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CHAPTER 1

INTRODUCTION

1.1 Reasoning about space

Spatial structures and spatial reasoning are essential to perception and cognition. Much
day-to-day practical information is about what happens at certain spatial locations.
Moreover, spatial representation is a powerful source of geometric intuitions that un-
derlie general cognitive tasks. How can we represent spatially located entities and
reason about them? To take a concrete domestic example: when we are setting a table
and place a spoon, what are the basic spatial properties of this new item in relation to
others, and to the rest of the space? Not only, there are further basic aspects to per-
ception: we have the ability to compare different visual scenes, and recognize objects
across them, given enough ‘similarity’. More concretely: which table settings are ‘the
same’? This is another task for which logic provides tools.

Constraining space within the bounds of a logical theory and using related formal
reasoning tools must be performed with particular care. One cannot expect the move
from space to formal theories of space to be complete. Natural spatial phenomena will
be left out of logical theories of space, while non-natural spatial phenomena could try
to sneak in (cf. the account of Helly’s theorem implications on diagrammatic theories
in [Lemon, 2002]). Paraphrasing Ansel Adams’ concern of space bound in a photo-
graph! one could say that space in nature is one thing; space confined and restricted
in the bounds of a formal representation and reasoning system is quite another thing.
Connectivity, parthood, and coherence, should be correctly handled and expressed by
the formalism, not aiming at a complete representation of space, but focusing on ex-
pressing the most perspicuous spatial phenomena.

The preliminary and fundamental step in devising a spatial reasoning framework
lays, thus, in the identification of which spatial behaviors the theory should capture and,

“Space in nature is one thing; space confined and restricted by the picture edges is quite another
thing. Space, scale, and form must be made eloquent, not in imitation of painting arrangements, but in
terms of the living camera image.” [Adams, 1981]

1



2 e Chapter 1. INTRODUCTION

possibly, in the identification of which practical uses will be made of the framework.
A key factor is in appropriately balancing expressive power, completeness with respect
to a specific class of spatial phenomena, and computational complexity.

The blend of expressivity and tractability we are aiming at points us in the di-
rection of modal logics as a privileged candidate for the formalization task. We will
not go into details on modal logics or on the reason for which modal logics balance
nicely expressive power and computational complexity (one can refer to a number of
texts on the subject, including the recent [Blackburn et al., 2001] or the more specific
[Vardi, 1997]). To enjoy the theoretical part of the thesis, we assume the reader has
some basic knowledge of modal logic and its best-known possible world semantics
(also referred to as Kripke semantics). Strangely enough, even though knowledge of
Kripke semantics is helpful for better understanding the presented material, we are
going to make little use of it, and rather resort to topological semantics, introduced
about 30 years earlier than Kripke semantics by [Tarski, 1938]. Modern modal logics
of space need old modal logic semantics.

The attention on spatial reasoning stems, in the case of the present thesis, from
the interest in applications in the domains of image processing and computer vision,
hence, the sub-titl&heory and PracticeBut this is only one of the many motivations
for which spatial logics have been considered in the past. These range from the early
philosophical efforts [Whitehead, 1929, Lesniewski, 1983] to recent work motivated
by such diverse concerns as spatial representation and vision in Al [Shanahan, 1995,
Randell et al., 2001], semantics of spatial prepositions in linguistics [Herskovits, 1997,
Winter and Zwarts, 1997], perceptual languages [Dastani et al., 1997, Dastani, 1998],
or diagrammatic reasoning [Hammer, 1995, Gurr, 1998, Kerdiles, 2001]. The result-
ing logics are diverse, too. Theories differ in their primitive objects: points, lines,
polygons, regions (contrast [Tarski, 1938] against [Tarski, 1959]). Likewise, theo-
ries differ in their primitive spatial relations: such as inclusion, overlap, touching,
‘space’ versus ‘place’, and on how these should be interpreted: [Randell et al., 1992,
Bennett, 1995, Asher and Vieu, 1995]. There are mereological theories of parts and
wholes, topological ones (stressing limit points, and connection) and mereotopological
ones (based on parthood and external connection). Systematic accounts of the genesis
of spatial vocabulary date back to Helmholtz’ work on invariants of movement, but
no generally agreed primitive relations have emerged on the logic side. Moreover, ax-
ioms differ across theories: [Clarke, 1981, Clarke, 1985] vs [Pratt and Schoop, 1998]
vs [Casati and Varzi, 1999]. Also our modal approach has its predecessors of which we
mention [Segerberg, 1970, Segerberg, 1976, Shehtman, 1983, Bennett, 1995, Venema,
1992, Balbiani et al., 1997, Lemon and Pratt, 1998].

The above references have no pretense of being a complete overview of the liter-
ature on spatial formalisms and, even less, on applications of spatial formalisms. We
shall refer, discuss and compare our work with the literature, with previous approaches
and systems on a ‘local basis’. That is, relevant literature is discussed in each chap-
ter where appropriate in order to set the context, compare our approach with previous
ones, and identify future extensions of our own work based on previous efforts.
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1.2 Theory and practice

Our contribution with this thesis is twofold. On the one hand, we investigate new
and existing spatial formalisms with the explicit goal of identifying languages nicely
balancing expressive power and tractability. On the other hand, we study the feasibility
of practical applications of such qualitative languages of space, by investigating two
symbolic approaches to pattern recognition.

The structure of the thesis reflects the two sub-tasks. The first part reflects the
ethereal nature of our theoretical approach to space. The second part reflects a more
practical task , that is, applying spatial theories to real world problems.

Modal formalisms are the thread of the thesis. We walk through a family of modal
languages of space for topological, affine, metric and vector spaces. The task is not
that of compiling a drudging taxonomy of modal spatial languages, but rather to design
languages with specific expressive tasks. ‘Expressivity in balance’ is the motto here.

While walking through modal logics of space some steps will be mandatory. Some
basic languages are needed as they form the basic for any subsequent analysis. This is
the case o654 a poor language in terms of expressivity, but, as it turns out, the min-
imal normal modal language with respect to topological interpretations. In fact, this
language will be our first test. On this language we shall introduce the topological se-
mantics (after Tarski), define adequate notions of bisimulations and model comparison
games, analyze completeness in modern terms (via canonical models), and more.

Our subsequent investigation concerns some striking facts &doéirst, we con-
sider completeness with respect to general topological spaces, to Cantor space, to the
real line, and further to serial sets of the real line and plane. Spatial finiteness arises
as a result. Then, we look at logical extensions. A typical example of this kind of lan-
guage is that 084, an extension by a universal modal operaté4, is known in the
literature of spatial reasoning as Bennett [1995] used it to encode a decidable fragment
of the region connection calculus of Randell, Cui and Cohn [1992]. Further examples
comprise the spatial extension of the temporal Since and Until logic of [Kamp, 1968].

Our next move is from topology to geometric structures. This involves a major
semantic change. Topological interpretation is abandoned, and more custom possible
worlds semantics is used. In this context, modal logics tend to either be sorted (typical
example is that of having sorts for points and lines, and an incidence relation) or to
adopt dyadic modal operators. Our focus will be on logics of the second kind.

In [Tarski, 1959], Tarski introduces the notion of elementary geometry and pro-
vides a first order axiomatization in terms of two fundamental relations, that is, be-
tweenness and equidistance. These are sufficient for any affine or metric construction.
For instance, one can define parallelism, convexity, or the notion of an equilateral tri-
angle. But what happens if one considers betweenness in isolation? Further, what is
the modal fragment of languages of betweenness? And, are there alternative relations
for axiomatizing elementary geometry?

We answer these questions in our investigation of geometrical extensions to our
basic modal approach to space. At the end of our journey in this realm of modal logics,
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we arrive at a vector theory of shape: mathematical morphology. This mathematical
theory of shape lends itself naturally to modal representations, as its two basic oper-
ators, which mimic Minkowski's operations in vector spaces, are easily axiomatized
in terms of modal ‘arrow logics’. It will be harder to maintain the balance between
expressivity and tractability as small deviations from the minimal axiomatization force
trespassing the limits of decidability. As a compensation, interesting new axiomatiza-
tions and open questions arise. All in all, we shall discover a number of intriguing facts
about topological and geometric spaces, thanks to a modal analysis of space.

When considering applications, the point of view on the logics of space analyzed in
our theoretical promenade shifts. Now interesting logics become those which can ex-
press region properties, rather than those merely referring to points, model comparison
games become interesting only if turned into distance measures, and boundaries of
regions play an even greater role.

There are even more general concerns when applying symbolic approaches to pat-
tern recognition problems: spatial coherence and brittleness. Spatial coherence regards
the way nature presents itself to observation, that is in a manner intrinsically hard to
capture symbolically. Elsewhere we have spelled out our personal concerns for spatial
coherency in the context of formal perceptual languages [Aiello and Smeulders, 1999].
We refer to [Florack, 1997] for an authoritative point of view.

Brittleness regards a risk ran by strict symbolic approaches when applied to real
world domains: they might break. There are various reasons for which a system can
show a brittle behavior. Little variations present in nature may result in misclassifi-
cations at the symbolic level. Thus, the misclassification propagates on to a wrong
analysis. The problem occurred in one of the practical systems we present, forcing the
introduction of a ‘less brittle’ interpretation of region relations.

We choose two significant problems in image processing and pattern matching as
our testing grounds: image retrieval and document image analysis.

Image retrieval is achieved by matching a description or a query image on a col-
lection of images. Symbolic approaches are successful in this field to the extent that
symbolic segmentation of the images is available. The matching process between a
guery and a collection of images is a matter of comparison. When analyzing modal
logics of space we encounter a tool performing precisely this task: model comparison
games, which we apply to measure image similarity.

We believe that the field of document image analysis is ripe for symbolic ap-
proaches. Various decades of research in pattern matching have solved most of the
problems involved in basic document image processing. For example, current tech-
nology for skew estimation or optical character recognition is very accurate. One of
the present challenges lies in the management and grouping of all the basic layout in-
formation in order to achieve document understanding. Symbolic approaches are of
interest here, as there is formal structure to be detected in printed documents. One may
even argue, as we do, that the structure present in documents has the form of precise
formal rules. These are the rules followed, most often without awareness, by document
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authors and, with awareness, by compositors. It is by reverse engineering these rules
and by using them to analyze documents that we can achieve document understanding.
The overall conclusion over our practical experiences will help us understand where
they are effective and where not. Practical issues also prompt for interesting theoretical
guestions, thus, closing the ‘vicious circle’ theory and practice—practice and theory.

The thesis is organized in seven technical chapters, plus an introductory and a conclu-
sions chapters, and three appendices. The chapters from 2 to 5 form the theoretical
core of the dissertation, while Chapters 6 and 7 are the practical component.

The first two chapters set the boundaries of our framework: Chapter 2 from the
expressive point of view, and Chapter 3 from the axiomatization one. Then, we an-
alyze two sorts of extensions of the framework. Logical extensions are presented in
Chapter 4, while geometrical ones are introduced in Chapter 5.

In Chapter 2, we revive the topological interpretation of modal logics, turning it into
a general language of patterns in space. In particular, we define a notion of bisimulation
for topological models that compares different visual scenes. We refine the comparison
by introducing Ehrenfeucht-Fige style games played on patterns in space.

In Chapter 3, we investigate the topological interpretation of modal logic in modern
terms, using the notion of bisimulation introduced in Chapter 2. We look at modal
logics with interesting topological content, presenting, amongst others, a new proof of
McKinsey and Tarski’'s theorem on completeness of S4 with respect to the real line,
and a completeness proof for the logic of finite unions of convex sets of the reals.

In Chapter 4 we consider logical extensions to the topological modal approach to
space. The introduction of universal and hybrid modalities is investigated with respect
to the added logical expressive power. A spatial version of the tense Since and Until
logic is also examined. A brief comparison with higher-order formalisms gives a more
general perspective on (extended) modal logics of space.

In Chapter 5, we proceed with the modal investigation of space by moving to affine
and metric geometry, and vector algebra. This allows us to see new fine-structure
in spatial patterns suggesting analogies across these mathematical theories in terms of
modal, tense and conditional logics. Expressive power is analyzed in terms of language
design, bisimulations, and correspondence phenomena. The result is both unification
across the areas visited, and the uncovering of interesting new questions.

In Chapter 6, we take a different look at model comparison games for the pur-
pose of designing an image similarity measure for image retrieval. Model comparison
games can be used not only to decide whether two specific models are equivalent or
not, but also to establish a measurement of difference among a whole class of models.
We show how this is possible in the case of the spatial modal Bgjc The approach
results in a spatial similarity measure based on topological model comparison games.
We move towards practice by giving an algorithm to effectively compute the similarity
measure for a class of topological models widely used in computer science applica-
tions: polygons of the real plane. At the end of the chapter, we briefly overview an
implemented system based on the game-similarity measure.
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In Chapter 7, we use a propositional language of qualitative rectangle relations to
detect the reading order from document images. To this end, we define the notion of
a document encoding rule and we analyze possible formalisms to express document
encoding rules such a&TEX, SGML languages, and others. Document encoding rules
expressed in the propositional language of rectangles are used to build a reading or-
der detector for document images. In order to achieve robustness and avoid brittleness
when applying the system to real life document images, the notion of a thick bound-
ary interpretation for a qualitative relation is introduced. The system is tested on a
collection of heterogeneous document images showing recall rates up to 89%.

The presentation ends with three appendices. Appendix A is a brief recall of basic
topological notions, useful for reading Chapters 2, 3, and 4. Appendix B presents an al-
gorithm for sorting directed transitive cyclic graphs in relation to the system presented
in Chapter 7. Appendix C overviews three implementations related to the thesis.

Material related to the thesis has been presented in various contexts. The contributions
are to be considered joint with the respective co-authors.

| Chapter| Co-authors | reference |

2 Johan van Benthem | [Aiello and van Benthem, 1999], a shart
version is to appear in &SLI volume
[Aiello and van Benthem, 20023a]

3 Johan van Benthem | [Aiello et al., 2001], submitted to théourn-
Guram Bezhanishvili| al of Logic and Computation

4,5 | Johan van Benthem | [Aiello and van Benthem, 1999,

Aiello and van Benthem, 2002b], sub-
mitted as one paper to thdournal of
Applied non-Classical Logics

6 [Aiello, 2000, Aiello, 2001a], to appear i
the Journal of the Interest Group in Pur
and Applied LogidAiello, 2002b]

7 Arnold Smeulders manuscript submitted téinformation Sci-
ences”

D o

The material of Chapter 7 describes a component of a larger architecture. The latter
has been presented in various contexts: [Aiello et al., 2000, Todoran et al., 2001a], and
[Todoran et al., 2001b] which has been submitted talthenal of Document Analysis

and Recognition



CHAPTER 2
THE TOPO APPROACH: EXPRESSIVENESS

We begin our investigation of representations of space from a simple modal logic. Our
primary goals here are that of identifying the appropriate tools we need in the rest of
the thesis and instantiating them for the simplest modal spatial logic.

Perhaps we are already running too fast. We have assumed an agreement on the
meaning of the term ‘space’ and we have started to refer to spatial languages talking
about a simplest one. But the goal of assigning a unique meaning to the term space is
really open-ended and under-determined. Mathematicians have developed many differ-
ent formal accounts, ranging from less or more fine-grained geometries (affine, metric)
to more coarsely-grained topologies. Philosophers have even added formal theories
of their own, such as ‘mereology’, cf. [Casati and Varzi, 1999]. Qualitatively differ-
ent levels of description also arise naturally in computer science, viz. mathematical
morphology [Serra, 1982]. A similar diversity of grain levels arises in logic, which
provides many different spatial languages for talking about objects and their locations.
Our general paradigm is this hierarchy of levels, even though we develop our methods
mainly at the level of topology, cf. [Singer and Thorpe, 1967] or [Engelking, 1989].
Inside the topological level, one can identify a sub-hierarchy of languages of increas-
ing expressive power and logical complexity. We begin at the bottom of this hierarchy
with the simplest language. Simplest here means less expressive language, both from
a syntactic and a semantic point of view. The syntactic evidence to the claim of sim-
plicity will be provided in the present chapter.

The simple language iS4 The name will not surprise the modal logician since
S4is a well known modal logic: the logic of partial orders. Maybe the surprise lies in
the fact that it is the simplest spatial logic, in placeékgfwhich is the simplest normal
modal logic for possible worlds semantics. Again, explanations will follow.

In the present chapter, we recall the syntax and state the truth definiti@ for
the spatial context. We proceed by providing the two fundamental tools tied to our
modal approach to space which keep us company for most of the thesis: topological
bisimulations and topological games.
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(a (b) (0 (o) (e) Q)

Figure 2.1: A formula of the languag®t identifies a region in a topological space. (a)

a spoonyp. (b) the containing part of the spoonp. (c) the boundary of the spoon,
OpAO—p. (d) the container part of the spoon with its boundéryip. (e) the handle of

the spoonpA—<0Op. Inthis case the handle does not contain the junction point handle-
container. (f) the joint point handle-container of the spoonip A G(p A =<COp): a
singleton in the topological space.

The chapter is rich in visual examples that should help in grounding intuitions of
the logic and of the tools we define. The images of the chapter—and of the following
ones—borrow from the daily activity of eating, in particular cutlery is the running
example in the figures. Unless stated otherwise, all depicted items are to be considered
subsets of?? equipped with the standard topology (that defined by the unitary disks).
Closed contours indicate that the set is not only the contour, but also all the points
inside. Of course, these spoons and forks should be taken with a grain of salt: our
framework is completely general.

For the convenience of the reader, and to make the thesis as much as possible self-
contained, we recall the basic topological definitions in Appendix A.

2.1 Basic modal logic of space

In the 30s, Tarski provided a topological interpretation and various completeness the-
orems ([McKinsey and Tarski, 1944, Rasiowa and Sikorski, 1963]) making n®#lal

the basic logic of topology. In the topological interpretation of a modal logic, each
propositional variable represents a region of the topological space, and so does every
formula. Boolean operators such as negatigror \V, andA are interpreted as com-
plement, union and intersection, respectively. The modal operators diamond and box,
become the topological closure and interior operators. More precisely, the modal logic
S4consists of:

e a set of proposition letterB,
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| Formula| Interpretation |

T the universe
1 the empty region
—p the complement of a region
w A1 | intersections of the regionsandy
@ V1 | union of the regions and
O¢p interior of the regiony
O closure of the regiop

Figure 2.2: Formulas dd4and their intended meaning.

e two constant symbols, |,
e Boolean operators, A, VvV, —, and

e two unary modal operators, <.
Formulas are built by means of the following recursive rules:

e psuchthap € P is a well formed formula,
e T, 1 are well formed formulas,
e —, V1, p A1 are well formed formulas ip andvy are well formed formulas,

e Oy and<p are well formed formulas ip is well formed formula.

In Figure 2.2, the intended meaning of some basic formulas is summarized. These are
pictured more vividly in Figure 2.1 with a spoon-shaped region. The intuitions about
the language are reflected in its semantics, which involves the idea of special regions
denoted by proposition letters. Topological modétgp6-modél M = (X, 0, v) are
topological space&X, O) plus a valuation functiow : P — P(X). Conversely, we

will sometimes strip the valuation from a topo-model, and just consider its underlying
topological space. This is like working wiframesin the usual Kripke semantics.

2.1.1.DEFINITION (TOPOLOGICAL SEMANTICS OFS4). Truth of modal formulas is
defined inductively at points in topological models\/:

M,z L1 never

M,z =T always

M,z =p iff =€ wv(p)(withp e P)
M,z = -y iff not M,z k¢

M,z Epny iff MzEpandM,z =9

MzEpvy iff MazEeporM a1y

M,z Ep— iff if M x| e thenM, z =

M,z | Op iff JoecO:xcoAVyeco:MykEyp
M,z = Cp iff YoeO:ifzeo,thendyco: M,y
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As usual we can economize by definipg/ ¢ as—¢p — v, and< e as—O-p.

One of Tarski’s early results was this. Universal validity of formulas over topological
models has the modal logie4 as a sound and complete proof system. The standard
axiomatization is:

OA — —-0O0-A (Dual.)
O0(A— B) — (DA — OB) (K)
0A— A (M
OA — O0A (4)

Modus Ponens and Necessitation are the rules of inference:

e =Y g K
v (MP) a9, (N)

For a closer fit to topological reasoning, however, it is better to work with an equivalent
axiomatization:

aT (N)
(Bp AOY) < O(p Ay) (R)
Op — ¢ (M
Op — O0p 4)

Modus Ponens and Monotonicity are the only rules of inference

o= © Qo — P
r Y (MP A SV
P (MP) Op — Oy (M)

In addition, consider the following derived theoremSx#
OAV OB« O(0AvV OB) (or)

Axiom (Dual.) reflects the topological duality of interior and closure. Axiom (K)
does not have an immediate interpretation, but it is equivalent to theorems (N) and (R),
which do (cf. [Bennett, 1995]). (N) says the whole space is open. (R) is the finite
intersection condition on a topological space. Next, (or) says that open sets are closed
under finite unions. (Closure undarbitrary unions requires an infinitary extension

of the modal language.) Finally, axiom (T) says every set contains its interior, and (4)
expresses inflationarity of the interior operator. Further principleS4ainay define
special notions in topology. For instance, the derived rule

if d(p <« SOyp), thenO(O—-yp «— OCO-y)

says that if a set is closed regular, so is its ‘open complement’.
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Figure 2.3: A spoon is bisimilar to a ‘chop-stick’. The relation among points that
match is highlighted via the double headed arrows.

2.1.1 Topological bisimulation

Once we have a language for expressing properties of visual scenes, we can also for-
mulatedifferencesetween such scenes. This brings us to the notion of ‘sameness’ for
spatial configurations associated with our language, and hence to techniques of com-
parison. The following is the topological version of a well-known notion from modal
logic and computer science ([van Benthem, 1976, Park, 1981]).

2.1.2.DEFINITION (TOPOLOGICAL BISIMULATION). Consider the language&4 and
two topological model3 X, O,v), (X’,0','). A topological bisimulatioris a non-
empty relation= C X x X'’ such that ifr = 2’ then:

() z €ev(p) <o’ €V (p) (for any proposition lettep)
(ii) (forth condition):x €0 € O =3 € O : 2’ € d andVy' €0 : Jyco:y =y
(iii) (back condition)z’ € o € O'=3Joc O :x coandVyco:Fy €0 :y =1y

We call a bisimulatiortotal if it is defined for all elements ok and of X’. We over-
load the symboi= extending it to models with pointg:X, O, v),z = (X', O', V), 2’
requires also that = z’. If only the atomic clause (i) and the forth condition (ii) hold,
we say that the second modulateghe first one.

To motivate this definition, one can look at the ‘topological dynamics’ of the back and
forth clauses, seeing how they makez’ lie in the same ‘modal setting’. Further
motivations come from a match with modal formulas, and basic topological notions.

2.1.1.EXAMPLE (SPOON AND CHOPSTICK). Is a spoon the same as a chop-stick?
The answer depends of course on how we define this cutlery. Suppose we let the
spoon be a closed ellipse plus a touching straight line and the chop-stick a straight line
touching a closed triangle (cf. Figure 2.3). Let us regard both as the interpretation of
some fixed proposition letter in their respective models. Then we do have a topo-
bisimulation by matching up (a) the two ‘junction points’, (b) all points in the two
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handles, and likewise for (c) the interiors, (d) the remaining boundary points, and (e)
all exterior points in both models.

Many more examples and cutlery related pictures of topologically bisimilar and not
spaces can be found in the technical report [Aiello and van Benthem, 1999].

Crucially, modal spatial properties arevariant for topo-bisimulations

2.1.3.THEOREM. Let M = (X,0,v), M’ = (X',O',v) be models with bisimilar
pointsx € X, 2’ € X'. For all modal formulasp, M,z |= ¢ iff M’ 2" = .

Proof Induction ony. The case of a proposition lettgiis the first condition on=.

As for conjunction, M,z = ¢ A v is equivalent by the truth definition o/, z = ¢
and M,z = 1, which by the induction hypothesis is equivalentt}, ' = ¢ and
M’ 2" = 1+, which by the truth definition amounts t’, 2’ = ¢ A ¢. The other
Boolean cases are similar. For the modal case, we do one directidn, 2if= Oy,
then by the truth definition we have thdéd € O : x € o AVy € 0 : M,y | ¢. By
the forth condition, corresponding o there must exist aol € O’ such thatvy’ € o

Jy € oy = y'. By the induction hypothesis applied goandy’ with respect top,
thenvy' € o : M’y = . By the truth definition of the modal operator we have
M’ ' = Op. Using the back condition one proves the other direction likewisesp

To clinch the fit, we need a converse. In general this fails, and matters become delicate
(see [Blackburn et al., 2001]). The converse does hold when we usgérarary modal
language—nbut also for our finite language over special classes of models. Here is a nice
illustration: finite modally equivalent pointed models are bisimilar.

2.1.4.THEOREM. LetM = (X,0,v), M' = (X', O',v') be two finite models; € X,
andz’ € X' two points in them such that for evepy M, x |= ¢ iff M’ 2’ |= ¢. Then
there exists a bisimulation betweéh and M/’ connectingr and«’.

Proof To get a bisimulation between the two finite models, we stipulateitkatu’

if and only if v and ' satisfy the same modal formulas. The atomic preservation
condition for a bisimulation holds since the mogahclude all proposition letters. We
now prove the forth condition. Suppose that= u' whereu € o. We must find an
openo’ such that/ € o’ andVy' € o'Jy € o : y = y'. Now, suppose there is no such
o'. Then for every' containingz’ 3y’ € o’ : Yy € o : 3o, : y = ¢, andy’ = ¢,. In
words, every open’ contains a poing’ with no modally equivalent point in. Taking
the finite conjunction of all formulag,, we get a formulab,, such that/ = ¢, and
-, is true everywhere in. Slightly abusing notation, we write = —-®,,. This line

of reasoning holds for any open containingz’ as chosen. Therefore, there exists a
collection of formulas~®,, for whicho = A—=®,. Sincex € o, by the truth definition

we haver = OA—-®,. By the fact thatr andz’ satisfy the same modal formulas, it

follows thatz’ = OA—®,,. But then, there exists an opeh(with 2’ € 0*) such that
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o E A_'(I)O/. Sinceo* is an open containing’, is one of the', i.e. o* = —~®,.. But

we had supposed that for all opesighere was a poiny’ = ./, so in particular the
y' of o* satisfiesd,.. We have thus reached a contradiction: which shows that some
appropriate open’ must exist. The back clause is proved analogously. QED

2.1.2 Connections with topology

The preceding results provide a match with logical definability. But topo-bisimulations
are also related to purely topological notions. Let us consider only topological frames
now, without valuations. Clearly, we have the following implication:

2.1.5.THEOREM. Homeomorphism implies total topo-bisimulation.

But not vice-versa! Homeomorphisms provide much more ‘analogy’ between two
spaces than topo-bisimulations. A trivial way of seeing this is as folléwg.two topo-
logical spaces are bisimilaOne can just take the full Cartesian product of their points.
Nevertheless, this is not a trivialization of the notion. First, specific topo-bisimulations
may be of independent interest — e.g., those preserving additional properties’ of points
(encoded in topo-models), where no similar trivial example exists. Second, the back
clause of topo-bisimulation resembles the characteristic propedgrainuous maps
This fact provides a foothold for a systematic ‘modal logic analysis’ of topological
behavior. E.g.existentialmodal formulas constructed from literals, conjunction, dis-
junction and box only are preserved under simulations.

2.1.6.THEOREM. LetM = (X,0,v), M' = (X', O',v') be two models, with a sim-
ulation — from M to M’, such that: — 2’. Then, for any existential modal formula

o, M,z = ponlyif M' 2" = .

This result explains how continuous maps preserve basic topological properties. The
following fact is just one typical illustration:

2.1.7.COROLLARY. Let f be a surjective continuous map froi¥, O) to (X', O’). If
the spac€ X, O) is connected, then so (X', 0’).

We leave the proof of Corollary 2.1.7 for Section 4.1. The reason for postponing the
proof is the need of extra logical power at the language level, more precisely, one needs
universal quantification over points. The origin of this need comes from the topological
component of the theorem which expresses a global property. In fact, a surjectiveness
claim is a claim of involvement faall points of the codomain space.

2.1.2.REMARK (INFORMATION TRANSFER). Various (bi-)simulations transfer log-
ical information across topological spaces. A case in point are ‘Chu morphisms’ relat-
ing topological spaces that are ‘adjoint’ in an abstract sense (cf. [van Benthem, 1998]).
Existential modal formulas are then mirrored in general first-order ‘flow formulas’.
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2.1.3 Topo-bisimilar reductions

In many contexts, bisimulations and simulations are used to find minimal models. This
is useful, for instance, to find minimal representations for labeled transition systems
having certain desired properties modally expressible. Topo-bisimulation can be used
for finding a minimal representation for a determined spatial configuration. For exam-
ple, consider a spoon with two handles, as depicted in Figure 2.6.a. The spoon has 7
‘salient’ points, these satisfy the formulas reported in Figure 2.4.

| Point| Formula |
1 Op

Op A O=p

O=p

p A —=<Op ASO-p
SOp A O(p A =<$Op)
pA—=O0Op AOO—p
<SOp A O(p A —=<Op)

~No oh~hWN

Figure 2.4: Formulas true at points of the model in Figure 2.5.

It is easy to find ar54 Kripke model satisfying the 7 formulas above, for instance,
the one in Figure 2.5.a. By a bisimulation one ‘reduces’ it to a minimal similar one.
The topo-bisimilar reduction is presented in the table on the right of Figure 2.6.

From the reduced model one can ‘reconstruct’ the pictorial example, that is, a spoon
with only one handle, Figure 2.6.b. Checking the topo-bisimilarity of Figure 2.6.a and
Figure 2.6.b is an easy task to perform. We do not spell out the general method used
here for transforming topological models into Kripke ones (and back); but it should be
fairly clear from the example.

The claim is not that one should move back and forth from topological and Kripke
semantics to find minimal models. Our goal is to show that topo-bisimulations enable
the reduction of spatial models in the same way that bisimulations enable the reduction
of Kripke models. A general algorithm for deciding topo-bisimulation is still missing,
but one for a specific class of models will be presented and used in Chapter 6.

2.2 Games that compare visual scenes

Topo-bisimulation is a global notion of comparison. But in practice, we are inter-
ested infine-structure what are the ‘simplest differences’ that can be detected be-
tween two visual scenes? For this purpose, we introtijpe-gamet®pological game

that generaliz&hrenfeucht-Frés€ comparison games between first-order models, see
[Doets, 1996]. Similarity and difference between visual scenes will then have to do
with strategiedor players comparing them.
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(@) (b)

Figure 2.5: The reduction of a topological model to a minimal topo-bisimilar one.
From a spoon with two handles to one with only one.

2.2.1.DEFINITION (TOPOLOGICAL GAME). Consider two topo-modelg X, O, v) ,

and (X', O, /'), a natural number and two pointse; € X, 2} € X'. A topological
gameof lengthn, with starting points:,, }—notationT'G (X, X', n, z1, x| )—consists

of n rounds between two players: Spoiler and Duplicator. Each round proceeds as
follows:

(i) Spoiler chooses a modd&{, and an opem, containing the current point, of
that model

(i) Duplicator chooses an opeq in the other modek,; containing the current point
x4 Of that model

(i) Spoiler picks a pointz, in Duplicator's opery, in the X,; model
(iv) Duplicator finally picks a poing, in Spoiler’s operv, in X

The pointsz, andz,; become the new current points of the and X; models, respec-
tively. After n rounds, two sequences have been built:

{z1,01,22,09,...,00_1,2,} {z}, 01, 2,05, ....0, 1,20}
with x; € o;, ando; € O (analogously for the second sequence). Aftaounds, if
x; andx’, (with i € [1,n]) satisfy the same atoms, Duplicateins (Note that Spoiler
already wins ‘en route’, if Duplicator fails to maintain the atomic match.yiAning
strategy(‘w.s.’ for short) for Duplicator is a function from any sequence of moves by
Spoiler to appropriate responses which always ends in a win for Duplicator. The same
notion applies to Spoiler. Amfinite topological gamés one without a finite limit to
the number of rounds. In this case, Duplicator wins if the matched points continue to
satisfy the same atoms.
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p p
5 7
2 3 4 6 _p
p p p w
(a) @) | (b)
11
0 2| 2
3|3
> 4 | 4
5| 5
6 | 4
7|5
1 2 3 4
p p p —-p
(b)

Figure 2.6: The reduction of the spoons of Figure 2.5 via a bisimulation on the corre-
sponding Kripke models. In the table, the bisimulation relation.
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1 Round 2 Rounds 3 Rounds

0 00 0T

e

(@ (b) ()

Figure 2.7: Games on two spoons with two different starting points. On top, the num-
ber of rounds needed by Spoiler to win.

The opens in the game sequence do not play any role in determining which player
wins, but they visually guide the development of the game. For instance, the following
intuitive ‘Locality Principle’ holds. Players lose no winning strategies if we restrict
their moves to choosing opens that aomtained in the previous open

2.2.1.EXAMPLE (PLAYING ON SPOONY. Consider the three configurations in Fig-

ure 2.7. (a) The leftmost game starts with a point on the boundary of the spoon versus
an interior point of the other spoon. Spoiler can win this game in one round by simply
choosing an open set on the right spoon completely contained in its interior. Duplica-
tor's open response must always contain a point not in the spoon, which Spoiler can
then pick, giving Duplicator no possible response. (b) In the central game, a point on
the handle is compared with a boundary point of the spoon’s container. Spoiler can
again win the game, but needs two rounds this time. Here is a winning strategy. First,
Spoiler chooses an open on the left spoon containing the starting point but without
interior points. Any open chosen by Duplicator on the other spoon must contain an
interior point. Spoiler then picks such an interior point. Duplicator’s response to that
can only be a boundary point of the other model (on the handle) or a point outside of
the spoon. In the latter case, she loses at once — in the former, she looses in one round,
by reduction to the previous game. (c) Finally, on the left the junction between handle
and container is compared with a boundary point of the container. In this game, Spoiler
will chose an open on the right model, avoiding points on the handle of the spoon. Du-
plicator is forced to chose an open on the left containing points on the handle. Spoiler
then picks such a handle point. Duplicator replies either with an interior point, or with
a boundary point of the right spoon. Thus we are back with game (b), and Spoiler can
win in the remaining two rounds.

The topological dynamics of these games is appealing. E.g. it is instructive to check
that other initial choices for Spoiler may very well lead to his losing the game! (E.g.,
let Spoiler start in the right-hand model in (b)). A strategy guarantees a win only for
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those who follow it...One can also make some more general mathematical observa-
tions here. In particular, topo-games are alwdgtermined either Duplicator has a
winning strategy, or Spoiler has one.

2.2.1 Strategies and modal formulas

The fine-structure provided by games measures differences in terms of the minimum
number of rounds needed by Spoiler to win. These same differences may also be
formulated in terms of our modal language. To see this, we need the notiood#i

rank, being the maximum number of nested modal operators in a formula. For instance,
the modal ranks of the formulas in Figure 2/,:0p, p A =Op, SOp, p A =<OOp,

SOp A O(p A—=<Op), are 0, 1, 1, 2, 2, and 3, respectively. We are now ready for our
main result.

2.2.2.THEOREM (ADEQUACY). topological gameladequacy Duplicator has a w.s. in
TG(X, X' n,z,2)iff x andz’ satisfy the same formulas of modal rank up:ito

Proof The left to right direction is proven by induction on the lengtbf the game
TG(X, X' n,xz,z'). If n = 0 and Duplicator has a winning strategy, this means
that the pointse, 2’ satisfy the same proposition letters, and hence the same Boolean
combinations of proposition letters, i.e., the same modal formulas of modal rank O.
Now for the inductive step. Suppose that Duplicator has a winning strateigy
TG(X, X' n,xz,z"). We want to show thak', z = ¢ iff X’ 2’ = ¢, when the modal
rank of ¢ is n. By simple syntactic inspectiory must be a Boolean combination of
formulas of the formay where has modal rank less or equal to— 1. Thus, it
suffices to prove thak', x = Ov iff X' 2’ | O¢. Without loss of generality, let us
consider the first model. Suppose tiatr = 0. By the truth definition there exists
an operp (with z € o) such thatvu € o : X,z = ¢. Now, assume that the-round
game starts with Spoiler choosingn X. Using the strategy, Duplicator can pick an
openo’ such that’ € o’ andvu' € o' : X, ' = 1. Now Spoiler can pick any point’
in o’. Duplicator can use the information into respond with a point € o, conclud-
ing the first round, so that the remaining strategys still winning for Duplicator in
TG(X, X',n—1,u,u). By the inductive hypothesis, the fact thgtu = ¢ (wherey
has modal rank — 1) implies thatX’, 2’ = . Thus we have shown that all € o’
satisfyi, and henceX’, 2’ |= O«. The other direction is analogous.

The right to left direction is again proven by inductionenlf n = 0, thenz and
x' satisfy the same non-modal formulas. In particular, they satisfy the same atoms,
which is winning for Duplicator, by the definition of topological game. Now for the
inductive step. Without loss of generality, let us assume that Spoiler picks an open set
o containingz in X in the first round of'G(X, X', n, z, ') game. Now, take the set
{DES,_1(z)|z € o}, where DEG_,(z) denotes all the formulas up to modal ramnk 1
satisfied at. This set is not finite per se, but we can simply prove the following
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2.2.3.FACT (LOGICAL FINITENESS). There are only finitely many modal formulas of
depthk up to logical equivalence.

Therefore, we can write one Boolean formula to describe this open, semely

V ADES,_i(z). Since this is true for alt € o, by the truth definition we have
that X,z = O\ ADES,_1(z) (a formula of modal rank:). By hypothesis;: and

«’ satisfy the same modal formulas of modal rankso X', 2’ = O\/ ADES,_1(z).
This last fact, together with the truth definition implies that there exists an apen
such thatvz’ € o’ : X', 2/ = \/ ADES,_1(z). This is the open that Duplicator must
choose to reply to Spoiler's move. Now Spoiler can pick any peinh o’. Such a
point satisfies at least one disjun§tDES,_;(z), and we let Duplicator respond with
z € o. As aresult of this first round;, v’ satisfy the same modal formulas up to modal
depthn — 1. Hence by the inductive hypothesis, Duplicator has a winning strategy
for TG(X, X',n — 1, z,u). Putting this together with our first instruction, we have a
winning strategy for Duplicator in the-round game. QED

This is the usual version of adequacy: slanted towards similarity. But in our pic-
torial examples, we rather looked at Spoiler. One can also set up the proof of Theo-
rem 2.2.2 so as to obtain affective correspondenbetween (a) winning strategies for
Spoiler, (b) modal ‘difference formulas’ for the initial points. Here is an illustration.

2.2.2.EXAMPLE (MATCHING STRATEGIES WITH FORMULAS. Look again at Fig-

ure 2.7. The strategies described for Spoiler are immediately linked to modal formulas
that distinguish the two models. Suppose the spoons are denoted by the proposition
letter p and hence the background by. In the game on the left]p is true of the
starting point of the right spoon, and its negati®np is true of the starting point of

the other spoon. The modal depth of these formulas is one and therefore Spoiler can
win in one round. In the central case, a distinguishing formutasIp, which holds

for the starting point on the left spoon, but not for that on the right. The modal depth
is 2, which is the number of rounds that Spoiler needed to win the game. Finally, a
formula of modal depth 3 that is only true of the point on the left spoon of the leftmost
game is:O(p A =<OOp). The negation of this formulas is true on the other starting
point, thus justifying Spoiler’s winning strategy in 3 turns.

There is still more fine-structure to these games. E.g., visual scenes may have sev-
eral modal differences, and hence more than one winning strategy for Spoiler. Also,
recall that topo-games can be playefinitely. Then the winning strategies for Dupli-
cator (if any) are precisely the variotgpo-bisimulation®etween the two models. For
further details, see [Aiello and van Benthem, 1999], [van Benthem, 1999]—and also
[Barwise and Moss, 1996].

Before considering completeness $4 with respect to topological spaces in the
next chapter, we remark an alternative modal approach to axiomatizing topology.
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2.3 Logical variations

Tarski’'s interior modalityd iff 3o € O : z € oAVy € 0: M,y = ¢ is actually a mix-
ture of elements of different sorts. By formula is true in a point whenever there
exist an open set containing the pairitself and such that all points of the set satigfy
The definition quantifies at the same time over points and over sets of points connected
by the incidence relation of set membership. Naturally, there is an alternative take on
the basic topological approach to topological reasoning: a ‘stepwise’ approach sepa-
rating points from open sets, thus splitting Tarski’s modality into two separate modal
quantifiers. The resulting modal logic was studied in [Dabrowski et al., 1996] and in
Georgatos’ PhD thesis [Georgatos, 1993]. The main motivation of their work is that
of modeling, with “weak logical systems whose primitives are appropriately chosen,”
logics of knowledge. In particular, with such a logic one can focus on the notion of ef-
fort in contraposition with that of view. The authors also explicitly mention the added
motivation of having devised a tool of potential use for visual reasoning. We share the
motivation and here place their language in our map of spatial logics to tour.

The definition of a model is analogous to that of topological models presented in
Section 2.1 and the truth definition for the new modal operators becomes:

M,z,o=Bp iff Yyeco: Myy,oE¢
M,z,o0E®p iff Yo Coc€cO:zedANMz,d Eyp

wherez,y € X are points and,o’ € O are open sets. The relation with Tarski's
interior modality is quite straightforward:

Ogp if ©klp

Proof The truth definition of the formul&®p statesM,z,0 = Vo' C 0o € O :
x € dANYy € 0 : My,olE ¢ Onthe other hand, in the truth definition of
there is no reference to an open set, so the previous truth definition beddmejs-
oV Coe€e O: xe€dAVye€d: Muyol ¢ which trivially simplifies to
M,z =Jox € oANYy € 0: M,y,0 = ¢ which is precisely the definition afip.

QED

The two level language affords a nice new view on34ebehavior of our original
topological interpretation. E.g., consider the behavior ofS4axioms.

Oy — ¢ becomesebly — o, (2.1)

which, in a two-sorted modal logic, expresses the fact that the accessibility relation
for s is contained in theonverseof that forp. This is a natural connection between
‘x € A’and ‘A 5 z’. Note thatreflexivityvanishes!

Op — OO0 becomesdkly — ISR, (2.2)

which follows from
Blp — BORp
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which is simply a minimally valid consequence of conversipn+ 6. The restis
an application of the valid modal base rule “from— o to &y — ©0.”

Op A Oy — O(p A1) becomesolp A OBl — SBI(p A 1)), (2.3)

a principle which has no obvious meaning in a two-sorted modal language. We can
analyze its meaning bframe correspondendechniques [Blackburn et al., 2001], to
obtain:

VAB:((te ANz e€B)—3C: (zeCAVyeC :ye AVy€E B)).

The full axiomatization of the logic is known [Dabrowski et al., 1996]. The set modal-
ity © has theS5axiomatization, while the point modality retains theS4 axiomatiza-

tion. Depending on which models we consider there is a number of different interaction
axioms that also hold. If we consider models for which the(sébllows the laws of

open spaces, rather than just being a family of subsets with no specific structure (cf.
neighbourhood semantics), one gets:

SBlp — B&p (Cross)
Sp A B®Y) — ©(@p A BOY A ©OE(p V 1)) (Union)

Either way, whether by a single modality defined by a second-order existential and an
universal quantifiers or by a two-sorted modal logic defined by first-order quantifica-
tions, there is a landscape of possible modal languages for topological patterns whose
nature is by no means understood. For instance, one would like to understand what are
natural well-chosen languages for simulations, and also, what acetmglexity jumps
between languages and their logics in this spectrum.






CHAPTER 3
THE TOPO APPROACH: AXIOMATICS

Regarding the modal box as an interior operator, one gets the feeling for why the modal
logic S4is complete with respect to arbitrary topological spaces as modal logic axioms
mimic Kuratowski’s topological axioms. But there are classical results with much
more mathematical content, such as McKinsey and Tarski’'s beautiful theorem stating
that S4 is the complete logic of the reals, and indeed of any metric separable space
without isolated points. Even so, the topological interpretation has always remained
something of a side-show in modal logic and intuitionistic logic, often tucked away
in notes and appendices. The purpose of this chapter is to take it one step further as
a first stage in a program of independent interest, viz. the modal analysis of space
—showing how one can get more generality, as well as some nice new questions. In
particular, this chapter contains (a) a modern analysis of the modal lan§4cae
presented in Chapter 2 in terms of ‘topo-bisimulation’, (b) a number of connections
between topological models and Kripke models, (c) a new general proof of McKinsey
and Tarski’s Theorem (inspired by [Mints, 1998]), (d) an analysis of special topological
logics on the reals, pointing toward a landscape of spatial logics ébbve

3.1 Topological spaces and Kripke models

The purpose of this section is a link-up with the better-known world of ‘standard’
semantics for modal logic. At the same time, this comparison increases our under-
standing of the ‘topological content’ of modal logic.

3.1.1 The basic connection

The standard Kripke semantics is a particular case of its more general topological se-
mantics. Recall that a&4-frame (henceforth ‘frame’, for short) is a pdi, R), where

W is a non-empty set anfl a quasi-order (transitive and reflexive) @n. Call a set

X C W upward closedf w € X andwRv imply v € X.

23
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3.1.1.FAcT. Everyframg W, R) induces a topological spacéV, 7z), wherery, is the
set of all upward closed subsets(®¥, R).

Itis easy to check that is a topology oriV/, and that the closure and interior operators
of (W, 7r) are respectivehz 1 (X) andW — R~}(IW — X), whereR™!(w) = {v €
WlvRw} andR™H(X) = U, cx B *(w), forw € W, X C W. Indeed,ry is a rather
special topology oV for any family { X },c; C 7z, we have(),., X; € 7. Such
spaces are callefllexandroff spacesn which every point has a least neighborhood.
In frames, the least neighborhood of a paints evidently{v € W|wRv}, which is
usually denoted byr(w).

Conversely, every topological spagé’, ) naturally induces a quasi-ordé&r. de-
fined by putting

wR iff w e {v} iff we Uimpliesv € U, for everyU € 7.

This is called thespecialization ordein the topological literature. Again it is easy to
check thatR. is transitive and reflexive, and that every open set o R.-upward
closed. MoreoverR. is anti-symmetric iff(IW, 7) satisfies thel, separation axiom
(that is, any two different points are separated by an open set). Henisea partial
order iff (W, 7) is aT,-space.

Combining the two mappings®? = R,,, 7 C 7g., andr = 75, iff (W, 7) is an
Alexandroff space. Indeed;R.,,v iff w € {v} iff w € R~ (v) iff wRv. Also, as every
open set ofr is R.-upward closed; C 7¢_. Finally, 7 = 75_iff every R.-upward
closed set belongs to iff every point of IV has a least neighborhood {#W, 7) iff
(W, 1) is an Alexandroff space.

The upshot of all this is a one-to-one correspondence between quasi-ordered sets
and Alexandroff spaces, and between partially ordered sets and Alexahgspfaces.
Since every finite topological space is an Alexandroff space, this immediately gives
a one-to-one correspondence between finite quasi-ordered sets and finite topological
spaces, and finite partially ordered sets and fikitspaces.

There is also a one-to-one correspondence between continuous maps and order
preserving maps, as well as open maps amdorphisms. Indeed, let two topolog-
ical spacesWy, ) and (W, ) be given. Recall that a functiofi : W, — W,
is continuousif f~'(V) € r, for everyV € 7,. Moreover, f is openif it is con-
tinuous andf(U) € r, for everyU € 7. Itis well-known thatf is continuous iff
f~1(X) C f~Y(X), and thatf is open iff f~1(X) = f~}(X), for everyX C Wy,

Next, for two quasi-orderéi¥;, R;) and (Ws, Ry), f : W7 — W, is said to be
order preservingf wR,v implies f(w)Ryf(v), for w,v € Wi. f is ap-morphism
if it is order preserving, and in additiofi(w)Ryv implies that there exists € W,
such thatwR,u and f(u) = v, forw € W; andv € Wy, It is well-known that
f is order preserving ifiR; ' f~'(w) C f~'R,*(w), and thatf is a p-morphism iff
RiYf~H(w) = f1Ry (w), for everyw € W,

Putting this together, one easily sees tfias monotone ifff is continuous, and
that f is p-morphism iff f is open.
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As an easy consequence we obtain that the catefytmp of Alexandroff spaces
and continuous maps is isomorphic to the cate@@ogof quasi ordered sets and order
preserving maps, and that the categdfop™ of Alexandroff spaces and open maps
is isomorphic to the catego@os™ of quasi ordered sets apemorphisms. Similarly,
the categoryATop;, of Alexandroff7,-spaces and continuous maps is isomorphic to
the categoryPosof partially ordered sets and order preserving maps, and the category
ATop;0 of AlexandroffT;,-spaces and open maps is isomorphic to the categosy
of partially ordered sets angmorphisms.

In the finite case, we get that the categoryTeip of finite spaces and continu-
ous maps is isomorphic to the category @os of finite quasi ordered sets and or-
der preserving maps, and that the categoryIbip' of finite topological spaces and
open maps is isomorphic to the category@us™ of finite quasi ordered sets apel
morphisms. Similarly, the category Hibp;, of finite 7;-spaces and continuous maps
is isomorphic to the category Fhosof finite partially ordered sets and order preserv-
ing maps, and the category Ainp;, of finite T;-spaces and open maps is isomorphic
to the category FiRos™ of finite partially ordered sets andmorphisms.

3.1.2 Analogies

The tight connection between modal frames and topological spaces explains the earlier-
mentioned analogies in their semantic development, suldcabty andinvariance for
bisimulation It may be extended to include other basic modal topics, sudoms-
spondence theorvan Benthem, 1985]. Likewise, the modern move toward extended
modal languages makes equally good sense for the topological interpretation. Many
natural topological notions need extra modal power for their definition: good exam-
ples are the basgeparation axiomsWe just saw that, among the quasi orders, partial
orders correspond to topological spaces satisfying/theeparation axiom. But this
difference does not show up in our basic modal langu&ges complete with respect

to arbitrary partial orders. Defining separation axioms requires various expressive ex-
tensions of the modal base language.

Finally, in a more technical sense, there still seems to be a vast difference. The
format of the topological interpretation looks more complex than the usual one which
guantifies over accessible worlds only. For, it involveseaond-ordequantification
over sets of worlds, plus a first-order quantification over their members. But this differ-
ence is more apparent than real, because the quantification is over open sets only, and
we may plausibly think of topological models aso-sorted first-order modelwith
separate domains of ‘points’ and ‘opens’, see Section 2.3.

3.2 General completeness

The preceding section shows that standard modal models are a particular case of a
more general topological semantics. Hence, the known completen&sbkpliis the
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topological soundness of its axioms immediately give us general topological complete-
ness. Even so, we now give a direct model-theoretic proof of this result. It is closely
related to the standard modal Henkin construction, but with some nice topological
twists. (Compare [Chellas, 1980] for the quite analogous case of modal ‘neighborhood
semantics’.)

3.2.1 The main argument

Soundness is immediate, and hence we move directly to completeness. Call a set
of formulas of £ (S4-)consistentif for no finite set{y1,...,p,} C I" we have that

S4 F —(p1 A -+ A p,). Aconsistent set of formulds is calledmaximally consistent

if there is no consistent set of formulas properly contairiindt is well-known thatl"

is maximally consistent iff, for any formula of £, eitherp € I" or = € I, but not

both. Now we define a topological space out of maximally consistent sets of formulas.

3.2.1.DEFINITION (CANONICAL SPACE). Thecanonical topological spaas the pair
SE = (WE, 75), where:

e W~ is the set of all maximally consistent séts,.;

e 7% is the set generated by arbitrary unions of the followbagic setsB* =
{Oy| ¢ is any formula}, wherep =get {Tpae € W] 0 € Thiaz}. In other
words, basic sets are the families of the foliy: = {I',,0. € W*|Op € Tyas }-

Let us first check tha§* is indeed a topological space.

3.2.2.LEMMA. B* forms a basis for the topology.

Proof We only need to show the following two properties:

e For anyU,,U, € B* and anyl',,,.. € U, N Uy, there isU, € B* such that
ez € Uy C U, N Uy;

e Foranyl',,.., € W¥, there isU, € B* such thaf’,,,.. € U,,.

Now, (N) implies thatoT € T,.,, for anyT,,... HencelV: = OT and the sec-
ond item is satisfied. As for the first item, thanks to (R), one can easily check that

—

O(p Atp) = Op N O4). HencelU, N U, € B*, and soB* is closed under finite inter-
sections: whence the first item is satisfied. QED

Next we define the canonical topological model.

3.2.3.DEFINITION (CANONICAL MODEL). Thecanonical topological modéd the
pair M* = (S v*), where:
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e S% is the canonical topological space;
o V5(P) = {Tax € X*| P € Tran}-

The valuationv* equates truth of a proposition lettat a maximally consistent
set with its membershijn that set. We now show this harmony between the two
viewpoints lifts to all formulas.

3.2.4.LEMMA (TRUTH LEMMA). For all modal formulag,
M- w =, @iff we .

Proof Induction on the complexity ofp. The base case was just described. The
case of the Booleans follows from the following well-known identities for maximally
consistent sets:

-~

« Tp=WE-g;

* YAt =N

The interesting case is that of the modal operatowWe do the two relevant impli-
cations separately, starting with the easy one.

< ‘From membership to truth. Suppose € @. By definition, @ is a basic
set, hence open. Moreover, thanks to axiom (fl\'c) C @. Hence there exists an open
neighborhood/ = @ of w such that for any € U, v € gAp, and by the induction
hypothesisM*, v =, . ThusM*, w =, Ogp.

= ‘From truth to membershlp Supposé”-, w ):5 Og. Then there exists a basic

set&p € B* such thatw < sz and for allv € Dw M* v =, . By the induction
hypothesisyv € D¢ v E 4,0 le. sz C gp But this implies that the logi§4can prove
the implicationdy) — . (If not, then there would be some maximally consistent set
containing bothdy and—p.) But then we can prove the implicationdy — O,
and hence, using th@4transitivity axiom,0vy — O¢. It follows thatﬁz\b - 525, and
hence the worldv belongs t(ﬁEﬁ. QED

Now we can clinch the proof of our main result.
3.2.5.THEOREM (COMPLETENESS. For any set of formula§,

if I ):E ) then T° Fsa ®.

Proof Suppose thal' g4 . ThenI' U {—¢} is consistent, and by the Lindenbaum
Lemma it can be extended to a maximally consistent'sgt. By the Truth Lemma,
M* T ez =2 —p, Whened ... - o, and we have constructed the required counter-
model. QED



28 e Chapter 3. THE TOPO APPROACH: AXIOMATICS

3.2.2 Topological comments

Let us now look at some topological aspects of this construction. In proving the box
case of Truth Lemma, we did not use the standard modal argument, which crucially
invokes thedistribution axiomof the minimal modal logic. Normally, one shows that,

if a formulad¢ does not belong to a maximally consistentiSgthen there exists some
maximally consistent successor setlo€ontaining—e. This is not necessary in the
topological version at this stage. We only need the reflexivity and transitivity axioms,
plus the Lindenbaum Lemma on maximally consistent extensions. The modal distri-
bution axiom still plays a crucial role, but that was at the earlier stage of verifying that
we had really defined a topology. This different way of ‘cutting the cake’ provides an
additional proof-theoretic explanation wiS# is the weakest axiom system complete
for topological semantics. Moreover, the divergence with the ‘standard’ argument ex-
plodes the prejudice that one single ‘well-known’ interpretation for a language must
be the only natural one. Comparing our construction with the standard Henkin model
for S4(W*~, R* |=,), the basic sets of our topologyf are R*-upward closed. Hence
every open of5* is R“-upward closed, and* is weaker than the topology,: corre-
sponding toR~. In particular, our canonical spaceristan Alexandroff space.

Here are some further topological aspects of the above construction. First, it is
worthwhile to compare Stone’s famous construction which uses the alternative basis
{o| any formulg, yielding a space which we denote biy’~, 7°). It is well-known
that (W~ 75) is homeomorphic to the Cantor space—and so, up to homeomorphism,
(W 75 is compact, metric)-dimensional, and dense-in-itself. The basis of our
topology, however, was the sub-famiﬂﬁoho any formulg. Now every subtopology
of one that is compact and dense-in-itself is also compact and dense-in-itself. There-
fore, we get these same properties for our canonical topological space. But we can be
more precise than this.

3.2.6.FACT. The canonical topology is actually thatersectionof the Kripke and
Stone topologies.

In other words,* = 7zc N 7°. Indeed, since* C 75 and7* C 75, obviously
£ C 75e N 5. Conversely, since every base sebf Stone’s topology is4-upward
closed iffp = O¢) for somey, 7pe N 75 C 75, andrt = 74 N 75.

One can also connect modal formulas and topological properties more directly, by
giving a direct proof of the fact that* is compact and dense-in-itself. The former fact
goes just as for the Stone space, but we display it for the sake of illustration.

3.2.7.LEMMA. S* is compact.

Proof Ad absurdum, there is a famﬂ{,ﬂwz}ze[ C B* such thaU Jier ! D1/)Z WE,

and for no finite subfam|I>{D¢“, . D% } we havqu/)z1 U D@b,n = W¥. Let
I'= {_‘Dwz}zef-
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3.2.8.CLAIM . T'is consistent.

Proof Ad absurdum, there is a finite number of formutaSvy,...,—-0y, € T’
such thatS4 k —(=0¢1 A --- A 2Ov,). HenceS4 + Oy Vv --- v OyY,. But then
Oy, U --- U Oy, = WE, which is a contradiction. QED

Sincel is consistent, it can be extended to a maX|maIIy consistemt set Obwously
-0, € me for anyi € I Hencel',,,. € ﬁDz/;Z foranyi € I. SlnceﬁDw, =

WE — Ouy, Typaw € WE — 0o for anyi € I. Hencel ., € WE — Uier Di;, which
contradicts our assumption. Thu; is compact. QED

3.2.9.LEMMA. S%is dense-in-itself.

Proof Suppose there was an isolated pairin S. Then there is a formulay with
DAgo = {w}. This meansly € w and for anyy, ¢ € w iff S4 + Oy — 1, which
is obviously a contradiction—since we are working in a language with infinitely many
propositional letters. QED

3.2.10.COROLLARY. S4is the logic of the class of all topological spaces which are
compact and dense-in-itself.

Still, the canonical topological spac is neither0-dimensional nor metric (it is not
even aly-space). Sa$* is not homeomorphic to the Cantor space. In the next section,
we show how to get completenessS#with respect to the Cantor space by a different
route.

3.2.3 Finite spaces suffice

We conclude with an observation that is important for later arguments. The whole
construction in the completeness proof would also work if we restricted attention to the
finite language consisting of the initial formula and all its subformulas. All definitions

go through, and our arguments never needs to go beyond it. This means that we only get
finitely many maximally consistent sets, and so non-provable formulas can be refuted
on finite modelswhose size is effectively computable from the formula itself. Note
however that the obtained finite model will not necessarily be dense-in-itself.

3.2.11.COROLLARY. S4has theeffective finite model property.r.t. the class of topo-
logical spaces.

Incidentally, this also shows that validity ®4 is decidable but we forego such
computability issues in this thesis.
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The resulting models have some interesting topological extras. Consider any finite
modal frameF = (W, R). We define some auxiliary notions. For amye W, let

C(w) = {v € W|wRv & vRw}. Call a setC a clusterif it is of the form C(w)

for somew: thecluster generated by. C(w) is simpleif C(w) = {w}, andproper
otherwisew € W is calledminimalif v Rw impliesw Rv for anyv € W. A clusterC'

is minimalif there exists a minimalb € W such thatC = C(w). Next, callF rooted

if there isw € W such thatoRv for anyv € W: w is then aroot of F. Thisw needs

not be unique: any point fror¥(w), theinitial cluster of F, will do.

Evidently, a finite Kripke frameF is rooted iff it has only one minimal cluster.
Topologically, this property is related to the earlier notiorcohnectednessA topo-
logical space/lV, ) is connectedf its universe cannot be written as a union of two
disjoint open sets(W, 7) is well-connectedf W = UUV impliesW =UorW =V,
forany U,V € 7. Obviously well-connectedness is a stronger notion than connect-
edness. It corresponds {0V, R, ) being rooted. For this observe that, dually, well-
connectedness can be stated as follows:

For any two closed subsets D of (I, ), C N D = () impliesC = @ or D = 0.

3.2.12.LEMMA. A finite Kripke frame is rooted if and only if the corresponding topo-
logical space is well-connected.

Proof Suppos€lV, R) is a rooted Kripke frame with a roet, and(IV, 7z) the cor-
responding topological space. L&, and X, be closed sets ofiV, 7z) such that

X: N X, = (. By an easy dualization of the notions of Section 3.1.1, a\&&t W

is topologically closed iff it isdownward closedn the ordering, that iss € X and

vRu imply v € X, for anyu,v € W. Now if both X; and X, are non-empty, then
belongs to both of them, which is a contradiction. Hence one of them should be empty,
and(W, i) is well-connected.

Conversely, suppos@V, R) is not rooted. Then there are at least two different
minimal clustersC; and C; in W. SinceC; and C5 are minimal clusters, they are
downward closed, and hence closed(iff, 7z). Moreover, since they are different,
C1 N Cy = (). Hence(W, 1) is not well-connected. QED

This allows us to improve on Corollary 3.2.11.

3.2.13.THEOREM. S4is the logic of finite well-connected topological spaces.

Proof It suffices to observe the following. If a modal formula has a counter-example
on a finite Kripke model, it fails in some point there. But then by standard ‘Locality’, it
also fails in the submodegjeneratedoy that point and its relational successors, which
is rooted—and hence transforms into a well-connected topological space. Qeb
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Again, there is a downside to such an upgraded completeness result. What it also means
is that the basic modal language cantefinesuch a nice topological property as well-
connectedness. As we saw in Section 2.4, the definition of connectedness requires
introduction of additional modalities. So does well-connectedness.

Finally, let us mention that for refuting non-theoremsS3#it is enough to restrict
ourselves to the class of those finite rooted models for which every cluster is proper.
As we already mentioned in Section 3.1.1, having only simple clusters topologically
corresponds to th&], separation axiom, which in finite case is equivalent to’fhe
separation axiom (every point is obtained as intersection of an open and a closed sets).
Consequently, having only proper clusters topologically corresponds to the fact that no
point can be obtained as intersection of an open and a closed sets. Call spaces with this
propertyessentially norifp. Then we can improve a little bit on Theorem 3.2.13:

3.2.14.THEOREM. S4is the logic of finite well-connected essentially nbn-topo-
logical spaces.

Proof Suppose a modal formula has a counter-example on a finite rooted Kripke
model M = (W, R, =). Then replacing every cluster of by ann-element cluster,
wheren is the maximum among the sizes of the clusterB/gfwe obtain a new frame
(W', R). Obviously (W, R) is a p-morphic image of(/W’ R’). This allows us to
definel=" on (W', R') so thaty has also a counter-example off = (W', R, |=).
Now every cluster of¥” is proper, hencelV’, R’) transforms into a well-connected
essentially norif, topological space. QED

3.3 Completeness on the reals

As early as 1944, McKinsey and Tarski proved the following beautiful result, which is
an expansion of a completeness theorem by Tarski for intuitionistic propositional logic
from 1938:

3.3.1.THEOREM (MCKINSEY AND TARSKI). S4is the complete logic of any metric
separable dense-in-itself space.

Most importantly, this theorem implies completenesSéfvith respect to the real
line IR. It also implies completeness 8#with respect to the Cantor spa€e

Our presentation does not present any startling new results improving on this the-
orem. It rather takes a systematic look at its proof, and what it achieves. The original
algebraic proof in [McKinsey and Tarski, 1944] was very complex, the later more topo-
logical version in [Rasiowa and Sikorski, 1963] is not much more accessible. Recently,
Mints [Mints, 1998] replaced these by a much more perspicuous model-theoretic con-
struction, extending earlier ideas of Beth and Kripke to get faster completengdgs of
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with respect to the Cantor space. We generalize its model-theoretic structure, using
topo-bisimulations, and also provide a modification for completeness on the reals.

Our strategy in the following subsections starts from the standard modal complete-
ness forS4 involving counter-examples on finite rooted models, and then exhibits a
topo-bisimulation resulting in “tree-like” topological model homeomorphic to the Can-
tor space”. We then show how to extract completenesSéfvith respect to the reals
from the completeness &4 with respect t.

3.3.1 Cantorization

Our starting point is an arbitrary modal formula which is not provabl84nWe have
already seen that such a non-theorem can be refuted on a finite rooted Kripke model.
Now we show how to transform the latter into a counterexample on the Cantor space
C. Our technique iselective unravelinga refinement of theinravelingtechnique
[Blackburn et al., 2001].

Supposéll = (W, R, =) is afinite rooted model with aroat. Our goal is to select
those infinite paths of/ which are in a one-to-one correspondence with infinite paths
of the full infinite binary tre€ls. In order to give an easier description of our construc-
tion, we assume that every clusteffis proper. This can be done by Theorem 3.2.14.
Now start with a rootv, and announcéw) as a selective path. Then(ify, . . ., wy)
is already a selective path, introducdeét move by announcinguwy, . . ., wy, wy) as
a selective path; and introduceright move by announcing@uw;, . .., wg, wx1) as a
selective path itv, Rwy 1 andwy, # w1 (Since we assumed that every clustebiof
is proper, suchw, 1 will exist for everywy.)

To make this idea precise, we need some definitionsuForE W, call v astrong
successoof u if uRv andu # v. Write SSuc(u) for the set of all strong successors
of u. Since we assumed that every clusted®fis proper,SSuc(u) # () for every
u € W. Supposey, ..., v, is a complete enumeration 6fSuc(u) for everyu € W.

Now define aselective path ofl recursively:

1 (w) is a selective path;

2 If (wq,...,wg) is a selective path of length, then(wy, ..., wy, wiy1) IS a se-
lective path of lengtit + 1, wherew,, 1 = wy;

3 If (wy,...,wy) is a selective path of length, then (wy, ..., wy, wry1) iS @ se-
lective path of lengtht + 1, wherew,,; = v; with i = k(mod n);*

4 That'’s all!

In other wordsgwy 1 ; is the first strong successor of, in the complete enumeration 8fSuc(wy,)
which has not appeared in any selective path of lergtif all strong successors af, have already
appeared in one of selective paths of lengtithen we start over again and puf; to be the first
strong successor afy, in the complete enumeration SfSuc(wy,).
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Use Y to denote the set of all infinite selective pathslBf For a finite selective
path(wy, ..., wy), let

By, = {Buw,,....wp) | (w1, . .., wy) is afinite selective path di/}
as a basis. To see thit is a basis, observe that,,) = 3, and that

Bw,,..wy)  1f (v1,...,vy,) is an initial segment

of (wy, ..., wg),
Bwr,..a) VBor,om) = Bo,wm) 1 (w1, ..., wy,) is an initial segment
of (v1,...,Un),
0 otherwise

In order to defined=y, note that every infinite selective pathof 1V either gets sta-
ble or keeps cycling. In other words, either = (w,...,wg, wg,...), OF 0 =
(Wi, ..., Wy, Wy, ... ), Wherew; belongs to some cluste&r C W for ¢ > n. In
the former case we say thaj, stabilizess, and in the latter that keepscyclingin C.
Now definel=y, on X by putting

wy = P if wy, stabilizeso,
o s P p(C) = P if o keeps cycling inC' C W, wherep(C) is some
arbitrarily chosen representative Gf

All we need to show is that>, 7v;) is homeomorphic to the Cantor space, and that
My, = (X, 1, 5 is topo-bisimilar to the initial\/. In order to show the first claim, let
us recall that the Cantor space is homeomorphic to the countable topological product
of the two element se2 = {0, 1} with the discrete topology. S@, = 2“ with the
subbasic sets for the topology beibig= [],.,, Ui, where all but onéJ; coincide with
2, or equivalently with the basic sets for the topology belihg= [, U;, where all
but finitely manyU; coincide with2.

To picture the Cantor space, one can think of the full infinite binaryfsestarting
at the root, one associateto every left-son of a node, aridvith every right-son. Then
the points of the Cantor space are the infinite branch&s.of

1EW

3.3.2.PROPOSITION (X, %) is homeomorphic tG.

Proof Supposer = (wy,wy, ws, ..., wg,...) € 3, wherew; = w is a root of IW.
With eachw, (k > 1) associaté if w,_; = wy, and associaté if wy is a strong
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successor ofv,_;. Denote an element & associated withu,, by g(w;) and define
G : ¥ — 2¥ by putting

G(wy, we, w3, ..., W, ...) = (g(ws), glws),...,g(wg),...).

It should be clear from the definition théatis a bijection. In order to prove that it is
a homeomorphism, we need to check tf¥at open. So, SUppose,, ....,) IS a basic
open set ofy,. Then

G(Buwr,..m)) = {g(wa)} x -+ x {g(wy)} x 2

is a basic open of, GG preserves basic opens, hence preserves opens. Conversely,
supposd/ = 2*71 x {¢;} x 2%, wherec, = 0 or 1, is a subbasic open ¢t Then

-----

which obviously belongs tesx. Thus,G is open, hence a homeomorphism.  Qep

It is left to be shown thad/y, is topo-bisimilar to)M . DefineF : 3 — W by putting

Flo) = Wy, if w;, stabilizeso,
)= p(C) if o keeps cycling irC.

F'is well-defined, and surjective. (For any, € W, F(oq, wg, wg, ... ) = wg, Where
oo Is a (finite) selective path from; to wy,.)

3.3.3.PROPOSITION Fis a total topo-bisimulation betweeWs, = (3, 7v,, F=5) and
M = (W, R, ).

Proof Recall from the previous section that a finite topological sp&terg) is as-
sociated withK W, R) (since(WW, R) is rooted,(W, 7) is actually well-connected). Let
us check thaf”’ : (3, 7s) — (W, 1x) is open. Recall thaR(v), for v € W, are basic
opens ofrg. So, in order to check thdt is continuous, we need to show that the
inverse image of everi(v) is open inrs. Observe that for any € W,

FYRW) = | Buwo

kew, vRwy,

which is an element ofy.. Indeed, suppose € Uke% wRwy, Blwr ... wi) - Theno be-
longs to one o3y, ,... w,) With vRwy. But themuw, RF (o), which together with Rw,
and transitivity of R imply thatvRF (o). So, F(o) € R(v), ando € F~'(R(v)).
Conversely, suppose € F~'(R(v)). ThenF (o) € R(v), andvRF (o). Now ei-
ther w;, stabilizeso, or o keeps cycling in a clustef’. In the former casey =
(w1, ..., Wk, W, ... ), Wherew, = F(o). Hence,oc € By, .. w,) With vRw. In
the latter casey = (wy, ..., Wy, Wpy1,...), Wherew; € C fori > n, andF (o) =
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p(C). Hence,o € By, . wnwn.a) With vRw, 1. In either case ' (R(v)) C
Ukew. viwy, Bwrroor)- THUS, FHR(V)) = Urew. viw, Blun..w)» @A F' is contin-
uous.

In order to show tha#" preserves opens, consider any basic/et

and show that’ (B, ,...w,)) iS open inTx. For this we show that

wy) of 5>

.....

.....

F(Buw,,...wy)) = B(wg).

Supposer € F(Bw,,.w,)). Then there exists = (wi,...,Wk,...) € Bw,,..un)
such that’(o) = v. Hence, we have thai, Rv. Conversely, suppose, Rv. Consider
a (finite) selective path, from w; to v containing(wy, ..., wy) as an initial segment.
Theno = (00,v,0,v,...) € B, . w,) and F(o) = v. HenceF (B, . w,)) =
R(wy), which is a basic open of;. So,F is open.

Moreover, as follows from the definition ¢fy;,

o ks Piff F(o) = P.

Now, since every continuous and open map satisfying this condition is a topo-bisimulation
(cf. Theorem 2.1.5), SO is OUt. QED

3.3.4.THEOREM. S4is complete with respect to the Cantor space.

Proof Suppose&44 ¢. Then by Theorem 3.2.13 there is a finite rooted Kripke model
M refuting ¢. By Theorem 3.2.14 we can assume that every clustér a$ proper.
By Propositions 3.3.2 and 3.3.3 there exists a valuatigron the Cantor sef such
that(C, =¢) is topo-bisimilar to)M . Hencey is refuted orC. QED

3.3.2 Counterexamples on the reals

In the previous subsection, we described how selective unraveling transforms coun-
terexamples on a finite rooted Kripke moddl into counterexamples on the Cantor
space’. In this subsection we show how to transfer counterexamples ftotm (0, 1).
As a result, we obtain a new proof of completenesS4ivith respect to the real line.
Our strategy is similar to that in Section 3.3.1: we start with a non-theore®4 of
having a counterexample on a finite rooted Kripke madek (W, R, =) whose every
cluster is proper. Then we construct the Seif all selective paths ofl’, and subtract
a proper subset of 3, which is in a one-to-one correspondence with1). After
that we define a topology, on A so that(A, 75) is homeomorphic tq0, 1) with its
natural topology. Finally, we define a valuatien, on A, and show thatA, 75, =a
) is topo-bisimilar toM. Note that sincer, is pretty different fromrs, the topo-
bisimulation betweenA, 75, =x) and M is not simply the restriction of the topo-
bisimulation betweer, 7, =) and M constructed in Section 3.3.1, but rather its
appropriate modification.
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Recall from Section 3.3.1 that in selective unraveling we had three different types
of selective branches: going infinitely to the left, infinitely to the right, or infinitely
zigzagging. Also recall that a selective branchs going infinitely to the left ifc =
(w1, ..., Wk, Wy, ... ); o is going infinitely to the right it = (w1, ..., w,, wya1,...),
wherew, 1 IS a strong successor af, for anyk > n; and finally,c is zigzagging if
o = (wy,..., Wy, wy1,...), Where there are infinitely many > n with wy,; = wy,
and there are also infinitely maky> n with w,_; being a strong successorof.

In order to transfer counterexamples frdrto (0, 1), in the definition of selective
unraveling we need to restrict ourselves only to those branches which are either going
infinitely to the left or are infinitely zigzagging. That is, we defineeal pathof W to
be a selective path d# either going infinitely to the left or infinitely zigzagging.

Denote byil the set of all real infinite paths &%. So,II is the subset of the s&t
of all selective infinite paths dfi” consisting of all selective paths going infinitely to
the left or infinitely zigzagging. Thereforél is in a one-to-one correspondence with
the set of those infinite branches of the infinite binary ffgevhich either have from
some node on or are infinitely zigzagging.

This correspondence sets up the desired connection befweend (0, 1). To see
this recall the dyadic representation of a number ffom|. Letz € [0, 1]. To construct
an infinite branchy = (a,,),e., of 75 representing: observe that either € [0, 5] or
T € [%, 1]. In the former case put; = 0 and in the latter case puj = 1. Assume
z € [0,1]. Then eitherr € [0, 7] orz € [}, 3]. Again in the former case put = 0
and in the latter case put = 1. Continuing this process, we get an infinite branch
a = (ay)new. Of To Which in turn represents.

Note that there are two ways for the dyadic representatiolg‘l ob,1,1,1,...)or
(1,0,0,0,...). In general, there are two ways for the dyadic representation of any
numberg: € [0,1] (m,n € w, 0 < m < 2"): either ag(a4,...,a;, 1,0,0,0,...) or
as(ay,...,a,,0,1,1,1,...). Therefore, if we throw away all infinite branchesof
having1 from some node on plu®), 0,0, ... ), we obtain a one-to-one correspondence
between(0, 1) and the remaining infinite branchesBf. Hence, there exists a one-to-
one correspondence betweg@nl) andA = IT — {(w, w,w,...)}.

Suppose(wy, . . ., Wy—1, W, Wk, ...) € A (wp—1 # wy) representsy < (0, 1).
Also suppose
wy) = 1A € Al the initial segment oA is (wy, ..., wy)}.

(Observe thaC(w1 ,,,,, wp) = Blwy,.w) N A)

In order to transfer topological structure @, 1) to A observe that the family

{(&, 2 m,n € w, 0 <m+ 1 < 2"} forms a basis for the topology df, 1), and

thatthes.ubsetoﬁrepresentin%ﬂn,””;ﬁl)isD(w1 ,,,,, wi) = Clwn,o) — L (W1, - ., Wi1,

wg, Wy, - .. ) }. Hence, if we define a topology on A by introducing

{Dwr,...w0)| (w1, . .., wy) is a finite selective path of}

as a basis, the following obvious fact holds:
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3.3.5.FACT. (A, 7,)is homeomorphic tg0, 1).

Now we define=, on A, and show that there exists a topo-bisimulation between
(A, TA, ):A) and)M.

In order to defing=, observe that eithex € A gets stable or it keeps cycling. In
other words, eitheh = (wq, ..., Wk_1, Wk, Wk, ... ), OF A = (W1, ..., Wy, Wpi1,--.),
wherew; belongs to some clustér C W, fori > n. In the former case we say that
wy, Stabilizes\, and in the latter—thak keeps cycling inC'. Now define=, on A by
putting

wg_1 = P if wy stabilizes\,
A= Piff p(C) = P if X keeps cycling irC' C W, wherep(C) is
some arbitrarily chosen representative bf

Finally, define a functiorf’ : A — W by putting

F()\) o wi_1 If wy stabilizes),
| p(C) if X keeps cyclingirC.
3.3.6.PROPOSITION F'is a total topo-bisimulation betweelW, = (A, 7y, =) and
M = (W,R, ).

Proof Obviously F' is well-defined, and is actually surjective. (For any € W,
F(wy, ..., Wk, Wgy1, Wgt1,-..) = wg, Where(wy, ..., wy) is a finite selective path
from w; to wy, andwy; IS a strong successar,. Note thatw;,, exists, since every
cluster of IV is proper.) Let us check thdt : (A, 7,) — (W, 7g) is open. Recall that
R(v), forv € W, are basic opens of;. So, in order to check thdt is continuous, we
need to show that th€ inverse image of ever(v) is open in7,. Observe that for
anyv € W,

k€w, vRwy,

which is an element of,. Indeed, suppose € Uic, vruy, Dwr.w)- ThENA
belongs to one 0Dy, .. w,) With vRw,. Now X\ € Dy, . ., implies w, RF(X),
which together withv Rw;, and transitivity ofR yield vRF(\). Hence,F'(\) € R(v),
and\ € F~1(R(v)). Conversely, suppose € F~}(R(v)). ThenF()\) € R(v),
andvRF(X). Now either) is going infinitely to the left or is infinitely zigzagging.
In the former case) = (wy, ..., Wk, W1, Wkt1,--- ), Wherew, = F()). Hence,

_____ wy) With vRwy,. In the latter cased = (wq, ..., Wy, Wni1, Wpt2, - ),
A € Urew, vrrwy, PDiwn o)y @A FTHR(0)) = Urew, vk, Piwr.w)- HeNCe,Fis
continuous.
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In order to show thaf" preserves opens, consider any basic/3gl . .,) of 7a
and show that' (D, ,...«,)) iS open inTx. For this we show that

F(D(w1 ..... wk)) = R(U}k)

Supposer € F(D(w,,..wy)- Then there exista = (wi,...,wy,...) € D,
such thatF'(\) = v. Now either) is going infinitely to the left or is infinitely zigzag-
ging. In the former case\ = (wy,..., Wk, ..., Wgis, W1, Wearil,--- ), Where
w4 = v. In the latter case; is a representative of a clust€rwhere\ keeps cycling.
In either casew,Rv. Hence,w € R(wy). Conversely, suppose € R(wy). Then
wpRv. Consider\ = (wy, ..., Wk, ...,v,u, u,...), where(wy, ..., wg,...,v)is a
finite selective path of” from w; to v containing(wy, . .., wy) as an initial segment,
andw is a strong successor of (u exists, since every cluster oF is proper.) Then
A € Dw,,..wy) @NAEF(XN) = v. HenceF (D, ,..w,)) = R(wy), which is a basic open
of 7z. So, F'is open.
Moreover, as follows from the definition ¢f,,

Nea Piff FO)) = P.

Now since every continuous and open map satisfying this condition is a topo-
bisimulation (cf. Theorem 2.1.5), so is oft QED

3.3.7.COROLLARY. S4is complete with respect {0, 1).

Proof Supposé&4- p. Then by Theorem 3.2.13 there is a finite rooted Kripke model
M refutingy. By Theorem 3.2.14 we can assume that every clustéf of proper. By
Proposition 3.3.6)/ is topo-bisimilar toM, = (A, 75, =4). Hence, M, is refutinge.
Now since(A, 75) is homeomorphic tq0, 1), ¢ is refuted on0, 1). QED

3.3.8.THEOREM. S4is complete with respect to the real life.

Proof SupposeS4- . Then by Corollary 3.3.7 there exists a valuatief, ;) on
(0, 1) refutingp. Now since(0, 1) is homeomorphic tdR, ¢ is refuted onlR. QED

This provides an alternative proof of McKinsey and Tarski’s original proof. It should
be noted that we can improve a little bit on their result. Indeed, McKinsey and Tarski
proved that for any non-theoremof S4there exists a valuation on IR falsifying ¢.

3.3.9.COROLLARY. There exists a single valuation on IR falsifying all the non-
theorems o054
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Proof Enumerate all the non-theorems®4 This can be done since the language of
S4is countable. Let this enumeration be;, s, . .. }. Since the intervaln,n + 1) is
homeomorphic tdr, from Theorem 3.3.8 it follows that there exists a valuatigron
(n,n+ 1) such that(n,n + 1), v,) falsifiesy,,. (Note that we need not know anything
about the shape of,(¢,).) Now take J, . (n,n + 1). For any propositional letteP

let v(P) = U, e, vn(P) be the valuation of” on [R. Note that eacli(n,n + 1), v,)

is an open submodel dR, v), where the ‘identity embedding’ is a topo-bisimulation.
Hence, the truth values of modal formulas do not change moving from gach +
1),v,) to (R,v). Thereforey, is still falsified on the wholeR for eachn. Thus, we
have constructed a single valuatioon IR falsifying all the non-theorems &4  qeb

This also shows that though very different from the standard canonical Kripke model
of S4, IR shares some of its universal properties.

3.3.3 Logical non-finiteness on the reals

Recall that two formulag and« are said to be&s4-equivalentif S4 F ¢ «— . It
is well known that there exist infinitely many formulas of one-variable which are not
S4-equivalent. E.g., consider the following list of formulas:

wo = P;

O = Pn-1 N C(C@p_1 A —pn_1).

We can easily construct a Kripke model on whichgllhave different interpretations.
Let M = (w, R, =), wherew denotes the set of all natural number&m iff m < n,

andn | P iff nis odd. Then one can readily check thatis true at all odd points

> n. Hence everyp, has a different interpretation ai. It implies that thep,, are

not S4-equivalent. Now we give a topological flavor to this result by showing that
interpreting a propositional variable as a certain subsét aflows us to construct in-
finitely manyS4-non-equivalent formulas of one variable. Corollary 3.3.9 already told
us such a uniform choice must exist, but the proof does not constfirgtexplicitly.

The following argument does, and thereby also highlights the topological content of
our modal completeness theorem.

We use<¢ andO instead of the standard notation$ and Int( ) for the closure
and interior operators of topology. This modal notation shows its basic use in topology
because it allows us to write topological formulas in a more perspicuous fashion.

To proceed further we need to recall the definition of Hausdorff’s residue of a
given set. Suppose a topological spaté 7) and X C W are given.p(X) = X N
O(OX — X) is called theHausdorff residuef X. Let o°(X) = X, o'(X) = o(X)
ando™*'(X) = 00"(X).

X is said to be ofankn, writtenr(X) = n, if n is the least natural number such
thato"(X) = (. X is said to be ofinite rankif there exists a natural such thatX is
of rankn. X is said to be ofnfinite rankif it is not of finite rank.
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The pointz € X is said to be ofankn if z € ¢"(X), butz ¢ "™ (X). z € X is
said to be ofinite rankif there exists a natural such thatz is of rankn. x is said to
be ofinfinite rankif it is not of finite rank.

Obviously X is of rankn iff the rank of every element oX is strictly less tham,
and there is at least one elementofof rankn — 1; X is of finite rank iff there is a
naturaln such that the rank of every element¥fis strictly less tham; and X is of
infinite rank iff there is no finite bound on the ranks of elementXof

If we interpretP as a subseX of IR, theny,, will be interpreted ag™(X). So, in
order to show that different,, areS4-non-equivalent, it is sufficient to show that there
is X C IR such thap(X) D ¢*(X) D -+ D ¢"(X) D .... We have the following

3.3.10.PROPOSITION There exists a subsef of IR such thato(X) D 0*(X) D
D 0(X)D ...

Proof We constructX inductively. Fix a natural numbeé.

Step 1 Consider a sequende;, };°_, from (k — 1, k) converging tdk — 1, and put

Xi={k—1}U U{y o1

i1=1

where{y;! }2°_, is a sequence frorx;, 1, z;,) converging ta,, ;. Note that

OXy = Xy U{w 5o,
OXy — Xy = {m;, }5°_y,
O(OX; — X)) = {k — 1} U {z;, }_,, and
o(Xy) ={k —1}.

So,k — 1is the only point ofX; of rank1, andr(X;) = 2.

Step 2 Consider a sequende;. "}, from (y;1.,, y!) converging toy! , ;, and put

(o olNe O lNe o]

Xy ={k—13u Jwinm v U U Ui,

11=1 i1=110=114i3=1

where{y;"#"}%_, is a sequence frorfw}}3, z;1"*) converging tar} 3. Note that
X, D Xy, and

<>X2 X2U{x’61}7,1 IUUzl 1U12 1{1'11 - ?3? 1
OXy — X2—{$n}zl 1UU11 1U22 1{ . =11

O(OXy=Xo)={k — 13 UUS_y {wid b U o 3o WU U (o o,
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o(Xz) = {k =1} UU;_ {yis } 5=, and
0*(Xy) = {k —1}.

So, the points ofX; of rank 1 areyjf;, for arbitraryi; andi,, & — 1 is the only point of
X, of rank2, andr(X;) = 3.

Step n Forn > 1 consider a sequen e:“’ ”2” 2100 from (7 1"2n=3
—1=1 ylz —2+1
Hson— ?) converging tcy”’ ’;i”l ?, and put

y22n 2

={k-1}U U{y o uul U el

i1=1 i1=1 iop—1=1

Zl: 77‘27L 1 Zl» 7Z2n 2 7417 a’52n 2 7/17 7742” 2
where{y;,” & _; is asequence frorfw;, 377 w0 ) o x0T Also
let

A=A{z 0ol Y e
11=1 ion—2=1
Then note tha¥X,, D X,,_; D --- D Xy D Xy, and
X, =X, UA,
X, — X, = A,
O(OX, — X)) = AU (X, — Uy - Uss oo fwin ™ s a),
Q(Xn) - Xn o I:LJZO:1 e Uf;nflzl{yz;;“ﬂQnil 7(?20n:1]’

0*(Xn) = p(Xn) = Ui=r - Usy {27 e i),

So, the points ofX,, of rank1 are

o0 oo ) )
-(U- U il

i1=1 i2n—1=1

the points ofX,, of rank2 are

o0 o0 o0 o0
1155820 —3 0O 11,5820 —1 7\ 00
- [U te U {yi2n72 i2n—2=1 U U te U {y%én i2n=1]’

11=1 i2n—3=1 i1=1 i2n—1=1
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and so on; finallyk — 1 is the only point ofX,, of rankn, andr(X,) = n + 1.

Now let X; be constructed i0, 1), X, in (1,2), X,, in (n — 1,n), and so on. We put

X =Jx.
n=1
Thenn — 1 € ¢"(X) andn — 1 ¢ ¢"*(X), for any naturah. So,o(X) D 0*(X) D
-+ D 0"(X) D ..., andX contains points of every finite rank. QED

3.3.1.REMARK (INFINITE RANK). The X constructed above does not contain ele-
ments of infinite rank. However, a little adjustment of the above construction allow
us to construct a subset @t with an element of infinite rank. Actually, it is possible
to construct a subset @ containing elements of rank, for any ordinaly < X;.

Returning to our list of formulas, witl® as the just constructed, the interpre-
tation of everyy,, in IR will be different, in terms of some topologically significant
phenomenon. In the next section, we show that if we restrict ourselves to only “good”
subsets ofR?, then the situation drastically changes.

3.4 Axiomatizing special kinds of regions

By interpreting propositional variables as certain subsets of the realRinee can

refute every non-theorem &4 on IR. Certainly not all subsets dit are required for
refuting the non-theorems @4 In this section, we analyze the complexity of the
subsets ofR required for refuting the non-theorems 4 We prefer to use> andC

to denote the closure and interior operators of a topological space. For consistency we
also use\, v and— to denote set-theoretical intersection, union and complement.

3.4.1 Serial sets on the real line

To start with, consider subsets Bf with the simplest intuitive structure. Call C IR

convexf all points lying in between any two points 6f belong toX. In other words,
X is convex ifz,y € X andz < y imply [z,y] C X. Every convex subset dR has
one of the following forms:

(Z)v (x,y), [l',y], [$ay)7 (IayL (—OO,ZL"), (—OO,[L‘}, (IL’,—FOO), [$7+OO)7 R.

3.4.1.DEFINITION. Call a subset ofR serialif it is a finite union of convex subsets of
IR. Denote the set of all serial subsetsiBfby S(IR). So,

S(R) = {X € P(IR)| X is a serial subset of?}.
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Obviously theX constructed in Proposition 3.3.10 is not serial, and actually this
was absolutely crucial in showing th&thas points of any finite rank. Indeed, we have
the following

3.4.2.LEMMA. r(X) =0foranyX € S(R).

Proof First, »(Y) = 0 for any convex subset™ of IR. For, if Y is convex, then
OY A =Y consists of at most two points;(¢Y A —Y) = OY A=Y, andp(Y) =
YAOQOY A=Y) =Y A (OY A=Y) = 0. Hencer(Y) = 0.

Now let X be a serial subset akR. ThenX = \/!', X;, where everyX, is a
convex subset ofR, and actually we can assume that &l| are disjoint. But then
o(X) =V, o(X;) =0, and hence(X) = 0. QED

It follows that if we interpretP as a serial subset @, then no twop,, (n > 1) from
the previous section define sets equal to each other.

Call a valuatiornv of our languaget to subsets ofR serialif v(P) € S(IR) for any
propositional variable®. SinceS(IR) is closed with respect te, A and <, we have
thatv(y) € S(IR) for any serial valuation. Call a formulay S-trueif it is true in IR
under a serial valuation. Call S-valid if ¢ is S-true for any serial valuation off.
Let L(S) = {p]|p is S-valid}.

3.4.3.FACT. L(S) is a normal modal logic ove4

Obviously all,, (n > 1) from the previous section ark(S)-equivalent. So, it is

natural to expect that there are only finitely many formulas in one variable which are
L(S)-non-equivalent, and indeed thatS) is a much stronger logic the®é.
As a first step in this direction, we show that the Grzegorczyk axiom

Grz=0(O(P —-0OP)—P)— P

belongs taL(S).
3.4.4.FACT. Grz is S-valid.

Proof Grz isS-valid iff X C O(X A =O(CX A—X)) forany X € S(IR). Suppose
X € S(IR). SinceCX A =X is finite, O(CX A =X) = OX A =X, Henced(X A
—O(OX A =X)) = O(X A=(OX A=X)) = O(X A (-OX V X)) = OX, which
clearly containsX. S0,X C O(X A =O(OX A —=X)). QED

As a next step, we show that the axioms

BD, = (-PACOP) — <0OP, and
BW,=~(PAQ AN O(PA-Q) AN O(=PAQ) A O(=P A-Q)),

bounding the depth and the width of a Kripke mode2tareS-valid.
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3.4.5.FAcT. BD, andBW, are S-valid.

Proof Note thatBD, is S-valid iff 0X A -X C OOX forany X € S(IR), and that
BW;,isS-validiff X AY AC(X A=Y)AO(Y A=X)AO(=X A=Y) = () for any
X, Y € S(R).

To show thatb X A—X C oOX forany X € S(IR), supposeino X A—X. Then
x is a limit point of X not belonging taX. SinceX is serial, there ig € IR such that
eithery < z and(y,z) C X, orz < y and(z,y) C X. In both cases € ¢OX. So,
OCX N—-X COOX.

To show thatX AY AC(X A=Y)AO(YA-X)AO(=mX A-Y) = Dforany X, Y €
S(IR), supposer € X A\Y AO(X A-Y)AO(Y A=X). Thenz ¢ OX andz ¢ OY.
Hence there exisj, z € IR such thaty < = < z and(y, z) N (=X A =Y) = ), which
meansthat ¢ G(=XA-Y). SO,XAY AO(XA-Y)AS(Y A=X)AO (=X A-Y) = ).

QED

The following is an immediate consequence of our observations.
3.4.6.COROLLARY. S4 + Grz + BDy, + BW, C L(S).

In order to prove the converse, and hence complete our axiomatization of the logic
of serial subsets aRk, observe tha84 + Grz + BD, + BW, is actually the complete
modal logic of the following 2-fork’ Kripke frame (W, R), wherelV' = {wy, wq, w3}
andwlRwl, ’LUQ.RH)Q7 U}ngg, w1 ng, w1 Rws:

Indeed, it is well known thaGrz is valid on a Kripke frame iff it is a Noetherian
partial order, thaBBD, is valid on a partially ordered Kripke frame iff its depth is
bounded by2, and thatBW, is valid on a partially ordered Kripke frame of a depth
< 2 iff its width is bounded by2. Now, denoting the logic of W, R) by L((W, R)),
we have the following:

3.4.7.THEOREM. S84 + Grz + BD, + BW, = L((W, R)).

Proof DenoteS4 + Grz + BDy; + BW, by L. Then, (W, R) = Grz, BDy, BW,.
HenceL C L({W,R)). Conversely, sinc&rz is a theorem of_, every L-frame is
a Noetherian partial order. Sin&D. is a theorem of.., every L-frame is of depth
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< 2, hencelL has the finite model property, and thus is complete with respect to finite
rooted partially ordered Kripke frames of depth2. SinceBW, is a theorem of,

then the width of finite rooted.-frames is also< 2. But then it is routine to check
that every such frame is@morphic image of W, R). HenceL({(W,R)) C L, and

L =L((W,R)). QED

As a final move, we show thatV, 7z) is an open anderialimage of R, meaning that

there is an open map: IR — W such thatf~'(X) € S(IR) for any subsef of 1.
Recall thatr; consists of the upward closed subset$lafwhich obviously are),

{wa}, {ws}, {wq, w3}, andW. Fix anyz € IR and definef : IR — W by putting

wy fory=ux,
fly) =1 wy fory < x,
ws fory > x.

Then it is routine to check that™'(0) = 0, f~'({ws}) = (—o0,2), f'({ws}) =
(z,4+00), [T ({ws,w3}) = (—o0, ) U (z,+00), andf (W) = IR. So, f is continu-
ous. Moreover, for any open subgéof R, if x € U, thenf(U) = W; andifx ¢ U,
then f(U) C {w9, w3}, which is always open. Hencé,is open. Furthermore, from
the definition of f it follows that the f-inverse image of any subset Bf is a serial
subset ofR. So,(W, ) is an open and serial image 6.

As a trivial consequence of this observation, we obtain that for every valuation
on (W, R) there is a serial valuatioas on IR such thaf W, R, |=) is topo-bisimilar to
(IR, =s). Hence, every non-theorem &f (W, R)) is a non-theorem of(S), and we
have the following:

3.4.8.COROLLARY. L(S) C L((W,R)).
Combining Corollaries 3.4.6 and 3.4.8 and Theorem 3.4.7 one obtains:

3.4.9.THEOREM. L(S) = L((W,R)) = S4 + Grz + BD, + BW,.

3.4.2 Formulas in one variable over the serial sets

This section provides some more concrete information on ‘serial sets’L(&8$ is
the logic of the finite ‘2-fork’ frame, for every natural number> 0, there are only
finitely many L(S)-non-equivalent formulas built from the variablés, ..., P,. In
this subsection we show that there are exagtly.(S)-non-equivalent formulas in one
variable, and describe them all.

3.4.10.THEOREM. Every formula in one variable i§(S)-equivalent to a disjunction
of the following six formulas:
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ap,

O-P,

P AOO-P,

-PAOOP,

P AOO-PAOOP, and
P AOCOP AOO=P,

Hence, there are exactlyl L(S)-non-equivalent formulas in one variable.

Proof In line with our interest in tying up ‘modal’ and ‘topological’ ways of think-
ing, we give two different proofs of this result. One proceeds by constructing the
1-universal Kripke model of.(S), which is a standard technique in modal logic, the
other is purely topological, using some basic observations on serial subgets of

First Proof SinceL(S) is the logic of the 2-fork’ frame, we can easily construct the
1-universal Kripke mode{\V (1), =n)) of L(S):

We  Ws

Herew, = P iff n is even. Now one can readily check that each pointiafl)
corresponds to one of the six formulas in the condition of the theorem. Hence every
formula in one variable i€, (S)-equivalent to a disjunction of the above six formulas.
Since there are exactBf different subsets ofi’(1), we obtain that there are exactly

64 L(S)-non-equivalent formulas in one variable.

Second Proof Observe that there exists a serial sub&ebf IR such thatdX =
O0-X # XAO0-X # 2 XAOOX # XACO-XAOCOX # - XAOCOXAOCO-X.
For example, lett < y < z < u, and takeX = [z,y) U (y, 2) U {u}. Then one can
readily check that

DX = (z,9) U (y,2),

O0-X = (—o0,z) U(z,u) U (u,+00),
X ADOOC=X = {u},

X ANOCX = {y},

X ANOO-X ACOOX = {z}, and
X AOOX AOO-X = {z}.
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Hence, we can always interprEtas a serial subset @& such that all the six formulas
of the theorem correspond to different serial subset® of

Now, we prove that every subset Bf obtained by repeatedly applying A, O to
a serial sefX is a finite (including the empty) union of the following serial subsets:

T, = 0OX,

T, = 0-X,

TgIXADO_!X,

T, =-XNOCX,

Ts = X NOO-X AOOX, and
Ty = "X ANOOX AOO-X.

For this, first observe thaf; A T; = 0 if i # j, and that\/?_, 7; = IR. So, these
six serial subsets al? are mutually disjoint and jointly exhaustive. Next observe that
-1, =T;vT, VT, VT, VT, wherei,jk,l,mn e {1,2,3,4,5 6} are different
from each other. FinalypT, = T}, OT, = T, andOT; = OTy = OT5 = OTg = (.
Hence every subset d® obtained by repeatedly applying A, O to {7}, ..., T}
is a finite (including the empty) union @ff}, ..., Ts}.
Now suppose€” C IR is obtained by repeatedly applying A, 0 to X. We prove
by induction on the complexity of thatY is equal to a finite (including the empty)
union of {7y, ..., Ts}.

Base caseSinceX = T; V13V T5 (and—X = T, vV Ty V T;), the base case (that is
whenY = X) is obvious.

Complement Suppos&” = —~Z andZ = T;,V---VT; ,whereiy, ... i, € {1,...,6}.
ThenY = ~(T;, vV ---VT;,) = =T; A--- A =T;,. Since every-T;, is equal to
V., Ti., using the distributivity law we obtain that = \/, . ., (T, A T5).
Since for different, andi;, T;, A T;, = (), which is the empty union df;s, we finally
obtain thaty” is a finite union of{ 77, ..., 75}.

Intersection. Suppos&” = Z1AZ,, Zy =1;,V---VT;,, andZ, = T; V---VT} ,where
Wy eyl J1,- -+ Jm € {1,...,6}. Similarly to the above case, using the distributivity
law we obtain that” is a finite union of T3, ..., Ts}.

Interior . Suppos&” = 0Z andZ =T;, V ---V T, , whereiy, ... i, € {1,...,6}.
SinceT;s are mutually disjointy” = O7;, v --- Vv OT;,. Now since{T},...,Ts} is
closed with respect tal, we obtain that” is a finite union o7, ..., Ts}.

Hence, every subset @ obtained by repeatedly applying A, O to a serial seX is
equal to a finite (including the empty) union{f}, . . ., 75 }. Since there are exactdy
different subsets obtained as a union{®@f, . .., 75}, we obtain that there are exactly
64 different subsets ofR obtained by repeatedly applying A, O to a serial setX.
This implies that there are exactiy L(S)-non-equivalent formulas in one variable.
QED
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The same technique can also be used to prove the normal form theoreii(S\dor
every formula with more than one proposition variable.

3.4.3 Countable unions of convex sets on the real line

Let us now be a bit more systematic. By Theorem 3.848js the complete logic
of IR, and hence sets of reals suffice as valugB) in refuting non-theorems. But
how complex must these sets be? In first-order logic, e.g., we know that completeness
requires atomic predicates over the integers which are atAasith only simpler
predicates in the arithmetic hierarchy, the logic gets richer. In a topological space like
IR, it seems reasonable to look at the Borel HierarghyHow high up do we have to
go for ourS4counterexamples? One could analyze our construction in Section 3.3.3
to have an upper bound. But here we state some more direct information.

Consider the set of all open subsets aR. Let B(7) denote the Boolean closure
of 7. SinceB(r) contains all closed subsets B, then3(7) is closed with respect
to ©. ObviouslyS(IR) is properly contained if5(7). It is natural to ask whether the
elements of3(7) are enough for refuting all the non-theoremsS#f The answer is
negative: the modal logic is still richer.

3.4.11.FACT (BEZHANISHVILI AND GEHRKE). The complete logic oB(7) is Grz.

Hence, we need to seek something bigger théan). Let C*>°(IR) denote the set of
countable unions of convex subsetsl®f Since every open subset B is a countable
union of open intervals, then C C*(IR). Let B(C*(IR)) denote the Boolean closure
of C*(IR). Sincer C C*>(IR), we also hava3(r) C B(C*(IR)). It follows that
B(C*>*(IR)) is also closed with respect to. Moreover,3(7) is properly contained in
B(C*>*(IR)), since the se® of rationals belongs t#(C>(IR)) but does not belong to
B(7).

3.4.12.THEOREM (BEZHANISHVILI AND GEHRKE). The logicS4is complete with
respect ta3(C>*(IR)).

So, the Boolean combinations of countable unions of convex subsétsaoé exactly
what we need for refuting the non-theoremsS#t Since every countable union of
convex subsets dR belongs to the Borel hierarclgj; over the opens of?, a very low
level of the Borel hierarchy suffices for refuting the non-theorents4fSo,G itself is
more than sufficient for refuting the non-theoremssdf

Summarizing, we constructed five Boolean algebras of subse#s fafrming a
chain under inclusionS(IR) C B(r) C B(C*(IR)) C G C P(IR), whereS(IR) is the
Boolean algebra of all serial subsetsiBf B(7) the Boolean closure of the set of all
open subsets dR, B(C>(IR)) the Boolean closure of the set of all countable unions of
convex subsets aR, G the Boolean algebra of all Borel subsetsi®f andP(IR) the
power-set oflR. All of these Boolean algebras are closed with respe¢tt®he modal
logic of the last three algebras$g}, that of the second one @Grz, and the modal logic
of the first is the logic of the2-fork’ Kripke frame.
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3.4.4 Generalization to IR?

In this section, we shift aim in a different direction. We generalize our results on the
serial subsets af? to the chequered subsetsiBf, and indicate further generalizations
to any Euclidean spad&™.

A setX C IR? is convexf all points laying in between any two points &f belong
to X. It is said to beserialif X is a finite union of convex subsets ##. Denote the
set of all serial subsets d@®? by S(IR?).

Here is a real difference betwedh and I??. Unlike S(IR), S(IR?) is not closed
with respect to complement. For instance, a full circle is obviously a convex subset of
IR%. However, its complement is not serial.

One natural way of overcoming this difficulty is to work with a smaller family
of chequered subsets @?, which also has a reasonable claim to being ‘the two-
dimensional generalization of the one-dimensional serial sets’.

A setX C IR?is arectangular conveXf X = X, x X,, where bothX; and X,
are convex subsets @ [van Benthem, 1983b]. Every rectangular convex is a convex
set in the usual sense, but not vice versa: a circle is not a rectangular convex.

A setX C IR?is said to bechequeredf it is a finite union of rectangular convex
subsets ofR%. Denote the set of all chequered subset&Bfby CH(R?). Obviously
CH(IR*) C S(IR?). Note that unlikeS(IR?), CH(IR?) does form a Boolean algebra.
Moreover,0X, &X € CH(IR?) forany X € CH(IR?).

3.4.13.FACT. CH(IR?) forms a Boolean algebra closed with respectitand <.

Proof In order to show thaf’H (IR??) forms a Boolean algebra it is sufficient to show

that CH(IR?) is closed with respect te. For this, observe that the complement of a

rectangular convex is a union of at most four rectangular convexes, and that the finite

intersection of rectangular convexes is again a rectangular convex. Now, supgose

CH(IR*). Then there exist rectangular convexés ..., A, such thatd = [ J;", 4;.

But -4 = (N_, ~A,;, which by the above observation and distributivity is chequered.
SinceCH(IR?) forms a Boolean algebra, in order to show that(IR?) is closed

with respect tdd and<, it is sufficient to check that’H (IR?) is closed with respect to

<. For the latter observe that the closure of a rectangular convex is again a rectangular

convex, and that the closure commutes with finite unions. Now suppes€H (IR?).

Then there exist rectangular convex¢s ..., A, such thatd = U?Zl A;. But then

OA =J_, ©A;, which is a chequered set by the above observation. QED

Hence, interpreting propositional variables as chequered subsi&ts ef/ery formula
of our language will be also interpreted as a chequered subdget.of

This approach leads to a logic, which we just sketch here. Call a valuatadn
L to subsets ofR? chequeredf v(P) € CH(IR?) for any propositional variablé.
SinceCH(IR?) is closed with respect te, A and<, we have that(y) € CH(IR?) for
any chequered interpretatien Call a formulap CH-true if it is true in IR? under a
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chequered valuation. Call CH-valid if ¢ is CH-true for any chequered valuation on
IR?. Let L(CH) = {¢|¢ is CH-valid}.

3.4.14.FACT. L(CH) is a normal modal logic oves4

Similarly to L(S), the Grzegorczyk axion®rz is provable inL(CH). For this it is
sufficient to show thaGrz is CH-valid.

3.4.15.FACT. Grz is CH-valid.

Proof Grz is CH-valid iff X C O(X A ~O(OX A =X)) for any X € CH(IR?).
SupposeX € CH(IR?). Observe that, unlik&(IR), ©X A —-X is not finite. However,
in this case the se®(CX A —=X) — (¢X A —X) is finite. Denote it byF. Then
(X NAO(CXA-X)) = O(XA[(CXA-X)VF]) = Q(XA(-OCXVX)A-F) =
O(X — F). Now sinceF is finite, O(X — F) = ©X. ThereforeO(X A =O(CX A
-X)) = ¢X, which obviously containg. So,X C O(X A =O(CX A—-X)).  Qeb

Now we show that the axioms

BD3:O(DP3A<><DP2/\<>DP1/\_‘P]_)/\_‘PQ) —>P3, and
BW, = /\j‘t:o OF, — \/Ogi;ﬁj§4 O(F N OP;),

which bound the depth and the width of a Kripke mode3 tand4, respectively, are
also provable inL(CH). For this, we show that boBD; andBW , areCH-valid.

3.4.16.FACT. (1) BD3 is CH-valid.
(2) BW, is CH-valid.

Proof (1) BD3 is CH-valid iff Q(DX{J, N O(DXQ A <OX| A _|X1) VAN _|X2) C Xj5
for any X, X», X3 € CH(IR?). Observe thatbOX; A —X] is a subset of the fron-
tier Fr(X;) = OX; A -0X; of X;. Hence,&O(OX3 A O(O0Xy AOOX] A —Xy) A
—Xy) € O(0X3 A O(OXy A Fr(Xy)) A —Xy). Let X5 = 0OXy A Fr(X;) and
X; = 0X3 A Fr(X;). Also let—*, &* andO* denote the corresponding operations
of a closed subspadér(X,) of IR%. Then<(OX3 A O(OXy A Fr(Xy)) A —Xy) =
O(OX3 AOXE A =Xy) = O(0X3 A O*XE A X)) C O(0X5 AO*X5A-OX,) =
O(OX5 A O*XF A —*X3) = O(X5 AO*XE A —*X3) = OF (X3 AO*X5 A —*X3).
SinceFr(X,) is of dimensiort, F'r(X;) is homeomorphic to a closed serial subspace
of IR. SinceBD, is S-valid in R, O*(X A O*Y A =*Y) C X for any open subsets
X,Y of Fr(X;). Hence 0% (X3 A O* X3 A —*X3) C Xi. Thus,O(0X5 A O(OX5 A
SOX | A _|X1) A _|X2) - X3, andBD3 is CH-valid.

(2) BW,is CH-valid iff A} OX; € Voopsiey O(X;AOX;) forany Xo,... X, €
CH(IR*). Supposer € /\Z‘:0 O X;. Thenz is a limit point of all X;. Since there are
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five X;, and everyX; belongs taCH(IR?), there should exisk; and X; such that: is
a limit point of X; A X;. S0,z € V(<4 O(Xi A O X). QED

As an immediate consequence we obtain @) - Grz, BD;, BW,. Hence, like
L(S), L(CH) is also a tabular logic. In a similar fashion, by induction on the dimension
of IR", we can prove that the logic of chequered subset#:bfis also tabular. In
particular, it validate8BD,,.; and BW,.. Hence, we are capable of capturing the
dimension of Euclidean spaces.

3.5 A general picture

3.5.1 The deductive landscape

The logics that we have studied in this chapter fit into a more general environment.
Typical for modal logic is its lattice of deductive systems suchikas$4, S5or GL.
These form a large family describing different classes of relational frames, with of-
ten very different motivations (cf. the series of books “Advances in Modal 128gic
Among the uncountably many modal logics, a small number are distinguished for one
of two reasons. Logics lik84or S5were originally proposed as syntactic proof theo-
ries for notions of modality, and then turned out to be semantically complete with re-
spect to natural frame classes, such as$#rtransitive reflexive orders. Other modal
logics, however, were discovered as the complete theories of important frames, such
as the natural numbers with their standard ordering. What about a similar landscape of
modal logics on the topological interpretation?

Some well-known modal logics extendisgtindeed correspond to natural classes
of topological spaces. E.g., it is easy to see that the ‘identity logic’ with axjom
O¢ axiomatizes the complete logic of allscrete spacesAnd it also defines them
semantically through the usual notionfeime correspondeneewhich can be lifted
to the topological semantics in a straight- forward manner. But alr8adprresponds
to a less standard condition, viz. that every point has an open neighborhood all of
whose points have in all their open neighborhoods. (Alternatively, this says that
every open set is closed.) Also, even rich topological spaces do not seem to validate
very spectacular modal logics, witness the fact tRatas justS4for its modal theory.
We did find stronger logics with ‘general frames’ though, i.e., frames with a designated
interior algebra of subsets, such/&swith the serial sets. The latter turned out to be a
well-known modal 'frame logic’, and we have not been able so far to find really new
modal logics arising on the topological interpretation.

A related question is what becomes of the known general results on completeness
and correspondence for modal logic in the topological setting. There appear to be
some obstacles here. E.g., the substitution method for Sahlqvist correspondence (cf.

2http://www.aiml.net
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[Blackburn et al., 2001]) has only a limited range. It does work for axioms like the
abovep — Oy, where it automatically generates the first-order condition

(Vz)(AU e 1)(x € U & (Vy € U)(y = x)),

i.e., discreteness. Likewise, it works for t88 symmetry axiomP — OO P, where it
produces the above-mentioned

V) (U et)(zx e U& MyeU) (VW er)(yeV -z eV)).

The method also works for antecedents of the fari—but things stop with an-
tecedents likeG P or OOP. The reason is that, on the topological semantics, one
modality O expresses awo-quantifiercombination

3U € 7 such thawx € U,

so that syntactic complexity builds up more rapidly than in standard modal logic, where

each modality is one quantifier over relational successors of the current world. Gen-
eral correspondence or completeness results for topological modal logics therefore
seem harder to obtain—and we may need different syntactic notions for them (see
[Gabelaia, 2002] for recent results in that direction).



CHAPTER 4

LOGICAL EXTENSIONS

Modal logics are, most notably, languages for describing relational structures. One
considers these formalisms, in contrast with first or second-order theories, because of
the nice balance between expressive power and computational properties. The logic
S4introduced in Chapter 2 is the minimal normal modal logic with the topological
interpretation, as shown in Chapter 3. It is a general formalism with respect to topo-
logical structures as it is complete for all topological spaces. Such a high abstraction
is a beauty, but also a handicap. The language is not expressive enough and cannot
capture specifics of some interesting topological spaces.

An extremely useful technique in modal logics to gain expressive power without
leaving the guarded area of decidable languages is to add a modal operator. For in-
stance, if one needs to express notions connected to equality of states in Kripke se-
mantics, one may add a difference operdigr which reads “there is a state different
from the current one that satisfies’ This is exactly what we do in this chapter. We
consider important topological relations not capturesidyalone which can be safely
expressed by ‘adding’ appropriate new modal operators. We have entered the realm of
extended modal languages, see [de Rijke, 1993, van Benthem, 1991b].

The first limitation to overcome i$4s locality. The formulas are evaluated at
points and provide local information, e.g., the pains in the open set given by the in-
tersection of the interior ap andy) (M, x = g A Ov). By this information we know
a lot about the point, but very little about the set denoted by A O, we merely
know that there is one point satisfying it, the point Introducing an universal (or
global) modality is the solutions to this problem. For instance, B#h(the universal
modality) one is able to express whether a topological space is connected or not, which
is clearly a global property of the space and not a local one of some points of the space.
We shall explain such behavior in Section 4.1. Extending with different modal oper-
ators enables different gains in expressive power, we present alternative extensions in
Section 4.2. These extensions can be viewed as a fragment of higher order languages.
We give a higher order formalism in Section 4.3 to give a general perspective.

53
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4.1 Universal reference

Even though ideas related to the universal modality have been around for a while,
[Prior, 1967], it is safe to say that it was ‘officially introduced’ as a modal logic ex-
tension tool in [Goranko and Passy, 1992]. In [Bennett, 1995], Bennett introduced the
universal language topologically interpreted to identify tractable fragments of a lan-
guage of topological relations over regions.

The truth definition oS54, Definition 2.1.1, is extended with the following:

M,z = FEp iff JyeX, MyEy
MzEUp iff YyeX: MykEyp
The definition reads, foF'y, “there exists a point in the model satisfying’ and

dually for Uy, “all the points in the model satisfy.” The U and £ modalities follow
the axiomatization of S5:

Ulp =) = (Up — Uy) (K)
Up— ¢ (T
Up— UUgp 4)
¢ —UEyp (B)
In addition, the following ‘connecting’ principle is part of the axioms:
Cp — Ey (Con)

The axiomatization suggests to search for a normal form. The nesting of universal
modal operators is redundant, as the next proposition shows.

4.1.1.PrROPOSITION Every formula of54, is equivalent to one without nested occur-
rences ofF, U.

Proof Here is one way of seeing this. The following well formed formula is valid in
the semantics dB4,. Let p[Ev] be any formula containing a subformut&a). Then
we have

PEY] — (Ep A[T]) V (mEY A p[L])

The reason is that subformul&s) are globally true or false, across modalities<,
E.U. This observation also produces an effective algorithm for finding the normal
form. E.g.

O(Ep A —~OEq)

(EpANO(T A-OEq)) V (—Ep AO(L A—-DEq))

(EpNO-OFEq) V (mEpAOL)

(Ep A ((EqgAO-0T)V (nEqAO-0L1)) VvV (-EpA L)

(EpNEgqANO-T)V(EpA—-EqNO-1))V L

(EpANEqN L)V (EpAN-Eq)

Ep AN —-Eq

1111171
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QED

Another way of seeing this is by proving some more familiar reduction principles
(either in the semantics, or from the given axioms), such as

OFEp — Eop, OFp <« Ey

Note that we do not get, e.gz0yp < Oy or EOy < E¢. The normal forms that we
obtain may be described as follows,

YA

where[U|E] is U or E or nothing, andy is a formula of our original languags4.

One extends, together with the truth definition of the language, all of the tools in the
topo-approach (Chapter 2): first and foremost, topo-bisimulations. Definition 2.1.2
straightforwardly extends. In fact it is exactly the same, except for the constraint that
the relation has to be defined for all points of the spaces, in the ‘universal’ spirit of the
extended language.

4.1.2.DEFINITION (TOPOLOGICAL BISIMULATION). Given two topological models
(X,0,v), (X',0',V), atotal topological bisimulatioris a non-empty relation= C
X x X' defined for allz € X and for allz’ € X’ such that ifr = 2':

(base): z € v(p) iff 2’ € V/(p) (for any propositiorp)

(forth condition): if z € o€ Othen
d'eO 2 edandvy €o :Ayco:y=y

(back condition): if 2/ € o’ € O then
JocO:xcoandVyco: Iy co:y=y

If only conditions (i) and (ii) hold, the second modginulateshe first one.
One must show that the above definition is adequate.

4.1.3.THEOREM. Let M = (X,0,v), M’ = (X',O',v') be two modelsy € X,
andz’ € X' bisimilar points. Then, for any modal formulain S4,, M,z | ¢ iff

M’ 2 = .

4.1.4.THEOREM. LetM = (X,0,v), M' = (X', O',v) be two models with finite
0, 0,z € X,andz’ € X’ such that for every in S4,, M,z = ¢ iff M, 2" = .
Then there exists a total bisimulation betweédrand M’ connectingr andx’.

In words, extended modal formulas are invariant under total bisimulations, while finite
modally equivalent models are totally bisimilar.

The other fundamental tool of the topo-approach is the definition of model com-
parison games. Here is the extension of Definition 2.2.1.



56 e Chapter4. LOGICAL EXTENSIONS

4.1.5.DEFINITION (TOPO-GAME). Consider two topological modelsy, O, v), (X',

O’,v') and a natural number. A topo-gameof lengthn, notationT'G(X, X', n), con-

sists ofn rounds between two players, Spoiler and Duplicator, who move alternatively.
Spoiler is granted the first move and always chooses which type of round to engage.
The two sorts of rounds are as follows:

(1)  Spoiler chooses a modal; and picks a point
T, anywhere inX;,

(1) Duplicator chooses a point; anywhere in t he
other modelX,

global

( (1)  Spoiler chooses a modal; and an open,
containing the current point, of that model

(1)  Duplicator chooses an open in the other
model X, containing its current point,

(131) Spoiler picks a point, in Duplicator’'s open
0,4 in the X,; model

(7v)  Duplicator replies by picking a point, in
Spoiler’s operv, in X,

local

The pointsz, andz, become the new current points. A game always starts by a global
round. By this succession of actions, two sequences are Huilt:zs, ... x,} and

{z!, 2, ... 2/ }. After n rounds, ifz; andz] (with i € [1,n]) satisfy the same propo-
sitional atoms, Duplicatowins otherwise, Spoiler wins. Avinning strategy (w.s.)

for Duplicator is a function from any sequence of moves by Spoiler to appropriate
responses which always ends in a win. Spoiler’s winning strategy is defined dually.

The multi-modal rankof a S4, formula is the maximum number of nested modal op-
erators appearing in it (i.e, ¢, U and E modalities). The following adequacy of the
games with respect to the mereotopological language holds.

4.1.6. THEOREM (ADEQUACY). Duplicator has a winning strategy far rounds in
TG(X, X' n)iff X, X’satisfy the same formulas of multi-modal rank at mast

The interesting result is that of having a game theoretic tool to compare topological

models. Given any two models, they can be played upon. If Spoiler has a winning

strategy in a certain number of rounds, then the two models are different up to a certain
degree. The degree is exactly the minimal number of rounds needed by Spoiler to win.
On the other hand, one knows that if Spoiler has no w.s. in any number of rounds, and
therefore Duplicator has in all games, including the infinite round game, then the two

models are bisimilar.

4.1.1.EXAMPLE (COMPARING CUTLERY). As we did in Section 2.2, we can play on
‘table items’, i.e., regions in topological spaces. Differently from the local games, one
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1 Round 2 Rounds 3Rounds

Figure 4.1: Plays of topological games for the universal lang&geAbove the two
models is the number of rounds needed by Spoiler to win.

may notice that there is no starting points in the two models. Spoiler can decide where
to play, by means of a global move. By this added freedom, Spoiler can win games in
which the players compare spoons and forks, spoons and plates or even spoons with an
empty table cloth.

Similar to before, we have a way of tying Spoiler’s winning strategies with formulas
(of S4,) true in the models. Note that the formulas can be true in the entire model, not
in only two particular starting points, as before. This reflects our earlier observation
that £ or U formulas are really true across a model.

Referring to Figure 4.1, we can write down a distinguishing formula of the appro-
priate multi-modal rank that is true in one model but not in the other. In the case of the
1 round game, Spoiler can win in one round since on the right model the forrpua
true, while its negation is true in the other model. Think of it as the empty table which
should be set, so there is no regjyet: U—p.

By a similar reasoning we can write the formutddp (the interior ofp is non
empty) for the 2 round game. This formula is only true in the left model. For the 3
round game, a distinguishing formulali§p < <Op). This formula encodes closed
regularity of regions, i.e., coincidence with the closure of its interior. This formula is
true for the plate on the right but not for the spoon on the left. The negation of the
regularity formula can be written a(p A OOC—p) V E(—p A <¢Op)). The first half
of this accounts for external lower-dimensional spikes in the regjdhe second for
lower dimensional cracks. For the spoon the handle is a lower dimensional spike.

4.1.2.REMARK (INFINITE GAMES). The definition can be easily extended to infinite
games. Just let — oo and hence the sequences ], be infinite. The Adequacy
Theorem is still valid. Duplicator has a winning strategy in the infinite round game iff
the models are bisimilar in our extended sense.

4.1.3.REMARK (STRATEGIES AND NORMAL FORMY. From the practical perspec-

tive of playing topological games, Spoiler should bear in mind that identifying formu-
las that differentiate the models is not enough. Spoiler may consume too many turns
if he is using a long formula (in terms of multi-modal depth) which has a shorter log-
ical equivalent. Similarly Duplicator may have the illusion of a win, if he makes the
same mistake. Once ‘difference formulas’ are identified in the models they should be
reduced to logically equivalent ones with the lowest multi-modal depth. Normal forms



58 e Chapter 4. LOGICAL EXTENSIONS

are of great help for this purpose. E.g., here is the game-theoretic content of our earlier
normal form forS4,. Having only one ‘outermost’ existential or universal modality
means that Spoiler needs to engage only once in a global round. Furthermore, since
such a modality is the first to appear, that is the first type of move Spoiler should play.
This can also be seen directly in the game. If Spoiler engages in more than one global
round, it is like jumping around the space, not having understood were the difference
between the models resides.

One might try to extend this line of reasoning to the inBdrpart. After all, S4
validates reduction laws likelOp «— Oy, or 0GOS «+» OO, Can this be used to
simplify Spoiler’s strategies? We have not been able to find a general principle here
that would be of much use.

The use of normal forms can lead to a redefinition of the rules. The new game
would have always one starting global round and thereafter only local rounds.

Finally, after having presented all the tools of the topo-approach for the extended
language, it is important to remark wiad, captures of the topological structure.

The relation betwee®4, and connected spaces has recent origins: [Shehtman,
1999] and [Aiello and van Benthem, 1999]. A topological space is defined toie
nectedif the only two sets that are both open and closed are the empty set and whole
space itself. The definition is expressibleSa, in the following way:

U(Cp — Op) — UpV U=p (4.1)

In topology, an alternative definition of connected space (cf. page 30) states that a
space is connected if there do not exist two open sets whose union covers the whole
space and that are disjoint. Again we can express the phrasing of the thedém in

U@pvOg) ANEpANEq— E(pAq) 4.2)
Here is the purely logical version of the well-known topological fact.
4.1.7.FACT. Fgq4, (4.1) impliest-s4, (4.2).
Proof Ad absurdum, suppose that not (4.2):
~(U(OpV Og) N Ep A Eq — E(pAq))
Substituting the propositional variabjeby —p, one obtains

~(U(Cp VvV O-p) A Ep A E=p — E(p A —p))
—(U(@pV =Op) A=(=EpV —E-p) — EL)
U(=<Cp Vv Op) A =(—=EpV —E-p)
U(Cp — Op) A~(U=pV Up)
~(=U(Sp — Op) v (U~pV Up))
~(U(®p — Op) — Up Vv U~p)
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Thus, contradicting the hypothesis,, (4.1). QED

Results like this can be used for a systematic analysis of well-known topologi-
cal preservation phenomena. But a more striking example, one that builds on topo-
bisimulations and gives a semantic proof of the topological fact, is the following corol-
lary of Theorem 4.1.3.

4.1.8.COROLLARY (CONNECTEDNES$. Consider(X,O) and (X', 0’), and a con-
tinuous surjective map : X — X'. If the topological spacéX, O) is connected, then
the space X', O’) is connected.

Proof Our first observation is a modal definition for connectedness, in the extended
modal languag84,. We say that a topological spac¥, O) validatesa modal formula

@ if @ is true at every point under every valuation. Now we have that the following two
statements are equivalent:

(i) (X,0) is connected
(i) (X,0) FU(Op—0Op)—UpVU-p

To see this, note that the antecedent of this extended formula holds if the denomination
of p is both open and closed, while the consequent says that pitheX orp = ().

Now, we return to the statement of the Corollary. We must show(tN&tO’) is
connected. Suppose that it is not. Then there exists a valudtamd a point:’ such
that (X', O",v'), 2" = —(ii). Next, we use the given continuous mgpto define a
simulation— from M’ to M (note the reversal in direction here):

a2  ff ' = f(x)

In particular, the definition of continuous map gives the forward simulation clause.
Moreover, the surjectiveness ¢f guarantees that- is surjective and total od/’.
Next, we define a valuatiomon M by ‘copyingr’ along

The result is a simulatioa- from (X', 0’, ) onto (X, O, v) such thatr — 2’ for
some pointr € X.

Finally, we note that the negated formulagi) is logically equivalent (by some
syntactic manipulation) to th®4, formula without$

U(O-pVvdp)ANE-pV Ep

By Corollary 4.1.3, this formula also holds fof in M, and hencé X, O) is not con-
nected. A contradiction. QED

The above is another piece of evidence for the claimed usefulness of bisimulations.
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4.2 Alternative extensions

The universal extension is not the possibility to enhance the logical power. Here, we
present some alternatives.

4.2.1 Hybrid reference

Another way to enhance the logical power of the basic topological language is to con-
sider hybrid modal references, cf. [Areces, 2000]. The idea of hybrid logics is that of
naming worlds in Kripke structures enabling explicit reference and naming power at
the language level. The resulting languages are very expressive as one can jump ‘quite
freely’ from one world to another remembering names of places to visit or visited. A
similar approach is also feasible for spatial logics interpreted on topological spaces.
One simply gives a name, sayto a region and directly refers to it at the level of the
language with an appropriate modal operator “at regidn

4.2.1.DEFINITION (SYNTAX OF S4q). Let(X, O) be atopological space, and let=
{p1,p2, ...} be a countable set of proposition letters (i.e., region names). The well-
formed formulas of the langua@. in the signaturé X, 0, P) are

F=T|pl-p|eAy|Dp|Qap
wherep, A € P andp,y € F.

4.2.2.DEFINITION (TOPOLOGICAL SEMANTICS OFS4y). A topological modelV/ =
(X,0,v) is defined as foB4. The interpretation is as f&4 with the addition of the
following definitions:

M,z |=Qup iff Vyev(d) M,yE¢
M,z |=Qup iff  Jyev(A) MykEg

One can look at thé operator in two ways. On the one hand, it is a restricted
version of the universal modality.

Qup = U(A — @)

On the other hand, the operator resembles closely that of hybrid logics, tho8dh in
there is no use of different sorts for propositional variables, nominals and states. Differ-
ent sorts could be used, for instance, if considering special points with uniqgue names.
One would end up with the full topology of spatial regions and with names for some
particular witnessing points. (Think for example of the topology of Europe, giving
unique names to a certain number of distinguished points: the capitals of European
countries.) Exploiting nominals would provide for extra expressive power. Most no-
tably irreflexivity, which is not expressible in ordinary modal logics, can be expressed
in hybrid systems, [Gabbay, 1981].
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What one gets for the logi€4s is a behavior that is a mixture of the universal
modality and of the hybridv operator.

Qpp > —Q,—p (Duals)
Purely topological behaviors are:

@,B « @,A (Intersection)
@, B AQpC — @,C (4a)

Some hybrid behaviors are retained:

Qalp — ¢) = (Qap — Qu9) (Ke)
ANQqp — @ (Ta)
Q A (Label)
Q@ Qpp — Qpp (Scope)

As with S4, there is also some purely topological power in the language. For instance,
one can express the regularity of a region:

@, <O0A regularity of the regiom

Though, other global topological properties fall beyond the pow8def For instance,

the property of a topological space to be connected or not, which is expressig in

by (1), is not expressible in terms 84,. To show this fact we need the basic tool

of our topo-approach: topo-bisimulations. Here is the adequate notion for the hybrid
language.

4.2.3.DEFINITION (TOPOLOGICAL BISIMULATION). Consider the language4 and
two topological model$ X, O,v), (X', O',v'). A topological bisimulatioris a non-
empty relation= C X x X’ such that:
(i) Vp € PVYx € v(p) 32’ € V'(p) such thatr = 2’
(i) Vp e PV’ € V/(p) 3x € v(p) such thatr = 2’
(iii) (forth condition):z € 0 € O = 30’ € O' : 2’ € o andVy' €0 : Jyco:y =y
(iv) (back condition)z’ € o € O'=3Joc O :x coandVyco:Fy €0 :y =7y

Now consider the two topological models formed one by the real int¢fval), the
other by the interva(0, 2) — {1}, both with the following valuation function:

v(x) = x mod2
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The topological space underlying the first model is connected, while the second is not
as it is the union of two open sets. Now consider the following bisimulation defined
forall x € (0,2):

r=21 iff v(zr)=2mod2
TheS4, formula of Equation (4.1) is true on the first model, but not on the second one.
Therefore a total topo-bisimulation cannot be established, which implieSthatan

distinguish between connected and non-connected spaces. If now one considers the
relation for allz € (0,2) — {1}:

r=2 iff v(xr)=2xmod2

it is easy to see that it is a bisimulation as defined in Definition 4.2.3. Therefore,
connectedness is not expressible by mear&ef

4.2.2 Until a boundary

Another source of inspiration for extension of the expressive power of the basic lan-
guage of topology comes from temporal formalisms. Consider the Since and Until
logic of [Kamp, 1968]. If one abstracts from the temporal behavior and interprets the
modality in spaces with dimensionality greater than one, one gets an operator express-
ing something to be validp to a certain boundaryegion, a sort of fence surrounding

the current region. Here is a natural notion of spatial ‘Until’ in topological models:

M,z =@y iff FJA:O(A) ANz € AANVY € Ap(y)A
Vz(z is on the boundary afl A 1(z))

Defining the dual modalityt/P+ as usual is~(—~pl—1)) we get:

M,z = oUPy  iff VA:OA)Az€A— 3y Ap(y)V
Jz(z is on the boundary ofl A ¢(2)))

Using the notation of the basic modal language, we recall the topological definition of
boundary of a se#:
boundaryA) = CANO-A

A graphical representation of the Until operator is presented in Figure 4.2. Its expres-
siveness is richer than that of the basic modal language of space. E.g., one can express
global properties inside connected components:

UL iff some open component arount the current point ispall

In connected spaces, this is equivalent to the universal modality
Which temporal principles valid iz survive the move to more than one dimen-
sion? We do not provide a full axiomatization, but rather look at how temporal axioms
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—p/\q

(@) (b)

Figure 4.3: Examples of Until models.

behave in space and which new ones may arise. Two useful equivalences for obtaining
normal forms in the one dimensional case are

tU(pV q) < (tUp) V (tUq)
(p A @)Ut < (pUt) A (qUt)

In our spatial setting, the first equivalence fails: Figure 4.3.a refutes:tiaplication.

But the other direction remains a valid principle of monotonicity. As for the second
equivalence, its direction is a general monotonicity principle again. Conversely, we
get even have a stronger valid law:

pildg A podt — (py Ap2)U(qV t)

Proof LetO, O’ be the two open sets such thatis true everywhere insid@ andp,
everywhere in0’, ¢ is true on the boundary @ andt on the boundary o®’. Now
consider the seD N O'. In such a sep; A p, is true everywhere. In addition, every
boundary point: of O N O’ is either a boundary point @ or of O’. In fact, consider
a boundary point: of (O N O'), thenz € G(O N O') andx ¢ O(O N O'). Since
rZ€00N0),z¢ (0ON0O"),asONO isopen. Say: ¢ O. Thenx ¢ 1O, while
alsox € ©O (asz € &(ONO")), thatis,z is a boundary point of. See Figure 4.3.b
for an illustration. Thus, our must satisfyy V ¢. QED
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Everywhere p — q

330

r r
r r
(a)

Figure 4.4: More examples of Until models.

Burgess [1984] reviews basic tense logic providing, among other things, an ax-
iomatization of the Since and Until logic for total dense orders. Departing from these
axioms, we consider their spatial validity. First, we let us define an abbreviation

Gp < pU_L
Here is the set of axioms:
G(p — q) — ((rUp) — (rUq)) A ((pUT) — (qUr)) (4.3)
pA(rUg) — (rU(g A (rSp))) (4.4)
(gUp) < ((g A (gUp))Up) < qU(q N (qgUp)) (4.5)
((gUp) A =(rUp)) — qU(p N —r) (4.6)
((gUp) A (sUr)) — (((gAs)UPAT))V ((gAsUPAsS))V((gAs)UgAT)))

4.7)

For now, this serves as an illustration of ‘transfer’ of temporal logic principles to spatial
settings. Finally, as for topo-bisimulations for this richer language, we would need an
extension of the proposals in [Kurtonina and de Rijke, 1997] for dealing withi'the
complexity of the truth condition for the spatial Until.

Axiom 4.3 is valid for the spatial Since and Until. If everywherep implies ¢,
then it must be the case that if the regiorhas ap boundary then it also has @
boundary. Similarly, if @ region has a boundary, so does theregion defined by the
samep points, cf. Figure 4.4.a. Axiom 4.4 does not make sense in the spatial setting
where there is no notion of past and, therefore, no Since operator. Axiom 4.5 expresses
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some kind of density and is valid in the spatial version if the model is dense, as it is
trivial to show by contraposition. Axiom 4.6 and Axiom 4.7 dothold in spaces with
more than one dimensions. Here are two simple counter-examples, respectively for
Axiom 4.6 and Axiom 4.7, cf. Figure 4.4.b,c. Consider an opemisaiade ofg points

with a boundary op points. InsideA consider a number of isolateg points, while
outside the open there are only: points. It is easy to see that insidethe left hand

side of the implication of Axiom 4.6 is satisfied, while the right hand side is not. In
factitis impossible to find an open set all made @bints with a continuous boundary

of —r points. A counter-example to Axiom 4.7 is also easy to build. Consider two
open circles of the same radius but different centers. Cidle made ofy points, its
circumference is made gfpoints, everywhere else it tsp. Circle B is built similarly

by replacing; by s andp by . The circleA andB overlap. Itis easy to check that there
does not exist an open set made; of s points whose boundary is made of exclusively

p A r points nor only ofp A s points and also not only gf A r points. At most one can
hope for a weaker version of the axiom valid in the temporal case (Axiom 4.7):

((qUp) A (stdr)) — (g AsU((p AT)V (P A )V (g AT))).

Proving soundness for the spatial version of Since and Until has shown a fundamental
difference with the temporal version. The reasoning does not involve trees, but full
fledged topological spaces.

4.3 Standard logical analysis

The modal hierarchy of topological languages has a common root. All operators given
have truth conditions in a second-order language quantifying over both points and sets
of points. E.g.Ap saysthaBlA : O(A) Az € AAVy :y € A— P(y). This language

has the following vocabulary:

YV guantification over points

VA guantification over sets of points
rT=y identity
reA membership of points in sets
O(A) predicate of openness of sets

All fundamental topological notions are definable in this formalism. Here are two
relevant observations.

4.3.1.FAcT. Formulas of the second-order language without free predicate variables
are preserved under topological homeomorphisms.

The proof is a simple induction.

4.3.2.FAcT. All topological separation axioms; (with 0 < i < 4) are expressible in
the second-order language.
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For example, one can express theaxiom (defining the Hausdorff spaces) in the
following way:

Ve,y: (x#y — JA,B:O(A) AN O(B) A =3z(z € ANz € B)Ax € ANy € B)
Similarly we can write the definition of the axiom @i, spaces:

VC, D : (O(-C)ANO(=D)AN—-Fz(z€ C Az € D)
JA,B:O(A)NOB)AN—-3z(z€ ANze B)ANVx e Cx € ANVr e Dux e B)
Of course, this strong language has various much more tractable fragments, and

the goal in ‘modal topology’ is finding these. But the second-orderness in this analysis
maybe somewhat spurious. One can see this by the ‘deconstruction’ of Section 2.3.



CHAPTER 5

GEOMETRICAL EXTENSIONS

5.1 Affine Geometry

Extending the expressive power of a modal logic of space may go beyond mere logical
power, cf. Chapter 4. One can also enmgaometrical poweby endowing spaces with

more structure. A first elementary example is the property of a point’s being in the
convex closure of a set of points. That is, there exists a segment containing the points
whose end-points are in the set. The notion of convexity is very important in many
fields related to space (e.g., computational geometry [Preparata and Shamos, 1985]),
but also in abstract cognitive settings (e.g., conceptual spacasig¢@fors, 2000]).
Capturing convexity modally involves a standard similarity type, that of frames of
points with a ternary relation of betweenness:

M,z = Cypiff y,z: M,y =AM,z E p Azliesin betweery andz  (5.1)

This definition is slightly different from the usual notion of convex closure. Itose-
step convexitpperator whose countable iteration yields the standard convex closure.
The difference between the two definitions is visible in Figure 5.9. On the left are three
points denoting a region. The standard convex closure operator gives the full triangle
depicted on the right. The one-step convexity, on the other hand, gives the frame of
the triangle and only when applied twice yields the full triangle. Another illustration is
presented in Figure 5.1. One-step convexity exhibits a modal pattern for an existential
binary modality:

Jyz : Blyzz) Apy) Ap(z)
From now on, we shall use the term convexity operator to refer to the one-step convex-
ity operator defined in (5.1).

5.1.1 Basic geometry

Geometrical modal logic starts from standard bits of mathematics, viz. affine geometry,
[Blumenthal, 1961]. For later reference, here are the affine base axioms in a language

67
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L

Figure 5.1: The point is in the one-step convex closupe

with two sorts for points and lines, and an incidence relation as presented by Goldblatt
[Goldblatt, 1987]:

Al Any two distinct points lie on exactly one line.
A2 There exist at least three non-collinear points.

A3 Given a pointz and a lineL, there is exactly one ling/ that passes throughand
is parallel toL.

There are also some properties that further classify affine planes. In particular, an affine
plane isPappianif every pair of its lines has the Pappus property:

A pair L, M of lines in an affine plane has the Pappus property if whenever
a, b, cis a triple of points onl,, andd’, V', ¢ is a triple onM such thatb’
is parallel toa’b andac is parallel tod’c, thenb'c is parallel tobc'.

Affine spaces have a strong modal flavor, as shown by [Balbiani et al., 1997, Balbiani,
1998, Venema, 1999, Stebletsova, 2000], where two roads are taken. One merges
points and lines into one sort of paifgoint, line) equipped with two incidence rela-
tions. The other has two sorts for points and lines, and a matching modal operator.

But there are more expressive classical approaches to affine structure. Tarski[1959]
gave a full first-order axiomatization of elementary geometry in terms of a ternary
betweenness predicateand quaternary equidistanée We display it as a kind of
‘upper limit’:

Al Vzy(B(zyz) — (x =y)), identity axiom for betweenness.
A2 Yryzu(B((zyu) A Byzu)) — B(ryz)), transitivity axiom for betweenness,

A3 Vzyzu(B(zyz) A Blxyu) A (x # y) — B(xzu) V B(xuz)) connectivity axiom for
betweenness,

A4 Vzy(é(xyyx)), reflexivity axiom for equidistance,
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A5 Vzyz(§(zyzz) — (z = y)), identity axiom for equidistance,
A6 Vryzuvw(d(zyzu) A d(zyvw) — §(zuvw)), transitivity axiom for equidistance,
A7 Vtxyzudv(B(xtu) A B(yuz) — B(xvy) A B(ztv)), Pasch’s axiom,

A8 VizyzuJvw(B(xut) A B(yuz) A(z # u) — B(xzv) A B(zyw) A B(vtw)), Euclid’s
axiom,

A9 Vax'yy zz'ud (§(zyx'y") A d(yzy'2") A d(zux'u’) A S(yuy'u’) A B(xyz)A
B(x'y'2') A (x # y) — d(zuz'u')), five-segment axiom,

Al10 Vzyuv3z([(zyz) A d(yzuv)), axiom of segment construction,
All Vazyz(—6(zyz) A —F(yzx) A =f(zxy), lower dimension axiom,

Al2 Vayzuv(d(zuzv) Ad(yuyv) Ad(zuzv) A (u # v) — B(xyz) V B(yzx) V B(zzy),
upper dimension axiom,

A13 All sentences of the forrdvw . .. (I2Vay(Pp A — B(zzy)) — JuVey(P Ap —
B(xuy))), elementary continuity axioms.

Why is this beautiful complete and decidable axiomatization not all one wants to
know? From a modal standpoint, there are two infelicities in this system. The axioms
are too powerful, and one wants to look at more tractable fragments. But also, the ax-
ioms mix betweenness and equidistance—whereas one first wants to understand affine
and metric structure separately.

5.1.2 The general logic of betweenness

Our choice of primitives for affine space is again betweenness, where:) means
that pointy lies in between: and z, allowing y to be one of these end-points. Line
structure is immediately available by definiogllinearity in terms of betweenness:

xyz are collinear iffg(xyz) vV B(yzx) V B(zxy)

‘Geometrical extensions’ of this sort can even define ‘extended modalities’, i.e., ‘logi-
cal extensions’ in our earlier terminology. Here is théstential‘at some point:”

Epiff (B)(¢,T) (5.2)
This will work provided we require betweenness to satisfy:

VaVyp(xxy).

Without this, the defined modality will just range over the connected component of the
current point of evaluation.
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Natural specific structures on which to interpret our modal language includethe
for anyn. But affine spaces really form a much more general class of structures. What
are natural general frame conditions constraining these? As one does for temporal
logics, theuniversal first-order theorgf ordinary real space suggests good candidates.
Consider just the betweenness part of Tarski's elementary geometry. ARAbMS
for identity, transitivity, and linearity are all plausible as general affine properties. They
are not sufficient, though, as one also wants some obvious variants of transitivity and
linearity with points in other positions stated explicitly. With Tarski, the latter are
theorems, but their proofs go through other axioms involving equidistance. Further
universal first-order assertions that hold in real space would exgr@ensionalityof
the space, which does not seem a plausible constraint in general.

Figure 5.3: Pappus property.

At the next level of syntactic complexity, one then finds existential axioms and
universal-existential ones, which require the space to have a certain richness in points.
The latter expresses typical geometrical behavior, witRassh’s axiomA7 (see Fig-
ure 5.2) and the earlier Pappus property (see Figure 5.3):

Vaa'yy'22'3jkIB(xy2) A B(2'y'2) A B(xgy’) A Blyja’) A Blak2")A
B(zkz") A B(ylz") A B(zly") — B(jkl)

Moving to the opposite extreme of geometrical structure, consider the redkline
Its universal first-order theory includes the strong dimensionality principle

Vayz, B(xyz) V Blyrz) V B(rzy) (5.3)
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The complete affine first-order theory here can be axiomatized very simply, by trans-
lating f(zyz)asy = x Vy = zVz < y < z. This reduces the one-dimensional
geometry to the decidable theory of discrete unbounded linear orders. But it would
be of interest to also axiomatize the universal first-order betweenness theories of the
spacedR™ explicitly.

5.1.3 Modal languages of betweenness

Let us now turn to modal logic over affine spaces.

5.1.3.1 The basic language
Ternary betweenness models a binary betweenness modayjity
M,z = (B)(p,¥) iff  y,z:Byzz) \MylE @AM,z
Note that this is a more standard modal notion than the earlier topological modality: we

are working on frames, and there are no two-step quantifiers hidden in the semantics.
(B) is expressive. For instance, it defines one-step convex closure as follows:

convexy) iff (B)(p, ) (5.4)

Passing to points ‘in between’ two others yields the convex closure only after re-
peated applications of this operator, as shown in Figure 5.9. In a more elaborate set-up,
we could take a leaf from dynamic logic, and add an operatiddle¢ne iterationof
the betweenness predicate—much as ternary ‘composition’ is iterated in dynamic Ar-
row Logic (cf. Chapter 8 in [van Benthem, 1996]). Next, the existential modality has
a dual universal versionB|(p, ) < —=(B)(—p, 1)), which works out to

M,z = [Bl(p,y) iff  Vy,z:B8(yzz) = MyE oV MzEY
An implicational variant of this definition is also helpful sometimes:
M,z = [B](=p,y) iff Yy, z:B(yzz) A\Myy|E o — M, 2 |9
One might think that there should be an independent conjunctive variant, saying

that both end-points have their property. But this is already definable—another sign of
the strength of the language:

[Bl(¢, L) ABI(L, ¥)
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5.1.3.2 Versatile extensions

Betweenness is natural, but biased toward 'interior positions’ of a segment. But given
two pointsz andy, one can also consider all poinissuch thatr lies in betweeny

andz, or all w such thaty lies in betweerr andw. In this way, two points identify a
direction and a weak notion of orientation. There are two obvious further existential
modalities corresponding to this. Together witB), they form a ‘versatile’ triple in

the sense of [Venema, 1992]. Such triples are often easier to axiomatize together than
in isolation. As an illustration, consider the table of Figure 5.4, which we have been

above above left side

below

Figure 5.4: A table and the regions for versatile betweenness modalities.

setting in earlier sections. Using versatile modalities, the legs of the table and its top
identify important zones of visual scenes, which also have names in natural language,
such as everything ‘above the table’.

5.1.3.3 Affine transformations

Affine transformations are the invariant maps for affine geometry. Their modal coun-
terpart areaffine bisimulationsvhich are mappings relating points verifying the same

proposition letters, and maintaining betweenness. We only display the definition for
our original ‘interior’ betweenness—since the versatile extensions are straightforward:

5.1.1.DEFINITION (AFFINE BISIMULATION). Given two affine model$X, O, 5,v),
and(X’, O, ', v), anaffine bisimulatioris a non-empty relation= C X x X’ such
that, ifr = 2/:

() = andz’ satisfy the same proposition letters,
(ii) (forth condition): 8(yzz) = 32’ : f'(y'2'2’) andy = ¢ andz = 2/
(ii) (back condition):5'(y'z'2") = Jyz : B(yxz) andy = ' andz = 2’
wherex,y, z € X andz’,y/, 2 € X'.

In [Goldblatt, 1987], isomorphisms are considered the only interesting maps across
affine models. But in fact, just as with topological bisimulations versus homeomor-
phisms (Theorem 2.1.5), affine bisimulations are interesting coarser ways of compar-
ing spatial situations. In the true modal spirit, they only consider the behavior of points
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inside their local line environments. Consider the two models consisting of 6 and 4
points, respectively, on and inside two triangles, with some atomic properties indicated,
Figure 5.5. The models are evidently not isomorphic, but there is an affine bisimula-

q
j>r
|
P P q r

Figure 5.5: Affine bisimilar models.

tion. Simply relate the two points on the left with the singlepoint on the right. Then
relate the tog point on the left with the top one on the right, the remaining ivpoints

on the left with the one on the right, and, finally, theoint on the left with the one of

the right. This affine bisimulation can be regarded as a sort of ‘modal contraction’ to a
smallest bisimilar model, as we did in Section 2.1.3. The models in Figure 5.6 are not
bisimilar though. One can check that no relation does the job—or, more simply, note

r

Figure 5.6: Affine bisimilar reduction.

that the modal formula A (B)(r, r) holds on the; point of the left model and nowhere

on the right. Affine bisimulations preserve truth of modal formulas in an obvious way,
and hence they are a coarser map than isomorphisms still giving meaningful geomet-
rical invariances. This is exactly as we found with topological bisimulations versus
homeomorphisms.

Incidentally, notice that theris a smaller bisimulation contraction for the left-hand
triangle. The reason is that not all its points are uniquely definable in our modal lan-
guage. Thep andq points are uniquely definable, but allpoints on the boundary
satisfy the same modal statements. The contraction will look like the picture to the
right, but with the middle point ‘in between’ the right point and the right point itself.
(This is not a standard 2D ‘picture’, and duplicating points cannot always be contracted
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if we insist on those.) This situation would change with a modalitypfoper between-

ness Then the two middle points become uniquely distinguishable as being properly

in between different pairs of points. But the top and right-bottom point remain indis-
tinguishable, unless we add versatile operators. It is a nice exercise to show that the
triangle does have every point uniquely definable in the original language when we
change the atomic proposition in the top vertex and the one center bottgrartd

that in the middle of the right edge o Consider the new valuation in Figure 5.7. In

Y

NTO

a T

Figure 5.7: An irreducible affine model.

this case there doa®t exists a bisimilar contraction. Every point of the triangle is
distinguishable by a formula which is not true on any other point, see Figure 5.8. This

| Point| Formula |

1 |¢e1= pA(B)gr)

2 | o= pA-p

3 |w3= qN(B)(¢1,¥2)
4 Y= T

5 05 = qN(B)(p2,¢1)
6 |ws= qAp3A\ps

Figure 5.8: Formulas true at points of the model in Figure 5.7.

suggests a theory of unique patterns, depending on how points are labeled in geomet-
rical pictures.

5.1.4 Modal logics of betweenness

The preceding language has a minimal logic as usual, which does not yet have much
geometrical content. Its key axioms are two distribution laws:

(B) (1 V @a,1) < (B)(p1,9) V (B) (2, )
(B)(W, 01V p2) < (B)(W),01) V (B)(¥, p2)
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This minimal logic by itself has all the usual modal properties, decidability among
them. Other basic principles express basic universal relational conditions, such as be-
tweenness being symmetric in end-points, and all points lying ‘in between themselves’:

(B)(0,¥) — (B)(¥, 9)
© — (B)(», )

These facts are simpfeame correspondencés the usual modal sense. A slightly
more tricky example is the earlier-mentioned relational conditioviy5(zzy). This
is not definable as it stands, but the modal axiom

(o A (B)(T, ) — (B)(p,¥)

corresponds to the related principle

VaVyVz : ((zzy) — [(zzy)

More generally, special modal axioms may correspond to more complex properties of
geometric interest. For example, considesociativityof the betweenness modality:

(B)(9, (B)(¥,€)) < (B)(B)(¥,¢), )

5.1.2.FACT. Associativity corresponds to the Pasch Axiom.
Proof Consider the Pasch Axio#7 in Tarski’s list (Figure 5.2). Suppose that

Vizyzudv(G(ztu) A Blyuz) — B(zvy) A B(ztv))

holds in a frame. Assume that a potnsatisfies(B) (¢, (B)(v,&)). Then there exist
pointsz, u with 5(ztu) such thatr = ¢, u = (B)(¢, &), and hence also points =
with 5(yuz) such thay = ¢ andz = £. Now by Pasch’s Axiom, there must be a point

v with B(zvy) and(vtz). Now, v = (B)(p, ) and hence = (B)((B)(p, 1), §).
The other direction is similar.

Conversely, assume thatztu) and (yuz). Define a valuation on the space by
settingv(p) = {z}, v(q) = {y}, andv(r) = {z}. Thus,u |= (B)(q,r) and

t = (B)(p, (B)(g,7))-

By the validity of modal associativity, then

t = (B)((B)(p.q),7)

So there must be points w with 3(vtw) such that = (B)(p, ¢) andw = r. By the
definition of v, the latter means that w=z, the former ti¥tuy). So indeedy is the
required point. QED

The preceding correspondence maycbenputed automaticallyas the associativ-
ity has ‘Sahlqvist form’. Thus, more general substitution methods apply for finding
geometrical correspondents: cf. [Blackburn et al., 2001].
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5.1.5 Special logics

For the affine modal logic of special models, additional considerations may apply. One
example is the real lin&?, which was also conspicuous in the topological setting. This
time, the task is easy, as one can take advantage of the binary ordeuiedining

M,z = (B)(p,¥) it Fy,2: MiyEoAM,zEdAz<z<y

Given this notion, we can use shorthand for the modalities of temporal logic: Future
and Past (here, both including the present).

Fo = (B)(true ¢)
Py = (B)(p, true)

Conversely, onR, these two unary modalities suffice for defini(¥g):

(B)(p,1) < Po N F

Thus, a complete and decidable axiomatization for(@i-language can be found us-
ing the well-known tense logic of future and pasti&r{Segerberg, 1970].

Special models also raise special issues. We have already seen the universal axiom
Equation (5.3) defining one-dimensionality. What would be good versions for higher
dimensions? We will address this issue once more in our next section.

5.1.6 Logics of convexity

A binary modality for a ternary frame relation gives maximal flexibility. Nevertheless,
given the geometrical importance of convexity per se, here is a unary modal operator
for one-step convex closure:

M,z =Cyp iff FJy,z:MyEeoAMzE@ANT €y—z2
This is a fragment of the preceding modal language:
Co < (B)(p, ).
The axiomatic behavior is different though: distributivity fails. Of the axiom
Cle V)« CovCy

only the right-to-leftmonotonicitymplication is valid. But the one-step convex closure
of a set of two distinct points is their whole interval, while the union of their separate
one-step closures is just these points themselves.

Earlier on, we already noted that one-step convex closure needs finite iteration to
yield the usual convex closure of geometry. This could be brought out again in a
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Figure 5.9: In a two dimensional space, the sequential application of the convexity
operator to three non aligned points results in two different regions: a triangle (only
the sides and corners of it) and the filled triangle.

language with an additional modality*, where the* denotes Kleene iteration. This
interesting spatial use of dynamic logic is not pursued here, for a reason to be explained
below. First, note that the non-idempotence&ogives additional expressive power by
itself. In fact, it helps us distinguish dimensions! Here is how. The principle

CCyp  Cyp

holds onIR, but not on??. A counter-example oi?? is shown in Figure 5.9. The
regionp is given by three non-collinear pointS§p is then the bare triangle: convexity
has added the edges. Applying convexity ag&i@’p defines a different region, namely
the whole triangle with its interior. One may be inclined to rush to the conclusion that
principles of the form

C" 1y CMp (5.5)

determine the dimensionality of the spade® for all n. But here is a surprise.

5.1.3.THEOREM. The principleCCCy < CCyp holds inIR?.

Proof Here is a sketch. It will help the reader to visualize the situation using the
tetrahedron example in Figure 5.11.

C'p consists of all points in between twepoints. CC'yp consists of all points in
between the latter, and the implicatioiCy — C'p corresponds (in the literal modal
frame-theoretic sense) to the betweenness property that

(Byaz) A Bluyv) A B(szt) — N\{B(ix))] i, € {u,v,5,1}}

This is true in one dimension, though not in higher ones.

On the plane(”'y consists of the same points. But we can give another descrip-
tion of CCy . If z lies in between twda’p-points, say on intervalg—z andu—u ,
respectively, then lies in/on one of the triangleg:u or yzv. Therefore C'C'y-points
lie on triangles ofp-points. Now consider any poimtin CCC'p, i.e., between points
s, t infon suchC'C triangles. Intersecting the segment-t with the two triangle
boundaries, we get thaties in a four sided polygon af-points, and hence, bisecting,

r is already in/on a triangle @f-points: i.e.; is in CCy already.
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Figure 5.10: In a three dimensional space, the sequential application of the between-
ness operator to four non coplanar points results in two distinct regions: the wire-frame
of a tetrahedron and the filled tetrahedron.

Figure 5.11: Applying convexity from the wire-frame to the full tetrahedron.

In 3D, the description fo€'Cy is different, because the two segments fordhe
points need not lie in the same plane. The outcome is that these points lie in/on a
4-hedron ofp-points. Now consider a generic poinin CCCp. It will lie in between
points in such 4-hedra. This situation is easier to picture: take the segment on which it
lies, and intersect that with the relevant faces of the 4-hedra. Then it is easy to see that
the pointr lies inside a 6-hedron whose vertices arpoints. But then, cutting this up
a number of times now, there is again a 4-hedro-gints in/on which we find-,
hence, it is inC'C'p already. QED

As a corollary, for real spaces, we can then define convex closure in our language
after all, usingC'C' combinations. Hence, a full dynamic language, no matter how
interesting, is not strictly needed. But for the moment we note the following fact.

5.1.4.FAcT. For any formulap, C™ is a convex set idR".

But there are dimension highlighters in our language after all. An old theorem from
almost a century ago [Helly, 1923] comes to the rescue:

5.1.5.THEOREM (HELLY). If K1, K>, ..., K,, are convex sets in-dimensional Eu-
clidean space&’”, in whichm > n + 1, and if for every choice of. + 1 of the sets

K; there exists a point that belongs to all the chosen sets, then there exists a point that
belongs to all the set&’|, Ks, ..., K,,.

This theorem does have a modal version;

n+1 m

A\ E(N\(C™es)) = E(/\ C"¢:)

A1, n+1}—{1,....m} =1 =1
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whereF is the existential modality (defined in terms of betweenness in Equation 5.2),
C™ is convexity appliech times (Fact 5.1.4), and is a function from{1,...,n + 1}
to{1,...,m}.

5.1.6.1 Digression: A proof in the projective plane

A convenient form of representing geometrical spaces is by homogeneous coordinates
of the projective plane. In homogeneous coordinates (see for instance [Foley et al.,
1990]), a point in am-dimensional space is representediby 1 elements of a vector.

For example, the origin of the plane is represented by

P =

= O O

Representing points and sets of points in this form we look at convexity with two goals:
one, to see the relation between bisimulations and convexity; two, to show formally that
(5.5) does not hold.

The convexity operator applied to the regions formed by two generic pfints
(x1,11,1), Po = (z2,y9,1) of the plane denotes the segment, with a slight mix of
notation between the language level and model level,

z1(1 — ¢) + xac
c(RJP) = | 1= o) +pec (5.6)
1

with ¢ € [0, 1]. In the following, we may abbreviat€ (P, |J P,) by Pi(1 — ¢) + Pac,
even though it is not precise from an algebraic point of view.

5.1.6.LEMMA (AFFINE BISIMULATIONS). Affine transformations imply affine bisim-
ulations.

Proof We sketch the proof for the two dimensional case. First a geometrical fact,
affinely transforming a poinf” is represented, in homogeneous coordinates, by the
pre-multiplication of a square matrix, =17 - P,

rin T2t
T = T21 T922 ty (57)
0O 0 1

where the uppet x 2 matrix is orthonormal, i.eZ"~' = T* and|T| = 1. For example,
if r7 = 1,m2 = 0,791 = 0,799 = 1 one gets a translation, while if, = 0,t, =
0,791 = 0,t, = 0 one gets a scaling.

First, we show that affine transformations imply bisimulations. Disregard the val-
uation function. A generic poin®, € P,—P; is related, via an affine transformation,
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to the pointI" - P,. We need to show that - P, € T'- P.—T - P,. We rewrite the last
membership relation &6 - P, = T - P;(1 — ¢) + T - Poc with ¢ € [0, 1]. Itis now a
matter of simple matrix manipulation and substitution with Equation (5.6) and (5.7) to
show that the latter equation holds. QED

Actually, there are reasons to suspect that the implication in the opposite direction
holds in a vast number of cases. For instance, both affine bisimulations and affine
transformations preserve convexity in a very similar manner.

5.1.7.FAcT. C¢ does not necessarily denote a convex set in two or more dimensional
spaces.

Proof We give a counter-example, see also Figure 5.12. Consider 3 ggintgs, Ps.

R
P -
128 ~ < _ SO .
P, R R PR R
(a) (b)

Figure 5.12: Convexity of a region made is not necessarily a convex region. In (a) itis
not, while in (b) it is.

A point of C'p is, for instance Py, = Pi(1 — %) + PQ%. If we consider all the points
betweenP;, and P; we see that they are (i iff the three points are collinear:

i(x1+x2+2:1:3) x1(1 —¢) + x9c

%1(?/1+y2+293) _ yi(1 —c) +yac

}1(21+22+223) Zl<1—C)+ZQC
1 1

has solutions ir iff the values of thery, 5y, y12;, 2{1,2) are pairwise linearly depen-
dent, i.e., iff the pointd;, P,, P; are collinear (Figure 5.12.(b)). QED

Finally, we consider what happens applying the convexity operator one more time.
5.1.8.FACT. C'Cp denotes a convex set in a three-dimensional space.
Proof If we apply convexity twice, we obtain
Z;
CCyp = CCLZJ g =
1
{P.| Vi, k,l,m, P.=(P;j(1—c1)+ Pecr1)(1 —c3) + (P(1 — ca) + Pca)cs}
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The expression of a point between any two generic points of the previod3.séX,
is

Py =((Pj(1 —c1) + Prer)(1 = ¢c3) + (Bi(1 = ¢2) + Prea)es)(1 — er)+
(P (1 = eq) + Prea)(1 = c6) + (Pi(1 = ¢5) + Prcs)Co )7 (5.8)

if P, belonged to the set df.. points, then it would have the form
P, = ((Pj(1 —dy)+ Ppdy)(1 —ds) + (P(1 — dg) + Pds)ds)(1 — dr) (5.9)

SubstitutingP, of Equation 5.9 into Equation 5.8 yields an over-determined system of
equations, which in turn is an identity. Therefore the sePgfpoints is a convex set.
QED

We believe this proof lifts to higher dimensions.

5.1.7 First-order affine geometry

The above modal language is again a fragment of a first-order one, under the standard
translation. The relevant first-order language is not quite that of Tarski's elementary
geometry forl??, as we also get unary predicate letters denoting regions. In fact, one
open question which we have not been able to resolve is this. A forpiglaP, @, ...)

is valid, say in the real plane, if it holds for any interpretation of the region®, ...

Thus, we would be looking at a universal fragment ofi@nadic second-order logic

What is the complete monadit} theory of the affine real plane?

We suspect it is recursively axiomatizable and decidable—perhaps using the Ehren-
feucht game methods of [Doets, 1987]. This is an extension of the affine part of
Tarski’s logic. But our previous discussion has also identified intereftiggnents

What is theuniversal first-ordetheory of the affine real plane?

As in our discussion of topology, the affine first-order language of regions is a natural
limit towards which modal affine languages can strive via various logical extensions.
From a geometrical viewpoint, one might also hope that ‘layering’ the usual language
in this modal way will bring to light interesting new geometrical facts.

Another major feature of standard geometry iseljeal status of points and lines
This would suggest a reorganization of the modal logic twa-sortedone stating
properties of both points and segments, viewed as independent semantic objects. There
are several ways of doing this. One would béws-dimensionaimodal language
in the spirit of [Marx and Venema, 1997], handling both points and pairs of points,
with various cross-sortal modalities. Another would treat both objects as primitives,
and then have cross-sortal modalities for “at an end-point,” “at an intermediate point,”
“at some surrounding segment.” We think the latter is the best way to go eventually,
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as it has the useful feature of replacing talk in terms of ternary relations, which are

hard to visualize, by binary ones, which are easier to represent. (This is of course
the key advantage of the geometer’s habit of working with points and lines.) More-

over, the two-sorted move would be in line with other modal trends sucdkrrasv

Logic [van Benthem, 1996, Venema, 1996], where transitions between points become
semantical objects in their own right. This gives more control over semantic struc-

tures and the complexity of reasoning. It would also help reflect geometrical duality

principles of the sort that led from affine to projective geometry.

5.2 Metric geometry

There is more structure to geometry than just affine point and line patterns. Tarski's
equidistance also capturesetric information. There are various primitives for this.
Tarski used quaternary equidistance—while ternary equidistance would do just as well
(z, y andz lie at equal distances). Our choice in this section is a different one, stressing
the comparative character of metric structure.

5.2.1 The geometry of relative nearness

Relative nearness was introduced in [van Benthem, 1983b] (see Figure 5.13):

N(z,y, z) iff yis closer tar thanz is, i.e.,d(z,y) < d(z, z)
whered(z, y) is any distance function

This is meant very generally. The functidncan be a geometrical metric, or some

z

Figure 5.13: From point, y is closer than point.

more cognitive notion of visual closeness (van Benthem'’s original interest; cf. also
Gardenfors ‘Conceptual Spaces’), or some utility function with metric behavior. Ran-
dell et al. [2001] develop the theory of comparative nearness for the purpose of robot
navigation, related to the earlier-mentioned calculus of regions RCC.

Relative nearness defines equidistance:

Eqd(z,y,z): =N(z,y,2) N ~N(z,z,y)
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Tarski’s quaternary equidistance is expressible in term$ ak well. Details are post-
poned until Section 5.2.3 on first-order metric geometry.
Affine betweenness is also definable in termgVofat least in the real spacé?’:

B(xyz) iff Va'~(N(y,x,2') A N(z,2', )
Finally, note that even identity of poinis= y is expressible in terms af
r=Y iff _\N(l’,l',y)

At the end of the XVIII century the mathematician Lorenzo Mascheroni proved in
his tractatelThe Geometry of Compasdest everything that can be done with compass
and ruler can be done with the compass alone. One can generate all of Mascheroni’s
constructions with the first-order logic of and thereby achieve geometry, as we il-
lustrate in Section 5.2.1.1.

The further analysis of this structure can proceed along much the same lines as the
earlier one for affine geometry. In particular, as a source of basic constraints, one is
interested in theniversal first-order theorgf relative nearness. Its complete descrip-
tion is an open question right now, but here are some examples showing its interest.
First, comparative nearness induces a standard comparative ordering. Onceza point
is fixed, the binary ordeN (z, y, 2) is irreflexive, transitive and almost-connected:

VaVyVzvu : (N(z,y,2z) A N(z,z,u)) — N(z,y,u)) (transitivity)
VaVy : =N(z,y,y) (irreflexivity)
VaVyVzVu : N(x,y,z) — (N(z,y,u) V N(z,u, z)) (almost-connectedness)

These are like the principles of comparative order in logical semantics for counterfac-
tuals [Lewis, 1973]. But additional valid principles are more truly geometrical, relating
distances from different standpoints. These are the followiaggle inequalities

VaVyVzVu : N(x,y,z) ANN(z,z,y) — N(y,z,2)
VaVyVzVu : =N (z,y,2) AN —=N(z,z,y) — = N(y,z, 2)

These seem pretty universal constraints on comparative nearness in general. Further
universal first-order properties &f reflect the two-dimensionality of the plane. Just
inscribe 6 equilateral triangles in a circle, and see that

on a circle with radiusg, the largest polygon that can be inscribed of points
at distance' has6 vertices.

This upper bound can be expressed in universal first-order form, because we can ex-
press equidistance in terms®t Other principles of this form concern the arrangement
of points on circles:
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on a circleC, any point has at most two points at each of its ‘equidistance
levels’ onC'

and

circles with the same radius but different centers intersect in at most two
points.

To obtain the complete universal first-order theory of comparative nearness in the
Euclidean plandR?, one would have to guarantee a planar embedding. Do our gen-
eral axioms, including the triangle inequalities, suffice for axiomatizing the complete
universal theory oéll Euclidean spacef&?

5.2.1.1 Geometrical excursus: Mascheroni, Voronoi, and Delaunay

Having the predicate of comparative nearness is like having a compass. One is able to
draw circles, but does not know their radius. (Think of having a map with no scale on it
and to start comparing distances by using the compass alon€()zlfy, =) holds, we

know that the pointg are those contained in the circle centered invhose radius is

given by the distancé(z, z). Via the defined notion of equidistance we can also refer

to the circumference of the regions. This allows us to look at modal and first-order
nearness geometry through some classical theorems in geometry.

Mascheroni’'s geometry of compas$. one can define circumferences via equidis-
tance and one can ‘do’ all basic geometrical constructions with the compass alone via
Mascheroni constructions, then the logic of comparative nearness must be able to ex-
press all basic geometrical constructions.

VAYAY,
WAVA

Figure 5.14: The construction of a regular hexagon via Mascheroni’s construction.
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Here is an example. Let us construct a regular hexagon usiny tieéation alone,
see Figure 5.14.

P1 # P2 # P3 # Pa F D5 # Do/

E(c,p1,p2) N E(c,pa2,p3) N E(c,ps3,pa) AN E(c,pa,05) N E(c, p5,p6) N
E(p1,pa,¢) A E(p2,p3, ¢) A E(p3, pa, ¢) A E(pa, ps, ¢) A E(ps, ps, ¢) —

E(pﬁa b1, C) (5.10)

In the first line of Equation 5.10, we identify six disjoint points. . . ps. In the second
line, we constrain the six points to lie on the same circumference centereBimally,
we build circles of the same radius as that centeredhat connect the points pairwise.

As aresult, the six segments—ps, po—ps, ps—Pp1, Pa—Ps, Ps—>Pe, pe—p1 define a
regular hexagon. The technique generalizes for the other geometrical constructions.

Voronoi diagrams.Imagine having a set of marked points scattered in space. Then
consider the partitioning of the space in regions, one for every marked point. A region
is defined as the set of points that are closest to the marked point than to any other
one. The Voronoi diagram of the marked points is the union of all the boundaries
of such regions, [Voronoi, 1908]. An example of the Voronoi diagram of four points
p1, P2, P3, P4 ON the plane is depicted in Figure 5.15.(a). The definition of a Voronoi

P

pg. p;-‘"'

(@) (b) (c)

Figure 5.15: (a) The Voronoi diagram of four points on the plane. (b) The circles
connecting neighboring points. (c) Delaunay triangulation.

region, also calledell, is, at a closer look, given in terms of comparative nearness.
Following this intuition, we define a cell of the poins= {py, pa, ..., px} in terms of
the nearness relation:

k

cell (p,p) < /\ N(pi,p, i)
{i=1,i#l}

The interpretation is that is in the cell of the poinp; if it is closer top, than to any
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other of the points inP. The whole Voronoi diagram is then:

k

k k
diagram (p, P) < \/ \/ E(p,pi, pm) N /\ N(pi, p, p;)
I=1 {m=1,m#l} {7=1,m#j#l}

A point p is in the Voronoi diagram of the set of poinksif it is equidistant from two
given points and it is closer to these two points than to any other one of tlit set

Delaunay triangulationBy connecting with segments the pointsi@fwvhich share an

edge in the Voronoi diagram, one obtains a graph. The operation is called Delaunay
triangulation, [Delaunay, 1934]. If one thinks of the pointsfofas the vertices of a
polyhedron, then the Delaunay triangulation gives a procedure to partition the poly-
gon into tetrahedra. In Figure 5.15.(c) the Delaunay triangulation of four points on
the plane. To express this in terms of the comparative nearness operator, we use the
property that there are no points Bfinside a circle circumscribing the three vertex of

a Delaunay triangle.

Delaunay (p, P) <«
k k k
\/ \/ \/ E(phpmac)/\E(pm7pn7c>/\E(pn7plac)/\
=1 {m=1,m#l} {n=1,n#m}
k
/\ N<p17 C, p])/\

{j=1,j#l,mn}
(B(p, 1, pm) V B, Prms Pn) V. B(D, Py 1))

The construction is a bit laborious. One begins by constructing the circle passing for
any three given points aP. The center of such circle is If the circle contains no

point of P different fromp;, p,., p., then the three points form a Delaunay triangle.
The triangle is then defined by its three sides, which we denote via the betweenness
operator. Figure 5.15 shows the construction of the Voronoi and Delaunay triangulation
stepwise for four points of the plane. We remark that the definitions given here are
completely general and apply also to more than two dimensions. In three dimensions
for instance, via Delaunay triangulation, one partitions the space between the points of
P into a number of disjoint tetrahedra.

5.2.2 Modal logic of nearness

The ternary relation of comparative nearness lends itself to modal description, just like
ternary betweenness. We will just briefly sketch the resulting logic, which is like our
affine system in its broad outline. But the intuitive meaning\olso adds some new
issues of its own.
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5.2.2.1 Modal languages of nearness

First, one sets

M,z E (NYp, v iff Jy,z: MyEyvAM,zE o AN(z,y,2)

The universal dual is also interesting in its spatial behavior:

v vy

X

(@) (b)

Figure 5.16: Interpreting a modal operator of nearness and its dual.

M,z = [N]o,viff Vy,z: N(z,y,2) AM,y = —¢ — M,z =

Dropping the negation, one gets an interchangeable version with the following intuitive
content:

if any pointy around the current pointsatisfiesy, then all points: further
out must satisfy).

Moreover, there are obviowgrsatileversions of these modal operators, which look at
the same situation in a different way. For instance, using one of these in its universal
version, we can also express the appealing statement that

if any pointy around the current pointsatisfiesp, then all points: closer
to z must satisfy).

See Figure 5.17 for an illustration. Finally, note that this language defines an existential
modality (assuming the mild condition theég : N(z,x,y) V x = y):

Epiff o V(N)(T,¢)

Without the stated condition, this existential modality will only range over connected
components.
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Figure 5.17: Versatile interpretation of the dual of a modal operator of nearness.

5.2.2.2 Modal logics of nearness

Modal logics of nearness again start with universally valid principles, with distribution
as the prime example:

(N)(pV1,8) < (N)(p, &) V(N)(¥,8)
(N)(p, v VE) = (N)(p,9) V(N)(p,§)

Universal constraints of earlier kinds will return as special axioms. Here is an example:

(N) (@, ) A =(N)(p,0) AN (W, 90) ANY (1, €) — (N)(,€)  (transitivity)

In the above definition the two clausesN)(p, ¢) and —=(N)(¢, 1)) are necessary

to ensure that and+ can be true only at a fixed distance from the current point.
Omitting them results in an invalid principle, as it may very well be the case that
(N)(p, ) A(N) (W, ) AN —(N) (&, p) if ¢ is true at points at different distances from
the current one. Another example of a universal constraint is almost-connectedness:

(N) (@, ) A =(N)(p,0) A (N (¥, ¥0) A EE — (N)(p,€) V(N) (&, ¥)

(almost-connectedness)

Irreflexivity seems harder to define (as usual in modal logics), but see below.

Special logics of nearness arise by looking at special structures, or at least, im-
posing more particular constraints. These can again be computed by correspondence
techniques. In a similar way, one can modally expressgrtaegle inequalities But in
fact, there is a more general observation to be made here. Note that our language can
define thatp holds in a unique point:

Elgiff E(o A —~(N)(e,¢))
Now observe the following.

5.2.1.PROPOSITION Every universal first-order property @f is modally definable.
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Proof Every such property is of the form
Vay ... Vo : BO(N(z, x5, x1))

where BC' stands for any Boolean combination of nearness atoms. Now take proposi-
tion lettersp,, . . . p,, and write

E'pi A+ A Elp, — BO(N#(xy,25,21))

where N#(z;, z;, 1)) is defined asE(p; A (N)(p;,px)). It is evident that this is a
modal frame correspondent. QED

This explains the definition of the triangle inequalities. Moreowegflexivity (whose
first-order definition is/xVy—N(z,y,y)) is definable after all by

Elpi N Elpy — =E(p1 A (N)(p2, p2))

5.2.2.3 Modal extensions

Useful modal extensions of the base language are partly as in the affine case. But there
is also a novelty. In describing patterns, one may often want to say something like this:

for everyp-point aroundz, there existsome closer)-point.

Now this is not definable in our language, which uses uniféi or AA quantifier
combinations. Mixing universal and existential quantifiers is more like temporal ‘Un-
ti languages. Speaking generally, we want a new operator:

M,z = (NP) (@, ) iff Yy(M,y = ¢ — 32(N(z,y,2) A M,z = 1))

The general logic of this additional modality over a ternary relation is a bit more
complex with respect to distribution and monotonicity behavior—but it can be axiom-
atized completely, at least minimally, over all abstract models.

Indeed, this universal-existential pattern is reminiscent of other modal logics nat-
urally involving ternary frame relations. One exampleédamporal logicof Since and
Until, which involves moving to some point around the current point in time, and then
saying something about all points in between. One existential-universal variant of the
preceding modality would indeed be a kind of spatial Until, stating that some point on
a circle around the current point satisfieswhile all points in the interior satisfy.

This is almost a metric analogue of the topological Until operator in Section 4.2.2, but
the latter should have the whole circle boundary satjsfyvhich requires one more
universal modality over equidistant points.

Another intriguing analogy is with a typical modal logic over comparative near-
ness, viz.conditional logic The latter is mostly known in connection with counter-
factuals and default reasoning [Lewis, 1973, Nute, 1983, Veltman, 1985]. In general
conditional logic, one crucial binary modality reads

¢ = 1 iff every closestp-world is ¢
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This satisfies the usual Lewis axioms for conditional semantics in terms of ‘nested
spheres’ (cf. [van Benthem, 1983a]):

=9 —op=>9PVE
p=UvANp=E—op=>1PNAE

=P Np=>E>pANb=¢
p=YPNE=Y o pVE=TY

(V) =)V (=((pVy)=E) V(Y=

The interesting open question here concerns modal-conditional reflections of the addi-
tional geometrical content of th¥ (z, y, z) relation. Lewis’ complete system is just
about ordering properties of comparisons from some fixed vantage point. This shows
in the fact that there are no significant axiomsiterated conditionalsvhich require

shifts in vantage point. What is the conditional logic content of the triangle inequali-
ties?

5.2.3 First-order theory of nearness

As for the complete first-order theory of relative nearness, we have no special results
to offer, except for the promised proof of an earlier claim.

5.2.2.FACT. The single primitive of comparative nearness defines the two primitives
of Tarski’'s Elementary Geometry in first order logic.

Proof The following defines betweenness (see Figure 5.18):

Byxz) iff =32" . N(y,2',2) AN N(z,2', )

/1IN

Figure 5.18: Defining betweenness via nearness.

X

y X z

This allows us to define parallel segments in the usual way, as having no intersec-
tion points on their generated lines.

x2'|lyy' —=3c: B(wa’c) A Blyy )N
-3¢ : B(dxx’) A Bleyy )N
=3c": Blwex’) A Blycy')
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Then, one defines equal segment length by
0z, y, 2, u) iff 3y"+ zullyy’ A zylluy’ A =N(u,z,y) A =N (u,y'2)

Intuitively, one moves one segment on the other matching end-points and preserving
length via parallel lines. Then state that the other end-points are at the same distance
from the joined point. See the depiction in Figure 5.19. QED

Figure 5.19: Equidistance in terms of betweenness.

Apart from this, much of our earlier discussion concerning affine first-order geometry
applies. Incidentally, no claim is made here for the originality of this approach per se.
There are many systems of logical geometry which have similar richness. A case in
point is the axiomatization of constructive geometry in [von Plato, 1995].

5.3 Linear algebra

Our final example of modal structures inside a spatial theory is different in spirit from
either topology or standard geometry. Connections betweear algebraand spatial
representation are well-known from a major qualitative visual theory,methemati-
cal morphology Our treatment follows the lines of [Aiello and van Benthem, 1999]—
and especially [van Benthem, 2000], which also has further details. (A different con-
nection between mathematical morphology and modal logic is found in [Bloch, 2000],
which also includes a fuzzy version.) The flavor of this brand of spatial reasoning is
different from what we had before—but similar modal themes emerge all the same.
Mathematical morphology, developed in the 60s by Matheron and Serra, [Math-
eron, 1967, Serra, 1982], underlies modern image processing, where it has a wide va-
riety of applications. Compared with classical signal processing approaches it is more
efficient in image preprocessing, enhancing object structure, and segmenting objects
from the background. The modern mathematics behind this involves lattice theory:
[Heijmans, 1994]. Logicians may want to think of ‘linear algebras’ [Girard, 1987], an
abstract version of vector spaces:
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5.3.1.DEFINITION (LINEAR ALGEBRA). (X,M, L, L, —o,x,0,1) is alinear algebra
if

() (X,m,u,L,)is a lattice with bottomL;
(i) (X,x,1)is a monoid with unitl;
(i) if z <2,y <y, thenzrxy <z'xy andz’ —oy <z —y/;
(V) exy < ziff z <y —o z;
(V) 7= (x — 0) — 0 forall .

In line with our spatial emphasis of this chapter, we will stick with concrete vector
spacesR” in what follows. Images are regions consisting of sets of vectors. Math-
ematical morphology provides four basic ways of combining, or simplifying images,
viz. dilation, erosion openingandclosing These are illustrated pictorially in Fig-
ure 5.20. Intuitively, dilation adds regions together—while, e.g., erosion is a way of

(b) (€) (d) (e)

Figure 5.20: (a) Regiond and B, elements of the vector spadé?; (b) dilating A by
B; (c) erodingA by B; (d) closingA by B; (e) openingA by B.

removing ‘measuring idiosyncrasies’ from a regidrby using regionB as a kind of
boundary smoothener. (B is a circle, one can think of it as rolling tightly along the
inside of A’s boundary, leaving only a smoother interior versiordof More formally,
dilation, orMinkowski addition® is vector sum:

A@B={a+blac Abe B} dilation
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This is naturally accompanied by
AcoB={ala+be A Ybe B} erosion
Openings and closing are combinations of dilation and erosions:

the structurabpeningof A by B (AeB)® B
the structuratlosingof A by B (AeB)e B

In addition, mathematical morphology also employs the usual Boolean operations
on regions: intersection, union, and complement. This is our third mathematization of
real numberdR™ in various dimensions, this time focusing on their vector structure.
Evidently, the above operations are only a small sub-calculus, chosen for its computa-
tional utility and expressive perspicuity.

5.3.1 Mathematical morphology and linear logic

The first connection that we note lies even below the level of standard modal languages.
The Minkowski operations behave a bit like the operationgropositional logic Di-

lation is like a logical conjunctiorp, and erosion like an implicatior—, as seems

clear from their definitions (‘combining aA and aB’, and ‘if you give me aB, | will

give anA’). The two were related by the followingsiduation law

AeBCCIiff ACB—C

which is also typical for conjunction and implication (cf. also clause (iv) in Defini-
tion 5.3.1). Thus;— is a sort of inverse tep.

5.3.1.1 Resource logics

There already exists a logical calculus for these operations, invented undeultne
plicative linear logicname in theoretical computer science [Troelstra, 1992], and inde-
pendently as theambek calculus with permutation logical linguistics, cf. [Kurton-

ina, 1995]. The calculus derives ‘sequents’ of the fotm. .., A, = B where each
expressiom, B in the current setting stands for a region, and the intended interpreta-
tion, in our case, says that

the sum of thed’s is included in the region denoted 33/

Here are the derivation rules, starting from basic axioms- A:
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X=A4 V=5 X, A,B=C
XY= AeB X AeB o= C (product rules)
A X =18 X=A B)YY = C

X=A—B XA_SBYSC (arrow rules)

e tat ol AY=P, (structural rules)

T permutaton cu

Derivable sequents typically include:

AJ/A— B=10B (‘function application’)
A—BB—C=A—(C (‘function composition’)

Here is an example of a derivation, just for the flavor of the system:

A=A B=1B

AJ/A— B=210B C=C
AAA— B, B—C=C
A—BB—C=A—C

Another key example are the two ‘Currying’ laws, whose proof uses ties:

(AeB) — (C = (A— (B—())
(A— (B—C))=(AeB) — C

This calculus is best understood in termsr@$ources Think of each premise in an
argument as a resource which you can use just once when ‘drawing’ the conclusion.
In standard logical inference, the premises form a set: you can duplicate the same
item, or contract different occurrence of it without any change in valid conclusions.
This time, however, the premises fornbag, or multi-set of occurrences: validating

only ‘resource-conscious’ versions of the standard logical laws. E.g., ‘Modus Ponens’
A,A — B = Bisvalid, but its variantd, A, A — B = B is not: there is one
unused resource left. A correct, and provable sequent using the latter resources is:

AAA—B=AeB

Or consider the classically valid sequeht(A — (A — B)) = B. Here the above
calculus only proves!, (A — (A — B)) = A — B, and you must supply one
more resourcel to derive

AA(A— (A— B)) = B.

Y



5.3. Linear algebra e 95

The related categorial grammar interpretation for this same calculus reads the prod-
uct e as syntactic juxtaposition of linguistic expressions, and an implicatiea~ B
as a function category taking-type to B-type expressions. The same occurrence-
based character will hold: repeating the same word is not the same as having it once.
The major combinatorial properties of this calculiis are known, including proof-
theoretic cut elimination theorems, addcidabilityof derivability in NP time. More-
over, there are several formal semantics underpinning this calculus (algebraic, game-
theoretic, category-theoretic, possible worlds-style [van Benthem, 1991a]). Still, no
totally satisfying modeling has emerged so far.

5.3.1.2 Linear logic as mathematical morphology

Here is where the present setting becomes intriguing: mathematical morphology pro-
vides a new model for linear logic.

5.3.2.FACT. Every spaceR™ with the Minkowski operations is a model for &lL -
provable sequents.

This soundness theorem shows that every sequent one derilés must be a
valid principle of mathematical morphology. One can see this for the above examples,
or other ones, such as the idempotence of morphological opédingB) & B:

((AeB)eB)eB)@B=((AeB)® B)

In LL, the opening iSA — B) e A, and the idempotence law is literally derivable
using the above rules:

(A— B)eA= (A— ((A— B)eA))e A
(A—((A— B)eA)eA)= (A — B)e )

The list might even include new principles not considered in that community. The
converse seems an open completeness question of independent interest:

Is multiplicative linear logic complete w.r.t the class of &t'’'s?
Or even w.r.t. two-dimensional Euclidean space?

Further, mathematical morphology laws ‘mix’ pure Minkowski operatiens— with
standard Boolean ones. E.g. they include the factthat— (B N C) is the same as
(AUB) — C = (A — C)Nn (B — (). This requires adding Boolean operations:

X, A= B X, A, = B X=A X=15B
X, ANnC =B X,CNA=1B X=ANB
X=A X=A X, A= B X,C=1~B

X=AUB X=BUA X, AuC =B
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Note the difference between the two conjunctions. Produabd intersection have

some similarities, but the rules are different. E.4.— (B e C') does not derive

(A — B)e (A — (), or vice versa. Conversely, dot product satisfied the ‘Curry

laws’, but(A N B) — C'is certainly not derivably equivalent ol — (B — ().

All these observations tally with known facts in mathematical morphology. Indeed, the

extended calculus is still sound—while its completeness remains an open question.
The Boolean operations look a bit like the *additives’ of linear logic, but they also

recall ordinary modal logic, which is where we are going now.

5.3.2 Richer languages

Evidently, the basic players in an algebra of regions in a vector space are the vectors
themselves. For instance, Figure 5.20.a represents the rdgasma set of 13 vectors
departing from the origin. Vectors come with some natural operations, such as binary
addition, or unary inverse—witness the usual definition of a vector space. A vector

in our particular spaces may be viewed as an ordered pair of peints with o the

origin ande the end point. Pictorially, this is an arrow frosrto e. Now this provides

our point of entry into modal logic.

5.3.2.1 Arrow logic

Arrow logic is a form of modal logic where the objects are transitions or arrows, struc-
tured by various relations. In particular, there is a binary modalityctomposition

of arrows, and a unary one faonverse The motivation for this comes from dy-
namic logics, treating transitions as objects in their own right, and from relational
algebra, making pairs of points separate objects. This allows for greater expressive
power than the usual systems, while also lowering complexity of the core logics (see
[Blackburn et al., 2001, van Benthem, 1996] for overviews). Consider in particular the
pair-interpretation, with arrows being pairs of poifis, a. ). Here are the fundamental
semantic relations:

composition C(a,, a.)(bo, be)(Co, ce) iff a, = by, ac = c., andb, = c,,
inverse R(a,,ae)(b,,b.) iff a, = b, anda, = b,,
identity 1(a,, a.) iff a, = a..

An abstract model is then defined as any set of arrows as primitive objects, with
three relations as above, and a valuation function sending each propositiom ketter
the set of the arrows where propertrolds.

5.3.3.DEFINITION (ARROW MODEL). An arrow modelis a tupleM = (W,.C, R, I,
vysuchthaC CW x W x W, RCW xW,I CW,andv: W — P.
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Such models have a wide variety of interpretations, ranging from concrete models in
linguistic syntax to abstract ones in category theory [Venema, 1996]—but of relevance
to us is the obvious connection with vector spaces. Thinkajz asx = y + z, Rzy

asr = —y and/z asz = 0. To make this even clearer, we use a modal arrow language
with proposition letters, the identity elemahtmonadic operators, —, and a dyadic
operator®. The truth definition reads:

M,z =p iff aev(p)

M,z =0 iff Iz

M,x = —p iff Jy: RryandM,y k¢

M,z | - iff not M,z =

M,z EpVvy iff MaxlEgeorMzkE=y

M,x=A®eB iff Jydz: CayzAM,y=AANM,z=B
M,z =AeB iff VYyVz: CyzzAM,z=A— M,y =B

This system can be studied like any modal logic. For the basic results in the area, we
refer to the above-mentioned publications.

5.3.2.2 Arrow logic as linear algebra

Most modal topics make immediate sense in linear algebra or mathematical morphol-
ogy. E.g., the above models support a natural notidnismulation

5.3.4.DEFINITION (ARROW BISIMULATION). Let M, M’ be two arrow models. A
relation=C W x W’ is anarrow bisimulationiff, for all =, 2’ such thatr = z’:

base x € v(p) iff 2’ € V/(p),

C-forth Czyz only if there are)/z’ € W’ such thatC'z'y' 2/, y = ' andz = 2/,
C-back C’x'y’2' only if there areyz € W such thaCzyz, y = 3 andz = 2/,
R-forth Rzxy only if there arey’ € W’ such thatR'z'y’ andy = v/,

R-back R’z'y’ only if there arey € W such thatRzy andy = v/,

I-harmony [z iff I'2’.

Arrow bisimulation is a coarser comparison of vector spaces than the usual linear trans-
formations. It preserves all modal statements in the above modal arrow language, and
hence provide a lower level of visual analysis in linear algebra similar to what we have
found earlier for topology, or geometry.
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Next, logics for valid reasoning also transfer immediately. Here is a display of the
basic system of arrow logic:

(Vi) BE— (pVo)DE (5.11)
PO W VE <« (pdd)V(p®E) (5.12)
—(pVY) = —pV—y (5.13)
pANW e —yYa(EA(-YBy) (5.14)

These principles either represent or imply obvious vector laws. Here are some conse-
qguences of (5.13), (5.14):

~(=4) & ~(~4)
—~(A+B) < —B+-A
A+-(-A+-B)— B

The latter ‘triangle inequality’ is the earlier rule of Modus Ponens in disguise. On

top of this, special arrow logics have been axiomatized with a number of additional
frame conditions. In particular, the vector space interpretation makes composition
commutativendassociativewhich leads to further axioms:

A®DB— BdA commutativity
A (B (C)«— (A® B)® C associativity

These additional principles make the calculus simpler in some ways than basic arrow
logic. The key fact about composition is now the vector law

a=b+c iff c=a-0

which derives the triangle inequality. And there are also expressive gains. E.g., the
modal language becomes automatically ‘versatile’ in our earlier sense.

Again the soundness of the given arrow logic for vector algebra is clear, and we can
freely derive old and new laws of vector algebra. But the central open question about
arrow logic and mathematical morphology is again a converse:

What is the completaxiomatizatiorof arrow logic over the standard vec-
tor spacedR™?

In particular, are there differences of dimensionality that show up in different arrow
principles across these spaces?

Continuing with earlier topicgxtendinghe basic modal language of arrows also
makes sense. E.g., in general arrow logic there may be many identity arrows, while in
vector space there is only one identity elem@nto express this uniqueness, we need
to move to some form of modadlifference logiqcf. Chapter 4). Also, in mathematical
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morphology, one finds a device for stating laws that are not valid in general, but only
when we interpret some variables as standing for single vectors. An example is:

(X)) —Y=(X-Y), (MM-form)
B—(A+t)e (B—A)+t (LL-form)

From right to left, this id.L derivable as the general laf — X)eY = S —

(X eY). The converse of this is ndtL derivable, but it only works whel is a
singleton{t¢}. In the latter case, we have the special principle> (S + {t}) — {t},

which we have to ‘inject’ into an otherwise filhé. derivation to get the desired result.
This trick is exactly the same as using so-cahedhinalsin extended modal logics, cf.
[Areces, 2000], which are special proposition letters denoting just a single point. Other
natural language extensions include an infinitary version of the addition modality
allowing us to close sets tmear subspaces

Thus, the two fields are related, not just in their general structure, but also in their
modus operandi, including tricks for boosting expressiveness. Of course, one would
hope that thalgorithmic content of arrow logics also makes sense under this connec-
tion, including its philosophy of ‘taming complexity’.

5.3.2.3 A worry about complexity

Issues of decidability and complexity have been largely ignored in this thesis. But one
part of the ‘modal program’ is the balance between moderate expressive power and
low complexity for various tasks: model checking, model comparison, and logical in-
ference. In particular, arrow logics were originally designed to make the spectacular
jump from undecidability in standard relational algebra to decidability. What happens
to arrow logics in mathematical morphology? Even though the logic of the standard
models appears to be effectively axiomatizable, i.e., recursively enumenadiesid-

ability is lurking! One bad omen is the validity of associativity, a danger sign in the
arrow philosophy (cf. [van Benthem, 1996]).

Resorting to the tiling techniques introduced in [Harel, 1983], by encoding the
problem of tiling thelV x IN grid in the arrow logic of vector spaces, one can show its
undecidability. The idea of the proof is that of considering a denumerable set of colors
C and a set of tile§" = {¢1,...,t;} (where each tile is a four-tuple of colors). Tiling
is defined as amap: IV x IN — T such that the colors on touching edges coincide.
The problem is known to be undecidable, [Robinson, 1971].
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The tiling problem is encoded in the arrow logic of vector spaces;as

reu=u®dr
T=u®dT whereu«t;V---Vi

T=r®T wherer«—t;V---Vi
l
/\ u—t, \/{tj|topCoI0t(ti) = bottomColoft;) }

=1

l
A\ r < t:©\/{t;lrightColort;) = leftColor(t;)}
=1

The argument to show undecidability becom@stiles IV x IV if and only if there
exists a non-trivial vector spad&® such thatl?* |= pr. The key of the proof is to
show that indeed it is possible to encode the tiling problem in terms of the arrow logic
of vector spaces with the formula,.

We may have gone overboard in our desire to express the truth about vectors. Thus,
the balance remains a continuing concern.

This chapter has shown modal structure in whichever direction one looks. There are
natural fine-structured modal versions of affine and metric geometry, and linear alge-

bra. These can be studied by general modal techniques—though much of the inter-
est comes from paying attention to special spatial features. The benefits of this may
be uniformity and greater sensitivity to expressive and computational fine-structure in

theories of space. As a pleasant side-effect, a number of open problems of expressivity,
complexity and complete axiomatization arise.



CHAPTER 6

A GAME-BASED SIMILARITY FOR IMAGE
RETRIEVAL

6.1 Introduction

Image retrieval is concerned with the recovering of elements from a collection of im-
ages according to some set of desired properties. The properties of images are related
to features which can be as diverse as textual annotations, color, texture, object shape,
and spatial relationships among objects. The way the features from different images
are compared, in order to have a measure of similarity among images, characterizes an
image retrieval architecture.

Though quite a young field of computer vision, image retrieval already counts nu-
merous frameworks, prototypes and commercial products. In [Smeulders et al., 2000],
a method for systematizing approaches to image retrieval and a unifying framework for
comparing systems is proposed. The work serves also as an excellent and up-to-date
overview of the field. A similar purpose is served by the book [Del Bimbo, 1999].

The kind of topological relationship among objects we focus on are those at the
gualitative level of mereotopology, that is, part-whole relations, topological relations
and topological properties of individual regions. Other image retrieval systems are
based on spatial relationships as the main retrieval feature. The work in [Tagare et al.,
1995] is founded on transformation of Voronoi diagrams and that in [Petrakis et al.,
2001] on graph matching. An older and known approach to image retrieval by spa-
tial relationship is in [Chang and Liu, 1984]. This work considers the projections of
regions onto two axes superimposed on the picture and simple interval relations over
the projections over the axes. The approach suffers from not being orientation invari-
ant and from the inability to deal with overlapping objects. On the positive side is
the compactness of the topological representation of spatial relationships (called 2D
strings). Other symbolic formalisms to handle qualitative topological relationships,
which have been deployed for image retrieval, are those presented in [Egenhofer, 1991,
Egenhofer and Franzosa, 1991, Del Bimbo et al., 1995]. Another trend in symbolic

101
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approaches to image retrieval are the knowledge based ones. Originally concerned with
the organization of knowledgattachedto the image, the field has more recently seen
efforts to organize and handle spatial informataitainedfrom the image. Such re-

cent systems [Russ et al., 1996, Aiello et al., 1999, Di Sciascio et al., 2000] make use
of description logics, a modern reasoning tool closely related to modal logics.

Following the agenda in [Smeulders et al., 2000], we set the boundaries of our ap-
proach to image retrieval in the context of this chapter. Smeulders et al. identify five
basic aspects of an image retrieval approach: image processing, features, interpreta-
tion and similarity, interaction, and system aspects. Here, we abstract from the image
processing and from the system aspects, that is, we do not consider how to process
images and extract features, nor how the images are stored and how systems are evalu-
ated. We concentrate on a specific sort of features, we define for it a precise similarity
measure and we consider only one set of modalities to interact with the system. Let us
be more precise. The features we are interested in are the topological configurations of
extended spatial entities and the topological spatial relations among different entities.
The similarity is assessed with respect to a game theoretic comparison of the features.
The interaction is based on query by example and query by sketch.

There are two requirements we desire to fulfill in our approach: on the one hand,
the system should be based on a formal framework the properties of which must be
well understood, on the other hand, the system should be actually implementable. The
first part of the thesis is the place to dig for tools in order to satisfy the first require-
ment. We have seen a number of modal formalisms to handle space of which we have
studied the formal properties such as their expressive power and their completeness.
The second requirement must also be handled with care. We not only need correct rep-
resentation and reasoning tools, we also need them to be compact and implementable.
By implementable we intend both that the reasoning procedures should be decidable
and should be decided in an amount of time acceptable for the average user. The in-
spiring model comes from the field of textual information retrieval (see for instance
[Baeza-Yates and Ribeiro-Neto, 1999, Witten et al., 1999]): our aim is having a com-
pact representations related to each picture such that all representations can be directly
and rapidly compared in the retrieval phase.

The language we choose to express the main spatial information of an image is
S4,, see Chapter 4. In the next section, we show why this language is adequate for
expressing basic topological properties of patterns by highlighting its mereotopological
strengths. Then we show how a similarity measure is built departing from the basic
formal tools of the topo-approach. We can then identify a compact representation for
images. Finally, we illustratlRIS , a prototype based on the framework proposed.

6.2 A general framework for mereotopology

In Section 4.1, we have extensively studied the properties of the extended modal lan-
guageS4, in the context of the topo-approach. Before putting the language in action
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on the task of image retrieval, we highlight its mereotopological expressive power. We
now bring evidence to the claim th&4, is a general framework for mereotopolog-
ical representation and reasoning. We also define our personal point of view on the
connection with RCC identified in [Bennett, 1995].

6.2.1 Expressiveness

The languagé&d4, is perfectly suited to express mereotopological concepts. The rela-
tion of parthoodP(A, B) of a regionA being inside the regio® holds whenever it is
the case everywhere thdtimplies B:

P(A,B) :=U(A — B)

This captures exactly the set-inclusion relation of the models. As for connégtion
regionsA and B are connected if there exists a point where héthnd B are true:

C(A,B) := E(AA B)

From here it is immediate to define all the basic eight RCC mereotopological predi-
cates. Referring to Figure 6.1, let us recall the RCC8 relations (which we know to be
definable in terms 084, [Bennett, 1995]):

Figure 6.1: The RCCS relations.
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e A, isDisconnected from B,

e A, isin External Connection with B,

e Az Overlaps with B,

e A, is Tangential P of B,

e A;isProper P of B,

e AgisEqual to B,

e A; contains tangentiallyTangential P 1) B,
e Agcontains Proper P~ !) B,

Notice that the choice made in definiRgandC is arbitrary. So, why not take a more
restrictive definition of parthood? Say, is part of B whenever the closure of is
contained in the interior aB?

P(A,B) := U(CA — OB)

As this formula shows$4, is expressive enough to capture also this definition of part-
hood. In [Cohn and Varzi, 1998], the logical space of mereotopological theories is sys-
tematized. Based on the intended interpretation of the connection predicate the
consequent interpretation bf(and fusion operation), a type is assigned to mereotopo-
logical theories. More preciselytgpeis a tripler = (i, j, k), where the first refers to

the adopted definition df;, j to that ofP; andk to the sort of fusion. The index re-
ferring to the connection predicatgeaccounts for the different definition of connection

at the topological level. Usin§4, one can repeat here the three types of connection:

C(A,B):= E(AA B)
Co(A,B):= E(AAOB) V E(CAN B)
Cs(A,B):= E(OA N OB)

Looking at previous mereotopological literature, one remarks that RCC seded-
inition, while the system proposed in [Asher and Vieu, 1995] usegs &imilarly to
connectedness, one can distinguish various types of parthood, again in te3)s of

P,(A,B):=U(A — B)
P,(A,B):=U(A — OB)
P3(A,B):=U(CA — OB)
In [Cohn and Varzi, 1998], the definitions of theare given directly in terms of topol-

ogy, and the definitions df; in terms of a first order language with the addition of a
predicateC;. Finally, a general fusiomn, is defined in terms of a first order language
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with aC; predicate. Fusion operations are like algebraic operations on regions, such as
adding two regions (product), or subtracting two regions. One cannot repeat the gen-
eral definition given in [Cohn and Varzi, 1998] at tG4, level. Anyhow, one can show

that various instances of fusion operations are expressible. E.g., the prodycB:

AxlB::A/\B
AxyB=(CAANB)V(ANOB)
A x3B:=(CAAOB)

Usually uniform theories are found in the literature, that is, theories that combine def-
initions of C;, P;, and x; with the same index. Though, there are some exceptions,
e.g, [Cartwright, 1975] uses@,, P, combination. Non uniform theories separate the
topological part from the purely mereological one requiring the definition of parthood
and connection to be independent. Cleafycannot be defined in terms 6f; if i # j.

The above discussion has shown t84f is a general language for mereotopology.
All the different typesr = (i, j, k) of mereotopological theories are expressible. In-
cidentally, notice that a mereotopological theory of space may combine definition of
parthood and connection with different indices. For instance, it is possible to have a
C1, P, mereotopological theory.

a First-Order Logic

Modal Fragment of
First-Order Logic

Figure 6.2: The positioning &4, and RCC with respect to well-known logics.

The languag&4, is a multi-modal language with nice computational properties. It
is complete with respect to topological models, it is decidable, it has the finite model
property. It captures a large and “well-behaved” fragment of mereotopology, though, it
is not a first-order language. In other words, it is not possible to quantify over regions.
A comparison with the best-known RCC is in order.

6.2.2 Comparison with RCC

RCC is afirst order language with a distinguished connection predigaiée driving
idea behind this qualitative theory of space is that regions of space are primitive objects
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and connection is the basic predicate. This reflects in the main difference between RCC
and the proposed system, which on the contrary builds on point-based topology.

RCC andS4, capture different portions of mereotopology.

To show this, two formulas are given: an RCC formula which is not expressilgé,in
and, vice-versa, one expressibleS4,, but not in RCC. The situation is depicted in
Figure 6.2. In RCC, one can write:

VA3B : P(A, B) (@)

meaning that every region is part of another one (think of the entire space). On the
other hand, one can write a formula such as:

U(p < <Op) ()

which expresses the regularity of the regjorit is easy to see that is not expressible
in S4, and thats is notin RCC.

This fact may be misleading. It is neither the motivations, nor the core philo-
sophical intuitions that draw the line between RCC &4J. Rather, it is the logical
apparatus which makes the difference. To boost the similarities, consider again how
the main predicates of RCC can be expressed wiiifin Indeed one can define the
same predicates as RCC8. However, as remarked before the nature of the approach is
quite different. Take for instance the non tangential part predicate. In RCC it is defined
by means of the non existence of a third endity

NTTP(A, B) iff P(A, B) A —=P(B, A) A =3C[EC(C, A) AEC(C, B)]

On the other hand, i®4, it is simply a matter of topological operations. As in the
previous table, foNTTP(A, B) it is sufficient to take the interior of the containing
regiond B, the closure of the contained regi®m and check if all points that satisfy

the latter® A also satisfy the formen B.

6.3 Comparing spatial patterns

At the beginning of the chapter, we introduced the problem of image retrieval and its
relying on similarity measures. Then, we advocated the adequ&s#, afs a general
language of mereotopology. We take the view that one shouldbdséo talk about
spatial patterns in the context of image retrieval. Now there is a technical question.
How does one answer questions suchMsen are two spatial patterns the same?
When is a pattern a sub-pattern of another ona¥d, most importantijslow different

are two spatial patterns?
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6.3.1 Model comparison games distance

The answer to these questions comes from looking at the tools of the topo-approach
with a different twist. Consider the definition of topo-bisimulation and topo-game,
Definition 4.1.2 and Definition 4.1.5. Topo-bisimulations are an equivalence relation,
so one may very well use them to define identity of patterns. Via simulations, one can
also consider issues of a pattern being a sub-pattern of another one. Then, topo-games
were introduced as a refining notion of topo-bisimulations. Therefore, one may use
topo-games to define a measure of difference among spatial patterns. Think of it this
way. The less it takes Spoiler to win a game, the more different must the spatial patterns
be, the moraunsimilar. On the opposite, the longer Duplicator can resist, the more
similar are the spatial patterns. In the limit, if Duplicator can resist forever, i.e., in the
infinite round game, the two patterns are topologically bisimilar. Now comes the tech-
nical problem. Topo-games are defined as a way of comparing two given topological
models, exactly in the spirit of the original definition of first-order model comparison
gamesa la Ehrenfeucht-Fiag, but we need a similarity measure on the whole class
of models; we need a measure that behaves uniformly across all mod8i, for

The first intuition on turning model comparison games into a similarity measure
may be misleading in a pessimistic direction. To get to a similarity measure, we need
to define a distance in terms of topo-games. Distances require considering more than
just two models at a time. Consider, for example, three models and the three model
comparison games that can be played. The formulas, the points and open sets picked
in the three games may be completely unrelated one game from each other, therefore,
one may be discouraged and conjecture that model comparison games are not related
across different models of the same class.

Even though the remark on the unrelatedness of the strategies for different games
is true. It turns out that there is still an interrelation between model comparison games
over two given models and the whole class. Most importantly, the relation can be
defined to satisfy the three properties defining a distance measure. Here is how.

6.3.1.DEFINITION (ISOSCELES TOP@DISTANCE). Consider the space of all topo-
logical modelsT'. Spoiler's shortest possible wis the functionspw : 7' x T —
IN U {oc}, defined as:

(. if Spoiler has a winning strategy iiG(X1, X», n),
but not inTG(Xy, Xo,n — 1)
spw(Xy, Xo) =
oo if Spoiler does not have a winning strategy in
TG(X, Xy, 00)

Theisosceles topo-model distance (topo-distaf@eshor) betweenX; and X, is the
functiontmd: T x T — [0, 1] defined as:

1

tmd(X, Xo) = X %)
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Figure 6.3: On the left, three models and their relative distance. On the right, the
distinguishing formulas.

The distance was named ‘isosceles’ since it satisfies the triangular property in a pecu-
liar manner. Given three models, two of the distances among them (two sides of the
triangle) are always the same and the remaining distance (the other side of the triangle)
is smaller or equal. On the left of Figure 6.3, three models are displayed: a spoon, a
fork and a plate. Think these cutlery objects as subsets of a dense space, such as the
real plane, which evaluate g while the background of the items evaluates:to The
isosceles topo-distance is displayed on the left next to the arrow connecting two mod-
els. For instance, the distance between the fork and the spgasirise the minimum
number of rounds that Spoiler needs to win the gam i3o see this, consider the
formula £O¢, which is true on the spoon (there exists an interior point of the region
associated with the spoon) but not on the fork (which has no interior points). On the
right of the figure, the formulas used by spoiler to win the three games between the
fork, the spoon and the plate are shown. Next the prooftthdtis a distance function,

in particular the triangular property, exemplified in Figure 6.3, is always satisfied by
any three topological models.

6.3.2.THEOREM (ISOSCELES TOPOMODEL DISTANCE). tmd is a distance measure
on the space of all topological models.

Proof tmd satisfies the three properties of distances; i.e., faKall X, € T
(l) tmd(Xl, XQ) >0 andtmd(Xl,Xg) = 0 iff X1 =Xy

(ll) tmd(Xl, XQ) = tmd(Xg,Xl)
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(i) tmd(X1, Xo) + tmd(Xa, X3) > tmd (X1, X3)

As for (i), from the definition of topo-games it follows that the amount of rounds that
can be played is a positive quantity. Furthermore, the interpretatidi ef X, is that
the spacesY;, X, satisfy the same modal formulas. If Spoiler does not have a w.s.
in lim,, .., TG(X1, Xo,n) then X;, X, satisfy the same modal formulas. Thus, one
correctly gets

tmd (X, X2) = lim 1 0.

n—oo N,

Equation (ii), since for allX;, Xs, thenTG(X1, Xo,n) = TG (X3, X1,n).

As for (iii), the triangular property, consider any three mod&ls X,, X3 and the
three games playable on them,

TG<X17X27n)7 TG(X27X37n)7 TG(X17X37n) (61)

Two cases are possible. Either Spoiler does not have a winning strategy in all 3 games
(6.1) for any amount of rounds, or he has a winning strategy in at least one game.

If Spoiler does not have a winning strategy in all the games (6.1) for any number
of roundsn, then Duplicator has a winning strategy in all games (6.1). Therefore, the
three models satisfy the same modal formukagy, — oo, andimd — 0. Trivially,
the triangular property (iii) is satisfied.

Suppose Spoiler has a winning strategy in one of the games (6.1). Via Theo-
rem 4.1.6 (adequacy), one can shift the reasoning from games to formulas: there exists
a modal formulay of multi-modal rankmn such thatX; = v and.X; = —v. Without
loss of generality, one can think efas being in normal form:

v=\V AFU(¢sa) (6.2)

This last step is granted by the fact that every formplaf S4, has an equivalent
one in normal form whose modal rank is equivalent or smaller to that’ofLet ~*
be the formula with minimal multi-modal depth* with the property:X; = +* and
X; E —*. Now, the other modeX, either satisfies* or its negation. Without loss
of generality, X, = ~* and thereforeX; and X are distinguished by a formula of
depthm*. SupposeX; and.X; to be distinguished by a formufaof multi-modal rank
h <m*: X; = fandX; = —f. By the minimality ofm*, one has thak; = [, and
hence,X; and X, can be distinguished at depth As this argument is symmetric, it
shows that either

e one model is at distancg; from the other two models, which are at distance
(<L), or
I \— m*/?

LIn the proof, the availability of the normal form is not strictly necessary, but it gives a better impres-
sion of the behavior of the language, see Section 4.1.
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e one model is at distanc§ from the other two models, which are at distance

L (< 1) one from the other.

It is a simple matter of algebraic manipulation to check that! andh, m* (as in the
two cases above), always satisfy the triangular inequality. QED

The nature of the isosceles topo-distance triggers a question. Given three spatial mod-
els, why is the distance between two pairs of them always the same?

First an example, consider a spoon, a chop-stick and a sculpture by Henry Moore.
It is immediate to distinguish, viand, the Moore’s sculpture from the spoon and from
the chop-stick. The distance between them is high and the same. On the other hand, the
spoon and the chop-stick look much more similar, thus, their distance is much smaller.
Mereotopologically, it may even be impossible to distinguish them (null distance).

In fact one is dealing with models of a qualitative spatial reasoning language of
mereotopology. Given three models, via the isosceles topo-distance, one can easily
distinguish the very different patterns. In some sense they are far apart as if they were
belonging to different equivalence classes. Then, to distinguish the remaining two can
only be harder, or equivalently, the distance can only be smaller.

The division in classes of equivalence and the isosceles nature of the topo-distance
should not be interpreted as the topo-distance having only a finite number of values.
In general, the distance between any two patterns can be any value betwee% 1 and
with n € IN. One way of seeing this is considering two non-equivagftformulas.

Such formulas can be chosen of any modal depth. Therefore, the distance could have
any value in the intervgD, 1]. What is true is that the distribution of the values is not
linear in the interval0, 1], but rather it becomes increasingly more dense towards

6.4 Computing similarities

The definition of a distance based on model comparison games is an important step,
but how can we complete our journey towards practice? We need to compute the topo-
distance. First, we give a general methodology, then we provide an algorithm for the
concrete case that is of most interest to us.

6.4.1 Methodology

A general methodology for the computation of the topo-distance among two topo-
modelsM, N might work as follows. First, one translates the topo-modélsV into
equivalent Kripke models (as we did in Section 2.1.3), then one checks the models
for traditional bisimilarity [Dovier et al., 2001]. If the models are not bisimilar, one
checks all the points for which a bisimulation can not be established. The inverse of the
minimal modal depth of the formulas distinguishing these points is the topo-distance.
An alternative and more direct approach is that of relating the points in the topolog-
ical spaces. The worry with topological semantics might be an exponential explosion
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due to the number of open sets (rather than the accessibility relation for ordinary Kripke
models). Still, one might measure input complexity in terms of both points and opens,
and still get a polynomial time algorithm to compute the topo-distance.

Here we shall not enter into the details of such general methods for computing
topo-distance, but rather concentrate on a specific case of practical interest.

6.4.2 Polygons of the plane

We make an ontological commitment to finite polygons of the real plane. This is com-
mon practice in various application domains such as geographical information systems
(GIS), in many branches of image retrieval and of computer vision, or in robot plan-
ning, just to mention the most common.

Consider the real plan&?, any line inI?? cuts it into two half-planes. We call a
half-planeclosedif it includes the cutting lineppenotherwise.

6.4.1.DEFINITION (REGION). A polygonis the intersection of finitely many open and
closed half-planes. Aatomic regionof IR?? is the union of finitely many polygons.

An atomic region is denoted by one propositional letter. More in general, any set of
atomic regions, simply callegégion, is denoted by &4, formula. The polygons of
the plane equipped with a valuation function, denotedMby-, are in full rights a
topological model as in Definition 2.1.1, a basic topological fact. A similar definition
of region can be found in [Pratt and Lemon, 1997]. In that article Pratt and Lemon also
provide a collection of fundamental results regarding the plane, polygonal ontology just
defined (actually one in which the regions are open regular).

From a model theoretic point of view, the advantage of working With: is that
we can prove a logical finiteness result and thus give a terminating algorithm to com-
pute the topo-distance between any two regions.

6.4.2.1 Finiteness

In general, there are infinitely many non equival®dtformulas and one can identify
appropriate Kripke models to show this (cf. [Blackburn et al., 2001]). In Section 3.4.1,
however we have seen how finite unions of convex intervals of the real line yield a finite
number (64) of modally different formulas (Theorem 3.4.10). Similar results (though
with a larger upper bound) hold for the plane where in place of intervals one considers
rectangles, cf. Section 3.4.4. The further extension needed here is to move from such
rectangles to generic polygons with a finite number of sides.

First, let us consider an example. Figure 6.4.a shows a model composed of two
closed polygons: one denoted bgnd one by;. Relevant points of the union of these
two polygons are those on the frontiers, on the intersections of the frontiers and in the
interiors of each polygon. A distinguishing formula of minimal modal rank true at each
of these relevant points is shown in Figure 6.4.b.
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Figure 6.4: (a) A simple polygonal model of the plane; (b) relevant formulas.

Given the limitation on finiteness of the number of polygons of the space in our
definition of a polygonal model of the plane, one can get a grasp of why there are only
finitely many definable formulas. We shall not give a precise proof here: it would go
more or less like the one in Section 3.4.4, but now taking oblique orientations into
account, instead we sketch some concrete steps toward the result.

6.4.2.LEMMA (FINITENESS). There are only finitely many modally definable subsets
starting from any finite set of regions viewed as atoms.

We work by enumerating cases, i.e., considering Boolean combinations of planes,
adding to an ‘empty’ space one half-plane at the time, first to build one regiand

then to build a finite set of regions. The goal is to show that only finitely many pos-
sibilities exist. We begin by placing a closed half plane denoted by an empty
bidimensional space, Figure 6.5.a. Let us follow what happens to points in the space
from left to right. On the left, points satisfy the formula. This is true until we reach

the closed frontier point of the half-plane, whete A &G—r A r holds. Left of the
frontier, the points satisfy the formuta—r. Similarly the formulas are defined for the
negate region in Figure 6:5a, notice that this time the polygon is open. In fact, by
considering negation the rolesoand—r switch. Consider now a second plane in the
picture:
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Figure 6.5: Basic formulas defined by one region

e Intersection: the intersection may be empty (no new formula), may be a poly-
gon with two sides and vertices (no new formula, the same situation as with one
polygon), or it may be a line, the case of two closed polygons that share the
side (in this last case depicted in Figure 6.5 $pike—we have a new formula,
namely,r A OO—r).

e Union: the union may be a polygon with either one or two sides (no new for-
mula), two separated polygons (no new formula), or two open polygons sharing
the open side (this last case depicted in Figure-h5-crack—is like the spike,
one inverts the roles and—r in the formula:—r A O$r).

Finally, consider combining cases (a) and (b). By union, we get Figure 6.5.a, 6.5.c,
6.5.d. The only situation bringing new formulas is the latter. In particular, the point
where the line intersects the plane satisfies the formaiar A &(r A OO—r). By
intersection, we get a segment, or the empty space, thus, no new formula.

The four basic configurations just identified yield no new configuration from the
S4, point of view. To see this, consider the Boolean combinations of the above config-
urations. We begin by negation (complement):

-0 . HLEEL
I —|a. -b I —|a,—|b I -d

Union straightforwardly follows (where a stands for both a aiagl as both configura-
tions always appear together):
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The table for intersection follows, with the proviso that the combination of the two
regions can always be empty (not reported in the table) and again-acaack repre-
sented simply by a:

Ia ‘b I‘c rd

N
I alab,cd b a,b,c| ab,d
‘ b b b b b
I‘c a,b,c b |abrcdabcd
?d a,b,d b |ab,cdab,cd

We have thus gave a taste for the finiteness of the polygons of the real pl&¥ But

we have designed the whole topo-distance for the richer langagd his extension

is not a problem. Recalling the availability of a normal form #®4, (Section 4.1),

one sees that the finiteness result simply extends. The formulas above are simply pre-
ceded by an existential operator stating the existence of such a point in the model. For
instance in case a we havBdr, E(Or A O—r Ar), andE(O-r).

Since the information related to a region is finite, we can compactly represent it.
We calltopo-vectorassociated with the region notationr, an ordered sequence of
Boolean values. The values represent whether the regsaisfies or not a fixed se-
guence ofS4, formulas:

| EOr | EO—r [ ... [ E(-r ADOr) [ ... [ E(CO-7r AO(or AOOT)) |

The formulas are those identified in Figure 6.5 preceded by an existential operator. For
example, the topo-vector associated with a plate—a closed sgiratke plane—is:

| true| true| ... | false| ... | false]

Adding half-planes with different denotations, r3, ... increases the number of de-
fined formulas. The definition of topo-vector is extended to an eftige model.
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The topo-vector is built such that the modal rank of the formulas is not decreasing
going from the positions with lower index to those with higher. The size of the topo-
vector grows by - 2¢, wherec is a constant value andis the number of the regions
in the model. This might seem a serious drawback. But then, the topo-vector has
to store all the information relevant @4, about the model. Furthermore, its size
is often considerably smaller than that of the whole topological model. As a final
consideration, one should add that in practical situations the size of topo-vectors still
remains manageable.

6.4.3 The topo-distance algorithm

The topo-vector is a compact representation of a spatial pattern. One way of seeing
this is the following. Take any spatial pattern. Reduce it to the smallest topo-bisimilar
model, using the technique of Section 2.1.3. Consider all definable formulas from the
proposition letters present in the pattern and consider whether each formula is true
somewhere in the reduced model. This information is collected in the topo-vector.

Before giving an algorithm to compute the topo-vector #dg:, and in turn the
topo-distance, let us reconsider the example of Figure 6.4. The regiontributes
to the topo-vector only with three possible behaviors. Either the points are outside
of it O—gq, or they areg points. In the latter case all these points are also inSide
and one only distinguishes the case for which the points are in the interior or on the
boundary. For the regionthere is a bit more variety, because there is a spike. The
spike contributes because it yields a non regular portion, and because it intersects a
regular region. Summarizing, the topo-vector for the region looks like this:

E(@OrAQq) | E(Or AO=q) | E(O-r AQq) | E(O-r AO-q)
true (7) true (4) false true (0)

rA—-OOr Adg | r A—=OOr Ald—g
false true (6)

where we have marked the point satisfying the part of the formula after the existential
operator. The name of the points refers to Figure 6.4.

Next we present the algorithm to compute the topo-vector for a generic pattern of
M2 with respect td54,. Given anM 2 model M, topo-vector( M) returns the
topo-vector associated with .
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topo-vector( M)
v« initialized to all false values
loop on regions r of M with index 1
loop on atomic regions a of r(i) with index  j
loop on vertices v of a(y) with index &
update ¢ with the A O[-]g information
update ¢ with the point v(k)
if v(k) is not free
update ¢ with the A O[-]g information
loop on intersections xz of a(j) with all
regions of M with index [
update ¢ with the point x(1)
return o

—

return v

If a pointv(k) of an atomic regioru(j) is contained in any polygon different from
a(7) and it is not contained in any other region, then the conditith) is not

free is satisfied. Standard computational geometry algorithms exist for this task,
[de Berg et al., 2000]. When thaupdate o with the point p” function is
called, one checks in which cages (as shown after Lemma 6.4.2), then one consid-
ers the position in the topo-vector corresponding to the formula satisfied by the point.
Then one sets the values for that entry to ttu&/hen the tipdate ¢ with the

A\ O[—]¢” function is called, one checks in the interior of which regions the current
point is and updates accordingly theg;; A O—-gs A ... formulas (e.g., those for the
points 0, 4, 7, and 11 in Figure 6.4.

Consider again the simple model of Figure 6.4, repeated in Figure 6.6 for con-
venience. After initialization, the regionis considered and one starts looping on
the vertices of its polygons, first the point 1. The poinfree , it is the vertex of
a full polygon (not a segment) and therefore the topo-vector is updated with a true
value in the positions correspondingfigdr A O—q), E(r A $r A O—r A O-g), and
E(O-r A O-q). The points 2 and 3 update the values for the same formulas and thus
have no effect. The point 4 falls inside the first polygon-othe topo-vector does not
need update. Intersections are then computed and the point 5 is found. The point needs
to update the vector for the formula(<&0Or A O(r A =OOr) A O-g). The point 6 is
considered and the point needs to update the forthgtar —~<Or A O—q). The algo-
rithm proceeds by considering the second regioand its vertices 8, 9, and 10. The
three vertices all fall inside the regierand provide for the satisfaction of the formulas
E(Or AQg), E(Or AOg A <$Ong), andE(Or A O-q).

2An obvious optimization to the algorithm is to avoid checking points for which all the associated
entries are already set to true.
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Figure 6.6: Computing the topo-vector on a simple model.

The final goal is to have an algorithm to compute the topo-distance not simply the
topo-vector. One can compute the topo-distance among two models by comparing the
respective topo-vectors. Here is the algorithm taking as inpufMige modelsiM, M,
and outputting the value of the topo-distance between them.

topo-distance( My, M)
v; « topo-vector ( M)
vy « topo-vector ( M)
align v; and v,
I()ﬂ) on v; v with index 7
if (i) # 53(0)
return
return 0

1
modal rank (vi(z))

The idea is to retrieve the topo-vectors associated with the two input models and then
loop over their elements. The inequality check can also be thought okais aince
the elements of the array are Booleans. If the condition is never satisfied, the two topo-
vectors are identical, the two-models are topo-bisimilar and thus the topo-distance is
zero. Thealign command makes the topo-vectors of the same length and aligns the
formulas of the two in a way such that to the same index in the vector corresponds the
same formula. If a topo-vector contains a formula that the other one does not, the entry
is added to the vector missing it with a false value.

The basic properties of the topo-distance algorithm are the following.

6.4.3.LEMMA (TERMINATION). The topo-distance algorithm terminates.

The property is easily shown by noticing that a segment (a side of a polygon) can have
at most one intersection with any other segment, that the number of polygons forming
a region ofM - is finite, and that the number of regionsdf: is finite.
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6.4.4.LEMMA (CORRECTNESS. For anyM, N € Mp:, topo-distance( M, N)
= k iff the actual topo-distance betweéh and N is k.

Proof First, consider the case of bisimilar models.Mf and N are topo-bisimilar,
by Definition 6.3.1 the topo-distance(is By Theorem 4.1.3, if the models are topo-
bisimilar they satisfy the same modal formulas, thapp-vector( M) andtopo-
vector( N) are identical, which in turn means thapo-distance( M,N) =0.

As for the other direction, if théopo-distance( M, N) = 0 then the topo-
vectors are identical. But since the topo-vectors comprise all non-equivalent modal
formulas forM and N, and since they are finite, Theorem 4.1.3 may be applied to
the finite bisimulation contractions. That is, the latter models are topo-bisimilar. By
Definition 6.3.1, if the models are topo-bisimilar, then topo-distance is

Second, consider the case in which the models are not topo-bisimilar. The idea is
similar. One uses the adequacy theorem for model comparison topo-games in place of
the theorems for topo-bisimulations.

If the distance betweei and N is k& > 0, by Definition 6.3.1, Spoiler has a
winning strategy in any game of length at Ie%st By Theorem 4.1.6, all the en-
tries for the formulas of modal depth smaller th,?in thetopo-vector( M) and
topo-vector( N) must be the same. Since the topo-vectors comprise all non-
equivalent modal formulas fa¥/ and N, there must be an entry for at least one modal
formula of depth% which differentiate the two topo-vectors allowing Spoiler to win.

By the topo-distance algorithm, this means tiogo-distance( M,N) = k.

As for the other direction, suppose that topo-distance( M,N) =k >0,
then the topo-vectors must be identical for all entries associated to formulas of modal
depth smaller thar%, and there must be a difference for at least one entry associated
with a formula of modal deptl%. Since the topo-vectors comprise all non-equivalent
modal formulas of minimal modal rank fav/ and V, the differentiating formula of
minimal modal rank forM/ and N has modal ranI%. By Theorem 4.1.6, this means
that Spoiler's shortest winning strategy needs exai:ttpunds. By Definition 6.3.1,
the latter implies that the topo-distance betw@émnd N is k. QED

By Lemma 6.4.3 and Lemma 6.4.4, we obtain the following result.

6.4.5. THEOREM (DECIDABILITY OF THE TOPO-DISTANCE). In the case of polygo-
nal topological modeld/- over the real plane, the problem of computing the topo-
distance among any two models is decidable.

Given our further definitions, and the connection between Duplicator’s winning strate-
gies in infinite topo-games and topo-bisimulations, (cf. [Barwise and Moss, 1996]), we
also have the following result.

6.4.6.COROLLARY (DECIDABILITY OF TOPO-BISIMULATIONS).In the case of polyg-
onal topological models over the real plane, the problem of identifying whether two
models are topo-bisimilar is decidable.
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6.5 The IRIS prototype

The ultimate step toward practice of the spatial framework presented in the chapter is
the actual implementation of the similarity measure in a prototype. The topo-distance
is a building block of an image retrieval system, nantels | mageRetrl eval based
on Spatial relationships, coded in Java and enjoying a Swing interface (Figure 6.8). An
overview of the programming behinRIS with the presentation of the most relevant
source code passages can be found in Appendix C.

The actual similarity measure is builtiRIS to both index and retrieve images on
the basis of:

(i) The spatial intricacy of each region,
(i) The binary spatial relationships between regions, and
(i) The textual description accompanying the image.

Referring to Figure 6.7, one can get a glimpse of the conceptual organizatidrsof

A spatial model, as in Definition 2.1.1, and a textual description (central portion of
the figure) are associated with each image of the collection (on the left). Each topo-
logical model is represented by its topo-distance vector, as built by the algorithm in
Section 6.4 and by a matrix of binary relationships holding between regions. Simi-
larly, each textual description is indexed holding a representative textual vector of the
text (right portion of the figure). In Figure 6.8, a screen-shot fi®1s after query-

ing a database of about 50 images of men and cars is shown. On the top-right is the
window for sketching queries. The top-center window serves to write textual queries
and to attach information to the sketched regions. The bottom window shows the re-
sults of the query with the thumbnails of the retrieved images (left to right are the most
similar). Finally, the window on the top-left controls the session.

We remark again the importance of moving from games to a distance measure
and of identifying the topo-vectors for actually being able to implement the spatial
framework. In particular, iIHRIS once an image is placed in the database the topo-
vector for its related topological model is computed, thus off-line, and it is the only data
structure actually used in the retrieval process. The representation is quite compact
both if compared with the topological model and with the image itself. In addition,
the availability of topo-vectors as indexing structures enables us to use a number of
information retrieval optimizations, [Frakes and Baeza-Yates, 1992].

6.5.1 Implementing the similarity measure

In IRIS , the similarity measure is built on three components:

1
similarity(l,, I;) = k—(kif’p°~ dropo(1y, 1) + k2 - do(1y, I;) + K- diexi(1,, 1))

n
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Figure 6.7: The organization &RIS together with the indexing data structures.

wherel, is the query image (equipped with its topological model and textual descrip-
tion), I; is the j-th image in the visual database®®, k2, and k' are user defined
factors to specify the relative importance of topological intricacy, binary relationships
and text in the querying process, is a normalizing factordiope(1,, Z;) is the topo-
distance between, andl;, dy(,, [;) anddwx(,, ;) are the distances for the binary
spatial relationships and for the textual descriptions, respectively. In the context of
IRIS , the textual component is considered independent of the two spatial ones, while
the binary relationship and the topo-distance are also independent. In fact, the compar-
ison of the topological configuration of a given region does not affect the comparison
of its relations with other regions (it does not matter if a region is open regular or a
spike when considering if it is contained in another region or not). The user defined
factorsk serve for experimentation purpose. So one can experiment with the relevance
of a factor in the retrieval process. Ideally, one should find the perfect balance between
the three components of the similarity measure and then fix these three parameters
once and for all (or fix them for a specific domain).

The entire Section 6.4 is concerned with the computatiafgf( /,, /). The topo-
distance component is simply:

diopo( 14, 1;) = topo-distancé-ved,), t-ved;))

The second componed(,, I;) of the similarity measure accounts for the binary
spatial relationships between objects. When an image is indexed, a matrix is built.
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Figure 6.8: The result of querying a database of men and cars.

This is a square matrix whose indices range over the regions present in the model.
The generic entry; ; of the matrix represents the spatial relationship between region

¢ and regionj and can be one of the following: disconnected, externally connected,
overlap, equal, tangential part, non-tangential part, and the inverses of the last two
(RCC8). Following [Egenhofer, 1997], we define a topological distance using RCC8
in the following way. Any two relations are at distancef there is a path of length

n in the graph in Figure 6.9 connecting the two nodes representing the relations. Our
distance is slightly different from that in [Egenhofer, 1997] since we use a modification
of its original graph, though the underlying idea is the same. In the similarity measure,
one compares matrice$la,, Ms):

dp(1y, I;) = b(b_matrix(1,), b_-matrix(I;))

where bhmatrix(1;) is the matrix of binary s8 relations associated with the regions
identified in thej-th image.

The third and last componetix(Z,, Z;) of the similarity measure deals with tex-
tual annotation. The motivation comes from captions accompanying images in paper
documents or present ‘near’ images in hyper-media documents. We employ quite stan-
dard textual information retrieval techniques, see for instance [Frakes and Baeza-Yates,
1992], and therefore omit further explanation of this part of the similarity measure be-
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Figure 6.9: The binary relationships graph.

half for the standard definition of ‘textual distance’ between two image descriptions:

weightedoccurrence@extvector(],), text vector/;))

diext(1,, I;) = (1
text(£g: ;) = ( length(text.vector(/,))

)

where textvector(/,) is the list of meaningful words found in the description of the
j-th image, weighteaccurences counts the number of instances of a word appearing
in two textual vectors weighted by a factor indicating the indexing power of the word.
A word is more powerful if it discriminates more, which in turns means that it occurs
in less descriptions in the whole collection of image captions. &h&!,, ;) follows

a common way of defining a cosine distance among word vectors, see for instance
[Witten et al., 1999].

6.6 Discussion

There are two abstractions on the idea of topo-distance that are worth noticing:

1. the transformation of model comparison games into distance measures for lan-
guages different frons4,,

2. the extension of the framework topo-bisimulation, topo-game, topo-distance to
modal spatial languages more expressive than the sig#le

1. The theoretical framework proposed is much more general than what we have shown
here. We were interested in a mereotopological framework and have therefore used the
languageS4, interpreted on topological models, but an isosceles distance can be used
for any modal language equipped with negation, for which one has adequate notions
of model comparison games and bisimulation. Even the restriction to modal logic
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is not necessary, one can think of first-order logic, of the usual Ehrenfeudst-ra
games, of elementary equivalence in place of bisimulation, and an isosceles distance
is then definable. The decidability result for the distance is the only thing that does
not necessarily extend, rather one has to consider the class of models and the logic
case by case. Of particular importance is then how the adequate topological games are
defined. The technique employed in Theorem 6.3.2 for the langs4gs, as we have

just mentioned, much more general. A question interegterge but out of the scope

of the present dissertation, is: which is the class of games (over which languages) for
which a notion of isosceles distance holds? We believe the class of such languages and
model comparison games to be quite vast.

2. The second abstraction step is, in some sense, an instance of the previous one. The
idea is to take the framework topo-bisimulation, topo-game, topo-distance, algorithm
to compute the distance to more expressive languagesS#hanThe starting point is

then to identify an appropriate language of, say, qualitative shape with adequate model
comparison games. Then a newer versiorlRIS can be built. We have seen a
number of modal languages more expressive ®éntogether with adequate notions

of model comparison games in Chapter 4 and 5. All these languages are excellent
candidates for extendindrlS . The difficulty of the extension will mostly lie in the
identification of efficient algorithms to compute the various distance measures.

A separate remark regarding experimentation is in order. Having implemented a sys-
tem based on the topo approach is also an important step in the presented research. Ex-
perimentation is essential to asses applicability, but some preliminary considerations
are possible. We have noticed that the prototype is very sensible to the labeling of
segmented areas of images, i.e., to the assignment of proposition letters to regions. We
have also noticed that the mereotopological expressive power appears to enhance the
quality of retrieval and indexing over pure textual searches, but the expressive power
of S4, is still too limited. Notions of qualitative orientation, shape or geometry appear

to be important, especially when the user expresses his desires in the form of an image
guery or of a sketch.

All'in all, the idea of designing a spatial similarity measure based on formal model
comparison games is both intriguing and rewarding from the intellectual point of view.
Though, the gap between our implemented system and actually practical systems is still
to be filled. There is no indication that the topo-distance gives human-intuitive mean-
ings to the similarity of images, because a numerical distance can hide very different
types of visual distinction.

Another major concern is the following. The system proposed may result to be
very brittle when experimenting on real world images segmented automatically. The
misclassification of a region, or the misinterpretation of a boundary, not to mention
noise in the original image, can have a devastating impact on the values of the similarity
measure. Solutions to fill these gaps between our system and more effective ones are
bound to involve some genuine extensions of our pure topological framework.






CHAPTER 7

THICK 2D RELATIONS FOR DOCUMENT
UNDERSTANDING

7.1 Introduction

When Dave placed his own drawing in front of the ‘eye’ of HAL—in 2001: A Space
Odyssey—HAL showed to have correctly comprehended and interpreted the sketch.
“That’s Dr. Hunter, isn't it?” [Rosenfeld, 1997]. But what would have happened if
Dave used the first page of a newspaper in front of the eye and started discussing its
contents? Considering HAL a system capable of Al, we expect HAL to recognize the
document as a newspaper, to understand how to extract information and to understand
its contents. Finally, we expect Dave and HAL to begin a conversation on the contents
of the document. In short, HAL has to be able to perfa@lmcument image analysis

Document image analysis is the set of techniques to recover syntactic and semantic
information from images of documents, prominently scanned versions of paper docu-
ments. An excellent survey of document image analysis is provided in [Nagy, 2000]
where, by going through 99 articles having appeared in the IEEE’s Transactions on
Pattern Analysis and Machine Intelligence (PAMI), Nagy reconstructs the history and
state of the art of document image analysis. Research in document images analysis is
useful and studied in connection with document reproduction, digital libraries, infor-
mation retrieval, office automation, and text-to-speech.

One may have different goals when performing document image analysis. For
instance, one may be in interested in the reconstruction of the reading order of a docu-
ment from its image. One way to achieve this is by performing the following interme-
diate steps. First, one identifies the basic components of the document, the so-called
document objectsSecond, one identifies the logical function of the document objects
within the document (e.qg., title, page number, caption). This is cédigdal label-
ing. Last, one infers the order in which the user is to read the document objects. This
phase is called theeading order detectionln the process, one moves from basic ge-
ometric information of the document composition, thgout structure to semantic

125
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information, thdogical structure document objects and their spatial arrangement are
prototypical examples of elements of the layout structure, while the reading order is an
instance of the logical structure.

In Figure 7.1, we illustrate possible flows of information in document image analy-
sis. The first row represents the flow from the documentimage to its reading order. The
following row represents the flow from the image to the identification of the document
class. Discovering to which scientific publication belongs a given document image is
an example of document classification. One should interpret the arrows in the figure
as possible choices. It is perfectly normal to move from one row to another, or to stop
the analysis at the layout structure level. For example, systems for mail delivery do not
need to perform any document classification, or reading order detection.

Layout Structure Logical Structure
Input
Syntactic Intermediate Semantic Semantic
Document Logical Reading
Objects Labeling Order
—_— Detection Detection
Layout Genre Document
Detection Identification Classification

Document
Image

Figure 7.1: Various tasks in document image analysis and understanding. Left to right,
from input data towards semantic content.

The first document image analysis systems were built to process documents of a
specific class, e.g., forms for telegraph input. One of the recent trends is to build
systems as flexible as possible, capable of treating the widest variety of documents.
This has led to categorize the knowledge used in a document image analysis system
into: class specific and general knowledge (e.g., [Cesarini et al., 1999]). In addition,
such knowledge can be explicitly available or implicitly hard-coded in the system.

Lee and Choy [2000] present a system to analyze technical journals of one kind
(PAMI) based on explicit knowledge of the specific journal. The goal is that of region
segmentation and identification (logical labeling). The knowledge is formalized in
“IF-THEN” rules applied directly to part of the document image and “IF-THEN” meta
rules. Though the idea of encoding the class specific knowledge of a document is
promising, it is not clear whether the proposed approach is scalable and flexible. Given
the specific form of the IF-THEN rules, the impression is that the system is not suited
for the analysis of documents different from PAMI. Experimental results show good
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performance in the task of logical labeling, especially in the detection of formulas and
drawings embedded in the main text.

There are a number of problems related to the rule based approaches found in the
literature. The most prominent is the high specificity of the rules. The specificity makes
it hard or impossible to extend such systems to documents of a class different from the
one for which the system was originally designed. Another problem is the lack of
proof of correctness or termination. Recent rule-based approaches for layout and log-
ical structure detection are presented in [Klink and Kieninger, 2001, Lee et al., 2000,
Niyogi and Srihari, 1996] while an older one is [Tsujimoto and Asada, 1992].

Given the difficulty in designing appropriate rules for the analysis of documents,
approaches based on learning are interesting. The document classification components
of the WISDOM++ system [Altamura et al., 2001] are based on first-order learning al-
gorithms [Esposito et al., 2000]. Another advantage of such systems is their flexibility
compared to the non-learning based systems. By training the system on a different
class of documents with similar layout, it should be possible to reuse the same archi-
tecture. On the negative side, the rules learned are not intuitive. More often than not,
these rules are impossible to modularize for further use on different document classes.

An important aspect of a document image analysis system working at the logi-
cal structure level is the representation of the information extracted from the docu-
ment. The key here is a modularity and standardization of the representation. Markup
languages are a good example of representation means with such qualities. The sys-
tem presented in [Worring and Smeulders, 1999] uses HTML as its final output form,
while [Altamura et al., 2001] uses XML. More abstract representations are labeled and
weighted graphs. These have been used in various systems such as, for instance, the
ones presented in [Li and Ng, 1999, Cesarini et al., 1998, Walischewski, 1997].

As we are investigating practical applications of spatial reasoning formalisms, it
is relevant to review approaches using these kind of formalisms. In particular, we
consider bidimensional extensions of Allen’s interval relations, that is, rectangular
relations. To the best of our knowledge, bidimensional Allen relations have been
used in document image analysis in three cases [Klink et al., 2000, Singh et al., 1999,
Walischewski, 1997]. In all these approaches, bidimensional Allen relations are used
as geometric features descriptors, at times as labels for graphs and at other times as
layout relations among document objects. Thus, the use of Allen relations is relegated
to feature comparison and it is not used for performing any other kind of reasoning.

We present a methodology based on inference with bidimensional qualitative spa-
tial relations for logical structure detection of document images. In particular, the
methodology addresses the issue of detecting the reading order in documents from an
heterogeneous collection without using any document specific knowledge.

The methodology is implemented in a prototype system naGpaRe (Spatial
Reasoning component) part of a larger architecture for logical structure detection in
a broad class of documents. In the next section, we give an overview of the architec-
ture. In Section 7.3, we describe the methodology based on the concept of document
encoding rule and of thick boundary interpretation of bidimensional Allen relations.
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Section 7.4 is dedicated to the experimental results and their discussion. Directions for
future work and a discussion of the methodology are presented in Section 7.5.

7.2 Alogical structure detection architecture

In [Todoran et al., 2001a], we presented a logical structure detection architecture. De-
parting from a pre-processed document image the goal of such an architecture is that
of logically labeling the document objects and subsequently identify the reading order.
The system uses general document knowledge only, hence, it is applicable to docu-
ments of different classes.

(0]
g
= Trained document object General document Language of the document
2 classifiers encoding rules (language corpora)
X
. Y Y Y
g § SpaRe Natural language
BS Logical labeling spatial reasoning processing
1) IS module module module
o)
O
bochy_of_tex F
: e ) Fem) (2 =]
g = [ —— +
e %

Spatialy i
Preprocessed image Labeled layout admissible Rffg:g
read. orders

Figure 7.2: The flow of knowledge and data in the logical structure detection architec-
ture presented in [Todoran et al., 2001a].

Referring to Figure 7.2, one has a glimpse of the architecture presented in [Todoran
et al.,, 2001a]. The input is a pre-processed document image in which the document
objects have been segmented, local textual content recognized and font information
identified. The original document can be of any class as long as it is acceptable that
document objects are represented by rectangles. Overlapping document objects are
accepted by the system.

There are three modules: a logical labeler, a spatial reasoning reading order de-
tector, and a natural language processing ‘disambiguator’. logical labeling on the pre-
processed image is achieved via pre-trained classifiers.

The spatial reasoning module starts from the logically labeled layout of the doc-
ument and, using general document encoding rules, it outputs a number of reading
orders. The module is the subject of the remainder of the chapter.
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The natural language processing module starts from the spatially admissible read-
ing orders and the textual content of each one of the textual document objects. It
uses this information to prune the set of spatially admissible reading orders of those
which are linguistically not acceptable. This is performed by applying a combination
of statistical methods and shallow parsing techniques. The statistical tools are trained
on a large corpora of text. The training corpora is based on [Hersh et al., 1994] and
[Baayen et al., 1995] which are independent from the document classes analyzed. De-
tails of this module are presented in [Todoran et al., 2001b].

The output of the system is a reading order for the input document image. To
be more precise, the output is a list of reading orders for the document ranked in
order of linguistic plausibility (a probability is assigned to each reading order). Ex-
perimental results on each module and on the whole system have been presented in
[Aiello et al., 2000, Todoran et al., 2001b, Todoran et al., 2001a].

7.3 Methodology

We focus on the spatial reasoning module of the architecture presented in the previous
section. Figure 7.3 is a zoom-in of the spatial reasoning component in Figure 7.2 high-
lighting details. First, the generic document knowledge in the form of document en-
coding rules may have different origins. Second, the spatial reasoning ntuhafe,

is actually composed of two sub-modules. The first one, which performs inference
on the spatial relations of the layout and on the document encoding rules, is based
on constraint satisfaction techniques. The second one is a module to sort graphs, that
is, directed transitive cyclic ones. In the following sections, we analyze each of these
items.

7.3.1 Document encoding rules

A document encoding ruls a principle followed by the author of a document to
convey an intent of the author by layout details. document encoding rules can be one
of two types: general or class specific. Document encoding rules can be expressed in a
informal or in a formal manner. Informal rules are proposed in natural language or by
sketch. Examples are found in books such as [Reynold, 1979]. Examples of generic
and specific, and formal and informal rules are presented in Figure 7.4.

Let us consider a number of formal ways to express document encoding rules.

IATEX is a compiled markup language. Typically, there is a number of source files
with the main marked-up text (theex files), a number of style definition
files (sty ,.cls ) and a compiler. The document encoding rules can reside
as macros in thdex file, but the most common solution is that document en-
coding rules reside inside the style files. Consider the figure environment in the
class file for generating transactions for the AGM.

IM. Aiello. (2001). http://www.acm.org/pubs/submissions/latex_style/
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Figure 7.3: The flow of knowledge and data in the spatial reasoning m&gpaRe.

The document encoding rules originate from an expert, or from previous learning or are
given directly by the document author. The module itself is composed of a constraint
satisfaction problem solver and a handler for directed transitive cyclic graphs.

\newcounter{figure}

\defithefigure{\@arabic\c@figure}

\def\fps@figure{tbp}

\def\ftype@figure{1}

\deflext@figure{lof}

\def\fnum@figure{Fig.\ \thefigure}

\defifigure{\let\normalsize\footnotesize \normalsize
\@float{figure}let\endfigure\end@float

\@namedef{figure*}{\@dblfloat{figure}}

\@namedef{endfigure*}{\end@dblfloat}

The above definition, among other thinggefines the figure as belonging to
a float environment [Goossens et al., 1994] whose default major features are: a
float occupies the top of a page; a float does not have to appear where it is

acmtrans2m.cls . The class file currently in use at ACM, an extension ofdbmtrans2e.cls

version.
2See [Knuth, 1984] for details over the syntax and semanticgXf T
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general class specific

informal | “the caption neighbors its fig-“the caption starts with the word

ure” “Fig.” with font size 12pt, green text,
and it is centered”
formal || Vf efiguredc ecaption: Ve ecaption—
neighborsf, c) text startgc, “Fig.” ) Apoint(c, 12) A

font_color(c, ‘Green’) Acenteredr)

Figure 7.4: Examples of generic and specific, and formal and informal rules. The
formal rules are expressed in a first-order like language for documents whose semantics
should be self-evident.

declared in the source; a float should not occupy more than 70% of the page
otherwise it is moved after the firstlearpage  instruction; if a caption is
present it cannot be split across pages. The ACM transactions style file provides
further class specific definitions for displaying the caption which overwrite the
corresponding®IEX definitions.

\long\def\@makecaption#1#2{\vskip 1pc
\setbox\@tempboxa\hbox{#1.\hskip lem\relax #2}
\ifdim \wd\@tempboxa >\hsize #1. #2\par \else
\hbox to\hsize{\hfi\box\@tempboxa\hfil}
\fi}
\def\nocaption{\refstepcounter\@captype \par
\vskip 1pc \hbox to\hsize{\hfil \footnotesize
Figure \thefigure\hfil}}

The second example of a document ruleAleX places the word “Figure” the
figure counter immediately below the picture, placing a vertical spadgpof
units (i.e., 12pt). The size of such text is set to the valudaaitnotesize

More abstractly, the document encoding rule for a figure says that a figure is
left to float in the main text, its preferred position is on top of a page and the
caption is placed immediately below. The figure and caption always appear in
the above/below spatial relation on one page.

WYSIWYG are computer systems in which the input of the user corresponds almost
exactly to the final layout of the document (WYSIWYG stands for ‘what you
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see is what you get’). A prototypical example is Microsoft's Word. In these
sort of systems, it is hard to distinguish between the syntactic and the semantic
portion of document encoding rules, as they are hidden in the implementation.
The only control that the user has over the formal document encoding rules is
through the functionalities provided by an interface allowing the user to change
rule parameters.

In a common way of employing the WYSIWYG-style there are few strict docu-
ment encoding rules, while the user still enforces elements of style. In a typical
way of doing, captions may be put underneath a figure and also typically be
indented (apart from the one place where the user forgot to implement that).

However, when observing the text one could learn document encoding rules,
for example, that captions are always below the figure and immediately follow-
ing it provided there is one. In that case, one would require rules which can
express topological relationships with some form of tolerance as the user will
implement notions like alignment and marking with a limited precision. In ad-
dition, one would require rules which express topographic relationships as they
can be implemented in the freedom to move around on the 2D-screen where the
WYSIWYG-program runs, implying that the caption is always close to the fig-
ure. Finally, to address the inconsistencies of ad hoc rule implementation and
the lack of discipline to enforce them would require rules with a less than strict
character.

SGML languages are a family of interpreted markup languages, whose best known

members are HTML and XML. The eXtensible Markup Language, XML for
short, achieves a clear separation between conteni\ildexn{XML} file),
syntactic document encoding rulesgs , .xsl , .dtd ) and semantics of the
document encoding rules (the browser’s interpretation of the document encoding
rules). For instance, the document encoding rule for a captiord&aPTION>

A figure </CAPTION> could be the following:

e (syntax):inside a.css file
CAPTION
{dispaly: block; font-size: 12pt; color: #000000; text-align: cehter

e (semantics):the browser will display the text “A figure” in one block of
text, in black color, using the default font, using the font size 12pt, and
center it.

To the same degree SGML as WYSIWYG offers the possibility to move around
the images of the document objects and hence implement document encoding
rules by habit rather than by a priori rules. As the user has no visual feedback,
the factual encoding rules are more informal than in the WYSIWYG paradigm.
Hence, here are needed topological and topographical rule sets to describe the
power of SGML but even more forgiving than in the WYSIWYG style.
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Abstract formal languages can also serve as document encoding languages, for in-
stance, first-order logic. The syntax and semantics are the usual ones for first-
order logic, taking special care in giving adequate semantics to spatial relations
and predicates.

A final example of a general document encoding rule stated informally in natural lan-
guage is the following:

“in the Western culture, documents are usually read top-bottom and left-right.” (7.1)

A problem of stating rules in natural language is ambiguity. In fact, we do not know if
one should interpret the “and” as commutative or not. Should one first go top-bottom
andthenleft-right? Or, should one apply any of the two interchangeably? It is not
possible to say from the rule merely stated in natural language.

In the next section, we define an abstract propositional formal language to express
qualitative spatial relations among document objects to formally express document
encoding rules.

7.3.2 Relations adequate for documents

Considering relations adequate for documents and their components, requires a pre-
liminary formalization step. This consists of regarding a document as a formal model.
At this level of abstraction a document is a tugle, R, ) of document object®, a

binary relationR, and a labeling functioh Each document objedt < D consists of

the coordinates of its bounding box (defined as the smallest rectangle containing all
elements of that object)

D = {d|d = (id,z1,y1, %2, y2)}

whereid is an identifier of the document object aqd,, y;) (x2,y2) represent the
upper-left corner and the lower-right corner of the bounding box of the document ob-
ject. In addition, we consider the logical labeling information. Given a set of ldhels
logical labeling is a functiom, typically injective, from document objects to labels:

l: D— L

In the following, we consider an instance of such a model where the set of rela-
tions R is the set of bidimensional Allen relations and where the set of labels

is {title, body of text, figure, caption, footer, header, pagenber, graphics We

shall refer to this model as spatial [bidimensional Allen] model.Bidimensional
Allen relations consist of 1313 relations: the product of Allen’s 13 interval relations
[Allen, 1983, van Benthem, 1983b] on two orthogonal axes. (Consider an inverted co-
ordinate system for each document with origin (0,0) in the left-upper corner.zThe
axis spans horizontally increasing to the right, while thaxis spans vertically to-
wards the bottom.) Each relatione A is a tuple of Allen interval relations of the
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form: precedes, meets, overlaps, starts, during, finishes, equals, andprecedes_i,
meets_i, overlaps_i, starts_i, during_i, finishes_i. We shall refer to the set of Allen
bidimensional relations simply a$ and to the propositional language over bidimen-
sional Allen relations a£ the remainder of the chapter. Since Allen relations are
jointly exhaustive and pairwise disjoint, sods This implies that given any two doc-
ument objects there is one and only ofieelation holding among them.

(a) (b)

Figure 7.5: (a) The document objetitis Part of d,, as the projection od; on both
axes isduring the projection ofly; (b) The document objeet, Overlap s with d,,
as the projection om of d; overlaps that ofd, and ony it overlaps_i that ofds.

Document objects are represented by their bounding boxes and the relative position
of these objects plays a key role in the interpretation of the meaning of the document.
For example, if a document object is above another one itis likely that it should be read
before. If a document object is contained in another one, it is likely that the contained
one is a ‘part’ of the containing one, for instance the title of a remark inside a frame.
document objects can be also overlapping. This last feature is more common when the
document has different colors and colored text runs over pictures, logos and drawings.

All relations of the examples above are expressible in termS. oFor instance,
‘being part of’ is

Part (dy,dy) iff (during_x(dy,ds) V starts_x(dy, dy) V finishes_x(dy, da))A
(during_y(dy,ds) V starts_y(dy,ds) V finishes_y(dy,ds)) (7.2)

To analyze the expressive power@fwe encode the basic RCC5 [Randell et al., 1992]
relations:

o Part _1(d1,d2) = Part (dg,dl),

e Equal (di,ds) = equal_x(dy, ds) A equal y(dy, ds),
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e Disconnected (dy,dy) = precedes_xz(dy,dy) V precedes_i_x(dy, ds)V
precedes_y(dy, ds) V precedes_i_y(dy, ds),

e Overlap (di,dy) = —Part (dy,ds) A —=Part ~1(dy, ds)A
—Equal (d;,dy) A —Disconnected (dy, d2)A
—ExternalConnection (dy,ds).

Similarly, one can encode RCC8 ih Examples of document objects satisfying the
part and the overlap relations are presented in Figure 7.5.

Restricting attention to RCC relations one looses a featuré of great impor-
tance, namely, its ordering expressivity with respect to the axes. Take for instance
the Disconnected relation. There are various ways in which two document ob-
jects can satisfy this relation. If eitherecedes x(dy,ds) N equal y_xz(dy,dy) or
precedes_i_x(dy, ds) N equal_y_x(dy,ds) holds, then it is true that the RCC8 predi-
cateDisconnected (d;,ds) holds, but the two situations are most different. In the
first casegd; is to the left ofd,, in the second case it is to the right. In other words,
in the first case it is likely that; is to be read before thafy in the document, while
in the second cas#, is to be read beforé,. This is one of the key features that we
exploit in usingL to define document encoding rules.

Consider again the example of the relation between a figure and its caption in the
IATEX ACM transactions class file. This spatial relationCislefinable:

(during-z(figure, caption V equals_x(figure caption) A precedes_y(figure, caption

The spatial relation between the word “Figure” and the figure counter isCatifin-
able:

meets_x(“Figure ", figure_.countejA
equals_y(“Figure ", figure_countey V during_i_y(“Figure ”, figure_countey

Other features of thé'TeX definitions are notL definable: trivially, all font and textual
features. But also size and distance features ar& migtfinable, e.g., the fact that the
white space between a figure and a caption is of a fixed amapat)(

7.3.2.1 Document encoding rules with £

The languag€ is adequate to express mereotopological and ordering relations among
rectangles. Here, we show how to use this power to express formal unambiguous
document encoding rules.

Take the informal document encoding rule (7.1) expressed in natural language.
Consider the layout of a document as presented in Figure 7.6.a, where the numbering
of the document objects is provided counterclockwise. After having read the document
object2, to which one should the reader move? Only having the layout and not the
content of the text there is not a unique choice. One would either move to the block of
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(@) (b)

Figure 7.6: Layouts of documents considering text objects only.

text4 or to block3. In the first case, one has followed the left-right rule, in the latter
the top-bottom rule. No one would have proposed to move to blothkis because it
is in violation of the top-bottom rule.

The top-bottom, left-right document rules are expressible in the langfidye

beforein_readindd,, d») iff precedes_x(dy, ds) V meets_x(dy, ds)V
overlaps_x(dy, ds) V precedes_y(dy, da)V
meets_y(dy, ds) V overlaps_y(dy, ds) (7.3)

The equation reads “the document objécis ‘before in the reading order’ of the doc-
ument objectl, if the a Boolean combination of basitrelations are satisfied.” The

rule (7.3) is the formal counterpart to (7.1). Though the generality of (7.3) is also its
weakness. Too many document objects satisfy it, calling for the design of rules balanc-
ing between being more restrictive and being general. Consider the layout proposed in
Figure 7.6.b. It is hard to judge if one would follow the reading, 6, 3, 5,4 or the
readingl, 6, 5, 2, 3, 4, but the readingd, 6, 2, 3, 5, 4 surely seems odd. Without know-

ing the content of the document, we are inclined to consistently apply a column-wise
or row-wise rule. Therefore, a candidate for a general and yet more restrictive rule
in comparison with (7.3) is aolumn-wisedocument rule. In this case, ofiest goes
top-bottom thenleft-right. A rule to encode this behavior is again expressible With

It has the following form:
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beforein_reading®(d;, ds) iff

precedes_x(dy, dy) V meets_x(dy, ds)V

(overlaps_x(dy, d2) A
(precedes_y(dy, da) V meets_y(dy, ds) V overlaps_y(dy, ds)))V

((precedes_y(dy, ds) V meets_y(dy, ds) V overlaps_y(dy, ds)) A
(precedes_x(dy, ds) V meets_x(dy, dy) V overlaps_x(dy, dy)V
starts_x(dy,dy) V finishes_i_x(dy, ds) V equals_xz(dy, ds)V
during-x(dy, ds) V during-i_x(dy, ds) V finishes_x(dy, d2)V
starts_i_x(dy,dy) V overlaps_i_x(dy, ds))) (7.4)

The declarative code implementing this rules is presented on page 175. An analogous
row-wiserule is obtained by inverting the axes in (7%4).

7.3.2.2 Thick boundary interpretation

The direct application of systems based on Allen or similar relations results in brittle
systems. This is because Allen relations rely on the precise identification of a boundary
of the interval. This means that some relations never occur in practical situations. One
goes directly fromprecedes to overlaps and fromoverlaps to during without ever
identifying an instance ofneets, starts, or finishes. To solve this drawback of
Allen-like relations, we provide a less brittle interpretation of the relations.

Instead of considering two interval extremes to be equal when they have the same
coordinates, we consider them equal if they are closer than a fixed threshold distance
T. This can be seen as if the bounding boxes of the document objects hiavk a
boundary We name the set of thirteen Allen’s relations thus interprétet boundary
rectangle relations

The thickness of the boundary is assumed identical for all objects in the document.
It is fixed with respect to the page size. The optimal value is found through experimen-
tation. There is a constraint on tiewith respect to the size of the smallest document
object: it should not exceed half the size of the shortest side of all bounding boxes.
Referring to Figure 7.7, one sees how theelations with their thick interpretation are
more tolerant in the establishment of a relation between two intervals. For example,
interval a meets intervab not only if z3 = 2%, but also if2? — T < 23 < 24 + T.

With the thick boundary interpretation, Allen’s relation maintain the jointly exhaustive
and pairwise disjoint property, see [Todoran et al., 2001a] for a proof. The declarative
code with the clauses definingwith the thick boundary interpretation are reported in
Appendix C on pages 177-179.

3Its implementation is presented on page 175.
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Figure 7.7: The thick boundary interpretation of Allen’s relations. The intdrval
considered fixed and the threshdlds highlighted on its extreme points. The interval

a varies in all 13 possible positions. On the left, the equation of the standard interpre-
tation of Allen’s relations. On the right, the thick boundary interpretation.

7.3.2.3 Theoretical excursus

One might wonder about the connection betwégeand the family of languages pre-
sented in the first half of the thesis. The connection is strong, as we have already
remarked by showing the encoding of RCC8 in term& oBut there is more.

The A relations are mereotopological relations, but they are also weak geometrical
relations. It is possible to define a notion of betweenness, see Section 5.1.2, in terms
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of £. Consider the following definition

B(dy,d,dy) iff —precedes_i_x(dy,d) N ~meets_i_x(dy,d)A
—overlaps_i_x(dy,d) N —precedes_i_x(d, dy) A
—meets_i_x(dy,d) N —overlaps_i_x(d, ds)\
—precedes_i_x(dy,d) N —meets_i_y(dy, d)\
—overlaps_i_y(dy,d) N\ —precedes_i_y(d, dy)\
—meets_i_y(dy,d) N —overlaps_i_y(d, ds)

We call this notiorManhattan betweennesa the spirit of the Manhattan distance. An

Figure 7.8: The document obje@snd4 lie ‘in between’ the document objectsand
3. 2 is strictly in betweenl and3, while 4 is a limit case.

example ofC-betweenness holding among three rectangles is presented in Figure 7.8.
One can check that it satisfies the universal betweenness axioms (Section 5.1) with one
minor adjustment. The identity axiom becom#&gl,d, d;) — Part (d,d;), that is,

the equality relation i\2 is replaced by the ‘part’ relation.

To move fromL to a modal logic of rectangles is possible. The techniques used
to perform the same move for the one-dimensional case are the most promising. The
idea of chopping intervals [Venema, 1991] could be extended to chopping rectangles.
Also the technique of Halpern and Shoham [Halpern and Shoham, 1991] should work
for rectangles.

7.3.3 Inference

Equipped with a qualitative spatial language for document objéctsith document
encoding rules and the layout and logical labeling information, we are now in the posi-
tion to perform inference in order to achieve ‘understanding’ of a document. Following
is the definition of document understanding in this context.
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First, we define the notion of an admissible transition between document objects.
Given a pair of document objects andd,, a document modelD, R,[) and a set
of document encoding ruleS, we say thatd,, d;) is anadmissible transitiorwith
respect taR iff the bidimensional Allen relatiorid,, d2) € R is consistent witht.

A spatially admissible reading ordewith respect to a document moddD, R, [)
and a set of document encoding rulkess a total ordering of document objects in
with respect to the admissible transitions.

Theunderstandingf the document with respect to a document mdde|R, [) and
a set of document encoding rulgss the set of spatially admissible reading orders.

Following the above definitions, we see that inference is performed by two follow-
ing steps. The first one is a constraint satisfaction step in which instances of bidimen-
sional Allen relations are matched against document encoding rules expressed in
The second one is a graph sorting procedure similar to topological sorting.

(b)

Figure 7.9: A page from the Communications of the Association for Computing Ma-
chinery and a possible layout segmentation of it.

Consider the image from the magazine Communications of the Association for
Computing Machinery presented in Figure 7.9.a. A possible segmentation of its layout
(Figure 7.9.b) is formally represented by

[1, body\ of\ text, [13, 23, 93, 101], Times, 11, 0, 16]
[2, body\ of\ text, [100, 23, 180, 101], Times, 11, 0, 16]
[3, caption, [13, 107, 180, 122], Arial, 11, 0, 16]

[4, graphics, [13, 122, 115, 183], Courier , 11, 16, 0]
[5, figure, [115, 122, 180, 183], None , 11, 0, 16]
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[6, body\ of\ text, [13, 191, 93, 261], Times, 11, 0, 16]
[7, body\ of\ text, [100, 191, 180, 261], Times, 11, 0, 16]
[8, footer, [108, 267, 171, 270], Arial, 7, 0, 16]

[9, page\_number, [175, 267, 180, 270], Arial, 12, 0, 16]

where each element of the list represents one document object together with its layout
and logical labeling information. The first element is a unique identifier, the second is
the logical label, the third is the upper-left corner and the bottom-right corner of the
bounding box, the fourth is the font of the text (if applicable), then the size of the font,
the color of the font, and the last element is the color of the background.

Consider using the general document encoding rule (7.3). For all pairs of docu-
ment objects labeled by "bodyf_text”, we consider their bidimensional Allen relation.
Then we input these together with (7.3) into a constraint satisfaction solver. Obtaining
the following set of admissible transitions

1, 2], [, 6], [1, 7], [2, 6], [2, 7], [6, 2], [6, 7]

20&/’;1\\&%5
N/

O7

Figure 7.10: The graph of spatially admissible transitions for the ldext docu-
ment objects of the document in Figure 7.9.

One can view this as a directed graph of spatially admissible transitions, Figure 7.10.
There are two possible complete total orderings of this graph. They are

[1, 6, 2, 7] [1, 2, 6, 7]

Following the above definition, the two spatially admissible reading orders constitute
the ‘understanding’ of the document in Figure 7.9.b with respect to the set of document
encoding ruleg(7.3)}. Once the set of spatially admissible transitions is identified, the
task it that of totally sorting the graph. The algorithm to perform the sorting of directed
transitive cyclic graphs is presented in Appendix B.
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7.4 Evaluation

The methodology proposed has been implemented in a prototype sySigaRe.
The core ofSpaRe is implemented in the declarative programming language Ecflipse,
making use of the finite domain constraint satisfaction libraries. Relevant passages of
Eclipse code are presented in Appendix C.3.

To testSpaRe, we used the Media Team Data-Base (MTDB) from the University
of Oulu, [Sauvola and Kauniskangas, 2000]. The data set consists of scanned docu-
ments of various types: technical journals, newspapers, magazines, and one-page com-
mercials. Elements from the data set are presented in Figure 7.11. We only used the
documents in English, resulting in a data set of 34 documents having 171 pages. The
MTDB data set has a ground truth at the document object level. Every document object
has a layout label and a logical label. The reading orders are part of the ground truth.
Of the 171 pages, 133 have a unique reading order, 32 have two independent reading
orders, 5 have three, and 1 has four. We considered the layout information from the
ground truth as the input to our system. As there is no ground truth for textual content
and font information, we used the TextBridge OCR pacRagextract these.

For evaluation purposes, the documents in the data set were split into three main
groups, based on their complexity:

e trivial documents containing up to 3 textual document objects;
e regulardocuments containing between 4 and 8 textual document objects;

e complexdocuments containing more than 8 textual document objects;

Out of 171 document pages, 98 are of typeial, 66 of typeregularand 7 are of type
complex

The goal of the experimentation was to evaluate wheipaRe is effective in the
detection of the reading order given the layout information. As subtasks, we were inter-
ested in evaluating the performance with different document encoding rules and with
different values of the threshold for the thick boundary interpretation of bidimensional
Allen relations.

The experiments consisted of three cases. In the first case, we have used the layout
and labeling information from the ground truth and the general document encoding
rule (7.3), denoted a&Seneral Rule on Ground Truth datén the second case, we have
used the layout and labeling information from the ground truth and the column and
row-wise document encoding rules (7.4), denoteCakimn/Row Rules on Ground
Truth data In the last case, we have used the layout and labeling information from
an existing logical labeler (see Section 7.2) and the column and row-wise document
encoding rules (7.4), denoted @slumn/Row Rules on the logical labeler dateor
each one of these we have varied the threshold of the thick boundary interpretation
from O to 400 dots.

“http:/lwww-icparc.doc.ic.ac.uk/eclipse
STextBridge SDK 4.5, ScanSotijtp://www.scansoft.com
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(a) (b) (c) (d)
Figure 7.11: Sample images from the MTDB data set.

7.4.1 Criteria

To evaluateSpaRe, we use precision and recall [Baeza-Yates and Ribeiro-Neto, 1999].
The set of reading orders detected (D) is compared to the ground truth. For 38 docu-
ments, the ground truth defines independent reading orders on non-intersecting subsets
of the textual objects within the same document. In these cases, the reading orders are
composed by one main sequence of document objects and one or two blocks to be read
independently; e.g., a page containing a frame with independent text. To account for
this portion of documents with multiple reading orders (20% of the whole data set),
we consider a reading order correct if it is identical to at least one permutation of the
independent reading orders as defined in the ground truth.

We refer to the set of permutations of the ground truth as the set of correct reading
orders (C). Then, the precision and recall are defined as follows:

_|DNC| _|DNC|

r = 7.5
D] C (7.5)

The values lie between 0 and 1 inclusive, where 0 indicates the worst possible perfor-
mance and 1 the best possible one. Because there is only one reading order, the recall
can only be 1 if the correct reading is among the ones detected, or O if it is not. This
makes the recall less informative of the overall behavior of the system.

7.4.2 Results

We have evaluated the results in terms of the average precision and recall defined in
Equation 7.5.

General Rule on Ground Truth data. We have used the general document encoding
rule (7.3) on the ground truth layout and logical labels of the MTDB documents.
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Figure 7.12: Average precision for increasing threshold values (between 0 and 50)
using the general rule on the ground truth of the MTDB data set. The maximum value
is for the threshold value of 30.

The values of average precision with respect to increasing values of the threshold
are shown in Figure 7.12.

The average precision and recall of the system for the entire MTDB data set for
the threshold value of 15 are:

Document| Number of SpaRe
group Documents p r
trivial 98| 0.96 0.99
regular 66| 0.31 0.97
complex 710.003 1.00
average 171 0.06 0.98

SpaRe detected 2714 reading orders for the 171 document pages in the data
set. In the case of a very rich and complex document, 2157 reading orders were
detected. For other four documents, 140, 50, 37 and 15 reading orders were
detected. For the remaining collection the average of reading orders detected
was of 1.74. In two cases, none of the reading orders as detected were correct.

Column/Row rule on Ground Truth data. We have used together the column and
row-wise document encoding rules on the ground truth layout and logical labels
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of the MTDB documents. The values of average precision with respect to in-
creasing values of the threshold are shown in Figure 7.13. The maximum value

of precision is for the threshold value of 15.
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Figure 7.13: Average precision for increasing threshold values (between 0 and 50)
using the column/row rule on the ground truth of the MTDB data set.

The average precision and recall of the system for the entire MTDB data set for
the threshold value of 15 are:

Document| Number of| SpaRe
group | Documents p r
trivial 98| 0.97 0.99
regular 66| 0.79 0.97
complex 710.88 1.00
average 1711 0.89 0.98

SpaRe detected 190 reading orders for the 171 document pages in the data set.
For 16 documents 2 reading orders were detected, including the correct one.
In one case, none of the two reading orders as detected were correct. For one
document, 4 possible reading orders were detected and none of them was correct.
For the rest of 154 documentSpaRe detected one reading order only and in
one case this was not correct.
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In the case of a two column scientific article composed of 6 textual document
objects SpaRe detected 4 reading orders. These were all wrong because a short
subtitle ("*Acknowledgments”) was too close to a white space in the neighboring
column and was considered the title of the neighboring row in a row-wise read-
ing. This row-wise connection was possible in four different ways, all incorrect.
In case of a first page of an article in a magazine composed of 3 textual docu-
ment objects, the title was on the left of the main text and centered vertically. In
a reading order, the title was considered3paRe to be a subtitle of one of the

two main bodies of text. It was placed incorrectly in the center of the reading
order instead of on top of it. For one document composed of 4 textual document
objects organized in one column with two subtitles and poorly typ&etRe
wrongly detected the reading order. The reason is that the subtitles were almost
embedded in the main text anddnerlap relation in ther axes instead of meet.

The problem disappears when increasing the threshold value above 25 points.

The column-wise document rule has as one of its conditions that two blocks meet
on thezr axis. But with the boundary’s thickness set to 0, this never occurs in the
data set. On the other hand, allowing thicknessthet relation holds among
some neighboring document objects.

Column/Row on the logical labeler data. We have used the column and row-wise
document encoding rules on the output of a logical labeling system on the MTDB
documents. The values of average precision with respect to increasing values of
the threshold are shown in Figure 7.14. The maximum value of precision is for
the threshold value of 15.

The average precision and recall of the system for the entire MTDB data set for
the threshold value of 15 are:

Document| Number of| SpaRe
group Documents p r
trivial 98] 0.92 0.94
regular 66 | 0.74 0.92
complex 710.86 1.00
average 171 0.84 0.94

SpaRe detected 192 reading orders for the 171 document pages in the data set.
For 18 documents 2 reading orders were detected where the ground truth indi-
cates only one. For one document, 4 possible reading orders were detected and
none of them was correct. For the rest of 152 documé&yaRe detected one
reading order only. For 11 documents the correct reading order was not detected
by SpaRe. In particular, for the simple documents 2 extra reading orders were
detected and the number of wrongly understood documents was of 6. For the
regular documents, the number of wrong detections was 5. For the 7 complex
documents, there were no errors.
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Figure 7.14: Average precision for increasing threshold values (between 0 and 50)
using the column/row rule on the data from the logical labeler.

All additional misdetections of the reading order using the logical labeler data
in place of the ground truth data are due to the misclassification of title objects.
They are confused with footers, captions or rulers. The misclassification in the
logical labeler data propagates$paRe. Eight additional documents are inter-
preted erroneously.

7.4.3 Discussion of the results

Variating the threshold in the thick boundary interpretation of Allen bidimensional re-
lations does influence the overall performance considerably. In Figure 7.15, we com-
pare the values of precision and recall for the three experimental cases increasing the
threshold from O (no thickness) to 400 points. We notice that the precision increases
considerably when the threshold goes from 0 to 5-10 points. Then it stabilizes showing
minor variation over a wide range of thicknesses.

Moving the thickness from 0 to the maximum values corrects the situations in
which boundary detection is not ideal. The reason for the stabilization of the preci-
sion between 15 and 100 points can bee interpreted as follows. In a document, docu-
ment objects need not be found perfectly aligned. As far as the variation is small, the
document layout is still intelligible. The acceptable variation depends on the specific
document. For example, in a multicolumn document without overlapping frames, it is
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necessary to allow a small variation because the elements of a column will never be
perfectly aligned; on the other hand, the variation should not go beyond half of the size
of the white space between two adjacent columns otherwise columns will be confused.

Letting the thickness grow much beyond 100, makes the precision fall down as
the thickness becomes too big with respect to the average document block size. The
document objects become ‘blurred’ entities andr/lap becomes the most frequent
relation. Performance degrades rapidly.

Considering the maximum values in Figure 7.12, Figure 7.13, and Figure 7.14, we
notice that the maximum value is different for different rules.

The recall is stable and has always a high score between 0.9 and 1.0. This makes
this measure of little interest in the presented experimentation. The reason for this high
values resides in the fact that only one reading order is considered for the documents.

Figure 7.15: Comparing precision and recall for the three experimental cases with re-
spect to increasing threshold (from 0 to 400). From foreground to background, the
recall for the general rule on ground truth data, the recall for column/row rules on

ground truth data, the recall for column/row rules on the logical labeler data, the pre-
cision for the general rule on ground truth data, the precision for column/row rules on
ground truth data, and the precision for column/row rules on the logical labeler data.

From the comparison of the use of the column and row-wise rules on the ground
truth and on the logical labeler data (with threshold set to 15), one notices a small
degradation of the overall performance. On the whole collection this means an ap-
preciable decrease in performance, but not a total brake-down of the approach, as the
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precision goes from 0.89 to 0.84 and the recall from 0.98 to 0.94.

Considering the use of the general and the column and row-wise document encod-
ing rules, one notices a big difference with respect to precision. The problem with the
general document encoding rule is its generality. It looses almost none of the correct
readings of a document, but it finds too many. For instance, for a three column docu-
ment with an image in the central column composed of 14 textual document objects,
the general rule gives 2714 admissible reading orders while using the column-wise rule
one gets only the correct one. When performing the experiment with the column and
row-wise rules, we appreciate the sharp increase in precision, while the recall remains
unmodified. This means that the rules are less general to detect less reading orders, but
are not too specific to degrade the performance. Even on a heterogeneous collection
of documents such as the MTDB, the column and row-wise rules have high values of
recall and, most notably, precision. It is safe to conclude that the general rule is of no
interest when compared with the column and row-wise rules.

The average execution time paRe is appreciably fast. On a standard Sparc 300
Mhz machine, it takes about 28 seconds of wall clock time to process the whole data
set. The median execution value for a document is of 10 milliseconds. The execution
time increases more than linearly with the number of document objects. Therefore,
there is a practical upper bound to the complexity and richness of document compo-
nents that can be analyzed.

7.5 Concluding remarks

We have shown the feasibility, and efficacy, of applying a symbolic approach to logical
structure detection in the context of document image analysis and understanding. The
approach is based on a spatial language of rectangles and basic mereotopological rect-
angle relations (bidimensional Allen relations). Inference is achieved via constraint
satisfaction techniques.

We have shown a bidimensional Allen based language to have appropriate expres-
sive power for the task of document understanding. Though, what the language misses
is a notion of neighbourhood or some other kind of weak metric expressivity. Consider-
ing the 11% of the documents understood erroneously using the column and row-wise
rules on the ground truth, one may argue that the correct order would have been cap-
tured by using a rule preferring neighboring text objects. Something not expressible in
bidimensional Allen. In [Todoran et al., 2001a], we move the first steps in this direc-
tion by using Voronoi diagrams.

The logical labeler adds 4% of misclassified reading orders. Little can be modified
in SpaRe to overcome these failures. When logical labels do not correspond with the
actual logical function of the objects, any symbolic approach shows brittleness.

Two notable features of the presented symbolic approach are its flexibility and
modularity. SpaRe is flexible enough to treat a wide variety of documents, including
scientific articles, newspapers, magazines and commercial hand-outs, in a single run.
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To increase the number of document classes handled, future work includes an ex-
tension to explicitly deal with independent reading orders. Independent reading orders
are the case of complex documents, such as newspapers where pieces of text indepen-
dent of one another coexist on the same sheet. The foreseeable key point of such an
extension lies in the identification of appropriate document rules.

Regarding the issue of execution time for rich documents, there are more efficient
alternatives. In [Aiello, 2002a], we propose the use of model checking techniques.

In conclusion, we do not know if HAL was equipped with a symbolic document im-
age analysis system or with one based on different technologies. The only thing we
know is that whenever a HAL-like machine will be available we expect it to read and
understand the contents of any printed document brought to its attention.



CHAPTER 8

CONCLUSIONS

8.1 Where we stand

Spatial structures and visual reasoning, in its broader sense, are the subject of this
thesis. Our personal take on the matter is the attempt to bring together two research
areas: the standard mathematical approach (topology, geometry, and linear algebra)
with a computational analysis of visual processing tasks. To build such a bridge, we
proposed a modal logic approach, which connects up with both:

(i) more tractable levels of spatial structure inside mathematical theories, and
(i) more expressive power in computational tasks.

The results in the thesis show the connection meaningful by providing a number of
tools which are both useful for ‘deconstructing mathematics’ and for the analysis and
redesign of computational tasks. Next, we briefly summarize the main points.

Topo-approachWe proposed a framework for topological reasoning with a modal lan-
guage of visual patterns, emphasizing bisimulation and comparison games as a means
of calibrating similarity of visual scenes. Moreover, a pleasing side-effect was a new
take on elementary topology. Laying the basis for a more ambitious program of ‘modal
geometry’, exploring new fine-structure of tractable fragments of geometry; just as
modal logic itself does for first-order logic.

Logical extensionsWe proposed and reconsidered a number of languages to increase
the expressive power &4 within the bounds of the topo-approach. This has included

a new analysis of the universal langu&g® of Bennett [1995]. We showed4, to be

a language of connected spaces whose simulations preserve the truth of existentially
guantified formulas (the connection with connected spaces has also been presented in
[Shehtman, 1999], the results were independently obtained). We introduced an even
more expressive formalism: a spatial Since and Until logic.

151
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Geometrical extensiongOur walk through geometrical spaces showed modal struc-
tures wherever one looks. There are natural fine-structured modal versions of affine
and metric geometry. These can be studied by general modal techniques—though
much of the interest comes from paying attention to special spatial features. The ben-
efits of this may be uniformity and greater sensitivity to expressive and computational
fine-structure in theories of space.

Logical fragments of mathematical morpholodie established preliminary connec-
tions between logical axiomatizations of mathematical morphology. The links were
built on linear and on arrow logics, as both capture relevant fragments of what is a
fundamental qualitative theory of shape.

Games as similarity measured/e introduced a similarity measure for spatial patterns
based on model comparison games and implemented it in a image retrieval system.

Symbolic approach to document understandivg. showed the applicability of a sym-

bolic approach to document image understanding. The use of a thick boundary inter-

pretation of rectangular Allen relations has proven to be at the right expressive level to

perform reading order detection. We implemented a system based on the framework
which shows high accuracy when tested on heterogeneous collections of document
images for which no specific document knowledge is available.

8.2 Final remarks on theory and practice

The words theory and practice may be dangerous. The risk we take is that the terms
are considered in contraposition rather than as distinct aspects of the same research
process; which has been our own experience. Still, we found a few concerns that
differentiate more theoretical branches of spatial reasoning from more practical ones.

Ontology: regions vs. point# long debated matter in temporal reasoning is the oppo-
sition of instant based ontologies with interval based ones, cf. [van Benthem, 1983b].
A similar dichotomy holds for spatial reasoning, opposing point-based theories to re-
gion based ones; the latter are more frequent in philosophy, artificial intelligence and
cognitive science. Unfortunately, mathematical region-based theories are much scarcer
than those based on points (cf. [Johnstone, 1977, Johnstone, 1982, Sambin, 1987,
Vickers, 1994]), leaving researchers with few tools to approach the subject.

Our own experience shows that a theory of space must work with regions. What
matters is that one can refer to regions and their properties. Our modal approach was
designed to do just that. For instance, consider the langu@msdS4,. The first can
express only properties of a point and its neighbourhoods. This has no immediate prac-
tical application. On the other han84, expresses properties of regions, their spatial
structure, and their relations with other regions. These basic spatial descriptors make
S4, a promising candidate for applications, as we saw in Chapter 6. The design of the
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formalism for document image analysis (Chapter 7) also needs to express properties
of regions. In analyzing a document image, the prominent properties are those of the

spatial arrangement of extended objects detected in the document, not those of specific
points inside the document.

Boundaries: inferred vs. detectedhe theories of space based on topology (Chap-
ters 2—4) tend to put special emphasis on boundaries. After all, topology can be seen
as the theory of connected entities and a connected entity is a collection of points up to
a boundary. Now, boundaries are puzzling spatial entities which are located in space,
but which do not take any space [Casati and Varzi, 1999, Aiello, 2001b]. Thus, while
our spatial topological theories heavily rely on boundaries, the chances of detecting a
boundary (in the sense of formal topology) in real life images and spatial patterns are
none. A system relying on that detection is likely to be brittle and unsuccessful.

Of the two prototypes presented in the theSipaRe is most affected by bound-
aries. As it works with real images, and uses topological regions, it is very sensitive to
the precise location of boundaries. After a first round of experimentation, we realized
that a number of erroneous analyses were due to boundary problems. We solved this
by giving a different interpretation of boundaries, cf. Chapter 7.

Model classes: across vs. withif.heoretical research in spatial logics is interested
in resultsfor a specific class of models acrosssuch classes. Take completeness:
McKinsey and Tarski [1944] efforts went in showing completenesS4#ith respect

to the real line; [Shehtman, 1999] showed completenespf (the connectedness
axiom) for connected topological spaces. Another example are Ehrenfeutss®Fra
games, which are typically used to compare across different structures.

In our applications, one is more interested in restricting attentidimn some par-
ticular class of models, and then use tools which behave uniformly on it. A typical
example is our use of Ehrenfeucht-Fa® games to compare different images, viewed
as constellations of regions in the same kind of mathematical space. In particular, the
key step from theory to practice in Chapter 6 is a move from a general model compar-
ison game to a distance measure within a fixed class of spatial structures.

Our analysis of space and of applications of spatial theories is only a small step which
generates more questions than answers. We identified many new open problems along
the way in the thesis. Thus, our work also serves as a pilot study for a broader modal
geometry developed with a view to potential applications.

Most likely, the next spatial reasoning task that awaits us consists of closing the disser-
tation in hand and laying it down on a flat solid surface. Alternatively, by appropriate
‘point and click’-ing we shall get rid of the window containing the current text. What-
ever we do next, there is just no way of avoiding spatial reasoning.






APPENDIX A

A BIT OF TOPOLOGY

A topological space, in its general definition, is just a set with a tiny bit of extra struc-
ture. It is a collection of elements, a membership function and, in addition, a family of
subcollections with three simple properties.

A.0.1.DEFINITION (TOPOLOGICAL SPACH. A topological spacds a pair (X, O),
whereX is a set and C P(X) a family of subsets ok such that:

1.0 e OandX € O,
2. O is closed under arbitrary unions,
3. O is closed under finite intersections.
Related definitions to that of a topological space follow.

(i) Anelement ofO is called aropen A subsetA of X is calledclosedif X — A is
open.

(i) A point s € X is alimit point of a subsetd of X if for eacho € O such that
s € o, (0 — {s}) N Ais not empty.

(i) The interior of a setA C X is the union of all open sets containedA4n

(iv) Theclosureof a setA C X is the intersection of all closed sets containihgr,
equivalently, the union of the set A with all its limit points.

(v) Given a setA, the set of pointg such that for any open setcontainingy both
oNA=#pandon (X — A) # 0 hold, is called thdrontier, or boundary of A.

(vi) A family of open setsB is abaseof the spaceX if all open sets are unions of
members ofB. Such a family is asubbaseof X, if the collection of all finite
intersections of elements &f is a base forX.
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A.0.1.EXAMPLE (TOPOLOGICAL SPACE$. Typical examples of topological spaces
are the indiscrete topology, the discrete topology, metric spaces, and Cantor space.

(i) indiscrete topology (X, {0, X'})
(i) discrete topology (X, P(X))

(i) metric spaces every metric space is a topological space. A base that builds up
the topology is the family of setsr|distancéz, p) < r} for arbitrary pointg of
the space and nonnegativeThis is called thestandardtopology.

(iv) Cantor space all infinite sequences of, 1. A base that builds up the topology is
the family of setsA,, consisting of all the sequences extending the finite initial
segment.

As a point of notation, when considering intervals in one dimensional metric spaces,
we write (a,b) for {z|a < = < b}. Square brackets denote that the frontier point
belongs to the interval, e.da, b] stands fo{z|a < = < b}.

A.0.2.DEFINITION (CONNECTED SPACH. A topological spaceX is connectedf the
only sets which are both open and closed(aasd X .

A.0.2. EXAMPLE (CONNECTED SPACE. Examples of connected spaces are the met-
ric spacesdRR” with the standard topology, for any positive integerNon-connected
spaces are the rational®. E.g., consider the two non-empty open and closed sets

(—o0,v2) and(v/2, 00).

A.0.3.DEFINITION (COMPACT SPACH. Let X be a topological space. A collection
V; € P(X) is acoveringof X if | J, Vi = X. Itis anopen coveringdf all the V; are
open. A topological spac¥ is said to becompactf every open covering has a finite
subcovering.

A.0.3.EXAMPLE (COMPACT SPACH. No spacelR" is compact. But all (and only)
theirboundedsubsets are compact.

A.0.4.DEFINITION (DENSE). A setA in a topological spacg, is said to belensdan
X, if all points of X are a point or a limit point ofA. A topological space is said to be
densdf all its points are limit points for itself.

Another interesting way to discern topological spaces uses their richness in terms
of points and open sets. If there are enough of them one can ‘separate’ points. This
formally shows in so-called ‘separation axioms':

A.0.5.DEFINITION (SEPARATION AXIOMS). A topological space is called



e 157

(i) Ty if for any two distinct pointse; andz, (€ X), there exists an open set X
containing one but not the other,

(i) Ty if for any two distinct pointse; andzs (€ X), there exist an open set € X
containingz; but notx, and there exists an open sgte X containingz, but
notx,

(iii) T, (Hausdorff)as T1 with the additional requirement thatn o, = 0,

(iv) T3 (regular) as T1 and for every closed set and point not contained in it there
exist two disjoint open sets containing the point and the closed set respectively,

(v) T, (normal)as T1 and for every two closed disjoint sets there exists two disjoint
open sets each containing one of the closed sets.

The fundamental way to move from a topological space to another space is through
continuous mappings. Those preserving, among all, the property of openness.

A.0.6. DEFINITION (CONTINUITY). Amap f : X — X’ between two topological
spaces X, 0), (X', O’ is continuousif for all openso’ € O', f~![d] isin O: i.e.,
inverse images of open sets are open.

Continuous mappings are the building block for defining the equivalence of topological
spaces. If two continuous mappings exist that composed, either way, yield the identity
on each space, then the two spaces are topologically equivalent. The equivalence is
named in topologyhhomeomorphism

A.0.7.DEFINITION (HOMEOMORPHISM). Two topological spacesX, O), (X', O’)
arehomeomorphidf there are continuous mags: X — X’ andg : X’ — X such
thatf o g, g o f are both identity maps.

A basic topological fact about homeomorphic spaces is that of having the same cardi-
nality. But the converse is not generally true: topology demands more structure that
pure counting.

A.0.4.EXAMPLE (HOMEOMORPHISM). The two subset§), 1) and(1, co) of the met-
ric spacelR with the standard topology are homeomorphic. The two inverse func-
tions f(z) = g(x) = % are continuous and compose to identity maps both ways.
By a similar construction of homeomorphisms, the real pl&tteand a unit circle
x € IR*: d(z,0) < 1 are homeomorphic. Also Cantor space is homeomorphik 10.

Two non-homeomorphic spaces are the real pi&iend a three dimensional unit
ballz € IR? : d(x,0) < 1.

Topology also provides a more general notion than homeomorphism.
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A.0.8.DEFINITION (HOMOTOPY). LetX andX’ be topological spaces, and lgtand
f1 be continuous maps frod to X'. f, is homotopido f; (notationf, ~ f) if there
exists a continuous map : X x I — X’ such that for allke F'(z,0) = fo(z) and
F(z,1) = fi(z), wherel is [0, 1]. F'is called arhomotopyfrom f; to f;.

A.0.9.DEFINITION (HOMOTOPY TYPE). Two topological spaceX¥ and.X’ are of the
samehomotopy typd there exists two continuous mags X — X' andg: X' — X
such thaty o f is homotopic to the identity mapping oXi and f o g is homotopic to
the identity mapping orX .

A.0.5.ExXAMPLE (HOMOTOPY). Homeomorphic spaces are also homotopic. There-
fore, an example of homotopic spaces is the real line and the real unit interval (see
Example A.0.4). A more interesting example is the homotopy between a single point
and any real metric spadg”.

The real plane without its origifiz> — (0,0) and the unit circle are an example of
non-homotopic spaces.



APPENDIX B
SORTING TRANSITIVE DIRECTED GRAPHS

We extend the notion ofopological sortinga directed acyclic graph [Knuth, 1968,
Knuth and Szwarcfiter, 1974]. Instead of a directed ‘acyclic’ graph, we sort a directed
‘cyclic’ graph whose edge relation is transitively closed. We call the latiexcted
transitive cyclic graph More formally, a directed transitive cyclic graph is a graph
G = (V,E) such that if(i, j) € E and(j,k) € E, then(i,k) € E. In what follows,

we assume that there arevertices|V| = n andm edges|E| = m. The problem

of sorting a directed transitive gragh consists of creating sequences of nodes of the
graph such that for any pair of nodesandv in G appearing in any sequence, then
(u,v) must be an edge df.

Algorithms to perform topological sorting of directed acyclic graphs work iterating
the following procedure until all nodes have been visited. First, a nodé&h no
predecessors

Yu # v —3I(u,v) € E

is identified. The node is placed in the output. Then, all the eddesu) such that

Vu # v (v,u) € E are removed from the graph. In other words, the set of edpes

the graph is replaced by its subdet{(v,u) € E} without the edges departing from

the nodev. If the original graph is acyclic, then the algorithm outputs a topological
sorting of the input graph, otherwise the output is incorrect. The complexity of this sort
of algorithms isO(m + n). Notice that the algorithm does not return any clue on the
incorrectness of the output in the case the input graph is cyclic. This is rather natural
when considering the complexity of topological sorting and that of identifying cycles
in directed graphs. It is well known that the latter is in NL-hard (see, for instance,
[Toda, 1990]).

The algorithm for sorting transitive cyclic directed graphs takes as input a connected
graphG = (V, E) and outputs a sequence of nodesv, - vs - . . . - v, such that:

1. foralli: v, € V,

2. "Ul'UQ'Ug'..."Un|:|V|’

159
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3. foralli # j: v; # vj,
4. ifi < j: (v;,v;) € E.

One starts by removing all self-loofs, v) € E to setup the graph. Then the main
cycle of the algorithm begins by considering all the nodes and counting the number of
edges departing from each one, also knowdeggeeof the nodedeg(v) = [{(v,w) €

E|w € V}|. Then one chooses a node with the highest degree, which has to be the
same as the number of nodes of the graph minus one. In other words, the node is
related — is ‘before’ — all other nodes of the graph. As we allow for cycles, there can
be more than one node satisfying this condition. Once a node with maximal degree has
been chosen, we remove it from the graph together with all the edges connected to it,
both outgoing and incoming, and repeat the procedure on the remaining subgraph.

20A06
NS

O7

Figure B.1: A simple directed transitive cyclic graph.

Consider the simple example in Figure B.1. The input grapgh is ({1,2,6,7}
{(1,2), (1,6), (1,7), (2,6), (2,7), (6,2), (6,7)}), it is easy to check that it meets the
input conditions. The first step of the algorithm is to create a list of nodes and their
occurrences’ = {(1,3), (2,2), (6,2), (7,0)}. The nodel is selected as first node of
the output, as its degreeds= |V'| — 1. The list L is then updated tb = {(2, 2), (6, 2),
(7,0)}. Two choices are possible at the following iteration: either 6. Suppose the
first item is chosen, theh becomes{(6,1), (7,0)}. Finally, the output is updated
with 6 and7, respectively, yielding the final output é1,2, 6,7} (also{1,6,2,7} isa
correct solution, and it can be computed by backtracking to the point in whialas
chosen in place afs).

Let us now proceed with a more precise definition of the algorithm. The prelimi-
nary step of the algorithm consists of the construction of alief pairs(v, o), where
o is the degree of, i.e.,o = deg(v). In pseudo-code, we have:
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fail « false;
for all v such that (v,v) € E;

E — E/(v,v);
while( |V| > 0 and (not fail))
sort L in descending order of occurrences

% let (v*, 1) be the first element of L
it (1#|V]=1)

fail  « true;
else

output « output + v*;

V o« V/v5

for all  w such that (v,w)e E or (w,v)€ E;

E — (E/(v",w)) N(E/(w,v"));
update( L);

Given that sorting a set of up tovalues, each of which is an integer in the intervah[O,

1] can be performed with a bucket sortdrn), one can conclude that the complexity
of the proposed algorithm is in thi&(n?) class® If the algorithm terminates witfail

set to false, then a correct sorting of the original directed transitive graph graph

be found in the variableutput . If no check is performed on the input graph, nothing
can be said in case the algorithm returns true for the varfaidle . On the other hand,

if the input graph is tested to be transitively closed, tfaih set to true indicates that

no sorting for the input grapy’ exists. Algorithms to transitively close a graph can be
found in the literature [Warshall, 1962, Munro, 1971, Arlazarov et al., 1970], and are
also relatively inexpensived (n?), O(n*37), andO(%), respectively.

Ut is possible to devise an algorithm for directed transitive graph sorting with lower asymptotic
complexity, though this is beyond the scope of the presented material. The steps of such an algorithm
consist of: 1) finding strongly connected components of the graph, whichQérint- m); 2) consider
the graph of the strongly connected components; 3) topologically sort the new graph. This algorithm
hasO(n + m) complexity wheren is the number of nodes and the number of edges.






APPENDIX C

IMPLEMENTATIONS

This appendix consists of a number of short system descriptions and the presentation
of selected declarative code. The system described are:

1. the appletopax for the visualization of the selective unraveling technique as
presented in Chapter 3,

2. the image retrieval prototygRIS described in Chapter 6, and
3. the document analysis prototypaRe described in Chapter 7.

The full source code for these systems is available electronicahyt@t/www.
aiellom.it/phd/source . Other implementations related to the thesis can be
found athttp://www.aiellom.it/java , including one of Ehrenfeucht-Fsze
games. The latter is described and motivated in [Agostini and Aiello, 1999].

C.1 Topax

What follows is the content of the web paltp://www.aiellom.it/java/

topax . Itis a Java applet for the visualization of the selective unraveling presented in
Section 3.3.1, together with instructions on how to use the applet and some motivations.
The centered text itypewriter font does not appear in the web page and was
added for this presentation. The colors refer to the web-page and the electronic pdf
version of the thesis (the hard copy of the thesis has only gray-levels). The contents of
the web-page start on the next page.
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This page presents a Java applet for the visualization of the modal logic construction
presented in [Aiello et al., 2001]. Instructions on how to use the applet and its motiva-
tion can be found below on this page.

NOTE, if a window has not popped-up, it means that the applet is not running
properly. Please refer to the troubleshooting section.

[In the web-page, the applet appears here.]

Motivations and use

The aim of the applet is the visualization of a construction relating Kripke semantics
and topological semantics for modal logics, in particular, for the modal logic S4.

A bit of history

The first completeness result for the modal logic S4 (we refer to a standard book in
modal logic for its syntax and its standard Kripke semantics such as [Blackburn et al.,
2001]) was given by Tarski in the late 30s [Tarski, 1938]. Later, together with McK-
insey [McKinsey and Tarski, 1944], Tarski showed S4 to be complete with respect to
any metric space without isolated points. The topological interpretation was some-
what abandoned when the possible worlds semantics was introduced for modal logics
thanks to the independent efforts of a number of researchers, including Kripke. The
graph like possible worlds semantics made modal logics more accessible and easy to
use, completely replacing in common practice the topological semantics for modal
logics. Recently the topological interpretation has received new attention in relation to
spatial representation and reasoning (e.g., [Bennett, 1995]).

Standard Kripke models for S4

A known fact for the logic S4 is that its models can be viewed as trees of mutually
accessible clusters. This means that a model can be partitioned into a number of clus-
ters (cliques) of worlds which are all mutually accessible. An example of a cluster of
4 worlds is presented on the righgigure C.1 ). The various clusters are ordered
from a higher cluster that can access all other clusters to those which can access none.
An example is given by the picture belowigure C.2 ).

The model is not a tree with respect to the possible worlds (the blue circles), but
rather a directed graph. Though, if considering the clusters (the red rectangles) as the
basic elements and considering the green arrows, then the S4 model is a tree.

Evaluating colors

A model comprises a valuation function usually assigning a propositional letter to each
world. Now viewing every propositional letter as a (different) color, we can visualize
a valuation as a coloring of each world (may be in many different colors). In the two
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Figure C.1: The blue circles are possible worlds of the models and the arrows represent
an element of the accessibility relation. This is a cluster of 4 mutually accessible
worlds.

Figure C.2: The red rectangles denote the clusters of mutually accessible nodes (for
which the accessibility relation is given by the yellow arrows). A green arrow means
that all the worlds in the origin cluster are related to all the worlds in the endpoint
cluster.

pictures above, the valuation function related all worlds with the color blue. In the
applet, we can evaluate a world of the starting tree of clusters to any color.

Towards topological spaces

The tree of clusters of mutually accessible points can also be regarded as a topological
space. In fact, it is an Alexandroff’s space. A possible world becomes a point of the
Alexandroff space, while all accessible worlds from a given one define its least open
neighborhood [Vickers, 1989]. One can achieve more, and move from an Alexan-
droff space to the Cantor space, and then to the real line. To achieve completeness
on the Cantor space, we selectively unravel an Alexandroff space generated by a tree
of clusters into the Cantor space (an infinite complete binary tree). The full formal
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description of selective unraveling is presented in [Aiello et al., 2001], while the tool
to show the correctness of the transition is that of topo-bisimulations, introduced in
[Aiello and van Benthem, 1999]. Note that in the topological space model of S4, the
worlds are not the nodes of the Cantor tree, but rather the full infinite branches. So
the colors visualized by the applet are only the preliminary colors assigned to the
branch (not the colors assigned to obtain the exact topo-bisimulation, again refer to
[Aiello et al., 2001] for the details of the construction).

Using the applet

First, one creates an S4 model as a tree of clusters of colors. The window S4 model
editor serves this purpose. The background color of the window is the current color.
By clicking on the window a cluster is created with the current color as the color of
one of the worlds of the cluster. By pressing the Change Color button, a color chooser
window pops up. In this manner one can choose the new current color. The current
color becomes the new background color of the window. By clicking on an existing
cluster a node of the current color is added to the cluster. If clicking outside any
cluster, a new one is created. The clusters are represented by the average color of all
their worlds. The tree is built considering as root the upper cluster (if more clusters are
on the highest row of the window, a dummy cluster with one world of white color is
the root), then the clusters below are considered as children in the tree and associated
to the closest cluster going first up and the right.

We present an example of using the applet. First, one builds the S4 model as a tree
of clusters.

" 0) O 54 model editor 1 2 O O 54 model editor

Change Color f Change Color A

Current Color Is Transparent in the background Current Color Is Transparent in the background

(200 ) 54 model editor (202 () 5S4 model editor
£ '
f Change Color Change Color
Current Color |s Transparent in the background Current Color Is Transparent in the background
L
i A
S /_x'
' /“ -\"./ \.
AN A __/L\__/’

In the S4 model editor window with yellow background, we click in the window
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and we create a first cluster with one world of yellow color, (a) and (b). Then we press
the Change Color button and select a new color: green. We click below the yellow
cluster and create a new cluster with one world of green color (c). We then select
blue as the current color. We click on the yellow cluster (which now gets as color the
average of yellow and blue, i.e., green). Finally, we click below the yellow/blue cluster

to obtain a new blue cluster (d).

When we close the S4 model editor window, the model we have just built becomes
the current model. By pressing the Paint button the model is selectively unraveled
into the Cantor space. In particular the default values for Depth of rendering and for
Visualization mode are used.

Depth of rendering: 5 : Color Randomness: (.0

Visualization mode:  Circle

The default value for the depth of rendering is 5, while the default value for the
visualization mode is circle. The latter means that the nodes of the binary tree are
represented as thick circumferences. The root is the central circle. Then the second
level of the binary tree is the surrounding circumference, which is divided in two half
circumferences. The left son of the root is the left half circumference, the right son is
the right half circumference.

By setting the depth of rendering to 12 and the Color Randomness to 0.4 we obtain
the renderings

(e) (f)

depending on the Visualization mode. (e) uses the circle mode, while (f) uses square
mode. In the latter, the root of the Cantor tree is on top and the sons of each node are
in the line below. The length of a son is the half of the one of the parent.
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The color randomness lets a node be rendered with a little variance from the orig-
inal color in the tree of clusters. In this way, it is possible to better identify the single
nodes in the Cantor tree and to obtain more appealing renderings. (Please be careful in
setting the depth of rendering. Depending on the computing power of your machine,
you may be waiting for a long time or even get an out of memory error. On my Mac
12 is the limit, while on the Sun at work it is 18.)

Finally, by bringing the color randomness to 0.5 and moving the visualization mode
to big circle we obtain the following rendering of the selective unraveling

Two final remarks:

e by rearranging the colors one can move further on to the real interval (0,1). For
details we refer to [Aiello et al., 2001].

e the Cantor space obtained has a fractal structure. It is easy to identify patterns
that repeat themselves. Subtrees of the unraveled model are identical to the
whole model and different subtrees at different depths are also identical with
respect to each other. For instance, one can see the green pattern to repeat itself
in the circle visualization mode above. It starts on the top-left part of the circle
and it repeats moving counter-clockwise on the figure.

Troubleshooting

The applet will only run in Java2 enabled browsers. If your browser does not support
Java2, you may try to download the whole applet on your machine and run it with
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semant 1 cbB

text Hash (the inverted matrix of textual occurrences)
(private list of nmbdels) nbdel — nbdel~—> nodel——. ..

————= image path

= .déscription (caption)

< matrix (RCC rel ations)

L~ (private list of regions) region regi on

Regi on

= nane
————= col or

=——=(private list of polygons) pol ygon—= pol ygon——= ...

Figure C.3: The design of the spatial data structures.

appletviewer. In alternative, you can try the page with the Java-plug-in.

Contact and bibliographic information follows.

C.2 IRIS

The image retrieval prototypiRIS , presented in Chapter 6 is implemented in Java.
Here we present the main data structures behind the implementation.

The spatial data structures

The spatial data structures are implemented according to the schema presented in Fig-
ure C.3. Classes are presented together with their most relevant variables. See Fig-
ure 6.7 for a more functional view of the data structures within IRIS.

public class semanticDB
extends java.lang.Object
implements java.io.Serializable
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Field Summary
textHash textMatrix

Constructor Summary

semanticDB()

Method Summary

void addModel(model m)
java.awt.Graphics draw(java.awt.Graphics Q)
int getFree()
java.lang.String  paramsString())

void remove() )

int scanModels() )

model scanModels(int i)

public class model
extends java.lang.Object
implements java.io.Serializable

Field Summary

java.lang.String description
java.lang.String imagePath

int[][] matrix

Constructor Summary

model()

Method Summary

void addRegion(region )
void computeMatrix()

int contains(java.lang.String name)
java.awt.Graphics draw(java.awt.Graphics Q)
int freeRegions()
java.lang.String  paramString()

void printMatrix()

void remove()

region scanRegions(int i)

public class region
extends java.lang.Object
implements java.io.Serializable
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Field Summary

java.awt.Color color
java.lang.String description
int freePolygons
java.lang.String name
boolean(] open
java.awt.Polygon(] polygons
boolean transparent
boolean(] vector
Constructor Summary
region()
Method Summary
void addPolygon(java.awt.Polygon p,
boolean 0)
void computeVector()

java.awt.Graphics draw(java.awt.Graphics g,
int xshift, int yshift)

void endRegion()
boolean(] getVector()
boolean printVector()
void remove()
void reset()

C.3 SpaRe

SpaRe consists of an Eclipse program using the finite domain lidrand a number

of Perl scripts. The Perl scripts, which are not documented here, serve for the analysis
of the output and to coordinatgpaRe with the other modules of the document im-

age analysis system. We present source code in the thesis as an useful companion to
Chapter 7. Being declarative code it should be fairly readable.

Selected Eclipse passages

The following listing of Eclipse clauses is not the fi8paRe implementation, but

just the most relevant portions. It starts with the invocations of Eclipse libraries, then
sets the type of analysis to perform and which document rules to adopt. Then there is
the main clause as called by the overall document analysis syg@which takes

as a input a list of documents (i.e., a list of document object positions and labels)
and returns a list of lists of admissible reading orders. Following there is the body
of clauses necessary to check the document rules on the given input. Then, there is

http://www-icparc.doc.ic.ac.uk/eclipse
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the encoding of the various document rules to be used in the analysis. Finally, Allen
relations are defined for both axes. Note the use of a threshold in the definition, which
slightly deviates from the usual interpretation of Allen’s relations.

--lib(fd).
--lib(listut).

%
% type of analysis, set from calling function
%

96************************************************

threshold(15).

% this can be one of the following:
% general, verticalColumns, horizontalColumns

rule_set(verticalColumns).

% this can be one of the following:

% general, small caption, big caption
rule_figure(general).

rule_title(general).

%
% main call to SpaRe
%

96***********************************

go_each(H,Stream):-

scan(25,H,Texts,Stream),

scanNoWrite(20,H, Titles,Stream),

merge _titles(Titles, Texts, TBcouples),

text_analyze(Texts,[],OutputVer,verticalColumns),

text_analyze(Texts,[],OutputHor,horizontalColumns),

text_analyze(Titles,[],Output3,general), !,

quicksort_couples(OutputVer, SortedVer), !,

quicksort_couples(OutputHor, SortedHor), !,

quicksort_couples(Output3, Sorted3), !,

elements(Texts, Texts_elements),

elements(Titles, Titles_elements),

findall(PathVer, path(Texts_elements, SortedVer, PathVer),
BVreading_orders),

findall(PathHor, path(Texts_elements, SortedHor, PathHor),
BHreading_orders),
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findall(Path3, path(Titles_elements, Sorted3, Path3),
Treading_orders),

append(BVreading_orders,BHreading_orders,
BHVreading_orders),

merge_title_text_all(BHVreading_orders,Treading_orders,
TBcouples,OutputDuplicates),

remove_dups(OutputDuplicates, OutputEmptyList),

remove([], OutputEmptyList, Output),

length(Output, M),

nl, write(Number of pahts ’), write(M),nl,

length(Titles, Ltitles),

length(Texts, Ltexts),

Blocksnumber is Ltitles+Ltexts,

factorial(Blocksnumber,Fact),

writeln(Stream, [Blocksnumber, Fact,M]).

96***********************************

%

% Checking the rules on the
% input for body text

%

96***********************************

text_analyze([B1|Rest], Old, Out, R):-
append(Rest, Old, Checklist),
text_check(B1, Checklist, Out2, R),
append([B1], Old, Old2),
text_analyze(Rest, Old2, Out3, R),
append(Out3, Out2, Out).

text_analyze(], _, [I. ).

% CHECK TITLE BLOCKS AGAINST BODY TEXT

text_check([ld1, T1, B1], [[Ild2, T2, B2]|Rest], Out, R):-
before_in_reading(B1, B2, R),
text_check([ld1, T1, B1], Rest, Out2, R),
append([[ld1,Id2]],Out2, Out).

text_check(B1, [ |Rest], Out, R):-
text_check(B1, Rest, Out2, R),
append([], Out2, Out).

text_check(, [I, [I. ).
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gﬁa *% *kk **% *kk *%
%

% Checking the rules on the
% input for title

%

96 *% *% *% *% *%

merge_titles([[Id, T1, [X1,X2,Y1,Y2]]|TT],Texts,Merged):-
titte_check([ld, T1, [X1,X2,Y1,Y2]],Texts,Blocks),
take_leftuppermost(Blocks,[1d2|_]),
merge_titles(TT,Texts,Merged?2),
append([[ld,Id2]], Merged2, Merged).

merge_titles(_, ,[])-

take_leftuppermost([[ld, T1, [X1,Y1,X2,Y2]]|T],[Ildb, T1b,
[X1b,Y1b,X2b,Y2b]]):-
take_leftuppermost(T,[ldb, T1b, [X1b,Y1lb,X2b,Y2b]]),

take_leftuppermost([[ld, T1, [X1,Y1,X2,Y2]]|T],[ldb, T1b,
[X1b,Y1b,X2b,Y2b]]):-
take_leftuppermost(T,[Id, T1,[X1,Y1,X2,Y2]]),
X1b#>=X1, Y1lb#>=Y1.

take_leftuppermost([B],B).

% CHECK TITLE BLOCKS AGAINST BODY TEXT

title_check([ld1, T1, B1], [[Id2, T2, B2]|Rest], Out):-
titte_body(B1, B2),
title_check([ld1, T1, B1], Rest, Out2),
append([[Id2, T2, B2]],0ut2, Out).

title_check(B1, [_|Rest], Out):-
title_check(B1, Rest, Out2),
append([], Out2, Out).

titte_check(_, [I, [D.

96***********************************

%

% Encoding of Layout rules in
% rectangle model

%

96***********************************



% GENERAL %

before_in_reading(B1, B2, general):-
precedes_X(B1, B2).

before_in_reading(B1, B2, general):-
meets_X(B1, B2).

before_in_reading(B1, B2, general):-
overlaps_X(B1, B2).

before_in_reading(B1, B2, general):-
precedes_Y(B1, B2).

before_in_reading(B1, B2, general):-
meets_Y(B1, B2).

before_in_reading(B1, B2, general):-
overlaps_Y(B1, B2), precedes_X(B1,B2).

% VERTICAL COLUMNS %

before_in_reading(B1, B2, verticalColumns):-
precedes_X(B1, B2).

before_in_reading(B1, B2, verticalColumns):-
meets_X(B1, B2).

before_in_reading(B1, B2, verticalColumns):-
overlaps_X(B1, B2),
(precedes_Y(B1,B2); meets_Y(B1,B2); overlaps_Y(B1,B2)).

before_in_reading(B1, B2, verticalColumns):-
(precedes_Y(B1, B2); meets_Y(B1,B2); overlaps_Y(B1,B2)),
(precedes_X(B1,B2); meets X(B1,B2); overlaps_X(B1,B2);
starts_X(B1,B2); finishesi_X(B1,B2); equals_X(B1,B2);
during_X(B1,B2); duringi_X(B1,B2); finishes X(B1,B2);
startsi_X(B1,B2); overlapsi_X(B1,B2)).

% HORIZONTAL COLUMNS %

before_in_reading(B1, B2, horizontalColumns):-
precedes_Y(B1, B2).

before_in_reading(B1, B2, horizontalColumns):-
meets_Y(B1, B2).

C.3. SpaRe
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before_in_reading(B1, B2, horizontalColumns):-
overlaps_Y(B1, B2),
(precedes_X(B1,B2); meets X(B1,B2); overlaps_X(B1,B2)).

before_in_reading(B1, B2, horizontalColumns):-
(precedes_X(B1, B2);meets_X(B1,B2);overlaps_X(B1,B2)),
(precedes_Y(B1,B2); meets_Y(B1,B2); overlaps_Y(B1,B2);
starts_Y(B1,B2); finishesi_Y(B1,B2); equals_Y(B1,B2);
during_Y(B1,B2); duringi_Y(B1,B2); finishes_Y(B1,B2);
startsi_Y(B1,B2); overlapsi_Y(B1,B2)).

%%%
% RULES FOR TITLES
%%%

title_body(T,B):-
(precedes_Y(T,B);meets_Y(T,B)).

%%%
% RULES FOR FIGURES
%%%

% general

make_one_block(B1, B2):-
rule_figure(general),
figure(B1),
caption(B2),
precedes_Y(B1, B2).

make_one_block(B1, B2):-
rule_figure(general),
figure(B1),
caption(B2),
precedesi_Y(B1, B2).

% smallCaption

make_one_block(B1, B2):-
rule_figure(smallCaption),
figure(B1),
caption(B2),
precedes_Y(B1, B2),
(startsi_X(B1, B2); duringi_X(B1, B2);
finishesi_X(B1, B2); equals_X(B1, B2)).



C.3. SpaRe

make_one_block(B1, B2):-
rule_figure(smallCaption),
figure(B1),
caption(B2),
precedesi_Y(B1, B2),
(startsi_X(B1, B2); duringi_X(B1, B2);
finishesi_X(B1, B2); equals_X(B1, B2)).

%7( *% **%x% *% *%k% *%
%
% Allen’s interval relations
%

%***********************************

% be careful that the threshold should never be
% bigger than half of the smalles document object!!!
% I'm not implementing this check.

precedes X([_, _, Xf1, ], [Xo2, , , ]
threshold(T),
X02-Xfl #>= T.

meets_ X([_, _, Xf1, ], [Xo2, _, _, -
threshold(T),
Xfl-X02 #<T, X02-Xfl #< T.
overlaps_X([Xol, _, Xfi1, ], [Xo2, _, Xf2, ]):-
threshold(T),
Xfl-Xo2 #>= T,
Xf2-Xfl #>= T,
X02-Xol #>=T.

starts_X([Xo1, _, Xfl, ], [Xo2, _, Xf2, _]):-
threshold(T),
Xol-Xo2#< T, Xo2-Xol#< T,
Xfl-Xf2#>= T.

during_X([Xol, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xol-Xo2 #>= T,
Xf2-Xfl #>= T.

finishes X([Xol, _, Xfi, ], [Xo2, _, Xf2, -
threshold(T),
Xf1-Xf2 #< T, Xf2-Xf1 #<T,
X02-Xol #>= T.

equals_X([Xol, _, Xfi, ], [Xo2, _, Xf2, _])-
threshold(T),
Xo01l-X02 #< T, Xo02-Xol #< T,
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Xf1-Xf2 #< T, Xf2-Xfl #< T.

finishesi_X(B1, B2):-
finishes_X(B2, B1).

duringi_X(B1, B2):-
during_X(B2, B1).

startsi_X(B1, B2):-
starts_X(B2, Bl).

overlapsi_X(B1, B2):--
overlaps_X(B2, B1).

meetsi_X(B1, B2):-
meets_X(B2, Bl).

precedesi_X(B1, B2):-
precedes_X(B2, B1).

% AND ON THE Y AXIS

precedes_Y([, _, _, Yfl], [, Yo2, _, ]
threshold(T),
Yo2-Yfl #>= T.

meets_Y([_, _, _, Yf1], [, Yo2, _, _])-
threshold(T),

Yfl-Yo2 #<T, Yo02-Yfl #< T.

overlaps_Y([_, Yol, _, Yfl], [, Yo2, _, Yf2]):-
threshold(T),
Yfl-Yo2 #>= T,
Yf2-Yfl #>= T,
Yo2-Yol #>=T.

starts_Y([_, Yol, , Yfl], [, Yo2, _, Yf2]):-
threshold(T),
Yol-Yo2#< T, Yo2-Yol#< T,
Yfl-Yf2#>= T.

during_Y([_, Yol1, _, Yfi], [, Yo2, _, Yf2]):-
threshold(T),
Yol-Yo2 #>= T,
Yf2-Yfl #>= T.

finishes_Y([_, Yol, _, Yf1], [, Yo2, _, Yf2]):-
threshold(T),
Yfl1-Yf2 #< T, Y{2-Yfl #<T,
Yo2-Yol #>= T.
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equals_Y([_, Yol1, _, Yfl], [, Yo2, _, Yf2]):-
threshold(T),
Yol-Yo2 #< T, Yo2-Yol #< T,
Yf1-Yf2 #< T, Yf2-Yfl #< T.

finishesi_Y(B1, B2):-
finishes_Y (B2, B1).

duringi_Y(B1, B2):-
during_Y(B2, B1).

startsi_Y(B1, B2):-
starts_Y(B2, B1).

overlapsi_Y(B1, B2):-
overlaps_Y(B2, B1l).

meetsi_Y(B1, B2):-
meets_Y(B2, B1).

precedesi_Y(B1, B2):-
precedes_Y(B2, B1).
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SAMENVATTING

This is an abstract of the thesis in Dut€h.

Ruimtelijke structuren zijn essentieel voor perceptie en cognitie. Een groot deel van
onze dagelijkse informatieuitwisselingen betreft de vraag wat er aan de hand is en
waar. Daarnaast vormen ruimtelijke representaties een goede bron voor geometrische
intuities die een verklaring vormen voor algemene cognitieve taken. Hoe representeren
we objecten die in de ruimte zijn gelocaliseerd? Hoe kunnen we over dit soort objec-
ten redeneren? Bijvoorbeeld bij het opdekken van een tafel, wat zijn vanuit ruimtelijk
oogpunt beschouwd de basis eigenschappen van, zeg, een lepel in relatie tot de rest van
het bestek en de rest van de ruimte? Een ander basisaspect van perceptie is dat wij in
staat zijn verschillende visuele scenes te vergelijken en eenzelfde object in deze ver-
schillende scenes te identificeren. Zo kunnen we vaststellen welke feestelijk gedekte
tafels ‘hetzelfde’ zijn. Logica verschaft middelen voor deze taak.

We moeten voorzichtig zijn als we het begrip ruimte in een logische theorie vatten en
er vervolgens logische hulpmiddelen op loslaten. We kunnen namelijk niet verwach-
ten dat de werkelijke ruimte in al zijn verscheidenheid zonder meer gevat is in onze
formele theorie van deze ruimte. Zo zal onze theorie bepaalde natuurlijke, ruimtelijke
aspecten niet kunnen behandelen, terwijl daarentegen sommige niet-natuurlijke, ruim-
telijke fenomenen een rol zullen spelen. We zijn er echter ook niet op uit een volledige
representatie van de ruimte te geven, maar we proberen de meest in het oog springende
ruimtelijke fenomen uit te drukken.

Onze bijdrage met deze dissertatie is tweeledig. In de eerste plaats onderzoeken wij
nieuwe en bestaande ruimtelijke formalismen met het expliciete doel om logica’s te
identificeren met een redelijke uitdrukkingskracht die tegelijkertijd mooie, meta-logis-
che eigenschapppen bezitten. In de tweede plaats onderzoeken we de haalbaarheid

°The samenvatting is mandatory for all thesis defended in the Netherlands which are written in
English. Many thanks to Eva Hoogland for the translation.

199



200 e Samenvatting

van praktische toepassingen van dit soort kwalitatieve, ruimtelijke logica’s. Hiertoe
bestuderen we twee symbolische benaderingen van patroonherkenning.

Dit proefschrift bestaat uit zeven technische hoofdstukken, een introductie, een afslui-
tend hoofdstuk en drie appendices. De hoofdstukken 2 tot 5 vormen de theoretische
kern van de dissertatie, de hoofdstukken 6 en 7 vormen de praktische component.

De eerste twee hoofdstukken geven de grenzen van onze benadering aan: Hoofd-
stuk 2 geeft aan wat we wel en niet kunnen uitdrukken, Hoofdstuk 3 behandelt welke
axioma’s we kunnen toestaan. Daarna analyseren we twee soorten uitbreidingen van
deze benadering: logische (Hoofdstuk 4) en axiomatische uitbreidingen (Hoofdstuk 5).

In Hoofdstuk 2 brengen we de topologische interpretatie van modale logica’s op-
nieuw tot leven door deze op te vatten als een algemene taal voor ruimtelijke patronen.
Zo definéren we een notie van bisimulatie voor topologische modellen aan de hand
waarvan verschillende visuele scenes kunnen worden vergeleken. De resulterende no-
tie van gelijkheid verfijnen we later door EhrenfeuchtiBga spelen te introduceren
die op ruimtelijke structuren kunnen worden gespeeld.

In Hoofdstuk 3 onderzoeken we de topologische interpretatie van modale logica
in moderne termen, waarbij we gebruik maken van de notie van bisimulatie die we
zojuist hebben gatroduceerd. We beschouwen modale logica’s met een interessante
topologische inhoud en presenteren ondermeer een nieuw bewijs van de volledigheid
vanS4ten opzichte van de éele getallen (eerder bewezen door McKinsey en Tarski)
en ook een volledigheidsbewijs van de logica van eindige verenigingen van convexe
verzamelingen riele getallen.

In het volgende hoofdstuk beschouwen we logische uitbreidingen van de topolo-
gische modale benadering van ruimte. We introduceren universele en hybride moda-
liteiten en onderzoeken in hoeverre deze bijJdragen aan de uitdrukkingskracht. Ook
bekijken we een ruimtelijke versie van de tijdslogica van Since en Until. Een beknopte
vergelijking met hogere-orde formalismen geeft een algemeen beeld van (uitgebreide)
modale, ruimtelijke, logica’s.

We vervolgen onze modale ruimetelijke onderzoekingen in Hoofdstuk 5 door over
te stappen op affine en metrische geometrjeen op vectoralgebra. Dit levert een
nieuwe onderverdeling in ruimtelijke patronen die analégisuggereren tussen voor-
noemde wiskundige theoia in termen van modale logica’s, conditionele logica’s en
tijdslogica’s. We onderzoeken de uitdrukkingskracht in termen van het ontwerp van de
taal, bisimulaties en correspondentieverschijnselen. We leren verscheidene overeen-
komsten tussen de verschillende gebieden, kennen, en stuiten op open vragen.

In Hoofdstuk 6 kijken we met andere ogen naar model-vergelijkende spelen ten-
einde een maat te ontwikkelen waarmee de gelijkenis van beelden bepaald kan worden.
Dit soort spelen kunnen namelijk niet alleen gebruikt worden om te beslissen of twee
gegeven modellen gelijk zijn, maar ook om een maat op te stellen die de verschillen
binnen eerklassevan modellen bepaalt. We laten zien hoe dit mogelijk is voor het ge-
val van de ruimtelijke modale logic®4,. Deze benadering geeft ons dus een maat voor
ruimtelijke gelijkheid die gebaseerd is op topologische, model-vergelijkende spelen.
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Als een toepassing geven we een algoritme dat effectief de gelijkheidsmaat berekent
voor een klasse van modellen die volop gebruikt wordt in de informatica: polygonen
van het réele vlak. Aan het eind van dit hoofdstuk geven we een overzicht van een
gemplemeneerd systeem gebaseerd op onze gelijkheidsmaat.

In het laatste hoofdstuk gebruiken we een propositionele taal van kwalitatieve
rechthoeken om de leesvolgorde van documenten te achterhalen. Hiertoérdefini
we eerst de notie van een ‘document-codeer-regel’ en analyseren we formalismen die
deze regels zouden kunnen uitdrukken, zad}sd, SGML talen, etc. Met behulp van
deze regel construeren we vervolgens een detector die de leesvolgorde van documen-
ten achterhaalt. De document-codeer-regels die we bij deze constructie gebruiken zijn
uitgedrukt in de propositionele taal van rechthoeken. Om te zorgen dat ons systeem
de toets aan de realiteit doorstaat, introduceren we de notie vathiekrboundary
interpretationvoor een kwalitatieve relatie. Als we het systeem testen op een collectie
van heterogene documenten, zien we een mate van recall van 89%.

Tot besluit bevat het proefschrift drie appendices. Appendix A is een kort overzicht
van basis topologische noties die gebruikt worden in de Hoofdstukken 2, 3 en 4. Ap-
pendix B geeft een algoritme dat gerichte, transitieve, cyclische graven sorteert volgens
het syteem uit Hoofdstuk 7. In Appendix C komen drie implementaties aan bod die
allen aan dit proefschrift zijn gerelateerd.
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