Saying It with Pictures:

a logical landscape of conceptual graphs

ILLC Dissertation Series DS-2001-09

A
Euil

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: i1lc@wins.uva.nl
homepage: http://www.illc.uva.nl/

Saying It with Pictures:

a logical landscape of conceptual graphs

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof.dr. J.J.M. Franse

ten overstaan van een door het college voor

promoties ingestelde commissie, in het openbaar
te verdedigen in de Aula der Universiteit
op woensdag 14 november 2001, te 14.00 uur

door
Gwenael Nang Kerdiles

geboren te Saint-Denis, Ile de la Réunion, France

Promotors: prof.dr. J.F.A.K. van Benthem
prof.dr. A.M.K. Preller
Co-promotor: prof.dr. F.J.M.M. Veltman

Faculteit der Geesteswetenschappen
Afdeling Wijsbegeerte

Universiteit van Amsterdam
Nieuwe Doelenstraat 15

1012 CP Amsterdam

The Netherlands

and

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Université Montpellier 11

161 rue Ada

34392 Montpellier Cedex 5

France

Copyright (©) 2001 by Gwenael N. Kerdiles
Printed and bound by Print Partners Ipskamp, Enschede.
ISBN: 90-5776-073-8

“J’ai besoin d’'un mouton. Dessine-moi un mouton

s
F)
Alors j’ai dessiné. s

Il regarda attentivement, puis :
- Non! celui-la est déja trés malade. Fais-en un autre.

Je dessinai :
Mon ami sourit gentiment, avec indulgence :
- Tu vois bien. .. ce n’est pas un mouton, c’est un bélier. Il a des cornes |...]

Et je lancai :

- Ca c’est la caisse. Le mouton que tu veux est dedans.

Mais je fus bien surpris de voir s’illuminer le visage de mon jeune juge :
- C’est tout a fait comme g¢a que je le voulais!”

[SE46]

A Nina

Contents

Acknowledgments xi
Abstract xiii
Introduction 1
1 Diagrams and visual information 3
1.1 Diagramsinlogic L Lo 4
1.1.1 Frege’s graphs 4

1.1.2 Peirce’s existential graphso)

1.1.3 Conceptual graphs oo 6

1.1.3.1 Positive information 6

1.1.3.2 Negation 8

1.1.3.3 Nested conceptual graphs 9

1.1.4 Concluding remarks L. 10

1.2 Conceptual graph diagrams and artificial intelligence 11
1.2.1 Semantic networks L 11

1.2.2 Description logics oo 11

1.2.3 Contextsin AL 12

1.2.4 Conclusion 13

1.3 The visual impact of CG drawings 13
1.3.1 Overview of the information drawn 14

1.3.1.1 Partition of the space. 14

1.3.1.2 Spinal structure. oL 15

1.3.2 Faithfulness of drawings 15

1.3.2.1 Simple graphical components. 16

1.3.2.2 Limited abstraction. 16

1.3.3 Additional information 17

1.3.3.1 Generalisation of semantic conventions. 17

1.3.3.2 Interaction of graphical effects and semantic conventions. 18

1.3.4 Conclusion 18

Vil

1.4

1.5

The
2.1
2.2

2.3

24

2.5

2.6

Conceptual graphs and the structure of discourse
1.4.1 Bindings in conceptual graphs and discourse

1.4.1.1 Conjunction of conceptual graphs

1.4.1.2 Negation e
1.4.2 Discourse representation theory
1.4.3 Dynamic view on conceptual graph semantics
1.4.4 Concluding remarkso
Conclusions L

complexity of reasoning with graphs and fragments
Conceptual graph drawings and formal languages
Computation models L L
2.2.1 'Turing machines and equivalent models
2.2.2 Time and space are chosen as measured resource variables
2.2.3 A detour into precise encodings
2.2.3.1 The case of formulae.
2.2.3.2 Finite structures.. oL
2.2.3.3 Graphs and conceptual graphs.
2.2.4 Complexity classes that will be encountered
2.2.5 Reductions
The classical decision problem
2.3.1 The classical decision problem in fragments of FOL
2.3.1.1 Monadic versus polyadic.
2.3.1.2 Quantifier prefixes.
2.3.1.3 Finite signature L.
2.3.1.4 Modal restrictions.
Benchmarks
2.4.1 Four problems
2.4.1.1 Satisfiability. oL
2.4.1.2 ConsSequeNnCe. v it
2.4.1.3 Model checking. L.
2.4.1.4 Model comparison.
2.4.2 Results that set thescene.
2.4.3 Conclusions
2.4.3.1 A festival of parameters.
2.4.3.2 Complexity collapses and divergences between problems.
A key fragment:existential conjunctive FOL
2.5.1 Semantic relationships Lo
2.5.2 Complexity
2.5.3 Harmless meaning postulates
2.5.4 Conclusion
2541 Aroadmap.
Fragments richer than FOLg3,yo 0oL
2.6.1 Including atomic negation
2.6.1.1 Benchmark problems on models
2.6.1.2 Satisfiability problem

viii

2.6.1.3 Consequence problem 55

2.6.2 Existential first-order logic oL 55

2.7 Two steps backwards into tractable worlds 58
2.7.1 Simple conceptual trees 58
2.7.2 A bit of negation: non-interlaced positive and negative information 60

2.8 The travelled FOL landscape 62
2.9 The modal perspective: expressivity at low costs 63
2.9.1 The existential conjunctive guarded fragment 64
2.9.1.1 Note on the complexity of the algorithm 67

2.9.2 The modal cousin of FOLgz5 Ay -« -« o o oo v oo 69
2.9.3 Atomic negation at nocost 69
2.9.4 Back to untractabilityo 70
2.95 Finitebounds L 71
2.9.6 Description logics o oL 71
2.9.7 A landscape of modal complexity results 72

2.10 Conclusions 73
3 Positive information 75
3.1 The cornerstone: simple conceptual graphs 76
3.1.1 Language signature. Lo 76
3.1.2 Syntax 79
3.1.2.1 Notations 79

3.1.3 Semantics e e 80
3.1.3.1 Structures 80

3.1.3.2 Assignments 81

3.1.3.3 Truth definition for SCGs 82

3.1.4 Canonical forms 83
3.1.4.1 Normal forms 83

3.142 Crazedforms, 85

3.1.5 Textual correspondences 87
3.1.5.1 Translation of the support 87

3.1.5.2 Translation to FOL5 1}, component by component . . 88

3.2 Consequence proofs by homomorphism 91
3.2.1 Projection L 91
3.2.1.1 Independent sub-projections 92

3.2.2 Canonical model L L 93
3.2.3 Completeness theorem, 96
3.2.4 Tractable simple conceptual trees 98
3.2.4.1 Simple conceptual trees L. 98

3.2.4.2 SCGs transformable into SCTs 99

3.2.4.3 Tree coverings of crazed graphs 100

3.3 Guarded simple conceptual graphso 103
3.3.0.4 Ordering derived from a guarded covering 104

3.3.0.5 On the FOL-translation of guarded simple graphs . . . 105

3.3.1 Complexity of consequence for guarded SCGs 107
3.3.1.1 Description and complexity of the algorithm 108

1X

3.3.1.2

3.4 Conclusions e

4 Richer pictures

4.1 Atomic negation

4.1.1 Polarised simple graphs

4.1.1.1
4.1.1.2
4.1.1.3

Embedding semantics

Positivising .
Projection .

4.1.2 Insufficiencies of projection
4.1.3 Discriminated polarised simple graphs
4.1.4 Completeness and tractability
Discriminated graphs and the splitting of labour
Projection completenesso
4.1.4.3 Tractability harvest

4.1.5 Concluding remarks .

4.2 Full classical negation
4.2.1 Conceptual Graphs . .
Negation box syntax
Interpretation of negated graphs
4.2.1.3 Translation to FOL

4.2.2 Combining tableaux with projections
Decompositionrules

4.14.1
4.1.4.2

4.21.1

4.2.1.2

4.2.2.1
4.2.2.2

Completeness

of the calculus

4.2.3 Related work and further directions

4.3 Nested graphs

4.3.1 Modularity by nesting
The traditional conceptual graph approach to nesting .
Exploiting the power of guards in the nested setup . . .
4.3.2 Nested conceptual graphs,

4.3.1.1
4.3.1.2

4.3.2.1
4.3.2.2

4.3.3.1
4.3.3.2

4.34.1
4.3.4.2

5 Conclusions
Bibliography
Index

Samenvatting

Syntax . . .

Nested structures
4.3.3 Complexity and Guards,
From nested graphs to simpleones
Complexity of reasoning in nested graphs
4.3.4 Concluding remarks .

Related work
Further work.

113
114
114
115
115
118
120
121
122
122
125
126
127
128
128
128
131
132
133
134
137
141
142
143
143
146
146
147
149
150
151
157
158
158
159

161

167

181

183

Acknowledgments

In the first place, I would like to express my deep gratitude to Johan van Ben-
them, Anne Preller and Frank Veltman. I could not have dreamt having a better
team of supervisors. Their enthusiasm for new visual escapades, their sound
guidance through the main tracks and their fruitful complementarity offered me
the perfect support to carry out this journey through logical landscapes. Anne
made me discover the graphical software Turing’s world in a basic logic course
we taught together. I enjoyed her constant demand for mathematical precision
in the blurredness of visual issues. Frank warmly welcomed me in Amsterdam
and introduced me to various aspects of reasoning. His daily care and his taste
for coffee with “character” gave a pleasant touch to my studies. Johan joined
the voyage in its second half. His availability, his rigourous analysis, his vast
knowledge of the fields involved and his ability of extracting a clear line from the
gestalt view of my muddle-headed propositions helped me tremendously to head
for interesting destinations.

I am indebted to many people who have contributed in one way or another to
make this exploration possible and enjoyable. I would like to particularly thank
some of them.

Several colleagues and teachers stimulated the tracks followed in this work.
As a compagnon de route, Patrice Duroux brought to me a note of Jazz and a
valuable friendship through these doctoral years. Besides my supervisors, Dick
de Jongh also saw the interest in this Franco-Hollando-Graphico-Logico-project
and helped to make it happen. During a study year spent in Montreal, Gilles
Brassard and Pierre McKenzie opened my eyes to the beauty of computational
complexity theory. Michel Chein and Marie-Laure Mugnier let me meet concep-
tual graphs and rightly insisted on the graphical nature of these languages. In
interesting discussions, Jean-Francois Baget, Olivier Guinaldo, Eric Salvat and
Genevieve Simonet gave me the opportunity to deepen my knowledge of the for-
malism. Marco Aiello, Maria Aloni, Carlos Areces, David Beaver, Paul Dekker,
Rosella Gennari, Jelle Gerbrandy, Jeroen Groenendijk, Maarten de Rijke, Robert

x1

van Rooy, Martin Stokhof and Allard Tamminga were not only efficient ambas-
sadors of Amsterdam’s dynamic vision on logic, language and computation; their
own dynamism created a very stimulating working environment. Bé Bernini,
Ria Beentjes, Peter Blok, Josette Durante, Erik-Jan van der Linden, Ingrid van
Loon, Kees Ostendorf, Marjorie Pigge, Marjan Veldhuisen, Marco de Vries and
Reni Webb were efficient skippers on the administrative reef. For their relevant
feedback at the conclusion of this journey, I would also like to thank the exam-
iners of the graduation committee: Franz Baader, Michel Chein, Jan van Eijck,
Marie-Laure Mugnier, Maarten de Rijke and Martin Stokhof.

Anne, Bert, Bridget, La fondation Antoine de Saint-Ezupéry, Marieke, Mike,
Mireille, Nynke, Oscar and Rienk deserve my thanks for their contribution to the
text and pictures in this thesis.

Merci a Edouard and Steffi, for their happiness and for kindly accepting to
be my paranimfs; Raphaél, for his forthcoming novel; Bernard, for his friendship;
Vince, for his Breton-Catalan perspective on life; my badminton-mates for all the
smashed shuttles used as a stress-safety-valve; my Ba Ngoai, Bert, Diana, Hervé,
Jaap, Jorge, Nynke, Stephan, Sytske and Valérie, for being a wonderful family.
My parents’ encouragement and support mean very much to me.

I dedicate this book to Nina and Marieke. My doctoral experience would not
have been as exciting without their love and extraordinary patience.

’s Gravenhage Gwen Kerdiles
Oktober, 2001.

xil

Abstract

Pictorial languages occur in almost every field from roadsigns to technical design
or abstract art. Computer science is no exception. Understanding the reasons for
the success of visual information in human communication and exploiting them
in an automated fashion has gained a prominent place in the artificial intelli-
gence agenda. By considering several aspects of graphical languages in knowledge
representation, this thesis positions conceptual graphs, a specific diagrammatic
framework, at a crossroad of logic, language and computation.

Some of the cognitive and linguistic efficient features of drawings play an
indisputable role in human and human-machine communication. Besides these
interesting representational standpoints, the computational efficiency of reasoning
we obtain on some classes of diagrams emphasises the relevance of pictures in
automated reasoning.

In this dissertation, computational complexity is understood in traditional
symbolic terms. As a result, this lays a common ground for a beneficial interac-
tion between usual textual logics and graphical languages: in the first place, the
diagrammatic systems we study reveal the attractive computational complexity of
logical fragments that fall outside the usual paths of symbolic logic. Conversely,
some symbolic characterisations adapt well to the diagrammatic frameworks. For
instance, the notion of guards, which arose from the translation of modal logics
into classical ones, defines a new visual notion of tree in the conceptual graph
paradigm. Moreover, reasoning techniques can be exchanged between both sides
or combined. Finally, cognitive aspects that are recognised in the perception and
manipulation of diagrams offer new tracks for expanding established symbolic
computational models with additional visual features.

The central issue of this thesis is to explore these interactions between con-
ceptual graph fragments and symbolic logics, in the light of standard symbolic
complexity models. The main results that are presented concern graphical proof
methods for consequence problems and their complexity analysis in several con-
ceptual graph languages. Furthermore, by bringing the study into the wider

xiii

perspective of visual information in artificial intelligence, we aim at contributing
to the general issue of a better understanding of some properties of reasoning with
diagrams; this appears to be the necessary basis for further promising connections
between symbolic and graphical perspectives.

The work is organised in five chapters. The first two chapters position concep-
tual graphs in the perspective of several disciplines involved in artificial intelli-
gence. Chapter 1 relates conceptual graphs to historical appearances of diagrams
in logic, pictorial languages in knowledge representation, cognitive studies of vi-
sual information and drawings used in natural language processing. The wide
scope of this overview stresses the relevance of fine-grained studies of visual prop-
erties to the artificial intelligence community as a whole. Computational logic
may be seen as common ground for all these fields when applied to automated
reasoning; this is the subject of the next chapter.

Chapter 2 presents the technical framework in which the graphical systems
used in the rest of this work will be evaluated. Symbolic complexity analysis offers
fine-structure formal analysis of reasoning with the graphs and connects the study
of visual reasoning to current interests in expressiveness and complexity in sym-
bolic logic. A geography of complexity results in classical and modal fragments
is then depicted. It sets the scene for the study of conceptual graph languages:
several decision problems are relevant and homomorphism-based methods rely on
problem equivalence (between model comparison and consequence) that occur in
low-expressive languages.

Chapter 3 introduces the core fragment of simple conceptual graphs and pro-
jection, a consequence calculus based on labelled graph homomorphism. In ad-
dition to the usual semantics of simple graphs, which is given by a translation
to existential conjunctive FOL, a model-theoretic approach is also provided. It
offers a direct handle for associating projections with model comparisons. By
defining a notion of meta-acyclicity based on guarded quantification and an ap-
propriate projection algorithm, a tractable guarded fragment of simple graphs is
highlighted (Theorem 3.3.7). It includes all previously known tractable fragments
of simple conceptual graphs (i.e. graphs that can be transformed into equivalent
trees).

Chapter 4 explores different possible extensions of the core language. First,
the addition of atomic negation is considered. In the graph representations, a
separation criterion of positive from negative information defines a fragment of
simple graphs with atomic negation in which projections apply (Theorem 4.1.19).
Furthermore, in the guarded restriction of this fragment, consequence is polyno-
mial (Corollary 4.1.22). Secondly, for a language of conceptual graphs equivalent
to first-order logic, we propose a complete proof method combining tableau con-
struction rules and projections (Chapter 4.2). Finally, in the remaining part of
the chapter, a modal perspective for graph nesting is studied . Reimporting the
notion of guards in this modal framework enables us to define a language of nested
graphs with a tractable associated projection (Corollary 4.3.15).

Xiv

In the last chapter, we draw our main conclusions from the complexity results
obtained along our chosen route through conceptual graph landscapes. In partic-
ular, the successful interaction of graphical aspects with symbolic ones suggests
promising further paths towards more visually oriented computation.

XV

Introduction

Mankind has used pictorial representations to convey information since the first
prehistoric wall paintings. The resemblance of pictures to what they represent
and their universal nature are often put forward as reasons for the efficiency of
pictures as a mean of communication. In addition, one can identify graphical
features that play a role in the efficiency of reasoning with pictures. The two
aspects, representation efficiency and inference efficiency, are complementary in
this study of a particular class of graphical languages, conceptual graphs. The
aim of this dissertation is to examine some cognitive and computational impacts
of representing knowledge with conceptual graph diagrams.

The course of this dissertation is almost linear. The first chapter offers a
wide perspective in exploring several facets of the representation of information
by conceptual graphs in the light of logic, artificial intelligence, cognitive science
and linguistics.

The second chapter introduces the most salient theme of this dissertation, the
complexity of logical reasoning in conceptual graph systems. Symbolic complexity
theory offers the required fine structure to define the formal problems relevant
to the study and to explore the connections between the diagrams and symbolic
logics.

The third chapter explores in detail the cornerstone fragment: simple concep-
tual graphs. A particular interest concerns the complexity of an homomorphism-
based calculus that takes advantage of guarded quantification in the diagrams.

In the fourth chapter, the addition of different forms of negation to the simple
graphs and the modal nature of nested graphs are investigated. The tractability
of reasoning in these fragments and the definition of graphical complete calculi
remain our main concerns.

In the final chapter, the main conclusions are drawn from the lessons learned
along this systematic investigation.

Chapter 1
Diagrams and visual information

Figure 1.1: Message sent on the Voyager space probe

Diagrams occur in almost every domain where information is communicated.
Examples are numerous, from the geometrical demonstration of Pythagoras the-
orem to a diagrammatic message sent to possible extra-terrestrial life forms. Part
of the success of diagrams as a means of communication is due to the simple
way in which complex information is represented. This chapter examines several
aspects of the diagrammatic representation of knowledge, with a constant focus
on a particular point of interest, conceptual graph diagrams.

To begin with, the occurrence of diagrammatic representations in the history
of logic is explored. Peirce’s predicate logic of existential graphs was introduced
at the turn of the nineteenth century. It is a particularly important source of
inspiration for the development of conceptual graphs.

In computer science, graphical features are extensively exploited on the repre-
sentational level as well as on the computational level. Some of these applications
to artificial intelligence are examined in part two of this chapter.

The essence of diagram processing resides in their prime perceptual effect. In
the third part, the cognitive impact of conceptual graph diagrams is explored.

As a preponderant form of communication between humans, natural language
should not be disregarded. The last part of this chapter is an attempt to relate

4 Chapter 1. Diagrams and visual information

the structure of conceptual graph drawings to the structure of discourse in natural
language.

Diagrams? Before diagrams are explored, a brief presentation of some terms,
that all correspond to graphical representations, is necessary.

Picture will be used as a generic term to refer to a graphical representation
laid on a delimited zone of a two-dimensional space. Images and drawings are
both pictures. Conventionally, images refer to pictures that can be decomposed
into a finite amount of minimal points (e.g., pixels, bitmaps), whereas drawings
can be formed of continuous lines. With the assistance of computers for drawing
pictures this difference between images and drawings is even more subtle: while
a computer picture can be conceived and stored as a drawing (e.g. a vectorial
representation), its printing on a screen will be an image limited by the resolution
of the screen.

Diagrams correspond to schematised drawings in which graphical constituents
are associated with a well-defined semantics. Finally, a graph refers to an abstract
mathematical object composed of nodes connected by edges. It can be physically
represented by a diagram.

The specific nature of diagrams will be discussed in the part dedicated to the
cognitive impact of conceptual graph diagrams (Chapter 1.3). Before that, some
graphical systems that preceded conceptual graphs in logic are presented.

1.1 Diagrams in logic

Graphical knowledge representation systems are not a new phenomenon. FKEigh-
teenth century Euler circles and nineteenth century Venn diagrams are still pop-
ular for manipulating sets and boolean operations. Although most languages of
modern logic are textual, it is worth noting that the pioneer research for the
foundation of predicate logic was presented in graphical forms: at the end of
the nineteenth century, Frege and Peirce independently introduced two graphical
systems of first-order logic in an attempt to formalise mathematical reasoning.

1.1.1 Frege’s graphs

The language proposed by Frege in his Begriffsschrift [Fre79] represents sentences
by trees derived from four graphical primitives:

1. “assert A”: F—A
2. “not A”: "T—A

T,

3. “B implies A”:

1.1. Diagrams in logic 5

4. “for every x, Px”: —%— Px

For instance, “assert that for every x, there exists y such that Pxy and Pyz” or

—Y I;Pyx
equivalently, “Vz—Vy(Pxy — —Pyx)” is represented by Pxy.

Similar to a tree presentation of a tableau calculus proof, different parts of the
representation are distinguished by a disposition on branches. In this particular
language, the premiss and the conclusion of an implication occur on different
branches. Despite this graphical feature, a representation reads in a linear fashion
that clearly resembles its textual counterpart: from left to right and in a depth-
first way such that at a branching point, the lowest path —i.e. the premiss of an
implication— is first explored.

For predicate logic, Frege’s graphical language has long since been replaced
by Peano’s textual notation. Nevertheless, the importance of visual information
to computers and robots has brought back another logical system of this period
to the research agenda, Peirce’s graphs.

1.1.2 Peirce’s existential graphs

Peirce’s languages and calculi have been studied extensively; see e.g., [Pei58],
[Rob73], [Thi75] [Shi93] or [Ham98]. It is not the aim to describe these logical
systems in detail, but to point out some features of Peirce’s existential graphs
that have been adopted in conceptual graphs.

A first feature of Peirce’s graphs, that is fundamental to conceptual graphs,
is the role of a primary surface. The sheet of assertion fixes the bounds of the
space on which the representations of the different pieces of information that are
asserted are disposed. Furthermore, the two dimensionality of the plane is used
to represent the conjunction of all drawn components.

A
B C

For instance, represents the conjunction of A, B and C.

The symmetry of conjunction is induced by the fact that there is no predefined

order of the conjuncts, as opposed to a textual formula read from left to right.
In Peirce’s graphs, existentially quantified variables are represented as lines

connecting the predicate occurrences of which they are arguments.

A
e

For instance, is equivalent to Jz(Ax A Bx A Cz).
Direct connections through edges will similarly be exploited by conceptual graphs
to represent the relationship between predicate occurrences and their arguments.

6 Chapter 1. Diagrams and visual information

Finally, negations are represented as closed lines cutting off the negated part
from the rest of the assertion.

A

For instance, is equivalent to A A = B.
The place where existential quantification occurs is defined by the outermost zone
in which a line that represents the quantified variable in question appears.

For example, represents dx(Axr — Bx).

The interaction between existential quantification and negation will be elaborated
upon in Chapter 1.4, where some structures occurring in discourse are highlighted
in conceptual graph representations.

Peirce [Pei58] proposed some calculi for propositional (alpha system) and pred-
icate (beta system) logic and ideas of a modal framework (gama systems). In
Peirce’s systems, a conclusion graph follows from a premiss one if and only if
the later can be transformed into the former using an appropriate set of graph
transformation rules. Although interesting in themselves, these calculi are not
particularly adapted to automatised reasoning. Indeed, they are not analytical
in the sense that they do not systematically decompose a problem into subprob-
lems, but rest on non-guided rules such as “any graph may be added into a zone
enclosed in an odd number of negation lines”. In the light of automated theorem
proving, analytical calculi based on graph homomorphisms and analytic tableaux
will be studied in this thesis.

1.1.3 Conceptual graphs

Since the late sixties, a graphical knowledge representation formalism equiva-
lent to first-order logic has been developed: conceptual graphs; see e.g., [Sow84,
Sow99] for detailed expositions of Sowa’s original systems. The syntax and lay-
out were influenced by a combination of Peirce’s graphs, linguistic dependency
graphs and computer science flow charts. On the semantic and deductive side,
order-sorted predicate logic and Peirce’s calculi were adopted.

1.1.3.1 Positive information

Departing from the whole first-order language, a sub-formalism for representing
positive existential-conjunctive information, simple conceptual graphs, has been
carefully studied since Sowa’s book [Sow84]. The language is expressive enough
to describe factual information with a slight touch of indeterminacy provided by
existential quantification. We may distinguish two graphical aspects related to

1.1. Diagrams in logic 7

the fragment: the representation by graph diagrams and a proof method based
on labelled graph homomorphism.

Representation Textual symbols of the vocabulary for a conceptual graph
language are partially ordered in a predefined classification, called a support in
[CM92] or canon in [Sow84].

Formalism

Logic
Al Ontology [

OrderSortedLogic

Figure 1.2: A support

For instance, the tree in Figure 1.2 represents the information that “every
order-sorted logic is a logic and that every logic or Al ontology is a formalism”
or in FOL notation:

&y = Vz[OrderSortedLogic(x) — Logic(x)]
AYzx[Logic(x) — Formalism(x)]
NYx[AIOntology(z) — Formalism(x)]

Simple conceptual graphs are bipartite node-edge diagrams, in which square
nodes, representing term occurrences, alternate with rounded nodes, representing
predicate occurrences. Labelled edges linking a round node (or relation node)
to a set of square nodes (or concept nodes) symbolise the ordered relationship
between a predicate occurrence and its arguments. Concept nodes are labelled
with a concept type and either a constant or a star (standing for an unnamed
existentially quantified variable).

Al Ontology:* Logic:FOL

Formalism:CG | OrderSortedLogic:* |

Figure 1.3: A simple conceptual graph diagram

For instance, the graph in Figure 1.3 is a representation of “The CG formalism
combines Peirce’s EG logic to an order-sorted logic, which itself combines an Al

8 Chapter 1. Diagrams and visual information

ontology to the FOL logic” or the (positive existentially quantified) FOL formula:

¢, = Jz[Formalism(CG) A Logic(EG) A OrderSordedLogic(x)
Ncombines(CG, EG, x)
AJy[AIOntology(y) N Logic(FOL) N\ combines(x,y, FOL)]]

Computation Consequence proofs in the simple conceptual graph formalism
correspond to labelled graph homomorphisms, called projections (e.g., [CM92]).

The possibility of basing deduction on graph operations has strengthened
interest in this alternative to classical calculi of predicate logic.

As in order-sorted logics [SW90], the classification of concepts and relations
is exploited in logical consequence. For instance, given the information that
“every order-sorted logic is a logic”, represented in the support in Figure 1.2,
the information that “the CG formalism combines two (not necessarily different)
logics” can be derived from the graph in Figure 1.3 or in FOL notation:

Do A @y FzTy[formalism(CG) A logic(x) A logic(y) A combines(CG, x,y)]

| Al Ontology:* | Logic:FOL| m

[Logic:PeirceE Gl €= 2 [3
2 combines

CCombines> < 1
| OrderSortedLogic:* |

L

Figure 1.4: A projection from a simple conceptual graph to another one

combines

Formalism:CG

A proof of this logical consequence is provided by a mapping, pictured in
Figure 1.4, preserving both the structure of the source graph (i.e., the conclusion
of the logical consequence) and the ordering of labels conveyed by the underlying
support.

In subsequent chapters, the computational efficiency of this calculus will be
explored for different structural fragments of simple conceptual graphs and ex-
tensions to negations and modalities.

1.1.3.2 Negation

For a full predicate logic language, Peirce’s closed negation lines are used to
enclose negated zones. For instance, the graph in Figure 1.5 is a representation

1.1. Diagrams in logic 9

~
~

surface: ¥~ _
~

4 S o)
|negation line:* | \

T
| \

|negati£)n_line:*|

Figure 1.5: Negated regions in a conceptual graph

of “there is a surface such that every negation line delimits a zone which is part

of that surface” or

dz[sur face(x) A= (Jy[negationline(y) A—(3z[zone(z) Ndelimits(y, z) Apartof(z,z)])])]
In Chapter 4, we will explore some possibilities and limitations of adapting

the projection calculus to the representation of negation in conceptual graphs. In

particular, an interlacing of projections and semantic tableaux will be proposed

as a predicate logic calculus.

1.1.3.3 Nested conceptual graphs

Figure 1.6: A nested conceptual graph

An additional structural level is obtained by nesting a description (that is itself
a nested graph) in concept nodes. To set the ground of the recurrence, the empty

10 Chapter 1. Diagrams and visual information

graph that corresponds to the logical constant True, is considered as a nested
graph (in order not to overload the picture, empty descriptions of concept nodes in
Figure 1.6 have not been represented). The nested conceptual graph formalism,
which has a modal flavour, can be exploited to distinguish different groups of
localised pieces of information or different levels of knowledge. A “zooming in
effect” enables to focus on one local description.

For instance, the nested diagram in Figure 1.6 illustrates a boot failure occur-
ring in the context of the open of my car.

The study of several semantics that can be associated to these nested drawings
will be the subject of Chapter 4.3.

1.1.4 Concluding remarks

As graph theory is an extensively studied field in computer science, it is not
surprising that many other logical formalisms have chosen graphical features.

Kripke models of modal logics are often represented as labelled graphs and
model comparisons, such as bisimulations (e.g., [Ben96]), are naturally defined in
terms of graph homomorphisms. Applied modal logics, such as attribute value
logics (e.g., [Spa93]) or feature logics (e.g., [Rou97]) exploit the tree structures of
their frame languages.

Research by the team of Barwise and Etchemendy at the Visual Inference
Laboratory! has concentrated on the process of learning logical reasoning by
graphical model construction (Hyperproof project? and the pieces of software
Turing’s world and Tarski’s world) and on the formalisation of the graphical
systems of Euler, Venn and Peirce; see, e.g., [Shi93, Shi95, Ham95, Ham98] and
[BE9S] for a collection of articles on different aspects of learning and practicing
diagrammatic logic.

This introduction to conceptual graphs has exemplified the fact that there
is not a single conceptual graph formalism, but a multitude of possible ways to
combine and interpret a chosen group of primitive graphical artefacts. Therefore,
it is important to identify some criteria, that may guide us in favouring one
system over another. In the remainder of this chapter and in the next chapter
too, facets of the conceptual graph paradigm are explored under the light of
several fields related to logical reasoning, such as artificial intelligence, cognitive
science, linguistics and computational logic.

"http://www-vil.cs.indiana.edu
2http://www-vil.cs.indiana.edu/Projects /hyperproof.html

1.2. Conceptual graph diagrams and artificial intelligence 11

1.2 Conceptual graph diagrams and artificial in-
telligence

Diagrams have gained an indisputable importance in computer science and ar-
tificial intelligence (AI). They occur in almost every field related to computers,
ranging from the actual chips to the abstract representation of knowledge. For
example, circuit designs, data structures, algorithms, human-machine interfaces,
inheritance in object programming languages or knowledge bases can be repre-
sented as trees, graphs, flow-charts or other specific diagrammatic forms.

If research in logic has long been concerned with the distinction between what
is provable or not, the application to Al has somehow shifted the focus to de-
termining what kind of reasoning can feasibly be carried out by a computer in
a “reasonable” amount of time. Following this line of thinking, adapted rep-
resentation languages and deductive systems have been invented for automated
reasoning. Semantic networks are one example of this.

1.2.1 Semantic networks

Semantic networks, a family of node-edge graphs in Al, have been popular for
trying to represent knowledge in a way that is as close to natural language as
possible. The proliferation of graphical systems lacking formal semantics has lead
to criticism such as McDermott’s “Artificial intelligence meets natural stupidity”
[McD76], but also to the development of a family of formal semantic networks
originated by Brachman’s KL-ONE system.

Besides the fact that conceptual graph formalisms belong to the class of (for-
mal) semantic networks, they have also borrowed a central notion of classification
from artificial intelligence.

e On one hand, the ordering of archived representations of pieces of informa-
tion, with respect to logical entailment, is relevant to efficient information
retrieving from conceptual graph knowledge bases. The logical consequence
relationship is sometimes called subsumption and, its symmetrical counter-
part, generalisation.

e On the other hand, in Al the classification of the basic terms of a language to
describe a particular application domain is called an ontology. Conceptual
graph languages exploit such ontologies for efficiency purposes by restraining
search spaces to subdomains smaller than the whole domain of a given
knowledge base.

1.2.2 Description logics

When artificial intelligence and logic meet, description logics are successful logical
formalisms applied to the representation of knowledge. They inherited the two

12 Chapter 1. Diagrams and visual information

notions of classification, ontologies and knowledge classification, from semantic
network and terminological logic ancestors.

By adopting the semantics of a modal formalism, called hybrid logic (see
[Are00] for a detailed analysis of hybrid logics and their relation to description
logics), description logics benefit from the efficient computational behaviour of
modal logics.

Building on the tree characteristics of models for modal logics, there has been
a recent return to graphical features in the syntactic and deductive side of de-
scription logics: Baader et al. [BKM99, BMT99] propose a translation of some
description logics into a language of trees that is exploited in homomorphism
calculi. We shall return to description logics with the complexity study of logical
reasoning in Chapters 2 and 3 and with the modal direction taken for nested
conceptual graphs in Chapter 4.3.

1.2.3 Contexts in Al

Many researches in Al have questioned the context dependency of information.
Giunchiglia and Bouquet[GB97] metaphorically present a context in Al as “a
sort of box which is part of the structure of an individual’s representation of
the world and which draws a sort of boundary between what is in and what is
out”. In J. McCarthy’s pioneering work on the formalisation of context (see e.g.
[McC87] and [MB97] for a recent survey), such a box is a rich object (a collection
of parameters) upon which a representation depends. Typically, a representation
can be true in some contexts and false in others. For instance, the piece of
information “It is raining” calls for a context of utterance to be interpreted and
that context can include among the parameters the time and place of utterance
(In the context of Amsterdam, that sentence is often true and particularly on
Sunday April 4, 1999). A context, as part of the cognitive state of an agent (the
hearer), is used in the interpretation process.

The box metaphor resembles the two kinds of closed lines of the conceptual
graph syntax: negation lines and nested boxes. Indeed, from a linguistic point
of view, negations play the role of a border line for anaphoric bindings by sur-
rounding a context of discourse interpretation and being permeable in specific
conditions. We will elaborate this linguistic argument by examining some struc-
tural properties of discourse in Chapter 1.4.

For nested graphs, the meaning of enclosing information into a box can be
captured by adapting an applied modal logic: the context logic of Buvac [Buv98|.
This point of view will be undertaken in the study of nested conceptual graphs
(Chapter 4.3).

1.3. The visual impact of CG drawings 13

1.2.4 Conclusion

Artificial intelligence is at the crossroad of logic, linguistics, computer and cog-
nitive sciences. Therefore, it is almost impossible to avoid such pluridisciplinary
references. Conceptual graphs also dwell at this multicultural crossroads.

Returning to ontologies and without disputing terms, Peirce’s graphs, seman-
tic networks and a fortiori, conceptual graphs, make an ontological commitment
to graphical items. We now turn to the cognitive impact of these primitive graph-
ical artefacts that, when combined, form conceptual graphs.

1.3 The visual impact of CG drawings

Drawings have many visual properties. Three properties that are particularly
pertinent to this study of knowledge representation by conceptual graphs have
been chosen to be elaborated upon.

The gestalt feature of diagrams, their faculty to provide an overview of what is
represented, is the first visual subject. The perception of the global shape of the
information represented results from the different uses of the two dimensionality
of drawings. In particular, we distinguish the spatial disposition of pieces of
information and the agglomeration of lines to form skeletal structures on which
some components hang.

The second visual feature of drawings, that will be discussed in Chapter 1.3.2,
is their faithfulness to what they represent. Drawings are often easy to grasp
because they are somehow close to what they depict. This property is linked
to the expressive power of the drawings, which is relatively limited compared to
the high level of abstraction conveyed in sentences of classical linear textual logic
languages.

Finally, Chapter 1.3.3 examines how some drawings can provide additional
information to the semantic conventions.

Moy 2] Moy 20) Moy 30j Moy 100j Bollingers

, a5
g~

an

O D = .. oo o
Aoutl0 Septemhbre00 Octohre00 Novemhre00

Figure 1.7: The evolution of stock-quotes over time

For example, these three themes appear in a kind of diagram that is com-

14 Chapter 1. Diagrams and visual information

monly found in the economic pages of newspapers; stock-charts. Figure 1.7 is a
space economical presentation of a large matrix of numbers (i.e., 859 bidimen-
sional coordinates). The diagram stresses the overall characteristics of the data,
such as a price that globally follows a downward slope over a three month pe-
riod. Moreover, the use of conventional scales for price and time facilitates our
understanding of the chart. Finally, the intersections of curves are typical pieces
of information that are not part of the initial data, but are directly read on the
diagram and can be interpreted by investors as signals for changes of tendencies.

We now undertake our first subject in visual matters, the perception of a
global perspective of diagrammatic information.

1.3.1 Overview of the information drawn

A generally acknowledged property of diagrams is that they offer a synoptic rep-
resentation. The possibility of visualising the global structure of a large set of
data, takes advantage of our prime perception of visual notions such as density or
direction. In particular, the global information perceived in a conceptual graph
drawing is a sort of large scale map of the represented relational network. This
map has two main components: a partition of the space into areas and a skeletal
structure.

1.3.1.1 Partition of the space.

\ o

\ <

Figure 1.8: Closed lines and empty-spaces dividing the sheet of assertion

7

How is the spatial division of the plane on which a conceptual graph is drawn
perceived? Outlines of the areas must be found. The most effective symbol to
represent a borderline between zones is to draw a line. For example, a Peirce’s cut,
the representations of a negation in conceptual graphs, is a closed line imprisoning
pieces of information into a negated area. Nested boxes in nested conceptual
graphs also divide the plane of a drawing into areas symbolising different levels
of information. An additional way of defining areas is provided by the perceptual
effect of density. In particular, emptiness appears as a discriminating feature

1.3. The visual impact of CG drawings 15

between zones of high-density. To summarise, the first overall impression of a
conceptual graph is some partition of the space into zones containing pieces of
information.

1.3.1.2 Spinal structure.

T a oy £7

Figure 1.9: Spinal structures

Just as important for the overview is the impact of edges that are perceived
as agglomerated into a spine linking different pieces of information. This skeleton
does not necessarily have a beginning or end; it is merely central to the different
components. The global structure of such a network provides some assistance for
navigating the drawing, for moving our point of focus along a path or jumping to
an information island. This idea of a support for navigation is reinforced in nested
conceptual graphs because they represent different levels of relational structures
in one picture: like a road map that includes enlargements for cities provides a
representation of a road network at the top level and of some street networks at a
lower level. A nested conceptual graph drawing stimulates our visual faculty for
discriminating levels and grouping what is connected, in order to safely convey
an understandable picture of a complex multi-level network.

To recapitulate, the ingenious human visual machinery capitalises on the per-
ception of density, groups, discontinuities and line structures, to extract, at a
glance, the overall information conveyed by drawings. This information can fur-
ther be employed to guide a search for more details. The overview is a large-scale
guide for further in-depth observations. Nevertheless, efficiently using it may
require the same kind of training as the reading of a road map does.

Structures formed by lines on the drawings are perceived, but what makes us
recognise a shape in a drawing? This is the subject of the next section.

1.3.2 Faithfulness of drawings

Graphics are often labelled as efficient information conveyors because of the facil-
ity to understand them. They somehow mirror the information represented. In
the case of conceptual graph drawings, two factors influencing this resemblance
property can be distinguished: (i) the use of graphical basic components that
have a conventional meaning closely related to what they represent and (ii) a
deliberately limited level of abstraction.

16 Chapter 1. Diagrams and visual information

1.3.2.1 Simple graphical components.

Basic graphical items in conceptual graph drawings are nodes, edges (lines con-
necting nodes) and closed lines defining frontiers. Different kinds of frontiers can
be distinguished by the chosen shape conventions, such as thickness. For instance,
lines surrounding negated zones and those defining the outlines of modal worlds
are drawn differently.

1.3.2.2 Limited abstraction.

It has been argued that the graphical signs have a standard simple semantics,
but what makes a conceptual graph diagram easy to grasp, also lies in limited
expressive power of the drawings.

First, there are very few graphical signs used and they all have a clear sig-
nificance. This fact implies the need for only few simple rules of interpretation,
which is certainly to the advantage of the reader.

A second factor of simplicity is the direct nature of the graphical message:
what is left unsaid is really not represented. The sole exception to this rule is
the use of the indefinite marker *, a place holder for an indefinite object. It
corresponds to an existentially quantified variable in a textual logic language.
Nevertheless, other connectives commonly used in logic, such as universal quan-
tification, disjunction and implication, are left out of the picture. These con-
nectives have the disadvantage of summarising complex information into single
symbols. For example, universal quantification conveys the message that all the
individuals living in the represented model have some property. In other words,
it abstracts some information to the level of the whole population instead of di-
rectly showing facts for each individual. It conveys a large amount of information
with very few syntactic items and the expansion of the compacted information is
left to the reader. Similarly, disjunctions and implications call upon the reader’s
interpretation process to build several alternative models at once.

Existential quantification alone does not have these drawbacks. It provides the
reader with an unnamed object, but guides the interpretation process by showing
a one-on-one correspondence between the syntactic objects and the represented
ones. Hammer [Ham95] has studied a similar type of matching for different forms
of diagrams; the isomorphism thesis. [AB96] and [CSO94] discuss how the low
level of abstraction in some graphical representations of logical sentences can
influence a logic learning process.

To summarise this point on the faithfulness of conceptual graph drawings to
what they represent, we can relate this advantage to the small amount of graphical
signs used, and to their intuitive meaning. A drawing with a relatively low level
of abstraction presents a one-on-one correspondence to the represented.

Until this point, it has been argued that drawings have prominent perceptual
features. Some of them, like resemblance, have an obvious semantic use. Others,

1.3. The visual impact of CG drawings 17

like the overview spinal structure, have a less direct meaning. The study of the
semantics of these graphical properties that provide extra information, is the
subject of the next section.

1.3.3 Additional information

Graphical features can be perceived. Some of them are given meaning according
to defined interpretation rules. For instance, an edge between two nodes is known
to represent a binary relationship between two objects. Other features fall outside
the interpretation conventions, but are nevertheless informative if associated with
a meaning.

This section is devoted to the study of the additional information that is
perceived from conceptual graph diagrams. Basic semantic conventions give rise
to new interpretation rules. Two themes may be distinguished. The first concerns
some generalisation of a particular convention to a larger domain. The second is
related to the modification of a particular convention by some typically graphical
feature, which initially had an obvious intuitive meaning.

1.3.3.1 Generalisation of semantic conventions.

In the previous section, conceptual graph drawings were observed to be composed
of a small amount of distinct graphical signs (nodes, edges and closed lines). It
has been argued that the small amount of signs is a cognitive strength, as only
very few interpretation conventions are required to understand a drawing.

Among these graphical signs, the edge has a preponderant role, one of repre-
senting relational information. An edge is a local object. It connects its extremi-
ties at a particular place in the representation. However, this role of representing
direct connectedness is intuitively generalised to the level of the whole representa-
tion. Agglomeration or concatenation of edges convey a global notion of indirect
connectedness.

This is first visible in the graphical representation of the vocabulary clas-
sification. Edges correspond to implications and paths provide their transitive
closure (e.g., from reading the branch on the right-hand side in Figure 1.2, we
can conclude that any order-sorted logic is a formalism).

Similarly, in conceptual graph diagrams, the notion of indirect connectedness
has a meaning of relatedness. Relatedness is useful in applications like informa-
tion retrieval, enabling the connection of objects that are not in direct relation
to each other. Interpreting distinct connected compounds as unrelated pieces of
information provides a simple guide for breaking down a problem into smaller sub-
problems that can be solved independently of each other. Salvat’s experiments
[Sal97] in an application of a meta-resolution rule for a language of conceptual
graphs, which includes implication, have shown that applying this obvious se-
lection function (i.e., if possible, take a successor in the connected compound at

18 Chapter 1. Diagrams and visual information

stake) does often reduce the number of backtracks. Tree structures will also prove
essential to efficient calculi.

To summarise, the meaning of edges, as being representations of connected-
ness, can be generalised in a weaker significance for paths: one of relatedness.

1.3.3.2 Interaction of graphical effects and semantic conventions.

From the basic interpretation convention, the meaning of the occurrence of two
distinct pieces of information on the same plane (or area in the presence of Peirce’s
cuts) is known: the conjunction of the components is represented. However, this
significance can be strengthened by a perceptual effect, namely density. Indeed,
spatial grouping of pieces of information can corrupt the neutral conjunctive
information and represent a second form of relatedness. As noted above, density
capitalises on innate human perception to make salient information relevant. This
second notion of relatedness can prove useful in order to organise the presentation
of information in packets. These are groups either conveying a semantic message
or simply being a practical help (for example, a division of the space between
multiple users of a knowledge base).

Another use of density occurs in homomorphism proof drawings. The signif-
icance of a proof diagram can be enriched by information about the location of
the pieces of information that are utilised on the density map.

We have seen that information that is not considered in the basic semantic
conventions can be perceived from graphics. The meaning of this information is
intuitive because it results either from the generalisation of the semantics of local
items to a larger scale, or from the interaction of meaningful graphical effects
with basic semantic rules.

In his thesis [Shi95], Shimojima studies a related phenomenon: free-rides.
Free-rides are additional information resulting from the matching of graphical
constraints with some constraints of the represented. The derived meaning pos-
tulate, read from the transitive closure on support paths, would fit this definition,
but free-rides are more specific. The additional information can be directly inter-
preted using the basic semantic rules of the graphical system. The phenomena
examined in this section are of a slightly different nature. They concern extra
information which is obtained by derived interpretation rules.

1.3.4 Conclusion

In this survey of some visual properties of conceptual graph drawings, which by
no means claims to be exhaustive, three main themes that participate in the
cognitive efficiency of diagrams have been distinguished.

The first issue concerns the gestalt feature of diagrams and their faculty of
offering a synoptic representation of both the partition of the information space
and the spinal structure linking pieces of information.

1.4. Conceptual graphs and the structure of discourse 19

The second theme is an attempt to recognise the features that make conceptual
graph drawings faithful representations of relational structures. The nearly iconic
nature of the graphic components and the limited abstraction represented in
drawings have been identified as reasons for this mirroring property.

Finally, the usefulness of perceptible additional information is linked to the
intuitive adaptation of local semantic conventions to large-scale graphical effects.

By using expressions such as easy perception, the ingenuity of the human visual
machinery is taken for granted. However, it is far from clear how complex basic
perception operations would function for an artificial visual machine. Despite the
lack of formal visual models for efficiency measures, we are not totally clueless.
In the forthcoming chapters, the use of classical complexity theory for textual
translations of graphs will provide a first handle in a formal attempt to answer
the question.

Closer to the previous cognitive concerns than computation models, the study
of relationships between natural language and conceptual graphs is the next sub-
ject focused on.

1.4 Conceptual graphs and the structure of dis-
course

Natural language is the pervasive medium for cognitive activities. Despite the fact
that it is transcribed in a linear way with the use of symbols (letters or characters),
a discourse shares some characteristics with conceptual graph diagrams.

Primarily, a discourse is structured. First, we will examine some correspon-
dences between the binding of term occurrences in the process of conceptual graph
construction and anaphoric phenomena in natural language.

Some linguistic theories also use pictures. In a second section, the features
that bring a specific linguistic formalism, discourse representation theory, and
conceptual graphs closer will be considered.

Finally, by viewing conceptual graphs and discourse representation structures
together, the same innovations may be applied to both. As an illustration, so-
called dynamic interpretations will be quickly discussed.

1.4.1 Bindings in conceptual graphs and discourse

It has been observed that the linguistic counterparts of logical connectives be-
have as structuring items in discourse, with different permeability properties to
pronominal coreferences.

For example, the conjunction of two sentences can be expressed in English
by the use of the term ‘and’ or just the concatenation of these sentences: “A
man entered. He took a chair.” or “A man came in and he took a chair.”. In
the second sentence, a pronominal reference to an object introduced in the first

20 Chapter 1. Diagrams and visual information

sentence is possible. On the other hand, the use of negation appears to block the
possibility of such binding: It seems unacceptable to continue the sentence “It is
not the case that a man came in.” with “He took a chair.” as the pronoun ‘he’
cannot be resolved by any object previously introduced in this piece of discourse.
Conceptual graph construction rules present similar properties of bindings.

1.4.1.1 Conjunction of conceptual graphs

Conjunction in conceptual graphs obeys two simple rules:

(i) the conjunction of two pieces of information is represented by their juxta-
position on the sheet of assertion

(ii) in the absence of negation line, a concept node can be made coreferent to
another concept node occurring in the same graph.

]
g |
“A man entered.”
1 2 ,
man : ? @ chair : * |
“He took a chair.”

Juxtaposition of the previous two graphs:

Resolution of the coreference binding:

Figure 1.10: Conjunction of conceptual graphs

For example, in Figure 1.10, the pronoun ‘he’ is represented by a concept node
labelled with the marker ‘7’ symbolising that it needs to be made coreferent to
another accessible concept node. After the two graphs have been juxtaposed, the
concept node ‘man:x’ becomes available for coreference to the node labelled with
the question mark.

The resolution of the anaphoric binding is a problem that is beyond the scope
of this thesis. What is important is the fact that, after juxtaposition of the two
initial graphs, the representation of the indefinite noun phrase ‘a man’ becomes
available for coreference to the representation of the pronoun ‘he’.

According to the second rule, in the absence of negation, the application of
coreference is, in principle, free for any pair of concept nodes in a graph. Of course,
one can add some additional constraints. For instance, it could be requested that
two nodes made coreferent should have concept types sharing a common subtype.

1.4. Conceptual graphs and the structure of discourse 21

It could also be forbidden to link two nodes labelled with different constants,
respecting a common assumption for many Al systems that different constants
represent different individuals.

If conjunction in conceptual graphs is, as conjunction is in discourse, perme-
able to coreferences, what about negation?

1.4.1.2 Negation

Closed lines, representing negations in conceptual graphs, delimit zones that are
included in the outermost zone: the sheet of assertion. These zones and fron-
tiers remind the metaphoric image of “context as a sort of box” discussed in
Chapter 1.2.3.

By construction, negation lines do not intersect each other. Thus, the nesting
of zones has the structure of a tree whose root is the sheet of assertion. This
partial order is called domination. A zone is said to dominate another zone if the
later is included in the first one. We may now restate the rule for coreference as
follows:

(ii’) a concept node can be made coreferent to another concept node occurring in
a dominating zone of the same graph.

“A man entered. It is not the case that he, took a chair.”

7’ N

d Ly
rzn -+ HCentersd)

Figure 1.11: Negation boxes are permeable for coreferences from outside-in

Figure 1.10 is an example of concept nodes occurring in the same zone (the
sheet of assertion). Let us consider an example with a negation: “A man entered.
It is not the case that he took a chair.”. In Figure 1.11, the concept node rep-
resenting the pronoun ‘he’ occurs in a zone dominated by the sheet of assertion,
in which the concept node for ‘a man’ occurs. According to the rule (ii’), we are
allowed to bridge those two nodes with a coreference link.

Conversely, the binding of the pronoun ‘he’ is not resolvable in the (unaccept-
able) discourse “It is not the case that a man came in. He took a chair.”.

22 Chapter 1. Diagrams and visual information

?\

N
[man -+ HCentered

In other words, the scope of existential quantification in conceptual graphs
is limited to all the zones that are included in the zone where the quantifier
occurs. Such scoping rules are familiar to a linguistic theory that also makes use
of pictures: discourse representation theory.

1.4.2 Discourse representation theory

Discourse representation structures (DRS) combine nested boxes with notations
of predicate logic for representing the structure of natural language sentences.
We refer the reader to Kamp’s foundation article [Kam81] and to the extended
treatment of DRT in [KR93]. [BB9S8| is a comprehensive introduction to DRT
and some background in computational linguistics.

In a language where all connectives are expressed in terms of conjunction,
negation and existential quantification, a DRS is a box divided into two parts.
These parts are a set of discourse referents and a set of conditions where a con-
dition has either the form of a predicate logic atom or the negation of a DRS.
Discourse referents in the first part of a box correspond to existentially quanti-
fied variables which are accessible to the conditions in the second part and, by
transitivity of nesting, to all conditions occurring deeper in the nesting.

For example, “A man entered. It is not the case that he took a chair.” can be
x

man(x)
entered(z)
represented by the DRS: y
= | chair(y)
took(z,y)

There is a notable difference between conceptual graphs and DRSs. By inher-
iting Peirce’s lines of identity and contrary to DRSs, conceptual graphs provide
a notation of equivalent expressive power that is free of variables. This feature
is relevant in theorem proving. Indeed, efficient methods for constructing proofs
like free-variable tableaux or resolution require pure representations (representa-
tions in which a variable is not quantified twice). Hence, a renaming pre-process
can be required. By avoiding variable names, CGs are always pure. However,
the absence of variables is mostly relevant for an incremental construction of
the representations. If the representations of the constituents of a text can be
drawn independently, then building a representation of the whole text consists in
merging the representations of the constituents.

To illustrate a problem associated to merging, we present un example from
[Eij98]. A DRS for “A man entered. A woman entered.” can be obtained by

1.4. Conceptual graphs and the structure of discourse 23

y
@ y
merging the following two DRSs: [man(z) |&| woman(y) |= Z;;Zﬁ:c)l(x) .
entered(z) entered(y) woman(y)
entered(y)
But merging is not defined in case of a variable clash: [man(z) |®[woman(z) ‘: ?
entered(z) entered(x)

In discourse representation theory, the problem of variable clashes is solved by
always building the representation of a new sentence in the context of an existing
DRS. Another solution consists in first renaming the variables occurring in differ-
ent DRSs before merging them. Van Eijck [Eij98| proposes another alternative:
the replacement of variable names in DRSs by De Bruijn’s indices. Conceptual
graphs do not make use of variables, so variable clashes cannot occur and two
graphs can always be merged by only juxtaposing them. The simplicity of this
safe merging operation is an attractive feature of Conceptual Graphs.

Syntactically, DRSs and conceptual graphs share the same structure for dis-
playing the representations and the same scoping rules for existential quantifiers.
Furthermore, semantically, both formalisms rely on a notion of embedding of
pictures into classical models for predicate logic. These similarities may be ex-
ploited to bridge the differences. On one hand, discourse representation theory
has achieved numerous results in the study of natural language phenomena and
being able to adapt these results would be beneficial to conceptual graph theory.
On the other hand, conceptual graph theory has achieved some computational
results, based on the use of graph calculi, which could serve the interest of the
deductive side of DRT.

Finally, there is an alternative semantics to the embedding of DRSs into clas-
sical models, which brings us to our next subject, dynamic semantics.

1.4.3 Dynamic view on conceptual graph semantics

It is often assumed that discourse interpretation is related to a dynamic process
of discourse context evolution. When successively uttered sentences are processed
by a hearer, they bring successive changes into the interpretation context of that
hearer. When a simple conceptual graph is asserted, it introduces two kinds
of information: a relation occurrence between concepts provides some factual
information and a concept node introduces in the context an item that is available
for further references. A semantics for conceptual graphs could take into account
these two kinds of information and follow the way paved by dynamic semantics

[GSO1].

1.4.1. EXAMPLE. Imagine the following situation: the vocabulary is composed
of three individual markers a, b and ¢, and two relations entered and spoke.
Let M = (D = {A, B,C}, F) be a classical model such that F(a) = A, F(b) =
B,F(c) = C, F(entered) = {A, B} and F(spoke) = {(A, B)}. We are at the

24 Chapter 1. Diagrams and visual information
beginning of a conceptual graph discourse, only aware of our formal vision of the

world, M. Our discourse context is empty: <®>

;
Suppose that we are told that “Someone entered.” .

We process this information by creating a record for that person in our informa-
tion state and associating to it all objects provided by the model, which satisfies
the graph utterance: A and B.

A
(=)
Our new discourse context is: B
If we are now told that “He spoke to b.” ,

We can resolve the pronoun ‘he’ to the sole item in our discourse context and,
given our model M, eliminate the possibility that the person at stake is refereing
to B.

If the last utterance had been “He spoke to a.”, no possible interpretation for the
context item would have remained and we, as hearer, would have ended up in an
‘absurd state’. A possible escape of would then be a rejection of (pieces of) the
discourse or the revision of previously accepted information.

The meaning of a graph is given by the change its assertion brings into a
context. The example only sketches the possibility of storing terms (and their
possible interpretation) as contextual information. However far richer contexts
could be conceived. For example, a context could also contain relational infor-
mation between the stored discourse items with the consequence of a shift from
the notion of test in a model to a notion of model construction.

The dynamic view of conceptual graph interpretation can be related to the
process of constructing a complex representation by successive updates, each of
them refining a previous representation with additional knowledge. This proce-
dural view is common to conceptual graph incremental construction rules and to
calculi based on successive graph derivations (see e.g., [Sow84] or [CM92]).

1.4.4 Concluding remarks

The aim of this brief jaunt into natural language semantics was twofold. First, to
relate the layout of conceptual graph drawings to some structural properties of
discourse and in particular, to the interaction of boolean connectives and quan-
tifiers. Secondly, to provide the first steps toward stronger interactions between
conceptual graph theory and linguistic theories. Such an exchange could bene-
fit both sides. On one hand, it would strengthen the foundations of conceptual
graphs in artificial intelligence, as natural language remains the most common
way of communication between humans. On the other hand, such a link could

1.5. Conclusions 25

provide new insights into efficient computation for theories that are aimed at
automated natural language processing.

However, despite the promising perspectives of further connections between
conceptual graphs and natural language processing, a longer exposition of lin-
guistic features would bring us out of our main trail, which is concerned with the
use of conceptual graphs for efficient logical reasoning. We refer the reader to
[KR93], [BBI8], [GSI1], [GSVI6] and [Ben96] for deeper insights into discourse
representation theory and dynamic semantics and their relation to logic and com-
puter science. For a formal proposition of dynamic interpretation in conceptual
graphs, see [Ker99a).

1.5 Conclusions

Languages of modern logics are essentially textual. It comes as no surprise that
knowledge representation systems often adopt textual notations similar to those
of their underlying logics. However, on the semantic side, sentences of these
languages are interpreted with respect to structures. It is somehow paradoxical
that these languages describe and refer to structured information by means of
linear text, while linking sentences and structures is left to the interpretation
process alone. To represent structured knowledge, it seems sensible to import as
much as possible the object structure in the layout of the representation language.
Conceptual graphs take this path by combining textual labels with node-edge
drawings.

Along this introductory chapter, we have described influential graphical an-
cestors of conceptual graphs at the historical foundations of modern logic.

The importance of graphics and graphs to logic and its application to arti-
ficial intelligence has become a fact with the development of robotics, artificial
vision and computers that are now provided with great graphical abilities. For
instance, almost no operating system would now be commercialised with a sin-
gle purely textual interface, no web-browser would be limited to the display of
textual information. Pictures have found applications in logic and applied logics
for educational purposes (e.g., the Hyperproof project), for representational and
computational purposes (e.g., semantic networks, description logics or conceptual
graphs).

Another reason for this regain of interest in pictures, which, after all, have al-
ways been used for every day communication since prehistoric times, might simply
come from their cognitive power: perspicuity and efficiency. Such features appear
in conceptual graphs under different aspects: primary gestalt view, distinction of
structural components, simplicity of interpretation and visual derivative meanings
of the representations. With the experience of working with conceptual graphs,
acquired in the subsequent chapters, we will come back to this cognitive theme
in the concluding chapter of the dissertation.

26 Chapter 1. Diagrams and visual information

Finally, we have explored a linguistic aspect of conceptual graphs: their faith-
fulness to natural language structures. The perspective of rich interaction with
fruitful linguistic theories has just been scratched and is promising for further re-
search. In particular, the dynamic turn in semantics does not only confine itself
to natural language semantics, it is also of great interest to computer science for
which the dynamic notion of process is central. This brings us to the theme of
our next chapter: the computational aspect of logical reasoning.

Chapter 2

The complexity of reasoning with
graphs and fragments

We have previously argued that knowledge graph drawings enjoy some cogni-
tive efficiency in representation. In this chapter, another form of (in)efficiency
is considered, namely the difficulty of a typical computation task over these rep-
resentations, viz. logical reasoning. Indeed, the drawings would not prove very
useful if we could not exploit them to answer questions about the knowledge
represented or to infer new knowledge from the existing one.

Now, the judgments of difficulty of inference tasks, and of relative merits of
different representations, that one finds in the literature on graphical versus sym-
bolic reasoning are often unsystematic and “impressionistic”. To advance beyond
this stage, and get more definite insights, one needs a mathematical complexity
analysis.

So far, the only successful style of analysis which has been developed is that
of complexity theory in computer science, based on symbolic computation using
Turing machines. We will adopt this here, and see what it tells us about the
reasoning tasks in our area of interest. In particular, we find that we are operating
in a much larger landscape of decidable calculi, with various subtle thresholds in
complexity behaviour, e.g. from P to NP. Thus, we get a much more systematic
picture of the potential of conceptual graph-based reasoning methods.

Of course, there is more to actual performance than abstract complexity, as
the latter concerns worst cases. There is also average complexity, which needs to
be explored in greater detail. But still, we regard this chapter as a necessary first
step to operating at all: “si vis pacem, para bellum”.

Equally of course, complexity analysis based on a symbol-processing paradigm
may seem inappropriate to analysing graphical reasoning. The matter is indeed
delicate, and we will delay the discussion to the concluding chapter. For now, we
will just say this: the analysis in this chapter is not sufficient. But, it is necessary.

In order to do complexity analysis, we need two ingredients. Conceptual
graphs need to be represented symbolically in some textual language and we

27

28 Chapter 2. The complexity of reasoning with graphs and fragments

need to fix our computation models over that language.

2.1 Conceptual graph drawings and formal lan-
guages

We have already seen, in Chapter 1, how some conceptual graphs (CG) correspond
to first-order formulae. More precisely, different conceptual graph languages cor-
respond to different fragments of classical first-order logic (FOL).

The connection to FOL, the prominent modern logic, can be traced back to
Peirce’s first-order calculus of existential graphs. For the specific language of
conceptual graph, [Sow84] offers a translation to FOL. The anchor to FOL is so
strong that, in most of the conceptual graph literature, the semantics of concep-
tual graph fragments are only presented as translations to FOL languages. In this
dissertation, we prefer to present both model theoretic analysis and translations
following the line of [Ker96] or [Pre98].

The graph fragment of simple conceptual graphs is central to most CG sys-
tems. It corresponds to existential conjunctive FOL, i.e., the set of FOL formulae
whose boolean connectives are conjunctions and whose quantifiers are existential
ones, noted F'OL{3 5.

2.1.1. EXAMPLE.

A star within box represents an existentially quantified variable and two boxes
linked by a dashed edge represent the same object. An occurrence of a rela-
tion symbol is encircled and connected by ordered edges to its arguments. A
translation of the graph is the following sentence of F'OL5 Ay:

Rba A 3z(Qax A Jy(Pyzx))

To highlight the occurrence of the dashed edge (also called a coreference edge),
we could alternatively choose to translate it into an equality atom and associate
a “fresh” variable to each occurrence of a star marker. Thus, in FOL5 5 —y:

Rba A Fz(Qax N Jyz(Pyz AN x = 2))

However, as the syntax of simple graphs forbids two constants to be connected
by a coreference edge, equality symbols can always be eliminated to obtain an
equivalent sentence in F'OL{3,}.

2.1. Conceptual graph drawings and formal languages 29

This example suggests another point: full first-order logic is not always needed
and mostly, often not desired. Indeed, its nice high expressivity has an heavy
counterpart for practical applications: its undecidability (i.e., the impossibil-
ity to guaranty an answer to some questions). The quest of efficient reason-
ing (where efficiency is expressed in terms of the amount of resources needed to
solve a problem, such as time, space or the number of parallel processors) has
been challenged in almost every field of computer science (artificial intelligence,
knowledge representation, databases, software engineering, robotics, computa-
tional linguistics, etc.). From the diversity of applications with their associated
specific reasoning tasks has resulted a multiplication of propositions; for instance,
constrained query languages in databases [AHV95, KV00] or applied modal logics
[DLNS94, Rou97, Mas98|.

The connections between graph systems and FOL or fragments of FOL are
not the sole ones to formal languages. Already in Peirce’s work on Gamma graphs
(e.g., [Rob92]) appears the notion of intensional logic. Recent work in description
logics (e.g., [BKM99] or [BMT99]) makes use of graph-homomorphism calculi for
modal logics applied to knowledge representation. Therefore, it makes sense to
look at connections with modal logics.

2.1.2. EXAMPLE. In [BMT99], a rooted simple conceptual graphs on some bi-
nary relational vocabulary is interpreted as a modal formula describing binary
accessibility relations in a pointed Kripke model:

translates to P A or(Q) A og(P)

2.1.3. EXaMPLE. Nested simple conceptual graphs can also be translated to
usual (textual) modal languages. For instance, in the following graph, the de-
scription associated to the constant ‘a’ may be interpreted as the representation
of a world accessible by an ‘a-link’ from the world corresponding to the outermost
box:

P:a: [F®r %]

1

2

Q:b:[@a]

translates to Pa A Qb A Rab A ¢,(3x3y(Qz A Py A Ryzx)) A op(Qa)

30 Chapter 2. The complexity of reasoning with graphs and fragments

By highlighting some problems relevant to knowledge representation systems
and systematically studying them for fragments of common logics, this chapter
will attempt to picture a landscape of (sometimes understudied) low fragments
and provide a guideline for choosing extensions and restrictions of conceptual
graph languages. But, in order to compare the behaviour of different logics, we
need some measurement tools on a common ground. It is where complexity theory
comes at stake.

2.2 Computation models

The complexity of a computational task is measured with respect to an abstract
computation model which is independent from the kind of computers, the pro-
gramming languages and the precise algorithms that may be put at work to solve
the problem in real life (many of such models where introduced before the concep-
tion of the first computer). The most well-known of those models is the Turing
machine.

2.2.1 Turing machines and equivalent models

The Turing machine [Tur37] is a primitive computer whose memory is a tape on
which is written a string of symbols and whose set of actions is limited to moving a
read /write-head on the tape and reading and writing the symbol placed under the
head. Furthermore, the processor is programmed to conditionally perform these
primitive actions (e.g., ”if symbol z is read under the head then move one step
to the right and write the symbol y”). Despite these apparent simple settings,
Turing machines are capable of expressing any algorithm or simulating any rich
programming language. It is precisely the simplicity of the execution steps that
enables a sharp analysis of the processor’s behaviour under a given program.

One of the most fundamental result of complexity theory is the equivalence be-
tween different computation models. In the early years of computation, motivated
by the classical decision problem of first-order logic (the Entscheidungsproblem),
several independent and equivalent models were proposed (e.g., Post’s finite com-
binatory processes, Kleene’s recursive functions, Church’s A-calculus or Markov’s
string-oriented algorithmic notation). The lesson to draw from these equivalences
is that it is not the choice of a particular computation model that matters. In-
deed, in the rest of the chapter, any specific choice of a computation model will
be left aside, but instead, we shall apply reduction techniques that enable us to
rely on known complexity results to draw new ones. What matters more is the
kind of parameter that we intend to measure.

2.2. Computation models 31

2.2.2 Time and space are chosen as measured resource
variables

The amount of resources needed to solve a problem is expressed in terms of the size
of a particular encoding of the input of a the given problem. Storing operations
already bring to the fore the salience of space: how much space do we need to
store the encoding of the input? How long are the intermediate results that do
we need to write down during the execution of a program?

These space measurements suggest time related questions: How long does it
take to read the input? How many of these intermediate results do we need to
calculate and how many basic operations takes each of them? Just as modern
physics teach us, time and space are intrinsically related. For instance, a problem
that can be solved using polynomial time —i.e., the number of needed steps can
be expressed as a polynomial of the size of the input, with constant exponents—
can also be solved using polynomial space. This property forms a small stitch in
the hierarchy of complexity classes which is partially described in Figure 2.1.

The class of problems that can be solved in polynomial time (P) is
(strictly) included in the class of problems that can be solved in poly-
nomial space (PSPACE).

Time and space are not the only variables that may enter the complexity
dance. For example, with the recent development of networks and computers
with multiple independent processors, the number of processors can be taken as
another relevant parameter (see e.g., [JJ92] for an introduction to parallel process-
ing complexity). Another trend in complexity theory, descriptive complexity (see
e.g., [Imm99)), studies the complexity of expressing a property; roughly stated,
language expressive power comes as another variable. As an example, polynomial
time (P) corresponds to the class of queries describable by second-order-Horn for-
mulae [Gra92].

For simplicity, we will remain in the classical trend and focus on space and time
consumption. If the space required by an encoding of an input is so important, a
crucial detail has been left unrevealed: how are formulae and structures going to
be represented?

2.2.3 A detour into precise encodings

Although we often want to keep the freedom of choosing no finite bound on the
amount of symbols available in our vocabulary, we face the evidence that any
description of a finite input —i.e., formula, structure, graph, conceptual graph,
etc.— uses a finite set of symbols. However, this set may vary with different
instances and with different kind of inputs.

32 Chapter 2. The complexity of reasoning with graphs and fragments

2.2.3.1 The case of formulae.

On one hand, the logical vocabulary and delimiters form a finite set which is
fixed for all instances: A, V, =, (atomic negation), =, —, <, 3V, (), o, O L.
On the other hand, relation symbols and terms may vary with different inputs
and a way to obtain a uniform encoding method is to assign an index —i.e., a
natural number— to every relation or term symbol of the input. For instance, the
FOL-formula Jx3y(Px A Qzy) could be represented by JviFva(Riv; A Rovqvs)
in which the i-th (from left to right) variable is represented by v; and the i-th
relational symbol is represented by R;.

It should be noted that, if indexes where written in unary, then an encoding
of a formula would require exponentially more occurrences of symbols than the
formula in the usual base 10 notation and complexity results would deceptively be
favourable. Indexes are therefore required to be encoded in any base n notation
for n > 1. Binary notation is the usual choice for indexes and will be the chosen
notation subsequently.

Hence, the size of the encoding of a formula composed of m symbols
is bound by O(m * log m).

Among formulae, conjunctions of atoms have some special features: first,
syntactically, a conjunction of atoms is a sequence in which atoms and conjunction
symbols alternate (i.e., contrary to the general case of formulae, logical symbols
may not be concatenated) and also, semantically, a conjunction of atoms may
is an equivalent representation to the interpretation of relations in a structure
(i.e., for a structure M, [.],, may be represented by °L], = Ni<i<; iti such that

Ju <i<
te[r]iff rt € 1]). It is therefore worth considering the size of an encoding
Im

of a conjunction of atoms.
Let | be the number of atoms in a conjunction of atoms ¢, u be
the number of distinct terms in p, r be the number of distinct re-
lation symbols in ¢ and k be the mazimal arity of a relation oc-
curring in @, it holds that the size of an encoding of ¢ is bound by
O(l* (logr + k x log u)).

It is easy to verify that, even though more space than needed might be reserved
for each atom (i.e., the place for k terms), as [, u, r, and k are smaller than the
number m of symbols in ¢, it holds that [* (log r + k x log u) is polynomially
related to m x log m.

2.2.3.2 Finite structures.

We only consider function free languages. Hence, a finite structure is given by a
finite set of objects U, a finite set of constants C, an interpretation [¢] € U for

'In the case of multi-modal logics, we may have to treat modalities like relation symbols.

2.2. Computation models 33

every constant ¢ € C, a finite set of relations R, an arity a, and an interpretation
[r] € U for every relation r € R. As in the case of formulae, objects, constants
and relation symbols may be represented by indexed symbols (e.g., o; for the i-th
object in any chosen ordering).

We may decompose the encoding of a structure into two parts: on one hand,
the universe, the interpretation of constants and the arity of each relation symbol?,
and on the other hand, the interpretation of relations. universe may be encoded
by the greatest index for objects, the interpretation of constants by a list of
numbers of corresponding objects.

For a structure with u objects, ¢ constants and r relations of maxi-

mal arity k, the first part of the encoding of the structure is a string

of size bound by log u + cx*logu + rxlogk
S—~— S—— ——

unierse constant interpretation relation arities
hence O(c *logu + r * log k).

We are presented different alternatives for the encoding of the interpretation
of relations:

Standard encodings. The cautious way is to consider that the structure has as
much probability of being dense as of being empty (the density of a model
refers here to the sum of number of tuples occurring in the interpretation of
each relation, i.e., >° _p|[r]]). For a given relation r of arity a,, the |U|*
possible tuples can be ordered lexicographically and [r] can be represented
by a binary word of length |U|%: a 1 in a position ¢ of the word indicates
that the i-th a,-tuple of objects is in the interpretation of r, and 0 codes
the converse. n = (|C| xlog |U| +)" .z |U|*) is to be taken as the size of
an encoding of an input finite model.

In practise, the number of constant being often much smaller than
the number of k-tuples, we can usually take n = |R|* [U[* as
upper bound on the size of a structure where k is the greatest
arity of the relations in R.

2.2.1. EXAMPLE. let U = {01,02,03,04}, R = {ry,r2}, [r1] = {{01,01), (02,02)}
and [ra] = {(01,03), (01,04)}, [.] can be encoded by the following word:

J1000010000000000 0011000000000000,
[r1] [ra]

2Depending on the way used for representing the interpretation of relations, this information
could be retrieve from the latest, however, we may safely encode arities separately as this
information requires a size polynomial in the size of the remaining parts of the total encoding
of a structure.

34 Chapter 2. The complexity of reasoning with graphs and fragments

Adapted encodings. We will encounter special situations in which the density
of a model is extreme. Take, for instance, a structure in which every relation
r € Ris nearly universal i.e., verified by almost all a,-tuples of objects—, the
previous encoding would be a waste; it would be more economical to encode
only those tuples of objects that are not in the interpretation of a given
relation; i.e., [r] can be represented by {{0;,...,0i,)/{(0i, ..., 0,) & [r]}-
In particular, for the complexity proof of model checking for the guarded
fragment of FOL in Chapter 2.4.2, a balanced structure with two objects 0
and 1 and a single unary relation r such that [r] = {0} will be extended with
an n-ary universal relation [G,] = {0,1}", n being a variable taking part
in the input. Extending a standard encoding of the model would require 2"
extra bits of information, whereas extending a representation of the negative
information of the structure is only a matter of adding some information
about the existence of the n-ary universal relation: the addition of log n
bits to code the arity.

A model construction, which is recurrent to this thesis, concerns the mini-
mal model of an existential conjunctive FOL-sentence. The minimal model
M () of an existential conjunctive sentence ¢ with e existential quantifiers,
c constants and [atoms is a structure with u = e + ¢ objects and [relevant
tuples of objects —i.e., there are exactly [occurrences of 1’s in the standard
encoding of the previous paragraph—. Let r be the number of distinct re-
lation symbols in ¢ and k be their maximal arity, it holds that [< r * u*.
The interpretation function for relations can this time be encoded in a sim-
ilar way to the encoding of a formula —i.e., a sequence of relation symbols

followed by their arguments—.

Hence, the size of the formula-style encoding of a minimal model
for ¢ € FOL{3 5y is bound by 1 * (logr + k xlog u).

2.2.2. EXAMPLE. The interpretation function in Example 2.2.1 (i.e., u =4, r =
2, k=2 and [= 4) can be alternatively be encoded by the following word of 20
bits (instead of 32 bits in Example 2.2.1):

0 00 00 0O 01 01 1 00 10 _1 00 11
I e g N S
T1 01 01 T1 02 02 T2 01 03 T2 o1 04

[r] [ra]

For non-dense models —i.e., when [is much smaller than r * u*— with at
least two objects, this encoding seems more economical than the standard
encoding. A closer look at the worst case [= r x u* reveals that for a
structure with at least two objects, the sizes of both proposed encodings
are polynomially related. Indeed, k * log u < u* for v > 1 and k > 0,
hence (I * (log T + k * log u)) < d * (r * u¥)? for some constant d. In this

2.2. Computation models 35

thesis, we have chosen to confine ourselves to complexity results that are
not sensitive to a finer grain of measure than a polynomial relation between
input encodings. Therefore, we will have the freedom to use the encoding
which is the most suitable to the problem at stake.

2.2.3.3 Graphs and conceptual graphs.

Graph encodings exemplifies the collapse between existential conjunctive formulae
and structures: a graph is a pair G = (V, E C V x V') where V is a set of objects,
thus a structure with universe V' and a single binary relation. Alternatively, a
graph may also be represented as a conjunction of atoms? /\(v,v’) cp Rvv'. In graph
terminology, these polynomially related encodings are known under the names
adjacency matriz (standard encoding) and edge list (formula style encoding).
Simple conceptual graphs surpass the limitation of a unique binary relation by
the use of labelled edges and nodes. They have the expressive power of conjunctive
existential predicate logic and therefore also enjoy polynomial translation between
formula-style encodings and structure-style encodings.

The main conclusion to draw from these encoding comparisons is that finite
structures can equivalently be coded by their k-dimension matrix (where k is the
maximal arity of relations) or by a conjunction of atoms, however, the choice may
matter if the structure has to be extended with additional information.

Though, it is informative to calculate the exact time and space consumption
of a given algorithm on a given input, we are often interested in a larger scale
classification of problems. The next section presents some of the usual classes
considered in complexity theory.

2.2.4 Complexity classes that will be encountered

With P and PSPACE, we have already met two complexity classes. Figure 2.1
presents an overview of the hierarchy of complexity classes relevant to this chapter.

e Decidable versus undecidable. Problems can be partitioned into two main
group of classes: decidable problems —i.e, problems for which we can exhibit a
correct solving algorithm that will terminate on any instance— and by opposi-
tion, undecidable ones. For instance, satisfiability in FOL —i.e., the problem of
determining the existence of a model satisfying a given first-order formula— is un-
decidable (Theorem 2.3.1). On the other hand, the same problem in the fragment
FOL3,,y is decidable.

3For non-directed graphs, E is sometimes defined as a set of subsets of V' with at most two
elements; i.e., E C {X/X C V&|X| < 2} where singletons represent reflexive edges. To express
the symmetry of non-directed edges, twin-atoms may also be added in A, ,)cp Rvv' A Rv'v.

36 Chapter 2. The complexity of reasoning with graphs and fragments

undecidable
R

)

2-EXP

EXPSPACE

A oN

NEXP coNEXP

V\/V

EXP

PSPACE

decidable but untractable

tractable
trivial = O(1)

Figure 2.1: Complexity class hierarchy (A — B represents A C B)

2.2.3. THEOREM. satisfiability in existential conjunctive first-order logic is de-
cidable.

Proof: formulae of FOL{3 .y have no mean to express contradictory information,
hence the satisfiability problem is trivially decidable. ll

e Tractable versus untractable. Decidable problems can themselves be parti-
tioned into tractable problems and decidable but untractable ones. The previous
model construction is an example of a tractable task; it can be achieved in a
reasonable amount of time (an amount of time linear —~hence, polynomial- in the
size of the input formula). Polynomial time problems (including trivial prob-
lems) are usually considered as tractable: the needed amount of resources grows
“moderately” with the growth of the input.

On the other hand, a basic graph problem, CLIQU E falls into the difficult
category: it is NP-complete.

2.2.4. DEFINITION. CLIQUE:
Input: a finite graph G = (V, E C V?) and a natural number k > 2
Question: does G includes complete subgraph of size k (i.e., a k-clique)?

2.2. Computation models 37

Thus, a k-clique is a graph G’ = (V', ' C V') such that (i)V' C V, (ii))E’' C E,
(iii)|[V'| = k and (iv)Vzy € V', (z,y) € E'.

NP is the class of problems that can be solved in non-deterministic polynomial
time; that is, if a potential solution can be non-deterministically guessed, the
verification that it is a solution to the problem only takes polynomial time. Fur-
thermore, a problem is complete for a complexity class if it belongs to the class
and is as difficult as any other problem of the class: complete problems char-
acterise their class. For instance, the trivial problem satis fiability(FOL ry)
(Theorem 2.2.3), is obviously in NP: if we can guess the canonical model of a
FOL3 5 -formula, checking the satisfaction of the formula by the model only
takes linear time. However, satis fiability(FOL{3 ;) is not NP-complete as it is
much easier than some other problems in NP such as CLIQU E or satisfiability
in propositional logic (SAT).

2.2.5. THEOREM. [Kar72] CLIQUE is NP-complete.

Symmetrically to NP, coNP is the class of problems that have a succinct
disqualification: if we can guess a potential counter-example, then the verification
that it is a counter- example only takes polynomial time. For instance, validity
—i.e., the satisfaction by all structures— in propositional logic is in coNP: if a
propositional formula is not valid, then for a guessed truth assignment that does
not satisfy the formula, verifying that this truth assignment does not satisfy the
formula takes linear time.

The frontier between tractable and untractable problems is thin. First, the
polynomial time characterisation of a problem might not always be as satisfactory
in practice as it appears theoretically: an algorithm whose complexity is with a
high polynomial degree might not be enough efficient for a robot that requires
quick reaction. On the contrary, some untractable problems can be solved rea-
sonably fast for most inputs, while worst cases, that force the belonging to an
untractable complexity class, are seldom encountered. Furthermore, the inequal-
ity P # NP is suspected but not proven. All we can say so far, is that for no
NP-complete problem, a deterministic polynomial time algorithm has been exhib-
ited. For these reasons, the limit between modest complexity or not is sometimes
set between polynomial classes and exponential ones.

e modest complexity versus high complexity. In this bipartition, all classes
included in PSPACE are considered modest. The bottom line of high complexity
classes is EXP: the class of problems that can be solved in exponential time (2-
EXP being double exponential time). Similarly to the relation between P and NP,
NEXP is the class of problems for which a candidate solution can be validated
in exponential time. Its complement, coNEXP, is the class for which a candidate
counter-example can be validated in exponential time. EXPSPACE is the class
of problems that require exponential space, while on top of Figure 2.1, R denotes
recursive languages.

38 Chapter 2. The complexity of reasoning with graphs and fragments

The notion of class completeness brings us to our next subject: the transfor-
mation of a problem into another problem of known complexity.

2.2.5 Reductions

Reductions are techniques that enable to rely on known classification results for
inferring new results: a problem A is at least as hard as a problem B if B reduces
to A. We will exclusively deal with problems whose answer are either “yes” or
“no” (decision problems). For a decision problem, B reduces to A means that
there is a polynomial time transformation f which for any instance b of B provides
an instance f(b) of A such that the answer of A on f(b) is the answer of B on b.

As an application of the method, we will prove the undecidability of conse-
quence in positive FOL(i.e., the set of FOL formulae containing no occurrence
of a negation symbol). From Church’s thesis [Chu36|, we know that the valid-
ity problem is undecidable in FOL (Theorem 2.3.1). The consequence problem
in positive FOL can be stated as follows: let (¢,%) be a pair of positive FOL
formulae, is any model of ¢ a model of 1)?

2.2.6. THEOREM. Consequence(FOLzyavy) is undecidable.

Proof: by reduction of Validity(FOL) to Consequence(FOLzyavy). Let ¢ be
a FFOL sentence and ¢ be the sentence obtained from the negation normal form
of ¢ by replacing any negative literal —Pt by a positive one P~ such that P~
does not occur in .

):FOL 2
lff /\P@p Vf<va Pif) A /\PE(p _'(Elf(Pf/\ Pif))):FOL ¢
iff Ape, VE(PZV P~E) ror ¥V \ pe, IT(PE A P~T).

Obviously the input (A pe, VZ[PZV P~Z], ¥ V' pe, 3T[PZ A P~7)]) of the conse-
quence problem in positive FOL is obtained from the input ¢ in polynomial time.
|

We can note that for the same reason that satisfiability was trivial in F'OL{3 5y,
it is also trivial in positive FOL: no contradiction can be expressed without
some form of negation. It is also interesting to see that the particular case
of Consequence(FOLzy v, functions,=}) Where the premiss is a conjunction of
ground literals, is NP-complete [Koz81]. This problem remains NP-complete
without equality and without function symbols [Vor99.

Despite their fairly independent characteristic, classical computation models
are used to measure the amount of needed resources in terms of the size of their
input presented as a string of symbols. Does this mean that we have to abandon
many of the graphical features and translate our drawings into strings? Maybe

2.3. The classical decision problem 39

not, but a paradigm of visual computation models would have to emerge together
with real visual computers. In the mean time, actual computers only manipulate
strings and therefore, it makes sense to renounce, for a while, some of the visual
features such as proximity and compare the computational behaviour of different
logics on a solid ground. An extended presentation of complexity theory and
reduction techniques may be found in e.g. [Pap94].

With the machinery of complexity theory, we are now nearly equipped for
comparing the computational behaviour of various logical fragments. However,
we must first decide the kind of logical problems we are interested in.

2.3 The classical decision problem

We have already encountered several problems (e.g., Consequence(FO Ly avy),
SAT, CLIQUE). The most prominent problem of modern logic is Hilbert’s
Entscheidungsproblem, the classical decision problem. It can be stated in different
equivalent ways:

satisfiability(FOL): given a sentence of a first-order language, is it
first-order satisfiable?
consequence(FOL): given two sentences of a first-order language, does
the first one entail the second one?
validity(FOL): given a sentence of a first-order language, is it logically
true?

@ entails ¥ iff = V ¢ is valid iff ¢ A =) is not satisfiable

Church and Turing provided a negative answer to the decidability of this problem
in its general form:

2.3.1. THEOREM. [Chu36, Tur37] satisfiability(FOL), consequence(FOL) and
validity(FOL) are undecidable.

In the mean time, the restriction of the classical decision problem to certain
syntactical forms had already been proven decidable (e.g., the decidability of
satisfiability in monadic first-order logic by Léwenheim [Léw15]) and the general
problem was restated as a classification of the classical decision problem for first-
order fragments.

2.3.1 The classical decision problem in fragments of FOL

Most of the literature on decision problems in first-order logic has focussed on
the satisfiability problem in fragments determined by quantifier prefixes, clausal
forms (Krom or Horn formulae) and the vocabulary, witness the extensive survey
[BGGI7]. Examples of complexity results obtained by syntactic restrictions on
FOL include:

40 Chapter 2. The complexity of reasoning with graphs and fragments

2.3.1.1 Monadic versus polyadic.

Léwenheim [Low15] proved the decidability of satisfiability for FOL formulae
containing only unary relations and the undecidability of satisfiability for FOL
formulae containing binary relations. The later result was refined by Kalmar
[Kal36] who proved that one binary relation was sufficient.

2.3.1.2 Quantifier prefixes.

The Bernays-Schonfinkel fragment consists in the FOL formulae in prenex normal
form of the form 3¥Vyp where ¢ is quantifier free. Satisfiability in the Bernays-
Schonfinkel fragment is decidable [BS28] (and NEXP-complete [Lew80]). By con-
trast and to highlight the relevance of the order in the interlacing of quantifiers,
satisfiability in the fragment consisting of formulae of the form VZ3yp, where ¢
is quantifier free, is undecidable [Sko20].

2.3.1.3 Finite signature

When only two variables are available for building FOL-formulae, the satisfiabil-
ity problem becomes NEXP-complete [GKV97]. On the other hand, with three
variables or more the satisfiability problem is undecidable (e.g. [BGG97]). It
should be noted that for a given finite relational vocabulary, there some k such
that any formula is equivalent to a formula with at most k variables.

Satisfiability of Bernays-Schonfinkel sentences with a bound number of univer-
sal quantifiers (i.e., sentences in prenex normal form 3z ... 3z Ve, ... Vo where
¢ is quantifier free and [< ¢ for some fixed natural number ¢) is in NP [BGG97].
It follows a coNP upper bound on the consequence problem in existential FOL
—i.e., FOL-formulae with no occurrences of universal quantifier in negation nor-
mal form— and sub-fragments, if the conclusion part of the input is restricted to
existential sentences with a fixed bound on the number of quantifiers.

More drastically, satisfiability of FOL-sentences with a fixed bound on the
amount of quantifiers and built from a finite vocabulary, is in P [BGG97]. It
follows that C'onsequence in this fragment is also in P. The idea of the proof is
to chose a linear order on the finite vocabulary and to pre-compute a finite table
of results for the formulae whose matrix in conjunctive normal form (CNF) is
minimal with respect to the order. Then, answering an instance of the problem
can be done in logarithmic space as it amounts to a CNF-normalisation of the
input and a check into a fixed table.

2.3.1.4 Modal restrictions.

The two variable fragment of FOL has already a modal flavour: it includes the
standard translation of propositional modal logic [Gab71]. A closer look at the
syntactic structure of the translated modal formulae reveals another property:

2.4. Benchmarks 41

existential quantifiers are “guarded” by an atom whose arguments includes all free
variables occurring in the scope of the quantifier. For instance QQ Ao P corresponds
to Qx A Jy(Rxy A Py) where the accessibility atom Rzy is called a guard for the
quantifier 3y. By dropping the restriction to use only two variables, Andréka
et al. [ABNOS8| defined the guarded fragment of FOL which enjoys the finite
model property, the decidability of its satisfiability problem (2-EXP-complete
[Grda99]) and diverse model theoretic properties such as the interpolation property
or equivalence under bisimulation. [Ben97] further extends the decidability result
to the loosely guarded fragment of FOL in which quantifiers are guarded by
conjunctions of atoms. We will elaborate on these bounded quantifications in
Chapter 2.7 and in the next chapter.

Despite the large focus of the logic literature on the sole satisfiability prob-
lem, the three versions of the classical problem —i.e., satisfiability, validity and
consequence— are of interest for fragments of FOL: their equivalence in FOL
breaks down in fragments of FOL. For instance, we have seen that consequence
in positive FOL is just as difficult as in full first-order logic (undecidable), whereas
satisfiability in positive FOL is trivial.

Furthermore, the fragments we are interested in —i.e., languages missing some
boolean connectives— are not the ones usually studied in logic. To some extent,
our application driven route leads above all to the study of tractable fragments
and to the point of view of computer science for which other benchmark problems
also come to the fore.

2.4 Benchmarks

Although decidability and complexity studies in logic have traditionally been fo-
cussed on the satisfiability problem, we should not forget our conceptual graphs
and the use we want to make of them: represent knowledge and reason on these
representations. A knowledge representation system (KRS) has at least two in-
gredients: a knowledge base, in which the knowledge represented is stored, and an
inference engine that solves problems by manipulating sentences according to a
semantics. A third ingredient, which falls outside the scope of this study, concern
some methods for revising the knowledge base with new evidences.

Different kinds of questions may fuel an inference engine; for instance, does
a given knowledge base contain contradictory information? What is the set of
all objects in a knowledge base satisfying some property? Is a given piece of
information the logical consequence of a knowledge base (or of another piece of
information)? In the eyes of these applications of logic different decision problems
are salient and we will select a set of benchmark problems that will serve the
comparison between languages.

42 Chapter 2. The complexity of reasoning with graphs and fragments

2.4.1 Four problems
2.4.1.1 Satisfiability.

Proving the satisfiability (or consistency) of a knowledge base guarantees that it
does not contain contradictory information and therefore, that it will not classi-
cally imply everything. It should be noted that, in practice, satisfiability tests of
a knowledge base that is seldom modified, may be performed “offline”. Formally
the problem can be formulated as follows:

Satisfiability (£):
Input: a formula ¢ € L where L is a language for the logic £
Question: is there a L-structure M such that M =, ¢ 7

Another problem concerning a single piece of information is validity (i.e., is a
given formula satisfied by all structures?). Validity is a sign of non-informative
content: asking a valid question about the information represented in a knowledge
base does not provide any insight on the informational content of the knowledge
base. On the other hand, from a valid knowledge base, can only be inferred valid
representations: pieces of information whose logical truth is not related to the
information contained in the knowledge base. For these reasons, validity will be
left aside.

2.4.1.2 Consequence.

Proving the entailment of a piece of information by another piece of information
is often considered as the central reasoning task in knowledge representation
systems. This consequence problem takes different names depending on whether
the premiss is called a knowledge base or not:

(i) query answering: given a knowledge base and a query, is it the case that the
query follows from the information contained in the knowledge base?

(i) subsumption (also called query containment in database theory): is some
representation more general than another one? This last formulation is often
used as part of a classification scheme.

Consequence(L):
Input: two formulae ¢, € L where L is a language for the logic £
Question: is it the case that for every L-structure M,

M . ¢ implies that M =, ¢?

A variant where ¢ and v are formulae of two languages over the same vocabulary
but that do not share exactly the same logical language (i.e., boolean connectors
and quantifiers), will also be useful:

2.4. Benchmarks 43

Consequence(L, L'):
Input: ¢ € L where L is a language for the logic £

and ¢ € L' where L’ is a language for the logic £’
Question: is it the case that for every L-structure M,

M . o implies that M =g 7

The consequence problem does not only play a preponderant role because of
its association to information comparison tasks which are relevant to KRSs, but
as well for the upper bound provided by its complexity on the one of satisfiability
and of validity. Indeed, the consequence problem is always at least as difficult as
the satisfiability problem as proving that a consequence holds amounts to proving
the satisfaction of the conclusion in every model of the premiss. Furthermore,
validity is a special case of consequence as a valid expression follows from the
logical constant True.

Particular cases of consequence problems may arise from specific choices in
some knowledge representation systems. For instance, some description logic sys-
tems distinguish an intensional knowledge level —i.e. knowledge about patterns
in the relational structure represented— from an extensional (or assertional) one
—i.e. knowledge about individuals in the relational structure—. In this case (e.g.
[DLNS94)), instance checking is the problem of verifying that a particular rela-
tional pattern is true of a particular individual in a knowledge base, and the term
subsumption is then reserved for consequence between constant-free sentences.

2.4.1.3 Model checking.

It happens that we are sometimes more interested in one particular model of a
knowledge base than in all its satisfying structures. This is a common standpoint
in database theory [AHV95, Via97, KV00], where a database instance may be
considered as a finite relational structure providing a finite interpretation of the
vocabulary. Queries are answered with pieces of information extracted from this
finite description. Model checking also offers an approach in computer-aided
design and verification [CE81, McM93, Kur94] which is modest enough to be
practically applicable (tractable for many query languages). Model checking can
be applied to chip designing, software programming, web-site conception or any
activity requiring the design of a process that can be represented by a labelled
transition system (an automata, simply a structure) and that needs to conform
to some properties. These properties are expressed as formulae that must be
satisfied by the model.

Model checking(L):
Input: a formula ¢ € L and M a finite structure over L,

where L is a language for the logic £
Question: is it the case that M =, ¢ 7

44 Chapter 2. The complexity of reasoning with graphs and fragments

This generic definition of model checking is also called uniform as the sizes
of both input parts come into account in the complexity analysis. In Database
theory, two popular variants of model checking are considered (see e.g., [Var82,
KV00]): by fixing the model —i.e., the structure is not part of the input, thus, its
size does not take part in the complexity analysis of the problem—, one measures
the expression-complexity of a non-uniform model checking problem. Symmet-
rically, data-complexity is obtained by fixing the query. For instance, in FOL
[Var82]: both uniform and expression variants of model checking are PSPACE-
complete, while the data-complexity is polynomial time (more precisely in the
logarithmic-time class AC?).

2.4.1.4 Model comparison.

In the line of model checking, another problem emerges: the comparison of two
structures. Practical questions are for instance: are two databases equivalent or
is one of the two more general than the other one? Are two programs equivalent
—a model smaller than the other may then be more useful for model checking—?
Variants of the model comparison problem are called p-morphism or bisimula-
tion in modal logic [Ben96, BRV01], database conjunctive-query containment
[KV00], constraint satisfaction problem [FV99] or automata simulation [Mil90].
An interesting relation to conceptual graph is the efficient bisimulation algorithm
proposed in [DPP01] which is based on a graph algorithm in [PTB85]. Indeed,
as we will see in Chapter 2.5 and in Chapter 3, for simple conceptual graphs, the
equivalence of the consequence problem and the model comparison is exploited
in a graph homomorphism consequence calculus, projection.

Model comparison(L):
Input: two finite L-structures M and N, where L is a language for £
Question: is there an homomorphism from N to M (M < N)?

For these four benchmark problems, we already know some complexity results.

2.4.2 Results that set the scene.

satis fiability | consequence | model checking | model comparison
FOL undecidable | undecidable PSPACE NP
FOLg~s var | undecidable | undecidable P P
ML PSPACE PSPACE P P

Undecidability results for the classical decision problem in first-order logic
[Chu36, Tur37] motivated the foundation of complexity theory. The undecidabil-
ity of the classical decision problem restricted to predicate logic with 3 variables

2.4. Benchmarks 45

follows from the undecidability of satisfiability in the Kahr class [Kah62]: FOL
formulae in prenex form Vz3yVvz ¢(x,y, 2).

The PSPACE-completeness of (local) satisfiability and consequence in modal
logic K was proven in [Lad77] and extended to the multi-modal case in [HM92].
Complexity classification has been salient to some applied modal logics in which
the behaviour of satisfiability and consequence in various syntactic fragments are
put under a microscope, e.g., [SSS91, DLNN97].

Model checking tasks have received a careful attention of finite model the-
ory (e.g., [EF95]) and database theory (e.g.,[AHV95, Imm82, HV91]). Chandra
and Merlin [CM77] and Vardi [Var82] prove the PSPACE-completeness of uni-
form model checking in FOL. The polynomial time complexity of uniform model
checking in variable bounded fragments of FOL is proven in [Imm82] (see also
[Var95] for the complexity of the problem when the model is fixed —i.e., expres-
sion complexity— and when the formula is fixed —i.e., data complexity—). The
polynomial time complexity of model checking in modal logic K follows from the
inclusion of its standard translation in F'OLs (see also [HV91] for a direct proof of
this result). Some recent developments in database theory concern also bounded
loosely guarded fragments of FOL. [GLS01]| proposes an elegant game theoretic
connection between the class of conjunctive queries with bounded hypertree-width
and k-loosely guarded existential conjunctive FOL (i.e., subformulae are guarded
by a conjunction of at most k atoms). Furthermore, [GLS99] proves the polyno-
mial time complexity of query evaluation in these bounded fragments.

Studies on the complexity of model comparison can be traced back to early
results on combinatorial problems on graphs such as CLIQUE [Kar72]. Verify-
ing that a guessed correspondence between the universes of two FOL-structures
corresponds to an homomorphism can be done in polynomial time (it is a check
of every tuple in the conclusion is a tuple in the premiss under the substitution).
On the other hand, the reduction CLIQUE into model embedding provides the
NP-hardness. Polynomial results for structure equivalences in variable bounded
fragments and modal logic are discussed in [Gro96].

We can also note that at the crossroad of FOL and ML, guarded fragments of
FOL have decidable decision problems:

- Satisfiability is 2-EXP-complete for both the guarded fragment and the loosely
guarded fragment [Gra99].

- Uniform model checking is P-complete for the restriction of the guarded frag-
ment (GF) to a finite number of variables (or equivalently, to a finite relational
vocabulary): indeed uniform model checking in FOLy~y is P-complete and the
P-hardness proof in [Var97| uses an encoding inside G F3.

- For the whole guarded fragment, Maarten Marx proved the following theorem.

2.4.1. THEOREM. [Personal communication of Maarten Marx, ILLC, 2000.]
Uniform model checking is PSPACE-complete for both the guarded fragment and
the loosely guarded fragment of FOL.

46 Chapter 2. The complexity of reasoning with graphs and fragments

Proof: the PSPACE upper bound is provided by uniform model checking in FOL
and the PSPACE-hardness by an extension of the reduction from the satisfiability
problem of quantified boolean formulae (QBF) [SM