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“J’ai besoin d’un mouton. Dessine-moi un mouton

Alors j’ai dessiné.
Il regarda attentivement, puis :
- Non! celui-là est déjà très malade. Fais-en un autre.

Je dessinai :
Mon ami sourit gentiment, avec indulgence :
- Tu vois bien. . . ce n’est pas un mouton, c’est un bélier. Il a des cornes [. . . ]

Et je lançai :
- Ça c’est la caisse. Le mouton que tu veux est dedans.
Mais je fus bien surpris de voir s’illuminer le visage de mon jeune juge :
- C’est tout à fait comme ça que je le voulais!”
[SE46]

A Nina

v
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Abstract

Pictorial languages occur in almost every field from roadsigns to technical design
or abstract art. Computer science is no exception. Understanding the reasons for
the success of visual information in human communication and exploiting them
in an automated fashion has gained a prominent place in the artificial intelli-
gence agenda. By considering several aspects of graphical languages in knowledge
representation, this thesis positions conceptual graphs, a specific diagrammatic
framework, at a crossroad of logic, language and computation.

Some of the cognitive and linguistic efficient features of drawings play an
indisputable role in human and human-machine communication. Besides these
interesting representational standpoints, the computational efficiency of reasoning
we obtain on some classes of diagrams emphasises the relevance of pictures in
automated reasoning.

In this dissertation, computational complexity is understood in traditional
symbolic terms. As a result, this lays a common ground for a beneficial interac-
tion between usual textual logics and graphical languages: in the first place, the
diagrammatic systems we study reveal the attractive computational complexity of
logical fragments that fall outside the usual paths of symbolic logic. Conversely,
some symbolic characterisations adapt well to the diagrammatic frameworks. For
instance, the notion of guards, which arose from the translation of modal logics
into classical ones, defines a new visual notion of tree in the conceptual graph
paradigm. Moreover, reasoning techniques can be exchanged between both sides
or combined. Finally, cognitive aspects that are recognised in the perception and
manipulation of diagrams offer new tracks for expanding established symbolic
computational models with additional visual features.

The central issue of this thesis is to explore these interactions between con-
ceptual graph fragments and symbolic logics, in the light of standard symbolic
complexity models. The main results that are presented concern graphical proof
methods for consequence problems and their complexity analysis in several con-
ceptual graph languages. Furthermore, by bringing the study into the wider

xiii



perspective of visual information in artificial intelligence, we aim at contributing
to the general issue of a better understanding of some properties of reasoning with
diagrams; this appears to be the necessary basis for further promising connections
between symbolic and graphical perspectives.

The work is organised in five chapters. The first two chapters position concep-
tual graphs in the perspective of several disciplines involved in artificial intelli-
gence. Chapter 1 relates conceptual graphs to historical appearances of diagrams
in logic, pictorial languages in knowledge representation, cognitive studies of vi-
sual information and drawings used in natural language processing. The wide
scope of this overview stresses the relevance of fine-grained studies of visual prop-
erties to the artificial intelligence community as a whole. Computational logic
may be seen as common ground for all these fields when applied to automated
reasoning; this is the subject of the next chapter.

Chapter 2 presents the technical framework in which the graphical systems
used in the rest of this work will be evaluated. Symbolic complexity analysis offers
fine-structure formal analysis of reasoning with the graphs and connects the study
of visual reasoning to current interests in expressiveness and complexity in sym-
bolic logic. A geography of complexity results in classical and modal fragments
is then depicted. It sets the scene for the study of conceptual graph languages:
several decision problems are relevant and homomorphism-based methods rely on
problem equivalence (between model comparison and consequence) that occur in
low-expressive languages.

Chapter 3 introduces the core fragment of simple conceptual graphs and pro-
jection, a consequence calculus based on labelled graph homomorphism. In ad-
dition to the usual semantics of simple graphs, which is given by a translation
to existential conjunctive FOL, a model-theoretic approach is also provided. It
offers a direct handle for associating projections with model comparisons. By
defining a notion of meta-acyclicity based on guarded quantification and an ap-
propriate projection algorithm, a tractable guarded fragment of simple graphs is
highlighted (Theorem 3.3.7). It includes all previously known tractable fragments
of simple conceptual graphs (i.e. graphs that can be transformed into equivalent
trees).

Chapter 4 explores different possible extensions of the core language. First,
the addition of atomic negation is considered. In the graph representations, a
separation criterion of positive from negative information defines a fragment of
simple graphs with atomic negation in which projections apply (Theorem 4.1.19).
Furthermore, in the guarded restriction of this fragment, consequence is polyno-
mial (Corollary 4.1.22). Secondly, for a language of conceptual graphs equivalent
to first-order logic, we propose a complete proof method combining tableau con-
struction rules and projections (Chapter 4.2). Finally, in the remaining part of
the chapter, a modal perspective for graph nesting is studied . Reimporting the
notion of guards in this modal framework enables us to define a language of nested
graphs with a tractable associated projection (Corollary 4.3.15).

xiv



In the last chapter, we draw our main conclusions from the complexity results
obtained along our chosen route through conceptual graph landscapes. In partic-
ular, the successful interaction of graphical aspects with symbolic ones suggests
promising further paths towards more visually oriented computation.
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Introduction

Mankind has used pictorial representations to convey information since the first
prehistoric wall paintings. The resemblance of pictures to what they represent
and their universal nature are often put forward as reasons for the efficiency of
pictures as a mean of communication. In addition, one can identify graphical
features that play a role in the efficiency of reasoning with pictures. The two
aspects, representation efficiency and inference efficiency, are complementary in
this study of a particular class of graphical languages, conceptual graphs. The
aim of this dissertation is to examine some cognitive and computational impacts
of representing knowledge with conceptual graph diagrams.

The course of this dissertation is almost linear. The first chapter offers a
wide perspective in exploring several facets of the representation of information
by conceptual graphs in the light of logic, artificial intelligence, cognitive science
and linguistics.

The second chapter introduces the most salient theme of this dissertation, the
complexity of logical reasoning in conceptual graph systems. Symbolic complexity
theory offers the required fine structure to define the formal problems relevant
to the study and to explore the connections between the diagrams and symbolic
logics.

The third chapter explores in detail the cornerstone fragment: simple concep-
tual graphs. A particular interest concerns the complexity of an homomorphism-
based calculus that takes advantage of guarded quantification in the diagrams.

In the fourth chapter, the addition of different forms of negation to the simple
graphs and the modal nature of nested graphs are investigated. The tractability
of reasoning in these fragments and the definition of graphical complete calculi
remain our main concerns.

In the final chapter, the main conclusions are drawn from the lessons learned
along this systematic investigation.

1





Chapter 1

Diagrams and visual information

Figure 1.1: Message sent on the Voyager space probe

Diagrams occur in almost every domain where information is communicated.
Examples are numerous, from the geometrical demonstration of Pythagoras the-
orem to a diagrammatic message sent to possible extra-terrestrial life forms. Part
of the success of diagrams as a means of communication is due to the simple
way in which complex information is represented. This chapter examines several
aspects of the diagrammatic representation of knowledge, with a constant focus
on a particular point of interest, conceptual graph diagrams.

To begin with, the occurrence of diagrammatic representations in the history
of logic is explored. Peirce’s predicate logic of existential graphs was introduced
at the turn of the nineteenth century. It is a particularly important source of
inspiration for the development of conceptual graphs.

In computer science, graphical features are extensively exploited on the repre-
sentational level as well as on the computational level. Some of these applications
to artificial intelligence are examined in part two of this chapter.

The essence of diagram processing resides in their prime perceptual effect. In
the third part, the cognitive impact of conceptual graph diagrams is explored.

As a preponderant form of communication between humans, natural language
should not be disregarded. The last part of this chapter is an attempt to relate

3
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the structure of conceptual graph drawings to the structure of discourse in natural
language.

Diagrams? Before diagrams are explored, a brief presentation of some terms,
that all correspond to graphical representations, is necessary.

Picture will be used as a generic term to refer to a graphical representation
laid on a delimited zone of a two-dimensional space. Images and drawings are
both pictures. Conventionally, images refer to pictures that can be decomposed
into a finite amount of minimal points (e.g., pixels, bitmaps), whereas drawings
can be formed of continuous lines. With the assistance of computers for drawing
pictures this difference between images and drawings is even more subtle: while
a computer picture can be conceived and stored as a drawing (e.g. a vectorial
representation), its printing on a screen will be an image limited by the resolution
of the screen.

Diagrams correspond to schematised drawings in which graphical constituents
are associated with a well-defined semantics. Finally, a graph refers to an abstract
mathematical object composed of nodes connected by edges. It can be physically
represented by a diagram.

The specific nature of diagrams will be discussed in the part dedicated to the
cognitive impact of conceptual graph diagrams (Chapter 1.3). Before that, some
graphical systems that preceded conceptual graphs in logic are presented.

1.1 Diagrams in logic

Graphical knowledge representation systems are not a new phenomenon. Eigh-
teenth century Euler circles and nineteenth century Venn diagrams are still pop-
ular for manipulating sets and boolean operations. Although most languages of
modern logic are textual, it is worth noting that the pioneer research for the
foundation of predicate logic was presented in graphical forms: at the end of
the nineteenth century, Frege and Peirce independently introduced two graphical
systems of first-order logic in an attempt to formalise mathematical reasoning.

1.1.1 Frege’s graphs

The language proposed by Frege in his Begriffsschrift [Fre79] represents sentences
by trees derived from four graphical primitives:

1. “assert A”:

2. “not A”:

3. “B implies A”:
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4. “for every x, Px”:

For instance, “assert that for every x, there exists y such that Pxy and Pyx” or

equivalently, “∀x¬∀y(Pxy → ¬Pyx)” is represented by .
Similar to a tree presentation of a tableau calculus proof, different parts of the

representation are distinguished by a disposition on branches. In this particular
language, the premiss and the conclusion of an implication occur on different
branches. Despite this graphical feature, a representation reads in a linear fashion
that clearly resembles its textual counterpart: from left to right and in a depth-
first way such that at a branching point, the lowest path –i.e. the premiss of an
implication– is first explored.

For predicate logic, Frege’s graphical language has long since been replaced
by Peano’s textual notation. Nevertheless, the importance of visual information
to computers and robots has brought back another logical system of this period
to the research agenda, Peirce’s graphs.

1.1.2 Peirce’s existential graphs

Peirce’s languages and calculi have been studied extensively; see e.g., [Pei58],
[Rob73], [Thi75] [Shi93] or [Ham98]. It is not the aim to describe these logical
systems in detail, but to point out some features of Peirce’s existential graphs
that have been adopted in conceptual graphs.

A first feature of Peirce’s graphs, that is fundamental to conceptual graphs,
is the role of a primary surface. The sheet of assertion fixes the bounds of the
space on which the representations of the different pieces of information that are
asserted are disposed. Furthermore, the two dimensionality of the plane is used
to represent the conjunction of all drawn components.

For instance, represents the conjunction of A, B and C.
The symmetry of conjunction is induced by the fact that there is no predefined
order of the conjuncts, as opposed to a textual formula read from left to right.

In Peirce’s graphs, existentially quantified variables are represented as lines
connecting the predicate occurrences of which they are arguments.

For instance, is equivalent to ∃x(Ax ∧Bx ∧ Cx).
Direct connections through edges will similarly be exploited by conceptual graphs
to represent the relationship between predicate occurrences and their arguments.
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Finally, negations are represented as closed lines cutting off the negated part
from the rest of the assertion.

For instance, is equivalent to A ∧ ¬B.
The place where existential quantification occurs is defined by the outermost zone
in which a line that represents the quantified variable in question appears.

For example, represents ∃x(Ax → Bx).
The interaction between existential quantification and negation will be elaborated
upon in Chapter 1.4, where some structures occurring in discourse are highlighted
in conceptual graph representations.

Peirce [Pei58] proposed some calculi for propositional (alpha system) and pred-
icate (beta system) logic and ideas of a modal framework (gama systems). In
Peirce’s systems, a conclusion graph follows from a premiss one if and only if
the later can be transformed into the former using an appropriate set of graph
transformation rules. Although interesting in themselves, these calculi are not
particularly adapted to automatised reasoning. Indeed, they are not analytical
in the sense that they do not systematically decompose a problem into subprob-
lems, but rest on non-guided rules such as “any graph may be added into a zone
enclosed in an odd number of negation lines”. In the light of automated theorem
proving, analytical calculi based on graph homomorphisms and analytic tableaux
will be studied in this thesis.

1.1.3 Conceptual graphs

Since the late sixties, a graphical knowledge representation formalism equiva-
lent to first-order logic has been developed: conceptual graphs; see e.g., [Sow84,
Sow99] for detailed expositions of Sowa’s original systems. The syntax and lay-
out were influenced by a combination of Peirce’s graphs, linguistic dependency
graphs and computer science flow charts. On the semantic and deductive side,
order-sorted predicate logic and Peirce’s calculi were adopted.

1.1.3.1 Positive information

Departing from the whole first-order language, a sub-formalism for representing
positive existential-conjunctive information, simple conceptual graphs, has been
carefully studied since Sowa’s book [Sow84]. The language is expressive enough
to describe factual information with a slight touch of indeterminacy provided by
existential quantification. We may distinguish two graphical aspects related to
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the fragment: the representation by graph diagrams and a proof method based
on labelled graph homomorphism.

Representation Textual symbols of the vocabulary for a conceptual graph
language are partially ordered in a predefined classification, called a support in
[CM92] or canon in [Sow84].

Figure 1.2: A support

For instance, the tree in Figure 1.2 represents the information that “every
order-sorted logic is a logic and that every logic or AI ontology is a formalism”
or in FOL notation:

Φ0 = ∀x[OrderSortedLogic(x)→ Logic(x)]
∧∀x[Logic(x)→ Formalism(x)]
∧∀x[AIOntology(x)→ Formalism(x)]

Simple conceptual graphs are bipartite node-edge diagrams, in which square
nodes, representing term occurrences, alternate with rounded nodes, representing
predicate occurrences. Labelled edges linking a round node (or relation node)
to a set of square nodes (or concept nodes) symbolise the ordered relationship
between a predicate occurrence and its arguments. Concept nodes are labelled
with a concept type and either a constant or a star (standing for an unnamed
existentially quantified variable).

Figure 1.3: A simple conceptual graph diagram

For instance, the graph in Figure 1.3 is a representation of “The CG formalism
combines Peirce’s EG logic to an order-sorted logic, which itself combines an AI
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ontology to the FOL logic” or the (positive existentially quantified) FOL formula:

Φ1 = ∃x[ Formalism(CG) ∧ Logic(EG) ∧OrderSordedLogic(x)
∧combines(CG,EG, x)
∧∃y[AIOntology(y) ∧ Logic(FOL) ∧ combines(x, y, FOL)]]

Computation Consequence proofs in the simple conceptual graph formalism
correspond to labelled graph homomorphisms, called projections (e.g., [CM92]).

The possibility of basing deduction on graph operations has strengthened
interest in this alternative to classical calculi of predicate logic.

As in order-sorted logics [SW90], the classification of concepts and relations
is exploited in logical consequence. For instance, given the information that
“every order-sorted logic is a logic”, represented in the support in Figure 1.2,
the information that “the CG formalism combines two (not necessarily different)
logics” can be derived from the graph in Figure 1.3 or in FOL notation:

Φ0 ∧ Φ1 � ∃x∃y[formalism(CG) ∧ logic(x) ∧ logic(y) ∧ combines(CG, x, y)]

Figure 1.4: A projection from a simple conceptual graph to another one

A proof of this logical consequence is provided by a mapping, pictured in
Figure 1.4, preserving both the structure of the source graph (i.e., the conclusion
of the logical consequence) and the ordering of labels conveyed by the underlying
support.

In subsequent chapters, the computational efficiency of this calculus will be
explored for different structural fragments of simple conceptual graphs and ex-
tensions to negations and modalities.

1.1.3.2 Negation

For a full predicate logic language, Peirce’s closed negation lines are used to
enclose negated zones. For instance, the graph in Figure 1.5 is a representation
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Figure 1.5: Negated regions in a conceptual graph

of “there is a surface such that every negation line delimits a zone which is part
of that surface” or
∃x[surface(x)∧¬(∃y[negationline(y)∧¬(∃z[zone(z)∧delimits(y, z)∧partof(z, x)])])]

In Chapter 4, we will explore some possibilities and limitations of adapting
the projection calculus to the representation of negation in conceptual graphs. In
particular, an interlacing of projections and semantic tableaux will be proposed
as a predicate logic calculus.

1.1.3.3 Nested conceptual graphs

Figure 1.6: A nested conceptual graph

An additional structural level is obtained by nesting a description (that is itself
a nested graph) in concept nodes. To set the ground of the recurrence, the empty
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graph that corresponds to the logical constant True, is considered as a nested
graph (in order not to overload the picture, empty descriptions of concept nodes in
Figure 1.6 have not been represented). The nested conceptual graph formalism,
which has a modal flavour, can be exploited to distinguish different groups of
localised pieces of information or different levels of knowledge. A “zooming in
effect” enables to focus on one local description.

For instance, the nested diagram in Figure 1.6 illustrates a boot failure occur-
ring in the context of the open of my car.

The study of several semantics that can be associated to these nested drawings
will be the subject of Chapter 4.3.

1.1.4 Concluding remarks

As graph theory is an extensively studied field in computer science, it is not
surprising that many other logical formalisms have chosen graphical features.

Kripke models of modal logics are often represented as labelled graphs and
model comparisons, such as bisimulations (e.g., [Ben96]), are naturally defined in
terms of graph homomorphisms. Applied modal logics, such as attribute value
logics (e.g., [Spa93]) or feature logics (e.g., [Rou97]) exploit the tree structures of
their frame languages.

Research by the team of Barwise and Etchemendy at the Visual Inference
Laboratory1 has concentrated on the process of learning logical reasoning by
graphical model construction (Hyperproof project2 and the pieces of software
Turing’s world and Tarski’s world) and on the formalisation of the graphical
systems of Euler, Venn and Peirce; see, e.g., [Shi93, Shi95, Ham95, Ham98] and
[BE98] for a collection of articles on different aspects of learning and practicing
diagrammatic logic.

This introduction to conceptual graphs has exemplified the fact that there
is not a single conceptual graph formalism, but a multitude of possible ways to
combine and interpret a chosen group of primitive graphical artefacts. Therefore,
it is important to identify some criteria, that may guide us in favouring one
system over another. In the remainder of this chapter and in the next chapter
too, facets of the conceptual graph paradigm are explored under the light of
several fields related to logical reasoning, such as artificial intelligence, cognitive
science, linguistics and computational logic.

1http://www-vil.cs.indiana.edu
2http://www-vil.cs.indiana.edu/Projects/hyperproof.html
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1.2 Conceptual graph diagrams and artificial in-

telligence

Diagrams have gained an indisputable importance in computer science and ar-
tificial intelligence (AI). They occur in almost every field related to computers,
ranging from the actual chips to the abstract representation of knowledge. For
example, circuit designs, data structures, algorithms, human-machine interfaces,
inheritance in object programming languages or knowledge bases can be repre-
sented as trees, graphs, flow-charts or other specific diagrammatic forms.

If research in logic has long been concerned with the distinction between what
is provable or not, the application to AI has somehow shifted the focus to de-
termining what kind of reasoning can feasibly be carried out by a computer in
a “reasonable” amount of time. Following this line of thinking, adapted rep-
resentation languages and deductive systems have been invented for automated
reasoning. Semantic networks are one example of this.

1.2.1 Semantic networks

Semantic networks, a family of node-edge graphs in AI, have been popular for
trying to represent knowledge in a way that is as close to natural language as
possible. The proliferation of graphical systems lacking formal semantics has lead
to criticism such as McDermott’s “Artificial intelligence meets natural stupidity”
[McD76], but also to the development of a family of formal semantic networks
originated by Brachman’s KL-ONE system.

Besides the fact that conceptual graph formalisms belong to the class of (for-
mal) semantic networks, they have also borrowed a central notion of classification
from artificial intelligence.

• On one hand, the ordering of archived representations of pieces of informa-
tion, with respect to logical entailment, is relevant to efficient information
retrieving from conceptual graph knowledge bases. The logical consequence
relationship is sometimes called subsumption and, its symmetrical counter-
part, generalisation.

• On the other hand, in AI the classification of the basic terms of a language to
describe a particular application domain is called an ontology. Conceptual
graph languages exploit such ontologies for efficiency purposes by restraining
search spaces to subdomains smaller than the whole domain of a given
knowledge base.

1.2.2 Description logics

When artificial intelligence and logic meet, description logics are successful logical
formalisms applied to the representation of knowledge. They inherited the two
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notions of classification, ontologies and knowledge classification, from semantic
network and terminological logic ancestors.

By adopting the semantics of a modal formalism, called hybrid logic (see
[Are00] for a detailed analysis of hybrid logics and their relation to description
logics), description logics benefit from the efficient computational behaviour of
modal logics.

Building on the tree characteristics of models for modal logics, there has been
a recent return to graphical features in the syntactic and deductive side of de-
scription logics: Baader et al. [BKM99, BMT99] propose a translation of some
description logics into a language of trees that is exploited in homomorphism
calculi. We shall return to description logics with the complexity study of logical
reasoning in Chapters 2 and 3 and with the modal direction taken for nested
conceptual graphs in Chapter 4.3.

1.2.3 Contexts in AI

Many researches in AI have questioned the context dependency of information.
Giunchiglia and Bouquet[GB97] metaphorically present a context in AI as “a
sort of box which is part of the structure of an individual’s representation of
the world and which draws a sort of boundary between what is in and what is
out”. In J. McCarthy’s pioneering work on the formalisation of context (see e.g.
[McC87] and [MB97] for a recent survey), such a box is a rich object (a collection
of parameters) upon which a representation depends. Typically, a representation
can be true in some contexts and false in others. For instance, the piece of
information “It is raining” calls for a context of utterance to be interpreted and
that context can include among the parameters the time and place of utterance
(In the context of Amsterdam, that sentence is often true and particularly on
Sunday April 4, 1999). A context, as part of the cognitive state of an agent (the
hearer), is used in the interpretation process.

The box metaphor resembles the two kinds of closed lines of the conceptual
graph syntax: negation lines and nested boxes. Indeed, from a linguistic point
of view, negations play the role of a border line for anaphoric bindings by sur-
rounding a context of discourse interpretation and being permeable in specific
conditions. We will elaborate this linguistic argument by examining some struc-
tural properties of discourse in Chapter 1.4.

For nested graphs, the meaning of enclosing information into a box can be
captured by adapting an applied modal logic: the context logic of Buvac [Buv98].
This point of view will be undertaken in the study of nested conceptual graphs
(Chapter 4.3).
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1.2.4 Conclusion

Artificial intelligence is at the crossroad of logic, linguistics, computer and cog-
nitive sciences. Therefore, it is almost impossible to avoid such pluridisciplinary
references. Conceptual graphs also dwell at this multicultural crossroads.

Returning to ontologies and without disputing terms, Peirce’s graphs, seman-
tic networks and a fortiori, conceptual graphs, make an ontological commitment
to graphical items. We now turn to the cognitive impact of these primitive graph-
ical artefacts that, when combined, form conceptual graphs.

1.3 The visual impact of CG drawings

Drawings have many visual properties. Three properties that are particularly
pertinent to this study of knowledge representation by conceptual graphs have
been chosen to be elaborated upon.

The gestalt feature of diagrams, their faculty to provide an overview of what is
represented, is the first visual subject. The perception of the global shape of the
information represented results from the different uses of the two dimensionality
of drawings. In particular, we distinguish the spatial disposition of pieces of
information and the agglomeration of lines to form skeletal structures on which
some components hang.

The second visual feature of drawings, that will be discussed in Chapter 1.3.2,
is their faithfulness to what they represent. Drawings are often easy to grasp
because they are somehow close to what they depict. This property is linked
to the expressive power of the drawings, which is relatively limited compared to
the high level of abstraction conveyed in sentences of classical linear textual logic
languages.

Finally, Chapter 1.3.3 examines how some drawings can provide additional
information to the semantic conventions.

Figure 1.7: The evolution of stock-quotes over time

For example, these three themes appear in a kind of diagram that is com-
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monly found in the economic pages of newspapers; stock-charts. Figure 1.7 is a
space economical presentation of a large matrix of numbers (i.e., 859 bidimen-
sional coordinates). The diagram stresses the overall characteristics of the data,
such as a price that globally follows a downward slope over a three month pe-
riod. Moreover, the use of conventional scales for price and time facilitates our
understanding of the chart. Finally, the intersections of curves are typical pieces
of information that are not part of the initial data, but are directly read on the
diagram and can be interpreted by investors as signals for changes of tendencies.

We now undertake our first subject in visual matters, the perception of a
global perspective of diagrammatic information.

1.3.1 Overview of the information drawn

A generally acknowledged property of diagrams is that they offer a synoptic rep-
resentation. The possibility of visualising the global structure of a large set of
data, takes advantage of our prime perception of visual notions such as density or
direction. In particular, the global information perceived in a conceptual graph
drawing is a sort of large scale map of the represented relational network. This
map has two main components: a partition of the space into areas and a skeletal
structure.

1.3.1.1 Partition of the space.

Figure 1.8: Closed lines and empty-spaces dividing the sheet of assertion

How is the spatial division of the plane on which a conceptual graph is drawn
perceived? Outlines of the areas must be found. The most effective symbol to
represent a borderline between zones is to draw a line. For example, a Peirce’s cut,
the representations of a negation in conceptual graphs, is a closed line imprisoning
pieces of information into a negated area. Nested boxes in nested conceptual
graphs also divide the plane of a drawing into areas symbolising different levels
of information. An additional way of defining areas is provided by the perceptual
effect of density. In particular, emptiness appears as a discriminating feature
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between zones of high-density. To summarise, the first overall impression of a
conceptual graph is some partition of the space into zones containing pieces of
information.

1.3.1.2 Spinal structure.

Figure 1.9: Spinal structures

Just as important for the overview is the impact of edges that are perceived
as agglomerated into a spine linking different pieces of information. This skeleton
does not necessarily have a beginning or end; it is merely central to the different
components. The global structure of such a network provides some assistance for
navigating the drawing, for moving our point of focus along a path or jumping to
an information island. This idea of a support for navigation is reinforced in nested
conceptual graphs because they represent different levels of relational structures
in one picture: like a road map that includes enlargements for cities provides a
representation of a road network at the top level and of some street networks at a
lower level. A nested conceptual graph drawing stimulates our visual faculty for
discriminating levels and grouping what is connected, in order to safely convey
an understandable picture of a complex multi-level network.

To recapitulate, the ingenious human visual machinery capitalises on the per-
ception of density, groups, discontinuities and line structures, to extract, at a
glance, the overall information conveyed by drawings. This information can fur-
ther be employed to guide a search for more details. The overview is a large-scale
guide for further in-depth observations. Nevertheless, efficiently using it may
require the same kind of training as the reading of a road map does.

Structures formed by lines on the drawings are perceived, but what makes us
recognise a shape in a drawing? This is the subject of the next section.

1.3.2 Faithfulness of drawings

Graphics are often labelled as efficient information conveyors because of the facil-
ity to understand them. They somehow mirror the information represented. In
the case of conceptual graph drawings, two factors influencing this resemblance
property can be distinguished: (i) the use of graphical basic components that
have a conventional meaning closely related to what they represent and (ii) a
deliberately limited level of abstraction.
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1.3.2.1 Simple graphical components.

Basic graphical items in conceptual graph drawings are nodes, edges (lines con-
necting nodes) and closed lines defining frontiers. Different kinds of frontiers can
be distinguished by the chosen shape conventions, such as thickness. For instance,
lines surrounding negated zones and those defining the outlines of modal worlds
are drawn differently.

1.3.2.2 Limited abstraction.

It has been argued that the graphical signs have a standard simple semantics,
but what makes a conceptual graph diagram easy to grasp, also lies in limited
expressive power of the drawings.

First, there are very few graphical signs used and they all have a clear sig-
nificance. This fact implies the need for only few simple rules of interpretation,
which is certainly to the advantage of the reader.

A second factor of simplicity is the direct nature of the graphical message:
what is left unsaid is really not represented. The sole exception to this rule is
the use of the indefinite marker ∗, a place holder for an indefinite object. It
corresponds to an existentially quantified variable in a textual logic language.
Nevertheless, other connectives commonly used in logic, such as universal quan-
tification, disjunction and implication, are left out of the picture. These con-
nectives have the disadvantage of summarising complex information into single
symbols. For example, universal quantification conveys the message that all the
individuals living in the represented model have some property. In other words,
it abstracts some information to the level of the whole population instead of di-
rectly showing facts for each individual. It conveys a large amount of information
with very few syntactic items and the expansion of the compacted information is
left to the reader. Similarly, disjunctions and implications call upon the reader’s
interpretation process to build several alternative models at once.

Existential quantification alone does not have these drawbacks. It provides the
reader with an unnamed object, but guides the interpretation process by showing
a one-on-one correspondence between the syntactic objects and the represented
ones. Hammer [Ham95] has studied a similar type of matching for different forms
of diagrams; the isomorphism thesis. [AB96] and [CSO94] discuss how the low
level of abstraction in some graphical representations of logical sentences can
influence a logic learning process.

To summarise this point on the faithfulness of conceptual graph drawings to
what they represent, we can relate this advantage to the small amount of graphical
signs used, and to their intuitive meaning. A drawing with a relatively low level
of abstraction presents a one-on-one correspondence to the represented.

Until this point, it has been argued that drawings have prominent perceptual
features. Some of them, like resemblance, have an obvious semantic use. Others,
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like the overview spinal structure, have a less direct meaning. The study of the
semantics of these graphical properties that provide extra information, is the
subject of the next section.

1.3.3 Additional information

Graphical features can be perceived. Some of them are given meaning according
to defined interpretation rules. For instance, an edge between two nodes is known
to represent a binary relationship between two objects. Other features fall outside
the interpretation conventions, but are nevertheless informative if associated with
a meaning.

This section is devoted to the study of the additional information that is
perceived from conceptual graph diagrams. Basic semantic conventions give rise
to new interpretation rules. Two themes may be distinguished. The first concerns
some generalisation of a particular convention to a larger domain. The second is
related to the modification of a particular convention by some typically graphical
feature, which initially had an obvious intuitive meaning.

1.3.3.1 Generalisation of semantic conventions.

In the previous section, conceptual graph drawings were observed to be composed
of a small amount of distinct graphical signs (nodes, edges and closed lines). It
has been argued that the small amount of signs is a cognitive strength, as only
very few interpretation conventions are required to understand a drawing.

Among these graphical signs, the edge has a preponderant role, one of repre-
senting relational information. An edge is a local object. It connects its extremi-
ties at a particular place in the representation. However, this role of representing
direct connectedness is intuitively generalised to the level of the whole representa-
tion. Agglomeration or concatenation of edges convey a global notion of indirect
connectedness.

This is first visible in the graphical representation of the vocabulary clas-
sification. Edges correspond to implications and paths provide their transitive
closure (e.g., from reading the branch on the right-hand side in Figure 1.2, we
can conclude that any order-sorted logic is a formalism).

Similarly, in conceptual graph diagrams, the notion of indirect connectedness
has a meaning of relatedness. Relatedness is useful in applications like informa-
tion retrieval, enabling the connection of objects that are not in direct relation
to each other. Interpreting distinct connected compounds as unrelated pieces of
information provides a simple guide for breaking down a problem into smaller sub-
problems that can be solved independently of each other. Salvat’s experiments
[Sal97] in an application of a meta-resolution rule for a language of conceptual
graphs, which includes implication, have shown that applying this obvious se-
lection function (i.e., if possible, take a successor in the connected compound at
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stake) does often reduce the number of backtracks. Tree structures will also prove
essential to efficient calculi.

To summarise, the meaning of edges, as being representations of connected-
ness, can be generalised in a weaker significance for paths: one of relatedness.

1.3.3.2 Interaction of graphical effects and semantic conventions.

From the basic interpretation convention, the meaning of the occurrence of two
distinct pieces of information on the same plane (or area in the presence of Peirce’s
cuts) is known: the conjunction of the components is represented. However, this
significance can be strengthened by a perceptual effect, namely density. Indeed,
spatial grouping of pieces of information can corrupt the neutral conjunctive
information and represent a second form of relatedness. As noted above, density
capitalises on innate human perception to make salient information relevant. This
second notion of relatedness can prove useful in order to organise the presentation
of information in packets. These are groups either conveying a semantic message
or simply being a practical help (for example, a division of the space between
multiple users of a knowledge base).

Another use of density occurs in homomorphism proof drawings. The signif-
icance of a proof diagram can be enriched by information about the location of
the pieces of information that are utilised on the density map.

We have seen that information that is not considered in the basic semantic
conventions can be perceived from graphics. The meaning of this information is
intuitive because it results either from the generalisation of the semantics of local
items to a larger scale, or from the interaction of meaningful graphical effects
with basic semantic rules.

In his thesis [Shi95], Shimojima studies a related phenomenon: free-rides.
Free-rides are additional information resulting from the matching of graphical
constraints with some constraints of the represented. The derived meaning pos-
tulate, read from the transitive closure on support paths, would fit this definition,
but free-rides are more specific. The additional information can be directly inter-
preted using the basic semantic rules of the graphical system. The phenomena
examined in this section are of a slightly different nature. They concern extra
information which is obtained by derived interpretation rules.

1.3.4 Conclusion

In this survey of some visual properties of conceptual graph drawings, which by
no means claims to be exhaustive, three main themes that participate in the
cognitive efficiency of diagrams have been distinguished.

The first issue concerns the gestalt feature of diagrams and their faculty of
offering a synoptic representation of both the partition of the information space
and the spinal structure linking pieces of information.
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The second theme is an attempt to recognise the features that make conceptual
graph drawings faithful representations of relational structures. The nearly iconic
nature of the graphic components and the limited abstraction represented in
drawings have been identified as reasons for this mirroring property.

Finally, the usefulness of perceptible additional information is linked to the
intuitive adaptation of local semantic conventions to large-scale graphical effects.

By using expressions such as easy perception, the ingenuity of the human visual
machinery is taken for granted. However, it is far from clear how complex basic
perception operations would function for an artificial visual machine. Despite the
lack of formal visual models for efficiency measures, we are not totally clueless.
In the forthcoming chapters, the use of classical complexity theory for textual
translations of graphs will provide a first handle in a formal attempt to answer
the question.

Closer to the previous cognitive concerns than computation models, the study
of relationships between natural language and conceptual graphs is the next sub-
ject focused on.

1.4 Conceptual graphs and the structure of dis-

course

Natural language is the pervasive medium for cognitive activities. Despite the fact
that it is transcribed in a linear way with the use of symbols (letters or characters),
a discourse shares some characteristics with conceptual graph diagrams.

Primarily, a discourse is structured. First, we will examine some correspon-
dences between the binding of term occurrences in the process of conceptual graph
construction and anaphoric phenomena in natural language.

Some linguistic theories also use pictures. In a second section, the features
that bring a specific linguistic formalism, discourse representation theory, and
conceptual graphs closer will be considered.

Finally, by viewing conceptual graphs and discourse representation structures
together, the same innovations may be applied to both. As an illustration, so-
called dynamic interpretations will be quickly discussed.

1.4.1 Bindings in conceptual graphs and discourse

It has been observed that the linguistic counterparts of logical connectives be-
have as structuring items in discourse, with different permeability properties to
pronominal coreferences.

For example, the conjunction of two sentences can be expressed in English
by the use of the term ‘and’ or just the concatenation of these sentences: “A
man entered. He took a chair.” or “A man came in and he took a chair.”. In
the second sentence, a pronominal reference to an object introduced in the first
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sentence is possible. On the other hand, the use of negation appears to block the
possibility of such binding: It seems unacceptable to continue the sentence “It is
not the case that a man came in.” with “He took a chair.” as the pronoun ‘he’
cannot be resolved by any object previously introduced in this piece of discourse.
Conceptual graph construction rules present similar properties of bindings.

1.4.1.1 Conjunction of conceptual graphs

Conjunction in conceptual graphs obeys two simple rules:
(i) the conjunction of two pieces of information is represented by their juxta-

position on the sheet of assertion
(ii) in the absence of negation line, a concept node can be made coreferent to

another concept node occurring in the same graph.

“A man entered.”

“He took a chair.”
Juxtaposition of the previous two graphs:

Resolution of the coreference binding:

Figure 1.10: Conjunction of conceptual graphs

For example, in Figure 1.10, the pronoun ‘he’ is represented by a concept node
labelled with the marker ‘?’ symbolising that it needs to be made coreferent to
another accessible concept node. After the two graphs have been juxtaposed, the
concept node ‘man:∗’ becomes available for coreference to the node labelled with
the question mark.

The resolution of the anaphoric binding is a problem that is beyond the scope
of this thesis. What is important is the fact that, after juxtaposition of the two
initial graphs, the representation of the indefinite noun phrase ‘a man’ becomes
available for coreference to the representation of the pronoun ‘he’.

According to the second rule, in the absence of negation, the application of
coreference is, in principle, free for any pair of concept nodes in a graph. Of course,
one can add some additional constraints. For instance, it could be requested that
two nodes made coreferent should have concept types sharing a common subtype.
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It could also be forbidden to link two nodes labelled with different constants,
respecting a common assumption for many AI systems that different constants
represent different individuals.

If conjunction in conceptual graphs is, as conjunction is in discourse, perme-
able to coreferences, what about negation?

1.4.1.2 Negation

Closed lines, representing negations in conceptual graphs, delimit zones that are
included in the outermost zone: the sheet of assertion. These zones and fron-
tiers remind the metaphoric image of “context as a sort of box” discussed in
Chapter 1.2.3.

By construction, negation lines do not intersect each other. Thus, the nesting
of zones has the structure of a tree whose root is the sheet of assertion. This
partial order is called domination. A zone is said to dominate another zone if the
later is included in the first one. We may now restate the rule for coreference as
follows:
(ii’) a concept node can be made coreferent to another concept node occurring in
a dominating zone of the same graph.

“A man entered. It is not the case that he? took a chair.”

Figure 1.11: Negation boxes are permeable for coreferences from outside-in

Figure 1.10 is an example of concept nodes occurring in the same zone (the
sheet of assertion). Let us consider an example with a negation: “A man entered.
It is not the case that he took a chair.”. In Figure 1.11, the concept node rep-
resenting the pronoun ‘he’ occurs in a zone dominated by the sheet of assertion,
in which the concept node for ‘a man’ occurs. According to the rule (ii’), we are
allowed to bridge those two nodes with a coreference link.

Conversely, the binding of the pronoun ‘he’ is not resolvable in the (unaccept-
able) discourse “It is not the case that a man came in. He took a chair.”.
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In other words, the scope of existential quantification in conceptual graphs
is limited to all the zones that are included in the zone where the quantifier
occurs. Such scoping rules are familiar to a linguistic theory that also makes use
of pictures: discourse representation theory.

1.4.2 Discourse representation theory

Discourse representation structures (DRS) combine nested boxes with notations
of predicate logic for representing the structure of natural language sentences.
We refer the reader to Kamp’s foundation article [Kam81] and to the extended
treatment of DRT in [KR93]. [BB98] is a comprehensive introduction to DRT
and some background in computational linguistics.

In a language where all connectives are expressed in terms of conjunction,
negation and existential quantification, a DRS is a box divided into two parts.
These parts are a set of discourse referents and a set of conditions where a con-
dition has either the form of a predicate logic atom or the negation of a DRS.
Discourse referents in the first part of a box correspond to existentially quanti-
fied variables which are accessible to the conditions in the second part and, by
transitivity of nesting, to all conditions occurring deeper in the nesting.

For example, “A man entered. It is not the case that he took a chair.” can be

represented by the DRS:

x
man(x)
entered(x)

¬
y
chair(y)
took(x, y)

There is a notable difference between conceptual graphs and DRSs. By inher-
iting Peirce’s lines of identity and contrary to DRSs, conceptual graphs provide
a notation of equivalent expressive power that is free of variables. This feature
is relevant in theorem proving. Indeed, efficient methods for constructing proofs
like free-variable tableaux or resolution require pure representations (representa-
tions in which a variable is not quantified twice). Hence, a renaming pre-process
can be required. By avoiding variable names, CGs are always pure. However,
the absence of variables is mostly relevant for an incremental construction of
the representations. If the representations of the constituents of a text can be
drawn independently, then building a representation of the whole text consists in
merging the representations of the constituents.

To illustrate a problem associated to merging, we present un example from
[Eij98]. A DRS for “A man entered. A woman entered.” can be obtained by
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merging the following two DRSs:
x
man(x)
entered(x)

⊕
y
woman(y)
entered(y)

=

x
y
man(x)
entered(x)
woman(y)
entered(y)

.

But merging is not defined in case of a variable clash:
x
man(x)
entered(x)

⊕
x
woman(x)
entered(x)

= ?

In discourse representation theory, the problem of variable clashes is solved by
always building the representation of a new sentence in the context of an existing
DRS. Another solution consists in first renaming the variables occurring in differ-
ent DRSs before merging them. Van Eijck [Eij98] proposes another alternative:
the replacement of variable names in DRSs by De Bruijn’s indices. Conceptual
graphs do not make use of variables, so variable clashes cannot occur and two
graphs can always be merged by only juxtaposing them. The simplicity of this
safe merging operation is an attractive feature of Conceptual Graphs.

Syntactically, DRSs and conceptual graphs share the same structure for dis-
playing the representations and the same scoping rules for existential quantifiers.
Furthermore, semantically, both formalisms rely on a notion of embedding of
pictures into classical models for predicate logic. These similarities may be ex-
ploited to bridge the differences. On one hand, discourse representation theory
has achieved numerous results in the study of natural language phenomena and
being able to adapt these results would be beneficial to conceptual graph theory.
On the other hand, conceptual graph theory has achieved some computational
results, based on the use of graph calculi, which could serve the interest of the
deductive side of DRT.

Finally, there is an alternative semantics to the embedding of DRSs into clas-
sical models, which brings us to our next subject, dynamic semantics.

1.4.3 Dynamic view on conceptual graph semantics

It is often assumed that discourse interpretation is related to a dynamic process
of discourse context evolution. When successively uttered sentences are processed
by a hearer, they bring successive changes into the interpretation context of that
hearer. When a simple conceptual graph is asserted, it introduces two kinds
of information: a relation occurrence between concepts provides some factual
information and a concept node introduces in the context an item that is available
for further references. A semantics for conceptual graphs could take into account
these two kinds of information and follow the way paved by dynamic semantics
[GS91].

1.4.1. Example. Imagine the following situation: the vocabulary is composed
of three individual markers a, b and c, and two relations entered and spoke.
Let M = (D = {A,B,C}, F ) be a classical model such that F (a) = A,F (b) =
B,F (c) = C,F (entered) = {A,B} and F (spoke) = {(A,B)}. We are at the



24 Chapter 1. Diagrams and visual information

beginning of a conceptual graph discourse, only aware of our formal vision of the

world, M . Our discourse context is empty:

Suppose that we are told that “Someone entered.” .
We process this information by creating a record for that person in our informa-
tion state and associating to it all objects provided by the model, which satisfies
the graph utterance: A and B.

Our new discourse context is:

If we are now told that “He spoke to b.” ,
We can resolve the pronoun ‘he’ to the sole item in our discourse context and,
given our model M , eliminate the possibility that the person at stake is refereing
to B.
If the last utterance had been “He spoke to a.”, no possible interpretation for the
context item would have remained and we, as hearer, would have ended up in an
‘absurd state’. A possible escape of would then be a rejection of (pieces of) the
discourse or the revision of previously accepted information.

The meaning of a graph is given by the change its assertion brings into a
context. The example only sketches the possibility of storing terms (and their
possible interpretation) as contextual information. However far richer contexts
could be conceived. For example, a context could also contain relational infor-
mation between the stored discourse items with the consequence of a shift from
the notion of test in a model to a notion of model construction.

The dynamic view of conceptual graph interpretation can be related to the
process of constructing a complex representation by successive updates, each of
them refining a previous representation with additional knowledge. This proce-
dural view is common to conceptual graph incremental construction rules and to
calculi based on successive graph derivations (see e.g., [Sow84] or [CM92]).

1.4.4 Concluding remarks

The aim of this brief jaunt into natural language semantics was twofold. First, to
relate the layout of conceptual graph drawings to some structural properties of
discourse and in particular, to the interaction of boolean connectives and quan-
tifiers. Secondly, to provide the first steps toward stronger interactions between
conceptual graph theory and linguistic theories. Such an exchange could bene-
fit both sides. On one hand, it would strengthen the foundations of conceptual
graphs in artificial intelligence, as natural language remains the most common
way of communication between humans. On the other hand, such a link could
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provide new insights into efficient computation for theories that are aimed at
automated natural language processing.

However, despite the promising perspectives of further connections between
conceptual graphs and natural language processing, a longer exposition of lin-
guistic features would bring us out of our main trail, which is concerned with the
use of conceptual graphs for efficient logical reasoning. We refer the reader to
[KR93], [BB98], [GS91], [GSV96] and [Ben96] for deeper insights into discourse
representation theory and dynamic semantics and their relation to logic and com-
puter science. For a formal proposition of dynamic interpretation in conceptual
graphs, see [Ker99a].

1.5 Conclusions

Languages of modern logics are essentially textual. It comes as no surprise that
knowledge representation systems often adopt textual notations similar to those
of their underlying logics. However, on the semantic side, sentences of these
languages are interpreted with respect to structures. It is somehow paradoxical
that these languages describe and refer to structured information by means of
linear text, while linking sentences and structures is left to the interpretation
process alone. To represent structured knowledge, it seems sensible to import as
much as possible the object structure in the layout of the representation language.
Conceptual graphs take this path by combining textual labels with node-edge
drawings.

Along this introductory chapter, we have described influential graphical an-
cestors of conceptual graphs at the historical foundations of modern logic.

The importance of graphics and graphs to logic and its application to arti-
ficial intelligence has become a fact with the development of robotics, artificial
vision and computers that are now provided with great graphical abilities. For
instance, almost no operating system would now be commercialised with a sin-
gle purely textual interface, no web-browser would be limited to the display of
textual information. Pictures have found applications in logic and applied logics
for educational purposes (e.g., the Hyperproof project), for representational and
computational purposes (e.g., semantic networks, description logics or conceptual
graphs).

Another reason for this regain of interest in pictures, which, after all, have al-
ways been used for every day communication since prehistoric times, might simply
come from their cognitive power: perspicuity and efficiency. Such features appear
in conceptual graphs under different aspects: primary gestalt view, distinction of
structural components, simplicity of interpretation and visual derivative meanings
of the representations. With the experience of working with conceptual graphs,
acquired in the subsequent chapters, we will come back to this cognitive theme
in the concluding chapter of the dissertation.
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Finally, we have explored a linguistic aspect of conceptual graphs: their faith-
fulness to natural language structures. The perspective of rich interaction with
fruitful linguistic theories has just been scratched and is promising for further re-
search. In particular, the dynamic turn in semantics does not only confine itself
to natural language semantics, it is also of great interest to computer science for
which the dynamic notion of process is central. This brings us to the theme of
our next chapter: the computational aspect of logical reasoning.



Chapter 2

The complexity of reasoning with
graphs and fragments

We have previously argued that knowledge graph drawings enjoy some cogni-
tive efficiency in representation. In this chapter, another form of (in)efficiency
is considered, namely the difficulty of a typical computation task over these rep-
resentations, viz. logical reasoning. Indeed, the drawings would not prove very
useful if we could not exploit them to answer questions about the knowledge
represented or to infer new knowledge from the existing one.

Now, the judgments of difficulty of inference tasks, and of relative merits of
different representations, that one finds in the literature on graphical versus sym-
bolic reasoning are often unsystematic and “impressionistic”. To advance beyond
this stage, and get more definite insights, one needs a mathematical complexity
analysis.

So far, the only successful style of analysis which has been developed is that
of complexity theory in computer science, based on symbolic computation using
Turing machines. We will adopt this here, and see what it tells us about the
reasoning tasks in our area of interest. In particular, we find that we are operating
in a much larger landscape of decidable calculi, with various subtle thresholds in
complexity behaviour, e.g. from P to NP. Thus, we get a much more systematic
picture of the potential of conceptual graph-based reasoning methods.

Of course, there is more to actual performance than abstract complexity, as
the latter concerns worst cases. There is also average complexity, which needs to
be explored in greater detail. But still, we regard this chapter as a necessary first
step to operating at all: “si vis pacem, para bellum”.

Equally of course, complexity analysis based on a symbol-processing paradigm
may seem inappropriate to analysing graphical reasoning. The matter is indeed
delicate, and we will delay the discussion to the concluding chapter. For now, we
will just say this: the analysis in this chapter is not sufficient. But, it is necessary.

In order to do complexity analysis, we need two ingredients. Conceptual
graphs need to be represented symbolically in some textual language and we

27
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need to fix our computation models over that language.

2.1 Conceptual graph drawings and formal lan-

guages

We have already seen, in Chapter 1, how some conceptual graphs (CG) correspond
to first-order formulae. More precisely, different conceptual graph languages cor-
respond to different fragments of classical first-order logic (FOL).

The connection to FOL, the prominent modern logic, can be traced back to
Peirce’s first-order calculus of existential graphs. For the specific language of
conceptual graph, [Sow84] offers a translation to FOL. The anchor to FOL is so
strong that, in most of the conceptual graph literature, the semantics of concep-
tual graph fragments are only presented as translations to FOL languages. In this
dissertation, we prefer to present both model theoretic analysis and translations
following the line of [Ker96] or [Pre98].

The graph fragment of simple conceptual graphs is central to most CG sys-
tems. It corresponds to existential conjunctive FOL, i.e., the set of FOL formulae
whose boolean connectives are conjunctions and whose quantifiers are existential
ones, noted FOL{∃,∧}.

2.1.1. Example.

A star within box represents an existentially quantified variable and two boxes
linked by a dashed edge represent the same object. An occurrence of a rela-
tion symbol is encircled and connected by ordered edges to its arguments. A
translation of the graph is the following sentence of FOL{∃,∧}:

Rba ∧ ∃x(Qax ∧ ∃y(Pyx))

To highlight the occurrence of the dashed edge (also called a coreference edge),
we could alternatively choose to translate it into an equality atom and associate
a “fresh” variable to each occurrence of a star marker. Thus, in FOL{∃,∧,=}:

Rba ∧ ∃x(Qax ∧ ∃yz(Pyz ∧ x = z))

However, as the syntax of simple graphs forbids two constants to be connected
by a coreference edge, equality symbols can always be eliminated to obtain an
equivalent sentence in FOL{∃,∧}.
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This example suggests another point: full first-order logic is not always needed
and mostly, often not desired. Indeed, its nice high expressivity has an heavy
counterpart for practical applications: its undecidability (i.e., the impossibil-
ity to guaranty an answer to some questions). The quest of efficient reason-
ing (where efficiency is expressed in terms of the amount of resources needed to
solve a problem, such as time, space or the number of parallel processors) has
been challenged in almost every field of computer science (artificial intelligence,
knowledge representation, databases, software engineering, robotics, computa-
tional linguistics, etc.). From the diversity of applications with their associated
specific reasoning tasks has resulted a multiplication of propositions; for instance,
constrained query languages in databases [AHV95, KV00] or applied modal logics
[DLNS94, Rou97, Mas98].

The connections between graph systems and FOL or fragments of FOL are
not the sole ones to formal languages. Already in Peirce’s work on Gamma graphs
(e.g., [Rob92]) appears the notion of intensional logic. Recent work in description
logics (e.g., [BKM99] or [BMT99]) makes use of graph-homomorphism calculi for
modal logics applied to knowledge representation. Therefore, it makes sense to
look at connections with modal logics.

2.1.2. Example. In [BMT99], a rooted simple conceptual graphs on some bi-
nary relational vocabulary is interpreted as a modal formula describing binary
accessibility relations in a pointed Kripke model:

translates to P ∧ �R(Q) ∧ �S(P )

2.1.3. Example. Nested simple conceptual graphs can also be translated to
usual (textual) modal languages. For instance, in the following graph, the de-
scription associated to the constant ‘a’ may be interpreted as the representation
of a world accessible by an ‘a-link’ from the world corresponding to the outermost
box:

translates to Pa ∧Qb ∧Rab ∧ �a(∃x∃y(Qx ∧ Py ∧Ryx)) ∧ �b(Qa)
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By highlighting some problems relevant to knowledge representation systems
and systematically studying them for fragments of common logics, this chapter
will attempt to picture a landscape of (sometimes understudied) low fragments
and provide a guideline for choosing extensions and restrictions of conceptual
graph languages. But, in order to compare the behaviour of different logics, we
need some measurement tools on a common ground. It is where complexity theory
comes at stake.

2.2 Computation models

The complexity of a computational task is measured with respect to an abstract
computation model which is independent from the kind of computers, the pro-
gramming languages and the precise algorithms that may be put at work to solve
the problem in real life (many of such models where introduced before the concep-
tion of the first computer). The most well-known of those models is the Turing
machine.

2.2.1 Turing machines and equivalent models

The Turing machine [Tur37] is a primitive computer whose memory is a tape on
which is written a string of symbols and whose set of actions is limited to moving a
read/write-head on the tape and reading and writing the symbol placed under the
head. Furthermore, the processor is programmed to conditionally perform these
primitive actions (e.g., ”if symbol x is read under the head then move one step
to the right and write the symbol y”). Despite these apparent simple settings,
Turing machines are capable of expressing any algorithm or simulating any rich
programming language. It is precisely the simplicity of the execution steps that
enables a sharp analysis of the processor’s behaviour under a given program.

One of the most fundamental result of complexity theory is the equivalence be-
tween different computation models. In the early years of computation, motivated
by the classical decision problem of first-order logic (the Entscheidungsproblem),
several independent and equivalent models were proposed (e.g., Post’s finite com-
binatory processes, Kleene’s recursive functions, Church’s λ-calculus or Markov’s
string-oriented algorithmic notation). The lesson to draw from these equivalences
is that it is not the choice of a particular computation model that matters. In-
deed, in the rest of the chapter, any specific choice of a computation model will
be left aside, but instead, we shall apply reduction techniques that enable us to
rely on known complexity results to draw new ones. What matters more is the
kind of parameter that we intend to measure.
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2.2.2 Time and space are chosen as measured resource
variables

The amount of resources needed to solve a problem is expressed in terms of the size
of a particular encoding of the input of a the given problem. Storing operations
already bring to the fore the salience of space: how much space do we need to
store the encoding of the input? How long are the intermediate results that do
we need to write down during the execution of a program?

These space measurements suggest time related questions: How long does it
take to read the input? How many of these intermediate results do we need to
calculate and how many basic operations takes each of them? Just as modern
physics teach us, time and space are intrinsically related. For instance, a problem
that can be solved using polynomial time –i.e., the number of needed steps can
be expressed as a polynomial of the size of the input, with constant exponents–
can also be solved using polynomial space. This property forms a small stitch in
the hierarchy of complexity classes which is partially described in Figure 2.1.

The class of problems that can be solved in polynomial time (P) is
(strictly) included in the class of problems that can be solved in poly-
nomial space (PSPACE).

Time and space are not the only variables that may enter the complexity
dance. For example, with the recent development of networks and computers
with multiple independent processors, the number of processors can be taken as
another relevant parameter (see e.g., [JJ92] for an introduction to parallel process-
ing complexity). Another trend in complexity theory, descriptive complexity (see
e.g., [Imm99]), studies the complexity of expressing a property; roughly stated,
language expressive power comes as another variable. As an example, polynomial
time (P) corresponds to the class of queries describable by second-order-Horn for-
mulae [Grä92].

For simplicity, we will remain in the classical trend and focus on space and time
consumption. If the space required by an encoding of an input is so important, a
crucial detail has been left unrevealed: how are formulae and structures going to
be represented?

2.2.3 A detour into precise encodings

Although we often want to keep the freedom of choosing no finite bound on the
amount of symbols available in our vocabulary, we face the evidence that any
description of a finite input –i.e., formula, structure, graph, conceptual graph,
etc.– uses a finite set of symbols. However, this set may vary with different
instances and with different kind of inputs.
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2.2.3.1 The case of formulae.

On one hand, the logical vocabulary and delimiters form a finite set which is
fixed for all instances: ∧, ∨, ¬a (atomic negation), ¬, →, ↔, ∃ ∀, ( ,), �, ✷ 1.
On the other hand, relation symbols and terms may vary with different inputs
and a way to obtain a uniform encoding method is to assign an index –i.e., a
natural number– to every relation or term symbol of the input. For instance, the
FOL-formula ∃x∃y(Px ∧ Qxy) could be represented by ∃v1∃v2(R1v1 ∧ R2v1v2)
in which the i-th (from left to right) variable is represented by vi and the i-th
relational symbol is represented by Ri.

It should be noted that, if indexes where written in unary, then an encoding
of a formula would require exponentially more occurrences of symbols than the
formula in the usual base 10 notation and complexity results would deceptively be
favourable. Indexes are therefore required to be encoded in any base n notation
for n > 1. Binary notation is the usual choice for indexes and will be the chosen
notation subsequently.

Hence, the size of the encoding of a formula composed of m symbols
is bound by O(m ∗ log m).

Among formulae, conjunctions of atoms have some special features: first,
syntactically, a conjunction of atoms is a sequence in which atoms and conjunction
symbols alternate (i.e., contrary to the general case of formulae, logical symbols
may not be concatenated) and also, semantically, a conjunction of atoms may
is an equivalent representation to the interpretation of relations in a structure
(i.e., for a structure M , [[.]]M may be represented by ϕ[[.]]

M

=
∧

1≤i≤l ri$ti such that

$t ∈ [[r]] iff r$t ∈ ϕ[[.]]
M

). It is therefore worth considering the size of an encoding

of a conjunction of atoms.

Let l be the number of atoms in a conjunction of atoms ϕ, u be
the number of distinct terms in ϕ, r be the number of distinct re-
lation symbols in ϕ and k be the maximal arity of a relation oc-
curring in ϕ, it holds that the size of an encoding of ϕ is bound by
O(l ∗ (log r + k ∗ log u)).

It is easy to verify that, even though more space than needed might be reserved
for each atom (i.e., the place for k terms), as l, u, r, and k are smaller than the
number m of symbols in ϕ, it holds that l ∗ (log r + k ∗ log u) is polynomially
related to m ∗ log m.

2.2.3.2 Finite structures.

We only consider function free languages. Hence, a finite structure is given by a
finite set of objects U , a finite set of constants C, an interpretation [[c]] ∈ U for

1In the case of multi-modal logics, we may have to treat modalities like relation symbols.
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every constant c ∈ C, a finite set of relations R, an arity ar and an interpretation
[[r]] ∈ Uar for every relation r ∈ R. As in the case of formulae, objects, constants
and relation symbols may be represented by indexed symbols (e.g., oi for the i-th
object in any chosen ordering).

We may decompose the encoding of a structure into two parts: on one hand,
the universe, the interpretation of constants and the arity of each relation symbol2,
and on the other hand, the interpretation of relations. universe may be encoded
by the greatest index for objects, the interpretation of constants by a list of
numbers of corresponding objects.

For a structure with u objects, c constants and r relations of maxi-
mal arity k, the first part of the encoding of the structure is a string
of size bound by log u︸ ︷︷ ︸

universe

+ c ∗ log u︸ ︷︷ ︸
constant interpretation

+ r ∗ log k︸ ︷︷ ︸
relation arities

,

hence O(c ∗ log u + r ∗ log k).

We are presented different alternatives for the encoding of the interpretation
of relations:

Standard encodings. The cautious way is to consider that the structure has as
much probability of being dense as of being empty (the density of a model
refers here to the sum of number of tuples occurring in the interpretation of
each relation, i.e.,

∑
r∈R |[[r]]|). For a given relation r of arity ar, the |U |ar

possible tuples can be ordered lexicographically and [[r]] can be represented
by a binary word of length |U |ar : a 1 in a position i of the word indicates
that the i-th ar-tuple of objects is in the interpretation of r, and 0 codes
the converse. n = (|C| ∗ log |U | +

∑
r∈R |U |ar) is to be taken as the size of

an encoding of an input finite model.

In practise, the number of constant being often much smaller than
the number of k-tuples, we can usually take n = |R| ∗ |U|k as
upper bound on the size of a structure where k is the greatest
arity of the relations in R.

2.2.1. Example. let U = {o1, o2, o3, o4}, R = {r1, r2}, [[r1]] = {〈o1, o1〉, 〈o2, o2〉}
and [[r2]] = {〈o1, o3〉, 〈o1, o4〉}, [[.]] can be encoded by the following word:

1000010000000000︸ ︷︷ ︸
[[r1]]

0011000000000000︸ ︷︷ ︸
[[r2]]

2Depending on the way used for representing the interpretation of relations, this information
could be retrieve from the latest, however, we may safely encode arities separately as this
information requires a size polynomial in the size of the remaining parts of the total encoding
of a structure.
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Adapted encodings. We will encounter special situations in which the density
of a model is extreme. Take, for instance, a structure in which every relation
r ∈ R is nearly universal –i.e., verified by almost all ar-tuples of objects–, the
previous encoding would be a waste; it would be more economical to encode
only those tuples of objects that are not in the interpretation of a given
relation; i.e., [[r]] can be represented by {〈oi1 , ..., oiar

〉/〈oi1 , ..., oiar
〉 �∈ [[r]]}.

In particular, for the complexity proof of model checking for the guarded
fragment of FOL in Chapter 2.4.2, a balanced structure with two objects 0
and 1 and a single unary relation r such that [[r]] = {0} will be extended with
an n-ary universal relation [[Gn]] = {0, 1}n, n being a variable taking part
in the input. Extending a standard encoding of the model would require 2n

extra bits of information, whereas extending a representation of the negative
information of the structure is only a matter of adding some information
about the existence of the n-ary universal relation: the addition of log n
bits to code the arity.

A model construction, which is recurrent to this thesis, concerns the mini-
mal model of an existential conjunctive FOL-sentence. The minimal model
M(ϕ) of an existential conjunctive sentence ϕ with e existential quantifiers,
c constants and l atoms is a structure with u = e+ c objects and l relevant
tuples of objects –i.e., there are exactly l occurrences of 1’s in the standard
encoding of the previous paragraph–. Let r be the number of distinct re-
lation symbols in ϕ and k be their maximal arity, it holds that l ≤ r ∗ uk.
The interpretation function for relations can this time be encoded in a sim-
ilar way to the encoding of a formula –i.e., a sequence of relation symbols
followed by their arguments–.

Hence, the size of the formula-style encoding of a minimal model
for ϕ ∈ FOL{∃,∧} is bound by l ∗ (log r + k ∗ log u).

2.2.2. Example. The interpretation function in Example 2.2.1 (i.e., u = 4, r =
2, k = 2 and l = 4) can be alternatively be encoded by the following word of 20
bits (instead of 32 bits in Example 2.2.1):

0︸︷︷︸
r1

00︸︷︷︸
o1

00︸︷︷︸
o1

0︸︷︷︸
r1

01︸︷︷︸
o2

01︸︷︷︸
o2︸ ︷︷ ︸

[[r1]]

1︸︷︷︸
r2

00︸︷︷︸
o1

10︸︷︷︸
o3

1︸︷︷︸
r2

00︸︷︷︸
o1

11︸︷︷︸
o4︸ ︷︷ ︸

[[r2]]

For non-dense models –i.e., when l is much smaller than r ∗ uk– with at
least two objects, this encoding seems more economical than the standard
encoding. A closer look at the worst case l = r ∗ uk reveals that for a
structure with at least two objects, the sizes of both proposed encodings
are polynomially related. Indeed, k ∗ log u ≤ uk for u > 1 and k > 0,
hence (l ∗ (log r + k ∗ log u)) ≤ d ∗ (r ∗ uk)2 for some constant d. In this
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thesis, we have chosen to confine ourselves to complexity results that are
not sensitive to a finer grain of measure than a polynomial relation between
input encodings. Therefore, we will have the freedom to use the encoding
which is the most suitable to the problem at stake.

2.2.3.3 Graphs and conceptual graphs.

Graph encodings exemplifies the collapse between existential conjunctive formulae
and structures: a graph is a pair G = (V,E ⊆ V ×V ) where V is a set of objects,
thus a structure with universe V and a single binary relation. Alternatively, a
graph may also be represented as a conjunction of atoms3

∧
(v,v′)∈E Rvv′. In graph

terminology, these polynomially related encodings are known under the names
adjacency matrix (standard encoding) and edge list (formula style encoding).
Simple conceptual graphs surpass the limitation of a unique binary relation by
the use of labelled edges and nodes. They have the expressive power of conjunctive
existential predicate logic and therefore also enjoy polynomial translation between
formula-style encodings and structure-style encodings.

The main conclusion to draw from these encoding comparisons is that finite
structures can equivalently be coded by their k-dimension matrix (where k is the
maximal arity of relations) or by a conjunction of atoms, however, the choice may
matter if the structure has to be extended with additional information.

Though, it is informative to calculate the exact time and space consumption
of a given algorithm on a given input, we are often interested in a larger scale
classification of problems. The next section presents some of the usual classes
considered in complexity theory.

2.2.4 Complexity classes that will be encountered

With P and PSPACE, we have already met two complexity classes. Figure 2.1
presents an overview of the hierarchy of complexity classes relevant to this chapter.

• Decidable versus undecidable. Problems can be partitioned into two main
group of classes: decidable problems –i.e, problems for which we can exhibit a
correct solving algorithm that will terminate on any instance– and by opposi-
tion, undecidable ones. For instance, satisfiability in FOL –i.e., the problem of
determining the existence of a model satisfying a given first-order formula– is un-
decidable (Theorem 2.3.1). On the other hand, the same problem in the fragment
FOL{∃,∧} is decidable.

3For non-directed graphs, E is sometimes defined as a set of subsets of V with at most two
elements; i.e., E ⊆ {X/X ⊆ V & |X| ≤ 2} where singletons represent reflexive edges. To express
the symmetry of non-directed edges, twin-atoms may also be added in

∧
(v,v′)∈E Rvv

′ ∧Rv′v.
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Figure 2.1: Complexity class hierarchy (A −→ B represents A ⊆ B)

2.2.3. Theorem. satisfiability in existential conjunctive first-order logic is de-
cidable.

Proof: formulae of FOL{∃,∧} have no mean to express contradictory information,
hence the satisfiability problem is trivially decidable. �

• Tractable versus untractable. Decidable problems can themselves be parti-
tioned into tractable problems and decidable but untractable ones. The previous
model construction is an example of a tractable task; it can be achieved in a
reasonable amount of time (an amount of time linear –hence, polynomial– in the
size of the input formula). Polynomial time problems (including trivial prob-
lems) are usually considered as tractable: the needed amount of resources grows
“moderately” with the growth of the input.

On the other hand, a basic graph problem, CLIQUE falls into the difficult
category: it is NP-complete.

2.2.4. Definition. CLIQUE:
Input : a finite graph G = (V,E ⊆ V 2) and a natural number k ≥ 2
Question: does G includes complete subgraph of size k (i.e., a k-clique)?
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Thus, a k-clique is a graph G′ = (V ′, E ′ ⊆ V ′2) such that (i)V ′ ⊆ V , (ii)E ′ ⊆ E,
(iii)|V ′| = k and (iv)∀xy ∈ V ′, (x, y) ∈ E ′.

NP is the class of problems that can be solved in non-deterministic polynomial
time; that is, if a potential solution can be non-deterministically guessed, the
verification that it is a solution to the problem only takes polynomial time. Fur-
thermore, a problem is complete for a complexity class if it belongs to the class
and is as difficult as any other problem of the class: complete problems char-
acterise their class. For instance, the trivial problem satisfiability(FOL{∃,∧})
(Theorem 2.2.3), is obviously in NP: if we can guess the canonical model of a
FOL{∃,∧}-formula, checking the satisfaction of the formula by the model only
takes linear time. However, satisfiability(FOL{∃,∧}) is not NP-complete as it is
much easier than some other problems in NP such as CLIQUE or satisfiability
in propositional logic (SAT ).

2.2.5. Theorem. [Kar72] CLIQUE is NP-complete.

Symmetrically to NP, coNP is the class of problems that have a succinct
disqualification: if we can guess a potential counter-example, then the verification
that it is a counter- example only takes polynomial time. For instance, validity
–i.e., the satisfaction by all structures– in propositional logic is in coNP: if a
propositional formula is not valid, then for a guessed truth assignment that does
not satisfy the formula, verifying that this truth assignment does not satisfy the
formula takes linear time.

The frontier between tractable and untractable problems is thin. First, the
polynomial time characterisation of a problem might not always be as satisfactory
in practice as it appears theoretically: an algorithm whose complexity is with a
high polynomial degree might not be enough efficient for a robot that requires
quick reaction. On the contrary, some untractable problems can be solved rea-
sonably fast for most inputs, while worst cases, that force the belonging to an
untractable complexity class, are seldom encountered. Furthermore, the inequal-
ity P �= NP is suspected but not proven. All we can say so far, is that for no
NP-complete problem, a deterministic polynomial time algorithm has been exhib-
ited. For these reasons, the limit between modest complexity or not is sometimes
set between polynomial classes and exponential ones.
• modest complexity versus high complexity. In this bipartition, all classes

included in PSPACE are considered modest. The bottom line of high complexity
classes is EXP: the class of problems that can be solved in exponential time (2-
EXP being double exponential time). Similarly to the relation between P and NP,
NEXP is the class of problems for which a candidate solution can be validated
in exponential time. Its complement, coNEXP, is the class for which a candidate
counter-example can be validated in exponential time. EXPSPACE is the class
of problems that require exponential space, while on top of Figure 2.1, R denotes
recursive languages.
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The notion of class completeness brings us to our next subject: the transfor-
mation of a problem into another problem of known complexity.

2.2.5 Reductions

Reductions are techniques that enable to rely on known classification results for
inferring new results: a problem A is at least as hard as a problem B if B reduces
to A. We will exclusively deal with problems whose answer are either “yes” or
“no” (decision problems). For a decision problem, B reduces to A means that
there is a polynomial time transformation f which for any instance b of B provides
an instance f(b) of A such that the answer of A on f(b) is the answer of B on b.

As an application of the method, we will prove the undecidability of conse-
quence in positive FOL(i.e., the set of FOL formulae containing no occurrence
of a negation symbol). From Church’s thesis [Chu36], we know that the valid-
ity problem is undecidable in FOL (Theorem 2.3.1). The consequence problem
in positive FOL can be stated as follows: let (ϕ, ψ) be a pair of positive FOL
formulae, is any model of ϕ a model of ψ?

2.2.6. Theorem. Consequence(FOL{∃,∀,∧,∨}) is undecidable.

Proof: by reduction of V alidity(FOL) to Consequence(FOL{∃,∀,∧,∨}). Let ϕ be
a FOL sentence and ψ be the sentence obtained from the negation normal form
of ϕ by replacing any negative literal ¬P$t by a positive one P−$t such that P−

does not occur in ϕ.

|=FOL ϕ
iff

∧
P∈ϕ ∀$x(P$x ∨ P−$x) ∧

∧
P∈ϕ ¬(∃$x(P$x ∧ P−$x)) |=FOL ψ

iff
∧
P∈ϕ ∀$x(P$x ∨ P−$x) |=FOL ψ ∨

∨
P∈ϕ ∃$x(P$x ∧ P−$x).

Obviously the input (
∧
P∈ϕ ∀$x[P$x∨P−$x], ψ∨

∨
P∈ϕ ∃$x[P$x∧P−$x)]) of the conse-

quence problem in positive FOL is obtained from the input ϕ in polynomial time.
�

We can note that for the same reason that satisfiability was trivial in FOL{∃,∧},
it is also trivial in positive FOL: no contradiction can be expressed without
some form of negation. It is also interesting to see that the particular case
of Consequence(FOL{∃,∀,∧,∨,functions,=}) where the premiss is a conjunction of
ground literals, is NP-complete [Koz81]. This problem remains NP-complete
without equality and without function symbols [Vor99].

Despite their fairly independent characteristic, classical computation models
are used to measure the amount of needed resources in terms of the size of their
input presented as a string of symbols. Does this mean that we have to abandon
many of the graphical features and translate our drawings into strings? Maybe
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not, but a paradigm of visual computation models would have to emerge together
with real visual computers. In the mean time, actual computers only manipulate
strings and therefore, it makes sense to renounce, for a while, some of the visual
features such as proximity and compare the computational behaviour of different
logics on a solid ground. An extended presentation of complexity theory and
reduction techniques may be found in e.g. [Pap94].

With the machinery of complexity theory, we are now nearly equipped for
comparing the computational behaviour of various logical fragments. However,
we must first decide the kind of logical problems we are interested in.

2.3 The classical decision problem

We have already encountered several problems (e.g., Consequence(FOL{∃,∀,∧,∨}),
SAT , CLIQUE). The most prominent problem of modern logic is Hilbert’s
Entscheidungsproblem, the classical decision problem. It can be stated in different
equivalent ways:

satisfiability(FOL): given a sentence of a first-order language, is it
first-order satisfiable?
consequence(FOL): given two sentences of a first-order language, does
the first one entail the second one?
validity(FOL): given a sentence of a first-order language, is it logically
true?

ϕ entails ψ iff ¬ϕ ∨ ψ is valid iff ϕ ∧ ¬ψ is not satisfiable

Church and Turing provided a negative answer to the decidability of this problem
in its general form:

2.3.1. Theorem. [Chu36, Tur37] satisfiability(FOL), consequence(FOL) and
validity(FOL) are undecidable.

In the mean time, the restriction of the classical decision problem to certain
syntactical forms had already been proven decidable (e.g., the decidability of
satisfiability in monadic first-order logic by Löwenheim [Löw15]) and the general
problem was restated as a classification of the classical decision problem for first-
order fragments.

2.3.1 The classical decision problem in fragments of FOL

Most of the literature on decision problems in first-order logic has focussed on
the satisfiability problem in fragments determined by quantifier prefixes, clausal
forms (Krom or Horn formulae) and the vocabulary, witness the extensive survey
[BGG97]. Examples of complexity results obtained by syntactic restrictions on
FOL include:
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2.3.1.1 Monadic versus polyadic.

Löwenheim [Löw15] proved the decidability of satisfiability for FOL formulae
containing only unary relations and the undecidability of satisfiability for FOL
formulae containing binary relations. The later result was refined by Kalmár
[Kal36] who proved that one binary relation was sufficient.

2.3.1.2 Quantifier prefixes.

The Bernays-Schönfinkel fragment consists in the FOL formulae in prenex normal
form of the form ∃$x∀$yϕ where ϕ is quantifier free. Satisfiability in the Bernays-
Schönfinkel fragment is decidable [BS28] (and NEXP-complete [Lew80]). By con-
trast and to highlight the relevance of the order in the interlacing of quantifiers,
satisfiability in the fragment consisting of formulae of the form ∀$x∃$yϕ, where ϕ
is quantifier free, is undecidable [Sko20].

2.3.1.3 Finite signature

When only two variables are available for building FOL-formulae, the satisfiabil-
ity problem becomes NEXP-complete [GKV97]. On the other hand, with three
variables or more the satisfiability problem is undecidable (e.g. [BGG97]). It
should be noted that for a given finite relational vocabulary, there some k such
that any formula is equivalent to a formula with at most k variables.

Satisfiability of Bernays-Schönfinkel sentences with a bound number of univer-
sal quantifiers (i.e., sentences in prenex normal form ∃x1 . . . ∃xk∀x1 . . . ∀xlϕ where
ϕ is quantifier free and l ≤ q for some fixed natural number q) is in NP [BGG97].
It follows a coNP upper bound on the consequence problem in existential FOL
–i.e., FOL-formulae with no occurrences of universal quantifier in negation nor-
mal form– and sub-fragments, if the conclusion part of the input is restricted to
existential sentences with a fixed bound on the number of quantifiers.

More drastically, satisfiability of FOL-sentences with a fixed bound on the
amount of quantifiers and built from a finite vocabulary, is in P [BGG97]. It
follows that Consequence in this fragment is also in P. The idea of the proof is
to chose a linear order on the finite vocabulary and to pre-compute a finite table
of results for the formulae whose matrix in conjunctive normal form (CNF) is
minimal with respect to the order. Then, answering an instance of the problem
can be done in logarithmic space as it amounts to a CNF-normalisation of the
input and a check into a fixed table.

2.3.1.4 Modal restrictions.

The two variable fragment of FOL has already a modal flavour: it includes the
standard translation of propositional modal logic [Gab71]. A closer look at the
syntactic structure of the translated modal formulae reveals another property:
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existential quantifiers are “guarded” by an atom whose arguments includes all free
variables occurring in the scope of the quantifier. For instance Q∧�P corresponds
to Qx∧∃y(Rxy ∧Py) where the accessibility atom Rxy is called a guard for the
quantifier ∃y. By dropping the restriction to use only two variables, Andréka
et al. [ABN98] defined the guarded fragment of FOL which enjoys the finite
model property, the decidability of its satisfiability problem (2-EXP-complete
[Grä99]) and diverse model theoretic properties such as the interpolation property
or equivalence under bisimulation. [Ben97] further extends the decidability result
to the loosely guarded fragment of FOL in which quantifiers are guarded by
conjunctions of atoms. We will elaborate on these bounded quantifications in
Chapter 2.7 and in the next chapter.

Despite the large focus of the logic literature on the sole satisfiability prob-
lem, the three versions of the classical problem –i.e., satisfiability, validity and
consequence– are of interest for fragments of FOL: their equivalence in FOL
breaks down in fragments of FOL. For instance, we have seen that consequence
in positive FOL is just as difficult as in full first-order logic (undecidable), whereas
satisfiability in positive FOL is trivial.

Furthermore, the fragments we are interested in –i.e., languages missing some
boolean connectives– are not the ones usually studied in logic. To some extent,
our application driven route leads above all to the study of tractable fragments
and to the point of view of computer science for which other benchmark problems
also come to the fore.

2.4 Benchmarks

Although decidability and complexity studies in logic have traditionally been fo-
cussed on the satisfiability problem, we should not forget our conceptual graphs
and the use we want to make of them: represent knowledge and reason on these
representations. A knowledge representation system (KRS) has at least two in-
gredients: a knowledge base, in which the knowledge represented is stored, and an
inference engine that solves problems by manipulating sentences according to a
semantics. A third ingredient, which falls outside the scope of this study, concern
some methods for revising the knowledge base with new evidences.

Different kinds of questions may fuel an inference engine; for instance, does
a given knowledge base contain contradictory information? What is the set of
all objects in a knowledge base satisfying some property? Is a given piece of
information the logical consequence of a knowledge base (or of another piece of
information)? In the eyes of these applications of logic different decision problems
are salient and we will select a set of benchmark problems that will serve the
comparison between languages.
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2.4.1 Four problems

2.4.1.1 Satisfiability.

Proving the satisfiability (or consistency) of a knowledge base guarantees that it
does not contain contradictory information and therefore, that it will not classi-
cally imply everything. It should be noted that, in practice, satisfiability tests of
a knowledge base that is seldom modified, may be performed “offline”. Formally
the problem can be formulated as follows:

Satisfiability(L):
Input : a formula ϕ ∈ L where L is a language for the logic L
Question: is there a L-structure M such that M |=L ϕ ?

Another problem concerning a single piece of information is validity (i.e., is a
given formula satisfied by all structures?). Validity is a sign of non-informative
content: asking a valid question about the information represented in a knowledge
base does not provide any insight on the informational content of the knowledge
base. On the other hand, from a valid knowledge base, can only be inferred valid
representations: pieces of information whose logical truth is not related to the
information contained in the knowledge base. For these reasons, validity will be
left aside.

2.4.1.2 Consequence.

Proving the entailment of a piece of information by another piece of information
is often considered as the central reasoning task in knowledge representation
systems. This consequence problem takes different names depending on whether
the premiss is called a knowledge base or not:
(i) query answering : given a knowledge base and a query, is it the case that the
query follows from the information contained in the knowledge base?
(ii) subsumption (also called query containment in database theory): is some
representation more general than another one? This last formulation is often
used as part of a classification scheme.

Consequence(L):
Input : two formulae ϕ, ψ ∈ L where L is a language for the logic L
Question: is it the case that for every L-structure M ,

M |=L ϕ implies that M |=L ψ?

A variant where ϕ and ψ are formulae of two languages over the same vocabulary
but that do not share exactly the same logical language (i.e., boolean connectors
and quantifiers), will also be useful:
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Consequence(L,L′):
Input : ϕ ∈ L where L is a language for the logic L

and ψ ∈ L′ where L′ is a language for the logic L′
Question: is it the case that for every L-structure M ,

M |=L ϕ implies that M |=L′ ψ?

The consequence problem does not only play a preponderant role because of
its association to information comparison tasks which are relevant to KRSs, but
as well for the upper bound provided by its complexity on the one of satisfiability
and of validity. Indeed, the consequence problem is always at least as difficult as
the satisfiability problem as proving that a consequence holds amounts to proving
the satisfaction of the conclusion in every model of the premiss. Furthermore,
validity is a special case of consequence as a valid expression follows from the
logical constant True.

Particular cases of consequence problems may arise from specific choices in
some knowledge representation systems. For instance, some description logic sys-
tems distinguish an intensional knowledge level –i.e. knowledge about patterns
in the relational structure represented– from an extensional (or assertional) one
–i.e. knowledge about individuals in the relational structure–. In this case (e.g.
[DLNS94]), instance checking is the problem of verifying that a particular rela-
tional pattern is true of a particular individual in a knowledge base, and the term
subsumption is then reserved for consequence between constant-free sentences.

2.4.1.3 Model checking.

It happens that we are sometimes more interested in one particular model of a
knowledge base than in all its satisfying structures. This is a common standpoint
in database theory [AHV95, Via97, KV00], where a database instance may be
considered as a finite relational structure providing a finite interpretation of the
vocabulary. Queries are answered with pieces of information extracted from this
finite description. Model checking also offers an approach in computer-aided
design and verification [CE81, McM93, Kur94] which is modest enough to be
practically applicable (tractable for many query languages). Model checking can
be applied to chip designing, software programming, web-site conception or any
activity requiring the design of a process that can be represented by a labelled
transition system (an automata, simply a structure) and that needs to conform
to some properties. These properties are expressed as formulae that must be
satisfied by the model.

Model checking(L):
Input : a formula ϕ ∈ L and M a finite structure over L,

where L is a language for the logic L
Question: is it the case that M |=L ϕ ?
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This generic definition of model checking is also called uniform as the sizes
of both input parts come into account in the complexity analysis. In Database
theory, two popular variants of model checking are considered (see e.g., [Var82,
KV00]): by fixing the model –i.e., the structure is not part of the input, thus, its
size does not take part in the complexity analysis of the problem–, one measures
the expression-complexity of a non-uniform model checking problem. Symmet-
rically, data-complexity is obtained by fixing the query. For instance, in FOL
[Var82]: both uniform and expression variants of model checking are PSPACE-
complete, while the data-complexity is polynomial time (more precisely in the
logarithmic-time class AC0).

2.4.1.4 Model comparison.

In the line of model checking, another problem emerges: the comparison of two
structures. Practical questions are for instance: are two databases equivalent or
is one of the two more general than the other one? Are two programs equivalent
–a model smaller than the other may then be more useful for model checking–?
Variants of the model comparison problem are called p-morphism or bisimula-
tion in modal logic [Ben96, BRV01], database conjunctive-query containment
[KV00], constraint satisfaction problem [FV99] or automata simulation [Mil90].
An interesting relation to conceptual graph is the efficient bisimulation algorithm
proposed in [DPP01] which is based on a graph algorithm in [PTB85]. Indeed,
as we will see in Chapter 2.5 and in Chapter 3, for simple conceptual graphs, the
equivalence of the consequence problem and the model comparison is exploited
in a graph homomorphism consequence calculus, projection.

Model comparison(L):
Input : two finite L-structures M and N , where L is a language for L
Question: is there an homomorphism from N to M (M � N)?

For these four benchmark problems, we already know some complexity results.

2.4.2 Results that set the scene.

satisfiability consequence model checking model comparison

FOL undecidable undecidable PSPACE NP

FOLk>2 var undecidable undecidable P P

ML PSPACE PSPACE P P

Undecidability results for the classical decision problem in first-order logic
[Chu36, Tur37] motivated the foundation of complexity theory. The undecidabil-
ity of the classical decision problem restricted to predicate logic with 3 variables
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follows from the undecidability of satisfiability in the Kahr class [Kah62]: FOL
formulae in prenex form ∀x∃y∀z ϕ(x, y, z).

The PSPACE-completeness of (local) satisfiability and consequence in modal
logic K was proven in [Lad77] and extended to the multi-modal case in [HM92].
Complexity classification has been salient to some applied modal logics in which
the behaviour of satisfiability and consequence in various syntactic fragments are
put under a microscope, e.g., [SSS91, DLNN97].

Model checking tasks have received a careful attention of finite model the-
ory (e.g., [EF95]) and database theory (e.g.,[AHV95, Imm82, HV91]). Chandra
and Merlin [CM77] and Vardi [Var82] prove the PSPACE-completeness of uni-
form model checking in FOL. The polynomial time complexity of uniform model
checking in variable bounded fragments of FOL is proven in [Imm82] (see also
[Var95] for the complexity of the problem when the model is fixed –i.e., expres-
sion complexity– and when the formula is fixed –i.e., data complexity–). The
polynomial time complexity of model checking in modal logic K follows from the
inclusion of its standard translation in FOL2 (see also [HV91] for a direct proof of
this result). Some recent developments in database theory concern also bounded
loosely guarded fragments of FOL. [GLS01] proposes an elegant game theoretic
connection between the class of conjunctive queries with bounded hypertree-width
and k-loosely guarded existential conjunctive FOL (i.e., subformulae are guarded
by a conjunction of at most k atoms). Furthermore, [GLS99] proves the polyno-
mial time complexity of query evaluation in these bounded fragments.

Studies on the complexity of model comparison can be traced back to early
results on combinatorial problems on graphs such as CLIQUE [Kar72]. Verify-
ing that a guessed correspondence between the universes of two FOL-structures
corresponds to an homomorphism can be done in polynomial time (it is a check
of every tuple in the conclusion is a tuple in the premiss under the substitution).
On the other hand, the reduction CLIQUE into model embedding provides the
NP-hardness. Polynomial results for structure equivalences in variable bounded
fragments and modal logic are discussed in [Gro96].

We can also note that at the crossroad of FOL and ML, guarded fragments of
FOL have decidable decision problems:
- Satisfiability is 2-EXP-complete for both the guarded fragment and the loosely
guarded fragment [Grä99].
- Uniform model checking is P-complete for the restriction of the guarded frag-
ment (GF) to a finite number of variables (or equivalently, to a finite relational
vocabulary): indeed uniform model checking in FOLk>2 is P-complete and the
P-hardness proof in [Var97] uses an encoding inside GF3.
- For the whole guarded fragment, Maarten Marx proved the following theorem.

2.4.1. Theorem. [Personal communication of Maarten Marx, ILLC, 2000.]
Uniform model checking is PSPACE-complete for both the guarded fragment and
the loosely guarded fragment of FOL.
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Proof: the PSPACE upper bound is provided by uniform model checking in FOL
and the PSPACE-hardness by an extension of the reduction from the satisfiability
problem of quantified boolean formulae (QBF) [SM73] to model checking in FOL.
Let φ = ∃p1∀p2...Qnpnϕ be a QBF (i.e., Qi is ∃ if i is odd and ∀ otherwise) and
M = (U = {0, 1}, [[.]]) with [[r]] = {0} and [[G]] = Un.

Let φ′ = ∃x1(guard ∧ ∀x2(guard→ ...Qnxn(guard op ϕ[pi/r(xi)])...))

such that guard = Gx1...xn and
op is ∧ if it follows an existential quantifier and → otherwise.

φ is satisfiable iff M |= φ′

φ′ is guarded and furthermore, the reduction is polynomial if the universal rela-
tion in the structure M is economically encoded as described in Chapter 2.2.3. �

2.4.3 Conclusions

In order to compare logics and select some that might apply to conceptual graph
formalisms, we have chosen four benchmark problems that are relevant to knowl-
edge representation systems.

2.4.3.1 A festival of parameters.

The most enthralling fact to retain from the study of decision problem complex-
ities is that there is a wide range of parameters that we may tune to change the
rules of the game. The interlacing of different scales offers a variety of specific
problems:

1. diverse semantics: we have focussed on first-order and local modal inter-
pretations, however, we could also deal with propositional logic, epistemic
logic or modal logic with global satisfiability or combination of logics such
as first-order modal logic.

2. other generic problems: even though we have selected four of them, we have
been aware of validity problems, instance checking, model equivalences, etc.

3. the vocabulary scale induced by constraints on the variable set, on the
relational vocabulary or on the logical vocabulary.

4. the scale of syntactic constraints such as guarded forms and quantifier prefix
restrictions.
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5. the freedom of choosing premiss and conclusion from different logics over a
common vocabulary.

6. restrictions on part of the input of a generic problem. We have mostly con-
sidered uniform problems –i.e., in which the sizes of both the premiss and
the conclusion take part in the complexity measure– for their fair way of
taking into account the size of all the available information. However, non
uniform variants of model checking are commonly studied in database the-
ory. Similarly, the freezing of one input side can also apply to consequence
and model comparison.

This great amount of possibilities calls for selection –i.e., we will not draw
an exhaustive landscape of results– and precision concerning the measured pa-
rameters. For instance, subsequently, all results will be about uniform problems
except if explicitly stated.

2.4.3.2 Complexity collapses and divergences between problems.

The problems are not as independent as they may look. For instance, in all
three (rather rich) logics of the previous table, consequence is just as difficult as
satisfiability, but for positive FOL, these two problems are located at opposite
extremities of the hierarchy –i.e., satisfiability is trivial, while consequence is
undecidable–. We can also notice that the difference between model comparison
and model checking in FOL, collapses in modal logic and finite-variable fragments
of FOL. The interdependence of the benchmark problems is even more striking
as for example, satisfiability may be put at work to compute a model and fuel
model checking. Model comparison can be used to simplify a model and ease the
model checking task.

With structure encodings we have caught a glimpse of an interdependence be-
tween structures and conjunctions of atoms. In the next section, we will observe
that this interdependence can be formulated as an equivalence between conse-
quence, model checking and model comparison in existential conjunctive FOL.

2.5 A key fragment: existential conjunctive FOL

Despite its apparent poor language, FOL{∃,∧} proves useful in some practical
applications where the information represented has the form of a list of positive
atomic facts with a slight degree of indeterminacy introduced by the existential
quantification (e.g., [GC97] studies document retrieval tasks in a simple con-
ceptual graph knowledge base for libraries or [KV00] examines FOL{∃,∧} as a
language for database queries). One of the first asset of FOL{∃,∧} is a semantic
relationship between three of the benchmark problems.
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2.5.1 Semantic relationships

Formulae of existential conjunctive logic (FOL{∃,∧}) enjoy a notion of minimal (or
canonical) finite model: a structure containing exactly the positive information
conveyed by a formula.

2.5.1. Definition. Let ϕ ∈ FOL{∃,∧} and φ be the Skolem form of ϕ –i.e.,
existential quantifiers are replaced by new constants or witnesses–. The minimal
model of ϕ is the finite structure M(ϕ) = (U, [[.]]M(ϕ)) defined as follows:

• U is the set of terms occurring in φ,

• [[.]]M(ϕ) is defined on R∪C where R is the set of relation symbols occurring
in ϕ and C is the set of constants occurring in ϕ.

• for a constant c ∈ C, [[c]]M(ϕ) = c and

• for a relation symbol r ∈ R of arity ar, [[r]]M(ϕ) = {〈u1, ..., uar〉/r u1, ..., uar

is an atom in φ}.

2.5.2. Fact. It is easy to prove by induction on the structure of formulae that:

1. ϕ ∈ FOL{∃,∧,¬atomic,∨} is equivalent to a formula in prenex form ∃$xϕ′ where
ϕ′ is quantifier free.

2. Minimal models are models: M(ϕ) |= ϕ for ϕ ∈ FOL{∃,∧}.

3. The satisfaction of a formula in ϕ ∈ FOL{∃,∧} is preserved under structure
homomorphism: if M � N and M |= ϕ then N |= ϕ.

4. For ϕ, ψ ∈ FOL, if M |= ϕ and ϕ |= ψ then M |= ψ (by definition of
entailment, every model of ϕ is a model of ψ).

We now have enough material to state a theorem that justifies the use of
structure homomorphism algorithms to solve the consequence problem in simple
conceptual graphs.

2.5.3. Theorem. Let ϕ, ψ ∈ FOL{∃,∧} and M(x) be the minimal model of x,

ϕ |= ψ ←→ M(ϕ) |= ψ ←→ M(ϕ) �M(ψ)

Furthermore, these equivalence are complexity preserving.

Proof:
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1. ϕ |= ψ −→1 M(ϕ) |= ψ

by Fact 2.5.2(2), M(ϕ) |= ϕ. Therefore, the hypothesis that ϕ |= ψ and
Fact 2.5.2(4) imply that M(varphi) |= ψ.

The reciprocal could be shown from Fact 2.5.2(3) and the property that
there is an homomorphism from M(ϕ) to any model of ϕ.

2. M |= ψ −→2 M �M(ψ)

Without loss of generality (by Fact 2.5.2(1)), let ψ be in prenex form
∃$xψ′. By construction of M(ψ), there is a bijection F : term(ψ′) →
domain(M(ψ)) such that an atom R$t ∈ ψ′ iff F ($t) ∈ [[R]]M(ψ).

Assume that M |= ψ, we must show that there exists an homomorphism
π : M(ψ)→ M .

It follows from M |= ψ that there exists a function a : term(ψ′) →
domain(M) such that:
(i) a is conform to [[]]M on constants occurring in ψ and
(ii) if R$t ∈ ψ′ then a($t) ∈ [[R]]M .

Thus π = a(F−1) is a function from domain(M(ψ)) to domain(M) such
that for any relation R occurring in ψ, 〈d1, ..., dn〉 ∈ [[R]]M(ψ) implies that
〈π(d1), ..., π(dn)〉 ∈ [[R]]M .

3. M(ϕ) � M(ψ) −→ ϕ |= ψ

Assume that M(ϕ) � M(ψ) and M |= ϕ, we have to show that M |= ψ.

M(ψ) |= ψ, thus, by Fact 2.5.2(3), M(ϕ) |= ψ.

Furthermore by −→2, M |= ϕ implies that there exists an homomorphism
from M(ϕ) to M . Hence, by Fact 2.5.2(3), M |= ψ.

We have already shown, in Chapter 2.2.3, the polynomial time equivalence
between a structure M and a formula ϕ ∈ FOL{∃,∧} such that M |= ϕ. The
encoding rewriting which was used in Chapter 2.2.3 is precisely the converse of
the model construction step from the Skolem form of an existential conjunctive
formula to its minimal model described in Definition 2.5.1. Furthermore, as the
Skolemisation of an existential conjunctive sentence takes linear time (by a single
run through the formula, existential quantifiers can be eliminated and variables
be replaced by witnesses), the size of an encoding of ϕ and the size of an encoding
of M(ϕ) are polynomially related. �

Similar problem equivalences and size preservation do also hold for restricted
modal logics such as ML{�,∧} and its enrichments with nominals and nominal
binders; indeed, by standard translation, these fragments of modal logic corre-
spond to fragments of existential conjunctive FOL.
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The complexity preserving equivalences suggest the use of an homomorphism
calculus on minimal models to decide an instance of the consequence problem.
Projection [Sow84] is such a labelled graph homomorphism calculus for simple
conceptual graphs (the conceptual graph fragment corresponding to FOL{∃,∧}).
It remains to capture the complexity behaviour of our benchmark problems in
this fragment.

2.5.2 Complexity

Excluded from the previous semantic equivalence, satisfiability in existential con-
junctive FOL is very easy:

2.5.4. Theorem. Satisfiability(FOL{∃,∧}) is trivial.

Proof: for every positive fragment of FOL (i.e. ∀X ⊆ {∃,∀,∧,∨}, FOLX)), sat-
isfiability is trivially answered by the affirmative as no contradiction can occur.
Any positive formula has a model with one element. �

On the other hand, subsumption is untractable as FOL{∃,∧} is a language of
cliques.

2.5.5. Theorem. Consequence(FOL{∃,∧}) is NP-complete.

Proof: let A = ∃x1 . . .∃xkµ where µ is quantifier free and contains l distinct
constants. A has a canonical model of size k + l represented by the set of atoms
of µ where witnesses are substituted to existentially quantified variables, i.e. A′ =
{Rt1 . . . tm[x1/w1 . . . xk/wk] : Rt1 . . . tm ∈ µ}. Let B′ be the set of atoms in B,
A |=FOL B iff there exists a substitution β for the free variables of B′ such that
B′[β] ⊆ A′. Let n be an upper bound of the length of the strings representing
A′ and B′. If β is guessed, B′[β] ⊆ A′ can be verified in O(n2), therefore the
problem is in NP.

To show the NP-hardness, we can reduce the NP-complete problem CLIQUE
(see Definition 2.2.4 and Theorem 2.2.5) to Consequence(FOL{∃,∧}).
Let G = (V,E ⊆ V 2, k ≥ 2) with V = {c1, . . . , cm} be an input of CLIQUE, we
define f(G) = (A,B) where A =

∧
(ci,cj)∈E and i<j

Rcicj and

B = ∃x1 . . . ∃xk
∧

1≤i<j≤k Rxixj.
An atom Rt1t2 stands for an edge, A represents the set of edges V and B a com-
plete graph with k vertices. It is easy to show that G ∈ CLIQUE iff A |=FOL B.
�
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By language correspondence, the problem is equivalent to the NP-complete
problem of proving the existence of an homomorphism between two labelled
graphs (e.g., simple conceptual graphs) [Mug95].

As a corollary of Theorem 2.5.3 and Theorem 2.5.5, the remaining two bench-
mark problems are also untractable (concerning model comparison, after all,
structures of FOL{∃,∧} are just structures of FOL and the problem inherits the
complexity of its richer parent).

2.5.6. Corollary. Model checking(FOL{∃,∧}) and Model comparison(FOL{∃,∧})
are NP-complete.

Coming back to our conceptual graph systems, we may wonder what are
the consequences of the information conveyed by a support on the behaviour of
reasoning in the fragment.

2.5.3 Harmless meaning postulates

Simple conceptual graph systems add a supplementary touch of enrichment to
existential conjunctive FOL: a finite subset R of the relational vocabulary is
governed by a partial order ≤R such that two relations with different arities
are incomparable. The ordered set (R,≤R) is represented as an acyclic directed
graph, called a relational support, in which the set of nodes corresponds to R
and a directed edge (P,Q) can occurs iff P ≤R Q and there is no S such that
P ≤R S ≤R Q.

2.5.7. Example. Let {P,Q, S, T, U, V } be a set of k-ary relations for some k ∈
IN+.

A directed edge represents a universal sentence; e.g., the edge from P to Q cor-
responds to ∀$x(P$x→ Q$x) where $x = 〈x1...xk〉.
The whole graph corresponds to a conjunction of universal formulae, e.g.,

σ = ∀+x(P+x→ Q+x) ∧ ∀+x(Q+x→ S+x) ∧ ∀+x(P+x→ S+x) ∧ ∀+x(Q+x→ T+x) ∧ ∀+x(U+x→ V +x)

Applying σ to an existentially quantified conjunction of atoms

ϕ = ∃$y(P$y ∧ P$b ∧Q$c ∧ U $d)

results in an extension of ϕ with new k-ary atoms:

σ(ϕ) = ∃$y(P$y ∧Q$y ∧ S$y ∧ T$y︸ ︷︷ ︸
σ(P&y)

∧P$b ∧Q$b ∧ S$b ∧ T$b︸ ︷︷ ︸
σ(P&b)

∧Q$c ∧ S$c ∧ T$c︸ ︷︷ ︸
σ(Q&c)

∧ U $d︸︷︷︸
σ(U &d)

)
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We can note that for each atom of the original formula, each meaning postulate
(MP) can apply at most once and that a meaning postulate cannot be triggered
without a fitting atom. Indeed, a meaning postulate is a guarded formula; i.e.,
of the form ¬(∃$x(P$x ∧ ¬Q$x)) where P and Q are relation symbols and every
variable in the conclusion Q$x occurs in the guard P$x.

Meaning postulates can be seen as part of the premiss of a consequence prob-
lem and influence the minimal model of a knowledge base. We note FOL{∃,∧}+MP
the class of FOL languages whose formulae are conjunctions of an existential con-
junctive sentence and a conjunction of meaning postulates corresponding to a
relational support.

A simple counting argument is sufficient to prove that the addition of meaning
postulates to a knowledge base does not change the complexity of the benchmark
problems:

2.5.8. Theorem. Satisfiability(FOL{∃,∧}+MP ) is trivial and
Consequence(FOL{∃,∧}+MP , FOL{∃,∧}) is NP-complete.

Proof: For satisfiability, in the absence of negation and constant FALSE, mean-
ing postulates cannot bring in contradictions.

For consequence, we could fear an explosion of the size for the minimal model
of the premiss. However, a closer look at the needed expansion of the minimal
model can rest us. How many atoms would be sufficient to replace the meaning
postulates in an equivalent “meaning-postulate-free” premiss?
For each atom of the premiss minimal model, each MP can only be triggered
once as the guarded form of the MP makes it eventually introduce new relational
occurrences, but no new object and no more than one new atom per application
of an MP. Hence, a simple model saturation algorithm would make the minimal
model of the premiss graph grow polynomially in the combined size of the model
and the set of MP’s, in a polynomial number of expansion steps. �

2.5.9. Example. For instance, the minimal model of the sentence:

Pa ∧ Pb ∧Qc ∧ Ud∧
∀$x(P$x→ Q$x) ∧ ∀$x(Q$x→ S$x) ∧ ∀$x(P$x→ S$x) ∧ ∀$x(Q$x→ T$x)

represented by the graph:

is the minimal model of:

Pa ∧ Pb ∧Qc ∧ Ud ∧Qa ∧Qb ∧ Sa ∧ Sb ∧ Sc ∧ Ta ∧ Tb ∧ Tc
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The harmless role of meaning postulates in the complexity of the problems
makes them often be considered as part of the input which is fixed beforehand; just
like the vocabulary. Furthermore, the notion of guarded occurrences of quantifiers
in MP’s suggests several possible extensions:

1. the “acyclicity” property of the meaning postulate set may be dropped.

2. meaning postulates in the transitive closure of the implication set may freely
be added.

3. the conclusion may not have the same arity as its guard.

4. the guard of a meaning postulate may be replaced by a loose guard; i.e. a
conjunction of atoms.

2.5.4 Conclusion

The logic of simple conceptual graphs, existential conjunctive FOL, is not tracta-
ble for consequence, the prominent problem of KRSs. Fortunately, enriching
the language with meaning postulates leaves the complexity of the benchmark
problems unchanged:

satisfiability consequence model checking model comparison

FOL{∃,∧} trivial NP − complete NP − complete NP − complete

Two notions have been essential in this fragment. Firstly, the one of a minimal
model of a FOL{∃,∧}-sentence. The close relation between the size of an encoding
of such a sentence and the one of its minimal model has repercussions under
the form of problem equivalences for the fragment. These equivalences can serve
the elaboration of calculi: e.g., model matching by homomorphism to compute
consequences.

Secondly, a notion of guarded sentences, borrowed from modal formalisms,
has already proved its attractive computational behaviour. Other applications of
guards will later be examined.

2.5.4.1 A road map.

Some of fragments that gravitate around our central reference, existential conjunc-
tive first-order logic, will be studied in the following two sections. The relatively
low, but not safe enough, NP-complete complexity result suggests two directions
to explore:
- fragments richer than FOL{∃,∧} where decidability (or even better, modest com-
plexity) can be preserved and
- tractable restrictions of FOL{∃,∧}.

In a first part, we consider expressivity extensions by addition of boolean
connectors.
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2.6 Fragments richer than FOL{∃,∧}

2.6.1 Including atomic negation

A first sensible extension of existential conjunctive first-order logic consists in the
enrichment with atomic negation, the possibility of stating that some objects are
not in a given relation. The question related to these enrichments is whether the
already untractable , but modest, complexity results remain “reasonable”.

2.6.1.1 Benchmark problems on models

The complexities of model checking and model comparison do not increase:

2.6.1. Proposition. Model checking(FOL{∃,∧,¬a}) and
model comparison(FOL{∃,∧,¬a}) are NP-complete

Proof: for model comparison, upper and lower bounds are respectively provided
by FOL and (FOL{∃,∧}).

For model checking, the NP lower bound of model checking(FOL{∃,∧}) also
remains an upper bound: if we can guess an assignment for the existentially quan-
tified variables, then the verification can be done in a single (polynomial time)
run through the formula and the structure. �

2.6.1.2 Satisfiability problem

Even though the language is rich enough to express inconsistencies, satisfiability
remains tractable.

2.6.2. Proposition. Satisfiability(FOL{∃,∧,¬a}) is in P.

Proof: a polynomial time algorithm goes through the matrix and checks that for
every positive atom, its negation is not present. �

In the further addition of universal quantification, satisfiability remains in
polynomial time: Satisfiability(FOL{∃,∀,∧,¬a}) is in P. A quantified conjunction
of literals is called an Herbrand formula and [BGG97](Chapter 8.2.2) proves that
the unification problem, which is a known polynomial time problem, can be re-
duced to the satisfiability of Herbrand formulae.

Despite these encouraging results, difficulties arise with the consequence prob-
lem.
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2.6.1.3 Consequence problem

In FOL{∃,∧}, proving the entailment between two formulae was only a matter of
finding the right substitution for the variables in the conclusion into the Herbrand
domain of the premiss. However, in the presence of atomic negation, this single
substitution criterion fails. For instance, in the following instance of the problem,
there is no substitution γ for x and y in {a, b, c} such that (Px∧Rxy ∧¬aPy)[γ]
follows from the premiss formula.

Pa ∧Rab ∧Rbc ∧ ¬aPc |=FOL ∃x∃y(Px ∧Rxy ∧ ¬aPy)

Atomic negation is a source of disjunction in disguise and many alternative models
of the premiss must be taken in consideration: in the example, the information
that “either Pb or not Pb” is implicit, and in both cases a substitution that
satisfies the conclusion can be found, but an exponential rewriting of the premiss
might be required to make this implicit information become explicit.

The complexity of Consequence(FOL{∃,∧,¬a}) remains an open question.
In Chapter 2.7, we will examine an intermediate fragment between FOL{∃,∧}

and FOL{∃,∧,¬a} for which consequence is non-deterministic polynomial time com-
plete: it consists in formulae for which positive and negative atoms do not share
variables. A further tree constraint on the syntax will provide a tractable frag-
ment.

In theoretical database research, conjunctive queries including atomic nega-
tion have also drawn considerable attention. In particular, query containment
check algorithms have been proposed for the containment problem in different
subcases of conjunctive query languages with safe (i.e., any variable occurring in
a negative literal must also occur in a positive literal) negation; see e.g. [LS93],
[LMSS93], [LS95] or [FTU99].

Back to the drawings, the difficulty of reasoning implied by the representation
of negated information can be related to the semantical difficulty of negations in
pictures. Indeed, we may simply wonder what a negated picture means. It
certainly looses its characteristic of direct mapping to the represented world,
which we called the faithfulness of drawings in the previous Chapter. Despite
this rising level of complexity, parallel to the rising of abstraction in language, it
is interesting to observe how fast this process grows towards undecidability. A
natural subsequent step is the study of existential FOL.

2.6.2 Existential first-order logic

Existential FOL is the FOL fragment including existential quantification and the
three boolean operators: conjunction, disjunction and atomic negation. Com-
pared to the situation in the previous fragment, satisfiability in existential FOL
leaves the tractable classes and consequence, the modest complexity classes.

2.6.3. Theorem. Satisfiability(FOL{∃,∧,∨,¬a}) is NP-complete.
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Proof: a satisfiable existential sentence is satisfiable over the same domain as
its Skolem form, and thus has a canonical model of size k ≤ n, the number of
quantifiers plus the number of constants. The guessed model is represented as
a consistent list of atoms and constants values of size polynomial in n and the
verification takes a time polynomial in the size of the list, therefore the problem
is in NP. A reduction of SAT proves the NP-hardness, for instance a proposi-
tional formula φ(X1, . . . , Xk) is satisfiable if and only if ∃x1 . . .∃xkφ[Xi/Pxi] is
satisfiable. �

In fact, deciding the satisfiability of existential formulae with functions and equal-
ity is a NP-complete problem [BGG97].

2.6.4. Theorem. Consequence(FOL{∃,∧,∨,¬a}) is coNEXP-complete.

A reduction of a tiling problem (e.g. [BGG97]) will be applied to prove the
theorem. A tile is a 1× 1 square. A tiling of a square X2 is a covering of X ×X
with a given finite set of tiles T = {T1, . . . , Tk} in such a way that it respects two
given binary compatibility relations H and V on T and a given initial condition
w. (ti, tj) ∈ H (respectively, V ) means that tj is allowed to be juxtaposed at the
right (respectively, on top) of ti. w = 〈w0, . . . , wn−1〉 ∈ T n is a sequence of length
n of tiles such that the word w covers the n leftmost places at the bottom of the
square (i.e. wi/0≤i≤n−1 is required to be placed at the position (i, 0)). A tiling of
the torus Z(2n) is a tiling of Z2 that can be decomposed into juxtaposed copies
of the tiling of a square with side 2n (note that the definition of a tiling requires
that a tile occurring on the border of the 2n × 2n square is compatible with its
juxtaposed neighbour).

2.6.5. Lemma. (Theorem 6.1.8 in [BGG97]) If any instance of the tiling of the
torus Z(2n) is reducible to an instance ϕ of a problem P such that |ϕ| ∈ O(nlogn),
then there exists c > 0 such that P cannot be decided in non-deterministic time
2cn/logn

Proof of Theorem 2.6.4: for a given vocabulary, let FOL(∃∗) be the set of sen-
tences that are the existential closure of a quantifier free formula and FOL(∀∗)
be the set of sentences that are the universal closure of a quantifier free for-
mula. FOL(∃∗ ∧ ∀∗) denotes the satisfiability problem of sentences of the form
A ∧ B where A ∈ FOL(∃∗) and B ∈ FOL(∀∗). A ∧ B is unsatisfiable iff
A |=FOL ¬B. If A ∈ FOL(∃∗) and B ∈ FOL(∀∗), both A and ¬B can be
rewritten in negation normal form as sentences in FOL{∃,∧,∨,¬a}. Hence, the
complexity of Consequence(FOL{∃,∧,∨,¬a}) is the complement of the complexity
of Satisfiability(FOL(∃∗ ∧ ∀∗)).

For an upper bound, Satisfiability(FOL(∃∗ ∧ ∀∗)) ∈ NEXP as any sentence
in FOL(∃∗ ∧ ∀∗) is in the Bernays-Schönfinkel fragment (FOL sentences with
prefix ∃∗∀∗) whose satisfiability is NEXP-complete [Lew80, BGG97].
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To prove the NEXP-hardness, we reduce the tiling of the torus Z(2n) to
Satisfiability(FOL(∃∗ ∧ ∀∗)). It is sufficient to construct for any tiling instance
(T,H, V, w), a formula ϕ of the requested size and form –i.e., in FOL(∃∗ ∧ ∀∗)–,
such that ϕ is satisfiable iff (T,H, V, w) tiles Z(2n).

Let T = {T1, . . . , Tk} and n = |w|, a point (x, y) ∈ Z(2n) is encoded in binary
by a 2n-tuple (x̄, ȳ) = (xn−1, . . . , x0, yn−1, . . . , y0) ∈ {0, 1}2n. There are (k + 1)
2n-ary predicates: S, t1, . . . , tk. S encodes the successor relation (i.e. addition
of 1 to a number in binary), and ti(x̄, ȳ) stands for “a tile Ti is at the position
(x, y)”. The intended model has two elements 0 and 1. We first define the
successor relation S such that S(x̄, ȳ) iff y = x + 1, by the following conjunction
Succ = ∀x̄ȳ(Succ1 ∧ Succ2 ∧ Succ3). For convenience, we use implication and
equivalence symbols inside quantifier free formulae, but they can be removed by
applying the De Morgan’s laws.
The last bit alternates:
Succ1 = S(xn−1, . . . , x1, 0, yn−1, . . . , y1, 1) ∨ S(xn−1, . . . , x1, 1, yn−1, . . . , y1, 0)
If the last bit is 0 then it is replaced by 1 and the rest remains identical:
Succ2 = S(xn−1, . . . , x1, 0, yn−1, . . . , y1, 1)↔ S(xn−1, . . . , x1, 0, xn−1, . . . , x1, 1)
Otherwise, addition of 1 is shifting or going back to 0 if 2n has been reached:
Succ3 = S(xn−1, . . . , x1, 1, yn−1, . . . , y1, 0)↔ [S(0, xn−1, . . . , x1, 0, yn−1, . . . , y1)
∨S(xn−1, . . . , x2, 1, 1, yn−1, . . . , y2, 0, 0)]

We now encode the conditions on the tiles: T iling = T iling1 ∧T iling2 ∧T iling3.
There is exactly one tile at each point:

T iling1 = ∀x̄ȳ(
∨k
i=1 ti(x̄, ȳ) ∧

∧
1≤i<j≤k(¬ati(x̄, ȳ) ∨ ¬atj(x̄, ȳ)))

Two juxtaposed tiles on a row have a H-match:

T iling2 = ∀x̄ȳz̄(S(x̄, z̄)→
∨

(i,j)∈H(ti(x̄, ȳ) ∧ tj(z̄, ȳ)))
Two juxtaposed tiles on a column have a V -match:

T iling3 = ∀x̄ȳz̄(S(ȳ, z̄)→
∨

(i,j)∈V (ti(x̄, ȳ) ∧ tj(x̄, z̄)))
Finally the initial condition w is encoded:

Initial =
∧n−1
i=0 twi

(̄i, 0̄).

ϕ = Succ∧T iling ∧ Initial is a universal formulae composed of atomic nega-
tions, disjunctions and conjunctions, thus of the proper form. Furthermore, ϕ is
satisfiable iff there exists a tiling f : Z(2n) → T . The “if-direction” is easy as
the formulae encode their intended meaning. Conversely, let M be a model of ϕ
with universe {0, 1}. We associate to each point (x, y) of the square, the unique
2n-tuple of objects g(x, y) = (xn−1, . . . , x0, yn−1, . . . , y0) such that (xn−1, . . . , x0)
encodes x in binary and (yn−1, . . . , y0) encodes y in binary. At every point (x, y),
we put the unique tile Ti such that M |=FOL ti(g(x, y)). ϕ ensures that this
defines a correct tiling of Z(2n) by T with initial condition w. Finally, ϕ is of
size O(nlogn) and thus Satisfiability(FOL(∃∗ ∧ ∀∗)) is NEXP-hard. Hence,
Consequence(FOL{∃,∧,∨,¬a}) is coNEXP-complete.
�
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We have now achieved a general view of complexity for first-order logic and
some of its fragments. In particular, we found that even small fragments by the
standards of a classical logician can still be quite complex. Therefore, we now
turn to more tractable fragments, which drop to polynomial-time complexity, and
which correspond more closely to the positive information aspect of conceptual
graphs.

2.7 Two steps backwards into tractable worlds

We have seen that existential conjunctive FOL enjoys an equivalence between
consequence and model comparison, which is complexity preserving. We can use
the intrinsic structure of the models for delimiting tractable fragments. Acyclic
simple conceptual graphs can be seen as representations of models with a tree
structure.

2.7.1 Simple conceptual trees

Figure 2.2: A simple conceptual tree

Mugnier [Mug95] proposes a polynomial time algorithm for deciding the exis-
tence of an homomorphism from a simple conceptual tree to a simple conceptual
graph. The notion of tree is very natural in the graph language and corresponds in
the textual language to the absence of “term cycles”. For instance, in Figure 2.2,
there is no cyclic path of edges passing by least two relation nodes.

Baader et al. [BMT99] generalises Mugnier’s result to the absence of “variable
cycles”. Indeed, cycles containing constants can be eliminated as the interpreta-
tion of a constant in the conclusion (and therefore, its image by homomorphism)
is determined by its occurrence in the premiss. For instance, the cyclic graph rep-
resented in Figure 2.3 can be transformed into the equivalent tree in Figure 2.2
by splitting the node labelled with the term a.

The tree property (the absence of cycles) is highlighted in an inductive defi-
nition for the syntax.
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Figure 2.3: Eliminable cycles

2.7.1. Definition. The existential conjunctive tree fragment (ECTF) is defined
inductively by:

• Every atomic formula belongs to ECTF.

• ECTF is closed under conjunction.

• If (i) α is an atom and (ii) ϕ = ϕ1∧...∧ϕn is a (possibly empty) conjunction
of formulae in ECTF and (iii) for every i/1 ≤ i ≤ n, both free(ϕi) ⊆
free(α) and |free(ϕi)| ≤ 1 then for every $x ⊆ free(α), ∃$x(α ∧ ϕ) is in
ECTF.

If $x is the empty sequence, then ∃$x(α ∧ ϕ) is understood as (α ∧ ϕ). An ECTF
sentence is a formula ϕ ∈ ECTF such that free(ϕ) = ∅.

The atom α, which relativises the existential quantifier, is called a guard. The
only possible variable shared by two sub-formulae ϕi and ϕj in ∃$x(α ∧ ϕ1 ∧ ... ∧
ϕn) must also occur in their guard. For instance, the simple conceptual tree in
Figure 2.2 can be translated in an ECTF sentence:

∃x(Paax ∧ Ca ∧ Cx ∧Rxa ∧ ∃y(Rxy ∧ Cy))

2.7.2. Proposition. Let A ∈ FOL{∃,∧} and B ∈ ECTF be two sentences,
A |= B can be decided in polynomial time.

Proof: The result directly follows from equivalent expressive power of simple con-
ceptual trees and ECTF and from the complexity of the consequence problem
with a simple conceptual graph premiss and a simple conceptual tree conclusion:
Theorem 3.2.9[CM92, Mug95]. �

2.7.3. Corollary. Let M be a first-order structure and B ∈ ECTF , M |= B
and M �M(B) can be decided in polynomial time.



60 Chapter 2. The complexity of reasoning with graphs and fragments

Proof: the complexity of model checking follows from proposition 2.7.2 and the
formula-style encoding of a model Chapter 2.2.3. The particular instance of model
comparison is a direct consequence of the complexity preserving equivalences in
FOL{∃,∧} (Theorem 2.5.3). �

The tree property of ECTF will later be generalised to a wider fragment of
FOL{∃,∧}: the existential conjunctive guarded fragment. For the time being, we
can examine how the “tree idea” can be applied to negative information.

2.7.2 A bit of negation: non-interlaced positive and neg-
ative information

There is a fragment of FOL{∃,∧,¬atomic} which inherits the complexity behaviour
of FOL{∃,∧}: the set of existential conjunctive formulae with atomic negation
in which no pair of literals of opposite sign share some variable. For instance,
∃x∃y(Px∧Rxa∧¬Pa) is acceptable in the fragment, while ∃x∃y(Px∧Rxy∧¬Py)
is not (Rxy and ¬Py are of opposite sign and share the variable y).

2.7.4. Definition. [Rewriting negative literals into positive ones] For a formula
ϕ ∈ FOL{∃,∧,¬atomic}, the positive formula ϕ+ ∈ FOL{∃,∧} is obtained from ϕ by

replacing every negative literal ¬R($t) by an atom R−($t) such that R− does not
occur in ϕ. We note R− the set of all these new relation symbols.

This rewriting of negative literals into positive ones takes linear time. Further-
more, it preserves the semantics of these particular negated representations:

2.7.5. Theorem. Let ϕ, ψ ∈ FOL{∃,∧,¬atomic} such that ϕ �≡ ⊥ and ψ is of the
form ∃$xα∧∃$yβ where α is a conjunction of positive literals and β is a conjunction
of negative literals.

ϕ |= ψ ←→ ϕ+ |= ψ+

Proof: Lemma: M(ϕ+) |= ϕ (by construction of ϕ+).
We can use Theorem 2.5.3 and show that ϕ |= ψ ←→ M(ϕ+) |= ψ+.

• ←−: assume M(ϕ+) |= ψ+ and M |= ϕ.
We first extend M to the extra vocabulary: M ′ has the same domain and same

interpretation function for constants as M and [[R]]M ′ = [[R]]M and [[R−]]M ′ =
{〈d1, ..., dn〉/〈d1, ..., dn〉 �∈ [[R]]M}.

There is an homomorphism from M(ϕ+) to M ′ which preserves the satisfaction
of positive existential conjunctive formulae, thus M ′ |= ψ+.

By construction of M ′, M ′ |= ψ+ implies that M ′ |= ψ. Indeed, [[r−]]M ′ ∩
[[r]]M ′ = ∅.
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Finally, M and M ′ only differ on the interpretation of the R− relations (which
do not occur in ψ), hence, M |= ψ.

• −→: assume that ∀M,M |= ϕ →M |= ψ.

It is easy to verify that M(ϕ+) |= ϕ. Therefore, M(ϕ+) |= ψ.
We must show that (i) M(ϕ+) |= ∃$xα and (ii) M(ϕ+) |= ∃$yβ+ (the special form
of ψ makes possible to divide the work in two parts, one for positive information
and one for negative information).
(i) M(ϕ+) |= ∃$xα directly follows from M(ϕ+) |= ψ.
(ii) We can extend M(ϕ+) as follows: M ′ has the same domain and same in-
terpretation function for constants as M(ϕ+) and [[R−]]M ′ = [[R−]]M(ϕ+) and

[[R]]M ′ = {〈d1, ..., dn〉/〈d1, ..., dn〉 �∈ [[R−]]M(ϕ+)}.
M ′ extends M(ϕ+) with some positive facts which are not in conflict with the neg-
ative information conveyed by ϕ, thus M ′ |= ϕ and so M ′ |= ψ. Hence M ′ |= ∃$yβ.
By construction, 〈d1, ..., dn〉 �∈ [[R]]M ′ iff 〈d1, ..., dn〉 ∈ [[R−]]M ′ , thus M ′ |= ∃$yβ+.
As ∀R− ∈ R−, [[R−]]M ′ = [[R−]]M(ϕ+) and the satisfaction of $yβ+ in M ′ only de-

pends on the denotation of relations in R−, it follows that M(ϕ+) |= $yβ+. �

To highlight the importance of a strict separation between positive and neg-
ative pieces of information, follows a counter-example4 of the theorem in the
general case of FOL{∃,∧,¬atomic} is for instance,

Pa ∧Rab ∧Rbc ∧ ¬Pc |= ∃x∃y(Px ∧Rxy ∧ ¬Py)

Indeed

Pa ∧Rab ∧Rbc ∧ P−c �|= ∃x∃y(Px ∧Rxy ∧ P−y)

As a direct consequence of the previous theorem (Theorem 2.7.5) and of Propo-
sition 2.7.2 (i.e., the tractability of consequence for tree structures), follows the
following tractability result for a tree fragment of FOL{∃,∧,¬atomic}.

2.7.6. Corollary. Let ϕ, ψ ∈ FOL{∃,∧,¬atomic} such that (i) ϕ �≡ ⊥ and (ii) ψ
is of the form ∃$xα ∧ ∃$yβ where α is a conjunction of positive literals and β is a
conjunction of negative literals.

ψ+ ∈ ECTF implies that φ |= ψ is decidable in polynomial time.

We may now gather the learned results on the computational behaviour of
various predicate logic fragments.

4In personal communications, Geneviève Simonet proposed me related counter-examples to
the completeness of projection for simple conceptual graphs in presence of negated concepts.
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2.8 The travelled FOL landscape

From the complexity results, we can note the following points:

1. With language impoverishment, the benchmark problems do not evolute
in a uniform direction. For instance, the step from FOL to positive FOL
leaves consequence undecidable whereas satisfiability goes from undecidable
to trivial.

2. Some low fragments enjoy a polynomial time equivalence between conse-
quence and minimal-model checking (e.g., FOL{∃,∧} and the fragment of
FOL{∃,∧,¬atomic} with non interlaced positive and negative information). It
is this property which will be exploited in graph-homomorphism calculi for
corresponding conceptual graph languages.

3. The frontier between tractability and untractability is subtle. Some tree
characterisation is present in all examined fragments which are tractable
for consequence.

This last property, which is central to modal logics, motivates a change of
perspective. Tree properties are central to modal languages, whose raison d’etre
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is precisely their good balance between expressive power and low complexity (cf.
[BRV01] and [Are00] for extended discussions of modal formalisms and their ad-
vantages). Therefore, we also take a look at what is known about the complexity
of modal fragments, which brings us to an extension of the earlier tractability
results.

2.9 The modal perspective: expressivity at low

costs

In modal logics, formulae are not evaluated by an observer having an overview
on a structure like in first-order logic, but by focussing on a particular point of
a structure and moving the focus to accessible locations along paths of relational
edges. This local internal view-point is acknowledged as a main strength of modal
logics applied to artificial intelligence problems. Indeed, this locality principle
not only leads to advantageous complexity results, but it also meets the needs
of many applications, witness the use of modal formalisms in, among others,
program verification (PDL, e.g., [Mas98]), multi-agent systems (epistemic logic,
e.g., [FHMV95]), linguistic structures (feature logic, e.g. [Rou97]) and our present
subject, knowledge representation (description logic, e.g., [DLNS94]).

A language of modal logic is a language of propositional logic extended with
unary operators, modalities. The semantic message of such operators is an indi-
cation to move the local point of interpretation to other accessible locations. It is
a peculiarity of modal languages to talk about local phenomena without explic-
itly naming the places where they occur. Hybrid languages naturally emerged
as modal languages extended with some of the apparatus of first-order logic: the
ability of naming the objects inhabiting the structures, of representing them by
place holders (variables) and associated machinery (classical quantifiers or more
specific binders). Such extensions of orthodox modal logics are present in hybrid
logic, tense logic, feature logic or description logic.

2.9.1. Definition. A vocabulary is defined by four disjoint countable sets: P =
{P,Q, . . .} of propositional variables, N = {i, j, . . .} of nominals,
V AR = {x, y, . . .} of nominal variables and MOD = {1, 2, . . .} of modality in-
dexes.

For a vocabulary, the well-formed formulae of a language of modal logic (ML)
are defined by:
WFF := True|A|¬aA|¬ϕ|ϕ ∧ ψ|ϕ ∨ ψ| �m ϕ|✷mϕ|@lϕ| ↓ x(ϕ)
where A ∈ P ∪N ∪ V AR, m ∈MOD, l ∈ N ∪ V AR and x ∈ V AR.

A class of modal languages is denoted by a subset of {�,✷,∧,∨,¬a,¬, N,@, ↓}.
For example, L ∈ ML{�,∧,¬} is a classical language of multi-modal logic. Note
that, in well-formed formulae, the presence of @ requires the one of N , but not
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vice-versa, and that the absence of ↓ makes nominal variables useless (as inputs
are required to be sentences). Furthermore, all languages include the logical
constant True.

The variable binder ↓ bookmarks the actual point of evaluation by storing it
in a variable (for this reason, it is also called the Here and Now binder [BT99]):
M,w |=ML↓ x(ϕ) if M,w |=ML ϕ[x/w]. The jump operator enables to move
the evaluation point to the world denoted by a nominal or a bound variable:
M,w |=ML @iϕ if M,V (i) |=ML ϕ.

The literature on the complexity of modal formalisms is broad and diversified.
For in-depth studies, we refer the interested reader to the following non-exhaustive
list of publications:
[Lad77], [BRV01], [Hem01] (modal logics), [ABM99a], [ABM99b], [ABM00] and
[Are00] (hybrid logics), [DLN+92], [DLNS94] and [DLNN97] (description logics).
Concerning the later knowledge representation formalism, the search of efficient
reasoning techniques in description logics has led to an extensive study of frag-
ments of modal logics and to a recent focus on graph homomorphism methods in
e.g., [BKM99] and [BMT99]).

Before exploring the behaviour of our benchmark problems in modal frag-
ments, we will first describe a direct application of modal ideas to predicate logic.

2.9.1 The existential conjunctive guarded fragment

The guarded fragment of FOL (GF) arose as a generalisation of the standard
translation of modal logics into classical logic and the search for a fragment
preserving some modal model-theoretic properties (see for instance [Ben85] and
[ABN98]). GF includes the translation of the corresponding modal formalisms,
while having an expressivity advantage for knowledge representation: no pred-
icate arity limitation. In the guarded fragment, satisfiability can be decided
in deterministic double exponential time (2-EXP-complete) [Grä99] and model
checking is PSPACE-complete5. We will prove in Chapter 3 that ECGF, the in-
tersection of the guarded fragment with FOL{∃,∧}, has a deterministic polynomial
time consequence problem.

2.9.2. Definition. The existential conjunctive guarded fragment (ECGF) is de-
fined inductively by:

• Every atomic formula belongs to ECGF.

• ECGF is closed under conjunction.

• If (i) α is an atom (called a guard) and
(ii) ϕ = ϕ1∧ ...∧ϕn is a (possibly empty) conjunction of formulae in ECGF

5Maarten Marx, Model checking in the guarded and packed fragments. Unpublished note,
ILLC, 2000.
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and
(iii) for every i/1 ≤ i ≤ n, free(ϕi) ⊆ free(α) and
(iv) $x ⊆ free(α),
then ∃$x(α ∧ ϕ) is in ECGF.

The atom α relativises the quantifier sequence: it guards the sub-formulae ϕi’s
by sharing their free variables.

The similarity of the tree fragment of simple conceptual graphs with ECGF
is striking. Indeed, the later is a generalisation of the notion of guarding used in
the former.

2.9.3. Fact. ECTF is strictly included in ECGF.

The only difference between the two fragments resides in the constraint on the
cardinality of the set of free variable occurring in a guarded sub-formula ϕi.
Furthermore ∃x∃y(P (x, y) ∧R(x, y)) is in ECGF but not in ECTF.

A particular case of ECGF has been studied in the description logic ELIRO1.
An ELIRO1-sentence ϕ translates into an ECGF-formula ST (ϕ) with only unary
and binary predicates. [BMT99] proves that Consequence(ELIRO1) is in P. In
Chapter 3, we will prove the following generalisation of both the complexity of
consequence in ELIRO1 and of the complexity of projection in simple conceptual
trees.

2.9.4. Proposition. If A is a sentence in FOL{∃,∧}, B is an ECGF-sentence
and M is a FOL-structure, then A |= B can be decided in polynomial time.

The result directly follows from the equivalence between the fragment of guarded
simple conceptual graphs and ECGF and from the polynomial time algorithm for
projecting a guarded simple graph onto a simple conceptual graphp; See Chap-
ter 3.3 in Chapter 3).

2.9.5. Corollary. Let M be a first-order structure and B ∈ ECGF , M |= B
and M �M(B) can be decided in polynomial time.

Proof: similarly to the case of ECTF, the complexity of model checking follows
from proposition 2.9.4 and the formula-style encoding of a model (Chapter 2.2.3).
The particular instance of model comparison is a direct consequence of the com-
plexity preserving equivalences in FOL{∃,∧} (Theorem 2.5.3). �

For the time being, the main ideas of the algorithm will be presented in an
example.
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2.9.6. Example.

Let ϕ = Paa ∧Raaa ∧ ∃x(Pax ∧Rxaa ∧Rxax) ∈ FOL{∃,∧}

and ψ = ∃x∃y(Pxy ∧Rxyy ∧ ∃z(Rzxy)) ∈ ECGF

.
From Theorem 2.5.3, we know that ϕ |= ψ iff M(ϕ) |= ψ and that the mini-

mal model of ϕ can be represented by the set of ground atoms occurring in the
Skolemised form of ϕ.

E.g., M(ϕ) = {Paa,Raaa, Pab,Rbaa,Rbab}

Without loss of generality, ψ is considered to be pure –i.e., no variable is quantified
twice–. A guarded existential conjunctive formula is represented by a tree with
nodes labelled by atoms and such that a guard occurs as predecessor of the sub-
formulae in its scope.

For instance, ψ is represented by .

Actually, to be precise, the graph representation of an ECGF-sentence is a for-
est as the conjunction of two ECGF-sentences is an ECGF-sentence (Defini-
tion 2.9.2-ii). However, we can easily eliminate non-guarded conjunctions of
ECGF-sentences by a linear rewriting: let ∆1 and ∆2 = ∃$x(Guard ∧ δ) be two
ECGF-sentences such that ∆ = ∆1 ∧∆2 is pure, ∆ is equivalent to ∃$x(Guard ∧
∆1 ∧ δ).

M(ϕ) |= ψ holds iff there exists a substitution s from the variables in ψ to the
domain of M(ϕ): i.e., s : {x, y, z} → {a, b}) such that, under s, the set of atoms
in ψ is included in M(ϕ) (i.e., {Pxy,Rxyy,Rzxy}[s] ⊆M(ϕ).

The algorithm uses the tree-structure of the guarded conclusion sentence to
verify recursively the existence of such a substitution:

substitution(M, ψ):
Input: M and ψ = ∃$x(α ∧ ϕ1 ∧ ... ∧ ϕn)
Output: a set S of substitutions from X, the set of variables in α, to D, the
domain of M .
S = {s/s : X → D and candidate(s) and neighbour-agreement(s)} where
(i) s is a candidate if the model satisfies the guard α under the substitution s:
i.e., α[s] ∈M .
(ii) s agrees with the neighbourhood of the guard if for every successor
ϕi/1≤i≤n of α, s agrees with some substitution si chosen for ϕi on their shared
domain: i.e., ∀1 ≤ i ≤ n,∃si ∈ substitution(M,ϕi)/x ∈ (domain(s) ∩
domain(si)) implies that s(x) = si(x).
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M(ϕ) = {Paa,Raaa, Pab,Rbaa,Rbab} |=? ψ. The recursive launching of the
function substitution stops at the leaves:
•substitution(M(ϕ), Rxyy) = {(x/a, y/a), (x/b, y/a)} as Rxyy can be evaluated
at both –and only– Raaa and Rbaa.
•substitution(M(ϕ), Rzxy) = {(x/a, y/a, z/a), (x/a, y/a, z/b), (x/a, y/b, z/b)}.
The two leaves are treated independently despite their shared variables, however,
the resulting substitutions are confronted at the level of their guard as follows.
For the root, Pxy, candidate substitutions correspond to the atoms Paa and
Pab. Hence, (x/a, y/a) and (x/a, y/b) are pre-selected and confronted to the
neighbourhood-agreement criterion:
− (x/a, y/b) agrees with none of the substitutions selected for the successors of
the guard and therefore is rejected.
− on the other hand, (x/a, y/a) agrees with at least one substitution for each
successor and therefore, it can be selected at the level of the guard.
substitution(M(ϕ), ψ = {(x/a, y/a)} is not empty, thus, it holds that M(ϕ) |=
ψ. Indeed, the atoms of the conclusion are satisfied by the minimal model of
the premiss under two substitutions extending (x/a, y/a) that could have been
recorded along the recursive steps:
{Pxy,Rxyy,Rzxy}[x/a, y/a, z/a] ⊆ {Paa,Raaa, Pab,Rbaa,Rbab} and
{Pxy,Rxyy,Rzxy}[x/a, y/a, z/b] ⊆ {Paa,Raaa, Pab,Rbaa,Rbab}.

2.9.1.1 Note on the complexity of the algorithm

the minimal model of the premiss can be encoded (see Chapter 2.2.3) as a binary
string of size polynomial in n ∈ O(r ∗ dk) where d is the size of the domain, r the
number of relation symbols and k their maximal arity. We can assume that every
relation symbol occurring in the conclusion formula has an interpretation in the
model (a simple polynomial time check can rest us) and therefore, the maximal
arity of relation symbols in the conclusion is bound by k.

Applying the algorithm as it is may require exponential time. However, in the
algorithm proposed in Chapter 3, the recursive calls of the function substitution
are replaced by a single run through the syntactic tree from the leaves to the root.
A set of substitutions is recorded for each atom of the conclusion formula. The
number of substitutions in these sets is bound by the number of tuples occurring
in the interpretation of relation symbols –i.e., the number of 1’s in the encoding of
the model or seen from the point of view of the consequence problem, the number
of atoms in the premiss formula–; hence, bound by n. If an order is chosen for
the v variables of the conclusion, each substitution can be encoded as a binary
string of size k ∗ log v ∗ log d, a size polynomial in the size of the input. Let m be
the number of atoms occurring in the conclusion formula, for each of the m nodes
in the conclusion tree, at most n polynomial size substitutions are pre-selected
in time O(n ∗ k). Each of them is compared to the selection made for the (at
most) m successors of the node at stake. For each pair of substitutions, their
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agreement depends on at most k shared variables. Hence, the total time of the
algorithm is polynomial in the combined size of the (encoding) of the model and
the conclusion formula.

The salience of the “single guard property” to the polynomial time complexity
of consequence in ECGF is revealed by examining a wider fragment: the loosely
guarded fragment of FOL (LGF) [Ben97] generalises GF by allowing conjunctions
of atoms of a special form as guard. LGF is also decidable for satisfiability
[Ben97] (2-EXP-complete [Grä99]) and PSPACE-complete for model checking
(Chapter 2.4.2). ECLGF, the restriction of LGF to existential conjunctive FOL
is defined inductively by:

2.9.7. Definition. (ECLGF)

• Every atomic formula belongs to ECLGF.

• ECLGF is closed under conjunction.

• If (i) α = α1 ∧ ... ∧ αm is a conjunction of atoms and
(ii) ϕ = ϕ1∧...∧ϕn is a (possibly empty) conjunction of formulae in ECLGF
and
(iii) for every i/1 ≤ i ≤ n, free(ϕi) ⊆ free(α) and
(iv) $x ⊆ free(α) and
(v) for every x ∈ $x and every other variable y ∈ free(α), there is at least
one atom αi1≤i≤m

that contains both x and y,
then ∃$x(α ∧ ϕ) is in ECLGF.

ECLGF is a typical language for cliques. For instance,

∃x1∃x2∃x3((Ex1x2 ∧ Ex1x3 ∧ Ex2x3)︸ ︷︷ ︸
loose-guards

∧ (Ex2x1 ∧ Ex3x1 ∧ Ex3x2)︸ ︷︷ ︸
symmetry of edges

)

expresses a clique with three nodes (E represents the edge relation between
nodes).

2.9.8. Corollary. If A is a sentence in FOL{∃,∧} and B is an ECLGF-sentence,
then A |= B is NP-complete.

Proof: The proposition is a direct consequence of the NP-completeness of the
CLIQUE problem (Theorem 2.2.5) and the non-deterministic polynomial time
algorithm for consequence in FOL{∃,∧} (Theorem 2.5.5). The recursive function
substitution can easily be adapted to ECLGF by representing a formula as a
graph in which two nodes (atoms) are connected if they share a variable. How-
ever, if this graph is cyclic –e.g., the previous clique–, the recursive calls of the
function lead to a deterministic exponential time algorithm. �
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This application of modal ideas to the structure of first-order formulae demon-
strates several points. Firstly, as already noticed, tree like structures can often
be associated to efficient computation. Secondly, how thin is the frontier be-
tween tractability and untractability is highlighted by the subtle difference be-
tween guards and loose guards. Finally, predicate logic, modal logic and graph
formalisms can benefit from a multicultural symbiosis. In particular, the appli-
cation of a guarded syntax to simple conceptual graphs combined with graph
homomorphism techniques will be one of our main result in the next chapter.
Now, to learn more about this symbiosis, it is interesting to consider further
correspondences between classical and modal languages.

2.9.2 The modal cousin of FOL{∃,∧}

The modal operator corresponding to existential quantification in first-order logic
is the diamond: �ϕ is true at a world w of a model M if there exists some world
w′ in M such that w′ is accessible from w and ϕ is true at w′.

2.9.9. Theorem. For ML{�,∧}, satisfiability is trivial.
Model checking, model equivalence and consequence are in polynomial time.

Proof: In the absence of negation, any modal formula is satisfiable (in a model
with a single world). Complexity results for model checking and model equiva-
lence inherit the upper bound of the richer logic K = ML{�,∧,¬} [HV91, Gro96].
For consequence, we can use the fact that a sentence in ML{�,∧} translates into
a formula (with at most two variables and at most one free variable) of the exis-
tential conjunctive guarded fragment which has a polynomial time consequence
problem (Proposition 2.9.4):
STx(�ϕ) := ∃y(Rxy ∧ STy(ϕ)),
STx(ϕ ∧ ψ) := STx(ϕ) ∧ STx(ψ) and
STx(P ) := Px. �

We can also note that it follows from the standard translation and Theo-
rem 2.5.3 that complexity preserving equivalences between consequence, model
checking and model comparison, also hold in ML{�,∧}.

By relying on a guarded use of existential quantification, consequence in
ML{�,∧} is tractable. What would be the effect of adding atomic negation to
the language?

2.9.3 Atomic negation at no cost

2.9.10. Proposition. For ML{�,∧,¬a}, consequence is in P.
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Proof: We can use the tractability result of Theorem 2.9.9 by translating negated
propositions to new positive ones. Let ϕ and ψ be formulae in ML{�,∧,¬a}. With-
out loss of generality, assume that ϕ is satisfiable (the case of an unsatisfiable
formula can be solved by a pretreatment checking for contradictory literals). Let
φ+ denote the formula φ in which every negated proposition ¬aP has been re-
placed by a proposition P− not occurring in φ. By induction, it is easy to prove
that ϕ |= ψ iff ϕ+ |= ψ+ and the later is an instance of the polynomial time
problem, Consequence(ML{�,∧}). �

Contrary to existential conjunctive FOL with atomic negation, ML{∃,∧,¬a}
enjoys together the guarded criterion and a minimal model (of reasonable size)
property, two recurrent characteristics of tractable fragments.

A step further in combining classical and modal logics, is the introduction of
the first-order machinery for manipulating variables into a modal language. The
result is an hybrid language.

2.9.4 Back to untractability

The price to pay for the introduction of first-order logic freedom with variable
manipulation is no surprise:

2.9.11. Proposition. Consequence(ML{�,∧,N,@,↓}) is NP-complete.

Proof: a formula in ML{�,∧,N,@,↓} enjoys a minimal model whose size is polyno-
mially related to the formula: a first-order structure with a designated object in
which each diamond generates a single accessible new world. If we guess a substi-
tution for the nominal variable of the conclusion into the universe of the minimal
model of the premiss, the verification that the conclusion holds in this model
takes polynomial time. For the NP-hardness, we can again reduce CLIQUE in
polynomial time: A |=↓ x1...xk(

∧
1≤i<j≤k@xi

� xj) iff A represents a graph con-
taining a clique of size k. �

Standard translation provides another perspective on the consequence prob-
lem: it boils down to Consequence(FOL{∃,∧}) as the ↓ binder enables to intro-
duce non guarded variable by marking worlds to which we may later come back.
For instance, STx(↓ z(�1 �1 �1z)) ≡ ∃y(R1(z, y) ∧ ∃x(R1(y, x) ∧ R1(x, z))) is not
guarded.

In contrast to FOL, the full language of modal logic remains decidable and of
modest complexity:

2.9.12. Theorem. Satisfiability(ML{�,∧,¬}) and Consequence(ML{�,∧,¬}) are
PSPACE-complete.
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Proof by reduction of validity of quantified boolean formulae and a PSPACE
tableau algorithm to explore economically the possibly exponential model can
be found in [Lad77] (modal logic K), [HM92] (multi-modal logic K) and [SSS91]
(description logic ALC).

[ABM00] shows that the further addition of nominals and the jump operator @
does not increase the difficulty of satisfiability (i.e., Satisfiability(ML{�,∧,¬,N,@})
is PSPACE-complete) whereas the ↓-binder for nominal variables can have a
dangerous effect: Satisfiability(ML{∧,¬,�,↓}) is undecidable [ABM99a]; see also
[ABM99b] and [Are00] for a complexity study of several hybrid fragments.

2.9.5 Finite bounds

By analogy to the first-order logic case, finite bounds on the modal languages
may also ease decision problems. For instance, [Hal95] shows that a fixed bound
on the modal depth (the maximal nesting of modalities) makes satisfiability be
NP-complete. If this modal depth bound is cumulated with a finite bound on
the number of propositional variables, then the problem can be decided in linear
time. It is however surprising to note that, when a finite bound on the number
of propositional variables is fixed, the complexity of satisfiability in K (multi-
modal or not) remains PSPACE-complete (one propositional symbol is sufficient
to obtain the polynomial space lower bound) [Hal95].

2.9.6 Description logics

Modal languages are not the only way of carving up simple fragments of first-
order logic. Another well-established tradition are description logics. These occur
implicitly in many parts of this dissertation, but we record a few salient facts here.

Description logics arose in the KL-ONE system [BS85] from the study of the
representation of structured knowledge in semantic networks (see e.g., the syn-
thesis in [Leh92]) and frame systems (e.g. [Min74]). Even though the semantics
of description logics is often provided as an interpretation in first-order models
or as a translation to first-order logic, Schild [Sch91] identified strong semantical
connections between modal logics and the core language of description logics. In-
deed, the applications of description logics to specific knowledge representation
problems have given rise to constructors which are not typically considered in
(core language of the) modal logics: e.g., so-called assertional knowledge about
individuals, complex relational constructors or counting operators. Bridging these
expressive, application driven, extensions has been obtained by considering hybrid
modal formalisms [Are00].

Nonetheless, it remains that, in their seek for expressive, while efficient, rea-
soning systems, description logics have adopted the locality principle of modal
interpretation.
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Another interesting feature is the modularity of description logic languages.
The extensive study of different syntactic fragments adapted to specific applica-
tions and of associated (often modal tableau-based) optimal calculi, provides a
general map of the complexity landscape for reasoning with description logics; we
refer the interested reader to the detailed synthesis in [BBH+90],[DLNS94] and
[DLNN97].

Following the route traced by KL-ONE for describing rules and “universal
knowledge”, many description logics include universal quantification or its modal
counter-part, box-modalities. However, a recent bifurcation to a focus on “factual
knowledge” expressed by existential quantification (and diamond-modalities) has
brought to the fore the use of the underlying tree structures of models for efficient
homomorphism-based calculi: see e.g., [DLN+92] and [BKM99].

This use of graph representation of knowledge and graph-based deduction
methods to efficiently compute logical reasoning, has naturally lead to bridges
between conceptual graph and description logic formalisms. [BMT99] proposes
a first step in this direction, by constraining simple conceptual graphs to tree
descriptions of the existential conjunctive ELIRO1 description logic. We will
further explore this interaction in our modal treatment of simple and nested
conceptual graphs in Chapter 4.3.

We refrain from giving an extensive complexity analysis here, referring the
reader to [Are00] for a bridge to modal languages of various sorts, which makes
many of our earlier points applicable mutatis mutandis.

2.9.7 A landscape of modal complexity results
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The main message of this quick overview of complexity results in modal logics is
that the locality principle of modal semantics has a benefic effect on the chosen
benchmark problems: first, model checking and model comparison are tractable.
But also, on the basis of the correspondence between � and existential quantifi-
cation, satisfiability and consequence are often easier (and never more difficult)
in modal fragments than in the corresponding first-order fragments.

Finally, the study of the modal paradigm is twofold. First, some strengths of
modal formalisms can directly be exploited in first-order formalisms, witness the
notion of guards that we will further develop in the next chapter. But of course,
the modal view on interpretation can directly be applied to graph-based systems.
This will be the chosen path in Chapter 4.3. We will also take up the question of
combining these two perspectives in predicate modal formalisms.

2.10 Conclusions

With the development of automatised reasoning systems, the search for tractable
problems has become a crucial point of the agenda identified in [LB87] as the
tradeoff between expressivity and tractability in knowledge representation.

By “projecting” graph-like reasoning systems on usual formal logical systems,
we have achieved a finely-structured view of complexity for the former ones. We
are now equipped to exploit, in a controlled way, their analogies to modal and
first-order fragments.

Of course, this bridge is useful as such, as we can apply it to get new tractable
conceptual graph systems. But also, vice versa, it suggests graphical aspects to
existing weak linguistic formalisms that are often neglected by logical studies.

Also, by bringing to the fore several benchmark problems that have a role to
play in the comparison of logics, we have attempted to escape the yoke of the
traditional (in logic) and unidirectional focus on satisfiability. Indeed, the chosen
remaining problems are not only salient in practical applications of logics, but
also are interesting for their evolution with language changes; i.e., the problems
appear to follow quite independent complexity paths with identified crossroads.
However, such choices are not the only relevant ones. For instance, to be fair
to applications of logics to automated reasoning, we could as well consider av-
erage complexity analysis. Leaving such further explorations to perspectives, we
nevertheless regard our present “worst-case” analysis as a necessary first step to
understanding logical and computational grounds in graph-based reasoning.

The eventual issue is not a list of separate complexity results, but under-
standing the general parameters that affect complexity and in particular, the
overstepping of low complexity bounds such as tractability. Whether the pa-
rameters that we found here (e.g., tree-like structures, direct mapping between
formulae and their minimal model, etc.) are visually relevant is something we
leave for discussion in our concluding chapter.
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Strong of our recent experience with fragments of formal languages, we can
now undertake the study of specific conceptual graph systems and observe how
the symbiosis of logics and techniques can pay off to devise expressive and efficient
fragments of the graph formalism. A natural starting point is the central language
of simple conceptual graphs.



Chapter 3

Positive information

In representing positive factual information, simple conceptual graphs achieve a
symbiosis of the previously discussed cognitive and computational aspects.

Among the cognitive properties of drawings, we have seen that their faithful-
ness to what they represent is one of their preponderant positive characteristics.
This aspect is salient in simple conceptual graphs. Not only the interpretation of
a simple graph drawing can be described by the slogan “find the direct mapping
of the picture in the formal model”, but also simple conceptual graphs enjoy a
one-to-one correspondence between a graph and its canonical structure. From the
previous chapter, we know that such a correspondence propagates to complexity
results under the form of a collapse between three of our benchmark computation
problems. Hence, the interlaced effect of computational and cognitive aspects for
simple graph drawings.

In order to provide a careful complexity analysis of logical reasoning with
simple conceptual graphs, we first need to expose the formal syntax and semantics
of these graphs. This will form the first part of the chapter.

In a second part, projection will be defined. It is a consequence calculus based
on labelled graph homomorphism, which is proved complete with respect to the
semantics. But, consequence, a central problem in knowledge base managing
and querying, is known untractable in the equivalent fragment of FOL. There-
fore, it becomes vital for the tractability of automated reasoning to look at more
constrained fragments. A way to do so is to consider syntactical constraints on
the language, without changing the semantics. We present the known tractable
restriction of projection to graphs having a tree structure. By language corre-
spondence, another perspective on the simple conceptual tree fragment is offered:
the one, imported from modal logic, of guarded sentences.

Finally, in the last part, the tractability result is extended to a wider fragment
by careful enlarging of the power of guards. The proved polynomial complexity
of a projection algorithm on this new fragment will constitute the main result of
the chapter.

75
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This chapter partly overlaps with the previous discussion on tractability in
Chapter 2. What follows is the extensive version of our lighter treatment of
tree-properties and guards for existential conjunctive FOL.

3.1 The cornerstone: simple conceptual graphs

Departing from formal logical languages and adopting features of graph theory,
simple conceptual graphs (SCG), introduced by Sowa in [Sow84], have captured
the attention of computer scientists more than of logicians, which often prefer
more expressive formalisms such as the one including Peirce’s negation boxes.

Nonetheless, SCGs are the basic and inescapable components in the puzzle of
the different languages considered in this thesis. Hence, they deserve a detailed
presentation and an analysis of their complexity behaviour on logical problems.

Just as any other formal language, the syntax of the graphs rests on a prede-
fined choice of vocabulary. For their concern to the classification of knowledge,
conceptual graph formalisms have adopted the notion of hierarchical vocabulary,
the so-called ontologies in artificial intelligence.

3.1.1 Language signature

The signature of a conceptual graph language represents an ontology of a spe-
cific application domain. Classification is the recurring message as the different
language items of an alphabet are organised in a set of hierarchies forming, as a
whole, a support.

3.1.1. Definition. [Alphabet] An alphabet is a quadruple (I, C,R, arity) where
I, C and R are pairwise disjoint enumerable non-empty sets. I is a set of object
names, C is a set of concept names and R is a set of relation names. arity :
R → IN+ is an arity function for relation names which partitions the set R into
a family (Rn)n∈arity(R) such that ∀r ∈ R, r ∈ Rn iff arity(r) = n. Furthermore,
there are two distinguished concept names, the unit concept c� ∈ C and the zero
concept c⊥ ∈ C, and for every Rn ⊆ R, there are two distinguished relation
names, the unit n-ary relation r�n ∈ Rn and the zero n-ary relation r⊥n ∈ Rn.

A support describes some hierarchical knowledge on (part of) an alphabet.

3.1.2. Definition. [Support] A support over an alphabet A = (I, C,R, arity)
is a pair ((C,≤C), (R,≤R)) where (C,≤C) is a

∧
-semilattice of concept names

and (R,≤R) is an ordered set of relation names partitioned by arity such that:

1. C ⊆ C and (C,≤C) is
∧
-semilattice with supremum c� (i.e. ∀c ∈ C, c ≤C

c�) and zero c⊥ (i.e.
∧
C C = c⊥)
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2. R ⊆ R and (R,≤R) =
⋃
i∈arity(R)(Ri,≤Ri

) where for all i ∈ arity(R),

Ri = Ri∩R and (Ri,≤Ri
) is an ordered set of relation names of arity i with

supremum r�i and infimum r⊥i (i.e. ∀r ∈ Ri, r
⊥
i ≤R r ≤R r�i )

A support ((C,≤C), (R,≤R)) is called finite if both C and R are finite.

It follows from the definition that ≤R is an order on R such that two relations
of different arity are incomparable; i.e., ∀i, j ∈ arity(R),∀r ∈ Ri,∀r′ ∈ Rj, (i �= j
implies that neither r ≤R r′ nor r′ ≤R r). The intuitive meaning of c1 ≤C c2 is
that every object belonging to the extension of the concept c1 ∈ C also belongs to
the extension of the concept c2 ∈ C. Similarly, for two n-ary relations in R, r1 and
r2, the intuitive meaning of r1 ≤R r2 is ∀x1, ..., xn[r1(x1, ..., xn)→ r2(x1, ..., xn)].

The signature of a conceptual graph language is an alphabet ordered by a
support.

3.1.3. Definition. [Signature] The signature of a conceptual graph language is
a tuple (I, (C,≤C), (R,≤R), arity) such that A = (I, C,R, arity) is an alphabet
and ((C,≤C), (R,≤R)) is a support over A.

From a practical point of view, the hierarchical information conveyed by a
signature is often specified and stored as a finite support which is extended into
a signature in the following way. A signature is obtained from a support by a
closure over the vocabulary of the concerned alphabet. Elements which are not
contained in the original support become pairwise incomparable in the resulting
signature.

Given a support σA = ((C,≤C), (R,≤R)) over an alphabetA = (I, C,R, arity),
ΣσA is the tuple (I, (C,≤C), (R,≤R), arity) such that ((C,≤C), (R,≤R)) uniquely
extends the support ((C,≤C), (R,≤R)) by:

1. ∀(c, c′) ∈ C × C, c ≤C c′ iff (i) (c, c′) ∈ C × C and c ≤C c′ or (ii) c = c′ or
(iii) c′ = c� or (iv) c = c⊥,

For example,

2. ∀(r, r′) ∈ R×R, r ≤R r′ iff (i) (r, r′) ∈ R× R and r ≤R r′ or (ii) r = r′ or
(iii) r′ = r�arity(r) or (iv) r = r⊥arity(r′).

3.1.4. Proposition. Given a support σA = ((C,≤C), (R,≤R)) over an alphabet
A = (I, C,R, arity), ΣσA is a signature.
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Proof: We need to verify that a
∧
-semilattice of concept names with supremum

C� is constructed. Obviously, ≤C is an order on C (it is the order ≤C). For two
concept names c ∈ (C \ C) and c′ ∈ C,
• reflexive: c = c′ implies that c ≤C c′ by construction,
• antisymmetric: c �= c′ and c ≤C c′ implies that c′ �≤C c. Indeed, c� �≤C c
and c �≤C c⊥ and c is ≤C-incomparable with other concept names than the zero
concept and the unit concept.
• transitive: c is only comparable to c⊥ and c�, and c⊥ ≤C c�.
Hence, ≤C is an order on C with infimum c⊥ and supremum c�. For the semilattice
condition, it holds that for two concept names c ∈ (C \ C) and c′ ∈ C, the non-
empty set {x ∈ C/x ≤C c and x ≤C c′} ⊆ {c, c⊥} and c⊥ ≤C c.

Similarly for each set of relations Ri ⊆ R, ≤Ri
is an order with infimum r⊥i

and supremum r�i . �
The semilattice condition on concept names is sometimes relaxed to an order

(e.g. [CM92]) or strengthened to a complete lattice [GW99]. Our intermediate
choice is semantically motivated: the assertion that an object belongs to the
extension of two distinct concept names will be equivalent to the assertion that
the same object belongs to the extension of the meet of those concept names.
It will therefore prove convenient to guarantee the existence of the meet of two
concept names, which denotes the intersection of the extensions of those two
concept names. It should be noted that an ordered set (C,≤C) can easily be
embedded into a

∧
-semilattice by insertion of eventual “missing meets”. On the

other hand, contrary to Formal Concept Analysis [GW99] which is devoted to
the extraction (and manipulation) of concept name lattices from structures, the
join operation on concept names will find no use in the conceptual graph systems
defined in this thesis.

Another difference with some other notions of support in the literature resides
in the absence of predefined association of a concept name to every object name.
We will see with the homomorphism calculus that such a constraint would imply
special care for the isolated terms (i.e, terms that occur in a graph but not as
argument of a relation).

Now that we have defined how a vocabulary is organised into an hierarchy, we
can proceed to the assembling of symbols into simple conceptual graphs. In order
to provide a systematic description of the drawings that can later be formally
exploited for semantical and deductive purposes, a sensible style is to use the
mathematical way of representing the abstract objects, graphs. Of course, these
symbolic and textual notations may seem cumbersome when compared to the re-
lated drawings, but this is a necessary step for our subsequent complexity analysis
in the framework of symbolic complexity theory. Furthermore, by defining simple
conceptual graphs as abstract symbolic objects, we enrich our ordnance with an
other symbolic language, which comes in addition to the previous translations to
formal languages of logic.
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3.1.2 Syntax

3.1.5. Definition. [Simple conceptual graph] A simple conceptual graph (SCG)
over a signature Σ = (I, (C,≤C), (R,≤R), arity) is a finite, directed and bipartite
multigraph G = (R,C,E, label, co) where R denotes the set of relation vertices,
C the set of concept vertices and E the set of edges.
It is a multigraph as more than one edge may connect two vertices, bipartite as
concept and relation vertices alternate and directed as E ⊆ (R × C × IN+); the
third parameter provides a total order on the edges incident to a relation vertex,
enabling to distinguish two distinct edges connecting the same two vertices.
label is a mapping from vertices to names such that:
(i) ∀c ∈ C, label(c) = (type(c),marker(c)) ∈ C × (I ∪ {∗}) and
(ii) ∀r ∈ R,∃k ∈ IN+ such that label(r) ∈ Rk, |{(r, c, i)/(r, c, i) ∈ E}| = k and
{i/(r, c, i) ∈ E} = {1, . . . , i} (i.e., there are k edges incident to r).
C∗ denotes the set of concept nodes labelled with the marker ∗ and co is an
equivalence relation on C∗.

Figure 3.1: A simple conceptual graph

For instance, the graph in Figure 3.1 represents the information “a is of type
c1 and c3 (i.e., “the denotation of a belongs to both the extension of the concept
c1 and the extension of the concept c3”) and there is something of type c1 and c2
which is in relation R with a and also in both relations R and P with something
of type c1”. As already seen, a possible translation of the graph into a language of
existential conjunctive FOL is “c1(b)∧ c3(a)∧ c1(a)∧∃x(c1(x)∧ c2(x)∧R(x, a)∧
∃y(c1(y) ∧R(y, x) ∧ P (y, x)))”.

3.1.2.1 Notations

• We note r(i) the ith neighbour of r; i.e. r(i) = c such that (r, c, i) ∈ E.

• The size |G| of a simple graph G is equal to |C|+ |R|+ |E|.
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• Furthermore, the special simple graph G∅ = (∅, ∅, ∅, ∅, ∅) is called the empty
graph and SCG(Σ) denotes the set of all (finite) simple graphs with respect
to a signature Σ.

• In order to lighten the drawings, an equivalence relation on a set of concept
nodes is represented by an undirected graph covering the relation: c ≡co c′

iff there is a dashed path between c and c′. For later manipulations of
equivalence relations, it is useful to fix some related notations: given an
equivalence relation R on a set X and x ∈ X, classR(x) is the R-equivalence
class of x (i.e. classR(x) = {y ∈ X/(x, y) ∈ R}) and classR(X) is the set
of R-equivalence classes (i.e. classR(X) = {classR(x)/x ∈ X}).

• It should be emphasised that the adopted set notation of graphs presupposes
that if G1 = (R,C,E, label, co) and G2 = (R′, C ′, E ′, label′, co′) are two
disjoint graphs, then R ∩R′ = C ∩ C ′ = ∅.

The graphs would make no sense if we would not be able to understand them.
So far, in the many previous examples, we have seen two ways of interpreting the
simple conceptual graph drawings: an intuitive description in natural language
of the represented information and a translation into the usual language of first-
order logic. It is now time to formalise the former. We will proceed by interpreting
the graphs into structures of the later; i.e., first-order structures.

3.1.3 Semantics

Following the work of Sowa [Sow84], in most of the conceptual graph literature,
SCGs are given a meaning by translating them to existential conjunctive first-
order formulae. We propose, in the line of [Ker96], [Pre98] or [Min00], to stride
FOL semantics and directly interpret our graphs into classical structures. By this
way, the structural connections between graphs and models are better rendered.

3.1.3.1 Structures

The hierarchical knowledge associated to a conceptual graph vocabulary is not
part of the graphs, but an a priori information we have when the representations
are built, communicated or simply, perceived. This classification should therefore
be contained in the underlying structures used for interpretation.

3.1.6. Definition. [Σ-structure]
For a signature Σ = (I, (C,≤C), (R,≤R), arity), a Σ-structure is a pair (D,F )
where the domain D is a set of objects and the interpretation function F is partial
on the set of object names (or equivalently, there is an “undefined object”, * �∈ D)
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and F :



I → D ∪ {*}
C → P(D)
∀Rn ⊆ R,Rn → 2D

n

such that the ordering conveyed by the signature is respected:

• F (c�) = D and ∀c, c′ ∈ C, F (c) ∩ F (c′) = F (c ∧C c′)

• ∀r, r′ ∈ Rn, r ≤R r′ implies that F (r) ⊆ F (r′).

For a concept c, F (c) is called the extension of the concept c or the c-subdomain.
Note that a subdomain or even the whole domain can be empty.

A first step in relating a graph to a structure is to assign object nodes of the
former to objects of the later. Coming back to our embedding slogan, assignments
would correspond to “find the anchoring points of the picture in the model”.

3.1.3.2 Assignments

An assignment is a mapping from the concept nodes of a simple graph to the
domain of a structure. It extends the interpretation function and maps two
coreferent nodes to the same domain object.

3.1.7. Definition. [Assignment]
For a signature Σ = (I, (C,≤C), (R,≤R), arity), a SCG G = (C,R,E, label, co)
over Σ and a Σ-structure M = (D,F ), an assignment is a function f : C → D
such that

• ∀c ∈ C, f(c) ∈ F (type(c)) and if marker(c) ∈ I then f(c) = F (marker(c))
and

• ∀c, c′ ∈ C∗, if c ≡co c′ then f(c) = f(c′).

As a consequence , if ∃c ∈ C such that F (marker(c)) = * then there is no
assignment of the graph in M .

As for the classical interpretation of a textual first-order language, two occur-
rences of a constant (two concept nodes labelled with the same object name) are
mapped on the same object of a structure. It should however be noted that this
choice is not the only natural one in the case of conceptual graphs: a textual lan-
guage is usually not equipped for distinguishing a single occurrence of a constant
which is an argument of different relation symbols, from distinct occurrences of
the same constant. For instance, the two different graphs:
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and

have a single textual counterpart:

Person(Holmes) ∧HoldsInquiry(Holmes) ∧ Person(Holmes) ∧HoldsInquiry(Holmes)

With a more liberal interpretation of proper names, the first graph could convey
some redundant information about the activity of a single person named Holmes,
whereas the second graph could represent a gathering of information about the
detective Sherlock Holmes and about the US Supreme Court Justice, Holmes. In
order to obtain a straight forward semantical correspondence between graphs and
textual formulae, the choice of forcing an object name to denote at most1 one
object in the domain of a structure is made.

Finally, we come to the last ingredient of the interpretation: the verification
that the relational network connecting the anchoring points (i.e., the concept
nodes) coincides with the one linking the corresponding objects in the structure.

3.1.3.3 Truth definition for SCGs

3.1.8. Definition. [Truth of a SCG] Let Σ = (I, (C,≤C), (R,≤R), arity) be
a signature, G = (C,R,E, label, co) be a SCG over Σ and M = (D,F ) be a
Σ-structure.

• G is true in M under an assignment f (noted M, f |= G)

iff

{
∀c ∈ C, f(c) ∈ F (type(c)) and
∀r ∈ R, label(r) ∈ Rn ⇒ 〈f(r(1)), . . . , f(r(n))〉 ∈ F (label(r))

• G is true in M , noted M |= G, iff there exists an assignment f such that
M, f |= G.

• H is a consequence of G (or H subsumes G), noted G , H, iff H is true in
every Σ-structure in which G is true.

• H is equivalent to G, noted H ≡ G, iff G , H and H , G.

The empty graph corresponds to the logical constant True of a textual lan-
guage as it is verified by any structure; it is in fact the only valid simple graph.

In conceptual graphs, terms are proper formulae: an isolated concept node is
a simple graph denoting the non-emptiness of a concept. Indeed, if every object
name was interpreted as an object in the domain of a structure, then any graph
consisting of an isolated concept node labelled with the unit concept (i.e., c� : m

1The importance of the undefined object as possible denotation for a name will become clear
from the interpretation of isolated concept nodes and their role in homomorphism calculi.
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for m ∈ I∪{∗}) would be equivalent to the empty graph as I �= ∅ and F (c�) = D,
whereas the two graphs are intended to represent different pieces of information:
the empty graph represents the absence of information and c� : m captures the
non-emptiness of the depicted domain.

We have decomposed embeddings of graphs into structures into two separate
phases: a mapping from concept nodes to objects and a test of the relational
links. The whole interpretation process emphasises the correspondence between
the simple graph edge structure and the relational structure in the represented
model. This correspondence allies simplicity of semantics with resemblance of
the representation to the represented (i.e., Hammer’s homomorphism thesis for
diagrams [Ham95]).

From the interpretation of simple graphs, we remark that, for a given piece of
information, there is an infinity of different (but semantically equivalent) graph
representations. Indeed, if isomorphism takes implicitly care of the commutativity
of conjunction, the duplication of atomic pieces of information is not limited. In
particular, the multiple occurrences of concept nodes representing a single object
are redundant. We now examine two different (and somehow opposite) graph
transformations that uses these redundancies to defined canonical forms of a
given graph.

3.1.4 Canonical forms

3.1.4.1 Normal forms

The first transformation eliminates duplicates of concept nodes which, a priori,
represent a single object in any model of a graph.

Figure 3.2: Normalisation step

The normal form of a simple graph is obtained by merging all occurrences
of concept nodes having the same individual marker and all elements of each
coreference equivalence class as depicted in Figure 3.2.

3.1.9. Definition. [co+: an extended coreference equivalence relation] G =
(C,R,E, label, co) be a simple graph, we note co+ the equivalence relation on
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concept nodes that extends co and capture the information that two nodes labelled
with the same object name necessarily denote the same object:

∀c, c′ ∈ C∗, (c, c′) ∈ co+ iff (c, c′) ∈ co
and ∀c, c′ ∈ (C \ C∗), (c, c′) ∈ co+ iff marker(c) = marker(c′)

3.1.10. Definition. [Normalisation of SCGs] A SCG H = (C ′, R′, E ′, label′, co′)
is the normal form of a SCG G = (C,R,E, label, co), noted Norm(G) = H, iff
there exists a bijection bR : R → R′ and a bijection bC : classco+(C) → C ′ such
that the following holds:

• R′ is a duplicate of R: ∀r ∈ R, label(r) = label′(bR(r))

• an equivalence class in C corresponds to a single concept node of the normal
form, labelled with the meet of the concept labels: ∀X ∈ classco+(C),
type′(bC(X)) =

∧
C{type(x)/x ∈ X} and marker′(bC(X)) = marker(c)

where c ∈ X

• co′ is the identity on C ′ and the neighbourhood is preserved: ∀(r, c, i) ∈ E,
(bR(r), bC(classco+(c)), i) ∈ E ′

Figure 3.3: The transformation of the SCG in Figure 3.1 into its normal form

The normal form of a graph can be obtained during a single run through the
sets of concept nodes and edges, thus in linear time in the size of the graph.
Furthermore, normalisation is meaning preserving:

3.1.11. Proposition. G and Norm(G) are equivalent

Proof: The proof is immediate as each of the nodes in a co+ equivalence class
and their unique representant in the normal form, denote the same object in a
structure and as the extension of the meet of two concepts is equal to the inter-
section of the extensions of these concepts. �
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The conceptual graph formalism represents terms (concept nodes) and rela-
tions (relation nodes) on an egalitarian level: as nodes connected by edges. By
opposition, formal languages of logic ascribe a somehow preponderant role to
relations and atoms; after all, we say that a term is an argument of a predi-
cate symbol. To ease the correspondence between graphs and formulae, it seems
natural to let the relation nodes lead the dance.

3.1.4.2 Crazed forms

A crazed graph is a simple conceptual graph partitioned into atomic relational
networks. There are two kinds of atomic subgraphs: isolated concept nodes and
star graphs.

3.1.12. Definition. [Isolated concept nodes and star graphs] • An isolated con-
cept node is a concept node which is not connected to a relation node: for a SCG
G = (R,C,E, label, co), the node c ∈ C is isolated iff ∀(r, x, i) ∈ E it holds that
x �= c. Let Cisolated denote the set of isolated concept nodes in G.
• A star graph is an atomic simple conceptual graph: i.e., a SCG composed of a
single relation node connected to its concept node arguments.

For instance, in the rightmost drawing in Figure 3.4, the component indexed
by (4) is an isolated concept node, whereas the remaining three components are
star graphs. To transform a graph into its crazed form, we duplicate concept
nodes that are linked to more than one relation node in the normal form of the
graph.

3.1.13. Definition. [Crazed form of a SCG] The crazed form of a simple con-
ceptual graph G is the simple conceptual graph Crazed(G) = (R,C ′, E ′, label′, co′)
obtained from Norm(G) = (R,C,E, label, co) as follows:
for any concept node c ∈ C directly linked to n > 1 distinct relation nodes (i.e.,
{r1, ..., rn} = {r ∈ R/∃i, (r, c, i) ∈ E} and n > 1), we replace c in Norm(G) by n
copies {c1, ...cn} ⊆ C ′ in Crazed(G) such that

1. ∀1 ≤ j ≤ n, label′(cj) = label(c) and

2. for every relation node rj ∈ {r1, ..., rn}, any edge (rj, c, i) ∈ E is replaced
by an edge (rj, cj, i) ∈ E ′ and

3. if marker(c) = ∗ then {c1, ...cn} are co′-equivalent.

3.1.14. Fact. For a SCG G, (i) Crazed(G) is unique, (ii) the transformation
from G to Crazed(G) takes polynomial time and (iii) Crazed(G) is equivalent to
G.
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Figure 3.4: The transformation of the SCG in Figure 3.1 into its crazed form

Proof: (i) The normal form of the original graph is unique and furthermore, up to
an isomorphism induced by the chosen indexing on the relational neighbourhood
of a concept node, the splitting of a shared concept node is deterministic, unique
and independent from any other splitting.
(ii) Normalisation takes polynomial time and each splitting consists in visiting all
edges connected to the concept node at stake and modifying them. In the whole
transformation, each concept node and each edge of the original graph is only
visited once.
(iii) Obviously, the splitting of a node preserve the meaning of a graph as copies
of an instantiated concept node refer to a single object in a structure and copies of
an existential concept node (i.e., a node labelled with the marker ∗) are forced to
refer to a single object by their assignment to a common coreference equivalence
class. �
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Once partitioned into atoms and isolated concept nodes, a graph can be as-
cribed an arbitrary ordering of its components (e.g., the indices indicated between
brackets in the rightmost graph in Figure 3.4), which will determine the outcome
of its translation to a language of FOL.

3.1.15. Definition. [Order on the components of a crazed graph] An ordered
partition of the E-connected compounds of a non-empty crazed graph G =
(R,C,E, label, co) is defined as a function comp : (R ∪ C) → {1, ..., n} where
n = |Cisolated|+ |R| and such that

1. ∀x, x′ ∈ (R ∪ Cisolated), x �= x′ implies that comp(x) �= comp(x′) and

2. ∀c ∈ (C \ Cisolated), comp(c) = i if ∃(r, c, j) ∈ E and comp(r) = i.

We note (G, comp, n) such an ordered partition of the crazed graph G and Gi =
(Ci, Ri, Ei, labeli, coi), the restriction of G to the nodes indexed by i ∈ {1, ..., n}.

Fortified by these formal definitions of simple graphs and their meaning, we
can now return to the correspondence with the usual textual language of exis-
tential conjunctive FOL and verify that our, so far only intuitively described,
translation is conform to the intended semantics.

3.1.5 Textual correspondences

A language of conceptual graph is an order-sorted language (e.g. [BHR90],
[SS89])in which not only terms are associated to sorts organised into a prede-
fined hierarchy, but relation names are ordered as well.

3.1.5.1 Translation of the support

A signature Σ = (I, (C,≤C), (R,≤R), arity) translates into a formula Φ(Σ) of a
first-order language with constants in I, relation symbols in C ∪R and variables
in an enumerable set V AR such that:

• ∀c, c′, c′′ ∈ C, c ∧C c′ = c′′ iff Φ(Σ) |=FOL ∀x(c(x) ∧ c′(x)→ c′′(x))

• ∀r, r′ ∈ Rn, r ≤R r′ iff Φ(Σ) |=FOL ∀x1, ..., xn(r(x1, ..., xn)→ r′(x1, ..., xn))

In other words, if an object belongs to the extension of two concepts, then it also
belongs to the extension of their meet (thus, if an object belongs to the extension
of a concept, then it also belongs to the extension of super-concepts). The order
on relation names is similarly preserved.

A simple conceptual graph translates into an existentially closed conjunction
of atoms. We propose an inductive translation based on the crazed form of a
SCG.
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3.1.5.2 Translation to FOL{∃,∧}, component by component

3.1.16. Definition. [Φ] Let H be a SCG, if H is the empty graph then we
define Φ(H) = True. Otherwise, let (G, comp, n) be an ordered partition of the
crazed form of H. The translation of the n components of G = (R,C,E, label, co)
is defined inductively as follows.

• term is a function which associates to each concept node in G, a term such
that:

(i) ∀c ∈ C, term(c) = m ∈ I iff marker(c) = m and
(ii) ∀c, c′ ∈ C∗, term(c) = term(c′) ∈ V AR iff c ≡co c′.

• For i ∈ {1, ...n}, V ar(Gi) denotes the set of variables which are associated to
nodes in Gi and which are not associated to nodes in components with higher
indices than i:

V ar(Gi) =
⋃
c∈Ci

{
term(c)/

marker(c) = ∗
and ∀c′ ∈ C(c ≡co c′ → comp(c′) ≤ comp(c))

}

• The translation of a component may be decomposed in three parts:

1. A sequence of quantifiers as prefix (a function that transforms a formula
into a formula):

Quant(Gi) : ϕ→
{

ϕ if V ar(Gi) = ∅
∃x1...∃xl(ϕ) if V ar(Gi) = {x1, ..., xl}

2. The translation of the concept nodes:

Conc(Gi) =
∧
c∈Ci

type(c)(term(c))

3. The translation of an eventual (unique if it exists) relation node:

Rel(Gi) =




True if Ri = ∅

P (term(ri(1)), ..., term(ri(m))) if




Ri = {ri},
label(ri) = P ∈ Rm,
and (ri, ri(j), j) ∈ E

We may now compose the translation from its parts and inductively obtain
Φ(G) = Φn(G):

base : if Rel(G1) = True, then Φ1(G) = Quant(G1)(Conc(G1)) else

Φ1(G) = Quant(G1)(Rel(G1) ∧ Conc(G1))
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step (k− 1)→ k where 1 < k ≤ n:
if Rel(Gk) = True, then Φk(G) = Quant(Gk)(Conc(Gk) ∧ Φk−1(G)) else

Φk(G) = Quant(Gk)(Rel(Gk) ∧ Conc(Gk) ∧ Φk−1(G))

Of course, we have abused notations by defining Φ as a function from simple
graphs to formulae. Indeed, the outcome of the translation relies on the chosen
ordering on the components of the underlying crazed graph. However, we can no-
tice that in the target language of existential conjunctive FOL, the ordering does
only influence the relative position of atoms and quantifiers. Furthermore, as the
translations are pure sentences (i.e., formulae with no free variables and variables
quantified at most once), we can safely commute conjuncts and shift quantifiers,
provided that the sentence characteristics is preserved, and obtain equivalent sen-
tences including the translations that would be obtained with different orderings
of the components.

3.1.17. Example. A translation of the partitioned graph in Figure 3.4 is

component(4)︷ ︸︸ ︷
c1(b) ∧ ∃x∃y(R(y, x) ∧ c1(y) ∧ c3(x) ∧

component(2)︷ ︸︸ ︷
P (y, x) ∧ c1(y) ∧ c3(x) ∧R(x, a) ∧ c3(x) ∧ c3(a)︸ ︷︷ ︸

component(1)

)

︸ ︷︷ ︸
component(3)

We can now verify that the Φ-translation is conform to the interpretation of
simple graphs.

3.1.18. Proposition. For G a simple graph over a signature Σ and M = (D,F )
a Σ-structure,

M |= G iff M |=FOL Φ(G)

Proof: Suppose that for some assignment f , M, f |= G, we want to prove that
M |=FOL Φ(G). We proceed by induction on the structure of the graph: the
number of components in the crazed form.

If G is the empty graph, then Φ(G) = True and ∀M,M |= G and M |=FOL True.

Without loss of generality, let G be under its crazed form which is composed
of n components. For 1 ≤ k < n, suppose that M, f ′ |=FOL Φk(G) where f ′

which coincides with f : i.e., ∀c ∈ C, f(c) = f ′(term(c)). We have to prove that
(M, f ′) also satisfies the translation of the restriction of G to G1, ..., Gk+1; viz.
M, f ′ |=FOL Φk+1(G).

• Φk+1(G) = Quant(Gk+1)(Rel(Gk+1) ∧ Conc(Gk+1) ∧ Φk(G))
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• By definition of an assignment (Definition 3.1.7), it holds that the set of
concept nodes in Gk+1 is satisfied by (M, f), thus, by construction of f ′

(i.e., ∀c ∈ C, f(c) = f ′(term(c))) it holds that M, f ′ |=FOL Conc(Gk+1).

• Furthermore M, f |= G, thus, by Definition 3.1.8, the eventual relation
occurrence between the concept nodes of Gk+1 is verified in (M, f). This
implies that M, f ′ |=FOL Rel(Gk+1).

• Therefore M, f ′ |=FOL Rel(Gk+1)∧Conc(Gk+1)∧Φk(G). It follows that for
any variable x, by definition of the interpretation of an existential quanti-
fier, M, f ′ |=FOL ∃x(Rel(Gk+1) ∧ Conc(Gk+1) ∧ Φk(G)) thus M, f ′ |=FOL
Φk+1(G). The particular case where Rel(Gk+1) = True is similar.

Reciprocally, the induction on the structure of the sentence runs as smoothly,
by considering subformulae corresponding to the translation of components.
�

In this opening part on the representation of positive information, we have
described the syntax of simple conceptual graphs using the formal mathematical
language of sets and graphs. Graphs are built over an hierarchical vocabulary
captured by the notion of support.

We have diverged from the traditional treatment of the semantics of simple
conceptual graphs, which consists in translating the graphs into sentences of ex-
istential conjunctive FOL (see e.g., the extensive surveys in [Sow84] or [CM92]
and the proceedings of ICCS conferences). Instead, we have chosen a set theo-
retical extensional semantics and directly interpreted the graphs by embedding
into classical structures. This view renders the close connection between repre-
sented structures and graph representations, thus the facility of understanding
the meaning of the graphs.

Of course, the translation into the textual language of FOL is also beneficial
to conceptual graph theory. For instance, we can directly adapt the complexity
results of the precious chapter by such correspondences. We have proposed an
inductive translation based on the crazed form of a graph, i.e., its transformation
to an equivalent graph decomposed into atomic subgraphs.

The idea of atomic decomposition behind the notion of crazed form is also
used in the anti-normal form proposed by Ghosh and Wuwongse [GW95, Gho96]
for logic programming with conceptual graphs.

There are some tiny differences due to our specific choices: contrary to the
general trend in the conceptual graph literature, we have chosen not to fix in ad-
vance (i.e., in the support) the type of individual markers. Furthermore, we have
allowed distinct concept nodes representing a single individual (either labelled
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with the same constant or being coreferent) to be labelled with different concept
types.

Our specific choices are, on one hand, justified by our ontological commit-
ment to graph artefacts (e.g., the presence in a graph of a single instantiated
concept node t : m conveys the information of the existence of the individual
represented by m and its belonging to the type t, whereas this information would
be redundant with the support-information if this one should also predefine the
same information). Therefore, our choices do, on the other hand, justify the
previous lengthy and detailed treatment of basic definitions.

In the subsequent sections, crazed graphs will prove useful for the study of
efficient reasoning in simple conceptual graphs enjoying tree-like properties. Rea-
soning on the graph representations will be the subject of the coming section.

3.2 Consequence proofs by homomorphism

If simple conceptual graphs share many syntactic similarities with Peirce’s ex-
istential graphs or even, with the classical language of FOL, there is a facet on
which they differ: the use for deductive purposes of projection, a labelled graph
homomorphism method. This mapping idea which was already present in the
embedding semantics is not only visual and intuitive, but it emphasises the role
of the edge structure.

We will first present the projection calculus, prove its completeness with re-
spect to the semantics of simple graphs and examine known complexity results.

3.2.1 Projection

A proof of a consequence relation between two graphs, called a projection [Sow84],
takes the form of a labelled graph homomorphism: a mapping from the nodes
of the conclusion to the nodes of the premiss which preserves the neighbourhood
relation and respects the hierarchical information of the language signature.

3.2.1. Definition. [Projection]
Let G = (C,R,E, label, co) and G′ = (C ′, R′, E ′, label′, co′) be two simple concep-
tual graphs over a signature Σ = (I, (C,≤C), (R,≤R), arity). A projection from
the source G′ to the target G is a mapping π : C ′ ∪R′ → C ∪R such that:

• ∀c ∈ C ′, π(c) ∈ C and type(π(c)) ≤C type′(c)

• ∀c ∈ C ′, if marker′(c) ∈ I then marker(π(c)) = marker′(c)

• ∀r ∈ R′, π(r) ∈ R and label(π(r)) ≤R label′(r)

• ∀(r, c, i) ∈ E ′, (π(r), π(c), i) ∈ E
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Figure 3.5: A projection

• ∀(c1, c2) ∈ co′, π(c1) = π(c2)

The mapping is a specialisation relation: a concept node is mapped onto
another concept node labelled with a subconcept name, and if the source is in-
stantiated with a proper name, then the target is labelled with the same name,
otherwise (i.e., the source is labelled with a “*” representing an indefinite ob-
ject) the target may be labelled with any marker. Similarly, a relation node is
projected onto another relation node labelled with a subrelation name. Finally,
the neighbourhood of a relation node is preserved by the mapping and coreferent
concept nodes are associated to a single target.

When it is clear from the context which order on concept names is considered,
we often use the derived order ≤: for t, t′ ∈ C, m,m′ ∈ I ∪ {∗} and r, r′ ∈ R{

(t,m) ≤ (t′,m′) iff t ≤C t′ and m′ ∈ I → m = m′

r ≤ r′ iff r ≤R r′

3.2.1.1 Independent sub-projections

A decomposition principle directly follows from the definition of a projection. It
exemplifies the meaning of juxtaposition in the graphical language: juxtaposition
represents conjunction.

3.2.2. Fact. For three simple graphs, G, H1 and H2, there exists a projection
from the juxtaposition of H1 and H2 (this simple graph is noted H1 ⊕H2) to G
iff there exists a projection from H1 to G and a projection from H2 to G.

Proof: For the “only if”, it is obvious that the domain restriction of a projection
π : H1 ⊕H2 → G to H1 (and also to H2) is a projection, as neither an edge nor
a coreference link bridge the two compounds in the juxtaposition. Reciprocally,
for the same reason, the union of a two projection (one for each of the two com-
pounds) provides a projection of their juxtaposition. �
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This fact will later prove useful in different applications. For instance, the
possibility of rewriting a cyclic graph into an equivalent juxtaposition of acyclic
compounds guarantees the tractability of the projection reasoning. In the frag-
ment of simple graphs including atomic negation, the possibility of splitting pos-
itive and negative pieces of information will be the key of a complete projection
calculus.

A calculus is reliable if it is complete with respect to the defined semantics.
In order to prove this property for projection, we need to define an intermediate
notion: the canonical model of a simple graph.

3.2.2 Canonical model

We have already seen in the previous chapter that a sentence of the fragment
corresponding to SCGs, FOL{∃,∧}, enjoys a minimal model. We will now define
how such a model is built for a simple conceptual graph in normal form.

The canonical model of a simple graph can be read off its normal form:

3.2.3. Definition. [Canonical model of a SCG] Let G be a simple conceptual
graph in normal form (C,R,E, label, co) over a signature Σ = (I, (C,≤C), (R,≤R
), arity), the canonical model of G ,MG = (D,F ), is built as follows:

1. D = C

2. ∀m ∈ I, if ∃c ∈ C such that marker(c) = m then F (m) = c else F (m) = *

3. for concept ∈ C, F (concept) = {x/x ∈ C and type(x) ≤C concept}

4. for P ∈ Rn, F (p) = {〈r(1), . . . , r(n)〉/r ∈ R and label(r) ≤R P}

We must now verify that the canonical model of a simple graph is indeed a
structure which satisfies the graph.

3.2.4. Fact. Let G be a SCG in normal form over a signature Σ and MG =
(D,F ) be the canonical model of G, it holds that:

1. MG is a Σ-structure.

2. The canonical model of a graph captures at least all the information con-
tained in the graph:

G is true in MG under the identity-assignment.

3. Conversely, MG conveys no more information than together G and the in-
formation that can be derived from G by applying meaning postulates of
the language signature.
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4. ∀a, b ∈ I, F (a) = F (b) �= * implies that a = b.

Proof:

1. On I, F is a function as the graph is in normal form. We need to verify
that the ordering conveyed by the signature is preserved in the structure:

(a) F (c�) = D follows from the fact that ∀x ∈ C, x ≤C c�.

(b) ∀c, c′ ∈ C, c ≤C c′ implies that F (c) ⊆ F (c′) as by construction, for any
concept node x, x ∈ F (c) iff type(x) ≤C c, thus type(x) ≤C c′ by transitivity
of ≤C. Hence, x ∈ F (c′) by construction.

(d) ∀c, c′ ∈ C, F (c ∧C c′) ⊆ F (c) ∩ F (c′) directly follows from (b) and the
definition of the meet. ∀c, c′ ∈ C, F (c) ∩ F (c′) ⊆ F (c ∧C c′): indeed, by
construction, x ∈ F (c)∩ F (c′) implies that type(x) ≤C c and type(x) ≤C c′.
Thus, type(x) ≤C (c ∧C c′) and x ∈ F (c ∧C c′).

Similarly for relation names (without the meet-constraint).

2. The canonical model captures all the positive information contained in G
and thus the concept nodes and the positive relation nodes can be success-
fully interpreted under the identity assignment Id: Id is an assignment as
for any concept node c with label (t,m), by construction (Definition 3.2.3-
3), it holds that Id(c) = c ∈ F (t) and furthermore, if m is an object name
(i.e., m ∈ I) then F (m) = Id(c) = c. It remains to verify that relation
nodes can successfully be interpreted: For any relation node r with ar-
guments 〈r(1), . . . , r(n)〉, it holds that 〈r(1), . . . , r(n)〉 ∈ F (label(r)) (by
Definition 3.2.3-4).

3. By construction:
(a) ∀P ∈ Rn∀〈d1, ..., dn〉 ∈ Dn, if 〈d1, ..., dn〉 ∈ F (P ), then 〈d1, ..., dn〉 are
the ordered arguments of a relation node r ∈ G such that label(r) ≤R P
and (b) ∀d ∈ D, d is a concept node in G
and (c) ∀concept ∈ C, if an object d ∈ F (concept), then labelG(d) ≤C
concept

4. G is normalised, thus an object name can appear in at most one concept
node. Hence, F is a bijection between the set of object names occurring in
G and the set of instantiated concept nodes.

�

As in the case of existential conjunctive FOL, we can state an equivalence
between consequence and canonical model satisfaction:

3.2.5. Theorem. For G and H two simple graphs, G , H iff MNorm(G) |= H
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Proof: the ”only if direction” is immediate as by Fact 3.2.4-2 MG is a model of
G.

For the ”if direction”, assume that Mnorm(G), f |= H and N, g |= Norm(G).
G and Norm(G) are equivalent (Proposition 3.1.11), thus N |= G. We will show
that h = g(f) is such that N, h |= H.

N = (DN , FN)
g←− Norm(G)

Fact 3.2.4−3←− MNorm(G) = (D,F )
f←− H

• instantiated concept nodes: let c be any concept node in H such that its
label is (t, a) for t ∈ C and a ∈ I. f is an assignment of H in MNorm(G),
thus f(c) = F (a) �= * and f(c) is the unique concept node labelled with ‘a’
in Norm(G) (by Fact 3.2.4-3 and 4). N, g |= Norm(G) thus, by definition
of an assignment, g(f(c)) = FN (a).

• coreferent concept nodes: let c and c′ be two distinct coreferent concept
nodes in H. By definition of an assignment, f(c) = f(c′). Hence g(f(c)) =
g(f(c′)).

• concept types: let c be any concept node in H and t ∈ C be its con-
cept type label. f(c) ∈ F (t) by definition of an assignment. Furthermore,
F (t) = {x/x ∈ Norm(G) and type(x) ≤C t} (by construction of the canon-
ical model) and ∀x ∈ F (t), g(x) ∈ FN(type(x) (as g is an assignment of
Norm(G) in N). N is a Σ-structure, thus ∀x ∈ F (t), g(x) ∈ FN(t). Hence,
g(f(c) ∈ FN(t).

• atoms: let r be a relation node in H with label P ∈ R and ordered ar-
guments 〈r(1), ...r(n)〉, we must verify that 〈h(r(1)), ...h(r(n))〉 ∈ FN(P ).
〈f(r(1)), ...f(r(n))〉 ∈ F (P ) as MNorm(G), f |= H. Hence, by Fact 3.2.4-
3, there exists a concept node s in Norm(G) such that label(s) ≤R P
and ∀1 ≤ i ≤ n, s(i) = f(r(i)). Furthermore, N, g |= Norm(G), thus
〈g(s(1)), ...g(s(n))〉 ∈ FN(label(s)) and FN(label(s)) ⊆ FN(P ) by definition
of a Σ-structure.

�

Going one step further, by relating canonical model satisfaction and graph ho-
momorphism, we will now prove that projection is consistent and complete with
the defined semantics. We can note that the relevance of normalisation emerge in
the proof of Theorem 3.2.5: the mapping from the canonical model to its original
graph is only possible because the graph is in normal form. This normal form
constraint will also be essential for the completeness of projection.
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3.2.3 Completeness theorem

The completeness result of projection with respect to a FOL-translation was
proved by Sowa [Sow84] (Soundness) and Chein and Mugnier [CM92, MC96]
(Completeness). We prove here the completeness with respect to the direct in-
terpretation of the graphs into structures.

Figure 3.6: No projection between equivalent graphs: needed normalisation.

As noted by Preller in a personal communication to Chein and Mugnier (see
Chapter 3.4 in [MC96]), some graph rewriting of the target graph of a projection
is required for completeness: normalisation. Indeed, coreferent concept nodes
or concept nodes instantiated with the same proper name necessarily denote a
single object. Hence, they should find a mapping onto the same target. However,
some equivalent simple graphs cannot always be associated to a projection on
each other. For instance, in Figure 3.6, the two graphs on the left-hand side are
equivalent but there is no projection from the top one to the bottom one as the
conservation of the neighbourhood of the relation node cannot be satisfied. The
remaining two graphs are also equivalent but if P and R are not comparable,
then there is no projection between the graphs as ≤C is antisymmetric.

The target graph must explicitly state that the object denoted by the proper
name a belongs to the extension of the concept which is the meet of c1 and c2.
To solve this problem, we can require the target graph to be in normal form.

3.2.6. Theorem (Completeness of projection). For G and H two simple
graphs, G , H iff there exists a projection from H to Norm(G)

Proof: By Theorem 3.2.5, we must show that MNorm(G) |= H iff there is a projec-
tion from H to Norm(G). Assume without loss of generality that G is already
in normal form.

• Let π be a projection from H = (CH , RH , EH , labelH , coH) to
G = (CG, RG, EG, labelG, coG), we must verify that there exists an assign-
ment f from H to MG = (CG, F ) such that MG, f |= H. Using the fact
that G is satisfied by MG under the identity function (Fact 3.2.4-2), we can
chose the restriction of π to concept nodes in H as assignment f :

(i) f is a function from CH to CG
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(ii) ∀c ∈ CH , typeG(π(c)) ≤C typeH(c) and f(c) ∈ F (typeG(π(c))), thus
f(c) ∈ F (typeH(c)) as by definition 3.1.6, F (typeG(π(c))) ⊆ F (typeH(c))

(iii) ∀c ∈ CH such that markerH(c) ∈ I, markerH(c) = markerG(π(c))
and f(π′(c)) = F (markerG(π(c))), thus f(c) = F (markerH(c))

(iv) ∀(c, c′) ∈ coH , π(c) = π(c′) and therefore f ′(c) = f ′(c′).

(v) For any relation node r in RH , 〈r(1) . . . r(n)〉 are the n ordered neigh-
bours of r in H. By definition of a projection labelG(π(r)) ≤R labelH(r)
and the n ordered neighbours of π(r) in G are 〈π(r(1)) . . . π(r(n))〉. G is
true in M under f thus 〈f ′(r(1)), . . . , f ′(r(n))〉 ∈ F (labelG(π(r))) and by
definition 3.1.6, 〈f ′(r(1)), . . . , f ′(r(n))〉 ∈ F (labelH(r)).

• Assume that for every structure in which G is true, H is also true, then there
exists an assignment f of H in the canonical model MG = (D,F ) under
which H is true in MG. We have to show that there exists a projection from
H to G; We first prove that the mapping f on concept nodes is conform to
the definition of a projection: ∀c ∈ CH , f(c) ∈ CG = D and

– if markerH(c) ∈ I then f(c) = F (markerG(f(c))) by definition of a
canonical model and f(c) = F (markerH(c)) �= * by definition of an
assignment, so F (markerG(f(c))) = F (markerH(c)) and therefore, by
Fact 3.2.4(3), markerG(f(c)) = markerH(c)

– f(c) ∈ F (typeH(c)) = {c′/c′ ∈ CG and typeG(c
′) ≤C typeH(c)}. Thus,

typeG(f(c)) ≤C typeH(c)

– ∀c′ ∈ CH , (c, c
′) ∈ coH implies that f(c) = f(c′).

We now have to verify that for every relation node in H, we can find
a relation node in G such that the mapping preserve adjacency and la-
bel hierarchy: Let r ∈ RH , if labelH(r) = p ∈ Rn: H is true in MG

under f , thus 〈f(r(1)), . . . (f(r(n)))〉 ∈ F (p). By construction of MG,
〈f(r(1)), . . . (f(r(n)))〉 ∈ F (p) iff ∃r′ ∈ RG such that labelG(r

′) ≤R p and
∀1 ≤ i ≤ n, r′(i) = f(r(i)).

Therefore, ∃r′ ∈ RG such that labelG(r
′) ≤R labelH(r) and ∀(r, c, i) ∈ EH ,

(r′, f(c), i) ∈ EG.

�

The problem of finding a projection is known decidable but untractable: it
is an NP-complete problem (see, for instance, the complexity of the consequence
problem in the existential conjunctive fragment of first-order logic in Chapter 2.5).

However, it is also known that structural constraints on the data can ease the
complexity of reasoning. For instance, the problem of finding an homomorphism
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from a labelled tree to a labelled graph is a polynomial problem: the search of a
mapping from the source to the target, starting at the leaves towards the root, is
an elimination process of possible projection candidates which runs at most once
through each node of the source.

In Chapter 3.3, a larger tractable fragment of simple graphs will be proposed:
the guarded simple conceptual graphs. Guarded simple graphs rely on a notion
of tree-like structures. To arrive at this notion, it is instructive to examine the
more usual notion of simple conceptual tree.

3.2.4 Tractable simple conceptual trees

In the simple conceptual graph fragment, we face a computational difficulty:
consequence is untractable.

3.2.7. Theorem. [CM92] For two simple conceptual graphs G and H, proving
the existence of a projection from H to G is NP-complete.

Automated reasoning being one of the goals for the conceptual graph formalism,
it becomes relevant to exhibit how much constraint on the problem is sufficient
for obtaining a tractable version.

A first answer was provided by Chein and Mugnier [CM92, MC92, Mug92]:
when the source graph is a tree, the complexity of the projection problem de-
creases to polynomial. By transferring results from description logics to simple
conceptual graphs, Baader et al. [BMT99] extended the tractable fragment to
simple graphs that can be transformed into equivalent trees.

We recall these results and characterise these fragments in terms of tree cov-
ering of the coreference equivalence relation in the crazed form of a SCG.

3.2.4.1 Simple conceptual trees

The tree structure of a simple conceptual tree is more salient in a simple graph
without coreferent nodes. We already know from the normal form of a graph that
coreference can safely be eliminated. Indeed, any graph is equivalent to the graph
resulting from the merging of all distinct elements in each coreference equivalence

class: i.e, is equivalent to .

3.2.8. Definition. [Edge-path, cycles and SCT]
In a graph G = (R,C,E, label, Id) where Id is the identity relation on C∗, an
edge-path between two concept nodes c, c′ ∈ C is a sequence of distinct edges
connecting the two concept nodes in the incidence undirected graph; in other
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words, abstraction is made over multiple edges connecting a concept and a relation
node:

edge−path(c, c′) = 〈e1 = (c, f1), ..., ej = (dj, fj), ..., en = (dn, c
′)〉 such

that
(i) n > 1 and
(ii) ∀1 ≤ x ≤ n,∃ix ∈ IN+/(dx, fx, ix) ∈ E or (fx, dx, ix) ∈ E and
(iii)∀1 ≤ x < n, fx = dx+1 and
(iv) ∀1 ≤ x �= y ≤ n, fx = dy implies that dx �= fy.

A cycle is an edge-path from a concept node to itself and a simple conceptual
tree (SCT) is a simple graph that does not contain any cycle.

For instance, the graph in Figure 3.7 is a simple conceptual tree.

Figure 3.7: A simple conceptual graph with a tree structure

3.2.9. Theorem. [CM92, Mug95] For a SCG G and a SCT T , proving the ex-
istence of a projection from T to G is polynomial.

[Mug95] proposes a polynomial algorithm which builds a projection starting from
the leaves of the tree towards the root and successively eliminating mapping
candidates.

3.2.4.2 SCGs transformable into SCTs

In [BMT99], Theorem 3.2.9 is extended to source simple graphs that can be
polynomially transformed into equivalent trees by splitting instantiated concept
nodes.

Indeed, the graph is equivalent to the graph
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.
Hence, any cycle containing a concept node labelled with a proper name can be
eliminated. For instance, the simple graph in Figure 3.8, which is not a simple
conceptual tree, is equivalent to the tree in Figure 3.7.

Figure 3.8: Eliminable cycles

3.2.4.3 Tree coverings of crazed graphs

Similarly to the Gaifman graph of a structure2, the conceptual graph formalism
puts forward the role of terms in representations. We have seen an alternative
equivalent representation based on atomic sub-graphs: the crazed form of a SCG
(Definition 3.1.13).

Figure 3.9: The crazed form of the graph in Figure 3.8

2The Gaifman graph [Gai82]of a structure has the elements of the universe as nodes and an
edge connects two nodes iff the corresponding objects appear in the extension of a relation.
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A tree covering of a crazed simple graph is an undirected acyclic graph,
which covers the coreference equivalence relation in such a way that two com-
ponents (star-graph or isolated concept node) are connected by at most one path
of coreference-edges.

3.2.10. Definition. [Covering of coreference edges]
Let (G = (R,C,E, label, co), comp,m) be the crazed form of a SCG.
• A covering of G is a graph, (C∗, Uco), such that two distinct coreferent concept
nodes, c and c′, are linked by at least one path of coreference-edges in Uco.
Coreference edges are uplifted to the level of atomic components:
for 1 ≤ k, l ≤ m and two existential concept nodes c ∈ Gk and c′ ∈ Gl, a
coreference-edge {c, c′} ∈ Uco is also an edge connecting Gk and Gl.
An extended path between two components Gk and Gl is a sequence of compo-
nents 〈Gk = g0, ..., gn = Gl〉 such that ∀1 ≤ i ≤ n, gi−1 �= gi and there is a
unique coreference-edge in Uco between gi−1 and gi.
• A tree covering of G is an acyclic covering of G such that there is at most one
extended path between two distinct atomic components of G.

3.2.11. Example. A tree covering of the graph in Figure 3.9 is highlighted in
Figure 3.10.

Figure 3.10: A tree covered crazed graph

The graph in Figure 3.11 has no tree covering. Indeed, its unique covering
includes two distinct paths (a cycle) between the two components.

3.2.12. Fact. A simple graph G is transformable into an equivalent simple con-
ceptual tree if and only if the crazed form of G has a tree covering.

Proof: on one hand, from a simple conceptual tree we can extract a tree covering
of its crazed form. In the crazed form transformation, a concept node is split if
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Figure 3.11: A cyclic graph

and only if it is originally shared by more than one relation nodes. For the case of
an instantiated concept, no cycle can be introduced as the nodes is only split into
copies. For the case of an existential concept node, we must chose locally a set of
coreference-edges which is a tree and links every resulting copies; we simply chose
an arbitrary copy and linked it to every other resulting copies. It then directly
follows from the acyclicity of the original SCT, that these “local tree-coverings”
combine together in a tree covering of the crazed form.

On the other hand, merging all elements of each coreference equivalence class
transforms a tree covered crazed graph into an equivalent simple tree (if there
was a cycle in the resulting graph, it would correspond to a cyclic extended path
in the crazed graph). �

We should note that the previous proposition is not sensitive to redundant in-
formation taking the form of multiple copies of an atom. For example, the graph

Figure 3.12: A cyclic path which could be eliminated

on the left-hand side in Figure 3.12 has no tree covering, however, it is equivalent
to the irredundant graph pictured on the right-hand side which is acyclic.

In this section, we have reviewed the complete homomorphism calculus for con-
sequence in simple conceptual graphs: projection. We have also recalled the
intractability of the method, a complexity result which we already knew from the
complexity of consequence in the corresponding fragment FOL{∃,∧}.
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With implications for the safety of computational applications, a tree con-
straint on the source graph of a projection proves sufficient to enable a shift of
the consequence problem into the tractable zone.

The next natural step consists in relaxing this constraint without going back
beyond the untractability frontier. Our proposition will be a widening of the no-
tion of tree covering, in order to accept cyclic paths such as the one in Figure 3.11.

3.3 Guarded simple conceptual graphs

From our previous experience with simple conceptual trees and the exploration
of modal formalisms in Chapter 2, we learned that tree structures are a key to
efficiency. How can we import in conceptual graphs, some modal tree features?
Guarded syntactic forms are an answer; see, for instance, [Ben85], [ABN98] or
[Grä99] for detailed studies of these embeddings of modal logics into classical
logic.

The notion of guarded syntax, that we presented for FOL{∃,∧} in Chap-
ter 2.9.1, finds a natural formulation in terms of constraints on coverings of the
coreference relation.

3.3.1. Definition. [Guarded SCGs] Let (G = (R,C,E, label, co), comp,m) be
an ordered crazed form of a SCG and (C∗, Uco) be a covering of G.
A guarded path between two components Gk and Gl is a sequence of components
〈Gk = g0, ..., gn = Gl〉 such that ∀1 ≤ i ≤ n, gi−1 �= gi and there is a (not
necessarily unique) coreference-edge in Uco between gi−1 and gi.
• A guarded covering of G is an acyclic covering of G such that there is at most
one guarded path between two distinct atomic components of G.
• A simple graph is guarded if its crazed form admits a guarded covering.

3.3.2. Example. In Figure 3.13, the simple graph is guarded by the highlighted
covering.

The difference between a tree covering and a guarded covering is that, in the
later, multiple coreference-edges are allowed to connect two components of the
crazed graph.

3.3.3. Fact. The fragment of guarded simple conceptual graphs strictly includes
the one of simple conceptual trees.

Proof: It directly follows from Definition 3.2.10 and Definition 3.3.1 that an ex-
tended path is a guarded path. Conversely, the graph in Figure 3.13 is guarded,
but is not a tree. �
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Figure 3.13: A guarded simple graph and one of its guarded coverings

3.3.0.4 Ordering derived from a guarded covering

To crazed graphs in general, we have associated an arbitrary ordering of the
atomic components. Now that we have a tree structure linking these components
in a guarded crazed graph, we can associate to the graph an ordering which
respects the tree structure. To obtain the ordering, we first define a directed
version of guarded covering.

3.3.4. Definition. [Directed guarded covering]
Let G = ((R,C,E, label, co), comp,m) be a guarded crazed simple graph.
• A directed guarded covering of G is a directed graph, T ′ = (C∗, U ′

co), derived
from a guarded covering T = (C∗, Uco) of G:

1. U ′
co ⊆ C∗ × C∗ is irreflexive and asymmetric.

2. A direction is chosen for every undirected coreference edge in T :
∀{x, y} ∈ Uco, either (x, y) ∈ U ′

co or (y, x) ∈ U ′
co.

3. All coreference edges between two components have the same orientation:
∀{x, y}, {x′, y′} ∈ Uco if comp(x) = comp(x′) and comp(y) = comp(y′) then
(x, y) ∈ U ′

co iff (x′, y′) ∈ U ′
co

4. Connected compounds are rooted:
If there is a guarded path in T from a component Gk to a component Gl,
then there is a guarded directed path in T ′ either from Gk to Gl or from
Gl to Gk, where a guarded directed path from Gk and Gl is a sequence of
components 〈Gk = g0, ..., gn = Gl〉 such that ∀1 ≤ i ≤ n, gi−1 �= gi and
there is a coreference-edge in U ′

co from gi−1 to gi.
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• From a directed guarded covering T ′, a successor function is defined.
succ : {G1, ..., Gm} → P({G1, ..., Gm}) such that Gj ∈ succ(Gi) iff there is a
directed coreference-edge in U ′

co from Gi to Gj.

Figure 3.14: A directed guarded covering

A directed guarded covering can always be derived from a guarded covering
of a SCG by an exhaustive run through the undirected structure. Such a run
through the underlying tree structure provides an order of the components.

3.3.5. Definition. [Post-order sequence of the components]
Let (G = (R,C,E, label, co), comp,m) be a guarded crazed simple graph and succ
be the successor function derived from a directed guarded covering of G.
comp is a post-order sequence of the components in G iff ∀1 ≤ i, j ≤ m, Gj ∈
succ(Gi) implies that j < i.

3.3.6. Example. A possible directed guarded covering of the graph in Fig-
ure 3.13 is represented in Figure 3.14. A post-order sequence of the components,
which respects the directed covering, is indicated by indexes between brackets.

3.3.0.5 On the FOL-translation of guarded simple graphs

The translation Φ (Definition 3.1.16) does not translate a guarded simple graph
into a guarded sentence of FOL{∃,∧}, but in a sentence which is equivalent to a
guarded one.

Locally, each component translates to a guarded formula: if Gi ∈ G is an iso-
lated concept node, it translates to an atom Pt eventually preceded by a quantifier
∃t. Hence, a guarded formula.
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If Gi is a star graph, the translation of its relation node, Rel(Gi), is a guard
for the remaining conjunction of unary atoms (i.e., atoms reflecting the concept
type of terms). Indeed, all existentially quantified variables in Quant(Gi) and all
terms in Conc(Gi) occur as argument in Rel(Gi).

Figure 3.15: Translation problem

However, the translation of components in a linear fashion does not capture
the general tree structure of a guarded covering. For instance, using the pictured
ordering of components, the guarded graph G in Figure 3.15, would translate

to the non-guarded sentence Φ(G) = ∃xz(Rzx ∧
component(2)︷ ︸︸ ︷

∃y(Rzy ∧ Px︸︷︷︸
component(1)

))

︸ ︷︷ ︸
component(3)

, whereas

the equivalent sentence ∃xz(Rzx ∧
component(2)︷ ︸︸ ︷
∃y(Rzy) ∧

component(1)︷︸︸︷
Px )︸ ︷︷ ︸

component(3)

is guarded.

In order to translate guarded graphs into ECGF-sentences, we can use the
successor function on components:

Φk(G) = Quant(Gk)(Rel(Gk) ∧ Conc(Gk) ∧
∧

l/Gl∈succ(Gk)

Φl(G))

By induction hypothesis, for Gl ∈ succ(Gk) (thus, l < k), Φl(G) is guarded and
every variable occurring free in Gl also occurs in Gk. Hence Φk(G) is guarded.

Reciprocally, any sentence in ECGF can be represented as a guarded simple
graph.
Without loss of generality, we can consider a pure ECGF-sentence (i.e., a sentence
in which no variable is quantified twice).
• An atom P (t1, ..., tn) corresponds to a star graph whose relation node is labelled
with P . The ith neighbour of the relation node (for 1 ≤ i ≤ n) is a concept node
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labelled with (c�, t1). This single star-graph is necessarily guarded.
• A conjunction of ECGF-formulae corresponds to the juxtaposition of graphs.
Furthermore, if this conjunction is a sentence, then each conjunct is an ECGF-
sentence and the graphical correspondent is a guarded graph partitioned into
guarded connected compounds, by induction hypothesis.
• The main case of the induction step is illustrated as follows:

an ECGF-formula ∃$x(α( $x0, $y0, $a0) ∧ ϕ1( $x1, $y1, $a1) ∧ ... ∧ ϕn( $xn, $yn, $an)) such that
for 0 ≤ i ≤ n, ϕi is not a conjunction and $xi ⊆ $x0, $yi ⊆ $y0 and $ai is composed
of constants. The guard α translates into a star-graph root whose successors are,
by induction, roots of guarded graphs. The result is therefore a guarded graph.

We have seen that the guarded fragment of simple conceptual graphs includes
the fragment of simple conceptual tree. In the next section, we will consider the
complexity of the projection problem in the guarded fragment.

3.3.1 Complexity of consequence for guarded SCGs

To prove that deciding the existence of a projection from a guarded simple graph
to another simple graph (in normal form) is polynomial time, we propose a pro-
jection algorithm which exploits the particular structure of coreference links in
the guarded graph.
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Input: H = (RH , CH , EH , labelH , coH) is a simple graph in normal form,
G = ((R,C,E, label, co), comp, n) is a crazed guarded simple graph such that comp is a post
order sequence of the components derived from a directed guarded covering T = (C∗, Uco).
Output: “Yes” if there exists a projection from G to H, “No” otherwise.
Initialisation: FOR ALL x ∈ R ∪ C, δ(x) := ∅
FOR 1 ≤ i ≤ n,


IF Gi is an isolated concept node c
THEN (A)∀c′ ∈ CH , IF labelH(c′) ≤ label(c) THEN δ(c) := δ(c) ∪ {c′}

ELSE (B)




let r be the single relation node in Gi,
FOR ALL r′ ∈ RH ,

IF




(B1) labelH(r′) ≤R label(r) and
(B2) ∀r′(j) ∈ CH , labelH(r′(j)) ≤ label(r(i)) and

(B3) ∀g ∈ succ(Gi),
[
∃p′ ∈ δ(p)/∀u = (r(j), p(k)) ∈ Uco, r

′(j) = p′(k)
where p is the single relation node in g

THEN
[
δ(r) := δ(r) ∪ {r′} and
∀j/1 ≤ j ≤ arity(label(r)), δ(r(j)) := δ(r(j)) ∪ {r′(j)}

IF ∀x ∈ R ∪ C, δ(x) �= ∅ THEN return “Yes” ELSE return “No”.

3.3.1.1 Description and complexity of the algorithm

The algorithm considers successively, in the chosen order which respects the gen-
eral tree structure of a covering, every basic component (i.e., star graphs and
isolated concept nodes) of the source graph and for each of them, searches for a
maximal set of acceptable mapping targets in the target graph. To become accept-
able, a potential target component must not only satisfy the labelling constraints
of a projection (a specialisation relation), but as well comply with candidates that
have already been chosen for the neighbourhood of the source component. There
are n ∈ O(|CG|) basic components in G (every relation node is directly linked
to at least one concept node and two distinct relation nodes do not share direct
concept node neighbours in a crazed graph).

There are two possible scenarios depending on the source component that we
try to map:

• (Part A of the algorithm) The source component is an isolated concept
node: it is either labelled with a proper name or it is a generic concept
node which is not coreferent to any other concept node. In both cases, it is
sufficient to find a concept node of the target graph with a more specialised
label. A run through every concept node of the target graph takes O(|CH |)
label checks. The time required for each of these checks is not dependent
on the size of the two input graphs, but on the size and the coding of the
language signature. We may therefore consider for the projection problem
that a label check is done in constant time.

• (Part B of the algorithm) The source component Gi is a star graph and we
must find every target star graphs which is a specialisation of Gi. If we call
r the unique relation node of Gi, a relation node r′ in the target graph is a
potential mapping candidate if its label is a specialisation of the label of r
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(thus, both relations also have the same arity k) and for every i from 1 to
k, the ith argument of r′ is a specialisation of the ith argument of r. These
two comparison take O(1 + |CG|).
Now, if the source component has no successor in the directed guarded
covering, then we are done with r′. Otherwise, we must check that the
neighbourhood of r′ complies with the candidates that have been selected
for the successors of Gi in the directed covering (by definition of the chosen
ordering, these successors have already been treated). That is, for every star
graph successor of Gi, we must find among the candidates already selected
for its relation node p, a relation node p′ in the target graph such that every
pair of coreferent arguments for p and r corresponds to a single concept
node that occurs as argument of both p′ and r′. Gi has at most O(|RG|)
successors, each p has at most O(|RH |) mapping candidates and there are
at most O(|CG|) coreference links between Gi and one of its successors.

Therefore, an upper bound for the total complexity of the algorithm is O(|CG| ∗
max(|CH |, (|RH | ∗ ((1 + |CG|) + |RG| ∗ |RH | ∗ |CG|)))) which is itself bound by
O(k5) where k = max(|CH |, |RH |, |RG|, |CG|).

3.3.1.2 Soundness and completeness of the algorithm

Completeness: if there exists a projection from G to H then the algorithm
answers “Yes”.
Proof: assume a projection from G to H, i.e. a mapping π : C ∪ R → CH ∪ RH
such that

1. ∀c ∈ C, π(c) ∈ CH and labelH(π(c)) ≤ label(c) and

2. ∀r ∈ R, π(r) ∈ RH and labelH(π(r)) ≤R label(r)

and ∀1 ≤ i ≤ arity(label(r)), π(r(i)) = (π(r))(i) and

3. ∀(c1, c2) ∈ co, π(c1) = π(c2).

We will show that for every star graph Gm in G and every node x in Gm it holds
that π(x) ∈ δ(x).

Basic step m = 1: by definition of the ordering, no concept node in G1 has a suc-
cessor in the directed covering T (the constraint (B3) is fulfilled).
(A) If G1 is an isolated concept node c, then, by definition of a projection, π(c)
is a concept node of H such that labelH(π(c)) ≤ label(c). Thus, π(c) ∈ δ(c).
(B) If G1 is a star graph. Let r be its unique relation node, k is the arity of its
relation name label. π is a projection, thus, if π(r) = r′ ∈ RH then labelH(r

′) ≤R
label(r) and ∀j/1 ≤ j ≤ k, labelH(r

′(j)) ≤ label(r(j)). Therefore, the tests (B1)
and (B2) succeed and r′ ∈ δ(r) and ∀1 ≤ j ≤ k, π(r(j)) = r′(j) ∈ δ(r(j)).
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Induction step 1 < m ≤ n: either Gm is an isolated concept node or a star graph.
(A) In the first case, similarly to the case of G1, Gm is a single concept node
whose image by π has a more specialised label. Thus, π(c) ∈ δ(c).
(B) Gm is a star graph. Let r be its unique relation node, k be the arity of its re-
lation name label and r′ its image by the projection π, it holds that labelH(r

′) ≤R
label(r). It remains to be shown that (B2) and (B3) are satisfied by r′. (B2) fol-
lows directly from the definition of a projection: the projection of the ith argument
of r (noted r(i)) is the ith argument of r′ and the label of r′(i) is more specific
than the label of r(i). For (B3), a stronger property follows from the definition
of a projection: ∀x, y ∈ RG,∀1 ≤ i ≤ arity(label(x)),∀1 ≤ j ≤ arity(label(y)),
if x(i) ≡co y(j) then π(x)(i) = π(y)(j). Indeed, from the third condition of the
definition of the projection, x(i) ≡co y(j) implies that π(x(i)) = π(y(j)), then, it
follows from the second condition that π(x(i)) = π(x)(i) and π(y(j)) = π(y)(j).
∀x ∈ R ∪ C, π(x) ∈ δ(x), therefore the algorithm returns “Yes”.

Soundness: if the algorithm answers “Yes” then there exists a projection from
G to H.
Proof: suppose that the algorithm returns “Yes”, we will extract a projection π
from the mapping δ : C ∪R → P(CH ∪RH) \ ∅.

We will prove that ∀1 ≤ m ≤ n, (i) the recursively build mapping π is a
projection from G(m) to H where G(m) is the restriction of G to the star graphs
Gm, Gm+1, ..., Gn (including the coreference links between the concept nodes of
these star graphs) and (ii) for every node x in G(m), π(x) ∈ δ(x).

Basic step m = n:
(A) if Gn is an isolated concept node c. We select a concept node c′ in δ(c) �= ∅
and set π(c) := c′. c′ has passed the test (A) in the algorithm (i.e., labelH(c

′) ≤
label(c)), thus, π is a projection from Gn to H.
(B) if Gn is a star graph whose unique relation node r is labelled with a relation
symbol of arity k. We can select any relation node r′ in δ(r) and set π(r) := r′

and ∀1 ≤ j ≤ k, π(r(j)) := r′(j). r′ ∈ δ(r) therefore labelH(r
′) ≤R label(r) and

∀1 ≤ j ≤ k, labelH(r
′(j)) ≤ label(r(j)). Furthermore, by definition of a crazed

graph, two distinct concept nodes of Gn cannot be coreferent. Hence π is a pro-
jection from Gn to H.

Induction step 1 ≤ m < n: suppose that π is a projection from G(m + 1) to H,
we extend π to a projection from G(m) to H.
(A) If Gm is an isolated concept node c, similarly to the case of Gn, we may select
any concept node c′′ ∈ δ(c) and set π(c) := c′′. It holds that labelH(c

′′) ≤ label(c)
and c is not coreferent to another (distinct) concept node, hence, π is a projection
from G(m) to H.
(B) The remaining case concerns a star graph Gm whose relation node, r, is
labelled with a relation of arity k. In order to obtain a projection from G(m)
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to H we must select in δ(r), a π-image r′ for r such that (i) the specialisation
relation on labels is respected and (ii) for every argument r(x) of r which is
coreferent to a concept node c in G(m + 1), it holds that π(r(x)) = π(c). We
first note that any choice of r′ in δ(r) respects the specialisation relation on labels
required for a projection; that is, (part B1) labelH(r

′) ≤R label(r) and (part B2)
∀1 ≤ j ≤ k, labelH(r

′(j)) ≤ label(r(j)) and (conclusion of part B) r′(j) ∈ δ(r(j)).
Therefore, we must show that in δ(r), there exists a node r′ such that for every
pair of coreferent concept nodes (r(x), c) in Gm×G(m+1), r′(x) = π(c). However,
by definition of a directed covering, all the eventual Uco-predecessors of concept
nodes in Gm belong to a single star graph Gl such that m < l, and furthermore,
by induction hypothesis (i.e., the restriction of π to G(m+1) is a projection onto
H) and the definition of a projection, ∀(c1, c2) ∈ G(m + 1)×G(m + 1), c1 ≡co c2

implies that π(c1) = π(c2). It is therefore sufficient to show that in δ(r), there
exists a node r′ such that for every pair of coreferent concept nodes (r(x), p(y))
in Gm × Gl, r′(x) = π(p)(y) where p is the relation node of Gl. By induction
hypothesis, it holds that π(p) ∈ δ(p). Furthermore, Gm ∈ succ(Gl), thus, if
π(p) ∈ δ(p) (conclusion of the part (B) of the algorithm), then (part B3) ∃r′ ∈
δ(r)/∀u = (p(y), r(x)) ∈ Uco, π(p)(y) = r′(x) Now that the existence of a proper
candidate r′ on which r can be projected exists, we can select a such relation
node and extend π to a projection from G(m) to H by setting π(r) := r′ and
∀1 ≤ j ≤ k, π(r(j)) := r′(j).

G(1) = G, hence we have extracted from δ a projection π : G → H.
�

Normalisation being of polynomial time complexity, we have proved that de-
ciding the projection problem (hence, the consequence problem) for a source
guarded simple conceptual graph and a target simple conceptual graph (without
restriction) can be done in time polynomial in the size of the input graphs:

3.3.7. Theorem (Complexity of subsumption for guarded SCG). For
a SCG G and a guarded SCG H, G , H is decidable in polynomial time.

Recent developments in database theory have focussed on conjunctive queries
with bounded tree-width (which correspond to the k-variable fragment of FOL{∃,∧}
[KV00]) and bounded hypertree-width [GLS99, GLS01]. In [GLS01], an elegant
characterisation of hypertree-width is proposed in game theoretic terms. It is also
shown that the k-guarded fragment (i.e., a guard is a conjunction of at most k
atoms) of FOL{∃,∧} is the class of conjunctive queries with bounded hypertree-
width k. Hence, the guarded fragment of FOL{∃,∧} corresponds to the class of
conjunctive queries with hypertree-width 1. Furthermore, [GLS99] proves the
polynomial time complexity of the evaluation of conjunctive queries whose hy-
pergraphs have bounded hypertree-width. This tractability result and the strong
connection between conjunctive query evaluation and containment [CM77] sug-
gest promising extensions of the polynomial projection algorithm to a notion of
k-guarded simple graphs.
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3.4 Conclusions

Simple conceptual graphs are an alternative graphical notation for existential con-
junctive first-order sentences. In order to formalise properties of these drawings,
we have used the usual symbolic language of graph theory.

A first property of conceptual graph systems is that their languages are
founded on predefined classifications of the basic vocabulary elements; the so-
called ontologies in artificial intelligence. We have presented our specific choices
on the form of these hierarchies.

A simple conceptual graph is a finite bipartite graph that represents a conjunc-
tion of atomic facts. In the variable-free notation inspired by Peirce’s existential
graphs, objects are denoted by proper names or the use of a generic marker which
symbolises existential quantification. The existence of an object is stipulated by
the physical drawing of its representation, a concept node. To provide a meaning
to the drawings, we have interpreted the simple conceptual graphs by embedding
into first-order structures.

Departing from traditional first-order calculi, these drawings admit a method
for proving consequences, which is also based on the embedding idea: a simple
graph follows from another simple graph if the later can be mapped onto the
former. Despite the interesting visual property of the projection method, it is
computationally untractable for the whole fragment of simple conceptual graphs.
Driven by applications of conceptual graph systems to automated reasoning, re-
search has focussed on tractable subfragments of simple conceptual graphs and
in particular on graphs presenting a tree structure. In [PD98], projection is also
studied as a resource sensitive way of making proofs in Cartesian Closed Cate-
gories.

Using the structure presented by the standard translation of modal formulae,
we have extended the known tractable class of simple conceptual trees to the class
of guarded simple conceptual graphs and proved its polynomial time complexity
for the consequence problem. This results is a refined answer to the question
“what are sufficient structural constraints on the input of projection to obtain a
tractable problem?”.

We have only considered constraints on one side of the input, viz. the source
graph. Promising constraints on the target graph have been studied in database
theory; for instance, sentences in which a relation symbol occurs at most twice
[Sar91] or the 2-colourability of a sentence [KV00]. This last property as a visual
aspects which would deserve some further work in the conceptual graph setting.

We have presented the simple conceptual graphs fragment as a central lan-
guage of richer conceptual graph systems. We will now consider its enrichment
with different forms of negation.
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Richer pictures

In this chapter, we will consider possible extensions of the simple conceptual
graph model. In a search for additional language features and under the control
of complexity theory, one cannot escape the well identified tradeoff between ex-
pressivity and computational efficiency. Expressive power change is taken here in
a broad sense: more than a pure formal notion of symbolic logic comparison, it
includes the cognitive impact of considering new language elements that facilitate
the representation of information. Indeed, among the different extensions, we will
encounter forms of conceptual graph that faithfully depict some characteristics
of the represented information such as negative propositions or structured knowl-
edge, while being logically equivalent to the basic language of simple graphs.
Continuing on the previous chapter, our guidelines will remain the applications
of graphical methods as calculi and the recognition of fragments for which our
central benchmark problem, consequence, is tractable.

The language of simple conceptual graphs enables to express positive rela-
tional facts between objects with a bit of indeterminacy conveyed by the use of
a place holder, the marker‘∗’. The first natural extension we consider, is to al-
low the expressibility of negative facts or in more classical terms, we introduce an
atomic negation operator in the language. Chapter 4.1 examines the completeness
problem encountered by projection in presence of negated atoms. A syntactical
constraint is proposed to define a fragment of simple graphs with atomic negation
for which projection is complete and even tractable on guarded forms.

In a second part, Chapter 4.2, we make a large step to a language of graphs
as expressive as classical first-order logic. Our perspective is already influenced
by the known undecidability of our benchmark problems in FOL, thus we follow
a path that moves us away from efficiency considerations and instead, we study
the possibility of combining two graphical methods in one complete calculus:
projections and classical tableau decomposition rules. Such a generic and modular
proof method for the whole language opens the possibility of examining particular
tunings of the components in order to suit the needs of intermediate fragments.

113
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Our final language takes us back to the cornerstone of this thesis, existential
conjunctive FOL, but with a superstructure of hierarchical networks. In this
setup, the information conveyed by a graph is partitioned into smaller local pieces
of information. The representation of localised -or contextualised- information has
been recognised as a need in artificial intelligence. Nested graphs, graphs whose
nodes are themselves graphs, follow this principle of locality.

4.1 Atomic negation

Describing the world, one may not only want to provide a positive image! The
possibility of expressing negative facts enriches the range of our language. Even
in the case of a finite situation in which negative information can be left implicit
as it can be extracted from a complete picture of the positive facts, the virtue of
a negation operator can be defended in terms of conciseness.

4.1.1 Polarised simple graphs

Syntactically, the most obvious way of discriminating positive facts from negative
ones is to attribute a colour, a sign, to every relation occurrence:

4.1.1. Definition. [Polarised simple graph] A polarised simple conceptual graph
(PSCG) G = (R,C,E, label, co, sign) over a signature Σ is a simple conceptual
graph such that every relation vertex is signed: i.e., G = (R,C,E, label, co) is a
simple conceptual graph and sign, a function from R to {+,−}.

To avoid some overloading of graphics, positive relation nodes are represented
without explicit sign whereas negative ones have a label preceded by a “−”.

Figure 4.1: A polarised simple conceptual graph

4.1.2. Example. The graph drawn in Figure 4.1 represents the information
“c3(a) ∧ c1(a) ∧ ∃x(c1(x) ∧ c2(x) ∧R(x, a) ∧ ∃y(c1(y) ∧R(y, x) ∧ ¬P (y, x)))”.
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There is one exception to the finiteness of simple graphs: the absurd graph.
By opposition to the empty graph, which is satisfied by any structure, the absurd
graph represents the conjunction of all possible (finite) polarised simple graphs
over a given language signature.

4.1.3. Definition. [Absurd graph] G⊥, the absurd graph, is defined as the jux-
taposition of all PSCGs over Σ.

4.1.1.1 Embedding semantics

Polarised simple graphs are interpreted in the same structures respecting the
language signature as the (positive) simple conceptual graphs (Chapter 3.1.3).
For a graph to be true in a structure under an assignment, the tuple of objects
corresponding to the arguments of a negated relation node must not belong to
the interpretation of the considered relation.

4.1.4. Definition. [Truth of a polarised graph] Let Σ = (I, (C,≤C), (R,≤R
), arity) be a signature, G = (C,R,E, label, co, sign) be a PSCG over Σ and
M = (D,F ) be a Σ-structure,

• M, f |= G if and only if

1. ∀c ∈ C, f(c) ∈ F (type(c)) and

2. ∀r ∈ R such that label(r) ∈ Rn,
if sign(r) = +, then 〈f(r(1)), . . . , f(r(n))〉 ∈ F (label(r)),
else (sign(r) = −) it holds that 〈f(r(1)), . . . , f(r(n))〉 �∈ F (label(r)).

• M |= G iff there exists an assignment f such that M, f |= G.

• G , H iff H is true in every Σ-structure in which G is true.

This interpretation of polarised graphs by direct mapping from the represen-
tation to the represented is in agreement with the recognised cognitive character-
istics of pictures: their faithfulness which enables the formal meaning to match
intuition. To be verified in a structure, negated atoms must fit into the holes like
pieces of a jigsaw puzzle.

4.1.1.2 Positivising

Another way of seing negative relation nodes is to consider that their label be-
longs to the vocabulary. To apply the “Positivising” technique (see e.g., [BP83]
or [Ben88]) to the polarised fragment, we define a meaning-preserving transfor-
mation from negative atoms to positive representations.

4.1.5. Definition. Let Σ = (I, (C,≤C), (R,≤R), arity) be a signature,
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• We extend Σ to a signature Σ+ = (I, (C,≤C), (R+,≤R+), arity+) such that

1. ∀P ∈ R, P− ∈ R+ and arity+(P−) = arity+(P ) = arity(P ),

2. and ∀P,Q ∈ R, (P ≤R+ Q iff P ≤R Q) and (Q− ≤R+ P− iff P ≤R Q)

• For a polarised SCG G = (C,R,E, label, co, sign) over Σ, its positive form
G+ = (C,R,E, label+, co) is the simple conceptual graph over Σ+ obtained
from G by replacing the label of every negative relation node by the corre-
sponding newly introduced label:
∀r ∈ R,

1. if sign(r) = + then label+(r) = label(r) and

2. (ii) if sign(r) = − and label(r) = P then label+(r) = P−.

Symmetrically, for any simple conceptual graph H over Σ+, H− is the
polarised graph obtained by replacing every relation node labelled with
P− by a relation node labelled with P and negatively signed.

• For a given Σ-structure M = (D, [[.]]M), we define a structure M+ =
(D, [[.]]M+) over Σ+ such that

1. [[.]]M+ is equal to [[.]]M on I, C and R and

2. ∀P ∈ R of arity n, [[P−]]M+ = Dn \ [[P ]]M .

Symmetrically, a Σ+-structure N is transformed into a Σ-structure N− such
that
∀P ∈ R, [[P ]]N− = [[P ]]N .

We note that relation symbols of the original signature and newly introduced
ones are ≤R+-incomparable.

On one hand, back and forth translations of graphs preserve all information:
the sign of a relation node is just internalised in the label and vice-versa. On
the other hand, structure transformations call for a more careful analysis which
presents the premisses for the soundness but incompleteness of projection in the
polarised fragment (further developed in Chapter 4.1.2).

4.1.6. Fact. Let M be a Σ-structure, N be a Σ+-structure, G be a polarised
simple graph over Σ and H be a simple graph over Σ+,

1. G+− = G and H−+ = H

2. M+ is a proper Σ+-structure and N− is a proper Σ-structure

3. M |= G⇒ M+ |= G+ and N |= H ⇒ N− |= H−

provided that ∀P ∈ R, [[P ]]N ∩ [[P−]]N = ∅ and H− is not absurd.
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4. M+− = M , but there exists a Σ+-structure N such that N−+ �= N .

Proof:

1. Graph transformations purely concerns the layout by gathering (or split-
ting) two kinds of labels attached to relation nodes: sign and relation sym-
bol.

2. To prove that M+ is a Σ+ structure, it is sufficient to verify that ∀P,Q ∈ R,
if P ≤R Q then [[Q−]]M+ ⊆ [[P−]]M+ . Indeed, the interpretation of the
remaining symbols is preserved from M . Let P,Q ∈ R, of arity n such that
P ≤R Q. M is a Σ-structure, thus, [[P ]]M ⊆ [[Q]]M . As [[Q−]]M+ = Dn\[[Q]]M
and [[P−]]M+ = Dn \ [[P ]]M , it directly follows that [[Q−]]M+ ⊆ [[P−]]M+ .

Symmetrically, the ordering on relation symbols is directly preserved by the
transformation from N to N− as [[P ]]N− = [[P ]]N .

3. M+ = (D, [[.]]M+) is a Σ+-structure of a special form: given a relation

symbol P ∈ R of arity n and $d ∈ Dn, either $d ∈ [[P ]]M+ or $d ∈ [[P−]]M+ ;
The classical two-valuation is forced.

Assume for an assignment f that M, f |= G. In G+, every atomic compound
with a relation node labelled with a symbol in R must be satisfied by M
under f ; hence, by M+ under f as the interpretation of relation symbols in
R is preserved by the structure transformation.
On the other hand, any atomic compound r($t) in G+ with label(r) = P−

corresponds to an atomic compound r′($t) in G with label(r′) = P and
sign(r′) = −. M, f |= G, thus f($t) �∈ [[P ]]M . Hence, f($t) ∈ [[P−]]M+ .

Symmetrically, the interpretation of positive relation symbols is also pre-
served (i.e., ∀P ∈ R, [[P ]]N− = [[P ]]N) and as overvaluation is avoided (i.e.,
it is not the case that $t ∈ ([[P ]]N ∩ [[P−]]N) for any $t and P ), it follows that
$t ∈ [[P−]]N implies that $t �∈ [[P ]]N− .

4. The chosen structure transformations are based on the preservation of the
positive information:
(i) $t ∈ [[P ]]M ⇒ $t ∈ [[P ]]M+ ⇒ $t ∈ [[P ]]M+− and
(ii) $t �∈ [[P ]]M ⇒ $t �∈ [[P ]]M+ ⇒ $t �∈ [[P ]]M+−

Hence, M+− = M .

On the other hand, “undervaluation” in a Σ+-structure is transformed into
negative information and “overvaluation” into positive one; hence modifying
the original structure:
(i) if both $t �∈ [[P ]]N and $t �∈ [[P−]]N , then $t �∈ [[P ]]N− , thus $t ∈ [[P−]]N−+

(ii) if both $t ∈ [[P ]]N and $t ∈ [[P−]]N , then $t ∈ [[P ]]N− , thus $t �∈ [[P−]]N−+

Hence, there exists a Σ+-structure N such that N−+ �= N
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�

From the previous facts, follows a first application of the positive transforma-
tion of polarised graphs:

4.1.7. Theorem. For G and H two polarised simple conceptual graphs over Σ,

G+ , H+ implies that G , H

Proof: assume that any Σ+ structure that satisfies G+ also satisfies H+. Let M
be a Σ structure which satisfies G, by the previous fact (Fact 4.1.6(3)), N+ is a
Σ+ structures which satisfies G+. Thus, by assumption, N+ |= H+. Thus, again
by Fact 4.1.6(3), N+− |= H+−. Hence, by Fact 4.1.6(1 & 4), N |= H �

Unfortunately the reciprocal of the previous theorem is not true: we will see in
Chapter 4.1.2 that the undervaluation case, in the proof of Fact 4.1.6(4), forbids
the use of the minimal model of a polarised graph transformed into positive form
as a fair representant of the information conveyed by the original polarised graph.

Our next step in manipulating the polarised fragment has become clear. Po-
larised graphs resemble their simple conceptual graph ancestors: drawings have
the same bipartite network structure and are interpreted by the same kind of
direct mapping to models. The sole difference resides in the labelling, it is thus
legitimate to consider the possibility of solving the consequence decision problem
by a special projection taking care of the new kind of labels.

4.1.1.3 Projection

The projection calculus corresponds to the evaluation of a source graph in the
canonical model of a target graph. We have seen in the simple graph fragment
that the method is complete if the target graph is isomorphic to its canonical
model, or in conceptual graph terms, normalised. It seems natural to extend
the projection algorithm to polarised simple graphs, by just adding for negated
nodes, a constraint on labels which is symmetrical to the usual one for positive
relations: while the neighbourhood of a relation node must be preserved in the
mapping, a positive relation node is mapped onto another positive one which has
a more specialised label, whereas a negative relation node is mapped onto another
negative one with a more general label.

4.1.8. Definition. [Projection for PSCGs] Let G = (C,R,E, label, co, sign)
and H = (C ′, R′, E ′, label′, co′, sign′) be two polarised simple conceptual graphs
over a signature Σ = (I, (C,≤C), (R,≤R), arity).
A projection from the source H to the target G is a mapping π : C ′∪R′ → C ∪R
such that:
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• ∀c ∈ C ′, π(c) ∈ C and type(π(c)) ≤C type′(c)

• ∀c ∈ C ′, if marker′(c) ∈ I then marker(π(c)) = marker′(c)

• ∀r ∈ R′, π(r) ∈ R and
if sign′(r) = +, then sign(π(r)) = + and label(π(r)) ≤R label′(r),
else sign(π(r)) = − and label′(r) ≤R label(π(r)).

• ∀(r, c, i) ∈ E ′, (π(r), π(c), i) ∈ E

• ∀(c1, c2) ∈ co′, π(c1) = π(c2)

Figure 4.2: A projection with polarised graphs

4.1.9. Example. In Figure 4.2, the source graph representing “c3(a) ∧ c1(a) ∧
∃x(c1(x)∧c2(x)∧R(x, a)∧∃y(c1(y)∧R(y, x)∧¬P (y, x)))” is a logical consequence
of the target graph representing “c3(a)∧¬P ′(a, a)∧R(a, a)”, given the information
that c3 is a subconcept of c1 and c2 and that the relation P is a subrelation of
P ′.

Equivalently presented, there is a projection between two polarised simple
graphs iff there is a projection between their respective positive representation:

4.1.10. Fact. For two polarised simple conceptual graphs G and H over Σ, there
is a projection from H to G if and only if there is a projection, with respect to
the orders in Σ+, from H+ to G+.
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Proof: it is immediate to verify that the projection-constraint on negative relation
nodes is transferred to the signature order over the negated relational vocabulary.
�

4.1.11. Corollary (Soundness of projection for polarised graphs).

For G and H two polarised simple conceptual graphs over Σ,

if there exists a projection from H to G, then G , H

Proof: if there exists a projection from H to G, then there exists a projection
from H+ to G+ by Fact 4.1.10. Thus G+ , H+ by the soundness of projection
on simple conceptual graphs (Theorem 3.2.6). Hence, G , H by Theorem 4.1.7.
�

Soundness is not sufficient. We also aim at a complete method, but atomic
negation has introduced a form of disjunctive information which prevents the “all
in one mapping” method to capture all consequences.

4.1.2 Insufficiencies of projection

We already know from the fragment of positive simple graphs, that the target
graph is required to appear in normal form (i.e., that distinct concept nodes
representing a single object must be merged). Fortunately, this normal form can
be obtained in polynomial time.

Normalisation put aside, there is still a source of incompleteness which is
linked to the fact that the calculus has to cope with tautologies of the form
“P ($t) ∨ ¬P ($t)”.

Take, for instance, the sentence ϕ1 = P (a) ∧ R(a, b) ∧ R(b, c) ∧ ¬P (c). It
entails the sentence ϕ2 = ∃x∃y(P (x)∧¬P (y)∧R(x, y)) because, from ϕ1, either
it holds that P (b) and in this case the pair of variables (x, y) can be unified with
(b, c), or it holds that ¬P (b) and in this case (x, y) can be unified with (a, b).
From the viewpoint of model-checking, every model of ϕ1 satisfies either P (b) or
¬P (b). However, the conceptual graph formalism does not allow for an explicit
representation of this disjunctive information and there is no projection from

to .
The following second counter-example to the completeness of projection in-

volves a target graph where positive and negative information are dispatched
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in different connected compounds: R(a, b) ∧ ¬R(c, d) |=FOL ∃x∃y∃z(R(x, y) ∧

¬R(y, z)) whereas the graph cannot be projected

onto the graph .

To take an alternative perspective on the problem, we can observe projec-
tion through the previously presented positive transformation of polarised graph
(Chapter 4.1.1.2). We could be tempted to apply the reciprocal reasoning to the
proof of Theorem 4.1.7:
consider G+ and H+ the positive forms of the respective polarised graphs G and
H. Assume that G , H and let N be the minimal model of G+.
N− |= G+−, thus N− |= G, by Fact 4.1.6(3 & 1).
By assumption, N− |= H, thus, again by Fact 4.1.6(3), N−+ |= H+.
Unfortunately, N−+ is not a sub-model of the original structure N , hence we
cannot conclude that N |= H+.

Stronger, we can conclude from the previous counter examples that it does
not hold that for G and H two polarised simple conceptual graphs, G , H ⇒
G+ , H+.

So, are we forced to completely abandon our project of mapping polarised
graphs? No, as we will see, constraints on the interaction of negations and exis-
tential quantifiers allow us to correctly base our reasoning technique on projection
and even in a tractable way under guarded conditions.

4.1.3 Discriminated polarised simple graphs

We have already noticed the relevance of the notion of connected compound
to the projection calculus for positive simple conceptual graphs: a connected
compound is a piece of information which is independent from the remaining
parts. Therefore, if each connected compound of a source graph can be projected
on a target graph, then we obtain a projection of the whole source graph by taking
the union of all these “small” projections. This idea can be applied to polarised
graphs in order to treat separately positive and negative pieces of information.

A polarised simple graph is called discriminated if none of its relation nodes
shares a concept node neighbour with a relation node of the opposite sign.

4.1.12. Definition. [Discriminated simple graphs] A polarised simple graph
G = (R,C,E, label, co, sign) is discriminated if ∀r ∈ R such that sign(r) = + it
holds that ∀(r, c, i) ∈ E, (r′, c, j) ∈ E implies that sign(r′) = +.

Because splitting an instantiated concept node into many copies preserves
the meaning of a graph (the distinct copies denote the same object in a model),
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Figure 4.3: A discriminated graph

a polarised graph can be transformed into an equivalent discriminated graph
if all paths of edges between two relation nodes of opposite sign include some
instantiated concept nodes. For instance, the graph in Figure 4.3 is equivalent to
the following non-discriminated graph:

Obviously, in terms of formulae, a discriminated graph corresponds to a con-
junction of two sentences, one with only positive occurrences of relations and the
other one with only negated occurrences of relations.

4.1.4 Completeness and tractability

4.1.4.1 Discriminated graphs and the splitting of labour

Before getting into the details of the desired completeness proof for the discrimi-
nated fragment, let us come back to the simple proof scheme proposed in Chap-
ter 4.1.2. Failing to show that G , H ⇒ G+ , H+, we identified a culprit as a
missing identity N−+ = N , or more precisely, a missing inclusion N−+ ⊆ N , as
the satisfaction of a positive graph is preserved under model expansion.

In this section, we can still not prove that the minimal model MG+ of G+ is pre-
served under −+ transformations, but we can use the fact that the discrimination
in the conclusion graph, H+ = H+

pos ⊕H+
neg, allows us to consider independently

positive and negative information and gather the results at the end. We will prove
that if the conclusion H contains either only positive facts or only negative facts,
then we can exhibit a sub-model N ⊆ MG+ constructed from (MG+)−+ such that
N |= H+. Hence (G , H)⇒ (MG+ |= H+

pos ⊕H+
neg)⇒ (G+ , H+).

We have seen that the transformation from a Σ+-structure N to the Σ-
structure N− favours truly positive knowledge: ∀P ∈ R, [[P ]]N− = [[P ]]N . To
restore the balance, we shall use a second transformation which favours truly
negative knowledge:
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4.1.13. Definition. [�-transformation] Given a signature Σ and a Σ+-structure

N = (D, [[.]]N), we define N� = (D, [[.]]
N�) such that ∀P ∈ R of arity n,∀$t ∈ Dn,

$t �∈ [[P ]]
N� iff $t ∈ [[P−]]N

4.1.14. Fact. Given a signature Σ and a Σ+-structure N ,

1. N� is a proper Σ-structure

2. ∀P ∈ R, if [[P ]]N ∩ [[P−]]N = ∅, then [[P ]]N ⊆ [[P ]]
N�

3. N |= H ⇒ N� |= H−

provided that ∀P ∈ R, [[P ]]N ∩ [[P−]]N = ∅ and H− is not absurd.

Proof:

1. We must verify that the chosen ordering on relation symbols is preserved
by the �-transformation. For P ≤R Q, suppose that there exists $t ∈
[[P ]]

N� such that $t �∈ [[Q]]
N� . By Definition 4.1.13, $t ∈ [[Q−]]N and, as

N is a proper Σ+-structure, [[Q−]]N ⊆ [[P−]]N , thus $t ∈ [[P−]]N . Again, by
Definition 4.1.13, it follows the contradiction: $t �∈ [[P ]]

N� .

2. If N does not contain any overvaluation, then truly positive facts are pre-
served by the �-transformation: suppose that $t ∈ [[P ]]N and $t �∈ [[P ]]

N� ,

then, by Definition 4.1.13, $t ∈ [[P−]]N . Thus , from [[P ]]N ∩ [[P−]]N = ∅, it
follows the contradiction that $t �∈ [[P ]]N .

3. We have just proved that positive information is preserved by the transfor-
mation. On the other hand, ∀P ∈ R of arity n, (Dn\[[P ]]

N�) = [[P−]]N , thus
the satisfaction of negative facts is also preserved by the transformation.

�

To prove the completeness theorem, i.e. (G , H) ⇒ (G+ , H+), we have
learned from Chapter 2 and Chapter 3 that it sufficient to prove that G , H
implies that MG+ |= H+, as G+ and H+ are simple conceptual graphs (over an
extended vocabulary). Let us briefly recall the construction of the minimal model
of the simple graph G+.

Without loss of generality, we assume that G is not absurd, thus [[P ]]MG+
∩

[[P−]]MG+
= ∅ for any relation symbol P . The universe of MG+ consists in the set

of concept nodes in the normal form of G+, or equivalently, the set of concept
node labels in the graph obtained from G+ by replacing each coreference class
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by a witness. For any relation symbol P , [[P ]]MG+
=

{
$t/∃Q ≤R P,Q$t ∈ G+

}
and

[[P−]]MG+
=

{
$t/∃Q ≥R P,Q−$t ∈ G+

}
.

It directly follows from the model construction that the minimal model of G+

satisfies G under both transformations − and �.

4.1.15. Fact.
(MG+)� |= G and (MG+)− |= G

Proof: MG+ |= G+ by construction (Fact 3.2.4). As G is not absurd, MG+ is

not over-valuated. Thus, (MG+)− |= G+− (by Fact 4.1.6), (MG+)� |= G+− (by
Fact 4.1.14) and G+− = G (by Fact 4.1.6). �

We can now employ the � and − transformations to prove the following
lemma:

4.1.16. Lemma (Completeness with a uniformly signed conclusion).

Let Σ be a signature, G be a non absurd polarised simple conceptual graph over Σ
and H be a polarised simple conceptual graph whose relation nodes all have
the same sign, it holds that

(G , H)⇒ (G+ , H+)

Proof: Assume that G , H.

• Let H be negative (i.e., every relation node in H is negatively signed or,
equivalently, every relation node in H+ is labelled with a negatively signed
relation symbol.

We have just proved that (MG+)� |= G.

Hence, by assumption (MG+)� |= H.

Thus, by Fact 4.1.6(3), (MG+)�+ |= H+

Furthermore, we can verify that ∀P ∈ R, [[P−]]MG+
= [[P−]]

(MG+ )�+
:

$t ∈ [[P−]]MG+
iff $t �∈ [[P ]]

(MG+ )� (by Definition 4.1.13)

iff $t ∈ [[P ]]
(MG+ )�+

(by Definition 4.1.5).

So, (MG+)�+ and MG+ coincide on the interpretation of negated relation
symbols.

Furthermore, as H be negative, we can safely eliminate from the model the
sets of tuples in the interpretation of positive relation symbols:

let N have the same universe as (MG+)�+ and ∀P ∈ R, [[P ]]N = ∅ and
[[P−]]N = [[P−]]

(MG+ )�+
. It holds that N |= H+ and that N ⊆MG+ .

Hence MG+ |= H+ as the satisfaction of a simple graph is preserved under
model expansion.
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• Let H be positive (it is a simple conceptual graph). Similarly to the negative
case, but using the − transformation, we can construct a submodel of the
minimal model of G+ that satisfies H+:

(MG+)− |= G ⇒ (MG+)− |= H ⇒ (MG+)−+ |= H+

let N have the same universe as (MG+)−+ and ∀P ∈ R, [[P ]]N = [[P−]](MG+ )−+

and [[P−]]N = ∅. It holds that N |= H+ and that N ⊆ MG+ . Hence,
MG+ |= H+.

�

4.1.4.2 Projection completeness

We are now ready to prove the completeness of projection from a discriminated
graph to a polarised one in normal form. We can apply the lemma to each part
of a discriminated graph:

4.1.17. Corollary. For G and H two polarised simple conceptual graphs over
Σ such that G �= G⊥ and H is discriminated,

G , H ⇒ G+ , H+

Proof: H is discriminated, so we can equivalently rewrite it as the juxtaposition
of two polarised simple graphs Hpos and Hneg such that all relation nodes in Hpos

are positive and all relation nodes in Hneg are negative; H = Hpos ⊕Hneg.

Assume that G , H. From Lemma 4.1.16, we have ∃f, g assignments such
that MG+ , f |= H+

pos and MG+ , g |= H+
neg. Hence, MG+ , (f ∪ g) |= H+

pos ⊕H+
neg as

f and g coincide on the interpretation of individual marker (by definition of an
assignment) and H+

pos and H+
neg do not share any existential concept node. Hence

MG+ |= H+. �

The purpose of normalisation is twofold: first, as for positive graphs, concept
nodes representing a single object are merged in order to obtain a graph isomor-
phic to its minimal model (if such a model exists). Furthermore, if the graph
contains contradictory information, then it is replaced by the absurd graph. This
operation guarantees that any graph can be projected onto the normal form of
a graph representing contradictory information (more specifically, any graph can
be mapped onto its copy which is part of the absurd graph).

4.1.18. Definition. [Normal form of a polarised graph] Norm(G), the normal
form of a PSCG G = (C,R,E, label, co, sign) is defined in two steps as follows:
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1. let G′ = (C ′, R,E ′, label′, sign′) be the PSCG obtained from G by merging
all occurrences of concept nodes having the same individual marker and,
for each coreference equivalence class, merging all elements of the class.
After merging two nodes, the resulting one is labelled with the meet of the
concept label of the original nodes.

2. if in G′ there are two relation nodes r and r′ in R such that label′(r′) =
p, sign′(r′) = +, label′(r) = q, sign′(r) = −, p ≤R q and ∀(r, c, i) ∈
E, (r′, c, i) ∈ E, then Norm(G) = ⊥; otherwise Norm(G) = G′.

4.1.19. Theorem (Completeness of projection). For a polarised graph in
normal form G and a discriminated graph H,

G , H iff there exists a projection from H to G

Proof: we have already considered the “if direction” in Corollary 4.1.11.
Reciprocally, if G is absurd, then H is a subgraph of G (as G is in normal

form). Hence, there is projection from H to G. Otherwise, G+ , H+ by Corol-
lary 4.1.17 and building on the completeness of projection for simple conceptual
graphs (Theorem 3.2.6), we can conclude that there is a projection from H+ to
G+. Hence there is a projection from H to G by Fact 4.1.10. �

4.1.4.3 Tractability harvest

We can directly benefit from the complete transposition of discriminated polarised
graphs into the simple conceptual graph fragment.

4.1.20. Corollary. • The empty graph is the sole valid polarised graph.
• Deciding satisfiability of a polarised graph is in polynomial time.
• G ⊆ H is NP-complete, for G and H two polarised graphs over a common
signature and such that H is discriminated.

Proof:
• A structure with empty universe can only satisfy the empty graph which is by
definition also satisfied by any structure (no required embedding).
• As in the corresponding textual fragment (Proposition 2.6.2), we can verify that
no opposite relation nodes share the same arguments by a simple check through
a polarised graph: a brutal procedure that goes through the whole graph for each
relation node requires a quadratic time.
• By Theorem 4.1.17, the polarised consequence problem with a discriminated
conclusion is in NP. Indeed, the translation of a polarised graph into its positive
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form is only a linear renaming. The NP lower bound is the one of subsumption
in simple graphs as any simple graph is a polarised one. �

We can exploit even further the correspondence to (positive) simple graphs:

4.1.21. Definition. [Guarded discriminated polarised graphs] A discriminated
polarised graph is guarded if it is the result of juxtaposing two polarised graphs G
and H such that (i) all relation nodes in G are positive, (ii) all relation nodes in H
are negative and (iii) G and H are guarded simple graphs if we make abstraction
of the signs.

4.1.22. Corollary. Given two polarised graphs G and H over a common sig-
nature, G ,NCG H is decidable in polynomial time if H is guarded and discrimi-
nated.

Proof: Immediate consequence of Theorem 4.1.17 and Theorem 3.3.7 as the trans-
formation of the problem into the (guarded) fragment of simple graphs is poly-
nomial. �

4.1.5 Concluding remarks

The lesson we can draw from this first extension of the simple graph fragment is
that a very simple additional language feature such as atomic negation can already
compromise the enterprise of basing reasoning on a single picture comparison.

Nevertheless, we have been able to identify a constraint on the disposition of
negations in a picture which defines a fragment of polarised graphs where the
projection technique safely applies. Discriminated polarised graphs are repre-
sentations built from the juxtaposition of proper polarised graphs which contain
either only positive facts or only negative ones.

Furthermore, by transposing back the problem into the guarded fragment of
simple graphs, we have reinforced the relevance of tree-like structures for the
computational tractability of the consequence problem.

We should note that to our disadvantage, disjunctive forms that, by nature,
do not lend themselves easily to pictorial representations, are among the most ex-
tensively decorticated fragments of FOL in the literature. For instance, languages
based on clausal forms, such as Horn-fragments, have proved their computational
efficiency ([BGG97] provides a very extensive survey of complexity results and
bibliographic references for such clausal languages). Also in database theory,
algorithmic solutions to the query containment problem in different languages
of conjunctive queries including forms of negation have been proposed; see e.g.
[LS93], [LMSS93], [LS95] or [FTU99].
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Back to the graphs, we may not have yet played all our cards on projection
with atomic negation: the implicit disjunctive information hidden in polarised
representations could possibly be handled by combining alternative simultaneous
projections.

This idea of decomposing the proof of a disjunction into parallel subproofs is
also the core of a classical type of calculus in logic, semantic tableaux. Leaving
open the question of the applicability of simultaneous projections, we will examine
how tableaux can be combined to projections in a wider graph fragment.

4.2 Full classical negation

This section is taken up with a rather different angle than the previous ones. In-
deed, by considering a conceptual graph language which is equivalent to FOL, our
goal cannot be tractability (and even decidability) anymore, but consistently with
the former fragments, our focus can still be directed towards graphical methods
that naturally apply to the pictorial representations.

We will propose a proof method interlacing decomposition steps by tableau
rules1 applied to complex graphs and projection steps on sufficiently simple sub-
graphs. For its generic character, the calculus is not aimed as such at a direct
efficient implementation, but rather at being easily reinforced by heuristics that
abound in both the tableau and the graph homomorphism literature. Such a fine
tuning should be application driven and take place when specific forms of graphs
are considered.

It should be emphasised that despite their origins in textual symbolic logics,
tableaux offer an overwhelming position to a graphical aspect: trees serve the pur-
pose of collecting in a compact way the deterministic construction of alternative
(counter) models.

4.2.1 Conceptual Graphs

In a preliminary stage, we define a conceptual graph representation of negation
inspired by Peirce’s notation in existential graphs (e.g., [Rob73]) and also very
similar to the box style of DRS syntax (e.g., [KR93]).

4.2.1.1 Negation box syntax

The negation of a graph is represented by a closed line surrounding the graph
(or in Peirce’s terms, a line cutting the portion of the sheet where the graph is
drawn). Furthermore, closed lines are not crossing each other. Hence they define

1See e.g., [Smu68] for a very pleasant presentation of the method or [Fit90] for an imple-
mentation oriented introduction. The proceedings of the annual tableau conference also form a
rich knowledge base of application oriented techniques.
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an order, a tree structure, on the nesting of delimited portions of the assertion
sheet. Coreference links are required to respect this order.

4.2.1. Definition. [Conceptual graphs] A Conceptual Graph (CG) over a sig-
nature Σ, is a set of entries strengthened by a coreference equivalence relation
on existential concept nodes, G = ({G1, ..., Gn(1≤n)

}, co), such that the following
holds:

1. an entry is

(a) either simple if it is a simple conceptual graph (possibly the empty
graph G∅) over Σ:
G′ = (R′, C ′, E ′, label′, co′) where co′ is the identity relation on C ′

∗;

(b) or boxed if it is of the form G′ where G′ is a CG over Σ

2. G1 is simple.

3. if two concept nodes, c and c′, are labelled with the same object name,
m ∈ I, or are co-equivalent, then they are also labelled with the same
concept type t ∈ C

4. the coreference relation co extends the coreference relation of the n entries:
c ≡co c′ implies that

(a) either the two nodes are already coreferent in a single entry Gi(1≤i≤n)

in which they occur

(b) or there exists an existential concept node c′′ in the simple entry G1

such that c ≡co c′ ≡co c′′.

CG(Σ) denotes the set of all finite conceptual graphs with respect to the signa-
ture Σ. Abusing the former notation for simple graphs, we call G∅ the empty
conceptual graph: viz., the graph whose single entry is the empty SCG.

4.2.2. Example. To emphasise the nesting of boxes, we use two different back-
ground tints for the subgraphs surrounded by an odd number of boxes and those
surrounded by an even number of boxes.

The simple entry is the empty graph. The conceptual graph represents the nega-
tion of the information conveyed by the enclosed simple graph:

¬(∃x(Tx ∧ Ta ∧Rax))
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As in simple graphs, coreference is represented by a covering set of dashed
edges:

This conceptual graph represents

Ta ∧Qa ∧ ¬(∃x(Tx ∧ Px)) ∧ ¬(∃y(Ty ∧Qy ∧ ¬(Ty ∧Ry)))

or equivalently (in classical FOL)

Ta ∧Qa ∧ ∀x(Tx→ ¬Px) ∧ ∀y((Ty ∧Qy)→ Ry)

Note that the three existential concept nodes cannot form a coreference equiva-
lence class as they belong to different entries and cannot find an anchor concept
node in the simple entry of the whole CG.

This last graph exemplifies the fact that a finite support for the vocabulary
can now directly be expressed in the graph language. Nevertheless, we choose
to define CGs over hierarchical signatures to emphasise the role of the simple
conceptual graph building block, both syntactically and as part of a CG-calculus.

Symptomatic of the textual representation of conceptual graph pictures, we
need additional and somehow overloaded formal definitions to support our set-
oriented exposition of the framework.

4.2.3. Definition. [Degree, independent and dominant declarations] For any
Conceptual Graph, G = ({G1, ..., Gn(1≤n)

}, co).

• simple(G) denotes the SCG G1 and complex(G) the set of complex entries
of G. G is called simple if it contains no complex entry: G = {simple(G)}.

• To facilitate the notations, nodes, edges and labels are recursively uplifted
from entries to the whole graph:

∀X ∈ {C,R,E, label}, XG =
⋃

1≤i≤n
XGi

where for X ∈ {C,R,E, label, co}, on a complex entry G′′ = G′ , XG′′ =
XG′ and on a SCG G′ = (C ′, R′, E ′, label′, co′), XG′ = X ′.
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• Degree of a conceptual graph: if G is simple then degree(G) = 0, else
degree(G) is the sum of the degrees of the complex entries in G. The

degree of a complex entry G′ is 1 + degree(G′).

• Declarations are existential concept nodes in the simple entry of a concep-
tual graph. They are partitioned into:

1. independent declarations: IDec(G) is the set of existential concept
nodes in the simple entry of G, which are not coreferent to other dis-
tinct concept nodes.

IDec(G) = {c ∈ simple(G)/markerG(c) = ∗ & classco(c) = {c}}

2. dominant declarations: the declarations which bind other concept
nodes deeper in the nesting of entries.

DDec(G) = {c ∈ simple(G)/markerG(c) = ∗ & classco(c) �= {c}}

Dec(G) = IDec(G) ∪DDec(G) = {c ∈ simple(G)/markerG(c) = ∗}

• it is convenient to transform an entry into a proper conceptual graph.
Graph(G1) = ({G1}, coG1) and graph(Gi(1<i≤n)

) = ({G∅, Gi}, coGi
).

When it is clear from the context, we often lighten notations by writing G

instead of graph( G ).

4.2.1.2 Interpretation of negated graphs

Extending the embedding semantics of simple graphs, it is natural to interpret a
negated graph by testing whether its content can be mapped on part of a model.
We first need to define a way to convey recursively in the nesting of negation boxes
successful partial mappings: assignments. A partial assignment of a conceptual
graph in a structure extends the interpretation function of individual markers
and relation symbols, but it can remain undefined for some existential concept
nodes:

4.2.4. Definition. [Partial Assignments]
For a signature Σ = (I, (C,≤C), (R,≤R), arity), a CG G over Σ and a Σ-structure
M = (D,F ), a partial assignment of G in M is a partial function from the concept
nodes in G to D such that ∀c, c′ ∈ CG, both:

1. if marker(c) ∈ I then f(c) = F (marker(c)) and f(c) ∈ F (type(c))
(hence, f(c) is defined on all instantiated concept nodes)

2. if c ≡co c′ and f(c) is defined, then it holds that f(c′) = f(c) ∈ F (type(c)).
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The empty assignment of G in M is the unique partial assignment, f , of G in M
such that ∀c ∈ CG, marker(c) = ∗ implies that f(c) is undefined.

The meaning of a conceptual graph can now be recursively defined from the
meaning of simple sub-graphs:

4.2.5. Definition. [Truth of a CG] Let Σ = (I, (C,≤C), (R,≤R), arity) be a
signature, G = ({G1, ..., Gn(1≤n)

}, co) be a CG over Σ and M = (D,F ) be a Σ-
structure.
Let f be a partial assignment of G in M .

• M, f |= G iff there exists a partial assignment g of G in M such that:

1. g extends f and the restriction of g to simple(G) is an assignment of
simple(G) in M (cf. Definition 3.1.7) and

2. M, g |= simple(G) (cf. Definition 3.1.8) and

3. if n > 1, then for every complex entry of G, Gi(1<i≤n)
= G′ ,

it is not the case that M, g |= G′.

• M |= G iff M, f |= G where f is the empty assignment of G in M .

• G is satisfiable iff there exists a Σ-structure, M , such that M |= G.

• G is valid iff for every Σ-structure, M , it holds that M |= G.

• A set of conceptual graphs is interpreted as the conjunction of its elements.
Let S be a set of CGs, M, f |= S iff ∀s ∈ S(M, f |= s).

4.2.1.3 Translation to FOL

To provide an alternative and traditional view on the meaning of conceptual
graphs, the Φ-translation of the previous chapter is extended to negation boxes.
A notion of substitution is used to propagate, inside boxes, the translation of
∗-markers by variables. In other words, substitutions are the syntactic side of the
former assignments.

4.2.6. Definition. [Substitutions] Let G be a conceptual graph, c be an exis-
tential concept node in G, m be a term and t be a concept type.
• G[c/m] is the graph G in which the marker of every concept node coreferent to
c has been replaced by m.
• G[c/(t,m)] is the graph G in which the label of every concept node coreferent
to c has been replaced by (t,m).
In both cases, the modified concept nodes are eliminated from the domain of the
coreference equivalence relation.
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As conceptual graphs with variable markers have not been defined, G[c/m] is a
proper conceptual graph iff m ∈ I.

4.2.7. Definition. [Extension of Φ to CGs] Let G be a conceptual graph,

1. We first define a translation of concept node markers at the global level of
the whole graph. term is a function which associates to each concept node
in G, a term such that

(a) ∀c ∈ {x/x ∈ CG & markerG(x) ∈ I}, term(c) = marker(c) and

(b) ∀c, c′ ∈ {x/x ∈ CG & markerG(x) = ∗}, term(c) = term(c′) ∈ V AR
iff c ≡co c′.

2. We then recursively translate the entries in two steps as follows:

(a) in order to shortcut the quantification of variables in Definition 3.1.16,
the chosen variable is substituted to the ∗-marker of every concept
node which is “bound by a quantifier occurring in the simple entry of
the graph”: let {c1, ..., cn} = Dec(G),

G′ = G[c1/term(c1)]...[cn/term(cn)]

(b) let {x1, ..., xn} = term(Dec(G)),

Φ(G) = ∃x1...∃xn(Φ(simple(G′)) ∧
∧

G′′ ∈ complex(G′)

¬(Φ(G′′)))

We have presented the translation to FOL as a sidetrack in our tour through
conceptual graph fragments, a guideline for anchoring graphical items to their
corresponding notions in a well-established framework. Therefore, we will skip
both the proof that the translation is in agreement with the former truth definition
and the exposition of a reciprocal translation from first-order logic to conceptual
graphs that would be required for validating the equivalence of the fragments.
Instead, we will focus on the promised proof method that directly manipulates
the graphical syntactic items.

4.2.2 Combining tableaux with projections

A keyword of tableau systems is again simplicity: a tableau is model construction
by successive decomposition of an input into smaller pieces; hence, the analytical
qualification of the method.

These decompositions are guided by the form of the input representations at
each stage. Therefore, to any conceptual graph is associated a type depending
on the underlying logical operator which is dominating the representation:
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4.2.8. Definition. [Graph types] Let G = ({G1, ..., Gn(1≤n)
}, co) be a conceptual

graph. We distinguish three exclusive types of graphs:

1. G is of type α if one of the following conditions holds:

(a) n = 1 and Dec(G) �= ∅;
G is a simple graph with existential nodes

(b) n = 2 and simple(G) �= G∅;
G is a conjunction of a non-empty simple graph and the negation of a
graph.

(c) n > 2;
G is a conjunction of non-empty entries.

2. G is of type β if n = 2 and simple(G) = G∅ and Dec(G′) �= ∅ where

G2 = G′ ;
G is the negation of a graph with existential nodes

3. G is of type χ if one of the following conditions holds:

(a) n = 1 and Dec(G) = ∅;
G is a completely instantiated simple graph

(b) n = 2 and simple(G) = G∅ and Dec(G′) = ∅ where G2 = G′ ;
G is the negation of a completely instantiated simple graph

It is straightforward to verify that the classification defines a partition of the
set of all conceptual graphs over a given support.

4.2.9. Fact. Any conceptual graph is of one and only one of the three types.

4.2.2.1 Decomposition rules

The model construction proceeds by transforming an input graph into a disjunc-
tion of conjunctions preserving the satisfiability of the input. The disjunctive
form is captured as a tree which represents the disjunction of its branches, while
each branch is the conjunction of all nodes occurring on it.

A graph of type α is basically an existentially quantified conjunction of sub-
graphs. It is decomposed as follows: first, dominating existentially quantified
concept nodes, which may be coreferent to other concept nodes in the different
subgraphs, are replaced by witnesses (i.e., new constants). Then, the different
conjuncts are split along a branch.

By opposition, a graph of type β is the negation of an α-graph or, in classically
equivalent terms, a universally quantified disjunction of subgraphs. Before split-
ting the disjuncts, the concept nodes corresponding to dominant universal quan-
tifiers are instantiated. Then, the disjunction can be represented by a branching
in the tree.
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4.2.10. Definition. [Tableaux] A tableau is a tree whose nodes are occurrences
of CGs. The tableau T may be extended if one of the following two cases applies.

α: an α-type graph α = ({α1, ..., αn(1≤n)
}, co) occurs on the branch BH from the

root to a leaf H in T .

Let Xα be a set of concept nodes in simple(α) such that DDec(α) ⊆ Xα ⊆
Dec(α).

Let Θα be a substitution which associates a new object name to every
concept node in Xα;
i.e. ∀x ∈ Xα it holds that (i) Θα(x) = m ∈ I and (ii) m does not occur in
T and (iii) ∀y ∈ Xα(x �= y → Θα(x) �= Θα(y))).

For 1 ≤ i ≤ n, we define α′
i = graph(αi)[Θα].

We may adjoin successively α′
1,. . . ,α

′
n such that α′

1 is the sole successor of
H and α′

2≤i≤n is the sole successor of α′
i−1 (if n = 1, then α′

1 is the sole
successor of H).

β: a β-type graph β = ({G∅, β2 = β′ }, co) occurs on the branch BH from

the root to a leaf H in T . β′ = ({β′
1, ..., β

′
n(1≤n)

}, co′) and if n > 1, then

β′
i(1<i≤n)

= β′′
i .

Let Xβ be a set of concept nodes in simple(β′) such that DDec(β′) ⊆ Xβ ⊆
Dec(β′).

Let Θβ be a substitution which associates an instantiated label to every
concept node in Xβ such that:
∀x ∈ Xβ it holds that (i) Θβ(x) = (t,m) ∈ C × I and (ii) if there is a
concept node labelled with (t′,m) in T , then t = t′, else t ≤C typeβ(c).

β′′′
1 = ({G∅, β′

1 }, coβ′1)[Θβ] and
if n > 1, then β′′′

i(1<i≤n)
= graph(β′′

i )[Θβ].

We may simultaneously adjoin the graphs β′′′
1 to β′′′

n as successors of H.

4.2.11. Example. To illustrate the decomposition of an α-graph, consider the
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following tableau extension:

The simple entry of the graph contains two decla-
rations, among which one is dominant. We may
instantiate either both concept nodes or only the
dominant one. We chose this last option and re-
place the marker ∗ by an object name which does
not occur in the tableau yet: a. The second dec-
laration is left unchanged: the existential node can
later be ‘handled’ by projection.
A branch is interpreted as the conjunction of its
nodes. The graph α is an assertion of the con-
junction of the two entries α1 and α2. Hence, after
the substitution, we may assert both entries on the
branch.

To illustrate a β-application, we can consider the negation of the previous α
graph:

The graph β asserts a uni-
versally quantified disjunc-
tion. We may replace
these universal quantifiers
by any object name (new
or already occurring in the
tableau, but in the last case,
we must ensure the coher-
ence of the typing) and split
the branch into the different
disjuncts. As in the α-case,
only dominant declarations
need to be instantiated be-
fore the splitting.

A branch being a conjunction, it is not satisfiable if it contains the negation
of a graph which logically follows from the concatenation of other graphs on the
branch; it is then called closed. If all the branches of a tableau are closed then
it is not possible to find a model for the represented disjunction of conjunctions.
Furthermore, in this last case, as we will prove that the satisfiability of the input
graph (i.e., the root of the tree) is preserved by the tableau construction, we
can conclude that the input graph is not satisfiable. Hence, a validity proof of a
conceptual graph is a closed tableau of the negation of the graph.
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4.2.12. Definition. [Proofs] Let B be a branch of a tableau T and positive(B)
be the normal form of the concatenation of all simple graphs occurring as node
of B,

• B closes if it contains a node which is the negation of a simple graph H and
there exists a projection from H to positive(B).

• A proof of G is a tableau started with G , which has all of its branches
closed.

4.2.2.2 Completeness of the calculus

The following proof follows the line of standard tableau completeness proofs. The
main differences with usual textual systems reside in the following two features:
(i) dominating boolean connectors and quantifiers are here handled in one ex-
pansion step and (ii) the search for a contradiction on a branch is performed by
projection of simple subgraphs.

4.2.13. Lemma. If S is a satisfiable finite set of conceptual graphs, then:

F1: if an α occurs in S then S ∪ {α′
1, . . . , α

′
n} is satisfiable.

F2: if a β occurs in S then at least one of the n sets S ∪ {β′′′
1 }, ..., S ∪ {β′′′

n } is
satisfiable.

Proof:

• F1, case 1: suppose that Θα is empty. Hence, there is no dominant decla-
ration to replace in α. Thus, S ∪ {α1, . . . , αn} is satisfiable.
case 2: Θα is not empty. S ∪ {α} = S is satisfiable, say in a structure
M = (D,F ). Hence, there is at least one partial assignment f : Xα → D
such that M, f |= S ∪{α} is satisfiable. Θα is a function from Xα to object
names that do not occur in S, therefore, we can transform M into a model
M ′ = (D,F ′) such that M ′ |= S ∪ {α[Θα]} by defining F ′ = f on the
constants in the codomain of Θα and F ′ = F on the remaining constants.
Now, there are no more dominant declarations in α[Θα], thus, by case 1, we
may safely split the conjunction of entries: S ∪ {α′

1, . . . , α
′
n} is satisfied in

M ′.

• F2, case 1: suppose that Θβ is empty and S is satisfiable. β is the negation
of a conjunction of graphs that are pairwise not connected by coreferences.
From the interpretation of a negation box, it is clear that for at least one
of these subgraphs, the conjunction of its negation with S is satisfiable.

case 2: Θβ is not empty. S ∪ { β′ } is satisfiable, thus it is not the case

that there exists a substitution for the declarations of β′ such that S ∪ β′ is
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satisfiable. Hence, for any such substitution, Θβ, it holds that S∪{ β′ [Θβ]}
is satisfiable. β′ [Θβ] is the negation of a conjunction of subgraphs which
are not bridged by coreferences, thus, by case 1, it can safely be decomposed.

�

4.2.14. Theorem (Soundness). If there is a closed tableau started with G ,
then G is valid

Proof: if the root G is satisfiable then at least one branch is satisfiable (by
induction on the number of rules applied and the preservation of satisfiability).
Projection is complete for simple graphs (cf. Theorem 3.2.6) and tableau branches
(viz. sets of CGs) are interpreted as the conjunction of their nodes, thus a closed
branch is unsatisfiable. Hence, one branch of the tableau must be open.

Thus, as the tableau is closed, the root G must be unsatisfiable and G is
valid. �

It remains to be proved that the tableau construction does not overlook any
closing case; i.e, that by applying a systematic procedure that enumerates all
possible expansions, if a branch remains open, then it is satisfiable.

4.2.15. Definition. [Complete tableaux] A branch, B, of a tableau, T , is ex-
hausted if for every β-graph in B and every constructible substitution function,
Θβ, at least one resulting extension β′′′

i occurs in B.

A tableau, T , is called complete if for any branch B of T , the following holds:

1. if an α occurs in B then for at least one choice of the substitution function
Θα all corresponding α′

i occur in B, and

2. B is either closed or exhausted.

Fulfilling the exhaustion may require infinitely many steps. In a systematic
procedure, an order on individual markers, e.g. the alphabetical one, must be
chosen in order to enable the complete enumeration requested by the exhaustion of
β applications. We assume that we have a systematic procedure for constructing
a complete tableau, which guarantees that if the process of extending a branch
does not terminate, then the resulting infinite branch is exhausted (for example
an adaptation of Smullyan’s systematic procedure in [Smu68]).

4.2.16. Lemma. In a complete tableau, T , every exhausted open branch, B, is
satisfiable.
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Proof:

1. We construct a canonical model M = (D,F ) from the information conveyed
by χ-graphs in B.

(a) D is the set of all object names occurring in B.

(b) The interpretation function F is the identity on D and for every object
name x ∈ I \D, F (x) = *.

(c) By construction of a tableau, an object name can only occur in asso-
ciation to a single concept type. Thus, we can respect the semi-lattice
condition, by collecting the type of an object name and propagating
this name upward to the interpretation all dominating concept types:
for every d ∈ D and every concept type t′ ∈ C, let t ∈ C be the type
of any concept node labelled with d in B, it holds that d ∈ F (t′) iff
t ≤C t′.

(d) For every relation name P of arity n and every sequence 〈d1, . . . , dn〉 ∈
Dn, it holds that 〈d1, . . . , dn〉 ∈ F (P ) if and only if there exists in B
a (positive) simple conceptual graph in which occurs a relation node
whose label is P ′ such that P ′ ≤R P and whose (ordered) arguments
are labelled with the object names 〈d1, . . . , dn〉.

It is immediate to verify that M satisfies the hierarchical constraints con-
veyed by the underlying language signature.

2. We must show that every conceptual graph, G, occurring as a node B, is
satisfiable in the structure M . By induction on the degree of G.

(a) If degree(G) = 0, then G is a simple graph.

i. If Dec(G) = ∅, then it is obvious that G is satisfiable in M . Indeed,
by construction of M , every atomic piece of information in G has
been included in the structure and if there were two contradictory
atomic pieces of information, then the branch would be closed by
projection.

ii. Else, Dec(G) �= ∅ and G is an α. Since the tableau is complete,
there exists in B a copy of G with all declarations replaced by new
object names: say, α′

1 obtained from G by applying a substitu-
tion Θα (note that tableau rules enable to obtain this instantiated
graph in a finite number of successive steps, but for a complete
tableau, it is requested to be obtained in a single simultaneous
substitution of all declarations). α′

1 corresponds to the previous
case and thus, it is satisfiable in M . Now we can use the function
Θα ∪ F as an assignment which satisfies G in M .
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(b) degree(G) > 0

i. If G is an α (with n > 1 as degree(G) > 0), then α′
1 to α′

n

(obtained with the substitution function Θα) occur in B. Since
degree(α′

i(1≤i≤n)
) < degree(G), then by induction hypothesis, each

of these α′
i(1≤i≤n)

s is true under an assignment fi in M .

Furthermore, the coreference class of a dominant declaration in G
has been instantiated with a single new object name. Hence, each
of the α′

i(1≤i≤n)
s is satisfied by M under f =

⋃
1≤i≤n fi. Therefore,

G is satisfied by f ◦Θα in M .

ii. G is a β of the form β′
1, β′′

2 , ..., β′′
n .

B is exhausted, therefore it holds that for every constructible sub-

stitution function Θβ, at least one of the graphs in { β′
1[Θβ] } ∪⋃

1<i≤n β′′
i [Θβ] occurs in B and is satisfiable in M (by induction

hypothesis and since the degree of all these graphs is less than the

degree of G). Hence, for every Θβ, β′
1[Θβ], β′′

2 [Θβ] , ..., β′′
n[Θβ] is

satisfiable in M . Thus, it is not the case that there exists a substi-
tution f : Dec(G)→ D such that ∀c ∈ Dec(G), f(c) ∈ F (type(c))

and {β′
1, β′′

2 , ..., β′′
n }[f ] is satisfiable. Therefore G is satisfiable

in M .

iii. G is the negation of a simple conceptual graph: β′
1 .

Suppose that G is not satisfiable in M , then β ′
1 is satisfiable in

M , viz. there is an embedding of β′
1 into M . Furthermore, by

construction, M is the canonical model of the concatenation of
all simple conceptual graphs in B (i.e., positive(B)). Hence, by
completeness of projection (cf. Theorem 3.2.6), there exists a pro-
jection from β′

1 to positive(B) and B is closed. But, B is an
exhausted open branch, thus G is satisfiable in M .

�

4.2.17. Theorem (Completeness). If a conceptual graph G is valid, then
there exists a proof of G.

Proof: A proof of G is a closed tableau started from the negation of G: G .
If there is no proof of G, then there is an exhausted open branch B in any com-
plete tableau started from G . By Lemma 4.2.16, B is satisfiable and therefore

the root, G , which is an element of the branch, is satisfiable. Hence, G is not
valid. �
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4.2.3 Related work and further directions

In this brief detour outside our track of efficiently computable graph methods,
we have described a general and modular procedure for combining tableau and
projection algorithms. Though borrowed from the traditional textual courant of
symbolic logic, tableau methods perfectly fit the graphical setting of conceptual
graphs: their representation system are trees.

The separation of work between both implied types of calculi, tableaux and ho-
momorphisms, allows their almost independent tuning when practical efficiency is
desired. For instance, a well-known technique of tableau implementations consists
in delaying the instantiations and delegating the choice to a unification procedure.
A free-variable variant of tableaux for conceptual graphs has been proposed in
[Ker97]. In this case, projection can be seen as a meta-unification procedure on
pieces of information which are not necessarily atomic, but quantified conjunc-
tions of atoms.

Peirce’s existential graphs. Other complete calculi for conceptual graph lan-
guages equivalent to FOL have been proposed since the early days of conceptual
graphs (e.g., [Sow84], [Wer95] or [Ham98]), but their faithfulness to Peirce’s orig-
inal system of existential graphs have distanced them from possible implementa-
tion. Indeed, although some argue for the intuitive characteristics of Peirce’s α
and β systems (see e.g., [Rob73, Rob92] and [Thi75] for detailed presentation of
Peirce original work on FOL calculi), these proof methods are not analytical and
rely extremely on human intuition to guess the next proof step. For instance, the
following rule is an essential part of the propositional α calculus ([Rob73] p41)
“The rule of insertion. Any graph may be scribed on any oddly enclosed area”.
Of course, it is classically valid to derive ¬(A∧B) from ¬(A), but when it comes
to use the rule in an automated way, the infinite choice of graphs offered to take
the place of B is problematic.

Far from the ideological debate on the ease of learning or using such-and-such
type of calculi, we have decided to adopt Peirce’s notion of closed areas to rep-
resent negations, while choosing an analytical proof method that a machine can
apply without much intuition. After all, the part reserved to cognitive efficiency
in this thesis is sufficiently occupied by graphical items.

DRT-Tableaux. In [BE82], it was already advanced that the interaction of
tableau reasoning and picture embedding can serve linguistics purposes such as
the resolution of some kinds of anaphoric bindings. The existential nature and
the sole use of implication and conjunction in discourse representation structures
[Kam81] lend themselves to the analytical steps of tableau constructions. [KR96],
an early tableau calculus for DRT, has been an important source of inspiration
for preliminary versions of this chapter: interlacing projections and tableaux
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have been proposed in [Ker96, Ker97] for a language of conceptual graph based
on implication.

Graph rules. Having implication as sole logical connective between simple
conceptual graphs has also been applied in a study of a resolution-like calculus
[SM96]. In [Sal97], this method combining resolution steps and adapted pro-
jections has been experimentally compared to classical resolution techniques, in
order to highlight the advantages of projection for an early detection of dead-ends
in the explored proof tree. Comparing the resolution style and the tableau one
in the conceptual graph framework has also been our theme in [KS97].

Intermediate decidable fragments. Among the infinity of fragments stand-
ing between simple graphs and full conceptual graphs, most interesting are the
decidable ones for which only a careful application of the (adapted) tableau rules
can guarantee to satisfy the sharp bounds laid by theoretical complexity analysis.

One such appealing logic is the guarded fragment of first-order logic (2-EXP-
complete satisfiability problem [Grä99]) which expands the tree property to new
horizons. A guarded syntax of conceptual graphs has been proposed in [BKM99]
and the calculus side would also deserve some attention, witness the subtleties
employed in [Niv98] for adapting resolution to guarded FOL. So, the next task
for the proponents of a systematic exploration of the conceptual graph landscape
lies straight ahead.

For the time being, we propose an alternative route that offers the possibil-
ity of closing a loop opened in the previous chapter: reintroducing the tree-like
structures of guarded simple graphs into their modal ancestors.

4.3 Nested graphs

A keyword in knowledge representation is modularity. Imagine how tragic it
would be, if to access a web page, the whole content of all internet sites would
first need to be downloaded. The world wide web is a typical modular knowledge
base in which, among other properties, pieces of information grouped in pages are
made available by different authors, pages or even predefined locations in pages
are named and can be referred by other pages and in some cases, chosen pieces of
information can only be reached by specific sequences of actions. This modular
setting is common to almost all kinds of complex representations; e.g., the sec-
tioning units in a book, the division of a cooking receipt into small tasks which
can sometimes be accomplished in parallel, a large scale schema with enlargement
of specific items, object-oriented programming languages, etc.

When the represented knowledge is partitioned into local subsets, the way
navigation from one group to an other is offered, takes a preponderant rôle; after
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all, representing information makes sense if it possible to retrieve any piece even
in the deepest nested subunit.

Modularity does not only prove salient to representation: we have observed, in
Chapter 2, how a switch of interpretation viewpoint, from the global one of first-
order logic fragments to the local one of modal logics, can beneficially influence
the complexity of reasoning.

In this section, we will combine these representational and computational
themes into a framework offering the possibility to localise information conveyed
by simple conceptual graphs.

4.3.1 Modularity by nesting

In a single picture, a way to distinguish knowledge levels is to nest pieces of
information inside other ones. Here, the term level should not necessary convey
a notion of preferability,importance, but rather a geography of information with
traced paths between the different pieces. The implicit navigational support
associated to nesting is some kind of zooming in procedure which enables to let
the focus jump from the level at stake to one of the pieces nested in it.

Nested simple conceptual graphs emerged as an extension of the simple con-
ceptual graph model in [Sow92] but have only been thoroughly studied in recent
work [CM97, Sim98, CMS98] on the basis of a better understanding of the un-
derlying simple structures.

4.3.1.1 The traditional conceptual graph approach to nesting

Information is still represented by simple graphs with the difference that an entire
graph can be associated to the concept node it describes, can be nested in it.

4.3.1. Example. If I should describe my car, I would not start by exposing the
failure of a small non-vital system in one of its components (i.e., the opening of
the boot), but rather with the general features of the vehicle (e.g., its age, the
engine main characteristics, the type of steering system, etc.):
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Building on our understanding of simple graphs, it is most natural to interpret
simple graph components of a nested graph in classical first order structures and
consider that the notion of nesting corresponds to some relation between the
different structures described.

This sketch of semantics already raises many questions about the relation
between the simple structures involved in a model for a nested graph. Not only,
how they are connected to each other, but also whether they have the same
universe, whether nesting is associated to some notion of inheritance, etc. The
range of alternatives implied by such questions is familiar to modal predicate
logics and the semantics for nested conceptual graphs proposed in the forthcoming
sections is inevitably not the unique one, but it will conciliate the chosen syntactic
features of nested graphs to the intuitive meaning we will associate to them.

Individuals and domains A nested graph is intended to represent some struc-
tured information about a set of objects that may be named with individual
markers. Furthermore, the scope of quantification will be allowed to go beyond
the boundaries of nested components through coreference links. Hence, it makes
sense to associate the same denotation to any individual marker in every sub-
structure where it exists. Concerning this last point, we note that some objects
may not be relevant to all substructures: in Example 4.3.1, the boot is not an
object that necessarily belongs to the first level of description of my car, whereas
it is relevant to the context of the openings. Hence, every substructure will have
as domain a subset of the global universe.

Navigation There is a prime syntactical distinction between the notion of nest-
ing in conceptual graphs and the usual notion of modal operator in modal logics:
a subgraph is associated to a particular term in a graph, while a modal subfor-
mula is usually directly nested in another formula. This notion of term-nesting
can be the representation of a relation connecting objects in a substructure to
other substructures.

As any individual marker has a fixed denotation in every substructure, should
it also have the same connections in every substructure or, on the contrary, should
occurrences of an individual marker in distinct subgraphs correspond to objects
that have a priori nothing in common except sharing a name? We argue that such
a choice should be expressible in the language and hence, that we need to extend
the usual syntax of nested conceptual graphs. Let us consider the description of
a web-site outline in which two different uses of nesting are interlaced:

4.3.2. Example. We have three web-pages: home, page1 and page2. The author
has designed two buttons called next and home that are used in the different
pages:
- On home, ϕhome holds (e.g., ϕhome can be a representation of the content of the
page) and the button next is a link to page1.



4.3. Nested graphs 145

- On page1, ϕpage1 holds, next leads to page2 and home to the home-page.
- Finally, on page2, varphipage2 holds and the button home points to the home-
page.
The structure we want to represent by a nested graph has the following outline:

Chein et al [CMS98] proposes two alternative semantics for nested conceptual
graphs:

1. In the first one, two occurrences of a term share a priori nothing excepted
their name. Therefore, to ensure the capture of the fact that the page
pointed by home verifies ϕhome, it is required to nest a copy of the home-
page into the concept node button : home . Unfortunately, an adequate
conceptual graph representation of the site becomes an infinite chain of
nesting with no available syntactical shortcut for the repeated pattern:

2. In the second semantics proposed by Chein et al., all occurrences of a term
have the same description (i.e., an object is connected to the same substruc-
tures in all substructures where it exists). In this case, the representation
of the home-link is no more problematic, but now, all occurrences of the
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next-button need to be named differently:

The unsatisfactory point in this setting is that it does not represent the
fact that both occurrences of the button next correspond to a single object
occurring in different pages.

We can attack the problem directly at its source: the missing syntactical
element is a way to name a nested subgraph such that latter references to it
are enabled. Hybrid logics (e.g., [BT99, ABM99b, Are00]) are tackling a similar
problem in modal logics; they introduce nominals, which are terms in a first-order
logic manner, that denote worlds in propositional modal languages.

Similarly, we will name every nested subgraph with either a “graph constant”
or an indefinite marker representing existential quantification.

4.3.1.2 Exploiting the power of guards in the nested setup

The guarded fragment of simple conceptual graphs (and its sub-fragment of trees)
had already a modular flavour: localised pieces of information connected by con-
strained paths of coreference links. This is not surprising as guarded fragments
arose from the study of modal languages. It is interesting to “close a loop” by
reimporting the notion of guards into a modal language. Indeed, by including
FOL, modal predicate logics inherit undecidable decision problems. However,
we will prove that forcing guarded patterns of nesting is a way to highlight a
tractable fragment of nested conceptual graphs.

4.3.2 Nested conceptual graphs

A common ground to the different “flat” conceptual graph fragments is a close
resemblance of, on one hand, the graph representations and on the other hand,
the represented formal structures; actually this homomorphic setting has been
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Figure 4.4: A nested conceptual graph

equally highlighted as the justification of the projection calculus completeness
and as a cognitive strength of the graphs.

4.3.2.1 Syntax

Nesting has been intuitively presented as a way of clustering pieces of first-order
information into modules of a network. We have argued for the necessity of
naming these modules: nominals are introduced in the vocabulary.

4.3.3. Definition. [Extension of a simple graph signature] A nested signature
Σ is a pair (σ,N ) where σ = (I, (C,≤C), (R,≤R), arity) is a signature for simple
conceptual graphs2 and N is a non-empty set of nominals with a distinguished
element N0 and I ∩ N = ∅.
To simplify the reading, we will use lower cases letters for object names in I and
capital ones for nominals in N .

In the introductory examples, not all concept nodes were holding a nested
subgraph. However, for the sake of simplicity, it is convenient to define a nested
conceptual graph as a simple conceptual graph in which a nested conceptual
(sub)graph is associated to every concept node. The end-point of the recursion is
obtained by taking the empty simple conceptual graph (i.e, the logical constant
True) as a nested one.

We adopt a syntactic definition which will later facilitate the translation to
the simple graph fragment: instead of using a purely recursive definition, we
emphasise the set of simple graph components involved in a nested graph.

4.3.4. Definition. [Syntax of a nested conceptual graph] Given a nested sig-
nature Σ = (σ,N ), a nested conceptual graph (NCG) over Σ is a finite graph
G = (D = {D0, ..., Dn} , desc, nom, codesc, cotrans) where 0 ≤ n and

2Definition 3.1.1
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1. D, the set of descriptions, is a non-empty set of normalised simple concep-
tual graphs over σ. For 0 ≤ i ≤ n, Di = (RDi

, CDi
, EDi

, labelDi
, coDi

). The
set of concept nodes occurring in G is noted conceptG;
i.e., conceptG =

⋃
Di∈D CDi

.

2. desc is a bijection from conceptG to D \ {D0}; there is a one-to-one cor-
respondence between concept nodes and descriptions (with the exception of
the outermost description D0

3. nom is a labelling function from D to N ∪ {∗} such that label(D0) = N0

4. codesc, the coreference relation on descriptions, is an equivalence relation on
the set of descriptions labelled with the marker “∗”;
i.e., {Di/Di ∈ D and nom(Di) = ∗}

5. cotrans, the trans-description coreference relation, is an equivalence relation
on existential concept nodes in D such that two distinct nodes are coreferent
only if they occur in distinct descriptions.

In other words, desc associates a unique description to every concept node and
each description is named with either a nominal or the place holder “∗”.

Figure 4.5: The underlying tree structure of the NCG in Figure 4.4

The underlying recursive structure of nesting can easily be extracted from D
and desc: it is a tree with root D0 such that a description Di is a direct successor
of a description Dj with 0 ≤ i, j ≤ n and i �= j iff there exists in Dj a concept
node c ∈ CDj

such that desc(c) = Di. For instance, in Figure 4.5 is represented
the underlying tree of the nested graph in Figure 4.4.

It should however be noted that cotrans and codesc are external to this recursive
structure. Indeed, two idems occurring in independent branches can be coreferent.
This notion of cross-world quantification generalises the usual one in predicate
modal logic as, here, the scope of existential quantifiers is not bound by the one of
surrounding modalities. For instance, the nested graph in Figure 4.4 represents a
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situation in which (i) two objects a and b are in relation Q, (ii) in the description
of a there is an object which has the property P and (iii) the same object has the
property S in the description of b, while this object does not necessarily exist in
the world depicted by the root D0.

4.3.2.2 Nested structures

The intuitive meaning of a graph can be formalised by an embedding into a
nested structure. To each description Di corresponds a first-order structure, a
world wi, verifying the content of the description (the simple conceptual graph
at stake) and for each concept node c of this description Di, if wj is the world
corresponding to the subgraph desc(c), then it must hold that (wi, [[c]], wj) is in
a ternary accessibility relation Racc connecting objects in a world (the first two
arguments) to other worlds.

4.3.5. Definition. [Nested Σ-structures] A nested structure over Σ = (σ,N ) is
a tuple (W,O, [[.]], S, Racc) such that:

1. W is a set of worlds

2. O is a set of (discourse) objects

3. [[.]] :

[
I → O ∪ {*}
N → W ∪ {*}

4. S is a function from W to the set of σ-structures such that:

∀w ∈W,


 S(w) = (domw, [[.]]w)

domw ⊆ O
∀x ∈ I, if [[x]] ∈ domw, then [[x]]w = [[x]] else [[x]]w = *

5. and Racc is a ternary relation in (W × O ×W ) such that (w, o, w′) ∈ Racc
only if o ∈ domw.

Nominals, like individual markers, have a fixed denotation. The structure as-
signed to a world by the function S is a usual non-nested first-order structures
respecting the chosen ordering on concept and relation names as proposed in Def-
inition 3.1.6. Furthermore, the definition forces an individual marker to have the
same denotation in all worlds where it exists.

4.3.6. Fact. An object is in the domain of a world if and only if it is in the
denotation of the supremum in the concept type hierarchy at the world:

∀w ∈W,∀o ∈ O, o ∈ domw iff o ∈ [[c�]]w
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Proof: Definition 3.1.6 assigns the whole domain of a flat structure to the deno-
tation of the top-concept. �

By allowing trans-description coreference links, we have abandoned the recur-
sive syntax of nested graphs and therefore, we define assignments globally on the
whole representation:

4.3.7. Definition. [Truth definition of NCGs]
Given a nested signature Σ, a nested Σ-structure M = (W,O, [[.]], S, Racc) and a
NCG G = (D, desc, nom, codesc, cotrans) over Σ,

• an assignment is a function [[.]]a extending [[.]] from names to graph items
(concept nodes and descriptions) and respecting coreferences;

[[.]]a :

[
D →W
conceptG → O

such that

∀x ∈ D, nom(x) ∈ N ⇒ [[x]]a = [[nom(x)]]
∀x, y ∈ D, (x, y) ∈ codesc ⇒ [[x]]a = [[y]]a
∀c ∈ conceptG, marker(c) ∈ I ⇒ [[c]]a = [[marker(c)]]
∀c, c′ ∈ conceptG, (c, c

′) ∈ cotrans ⇒ [[c]]a = [[c′]]a

• M |=NCG G iff there exists an assignment [[.]]a s.t. (M, [[N0]], [[.]]a) |=NCG D0

• (M,w, [[.]]a) |=NCG Di iff



∀c ∈ CDi

, [[c]]a ∈ domw

∀c ∈ CDi
, 〈w, [[c]]a, [[desc(c)]]a〉 ∈ Racc

∀c ∈ CDi
, (M, [[desc(c)]]a, [[.]]a) |=NCG desc(c)

(S(w), [[.]]a) |=SCG Di

• G ,NCG H iff for every Σ-structure M , if M |=NCG G, then M |=NCG H

We now have a formal grasp on the meaning of nested representations, but
how complex is reasoning in the nested framework?

4.3.3 Complexity and Guards

We have defined representations and structures that resemble each other and it
should be quite natural to expand the strategy applied to simple graphs: the
definition of a projection calculus which simulates the embedding of a nested
graph into the canonical model of another one. Chein et al. [CM97, CMS98] define
a recursive projection-procedure based on the calculus for simple graphs and they
handle the alternative semantics for their nested language by defining alternative
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canonical models (via different forms of normalised nested graphs). However a
such line of thinking does not provide an immediate clue on the complexity of
the recursive method (only a lower NP bound due to the matching of two simple
graphs).

We here choose a different strategy: we skip the definition of a calculus and
translate the nested setup into a fragment of simple conceptual graphs. The
completeness of such a translation would have two corollaries: a measure of the
difficulty of reasoning in the nested fragment and a direct exploitation of the
tractability of guarded simple graphs (cf. Chapter 3.3).

4.3.3.1 From nested graphs to simple ones

A first step concerns a way of encoding the notions of world-partition and local-
substructure into a usual first-order structure.

By associating a local-substructure to every world, we have let the properties
of each individual (i.e., its concept type and the relations that link it to other
individuals of the world at stake) be relative to the local notion of world. This
information can be captured by an extra argument to every predicate. Further-
more, from this encoding, we can also derive the domain of a given world: an
individual o belongs to the domain of a world w if and only if w and o occur to-
gether in the interpretation of the super-concept c�. The transitions from objects
in worlds to other worlds were captured by the accessibility relation Racc; It will
prove convenient for guarded representations to include this information in the
denotation of other predicates.

4.3.8. Definition. [Derived signature] Given a nested signature Σ = ((I, (C,≤C
), (R,≤R), arity),N ), its derived signature is a signature for simple conceptual
graphs σ = (I ∪ N , {cσ} , (Rσ,≤Rσ), arityσ) such that:

1. cσ is the unique concept type

2. ∀r ∈ Rσ, ∃k ∈ IN+ such that arityσ(r) = 2k + 1

3. Rσ3 = C ∪ R1 and ≤Rσ
3
preserves both orders ≤C and ≤R1 .

4. ∀k > 1, (Rσ2k+1,≤Rσ
2k+1

) = (Rk,≤Rk
)

How the arity-change is employed becomes clear in the following transforma-
tions:

4.3.9. Definition. [λ-µ translations between nested structures and flat ones]
Given a nested signature Σ with derived signature σ, let c� be the supremum in
the concept type hierarchy of Σ,

• For a nested Σ-structure M = (W,O, [[.]]M , S, Racc),
λ(M) is a flat σ-structure (X, [[.]]λ(M)) such that
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1. relevant worlds:
W ′ = [[N ]]M ∪ {w ∈ W/ ∃ x ∈W,∃o ∈ O, 〈x, o, w〉 ∈ Racc}
relevant objects:
O′ = [[I]]M ∪ {o ∈ O/ ∃ x, y ∈ W ′, 〈x, o, y〉 ∈ Racc}

X = W ′ ∪O′

2. ∀x ∈ I ∪ N ,

[[x]]λ(M) = [[x]]M

3. ∀P ∈ R ∪ C such that3 arity(P ) = k,

[[P ]]λ(M) =


〈w, o1, v1, ..., ok, vk〉/


 w ∈W ′

& 〈o1, ..., ok〉 ∈ [[P ]]wM
& ∀1 ≤ i ≤ k, 〈w, oi, vi〉 ∈ Racc




• For a flat σ-structure M ′ = (X, [[.]]M ′),
µ(M ′) is a nested Σ-structure (W,O, [[.]]µ(M ′), S, Racc) such that

1. Racc =

{
〈w, o, v〉/ 〈w, o, v〉 ∈ [[c�]]M ′

and v is uniformly accessible from o in w

}
where v is uniformly accessible from o in w

iff


 ∀P ∈ R ∪ C such that arity(P ) = k

and ∀ 〈w, o1, v1, ..., ok, vk〉 ∈ [[P ]]M ′

if oi = o with 1 ≤ i ≤ k, then 〈w, o1, v1, ..., ok, vk〉[vi/v] ∈ [[P ]]M ′

2. W = [[N ]]M ′ ∪ {w ∈ X/∃ x, y ∈ X and 〈x, y, w〉 ∈ Racc}
3. ∀w ∈ W ,

(a) domw = {o ∈ X/∃ x ∈ W and 〈w, o, x〉 ∈ Racc}

(b) ∀x ∈ I, [[x]]wµ(M ′) =

[
[[x]]M ′ if [[x]]M ′ ∈ domw

* otherwise

(c) ∀P ∈ R ∪ C such that arity(P ) = k,

[[P ]]wµ(M ′) =

{
〈o1, ..., ok〉/

[
〈w, o1, v1, ..., ok, vk〉 ∈ [[P ]]M ′

and ∀1 ≤ i ≤ k, 〈w, oi, vi〉 ∈ Racc

}

(d) S(w) = (domw, [[.]]w)

4. O = [[I]]M ′ ∪
⋃
w∈W domw

5. ∀x ∈ I ∪ N , [[x]]µ(M ′) = [[x]]M ′

We note that both structure translations do not preserve those pieces of in-
formation which cannot play a rôle in the satisfaction of a nested graph. For

3By convention, the arity of a concept type in C is 1.
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instance, a world which is neither in the denotation of nominals nor in the acces-
sibility relation is eliminated by λ. Also, world connections are conveyed by the
accessibility relation in a nested structure, while the information is duplicated
in the arguments of relations in a flat structure and µ eliminates some incom-
plete patterns; e.g., suppose that a flat structure M ′ is partially described by (i)
“{〈w, a, y〉} = [[P ]]M ′ and {〈w, a, x〉} = [[Q]]M ′”. Neither x nor y is uniformly
accessible from a in w, hence, (i) is not preserved in µ(M ′).

4.3.10. Definition. [Interpretation of NCGs into flat structures] Given a nested
signature Σ with derived signature σ, a σ-structure M = (O, [[.]]) and a NCG
G = (D, desc, nom, codesc, cotrans) over Σ,

• an assignment is a function from nodes to objects which coincides with the
denotation of constants
[[.]]a : D ∪ conceptG → O such that

∀ x, y ∈ D and ∀ c, c′ ∈ conceptG,




nom(x) ∈ N ⇒ [[x]]a = [[nom(x)]]
(x, y) ∈ codesc ⇒ [[x]]a = [[y]]a
marker(c) ∈ I ⇒ [[c]]a = [[marker(c)]]
(c, c′) ∈ cotrans ⇒ [[c]]a = [[c′]]a

• M |=NCGflat G iff ∃[[.]]a assignment s.t. (M, [[N0]], [[.]]a) |=NCGflat D0

• (M,w, [[.]]a) |=NCGflat Di iff

∀c ∈ CDi
,

∀r ∈ RDi
,


 〈w, [[c]]a, [[desc(c)]]a〉 ∈ [[type(c)]]
〈w, [[c1]]a, [[desc(c1)]]a, . . . , [[ck]]a, [[desc(ck)]]a〉 ∈ [[labelDi

(r)]]
(M, [[desc(c)]]a, [[.]]a) |=NCGflat desc(c)

where k is the arity of the relation symbol labelling r and cj,1≤j≤k is the jth

concept node neighbour of r in Di.

• G ,NCGflat H iff for every σ-structure M , M |=NCGflat G implies that
M |=NCGflat H

In Theorem 4.3.12, we will prove that the model transformation λ and µ
preserve the satisfaction of nested graphs. For the time being, we will go directly
to the point of this section: the translation of a nested graph into a simple one.

4.3.11. Definition. [κ translation] Given a nested signature Σ with derived sig-
nature σ and a NCG G over Σ, κ(G) = (R,C,E, label, co) is a simple conceptual
graph over σ defined from G = (D, desc, nom, codesc, cotrans) as follows:

1. ∀Di = (RDi
, CDi

, EDi
, labelDi

, coDi
) ∈ D,
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Figure 4.6: The κ-translation of the NCG in Figure 4.4

(a) κnom(Di) is a concept node cσ : nom(Di)

i.e., to each description corresponds a concept node referring to the
name of the described world

(b) ∀c ∈ CDi
,




κmarker(c) is a concept node cσ : marker(c)

κtype(c) is a relation node

κedge(c) =




(κtype(c), κnom(Di), 1),
(κtype(c), κmarker(c), 2),
(κtype(c), κnom(desc(c)), 3)




i.e., a concept node is transformed into a relation node with as argu-
ments the description in which it occurs, its marker and the description
it is pointing to.

(c) ∀r ∈ RDi
, κ(r) = (r, κnom(Di), 1) and ∀e = (r, c, k) ∈ EDi

,
κ(e) = {(r, κmarker(c), 2k), (r, κnom(desc(c)), 2k + 1)}
i.e., arities of relation are changed according to the transition from a
nested signature to its derived one.

2.

R =
⋃
Di∈D

RDi
∪

⋃
c∈conceptG

κtype(c)

C =
⋃
Di∈D

κnom(Di) ∪
⋃

c∈conceptG
κmarker(c)

E =
⋃
Di∈D

κ(EDi
) ∪

⋃
Di∈D

κ(RDi
) ∪

⋃
c∈conceptG

κedge(c)

label =
⋃
Di∈D

labelDi
(RDi

)∪
⋃

c∈conceptG
label(κmarker(c))∪

⋃
c∈conceptG

label(κtype(c))
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Figure 4.7: κ-translation of a concept node and its neighbourhood

∀c, c′ ∈ conceptG, κmarker(c) ≡co κmarker(c
′) iff (c, c′) ∈ cotrans

∀Di, Dj ∈ D, κnom(Di) ≡co κnom(Dj) iff (Di, Dj) ∈ codesc

In Figure 4.6, the typing of concept nodes has not been represented in the
κ-translation . Indeed, the unique concept type does not convey any useful in-
formation; it is just a necessary component of the simple conceptual graph syntax.

We need to prove that the proposed translations are meaning preserving:

4.3.12. Theorem (Completeness of the translation). Given a nested
signature Σ with derived signature σ and two nested conceptual graphs G and H
over Σ,

G ,NCG H iff G ,NCGflat H iff κ(G) ,SCG κ(H)

4.3.13. Lemma. Given a nested signature Σ with derived signature σ and a
nested conceptual graphs G over Σ,

1. ∀M nested Σ-structure, M |=NCG G iff λ(M) |=NCGflat G

2. ∀M flat σ-structure, M |=NCGflat G iff µ(M) |=NCG G

3. ∀M flat σ-structure, M |=NCGflat G iff M |=SCG κ(G)

Proof of Lemma 4.3.13(1): let M = (W,O, [[.]]M , S, Racc), λ(M) = (X, [[.]]λ(M)),
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M |=NCG G ⇒
[
[[N0]]M �= * ⇒ [[N0]]λ(M) �= * by Def λ.1, 2

and ∃[[.]]a/(M, [[N0]]M , [[.]]a) |=NCG D0

(M,w, [[.]]a) |=NCG Di

⇒


 ∀c ∈ CDi

,


 〈w, [[c]]a, [[desc(c)]]a〉 ∈ Racc (i)

(M, [[desc(c)]]a, [[.]]a) |=NCG desc(c) (ii)
[[c]]a ∈ [[type(c)]]wM (iii)

∀r ∈ RDi
, 〈[[r(1)]]a, ..., [[r(k)]]a〉 ∈ [[label(r)]]wM (iv)

⇒



∀c ∈ CDi

,


 [[c]]a ∈ X by (i)&Def λ.1
〈w, [[c]]a, [[desc(c)]]a〉 ∈ [[type(c)]]λ(M) by (i), (iii)&Defλ.3

(M, [[desc(c)]]a, [[.]]a) |=NCGflat desc(c) (ii)
∀r ∈ RDi

, 〈w, [[r(1)]]a, [[desc(r(1))]]a, ..., [[r(k)]]a, [[desc(r(k))]]a〉
∈ [[label(r)]]wλ(M)by (i), (iv)&Def λ.3

⇒ (M,w, [[.]]a) |=NCGflat Di

We skip the proof of the reciprocal and the one of Lemma 4.3.13(2) which are
very similar checks that enough information is conveyed by the model translations.
Proof of Lemma 4.3.13(3): by induction on the structure of G.
Let [[.]]f = [[κnom(D)]]a ∪ [[κmarker(conceptG)]]a

1. (M, [[Di]]a, [[.]]a) |=NCGflat c ∈ Di

with c = type(c) : marker(c), nom(desc(c)) : desc(c)

iff

[
〈[[Di]]a, [[c]]a, [[desc(c)]]a〉 ∈ [[type(c)]]
and (M, [[desc(c)]]a, [[.]]a) |=NCGflat desc(c)

iff

[
〈[[κnom(Di)]]f , [[κmarker(c)]]f , [[κnom(desc(c))]]f〉 ∈ [[type(c)]]

and (M, [[desc(c)]]a, [[.]]a) |=NCGflat desc(c)

iff (M, [[.]]f ) |=SCG κ(graph(c))
where graph(c) is the SCG composed of the single node c

2. (M, [[Di]]a, [[.]]a) |=NCGflat r(c1, ..., ck) ∈ Di

iff 〈[[Di]]a, [[c1]]a, [[desc(c1)]]a, ..., [[ck]]a, [[desc(ck)]]a〉 ∈ [[labelDi
(r)]]

iff (M, [[.]]f ) |=SCG κ(r(c1, ..., ck))

3. assignments take into account coreferences.



4.3. Nested graphs 157

�

It is now straight forward to prove the completeness of the translations.
Proof of Theorem 4.3.12:

∀ Σ− structure M, M |=NCG G ⇒ M |=NCG H
⇓ Lemma 4.3.13(1)

λ(M) |=NCGflat G ⇒ λ(M) |=NCGflat H

∀ σ − structure M ′, M ′ |=NCGflat G ⇒ M ′ |=NCGflat H
⇓ Lemma 4.3.13(2)

µ(M ′) |=NCG G ⇒ µ(M ′) |=NCG H

Hence, G ,NCG H iff G ,NCGflat H

∀ σ − structure M ′, M ′ |=NCGflat G ⇒ M ′ |=NCGflat H
2 Lemma 4.3.13(3)

M ′ |=SCG κ(G)⇒ M ′ |=SCG κ(H)

Hence, G ,NCGflat H iff κ(G) ,SCG κ(H)
�

4.3.3.2 Complexity of reasoning in nested graphs

Through the previous correspondences, we can directly harvest some results on
the complexity of our benchmark problems in the nested framework.

4.3.14. Corollary. • No nested graph is valid.
• A nested graph is always satisfiable.
• G ⊆NCG H is NP-complete, for G and H nested conceptual graphs over a
common nested-signature.

Proof: It comes to no surprise that validity and satisfiability are not informative
notions for positive graphs.
• By analogy to flat structures having an empty universe, a nested structures can
have an empty set of worlds, hence providing no world to interpret the description
D0 and thus no possible assignment.
• A nested graph G is always satisfied by the µ-translation of the canonical model
of κ(G) (cf. Fact 3.2.4).
• By Theorem 4.3.12, subsumption of nested graphs is in NP. Indeed, the κ-
translation is polynomial: for a nested graph G with c concept nodes, r relation
nodes and e edges, κ(G) is a graph with (3c + 1) concept nodes, (r + c) relation
nodes and at most (3c+3e) edges. The NP lower bound is the one of subsumption
in simple graphs as we can encode any simple graph G as a nested graph κ−1(G)
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with a single non-empty description, D0, and with each concept node described
by an instance of the empty graph labelled with N0. It is obvious that G ,SCG H
iff κ−1(G) ,NCG κ−1(H) as any concept node of the premiss introduces a required
link to the world [[N0]]. �

Despite the cognitive impact of a modular layout of represented information,
the expressive power of the nested fragment is the same as the one of the sim-
ple graph fragment. For tractability reasons, we can turn ourselves to guarded
quantification.

4.3.15. Corollary. Given a nested signature Σ with derived signature σ and
two nested conceptual graphs G and H over Σ, G ,NCG H is decidable in poly-
nomial time if κ(H) is a guarded simple graph.

Proof: Immediate consequence of Theorem 4.3.12 and Theorem 3.3.7. �

4.3.4 Concluding remarks

In this section, we have presented how some modular knowledge can be repre-
sented by a language of nested graphs. To overcome a syntactical lack in the
traditional setting of nested conceptual graph, we have introduced nominals. As
consequence, the different kinds of knowledge found in the literature under al-
ternative semantics ([CM97, Sim98, CMS98]) can now be expressed in a single
framework. Furthermore, by translation to the simple conceptual graph frag-
ment, we have prove the low, though untractable, complexity of reasoning in the
nested framework and we have isolated a fragment of nested graphs for which
subsumption is tractable.

4.3.4.1 Related work

Peirce’s gamma-graphs. Under the name of gamma-system (see e.g., [Rob73,
Thi75]), Peirce also studied a modal version of its propositional graphs, but his
work remained rather informal and unfinished and, so far, the gamma-system
has not yet proved any computational nor cognitive appeals compared to textual
propositional logic.

Hybrid and Description logics. Hybrid logics (see for instance Areces’ recent
thesis [Are00]) and their use of nominals to name worlds in propositional modal
logics have been a source of inspiration for the proposed setting of nested graphs.
It should be noted that most complexity studies in hybrid logics have focussed
on rich fragments for which satisfiability is often difficult or even undecidable.
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Description logics are hybrid logics with a different syntax and a high concern
for low complexity reasoning tasks. Most relevant to nested conceptual graphs is
the fragment ELIRO1, a propositional modal logic with only diamonds, conjunc-
tions and nominal-constants for which Baader et al. [BMT99] propose a graph
representation of formulae and a tractable calculus based on graph homomor-
phisms.

Context logics. Among predicate modal logics, context logics (e.g., [Buv96,
MB97, Buv98]) have in common with nested conceptual graphs that modalities
are associated to terms. Syntactically, a description φ attached to a term t is
represented by a modal formula ist(t, φ) (which reads “from the present context,
φ is true in the context of t”). In [Ker99b], a link between nested graphs and
the context logic of Buvač is further explored and a calculus combining modal-
tableaux and nested projections is proposed for an extension of the language
containing negation.

4.3.4.2 Further work.

Guarded nested graphs have been defined as nested graphs that translate into
guarded simple ones. It remains to capture on nested representations the con-
straints that force the guarded property but a formal presentation would require
some extensions of the syntax; for instance, crazed graphs (Definition 3.1.13)
would need to be able to take part of nested graphs whereas we have deliberately
simplify the setting by only allowing descriptions in normal form. An obvious
necessary condition is that every description in a nested graph must be a guarded
simple graph. Studying the guarded structure of coreference between subgraphs
is left for further work.

Secondly, the extension of the language to some restricted forms of nega-
tion, such as the limited atomic negation of Chapter 4.1, would also be interest-
ing. Indeed, from description logics and modal propositional logics, we know the
tractability of reasoning in some modal fragments including negation. How would
guards interact with negations in the modal predicate framework?

Finally, other forms of nesting would also be worth studying. For instance,
instead of nesting graphs inside concept nodes, we could have adopted a more
usual modal syntax by nesting a graph on the sheet of assertion of another graph
(in the style of negated zones in Chapter 4.2). How useful could graph methods
be in fragments of usual modal predicate logics?





Chapter 5

Conclusions

Conceptual graphs ally symbolic order-sorted reasoning with the visual under-
standing of drawn information. The role of graphical items is twofold: (a) they
compose networks that host pieces of knowledge; (b) they are also the fuel of
reasoning methods. The main results we have achieved relate the diagrammatic
framework to the well-established area of symbolic reasoning. In this context,
conceptual graphs turn out to be related to current interests in fine-structure
studies of the expressiveness/complexity balance. We have been able to occupy
relevant positions in a landscape of fragments of known logical languages.

We have also emphasised salient visual aspects of the diagrams. In our opin-
ion, a better understanding of the computational power of visual items may call
for escaping the shackles of the traditional symbolic computation theory. This
chapter concludes with a brief discussion of some graphical factors that one would
expect to play a significant role in more visually oriented computation models.

In short. The main results that we have achieved can be summarised in:
(i) a systematic exploration of conceptual graph languages
(ii) an analysis of structural properties reappearing in several fragments
(iii) the positioning of conceptual graphs in a landscape of standard logics

More concretely, we can recall a few specific results.

New horizons in poor fragments. Diverging from a classical trend in “pure
logic” where the satisfiability problem has remained the predominant benchmark
for judging a fragment, logics applied to computer science, knowledge represen-
tation or natural language processing emphasise the practical computational fea-
sibility of “poor languages”. Applied logics also stress the importance of decision
problems such as consequence, model checking or model comparison. When we
step down from the pedestal of full first-order logic, other decision problems gain
their independence from satisfiability and therefore, become a relevant source of
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information; “saying less is often hearing more”. Besides observing the separa-
tions of decision problems, new collapses are appear as well. One such equiv-
alence that we have met at the low level of existential conjunctive logic, the
domain of simple conceptual graphs and cliques, concerned the relation between
consequence, truth and model comparison:

for two simple conceptual graphs G and H,
G , H iff Minimal-Model(G) |= H iff H projects onto Normal-form(G)

This key equivalence of decision problems has pushed forward the simple graph
fragment to a central position in the study.

Mappings reign. The model-theoretic approach that we have proposed, re-
veals that simple graphs enjoy a direct resemblance to the structures they repre-
sent. Therefore, the meaning of a simple graph is conveyed by a structure pre-
serving mapping. Furthermore, in the light of the previous equivalence between
decision problems, this direct embedding semantics stands up as a guarantee for
the adequacy of an embedding calculus, projection.

The guarded safety belt. It is common knowledge that tree structures are a
key for efficiency in computation. Tree properties of modal logics translate into
guarded fragments of classical logic. By adapting the notion of guards to simple
graph diagrams, we have brought to light a fragment in which subsumption can be
decided in polynomial time. This guarded fragment of simple graphs includes all
previously known tractable fragments of simple graphs. A notable characteristic
of guarded graphs is that the traditional notion of tree, as non-cyclic paths of
edges, has left the place for one where acyclicity concerns coreferences between
atomic subgraphs. For this guarded fragment, we have proposed a polynomial
time projection algorithm that builds a mapping by eliminating impossible local
correspondences along a single run through the recursive structure of the source
guarded graph.

Extensions. While enriching simple graphs with additional logical connectors,
we have kept in mind those properties that made us advocate for simple graphs:
(i) neat semantics by direct embedding into resembling structures, (ii) the use of
graphical calculi that take the best of the diagrammatic features in the represen-
tations and (iii) the computational power of guards. In particular, the fragments
of discriminated graphs with atomic negation and nested graphs can be embed-
ded into the language of simple graphs. As a consequence, guarded restrictions of
these languages enjoy a tractable consequence problem. Furthermore, the proof-
tree construction of tableau algorithms has been combined to projections in an
analytical calculus for first-order logic conceptual graphs.
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The connections that we settled between conceptual graphs and symbolic
logics are bidirectional. We can learn from standard logic interesting properties
of graph languages and adapt symbolic techniques to overcome the limitations of
some pure graphical reasoning. Furthermore, links to symbolic logics allow new
developments of conceptual graphs to be more systematic and understandable.
Reciprocally, we can point out structural properties that naturally emerge from
the diagrams and translate visual techniques into the symbolic world.

Open questions. All the results that we have obtained suggest new questions.
We raise a few of them that, in our opinion, could present some interest for the
conceptual graph research agenda.

• Multi-projection. Projection that is based on a single homomorphism, is
incomplete for the language of simple graph extended with atomic negation.
However, could we define an efficient consequence algorithm with simulta-
neous mappings to cope with the disguised disjunctions in the fragment?
In other words, can we incorporate the branching idea of tableaux directly
into the projection method?

• New graph languages. In the line of this study, well-behaved modal and
hybrid logics may remain an important source of inspiration to decidable
conceptual graph languages. In particular, we may wonder which “modal
negations” could elegantly fit the diagrammatic framework.

There might also be relevant graphical applications of non-classical seman-
tics such as linear logic that already uses diagrammatic proof-nets.

• Graphical properties of guarded-FOL. Could a graph approach bring a
novel view on the consequence problem in the full guarded fragment of FOL
or in rich subfragments of it? Can the clique property of loosely guarded
fragments be exploited from a purely graphical point of view?

• Usable modal predicate logics. Tractable modal predicate logics may
find direct applications to network technologies and partitioned knowledge
bases. Can we expand the nested fragment presented in this work into new
tractable areas? How far can we avoid well-known problems on cross world
quantification?

• Meta-guards. The tree property has occurred recurrently in this the-
sis: under its most usual setting of acyclic paths of edges in a graph and
later, in the acyclicity of coreferences between atomic subgraphs. It would
be very interesting to lift again the observation view point and consider
acyclic networks of (not necessarily atomic) subgraphs that are bound in
size. Some recent developments on hypertree characterisations of conjunc-
tive queries[GLS01] in database theory suggest that the projection method
could preserve its polynomial complexity.
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The general patterns behind significant complexity results are largely matters
like: (a) guarded syntax, (b) the tree model property, and (c) embedding seman-
tics. This outcome of our expressiveness/complexity analysis raises the question
how such features relate to actual visual reasoning. The remainder of this chapter
is a very brief discussion of the main points as we see them.

But once again, why are drawings efficient? With no adapted tools at
hand (i.e., the lack of a geometrical computation model of equal standing to
Turing machines), we cannot provide a definitive answer. However, in the light of
our gathered experience on drawings, we can briefly discuss the potential relevance
of two graphical factors that one would expect to play a significant role in more
visually oriented computation models.

• Direct mapping to reality. It is generally acknowledged that a large part
of the cognitive efficiency of drawings resides in their faithfulness to what
they represent.

In the specific case of conceptual graphs, the resemblance of pictures to their
model has recurrently emerged. In an obvious way, this property eases the
interpretation process by providing a direct match between the intuitive
meaning and the formal one. For example, a path is a self-speaking connec-
tion between items. Nesting conveys the pictorial message of a delimited
zone reachable from another one; formally, world accessibility. Further-
more, we have related this close resemblance between representation and
represented to a collapse of distinct decision problems.

We should note that there is a preliminary condition for a drawing to convey
the intended intuitive meaning. If complexity studies often try to be as neu-
tral as possible with respect to the layout of information1, the disposition of
graphical items in a drawing is crucial. Clarity is not a property of drawings
in general, but only of “good” ones. A good drawing must mirror the infor-
mation it represents. Drawing writers have to respect some Gricean max-
ims of quantity in order to convey an informative message. Such maxims
are proposed by Oberlander [Obe96] in the framework of computer-assisted
design in electronics or by Tufte in his compendium of graphics [Tuf83].
Closer to our concept languages, automatised tools have been developed for
drawing “readable” lattices of concepts in formal concept analysis; see e.g.,
[Wil89]. It seems difficult to define quality guidelines that would embrace
all kinds of graphics. However, this is possible in specific domains such as

1We have seen that the layout can also be relevant to classical complexity measures, witness
the case of a structure which is expanded with a universal relation while preserving a tolerable
size: only the tuples of objects that are not in relation with each other are encoded. Metaphor-
ically, we can imagine this situation as if the negative of a photo would be lighter to carry than
the usual positive printing, but just as informative.
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the conceptual graph framework. For example, it is often taken for granted
that branches of a tree should not cross each other and that an orientation
is chosen in the two-dimensional plane from the root to the leaves. Com-
plete graphs (cliques) are almost always represented with a regular placing
of the nodes on a cycle. Lattice drawings enjoy symmetrical patterns.

With its linear disposition of information, the tape of a Turing machine
cannot faithfully capture simple geometrical features such as a branching
or a cycle. Hence, following a cyclic path on any linear representation of
a graph would appear to cost more efforts than shifting a pencil along the
same path in a two-dimensional drawing of the structure.

So, if one admits “good drawing norms” as part of a graphical syntax, the
faithfulness of drawings is efficiently exploited by the human vision to anchor
recognised geometrical constraints in a representation to similar constraints
in the represented situation. On the contrary, linear representation systems
will not grant the easiness of recognising some geometrical patterns.

• Gestalt view. The human ability of recognising shapes and mapping them
on each other is striking. One can argue that it is the fruit of a continuous
training starting in early childhood when we are asked to learn concepts on
images, assemble similar representations or picture reality.

The perception of forms on different levels of “shallowness”2 in a represen-
tation has also been salient in guarded and nested drawings. By making
abstraction of some “details”, we have been able to extract spinal structures
that were essential to the efficiency of computing the reasoning.

The possibility of perceiving irregularities in a gestalt view of a drawing
enables to recognise regular patterns such as trees or cliques. Acyclicity
seems to be verifiable at first sight (provided the respect of norms discussed
previously): by bringing an irregularity in the picture, the intersection of
two branches must disfigure the general form so much that it captures the
attention in an overview examination. Trees are not only easy to be recog-
nised; they appear to facilitate form matching. The mapping of a tree
on another graph is guided by the direction chosen in the representation.
This suggests the one round elimination process that has been adopted for
guarded projection.

Based on our conventional representation of cliques (i.e., with a regular
cyclic disposition of nodes), the verification that a given graph is really
complete also seem to be an instantaneous process of finding if any irregu-
larity attracts the attention. This does not mean that the clique problem

2From a symbolic perspective, recognising and formally applying levels of under-
specification in computational linguistics is a goal of the project Computing with meaning ;
see http://turing.wins.uva.nl/ mdr/Projects/CoMe/index.html



166 Chapter 5. Conclusions

(i.e., finding a clique of a given size in a graph) should be easier when ma-
nipulating pictures, but more that by visualising an almost complete graph,
we obtain “for free” its complementary; “the photo and its negative”3.

To take a final concrete example, the perception of global shapes and irreg-
ularities also forms the foundation of a well spread technique of tendency
analysis on stock-exchange graphics. We note that these graphics are only
converted to matrices of numbers to serve as representation for computer
treatment; People seem to extract/perceive a more easily usable information
from reading the drawings.

The gestalt view on drawings seems to offer the possibility of immediately
separating distinct levels of information and capturing salient irregularities.
On the contrary, extracting similar information from “equivalent” linear
representation often necessitates a more costly systematic analysis of the
data.

The upshot of our discussion is that there are further features of visual reason-
ing not captured by our conservative approach. But we also see this as a worth.
The symbolic approach in the preceding chapters allows us to see more clearly
what is genuinely visual and what isn’t.

Brief summary. Visual reasoning is a key area of current interest where a lot
of disciplines meet: philosophy, computer science, logic, linguistics. Conceptual
graphs live at the interface of many of these. In this study we have investigated
them in parallel with classical perspectives from logic, language and computation,
exploiting analogies wherever possible. One general advantage of this cautious
approach is a certain discipline of thinking in an area which is sometimes dom-
inated by appealing metaphors. Nevertheless, there also remains an empirical
cognitive science dimension to the workings of visual patterns, which transcends
what can be gotten from Turing machines and language fragments and therefore,
this thesis is not the last word on pictures...

3In a symbolic representation, we can also minimally encode the graph as the set of pairs of
points that are not connected, but in the picture we do not need to “cheat” on the input.
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Samenvatting

Pictografische talen komen in vrijwel elk domein voor, van verkeersborden tot
technische vormgeving of abstracte kunst. Computerwetenschap vormt hierop
geen uitzondering. Het vraagstuk van het succes van visuele informatie in mense-
lijke communicatie, en het geautomatiseerde gebruik ervan, nemen een promi-
nente plaats in op de agenda van de kunstmatige intelligentie. Rekening houdend
met uiteenlopende aspecten van grafische talen in kennisweergave, positioneert en
ontwikkelt deze dissertatie een specifiek grafisch raamwerk, conceptuele grafen,
op een kruispunt van logica, taal en berekenbaarheid.

Diverse cognitieve en linguistisch efficiënte kenmerken van plaatjes en tekenin-
gen spelen een onbetwistbare rol in de menselijke en mens-machine communicatie.
Naast voordelen op het gebied van representatie van informatie, onderstreept de
computationele efficiëntie van sommige diagram-klassen de relevantie van tekenin-
gen in geautomatiseerd redeneren.

In deze dissertatie wordt computationele complexiteit uitgelegd in traditionele
symbolische termen. Dit legt een gemeenschappelijke basis voor een nuttige in-
teractie tussen normale textuele logica en grafische talen. Ten eerste onthullen de
hier bestudeerde grafische systemen het bestaan van logische fragmenten met
aantrekkelijke computationele complexiteit, die buiten de normale paden van
de symbolische logica vallen. Omgekeerd blijkt een aantal symbolische tech-
nieken zich goed aan te passen aan onze grafische raamwerken. Bijvoorbeeld het
begrip van ’wachters’ voor kwantor-uitdrukkingen, dat oorspronkelijk opkwam
bij de vertaling van modale logica in klassieke logica, omschrijft een nieuwe vi-
suele notie van bomen in het conceptuele graaf-paradigma. Ten tweede kunnen
redeneer-technieken wederzijds worden uitgewisseld of gecombineerd. Ten slotte
bieden cognitieve aspecten, die worden herkend in de perceptie en manipulatie van
diagrammen, nieuwe suggesties voor het uitbreiden van gevestigde symbolische
computatie-modellen met additionele visuele kenmerken.

Het centrale thema van deze dissertatie is het verkennen van de interacties
tussen conceptuele graaf-fragmenten en symbolische logica, in het licht van stan-
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daard symbolische complexiteitsmodellen. De voornaamste resultaten, die wor-
den verkregen, betreffen grafische bewijs-methoden voor gevolgtrekkingsproble-
men en hun complexiteitsanalyse in verschillende talen van conceptuele grafen.
Door de studie in een breder perspectief van visuele informatie in kunstmatige
intelligentie te plaatsen hopen we bovendien bij te dragen aan een algemener
onderwerp: het beter begrijpen van de formele aspecten van redeneren met dia-
grammen. Dit is de noodzakelijke basis voor verdere vruchtbare verbindingen
tussen symbolische en grafische perspectieven.

Dit proefschrift bestaat uit vijf hoofdstukken. De eerste twee hoofdstukken
plaatsen conceptuele grafen in het perspectief van meerdere disciplines, die be-
trokken zijn bij kunstmatige intelligentie. Hoofdstuk 1 relateert conceptuele
grafen aan historische verschijningen van diagrammen in logica, pictografische
talen in kennis-weergave, cognitieve studies van visuele informatie en diagram-
men die worden gebruikt bij natuurlijke taal-analyse. Het brede bereik van dit
overzicht legt nadruk op de relevantie van fijnmazige studies van visuele aspecten
in alle gebieden van kunstmatige intelligentie. Computationele logica kan wor-
den gezien als een gemeenschappelijke grond voor al deze gebieden als ze worden
toegepast op automatisch redeneren. Dit is het onderwerp van het volgende
hoofdstuk.

Hoofdstuk 2 presenteert het technische raamwerk waarin grafische systemen
uit de latere hoofdstukken worden geëvalueerd. Symbolische complexiteitsbegrip-
pen bieden een fijn gestructureerde formele analyse van redeneren met de grafen
en verbindt de studie van visueel redeneren met huidige interessen in expres-
siviteit en complexiteit binnen de symbolische logica. Vervolgens wordt een geo-
grafie van complexiteitsresultaten in klassieke en modale fragmenten ontwikkeld.
Het terrein voor de studie van conceptuele graaf-talen wordt op deze manier
verkend: meerdere logische beslissingsproblemen blijken relevant en op homo-
morfisme gebaseerde methoden worden gerelateerd aan de probleem-equivalentie
tussen model-vergelijking en consequentie die voorkomt in talen met een lage
expressiviteit.

Hoofdstuk 3 introduceert het centrale fragment van simpele conceptuele grafen
en projectie, een bewijsmethode voor logisch gevolg gebaseerd op gelabelde graaf-
homomorfismen. Naast de normale semantiek van simpele conceptuele grafen, die
wordt gegeven door een vertaling naar existentiële conjunctieve eerste-orde-logica,
wordt ook een theoretisch benaderingsmodel gepresenteerd. Het biedt een direct
handvat voor het associëren van projecties met model-vergelijkingen. Door het
definieren van een notie van meta-acycliciteit, gebaseerd op bewaakte kwantifi-
catie en een aangepast projectie-algoritme, wordt een nieuw, in polynomiale tijd
beslisbaar fragment van simpele conceptuele grafen aan het licht gebracht (Theo-
rem 3.3.7). Deze taal bevat alle voorheen bekende polynomiale graaf-fragmenten
(inclusief simpele conceptuele grafen die kunnen worden veranderd in equivalente
bomen).

Hoofdstuk 4 verkent verschillende mogelijke uitbreidingen van de eerdere hoofd-
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taal. Allereerst wordt de toevoeging van atomaire negatie onderzocht. In graaf-
representaties definieert een onderscheidingscriterium tussen positieve en negatieve
informatie een fragment van simpele grafen met atomaire negatie, waarin projectie
nog steeds toepasbaar blijkt (Theorem 4.1.19). Verder is in de bewaakte beper-
king van dit fragment het consequentie-probleem polynomiaal (Corollary 4.1.22).
Ten tweede stellen we een taal van conceptuele grafen voor die equivalent is
met eerste-orde-logica, plus een volledige bewijs-methode die tableau-constructie-
regels en projecties combineert (Chapter 4.2). Tenslotte wordt in het resterende
deel van het hoofdstuk een modaal perspectief van het schakelen van grafen
bestudeerd. Het gebruik van de notie van bewaakte kwantificatie in haar ori-
ginele modale raamwerk maakt het mogelijk een taal van ’geneste’ grafen met
een polynomiale geassocieerde projectie te definiëren (Corollary 4.3.15).

In het laatste hoofdstuk trekken we onze uiteindelijke conclusies uit de com-
plexiteits- en expressiviteits-resultaten, verkregen via de gekozen route door het
landschap der conceptuele grafen. Meer in het algemeen suggereert de geconsta-
teerde succesvolle interactie van grafische en symbolische aspecten veelbelovende
verdere paden naar meer intrinsiek visueel georienteerde vormen van bereken-
baarheid.
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