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Chapter 1

Quantum Computing

1.1 Introduction

Today’s computers—both in theory (Turing machines) and practice (PCs)—are
based on classical physics. However, modern quantum physics tells us that the
world behaves quite differently. A quantum system can be in a superposition of
many different states at the same time, and can exhibit interference effects during
the course of its evolution. Moreover, spatially separated quantum systems may
be entangled with each other and operations may have “non-local” effects because
of this.

Quantum computation is the field that investigates the computational power
and other properties of computers based on quantum-mechanical principles. An
important objective is to find quantum algorithms that are significantly faster
than any classical algorithm solving the same problem. The field started in the
early 1980s with suggestions for analog quantum computers by Paul Benioff [22]
and Richard Feynman [74, 75], and reached more digital ground when in 1985
David Deutsch defined the universal quantum Turing machine [61]. The following
years saw only sparse activity, notably the development of the first algorithms
by Deutsch and Jozsa [63] and by Simon [152], and the development of quantum
complexity theory by Bernstein and Vazirani [28]. However, interest in the field
increased tremendously after Peter Shor’s very surprising discovery of efficient
quantum algorithms for the problems of integer factorization and discrete loga-
rithms in 1994 [151]. Since most of current classical cryptography is based on
the assumption that these two problems are computationally hard, the ability to
actually build and use a quantum computer would allow us to break most current
classical cryptographic systems, notably the RSA system [140, 142]. (In contrast,
a quantum form of cryptography due to Bennett and Brassard [26] is unbreakable
even for quantum computers.)

This chapter is intended to be an introduction to the model of quantum com-
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2 Chapter 1. Quantum Computing

putation and to the main quantum algorithms that have been found so far, all
of which are conveniently named after their inventors: Deutsch-Jozsa, Bernstein-
Vazirani, Simon, Shor, and Grover. Some familiarity with computational com-
plexity theory will be useful, but is not necessary for understanding the chapter.
We start with an abstract explanation of quantum mechanics in Section 1.2.
Section 1.3 explains what quantum bits and quantum memory look like, and Sec-
tion 1.4 shows how we can compute with quantum memory. In the last three
sections we explain the above-mentioned quantum algorithms in detail.

Before limiting ourselves to theory, let us say a few words about practice: to
what extent will quantum computers ever be built? At this point in time, it is just
too early to tell. The first small 2-qubit quantum computer was built in 1997 and
at the time of writing (early 2001), the largest implemented quantum algorithm
uses a mere 5 qubits [156]. The practical problems facing physical realizations
of quantum computers seem formidable. The problems of noise and decoherence
have to some extent been solved in theory by the discovery of quantum error-
correcting codes and fault-tolerant computing (see e.g. [130, Chapter 10]), but
these problems are by no means solved in practice. On the other hand, we should
realize that the field of physical realization of quantum computing is still in its
infancy and that classical computing had to face and solve many formidable
technical problems as well—interestingly, often these problems were even of the
same nature as those now faced by quantum computing (e.g., noise-reduction
and error-correction). Moreover, the difficulties facing the implementation of a
full quantum computer may seem daunting, but more limited things involving
quantum communication have already been implemented with some success, for
example quantum cryptography and teleportation (which is the process of sending
qubits using entanglement and classical communication).

Even if the theory of quantum computing never materializes to a real physical
computer, quantum-mechanical computers are still an extremely interesting idea
which will bear fruit in other areas than practical fast computing. On the physics
side, it may improve our understanding of quantum mechanics. The emerging
theory of entanglement has already done this to some extent. On the computer
science side, the theory of quantum computation generalizes and enriches classical
complexity theory and may help resolve some of its problems. This explains the
motto of the present thesis: se non è vero, è ben trovato, which roughly translates
as “even if it is not true, it’s still a nice idea”.

1.2 Quantum Mechanics

Here we give a brief and abstract introduction to quantum mechanics. In short: a
quantum state is a superposition of classical states, to which we can apply either
a measurement or a unitary operation. For the required linear algebra and Dirac
notation we refer to Appendix A.



1.2. Quantum Mechanics 3

1.2.1 Superposition

Consider some physical system that can be in N different, mutually exclusive
classical states. Call these states |1〉, |2〉, . . . , |N〉. Roughly, by a “classical” state
we mean a state in which the system can be found if we observe it. A pure
quantum state (usually just called state) |φ〉 is a superposition of classical states,
written

|φ〉 = α1|1〉+ α2|2〉+ · · ·+ αN |N〉.
Here αi is a complex number that is called the amplitude of |i〉 in |φ〉. Intuitively, a
system in quantum state |φ〉 is in all classical states at the same time! It is in state
|1〉 with amplitude α1, in state |2〉 with amplitude α2, and so on. Mathematically,
the states |1〉, . . . , |N〉 form an orthonormal basis of an N -dimensional Hilbert
space (i.e., an N -dimensional vector space equipped with an inner product) of
dimension N , and a quantum state |φ〉 is a vector in this space.

1.2.2 Measurement

There are two things we can do with a quantum state: measure it or let it evolve
unitarily without measuring it. We will deal with measurement first.

Measurement in the computational basis

Suppose we measure state |φ〉. We cannot “see” a superposition itself, but only
classical states. Accordingly, if we measure state |φ〉 we will see one and only
one classical state |j〉. Which specific |j〉 will we see? This is not determined in
advance; the only thing we can say is that we will see state |j〉 with probability
|αj|2, which is the squared norm of the corresponding amplitude αj (|a + ib| =√
a2 + b2). Thus observing a quantum state induces a probability distribution on

the classical states, given by the squared norms of the amplitudes. This implies∑N
j=1 |αj|2 = 1, so the vector of amplitudes has (Euclidean) norm 1. If we measure

|φ〉 and see classical state |j〉 as a result, then |φ〉 itself has “disappeared”, and
all that is left is |j〉. In other words, observing |φ〉 “collapses” the quantum
superposition |φ〉 to the classical state |j〉 that we saw, and all “information”
that might have been contained in the amplitudes αi is gone.

Orthogonal measurement

A somewhat more general kind of measurement than the above “measurement
in the computational (or standard) basis” is possible. This will be used only
sparsely in the thesis, and not not at all in this chapter, so it may be skipped
on a first reading. Such an orthogonal measurement is described by projectors
P1, . . . , PM (M ≤ N) which sum to identity. These projectors are orthogonal,
meaning that PiPj = 0 if i 6= j. The projector Pj projects on some subspace Vj
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of the total Hilbert space V , and every state |φ〉 ∈ V can be decomposed in a
unique way as |φ〉 = ∑M

j=1 |φj〉, with |φj〉 = Pj|φ〉 ∈ Vj. Because the projectors
are orthogonal, the subspaces Vj are orthogonal as well, as are the states |φj〉.
When we apply this measurement to the pure state |φ〉, then we will get outcome
j with probability ‖ |φj〉 ‖2= Tr(Pj|φ〉〈φ|) and the state will then “collapse” to
the new state |φj〉/ ‖|φj〉‖= Pj|φ〉/ ‖Pj|φ〉‖.

For example, a measurement in the standard basis is the specific orthogonal
measurement where M = N and Pj = |j〉〈j|. That is, Pj projects onto the
standard basis state |j〉 and the corresponding subspace Vj is the space spanned

by |j〉. Consider the state |φ〉 =∑N
j=1 αj|j〉. Note that Pj|φ〉 = αj|j〉, so applying

our measurement to |φ〉 will give outcome j with probability ‖ αj|j〉 ‖2= |αj|2,
and in that case the state collapses to αj|j〉/ ‖αj|j〉‖= αj

|αj | |j〉. The norm-1 factor
αj
|αj | may be disregarded because it has no physical significance, so we end up with

the state |j〉 as we saw before.
As another example, a measurement that distinguishes between |j〉 with j ≤

N/2 and |j〉 with j > N/2 corresponds to the two projectors P1 =
∑

j≤N/2 |j〉〈j|
and P2 =

∑
j>N/2 |j〉〈j|. Applying this measurement to the state |φ〉 = 1√

3
|1〉 +√

2
3
|N〉 will give outcome 1 with probability ‖ P1|φ〉 ‖2= 1/3, in which case the

state collapses to |1〉, and will give outcome 2 with probability ‖P2|φ〉 ‖2= 2/3,
in which case the state collapses to |N〉. We refer to the book of Nielsen and
Chuang [130] for the even more general but not really more powerful POVM-
formalism of measurement, which we will not need in this thesis.

1.2.3 Unitary evolution

Instead of measuring |φ〉, we can also apply some operation to it, i.e., change the
state to some

|ψ〉 = β1|1〉+ β2|2〉+ · · ·+ βN |N〉.
Quantummechanics only allows linear operations to be applied to quantum states.
What this means is: if we view a state like |φ〉 as an N -dimensional vector
(α1, . . . , αN )

T , then applying an operation that changes |φ〉 to |ψ〉 corresponds to
multiplying |φ〉 with an N ×N complex-valued matrix U :

U




α1
...
αN


 =




β1
...
βN


 .

Note that by linearity we have |ψ〉 = U |φ〉 = U (
∑

i αi|i〉) =
∑

i αiU |i〉.
Because measuring |ψ〉 should also give a probability distribution, we have

the constraint
∑N

j=1 |βj|2 = 1. This implies that the operation U must preserve
the norm of vectors, and hence must be a unitary transformation. A matrix U is
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unitary if its inverse U−1 equals its conjugate transpose U ∗. This is equivalent to
saying that U always maps a vector of norm 1 to a vector of norm 1. Because a
unitary transformation always has an inverse, it follows that any (non-measuring)
operation on quantum states must be reversible: by applying U−1 we can always
“undo” the action of U , and nothing is lost in the process. On the other hand,
a measurement is clearly non-reversible, because we cannot reconstruct |φ〉 from
the observed classical state |j〉.

1.3 Quantum Memory

In classical computation, the unit of information is a bit , which can be 0 or 1. In
quantum computation, this unit is a quantum bit (qubit), which is a superposition
of 0 and 1. Consider a system with 2 basis states, call them |0〉 and |1〉. We

identify these basis states with the vectors

(
1
0

)
and

(
0
1

)
, respectively. A

single qubit can be in any superposition

α0|0〉+ α1|1〉, |α0|2 + |α1|2 = 1.

Accordingly, a single qubit “lives” in the vector space C2. Similarly we can think
of systems of more than 1 qubit, which “live” in the tensor product space of
several qubit systems. For instance, a 2-qubit system has 4 basis states: |0〉⊗ |0〉,
|0〉⊗ |1〉, |1〉⊗ |0〉, |1〉⊗ |1〉. Here for instance |1〉⊗ |0〉 means that the first qubit
is in its basis state |1〉 and the second qubit is in its basis state |0〉. We will often
abbreviate this to |1〉|0〉, |1, 0〉, or even |10〉.

More generally, a register of n qubits has 2n basis states, each of the form
|b1〉 ⊗ |b2〉 ⊗ . . . ⊗ |bn〉, with bi ∈ {0, 1}. We can abbreviate this to |b1b2 . . . bn〉.
We will often abbreviate 0 . . . 0 to ~0. Since bitstrings of length n can be viewed
as numbers between 0 and 2n − 1, we can also write the basis states as numbers
|0〉, |1〉, |2〉, . . . , |2n − 1〉. A quantum register of n qubits can be in any superpo-
sition

α0|0〉+ α1|1〉+ · · ·+ α2n−1|2n − 1〉,
2n−1∑

j=0

|αj|2 = 1.

If we measure this in the standard basis, we obtain the n-bit state state |j〉 with
probability |αj|2.

Measuring just the first qubit of a state would correspond to the orthogonal
measurement that has the two projectors P0 = |0〉〈0| ⊗ I2n−1 and P1 = |1〉〈1| ⊗
I2n−1 . For example, applying this measurement to the state 1√

3
|0〉|φ〉+

√
2
3
|1〉|ψ〉

will give outcome 0 with probability 1/3 (the state then becomes |0〉|φ〉) and out-
come 1 with probability 2/3 (the state then becomes |1〉|ψ〉). Similarly, measuring
the first n qubits of an (n+m)-qubit state in the standard basis corresponds to the
orthogonal measurement that has 2n projectors Pi = |i〉〈i| ⊗ I2m for i ∈ {0, 1}n.
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An important property that deserves to be mentioned is entanglement, which
refers to quantum correlations between different qubits. For instance, consider a
2-qubit register that is in the state

1√
2
|00〉+ 1√

2
|11〉.

Such 2-qubit states are sometimes called EPR-pairs in honor of Einstein, Podol-
sky, and Rosen [67], who first examined such states and their seemingly paradox-
ical properties. Initially neither of the two qubits has a classical value |0〉 or |1〉.
However, if we measure the first qubit and observe, say, a |0〉, then the whole
state collapses to |00〉. Thus observing only the first qubit immediately fixes also
the second, unobserved qubit to a classical value. Therefore this system is called
entangled. Since the two qubits that make up the register may be far apart, this
example illustrates some of the non-local effects that quantum systems can ex-
hibit. In general, a bipartite state |φ〉 is called entangled if it cannot be written
as a tensor product |φA〉 ⊗ |φB〉 where |φA〉 lives in the first space and |φB〉 lives
in the second.

At this point, a comparison with classical probability distributions may be
helpful. Suppose we have two probability spaces, A and B, the first with 2n

possible outcomes, the second with 2m possible outcomes. A distribution on the
first space can be described by 2n numbers (non-negative reals summing to 1;
actually there are only 2n − 1 degrees of freedom here) and a distribution on the
second by 2m numbers. Accordingly, a product distribution on the joint space
can be described by 2n + 2m numbers. However, an arbitrary (non-product)
distribution on the joint space takes 2n+m real numbers, since there are 2n+m

possible outcomes in total. Analogously, an n-qubit state |φA〉 can be described
by 2n numbers (complex numbers whose squared moduli sum to 1), an m-qubit
state |φB〉 by 2m numbers, and their tensor product |φA〉 ⊗ |φB〉 by 2n + 2m

numbers. However, an arbitrary (possibly entangled) state in the joint space
takes 2n+m numbers, since it lives in a 2n+m-dimensional space. We see that the
number of parameters required to describe quantum states is the same as the
number of parameters needed to describe probability distributions. Also note
the analogy between statistical independence of two random variables A and B
and non-entanglement of the product state |φA〉 ⊗ |φB〉. However, despite the
similarities between probabilities and amplitudes, quantum states are much more
powerful than distributions, because amplitudes may have negative parts which
can lead to interference effects. Amplitudes only become probabilities when we
square them. The art of quantum computing is to use these special properties for
interesting computational purposes.
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1.4 Quantum Computation

Below we explain how a quantum computer can apply computational steps to its
register of qubits. Two models exist for this: the quantum Turing machine [61, 28]
and the quantum circuit model [62, 165]. These models are equivalent, in the sense
that they can simulate each other in polynomial time, assuming the circuits are
appropriately “uniform”. We only explain the circuit model here, which is more
popular among researchers.

1.4.1 Classical circuits

In classical complexity theory, a Boolean circuit is a finite directed acyclic graph
with AND, OR, and NOT gates. It has n input nodes, which contain the n
input bits (n ≥ 0). The internal nodes are AND, OR, and NOT gates, and there
are one or more designated output nodes. The initial input bits are fed into
AND, OR, and NOT gates according to the circuit, and eventually the output
nodes assume some value. We say that a circuit computes some Boolean function
f : {0, 1}n → {0, 1}m if the output nodes get the right value f(x) for every input
x ∈ {0, 1}n.

A circuit family is a set C = {Cn} of circuits, one for each input size n.
Each circuit has one output bit. Such a family recognizes or decides a language
L ⊆ {0, 1}∗ if, for every n and every input x ∈ {0, 1}n, the circuit Cn outputs 1 if
x ∈ L and outputs 0 otherwise. Such a circuit family is uniformly polynomial if
there is a deterministic Turing machine that outputs Cn given n as input, using
space logarithmic in n (this implies time polynomial in n, because such a machine
will have only poly(n) different internal states, so it either halts after poly(n) steps
or cycles forever). Note that the size (number of gates) of the circuits Cn can then
grow at most polynomially with n. It is known that uniformly polynomial circuit
families are equal in power to polynomial-time deterministic Turing machines: a
language L can be decided by a uniformly polynomial circuit family iff L ∈ P [135,
Theorem 11.5], where P is the class of languages decidable by polynomial-time
Turing machines.

Similarly we can consider randomized circuits. These receive, in addition to
the n input bits, also some random bits (“coin flips”) as input. A randomized
circuit computes a function f if it successfully outputs the right answer f(x)
with probability at least 2/3 for every x (probability taken over the values of the
random bits; the 2/3 may be replaced by any 1/2 + ε). Randomized circuits are
equal in power to randomized Turing machines: a language L can be decided
by a uniformly polynomial randomized circuit family iff L ∈ BPP, where BPP
(“Bounded-error Probabilistic Polynomial time”) is the class of languages that can
efficiently be recognized by randomized Turing machines with success probability
at least 2/3. Clearly P ⊆ BPP. It is unknown whether this inclusion is strict.
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1.4.2 Quantum circuits

A quantum circuit (also called quantum network or quantum gate array) general-
izes the idea of classical circuit families, replacing the AND, OR, and NOT gates
by elementary quantum gates. A quantum gate is a unitary transformation on a
small (usually 1, 2, or 3) number of qubits. Mathematically, these gates can be
composed by taking tensor products (if gates are applied in parallel to different
parts of the register) and ordinary products (if gates are applied sequentially).
Simple examples of such circuits of elementary gates are given in the next section.

A widely used example of a 1-qubit gate is the Hadamard transform, specified
by:

H|0〉 = 1√
2
|0〉+ 1√

2
|1〉

H|1〉 = 1√
2
|0〉 − 1√

2
|1〉

As a unitary matrix, this is represented as

H =
1√
2

(
1 1
1 −1

)
.

If we apply H to initial state |0〉 and then measure, we have equal probability
of observing |0〉 or |1〉. Similarly, applying H to |1〉 and observing gives equal
probability of |0〉 or |1〉. However, if we applyH to the superposition 1√

2
|0〉+ 1√

2
|1〉

then we obtain |0〉: the positive and negative amplitudes for |1〉 cancel out! This
effect is called interference, and is analogous to interference patterns between light
or sound waves. Note that if we apply H to each bit in a register of n zeroes,
we obtain 1√

2n

∑
j∈{0,1}n |j〉, which is a superposition of all n-bit strings. More

generally, if we apply H⊗n to an initial state |i〉, with i ∈ {0, 1}n, we obtain

H⊗n|i〉 = 1√
2n

∑

j∈{0,1}n
(−1)i·j|j〉, (1.1)

where i·j =∑n
k=1 ikjk denotes the inner product of the n-bit strings i, j ∈ {0, 1}n.

For example:

H⊗2|01〉 = 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉 − |1〉) = 1

2

∑

j∈{0,1}2
(−1)01·j|j〉.

The n-fold Hadamard transform will be very useful for the quantum algorithms
explained in the next section.

Another important 1-qubit gate is the phase gate Rφ, which merely rotates
the phase of the |1〉-state by an angle φ:

Rφ|0〉 = |0〉
Rφ|1〉 = eiφ|1〉
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This corresponds to the unitary matrix

R =

(
1 0
0 eiφ

)
.

An example of a 2-qubit gate is the controlled-not gate CNOT. It negates the
second bit of its input if the first bit is 1, and does nothing if the first bit is 0:

CNOT|0〉|b〉 = |0〉|b〉
CNOT|1〉|b〉 = |1〉|1− b〉

In matrix form, this is

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

As in the classical case, a quantum circuit is a finite directed acyclic graph
of input nodes, gates, and output nodes. There are n nodes that contain the
input (as classical bits); in addition we may have some more input nodes that
are initially |0〉 (“workspace”). The internal nodes of the quantum circuit are
quantum gates that each operate on at most 2 qubits of the state. The gates in
the circuit transform the initial state vector into a final state, which will generally
be a superposition. We measure some dedicated output bits of this final state
to (probabilistically) obtain an answer. It is known that the set of all 1-qubit
operations together with the 2-qubit CNOT gate is universal, meaning that any
other unitary transformation can be built from these gates. Allowing all 1-qubit
gates is not very realistic from an implementational point of view, as there are
uncountably many of them. However, the model is usually restricted, only al-
lowing a small finite set of 1-qubit gates from which all other 1-qubit gates can
be efficiently approximated. For example, it is known that the set consisting of
CNOT, Hadamard, and the phase-gate Rπ/4 is universal in the sense of approxi-
mation. In the main part of this thesis we will not be much concerned with the
actual gate-complexity of our unitary transformations, so we refer to [16, 130] for
more details.

The classical classes P and BPP can now be generalized as follows. EQP
(“Exact Quantum Polynomial time”) is the class of languages that can be recog-
nized with success probability 1 by uniformly polynomial quantum circuits. BQP
(“Bounded-error Quantum Polynomial time”) is the class of languages that can
be recognized with success probability at least 2/3 by uniformly polynomial quan-
tum circuits. Since classical computations can be made reversible at a small cost,
and every reversible classical computation is a quantum computation, it follows
that P ⊆ EQP and BPP ⊆ BQP. One of the main open question of quantum
complexity theory is whether these inclusions are strict, and more generally what
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is the power of BQP. The main candidate to separate BPP and BQP is the
factoring problem, to be explained below when we come to Shor’s factoring al-
gorithm. The inclusion BQP ⊆ PSPACE was proven in [28], where PSPACE
denotes the class of all problems that can be solved by classical Turing machines
using space polynomial in the input length. A stronger inclusion for BQP was
shown in [76].

One uniquely quantum-mechanical effect that we can use for building quantum
algorithms is quantum parallelism. Suppose we have a classical algorithm that
computes some function f : {0, 1}n → {0, 1}m. Then we can build a quantum
circuit U that maps |x〉|0〉 → |x〉|f(x)〉 for every x ∈ {0, 1}n. Now suppose
we apply U to a superposition of all inputs x (which is easy to build using n
Hadamard transforms):

U


 1√

2n

∑

x∈{0,1}n
|x〉|0〉


 =

1√
2n

∑

x∈{0,1}n
|x〉|f(x)〉.

We applied U just once, but the final superposition contains f(x) for all 2n input
values x! However, by itself this is not very useful and does not give more than
classical randomization, since observing the final superposition will give just one
random |x〉|f(x)〉 and all other information will be lost. As we will see below,
quantum parallelism needs to be combined with the effects of interference and
entanglement in order to get something that is better than classical.

1.5 The Early Algorithms

The two main successes of quantum algorithm so far are Shor’s factoring algorithm
from 1994 [151] and Grover’s search algorithm from 1996 [83], which will be
discussed in the following sections. In this section we describe the sequence of
earlier quantum algorithms that preceded Shor’s and Grover’s.

Virtually all quantum algorithms work with queries in some form or other.
We will explain this model here. It may look contrived at first, but eventually will
lead smoothly to Shor’s and Grover’s algorithm. We should, however, emphasize
that the query complexity model differs from the standard model described above,
because the input is now given as a “black-box”. This means that the exponential
quantum-classical separations that we describe below (like Simon’s) do not by
themselves give exponential quantum-classical separations in the standard model.
In particular, they do not imply BPP 6= BQP.

To explain the query setting, consider an N -bit input x = (x1, . . . , xN ) ∈
{0, 1}N . Usually we will have N = 2n, so that we can address bit xi using an
n-bit index i. One can think of the input as an N -bit memory which we can
access at any point of our choice (a Random Access Memory). A memory access
is via a so-called “black-box”, which is equipped to output the bit xi on input i.
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As a quantum operation, this would be the following unitary mapping on n + 1
qubits:

O : |i, 0〉 → |i, xi〉.
The (n+1)st qubit of the state is called the target bit. Since this operation must
be unitary, we also have to specify what happens if the initial value of the target
bit is 1. Therefore we actually let O be the following unitary transformation:

O : |i, b〉 → |i, b⊕ xi〉,

here i ∈ {0, 1}n, b ∈ {0, 1}, and ⊕ denotes exclusive-or (addition modulo 2).
In matrix representation, O is now a permutation matrix and hence unitary.
Note also that a quantum computer can apply O on a superposition of various i,
something a classical computer cannot do. One application of this black-box is
called a query, and counting the required number of queries to compute this or
that function of x is something we will do a lot in the first half of this thesis.

Given the ability to make a query of the above type, we can also make a
query of the form |i〉 → (−1)xi |i〉 by setting the target bit to the state |∆〉 =
1√
2
(|0〉 − |1〉):

O (|i〉|∆〉) = |i〉 1√
2
(|xi〉 − |1− xi〉) = (−1)xi |i〉|∆〉.

This ±-kind of query puts the output variable in the phase of the state: if xi is
1 then we get a −1 in the phase; if xi = 0 nothing happens. This is sometimes
more convenient than the standard type of query. We denote the corresponding
n-qubit unitary transformation by O±.

1.5.1 Deutsch-Jozsa

Deutsch-Jozsa problem [63]:
For N = 2n, we are given x ∈ {0, 1}N such that either
(1) all xi have the same value (“constant”), or
(2) N/2 of the xi are 0 and N/2 are 1 (“balanced”).
The goal is to find out whether x is constant or balanced.

The algorithm of Deutsch and Jozsa is as follows. We start in the n-qubit
zero state |~0〉, apply a Hadamard transform to each qubit, apply a query (in
its ±-form), apply another Hadamard to each qubit, and then measure the final
state. As a unitary transformation, the algorithm would beH⊗nO±H

⊗n. We have
drawn the corresponding quantum circuit in Figure 1.1 (where time progresses
from left to right).

Let us follow the state through these operations. Initially we have the state
|0n〉. By Equation 1.1 on page 8, after the first Hadamard transforms we have
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|0〉

|0〉

|0〉

measure

H

H

H

H

H

H

O±

Figure 1.1: The Deutsch-Jozsa algorithm for n = 3

obtained the uniform superposition of all i:

1√
2n

∑

i∈{0,1}n
|i〉.

The O±-query turns this into

1√
2n

∑

i∈{0,1}n
(−1)xi |i〉.

Applying another Hadamard gives (again by Equation 1.1) the final superposition

1

2n

∑

i∈{0,1}n
(−1)xi

∑

j∈{0,1}n
(−1)i·j|j〉,

where i · j =
∑n

k=1 ikjk as before. Since i · ~0 = 0 for all i ∈ {0, 1}n, we see that

the amplitude of the |~0〉-state in the final superposition is

1

2n

∑

i∈{0,1}n
(−1)xi =





1 if xi = 0 for all i,
−1 if xi = 1 for all i,
0 if x is balanced.

Hence the final observation will yield |~0〉 if x is constant and will yield some other
state if x is balanced. Accordingly, the Deutsch-Jozsa problem can be solved with
certainty using only 1 quantum query and O(n) other operations (the original
solution of Deutsch and Jozsa used 2 queries, the 1-query solution is from [55]).

In contrast, it is easy to see that any classical deterministic algorithm needs
at least N/2 + 1 queries: if it has made only N/2 queries and seen only 0s, the
correct output is still undetermined. However, a classical algorithm can solve
this problem efficiently if we allow a small error probability: just query x at two
random positions, output “constant” if those bits are the same and “balanced” if
they are different. This algorithm outputs the correct answer with probability 1 if
x is constant and outputs the correct answer with probability 1/2 if x is balanced.
Thus the quantum-classical separation of this problem only holds if we consider
algorithms without error probability.
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1.5.2 Bernstein-Vazirani

Bernstein-Vazirani problem [28]:
For N = 2n, we are given x ∈ {0, 1}N with the property that there is some
unknown a ∈ {0, 1}n such that xi = (i · a) mod 2. The goal is to find a.

The Bernstein-Vazirani algorithm is exactly the same as the Deutsch-Jozsa
algorithm, but now the final observation miraculously yields a. Since (−1)xi =
(−1)(i·a) mod 2 = (−1)i·a, we can write the state obtained after the query as:

1√
2n

∑

i∈{0,1}n
(−1)xi |i〉 = 1√

2n

∑

i∈{0,1}n
(−1)i·a|i〉.

Applying a Hadamard to each qubit will turn this into the classical state |a〉 and
hence solves the problem with 1 query and O(n) other operations. In contrast,
any classical algorithm (even a randomized one with small error probability) needs
to ask n queries for information-theoretic reasons: the final answer consists of n
bits and one classical query gives at most 1 bit of information.

Bernstein and Vazirani also defined a recursive version of this problem, which
can be solved exactly by a quantum algorithm in poly(n) steps, but for which any
classical randomized algorithm needs nΩ(logn) steps.

1.5.3 Simon

Let N = 2n, and [N ] = {1, . . . , N}, which we can identify with {0, 1}n. Let j ⊕ s
be the n-bit string obtained by bitwise adding the n-bit strings j and s mod 2.

Simon’s problem [152]:
For N = 2n, we are given x = (x1, . . . , xN), with xi ∈ {0, 1}n, with the property
that there is some unknown non-zero s ∈ {0, 1}n such that xi = xj iff i = j ⊕ s.
The goal is to find s.

Note that x, viewed as a function from [N ] to [N ] is a 2-to-1 function, where the
2-to-1-ness is determined by the unknown mask s. The queries to the input here
are slightly different from before: the input x = (x1, . . . , xN) now has variables
xi that themselves are n-bit strings, and one query gives such a string completely
(|i,~0〉 → |i, xi〉). However, we can also view this problem as having n2n binary
variables that we can query individually. Since we can simulate one xi-query
using only n binary queries (just query all n bits of xi), this alternative view will
not affect the number of queries very much.

Simon’s algorithm starts out very similar to Deutsch-Jozsa: start in a state of
2n zero qubits |~0〉 and apply Hadamard transforms to the first n qubits, giving

1√
2n

∑

i∈{0,1}n
|i〉|~0〉.
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At this point, the second n-qubit register still holds only zeroes. A query turns
this into

1√
2n

∑

i∈{0,1}n
|i〉|xi〉.

Now the algorithm measures the second n-bit register (this measurement is actu-
ally not necessary, but it facilitates analysis). The measurement outcome will be
some value xi and the first register will collapse to the superposition of the two
indices having that xi-value:

1√
2
(|i〉+ |i⊕ s〉)|xi〉.

We will now ignore the second register and apply Hadamard transforms to the
first n qubits. Using Equation 1.1 and the fact that (i ⊕ s) · j = (i · j) ⊕ (s · j),
we can write the resulting state as

1√
2n+1


 ∑

j∈{0,1}n
(−1)i·j|j〉+

∑

j∈{0,1}n
(−1)(i⊕s)·j|j〉


 =

1√
2n+1


 ∑

j∈{0,1}n
(−1)i·j

(
1 + (−1)s·j

)
|j〉


 .

Note that |j〉 has non-zero amplitude iff s · j = 0 mod 2. Accordingly, if we
measure the final state we get a linear equation that gives information about s.
Repeating this algorithm an expected number of O(n) times, we obtain n inde-
pendent linear equations involving s, from which we can extract s efficiently by
a classical algorithm (Gaussian elimination over GF (2)). Simon’s algorithm thus
finds s using an expected number of O(n) xi-queries and polynomially many other
operations. Later, Brassard and Høyer [34] gave a variant of Simon’s algorithm
that solves the problem using only polynomial (in n) quantum operations even
in the worst-case.

Simon [152] proved that any classical randomized algorithm that finds s with
high probability needs to make Ω(

√
2n) queries.1 This was the first proven ex-

ponential separation between quantum algorithms and classical bounded-error
algorithms (let us stress again that this does not prove BPP 6= BQP, because
we are counting queries rather than ordinary operations here). Simon’s algorithm
inspired Shor to his factoring algorithm, which we describe below.

1The essence of the proof is as follows. There are N (i, i⊕s)-pairs (collisions) among all
(
N
2

)

(i, j)-pairs, so a random set of o(N) pairs probably does not contain any collision, and hence
gives no information about s. If the classical algorithm makes T queries, it “sees”

(
T
2

)
pairs;

this must be more than o(N), hence T ∈ Ω(
√

N).
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1.6 Shor’s Factoring Algorithm

Probably the most important quantum algorithm so far is Shor’s factoring algo-
rithm [151]. It can find a factor of a composite number N in roughly (logN)2

steps, which is polynomial in the length logN of the input. On the other hand,
there is no known classical (deterministic or randomized) algorithm that can fac-
tor N in polynomial time. The best known classical randomized algorithms run
in time roughly

2(logN)
α

,

where α = 1/3 for a heuristic upper bound [110] and α = 1/2 for a rigorous upper
bound [111]. In fact, much of modern cryptography is based on the conjecture
that no fast classical factoring algorithm exists [142]. All this cryptography (for
example RSA) would be broken if Shor’s algorithm could be physically realized.
In terms of complexity classes: factoring (rather, the decision problem equivalent
to it) is provably in BQP but is not known to be in BPP. If indeed factoring is
not in BPP, then the quantum computer would be the first counterexample to
the “strong” Church-Turing thesis, which states that all “reasonable” models of
computation are polynomially equivalent (see [68] and [135, p.31,36]).

Shor also gave a similar algorithm for solving the discrete logarithm problem.
His algorithm was subsequently generalized to solve the so-called Abelian hidden
subgroup problem and phase-estimation problem [99, 55, 124]. We will not go
into those issues here, and restrict to an explanation of the quantum factoring
algorithm.

1.6.1 Reduction from factoring to period-finding

The crucial observation of Shor was that there is an efficient quantum algorithm
for the problem of period-finding and that factoring can be reduced to this. We
first explain the reduction. Suppose we want to find factors of the composite
number N > 1. Randomly choose some integer x ∈ {2, . . . , N − 1} which is
coprime to N (if x is not coprime to N , then the greatest common divisor of x
and N is a factor of N , so then we are already done). Now consider the sequence

1 = x0 mod N, x1 mod N, x2 mod N, . . .

This sequence will cycle after a while: there is a least 0 < r ≤ N such that
xr = 1 mod N . This r is called the period of the sequence. It can be shown that
with probability ≥ 1/4, r is even and xr/2 + 1 and xr/2 − 1 are not multiples of
N . In that case we have:

xr ≡ 1 mod N ⇐⇒
(xr/2)2 ≡ 1 mod N ⇐⇒

(xr/2 + 1)(xr/2 − 1) ≡ 0 mod N ⇐⇒
(xr/2 + 1)(xr/2 − 1) = kN for some k.
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Note that k > 0 because both xr/2 + 1 > 0 and xr/2 − 1 > 0 (x > 1). Hence
xr/2 + 1 or xr/2 − 1 will share a factor with N . Because xr/2 + 1 and xr/2 − 1 are
not multiples of N this factor will be < N , and in fact both these numbers will
share a non-trivial factor with N . Accordingly, if we have r then we can efficiently
(in roughly logN steps) compute the greatest common divisors gcd(xr/2 + 1, N)
and gcd(xr/2 − 1, N), and both of these two numbers will be non-trivial factors
of N . If we are unlucky we might have chosen an x that does not give a factor
(which we can detect efficiently), but trying a few different random x gives a high
probability of finding a factor.

Thus the problem of factoring reduces to finding the period r of the function
given by modular exponentiation f(a) = xa mod N . In general, the period-
finding problem can be stated as follows:

The period-finding problem:
We are given some function f : N → [N ] with the property that there is some
unknown r ∈ [N ] such that f(a) = f(b) iff a = b mod r. The goal is to find r.

We will show below how we can solve this problem efficiently, using O(log logN)
evaluations of f and O(log logN) quantum Fourier transforms. An evaluation
of f can be viewed as analogous to the application of a query in the previous
algorithms. Even a somewhat more general kind of period-finding can be solved
by Shor’s algorithm with very few f -evaluations, whereas any classical bounded-
error algorithm would need to evaluate the function Ω(N 1/3/

√
logN) times in

order to find the period [52].
How many steps (elementary gates) will the algorithm take? For a = NO(1),

we can compute f(a) = xa mod N in O((logN)2 log logN log log logN) steps:
compute x2 mod N, x4 mod N, x8 mod N, . . . by repeated squaring (using the
Schönhage-Strassen algorithm for fast multiplication [106]) and take an appro-
priate product of these to get xa mod N . Moreover, as explained below, the
quantum Fourier transform can be implemented using O((logN)2) steps. Ac-
cordingly, Shor’s algorithm finds a factor of N using an expected number of
roughly (logN)2(log logN)2 log log logN steps, which is only slightly worse than
quadratic in the length of the input.

1.6.2 The quantum Fourier transform

For some number q, let Zq = {0, . . . , q − 1}. For each a ∈ Zq define a function
χa : Zq → C by

χa(b) = e2πi
ab
q .

The set of basis states {|a〉 | a ∈ Zq} is called the standard basis. An alternative
orthonormal basis, called the Fourier basis, is the set {|χa〉 | a ∈ Zq} defined by

|χa〉 =
1√
q

∑

b∈Zq

χa(b)|b〉.
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The quantum Fourier transform (QFT) is the unitary transformation that maps
the standard basis to the Fourier basis:

QFT: |a〉 → |χa〉.

It is known that if q = 2m for some m, then the QFT can be implemented on
a quantum computer using O((log q)2) elementary gates. We will here present
the construction from [55]; somewhat more efficient constructions can be found
in [57, 85, 56]. It may be verified (with some effort) that applying QFT to an
m-bit basis state |a〉 = |a1 . . . am〉 gives an unentangled state:

|χa〉 =
1√
2m

(
|0〉+ e2πi(0.am)|1〉)(|0〉+ e2πi(0.am−1am)|1〉) · · · (|0〉+ e2πi(0.a1...am)|1〉

)
,

with 0.aj . . . am interpreted as a fraction in binary digits. This means that we can
just restrict attention to single-qubit operations controlled by the values of the
ai-bits, as follows. To the rightmost qubit of the initial state, which is initially
|am〉, we apply a Hadamard gate, obtaining 1√

2
(|0〉 + e2πi(0.am)|1〉). This is the

leftmost qubit of |χa〉. To the second qubit from the right in the initial state,
which is initially |am−1〉, we apply a Hadamard, and if am = 1 we also apply the
phase gate R2πi(1/4), obtaining

1√
2
(|0〉+e2πi(0.am−1am)|1〉). This is the second qubit

from the left of |χa〉. We also do this for |am−2〉, |am−3〉, “rotating in” smaller
and smaller angles etc., and eventually generating all qubits of |χa〉 in the wrong
order. Applying some swap gates to change the order, we have constructed |χa〉
using O(m2) operations. But if we have a circuit that works for basis states |a〉,
then by linearity it also works on all superpositions of basis states, so we have
constructed the full quantum Fourier transform. Graphical representations of this
circuit may be found in [55, 130].

1.6.3 Period-finding, easy case: r divides q

Now we will show how we can find the period of the function f , given a “black-
box” that maps |a〉|0〉 → |a〉|f(a)〉. We can always efficiently pick some q = 2m

such that N 2 < q ≤ 2N 2 and we can implement the Fourier transform over Zq
using O((logN)2) gates.

For didactical reasons, we will first assume that the unknown r divides q, in
which case everything works out smoothly. We now find r as follows. Start with
|0〉|0〉, two registers of dlog qe and dlogNe zeroes, respectively. Apply the QFT
to the first register to build the uniform superposition

1√
q

q−1∑

a=0

|a〉|~0〉.

(Actually the m-qubit Hadamard transform would have the same effect here.)
The second register still consists of zeroes. Now use the “black-box” to compute
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f(a) in quantum parallel:

1√
q

q−1∑

a=0

|a〉|f(a)〉.

Observing the second register gives some value f(s), with s < r. Because f(a) =
f(s) iff a = s mod r, and r divides q, the a of the form a = jr + s (0 ≤ j < q/r)
are exactly the a for which f(a) = f(s). Thus the first register collapses to a
superposition of |s〉, |r+s〉, |2r+s〉, . . . , |q−r+s〉 and the second register collapses
to the classical state |f(s)〉. We can now ignore the second register, and have in
the first: √

r

q

q/r−1∑

j=0

|jr + s〉.

Applying the QFT again gives

√
r

q

q/r−1∑

j=0

q−1∑

b=0

e2πi
(jr+s)b

q |b〉 =
√
r

q

q−1∑

b=0

e2πi
sb
q



q/r−1∑

j=0

e2πi
jrb
q


 |b〉.

Using that
∑n−1

j=0 a
j = (1− an)/(1− a) for a 6= 1, we compute:

q/r−1∑

j=0

e2πi
jrb
q =

q/r−1∑

j=0

(
e2πi

rb
q

)j
=





q/r if e2πi
rb
q = 1

1−
(
e
2πi rbq

)q/r

1−e2πi
rb
q

= 1−e2πib

1−e2πi
rb
q
= 0 if e2πi

rb
q 6= 1

Note that e2πirb/q = 1 iff rb/q is an integer iff b is a multiple of q/r. Accordingly,
we are left with a superposition where only the multiples of q/r have non-zero
amplitude. Observing this final superposition gives some random multiple b =
cq/r, with c a random number 0 ≤ c < r. Thus we get a b such that

b

q
=
c

r
,

where b and q are known and c and r are not. There are φ(r) ∈ Ω(r/ log log r)
numbers smaller than r that are coprime to r [86, Theorem 328], so c will be
coprime to r with probability Ω(1/ log log r). Accordingly, an expected number
of O(log logN) repetitions of the procedure of this section suffices to obtain a
b = cq/r with c coprime to r. Once we have such a b, we can obtain r as the
denominator by writing b/q in lowest terms.

Before continuing with the harder case, notice the resemblance of the basic
subroutine of Shor’s algorithm (Fourier, f -evaluation, Fourier) with the basic sub-
routine of Simon’s algorithm (Hadamard, query, Hadamard). The number of re-
quired f -evaluations for period-finding can actually be reduced from O(log logN)
to O(1), see Shor’s paper [151] for details.
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1.6.4 Period-finding, hard case: r does not divide q

In case r does not divide q (which is actually very likely), it can be shown that
applying exactly the same algorithm will still yield with high probability a b such
that ∣∣∣∣

b

q
− c

r

∣∣∣∣ ≤
1

2q
,

with b, q known and c, r unknown. Two distinct fractions, each with denomina-
tor ≤ N , must be at least 1/N 2 > 1/q apart.2 Therefore c/r is the only fraction
with denominator ≤ N at distance ≤ 1/2q from b/q. Applying continued-fraction
expansion (see [86, Chapter X]) to b/q efficiently gives us the fraction with de-
nominator ≤ N that is closest to b/q. This fraction must be c/r. Again, with
good probability c and r will be coprime, in which case writing c/r in lowest
terms gives us r.

1.7 Grover’s Search Algorithm

The search problem:
For N = 2n, we are given an arbitrary x ∈ {0, 1}N . The goal is to find an i such
that xi = 1 (and to output ‘no solutions’ if there are no such i).

This problem may be viewed as a simplification of the problem of searching
an N -slot unordered database. Classically, a randomized algorithm would need
Θ(N) queries to solve the search problem. Grover’s algorithm solves it in O(

√
N)

queries.

Let Ox|i〉 = (−1)xi |i〉 denote the ±-type oracle for the input x and OG be
the unitary transformation that puts a −1 in front of |~0〉 and does nothing to
the other basis states. The Grover iterate is G = −H⊗nOGH

⊗nOx. Note that 1
Grover iterate corresponds to 1 query.

Grover’s algorithm starts in the n-bit state |~0〉, applies a Hadamard transfor-
mation to each qubit to get the uniform superposition 1√

N

∑
i |i〉 of all N indices,

applies G to this state k times (for some k to be chosen later), and then measures
the final state. Intuitively, what happens is that in each iteration some ampli-
tude is moved from the indices of the 0-bits to the indices of the 1-bits. The
algorithm stops when almost all of the amplitude is on the 1-bits, in which case
a measurement of the final state will probably give the index of a 1-bit.

More precisely, suppose that t of the N input bits are 1. Let ak denote
the amplitude of the indices of the t 1-bits after k Grover iterates and bk the
amplitude of the indices of the 0-bits. Initially, for the uniform superposition we

2Consider two fractions z = x/y and z′ = x′/y′ with y, y′ ≤ N . If z 6= z′ then |xy′−x′y| ≥ 1,
and hence |z − z′| = |(xy′ − x′y)/yy′| ≥ 1/N2.
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have a0 = b0 = 1/
√
N . Using that H⊗nOGH

⊗n = I − [2/N ], where [2/N ] is the
matrix in which all entries are 2/N , we find the following recursion:

ak+1 =
N − 2t

N
ak +

2(N − t)
N

bk

bk+1 =
−2t
N

ak +
N − 2t

N
bk

The following formulas, due to Boyer et al. [30], provide a closed form for ak and
bk (which may be verified by filling them into the recursion).

ak =
1√
t
sin((2k + 1)θ)

bk =
1√
N − t

cos((2k + 1)θ)

where θ = arcsin(
√
t/N)

Accordingly, after k iterations the failure probability (the sum of squares of the
amplitudes of the N − t 0-bits) is

Pk = (N − t) · b2k = (cos((2k + 1)θ))2.

We want Pk to be as close to 0 as possible. Note that if we can choose k̃ =
π/4θ − 1/2, then (2k̃ + 1)θ = π/2 and hence Pk̃ = cos(π/2)2 = 0. An example
where this works is if t = N/4, for then θ = π/6 and k̃ = 1.

Unfortunately, k̃ will usually not be an integer. However, if we choose k to
be the integer closest to k̃, then the failure probability will still be small (using
|k − k̃| ≤ 1/2 and assuming t ≤ N/2):

Pk ≤ (cos(π/2 + θ))2 = (sin(θ))2 =
t

N
.

Since arcsinφ ≥ φ, the number of queries is k ≤ π/4θ ≤ π
4

√
N
t
. Thus we have

a bounded-error quantum search algorithm with O(
√
N/t) queries, assuming we

know t. If we do not know t, then we do not know which k to use, but a slightly
more complicated algorithm due to [30] (basically running the above algorithm
with systematic different guesses for k) shows that O(

√
N/t) queries still suffice

to find a solution with high probability. If there is no solution (t = 0) we can
easily detect that by checking xi for the i that the algorithm outputs.

In Chapter 3 we will make a much more detailed analysis of upper and lower
bounds on quantum searching. Before we continue, we mention two general results
that can be obtained by techniques similar to Grover’s.

1.7.1. Theorem (Amplitude amplification, BHMT [35]). There exists a
quantum algorithm QSearch with the following property. Let A be any quantum
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algorithm that uses no measurements, and let χ : Z → {0, 1} be any Boolean
function. Let p denote the initial success probability of A of finding a solution
(i.e., the probability that a measurement of the final state of A gives a z such
that χ(z) = 1). Algorithm QSearch finds a solution using an expected number of
O(1/

√
p) applications of A and A−1 if p > 0, and otherwise runs forever.

Very briefly, QSearch works very much like Grover’s algorithm: it iterates
the unitary transformation Q = −ASGA−1Sχ a number of times, starting with
initial state A|~0〉. Here Sχ|z〉 = (−1)χ(z)|z〉, and SG|~0〉 = −|~0〉 and SG|z〉 = |z〉
for all z 6= ~0. The analysis of [35] shows that doing a measurement after O(1/

√
p)

iterations of QSearch will yield a solution with probability close to 1. The
algorithm QSearch does not need to know the value of p in advance, but if p is
known, then a slightly modified QSearch can find a solution with certainty using
O(1/

√
p) applications of A and A−1.

Grover’s algorithm is a special case of amplitude amplification, where A is the
Hadamard transform on each qubit, which can be viewed as an algorithm with
success probability t/N . The exact case of amplitude amplification in fact implies
an exact quantum search algorithm for the case where t is known. In this case we
can find a solution with probability 1 using O(

√
N/t) steps.

Combining Grover’s algorithm with the Fourier transform leads to an algo-
rithm that can quickly count the number t = |x| of solutions in the input [35,
Theorem 13].

1.7.2. Theorem (Quantum counting, BHMT [35]). There exists a quan-
tum algorithm QCount with the following property. For every N-bit input x
(with t = |x|) and number of queries T , and any integer k ≥ 1, QCount uses T
queries and outputs a number t̃ such that

|t− t̃| ≤ 2πk

√
t(N − t)
T

+ π2k2
N

T 2

with probability at least 8/π2 if k = 1 and probability ≥ 1− 1/2(k − 1) if k > 1.

Roughly speaking, with high probability we will get an estimate t̃ that is
close to the real unknown t. For example, if we set T = 10

√
N , then with high

probability we will have |t− t̃| ≤
√
t.

1.8 Summary

Quantum computing starts from the observation that a computer is a physical
device and hence should follow the laws of physics. As it is currently believed
that nature is quantum-mechanical at the most fundamental level, it makes sense
to consider computers based on the laws of quantum mechanics. A state of such
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a quantum computer is a superposition of classical states, to which we can apply
a measurement or some unitary operation. Quantum algorithms can solve certain
problems much faster than classical algorithms. We sketched the early quantum
algorithms due to Deutsch & Jozsa, Bernstein & Vazirani, and Simon, as well as
the two main quantum algorithms known today: Shor’s algorithm for factoring
large integers in polynomial time and Grover’s algorithm for searching a space of
N elements in about

√
N steps.
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Query Complexity
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Chapter 2

Lower Bounds by Polynomials

This chapter is based on the papers

• R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum
Lower Bounds by Polynomials. In Proceedings of 39th IEEE FOCS, pages
352–361, 1998. Journal version to appear in the Journal of the ACM.

• H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for Small-Error
and Zero-Error Quantum Algorithms. In Proceedings of 40th IEEE FOCS,
pages 358–368, 1999.

• H. Buhrman and R. de Wolf. Complexity Measures and Decision Tree
Complexity: A Survey. To appear in Theoretical Computer Science, 2001.

2.1 Introduction

All quantum algorithms that we described in the previous chapter can be writ-
ten in the following form: they start in some classical initial state, do a unitary
transformation U0 on that state, make a query to the input, do another uni-
tary transformation U1, make another query to the input, and so on. Here the
transformations Uj are independent of the input. At the end, the output of the
algorithm is obtained by applying an appropriate measurement to the final state.
Sometimes 1 query suffices, as in the Deutsch-Jozsa case, and sometimes more
queries are needed, as in the Simon, Shor, and Grover cases. The reason that the
quantum algorithms work fast is twofold: (1) few queries suffice for them and (2)
the intermediate unitary transformations Uj are efficiently implementable. The
reason that classical algorithms are provably worse than quantum algorithms is
that they need many queries to solve the problem. For example, Simon’s al-
gorithm makes O(n) queries to the input while any classical algorithm requires
Ω(
√
2n) queries. Similarly, Grover’s algorithm makes O(

√
N) queries while any

classical algorithm for the same problem needs Ω(N) queries.

25
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Since virtually all existing quantum algorithms work in this query model and
achieve a provable speed-up there, it seems that the model of query complexity
captures a significant part of the power of quantum computers, and it is worth
studying the required number of queries in isolation. In contrast, analyzing reason
(2) above will be fairly difficult. Classical circuit complexity is already an exceed-
ingly hard field having close ties to the main open problems in complexity theory.
For example, superpolynomial circuit lower bounds for an NP-complete problem
would imply P 6= NP, but the best bounds known are only linear. Since quantum
generalizes classical, analyzing quantum circuit complexity (i.e., how many ele-
mentary quantum gates are needed to implement some unitary transformation?)
will be very hard as well, at least with respect to lower bounds.

In this chapter we will analyze quantum query complexity in detail, con-
trasting it with classical query complexity, which is also known as decision tree
complexity. In order to capture the essentials and to facilitate analysis, we will
simplify the model to the following: the input consists of N bits and the output
of only 1 bit. For example, Simon’s setting fits in this model by setting N = n2n,
redefining the output to be 0 if the input is 1-to-1 and 1 if the input is 2-to-1 (with
an appropriate non-zero mask s), and querying individual bits of the input rather
than n bits at a time. This boosts the query complexity of Simon’s algorithm
to O(n2) queries, but this is still exponentially smaller than the classical lower
bound. Something similar holds for Shor’s period-finding (Cleve [52] proved an
exponential classical lower bound on the query complexity of period-finding).

In our analysis, the distinction between total problems and promise problems
will be important. A total function or problem is defined on all 2N N -bit in-
puts. A promise problem is restricted to inputs satisfying some specific property,
called the “promise”, and is undefined on the inputs that do not satisfy the
promise. Looking at the main quantum algorithms, we can divide them in two
groups: quantum algorithms that achieve an exponential speed-up for promise
problems (Deutsch-Jozsa, Simon, Shor’s period-finding) and quantum algorithms
that achieve a polynomial speed-up for total problems (Grover and its applica-
tions). An obvious question is then: are there total problems for which a quan-
tum computer can achieve an exponential—or at least superpolynomial—speed-
up over classical algorithms. The main result of this chapter is a negative answer
to this question: for all total functions, quantum query complexity is at most
polynomially better than classical deterministic query complexity.

Our main tool in proving this result (as well as many others) will be the
degrees of multivariate polynomials that represent or approximate the function
f at hand. These we introduce in the next section. In Section 2.3 we define
deterministic, randomized, and quantum query complexity, and in Section 2.4 we
show how degrees lower bound query complexity. In Section 2.5 we then use those
lower bounds to prove the result that quantum and classical query complexity are
polynomially related. In the last sections we tighten the proven bounds for the
special classes of symmetric and monotone functions.
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2.2 Boolean Functions and Polynomials

2.2.1 Boolean functions

A Boolean function on N bits is a function f : D → {0, 1} where D ⊆ {0, 1}N .
If the domain D equals {0, 1}N then f is called a total function, otherwise it is a
promise function (where the promise is that no N -bit strings outside of D will be
presented as input). In this chapter we will restrict attention to total functions.
For an input x ∈ {0, 1}N , we use xi to denote its ith bit, so x = x1 . . . xN . We
use |x| = ∑N

i=1 xi to denote the Hamming weight of x (its number of 1s), and ~0
for the all-zero input. If S is a set of (indices of) variables, then we use xS to
denote the input obtained by complementing (negating) in x the bit positions in
S. We abbreviate x{i} to xi. For example, if x = 0011, then x{2,3} = 0101 and
x4 = 0010. We call f symmetric if f(x) only depends on |x|. Some common
N -bit symmetric functions that we will refer to are:

• ORN(x) = 1 iff |x| ≥ 1

• ANDN(x) = 1 iff |x| = N

• PARITYN(x) = 1 iff |x| is odd

• MAJN(x) = 1 iff |x| > N/2

We call f monotone (increasing) if f(x) cannot decrease if we set more variables
of x to 1. The above ORN , ANDN , and MAJN are examples of this.

2.2.2 Multilinear polynomials

If S is a set of (indices of) variables, then the monomial xS is defined as the
product of the S-variables: xS = Πi∈Sxi. The degree of this monomial is the
cardinality of S. Amultilinear polynomial onN variables is a function p : RN → C
that can be written as p(x) =

∑
S⊆[N ] aSxS for some complex numbers aS. We

call aS the coefficient of the monomial xS in p. The degree deg(p) of p is the degree
of its largest monomial: deg(p) = max{|S| | aS 6= 0}. Note that if we restrict
attention to the Boolean domain {0, 1}N , then xi = xki for all k > 1, so we can
change all higher exponents to 1 without affecting the value of the polynomial on
Boolean inputs. This shows that considering only multilinear polynomials is no
restriction when dealing with Boolean inputs.

The next lemma implies that if multilinear polynomials p and q are equal on
all Boolean inputs, then they are identical:

2.2.1. Lemma. Let p, q : RN → R be multilinear polynomials of degree at most
d. If p(x) = q(x) for all x ∈ {0, 1}N with |x| ≤ d, then p = q.
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Proof. Define r(x) = p(x) − q(x). Suppose r is not identically zero. Let xS
be a minimal-degree monomial in r with non-zero coefficient aS, and x be the
input where xj = 1 iff xj occurs in S. Then |x| ≤ d, and hence p(x) = q(x).
However, since all monomials in r except for xS evaluate to 0 on x, we have
r(x) = aS 6= 0 = p(x) − q(x), which is a contradiction. It follows that r is
identically zero and p = q. 2

Below we sketch the method of symmetrization, due to Minsky and Pa-
pert [122] (see also [19, Section 4]). Let p : RN → R be a polynomial. If π
is some permutation and x = x1 . . . xN , then π(x) = (xπ(1), . . . , xπ(N)). Let ΣN

be the set of all N ! permutations. The symmetrization psym of p averages over all
permutations of the input, and is defined as:

psym(x) =

∑
π∈ΣN p(π(x))

N !
.

Note that psym is a polynomial of degree at most the degree of p. Symmetrizing
may actually lower the degree: if p(x) = x1−x2, then psym(x) = 0. The following
lemma allows us to reduce an N -variate polynomial to a single-variate one.

2.2.2. Lemma (Minsky & Papert [122]). If p : RN → R is a multilinear
polynomial, then there exists a single-variate polynomial q : R → R, of degree
at most the degree of p, such that psym(x) = q(|x|) for all x ∈ {0, 1}N .

Proof. Let d be the degree of psym, which is at most the degree of p. Let Vj
denote the sum of all

(
N
j

)
products of j different variables, so V1 = x1+ · · ·+ xN ,

V2 = x1x2+x1x3+ · · ·+xN−1xN , etc. Since psym is symmetrical, it is easily shown
by induction that it can be written as

psym(x) = b0 + b1V1 + b2V2 + · · ·+ bdVd,

with bi ∈ R. Note that Vj assumes value
(|x|
j

)
= |x|(|x| − 1)(|x| − 2) · · · (|x| − j +

1)/j! on x, which is a polynomial of degree j of |x|. Therefore the single-variate
polynomial q defined by

q(|x|) = b0 + b1

(|x|
1

)
+ b2

(|x|
2

)
+ · · ·+ bd

(|x|
d

)

satisfies the lemma. 2

2.2.3 Representing and approximating functions

We can use multilinear polynomials to represent Boolean functions:
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2.2.3. Definition. A polynomial p : RN → R represents f if p(x) = f(x) for
all x ∈ {0, 1}N .

Note that since x2 = x for x ∈ {0, 1}, we can restrict attention to multi-
linear polynomials for representing f . In the remainder of this chapter, we will
usually omit the word “multilinear”. It is easy to see that each f : {0, 1}N →
{0, 1} can be represented by a polynomial p. For z ∈ {0, 1}N , define pz(x) =∏

i:zi=1
xi
∏

i:zi=0
(1− xi). The polynomial pz(x) is 1 for x = z and 0 for all other

x ∈ {0, 1}N . Hence the polynomial p(x) =
∑

z:f(z)=1 pz(x) will equal f on all
inputs x. Lemma 2.2.1 implies that this polynomial is actually the unique poly-
nomial that equals f on all x. This allows us to identify f with its representing
polynomial and to define:

2.2.4. Definition. The degree deg(f) of f is the degree of the multilinear poly-
nomial that represents f .

For example, deg(ANDN) = N , because the representing polynomial is the
monomial x1 . . . xN .

Apart from representing a function f exactly by means of a polynomial, we
may also only approximate it with a polynomial, which can sometimes be of a
smaller degree:

2.2.5. Definition. A polynomial p : RN → R approximates f if |p(x)− f(x)| ≤
1/3 for all x ∈ {0, 1}N . The approximate degree d̃eg(f) of f is the minimum
degree among all multilinear polynomials that approximate f .

As a simple example: 2
3
x1 +

2
3
x2 approximates OR2, so d̃eg(OR2) = 1. In

contrast, OR2(x1, x2) = x1+x2−x1x2 hence deg(OR2) = 2. Note that there may
be many different minimal-degree polynomials that approximate f , whereas there
is only one polynomial that represents f .

A third, more elaborate polynomial is the “zero-error polynomial”. It is ac-
tually a pair of polynomials:

2.2.6. Definition. A pair of polynomials (p0, p1) is called a zero-error polyno-
mial for f if both of the following conditions hold

• if f(x) = 0 then p0(x) = 0 and p1(x) ∈ [1/2, 1],

• if f(x) = 1 then p0(x) ∈ [1/2, 1] and p1(x) = 0.

The degree of this zero-error polynomial is the largest of deg(p0) and deg(p1).
The zero-error degree deg0(f) of f is the minimum degree among all zero-error
polynomials for f .
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On the hand, if p represents f , then (p, p) is a zero-error polynomial for f ,
hence deg0(f) ≤ deg(f). On the other hand, if (p0, p1) is a zero-error polynomial

for f , then p0(x) + 1/6 and 5/6− p1(x) approximate f , hence d̃eg(f) ≤ deg0(f).
To end this section we prove that almost all functions have degree N , meaning

that the fraction of functions with deg(f) < N goes to 0 with N . Define X even
1 =

{x | |x| is even and f(x) = 1}, and similarly for Xodd
1 . Let X1 = Xeven

1 ∪ Xodd
1 .

Let p(x) =
∑

S aSxS be the unique polynomial representing f . The Moebius
inversion formula (see [19]) says:

aS =
∑

T⊆S
(−1)|S|−|T |f(T ),

where f(T ) is the value of f on the input where exactly the variables in T are 1.
We learned about the next lemma via personal communication with Yaoyun Shi:

2.2.7. Lemma (Shi & Yao). deg(f) = N iff |Xeven
1 | 6= |Xodd

1 |.
Proof. Applying the Moebius formula to S = [N ] = {1, . . . , N}, we get

a[N ] =
∑

T⊆[N ]
(−1)N−|T |f(T ) = (−1)N

∑

x∈X1

(−1)|x| = (−1)N
(
|Xeven

1 | − |Xodd
1 |
)
.

By this formula we now have deg(f) = N iff the monomial x1 . . . xN has non-zero
coefficient iff a[N ] 6= 0 iff |Xeven

1 | 6= |Xodd
1 |. 2

As a consequence, we can exactly count the number of functions that have
less than full degree:

2.2.8. Theorem (Buhrman & de Wolf [49]). There are
(
2N

2N−1

)
functions f :

{0, 1}N → {0, 1} with deg(f) < N .

Proof. We count the number E of f for which |Xeven
1 | = |Xodd

1 |; by Lemma 2.2.7
these are exactly the f satisfying deg(f) < N . Suppose we want to assign f -value

1 to exactly i of the 2N−1 inputs for which |x| is even. There are
(
2N−1

i

)
ways to

do this. If we want |Xeven
1 | = |Xodd

1 |, then there are only
(
2N−1

i

)
ways to choose

the f -values of the odd x. Hence

E =
2N−1∑

i=0

(
2N−1

i

)(
2N−1

i

)
=

(
2N

2N−1

)
.

The second equality is Vandermonde’s convolution [80, p.174]. 2

Note that
(
2N

2N−1

)
∈ Θ(22

N
/
√
2N) by Stirling’s formula n! ≈

√
2πn(n/e)n.

Since there are 22
N
Boolean functions on N variables, we see that the fraction of

functions with degree < N is o(1). Thus almost all functions have deg(f) = N .
Ambainis showed that almost all functions even have high approximate degree:
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2.2.9. Theorem (Ambainis [9]). d̃eg(f) ≥ N
2
−O(

√
N logN) for almost all f .

A much weaker (but essentially tight) result which holds for all functions is
the following:

2.2.10. Theorem (Nisan & Szegedy [133]). If f depends on all N variables,
then deg(f) ≥ logN −O(log logN).

2.3 Query Complexity

Below we define query complexity for three different kinds of algorithms for com-
puting a function f : deterministic, randomized, and quantum algorithms. Of
the quantum query complexity, there are three flavors, depending on the error-
requirements of the algorithm: we have exact, zero-error, and bounded-error quan-
tum algorithms. In the section after that, we will relate these three complexities
to the three polynomial degrees deg(f), deg0(f), and d̃eg(f) defined above. But
first we start by defining classical query complexity.

2.3.1 Deterministic

A deterministic decision tree is a rooted ordered binary tree T . Each internal
node of T is labeled with a variable xi and each leaf is labeled with a value 0 or
1. Given an input x ∈ {0, 1}N , the tree is evaluated as follows. Start at the root.
If this is a leaf then stop. Otherwise, query the variable xi that labels the root.
If xi = 0, then recursively evaluate the left subtree, if xi = 1 then recursively
evaluate the right subtree. The output of the tree is the value (0 or 1) of the leaf
that is reached eventually. Note that an input x deterministically determines the
leaf, and thus the output, that the procedure ends up in. We say that the tree
accepts input x if it outputs 1 on that input.

We say that a decision tree computes f if its output equals f(x), for every
x ∈ {0, 1}N . Clearly there are many different decision trees that compute the
same f . The complexity of such a tree is its depth, i.e., the number of queries
made on the worst-case input. We define D(f), the decision tree complexity of
f , as the depth of an optimal (= minimal-depth) decision tree that computes f .
Note that D(f) ≤ N for every f , because a decision tree can be made to have
sufficient information for computing f(x) if it has queried all N input bits.

2.3.2 Randomized

As in many other models of computation, we can add the power of randomization
to decision trees. There are two ways to randomize a decision tree. Firstly, we
can add (possibly biased) coin flips as internal nodes to the tree. That is, the tree
may contain internal nodes labeled by a bias p ∈ [0, 1], and when the evaluation
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procedure reaches such a node, it will flip a coin with bias p and will go to the
left child on outcome ‘heads’ and to the right child on ‘tails’. Now an input x
no longer determines with certainty which leaf of the tree will be reached, but
instead induces a probability distribution over the set of all leaves. Thus the
tree outputs 0 or 1 with a certain probability. The probability of output 1 on
input x is called the acceptance probability of x. The complexity of the tree is
the number of queries on the worst-case input and worst-case outcome of the
coin flips. A second way to define a randomized decision tree is as a probability
distribution µ over deterministic decision trees. The tree is evaluated by choosing
a deterministic decision tree according to µ, which is then evaluated as before.
The complexity of the randomized tree in this second definition is the depth of
the deepest tree T that has µ(T ) > 0.

It is not hard to see that these two definitions are equivalent. To turn a
tree of the first type into one of the second type, we can make all coin flips
precede all queries, without increasing the number of queries on the worst-case
path. These coin flips now clearly induce a probability distribution on the forest
of deterministic decision trees that follow the coin flips, which gives a tree of the
second type. To turn a tree of the second type into one of the first type, observe
that only finitely many deterministic trees T can have µ(T ) > 0, since there are
only finitely many T of a given depth. Therefore we can build a finite binary tree
of (biased) coin flips, such that for every T for which µ(T ) > 0, there is a leaf in
the coin-flip-tree that is reached with probability µ(T ). Attaching the trees T to
the corresponding leaves in the coin-flip-tree gives a tree of the first type.

We say that a randomized decision tree computes f with bounded-error if its
output equals f(x) with probability at least 2/3, for every x ∈ {0, 1}N . We
use R2(f) to denote the complexity of the optimal randomized decision tree that
computes f with bounded error.1 The specific error probability 1/3 adopted
here is not essential; it can be reduced to ε by running an error-1/3 algorithm
O(log(1/ε)) times and outputting the majority answer of those runs.

We will sometimes consider a third error model, which lies between deter-
ministic and bounded-error complexity. We say that a randomized decision tree
computes f with zero error if it never ends up in a leaf labeled with the incorrect
output, but it may, with probability ≤ 1/2 for every x, end up in a third kind of
leaf, labeled “don’t know”. In other words, zero-error algorithms never give an
incorrect output, but they may sometimes give no output at all. We use R0(f)
for the optimal complexity of such algorithms.

Note that it immediately follows from these definitions that R2(f) ≤ R0(f) ≤
D(f) ≤ N .

1The subscript ‘2’ in R2(f) refers to the 2-sided error of the algorithm: it may err on 0-inputs
as well as on 1-inputs.
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2.3.3 Quantum

In the quantum case, the queries have to correspond to unitary transformations, in
particular they have to be reversible. We formalize a query to an input x ∈ {0, 1}N
as in Section 1.5: as a unitary transformation O that maps |i, b, z〉 to |i, b⊕xi, z〉.
Here |i, b, z〉 is some m-qubit basis state, where i takes dlogNe bits, b is one bit, z
denotes the (m−dlogNe−1)-bit “workspace” of the quantum computer, which is
not affected by the query, and ⊕ denotes exclusive-or. This clearly generalizes the
classical setting where a query inputs an i into a “black-box”, which returns the bit
xi: if we apply O to the basis state |i, 0, z〉 we get |i, xi, z〉, from which the ith bit of
the input can be read. Because O has to be unitary, we specify that it maps |i, 1, z〉
to |i, 1−xi, z〉. This ensures that O is a permutation matrix, and therefore unitary.
Note that a quantum computer can make queries in superposition: applying O
once to the state 1√

N

∑N
i=1 |i, 0, z〉 gives 1√

N

∑N
i=1 |i, xi, z〉, which in some sense

contains all N bits of the input.

A quantum decision tree has the following form: we start with an m-qubit
state |~0〉 where every bit is 0. Then we apply a unitary transformation U0 to the
state, then we apply a query O, then another unitary transformation U1, etc. A
T -query quantum decision tree thus corresponds to a big unitary transformation
A = UTOUT−1 · · ·OU1OU0. Here the Ui are fixed unitary transformations, inde-
pendent of the input x. The final state A|~0〉 depends on the input x only via the
T applications of O. The output is obtained by measuring the final state and
outputting the rightmost bit of the observed basis state.

Without loss of generality, we can assume there are no intermediate mea-
surements, because such measurements can always be pushed to the end of the
computation at the cost of some extra workspace but no extra queries, as follows.
Referring to Section 1.2.2, suppose the first intermediate measurement has pro-
jectors P1, . . . , PM and corresponding orthogonal subspaces V1, . . . , VM . Instead
of actually measuring the state, we can also add dlogMe extra zero qubits, and
apply the transformation that maps |φ〉|0〉 → |φ〉|i〉 for |φ〉 ∈ Vi (this is unitary
because the corresponding subspaces are orthogonal). In the rest of the algorithm
we do not touch these extra dlogMe qubits anymore, which ensures that they will
not give undesired interference effects. It can be shown that applying this idea
to all intermediate measurements and measuring only the output bit at the end
gives the same acceptance probability as the original algorithm.

We say that a quantum decision tree computes f exactly if its output equals
f(x) with probability 1, for every x ∈ {0, 1}N . The tree computes f with bounded-
error if the output equals f(x) with probability at least 2/3, for every x ∈ {0, 1}N .
To define the zero-error setting, the output is obtained by observing the two
rightmost bits of the final state. If the first of these bits is 0, the quantum
decision tree claims ignorance (“don’t know”), otherwise the second bit should
contain f(x) with certainty. For every x, the probability of getting output “don’t
know” should be less than 1/2. We let QE(f) denote the number of queries
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of an optimal quantum decision tree that computes f exactly, and Q0(f) and
Q2(f) denote the minimal complexity of zero-error and bounded-error quantum
algorithms for f , respectively. Note that we just count the number of queries,
not the complexity of the intermediate Ui.

Unlike the classical deterministic or randomized decision trees, the quantum
algorithms are not really trees anymore, and we will usually refer to them as
“quantum algorithms” or “quantum query algorithms”. Such quantum algo-
rithms generalize classical trees in the sense that they can simulate them, as
sketched below. Consider a T -query deterministic decision tree. It first deter-
mines which variable it will query initially; then it determines the next query
depending upon its history, and so on for T queries. Eventually it outputs an
output-bit depending on its total history. The basis states of the corresponding
quantum algorithm have the form |i, b, h, a〉, where i, b is the query-part, h ranges
over all possible histories of the classical computation (this history includes all
previous queries and their answers), and a is the rightmost qubit, which will even-
tually contain the output. Let U0 map the initial state |~0, 0,~0, 0〉 to |i, 0,~0, 0〉,
where xi is the first variable that the classical tree would query. Now the quantum
algorithm applies O, which turns the state into |i, xi,~0, 0〉. Then the algorithm
applies a transformation U1 that maps |i, xi,~0, 0〉 to |j, 0, h, 0〉, where h is the new
history (which includes i and xi) and xj is the variable that the classical tree
would query given the outcome of the previous query. Then the quantum tree
applies O for the second time, it applies a transformation U2 that updates the
history and determines the next query, etc. Finally, after T queries the quantum
tree sets the answer bit to 0 or 1 depending on its total history. All opera-
tions Ui performed here are injective mappings from basis states to basis states,
hence they can be extended to permutations of basis states, which are unitary
transformations. Thus a T -query deterministic decision tree can be simulated
by an exact T -query quantum algorithm. Similarly a T -query randomized deci-
sion tree can be simulated by a T -query quantum decision tree with the same
error probability (basically because a superposition can “simulate” a probability
distribution). Accordingly, we have Q2(f) ≤ R2(f) ≤ R0(f) ≤ D(f) ≤ N and
Q2(f) ≤ Q0(f) ≤ QE(f) ≤ D(f) ≤ N for every f . The fact that quantum algo-
rithms can simulate classical algorithms will also allow us to be somewhat sloppy
in our description of quantum algorithms: since we know that classical algorithms
can manipulate and compare numbers, combine subroutines, sort lists, etc., we
can assume that quantum algorithms can perform these tasks too, without having
to spell out completely the corresponding quantum circuit.

2.4 Degree Lower Bounds on Query Complexity

In this section we show that deg(f), deg0(f), and d̃eg(f) give lower bounds on
quantum query complexity. The next lemma from [17] is also implicit in the
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combination of some proofs of Fortnow et al. in [72, 76].

2.4.1. Lemma. Let A be a quantum algorithm that makes T queries to its N-bit
input x. Then there exist complex-valued N-variate multilinear polynomials αi of
degree at most T , such that the final state of A is

∑

i∈{0,1}m
αi(x)|i〉,

for every input x ∈ {0, 1}N .

Proof. Let |φk〉 be the state of quantum decision tree (on input x) just before
the kth query. Note that |φk+1〉 = UkO|φk〉. The amplitudes in |φ0〉 depend on
the initial state and on U0 but not on x, so they are polynomials of x of degree 0.
A query maps basis state |i, b, z〉 to |i, b⊕ xi, z〉, so if the amplitude of |i, 0, z〉 in
|φ0〉 is α and the amplitude of |i, 1, z〉 is β, then the amplitude of |i, 0, z〉 after the
query becomes (1−xi)α+xiβ and the amplitude of |i, 1, z〉 becomes xiα+(1−xi)β,
which are polynomials of degree 1. Between the first and the second query lies
the unitary transformation U1. However, the amplitudes after applying U1 are
just linear combinations of the amplitudes before applying U1, so the amplitudes
in |φ1〉 are polynomials of degree at most 1. (In general, if the amplitudes before
a query are polynomials of degree ≤ j, then the amplitudes before the next query
will be polynomials of degree ≤ j + 1.) Continuing inductively, the amplitudes
of the final state are found to be polynomials of degree at most T . We can make
these polynomials multilinear without affecting their values on x ∈ {0, 1}N by
replacing all higher powers xki by xi. 2

Note that we have not used the assumption that the Uj are unitary, but only
their linearity.

The main consequence of this lemma is that we can write the acceptance
probability of a T -query algorithm as a multilinear polynomial of degree at most
2T , since the acceptance probability is just the sum of squared norms of the
final amplitudes of the basis states whose rightmost bit is 1. This fact almost
immediately implies the following lower bounds, which are the key to most results
in this chapter and some of the following chapters:

2.4.2. Theorem (BBCMW [17]). If f is a total Boolean function, then

• QE(f) ≥
deg(f)

2

• Q0(f) ≥
deg0(f)

2

• Q2(f) ≥
d̃eg(f)

2
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Proof. Consider an exact quantum algorithm for f with QE(f) queries. Let
S be the set of basis states corresponding to a 1-output. Then the acceptance
probability is P (x) =

∑
k∈S |αk(x)|2. By the previous lemma, the αk are polyno-

mials of degree ≤ QE(f), so P (x) is a polynomial of degree ≤ 2QE(f). But P
represents f , so it has degree deg(f) and hence deg(f) ≤ 2QE(f).

Similarly, the acceptance probability and rejecting probability of a Q0(f)-
query zero-error algorithm for f together form a zero-error polynomial for f of
degree ≤ 2Q0(f), giving the second part of the theorem. Finally, the acceptance
probability of a Q2(f)-query bounded-error algorithm for f is an approximating
polynomial for f of degree ≤ 2Q2(f), giving the third part of the theorem. 2

It can also be shown that the three parts of Theorem 2.4.2 hold without the
factor of 2 for the classical complexities D(f), R0(f), and R2(f), respectively.

Theorem 2.4.2 is tight for f = PARITYN , where deg(f) = deg0(f) = d̃eg(f) =
N and QE(f) = Q0(f) = Q2(f) = dN/2e, as we will see in Section 2.6.3. Together
with the fact that almost all f have high degree (Theorems 2.2.8 and 2.2.9), it
also follows that almost all functions have high quantum query complexity, even
in the bounded-error model. A general upper bound for bounded-error quantum
algorithms is Q2(f) ≤ N/2 +

√
N for all f , which follows from a result of van

Dam [60]. Combining Theorem 2.4.2 with Theorem 2.2.10 gives the lower bound
QE(f) ≥ (logN)/2−O(log logN) for all functions that depend on N variables

2.5 Polynomial Relation for All Total Functions

In this section we show that the quantum query complexity of total functions
cannot be more than polynomially smaller than their classical query complexity.
Apart from polynomial degrees, our main tools in proving this result are the
notions of certificate complexity and block sensitivity.

2.5.1 Certificate complexity and block sensitivity

Certificate complexity measures how many of the N variables have to be given a
value in order to fix the value of f .

2.5.1. Definition. Let C be an assignment C : S → {0, 1} of values to some
subset S of the N variables. We say that C is consistent with x ∈ {0, 1}N if
xi = C(i) for all i ∈ S.

For b ∈ {0, 1}, a b-certificate for f is an assignment C such that f(x) = b
whenever x is consistent with C. The size of C is |S|, the cardinality of S.

The certificate complexity Cx(f) of f on x is the size of a smallest f(x)-
certificate that is consistent with x. The certificate complexity of f is C(f) =
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maxxCx(f). The 1-certificate complexity of f is C (1)(f) = max{x|f(x)=1} Cx(f),
and similarly we define C(0)(f) = max{x|f(x)=0} Cx(f).

For example, C(1)(ORN) = 1 since it suffices to set one variable xi = 1 to
force the OR-function to 1. On the other hand, C(ORN) = C(0)(ORN) = N .

Sensitivity and block sensitivity measure how sensitive the value of f is to
changes in the input.

2.5.2. Definition. The sensitivity sx(f) of f on x is the number of variables
xi for which f(x) 6= f(xi) (i.e., changing the bit xi changes the function value).
The sensitivity of f is s(f) = maxx sx(f).

The block sensitivity bsx(f) of f on x is the maximum number b such that
there are disjoint sets B1, . . . , Bb for which f(x) 6= f(xBi) (i.e., complementing
the Bi-variables in x changes the function value). We will call those sets the
sensitive blocks for x. The block sensitivity of f is bs(f) = maxx bsx(f). (If f is
constant, we define s(f) = bs(f) = 0.)

Note that sensitivity is the special case of block sensitivity where the size of
the blocks Bi is restricted to 1. Also note that sx(f) ≤ bsx(f) ≤ Cx(f) for all f
and x, hence s(f) ≤ bs(f) ≤ C(f).

We proceed to give Nisan’s proof [131] that C(f) is upper bounded by the
product of s(f) and bs(f).

2.5.3. Lemma. If B is a minimal-size sensitive block for x, then |B| ≤ s(f).

Proof. If we complement one of the B-variables in xB, then the function value
must flip from f(xB) to f(x) (otherwise B would not be minimal), so every B-
variable is sensitive for f on input xB. Hence |B| ≤ sxB(f) ≤ s(f). 2

2.5.4. Theorem (Nisan [131]). C(f) ≤ s(f)bs(f).

Proof. Consider an input x ∈ {0, 1}N and let B1, . . . , Bb be disjoint minimal
sets of variables that achieve the block sensitivity b = bsx(f) ≤ bs(f). We will
show that the function C : ∪iBi → {0, 1} that sets variables according to x is a
sufficiently small certificate for f(x).

If C is not an f(x)-certificate, then let x′ be an input that is consistent with
C, such that f(x′) 6= f(x). Define Bb+1 by x

Bb+1 = x′. Now f is sensitive to Bb+1

on x and Bb+1 is disjoint from B1, . . . , Bb, which contradicts b = bsx(f). Hence C
is an f(x)-certificate. By the previous lemma we have |Bi| ≤ s(f) for all i, hence
the size of this certificate is | ∪i Bi| ≤ s(f)bs(f). 2

Nisan and Szegedy related block sensitivity to the exact and approximate
degree, using the following theorem:
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2.5.5. Theorem (Ehlich & Zeller [66]; Rivlin & Cheney [144]). Let p :
R → R be a polynomial such that b1 ≤ p(i) ≤ b2 for every integer 0 ≤ i ≤ N ,
and its derivative has |p′(x)| ≥ c for some real 0 ≤ x ≤ N . Then deg(p) ≥√
cN/(c+ b2 − b1).

2.5.6. Theorem (Nisan & Szegedy [133]). If f is a total Boolean function,
then

• deg(f) ≥
√
bs(f)

2

• deg0(f) ≥
√
bs(f)

3

• d̃eg(f) ≥
√
bs(f)

6

Proof. We prove the first part, the other parts are similar. Let polynomial p
of degree d represent f . Let b = bs(f), and a and B1, . . . , Bb be the input and
sets that achieve the block sensitivity. We assume without loss of generality that
f(a) = 0. We transform p(x1, . . . , xN) into a polynomial q(y1, . . . , yb) by replacing
every xj in p as follows:

1. xj = yi if aj = 0 and j ∈ Bi

2. xj = 1− yi if aj = 1 and j ∈ Bi

3. xj = aj if j 6∈ Bi for every i

We make the resulting polynomial multilinear by replacing any higher powers xki
by xi, which will not change the value of the polynomial on inputs x ∈ {0, 1}N .
Now it is easy to see that q has the following properties:

1. q is a multilinear polynomial of degree ≤ d

2. q(y) ∈ {0, 1} for all y ∈ {0, 1}b

3. q(~0) = p(x) = f(x) = 0

4. q(ei) = p(xBi) = f(xBi) = 1 for all unit vectors ei ∈ {0, 1}b

Let r be the single-variate polynomial of degree ≤ d obtained from symmetrizing
q over {0, 1}b. Note that 0 ≤ r(i) ≤ 1 for every integer 0 ≤ i ≤ b, and for
some x ∈ [0, 1] we have r′(x) ≥ 1 because r(0) = 0 and r(1) = 1. Applying
Theorem 2.5.5 we get d ≥

√
b/2. 2

Since the acceptance probability of a T -query quantum algorithm can be writ-
ten as a degree-2T multivariate polynomial, we can also prove:
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2.5.7. Theorem (BBCMW [17]). If f is a total Boolean function, then

• QE(f) ≥
√
bs(f)

8

• Q0(f) ≥
√
bs(f)

12

• Q2(f) ≥
√
bs(f)

16

Note that the constant 1/
√
16 = 1/4 in the above bound for Q2(f) is slightly

stronger than the constant 1/
√
24 that we would get from combining Theo-

rems 2.4.2 and 2.5.6. We get the better constant here because the specific approx-
imating polynomial for f induced by a bounded-error quantum algorithm repre-
sents a probability, and hence lies in the interval [0, 1] for all inputs x ∈ {0, 1}N .
In contrast, in general an approximating polynomial is only required to lie in the
interval [−1/3, 4/3] for all x ∈ {0, 1}N .

The square root in the above theorem is tight for Q2(f), since bs(ORN) = N ,
while Q2(ORN) ∈ O(

√
N) because of Grover’s algorithm. The square root is not

needed in the corresponding classical lower bound of Nisan:

2.5.8. Theorem (Nisan [131]). R2(f) ≥
bs(f)

3
.

Proof. Consider an algorithm with R2(f) queries, and an input x that achieves
the block sensitivity. For every set S such that f(x) 6= f(xS), the probability that
the algorithm queries a variable in S must be≥ 1/3, otherwise the algorithm could
not “see” the difference between x and xS with sufficient probability. Hence on
input x the algorithm has to make an expected number of at least 1/3 queries
in each of the bs(f) sensitive blocks, so the total expected number of queries on
input x must be at least bs(f)/3. Since the worst-case number of queries on input
x is at the least the expected number of queries on x, the theorem follows. 2

2.5.2 Polynomial bound for QE(f) and Q0(f)

The first result in this section is due to Nisan and Smolensky, and improves
the earlier result D(f) ∈ O(deg(f)8) of Nisan and Szegedy [133]. Nisan and
Smolensky never published their proof (dated around 1995), but allowed it to be
included in [49]. In the proof, a maxonomial of f is a monomial in f ’s representing
polynomial p that has maximal degree.

2.5.9. Lemma (Nisan & Smolensky [132]). For every maxonomial M of f ,
there is a set B of variables in M such that f(~0B) 6= f(~0).
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Proof. Obtain a restricted function g from f by setting all variables outside
of M to 0. This g cannot be constant 0 or 1, because its unique polynomial
representation (as obtained from p) contains M . Thus there is some subset B of
the variables in M that makes g(~0B) 6= g(~0) and hence f(~0B) 6= f(~0). 2

2.5.10. Lemma (Nisan & Smolensky [132]). There is a set of deg(f)bs(f)
variables that intersects each maxonomial of f .

Proof. Greedily take all variables in maxonomials of f , as long as there is
a maxonomial that is still disjoint from those taken so far. Since each such
maxonomial will contain a sensitive block for ~0, and there can be at most bs(f)
disjoint sensitive blocks, this procedure can go on for at most bs(f) maxonomials.
Since each maxonomial contains deg(f) variables, the lemma follows. 2

2.5.11. Theorem (Nisan & Smolensky [132]).
D(f) ≤ deg(f)2bs(f) ≤ 2deg(f)4.

Proof. We construct a deterministic algorithm as follows. By the previous
lemma, there is a set of deg(f)bs(f) variables that intersects each maxonomial of
f . Query all these variables. This induces a restriction g of f on the remaining
variables, such that deg(g) < deg(f) (because the degree of each maxonomial in
the representation of f drops at least one) and bs(g) ≤ bs(f). Repeating this
inductively for at most deg(f) times, we reach a constant function and learn the
value of f . This algorithm uses at most deg(f)2bs(f) queries, hence D(f) ≤
deg(f)2bs(f). Theorem 2.5.6 gives the second inequality of the theorem. 2

In fact, almost the same proof works to show a fourth-power relation between
D(f) and the degree of a zero-error polynomial (p0, p1) for f . The only change
in the proof is that now we have to reduce the degrees of both p0 and p1. This
costs a factor of 2, giving D(f) ≤ 2 deg0(f)

2bs(f) ≤ 6 deg0(f)
4.

The main consequence of the proven bounds between D(f) and the degrees
is a polynomial relation between the classical complexity D(f) on the one hand
and the quantum complexities QE(f) and Q0(f) on the other:

2.5.12. Theorem (BBCMW [17]; BCWZ [43]). D(f) ≤ 32 QE(f)
4 and

D(f) ≤ 96 Q0(f)
4.

It is quite likely that the fourth power in the above relations is not tight.
The biggest separation we know between D(f) and QE(f) is only a factor of 2
(for PARITY, see Section 2.6), while the biggest gap we know between D(f) and
Q0(f) is near-quadratic (for AND-OR trees, see Section 2.7).
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A function which may throw some light on the relations betweenD(f), deg(f),
and QE(f) is the following from [133]. Consider E12 defined by E12(x1, x2, x3) = 1
iff |x| ∈ {1, 2}. This is represented by the following degree-2 polynomial:

E12(x1, x2, x3) = x1 + x2 + x3 − x1x2 − x1x3 − x2x3.

Define Ek
12 as the function onN = 3k variables obtained by building a complete re-

cursive ternary tree of depth k, where the 3k leaves are the variables and each node
is the E12-function of its three children. For k > 1, the representing polynomial
for Ek

12 is obtained by substituting independent copies of the Ek−1
12 -polynomial in

the above polynomial for E12. This shows that deg(f) = 2k = N1/ log 3 ≈ N0.63....
On the other hand, it is easy to see that complementing any variable in the input
~0 flips the function value from 0 to 1, hence D(f) = s(f) = N = deg(f)log 3.
The exact quantum complexity QE(f) of this function is unknown; it must lie
between N 1/ log 3/2 and N . Hence either Ek

12 satisfies QE(f)¿ D(f) or it satisfies
deg(f)¿ QE(f). Both results would be interesting.

2.5.3 Polynomial bound for Q2(f)

Since Q2(f) can be much lower than Q0(f), the results of the previous section do
not yet imply that D(f) and Q2(f) are polynomially close. This we prove here,
using the following theorem:

2.5.13. Theorem (BBCMW [17]). D(f) ≤ C (1)(f)bs(f).

Proof. The following describes an algorithm to compute f(x), querying at
most C(1)(f)bs(f) variables of x (in the algorithm, by a “consistent” certificate
C or input y at some point we mean a C or y that agrees with the values of all
variables queried up to that point).

1. Repeat the following at most bs(f) times:

Pick a consistent 1-certificate C and query those of its variables
whose x-values are still unknown (if there is no such C, then
return 0 and stop); if the queried values agree with C then return
1 and stop.

2. Pick a consistent y ∈ {0, 1}N and return f(y).

The nondeterministic “pick a C” and “pick a y” can easily be made deterministic
by choosing the first C and y in some fixed order. Call this algorithm A. Since
A runs for at most bs(f) stages and each stage queries at most C (1)(f) variables,
A queries at most C(1)(f)bs(f) variables.

It remains to show that A always returns the right answer. If it returns an
answer in step (1), this is either because there are no consistent 1-certificates
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left (and hence f(x) must be 0) or because x is found to agree with a particular
1-certificate C. In both cases A gives the right answer.

Now consider the case where A returns an answer in step (2). We will show
that all consistent y must have the same f -value. Suppose not. Then there are
consistent y, y′ with f(y) = 0 and f(y′) = 1. A has queried b = bs(f) 1-certificates
C1, C2, . . . , Cb. Furthermore, y′ contains a consistent 1-certificate Cb+1. We will
derive from these Ci disjoint sets Bi such that f is sensitive to each Bi on y.
For every 1 ≤ i ≤ b + 1, define Bi as the set of variables on which y and Ci

disagree. Clearly, each Bi is non-empty, for otherwise the procedure would have
returned 1 in step (1). Note that yBi agrees with Ci, so f(y

Bi) = 1, which shows
that f is sensitive to each Bi on y. Suppose the kth variable occurs in some Bi

(1 ≤ i ≤ b), then xk = yk 6= Ci(k). If j > i, then Cj has been chosen consistent
with all variables queried up to that point (including xk), so we cannot have
xk = yk 6= Cj(k). This shows that k 6∈ Bj, hence all Bi and Bj are disjoint.
But then f is sensitive to bs(f) + 1 disjoint sets on y, which is a contradiction.
Accordingly, all consistent y in step 2 must have the same f -value, and A returns
the right value f(y) = f(x) in step 2, because x is one of those consistent y. 2

Combining with Theorem 2.5.4 we obtain:

2.5.14. Corollary (BBCMW [17]). D(f) ≤ s(f)bs(f)2 ≤ bs(f)3.

Combining Corollary 2.5.14 with Theorem 2.5.7, we have proven the main
result of this section: for query complexity of total functions, bounded-error
quantum algorithms can be at most polynomially faster than exact classical al-
gorithms.

2.5.15. Theorem (BBCMW [17]). D(f) ≤ 4096 Q2(f)
6.

We do not know whether our general bounds D(f) ∈ O(Q0(f)
4) and D(f) ∈

O(Q2(f)
6) are tight, and suspect that they are not. In the following two sections

we will tighten these bounds for special classes of functions.
Finally, combining Corollary 2.5.14 and Theorem 2.5.6 we obtain the follow-

ing result, which improved the earlier D(f) ∈ O(d̃eg(f)8) result of Nisan and
Szegedy [133]:

2.5.16. Theorem (BBCMW [17]). D(f) ≤ 216 d̃eg(f)6.

2.6 Symmetric Functions

Recall that a function f is symmetric if f(x) only depends on the Hamming
weight |x| of its input, so permuting the input does not change the value of the
function.
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2.6.1 Tight bounds

A symmetric f is fully described by giving a vector (f0, f1, . . . , fN ) ∈ {0, 1}N+1,
where fk is the value of f(x) for |x| = k. Because of this and Lemma 2.2.2, there
is a close relationship between polynomials that represent symmetric functions
and single-variate polynomials that assume values 0 or 1 on {0, 1, . . . , N}. Using
this relationship, von zur Gathen and Roche [79] proved deg(f) = (1 − o(1))N
for all symmetric f :

2.6.1. Theorem (von zur Gathen & Roche [79]). If f is non-constant and
symmetric, then deg(f) = N − O(N 0.548). If, furthermore, N + 1 is prime, then
deg(f) = N .

In fact, von zur Gathen and Roche conjecture that deg(f) = N − O(1) for
every symmetric f . The biggest gap they found is deg(f) = N − 3 for some
specific f and N . Since D(f) ≥ deg(f) and QE(f) ≥ deg(f)/2 (Theorem 2.4.2),
the above degree lower bounds give strong lower bounds on D(f) and QE(f).

For the case of approximate degrees of symmetric f , Paturi [136] gave the
following tight characterization. Define Γ(f) = min{|2k − N + 1| : fk 6= fk+1}.
Informally, this quantity measures the length of the interval around Hamming
weight N/2 where fk is constant. The following theorem of Paturi [136] implies
a strong lower bound on Q2(f) for all symmetric functions.

2.6.2. Theorem (Paturi [136]). If f is non-constant and symmetric, then we

have d̃eg(f) ∈ Θ(
√
N(N − Γ(f))).

We can prove a matching upper bound using the result about quantum count-
ing from Section 1.7:

2.6.3. Theorem (BBCMW [17]). If f is non-constant and symmetric, then
we have Q2(f) ∈ Θ(

√
N(N − Γ(f))).

Proof. We will sketch a strategy that computes f with bounded error prob-
ability ≤ 1/3. Let fk = f(x) for x with |x| = k. First note that since Γ(f) =
min{|2k−N+1| : fk 6= fk+1 and 0 ≤ k ≤ N−1}, fk must be identically 0 or 1 for
k ∈ {(N−Γ(f))/2, . . . , (N+Γ(f)−2)/2}. Consider some x with |x| = t. In order
to be able to compute f(x), it is sufficient to know t exactly if t < (N − Γ(f))/2
or t > (N + Γ(f)− 2)/2, or to know that (N − Γ(f))/2 ≤ t ≤ (N + Γ(f)− 2)/2
otherwise.

Run the quantum counting algorithm for Θ(
√

(N − Γ(f))N) steps to count
the number of 1s in x. If t is in one of the two tails (t < (N − Γ(f))/2 or
t > (N +Γ(f)−2)/2), then with high probability the algorithm gives us an exact
count of t. If (N−Γ(f))/2 ≤ t ≤ (N+Γ(f)−2)/2, then with high probability the
counting algorithm returns some t̃ which is in this interval. Thus with bounded
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error probability we have obtained sufficient information to compute ft = f(x),
using only O(

√
N(N − Γ(f))) queries. Repeating this procedure some constant

number of times, we can limit the probability of error to at most 1/3. 2

In contrast to Theorem 2.6.3, it can be shown that a randomized classical
strategy needs Θ(N) queries to compute any non-constant symmetric f with
bounded-error, the reason being that we can reduce ORN/2 to f (which is easy
to see). Also, together with the bound Q0(ORN) = N that we prove below
(Proposition 2.6.5), this reduction gives QE(f), Q0(f) ∈ Θ(N). To summarize, we
have the following tight characterizations of the various decision tree complexities
of all symmetric f :

2.6.4. Theorem. If f is non-constant and symmetric, then

• D(f) = (1− o(1))N

• R0(f), R2(f) ∈ Θ(N)

• QE(f), Q0(f) ∈ Θ(N)

• Q2(f) ∈ Θ(
√
N(N − Γ(f)))

2.6.2 OR

Before continuing with monotone functions, we will take a closer look at three
important symmetric functions: OR, PARITY, and MAJORITY.

First we will consider the OR-function, which is related to database search.
Grover’s search algorithm can find an index i such that xi = 1 with high prob-
ability of success in O(

√
N) queries (if there is such an i). This implies that

we can also compute the OR-function with high success probability in O(
√
N):

let Grover’s algorithm generate an index i, and return xi. Since bs(ORN) = N ,
Theorem 2.5.7 gives us a lower bound of 1

4

√
N on computing ORN with bounded

error probability,2 so we have Q2(ORN) ∈ Θ(
√
N), where classically we require

R2(ORN) ∈ Θ(N) queries. Now suppose we want to get rid of the probability of
error: can we compute ORN exactly or with zero-error using O(

√
N) queries? If

not, can quantum computation give us at least some advantage over the classical
deterministic case? Both questions have a negative answer:

2.6.5. Proposition (BBCMW [17]). Q0(ORN) = N .

2This Ω(
√

N) lower bound on ORN is well known [25, 83], and is given in a tighter form
in [30, 167], but the way we obtained it here is rather different from existing proofs. Many more
bounds for OR and search will be proven in Chapter 3.



2.6. Symmetric Functions 45

Proof. Consider a quantum algorithm that computes ORN with zero-error using
T = Q0(ORN) queries. By Lemma 2.4.1, there are complex-valued polynomials
pi of degree at most T , such that the final state of the algorithm on input x is

∑

i∈{0,1}m
αi(x)|i〉.

Let B be the set of all basis states ending in 10 (i.e., where the output is the
answer 0). Then for every i ∈ B we have pi(x) = 0 if x 6= ~0, otherwise the
probability of getting the incorrect answer 0 on input x would be non-zero. On
the other hand, there must be at least one j ∈ B such that pj(~0) 6= 0, since the
probability of getting the correct output 0 on x = ~0 must be non-zero. Let p(x)
be the real part of 1− pj(x)/pj(~0). This polynomial p has degree at most T and
represents ORN . But then p has degree at least deg(ORN) = N , so T ≥ N . 2

2.6.3 PARITY

Secondly we consider PARITY. Using the Deutsch-Jozsa algorithm for n = 1,
we can determine the parity of two variables using only 1 query. The parity of
an N -bit input x is the parity of N/2 such pairs, so QE(PARITYN) ≤ dN/2e.
A matching lower bound for bounded-error quantum algorithms follows from the
next lemma, which is essentially due to Minsky and Papert:

2.6.6. Lemma (Minsky & Papert [122]). d̃eg(PARITYN) = N .

Proof. Let f be PARITY on N variables. Let p be a polynomial of degree
d̃eg(f) that approximates f . Since p approximates f , its symmetrization psym

also approximates f . By Lemma 2.2.2, there is a polynomial q, of degree at
most d̃eg(f), such that q(|x|) = psym(x) for all inputs. Thus we must have
|f(x)− q(|x|)| ≤ 1/3, so q(0) ≤ 1/3, q(1) ≥ 2/3, . . . , q(N −1) ≥ 2/3, q(N) ≤ 1/3
(assuming N even). We see that the polynomial q(x)− 1/2 must have at least N

zeroes, hence q has degree at least N and d̃eg(f) ≥ N . 2

Thus we having the following optimal result for parity, which was proven inde-
pendently at around the same time as our result by Farhi, Goldstone, Gutmann,
and Sipser.

2.6.7. Corollary (BBCMW [17]; FGGS [71]).

QE(PARITYN) = Q0(PARITYN) = Q2(PARITYN) = dN/2e.
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2.6.4 MAJORITY

Thirdly we consider MAJORITY. Since the OR of N variables can be reduced
to MAJORITY on 2N − 1 variables (if we set the first N − 1 variables to 1,
then the MAJORITY of all variables equals the OR of the last N variables)
and ORN requires N queries to be computed exactly or with zero-error, we have
QE(MAJN) ≥ Q0(MAJN) ≥ (N + 1)/2. It is known that QE(MAJN) ≤ N + 1−
w(N), where w(N) is the number of 1s in the binary expansion of N . This was
first noted by Hayes, Kutin and Van Melkebeek [87]. It also follows immediately
from classical results [146, 5] that show that an item with the majority value can
be identified classically deterministically with N − w(N) comparisons between
bits (a comparison between two input bits is the parity of the two bits, which can
be computed with 1 quantum query). One further query to this item suffices
to determine the majority value. For N satisfying w(N) ≥ 2 we thus have
QE(MAJN) ≤ N − w(N) + 1 < N = D(MAJN).

For the zero-error case, Van Melkebeek, Hayes and Kutin give an algorithm
that works in roughly 2

3
N queries, which is still slightly worse than the best known

lower bound Q0(MAJN) ≥ (N + 1)/2. For the bounded-error case, we can apply
Theorem 2.6.3: Γ(MAJN) = 1, so we need Q2(MAJN) ∈ Θ(N) queries. The best
upper bound we have here is N/2 +

√
N , which follows from [60].

2.7 Monotone Functions

Recall that a function f is monotone if f(x) cannot decrease (change from 1 to
0) if we change some of the 0-bits in x to 1.

2.7.1 Improvements of the general bounds

One nice property of monotone functions was shown by Nisan:

2.7.1. Theorem (Nisan [131]). If f is monotone, then C(f) = s(f) = bs(f).

Proof. Since s(f) ≤ bs(f) ≤ C(f) for all f , we only have to prove C(f) ≤ s(f).
Let C : S → {0, 1} be a minimal certificate for some x with |S| = C(f). Without
loss of generality we assume f(x) = 0. For each i ∈ S we have xi = 0 and
f(xi) = 1, for otherwise i could be dropped from the certificate, contradicting
minimality. Thus each S-variable is sensitive in x and C(f) ≤ sx(f) ≤ s(f). 2

Theorem 2.5.13 now implies:

2.7.2. Corollary. If f is monotone, then D(f) ≤ s(f)2.
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This corollary is actually tight, since the uniform 2-level AND-OR tree (the
AND of

√
N ORs of

√
N variables each) has D(f) = N and s(f) =

√
N and is

monotone.
Also, the first part of Theorem 2.5.6 can now be improved to

2.7.3. Proposition (Buhrman & de Wolf [49]). If f is monotone, then we
have s(f) ≤ deg(f).

Proof. Let x be an input on which the sensitivity of f is s(f). Assume without
loss of generality that f(x) = 0. All sensitive variables must be 0 in x, and setting
one or more of them to 1 changes the value of f from 0 to 1. Hence by fixing all
variables in x except for the s(f) sensitive variables, we obtain the OR function
on s(f) variables, which has degree s(f). Therefore deg(f) is at least s(f). 2

The above two results, combined with Theorems 2.4.2 and 2.5.7, strengthen
some of the previous bounds for monotone functions:

2.7.4. Corollary (BBCMW [17]). If f is monotone, then we have D(f) ∈
O(QE(f)

2), and D(f) ∈ O(Q2(f)
4).

2.7.2 Tight bounds for zero-error

In this section we show for monotone functions that the difference between Q0(f)
and D(f) can be near-quadratic, but not more.

2.7.5. Theorem (BCWZ [43]). For every total monotone Boolean function f
we have D(f) ≤ Q0(f)

2.

Proof. Let x be an input on which the sensitivity of f equals s(f). Assume
without loss of generality that f(x) = 0. All sensitive variables must be 0 in x,
and setting one or more of them to 1 changes the value of f from 0 to 1. Hence
by fixing all variables in x except for the s(f) sensitive variables, we obtain the
OR function on s(f) variables. Since OR on s(f) variables has Q0(ORN) = s(f)
(Proposition 2.6.5), it follows that s(f) ≤ Q0(f). We have D(f) ≤ s(f)2 by
Corollary 2.7.2, hence the theorem follows. 2

Important examples of monotone functions are AND-OR trees. These can be
represented as trees of depth d where the N leaves are the variables, and the d
levels of internal nodes are alternatingly labeled with ANDs and ORs. It is easy
to see that all such functions f have degree deg(f) = N , hence QE(f) ≥ N/2
and D(f) = N . However, we now show that in the zero-error setting quantum
computers can achieve significant speed-ups for such functions. These are in
fact the first total functions with proven superlinear gap between quantum and
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classical zero-error complexity. Interestingly, the quantum algorithms for these
functions are not just zero-error: if they output an answer b ∈ {0, 1} then they
also output a b-certificate for this answer (= a set of indices of variables whose
values force the function to the value b).

We prove that for sufficiently large d, quantum computers can obtain near-
quadratic speed-ups on d-level AND-OR trees that are uniform, i.e., have branch-
ing factor N 1/d at each level. Using the next lemma we prove that Theorem 2.7.5
is almost tight: for every ε > 0 there exists a total monotone f with Q0(f) ∈
O(N 1/2+ε) and D(f) = N .

2.7.6. Lemma (BCWZ [43]). Let d ≥ 1 and let f denote the uniform d-level
AND-OR tree on N variables that has an OR as root. There exists a quantum
algorithm A1 that finds a 1-certificate in expected number of queries O(N 1/2+1/2d)
if f(x) = 1 and does not terminate if f(x) = 0. Similarly, there exists a quantum
algorithm A0 that finds a 0-certificate in expected number of queries O(N 1/2+1/d)
if f(x) = 0 and does not terminate if f(x) = 1.

Proof. By induction on d.
Base step. For d = 1 the bounds are trivial.
Induction step (assume the lemma for d − 1). Let f be the uniform

d-level AND-OR tree on N variables. The root is an OR of N 1/d subtrees, each
of which has N (d−1)/d variables.

We construct A1 as follows. We can use Grover’s algorithm recursively to find
a subtree of the root whose value is 1, if there is one. This takes O(N 1/2(logN)d−1)
queries and works with bounded-error. For the technical details of this multi-level
quantum search we refer to [42, Theorem 1.15]. By the induction hypothesis there
is an algorithm A′0 that finds a 1-certificate for this subtree using an expected
number of O((N (d−1)/d)1/2+1/(d−1)) = O(N 1/2+1/2d) queries (note that the subtree
has an AND as root, so the roles of 0 and 1 are reversed). If A′0 has not terminated
after, say, 10 times its expected number of queries, then terminate it and start all
over with the multi-level Grover search. The expected number of queries for one
such run is O(N 1/2(logN)d−1) + 10 · O(N 1/2+1/2d) = O(N 1/2+1/2d). If f(x) = 1,
then the expected number of runs before success is O(1) and A1 will find a 1-
certificate after a total expected number of O(N 1/2+1/2d) queries. If f(x) = 0,
then the subtree found by the multi-level Grover-search will have value 0, so then
A′0 will never terminate by itself and A1 will start over again and again but never
terminates.

We construct A0 as follows. By the induction hypothesis there exists an al-
gorithm A′1 with expected number of O((N (d−1)/d)1/2+1/2(d−1)) = O(N 1/2) queries
that finds a 0-certificate for a subtree whose value is 0, and that runs forever
if the subtree has value 1. A0 first runs A′1 on the first subtree until it termi-
nates, then on the second subtree, etc. If f(x) = 0, then each run of A′1 will
eventually terminate with a 0-certificate for a subtree, and the 0-certificates of
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the N 1/d subtrees together form a 0-certificate for f . The total expected num-
ber of queries is the sum of the expectations over all N 1/d subtrees, which is
N1/d · O(N 1/2) = O(N 1/2+1/d). If f(x) = 1, then one of the subtrees has value 1
and the run of A′1 on that subtree will not terminate, so then A0 will not termi-
nate. 2

2.7.7. Theorem (BCWZ [43]). Let d ≥ 1 and let f denote the uniform d-level
AND-OR tree on N variables that has an OR as root. Then Q0(f) ∈ O(N 1/2+1/d)
and R2(f) ∈ Ω(N).

Proof. Run the algorithms A1 and A0 of Lemma 2.7.6 side-by-side until one
of them terminates with a certificate. This gives a certificate-finding quantum
algorithm for f with expected number of queries O(N 1/2+1/d). Run this algo-
rithm for twice its expected number of queries and answer “don’t know” if it
has not terminated after that time. By Markov’s inequality, the probability of
non-termination is ≤ 1/2, so we obtain an algorithm for our zero-error setting
with Q0(f) ∈ O(N 1/2+1/d) queries.

The classical lower bound follows from combining two known results. First,
an AND-OR tree of depth d on N variables has R0(f) ≥ N/2d [88, Theorem 2.1]
(see also [145]). Second, for such trees we have R2(f) ∈ Ω(R0(f)) [147]. Hence
R2(f) ∈ Ω(N). 2

This analysis is not quite optimal. It gives only trivial bounds for d = 2, but a
more refined analysis shows that we can also get speed-ups for such 2-level trees:

2.7.8. Theorem (BCWZ [43]). Let f be the AND of N 1/3 ORs of N 2/3 vari-
ables each. Then Q0(f) ∈ Θ(N 2/3) and R2(f) ∈ Ω(N).

Proof. A similar analysis as before shows Q0(f) ∈ O(N 2/3) and R2(f) ∈ Ω(N).
For the quantum lower bound: note that if we set all variables to 1 except for

the N 2/3 variables in the first subtree, then f becomes the OR of N 2/3 variables.
This has zero-error complexity N 2/3 (Proposition 2.6.5), hence we have Q0(f) ∈
Ω(N2/3). 2

If we consider a tree with
√
N subtrees of

√
N variables each, we would get

Q0(f) ∈ O(N 3/4) and R2(f) ∈ Ω(N). The best lower bound we can prove here is
Q0(f) ∈ Ω(

√
N).

2.7.3 Monotone graph properties

An interesting and well studied subclass of the monotone functions are the mono-
tone graph properties. We will show in this section that quantum algorithms can
compute some graph properties much faster than classical algorithms.
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Consider an undirected graph on n vertices. There are N =
(
n
2

)
possible edges,

each of which may be present or absent, so we can pair up the set of all graphs with
the set of all N -bit strings. In other words, labelling the vertices 1, . . . , n, an input
graph is represented by an N -bit string x = (e1,2, e1,3, . . . , e1,n, e2,3, . . . , en−1,n)
where the bit eij indicates whether there is an edge between vertices i and j.
A graph property P is a set of graphs that is closed under permutation of the n
vertices, so isomorphic graphs have the same properties. In other words, if graphs
x = (e12, . . .) and x′ = (e′12, . . .) are such that there is permutation π with the
property that eij = e′π(i),π(j) for every i, j, then either both graphs have property
P , or neither of them has property P .

We are now interested in the question: At how many edges must we look in
order to determine if a graph has the property P? This is just the decision-tree
complexity D(P ) of P if we view P as a total Boolean function on N bits. The
complexity of graph properties has been well-studied classically, especially for
monotone graph properties. A property P is monotone if adding edges cannot
destroy the property, which means that such a P is a specific monotone total
Boolean function on N =

(
n
2

)
bits.

In the sequel, let P stand for a (non-constant) monotone graph property. It
is called evasive if D(P ) = N , i.e., if any deterministic algorithm has to look at
all edges on some inputs. Much research revolved around the so-called Aanderaa-
Karp-Rosenberg conjecture or evasiveness conjecture, which states that every P
is evasive. This conjecture is still open; see [117] for an overview. It has been
proved for n equals a prime power [95] and for bipartite graphs [164], but the best
known bound that holds for all P is D(P ) ∈ Ω(N) [141, 95, 97]. This bound also
follows from a degree-bound by Dodis and Khanna [64, Theorem 2]:

2.7.9. Theorem (Dodis & Khanna [64]). If P is a non-constant monotone
graph property, then deg(P ) ∈ Ω(N).

Since deg(f)/2 lower bounds QE(f), we can prove that exact quantum eva-
siveness (QE(P ) = N) does not hold for all P , but near-evasiveness does:

2.7.10. Theorem (BCWZ [43]). For all non-constant monotone graph prop-
erties P we have QE(P ) ∈ Ω(N). There is a P such that QE(P ) < N for every
n > 2.

Proof. The general lower bound follows immediately from combining Theo-
rems 2.4.2 and 2.7.9. Letting P be the majority function (“are more than half
of the edges present?”), the results of Hayes et al. from Section 2.6.4 show that
there is a monotone P with QE(P ) < N for every n > 2. 2

For the classical zero-error complexity, the best known result is R0(P ) ∈
Ω(N2/3) for all P [84], but it has been conjectured that R0(P ) ∈ Θ(N). To the
best of our knowledge, no P is known to have R2(P ) ∈ o(N). For the quantum
case we can prove:
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2.7.11. Theorem (BCWZ [43]). For all non-constant monotone graph prop-
erties P we have Q0(P ) ∈ Ω(

√
N). There is a P such that Q0(P ) ∈ O(N 3/4) and

R2(P ) ∈ Ω(N).

Proof. The quantum lower bound follows immediately from D(P ) ≤ Q0(P )
2

(Theorem 2.7.5) and D(P ) ∈ Ω(N). Now consider the property “the graph
contains a star”, where a star is a node that has edges to all other nodes. This
property corresponds to a 2-level tree, where the first level is an OR of n subtrees,
and each subtree is an AND of n − 1 variables. The n − 1 variables in the ith
subtree correspond to the n− 1 edges (i, j) for j 6= i. The ith subtree is 1 iff the
ith node is the center of a star, so the root of the tree is 1 iff the graph contains
a star. Now we can show Q0(P ) ∈ O(N 3/4) and R2(P ) ∈ Ω(N) analogously to
Theorem 2.7.8. 2

Finally, for the bounded-error case we have quadratic gaps between quan-
tum and classical: the property “the graph has at least one edge” has Q2(P ) ∈
O(
√
N) = O(n) by Grover’s quantum search algorithm. Combining the results

that D(P ) ∈ Ω(N) for all P and D(f) ∈ O(Q2(f)
4) for all monotone f (Theo-

rem 2.5.12), we also obtain a (probably non-optimal) lower bound for this case:

2.7.12. Theorem (BCWZ [43]). For all monotone graph properties P we have
Q2(P ) ∈ Ω(N 1/4). There is a P such that Q2(P ) ∈ O(

√
N) and R2(P ) ∈ Ω(N) .

2.8 Summary

In this chapter we analyzed the quantum query complexity of total Boolean func-
tions. Query complexity measures the number of queries to inputs bits that an
algorithm needs. This model is interesting because most existing quantum algo-
rithms depend on queries in some form or other. We used QE(f), Q0(f), and
Q2(f) for the optimal query complexity of exact, zero-error, and bounded-error
quantum algorithms for f , respectively. We showed how degrees of polynomials
for f give strong lower bounds on quantum query complexity:

• QE(f) ≥
deg(f)

2

• Q0(f) ≥
deg0(f)

2

• Q2(f) ≥
d̃eg(f)

2

The main consequence is that for all total functions, quantum query complexity
can be at most polynomially lower than classical deterministic query complexity:
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• D(f) ∈ O(Q0(f)
4)

• D(f) ∈ O(Q2(f)
6)

This contrasts sharply with the case of promise functions (e.g., Deutsch-Jozsa,
Simon, Shor’s period-finding), where quantum computers sometimes require ex-
ponentially fewer queries than classical ones. We conjecture that our general
bounds are not tight. The largest gaps known between D(f) on the one hand
and Q0(f) and Q2(f) are both only quadratic. We sharpened the bounds for
various special classes of functions.



Chapter 3

Bounds for Quantum Search

This chapter is based on the papers

• H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for Small-Error
and Zero-Error Quantum Algorithms. In Proceedings of 40th IEEE FOCS,
pages 358–368, 1999.

• H. Buhrman and R. de Wolf. A Lower Bound for Quantum Search of an
Ordered List. Information Processing Letters, 70(5):205–209, 1999.

3.1 Introduction

Searching is something which computers have to do a lot and it is clearly of
great interest to know how fast a quantum computer can search under various
circumstances. Foremost among those circumstances is the issue of whether the
search space (sometimes called the “database”) is ordered or unordered. In this
chapter we will consider the quantum complexity of both kinds of search, starting
with the unordered case.

Three different parameters are of interest when searching some unordered
space:

• N : the size of the search space

• t: the number of solutions in the search space

• ε: the allowed probability of error

The algorithm may or may not know the number of solutions t. Given these
parameters, we want to know how fast a quantum computer can search the N -
element space and find one of the solutions with failure probability at most ε. As
in the previous chapters, we will abstract “time complexity” to “query complex-
ity” (in the case of search these will usually come to the same anyway). A query

53
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is basically a “look-up” in the search space, the examination of an element of the
space — with the crucial property that a quantum look-up can examine several
different elements in superposition.

We will use T = T (N, t, ε) to denote the minimal number of queries needed
for the parameters N, t, ε in the case where the quantum search algorithm does
not know t. We will add superscript ‘k’ for the case where the exact number
of solutions t is known to the algorithm. The main result about the complexity
of unordered search is of course Grover’s algorithm (Section 1.7), which shows
that T (N, t, 1/2) ∈ O(

√
N/t). Moreover, if the algorithm knows the number t of

solutions, then the exact version of Grover’s algorithm implies even T k(N, t, 0) ∈
O(
√
N/t). Both bounds were proven to be optimal by various people [25, 30, 167].

Furthermore, our Proposition 2.6.5 in Chapter 2 implies that if t is unknown
and we do not want any error (ε = 0), then the algorithm needs N queries:
T (N, t, 0) = N . Hence allowing no error probability whatsoever wipes out all
potential speed-up afforded by quantum computing.

But what about the case in between ε = 1/2 and ε = 0? Prior to the
work presented here, no good lower bounds were known on quantum search with
very small but non-zero error probability ε. By standard techniques, we can
repeat Grover’s algorithm O(log(1/ε)) many times and reduce the error to ε,
which shows that T (N, t, ε) ∈ O(

√
N/t log(1/ε)). However, there is no a priori

reason to believe that this method of error-reduction is optimal, and there might
well be a quantum method that tremendously boosts the success probability in
quantum search at a very small cost. In Section 3.2 we will prove tight bounds
on T (N, t, ε), showing, roughly speaking, that the error in quantum search can be
reduced slightly better than by the classical repetition technique, but not much
better.

Our lower bounds on error-reduction in quantum search algorithms also imply
lower bounds on general error-reduction: any general quantum method to boost
the success probability of a given bounded-error algorithm (quantum or classical)
to 1−ε needs Ω(log(1/ε)) repetitions of the algorithm in the worst case to reduce
the error to ε. This is at most a constant factor better than classical success
amplification, which shows that there are no general Grover-type quantum speed-
ups for reducing the error probability of a given algorithm.

Finally, in Section 3.4 we examine the case of searching an N -element list that
is ordered according to some key-field of the elements. Classically, we can search
such a list with only logN queries using binary search (each query can effectively
halve the relevant part of the list: looking at the key of the middle element of the
list tells you whether the item you are searching for is in the first or the second
half of the list); logN is also the classical lower bound, even in the bounded-
error case. How much better can we do on a quantum computer? We show that
a quantum computer cannot improve on classical binary search algorithms by
much more than a square-root: we prove a lower bound of Ω(

√
logN/ log logN)

queries for bounded-error quantum search in this setting. Our lower bound was
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the first significant lower bound for quantum ordered search that appeared (it first
appeared on the quant-ph archive in November 1998 in [46]). It has subsequently
been improved by means of different proof techniques to (logN)/2 log logN [69],
then to (logN)/12−O(1) [8], and then to (logN)/(π log e)−O(1) [93]. Thus at
most a linear speed-up is possible over classical computers. Such a linear quantum
speed-up is indeed possible: an upper bound of 0.53 logN can be achieved [70]
(see [93] for a slightly worse but more intuitive algorithm).

3.2 Tight Bounds for Unordered Search

To restate the unordered search problem: we have an N -element search space x =
(x1, . . . , xN ) that we can only access by means of queries. A query corresponds
to the unitary transformation that maps |i, b〉 → |i, b ⊕ xi〉. The aim is to find
an i such that xi = 1. Such an i is a called a solution. We assume the space
contains (at least) t solutions, and use T (N, t, ε) to denote the minimal numbers
of queries that a quantum algorithm needs in order to find a solution in this space
with probability at least 1− ε.

In this section we prove tight bounds on T (N, t, ε). We first consider lower
bounds on T (N, t, ε). The main idea is the following. It will be convenient for us
to analyze the quantum complexity of the ORN -function under the promise that
the number of solutions is either 0 or at least t. Clearly, searching for a solution
is at least as hard as the ORN -function, so a lower bound for ORN gives a lower
bound for search. By Lemma 2.4.1, the acceptance probability of a quantum
computer with T queries that computes the ORN with error probability ≤ ε
(under the promise that there are either 0 or at least t solutions) can be written
as an N -variate multilinear polynomial P (x) of degree ≤ 2T . This polynomial
has the properties that

P (~0) = 0
1− ε ≤ P (x) ≤ 1 whenever |x| ∈ [t, N ]

Since we can always test whether we actually found a solution at the expense of
one more query, we can assume the algorithm always gives the right answer ‘no
solutions’ if the input contains only 0s, hence the property P (0) = 0. However,
our results remain unaffected up to constant factors if we also allow a small error
here (i.e., 0 ≤ P (0) ≤ ε).

By symmetrizing (Lemma 2.2.2), P can be reduced to a single-variate poly-
nomial s of degree d ≤ 2T with the following properties:

s(0) = 0
1− ε ≤ s(z) ≤ 1 for all integers z ∈ [t, N ]

We will prove a lower bound on ε in terms of d, N , and t. Since d ≤ 2T , this will
imply a lower bound on ε in terms of T,N, t. Equivalently, it will imply a lower
bound on T in terms of N, t, ε.
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Our proof uses three results about polynomials. The first is by Coppersmith
and Rivlin [58, p. 980] and gives a general bound for polynomials that are bounded
by 1 at integer points:

3.2.1. Theorem (Coppersmith & Rivlin [58]). Every polynomial p of de-
gree d that has absolute value

|p(z)| ≤ 1 for all integers z ∈ [0, n],

satisfies

|p(z)| < aebd
2/n for all real z ∈ [0, n],

where a, b > 0 are universal constants. (No explicit values for a and b are given
in [58].)

The second two tools concern the Chebyshev polynomials Td, defined as
in [143]:

Td(z) =
1

2

((
z +
√
z2 − 1

)d
+
(
z −
√
z2 − 1

)d)
.

Td has degree d and its absolute value |Td(z)| is bounded by 1 if z ∈ [−1, 1]. On
the interval [1,∞), Td exceeds all others polynomials with those two properties
([143, p.108] and [136, Fact 2]):

3.2.2. Theorem. If q is a polynomial of degree d such that |q(z)| ≤ 1 for all
z ∈ [−1, 1] then |q(z)| ≤ |Td(z)| for all z ≥ 1.

Paturi ([136, before Fact 2] and personal communication) proved

3.2.3. Lemma (Paturi [136]). Td(1 + µ) ≤ e2d
√
2µ+µ2

for all µ ≥ 0.

Proof. For z = 1 + µ: Td(z) ≤ (z +
√
z2 − 1)d = (1 + µ +

√
2µ+ µ2)d ≤

(1 + 2
√

2µ+ µ2)d ≤ e2d
√
2µ+µ2

(using that 1 + x ≤ ex for all real x). 2

Now we can prove our lower bound on ε in terms of d (and N and t):

3.2.4. Theorem (BCWZ [43]). Let 1 ≤ t < N be an integer. Every polyno-
mial s of degree d ≤ N− t such that s(0) = 0 and 1−ε ≤ s(z) ≤ 1 for all integers
z ∈ [t, N ] has

ε ≥ 1

a
e−(bd

2/(N−t))−4d
√
tN/(N−t)2 ,

where a, b are as in Theorem 3.2.1.
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Proof. Every polynomial s satisfying s(0) = 0 and s(z) = 1 for all integers
z ∈ [t, N ] must have degree > N − t, because s(z) − 1 has at least N − t + 1
zeroes. Since the s in this theorem has degree d ≤ N − t, we have ε > 0 (and
hence we can divide by ε later on). Consider the polynomial p(z) = 1− s(N − z).
It has degree d and

0 ≤ p(z) ≤ ε for all integers z ∈ [0, N − t]
p(N) = 1

Applying Theorem 3.2.1 to p/ε (which is bounded by 1 at integer points z ∈
[0, N − t]) with n = N − t we obtain:

|p(z)| < εaebd
2/(N−t) for all real z ∈ [0, N − t].

Now we rescale p to q(z) = p((z + 1)(N − t)/2) (i.e., the domain [0, N − t] is
transformed to [−1, 1]), which has the following properties:

|q(z)| < εaebd
2/(N−t) for all real z ∈ [−1, 1]

q(1 + µ) = p(N) = 1 for µ = 2t/(N − t).

Thus q is “small” on all z ∈ [−1, 1] and “large” at z = 1 + µ. Linking this with
Theorem 3.2.2 and Lemma 3.2.3 we obtain

1 = q(1 + µ)

≤ εaebd
2/(N−t)|Td(1 + µ)|

≤ εaebd
2/(N−t)e2d

√
2µ+µ2

= εaebd
2/(N−t)+2d

√
4t/(N−t)+4t2/(N−t)2

= εaebd
2/(N−t)+4d

√
tN/(N−t)2 .

Rearranging gives the bound. 2

Note that if T > N−t then we can achieve ε = 0 by just checking an arbitrary
set of T elements. Since there are t solutions, this set must contain at least one
solution. Conversely, it follows from Proposition 2.6.5 that if T ≤ N − t, then we
must have ε > 0. Since a T -query quantum search algorithm induces a degree-d
polynomial s with the properties mentioned in Theorem 3.2.4 and d ≤ 2T , we
obtain the following bound for quantum search under the promise:

3.2.5. Theorem (BCWZ [43]). Under the promise that the number of solu-
tions is at least t, every quantum search algorithm that uses T ≤ N − t queries
has error probability

ε ∈ Ω
(
e−(4bT

2/(N−t))−8T
√
tN/(N−t)2

)
.
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This theorem implies a lower bound on T in terms of N , t, and ε. To give
a tight characterization of the relations between T , N , t and ε, we need the
following upper bound on T for the case t = 1:

3.2.6. Theorem (BCWZ [43]). For every ε > 0 there exists a quantum search

algorithm with error probability ≤ ε and O
(√

N log(1/ε)
)
queries.

Proof. Set t0 = dlog(1/ε)e. Consider the following algorithm:

1. Apply the exact quantum search algorithm for the values t = 1, . . . , t0. One
such application takes O(

√
N/t) queries.

2. If no solution has been found, then apply t0 ordinary Grover searches, each
with O(

√
N/t0) queries.

3. Output a solution if one has been found, otherwise output ‘no solutions’.

The query complexity of this algorithm is bounded by

t0∑

t=1

O

(√
N

t

)
+ t0O

(√
N

t0

)
= O

(√
N log(1/ε)

)
.

If the real number of solutions was in {1, . . . , t0}, then a solution will be found
with certainty in step 1. If the real number of solutions was > t0, then each of
the searches in step 2 can be made to have error probability ≤ 1/2, so we have
total error probability at most (1/2)t0 ≤ ε. 2

The main theorem of this section tightly characterizes the various trade-offs
between the size of the search space N , the promise t, the error probability ε,
and the required number of queries (we need some mild conditions on t and ε to
make it all work):

3.2.7. Theorem (BCWZ [43]). Let N > 0, 1 ≤ t ≤ 0.9N , ε ≥ 2−N . Let
T = T (N, t, ε) be the optimal number of queries a quantum computer needs to
search with error ≤ ε through an unordered N-element space that contains at
least t solutions. Then

log(1/ε) ∈ Θ

(
T 2

N
+ T

√
t

N

)
.

Proof. From Theorem 3.2.5 we obtain log(1/ε) ∈ O
(
T 2/N + T

√
t/N

)
. To

prove a lower bound on log(1/ε) we distinguish two cases.
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Case 1: T ≥
√
tN . By Theorem 3.2.6, we can achieve error ≤ ε using

Tu ∈ O(
√
N log(1/ε)) queries. Now (leaving out some constant factors):

log(1/ε) ≥ T 2u
N
≥ T 2

N
=

1

2

(
T 2

N
+ T

T

N

)
≥ 1

2

(
T 2

N
+ T

√
t

N

)
.

Case 2: T <
√
tN . We can achieve error ≤ 1/2 by using ordinary Grover

search with O(
√
N/t) queries and then classically amplifying this to error ≤ ε

using O(log(1/ε)) repetitions. This takes Tu ∈ O(
√
N/t log(1/ε)) queries in total.

Now:

log(1/ε) ≥ Tu

√
t

N
≥ T

√
t

N
=

1

2

(
T

√
t

N
+ T

√
t

N

)
≥ 1

2

(
T 2

N
+ T

√
t

N

)
.

2

Ignoring constant factors, the theorem can be written as

log(1/ε) =
T 2

N
+ T

√
t

N
.

Viewing this as a quadratic equation in T , we can solve for T and obtain (still
ignoring constant factors)

T (N, t, ε) =
√
N

√
t+ 4 log(1/ε)−

√
t

2
.

We note some interesting consequences of this general theorem:

• T (N, t, 1/2) ∈ Θ(
√
N/t)

This was first proven in [30].

• T (N, 1, ε) ∈ Θ(
√
N log(1/ε))

This is slightly better than classical amplification of Grover’s algorithm
(which would take

√
N log(1/ε) queries). It also implies that no quantum

search algorithm with O(
√
N) queries can achieve ε ∈ o(1).

• T (N, t, ε) ∈ Θ(
√
N/t log(1/ε)) if tÀ log(1/ε)

This shows that if t is large relative to log(1/ε), then classical amplification
is optimal. We will elaborate further on this in the next section.

• T (N, t, 2−N ) ∈ Θ(N)
If we want exponentially small error probability ε = 2−N , then we might as
well run a classical algorithm that queries all N elements. This also justifies
the restriction ε ≥ 2−N of Theorem 3.2.7: if we want ε ≤ 2−N then quantum
search is not significantly faster than classical search.
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3.3 Application to Success Amplification

Our lower bounds on error-reduction in quantum search algorithms have some
negative consequences for error-reduction in general. Consider the case of an
algorithm that has some small one-sided success probability p that we want to
improve. We assume we are given the initial algorithm as a “black-box”, which we
cannot look into. We have to do this to make the boosting problem interesting,
otherwise it would be conceivable that a successful boosting method “opens up”
the algorithm, finds out which problem it solves, and comes up with a completely
different but error-free algorithm for the same problem.

Classically, we need to repeat the black-box algorithm about 1/p times to
boost the success probability to, say, 1/2. In the quantum case, amplitude am-
plification achieves the same goal quadratically faster: a quantum booster needs
only about 1/

√
p “quantum repetitions” of the algorithm to boost the success

probability to 1/2. Now suppose we want to go from success probability 1/2
to 1 − ε. Classically this would require about log(1/ε) repetitions of the error-
1/2 algorithm, which is the best one can do in general. The classical booster is
basically searching for a successful run of the algorithm (which will occur with
probability 1 − ε if we run the algorithm O(log(1/ε)) times independently, i.e.,
if we search among O(log(1/ε)) different runs). Accordingly, an analogy with
Grover’s search algorithm suggests that maybe a quantum booster would need
only O(

√
log(1/ε)) repetitions of the algorithm. A quantum booster would be

given such an algorithm as a unitary transformation A that it can apply as often
as it wants. If the booster would need T repetitions of the algorithm, it would
look like B = UTAUT−1A . . . AU0, where the Uj are unitary transformations that
do not depend on A. An appropriate measurement of the final state B|~0〉 would
then give the output of the booster. A quantum booster could indeed apply some
Grover-type amplitude amplification to A, but this would introduce an error of
its own, which may outweigh the improvement of success probability achieved by
amplitude amplification.

Somewhat disappointingly, we prove that no quantum booster can work sig-
nificantly better than a classical booster: like the classical booster, a quantum
booster needs about log(1/ε) repetitions of the algorithm in the worst case to
reduce the error to ε.

3.3.1. Theorem (BCWZ [43]). A general quantum method that boosts any al-
gorithm of success probability 1/2 to success probability 1 − ε, needs to run the
algorithm Ω(log(1/ε)) times in the worst case.

Proof. Consider the unordered search problem with parameters N and t = N/2,
chosen such that t À log(1/ε). Grover’s algorithm (not knowing t) can solve
this problem with error probability ≤ 1/2 using O(

√
N/t) = O(1) queries. Now

suppose we have a general quantum booster, which boosts any 1/2-error algorithm
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to success probability 1−ε using at most T repetitions of the algorithm. Applying
this to Grover’s algorithm gives a solution to the search problem with T · O(1)
queries and error probability ≤ ε. However, we know from the previous section
that T (N,N/2, ε) ∈ Ω(log(1/ε)), hence T ∈ Ω(log(1/ε)). 2

We focused on one-sided error algorithms here, but similar negative results
hold for boosting a given zero-error or bounded-error algorithm: there is no gen-
eral quantum way to boost success probability that is significantly (= more than
a constant factor) better than classical.

3.4 Lower Bound for Ordered Searching

In this section we prove a lower bound on searching a space that is ordered accord-
ing to some key value. We model the search space as an input x = (x1, . . . , xN),
which we can query in the usual way. We let Ox denote the unitary transformation
corresponding to a query:

Ox : |j, b, z〉 → |j, b⊕ xj, z〉.

Here z indicates the workspace of the algorithm, which is not affected by the
query, and xj is the result of a comparison, indicating whether the jth item in
the space has a key-value smaller or equal to the value we are looking for. We
assume the underlying search space is ordered in increasing order, meaning that
x consists of a sequence of i 1s followed by 0s:

x = (1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
N−i

).

The goal is to find the number i, which we will call the step of x, using as few
queries as possible. This i is the point in the list where the looked-for item resides
(i may be 0, in which case all items in the list happen to be larger than the item
we are looking for).

3.4.1 Intuition

Before plunging into the technicalities of the proof let us briefly sketch the main
idea, ignoring the error probabilities for now.

Suppose we have a quantum algorithm S that uses T queries to determine the
step i of any ordered input x. We can use S to retrieve the complete contents of
a given arbitrary (non-ordered) input y ∈ {0, 1}logN , as follows. The sequence of
bits in y is the binary representation of some number i ∈ [0, N − 1]. Define x as
the ordered input of size N where the step occurs at position i: xj = 1 for j ≤ i
and xj = 0 for j > i. Running S on x would give us i, and hence the complete
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y. Unfortunately we do not have the possibility to query x; we can only query y.
However, we can simulate an x-query using y-queries. An x-query is basically a
mapping from a given number j to the bit xj, where xj = 1 iff j ≤ i. Both j and
i are logN -bit numbers, and the leftmost (= most significant) bit where their
binary representations differ determines whether j ≤ i. Using Grover’s algorithm
we can find this bit using roughly

√
logN queries to y and hence learn xj. Thus

we can simulate an x-query by
√
logN y-queries.

Now if we replace each of the T x-queries in S by such a simulation, we obtain
a network with roughly T · √logN y-queries that computes i (and hence learn
the whole y). Knowing y would for instance enable us to compute PARITY(y)
(i.e., whether the number of 1s in y is odd), for which Corollary 2.6.7 gives a
lower bound of (logN)/2 y-queries. Hence we must have

T ·
√

logN ≥ logN

2
,

and the lower bound on T follows. The following technical sections make this
idea precise.

3.4.2 Simulating queries to an ordered input

Our lower bound proof uses three technical lemmas, which together show that
we can approximately simulate a query to an ordered input x with step at i,
using roughly

√
logN queries to an input y of logN bits that form the binary

representation of i. We prove these three lemmas first.
Since xj = 1 iff j ≤ i, we can simulate an x-query if we are able to determine

whether j ≤ i for given j. By a result of Dürr and Høyer [65], there is a bounded-
error quantum algorithm that can find the minimum element of a list of logN
items using O(

√
logN) queries. We can use this to find the leftmost bit where

the binary representations of i and j differ, as follows: construct a logN -element
list z, defining zk = k if i and j differ in their kth bit and zk = logN + 1 if those
kth bits are the same. Now the index k for which zk is minimal, is the index of
the leftmost bit where i and j differ. Thus we can determine whether j ≤ i, using
O(
√
logN) y-queries. By standard techniques we can reduce the error probability

to ε = 1/ logN by repeating the algorithm O(log(1/ε)) = O(log logN) times. We
may assume without loss of generality that this computation does not affect the
input j and does not use intermediate measurements. Thus we obtain:

3.4.1. Lemma. There is a quantum algorithm A that makes O(
√
logN log logN)

queries to a logN-bit input y, such that if y represents the number i ∈ {0, . . . , N−
1}, then for every j ∈ [0, N − 1], A maps

|j,~0〉 → α|j, xj〉|Vij〉+ β|j, xj〉|V ′ij〉,
where xj = 1 if j ≤ i and xj = 0 if j > i, |β|2 ≤ ε = 1/ logN , and Vij and V ′ij
are unit-length vectors that depend on i and j.



3.4. Lower Bound for Ordered Searching 63

Cleaning up by reversing the computation

If we want to simulate an x-query, we must make sure that the simulation does not
leave behind used non-zero workspace, since this may destroy interference later
on. Thus we must somehow “clean up” the vectors |Vij〉 and |V ′ij〉 introduced by
the previous lemma. We can in fact do this at a small overhead (a factor of 2 in
the time and number of queries). The idea of the proof is familiar from classical
reversible computing:

1. do the original computation A

2. copy the answer bit to a safe place (a fresh new qubit)

3. reverse the computation (i.e., apply A−1) to return to the clean initial state
plus the copy of the answer bit

If the computation is exact, then the answer bit is in fact a classical bit (|0〉 or |1〉)
and this scheme works perfectly. If the computation has a small error probability,
then part of the state after step (1) will have answer bit |0〉 and part will have
answer bit |1〉. Thus in this case step (2) will introduce some entanglement
between the new copy of the answer bit and the rest of the state, and we cannot
reverse it exactly. However, if most of the amplitude is concentrated on one of the
two answers, then the answer bit is approximately classical, and step (3) will still
return the state to approximately the clean initial state. This technique is by now
standard in quantum computing, and can be found for instance in [25, 54, 42].

Lemma 3.4.2 first shows that the above technique works when applying A to
basis states, Lemma 3.4.3 then extends this by showing that it also works when
applying A to superpositions of basis states.

3.4.2. Lemma. Suppose A is a quantum algorithm that uses T y-queries and for
every j ∈ [0, N − 1] maps

|j,~0〉 → α|j, xj〉|Vij〉+ β|j, xj〉|V ′ij〉,

where |β|2 ≤ ε and Vij and V
′
ij have unit length.

Then there exists a quantum algorithm A′ that uses 2T y-queries and maps

|j, b,~0〉 → |j, b⊕ xj,~0〉+ |j〉|Wijb〉,

where ‖|Wijb〉‖≤
√
2ε, for every i, j, and b ∈ {0, 1}.

Proof. For ease of notation we assume b follows the workspace ~0 instead of
preceding it. Thus we can write

A|j,~0, b〉 = α|j, xj〉|Vij〉|b〉+ β|j, xj〉|V ′ij〉|b〉.
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Applying a controlled-not operation that XORs the answer bit into b, we get

α|j, xj〉|Vij〉|b⊕ xj〉+ β|j, xj〉|V ′ij〉|b⊕ xj〉 =

(
α|j, xj〉|Vij〉+ β|j, xj〉|V ′ij〉

)
|b⊕ xj〉+ β|j, xj〉|V ′ij〉|b⊕ xj〉 − β|j, xj〉|V ′ij〉|b⊕ xj〉.

Applying A−1 ⊗ I gives

|j,~0〉|b⊕ xj〉+ (A−1 ⊗ I)
(
β|j, xj〉|V ′ij〉|b⊕ xj〉 − β|j, xj〉|V ′ij〉|b⊕ xj〉

)
.

Because A and hence also A−1 do not change j, this superposition can be written
as

|j,~0, b⊕ xj〉+ |j〉|Wijb〉,

for some vector |Wijb〉. Now

‖|Wijb〉‖ = ‖|j〉|Wijb〉‖ (3.1)

= ‖(A−1 ⊗ I)
(
β|j, xj〉|V ′ij〉|b⊕ xj〉 − β|j, xj〉|V ′ij〉|b⊕ xj〉

)
‖ (3.2)

= ‖β|j, xj〉|V ′ij〉|b⊕ xj〉 − β|j, xj〉|V ′ij〉|b⊕ xj〉‖ (3.3)

=
√
|β|2 + | − β|2 (3.4)

≤
√
2ε. (3.5)

Here (3.1) holds because |j〉 has norm 1. Equality between (3.2) and (3.3) holds
because A−1 ⊗ I is unitary and hence preserves norm. Equality between (3.3)
and (3.4) holds because the two vectors |j, xj〉|V ′ij〉|b⊕ xj〉 and |j, xj〉|V ′ij〉|b⊕ xj〉
in (3.3) have norm 1 and are orthogonal (they differ in the last bit).

Accordingly, the quantum algorithm A′ that first applies A, then XORs the
answer-bit into b, and then applies A−1 satisfies the lemma. 2

We have now shown that we can “cleanly” simulate Ox on a basis state |j, b,~0〉.
It remains to show that the simulation also works well on superpositions of basis
states. The next lemma proves this, using an idea from [54].

3.4.3. Lemma. Let Ox and Õx be unitary transformations such that

Ox : |j, b,~0〉 → |j, b⊕ xj,~0〉
Õx : |j, b,~0〉 → |j, b⊕ xj,~0〉+ |j〉|Wijb〉

If ‖ |Wijb〉 ‖≤ ε for every i, j, b and |φ〉 =
∑

j,b αjb|j, b,~0〉 has norm 1, then

‖Ox|φ〉 − Õx|φ〉‖≤ ε
√
2.
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Proof.

‖Ox|φ〉 − Õx|φ〉‖ = ‖
∑

j,b

αjb|j〉|Wijb〉‖ (3.6)

= ‖
∑

j

αj0|j〉|Wij0〉+
∑

j

αj1|j〉|Wij1〉‖ (3.7)

≤ ‖
∑

j

αj0|j〉|Wij0〉‖ + ‖
∑

j

αj1|j〉|Wij1〉‖ (3.8)

=

√∑

j

|αj0|2 ‖|j〉|Wij0〉‖2 +
√∑

j

|αj1|2 ‖|j〉|Wij1〉‖2 (3.9)

≤ ε ·
√∑

j

|αj0|2 + ε ·
√∑

j

|αj1|2 (3.10)

≤ ε
√
2. (3.11)

The step from (3.7) to (3.8) is the triangle inequality. The step from (3.8) to (3.9)
holds because the states |j〉|Wijb〉 in

∑
j αjb|j〉|Wijb〉 form an orthogonal set. The

last inequality holds because
∑

j |αj0|2 +
∑

j |αj1|2 = 1 and
√
a +
√
1− a ≤

√
2

for all a ∈ [0, 1]. 2

3.4.3 Lower bound for ordered search

Using the above technicalities, we can now formalize the intuitive proof:

3.4.4. Theorem (Buhrman & de Wolf [47]). A bounded-error quantum al-
gorithm for searching an ordered input of N elements needs Ω(

√
logN/ log logN)

queries.

Proof. Suppose we have a bounded-error algorithm S for search that uses
T queries to find the step i hidden in an ordered input x. Since logN queries
are sufficient for this (classical binary search), we can assume T ≤ logN . We

will show how we can get from S to a network S̃ that determines the whole
contents of an arbitrary input y of logN bits with high probability, using only
T ·O(

√
logN log logN) queries to y. This would allow us to compute PARITY(y)

with small error probability. Since we have a (logN)/2 lower bound for the latter
(Corollary 2.6.7), we obtain

T ·O(
√

logN log logN) ≥ logN

2
,

from which the theorem follows.
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So let y be an arbitrary logN -bit string. It represents some i ∈ {0, . . . , N−1}.
Let x = (x1, . . . , xN) be the ordered input with step at i, so xj = 1 iff j ≤ i. The
algorithm S, when allowed to make queries to Ox, outputs the number i with
high probability. Ox maps

|j, b,~0〉 → |j, b⊕ xj,~0〉.
Since xj = 1 iff j ≤ i, Lemmas 3.4.1 and 3.4.2 imply that there is a quantum

algorithm Õx that uses O(
√
logN log logN) y-queries and maps

|j, b,~0〉 → |j, b⊕ xj,~0〉+ |j〉|Wijb〉,
where ‖ |Wijb〉 ‖≤ η/ logN for all i, j, b, for some small fixed η of our choice
(η = 0.1 suffices).

Let S̃ be obtained from S by replacing all T Ox-queries by Õx-queries. Note
that S̃ contains T ·O(

√
logN log logN) queries to y. Consider the way S̃ acts on

initial state |~0〉, compared to S. Each replacement ofOx by Õx introduces an error,
but each of these errors is at most η

√
2/ logN in Euclidean norm by Lemma 3.4.3.

Using the triangle inequality and the unitarity of the transformations in S and S̃,
it is easy to show that these T errors add at most linearly (see for instance [25,

p.1515]). Hence the final states after S and S̃ will be close together:

‖S|~0〉 − S̃|~0〉‖≤ Tη
√
2/ logN ≤ η

√
2.

Since observing the final state S|~0〉 yields the number i with high probability,

observing S̃|~0〉 will also yield i with high probability. Thus the network S̃ allows
us to learn i and hence the whole input y. 2

3.5 Summary

In this chapter we examined the quantum complexity of searching a space of N
elements. This space may be either ordered or unordered. For the unordered
case we derived tight bounds on the number of queries required to search the
space depending on its number t of solutions and the allowed error probability ε.
These bounds basically show that the error probability of quantum search can be
reduced slightly better than the naive classical method that just repeats Grover’s
algorithm many times. Secondly, our lower bounds for quantum search imply that
any quantum method that reduces the error of arbitrary algorithms to ≤ ε needs
to repeat the algorithm about log(1/ε) many times, which is the same bound as
for the classical repetition-method up to constant factors. Thirdly, we proved a
lower bound of roughly

√
logN queries on the quantum complexity of searching

an ordered N -element space. This lower bound has subsequently been improved
by others to nearly logN queries, which shows that quantum computers are not
significantly better for this problem than classical binary search.



Chapter 4

Element Distinctness and Related
Problems

This chapter is based on the paper

• H. Buhrman, Ch. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha,
and R. de Wolf. Quantum Algorithms for Element Distinctness. In Proceed-
ings of 16th IEEE Annual Conference on Computational Complexity (CCC
2001), pages 131–137, 2001.

4.1 Introduction

As we saw in Chapter 1, only a few good quantum algorithms are known to
date, the two main examples being Shor’s factoring algorithm and Grover’s search
algorithm. Whereas the first so far has remained a seminal but somewhat isolated
result, the second has been applied as a building block in quite a few other
quantum algorithms.

One of the earliest applications of Grover’s algorithm was the algorithm of
Brassard, Høyer, and Tapp [36] for finding a collision in a 2-to-1 function f .1 A
function f is 2-to-1 if every element in the range of f has exactly 2 pre-images. A
collision is a pair of distinct elements x, y such that f(x) = f(y). Suppose the size
of f ’s domain is N . For a classical randomized algorithm, it can be shown that
Θ(
√
N) evaluations of the function are necessary and sufficient to find a collision.

The quantum algorithm of [36] finds a collision using O(N 1/3) evaluations of f
(and can be made to do this with certainty). No non-trivial quantum lower bound
is known for this problem. A notion related to collisions is that of a claw. A claw
in functions f and g is a pair (x, y) such that f(x) = g(y). If f and g are

1Note that we are using f here not as a Boolean function that we want to compute (in
contrast to previous chapters where f was usually something like OR or PARITY), but as the
name of the input of the problem that we want solve.

67
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permutations on [N ] = {1, . . . , N}, then we can reduce the problem of claw-
finding to collision-finding for 2-to-1 functions: the function h on [2N ] defined
by h(i) = f(i) and h(i + N) = g(i) for i ∈ [N ], is a 2-to-1 function. Thus the
algorithm of Brassard, Høyer, and Tapp [36] can also find a claw in such f and g
using O(N 1/3) evaluations of f and g.

In this paper we consider the quantum complexity of collision-finding and
claw-finding with and without restrictions on the functions f and g. In Section 4.2
we consider the situation where f : [N ]→ Z and g : [M ]→ Z are arbitrary. Our
aim is to find a claw between f and g, if one exists. For now, let us assume N =M
(in the body of the chapter we treat the general case). The complexity measure
we use is the number of comparisons between elements. That is, we assume a
total order on Z and our only way to access f and g is by comparing f(x) with
f(y), g(x) with g(y), or f(x) with g(y), according to this total order. The ability
to make such comparisons is weaker than the ability to evaluate and actually
obtain the function values f(x) and g(y), because if we can obtain the values
f(x) and g(y), we can of course also compare those two values. Accordingly, the
existence of a quantum algorithm that finds a claw using T comparisons implies
the existence of a quantum algorithm that finds a claw using O(T ) function-
evaluations. However, also the lower bounds on the complexity of claw-finding
presented here remain essentially the same if we were to count the number of
function-evaluations instead of comparisons. This shows that it does not matter
much for our results whether we count comparisons or function-evaluations.

A simple yet essentially optimal classical algorithm for this general claw-
finding problem is the following. Viewing the values of f as a list of N items, we
can sort it using N logN + O(N) comparisons. Once f is sorted, we can for a
given y ∈ [N ] find an x such that f(x) = g(y) provided such an x exists, using
logN comparisons (by utilizing binary search on f). Thus exhaustive search on
all y yields an O(N logN) algorithm for finding a claw with certainty, provided
one exists. This N logN is optimal up to constant factors even for bounded-
error classical algorithms, as follows from the classical Ω(N logN) bounds for the
element distinctness problem, explained below. In this chapter we show that a
quantum computer can do better: we exhibit a quantum algorithm that finds a
claw with high probability using O(N 3/4 logN) comparisons. We also prove a
lower bound for this problem of Ω(N 1/2) comparisons for bounded-error quantum
algorithms and Ω(N) for exact quantum algorithms.

Our algorithm for claw-finding also yields an O(N 3/4 logN) bounded-error
quantum algorithm for finding a collision for arbitrary functions. Note that de-
ciding if a collision occurs in f is equivalent to deciding whether f maps all x
to distinct elements. This is known as the element distinctness problem and has
been well studied classically, see for instance [166, 118, 81, 18]. Element distinct-
ness is particularly interesting because its classical complexity is related to that
of sorting, which is well known to require N logN+Θ(N) comparisons classically.
If we sort f , we can decide element distinctness by going through the sorted list
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once, which gives a classical upper bound of N logN +O(N) comparisons. Con-
versely, element distinctness requires Ω(N logN) comparisons in case of classical
bounded-error algorithms (even in a much stronger model, see [81]), so sorting
and element distinctness are equally hard for classical computers. On a quantum
computer, the best known upper bound for sorting is roughly 0.53 N logN com-
parisons [70] and it was recently shown that such a linear speed-up is the best
possible: quantum sorting requires Ω(N logN) comparisons, even if one allows a
small probability of error [93]. Accordingly, our O(N 3/4 logN) quantum upper
bound shows that element distinctness is significantly easier than sorting for a
quantum computer, in contrast to the classical case.

In Section 4.3, we consider the case where f is ordered (monotone non-
decreasing): f(1) ≤ f(2) ≤ · · · ≤ f(N). In this case, the quantum complexity
of claw-finding and collision finding drops from O(N 3/4 logN) to O(N 1/2 logN).
In Section 4.4 we show how to remove the logN factor (replacing it by a near-
constant function) if both f and g are ordered. The lower bound for this restricted
case remains Ω(N 1/2). We then, in Section 4.5, give bounds for the number of
edges a quantum computer needs to query in order to find a triangle in a given
graph (which, informally, can be viewed as a collision between three nodes).

4.2 Finding Claws if f and g Are not Ordered

We consider the following problems:

Claw-finding problem
Given two functions f : X → Z and g : Y → Z, find a pair (x, y) ∈ X × Y
such that f(x) = g(y).

Collision-finding problem
Given a function f : X → Z, find two distinct elements x, y ∈ X such that
f(x) = f(y).

We assume that X = [N ] = {1, . . . , N} and Y = [M ] = {1, . . . ,M} with
N ≤ M . We are interested in the number of comparisons required for claw-
finding and collision-finding. A comparison between f(x) and f(y) is formalized
as an application of the following unitary transformation:

|x, y, b〉 → |x, y, b⊕ [f(x) ≤ f(y)]〉,

where b ∈ {0, 1} and [f(x) ≤ f(y)] denotes the truth-value of the statement
“f(x) ≤ f(y)”. We formalize comparisons between f(x) and g(y) similarly.

First we consider the most general case, where f and g are arbitrary func-
tions. Our claw-finding algorithms are instances of the following generic algo-
rithm, which is parameterized by an integer ` ≤ min{N,

√
M}:
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Algorithm Generic claw-finder

Apply amplitude amplification on steps 1–4:

1. Select a random subset A ⊆ [N ] of size `

2. Select a random subset B ⊆ [M ] of size `2

3. Sort the elements in A according to their f -value

4. For a specific b ∈ B, we can check if there is an a ∈ A such that (a, b) is a
claw using classical binary search on the sorted version of A. Combine this
with quantum search on the B-elements to search for a claw in A×B.

We analyze the comparison-complexity of this algorithm. Steps 1 and 2 do
not use any queries. Step 3 just employs classical sorting and takes ` log `+O(`)
comparisons. Step 4 takes O(

√
|B| log |A|) = O(` log `) comparisons, since testing

if there is an A-element colliding with a given b ∈ B takes O(logA) comparisons
(via binary search on the sorted A) and the quantum search needs O(

√
|B|) such

tests to find a B-element that collides with an element occurring in A, if there is
such a B-element. In total, steps 1–4 take O(` log `) comparisons.

If no claws between f and g exist, then this algorithm does not terminate.
Now suppose there is a claw (x, y) ∈ X×Y . Then (x, y) ∈ A×B with probability
(`/N) · (`2/M), and if indeed (x, y) ∈ A× B, then step 4 will find this (or some
other) collision with probability at least 1/2 in at most O(` log `) comparisons.
Hence the overall success probability of steps 1–4 is at least p = `3/2NM , and
the overall amplitude amplification requires an expected number of O(

√
NM/`3)

iterations of steps 1–4. Accordingly, the total expected number of comparisons to

find a claw is O(
√

NM
`

log `), provided there is one. In order to minimize the num-

ber of comparisons we maximize `, subject to the constraint ` ≤ min{N,
√
M}.

This gives upper bounds of O(N 1/2M1/4 logN) comparisons if N ≤ M ≤ N 2,
and O(M 1/2 logN) if M > N 2.

What about lower bounds for the claw-finding problem? We can reduce the
ORM -problem to claw-finding as follows. Given an input x ∈ {0, 1}M , we set
N = 1 and define f(1) = 1 and g(i) = xi. Then there is a claw between f
and g iff ORM(x) = 1. Thus, if we can find a claw using c comparisons, we can
decide ORM using 2c queries to x, since two x-queries suffice to implement a
comparison. Using the lower bounds QE(ORM) = M and Q2(ORM) ∈ Θ(

√
M)

from Chapter 2, this gives an Ω(M) bound for exact quantum claw-finding (nearly
matching the classical deterministic O(M logN) upper bound that comes from
sorting the first list and then searching the second), and an Ω(

√
M) bound for

bounded-error quantum claw-finding. We thus have established the following
theorem:
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4.2.1. Theorem (BDHHMSW [45]). The quantum comparison-complexity of
the claw-finding problem is

• Ω(M1/2) ≤ Q2(Claw) ≤
{
O(N 1/2M1/4 logN) if N ≤M ≤ N 2

O(M1/2 logN) if M > N 2

• Ω(M) ≤ QE(Claw) ≤ O(M logN).

The bounds for the case M > N 2 and the case of exact computation are tight
up to the logN term, but the case M ≤ N 2 is nowhere near tight. In particular,
for N =M the complexity lies somewhere between N 1/2 and N3/4 logN .

Now consider the problem of finding a collision for an arbitrary function
f : [N ] → Z, i.e., to find distinct x, y ∈ [N ] such that f(x) = f(y). A sim-
ple modification of the above algorithm for claw-finding works fine to find such
(x, y)-pairs if they exist (put g = f and avoid claws of the form (x, x)), and gives
a bounded-error algorithm that finds a collision using O(N 3/4 logN) comparisons.
This algorithm may be viewed as a modification of the Generic claw finder with
|A| = ` ∈ O(

√
N) and B = [N ]\A. Note that now the choice of A determines

B, so our algorithm only has to store A and sort it, which means that the space
requirements of steps 1–4 are now only O(

√
N logN) qubits. The overall am-

plitude amplification requires not more space than the algorithm that is being
amplified, so the total space complexity of our algorithm is O(

√
N logN) as well.

The best known lower bounds follow again via reductions from the ORN -problem:
given x ∈ {0, 1}N , we define f : [N + 1] → {0, . . . , N} as f(i) = i(1 − xi) and
f(N + 1) = 0. Now ORN(x) = 1 iff f contains a collision.

As mentioned in the introduction, the problem of deciding if there is a collision
is equivalent to the element distinctness (ED) problem, so we have obtained the
following bounds:

4.2.2. Theorem (BDHHMSW [45]). The quantum comparison-complexity of
the element distinctness problem is

• Ω(N1/2) ≤ Q2(ED) ≤ O(N 3/4 logN)

• Ω(N) ≤ QE(ED) ≤ O(N logN).

In contrast, for classical (exact or bounded-error) algorithms, element distinct-
ness is as hard as sorting and requires Θ(N logN) comparisons. The Ω(N 1/2)
lower bound on bounded-error quantum algorithms for element distinctness was
improved recently to Ω(N 1/2 logN) in [93].

Collision-finding requires fewer comparisons if we know that some value z ∈ Z
occurs at least k times. If we pick a random subset S of cN/k elements of
the domain, for c a small constant like 10, then with high probability (at least
1 − 2−Ω(c)), S will contain at least two pre-images of z. Thus running our al-
gorithm on S will find a collision with high probability, resulting in complex-
ity O((N/k)3/4 log(N/k)). Also, if f is a 2-to-1 function, we can rederive the
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O(N 1/3 logN) bound of Brassard, Høyer, and Tapp [36] by taking ` = N 1/3. This
yields constant success probability after steps 1–4 in the generic algorithm, and
hence only O(1) rounds of amplitude amplification are required. As in the case
of [36], this algorithm can be made exact by using the exact form of amplitude
amplification (the success probability can be exactly computed in this case, so
exact amplitude amplification is applicable).

4.3 Finding Claws if f is Ordered

Now suppose that function f is ordered: f(1) ≤ f(2) ≤ · · · ≤ f(N), and that
function g : [M ] → Z is arbitrary. In this case, given some y ∈ [M ], we can
find an x ∈ [N ] such that (x, y) is a claw using binary search on f . Thus,
combining this with a quantum search on all y ∈ [M ], we obtain the upper bound
of O(

√
M logN) for finding a claw in f and g. The lower bounds via the OR-

reduction still apply (see also the next section), hence we obtain the following
theorem:

4.3.1. Theorem (BDHHMSW [45]). The quantum comparison-complexity of
the claw-finding problem with ordered f is

• Ω(M1/2) ≤ Q2(Claw) ≤ O(M 1/2 logN)

• Ω(M) ≤ QE(Claw) ≤ O(M logN).

Note that collision-finding for an ordered f : [N ]→ Z is equivalent to search-
ing a space of N − 1 elements (namely all N − 1 consecutive pairs in the domain
of f) and hence requires Θ(

√
N) comparisons.

4.4 Finding Claws if both f and g Are Ordered

Now consider the case where both f and g are ordered. Assume for simplicity that
N = M . Again we get an Ω(

√
N) lower bound via a reduction from the ORN -

problem, as follows. Given an ORN -instance x ∈ {0, 1}N , we define f, g : [N ]→ Z
by f(i) = 2i + 1 and g(i) = 2i + xi for all i ∈ [N ]. Then f and g are ordered,
and ORN(x) = 1 if and only if there is a claw between f and g. The lower bound
Q2(Claw) ∈ Ω(

√
N) follows.

We give a quantum algorithm that solves the problem using O(
√
Nclog

?(N))
comparisons for some constant c > 0. The function log?(N) is defined as the
minimum number of iterated applications of the logarithm function necessary to
obtain a number less than or equal to 1: log?(N) = min{i ≥ 0 | log(i)(N) ≤ 1},
where log(i) = log ◦ log(i−1) denotes the i-fold application of log, and log(0) is the
identity function. Even though clog

?(N) is exponential in log?(N), it is still very
small in N , in particular clog

?(N) ∈ o(log(i)(N)) for any constant i ≥ 1. Thus we
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replace the logN in the upper bound of the previous section by a near-constant
function.

Our algorithm defines a set of subproblems such that the original problem
(f, g) contains a claw if and only if at least one of the subproblems contains a
claw. We then solve the original problem by running the subproblems in quantum
parallel and applying amplitude amplification.

Let r > 0 be an integer. We define 2
⌈
N
r

⌉
subproblems as follows.

4.4.1. Definition. Let r > 0 be an integer and f, g : [N ]→ Z.
For each 0 ≤ i ≤ dN/re − 1, we define the subproblem (fi, g

′
i) by letting fi

denote the restriction of f to subdomain [ir + 1, (i + 1)r], and g ′i the restriction
of g to [j, j + r− 1] where j is the minimum j ′ ∈ [N ] such that g(j ′) ≥ f(ir+ 1).

Similarly, for each 0 ≤ j ≤ dN/re − 1, we define the subproblem (f ′j, gj) by
letting gj denote the restriction of g to [jr+ 1, (j + 1)r], and f ′j the restriction of
f to [i, i+ r − 1] where i is the minimum i′ ∈ [N ] such that f(i′) ≥ g(jr + 1).

It is not hard to check that these subproblems all together provide a solution
to the original problem.

4.4.2. Lemma. Let r > 0 be an integer and f, g : [N ]→ Z. Then (f, g) contains
a claw if and only if for some i or j in [0, dN/re − 1] the subproblem (fi, g

′
i) or

(f ′j, gj) contains a claw.

Each of these 2
⌈
N
r

⌉
subproblems is itself an instance of the claw-finding prob-

lem of size r. By running them all together in quantum parallel and then applying
amplitude amplification, we obtain our main result.

4.4.3. Theorem (BDHHMSW [45]). There exists a quantum algorithm that
outputs a claw between ordered f and ordered g with probability at least 2/3 pro-
vided one exists, using O(

√
Nclog

?(N)) comparisons, for some constant c.

Proof. Let T (N) denote the worst-case number of comparisons required if f
and g have domain of size N . We show that

T (N) ≤ c′
√
N

r

(
dlog(N + 1)e+ T (r)

)
, (4.1)

for some (small) constant c′. Let 0 ≤ i ≤ dN/re− 1 and consider the subproblem
(fi, g

′
i). Using at most dlog(N + 1)e + T (r) comparisons, we can find a claw in

(fi, g
′
i) with probability at least 2/3, provided there is one. We do that by using

binary search to find the minimum j for which g(j) ≥ f(ir + 1), at the cost of
dlog(N + 1)e comparisons, and then recursively determining if the subproblem
(fi, g

′
i) contains a claw at the cost of at most T (r) additional comparisons. There

are 2
⌈
N
r

⌉
subproblems, so by applying amplitude amplification we can find a claw
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among any one of them with probability at least 2/3, provided there is one, in
the number of comparisons given in equation (4.1).

Take r = dlog2(N)e. Since T (r) ≥ Ω(
√
r) = Ω(logN), Equation 4.1 implies

T (N) ≤ c′′
√
N

r
T (r), (4.2)

for some constant c′′. Furthermore, our choice of r implies that the depth of the
recursion defined by equation (4.2) is on the order of log?(N), so unfolding the
recursion gives the theorem. 2

4.5 Finding a Triangle in a Graph

Finally we consider a related search problem, which is to find a triangle in a
labeled graph, provided one exists. Consider again the setting for computing
graph properties of Section 2.7.3. There is an undirected graph G = (V,E) on
|V | = n nodes with |E| = m edges. There are N =

(
n
2

)
edge slots for the elements

of E, which we can query as in Section 2.7.3. The triangle-finding problem is the
following:

Triangle-finding problem
Given undirected labeled graph G = (V,E), find distinct vertices a, b, c ∈ V
such that (a, b), (a, c), (b, c) ∈ E.

Since there are
(
n
3

)
< n3 triples a, b, c, and we can decide whether a given triple

is a triangle using 3 queries, we can use Grover’s algorithm to find a triangle in
O(n3/2) queries. Below we give an algorithm that works more efficiently for sparse
graphs.

Algorithm Triangle-finder

Apply amplitude amplification on steps 1–2:

1. Quantum search for an edge (a, b) ∈ E among all
(
n
2

)
potential edges.

2. Quantum search for a node c ∈ V such that a, b, c is a triangle.

Step 1 takes O(
√
n2/m) queries and step 2 takes O(

√
n) queries. If there is

a triangle in the graph, then the probability that step 1 finds an edge belonging
to this specific triangle is Θ(1/m). If step 1 indeed finds an edge of a triangle,
then with probability at least 1/2, step 2 finds a c that completes the triangle.
Thus the success probability of steps 1–2 is Θ(1/m) and the overall amplitude
amplification requires O(

√
m) iterations of steps 1–2. The total complexity is
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thus O((
√
n2/m +

√
n)
√
m) = O(n +

√
nm). If G is sparse in the sense that

m = |E| ∈ o(n2), then o(n3/2) queries suffice. Of course for dense graphs our
algorithm will still require Θ(n3/2) queries.

We again obtain lower bounds by a reduction from the ORN -problem. Con-

sider an ORN -input x ∈ {0, 1}(
n
2) as a graph on n nodes. Let G be the graph

obtained from this by adding an (n+1)st node and connecting this to all other n
nodes. Now G has |x|+ n edges, and ORN(x) = 1 iff G contains a triangle. This
gives Ω(n2) bounds for exact quantum algorithms and bounded-error classical
algorithms, and an Ω(n) bound for bounded-error quantum algorithms. We have
shown:

4.5.1. Theorem (BDHHMSW [45]). If Ω(n) ≤ |E| ≤
(
n
2

)
, then the quantum

query complexity of triangle-finding is

• Ω(n) ≤ Q2(Triangle) ≤ O(n+
√
nm)

• QE(Triangle) ∈ Θ(n2)

where n = |V | and m = |E| for the input graph G = (V,E).

Note that for graphs with Θ(n) edges, the bounded-error quantum bound
becomes Θ(n) queries, whereas the classical bound remains Θ(n2). Thus we have
a quadratic gap for such very sparse graphs.

4.6 Summary

The claw-finding problem is: given functions f and g, find x, y such that f(x) =
g(y). We gave a quantum algorithm that finds a collision between arbitrary
functions f and g having a domain of size N . The algorithm uses about N 3/4

comparisons. This implies an N 3/4 algorithm for both the problem of finding a
collision in a single function and for the element distinctness problem (which is:
are all elements on a list of N numbers distinct?). This shows that for a quantum
computer, element distinctness is significantly easier than sorting (which takes
Ω(N logN) comparisons classically as well as quantumly) and contrasts with
the classical case, where both sorting and element distinctness require about
N logN comparisons. The main problem left open by this chapter is to close the
gap between upper and lower bounds for element distinctness. An interesting
direction could be to take into account simultaneously time complexity and space
complexity, as has been done for classical algorithms in e.g. [166, 2, 18].





Chapter 5

Average-Case and Non-Deterministic
Query Complexity

This chapter is based on the papers

• A. Ambainis and R. de Wolf. Average-Case Quantum Query Complexity. In
Proceedings of 17th Annual Symposium on Theoretical Aspects of Computer
Science (STACS 2000), LNCS 1770, pages 133–144, Springer, 2000. Journal
version to appear in the Journal of Physics A, 2001.

• R. de Wolf. Characterization of Non-Deterministic Quantum Query and
Quantum Communication Complexity. In Proceedings of 15th IEEE An-
nual Conference on Computational Complexity (CCC 2000), pages 271–278,
2000.

5.1 Introduction

The interest in quantum computers mainly derives from the fact that they are
much faster (or in some other way better) than classical computers for some inter-
esting problems—sometimes even exponentially faster. As we saw in Chapter 1,
virtually all existing quantum algorithms work in the query complexity model. In
Chapter 2 we proved the somewhat disappointing result that the maximal possi-
ble quantum speed-up in this model is only polynomial, for all total functions. In
other words, in the standard model of query complexity, exponential speed-ups
can only be attained for specific promise-problems, like Simon’s and Shor’s. In
this chapter we analyze two other common computational models—average-case
complexity and non-deterministic complexity—and prove that in both of these
models there are total functions for which quantum algorithms require at least
exponentially fewer queries than classical algorithms.

In our query complexity setting, average-case complexity concerns the ex-
pected number of queries needed to compute some function f when the input is

77



78 Chapter 5. Average-Case and Non-Deterministic Query Complexity

distributed according to some given probability distribution µ. If the hard inputs
(i.e., those requiring many queries) receive little µ-probability, then average-case
complexity can be significantly smaller than worst-case complexity. Let Dµ(f),
Rµ
2 (f), and Q

µ
2 (f) denote the average-case analogues of the worst-case complex-

ities D(f), R2(f), and Q2(f), respectively, to be defined more precisely in the
next section. By definition we have Qµ

2 (f) ≤ Rµ
2 (f) ≤ Dµ(f); the objective of the

following sections is to compare these measures and to investigate the possible
gaps between them. Our main results for average-case complexity are:

• Under the uniform distribution µ, there is a total function f such that Qµ
2 (f)

is exponentially less than Rµ
2 (f). Thus the polynomial relation that holds

between quantum and classical query complexities in the case of worst-case
complexity (Theorem 2.5.15) does not carry over to the average-case setting.

• Under non-uniform µ the gap can be even larger: we give distributions µ
where Qµ

2 (ORN) is constant, whereas R
µ
2 (ORN) is almost

√
N .

• For the MAJORITY-function under uniform µ, we have Qµ
2 (MAJN) ∈

O(
√
N(logN)2) and Qµ

2 (MAJN) ∈ Ω(
√
N). In contrast, Rµ

2 (MAJN) ∈
Ω(N).

In the second part of the chapter we deal with non-deterministic complexity.
We define a non-deterministic algorithm for a Boolean function f as an algorithm
that has positive acceptance probability if f(x) = 1 and that has acceptance prob-
ability 0 if f(x) = 0 (other definitions of non-deterministic complexity are possible
and will be discussed below). We use N(f) and NQ(f) for the non-deterministic
query complexity of f on classical and quantum computers, respectively. While
the classical complexity N(f) equals the certificate complexity C (1)(f), we prove
that the quantum complexity NQ(f) equals the minimal degree of a so-called
non-deterministic polynomial for f , up to a factor of 2. This contrasts with the
standard model of computation, where the quantum complexities are polynomi-
ally related to the respective degrees (Section 2.5)

deg(f)

2
≤ QE(f) ≤ 2 deg(f)4 and

d̃eg(f)

2
≤ Q2(f) ≤ 512 d̃eg(f)6,

but where a linear relation is not known to hold (nor not to hold). We also exhibit
a total function f on N variables with a very large gap between quantum and
classical non-deterministic complexity: NQ(f) = 1 and N(f) = N . This is the
largest possible gap allowed by the query complexity model.

5.2 Average-Case Complexity: Definitions

We start by discussing several issues pertaining to the proper definition of average-
case query complexity. As described in Section 2.3.3, a quantum algorithm A =
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UTOUT−1O · · ·OU0 will make exactly T queries on every input x. Since we are
interested in average-case number of queries and the required number of queries
will depend on the input x, we need to allow the algorithm to sometimes give an
output after fewer than T queries. We will do that by measuring, after each Uj,
a dedicated flag-qubit of the intermediate state at that point. This bit indicates
whether the algorithm is already prepared to stop and output a value. If this bit
is 1, then we measure the output bit, output its value A(x) ∈ {0, 1} and stop; if
the flag-bit is 0 we let the algorithm continue with the next query O and Uj+1.
Note that the number of queries that the algorithm makes on input x is now a
random variable, since it depends on the probabilistic outcome of measuring the
flag-qubit after each step. We use TA(x) to denote the expected number of queries
that A makes on input x. The Boolean output A(x) of the algorithm is a random
variable as well.

We mainly focus on three kinds of algorithms for computing f : classical deter-
ministic, classical randomized bounded-error, and quantum bounded-error algo-
rithms. LetD(f) denote the set of classical deterministic algorithms that compute
f . Let R(f) = {classical A | ∀x ∈ {0, 1}N : Pr[A(x) = f(x)] ≥ 2/3} be the set of
classical randomized algorithms that compute f with bounded error probability.
Similarly we let Q(f) = {quantum A | ∀x ∈ {0, 1}N : Pr[A(x) = f(x)] ≥ 2/3} be
the set of bounded-error quantum algorithms for f .

The following are our familiar worst-case complexities:1

D(f) = min
A∈D(f)

max
x∈{0,1}N

TA(x)

R2(f) = min
A∈R(f)

max
x∈{0,1}N

TA(x)

Q2(f) = min
A∈Q(f)

max
x∈{0,1}N

TA(x)

Let µ : {0, 1}N → [0, 1] be a probability distribution. We define the average-case
complexity of an algorithm A with respect to a distribution µ as:

T µ
A =

∑

x∈{0,1}N
µ(x)TA(x).

The average-case deterministic, randomized, and quantum complexities of f with
respect to µ are defined as

Dµ(f) = min
A∈D(f)

T µ
A

Rµ
2 (f) = min

A∈R(f)
T µ
A

Qµ
2 (f) = min

A∈Q(f)
T µ
A

1Actually, they are slightly different from the definitions of Chapter 2 because we are counting
expected number of queries on the worst-case input here, instead of worst-case number of queries
on the worst-case input. However, this change of definition can change the complexities by at
most a small constant factor, and we will henceforth ignore the difference.
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Note that the algorithms still have to satisfy the appropriate output requirements
(such as outputting f(x) with probability ≥ 2/3 in case of R2 or Q2) on all inputs
x, even on x that have µ(x) = 0. Clearly Qµ

2 (f) ≤ Rµ
2 (f) ≤ Dµ(f) ≤ N for all

µ and f . Our goal is to examine how large the gaps between these measures can
be, in particular for the uniform distribution, which has unif (x) = 2−N .

The above treatment of average-case complexity is the standard one used in
average-case analysis of algorithms [157]. One counter-intuitive consequence of
these definitions, however, is that the average-case performance of polynomially
related algorithms can be superpolynomially apart (we will see this happen in
Section 5.5.1). This seemingly paradoxical effect makes these definitions unsuit-
able for dealing with polynomial-time reducibilities and average-case complexity
classes in structural complexity theory, which is what led Levin to his alterna-
tive definition of “polynomial time on average” [112]. Nevertheless, we feel the
above definitions are the appropriate ones for our query complexity setting: they
just are the average numbers of queries that one needs when the input is drawn
according to distribution µ.

5.3 Average-Case: Deterministic vs. Bounded-

Error

Here we show that Dunif(f) can be much larger then Runif
2 (f) and Qunif

2 (f):

5.3.1. Theorem. Define f on N variables such that f(x) = 1 iff |x| ≥ N/10.
Then Qunif

2 (f) and Runif
2 (f) are O(1) and Dunif(f) ∈ Ω(N).

Proof. Suppose we randomly sample k bits of the input. Let a = |x|/N denote
the fraction of 1s in the input and ã the fraction of 1s in the sample. The Chernoff
bound (see e.g. [4]) implies that there is a constant c > 0 such that

Pr[ã < 2/10 | a ≥ 3/10] ≤ 2−ck.

Now consider the following randomized algorithm for f :

1. Let i = 100.

2. Sample ki = i/c bits. If the fraction ãi of 1s is ≥ 2/10, then output 1 and
stop.

3. If i < logN , then increase i by 1 and repeat step 2.

4. If i ≥ logN , then count |x| exactly using N queries and output the correct
answer.
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It is easily seen that this is a bounded-error algorithm for f . Let us bound its
average-case complexity under the uniform distribution.

If a ≥ 3/10, the expected number of queries for step 2 is

logN∑

i=100

Pr[ã1 ≤ 2/10, . . . , ãi−1 ≤ 2/10 | a ≥ 3/10] · i
c
≤

logN∑

i=100

Pr[ãi−1 ≤ 2/10 | a ≥ 3/10] · i
c
≤

logN∑

i=100

2−(i−1) · i
c
∈ O(1).

The probability that step 4 is needed (given a ≥ 3/10) is at most 2−(c logN)/c =
1/N . This adds 1

N
N = 1 to the expected number of queries.

Under the uniform distribution, the probability of the event a < 3/10 is
at most 2−c

′N for some constant c′. This case contributes at most 2−c
′N(N +

(logN)2) ∈ o(1) to the expected number of queries. Thus in total the algorithm
uses O(1) queries on average, hence Runif

2 (f) ∈ O(1). Since Qunif
2 (f) ≤ Runif

2 (f),
we also have Qunif

2 (f) ∈ O(1).
Since a deterministic classical algorithm for f must be correct on every input

x, it is easy to see that it must make at least N/10 queries on every input, hence
Dunif(f) ≥ N/10. 2

Accordingly, we can have huge gaps between Dunif(f) and Qunif
2 (f). However,

this example tells us nothing about the gaps between quantum and classical
bounded-error algorithms. In the next section we exhibit an f where Qunif

2 (f) is
exponentially smaller than the classical bounded-error complexity Runif

2 (f).

5.4 Average-Case: Randomized vs. Quantum

5.4.1 The function

We use the following modification of Simon’s problem from Section 1.5:2

Modified Simon’s problem:
We are given x = (x1, . . . , x2n), with xi ∈ {0, 1}n. We want to compute a Boolean
function defined by: f(x) = 1 iff there is a non-zero k ∈ {0, 1}n such that for all
i ∈ {0, 1}n we have xi⊕k = xi.

Here we treat i ∈ {0, 1}n both as an n-bit string and as a number between 1
and 2n, and ⊕ denotes bitwise XOR (addition modulo 2). Note that this function
is total, unlike Simon’s original promise function. Formally, f is not a Boolean
function because the variables xi are {0, 1}n-valued. However, we can replace

2The preprint [90] proves a related but incomparable result about another modification of
Simon’s problem.
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every variable xi by n Boolean variables and then f becomes a Boolean function
of N = n2n variables. The number of queries needed to compute the Boolean
function is at least the number of queries needed to compute the function with
{0, 1}n-valued variables (because we can simulate a query to the Boolean input-
variables by means of a query to the {0, 1}n-valued input-variables, just ignoring
the n−1 bits we are not interested in) and at most n times the number of queries
to the {0, 1}n-valued input variables (because one {0, 1}n-valued query can be
simulated using n Boolean queries). As the numbers of queries are so closely
related, it does not make a big difference whether we use the {0, 1}n-valued input
variables or the Boolean input variables. For simplicity we count queries to the
{0, 1}n-valued input variables.

We are interested in the average-case complexity of this function. The main
result is the following exponential gap, to be proven in the next sections:

5.4.1. Theorem (Ambainis & de Wolf [13]). For f as above, we have that
Qunif
2 (f) ≤ 22n+ 1 and Runif

2 (f) ∈ Ω(2n/2).

5.4.2 Quantum upper bound

Our quantum algorithm for f is similar to Simon’s. Start with the 2-register su-
perposition

∑
i∈{0,1}n |i〉|~0〉 (for convenience we ignore normalizing factors). Apply

a query to obtain ∑

i∈{0,1}n
|i〉|xi〉.

Measuring the second register gives some j and collapses the first register to
∑

i:xi=j

|i〉.

Applying a Hadamard transform to each qubit of the first register gives
∑

i:xi=j

∑

i′∈{0,1}n
(−1)(i,i′)|i′〉. (5.1)

Here (a, b) denotes inner product modulo 2; if (a, b) = 0 we say a and b are
orthogonal.

If f(x) = 1, then there is a non-zero k such that xi = xi⊕k for all i. In
particular, xi = j iff xi⊕k = j. Then the final state (5.1) can be rewritten as

∑

i′∈{0,1}n

∑

i:xi=j

(−1)(i,i′)|i′〉 =
∑

i′∈{0,1}n

(
∑

i:xi=j

1

2
((−1)(i,i′) + (−1)(i⊕k,i′))

)
|i′〉

=
∑

i′∈{0,1}n

(
∑

i:xi=j

(−1)(i,i′)
2

(1 + (−1)(k,i′))
)
|i′〉.
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Notice that |i′〉 has non-zero amplitude only if (k, i′) = 0. Hence if f(x) = 1, then
measuring the final state gives some i′ orthogonal to the unknown k.

To decide if f(x) = 1, we repeat the above process m = 22n times. Let
i1, . . . , im ∈ {0, 1}n be the results of the m measurements. If f(x) = 1, there
must be a non-zero k that is orthogonal to all ir (r ∈ {1, . . . ,m}). Compute
the subspace S ⊆ {0, 1}n that is generated by i1, . . . , im (i.e., S is the set of
binary vectors obtained by taking linear combinations of i1, . . . , im over GF (2)).
If S = {0, 1}n, then the only k that is orthogonal to all ir is k = 0n (clearly
ir · 0n = 0 for all ir), so then we know that f(x) = 0. If S 6= {0, 1}n, we just
query all 2n values x0...0, . . . , x1...1 and then compute f(x). Of course, this latter
step is very expensive, but it is needed only rarely:

5.4.2. Lemma. Assume that x = (x0, . . . , x2n−1) is chosen uniformly at random
from {0, 1}N . Then, with probability at least 1− 2−n, f(x) = 0 and the measured
i1, . . . , im generate {0, 1}n.

Proof. It can be shown by a small modification of [4, Theorem 5.1, p.91] that
with probability at least 1 − 2−c2

n
(c > 0), there are at least 2n/8 values j such

that xi = j for exactly one i ∈ {0, 1}n (and hence f(x) = 0). We assume that
this is the case in the following.

If i1, . . . , im generate a proper subspace of {0, 1}n, then there is a non-zero
k ∈ {0, 1}n that is orthogonal to this subspace. We estimate the probability that
this happens. Consider some fixed non-zero vector k ∈ {0, 1}n. The probability
that i1 and k are orthogonal is at most 15

16
, as follows. With probability at least

1/8, the measurement of the second register gives j such that f(i) = j for a
unique i. In this case, the measurement of the final superposition (5.1) gives a
uniformly random i′. The probability that a uniformly random i′ has (k, i′) 6= 0
is 1/2. Therefore, the probability that (k, i1) = 0 is at most 1− 1

8
· 1
2
= 15

16
.

The vectors i1, . . . , im are chosen independently. Therefore, the probability
that k is orthogonal to each of them is at most ( 15

16
)m = (15

16
)22n < 2−2n. There are

2n − 1 possible non-zero k, so the probability that there is a k that is orthogonal
to each of i1, . . . , im, is ≤ (2n − 1)2−2n < 2−n. 2

Note that this algorithm is actually a zero-error algorithm: it always outputs
the correct answer. Its expected number of queries on a uniformly random input
is at most m = 22n for generating i1, . . . , im and at most 1

2n
2n = 1 for querying

all the xi if the first step does not give i1, . . . , im that generate {0, 1}n. This
completes the proof of the first part of Theorem 5.4.1. In contrast, in Section 5.4.4
we show that the worst-case zero-error quantum complexity of f is Ω(N), which
is near-maximal.
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5.4.3 Classical lower bound

Let D1 be the uniform distribution over all inputs x ∈ {0, 1}N and D2 be the
uniform distribution over all x for which there is a unique k 6= 0 such that
xi = xi⊕k (and hence f(x) = 1). We say that an algorithm A distinguishes
between D1 and D2 if the average probability that A outputs 0 is ≥ 2/3 under
D1 and the average probability that A outputs 1 is ≥ 2/3 under D2.

5.4.3. Lemma. If there is a bounded-error algorithm A that computes f with m =
T unif
A queries on average, then there is an algorithm that distinguishes between D1

and D2 and uses O(m) queries on all inputs.

Proof. Without loss of generality we assume A has error probability ≤ 1/10.
Under D1, the probability that A outputs 1 is at most 1/10 + o(1) (1/10 is
the maximum probability of error on an input with f(x) = 0 and o(1) is the
probability of getting an input with f(x) = 1), so the probability that A outputs
0 is at least 9/10−o(1). We runA until it stops or makes 10m queries. The average
probability (under D1) that A does not stop before 10m queries is at most 1/10,
for otherwise the average number of queries would be more than 1

10
(10m) = m.

Therefore the probability under D1 that A outputs 0 after at most 10m queries,
is at least (9/10− o(1))− 1/10 = 4/5− o(1). In contrast, the D2-probability that
A outputs 0 is ≤ 1/10 because f(x) = 1 for any input x from D2. We can use
this to distinguish D1 from D2. 2

5.4.4. Lemma. A classical randomized algorithm A that makes m ∈ o(2n/2)
queries cannot distinguish between D1 and D2.

Proof. Suppose m ∈ o(2n/2). For a random input from D1, the probability that
all answers to m queries are different is

1 ·
(
1− 1

2n

)
· · ·
(
1− (m− 1)

2n

)
≥ 1−

m−1∑

i=1

i

2n
= 1− m(m− 1)

2n+1
= 1− o(1).

For a random input from D2, the probability that there is an i such that A queries
both xi and xi⊕k (k is the hidden vector) is ≤

(
m
2

)
/(2n − 1) ∈ o(1), because:

1. for every pair of distinct i, j, the probability that i = j ⊕ k is 1/(2n − 1)

2. since A queries only m of the xi, it queries only
(
m
2

)
distinct pairs i, j

If no pair xi, xi⊕k is queried, the probability that all answers are different is

1 ·
(
1− 1

2n−1

)
· · ·
(
1− (m− 1)

2n−1

)
= 1− o(1).
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It is easy to see that all sequences of m different answers are equally likely.
Therefore, for both distributions D1 and D2, we get a uniformly random sequence
of m different values with probability 1−o(1) and something else with probability
o(1). Thus A cannot “see” the difference between D1 and D2 with sufficient
probability to distinguish between them. 2

The second part of Theorem 5.4.1 now follows: a classical algorithm that
computes f with an average number of m queries can be used to distinguish
between D1 and D2 with O(m) queries (Lemma 5.4.3), but then O(m) ∈ Ω(2n/2)
(Lemma 5.4.4).

5.4.4 Worst-case quantum complexity of f

For the sake of completeness, we will here show a lower bound of Ω(N) queries for
the zero-error worst-case complexity Q0(f) of the function f on N = n2n binary
variables defined in Section 5.4. (We count binary queries this time.) Consider a
quantum algorithm that makes at most T queries and that, for every x, outputs
either the correct output f(x) or, with probability ≤ 1/2, outputs “don’t know”.
Consider the polynomial P which is the acceptance probability of our T -query
algorithm for f . It has the following properties:

1. P has degree d ≤ 2T

2. if f(x) = 0 then P (x) = 0

3. if f(x) = 1 then P (x) ∈ [1/2, 1]

We first show that only very few inputs x ∈ {0, 1}N make f(x) = 1. The number
of such 1-inputs for f is the number of ways to choose k ∈ {0, 1}n − {0n}, times
the number of ways to choose 2n/2 independent xi ∈ {0, 1}n. This is (2n − 1) ·
(2n)2

n/2 < 2n(2
n/2+1). Accordingly, the fraction of 1-inputs among all 2N inputs x

is < 2n(2
n/2+1)/2n2

n
= 2−n(2

n/2−1). These x are exactly the x that make P (x) 6= 0.
However, the following result is known [148, 133]:

5.4.5. Lemma (Schwartz). If P is a non-constant N-variate multilinear poly-
nomial of degree d, then

|{x ∈ {0, 1}N | P (x) 6= 0}|
2N

≥ 2−d.

This implies d ≥ n(2n/2 − 1) and hence T ≥ d/2 ≥ n(2n/4 − 2) ≈ N/4.
Thus we have proved that the worst-case zero-error quantum complexity of f is
near-maximal:

5.4.6. Theorem (Ambainis & de Wolf [13]). Q0(f) ∈ Ω(N).
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5.5 Further Average-Case Results

5.5.1 Super-exponential gap for non-uniform µ

The last section gave an exponential gap between Qµ
2 (f) and R

µ
2 (f) under uniform

µ. Here we show that the gap can be even larger for non-uniform µ. Consider the
average-case complexity of the OR-function. It is easy to see that Dunif (ORN),
Runif
2 (ORN), and Q

unif
2 (ORN) are all O(1), since the average input under the uni-

form distribution will have many 1s. Now we give some examples of non-uniform
distributions µ where Qµ

2 (ORN) is super-exponentially smaller than Rµ
2 (ORN):

5.5.1. Theorem (Ambainis & de Wolf [13]). For α ∈ (0, 1/2), define the
distribution µ(x) = c/

(
N
|x|
)
(|x|+1)α(N +1)1−α (where c ≈ 1−α is a normalizing

constant). Then we have Rµ
2 (ORN) ∈ Θ(Nα) and Qµ

2 (ORN) ∈ Θ(1).

Proof. Any classical algorithm for ORN requires Θ(N/(|x| + 1)) queries on
input x. The upper bound follows from random sampling, the lower bound from
a block sensitivity argument (Theorem 2.5.8). Hence, omitting the intermediate
Θs, we obtain:

Rµ
2 (ORN) =

∑

x

µ(x)
N

|x|+ 1
=

N∑

t=0

cNα

(t+ 1)α+1
∈ Θ(Nα),

where the last step can be shown by approximating the sum over t with an
integral. Similarly, by the quantum search bounds (Chapter 3), Θ(

√
N/(|x|+ 1))

queries are necessary and sufficient for a quantum computer on input x, so

Qµ
2 (ORN) =

∑

x

µ(x)

√
N

|x|+ 1
=

N∑

t=0

cNα−1/2

(t+ 1)α+1/2
∈ Θ(1).

2

In particular, for α = 1/2−ε we have the very large gap of O(1) quantum ver-
sus Ω(N 1/2−ε) classical. Note that we obtain this super-exponential gap by weigh-
ing the complexity of two algorithms (classical and quantum OR-algorithms) that
are only quadratically apart on each input x. This is the phenomenon we referred
to at the end of Section 5.2.

5.5.2 General bounds

In this section we prove some general bounds for average-case complexity. First
we make precise the intuitively obvious fact that if an algorithm A is faster on
every input than another algorithm B, then it is also faster on average under any
distribution:
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5.5.2. Theorem (Ambainis & de Wolf [13]). If φ : R → R is a concave
function and TA(x) ≤ φ(TB(x)) for all x, then T µ

A ≤ φ (T µ
B) for every µ.

Proof. Jensen’s inequality [59] says that Eµ[φ(T )] ≤ φ(Eµ[T ]) for concave φ,
hence

T µ
A =

∑

x∈{0,1}N
µ(x)TA(x) ≤

∑

x∈{0,1}N
µ(x)φ(TB(x))

≤ φ


 ∑

x∈{0,1}N
µ(x)TB(x)


 = φ (T µ

B) .

2

In words: taking the average cannot make the complexity-gap between two
algorithms smaller. For instance, if TA(x) ≤

√
TB(x) (say, A is Grover’s algorithm

and B is a classical algorithm for OR), then T µ
A ≤

√
T µ
B. On the other hand,

taking the average can make the gap much larger, as we saw in Theorem 5.5.1:
the quantum algorithm for OR runs only quadratically faster than any classical
algorithm on each input, but the average-case gap between quantum and classical
can be much bigger than quadratic.

Using that TA(x) ∈ Ω(bsx(f)) for classical algorithms A (Theorem 2.5.8) and
TA(x) ∈ Ω(

√
bsx(f)) for quantum algorithms A (Theorem 2.5.7), we obtain a

simple lower bound in terms of the µ-expected block sensitivity:

5.5.3. Theorem (Ambainis & de Wolf [13]). For all f and µ we have that
Rµ
2 (f) ∈ Ω(Eµ[bsx(f)]) and Q

µ
2 (f) ∈ Ω(Eµ[

√
bsx(f)]).

5.5.3 MAJORITY

Here we examine the average-case complexity of the MAJORITY-function. The
hard inputs for majority occur when t = |x| ≈ N/2. Any quantum algorithm
needs Ω(N) queries for such inputs (Section 2.6.4). Since the uniform distribution
puts most probability on the set of x with |x| close to N/2, we might expect an
Ω(N) average-case complexity as well. However, we will prove that the complexity
is nearly

√
N , using the result about quantum counting mentioned in Section 1.7.

5.5.4. Theorem (Ambainis & de Wolf [13]). Qunif
2 (MAJN) ∈ O(

√
N(logN)2).

Proof. For all i ∈ {1, . . . , logN}, define Ai = {x | N/2i+1 < ||x| −N/2| ≤
N/2i}. The probability under the uniform distribution of getting an inputX ∈ Ai

is µ(Ai) ∈ O(
√
N/2i), since the number of inputsX with k 1s is

(
N
k

)
∈ O(2N/

√
N)

for all k. The idea of our algorithm is to have logN runs of the quantum counting
algorithm, with increasing numbers of queries, such that the majority value of
inputs from Ai is probably detected around the ith counting stage. We will use
Ti = 100·2i logN queries in the ith counting stage. Our algorithm is the following:
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For i = 1 to logN do:

quantum count |x| using Ti queries (call the estimate t̃i)
if |t̃i −N/2| > N/2i, then output whether t̃i > N/2 and stop.

Classically count |x| using N queries and output its majority.

Let us analyze the behavior of the algorithm on an input x ∈ Ai. For t = |x|,
we have |t − N/2| ∈ (N/2i+1, N/2i]. By Theorem 1.7.2, with probability > 1 −
1/10 logN we have

∣∣t̃i − t
∣∣ ≤ N/2i, so with probability (1 − 1/10 logN)logN ≈

e−1/10 > 0.9 we have
∣∣t̃i − t

∣∣ ≤ N/2i for all 1 ≤ i ≤ N . This ensures that the
algorithm outputs the correct value with high probability.

Consider the (i + 2)nd counting stage. With probability 1 − 1/10 logN we
will have |t̃i+2 − t| ≤ N/2i+2. In this case the algorithm will terminate, because

|t̃i+2 −N/2| ≥ |t−N/2| − |t̃i+2 − t| > N/2i+1 −N/2i+2 = N/2i+2.

Thus with high probability the algorithm needs no more than i+2 counting stages
on x. Later counting stages take exponentially more queries (Ti+2+j = 2jTi+2),
but are needed only with exponentially decreasing probability O(1/2j logN): the
probability that |t̃i+2+j − t| > N/2i+2 goes down exponentially with j precisely
because the number of queries goes up exponentially. Similarly, the last step of
the algorithm (classical counting) is needed only with negligible probability.

Now the expected number of queries on input x can be upper bounded by

i+2∑

j=1

Ti+

logN∑

k=i+3

TkO

(
1

2k−i−3 logN

)
< 100·2i+3 logN+

logN∑

k=i+3

100·2i+3 ∈ O(2i logN).

Therefore under the uniform distribution the average expected number of queries
can be upper bounded by

∑logN
i=1 µ(Ai)O(2i logN) ∈ O(

√
N(logN)2). 2

The nearly matching lower bound is:

5.5.5. Theorem (Ambainis & de Wolf [13]). Qunif
2 (MAJN) ∈ Ω(

√
N).

Proof. Let A be a bounded-error quantum algorithm for MAJORITY. It
follows from the worst-case results of Section 2.6.4 that A uses Ω(N) queries
on the hardest inputs, which are the x with |x| = N/2 ± 1. Since the uniform
distribution puts Ω(1/

√
N) probability on the set of such x, the average-case

complexity of A is at least Ω(1/
√
N)Ω(N) = Ω(

√
N). 2

What about the classical average-case complexity of MAJORITY? Alonso,
Reingold, and Schott [6] prove the bound Dunif(MAJN) = 2N/3 −

√
8N/9π +

O(logN) for deterministic classical computers. We can also prove a linear lower
bound for the bounded-error classical complexity, using the following lemma:
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5.5.6. Lemma. Let ∆ ∈ {1, . . . ,
√
N}. Any classical bounded-error algorithm

that computes MAJORITY on inputs x with |x| ∈ {N/2, N/2 + ∆} must make
Ω(N) queries on all such inputs.

Proof. We will prove the lemma for ∆ =
√
N , which is the hardest case.

We assume without loss of generality that the algorithm queries its input x at
T (x) random positions, and outputs 1 if the fraction of 1s in its sample is at
least (N/2 + ∆)/N = 1/2 + 1/

√
N . We do not care what the algorithm outputs

otherwise. Consider an input x with |x| = N/2. The algorithm uses T = T (x)
queries and should output 0 with probability at least 2/3. Thus the probability
of output 1 on x must be at most 1/3, in particular

Pr[ at least T (1/2 + 1/
√
N) 1s in T -sample] ≤ 1/3.

Since the T queries of the algorithm can be viewed as sampling without replace-
ment from a set containing N/2 1s and N/2 0s, this error probability is given by
the hypergeometric distribution

Pr[ at least T (1/2 + 1/
√
N) 1s in T -sample] =

T∑

i=T (1/2+1/
√
N)

(
N/2

i

)
·
(
N/2

T − i

)

(
N

T

) .

We can approximate the hypergeometric distribution using the normal distribu-
tion, see e.g. [128]. Let zk = (2k − T )/

√
T and Φ(z) =

∫ z
−∞

1√
2π
e−t

2/2dt, then the
above probability approaches

Φ(zT )− Φ(zT (1/2+1/
√
N)).

Note that Φ(zT ) = Φ(
√
T ) → 1 and that Φ(zT (1/2+1/

√
N)) = Φ(2

√
T/N) → 1/2

if T ∈ o(N). Accordingly, we can only avoid having an error probability close to
1/2 by using T ∈ Ω(N) queries on x with |x| = N/2. A similar argument shows
that we must also use Ω(N) queries if |x| = N/2 + ∆. 2

It now follows that:

5.5.7. Theorem (Ambainis & de Wolf [13]). Runif
2 (MAJN) ∈ Ω(N).

Proof. The previous lemma shows that any algorithm for MAJORITY needs
Ω(N) queries on inputs x with |x| ∈ [N/2, N/2 +

√
N ]. Since the uniform distri-

bution puts Ω(1) probability on the set of such x, the theorem follows. 2

Accordingly, on average a quantum computer can compute MAJORITY al-
most quadratically faster than a classical computer, whereas for the worst-case
input quantum and classical computers are about equally fast (or slow).
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5.5.4 PARITY

Finally we prove some results for the average-case complexity of PARITY. This is
in many ways the hardest Boolean function. Firstly, bsx(f) = N for all x, hence
by Theorem 5.5.3:

5.5.8. Corollary (Ambainis & de Wolf [13]). For every µ we have that
Rµ
2 (PARITYN) ∈ Ω(N) and Qµ

2 (PARITYN) ∈ Ω(
√
N).

With high probability we can get an exact count of |x|, using O(
√

(|x|+ 1)N)
quantum queries (Theorem 1.7.2). Combining this with a distribution µ that
puts O(1/

√
N) probability on the set of all x with |x| > 1 and distributes the

remaining probability arbitrarily over the x with |x| ≤ 1, we obtain a distribution
µ such that Qµ

2 (PARITYN) ∈ O(
√
N).

More than a linear speed-up on average is not possible if µ is uniform:

5.5.9. Theorem (Ambainis & de Wolf [13]). Qunif
2 (PARITYN) ∈ Ω(N).

Proof. Let A be a bounded-error quantum algorithm for PARITYN . Let B be
an algorithm that flips each bit of its input x with probability 1/2, records the
number b of actual bitflips, runs A on the changed input y, and outputs A(y)⊕
b mod 2. It is easy to see that B is a bounded-error algorithm for PARITYN and
that it uses an expected number of T µ

A queries on every input. By breaking off
the computation if it has not finished after several times its expected number of
queries, we can turn this into an algorithm for PARITYN with worst-case O(T µ

A)
queries. Since the worst-case lower bound for PARITYN is N/2 (Corollary 2.6.7),
the theorem follows. 2

5.6 Non-Deterministic Complexity: Definitions

Now we turn our attention from average-case to non-deterministic complexity.
There are two ways to view a classical non-deterministic algorithm for some
Boolean function f . First, we may think of it as a deterministic algorithm A
that receives the input x and a “certificate” y. For all inputs x, if f(x) = 1 then
there is a certificate y such that A(x, y) = 1; if f(x) = 0 then A(x, y) = 0 for all
certificates y. Secondly, we may view A as a randomized algorithm whose accep-
tance probability P (x) is positive if f(x) = 1 and P (x) = 0 if f(x) = 0. It is easy
to see that these two views are equivalent in the case of classical computation:
there is a view 1 algorithm for f iff there is a view 2 algorithm for f of roughly
the same complexity.

Both views may be generalized to the quantum case, yielding three possibly
non-equivalent definitions of non-deterministic quantum algorithms. The quan-
tum algorithm may be required to output the right answer f(x) when given an
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appropriate certificate (which may be quantum or classical); or the quantum al-
gorithm may be required to have positive acceptance probability iff f(x) = 1. An
example is given by two alternative definitions of “quantum-NP”. Kitaev [100]
(see also [98]) defines this class as the set of languages that are accepted by
polynomial-time quantum algorithms that are given a polynomial-size quantum
certificate. On the other hand, Adleman et al. [1] and Fenner et al. [73] define
quantum-NP as the set of languages L for which there is a polynomial-time quan-
tum algorithm whose acceptance probability is positive iff x ∈ L. This quantum
class was shown equal to the classical counting class co-C=P in [73], using tools
from [76].

We will here adopt the latter view: a non-deterministic algorithm for f is
an algorithm that has positive acceptance probability on input x iff f(x) = 1.
Let N(f) and NQ(f) denote the query complexities of optimal non-deterministic
classical and quantum algorithms for f , respectively. Before characterizing these
complexities in the next section, let us contrast our definition of NQ(f) to the
other possible definitions. We may consider the complexity of quantum algorithms
that either:

1. output 1 iff given an appropriate classical certificate (such certificates must
exist iff f(x) = 1)

2. output 1 iff given an appropriate quantum certificate (such certificates must
exist iff f(x) = 1)

3. output 1 with positive probability iff f(x) = 1

The third definition is the one we adopted. Clearly the second definition is at
least as strong as the first, in the sense that an optimal algorithm according to the
second definition requires no more queries than an optimal algorithm according
to the first definition. Here we will show that the third definition is at least as
strong as the second. Thus our NQ(f) gives in fact the smallest non-deterministic
complexity among the three alternative definitions. (We give the proof for the
query complexity setting, but the same proof works for communication complexity
and other non-uniform settings as well.)

We formalize the second definition as follows: a T -query quantum verifier for
f is a T -query quantum algorithm V together with a set C of m-qubit states,
such that for all x ∈ {0, 1}N we have: (1) if f(x) = 1 then there is a |φx〉 ∈ C
such that V |φx〉 has acceptance probability 1 on input x, and (2) if f(x) = 0
then V |φ〉 has acceptance probability 0 on input x, for every |φ〉 ∈ C. Informally:
the set C contains all possible certificates, and (1) for every 1-input there is a
verifiable 1-certificate in C, and (2) for 0-inputs there aren’t any. We do not put
any constraints on C. However, note that the definition implies that if f(x) = 0
for some x, then C cannot contain all m-qubit states: otherwise the state V −1x |1~0〉
would be a 1-certificate in C even for x with f(x) = 0.
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We now prove that a T -query quantum verifier can be turned into a T -query
non-deterministic quantum algorithm according to our third definition. This
shows that the third definition is at least as powerful as the second (in fact, this
even holds if we replace the acceptance probability 1 in clause (1) of the definition
of a quantum verifier by just positive acceptance probability — in this case both
definitions are equivalent).

5.6.1. Theorem (de Wolf [160]). Suppose there is a T -query quantum veri-
fier V for f . Then NQ(f) ≤ T .

Proof. The verifier V and the associated set C satisfy:

1. if f(x) = 1 then there is a |φx〉 ∈ C such that V |φx〉 has acceptance proba-
bility 1 on input x

2. if f(x) = 0 then V |φ〉 has acceptance probability 0 on input x, for all |φ〉 ∈ C

Let X1 = {z | f(z) = 1}. For each z ∈ X1 choose one specific 1-certificate
|φz〉 ∈ C. Now let us consider some input x and see what happens if we run V ⊗ I
(where I is the 2N × 2N identity operation) on the m+ n-qubit state

|φ〉 = 1√
|X1|

∑

z∈X1

|φz〉|z〉.

V only acts on the firstm qubits of |φ〉, the |z〉-part remains unaffected. Therefore
running V ⊗ I on |φ〉 gives the same acceptance probabilities as when we first
randomly choose some z ∈ X1 and then apply V to |φz〉. In case f(x) = 0,
this V |φz〉 will have acceptance probability 0, so (V ⊗ I)|φ〉 will have acceptance
probability 0 as well. In case the input x is such that f(x) = 1, the specific
certificate |φz〉 that we chose for this x will satisfy that V |φx〉 has acceptance
probability 1. But then (V ⊗ I)|φ〉 has acceptance probability at least 1/|X1|.
Accordingly, (V ⊗ I)|φ〉 has positive acceptance probability iff f(x) = 1. By
prefixing V ⊗ I with a unitary transformation that maps the n +m-qubit state
|~0〉 to |φ〉, we have constructed a non-deterministic quantum algorithm for f with
T queries. 2

5.7 Non-Deterministic Complexity: Character-

ization and Separation

In this section we will characterizeN(f) andNQ(f) and exhibit a large separation
between them. Our main tools will be “non-deterministic polynomials”.
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5.7.1 Non-deterministic polynomials

Recall from Chapter 2 that an N -variate multilinear polynomial is a function
p : RN → R that can be written as

p(x) =
∑

S⊆[N ]
aSxS,

where S ranges over all sets of indices of variables, aS is a real number, and
xS = Πi∈Sxi. The degree deg(p) of p is the degree of a largest monomial with
non-zero coefficient. Every multilinear polynomial p =

∑
S aSxS can also be

written out uniquely in the so-called Fourier basis:

p(x) =
∑

S

cS(−1)x·S.

Again S ranges over all sets of indices of variables (we often identify a set S ⊆ [N ]
with its characteristic N -bit vector), cS is a real number, and x · S denotes the
inner product of the N -bit strings x and S, equivalently x ·S = |x∧S| =∑i∈S xi.
It is easy to see that deg(p) = max{|S| | cS 6= 0}. For example, OR2(x1, x2) =
3
4
− 1

4
(−1)x1 − 1

4
(−1)x2 − 1

4
(−1)x1+x2 in the Fourier basis.

We introduce the notion of a non-deterministic polynomial for f :

5.7.1. Definition. A multilinear N -variate polynomial p is a non-deterministic
polynomial for a Boolean function f : {0, 1}N → {0, 1}, if it holds that p(x) 6= 0
iff f(x) = 1. The non-deterministic degree of f , denoted ndeg(f), is the minimum
degree among all non-deterministic polynomials p for f .

Without loss of generality we can assume p(x) ∈ [−1, 1] for all x ∈ {0, 1}N (if
not, just divide by maxx |p(x)|).

We mention some upper and lower bounds for ndeg(f). For example, p(x) =∑
i xi/N is a non-deterministic polynomial for ORN , hence ndeg(ORN) = 1. More

generally, let f be a non-constant symmetric function, which is 0 on z Hamming
weights, k1, . . . , kz. Since |x| = ∑

i xi, it is easy to see that (|x| − k1)(|x| −
k2) · · · (|x|−kz) is a non-deterministic polynomial for f , hence ndeg(f) ≤ z. This
upper bound is tight for AND (see below) but not for PARITY. For example,
p(x1, x2) = x1 − x2 is a degree-1 non-deterministic polynomial for PARITY2: it
assumes value 0 on x-weights 0 and 2, and ±1 on weight 1. Using symmetrization
techniques as in Chapter 2, we can also show the general lower bound ndeg(f) ≥
z/2 for symmetric f . Furthermore, it is easy to show that ndeg(f) ≤ C (1)(f) for
every f (just take a polynomial that is the “sum” over all 1-certificates for f).

Finally, we mention a general lower bound on ndeg(f). Letting Pr[p 6= 0] =
|{x ∈ {0, 1}N | p(x) 6= 0}|/2N be the probability that a random Boolean input
x makes a function p non-zero, it follows from Schwartz’s Lemma (Lemma 5.4.5)
that

ndeg(f) ≥ log(1/Pr[f 6= 0]) = log(1/Pr[f = 1]).
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Accordingly, functions with a very small fraction of 1-inputs will have high non-
deterministic degree. For instance, Pr[ANDN = 1] = 2−N , so ndeg(ANDN) = N .

5.7.2 Characterization of N(f) and NQ(f)

It is easy to see that the 1-certificate complexity characterizes the classical non-
deterministic complexity of f :

5.7.2. Proposition. N(f) = C (1)(f).

Proof.
N(f) ≤ C(1)(f): a classical algorithm that guesses a 1-certificate, queries its

variables, and outputs 1 iff the certificate holds, is a non-deterministic algorithm
for f .

N(f) ≥ C(1)(f): a non-deterministic algorithm for f can only output 1 if the
outcomes of the queries that it has made force the function to 1. Hence if x is an
input where all 1-certificates have size at least C (1)(f), then the algorithm will
have to query at least C(1)(f) variables before it can output 1 (which it must do
on some runs). 2

Next, we show a tight relation between non-deterministic quantum query com-
plexity NQ(f) and non-deterministic degree ndeg(f). The upper bound uses a
trick similar to the one used in [73] to show co-C=P ⊆ quantum-NP.

5.7.3. Theorem (de Wolf [160]).
ndeg(f)

2
≤ NQ(f) ≤ ndeg(f).

Proof. Suppose we have an NQ(f)-query non-deterministic quantum algorithm
A for f . By Lemma 2.4.1, its acceptance probability can be written as a polyno-
mial P (x) of degree ≤ 2NQ(f). Because A is a non-deterministic algorithm for
f , P (x) is a non-deterministic polynomial for f . Hence ndeg(f) ≤ 2NQ(f).

For the upper bound: let p(x) be a non-deterministic polynomial for f of
degree d = ndeg(f). We write p in the Fourier basis:

p(x) =
∑

S

cS(−1)x·S.

Since deg(p) = max{|S| | cs 6= 0}, we have that cS 6= 0 only if |S| ≤ d.
We can make a unitary transformation F that uses d queries and maps

|S〉 → (−1)x·S|S〉 whenever |S| ≤ d. Informally, this transformation does a
controlled parity-computation: it computes x · S mod 2 using |S|/2 queries (see
Corollary 2.6.7), copies the answer to a safe place, and then reverses the com-
putation to clean up the workspace at the cost of another |S|/2 queries. By the
standard trick explained in Section 1.5.1, the answer x · S mod 2 can then be
turned into a phase factor (−1)x·S mod 2 = (−1)x·S.

Now consider the following quantum algorithm:
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1. Start with c
∑

S cS|S〉 (an N -qubit state, where c = 1/
√∑

S c
2
S is a nor-

malizing constant)

2. Apply F to the state

3. Apply a Hadamard transform H to each qubit

4. Measure the final state and output 1 if the outcome is the all-zero state |~0〉
and output 0 otherwise.

The acceptance probability (i.e., the probability of observing |~0〉 at the end) is

P (x) = |〈~0|H⊗nFc
∑

S

cS|S〉|2

=
c2

2N
|
∑

S′

〈S ′|
∑

S

cS(−1)x·S|S〉|2

=
c2

2N
|
∑

S

cS(−1)x·S|2 =
c2p(x)2

2N
.

Since p(x) is non-zero iff f(x) = 1, P (x) will be positive iff f(x) = 1. Hence we
have a non-deterministic quantum algorithm for f with d = ndeg(f) queries. 2

The upper bound in this theorem is tight: by a proof similar to Proposi-
tion 2.6.5 we can show NQ(ANDN) = ndeg(ANDN) = N . We do not know if
the factor of 2 in the lower bound can be dispensed with. If we were to change
the output requirement of the quantum algorithm a little bit, by saying that the
algorithm accepts iff measuring the final superposition gives basis state |~0〉, then
the required number of queries is exactly ndeg(f): the upper bound of ndeg(f)
queries in this changed model is the same as above, while the lower bound of
ndeg(f) queries holds because the amplitude of the basis state |~0〉 in the final su-
perposition must now be non-zero iff f(x) = 1, and this amplitude is a polynomial
of degree at most the number of queries (Lemma 2.4.1).

5.7.3 Separations

What is the biggest possible gap between quantum and classical non-deterministic
query complexity? Consider the Boolean function f defined by

f(x) = 1 iff |x| 6= 1.

It is easy to see that N(f) = C (1)(f) = C(0)(f) = N . On the other hand, the
following is a degree-1 non-deterministic polynomial for f :

p(x) =

∑
i xi − 1

N − 1
.



96 Chapter 5. Average-Case and Non-Deterministic Query Complexity

Thus ndeg(f) = 1 and by Theorem 5.7.3 we have NQ(f) = 1. For the comple-
ment of f , we can easily show NQ(f) ≥ N/2, since the acceptance probability of
a non-deterministic algorithm for f is a polynomial of degree ≤ 2NQ(f) that is
0 on N Hamming weights and hence has degree at least N (this NQ(f) ≥ N/2
is tight for N = 2, witness p(x) = x1 − x2). In sum:

5.7.4. Theorem (de Wolf [160]). For the above f we have that NQ(f) = 1,
NQ(f) ≥ N/2 and N(f) = N(f) = N .

A slightly smaller gap holds for the function defined by DeJo(x) = 1 iff |x| 6=
N/2. This is a total version of the Deutsch-Jozsa promise problem of Section 1.5.1.
The Deutsch-Jozsa algorithm turns out to be a non-deterministic quantum algo-
rithm for DeJo, soNQ(DeJo) = 1. In contrast, N(DeJo) = C (1)(DeJo) = N/2+1.

5.7.4 Relation of NQ(f) to other complexities

In Chapter 2 we saw that the classical deterministic query complexity D(f) and
the quantum bounded-error complexity Q2(f) are polynomially related. This
relation was proved using notions like certificate complexity and block sensitivity.
In this subsection we will similarly embed NQ(f) in this web of relations, and
give upper bounds on D(f) in terms of NQ(f), C(f), and bs(f). These results
are new and have not (yet) been published anywhere.

5.7.5. Lemma (de Wolf). If f(x) = 0 and B is a minimal sensitive block for
x, then |B| ≤ ndeg(f).

Proof. Assume without loss of generality that x = ~0. Because B is minimal,
for every proper subset B ′ of B we have f(x) = f(xB

′
) = 0, but on the other

hand f(xB) = 1. Accordingly, if we fix all variables outside of B to zero, then
we obtain the AND-function of |B| variables, which requires non-deterministic
degree |B|. Hence |B| ≤ ndeg(f). 2

5.7.6. Corollary (de Wolf). C (0)(f) ≤ bs(f)ndeg(f).

Proof. Consider any input x such that f(x) = 0. In the proof of Theorem 2.5.4
we showed that the union of the set of minimal sensitive blocks in x is a certificate
for x. Since there are at most bs(f) such blocks and each block contains at most
ndeg(f) variables by the above lemma, the corollary follows. 2

5.7.7. Theorem (de Wolf). D(f) ≤ C (0)(f)ndeg(f).
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Proof. Let p be a non-deterministic polynomial for f of degree ndeg(f). Note
that if we take a 0-certificate C : S → {0, 1} and fix the S-variables accordingly,
then p must reduce to the constant-0 polynomial. This implies that S intersects
all maxonomials of p (because a non-intersected maxonomial would still be present
in the reduced polynomial, which would then not be constant-0). Thus, taking a
minimal 0-certificate and querying its variables reduces the degree of p by at least
1. Repeating this at most ndeg(f) times, we reduce p to a constant polynomial
and know f(x). This algorithm takes at most C (0)(f)ndeg(f) queries. 2

Combining with Theorems 2.5.7 and 5.7.3 we obtain:

5.7.8. Corollary (de Wolf). D(f) ≤ bs(f)ndeg(f)2 ≤ 24 Q2(f)
2NQ(f)2.

This corollary has the somewhat paradoxical consequence that if the non-
deterministic complexity NQ(f) is small, then the bounded-error complexity
Q2(f) must be large (i.e., close to D(f)). For instance, if NQ(f) ∈ O(1) then
Q2(f) ∈ Ω(

√
D(f)). We hope that this result will help tighten the relations

D(f) ∈ O(Q2(f)
6) and D(f) ∈ O(Q0(f)

4) that we proved in Chapter 2.

5.8 Summary

In Chapter 2 we saw that the bounded-error quantum query complexity of ev-
ery total function is at most polynomially smaller than its classical deterministic
complexity. In this chapter we considered two other models of query complexity,
for which the quantum-classical gap can be much larger. First, for the model of
average-case complexity we constructed a total function based on Simon’s problem
where the average quantum complexity under the uniform distribution is expo-
nentially smaller than the classical average-case complexity. We also obtained a
super-exponential gap for the OR-function under a non-uniform distribution and
a near-quadratic gap for the MAJORITY-function under the uniform distribu-
tion. Second, we defined the non-deterministic quantum complexity NQ(f) of
f as the minimal number of queries required for an algorithm that has positive
acceptance probability on input x iff f(x) = 1. We showed NQ(f) to be equal (up
to a factor of 2) to the non-deterministic polynomial degree of f and exhibited a
function where NQ(f) = 1 but where the classical non-deterministic complexity
is N .
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Chapter 6

Quantum Communication Complexity

This chapter is based on the paper

• R. de Wolf. Quantum Communication and Complexity. Invited paper for
Theoretical Computer Science.

6.1 Introduction

The area of communication complexity deals with the following type of problem.
There are two separated parties, called Alice and Bob. Alice receives some input
x ∈ X, Bob receives some y ∈ Y , and together they want to compute some
function f(x, y). Since the value f(x, y) will generally depend on both x and y,
neither Alice nor Bob will have sufficient information to do the computation by
themselves, so they will have to communicate in order to achieve their goal. In this
model, individual computation is free, but communication is expensive and has
to be minimized. How many bits do they need to exchange between them in order
to compute f(x, y)? Clearly, Alice can just send her complete input to Bob, but
sometimes more efficient schemes are possible. The minimum number of bits that
Alice and Bob need to communicate is called the communication complexity of f .
This model was introduced by Yao [163], inspired by the older “crossing sequence”
arguments used for obtaining lower bounds on Turing machine computations.
Communication complexity has been studied extensively, both for its applications
(like lower bounds on VLSI and circuit complexity) and for its own sake. A wealth
of results may be found in the book of Kushilevitz and Nisan [109].

In the quantum setting, the communication resources are quantum bits rather
than classical bits, so an interesting variant of classical communication complexity
is quantum communication complexity: suppose that Alice and Bob each have
a quantum computer at their disposal and are allowed to exchange quantum
bits (qubits) and/or to make use of the quantum correlations given by shared
EPR-pairs (2-qubit systems in the entangled state 1√

2
(|00〉 + |11〉)). Can Alice

101



102 Chapter 6. Quantum Communication Complexity

and Bob now compute f using less of the new communication resources than in
the classical case? Quantum communication complexity was first considered by
Yao [165] for the model with qubit communication and no prior EPR-pairs, and
it was shown later that for some problems the amount of communication required
in the quantum world is indeed considerably less than the amount of classical
communication.

In this chapter we give an introduction to quantum communication complex-
ity. We first give brief explanations of quantum communication, and then cover
the main known upper bounds of quantum communication complexity in Sec-
tion 6.4. We include proofs of some of the central results and references to oth-
ers. In Section 6.5 we mention some applications of quantum communication
complexity. In the next chapter we will describe some new lower bound results
for quantum communication complexity and in Chapter 8 we will give a new ex-
ample of a strong quantum-classical separation for a variant of communication
complexity. Some other recent surveys of quantum communication complexity
are [154, 39, 102, 32], and a more popular account can be found in [153].

6.2 Quantum Communication

Before going into quantum communication complexity, we will first look briefly
at quantum communication in general. The area of quantum information theory
deals with the properties of quantum information and its communication between
different parties. We refer to [27, 130] for general surveys, and will here restrict
ourselves to explaining two important phenomena: teleportation [23] and super-
dense coding [24]. These pre-date quantum communication complexity and show
some of the power of quantum communication.

Here we explain how teleporting a qubit works. Alice has a qubit α0|0〉 +
α1|1〉 that she wants to send to Bob via a classical channel. Without further
resources this would be impossible, since it may take infinitely many classical
bits to describe and transmit the exact amplitudes α0 and α1. However, if Alice
also shares an EPR-pair 1√

2
(|00〉+ |11〉) with Bob then it can be done, as follows.

Initially, their joint state is

(α0|0〉+ α1|1〉)⊗
1√
2
(|00〉+ |11〉).

The first two qubits belong to Alice, the third to Bob. Alice performs a controlled-
not on her two qubits and then a Hadamard transform on her first qubit. Their
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joint state can now be written as

1
2
|00〉 ⊗ (α0|0〉+ α1|1〉) +

1
2
|01〉 ⊗ (α0|1〉+ α1|0〉) +

1
2
|10〉 ⊗ (α0|0〉 − α1|1〉) +

1
2
|11〉︸︷︷︸
Alice

⊗ (α0|1〉 − α1|0〉)︸ ︷︷ ︸
Bob

.

Alice then measures her two qubits and sends the result (2 random classical
bits) to Bob, who now knows which transformation he must do on his qubit in
order to regain the qubit α0|0〉 + α1|1〉. For instance, if Alice sent 11 then Bob
knows that his qubit is α0|1〉 − α1|0〉. A bit-flip (|b〉 → |1 − b〉) followed by a
phase-flip (|b〉 → (−1)b|b〉) will give him Alice’s original qubit α0|0〉+α1|1〉. This
technique can easily be generalized to many-qubit systems, and can also be shown
to preserve entanglement: if Alice teleports part of her state to Bob, then Bob’s
new state will be entangled with the part of the state that Alice kept to herself.

Note that the qubit on Alice’s side has been destroyed: teleporting moves a
qubit from Alice to Bob, rather than copying it. In fact, copying an unknown
qubit is impossible [162], which can be seen as follows. Suppose C were a 1-qubit
copier, i.e., C|φ〉|0〉 = |φ〉|φ〉 for every qubit |φ〉. In particular C|0〉|0〉 = |0〉|0〉
and C|1〉|0〉 = |1〉|1〉. But then C would not copy |φ〉 = 1√

2
(|0〉 + |1〉) correctly,

since by linearity C|φ〉|0〉 = 1√
2
(C|0〉|0〉+C|1〉|0〉) = 1√

2
(|0〉|0〉+ |1〉|1〉) 6= |φ〉|φ〉.

In teleportation, Alice uses 2 classical bits and 1 EPR-pair to send 1 qubit to
Bob. Superdense coding achieves the opposite: using 1 qubit of communication
and 1 EPR-pair, Alice can send 2 classical bits b1 and b2 to Bob. It works as
follows. Initially they share an EPR-pair 1√

2
(|00〉 + |11〉). First, if b1 = 1 then

Alice applies the phase gate Rπ to her half of the pair (this maps |b〉 → (−1)b|b〉).
Second, if b2 = 1 then she applies a bit-flip. Third, she sends her half of the
EPR-pair to Bob, who now has one of 4 states |φb1b2〉:

|φ00〉 = 1√
2
(|00〉+ |11〉)

|φ01〉 = 1√
2
(|10〉+ |01〉)

|φ10〉 = 1√
2
(|00〉 − |11〉)

|φ11〉 = 1√
2
(|10〉 − |01〉)

Since these states form an orthogonal set, Bob can apply a unitary transformation
that maps |φb1b2〉 → |b1b2〉 and thus learn b1 and b2.

Suppose Alice wants to send n classical bits of information to Bob and they
do not share any prior entanglement. Alice can just send her n bits to Bob, but,
alternatively, Bob can also first send n/2 halves of EPR-pairs to Alice and then
Alice can send n bits in n/2 qubits using superdense coding. In either case, n
qubits are exchanged between them. If Alice and Bob already share n/2 prior
EPR-pairs, then n/2 qubits of communication suffice by superdense coding. The
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following result shows that this is optimal. We will refer to it as Holevo’s theorem,
because the first part is an immediate consequence of a result of [91] (the second
part was derived in [54]).

6.2.1. Theorem (Holevo). If Alice wants to send n bits of information to Bob
via a qubit channel, and they do not share prior entanglement, then they have to
exchange at least n qubits. If they do share unlimited prior entanglement, then
Alice has to send at least n/2 qubits to Bob, no matter how many qubits Bob
sends to Alice.

A somewhat stronger and more subtle variant of this lower bound was derived
by Nayak [125], improving upon [11]. Suppose that Alice doesn’t want to send
Bob all of her n bits, but just wants to send a message that allows Bob to learn
one of her bits xi, where Bob can choose i after the message has been sent
(such a message is called a random access code). Even for this weaker form of
communication, Alice has to send an Ω(n)-qubit message.

6.3 The Model of Communication Complexity

6.3.1 Classical

First we sketch the setting for classical communication complexity, referring
to [109] for more details. Alice and Bob want to compute some function f :
D → {0, 1}, where D ⊆ X × Y . Usually X = Y = {0, 1}n. If the domain D
equals X × Y then f is called a total function, otherwise it is a promise function.
Alice receives input x, Bob receives input y, with (x, y) ∈ D. As the value f(x, y)
will generally depend on both x and y, some communication between Alice and
Bob is required in order for them to be able to compute f(x, y). At the end of
the protocol, Alice and Bob should have the same output. We are interested in
the minimal amount of communication they need for this.

A communication protocol is a distributed algorithm where first Alice does
some individual computation, then sends a message (of one or more bits) to Bob,
then Bob does some computation and sends a message to Alice, etc. Each message
is called a round. After one or more rounds the protocol terminates and outputs
some value, which must be known to both players. We sketch the form of a
3-round communication protocol in Figure 6.1.

The conversation of some run of the protocol on some input is the concate-
nation of all messages sent during that run. The cost of a protocol is the total
number of bits communicated on the worst-case input, i.e., the length of the
longest conversation.

We consider the same three error-models as in the case of query complexity
(Chapter 2). A deterministic protocol for f always has to output the right value
f(x, y) for all (x, y) ∈ D. In a bounded-error protocol, Alice and Bob may flip
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Alice: x Bob: y

round 1

round 2

round 3

-

¾

-

Figure 6.1: A 3-round communication protocol

coins and the protocol has to output the right value f(x, y) with probability ≥ 2/3
for all (x, y) ∈ D. In a zero-error protocol, Alice and Bob may claim ignorance
(“don’t know”) with probability ≤ 1/2 on every input (x, y) ∈ D, but if they give
an output, then this must be the correct value f(x, y). The acceptance probability
of a protocol on input (x, y) is its probability to output the value 1 on that input.
We use Dcc(f), Rcc0(f), and Rcc2(f) to denote the minimal cost of deterministic,
zero-error, and (2-sided) bounded-error protocols for f , respectively. The ‘cc’
in these names stands for “communication complexity”; this is not used in the
standard reference [109], but we add it here to avoid confusion with the notation
for query complexities used in the previous part of this thesis. We will add the
superscript “1 round” when we restrict attention to protocols with only one round
of communication: Alice sends a message to Bob, who then computes the output.

In case of the randomized versions of communication complexity, Rcc0(f) and
Rcc2(f), we can either allow Alice and Bob to toss coins individually (private
coin) or jointly (public coin). We will add superscript ‘pub’ if we speak about
the latter model. The difference between the two is not large: Newman [126]
(see also [50]) proved that a public coin can save at most about O(log n) bits of
communication, compared to a protocol with a private coin.

Some often studied total functions where X = Y = {0, 1}n are:

• Equality: EQn(x, y) = 1 iff x = y

• Inner product: IPn(x, y) = PARITYn(x ∧ y) =
∑

i xiyi (mod 2)
(for x, y ∈ {0, 1}n, xi is the ith bit of x and x ∧ y ∈ {0, 1}n is the bit-wise
AND of x and y)

• Disjointness: DISJn(x, y) = NORn(x ∧ y). This function is 1 iff there is no
i where xi = yi = 1 (viewing x and y as characteristic vectors of sets, the
sets are disjoint)

Note that there always is a trivial protocol with n+1 bits of communication: Alice
sends x to Bob, then Bob computes f(x, y) and sends back the 1-bit answer. It
is known that this trivial protocol is often optimal, for example Dcc(EQn) =
Dcc(IPn) = Dcc(DISJn) = n + 1, and Rcc2(IPn),Rcc2(DISJn) ∈ Ω(n). However,
sometimes there are much more efficient protocols. For instance, Rccpub2 (EQn) is
only O(1), as follows. Alice and Bob jointly toss a random string r ∈ {0, 1}n.
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Alice sends the bit a = x · r mod 2 =
∑n

i=1 xiri mod 2 to Bob. Bob computes
b = y · r mod 2 and compares this with a. If x = y then a = b, but if x 6= y then
a 6= b with probability 1/2. Thus Alice and Bob can decide equality with small
error using O(n) public coin flips and O(1) communication. Since public coin
and private coin protocols are close by Newman’s result, this also implies that
Rcc2(EQn) ∈ O(log n) with a private coin. More about efficient communication
protocols for equality may be found in Chapter 8.

6.3.2 Quantum

Now what happens if we give Alice and Bob a quantum computer and allow them
to send each other qubits and/or to make use of EPR-pairs that they share at the
start of the protocol? Formally speaking, we can model a quantum protocol as
follows. The total state consists of 3 parts: Alice’s private space, the communica-
tion channel, and Bob’s private space. The starting state is |x,~0〉|~0〉|y,~0〉: Alice
gets input x, and some additional initially-zero qubits as workspace; the channel
is initially empty (zero); and Bob gets input y and some workspace. (We will
usually not specify the precise number of workspace-qubits used, and sometimes
omit them from the presentation altogether.) Now Alice applies a fixed unitary
transformation UA

1 to her space and the channel. This corresponds to her private
computation as well as to putting a message on the channel. The length of this
first message is the number of channel-qubits affected by Alice’s operation. Since
nothing happens to Bob’s space during the first round, the overall unitary trans-
formation is UA

1 ⊗ IB, where IB is the identity operation on Bob’s space. For the
second round, Bob applies a fixed unitary transformation UB

2 to his space and
the channel, then Alice applies UA

3 , etc. The final state of a k-round protocol on
input (x, y) is

(UA
k ⊗ IB)(IA ⊗ UB

k−1) · · · (IA ⊗ UB
2 )(U

A
1 ⊗ IB)|x,~0〉|~0〉|y,~0〉.

For technical reasons it will be convenient to assume that at the end of the
protocol, the first qubit of the channel contains the answer. A measurement of
this qubit then determines the output of the protocol. This is similar to assuming
that both parties know the output bit at the end of the protocol (roughly speaking,
the party who sent the output qubit must know the output in order to be able to
put it on the channel, and the party who receives this qubit then also knows it).
Note that, despite the fact that the operation UA

m is independent of x and the first
m − 1 messages, the mth message still depends on x and the earlier messages.
The reason is that UA

m acts on Alice’s workspace as well as on the channel, so the
new message will depend on what Alice has in her part of the space at that point
(i.e., x and what she has stored of earlier messages).

A second, equivalent, way to view these protocols is to assume that they
start in state |~0〉|~0〉|~0〉 (Alice’s workspace; channel; Bob’s workspace) and that
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the unitary transformations that Alice and Bob apply are functions of their in-
put. In other words, for a k-round protocol there are unitary transformations
UA
1 (x), U

B
2 (y), U

A
3 (x), . . . , U

B
k−1(y), U

A
k (x), which act on Alice’s (resp. Bob’s) part

of the space and the channel. The final state of the protocol on input (x, y) is

(UA
k (x)⊗ IB)(IA ⊗ UB

k−1(y)) · · · (IA ⊗ UB
2 (y))(U

A
1 (x)⊗ IB)|~0〉|~0〉|~0〉.

Again, at the end of the protocol a measurement of the first channel-qubit de-
termines the output. It is not hard to show that both kinds of protocols are
equivalent.1

We can consider three different kinds of quantum communication complexity,
depending on whether we allow qubit communication and/or the use of shared
EPR-pairs. We use QccE(f) to denote the minimal communication cost of a quan-
tum protocol that is allowed qubit communication but no prior entanglement and
that computes f(x, y) exactly (= with error probability 0, the ‘E’ stands for ‘ex-
act’). This model was introduced by Yao [165]. In the second model, introduced
by Cleve and Buhrman [53], Alice and Bob share an unlimited number of EPR-
pairs 1√

2
(|00〉+ |11〉) at the start of the protocol, but now they communicate via

a classical channel: the channel has to be in a classical state throughout the pro-
tocol. (Actually, Cleve and Buhrman introduced a 3-party version of this, where
Alice, Bob, and Charley share the 3-qubit “GHZ-state” 1√

2
(|000〉 + |111〉)). We

use Ccc∗E(f) for the minimal complexity of an exact protocol for f in this model.
Note that we only count the communication, not the number of EPR-pairs used;
this is similar to classical communication complexity with a public coin, where
one usually does not count the number of coin flips used. Only communication
is considered an expensive resource in this model. The third variant combines
the strengths of the other two: here Alice and Bob start out with an unlimited
number of shared EPR-pairs and they are allowed to communicate qubits. We
use Qcc∗E(f) to denote the communication complexity in this third model.

Clearly, quantum protocols are at least as powerful as the corresponding clas-
sical protocols. Also, by teleportation, 1 EPR-pair and 2 classical bits can re-
place 1 qubit of communication, so we have Qcc∗E(f) ≤ Ccc∗E(f) ≤ 2Qcc∗E(f) ≤
2QccE(f). Similarly we define Qcc0(f), Ccc

∗
0(f), and Qcc∗0(f) for zero-error quan-

tum protocols of the three flavors, and Qcc2(f), Ccc
∗
2(f), and Qcc∗2(f) for bounded-

error quantum protocols.2 Note that a shared EPR-pair can simulate a public

1We can assume that protocols of the first kind do not change the input-parts containing x
and y during the computation. To get a protocol of the first kind from one of the second kind,
just define UA

1 =
∑

z |z〉〈z| ⊗ UA
1 (z), and similarly define UB

2 , etc. To get a protocol of the
second kind from one of the first kind, define UA

1 (x) to be the unitary transformation that UA
1

applies to Alice’s workspace and channel if x is fixed, and similarly define U B
2 (y), etc.

2A comment on the pronunciation of this: Qcc∗2(f) is “bounded-error quantum communica-
tion complexity of f with shared entanglement”, Ccc∗E(f) is “exact communication complexity
of f with classical bits and shared entanglement”, etc. We sometimes refer to protocols that
start with prior entanglement as entanglement-enhanced quantum protocols.
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coin toss: if Alice and Bob each measure their half of the pair, they get the same
random bit. This implies for instance that Qcc∗2(f) ≤ Rccpub2 (f). In particular we
have Qcc∗2(EQn) ∈ O(1) using the classical public-coin protocol for equality from
the previous section.

Before continuing to study this model, we first have to face an important
question: is there anything to be gained here? At first sight, the following argu-
ment seems to rule out any significant gain. By definition, in the classical world
Dcc(f) bits have to be communicated in order to compute f . Since Holevo’s
theorem says that k qubits cannot contain more information than k classical bits,
it seems that the quantum communication complexity should be roughly Dcc(f)
qubits as well (maybe Dcc(f)/2 to account for superdense coding, but not less).
Fortunately and surprisingly, this argument is false, and quantum communica-
tion can sometimes be much less than classical communication complexity. The
information-theoretic argument via Holevo’s theorem does not apply, because Al-
ice and Bob do not need to communicate the information in the Dcc(f) bits of
the classical protocol; they are only interested in the value f(x, y), which is just
1 bit. Below we survey the main examples that have so far been found of gaps
between quantum and classical communication complexity.

6.4 Quantum Upper Bounds

6.4.1 Initial steps

Quantum communication complexity was introduced by Yao [165] and studied
by Kremer [108], but neither showed any advantages of quantum over classical
communication. Cleve and Buhrman [53] introduced the variant with classical
communication and shared EPR-pairs, and exhibited the first quantum protocol
provably better than any classical protocol. It uses EPR-pairs and 2 classical bits
of communication to solve some specific 3-party communication problem exactly,
which would require 3 bits of communication without prior entanglement. This
gap was later extended by Buhrman, Cleve, and van Dam [40] and Buhrman, van
Dam, Høyer, and Tapp [44].

6.4.2 Buhrman, Cleve, and Wigderson

The first impressively large gaps between quantum and classical communica-
tion complexity were exhibited by Buhrman, Cleve, and Wigderson [42]. Their
protocols are distributed versions of known quantum query algorithms, like the
Deutsch-Jozsa and Grover algorithms from Chapter 1. The following lemma
shows how a query algorithm induces a communication protocol:
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6.4.1. Lemma (BCW [42]). Let g : {0, 1}n → {0, 1} and f(x, y) = g(x ? y),
where ? is any binary connective (for instance ⊕ or ∧). If there is a T -query quan-
tum algorithm for g, then there is a protocol for f that communicates T (2 log n+4)
qubits (and uses no prior entanglement) and that has the same error probability
as the query algorithm.

Proof. The quantum protocol consists of Alice’s simulating the quantum query
algorithm A on input x ? y. Every query in A will correspond to 2 rounds of
communication. Namely, suppose Alice at some point wants to apply a query to
the (log n + 1)-qubit state |φ〉 = ∑i∈{1,...,n},b∈{0,1} αib|i, b〉 (for simplicity we omit

Alice’s workspace). Then she adds a |0〉-qubit to the state, applies the unitary
mapping |i, b, 0〉 → |i, b, xi〉, and sends the resulting (log n+2)-qubit state to Bob.
Bob now applies the unitary mapping |i, b, xi〉 → |i, b⊕ (xi ?yi), xi〉 and sends the
resulting (log n + 2)-qubit state back to Alice. Alice applies |i, b, xi〉 → |i, b, 0〉,
takes off the last qubit, and ends up with the state

∑
i,b αib|i, b⊕ (xi ? yi)〉, which

is exactly the result of applying an x ? y-query to |φ〉. Thus every query to x ? y
can be simulated using 2 log n + 4 qubits of communication. The final quantum
protocol will have T (2 log n + 4) qubits of communication and computes f(x, y)
with the same error probability as A has on input x ? y. 2

Now consider the disjointness function: DISJn(x, y) = NORn(x∧ y), which is
1 iff xi = yi = 1 for at least one i ∈ {1, . . . , n}. Since Grover’s algorithm can
compute the NORn of n variables with O(

√
n) queries and small error prob-

ability, the previous lemma implies a bounded-error protocol for disjointness
with O(

√
n log n) qubits of communication. On the other hand, the linear lower

bound for disjointness is a well-known result of classical communication complex-
ity [96, 139]. Thus we obtain the following near-quadratic separation:

6.4.2. Theorem (BCW [42]). Qcc2(DISJn) ∈ O(
√
n log n) and Rcc2(DISJn) ∈

Ω(n).

The disjointness problem is very similar to the appointment scheduling prob-
lem, which is: Alice and Bob each have an n-slot agenda, and they want to find
a slot on which they are both free. Viewing their input as n-bit strings, with
a 1 indicating a free day, Alice and Bob need to find a slot i such that they
both have a 1 on that slot—and this is exactly what the distributed version of
Grover’s algorithm does, using near-quadratically less communication than the
best classical protocols.

Another separation is given by a distributed version of the Deutsch-Jozsa
problem of Section 1.5. Let n be divisible by 4 and DeJon be the Deutsch-Jozsa
promise function on n-bit input z, which is defined to be 1 if |z| = 0, to be 0
if |z| = n/2, and which is undefined if |z| 6∈ {0, n/2}. Define a communication
complexity problem as EQ′n(x, y) = DeJon(x ⊕ y). This is a promise version of
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equality, where the promise is that x and y are either equal or are at Hamming
distance ∆(x, y) = n/2 (EQ′n(x, y) is undefined for other x, y). Since there is an
exact 1-query quantum algorithm for DeJon, Lemma 6.4.1 implies QccE(EQ

′
n) ∈

O(log n). In contrast, Buhrman, Cleve, and Wigderson use a combinatorial result
of Frankl and Rödl [77] to prove the classical lower bound Dcc(EQ′n) ∈ Ω(n),
giving the following exponential separation for exact protocols:

6.4.3. Theorem (BCW [42]). QccE(EQ
′
n) ∈ O(log n) and Dcc(EQ′n) ∈ Ω(n).

Proof. The quantum upper bound follows immediately from combining the
Deutsch-Jozsa algorithm with Lemma 6.4.1.

Any classical protocol will require Ω(n) classical bits of communication to solve
EQ′n with certainty, as follows. Suppose there is a c-bit deterministic classical
protocol for EQ′n. It is easy to prove that every conversation corresponds to a
rectangle R = S × T , with S, T ⊆ {0, 1}n, such that the protocol has the same
conversation and output iff (x, y) ∈ R (see e.g. [109, Section 1.2]). Since there
are at most 2c possible conversations, the protocol partitions {0, 1}n × {0, 1}n in
at most 2c different such rectangles. Now consider all n-bit strings x of Hamming
weight n/2, there are roughly 2n/

√
n of those. Since every (x, x)-pair must occur

in some rectangle and there are only 2c rectangles, there is a rectangle R = S×T
that contains at least 2n/

√
n2c different such (x, x)-pairs. Let A = {x | |x| =

n/2, (x, x) ∈ R} be the set of such x. Since R contains some (x, x)-pairs (on
which the protocol outputs 1) and the protocol has the same output for all inputs
in R, R contains no 0-inputs. This implies that the Hamming distance of every
pair x, y ∈ A is different from n/2, for otherwise (x, y) would be a 0-input in R.
Viewing the x in A as characteristic vectors of sets, it is easy to see that the size
of the intersection of x, y ∈ A is never n/4. Thus we have a set system A of at
least 2n/

√
n2c sets, such that the size of the intersection of any two sets in A is

not n/4. However, by Corollary 1.2 of [77], such a set system can have at most
1.99n elements, so we have

2n√
n2c
≤ |A| ≤ 1.99n.

This implies c ≥ log(2n/
√
n1.99n) ≥ 0.007 n. 2

6.4.3 Raz

Notice the contrast between the two separations of the previous section. For
the distributed Deutsch-Jozsa problem we get an exponential quantum-classical
separation, but the separation only holds if we force the classical protocol to be
exact; it is easy to see that O(log n) bits of communication suffice for classical
protocols if we allow a small probability of error (the classical protocol can just
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try a few random positions i and check if xi = yi or not). On the other hand, the
gap for the disjointness function is only quadratic, but it holds even if we allow
classical protocols to have some error probability. Ran Raz [138] has exhibited a
function where the quantum-classical separation has both features: the quantum
protocol is exponentially better than the classical protocol, even if the latter is
allowed some error probability. Consider the following promise problem P:

Alice receives a unit vector v ∈ Rm and a decomposition of the cor-
responding space in two orthogonal subspaces H (0) and H(1). Bob
receives an m×m unitary transformation U .
Promise: Uv is either “close” to H (0) or to H(1).
Question: which of the two?

Formally, Uv being “close” to subspace H (i) means that ‖PiUv ‖2≥ 2/3, where
Pi is the projector on subspace H (i). As stated, this is a problem with continuous
input, but it can be discretized by approximating each real number by O(logm)
bits. Alice and Bob’s input is now n ∈ O(m2 logm) bits long. There is a simple
yet efficient 2-round quantum protocol for this problem: Alice views v as a logm-
qubit state and sends this to Bob. Bob applies U and sends back the result.
Alice then measures in which subspace H (i) the vector Uv lies and outputs the
resulting i. This takes only 2 logm ∈ O(log n) qubits of communication and has
small probability of error.

The efficiency of this protocol comes from the fact that an m-dimensional
vector can be “compressed” or “represented” as a logm-qubit state. Similar
compression is not possible with classical bits, which suggests that any classical
protocol forP will have to send the vector v more or less literally and hence require
much communication. This turns out to be true but the proof is surprisingly
hard [138]. The result is the first exponential gap between Qcc2 and Rcc2:

6.4.4. Theorem (Raz [138]). Qcc2(P) ∈ O(log n) and Rcc2(P) ∈ Ω

(
n1/4

log n

)
.

6.5 Some Applications

The main applications of classical communication complexity have been in prov-
ing lower bounds for various models like VLSI, Boolean circuits, formula size,
Turing machine complexity, data structures, automata size etc. We refer to [109]
for many examples. Typically, one proceeds by showing that a communication
complexity problem f is “embedded” in the computational problem P of inter-
est, and then uses communication complexity lower bounds on f to establish
lower bounds on P . Similarly, quantum communication complexity can be used
to establish lower bounds in various models of quantum computation, though
such applications have received relatively little attention so far. We will briefly
mention some.
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Yao [165] initially introduced quantum communication complexity as a tool
for proving a superlinear lower bound on the quantum formula size of the majority
function (a “formula” is a circuit of restricted form). More recently, Klauck [101]
used one-round quantum communication complexity lower bounds to prove lower
bounds on the size of quantum formulae.

Since upper bounds on query complexity give upper bounds on communication
complexity (Lemma 6.4.1), lower bounds on communication complexity give lower
bounds on query complexity. For instance, IPn(x, y) = PARITYn(x ∧ y), so the
Ω(n) bound which was proven for IPn in [54] (see also Section 7.4 below) implies an
Ω(n/ log n) lower bound for the quantum query complexity of the parity function,
as observed by Buhrman, Cleve, and Wigderson [42]. This lower bound was later
strengthened to n/2, as explained in Section 2.6.3 of this thesis.

Furthermore, as in the classical case, lower bounds on (one-way) communi-
cation complexity imply lower bounds on the size of finite automata. This was
used by Klauck [101] to show that zero-error quantum finite automata cannot be
much smaller than classical deterministic finite automata.

Finally, Ben-Or [21] has recently applied the lower bounds for IPn in a new
proof of the security of quantum key distribution.

6.6 Other Developments

At the end of this introductory chapter, we mention some other results in quantum
communication complexity or related models:

• Zero-error protocols. We have seen quantum-classical separations in the
exact and the bounded-error settings. What about the zero-error setting?
It was observed in [43] that we can combine Lemma 6.4.1 with our zero-error
quantum algorithms for AND-OR trees (Section 2.7.2) to get quantum zero-
error protocols for the total function which is the dth-level AND-OR tree of
x ∧ y. These protocols use O(n1/2+1/d log n) qubits of communication. We
conjecture that classical zero-error protocols need Ω(n) communication for
these functions (for fixed d), but were unfortunately unable to prove this.
Klauck [101] later constructed a similar function f for which he could prove
a good lower bound on Rcc0(f), thus establishing the first quantum-classical
separation between Qcc0(f) and Rcc0(f) for a total function.

• One-way communication. Suppose the communication is one-round: Al-
ice just sends qubits to Bob. Klauck [101] showed for all total functions that
quantum communication is not significantly better than classical communi-
cation for one-way communication in the exact or zero-error settings.

• Rounds. It is well known in classical communication complexity that al-
lowing Alice and Bob k + 1 rounds of communication instead of k reduces
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the required communication exponentially for some functions. An analo-
gous result has recently been shown for quantum communication [104].

• Quantum sampling. For the sampling problem, Alice and Bob do not
want to compute some f(x, y), but instead want to sample an (x, y)-pair
according to some known joint probability distribution, using as little com-
munication as possible. Ambainis et al. [12] give a tight algebraic charac-
terization of quantum sampling complexity, and exhibit an exponential gap
between the quantum and classical communication required for a sampling
problem related to disjointness.

• Spooky communication. Brassard, Cleve, and Tapp [33] exhibit tasks
that can be achieved in the quantum world with entanglement and no
communication, but which would require communication in the classical
world. They call such quantum protocols “spooky” in reference to Ein-
stein’s description of certain quantum effects as “spooky actions at a dis-
tance” (“spukhafte Fernwirkungen”). Brassard, Cleve, and Tapp also give
upper and lower bounds on the amount of classical communication needed
to “simulate” EPR-pairs. Their results may be viewed as quantitative ex-
tensions of the famous Bell inequalities [20].

6.7 Summary

The basic problem of communication complexity is the following: Alice receives
an input x and Bob receives an input y (usually of n bits each), and together
they want to compute some function f(x, y) using as little communication be-
tween them as possible. This model of distributed computation has found many
applications in classical computing. Quantum communication complexity asks
whether the amount of communication of such a problem can be reduced sig-
nificantly if Alice and Bob can communicate qubits and/or make use of shared
entanglement. The answer is ‘yes’ (sometimes). In this chapter we described the
main examples known where quantum communication complexity is significantly
less than classical communication complexity, as well as some applications.





Chapter 7

Lower Bounds for Quantum
Communication Complexity

This chapter is based on the papers

• H. Buhrman and R. de Wolf. Communication Complexity Lower Bounds
by Polynomials. In Proceedings of 16th IEEE Annual Conference on Com-
putational Complexity (CCC 2001), pages 120–130, 2001.

• R. de Wolf. Characterization of Non-Deterministic Quantum Query and
Quantum Communication Complexity. In Proceedings of 15th IEEE An-
nual Conference on Computational Complexity (CCC 2000), pages 271–278,
2000.

7.1 Introduction

To repeat the previous chapter, the field of communication complexity deals with
the following kind of problem: Alice receives some input x ∈ X, Bob receives
some y ∈ Y , and together they want to compute some (usually Boolean) func-
tion f(x, y) which depends on both x and y. At the end of the protocol they
should both have the same output. We are interested in the minimum amount of
communication that Alice and Bob need. The communication may be classical
or quantum, and the protocols may be exact, zero-error, or bounded-error.

In Section 6.4, we saw some examples where quantum communication com-
plexity was exponentially smaller than classical communication complexity. The
question arises how big the gaps between quantum and classical can be for vari-
ous (classes of) functions. In order to answer this, we need to exhibit limits on
the power of quantum communication complexity, i.e., establish lower bounds on
quantum communication complexity. Few such lower bound techniques are cur-
rently known. Some lower bound methods are available for QccE(f) [165, 108, 54,

115



116 Chapter 7. Lower Bounds for Quantum Communication Complexity

12], but the only lower bound known for the entanglement-enhanced complexity
Qcc∗E(f) is for the inner product function [54].1 For the case of lower bounds
on bounded-error protocols, our current techniques are even more limited. The
main purpose of this chapter is to develop new tools for proving lower bounds on
quantum communication protocols.

The tools we will develop are quite successful for proving lower bounds on
exact quantum protocols. A strong and well known lower bound for the classical
deterministic complexity Dcc(f) is given by the logarithm of the rank (over the
field of real numbers) of the communication matrix for f [121]. As first noted
in [42], techniques of Yao [165] and Kremer [108] imply that an Ω(log rank(f))-
bound also holds for QccE(f). Our first result in this chapter is to extend this
bound to the entanglement-enhanced complexity Qcc∗E(f) and to derive the op-
timal constant:2

Qcc∗E(f) ≥
log(rank(f)− 1)

2
.

This implies n/2 lower bounds for the Qcc∗E-complexity of the equality and dis-
jointness problems, for which no good bounds were known prior to this work.
This n/2 is tight up to 1 bit, since Alice can send her n-bit input to Bob with
n/2 qubits and n/2 EPR-pairs using superdense coding [24]; Bob can then com-
pute f(x, y) and send back the 1-bit answer. Our n/2 lower bound also provides
a new proof of optimality of superdense coding: if we were able to send more
than 2 classical bits via 1 qubit of communication, then we would violate our
communication complexity lower bounds. The same n/2 bound can be shown to
hold for almost all functions (which, however, does not preclude the existence of
interesting problems with large quantum-classical gaps).

In another direction, proof of the well known “log-rank conjecture” (Dcc(f) ≤
(log rank(f))k for some k) would now imply polynomial equivalence between
Dcc(f) and Qcc∗E(f) (as already noted for Dcc(f) and QccE(f) in [12]). How-
ever, this conjecture is a long standing open question which is probably hard
to solve in full generality. In order to get a better handle on rank(f), we re-
late it to a property of polynomials. If our communication problem is of the
form f(x, y) = g(x ∧ y) for some Boolean function g (where x ∧ y is the n-bit
string obtained by bitwise ANDing x and y), then we prove that rank(f) equals
the number of monomials mon(g) in the unique representing polynomial for g.
Since mon(g) is often easy to count, this relation allows us to prove polynomial
equivalence of Dcc(f) and Qcc∗E(f) for the special cases where g is monotone or

1Recall from the previous chapter that for the Q∗ and C∗ complexities we only count the
number of communicated qubits, not the number of prior EPR-pairs consumed by the protocol.

2During discussions we had with Michael Nielsen in Cambridge (UK) in the summer of 1999,
it appeared that an equivalent result can be derived from results about Schmidt numbers in [129,
Section 6.4.2].
Actually, in the conference version of this work [48], the lower bound was stated without the

‘−1’, but that proof contained a bug.
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symmetric.

For the case of bounded-error quantum protocols, very few lower bounds are
currently known (exceptions are inner product [54] and the general “discrep-
ancy” bound [108]). In particular, no good lower bounds are known for the
disjointness problem. The best known upper bound for this is O(

√
n log n) qubits

(Section 6.4.2), contrasting with linear classical randomized complexity. Since dis-
jointness is a “co-NP-complete” communication problem [14], a good lower bound
for this problem would imply lower bounds for all “NP-hard” communication
problems. In order to attack this problem, we make an effort to extend the above
polynomial-based approach to bounded-error protocols. We consider the approxi-

mate rank, denoted r̃ank(f)), and show the bound Qcc2(f) ≥ (log r̃ank(f))/2 for
2-sided bounded-error qubit protocols (again using techniques from [165, 108]).

Unfortunately, lower bounds on r̃ank(f) are much harder to obtain than for

rank(f). If we could prove for the case f(x, y) = g(x ∧ y) that r̃ank(f) roughly
equals the number of monomials m̃on(g) of an approximating polynomial for g,
then an Ω(

√
n) lower bound would follow for disjointness, because we show that

disjointness requires at least 2
√
n monomials to approximate. Since we prove that

the quantities rank(f) and mon(g) are in fact equal in the exact case, this gives

some hope for a similar result r̃ank(f) ≈ m̃on(g) in the approximating case, and
hence for resolving the complexity of disjointness. Nevertheless, the bounds that
we actually are able to prove for disjointness are disappointingly weak. We end
the chapter with a discussion of some of the main open problems for quantum
communication complexity.

7.2 Lower Bounds for Exact Protocols

Consider a total function f : {0, 1}n × {0, 1}n → {0, 1}. The communication
matrix Mf corresponding to this f is the 2n × 2n Boolean matrix whose (x, y)-
entry is f(x, y). We use rank(f) to denote the rank of Mf (over the reals).
One of the most powerful techniques for lower bounds on classical deterministic
communication complexity is the well known log-rank lower bound: Dcc(f) ≥
log rank(f). This was first proven by Mehlhorn and Schmidt [121].

As noted in [42, 12], techniques from [165, 108] imply a similar lower bound for
quantum protocols with prior entanglement: QccE(f) ∈ Ω(log rank(f)). Here we
will first prove the log rank(f) bound for clean quantum protocols and afterwards
extend it to general entanglement-enhanced protocols. A clean qubit protocol is
a protocol, of the second kind considered in Section 6.3.2, that leaves a clean
workspace behind at the end of the protocol: it starts in the state |~0〉|0〉|~0〉 (no
prior entanglement) and ends with |~0〉|f(x, y)〉|~0〉We use Qccc(f) for the minimal
cost of such clean protocols for f . For simplicity, our proof assumes that the
channel is a 1-qubit space. The same proof works if the channel can hold more
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qubits. We use the following lemma:

7.2.1. Lemma (Yao [165]; Kremer [108]). The final state of an `-qubit pro-
tocol (without prior entanglement) on input (x, y) can be written as

∑

i∈{0,1}`
αi(x)βi(y)|Ai(x)〉|i`〉|Bi(y)〉,

where the αi(x), βi(y) are complex numbers of magnitude ≤ 1, the Ai(x), Bi(y)
are unit vectors, and i` denotes the last bit of the `-bit string i.

Proof. The proof is by induction on `:
Base step. For ` = 0 the lemma is obvious.
Induction step. Suppose after ` qubits of communication the state can be

written as ∑

i∈{0,1}`
αi(x)βi(y)|Ai(x)〉|i`〉|Bi(y)〉. (7.1)

We assume without loss of generality that it is Alice’s turn: she applies UA
`+1(x)

to her part and the 1-qubit channel. Note that there exist complex numbers
αi0(x), αi1(x) and unit vectors Ai0(x), Ai1(x) such that

(UA
`+1(x)⊗ I)|Ai(x)〉|i`〉|Bi(y)〉 =

αi0(x)|Ai0(x)〉|0〉|Bi(y)〉+ αi1(x)|Ai1(x)〉|1〉|Bi(y)〉.
Thus every element of the superposition (7.1) “splits in two” when we apply UA

`+1.
Accordingly, we can write the state after U`+1 in the form required by the lemma,
which concludes the proof. 2

7.2.2. Theorem (Buhrman & de Wolf [48]). Qccc(f) ≥ log rank(f) + 1.

Proof. Consider a clean `-qubit protocol for f . By Lemma 7.2.1, we can write
its final state as ∑

i∈{0,1}`
αi(x)βi(y)|Ai(x)〉|i`〉|Bi(y)〉.

The protocol is clean, so the final state is |~0〉|f(x, y)〉|~0〉. Hence all parts of
|Ai(x)〉 and |Bi(y)〉 other than |~0〉 will cancel out, and we can assume without
loss of generality that |Ai(x)〉 = |Bi(y)〉 = |~0〉 for all i. Now the amplitude of the
|~0〉|1〉|~0〉-state is simply the sum of the amplitudes αi(x)βi(y) of the i for which
i` = 1. This sum is either 0 or 1, and equals the acceptance probability P (x, y)
of the protocol. Letting α(x) (resp. β(y)) be the dimension-2`−1 vector whose
entries are αi(x) (resp. βi(y)) for the i with i` = 1, we obtain:

P (x, y) =
∑

i:i`=1

αi(x)βi(y) = α(x)T · β(y).
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Since the protocol is exact, we must have P (x, y) = f(x, y). Hence if we define
A as the |X| × d matrix having the α(x) as rows and B as the d × |Y | matrix
having the β(y) as columns, then Mf = AB. But now

rank(Mf ) = rank(AB) ≤ rank(A) ≤ d ≤ 2l−1,

and the theorem follows. 2

We now extend this to the case where Alice and Bob share an unlimited (but
finite) number of EPR-pairs at the start of the protocol:

7.2.3. Theorem (Buhrman & de Wolf [48]). Qcc∗E(f) ≥
log(rank(f)− 1)

2
.

Proof. Let M±
f be the matrix whose (x, y)-entry is (−1)f(x,y); this is the matrix

we get if we replace {0, 1} by {+1,−1} in the ordinary communication matrixMf .
Letting J denote the all-1 matrix (which has rank 1), we have M±

f = J−2Mf , so

the ranks of Mf and M±
f differ by at most 1. For m > 0, let f⊕m : Xm × Y m →

{0, 1} denote the Boolean function that is the XOR of m independent copies
of f , i.e., f⊕m(x1, . . . , xm, y1, . . . , ym) = f(x1, y1) ⊕ · · · ⊕ f(xm, ym). Note that
M±

f⊕m = (M±
f )
⊗m, because the XOR of m Boolean variables in ±-notation is

just their product. This implies that rank(M±
f⊕m) = rank(M±

f )
m and hence also

rank(f⊕m) ≥ (rank(f)− 1)m − 1.
Now suppose we have some exact protocol for f that uses ` qubits of com-

munication and k prior EPR-pairs. We will build a clean qubit protocol without
prior entanglement for f⊕m, and then invoke Theorem 7.2.2 to get a lower bound
on `. The idea is to establish the prior entanglement once, then to reuse it to
cleanly compute f m times, and finally to “uncompute” the entanglement.

First Alice makes k EPR-pairs and sends one half of each pair to Bob (at a
cost of k qubits of communication). Now they run the protocol to compute the
first instance of f (` qubits of communication). Alice and Bob each copy the
answer to a safe place, which we will call their respective ‘answer bits’, and they
reverse the protocol (again ` qubits of communication). This gives them back
the k EPR-pairs and an otherwise clean workspace, which they can reuse. Now
they compute the second instance of f , they each XOR the answer into their
answer bit (which can be done cleanly), and they reverse the protocol, etc. After
all m instances of f have been computed, Alice and Bob both have the answer
f⊕m(x, y) left and the k EPR-pairs, which they uncompute using another k qubits
of communication (Bob sends his halves of the k EPR-pairs to Alice, who sets
them back to |00〉).

This gives a clean protocol for f⊕m that uses 2m` + 2k qubits and no prior
entanglement. By Theorem 7.2.2 we obtain:

2m`+ 2k ≥ Qccc(f
⊕m) ≥ log rank(f⊕m) + 1

≥ log((rank(f)− 1)m − 1) + 1 ≥ m log(rank(f)− 1),
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hence

` ≥ log(rank(f)− 1)

2
− k

m
.

Since this must hold for every m > 0, the theorem follows. 2

We can derive a stronger bound for the Ccc∗E(f)-complexity, which combines
classical communication with unlimited prior entanglement:

7.2.4. Theorem (Buhrman & de Wolf [48]). Ccc∗E(f) ≥ log(rank(f)− 1).

Proof. Let f ∧ f : X2 × Y 2 → {0, 1} denote the Boolean function that is
the AND of two independent copies of f . Note that Mf∧f = Mf ⊗ Mf and
hence rank(f ∧ f) = rank(f)2. Since a qubit and an EPR-pair can be used
to send 2 classical bits via superdense coding (Section 6.2), we can devise a
qubit protocol for f ∧ f using Ccc∗E(f) qubits (compute the two copies of f in
parallel using the classical bit protocol). Hence by the previous theorem we obtain
Ccc∗E(f) ≥ Qcc∗E(f ∧ f) ≥ (log(rank(f ∧ f)− 1))/2 ≥ log(rank(f)− 1). 2

Below we draw some consequences from these log-rank lower bounds. Firstly,
the communication matrix MEQn of the equality-problem is the 2n × 2n iden-
tity matrix, so rank(EQn) = 2n. This implies Qcc∗E(EQn) ≥ n/2, which is
tight up to 1 bit because of superdense coding, and Ccc∗E(EQn) ≥ n (in con-
trast, Qcc2(EQn) ∈ Θ(log n) and Ccc∗2(EQn) ∈ O(1)). The disjointness func-
tion on n bits is the AND of n disjointnesses on 1 bit (which have rank 2
each), so rank(DISJn) = 2n. The complement of the inner product function
has rank(IPn) = 2n. Thus we have the following strong lower bounds, all tight
up to 1 bit:3

7.2.5. Corollary (Buhrman & de Wolf [48]).

• Qcc∗E(EQn),Qcc∗E(DISJn), Qcc∗E(IPn) ≥ n/2

• Ccc∗E(EQn),Ccc
∗
E(DISJn),Ccc

∗
E(IPn) ≥ n

Komlós [107] has shown that the fraction ofm×m Boolean matrices that have
determinant 0 goes to 0 as m → ∞. Hence almost all 2n × 2n Boolean matrices
have full rank 2n, which implies that almost all functions have maximal quantum
communication complexity:

7.2.6. Corollary (Buhrman & de Wolf [48]). For almost all total f we
have Qcc∗E(f) ≥ n/2 and Ccc∗E(f) ≥ n.

3The same bounds for IPn are also given in [54]. The bounds for EQn and DISJn are new,
and can also be shown to hold for zero-error quantum protocols.



7.3. A Lower Bound Technique via Polynomials 121

In classical communication complexity, much research went into various kinds
of direct sum properties (see [109, Section 4.1]). We say f satisfies the quantum
direct sum property if computing m independent copies of f (without prior en-
tanglement) takes mQccE(f) qubits of communication in the worst case. We do
not know an example of an f without this property. Using the same technique as
before, we can prove an equivalence between the qubit models with and without
prior entanglement for f that satisfy this property:

7.2.7. Corollary (Buhrman & de Wolf [48]). If f satisfies the quantum
direct sum property, then Qcc∗E(f) ≤ QccE(f) ≤ 2Qcc∗E(f).

Proof. Qcc∗E(f) ≤ QccE(f) is obvious. Using the techniques of Theorem 7.2.3
we havemQccE(f) ≤ 2mQcc∗E(f)+k, for allm and some fixed k, hence QccE(f) ≤
2Qcc∗E(f). 2

Finally, because of Theorem 7.2.3, the well known “log-rank conjecture” now
implies the polynomial equivalence of deterministic classical communication com-
plexity and exact quantum communication complexity (with or without prior
entanglement) for all total f :

7.2.8. Corollary (Buhrman & de Wolf [48]). If for some function f we
have that Dcc(f) ∈ O((log rank(f))k), then Qcc∗E(f) ≤ QccE(f) ≤ Dcc(f) ∈
O(Qcc∗E(f)

k).

7.3 A Lower Bound Technique via Polynomials

7.3.1 Decompositions and polynomials

The previous section showed that lower bounds on rank(f) imply lower bounds
on Qcc∗E(f). In this section we relate rank(f) to the number of monomials of a
polynomial for f and use this to prove lower bounds on Qcc∗E(f) for some classes
of functions.

We define the decomposition number m(f) of some function f : {0, 1}n ×
{0, 1}n → R as the minimum m such that there exist functions a1(x), . . . , am(x)
and b1(y), . . . , bm(y) (from Rn to R) for which f(x, y) =

∑m
i=1 ai(x)bi(y) for all

x, y. We say that f can be decomposed into the m functions aibi. Without loss of
generality, the functions ai, bi may be assumed to be multilinear polynomials. It
is easy to see that the decomposition number equals the rank:4

4The first part of the proof employs a technique of Nisan and Wigderson [134]. They used
this to prove log rank(f) ∈ O(nlog

3
2) for a specific f . Our Corollary 7.3.4, together with an

easy lower bound on the number of monomials in the polynomial for their function, implies that
this is tight: log rank(f) ∈ Θ(nlog

3
2) for their f .
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7.3.1. Lemma (Buhrman & de Wolf [48]). rank(f) = m(f).

Proof.
rank(f) ≤m(f): Let f(x, y) =

∑m(f)
i=1 ai(x)bi(y), Mi be the matrix defined by

Mi(x, y) = ai(x)bi(y), ri be the row vector whose yth entry is bi(y). Note that
the xth row of Mi is ai(x) times ri. Thus all rows of Mi are scalar multiples of
each other, hence Mi has rank 1. Since rank(A+ B) ≤ rank(A) + rank(B) and

Mf =
∑m(f)

i=1 Mi, we have rank(f) = rank(Mf ) ≤
∑m(f)

i=1 rank(Mi) = m(f).
m(f) ≤ rank(f): Suppose rank(f) = r. Then there are r columns c1, . . . , cr

in Mf which span the column space of Mf . Let A be the 2n × r matrix that has
these ci as columns. Let B be the r×2n matrix whose ith column is formed by the
r coefficients of the ith column of Mf when written out as a linear combination
of c1, . . . , cr. Then Mf = AB, hence f(x, y) = Mf (x, y) =

∑r
i=1AxiBiy. Defining

functions ai, bi by ai(x) = Axi and bi(y) = Biy, we have m(f) ≤ rank(f). 2

Combined with Theorems 7.2.3 and 7.2.4 we obtain

7.3.2. Corollary (Buhrman & de Wolf [48]). Qcc∗E(f) ≥
log(m(f)− 1)

2
and Ccc∗E(f) ≥ log(m(f)− 1).

Accordingly, for lower bounds on quantum communication complexity it is
important to be able to determine the decomposition number m(f). Often this
is hard. It is much easier to determine the number of monomials mon(f) of the
representing polynomial for f . Clearly m(f) ≤ mon(f). Below we show that in
the special case where f(x, y) = g(x ∧ y), these two numbers are the same.5

Below, a monomial is called even if it contains xi iff it contains yi, for example
2x1x3y1y3 is even and x1x3y1 is not. A polynomial is even if each of its monomials
is even.

7.3.3. Lemma (Buhrman & de Wolf [48]). If p : {0, 1}n × {0, 1}n → R is
an even polynomial with k monomials, then m(p) = k.

Proof. Clearly m(p) ≤ k. To prove the converse, consider DISJn(x, y) =
Πn
i=1(1 − xiyi), the unique polynomial for the disjointness function. Note that

this polynomial contains all and only even monomials (with coefficients ±1).
Since DISJn has rank 2n, it follows from Lemma 7.3.1 that DISJn cannot be
decomposed in fewer then 2n terms. We will show how a decomposition of p with
m(p) < k would give rise to a decomposition of DISJn with fewer than 2n terms.
Suppose we can write

p(x, y) =

m(p)∑

i=1

ai(x)bi(y).

5After learning about this result, Mario Szegedy (personal communication) came up with
an alternative proof of this, using Fourier transforms.
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Let axSyS be some even monomial in p and suppose the monomial xSyS in DISJn
has coefficient c = ±1. Now whenever bxS occurs in some ai, replace that bxS by
(cb/a)xS. Using the fact that p contains only even monomials, it is not hard to
see that the new polynomial obtained in this way is the same as p, except that
the monomial axSxS is replaced by cxSxS.

Doing this sequentially for all monomials in p, we end up with a polynomial p′

(with k monomials and m(p′) ≤ m(p)) which is a subpolynomial of DISJn, in the
sense that each monomial in p′ also occurs with the same coefficient in DISJn.
Notice that by adding all 2n − k missing DISJn-monomials to p′, we obtain a
decomposition of DISJn with m(p′) + 2n − k terms. But any such decomposition
needs at least 2n terms, hence m(p′) + 2n − k ≥ 2n, which implies k ≤ m(p′) ≤
m(p). 2

If f(x, y) = g(x ∧ y) for some Boolean function g, then the polynomial that
represents f is just the polynomial of g with the ith variable replaced by xiyi.
Hence such a polynomial is even, and we obtain:

7.3.4. Corollary (Buhrman & de Wolf [48]). If g : {0, 1}n → {0, 1} and
f(x, y) = g(x ∧ y), then mon(g) = mon(f) = m(f) = rank(f).

This gives a tool for lower bounding (quantum and classical) communication
complexity whenever f is of the form f(x, y) = g(x ∧ y): log(mon(g) − 1) ≤
Ccc∗E(f) ≤ Dcc(f). Below we give some applications.

7.3.2 Symmetric functions

As a first application we show that Dcc(f) and Qcc∗E(f) are linearly related if
f(x, y) = g(x ∧ y) and g is symmetric (this follows from Corollary 7.3.8 be-
low). Furthermore, we show that the classical randomized public-coin complexity
Rpub
2 (f) can be at most a log n-factor less than Dcc(f) for such f (Theorem 7.3.10).

We will assume without loss of generality that g(~0) = 0, so the polynomial rep-
resenting g does not have the constant-1 monomial.

7.3.5. Lemma (Buhrman & de Wolf [48]). If g is a symmetric function such
that its lowest-weight 1-input has Hamming weight t > 0, and f(x, y) = g(x∧ y),
then Dcc1 round(f) = log

(∑n
i=t

(
n
i

)
+ 1
)
+ 1.

Proof. It is known (and easy to see) that Dcc1 round(f) = log r+1, where r is the
number of different rows ofMf (this equals the number of different columns in our
case, because f(x, y) = f(y, x)). We count r. Firstly, if |x| < t then |x∧y| < t, so
then the x-row of Mf contains only zeroes by definition of f . Secondly, if x 6= x′

and both |x| ≥ t and |x′| ≥ t then it is easy to see that there exists a y such
that |x ∧ y| = t and |x′ ∧ y| < t (or vice versa), hence f(x, y) 6= f(x′, y) so the
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x-row and x′-row are different. Accordingly, r equals the number of different x
with |x| ≥ t, +1 for the 0-row, which gives the lemma. 2

7.3.6. Lemma (Buhrman & de Wolf [48]). If g is a symmetric function such
that its lowest-weight 1-input has weight t > 0, then

(1− o(1)) log
(

n∑

i=t

(
n

i

))
≤ logmon(g) ≤ log

(
n∑

i=t

(
n

i

))
.

Proof. The upper bound follows immediately from the fact that g can only
contain monomials of degree ≥ t. For the lower bound we distinguish two cases.

Case 1: t ≤ n/2. It has been proven by von zur Gathen and Roche that
every symmetric g has degree deg(g) = n − O(n0.548) (Theorem 2.6.1). This
implies that g must contain a monomial of degree d for some d ∈ [n/2, n/2 + b]
with b ∈ O(n0.548), for otherwise we could set n/2− b variables to zero and obtain
a non-constant symmetric function on m = n/2+b variables with degree < n/2 ≤
m−O(m0.548). But because g is symmetric, it must then contain all

(
n
d

)
monomials

of degree d. Using Stirling’s approximation (n! = (1+ o(1))
√
2πn(n/e)n) we now

get (suppressing constant factors in the derivation):

mon(g) ≥
(
n

d

)

≥
(

n

n/2 + b

)

=
nn+1/2

(n/2− b)n/2−b+1/2(n/2 + b)n/2+b+1/2

=
nn+1/2

((n/2)2 − b2)n/2−b+1/2(n/2 + b)2b

≥ nn+1/2

(n2/4)n/2−b+1/2n2b

=
nn+1/2

(n/2)n−2b+1n2b

=
2n−2b+1√

n
.

Hence logmon(g) ≥ n−O(n0.548) = (1− o(1))n ≥ (1− o(1)) log
(∑n

i=t

(
n
i

))
.

Case 2: t > n/2. It is easy to see by symmetry that g contains all
(
n
t

)

monomials of degree t. Now

(n− t+ 1)mon(g) ≥ (n− t+ 1)

(
n

t

)
≥

n∑

i=t

(
n

i

)
.
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Hence logmon(g) ≥ log
(∑n

i=t

(
n
i

))
− log(n− t+1) = (1− o(1)) log

(∑n
i=t

(
n
i

))
. 2

The number mon(g) may be less then
∑n

i=t

(
n
i

)
. For example, consider the

function g(x1, x2, x3) = x1+x2+x3−x1x2−x1x3−x2x3 [133]. Here mon(g) = 6
but

∑3
i=1

(
3
i

)
= 7. Hence the 1 − o(1) of Lemma 7.3.6 cannot be improved to 1

in general (it can if g is a threshold function).
Combining the previous results:

7.3.7. Corollary (Buhrman & de Wolf [48]). If g is a symmetric func-
tion whose lowest-weight 1-input has weight t > 0 and f(x, y) = g(x ∧ y), then

(1− o(1)) log
(

n∑

i=t

(
n

i

))
≤ Ccc∗E(f) ≤

Dcc(f) ≤ Dcc1 round(f) = log

(
n∑

i=t

(
n

i

)
+ 1

)
+ 1.

Accordingly, for symmetric g the communication complexity (quantum and
classical, with or without prior entanglement, 1-round and multi-round) asymp-
totically equals log rank(f) up to small constant factors. In particular:

7.3.8. Corollary (Buhrman & de Wolf [48]). If g is a symmetric func-
tion and f(x, y) = g(x ∧ y), then (1− o(1))Dcc(f) ≤ Ccc∗E(f) ≤ Dcc(f).

We have shown that Ccc∗E(f) and Dcc(f) are asymptotically equal whenever
f(x, y) = g(x ∧ y) and g is symmetric. For such f , Dcc(f) is also nearly equal to
the classical bounded-error communication complexity Rccpub2 (f), where we allow
Alice and Bob to share public coin flips. In order to prove this, we introduce
the notion of 0-block sensitivity in analogy to the notion of block sensitivity of
Nisan (Section 2.5.1). For input x ∈ {0, 1}n, let bs0x(g) be the maximal number
of disjoint sets S1, . . . , Sb of indices of variables, such that for every i we have (1)
all Si-variables have value 0 in x and (2) g(x) 6= g(xSi), where xSi is the string
obtained from x by setting all Si-variables to 1. Let bs0(g) = maxx bs0x(g). We
now have:

7.3.9. Lemma (Buhrman & de Wolf [48]). If g is a symmetric function, then
mon(g) ≤ n2bs0(g).

Proof. Denote gk = g(x) for |x| = k, and let t be the smallest number such
that gt 6= gt+1. Then bs0(g) ≥ n− t, because complementing any one of the n− t
0-variables in a weight-t input x, will change the function value from gt to gt+1.
If t ≤ n/2 then bs0(g) ≥ n/2, so mon(g) ≤ 2n ≤ n2bs0(g). If t > n/2 then g has
no monomials of degree ≤ t, hence mon(g) ≤∑n

i=t+1

(
n
i

)
≤ n2bs0(g). 2

Now it follows that Rccpub2 (f) cannot be much less than Dcc(f):



126 Chapter 7. Lower Bounds for Quantum Communication Complexity

7.3.10. Theorem (Buhrman & de Wolf [48]). If g is a symmetric function
and f(x, y) = g(x ∧ y), then Dcc(f) ∈ O(Rccpub2 (f) log n).

Proof. By Corollaries 7.3.6 and 7.3.7 we have Dcc(f) ≤ (1 + o(1)) logmon(g).
Lemma 7.3.9 implies Dcc(f) ∈ O(bs0(g) log n). Finally we can fairly easily modify
Razborov’s lower bound proof for disjointness [139] (see also [109, Section 4.6])
to show Rccpub2 (f) ∈ Ω(bs0(f)) (we omit the technical details). This implies the
theorem. 2

This theorem is tight for the function defined by g(x) = 1 iff |x| ≥ n − 1.
We have mon(g) = n + 1, so log n ≤ Dcc(f) ≤ (1 + o(1)) log n. On the other
hand, an O(1) bounded-error public coin protocol can easily be derived from the
O(1)-protocol for equality (Section 6.3.1): Alice tests if |x| < n − 1, sends a 0 if
so and a 1 if not. In the first case Alice and Bob know that f(x, y) = 0. In the
second case, we have f(x, y) = 1 iff x = y or y = ~1, which can be tested with 2
applications of the equality-protocol. Hence Rccpub2 (f) ∈ O(1).

The above results show that deterministic complexity, classical bounded-error
complexity, and exact quantum complexity are all nearly equal if f(x, y) = g(x∧y)
and g is symmetric. What about the quantum bounded-error complexity? Recall
that Theorem 6.4.2 gave the near-quadratic gap Qcc2(DISJn) ∈ O(

√
n log n) and

Rcc2(DISJn) ∈ Ω(n) for the disjointness function DISJn(x, y) = NOR(x ∧ y).
Unfortunately, no good lower bounds on Qcc2(DISJn) are known (see below), so
we do not know whether this is the largest gap possible.

7.3.3 Monotone functions

A second application concerns monotone problems. Lovász and Saks [116] (see
also [115]) prove the log-rank conjecture for (among others) the following problem,
which they call the union problem for C. Here C is a monotone set system
(i.e., (A ∈ C ∧ A ⊆ B) ⇒ B ∈ C) over some size-n universe. Alice and Bob
receive sets x and y, respectively, from this universe, and their task is to determine
whether x ∪ y ∈ C. Identifying sets with their representation as n-bit strings,
this problem can equivalently be viewed as a function f(x, y) = g(x ∨ y), where
g is a monotone increasing Boolean function. Note that it doesn’t really matter
whether we take g increasing or decreasing, nor whether we use x∨ y or x∧ y, as
these problems can all be converted into each other via De Morgan’s laws.

7.3.11. Theorem (Lovász & Saks [116]). If g is a monotone function and
f(x, y) = g(x ∧ y), then Dcc(f) ∈ O((log rank(f))2).

7.3.12. Corollary (Buhrman & de Wolf [48]). If g is a monotone func-
tion and f(x, y) = g(x ∧ y), then Dcc(f) ∈ O(Qcc∗E(f)

2).
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This result can be tightened for the special case of d-level AND-OR-trees.
For example, let g be a 2-level AND-of-ORs on n variables with fan-out

√
n and

f(x, y) = g(x∧y). Then g has (2
√
n−1)

√
n monomials and hence Qcc∗E(f) ≥ n/2.

In contrast, the zero-error quantum complexity of f is Qcc0(f) ∈ O(n3/4 log n),
which follows from combining Lemma 6.4.1 with our zero-error algorithms from
Section 2.7.2.

7.4 Lower Bounds for Bounded-Error Protocols

In the previous sections we saw that the log rank(f) lower bound on exact quan-
tum communication complexity Qcc∗E(f) is a strong tool, which often gives good
lower bounds. The situation is much worse when it comes to lower bounds on
bounded-error quantum communication complexity. Kremer [108] showed that
the so-called “discrepancy” lower bound also holds for Qcc2(f). This gives a lower
bound Qcc2(IPn) ∈ Ω(n) for inner product but does not provide good bounds for
functions like disjointness. Cleve, van Dam, Nielsen, and Tapp [54] later indepen-
dently proved the lower bound for Qcc∗2(IPn). We will sketch their very elegant
proof here for the case of exact protocols; for bounded-error protocols it is similar
but more technical. The proof uses the IP-protocol to communicate Alice’s n-bit
input to Bob, and then invokes Holevo’s theorem to conclude that many qubits
must have been communicated in order to achieve this. Suppose Alice and Bob
have some protocol for IPn. They can use this to compute the following mapping:

|x〉|y〉 → |x〉(−1)x·y|y〉.

Now suppose Alice starts with an arbitrary n-bit state |x〉 and Bob starts with
the uniform superposition 1√

2n

∑
y∈{0,1}n |y〉. If they apply the above mapping,

the final state becomes

|x〉 1√
2n

∑

y∈{0,1}n
(−1)x·y|y〉.

If Bob now applies a Hadamard transform to each of his n qubits, then he obtains
the basis state |x〉, so Alice’s n classical bits have been communicated to Bob.
Theorem 6.2.1 now implies that the IPn-protocol must communicate Ω(n) qubits,
even if Alice and Bob share unlimited prior entanglement. The above proof works
for IPn, but unfortunately does not easily yield good bounds in general.

A generally applicable but usually weak lower bound is due to Kremer [108]:

7.4.1. Theorem (Kremer [108]). For every f (total or partial) we have

Dcc1 round(f) ≤ (4Qcc2(f) + 2)22Qcc2(f)−2.
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Proof. Let ` = Qcc2(f). By Lemma 7.2.1 we can write the final state of an
`-qubit bounded-error protocol for f as

∑

i∈{0,1}`
αi(x)βi(y)|Ai(x)〉|i`〉|Bi(y)〉.

Let φ(x, y) =
∑

i∈{0,1}`−1 αi1(x)βi1(y)|Ai1(x)〉|1〉|Bi1(y)〉 be the part of the final

state that corresponds to a 1-output of the protocol. For i, j ∈ {0, 1}`−1, define
functions aij, bij by

aij(x) = αi1(x)αj1(x)〈Ai1(x)|Aj1(x)〉

bij(y) = βi1(y)βj1(y)〈Bi1(y)|Bj1(y)〉
Note that |aij(x)| ≤ 1 and |bij(y)| ≤ 1 for all x and y, and that the acceptance
probability can now be written as

P (x, y) = 〈φ(x, y)|φ(x, y)〉 =
∑

i,j∈{0,1}`−1

aij(x)bij(y).

The classical 1-round protocol is as follows. Alice approximates the numbers
aij(x) by numbers ãij(x) of 4`+2 bits each (2`+1 bits for the real part of aij(x)
and 2` + 1 bits for its imaginary part). She sends these approximations to Bob,

which takes (4` + 2)22`−2 bits of communication. Bob then computes P̃ (x, y) =∑
i,j ãij(x)bij(y), and outputs 1 if this value is above 1/2, and 0 otherwise. Since

|f(x, y)− P (x, y)| ≤ 1/3 and

|P (x, y)− P̃ (x, y)| =

∣∣∣∣∣∣

∑

i,j∈{0,1}`−1

(aij(x)− ãij(x))bij(y)

∣∣∣∣∣∣

≤
∑

i,j∈{0,1}`−1

|aij(x)− ãij(x)|

<
∑

i,j∈{0,1}`−1

2−(2`+1)

= 22`−22−(2`+1) =
1

8
,

Bob is guaranteed to output the right value f(x, y). 2

7.4.2. Corollary (Kremer [108]). Qcc2(f) ≥
(
1
2
− o(1)

)
log
(
Dcc1 round(f)

)
.

This says that bounded-error quantum communication complexity without
prior entanglement is at most exponentially less than 1-round deterministic com-
munication complexity. There are few cases where this corollary is more or less
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tight. One example is the distributed Deutsch-Jozsa problem (Theorem 6.4.3),
where Qcc2(f) ∈ O(log n) and Dcc(f) ∈ Ω(n). Note that Corollary 7.4.2 does
not hold for the models with prior entanglement: Qcc∗2(EQn) ∈ O(1) while
Dcc(EQn) = n+ 1.

Now we generalize the lower bound approach of the previous sections to
bounded-error quantum protocols. We say that a matrix M approximates the
communication matrix Mf if |M(x, y) − f(x, y)| ≤ 1/3 for all x, y (equivalently,

‖M −Mf ‖∞≤ 1/3). The approximate rank r̃ank(f) of f is the minimum rank
among all matrices M that approximate Mf . Let the approximate decomposition
number m̃(f) be the minimum m such that there exist functions a1(x), . . . , am(x)
and b1(y), . . . , bm(y) for which |f(x, y) −∑m

i=1 ai(x)bi(y)| ≤ 1/3 for all x, y. By
the same proof as for Lemma 7.3.1 we obtain:

7.4.3. Lemma (Buhrman & de Wolf [48]). r̃ank(f) = m̃(f).

By a proof similar to Theorem 7.2.2 we can show

7.4.4. Theorem (Buhrman & de Wolf [48]). Qcc2(f) ≥
log m̃(f)

2
.

Proof. As in Theorem 7.4.1, we can write the acceptance probability of an
`-qubit protocol for f as

P (x, y) = 〈φ(x, y)|φ(x, y)〉 =
∑

i,j∈{0,1}`−1

aij(x)bij(y).

We have now decomposed P (x, y) into 22`−2 functions. However, we must have
|P (x, y) − f(x, y)| ≤ 1/3 for all x, y, hence 22`−2 ≥ m̃(f). It follows that ` ≥
(log m̃(f))/2 + 1. 2

Unfortunately, it is much harder to prove bounds on m̃(f) than on m(f).6 In
the exact case we have m(f) = mon(g) whenever f(x, y) = g(x∧ y), and mon(g)
is often easy to determine. If something similar is true in the approximate case,
then we obtain strong lower bounds on Qcc2(f), because our next theorem gives
a bound on m̃on(g) in terms of the 0-block sensitivity defined in the previous
section.

The theorem uses the notion of a hypergraph. Let [n] = {1, . . . , n} and 2[n]

be the power set of [n] (i.e., the set of all subsets of [n]). A hypergraph is a set
system H ⊆ 2[n]. The sets E ∈ H are called the edges of H; the size of H is its
number of edges. We call H an s-hypergraph if all E ∈ H satisfy |E| ≥ s. A set
S ⊆ {1, . . . , n} is a blocking set for H if it “hits” every edge: S ∩ E 6= ∅ for all
E ∈ H.

6It is interesting to note that IPn (the negation of IPn) has less than maximal approximate
decomposition number. For example for n = 2, m(f) = 4 but m̃(f) = 3.
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7.4.5. Lemma (Buhrman & de Wolf [48]). Let g : {0, 1}n → {0, 1} be a
Boolean function for which g(~0) = 0 and g(ei) = 1, p be a multilinear polynomial
which approximates g (i.e., |g(x) − p(x)| ≤ 1/3 for all x ∈ {0, 1}n), and H be
the

√
n/12-hypergraph formed by the set of all monomials of p that have degree

≥
√
n/12. Then H has no blocking set of n/2 elements.

Proof. Assume, by way of contradiction, that there exists a blocking set S
of H with |S| ≤ n/2. Obtain restrictions h and q of g and p, respectively, on
n − |S| ≥ n/2 variables by fixing all S-variables to 0. Then q approximates h
and all monomials of q have degree <

√
n/12 (all p-monomials of higher degree

have been set to 0 because S is a blocking set for H). Since q approximates
h we have q(~0) ∈ [−1/3, 1/3], q(ei) ∈ [2/3, 4/3], and q(x) ∈ [−1/3, 4/3] for all
other x ∈ {0, 1}n. By the symmetrization techniques from Section 2.2.2, we
can turn q into a single-variate polynomial r of degree <

√
n/12, such that

r(0) ∈ [−1/3, 1/3], r(1) ∈ [2/3, 4/3], and r(i) ∈ [−1/3, 4/3] for i ∈ {2, . . . , n/2}.
Since r(0) ≤ 1/3 and r(1) ≥ 2/3, we must have p′(x) ≥ 1/3 for some real x ∈ [0, 1].
But then deg(r) ≥

√
(1/3)(n/2)/(1/3 + 4/3 + 1/3) =

√
n/12 by Theorem 2.5.5,

contradiction. Hence there is no blocking set S with |S| ≤ n/2. 2

The next lemma shows that H is large if it has no blocking set of size ≤ n/2:

7.4.6. Lemma (Buhrman & de Wolf [48]). If H ⊆ 2[n] is an s-hypergraph
of size m < 2s, then H has a blocking set of n/2 elements.

Proof. We use the probabilistic method to show the existence of a blocking set
S. Randomly choose a set S of n/2 elements. The probability that S does not
hit some specific E ∈ H is

(
n−|E|
n/2

)
(
n
n/2

) =
n
2
(n
2
− 1) . . . (n

2
− |E|+ 1)

n(n− 1) . . . (n− |E|+ 1)
≤ 2−|E|.

Then the probability that there is some edge E ∈ H which is not hit by S is

Pr[
∨

E∈H
S does not hit E] ≤

∑

E∈H
Pr[S does not hit E] ≤

∑

E∈H
2−|E| ≤ m · 2−s < 1.

Thus with positive probability, S hits all E ∈ H, which proves the existence of a
blocking set. 2

The above lemmas allow us to prove:

7.4.7. Theorem (Buhrman & de Wolf [48]). If g is a Boolean function, then

m̃on(g) ≥ 2
√
bs0(g)/12.
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Proof. Let p be a polynomial which approximates g with m̃on(g) monomials.
Let b = bs0(g), and z and S1, . . . , Sb be the input and sets which achieve the
0-block sensitivity of g. We assume without loss of generality that g(z) = 0.

We derive a b-variable Boolean function h(y1, . . . , yb) from g(x1, . . . , xn) as
follows: if j ∈ Si then we replace xj in g by yi, and if j 6∈ Si for any i, then we
fix xj in g to the value zj. Note that h satisfies

1. h(~0) = g(z) = 0

2. h(ei) = g(zSi) = 1 for all unit ei ∈ {0, 1}b

3. m̃on(h) ≤ m̃on(g), because we can easily derive an approximating polyno-
mial for h from p, without increasing the number of monomials in p.

It now follows from combining the previous lemmas that any approximating poly-

nomial for h requires at least 2
√
b/12 monomials. 2

In particular, for DISJn(x, y) = NORn(x∧y) it is easy to see that bs0(NORn) = n,
so log m̃on(NORn) ≥

√
n/12 (the upper bound log m̃on(NORn) ∈ O(

√
n log n)

follows from the construction of a degree-
√
n polynomial for ORn in [133]). Conse-

quently, a proof that the approximate decomposition number m̃(f) roughly equals
m̃on(g) would give Qcc2(DISJn) ∈ Ω(

√
n), nearly matching the O(

√
n log n) up-

per bound of Section 6.4.2. Since m(f) = mon(g) holds in the exact case, a result
like m̃(f) ≈ m̃on(g) might be doable, but we have not been able to prove this
(yet).

We end this section by proving some weaker lower bounds for disjointness.
Firstly, disjointness has a bounded-error protocol with O(

√
n log n) qubits and

O(
√
n) rounds (Section 6.4.2), but if we restrict to 1-round protocols then a

linear lower bound follows from a result of Nayak [125].

7.4.8. Proposition (Buhrman & de Wolf [48]). Qcc1 round2 (DISJn) ∈ Ω(n).

Proof. Suppose there exists a 1-round qubit protocol with m qubits: Alice
sends a message M(x) of m qubits to Bob, and Bob then has sufficient infor-
mation to establish whether Alice’s x and Bob’s y are disjoint. Note that M(x)
is independent of y. If Bob’s input is y = ei (the string with a 1 only on posi-
tion i), then DISJn(x, y) is the negation of Alice’s ith bit. But then the message
is an (n,m, 2/3) quantum random access code: by choosing input y = ei and
continuing the protocol, Bob can extract from M(x) the ith bit of Alice (with
probability ≥ 2/3), for any 1 ≤ i ≤ n of his choice. For this the lower bound
m ≥ (1 − H(2/3))n > 0.08 n is known [125], where H(·) is the binary entropy
function. 2



132 Chapter 7. Lower Bounds for Quantum Communication Complexity

Independently from our work, Klauck et al. [104] recently proved the stronger
result that k-round protocols for disjointness require Ω(n1/k/k3) qubits of com-
munication, even in the presence of prior entanglement.

For unlimited-rounds bounded-error quantum protocols for disjointness we can
only prove a logarithmic lower bound, using the information-theoretic technique
from [54] (the bound Qcc2(DISJn) ∈ Ω(log n) was already shown in [12] and also
follows from Corollary 7.4.2).

7.4.9. Proposition (Buhrman & de Wolf [48]). Qcc∗2(DISJn) ∈ Ω(log n).

Proof. We sketch the proof for a protocol mapping |x〉|y〉 → (−1)DISJn(x,y)|x〉|y〉.
Alice chooses some i ∈ {1, . . . , n} and starts with |ei〉, the classical state which
has a 1 only at the ith bit, and Bob starts with 1√

2n

∑
y∈{0,1}n |y〉. After running

the protocol, Bob has state

|φi〉 =
∑

y

(−1)DISJn(ei,y)√
2n

|y〉 =
∑

y

(−1)1−yi√
2n
|y〉.

Note that

〈φi|φj〉 =
1

2n

∑

y

(−1)yi+yj =
{

1 if i = j
0 if i 6= j

Hence the |φi〉 form an orthogonal set, and Bob can determine exactly which |φi〉
he has and thus learn i. Alice now has transmitted log n bits to Bob and Holevo’s
theorem (Theorem 6.2.1) implies that at least (log n)/2 qubits must have been
communicated to achieve this. A similar but more technical analysis works for
the bounded-error case (as in [54]). 2

Finally, for the case where we want to compute disjointness with very small
error probability ε, we can prove an Ω(log(n/ε)) bound. Here we use the subscript
“ε” to indicate qubit protocols without prior entanglement whose error probability
is < ε. We first give a bound for equality:

7.4.10. Proposition (Buhrman & de Wolf [48]). If ε ≥ 2−n, then we have
Qccε(EQn) ∈ Ω(log(n/ε)).

Proof. For simplicity we assume 1/ε is an integer. Suppose that matrix M
approximates MEQn = I entry-wise up to ε. Consider the 1/ε × 1/ε matrix
M ′ that is the upper left block of M . This M ′ is strictly diagonally dominant:
|M ′

ii| > 1 − ε = (1
ε
− 1)ε >

∑
j 6=i |M ′

ij|. A strictly diagonally dominant matrix
has full rank [92, Theorem 6.1.10.a], hence M itself has rank at least 1/ε. Using
Lemma 7.4.3 and Theorem 7.4.4, we now have Qε(EQn) ∈ Ω(log(1/ε)).

Since Qccε(EQn) ∈ Ω(log n) for all ε ≤ 1/3 (from Corollary 7.4.2), we have
Qccε(EQn) ∈ Ω(max(log(1/ε), log n)) = Ω(log(n/ε)). 2
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We now reduce equality to disjointness. Let x, y ∈ {0, 1}n/2. Define x′ ∈
{0, 1}n by replacing xi by xixi in x, and y

′ ∈ {0, 1}n by replacing yi by yiyi in y.
It is easy to see that EQn/2(x, y) = DISJn(x

′, y′) so from the previous proposition
we obtain:

7.4.11. Corollary (Buhrman & de Wolf [48]). If ε ≥ 2−n/2, then we have
Qccε(DISJn) ∈ Ω(log(n/ε)).

In particular, both equality and disjointness require Ω(n) qubits of communi-
cation if we want the error probability to be exponentially small.

7.5 Non-Deterministic Complexity

Above we showed a lower bound on Qcc∗E(f) in terms of log rank(f), but were not
able to prove the desired general upper bound on Qcc∗E(f) in terms of log rank(f).
In this section we will prove that such a result holds for the non-deterministic
case: the non-deterministic quantum communication complexity NQcc(f) equals
log nrank(f) up to a factor of 2, where nrank(f) is the non-deterministic analogue
of rank(f), to be defined below.

7.5.1 Some definitions

Consider some communication complexity problem f : {0, 1}n×{0, 1}n → {0, 1}.
A non-deterministic protocol for f is a protocol whose acceptance probability (=
the probability of outputting 1) on an input (x, y) is positive iff f(x, y) = 1. For
a discussion of this choice of definition and a comparison with other potential
definitions, we refer to Section 5.6. We use Ncc(f) and NQcc(f) for the cost of
optimal classical and quantum non-deterministic protocols for f , respectively.

It is well known that the classical non-deterministic complexity Ncc(f) is
closely related to the minimal size of a 1-cover for f , defined as follows. A
rectangle is a subset R = S × T ⊆ X × Y . Such an R is a 1-rectangle (for
f) if f(x, y) = 1 for all (x, y) ∈ R. A 1-cover for f is a set of 1-rectangles
whose union contains all (x, y) ∈ {0, 1}n × {0, 1}n for which f(x, y) = 1. We
use Cov1(f) to denote the minimal size (i.e., minimal number of rectangles) of
a 1-cover for f . Similarly we define 0-rectangles, 0-covers, and Cov0(f). Now it
is easy to prove that Ncc(f) = dlogCov1(f)e (see e.g. [109, Section 2.1]), so the
classical non-deterministic communication complexity is completely determined
by the combinatorial notion of 1-covers.

Below we show that the quantum non-deterministic communication complex-
ity is almost completely determined by the algebraic notion of non-deterministic
rank, defined as follows. Recall that the communication matrix Mf of f is the
2n × 2n Boolean matrix whose x, y entry is f(x, y) and that rank(f) denotes the
rank of Mf over the reals. A real 2n × 2n matrix M is called a non-deterministic
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communication matrix for f if it has the property thatM(x, y) 6= 0 iff f(x, y) = 1.
Thus M is any matrix obtainable by replacing 1-entries in Mf by non-zero reals.
Let the non-deterministic rank of f , denoted nrank(f), be the minimum rank
over all non-deterministic matrices M for f . Without loss of generality we can
assume all M -entries are in [−1, 1], because we can divide by maxx,y |M [x, y]|
without changing the rank of M .

7.5.2 Equality to non-deterministic rank

Here we characterize the non-deterministic quantum communication complexity
NQcc(f) in terms of the non-deterministic rank nrank(f):

7.5.1. Theorem (de Wolf [160]).
log nrank(f)

2
≤ NQcc(f) ≤ dlog nrank(f)e.

Proof. Consider an NQcc(f)-qubit non-deterministic quantum protocol for f .
Using Lemma 7.2.1 in the same way as in Theorems 7.2.2 and 7.4.4, its acceptance
probabilities P (x, y) form a matrix of rank ≤ 22NQcc(f). It is easy to see that this
is a non-deterministic matrix for f , hence nrank(f) ≤ 22NQcc(f) and the first
inequality follows.

For the upper bound, let r = nrank(f) and M be a rank-r non-deterministic
matrix for f . Let MT = UΣV be the singular value decomposition of MT (see
Appendix A.3), so U and V are unitary, and Σ is a diagonal matrix whose first r
diagonal entries are positive real numbers and whose other diagonal entries are 0.
Below we describe a 1-round non-deterministic protocol for f , using dlog re qubits.
First Alice prepares the vector |φx〉 = cxΣV |x〉, where cx > 0 is a normalizing
real number that depends on x. Because only the first r diagonal entries of
Σ are non-zero, only the first r amplitudes of |φx〉 are non-zero, so |φx〉 can be
compressed into dlog re qubits. Alice sends these qubits to Bob. Bob then applies
U to |φx〉 and measures the resulting state. If he observes |y〉 then he outputs 1
and otherwise he outputs 0. The acceptance probability of this protocol is

P (x, y) = |〈y|U |φx〉|2
= c2x|〈y|UΣV |x〉|2
= c2x|MT (y, x)|2
= c2x|M(x, y)|2.

Since M(x, y) is non-zero iff f(x, y) = 1, P (x, y) will be positive iff f(x, y) = 1.
Thus we have a non-deterministic protocol for f with dlog re qubits. 2

In sum: classically we have Ncc(f) = dlogCov1(f)e and quantumly we have
NQcc(f) ≈ log nrank(f).
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7.5.3 Exponential quantum-classical separation

We now give an f with an exponential gap between the classical complexity
Ncc(f) and the quantum complexity NQcc(f). For n > 1, define f by

f(x, y) = 1 iff |x ∧ y| 6= 1.

We first show that the quantum complexity NQcc(f) is low:

7.5.2. Theorem (de Wolf [160]). NQcc(f) ≤ dlog(n+ 1)e for the above f .

Proof. By Theorem 7.5.1, it suffices to prove nrank(f) ≤ n+1. Let Mi be the
Boolean matrix whose (x, y)-entry is 1 if xi = yi = 1, and whose (x, y)-entry is 0
otherwise. Notice that Mi has rank 1. Now define a 2n × 2n matrix M by

M(x, y) =

∑
iMi(x, y)− 1

n− 1
.

Note that M(x, y) is non-zero iff the Hamming weight of x ∧ y is different from
1, hence M is a non-deterministic matrix for f . Because M is the sum of n + 1
rank-1 matrices, it has rank at most n+ 1. 2

Now we show that the classical Ncc(f) is high (both for f and its complement):

7.5.3. Theorem (de Wolf [160]). Ncc(f) ∈ Ω(n) and Ncc(f) ≥ n−1 for the
above f .

Proof. Let R1, . . . , Rk be a minimal 1-cover for f . We use the following
result from [109, Example 3.22 and Section 4.6], which is essentially due to
Razborov [139].

There exist sets A,B ⊆ {0, 1}n×{0, 1}n and a probability distribution
µ : {0, 1}n × {0, 1}n → [0, 1] such that all (x, y) ∈ A have |x ∧ y| = 0,
all (x, y) ∈ B have |x ∧ y| = 1, µ(A) = 3/4, and there are constants
α, δ > 0 (independent of n) such that for all rectangles R, µ(R∩B) ≥
α · µ(R ∩ A)− 2−δn.

Since the Ri are 1-rectangles, they cannot contain elements from B. Hence µ(Ri∩
B) = 0 and µ(Ri ∩ A) ≤ 2−δn/α. But since all elements of A are covered by the
Ri we have

3

4
= µ(A) = µ

(
k⋃

i=1

(Ri ∩ A)
)
≤

k∑

i=1

µ(Ri ∩ A) ≤ k · 2
−δn

α
.

Therefore Ncc(f) = dlog ke ≥ δn+ log(3α/4).
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For the lower bound on Ncc(f), consider the set S = {(x, y) | x1 = y1 =
1, xi = yi for i > 1}. This S contains 2n−1 elements, all of which are 1-inputs
for f . Note that if (x, y) and (x′, y′) are two elements from S then |x ∧ y′| > 1
or |x′ ∧ y| > 1, so a 1-rectangle for f can contain at most one element of S.
This shows that a minimal 1-cover for f requires at least 2n−1 rectangles and
Ncc(f) ≥ n− 1. 2

Another quantum-classical separation was obtained earlier by Massar et al. [120]:

7.5.4. Theorem (MBCC [120]). For the non-equality problem on n bits, we
have NQcc(NEn) = 1 versus Ncc(NEn) = log n.

Proof. Ncc(NEn) = log n is well known (see [109, Example 2.5]). Below we
give the [120]-protocol for NEn.

Viewing her input x as a number ∈ [0, 2n − 1], Alice rotates a |0〉-qubit over
an angle xπ/2n, obtaining a qubit cos(xπ/2n)|0〉+ sin(xπ/2n)|1〉 which she sends
to Bob. Bob rotates the qubit back over an angle yπ/2n, obtaining cos((x −
y)π/2n)|0〉 + sin((x − y)π/2n)|1〉. Bob now measures the qubit and outputs the
observed bit. If x = y then sin((x − y)π/2n) = 0, so Bob always outputs 0. If
x 6= y then sin((x− y)π/2n) 6= 0, so Bob will output 1 with probability > 0. 2

Note that nrank(EQn) = 2n, since every non-deterministic matrix for equal-
ity will be a diagonal 2n × 2n matrix with non-zero diagonal entries. Thus
NQcc(EQn) ≥ (log nrank(EQn))/2 = n/2, which contrasts sharply with the non-
deterministic quantum complexity NQcc(NEn) = 1 of its complement.

7.6 Open Problems

To end this chapter, we identify three important open questions in quantum
communication complexity. First, are Qcc∗E(f) and Dcc(f) polynomially re-
lated for all total f? For the case of query complexity we proved in Chapter 2
that D(f) ∈ O(Q2(f)

6) for all total f , so deterministic classical query com-
plexity and bounded-error quantum query complexity are polynomially related.
Such a strong result cannot hold for communication complexity, because here
we have exponential gaps even in the classical world: Dcc(EQn) = n + 1 versus
Rcc2(EQn) ∈ O(log n). However, we conjecture that a polynomial relation holds
for the case of exact protocols: Dcc(f) ∈ O(Qcc∗E(f)

k) for some k. This conjec-
ture is implied by the classical log-rank conjecture (see Corollary 7.2.8), but that
has been a long-standing open problem in its own right, and is quite possibly a
stronger statement.

Secondly, how do we prove good lower bounds on bounded-error quantum
protocols? Theorems 7.4.4 and 7.4.7 of the previous section show that Qcc2(f)
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is lower bounded by the approximate rank, but this approximate rank is often
hard to determine. One way to go would be to show that m̃(f) ≈ m̃on(g)
whenever f(x, y) = g(x ∧ y). As explained in the previous section, this would
imply Qcc2(f) ∈ Ω(

√
bs0(g)) and in particular Qcc2(DISJn) ∈ Ω(

√
n). Recently,

Klauck [103] developed some new lower bound methods for Qcc2(f), but unfor-
tunately these do not give good bounds for disjointness either.

Finally, does prior entanglement add much power to qubit communication, or
are QccE(f) and Qcc∗E(f) equal up to small additive or multiplicative factors?
Similarly, are Qcc2(f) and Qcc∗2(f) roughly equal? The largest gap that we know
is Qcc2(EQn) ∈ Θ(log n) versus Qcc∗2(EQn) ∈ O(1).

7.7 Summary

In this chapter we considered lower bounds on quantum communication com-
plexity. We proved log-rank lower bounds for entanglement-enhanced quantum
protocols that communicate qubits and classical bits, respectively:

Qcc∗E(f) ≥
log(rank(f)− 1)

2
and Ccc∗E(f) ≥ log(rank(f)− 1).

Relating rank(f) to the number of monomials of certain polynomials, we were
able to prove strong lower bounds on exact quantum communication protocols
for specific classes of functions. Much less is known about lower bounds on
quantum communication protocols which are allowed to have some small error
probability. We proved an approximate-rank lower bound for this case, but were
unable to prove strong bounds on the approximate rank of interesting functions
like disjointness. Finally, we proved that the rank essentially determines the
quantum communication complexity in the case of non-deterministic protocols:
NQcc(f) equals log nrank(f) up to a factor of 2. We also exhibited a function
where the quantum non-deterministic complexity is exponentially smaller than
the classical non-deterministic complexity.





Chapter 8

Quantum Fingerprinting

This chapter is based on the paper

• H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum Finger-
printing. Submitted to Physical Review Letters. quant-ph/0102001. (Not
all results below were included in this paper, but I have cited those as
“BCWW” nonetheless.)

8.1 Introduction

In classical computing, fingerprinting can be a useful mechanism for determining
if two strings are the same: each string is associated with a much shorter fin-
gerprint and comparisons between strings are made in terms of their fingerprints
alone. This can lead to savings in the communication and storage of information.

The notion of fingerprinting arises naturally in the setting of communication
complexity. The particular model of communication complexity that we consider
is called the simultaneous message passing model (also known as oblivious com-
munication complexity). It is a variant of 1-round communication complexity,
first introduced by Yao [163] in his original paper on communication complexity.
In this model, the two parties—Alice and Bob—receive inputs x and y, respec-
tively, and are not permitted to communicate with one another directly. Rather
they each send a message to a third party, called the referee, who determines the
output of the protocol based solely on the messages sent by Alice and Bob. We
illustrate this in Figure 8.1. The collective goal of the three parties is to cause the
protocol to output the correct value of some function f(x, y) while minimizing
the amount of communication that Alice and Bob send to the referee.

For the equality problem on n bits, the function to be determined is

EQn(x, y) =

{
1 if x = y,
0 if x 6= y.

139
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Alice: x Bob: y

Mx My

Referee

H
H
H
Hj

©
©

©
©¼

?

f(x, y)

Figure 8.1: The model of simultaneous message passing

This problem can of course be trivially solved if Alice sends x and Bob sends y
to the referee, who can then simply compute EQn(x, y). However, the cost of
this protocol is high: if x and y are n-bit strings, then a total of 2n bits are
communicated. If Alice and Bob instead send fingerprints of x and y, which
may each be considerably shorter than x and y themselves, then the cost can be
reduced significantly. The question we are interested in is how much the size of
the fingerprints can be reduced.

If Alice and Bob share a random O(log n)-bit key then the fingerprints need
only be of constant length if we allow a small probability of error. This works
as follows. A binary error-correcting code is used, which can be represented as a
function E : {0, 1}n → {0, 1}m, where E(x) is the codeword associated with x ∈
{0, 1}n. There exist error-correcting codes (Justesen codes, for instance) withm =
cn such that the Hamming distance between any two distinct codewords E(x) and
E(y) is at least (1− δ)m, where c and δ are constants. For the particular case of
Justesen codes, we may choose any c > 2 and we will have δ < 9/10 + 1/(15c)
(assuming n is sufficiently large). For further information on Justesen codes, see
Justesen [94] and MacWilliams and Sloane [119, Chapter 10]. Now, for x ∈ {0, 1}n
and i ∈ {1, 2, . . . ,m}, let Ei(x) denote the ith bit of E(x). The shared key is a
random i ∈ {1, 2, . . . ,m} (which consists of logm = log n+O(1) bits). Alice and
Bob respectively send the bits Ei(x) and Ei(y) to the referee, who then outputs
1 if and only if Ei(x) = Ei(y). If x = y then Ei(x) = Ei(y), so then the outcome
is correct. If x 6= y then the probability that Ei(x) = Ei(y) is at most δ, so the
outcome is correct with probability 1 − δ. The error probability can be reduced
from δ to any ε > 0 by having Alice and Bob send O(log(1/ε)) independent
random bits of the codewords E(x) and E(y) to the referee (where the O(·)
notation hides the dependence on δ). In this case, the length of each fingerprint
is O(log(1/ε)) bits and the length of the required random key is O(log(1/ε) log n)
bits.

One disadvantage of the above scheme is that it requires overhead in creating
and maintaining a shared key. Moreover, once the key is distributed, it must be
stored securely until the inputs are obtained. This is because an adversary who
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knows the value of the key can easily choose inputs x and y such that x 6= y but
for which the output of the protocol always indicates that x = y.

Yao [163, Section 4.D] posed as an open problem what happens in this model
if Alice and Bob do not have a shared key. Note that in this setting Alice and
Bob still have access to random bits, but their random bits are not correlated.
Ambainis [7] proved that fingerprints of O(

√
n) bits suffice if we allow a small

error probability, and subsequently, Newman and Szegedy [127] proved a matching
lower bound of Ω(

√
n) bits.

We shall consider the problem where there is no shared key (or entanglement)
between Alice and Bob, but the fingerprints can consist of quantum information.
In Section 8.2, we show that O(log n)-qubit fingerprints are sufficient to solve the
equality problem in this setting—an exponential improvement over the

√
n-bound

for the comparable classical case. This result seems to be the first exponential
quantum-classical separation for a total function in any variant of communication
complexity. Our method is to set the 2n fingerprints to quantum states whose
pairwise inner-products are bounded below 1 in absolute value and to use a test
that identifies identical fingerprints and distinguishes distinct fingerprints with
good probability. This gives a simultaneous message passing protocol for equality
in the obvious way: Alice and Bob send the fingerprints of their respective inputs
to the referee, who then executes the test to check if the fingerprints are equal
or distinct. In Section 8.2, we also show that the fingerprints must consist of at
least Ω(log n) qubits if the error is bounded below 1.

In Sections 8.3 and 8.4, we consider possible improvements to the efficiency of
the fingerprinting methods of Section 8.2. In Section 8.5 we analyze the conditions
under which quantum fingerprints can be made exactly orthogonal. In Section 8.6
we consider exact classical fingerprints in the presence of a shared quantum key
of EPR-pairs. Finally, in Section 8.7 we show that the quantum fingerprints
can be used in a specific context to represent sparse sets much more efficiently
than is possible classically. A word of warning: Sections 8.5–8.7 describe some
preliminary results rather than a complete picture, and will require more study
in the future.

8.2 Simultaneous Message Passing

The simultaneous message passing model of communication complexity is as fol-
lows: Alice, Bob, and a referee want to compute some f : D → {0, 1}. We will
here only consider total functions where D = {0, 1}n × {0, 1}n. Alice receives
input x, Bob receives y, they each pass a message to the referee, who should
then announce f(x, y). A protocol that satisfies this is called a simultaneous
message protocol for f . Its cost is the sum of the lengths of the two messages
that are passed to the referee. We use Dcc‖(f) for the minimal cost of classi-

cal deterministic simultaneous message protocols for f , and Rcc
‖
2(f) for classical
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bounded-error simultaneous message protocols. For the latter we assume Alice
and Bob have private coin flips but no public coin flips. Similarly we define
Qcc

‖
E(f) and Qcc

‖
2(f) for exact and bounded-error quantum simultaneous mes-

sage protocols, respectively. Note that the simultaneous message passing model is
weaker than the 1-round version of communication complexity, since in the latter
model Bob can play the role of Bob and the referee at the same time. Thus we
have Dcc1 round(f) ≤ Dcc‖(f), Rcc1 round2 (f) ≤ Rcc

‖
2(f), and similarly for the two

quantum complexities.
Recall that the communication matrix Mf is the 2n × 2n matrix that has

f(x, y) as its (x, y)-entry. Let nrow(f) be the number of distinct rows of Mf and
ncol(f) the number of distinct columns. For the exact case it is easy to see that
Dcc‖(f) = log nrow(f) + log ncol(f). The same holds for the quantum case:

8.2.1. Theorem (BCWW). Qcc
‖
E(f) = dlog nrow(f)e+ dlog ncol(f)e.

Proof. For the upper bound, Alice numbers the distinct rows, with two rows
receiving the same number iff they are equal, and Bob numbers the distinct
columns. On input (x, y) Alice sends the number of the x-row to the referee (at
a cost of dlog nrow(f)e classical bits) and Bob sends the number of the y-column
(dlog ncol(f)e bits). The referee now can determine f(x, y).

For the lower bound, fix a protocol and let |vx〉 and |wy〉 be the quantum
messages sent by Alice and Bob on input (x, y), respectively. Suppose x and x′

correspond to distinct rows, then there is a y such that f(x, y) 6= f(x′, y). On
input (x, y) the referee receives messages |vx〉, |wy〉 and on input (x′, y) he receives
|vx′〉, |wy〉. Since the referee must be able to distinguish between these two cases
with certainty, |vx〉 and |vx′〉 must be orthogonal (see e.g. [130, p.87]). Thus
there is a set of nrow(f) vectors |vx〉 (corresponding to distinct rows) that are all
pairwise orthogonal. These vectors must then have dimension at least nrow(f),
and thus have at least dlog nrow(f)e qubits. Similarly some |wy〉 must be at least
dlog ncol(f)e qubits. 2

In particular this shows that for the equality function where x and y are n-bit
strings, we have Dcc‖(EQn) = Qcc

‖
E(EQn) = 2n.

For the bounded-error case, Babai and Kimmel have shown that the gap be-
tween Dcc‖(f) and Rcc

‖
2(f) is at most quadratic. This was shown independently

at around the same time by Bourgain and Wigderson (unpublished, but sketched
in [15]).

8.2.2. Theorem (Babai & Kimmel [15]; Bourgain & Wigderson [15]).

Rcc
‖
2(f) ∈ Ω

(√
Dcc‖(f)

)
.

The following corollary was independently and somewhat earlier obtained by
Newman and Szegedy:
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8.2.3. Corollary (Newman & Szegedy [127]). Rcc
‖
2(EQn) ∈ Ω(

√
n).

Together with Ambainis’ [7] matching upper bound (see also [15]), it follows

that Rcc
‖
2(EQn) ∈ Θ(

√
n).

We now show that the analogue of Theorem 8.2.2 does not hold in the quan-
tum world, and in fact Qcc

‖
2(f) can be exponentially smaller than both Qcc

‖
E(f)

and Rcc
‖
2(f) for f = EQn. Our method uses quantum fingerprints based on clas-

sical error-correcting codes, though in a different manner than discussed in the
introduction, since no shared key is available.

Assume that for fixed c > 1 and δ < 1 we have an error correcting code
E : {0, 1}n → {0, 1}m for each n, where m = cn and such that the distance
between distinct codewords E(x) and E(y) is at least (1 − δ)m. As mentioned
in the introduction, a reasonable first choice of such codes are Justesen codes,
which give δ < 9/10+1/(15c) for any chosen c > 2. Now, for any choice of n and
x ∈ {0, 1}n, we define the (logm+ 1)-qubit state |hx〉 as

|hx〉 =
1√
m

m∑

i=1

|i〉|Ei(x)〉.

Since two distinct codewords can be equal in at most δm positions, for any x 6= y
we have 〈hx|hy〉 ≤ δm/m = δ. Thus we have 2n different (log n + O(1))-qubit
states, and each pair of them has inner product at most δ.

The simultaneous message passing protocol for the equality problem works as
follows. When given n-bit inputs x and y, respectively, Alice and Bob send finger-
prints |hx〉 and |hy〉 to the referee. Then the referee must distinguish between the
case where the two states received—call them |φ〉 and |ψ〉—are identical or have
inner product at most δ. This is accomplished with one-sided error probability
by the procedure that measures and outputs the first qubit of the state

(H ⊗ I)(c-SWAP)(H ⊗ I)|0〉|φ〉|ψ〉.

Here H is the Hadamard transform, which maps |b〉 → 1√
2
(|0〉+(−1)b|1〉), SWAP

is the operation |φ〉|ψ〉 → |ψ〉|φ〉 and c-SWAP is the controlled-SWAP (controlled
by the first qubit). The circuit for this procedure is illustrated in Figure 8.2.

By tracing through the execution of this circuit, one can determine that the
final state before the measurement is

1
2
|0〉(|φ〉|ψ〉+ |ψ〉|φ〉) + 1

2
|1〉(|φ〉|ψ〉 − |ψ〉|φ〉).

Measuring the first qubit of this state produces outcome 1 with probability 1
2
−

1
2
|〈φ|ψ〉|2. This probability is 0 if x = y and is at least 1

2
(1−δ2) > 0 if x 6= y. Thus,

the test determines which case holds with one-sided error probability at most
1
2
(1+δ2). The error probability of the test can be reduced to any ε > 0 by setting

the fingerprint of x ∈ {0, 1}n to |hx〉⊗k for a suitable k ∈ O(log(1/ε)). From
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|0〉

|φ〉

|ψ〉

measureH Ht

SWAP

Figure 8.2: Circuit to test whether |φ〉 = |ψ〉 or |〈φ|ψ〉| ≤ δ

such fingerprints, the referee can independently perform the test in Figure 8.2 k
times, resulting in an error probability below ε. In this case, the length of each
fingerprint is O((log n)(log(1/ε)).

As the above test shows that the referee can test whether the fingerprints he
received from Alice and Bob are the same, we have proved:

8.2.4. Theorem (BCWW [41]). Qcc
‖
2(EQn) ∈ O(log n).

It is worth considering what goes wrong if one tries to simulate the above
quantum protocol using classical probability distributions in place of quantum
superpositions. In such a protocol, Alice and Bob send (i, Ei(x)) and (j, Ej(y))
respectively to the referee for independent random uniformly distributed i, j ∈
{1, 2, . . . ,m}. If it should happen that i = j then the referee can make a statistical
inference about whether or not x = y. But i = j occurs with probability only
O(1/n)—and the ability of the referee to make an inference when i 6= j seems
difficult. For many error-correcting codes, no inference whatsoever about x = y is
possible when i 6= j and the lower bound in [127] implies that no error-correcting
code enables inferences to be made when i 6= j with error probability bounded
below 1. The distinguishing test in Figure 8.2 can be viewed as a quantum
operation which has no analogous classical probabilistic counterpart.

Our quantum protocol for equality in the simultaneous message model uses
O(log n)-qubit fingerprints for any constant error probability. Is it possible to
use fewer qubits? In fact, without a shared key, Ω(log n)-qubit fingerprints are
necessary. This is because any k-qubit quantum state can be specified within
exponential precision with O(k2k) classical bits. Therefore the existence of a
k-qubit quantum protocol implies the existence of an O(k2k)-bit deterministic
classical protocol. From the fact that Dcc‖(EQn) = 2n we can now infer that
k ≥ (1− o(1)) log n.
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8.3 Short Near-Orthogonal Quantum States

In Section 8.2, we employed a particular classical error-correcting code to con-
struct a set of 2n quantum states with pairwise inner products below δ in absolute
value. Here, we consider the question of how few qubits are sufficient for this to
be accomplished for some small δ > 0.

An alternative construction where we can efficiently achieve a very small inner
product is as follows. Let n and δ > 0 be given and let F be a field of size n/δ (we
ignore the fact that n/δ should be rounded to the nearest prime power in order
for F to be a field). For x = x1 . . . xn ∈ {0, 1}n, define the polynomial px(z) over
F as

px(z) = x1 + x2z + x3z
2 + · · ·+ xnz

n−1.

For each x ∈ {0, 1}n, define the 2 log(n/δ)-qubit state |hx〉 as

|hx〉 = 1√
|F|

∑

z∈F

|z〉|px(z)〉.

Two distinct polynomials of degree ≤ d can be equal on at most d elements of F,
so for any x 6= y we have 〈hx|hy〉 ≤ (n − 1)δ/n < δ. Thus we have 2n different
2 log(n/δ)-qubit states, and each pair of them is almost orthogonal.

In fact, even log n + O(log(1/δ)) qubits are sufficient, as follows. Using a
probabilistic argument (see e.g. [4]), it can be shown that, for an arbitrarily small
δ > 0, there exists an error-correcting code E : {0, 1}n → {0, 1}m with m ≤ n/δc

(for some constant c) such that the Hamming distance between any two distinct
codewords E(x) and E(y) is between (1− δ)m/2 and (1 + δ)m/2. (If a set S of
2n m-bit strings is chosen at random then the probability that there is a pair of
strings in S whose Hamming distance deviates from m/2 by more than δm, is
less than 1. This shows that there exists a set S with the right properties.) Note
that this existence proof does not yet yield an explicit construction of the code;
however, Venkatesan Guruswami and Adam Smith (personal communication via
Richard Cleve) recently pointed out to us that explicit constructions of such
codes can be obtained from results in [3, 29]. Given such a code, the logm-qubit
fingerprint of x ∈ {0, 1}n can be set to

|hx〉 =
1√
m

m∑

i=1

(−1)Ei(x)|i〉

to yield the following theorem:

8.3.1. Theorem (BCWW [41]; Guruswami & Smith). For every n and δ >
0 one can construct a set {|hx〉 | x ∈ {0, 1}n} of states of log n + O(log(1/δ))
qubits, such that |〈hx|hy〉| ≤ δ whenever x 6= y.

These constructions are optimal in the following sense:
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8.3.2. Theorem (BCWW [41]). Let δ ≥ 2−n. Then an assignment of b-qubit
states to all n-bit strings such that the absolute value of the inner product between
any two fingerprints is at most δ, requires b ∈ Ω(log(n/δ2)) qubits.

Proof. Let {|hx〉 | x ∈ {0, 1}n} be the b-qubit states. We will use these
states to get a 1-round protocol for the equality function. Suppose Alice has
input x and Bob has input y. Then Alice sends Bob the state |hx〉 and Bob
performs a 2-outcome orthogonal measurement given by projectors P1 = |hy〉〈hy|
and P0 = I − P1. Bob outputs 1 with probability Tr(P1|hx〉〈hx|) = |〈hx|hy〉|2.
If x = y then this is 1, and if x 6= y then this is ≤ δ2. Thus we have a b-qubit
protocol for EQn with error probability ≤ δ2. Proposition 7.4.10 now implies
b ∈ Ω(log(n/δ2)). 2

It should be noted that having small inner product δ is desirable but not
all-important. For instance, there is a trade-off between δ and the number of
copies of each state sent by Alice and Bob in the simultaneous message passing
protocol for equality from the previous section in terms of the total number of
qubits communicated and the resulting error bound.

8.4 The State Distinguishing Problem

Motivated by the referee’s test of Section 8.2, we define the state distinguishing
problem as follows. The input consists of k copies of each of two quantum states
|φ〉 and |ψ〉, with a promise that |φ〉 and |ψ〉 are either identical or have inner
product bounded in absolute value by some given δ < 1. The goal is to distinguish
between the two cases with as high a probability as possible.

One method for solving this problem is to use the method in Section 8.2,
independently performing the test in Figure 8.2 k times, resulting in an error
probability of 0 in the identical case and ( 1+δ

2

2
)k otherwise. We will describe an

improved method, whose error probability is approximately
√
πk(1+δ

2
)2k, which

is almost quadratically better when δ is small. We also show that this is nearly
optimal by proving a lower bound of 1

4
(1+δ
2
)2k on the error probability.

The improved method for the state distinguishing problem uses registers
R1, . . . , R2k, which initially contain |φ〉, . . . , |φ〉, |ψ〉, . . . , |ψ〉 (k copies of each).
It also uses a register P whose classical states include encodings of all the (2k)!
permutations on 2k elements, i.e., all σ ∈ Σ2k. Let 0 denote the identity permu-
tation and let P be initialized to 0. Let F be any transformation satisfying

F : |0〉 → 1√
(2k)!

∑

σ∈Σ2k

|σ〉.

For example, F could be the quantum Fourier transform on (2k)! elements. Since
all prime factors of (2k)! are O(k), this QFT can be computed efficiently, using
poly(k) many gates (see, e.g., [51] or the conference version of [151]).
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The distinguishing procedure operates as follows:

1. Apply F to register P .

2. Apply a conditional permutation on the contents of registers R1, . . . , R2k,
conditioned on the permutation specified in P .

3. Apply F ∗ = F−1 to P and measure the final state. If P contains 0 then
answer equal, otherwise answer not equal.

We now analyze this procedure. The state after step 2 is

1√
(2k)!

∑

σ∈Σ2k

|σ〉σ(|φ〉 · · · |φ〉|ψ〉 · · · |ψ〉)

(where σ(|φ〉 · · · |φ〉|ψ〉 · · · |ψ〉) means we permute the contents of the 2k registers
according to σ).

Case 1: |φ〉 = |ψ〉. In this case the permutation of the registers does absolutely
nothing, so the procedure answers equal with certainty.

Case 2: Assume |〈φ|ψ〉| < δ. The probability of answering equal is the squared
norm of the vector obtained by applying the projection |0〉〈0| ⊗ I to the final
state, which is

peq =

∥∥∥∥∥
1√
(2k)!

∑

σ∈Σ2k

〈0|F ∗|σ〉σ(|φ〉 · · · |φ〉|ψ〉 · · · |ψ〉)
∥∥∥∥∥

2

=

∥∥∥∥∥
1

(2k)!

∑

σ∈Σ2k

σ(|φ〉 · · · |φ〉|ψ〉 · · · |ψ〉)
∥∥∥∥∥

2

.

Since ‖|η〉‖2 = 〈η|η〉 for any |η〉 we may simplify this probability as follows:

peq =
1

((2k)!)2

∑

σ,τ∈Σ2k

σ(〈φ| · · · 〈φ|〈ψ| · · · 〈ψ|)τ(|φ〉 · · · |φ〉|ψ〉 · · · |ψ〉)

=
1

((2k)!)2

∑

σ,τ∈Σ2k

〈φ| · · · 〈φ|〈ψ| · · · 〈ψ|σ−1τ(|φ〉 · · · |φ〉|ψ〉 · · · |ψ〉)

=
1

(2k)!

∑

σ∈Σ2k

〈φ| · · · 〈φ|〈ψ| · · · 〈ψ|σ(|φ〉 · · · |φ〉|ψ〉 · · · |ψ〉)

=
(k!)2

(2k)!

k∑

j=0

(
k

j

)2
δ2j

≤ (k!)2

(2k)!

k∑

j=0

(
2k

2j

)
δ2j

≤ (k!)2

(2k)!
(1 + δ)2k .
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The sum of binomial coefficients arises by grouping the permutations σ according
to the number of registers j in the set {R1, . . . , Rk} that σ causes to contain |ψ〉.
From Stirling’s approximation we therefore obtain:

8.4.1. Theorem. The above procedure, on input |φ〉⊗k and |ψ〉⊗k such that ei-
ther |φ〉 = |ψ〉 or |〈φ|ψ〉| ≤ δ, decides which of the two is the case with error

O(
√
k
(
1+δ
2

)2k
).

We now show that the error probability cannot be less than 1
4
(1+δ
2
)2k for the

state distinguishing problem.1 Consider an optimal state distinguisher that acts
on k copies of |φ〉 and k copies of |ψ〉 where either |φ〉 = |ψ〉 or |〈φ|ψ〉| ≤ δ. Let
|φ1〉 = |ψ1〉 = |0〉, and let |φ2〉 = cos( θ

2
)|0〉 + sin( θ

2
)|1〉 and |ψ2〉 = cos( θ

2
)|0〉 −

sin( θ
2
)|1〉, where θ = arccos δ. Clearly, |φ1〉 = |ψ1〉 and 〈φ2|ψ2〉 = δ. A state

distinguisher must distinguish between the state |a〉 = |φ1〉⊗k ⊗ |ψ1〉⊗k and the
state |b〉 = |φ2〉⊗k ⊗ |ψ2〉⊗k. We consider the probability with which a state
distinguisher can distinguish between these two states. Since 〈φ1|φ2〉 = 〈ψ1|ψ2〉 =
cos( θ

2
), it follows that 〈a|b〉 = cos2k( θ

2
) = (1+cos θ

2
)k = (1+δ

2
)k. Now, it is known

that the optimal procedure distinguishing between two states with inner product
cosα has error probability 1−sinα

2
≥ 1

4
(cosα)2. (This follows from an early result

of Helstrom [89], which was later strengthened by Fuchs [78, Section 3.2]. A clean
and self-contained derivation of this result may also be found in [137].) Therefore,
the state distinguisher must have error probability at least 1

4
(1+δ
2
)2k.

8.5 Exactly Orthogonal Quantum States

As constructed above, different quantum fingerprints are nearly orthogonal but
not completely. In general, quantum mechanics allows no short fingerprints that
are exactly orthogonal, because if the 2n vectors are all pairwise orthogonal then
they must have dimension at least 2n and hence require at least n qubits. How-
ever, if we are promised that not all pairs of fingerprints will be compared, then
short but exactly orthogonal quantum fingerprints are sometimes possible. Let
G = (V,E) be some graph with V = {0, 1}n. We consider exactly orthogo-
nal fingerprints under the promise that the fingerprints for x and y will only be
compared if x = y or if (x, y) ∈ E.

We want to associate fingerprints with the nodes such that adjacent nodes
receive orthogonal fingerprints. In the classical case these fingerprints correspond
to classical bitstrings, which when represented as a state in Hilbert space are
vectors with a 1 at a specific position and zeroes elsewhere. In this case it is easy
to see that the length (in bits) of the fingerprints is characterized by the length (in

1Note that this lower bound concerns a problem that is slightly more general than the
problem of distinguishing fingerprints, because the fingerprints used in Section 8.2 are not
arbitrary but come from a known set of only 2n states.
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bits) of the chromatic number χ(G) of the graph G (χ(G) is the minimal number
of colors required to assign a color to each node of the graph in such a way that
two adjacent nodes get different colors.) On the one hand, if we have a coloring
of the graph, then those colors can serve as classical fingerprints of logχ(G) bits.
Conversely, if we have assigned classical fingerprints hx to the nodes x, then these
form a proper coloring of the graph.

It is also easy to prove a 1-1 correspondence between colorings of G and de-
terministic 1-round communication protocols for the communication complexity
problem problem EQG, which is the promise version of EQn specified by G. The
color for node x in G would correspond to the message that Alice sends when
she receives input x. In particular, we have an equivalence between the optimal
1-round communication complexity and the chromatic number χ(G):

8.5.1. Theorem (BCWW). Dcc1 round(EQG) = logχ(G).

In the quantum world, an exact fingerprinting scheme would assign states
|hx〉 ∈ Cd to the nodes of G such that 〈hx|hy〉 = 0 if (x, y) ∈ E. We call such
an assignment an orthogonal representation of G (see [114, 82, 105] for related
notions). The orthogonal dimension dim(G) of G is the minimal d for which such
a representation exists. Since an orthogonal representation and an exact quantum
fingerprinting scheme are just the same thing, log dim(G) qubits are necessary
and sufficient for exact quantum fingerprints. The orthogonal dimension also
characterizes the 1-round quantum communication complexity of equality with
the G-promise:

8.5.2. Theorem (BCWW). Qcc1 roundE (EQG) = log dim(G).

Proof. Let {|hx〉 | x ∈ {0, 1}n} be an orthonormal representation of G. A
1-round quantum protocol is the following: Alice sends |hx〉 to Bob in log dim(G)
qubits and Bob measures it according to the 2-outcome measurement specified
by the projectors P1 = |hy〉〈hy| and P0 = I − P1. Since the vectors come from
an orthonormal representation of G, we have that 〈hx|hy〉 = 0 whenever x 6= y
and (x, y) ∈ E. Accordingly, the protocol will output 1 iff x = y and we have
Q1 round(EQG) ≤ log dim(G).

Conversely, consider some optimal 1-round quantum protocol for EQG. We
can assume without loss of generality that Alice’s messages are pure states, which
are not entangled with her workspace. Let |hx〉 be the message that Alice sends
to Bob if her input is x. Suppose (x, y) ∈ E and Bob gets input y. If he receives
message |hx〉 then he should output 0 and if he receives |hy〉 then he should
output 1. But this means that Bob must be able to distinguish the vectors |hx〉
and |hy〉 with certainty, which is possible only if |hx〉 and |hy〉 are orthogonal
[130, p.87]. Thus the vectors |hx〉 form an orthonormal representation of G of

dimension 2QccE
1 round(EQG). 2
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We have shown that the minimal length of classical fingerprints is logχ(G) bits
and the minimal length of quantum fingerprints is log dim(G) qubits. Sometimes
the latter is much smaller than the former. One interesting example of this can be
derived from the distributed Deutsch-Jozsa problem of Section 6.4.2. It concerns
the graph G = (V,E) with V = {0, 1}n, E = {(x, y) | ∆(x, y) = n/2}, where
∆ denotes Hamming distance, and n is divisible by 4. A simple orthonormal
representation of G of dimension n is |hx〉 = 1√

n

∑n
i=1(−1)xi |i〉, since 〈hx|hy〉 = 0

iff ∆(x, y) = n/2. On the other hand, note that the EQG problem for this G is
just the distributed Deutsch-Jozsa problem, for which we proved a lower bound
of Dcc(EQG) ≥ 0.007 n in Theorem 6.4.3. Combined with Theorem 8.5.1, this
implies that G has high chromatic number:

8.5.3. Theorem (BCWW). The above G has dim(G) ≤ n and χ(G) ≥ 20.007n,
so exact quantum fingerprints are exponentially shorter than exact classical fin-
gerprints for this graph.

It would be interesting to characterize the graphs for which exact quantum
fingerprints are much shorter than the classical ones, i.e., for which dim(G) is
much smaller than χ(G). It is easy to see that dim(G) is lower bounded by the
size of the largest clique in G, so such graphs should have only small cliques.

8.6 Exact Fingerprinting with a Quantum Key

Here we briefly consider the case of fingerprinting where Alice and Bob have a
shared quantum key, consisting of O(log n) EPR-pairs, but are required to output
classical strings as fingerprints. Is there any sense in which a quantum key can
result in improved performance over the case of a classical key?

Consider again a Deutsch-Jozsa type of promise (with n a power of 2): either
x = y or the Hamming distance between x and y is n/2. Under this restriction,
any exact classical scheme with a shared classical key would require fingerprints of
length Ω(n). This follows immediately from the Ω(n) lower bound for Dcc(DeJo)
(Theorem 6.4.3): Alice can send her fingerprint to Bob to get an exact 1-round
classical protocol for the distributed Deutsch-Jozsa problem.

On the other hand, there is a scheme due to Brassard, Cleve, and Tapp [33]
with a shared quantum key of log n EPR-pairs that outputs classical fingerprints
of length only log n bits, such that x = y iff the fingerprints are equal. It works
as follows. Initially the log n EPR-pairs are in the following state:

1√
n

∑

i∈{0,1}log n
|i〉|i〉.

This is a 2 log n-qubit state, where the first log n qubits belong to Alice and
the last log n qubits belong to Bob. Alice applies the unitary transformation
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|i〉 → (−1)xi |i〉 to her part and Bob applies |i〉 → (−1)yi |i〉, giving
1√
n

∑

i∈{0,1}log n
(−1)xi |i〉(−1)yi |i〉.

They now each apply Hadamard transforms to their qubits, giving

1

n3/2

∑

i∈{0,1}log n


(−1)xi

∑

k∈{0,1}log n
(−1)i·k|k〉




(−1)yi

∑

`∈{0,1}log n
(−1)i·`|`〉


 .

Note that the total amplitude of the state |k〉|k〉 is now
1

n3/2

∑

i∈{0,1}log n
(−1)xi(−1)i·k(−1)yi(−1)i·k = 1

n3/2

∑

i∈{0,1}log n
(−1)xi⊕yi .

This amplitude will be 1/
√
n if x = y and it will be 0 if ∆(x, y) = n/2. Thus

if Alice and Bob each measure their part of the state and output the resulting
log n-bit strings a and b, then a = b iff x = y and they have achieved their goal.

8.7 Quantum Data Structures

Finally, we give an application of quantum fingerprints to data structures. Con-
sider an N = 2n-element universe U , which we can identify with {0, 1}n. Suppose
we want to store a set S of at most k elements from U as a data structure dS, in
such a way that we can answer a membership question ‘x ∈ S?’ by looking at dS.
We want the data structure dS to be as small as possible. It may consist of bits
or qubits. We will first analyze the qubit case, and then contrast this to what is
and is not possible classically.

8.7.1 The quantum case

First consider the case k = 1, so S = {x} for some x ∈ {0, 1}n. We can represent
S by a fingerprint of x. We will use the polynomial-based construction from
Section 8.3. Let F be a field of size n/ε and define

|hx〉 =
1√
|F|
∑

z∈F

|z〉|px(z)〉.

A query of the form ‘y ∈ S?’ is now simply the question ‘x = y?’ and can be
answered with bounded-error, for instance by applying the test of Figure 8.2. A
better test in this case is to apply the following efficiently computable unitary
transformation on the fingerprint with an auxiliary |0〉-qubit:

|z〉|p〉|0〉 → |z〉|p〉|[py(z) = p]〉,
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and measuring the last bit (here [py(z) = p] is the truth-value of the statement
‘py(z) = p’). If x = y then this measurement will give a 1 with certainty; if x 6= y
then it will give a 0 with probability > 1− ε. We will call such a test for ‘x = y?’
a query to the data structure.

A severe disadvantage is that the quantum structure can be used only once,
since answering a membership query will involve a measurement and will disturb
the state. However, we can make the data structure such that with high proba-
bility it can be used m times by setting ε ≤ 1/4m, i.e., by choosing our field F
to be of size n/ε = 4mn. This we prove as follows. Consider the data structure
|hx〉 and suppose we sequentially query y1, . . . , ym for equality with x, using the
test described in the previous paragraph. First consider y1. If x = y1 then the
test will work with probability 1 and will not disturb the fingerprint at all. If
x 6= y1 then with probability ≥ 1 − ε the test will give the right answer. In this
case the measurement will eliminate from the superposition all basis states |z〉
for which px(z) = py1(z); there are at most n− 1 such |z〉. Before the second test
(‘x = y2?’) there are at least 4mn− (n−1) |z〉 left in the superposition. If x = y2
then with probability 1 the second test gives the correct answer and the state
will not be affected. If x 6= y2 then we get the correct answer with probability
≥ 1− n−1

4mn−(n−1) and the measurement will again delete at most n− 1 basis states

|z〉 from the superposition. In general, assuming all previous tests gave the cor-
rect answer, the probability that the test yi = x gives the right answer is at least
1 − n−1

4nm−(i−1)(n−1) . Thus the probability that all m tests give the correct answer
is at least

m∏

i=1

(
1− n− 1

4nm− (i− 1)(n− 1)

)
≥
(
1− 1

3m

)m
≥ 2

3
, for all m ≥ 1.

Choosing |F| ≈ 4mn gives fingerprints of about 2 log(4mn) qubits. What this
shows is that we can cheaply make our data structure reusable. In particular, at
the cost of only a constant factor c for the number of qubits of the data structure,
we can make the structure m = nc times reusable before it is disturbed too much.

A fingerprint |hx〉 stores just one element x. Sets of k > 1 elements can be
stored in O(k log(kn)) qubits, since we can represent S = {x1, . . . , xk} by giving
the fingerprints |hx1〉, . . . , |hxk〉 of each element, with error probability of each
fingerprint reduced to, say, ε = 0.01/k. The question ‘y ∈ S?’ reduces to the k
questions ‘y = xi?’, which can all be answered with high success probability using
the fingerprints.

We summarize the above discussion in the following theorem:

8.7.1. Theorem (BCWW [41]). Let n, k,m be positive integers. There exists
a scheme that can store any set S ⊆ {0, 1}n of size |S| ≤ k in a quantum data
structure of O(k log(nmk)) qubits, in such a way that with probability ≥ 2/3, m
consecutive membership queries (each of the form ‘x ∈ S?’) to the data structure
will all be answered correctly.
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What about lower bounds on the size of such a quantum data structure? If we
are able to represent any ≤ k-element subset of our universe, then we can embed
a k-bit quantum random access code in the data structure: the ability to represent
any subset of {1, . . . , k} such that one membership query can be answered entails
the ability to represent any k-bit string such that any one bit-probe in this string
can be answered. Nayak [125] proved that such a quantum data structure needs
(1 − H(η))k qubits, where H(η) is the binary entropy function applied to the
error probability of the queries. Thus the size of quantum data structures lies
roughly between k and k log(kn).

8.7.2 Comparison with the classical case

What about classical data structures for the set membership problem, how many
bits are required to represent a set S ⊆ {0, 1}n of at most k elements? The answer
depends on what we expect from the data structure. Most reasonable seems to
require the data structure to be a classical string (possibly generated according to
some distribution depending on S) which we can store somewhere and afterwards
use to determine whether y ∈ S for any y of our choice. With this constraint, the

classical data structure requires about log
(∑k

i=0

(
N
i

))
≈ kn bits (the logarithm of

the number of sets that we want to represent). Accordingly, in this case, quantum
mechanics allows exponential space savings for small k: if k ∈ polylog(n) then
the quantum data structure for S requires about k log(kn) ∈ polylog(n) qubits,
which is exponentially less than the classical space of about kn bits.

There is, however, another way to view the classical data structure, a way
which uses classical fingerprinting and requires only O(k log(kn)) bits to represent
S. Suppose we choose a field F of, say, 100kn elements. For each x ∈ S we choose
a random zx ∈ F and we represent S by giving the pairs (zx, px(zx)) for all x ∈ S.
This takes k · 2 log(100kn) bits. If we now want to test whether some y is in S,
then we can compare px(zx) with py(zx) for all k pairs. If y ∈ S then one of these
k comparisons will give equality, and if y 6∈ S then probably all comparisons give
inequality, where the probability is taken over the random choices of zx. If this
probabilistic result satisfies us, then we have a classical data structure which is as
efficient as the quantum one given above. The problem with this approach is that
once the randomness (the choices of zx) has been fixed, an adversary can find a
y such that with certainty the data structure will give the wrong answer for the
query ‘y ∈ S?’. The quantum data structure does not suffer from this drawback.
In the quantum case there is no randomness that needs to be fixed, and every
query is answered with high probability no matter which y the adversary chooses.
One way to express this is to say that the quantum superposition “postpones”
the randomness to the actual time at which the query is made.

The difference between the quantum and the classical case also shows up in
the simultaneous message passing model mentioned in the first part of this paper.
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Suppose Alice receives S ⊆ {0, 1}n of size |S| ≤ k, Bob receives some y ∈ {0, 1}n,
and they each want to send one message to the referee to enable him to determine
whether y ∈ S. In the quantum case, Alice can send the quantum data structure
for S to the referee (O(k log(kn)) qubits), Bob can send a fingerprint of y to
the referee with error reduced to ≈ 1/k (O(log(kn)) qubits), and the referee can
determine whether y ∈ S with small error probability. Note that the referee has
to apply the test of Figure 8.2, he cannot apply the simpler test from this section,
since he does not have the complete y. In the classical case, Alice and/or Bob
need to send exponentially more bits to the referee (in particular, for k = 1 this
is just the equality problem, for which the classical bound is Θ(

√
n)).

8.8 Summary

In many contexts, testing the equality of n-bit strings x and y can be done by
taking short fingerprints of x and y and comparing only those. If the two parties
making the respective fingerprints share O(log n) bits of randomness, then the
classical fingerprints need only be O(1) bits long. However, if the parties do not
share randomness, then the fingerprints need Θ(

√
n) bits. We gave a quantum

fingerprinting scheme in which the fingerprints can be O(log n) qubits even if the
parties share no randomness whatsoever. This implies an exponential quantum-
classical gap for the equality problem in the simultaneous message passing variant
of communication complexity: Alice and Bob are uncorrelated, they get inputs
x and y, respectively, and should each send a message to a referee to enable him
to decide whether x = y. Classically this takes Θ(

√
n) bits of communication,

quantumly it takes only O(log n) qubits. We analyzed the required size of the
quantum fingerprints and the error probability of the referee’s equality test in
detail, and also gave some other applications of quantum fingerprinting.



Chapter 9

Private Quantum Channels

This chapter is based on the paper

• A. Ambainis, M. Mosca, A. Tapp, and R. de Wolf. Private Quantum Chan-
nels. In Proceedings of 41th IEEE FOCS, pages, 547–553, 2000.

9.1 Introduction

In the previous chapters we have discussed bounds on the amount of quantum
communication that is needed for solving various tasks. Whenever two people
communicate over some channel, they run the risk of being spied on: some eaves-
dropper Eve may tap the channel and learn things about the conversation that
Alice and Bob would rather she didn’t know. In this chapter we will investigate
what resources are needed for Alice and Bob to make their quantum communi-
cation secure, in the sense that Eve will get no information about the messages
when she taps the channel.

Secure transmission of classical information is a well studied topic. Suppose
Alice wants to send an n-bit message M to Bob over an insecure (i.e., spied-on)
channel, in such a way that the eavesdropper Eve cannot obtain any information
about M from tapping the channel. If Alice and Bob share some secret n-bit
key K, then here is a simple way for them to achieve their goal: Alice exclusive-
ors M with K and sends the result M ′ = M ⊕ K over the channel, Bob then
xors M ′ again with K and obtains the original message M ′ ⊕ K = M . Eve
may see the encoded message M ′, but if she does not know K then this will
give her no information about the real message M , since for any M there is
a key K ′ giving rise to the same encoding M ′. This scheme is known as the
Vernam cipher or one-time pad (“one-time” because K can be used only once
if we want information-theoretic security). It shows that n bits of shared secret
key are sufficient to securely transmit n bits of information. Shannon [149, 150]
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has shown that this scheme is optimal: n bits of shared key are also necessary in
order to transmit an n-bit message in an information-theoretically secure way.

Now let us consider the analogous situation in the quantum world. Alice and
Bob are connected by a one-way quantum channel, to which an eavesdropper Eve
has complete access. Alice wants to transmit to Bob some n-qubit state ρ taken
from some set S, without allowing Eve to obtain any information about ρ. (Here
ρ is a mixed quantum state, a probability distribution on pure quantum states,
to be defined in more detail in the next section.) Alice and Bob could easily
achieve such security if they share n EPR-pairs or if they were able to establish
EPR-pairs over a secure quantum channel, for then they can apply teleportation
(Section 6.2) and transmit every qubit via 2 random classical bits, which will give
Eve no information whatsoever. But now suppose Alice and Bob do not share
EPR-pairs, but instead they only have the resource of shared randomness, which
is weaker but easier to maintain.

A first question is: is it at all possible to send quantum information fully
securely using only a finite amount of randomness? At first sight this may seem
hard: Alice and Bob have to “hide” the amplitudes of a quantum state, which
are infinitely precise complex numbers. Nevertheless, the question has a positive
answer. More precisely, to privately send n qubits, a shared 2n-bit classical key is
sufficient. The encryption technique is fairly natural. Alice applies to the state ρ
that she wants to transmit a reversible quantum operation specified by the shared
key K (basically, she applies a random Pauli matrix to each qubit), and she sends
the result ρ′ to Bob. In the most general setting this reversible operation can be
represented as doing a unitary operation on the state ρ augmented with a known
fixed ancilla state ρa. Knowing the key K that Alice used, Bob knows which
operation Alice applied and he can reverse this, remove the ancilla, and retrieve
ρ. In order for this scheme to be information-theoretically secure against the
eavesdropper, we have to require that Eve always “sees” the same density matrix
ρ0 on the channel, no matter what ρ was. Because Eve does not know K, this
condition can indeed be satisfied. Accordingly, an insecure quantum channel can
be made secure (private) by means of shared classical randomness.

A second question is, then, how much key Alice and Bob need to share in order
to be able to privately transmit any n-qubit state. A good way to measure key
size is by the amount of entropy required to create it, that is, by the entropy of
the probability distribution according to which Alice and Bob select their secret
key. In the case of a uniform distribution, this is just the number of bits of the
key. As one might imagine, showing that 2n bits of key are not only sufficient but
also necessary, is the most intricate part of this chapter.1 We prove this 2n-bit
lower bound in Section 9.5, and show that it even holds for the simpler task of

1Note that if Alice and Bob share an insecure two-way channel, then they can do quantum
key exchange [26] in order to establish a shared random key, so in this case no prior shared key
(or only a very small one) is required.
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privately transmitting n unentangled qubits. Accordingly, in analogy with the
classical one-time pad, we have an optimal quantum one-time pad that uses 2n
classical bits to completely “hide” n qubits from Eve. In particular, hiding a
qubit is only twice as hard as hiding a classical bit, despite the fact that in the
qubit we now have to hide amplitudes coming from a continuous set.

The chapter is organized as follows. Section 9.2 introduces some notation
and some properties of Von Neumann entropy. In Section 9.3 we give a formal
definition of a private quantum channel (PQC). In Section 9.4 we give some
examples of PQCs. In particular we show that there is a PQC that privately
sends any n-qubit state using 2n bits of randomness (shared key). We also exhibit
a non-trivial set of n-qubit states for which there is PQC requiring only n bits
of randomness, namely the tensor products of qubits with real amplitudes. The
latter result includes the classical one-time pad. In Section 9.5 we show that 2n
bits of randomness are necessary if we want to be able to send any n-qubit mixed
state privately.

Remark about related work. Several recent papers independently discussed
issues similar to the work presented in this chapter. In a related but slightly
different setting, Braunstein, Lo, and Spiller [38, 113] have shown that 2 bits
of entropy are necessary and sufficient to “randomize” a qubit. At around the
same time as this work was done, Boykin and Roychowdhury [31] exhibited the
2n-bit Pauli-matrix one-time pad. They also gave a general characterization
of all possible encryption schemes without ancilla, a characterization which can
also be derived from the simultaneous and independent work of Werner [159].
Furthermore, Boykin and Roychowdhury proved a 2n-bit lower bound for the
case where the encryption scheme does not allow the use of an ancilla state. In
Section 9.5 we start with a simplified proof of their lower bound for the no-ancilla
case and give a different and more complicated proof for the lower bound in the
case where we do allow an ancilla.

9.2 Preliminaries

9.2.1 Mixed states and superoperators

In this chapter we need to go a little bit beyond the usual pure state formalism
that we introduced in Section 1.2. A mixed quantum state or density matrix ρ is
a non-negative Hermitian matrix that has trace Tr(ρ) = 1. The density matrix
corresponding to a pure state |φ〉 is the outer product |φ〉〈φ|. Because a density
matrix ρ is Hermitian, it has a diagonalization ρ =

∑r
i=1 pi|φi〉〈φi|, where r is

the rank of ρ, the pi are its eigenvalues, and the |φi〉 form an orthonormal set.
Because ρ is non-negative and has trace 1, we also have pi ≥ 0 and

∑
i pi = 1.

Thus ρ can be viewed as describing a probability distribution or “mixture” over
pure states. A density matrix gives a complete description of the quantum state,
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so there is no way in which two quantum states with identical density matrices can
be distinguished. We use ĨM = 1

M
IM = 1

M

∑M
i=1 |i〉〈i| to denote the totally mixed

state in anM -dimensional space, which represents the uniform distribution on all
basis states. It should be noted that the same density matrix can be represented
by different distributions. For example, the 2-dimensional totally mixed state is

Ĩ2 =

(
1
2

0
0 1

2

)
=

1

2
|0〉〈0|+ 1

2
|1〉〈1| = 1

2
|+〉〈+|+ 1

2
|−〉〈−|,

where we defined |+〉 = 1√
2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉).

If two systems are in pure states |φ〉 and |ψ〉, respectively, then their joint
state is the tensor product pure state |φ〉 ⊗ |ψ〉 = |φ〉|ψ〉. If two systems are in
mixed states ρ1 and ρ2, respectively, then their joint state is the tensor product
ρ1 ⊗ ρ2. We refer to [130, Chapter 2] for more about density matrices.

Applying a unitary transformation U to a pure state |φ〉 gives pure state U |φ〉,
and applying U to a mixed state ρ gives mixed state UρU ∗, where U ∗ = U−1 is
the conjugate transpose of U . We will use E = {√piUi | 1 ≤ i ≤ N} to denote
the superoperator that applies Ui with probability pi to its argument (we assume∑

i pi = 1). Thus E(ρ) =
∑

i piUiρU
∗
i . Quantum mechanics allows for more

general superoperators, but this type suffices for our purposes. A very useful
result is that two identical superoperators are unitarily related [129, Section 3.2]:

9.2.1. Theorem (Nielsen [129]). If E = {√piUi | 1 ≤ i ≤ N} and E ′ =

{
√
p′iU

′
i | 1 ≤ i ≤ N ′} are identical (E(ρ) = E ′(ρ) for all ρ), then they are

unitarily related in the following way (where we assume N ≥ N ′ and if N > N ′

we pad E ′ with zero operators to make E and E ′ of equal size): there exists a
unitary N ×N matrix A such that for all i

√
piUi =

N∑

j=1

Aij

√
p′jU

′
j.

9.2.2 Von Neumann entropy

Let density matrix ρ have the diagonalization
∑N

i=1 pi|φi〉〈φi|. The Von Neu-
mann entropy S(ρ) of ρ is the classical Shannon entropy H of the eigenvalues
of ρ: S(ρ) = H(p1, . . . , pN) = −∑N

i=1 pi log pi. This S(ρ) can be interpreted as
the minimal Shannon entropy of the measurement outcome, minimized over all
possible complete measurements. Note that S(ρ) only depends on the eigenvalues
of ρ. The following properties of Von Neumann entropy will be useful later (for
proofs see for instance [158, 130]).

1. S(|φ〉〈φ|) = 0 for every pure state |φ〉.

2. S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2).
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3. S(UρU ∗) = S(ρ).

4. S(λ1ρ1 + λ2ρ2 + · · ·+ λnρn) ≥ λ1S(ρ1) + λ2S(ρ2) + · · ·+ λnS(ρn) if λi ≥ 0
and

∑
i λi = 1.

5. If ρ =
∑N

i=1 pi |φi〉〈φi| with the |φi〉 not necessarily orthogonal, then S(ρ) ≤
H(p1, . . . , pN). (Equality holds if the |φi〉 form an orthonormal set.)

9.3 Definition of Private Quantum Channel

Let us sketch the scenario for a private quantum channel. There are N possible
keys, which we identify for convenience with the numbers 1, . . . , N . The ith
key has probability pi, so the key has entropy H(p1, . . . , pN) when viewed as a
random variable. The private quantum channel specifies unitary transformations
Ui corresponding to the keys i. Suppose Alice wants to send an n-qubit pure
state |φ〉 from some set S to Bob. She appends m − n fixed ancilla qubits in
state ρa to |φ〉〈φ| and then applies Ui to the m-qubit state |φ〉〈φ| ⊗ ρa, where i
is her key. She sends the resulting m-qubit state Ui(|φ〉〈φ| ⊗ ρa)U ∗i to Bob. Bob,
who shares the key i with Alice, applies U−1i to obtain |φ〉〈φ| ⊗ ρa, removes the
ancilla ρa, and is left with Alice’s message |φ〉〈φ|. One can verify that this is the
most general setting allowed by quantum mechanics if we want Bob to be able to
recover the state perfectly.

We will allow the eavesdropper Eve complete knowledge of the scheme used
(including all the Uj’s). Of course, if she also knows the specific key i used, then
she can just intercept the message on the channel and decode it using U−1i . How-
ever, i is supposed to be a secret key known only to Alice and Bob. Accordingly,
in order for our scheme to be secure against the eavesdropper, we have to re-
quire that if Eve does not know i, then the density matrix ρ0 that she gets from
monitoring the channel is independent of |φ〉. This implies that she gets no in-
formation at all about |φ〉. Of course, Eve’s measuring the channel might destroy
the encoded message, but this is like classically jamming the channel and cannot
be avoided. The point is that if Eve measures, then she receives no information
about |φ〉. We formalize this scenario as follows.

9.3.1. Definition. Let n,m be natural numbers withm ≥ n. LetH2n be the set
of all pure n-qubit states, S ⊆ H2n be some subset thereof, E = {√piUi | 1 ≤ i ≤
N} be a superoperator where each Ui is a unitary mapping on H2m ,

∑N
i=1 pi = 1,

ρa be an (m − n)-qubit density matrix, and ρ0 be an m-qubit density matrix.
Then [S, E , ρa, ρ0] is called a Private Quantum Channel (PQC) if for all |φ〉 ∈ S
we have

E(|φ〉〈φ| ⊗ ρa) =
N∑

i=1

piUi (|φ〉〈φ| ⊗ ρa)U ∗i = ρ0.

If n = m (i.e., no ancilla), then we omit ρa.
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Note that by linearity, if the PQC works for all pure states in S, then it
also works for density matrices over S: applying the PQC to a mixture of states
from S gives the same ρ0 as when we apply it to a pure state. Accordingly, if
[S, {√pi Ui | 1 ≤ i ≤ N}, ρa, ρ0] is a PQC, then H(p1, . . . , pN) bits of shared
randomness are sufficient for Alice to send any mixture ρ of S-states to Bob in a
secure way.

To sum up: Alice encodes ρ, together with a fixed ancilla state ρa, in a unitary
way depending on her key i and Bob can decode because he knows the same i
and hence can reverse Alice’s unitary operation Ui. On the other hand, Eve has
no information about the key i apart from the distribution pi, so from her point
of view the channel is in state ρEve = ρ0. This is independent of the ρ that Alice
wants to send, and hence gives Eve no information about ρ.

9.4 Examples and Properties of PQCs

In this section we exhibit some private quantum channels. The first uses 2n bits
of key to privately send any n-qubit state. The idea is simply to apply a random
Pauli matrix to each qubit individually. The 4 Pauli matrices are:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Note that these matrices are unitary as well as Hermitian, so σi = σ∗i = σ−1i .
Selecting a random Pauli matrix takes 2 random bits per qubit and the resulting
qubit is in the totally mixed state. That is, for all qubits |φ〉 = α|0〉 + β|1〉 we
have

1

4

3∑

i=0

σi|φ〉〈φ|σ∗i = Ĩ2.

Similarly, it is easily verified that applying n random Pauli matrices to n qubits,
respectively, gives the totally mixed n-qubit state Ĩ2n (irrespective of any en-
tanglement that may hold between the n qubits; this fact also follows from the
1-qubit case combined with Theorem 9.4.5 below). For notational convenience we
identify the numbers {0, . . . , 22n−1} with the set {0, 1, 2, 3}n. For x ∈ {0, 1, 2, 3}n
we use xi ∈ {0, 1, 2, 3} for its ith entry, and we use σx to denote the n-qubit uni-
tary transformation σx1 ⊗ · · · ⊗ σxn . This allows us to state our main example of
a private quantum channel:

9.4.1. Theorem (AMTW [10]). If E = { 1√
22n
σx | x ∈ {0, 1, 2, 3}n}, then we

have that [H2n , E , Ĩ2n ] is a PQC.

Since the above E contains 22n operations which have uniform probability, it
follows that 2n bits of private key suffice to privately send any state from H2n .
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The next theorem shows that there is some nontrivial subspace ofH2n where n
bits of private key suffice, namely the set of all tensor products of real-amplitude
qubits.

9.4.2. Theorem (AMTW [10]). If B = {cos(θ)|0〉 + sin(θ)|1〉 | 0 ≤ θ < 2π},
S = B⊗n, and E = { 1√

2n
σx | x ∈ {0, 2}n}, then [S, E , Ĩ2n ] is a PQC.

Proof. This is easily verified: applying σ0 and σ2, each with probability 1/2,
puts any qubit from B in the totally mixed state. Operator E does this to each
of the n qubits individually. 2

Note that if we restrict B to classical bits (i.e., θ ∈ {0, π/2}) then the above
PQC reduces to the classical one-time pad: flipping each bit with probability 1/2
gives information-theoretical security when the messages are classical. Note also
that this PQC does not work for arbitrary entangled real-amplitude states; for
instance the entangled state 1√

2
(|00〉 + |11〉) is not mapped to the totally mixed

state. For n = 1, 2, 3 there exist PQCs that require exactly n bits of entropy
and can privately transmit any entangled real-amplitude n-qubit state. However,
for n ≥ 4 we can show that such a PQC requires entropy strictly greater than n
bits. This marks a difference between sending entangled and unentangled real-
amplitude states. We omit the technical and not very intuitive proofs.

In the previous PQCs, ρ0 was the totally mixed state Ĩ2n . This is no accident,
and holds whenever n = m and Ĩ2n is one of the states that the PQC can send:

9.4.3. Theorem (AMTW [10]). If [S, E , ρ0] is a PQC without ancilla and Ĩ2n
can be written as a mixture of S-states, then ρ0 = Ĩ2n.

Proof. If Ĩ2n can be written as a mixture of S-states, then

ρ0 = E(Ĩ2n) =
N∑

i=1

piUiĨ2nU
∗
i =

N∑

i=1

pi
2n
UiU

∗
i =

N∑

i=1

pi
2n
I2n = Ĩ2n . 2

In general ρ0 need not be Ĩ2n . For instance, let S = {|0〉, 1√
2
(|0〉 + |1〉)}, E =

{1
2
I2,

1
2
H}, and ρ0 =

(
3
4

1
4

1
4

1
4

)
. Then it is easily verified that [S, E , ρ0] is a PQC.

Finally we prove that a PQC for n-qubit states and a PQC for m-qubit states
can easily be combined to a PQC for (n+m)-qubit states: entanglement between
the n-qubit and m-qubit parts is dealt with automatically. If E = {√piUi} and
E ′ = {√p′jU

′
j} are superoperators, then we use E ⊗E ′ = {√pip′jUi⊗U ′j} for their

tensor product. We will need the following technical lemma, which we prove first:

9.4.4. Lemma (AMTW [10]). Suppose that E(|φ〉〈φ| ⊗ ρa) = ρ0 whenever |φ〉
is a tensor product of n qubits. Then E(|x〉〈y| ⊗ ρa) = 0 whenever x and y are
different n-bit strings.
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Proof. For notational convenience we assume without loss of generality that
ρa = 0, so E uses no ancilla and ρ0 is an n-qubit state (this does not affect the
proof in any way). The proof is by induction on the Hamming distance d between
x and y.

Base case. If d = 1, then x and y differ only in 1 bit, which implies that
1√
2
(|x〉+ |y〉) and 1√

2
(|x〉+ i|y〉) are tensor products of n qubits (the first of these

states has 1√
2
(|0〉 + |1〉) at the bit position where x and y differ, the second has

1√
2
(|0〉+ i|1〉)). Hence we can write ρ0 in three ways:

ρ0 = E
(
1

2
(|x〉〈x|+ |y〉〈y|)

)

=
1

2
(E(|x〉〈x|) + E(|y〉〈y|)) .

ρ0 = E
(
(
1√
2
(|x〉+ |y〉))( 1√

2
(〈x|+ 〈y|))

)

=
1

2
(E(|x〉〈x|) + E(|y〉〈y|) + E(|x〉〈y|) + E(|y〉〈x|)) .

ρ0 = E
(
(
1√
2
(|x〉+ i|y〉))( 1√

2
(〈x| − i〈y|))

)

=
1

2
(E(|x〉〈x|) + E(|y〉〈y|)− iE(|x〉〈y|) + iE(|y〉〈x|)) .

The first and second equality together imply E(|x〉〈y|) + E(|y〉〈x|) = 0, the first
and third equality together imply E(|x〉〈y|) − E(|y〉〈x|) = 0. Hence E(|x〉〈y|) =
E(|y〉〈x|) = 0.

Induction step. Let x, y ∈ {0, 1}n have Hamming distance d > 1. Without
loss of generality we assume x = 0dz and y = 1dz for some z ∈ {0, 1}n−d. We
have to show E(|x〉〈y|) = 0.

Let v ∈ {0, 1}d. We consider the pure n-qubit state

|φv〉 =
1√
2d

(|0〉+ iv1 |1〉)⊗ · · · ⊗ (|0〉+ ivd |1〉)⊗ |z〉.

Let u · v =
∑

j ujvj denote the inner product of bitstrings u and v, and let u
denote the negation of u (all bits flipped). Since |φv〉 is a tensor product, we have

ρ0 = E(|φv〉〈φv|) =
1

2d

∑

u,u′∈{0,1}d
iu·v(−i)u′·vE(|u〉〈u′| ⊗ |z〉〈z|).

Note that the 2d terms with u = u′ in the right-hand side sum to ρ0. Subtracting
this from both sides of the equation reduces the left-hand side to 0. Furthermore,
by the induction hypothesis we have E(|u〉〈u′|⊗|z〉〈z|) = 0 whenever the Hamming
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distance between u and u′ lies between 1 and d − 1. Thus the only terms which
are left in the right-hand side of the above equation are the ones where u and u′

have Hamming distance d (i.e., u′ = u). Now, using iu·v(−i)u·v = (−i)|v|(−1)u·v,
the equation reduces to:

0 =
(−i)|v|
2d

∑

u∈{0,1}d
(−1)u·vE(|u〉〈u| ⊗ |z〉〈z|).

Removing the constant factor (−i)|v|, summing over all v, and using the fact that∑
v(−1)u·v = 2d for u = 0d and 0 for u 6= 0d, we obtain:

0 =
1

2d

∑

v∈{0,1}d

∑

u∈{0,1}d
(−1)u·vE(|u〉〈u| ⊗ |z〉〈z|) = E(|0 . . . 0〉〈1 . . . 1| ⊗ |z〉〈z|).

Since |0 . . . 0〉〈1 . . . 1| ⊗ |z〉〈z| = |x〉〈y|, this concludes the proof. 2

9.4.5. Theorem (AMTW [10]). If [H2n , E , ρa, ρ0] and [H2m , E ′, ρa′, ρ0′] are
PQCs, then [H2n+m , E ⊗ E ′, ρa ⊗ ρa′, ρ0 ⊗ ρ0′] is a PQC.

Proof. For notational convenience we will assume ρa = ρa
′ = 0. Consider any

n+m-qubit pure state |φ〉 =
∑

x∈{0,1}n,y∈{0,1}m
αxy|x〉|y〉. Using that |x〉|y〉〈x′|〈y′| =

|x〉〈x′| ⊗ |y〉〈y′|, we have:

(E ⊗ E ′) (|φ〉〈φ|) = (E ⊗ E ′)
(
∑

x,y,x′,y′

αxyα
∗
x′y′ |x〉〈x′| ⊗ |y〉〈y′|

)

=
∑

x,y,x′,y′

αxyα
∗
x′y′E (|x〉〈x′|)⊗ E ′ (|y〉〈y′|)

(∗)
=

∑

x,y

αxyα
∗
xyE (|x〉〈x|)⊗ E ′ (|y〉〈y|)

=
∑

x,y

|αxy|2ρ0 ⊗ ρ0′ = ρ0 ⊗ ρ0′.

In the (∗)-step we used that E(|x〉〈x′|) = 0 unless x = x′ (Lemma 9.4.4). 2

The above proof also shows that a PQC for S = H⊗n2 (the set of all unentangled
n-qubit states) is automatically also a PQC for S = H2n (the set of all n-qubit
states).

Finally, a similar derivation can be used to show that Alice can use an n-qubit
PQC to privately send Bob n qubits from a larger entangled state in a way that
preserves the entanglement. The PQC puts the n qubits in the ρ0-state, so Eve
can obtain no information from the channel. When Bob reconstructs the original
n-qubit state, this will still be entangled with the part of the state that Alice kept
to herself.
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9.5 Lower Bound on the Entropy of PQCs

Above we showed that 2n bits of entropy suffice for a PQC that can send arbitrary
n-qubit states. In this section we will show that 2n bits are also necessary for this.
Independently of our work, this 2n-bit lower bound was also proven by Boykin
and Roychowdhury [31] for the special case where the PQC is not allowed to use
any ancilla qubits. We will first give a shorter version of their proof, basically
by observing that a large part of it can be replaced by a reference to the unitary
equivalence of identical superoperators stated at the end of Section 9.2.1.

9.5.1. Theorem (Boykin & Roychowdhury [31]; AMTW [10]).
If [H2n , {

√
piUi | 1 ≤ i ≤ N}, Ĩ2n ] is a PQC, then H(p1, . . . , pN) ≥ 2n.

Proof. Let E = {√piUi}, and let E ′ = { 1√
22n
σx | x ∈ {0, 1, 2, 3}n} be the

superoperator of Theorem 9.4.1, and let K = max(22n, N). Since E(ρ) = E ′(ρ) =
Ĩ2n for all n-qubit states ρ, we have that E and E ′ are unitarily related in the way
mentioned in Theorem 9.2.1: there exists a unitary K × K matrix A such that
for all 1 ≤ i ≤ N we have

√
piUi =

∑

x∈{0,1,2,3}n
Aix

1√
22n

σx.

We view the set of all 2n × 2n matrices as a 22n-dimensional vector space with
inner product 〈M,M ′〉 = Tr(M ∗M ′)/2n and induced norm ‖M ‖=

√
〈M,M〉 (as

done in [31]). Note that ‖M ‖= 1 if M is unitary. It is easy to see that the set
of all σx forms an orthonormal basis for this vector space, so:

pi =‖
√
piUi ‖2=‖

∑

x

Aix
1√
22n

σx ‖2=
1

22n

∑

x

|Aix|2 ≤
1

22n
.

Hence N ≥ 22n and H(p1, . . . , pN) ≥ 2n. 2

However, even granted this result it is still conceivable that a PQC might
require fewer than 2n bits of randomness if it can “spread out” its encoding over
many ancilla qubits — it is even conceivable that those ancilla qubits can be
used to establish privately shared randomness using some variant of quantum
key distribution. The general case with ancilla is not addressed in [31], and
proving that the 2n-bit lower bound extends to this case requires more work.
The next few theorems will do this. They will in fact show something slightly
stronger, namely that a PQC that can transmit any unentangled n-qubit state
already requires 2n bits of randomness, no matter how many ancilla qubits it
uses. Thus Theorem 9.4.1 exhibits an optimal quantum one-time pad, analogous
to the optimal classical one-time pad mentioned in the introduction.
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We use the notation Ck = {|i〉 | 0 ≤ i ≤ k − 1} for the set of the first k
classical states. The next theorem implies that a PQC that privately conveys
n unentangled qubits using m bits of key, can be transformed into a PQC that
privately conveys any |i〉 ∈ C22n , still using only m bits of key.

9.5.2. Theorem (AMTW [10]). If there exists a PQC [H⊗n2 , E = {√piUi | 1 ≤
i ≤ N}, ρa, ρ0], then there is a PQC [C22n , E ′ = {

√
piU

′
i | 1 ≤ i ≤ N}, ρa, Ĩ2n ⊗ρ0].

Proof. For ease of notation we again assume E uses no ancilla. First note
that it follows easily from Lemma 9.4.4 that the PQC E not only works for H⊗n2
(the set of all unentangled n-qubit states) but also for H2n (the set of all n-qubit
states). We will first define E ′ and then show that it is a PQC.

Intuitively, E ′ maps every state from C22n to a tensor product of n Bell states by
mapping pairs of bits to one of the four Bell states (which are 1√

2
(|00〉± |11〉) and

1√
2
(|01〉 ± |10〉)). The second bits of the pairs are then moved to the second half

of the state and encrypted by applying E to them. Because of the entanglement
between the two halves of each Bell state, the resulting 2n-qubit density matrix
will be Ĩ2n ⊗ ρ0. More specifically, for x ∈ {0, 1, 2, 3}n and σx = σx1 ⊗ · · · ⊗ σxn
as in Theorem 9.4.1, define the following unitary transformation U :

U |x〉 = (σx ⊗ I2n)
1√
2n

∑

i∈{0,1}n
|i〉|i〉.

Also define U ′i = (I2n ⊗ Ui)U . It remains to show that E ′(|x〉〈x|) = Ĩ2n ⊗ ρ0 for
all |x〉 ∈ C22n :
E ′(|x〉〈x|) =

=
N∑

i=1

pi(I2n ⊗ Ui)


(σx ⊗ I2n)


 1√

2n

∑

y∈{0,1}n
|y〉|y〉




·


 1√

2n

∑

z∈{0,1}n
〈z|〈z|


 (σx ⊗ I2n)∗


 (I2n ⊗ Ui)∗

= (σx ⊗ I2n)


 1

2n

N∑

i=1

pi(I2n ⊗ Ui)


∑

y,z∈{0,1}n
|y〉〈z| ⊗ |y〉〈z|


(I2n ⊗ Ui)∗


(σx ⊗ I2n)∗

= (σx ⊗ I2n)


 1

2n

∑

y,z∈{0,1}n
|y〉〈z| ⊗

(
N∑

i=1

piUi|y〉〈z|U ∗i

)
 (σx ⊗ I2n)∗

= (σx ⊗ I2n)


 1

2n

∑

y,z∈{0,1}n
|y〉〈z| ⊗ E(|y〉〈z|)


 (σx ⊗ I2n)∗
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(∗)
= (σx ⊗ I2n)


 1

2n

∑

y∈{0,1}n
|y〉〈y| ⊗ E(|y〉〈y|)


 (σx ⊗ I2n)∗

= (σx ⊗ I2n)
[
Ĩ2n ⊗ ρ0

]
(σx ⊗ I2n)∗

= Ĩ2n ⊗ ρ0.

In the (∗)-step we used that E(|y〉〈z|) = 0 unless y = z (Lemma 9.4.4). 2

Privately sending any state from C2m corresponds to privately sending any
classical m-bit string. If communication takes place through classical channels,
then Shannon’s theorem implies that m bits of shared key are required to achieve
such security. Shannon’s classical lower bound does not translate automatically
to the quantum world (it is in fact violated if a two-way quantum channel is avail-
able, see Footnote 1 on page 156). Nevertheless, if Alice and Bob communicate
via a one-way quantum channel, then Shannon’s theorem does generalize to the
quantum world:

9.5.3. Theorem (AMTW [10]). If [C2m , {
√
piUi | 1 ≤ i ≤ N}, ρa, ρ0] is a

PQC, then H(p1, . . . , pN) ≥ m.

Proof. Diagonalize the ancilla: ρa =
∑r

j=1 qj|ψj〉〈ψj|, so S(ρa) = H(q1, . . . , qr).
Note that the 5th property of Von Neumann entropy (Section 9.2) implies:

S(ρ0) = S

(
N∑

i=1

piUi(|0〉〈0| ⊗ ρa)U ∗i

)

= S

(
N∑

i=1

r∑

j=1

piqjUi(|0〉〈0| ⊗ |ψj〉〈ψj|)U ∗i

)

≤ H(p1q1, p1q2, . . . , pNqr−1, pNqr)

= H(p1, . . . , pN) +H(q1, . . . , qr).

Also, using properties 2, 3, and 4 of Von Neumann entropy:

S(ρ0) = S

(
N∑

i=1

piUi(Ĩ2m ⊗ ρa)U ∗i

)

≥
N∑

i=1

piS
(
Ĩ2m ⊗ ρa

)

=
N∑

i=1

pi(m+ S(ρa))

= m+ S(ρa).
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Combining these two inequalities gives the theorem. 2

In particular, for sending arbitrary states from C22n we need entropy at least
2n. Combining Theorems 9.5.2 and 9.5.3 we thus obtain the main lower bound:
any private quantum channel that can send every n-qubit state in a secure way,
needs at least 2n bits of secret key. This shows that Theorem 9.4.1 is optimal.

9.5.4. Corollary (AMTW [10]). If [H⊗n2 , {√piUi | 1 ≤ i ≤ N}, ρa, ρ0] is a
PQC, then H(p1, . . . , pN) ≥ 2n (and hence in particular N ≥ 22n).

Since H⊗n2 ⊆ H2n , we have also proved the optimality of the PQC of Theo-
rem 9.4.1:

9.5.5. Corollary (AMTW [10]). If [H2n , {
√
piUi | 1 ≤ i ≤ N}, ρa, ρ0] is a

PQC, then H(p1, . . . , pN) ≥ 2n.

In relation to Theorem 9.4.2, note that C2n ⊆ B⊗n. Hence another corollary
of Theorem 9.5.3 is the optimality of the PQC of Theorem 9.4.2:

9.5.6. Corollary (AMTW [10]). If [B⊗n, {√piUi | 1 ≤ i ≤ N}, ρa, ρ0] is a
PQC, then H(p1, . . . , pN) ≥ n (and hence in particular N ≥ 2n).

9.6 Summary

The main result of this chapter is an optimal quantum version of the classical
one-time pad. On the one hand, if Alice and Bob share 2n bits of secret key, then
Alice can send Bob any n-qubit state ρ, encoded in another n-qubit state in a way
that conveys no information about ρ to the eavesdropper. This is a simple scheme
which works locally (i.e., deals with each qubit separately) and uses no ancillary
qubits. On the other hand, we showed that even if Alice and Bob are allowed
to use and send any number of ancilla qubits, then they still require 2n bits of
entropy. Thus 2n bits of shared randomness are necessary as well as sufficient for
private communication of n qubits.





Appendix A

Some Useful Linear Algebra

In this appendix we sketch some useful parts of linear algebra, most of which will
be used somewhere or other in the thesis.

A.1 Some Terminology and Notation

We use V = Cd to denote the d-dimensional complex vector space, which is the
set of all column vectors of d complex numbers. We assume familiarity with the
basic rules of matrix addition and multiplication. A set of vectors v1, . . . , vm ∈ V
is linearly independent if the only way to get

∑m
i=1 aivi equal to the zero-vector ~0

is to set a1 = · · · = am = 0. A basis for V is a set of vectors v1, . . . , vd such that
every vector v ∈ V can be written as a linear combination of those basis vectors
v =

∑d
i=1 aivi. One can show that a basis is linearly independent.

We use Aij for the (i, j)-entry of a matrix A and AT for its transpose, which
has AT

ij = Aji. Id denotes the d× d identity matrix, which has 1s on its diagonal
and 0s elsewhere. We usually omit the subscript d when the dimension is clear
from context. If A is square and there is a matrix B such that AB = BA = I,
then we use A−1 to denote this B, which is called the inverse of A (and is unique if
it exists). Note that (AB)−1 = B−1A−1. If A is a matrix (not necessarily square),
then A∗ denotes its conjugate transpose: the matrix obtained by transposing A
and taking the complex conjugates of all entries. Note that (AB)∗ = B∗A∗.
Physicists often write A† instead of A∗.

For vectors v, w, we use 〈v|w〉 = v∗w =
∑

i v
∗
iwi for their inner product. The

combination of the vector space V with this inner product is called a Hilbert
space. Two vectors v, w are orthogonal if 〈v|w〉 = 0. The inner product induces
a vector norm ‖v ‖=

√
〈v|v〉 =

√∑
i |vi|2. The Cauchy-Schwarz inequality gives

|〈v|w〉| ≤‖v‖ · ‖w‖. A set {vi} of vectors is called an orthogonal set if all vectors
are pairwise orthogonal: 〈vi|vj〉 = 0 if i 6= j. If additionally the vectors all have
norm 1, then the set is called orthonormal. The outer product of v and w is the
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matrix vw∗. Below we will restrict attention to square matrices, unless explicitly
mentioned otherwise. The complex number λ is an eigenvalue of square matrix
A is there is some eigenvector v such that Av = λv.

A.2 Unitary Matrices

A matrix A is unitary if A−1 = A∗. The following conditions are equivalent:

1. A is unitary

2. A preserves inner product: 〈Av|Aw〉 = 〈v|w〉 for all v, w

3. A preserves norm: ‖Av‖=‖v‖ for all v

4. ‖Av‖= 1 if ‖v‖= 1

(1) implies (2) because if A is unitary then A∗A = I, and hence 〈Av|Aw〉 =
(v∗A∗)Aw = 〈v|w〉. (2) implies (1) as follows: if A is not unitary then A∗A 6= I,
so then there is a w such that A∗Aw 6= w and, hence, a v such that 〈v|w〉 6=
〈v|A∗Aw〉 = 〈Av|Aw〉, contradicting (2). Clearly (2) implies (3). Moreover, it is
easy to show that (3) implies (2) using the following identity:

‖v + w‖2=‖v‖2 + ‖w‖2 +〈v|w〉+ 〈w|v〉.

The equivalence of (3) and (4) is obvious. Note that by (4), the eigenvalues of a
unitary matrix have absolute value 1.

A.3 Diagonalization and Singular Values

Matrices A and B are similar if there is an invertible matrix S such that A =
SBS−1. Note that if Av = λv, then BS−1v = λS−1v, so similar matrices have
the same eigenvalues. Schur’s lemma states that every matrix A is similar to an
upper triangular matrix: A = U−1TU for some unitary U and upper triangular
T . Since similar matrices have the same eigenvalues and the eigenvalues of an
upper triangular matrix are exactly its diagonal entries, the eigenvalues of A form
the diagonal of T .

A matrix D is diagonal if Dij = 0 whenever i 6= j. Let S be some matrix
satisfying AS = SD for some diagonal matrix D. Let vi be the ith column of S
and λi be the ith entry on the diagonal of D, then




...
...

Av1 · · · Avd
...

...




︸ ︷︷ ︸
AS

=




...
...

λ1v1 · · · λdvd
...

...




︸ ︷︷ ︸
SD

,
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and we see that vi is an eigenvector of A associated with eigenvalue λi. Conversely,
if v1, . . . , vd are eigenvectors of A with eigenvalues λ1, . . . , λd, then we have AS =
SD, where S has the vi as columns and D is the diagonal matrix of λi. We
call a square matrix A diagonalizable if it is similar to some diagonal matrix D:
A = SDS−1. This D then has A’s eigenvalues λi on its diagonal, some of which
may be zero. Note that A is diagonalizable iff it has a linearly independent set of d
eigenvectors. These eigenvectors will form the columns of S, givingAS = SD, and
linear independence ensures that S has an inverse, giving A = SDS−1. A matrix
A is unitarily diagonalizable iff it can be diagonalized via a unitary matrix U :
A = UDU−1. By the same argument as before, A will be unitarily diagonalizable
iff it has an orthonormal set of d eigenvectors.

A matrix A is normal if it commutes with its conjugate transpose (A∗A =
AA∗). For example, unitary matrices are normal. If A is normal and A = U−1TU
for some upper triangular T (which must exist because of Schur’s lemma), then
T = UAU−1 and T ∗ = UA∗U−1, so TT ∗ = UAA∗U−1 = UA∗AU−1 = T ∗T .
Hence T is normal and upper triangular, which implies (with a little work) that
T is diagonal. This shows that normal matrices are unitarily diagonalizable. Con-
versely, if A is diagonalizable as U−1DU , then AA∗ = U−1DD∗U = U−1D∗DU =
A∗A, so then A is normal. Thus a matrix is normal iff it is unitarily diagonaliz-
able. If A is not normal, it may still be diagonalizable via a non-unitary S, for
example: (

1 1
0 2

)

︸ ︷︷ ︸
A

=

(
1 1
0 1

)

︸ ︷︷ ︸
S

·
(

1 0
0 2

)

︸ ︷︷ ︸
D

·
(

1 −1
0 1

)

︸ ︷︷ ︸
S−1

.

If A = UDU−1 then A∗ = UD∗U−1, so the eigenvalues of A∗ are the complex
conjugates of the eigenvalues of A.

An important class of normal (and hence unitarily diagonalizable) matrices
are the Hermitian matrices, which are the ones satisfying A = A∗. Note that the
previous paragraph implies that the eigenvalues of Hermitian matrices are real.
A Hermitian matrix is called positive (resp. non-negative) if all its eigenvalues
are positive (resp. non-negative). If all eigenvalues are 0 or 1, then A is called a
projection or projection matrix. This is equivalent to requiring A2 = A.

Not all matrices are diagonalizable, for instance A =

(
0 1
0 0

)
. However,

every matrix A has a singular value decomposition, as follows. It is easy to see
that the matrix A∗A has the same eigenvectors as A and that its eigenvalues are
the squared absolute values of the eigenvalues of A. Since A∗A is Hermitian and
hence normal, we have A∗A = UDU−1 for some U and some non-negative real
diagonal matrix D. The entries of Σ =

√
D are called the singular values of A.

Every A has a singular value decomposition A = UΣV −1, with U, V unitary. This
implies that A can be written as A =

∑
i λiuiv

∗
i , with ui the columns of U and vi

the columns of V .
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A.4 Trace

The trace of a matrix A is the sum of its diagonal entries: Tr(A) =
∑

iAii. Some
important and easily verified properties of Tr(A) are:

• Tr(A+B) = Tr(A) + Tr(B)

• Tr(AB) = Tr(BA)

• Tr(A) is the sum of the eigenvalues of A
(This follows from Schur and the previous item: Tr(A) = Tr(UTU−1) =
Tr(U−1UT ) = Tr(T ) =

∑
i λi)

A.5 Tensor Products

If A = (Aij) is an m × n matrix and B an m′ × n′ matrix, then their tensor or
Kronecker product is the mm′ × nn′ matrix

A⊗B =




A11B · · · A1nB
A21B · · · A2nB

. . .

Am1B · · · AmnB


 .

The following properties of the tensor product are easily verified:

• c(A⊗B) = (cA)⊗B = A⊗ (cB) for all scalars c

• (A⊗B)∗ = A∗ ⊗B∗ (and similarly for inverse and transpose)

• A⊗ (B + C) = (A⊗B) + (A⊗ C)

• A⊗ (B ⊗ C) = (A⊗B)⊗ C

• (A⊗B)(C ⊗D) = (AC)⊗ (BD)

Different vector spaces can also be combined using tensor products. If V and V ′

are vectors spaces of dimension d and d′ with basis {v1, . . . , vd} and {v′1, . . . , v′d′},
respectively, then their tensor product space is the d · d′-dimensional space W =
V ⊗ V ′ spanned by {vi ⊗ v′j | 1 ≤ i ≤ d, 1 ≤ j ≤ d′}. Applying a linear operation
A to V and B to V ′ corresponds to applying the tensor product A ⊗ B to the
tensor product space W .
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A.6 Rank

The rank of a matrix A (over a field F) is the size of the largest linearly inde-
pendent set of rows of A (linear independence taken over F). Unless mentioned
otherwise, we take F to be the field of real numbers. We say that A has full rank
if its rank equals its dimension. The following properties are all easy to show:

• rank(A) = rank(A∗)

• rank(A) equals the number of non-zero eigenvalues of A (counting multi-
plicity)

• rank(A+B) ≤ rank(A) + rank(B)

• rank(AB) ≤ min{rank(A), rank(B)}

• rank(A⊗B) = rank(A) · rank(B)

• A has an inverse iff A has full rank

A.7 Dirac Notation

Physicists often write their linear algebra in Dirac notation, and we will follow
that custom for denoting quantum states. In this notation we write |v〉 = v and
〈v| = v∗. The first is called a ket, the second a bra. Note that

• 〈v|w〉 = 〈v||w〉

• If A is unitarily diagonalizable, then A =
∑

i λi|vi〉〈vi| for some orthonormal
set of eigenvectors {vi}

• |v〉〈v| ⊗ |w〉〈w| = (|v〉 ⊗ |w〉)(〈v| ⊗ 〈w|)
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Samenvatting

Computers zijn fysische objecten en dus onderhevig aan de wetten van de natuur-
kunde. Het is daarom enigszins verrassend dat de computers van tegenwoordig
(zowel theoretische Turing machines als huis-tuin-en-keuken PCs) ontwikkeld zijn
op basis van de klassieke natuurkunde, en niet op basis van de 20e eeuwse opvol-
ger daarvan, de quantum mechanica. Het nieuwe vakgebied quantum computing
herstelt deze omissie door de eigenschappen te bestuderen van computers die
zich gedragen volgens de wetten van de quantum mechanica. Een van de meest
opvallende eigenschappen van de quantum computer is dat deze in een superpo-
sitie van allerlei klassieke toestanden tegelijk kan zijn, die interferentiepatronen
kunnen vertonen.

Eén van de belangrijkste doelen van quantum computing is om quantum al-
goritmes (berekeningschema’s) te vinden die bepaalde computationele problemen
veel sneller kunnen oplossen dan de beste klassieke algoritmes. De twee succes-
volste quantum algoritmes tot nu toe zijn Shor’s algoritme uit 1994 dat snel de
priemfactoren van grote getallen kan vinden (waarmee de meeste moderne cryp-
tografische systemen gekraakt zouden kunnen worden) en Grover’s algoritme uit
1996 dat een zoekruimte van n elementen in ongeveer

√
n stappen kan doorzoeken.

Deel I: Query Complexiteit

Het beginpunt van deel I van dit proefschrift is de observatie dat vrijwel alle be-
staande quantum algoritmes (inclusief die van Shor en Grover) beschreven kun-
nen worden in termen van query complexiteit : de quantum algoritmes hoeven veel
minder vaak naar bits van de input te “kijken” dan klassieke algoritmes. Het lijkt
er op dat dit model van query complexititeit een significant deel van de kracht
van quantum computers bevat. Daarom maken we in deel I van het proefschrift
een algemene en gedetailleerde vergelijking tussen quantum query complexiteit
en klassieke query complexiteit voor allerlei computationele problemen.
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Ons belangrijkste instrument in deze vergelijking is algebräısch: we bewijzen
dat de graad van een polynoom dat het computationele probleem representeert,
een ondergrens geeft op quantum query complexiteit. Dit betekent dat we on-
dergrenzen op quantum complexiteit kunnen bewijzen door polynomen voor die
problemen te analyseren. Eén van de belangrijkste gevolgen is een bewijs dat
quantum query complexiteit hoogstens polynomiaal kleiner kan zijn dan klassieke
query complexiteit wanneer we te maken hebben met een totaal computationeel
probleem (dat wil zeggen, een probleem dat gedefinieerd is voor alle mogelijke
inputs). Met andere woorden, een quantum computer kan alleen exponentieel
sneller zijn dan een klassieke computer in dit model wanneer we weten dat de in-
put een bepaalde specifieke eigenschap zal hebben. Bijvoorbeeld in het geval van
Shors algoritme weten we dat een bepaalde functie waarnaar het factoriserings-
probleem gereduceerd wordt, periodiek is.

Afgezien van deze algemene resultaten die voor alle totale problemen gelden,
houden we ons ook in detail bezig met verschillende specifieke computationele
problemen. We bewijzen bijvoorbeeld dat de kans op een fout antwoord in Grovers
algoritme wat beter gereduceerd kan worden wanneer we deze fout-reductie op een
quantum manier doen dan wanneer we het op de normale klassieke manier zouden
doen (die het algoritme gewoon een paar keer zou herhalen). We ontwikkelen ook
een quantum algoritme voor het element distinctness probleem (dit is: zijn de
getallen op een gegeven lijst met n getallen allemaal verschillend?) dat ongeveer
n3/4 stappen nodig heeft. Dit laat zien dat voor een quantum computer het
probleem van element distinctness veel eenvoudiger is dan het sorteer-probleem.
Dit contrasteert met de klassieke wereld, waarin beide problemen ongeveer n log n
stappen nodig hebben.

Tot slot laten we zien dat het negatieve resultaat voor standaard query com-
plexiteit (quantum geeft hoogstens een polynomiale verbetering voor alle totale
problemen) niet geldt in twee andere versies van query complexiteit: average-case
complexiteit en non-deterministische complexiteit. Voor beide modellen laten we
totale computationele problemen zien waarvoor quantum computers exponentieel
minder queries nodig hebben dan de beste klassieke algoritmes.

Deel II: Communicatie en Complexiteit

Sinds de jaren ’70 is het bekend dat quantum communicatie niet efficiënter is dan
klassieke communicatie voor informatieoverdracht: als Alice k bits aan informa-
tie wil sturen naar Bob dan zal ze hem minstens k quantum bits moeten sturen.
Echter, Cleve en Buhrman hebben ontdekt dat wanneer Alice en Bob niet zozeer
informatie willen oversturen, maar een of ander computationeel probleem willen
oplossen (Alice krijgt x, Bob krijgt y, en samen willen ze een functie f(x, y) bere-
kenen met minimale onderlinge communicatie), dan kan de benodigde hoeveelheid
communicatie soms drastisch gereduceerd worden als we quantum communicatie
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toestaan. Bijvoorbeeld, een resultaat van Buhrman, Cleve, en Wigderson laat
zien dat als Alice en Bob ieder een agenda hebben met n dagen waarin ze een
dag willen vinden waarop ze allebei vrij zijn, dan kunnen ze zo’n dag vinden met
zo’n

√
n quantum bits aan communicatie. Klassiek zijn hier ongeveer n bits voor

nodig.
In deel II van dit proefschrift bekijken we dit model van communicatie com-

plexiteit van verschillende kanten. We bespreken eerst de belangrijkste voorbeel-
den waar quantum communicatie complexiteit significant minder is dan klassieke
communicatie complexiteit. Daarna bestuderen we de andere kant, en ontwikke-
len we technieken om ondergrenzen te bewijzen op quantum communicatie com-
plexiteit. Deze technieken laten bijvoorbeeld zien dat quantum communicatie
nauwelijks beter is dan klassieke communicatie voor bijna alle gedistribueerde
problemen. We laten echter ook een nieuw geval zien waar de quantum commu-
nicatie complexiteit wel veel lager is dan de klassieke complexiteit: in een bepaald
3-partijen model (Alice en Bob sturen allebei een boodschap naar een arbiter, die
daarmee f(x, y) moet berekenen), kunnen Alice en Bob testen of hun inputs x
en y gelijk zijn met exponentieel veel minder communicatie wanneer we quan-
tum communicatie toestaan. Dit voorbeeld gebruikt een nieuwe techniek die we
quantum fingerprinting noemen.

In het laatste hoofdstuk bekijken we tenslotte een beveiligingsaspect. Stel dat
Alice en Bob hun onderlinge communicatie niet alleen willen minimaliseren, maar
deze communicatie ook geheim willen houden: als een derde persoon, Eve, het
communicatiekanaal aftapt, dan mag ze hiervan niets leren over de boodschappen
die Alice en Bob uitwisselen. Het is bekend dat een gedeelde geheime sleutel van
n bits noodzakelijk en voldoende is om een klassieke n-bit boodschap van Alice
naar Bob te sturen op een manier die geen informatie geeft aan Eve (Shannons
stelling). We bewijzen het quantum analogon hiervan: een gedeelde 2n-bit sleutel
is noodzakelijk en voldoende om veilig een boodschap van n quantum bits te
kunnen sturen.





Abstract

Computers are physical objects and hence should follow the laws of physics. Some-
what surprisingly, today’s computers (theoretical Turing machines as well as desk-
top PCs) are developed on the model of classical physics rather than on the model
of its 20th century successor quantum mechanics. The new field of quantum com-
puting tries to make up for this deficit by studying the properties of computers
that follow the laws of quantum mechanics. One of the striking properties of a
quantum computer is that it can be in a superposition of many classical states at
the same time, which can exhibit interference patterns.

One of the main goals of the field of quantum computing is to find quantum
algorithms that solve certain problems much faster than the best classical algo-
rithms. Its two main successes so far are Shor’s 1994 efficient quantum algorithm
for finding the prime factors of large integers (which can break most of modern
cryptography) and Grover’s 1996 algorithm that can search an n-element space
in about

√
n steps.

Part I: Query Complexity

The starting point of part I of this thesis is the observation that virtually all known
quantum algorithms (including Shor’s and Grover’s) can be described in terms
of query complexity : they require far fewer queries to input bits than classical
algorithms do. It thus appears that the model of query complexity captures a lot
of the power of quantum computing. Accordingly, in part I of the thesis we make
a detailed and general comparison of quantum query complexity versus classical
query complexity for various kinds of computational problems.

Our main tool in this comparison is algebraic: we prove that the quantum
query complexity of a computational problem is lower bounded by the degree of
a certain polynomial that in some sense represents that problem. This means
that we can prove lower bounds on the quantum query complexity of various
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problems by analyzing polynomials for those problems. One of the main con-
sequences of this technique is the result that quantum query complexity can be
at most polynomially smaller than classical query complexity when we consider
total computational problems (which are defined on all possible inputs). In other
words, any exponential quantum speed-up in this model will have to be based on
some promise on the input, some property that the input is known in advance
to have. For example, for Shor’s algorithm this promise is the periodicity of a
certain function to which the factoring problem can be reduced.

Apart from these general results that hold for all total problems, we also con-
sider in more detail the quantum complexities of various specific computational
problems. For example, we prove that the error probability in Grover’s search
algorithm can be reduced slightly better if we do this in a quantum way than if
we do it in the usual classical way (which would just repeat Grover’s algorithm
many times). We also derive an algorithm for the element distinctness problem
(which is: are the numbers on a list of n elements all distinct?) that takes about
n3/4 steps. This shows that for a quantum computer the problem of element
distinctness is significantly easier than the problem of sorting, in contrast to the
classical world, where both problems require about n log n steps.

Finally, we show that the negative result for standard query complexity (at
most a polynomial quantum speed-up for all total problems) does not hold in two
other versions of query complexity: average-case complexity and non-deterministic
complexity. For both models we exhibit total problems and quantum algorithms
for solving those problems that are exponentially better than the best classical
algorithms.

Part II: Communication and Complexity

It has been known since the early 1970s that quantum communication cannot
improve upon classical communication when it comes to information transmission:
if Alice wants to send Bob k bits of information, then she has to send him at least k
quantum bits (Holevo’s theorem). However, Cleve and Buhrman discovered that
if the goal of Alice and Bob is not to communicate information but to solve some
distributed computational problem (Alice gets x, Bob gets y, and together they
want to compute some function f(x, y) with minimal communication between
them), then sometimes the amount of communication can be reduced drastically
by allowing quantum communication. For example, a result of Buhrman, Cleve,
and Wigderson says that if Alice and Bob each have an n-slot agenda and they
want to find a slot where they are both free, then they can do this with roughly√
n quantum bits of communication, whereas in the classical world about n bits

of communication would be needed.

In part II of the thesis we look at this model of quantum communication com-
plexity from various angles. We first discuss the main examples known where
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quantum communication complexity is significantly less than classical communi-
cation complexity. Then we consider the other side and develop techniques to
show lower bounds on quantum communication complexity, again using algebraic
techniques. These techniques imply, for example, that quantum communication
cannot improve significantly upon classical communication complexity for almost
all distributed problems. However, we also exhibit a new example where quantum
communication complexity does improve upon classical complexity: in a specific
3-party model (Alice and Bob each send a message to a referee, who should then
compute f(x, y)), the problem of testing equality between Alice and Bob’s input
can be solved with exponentially less communication when we allow quantum
communication, using a new technique called quantum fingerprinting.

In the final chapter we address an issue of security. Suppose Alice and Bob
care not only about minimizing the amount of their communication, but also
about keeping it secret : if some third party Eve is tapping the communication
channel, then she should learn nothing about the actual messages. Classically,
it is known that a shared secret n-bit key is necessary and sufficient to send a
classical n-bit message from Alice to Bob in a way that gives no information to
Eve (Shannon’s theorem). We prove the quantum analogue of this: 2n bits of
shared secret key are necessary and sufficient to securely send a message of n
quantum bits.





List of symbols

D(f) deterministic classical query complexity (p.31)
R0(f) zero-error classical query complexity (p.32)
R2(f) bounded-error classical query complexity (p.32)
QE(f) exact quantum query complexity (p.33)
Q0(f) zero-error quantum query complexity (p.34)
Q2(f) bounded-error quantum query complexity (p.34)

superscript ‘µ’ indicates average-case complexity under µ (p.79)
N(f) non-deterministic classical query complexity (p.91)
NQ(f) non-deterministic quantum query complexity (p.91)
deg(f) degree of exact polynomial for f (p.29)
deg0(f) zero-error degree (p.29)

d̃eg(f) approximating degree (p.29)
ndeg(f) non-deterministic degree (p.93)
C(f) certificate complexity (p.36)
s(f) sensitivity (p.37)
bs(f) block sensitivity (p.37)
bs0(f) 0-block sensitivity (p.125)
Dcc(f) deterministic classical communication complexity (p.105)
Rcc0(f) zero-error classical communication complexity (p.105)
Rcc2(f) bounded-error classical communication complexity (p.105)
QccE(f) exact quantum communication complexity (p.107)
Qcc0(f) zero-error quantum communication complexity (p.107)
Qcc2(f) bounded-error quantum communication complexity (p.107)

superscript ‘∗’ indicates the use of prior EPR-pairs (p.107)
superscript ‘‖’ indicates the simultaneous message passing model (p.141)

Ccc∗E(f) exact classical communication complexity with EPR-pairs (p.107)
Ccc∗0(f) zero-error classical communication complexity with EPR-pairs (p.107)
Ccc∗2(f) bounded-error classical communication complexity with EPR-pairs (p.107)
Ncc(f) non-deterministic classical communication complexity (p.133)
NQcc(f) non-deterministic quantum communication complexity (p.133)
rank(f) rank of the communication matrix of f (p.117)

r̃ank(f) approximate rank (p.129)
nrank(f) non-deterministic rank (p.134)
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