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CHAPTER 1

INTRODUCTION

1.1 Reasoning about space

Spatial structures and spatial reasoning are essential to perception and cognition. Much
day-to-day practical information is about what happens at certain spatial locations.
Moreover, spatial representation is a powerful source of geometric intuitions that un-
derlie general cognitive tasks. How can we represent spatially located entities and
reason about them? To take a concrete domestic example: when we are setting a table
and place a spoon, what are the basic spatial properties of this new item in relation to
others, and to the rest of the space? Not only, there are further basic aspects to per-
ception: we have the ability to compare different visual scenes, and recognize objects
across them, given enough ‘similarity’. More concretely: which table settings are ‘the
same’? This is another task for which logic provides tools.

Constraining space within the bounds of a logical theory and using related formal
reasoning tools must be performed with particular care. One cannot expect the move
from space to formal theories of space to be complete. Natural spatial phenomena will
be left out of logical theories of space, while non-natural spatial phenomena could try
to sneak in (cf. the account of Helly’s theorem implications on diagrammatic theories
in [Lemon, 2002]). Paraphrasing Ansel Adams’ concern of space bound in a photo-
graph,1 one could say that space in nature is one thing; space confined and restricted
in the bounds of a formal representation and reasoning system is quite another thing.
Connectivity, parthood, and coherence, should be correctly handled and expressed by
the formalism, not aiming at a complete representation of space, but focusing on ex-
pressing the most perspicuous spatial phenomena.

The preliminary and fundamental step in devising a spatial reasoning framework
lays, thus, in the identification of which spatial behaviors the theory should capture and,

1“Space in nature is one thing; space confined and restricted by the picture edges is quite another
thing. Space, scale, and form must be made eloquent, not in imitation of painting arrangements, but in
terms of the living camera image.” [Adams, 1981]

1



2 • Chapter 1. INTRODUCTION

possibly, in the identification of which practical uses will be made of the framework.
A key factor is in appropriately balancing expressive power, completeness with respect
to a specific class of spatial phenomena, and computational complexity.

The blend of expressivity and tractability we are aiming at points us in the di-
rection of modal logics as a privileged candidate for the formalization task. We will
not go into details on modal logics or on the reason for which modal logics balance
nicely expressive power and computational complexity (one can refer to a number of
texts on the subject, including the recent [Blackburn et al., 2001] or the more specific
[Vardi, 1997]). To enjoy the theoretical part of the thesis, we assume the reader has
some basic knowledge of modal logic and its best-known possible world semantics
(also referred to as Kripke semantics). Strangely enough, even though knowledge of
Kripke semantics is helpful for better understanding the presented material, we are
going to make little use of it, and rather resort to topological semantics, introduced
about 30 years earlier than Kripke semantics by [Tarski, 1938]. Modern modal logics
of space need old modal logic semantics.

The attention on spatial reasoning stems, in the case of the present thesis, from
the interest in applications in the domains of image processing and computer vision,
hence, the sub-titleTheory and Practice. But this is only one of the many motivations
for which spatial logics have been considered in the past. These range from the early
philosophical efforts [Whitehead, 1929, Lesniewski, 1983] to recent work motivated
by such diverse concerns as spatial representation and vision in AI [Shanahan, 1995,
Randell et al., 2001], semantics of spatial prepositions in linguistics [Herskovits, 1997,
Winter and Zwarts, 1997], perceptual languages [Dastani et al., 1997, Dastani, 1998],
or diagrammatic reasoning [Hammer, 1995, Gurr, 1998, Kerdiles, 2001]. The result-
ing logics are diverse, too. Theories differ in their primitive objects: points, lines,
polygons, regions (contrast [Tarski, 1938] against [Tarski, 1959]). Likewise, theo-
ries differ in their primitive spatial relations: such as inclusion, overlap, touching,
‘space’ versus ‘place’, and on how these should be interpreted: [Randell et al., 1992,
Bennett, 1995, Asher and Vieu, 1995]. There are mereological theories of parts and
wholes, topological ones (stressing limit points, and connection) and mereotopological
ones (based on parthood and external connection). Systematic accounts of the genesis
of spatial vocabulary date back to Helmholtz’ work on invariants of movement, but
no generally agreed primitive relations have emerged on the logic side. Moreover, ax-
ioms differ across theories: [Clarke, 1981, Clarke, 1985] vs [Pratt and Schoop, 1998]
vs [Casati and Varzi, 1999]. Also our modal approach has its predecessors of which we
mention [Segerberg, 1970, Segerberg, 1976, Shehtman, 1983, Bennett, 1995, Venema,
1992, Balbiani et al., 1997, Lemon and Pratt, 1998].

The above references have no pretense of being a complete overview of the liter-
ature on spatial formalisms and, even less, on applications of spatial formalisms. We
shall refer, discuss and compare our work with the literature, with previous approaches
and systems on a ‘local basis’. That is, relevant literature is discussed in each chap-
ter where appropriate in order to set the context, compare our approach with previous
ones, and identify future extensions of our own work based on previous efforts.
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1.2 Theory and practice

Our contribution with this thesis is twofold. On the one hand, we investigate new
and existing spatial formalisms with the explicit goal of identifying languages nicely
balancing expressive power and tractability. On the other hand, we study the feasibility
of practical applications of such qualitative languages of space, by investigating two
symbolic approaches to pattern recognition.

The structure of the thesis reflects the two sub-tasks. The first part reflects the
ethereal nature of our theoretical approach to space. The second part reflects a more
practical task , that is, applying spatial theories to real world problems.

Modal formalisms are the thread of the thesis. We walk through a family of modal
languages of space for topological, affine, metric and vector spaces. The task is not
that of compiling a drudging taxonomy of modal spatial languages, but rather to design
languages with specific expressive tasks. ‘Expressivity in balance’ is the motto here.

While walking through modal logics of space some steps will be mandatory. Some
basic languages are needed as they form the basic for any subsequent analysis. This is
the case ofS4: a poor language in terms of expressivity, but, as it turns out, the min-
imal normal modal language with respect to topological interpretations. In fact, this
language will be our first test. On this language we shall introduce the topological se-
mantics (after Tarski), define adequate notions of bisimulations and model comparison
games, analyze completeness in modern terms (via canonical models), and more.

Our subsequent investigation concerns some striking facts aboutS4. First, we con-
sider completeness with respect to general topological spaces, to Cantor space, to the
real line, and further to serial sets of the real line and plane. Spatial finiteness arises
as a result. Then, we look at logical extensions. A typical example of this kind of lan-
guage is that ofS4u, an extension by a universal modal operator.S4u is known in the
literature of spatial reasoning as Bennett [1995] used it to encode a decidable fragment
of the region connection calculus of Randell, Cui and Cohn [1992]. Further examples
comprise the spatial extension of the temporal Since and Until logic of [Kamp, 1968].

Our next move is from topology to geometric structures. This involves a major
semantic change. Topological interpretation is abandoned, and more custom possible
worlds semantics is used. In this context, modal logics tend to either be sorted (typical
example is that of having sorts for points and lines, and an incidence relation) or to
adopt dyadic modal operators. Our focus will be on logics of the second kind.

In [Tarski, 1959], Tarski introduces the notion of elementary geometry and pro-
vides a first order axiomatization in terms of two fundamental relations, that is, be-
tweenness and equidistance. These are sufficient for any affine or metric construction.
For instance, one can define parallelism, convexity, or the notion of an equilateral tri-
angle. But what happens if one considers betweenness in isolation? Further, what is
the modal fragment of languages of betweenness? And, are there alternative relations
for axiomatizing elementary geometry?

We answer these questions in our investigation of geometrical extensions to our
basic modal approach to space. At the end of our journey in this realm of modal logics,
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we arrive at a vector theory of shape: mathematical morphology. This mathematical
theory of shape lends itself naturally to modal representations, as its two basic oper-
ators, which mimic Minkowski’s operations in vector spaces, are easily axiomatized
in terms of modal ‘arrow logics’. It will be harder to maintain the balance between
expressivity and tractability as small deviations from the minimal axiomatization force
trespassing the limits of decidability. As a compensation, interesting new axiomatiza-
tions and open questions arise. All in all, we shall discover a number of intriguing facts
about topological and geometric spaces, thanks to a modal analysis of space.

When considering applications, the point of view on the logics of space analyzed in
our theoretical promenade shifts. Now interesting logics become those which can ex-
press region properties, rather than those merely referring to points, model comparison
games become interesting only if turned into distance measures, and boundaries of
regions play an even greater role.

There are even more general concerns when applying symbolic approaches to pat-
tern recognition problems: spatial coherence and brittleness. Spatial coherence regards
the way nature presents itself to observation, that is in a manner intrinsically hard to
capture symbolically. Elsewhere we have spelled out our personal concerns for spatial
coherency in the context of formal perceptual languages [Aiello and Smeulders, 1999].
We refer to [Florack, 1997] for an authoritative point of view.

Brittleness regards a risk ran by strict symbolic approaches when applied to real
world domains: they might break. There are various reasons for which a system can
show a brittle behavior. Little variations present in nature may result in misclassifi-
cations at the symbolic level. Thus, the misclassification propagates on to a wrong
analysis. The problem occurred in one of the practical systems we present, forcing the
introduction of a ‘less brittle’ interpretation of region relations.

We choose two significant problems in image processing and pattern matching as
our testing grounds: image retrieval and document image analysis.

Image retrieval is achieved by matching a description or a query image on a col-
lection of images. Symbolic approaches are successful in this field to the extent that
symbolic segmentation of the images is available. The matching process between a
query and a collection of images is a matter of comparison. When analyzing modal
logics of space we encounter a tool performing precisely this task: model comparison
games, which we apply to measure image similarity.

We believe that the field of document image analysis is ripe for symbolic ap-
proaches. Various decades of research in pattern matching have solved most of the
problems involved in basic document image processing. For example, current tech-
nology for skew estimation or optical character recognition is very accurate. One of
the present challenges lies in the management and grouping of all the basic layout in-
formation in order to achieve document understanding. Symbolic approaches are of
interest here, as there is formal structure to be detected in printed documents. One may
even argue, as we do, that the structure present in documents has the form of precise
formal rules. These are the rules followed, most often without awareness, by document
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authors and, with awareness, by compositors. It is by reverse engineering these rules
and by using them to analyze documents that we can achieve document understanding.

The overall conclusion over our practical experiences will help us understand where
they are effective and where not. Practical issues also prompt for interesting theoretical
questions, thus, closing the ‘vicious circle’ theory and practice—practice and theory.

The thesis is organized in seven technical chapters, plus an introductory and a conclu-
sions chapters, and three appendices. The chapters from 2 to 5 form the theoretical
core of the dissertation, while Chapters 6 and 7 are the practical component.

The first two chapters set the boundaries of our framework: Chapter 2 from the
expressive point of view, and Chapter 3 from the axiomatization one. Then, we an-
alyze two sorts of extensions of the framework. Logical extensions are presented in
Chapter 4, while geometrical ones are introduced in Chapter 5.

In Chapter 2, we revive the topological interpretation of modal logics, turning it into
a general language of patterns in space. In particular, we define a notion of bisimulation
for topological models that compares different visual scenes. We refine the comparison
by introducing Ehrenfeucht-Fraı̈sśe style games played on patterns in space.

In Chapter 3, we investigate the topological interpretation of modal logic in modern
terms, using the notion of bisimulation introduced in Chapter 2. We look at modal
logics with interesting topological content, presenting, amongst others, a new proof of
McKinsey and Tarski’s theorem on completeness of S4 with respect to the real line,
and a completeness proof for the logic of finite unions of convex sets of the reals.

In Chapter 4 we consider logical extensions to the topological modal approach to
space. The introduction of universal and hybrid modalities is investigated with respect
to the added logical expressive power. A spatial version of the tense Since and Until
logic is also examined. A brief comparison with higher-order formalisms gives a more
general perspective on (extended) modal logics of space.

In Chapter 5, we proceed with the modal investigation of space by moving to affine
and metric geometry, and vector algebra. This allows us to see new fine-structure
in spatial patterns suggesting analogies across these mathematical theories in terms of
modal, tense and conditional logics. Expressive power is analyzed in terms of language
design, bisimulations, and correspondence phenomena. The result is both unification
across the areas visited, and the uncovering of interesting new questions.

In Chapter 6, we take a different look at model comparison games for the pur-
pose of designing an image similarity measure for image retrieval. Model comparison
games can be used not only to decide whether two specific models are equivalent or
not, but also to establish a measurement of difference among a whole class of models.
We show how this is possible in the case of the spatial modal logicS4u. The approach
results in a spatial similarity measure based on topological model comparison games.
We move towards practice by giving an algorithm to effectively compute the similarity
measure for a class of topological models widely used in computer science applica-
tions: polygons of the real plane. At the end of the chapter, we briefly overview an
implemented system based on the game-similarity measure.
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In Chapter 7, we use a propositional language of qualitative rectangle relations to
detect the reading order from document images. To this end, we define the notion of
a document encoding rule and we analyze possible formalisms to express document
encoding rules such as LATEX, SGML languages, and others. Document encoding rules
expressed in the propositional language of rectangles are used to build a reading or-
der detector for document images. In order to achieve robustness and avoid brittleness
when applying the system to real life document images, the notion of a thick bound-
ary interpretation for a qualitative relation is introduced. The system is tested on a
collection of heterogeneous document images showing recall rates up to 89%.

The presentation ends with three appendices. Appendix A is a brief recall of basic
topological notions, useful for reading Chapters 2, 3, and 4. Appendix B presents an al-
gorithm for sorting directed transitive cyclic graphs in relation to the system presented
in Chapter 7. Appendix C overviews three implementations related to the thesis.

Material related to the thesis has been presented in various contexts. The contributions
are to be considered joint with the respective co-authors.

Chapter Co-authors reference

2 Johan van Benthem [Aiello and van Benthem, 1999], a short
version is to appear in aCSLI volume
[Aiello and van Benthem, 2002a]

3 Johan van Benthem [Aiello et al., 2001], submitted to theJourn-
Guram Bezhanishvili al of Logic and Computation

4, 5 Johan van Benthem [Aiello and van Benthem, 1999,
Aiello and van Benthem, 2002b], sub-
mitted as one paper to theJournal of
Applied non-Classical Logics

6 [Aiello, 2000, Aiello, 2001a], to appear in
the Journal of the Interest Group in Pure
and Applied Logic[Aiello, 2002b]

7 Arnold Smeulders manuscript submitted to”Information Sci-
ences”

The material of Chapter 7 describes a component of a larger architecture. The latter
has been presented in various contexts: [Aiello et al., 2000, Todoran et al., 2001a], and
[Todoran et al., 2001b] which has been submitted to theJournal of Document Analysis
and Recognition.



CHAPTER 2
THE TOPO APPROACH: EXPRESSIVENESS

We begin our investigation of representations of space from a simple modal logic. Our
primary goals here are that of identifying the appropriate tools we need in the rest of
the thesis and instantiating them for the simplest modal spatial logic.

Perhaps we are already running too fast. We have assumed an agreement on the
meaning of the term ‘space’ and we have started to refer to spatial languages talking
about a simplest one. But the goal of assigning a unique meaning to the term space is
really open-ended and under-determined. Mathematicians have developed many differ-
ent formal accounts, ranging from less or more fine-grained geometries (affine, metric)
to more coarsely-grained topologies. Philosophers have even added formal theories
of their own, such as ‘mereology’, cf. [Casati and Varzi, 1999]. Qualitatively differ-
ent levels of description also arise naturally in computer science, viz. mathematical
morphology [Serra, 1982]. A similar diversity of grain levels arises in logic, which
provides many different spatial languages for talking about objects and their locations.
Our general paradigm is this hierarchy of levels, even though we develop our methods
mainly at the level of topology, cf. [Singer and Thorpe, 1967] or [Engelking, 1989].
Inside the topological level, one can identify a sub-hierarchy of languages of increas-
ing expressive power and logical complexity. We begin at the bottom of this hierarchy
with the simplest language. Simplest here means less expressive language, both from
a syntactic and a semantic point of view. The syntactic evidence to the claim of sim-
plicity will be provided in the present chapter.

The simple language isS4. The name will not surprise the modal logician since
S4 is a well known modal logic: the logic of partial orders. Maybe the surprise lies in
the fact that it is the simplest spatial logic, in place ofK , which is the simplest normal
modal logic for possible worlds semantics. Again, explanations will follow.

In the present chapter, we recall the syntax and state the truth definition forS4 in
the spatial context. We proceed by providing the two fundamental tools tied to our
modal approach to space which keep us company for most of the thesis: topological
bisimulations and topological games.

7
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(a) (b) (c) (d) (e) (f)

singleton

open

Figure 2.1: A formula of the languageS4 identifies a region in a topological space. (a)
a spoon,p. (b) the containing part of the spoon,2p. (c) the boundary of the spoon,
3p∧3¬p. (d) the container part of the spoon with its boundary,32p. (e) the handle of
the spoon,p∧¬32p. In this case the handle does not contain the junction point handle-
container. (f) the joint point handle-container of the spoon,32p ∧ 3(p ∧ ¬32p): a
singleton in the topological space.

The chapter is rich in visual examples that should help in grounding intuitions of
the logic and of the tools we define. The images of the chapter—and of the following
ones—borrow from the daily activity of eating, in particular cutlery is the running
example in the figures. Unless stated otherwise, all depicted items are to be considered
subsets ofIR2 equipped with the standard topology (that defined by the unitary disks).
Closed contours indicate that the set is not only the contour, but also all the points
inside. Of course, these spoons and forks should be taken with a grain of salt: our
framework is completely general.

For the convenience of the reader, and to make the thesis as much as possible self-
contained, we recall the basic topological definitions in Appendix A.

2.1 Basic modal logic of space

In the 30s, Tarski provided a topological interpretation and various completeness the-
orems ([McKinsey and Tarski, 1944, Rasiowa and Sikorski, 1963]) making modalS4
the basic logic of topology. In the topological interpretation of a modal logic, each
propositional variable represents a region of the topological space, and so does every
formula. Boolean operators such as negation¬, or ∨, and∧ are interpreted as com-
plement, union and intersection, respectively. The modal operators diamond and box,
become the topological closure and interior operators. More precisely, the modal logic
S4consists of:

• a set of proposition lettersP ,
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Formula Interpretation

> the universe
⊥ the empty region
¬ϕ the complement of a region
ϕ ∧ ψ intersections of the regionsϕ andψ
ϕ ∨ ψ union of the regionsϕ andψ
2ϕ interior of the regionϕ
3ϕ closure of the regionϕ

Figure 2.2: Formulas ofS4and their intended meaning.

• two constant symbols>,⊥,

• Boolean operators¬,∧,∨,→, and

• two unary modal operators2,3.

Formulas are built by means of the following recursive rules:

• p such thatp ∈ P is a well formed formula,

• >,⊥ are well formed formulas,

• ¬ϕ, ϕ∨ψ, ϕ∧ψ are well formed formulas ifϕ andψ are well formed formulas,

• 2ϕ and3ϕ are well formed formulas ifϕ is well formed formula.

In Figure 2.2, the intended meaning of some basic formulas is summarized. These are
pictured more vividly in Figure 2.1 with a spoon-shaped region. The intuitions about
the language are reflected in its semantics, which involves the idea of special regions
denoted by proposition letters. Topological models (topo-model) M = 〈X,O, ν〉 are
topological spaces(X,O) plus a valuation functionν : P → P(X). Conversely, we
will sometimes strip the valuation from a topo-model, and just consider its underlying
topological space. This is like working withframesin the usual Kripke semantics.

2.1.1.DEFINITION (TOPOLOGICAL SEMANTICS OFS4). Truth of modal formulas is
defined inductively at pointsx in topological modelsM :

M,x |= ⊥ never
M,x |= > always
M,x |= p iff x ∈ ν(p) (with p ∈ P )
M,x |= ¬ϕ iff not M,x |= ϕ
M, x |= ϕ ∧ ψ iff M,x |= ϕ andM,x |= ψ
M, x |= ϕ ∨ ψ iff M,x |= ϕ orM,x |= ψ
M, x |= ϕ→ ψ iff if M,x |= ϕ, thenM,x |= ψ
M, x |= 2ϕ iff ∃o ∈ O : x ∈ o ∧ ∀y ∈ o : M, y |= ϕ
M, x |= 3ϕ iff ∀o ∈ O : if x ∈ o, then∃y ∈ o : M, y |= ϕ
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As usual we can economize by definingϕ ∨ ψ as¬ϕ→ ψ, and3ϕ as¬2¬ϕ.

One of Tarski’s early results was this. Universal validity of formulas over topological
models has the modal logicS4 as a sound and complete proof system. The standard
axiomatization is:

3A↔ ¬2¬A (Dual.)

2(A→ B)→ (2A→ 2B) (K)

2A→ A (T)

2A→ 22A (4)

Modus Ponens and Necessitation are the rules of inference:

ϕ→ ψ ϕ

ψ
(MP)

ϕ

2ϕ
(N)

For a closer fit to topological reasoning, however, it is better to work with an equivalent
axiomatization:

2> (N)

(2ϕ ∧2ψ)↔ 2(ϕ ∧ ψ) (R)

2ϕ→ ϕ (T)

2ϕ→ 22ϕ (4)

Modus Ponens and Monotonicity are the only rules of inference

ϕ→ ψ ϕ

ψ
(MP)

ϕ→ ψ

2ϕ→ 2ψ
(M)

In addition, consider the following derived theorem ofS4:

2A ∨2B ↔ 2(2A ∨2B) (or)

Axiom (Dual.) reflects the topological duality of interior and closure. Axiom (K)
does not have an immediate interpretation, but it is equivalent to theorems (N) and (R),
which do (cf. [Bennett, 1995]). (N) says the whole space is open. (R) is the finite
intersection condition on a topological space. Next, (or) says that open sets are closed
under finite unions. (Closure underarbitrary unions requires an infinitary extension
of the modal language.) Finally, axiom (T) says every set contains its interior, and (4)
expresses inflationarity of the interior operator. Further principles ofS4 may define
special notions in topology. For instance, the derived rule

if 2(ϕ↔ 32ϕ), then2(2¬ϕ↔ 232¬ϕ)

says that if a set is closed regular, so is its ‘open complement’.
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Figure 2.3: A spoon is bisimilar to a ‘chop-stick’. The relation among points that
match is highlighted via the double headed arrows.

2.1.1 Topological bisimulation

Once we have a language for expressing properties of visual scenes, we can also for-
mulatedifferencesbetween such scenes. This brings us to the notion of ‘sameness’ for
spatial configurations associated with our language, and hence to techniques of com-
parison. The following is the topological version of a well-known notion from modal
logic and computer science ([van Benthem, 1976, Park, 1981]).

2.1.2.DEFINITION (TOPOLOGICAL BISIMULATION). Consider the languageS4 and
two topological models〈X,O, ν〉, 〈X ′, O′, ν ′〉. A topological bisimulationis a non-
empty relation� ⊆ X ×X ′ such that ifx � x′ then:

(i) x ∈ ν(p)⇔ x′ ∈ ν ′(p) (for any proposition letterp)

(ii) (forth condition):x ∈ o ∈ O⇒ ∃o′ ∈ O′ : x′ ∈ o′ and∀y′∈o′ : ∃y∈o : y � y′

(iii) (back condition):x′ ∈ o′ ∈ O′⇒ ∃o ∈ O : x ∈ o and∀y ∈ o : ∃y′ ∈ o′ : y � y′

We call a bisimulationtotal if it is defined for all elements ofX and ofX ′. We over-
load the symbol� extending it to models with points:〈X,O, ν〉, x � 〈X ′, O′, ν ′〉, x′
requires also thatx � x′. If only the atomic clause (i) and the forth condition (ii) hold,
we say that the second modelsimulatesthe first one.

To motivate this definition, one can look at the ‘topological dynamics’ of the back and
forth clauses, seeing how they makex, x′ lie in the same ‘modal setting’. Further
motivations come from a match with modal formulas, and basic topological notions.

2.1.1.EXAMPLE (SPOON AND CHOP-STICK). Is a spoon the same as a chop-stick?
The answer depends of course on how we define this cutlery. Suppose we let the
spoon be a closed ellipse plus a touching straight line and the chop-stick a straight line
touching a closed triangle (cf. Figure 2.3). Let us regard both as the interpretation of
some fixed proposition letterp in their respective models. Then we do have a topo-
bisimulation by matching up (a) the two ‘junction points’, (b) all points in the two
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handles, and likewise for (c) the interiors, (d) the remaining boundary points, and (e)
all exterior points in both models.

Many more examples and cutlery related pictures of topologically bisimilar and not
spaces can be found in the technical report [Aiello and van Benthem, 1999].

Crucially, modal spatial properties areinvariant for topo-bisimulations:

2.1.3.THEOREM. Let M = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν ′〉 be models with bisimilar
pointsx ∈ X, x′ ∈ X ′. For all modal formulasϕ,M,x |= ϕ iff M ′, x′ |= ϕ.

Proof Induction onϕ. The case of a proposition letterp is the first condition on�.
As for conjunction,M,x |= ϕ ∧ ψ is equivalent by the truth definition toM,x |= ϕ
andM,x |= ψ, which by the induction hypothesis is equivalent toM ′, x′ |= ϕ and
M ′, x′ |= ψ, which by the truth definition amounts toM ′, x′ |= ϕ ∧ ψ. The other
Boolean cases are similar. For the modal case, we do one direction. IfM,x |= 2ϕ,
then by the truth definition we have that∃o ∈ O : x ∈ o ∧ ∀y ∈ o : M, y |= ϕ. By
the forth condition, corresponding too, there must exist ano′ ∈ O′ such that∀y′ ∈ o′
∃y ∈ o y � y′. By the induction hypothesis applied toy andy′ with respect toϕ,
then∀y′ ∈ o′ : M ′, y′ |= ϕ. By the truth definition of the modal operator we have
M ′, x′ |= 2ϕ. Using the back condition one proves the other direction likewise.QED

To clinch the fit, we need a converse. In general this fails, and matters become delicate
(see [Blackburn et al., 2001]). The converse does hold when we use aninfinitary modal
language—but also for our finite language over special classes of models. Here is a nice
illustration: finite modally equivalent pointed models are bisimilar.

2.1.4.THEOREM. LetM = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν ′〉 be two finite models,x ∈ X,
andx′ ∈ X ′ two points in them such that for everyϕ, M,x |= ϕ iff M ′, x′ |= ϕ. Then
there exists a bisimulation betweenM andM ′ connectingx andx′.

Proof To get a bisimulation between the two finite models, we stipulate thatu � u′

if and only if u andu′ satisfy the same modal formulas. The atomic preservation
condition for a bisimulation holds since the modalϕ include all proposition letters. We
now prove the forth condition. Suppose thatu � u′ whereu ∈ o. We must find an
openo′ such thatu′ ∈ o′ and∀y′ ∈ o′∃y ∈ o : y � y′. Now, suppose there is no such
o′. Then for everyo′ containingx′ ∃y′ ∈ o′ : ∀y ∈ o : ∃ϕy : y 6|= ϕy andy′ |= ϕy. In
words, every openo′ contains a pointy′ with no modally equivalent point ino. Taking
the finite conjunction of all formulasϕy, we get a formulaΦo′ such thaty′ |= Φo′ and
¬Φo′ is true everywhere ino. Slightly abusing notation, we writeo |= ¬Φo′. This line
of reasoning holds for any openo′ containingx′ as chosen. Therefore, there exists a
collection of formulas¬Φo′ for whicho |=

∧
o′
¬Φo′. Sincex ∈ o, by the truth definition

we havex |= 2
∧
o′
¬Φo′. By the fact thatx andx′ satisfy the same modal formulas, it

follows thatx′ |= 2
∧
o′
¬Φo′. But then, there exists an openo∗ (with x′ ∈ o∗) such that
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o∗ |=
∧
o′
¬Φo′. Sinceo∗ is an open containingx′, is one of theo′, i.e. o∗ |= ¬Φo∗. But

we had supposed that for all openso′ there was a pointy′ |= Φo′, so in particular the
y′ of o∗ satisfiesΦo∗. We have thus reached a contradiction: which shows that some
appropriate openo′ must exist. The back clause is proved analogously. QED

2.1.2 Connections with topology

The preceding results provide a match with logical definability. But topo-bisimulations
are also related to purely topological notions. Let us consider only topological frames
now, without valuations. Clearly, we have the following implication:

2.1.5.THEOREM. Homeomorphism implies total topo-bisimulation.

But not vice-versa! Homeomorphisms provide much more ‘analogy’ between two
spaces than topo-bisimulations. A trivial way of seeing this is as follows.Any two topo-
logical spaces are bisimilar.One can just take the full Cartesian product of their points.
Nevertheless, this is not a trivialization of the notion. First, specific topo-bisimulations
may be of independent interest – e.g., those preserving additional properties’ of points
(encoded in topo-models), where no similar trivial example exists. Second, the back
clause of topo-bisimulation resembles the characteristic property ofcontinuous maps.
This fact provides a foothold for a systematic ‘modal logic analysis’ of topological
behavior. E.g.,existentialmodal formulas constructed from literals, conjunction, dis-
junction and box only are preserved under simulations.

2.1.6.THEOREM. LetM = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν ′〉 be two models, with a sim-
ulation⇁ fromM to M ′, such thatx ⇁ x′. Then, for any existential modal formula
ϕ,M,x |= ϕ only ifM ′, x′ |= ϕ.

This result explains how continuous maps preserve basic topological properties. The
following fact is just one typical illustration:

2.1.7.COROLLARY. Letf be a surjective continuous map from〈X,O〉 to 〈X ′, O′〉. If
the space〈X,O〉 is connected, then so is〈X ′, O′〉.

We leave the proof of Corollary 2.1.7 for Section 4.1. The reason for postponing the
proof is the need of extra logical power at the language level, more precisely, one needs
universal quantification over points. The origin of this need comes from the topological
component of the theorem which expresses a global property. In fact, a surjectiveness
claim is a claim of involvement forall points of the codomain space.

2.1.2.REMARK (INFORMATION TRANSFER). Various (bi-)simulations transfer log-
ical information across topological spaces. A case in point are ‘Chu morphisms’ relat-
ing topological spaces that are ‘adjoint’ in an abstract sense (cf. [van Benthem, 1998]).
Existential modal formulas are then mirrored in general first-order ‘flow formulas’.
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2.1.3 Topo-bisimilar reductions

In many contexts, bisimulations and simulations are used to find minimal models. This
is useful, for instance, to find minimal representations for labeled transition systems
having certain desired properties modally expressible. Topo-bisimulation can be used
for finding a minimal representation for a determined spatial configuration. For exam-
ple, consider a spoon with two handles, as depicted in Figure 2.6.a. The spoon has 7
‘salient’ points, these satisfy the formulas reported in Figure 2.4.

Point Formula

1 2p
2 3p ∧3¬p
3 2¬p
4 p ∧ ¬32p ∧32¬p
5 32p ∧3(p ∧ ¬32p)
6 p ∧ ¬32p ∧32¬p
7 32p ∧3(p ∧ ¬32p)

Figure 2.4: Formulas true at points of the model in Figure 2.5.

It is easy to find anS4Kripke model satisfying the 7 formulas above, for instance,
the one in Figure 2.5.a. By a bisimulation one ‘reduces’ it to a minimal similar one.
The topo-bisimilar reduction is presented in the table on the right of Figure 2.6.

From the reduced model one can ‘reconstruct’ the pictorial example, that is, a spoon
with only one handle, Figure 2.6.b. Checking the topo-bisimilarity of Figure 2.6.a and
Figure 2.6.b is an easy task to perform. We do not spell out the general method used
here for transforming topological models into Kripke ones (and back); but it should be
fairly clear from the example.

The claim is not that one should move back and forth from topological and Kripke
semantics to find minimal models. Our goal is to show that topo-bisimulations enable
the reduction of spatial models in the same way that bisimulations enable the reduction
of Kripke models. A general algorithm for deciding topo-bisimulation is still missing,
but one for a specific class of models will be presented and used in Chapter 6.

2.2 Games that compare visual scenes

Topo-bisimulation is a global notion of comparison. But in practice, we are inter-
ested infine-structure: what are the ‘simplest differences’ that can be detected be-
tween two visual scenes? For this purpose, we introducetopo-gamestopological game
that generalizeEhrenfeucht-Fräısśecomparison games between first-order models, see
[Doets, 1996]. Similarity and difference between visual scenes will then have to do
with strategiesfor players comparing them.
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 6

(a) (b)

Figure 2.5: The reduction of a topological model to a minimal topo-bisimilar one.
From a spoon with two handles to one with only one.

2.2.1.DEFINITION (TOPOLOGICAL GAME). Consider two topo-models〈X,O, ν〉 ,
and〈X ′, O′, ν ′〉, a natural numbern and two pointsx1 ∈ X, x′1 ∈ X ′. A topological
gameof lengthn, with starting pointsx1, x

′
1—notationTG(X,X ′, n, x1, x

′
1)—consists

of n rounds between two players: Spoiler and Duplicator. Each round proceeds as
follows:

(i) Spoiler chooses a modelXs and an openos containing the current pointxs of
that model

(ii) Duplicator chooses an openod in the other modelXd containing the current point
xd of that model

(iii) Spoiler picks a point̄xd in Duplicator’s openod in theXd model

(iv) Duplicator finally picks a point̄xs in Spoiler’s openos in Xs

The points̄xs andx̄d become the new current points of theXs andXd models, respec-
tively. After n rounds, two sequences have been built:

{x1, o1, x2, o2, . . . , on−1, xn} {x′1, o′1, x′2, o′2, . . . , o′n−1, x
′
n}

with xi ∈ oi, andoi ∈ O (analogously for the second sequence). Aftern rounds, if
xi andx′i (with i ∈ [1, n]) satisfy the same atoms, Duplicatorwins. (Note that Spoiler
already wins ‘en route’, if Duplicator fails to maintain the atomic match.) Awinning
strategy(‘w.s.’ for short) for Duplicator is a function from any sequence of moves by
Spoiler to appropriate responses which always ends in a win for Duplicator. The same
notion applies to Spoiler. Aninfinite topological gameis one without a finite limit to
the number of rounds. In this case, Duplicator wins if the matched points continue to
satisfy the same atoms.
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2 31 4
p p p −p

5
p

7
p

6 −p

(a) (b)

1 1
2 2
3 3
4 4
5 5
6 4
7 5

(a)

5

2 31 4
p p p −p

p

(b)

Figure 2.6: The reduction of the spoons of Figure 2.5 via a bisimulation on the corre-
sponding Kripke models. In the table, the bisimulation relation.
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1 Round 2 Rounds 3 Rounds

(a) (b) (c)

Figure 2.7: Games on two spoons with two different starting points. On top, the num-
ber of rounds needed by Spoiler to win.

The opens in the game sequence do not play any role in determining which player
wins, but they visually guide the development of the game. For instance, the following
intuitive ‘Locality Principle’ holds. Players lose no winning strategies if we restrict
their moves to choosing opens that arecontained in the previous open.

2.2.1.EXAMPLE (PLAYING ON SPOONS). Consider the three configurations in Fig-
ure 2.7. (a) The leftmost game starts with a point on the boundary of the spoon versus
an interior point of the other spoon. Spoiler can win this game in one round by simply
choosing an open set on the right spoon completely contained in its interior. Duplica-
tor’s open response must always contain a point not in the spoon, which Spoiler can
then pick, giving Duplicator no possible response. (b) In the central game, a point on
the handle is compared with a boundary point of the spoon’s container. Spoiler can
again win the game, but needs two rounds this time. Here is a winning strategy. First,
Spoiler chooses an open on the left spoon containing the starting point but without
interior points. Any open chosen by Duplicator on the other spoon must contain an
interior point. Spoiler then picks such an interior point. Duplicator’s response to that
can only be a boundary point of the other model (on the handle) or a point outside of
the spoon. In the latter case, she loses at once – in the former, she looses in one round,
by reduction to the previous game. (c) Finally, on the left the junction between handle
and container is compared with a boundary point of the container. In this game, Spoiler
will chose an open on the right model, avoiding points on the handle of the spoon. Du-
plicator is forced to chose an open on the left containing points on the handle. Spoiler
then picks such a handle point. Duplicator replies either with an interior point, or with
a boundary point of the right spoon. Thus we are back with game (b), and Spoiler can
win in the remaining two rounds.

The topological dynamics of these games is appealing. E.g. it is instructive to check
that other initial choices for Spoiler may very well lead to his losing the game! (E.g.,
let Spoiler start in the right-hand model in (b)). A strategy guarantees a win only for
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those who follow it. . . One can also make some more general mathematical observa-
tions here. In particular, topo-games are alwaysdetermined: either Duplicator has a
winning strategy, or Spoiler has one.

2.2.1 Strategies and modal formulas

The fine-structure provided by games measures differences in terms of the minimum
number of rounds needed by Spoiler to win. These same differences may also be
formulated in terms of our modal language. To see this, we need the notion ofmodal
rank, being the maximum number of nested modal operators in a formula. For instance,
the modal ranks of the formulas in Figure 2.1:p, 2p, p ∧ ¬2p, 32p, p ∧ ¬32p,
32p ∧3(p ∧ ¬32p), are 0, 1, 1, 2, 2, and 3, respectively. We are now ready for our
main result.

2.2.2.THEOREM (ADEQUACY). topological game!adequacy Duplicator has a w.s. in
TG(X,X ′, n, x, x′) iff x andx′ satisfy the same formulas of modal rank up ton.

Proof The left to right direction is proven by induction on the lengthn of the game
TG(X,X ′, n, x, x′). If n = 0 and Duplicator has a winning strategy, this means
that the pointsx, x′ satisfy the same proposition letters, and hence the same Boolean
combinations of proposition letters, i.e., the same modal formulas of modal rank 0.
Now for the inductive step. Suppose that Duplicator has a winning strategyσ in
TG(X,X ′, n, x, x′). We want to show thatX, x |= ϕ iff X ′, x′ |= ϕ, when the modal
rank ofϕ is n. By simple syntactic inspection,ϕ must be a Boolean combination of
formulas of the form2ψ whereψ has modal rank less or equal ton − 1. Thus, it
suffices to prove thatX, x |= 2ψ iff X ′, x′ |= 2ψ. Without loss of generality, let us
consider the first model. Suppose thatX, x |= 2ψ. By the truth definition there exists
an openo (with x ∈ o) such that∀u ∈ o : X, z |= ψ. Now, assume that then-round
game starts with Spoiler choosingo in X. Using the strategyσ, Duplicator can pick an
openo′ such thatx′ ∈ o′ and∀u′ ∈ o′ : X, u′ |= ψ. Now Spoiler can pick any pointu′

in o′. Duplicator can use the information inσ to respond with a pointu ∈ o, conclud-
ing the first round, so that the remaining strategyσ′ is still winning for Duplicator in
TG(X,X ′, n− 1, u, u′). By the inductive hypothesis, the fact thatX, u |= ψ (whereψ
has modal rankn − 1) implies thatX ′, x′ |= ψ. Thus we have shown that allu′ ∈ o′
satisfyψ, and henceX ′, x′ |= 2ψ. The other direction is analogous.

The right to left direction is again proven by induction onn. If n = 0, thenx and
x′ satisfy the same non-modal formulas. In particular, they satisfy the same atoms,
which is winning for Duplicator, by the definition of topological game. Now for the
inductive step. Without loss of generality, let us assume that Spoiler picks an open set
o containingx in X in the first round ofTG(X,X ′, n, x, x′) game. Now, take the set
{DESn−1(z)|z ∈ o}, where DESn−1(z) denotes all the formulas up to modal rankn−1
satisfied atz. This set is not finite per se, but we can simply prove the following
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2.2.3.FACT (LOGICAL FINITENESS). There are only finitely many modal formulas of
depthk up to logical equivalence.

Therefore, we can write one Boolean formula to describe this open seto, namely∨ ∧
DESn−1(z). Since this is true for allz ∈ o, by the truth definition we have

thatX, x |= 2
∨ ∧

DESn−1(z) (a formula of modal rankn). By hypothesis,x and
x′ satisfy the same modal formulas of modal rankn, soX ′, x′ |= 2

∨ ∧
DESn−1(z).

This last fact, together with the truth definition implies that there exists an openo′

such that∀z′ ∈ o′ : X ′, z′ |=
∨ ∧

DESn−1(z). This is the open that Duplicator must
choose to reply to Spoiler’s move. Now Spoiler can pick any pointu′ in o′. Such a
point satisfies at least one disjunct

∧
DESn−1(z), and we let Duplicator respond with

z ∈ o. As a result of this first round,z, u′ satisfy the same modal formulas up to modal
depthn − 1. Hence by the inductive hypothesis, Duplicator has a winning strategy
for TG(X,X ′, n − 1, z, u′). Putting this together with our first instruction, we have a
winning strategy for Duplicator in then-round game. QED

This is the usual version of adequacy: slanted towards similarity. But in our pic-
torial examples, we rather looked at Spoiler. One can also set up the proof of Theo-
rem 2.2.2 so as to obtain aneffective correspondencebetween (a) winning strategies for
Spoiler, (b) modal ‘difference formulas’ for the initial points. Here is an illustration.

2.2.2.EXAMPLE (MATCHING STRATEGIES WITH FORMULAS). Look again at Fig-
ure 2.7. The strategies described for Spoiler are immediately linked to modal formulas
that distinguish the two models. Suppose the spoons are denoted by the proposition
letter p and hence the background by¬p. In the game on the left,2p is true of the
starting point of the right spoon, and its negation3¬p is true of the starting point of
the other spoon. The modal depth of these formulas is one and therefore Spoiler can
win in one round. In the central case, a distinguishing formula is¬32p, which holds
for the starting point on the left spoon, but not for that on the right. The modal depth
is 2, which is the number of rounds that Spoiler needed to win the game. Finally, a
formula of modal depth 3 that is only true of the point on the left spoon of the leftmost
game is:3(p ∧ ¬32p). The negation of this formulas is true on the other starting
point, thus justifying Spoiler’s winning strategy in 3 turns.

There is still more fine-structure to these games. E.g., visual scenes may have sev-
eral modal differences, and hence more than one winning strategy for Spoiler. Also,
recall that topo-games can be playedinfinitely. Then the winning strategies for Dupli-
cator (if any) are precisely the varioustopo-bisimulationsbetween the two models. For
further details, see [Aiello and van Benthem, 1999], [van Benthem, 1999]—and also
[Barwise and Moss, 1996].

Before considering completeness ofS4 with respect to topological spaces in the
next chapter, we remark an alternative modal approach to axiomatizing topology.
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2.3 Logical variations

Tarski’s interior modality2 iff ∃o ∈ O : x ∈ o∧∀y ∈ o : M, y |= ϕ is actually a mix-
ture of elements of different sorts. A2ϕ formula is true in a pointx whenever there
exist an open set containing the pointx itself and such that all points of the set satisfyϕ.
The definition quantifies at the same time over points and over sets of points connected
by the incidence relation of set membership. Naturally, there is an alternative take on
the basic topological approach to topological reasoning: a ‘stepwise’ approach sepa-
rating points from open sets, thus splitting Tarski’s modality into two separate modal
quantifiers. The resulting modal logic was studied in [Dabrowski et al., 1996] and in
Georgatos’ PhD thesis [Georgatos, 1993]. The main motivation of their work is that
of modeling, with “weak logical systems whose primitives are appropriately chosen,”
logics of knowledge. In particular, with such a logic one can focus on the notion of ef-
fort in contraposition with that of view. The authors also explicitly mention the added
motivation of having devised a tool of potential use for visual reasoning. We share the
motivation and here place their language in our map of spatial logics to tour.

The definition of a model is analogous to that of topological models presented in
Section 2.1 and the truth definition for the new modal operators becomes:

M,x, o |= 2p ϕ iff ∀y ∈ o : M, y, o |= ϕ
M, x, o |= 3s ϕ iff ∀o′ ⊆ o ∈ O : x ∈ o′ ∧M,x, o′ |= ϕ

wherex, y ∈ X are points ando, o′ ∈ O are open sets. The relation with Tarski’s
interior modality is quite straightforward:

2ϕ if 3s 2p ϕ

Proof The truth definition of the formula3s 2p ϕ statesM,x, o |= ∀o′ ⊆ o ∈ O :

x ∈ o′ ∧ ∀y ∈ o′ : M, y, o |= ϕ. On the other hand, in the truth definition of2

there is no reference to an open set, so the previous truth definition becomesM,x |=
∃o ∀o′ ⊆ o ∈ O : x ∈ o′ ∧ ∀y ∈ o′ : M, y, o |= ϕ, which trivially simplifies to
M,x |= ∃o x ∈ o ∧ ∀y ∈ o : M, y, o |= ϕ which is precisely the definition of2ϕ.

QED

The two level language affords a nice new view on theS4-behavior of our original
topological interpretation. E.g., consider the behavior of theS4axioms.

2ϕ→ ϕ becomes3s 2p ϕ→ ϕ, (2.1)

which, in a two-sorted modal logic, expresses the fact that the accessibility relation
for s is contained in theconverseof that forp. This is a natural connection between
‘x ∈ A’ and ‘A 3 x’. Note thatreflexivityvanishes!

2ϕ→ 22ϕ becomes3s 2p ϕ→ 3s 2p 3s 2p ϕ, (2.2)

which follows from
2p ϕ→ 2p 3s 2p ϕ
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which is simply a minimally valid consequence of conversion (ψ → 2p 3s ψ). The rest is
an application of the valid modal base rule “fromγ → σ to 3s γ → 3s σ.”

2ϕ ∧2ψ → 2(ϕ ∧ ψ) becomes3s 2p ϕ ∧3s 2p ψ → 3s 2p (ϕ ∧ ψ), (2.3)

a principle which has no obvious meaning in a two-sorted modal language. We can
analyze its meaning byframe correspondencetechniques [Blackburn et al., 2001], to
obtain:

∀A,B : ((x ∈ A ∧ x ∈ B)→ ∃C : (x ∈ C ∧ ∀y ∈ C : y ∈ A ∨ y ∈ B)).

The full axiomatization of the logic is known [Dabrowski et al., 1996]. The set modal-
ity 3s has theS5axiomatization, while the point modality2p retains theS4axiomatiza-
tion. Depending on which models we consider there is a number of different interaction
axioms that also hold. If we consider models for which the setO follows the laws of
open spaces, rather than just being a family of subsets with no specific structure (cf.
neighbourhood semantics), one gets:

3s 2p ϕ→ 2p 3s ϕ (Cross)

3p ϕ ∧2s 3p ψ → 3p (3p ϕ ∧2s 3p ψ ∧3s 3p 2s (ϕ ∨ ψ)) (Union)

Either way, whether by a single modality defined by a second-order existential and an
universal quantifiers or by a two-sorted modal logic defined by first-order quantifica-
tions, there is a landscape of possible modal languages for topological patterns whose
nature is by no means understood. For instance, one would like to understand what are
natural well-chosen languages for simulations, and also, what are thecomplexity jumps
between languages and their logics in this spectrum.





CHAPTER 3
THE TOPO APPROACH: AXIOMATICS

Regarding the modal box as an interior operator, one gets the feeling for why the modal
logic S4is complete with respect to arbitrary topological spaces as modal logic axioms
mimic Kuratowski’s topological axioms. But there are classical results with much
more mathematical content, such as McKinsey and Tarski’s beautiful theorem stating
that S4 is the complete logic of the reals, and indeed of any metric separable space
without isolated points. Even so, the topological interpretation has always remained
something of a side-show in modal logic and intuitionistic logic, often tucked away
in notes and appendices. The purpose of this chapter is to take it one step further as
a first stage in a program of independent interest, viz. the modal analysis of space
—showing how one can get more generality, as well as some nice new questions. In
particular, this chapter contains (a) a modern analysis of the modal languageS4 as
presented in Chapter 2 in terms of ‘topo-bisimulation’, (b) a number of connections
between topological models and Kripke models, (c) a new general proof of McKinsey
and Tarski’s Theorem (inspired by [Mints, 1998]), (d) an analysis of special topological
logics on the reals, pointing toward a landscape of spatial logics aboveS4.

3.1 Topological spaces and Kripke models

The purpose of this section is a link-up with the better-known world of ‘standard’
semantics for modal logic. At the same time, this comparison increases our under-
standing of the ‘topological content’ of modal logic.

3.1.1 The basic connection

The standard Kripke semantics is a particular case of its more general topological se-
mantics. Recall that anS4-frame (henceforth ‘frame’, for short) is a pair〈W,R〉, where
W is a non-empty set andR a quasi-order (transitive and reflexive) onW . Call a set
X ⊆ W upward closedif w ∈ X andwRv imply v ∈ X.

23
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3.1.1.FACT. Every frame〈W,R〉 induces a topological space〈W, τR〉, whereτR is the
set of all upward closed subsets of〈W,R〉.

It is easy to check thatτR is a topology onW , and that the closure and interior operators
of 〈W, τR〉 are respectivelyR−1(X) andW − R−1(W − X), whereR−1(w) = {v ∈
W |vRw} andR−1(X) =

⋃
w∈X R

−1(w), for w ∈ W , X ⊆ W . Indeed,τR is a rather
special topology onW : for any family{Xi}i∈I ⊆ τR, we have

⋂
i∈I Xi ∈ τR. Such

spaces are calledAlexandroff spaces, in which every point has a least neighborhood.
In frames, the least neighborhood of a pointw is evidently{v ∈ W |wRv}, which is
usually denoted byR(w).

Conversely, every topological space〈W, τ〉 naturally induces a quasi-orderRτ de-
fined by putting

wRτv iff w ∈ {v} iff w ∈ U impliesv ∈ U , for everyU ∈ τ .

This is called thespecialization orderin the topological literature. Again it is easy to
check thatRτ is transitive and reflexive, and that every open set ofτ is Rτ -upward
closed. Moreover,Rτ is anti-symmetric iff〈W, τ〉 satisfies theT0 separation axiom
(that is, any two different points are separated by an open set). HenceRτ is a partial
order iff 〈W, τ〉 is aT0-space.

Combining the two mappings,R = RτR , τ ⊆ τRτ , andτ = τRτ iff 〈W, τ〉 is an
Alexandroff space. Indeed,wRτRv iff w ∈ {v} iff w ∈ R−1(v) iff wRv. Also, as every
open set ofτ is Rτ -upward closed,τ ⊆ τRτ . Finally, τ = τRτ iff every Rτ -upward
closed set belongs toτ iff every point ofW has a least neighborhood in〈W, τ〉 iff
〈W, τ〉 is an Alexandroff space.

The upshot of all this is a one-to-one correspondence between quasi-ordered sets
and Alexandroff spaces, and between partially ordered sets and AlexandroffT0-spaces.
Since every finite topological space is an Alexandroff space, this immediately gives
a one-to-one correspondence between finite quasi-ordered sets and finite topological
spaces, and finite partially ordered sets and finiteT0-spaces.

There is also a one-to-one correspondence between continuous maps and order
preserving maps, as well as open maps andp-morphisms. Indeed, let two topolog-
ical spaces〈W1, τ1〉 and 〈W2, τ2〉 be given. Recall that a functionf : W1 → W2

is continuousif f−1(V ) ∈ τ1 for everyV ∈ τ2. Moreover,f is open if it is con-
tinuous andf(U) ∈ τ2 for everyU ∈ τ1. It is well-known thatf is continuous iff
f−1(X) ⊆ f−1(X), and thatf is open ifff−1(X) = f−1(X), for everyX ⊆ W2.

Next, for two quasi-orders〈W1, R1〉 and 〈W2, R2〉, f : W1 → W2 is said to be
order preservingif wR1v implies f(w)R2f(v), for w, v ∈ W1. f is a p-morphism
if it is order preserving, and in additionf(w)R2v implies that there existsu ∈ W1

such thatwR1u and f(u) = v, for w ∈ W1 and v ∈ W2. It is well-known that
f is order preserving iffR−1

1 f−1(w) ⊆ f−1R−1
2 (w), and thatf is a p-morphism iff

R−1
1 f−1(w) = f−1R−1

2 (w), for everyw ∈ W2.
Putting this together, one easily sees thatf is monotone ifff is continuous, and

thatf is p-morphism ifff is open.
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As an easy consequence we obtain that the categoryATop of Alexandroff spaces
and continuous maps is isomorphic to the categoryQosof quasi ordered sets and order
preserving maps, and that the categoryATop+ of Alexandroff spaces and open maps
is isomorphic to the categoryQos+ of quasi ordered sets andp-morphisms. Similarly,
the categoryATopT0

of AlexandroffT0-spaces and continuous maps is isomorphic to
the categoryPosof partially ordered sets and order preserving maps, and the category
ATop+

T0
of AlexandroffT0-spaces and open maps is isomorphic to the categoryPos+

of partially ordered sets andp-morphisms.
In the finite case, we get that the category FinTop of finite spaces and continu-

ous maps is isomorphic to the category FinQos of finite quasi ordered sets and or-
der preserving maps, and that the category FinTop+ of finite topological spaces and
open maps is isomorphic to the category FinQos+ of finite quasi ordered sets andp-
morphisms. Similarly, the category FinTopT0

of finite T0-spaces and continuous maps
is isomorphic to the category FinPosof finite partially ordered sets and order preserv-
ing maps, and the category FinTop+

T0
of finite T0-spaces and open maps is isomorphic

to the category FinPos+ of finite partially ordered sets andp-morphisms.

3.1.2 Analogies

The tight connection between modal frames and topological spaces explains the earlier-
mentioned analogies in their semantic development, such aslocality andinvariance for
bisimulation. It may be extended to include other basic modal topics, such ascorre-
spondence theory[van Benthem, 1985]. Likewise, the modern move toward extended
modal languages makes equally good sense for the topological interpretation. Many
natural topological notions need extra modal power for their definition: good exam-
ples are the basicseparation axioms. We just saw that, among the quasi orders, partial
orders correspond to topological spaces satisfying theT0 separation axiom. But this
difference does not show up in our basic modal language:S4 is complete with respect
to arbitrary partial orders. Defining separation axioms requires various expressive ex-
tensions of the modal base language.

Finally, in a more technical sense, there still seems to be a vast difference. The
format of the topological interpretation looks more complex than the usual one which
quantifies over accessible worlds only. For, it involves asecond-orderquantification
over sets of worlds, plus a first-order quantification over their members. But this differ-
ence is more apparent than real, because the quantification is over open sets only, and
we may plausibly think of topological models astwo-sorted first-order modelswith
separate domains of ‘points’ and ‘opens’, see Section 2.3.

3.2 General completeness

The preceding section shows that standard modal models are a particular case of a
more general topological semantics. Hence, the known completeness ofS4 plus the
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topological soundness of its axioms immediately give us general topological complete-
ness. Even so, we now give a direct model-theoretic proof of this result. It is closely
related to the standard modal Henkin construction, but with some nice topological
twists. (Compare [Chellas, 1980] for the quite analogous case of modal ‘neighborhood
semantics’.)

3.2.1 The main argument

Soundness is immediate, and hence we move directly to completeness. Call a setΓ
of formulas ofL (S4–)consistentif for no finite set{ϕ1, . . . , ϕn} ⊆ Γ we have that
S4 ` ¬(ϕ1 ∧ · · · ∧ ϕn). A consistent set of formulasΓ is calledmaximally consistent
if there is no consistent set of formulas properly containingΓ. It is well-known thatΓ
is maximally consistent iff, for any formulaϕ of L, eitherϕ ∈ Γ or ¬ϕ ∈ Γ, but not
both. Now we define a topological space out of maximally consistent sets of formulas.

3.2.1.DEFINITION (CANONICAL SPACE). Thecanonical topological spaceis the pair
SL = 〈WL, τL〉, where:

• WL is the set of all maximally consistent setsΓmax;

• τL is the set generated by arbitrary unions of the followingbasic setsBL =

{2̂ϕ| ϕ is any formula}, whereϕ̂ =def {Γmax ∈ WL| ϕ ∈ Γmax}. In other
words, basic sets are the families of the form:Uϕ = {Γmax ∈ WL|2ϕ ∈ Γmax}.

Let us first check thatSL is indeed a topological space.

3.2.2.LEMMA . BL forms a basis for the topology.

Proof We only need to show the following two properties:

• For anyUϕ, Uψ ∈ BL and anyΓmax ∈ Uϕ ∩ Uψ, there isUχ ∈ BL such that
Γmax ∈ Uχ ⊆ Uϕ ∩ Uψ;

• For anyΓmax ∈ WL, there isUϕ ∈ BL such thatΓmax ∈ Uϕ.

Now, (N) implies that2> ∈ Γmax, for any Γmax. HenceWL = 2̂> and the sec-
ond item is satisfied. As for the first item, thanks to (R), one can easily check that

̂2(ϕ ∧ ψ) = 2̂ϕ ∩ 2̂ψ. HenceUϕ ∩ Uψ ∈ BL, and soBL is closed under finite inter-
sections: whence the first item is satisfied. QED

Next we define the canonical topological model.

3.2.3.DEFINITION (CANONICAL MODEL). Thecanonical topological modelis the
pair ML = 〈SL, νL〉, where:
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• SL is the canonical topological space;

• νL(P ) = {Γmax ∈ XL| P ∈ Γmax}.

The valuationνL equates truth of a proposition letterat a maximally consistent
set with its membershipin that set. We now show this harmony between the two
viewpoints lifts to all formulas.

3.2.4.LEMMA (TRUTH LEMMA ). For all modal formulasϕ,

ML, w |=L ϕ iff w ∈ ϕ̂.

Proof Induction on the complexity ofϕ. The base case was just described. The
case of the Booleans follows from the following well-known identities for maximally
consistent sets:

• ¬̂ϕ = WL − ϕ̂;

• ϕ̂ ∧ ψ = ϕ̂ ∩ ψ̂.

The interesting case is that of the modal operator2. We do the two relevant impli-
cations separately, starting with the easy one.
⇐ ‘From membership to truth.’ Supposew ∈ 2̂ϕ. By definition, 2̂ϕ is a basic

set, hence open. Moreover, thanks to axiom (T),2̂ϕ ⊆ ϕ̂. Hence there exists an open
neighborhoodU = 2̂ϕ of w such that for anyv ∈ U , v ∈ ϕ̂, and by the induction
hypothesis,ML, v |=L ϕ. ThusML, w |=L 2ϕ.
⇒ ‘From truth to membership.’ SupposeML, w |=L 2ϕ. Then there exists a basic

set2̂ψ ∈ BL such thatw ∈ 2̂ψ and for allv ∈ 2̂ψ, ML, v |=L ϕ. By the induction
hypothesis,∀v ∈ 2̂ψ, v ∈ ϕ̂: i.e.,2̂ψ ⊆ ϕ̂. But this implies that the logicS4can prove
the implication2ψ → ϕ. (If not, then there would be some maximally consistent set
containing both2ψ and¬ϕ.) But then we can prove the implication22ψ → 2φ,
and hence, using theS4 transitivity axiom,2ψ → 2φ. It follows that2̂ψ ⊆ 2̂φ, and
hence the worldw belongs to2̂φ. QED

Now we can clinch the proof of our main result.

3.2.5.THEOREM (COMPLETENESS). For any set of formulasΓ,

if Γ |=L ϕ then Γ `S4 ϕ.

Proof Suppose thatΓ `S4 ϕ. ThenΓ ∪ {¬ϕ} is consistent, and by the Lindenbaum
Lemma it can be extended to a maximally consistent setΓmax. By the Truth Lemma,
ML,Γmax |=L ¬ϕ, whenceΓmax 6|=L ϕ, and we have constructed the required counter-
model. QED
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3.2.2 Topological comments

Let us now look at some topological aspects of this construction. In proving the box
case of Truth Lemma, we did not use the standard modal argument, which crucially
invokes thedistribution axiomof the minimal modal logic. Normally, one shows that,
if a formula2φ does not belong to a maximally consistent setΓ, then there exists some
maximally consistent successor set ofΓ containing¬ϕ. This is not necessary in the
topological version at this stage. We only need the reflexivity and transitivity axioms,
plus the Lindenbaum Lemma on maximally consistent extensions. The modal distri-
bution axiom still plays a crucial role, but that was at the earlier stage of verifying that
we had really defined a topology. This different way of ‘cutting the cake’ provides an
additional proof-theoretic explanation whyS4 is the weakest axiom system complete
for topological semantics. Moreover, the divergence with the ‘standard’ argument ex-
plodes the prejudice that one single ‘well-known’ interpretation for a language must
be the only natural one. Comparing our construction with the standard Henkin model
for S4〈WL, RL, |=L〉, the basic sets of our topologySL areRL-upward closed. Hence
every open ofSL isRL-upward closed, andSL is weaker than the topologyτRL corre-
sponding toRL. In particular, our canonical space isnotan Alexandroff space.

Here are some further topological aspects of the above construction. First, it is
worthwhile to compare Stone’s famous construction which uses the alternative basis
{ϕ̂|ϕ any formula}, yielding a space which we denote by〈WL, τS〉. It is well-known
that〈WL, τS〉 is homeomorphic to the Cantor space—and so, up to homeomorphism,
〈WL, τS〉 is compact, metric,0-dimensional, and dense-in-itself. The basis of our
topology, however, was the sub-family{2̂ϕ|ϕ any formula}. Now every subtopology
of one that is compact and dense-in-itself is also compact and dense-in-itself. There-
fore, we get these same properties for our canonical topological space. But we can be
more precise than this.

3.2.6.FACT. The canonical topology is actually theintersectionof the Kripke and
Stone topologies.

In other words,τL = τRL ∩ τS . Indeed, sinceτL ⊆ τRL andτL ⊆ τS , obviously
τL ⊆ τRL ∩ τS . Conversely, since every base setϕ̂ of Stone’s topology isRL-upward
closed iffϕ̂ = 2̂ψ for someψ, τRL ∩ τS ⊆ τL, andτL = τRL ∩ τS .

One can also connect modal formulas and topological properties more directly, by
giving a direct proof of the fact thatSL is compact and dense-in-itself. The former fact
goes just as for the Stone space, but we display it for the sake of illustration.

3.2.7.LEMMA . SL is compact.

Proof Ad absurdum, there is a family{2̂ψi}i∈I ⊆ BL such that
⋃
i∈I 2̂ψi = WL,

and for no finite subfamily{2̂ψi1 , . . . , 2̂ψin} we have2̂ψi1 ∪ · · · ∪ 2̂ψin = WL. Let
Γ = {¬2ψi}i∈I .
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3.2.8.CLAIM . Γ is consistent.

Proof Ad absurdum, there is a finite number of formulas¬2ψ1, . . . ,¬2ψn ∈ Γ
such thatS4 ` ¬(¬2ψ1 ∧ · · · ∧ ¬2ψn). HenceS4 ` 2ψ1 ∨ · · · ∨ 2ψn. But then
2̂ψ1 ∪ · · · ∪ 2̂ψn = WL, which is a contradiction. QED

SinceΓ is consistent, it can be extended to a maximally consistent setΓmax. Obviously
¬2ψi ∈ Γmax for any i ∈ I. HenceΓmax ∈ ¬̂2ψi for any i ∈ I. Since¬̂2ψi =

WL − 2̂ψi, Γmax ∈ WL − 2̂ψi for anyi ∈ I. HenceΓmax ∈ WL −
⋃
i∈I 2̂ψi, which

contradicts our assumption. Thus,SL is compact. QED

3.2.9.LEMMA . SL is dense-in-itself.

Proof Suppose there was an isolated pointw in SL. Then there is a formula2ϕ with
2̂ϕ = {w}. This means2ϕ ∈ w and for anyψ, ψ ∈ w iff S4 ` 2ϕ → ψ, which
is obviously a contradiction—since we are working in a language with infinitely many
propositional letters. QED

3.2.10.COROLLARY. S4 is the logic of the class of all topological spaces which are
compact and dense-in-itself.

Still, the canonical topological spaceSL is neither0-dimensional nor metric (it is not
even aT0-space). So,SL is not homeomorphic to the Cantor space. In the next section,
we show how to get completeness ofS4with respect to the Cantor space by a different
route.

3.2.3 Finite spaces suffice

We conclude with an observation that is important for later arguments. The whole
construction in the completeness proof would also work if we restricted attention to the
finite language consisting of the initial formula and all its subformulas. All definitions
go through, and our arguments never needs to go beyond it. This means that we only get
finitely many maximally consistent sets, and so non-provable formulas can be refuted
on finite models, whose size is effectively computable from the formula itself. Note
however that the obtained finite model will not necessarily be dense-in-itself.

3.2.11.COROLLARY. S4has theeffective finite model propertyw.r.t. the class of topo-
logical spaces.

Incidentally, this also shows that validity inS4 is decidable, but we forego such
computability issues in this thesis.
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The resulting models have some interesting topological extras. Consider any finite
modal frameF = 〈W,R〉. We define some auxiliary notions. For anyw ∈ W , let
C(w) = {v ∈ W |wRv & vRw}. Call a setC a cluster if it is of the form C(w)
for somew: thecluster generated byw. C(w) is simpleif C(w) = {w}, andproper
otherwise.w ∈ W is calledminimal if vRw implieswRv for anyv ∈ W . A clusterC
is minimal if there exists a minimalw ∈ W such thatC = C(w). Next, callF rooted
if there isw ∈ W such thatwRv for anyv ∈ W : w is then aroot of F . Thisw needs
not be unique: any point fromC(w), theinitial clusterof F , will do.

Evidently, a finite Kripke frameF is rooted iff it has only one minimal cluster.
Topologically, this property is related to the earlier notion ofconnectedness. A topo-
logical space〈W, τ〉 is connectedif its universe cannot be written as a union of two
disjoint open sets.〈W, τ〉 is well-connectedif W = U ∪V impliesW = U orW = V ,
for anyU, V ∈ τ . Obviously well-connectedness is a stronger notion than connect-
edness. It corresponds to〈W,Rτ 〉 being rooted. For this observe that, dually, well-
connectedness can be stated as follows:

For any two closed subsetsC,D of 〈W, τ〉, C ∩D = ∅ impliesC = ∅ orD = ∅.

3.2.12.LEMMA . A finite Kripke frame is rooted if and only if the corresponding topo-
logical space is well-connected.

Proof Suppose〈W,R〉 is a rooted Kripke frame with a rootw, and〈W, τR〉 the cor-
responding topological space. LetX1 andX2 be closed sets of〈W, τR〉 such that
X1 ∩ X2 = ∅. By an easy dualization of the notions of Section 3.1.1, a setX ⊆ W
is topologically closed iff it isdownward closedin the ordering, that isu ∈ X and
vRu imply v ∈ X, for anyu, v ∈ W . Now if bothX1 andX2 are non-empty, thenw
belongs to both of them, which is a contradiction. Hence one of them should be empty,
and〈W, τR〉 is well-connected.

Conversely, suppose〈W,R〉 is not rooted. Then there are at least two different
minimal clustersC1 andC2 in W . SinceC1 andC2 are minimal clusters, they are
downward closed, and hence closed in〈W, τR〉. Moreover, since they are different,
C1 ∩ C2 = ∅. Hence〈W, τR〉 is not well-connected. QED

This allows us to improve on Corollary 3.2.11.

3.2.13.THEOREM. S4 is the logic of finite well-connected topological spaces.

Proof It suffices to observe the following. If a modal formula has a counter-example
on a finite Kripke model, it fails in some point there. But then by standard ‘Locality’, it
also fails in the submodelgeneratedby that point and its relational successors, which
is rooted—and hence transforms into a well-connected topological space. QED
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Again, there is a downside to such an upgraded completeness result. What it also means
is that the basic modal language cannotdefinesuch a nice topological property as well-
connectedness. As we saw in Section 2.4, the definition of connectedness requires
introduction of additional modalities. So does well-connectedness.

Finally, let us mention that for refuting non-theorems ofS4 it is enough to restrict
ourselves to the class of those finite rooted models for which every cluster is proper.
As we already mentioned in Section 3.1.1, having only simple clusters topologically
corresponds to theT0 separation axiom, which in finite case is equivalent to theTD
separation axiom (every point is obtained as intersection of an open and a closed sets).
Consequently, having only proper clusters topologically corresponds to the fact that no
point can be obtained as intersection of an open and a closed sets. Call spaces with this
propertyessentially non-TD. Then we can improve a little bit on Theorem 3.2.13:

3.2.14.THEOREM. S4 is the logic of finite well-connected essentially non-TD topo-
logical spaces.

Proof Suppose a modal formulaϕ has a counter-example on a finite rooted Kripke
modelM = 〈W,R, |=〉. Then replacing every cluster ofW by ann-element cluster,
wheren is the maximum among the sizes of the clusters ofW , we obtain a new frame
〈W ′, R′〉. Obviously 〈W,R〉 is a p-morphic image of〈W ′, R′〉. This allows us to
define|=′ on 〈W ′, R′〉 so thatϕ has also a counter-example onM ′ = 〈W ′, R′, |=′〉.
Now every cluster ofW ′ is proper, hence〈W ′, R′〉 transforms into a well-connected
essentially non-TD topological space. QED

3.3 Completeness on the reals

As early as 1944, McKinsey and Tarski proved the following beautiful result, which is
an expansion of a completeness theorem by Tarski for intuitionistic propositional logic
from 1938:

3.3.1.THEOREM (MCK INSEY AND TARSKI). S4 is the complete logic of any metric
separable dense-in-itself space.

Most importantly, this theorem implies completeness ofS4with respect to the real
line IR. It also implies completeness ofS4with respect to the Cantor spaceC.

Our presentation does not present any startling new results improving on this the-
orem. It rather takes a systematic look at its proof, and what it achieves. The original
algebraic proof in [McKinsey and Tarski, 1944] was very complex, the later more topo-
logical version in [Rasiowa and Sikorski, 1963] is not much more accessible. Recently,
Mints [Mints, 1998] replaced these by a much more perspicuous model-theoretic con-
struction, extending earlier ideas of Beth and Kripke to get faster completeness ofS4
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with respect to the Cantor space. We generalize its model-theoretic structure, using
topo-bisimulations, and also provide a modification for completeness on the reals.

Our strategy in the following subsections starts from the standard modal complete-
ness forS4 involving counter-examples on finite rooted models, and then exhibits a
topo-bisimulation resulting in “tree-like” topological model homeomorphic to the Can-
tor spaceC. We then show how to extract completeness ofS4with respect to the reals
from the completeness ofS4with respect toC.

3.3.1 Cantorization

Our starting point is an arbitrary modal formula which is not provable inS4. We have
already seen that such a non-theorem can be refuted on a finite rooted Kripke model.
Now we show how to transform the latter into a counterexample on the Cantor space
C. Our technique isselective unraveling, a refinement of theunraveling technique
[Blackburn et al., 2001].

SupposeM = 〈W,R, |=〉 is a finite rooted model with a rootw. Our goal is to select
those infinite paths ofM which are in a one-to-one correspondence with infinite paths
of the full infinite binary treeT2. In order to give an easier description of our construc-
tion, we assume that every cluster ofW is proper. This can be done by Theorem 3.2.14.
Now start with a rootw, and announce(w) as a selective path. Then if(w1, . . . , wk)
is already a selective path, introduce aleft move by announcing(w1, . . . , wk, wk) as
a selective path; and introduce aright move by announcing(w1, . . . , wk, wk+1) as a
selective path ifwkRwk+1 andwk 6= wk+1. (Since we assumed that every cluster ofW
is proper, suchwk+1 will exist for everywk.)

To make this idea precise, we need some definitions. Foru, v ∈ W , call v a strong
successorof u if uRv andu 6= v. Write SSuc(u) for the set of all strong successors
of u. Since we assumed that every cluster ofW is proper,SSuc(u) 6= ∅ for every
u ∈ W . Supposev1, . . . , vn is a complete enumeration ofSSuc(u) for everyu ∈ W .
Now define aselective path ofW recursively:

1 (w) is a selective path;

2 If (w1, . . . , wk) is a selective path of lengthk, then(w1, . . . , wk, wk+1) is a se-
lective path of lengthk + 1, wherewk+1 = wk;

3 If (w1, . . . , wk) is a selective path of lengthk, then(w1, . . . , wk, wk+1) is a se-
lective path of lengthk + 1, wherewk+1 = vi with i ≡ k(mod n);1

4 That’s all!

1In other words,wk+1 is the first strong successor ofwk in the complete enumeration ofSSuc(wk)
which has not appeared in any selective path of lengthk; if all strong successors ofwk have already
appeared in one of selective paths of lengthk, then we start over again and putwk+1 to be the first
strong successor ofwk in the complete enumeration ofSSuc(wk).
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UseΣ to denote the set of all infinite selective paths ofW . For a finite selective
path(w1, . . . , wk), let

B(w1,...,wk) = {σ ∈ Σ| σ has an initial semgnet(w1, . . . , wk)}.

Define a topologyτΣ onΣ by introducing

BΣ = {B(w1,...,wk)|(w1, . . . , wk) is a finite selective path ofW}

as a basis. To see thatBΣ is a basis, observe thatB(w) = Σ, and that

B(w1,...,wk) ∩B(v1,...,vm) =


B(w1,...,wk) if (v1, . . . , vm) is an initial segment

of (w1, . . . , wk),
B(v1,...,vm) if (w1, . . . , wk) is an initial segment

of (v1, . . . , vm),
∅ otherwise.

In order to define|=Σ note that every infinite selective pathσ of W either gets sta-
ble or keeps cycling. In other words, eitherσ = (w1, . . . , wk, wk, . . . ), or σ =
(w1, . . . , wn, wn+1, . . . ), wherewi belongs to some clusterC ⊆ W for i > n. In
the former case we say thatwk stabilizesσ, and in the latter thatσ keepscycling in C.
Now define|=Σ onΣ by putting

σ |=Σ P iff


wk |= P if wk stabilizesσ,

ρ(C) |= P if σ keeps cycling inC ⊆ W, whereρ(C) is some
arbitrarily chosen representative ofC.

All we need to show is that〈Σ, τΣ〉 is homeomorphic to the Cantor space, and that
MΣ = 〈Σ, τΣ, |=Σ〉 is topo-bisimilar to the initialM . In order to show the first claim, let
us recall that the Cantor space is homeomorphic to the countable topological product
of the two element set2 = {0, 1} with the discrete topology. So,C ∼= 2ω with the
subbasic sets for the topology beingU =

∏
i∈ω Ui, where all but oneUi coincide with

2, or equivalently with the basic sets for the topology beingU =
∏

i∈ω Ui, where all
but finitely manyUi coincide with2.

To picture the Cantor space, one can think of the full infinite binary treeT2: starting
at the root, one associates0 to every left-son of a node, and1 with every right-son. Then
the points of the Cantor space are the infinite branches ofT2.

3.3.2.PROPOSITION. 〈Σ, τΣ〉 is homeomorphic toC.

Proof Supposeσ = (w1, w2, w3, . . . , wk, . . . ) ∈ Σ, wherew1 = w is a root ofW .
With eachwk (k > 1) associate0 if wk−1 = wk, and associate1 if wk is a strong
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successor ofwk−1. Denote an element of2 associated withwk by g(wk) and define
G : Σ→ 2ω by putting

G(w1, w2, w3, . . . , wk, . . . ) = (g(w2), g(w3), . . . , g(wk), . . . ).

It should be clear from the definition thatG is a bijection. In order to prove that it is
a homeomorphism, we need to check thatG is open. So, supposeB(w1,...,wk) is a basic
open set ofτΣ. Then

G(B(w1,...,wk)) = {g(w2)} × · · · × {g(wk)} × 2ω

is a basic open ofC, G preserves basic opens, hence preserves opens. Conversely,
supposeU = 2k−1 × {ck} × 2ω, whereck = 0 or 1, is a subbasic open ofC. Then

G−1(U) =
⋃

g(wk)=ck

B(w1,...,wk),

which obviously belongs toτΣ. Thus,G is open, hence a homeomorphism. QED

It is left to be shown thatMΣ is topo-bisimilar toM . DefineF : Σ→ W by putting

F (σ) =

{
wk if wk stabilizesσ,
ρ(C) if σ keeps cycling inC.

F is well-defined, and surjective. (For anywk ∈ W , F (σ0, wk, wk, . . . ) = wk, where
σ0 is a (finite) selective path fromw1 towk.)

3.3.3.PROPOSITION. F is a total topo-bisimulation betweenMΣ = 〈Σ, τΣ, |=Σ〉 and
M = 〈W,R, |=〉.

Proof Recall from the previous section that a finite topological space〈W, τR〉 is as-
sociated with〈W,R〉 (since〈W,R〉 is rooted,〈W, τR〉 is actually well-connected). Let
us check thatF : 〈Σ, τΣ〉 → 〈W, τR〉 is open. Recall thatR(v), for v ∈ W , are basic
opens ofτR. So, in order to check thatF is continuous, we need to show that theF
inverse image of everyR(v) is open inτΣ. Observe that for anyv ∈ W ,

F−1(R(v)) =
⋃

k∈ω, vRwk

B(w1,...,wk),

which is an element ofτΣ. Indeed, supposeσ ∈
⋃
k∈ω, vRwk

B(w1,...,wk). Thenσ be-
longs to one ofB(w1,...,wk) with vRwk. But thenwkRF (σ), which together withvRwk
and transitivity ofR imply that vRF (σ). So,F (σ) ∈ R(v), andσ ∈ F−1(R(v)).
Conversely, supposeσ ∈ F−1(R(v)). ThenF (σ) ∈ R(v), andvRF (σ). Now ei-
ther wk stabilizesσ, or σ keeps cycling in a clusterC. In the former case,σ =
(w1, . . . , wk, wk, . . . ), wherewk = F (σ). Hence,σ ∈ B(w1,...,wk) with vRwk. In
the latter case,σ = (w1, . . . , wn, wn+1, . . . ), wherewi ∈ C for i > n, andF (σ) =
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ρ(C). Hence,σ ∈ B(w1,...,wn,wn+1) with vRwn+1. In either case,F−1(R(v)) ⊆⋃
k∈ω, vRwk

B(w1,...,wk). Thus,F−1(R(v)) =
⋃
k∈ω, vRwk

B(w1,...,wk), andF is contin-
uous.

In order to show thatF preserves opens, consider any basic setB(w1,...,wk) of τΣ
and show thatF (B(w1,...,wk)) is open inτR. For this we show that

F (B(w1,...,wk)) = R(wk).

Supposev ∈ F (B(w1,...,wk)). Then there existsσ = (w1, . . . , wk, . . . ) ∈ B(w1,...,wk)

such thatF (σ) = v. Hence, we have thatwkRv. Conversely, supposewkRv. Consider
a (finite) selective pathσ0 fromw1 to v containing(w1, . . . , wk) as an initial segment.
Thenσ = (σ0, v, v, v, . . . ) ∈ B(w1,...,wk) andF (σ) = v. HenceF (B(w1,...,wk)) =
R(wk), which is a basic open ofτR. So,F is open.

Moreover, as follows from the definition of|=Σ,

σ |=Σ P iff F (σ) |= P.

Now, since every continuous and open map satisfying this condition is a topo-bisimulation
(cf. Theorem 2.1.5), so is ourF . QED

3.3.4.THEOREM. S4 is complete with respect to the Cantor space.

Proof SupposeS40 ϕ. Then by Theorem 3.2.13 there is a finite rooted Kripke model
M refutingϕ. By Theorem 3.2.14 we can assume that every cluster ofM is proper.
By Propositions 3.3.2 and 3.3.3 there exists a valuation|=C on the Cantor setC such
that〈C, |=C〉 is topo-bisimilar toM . Hence,ϕ is refuted onC. QED

3.3.2 Counterexamples on the reals

In the previous subsection, we described how selective unraveling transforms coun-
terexamples on a finite rooted Kripke modelM into counterexamples on the Cantor
spaceC. In this subsection we show how to transfer counterexamples fromM to (0, 1).
As a result, we obtain a new proof of completeness ofS4with respect to the real line.

Our strategy is similar to that in Section 3.3.1: we start with a non-theorem ofS4
having a counterexample on a finite rooted Kripke modelM = 〈W,R, |=〉whose every
cluster is proper. Then we construct the setΣ of all selective paths ofW , and subtract
a proper subsetΛ of Σ, which is in a one-to-one correspondence with(0, 1). After
that we define a topologyτΛ on Λ so that〈Λ, τΛ〉 is homeomorphic to(0, 1) with its
natural topology. Finally, we define a valuation|=Λ on Λ, and show that〈Λ, τΛ, |=Λ

〉 is topo-bisimilar toM . Note that sinceτΛ is pretty different fromτΣ, the topo-
bisimulation between〈Λ, τΛ, |=Λ〉 andM is not simply the restriction of the topo-
bisimulation between〈Σ, τΣ, |=Σ〉 andM constructed in Section 3.3.1, but rather its
appropriate modification.
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Recall from Section 3.3.1 that in selective unraveling we had three different types
of selective branches: going infinitely to the left, infinitely to the right, or infinitely
zigzagging. Also recall that a selective branchσ is going infinitely to the left ifσ =
(w1, . . . , wk, wk, . . . ); σ is going infinitely to the right ifσ = (w1, . . . , wn, wn+1, . . . ),
wherewk+1 is a strong successor ofwk for anyk ≥ n; and finally,σ is zigzagging if
σ = (w1, . . . , wn, wn+1, . . . ), where there are infinitely manyk ≥ n with wk+1 = wk,
and there are also infinitely manyk ≥ n with wk+1 being a strong successor ofwk.

In order to transfer counterexamples fromM to (0, 1), in the definition of selective
unraveling we need to restrict ourselves only to those branches which are either going
infinitely to the left or are infinitely zigzagging. That is, we define areal pathof W to
be a selective path ofW either going infinitely to the left or infinitely zigzagging.

Denote byΠ the set of all real infinite paths ofW . So,Π is the subset of the setΣ
of all selective infinite paths ofW consisting of all selective paths going infinitely to
the left or infinitely zigzagging. Therefore,Π is in a one-to-one correspondence with
the set of those infinite branches of the infinite binary treeT2 which either have0 from
some node on or are infinitely zigzagging.

This correspondence sets up the desired connection betweenΠ and(0, 1). To see
this recall the dyadic representation of a number from[0, 1]. Letx ∈ [0, 1]. To construct
an infinite branchα = (an)n∈ω of T2 representingx observe that eitherx ∈ [0, 1

2
] or

x ∈ [1
2
, 1]. In the former case puta1 = 0 and in the latter case puta1 = 1. Assume

x ∈ [0, 1
2
]. Then eitherx ∈ [0, 1

4
] or x ∈ [1

4
, 1

2
]. Again in the former case puta2 = 0

and in the latter case puta2 = 1. Continuing this process, we get an infinite branch
α = (an)n∈ω of T2 which in turn representsx.

Note that there are two ways for the dyadic representation of1
2
: (0, 1, 1, 1, . . . ) or

(1, 0, 0, 0, . . . ). In general, there are two ways for the dyadic representation of any
numberm

2n ∈ [0, 1] (m,n ∈ ω, 0 < m < 2n): either as(a1, . . . , ak, 1, 0, 0, 0, . . . ) or
as(a1, . . . , ak, 0, 1, 1, 1, . . . ). Therefore, if we throw away all infinite branches ofT2

having1 from some node on plus(0, 0, 0, . . . ), we obtain a one-to-one correspondence
between(0, 1) and the remaining infinite branches ofT2. Hence, there exists a one-to-
one correspondence between(0, 1) andΛ = Π− {(w,w,w, . . . )}.

Suppose(w1, . . . , wk−1, wk, wk, . . . ) ∈ Λ (wk−1 6= wk) representsm
2n ∈ (0, 1).

Also suppose

C(w1,...,wk) = {λ ∈ Λ| the initial segment ofλ is (w1, . . . , wk)}.

(Observe thatC(w1,...,wk) = B(w1,...,wk) ∩ Λ.)
In order to transfer topological structure of(0, 1) to Λ observe that the family

{(m
2n ,

m+1
2n )|m,n ∈ ω, 0 < m+ 1 < 2n} forms a basis for the topology on(0, 1), and

that the subset ofΛ representing(m
2n ,

m+1
2n ) isD(w1,...,wk) =C(w1,...,wk)−{(w1, . . . , wk−1,

wk, wk, . . . )}. Hence, if we define a topologyτΛ onΛ by introducing

{D(w1,...,wk)|(w1, . . . , wk) is a finite selective path ofΛ}

as a basis, the following obvious fact holds:
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3.3.5.FACT. (Λ, τΛ) is homeomorphic to(0, 1).

Now we define|=Λ on Λ, and show that there exists a topo-bisimulation between
(Λ, τΛ, |=Λ) andM .

In order to define|=Λ observe that eitherλ ∈ Λ gets stable or it keeps cycling. In
other words, eitherλ = (w1, . . . , wk−1, wk, wk, . . . ), or λ = (w1, . . . , wn, wn+1, . . . ),
wherewi belongs to some clusterC ⊆ W , for i > n. In the former case we say that
wk stabilizesλ, and in the latter—thatλ keeps cycling inC. Now define|=Λ on Λ by
putting

λ |=Λ P iff


wk−1 |= P if wk stabilizesλ,

ρ(C) |= P if λ keeps cycling inC ⊆ W, whereρ(C) is
some arbitrarily chosen representative ofC.

Finally, define a functionF : Λ→ W by putting

F (λ) =

{
wk−1 if wk stabilizesλ,
ρ(C) if λ keeps cycling inC.

3.3.6.PROPOSITION. F is a total topo-bisimulation betweenMΛ = 〈Λ, τΛ, |=Λ〉 and
M = 〈W,R, |=〉.

Proof ObviouslyF is well-defined, and is actually surjective. (For anywk ∈ W ,
F (w1, . . . , wk, wk+1, wk+1, . . . ) = wk, where(w1, . . . , wk) is a finite selective path
from w1 to wk, andwk+1 is a strong successorwk. Note thatwk+1 exists, since every
cluster ofW is proper.) Let us check thatF : 〈Λ, τΛ〉 → 〈W, τR〉 is open. Recall that
R(v), for v ∈ W , are basic opens ofτR. So, in order to check thatF is continuous, we
need to show that theF inverse image of everyR(v) is open inτΛ. Observe that for
anyv ∈ W ,

F−1(R(v)) =
⋃

k∈ω, vRwk

D(w1,...,wk),

which is an element ofτΛ. Indeed, supposeλ ∈
⋃
k∈ω, vRwk

D(w1,...,wk). Thenλ
belongs to one ofD(w1,...,wk) with vRwk. Now λ ∈ D(w1,...,wk) implies wkRF (λ),
which together withvRwk and transitivity ofR yield vRF (λ). Hence,F (λ) ∈ R(v),
andλ ∈ F−1(R(v)). Conversely, supposeλ ∈ F−1(R(v)). ThenF (λ) ∈ R(v),
andvRF (λ). Now eitherλ is going infinitely to the left or is infinitely zigzagging.
In the former case,λ = (w1, . . . , wk, wk+1, wk+1, . . . ), wherewk = F (λ). Hence,
λ ∈ D(w1,...,wk) with vRwk. In the latter case,λ = (w1, . . . , wn, wn+1, wn+2, . . . ),
whereF (λ) ∈ C(wn+1). Hence,λ ∈ D(w1,...,wn,wn+1) with vRwn+1. In either case,
λ ∈

⋃
k∈ω, vRwk

D(w1,...,wk), andF−1(R(v)) =
⋃
k∈ω, vRwk

D(w1,...,wk). Hence,F is
continuous.
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In order to show thatF preserves opens, consider any basic setD(w1,...,wk) of τΛ
and show thatF (D(w1,...,wk)) is open inτR. For this we show that

F (D(w1,...,wk)) = R(wk).

Supposev ∈ F (D(w1,...,wk)). Then there existsλ = (w1, . . . , wk, . . . ) ∈ D(w1,...,wk)

such thatF (λ) = v. Now eitherλ is going infinitely to the left or is infinitely zigzag-
ging. In the former case,λ = (w1, . . . , wk, . . . , wk+l, wk+l+1, wk+l+1, . . . ), where
wk+l = v. In the latter case,v is a representative of a clusterC whereλ keeps cycling.
In either case,wkRv. Hence,v ∈ R(wk). Conversely, supposev ∈ R(wk). Then
wkRv. Considerλ = (w1, . . . , wk, . . . , v, u, u, . . . ), where(w1, . . . , wk, . . . , v) is a
finite selective path ofW from w1 to v containing(w1, . . . , wk) as an initial segment,
andu is a strong successor ofv. (u exists, since every cluster ofW is proper.) Then
λ ∈ D(w1,...,wk) andF (λ) = v. HenceF (D(w1,...,wk)) = R(wk), which is a basic open
of τR. So,F is open.

Moreover, as follows from the definition of|=Λ,

λ |=Λ P iff F (λ) |= P.

Now since every continuous and open map satisfying this condition is a topo-
bisimulation (cf. Theorem 2.1.5), so is ourF . QED

3.3.7.COROLLARY. S4 is complete with respect to(0, 1).

Proof SupposeS4̀ ϕ. Then by Theorem 3.2.13 there is a finite rooted Kripke model
M refutingϕ. By Theorem 3.2.14 we can assume that every cluster ofM is proper. By
Proposition 3.3.6,M is topo-bisimilar toMΛ = 〈Λ, τΛ, |=Λ〉. Hence,MΛ is refutingϕ.
Now since〈Λ, τΛ〉 is homeomorphic to(0, 1), ϕ is refuted on(0, 1). QED

3.3.8.THEOREM. S4 is complete with respect to the real lineIR.

Proof SupposeS4̀ ϕ. Then by Corollary 3.3.7 there exists a valuation|=(0,1) on
(0, 1) refutingϕ. Now since(0, 1) is homeomorphic toIR, ϕ is refuted onIR. QED

This provides an alternative proof of McKinsey and Tarski’s original proof. It should
be noted that we can improve a little bit on their result. Indeed, McKinsey and Tarski
proved that for any non-theoremϕ of S4there exists a valuationν on IR falsifying ϕ.

3.3.9.COROLLARY. There exists a single valuationν on IR falsifying all the non-
theorems ofS4.
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Proof Enumerate all the non-theorems ofS4. This can be done since the language of
S4 is countable. Let this enumeration be{ϕ1, ϕ2, . . . }. Since the interval(n, n+ 1) is
homeomorphic toIR, from Theorem 3.3.8 it follows that there exists a valuationνn on
(n, n+1) such that〈(n, n+1), νn〉 falsifiesϕn. (Note that we need not know anything
about the shape ofνn(ϕn).) Now take

⋃
n∈ω(n, n + 1). For any propositional letterP

let ν(P ) =
⋃
n∈ω νn(P ) be the valuation ofP on IR. Note that each〈(n, n + 1), νn〉

is an open submodel of〈IR, ν〉, where the ‘identity embedding’ is a topo-bisimulation.
Hence, the truth values of modal formulas do not change moving from each〈(n, n +
1), νn〉 to 〈IR, ν〉. Therefore,ϕn is still falsified on the wholeIR for eachn. Thus, we
have constructed a single valuationν onIR falsifying all the non-theorems ofS4. QED

This also shows that though very different from the standard canonical Kripke model
of S4, IR shares some of its universal properties.

3.3.3 Logical non-finiteness on the reals

Recall that two formulasϕ andψ are said to beS4-equivalentif S4 ` ϕ ↔ ψ. It
is well known that there exist infinitely many formulas of one-variable which are not
S4-equivalent. E.g., consider the following list of formulas:

ϕ0 = P ;

ϕn = ϕn−1 ∧3(3ϕn−1 ∧ ¬ϕn−1).

We can easily construct a Kripke model on which allϕn have different interpretations.
LetM = 〈ω,R, |=〉, whereω denotes the set of all natural numbers,nRm iff m ≤ n,
andn |= P iff n is odd. Then one can readily check thatϕn is true at all odd points
> n. Hence everyϕn has a different interpretation onM . It implies that theϕn are
not S4-equivalent. Now we give a topological flavor to this result by showing that
interpreting a propositional variable as a certain subset ofIR allows us to construct in-
finitely manyS4-non-equivalent formulas of one variable. Corollary 3.3.9 already told
us such a uniform choice must exist, but the proof does not constructν(P ) explicitly.
The following argument does, and thereby also highlights the topological content of
our modal completeness theorem.

We use3 and2 instead of the standard notations( ) andInt( ) for the closure
and interior operators of topology. This modal notation shows its basic use in topology
because it allows us to write topological formulas in a more perspicuous fashion.

To proceed further we need to recall the definition of Hausdorff’s residue of a
given set. Suppose a topological space〈W, τ〉 andX ⊆ W are given.%(X) = X ∩
3(3X − X) is called theHausdorff residueof X. Let %0(X) = X, %1(X) = %(X)
and%n+1(X) = %%n(X).

X is said to be ofrankn, written r(X) = n, if n is the least natural number such
that%n(X) = ∅. X is said to be offinite rankif there exists a naturaln such thatX is
of rankn. X is said to be ofinfinite rankif it is not of finite rank.
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The pointx ∈ X is said to be ofrankn if x ∈ %n(X), butx /∈ %n+1(X). x ∈ X is
said to be offinite rankif there exists a naturaln such thatx is of rankn. x is said to
be of infinite rankif it is not of finite rank.

ObviouslyX is of rankn iff the rank of every element ofX is strictly less thann,
and there is at least one element ofX of rankn − 1; X is of finite rank iff there is a
naturaln such that the rank of every element ofX is strictly less thann; andX is of
infinite rank iff there is no finite bound on the ranks of elements ofX.

If we interpretP as a subsetX of IR, thenϕn will be interpreted as%n(X). So, in
order to show that differentϕn areS4-non-equivalent, it is sufficient to show that there
isX ⊂ IR such that%(X) ⊃ %2(X) ⊃ · · · ⊃ %n(X) ⊃ . . . . We have the following

3.3.10.PROPOSITION. There exists a subsetX of IR such that%(X) ⊃ %2(X) ⊃
· · · ⊃ %n(X) ⊃ . . . .

Proof We constructX inductively. Fix a natural numberk.

Step 1: Consider a sequence{xi1}∞i1=1 from (k − 1, k) converging tok − 1, and put

X1 = {k − 1} ∪
∞⋃
i1=1

{yi1i2}
∞
i2=1,

where{yi1i2}
∞
i2=1 is a sequence from(xi1+1, xi1) converging toxi1+1. Note that

3X1 = X1 ∪ {xi1}∞i1=1,

3X1 −X1 = {xi1}∞i1=1,

3(3X1 −X1) = {k − 1} ∪ {xi1}∞i1=1, and

%(X1) = {k − 1}.

So,k − 1 is the only point ofX1 of rank1, andr(X1) = 2.

Step 2: Consider a sequence{xi1,i2i3
}∞i3=1 from (yi1i2+1, y

i1
i2

) converging toyi1i2+1, and put

X2 = {k − 1} ∪
∞⋃
i1=1

{yi1i2}
∞
i2=1 ∪

∞⋃
i1=1

∞⋃
i2=1

∞⋃
i3=1

{yi1,i2,i3i4
}∞i4=1,

where{yi1,i2,i3i4
}∞i4=1 is a sequence from(xi1,i2i3+1, x

i1,i2
i3

) converging toxi1,i2i3+1. Note that
X2 ⊃ X1, and

3X2 = X2 ∪ {xi1}∞i1=1 ∪
⋃∞
i1=1

⋃∞
i2=1{x

i1,i2
i3
}∞i3=1,

3X2 −X2 = {xi1}∞i1=1 ∪
⋃∞
i1=1

⋃∞
i2=1{x

i1,i2
i3
}∞i3=1,

3(3X2−X2)={k − 1} ∪
⋃∞
i1=1{y

i1
i2
}∞i2=1 ∪ {xi1}∞i1=1 ∪

⋃∞
i1=1

⋃∞
i2=1{x

i1,i2
i3
}∞i3=1,
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%(X2) = {k − 1} ∪
⋃∞
i1=1{y

i1
i2
}∞i2=1, and

%2(X2) = {k − 1}.

So, the points ofX2 of rank1 areyi1i2 , for arbitraryi1 andi2, k − 1 is the only point of
X2 of rank2, andr(X2) = 3.

Step n: Forn ≥ 1 consider a sequence{xi1,...,i2n−2

i2n−1
}∞i2n−1=1 from (y

i1,...,i2n−3

i2n−2+1 ,

y
i1,...,i2n−3

i2n−2
) converging toyi1,...,i2n−3

i2n−2+1 , and put

Xn = {k − 1} ∪
∞⋃
i1=1

{yi1i2}
∞
i2=1 ∪ . . . ∪

∞⋃
i1=1

. . .
∞⋃

i2n−1=1

{yi1,...,i2n−1

i2n
}∞i2n=1,

where{yi1,...,i2n−1

i2n
}∞i2n=1 is a sequence from(xi1,...,i2n−2

i2n−1+1 , x
i1,...,i2n−2

i2n−1
) to xi1,...,i2n−2

i2n−1+1 . Also
let

A = {xi1}∞i1=1 ∪ . . . ∪
∞⋃
i1=1

. . .
∞⋃

i2n−2=1

{xi1,...,i2n−2

i2n−1
}∞i2n−1=1.

Then note thatXn ⊃ Xn−1 ⊃ · · · ⊃ X2 ⊃ X1, and

3Xn = Xn ∪ A,

3Xn −Xn = A,

3(3Xn −Xn) = A ∪ (Xn − [
⋃∞
i1=1 . . .

⋃∞
i2n−1=1{y

i1,...,i2n−1

i2n
}∞i2n=1]),

%(Xn) = Xn − [
⋃∞
i1=1 . . .

⋃∞
i2n−1=1{y

i1,...,i2n−1

i2n
}∞i2n=1],

%2(Xn) = ρ(Xn)− [
⋃∞
i1=1 . . .

⋃∞
i2n−3=1{y

i1,...,i2n−3

i2n−2
}∞i2n−2=1],

. . .

%n(Xn) = {k − 1}.

So, the points ofXn of rank1 are

Xn − [
∞⋃
i1=1

. . .

∞⋃
i2n−1=1

{yi1,...,i2n−1

i2n
}∞i2n=1],

the points ofXn of rank2 are

Xn − [
∞⋃
i1=1

. . .

∞⋃
i2n−3=1

{yi1,...,i2n−3

i2n−2
}∞i2n−2=1 ∪

∞⋃
i1=1

. . .

∞⋃
i2n−1=1

{yi1,...,i2n−1

i2n
}∞i2n=1],
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and so on; finally,k − 1 is the only point ofXn of rankn, andr(Xn) = n+ 1.

Now letX1 be constructed in(0, 1),X2 in (1, 2),Xn in (n− 1, n), and so on. We put

X =
∞⋃
n=1

Xn.

Thenn − 1 ∈ %n(X) andn − 1 /∈ %n+1(X), for any naturaln. So,%(X) ⊃ %2(X) ⊃
· · · ⊃ %n(X) ⊃ . . . , andX contains points of every finite rank. QED

3.3.1.REMARK (INFINITE RANK ). TheX constructed above does not contain ele-
ments of infinite rank. However, a little adjustment of the above construction allow
us to construct a subset ofIR with an element of infinite rank. Actually, it is possible
to construct a subset ofIR containing elements of rankα, for any ordinalα < ℵ1.

Returning to our list of formulas, withP as the just constructedX, the interpre-
tation of everyϕn in IR will be different, in terms of some topologically significant
phenomenon. In the next section, we show that if we restrict ourselves to only “good”
subsets ofIR, then the situation drastically changes.

3.4 Axiomatizing special kinds of regions

By interpreting propositional variables as certain subsets of the real lineIR, we can
refute every non-theorem ofS4on IR. Certainly not all subsets ofIR are required for
refuting the non-theorems ofS4. In this section, we analyze the complexity of the
subsets ofIR required for refuting the non-theorems ofS4We prefer to use3 and2

to denote the closure and interior operators of a topological space. For consistency we
also use∧,∨ and¬ to denote set-theoretical intersection, union and complement.

3.4.1 Serial sets on the real line

To start with, consider subsets ofIR with the simplest intuitive structure. CallX ⊆ IR
convexif all points lying in between any two points ofX belong toX. In other words,
X is convex ifx, y ∈ X andx ≤ y imply [x, y] ⊆ X. Every convex subset ofIR has
one of the following forms:

∅, (x, y), [x, y], [x, y), (x, y], (−∞, x), (−∞, x], (x,+∞), [x,+∞), IR.

3.4.1.DEFINITION. Call a subset ofIR serialif it is a finite union of convex subsets of
IR. Denote the set of all serial subsets ofIR byS(IR). So,

S(IR) = {X ∈ P(IR)|X is a serial subset ofIR}.
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Obviously theX constructed in Proposition 3.3.10 is not serial, and actually this
was absolutely crucial in showing thatX has points of any finite rank. Indeed, we have
the following

3.4.2.LEMMA . r(X) = 0 for anyX ∈ S(IR).

Proof First, r(Y ) = 0 for any convex subsetY of IR. For, if Y is convex, then
3Y ∧ ¬Y consists of at most two points,3(3Y ∧ ¬Y ) = 3Y ∧ ¬Y , and%(Y ) =
Y ∧3(3Y ∧ ¬Y ) = Y ∧ (3Y ∧ ¬Y ) = ∅. Hencer(Y ) = 0.

Now let X be a serial subset ofIR. ThenX =
∨n
i=1Xi, where everyXi is a

convex subset ofIR, and actually we can assume that allXi are disjoint. But then
%(X) =

∨n
i=1 %(Xi) = ∅, and hencer(X) = 0. QED

It follows that if we interpretP as a serial subset ofIR, then no twoϕn (n ≥ 1) from
the previous section define sets equal to each other.

Call a valuationν of our languageL to subsets ofIR serial if ν(P ) ∈ S(IR) for any
propositional variableP . SinceS(IR) is closed with respect to¬,∧ and3, we have
thatν(ϕ) ∈ S(IR) for any serial valuationν. Call a formulaϕ S-true if it is true in IR
under a serial valuation. Callϕ S-valid if ϕ is S-true for any serial valuation onIR.
LetL(S) = {ϕ|ϕ is S-valid}.

3.4.3.FACT. L(S) is a normal modal logic overS4.

Obviously allϕn (n ≥ 1) from the previous section areL(S)-equivalent. So, it is
natural to expect that there are only finitely many formulas in one variable which are
L(S)-non-equivalent, and indeed thatL(S) is a much stronger logic thanS4.

As a first step in this direction, we show that the Grzegorczyk axiom

Grz = 2(2(P → 2P )→ P )→ P

belongs toL(S).

3.4.4.FACT. Grz is S-valid.

Proof Grz is S-valid iff X ⊆ 3(X ∧¬3(3X ∧¬X)) for anyX ∈ S(IR). Suppose
X ∈ S(IR). Since3X ∧ ¬X is finite, 3(3X ∧ ¬X) = 3X ∧ ¬X. Hence3(X ∧
¬3(3X ∧ ¬X)) = 3(X ∧ ¬(3X ∧ ¬X)) = 3(X ∧ (¬3X ∨ X)) = 3X, which
clearly containsX. So,X ⊆ 3(X ∧ ¬3(3X ∧ ¬X)). QED

As a next step, we show that the axioms

BD2 = (¬P ∧3P )→ 32P , and
BW2 = ¬(P ∧Q ∧ 3(P ∧ ¬Q) ∧ 3(¬P ∧Q) ∧ 3(¬P ∧ ¬Q)),

bounding the depth and the width of a Kripke model to2, areS-valid.
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3.4.5.FACT. BD2 andBW2 areS-valid.

Proof Note thatBD2 is S-valid iff 3X ∧ ¬X ⊆ 32X for anyX ∈ S(IR), and that
BW2 is S-valid iff X ∧ Y ∧3(X ∧ ¬Y ) ∧3(Y ∧ ¬X) ∧3(¬X ∧ ¬Y ) = ∅ for any
X, Y ∈ S(IR).

To show that3X∧¬X ⊆ 32X for anyX ∈ S(IR), supposexin3X∧¬X. Then
x is a limit point ofX not belonging toX. SinceX is serial, there isy ∈ IR such that
eithery < x and(y, x) ⊆ X, or x < y and(x, y) ⊆ X. In both casesx ∈ 32X. So,
3X ∧ ¬X ⊆ 32X.

To show thatX∧Y ∧3(X∧¬Y )∧3(Y ∧¬X)∧3(¬X∧¬Y ) = ∅ for anyX, Y ∈
S(IR), supposex ∈ X ∧ Y ∧3(X ∧¬Y )∧3(Y ∧¬X). Thenx /∈ 2X andx /∈ 2Y .
Hence there existy, z ∈ IR such thaty < x < z and(y, z) ∩ (¬X ∧ ¬Y ) = ∅, which
means thatx /∈ 3(¬X∧¬Y ). So,X∧Y ∧3(X∧¬Y )∧3(Y ∧¬X)∧3(¬X∧¬Y ) = ∅.

QED

The following is an immediate consequence of our observations.

3.4.6.COROLLARY. S4 + Grz + BD2 + BW2 ⊆ L(S).

In order to prove the converse, and hence complete our axiomatization of the logic
of serial subsets ofIR, observe thatS4+Grz+BD2 +BW2 is actually the complete
modal logic of the following ‘2-fork’ Kripke frame〈W,R〉, whereW = {w1, w2, w3}
andw1Rw1, w2Rw2, w3Rw3, w1Rw2, w1Rw3:












J
J

J
JJ

•

• •

w1

w2 w3

Indeed, it is well known thatGrz is valid on a Kripke frame iff it is a Noetherian
partial order, thatBD2 is valid on a partially ordered Kripke frame iff its depth is
bounded by2, and thatBW2 is valid on a partially ordered Kripke frame of a depth
≤ 2 iff its width is bounded by2. Now, denoting the logic of〈W,R〉 by L(〈W,R〉),
we have the following:

3.4.7.THEOREM. S4 + Grz + BD2 + BW2 = L(〈W,R〉).

Proof DenoteS4 + Grz + BD2 + BW2 byL. Then,〈W,R〉 |= Grz,BD2,BW2.
HenceL ⊆ L(〈W,R〉). Conversely, sinceGrz is a theorem ofL, everyL-frame is
a Noetherian partial order. SinceBD2 is a theorem ofL, everyL-frame is of depth



3.4. Axiomatizing special kinds of regions • 45

≤ 2, henceL has the finite model property, and thus is complete with respect to finite
rooted partially ordered Kripke frames of depth≤ 2. SinceBW2 is a theorem ofL,
then the width of finite rootedL-frames is also≤ 2. But then it is routine to check
that every such frame is ap-morphic image of〈W,R〉. HenceL(〈W,R〉) ⊆ L, and
L = L(〈W,R〉). QED

As a final move, we show that〈W, τR〉 is an open andserial image ofIR, meaning that
there is an open mapf : IR→ W such thatf−1(X) ∈ S(IR) for any subsetX of W .

Recall thatτR consists of the upward closed subsets ofW , which obviously are∅,
{w2}, {w3}, {w2, w3}, andW . Fix anyx ∈ IR and definef : IR→ W by putting

f(y) =


w1 for y = x,
w2 for y < x,
w3 for y > x.

Then it is routine to check thatf−1(∅) = ∅, f−1({w2}) = (−∞, x), f−1({w3}) =
(x,+∞), f−1({w2, w3}) = (−∞, x) ∪ (x,+∞), andf−1(W ) = IR. So,f is continu-
ous. Moreover, for any open subsetU of IR, if x ∈ U , thenf(U) = W ; and ifx /∈ U ,
thenf(U) ⊆ {w2, w3}, which is always open. Hence,f is open. Furthermore, from
the definition off it follows that thef -inverse image of any subset ofW is a serial
subset ofIR. So,〈W, τR〉 is an open and serial image ofIR.

As a trivial consequence of this observation, we obtain that for every valuation|=
on 〈W,R〉 there is a serial valuation|=S on IR such that〈W,R, |=〉 is topo-bisimilar to
〈IR, |=S〉. Hence, every non-theorem ofL(〈W,R〉) is a non-theorem ofL(S), and we
have the following:

3.4.8.COROLLARY. L(S) ⊆ L(〈W,R〉).

Combining Corollaries 3.4.6 and 3.4.8 and Theorem 3.4.7 one obtains:

3.4.9.THEOREM. L(S) = L(〈W,R〉) = S4 + Grz + BD2 + BW2.

3.4.2 Formulas in one variable over the serial sets

This section provides some more concrete information on ‘serial sets’. AsL(S) is
the logic of the finite ‘2-fork’ frame, for every natural numbern ≥ 0, there are only
finitely manyL(S)-non-equivalent formulas built from the variablesP1, . . . , Pn. In
this subsection we show that there are exactly64 L(S)-non-equivalent formulas in one
variable, and describe them all.

3.4.10.THEOREM. Every formula in one variable isL(S)-equivalent to a disjunction
of the following six formulas:
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2P ,
2¬P ,
P ∧23¬P ,
¬P ∧23P ,
P ∧32¬P ∧32P , and
¬P ∧32P ∧32¬P .

Hence, there are exactly64 L(S)-non-equivalent formulas in one variable.

Proof In line with our interest in tying up ‘modal’ and ‘topological’ ways of think-
ing, we give two different proofs of this result. One proceeds by constructing the
1-universal Kripke model ofL(S), which is a standard technique in modal logic, the
other is purely topological, using some basic observations on serial subsets ofIR.

First Proof SinceL(S) is the logic of the ‘2-fork’ frame, we can easily construct the
1-universal Kripke model〈W (1), |=(1)〉 of L(S):
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w1 w2 w3 w4

w6 w5

Herewn |= P iff n is even. Now one can readily check that each point ofW (1)
corresponds to one of the six formulas in the condition of the theorem. Hence every
formula in one variable isL(S)-equivalent to a disjunction of the above six formulas.
Since there are exactly26 different subsets ofW (1), we obtain that there are exactly
64 L(S)-non-equivalent formulas in one variable.

Second Proof Observe that there exists a serial subsetX of IR such that2X 6=
2¬X 6= X∧23¬X 6= ¬X∧23X 6= X∧32¬X∧32X 6= ¬X∧32X∧32¬X.
For example, letx < y < z < u, and takeX = [x, y) ∪ (y, z) ∪ {u}. Then one can
readily check that

2X = (x, y) ∪ (y, z),
2¬X = (−∞, x) ∪ (z, u) ∪ (u,+∞),
X ∧23¬X = {u},
¬X ∧23X = {y},
X ∧32¬X ∧32X = {x}, and
¬X ∧32X ∧32¬X = {z}.
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Hence, we can always interpretP as a serial subset ofIR such that all the six formulas
of the theorem correspond to different serial subsets ofIR.

Now, we prove that every subset ofIR obtained by repeatedly applying¬,∧,2 to
a serial setX is a finite (including the empty) union of the following serial subsets:

T1 = 2X,
T2 = 2¬X,
T3 = X ∧23¬X,
T4 = ¬X ∧23X,
T5 = X ∧32¬X ∧32X, and
T6 = ¬X ∧32X ∧32¬X.

For this, first observe thatTi ∧ Tj = ∅ if i 6= j, and that
∨6
i=1 Ti = IR. So, these

six serial subsets ofIR are mutually disjoint and jointly exhaustive. Next observe that
¬Ti = Tj ∨ Tk ∨ Tl ∨ Tm ∨ Tn, wherei, j, k, l,m, n ∈ {1, 2, 3, 4, 5, 6} are different
from each other. Finally,2T1 = T1, 2T2 = T2, and2T3 = 2T4 = 2T5 = 2T6 = ∅.

Hence every subset ofIR obtained by repeatedly applying¬,∧,2 to {T1, . . . , T6}
is a finite (including the empty) union of{T1, . . . , T6}.

Now supposeY ⊆ IR is obtained by repeatedly applying¬,∧,2 toX. We prove
by induction on the complexity ofY thatY is equal to a finite (including the empty)
union of{T1, . . . , T6}.

Base case. SinceX = T1 ∨ T3 ∨ T5 (and¬X = T2 ∨ T4 ∨ T6), the base case (that is
whenY = X) is obvious.

Complement. SupposeY = ¬Z andZ = Ti1∨· · ·∨Tik , wherei1, . . . , ik ∈ {1, . . . , 6}.
ThenY = ¬(Ti1 ∨ · · · ∨ Tik) = ¬Ti1 ∧ · · · ∧ ¬Tik . Since every¬Tij is equal to∨
is 6=ij Tis , using the distributivity law we obtain thatY =

∨
is,it∈{1,...,6}(Tis ∧ Tit).

Since for differentis andit, Tis ∧ Tit = ∅, which is the empty union ofTis, we finally
obtain thatY is a finite union of{T1, . . . , T6}.

Intersection. SupposeY = Z1∧Z2,Z1 = Ti1∨· · ·∨Tik andZ2 = Tj1∨· · ·∨Tjm, where
i1, . . . , ik, j1, . . . , jm ∈ {1, . . . , 6}. Similarly to the above case, using the distributivity
law we obtain thatY is a finite union of{T1, . . . , T6}.

Interior . SupposeY = 2Z andZ = Ti1 ∨ · · · ∨ Tik , wherei1, . . . , ik ∈ {1, . . . , 6}.
SinceTis are mutually disjoint,Y = 2Ti1 ∨ · · · ∨ 2Tik . Now since{T1, . . . , T6} is
closed with respect to2, we obtain thatY is a finite union of{T1, . . . , T6}.

Hence, every subset ofIR obtained by repeatedly applying¬,∧,2 to a serial setX is
equal to a finite (including the empty) union of{T1, . . . , T6}. Since there are exactly26

different subsets obtained as a union of{T1, . . . , T6}, we obtain that there are exactly
64 different subsets ofIR obtained by repeatedly applying¬,∧,2 to a serial setX.
This implies that there are exactly64 L(S)-non-equivalent formulas in one variable.

QED
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The same technique can also be used to prove the normal form theorem overL(S) for
every formula with more than one proposition variable.

3.4.3 Countable unions of convex sets on the real line

Let us now be a bit more systematic. By Theorem 3.3.8,S4 is the complete logic
of IR, and hence sets of reals suffice as valuesν(P ) in refuting non-theorems. But
how complex must these sets be? In first-order logic, e.g., we know that completeness
requires atomic predicates over the integers which are at least∆0

2. With only simpler
predicates in the arithmetic hierarchy, the logic gets richer. In a topological space like
IR, it seems reasonable to look at the Borel HierarchyG. How high up do we have to
go for ourS4-counterexamples? One could analyze our construction in Section 3.3.3
to have an upper bound. But here we state some more direct information.

Consider the setτ of all open subsets ofIR. Let B(τ) denote the Boolean closure
of τ . SinceB(τ) contains all closed subsets ofIR, thenB(τ) is closed with respect
to 3. ObviouslyS(IR) is properly contained inB(τ). It is natural to ask whether the
elements ofB(τ) are enough for refuting all the non-theorems ofS4. The answer is
negative: the modal logic is still richer.

3.4.11.FACT (BEZHANISHVILI AND GEHRKE). The complete logic ofB(τ) is Grz.

Hence, we need to seek something bigger thanB(τ). Let C∞(IR) denote the set of
countable unions of convex subsets ofIR. Since every open subset ofIR is a countable
union of open intervals, thenτ ⊆ C∞(IR). LetB(C∞(IR)) denote the Boolean closure
of C∞(IR). Sinceτ ⊆ C∞(IR), we also haveB(τ) ⊆ B(C∞(IR)). It follows that
B(C∞(IR)) is also closed with respect to3. Moreover,B(τ) is properly contained in
B(C∞(IR)), since the setQ of rationals belongs toB(C∞(IR)) but does not belong to
B(τ).

3.4.12.THEOREM (BEZHANISHVILI AND GEHRKE). The logicS4 is complete with
respect toB(C∞(IR)).

So, the Boolean combinations of countable unions of convex subsets ofIR are exactly
what we need for refuting the non-theorems ofS4. Since every countable union of
convex subsets ofIR belongs to the Borel hierarchyG2 over the opens ofIR, a very low
level of the Borel hierarchy suffices for refuting the non-theorems ofS4. So,G itself is
more than sufficient for refuting the non-theorems ofS4.

Summarizing, we constructed five Boolean algebras of subsets ofIR forming a
chain under inclusion:S(IR) ⊂ B(τ) ⊂ B(C∞(IR)) ⊂ G ⊂ P(IR), whereS(IR) is the
Boolean algebra of all serial subsets ofIR, B(τ) the Boolean closure of the set of all
open subsets ofIR,B(C∞(IR)) the Boolean closure of the set of all countable unions of
convex subsets ofIR, G the Boolean algebra of all Borel subsets ofIR, andP(IR) the
power-set ofIR. All of these Boolean algebras are closed with respect to3. The modal
logic of the last three algebras isS4, that of the second one isGrz, and the modal logic
of the first is the logic of the ‘2-fork’ Kripke frame.
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3.4.4 Generalization to IR2

In this section, we shift aim in a different direction. We generalize our results on the
serial subsets ofIR to the chequered subsets ofIR2, and indicate further generalizations
to any Euclidean spaceIRn.

A setX ⊆ IR2 is convexif all points laying in between any two points ofX belong
toX. It is said to beserial if X is a finite union of convex subsets ofIR2. Denote the
set of all serial subsets ofIR2 by S(IR2).

Here is a real difference betweenIR andIR2. Unlike S(IR), S(IR2) is not closed
with respect to complement. For instance, a full circle is obviously a convex subset of
IR2. However, its complement is not serial.

One natural way of overcoming this difficulty is to work with a smaller family
of chequered subsets ofIR2, which also has a reasonable claim to being ‘the two-
dimensional generalization of the one-dimensional serial sets’.

A setX ⊆ IR2 is a rectangular convexif X = X1 × X2, where bothX1 andX2

are convex subsets ofIR [van Benthem, 1983b]. Every rectangular convex is a convex
set in the usual sense, but not vice versa: a circle is not a rectangular convex.

A setX ⊆ IR2 is said to bechequeredif it is a finite union of rectangular convex
subsets ofIR2. Denote the set of all chequered subsets ofIR2 by CH(IR2). Obviously
CH(IR2) ⊂ S(IR2). Note that unlikeS(IR2), CH(IR2) does form a Boolean algebra.
Moreover,2X,3X ∈ CH(IR2) for anyX ∈ CH(IR2).

3.4.13.FACT. CH(IR2) forms a Boolean algebra closed with respect to2 and3.

Proof In order to show thatCH(IR2) forms a Boolean algebra it is sufficient to show
thatCH(IR2) is closed with respect to¬. For this, observe that the complement of a
rectangular convex is a union of at most four rectangular convexes, and that the finite
intersection of rectangular convexes is again a rectangular convex. Now, supposeA ∈
CH(IR2). Then there exist rectangular convexesA1, . . . , An such thatA =

⋃n
i=1Ai.

But¬A =
⋂n
i=1 ¬Ai, which by the above observation and distributivity is chequered.

SinceCH(IR2) forms a Boolean algebra, in order to show thatCH(IR2) is closed
with respect to2 and3, it is sufficient to check thatCH(IR2) is closed with respect to
3. For the latter observe that the closure of a rectangular convex is again a rectangular
convex, and that the closure commutes with finite unions. Now supposeA ∈ CH(IR2).
Then there exist rectangular convexesA1, . . . , An such thatA =

⋃n
i=1Ai. But then

3A =
⋃n
i=1 3Ai, which is a chequered set by the above observation. QED

Hence, interpreting propositional variables as chequered subsets ofIR2, every formula
of our language will be also interpreted as a chequered subset ofIR2.

This approach leads to a logic, which we just sketch here. Call a valuationν of
L to subsets ofIR2 chequeredif ν(P ) ∈ CH(IR2) for any propositional variableP .
SinceCH(IR2) is closed with respect to¬,∧ and3, we have thatν(ϕ) ∈ CH(IR2) for
any chequered interpretationν. Call a formulaϕ CH-true if it is true in IR2 under a



50 • Chapter 3. THE TOPO APPROACH: AXIOMATICS

chequered valuation. Callϕ CH-valid if ϕ is CH-true for any chequered valuation on
IR2. LetL(CH) = {ϕ|ϕ is CH-valid}.

3.4.14.FACT. L(CH) is a normal modal logic overS4.

Similarly to L(S), the Grzegorczyk axiomGrz is provable inL(CH). For this it is
sufficient to show thatGrz is CH-valid.

3.4.15.FACT. Grz is CH-valid.

Proof Grz is CH-valid iff X ⊆ 3(X ∧ ¬3(3X ∧ ¬X)) for anyX ∈ CH(IR2).
SupposeX ∈ CH(IR2). Observe that, unlikeS(IR), 3X ∧ ¬X is not finite. However,
in this case the set3(3X ∧ ¬X) − (3X ∧ ¬X) is finite. Denote it byF . Then
3(X∧¬3(3X∧¬X)) = 3(X∧¬[(3X∧¬X)∨F ]) = 3(X∧(¬3X∨X)∧¬F ) =
3(X − F ). Now sinceF is finite,3(X − F ) = 3X. Therefore,3(X ∧ ¬3(3X ∧
¬X)) = 3X, which obviously containsX. So,X ⊆ 3(X ∧ ¬3(3X ∧ ¬X)). QED

Now we show that the axioms

BD3 = 3(2P3 ∧3(2P2 ∧32P1 ∧ ¬P1) ∧ ¬P2)→ P3, and
BW4 =

∧4
i=0 3Pi →

∨
0≤i6=j≤4 3(Pi ∧3Pj),

which bound the depth and the width of a Kripke model to3 and4, respectively, are
also provable inL(CH). For this, we show that bothBD3 andBW4 areCH-valid.

3.4.16.FACT. (1) BD3 is CH-valid.
(2) BW4 is CH-valid.

Proof (1) BD3 is CH-valid iff 3(2X3 ∧ 3(2X2 ∧ 32X1 ∧ ¬X1) ∧ ¬X2) ⊆ X3

for anyX1, X2, X3 ∈ CH(IR2). Observe that32X1 ∧ ¬X1 is a subset of the fron-
tier Fr(X1) = 3X1 ∧ ¬2X1 of X1. Hence,3(2X3 ∧ 3(2X2 ∧ 32X1 ∧ ¬X1) ∧
¬X2) ⊆ 3(2X3 ∧ 3(2X2 ∧ Fr(X1)) ∧ ¬X2). Let X∗

2 = 2X2 ∧ Fr(X1) and
X∗

3 = 2X3 ∧ Fr(X1). Also let¬∗,3∗ and2∗ denote the corresponding operations
of a closed subspaceFr(X1) of IR2. Then3(2X3 ∧ 3(2X2 ∧ Fr(X1)) ∧ ¬X2) =
3(2X3 ∧3X∗

2 ∧ ¬X2) = 3(2X3 ∧3∗X∗
2 ∧ ¬X2) ⊆ 3(2X3 ∧3∗X∗

2 ∧ ¬2X2) =
3(2X3 ∧ 3∗X∗

2 ∧ ¬∗X∗
2 ) = 3(X∗

3 ∧ 3∗X∗
2 ∧ ¬∗X∗

2 ) = 3∗(X∗
3 ∧ 3∗X∗

2 ∧ ¬∗X∗
2 ).

SinceFr(X1) is of dimension1, Fr(X1) is homeomorphic to a closed serial subspace
of IR. SinceBD2 is S-valid in IR, 3∗(X ∧ 3∗Y ∧ ¬∗Y ) ⊆ X for any open subsets
X, Y of Fr(X1). Hence,3∗(X∗

3 ∧3∗X∗
2 ∧ ¬∗X∗

2 ) ⊆ X∗
3 . Thus,3(2X3 ∧3(2X2 ∧

32X1 ∧ ¬X1) ∧ ¬X2) ⊆ X3, andBD3 is CH-valid.
(2) BW2 is CH-valid iff

∧4
i=0 3Xi ⊆

∨
0≤i6=j≤4 3(Xi∧3Xj) for anyX0,. . . X4∈

CH(IR2). Supposex ∈
∧4
i=0 3Xi. Thenx is a limit point of allXi. Since there are
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fiveXi, and everyXi belongs toCH(IR2), there should existXi andXj such thatx is
a limit point ofXi ∧Xj. So,x ∈

∨
0≤i6=j≤4 3(Xi ∧3Xj). QED

As an immediate consequence we obtain thatL(CH) ` Grz,BD3,BW4. Hence, like
L(S),L(CH) is also a tabular logic. In a similar fashion, by induction on the dimension
of IRn, we can prove that the logic of chequered subsets ofIRn is also tabular. In
particular, it validatesBDn+1 andBW2n. Hence, we are capable of capturing the
dimension of Euclidean spaces.

3.5 A general picture

3.5.1 The deductive landscape

The logics that we have studied in this chapter fit into a more general environment.
Typical for modal logic is its lattice of deductive systems such asK, S4, S5or GL .
These form a large family describing different classes of relational frames, with of-
ten very different motivations (cf. the series of books “Advances in Modal Logic2”).
Among the uncountably many modal logics, a small number are distinguished for one
of two reasons. Logics likeS4or S5were originally proposed as syntactic proof theo-
ries for notions of modality, and then turned out to be semantically complete with re-
spect to natural frame classes, such as (forS4) transitive reflexive orders. Other modal
logics, however, were discovered as the complete theories of important frames, such
as the natural numbers with their standard ordering. What about a similar landscape of
modal logics on the topological interpretation?

Some well-known modal logics extendingS4 indeed correspond to natural classes
of topological spaces. E.g., it is easy to see that the ‘identity logic’ with axiomϕ →
2ϕ axiomatizes the complete logic of alldiscrete spaces. And it also defines them
semantically through the usual notion offrame correspondence—which can be lifted
to the topological semantics in a straight- forward manner. But alreadyS5corresponds
to a less standard condition, viz. that every point has an open neighborhood all of
whose points havex in all their open neighborhoods. (Alternatively, this says that
every open set is closed.) Also, even rich topological spaces do not seem to validate
very spectacular modal logics, witness the fact thatIR has justS4for its modal theory.
We did find stronger logics with ‘general frames’ though, i.e., frames with a designated
interior algebra of subsets, such asIR with the serial sets. The latter turned out to be a
well-known modal ’frame logic’, and we have not been able so far to find really new
modal logics arising on the topological interpretation.

A related question is what becomes of the known general results on completeness
and correspondence for modal logic in the topological setting. There appear to be
some obstacles here. E.g., the substitution method for Sahlqvist correspondence (cf.

2http://www.aiml.net
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[Blackburn et al., 2001]) has only a limited range. It does work for axioms like the
aboveϕ→ 2ϕ, where it automatically generates the first-order condition

(∀x)(∃U ∈ τ)(x ∈ U & (∀y ∈ U)(y = x)),

i.e., discreteness. Likewise, it works for theS5symmetry axiomP → 23P , where it
produces the above-mentioned

(∀x)(∃U ∈ τ)(x ∈ U & (∀y ∈ U)(∀V ∈ τ)(y ∈ V → x ∈ V )).

The method also works for antecedents of the form2P—but things stop with an-
tecedents like3P or 22P . The reason is that, on the topological semantics, one
modality2 expresses atwo-quantifiercombination

∃U ∈ τ such that∀x ∈ U,

so that syntactic complexity builds up more rapidly than in standard modal logic, where
each modality is one quantifier over relational successors of the current world. Gen-
eral correspondence or completeness results for topological modal logics therefore
seem harder to obtain—and we may need different syntactic notions for them (see
[Gabelaia, 2002] for recent results in that direction).



CHAPTER 4

LOGICAL EXTENSIONS

Modal logics are, most notably, languages for describing relational structures. One
considers these formalisms, in contrast with first or second-order theories, because of
the nice balance between expressive power and computational properties. The logic
S4 introduced in Chapter 2 is the minimal normal modal logic with the topological
interpretation, as shown in Chapter 3. It is a general formalism with respect to topo-
logical structures as it is complete for all topological spaces. Such a high abstraction
is a beauty, but also a handicap. The language is not expressive enough and cannot
capture specifics of some interesting topological spaces.

An extremely useful technique in modal logics to gain expressive power without
leaving the guarded area of decidable languages is to add a modal operator. For in-
stance, if one needs to express notions connected to equality of states in Kripke se-
mantics, one may add a difference operatorDϕ which reads “there is a state different
from the current one that satisfiesϕ.” This is exactly what we do in this chapter. We
consider important topological relations not captured byS4alone which can be safely
expressed by ‘adding’ appropriate new modal operators. We have entered the realm of
extended modal languages, see [de Rijke, 1993, van Benthem, 1991b].

The first limitation to overcome isS4’s locality. The formulas are evaluated at
points and provide local information, e.g., the pointx is in the open set given by the in-
tersection of the interior ofϕ andψ (M,x |= 2ϕ∧2ψ). By this information we know
a lot about the pointx, but very little about the set denoted by2ϕ ∧ 2ψ, we merely
know that there is one point satisfying it, the pointx. Introducing an universal (or
global) modality is the solutions to this problem. For instance, withS4+(the universal
modality) one is able to express whether a topological space is connected or not, which
is clearly a global property of the space and not a local one of some points of the space.
We shall explain such behavior in Section 4.1. Extending with different modal oper-
ators enables different gains in expressive power, we present alternative extensions in
Section 4.2. These extensions can be viewed as a fragment of higher order languages.
We give a higher order formalism in Section 4.3 to give a general perspective.

53
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4.1 Universal reference

Even though ideas related to the universal modality have been around for a while,
[Prior, 1967], it is safe to say that it was ‘officially introduced’ as a modal logic ex-
tension tool in [Goranko and Passy, 1992]. In [Bennett, 1995], Bennett introduced the
universal language topologically interpreted to identify tractable fragments of a lan-
guage of topological relations over regions.

The truth definition ofS4, Definition 2.1.1, is extended with the following:

M,x |= Eϕ iff ∃y ∈ X, M, y |= ϕ

M, x |= Uϕ iff ∀y ∈ X : M, y |= ϕ

The definition reads, forEϕ, “there exists a point in the model satisfyingϕ,” and
dually forUϕ, “all the points in the model satisfyϕ.” TheU andE modalities follow
the axiomatization of S5:

U(ϕ→ ψ)→ (Uϕ→ Uψ) (K)

Uϕ→ ϕ (T)

Uϕ→ UUϕ (4)

ϕ→ UEϕ (B)

In addition, the following ‘connecting’ principle is part of the axioms:

3ϕ→ Eϕ (Con)

The axiomatization suggests to search for a normal form. The nesting of universal
modal operators is redundant, as the next proposition shows.

4.1.1.PROPOSITION. Every formula ofS4u is equivalent to one without nested occur-
rences ofE, U .

Proof Here is one way of seeing this. The following well formed formula is valid in
the semantics ofS4u. Let ϕ[Eψ] be any formula containing a subformulaEψ. Then
we have

ϕ[Eψ]↔ (Eψ ∧ ϕ[>]) ∨ (¬Eψ ∧ ϕ[⊥])

The reason is that subformulasEψ are globally true or false, across modalities2,3,
E, U . This observation also produces an effective algorithm for finding the normal
form. E.g.

2(Ep ∧ ¬2Eq) ↔
(Ep ∧2(> ∧ ¬2Eq)) ∨ (¬Ep ∧2(⊥ ∧ ¬2Eq)) ↔
(Ep ∧2¬2Eq) ∨ (¬Ep ∧2⊥) ↔
(Ep ∧ ((Eq ∧2¬2>) ∨ (¬Eq ∧2¬2⊥)) ∨ (¬Ep ∧ ⊥) ↔
(Ep ∧ Eq ∧2¬>) ∨ (Ep ∧ ¬Eq ∧2¬⊥)) ∨ ⊥ ↔
(Ep ∧ Eq ∧ ⊥) ∨ (Ep ∧ ¬Eq) ↔
Ep ∧ ¬Eq
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QED

Another way of seeing this is by proving some more familiar reduction principles
(either in the semantics, or from the given axioms), such as

3Eϕ↔ Eϕ, 2Eϕ↔ Eϕ

Note that we do not get, e.g.,E2ϕ↔ 2ϕ orE2ϕ↔ Eϕ. The normal forms that we
obtain may be described as follows,∨ ∧

[U |E]ϕ

where[U |E] isU orE or nothing, andϕ is a formula of our original languageS4.

One extends, together with the truth definition of the language, all of the tools in the
topo-approach (Chapter 2): first and foremost, topo-bisimulations. Definition 2.1.2
straightforwardly extends. In fact it is exactly the same, except for the constraint that
the relation has to be defined for all points of the spaces, in the ‘universal’ spirit of the
extended language.

4.1.2.DEFINITION (TOPOLOGICAL BISIMULATION). Given two topological models
〈X,O, ν〉, 〈X ′, O′, ν ′〉, a total topological bisimulationis a non-empty relation� ⊆
X ×X ′ defined for allx ∈ X and for allx′ ∈ X ′ such that ifx � x′:

(base): x ∈ ν(p) iff x′ ∈ ν ′(p) (for any propositionp)

(forth condition): if x ∈ o ∈ O then
∃o′ ∈ O′ : x′ ∈ o′ and∀y′ ∈ o′ : ∃y ∈ o : y � y′

(back condition): if x′ ∈ o′ ∈ O′ then
∃o ∈ O : x ∈ o and∀y ∈ o : ∃y′ ∈ o′ : y � y′

If only conditions (i) and (ii) hold, the second modelsimulatesthe first one.

One must show that the above definition is adequate.

4.1.3.THEOREM. Let M = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν ′〉 be two models,x ∈ X,
andx′ ∈ X ′ bisimilar points. Then, for any modal formulaϕ in S4u, M,x |= ϕ iff
M ′, x′ |= ϕ.

4.1.4.THEOREM. LetM = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν ′〉 be two models with finite
O, O′, x ∈ X, andx′ ∈ X ′ such that for everyϕ in S4u, M,x |= ϕ iff M ′, x′ |= ϕ.
Then there exists a total bisimulation betweenM andM ′ connectingx andx′.

In words, extended modal formulas are invariant under total bisimulations, while finite
modally equivalent models are totally bisimilar.

The other fundamental tool of the topo-approach is the definition of model com-
parison games. Here is the extension of Definition 2.2.1.
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4.1.5.DEFINITION (TOPO-GAME). Consider two topological models〈X,O, ν〉, 〈X ′,
O′, ν ′〉 and a natural numbern. A topo-gameof lengthn, notationTG(X,X ′, n), con-
sists ofn rounds between two players, Spoiler and Duplicator, who move alternatively.
Spoiler is granted the first move and always chooses which type of round to engage.
The two sorts of rounds are as follows:

global


(i) Spoiler chooses a modelXs and picks a point

x̄s anywhere inXs

(ii) Duplicator chooses a point̄xd anywhere in t he

other modelXd

local



(i) Spoiler chooses a modelXs and an openos
containing the current pointxs of that model

(ii) Duplicator chooses an openod in the other

modelXd containing its current pointxd
(iii) Spoiler picks a point̄xd in Duplicator’s open

od in theXd model

(iv) Duplicator replies by picking a point̄xs in

Spoiler’s openos in Xs

The points̄xs andx̄d become the new current points. A game always starts by a global
round. By this succession of actions, two sequences are built:{x1, x2, . . . xn} and
{x′1, x′2, . . . x′n}. After n rounds, ifxi andx′i (with i ∈ [1, n]) satisfy the same propo-
sitional atoms, Duplicatorwins, otherwise, Spoiler wins. Awinning strategy (w.s.)
for Duplicator is a function from any sequence of moves by Spoiler to appropriate
responses which always ends in a win. Spoiler’s winning strategy is defined dually.

Themulti-modal rankof a S4u formula is the maximum number of nested modal op-
erators appearing in it (i.e.,2, 3, U andE modalities). The following adequacy of the
games with respect to the mereotopological language holds.

4.1.6.THEOREM (ADEQUACY). Duplicator has a winning strategy forn rounds in
TG(X,X ′, n) iff X,X ′ satisfy the same formulas of multi-modal rank at mostn.

The interesting result is that of having a game theoretic tool to compare topological
models. Given any two models, they can be played upon. If Spoiler has a winning
strategy in a certain number of rounds, then the two models are different up to a certain
degree. The degree is exactly the minimal number of rounds needed by Spoiler to win.
On the other hand, one knows that if Spoiler has no w.s. in any number of rounds, and
therefore Duplicator has in all games, including the infinite round game, then the two
models are bisimilar.

4.1.1.EXAMPLE (COMPARING CUTLERY). As we did in Section 2.2, we can play on
‘table items’, i.e., regions in topological spaces. Differently from the local games, one
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2 Rounds 3 Rounds1 Round

Figure 4.1: Plays of topological games for the universal languageS4u. Above the two
models is the number of rounds needed by Spoiler to win.

may notice that there is no starting points in the two models. Spoiler can decide where
to play, by means of a global move. By this added freedom, Spoiler can win games in
which the players compare spoons and forks, spoons and plates or even spoons with an
empty table cloth.

Similar to before, we have a way of tying Spoiler’s winning strategies with formulas
(of S4u) true in the models. Note that the formulas can be true in the entire model, not
in only two particular starting points, as before. This reflects our earlier observation
thatE orU formulas are really true across a model.

Referring to Figure 4.1, we can write down a distinguishing formula of the appro-
priate multi-modal rank that is true in one model but not in the other. In the case of the
1 round game, Spoiler can win in one round since on the right model the formulaEp is
true, while its negation is true in the other model. Think of it as the empty table which
should be set, so there is no regionp yet:U¬p.

By a similar reasoning we can write the formulaE2p (the interior ofp is non
empty) for the 2 round game. This formula is only true in the left model. For the 3
round game, a distinguishing formula isU(p ↔ 32p). This formula encodes closed
regularity of regions, i.e., coincidence with the closure of its interior. This formula is
true for the plate on the right but not for the spoon on the left. The negation of the
regularity formula can be written asE(p ∧ 23¬p) ∨ E(¬p ∧ 32p)). The first half
of this accounts for external lower-dimensional spikes in the regionp, the second for
lower dimensional cracks. For the spoon the handle is a lower dimensional spike.

4.1.2.REMARK (INFINITE GAMES). The definition can be easily extended to infinite
games. Just letn → ∞ and hence the sequencesxn, x′n be infinite. The Adequacy
Theorem is still valid. Duplicator has a winning strategy in the infinite round game iff
the models are bisimilar in our extended sense.

4.1.3.REMARK (STRATEGIES AND NORMAL FORMS). From the practical perspec-
tive of playing topological games, Spoiler should bear in mind that identifying formu-
las that differentiate the models is not enough. Spoiler may consume too many turns
if he is using a long formula (in terms of multi-modal depth) which has a shorter log-
ical equivalent. Similarly Duplicator may have the illusion of a win, if he makes the
same mistake. Once ‘difference formulas’ are identified in the models they should be
reduced to logically equivalent ones with the lowest multi-modal depth. Normal forms
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are of great help for this purpose. E.g., here is the game-theoretic content of our earlier
normal form forS4u. Having only one ‘outermost’ existential or universal modality
means that Spoiler needs to engage only once in a global round. Furthermore, since
such a modality is the first to appear, that is the first type of move Spoiler should play.
This can also be seen directly in the game. If Spoiler engages in more than one global
round, it is like jumping around the space, not having understood were the difference
between the models resides.

One might try to extend this line of reasoning to the innerS4 part. After all,S4
validates reduction laws like22ϕ ↔ 2ϕ, or 2323ϕ ↔ 23ϕ. Can this be used to
simplify Spoiler’s strategies? We have not been able to find a general principle here
that would be of much use.

The use of normal forms can lead to a redefinition of the rules. The new game
would have always one starting global round and thereafter only local rounds.

Finally, after having presented all the tools of the topo-approach for the extended
language, it is important to remark whatS4u captures of the topological structure.

The relation betweenS4u and connected spaces has recent origins: [Shehtman,
1999] and [Aiello and van Benthem, 1999]. A topological space is defined to becon-
nectedif the only two sets that are both open and closed are the empty set and whole
space itself. The definition is expressible inS4u in the following way:

U(3p→ 2p)→ Up ∨ U¬p (4.1)

In topology, an alternative definition of connected space (cf. page 30) states that a
space is connected if there do not exist two open sets whose union covers the whole
space and that are disjoint. Again we can express the phrasing of the theorem inS4u:

U(2p ∨2q) ∧ Ep ∧ Eq → E(p ∧ q) (4.2)

Here is the purely logical version of the well-known topological fact.

4.1.7.FACT. `S4u (4.1) implies`S4u (4.2).

Proof Ad absurdum, suppose that not (4.2):

¬(U(2p ∨2q) ∧ Ep ∧ Eq → E(p ∧ q))

Substituting the propositional variableq by¬p, one obtains

¬(U(2p ∨2¬p) ∧ Ep ∧ E¬p→ E(p ∧ ¬p))
¬(U(2p ∨ ¬3p) ∧ ¬(¬Ep ∨ ¬E¬p)→ E⊥)

U(¬3p ∨2p) ∧ ¬(¬Ep ∨ ¬E¬p)
U(3p→ 2p) ∧ ¬(U¬p ∨ Up)
¬(¬U(3p→ 2p) ∨ (U¬p ∨ Up))
¬(U(3p→ 2p)→ Up ∨ U¬p)
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Thus, contradicting the hypothesis`S4u (4.1). QED

Results like this can be used for a systematic analysis of well-known topologi-
cal preservation phenomena. But a more striking example, one that builds on topo-
bisimulations and gives a semantic proof of the topological fact, is the following corol-
lary of Theorem 4.1.3.

4.1.8.COROLLARY (CONNECTEDNESS). Consider〈X,O〉 and 〈X ′, O′〉, and a con-
tinuous surjective mapf : X → X ′. If the topological space〈X,O〉 is connected, then
the space〈X ′, O′〉 is connected.

Proof Our first observation is a modal definition for connectedness, in the extended
modal languageS4u. We say that a topological space〈X,O〉 validatesa modal formula
ϕ if ϕ is true at every point under every valuation. Now we have that the following two
statements are equivalent:

(i) 〈X,O〉 is connected

(ii) 〈X,O〉 |= U(3p→ 2p)→ Up ∨ U¬p

To see this, note that the antecedent of this extended formula holds if the denomination
of p is both open and closed, while the consequent says that eitherp = X or p = ∅.

Now, we return to the statement of the Corollary. We must show that〈X ′, O′〉 is
connected. Suppose that it is not. Then there exists a valuationν ′ and a pointx′ such
that 〈X ′, O′, ν ′〉, x′ |= ¬(ii). Next, we use the given continuous mapf to define a
simulation↼ fromM ′ toM (note the reversal in direction here):

x ↼ x′ iff x′ = f(x)

In particular, the definition of continuous map gives the forward simulation clause.
Moreover, the surjectiveness off guarantees that↼ is surjective and total onM ′.
Next, we define a valuationν onM by ‘copyingν ′ alongf ’:

ν(p) = f−1(ν ′(p))

The result is a simulation↼ from 〈X ′, O′, ν ′〉 onto 〈X,O, ν〉 such thatx ↼ x′ for
some pointx ∈ X.

Finally, we note that the negated formulas¬(ii) is logically equivalent (by some
syntactic manipulation) to theS4u formula without3

U(2¬p ∨2p) ∧ E¬p ∨ Ep

By Corollary 4.1.3, this formula also holds forX in M , and hence〈X,O〉 is not con-
nected. A contradiction. QED

The above is another piece of evidence for the claimed usefulness of bisimulations.
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4.2 Alternative extensions

The universal extension is not the possibility to enhance the logical power. Here, we
present some alternatives.

4.2.1 Hybrid reference

Another way to enhance the logical power of the basic topological language is to con-
sider hybrid modal references, cf. [Areces, 2000]. The idea of hybrid logics is that of
naming worlds in Kripke structures enabling explicit reference and naming power at
the language level. The resulting languages are very expressive as one can jump ‘quite
freely’ from one world to another remembering names of places to visit or visited. A
similar approach is also feasible for spatial logics interpreted on topological spaces.
One simply gives a name, sayr, to a region and directly refers to it at the level of the
language with an appropriate modal operator “at regionr.”

4.2.1.DEFINITION (SYNTAX OF S4@). Let 〈X,O〉 be a topological space, and letP =
{p1, p2, . . . } be a countable set of proposition letters (i.e., region names). The well-
formed formulas of the languageS4@ in the signature〈X, 0, P 〉 are

F = > | p | ¬ϕ | ϕ ∧ ψ | 2ϕ | @Aϕ

wherep,A ∈ P andϕ, ψ ∈ F .

4.2.2.DEFINITION (TOPOLOGICAL SEMANTICS OFS4@). A topological modelM=
〈X,O, ν〉 is defined as forS4. The interpretation is as forS4 with the addition of the
following definitions:

M,x |= @Aϕ iff ∀y ∈ ν(A) M, y |= ϕ

M, x |= @aϕ iff ∃y ∈ ν(A) M, y |= ϕ

One can look at the@ operator in two ways. On the one hand, it is a restricted
version of the universal modality.

@Aϕ↔ U(A→ ϕ)

On the other hand, the operator resembles closely that of hybrid logics, though inS4@

there is no use of different sorts for propositional variables, nominals and states. Differ-
ent sorts could be used, for instance, if considering special points with unique names.
One would end up with the full topology of spatial regions and with names for some
particular witnessing points. (Think for example of the topology of Europe, giving
unique names to a certain number of distinguished points: the capitals of European
countries.) Exploiting nominals would provide for extra expressive power. Most no-
tably irreflexivity, which is not expressible in ordinary modal logics, can be expressed
in hybrid systems, [Gabbay, 1981].
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What one gets for the logicS4@ is a behavior that is a mixture of the universal
modality and of the hybrid@ operator.

@Aϕ↔ ¬@a¬ϕ (Dual@)

Purely topological behaviors are:

@aB ↔ @bA (Intersection)

@AB ∧@BC → @AC (4@)

Some hybrid behaviors are retained:

@A(ϕ→ ψ)→ (@Aϕ→ @Aψ) (K@)

A ∧@Aϕ→ ϕ (T@)

@AA (Label)

@A@Bϕ→ @Bϕ (Scope)

As with S4u there is also some purely topological power in the language. For instance,
one can express the regularity of a region:

@A32A regularity of the regionA

Though, other global topological properties fall beyond the power ofS4@. For instance,
the property of a topological space to be connected or not, which is expressible inS4u
by (1), is not expressible in terms ofS4@. To show this fact we need the basic tool
of our topo-approach: topo-bisimulations. Here is the adequate notion for the hybrid
language.

4.2.3.DEFINITION (TOPOLOGICAL BISIMULATION). Consider the languageS4 and
two topological models〈X,O, ν〉, 〈X ′, O′, ν ′〉. A topological bisimulationis a non-
empty relation� ⊆ X ×X ′ such that:

(i) ∀p ∈ P ∀x ∈ ν(p) ∃x′ ∈ ν ′(p) such thatx � x′

(ii) ∀p ∈ P ∀x′ ∈ ν ′(p) ∃x ∈ ν(p) such thatx � x′

(iii) (forth condition):x ∈ o ∈ O⇒ ∃o′ ∈ O′ : x′ ∈ o′ and∀y′∈o′ : ∃y∈o : y � y′

(iv) (back condition):x′ ∈ o′ ∈ O′⇒ ∃o ∈ O : x ∈ o and∀y ∈ o : ∃y′ ∈ o′ : y � y′

Now consider the two topological models formed one by the real interval(0, 1), the
other by the interval(0, 2)− {1}, both with the following valuation function:

ν(x) = x mod2
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The topological space underlying the first model is connected, while the second is not
as it is the union of two open sets. Now consider the following bisimulation defined
for all x ∈ (0, 2):

x � x′ iff ν(x) = x mod2

TheS4u formula of Equation (4.1) is true on the first model, but not on the second one.
Therefore a total topo-bisimulation cannot be established, which implies thatS4u can
distinguish between connected and non-connected spaces. If now one considers the
relation for allx ∈ (0, 2)− {1}:

x � x′ iff ν(x) = x mod2

it is easy to see that it is a bisimulation as defined in Definition 4.2.3. Therefore,
connectedness is not expressible by means ofS4@.

4.2.2 Until a boundary

Another source of inspiration for extension of the expressive power of the basic lan-
guage of topology comes from temporal formalisms. Consider the Since and Until
logic of [Kamp, 1968]. If one abstracts from the temporal behavior and interprets the
modality in spaces with dimensionality greater than one, one gets an operator express-
ing something to be validup to a certain boundaryregion, a sort of fence surrounding
the current region. Here is a natural notion of spatial ‘Until’ in topological models:

M,x |= ϕUψ iff ∃A : O(A) ∧ x ∈ A ∧ ∀y ∈ A.ϕ(y)∧
∀z(z is on the boundary ofA ∧ ψ(z))

Defining the dual modalityϕUDψ as usual is¬(¬ϕU¬ψ) we get:

M,x |= ϕUDψ iff ∀A : O(A) ∧ x ∈ A→ (∃y ∈ A.ϕ(y)∨
∃z(z is on the boundary ofA ∧ ψ(z)))

Using the notation of the basic modal language, we recall the topological definition of
boundary of a setA:

boundary(A) = 3A ∧3¬A

A graphical representation of the Until operator is presented in Figure 4.2. Its expres-
siveness is richer than that of the basic modal language of space. E.g., one can express
global properties inside connected components:

Uϕ⊥ iff some open component arount the current point is allϕ

In connected spaces, this is equivalent to the universal modalityU .
Which temporal principles valid inIR survive the move to more than one dimen-

sion? We do not provide a full axiomatization, but rather look at how temporal axioms
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Figure 4.3: Examples of Until models.

behave in space and which new ones may arise. Two useful equivalences for obtaining
normal forms in the one dimensional case are

tU(p ∨ q)↔ (tUp) ∨ (tUq)
(p ∧ q)Ut↔ (pUt) ∧ (qUt)

In our spatial setting, the first equivalence fails: Figure 4.3.a refutes the→ implication.
But the other direction remains a valid principle of monotonicity. As for the second
equivalence, its direction→ is a general monotonicity principle again. Conversely, we
get even have a stronger valid law:

p1Uq ∧ p2Ut→ (p1 ∧ p2)U(q ∨ t)

Proof LetO,O′ be the two open sets such thatp1 is true everywhere insideO andp2

everywhere inO′, q is true on the boundary ofO andt on the boundary ofO′. Now
consider the setO ∩ O′. In such a setp1 ∧ p2 is true everywhere. In addition, every
boundary pointx of O ∩ O′ is either a boundary point ofO or ofO′. In fact, consider
a boundary pointx of (O ∩ O′), thenx ∈ 3(O ∩ O′) andx 6∈ 2(O ∩ O′). Since
x 6∈ 2(O ∩ O′), x 6∈ (O ∩ O′), asO ∩ O′ is open. Sayx 6∈ O. Thenx 6∈ 2O, while
alsox ∈ 3O (asx ∈ 3(O ∩O′)), that is,x is a boundary point ofO. See Figure 4.3.b
for an illustration. Thus, ourx must satisfyq ∨ t. QED
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Figure 4.4: More examples of Until models.

Burgess [1984] reviews basic tense logic providing, among other things, an ax-
iomatization of the Since and Until logic for total dense orders. Departing from these
axioms, we consider their spatial validity. First, we let us define an abbreviationG:

Gp↔ pU⊥

Here is the set of axioms:

G(p→ q)→ ((rUp)→ (rUq)) ∧ ((pUr)→ (qUr)) (4.3)

p ∧ (rUq)→ (rU(q ∧ (rSp))) (4.4)

(qUp)↔ ((q ∧ (qUp))Up)↔ qU(q ∧ (qUp)) (4.5)

((qUp) ∧ ¬(rUp))→ qU(p ∧ ¬r) (4.6)

((qUp) ∧ (sUr))→ (((q ∧ s)U(p ∧ r)) ∨ ((q ∧ s)U(p ∧ s)) ∨ ((q ∧ s)U(q ∧ r)))
(4.7)

For now, this serves as an illustration of ‘transfer’ of temporal logic principles to spatial
settings. Finally, as for topo-bisimulations for this richer language, we would need an
extension of the proposals in [Kurtonina and de Rijke, 1997] for dealing with the∃∀-
complexity of the truth condition for the spatial Until.

Axiom 4.3 is valid for the spatial Since and Until. If everywhereG p implies q,
then it must be the case that if the regionr has ap boundary then it also has aq
boundary. Similarly, if ap region has ar boundary, so does theq region defined by the
samep points, cf. Figure 4.4.a. Axiom 4.4 does not make sense in the spatial setting
where there is no notion of past and, therefore, no Since operator. Axiom 4.5 expresses
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some kind of density and is valid in the spatial version if the model is dense, as it is
trivial to show by contraposition. Axiom 4.6 and Axiom 4.7 donothold in spaces with
more than one dimensions. Here are two simple counter-examples, respectively for
Axiom 4.6 and Axiom 4.7, cf. Figure 4.4.b,c. Consider an open setA made ofq points
with a boundary ofp points. InsideA consider a number of isolated¬r points, while
outside the openA there are onlyr points. It is easy to see that insideA the left hand
side of the implication of Axiom 4.6 is satisfied, while the right hand side is not. In
fact it is impossible to find an open set all made ofq points with a continuous boundary
of ¬r points. A counter-example to Axiom 4.7 is also easy to build. Consider two
open circles of the same radius but different centers. CircleA is made ofq points, its
circumference is made ofp points, everywhere else it is¬p. CircleB is built similarly
by replacingq by s andp by r. The circleA andB overlap. It is easy to check that there
does not exist an open set made ofq ∧ s points whose boundary is made of exclusively
p∧ r points nor only ofp∧ s points and also not only ofp∧ r points. At most one can
hope for a weaker version of the axiom valid in the temporal case (Axiom 4.7):

((qUp) ∧ (sUr))→ ((q ∧ s)U((p ∧ r) ∨ (p ∧ s) ∨ (q ∧ r))).

Proving soundness for the spatial version of Since and Until has shown a fundamental
difference with the temporal version. The reasoning does not involve trees, but full
fledged topological spaces.

4.3 Standard logical analysis

The modal hierarchy of topological languages has a common root. All operators given
have truth conditions in a second-order language quantifying over both points and sets
of points. E.g.,2p says that∃A : O(A)∧ x ∈ A∧∀y : y ∈ A→ P (y). This language
has the following vocabulary:

∀x quantification over points
∀A quantification over sets of points
x = y identity
x ∈ A membership of points in sets
O(A) predicate of openness of sets

All fundamental topological notions are definable in this formalism. Here are two
relevant observations.

4.3.1.FACT. Formulas of the second-order language without free predicate variables
are preserved under topological homeomorphisms.

The proof is a simple induction.

4.3.2.FACT. All topological separation axiomsTi (with 0 ≤ i ≤ 4) are expressible in
the second-order language.
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For example, one can express theT2 axiom (defining the Hausdorff spaces) in the
following way:

∀x, y : (x 6= y → ∃A,B : O(A) ∧ O(B) ∧ ¬∃z(z ∈ A∧z ∈ B)∧x ∈ A∧y ∈ B)

Similarly we can write the definition of the axiom forT4 spaces:

∀C,D : (O(¬C) ∧O(¬D) ∧ ¬∃z(z ∈ C ∧ z ∈ D)

∃A,B : O(A) ∧O(B) ∧ ¬∃z(z ∈ A ∧ z ∈ B) ∧ ∀x ∈ C x ∈ A ∧ ∀x ∈ D x ∈ B)

Of course, this strong language has various much more tractable fragments, and
the goal in ‘modal topology’ is finding these. But the second-orderness in this analysis
maybe somewhat spurious. One can see this by the ‘deconstruction’ of Section 2.3.



CHAPTER 5
GEOMETRICAL EXTENSIONS

5.1 Affine Geometry

Extending the expressive power of a modal logic of space may go beyond mere logical
power, cf. Chapter 4. One can also enrichgeometrical powerby endowing spaces with
more structure. A first elementary example is the property of a point’s being in the
convex closure of a set of points. That is, there exists a segment containing the points
whose end-points are in the set. The notion of convexity is very important in many
fields related to space (e.g., computational geometry [Preparata and Shamos, 1985]),
but also in abstract cognitive settings (e.g., conceptual spaces [Gärdenfors, 2000]).
Capturing convexity modally involves a standard similarity type, that of frames of
points with a ternary relation of betweenness:

M,x |= Cϕ iff ∃y, z : M, y |= ϕ ∧M, z |= ϕ ∧ x lies in betweeny andz (5.1)

This definition is slightly different from the usual notion of convex closure. It is aone-
step convexityoperator whose countable iteration yields the standard convex closure.
The difference between the two definitions is visible in Figure 5.9. On the left are three
points denoting a region. The standard convex closure operator gives the full triangle
depicted on the right. The one-step convexity, on the other hand, gives the frame of
the triangle and only when applied twice yields the full triangle. Another illustration is
presented in Figure 5.1. One-step convexity exhibits a modal pattern for an existential
binary modality:

∃yz : β(yxz) ∧ ϕ(y) ∧ ϕ(z)

From now on, we shall use the term convexity operator to refer to the one-step convex-
ity operator defined in (5.1).

5.1.1 Basic geometry

Geometrical modal logic starts from standard bits of mathematics, viz. affine geometry,
[Blumenthal, 1961]. For later reference, here are the affine base axioms in a language

67
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Figure 5.1: The pointx is in the one-step convex closureϕ.

with two sorts for points and lines, and an incidence relation as presented by Goldblatt
[Goldblatt, 1987]:

A1 Any two distinct points lie on exactly one line.

A2 There exist at least three non-collinear points.

A3 Given a pointa and a lineL, there is exactly one lineM that passes througha and
is parallel toL.

There are also some properties that further classify affine planes. In particular, an affine
plane isPappianif every pair of its lines has the Pappus property:

A pairL,M of lines in an affine plane has the Pappus property if whenever
a, b, c is a triple of points onL, anda′, b′, c′ is a triple onM such thatab′

is parallel toa′b andac′ is parallel toa′c, thenb′c is parallel tobc′.

Affine spaces have a strong modal flavor, as shown by [Balbiani et al., 1997, Balbiani,
1998, Venema, 1999, Stebletsova, 2000], where two roads are taken. One merges
points and lines into one sort of pairs〈point, line〉 equipped with two incidence rela-
tions. The other has two sorts for points and lines, and a matching modal operator.

But there are more expressive classical approaches to affine structure. Tarski [1959]
gave a full first-order axiomatization of elementary geometry in terms of a ternary
betweenness predicateβ and quaternary equidistanceδ. We display it as a kind of
‘upper limit’:

A1 ∀xy(β(xyx)→ (x = y)), identity axiom for betweenness.

A2 ∀xyzu(β((xyu) ∧ β(yzu))→ β(xyz)), transitivity axiom for betweenness,

A3 ∀xyzu(β(xyz) ∧ β(xyu) ∧ (x 6= y)→ β(xzu) ∨ β(xuz)) connectivity axiom for
betweenness,

A4 ∀xy(δ(xyyx)), reflexivity axiom for equidistance,
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A5 ∀xyz(δ(xyzz)→ (x = y)), identity axiom for equidistance,

A6 ∀xyzuvw(δ(xyzu) ∧ δ(xyvw)→ δ(zuvw)), transitivity axiom for equidistance,

A7 ∀txyzu∃v(β(xtu) ∧ β(yuz)→ β(xvy) ∧ β(ztv)), Pasch’s axiom,

A8 ∀txyzu∃vw(β(xut)∧β(yuz)∧ (x 6= u)→ β(xzv)∧β(xyw)∧β(vtw)), Euclid’s
axiom,

A9 ∀xx′yy′zz′uu′(δ(xyx′y′) ∧ δ(yzy′z′) ∧ δ(xux′u′) ∧ δ(yuy′u′) ∧ β(xyz)∧
β(x′y′z′) ∧ (x 6= y)→ δ(zuz′u′)), five-segment axiom,

A10 ∀xyuv∃z(β(xyz) ∧ δ(yzuv)), axiom of segment construction,

A11 ∀xyz(¬β(xyz) ∧ ¬β(yzx) ∧ ¬β(zxy), lower dimension axiom,

A12 ∀xyzuv(δ(xuxv)∧ δ(yuyv)∧ δ(zuzv)∧ (u 6= v)→ β(xyz)∨β(yzx)∨β(zxy),
upper dimension axiom,

A13 All sentences of the form∀vw . . . (∃z∀xy(ψ∧ϕ→ β(zxy))→ ∃u∀xy(ψ∧ϕ→
β(xuy))), elementary continuity axioms.

Why is this beautiful complete and decidable axiomatization not all one wants to
know? From a modal standpoint, there are two infelicities in this system. The axioms
are too powerful, and one wants to look at more tractable fragments. But also, the ax-
ioms mix betweenness and equidistance—whereas one first wants to understand affine
and metric structure separately.

5.1.2 The general logic of betweenness

Our choice of primitives for affine space is again betweenness, whereβ(xyz) means
that pointy lies in betweenx andz, allowing y to be one of these end-points. Line
structure is immediately available by definingcollinearity in terms of betweenness:

xyz are collinear iffβ(xyz) ∨ β(yzx) ∨ β(zxy)

‘Geometrical extensions’ of this sort can even define ‘extended modalities’, i.e., ‘logi-
cal extensions’ in our earlier terminology. Here is theexistential“at some point:”

Eϕ iff 〈B〉(ϕ,>) (5.2)

This will work provided we require betweenness to satisfy:

∀x∀yβ(xxy).

Without this, the defined modality will just range over the connected component of the
current point of evaluation.
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Natural specific structures on which to interpret our modal language include theIRn

for anyn. But affine spaces really form a much more general class of structures. What
are natural general frame conditions constraining these? As one does for temporal
logics, theuniversal first-order theoryof ordinary real space suggests good candidates.
Consider just the betweenness part of Tarski’s elementary geometry. AxiomsA1-A3
for identity, transitivity, and linearity are all plausible as general affine properties. They
are not sufficient, though, as one also wants some obvious variants of transitivity and
linearity with points in other positions stated explicitly. With Tarski, the latter are
theorems, but their proofs go through other axioms involving equidistance. Further
universal first-order assertions that hold in real space would expressdimensionalityof
the space, which does not seem a plausible constraint in general.
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Figure 5.2: Pasch’s property.
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At the next level of syntactic complexity, one then finds existential axioms and
universal-existential ones, which require the space to have a certain richness in points.
The latter expresses typical geometrical behavior, witnessPasch’s axiomA7 (see Fig-
ure 5.2) and the earlier Pappus property (see Figure 5.3):

∀xx′yy′zz′∃jklβ(xyz) ∧ β(x′y′z′) ∧ β(xjy′) ∧ β(yjx′) ∧ β(xkz′)∧
β(zkx′) ∧ β(ylz′) ∧ β(zly′)→ β(jkl)

Moving to the opposite extreme of geometrical structure, consider the real lineIR.
Its universal first-order theory includes the strong dimensionality principle

∀xyz, β(xyz) ∨ β(yxz) ∨ β(xzy) (5.3)
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The complete affine first-order theory here can be axiomatized very simply, by trans-
lating β(xyz) asy = x ∨ y = z ∨ x < y < z. This reduces the one-dimensional
geometry to the decidable theory of discrete unbounded linear orders. But it would
be of interest to also axiomatize the universal first-order betweenness theories of the
spacesIRn explicitly.

5.1.3 Modal languages of betweenness

Let us now turn to modal logic over affine spaces.

5.1.3.1 The basic language

Ternary betweenness models a binary betweenness modality〈B〉:

M,x |= 〈B〉(ϕ, ψ) iff ∃y, z : β(yxz) ∧M, y |= ϕ ∧M, z |= ψ

Note that this is a more standard modal notion than the earlier topological modality: we
are working on frames, and there are no two-step quantifiers hidden in the semantics.
〈B〉 is expressive. For instance, it defines one-step convex closure as follows:

convex(ϕ) iff 〈B〉(ϕ, ϕ) (5.4)

Passing to points ‘in between’ two others yields the convex closure only after re-
peated applications of this operator, as shown in Figure 5.9. In a more elaborate set-up,
we could take a leaf from dynamic logic, and add an operation ofKleene iterationof
the betweenness predicate–much as ternary ‘composition’ is iterated in dynamic Ar-
row Logic (cf. Chapter 8 in [van Benthem, 1996]). Next, the existential modality has
a dual universal version:[B](ϕ, ψ)↔ ¬〈B〉(¬ϕ,¬ψ), which works out to

M,x |= [B](ϕ, ψ) iff ∀y, z : β(yxz)→M, y |= ϕ ∨M, z |= ψ

An implicational variant of this definition is also helpful sometimes:

M,x |= [B](¬ϕ, ψ) iff ∀y, z : β(yxz) ∧M, y |= ϕ→M, z |= ψ

One might think that there should be an independent conjunctive variant, saying
that both end-points have their property. But this is already definable—another sign of
the strength of the language:

[B](ϕ,⊥) ∧ [B](⊥, ψ)
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5.1.3.2 Versatile extensions

Betweenness is natural, but biased toward ’interior positions’ of a segment. But given
two pointsx andy, one can also consider all pointsz such thatx lies in betweeny
andz, or allw such thaty lies in betweenx andw. In this way, two points identify a
direction and a weak notion of orientation. There are two obvious further existential
modalities corresponding to this. Together with〈B〉, they form a ‘versatile’ triple in
the sense of [Venema, 1992]. Such triples are often easier to axiomatize together than
in isolation. As an illustration, consider the table of Figure 5.4, which we have been

above above left side

below

Figure 5.4: A table and the regions for versatile betweenness modalities.

setting in earlier sections. Using versatile modalities, the legs of the table and its top
identify important zones of visual scenes, which also have names in natural language,
such as everything ‘above the table’.

5.1.3.3 Affine transformations

Affine transformations are the invariant maps for affine geometry. Their modal coun-
terpart areaffine bisimulationswhich are mappings relating points verifying the same
proposition letters, and maintaining betweenness. We only display the definition for
our original ‘interior’ betweenness—since the versatile extensions are straightforward:

5.1.1.DEFINITION (AFFINE BISIMULATION ). Given two affine models〈X,O, β, ν〉,
and〈X ′, O′, β′, ν〉, anaffine bisimulationis a non-empty relation� ⊆ X × X ′ such
that, ifx � x′:

(i) x andx′ satisfy the same proposition letters,

(ii) (forth condition):β(yxz)⇒ ∃y′z′ : β′(y′x′z′) andy � y′ andz � z′

(iii) (back condition):β′(y′x′z′)⇒ ∃yz : β(yxz) andy � y′ andz � z′

wherex, y, z ∈ X andx′, y′, z′ ∈ X ′.

In [Goldblatt, 1987], isomorphisms are considered the only interesting maps across
affine models. But in fact, just as with topological bisimulations versus homeomor-
phisms (Theorem 2.1.5), affine bisimulations are interesting coarser ways of compar-
ing spatial situations. In the true modal spirit, they only consider the behavior of points
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inside their local line environments. Consider the two models consisting of 6 and 4
points, respectively, on and inside two triangles, with some atomic properties indicated,
Figure 5.5. The models are evidently not isomorphic, but there is an affine bisimula-

p q r

r

q

q

p q r

q

Figure 5.5: Affine bisimilar models.

tion. Simply relate the twor points on the left with the singler point on the right. Then
relate the topq point on the left with the top one on the right, the remaining twoq points
on the left with the one on the right, and, finally, thep point on the left with the one of
the right. This affine bisimulation can be regarded as a sort of ‘modal contraction’ to a
smallest bisimilar model, as we did in Section 2.1.3. The models in Figure 5.6 are not
bisimilar though. One can check that no relation does the job—or, more simply, note

p r

r
q

p q rr

r

Figure 5.6: Affine bisimilar reduction.

that the modal formulaq∧〈B〉(r, r) holds on theq point of the left model and nowhere
on the right. Affine bisimulations preserve truth of modal formulas in an obvious way,
and hence they are a coarser map than isomorphisms still giving meaningful geomet-
rical invariances. This is exactly as we found with topological bisimulations versus
homeomorphisms.

Incidentally, notice that thereis a smaller bisimulation contraction for the left-hand
triangle. The reason is that not all its points are uniquely definable in our modal lan-
guage. Thep andq points are uniquely definable, but allr points on the boundary
satisfy the same modal statements. The contraction will look like the picture to the
right, but with the middle point ‘in between’ the right point and the right point itself.
(This is not a standard 2D ‘picture’, and duplicating points cannot always be contracted
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if we insist on those.) This situation would change with a modality forproper between-
ness. Then the two middler points become uniquely distinguishable as being properly
in between different pairs of points. But the top and right-bottom point remain indis-
tinguishable, unless we add versatile operators. It is a nice exercise to show that the
triangle does have every point uniquely definable in the original language when we
change the atomic proposition in the top vertex and the one center bottom toq and
that in the middle of the right edge top. Consider the new valuation in Figure 5.7. In

1

2

3

45

6

p
q

q

q p

r

Figure 5.7: An irreducible affine model.

this case there doesnot exists a bisimilar contraction. Every point of the triangle is
distinguishable by a formula which is not true on any other point, see Figure 5.8. This

Point Formula

1 ϕ1 = p ∧ 〈B〉(q, r)
2 ϕ2 = p ∧ ¬ϕ1

3 ϕ3 = q ∧ 〈B〉(ϕ1, ϕ2)
4 ϕ4 = r
5 ϕ5 = q ∧ 〈B〉(ϕ2, ϕ4)
6 ϕ6 = q ∧ ¬ϕ3 ∧ ¬ϕ5

Figure 5.8: Formulas true at points of the model in Figure 5.7.

suggests a theory of unique patterns, depending on how points are labeled in geomet-
rical pictures.

5.1.4 Modal logics of betweenness

The preceding language has a minimal logic as usual, which does not yet have much
geometrical content. Its key axioms are two distribution laws:

〈B〉(ϕ1 ∨ ϕ2, ψ)↔ 〈B〉(ϕ1, ψ) ∨ 〈B〉(ϕ2, ψ)

〈B〉(ψ, ϕ1 ∨ ϕ2)↔ 〈B〉(ψ, ϕ1) ∨ 〈B〉(ψ, ϕ2)
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This minimal logic by itself has all the usual modal properties, decidability among
them. Other basic principles express basic universal relational conditions, such as be-
tweenness being symmetric in end-points, and all points lying ‘in between themselves’:

〈B〉(ϕ, ψ)→ 〈B〉(ψ, ϕ)

ϕ→ 〈B〉(ϕ, ϕ)

These facts are simpleframe correspondencesin the usual modal sense. A slightly
more tricky example is the earlier-mentioned relational condition∀x∀yβ(xxy). This
is not definable as it stands, but the modal axiom

(ϕ ∧ 〈B〉(>, ψ))→ 〈B〉(ϕ, ψ)

corresponds to the related principle

∀x∀y∀z : β(zxy)→ β(xxy)

More generally, special modal axioms may correspond to more complex properties of
geometric interest. For example, considerassociativityof the betweenness modality:

〈B〉(ϕ, 〈B〉(ψ, ξ))↔ 〈B〉(〈B〉(ϕ, ψ), ξ)

5.1.2.FACT. Associativity corresponds to the Pasch Axiom.

Proof Consider the Pasch AxiomA7 in Tarski’s list (Figure 5.2). Suppose that

∀txyzu∃v(β(xtu) ∧ β(yuz)→ β(xvy) ∧ β(ztv))

holds in a frame. Assume that a pointt satisfies〈B〉(ϕ, 〈B〉(ψ, ξ)). Then there exist
pointsx, u with β(xtu) such thatx |= ϕ, u |= 〈B〉(ψ, ξ), and hence also pointsy, z
with β(yuz) such thaty |= ψ andz |= ξ. Now by Pasch’s Axiom, there must be a point
v with β(xvy) andβ(vtz). Now, v |= 〈B〉(ϕ, ψ) and hencet |= 〈B〉(〈B〉(ϕ, ψ), ξ).
The other direction is similar.

Conversely, assume thatβ(xtu) andβ(yuz). Define a valuation on the space by
settingν(p) = {x}, ν(q) = {y}, andν(r) = {z}. Thus,u |= 〈B〉(q, r) and

t |= 〈B〉(p, 〈B〉(q, r)).

By the validity of modal associativity, then

t |= 〈B〉(〈B〉(p, q), r)

So there must be pointsv, w with β(vtw) such thatv |= 〈B〉(p, q) andw |= r. By the
definition ofν, the latter means that w=z, the former thatβ(xuy). So indeed,u is the
required point. QED

The preceding correspondence may becomputed automatically, as the associativ-
ity has ‘Sahlqvist form’. Thus, more general substitution methods apply for finding
geometrical correspondents: cf. [Blackburn et al., 2001].
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5.1.5 Special logics

For the affine modal logic of special models, additional considerations may apply. One
example is the real lineIR, which was also conspicuous in the topological setting. This
time, the task is easy, as one can take advantage of the binary ordering<, defining

M,x |= 〈B〉(ϕ, ψ) iff ∃y, z : M, y |= ϕ ∧M, z |= ψ ∧ z ≤ x ≤ y

Given this notion, we can use shorthand for the modalities of temporal logic: Future
and Past (here, both including the present).

Fϕ := 〈B〉(true, ϕ)

Pϕ := 〈B〉(ϕ, true)

Conversely, onIR, these two unary modalities suffice for defining〈B〉:

〈B〉(ϕ, ψ)↔ Pϕ ∧ Fψ

Thus, a complete and decidable axiomatization for our〈B〉-language can be found us-
ing the well-known tense logic of future and past onIR [Segerberg, 1970].

Special models also raise special issues. We have already seen the universal axiom
Equation (5.3) defining one-dimensionality. What would be good versions for higher
dimensions? We will address this issue once more in our next section.

5.1.6 Logics of convexity

A binary modality for a ternary frame relation gives maximal flexibility. Nevertheless,
given the geometrical importance of convexity per se, here is a unary modal operator
for one-step convex closure:

M,x |= Cϕ iff ∃y, z : M, y |= ϕ ∧M, z |= ϕ ∧ x ∈ y—z

This is a fragment of the preceding modal language:

Cϕ↔ 〈B〉(ϕ, ϕ).

The axiomatic behavior is different though: distributivity fails. Of the axiom

C(ϕ ∨ ψ)↔ Cϕ ∨ Cψ

only the right-to-leftmonotonicityimplication is valid. But the one-step convex closure
of a set of two distinct points is their whole interval, while the union of their separate
one-step closures is just these points themselves.

Earlier on, we already noted that one-step convex closure needs finite iteration to
yield the usual convex closure of geometry. This could be brought out again in a
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Figure 5.9: In a two dimensional space, the sequential application of the convexity
operator to three non aligned points results in two different regions: a triangle (only
the sides and corners of it) and the filled triangle.

language with an additional modalityC∗, where the∗ denotes Kleene iteration. This
interesting spatial use of dynamic logic is not pursued here, for a reason to be explained
below. First, note that the non-idempotence ofC gives additional expressive power by
itself. In fact, it helps us distinguish dimensions! Here is how. The principle

CCϕ↔ Cϕ

holds onIR, but not onIR2. A counter-example onIR2 is shown in Figure 5.9. The
regionp is given by three non-collinear points.Cp is then the bare triangle: convexity
has added the edges. Applying convexity again,CCp defines a different region, namely
the whole triangle with its interior. One may be inclined to rush to the conclusion that
principles of the form

Cn+1ϕ↔ Cnϕ (5.5)

determine the dimensionality of the spacesIRn for all n. But here is a surprise.

5.1.3.THEOREM. The principleCCCϕ↔ CCϕ holds inIR3.

Proof Here is a sketch. It will help the reader to visualize the situation using the
tetrahedron example in Figure 5.11.

Cϕ consists of all points in between twoϕ-points. CCϕ consists of all points in
between the latter, and the implicationCCϕ → Cϕ corresponds (in the literal modal
frame-theoretic sense) to the betweenness property that

(β(yxz) ∧ β(uyv) ∧ β(szt))→
∧
{β(ixj)| i, j ∈ {u, v, s, t}}

This is true in one dimension, though not in higher ones.
On the plane,Cϕ consists of the same points. But we can give another descrip-

tion of CCϕ . If x lies in between twoCϕ-points, say on intervalsy—z andu—v ,
respectively, thenx lies in/on one of the trianglesyzu or yzv. Therefore,CCϕ-points
lie on triangles ofϕ-points. Now consider any pointr in CCCϕ, i.e., between points
s, t in/on suchCCϕ triangles. Intersecting the segments—t with the two triangle
boundaries, we get thatr lies in a four sided polygon ofϕ-points, and hence, bisecting,
r is already in/on a triangle ofϕ-points: i.e.,r is inCCϕ already.
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Figure 5.10: In a three dimensional space, the sequential application of the between-
ness operator to four non coplanar points results in two distinct regions: the wire-frame
of a tetrahedron and the filled tetrahedron.

Figure 5.11: Applying convexity from the wire-frame to the full tetrahedron.

In 3D, the description forCCϕ is different, because the two segments for theCϕ-
points need not lie in the same plane. The outcome is that these points lie in/on a
4-hedron ofϕ-points. Now consider a generic pointr in CCCϕ. It will lie in between
points in such 4-hedra. This situation is easier to picture: take the segment on which it
lies, and intersect that with the relevant faces of the 4-hedra. Then it is easy to see that
the pointr lies inside a 6-hedron whose vertices areϕ-points. But then, cutting this up
a number of times now, there is again a 4-hedron ofϕ-points in/on which we findr,
hence, it is inCCϕ already. QED

As a corollary, for real spaces, we can then define convex closure in our language
after all, usingCC combinations. Hence, a full dynamic language, no matter how
interesting, is not strictly needed. But for the moment we note the following fact.

5.1.4.FACT. For any formulaϕ, Cn is a convex set inIRn.

But there are dimension highlighters in our language after all. An old theorem from
almost a century ago [Helly, 1923] comes to the rescue:

5.1.5.THEOREM (HELLY ). If K1, K2, . . . , Km are convex sets inn-dimensional Eu-
clidean spaceEn, in whichm > n + 1, and if for every choice ofn + 1 of the sets
Ki there exists a point that belongs to all the chosen sets, then there exists a point that
belongs to all the setsK1, K2, . . . , Km.

This theorem does have a modal version;∧
f :{1,...,n+1}→{1,...,m}

E(
n+1∧
i=1

(Cnϕf(i))→ E(
m∧
i=1

Cnϕi)
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whereE is the existential modality (defined in terms of betweenness in Equation 5.2),
Cn is convexity appliedn times (Fact 5.1.4), andf is a function from{1, . . . , n + 1}
to {1, . . . ,m}.

5.1.6.1 Digression: A proof in the projective plane

A convenient form of representing geometrical spaces is by homogeneous coordinates
of the projective plane. In homogeneous coordinates (see for instance [Foley et al.,
1990]), a point in ann-dimensional space is represented byn+ 1 elements of a vector.
For example, the origin of the plane is represented by

P =

0
0
1


Representing points and sets of points in this form we look at convexity with two goals:
one, to see the relation between bisimulations and convexity; two, to show formally that
(5.5) does not hold.

The convexity operator applied to the regions formed by two generic pointsP1 =
(x1, y1, 1), P2 = (x2, y2, 1) of the plane denotes the segment, with a slight mix of
notation between the language level and model level,

C(P1

⋃
P2) =

x1(1− c) + x2c
y1(1− c) + y2c

1

 (5.6)

with c ∈ [0, 1]. In the following, we may abbreviateC(P1

⋃
P2) by P1(1 − c) + P2c,

even though it is not precise from an algebraic point of view.

5.1.6.LEMMA (AFFINE BISIMULATIONS). Affine transformations imply affine bisim-
ulations.

Proof We sketch the proof for the two dimensional case. First a geometrical fact,
affinely transforming a pointP is represented, in homogeneous coordinates, by the
pre-multiplication of a square matrix,̄P = T · P ,

T =

r11 r12 tx
r21 r22 ty
0 0 1

 (5.7)

where the upper2×2 matrix is orthonormal, i.e.,T−1 = T t and|T | = 1. For example,
if r11 = 1, r12 = 0, r21 = 0, r22 = 1 one gets a translation, while ifr12 = 0, tx =
0, r21 = 0, ty = 0 one gets a scaling.

First, we show that affine transformations imply bisimulations. Disregard the val-
uation function. A generic pointPg ∈ P1—P2 is related, via an affine transformation,



80 • Chapter 5. GEOMETRICAL EXTENSIONS

to the pointT · Pg. We need to show thatT · Pg ∈ T · P1—T · P2. We rewrite the last
membership relation asT · Pg = T · P1(1 − c) + T · P2c with c ∈ [0, 1]. It is now a
matter of simple matrix manipulation and substitution with Equation (5.6) and (5.7) to
show that the latter equation holds. QED

Actually, there are reasons to suspect that the implication in the opposite direction
holds in a vast number of cases. For instance, both affine bisimulations and affine
transformations preserve convexity in a very similar manner.

5.1.7.FACT. Cϕ does not necessarily denote a convex set in two or more dimensional
spaces.

Proof We give a counter-example, see also Figure 5.12. Consider 3 pointsP1, P2, P3.

P
2

P
3

P
1

P
12

P
2

P
3

P
12

P
1

(a) (b)

Figure 5.12: Convexity of a region made is not necessarily a convex region. In (a) it is
not, while in (b) it is.

A point of Cϕ is, for instance,P12 = P1(1 − 1
2
) + P2

1
2
. If we consider all the points

betweenP12 andP3 we see that they are inCϕ iff the three points are collinear:
1
4
(x1 + x2 + 2x3)

1
4
(y1 + y2 + 2y3)

1
4
(z1 + z2 + 2z3)

1

 =


x1(1− c) + x2c
y1(1− c) + y2c
z1(1− c) + z2c

1


has solutions inc iff the values of thex{1,2}, y{1,2}, z{1,2} are pairwise linearly depen-
dent, i.e., iff the pointsP1, P2, P3 are collinear (Figure 5.12.(b)). QED

Finally, we consider what happens applying the convexity operator one more time.

5.1.8.FACT. CCϕ denotes a convex set in a three-dimensional space.

Proof If we apply convexity twice, we obtain

CCϕ = CC
⋃
i


xi
yi
zi
1

 =

{Pcc| ∀j, k, l,m, Pcc = (Pj(1− c1) + Pkc1)(1− c3) + (Pl(1− c2) + Pmc2)c3}
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The expression of a point between any two generic points of the previous setPcc, P
′
cc

is

Pg =((Pj(1− c1) + Pkc1)(1− c3) + (Pl(1− c2) + Pmc2)c3)(1− c7)+
((Pj(1− c4) + Pkc4)(1− c6) + (Pl(1− c5) + Pmc5)C6)c7 (5.8)

if Pg belonged to the set ofPcc points, then it would have the form

Pg = ((Pj(1− d1) + Pkd1)(1− d3) + (Pl(1− d2) + Pmd2)d3)(1− d7) (5.9)

SubstitutingPg of Equation 5.9 into Equation 5.8 yields an over-determined system of
equations, which in turn is an identity. Therefore the set ofPcc points is a convex set.

QED

We believe this proof lifts to higher dimensions.

5.1.7 First-order affine geometry

The above modal language is again a fragment of a first-order one, under the standard
translation. The relevant first-order language is not quite that of Tarski’s elementary
geometry forIR2, as we also get unary predicate letters denoting regions. In fact, one
open question which we have not been able to resolve is this. A formulaϕ(β, P,Q, ...)
is valid, say in the real plane, if it holds for any interpretation of the regionsP , Q, ...
Thus, we would be looking at a universal fragment of amonadic second-order logic:

What is the complete monadicΠ1
1 theory of the affine real plane?

We suspect it is recursively axiomatizable and decidable—perhaps using the Ehren-
feucht game methods of [Doets, 1987]. This is an extension of the affine part of
Tarski’s logic. But our previous discussion has also identified interestingfragments:

What is theuniversal first-ordertheory of the affine real plane?

As in our discussion of topology, the affine first-order language of regions is a natural
limit towards which modal affine languages can strive via various logical extensions.
From a geometrical viewpoint, one might also hope that ‘layering’ the usual language
in this modal way will bring to light interesting new geometrical facts.

Another major feature of standard geometry is theequal status of points and lines.
This would suggest a reorganization of the modal logic to atwo-sortedone stating
properties of both points and segments, viewed as independent semantic objects. There
are several ways of doing this. One would be atwo-dimensionalmodal language
in the spirit of [Marx and Venema, 1997], handling both points and pairs of points,
with various cross-sortal modalities. Another would treat both objects as primitives,
and then have cross-sortal modalities for “at an end-point,” “at an intermediate point,”
“at some surrounding segment.” We think the latter is the best way to go eventually,
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as it has the useful feature of replacing talk in terms of ternary relations, which are
hard to visualize, by binary ones, which are easier to represent. (This is of course
the key advantage of the geometer’s habit of working with points and lines.) More-
over, the two-sorted move would be in line with other modal trends such asArrow
Logic [van Benthem, 1996, Venema, 1996], where transitions between points become
semantical objects in their own right. This gives more control over semantic struc-
tures and the complexity of reasoning. It would also help reflect geometrical duality
principles of the sort that led from affine to projective geometry.

5.2 Metric geometry

There is more structure to geometry than just affine point and line patterns. Tarski’s
equidistance also capturesmetric information. There are various primitives for this.
Tarski used quaternary equidistance—while ternary equidistance would do just as well
(x, y andz lie at equal distances). Our choice in this section is a different one, stressing
the comparative character of metric structure.

5.2.1 The geometry of relative nearness

Relative nearness was introduced in [van Benthem, 1983b] (see Figure 5.13):

N(x, y, z) iff y is closer tox thanz is, i.e.,d(x, y) < d(x, z)

whered(x, y) is any distance function.

This is meant very generally. The functiond can be a geometrical metric, or some

x

y
z

Figure 5.13: From pointx, y is closer than pointz.

more cognitive notion of visual closeness (van Benthem’s original interest; cf. also
Gärdenfors ‘Conceptual Spaces’), or some utility function with metric behavior. Ran-
dell et al. [2001] develop the theory of comparative nearness for the purpose of robot
navigation, related to the earlier-mentioned calculus of regions RCC.

Relative nearness defines equidistance:

Eqd(x, y, z) : ¬N(x, y, z) ∧ ¬N(x, z, y)
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Tarski’s quaternary equidistance is expressible in terms ofN as well. Details are post-
poned until Section 5.2.3 on first-order metric geometry.

Affine betweenness is also definable in terms ofN , at least in the real spacesIRn:

β(xyz) iff ∀x′¬(N(y, x, x′) ∧N(z, x′, x))

Finally, note that even identity of pointsx = y is expressible in terms ofN

x = y iff ¬N(x, x, y)

At the end of the XVIII century the mathematician Lorenzo Mascheroni proved in
his tractateThe Geometry of Compassesthat everything that can be done with compass
and ruler can be done with the compass alone. One can generate all of Mascheroni’s
constructions with the first-order logic ofN and thereby achieve geometry, as we il-
lustrate in Section 5.2.1.1.

The further analysis of this structure can proceed along much the same lines as the
earlier one for affine geometry. In particular, as a source of basic constraints, one is
interested in theuniversal first-order theoryof relative nearness. Its complete descrip-
tion is an open question right now, but here are some examples showing its interest.
First, comparative nearness induces a standard comparative ordering. Once a pointx
is fixed, the binary orderN(x, y, z) is irreflexive, transitive and almost-connected:

∀x∀y∀z∀u : (N(x, y, z) ∧N(x, z, u))→ N(x, y, u)) (transitivity)

∀x∀y : ¬N(x, y, y) (irreflexivity)

∀x∀y∀z∀u : N(x, y, z)→ (N(x, y, u) ∨N(x, u, z)) (almost-connectedness)

These are like the principles of comparative order in logical semantics for counterfac-
tuals [Lewis, 1973]. But additional valid principles are more truly geometrical, relating
distances from different standpoints. These are the followingtriangle inequalities

∀x∀y∀z∀u : N(x, y, z) ∧N(z, x, y)→ N(y, x, z)

∀x∀y∀z∀u : ¬N(x, y, z) ∧ ¬N(z, x, y)→ ¬N(y, x, z)

These seem pretty universal constraints on comparative nearness in general. Further
universal first-order properties ofN reflect the two-dimensionality of the plane. Just
inscribe 6 equilateral triangles in a circle, and see that

on a circle with radiusr, the largest polygon that can be inscribed of points
at distancer has6 vertices.

This upper bound can be expressed in universal first-order form, because we can ex-
press equidistance in terms ofN . Other principles of this form concern the arrangement
of points on circles:
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on a circleC, any point has at most two points at each of its ‘equidistance
levels’ onC

and

circles with the same radius but different centers intersect in at most two
points.

To obtain the complete universal first-order theory of comparative nearness in the
Euclidean planeIR2, one would have to guarantee a planar embedding. Do our gen-
eral axioms, including the triangle inequalities, suffice for axiomatizing the complete
universal theory ofall Euclidean spacesIRn?

5.2.1.1 Geometrical excursus: Mascheroni, Voronoi, and Delaunay

Having the predicate of comparative nearness is like having a compass. One is able to
draw circles, but does not know their radius. (Think of having a map with no scale on it
and to start comparing distances by using the compass alone.) IfN(x, y, z) holds, we
know that the pointsy are those contained in the circle centered inx, whose radius is
given by the distanced(x, z). Via the defined notion of equidistance we can also refer
to the circumference of the regions. This allows us to look at modal and first-order
nearness geometry through some classical theorems in geometry.

Mascheroni’s geometry of compass.If one can define circumferences via equidis-
tance and one can ‘do’ all basic geometrical constructions with the compass alone via
Mascheroni constructions, then the logic of comparative nearness must be able to ex-
press all basic geometrical constructions.

1
p

2
p

3
p

5
p

4
p

6
p  c

Figure 5.14: The construction of a regular hexagon via Mascheroni’s construction.



5.2. Metric geometry • 85

Here is an example. Let us construct a regular hexagon using theN relation alone,
see Figure 5.14.

p1 6= p2 6= p3 6= p4 6= p5 6= p6∧
E(c, p1, p2) ∧ E(c, p2, p3) ∧ E(c, p3, p4) ∧ E(c, p4, p5) ∧ E(c, p5, p6)∧
E(p1, p2, c) ∧ E(p2, p3, c) ∧ E(p3, p4, c) ∧ E(p4, p5, c) ∧ E(p5, p6, c)→
E(p6, p1, c) (5.10)

In the first line of Equation 5.10, we identify six disjoint pointsp1 . . . p6. In the second
line, we constrain the six points to lie on the same circumference centered inc. Finally,
we build circles of the same radius as that centered inc that connect the points pairwise.
As a result, the six segmentsp1—p2, p2—p3, p3—p4, p4—p5, p5—p6, p6—p1 define a
regular hexagon. The technique generalizes for the other geometrical constructions.

Voronoi diagrams.Imagine having a set of marked points scattered in space. Then
consider the partitioning of the space in regions, one for every marked point. A region
is defined as the set of points that are closest to the marked point than to any other
one. The Voronoi diagram of the marked points is the union of all the boundaries
of such regions, [Voronoi, 1908]. An example of the Voronoi diagram of four points
p1, p2, p3, p4 on the plane is depicted in Figure 5.15.(a). The definition of a Voronoi
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Figure 5.15: (a) The Voronoi diagram of four points on the plane. (b) The circles
connecting neighboring points. (c) Delaunay triangulation.

region, also calledcell, is, at a closer look, given in terms of comparative nearness.
Following this intuition, we define a cell of the pointsP = {p1, p2, . . . , pk} in terms of
the nearness relation:

cell (p, pl)↔
k∧

{i=1,i6=l}

N(pl, p, pi)

The interpretation is thatp is in the cell of the pointpl if it is closer topl than to any
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other of the points inP . The whole Voronoi diagram is then:

diagram (p, P )↔
k∨
l=1

k∨
{m=1,m 6=l}

E(p, pl, pm) ∧
k∧

{j=1,m 6=j 6=l}

N(pl, p, pj)

A point p is in the Voronoi diagram of the set of pointsP if it is equidistant from two
given points and it is closer to these two points than to any other one of the setP .

Delaunay triangulation.By connecting with segments the points ofP which share an
edge in the Voronoi diagram, one obtains a graph. The operation is called Delaunay
triangulation, [Delaunay, 1934]. If one thinks of the points ofP as the vertices of a
polyhedron, then the Delaunay triangulation gives a procedure to partition the poly-
gon into tetrahedra. In Figure 5.15.(c) the Delaunay triangulation of four points on
the plane. To express this in terms of the comparative nearness operator, we use the
property that there are no points ofP inside a circle circumscribing the three vertex of
a Delaunay triangle.

Delaunay (p, P )↔
k∨
l=1

k∨
{m=1,m 6=l}

k∨
{n=1,n6=m}

E(pl, pm, c) ∧ E(pm, pn, c) ∧ E(pn, pl, c)∧

k∧
{j=1,j 6=l,m,n}

N(pl, c, pj)∧

(B(p, pl, pm) ∨B(p, pm, pn) ∨B(p, pn, pl))

The construction is a bit laborious. One begins by constructing the circle passing for
any three given points ofP . The center of such circle isc. If the circle contains no
point of P different frompl, pm, pn, then the three points form a Delaunay triangle.
The triangle is then defined by its three sides, which we denote via the betweenness
operator. Figure 5.15 shows the construction of the Voronoi and Delaunay triangulation
stepwise for four points of the plane. We remark that the definitions given here are
completely general and apply also to more than two dimensions. In three dimensions
for instance, via Delaunay triangulation, one partitions the space between the points of
P into a number of disjoint tetrahedra.

5.2.2 Modal logic of nearness

The ternary relation of comparative nearness lends itself to modal description, just like
ternary betweenness. We will just briefly sketch the resulting logic, which is like our
affine system in its broad outline. But the intuitive meaning ofN also adds some new
issues of its own.
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5.2.2.1 Modal languages of nearness

First, one sets

M,x |= 〈N〉φ, ψ iff ∃y, z : M, y |= ψ ∧M, z |= ϕ ∧N(x, y, z)

The universal dual is also interesting in its spatial behavior:

φ
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ψ

x
φ

φ

φ φ

ψ ψ

ψ

ψ
ψ

ψ ψ

φψ
φ

(a) (b)

Figure 5.16: Interpreting a modal operator of nearness and its dual.

M,x |= [N ]φ, ψ iff ∀y, z : N(x, y, z) ∧M, y |= ¬φ→M, z |= ψ

Dropping the negation, one gets an interchangeable version with the following intuitive
content:

if any pointy around the current pointx satisfiesϕ, then all pointsz further
out must satisfyψ.

Moreover, there are obviousversatileversions of these modal operators, which look at
the same situation in a different way. For instance, using one of these in its universal
version, we can also express the appealing statement that

if any pointy around the current pointx satisfiesϕ, then all pointsz closer
to x must satisfyψ.

See Figure 5.17 for an illustration. Finally, note that this language defines an existential
modality (assuming the mild condition that∀y : N(x, x, y) ∨ x = y):

Eϕ iff ϕ ∨ 〈N〉(>, ϕ)

Without the stated condition, this existential modality will only range over connected
components.
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ϕ
y

ψ ψ
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ψ

ψ

Figure 5.17: Versatile interpretation of the dual of a modal operator of nearness.

5.2.2.2 Modal logics of nearness

Modal logics of nearness again start with universally valid principles, with distribution
as the prime example:

〈N〉(ϕ ∨ ψ, ξ)↔ 〈N〉(ϕ, ξ) ∨ 〈N〉(ψ, ξ)
〈N〉(ϕ, ψ ∨ ξ)↔ 〈N〉(ϕ, ψ) ∨ 〈N〉(ϕ, ξ)

Universal constraints of earlier kinds will return as special axioms. Here is an example:

〈N〉(ϕ, ψ) ∧ ¬〈N〉(ϕ, ϕ) ∧ ¬〈N〉(ψ, ψ) ∧ 〈N〉(ψ, ξ)→ 〈N〉(ϕ, ξ) (transitivity)

In the above definition the two clauses¬〈N〉(ϕ, ϕ) and¬〈N〉(ψ, ψ) are necessary
to ensure thatϕ andψ can be true only at a fixed distance from the current point.
Omitting them results in an invalid principle, as it may very well be the case that
〈N〉(ϕ, ψ) ∧ 〈N〉(ψ, ξ) ∧ ¬〈N〉(ξ, ϕ) if ϕ is true at points at different distances from
the current one. Another example of a universal constraint is almost-connectedness:

〈N〉(ϕ, ψ) ∧ ¬〈N〉(ϕ, ϕ) ∧ ¬〈N〉(ψ, ψ) ∧ Eξ → 〈N〉(ϕ, ξ) ∨ 〈N〉(ξ, ψ)
(almost-connectedness)

Irreflexivity seems harder to define (as usual in modal logics), but see below.
Special logics of nearness arise by looking at special structures, or at least, im-

posing more particular constraints. These can again be computed by correspondence
techniques. In a similar way, one can modally express thetriangle inequalities. But in
fact, there is a more general observation to be made here. Note that our language can
define thatϕ holds in a unique point:

E!ϕ iff E(ϕ ∧ ¬〈N〉(ϕ, ϕ))

Now observe the following.

5.2.1.PROPOSITION. Every universal first-order property ofN is modally definable.



5.2. Metric geometry • 89

Proof Every such property is of the form

∀x1 . . . ∀xk : BC(N(xi, xj, xk))

whereBC stands for any Boolean combination of nearness atoms. Now take proposi-
tion lettersp1, . . . pk and write

E! p1 ∧ · · · ∧ E !pk → BC(N#(xi, xj, xk))

whereN#(xi, xj, xk)) is defined asE(pi ∧ 〈N〉(pj, pk)). It is evident that this is a
modal frame correspondent. QED

This explains the definition of the triangle inequalities. Moreover,irreflexivity (whose
first-order definition is∀x∀y¬N(x, y, y)) is definable after all by

E! p1 ∧ E !p2 → ¬E(p1 ∧ 〈N〉(p2, p2))

5.2.2.3 Modal extensions

Useful modal extensions of the base language are partly as in the affine case. But there
is also a novelty. In describing patterns, one may often want to say something like this:

for everyϕ-point aroundx, there existssome closerψ-point.

Now this is not definable in our language, which uses uniformEE or AA quantifier
combinations. Mixing universal and existential quantifiers is more like temporal ‘Un-
til’ languages. Speaking generally, we want a new operator:

M,x |= 〈N∃∀〉(ϕ, ψ) iff ∀y(M, y |= ϕ→ ∃z(N(z, y, x) ∧M, z |= ψ))

The general logic of this additional modality over a ternary relation is a bit more
complex with respect to distribution and monotonicity behavior—but it can be axiom-
atized completely, at least minimally, over all abstract models.

Indeed, this universal-existential pattern is reminiscent of other modal logics nat-
urally involving ternary frame relations. One example istemporal logicof Since and
Until, which involves moving to some point around the current point in time, and then
saying something about all points in between. One existential-universal variant of the
preceding modality would indeed be a kind of spatial Until, stating that some point on
a circle around the current point satisfiesϕ, while all points in the interior satisfyψ.
This is almost a metric analogue of the topological Until operator in Section 4.2.2, but
the latter should have the whole circle boundary satisfyϕ, which requires one more
universal modality over equidistant points.

Another intriguing analogy is with a typical modal logic over comparative near-
ness, viz.conditional logic. The latter is mostly known in connection with counter-
factuals and default reasoning [Lewis, 1973, Nute, 1983, Veltman, 1985]. In general
conditional logic, one crucial binary modality reads

ϕ⇒ ψ iff every closestϕ-world isψ
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This satisfies the usual Lewis axioms for conditional semantics in terms of ‘nested
spheres’ (cf. [van Benthem, 1983a]):

ϕ⇒ ψ → ϕ⇒ ψ ∨ ξ
ϕ⇒ ψ ∧ ϕ⇒ ξ → ϕ⇒ ψ ∧ ξ
ϕ⇒ ψ ∧ ϕ⇒ ξ → ϕ ∧ ψ ⇒ ξ
ϕ⇒ ψ ∧ ξ ⇒ ψ → ϕ ∨ ξ ⇒ ψ
((ϕ ∨ ψ)⇒ ϕ) ∨ (¬((ϕ ∨ ψ)⇒ ξ)) ∨ (ψ ⇒ ξ)

The interesting open question here concerns modal-conditional reflections of the addi-
tional geometrical content of theN(x, y, z) relation. Lewis’ complete system is just
about ordering properties of comparisons from some fixed vantage point. This shows
in the fact that there are no significant axioms foriterated conditionalswhich require
shifts in vantage point. What is the conditional logic content of the triangle inequali-
ties?

5.2.3 First-order theory of nearness

As for the complete first-order theory of relative nearness, we have no special results
to offer, except for the promised proof of an earlier claim.

5.2.2.FACT. The single primitive of comparative nearness defines the two primitives
of Tarski’s Elementary Geometry in first order logic.

Proof The following defines betweenness (see Figure 5.18):

β(yxz) iff ¬∃x′ : N(y, x′, x) ∧N(z, x′, x)

y x’ z

x

Figure 5.18: Defining betweenness via nearness.

This allows us to define parallel segments in the usual way, as having no intersec-
tion points on their generated lines.

xx′||yy′ ↔¬∃c : β(xx′c) ∧ β(yy′c)∧
¬∃c′ : β(c′xx′) ∧ β(cyy′)∧
¬∃c′′ : β(xcx′) ∧ β(ycy′)
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Then, one defines equal segment length by

δ(x, y, z, u) iff ∃y′ : xu||yy′ ∧ xy||uy′ ∧ ¬N(u, z, y′) ∧ ¬N(u, y′z)

Intuitively, one moves one segment on the other matching end-points and preserving
length via parallel lines. Then state that the other end-points are at the same distance
from the joined point. See the depiction in Figure 5.19. QED

u
y’

xy

z

Figure 5.19: Equidistance in terms of betweenness.

Apart from this, much of our earlier discussion concerning affine first-order geometry
applies. Incidentally, no claim is made here for the originality of this approach per se.
There are many systems of logical geometry which have similar richness. A case in
point is the axiomatization of constructive geometry in [von Plato, 1995].

5.3 Linear algebra

Our final example of modal structures inside a spatial theory is different in spirit from
either topology or standard geometry. Connections betweenlinear algebraand spatial
representation are well-known from a major qualitative visual theory, viz.mathemati-
cal morphology. Our treatment follows the lines of [Aiello and van Benthem, 1999]—
and especially [van Benthem, 2000], which also has further details. (A different con-
nection between mathematical morphology and modal logic is found in [Bloch, 2000],
which also includes a fuzzy version.) The flavor of this brand of spatial reasoning is
different from what we had before—but similar modal themes emerge all the same.

Mathematical morphology, developed in the 60s by Matheron and Serra, [Math-
eron, 1967, Serra, 1982], underlies modern image processing, where it has a wide va-
riety of applications. Compared with classical signal processing approaches it is more
efficient in image preprocessing, enhancing object structure, and segmenting objects
from the background. The modern mathematics behind this involves lattice theory:
[Heijmans, 1994]. Logicians may want to think of ‘linear algebras’ [Girard, 1987], an
abstract version of vector spaces:
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5.3.1.DEFINITION (LINEAR ALGEBRA). 〈X,u,t,⊥,(, ?, 0̌, 1̌〉 is a linear algebra
if

(i) 〈X,u,t,⊥, 〉 is a lattice with bottom⊥;

(ii) 〈X, ?, 1̌〉 is a monoid with uniť1;

(iii) if x ≤ x′, y ≤ y′, thenx ? y ≤ x′ ? y′ andx′ ( y ≤ x ( y′;

(iv) x ? y ≤ z iff x ≤ y ( z;

(v) x = (x ( 0̌) ( 0̌ for all x.

In line with our spatial emphasis of this chapter, we will stick with concrete vector
spacesIRn in what follows. Images are regions consisting of sets of vectors. Math-
ematical morphology provides four basic ways of combining, or simplifying images,
viz. dilation, erosion, openingandclosing. These are illustrated pictorially in Fig-
ure 5.20. Intuitively, dilation adds regions together—while, e.g., erosion is a way of
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Figure 5.20: (a) RegionsA andB, elements of the vector spaceIN2; (b) dilatingA by
B; (c) erodingA byB; (d) closingA byB; (e) openingA byB.

removing ‘measuring idiosyncrasies’ from a regionA by using regionB as a kind of
boundary smoothener. (IfB is a circle, one can think of it as rolling tightly along the
inside ofA’s boundary, leaving only a smoother interior version ofA.) More formally,
dilation, orMinkowski addition⊕ is vector sum:

A⊕B = {a+ b | a ∈ A, b ∈ B} dilation
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This is naturally accompanied by

A	B = {a | a+ b ∈ A,∀b ∈ B} erosion

Openings and closing are combinations of dilation and erosions:

the structuralopeningof A byB (A	B)⊕B
the structuralclosingof A byB (A⊕B)	B

In addition, mathematical morphology also employs the usual Boolean operations
on regions: intersection, union, and complement. This is our third mathematization of
real numbersIRn in various dimensions, this time focusing on their vector structure.
Evidently, the above operations are only a small sub-calculus, chosen for its computa-
tional utility and expressive perspicuity.

5.3.1 Mathematical morphology and linear logic

The first connection that we note lies even below the level of standard modal languages.
The Minkowski operations behave a bit like the operations ofpropositional logic. Di-
lation is like a logical conjunction⊕, and erosion like an implication−→, as seems
clear from their definitions (’combining anA and aB’, and ‘if you give me aB, I will
give anA’). The two were related by the followingresiduation law:

A •B ⊆ C iff A ⊆ B −→ C

which is also typical for conjunction and implication (cf. also clause (iv) in Defini-
tion 5.3.1). Thus,−→ is a sort of inverse to⊕.

5.3.1.1 Resource logics

There already exists a logical calculus for these operations, invented under themulti-
plicative linear logicname in theoretical computer science [Troelstra, 1992], and inde-
pendently as theLambek calculus with permutationin logical linguistics, cf. [Kurton-
ina, 1995]. The calculus derives ‘sequents’ of the formA1, . . . , Ak ⇒ B where each
expressionA,B in the current setting stands for a region, and the intended interpreta-
tion, in our case, says that

the sum of theA’s is included in the region denoted byB.

Here are the derivation rules, starting from basic axiomsA⇒ A:
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X ⇒ A Y ⇒ B

X, Y ⇒ A •B
X,A,B ⇒ C

X,A •B ⇒ C
(product rules)

A,X ⇒ B

X ⇒ A −→ B

X ⇒ A B, Y ⇒ C

X,A −→ B, Y ⇒ C
(arrow rules)

X ⇒ A

π[X]⇒ A
permutation

X ⇒ A A, Y ⇒ B

X, Y ⇒ B
cut (structural rules)

Derivable sequents typically include:

A,A −→ B ⇒ B (‘function application’)

A −→ B,B −→ C ⇒ A −→ C (‘function composition’)

Here is an example of a derivation, just for the flavor of the system:

A⇒ A B ⇒ B

A,A −→ B ⇒ B C ⇒ C

A,A −→ B,B −→ C ⇒ C

A −→ B,B −→ C ⇒ A −→ C

Another key example are the two ‘Currying’ laws, whose proof uses the• rules:

(A •B) −→ C ⇒ (A −→ (B −→ C))

(A −→ (B −→ C))⇒ (A •B) −→ C

This calculus is best understood in terms ofresources. Think of each premise in an
argument as a resource which you can use just once when ‘drawing’ the conclusion.
In standard logical inference, the premises form a set: you can duplicate the same
item, or contract different occurrence of it without any change in valid conclusions.
This time, however, the premises form abag, or multi-set, of occurrences: validating
only ‘resource-conscious’ versions of the standard logical laws. E.g., ‘Modus Ponens’
A,A −→ B ⇒ B is valid, but its variantA,A,A −→ B ⇒ B is not: there is one
unused resource left. A correct, and provable sequent using the latter resources is:

A,A,A −→ B ⇒ A •B

Or consider the classically valid sequentA, (A −→ (A −→ B))⇒ B. Here the above
calculus only provesA, (A −→ (A −→ B)) ⇒ A −→ B, and you must supply one
more resourceA to derive

A,A, (A −→ (A −→ B))⇒ B.
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The related categorial grammar interpretation for this same calculus reads the prod-
uct • as syntactic juxtaposition of linguistic expressions, and an implicationA −→ B
as a function category takingA-type toB-type expressions. The same occurrence-
based character will hold: repeating the same word is not the same as having it once.

The major combinatorial properties of this calculusLL are known, including proof-
theoretic cut elimination theorems, anddecidabilityof derivability in NP time. More-
over, there are several formal semantics underpinning this calculus (algebraic, game-
theoretic, category-theoretic, possible worlds-style [van Benthem, 1991a]). Still, no
totally satisfying modeling has emerged so far.

5.3.1.2 Linear logic as mathematical morphology

Here is where the present setting becomes intriguing: mathematical morphology pro-
vides a new model for linear logic.

5.3.2.FACT. Every spaceIRn with the Minkowski operations is a model for allLL -
provable sequents.

This soundness theorem shows that every sequent one derives inLL must be a
valid principle of mathematical morphology. One can see this for the above examples,
or other ones, such as the idempotence of morphological opening(A	B)⊕B:

(((A	B)⊕B)	B)⊕B = ((A	B)⊕B)

In LL , the opening is(A −→ B) • A, and the idempotence law is literally derivable
using the above rules:

(A −→ B) • A⇒ (A −→ ((A −→ B) • A)) • A
(A −→ ((A −→ B) • A) • A)⇒ (A −→ B) • A)

The list might even include new principles not considered in that community. The
converse seems an open completeness question of independent interest:

Is multiplicative linear logic complete w.r.t the class of allIRn’s?
Or even w.r.t. two-dimensional Euclidean space?

Further, mathematical morphology laws ‘mix’ pure Minkowski operations⊕,−→with
standard Boolean ones. E.g. they include the fact thatA −→ (B ∩ C) is the same as
(A∪B) −→ C = (A −→ C)∩ (B −→ C). This requires adding Boolean operations:

X,A⇒ B

X,A ∩ C ⇒ B

X,A,⇒ B

X,C ∩ A⇒ B

X ⇒ A X ⇒ B

X ⇒ A ∩B

X ⇒ A

X ⇒ A ∪B
X ⇒ A

X ⇒ B ∪ A
X,A⇒ B X,C ⇒ B

X,A ∪ C ⇒ B
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Note the difference between the two conjunctions. Product• and intersection have
some similarities, but the rules are different. E.g.,A −→ (B • C) does not derive
(A −→ B) • (A −→ C), or vice versa. Conversely, dot product satisfied the ‘Curry
laws’, but(A∩B) −→ C is certainly not derivably equivalent to(A −→ (B −→ C)).
All these observations tally with known facts in mathematical morphology. Indeed, the
extended calculus is still sound—while its completeness remains an open question.

The Boolean operations look a bit like the ‘additives’ of linear logic, but they also
recall ordinary modal logic, which is where we are going now.

5.3.2 Richer languages

Evidently, the basic players in an algebra of regions in a vector space are the vectors
themselves. For instance, Figure 5.20.a represents the regionA as a set of 13 vectors
departing from the origin. Vectors come with some natural operations, such as binary
addition, or unary inverse—witness the usual definition of a vector space. A vectorv
in our particular spaces may be viewed as an ordered pair of points(o, e), with o the
origin ande the end point. Pictorially, this is an arrow fromo to e. Now this provides
our point of entry into modal logic.

5.3.2.1 Arrow logic

Arrow logic is a form of modal logic where the objects are transitions or arrows, struc-
tured by various relations. In particular, there is a binary modality forcomposition
of arrows, and a unary one forconverse. The motivation for this comes from dy-
namic logics, treating transitions as objects in their own right, and from relational
algebra, making pairs of points separate objects. This allows for greater expressive
power than the usual systems, while also lowering complexity of the core logics (see
[Blackburn et al., 2001, van Benthem, 1996] for overviews). Consider in particular the
pair-interpretation, with arrows being pairs of points(ao, ae). Here are the fundamental
semantic relations:

composition C(ao, ae)(bo, be)(co, ce) iff ao = bo, ae = ce, andbe = co,

inverse R(ao, ae)(bo, be) iff ao = be, andae = bo,

identity I(ao, ae) iff ao = ae.

An abstract model is then defined as any set of arrows as primitive objects, with
three relations as above, and a valuation function sending each proposition letterp to
the set of the arrows where propertyp holds.

5.3.3.DEFINITION (ARROW MODEL). An arrow modelis a tupleM = 〈W,C,R, I,
ν〉 such thatC ⊆ W ×W ×W ,R ⊆ W ×W , I ⊆ W , andν : W → P .
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Such models have a wide variety of interpretations, ranging from concrete models in
linguistic syntax to abstract ones in category theory [Venema, 1996]—but of relevance
to us is the obvious connection with vector spaces. Think ofCxyz asx = y + z, Rxy
asx = −y andIx asx = 0. To make this even clearer, we use a modal arrow language
with proposition letters, the identity element0, monadic operators¬,−, and a dyadic
operator⊕. The truth definition reads:

M,x |= p iff a ∈ ν(p)
M,x |= 0 iff Ix
M, x |= −ϕ iff ∃y : Rxy andM, y |= ϕ
M, x |= ¬ϕ iff not M,x |= ϕ
M, x |= ϕ ∨ ψ iff M,x |= ϕ orM,x |= ψ
M, x |= A⊕B iff ∃y∃z : Cxyz ∧M, y |= A ∧M, z |= B
M,x |= A	B iff ∀y∀z : Cyxz ∧M, z |= A→M, y |= B

This system can be studied like any modal logic. For the basic results in the area, we
refer to the above-mentioned publications.

5.3.2.2 Arrow logic as linear algebra

Most modal topics make immediate sense in linear algebra or mathematical morphol-
ogy. E.g., the above models support a natural notion ofbisimulation:

5.3.4.DEFINITION (ARROW BISIMULATION). Let M,M ′ be two arrow models. A
relation�⊆ W ×W ′ is anarrow bisimulationiff, for all x, x′ such thatx � x′:

base x ∈ ν(p) iff x′ ∈ ν ′(p),

C-forth Cxyz only if there arey′z′ ∈ W ′ such thatC ′x′y′z′, y � y′ andz � z′,

C-back C ′x′y′z′ only if there areyz ∈ W such thatCxyz, y � y′ andz � z′,

R-forth Rxy only if there arey′ ∈ W ′ such thatR′x′y′ andy � y′,

R-back R′x′y′ only if there arey ∈ W such thatRxy andy � y′,

I-harmony Ix iff I ′x′.

Arrow bisimulation is a coarser comparison of vector spaces than the usual linear trans-
formations. It preserves all modal statements in the above modal arrow language, and
hence provide a lower level of visual analysis in linear algebra similar to what we have
found earlier for topology, or geometry.
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Next, logics for valid reasoning also transfer immediately. Here is a display of the
basic system of arrow logic:

(ϕ ∨ ψ)⊕ ξ ↔ (ϕ ∨ φ)⊕ ξ (5.11)

ϕ⊕ (ψ ∨ ξ)↔ (ϕ⊕ φ) ∨ (ϕ⊕ ξ) (5.12)

−(ϕ ∨ ψ)↔ −ϕ ∨ −ψ (5.13)

ϕ ∧ (ψ ⊕ ξ)→ ψ ⊕ (ξ ∧ (−ψ ⊕ ϕ)) (5.14)

These principles either represent or imply obvious vector laws. Here are some conse-
quences of (5.13), (5.14):

−(¬A)↔ ¬(−A)

−(A+B)↔ −B +−A
A+ ¬(−A+ ¬B)→ B

The latter ‘triangle inequality’ is the earlier rule of Modus Ponens in disguise. On
top of this, special arrow logics have been axiomatized with a number of additional
frame conditions. In particular, the vector space interpretation makes composition
commutativeandassociative, which leads to further axioms:

A⊕B ↔ B ⊕ A commutativity
A⊕ (B ⊕ C)↔ (A⊕B)⊕ C associativity

These additional principles make the calculus simpler in some ways than basic arrow
logic. The key fact about composition is now the vector law

a = b+ c iff c = a− b

which derives the triangle inequality. And there are also expressive gains. E.g., the
modal language becomes automatically ‘versatile’ in our earlier sense.

Again the soundness of the given arrow logic for vector algebra is clear, and we can
freely derive old and new laws of vector algebra. But the central open question about
arrow logic and mathematical morphology is again a converse:

What is the completeaxiomatizationof arrow logic over the standard vec-
tor spacesIRn?

In particular, are there differences of dimensionality that show up in different arrow
principles across these spaces?

Continuing with earlier topics,extendingthe basic modal language of arrows also
makes sense. E.g., in general arrow logic there may be many identity arrows, while in
vector space there is only one identity element0. To express this uniqueness, we need
to move to some form of modaldifference logic(cf. Chapter 4). Also, in mathematical
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morphology, one finds a device for stating laws that are not valid in general, but only
when we interpret some variables as standing for single vectors. An example is:

(X)t − Y = (X − Y )t (MM-form)

B → (A+ t)⇔ (B → A) + t (LL-form)

From right to left, this isLL derivable as the general law(S −→ X) • Y ⇒ S −→
(X • Y ). The converse of this is notLL derivable, but it only works whenY is a
singleton{t}. In the latter case, we have the special principleS ⇔ (S + {t}) − {t},
which we have to ‘inject’ into an otherwise fineLL derivation to get the desired result.
This trick is exactly the same as using so-callednominalsin extended modal logics, cf.
[Areces, 2000], which are special proposition letters denoting just a single point. Other
natural language extensions include an infinitary version of the addition modality⊕,
allowing us to close sets tolinear subspaces.

Thus, the two fields are related, not just in their general structure, but also in their
modus operandi, including tricks for boosting expressiveness. Of course, one would
hope that thealgorithmiccontent of arrow logics also makes sense under this connec-
tion, including its philosophy of ‘taming complexity’.

5.3.2.3 A worry about complexity

Issues of decidability and complexity have been largely ignored in this thesis. But one
part of the ‘modal program’ is the balance between moderate expressive power and
low complexity for various tasks: model checking, model comparison, and logical in-
ference. In particular, arrow logics were originally designed to make the spectacular
jump from undecidability in standard relational algebra to decidability. What happens
to arrow logics in mathematical morphology? Even though the logic of the standard
models appears to be effectively axiomatizable, i.e., recursively enumerable,undecid-
ability is lurking! One bad omen is the validity of associativity, a danger sign in the
arrow philosophy (cf. [van Benthem, 1996]).

Resorting to the tiling techniques introduced in [Harel, 1983], by encoding the
problem of tiling theIN × IN grid in the arrow logic of vector spaces, one can show its
undecidability. The idea of the proof is that of considering a denumerable set of colors
C and a set of tilesT = {t1, . . . , tl} (where each tile is a four-tuple of colors). Tiling
is defined as a mapρ : IN × IN → T such that the colors on touching edges coincide.
The problem is known to be undecidable, [Robinson, 1971].
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The tiling problem is encoded in the arrow logic of vector spaces asϕT :

r ⊕ u = u⊕ r
> = u⊕> whereu← t1 ∨ · · · ∨ tl
> = r ⊕> wherer ← t1 ∨ · · · ∨ tl

l∧
i=1

u← ti 	
∨
{tj|topColor(ti) = bottomColor(tj)}

l∧
i=1

r ← ti 	
∨
{tj|rightColor(ti) = leftColor(tj)}

The argument to show undecidability becomes:T tiles IN × IN if and only if there
exists a non-trivial vector spaceIRk such thatIRk |= ϕT . The key of the proof is to
show that indeed it is possible to encode the tiling problem in terms of the arrow logic
of vector spaces with the formulaϕT .

We may have gone overboard in our desire to express the truth about vectors. Thus,
the balance remains a continuing concern.

This chapter has shown modal structure in whichever direction one looks. There are
natural fine-structured modal versions of affine and metric geometry, and linear alge-
bra. These can be studied by general modal techniques—though much of the inter-
est comes from paying attention to special spatial features. The benefits of this may
be uniformity and greater sensitivity to expressive and computational fine-structure in
theories of space. As a pleasant side-effect, a number of open problems of expressivity,
complexity and complete axiomatization arise.



CHAPTER 6

A GAME-BASED SIMILARITY FOR IMAGE
RETRIEVAL

6.1 Introduction

Image retrieval is concerned with the recovering of elements from a collection of im-
ages according to some set of desired properties. The properties of images are related
to features which can be as diverse as textual annotations, color, texture, object shape,
and spatial relationships among objects. The way the features from different images
are compared, in order to have a measure of similarity among images, characterizes an
image retrieval architecture.

Though quite a young field of computer vision, image retrieval already counts nu-
merous frameworks, prototypes and commercial products. In [Smeulders et al., 2000],
a method for systematizing approaches to image retrieval and a unifying framework for
comparing systems is proposed. The work serves also as an excellent and up-to-date
overview of the field. A similar purpose is served by the book [Del Bimbo, 1999].

The kind of topological relationship among objects we focus on are those at the
qualitative level of mereotopology, that is, part-whole relations, topological relations
and topological properties of individual regions. Other image retrieval systems are
based on spatial relationships as the main retrieval feature. The work in [Tagare et al.,
1995] is founded on transformation of Voronoi diagrams and that in [Petrakis et al.,
2001] on graph matching. An older and known approach to image retrieval by spa-
tial relationship is in [Chang and Liu, 1984]. This work considers the projections of
regions onto two axes superimposed on the picture and simple interval relations over
the projections over the axes. The approach suffers from not being orientation invari-
ant and from the inability to deal with overlapping objects. On the positive side is
the compactness of the topological representation of spatial relationships (called 2D
strings). Other symbolic formalisms to handle qualitative topological relationships,
which have been deployed for image retrieval, are those presented in [Egenhofer, 1991,
Egenhofer and Franzosa, 1991, Del Bimbo et al., 1995]. Another trend in symbolic
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approaches to image retrieval are the knowledge based ones. Originally concerned with
the organization of knowledgeattachedto the image, the field has more recently seen
efforts to organize and handle spatial informationobtainedfrom the image. Such re-
cent systems [Russ et al., 1996, Aiello et al., 1999, Di Sciascio et al., 2000] make use
of description logics, a modern reasoning tool closely related to modal logics.

Following the agenda in [Smeulders et al., 2000], we set the boundaries of our ap-
proach to image retrieval in the context of this chapter. Smeulders et al. identify five
basic aspects of an image retrieval approach: image processing, features, interpreta-
tion and similarity, interaction, and system aspects. Here, we abstract from the image
processing and from the system aspects, that is, we do not consider how to process
images and extract features, nor how the images are stored and how systems are evalu-
ated. We concentrate on a specific sort of features, we define for it a precise similarity
measure and we consider only one set of modalities to interact with the system. Let us
be more precise. The features we are interested in are the topological configurations of
extended spatial entities and the topological spatial relations among different entities.
The similarity is assessed with respect to a game theoretic comparison of the features.
The interaction is based on query by example and query by sketch.

There are two requirements we desire to fulfill in our approach: on the one hand,
the system should be based on a formal framework the properties of which must be
well understood, on the other hand, the system should be actually implementable. The
first part of the thesis is the place to dig for tools in order to satisfy the first require-
ment. We have seen a number of modal formalisms to handle space of which we have
studied the formal properties such as their expressive power and their completeness.
The second requirement must also be handled with care. We not only need correct rep-
resentation and reasoning tools, we also need them to be compact and implementable.
By implementable we intend both that the reasoning procedures should be decidable
and should be decided in an amount of time acceptable for the average user. The in-
spiring model comes from the field of textual information retrieval (see for instance
[Baeza-Yates and Ribeiro-Neto, 1999, Witten et al., 1999]): our aim is having a com-
pact representations related to each picture such that all representations can be directly
and rapidly compared in the retrieval phase.

The language we choose to express the main spatial information of an image is
S4u, see Chapter 4. In the next section, we show why this language is adequate for
expressing basic topological properties of patterns by highlighting its mereotopological
strengths. Then we show how a similarity measure is built departing from the basic
formal tools of the topo-approach. We can then identify a compact representation for
images. Finally, we illustrateIRIS , a prototype based on the framework proposed.

6.2 A general framework for mereotopology

In Section 4.1, we have extensively studied the properties of the extended modal lan-
guageS4u in the context of the topo-approach. Before putting the language in action
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on the task of image retrieval, we highlight its mereotopological expressive power. We
now bring evidence to the claim thatS4u is a general framework for mereotopolog-
ical representation and reasoning. We also define our personal point of view on the
connection with RCC identified in [Bennett, 1995].

6.2.1 Expressiveness

The languageS4u is perfectly suited to express mereotopological concepts. The rela-
tion of parthoodP(A, B) of a regionA being inside the regionB holds whenever it is
the case everywhere thatA impliesB:

P(A, B) := U(A→ B)

This captures exactly the set-inclusion relation of the models. As for connectionC, two
regionsA andB are connected if there exists a point where bothA andB are true:

C(A, B) := E(A ∧B)

From here it is immediate to define all the basic eight RCC mereotopological predi-
cates. Referring to Figure 6.1, let us recall the RCC8 relations (which we know to be
definable in terms ofS4u, [Bennett, 1995]):

A8

A7

A6

A5

A3A2

A1

B =

A4

Figure 6.1: The RCC8 relations.
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• A1 is Disconnected fromB,

• A2 is in External Connection with B,

• A3 Overlaps with B,

• A4 is Tangential P of B,

• A5 is Proper P of B,

• A6 is Equal toB,

• A7 contains tangentially (Tangential P−1 ) B,

• A8 contains (Proper P−1 ) B,

Notice that the choice made in definingP andC is arbitrary. So, why not take a more
restrictive definition of parthood? Say,A is part ofB whenever the closure ofA is
contained in the interior ofB?

P(A, B) := U(3A→ 2B)

As this formula shows,S4u is expressive enough to capture also this definition of part-
hood. In [Cohn and Varzi, 1998], the logical space of mereotopological theories is sys-
tematized. Based on the intended interpretation of the connection predicateC, and the
consequent interpretation ofP (and fusion operation), a type is assigned to mereotopo-
logical theories. More precisely, atypeis a tripleτ = 〈i, j, k〉, where the firsti refers to
the adopted definition ofCi, j to that ofPj andk to the sort of fusion. The indexi, re-
ferring to the connection predicateC, accounts for the different definition of connection
at the topological level. UsingS4u one can repeat here the three types of connection:

C1(A, B):= E(A ∧B)

C2(A, B):= E(A ∧3B) ∨ E(3A ∧B)

C3(A, B):= E(3A ∧3B)

Looking at previous mereotopological literature, one remarks that RCC uses aC3 def-
inition, while the system proposed in [Asher and Vieu, 1995] uses aC1. Similarly to
connectedness, one can distinguish various types of parthood, again in terms ofS4u:

P1(A, B):= U(A→ B)

P2(A, B):= U(A→ 3B)

P3(A, B):= U(3A→ 3B)

In [Cohn and Varzi, 1998], the definitions of theCi are given directly in terms of topol-
ogy, and the definitions ofPj in terms of a first order language with the addition of a
predicateCi. Finally, a general fusionφk is defined in terms of a first order language
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with aCi predicate. Fusion operations are like algebraic operations on regions, such as
adding two regions (product), or subtracting two regions. One cannot repeat the gen-
eral definition given in [Cohn and Varzi, 1998] at theS4u level. Anyhow, one can show
that various instances of fusion operations are expressible. E.g., the productA×k B:

A×1 B:= A ∧B
A×2 B:= (3A ∧B) ∨ (A ∧3B)

A×3 B:= (3A ∧3B)

Usually uniform theories are found in the literature, that is, theories that combine def-
initions ofCi, Pi, and×i with the same indexi. Though, there are some exceptions,
e.g, [Cartwright, 1975] uses aC2, P1 combination. Non uniform theories separate the
topological part from the purely mereological one requiring the definition of parthood
and connection to be independent. Clearly,Pi cannot be defined in terms ofCj if i 6= j.

The above discussion has shown thatS4u is a general language for mereotopology.
All the different typesτ = 〈i, j, k〉 of mereotopological theories are expressible. In-
cidentally, notice that a mereotopological theory of space may combine definition of
parthood and connection with different indices. For instance, it is possible to have a
C1, P2 mereotopological theory.

Modal Fragment of
First-Order Logic

S4u
β

First-Order Logic
RCC

α

Figure 6.2: The positioning ofS4u and RCC with respect to well-known logics.

The languageS4u is a multi-modal language with nice computational properties. It
is complete with respect to topological models, it is decidable, it has the finite model
property. It captures a large and “well-behaved” fragment of mereotopology, though, it
is not a first-order language. In other words, it is not possible to quantify over regions.
A comparison with the best-known RCC is in order.

6.2.2 Comparison with RCC

RCC is a first order language with a distinguished connection predicateC3. The driving
idea behind this qualitative theory of space is that regions of space are primitive objects
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and connection is the basic predicate. This reflects in the main difference between RCC
and the proposed system, which on the contrary builds on point-based topology.

RCC andS4u capture different portions of mereotopology.

To show this, two formulas are given: an RCC formula which is not expressible inS4u
and, vice-versa, one expressible inS4u, but not in RCC. The situation is depicted in
Figure 6.2. In RCC, one can write:

∀A∃B : P(A,B) (α)

meaning that every region is part of another one (think of the entire space). On the
other hand, one can write a formula such as:

U(p↔ 32p) (β)

which expresses the regularity of the regionp. It is easy to see thatα is not expressible
in S4u and thatβ is not in RCC.

This fact may be misleading. It is neither the motivations, nor the core philo-
sophical intuitions that draw the line between RCC andS4u. Rather, it is the logical
apparatus which makes the difference. To boost the similarities, consider again how
the main predicates of RCC can be expressed withinS4u. Indeed one can define the
same predicates as RCC8. However, as remarked before the nature of the approach is
quite different. Take for instance the non tangential part predicate. In RCC it is defined
by means of the non existence of a third entityC:

NTTP(A,B) iff P(A,B) ∧ ¬P(B,A) ∧ ¬∃C[EC(C,A) ∧ EC(C,B)]

On the other hand, inS4u it is simply a matter of topological operations. As in the
previous table, forNTTP(A,B) it is sufficient to take the interior of the containing
region2B, the closure of the contained region3A and check if all points that satisfy
the latter3A also satisfy the former2B.

6.3 Comparing spatial patterns

At the beginning of the chapter, we introduced the problem of image retrieval and its
relying on similarity measures. Then, we advocated the adequacy ofS4u as a general
language of mereotopology. We take the view that one should useS4u to talk about
spatial patterns in the context of image retrieval. Now there is a technical question.
How does one answer questions such asWhen are two spatial patterns the same?,
When is a pattern a sub-pattern of another one?, and, most importantly,How different
are two spatial patterns?
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6.3.1 Model comparison games distance

The answer to these questions comes from looking at the tools of the topo-approach
with a different twist. Consider the definition of topo-bisimulation and topo-game,
Definition 4.1.2 and Definition 4.1.5. Topo-bisimulations are an equivalence relation,
so one may very well use them to define identity of patterns. Via simulations, one can
also consider issues of a pattern being a sub-pattern of another one. Then, topo-games
were introduced as a refining notion of topo-bisimulations. Therefore, one may use
topo-games to define a measure of difference among spatial patterns. Think of it this
way. The less it takes Spoiler to win a game, the more different must the spatial patterns
be, the moreunsimilar. On the opposite, the longer Duplicator can resist, the more
similar are the spatial patterns. In the limit, if Duplicator can resist forever, i.e., in the
infinite round game, the two patterns are topologically bisimilar. Now comes the tech-
nical problem. Topo-games are defined as a way of comparing two given topological
models, exactly in the spirit of the original definition of first-order model comparison
games̀a la Ehrenfeucht-Fraı̈sśe, but we need a similarity measure on the whole class
of models; we need a measure that behaves uniformly across all models forS4u.

The first intuition on turning model comparison games into a similarity measure
may be misleading in a pessimistic direction. To get to a similarity measure, we need
to define a distance in terms of topo-games. Distances require considering more than
just two models at a time. Consider, for example, three models and the three model
comparison games that can be played. The formulas, the points and open sets picked
in the three games may be completely unrelated one game from each other, therefore,
one may be discouraged and conjecture that model comparison games are not related
across different models of the same class.

Even though the remark on the unrelatedness of the strategies for different games
is true. It turns out that there is still an interrelation between model comparison games
over two given models and the whole class. Most importantly, the relation can be
defined to satisfy the three properties defining a distance measure. Here is how.

6.3.1.DEFINITION (ISOSCELES TOPO-DISTANCE). Consider the space of all topo-
logical modelsT . Spoiler’s shortest possible winis the functionspw : T × T →
IN ∪ {∞}, defined as:

spw(X1, X2) =



n if Spoiler has a winning strategy inTG(X1, X2, n),

but not inTG(X1, X2, n− 1)

∞ if Spoiler does not have a winning strategy in

TG(X1, X2,∞)

The isosceles topo-model distance (topo-distance,for short) betweenX1 andX2 is the
functiontmd: T × T → [0, 1] defined as:

tmd(X1, X2) =
1

spw(X1, X2)
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tmd=
spw

1 = 1
3

tmd=
spw

1 = 1
2

tmd=
spw

1 = 1
2 ϕ ϕ( )E

φEφE

Figure 6.3: On the left, three models and their relative distance. On the right, the
distinguishing formulas.

The distance was named ‘isosceles’ since it satisfies the triangular property in a pecu-
liar manner. Given three models, two of the distances among them (two sides of the
triangle) are always the same and the remaining distance (the other side of the triangle)
is smaller or equal. On the left of Figure 6.3, three models are displayed: a spoon, a
fork and a plate. Think these cutlery objects as subsets of a dense space, such as the
real plane, which evaluate toφ, while the background of the items evaluates to¬φ. The
isosceles topo-distance is displayed on the left next to the arrow connecting two mod-
els. For instance, the distance between the fork and the spoon is1

2
since the minimum

number of rounds that Spoiler needs to win the game is2. To see this, consider the
formulaE2φ, which is true on the spoon (there exists an interior point of the regionφ
associated with the spoon) but not on the fork (which has no interior points). On the
right of the figure, the formulas used by spoiler to win the three games between the
fork, the spoon and the plate are shown. Next the proof thattmd is a distance function,
in particular the triangular property, exemplified in Figure 6.3, is always satisfied by
any three topological models.

6.3.2.THEOREM (ISOSCELES TOPO-MODEL DISTANCE). tmd is a distance measure
on the space of all topological models.

Proof tmd satisfies the three properties of distances; i.e., for allX1, X2 ∈ T :

(i) tmd(X1, X2) ≥ 0 andtmd(X1, X2) = 0 iff X1 = X2

(ii) tmd(X1, X2) = tmd(X2, X1)
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(iii) tmd(X1, X2) + tmd(X2, X3) ≥ tmd(X1, X3)

As for (i), from the definition of topo-games it follows that the amount of rounds that
can be played is a positive quantity. Furthermore, the interpretation ofX1 = X2 is that
the spacesX1, X2 satisfy the same modal formulas. If Spoiler does not have a w.s.
in limn→∞ TG(X1, X2, n) thenX1, X2 satisfy the same modal formulas. Thus, one
correctly gets

tmd(X1, X2) = lim
n→∞

1

n
= 0.

Equation (ii), since for allX1, X2, thenTG(X1, X2, n) = TG(X2, X1, n).

As for (iii), the triangular property, consider any three modelsX1, X2, X3 and the
three games playable on them,

TG(X1, X2, n), TG(X2, X3, n), TG(X1, X3, n) (6.1)

Two cases are possible. Either Spoiler does not have a winning strategy in all 3 games
(6.1) for any amount of rounds, or he has a winning strategy in at least one game.

If Spoiler does not have a winning strategy in all the games (6.1) for any number
of roundsn, then Duplicator has a winning strategy in all games (6.1). Therefore, the
three models satisfy the same modal formulas,spw → ∞, andtmd → 0. Trivially,
the triangular property (iii) is satisfied.

Suppose Spoiler has a winning strategy in one of the games (6.1). Via Theo-
rem 4.1.6 (adequacy), one can shift the reasoning from games to formulas: there exists
a modal formulaγ of multi-modal rankm such thatXi |= γ andXj |= ¬γ. Without
loss of generality, one can think ofγ as being in normal form:

γ =
∨ ∧

[¬]U(ϕS4) (6.2)

This last step is granted by the fact that every formulaϕ of S4u has an equivalent
one in normal form whose modal rank is equivalent or smaller to that ofϕ.1 Let γ∗

be the formula with minimal multi-modal depthm∗ with the property:Xi |= γ∗ and
Xj |= ¬γ∗. Now, the other modelXk either satisfiesγ∗ or its negation. Without loss
of generality,Xk |= γ∗ and thereforeXj andXk are distinguished by a formula of
depthm∗. SupposeXj andXk to be distinguished by a formulaβ of multi-modal rank
h < m∗: Xj |= β andXk |= ¬β. By the minimality ofm∗, one has thatXi |= β, and
hence,Xi andXk can be distinguished at depthh. As this argument is symmetric, it
shows that either

• one model is at distance1
m∗ from the other two models, which are at distance

1
l
(≤ 1

m∗ ), or

1In the proof, the availability of the normal form is not strictly necessary, but it gives a better impres-
sion of the behavior of the language, see Section 4.1.
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• one model is at distance1
h

from the other two models, which are at distance
1
m∗ (≤ 1

h
) one from the other.

It is a simple matter of algebraic manipulation to check thatm∗, l andh,m∗ (as in the
two cases above), always satisfy the triangular inequality. QED

The nature of the isosceles topo-distance triggers a question. Given three spatial mod-
els, why is the distance between two pairs of them always the same?

First an example, consider a spoon, a chop-stick and a sculpture by Henry Moore.
It is immediate to distinguish, viatmd, the Moore’s sculpture from the spoon and from
the chop-stick. The distance between them is high and the same. On the other hand, the
spoon and the chop-stick look much more similar, thus, their distance is much smaller.
Mereotopologically, it may even be impossible to distinguish them (null distance).

In fact one is dealing with models of a qualitative spatial reasoning language of
mereotopology. Given three models, via the isosceles topo-distance, one can easily
distinguish the very different patterns. In some sense they are far apart as if they were
belonging to different equivalence classes. Then, to distinguish the remaining two can
only be harder, or equivalently, the distance can only be smaller.

The division in classes of equivalence and the isosceles nature of the topo-distance
should not be interpreted as the topo-distance having only a finite number of values.
In general, the distance between any two patterns can be any value between 1 and1

n

with n ∈ IN . One way of seeing this is considering two non-equivalentS4u formulas.
Such formulas can be chosen of any modal depth. Therefore, the distance could have
any value in the interval[0, 1]. What is true is that the distribution of the values is not
linear in the interval[0, 1], but rather it becomes increasingly more dense towards0.

6.4 Computing similarities

The definition of a distance based on model comparison games is an important step,
but how can we complete our journey towards practice? We need to compute the topo-
distance. First, we give a general methodology, then we provide an algorithm for the
concrete case that is of most interest to us.

6.4.1 Methodology

A general methodology for the computation of the topo-distance among two topo-
modelsM,N might work as follows. First, one translates the topo-modelsM,N into
equivalent Kripke models (as we did in Section 2.1.3), then one checks the models
for traditional bisimilarity [Dovier et al., 2001]. If the models are not bisimilar, one
checks all the points for which a bisimulation can not be established. The inverse of the
minimal modal depth of the formulas distinguishing these points is the topo-distance.

An alternative and more direct approach is that of relating the points in the topolog-
ical spaces. The worry with topological semantics might be an exponential explosion
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due to the number of open sets (rather than the accessibility relation for ordinary Kripke
models). Still, one might measure input complexity in terms of both points and opens,
and still get a polynomial time algorithm to compute the topo-distance.

Here we shall not enter into the details of such general methods for computing
topo-distance, but rather concentrate on a specific case of practical interest.

6.4.2 Polygons of the plane

We make an ontological commitment to finite polygons of the real plane. This is com-
mon practice in various application domains such as geographical information systems
(GIS), in many branches of image retrieval and of computer vision, or in robot plan-
ning, just to mention the most common.

Consider the real planeIR2, any line inIR2 cuts it into two half-planes. We call a
half-planeclosedif it includes the cutting line,openotherwise.

6.4.1.DEFINITION (REGION). A polygonis the intersection of finitely many open and
closed half-planes. Anatomic regionof IR2 is the union of finitely many polygons.

An atomic region is denoted by one propositional letter. More in general, any set of
atomic regions, simply calledregion, is denoted by aS4u formula. The polygons of
the plane equipped with a valuation function, denoted byMIR2 , are in full rights a
topological model as in Definition 2.1.1, a basic topological fact. A similar definition
of region can be found in [Pratt and Lemon, 1997]. In that article Pratt and Lemon also
provide a collection of fundamental results regarding the plane, polygonal ontology just
defined (actually one in which the regions are open regular).

From a model theoretic point of view, the advantage of working withMIR2 is that
we can prove a logical finiteness result and thus give a terminating algorithm to com-
pute the topo-distance between any two regions.

6.4.2.1 Finiteness

In general, there are infinitely many non equivalentS4 formulas and one can identify
appropriate Kripke models to show this (cf. [Blackburn et al., 2001]). In Section 3.4.1,
however we have seen how finite unions of convex intervals of the real line yield a finite
number (64) of modally different formulas (Theorem 3.4.10). Similar results (though
with a larger upper bound) hold for the plane where in place of intervals one considers
rectangles, cf. Section 3.4.4. The further extension needed here is to move from such
rectangles to generic polygons with a finite number of sides.

First, let us consider an example. Figure 6.4.a shows a model composed of two
closed polygons: one denoted byr and one byq. Relevant points of the union of these
two polygons are those on the frontiers, on the intersections of the frontiers and in the
interiors of each polygon. A distinguishing formula of minimal modal rank true at each
of these relevant points is shown in Figure 6.4.b.
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Point Formula

0 2¬r ∧2¬q
1 3r ∧3¬r ∧2¬q
2 same as 1
3 same as 1
4 2r ∧2¬q
5 32r ∧3(r ∧ ¬32r) ∧2¬q
6 r ∧ ¬32r ∧2¬q
7 2r ∧2q
8 2r ∧3q ∧3¬q
9 same as 8
10 same as 8
11 same as 4

(a) (b)

Figure 6.4: (a) A simple polygonal model of the plane; (b) relevant formulas.

Given the limitation on finiteness of the number of polygons of the space in our
definition of a polygonal model of the plane, one can get a grasp of why there are only
finitely many definable formulas. We shall not give a precise proof here: it would go
more or less like the one in Section 3.4.4, but now taking oblique orientations into
account, instead we sketch some concrete steps toward the result.

6.4.2.LEMMA (FINITENESS). There are only finitely many modally definable subsets
starting from any finite set of regions viewed as atoms.

We work by enumerating cases, i.e., considering Boolean combinations of planes,
adding to an ‘empty’ space one half-plane at the time, first to build one regionr, and
then to build a finite set of regions. The goal is to show that only finitely many pos-
sibilities exist. We begin by placing a closed half plane denoted byr on an empty
bidimensional space, Figure 6.5.a. Let us follow what happens to points in the space
from left to right. On the left, points satisfy the formula2r. This is true until we reach
the closed frontier point of the half-plane, where3r ∧ 3¬r ∧ r holds. Left of the
frontier, the points satisfy the formula2¬r. Similarly the formulas are defined for the
negate region in Figure 6.5.¬a, notice that this time the polygon is open. In fact, by
considering negation the roles ofr and¬r switch. Consider now a second plane in the
picture:
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Figure 6.5: Basic formulas defined by one regionr.

• Intersection: the intersection may be empty (no new formula), may be a poly-
gon with two sides and vertices (no new formula, the same situation as with one
polygon), or it may be a line, the case of two closed polygons that share the
side (in this last case depicted in Figure 6.5.b—spike—we have a new formula,
namely,r ∧23¬r).

• Union: the union may be a polygon with either one or two sides (no new for-
mula), two separated polygons (no new formula), or two open polygons sharing
the open side (this last case depicted in Figure 6.5.¬b—crack—is like the spike,
one inverts the rolesr and¬r in the formula:¬r ∧23r).

Finally, consider combining cases (a) and (b). By union, we get Figure 6.5.a, 6.5.c,
6.5.d. The only situation bringing new formulas is the latter. In particular, the point
where the line intersects the plane satisfies the formula:32r ∧ 3(r ∧ 23¬r). By
intersection, we get a segment, or the empty space, thus, no new formula.

The four basic configurations just identified yield no new configuration from the
S4u point of view. To see this, consider the Boolean combinations of the above config-
urations. We begin by negation (complement):

¬ ���
���
���

���
���
���

a
������������������

b c �����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

d
���
���
���

���
���
���

¬a ¬b ¬a,¬b ���������
���������
���������
���������

���������
���������
���������
���������

�����
�����
�����
�����

¬d

Union straightforwardly follows (where a stands for both a and¬a, as both configura-
tions always appear together):
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⋃ ���
���
���

���
���
���

a
������������������

b c �����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

d
���
���
���

���
���
���

a a,¬b,¬d a, c, d a,¬b, c, d,¬d a,¬b, d,¬d
������������������

b a, c, d b c, d d

c a,¬b, c, d,¬d c, d a,¬b, c, d,¬d a,¬b, c, d,¬d
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

d a,¬b, d,¬d d a,¬b, c, d,¬d a,¬b, d,¬d

The table for intersection follows, with the proviso that the combination of the two
regions can always be empty (not reported in the table) and again a and¬a are repre-
sented simply by a:

⋂ ���
���
���

���
���
���

a
������������������

b c �����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

d
���
���
���

���
���
���

a a, b, c, d b a, b, c a, b, d
������������������

b b b b b

c a, b, c b a, b, c, d a, b, c, d
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

d a, b, d b a, b, c, d a, b, c, d

We have thus gave a taste for the finiteness of the polygons of the real plane forS4. But
we have designed the whole topo-distance for the richer languageS4u. This extension
is not a problem. Recalling the availability of a normal form forS4u (Section 4.1),
one sees that the finiteness result simply extends. The formulas above are simply pre-
ceded by an existential operator stating the existence of such a point in the model. For
instance in case a we have:E2r, E(3r ∧3¬r ∧ r), andE(2¬r).

Since the information related to a region is finite, we can compactly represent it.
We call topo-vectorassociated with the regionr, notation~r, an ordered sequence of
Boolean values. The values represent whether the regionr satisfies or not a fixed se-
quence ofS4u formulas:

E2r E2¬r . . . E(¬r ∧23r) . . . E(32¬r ∧3(¬r ∧23r))

The formulas are those identified in Figure 6.5 preceded by an existential operator. For
example, the topo-vector associated with a plate—a closed squarer in the plane—is:

true true . . . false . . . false

Adding half-planes with different denotationsr2, r3, . . . increases the number of de-
fined formulas. The definition of topo-vector is extended to an entireMIR2 model.
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The topo-vector is built such that the modal rank of the formulas is not decreasing
going from the positions with lower index to those with higher. The size of the topo-
vector grows byc · 2i, wherec is a constant value andi is the number of the regions
in the model. This might seem a serious drawback. But then, the topo-vector has
to store all the information relevant forS4u about the model. Furthermore, its size
is often considerably smaller than that of the whole topological model. As a final
consideration, one should add that in practical situations the size of topo-vectors still
remains manageable.

6.4.3 The topo-distance algorithm

The topo-vector is a compact representation of a spatial pattern. One way of seeing
this is the following. Take any spatial pattern. Reduce it to the smallest topo-bisimilar
model, using the technique of Section 2.1.3. Consider all definable formulas from the
proposition letters present in the pattern and consider whether each formula is true
somewhere in the reduced model. This information is collected in the topo-vector.

Before giving an algorithm to compute the topo-vector forMIR2, and in turn the
topo-distance, let us reconsider the example of Figure 6.4. The regionq contributes
to the topo-vector only with three possible behaviors. Either the points are outside
of it 2¬q, or they areq points. In the latter case all these points are also inside2r
and one only distinguishes the case for which the points are in the interior or on the
boundary. For the regionr there is a bit more variety, because there is a spike. The
spike contributes because it yields a non regular portion, and because it intersects a
regular region. Summarizing, the topo-vector for the region looks like this:

E(2r ∧2q) E(2r ∧2¬q) E(2¬r ∧2q) E(2¬r ∧2¬q) . . .
true (7) true (4) false true (0) . . .

. . . r ∧ ¬32r ∧2q r ∧ ¬32r ∧2¬q . . .

. . . false true (6) . . .

where we have marked the point satisfying the part of the formula after the existential
operator. The name of the points refers to Figure 6.4.

Next we present the algorithm to compute the topo-vector for a generic pattern of
MIR2 with respect toS4u. Given anMIR2 modelM , topo-vector( M ) returns the
topo-vector associated withM .
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topo-vector( M )

~v ← initialized to all false values

loop on regions r of M with index i

loop on atomic regions a of r(i) with index j

loop on vertices v of a(j) with index k

update ~v with the
∧

2[¬]g information

update ~v with the point v(k)

if v(k) is not free

update ~v with the
∧

2[¬]g information

loop on intersections x of a(j) with all

regions of M with index l
update ~v with the point x(l)

return ~v

return ~v

If a point v(k) of an atomic regiona(j) is contained in any polygon different from
a(j) and it is not contained in any other region, then the conditionv(k) is not
free is satisfied. Standard computational geometry algorithms exist for this task,
[de Berg et al., 2000]. When the “update ~v with the point p” function is
called, one checks in which casep is (as shown after Lemma 6.4.2), then one consid-
ers the position in the topo-vector corresponding to the formula satisfied by the point.
Then one sets the values for that entry to true.2 When the “update ~v with the∧

2[¬]g” function is called, one checks in the interior of which regions the current
point is and updates accordingly the2g1 ∧ 2¬g2 ∧ . . . formulas (e.g., those for the
points 0, 4, 7, and 11 in Figure 6.4.

Consider again the simple model of Figure 6.4, repeated in Figure 6.6 for con-
venience. After initialization, the regionr is considered and one starts looping on
the vertices of its polygons, first the point 1. The point isfree , it is the vertex of
a full polygon (not a segment) and therefore the topo-vector is updated with a true
value in the positions corresponding toE(2r ∧ 2¬q), E(r ∧3r ∧3¬r ∧ 2¬q), and
E(2¬r ∧ 2¬q). The points 2 and 3 update the values for the same formulas and thus
have no effect. The point 4 falls inside the first polygon ofr, the topo-vector does not
need update. Intersections are then computed and the point 5 is found. The point needs
to update the vector for the formulaE(32r ∧ 3(r ∧ ¬32r) ∧ 2¬q). The point 6 is
considered and the point needs to update the formulaE(r ∧¬32r ∧2¬q). The algo-
rithm proceeds by considering the second region,q and its vertices 8, 9, and 10. The
three vertices all fall inside the regionr and provide for the satisfaction of the formulas
E(2r ∧2q), E(2r ∧3q ∧3¬q), andE(2r ∧2¬q).

2An obvious optimization to the algorithm is to avoid checking points for which all the associated
entries are already set to true.
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Figure 6.6: Computing the topo-vector on a simple model.

The final goal is to have an algorithm to compute the topo-distance not simply the
topo-vector. One can compute the topo-distance among two models by comparing the
respective topo-vectors. Here is the algorithm taking as input twoMIR2 modelsM1,M2

and outputting the value of the topo-distance between them.

topo-distance( M1, M2)

~v1 ← topo-vector ( M1)

~v2 ← topo-vector ( M2)

align ~v1 and ~v2

loop on ~v1 ~v2 with index i

if ~v1(i) 6= ~v2(i)

return 1
modal rank ( ~v1(i))

return 0

The idea is to retrieve the topo-vectors associated with the two input models and then
loop over their elements. The inequality check can also be thought of as axor, since
the elements of the array are Booleans. If the condition is never satisfied, the two topo-
vectors are identical, the two-models are topo-bisimilar and thus the topo-distance is
zero. Thealign command makes the topo-vectors of the same length and aligns the
formulas of the two in a way such that to the same index in the vector corresponds the
same formula. If a topo-vector contains a formula that the other one does not, the entry
is added to the vector missing it with a false value.

The basic properties of the topo-distance algorithm are the following.

6.4.3.LEMMA (TERMINATION). The topo-distance algorithm terminates.

The property is easily shown by noticing that a segment (a side of a polygon) can have
at most one intersection with any other segment, that the number of polygons forming
a region ofMIR2 is finite, and that the number of regions ofMIR2 is finite.



118 • Chapter 6. A GAME-BASED SIMILARITY FOR IMAGE RETRIEVAL

6.4.4.LEMMA (CORRECTNESS). For anyM,N ∈MIR2, topo-distance( M,N )
= k iff the actual topo-distance betweenM andN is k.

Proof First, consider the case of bisimilar models. IfM andN are topo-bisimilar,
by Definition 6.3.1 the topo-distance is0. By Theorem 4.1.3, if the models are topo-
bisimilar they satisfy the same modal formulas, thus,topo-vector( M ) andtopo-
vector( N ) are identical, which in turn means thattopo-distance( M,N ) = 0.

As for the other direction, if thetopo-distance( M,N ) = 0 then the topo-
vectors are identical. But since the topo-vectors comprise all non-equivalent modal
formulas forM andN , and since they are finite, Theorem 4.1.3 may be applied to
the finite bisimulation contractions. That is, the latter models are topo-bisimilar. By
Definition 6.3.1, if the models are topo-bisimilar, then topo-distance is0.

Second, consider the case in which the models are not topo-bisimilar. The idea is
similar. One uses the adequacy theorem for model comparison topo-games in place of
the theorems for topo-bisimulations.

If the distance betweenM andN is k > 0, by Definition 6.3.1, Spoiler has a
winning strategy in any game of length at least1

k
. By Theorem 4.1.6, all the en-

tries for the formulas of modal depth smaller than1
k

in the topo-vector( M ) and
topo-vector( N ) must be the same. Since the topo-vectors comprise all non-
equivalent modal formulas forM andN , there must be an entry for at least one modal
formula of depth1

k
which differentiate the two topo-vectors allowing Spoiler to win.

By the topo-distance algorithm, this means thattopo-distance( M,N ) = k.
As for the other direction, suppose that thetopo-distance( M,N ) = k > 0,

then the topo-vectors must be identical for all entries associated to formulas of modal
depth smaller than1

k
, and there must be a difference for at least one entry associated

with a formula of modal depth1
k
. Since the topo-vectors comprise all non-equivalent

modal formulas of minimal modal rank forM andN , the differentiating formula of
minimal modal rank forM andN has modal rank1

k
. By Theorem 4.1.6, this means

that Spoiler’s shortest winning strategy needs exactly1
k

rounds. By Definition 6.3.1,
the latter implies that the topo-distance betweenM andN is k. QED

By Lemma 6.4.3 and Lemma 6.4.4, we obtain the following result.

6.4.5.THEOREM (DECIDABILITY OF THE TOPO-DISTANCE). In the case of polygo-
nal topological modelsMIR2 over the real plane, the problem of computing the topo-
distance among any two models is decidable.

Given our further definitions, and the connection between Duplicator’s winning strate-
gies in infinite topo-games and topo-bisimulations, (cf. [Barwise and Moss, 1996]), we
also have the following result.

6.4.6.COROLLARY (DECIDABILITY OF TOPO-BISIMULATIONS).In the case of polyg-
onal topological models over the real plane, the problem of identifying whether two
models are topo-bisimilar is decidable.
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6.5 The IRIS prototype

The ultimate step toward practice of the spatial framework presented in the chapter is
the actual implementation of the similarity measure in a prototype. The topo-distance
is a building block of an image retrieval system, namedIRIS I mageRetrI eval based
onSpatial relationships, coded in Java and enjoying a Swing interface (Figure 6.8). An
overview of the programming behindIRIS with the presentation of the most relevant
source code passages can be found in Appendix C.

The actual similarity measure is built inIRIS to both index and retrieve images on
the basis of:

(i) The spatial intricacy of each region,

(ii) The binary spatial relationships between regions, and

(iii) The textual description accompanying the image.

Referring to Figure 6.7, one can get a glimpse of the conceptual organization ofIRIS .
A spatial model, as in Definition 2.1.1, and a textual description (central portion of
the figure) are associated with each image of the collection (on the left). Each topo-
logical model is represented by its topo-distance vector, as built by the algorithm in
Section 6.4 and by a matrix of binary relationships holding between regions. Simi-
larly, each textual description is indexed holding a representative textual vector of the
text (right portion of the figure). In Figure 6.8, a screen-shot fromIRIS after query-
ing a database of about 50 images of men and cars is shown. On the top-right is the
window for sketching queries. The top-center window serves to write textual queries
and to attach information to the sketched regions. The bottom window shows the re-
sults of the query with the thumbnails of the retrieved images (left to right are the most
similar). Finally, the window on the top-left controls the session.

We remark again the importance of moving from games to a distance measure
and of identifying the topo-vectors for actually being able to implement the spatial
framework. In particular, inIRIS once an image is placed in the database the topo-
vector for its related topological model is computed, thus off-line, and it is the only data
structure actually used in the retrieval process. The representation is quite compact
both if compared with the topological model and with the image itself. In addition,
the availability of topo-vectors as indexing structures enables us to use a number of
information retrieval optimizations, [Frakes and Baeza-Yates, 1992].

6.5.1 Implementing the similarity measure

In IRIS , the similarity measure is built on three components:

similarity(Iq, Ij) =
1

kn
(ktopo
u · dtopo(Iq, Ij) + kb

u · db(Iq, Ij) + ktext
u · dtext(Iq, Ij))
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Figure 6.7: The organization ofIRIS together with the indexing data structures.

whereIq is the query image (equipped with its topological model and textual descrip-
tion), Ij is thej-th image in the visual database,ktopo

u , kb
u, andktext

u are user defined
factors to specify the relative importance of topological intricacy, binary relationships
and text in the querying process,kn is a normalizing factor,dtopo(Iq, Ij) is the topo-
distance betweenIq andIj, db(Iq, Ij) anddtext(Iq, Ij) are the distances for the binary
spatial relationships and for the textual descriptions, respectively. In the context of
IRIS , the textual component is considered independent of the two spatial ones, while
the binary relationship and the topo-distance are also independent. In fact, the compar-
ison of the topological configuration of a given region does not affect the comparison
of its relations with other regions (it does not matter if a region is open regular or a
spike when considering if it is contained in another region or not). The user defined
factorsk serve for experimentation purpose. So one can experiment with the relevance
of a factor in the retrieval process. Ideally, one should find the perfect balance between
the three components of the similarity measure and then fix these three parameters
once and for all (or fix them for a specific domain).

The entire Section 6.4 is concerned with the computation ofdtopo(Iq, Ij). The topo-
distance component is simply:

dtopo(Iq, Ij) = topo-distance(t-vec(Iq), t-vec(Ij))

The second componentdb(Iq, Ij) of the similarity measure accounts for the binary
spatial relationships between objects. When an image is indexed, a matrix is built.
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Figure 6.8: The result of querying a database of men and cars.

This is a square matrix whose indices range over the regions present in the model.
The generic entryei,j of the matrix represents the spatial relationship between region
i and regionj and can be one of the following: disconnected, externally connected,
overlap, equal, tangential part, non-tangential part, and the inverses of the last two
(RCC8). Following [Egenhofer, 1997], we define a topological distance using RCC8
in the following way. Any two relations are at distancen if there is a path of length
n in the graph in Figure 6.9 connecting the two nodes representing the relations. Our
distance is slightly different from that in [Egenhofer, 1997] since we use a modification
of its original graph, though the underlying idea is the same. In the similarity measure,
one compares matrices b(M1,M2):

db(Iq, Ij) = b(b matrix(Iq),b matrix(Ij))

where bmatrix(Ij) is the matrix of binary s8 relations associated with the regions
identified in thej-th image.

The third and last componentdtext(Iq, Ij) of the similarity measure deals with tex-
tual annotation. The motivation comes from captions accompanying images in paper
documents or present ‘near’ images in hyper-media documents. We employ quite stan-
dard textual information retrieval techniques, see for instance [Frakes and Baeza-Yates,
1992], and therefore omit further explanation of this part of the similarity measure be-
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disonnected

overlap
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equal tangential part

non-tangential part

Figure 6.9: The binary relationships graph.

half for the standard definition of ‘textual distance’ between two image descriptions:

dtext(Iq, Ij) = (1− weightedoccurrences(text vector(Iq), text vector(Ij))
length(text vector(Iq))

)

where textvector(Ij) is the list of meaningful words found in the description of the
j-th image, weightedoccurences counts the number of instances of a word appearing
in two textual vectors weighted by a factor indicating the indexing power of the word.
A word is more powerful if it discriminates more, which in turns means that it occurs
in less descriptions in the whole collection of image captions. Thedtext(Iq, Ij) follows
a common way of defining a cosine distance among word vectors, see for instance
[Witten et al., 1999].

6.6 Discussion

There are two abstractions on the idea of topo-distance that are worth noticing:

1. the transformation of model comparison games into distance measures for lan-
guages different fromS4u,

2. the extension of the framework topo-bisimulation, topo-game, topo-distance to
modal spatial languages more expressive than the simpleS4u.

1. The theoretical framework proposed is much more general than what we have shown
here. We were interested in a mereotopological framework and have therefore used the
languageS4u interpreted on topological models, but an isosceles distance can be used
for any modal language equipped with negation, for which one has adequate notions
of model comparison games and bisimulation. Even the restriction to modal logic
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is not necessary, one can think of first-order logic, of the usual Ehrenfeucht-Fraı̈sśe
games, of elementary equivalence in place of bisimulation, and an isosceles distance
is then definable. The decidability result for the distance is the only thing that does
not necessarily extend, rather one has to consider the class of models and the logic
case by case. Of particular importance is then how the adequate topological games are
defined. The technique employed in Theorem 6.3.2 for the languageS4u is, as we have
just mentioned, much more general. A question interestingper se, but out of the scope
of the present dissertation, is: which is the class of games (over which languages) for
which a notion of isosceles distance holds? We believe the class of such languages and
model comparison games to be quite vast.

2. The second abstraction step is, in some sense, an instance of the previous one. The
idea is to take the framework topo-bisimulation, topo-game, topo-distance, algorithm
to compute the distance to more expressive languages thanS4u. The starting point is
then to identify an appropriate language of, say, qualitative shape with adequate model
comparison games. Then a newer version ofIRIS can be built. We have seen a
number of modal languages more expressive thanS4u together with adequate notions
of model comparison games in Chapter 4 and 5. All these languages are excellent
candidates for extendingIRIS . The difficulty of the extension will mostly lie in the
identification of efficient algorithms to compute the various distance measures.

A separate remark regarding experimentation is in order. Having implemented a sys-
tem based on the topo approach is also an important step in the presented research. Ex-
perimentation is essential to asses applicability, but some preliminary considerations
are possible. We have noticed that the prototype is very sensible to the labeling of
segmented areas of images, i.e., to the assignment of proposition letters to regions. We
have also noticed that the mereotopological expressive power appears to enhance the
quality of retrieval and indexing over pure textual searches, but the expressive power
of S4u is still too limited. Notions of qualitative orientation, shape or geometry appear
to be important, especially when the user expresses his desires in the form of an image
query or of a sketch.

All in all, the idea of designing a spatial similarity measure based on formal model
comparison games is both intriguing and rewarding from the intellectual point of view.
Though, the gap between our implemented system and actually practical systems is still
to be filled. There is no indication that the topo-distance gives human-intuitive mean-
ings to the similarity of images, because a numerical distance can hide very different
types of visual distinction.

Another major concern is the following. The system proposed may result to be
very brittle when experimenting on real world images segmented automatically. The
misclassification of a region, or the misinterpretation of a boundary, not to mention
noise in the original image, can have a devastating impact on the values of the similarity
measure. Solutions to fill these gaps between our system and more effective ones are
bound to involve some genuine extensions of our pure topological framework.





CHAPTER 7

THICK 2D RELATIONS FOR DOCUMENT
UNDERSTANDING

7.1 Introduction

When Dave placed his own drawing in front of the ‘eye’ of HAL—in 2001: A Space
Odyssey—HAL showed to have correctly comprehended and interpreted the sketch.
“That’s Dr. Hunter, isn’t it?” [Rosenfeld, 1997]. But what would have happened if
Dave used the first page of a newspaper in front of the eye and started discussing its
contents? Considering HAL a system capable of AI, we expect HAL to recognize the
document as a newspaper, to understand how to extract information and to understand
its contents. Finally, we expect Dave and HAL to begin a conversation on the contents
of the document. In short, HAL has to be able to performdocument image analysis.

Document image analysis is the set of techniques to recover syntactic and semantic
information from images of documents, prominently scanned versions of paper docu-
ments. An excellent survey of document image analysis is provided in [Nagy, 2000]
where, by going through 99 articles having appeared in the IEEE’s Transactions on
Pattern Analysis and Machine Intelligence (PAMI), Nagy reconstructs the history and
state of the art of document image analysis. Research in document images analysis is
useful and studied in connection with document reproduction, digital libraries, infor-
mation retrieval, office automation, and text-to-speech.

One may have different goals when performing document image analysis. For
instance, one may be in interested in the reconstruction of the reading order of a docu-
ment from its image. One way to achieve this is by performing the following interme-
diate steps. First, one identifies the basic components of the document, the so-called
document objects. Second, one identifies the logical function of the document objects
within the document (e.g., title, page number, caption). This is calledlogical label-
ing. Last, one infers the order in which the user is to read the document objects. This
phase is called thereading order detection. In the process, one moves from basic ge-
ometric information of the document composition, thelayout structure, to semantic
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information, thelogical structure. document objects and their spatial arrangement are
prototypical examples of elements of the layout structure, while the reading order is an
instance of the logical structure.

In Figure 7.1, we illustrate possible flows of information in document image analy-
sis. The first row represents the flow from the document image to its reading order. The
following row represents the flow from the image to the identification of the document
class. Discovering to which scientific publication belongs a given document image is
an example of document classification. One should interpret the arrows in the figure
as possible choices. It is perfectly normal to move from one row to another, or to stop
the analysis at the layout structure level. For example, systems for mail delivery do not
need to perform any document classification, or reading order detection.

Document
Objects

Detection

Detection
Layout

Reading
Order 

Detection

Document
Classification

Logical
Labeling

Identification
Genre

Document
Image

Syntactic Intermediate Semantic Semantic

Layout Structure Logical Structure
Input

Figure 7.1: Various tasks in document image analysis and understanding. Left to right,
from input data towards semantic content.

The first document image analysis systems were built to process documents of a
specific class, e.g., forms for telegraph input. One of the recent trends is to build
systems as flexible as possible, capable of treating the widest variety of documents.
This has led to categorize the knowledge used in a document image analysis system
into: class specific and general knowledge (e.g., [Cesarini et al., 1999]). In addition,
such knowledge can be explicitly available or implicitly hard-coded in the system.

Lee and Choy [2000] present a system to analyze technical journals of one kind
(PAMI) based on explicit knowledge of the specific journal. The goal is that of region
segmentation and identification (logical labeling). The knowledge is formalized in
“IF-THEN” rules applied directly to part of the document image and “IF-THEN” meta
rules. Though the idea of encoding the class specific knowledge of a document is
promising, it is not clear whether the proposed approach is scalable and flexible. Given
the specific form of the IF-THEN rules, the impression is that the system is not suited
for the analysis of documents different from PAMI. Experimental results show good
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performance in the task of logical labeling, especially in the detection of formulas and
drawings embedded in the main text.

There are a number of problems related to the rule based approaches found in the
literature. The most prominent is the high specificity of the rules. The specificity makes
it hard or impossible to extend such systems to documents of a class different from the
one for which the system was originally designed. Another problem is the lack of
proof of correctness or termination. Recent rule-based approaches for layout and log-
ical structure detection are presented in [Klink and Kieninger, 2001, Lee et al., 2000,
Niyogi and Srihari, 1996] while an older one is [Tsujimoto and Asada, 1992].

Given the difficulty in designing appropriate rules for the analysis of documents,
approaches based on learning are interesting. The document classification components
of the WISDOM++ system [Altamura et al., 2001] are based on first-order learning al-
gorithms [Esposito et al., 2000]. Another advantage of such systems is their flexibility
compared to the non-learning based systems. By training the system on a different
class of documents with similar layout, it should be possible to reuse the same archi-
tecture. On the negative side, the rules learned are not intuitive. More often than not,
these rules are impossible to modularize for further use on different document classes.

An important aspect of a document image analysis system working at the logi-
cal structure level is the representation of the information extracted from the docu-
ment. The key here is a modularity and standardization of the representation. Markup
languages are a good example of representation means with such qualities. The sys-
tem presented in [Worring and Smeulders, 1999] uses HTML as its final output form,
while [Altamura et al., 2001] uses XML. More abstract representations are labeled and
weighted graphs. These have been used in various systems such as, for instance, the
ones presented in [Li and Ng, 1999, Cesarini et al., 1998, Walischewski, 1997].

As we are investigating practical applications of spatial reasoning formalisms, it
is relevant to review approaches using these kind of formalisms. In particular, we
consider bidimensional extensions of Allen’s interval relations, that is, rectangular
relations. To the best of our knowledge, bidimensional Allen relations have been
used in document image analysis in three cases [Klink et al., 2000, Singh et al., 1999,
Walischewski, 1997]. In all these approaches, bidimensional Allen relations are used
as geometric features descriptors, at times as labels for graphs and at other times as
layout relations among document objects. Thus, the use of Allen relations is relegated
to feature comparison and it is not used for performing any other kind of reasoning.

We present a methodology based on inference with bidimensional qualitative spa-
tial relations for logical structure detection of document images. In particular, the
methodology addresses the issue of detecting the reading order in documents from an
heterogeneous collection without using any document specific knowledge.

The methodology is implemented in a prototype system namedSpaRe (Spatial
Reasoning component) part of a larger architecture for logical structure detection in
a broad class of documents. In the next section, we give an overview of the architec-
ture. In Section 7.3, we describe the methodology based on the concept of document
encoding rule and of thick boundary interpretation of bidimensional Allen relations.
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Section 7.4 is dedicated to the experimental results and their discussion. Directions for
future work and a discussion of the methodology are presented in Section 7.5.

7.2 A logical structure detection architecture

In [Todoran et al., 2001a], we presented a logical structure detection architecture. De-
parting from a pre-processed document image the goal of such an architecture is that
of logically labeling the document objects and subsequently identify the reading order.
The system uses general document knowledge only, hence, it is applicable to docu-
ments of different classes.

General document
encoding rules
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Figure 7.2: The flow of knowledge and data in the logical structure detection architec-
ture presented in [Todoran et al., 2001a].

Referring to Figure 7.2, one has a glimpse of the architecture presented in [Todoran
et al., 2001a]. The input is a pre-processed document image in which the document
objects have been segmented, local textual content recognized and font information
identified. The original document can be of any class as long as it is acceptable that
document objects are represented by rectangles. Overlapping document objects are
accepted by the system.

There are three modules: a logical labeler, a spatial reasoning reading order de-
tector, and a natural language processing ‘disambiguator’. logical labeling on the pre-
processed image is achieved via pre-trained classifiers.

The spatial reasoning module starts from the logically labeled layout of the doc-
ument and, using general document encoding rules, it outputs a number of reading
orders. The module is the subject of the remainder of the chapter.
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The natural language processing module starts from the spatially admissible read-
ing orders and the textual content of each one of the textual document objects. It
uses this information to prune the set of spatially admissible reading orders of those
which are linguistically not acceptable. This is performed by applying a combination
of statistical methods and shallow parsing techniques. The statistical tools are trained
on a large corpora of text. The training corpora is based on [Hersh et al., 1994] and
[Baayen et al., 1995] which are independent from the document classes analyzed. De-
tails of this module are presented in [Todoran et al., 2001b].

The output of the system is a reading order for the input document image. To
be more precise, the output is a list of reading orders for the document ranked in
order of linguistic plausibility (a probability is assigned to each reading order). Ex-
perimental results on each module and on the whole system have been presented in
[Aiello et al., 2000, Todoran et al., 2001b, Todoran et al., 2001a].

7.3 Methodology

We focus on the spatial reasoning module of the architecture presented in the previous
section. Figure 7.3 is a zoom-in of the spatial reasoning component in Figure 7.2 high-
lighting details. First, the generic document knowledge in the form of document en-
coding rules may have different origins. Second, the spatial reasoning moduleSpaRe,
is actually composed of two sub-modules. The first one, which performs inference
on the spatial relations of the layout and on the document encoding rules, is based
on constraint satisfaction techniques. The second one is a module to sort graphs, that
is, directed transitive cyclic ones. In the following sections, we analyze each of these
items.

7.3.1 Document encoding rules

A document encoding ruleis a principle followed by the author of a document to
convey an intent of the author by layout details. document encoding rules can be one
of two types: general or class specific. Document encoding rules can be expressed in a
informal or in a formal manner. Informal rules are proposed in natural language or by
sketch. Examples are found in books such as [Reynold, 1979]. Examples of generic
and specific, and formal and informal rules are presented in Figure 7.4.

Let us consider a number of formal ways to express document encoding rules.

LATEX is a compiled markup language. Typically, there is a number of source files
with the main marked-up text (the.tex files), a number of style definition
files (.sty , .cls ) and a compiler. The document encoding rules can reside
as macros in the.tex file, but the most common solution is that document en-
coding rules reside inside the style files. Consider the figure environment in the
class file for generating transactions for the ACM.1

1M. Aiello. (2001). http://www.acm.org/pubs/submissions/latex_style/
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Figure 7.3: The flow of knowledge and data in the spatial reasoning moduleSpaRe.
The document encoding rules originate from an expert, or from previous learning or are
given directly by the document author. The module itself is composed of a constraint
satisfaction problem solver and a handler for directed transitive cyclic graphs.

\newcounter{figure}
\def\thefigure{\@arabic\c@figure}
\def\fps@figure{tbp}
\def\ftype@figure{1}
\def\ext@figure{lof}
\def\fnum@figure{Fig.\ \thefigure}
\def\figure{\let\normalsize\footnotesize \normalsize

\@float{figure}}\let\endfigure\end@float
\@namedef{figure*}{\@dblfloat{figure}}
\@namedef{endfigure*}{\end@dblfloat}

The above definition, among other things,2 defines the figure as belonging to
a float environment [Goossens et al., 1994] whose default major features are: a
float occupies the top of a page; a float does not have to appear where it is

acmtrans2m.cls . The class file currently in use at ACM, an extension of theacmtrans2e.cls
version.

2See [Knuth, 1984] for details over the syntax and semantics of TEX.
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general class specific

informal “the caption neighbors its fig-
ure”

“the caption starts with the word
“Fig.” with font size 12pt, green text,
and it is centered”

formal ∀f ∈figure∃c ∈caption: ∀c ∈caption→
neighbors(f, c) text starts(c, “Fig.” )∧point(c, 12)∧

font color(c, ‘Green’)∧centered(c)

Figure 7.4: Examples of generic and specific, and formal and informal rules. The
formal rules are expressed in a first-order like language for documents whose semantics
should be self-evident.

declared in the source; a float should not occupy more than 70% of the page
otherwise it is moved after the first\clearpage instruction; if a caption is
present it cannot be split across pages. The ACM transactions style file provides
further class specific definitions for displaying the caption which overwrite the
corresponding LATEX definitions.

\long\def\@makecaption#1#2{\vskip 1pc
\setbox\@tempboxa\hbox{#1.\hskip 1em\relax #2}
\ifdim \wd\@tempboxa >\hsize #1. #2\par \else
\hbox to\hsize{\hfil\box\@tempboxa\hfil}
\fi}

\def\nocaption{\refstepcounter\@captype \par
\vskip 1pc \hbox to\hsize{\hfil \footnotesize
Figure \thefigure\hfil}}

The second example of a document rule in LATEX places the word “Figure” the
figure counter immediately below the picture, placing a vertical space of1pc
units (i.e., 12pt). The size of such text is set to the value of\footnotesize .

More abstractly, the document encoding rule for a figure says that a figure is
left to float in the main text, its preferred position is on top of a page and the
caption is placed immediately below. The figure and caption always appear in
the above/below spatial relation on one page.

WYSIWYG are computer systems in which the input of the user corresponds almost
exactly to the final layout of the document (WYSIWYG stands for ‘what you
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see is what you get’). A prototypical example is Microsoft’s Word. In these
sort of systems, it is hard to distinguish between the syntactic and the semantic
portion of document encoding rules, as they are hidden in the implementation.
The only control that the user has over the formal document encoding rules is
through the functionalities provided by an interface allowing the user to change
rule parameters.

In a common way of employing the WYSIWYG-style there are few strict docu-
ment encoding rules, while the user still enforces elements of style. In a typical
way of doing, captions may be put underneath a figure and also typically be
indented (apart from the one place where the user forgot to implement that).

However, when observing the text one could learn document encoding rules,
for example, that captions are always below the figure and immediately follow-
ing it provided there is one. In that case, one would require rules which can
express topological relationships with some form of tolerance as the user will
implement notions like alignment and marking with a limited precision. In ad-
dition, one would require rules which express topographic relationships as they
can be implemented in the freedom to move around on the 2D-screen where the
WYSIWYG-program runs, implying that the caption is always close to the fig-
ure. Finally, to address the inconsistencies of ad hoc rule implementation and
the lack of discipline to enforce them would require rules with a less than strict
character.

SGML languages are a family of interpreted markup languages, whose best known
members are HTML and XML. The eXtensible Markup Language, XML for
short, achieves a clear separation between content (the.\indexn{XML} file),
syntactic document encoding rules (.css , .xsl , .dtd ) and semantics of the
document encoding rules (the browser’s interpretation of the document encoding
rules). For instance, the document encoding rule for a caption like<CAPTION>
A figure</CAPTION> could be the following:

• (syntax):inside a.css file
CAPTION
{dispaly: block; font-size: 12pt; color: #000000; text-align: center}
• (semantics):the browser will display the text “A figure” in one block of

text, in black color, using the default font, using the font size 12pt, and
center it.

To the same degree SGML as WYSIWYG offers the possibility to move around
the images of the document objects and hence implement document encoding
rules by habit rather than by a priori rules. As the user has no visual feedback,
the factual encoding rules are more informal than in the WYSIWYG paradigm.
Hence, here are needed topological and topographical rule sets to describe the
power of SGML but even more forgiving than in the WYSIWYG style.
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Abstract formal languages can also serve as document encoding languages, for in-
stance, first-order logic. The syntax and semantics are the usual ones for first-
order logic, taking special care in giving adequate semantics to spatial relations
and predicates.

A final example of a general document encoding rule stated informally in natural lan-
guage is the following:

“in the Western culture, documents are usually read top-bottom and left-right.” (7.1)

A problem of stating rules in natural language is ambiguity. In fact, we do not know if
one should interpret the “and” as commutative or not. Should one first go top-bottom
and then left-right? Or, should one apply any of the two interchangeably? It is not
possible to say from the rule merely stated in natural language.

In the next section, we define an abstract propositional formal language to express
qualitative spatial relations among document objects to formally express document
encoding rules.

7.3.2 Relations adequate for documents

Considering relations adequate for documents and their components, requires a pre-
liminary formalization step. This consists of regarding a document as a formal model.
At this level of abstraction a document is a tuple〈D,R, l〉 of document objectsD, a
binary relationR, and a labeling functionl. Each document objectd ∈ D consists of
the coordinates of its bounding box (defined as the smallest rectangle containing all
elements of that object)

D = {d | d = 〈id, x1, y1, x2, y2〉}

where id is an identifier of the document object and(x1, y1) (x2, y2) represent the
upper-left corner and the lower-right corner of the bounding box of the document ob-
ject. In addition, we consider the logical labeling information. Given a set of labelsL,
logical labeling is a functionl, typically injective, from document objects to labels:

l : D → L

In the following, we consider an instance of such a model where the set of rela-
tions R is the set of bidimensional Allen relations and where the set of labelsL
is {title, body of text, figure, caption, footer, header, pagenumber, graphics}. We
shall refer to this model as aspatial [bidimensional Allen] model.Bidimensional
Allen relations consist of 13×13 relations: the product of Allen’s 13 interval relations
[Allen, 1983, van Benthem, 1983b] on two orthogonal axes. (Consider an inverted co-
ordinate system for each document with origin (0,0) in the left-upper corner. Thex
axis spans horizontally increasing to the right, while they axis spans vertically to-
wards the bottom.) Each relationr ∈ A is a tuple of Allen interval relations of the
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form: precedes,meets, overlaps, starts, during, finishes, equals, andprecedes i,
meets i, overlaps i, starts i, during i, finishes i. We shall refer to the set of Allen
bidimensional relations simply asA and to the propositional language over bidimen-
sional Allen relations asL the remainder of the chapter. Since Allen relations are
jointly exhaustive and pairwise disjoint, so isA. This implies that given any two doc-
ument objects there is one and only oneA relation holding among them.
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Figure 7.5: (a) The document objectd1 is Part of d2, as the projection ofd1 on both
axes isduring the projection ofd2; (b) The document objectd2 Overlap s with d2,
as the projection onx of d1 overlaps that ofd2 and ony it overlaps i that ofd2.

Document objects are represented by their bounding boxes and the relative position
of these objects plays a key role in the interpretation of the meaning of the document.
For example, if a document object is above another one it is likely that it should be read
before. If a document object is contained in another one, it is likely that the contained
one is a ‘part’ of the containing one, for instance the title of a remark inside a frame.
document objects can be also overlapping. This last feature is more common when the
document has different colors and colored text runs over pictures, logos and drawings.

All relations of the examples above are expressible in terms ofL. For instance,
‘being part of’ is

Part (d1, d2) iff (during x(d1, d2) ∨ starts x(d1, d2) ∨ finishes x(d1, d2))∧
(during y(d1, d2) ∨ starts y(d1, d2) ∨ finishes y(d1, d2)) (7.2)

To analyze the expressive power ofL, we encode the basic RCC5 [Randell et al., 1992]
relations:

• Part −1(d1, d2) = Part (d2, d1),

• Equal (d1, d2) = equal x(d1, d2) ∧ equal y(d1, d2),
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• Disconnected (d1, d2) = precedes x(d1, d2) ∨ precedes i x(d1, d2)∨
precedes y(d1, d2) ∨ precedes i y(d1, d2),

• Overlap (d1, d2) = ¬Part (d1, d2) ∧ ¬Part −1(d1, d2)∧
¬Equal (d1, d2) ∧ ¬Disconnected (d1, d2)∧
¬ExternalConnection (d1, d2).

Similarly, one can encode RCC8 inL. Examples of document objects satisfying the
part and the overlap relations are presented in Figure 7.5.

Restricting attention to RCC relations one looses a feature ofL of great impor-
tance, namely, its ordering expressivity with respect to the axes. Take for instance
the Disconnected relation. There are various ways in which two document ob-
jects can satisfy this relation. If eitherprecedes x(d1, d2) ∧ equal y x(d1, d2) or
precedes i x(d1, d2) ∧ equal y x(d1, d2) holds, then it is true that the RCC8 predi-
cateDisconnected (d1, d2) holds, but the two situations are most different. In the
first case,d1 is to the left ofd2, in the second case it is to the right. In other words,
in the first case it is likely thatd1 is to be read before thand2 in the document, while
in the second cased2 is to be read befored1. This is one of the key features that we
exploit in usingL to define document encoding rules.

Consider again the example of the relation between a figure and its caption in the
LATEX ACM transactions class file. This spatial relation isL definable:

(during x(figure, caption)∨ equals x(figure, caption))∧ precedes y(figure, caption)

The spatial relation between the word “Figure” and the figure counter is alsoL defin-
able:

meets x(“Figure ”, figure counter)∧
equals y(“Figure ”, figure counter) ∨ during i y(“Figure ”, figure counter)

Other features of the LATEX definitions are notL definable: trivially, all font and textual
features. But also size and distance features are notL definable, e.g., the fact that the
white space between a figure and a caption is of a fixed amount (1pc ).

7.3.2.1 Document encoding rules with L

The languageL is adequate to express mereotopological and ordering relations among
rectangles. Here, we show how to use this power to express formal unambiguous
document encoding rules.

Take the informal document encoding rule (7.1) expressed in natural language.
Consider the layout of a document as presented in Figure 7.6.a, where the numbering
of the document objects is provided counterclockwise. After having read the document
object2, to which one should the reader move? Only having the layout and not the
content of the text there is not a unique choice. One would either move to the block of
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(a) (b)

Figure 7.6: Layouts of documents considering text objects only.

text 4 or to block3. In the first case, one has followed the left-right rule, in the latter
the top-bottom rule. No one would have proposed to move to block1, this because it
is in violation of the top-bottom rule.

The top-bottom, left-right document rules are expressible in the languageL by:

beforein reading(d1, d2) iff precedes x(d1, d2) ∨meets x(d1, d2)∨
overlaps x(d1, d2) ∨ precedes y(d1, d2)∨
meets y(d1, d2) ∨ overlaps y(d1, d2) (7.3)

The equation reads “the document objectd1 is ‘before in the reading order’ of the doc-
ument objectd2 if the a Boolean combination of basicL relations are satisfied.” The
rule (7.3) is the formal counterpart to (7.1). Though the generality of (7.3) is also its
weakness. Too many document objects satisfy it, calling for the design of rules balanc-
ing between being more restrictive and being general. Consider the layout proposed in
Figure 7.6.b. It is hard to judge if one would follow the reading1, 2, 6, 3, 5, 4 or the
reading1, 6, 5, 2, 3, 4, but the reading1, 6, 2, 3, 5, 4 surely seems odd. Without know-
ing the content of the document, we are inclined to consistently apply a column-wise
or row-wise rule. Therefore, a candidate for a general and yet more restrictive rule
in comparison with (7.3) is acolumn-wisedocument rule. In this case, onefirst goes
top-bottom,thenleft-right. A rule to encode this behavior is again expressible withL.
It has the following form:
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beforein readingcol(d1, d2) iff

precedes x(d1, d2) ∨meets x(d1, d2)∨

(overlaps x(d1, d2)∧
(precedes y(d1, d2) ∨meets y(d1, d2) ∨ overlaps y(d1, d2)))∨

((precedes y(d1, d2) ∨meets y(d1, d2) ∨ overlaps y(d1, d2))∧
(precedes x(d1, d2) ∨meets x(d1, d2) ∨ overlaps x(d1, d2)∨
starts x(d1, d2) ∨ finishes i x(d1, d2) ∨ equals x(d1, d2)∨
during x(d1, d2) ∨ during i x(d1, d2) ∨ finishes x(d1, d2)∨
starts i x(d1, d2) ∨ overlaps i x(d1, d2))) (7.4)

The declarative code implementing this rules is presented on page 175. An analogous
row-wiserule is obtained by inverting the axes in (7.4).3

7.3.2.2 Thick boundary interpretation

The direct application of systems based on Allen or similar relations results in brittle
systems. This is because Allen relations rely on the precise identification of a boundary
of the interval. This means that some relations never occur in practical situations. One
goes directly fromprecedes to overlaps and fromoverlaps to during without ever
identifying an instance ofmeets, starts, or finishes. To solve this drawback of
Allen-like relations, we provide a less brittle interpretation of the relations.

Instead of considering two interval extremes to be equal when they have the same
coordinates, we consider them equal if they are closer than a fixed threshold distance
T. This can be seen as if the bounding boxes of the document objects have athick
boundary. We name the set of thirteen Allen’s relations thus interpretedthick boundary
rectangle relations.

The thickness of the boundary is assumed identical for all objects in the document.
It is fixed with respect to the page size. The optimal value is found through experimen-
tation. There is a constraint on theT with respect to the size of the smallest document
object: it should not exceed half the size of the shortest side of all bounding boxes.
Referring to Figure 7.7, one sees how theA relations with their thick interpretation are
more tolerant in the establishment of a relation between two intervals. For example,
interval a meets intervalb not only if xa2 = xb1, but also ifxb1 − T ≤ xa2 ≤ xb1 + T .
With the thick boundary interpretation, Allen’s relation maintain the jointly exhaustive
and pairwise disjoint property, see [Todoran et al., 2001a] for a proof. The declarative
code with the clauses definingA with the thick boundary interpretation are reported in
Appendix C on pages 177–179.

3Its implementation is presented on page 175.
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Figure 7.7: The thick boundary interpretation of Allen’s relations. The intervalb is
considered fixed and the thresholdT is highlighted on its extreme points. The interval
a varies in all 13 possible positions. On the left, the equation of the standard interpre-
tation of Allen’s relations. On the right, the thick boundary interpretation.

7.3.2.3 Theoretical excursus

One might wonder about the connection betweenL and the family of languages pre-
sented in the first half of the thesis. The connection is strong, as we have already
remarked by showing the encoding of RCC8 in terms ofL. But there is more.

TheA relations are mereotopological relations, but they are also weak geometrical
relations. It is possible to define a notion of betweenness, see Section 5.1.2, in terms
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of L. Consider the following definition

β(d1, d, d2) iff ¬precedes i x(d1, d) ∧ ¬meets i x(d1, d)∧
¬overlaps i x(d1, d) ∧ ¬precedes i x(d, d2)∧
¬meets i x(d1, d) ∧ ¬overlaps i x(d, d2)∧
¬precedes i x(d1, d) ∧ ¬meets i y(d1, d)∧
¬overlaps i y(d1, d) ∧ ¬precedes i y(d, d2)∧
¬meets i y(d1, d) ∧ ¬overlaps i y(d, d2)

We call this notionManhattan betweenness, in the spirit of the Manhattan distance. An

1

2

3

4

Figure 7.8: The document objects2 and4 lie ‘in between’ the document objects1 and
3. 2 is strictly in between1 and3, while 4 is a limit case.

example ofL-betweenness holding among three rectangles is presented in Figure 7.8.
One can check that it satisfies the universal betweenness axioms (Section 5.1) with one
minor adjustment. The identity axiom becomesβ(d1, d, d1) → Part (d, d1), that is,
the equality relation inA2 is replaced by the ‘part’ relation.

To move fromL to a modal logic of rectangles is possible. The techniques used
to perform the same move for the one-dimensional case are the most promising. The
idea of chopping intervals [Venema, 1991] could be extended to chopping rectangles.
Also the technique of Halpern and Shoham [Halpern and Shoham, 1991] should work
for rectangles.

7.3.3 Inference

Equipped with a qualitative spatial language for document objectsL, with document
encoding rules and the layout and logical labeling information, we are now in the posi-
tion to perform inference in order to achieve ‘understanding’ of a document. Following
is the definition of document understanding in this context.
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First, we define the notion of an admissible transition between document objects.
Given a pair of document objectsd1 andd2, a document model〈D,R, l〉 and a set
of document encoding rulesS, we say that(d1, d2) is anadmissible transitionwith
respect toR iff the bidimensional Allen relation(d1, d2) ∈ R is consistent withS.

A spatially admissible reading orderwith respect to a document model〈D,R, l〉
and a set of document encoding rulesS is a total ordering of document objects inD
with respect to the admissible transitions.

Theunderstandingof the document with respect to a document model〈D,R, l〉 and
a set of document encoding rulesS is the set of spatially admissible reading orders.

Following the above definitions, we see that inference is performed by two follow-
ing steps. The first one is a constraint satisfaction step in which instances of bidimen-
sional Allen relations are matched against document encoding rules expressed inL.
The second one is a graph sorting procedure similar to topological sorting.

(a) (b)

Figure 7.9: A page from the Communications of the Association for Computing Ma-
chinery and a possible layout segmentation of it.

Consider the image from the magazine Communications of the Association for
Computing Machinery presented in Figure 7.9.a. A possible segmentation of its layout
(Figure 7.9.b) is formally represented by

[1, body\_of\_text, [13, 23, 93, 101], Times, 11, 0, 16]
[2, body\_of\_text, [100, 23, 180, 101], Times, 11, 0, 16]
[3, caption, [13, 107, 180, 122], Arial, 11, 0, 16]
[4, graphics, [13, 122, 115, 183], Courier , 11, 16, 0]
[5, figure, [115, 122, 180, 183], None , 11, 0, 16]
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[6, body\_of\_text, [13, 191, 93, 261], Times, 11, 0, 16]
[7, body\_of\_text, [100, 191, 180, 261], Times, 11, 0, 16]
[8, footer, [108, 267, 171, 270], Arial, 7, 0, 16]
[9, page\_number, [175, 267, 180, 270], Arial, 12, 0, 16]

where each element of the list represents one document object together with its layout
and logical labeling information. The first element is a unique identifier, the second is
the logical label, the third is the upper-left corner and the bottom-right corner of the
bounding box, the fourth is the font of the text (if applicable), then the size of the font,
the color of the font, and the last element is the color of the background.

Consider using the general document encoding rule (7.3). For all pairs of docu-
ment objects labeled by ”bodyof text”, we consider their bidimensional Allen relation.
Then we input these together with (7.3) into a constraint satisfaction solver. Obtaining
the following set of admissible transitions

[1, 2], [1, 6], [1, 7], [2, 6], [2, 7], [6, 2], [6, 7]

1

7

2 6

Figure 7.10: The graph of spatially admissible transitions for the bodyof text docu-
ment objects of the document in Figure 7.9.

One can view this as a directed graph of spatially admissible transitions, Figure 7.10.
There are two possible complete total orderings of this graph. They are

[1, 6, 2, 7] [1, 2, 6, 7]

Following the above definition, the two spatially admissible reading orders constitute
the ‘understanding’ of the document in Figure 7.9.b with respect to the set of document
encoding rules{(7.3)}. Once the set of spatially admissible transitions is identified, the
task it that of totally sorting the graph. The algorithm to perform the sorting of directed
transitive cyclic graphs is presented in Appendix B.
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7.4 Evaluation

The methodology proposed has been implemented in a prototype system:SpaRe.
The core ofSpaRe is implemented in the declarative programming language Eclipse,4

making use of the finite domain constraint satisfaction libraries. Relevant passages of
Eclipse code are presented in Appendix C.3.

To testSpaRe, we used the Media Team Data-Base (MTDB) from the University
of Oulu, [Sauvola and Kauniskangas, 2000]. The data set consists of scanned docu-
ments of various types: technical journals, newspapers, magazines, and one-page com-
mercials. Elements from the data set are presented in Figure 7.11. We only used the
documents in English, resulting in a data set of 34 documents having 171 pages. The
MTDB data set has a ground truth at the document object level. Every document object
has a layout label and a logical label. The reading orders are part of the ground truth.
Of the 171 pages, 133 have a unique reading order, 32 have two independent reading
orders, 5 have three, and 1 has four. We considered the layout information from the
ground truth as the input to our system. As there is no ground truth for textual content
and font information, we used the TextBridge OCR package5 to extract these.

For evaluation purposes, the documents in the data set were split into three main
groups, based on their complexity:

• trivial documents containing up to 3 textual document objects;

• regulardocuments containing between 4 and 8 textual document objects;

• complexdocuments containing more than 8 textual document objects;

Out of 171 document pages, 98 are of typetrivial , 66 of typeregularand 7 are of type
complex.

The goal of the experimentation was to evaluate whetherSpaRe is effective in the
detection of the reading order given the layout information. As subtasks, we were inter-
ested in evaluating the performance with different document encoding rules and with
different values of the threshold for the thick boundary interpretation of bidimensional
Allen relations.

The experiments consisted of three cases. In the first case, we have used the layout
and labeling information from the ground truth and the general document encoding
rule (7.3), denoted asGeneral Rule on Ground Truth data. In the second case, we have
used the layout and labeling information from the ground truth and the column and
row-wise document encoding rules (7.4), denoted asColumn/Row Rules on Ground
Truth data. In the last case, we have used the layout and labeling information from
an existing logical labeler (see Section 7.2) and the column and row-wise document
encoding rules (7.4), denoted asColumn/Row Rules on the logical labeler data. For
each one of these we have varied the threshold of the thick boundary interpretation
from 0 to 400 dots.

4http://www-icparc.doc.ic.ac.uk/eclipse .
5TextBridge SDK 4.5, ScanSoft,http://www.scansoft.com .
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(a) (b) (c) (d)

Figure 7.11: Sample images from the MTDB data set.

7.4.1 Criteria

To evaluateSpaRe, we use precision and recall [Baeza-Yates and Ribeiro-Neto, 1999].
The set of reading orders detected (D) is compared to the ground truth. For 38 docu-
ments, the ground truth defines independent reading orders on non-intersecting subsets
of the textual objects within the same document. In these cases, the reading orders are
composed by one main sequence of document objects and one or two blocks to be read
independently; e.g., a page containing a frame with independent text. To account for
this portion of documents with multiple reading orders (20% of the whole data set),
we consider a reading order correct if it is identical to at least one permutation of the
independent reading orders as defined in the ground truth.

We refer to the set of permutations of the ground truth as the set of correct reading
orders (C). Then, the precision and recall are defined as follows:

p =
| D ∩ C |
| D |

r =
| D ∩ C |
| C |

(7.5)

The values lie between 0 and 1 inclusive, where 0 indicates the worst possible perfor-
mance and 1 the best possible one. Because there is only one reading order, the recall
can only be 1 if the correct reading is among the ones detected, or 0 if it is not. This
makes the recall less informative of the overall behavior of the system.

7.4.2 Results

We have evaluated the results in terms of the average precision and recall defined in
Equation 7.5.

General Rule on Ground Truth data. We have used the general document encoding
rule (7.3) on the ground truth layout and logical labels of the MTDB documents.
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Figure 7.12: Average precision for increasing threshold values (between 0 and 50)
using the general rule on the ground truth of the MTDB data set. The maximum value
is for the threshold value of 30.

The values of average precision with respect to increasing values of the threshold
are shown in Figure 7.12.

The average precision and recall of the system for the entire MTDB data set for
the threshold value of 15 are:

Document Number of SpaRe
group Documents p r

trivial 98 0.96 0.99
regular 66 0.31 0.97
complex 7 0.003 1.00
average 171 0.06 0.98

SpaRe detected 2714 reading orders for the 171 document pages in the data
set. In the case of a very rich and complex document, 2157 reading orders were
detected. For other four documents, 140, 50, 37 and 15 reading orders were
detected. For the remaining collection the average of reading orders detected
was of 1.74. In two cases, none of the reading orders as detected were correct.

Column/Row rule on Ground Truth data. We have used together the column and
row-wise document encoding rules on the ground truth layout and logical labels
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of the MTDB documents. The values of average precision with respect to in-
creasing values of the threshold are shown in Figure 7.13. The maximum value
of precision is for the threshold value of 15.

Figure 7.13: Average precision for increasing threshold values (between 0 and 50)
using the column/row rule on the ground truth of the MTDB data set.

The average precision and recall of the system for the entire MTDB data set for
the threshold value of 15 are:

Document Number of SpaRe
group Documents p r

trivial 98 0.97 0.99
regular 66 0.79 0.97
complex 7 0.88 1.00
average 171 0.89 0.98

SpaRe detected 190 reading orders for the 171 document pages in the data set.
For 16 documents 2 reading orders were detected, including the correct one.
In one case, none of the two reading orders as detected were correct. For one
document, 4 possible reading orders were detected and none of them was correct.
For the rest of 154 documents,SpaRe detected one reading order only and in
one case this was not correct.
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In the case of a two column scientific article composed of 6 textual document
objects,SpaRe detected 4 reading orders. These were all wrong because a short
subtitle (“Acknowledgments”) was too close to a white space in the neighboring
column and was considered the title of the neighboring row in a row-wise read-
ing. This row-wise connection was possible in four different ways, all incorrect.
In case of a first page of an article in a magazine composed of 3 textual docu-
ment objects, the title was on the left of the main text and centered vertically. In
a reading order, the title was considered bySpaRe to be a subtitle of one of the
two main bodies of text. It was placed incorrectly in the center of the reading
order instead of on top of it. For one document composed of 4 textual document
objects organized in one column with two subtitles and poorly typeset,SpaRe
wrongly detected the reading order. The reason is that the subtitles were almost
embedded in the main text and inoverlap relation in thex axes instead of meet.
The problem disappears when increasing the threshold value above 25 points.

The column-wise document rule has as one of its conditions that two blocks meet
on thex axis. But with the boundary’s thickness set to 0, this never occurs in the
data set. On the other hand, allowing thickness, themeet relation holds among
some neighboring document objects.

Column/Row on the logical labeler data.We have used the column and row-wise
document encoding rules on the output of a logical labeling system on the MTDB
documents. The values of average precision with respect to increasing values of
the threshold are shown in Figure 7.14. The maximum value of precision is for
the threshold value of 15.

The average precision and recall of the system for the entire MTDB data set for
the threshold value of 15 are:

Document Number of SpaRe
group Documents p r

trivial 98 0.92 0.94
regular 66 0.74 0.92
complex 7 0.86 1.00
average 171 0.84 0.94

SpaRe detected 192 reading orders for the 171 document pages in the data set.
For 18 documents 2 reading orders were detected where the ground truth indi-
cates only one. For one document, 4 possible reading orders were detected and
none of them was correct. For the rest of 152 documents,SpaRe detected one
reading order only. For 11 documents the correct reading order was not detected
by SpaRe. In particular, for the simple documents 2 extra reading orders were
detected and the number of wrongly understood documents was of 6. For the
regular documents, the number of wrong detections was 5. For the 7 complex
documents, there were no errors.
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Figure 7.14: Average precision for increasing threshold values (between 0 and 50)
using the column/row rule on the data from the logical labeler.

All additional misdetections of the reading order using the logical labeler data
in place of the ground truth data are due to the misclassification of title objects.
They are confused with footers, captions or rulers. The misclassification in the
logical labeler data propagates toSpaRe. Eight additional documents are inter-
preted erroneously.

7.4.3 Discussion of the results

Variating the threshold in the thick boundary interpretation of Allen bidimensional re-
lations does influence the overall performance considerably. In Figure 7.15, we com-
pare the values of precision and recall for the three experimental cases increasing the
threshold from 0 (no thickness) to 400 points. We notice that the precision increases
considerably when the threshold goes from 0 to 5-10 points. Then it stabilizes showing
minor variation over a wide range of thicknesses.

Moving the thickness from 0 to the maximum values corrects the situations in
which boundary detection is not ideal. The reason for the stabilization of the preci-
sion between 15 and 100 points can bee interpreted as follows. In a document, docu-
ment objects need not be found perfectly aligned. As far as the variation is small, the
document layout is still intelligible. The acceptable variation depends on the specific
document. For example, in a multicolumn document without overlapping frames, it is



148 • Chapter 7. THICK 2D RELATIONS FOR DOCUMENT UNDERSTANDING

necessary to allow a small variation because the elements of a column will never be
perfectly aligned; on the other hand, the variation should not go beyond half of the size
of the white space between two adjacent columns otherwise columns will be confused.

Letting the thickness grow much beyond 100, makes the precision fall down as
the thickness becomes too big with respect to the average document block size. The
document objects become ‘blurred’ entities andoverlap becomes the most frequent
relation. Performance degrades rapidly.

Considering the maximum values in Figure 7.12, Figure 7.13, and Figure 7.14, we
notice that the maximum value is different for different rules.

The recall is stable and has always a high score between 0.9 and 1.0. This makes
this measure of little interest in the presented experimentation. The reason for this high
values resides in the fact that only one reading order is considered for the documents.

Figure 7.15: Comparing precision and recall for the three experimental cases with re-
spect to increasing threshold (from 0 to 400). From foreground to background, the
recall for the general rule on ground truth data, the recall for column/row rules on
ground truth data, the recall for column/row rules on the logical labeler data, the pre-
cision for the general rule on ground truth data, the precision for column/row rules on
ground truth data, and the precision for column/row rules on the logical labeler data.

From the comparison of the use of the column and row-wise rules on the ground
truth and on the logical labeler data (with threshold set to 15), one notices a small
degradation of the overall performance. On the whole collection this means an ap-
preciable decrease in performance, but not a total brake-down of the approach, as the
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precision goes from 0.89 to 0.84 and the recall from 0.98 to 0.94.
Considering the use of the general and the column and row-wise document encod-

ing rules, one notices a big difference with respect to precision. The problem with the
general document encoding rule is its generality. It looses almost none of the correct
readings of a document, but it finds too many. For instance, for a three column docu-
ment with an image in the central column composed of 14 textual document objects,
the general rule gives 2714 admissible reading orders while using the column-wise rule
one gets only the correct one. When performing the experiment with the column and
row-wise rules, we appreciate the sharp increase in precision, while the recall remains
unmodified. This means that the rules are less general to detect less reading orders, but
are not too specific to degrade the performance. Even on a heterogeneous collection
of documents such as the MTDB, the column and row-wise rules have high values of
recall and, most notably, precision. It is safe to conclude that the general rule is of no
interest when compared with the column and row-wise rules.

The average execution time ofSpaRe is appreciably fast. On a standard Sparc 300
Mhz machine, it takes about 28 seconds of wall clock time to process the whole data
set. The median execution value for a document is of 10 milliseconds. The execution
time increases more than linearly with the number of document objects. Therefore,
there is a practical upper bound to the complexity and richness of document compo-
nents that can be analyzed.

7.5 Concluding remarks

We have shown the feasibility, and efficacy, of applying a symbolic approach to logical
structure detection in the context of document image analysis and understanding. The
approach is based on a spatial language of rectangles and basic mereotopological rect-
angle relations (bidimensional Allen relations). Inference is achieved via constraint
satisfaction techniques.

We have shown a bidimensional Allen based language to have appropriate expres-
sive power for the task of document understanding. Though, what the language misses
is a notion of neighbourhood or some other kind of weak metric expressivity. Consider-
ing the 11% of the documents understood erroneously using the column and row-wise
rules on the ground truth, one may argue that the correct order would have been cap-
tured by using a rule preferring neighboring text objects. Something not expressible in
bidimensional Allen. In [Todoran et al., 2001a], we move the first steps in this direc-
tion by using Voronoi diagrams.

The logical labeler adds 4% of misclassified reading orders. Little can be modified
in SpaRe to overcome these failures. When logical labels do not correspond with the
actual logical function of the objects, any symbolic approach shows brittleness.

Two notable features of the presented symbolic approach are its flexibility and
modularity.SpaRe is flexible enough to treat a wide variety of documents, including
scientific articles, newspapers, magazines and commercial hand-outs, in a single run.
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To increase the number of document classes handled, future work includes an ex-
tension to explicitly deal with independent reading orders. Independent reading orders
are the case of complex documents, such as newspapers where pieces of text indepen-
dent of one another coexist on the same sheet. The foreseeable key point of such an
extension lies in the identification of appropriate document rules.

Regarding the issue of execution time for rich documents, there are more efficient
alternatives. In [Aiello, 2002a], we propose the use of model checking techniques.

In conclusion, we do not know if HAL was equipped with a symbolic document im-
age analysis system or with one based on different technologies. The only thing we
know is that whenever a HAL-like machine will be available we expect it to read and
understand the contents of any printed document brought to its attention.



CHAPTER 8
CONCLUSIONS

8.1 Where we stand

Spatial structures and visual reasoning, in its broader sense, are the subject of this
thesis. Our personal take on the matter is the attempt to bring together two research
areas: the standard mathematical approach (topology, geometry, and linear algebra)
with a computational analysis of visual processing tasks. To build such a bridge, we
proposed a modal logic approach, which connects up with both:

(i) more tractable levels of spatial structure inside mathematical theories, and

(ii) more expressive power in computational tasks.

The results in the thesis show the connection meaningful by providing a number of
tools which are both useful for ‘deconstructing mathematics’ and for the analysis and
redesign of computational tasks. Next, we briefly summarize the main points.

Topo-approach.We proposed a framework for topological reasoning with a modal lan-
guage of visual patterns, emphasizing bisimulation and comparison games as a means
of calibrating similarity of visual scenes. Moreover, a pleasing side-effect was a new
take on elementary topology. Laying the basis for a more ambitious program of ‘modal
geometry’, exploring new fine-structure of tractable fragments of geometry; just as
modal logic itself does for first-order logic.

Logical extensions.We proposed and reconsidered a number of languages to increase
the expressive power ofS4within the bounds of the topo-approach. This has included
a new analysis of the universal languageS4u of Bennett [1995]. We showedS4u to be
a language of connected spaces whose simulations preserve the truth of existentially
quantified formulas (the connection with connected spaces has also been presented in
[Shehtman, 1999], the results were independently obtained). We introduced an even
more expressive formalism: a spatial Since and Until logic.
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Geometrical extensions.Our walk through geometrical spaces showed modal struc-
tures wherever one looks. There are natural fine-structured modal versions of affine
and metric geometry. These can be studied by general modal techniques—though
much of the interest comes from paying attention to special spatial features. The ben-
efits of this may be uniformity and greater sensitivity to expressive and computational
fine-structure in theories of space.

Logical fragments of mathematical morphology.We established preliminary connec-
tions between logical axiomatizations of mathematical morphology. The links were
built on linear and on arrow logics, as both capture relevant fragments of what is a
fundamental qualitative theory of shape.

Games as similarity measures.We introduced a similarity measure for spatial patterns
based on model comparison games and implemented it in a image retrieval system.

Symbolic approach to document understanding.We showed the applicability of a sym-
bolic approach to document image understanding. The use of a thick boundary inter-
pretation of rectangular Allen relations has proven to be at the right expressive level to
perform reading order detection. We implemented a system based on the framework
which shows high accuracy when tested on heterogeneous collections of document
images for which no specific document knowledge is available.

8.2 Final remarks on theory and practice

The words theory and practice may be dangerous. The risk we take is that the terms
are considered in contraposition rather than as distinct aspects of the same research
process; which has been our own experience. Still, we found a few concerns that
differentiate more theoretical branches of spatial reasoning from more practical ones.

Ontology: regions vs. points.A long debated matter in temporal reasoning is the oppo-
sition of instant based ontologies with interval based ones, cf. [van Benthem, 1983b].
A similar dichotomy holds for spatial reasoning, opposing point-based theories to re-
gion based ones; the latter are more frequent in philosophy, artificial intelligence and
cognitive science. Unfortunately, mathematical region-based theories are much scarcer
than those based on points (cf. [Johnstone, 1977, Johnstone, 1982, Sambin, 1987,
Vickers, 1994]), leaving researchers with few tools to approach the subject.

Our own experience shows that a theory of space must work with regions. What
matters is that one can refer to regions and their properties. Our modal approach was
designed to do just that. For instance, consider the languagesS4andS4u. The first can
express only properties of a point and its neighbourhoods. This has no immediate prac-
tical application. On the other hand,S4u expresses properties of regions, their spatial
structure, and their relations with other regions. These basic spatial descriptors make
S4u a promising candidate for applications, as we saw in Chapter 6. The design of the
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formalism for document image analysis (Chapter 7) also needs to express properties
of regions. In analyzing a document image, the prominent properties are those of the
spatial arrangement of extended objects detected in the document, not those of specific
points inside the document.

Boundaries: inferred vs. detected.The theories of space based on topology (Chap-
ters 2–4) tend to put special emphasis on boundaries. After all, topology can be seen
as the theory of connected entities and a connected entity is a collection of points up to
a boundary. Now, boundaries are puzzling spatial entities which are located in space,
but which do not take any space [Casati and Varzi, 1999, Aiello, 2001b]. Thus, while
our spatial topological theories heavily rely on boundaries, the chances of detecting a
boundary (in the sense of formal topology) in real life images and spatial patterns are
none. A system relying on that detection is likely to be brittle and unsuccessful.

Of the two prototypes presented in the thesis,SpaRe is most affected by bound-
aries. As it works with real images, and uses topological regions, it is very sensitive to
the precise location of boundaries. After a first round of experimentation, we realized
that a number of erroneous analyses were due to boundary problems. We solved this
by giving a different interpretation of boundaries, cf. Chapter 7.

Model classes: across vs. within.Theoretical research in spatial logics is interested
in resultsfor a specific class of models oracrosssuch classes. Take completeness:
McKinsey and Tarski [1944] efforts went in showing completeness ofS4with respect
to the real line; [Shehtman, 1999] showed completeness ofS4u+ (the connectedness
axiom) for connected topological spaces. Another example are Ehrenfeucht-Fraı̈sśe
games, which are typically used to compare across different structures.

In our applications, one is more interested in restricting attentionwithin some par-
ticular class of models, and then use tools which behave uniformly on it. A typical
example is our use of Ehrenfeucht-Fraı̈sśe games to compare different images, viewed
as constellations of regions in the same kind of mathematical space. In particular, the
key step from theory to practice in Chapter 6 is a move from a general model compar-
ison game to a distance measure within a fixed class of spatial structures.

Our analysis of space and of applications of spatial theories is only a small step which
generates more questions than answers. We identified many new open problems along
the way in the thesis. Thus, our work also serves as a pilot study for a broader modal
geometry developed with a view to potential applications.

Most likely, the next spatial reasoning task that awaits us consists of closing the disser-
tation in hand and laying it down on a flat solid surface. Alternatively, by appropriate
‘point and click’-ing we shall get rid of the window containing the current text. What-
ever we do next, there is just no way of avoiding spatial reasoning.





APPENDIX A
A BIT OF TOPOLOGY

A topological space, in its general definition, is just a set with a tiny bit of extra struc-
ture. It is a collection of elements, a membership function and, in addition, a family of
subcollections with three simple properties.

A.0.1.DEFINITION (TOPOLOGICAL SPACE). A topological spaceis a pair 〈X,O〉,
whereX is a set andO ⊆ P(X) a family of subsets ofX such that:

1. ∅ ∈ O andX ∈ O,

2. O is closed under arbitrary unions,

3. O is closed under finite intersections.

Related definitions to that of a topological space follow.

(i) An element ofO is called anopen. A subsetA of X is calledclosedif X −A is
open.

(ii) A point s ∈ X is a limit point of a subsetA of X if for eacho ∈ O such that
s ∈ o, (o− {s}) ∩ A is not empty.

(iii) The interior of a setA ⊆ X is the union of all open sets contained inA.

(iv) Theclosureof a setA ⊆ X is the intersection of all closed sets containingA or,
equivalently, the union of the set A with all its limit points.

(v) Given a setA, the set of pointsy such that for any open seto containingy both
o ∩ A 6= ∅ ando ∩ (X − A) 6= ∅ hold, is called thefrontier, or boundary, of A.

(vi) A family of open setsB is abaseof the spaceX if all open sets are unions of
members ofB. Such a family is asubbaseof X, if the collection of all finite
intersections of elements ofB is a base forX.
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A.0.1.EXAMPLE (TOPOLOGICAL SPACES). Typical examples of topological spaces
are the indiscrete topology, the discrete topology, metric spaces, and Cantor space.

(i) indiscrete topology 〈X, {∅, X}〉

(ii) discrete topology 〈X,P(X)〉

(iii) metric spaces every metric space is a topological space. A base that builds up
the topology is the family of sets{x|distance(x, p) < r} for arbitrary pointsp of
the space and nonnegativer. This is called thestandardtopology.

(iv) Cantor space all infinite sequences of0, 1. A base that builds up the topology is
the family of setsAσ, consisting of all the sequences extending the finite initial
segmentσ.

As a point of notation, when considering intervals in one dimensional metric spaces,
we write (a, b) for {x|a < x < b}. Square brackets denote that the frontier point
belongs to the interval, e.g.(a, b] stands for{x|a < x ≤ b}.

A.0.2.DEFINITION (CONNECTED SPACE). A topological spaceX is connectedif the
only sets which are both open and closed are∅ andX.

A.0.2.EXAMPLE (CONNECTED SPACE). Examples of connected spaces are the met-
ric spacesIRn with the standard topology, for any positive integern. Non-connected
spaces are the rationalsCQ. E.g., consider the two non-empty open and closed sets
(−∞,

√
2) and(

√
2,∞).

A.0.3.DEFINITION (COMPACT SPACE). Let X be a topological space. A collection
Vi ∈ P(X) is a coveringof X if

⋃
i Vi = X. It is anopen coveringif all the Vi are

open. A topological spaceX is said to becompactif every open covering has a finite
subcovering.

A.0.3.EXAMPLE (COMPACT SPACE). No spaceIRn is compact. But all (and only)
theirboundedsubsets are compact.

A.0.4.DEFINITION (DENSE). A setA in a topological spaceX, is said to bedensein
X, if all points ofX are a point or a limit point ofA. A topological space is said to be
denseif all its points are limit points for itself.

Another interesting way to discern topological spaces uses their richness in terms
of points and open sets. If there are enough of them one can ‘separate’ points. This
formally shows in so-called ‘separation axioms’:

A.0.5.DEFINITION (SEPARATION AXIOMS). A topological spaceX is called
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(i) T0 if for any two distinct pointsx1 andx2 (∈ X), there exists an open seto ∈ X
containing one but not the other,

(ii) T1 if for any two distinct pointsx1 andx2 (∈ X), there exist an open seto1 ∈ X
containingx1 but notx2 and there exists an open seto2 ∈ X containingx2 but
notx1,

(iii) T2 (Hausdorff)as T1 with the additional requirement thato1 ∩ o2 = ∅,

(iv) T3 (regular) as T1 and for every closed set and point not contained in it there
exist two disjoint open sets containing the point and the closed set respectively,

(v) T4 (normal)as T1 and for every two closed disjoint sets there exists two disjoint
open sets each containing one of the closed sets.

The fundamental way to move from a topological space to another space is through
continuous mappings. Those preserving, among all, the property of openness.

A.0.6.DEFINITION (CONTINUITY). A map f : X → X ′ between two topological
spaces〈X,O〉, 〈X ′, O′〉 is continuousif for all openso′ ∈ O′, f−1[o′] is in O: i.e.,
inverse images of open sets are open.

Continuous mappings are the building block for defining the equivalence of topological
spaces. If two continuous mappings exist that composed, either way, yield the identity
on each space, then the two spaces are topologically equivalent. The equivalence is
named in topologyhomeomorphism.

A.0.7.DEFINITION (HOMEOMORPHISM). Two topological spaces〈X, O〉 , 〈X ′, O′〉
arehomeomorphicif there are continuous mapsf : X → X ′ andg : X ′ → X such
thatf ◦ g, g ◦ f are both identity maps.

A basic topological fact about homeomorphic spaces is that of having the same cardi-
nality. But the converse is not generally true: topology demands more structure that
pure counting.

A.0.4.EXAMPLE (HOMEOMORPHISM). The two subsets(0, 1) and(1,∞) of the met-
ric spaceIR with the standard topology are homeomorphic. The two inverse func-
tions f(x) = g(x) = 1

x
are continuous and compose to identity maps both ways.

By a similar construction of homeomorphisms, the real planeIR2 and a unit circle
x ∈ IR2 : d(x, 0) < 1 are homeomorphic. Also Cantor space is homeomorphic to[0, 1].

Two non-homeomorphic spaces are the real planeIR2 and a three dimensional unit
ball x ∈ IR3 : d(x, 0) < 1.

Topology also provides a more general notion than homeomorphism.



158 • Appendix A. A BIT OF TOPOLOGY

A.0.8.DEFINITION (HOMOTOPY). LetX andX ′ be topological spaces, and letf0 and
f1 be continuous maps fromX toX ′. f0 is homotopicto f1 (notationf0 ' f1) if there
exists a continuous mapF : X × I → X ′ such that for allx F (x, 0) = f0(x) and
F (x, 1) = f1(x), whereI is [0, 1]. F is called anhomotopyfrom f0 to f1.

A.0.9.DEFINITION (HOMOTOPY TYPE). Two topological spacesX andX ′ are of the
samehomotopy typeif there exists two continuous mapsf : X → X ′ andg : X ′ → X
such thatg ◦ f is homotopic to the identity mapping onX andf ◦ g is homotopic to
the identity mapping onX ′.

A.0.5.EXAMPLE (HOMOTOPY). Homeomorphic spaces are also homotopic. There-
fore, an example of homotopic spaces is the real line and the real unit interval (see
Example A.0.4). A more interesting example is the homotopy between a single point
and any real metric spaceIRn.

The real plane without its originIR2 − (0, 0) and the unit circle are an example of
non-homotopic spaces.



APPENDIX B
SORTING TRANSITIVE DIRECTED GRAPHS

We extend the notion oftopological sortinga directed acyclic graph [Knuth, 1968,
Knuth and Szwarcfiter, 1974]. Instead of a directed ‘acyclic’ graph, we sort a directed
‘cyclic’ graph whose edge relation is transitively closed. We call the latterdirected
transitive cyclic graph. More formally, a directed transitive cyclic graph is a graph
G = 〈V,E〉 such that if(i, j) ∈ E and(j, k) ∈ E, then(i, k) ∈ E. In what follows,
we assume that there aren vertices|V | = n andm edges|E| = m. The problem
of sorting a directed transitive graphG consists of creating sequences of nodes of the
graph such that for any pair of nodesu andv in G appearing in any sequence, then
(u, v) must be an edge ofG.

Algorithms to perform topological sorting of directed acyclic graphs work iterating
the following procedure until all nodes have been visited. First, a nodev with no
predecessors

∀u 6= v ¬∃(u, v) ∈ E
is identified. The nodev is placed in the output. Then, all the edges(v, u) such that
∀u 6= v (v, u) ∈ E are removed from the graph. In other words, the set of edgesE of
the graph is replaced by its subsetE/{(v, u) ∈ E} without the edges departing from
the nodev. If the original graph is acyclic, then the algorithm outputs a topological
sorting of the input graph, otherwise the output is incorrect. The complexity of this sort
of algorithms isO(m + n). Notice that the algorithm does not return any clue on the
incorrectness of the output in the case the input graph is cyclic. This is rather natural
when considering the complexity of topological sorting and that of identifying cycles
in directed graphs. It is well known that the latter is in NL-hard (see, for instance,
[Toda, 1990]).

The algorithm for sorting transitive cyclic directed graphs takes as input a connected
graphG = 〈V,E〉 and outputs a sequence of nodesv1 · v2 · v3 · . . . · vn such that:

1. for all i: vi ∈ V ,

2. |v1 · v2 · v3 · . . . · vn| = |V |,
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3. for all i 6= j: vi 6= vj,

4. if i < j: (vi, vj) ∈ E.

One starts by removing all self-loops(v, v) ∈ E to setup the graph. Then the main
cycle of the algorithm begins by considering all the nodes and counting the number of
edges departing from each one, also known asdegreeof the node:deg(v) = |{(v, w) ∈
E| w ∈ V }|. Then one chooses a node with the highest degree, which has to be the
same as the number of nodes of the graph minus one. In other words, the node is
related — is ‘before’ — all other nodes of the graph. As we allow for cycles, there can
be more than one node satisfying this condition. Once a node with maximal degree has
been chosen, we remove it from the graph together with all the edges connected to it,
both outgoing and incoming, and repeat the procedure on the remaining subgraph.

1

7

2 6

Figure B.1: A simple directed transitive cyclic graph.

Consider the simple example in Figure B.1. The input graph isG = 〈{1, 2, 6, 7}
{(1, 2), (1, 6), (1, 7), (2, 6), (2, 7), (6, 2), (6, 7)}〉, it is easy to check that it meets the
input conditions. The first step of the algorithm is to create a list of nodes and their
occurrences:L = {(1, 3), (2, 2), (6, 2), (7, 0)}. The node1 is selected as first node of
the output, as its degree is3 = |V |−1. The list L is then updated toL = {(2, 2), (6, 2),
(7, 0)}. Two choices are possible at the following iteration: either2 or 6. Suppose the
first item is chosen, thenL becomes{(6, 1), (7, 0)}. Finally, the output is updated
with 6 and7, respectively, yielding the final output of{1, 2, 6, 7} (also{1, 6, 2, 7} is a
correct solution, and it can be computed by backtracking to the point in whichv2 was
chosen in place ofv3).

Let us now proceed with a more precise definition of the algorithm. The prelimi-
nary step of the algorithm consists of the construction of a listL of pairs(v, o), where
o is the degree ofv, i.e.,o = deg(v). In pseudo-code, we have:
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fail ← false;
for all v such that (v, v) ∈ E;

E ← E/(v, v);

while( |V | > 0 and (not fail))

sort L in descending order of occurrences

% let (v∗, l) be the first element of L

if ( l 6= |V | − 1)

fail ← true;

else
output ← output + v∗;

V ← V/v∗;

for all w such that (v, w) ∈ E or (w, v) ∈ E;

E ← (E/(v∗, w))
⋂

(E/(w, v∗));

update( L);

Given that sorting a set of up ton values, each of which is an integer in the interval [0,n-
1] can be performed with a bucket sort inO(n), one can conclude that the complexity
of the proposed algorithm is in theO(n2) class.1 If the algorithm terminates withfail
set to false, then a correct sorting of the original directed transitive graph graphG will
be found in the variableoutput . If no check is performed on the input graph, nothing
can be said in case the algorithm returns true for the variablefail . On the other hand,
if the input graph is tested to be transitively closed, thenfail set to true indicates that
no sorting for the input graphG exists. Algorithms to transitively close a graph can be
found in the literature [Warshall, 1962, Munro, 1971, Arlazarov et al., 1970], and are
also relatively inexpensive:O(n3),O(n2.376), andO( n3

ln(n)
), respectively.

1It is possible to devise an algorithm for directed transitive graph sorting with lower asymptotic
complexity, though this is beyond the scope of the presented material. The steps of such an algorithm
consist of: 1) finding strongly connected components of the graph, which is inO(n + m); 2) consider
the graph of the strongly connected components; 3) topologically sort the new graph. This algorithm
hasO(n + m) complexity wheren is the number of nodes andm the number of edges.





APPENDIX C
IMPLEMENTATIONS

This appendix consists of a number of short system descriptions and the presentation
of selected declarative code. The system described are:

1. the applettopax for the visualization of the selective unraveling technique as
presented in Chapter 3,

2. the image retrieval prototypeIRIS described in Chapter 6, and

3. the document analysis prototypeSpaRe described in Chapter 7.

The full source code for these systems is available electronically athttp://www.
aiellom.it/phd/source . Other implementations related to the thesis can be
found athttp://www.aiellom.it/java , including one of Ehrenfeucht-Fraı̈sśe
games. The latter is described and motivated in [Agostini and Aiello, 1999].

C.1 Topax

What follows is the content of the web pagehttp://www.aiellom.it/java/
topax . It is a Java applet for the visualization of the selective unraveling presented in
Section 3.3.1, together with instructions on how to use the applet and some motivations.
The centered text intypewriter font does not appear in the web page and was
added for this presentation. The colors refer to the web-page and the electronic pdf
version of the thesis (the hard copy of the thesis has only gray-levels). The contents of
the web-page start on the next page.
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This page presents a Java applet for the visualization of the modal logic construction
presented in [Aiello et al., 2001]. Instructions on how to use the applet and its motiva-
tion can be found below on this page.

NOTE, if a window has not popped-up, it means that the applet is not running
properly. Please refer to the troubleshooting section.

[In the web-page, the applet appears here.]

Motivations and use

The aim of the applet is the visualization of a construction relating Kripke semantics
and topological semantics for modal logics, in particular, for the modal logic S4.

A bit of history

The first completeness result for the modal logic S4 (we refer to a standard book in
modal logic for its syntax and its standard Kripke semantics such as [Blackburn et al.,
2001]) was given by Tarski in the late 30s [Tarski, 1938]. Later, together with McK-
insey [McKinsey and Tarski, 1944], Tarski showed S4 to be complete with respect to
any metric space without isolated points. The topological interpretation was some-
what abandoned when the possible worlds semantics was introduced for modal logics
thanks to the independent efforts of a number of researchers, including Kripke. The
graph like possible worlds semantics made modal logics more accessible and easy to
use, completely replacing in common practice the topological semantics for modal
logics. Recently the topological interpretation has received new attention in relation to
spatial representation and reasoning (e.g., [Bennett, 1995]).

Standard Kripke models for S4

A known fact for the logic S4 is that its models can be viewed as trees of mutually
accessible clusters. This means that a model can be partitioned into a number of clus-
ters (cliques) of worlds which are all mutually accessible. An example of a cluster of
4 worlds is presented on the right (Figure C.1 ). The various clusters are ordered
from a higher cluster that can access all other clusters to those which can access none.
An example is given by the picture below (Figure C.2 ).

The model is not a tree with respect to the possible worlds (the blue circles), but
rather a directed graph. Though, if considering the clusters (the red rectangles) as the
basic elements and considering the green arrows, then the S4 model is a tree.

Evaluating colors

A model comprises a valuation function usually assigning a propositional letter to each
world. Now viewing every propositional letter as a (different) color, we can visualize
a valuation as a coloring of each world (may be in many different colors). In the two
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Figure C.1: The blue circles are possible worlds of the models and the arrows represent
an element of the accessibility relation. This is a cluster of 4 mutually accessible
worlds.

Figure C.2: The red rectangles denote the clusters of mutually accessible nodes (for
which the accessibility relation is given by the yellow arrows). A green arrow means
that all the worlds in the origin cluster are related to all the worlds in the endpoint
cluster.

pictures above, the valuation function related all worlds with the color blue. In the
applet, we can evaluate a world of the starting tree of clusters to any color.

Towards topological spaces

The tree of clusters of mutually accessible points can also be regarded as a topological
space. In fact, it is an Alexandroff’s space. A possible world becomes a point of the
Alexandroff space, while all accessible worlds from a given one define its least open
neighborhood [Vickers, 1989]. One can achieve more, and move from an Alexan-
droff space to the Cantor space, and then to the real line. To achieve completeness
on the Cantor space, we selectively unravel an Alexandroff space generated by a tree
of clusters into the Cantor space (an infinite complete binary tree). The full formal
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description of selective unraveling is presented in [Aiello et al., 2001], while the tool
to show the correctness of the transition is that of topo-bisimulations, introduced in
[Aiello and van Benthem, 1999]. Note that in the topological space model of S4, the
worlds are not the nodes of the Cantor tree, but rather the full infinite branches. So
the colors visualized by the applet are only the preliminary colors assigned to the
branch (not the colors assigned to obtain the exact topo-bisimulation, again refer to
[Aiello et al., 2001] for the details of the construction).

Using the applet

First, one creates an S4 model as a tree of clusters of colors. The window S4 model
editor serves this purpose. The background color of the window is the current color.
By clicking on the window a cluster is created with the current color as the color of
one of the worlds of the cluster. By pressing the Change Color button, a color chooser
window pops up. In this manner one can choose the new current color. The current
color becomes the new background color of the window. By clicking on an existing
cluster a node of the current color is added to the cluster. If clicking outside any
cluster, a new one is created. The clusters are represented by the average color of all
their worlds. The tree is built considering as root the upper cluster (if more clusters are
on the highest row of the window, a dummy cluster with one world of white color is
the root), then the clusters below are considered as children in the tree and associated
to the closest cluster going first up and the right.

We present an example of using the applet. First, one builds the S4 model as a tree
of clusters.

(a) (b)

(c) (d)

In the S4 model editor window with yellow background, we click in the window
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and we create a first cluster with one world of yellow color, (a) and (b). Then we press
the Change Color button and select a new color: green. We click below the yellow
cluster and create a new cluster with one world of green color (c). We then select
blue as the current color. We click on the yellow cluster (which now gets as color the
average of yellow and blue, i.e., green). Finally, we click below the yellow/blue cluster
to obtain a new blue cluster (d).

When we close the S4 model editor window, the model we have just built becomes
the current model. By pressing the Paint button the model is selectively unraveled
into the Cantor space. In particular the default values for Depth of rendering and for
Visualization mode are used.

The default value for the depth of rendering is 5, while the default value for the
visualization mode is circle. The latter means that the nodes of the binary tree are
represented as thick circumferences. The root is the central circle. Then the second
level of the binary tree is the surrounding circumference, which is divided in two half
circumferences. The left son of the root is the left half circumference, the right son is
the right half circumference.

By setting the depth of rendering to 12 and the Color Randomness to 0.4 we obtain
the renderings

(e) (f)

depending on the Visualization mode. (e) uses the circle mode, while (f) uses square
mode. In the latter, the root of the Cantor tree is on top and the sons of each node are
in the line below. The length of a son is the half of the one of the parent.
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The color randomness lets a node be rendered with a little variance from the orig-
inal color in the tree of clusters. In this way, it is possible to better identify the single
nodes in the Cantor tree and to obtain more appealing renderings. (Please be careful in
setting the depth of rendering. Depending on the computing power of your machine,
you may be waiting for a long time or even get an out of memory error. On my Mac
12 is the limit, while on the Sun at work it is 18.)

Finally, by bringing the color randomness to 0.5 and moving the visualization mode
to big circle we obtain the following rendering of the selective unraveling

Two final remarks:

• by rearranging the colors one can move further on to the real interval (0,1). For
details we refer to [Aiello et al., 2001].

• the Cantor space obtained has a fractal structure. It is easy to identify patterns
that repeat themselves. Subtrees of the unraveled model are identical to the
whole model and different subtrees at different depths are also identical with
respect to each other. For instance, one can see the green pattern to repeat itself
in the circle visualization mode above. It starts on the top-left part of the circle
and it repeats moving counter-clockwise on the figure.

Troubleshooting

The applet will only run in Java2 enabled browsers. If your browser does not support
Java2, you may try to download the whole applet on your machine and run it with



C.2. IRIS • 169

semanticDB

textHash (the inverted matrix of textual occurrences)
(private list of models) model    model     model     ...

Model

image path
description (caption)
matrix (RCC relations)
(private list of regions) region     region     ...

Region

name
color
(private list of polygons) polygon     polygon     ...

Figure C.3: The design of the spatial data structures.

appletviewer. In alternative, you can try the page with the Java-plug-in.

Contact and bibliographic information follows.

C.2 IRIS

The image retrieval prototypeIRIS , presented in Chapter 6 is implemented in Java.
Here we present the main data structures behind the implementation.

The spatial data structures

The spatial data structures are implemented according to the schema presented in Fig-
ure C.3. Classes are presented together with their most relevant variables. See Fig-
ure 6.7 for a more functional view of the data structures within IRIS.

public class semanticDB
extends java.lang.Object
implements java.io.Serializable
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Field Summary
textHash textMatrix

Constructor Summary
semanticDB()

Method Summary
void addModel(model m)
java.awt.Graphics draw(java.awt.Graphics g)
int getFree()
java.lang.String paramString())
void remove() )
int scanModels() )
model scanModels(int i)

public class model
extends java.lang.Object
implements java.io.Serializable

Field Summary
java.lang.String description
java.lang.String imagePath
int[][] matrix

Constructor Summary
model()

Method Summary
void addRegion(region r)
void computeMatrix()
int contains(java.lang.String name)
java.awt.Graphics draw(java.awt.Graphics g)
int freeRegions()
java.lang.String paramString()
void printMatrix()
void remove()
region scanRegions(int i)

public class region
extends java.lang.Object
implements java.io.Serializable
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Field Summary
java.awt.Color color
java.lang.String description
int freePolygons
java.lang.String name
boolean[] open
java.awt.Polygon[] polygons
boolean transparent
boolean[] vector

Constructor Summary
region()

Method Summary
void addPolygon(java.awt.Polygon p,

boolean o)
void computeVector()
java.awt.Graphics draw(java.awt.Graphics g,

int xshift, int yshift)
void endRegion()
boolean[] getVector()
boolean printVector()
void remove()
void reset()

C.3 SpaRe

SpaRe consists of an Eclipse program using the finite domain library1 and a number
of Perl scripts. The Perl scripts, which are not documented here, serve for the analysis
of the output and to coordinateSpaRe with the other modules of the document im-
age analysis system. We present source code in the thesis as an useful companion to
Chapter 7. Being declarative code it should be fairly readable.

Selected Eclipse passages

The following listing of Eclipse clauses is not the fullSpaRe implementation, but
just the most relevant portions. It starts with the invocations of Eclipse libraries, then
sets the type of analysis to perform and which document rules to adopt. Then there is
the main clause as called by the overall document analysis system (go) which takes
as a input a list of documents (i.e., a list of document object positions and labels)
and returns a list of lists of admissible reading orders. Following there is the body
of clauses necessary to check the document rules on the given input. Then, there is

1http://www-icparc.doc.ic.ac.uk/eclipse .
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the encoding of the various document rules to be used in the analysis. Finally, Allen
relations are defined for both axes. Note the use of a threshold in the definition, which
slightly deviates from the usual interpretation of Allen’s relations.

:-lib(fd).
:-lib(listut).

%************************************************
%
% type of analysis, set from calling function
%
%************************************************

threshold(15).

% this can be one of the following:
% general, verticalColumns, horizontalColumns

rule_set(verticalColumns).

% this can be one of the following:
% general, small caption, big caption
rule_figure(general).
rule_title(general).

%***********************************
%
% main call to SpaRe
%
%***********************************

go_each(H,Stream):-
scan(25,H,Texts,Stream),
scanNoWrite(20,H,Titles,Stream),
merge_titles(Titles,Texts,TBcouples),
text_analyze(Texts,[],OutputVer,verticalColumns),
text_analyze(Texts,[],OutputHor,horizontalColumns),
text_analyze(Titles,[],Output3,general), !,
quicksort_couples(OutputVer, SortedVer), !,
quicksort_couples(OutputHor, SortedHor), !,
quicksort_couples(Output3, Sorted3), !,
elements(Texts, Texts_elements),
elements(Titles, Titles_elements),
findall(PathVer, path(Texts_elements, SortedVer, PathVer),

BVreading_orders),
findall(PathHor, path(Texts_elements, SortedHor, PathHor),

BHreading_orders),
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findall(Path3, path(Titles_elements, Sorted3, Path3),
Treading_orders),

append(BVreading_orders,BHreading_orders,
BHVreading_orders),

merge_title_text_all(BHVreading_orders,Treading_orders,
TBcouples,OutputDuplicates),

remove_dups(OutputDuplicates, OutputEmptyList),
remove([], OutputEmptyList, Output),
length(Output, M),
nl, write(’Number of pahts ’), write(M),nl,
length(Titles, Ltitles),
length(Texts, Ltexts),
Blocksnumber is Ltitles+Ltexts,
factorial(Blocksnumber,Fact),
writeln(Stream, [Blocksnumber, Fact,M]).

%***********************************
%
% Checking the rules on the
% input for body text
%
%***********************************

text_analyze([B1|Rest], Old, Out, R):-
append(Rest, Old, Checklist),
text_check(B1, Checklist, Out2, R),
append([B1], Old, Old2),
text_analyze(Rest, Old2, Out3, R),
append(Out3, Out2, Out).

text_analyze([], _, [], _).

% CHECK TITLE BLOCKS AGAINST BODY TEXT

text_check([Id1, T1, B1], [[Id2, T2, B2]|Rest], Out, R):-
before_in_reading(B1, B2, R),
text_check([Id1, T1, B1], Rest, Out2, R),
append([[Id1,Id2]],Out2, Out).

text_check(B1, [_|Rest], Out, R):-
text_check(B1, Rest, Out2, R),
append([], Out2, Out).

text_check(_, [], [], _).
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%***********************************
%
% Checking the rules on the
% input for title
%
%***********************************

merge_titles([[Id, T1, [X1,X2,Y1,Y2]]|TT],Texts,Merged):-
title_check([Id, T1, [X1,X2,Y1,Y2]],Texts,Blocks),
take_leftuppermost(Blocks,[Id2|_]),
merge_titles(TT,Texts,Merged2),
append([[Id,Id2]], Merged2, Merged).

merge_titles(_,_,[]).

take_leftuppermost([[Id, T1, [X1,Y1,X2,Y2]]|T],[Idb, T1b,
[X1b,Y1b,X2b,Y2b]]):-

take_leftuppermost(T,[Idb, T1b, [X1b,Y1b,X2b,Y2b]]),

take_leftuppermost([[Id, T1, [X1,Y1,X2,Y2]]|T],[Idb, T1b,
[X1b,Y1b,X2b,Y2b]]):-

take_leftuppermost(T,[Id, T1,[X1,Y1,X2,Y2]]),
X1b#>=X1, Y1b#>=Y1.

take_leftuppermost([B],B).

% CHECK TITLE BLOCKS AGAINST BODY TEXT

title_check([Id1, T1, B1], [[Id2, T2, B2]|Rest], Out):-
title_body(B1, B2),
title_check([Id1, T1, B1], Rest, Out2),
append([[Id2, T2, B2]],Out2, Out).

title_check(B1, [_|Rest], Out):-
title_check(B1, Rest, Out2),
append([], Out2, Out).

title_check(_, [], []).

%***********************************
%
% Encoding of Layout rules in
% rectangle model
%
%***********************************



C.3. SpaRe • 175

% GENERAL %

before_in_reading(B1, B2, general):-
precedes_X(B1, B2).

before_in_reading(B1, B2, general):-
meets_X(B1, B2).

before_in_reading(B1, B2, general):-
overlaps_X(B1, B2).

before_in_reading(B1, B2, general):-
precedes_Y(B1, B2).

before_in_reading(B1, B2, general):-
meets_Y(B1, B2).

before_in_reading(B1, B2, general):-
overlaps_Y(B1, B2), precedes_X(B1,B2).

% VERTICAL COLUMNS %

before_in_reading(B1, B2, verticalColumns):-
precedes_X(B1, B2).

before_in_reading(B1, B2, verticalColumns):-
meets_X(B1, B2).

before_in_reading(B1, B2, verticalColumns):-
overlaps_X(B1, B2),
(precedes_Y(B1,B2); meets_Y(B1,B2); overlaps_Y(B1,B2)).

before_in_reading(B1, B2, verticalColumns):-
(precedes_Y(B1, B2); meets_Y(B1,B2); overlaps_Y(B1,B2)),
(precedes_X(B1,B2); meets_X(B1,B2); overlaps_X(B1,B2);

starts_X(B1,B2); finishesi_X(B1,B2); equals_X(B1,B2);
during_X(B1,B2); duringi_X(B1,B2); finishes_X(B1,B2);
startsi_X(B1,B2); overlapsi_X(B1,B2)).

% HORIZONTAL COLUMNS %

before_in_reading(B1, B2, horizontalColumns):-
precedes_Y(B1, B2).

before_in_reading(B1, B2, horizontalColumns):-
meets_Y(B1, B2).
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before_in_reading(B1, B2, horizontalColumns):-
overlaps_Y(B1, B2),
(precedes_X(B1,B2); meets_X(B1,B2); overlaps_X(B1,B2)).

before_in_reading(B1, B2, horizontalColumns):-
(precedes_X(B1, B2);meets_X(B1,B2);overlaps_X(B1,B2)),
(precedes_Y(B1,B2); meets_Y(B1,B2); overlaps_Y(B1,B2);

starts_Y(B1,B2); finishesi_Y(B1,B2); equals_Y(B1,B2);
during_Y(B1,B2); duringi_Y(B1,B2); finishes_Y(B1,B2);
startsi_Y(B1,B2); overlapsi_Y(B1,B2)).

%%%
% RULES FOR TITLES
%%%

title_body(T,B):-
(precedes_Y(T,B);meets_Y(T,B)).

%%%
% RULES FOR FIGURES
%%%

% general

make_one_block(B1, B2):-
rule_figure(general),
figure(B1),
caption(B2),
precedes_Y(B1, B2).

make_one_block(B1, B2):-
rule_figure(general),
figure(B1),
caption(B2),
precedesi_Y(B1, B2).

% smallCaption

make_one_block(B1, B2):-
rule_figure(smallCaption),
figure(B1),
caption(B2),
precedes_Y(B1, B2),
(startsi_X(B1, B2); duringi_X(B1, B2);

finishesi_X(B1, B2); equals_X(B1, B2)).
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make_one_block(B1, B2):-
rule_figure(smallCaption),
figure(B1),
caption(B2),
precedesi_Y(B1, B2),
(startsi_X(B1, B2); duringi_X(B1, B2);

finishesi_X(B1, B2); equals_X(B1, B2)).

%***********************************
%
% Allen’s interval relations
%
%***********************************

% be careful that the threshold should never be
% bigger than half of the smalles document object!!!
% I’m not implementing this check.

precedes_X([_, _, Xf1, _], [Xo2, _, _, _]):-
threshold(T),
Xo2-Xf1 #>= T.

meets_X([_, _, Xf1, _], [Xo2, _, _, _]):-
threshold(T),
Xf1-Xo2 #<T, Xo2-Xf1 #< T.

overlaps_X([Xo1, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xf1-Xo2 #>= T,
Xf2-Xf1 #>= T,
Xo2-Xo1 #>=T.

starts_X([Xo1, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xo1-Xo2#< T, Xo2-Xo1#< T,
Xf1-Xf2#>= T.

during_X([Xo1, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xo1-Xo2 #>= T,
Xf2-Xf1 #>= T.

finishes_X([Xo1, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xf1-Xf2 #< T, Xf2-Xf1 #<T,
Xo2-Xo1 #>= T.

equals_X([Xo1, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xo1-Xo2 #< T, Xo2-Xo1 #< T,
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Xf1-Xf2 #< T, Xf2-Xf1 #< T.

finishesi_X(B1, B2):-
finishes_X(B2, B1).

duringi_X(B1, B2):-
during_X(B2, B1).

startsi_X(B1, B2):-
starts_X(B2, B1).

overlapsi_X(B1, B2):-
overlaps_X(B2, B1).

meetsi_X(B1, B2):-
meets_X(B2, B1).

precedesi_X(B1, B2):-
precedes_X(B2, B1).

% AND ON THE Y AXIS

precedes_Y([_, _, _, Yf1], [_, Yo2, _, _]):-
threshold(T),
Yo2-Yf1 #>= T.

meets_Y([_, _, _, Yf1], [_, Yo2, _, _]):-
threshold(T),
Yf1-Yo2 #<T, Yo2-Yf1 #< T.

overlaps_Y([_, Yo1, _, Yf1], [_, Yo2, _, Yf2]):-
threshold(T),
Yf1-Yo2 #>= T,
Yf2-Yf1 #>= T,
Yo2-Yo1 #>=T.

starts_Y([_, Yo1, _, Yf1], [_, Yo2, _, Yf2]):-
threshold(T),
Yo1-Yo2#< T, Yo2-Yo1#< T,
Yf1-Yf2#>= T.

during_Y([_, Yo1, _, Yf1], [_, Yo2, _, Yf2]):-
threshold(T),
Yo1-Yo2 #>= T,
Yf2-Yf1 #>= T.

finishes_Y([_, Yo1, _, Yf1], [_, Yo2, _, Yf2]):-
threshold(T),
Yf1-Yf2 #< T, Yf2-Yf1 #<T,
Yo2-Yo1 #>= T.
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equals_Y([_, Yo1, _, Yf1], [_, Yo2, _, Yf2]):-
threshold(T),
Yo1-Yo2 #< T, Yo2-Yo1 #< T,
Yf1-Yf2 #< T, Yf2-Yf1 #< T.

finishesi_Y(B1, B2):-
finishes_Y(B2, B1).

duringi_Y(B1, B2):-
during_Y(B2, B1).

startsi_Y(B1, B2):-
starts_Y(B2, B1).

overlapsi_Y(B1, B2):-
overlaps_Y(B2, B1).

meetsi_Y(B1, B2):-
meets_Y(B2, B1).

precedesi_Y(B1, B2):-
precedes_Y(B2, B1).
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SAMENVATTING

This is an abstract of the thesis in Dutch.2

Ruimtelijke structuren zijn essentieel voor perceptie en cognitie. Een groot deel van
onze dagelijkse informatieuitwisselingen betreft de vraag wat er aan de hand is en
waar. Daarnaast vormen ruimtelijke representaties een goede bron voor geometrische
intüıties die een verklaring vormen voor algemene cognitieve taken. Hoe representeren
we objecten die in de ruimte zijn gelocaliseerd? Hoe kunnen we over dit soort objec-
ten redeneren? Bijvoorbeeld bij het opdekken van een tafel, wat zijn vanuit ruimtelijk
oogpunt beschouwd de basis eigenschappen van, zeg, een lepel in relatie tot de rest van
het bestek en de rest van de ruimte? Een ander basisaspect van perceptie is dat wij in
staat zijn verschillende visuele scenes te vergelijken en eenzelfde object in deze ver-
schillende scenes te identificeren. Zo kunnen we vaststellen welke feestelijk gedekte
tafels ‘hetzelfde’ zijn. Logica verschaft middelen voor deze taak.

We moeten voorzichtig zijn als we het begrip ruimte in een logische theorie vatten en
er vervolgens logische hulpmiddelen op loslaten. We kunnen namelijk niet verwach-
ten dat de werkelijke ruimte in al zijn verscheidenheid zonder meer gevat is in onze
formele theorie van deze ruimte. Zo zal onze theorie bepaalde natuurlijke, ruimtelijke
aspecten niet kunnen behandelen, terwijl daarentegen sommige niet-natuurlijke, ruim-
telijke fenomenen een rol zullen spelen. We zijn er echter ook niet op uit een volledige
representatie van de ruimte te geven, maar we proberen de meest in het oog springende
ruimtelijke fenomen uit te drukken.

Onze bijdrage met deze dissertatie is tweeledig. In de eerste plaats onderzoeken wij
nieuwe en bestaande ruimtelijke formalismen met het expliciete doel om logica’s te
identificeren met een redelijke uitdrukkingskracht die tegelijkertijd mooie, meta-logis-
che eigenschapppen bezitten. In de tweede plaats onderzoeken we de haalbaarheid

2The samenvatting is mandatory for all thesis defended in the Netherlands which are written in
English. Many thanks to Eva Hoogland for the translation.
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van praktische toepassingen van dit soort kwalitatieve, ruimtelijke logica’s. Hiertoe
bestuderen we twee symbolische benaderingen van patroonherkenning.

Dit proefschrift bestaat uit zeven technische hoofdstukken, een introductie, een afslui-
tend hoofdstuk en drie appendices. De hoofdstukken 2 tot 5 vormen de theoretische
kern van de dissertatie, de hoofdstukken 6 en 7 vormen de praktische component.

De eerste twee hoofdstukken geven de grenzen van onze benadering aan: Hoofd-
stuk 2 geeft aan wat we wel en niet kunnen uitdrukken, Hoofdstuk 3 behandelt welke
axioma’s we kunnen toestaan. Daarna analyseren we twee soorten uitbreidingen van
deze benadering: logische (Hoofdstuk 4) en axiomatische uitbreidingen (Hoofdstuk 5).

In Hoofdstuk 2 brengen we de topologische interpretatie van modale logica’s op-
nieuw tot leven door deze op te vatten als een algemene taal voor ruimtelijke patronen.
Zo definïeren we een notie van bisimulatie voor topologische modellen aan de hand
waarvan verschillende visuele scenes kunnen worden vergeleken. De resulterende no-
tie van gelijkheid verfijnen we later door Ehrenfeucht-Fraı̈sśe spelen te introduceren
die op ruimtelijke structuren kunnen worden gespeeld.

In Hoofdstuk 3 onderzoeken we de topologische interpretatie van modale logica
in moderne termen, waarbij we gebruik maken van de notie van bisimulatie die we
zojuist hebben geı̈ntroduceerd. We beschouwen modale logica’s met een interessante
topologische inhoud en presenteren ondermeer een nieuw bewijs van de volledigheid
vanS4 ten opzichte van de reëele getallen (eerder bewezen door McKinsey en Tarski)
en ook een volledigheidsbewijs van de logica van eindige verenigingen van convexe
verzamelingen rëeele getallen.

In het volgende hoofdstuk beschouwen we logische uitbreidingen van de topolo-
gische modale benadering van ruimte. We introduceren universele en hybride moda-
liteiten en onderzoeken in hoeverre deze bijdragen aan de uitdrukkingskracht. Ook
bekijken we een ruimtelijke versie van de tijdslogica van Since en Until. Een beknopte
vergelijking met hogere-orde formalismen geeft een algemeen beeld van (uitgebreide)
modale, ruimtelijke, logica’s.

We vervolgen onze modale ruimetelijke onderzoekingen in Hoofdstuk 5 door over
te stappen op affine en metrische geometrieën, en op vectoralgebra. Dit levert een
nieuwe onderverdeling in ruimtelijke patronen die analogieën suggereren tussen voor-
noemde wiskundige theorieën in termen van modale logica’s, conditionele logica’s en
tijdslogica’s. We onderzoeken de uitdrukkingskracht in termen van het ontwerp van de
taal, bisimulaties en correspondentieverschijnselen. We leren verscheidene overeen-
komsten tussen de verschillende gebieden, kennen, en stuiten op open vragen.

In Hoofdstuk 6 kijken we met andere ogen naar model-vergelijkende spelen ten-
einde een maat te ontwikkelen waarmee de gelijkenis van beelden bepaald kan worden.
Dit soort spelen kunnen namelijk niet alleen gebruikt worden om te beslissen of twee
gegeven modellen gelijk zijn, maar ook om een maat op te stellen die de verschillen
binnen eenklassevan modellen bepaalt. We laten zien hoe dit mogelijk is voor het ge-
val van de ruimtelijke modale logicaS4u. Deze benadering geeft ons dus een maat voor
ruimtelijke gelijkheid die gebaseerd is op topologische, model-vergelijkende spelen.
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Als een toepassing geven we een algoritme dat effectief de gelijkheidsmaat berekent
voor een klasse van modellen die volop gebruikt wordt in de informatica: polygonen
van het rëeele vlak. Aan het eind van dit hoofdstuk geven we een overzicht van een
gëımplemeneerd systeem gebaseerd op onze gelijkheidsmaat.

In het laatste hoofdstuk gebruiken we een propositionele taal van kwalitatieve
rechthoeken om de leesvolgorde van documenten te achterhalen. Hiertoe definiëren
we eerst de notie van een ‘document-codeer-regel’ en analyseren we formalismen die
deze regels zouden kunnen uitdrukken, zoals LATEX, SGML talen, etc. Met behulp van
deze regel construeren we vervolgens een detector die de leesvolgorde van documen-
ten achterhaalt. De document-codeer-regels die we bij deze constructie gebruiken zijn
uitgedrukt in de propositionele taal van rechthoeken. Om te zorgen dat ons systeem
de toets aan de realiteit doorstaat, introduceren we de notie van eenthick boundary
interpretationvoor een kwalitatieve relatie. Als we het systeem testen op een collectie
van heterogene documenten, zien we een mate van recall van 89%.

Tot besluit bevat het proefschrift drie appendices. Appendix A is een kort overzicht
van basis topologische noties die gebruikt worden in de Hoofdstukken 2, 3 en 4. Ap-
pendix B geeft een algoritme dat gerichte, transitieve, cyclische graven sorteert volgens
het syteem uit Hoofdstuk 7. In Appendix C komen drie implementaties aan bod die
allen aan dit proefschrift zijn gerelateerd.
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