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Chapter 1

Introduction

Surveillance can be informally defined as “a close watch kept over something or
someone with the purpose of detecting the occurrence of some relevant events”.
The person or thing to be watched should be understood to include humans,
animals, areas, places, parts of aerospace, et cetera. What events are considered
relevant depends on the type of surveillance and the reason why we do it.

Most surveillance tasks are very mundane and automating them is highly
desirable. Automated surveillance typically concerns itself with detection and
recognition of relevant events. A system of CCTV cameras, microphones or smoke
detectors can be used to detect interesting events or to analyse patterns of be-
haviour. Most of the existing work on robotic surveillance is on recognition of
relevant events.

However, event recognition is only one aspect of surveillance. Another aspect,
and the concern of this thesis, is that of selecting the right places to focus the
surveillance attention on. A solution to this is essential in situations where using
fixed surveillance sensors is either not possible, or not practical, or where mobile
platforms are more socially acceptable since people then know they are being
observed. Further, a solution to the problem of selecting the optimal places to
focus attention on can be important not only to robots but also to human security
guards.

Commonly, the reason for focusing attention on one area is that relevant events
are more likely to be detected there either because they are intrinsically more
likely to occur, or because the area has not been observed for a while - increasing
the chance that something is there. Because the robot is not omnipresent, this
becomes a problem of limited resource allocation. With enough knowledge of the
structure and the parameters affecting the decisions, this allocation problem can
be automated.

1
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1.1 Surveillance as a planning task

By reviewing surveillance in section 2.1, three main capacities in which an arti-
ficial or human agent can be involved in a surveillance task are identified. They
are those of:

coordinator An agent that determines or constrains which resources can be used
for the surveillance task. The coordinator of a surveillance task may decide
on the available budget, on the types of sensors to be used, on its relative
importance compared with other tasks, et cetera.

planner An agent that decides how to use the available resources (sensors and
actuators) to perform the surveillance task. Typically, a planner has a clear
goal like exploration or cost minimisation. It should be seen as something
much more task-specific than a coordinator.

sensor An agent that gathers information and transmits it to the planner. A
security camera is an example of sensor.

One way a robot can be used in surveillance is in the capacity of a (flexible)
sensor. In that case, the planning of the surveillance task would be typically
done by a human operator. An example is a security guard teleoperating a robot
that inspects a hazardous environment.

However, it is the next level that concerns us here. The subject of this thesis
is the investigation of autonomous surveillance planning for an office-like envi-
ronment. The main concern is to develop strategies or algorithms that move the
robot in a way that the expected cost of relevant events remaining undetected is
minimised. To make the discussion simpler we will focus on one type of relevant
events, namely that of fires. A detailed justification of these choices is given in
the next chapter.

1.2 Approach in this thesis

Humans can perform surveillance tasks quite well most of the time. However, the
process that makes this possible is not immediately clear, which makes it hard to
replicate it and hard to assess its optimality. In the case where the probabilities
and costs are known, we would like to get a structured understanding based on
an analysis of surveillance as a probabilistic decision process. We are eventually
interested in an algorithmic implementation of such a decision process.

The detailed exposition of the surveillance problem in the rest of the thesis
will make it clear that instances of it for simple environments and simple events
are still computationally very hard. So it is not clear how a robot should compute
solutions to such instances if results are to be found in a reasonable time.
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Approximation is a possible solution to the computational issues. However,
approximations, in turn, have the problem of departing from optimal. A difficult
balancing act exists between the need to approximate and the computational need
to get an approximation that is within some reasonable bound to the optimal.

The approximations proposed in this thesis are based on abstracted repre-
sentations of the environment. Eventually, decisions are taken among different
routes of the abstract environment nodes. A mix of theoretic and simulation
experiments are presented to support our discussion.

1.3 Thesis overview

This thesis is divided into the following chapters:

Chapter 2 - Issues in Robotic Surveillance. An overview of current and
past research in robotic surveillance is given to provide some context. It
should become clear from the discussion that most existing work on robotic
surveillance addresses event recognition and that not much is on planning.
On the basis of this review the decision was taken to concentrate on surveil-
lance planning. In the rest of this chapter some surveillance planning-related
issues which affect our work are mentioned.

Chapter 3 - Problem Formalisation and Complexity. The specific prob-
lem of fire surveillance is set using several formalisms like (PO)MDPs or
decision theory. These formalisms are shown to be equivalent and conveying
the exponential nature of surveillance planning viewed as an optimal search
problem with the aim of minimising the expected cost of fires. Because of
its exponential nature, simple n-step strategies cannot solve this problem
optimally, and consequently approximation methods for the surveillance
planning problem become a priority.

Chapter 4 - Hierarchy and Strategies. A “cost barrier” problem defined on
a specific office-like building is presented as an example of what a simple
n-step look-ahead strategy cannot solve. Then a hierarchical abstraction
of this environment is given along with a first ad-hoc expected cost ap-
proximation, which does not solve the problem in all circumstances, but
demonstrates the promise of abstraction.

Chapter 5 - Path-based Clustering. This chapter deals with abstracting in
a more principled manner. A much better assignment of the abstracted ex-
pected costs can be produced if the geometry of the environment is consid-
ered in more detail. After discussing some general desiderata for clustering
an office building, we concentrate on the specific case of the corridor-based
office building containing a “cost barrier”. A better method for assigning
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expected costs is produced which differentiates between different types of
routes that visit abstract nodes.

Chapter 6 - Path-based Decisions. Given the abstraction, a decision proce-
dure for choosing between clusters is necessary. Several decisions concerning
the look-ahead and the type of decisions needed are discussed. Then the
fixed cluster route strategy which works on the route-generated abstraction
of the environment is presented. It is shown to work well in most cases and
to have some robustness with reference to abstraction choices.

Chapter 7 - Conclusions. This chapter briefly draws general conclusions from
the specifics of the other chapters.



Chapter 2

Issues in Surveillance

Several robotic surveillance projects exist worldwide and a multitude of different
aspects have been and are currently being researched. Despite some overlap in the
scope of some projects, there are features that are quite unique in others. In this
chapter, we give an overview of current and past research in robotic surveillance
to provide the context for our work. It should become clear from the discussion
that only few projects have been concerned with surveillance planning and that
most existing work addresses event recognition.

After mentioning the research and assumptions of others, we proceed to make
explicit what kind of surveillance we are considering. Then some key issues in
surveillance planning, which have been identified from the literature review, are
listed together with the design choices made in relation to each of these issues.

2.1 Robotic surveillance projects

Some robotic surveillance research projects are first listed and then classified. The
aim here is to give an idea of the current status of research, rather than completely
describe everything that has been done. The classification of the listed projects
at the end of the section (see table 2.1) aims to help the reader assess their merits
and weaknesses.

2.1.1 List of surveillance projects

AUVs. The goal there is to produce a fleet of small, inexpensive, autonomous
underwater vehicles (AUVs) that will roam the earth’s oceans [Fri94].
Oceanographers often want simultaneous measurements in many places.
These measurements are necessary in building and testing models of the
dynamics of the earth’s oceans. Currently, such measurements have to
be taken on-board ships and it is normally prohibitively expensive to use

5



6 Chapter 2. Issues in Surveillance

enough ships to collect data at the required density. A great number of
inexpensive AUVs can reduce the cost of collecting such data [Bel97].

However, certain planning problems arise from the fact that these robots
have to be capable of performing autonomous navigation inside the sea. For
instance, the robot has to be able to avoid underwater obstacles, yet collect
the required measurements. An easy way of avoiding underwater obstacles
is to get the AUV to rise to the surface. However, rough seas can also be
a threat and some sort of compromise has to be made. Furthermore, since
the energy of the robot is limited, an optimal survey resolution and time
constraint parameters have to be found. This must be done so that the
survey takes the minimum amount of energy possible [BW96, WYBM96].

Moreover, there are plans to use “distributed intelligence” by making the
robots exchange information about their position and status [TT98]. To
do this, underwater communications and robot control mechanisms have
to be used [KML+96]. Apart from collecting measurements, other applica-
tions suggested include surveillance of fisheries, detection of toxic/nuclear
dumping and coast guard support.

(a) Inside view (b) Relative size

Figure 2.1: An AUV (Autonomous Underwater Vehicle).

NRaD, MSSMP. This is a project of the US Navy Research and Development
agency (NRaD). The MSSMP [MBB+97] acronym stands for Multipurpose
Security and Surveillance Mission Platform. It involves using Cypher, a
VTOL (Vertical Take-Off and Landing) robotic vehicle developed by Siko-
rsky, to perform airborne surveillance. Essentially, Cypher is used as a
flying tele-operated robot. It carries a visible and an infrared light camera,
a laser range finder and some audio sensors. The robot is controlled by an
operator, who can send the robot inside a war zone and use it for locating
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enemy positions or convoys. Moreover, it can be used to control the perime-
ter of bases and to inspect difficult terrains (e.g. villages and rooftops) for
enemy troops. The US Army calls this system autonomous because there is
no tether connecting the operator with the robot. However, we believe that
a truly autonomous system is one that does not need an operator. There is
some on-board processing performed on the robot to reduce the amount of
information needed to be sent over the radio link between the robot and the
operator. This on-board processing is limited, however, to the detection of
events of interest.

It should also be mentioned here that there is a number of related army
projects which aim at producing UAVs (Unmanned Airborne Vehicles).
Those vehicles also do not require a tether and their navigation relies on
tele-operation and GPS waypoints. Their range is much larger, up to a
little over 900 km for some of them. These vehicles communicate with a
control centre using satellite links and they are capable of providing their
operator with real-time video links. UAVs were used in Bosnia, Iraq and
Afghanistan for reconnaissance missions. They have also been used as air-
borne sensors for fire detection and even surveillance. Predator, Dark Star,
and Pioneer are the names of some of the more well-known models. The
differences amongst them are mainly related to the type of sensor payload
they carry and the altitude they fly.

(a) Cypher (b) Predator

Figure 2.2: Two UAVs (Unmanned Airborne Vehicles).

Cyberguard. Cyberguard is a mobile security robot marketed by a company
called Cybermotion. The aim of Cyberguard is to patrol indoor building
areas for intruders, fires, and chemical threats. The system consists of an
autonomous robot, an autocharger docking station and an array of software
that allows the user to control the robot over a secure digital radio link
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using a PC. The robot is equipped with a great variety of sensors that allow
it to navigate and detect events of interest.

The robot navigation relies partly on sonar sensors and partly on odometry.
The robot localises itself using walls, halls and other existing building fea-
tures and so no artificial landmarks are needed. The path to be followed is
predefined by its operator using a CAD-based package and a building floor
plan. The path representation consists of path lines and specific locations
where the robot has to perform specific actions. There is a separate path-
checking program that checks all paths and interacts with the programmer
to make sure that all programs are acceptable. Fuzzy logic is used to as-
sess the degree of certainty of detected hazards and to assure appropriate
response. The robot can operate continuously for over 12 hours between
3-hour battery charges.

Cyberguards have been sold to academic, industry, and military customers.
NRaD used a Cyberguard in a joint army-navy effort to provide automated
intrusion detection and inventory assessment capabilities for US DoD ware-
houses and storage sites. For the inventory assessment task NRaD uses RF
transponder tags that are attached to items of interest and hence used to
track the location/presence of those items [RLGIG99].

Figure 2.3: Cyberguard patrolling a warehouse.

Visual Surveillance. While a lot of work has been done in visual surveillance
covering different aspects and tasks, the topic is still open since none of
the systems proposed is completely reliable. The problem can be divided
into recognition of objects, tracking of objects/persons and analysis of be-
haviours.

We mention a particularly representative project on visual surveillance.
VSAM (Video Surveillance And Monitoring) is a consortium project spon-
sored by DARPA. The VSAM consortium consisted of about 15 cooperating
US universities and its efforts focus on fusion of information from a large
number of surveillance devices to provide surveillance in areas where using
humans is too dangerous, costly or impractical.
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In demonstrations, cameras distributed over a campus were used to track
cars or humans [CLK+00]. The fusion problem was quite hard because many
cameras of different types (e.g colour and black and white) and possibly also
moving (e.g. with a pan and tilt mechanism) were used. Further, fusion
of information coming from UAVs together with information collected on
the ground has been discussed [KCL+97, CLK+00]. One of the proposals of
this project is that the cameras should rearrange their orientation so that
a maximal area of the environment in which they operate is covered. This
re-orientation issue seems to be related to the Art Gallery theorems and
algorithms [O’R87]. In the Art Gallery problem the position and number of
cameras in a gallery is to be decided to ensure that no area of the physical
space is left uncovered. In VSAM, movable cameras or many static ones
can be used to survey large areas of a campus.

Several vision-related issues have been discussed within this framework
like: how calibration of the data coming from different sources should
be done [LRS00], how objects should be tracked in the calibrated data
[CD00, HHD00], and how sensors on moving robots could be considered
[BK01].

Apart from the simple lower-level tracking, higher-level skills like identifica-
tion of activities of humans or of cars were an issue. The target behaviours
were things like “person traversing parking lot”, “person meeting other per-
son and walking away”, “car traversing parking lot” etc. For the identifica-
tion of this kind of activities, more commonly, static cameras (often a single
one) were used, instead of many moving ones, but the assumption was made
that in the future the low-level tracking would be sufficiently well solved
to make this irrelevant. The models and techniques used to describe the
types of possible human behaviours varied; [ORP00] used Coupled Hidden
Markov Models (CHMMs), [BK00] used Hidden Markov Models (HMMs)
and Entropy Maximisation, while [IB00] used probabilistic grammar-based
descriptions of possible behaviours. In fact, more work has been done in
other projects on this kind of behaviour identification and in [Tes97] Petri-
nets were used while in [BG95] Bayesian Networks were the model of choice.

Highways. Traffic surveillance has also been considered. A type of visual traffic
surveillance is that of analysing behaviours of cars, like “car overtaking
other car” or “car exiting roundabout”, just by static cameras being placed
around a roundabout [BG95]

Another type of traffic surveillance is that of trying to determine the ori-
gin/destination counts of cars travelling on the highway system [HR98,
PROR99]. For this kind of work cameras are placed in several places of
the network (mainly entrances and exits). Various features of the cars, like
colour parameters, approximate size, velocity of travel, lane occupied etc.,
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Project Event Agent Sensor Sensor Structured Surveillance
name type type range environ. plan level

AUVs simple multi multi variable no no sensor
MSSMP interm multi multi variable no no sensor
Cyberguard simple single multi variable yes no sensor
Tracking interm multi multi variable no some sensor
Behaviour hard single single static yes no sensor
Traffic interm single multi static yes no sensor
Rescue simple multi multi variable yes/no yes coord.

Table 2.1: Classification of surveillance approaches

can be identified by the cameras. Then a probabilistic system can be used
to make the association between vehicles currently observed and vehicles
previously observed by other cameras. A solution to this problem can lead
to better highway design and to automatic identification of accidents and
breakdowns in parts of the network not covered by the cameras.

Search and Rescue. RoboCup-Rescue deals with the search and rescue opera-
tions after an earthquake [TKT+00]. A RoboCup competition was initiated
in order to start an international cooperation between universities in apply-
ing robotics technology to the search and rescue problem. The idea is how
to provide means for up to 1000 rescue agents to cooperate with each other.
Within this framework many heterogeneous types of agents were used: fire
fighting agents, police agents, road clearing agents, ambulance agents etc.
All these agents are given very incomplete information on what the cur-
rent state of affairs is and so cooperation and communication are of main
concern. The behaviour planning problem is extremely complex and has
widely time-varying objectives. The goal is not to find optimal but rather
semi-optimal strategies. Time for decisions is limited and apart from trying
to rescue people, prevention of a secondary disaster is a goal. The eventual
goal is to be able to use the system to develop and to coordinate real rescue
agents and to simulate scenarios of potential disasters. So the planning in-
volved is more of coordinator level surveillance as it was identified in section
1.1. Perhaps it should be mentioned that this project is in a relatively early
stage.

2.1.2 Classification of surveillance approaches

Here, the projects mentioned before are classified (Table 2.1) in terms of some of
their characteristic properties. In the table presented, each project corresponds
to a different row while each property corresponds to a different column. The
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property values assigned to each project are discrete. It should be mentioned
that there are some borderline cases where it is not clear what such a discrete
property value assignment should be. In such cases we try to make the most
accurate assignment possible based on the information presented in the project
descriptions available.

In our table, the “event type” column states the difficulty involved in detecting
the basic surveillance events considered by each project. Events whose detection
is based directly on sensor data are considered to be simple events, e.g. discrete
changes of thermometer readings. Intermediate difficulty events are events de-
tected after some analysis of the sensor data is performed, e.g. moving object
detection after computation of optic flow. The triggerings of cliche scenarios, e.g.
“car overtaking other car” or “car parking”, are considered to be hard events
since many simpler events have to be detected before a cliche can be triggered.

The “surveillance plan” column is related to the type of planning the agent
performs. In order for a project to qualify for our use of the term “surveillance
planning”, it has to be able to autonomously select the areas of interest within
its environment and move its focus of attention to those areas.

The “agent” column refers to the number of agents used. A project is multi-
agent if many agents are used and the information obtained by them is fused to
provide a single view of the world. The “sensor type” column is related to the
data fusion problem. A project is “multi-sensor” if each of the agents used is
equipped with multiple types of sensors. For example, a project that uses agents
equipped with a sonar and a camera is considered to be a multi-sensor project.

The “sensor range” column essentially refers to whether the sensor range is
controllable or not. The sensor range is considered to be “variable” if the sensor
can automatically move or adjust itself so that a different view of the environ-
ment is obtained. An “environment” is considered to be structured if it is not
a “naturally” occurring environment. For example, the AUV robots work inside
the sea, so they work in an unstructured environment. On the other hand, Cyber-
guard operates in a structured environment since its environment is man-made.
Finally, by level of surveillance we mean a classification into “sensor”, “planner”,
and “coordinator” along the lines of our definition in section 1.1.

From this table, it can be observed that there has been a lot of work on
the fusion of information derived from many agents and/or sensors. A system
deployed in the real world has first and foremost to solve its sensor interpretation
problem. This is perhaps the reason why so much work exists on this aspect of
surveillance. Although sensor interpretation and sensor fusion are hard problems,
a lot of progress has been made on these, especially in the last decade. Also, the
great variation in most properties indicates that different types of difficulties have
been encountered in each project.

Further analysis of research in surveillance suggests that although a lot of
work has been done at sensor level surveillance, little progress has been made
in the planner and coordinator levels which were identified in section 1.1. This
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indicates that there is potential for research in the area of surveillance planning.

2.2 Surveillance in this thesis

The main concern of this thesis is to develop strategies which use the available
sensors in such a way that interesting events are detected. A mechanism for
generating such strategies is an example of planner level surveillance. Therefore,
this project fills in a gap left open by previous research into robotic surveillance.

More precisely, this thesis deals with the problem of robot fire surveillance in
an office-like building. The fires are assumed to start with a certain probability
and to have a certain cost when present. The robot is supplied with a simple vir-
tual sensor that can detect a fire within its sensor range with complete reliability.
However, the robot has no way of knowing if a fire is present at a location outside
its sensor range. So our problem then becomes one of detecting fires as soon as
possible with preference given to expensive fires.

The fires we are considering will be modelled to be independent of each other,
i.e. we assume that a fire starting at a specific location cannot increase the
probability of a fire starting at another location. Further, our fires are modelled
to produce the same cost per time unit. In contrast, real fires usually cause more
damage at their beginning before they eventually burn everything and extinguish
themselves. These real fires do not produce the same cost per time unit as our
fires do.

The geometrical and topological structure of the environment is assumed to
be perfectly known. The robot has perfect localisation and a perfect map of the
environment to begin with. Also the actions for moving from one location to the
next never fail and always take the same amount of time.

Although we are discussing the problem of surveillance for fires, the main aim
is not to make a system that looks for fires. The aim is to understand how costs,
probabilities, and the topology of an office building interact in order to specify
how decisions should be taken. We are interested in how a decision process
that can make decisions about probabilities and costs in such a situation can be
constructed.

Even though the specifics of the problem are not very realistic, this does
not mean that it is not relevant to robotics since several similar problems exist.
Leaky pipes in a nuclear power plant, or dirty rooms that need cleaning could
replace fire as an event to be detected. It should be seen as a general detection
problem. In the next chapter the problem will be formalised to a great level of
detail. Further, many of the simplifications made in this thesis can be removed
in a straight forward way in future work.

A lot of the results presented will be based on simulations of our situation.
There is no real robot moving in a real office building that can be on fire. There
are several reasons for this decision. One is that working with a real robot is
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expensive, especially if the building can catch fire. Another is that working with
a real robot is time-consuming since a lot of mechanical problems can delay work.
Further, and perhaps more importantly, although some assumptions about the
sensors and the localisation are made, it does not mean that they are 100%
realistic in the current state of robotics. The aim is to develop decision strategies
that could command a robot once these capabilities are developed to a sufficiently
high level.

The most important decisions can be summarised as:

Sensor interpretation Perfect sensing is assumed in this thesis. This is rather
realistic in that we focus on simple events namely fires.

Sensor fusion The decision was taken to assume that the robot uses a single
sensor. Normally robots have multiple sensors; however, we overcome this
using a virtual fire sensor.

Indoor structured environment The robot works in a simple indoor environ-
ment. Further it has a map of that environment.

2.3 Key issues in surveillance planning

This section discusses some key issues that we have considered in order to achieve
the goal of our project, and we indicate on which of them we concentrated our
efforts. Several of these issues refer to dimensions along which the difficulty of the
surveillance planning task can vary, and we will indicate our preferences concern-
ing choices that can make the surveillance problem manageable. Some simplifying
choices have to be made, since one cannot expect to solve the complicated prob-
lem of automating surveillance planning in its full generality, especially since this
problem had not been extensively studied before. The aim is to clarify what type
of surveillance planning we are considering in this thesis.

2.3.1 Comparing surveillance strategies

Since the virtual fire sensor of the robot cannot span the entire area of interest,
the robot must somehow decide where to use it first. In all but the most trivial
situations, the robot will not be absolutely certain of the sensor location that is
going to yield the best chances of the relevant events being detected and clas-
sified. A probabilistic surveillance planner is one that explicitly reasons about
the uncertain outcomes of sensor-location choices and attempts to make the best
possible decisions. Of course, this type of decision problems can be masked by
forcing the robot to explore its environment either randomly or systematically.
It is also possible to use heuristic-based methods that make decisions on actions
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which are not necessarily based on probabilities. So the important observation
here is that there is a number of possible strategies for surveillance.

This multitude of possible surveillance strategies raises the question of which
strategy is best for minimising the expected cost. A comparison between different
high-level sensing strategies is, therefore, important. There are many ways in
which such a comparison can be made. The first way is to start comparing
different strategies at a theoretical level. For instance, it might be possible to
prove that in a specific scenario one strategy will be better than another. Such
proofs can be extremely useful because their results are more general than the
ones obtained through experimentation.

However, being able to prove something largely depends on the assumptions
and the scenario under consideration. For most realistic situations theoretical
proofs are not possible. In such cases the comparison should be an experimen-
tal one. One could simulate an environment and try to decide which strategy
performs best in simulation. For this type of experimental comparison, there is
still the question of what the criteria are that should be used to compare two
strategies.

Our decision on how to compare the strategies was to use a mix of theoretical
proofs and experimental simulation-based techniques. For the simulation-based
comparison the metric used in comparing is that of the actual strategy cost as it
is produced by simulating the strategy.

2.3.2 A priori information

The availability and reliability of pre-supplied (a priori) information may vary.
For instance, the robot can be supplied with a map of the environment which de-
scribes the locations of walls, doors, and other possible landmarks that the robot
can use to determine its location in the environment. Or it can be supplied with
(approximate) probabilities of interesting events occurring at various locations.
One can also imagine a robot learning this kind of information. This raises the
question of how much prior information is necessary and how much information
can or should be learned.

Prior information is usually available only in the form derived from a human
expert. Converting the knowledge of a human to a format suitable for automated
manipulation is usually very hard. Researchers in the area of expert systems
have tried in the past to convert human knowledge into facts and control rules
that can be processed by computer. There is experience within Knowledge Based
Engineering on how such an undertaking can be handled. However, as workers in
this area report, converting this knowledge to facts and rules is non-trivial.

At first sight, having a robot supplied with a map of the environment seems
simpler than having a robot which first has to learn such a map. However, as
soon as both the prior and sensory information stop being completely reliable, it
is not clear what should be done when they disagree. This difficult problem is
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avoided in the case of a learning robot.
The main advantage of a learning robot is clear: It is capable of operating

even if pre-supplied information is unavailable. However, for some applications,
it may be impractical to include an extensive learning stage before the robot can
be used reliably. Also, some of the necessary information may not be learnable
at all within a reasonable amount of time. For example, it is a serious problem
to learn the probabilities of relatively exceptional events, such as fire, at different
locations from past experiences alone.

We have not dealt with the problem of when to choose learning robots. Only
the case where a great deal of reliable prior information is available to the robot
was considered, and the aim was to develop strategies for using this information
together with sensory information to optimise behaviour. Another case not con-
sidered is that where the available prior information is not sufficient or is too
unreliable to exactly determine optimal behaviour. In such situations, one would
be looking for behaviour that is robust, in the sense that small changes in the
available information would result in small changes in the behaviour.

2.3.3 Level of detail

The supplied environment map may have various levels of detail. Some authors
[Fab96] use a very coarse cell-like representation. Others, use finer-grained ones
such as occupancy grids [Kon96].

A well-built surveillance system should probably dynamically adjust the detail
of its world representation to suit the task at hand. For instance, on the one hand,
route planning inside a building might require only a very coarse representation in
terms of rooms and connections between rooms. A path that connects two rooms
in that representation can easily be found using classical graph searching algo-
rithms. On the other hand, trajectory planning and localisation within a room
probably needs a much more detailed description so that individual obstacles can
be cleared with only a few centimetres to spare. Moreover, even experts use differ-
ent detail levels when describing their field. So the right environment description
simplifies planning and also makes the planning approaches more natural.

Maintaining a correct representation of the environment at various resolution
levels might be too hard. So an issue that arises within surveillance and, in
fact, within almost any AI application is how much of the world needs to be
represented and how this should be done. There has been a lot of work on this by
both general AI researchers and roboticists. However, there is still a lot of room
for improvement within this area.

We have not attempted to solve this problem in its full generality. However,
abstraction-based techniques were developed for handling the interaction between
representations at different levels of detail. This was unavoidable and we believe
there is little hope of applying a probabilistic surveillance planner to realistic
surveillance tasks without this kind of interaction between different levels of detail.
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2.3.4 Intelligent and non-intelligent opponents

Another issue in surveillance is that of the potential differences between the meth-
ods needed to treat intelligent and non-intelligent opponents. Non-intelligent
opponents can be thought to be natural phenomena or accidental events. For
example, accidental fires, leaky pipes and slippery floors can be classified as non-
intelligent opponents. Intelligent opponents are people and events caused by
them. For instance, a fire can be manipulated by an arsonist to make it espe-
cially dangerous and deceiving. This type of preplanned fires would be classified
in the intelligent opponent category.

One can imagine that the detection methods and surveillance strategies should
be affected by the sort of opponents the system is supposed to be dealing with.
The system should protect itself against attempts by opponents to modify its
characteristics. So opponents should not be capable of changing detection rates,
false alarm rates or the outcome of actions to alarms by some sort of intelli-
gent manipulation. Therefore, the mode of operation of an autonomous robot
should not be completely transparent to make the system resilient to this type
of manipulation attacks by intelligent opponents. If the robot succeeds in hid-
ing its strategy from the intelligent opponent, it is more or less justified to treat
the events caused by this intelligent opponent similarly to the events caused by
nature.

We have not considered the case of intelligent opponents. Instead, we concen-
trated our efforts on surveillance of natural phenomena. To be more specific, in
the rest of this thesis we are considering stochastic events of known probability
that can only occur at specific locations in our environment. We took “fire” as
an example of such an event. Although this makes our problem quite specific,
different types of natural events can replace that of “fire”. In fact, the “fires” we
are considering are not totally realistic since, for example, they do not spread.
In section, 3.1 we list the assumptions we are making about the problem, and
some of them concern the types of events considered. We believe that the rest
of this thesis is sufficiently general to deal with several types of non-intelligent
opponents, provided that the opponent events have similar characteristics to the
ones listed in section 3.1. For example, one could use the techniques developed
here to check for leaky pipes in a nuclear reactor.

2.3.5 Confidence

Finally, an important open problem is how to deal with information about the
environment that is acquired at different times. The fact that there was nothing
interesting in a room at the point in time when sensor measurements in that room
were taken does not exclude the fact that something interesting might happen
there after some time.

Temporal aspects like the decrease in confidence in the relevance of sensor
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measurements, given the dynamic nature of the world, are very interesting. For
example, an agent should deduce that there is no need to re-examine a recently
examined room but wait instead until some time has passed.

For realistic applications it is not obvious what these rates should be, and
they may even vary over time. For example, an aerial robot should be capable
of deducing that confidence in the non-presence of bush fires during the summer
should decrease more rapidly than it does during the winter. This is because
during the summer the woods are dry and, as a result, fires can start and spread
more easily.

The decision was to use probabilities to model the probabilistic belief that a
fire is present some time after a sensor measurement is taken. This decision will
be justified further in section 3.2.

2.3.6 Problem complexity

The issues of this section are mentioned because they can determine the style
and complexity of surveillance planning approaches. Therefore, the comparison
of these approaches depends on the choices made in these issues. The simplest
possible scenario is that of a system with a lot of a priori information and with a
single scale world representation which ignores confidence aspects and deals with
non-intelligent opponents. The hardest scenario is probably that of a system that
does not make any assumptions about the a priori information available, has a
true multi-scale map, and at the same time, takes into account confidence aspects
in a sophisticated manner and deals with intelligent opponents.

2.4 Other work on surveillance planning

As we have mentioned there has been little work on surveillance planning. There
is only one notable exception we are aware of. It is Fabiani’s PhD thesis which
deals with several issues of uncertain decision making but surveillance is taken
as an application area for these methods. Fabiani’s application is the selection
of areas to be inspected for possible bush-fires, using an autonomous flying robot
[Fab96]. This project takes some temporal reasoning aspects into consideration.

His environment consists of a finite set of cells and it is assumed that at
each moment the sensor range coincides with a single cell. All locations are
thought to be immediately accessible from each other. The dynamics at each cell
is modelled by a Markov process. The probabilities of fires starting are assumed
to be independent of the state of the neighbouring cells.

The main theoretical improvement is that the confidence with which some-
thing is believed in his system decreases over time. Such beliefs originate from
sensor measurements. The decrease in confidence of belief can be explained by
taking into account the fact that changes occur in the environment while it is not
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observed. A strategy for surveillance based on this notion of confidence, as well
as several others were proposed in his thesis and in the next chapter we will be
discussing some of them.

Fabiani has also worked on tracking a partially predictable target using a
moving, tracking robot [FGBLL01]. The target has some movement capabilities
that set some constraints on how far it can move. Target visibility and position
uncertainty are concurrently considered. Both the uncertainty in the target and
tracker position are modelled. The tracker can reduce the uncertainty in its
position by observing predetermined landmarks in the environment. A game-
theoretic framework is applied to decide what actions the tracker should take to
guarantee that it keeps the target within its field of view, while managing its
position uncertainty. This is a different kind of surveillance problem because the
target robot is moving and is evading its tracker. The events considered in this
thesis are simpler than those in the target-tracker problem.

2.5 Summary

Although robots seem to be excellently suited for automating the process of mov-
ing surveillance sensors, most of the existing projects on robotic surveillance use
robots as a kind of flexible sensor and let human operators control the high-level
decision-making on where to go to next. So far, relatively little attention has
been paid to the problem of automating the planning of available resources to
optimally use the sensors for the surveillance task.

As a result of this observation, we decided to develop and evaluate surveil-
lance strategies that can be used in an autonomous surveillance robot. The goal
is a strategy producing surveillance plans of approximately minimum cost. The
type of problem solved in this thesis would be classified according to the scheme
of table 2.1 as: simple event, single agent, single sensor, variable sensor range,
structured environment, planning-based and aiming at the planning level. Fur-
ther, the emphasis is on stochastic independent events, and we shall take ‘fire’ as
an example of such an event.



Chapter 3

Problem Formalisation and
Complexity

As we have indicated in the previous chapter, there exist various robot surveillance
problems of several different difficulties. Our thesis is focused on the specific
problem of a robot surveying an office-like building so that the expected cost of
fires is minimised. The aims of this chapter are: (a) to formalise this problem to
a degree of specificity that allows for it to be tackled, (b) to demonstrate that the
various ways in which it is formalised in this chapter are equivalent, and (c) to
show that approximations are necessary and that existing approximate methods
cannot be used to solve it.

Problems involving expected costs and probabilities are commonly set in a
decision-theoretic way. In such a setting the various costs and probabilities, as well
as the goal of the surveillance, have to be specified. In robotics decision-theoretic
problems are often described in a Markov Decision Process (MDP) setting or in a
Partially Observable Markov Decision Process (POMDP) setting. (PO)MDPs are
a general framework in which decision-theoretic problems can be specified. Their
use has become popular in robotics and other areas because of the existence of
several standard solution methods for problems set in this way.

We set our surveillance problem both in the general decision-theoretic way and
in several (PO)MDP-based ways. Setting the problem in several ways helps us
understand it better by examining its various representations. We shall demon-
strate that all these settings are equivalent.

The goal in all alternative settings of our problem is that of minimising the
expected cost of fire, but in general, a combination of costs (such as fire damage
to the building and fire damage to robot) could be minimised. We believe that
the decision-theoretic view on surveillance (including the (PO)MDP settings) is
sufficiently general to incorporate, at least theoretically, many of the possible
refinements of the problem presented in this chapter.

Although standard methods exist for solving problems set as (PO)MDPs,
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we shall demonstrate that our problem is too hard for conventional (PO)MDP-
solving methods. In fact, any method attempting to solve our problem exactly
would fail because its state space grows exponentially in the number of rooms
present in our environment. The (PO)MDPs settings will not be pursued in
subsequent chapters. Yet, this thesis would not be complete without discussing
the possibility of using (PO)MDP-solving methods, and the reason why we think
no extra benefit can be gained in this representation.

3.1 Problem assumptions

As in most problems, some assumptions are necessarily made in order to formalise
robot fire-surveillance. They describe what the capabilities of our robot are, how
time evolves, what the nature of the fires we are trying to extinguish is, etc.
Sections 3.2 and 3.3 elaborate on our assumptions by setting the problem and
discussing some of the issues related to them. The fact that our state space grows
exponentially (as it will be shown in section 3.4) indicates that our problem is
not oversimplified by the assumptions made here.

• Environment structure. The environment is discretised by assuming
that there exists a finite partition of it into rooms. The robot is assumed
to know the structure of this partitioning.

• Deterministic localisation. The robot always knows where it is.

• Deterministic movement. The robot always succeeds in going to a new
location.

• Deterministic sensing. The robot always knows if its current location is
on fire or not.

• Sensor range. The sensor range is limited to the current robot location.

• Sensor type. It is assumed that only one virtual sensor is present that can
be the result of data fusion.

• Time and actions. We assume time to be discrete, and we assume that
at any time, all the robot’s possible actions considered are those that may
change the sensor range.

• Time to move. The time to move between any two locations is the same
and corresponds to one time-step.

• Stopping of fires. Fires do not stop spontaneously (burn out).

• Independence of locations. Fires do not spread, which implies that the
probability of fire at a specific location is independent of other locations.
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• Probabilities. The robot is assumed to know the exact fire starting prob-
abilities.

• Costs. The robot is to know the exact cost a fire causes per time-step. It
is assumed that this cost per time-step is the same for the duration of the
fire.

• Start. For simplicity, we assume that the surveillance starts in a fire-free
environment. The robot starts from a specific known location.

3.2 Decision-theoretic setting

In this section we first set the problem in a decision-theoretic way. We then discuss
some simple, abstract examples of surveillance problems and show that in these
examples the minimum expected cost criterion leads to reasonable surveillance
strategies.

3.2.1 Formal environment model

The formal model of the environment that is used for describing the surveillance
task is:

3.2.1. Definition. An environment E is a tuple 〈X,A0, A, F, C, P0, P 〉, where:

• X is a set {Xi : 1 ≤ i ≤ n} of mutually disjoint spatial areas, or locations,

• A0 ∈ X is the start location of the robot,

• A ⊆ X×X represents the relation of immediate accessibility (for the robot)
between locations,

• F = {fi : 1 ≤ i ≤ n} is a set of Boolean variables indicating if a fire is
present at each location Xi. If a fire is present, we write fi = 1 or fi,

• C is a function assigning to each location Xi ∈ X the cost C(fi) associated
with not detecting a fire present at Xi,

• P0 is a function assigning to each location Xi ∈ X the probability P0(fi)
that at time 0 an event occurs at Xi,

• and P is a set of transition probabilities. That is, for every Xi ∈ X and
time t ≥ 0, P contains P (fi → 1) denoting the (prior) probability that a
fire starts at Xi during a time-step, and P (fi → 0) denoting the (prior)
probability that the fire at Xi stops during a time-step.
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In section 3.1 we stated that the robot starts working in a fire-free environ-
ment. This means that P0(fi) = 0 for every Xi ∈ X. As a consequence, we can
simplify the description of an environment 〈X, A0, A, F , C, P0, P 〉 to 〈X, A0,
A, F , C, P 〉. Further, we have assumed that P (fi → 1) and P (fi → 0) do not
depend on the time t. We also assume that the environment is connected, in the
sense that for every Xi, Xj ∈ X there is a path Xi = Y1, . . . , Ym = Xj such that
〈Yk, Yk+1〉 ∈ A.

As mentioned in section 3.1, we assume that the sensor range is one environ-
ment location and we write rt to denote the sensor range of the robot at time t.
We assume that the sensor range at time t = 0 coincides with the robot’s start
location, so r0 = A0. The set of reachable states is affected by the immediate ac-
cessibility relation so for every t ≥ 1, rt ∈ {Xi : 〈rt−1, Xi〉 ∈ A}. If rt = Xi, then
we say that Xi is visited at time t. The decision strategies should decide which
immediately accessible location to visit next. For the moment, we do not take
recognition uncertainty into account and assume a fire to be detected whenever
it is in the sensor range of the robot. However, this type of uncertainty can be
easily introduced.

The above definition provides an abstract model of the decision problem.
For realistic applications, we have to take into account that a robot can have
several sensors, each with its own sensor range, that the sensor range is not
necessarily an element of X, that the actions of the robot may include changing
its location, its orientation, and possibly manipulating aspects of the environment,
such as opening a door. We also have to take into account the exact state and
dynamics of the environment, the exact position of the robot in the environment,
the uncertainty in the recognition of fires, et cetera. We could have captured
more realistic surveillance problems by dropping some of our assumptions, but
we preferred a simple model so that we could concentrate on the surveillance
strategies. In spite of the many simplifying assumptions, the notions formalised
above are sufficiently general to capture the abstract environment used in [Fab96]
in order to experimentally compare different surveillance strategies.

Of course, not all applications of surveillance are meant to trigger intervening
responses to the observed relevant event. For example, observations made in the
context of a scientific study are primarily aimed at information gathering, not
at intervening. However, when interventions do play a role, their effects should
be incorporated in the model of the surveillance problem. Since the particular
actions triggered by a detection are not themselves, strictly speaking, part of the
surveillance behaviour of the agent, we will leave them out of our considerations.

For simplicity, we have assumed that fires do not stop spontaneously, but
immediately after being detected by the surveillance agent. Formally, P (fi → 0)
= 0, and Pt+1(fi) = P (fi → 1), if rt = Xi. It would, of course, have been possible
to introduce some time delay for the countermeasures to take effect, but this
would have raised the problem of deciding how important it is to monitor areas
where fires are known to be present or have been observed to occur. It would
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also have been possible to allow P (fi → 0) > 0 and to model the effect of the
actions triggered by observing a fire as an increase in P (fi → 0). Our simplifying
assumption can be viewed as an extreme instance of this possibility.

As in [Fab96], we assume that the cells are independent, and that the proba-
bility of fi → 1 is constant over time. It is then possible to express Pt(fi) in terms
of P (fi → 1) and the amount of time that has passed since the last visit to Xi.

3.2.2. Proposition. Let E = 〈X,A0, A, F, C, P 〉 be an environment where
P (fi → 0) = 0, and rt = Xi implies that Pt+1(fi) = P (fi → 1). Then Pt(fi) =
1− (1− P (fi → 1))t−t

′

, where t′ is the largest time point ≤ t such that rt′ = Xi.

Proof.
Prove for t = t′ + 1. For t = t′ + 1 using the formula in proposition 3.2.2, we
get Pt′+1(fi) = 1 − (1 − P (fi → 1))t

′+1−t′ = P (fi → 1). This is correct since
P (fi → 1) is the probability of a fire starting in one time-step.
Assume for t = t′ + k. Assume Pt′+k(fi) = 1− (1− P (fi → 1))k.
Prove for t = t′ + k + 1. We first compute Pt′+k+1(fi = 0) as the probability
that no fire existed at t = t′ + k times the probability that a fire did not start
during t = t′ + k + 1. We have Pt′+k+1(fi = 0) = (1− Pt′+k(fi = 1))(1− P (fi →
1)) = (1 − P (fi → 1))k(1 − P (fi → 1)) = (1 − P (fi → 1))k+1. We know
Pt′+k+1(fi = 1) = 1−Pt′+k+1(fi = 0). So, our formula also holds for t = t′+k+1
because Pt′+k+1(fi = 1) = 1− (1− P (fi → 1))k+1.

3.2.2 Surveillance strategies

In [Fab96] a surveillance strategy is proposed based on the newly introduced
notion of confidence, which can be viewed as a second-order uncertainty measure.
Whenever sensory information about the state of a location becomes available,
the probability of an event occurring at that location at that time is updated,
and one is assumed to be very confident about this assessment of the state of the
location. This confidence then drops gradually over time during a period in which
no fresh sensory information concerning this particular location is obtained. The
rate by which the confidence decreases depends on the transition probabilities:
the more likely the changes, the higher the decrease rate.

Specifically, the factor λp is used as confidence decrease rate, where p is the
transition probability leaving from the observed state and λ is some unspecified
parameter. The actually used computation of confidence is slightly more compli-
cated, due to the fact that some time after the observation it is no longer clear
which transition probability (P (fi → 1) or P (fi → 0)) should be used in the
computation of the decrease rate.

In our model, the situation is simpler, since we assumed that when visiting
a location Xi at time t, it either observes that no fire is present at Xi or it
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immediately extinguishes the fire. In both cases, the robot can be confident that
no fire is present at Xi after t. This confidence can decrease over time due to the
possibility that a fire starts after t. The rate of this decrease depends, of course,
on P (fi → 1). The transition probability P (fi → 0) does not play any role.

Since the factor λP (fi→1) is meant to be a decrease rate, one can infer that
0 < λ < 1. Every time a location Xi is not visited, the degree of confidence of
the robot that no fire is present at Xi is multiplied by λP (fi→1).

3.2.1. Observation. Let 0 < λ < 1. Then (λx)n > (λy)m iff nx < my.

When visiting Xi, the robot can either see that no fire is present, or the robot
will immediately extinguish it. In either case, the confidence of the robot that no
fire is present at Xi is maximal, say 1. It thus follows from the above observation
that the location with the lowest confidence at time t is the location Xi such that
P (fi → 1)(t− t′) is maximal, where t′ is the time of the last visit to Xi.

The strategy proposed in [Fab96] can be described as follows.

maximum confidence Choose the action that changes the sensor range to the
neighbouring location which has the lowest degree of confidence attached
to it.

In [Fab96], this strategy is experimentally compared to the following strate-
gies.

random exploration Randomly choose a location as the next sensor range.

methodical exploration Choose all the locations, one after the other, and al-
ways in the same order, as the sensor range at the next moment.

maximum likelihood Choose the action that changes the sensor range to the
neighbouring location with maximal uncertainty, where the uncertainty at
location Xi is measured by min(P (fi), 1− P (fi))

Notice that both random and methodical exploration, as described above, al-
low choosing non-neighbouring locations. Actually, in the experiments of [Fab96]
it is assumed that all locations are directly accessible from each other (A =
X × X). This is only realistic in the case when changing attention to a far re-
moved location involves no or only a negligible amount of cost or time and this
is not the case in robotic surveillance. Of course, it is not difficult to restrict
random exploration to choosing randomly between neighbouring locations only,
but it is not clear how to put a similar restriction on methodical exploration.

One possible strategy that can be considered to be a local variant of method-
ical exploration is the following.

minimax interval Minimise the maximum time interval between visits of lo-
cations by choosing the action that changes the sensor range to the neigh-
bouring location which has not been visited for the longest time.
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We propose to use this minimax interval strategy as a kind of reference strategy.
Since this strategy does not use information about the uncertainties, it can be
used to clarify how much other strategies which do use uncertainty information
gain in efficiency.

It should be mentioned that in the case of the maximum likelihood strategy
many uncertainty measures, including, for example, entropy (which is defined as
∑

Xi∈X
P (fi) log(P (fi))), give rise to the same preferences as min(P (fi), 1−P (fi)).

We use this definition of maximum likelihood rather than entropy, because we
want to be able to compare our strategies with those of Fabiani [Fab96] and that
is the definition used there. The uncertainty is maximal whenever the proba-
bility of fire is closest to 0.5. This is because min(0.5, 1 − 0.5) = 0.5 while for
example min(0.7, 1 − 0.7) = 0.3. As we will see in section 3.2.3, the maximum
likelihood strategy seems more appropriate for symmetrical surveillance under-
stood as maintaining a maximally correct model of the state of the environment,
with respect to both the presence and the absence of relevant events, than for
asymmetrical surveillance aimed at detecting relevant events.

In [Fab96], no explicit choice is made between such a symmetrical view on
surveillance and the asymmetrical view we take. Several criteria are used to
evaluate the performance of the strategies in the experiments, including the sym-
metrical criterion of the percentage of erroneous estimations of the state of each
location and the asymmetrical criterion of the percentage of undetected relevant
events.

We propose a surveillance strategy based on decision-theoretic considerations.
By decision-theoretic surveillance we understand the kind of behaviour guided by
the following decision strategy.

minimum expected cost Choose the action that minimises the expected cost.

This decision strategy can be interpreted both globally and locally. Under
the global interpretation, the action that has to be chosen corresponds to the
behaviour of the surveillance agent from the start to the end of the surveillance
task. There is not an inherent end to a surveillance task, but in practice each
particular task has a limited duration (say, until the next morning when the
employees return to the office building, or until the batteries of the robot have to
be recharged).

The (global) expected cost ECT until time T can be computed by the following
formula.

ECT =
∑

1≤t≤T,Xi 6=rt

Pt(fi)C(fi).

Notice that a choice to visit location Xi at t not only removes the term Pt(fi)C(fi)
from the above sum, but also has some indirect benefits, due to the fact that it
reduces Pt′(fi) for t′ > t and it makes some neighbouring locations of Xi available
to be visited at time t+ 1.
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The behaviour of the surveillance agent from the start to the end of the surveil-
lance task can also be viewed as consisting of a sequence of simpler actions. One
can apply the above decision strategy locally to choose at each time between
the possible simple actions by comparing the consequences of these simple ac-
tions, or perhaps by comparing the (expected) consequences of small sequences
of simple actions. Let us say that an n-step strategy compares the (expected)
consequences of sequences of n (simple) actions. Of course, the strategy is more
easily implemented for small n, whereas, in general, it better approximates the
global strategy for large n.

Notice that none of the strategies considered in [Fab96] takes into account a
notion of cost which, for example, allows one to express the opinion that for some
areas it is more important to observe relevant events than it is for other areas.
Another use of the notion of cost is to express the opinion that early detection is
important as it decreases the cost over time after the start of an event.

3.2.3 Examples and first results

We have defined six decision strategies for surveillance, three of which make use
of some kind of uncertainty information, namely maximum confidence, maximum
likelihood, and minimum expected cost. The following proposition shows that
these strategies essentially agree if there is no (relevant) uncertainty information
to be used.

3.2.3. Proposition. Let E = 〈X,A0, A, F, C, P 〉, and assume that for all loca-
tions Xi, Xj ∈ X, P (fi → 1) = P (fj → 1) and C(fi) = C(fj). Then the maximum
confidence strategy and the 1-step minimum expected cost strategy both reduce to
the minimax interval strategy. Also, for sufficiently small transition probabilities
P (fi → 1), the maximum likelihood strategy will agree with the minimax interval
strategy.

Proof. Examining observation 3.2.1 in conjunction with the assumption that
P (fi → 1) = P (fj → 1) for locations Xi, Xj ∈ X, we can conclude that an agent
choosing the location with the smallest degree of confidence essentially chooses
the location that has not been visited for the longest period of time in part of the
environment that is reachable in one time-step.

Similarly, under the same assumption, a 1-step minimum expected cost strat-
egy chooses the room with the largest expected cost but since the fire costs are
also uniform among rooms, this always corresponds to the room that has not
been visited for more time-steps.

In the case of the maximum likelihood strategy for sufficiently small transition
probabilities P (fi → 1) and relatively small environment, we have min(P (fi), 1−
P (fi)) = P (fi). If that is the case, choosing the action with maximal uncertainty
corresponds to using the 1-step minimum expected cost strategy and we have
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2

C(f2) = 1

P (f2 → 1) = 0.8

1

C(f1) = 1

P (f1 → 1) = 0.5

Figure 3.1: The environment of example 3.2.4.

already shown that, under our assumption, this corresponds to the minimax in-
terval strategy. This result supports the choice of using minimax interval as a
reference strategy.

It follows that we can expect a difference between the strategies mentioned
only in the case of varying probabilities or costs. Our first example illustrates the
difference between the various surveillance strategies introduced so far.

3.2.4. Example. Consider an environment E = 〈X,A0, A, F, C, P 〉, where X is
a set {X1, X2} consisting of two rooms, A = X × X (fig. 3.1). Assume C(f1)
= C(f2) = 1, P (f1 → 1) = 0.5 and P (f2 → 1) = 0.8 (Remember that we also
assume that P (fi → 0) = 0, and that Pt+1(fi) = P (fi → 1), if Xi ⊆ rt). In other
words, we have two equally important rooms, each accessible from the other, but
the probability of a fire starting at room X2 is higher than the corresponding
probability at room X1.

The strategy based on maximum likelihood will always look at roomX1 (where
the uncertainty is maximal), and will never take a look at room X2. It is maximal
for 0.5 because min(0.5, 1− 0.5) = 0.5 while for example min(0.7, 1− 0.7) = 0.3.
The strategies based on methodical exploration and minimax interval go back and
forth between both rooms, just as the maximum confidence strategy does, at least
if one assumes that the confidence in an observation made at the immediately
preceding moment is higher than the confidence in an observation made before
that time. This seems to follow from the way the decrease rate of confidence is
computed in [Fab96].

The strategy based on a 1-step minimisation of expected cost is slightly more
complicated. At time 1, room X2 is chosen because P (f2) = P (f2 → 1) =
0.8 > 0.5 = P (f1 → 1) = P (f1). At time 2, P (f2) is again 0.8, since this room
was visited at the immediately preceding time-step. However, P (f1) has only
increased to 0.75, which is not enough to get chosen. Only at time 3, P (f1) =
0.875 has increased above the 0.8 probability that a fire occurs in room 2. We
thus obtain a sequence where room X1 is only chosen every third time-step. See
table 3.1, where for the first six time-steps the expected costs of not visiting a
room are displayed.
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time EC(f1) EC(f2)

1 0.5 0.8
2 0.75 0.8
3 0.875 0.8
4 0.5 0.96
5 0.75 0.8
6 0.875 0.8

Table 3.1: The room expected costs of the first six time-steps of example 3.2.4.
The minimum expected cost strategy chooses the room with the maximal ex-
pected cost (printed in boldface).

In this example, the maximum likelihood strategy does not result in an ex-
haustive exploration of the environment. Both maximum confidence and mini-
mum expected cost behave better in this respect if we assume that exhaustive
exploration is desirable. The problem with the maximum likelihood criterion is
that P (fi) > P (fj) is not guaranteed to result in a preference to visit Xi rather
than Xj whenever P (fi) > 0.5. In fact, if P (fi) > P (fj) ≥ 0.5, then the criterion
prefers Xj. Notice that not only in the artificial example above, but also in prac-
tical applications, with sufficiently many locations and sufficiently high transition
probabilities, it can happen that P (fi) > 0.5. However, it should be mentioned
that typically the fire starting probabilities are very small and that the environ-
ment is not large enough for the probability to grow to 0.5. This means that in
those far more normal cases maximum likelihood does correspond to minimising
the probability of fire.

Still we believe that there is a theoretic point to be made. Since the maximum
likelihood criterion does not prefer locations where the chance of detecting a fire
is high, but is more interested in locations where the occurrence of a fire is highly
unknown, we conclude that the criterion is more appropriate for symmetrical than
for asymmetrical surveillance.

In example 3.2.4, the 1-step minimum expected cost strategy results in a
behaviour which seems intuitively appealing, since it clearly reflects the fact that
P (f1 → 1) is substantially lower than P (f2 → 1), whereas maximum confidence,
just as methodical exploration, treats both rooms the same. However, we will see
below that this intuitive appeal may be somewhat misleading.

The maximum confidence strategy does also take the probabilities P (f1 → 1)
and P (f2 → 1) into account, since the rate of confidence decrease is a function
of these probabilities. However, the decrease rate proposed in [Fab96] does not
result in a different treatment of both rooms in the example. Thus one can view
the example as an indication that in the minimum expected cost strategy the
probabilistic information is used more directly and taken more seriously than in
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the maximum confidence strategy.
The maximum confidence strategy does not consider at all the possibility

that for some areas it may be relatively more important to detect events. This
is easily implemented in the minimum expected cost strategy by letting the cost
C(fi) of not detecting a fire depend on the area Xi. Such varying costs may cause
a problem, since they may prevent the 1-step minimum expected cost strategy
from achieving an exhaustive exploration of the environment.

It can be shown that if the cost of not detecting a fire is constant over the dif-
ferent areas Xi, then, in the long run, the 1-step minimum expected cost strategy
will result in an exhaustive exploration of the environment. More precisely, one
can show the following:

3.2.5. Proposition. Let E = 〈X,A0, A, F, C, P 〉, and assume that for all loca-
tions Xi, Xj ∈ X, C(fi) = C(fj). Then, in the long run, every Xi ∈ X is visited
when applying the 1-step minimum expected cost strategy, and there is a finite
upper bound Ni on the length of the time interval between visits of Xi.

Proof. We prove the slightly more general proposition that says that for an
environment E = 〈X,A0, A, F, C, P 〉, with C(fi) = C(fj), P0(fi) < 1, P (fi →
1) < 1 ∀Xi, Xj ∈ X. Then ∀Xi ∈ X there exists a maximal time Ni between
visits of Xi. The proof is by induction to the size of X = {Xi : 1 ≤ i ≤ n}:
Prove for size 1. Trivial. The robot is always present in that room.
Assume for size < n.
Prove for size n. Let Xk be a location such that the infimum of time between
visits is at least as large as for the other locations.

Suppose the assumption step is not true for size n, then ∃Xm such that its
infimum time between visits of Xm is ∞. Therefore, for Xk the time between
visits is∞. Note also that by the induction hypothesis there is a finite maximum
time Nm that the robot can move in X − {Xk}, without exhaustively exploring
X − {Xk}.

By the assumption step (for n-1 rooms) we have that there is a bound Ni

on the time between visits for all rooms in X − {Xk} or in other words: ∀Xi ∈
X − {Xk},∃Ni > time between visits of Xi. This implies that there is a bound
pi on the probability that there is a fire in any of the rooms in X − {Xk} or in
other words: ∀Xi ∈ X − {Xk},∃pi < 1 such that ∀t, Pt(fi) < pi. So the bound
on the time between visits Ni of the inductive hypothesis sets a bound pi on how
much the probability of fire can rise. If the time between visits in room Xk is ∞,
then ∃N,∀X ∈ X−{Xk}, pi < P (fk), where P (fk) is the probability of fire at Xk

after not visiting it for N times.
Let Xj ∈ X − {Xk} be a neighbouring location of Xk, then between N and

N +Nm steps Xj will be visited. Since for that time ∀X ∈ X−{Xk}, pi < P (fk),
Xk will be visited at the next time-step. So room Xk is visited after the right
amount of time and this completes our induction.
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Since a bound in the time between visits at every location exists, one can
conclude that eventually every location will be visited.

If fires do not stop spontaneously before they are detected, exhaustive explo-
ration implies that all fires will eventually be detected. But even among strategies
that are 100% successful, with respect to eventually detecting fires, there may be
a difference in performance if, for example, early detection is considered to be
important.

Before we can continue with the discussion on exhaustive exploration, we need
to know the answer to another interesting question namely, that of if and how the
indirect benefits of visiting a location can be taken into account. For example,
visiting a location at time t decreases the probability of a fire being present at
that location after t, but this effect is not considered by simply comparing the
expected cost over n time-steps.

3.2.6. Definition. Let t′ be the time of the last visit to Xi before t, and T be
the time of the next visit after t. Then the indirect benefits of a visit to Xi at t
are equal to the following.

T
∑

n=t+1

(1− P (fi → 1))n−t − (1− P (fi → 1))n−t
′

.

This expression computes for every time-step between t and T two probabili-
ties: (a) the probability of a fire given that room Xi was last visited at time t, and
(b) the probability of fire given that room Xi was not visited at time t (so its last
time of visit was t′). The sum of the differences between these two probabilities
is defined as the indirect benefits of a visit at time t.

If T = t+1, then the above expression provides a lower bound of the indirect
benefits of a visit to Xi at t instead of later. Incorporating this amount of the
indirect benefit into the 1-step minimum expected cost strategy is similar to
employing a 2-step minimum expected cost strategy, and it results in the back
and forth behaviour in the environment of example 3.2.4.

3.2.7. Proposition. Let t′ be the time of the last visit to Xi before t. Then the
indirect benefits of a visit to Xi at t have the following upper bound.

lim
T→∞

T
∑

n=t+1

(1− P (fi → 1))n−t − (1− P (fi → 1))n−t
′

=
t−t′
∑

n=1

(1− P (fi → 1))n.
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Proof. If we expand the series, we get the following sequence:

lim
T→∞

T
∑

n=t+1

(1− P (fi → 1))n−t − (1− P (fi → 1))n−t
′

=

= (1− P (fi → 1)) − (1− P (fi → 1))t+1−t
′

(1)
+(1− P (fi → 1))2 − (1− P (fi → 1))t+2−t

′

(2)
+(1− P (fi → 1))3 − (1− P (fi → 1))t+3−t

′

(3)
...

...
...

+(1− P (fi → 1))t+1−t
′ − (1− P (fi → 1))t+1−2t

′

(4)
+(1− P (fi → 1))t+2−t

′ − (1− P (fi → 1))t+2−2t
′

(5)
+(1− P (fi → 1))t+3−t

′ − (1− P (fi → 1))t+2−3t
′

(6)
...

...
...

The left part of line (4) cancels out the right part of line (1), the left part of line
(5) cancels out the right part of line (2) and so forth. As T → ∞ only the left

column up to t− t′ remains and therefore the limit is
∑t−t′

n=1(1− P (fi → 1))n.

We now return to the discussion about exhaustive exploration. The next
example is a simple modification of example 3.2.4 and in conjunction with this
upper bound can be used to show that, in general, proposition 3.2.5 is no longer
valid if the costs are allowed to vary. Consequently, the 1-step minimum expected
cost strategy is no longer guaranteed to result in an exhaustive exploration of the
environment.

2

C(f2) = 3

P (f2 → 1) = 0.8

1

C(f1) = 1

P (f1 → 1) = 0.5

Figure 3.2: The environment of example 3.2.8.

3.2.8. Example. Consider the situation of example 3.2.4, but now assume that
C(f1) = 1 and C(f2) = 3 (fig. 3.2). Then the expected cost of not visiting room
X1 has an upper bound of 1, whereas that of not visiting room X2 is 2.4, even
though it has just been visited. Therefore, by the 1-step minimum expected cost
strategy, room X2 will always be chosen. See table 3.2, where for the first four
time-steps the expected costs (of not visiting a room) are displayed.
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time EC(f1) EC(f2)

1 0.5 2.4
2 0.75 2.4
3 0.875 2.4
4 0.9375 2.4

Table 3.2: The room expected costs of the first four time-steps of example 3.2.8.
The minimum expected cost strategy chooses the room with the maximal ex-
pected cost (printed in boldface).

This effect of ignoring room X1 can be avoided by allowing the cost of not
detecting an event to grow as a function of the time passed since the event started.
However, if the mentioned (expected) costs are correct, then this ignoring of room
X1 is defensible. Intuitively, one should not require a surveillance agent to explore
irrelevant or unimportant areas of the environment. This is substantiated by the
following.

3.2.9. Proposition. In the environment of example 3.2.8 the 1-step minimum
expected cost strategy minimises the global expected cost.

Proof. To prove this proposition we will show that a visit to room 1 is never
justified, so our 1-step minimum expected cost strategy, which only visits room
2, is optimal.

The direct benefit of visiting room 1 is limt→∞EC(f1) = 1. By proposition
3.2.7 we know that the upper bound of the indirect benefit of a potential visit to
room 1 at time t is

∑t−0
n=1(1− 0.5)n. The limit of this upper bound, as t→∞, is

also 1. Therefore, a potential visit to room 1 as t → ∞ can bring us a maximal
potential benefit of 2 (One util for the direct benefit plus one for the indirect
benefit). But this is always less than the 2.4 direct benefit of visiting room 2. So
a visit to room 1 is never justified.

Perhaps a more important problem than possibly preventing an exhaustive
exploration of the environment is that the varying cost can form an obstacle
to obtaining optimal behaviour using the local (1-step) minimum expected cost
strategy.

3.2.10. Example. Consider E = 〈X, A0, A, F , C, P 〉, where X is a set {X1,
X2, X3} consisting of three rooms (fig. 3.3). The accessibility relation A is given
by 〈Xi, Xj〉 ∈ A iff i and j differ by at most 1, C(f1) = 10. C(f2) = 1, C(f3) = 3,
P (f1 → 1) = 0.1, P (f2 → 1) = 0.5 and P (f3 → 1) = 0.8. In other words, we
now have three rooms in a row, and after discarding room X0, one obtains the
environment of example 3.2.8.
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3

C(f3) = 3

P (f3 → 1) = 0.8

2

C(f2) = 1

P (f2 → 1) = 0.5

1

C(f1) = 10

P (f1 → 1) = 0.1

Figure 3.3: The environment of example 3.2.10.

As in example 3.2.8, if A0 = X3, the 1-step minimum expected cost strategy
will always choose room X3. But now the (possibly justifiable) ignoring of room
X2 will make it impossible to visit room X1, and, in the long run, the expected
cost of not visiting room X1 will be very high.

Obviously, such problems can be solved theoretically by looking ahead more
than one step. However, looking many steps ahead is computationally expensive,
since the required computation time depends exponentially in the number of steps
considered. In [MV98], it is argued, based on some experiments, that in typical
environments it is not feasible for real-time behaviour to use much more than a
look-ahead of five steps.

Even for constant costs, the 1-step minimum expected cost strategy is not
guaranteed to globally minimise the expected cost.

3.2.11. Proposition. In the environment of example 3.2.4 the 1-step minimum
expected cost strategy does not minimise the global expected cost.

Proof. In table 3.1 a stable repetitive behaviour can be observed after time-step
4 with a cycle size of 3 (see steps 4-6). The total environment cost for three
time-steps of this behaviour is (0.5 + 0.96) + (0.75 + 0.8) + (0.875 + 0.8) = 4.685.

A robot moving back and forth between the rooms in the same environment
would enter a behaviour consisting of the states reached in time-steps 4 and 5 (a
cycle of 2). The cost for two time-steps of this behaviour is (0.5+ 0.96)+ (0.75+
0.8) = 3.01.

To make a comparison a cycle of 6 time-steps is examined. The 1-step mini-
mum expected cost strategy gives us a 4.685× 2 = 9.37 utils expected cost while
the simple back and forth behaviour gives us a 3.01 × 3 = 9.03 utils expected
cost. So the 1-step minimum expected cost strategy does not minimise the global
expected cost.

Actually, in example 3.2.4, the global expected cost of the 1-step minimum
expected cost strategy is higher than that of the back and forth behaviour result-
ing from the methodical exploration, the maximum likelihood and the minimax
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4
C(f4) = 1

P (f4 → 1) = 0.5

3
C(f3) = 1

P (f3 → 1) = 0.5
2

C(f2) = 1

P (f2 → 1) = 0.5

1
C(f1) = 1

P (f1 → 1) = 0.5

Figure 3.4: The environment of example 3.2.12.

interval strategies. The 2-step minimum expected cost strategy already results in
the same back and forth behaviour.

It should be observed that looking ahead more steps does not always result
in better performance. The following example shows that sometimes the 1-step
minimum expected cost strategy behaves better than the 2-step strategy.

3.2.12. Example. Consider E = 〈X, A0, A, F , C, P 〉, where X is the set
{X1, X2, X3, X4}, the accessibility relation A is given by 〈Xi, Xj〉 ∈ A iff i
and j differ at most 1, and for all locations Xi, C(fi) = 1 and P (fi → 1) =
0.5. This environment can model a corridor, with X1, X2, X3, X4 as sections
of the corridor, but it can also model two rooms, represented by X1, and X4,
connected by a corridor with two sections represented by X2 and X3. (See fig.
3.4.) Therefore, this kind of environment is not unusual for an office-like building.

If the agent starts at X2 or X3, then the 2-step minimum expected cost strat-
egy results in going back and forth between X2 and X3 (without visiting X1 or
X4), whereas the 1-step strategy results in going back and forth between X1 and
X4 (and visiting X2 and X3 in between). It is easy to see that the latter behaviour
is better.

Notice that the above example shows that the 2-step minimum expected cost
strategy is not guaranteed to result in an exhaustive exploration of the environ-
ment, even if the assumption of constant cost of proposition 3.2.5 is satisfied. The
problem is caused by the accessibility relation, since if one additionally assumes
universal accessibility (A = X × X), then proposition 3.2.5 generalises to the
n-step minimum expected cost strategy.

The subtle role of the accessibility relation is not present in several problems
which seem closely related to our robotic surveillance problem. The multi-armed
bandit problems are examples of this. There a casino visitor has to select a
lever to pull among many bandit machines (fruit machines). There are many
variants of this problem but typically the longer a lever has not been pulled the
more likely it is to give a big reward. An intelligent visitor should pull a lever
that has been used a lot but has not given up a reward for some time. Unlike
our problem, the agent may select any bandit and the accessibility relation does
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play a role. Other similar problems are the problem of maintaining a system
with independent component failures, and that of a surveillance camera selecting
which part of a scene to focus on. In all of these it seems natural to assume a
universal accessibility relation.

The problem with the 2-step strategy in example 3.2.12 can be solved by
implementing a commitment to complete the selected path of length 2, and make
a new choice only every other time-step. In the concrete, pseudo-realistic example
discussed in [MV99b], the 5-step minimum expected cost strategy performs better
with commitment than without.

The next example illustrates that a mobile platform may not always be very
useful if the relevant events have an insignificant duration.

3.2.13. Example. Consider a robot with a digital photo camera on top of a hill.
Assume that it has to take as many pictures of lightning as possible. Further,
assume that the camera has a viewing angle of 90 degrees, and that at any time
it can be directed in one of four directions: North, East, South, West. Finally,
assume that after taking a picture, the robot has sufficient time to change the
direction of the camera in any of these four directions before the camera is ready
to take the next picture, and that the probability of lightning at a particular
direction does not change over time.

In this case, {N,E, S,W} can be viewed both as the partition of the environ-
ment and as the set of possible sensor ranges at each time. It is clear that the
optimal strategy is to direct the camera towards the area where the probability
of lightning is maximal, and to keep taking pictures in that particular direction,
without making use of the possibility of changing the direction of the camera.

An essential feature of this example is that the probability of an event e at time
t always equals the probability of the event starting: Pt(e) = P (e→ 1). Moreover,
it is clear that, in this case, the decision problem at time t is independent of the
actions that are chosen at other times. Therefore, the global decision strategy
and the 1-step strategy are equivalent. From the description of the goal ‘to take
as many pictures of lightning as possible’ it can be inferred that the cost of not
detecting a particular lightning flash does not depend on the area where this flash
occurs. In that case, minimising expected cost at time t reduces to minimising
the probability of not detecting a particular flash at t, which is equivalent to the
strategy mentioned in the example.

3.3 (PO)MDP settings

In the previous section the surveillance problem was set and analysed in a decision-
theoretic way. Here it will be set as a (PO)MDP. In fact, due to the generality
of the (PO)MDP representation, it is possible to set it in several ways. To make
clear that we are dealing with the same problem, we will show that the different
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(PO)MDP settings are equivalent to each other and to the original decision-
theoretic setting. The (PO)MDP representation will not be used in the later
chapters. However it is still used in the next section where we derive the state-
space size.

3.3.1 Introduction to POMDPs

A Partially Observable Markov Decision Process (POMDP) is a tuple 〈S, A, T ,
R, Ω, O〉. We describe in turn each element of the tuple.

States S. S is the finite set of states the world can be in. An element from this
set is a possible way the world could exist.

Actions A. A is the set of possible actions. The set of possible actions can be
the same for all s ∈ S and in this case we write A. However, in some
situations different actions are available for each state s ∈ S and then we
write As.

Transitions T : S × A→ Π(S). T is the state transition function. Given a state
s ∈ S and an action a ∈ As, it gives a probability distribution over resulting
states. We often write T (s, a, s′) to represent the probability that, given
action a was taken at state s, s′ is the resulting state. Obviously, although
the effects of actions can be probabilistic, they do not necessarily have to.
In that case only one resulting state is possible.

Immediate Rewards R : S × A→ R. R is the immediate reward function. It
gives the expected immediate reward obtained by the agent for taking each
action in each state. We write R(s, a) to represent the expected immediate
reward for taking action a in state s.

Observations Ω. Ω is the finite set of observations the agent can experience
in the world. An agent, instead of directly observing after each action
the current environment state, receives an observation. This observation
provides a hint about the current state of the environment.

Observation function O : S × A→ Π(Ω). O is the observation function1. It
gives for each action and resulting state the probability distribution over
the possible observations. We write O(s′a, o) to represent the probability
that observation o was obtained when action a resulted in state s′.

1Note that in Puterman’s book [Put94] the transition and observation functions are referred
to as the transition and observation models.
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Further assumptions

The POMDP model makes the assumption that the next state for a given action
only depends on the current state. Looking back at the state history should not
change our probabilities. So we are making the Markov assumption.

An MDP is a POMDP without imperfect observations and is sometimes called
FOMDP (Fully Observable MDP). That is, the observations Ω and the observa-
tion function O are not present in MDPs. Instead, the agent always correctly
determines the state S ′ it ends up in, after taking action A at state S. Note
that the outcome of the actions is still probabilistic, the difference being that the
agent can just determine directly the state it is in.

Optimality criteria

The goal of an agent using a POMDP is to maximise the future reward for an
infinite time horizon. However, the methods of optimising over an infinite time
horizon for general problems require an infinite amount of computational time.
Since this is not possible, two alternative optimality criteria are proposed in the
POMDP community. The first one is the finite horizon model. The other is the
infinite-horizon discounted model.

In the finite horizon model we are trying to maximise the reward EUT over
the next T steps:

EUT =
T
∑

t=0

Rt

where Rt is the reward obtained at time-step t. It can be claimed that this
criterion is inconvenient since the value of T has to be known in advance and it
is hard to know T exactly. For our problem it is not too hard to pick a value of
T based on the duration in real time units (e.g. seconds) of a time-step and the
length of a shift of the robot (e.g. a night). This optimality criterion is almost
identical to our expected cost criterion.

In the infinite-horizon discounted model, the discounted sum of the rewards
over an infinite horizon EDU is maximised. The discounting is done using a
discount factor 0 < γ < 1 in order to guarantee that the sum is finite.

EDU =
∞
∑

t=0

γtRt

where Rt is as before.

Policies and belief states

A policy describes how the agent should behave in some specific environment. For
the MDP case (POMDP without the partial observability) a policy π : S → A
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specifies what action should be taken in every environment state. Solving an
MDP can be seen as equivalent to finding a policy for the given MDP.

In the case of POMDPs the situation gets slightly more complicated. This is
due to the fact that the agent does not know exactly what the current state of
the environment is. For POMDPs the policy is specified on belief states rather
than on environment states.

A belief state is probability distribution b over the possible actual world states
S. This distribution encodes the agent’s subjective probabilities about the state
of the environment and provides the basis for decision making. We let b(s) denote
the belief (subjective probability) of the agent that the current state is s.

A state estimator has to compute the new belief state b′ given the old belief
state b, action a, and observation o.

3.3.1. Proposition. The new belief in some state s′ is b′(s′) and can be written
as:

b′(s′) = P (s′|o, a, b) = O(s′, a, o)Σs∈ST (s, a, s
′)b(s)

P (o|a, b)

The following assumptions are made:
Assumption 1: The probability of an observation o depends only on the state

s′ and action a: P (o|s′, a, b) = P (o|s′, a) = O(s′, a, o).
Assumption 2: The probability of moving into a new state s′, given a previous

state s and an action a, does not depend on the old belief state b: P (s′|a, b, s) =
P (s′|a, s) = T (s, a, s′).

Assumption 3: The probability of being at state s, given a belief state b and
an action a, is independent of the a and is just the belief b of being at state s:
P (s|a, b) = b(s)
Proof. The proof is by substitution.

b′(s′) = P (s′|o, a, b) definition of b

=
P (o|s′, a, b)P (s′|a, b)

P (o|a, b) Bayes’ rule

=
O(s′, a, o)P (s′|a, b)

P (o|a, b) assumption 1

=
O(s′, a, o)Σs∈SP (s′|a, b, s)P (s|a, b)

P (o|a, b) total probability rule

=
O(s′, a, o)Σs∈ST (s, a, s

′)b(s)

P (o|a, b) assumptions 2,3

The denominator in the equation of proposition 3.3.1 can be seen as a renor-
malisation factor that causes b′ to sum up to 1. It can be computed as:

P (o|a, b) = Σs′∈SO(s′, a, o)Σs∈ST (s, a, s
′)b(s)
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The state estimator SE(b, a, o) gives as an output the new belief state b′ by
repeating the calculation of b′(s′) for all s′ ∈ S.

Now that the concept of a belief state has been introduced, we can talk about
belief MDPs. A belief MDP is defined as follows:

• B is the set of belief states.

• A is the set of actions, defined as for the POMDP.

• τ(b, a, b′) is the new state transition function and can be computed as fol-
lows:

τ(b, a, b′) = P (b′|b, a) = Σo∈Ω
P (b′,b,a,o)
P (b,a)

= Σo∈ΩP (b′|b, o, a)P (o|b, a)
where:

P (b′|b, o, a) =
{

1 if SE(b, a, o) = b′

0 otherwise

• ρ(b, a) is the reward function on the belief states and is defined as:

ρ(b, a) = Σs∈Sb(s)R(s, a)

3.3.2 POMDP setting

In this section the problem of finding fires described in section 3.2.1 will be set
as a POMDP. We describe here all the parts of the resulting POMDP plus the
initial belief state.

States S. 〈f1, . . . , fn, Xl〉, fi ∈ {0, 1}, Xl ∈ X, where fi is a Boolean variable
being 1 if a fire is present in room Xi, and Xl is the current robot location.

Actions As. The actions are state dependent. For a state S = 〈f1, . . . , fn, Xl〉
the available actions are of the form GO(Xg) with an action for each Xg

such that (Xl, Xg) ∈ A. So the actions available at each state are dependent
on the robot’s immediate accessibility relation (A ⊆ X ×X).

Transitions T : S × A→ Π(S) The transitions are specified as follows:

For s = 〈f1, . . . , fk, . . . , fn, Xl〉 and a = GO(Xg) the probabilities are:

P (s′ = 〈f ′1, . . . , f ′n, Xj〉) = 0 if j 6= g

P (s′ = 〈f ′1, . . . , f ′k, . . . , f ′n, Xg〉) = 0 if f ′k < fk&k 6= l

P (s′ = 〈f ′1, . . . , f ′n, Xg〉) =
∏

f ′a>fa
P (fa → 1)

∏

f ′
b
=0(1− P (fb → 1))

The first if-statement states that the robot cannot end up in the wrong
location. This is a consequence of the perfect navigation-localisation as-
sumption. The second if-statement denotes that fires do not stop on their
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own. This is a consequence of the assumption that only the robot can put
out fires. The third if-statement calculates the probability of all remaining
states (those not covered by the first two if-statements) as the product of
the probability of fires starting and the probability of fires not starting.

Immediate Rewards R : S × A→ R. If in state s action a is taken, then a lot
of resulting states s′ are possible with different probabilities (specified in
the transitions section). The utility of each possible resulting state s′ =
〈f1, . . . , fn, Xl〉 is U(s′) = C(fl) if fl = 1 and U(s′) = 0 otherwise. This
makes the expected reward for the state/action combination:

R(s, a) =
∑

s′

T (s, a, s′) ∗ U(s′)

Observations Ω. Observations Ω have the form: 〈fl〉 where fl is a Boolean
variable signifying whether a fire is present at the current robot location l.

Observation function O : S × A→ Π(Ω). The observation function for state
s′ = 〈f1, ..., fn, Xl〉 and action a = GO(Xl) is:

if fk 6= fl P (o = fk) = 0
else P (o = fl) = 1

You can notice that although the POMDP model requires us to specify the
action on top of the resulting state, this action is not necessary in our case
for specifying the observation function.

Initial State Initially, only state A0 is considered possible. This is represented
by having a belief state b such that b(A0) = 1 and b(s) = 0 for all other
s ∈ S. Then as time passes by, the belief is distributed over more states.

Belief MDP resulting from our POMDP

Since now we know what the POMDP for our problem is, the question of what
the resulting belief MDP looks like can be answered. To do that we examine the
part of section 3.3.1 on belief states for POMDPs and specify the corresponding
belief MDP components step-by-step:

States B. A single belief state is a distribution over all possible states S of the
POMDP. For example, b(〈1, 1, . . . , 1, Xl = 2〉) = 0 can be our belief that
everything is on fire and that we are currently in location Xl = 2. This
belief is part of one belief state, and B is the set of all possible belief states.
One important characteristic of the belief states in our problem is that only
the world states with the correct robot location are possible. This is an
artifact of the perfect robot localisation assumption. So b(〈. . . , Xk〉) = 0 if
Xk 6= Xl where Xl is the robot’s location.
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Actions Ab. The actions are as before. They are belief state dependent. For a
belief state b the available actions are of the form GO(Xg) with an action
for each Xg such that (Xl, Xg) ∈ A. Here note that Xl can be extracted
from the belief state b by looking at just one state s such that b(s) > 0

Transitions τ : B × A→ Π(B). These transitions have to be computed as pre-
viously described.

Immediate Rewards ρ : B × A→ R. The reward function of the belief states
B is defined as:

ρ(b, a) = Σs∈Sb(s)R(s, a) = Σs∈Sb(s)Σs′inST (s, a, s
′) ∗ U(s′).

So R(s, a) is substituted with the value it has for the POMDP.

3.3.3 Direct MDP settings

Although it is possible to obtain a belief MDP from the POMDP setting of the
problem, another alternative is to define an MDP directly based on the model
of the environment introduced at the beginning of this document. The resulting
MDPs are “belief MDPs” in the sense that they specify how our belief should
be updated. A difference from the belief MDP resulting from the POMDP is
that here our state is related to how much we believe a fire to be present in
each environment location. In the POMDP case our belief state is how much we
believe an entire state of the environment is possible.

First setting as MDP

States S. 〈t1, . . . , tn, Xl〉, ti ∈ [0,∞), Xl ∈ X, where t1 to tn are the times since
a room was last visited and Xl is the current robot location.

Actions As. The actions are state dependent. For a state s = 〈t1, . . . , tn, Xl〉
the available actions are of the form GO(Xg) with an action for each Xg

such that (Xl, Xg) ∈ A.

Transitions T : S × A→ Π(S). The transitions are completely deterministic
and so each (s, a) pair corresponds to a single state s′. So T : S×A→ Π(S)
has now the form T : S × A→ S

T (s, a) = T (〈t1, . . . , tl, . . . , tn, Xl〉, GO(Xg))→
〈t1 + 1, . . . , t′l = 1, . . . , tn + 1, Xg〉)

In the setting of section 3.2.1, once a room is visited, the fire is immediately
extinguished. Here we effectively do the same but the effects of the extin-
guishing action are delayed until the next time-step. This is done so that
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the reward of visiting a state where the room is on fire can be specified.
If the fire was extinguished immediately, then reaching a state where the
room is on fire would be no different than reaching a state where the room
is not on fire. This would make the reward specification very hard.

Immediate Rewards R : S × A→ R. Since the actions are deterministic, the
state action pair (s, a) always results in the same state s′. Then the reward
is: R(s, a) = C(fl) ∗ P (fl) where P (fl) = 1 − (1 − P (fl → 1))tl and Xl is
the robot location in s′. So given the state s′, the a priori probabilities of a
fire starting, and the cost for each room, the reward for each (s, a) can be
computed.

Second setting as MDP

States S. 〈p1, . . . , pn, Xl〉, pi ∈ [0, 1]2, Xl ∈ X, where pi is the probability of a
fire being present in a room Xi, and Xl is the current robot location.

Actions As. The actions are state dependent. For a state s = 〈p1, . . . , pn, Xl〉
the available actions are of the form GO(Xg) with an action for each Xg

such that (Xl, Xg) ∈ A.

Transitions T : S × A→ Π(S). The transitions are completely deterministic
and so each (s, a) pair corresponds to a single state s′. So T : S×A→ Π(S)
has now the form T : S × A→ S

T (s, a) = T (〈p1, . . . , pl, . . . , pn, Xl〉, GO(Xg))→
〈p′1 = 1− (1− p1)(1− P (f1 → 1)),
. . . , p′l = P (fl → 1), . . .
p′n = 1− (1− pn)(1− P (fn → 1)), Xg〉

So at every time-step the fire starting probabilities are used to update the
current state of the environment. The effect of the fire extinguishing action
is delayed until the next time-step for the same reason as in the transition
model of the first MDP setting.

Immediate Rewards R : S × A→ R. Since the transitions are completely de-
terministic each (s, a) pair corresponds to a single state s′. So, given the
state s′ and the cost for each room, the reward for each (s, a) can be com-
puted as R(s, a) = C(fl) ∗ pl, where Xl is the robot location in s′.

2note pi is an alternative notation for P (fl)
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Original Model

POMDP model

Belief MDP model

MDP model 2

MDP model 1

5(*)

1(*)

2(e)
3(e)

4(e)

Figure 3.5: Equivalence demonstration schema. Equivalence proof is supplied for (*)
and equivalence claim is made plausible by an example for (e).

3.3.4 Equivalence of different settings

In this section we show that the various surveillance models presented so far
are representationally equivalent. That is, we show the underlying problem to
be the same, no matter which representation is used. The model equivalence is
demonstrated by means of a collection of pairwise equivalences. There are some
proofs involved and the equivalence demonstration schema can be seen in figure
3.5.

Some of the equivalences are made plausible by means of working out by hand
example 3.2.4 for both the belief POMDP and the second MDP settings. The
choice to use this example is slightly arbitrary. The main reason for choosing it
is that it is simple and this makes it possible to work it out by hand. In fact, for
the case of belief MDPs this simulation on example 3.2.4 is still too long and it is
exhibited in appendix A to save space in the text of this chapter. Although, this
example is simple, it has been used in the section on strategies to demonstrate
some differences between them. We believe that it is hard to find an example
where these equivalences would not hold but, unfortunately, we have not been
able to find proofs.

Two MDP models (equivalence 1)

We begin our equivalence proofs by demonstrating that the following proposition
holds (label 1 of fig. 3.5).

3.3.2. Proposition. The two direct MDP settings are equivalent.

Proof. To prove this we show that there is a mapping between the states of the
two MDPs and that it does not matter which path of figure 3.6 we follow during
state transitions.

We begin by showing that there is mapping between states. Based on propo-
sition 3.2.2 and the definition of states in the second MDP model, we can say
that the probability pi of a room being on fire in a state s2 of the second MDP
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model is pi = 1 − (1 − P (fi → 1))ti , where ti is the time since the last visit in
the corresponding state s1 of the first MDP model. This formula gives us an easy
way of converting states of the first MDP model into states of the second. This
formula can be inverted. Beginning from:

pi = 1− (1− P (fi → 1))ti

we can write:

(1− P (fi → 1))ti = 1− pi ⇔ ti log(1− P (fi → 1)) = log(1− pi)

giving finally:

ti =
log(1− pi)

log(1− P (fi → 1))

This last formula gives us a way of converting states of the second MDP model
into states of the first. Actually, the above equation is undefined if P (fi → 1) = 0
or P (fi → 1) = 1. This means that in those two cases we cannot really tell how
long ago a room was visited from its probability of being on fire.

Now that the mapping between states has been demonstrated, we continue by
showing the equivalence of state transitions. Suppose that the state in the first
MDP is s1 = 〈t1, . . . , tl, . . . , tn, Xl〉. Using the information in s1 the corresponding
state s2 of the second MDP can be found:

s2 = 〈p1 = 1− (1− P (f1 → 1))t1 , . . . ,
pl = 1− (1− P (fl → 1))tl , . . . ,
pn = 1− (1− P (fn → 1))tn , Xl〉

Then suppose that action GO(Xg) is taken while at state s2, the resulting
state s′2 is:

s′2 = 〈p′1 = 1− (1− p1)(1− P (f1 → 1)), . . . ,
p′l = P (fl → 1), . . . ,
p′n = 1− (1− pn)(1− P (fn → 1)), Xg〉

State s′2 can be rewritten after substitution of values from s2:
s′2 = 〈p′1 = 1− (1− P (f1 → 1))t1+1, . . . ,

p′l = P (fl → 1), . . .
p′n = 1− (1− P (fn → 1))tn+1, Xg〉

Note now that s′2 is equivalent (using the inverse mapping mentioned above)
to:

s′′1 = 〈t1 + 1, . . . , t′l = 1, . . . , tn + 1, Xg〉

But s′′1 is the same as s′1 that can be directly computed from state s1 when
transition GO(Xg) is followed. We have thus shown that the transitions in the
two MDPs produce equivalent results.
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MDP 1

MDP 2

〈t1, . . . , tl, . . . , tn, Xl〉
6

?
〈p1, . . . , pl, . . . , pn, Xl〉

-GO(Xg)

-GO(Xg)

〈t1 + 1, . . . , t′l = 1, . . . , tn + 1, Xg〉

?

6

〈p′1 = 1− (1− p1)(1− P (f1 → 1)), . . . ,
p′l = P (fl → 1), . . . ,
p′n = 1− (1− pn)(1− P (fn → 1)), Xg〉

Figure 3.6: Equivalence sketch for the two MDPs.

Original and Belief MDP model (equivalence 4)

We now make plausible that the following claim holds (label 4 of fig. 3.5).

3.3.1. Claim. The belief MDP and the original models are equivalent.

The example given in appendix A can be seen as an informal demonstration
that the original setting and the belief MDP are equivalent. The justification of
this statement is that although the settings of the given problem are different,
the results computed by iterating the two models are the same, both in terms of
robot actions taken and in terms of expected action benefit.

Belief MDP and direct MDP model (equivalence 2)

We now make plausible that the following claim holds (label 2 of fig. 3.5).

3.3.2. Claim. The belief MDP and the second direct MDP models are equivalent.

To make this equivalence plausible, we will give a setting of example 3.2.4
within the second MDP model, then iterate the resulting MDP, and show that
the same results are computed.

States S. 〈p1, p2, Xl〉, pi ∈ [0, 1], Xl ∈ {X1, X2}.

Actions As. Here the actions are not state dependent because the state is too
small. Two actions are available: GO(X1) and GO(X2).

Transitions T : S × A→ Π(S). The transitions are:

T (s, a) = T (〈p1, p2, X1〉, GO(Xg))→
〈p′1 = 0.5, p′2 = 1− (1− p2)(1− 0.8), Xg〉

T (s, a) = T (〈p1, p2, X2〉, GO(Xg))→
〈p′1 = 1− (1− p1)(1− 0.5), p′2 = 0.8, Xg〉

Immediate Rewards R : S × A→ R. The rewards are given as previously de-
scribed.
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Now given this concrete setting, the MDP can be iterated with a one-step
look-ahead. The complete iteration can be found in figure 3.7. The starting state
is the state where the probability of both rooms being on fire is zero. Then both
actions are checked to determine their rewards R(s, a) and the action with the
largest reward is taken. This procedure is iterated a few times. It can be seen
that the actions taken during this iteration are the same as those in appendix A.
Furthermore, the rewards on which the decisions are based are also the same as
those found in appendix A.

Original and direct MDP model (equivalence 3)

This example can be seen to make the following claim (label 3 of fig. 3.5) plausible.

3.3.3. Claim. The original and the second direct MDP models are equivalent.

POMDP and Belief MDP model (equivalence 5)

3.3.3. Proposition. The POMDP and belief MDP models are equivalent.

This proposition corresponds to label 5 of figure 3.5. This is true according
to the definition of belief MDPs. A proof that the belief state is a sufficient
statistic for past history of observations of the POMDP can be found in [SS73].
Their proof shows that it is not necessary to remember the entire history of the
POMDP to determine its next state. That is, knowing the old belief state, the
action taken and the observation received are sufficient to determine the new
belief state. Furthermore, the state estimator SE(b, a, o) is derived as part of
their proof.

3.4 Surveillance state space size

Having described several problem settings and having shown that these are equiv-
alent, we proceed to derive the state space size for the surveillance problem. We
begin by giving a simple argument about why it is exponential and give a possible
objection to that argument. We then go on by proving that the state space size
is indeed exponential.

In the case of surveillance the state space is described as a tuple of times since
last visit containing one such time per room. A single state can be described as:

〈t1, . . . , tn, Xl〉, ti ∈ [0,∞), Xl ∈ X

The times since last visit are in theory allowed to go to infinity, which makes the
state space infinite in size. However, in normal situations not all times are used
because the behaviour of the robot exhibits some periodicity. Consequently, a
limit T is imposed on how long a time since last visit can be. The state space
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R(s1, a1) = 0.5

s2 = 〈0.5, 0.8, X1〉

a1

a2

a2

a1

a1

a1

a2

a2

a1 a2

s6 = 〈0.875, 0.8, X1〉
R(s5, a2) = 0.8

R(s9, a1) = 0.75

s7 = 〈0.875, 0.8, X2〉

R(s3, a1) = 0.75

s5 = 〈0.75, 0.8, X2〉s4 = 〈0.75, 0.8, X1〉

s1 = 〈0, 0, X1〉

s3 = 〈0.5, 0.8, X2〉
R(s1, a2) = 0.8

R(s3, a2) = 0.8

R(s5, a1) = 0.875

s8 = 〈0.5, 0.96, X1〉 s9 = 〈0.5, 0.96, X2〉
R(s6, a1) = 0.5 R(s6, a2) = 0.96

R(s9, a2) = 0.8

s4 = 〈0.75, 0.8, X1〉 s5 = 〈0.75, 0.8, X2〉

Figure 3.7: Iterating the second MDP setting.
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Figure 3.8: Permissible times vs room number.

size is exponential in the number of rooms included in a state (it is T n, where n
is the number of rooms).

One can object to the previous argument and say that the state space size
is not exponential in the number of rooms. A specific time since last visit for
a single room sets constraints on the times since last visit for the other rooms.
Those constraints are imposed by (a) the fact that the robot can be in only
one room at a given time and (b) by the connectivity between the rooms. The
constraints seem to imply that the state space size does not increase exponentially
in the number of rooms.

3.4.1 State space size derivation

Here it is argued that although the argument about the presence of constraints
and about the state space size not being T n is correct, the state space size is, in
fact, still exponential.

To show this we first limit the types of states we are examining by: (a) con-
centrating on a corridor environment, and (b) concentrating on the type of states
where the robot is on the leftmost room of the corridor. A diagram representing
the admissible states of this type can be generated (fig. 3.8). You can see in the
boxes at the bottom of the diagram that the robot is in the leftmost room and
this room can only have a time since last visit of 0. The rest of the rooms can
have times at some interval between 0 and T (shaded region), but not all values
are allowed because of the constraints mentioned.
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Assuming that every room was visited at some point, the lowest time value
allowed for any room is its distance from the leftmost room. This is 1 for room 2,
2 for room 3 and so on. An interesting observation is that there are n− 1 places
where our constraints apply and that the width of the possible options at each of
those places is at least T − (n− 1).

A possible MDP state corresponds to a path in this diagram. Note that
although the times are drawn as straight lines, they are discrete, and so should be
jagged. An example of a state represented as a path is the state 〈0, 2, 3, . . . , n−
1, n + 1〉 which is depicted as a dashed line in fig. 3.8. These paths have the
further constraint of having to be monotonically increasing with a slope of at
least 1. Paths that partially go back on themselves are possible but still the time
since last visit would be strictly decreasing with a slope of -1. An example of
such a path is given in figure 3.8 and the times since last visits generated by
this path are represented by its lower line segment as: 〈0, 3, 4, . . . , n + 1, n + 2〉.
Perhaps the important observation is that it is the most recent visit that matters
in determining the time since last visit and hence the state of the MDP.

The number of such paths is, at least, like putting T distinguishable balls
into n− 1 indistinguishable boxes and then sorting those indistinguishable boxes
based on the size of the ball in ascending order. The number of such possibilities
is:

(

T
n− 1

)

=
T !

(n− 1)!(T − (n− 1))!
(3.1)

This formula gives us for a specific T and n the number paths satisfying the
constraints in our diagram of fig. 3.8. So we have a formula to compute how
many states of this specific type (corridor, leftmost room) exist. In reality, there
are a few more possibilities because the figure is wider on one end, and because
paths that go back on themselves are allowed.

3.4.2 The value of T and the exponential expression

The size of T is related to the number of states that can be represented. If T =

n− 1, we get only one state
(

(n−1)!
(n−1)!0!

= 1
)

, so the rest of the states encountered

by the robot in a circular path cannot be represented.

T should be set to a value that is large enough to accommodate all possible
interesting paths and all the states that the robot would encounter along those
paths. In the case of the corridor the least possible T to pick is 2(n− 1) because
we need so many time-steps to walk along the corridor and return to the original
position. So a path just doing a round trip in the corridor needs at least T =
2(n− 1) to be representable in our MDP. The example of the path going back on
itself should be seen as an indication of why that is so.

We can convert equation 3.1 into one not involving factorials by using their
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Stirling approximation. The Stirling approximation of factorial is:

n! ≈
√
2nπ

(n

e

)n

Applying this to the formula for combinations we get:

(

T
m

)

≈
√
2Tπ

(

T
e

)T

√
2mπ

(

m
e

)m√

2(T −m)π
(

T−m
e

)T−m

=

√
2Tπ T T

2π
√

m(T −m)mm(T −m)T−m

The last equation is the general equation for combinations for any T and m.
Now in our case m = n−1, and for a corridor case we can set T = am = a(n−1).
Now we get:

(

am
m

)

≈
√
2amπ(am)am

2π
√

m(am−m)mm(am−m)am−m

=

√
a aammam

√

2πm(a− 1)mm(m(a− 1))m(a−1)

giving:
(

am
m

)

≈
√
a

√

2πm(a− 1)

(

aa

(a− 1)(a−1)

)m

(3.2)

Equation 3.2 is the general exponential expression for any a. Taking a = 2, the
number of states can be approximated as:

(

2(n− 1)
n− 1

)

≈ 1
√

π(n− 1)
4n−1

So for T = 2(n− 1) we get an exponential growth. Therefore, even for the simple
path in a corridor, the number of states available grows exponentially.

Given that the probabilities and the costs can also vary, we are likely to have
more complicated paths with the robot staying in some rooms. Those paths
require T > 2(n − 1) even for the corridor case, not to mention that there are
other types of environment like stars (chapter 5) that might need an even larger
T .

3.5 Standard (PO)MDP solving approaches

In this section we discuss several standard (PO)MDP solving approaches. The
focus on (PO)MDP based methods is due to the fact that they are what is most
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commonly used to solve other decision-theoretic problems in robotics. We hope it
will become clear that none of these methods is really suited to solve interesting
instances of the robot surveillance problem.

3.5.1 Value functions; value and policy iteration

In section 3.3.1 we have already defined a policy as a mapping π : S → A
from states S to actions A that specifies what action should be taken in every
environment state.

Given the policy of an MDP, and assuming that we are using the discounted
infinite horizon optimality model, we can define for each state its infinite horizon
value function as:

Vπ(s) = R(s, π(s)) + γΣs′∈ST (s, π(s), s
′)Vπ(s

′)

The value function is the expected cost resulting from starting in state s and the
following policy π. Here the discounted optimality criterion of section 3.3.1 is
used in which the value of states away from state s are discounted by γ.

The discounted infinite horizon solution to the MDP is a policy that maximises
its expected value Vπ. Howard [How60] showed that there is an optimal policy
π∗ that is guaranteed to maximise Vπ, no matter what the starting state of the
MDP is. The value function for this policy Vπ∗ , also written V ∗, can be defined
as:

V ∗(s) = max
a

[R(s, a) + γΣs′∈ST (s, a, s
′)V ∗(s′)]

This has a unique solution and if the optimal value function V ∗ is known, then
the optimal policy π∗ is defined as:

π∗(s) = argmaxa[R(s, a) + γΣs′∈ST (s, a, s
′)V ∗(s′)]

There are two very standard ways of finding the optimal policy, (a) policy-
iteration and (b) value iteration. The policy iteration method (see algorithm 3.9)
starts from a randomly chosen policy. The algorithm proceeds by repeatedly try-
ing to find alternative actions for each state that improve the current state value
function. The new actions found replace the old policy actions. The iterative
improvement of policies stops when no policy-improving actions can be found.

In value iteration (see algorithm 3.10) optimal policies are produced for suc-
cessively longer finite horizons until they converge with some error less than ε.
Assuming that for a look-ahead of 0, V0(s) = 0, the algorithm computes value
functions Vt based on the policy found using the value function Vt−1. The al-
gorithm terminates when the maximum change in the value function is below a
threshold.

Policy iteration and value iteration can find optimal policies in time polyno-
mial in the number of states in the MDP. However, as we have shown, the number
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of MDP states is exponential in the number of locations used to describe the state
space. This state space is defined as the cross product of those locations. So these
methods cannot be used to solve the Direct MDP formalisations of section 3.3.3.

Furthermore, in the case of POMDPs, the belief MDP corresponding to the
POMDP has a continuous state space and this complicates matters further. In
fact, in [PT87] it is shown that finding policies for POMDPs is a PSPACE-
complete problem and this makes exact solutions in polynomial time less likely
than for NP-complete problems. Policy iteration and value iteration can, there-
fore, find optimal policies but for the smallest POMDPs. In the rest of this
section we are going to describe techniques for finding POMDP policies for larger
problems.

for each s ∈ S do π(s)← RandomElement(A) end;
repeat

Compute Vπ(s) for all s ∈ S;
for each s ∈ S do

Find some a such that [R(s, a) + γΣs′∈ST (s, a, s
′)Vπ(s

′)] > Vπ(s);
if such an a exists then

π′(s)← a;
else

π′(s)← π(s);
end

end
until π′(s) = π(s) for all s ∈ S;
return π;

Figure 3.9: The policy iteration algorithm

for each s ∈ S do V0(s)← 0 end;
t← 0;
repeat

t← t+ 1;
for each s ∈ S do

for each a ∈ A do
Qt(s, a)← R(s, a) + γΣs′∈ST (s, a, s

′)Vt−1(s
′)

end
πt(s)← argmaxaQt(s, a);
Vt(s)← Qt(s, πt(s))

end
until maxs |Vt(s)− Vt−1(s)| < ε;
return πt;

Figure 3.10: The value iteration algorithm
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3.5.2 Piecewise linear discretisations

As previously mentioned, one of the problems in finding policies for POMDPs
is that the state space of the belief MDP is continuous. Several methods have
been proposed for solving POMDPs [Lov91]. All of them have to deal with the
problem of continuous state spaces. One naive suggestion is that of discretising
the continuous state space using a fixed discretisation. However, this is not an
efficient way of dealing with the discretisation problem.

In [SS73], it was suggested that for the finite horizon optimality model the
optimal POMDP value function is piecewise linear and convex. For a given hori-
zon, the continuous belief space can be split into regions (pieces) and within those
regions the optimal value function can be described using a linear function of the
belief space. The region boundaries arise naturally as a side effect of the fixed
finite horizon. The piecewise value function is convex in that the surface defined
by the union of the hyper surfaces within each region is convex. For a proof of
those two statements look at [SS73]. These two properties can be used to derive
a POMDP version of value iteration that discretises the environment accurately
at the borders of these regions in each iteration.

In [Son78] this method has been extended for the infinite discounted horizon
POMDP optimality model. The function remains piecewise linear because the
value iteration in the infinite horizon case stops iterating when the difference in the
value functions between iterations is under a limit. Therefore, the value function
computed in the infinite-horizon version of value iteration is still computed in a
finite number of iterations. Hence, the piecewise and convex properties are still
present. If the value iteration was to continue for an infinite number of iterations,
the resulting function would still be piecewise linear, but would possibly have
infinite piecewise segments. The discounting is necessary to guarantee that the
optimal value function will be finite and this, in turn, is necessary to guarantee
that value iteration will eventually converge with this optimal value function. The
value iteration methods used for POMDPs using the piecewise linearity property
can solve problems where the underlying MDP has around 2-5 states [LCK95b]
So these methods are rather restrictive.

In [KLC96] an improved version of value iteration for POMDPs called the
“witness algorithm” is proposed. In [LCK95a] it is mentioned that the witness
algorithm can deal with up to around 16 states in the underlying MDP, but
this is still a rather restrictive result. In [LCK95b] an attempt is presented to
find approximate solutions that can provide satisfactory solutions for problems
with around 100 states. An even newer approximation method [MKKC99] has
been used to solve problems with up to 1000 states. However, in our problem
the underlying MDP has at least 2|X| states where X is the set of all possible
environment locations (as described in section 3.2.1). For |X| = 32 the number
of states is close to 4 billion. The conclusion is that the methods based on the
piecewise linearity of the value function performing either exact or approximate
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solution computation cannot be used for our problem.

3.5.3 Planning with factored representations

As previously mentioned, the state space of an MDP is exponential in size in the
number of literals used to describe it. Consequently, the MDP state transition
and state reward tables are also exponential in size in the number of literals
used to describe the state space. In [BDH96] the distinction is made between
flat and factored state spaces. A flat state space is a state space where a single
literal is used to describe each state - the literal taking on as many values as the
number of states in the state space. A factored state space is one where each
state is composed of many literals (factors / fluents) - each literal taking on fewer
values than the size of the state space. Note that we have already been implicitly
considering factored state spaces in our discussion of the surveillance problem.

The main observation in [BDH96] and in later articles [BDH99, HSAHB99] is
that in some problems independences can be exploited to reduce the size of the
problem description. At the action level it may happen that the post action value
of a literal depends on the pre-action values of only a few literals. Similarly, the
reward of an action and the value of a state might be structurable on the value
of state space literals. It can possibly be so that some literals will not influence
at all the value of the state.

The suggestion in [BDH96, BDH99] is to use temporal Bayesian networks to
represent the state transition probabilities. The claim is that Bayesian networks
can reduce the space needed for transitions, from exponential in the number of
literals (using transition tables) to polynomial (using Bayesian networks). In
figure 3.11 such a Bayesian network is used to represent the action GO(X3) of
our surveillance application. From the network and the conditional probability
tables (CPTs) associated with it, one can see that the robot location X t+1

l , after
action GO(X3) is taken, does not depend on what the location X t

l was in the
pre-action state. Similarly, the presence of a room fire at t + 1 only depends on
whether a room fire already existed at t and on what the location X t

l was. One
such Bayesian network has to be introduced for each action in our environment.
Actually, the Bayesian network only requires less space than the state transition
table when independence structure is present, that is, when each time t+1 literal
does not have all time t literals as parents. If no independence structure is present,
it does not make sense using Bayesian networks in the representation. However,
typically such structure exists.

The other suggestion in [BDH96, BDH99] is using influence diagrams to com-
pactly represent the value/reward of a state based on the value of the literals.
This makes sense if the reward is only dependent on a few literals. In our case
the value depends on the current location Xl and the presence of a fire fl at the
current location Xl. This means that all literals f1 . . . fn have to be used in the
influence diagram and so the influence diagram is not significantly smaller than a
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Figure 3.11: Action network for the GO(X3) action with two CPTs shown.
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Figure 3.12: The reward influence diagram and the decision tree for the two-room
example.

reward table. The decision tree corresponding to the influence diagram, however,
is smaller than the reward table.

Both of these suggestions are used in [BDH96, BDH99] to produce an algo-
rithm called SPI. This algorithm is based on Sondik’s value iteration, but instead
of computing piecewise linear value functions, it is computing new influence dia-
grams to represent the state value function. The algorithm performs better than
classical piecewise linear value function algorithms because only literals that are
relevant to the outcome under a particular action are considered. Knowing the
state value function trivially gives us the policy by picking the action that takes
us to the best state.

In [HSAHB99] algebraic decision diagrams are used for representing rewards
and value functions instead of influence diagrams. Algebraic decision diagrams
are generalisations of the binary decision diagrams often used in computer circuit
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design. Algebraic decision diagrams allow assigning non-Boolean values to leaves
and so can be used to represent rewards (which can be real valued). Various oper-
ations are defined upon algebraic decision diagrams, such as adding two diagrams
or multiplying them. The claim in [HSAHB99] is that the algorithms based on al-
gebraic diagrams can benefit from the fast tree merging implementations already
existing for Boolean decision diagrams. Furthermore, an approximate method is
suggested whereby parts of the algebraic decision diagrams that have little effect
on the final value of a state are pruned to reduce the computation.

3.5.4 Reinforcement learning using neural networks

In this section we discuss reinforcement learning using neural networks as a
method for approximately computing the value function. We begin by discussing
the problem described in [CB96] of optimal elevator dispatching policies for a
building with 4 elevators and 10 floors. This problem has several characteristics
similar to those of our problem. The elevators are responding to call buttons
being pressed. In our problem, if uniform room costs are assumed, the surveil-
lance robot will visit rooms likely to be on fire. In a sense pressed buttons can
be thought to be corresponding to fires. Furthermore, a lift takes into account,
while parking, where it is more likely to be called up next (in our problem, the
robot looks at the probability of a fire starting).

However, there are also some differences. Firstly, the call buttons can be
thought of as perfect sensors distributed over all floors (in our case, each room
would have a perfectly reliable fire sensor). Secondly, queues of people waiting
for a lift can be formed (in our case, multiple fires would be present in a room).
Thirdly, once the person is in the lift, the lift still has to transport the person to
the right floor so the task is not equivalent to just picking up the person (as it is in
our case). Finally, in the elevator problem we are dealing with a one-dimensional
motion problem, while in the surveillance problem, connections between rooms
play an important role. So the two problems are not immediately equivalent.
However, here too, the state space is huge since all possible combinations of call
and elevator buttons plus all the possible lift positions and directions have to be
represented.

The solution proposed in [CB96] combines the concept of reinforcement learn-
ing with a neural network based approach to it. The neural network and rein-
forcement learning combination performs better in this problem than the standard
known solutions to the elevator dispatching problem. However, we have several
objections to this solution. Our first objection concerns the number of inputs and
the input significance, as part of the state representation is ignored in the inputs,
and some inputs correspond to heuristically determined properties. Our second
objection has to do with the number of hidden units and various learning param-
eters, such as the discount factor and learning rate, which were experimentally
set . Finally, no attempt of justification for those choices was made. The authors
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themselves admit that a significant amount of experimentation was necessary for
determining the appropriate network shape parameters.

Another frequently cited example of good performance exhibited by rein-
forcement learning methods is that of TD-Gammon [Tes95, Tes94, Tes92]. TD-
Gammon is a backgammon-playing program that uses a version of reinforcement
learning called temporal difference learning (TD-learning) [Sut88] to learn the
playing policy. The problem in TD-Gammon is very different from ours since a
policy that can be followed against intelligent opponents has to be found. This
is the domain of game theory instead of decision theory.

In TD-Gammon the agent learns the best playing policy by starting without
any a priori knowledge about the game of backgammon, apart from the rules.
That is, there is no knowledge derived from experts about how a player should
play backgammon in order to win. TD-Gammon plays games of backgammon
against a copy of itself and learns from the mistakes it makes. At the end of
each game a reinforcement (reward) for the entire game is computed (using the
backgammon scoring scheme). The problem then becomes one of assigning some
of this game reinforcement to each of the actions performed by the program during
the game. A similarity between the solution in [CB96] and the elevator problem is
that in both cases the value function for each state is represented in a multi-layer
perceptron and that the correct value function is learned using back propagation.

The results obtained with TD-Gammon are impressive. A policy, good enough
to follow against master level humans, is found. If some a priori knowledge is
incorporated in the input to the multi-layer perceptron in the form of interesting
board configuration features, then TD-Gammon can reach grand master level
play. However, as in the elevator scheduling problem, some parameters have to
be configured experimentally. Furthermore, and perhaps more importantly, no
definite explanation of its good performance can be given. In fact, it is always
possible that TD-Gammon will find a locally optimal solution although, according
to the authors, that seldom happens.

From our analysis of TD-Gammon and of the elevator scheduling problem so-
lution we conclude that although after some experimentation good reinforcement
learning solutions using neural networks can be found for those problems, they
are not necessarily open to introspection and cannot be guaranteed to be optimal
or near optimal.

3.5.5 State-action pair sampling

As we have previously mentioned, standard exact methods, like value and policy
iteration in the case of MDPs, have runtimes polynomial in the number of states
in the underlying MDP and exponential in the number of problem variables. In
[KMN99] a method is proposed whose runtime is not dependent on the num-
ber of states in the MDP. This method relies on sampling the look-ahead tree
and producing a sparse look-ahead tree that is dense enough to guarantee some
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optimality conditions.
The algorithm uses a generative model G that, given an action a and a

state s, randomly outputs a new state s′ according to the transition probabil-
ities T (s, a, s′). The algorithm takes an on-line view; given a state, a decision
about the best action has to be taken. No fixed policy is computed as in value
or policy iteration. Going back to the optimality conditions the algorithm guar-
antees that, given the generative model G, an input state s ∈ S and a tolerance
value ε > 0, the action output satisfies the following conditions:

• The runtime is O(kC)H , where k is the number of actions available at each
state, C is the number of samples taken for each state-action pair, and H is
the look-ahead depth of the tree. C and H are determined by the algorithm
but are independent of the state space size (see fig. 3.14).

• The value function of the approximate policy V A(s) is such that its differ-
ence from the optimal policy V ∗ is below ε:

|V A(s)− V ∗(s)| ≤ ε

The complete algorithm A can be found in figure 3.14. The top level function
calculates the right values for C and H given the required tolerance ε and discount
factor λ. Subsequently, it proceeds to compute an estimate Q̂∗H of the optimal
state-action value function Q∗H and select the action with the best Q̂∗H value.
The Q functions should be seen to be a special kind of value functions V with
two arguments, one for the states s we begin from and another for the action
a taken at that state. The computational advantage of the algorithm derives
from the approximate computation of the state-action value function Q̂∗H . In the
calculation of Q̂∗h(s, a) (line 1 in the algorithm), only C sample resulting states
are considered instead of the full state space S. If the size of the state space
|S| = N ≥ C, then a computational advantage can be gained because the tree
searched is smaller than the full search tree. A proof that the algorithm really
satisfies the above-mentioned optimality criteria can be found in [KMN99].

The state-action sampling approach is well suited for situations where an ac-
tion can take the system to every state s ∈ S. However, as was seen in the
example of appendix A, our belief MDPs have rather structured transition prob-
ability tables and this structure can probably be better exploited. Furthermore,
in [MV98], we have shown that our search for a decision-theoretic strategy using
the original problem setting could provide us with a solution of O(kh) time com-
plexity, where k is the number of actions available at each location and h is the
number of steps to look ahead. There, as well as in the MDPs proposed in section
3.3.3, the actions are completely deterministic and only a single resulting state is
possible for each state-action pair. So, in fact, the decision-theoretic search can
do better than the state-action sampling approach for our specific problem.
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Figure 3.13: The look-ahead tree for the state-action sampling algorithm for C = 3
and k = 2.

Furthermore, the interpretation of tolerance ε here is not immediately intu-
itive. Tolerance is not defined as a proportional difference from the optimal value
function. One needs to have an idea of what the value of the optimal value
function is before a reasonable tolerance can be specified.

One seeming advantage of the discussion in [KMN99] over our discussion in
[MV98] is that given the tolerance and the discount factor, the depthH that has to
be used in the search in order to achieve the desired tolerance ε can be computed.
In [MV98], no optimality guarantees are given and the maximal depth used is
only determined based on computational constraints (the robot has to act in real
time). Although the approach of [KMN99] is more formal, if some reasonable
values (ε = 0.2, γ = 0.9, Rmax = 1) are substituted in the equations of algorithm
3.14, large values are computed for C and H (C = 3003, H = 39). For such large
values for C and H the runtime will most probably be very large, making the
application of this algorithm unrealistic for the desired C and H.

In any case, we hope that from this section it is clear that our problem has
transition tables with a rather specific structure and that the state-action pair
sampling algorithm is designed for problems with a different type of transition
table structure.

3.6 Summary

There are several equivalent ways in which the surveillance problem can be set.
The state space size is exponential in the number of locations used to describe the
environment in all these settings. The exponential state space size in conjunction
with the results in [PT87] implies that standard exact MDP solving methods



60 Chapter 3. Problem Formalisation and Complexity

Function: Estimate Q(h,C, γ,G, s)
if h = 0 then return (0, . . . , 0);
for each a ∈ A do

generate C samples using G;
let Sa be the set containing these C samples;

end
for each a ∈ A do

let our estimate of Q∗(s, a) be:

Q̂∗h(s, a)← R(s, a) + γ 1
C
Σs′∈SaEstimate V(h− 1, C, γ,G, s′)

end
return (Q̂∗h(s, a1), Q̂

∗
h(s, a2), . . . , Q̂

∗
h(s, ak)) ;

Function: Estimate V(h,C, γ,G, s)
(Q̂∗h(s, a1), Q̂

∗
h(s, a2), . . . , Q̂

∗
h(s, ak))← Estimate Q(h,C, γ,G, s);

return maxa∈{a1,...,al}{Q̂∗h(s, a)} ;

Function: Algorithm A(ε, γ, Rmax, G, s0)

λ← ε(1−γ2)
4

;
Vmax ← Rmax

1−γ
;

H ← logγ
λ

Vmax
;

δ ← λ
Rmax

;

C ← V 2
max

λ2 (2H log
kHV 2

max log
1
δ

λ2 + log 1
δ
) ;

(Q̂∗H(s, a1), Q̂
∗
H(s, a2), . . . , Q̂

∗
H(s, ak))← Estimate Q(H,C, γ,G, s0);

return argmaxa∈{a1,...,al}
{Q̂∗H(s, a)};

Figure 3.14: Sparse MDP sampling
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cannot solve our problem, and that approximate methods need to be tried.
We have demonstrated that all the different settings are equivalent, and so

our choice of representation should not affect results. We felt that it would be
clearer and more convenient if just one of these settings was used in the rest of
this thesis. We are probably right in saying that POMDPs are harder to compute
using paper and pencil (e.g. in appendix A). So we decided to use the decision-
theoretic setting of section 3.2.1 in the rest of this thesis.

A further observation is that at least some of the POMDP solving methods
discussed attempt to use the structure of the specific problem attacked. State-
action pair sampling computes solutions faster, due to the fact that in their
problem setting some resulting states are more likely than others for a given
state-action pair. Factored representations make use of the fact that in some
problems the sets of possible actions and resulting states depend only on some of
the parameters of the current state. This seems to indicate that the structure of
the problem is important in efficiently computing the solution. In fact, in [WM95],
it is shown that the best way to solve a specific search problem is to make a
customised search method that looks carefully into what the “salient features” of
the problem are. However, none of the standard approximate methods proposed
can be applied to our problem because they take advantage of different types of
structure from that present in our problem.

We decided to concentrate on approximate methods built specifically for our
problem and for the scenarios that a robot is likely to encounter in an office-like
environment. Our problem has a lot of geometric structure in it. For example, the
possible state transitions are greatly constrained by the structure of the physical
environment. None of the methods we have seen so far explicitly tries to take
into account the geometrical structure present in the motion actions. Our claim
is that using it to guide our approximations is the best way to produce fast and
accurate solution algorithms for the surveillance problem.





Chapter 4

Hierarchy and Strategies

In this chapter, we show that a hierarchical approach to surveillance can improve
the simple minimum expected cost (MEC) strategy proposed in section 3.2.2.
The minimum expected cost strategy can only be evaluated with a limited look-
ahead and this causes problems related to local minima. One such local minima
problem is that of “expected cost obstacles” in example 3.2.10.

The hierarchical decision theoretic strategy proposed here attempts to over-
come these problems by simultaneously using descriptions of the environment
at different levels of abstraction, where decisions made at more abstract levels
guide the decision making at less abstract levels. Although it also uses a limited
look-ahead, it deals with much larger time horizons than the original minimum
expected cost strategy, because the higher levels of the hierarchy can shift the
focus of attention to areas of the environment far away from the current robot
position.

While the hierarchical strategies of this chapter are heuristic and the ap-
proximation of the expected cost is rather ad hoc, they improve performance in
situations with local minima. They are presented to justify the use of a hierarchi-
cal approach. In later chapters, we will devise an improved hierarchical strategy
which better exploits the geometrical structure in our environment.

4.1 An office-like environment

The strategies of this chapter are compared in a realistic office-like environment
that is based on an existing office building (fig. 4.1:a). This environment is used to
guide our thought on what kind of methods are applicable in a real life scenario.
Describing our method in terms of a real environment serves to make our ideas
more concrete. This environment will also be used in later chapters to compare
surveillance strategies. Although it is just an instance of an office-like building it
has features that are common in many such buildings.

63
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It is assumed that an a priori map of the building is available. This map is
an accurately labeled occupancy grid that is composed of walls, doors, and free
space. Locations Xi are rooms and segments of the corridor (fig. 4.1:b) and fires
have given starting probabilities P (fi → 1) and known costs C(fi).

4.1.1 Environment graph construction

Before applying the decision strategies to the office environment, each room is
identified and marked. The corridor (room 0) is segmented into many smaller
rooms. The places where to segment the corridor are determined by the position
of the doors connecting other rooms to the corridor. By segmenting the corridor,
a mapping of all potential decision points of the robot to individual locations is
achieved (fig. 4.1:b). Such a segmentation is also considered natural, for an office
environment in [TRS01]. Finally, the marked room environment representation
is converted into a graph where rooms correspond to graph nodes and doors to
graph links (fig. 4.1:c). This representation is called the environment graph.

The n-step minimum expected cost strategy can be applied to the environment
graph. An n-step minimum expected cost strategy is essentially doing a depth-
first search of a tree of possible decisions. The time needed to take a single
decision using such a strategy is exponential with an O(bn) time complexity (see
e.g. [Lug02] page 106), where b is the branch factor of the decision tree being
explored and n is the number of steps to look ahead. In our environment, b is the
average connectivity of the environment graph being explored and has a value
of about 3. In connected environments, where there is a link to a neighbouring
room and one to the room itself, the lowest value b can take is 2. This sets a
lower bound of 2n on the time complexity.

4.1.2 The cost barrier problem

It is obvious that under certain circumstances, n-step strategies can face a difficult
situation in our environment.

4.1.1. Example. Consider the case in fig.4.2 where C(fi) = 0 for i ∈ {5, 6, 7, 8,
9, 10, 32, 33, 34, 35, 36}, C(fj) = ĉ for j ∈ {1, 2, 3, 4, 28, 29, 30, 31}, C(fk) = 1
for all k 6= i∧ k 6= j, P (fl → 1) = 0.001 for all l and A0 = 50. The variable ĉ can
take any positive value and values from 1 to 100 are used in our simulations.

In this setting an “expected cost barrier” is formed by the Xis that an n-step
minimum expected cost strategy (section 3.2.2) with n ≤ 5 cannot cross. All the
barrier locations Xi have an expected cost of 0. A robot starting at room 50 can
get up to room 37 but then its immediate neighbours will all have an expected
cost of 0 and a visit there will not be justified. The rooms Xj will not be visited
either because they can only be considered once the robot is in one of the Xis.
Therefore, the rooms Xj will never be visited although, after a sufficiently large
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Figure 4.1: (a) Initial map (b) Segmented map (c) Environment graph.
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period, they will almost certainly be on fire and the cost of fire there is relatively
high (if ĉ > 1). This is an example of an expected cost barrier.

Of course, a 6-step strategy can overcome this barrier, but then a larger one
can always be constructed. Furthermore, the decision to use 6 rather than 5 steps
has to be based on knowledge about the presence of a barrier. Such knowledge
must either be given in advance or has to be derived based on an analysis of the
environment. It is not obvious how such an analysis might be performed since
effective cost barriers can exist in more subtle situations. Finally, as we mentioned
in the previous section, there is a real-time, performance-imposed upper limit on
the value of n that can be used since the complexity of the search is exponential.

4.1.3 Simulation experiments

The environment graph of this example was used in the simulations. Furthermore,
virtual sensors that can detect if a fire is present within a certain graph node were
implemented. Initial fire locations, probabilities and costs are specified at the level
of environment graph nodes.

The hierarchical as well as the minimum expected cost and the minimax in-
terval strategies were simulated in the environment of example 4.1.1. Several
instances of that environment with different ĉ values for the barrier rooms were
used in the simulations. Further, a “uniform” environment was used where all
rooms had costs of 1 and so no barrier was present.

Both the evolution of fires in the environment and the decisions taken by
the robot were simulated. Fires could start at all locations and their costs were
accumulated over many simulated time-steps. The accumulative costs represent
the ground truth on how well the strategy did in that particular run. The smaller
the resulting cost, the better the strategy minimised the cost.

The robot had knowledge about the time since last visit for all locations as
well as for the P (fi → 1) and C(fi) for all Xi ∈ X. These values were used
to compute the estimate of the expected cost for each location and guide the
strategies accordingly. The simulated robot attempted to take the actions that
minimised the expected cost.

In the simulations, 10000 iterated time-steps were used for each run of the
simulator. Taken together with a probability of fire starting of P (fi → 1) = 0.001
means that a fire almost definitely starts in each of the environment’s 50 locations
during the simulation run. Twenty runs of 10000 were used for each strategy to
give some estimate of the effects of the randomness and to compute the standard
deviation of our measurements. Since the size of our time-steps in real time units
would be determined by the time a real robot would take to move to an adjacent
room, one can claim that a P (fi → 1) = 0.001 is too high. Although this is true
in most cases, a lower fire starting probability would imply that more iterations
would be necessary in our simulations to ensure that statistically correct results
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are gathered. Although, P (fi → 1) = 0.001 is quite high, we believe that, if
this probability is lowered, but at the same time the environment becomes larger
(incorporating many floors or buildings), the same qualitative results will be
obtained.

We have plotted the number of times each room is visited by the 5-step min-
imum expected cost strategy (fig. 4.6:i). Since this strategy cannot overcome the
expected cost barrier, the groups of nodes a, b, c and d in the plot are not visited.
So neither the nodes beyond the barrier nor the nodes in the barrier are visited.

4.2 The hierarchical minimum expected cost

strategy

The proposal is to overcome the barrier problems by means of a hierarchical
minimum expected cost strategy. In order to implement a hierarchical minimum
expected cost strategy two subtasks are performed.

• The environment graph is abstracted. The aim is to generate a hierarchical
model of the environment.

• A reasonable strategy is found. This strategy has to apply minimum ex-
pected cost to the hierarchical model of the environment, in a way that cor-
responds in a well-defined approximate manner to the actual MEC strategy
at the lowest level.

The hierarchical strategy is proposed here to demonstrate the benefit of using a
hierarchy in our approximations.

4.2.1 Abstraction tree construction

To construct the abstraction tree, the environment graph was repeatedly clustered
and abstracted. Only example 4.1.1 was considered and so the clustering process
was not automated as the effort was not justified. However, the following criteria
leading to the possibility of its automation were taken into account.

1. A path within the cluster should exist between any two nodes in a cluster.

2. No path between any two nodes within a cluster should be greater than the
look-ahead size n (we took n = 5).

3. The resulting tree should be balanced. This means that at each level all
clusters should have approximately the same number of children.

The clustering was performed recursively until the environment graph could
not be further abstracted. In the resulting abstraction tree, the abstract nodes
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Figure 4.3: Abstraction tree.

at each level are interconnected with links that map to doors (fig. 4.3 (levels 1
and 2)).

4.2.1. Definition. The expected cost EC of an abstract node is defined recur-
sively as:

EC(Xi) = Pt(fi)C(fi) if level(Xi) = 0.
EC(Xi) =

∑

j∈ch(Xi)
EC(Xj) if level(Xi) > 0.

where ch(Xi) is the set of children of node Xi, Pt(fi) is the probability of fire in
room Xi at t time-steps since its last visit (definition 3.2.2), and C(fi) is the cost
of fire per time-step at room Xi. So the expected cost of an abstract node is the
sum of the expected costs of all its level 0 descendants.

4.2.2. Definition. The expected cost ECp of a path p = [Xf |r] is defined re-
cursively as:

ECp([Xf |r]) = EC(Xf ) + ECp([r])

where Xf is the first node in the path, r is the rest of the path, and EC is the
expected cost of an abstract node as computed by definition 4.2.1.

4.2.2 Decision procedure

The hierarchical minimum expected cost strategy (fig. 4.4) begins from the top
of the abstraction tree and works its way down through its different levels. The
original minimum expected cost strategy is used to select the best node to visit at
each level. If at the current abstraction level the best node does not correspond
to the robot location at that level, a path is planned to a child of the selected
best node, and so the abstract cluster is changed. If the best node corresponds
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present room← ROOM ;
% where ROOM is the room the robot is currently in
abstraction level←MAX ;
% where MAX is the most abstract level with more than 1 node
change abstract node← false;
%if change abstract node is set to true then the robot directly plans a
%path to another abstract node

while abstraction level > 0 do
present node← map present room to abstraction level node;
select best next node using 5-step MEC at current abstraction level;
if best next node = present node then

abstraction level← abstraction level − 1;
else

change abstract node← true;
target← map best next node to closest 0 level node to present room;
best path← plan shortest level 0 path from present room to target;
abstraction level← 0;

end
end

if change abstract node=false then

best path← plan using 5-step committed MEC at level 0;
end

follow best path until its end is reached;
repeat the decision procedure to select new best path;

Figure 4.4: Algorithm for the hierarchical minimum expected cost strategy.

to the robot location, the same decision procedure is repeated for the next lower
abstraction level.

If no decision is made to change abstract nodes and level 0 is reached, the robot
has to plan a 5-step “committed minimum expected path” within its present level
1 node. “Committed minimum expected cost” means that once a path is selected
by the strategy, the robot sticks to it until its end. Ordinary 5-step strategies are
reevaluated after each step is taken. So once a path is selected by an ordinary
strategy, the first location in the path is visited and then a new 5-step reevaluation
takes place. By using “committed minimum expected cost” a path staying in the
cluster visits five rooms and hence its length is closer to that of a path moving
to a different part of the environment. Further, using commitment solves the
problem with the n-step strategies described in example 3.2.12.

To clarify the hierarchical strategy we give a couple of concrete examples. In
the first example the abstract node is changed (fig. 4.5:a).
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Figure 4.5: Example 4.2.3 (a) and 4.2.4 (b).

4.2.3. Example. The robot starts in room 3 at level 0 of the abstraction tree.
The strategy has first to decide which node at level 2 should be visited. Suppose
its outcome is that the robot should stay within the abstract node 59. Then
another decision has to be made at level 1. If the decision is that it should visit
node 52, then the robot has to move to another node. Consequently, a direct
path is planned and the robot moves from 3 to 31 and then 32 because this is the
shortest path from 2 to some descendant of node 52.

In the second example the robot never changes abstract node (fig. 4.5:b).

4.2.4. Example. The robot again begins at room 3 and the same line of reason-
ing is followed until abstraction level 1. Then suppose a decision is taken at level
1 to visit node 51. The main loop should be exited and the robot has to use a
committed minimum expected cost strategy starting from node 3. Consequently,
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a longer visit of node 51 is planned rather than a move to a different abstract
node.

The proposed hierarchical strategy was applied in the environment of ex-
ample 4.1.1 for ĉ = 50. The number of visits per location was again plotted
(fig. 4.6:ii). The location groupings a and c are visited indicating that the robot
went beyond the expected cost barrier. This is a positive result. Furthermore,
the barrier locations in the corridor (group d) are visited when the robot crosses
to the other side of the barrier. The barrier locations that are not in the corridor
(group b) correctly are not visited since no benefit can be gained by doing so.

4.2.3 Revised decision procedure

One problem we encountered is that the robot frequently swaps between abstract
nodes 59 and 60. This problem cannot be seen directly from fig. 4.6:ii, but its
effect is that we have rather a lot of visits along the corridor of the barrier (around
rooms 32-36) and along the rest of the corridor of node 59 (along rooms 36-40).
It occurs because, although the rooms past the barrier can have a rather high
ĉ, they are not sufficiently many to keep the robot busy for a long period. This
means that at the top level of abstract nodes 59 and 60 not visiting node 60 for
many steps is also comparatively expensive. However, a brief visit to one of these
abstract nodes is sometimes enough to tip the scales in favour of the other and
then a lot of direct cluster changing paths are planned as a net result. To make
things worse, a visit to cluster 59 most of the time results in a visit to cluster
51, which is more expensive, and that is why so many visits along the corridor of
cluster 59 take place.

To fix this problem we revised hierarchical MEC to prefer paths that start at
the current node Xl. This might seem strange since we just visited those rooms,
but at the abstract levels it makes sense since it tends to make the robot explore
the local neighbourhood properly before moving elsewhere.

4.2.5. Definition. The revised expected cost EC∗p of a path p = [Xf |r] is de-
fined as:

EC∗p([Xf |r]) = κECp([Xf |r]), κ > 1 if Xl = Xf .
EC∗p([Xf |r]) = ECp([Xf |r]) if Xl 6= Xf .

where Xf is the first node in the path, r is the rest of the path, κ is a delay
constant, Xf , Xl are nodes at the same level of the abstraction tree and ECp is
computed using definition 4.2.2.

The purpose of κ is to delay moving from the current node. It can perhaps
be thought of as a “hysteresis” parameter. The bigger the value of κ the longer
the delay in deciding when to move into a new cluster. It might appear counter-
intuitive to want to stay longer at a node that was just examined. However, this
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ĉ = 100 ĉ = 50 ĉ = 10 ĉ = 1 uniform
κ = 1.0 407± 28 278± 17 130± 7.0 100± 5.5 321± 6.4
κ = 1.1 350± 32 230± 14 79.5± 5.5 27.6± 1.7 39.3± 2.6
κ = 1.2 279±20 162± 11 61.9±4.1 20.4± .93 29.1± 2.2
κ = 1.3 329± 6.6 145±11 64.4± 3.6 18.9± 1.2 25.8± 1.1
κ = 1.4 325± 9.2 302± 6.0 92.0± 5.7 18.0± 1.3 26.5± 1.7
κ = 1.5 328± 8.3 301± 5.7 123± 6.9 17.3±1.2 22.0±1.6
κ = 1.6 327± 8.7 304± 7.0 143± 7.5 19.3± 1.0 28.7± 1.4
κ = 1.7 326± 11 304± 6.6 158± 7.4 22.0± 1.4 34.4± 1.5
κ = 1.8 331± 9.9 305± 7.4 183± 9.1 35.0± 2.3 47.7± 2.4
κ = 1.9 358± 28 316± 13 202± 9.0 690± 3.4 92.9± 4.9
κ = 2.0 7, 460± 320 3, 830± 130 975± 22 315± 7.7 415± 6.8

Table 4.1: The search for a κ value. Total costs and standard deviation after 10000
iterations in units of 103. Best costs for each environment in bold.

is reasonable if the current node is important and the expected cost computed
for the other nodes is an overestimation of what will be seen once there. At the
abstract levels of the hierarchy the expected cost of a node is an overestimation of
what is seen once a robot visits that node. This is demonstrated in the following
example.

4.2.6. Example. The expected cost computed for node 60 is that of visiting
all its subnodes. These subnodes correspond to almost half the environment of
example 4.1.1. However, it is possible for the hierarchical expected cost to just
spend a 5-step path within node 60 and then move back to node 59. If that is
the case, the decision to move to node 60 would be based on the expected cost
of half the environment, and consequently on an overestimation of what was seen
by moving to node 60.

We have tried various values of κ for different ĉ and the results can be sum-
marised in table 4.1. We found that the values of κ that worked best were between
1.2 and 1.5. In the table the best costs for each environment are printed in bold.
We decided to set κ to 1.3. This value is probably rather specific for the envi-
ronment we consider. It is a rather arbitrary ad hoc choice and it is the weakest
part of this approach.

We then replotted the number of visits per room for the revised hierarchical
strategy for κ = 1.3 (fig. 4.6:iii). Although now there are some irregular peaks in
the plot, the previous problem of swapping between nodes 59 and 60 is solved.
Furthermore, the nodes in groups a and c are visited more often and this also
constitutes an improvement.
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Figure 4.6: Number of visits vs. room number for example 4.1.1 (i) 5-step MEC (ii)
hierarchical MEC (iii) revised hierarchical MEC (iv) minimax interval.
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minimax 5-step hierarchical MEC
interval MEC original revised

uniform 19.6±1.2 22.6± 1.4 321± 6.1 25.8± 1.1
ĉ = 1 15.3±1.1 81.4± 2.8 102± 4.4 18.9± 1.2
ĉ = 10 47.0±5.3 734± 26 127± 9.7 64.4± 3.6
ĉ = 50 196± 24 3, 640± 130 281± 14 145±11
ĉ = 100 371± 53 7, 250± 210 410± 31 329±6.6

Table 4.2: Total costs after 10000 iterations in units of 103.

4.2.4 Discussion

The hierarchical strategy succeeds in crossing the barrier. More importantly,
however, the hierarchical strategy also reduces the total cost in comparison to
MEC. In table 4.2 the total costs (in units of 103) and their standard deviations
are listed for minimax interval, 5-step MEC, the original hierarchical MEC and
the revised hierarchical MEC. Minimax interval and 5-step minimum expected
cost were first defined in section 3.2.2. The minimax interval strategy, given a
room, selects its neighbour with the largest time since last visit. It completely
ignores costs and probabilities and, in the long run, it explores all rooms in our
environment. The 5-step MEC strategy minimises the expected cost over 5 time-
steps.

Instances of our example with different ĉ values were simulated for 10000
iterations to collect the data in the table. The original hierarchical MEC strategy
does not always reduce the total cost in comparison with MEC. However, the
revised MEC wins over MEC in all cases but the one of uniform costs. This is
an indication that we have improved on the original MEC strategy in the cases
where costs matter.

The improvement in total cost arising from making “not moving” at higher
levels more attractive, is quite dramatic. The delay κ is necessary because the
expected cost assigned to the abstract nodes is always an overestimation of the
actual cost. The expected cost estimate assumes that once the strategy visits an
abstract node, it stays there long enough for all sub-nodes to be visited. However,
it is often the case that the strategy stays in a node only long enough for its
expected cost to decrease and for the other nodes to attract the attention of the
strategy. When that happens, the actual cost is only a portion of the estimated
expected cost. We believe that by making “not moving” more attractive, the
revised hierarchical strategy stays longer in a node and so our abstracted cost is
a better estimate of the real cost (see example 4.2.6).

A possibly more interesting observation that can be made from table 4.2 is
that minimax interval, which does not use the probabilities and costs, performs
better than MEC and hierarchical MEC in the “uniform” cost case and in the sit-
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uations where ĉ is 1 or 10. These are situations where the cost differences are not
very big. Minimax interval moves in the environment in a way that can almost
be described as “methodical”. Some environment locations are visited more fre-
quently than others only due to the connectivity of the environment (fig. 4.6:iv).
In the situations where ĉ = 1 and ĉ = 10 this “methodical exploration” of the
environment produces better results than our ad hoc revised MEC. However, we
believe that a good hierarchical MEC strategy should be able to perform bet-
ter even in those cases and, therefore, we consider this an indication that the
realisation in this chapter of this approach is not the best possible.

The fact that MEC performs so badly should not be surprising since MEC
never passes to the other side of the barrier. The original hierarchical MEC also
appears to be problematic despite perhaps being an improvement on MEC. It
is clear that both our original and revised hierarchical MEC strategies are not
optimal.

4.3 Summary

In chapter 3 we have shown that a minimum expected cost strategy is a promis-
ing method for planning in robotic surveillance. In practice, however, minimum
expected cost typically cannot be evaluated globally. Only n-step minimum ex-
pected cost strategies are feasible. In order to overcome problems imposed by
local minima and barriers, we propose using hierarchical versions of the mini-
mum expected cost strategy.

The hierarchical minimum expected cost strategies in this chapter are ad hoc.
Three problems were identified:

• The abstracted expected cost is an overestimation of the actual one (exam-
ple 4.2.6)

• The introduction of κ is not an exact solution to the overestimation problem

• The selection of a value for κ was experimental, will have to be repeated
for a different environment and the selected value 1.3 does not have an
immediate qualitative explanation.

Despite these problems, the hierarchical minimum expected cost strategy shows
the potential for improvement over the unabstracted strategies.

Given that our approach in this chapter was cursory, there are several areas
that can be improved. The computation of the expected cost for abstract clusters
seems to be the main problem of this approach. In the next two chapters we shall
start again working on a strategy that incorporates a hierarchy of the environment
but uses its geometrical structure in the clustering and in the computation of the
cluster expected costs.





Chapter 5

Path-based Clustering

In chapter 4, it was shown that making a hierarchical description of the en-
vironment helped produce better surveillance strategies. However, the method
presented there was rather ad hoc and did not always improve performance.

One of the problems of the hierarchical strategies presented so far is that the
expected cost assigned to the abstract nodes does not closely correspond to the
actual cost of visiting one. To be more exact, the expected cost of an abstract node
is the sum of the expected costs of its children. However, a 5-step path within
an abstract node does not always visit all its children and, further, some children
are perhaps visited twice. The parameter κ in the revised hierarchical strategy
was introduced to deal with some of the side-effects of this inexact expected cost
assignment. Despite being an improvement in some cases, this did not produce
better results in all test environments.

A much better assignment of the expected costs can be produced if the geom-
etry of the environment is considered. After discussing some general desiderata
for clustering an office building, we will concentrate on our specific case of a
corridor-based office building. A better method for assigning expected costs to
paths visiting abstract nodes is produced with that instance of an office building
in mind.

5.1 Clustering desiderata

A clustering is defined to be a graph of connected environment locations fulfilling
certain criteria. In general, there are many ways in which one would want to
cluster an environment. In our case, the main reason for being interested in
clustering is the potential for computational time savings. An abstracted n-
step lookahead is prohibitively slow for values of n, large enough to examine
every room in our environment before acting. By clustering the environment and
approximating the expected cost at higher level nodes, we produce an abstract
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description of the problem. Then a decision procedure for planning at the simpler
higher levels can be produced. Our clustering is driven by the need to produce
such a faster decision procedure that computes approximate solutions.

To generate a clustering, a clustering criterion needs to be selected. There
are three main possibilities on what could be used to cluster the environment.
It is possible to use the structure present in the type of the indoor environment
considered to guide our clustering. A natural clustering of an office building would
be to form clusters consisting of separate floors. Within a floor different corridors
can form separate clusters and so on. Another possibility is to let the costs guide
the clustering. Some environments might have clumps of rooms that are similar,
therefore have the same costs in fire presence. A last option is to let the type
of permissible paths guide the clustering. For example, it might be reasonable to
opt for clusters that produce equal path lengths when visited.

In the case of the surveillance application, the types of paths likely to be
useful for a robot performing a surveillance are limited by the properties of the
surveillance task. For the purposes of a surveillance task a lot of the possible
paths can be ignored because they are not efficient in reducing the expected cost.
For example, under mild assumptions, a robot should not stay for many steps
in one room before moving to another. Typical paths for a robot performing
surveillance are: explore a cluster (visit each room in it at least once), transit
through it on its way to something interesting (visit only the rooms needed to get
through it), ignore it altogether (do not visit anything) or visit a specific location
where, for example, the cost is comparatively high (visit just the rooms on the
way to that location and out). These task-dependent path preferences can help
us both decide what type of clusters to consider and, related to this, decide to
only consider specific paths when assigning expected cost to clusters.

Further, there is an interaction between the shape of the selected clusters
and the properties of the considered paths. One such property is that of path
length. The path length can be defined to be the total number of room visits
along the path. The worst and best case scenarios for exploration path length in
a cluster are those where the cluster has a star and a linear topology respectively
(fig. 5.1). For the case of a star cluster with n rooms the exploration length, if
we enter and leave at the centre of the cluster, is 2n. For the case of a linear
cluster the exploration length is n, if we enter from the sides; for loops this is n,
no matter where we enter. This can give us an idea on the bounds of how much
time is necessary to explore each type of cluster. For the case of transit paths the
situation is rather different. To transit a star can be as short as a single room
visit if the entrypoints are in the center of the cluster. To transit a loop can be a
lot more complicated with up to n/2 nodes visited. In fact, for transiting paths
the worst case scenario is when the rooms are arranged as a corridor where the
path length is n. From the discussion on path lengths it is obvious that when
discussing a path within a cluster the entrypoint at which the cluster is entered
is relevant.
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Linear cluster Circular cluster Star cluster Intersecting linear

Figure 5.1: Different types of cluster shapes.

The probabilities and costs at the lowest level also play a role in the cluster-
ing. An exploration path of fixed allotted time within a cluster assumes that the
clusters subnodes are equally important and that therefore staying longer some-
where does not give any benefit. This is definitely the case in office environments
where most rooms are equally important offices. However, even within the office
environment, one can imagine areas that are more important than others. A fire
in the part housing office rooms can be less important than in the area where the
computer data storage is housed.

So the boundaries of a cluster could depend on many parameters and in our
discussion here we have given a stronger emphasis on paths and costs, because
those are more important in our surveillance problem. In the rest of the chapter we
work out, in full detail, the office-building example which was given in chapter 4.

5.2 Office-like environments

As mentioned in the last section, office-like environments contain a lot of struc-
ture. Offices are normally organised along corridors. These corridors are in turn
connected with each other. If they are at different floors they are connected with
staircases or elevators. If they are parallel they are connected at some point along
their length. If halls are ignored, it is clear that almost any office-like building
can be described using corridor shaped structures.

The building blocks of a corridor are, in turn, star-shaped clusters. By con-
necting the centres of many star-shaped clusters, a long corridor can be formed.
The leaves of those clusters correspond to the offices along the corridor. Further,
a hall-shaped structure with many rooms connected to it, can be described as a
star-shaped cluster with usually a higher number of leaves than a typical corridor
star-shaped cluster.

In general, the four different types of cluster depicted in figure 5.1 are relevant
within an office building. Linear clusters correspond to corridors, circular clusters
correspond to parallel corridors connected at their ends, stars correspond to the



80 Chapter 5. Path-based Clustering

Figure 5.2: Star-shaped blocks of various sizes.

local structure within corridors and crosses correspond to intersecting corridors.
The exact geometrical shape of the rooms and corridors can vary from building
to building and largely depends on architectural considerations. However, we
believe that the topological structure, although different among buildings, has a
common basis.

A clustering process can be developed for office-like buildings that treats level
1 clusters as a special kind of cluster. We call level 1 clusters blocks. The blocks
considered have the shape of a star (fig. 5.2). Of course, several other shapes
could be considered, but block clusters of this shape are sensible building blocks
of corridor-shaped office buildings. The expected cost of star-shaped blocks can
be computed directly without examining individual rooms and this simplifies the
computation of the expected cost later in this chapter.

A clustering process can be created for office-like environments. This can be
based on repeated clustering until the environment cannot be further abstracted.
We propose a clustering process with the following properties:

1. (block-based) star-shaped blocks first have to be found to form level 1 of
the abstraction.

2. (connected) a path within the cluster should exist between any two nodes
in a cluster.

3. (balanced) the resulting tree should be balanced; this means that at each
level the exploration paths within the clusters should have more or less
equal length.

4. (uniformity) the fire costs and fire starting probabilities have to be uniform
within a block.

The last two criteria deserve further discussion. On the issue of tree balancing
several options were available. The tree could be balanced on the number of rooms
in each cluster (as in section 4.2.1). It could also be balanced on cost so that all
clusters of a certain level have equal expected costs. In the next chapter decisions
will be taken between different cluster paths. Choosing to balance the tree on
path length makes these comparisons fairer. It is the time others are ignored,
instead of the particular cost of a cluster itself, that appears more important in
our situation.
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Figure 5.3: A clustered corridor based environment.

The decision for uniformity in the probabilities and costs within star blocks
was taken to simplify the computation of block expected costs. The equations for
computing the expected cost of a path in a star rely on the assumption that the
fire costs and fire starting probabilities are uniform within a block. It should be
mentioned however that this assumption is not very essential. If this assumption
was not made, the computation of the expected costs at the block level would
have to be more complicated.

If we concentrate on an office-like environment with a single corridor an ab-
straction tree such as that in figure 5.3 can be created. The focus in the rest of
this chapter is on an environment with this type of structure. The equations for
the derivation of expected cost assume a corridor-like topology in our building.
Of course not all office-like buildings are composed of a single corridor, but this
will serve in this thesis to investigate the main issues in surveillance planning.

5.3 Route abstraction simplification

The expected cost assigned to a cluster should depend on the route of subclusters
followed within the cluster. A specific cluster can be explored using various
different routes and not all routes can be expected to incur the same cost. Ideally,
all possible routes within the cluster should be examined. A potentially infinite
number of routes exists even within a small cluster if revisits are allowed and it is
not computationally feasible to consider all those routes. A way of circumventing
this difficulty is to examine a few predefined routes within the cluster. Taking
the cluster’s entrypoints as a basis, the following possibilities are considered:

• Exploration routes reXi
, routes between entrypoints that visit every sub-

cluster.
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• Transit routes rtXi
, shortest routes between entrypoints.

• Ignoring clusters, all the clusters that are neither explored nor transited
are ignored.

While the robot is following a transit or an exploration route, all rooms in the
route are sensed and, if necessary, their fires are extinguished. The entrypoint
of a route is important in a cluster with more than one entrypoints since then,
routes of several directions might exist.

When considering a single room both exploration and transit paths just visit
the room itself reXi

= rtXi
= [Xi]. In the case of star-shaped blocks a reasonable

exploration route visits every node in the star once, and a reasonable transit
route visits the central node. This single route property of the blocks simplifies
matters because, in a sense, blocks can be treated as rooms. A cluster of level
h > 1 contains many blocks (or subclusters). In the case of our environment the
clusters look like corridors of blocks or subclusters and this simplifies matters.
A cluster exploration route is a sequence of subcluster exploration routes that
begin at one end and finish at the other end of the corridor. For transit routes
the situation is similar.

We give an example of route types for the cases of blocks and clusters.

5.3.1. Example. For the case of block 34 (fig. 5.3) such an exploration route
is re34 = [re16, r

e
17, r

e
16, r

e
18, r

e
16, r

4
19, r

e
16, r

e
20, r

e
16]. Similarly only one transit route is

possible per block, namely that of visiting the center of the block. For the case
of block 66 such a transit route is rt34 = [re16].

Since clusters 39, 37 each have a single entrylink, only a single exploration
route is possible and in cluster 39 such a route is re39 = [re35, r

e
36, r

t
35]. Routes like

re79 can be recursively rewritten to contain just room routes. Cluster 38 has two
entrylinks and so two similar exploration routes are possible one for each direction
of exploring. For transit routes the situation is similar. For example, for cluster
28 a transit route is rt38 = [rt33, r

t
34].

5.4 Expected cost assignment

Now that a clustering of the environment has been constructed using star-shaped
blocks, and standard routes have been assigned to the clusters, we need to assign
expected cost specific cluster/route combinations.

To make the equations of this section clearer some shorthand notations are
introduced. First, a superscript is used to denote a location’s X level h in the
abstraction tree. For example, a room will be written as X0 and a block as X1.
Secondly, pi is written instead of P (fi → 1) for the probability of a fire starting
at location Xi and ci, instead of C(fi), for the cost of a fire being present at Xi.
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5.4.1 Approximate probability computation

In proposition 3.2.2 the probability Pt(fi) of the presence of fire at location Xi at
a given time since last visit t was defined as:

Pt(fi) = 1− (1− pi)
t

where pi is shorthand for P (fi → 1), the probability of a fire starting during
one time-step. The exponential increase of probability Pt(fi) in time t makes it
hard to compute differences of expected costs at different points in time. An
approximation of the probability Pt(fi) is proposed that makes reasoning about
the benefit of visiting a cluster easier without affecting the results significantly.

5.4.1. Definition. The approximate probability P̃t(fi) of fire presence at time
t is defined as the product of the fire starting probability pi and time t:

P̃t(fi) = pit, if t¿ 1
pi

(5.1)

This is not a real probability; the condition of t ¿ 1
pi

is added to the definition
to guarantee that it is not greater than 1. The advantage of this definition over
the exact one in proposition 3.2.2 is that P̃t(fi) is linear in t. We will call any
computations made using the approximation of equation 5.1 “linear probability
approximations”. The error of the approximation can be determined directly as:

E =
(1− (1− pi)

t)− pit

1− (1− pi)t

The equation for E allows us, given some values for pi and t, to compute
the error in our estimation of the probability Pt(fi). In a concrete example the
probability pi of fires starting would be characteristic of our environment and
should be known a priori, while the maximum t would be dependent on the size
of the environment.

In order to demonstrate that the quality of the approximation is reasonable
a graph of E versus pi and t was plotted (fig. 5.4). Since our environment has
50 rooms, exploring it would take a maximum of 100 time-steps and so values
between 1 and 100 were used for the t axis. In fact, 100 is the worst-case number
of steps for the case where the environment is a star, while, in our case, it is
a corridor of smaller stars and this makes the exploration path smaller. The
probability of fire starting pi used in the simulations was 0.001 but, in reality,
smaller values of pi would be expected. From the graph it can be observed that
the error is always below 5%. So for the environment we are considering, but also
for more realistic environments, this approximation is reasonable.
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Figure 5.4: Error sensitivity to pi, t for the approximation of P (fi)

5.4.2 Cost computation

In what follows we give the expected cost computed in the case of rooms, blocks
and clusters using the clustering principles of this chapter. Three equations are
given for each type of action:

1. ECe(X, re, T ) for exploring location X, using exploration route re, given a
time T since last visit.

2. ECt(X, rt, T ) for transiting through location X, using transit route rt, given
a time T since last visit.

3. ECn(X, I, T ) for ignoring location X, for I time-steps, given a time T since
last visit.

At time t, we need to compute the expected cost of our proposed visiting
action (either an exploration or a transit) at a location X. Suppose that the last
time location X was visited was T time-steps ago, at time t′ = t − T . Further
assume that a visit to location X takes l time-steps where l is the length of the
route corresponding to the visiting action taken. Then, the expected cost of this
visit to location X is the sum from time t to time t+ l of the expected costs for
each of the time-steps in the visit of location X. These individual costs per time-
step depend on the time since last visit T . This is seen in figure 5.5. There the



5.4. Expected cost assignment 85

EC
per

time
step

timet

a
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Figure 5.5: The expected costs computed for our actions (area shown in grey).

x-axis corresponds to time-steps and the y-axis corresponds to cost of location X
per time-step. The shaded area a is the expected cost EC the rest of this section
computes. Costs between t and t−T do not need to be computed, since these are
assumed to be costs that are already incurred. Note that we do not talk about
t any longer because the computations we will provide depend just on the time
since last visit T (when the costs were “reset”) and the duration l of the intended
visit.

It was already mentioned that only one of the two types of routes can be fol-
lowed. The robot can either transit through or explore a cluster while everything
else is ignored. The expected cost of the entire environment when a location X
is explored using path re is defined as:

EC = ECe(X, reX , TX) + ΣX′ 6=XECn(X
′, lre

X
, T ′X) (5.2)

where lre
X
is the length of the exploration path reX .

If that location is transited instead of explored this becomes:

EC = ECt(X, rtX , TX) + ΣX′ 6=XECn(X
′, lrt

X
, T ′X) (5.3)

where lrt
X
is the length of the transit path reX .

These environment expected costs are very important. The robot tries to
minimise the expected cost of the entire environment. So what is ignored and for
how long is just as important as what is visited.

5.4.3 Room expected cost

Focusing on the level of rooms three expected cost equations are again given: one
for transiting through, one for exploring and one for ignoring a room. However,
the first two are the same because visiting a room or passing through one is the
same thing.
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When room X0 with a time since last visit of TX0 time-steps is not visited (ig-
nored) for an extra time-step, an approximate expected cost ECn(X

0, 1, TX0) =
(pX0TX0)cX0 is associated with it. Generally, if room X0 is not visited for I con-
secutive time-steps, this incurs an approximate expected cost ECn(X

0, I, TX0):

ECn(X
0, I, TX0) =

I
∑

t=1

PT
X0+t(fX0)cX0 ≈

I
∑

t=1

pX0(TX0 + t)cX0

=
I(2TX0 + I + 1)

2
pX0cX0 (5.4)

where TX0 is the time since last visit of room X0 at the start of the I time-steps.
The exploration route reX0 only visits room X0, and so the robot immediately

extinguishes any possible fire in that room. If in proposition 3.2.2 t = t′, the
time-step that the robot visits the room is considered, then the probability of fire
presence in that time-step is Pt(fX0) = 1− (1−P (fX0 → 1))t

′−t′ = 0. Hence, the
expected cost associated with exploring that room is also:

ECe(X
0, reX0 , TX0) = 0 (5.5)

Similarly, the expected cost of a route rtX0 transiting through a room is:

ECt(X
0, rtX0 , TX0) = ECe(X

0, reX0 , TX0) = 0 (5.6)

This is also because only room X0 is visited by rtX0 .
It is interesting to give again the expected cost of the entire environment for

the level of rooms. We will only do it here at this level because paths at the
block or cluster levels can have different lengths. However, as we have mentioned
room level transits and explorations are indistinguishable. This makes room-level
computation of the environment expected cost fairer.

At each time-step only one room X0 can be explored, or transited through,
while every other room X ′0 ∈ X is not visited. The total expected cost at that
time-step of the entire environment is:

EC = ECe(X
0, rX0 , TX0) + ΣX′0 6=X0ECn(X

′0, 1, TX′0) (5.7)

Because the exploration/transit cost is always 0, this can be simplified to:

EC = ΣX′0 6=X0(TX′0 + 1)pX′0cX′0 (5.8)

5.4.4 Block expected cost

Having described how expected costs should be assigned to rooms, we proceed
to discuss the case of star-shaped block clusters. At section 5.3 we have already
described how routes are assigned to clusters. As with rooms, three cases are
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Figure 5.6: A block of size s = k + 1 with time T since last visit.

again considered: ignoring, exploring and transiting through a block. A transit
through a star-shaped block only visits its central node, while an exploration
visits the central node many times on its way to visiting the leaves of the block
(as we have shown in example 5.3.1).

5.4.2. Proposition. (Ignoring after exploration) The expected cost of ignoring
a star shaped block X1 of size s for I time-steps is:

ECn(X
1, I, T ) = (I(sT + 1 +

s−1
∑

i=0

2i) + s
I−1
∑

i=0

i)pc

= (I(sT + 1 + s(s− 1)) +
s(I − 1)I

2
)pc (5.9)

where the size s is defined to be the number of rooms in the block, T is the time
since last visit of the block, p is the probability of a fire starting, and c is the
expected cost of a fire per time step for each room in the block. The assumption
is made that p and c are uniform within the block. It is also assumed that the
previous visit was an exploration.

Proof.
We do induction on the size s of the cluster.
Prove for s = 1
We have, using eq. 5.9, ECn(X

1, I, T ) = I(T +1)+ I(I−1)
2

)pc = I(2T+I+1)
2

pc. This
is equal to the case of a single room (eq. 5.4), thus correct.
Assume true for s = k Assume that in this case we have: ECn(X

1, I, T ) =

(I(kT + 1 + k(k − 1)) + k(I−1)I
2

)pc.
Prove true for s = k + 1 In this case the expected cost is that of ignoring the
first k rooms (call them g) for I steps (the assumed case) + the expected cost of
ignoring the k + 1 room (call this g′) for I steps (see fig. 5.6). In that figure the
times since last visit for a star-shaped block are shown. The assumption is that
at time T the previous exploration of the block was finished. The times on the
leaves in the figure are dependent on the last exploration route followed by the
robot. This expected cost can be written as:

ECn(X
1, I, T ) = ECn(g, I, T ) + ECn(g

′, I, T + 2k − 1)
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= (I((k + 1)T + 1 + k(k + 1)) +
(k + 1)I(I − 1)

2
)pc

So equation 5.9 also applies in the k + 1 case.

5.4.3. Proposition. (Exploring after exploration) The expected cost for explor-
ing a star-shaped block X1 of size s is:

ECe(X
1, reX1 , T ) = ((s− 1)2T + 2(s− 1)3 + (s− 1)2 + (s− 1))pc (5.10)

where s, T, p and c are defined as before and reX1 is understood to be the route of
length 2s − 1 that visits every leaf node in the star once. Again, it is assumed
that p and c are uniform within the block, and that the previous visit was an
exploration.

Proof.
Again we provide an induction proof on the size s of the cluster.
Prove for s = 1 Again this case is equivalent to having a single room. We have
ECe(X

1, reX1 , T ) = 0 and this is also what you see in eq. 5.5.
Assume true for s = k Assume that in this case we have: ECe(X

1, reX1 , T ) =
((k − 1)2T + (2(k − 1)3 + (k − 1)2 + (k − 1)))pc.
Prove true for s = k + 1 We first split the block into the part with k rooms g
and the new room g′(see fig. 5.6). Suppose that the exploration taken follows the
same order as the last exploration of the cluster. Then we split the exploration
of the block into three sections and compute the expected costs in conjunction
with those parts (see fig. 5.7). The expected EC1 is that of the first time-step of
the exploration k leaf rooms are ignored. The expected cost EC2 is that of the
second time-step of the exploration and can be seen as ignoring g while exploring
g′. Finally, the last step EC3 is that of ignoring g′ while exploring g. Writing
this out (ignoring the anyhow uniform p, c) gives:

ECe(Xk + 1, reXk+1
, T ) = EC1 + EC2 + EC3

= (

k
∑

i=1

(T + 2i)) + (ECn(g, 1, T + 1)− (T + 1))

+(ECe(g, rg, T + 2) + ECn(g
′, 2k − 1, 0))

= (kT + k(k + 1)) + (kT + k2 − T ) +

((k − 1)2T + 2(k − 1)3 + (k − 1)2 + (k − 1) + (2k − 1)k)

= k2T + 2k3 + k2 + k

The equation thus obtained is essentially eq. 5.10 but for s = k + 1, so eq. 5.10
is proved.
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Figure 5.7: Proof of eq. 5.10.

The assumption that the exploration order is the same as that of the last
exploration is not essential to the proof. Even if a different order is taken, the
differencing in T in combination with the approximation of the probability gives
the same result.

5.4.4. Definition. (Transit after any) The expected cost of transiting through
a block X1 of size s is defined to be the expected cost of ignoring it for the time it
takes to transit through it. Since a transit route rtX1 for star-shaped blocks only
visits the central node of the star, passing through it only takes one time-step.
The expected cost of a transit route is then:

ECt(X
1, rtX1 , T ) = ECn(X

1, 1, T ) (5.11)

Computing the transit cost by ignoring the block is essentially equivalent to saying
that a robot transiting a cluster is moving through it with “its eyes closed”.

5.4.5. Definition. (Exploration and ignoring after transit) The equations for
exploration after exploration (eq. 5.10) and ignoring after exploration (eq. 5.9)
are also used for these cases.

We will use equations 5.9, 5.10 even when transits are considered. In those
propositions, the assumption was made that the previous visit was an exploration.
If that is the case, the expected cost computed by equation 5.10 is a “linear
approximation” for p → 0. With the introduction of transit routes the state of
a block is not necessarily that of figure 5.6 when an exploration begins. In that
figure, the times since last visit in each of the nodes are left as if the last visit
was an exploration and this figure is used in the proof of “linear approximation”
of equations 5.10 and 5.9.

To make everything “linearly approximate”, we would have to consider the
interaction between the types of routes at the computation of block expected
costs. However, this would yield complicated equations and would evolve many
cases based on the type of last visits to a cluster. Since this would be complicated,
the decision was made to sacrifice strict “linear approximateness” and to opt
instead for a definition of transit where the robot is essentially moving with “its
eyes closed”. Although this is still an approximation, it will be shown in the next
chapter that the results obtained in this way are very good.
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5.4.5 Higher-level cluster expected cost

Now that the equations for the block case have been defined, we can proceed
by defining how the expected cost should be computed for the case of higher-
level clusters. Equations 5.12, 5.13 and 5.14 have to be taken to be correct by
definition.

5.4.6. Definition. Ignoring a cluster Xh of level h > 1 for I time-steps gives
an expected cost that can be computed as:

ECn(X
h, I, T ) =

∑

Xh−1∈children(Xh)

ECn(X
h−1, I, TXh−1) (5.12)

where children(Xh) are the subclusters of cluster Xh, and TXh−1 is the time
since last visit for cluster Xh−1. So ignoring a cluster is the sum of ignoring its
subclusters.

5.4.7. Definition. Exploring corridor cluster Xh of level h > 1 using a route
re
Xh = [re

Xh−1
1

, re
Xh−1

2

, . . . , re
Xh−1

n
] gives an expected cost that can be computed using:

ECe(X
h, reXh , T ) =

n
∑

i=1

(
i−1
∑

j=1

ECn(X
h−1
i , lj, TXh−1

i
+

j
∑

k=1

lk) +

ECe(X
h−1
i , re

Xh−1
i

, TXh−1
i

+
i−1
∑

k=1

lk) +

n
∑

j=i+1

ECn(X
h−1
i , lj,

j−1
∑

k=i+1

lk)) (5.13)

where TXh−1
i

is the time since last visit for subcluster Xh−1
i , Xh−1

i , Xh−1
1 , Xh−1

2 ,

. . ., Xh−1
n ∈ children(Xh) are the subclusters of Xh, and lk is the exploration

route length of cluster Xh−1
k .

In this equation, a cost is added for each subcluster. This corresponds to what
happens in each subcluster during an exploration route. A subcluster is first
ignored i−1 times (while other clusters are explored), then explored, then ignored
again n− i times (while other clusters are explored). The position of the cluster
in the route is important in deciding how much it is ignored and when. For
instance, during the jth time the cluster is ignored, it is ignored for lj room-level
time-steps. This is because lj is the exploration path length of cluster j in the
path. This definition makes the assumption that the blocks are organised in a
corridor, which is true in the case of the our environment but not in all cases.
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5.4.8. Definition. Transiting through cluster Xh of level h > 1 using a route
rt
Xh = [rt

Xh−1
1

, rt
Xh−1

2

, . . . , rt
Xh−1

n
] gives a cost that can be computed using:

ECt(X
h, rtXh , T ) =

n
∑

i=1

(
i−1
∑

j=1

ECn(X
h−1
i , lj, TXh−1

i
+

j
∑

k=1

lk) +

ECt(X
h−1
i , rt

Xh−1
i

, TXh−1
i

+
i−1
∑

k=1

lk) +

n
∑

j=i+1

ECn(X
h−1
i , lj,

j−1
∑

k=i+1

lk)) (5.14)

where Xh−1
1 , Xh−1

2 , . . . , Xh−1
n ∈ children(Xh) are the subclusters of Xh, TXh−1

i
is

the time since last visit of subcluster Xh−1
i and lk is the transit route length of

cluster Xh−1
k .

So the only difference in the expected cost computation between transiting
through Xh and exploring Xh is that the central term in the sum ECt in the case
of transits gets replaced by ECe in the case of explorations.

Knowing the cluster structure, which includes all probabilities, costs and
routes, and the equations of sections 5.4.4 and 5.4.5 is enough to compute the ex-
pected cost for any cluster/route combination. In fact, the equations about rooms
in section 5.4.3 are not necessary, since they are special cases of the equations for
blocks for s = 1. The definitions of section 5.4.5 treat the block expected cost
computation as a closed blackbox computation. This implies that our corridor
could consist of blocks of a different shape to stars without any need to modify
the equations for computing the expected cost within the corridor.

5.5 Properties of expected cost equations

Several observations can be made about the use of star-blocks to structure the
environment graph and the computation of expected cost:

1. For corridor clusters, the entrylinks used in the visit are important and are
considered in the computation of expected cost. Routes visiting the rooms
in the cluster in an opposing order produce different costs.

2. The probability of fire starting and the cost of room fire have to be kept
uniform at the block level but not necessarily at higher levels. This is not
an important limitation. For a different distribution of expected cost the
equations of block expected cost would have to become a bit more involved.
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3. The block expected cost is computed directly and then accumulation of
costs (i.e. summations in eqns. 5.12, 5.13, 5.14) is only used for clusters.
This makes expected cost computation slightly faster.

4. The available routes within each cluster are stored together with the cluster.
When a route cost needs to be evaluated they can be retrieved from the
cluster information.

The expected cost of transiting through, ignoring or exploring a cluster is a
linear function its time since last visit T . More formally:

5.5.1. Proposition. For a cluster Xh of any level h, the expected cost of tran-
siting through, ignoring, or exploring a cluster can be written as an equation of
the form EC(Xh, I, T ) = aT + b.

The exact parameters a and b depend on the level of the cluster and its shape,
size etc, but the proof of this proposition is relatively easy.
Proof.
The proof is by induction. For the case of ignoring a cluster:
Prove for h = 1 At the block level, eq. 5.9 can also be rewritten to be of the
form aT + b.
Assume true for h = k Assume that the equations for clusters also have the
form aT + b
Prove true for h = k+1 Then for the collection of blocks of level h = k+1 we
have using eq. 5.12 that, ECn(X

k+1, I, T ) =
∑

Xk∈children(Xk+1)ECn(X
k, I, TXk).

But then, in turn, this equation is a sum of linear equations and thus also linear.
The proofs for transiting through and exploring a cluster work in the same

way and are not reproduced here.

Further, another important observation is that the way in which clusters are
decomposed into subclusters is no longer significant. As proof of this statement
we consider the simpler possible case of subcluster decomposition in our following
proposition. It should be clear that this can be extended to more complicated
cluster decompositions.

5.5.2. Proposition. Given three clusters X1, X2, X3, that eventually comprise
cluster X5 (see fig. 5.8). The expected cost computation for exploring, transiting
or ignoring cluster X5 is affected neither by introducing an extra cluster X4 in a
position between X5 and X1, X2, X3 nor by which subclusters are contained within
the introduced cluster X4.

Proof. For the case of ignoring cluster X5 in the situation of fig. 5.8(a) as:

ECn(X5, I, T ) = ECn(X4, I, TX4
) + ECn(X3, I, TX3

)

= ECn(X1, I, TX1
) + ECn(X2, I, TX2

) + ECn(X3, I, TX3
)
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Figure 5.8: Different groupings.

For the case of ignoring cluster X5 in the situation of fig. 5.8(b) the EC is:

ECn(X
′
5, I, T ) = ECn(X1, I, TX1

) + ECn(X
′
4, I, TX′

4
)

= ECn(X1, I, TX1
) + ECn(X2, I, TX2

) + ECn(X3, I, TX3
)

For the case of ignoring cluster X ′′
5 in the situation of fig. 5.8(c) the EC is:

ECn(X
′′
5 , I, T ) = ECn(X1, I, TX1

) + ECn(X2, I, TX2
) + ECn(X3, I, TX3

)

The substitutions given above are due to definition 5.12 on the cost of ignoring
a cluster. So the expected cost is the same and hence the position or presence
of the cluster X4 does not matter. The proofs for the case of explorations and
transits work in a similar way.

5.6 Summary

In this chapter we discussed mainly the use of star-shaped blocks in the abstrac-
tion. This rather specific shape is at the basis of the description of any office
building, so explicit formulas were developed for ignoring, exploring and tran-
siting through star-shaped blocks. If one liked to choose other primitives for a
building, introducing a new cluster shape would only affect the computation of
the expected cost at the block level since new equations have to be introduced
for the new shape. The accumulation of expected costs at the cluster level should
remain the same provided, of course, that the case of a corridor environment is
considered.

The linearity property makes comparison of expected costs and predictions
of their evolution simpler. It is a property which can simplify the process of
decision-making between clusters. We also proved a property on the interaction
between the abstraction hierarchy and the expected cost assignment which states
that the assignment is independent of the exact ordering of the clusters over the
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block level. This suggests robustness of the proposed method against arbitrary
decisions on the position of cluster boundaries and this is something we will
confirm in the next chapter.



Chapter 6

Path-based Decisions

In chapter 5 it was decided to cluster the environment based on paths and to
compute the expected costs for specific cluster-route combinations. It was hoped
that this new clustering would enable us to design a decision procedure that
best corresponds to the optimal but is still computable. This chapter treats the
fixed cluster route strategy which works on this path-generated abstraction of the
environment.

6.1 New clustering of our office building

Before starting with the description of the new decision procedure, a revision is
proposed of the clustering that was presented in section 4.2.1, for example 4.1.1.
The new clustering stems from the considerations presented in the previous chap-
ter and its novelty lies in the introduction of a lowest clustering unit at which the
expected costs and “atomic” paths are specified. This new clustering is used in
the simulation results that will be presented later.

The new clustering of the office building of example 4.1.1 treats level 1 clusters
as star-shaped blocks (fig. 5.2), in accordance with our observation in section 5.2
that these are sensible, lower level building blocks for any office-like building. The
central nodes in the star blocks correspond to corridor locations while the leaves
of the star blocks correspond to rooms.

The clustering is generated by repeatedly clustering the room nodes until the
environment cannot be further abstracted. The aim is to produce the abstraction
tree (see fig. 6.1). The clustering process can be automated using the cluster-
ing criteria of section 5.2. However, the clustering presented here was created
manually.

95
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Figure 6.1: The new block-based abstraction tree.

6.2 The fixed cluster route strategy

6.2.1 Overview

We now define a new decision strategy for such an abstracted building called
the fixed cluster route strategy. The full decision procedure is summarised as
pseudocode in figure 6.2. In essence, the fixed cluster route strategy computes the
cluster expected cost for a predefined route within the cluster instead of giving a
heuristic estimate of the cost for all possible routes within the cluster. The robot
then has to stick to the predefined route it selected by comparing the expected
costs. Although the computation of the route cost is more accurate than before,
the method is still heuristic in that not all routes are examined. The expectation,
however, is that examining the expected cost of predefined routes while forcing
the robot to follow those routes produces a strategy that approximates to the
ideal infinite horizon minimum expected cost strategy.

This can be compared to the decision procedure of the hierarchical minimum
expected cost strategy of figure 4.4. Our strategy for making decisions at the
decision level can be split into two parts. The first part combines routes of the
lower level clusters in order to produce the options available at the higher levels.
These options can then be evaluated in the manner described in the previous
chapter. The second part uses the evaluation of these options to make decisions
on which option should be chosen. These are no longer between clusters, as in
chapter 4, but between cluster-route combinations.

6.2.2 Candidate trajectory generation

In the last chapter two types of cluster routes were considered: explorations
and transits. A trajectory is defined to be a concatenation at the same level
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look ahead← NUMBER;
% where NUMBER is the maximum number of rooms in a trajectory
% and was determined in section 6.2.4.
present room← ROOM ;
% where ROOM is the room the robot is currently in
decision level← LEV EL ;
% where LEVEL is the bottommost level where enough computationally
% tractable but maximally representative choices are available
% Determined at the end of section 6.2.2.

present node← map present room to decision level node;
trajectory list← fixed cluster route concatenations at decision level

starting from present node with length less

than look ahead rooms ;
for trajectory ∈ trajectory list do

cost[trajectory]← expected cost of trajectory

end

selected trajectory ← select trajectory with lowest cost[trajectory];
follow selected trajectory until its end is reached;
present room← end room in select trajectory;
repeat the decision procedure to select new trajectory;

Figure 6.2: Algorithm for the fixed cluster route strategy.

of cluster routes of these two types. These concatenated trajectories form the
options available for our strategy.

When combining subcluster routes to form cluster routes or when combining
cluster routes to form trajectories, special care has to be taken to ensure that all
route concatenations are valid. The trajectories should not contain any “jumps”,
that is the robot should not consider moving in one time-step between locations
that are not adjacent. To guarantee that, cluster entrylinks are given a special
status in the decision procedure.

A link (Xi, Xj) ∈ A is a member of the set of entrylinks AX of cluster X if:

either Xi ∈ children(X) and Xj /∈ children(X)
or Xi /∈ children(X) and Xj ∈ children(X)

The possible routes RX within cluster X are found by focusing on its subclus-
ters children(X) = {X1, . . . , Xn} and forming combinations using routes from
children(X) of length equal to the cardinality of children(X). However, not all
such combinations are guaranteed to be valid robot routes and they have to be
pruned using the following constraints:

• If Rx = [Xs, . . . , Xe] is a new route of RX , then it should be that (. . . , Xs) ∈
AX and (Xe, . . .) ∈ AX . So the start and end points of a new route should
be entrylinks to the cluster.
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Figure 6.3: Ways of combining transits (T) and explorations (E) at the cluster level.
(i) and (ii) are permitted. Permutations of T and E are not permitted (iii).

• If [. . . , Xe, X
′
s, . . .] is a new route of RX formed by the concatenation of

RX′ = [Xs, . . . , Xe] and RX′′ = [X ′
s, . . . , X

′
e], where X ′, X ′′ ∈ X, then

(Xe, X
′
s) ∈ A. Or in words: for every possible route concatenation the

startpoint of the second route must be accessible from the endpoint of the
first route.

• If two routes RX′ , RX′′ , X ′, X ′′ ∈ children(X) are concatenated, they
should both be of the same type, i.e. both either exploration or transit
(see fig. 6.3).

The reason why the third constraint is wanted is computational. If this con-
straint was not present many combinations of subcluster routes would be offered
as choices to the decision procedure (fig 6.3:iii). The third constraint limits the
number of choices per cluster offered to the decision procedure to 3 (ignore, ex-
plore and transit). It can be justified for environments with uniform costs because
there is no local cost-based reason to discriminate among subnodes. Offering just
3 choices is enough for that case. For non-uniform environments it is not fully
justified, but we choose the clusters such that a high degree of cost uniformity
still exists at the cluster level; then even in that level the above argument applies.

6.2.3 The decision level

In the fixed cluster route strategy, the decision theoretic comparison, and the
trajectory generation, only take place at one specific abstraction level, which is
called the decision level. This is again done mainly for computational reasons.
A natural choice for such a level to take decisions exists because the costs in
the clusters should be almost uniform and because the routes in any level are
not be allowed to be combinations of explorations and transits. We decided to
use the bottommost level where enough computationally tractable but maximally
representative choices are available (e.g. level 2 in fig. 6.1).

Following the identification of the decision level, the collection of trajectories
can be automatically generated using the method just described for single clusters.
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It is possible to combine decision level routes to form many-step trajectories that
satisfy the above-mentioned constraints. At the level of trajectories the final
constraint about concatenated route types is lifted. A trajectory can contain a
combination of explorations and transits. It is only important that the routes are
not mixtures of transits and explorations to guarantee that the number of options
within a cluster is limited (fig. 6.3).

6.2.4 Trajectory selection

Given that the robot is in a specific entrylink on the boundary between clusters at
the decision level, several actions are available based on which trajectories begin
from its current location. In the n-step look-ahead case, possible trajectories
of routes are computed to the depth of the desired look-ahead and the best is
selected. The trajectory which produces the lowest environment expected cost
is considered to be the best trajectory. Once a trajectory is selected, the robot
should commit itself to the selected route or trajectory.

The most obvious look-ahead limit is, perhaps, to look ahead a specific number
of cluster actions, whether explorations or transits. Then, all the trajectories
evaluated would be visiting a fixed number of clusters starting from the current
entrylink.

However, this does not hold, not even in balanced trees, because the explo-
ration route length is significantly greater than a transit route length and this
makes computation biased. Taking cluster 77 in figure 6.1 as an example, clus-
ter 77 has an exploration length of 14 visits, which correspond to 14 time-steps,
while a transit just takes 4 time-steps. In the case of two 8-step trajectories,
one just exploring cluster 77 eight times and one just transiting it eight times,
a significant difference in path length develops (14 ∗ 8 − 4 ∗ 8 = 80). Such dif-
ferences develop, even when just considering exploration routes, because the tree
can never be completely balanced. A route of greater length typically results
in greater environment expected cost and would not be preferred even though
perhaps it should.

To focus on the last statement, routes of larger length do produce, most of the
time, higher costs. This can be founded on equation 5.8, which describes how the
expected cost of the environment evolves during one time-step. This says that
the expected cost EC of the entire environment is the expected cost ECe of the
room X0 currently being explored plus the sum of the expected costs ECn for all
the ignored rooms.

EC = ECe(X
0, rX0 , TX0) + ΣX′0 6=X0ECn(X

′0, 1, TX′0)

Since, the exploration cost ECe for rooms is 0, this can be rewritten as:

EC = ΣX′0 6=X0ECn(X
′0, 1, TX′0)
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Now, if a trajectory k of length l is used to visit many rooms X0 in some sequence,
the expected cost ECk of the trajectory is:

ECk = ΣX0∈kΣX′0 6=X0ECn(X
′0, 1, TX′0)

So the expected cost of the trajectory is reduced to the sum of ignored rooms
per time step. The longer the trajectory, the longer some rooms are inevitably
ignored and the higher, most of the time, the expected cost of the trajectory.

To make fair comparisons then, it is important, just as we did while cluster-
ing, to focus on balancing the room-level lengths of trajectories. Since we want
trajectories to be combinations of explorations and transits at the decision level,
the solution is to look ahead a specific number of time-steps rather than a spe-
cific number of cluster visits (whether explorations or transits). Picking a large
time horizon, we can try to fit within it as many permutations of transits and
explorations as possible that result in a trajectory-length as close as possible to
the limit. Then a choice is made among those trajectories.

The “candidate” trajectories are automatically generated as follows: starting
from a specific entrylink a trajectory begins with the first possible route also
starting there. Then more routes are concatenated until the length of the total
trajectory is over 30. These are considered to be “candidate”. By back tracking
the space of possible trajectories, they can all be found automatically.

6.2.1. Example. We give some examples of possible trajectories. Assume the
look-ahead is set at 30 rooms and that we start at the link between clusters
77 and 78 in figure 6.1. A possible trajectory is [re78, r

t
77, r

t
76], which first explores

cluster 78 and then transits clusters 77,76. This trajectory has a length of exactly
30 rooms. An example of a trajectory that is not allowed is [re78] since, this is
shorter than 30 rooms. An example of a trajectory that is unintuitive but is
allowed is the one that transits cluster 77 eight times. Although it is unlikely
that this trajectory will ever be selected, it has a total length of 32 which is over
30. However, transiting cluster 77 seven times is not a “candidate” trajectory
because its length is just below 30.

The fixed cluster route strategy needs to be compared to the n-step minimum
expected cost strategy and to the hierarchical minimum expected cost strategy.
In chapter 4, a 5-step look-ahead was used for these strategies. The exploration
routes in the level two clusters of the abstraction tree in fig. 6.1 have a length of
about 15 rooms. As a consequence, the decision was taken to use a look-ahead of
75 time-steps for the fixed cluster route strategy because 75 time-steps roughly
correspond to setting a lower bound of 5 cluster level decisions. The upper bound
is however much higher. Assuming that a level 1 transit takes 5 steps, up to
around 15 transits can be considered.
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6.3 Simulation results

In this section, the fixed cluster route strategy is compared with the minimax
interval, the 5-step minimum expected cost, and the revised hierarchical strategies
of section 4.2.3. All strategies were simulated in the office building environment
of example 4.1.1. For the revised hierarchical strategy, κ was set at 1.3 as in
section 4.2.3. The comparison was for a run of 10.000 iterations; in fact, the
methodology of section 4.1.3 was followed to collect the simulation data.

6.3.1 Cost-based comparison

The actual costs after 10000 simulated iterations of example 4.1.1 are summarised
in units of 103 in table 6.1. Four different values of ĉ, the fire cost for rooms
“past” the barrier, were used. Further, a “uniform” environment setting with
no cost “barrier” helps determine what happens when the cost differences are
unimportant.

minimax 5-step revised(κ = 1.3) fixed cluster
interval MEC hierarchical MEC route

uniform 19.6±1.2 22.6± 1.4 25.8± 1.1 23.8± .66
ĉ = 1 15.3± 1.1 81.4± 2.8 18.9± 1.2 13.9±.62
ĉ = 10 47.0± 5.3 734± 26 64.4± 3.6 42.8±2.1
ĉ = 50 196± 24 3, 640± 130 145± 11 133±6.0
ĉ = 100 371± 53 7, 250± 210 329± 6.6 190±5.8

Table 6.1: Total costs and standard deviation after 10000 iterations in units of 103.
Best costs for each environment in bold.

From the table it is clear that the fixed cluster routes strategy outperforms
the others in all cases where a barrier is present, irrespective of what value ĉ
takes. These cases were the most interesting because it is there that the decision
theoretic comparison becomes important. It is also a clear improvement on the
naive revised hierarchical strategy which does not beat minimax interval for ĉ = 1
and ĉ = 10. In the remaining case, where the costs and probabilities are uniform,
minimax interval outperforms all expected cost-based strategies.

The minimax interval strategy always follows the same route, no matter what
the costs or probabilities are. Its behaviour is only dependent on the times since
last visit and the connectivity of the environment. It is, therefore, close to optimal
for the specific case of uniform costs. In the case where probabilities and costs
are uniform, simple 1-step minimum expected cost reduces to minimax interval;
this was proven in proposition 3.2.3. In table 6.1, 5-step minimum expected cost
is worse than minimax interval and consequently worse than the 1-step minimum
expected cost behaviour, which coincides with that of minimax interval.
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Figure 6.4: Number of room visits vs. room number using ĉ = 1: (i) minimax interval,
(ii) revised hierarchical minimum expected cost, (iii) fixed cluster routes.
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Figure 6.5: Number of room visits vs. room number using ĉ = 50: (i) minimax interval
(ii) revised hierarchical minimum expected cost (iii) fixed cluster routes.
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Figure 6.6: Number of room visits vs. room number using the “uniform” setting: (i)
minimax interval, (ii) revised hierarchical minimum expected cost, (iii) fixed cluster
routes.
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In figures 6.4, 6.5, 6.6, the number of visits per room are plotted for the
ĉ = 1, ĉ = 50 and “uniform” settings respectively. These figures, are included to
give some insight into the type of the trajectories chosen, but the order of visits
within the trajectories is not visible. Using the figures, the room preferences of
the three main strategies, namely minimax interval, revised hierarchical minimum
expected cost, and fixed cluster routes can be compared. Four groupings of rooms
are marked at the bottom of each graph. These groupings correspond to those
of figure 4.6 of chapter 4. Grouping a contains the rooms “past” the barrier,
grouping b contains the rooms on the barrier, grouping c contains the corridor
locations “past” the barrier and grouping d contains the corridor locations on the
barrier. Before discussing each cost setting separately, it can be said that all the
plots for the minimax interval strategy (subfigures (i)) are the same. This again
shows that minimax interval is not adapting to cost changes.

The case where ĉ = 1 is a situation where the new strategy wins over minimax
interval and the revised hierarchical strategies. In figure 6.4 the fixed cluster route
strategy can be seen to ignore the rooms that are unimportant (grouping b in the
figure), but still transits through the corridor rooms there (grouping c in the
figure); so the transit routes were used. The revised hierarchical strategy also
ignored the unimportant rooms. The improvement on the revised hierarchical
strategy is due to the regularity of the visits in the rest of the environment.
The fixed cluster routes and minimax interval strategies demonstrate a geometry-
dictated pattern. The minimax interval strategy performs worse for ĉ = 1 because
the unimportant rooms (grouping b) are visited although c = 0 there.

For the case where ĉ = 50 the fixed route strategy slightly improves perfor-
mance upon that of revised hierarchical strategy (table 6.1). Both seem to be
taking very similar decisions but the fixed route strategy displays again a more
regular behaviour and further spends more time in the costly part of the environ-
ment (groupings a and c). The fixed cluster route strategy again does not visit
grouping b corresponding to the barrier rooms. In all cases where a barrier is
present, the fixed cluster route strategy correctly applies transfer paths to cross
the barrier. This reduces the expected cost in relation to the minimax strategy,
which still visits those rooms.

In the case of the “uniform” setting, the minimax interval strategy outper-
forms the minimum expected cost strategies. The revised hierarchical is clearly
very “noisy” in its choices (fig 6.6:ii). This is due to its ad-hoc nature. In this set-
ting, the fixed cluster route strategy is again more regular(fig 6.6:iii). The pattern
of visits is geometrically influenced in the same way as for minimax interval. The
“peaks” in the room visits correspond to corridor locations of high connectivity
that need to be visited more often on the way to real rooms. The main problem of
the fixed cluster route strategy is that the central cluster (cluster 76 in figure 6.1)
is explored more often (it is a lumpy minimax interval). That the central node
is explored rather than transited becomes obvious from the fact that the rooms
of that cluster (rooms 11-16) are visited more than the rest of the rooms (rooms
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1-10,17-27).
The irregularity in cluster visits by the fixed cluster route strategy that is

visible in figure 6.6:iii is a type of discretisation noise. It originates from the
cluster boundary choices and the limited trajectory length. Since the clusters are
uniform in cost, there is no reason to prefer one cluster to another apart from
these small noise generated differences. So the noise dominates the choices of
the fixed cluster route strategy. In the “barrier” cases, the cost differences are
greater than the noise and can guide the behaviour as should be done if we were
approximating the optimal one.

6.3.2 Sensitivity to clustering

To assess the effect of the abstraction on the behaviour of the fixed cluster route
strategy, a simulation experiment on a modified star-based abstraction tree was
performed. In the modified abstraction tree, two of the decision level clusters
are joined to form a new larger cluster (fig. 6.7). The new abstraction tree is no
longer balanced at that level, since the new cluster 76 is much larger.

minimax fixed cluster Modified
interval route clustering

uniform 19.6±1.2 23.8± .66 20.7± 1.1
ĉ = 1 15.3± 1.1 13.9± .62 13.5±.76
ĉ = 10 47.0± 5.3 42.8± 2.1 40.6±2.2
ĉ = 50 196± 24 133± 6.0 123±7.2
ĉ = 100 371± 53 190± 5.8 184±8.4

Table 6.2: Total costs and standard deviation after 10000 iterations in units of 103.

The fixed route strategy was reapplied to this abstraction tree and the re-
sulting costs are summarised in units of 103 in table 6.2. What can be observed
from this table is that the new abstraction tree slightly changes the behaviour
of the fixed cluster route strategy in all cases. The actual costs incurred by the
simulation of the fixed cluster route strategy are a bit smaller in all cases for the
modified clustering. However, this difference is within the standard deviation and
this is a demonstration of the stability of the strategy in this type of variation. It
has already been proved in proposition 5.5.2 that the clustering order is commu-
tative in the cluster cost assignment. Further, the new distributions of number of
visits per room in figure 6.8:ii,iii are very close to those in figures 6.4:iii and 6.5:iii
respectively. This indicates that no difference exists in the qualitative behaviour.

In the case of the “uniform” environment, setting the performance of the fixed
route strategy on the modified abstraction tree almost matches that of minimax
interval. In figure 6.8:i the new distribution of number of visits comes closer to
that generated by minimax interval. However, cluster 75 is still visited more
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Figure 6.7: The modified block-based abstraction tree.

often and that can be seen from the frequency of visits to the rooms in the b
grouping. This frequency is comparatively higher and is not desirable, but it
is due to artifacts similar to those in example 3.2.12 and in figure 6.6:iii of the
look-ahead decisions. This is the reason why the fixed cluster route cannot match
the performance of minimax interval in the uniform environment.

These simulation experiments show that the clustering does not significantly
affect the decision procedure. It can perhaps be suggested that clustering areas
with similar costs into large lumps is desirable since a small difference in the actual
costs is present. However, the improvement from doing this is not very dramatic,
especially in the qualitative comparison of the case where cost differences are
present. We suspect when cost differences are not present the interaction between
the limited look-ahead and the clustering does play a more significant role in the
decisions of the robot.

6.4 Summary

The fixed cluster route strategy presents a clear improvement on the naive hi-
erarchical strategy of chapter 4. Especially under the condition of non-uniform
cost, the fixed cluster route strategy is a considerable improvement. It behaves
in a much more regular fashion and is more open to analysis. This vindicates our
decision to cluster the environment based on cluster routes and to assign expected
costs to specific routes.

Further, the fixed cluster route strategy shows some robustness in the face
of clustering changes. This, again, is true, especially under the condition of a
non-uniform cost.

For the uniform case, minimax interval is hard to beat in this environment. It
is strongly suspected that the minimax interval is the optimal strategy for that
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Figure 6.8: Number of room visits vs. room number using the fixed cluster route
strategy and the modified abstraction tree. (i) “uniform” (ii) ĉ = 1 (iii) ĉ = 50.
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case, but even then, the fixed cluster route strategy displays some of the qualities
of minimax interval. In the graphs of number of room visits, they have the same
local shape, but the fixed cluster route strategy is not following exactly the right
distribution of room visits.





Chapter 7

Conclusions

7.1 Overview

This thesis deals with surveillance planning, seen as an optimal search problem.
This is a relatively new field and few quantitative results are known. We focused
on the problem of fire surveillance in office-like buildings. Although this is a
specific instance of surveillance planning, finding a solution to it proves to be
exponentially hard computationally.

For this exploratory research effort, various representations and solution meth-
ods of a decision-theoretic nature were considered. The problem can be mapped
into formalisms, like (PO)MDP, or classical decision theory in many seemingly
different ways, which are in fact thought to be equivalent. The formalisation con-
veys the exponential nature of surveillance planning viewed as an optimal search
problem. Consequently, the focus of this thesis is mostly on the computational
issues raised by this conceptually simple, yet computationally very hard problem.

The first option for dealing with the computational issues is to limit the look-
ahead. This is what is typically done in optimal search problems in order to
control the size of the search space. However, if a small look-ahead is used,
the results generated are not acceptable because they fall prey to local minima
problems, such as the “barrier problem” exposed in chapter 4.

Our solution is to take a step away from the details and to abstract the
problem. Search methods based on abstraction boost the effective look-ahead but
are necessarily approximate. This creates a hard balancing act between finding
a method that is coarse enough to be computable and fine enough to closely
approximate the optimal solution. Deciding on this dilemma is not easy, but we
have shown that the structure of the problem can be useful. In the surveillance
planning problem for an office building, the structure of the topology and that of
the cost of the environment largely guide the actions of the robot and this should
be reflected in appropriate abstractions. It turns out that for office buildings,
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there is a sensible general method for grouping locations of similar topological
structure in star and corridor shaped clusters.

A new decision strategy for such an abstracted building called the fixed cluster
route strategy is proposed. The fixed cluster route strategy computes the cluster
expected cost for a predefined route within the cluster instead of giving a heuristic
estimate of the cost for all possible routes within the cluster. Just three route
types are considered, explore, transit and ignore. The robot then has to commit
itself to the predefined route it selected by comparing the expected costs at a fixed
decision-level. Although the computation of the route cost is more accurate than
before, the method is still heuristic in that not all routes are examined. However,
this strategy minimises cost better than the other strategies considered.

7.2 Claims

It is better to base decisions on costs computed for paths rather than on costs
computed for clusters.
Independently of how a decision is taken, the robot spends some time following a
path. However, if costs are computed per cluster visit, the path and duration of
the visit are left unspecified. This implies that computing expected costs for paths
is more informed since it takes into account the parameters of the path which in
turn affect what the robot encounters. Moreover, simulations suggest that the
fixed cluster route strategy minimises expected cost more than the strategy based
on cluster costs that was presented in chapter 4.

Progress has been made in analysing the elements of the clustering process for
office-like buildings.
Several basic cluster shapes were identified that are useful in clustering office
buildings. Further, some ideas were presented on how these basic cluster shapes
can be combined to generate a clustering of the environment. The focus was
on corridor-shaped buildings. However, generalising to more types of office-like
buildings should not be too difficult. The structured approach to clustering,
followed in the thesis provides opportunities for automating the clustering process.

Fixed cluster route strategy performs well.
In the simulations performed in an environment with varied costs, our strategy
was only beaten by the minimax interval strategy when the environment had
uniform cost throughout; in all other cases it beat the other strategies we tried.
We believe minimax may actually be optimal for the uniform cost case, the fact
that we cannot equate it suggests that our strategy could still be improved in this
and the other cases.

Apart from being quantitatively better, fixed cluster routes strategy is also quali-
tatively better
The fixed cluster routes strategy behaves fairly regularly and is open to analy-
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sis by examining the number of room visits or otherwise. Further, this strategy
shows robustness in the face of some changes in the clustering.

7.3 Further work

Establish upper and lower bounds on expected cost approximation for clusters
Knowing these bounds is important, since it would permit to trade accuracy
for computational complexity. It is believed that the strongest influence on the
bounds on expected costs of cluster-route comes from the interactions of routes
of different types. So to come up with bounds on the cluster-route expected cost
approximations, all issues related to combinations of routes of different types
would have to be solved first.

Automation of the clustering procedure
The discussion in this thesis, especially of the simulation results, focuses on a
specific instance of an office building. This specific instance has properties that
are common in the class of office buildings, but also lacks features such as loops
(caused by multiple floors etc). The idea that parts of the environment can
be treated in a uniform way is likely to be universal. The decision to limit the
attention to paths of equal length which have their cost rather accurately approx-
imated is also recommended in other environments. Coming up with a clustering
process for other types of environments, would enable us to develop a general
automated clustering method. This automated method could be designed based
on a combination of formal descriptions and the clustering criteria mentioned in
this thesis.

7.4 Final word

To sum up, the focus of this thesis has been the decision-theoretic surveillance
planning for office buildings. An analysis of the underlying problem structure
has led to solutions that work well for the instance at hand. It is hoped that a
contribution has been made to the understanding of the difficulties pertaining to
the decision-theoretic approach to surveillance.





Appendix A

Example POMDP application.

In this appendix we use our POMDP setting of the surveillance problem in exam-
ple 3.2.4. Our first goal here is to give a demonstration of a POMDP application.
Our second goal is to show that the result obtained using our POMDP matches
that of applying our decision theoretic setting in example 3.2.4. We hope that
by achieving this second goal the reader will be, at least partially, convinced that
the two settings are equivalent and that hence the same problem is being solved.

A.1 Setting example 3.2.4 as a POMDP

We begin by setting example 3.2.4 as a POMDP. This is essentially the POMDP
setting of the surveillance problem (section 3.3.2) with the specific parameters of
the example explicitly represented.

States S. {s1 = 〈0, 0, X1〉, s2 = 〈0, 1, X1〉, s3 = 〈1, 0, X1〉, s4 = 〈1, 1, X1〉, s5 =
〈0, 0, X2〉, s6 = 〈0, 1, X2〉, s7 = 〈1, 0, X2〉, s8 = 〈1, 1, X2〉}

Actions A. Here the actions are independent of the state s and are a1 = GO(X1)
and a2 = GO(X2).

Transitions T : S × A→ Π(S) The following (very symmetrical) transition
probability table can be derived using our POMDP setting.
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s1 s2 s3 s4 s5 s6 s7 s8
s1, a1 0.1 0.4 0.1 0.4 0.0 0.0 0.0 0.0
s2, a1 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0
s3, a1 0.1 0.4 0.1 0.4 0.0 0.0 0.0 0.0
s4, a1 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0
s5, a1 0.1 0.4 0.1 0.4 0.0 0.0 0.0 0.0
s6, a1 0.1 0.4 0.1 0.4 0.0 0.0 0.0 0.0
s7, a1 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0
s8, a1 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0
s1, a2 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.4
s2, a2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5
s3, a2 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.4
s4, a2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5
s5, a2 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.4
s6, a2 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.4
s7, a2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8
s8, a2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8

Immediate Rewards R : S × A→ R. The immediate rewards table calculated
as described in the POMDP section is:

a1 a2
s1 0.5 0.8
s2 0.5 1.0
s3 0.5 0.8
s4 0.5 1.0
s5 0.5 0.8
s6 0.5 0.8
s7 1.0 0.8
s8 1.0 0.8

Observations Ω. The set of observations Ω is {o1 = 〈f1 = 0〉, o2 = 〈f1 =
1〉, o3 = 〈f2 = 0〉, o4 = 〈f2 = 1〉}

Observation function O : S × A→ Π(Ω). The observation table has the form:

o1 o2 o3 o4
s1, a1 ∨ a2 1.0 0.0 0.0 0.0
s2, a1 ∨ a2 1.0 0.0 0.0 0.0
s3, a1 ∨ a2 0.0 1.0 0.0 0.0
s4, a1 ∨ a2 0.0 1.0 0.0 0.0
s5, a1 ∨ a2 0.0 0.0 1.0 0.0
s6, a1 ∨ a2 0.0 0.0 0.0 1.0
s7, a1 ∨ a2 0.0 0.0 1.0 0.0
s8, a1 ∨ a2 0.0 0.0 0.0 1.0
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Initial State Initially only state A0 = 〈0, 0, X1〉 = s1 is considered possible.
This is represented by having a belief state b such that b(s1) = 1 and
b(s) = 0 for all other s ∈ S.

A.2 One step look-ahead POMDP application

Here we apply the POMDP of example 3.2.4 using a one step look-ahead horizon.
This creates a sequence of decisions based on the POMDP belief states resulting
after each action is taken (see table A.1).

The robot starts with b(s1) = 1 and its first task is to decide which action
to take. There are two alternative actions a1 and a2. By looking at the rewards
table it sees that R(s1, a1) = 0.5 while R(s1, a2) = 0.8 so action a2 is taken first.

The robot takes action a2. Now suppose observation o3 is received1. Us-
ing this information, let us compute the robot’s new belief b′ over the possible
states. To compute the new belief we begin first by computing P (s′|b, a2) =
Σs∈ST (s, a2, s

′)b(s). The result of this computation is given in the following ta-
ble:

s1 s2 s3 s4 s5 s6 s7 s8
P (s′|b, a2) 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.4

Then given this table, P (o|b, a2) = Σs′∈SO(s′, a2, o)P (s′|b, a2) can be computed:

o1 o2 o3 o4
P (o|b, a2) 0.0 0.0 0.2 0.8

And this finally gives b′(s′) = O(s′,a2,o3)P (s′|b,a2)
P (o3|b,a2)

s1 s2 s3 s4 s5 s6 s7 s8
b′(s′) 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0

Now a new decision can be taken using the new belief b′. The expected rewards
of actions a1, a2 are ER(a1) = b′(s5)R(s5, a1)+b′(s7)R(s7, a1) = 0.5·0.5+0.5·1.0 =
0.75 and ER(a2) = b′(s5)R(s5, a2) + b′(s7)R(s7, a2) = 0.5 · 0.8 + 0.5 · 0.8 = 0.8
respectively. So action a2 is chosen this time.

Further, supposing that observation o4 is received after a2 is taken, we can
compute the new belief b′′ as previously.

s1 s2 s3 s4 s5 s6 s7 s8
P (s′|b′, a2) 0.0 0.0 0.0 0.0 0.05 0.2 0.15 0.6

1Since action a2 was taken the robot gets to location X2. In location X2 either observation
o3 or observation o4 could be received. However, for the purposes of the example only one
observation can be used (the robot either finds a fire or not). Fortunately, the observation
received has no effects in this example
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Then given this table, P (o|b′, a2) can be computed:

o1 o2 o3 o4
P (o|b′, a2) 0.0 0.0 0.2 0.8

And this finally gives b′′(s′):

s1 s2 s3 s4 s5 s6 s7 s8
b′′(s′) 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.75

Again a new decision can be taken using belief b′′. The expected rewards of
actions a1, a2 are ER(a1) = b′′(s6)R(s6, a1) + b′′(s8)R(s8, a1) = 0.25 · 0.5 + 0.75 ·
1.0 = 0.875 and ER(a2) = b′′(s6)R(s6, a2)+b′′(s8)R(s8, a2) = 0.25·0.8+0.75·0.8 =
0.8 respectively and so action a1 is chosen this time.

Supposing that the robot receives the observation o1 the new belief b′′′ can be
computed as:

s1 s2 s3 s4 s5 s6 s7 s8
P (s′|b′′, a1) 0.025 0.1 0.175 0.7 0.0 0.0 0.0 0.0

Then given this table, P (o|b′′, a1) can be computed:

o1 o2 o3 o4
P (o|b′′, a1) 0.125 0.875 0.0 0.0

And this finally gives b′′′(s′)

s1 s2 s3 s4 s5 s6 s7 s8
b′′′(s′) 0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0

Now a new decision can be taken using the new belief b′′′. The expected
rewards of actions a1, a2 are ER(a1) = b′′′(s1)R(s1, a1) + b′′′(s2)R(s2, a1) = 0.2 ·
0.5 + 0.8 · 0.5 = 0.5 and ER(a2) = b′′′(s1)R(s1, a2) + b′′′(s2)R(s2, a2) = 0.2 · 0.8 +
0.8 · 1.0 = 0.96 respectively. So action a2 is now chosen again.

Using this action we want to compute the new belief b′′′′. Suppose that the
robot receives the observation o4. The resulting tables are:

s1 s2 s3 s4 s5 s6 s7 s8
P (s′|b′′′, a2) 0.0 0.0 0.0 0.0 0.02 0.48 0.02 0.48

Then given this table, P (o|b′′′, a2) can be computed:

o1 o2 o3 o4
P (o|b′′′, a2) 0.0 0.0 0.04 0.96

And this finally gives b′′′′(s′)

s1 s2 s3 s4 s5 s6 s7 s8
b′′′′(s′) 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5

Now a new decision can be taken using the new belief b′′′′. The expected
rewards of actions a1, a2 are ER(a1) = b′′′′(s6)R(s6, a1) + b′′′′(s8)R(s8, a1) = 0.5 ·
0.5+0.5 ·1.0 = 0.75 and ER(a2) = b′′′′(s6)R(s6, a2)+ b′′′′(s8)R(s8, a2) = 0.5 ·0.8+
0.5 · 0.8 = 0.8 respectively. So action a2 is now chosen again.
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Belief state ER(a1) ER(a2)

b 0.5 0.8
b′ 0.75 0.8
b′′ 0.875 0.8
b′′′ 0.5 0.96
b′′′′ 0.75 0.8

Table A.1: The expected rewards in the POMDP version of example 3.2.4.

A.3 Remarks related to the example

This example is longer than example 3.2.4. This demonstrates that straight
forward computation of the POMDP solution is far from trivial even for the 1-
step case. Furthermore, it is worrying that a lot of intermediate tables have to
be computed before a decision can be taken by comparing expected rewards.

However, there are some positive results of the comparison between this ex-
ample and example 3.2.4.

• The sequence in which rooms are explored here is the same as that of
example 3.2.4.

• The expected rewards for each action before each decision is taken here
(table A.1) are the same as the expected costs in table 3.1.

• The observation of the robot does not affect the decision taken. Try it!
Compute the resulting decision for a different observation. A different belief
state results due to the different observation, but the actions taken and the
expected rewards for this belief state are the same. Still, the observation
is needed in the POMDP model to keep track which belief state we are
currently in. This, however, shows that there is always some dual belief
state (which results in the same decisions) depending on what observation
is taken.

In any case, this example should go part of the way towards convincing the
reader that our POMDP setting is an accurate description of the problem we
have been solving so far.
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issues de capteurs: le project perception. In NATO Research and
technology organisation meeting on ”Multi-sensor and data fusion for
telecommunications, remote sensing and radars”, Lisbon, Portugal,
September 1997.

[TKT+00] S. Tadokoro, H. Kitano, T. Takahashi, I. Noda, H. Matsubara,
A. Shinjoh, T. Koto, I Takeuchi, H. Takahashi, F. Matsuno,
M. Hatayama, J. Nobe, and S. Shimada. The robocup-rescue project:
A robotic approach to the disaster mitigation problem. In IEEE
International Conference on Robotics and Automation (ICRA ’00),
April 2000.

[TRS01] G. Theocharous, K. Rohanimanesh, and S.Mahadevan. Learning
hierarchical partially observable markov decision process models for
robot navigation. In IEEE International Conference on Robotics and
Automation, pages 511–516, Seoul, Korea, May 2001.

[TT98] R. M. Turner and E. H. Turner. Organization and reorganization of
autonomous oceanographic sample networks. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA-
98), pages 2060–2067, Piscataway, May 16–20 1998. IEEE Computer
Society.

[VM98] F. Voorbraak and N. Massios. Decision-theoretic planning for au-
tonomous robotic surveillance. In ECAI’98 Workshop on Decision



126 Bibliography

theory meets artificial intelligence - qualitative and quantitative ap-
proaches, pages 23–32, Brighton, UK, August 1998.

[VM01] F. Voorbraak and N. Massios. Decision-theoretic planning for
autonomous robotic surveillance. Applied Intelligence Journal,
14(3):253–262, May 2001.

[WM95] D.H Wolpert and W.G. Macready. No free lunch theorems for search.
Technical Report SFI-TR-95-02-010, The Santa Fe Institute, 1399
Hyde Park Road, Santa Fe, NM 87501, USA, February 1995.

[WYBM96] J.S. Willcox, Y.Zhang, J.G. Bellingham, and J. Marshall. AUV
survey design applied to oceaning deep convection. In Oceans’96
MTS/IEEE, Ft. Lauderdale, Florida, 1996.



Index

κ constant, 71
n-step strategy, 26

abstracted cost, 68
abstraction tree, 67

block-based, 95
block-based modified, 106

accessibility relation, 21
approximate probability, 83
AUVs, 5

belief states, 37
blocks, 80, 95

cluster shapes, 78
clustering, 77
commitment, 69
confidence, 16, 25

decrease rate, 28
coordinator, 2
cost barrier, 64
cost of fire presence, 21
cyberguard, 7

decision diagrams, 54
decision level, 98
decision procedure, 68, 97
distributed intelligence, 6

early detection, 30
entropy, 25

environment graph, 64
examples,

lightning, 35
modified two-room, 31
three-room, 32
two-room, 27

exhaustive exploration, 29
expected cost, definition of, 25

factored representations, 54
fire variable, 21
fixed cluster route strategy, 96, 101,

106
formal environment model, 21

hierarchical strategy, 67

indirect benefits, 30

linearity of abstracted costs, 92
locations, 21

maximum confidence, 24
maximum likelihood, 24
methodical exploration, 24, 74
minimax interval, 24, 66, 74, 101
minimum expected cost, 25, 66, 74,

101
multi-armed bandit, 34

office-like environment, 63

127



128 Index

opponents, 16

piecewise linear, 53
policy iteration, 51
POMDPs, 36
probability of fire, computation, 23

random exploration, 24
reinforcement learning, 56
relevant events, 1, 22
repetitive behaviour, 33
representation detail, 15
resource allocation, 1
revised hierarchical strategy, 71, 101
route, 81

search and rescue, 10
sensitivity to clustering, 106
settings

decision-theoretic, 21
direct MDP, 41
equivalence, 43
POMDP, 39

simulation methodology, 66
size of state space, 46
start location, 21
starting probability, 21
state-action pair sampling, 57
strategy comparison methods, 13
surveillance

definition, 1
of highways, 9
visual, 8

symmetrical vs asymmetrical, 25

TD-learning, 57
trajectory, 96
transition probability, 21

UAVs, 7

value iteration, 51



Samenvatting

Het onderwerp van dit proefschrift is autonome planning van een surveillance-
taak in kantoorachtige omgevingen. Het surveilleren kan gezien worden als “het
nauwkeurig in de gaten houden van iets of iemand met als doel het detecteren van
relevante gebeurtenissen”. Mensen zijn erg bekwaam in het surveilleren doordat
zij feilloos de waarnemingen, acties en besluitvorming weten te integreren. Het
automatiseren van deze aspecten om robotsurveillance mogelijk te maken is niet
triviaal. In dit proefschrift leggen we de nadruk op besluitvorming betreffende
het “waar naartoe”-aspect van het surveilleren.

We benaderen het probleem van surveillanceplanning door het te beschouwen
als een probabilistisch besluitvormingsproces, waarbij we voorlopig het afzonder-
lijke probleem van het bepalen van waarschijnlijkheden en kosten in realistische
situaties buiten beschouwing laten. We zijn uiteindelijk gëınteresseerd in de al-
goritmische implementatie van zulk een besluitvormingsproces, zodat we de as-
pecten formalisering en efficiënte berekenbaarheid in beschouwing moeten nemen.

Om de discussie te vereenvoudigen leggen we de nadruk op één bepaald type
relevante gebeurtenissen. De te beschouwen gebeurtenissen zijn probabilistisch,
onafhankelijk van elkaar, gelocaliseerd binnen de kamers en resulteren in hoge
kosten door schade. We nemen een gëıdealiseerde brand als voorbeeld van zo’n
gebeurtenis.

Het plannen in een surveillancetaak is een relatief nieuw gebied, en er zijn
slechts weinig kwantitatieve resultaten bekend. Voor deze onderzoeksbijdrage
werden verscheidene beslissingstheoretische representaties beschouwd. Het prob-
leem kan worden beschreven als een (PO)MDP (partieel observeerbaar Markov
beslissingsproces) of met klassieke beslissingstheorie op vele schijnbaar verschil-
lende manieren, waarvan we sterk vermoeden dat ze equivalent zijn. De for-
malisering laat het exponentiële karakter zien van surveillanceplanning, gezien als
een optimaal zoekprobleem. Daarom zal dit proefschrift de nadruk leggen op de
aspecten van berekenbaarheid, die voortkomen uit onze wens.

De eerste optie voor het omgaan met de berekenbaarheid is het beperken van
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het vooruitkijken tijdens het zoeken. Dit is wat normaliter gebeurt in optimale
zoekproblemen, om de grootte van de zoekruimte te beperken. Echter, bij het
beperkt vooruitkijken zijn de geboekte resultaten niet acceptabel, daar ze ten
prooi vallen aan ‘locale minima problemen’: wanneer een gebied niet belangrijk
genoeg is om te bezoeken, zal het mogelijkerwijs voorkomen dat gebieden verderop
ook niet worden geëxploreerd.

Onze oplossing is om niet bij de details te blijven, maar het probleem te abstra-
heren. Een abstracte representatie van een doelomgeving voor een surveillance-
taak kan geconstrueerd worden door gelijkende locaties te groeperen in clusters.
De beslissingen worden dan genomen op basis van de diverse manieren waarop
de clusters bezocht kunnen worden. Zoekmethoden gebaseerd op abstractie ver-
groten het effectieve vooruitkijken maar zijn noodzakelijkerwijs een benadering.
Dit resulteert in een afweging tussen het vinden van een methode die grof ge-
noeg is om het berekenbaar te houden en fijn genoeg om de optimale oplossing
goed genoeg te benaderen. De keuze in dit dilemma is niet makkelijk, maar we
laten zien dat de structuur van het probleem nuttig kan zijn. In ons planning-
probleem van de surveilleertaak voor een kantoorgebouw bepalen de topologie
en het patroon van kosten in de omgeving grotendeels de optimale acties van de
robot en dit moet teruggezien worden in geschikte clustervormingen. Het blijkt
dat we voor kantoorgebouwen een redelijk algemene methode kunnen geven voor
het groeperen van locaties van vergelijkbare topologische structuur in ster- en
gangvormige clusters.

We introduceren een nieuwe beslissingsstrategie voor zulke abstracte gebou-
wen, de strategie van vaste clusterroutes (fixed cluster route strategy). Deze
strategie berekent de verwachte kosten voor een vooraf gedefinieerde route binnen
het cluster, in plaats van het geven van een heuristische schatting van de totale
kosten van alle mogelijke routes in het cluster. Drie route types worden onder
beschouwing genomen: exploreer, doorkruis en negeer. De robot kiest dan een
vooraf gedefinieerde route die geselecteerd wordt door de verwachte kosten op
een eindig beslissingsniveau met elkaar te vergelijken.

De strategie van vaste clusterroutes is nog steeds heuristisch, maar simulatie-
experimenten laten zien dat het andere nog simpeler strategieën verslaat (ook gep-
resenteerd in dit proefschrift), wanneer er locale minima aanwezig zijn. Het lijkt
erop dat deze strategie verder verbeterd kan worden, omdat het verliest van een
simpele één-staps-vooruitkijkminimalisatie van de tijd tussen het bezoeken wan-
neer er geen kostenstructuur aanwezig is. De hoofdbijdrage van dit proefschrift
is waarschijnlijk het theoretische begrijpen van het probleem van surveillance-
planning. De fixed cluster route strategy suggereert dat abstractie de manier is
om automatische surveillanceplanning te bereiken.



Abstract

The subject of this thesis is the investigation of autonomous surveillance plan-
ning for an office-like environment. Surveillance can be informally defined as “a
close watch kept over something or someone with the purpose of detecting the
occurrence of some relevant events”. Humans perform surveillance tasks quite
well, intergrating sensing, action, and decision-making flawlessly. Automation of
each of these aspects to enable robotic surveillance is non-trivial. In this thesis,
we focus on the decision-making invloved in “where to go next”.

We approach this problem of surveillance planning by viewing it as a prob-
abilistic decision process, ignoring for now the separate problem of knowing the
probabilities and cost in actual situations. We are eventually interested in an
algorithmic implementation of such a decision process, so we need to consider
aspects of formalisation as well as of efficient computability.

To simplify the discussion we focus on one type of relevant events. The events
considered are probabilistic, independent of each other, localised within office
rooms and produce some costly damage when present. We took an idealised
version of fire as an example of such an event.

Surveillance planning is a relatively new field and few quantitative results
are known. For this exploratory research effort, various representations and so-
lution methods of a decision-theoretic nature are considered. The problem can
be mapped into formalisms like (PO)MDP or classical decision theory in many
seemingly different ways, which are in fact thought to be equivalent. The for-
malisation conveys the exponential nature of surveillance planning viewed as an
optimal search problem. Consequently, this thesis emphasises the computational
issues raised by the desire to compute decisions in reasonable time.

The first option for dealing with the computational issues is to limit the look-
ahead of the search. This is what is typically done in optimal search problems
to control the size of the search space. However, if a small look-ahead is used,
the results generated are not acceptable because they fall prey to local minima
problems: if a certain area is not important enough to be visited, it may also
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prevent other areas beyond it from being explored.
Our solution is to move up from the details and to abstract the problem. An

abstracted representation of a target environment for surveillance can be con-
structed by grouping similar locations into clusters. The decisions then are taken
among the various ways in which the clusters can be visited. Search methods
based on abstraction boost the effective look-ahead but are necessarily approxi-
mate. This creates a hard balancing act between finding a method that is coarse
enough to be computable and fine enough to closely approximate the optimal
solution. Deciding on this dilemma is not easy, but we show that the structure
of the problem can be useful. In our surveillance planning problem for an office
building, the topology and the pattern of costs of the environment largely guide
the actions of the robot and this should be reflected in appropriate clusterings. It
turns out that for office buildings, a sensible general method can be presented for
grouping locations of similar topological structure into clusters shaped as stars
and corridors.

A new decision strategy for such an abstracted building called the fixed cluster
route strategy is proposed. The fixed cluster route strategy computes the expected
cost for a predefined route within a cluster instead of giving a heuristic estimate
of the cost for all possible routes within the cluster. Three route types are consid-
ered: explore, transit and ignore. The robot then commits itself to the predefined
route it selects by comparing the expected costs at a fixed decision-level.

The fixed cluster route strategy is still heuristic, but simulation results show
that it beats other simpler strategies, also presented in this thesis, in cases where
local minima are present. It is believed that this strategy can be further improved,
since it loses from a simple one-step look-ahead minimisation of time between
visits when no cost structure is present. The main contribution of this thesis is
probably to the theoretical understanding of the surveillance planning problem.
The fixed cluster route strategy suggests that abstraction may be the route to
achieving automated surveillance planning.
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