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“ . . . Many errors have been made in the world which today, it seems,
even a child would not have made. How many crooked, out-of-the-way,
narrow, impassable, and devious paths has humanity chosen in the attempt
to attain eternal truth, while before it the straight road lay open, like the
road leading to a magnificent building destined to become a royal palace.
It is wider and more resplendent than all the other paths, lying as it does
in the full glare of the sun and lit up by many lights at night, but men have
streamed past it in blind darkness. And how many times even when guided
by understanding that has descended upon them from heaven, have they
still managed to swerve away from it and go astray, have managed in the
broad light of day to get into the impassable out-of-the-way places again,
have managed again to throw a blinding mist over each other’s eyes and,
running after will-o’-the-wisps, have managed to reach the brink of the
precipice only to ask themselves afterwards with horror: ‘Where is the way
out? Where is the road?’ The present generation sees everything clearly,
it is amazed at the errors and laughs at the folly of its ancestors, unaware
that this chronicle is shot through with heavenly fires, that every letter in
it cries out aloud to them, that from everywhere, from every direction an
accusing finger is pointed at it, at the present generation; but the present
generation laughs and proudly and self-confidently enters on a series of
fresh errors at which their descendants will laugh again later on.”

from “Dead Souls” by Nikolai Gogol
(translated by David Magarshack)
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Wolf, Peter Gács, Louis Salvail, Richard Cleve, Ronald Cramer, Lance Fortnow, Dieter
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Chapter 1

Theory of Quantum Mechanics

This chapter contains a standard introduction to quantum information theory.
Topics that will be discussed are: the Hilbert space formalism for quantum states,
unitary transformations and the probability rules for measurement outcomes.
Also the theory of mixed states, density matrices and completely positive oper-
ators is discussed.

1.1 Modeling Information

The term ‘bit’ stands for ‘binary digit’, which reflects the fact that it can be described
and implemented by a two-level system. Conventionally, these two levels are indicated
by the labels “zero” and “one”, or “0” and “1”. If we want to capture more than two
possibilities, more bits are needed: with k bits we have 2k different labels.

The abstraction from k two-level systems to the set {0, 1}k of size 2k takes us away
from the physical details of the implementation of a piece of memory in a computer,
and instead focuses on a more mathematical description of information. This ‘physics
independent’ approach to standard information theory has been extremely successful
in the past decades: it enables a general understanding of computational and commu-
nicational processes that is applicable to all the different ways of implementing these
processes. It is for this reason that the Turing machine model of computation gives an
accurate description of both the mechanical computer suggested by Charles Babbage
and the latest Silicon based Pentium IV processors, despite their obvious physical dif-
ferences. This does not mean that Turing’s model ignores the physical reality of build-
ing a computer, on the contrary. The observation that it would be unphysical to assume
an infinite or unbounded precision in the components of a computer is expressed by
Turing’s rule that per time-step only a fixed, finite amount of computational work can
be done.[99] The proper analysis of algorithms in the theory of computational com-
plexity relies critically on the exclusion of computational models that are not realistic.
Such models often give the wrong impression that certain complicated tasks are easy.
(A good example of this is the result that the factorization of integers can be done in

1



2 Chapter 1. Theory of Quantum Mechanics

polynomial time if we assume that addition, multiplication and division of arbitrary
big numbers can be done in constant time. (See Chapter 4.5.4, Exercise 40 in [63]
and [88].) There is, however, also a danger with this axiomatization of the physical
assumptions in information theory: believing that the assumptions are true. This is
what happened with the traditional view on information; forgotten were the implicit
classical assumptions that ignore the possibilities of quantum mechanics. The real-
ization that quantum physics describes a world where information behaves differently
than in classical theory led to the blossoming of several fields—quantum information,
quantum computing, quantum communication, et cetera. In this thesis we will focus
on the differences in query complexity between classical and a quantum computation
(Chapters 3–5), the possibility of ‘self-testing’ a quantum computer (Chapter 6) and
a definition of quantum Kolmogorov complexity (Chapter 7). Before doing so, it is
necessary to define what we mean by quantum information and computation.

1.2 Quantum Information

At the heart of quantum mechanical information theory lies the superposition principle.
Where a classical bit is either in the state “zero” or “one”, a quantum bit is allowed to
be in a superposition of the two states. A qubit with the label q is therefore described
in Dirac’s bra-ket notation by the linear combination:

|q〉 = α|“zero”〉+ β|“one”〉,

where for the complex valued amplitudes α, β ∈ C, the normalization restriction
|α|2 + |β|2 = 1 applies. Here |α| denotes the norm of α: if α = a + bi, then |α| :=√
a2 + b2. Alternatively we can write |α| :=

√
αα∗, where α∗ is the complex conjugate

a − bi of the complex value α = a + bi. In this formalism, the state space of a single
qubit is built up by the unit vectors in the two-dimensional Hilbert space H2. For k
qubits, there are 2k basis states and hence the corresponding superposition is a linear
combination of all 2k possible strings of k bits:

|q1 · · · qk〉 =
∑

i∈{0,1}k

αi|i〉.

Again it is required that the amplitudes αi obey the normalization condition:
∑

i |αi|2 =
1. (In Section 1.4 we will see the reason behind this stipulation.) The state space of
k qubits is the k-fold tensor product of the state space of a single qubit. This space is
identical with a single 2k-dimensional Hilbert space:

|q1 · · · qk〉 ∈ H2 ⊗ · · · ⊗ H2 = H2k .

For our purposes we will only use finite sets of quantum bits, so there is no need to
look at infinite-dimensional Hilbert spaces.
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1.3 Time Evolution of Quantum Bits

Quantum mechanics only allows transformations of states that are linear and respect
the normalization restriction. When acting on an n-dimensional Hilbert space, these
are the n × n complex valued rotation matrices that are norm preserving: the unitary
matrices of U(n). It is easy to show that this corresponds exactly to the requirement
that the inverse of U is the conjugate transpose U ∗ of the matrix.

The effect of a unitary transformation U on a state x is exactly described by the
corresponding rotation of the vector |x〉 in the appropriate Hilbert space. For this
reason, “U” stands both for the quantum mechanical transformation as well as for the
unitary rotation:

|U(x)〉 = U |x〉 = U

(

∑

i

αi|i〉
)

=
∑

i

αiU |i〉 =
∑

i

αi

∑

j

Uji|j〉,

where Uji denotes the matrix element of U positioned at the j-th row and the i-th
column. It follows from the associativity of matrix multiplication that the effect of two
consecutive transformation U and W is the same as the single transformation (W ·U).
Just as matrix multiplication does not commute, so does the order of a sequence of
unitary transformations matter: in general WU 6= UW . We can restate this in a more
intuitive way by saying that it makes a difference if we first do U and then W , or the
other way around. A typical example of this phenomenon is given by the matrices

W =

(

1 0
0 −1

)

and U =

(

0 1
1 0

)

, (1.1)

with clearly WU 6= UW .

1.4 Measurements

When measuring the state |x〉 =
∑

i αi|i〉, the probability of observing the outcome
“i” equals |αi|2. This explains the normalization restriction on the amplitudes: the
different probabilities have to add up to one. But what exactly is a ‘measurement’ and
an ‘observation’, and how do we describe this mathematically? These are thorny issues
that this thesis will leave untouched. Here we will only give a formal description of the
measurement process and a short explanation of why this is such a problematic part of
quantum mechanics.

The possible outcomes “i” of x correspond to a set of orthogonal vectors {|mi〉} of
the measuring device. This device can be our own eye or some kind of machine, but
the crucial point is that ‘measuring x’ implies ‘interacting with x’. The effect on x of
such a measurement is that the state collapses according to the outcome “mi” of our
observation. This is described by the transformation:

∑

i

αi|i〉 7−→
outcome mi

|i〉. (1.2)
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The above described collapse is a non-unitary transformation. This is typical when we
try to describe the behavior of x as it interacts with a system that lies outside of the
state. (We say that x is an ‘open system’.) When we view x and the measurement de-
vice together during the observation, the evolution becomes unitary again. Our current
example is then described by the transformation:

∑

i

αi|i〉 ⊗ |measurement device〉 7−→
∑

i

αi|i〉|outcome mi〉.

The problem with this last description is that it no longer specifies the specific outcome
“i” that we seem to observe. It is here where the debate on the measurement problem
starts and our discussion ends.

For the purposes of this thesis it is more convenient to use the terminology of the
collapsing quantum state. We will therefore describe the effect of a measurement as in
Equation 1.2 for practical reasons. (This does not imply that the author really thinks
that there is such a collapse, but these issues are outside the scope of this text. They
concern the interpretation of quantum mechanics, which is irrelevant for the purposes
of this thesis.)

We just described the traditional ‘Von Neumann measurement’ where we observe
the state x in a canonical basis spanned by the basis vectors i. Other, more subtle,
measurement procedures are also possible by choosing an in- or over-complete basis.
We will postpone the description of these two options to the point when we discuss the
density matrix formalism, which is more suitable for the general theory of interacting
quantum mechanical systems.

1.5 Limitations of Dirac’s Notation

The braket notation that we discussed above is tailor-made for the description of closed
quantum mechanical systems. By this we mean the evolution of states that do not
interact with an exterior environment. When we also want to consider the behavior of
open systems, the ket-notation becomes less suitable. This was already obvious in the
discussion of the measurement procedure where we had to expand the set of unitary
operations with a probabilistic procedure that ‘collapses’ the quantum state to one of
the basis states. One cannot help but feel uncomfortable about this sudden change of
rules: is it not possible to deal with open and closed quantum systems in the same
way? Luckily, we find in the formalism of density matrices a positive answer to this
question.

1.6 Density Matrices

An n-dimensional pure state x can be expressed as a normalized vector |x〉 in the
Hilbert spaceHn. The complex conjugate |x〉∗ of this vector is the bra 〈x|, which is an
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element of the adjoint space H∗
n. By taking the direct product between the ket |x〉 and

the bra 〈x|, we thus obtain an n × n complex valued, Hermitian matrix: the density
matrix of x.

As an example, for the state |x〉 =
∑

i αi|i〉, the density matrix is:

|x〉〈x| =

(

∑

i

αi|i〉
)(

∑

j

α∗
j〈j|
)

=
∑

i,j

αiα
∗
j |i〉〈j|.

In the case of a single qubit with the ket description |q〉 = α|0〉+β|1〉, this leads to the
2× 2 matrix in the standard basis

|q〉〈q| =

[

|α|2 αβ∗

α∗β |β|2
]

.

From now on, the density matrix of the state x will be denoted by the same symbol
x, and the fact that a matrix is a density matrix will be indicated by its square brackets.

The great advantage of this formalism is that it also allows the description of an
ensemble of pure quantum states. If we have such a state ρ, which is a probabilistic
mixture of the pure states |xt〉 with probabilities pt, then the matrix ρ is the weighted
linear combination of the corresponding pure states matrices,

ρ =
∑

t

pt · |xt〉〈xt|,

with pt ≥ 0 and
∑

t pt = 1.
Every density matrix that can be written as such a convex combination of pure

states is a legal, or ‘allowed’, state, where allowed means: “allowed by the laws of
quantum physics”. It follows from linear algebra that this restriction coincides with
the requirement that the matrix is a Hermitian, positive semidefinite matrix with unit
trace.

The spectral decomposition of a proper density matrix ρ is done in terms of its
eigenvalues λt and eigenvectors |ωt〉, by the equality

ρ =
∑

t

λt|ωt〉〈ωt|. (1.3)

This shows that we can interpret ρ as the mixture {(λt, |ωt〉)}t, where the states ωt are
pure and mutually orthogonal.

The above decomposition gives a convenient way of assigning a mixture to a
given density matrix. It is important to realize, however, that a density matrix cor-
responds to a whole family of possible mixtures. Take, for example, the ensembles
{(1

2
, |0〉), (1

2
, |1〉)} and {( 1

2
, 1√

2
(|0〉 + |1〉)), ( 1

2
, 1√

2
(|0〉 − |1〉))}, which have the same

density matrix:

1

2

[

1 0
0 0

]

+
1

2

[

0 0
0 1

]

=

[

1
2

0
0 1

2

]

=
1

2

[

1
2

1
2

1
2

1
2

]

+
1

2

[

+1
2
−1

2

−1
2

+1
2

]

.
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We shall see that this implies that these two mixtures are indistinguishable from each
other; it is therefore more accurate and less confusing to consider them as equivalent
mixtures.

The density matrix of a qubit ρ in the standard basis is always of the form

ρ(p, α) =

[

p α∗

α 1− p

]

,

with the probability p between 0 and 1 and the ‘off-diagonal term’ |α|2 ≤ p(1− p). If
|α|2 = p(1− p) then ρ is a pure state with |ρ〉 =

√
p|0〉+ α√

p
|1〉 (or |ρ〉 = |1〉 if p = 0);

otherwise the qubit ρ corresponds to a mixture.

1.7 Separated Systems

We need the formalism of density matrices to be able to describe the evolution of
an open system. By ‘open’ we mean that there is a possible interaction between the
quantum mechanical state and its environment. An example of such a situation was
already mentioned when we saw how a qubit changed into a probabilistic mixture
after it interacted with a measurement device outside the qubit system. An important
operation in this context is the ‘tracing out’ operation that describes how we can ignore
a part of a quantum system.

Definition 1 (Partial trace) Let HAB be the combination of the two Hilbert spaces
HA and HB , with the respective bases {|ai〉} and {|bj〉}. The partial trace trB of a
state ρ inHAB is defined by

trB(ρ) :=
∑

j

〈bj|ρAB|bj〉,

where 〈x|ρ|y〉 expresses the inner product of the row vector 〈x|, the matrix ρ and the
column vector |y〉.

When we are dealing with a general state ρ and we want to describe its content for
the subsystem HA, we indicate this by the notation “ρA” Hence in terms of the above
definition we would write ρA := trB(ρAB). Conversely, we also have ρB := trA(ρAB).

1.8 Von Neumann Entropy and Fidelity

The eigenvalues λi of a density matrix are always nonnegative and sum up to one. If we
decompose a mixture into a linear combination of orthogonal pure states, then the λ’s
will correspond to the probabilities of the respective eigenvectors. (See Equation 1.3.)
Although the eigenvectors of a density matrix are not always unique, its eigenvalues
are. This allows us to unambiguously define the Von Neumann entropy S(ρ) of a state,
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which reflects how ‘mixed’ or random ρ is. As a result, pure states will have zero
entropy.

Definition 2 (Von Neumann entropy) The Von Neumann entropy of a mixed state ρ
is defined as

S(ρ) = S

(

∑

i

pi|φi〉〈φi|
)

:= −
∑

i

pi log pi,

where
∑

i pi|φi〉〈φi| is a spectral decomposition of ρ in its eigenvectors.

If we understand the logarithm of the matrix ρ to be the standard Taylor expansion:
(ρ − I) − 1

2
(ρ − I)2 + 1

3
(ρ − I)3 − · · · , then the above definition can also be written

as S(ρ) := −tr(ρ log2 ρ). It should be clear that the Von Neumann entropy equals the
Shannon entropy of the eigenvalues of the density matrix ρ.

A source E = {(ρi, pi)} has an associated Von Neumann entropy S(ρ) of the av-
erage state ρ =

∑

i piρi. Schumacher’s noiseless coding theorem [83] shows how to
obtain an encoding with average letter-length S(ρ) for a source of pure states, where
the fidelity of the encoding goes to 1 as the number of letters emitted by the source goes
to infinity. (A survey can be found in Preskill’s lecture notes [78, page 190], Nielsen’s
thesis [73, Chapter 7], or the standard book by Nielsen and Chuang [74].)

How close two mixed states ρ and σ are, can be expressed by the fidelity be-
tween the two density matrices. This notion generalizes the inner product between
two Hilbert space vectors for pure states. The matrix ρ represents a pure state if and
only if ρ2 = ρ, in which case we can also say

√
ρ = ρ. In general, the square root of a

mixed state is defined by

√
ρ =

√

∑

i

pi|φi〉〈φi| :=
∑

i

√
pi|φi〉〈φi|.

We will use this root in the following definition.

Definition 3 (Fidelity) The fidelity F(,b)etween two density matrices ρ and σ is de-
fined by

F(ρ, σ) := tr

(

√√
ρ · σ · √ρ

)

. (1.4)

For pure states φ and ψ, the above definition coincides again with the familiar |〈φ|ψ〉|
(although some authors use the square of this value). If F(ρ, σ) = 1, then ρ = σ, and
vice versa.
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1.9 Operations on Mixed States

A unitary transformation U maps the pure state |x〉 to the new pure state U |x〉. The
latter can be written as the density matrix U |x〉〈x|U ∗. In the language of density matri-
ces, the corresponding transformation U is therefore calculated by ‘sandwiching’ the
matrix x between U and its conjugate U ∗:

U (|x〉〈x|) := U |x〉〈x|U ∗.

If we have a mixed state ρ, then U acts linearly on the eigenvectors of ρ. The following
equation shows us that this calculation can be done without having to decompose ρ,
and that our sandwich expression therefore also holds for mixed states:

U (ρ) = U

(

∑

t

λt|ωt〉〈ωt|
)

=
∑

t

λt ·U (|ωt〉〈ωt|)

:=
∑

t

λt · U |ωt〉〈ωt|U ∗

= U

(

∑

t

λt · |ωt〉〈ωt|
)

U∗

= U · ρ · U ∗.

It is clear that the positive eigenvalues λt of ρ remain unchanged, and that U only
rotates the eigenvectors |ωt〉 to the new eigenstates U |ωt〉.

Unitary operations are an example of completely-positive, trace preserving maps:
every positive semidefinite matrix is mapped to (another) positive semidefinite matrix,
and the trace of the matrix remains unaltered. Complete-positivity, in combination
with the preservation of the trace, assures us that the result of a transformation will be
a proper state if we started with a proper one.

Besides the unitary functions, there are other transformations that are possible in
quantum mechanics. Just as mixed states are composed of pure states, so can a positive
map be a linear combination of matrix multiplications similar to the ones we discussed
above. An example of such a non-unitary mapping is the mapping P , corresponding
to a measurement of a qubit in the standard basis {0, 1}. This function consists of two
‘projectors’ P0 = |0〉〈0| and P1 = |1〉〈1| that transform a qubit ρ into a probabilistic
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mixture of the states 0 and 1. Explicitly:

P (ρ) = P

([

p α∗

α 1− p

])

= P0

([

p α∗

α 1− p

])

+ P1

([

p α∗

α 1− p

])

=

[

p 0
0 0

]

+

[

0 0
0 1− p

]

=

[

p 0
0 1− p

]

.

We see that the eigenvalues of the new density matrix are p and 1 − p with the corre-
sponding eigenvectors |0〉〈0| and |1〉〈1|. In general, the eigenvalues of ρ will change
under this transformation and hence there is no unitary operation that can establish the
above mapping. In the next section we will give a formal description of all transforma-
tions, such as the above P , that are allowed by quantum physics.

1.10 Operator Sum Representation

The following requirements for an operator E are necessary and sufficient for E to be
a proper quantum mechanical transformation:

1. The mapping E can be written as a set of matrices {Ei}i with which it maps a
state ρ to the linear combination

∑

iEi · ρ · E∗
i .

2. The set of operators {Ei} has to obey the identity restriction
∑

k E
∗
i · Ei = I.

(Note the change of order of E and E∗ in the multiplication.)

These two requirements exactly describe the set of completely-positive, trace preserv-
ing maps. Complete-positivity means that we require both E as well its trivial ex-
tensions E ⊗ I to higher dimensions to be positive. This is a stronger condition than
positivity. An example of a positive but not completely-positive map is the partial
transpose T , which is defined by T (ρ) = ρT .

We have properly extended the set of unitary transformations and measurements by
the above ‘operator sum’ formalism. An example of this is the mapping that erases a
qubit and replaces it with the value zero. This non-unitary function is the combination
of two operators

E =

{(

1 0
0 0

)

,

(

0 1
0 0

)}

,
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and has the same effect on every qubit ρ, namely

E(ρ) = E

([

p α∗

α 1− p

])

=

(

1 0
0 0

)[

p α∗

α 1− p

](

1 0
0 0

)

+

(

0 1
0 0

)[

p α∗

α 1− p

](

0 0
1 0

)

=

[

p 0
0 0

]

+

[

1− p 0
0 0

]

= |0〉〈0|.

We previously argued that a measurement has a non-unitary effect on a state be-
cause we ignored its interaction with an outside system (the measurement device). This
lesson holds for all allowed transformations:

Every completely-positive, trace preserving transformation E of a system
HA can be viewed as a part of unitary mapping UE on a bigger system
HA ⊗ HB . That E by itself appears to be non-unitary is due to the fact
that we ignore the spaceHB.

It can be shown that for the extension of the system it is sufficient to assume that the
dimension of the appended spaceHB is twice as large as that ofHA, and that its initial
state is |0 · · · 0〉. Hence, for every allowed quantum mechanical transformation E that
acts on an n-dimensional system, there exists a unitary matrix UE ∈ U(n3) such that

E(x) = trB

[

UE(x⊗ |0B · · · 0B〉〈0B · · · 0B|)U ∗
E

]

for all x. This is, in more general terms, the difference that we encountered between
the Equations 1.2 and 1.3. The non-unitary ‘collapse’ associated with an observation,
or any other kind of interaction, is again a unitary transformation when we incorporate
the measurement device into the description of the event.

The converse of the earlier statement also holds: every mapping that can be writ-
ten as a traced-out, unitary transformation on a larger Hilbert space is a completely-
positive, trace preserving mapping.

In the literature on quantum information theory the linear functions on density
matrices are sometimes called ‘super operators’. We thus have the following definition.

Definition 4 (Completely positive super operator/CPSO) A transformation E is a
completely positive super operator, or CPSO, if only if E is linear, trace-preserving,
and completely positive.

The reader is referred to the standard book by Asher Peres[77] or the article by Ben-
jamin Schumacher[84] for a more extended and rigorous treatment of this ‘operator
sum representation’.



Chapter 2

Quantum Information and Computation

In the previous chapter we described the foundations of quantum information and
the quantum mechanical transformations that are possible with it. The central
idea of computational complexity theory is to assign different ‘costs’ to different
operations. Typically, a fixed set of elementary operations is used to construct
all other transformations. The computational cost is then expressed as the min-
imal number of elementary operations that is necessary to establish the desired
transformation.

2.1 Some Elementary Operations

In quantum computing and communication we look at the possibilities of transforming
information as is allowed by the laws of quantum mechanics. We usually decompose
such quantum algorithms in a series of small elementary steps that consist of one and
two qubit operations. The following elementary unitary gates will be used throughout
the rest of the thesis.

Definition 5 (Some elementary quantum gates) The Not gate: This is the gate that
we know in classical computation with the additional characteristic that it re-
spects the superposition of a qubit:

Not(α|0〉+ β|1〉) = β|0〉+ α|1〉.

Phase Flip: The Flip gate changes the phase of a qubit conditional on its value:

Flip(α|0〉+ β|1〉) = α|0〉 − β|1〉.

Phase Rotation: A more general phase rotation is provided by the Phase operation,
which has a free parameter φ that determines the angle of the phase change:

Phaseφ(α|0〉+ β|1〉) = α|0〉+ eiφβ|1〉.
(Note: Flip = Phaseπ.)

11
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Hadamard transform: This transformation H maps the zero and one state to the fol-
lowing superpositions of the two basis states:

H|0〉 = 1√
2
(|0〉+ |1〉) and H|1〉 = 1√

2
(|0〉 − |1〉).

The Hadamard is its own inverse (H2 = I).

General Rotation: The general rotation R with angles α, θ, φ is the unitary one qubit
transformation with eigenvectors |ψ〉 = cos( θ

2
)|0〉 + eiφ sin( θ

2
)|1〉 and |ψ⊥〉 =

sin( θ
2
)|0〉 − eiφ cos( θ

2
)|1〉. The corresponding eigenvalues are indicated by the

equalities

Rα,θ,φ|ψ〉 = |ψ〉 and Rα,θ,φ|ψ⊥〉 = eiα|ψ⊥〉,

and are therefore 1 and eiα.

Controlled-Not: The controlled-not is a two-qubit operation that applies the Not gate
to the target bit if the control bit equals “1”; otherwise it leaves the target un-
changed:

CNot|x, y〉 = |x, y ⊕ x〉,

for all x, y ∈ {0, 1}.

Controlled-Flip: The controlled-flip is, like the CNot, a two-qubit operation. It ap-
plies the Flip gate if both bits equals “1”; otherwise it leaves the state unchanged:

CFlip|x, y〉 = (−1)xy|x, y〉,

for all x, y ∈ {0, 1}.

2.2 Fault Tolerant and Universal Quantum Gates

It has been shown that there exists finite sets of quantum gates that are universal in the
following sense. Consider the networks that can be constructed from a countable set
of gates {G1, G2, . . . }. Each network will implement a unitary transformation, and we
want to consider if any finite-dimensional unitary transformation can be implemented
in such a way. Clearly, because the set of networks is countable, we cannot hope
that we can construct every element of U(n) exactly. Hence, we will have to aim
for the approximation (within an arbitrary small error) of every such element. It has
been proven that there are indeed universal sets of quantum gates with which this can
be achieved, and these sets can be remarkable simple. The following collection was
described in [26] and has the additional useful feature that the gates are ‘fault-tolerant’
[74].
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Fact 1 (Universal, Fault Tolerant Sets of Quantum Gates [26]) With the Hadamard
gate H, the controlled-not CNot and the π

4
phase gate Rπ/4,0,0 any other unitary trans-

formation can be approximated within an arbitrary small error (with respect to some
distance measure on the set of operators). Also, these three gates can be implemented
in a fault-tolerant way.

2.3 Quantum versus Classical Query Complexity

The theory of quantum computation investigates if, and if so, how, we can use quantum
mechanical effects to solve computational problems more efficiently than we can do by
classical means. So far, the strongest indication that there maybe such a difference in
computational power between quantum and classical computing is provided by Peter
Shor’s factoring algorithm[91]. Unfortunately, the result by Shor does not prove that
there is a superpolynomial separation between the two models of computation. This
is because the classical time complexity of factoring and discrete logarithms is still
unknown, despite more than two thousand years of effort, starting with Eratosthenes’s
sieve in 300 B.C.

A complexity measure for which we do have rigorous results is provided by the the
black-box, or oracle, model of computation. The algorithms of Deutsch [38], Deutsch
& Jozsa [39], Berthiaume & Brassard [23], Bernstein & Vazirani [22], Simon [92],
Grover [48], and Buhrman & van Dam [28] give examples of problems for which we
have a quantum reduction in the query complexity of a problem, whereas the lower
bounds of Jozsa [59], Bennett et al. [19], and Beals et al. [10] show that there are also
limits to the advantage that quantum computation can give us. The general picture that
has emerged from these results is that we can only expect a superpolynomial difference
between classical and quantum computation if we can use the specific structure of the
problem that we try to solve. The promise on the function of Simon’s problem is a typ-
ical example of such a structure that establishes an exponential quantum improvement
over the classical complexity.[92] To find more structured problems that allow such a
gain is one of the quests for researchers in quantum complexity theory.

Consider a problem that is defined in terms of n (unknown) values f(1), . . . , f(n).
The (probabilistic) query complexity of such a problem is the minimum number of
times that an algorithm has to ‘consult’ the string f(1), . . . , f(n) to solve the problem
(with high probability). A typical example of this setting is the calculation of the OR of
n bit values: the question whether there is an index iwith f(i) = 1. The classical query
complexity of this task is n, whereas in the quantum setting we only need O(

√
n)calls

to f to solve the problem. We therefore say that we have a ‘quadratic’ separation
between the classical and the quantum query complexity of the OR function. The
question is which tasks allow a quantum reduction in the query complexity, and if so,
how much.

The reason why quantum algorithms sometimes require less queries starts with the
superposition principle of quantum mechanics. A single call “i” to the function f
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establishes the evolution |i〉|b〉 7→ |i〉|f(i) ⊕ b〉 (where ⊕ denotes addition modulo
two), which in classical computation is the best we can expect from an f -query. But
by the rules of quantum mechanics, we can also consult f in superposition. Hence,
with a single call we can create a state that depends on several values f(i):

∑

i

|i〉 ⊗ (αi|0〉+ βi|1〉) 7−→
one f -query

∑

i

|i〉 ⊗ (αi|f(i)〉+ βi|f(i)⊕ 1〉).

It is this ‘parallelism’ in combination with the quantum mechanical phenomenon of
interference that allows us to solve some problems more efficiently than is possible
with classical protocols.

2.4 Earlier Results in Quantum Computing

This thesis uses, and builds on, a combination of earlier results in quantum computa-
tion. We are especially concerned with the query complexity of procedures that prepare
a state that depends on a black-box function. For example, how often do we have to
read out the bit values f(i) if we want to create the state

∑

i (−1)f(i)αi|i〉? The fol-
lowing fact shows us that this can be done with the minimum of a single query.

Fact 2 (Phase-kick-back trick [31]) If we can query the function f in quantum me-
chanical fashion as follows:

|i〉 ⊗ |b〉 7−→ |i〉 ⊗ |b⊕ f(i)〉

with f(i), b ∈ {0, 1}, then the phase changing transition

∑

i

αi|i〉 7−→
∑

i

(−1)f(i)αi|i〉

can be established with only one call to the unknown bit values of f .

Proof: First, we append to the superposition of |i〉 states the qubit 1√
2
(|0〉−|1〉). Then,

in superposition, we add (modulo two) the function value f(i) to this bit. For a specific
value of i, this yields the evolution

|i〉 ⊗ 1√
2
(|0〉 − |1〉) 7−→ |i〉 ⊗ 1√

2
(|0⊕ f(i)〉 − |1⊕ f(i)〉) (2.1)

=

{

+|i〉 ⊗ 1√
2
(|0〉 − |1〉) if f(i) = 0

−|i〉 ⊗ 1√
2
(|0〉 − |1〉) if f(i) = 1

(2.2)

Hence, by the superposition principle, this gives the desired evolution with only one
query to the function f . ut

Using this fact, we can easily prove the following core result.
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Fact 3 (Single Query Parity Trick[31, 38]) Let f : {0, 1} → {0, 1}. There exists a
deterministic quantum algorithm that computes the parity bit f(0) ⊕ f(1) with one
query to the function f . This algorithm works in constant time.

Proof: Construct the following initial state:

|Initial〉 = 1
2
(|0〉+ |1〉)⊗ (|0〉 − |1〉). (2.3)

Next, we add (modulo two) the bit values f(i) to the rightmost bit, where the index
i ∈ {0, 1} is described by the first bit of the initial state. Note that by the superposi-
tion of this rightmost bit, both values f(0) and f(1) are also queried in superposition.
Applying f in such a way establishes the following evolution on the two qubits:

|i〉 ⊗ |b〉 7−→ |i〉 ⊗ |b⊕ f(i)〉,

for b ∈ {0, 1}. This results in the following outcome when applied to the initial state
mentioned in the beginning of the proof:

1
2
(|0〉+ |1〉)⊗ (|0〉 − |1〉) if f(0) = f(1) = 0

1
2
(|0〉 − |1〉)⊗ (|0〉 − |1〉) if f(0) = 0, f(1) = 1

−1
2
(|0〉 − |1〉)⊗ (|0〉 − |1〉) if f(0) = 1, f(1) = 0

−1
2
(|0〉+ |1〉)⊗ (|0〉 − |1〉) if f(0) = f(1) = 1.

Hence, if we apply a Hadamard transformation to the first register, we obtain

|Final〉 = (−1)f(0)|f(0)⊕ f(1)〉 ⊗ (|0〉 − |1〉).

Observing the first bit of this final state yields the correct answer f(0)⊕ f(1) without
error. ut

2.5 More Classic Quantum Results

In 1993 Bernstein & Vazirani gave the following example of a family of functions that
are more easily distinguished with quantum queries than with classical ones.

Fact 4 (Bernstein & Vazirani’s inner-product problem [22, 31]) Let the black-box
function gs : {0, 1}n → {0, 1} be defined by

gs(x) = (x, s) =
n
∑

i=1

sixi mod 2, (2.4)

where s = s1 . . . sn ∈ {0, 1}n is an unknown n-bit mask. A quantum computer can de-
termine the value s with one call to the function gs, whereas any probabilistic, classical
algorithm needs at least n queries to gs to perform the same task.



16 Chapter 2. Quantum Information and Computation

Proof: (See [22] for the original proof, and [31] for the single query version of it.)
First, initialize the (n+ 1)-qubit register

|start〉 = 1√
2n

∑

x∈{0,1}n

|x〉 ⊗ 1√
2
(|0〉 − |1〉).

By XOR-ing the rightmost bit with the function value gs(x) (cf. Fact 2), we obtain the
state

1√
2n

∑

x∈{0,1}n

(−1)(s,x)|x〉 ⊗ 1√
2
(|0〉 − |1〉), (2.5)

with only one gs-call. The bit string s is then easily obtained with an n-fold Hadamard
transform on the first n bits:

1√
2n

∑

x∈{0,1}n

(−1)(s,x)|x〉 7−→
H⊗n

|s〉, (2.6)

which concludes the quantum algorithm.
For the classical lower bound we observe that every traditional query will only give

(maximally) one bit of information about the n bits of s. ut
The above result uses the unitarity of H⊗n and its connection with the inner-product
function. In Chapter 5 we will derive a similar result for a different family of unitary
matrices and the Legendre function that it uses.

Because the Hadamard is its own inverse we have, in fact, the following ‘bi-
directional statement’ about this transform

1√
2n

∑

x∈{0,1}n

(−1)(x,s)|x〉 ←− H⊗n −→ |s1s2 · · · sn〉. (2.7)

The above leads to the observation that if we want to know the string s1 · · · sn, it
is sufficient to have a superposition with phase values of the form (−1)(x,s), for every
x ∈ {0, 1}n. This is a well-known result in quantum computation and has been used
several times to underline the differences between quantum and classical information
processing.[22, 31, 49, 97]

Another key result in quantum computation is the square-root speed-up that one
can obtain when querying a database for a specific element.

Fact 5 (Grover’s search algorithm [48]) Let f(1), . . . , f(n) be a string of n−1 zeros
and one entry f(s) = 1. With a quantum computer the unknown value s can be
determined exactly with only

⌈

π
4

√
n
⌉

queries to the function f .

Proof: See the original article by Lov Grover[48], or better yet, the excellent analysis
of it by Boyer et al.[25] ut
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2.6 Notation

We use x, y, . . . to denote finite, classical Boolean strings. When we write |x〉, we
mean the quantum state vector in the standard basis that corresponds to the classical
string x. In general we use φ, ψ, . . . to denote pure quantum states. Mixed states
are represented by the letters ρ, σ et cetera. We also use uppercase letters X,Y, . . .
for (mixed) quantum states that are strings of qubits. The terms quantum state, qubit
string, and quantum register are used interchangeably (sometimes to emphasize the
purpose of the quantum state at hand). Lower-case letters i, j, k, l,m, n denote integer
indices or string lengths.

For classical strings over the alphabet {0, 1}, `(x) denotes the length of the string.
For finite sets A, |A| denotes the cardinality of the set. Concatenation of x, y is written
as the juxtaposition xy, and the n-fold concatenation of x is written xn.

For Hilbert spaces, we write Hd for the d-dimensional Hilbert space and Hm for
the m-fold tensor product space H⊗ · · · ⊗ H. A pure quantum state φ represented as
a vector in such a Hilbert space is denoted by the ket |φ〉.

We slightly abuse notation by sometimes letting the state symbols φ, ρ, . . . also
stand for the corresponding density matrices. Hence, a pure state φ as a Hilbert space
vector is denoted by |φ〉, whereas its density matrix |φ〉〈φ| can also be indicated by φ.

An ensemble E is a specific distribution p1, p2, . . . over a set of (mixed) states
ρ1, ρ2, . . . . We denote this by E = {(ρi, pi)}. The average state of such an ensemble E
is ρ =

∑

i piρi. An average state corresponds to several different ensembles. When an
ensemble is used to produce a sequence of states ρi according to the probabilities pi,
we speak of a source E .

The length of a quantum state is denoted by `(X), by which we mean the smallest
` for which X sits in the 2`-dimensional Hilbert space (in the standard basis).

A transformation S on the space of density matrices is allowed by the laws of
quantum mechanics if and if only it is a completely positive, trace preserving mapping.

Throughout this thesis, results that were already known are indicated as ‘facts’.





Chapter 3

Quantum Oracle Interrogation

In this chapter we discuss the quantum query complexity of the ‘oracle inter-
rogation’ problem: For a black-box function z : {1, . . . , n} → {0, 1}, how
many queries are necessary to recover (with high probability) the n unknown
bits z1 · · · zn? First, we will describe a quantum interrogation algorithm that —
with high probability— obtains the n bits using only n

2
+

√
n black box queries.

Next, an ‘approximating version’ of interrogation is discussed. It is shown how
with kn

2
black box queries one can produce an approximation of z that gets

n

2
+
√

k(n − k) bits (expected) of z1 · · · zn correct.

3.1 Introduction

Consider a quantum computer in combination with a black-box function z that de-
scribes an n bit string z1 · · · zn. We will show how n

2
+
√
n calls to the oracle are

sufficient to guess the whole content of the oracle (being an n bit string) with probabil-
ity greater than 95%. This contrasts the power of classical computers, which require n
calls to achieve the same task. From this result it follows that any function with the n
bits of z as input, can be calculated using n

2
+
√
n queries to z provided that we allow a

small probability of error. It is also shown that an error probability ε can be established
by n

2
+O(log(1

ε
))
√
n oracle queries.

In the second part of the chapter, ‘approximate interrogation’ is discussed. This is
when only a certain fraction of the n bits of z are requested. Also for this scenario does
the quantum algorithm outperform the classical protocols. An example is given where
a quantum procedure with n

10
queries returns a string of which 80% of the bits are

correct. Any classical protocol would need 3n
5

queries to establish such a correctness
ratio.

19
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3.2 Known Quantum Query Complexity Bounds

Various articles [10, 40, 72] have determined several lower bounds on the capability of
quantum computers to outperform classical computers in the black-box setting. These
bounds refer to the required amount of queries to a black-box or oracle (with a domain
size n) in order to decide some general property of this black-box. For example, if we
want to know (with bounded error) the parity of the n values, then it is still necessary
for a quantum computer to call the black-box n

2
times[10, 72]. It has also been shown

that for the exact calculation of certain functions (the bitwise OR for example) all n
calls are required[10].

Here, we present an upper bound on the number of black-box queries that is suffi-
cient to compute any function over the n bits provided that we allow a small probability
of error. More specifically, it will be shown that for every unknown black-box, there is
a potential speed-up of almost a factor of two if we want to know everything there is
to know about the oracle function. By this the following is meant. If the domain of the
oracle has size n, a classical computer will have to apply n calls in order to know all n
bits describing the oracle. Below, it will be proven that a quantum computer can per-
form the same task with high probability using only n

2
+
√
n queries. From this result it

immediately follows that any function F on the domain {0, 1}n can be calculated with
a small two-sided error using only n

2
+
√
n calls.

The factor-of-two gain can be increased by going to approximating interrogation
procedures. If we do not longer require to know all of the n bits but are instead already
satisfied with a certain percentage of correct bits, then the difference between classical
and quantum computation becomes bigger. An example of this occurs when we want
to guess the string such that we can expect 80% of the bits to be correct. A quantum
computer can do this with one-sixth of the queries that a classical computer requires:
n
10

quantum calls versus 3n
5

classical calls. This also illustrates that the procedure de-
scribed here is not a ‘superdense coding-in-disguise’, which would allow a reduction
by only a factor of two[21].

3.3 Definition of the Interrogation Problem

The setting for this chapter is as follows. We try to investigate the potential differences
between a quantum and a classical computer when both cases are confronted with an
oracle z. The only thing known in advance about this z is that it is a binary-valued
function with a domain of size n. We will view this oracle z : {1, . . . , n} → {0, 1}
as the n-bit string it defines: z = z1 · · · zn ∈ {0, 1}n. The goal for both computers
is to obtain the complete string z with high probability with as few oracle calls to
z as possible. The phrase “with high probability” means that for every possible z
the final answer of the algorithm should be exactly z with probability at least 95%.
(The probability is thus taken over the runs of the algorithm if we would repeat the
protocol for a specific z.) Note that we are primarily concerned with the complexity
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of the algorithm in terms of oracle calls, both the time and space requirements of the
algorithms are not considered when analyzing the complexity differences. The model
of an oracle as it used here goes also under the name of black-box, or database-query
model.

Definition 6 (Interrogation Task) Consider an unknown black-box containing n bits
z = z1 · · · zn. The interrogation task is to recover the whole string z (with high proba-
bility).

We call this problem interrogating black-box because afterwards, every possible ques-
tion about z can be answered correctly (with high probability).

3.4 The Quantum Algorithm

The algorithm that we will present here is an approximation of the procedure de-
scribed in the Equation 2.6. Instead of calculating the phase values (−1)(x,z) for all
x ∈ {0, 1}n, we will do this only for the strings x1 · · · xn that do not have a Hamming
weight ‖x‖1 (the number of ones in a bit string) above a certain threshold k. By doing
so, we can reduce the number of necessary oracle calls while obtaining an outcome that
still has a high fidelity with the ‘perfect state’ of Equation 2.6. The drawback is this
procedure is not exact anymore: with a small probability we obtain a string different
from z.

As stated in Fact 4, the value (x, z) corresponds to the parity of a subset of bits zi,
where this set is determined by the ones in the string x1 · · · xn. To calculate the parity
we can perform a sequence of additions modulo 2 of the relevant zi values, where
each zi has to be (and can be) obtained by one oracle call. Therefore, the Hamming
weight ‖x‖1 equals the ‘oracle call complexity’ of the procedure (for an arbitrary bit
b ∈ {0, 1}):

|x〉|b〉 7−→
‖x‖1 oracle calls

|x〉|b⊕ (x, z)〉. (3.1)

Since the number of z-queries will be limited by a threshold number k, this implies
that we can only compute the parity value (x, z) if the Hamming weight of x is less
than or equal to k. The algorithm that performs this conditional parity calculation is
denoted by Ak and its behavior is thus defined by:

Ak|x〉|b〉 :=

{

|x〉|b⊕ (x, z)〉 if ‖x‖1 ≤ k,
|x〉|b〉 if ‖x‖1 > k,

(3.2)

which can be done with at most k oracle calls for every x1 · · · xn. Because Ak is
reversible and does not induce any undesired phase changes it follows from the super-
position principle that we can apply Ak also to a superposition of different x strings.
This will allow us to prove the following theorem.
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Theorem 1 (Quantum Interrogation) Consider an unknown n-bit black box z =
z1 · · · zn ∈ {0, 1}n. There exist a quantum algorithm with query complexity n

2
+
√
n

that recovers the whole string z with 95% probability of success.

Proof: We exhibit the algorithm in detail. Prepare the state Ψk, which is an equally
weighted superposition of bit strings of size n with Hamming weight ‖x‖1 less than or
equal to k, and an additional qubit in the state 1√

2
(|0〉 − |1〉) attached to it:

|Ψk〉 ⊗ 1√
2
(|0〉 − |1〉) :=

1√
Mk





‖x‖1≤k
∑

x∈{0,1}n

|x〉



⊗ 1√
2
(|0〉 − |1〉), (3.3)

withMk the appropriate normalization factor calculated by the number of x strings that
have Hamming weight less than or equal to k:

Mk :=
k
∑

i=0

(

n

i

)

. (3.4)

Applying the above-described protocol Ak (Equation 3.2) to this state yields (re-
quiring k oracle calls):

Ak|Ψk〉 ⊗ 1√
2
(|0〉 − |1〉) =

1√
Mk





‖x‖1≤k
∑

x∈{0,1}n

(−1)(x,z)|x〉



⊗ 1√
2
(|0〉 − |1〉).(3.5)

Here we see how the phases of the state Ak|Ψk〉 contain a part of the desired informa-
tion about z1 · · · zn similar to Equation 2.6.

If we set k to its maximum k = n, then applying an n-fold Hadamard to the first
n qubits of Ak|Ψk〉 would give us exactly the state |z1 · · · zn〉. The minimum value
k = 0 leads to a state that does not reveal anything about z. For all the other possible
values of 0 < k < n there we have the situation that applying H⊗n to the x-register
of Ak|Ψk〉 gives a state that is close to |z1 · · · zn〉, but not exactly. For a given n, this
fidelity (statistical correspondence) between the acquired state and z depends on k: as
k gets bigger, the fidelity increases.

The n qubits that should give z1 · · · zn after the H⊗n transformation, is described
by (see Equation 3.5):

|Ψ′
k〉 =

1√
Mk

‖x‖1≤k
∑

x∈{0,1}n

(−1)(x,z)|x〉. (3.6)

The probability that this state gives the correct string of z-bits equals the square of its
fidelity with the perfect state |Ψ′

n〉:

Prob(Ak outputs z) = |〈Ψ′
k|Ψ′

n〉|
2 (3.7)
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The signs of the amplitudes of |Ψ′
k〉 and |Ψ′

n〉 will be the same for all registers x with
‖x‖1 ≤ k, whereas for the other strings with ‖x‖1 > k the amplitudes of |Ψ′

k〉 are zero.
The fidelity between the two states can therefore be calculated in a straightforward
way, yielding for the correctness probability (using Equation 3.4):

Prob(Ak outputs z) =
Mk

2n
=

1

2n

k
∑

i=0

(

n

i

)

. (3.8)

This equality shows the reason why the algorithm also works for values of k around
n
2

+
√
n. For large n the binomial distribution approaches the Gaussian distribution.

The requirement that the correctness probability has some value significantly greater
than 1

2
, translates into the requirement that k has to be bigger than the average n

2
by

some multiple of the standard deviation 1
2

√
n of the Hamming weights over the set of

bit strings {0, 1}n. Because less that 5% of the binomial distribution is concentrated
in the right tail that is at least two standard deviations away from the middle, it can be
shown that

Prob(Abn
2

+
√

nc outputs z) > 0.95 (3.9)

for every value of n.
This proves that the following algorithm will give us the requested n oracle values

z1 · · · zn with an error-rate of less than 5%, using only bn
2

+
√
nc queries to the oracle.

1. Initial state preparation: Prepare a register of n+ 1 qubits in the state

Ψbn
2

+
√

nc ⊗ 1√
2
(|0〉 − |1〉)

as in Equation 3.3.

2. Oracle calls: Apply the Ak procedure of Equation 3.2, for k = bn
2
+
√
nc oracle

queries.

3. Hadamard transformation: Perform n Hadamard transforms to the first n
qubits on the register (the state |Ψ′

k〉 in Equation 3.6).

4. Final observation: Observe the same first n qubits in the standard basis |0〉, |1〉.
The outcome of this observation is our guess for the oracle description z1 · · · zn.
This estimation of z will be correct for all n bits with error probability less than
5%.

ut
An expected error-rate of significantly less than 5% can easily be obtained if we

increase the threshold k with a multiple of the standard deviation 1
2

√
n. With the use

of the Chernoff bound, we can thus show that

Proberror(k = n
2

+ λ
√
n) ≤ e−

2
3

λ2

.
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Hence we conclude that an error rate of ε or less can be established with

k ≤ n

2
+

(

√

3
2
log(1

ε
)

)√
n

queries to the oracle z.

3.5 Comparison with Classical Algorithms

Consider now a classical computer Bk that is allowed to query the oracle k times.
This implies that after the procedure n − k bits of z are still unknown. Under the
uniform distribution Prob(z) = 2−n, we thus have a probability of 2k−n of guessing
the remaining n− k bit correctly. Hence, the probability of recovering the n-bit string
z1 · · · zn by a classical algorithm is:

Prob(Bk outputs z) ≤ 1

2n−k
. (3.10)

This establishes the following lemma.

Lemma 1 (Classical Interrogation) For an error probability of less than 1
2
, the clas-

sical, probabilistic, query complexity of the interrogation problem is n.

The space complexity of the quantum and the classical algorithms is in both cases
linear in n.

3.6 Approximate Interrogation

In this section we ask ourself what happens if we want to know only a certain fraction
of the n unknown bits. In other words: Given a threshold of k oracle-queries, what is
the maximum expected number of correct bits c that we can obtain via an ‘approximate
interrogation’ procedure if we assume the uniform distribution Prob(z) = 2−n over the
strings z ∈ {0, 1}?

3.7 Classical Approximate Interrogation

In the classical setting the analysis is again straightforward. If we query k out of n
bits, then we know k bits with certainty and we have to randomly guess the other n−k
bits of which we can expect 50% to be correct. The total number of correct bits will
therefore be

cclask =
n

2
+
k

2
, (3.11)

which shows a linear relation between k and c.
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3.8 Quantum Approximate Interrogation

The quantum procedure for approximate interrogation will be the same algorithm that
we used in the first part of this chapter, but with a different initial state Ψk. We now
allow the amplitudes αj of Ψk to depend on the Hamming weight of the bit strings x:

|Ψk〉 =
k
∑

j=0

αj
√

(n
j)

‖x‖1=j
∑

x∈{0,1}n

|x〉, (3.12)

with the normalization restriction
∑

j |α2
j | = 1.

After the preparation of this state Ψk, the algorithm is continued with an application
of the k query procedure Ak, in the same way as described in Section 3.4. The n bits
outcome of this protocol will correspond to a certain degree with the interrogated bit
string z1 · · · zn. This degree depends on k and the amplitudes αj .

3.9 The Expected Number of Correct Bits

In this section we will calculate how many bits we can expect to be correct for the
quantum interrogation procedure with the initial state Ψk of Equation 3.12. We do
this by assuming that the unknown bit string consists of zeros only: z = 0 · · · 0. The
expected number of correct bits for the algorithm equals therefore the expected number
of zeros of the observed output string y. Because we can make the assumption z =
0 · · · 0 without loss of generality, we then conclude that this number will the expected
number of correct bits for any z ∈ {0, 1}n.

The inner-product between x and z will be zero for every x, hence applying Ak to
Ψk will not change the initial state:

Ak|Ψk〉 =
k
∑

j=0

αj ·
1

√

(

n
j

)

‖x‖1=j
∑

x∈{0,1}n

|x〉. (3.13)

After this Ak, we perform the n Hadamard transforms on all n qubits, yielding a new
state:

H⊗nAk|Ψk〉 =
k
∑

j=0

αj
√

(

n
j

)

‖x‖1=j
∑

x∈{0,1}n

H⊗n|x〉 (3.14)

=
1√
2n

∑

y∈{0,1}n

k
∑

j=0

αj
√

(

n
j

)

‖x‖1=j
∑

x∈{0,1}n

(−1)(y,x)|y〉 (3.15)

Because the above state is invariant under permutation, the probability of observing a
certain string y depends only on its Hamming weight ‖y‖1. In the Appendix of this
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thesis it is shown that this gives us the following equality for the expected number of
zeros:

E[#zeros(H⊗nAk|Ψk〉)] =
n
∑

t=0

t ·
(

n

t

)

|〈0t1n−t|H⊗nAk|Ψk〉|2

=
1

2n

n
∑

t=0

t ·
(

n

t

)

∣

∣

∣

∣

∣

∣

k
∑

j=0

αj
√

(

n
j

)

||x||1=j
∑

x∈{0,1}n

(−1)(0t1n−t,x)

∣

∣

∣

∣

∣

∣

2

=
1

2n

n
∑

t=0

t ·
(

n

t

)

∣

∣

∣

∣

∣

∣

k
∑

j=0

αj
√

(

n
j

)

j
∑

i=0

(−1)i

(

n− t
i

)(

t

j − i

)

∣

∣

∣

∣

∣

∣

2

=
n

2
+

k−1
∑

j=0

Re(αjα
∗
j+1)

√

j + 1
√

n− j.

We can therefore conclude that the expected number ck of correctly guessed bits for
the quantum protocol will be (for given k and αj):

cquant
k =

n

2
+

k−1
∑

j=0

Re(αjα
∗
j+1)

√

j + 1
√

n− j. (3.16)

This equation allows us to optimize the αj amplitudes such that ck will be as big as
possible. (Note that for such an optimal solution we can always assume αj ∈ R

without loss of generality.) Two examples of such optimizations will be given below,
both of them showing an improvement over the classical algorithm.

3.10 Interrogation with One Quantum Query

If we allow the quantum computer to ask only one query (k = 1) to the oracle, then
Equation 3.16 is maximized by choosing α0 = α1 = 1√

2
, thus giving for the expected

number of correct bits

cquant
1 =

n

2
+

√
n

2
. (3.17)

When we compare this with Equation 3.11, we see that a classical algorithm would
require k =

√
n queries to match the power of a single quantum query.
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3.11 Interrogation with Many Queries

Let us assume that k is a square with 0 ≤ k
n
≤ 1

2
. We can then define the amplitudes

αj ∈ R according to

αj =

{

0 if 0 ≤ j ≤ k −
√
k

1
4√

k
if k −

√
k < j ≤ k

(3.18)

Using Equation 3.16, this gives for the expected ratio of correct bits

cquant
k

n
=

1

2
+

1

n
√
k

k−1
∑

j=k−
√

k+1

√

j + 1
√

n− j (3.19)

=
1

2
+

√

k

n

(

1− k

n

)

−O( 1√
n
). (3.20)

From this analysis it follows that for big enough n and all values k ≤ n
2
, we can ignore

the O( 1√
n
) term in the above equation. For k bigger than n

2
, we can always adopt the

same interrogation scheme that we used to reach the perfect correctness rate cq
n/2 ≈ n.

This gives us the following theorem.

Theorem 2 For big enough n and k queries, the above described algorithm has an
expected correctness rate c/n of

cquant
k

n
=

{

1
2

+
√

k
n

(

1− k
n

)

if 0 ≤ k ≤ n
2

1 if k > n
2

(3.21)

Lemma 2 (Classical Approximate Interrogation) In the same setting as the previ-
ous section, the classical fraction of correct bits is

cclask

n
=

1

2
+

k

2n
. (3.22)

This result is summarized in Figure 3.1 and gives a clear example of a quantum
reduction in the query complexity of the approximate interrogation problem. This
improvement is especially significant for small values of k

n
. For example, if we allot

the quantum protocol n
10

queries, then we can expect 80% of the bits to be correct. Any
classical algorithm would need six times as much (k = 3n

5
) queries to obtain such a

ratio.

3.12 Conclusions

The model of quantum computation does not permit a general significant speed-up of
the existing classical algorithms.[10] Instead, we have to investigate for each different
kind of problem whether there is a possible gain by using quantum algorithms or not.
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quantum interrogation:

classical interrogation:
correct

of

k/N

bits

fraction

0
0

1

1
fraction of queries

Approximate Interrogation for Big N:

c/N

Figure 3.1: Comparison of the interrogation effectiveness between classical and quan-
tum computers.

Here it has been shown that for every binary function z : {0, 1}n → {0, 1} we can
obtain the full description of the function with high probability while querying z only
n
2
+
√
n times. A classical computer always requires n calls to determine z1 · · · zn with

the same kind of success probability.
The lower bounds on PARITY (with bounded error) and OR (with no allowed error)

for black-boxes[10, 40] show us that any quantum algorithm must use at least n
2

calls to
obtain z with bounded error, and that the full n queries are necessary to determine the
string without error, respectively. Furthermore, it has been shown by Farhi et al.[41]
that the n

2
+
√
n of this chapter cannot be reduced any further: it is a tight bound for

the interrogation task (up to a constant in front of the
√
n term).

The term ‘approximate interrogation’ was used for the scenario where we are in-
terested in obtaining a certain fraction of the n unknown bits. Again we could see how
a quantum procedure outperforms the possible classical algorithms (Figure 3.1).



Chapter 4

Quantum Bounded Queries

It is known that that a super-polynomial quantum improvement can only be ob-
tained if we consider problems that are more structured than those in the black-
box model of computation.[10] In this chapter we look at the query complexity
of problems that can be computed in polynomial time with the help of, for exam-
ple, an oracle for the SAT problem. It is shown how in this setting a quantum
computer requires less queries than a classical computer, provided that standard
complexity assumptions like P 6= NP are true.

4.1 Introduction

We combine the classical notions and techniques for bounded query classes with those
developed in quantum computing. We give strong evidence that quantum queries to an
oracle in the class NP does indeed reduce the query complexity of decision problems.
Under traditional complexity assumptions, we obtain an exponential speed-up between
the quantum and the classical query complexity of function classes.

For decision problems and function classes we obtain the following results (see the
appendix of this thesis for a brief overview of these complexity classes):

• P
NP[2k]
q ⊆ EQP

NP[k]
q

• P
NP[2k+1−2]
q ⊆ EQP

NP[k]

• FP
NP[2k+1−2]
q ⊆ FEQP

NP[2k]

• FP
NP

q
⊆ FEQP

NP[O(log n)]

For sets A that are many-one complete for PSPACE or EXP we show that FP
A ⊆

FEQP
A[1]. Sets A that are many-one complete for PP have the property that FP

A
q
⊆

FEQP
A[1]. In general we prove that for any set A there is a set X such that FP

A ⊆
FEQP

X[1], establishing that no set is superterse in the quantum setting.

29
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The query complexity of a function is the minimum number of queries (to some
oracle) that are needed to compute one value of this function. With bounded query
complexity we look at the set of functions that can be calculated if we put an upper
bound on the number of queries that we allow the computer to ask the oracle. This
notion has been extensively studied both in the resource bounded setting [2, 4, 5, 13,
12, 11, 17, 60, 75, 104] and in the recursive setting[15, 16]. This notion and its variants
has lead to a series of techniques and tools that are used throughout complexity theory.

In this chapter we combine some of the bounded query notions with quantum com-
putation. The main goal is to further—as was done by Fortnow and Rogers [43]—the
incorporation of quantum computation complexity classes into standard classical com-
plexity theory. We feel that the synthesis of quantum computation and classical com-
plexity theory serves two purposes. First, it is important to know the limits of feasible
quantum computation and these can be clarified by expressing them in the framework
of classical computation. Second, the insights of quantum computation can be useful
for classical complexity theory in turn.

We start out with the class of sets (or decision problems) that are computable in
polynomial time with bounded queries to a set in NP. We consider the setting where
the queries are adaptive (i.e., a query may depend on the answers to previous ones), as
well as where they are non-adaptive. Classically, it is known that any decision problem
that can be solved in polynomial time with k adaptive queries to a set in NP (the class
PNP[k]) can also be solved with 2k − 1 non-adaptive queries (the class P

NP[2k−1]
q , where

“q” indicates the parallel or non-adaptive queries), and vice-versa [13]. In other words:
PNP[k] = P

NP[2k−1]
q . Moreover, there is strong evidence that this trade-off is optimal

in the sense that every non-adaptive class P
NP[k]
q is different for different values of

k. For example if P
NP[2]
q ⊆ PNP[1], then the polynomial hierarchy collapses [60] (see

also [27, 52]).
We will see that if we allow the query machine to make use of quantum mechan-

ical effects such as superposition and interference the situation changes. In the non-
adaptive case we will show that 2k classical queries can be simulated with only k
non-adaptive ones on a quantum computer and in the adaptive case we show how to
simulate 2k+1− 2 classical queries with only k quantum queries. The natural quantum
analog of P is the class EQP, which stands for exact quantum polynomial time. This
is the class of sets or decision problems that is computable in polynomial time with a
quantum computer that makes no errors (i.e., is exact). Then, our results are that

P
NP[2k]
q ⊆ EQP

NP[k]
q and P

NP[2k+1−2]
q ⊆ EQP

NP[k].

In particular it follows from this result that P
NP[2]
q ⊆ EQP

NP[1] (see also [36]).
In order to prove these results we combine the classical mind-change technique [13]

with the one query version (see [31]) of the first quantum algorithm developed by David
Deutsch [38].

Next, we turn our attention to functions that are computable with bounded queries
to a set in NP. Compared to the decision problems there is probably no nice trade-off



4.2. Classical Complexity Theory 31

between adaptive and non-adaptive queries for functions. This is because the following
is known [17]: for any k the inclusion FP

NP[k]
q ⊆ FP

NP[k−1] implies that P = NP.
Moreover, if FP

NP

q
⊆ FP

NP[O(log n)] then the polynomial time hierarchy collapses [12,
87, 98].

When the adaptive query machine is a quantum computer, things are different and
we seem to get a trade-off between adaptiveness and query complexity. We show the
following:

FP
NP[2k+1−2]
q ⊆ FEQP

NP[2k] and FP
NP

q
⊆ FEQP

NP[O(log n)].

Here FEQP
NP[k] is the class of functions that is computable by an exact quantum Turing

machine that runs in polynomial time and is allowed to make k queries to a set in NP.
The proofs of these results use our previous results on decision problems and a quantum
algorithm developed by Deutsch-Jozsa [39] and Bernstein-Vazirani [22].

Using the same ideas we are able to show that for any set A there exists a set X
such that FP

A ⊆ FEQP
X[1], establishing that no set is ‘superterse’. Also because the

complexity of X is not much harder than that of A (the problem X is Turing reducible
to A), we get quite general theorems for complete sets of complexity classes.

For a complexity class C that is closed under Turing reductions, and a problem
A ∈ C that is many-one complete for the class C, the inclusion FP

C ⊆ FEQP
A[1] is

proven. This holds in particular for the set QBF of the true quantified Boolean formulae
which is a PSPACE complete problem, and the complete sets for the class EXP. If C is
a class that is closed under truth-table reductions, then it holds that FP

C

q
⊆ FEQP

A[1].
The Theta levels of the polynomial hierarchy and PP are examples of such classes.

The ingredients for all our results are standard quantum algorithms combined with
well known techniques from complexity theory. Nevertheless we feel that this com-
bination gives a new point of view on the nature of bounded query classes and the
structure of complete sets in general.

4.2 Classical Complexity Theory

We assume the reader to be familiar with basic notions of complexity theory such as the
various complexity classes and types of reducibility as can be found in many textbooks
in the area [6, 7, 46, 58]. The essentials for this chapter are mentioned below.

For a set (decision problem) A we will identify A with its characteristic function.
Hence for a string x we have A(x) ∈ {0, 1}, and A(x) = 1 if and only if x ∈ A. A
class C consists of a set of decision problems. A problem A is many-one poly-time, or
≤p

m-complete for a class C if for any problem B ∈ C, there exists a polynomial-time
computable function or “Karp-reduction” τ such that x ∈ B if and only if τ(x) ∈ A.
The typical example of such a complete problem is SAT (the set of satisfiable Boolean
formulae) which is ≤p

m-complete for the class NP. The class FP indicates the set of
functions that can be calculated on a polynomial time, deterministic Turing machine.
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An oracle Turing machine is non-adaptive, if it can produce a list of all of the
oracle queries it is going to make before it makes the first query. For any set A, the
elements of the class PA[k] (FP

A[k]) are the languages (functions) that are computable
by polynomial time Turing machines that accesses the oracleA at most k times on each
input. The class P

A[k]
q and FP

A[k]
q allow only non-adaptive access to A. The notation

PNP[q(n)] is used to indicate algorithms that might require q(n) calls to an NP oracle,
where q is a function of the input size n.

The class NP can be generalized by defining the polynomial time hierarchy. We
start with the definitions ∆p

1 = P and Σp
1 = NP, and then for the higher levels continue

in an inductive fashion according to ∆p
i+1 = P∆p

i and Σp
i+1 = NP

Σp
i for i = 2, 3, . . .

Many complexity theorists conjecture that this polynomial time hierarchy is infinite,
i.e., Σp

i+1 6= Σp
i for all i.

A class C of languages is closed under Turing (truth-table) reduction if any de-
cision problem that can be solved with a polynomial time Turing machine and (non-
adaptive) queries to a set in C, is itself also an element of C. Examples of such classes

are PSPACE, EXP, and the Delta levels ∆p
i+1. The classes PP and Θp

i+1 = P
Σp

i
q

(Theta levels of the polynomial hierarchy) are for example closed under this truth-
table-reduction.

4.3 Quantum Complexity Classes

The class EQP is the collection of those sets that can be computed by a quantum Turing
machine that runs in polynomial time and accepts every string j with probability 1 or
0. Likewise, we define the class of functions FEQP as the class of functions that can
be computed exactly by some quantum Turing machine that runs in polynomial time.
The output of the Turing machine is the function value (rather than a single decision
bit).

We model oracle computation as follows (see also [19]). An oracle Turing machine
has a special query tape, and during the computation the Turing machine may enter a
special pre-query state to make a query to the oracle set A. Suppose the query tape
contains the state |i〉|b〉 (i represents the query and b is a bit meant to receive the answer
to the query). The result of this operation is that after the call the machine will go into
a special state called the post-query state and that the query tape has changed into
|i〉|A(i) ⊕ b〉, where ⊕ is the EXCLUSIVE OR. We will denote this unitary operation
by UA. Note that UA only changes the contents of the special query answer bit b, and
leaves all the other registers unchanged.

As with classical oracle computation, we make the distinction between adaptive
and non-adaptive quantum oracle machines. We call a quantum oracle machine non-
adaptive if on every computation path a list of all the oracle queries (on this path) is
generated before the first query is made.

The class EQP
A[k] are the sets recognized by an exact quantum Turing machine

that runs in polynomial time and makes at most k adaptive queries to the oracle for
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A. Likewise, we define classes like EQP
A[q(n)]
q , FEQP

A[q(n)], and FEQP
A[q(n)]
q , for non-

adaptive decision, adaptive function, and non-adaptive function classes respectively
(with q(n) a function that gives an upper bound on the number of queries and n the
size of the input string).

4.4 Decision Problems

In this section we will investigate the extra power that a polynomial time, exact quan-
tum computer yields compared to classical deterministic computation when querying
a set in the class NP. In the case of deterministic computation the following equality
between adaptive and non-adaptive queries to NP is well known.

Fact 6 [13, 29, 104]

1. For all k ≥ 0 we have P
NP[2k−1]
q = PNP[k].

2. For any polynomial q(n) > 1 the equality P
NP[q(n)]
q = PNP[O(log(q(n)))] holds.

Proof: Both items are proved in a similar way which has two parts. The first part
shows that computing a function in P

NP[2k−1]
q can be reduced to computing the parity

of 2k − 1 other queries to NP. The second part then proceeds by showing that using
binary search one can compute the parity of 2k−1 NP-queries with k adaptive queries
to SAT. On the other hand, it is trivial to see that any computation with k adaptive
queries can be simulated exhaustively with 2k − 1 non-adaptive oracle calls. ut

There is also strong evidence that the above trade-off is tight (see [14, 60]). It fol-
lows for example that if P

NP[2]
q = PNP[1] then the polynomial hierarchy collapses [60].

(See [27] for the latest developments with respect to this question.)
Perhaps surprisingly the situation changes when the query machine is quantum

mechanical. Using the one-call-parity trick of Fact 3, we will show that a quantum
Turing machine can compute decision problems with half the number of non-adaptive
queries.

Theorem 3 For all k ≥ 0 we have the inclusion P
NP[2k]
q ⊆ EQP

NP[k]
q .

Proof: Without loss of generality we will assume that the queries are made to SAT, and
that the predicate that is computable with 2k queries to SAT is f(x). Let ψ1, ψ2, . . . , ψ2k

be the queries that the computation of f(x) makes. We will use the proof technique
of Fact 6 (also called mind-change technique) which enables us to compute f(x) by
calculating the single bit SAT(φ1)⊕· · ·⊕SAT(φ2k). Here the new formulae φ1, . . . , φ2k

can be computed in polynomial time from ψ1, . . . , ψ2k, f , and x, but without having to
consult SAT.

Next, we use Fact 3 to compute the parity SAT(φi) ⊕ SAT(φi+1) for odd i (1 ≤
i < 2k) with k non-adaptive queries to SAT. Finally we compute the parity of these
answers, thus obtaining the necessary information for calculating f(x). ut
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Lemma 3 P
NP[2]
q ⊆ EQP

NP[1] (see [36]).

We do not know whether this is tight. It would be interesting to either improve this
result to PNP[2] ⊆ EQP

NP[1] or to show as a consequence of this that the polynomial
time hierarchy collapses.

Fact 6 relates adaptive query classes to non-adaptive ones, thereby establishing an
exponential gain in the number of queries (2k−1 versus k queries). We will now show
how to use the Deutsch trick to improve this result slightly in the quantum case.

Theorem 4 P
NP[2k+1−2]
q ⊆ EQP

NP[k] for all k ≥ 0.

Proof: The proof is by induction on k. For k = 1 we return to the situation of
Lemma 3. Let the predicate f(x) be computable with 2k+1− 2 non-adaptive queries to
SAT. As in the proof of Theorem 3 we reduce the 2k+1− 2 queries ψi that f(x) makes,
to the calculation of the parity-bit SAT(φ1) ⊕ · · · ⊕ SAT(φ2k+1−2). Next, we construct
2k+1 − 2 new formulae χ1, . . . , χ2k+1−2 according to:

χi is satisfiable ⇐⇒ |{φ1, . . . , φ2k+1−2} ∩ SAT| ≥ i.

The construction of each such χi can be done in polynomial time. Consider the non-
deterministic polynomial time Turing machine M that on input 〈i, φ1, . . . , φ2k+1−2〉,
accepts if and only if it can find for i of the formulae a satisfying assignment. Cook
and Levin [34, 66] —proving that SAT is ≤p

m -complete for NP— showed that any
polynomial time non-deterministic Turing machine computation M(x) in polynomial
time can be transformed into a formula that is satisfiable if and only if M(x) has an
accepting computation. Let χi be the result of this Cook-Levin reduction.

Note the following two properties of those formulae χi:

1. The parity SAT(φ1) ⊕ · · · ⊕ SAT(φ2k+1−2) is the same as the parity SAT(χ1) ⊕
· · · ⊕ SAT(χ2k+1−2).

2. For every i we have SAT(χi) ≥ SAT(χi+1).

Now we are ready to make the first query. We compute the parity of χ2k−1 and
χ2k−1+2k−1. This can be done in one query using Fact 3. By doing this we have at
the cost of one query reduced the question of computing the parity of 2k+1 − 2 formu-
lae to computing the parity of 2k−2. These we can solve using k−1 queries using the
induction hypothesis. To see this observe the following. For convenience set a = 2k−1

and b = 2k−1 + 2k − 1.
Suppose the parity of χa and χb is odd, with a < b. From the second property

above, it follows that χa = 1 and χb = 0, and hence that χ1, . . . , χa are all satisfiable
and χb, . . . , χ2k+1−2 are all unsatisfiable. Also note that a is even, so the parity of
χ1, . . . , χ2k+1−2 is the same as the parity of χa+1, . . . , χb−1 (these are 2k − 2 many
formulae).

On the other hand assume that the parity of χa and χb is even. This means (again
using property 2 above) that χa, . . . , χb are all either satisfiable or unsatisfiable and
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hence have even parity. So again the question reduces to the parity of the remaining
formulae: χ1, . . . , χa−1 and χb+1, . . . , χ2k+1−2. Which happen to be 2k − 2 many
formulae. ut

In essence the above technique seems to boil down to searching in an ordered list
χ1, . . . , χ2k+1−2. In [56] it has been shown that this can not be done with less than
log n
π log e

− O(1) queries. On the other hand, results by Farhi et al. [42] and [56] indicate
that the query complexity of the ordered search problem is upper bounded by 1

α
log n+

O(1), with α at least 1.88 . . . . Using these results it is likely that we can strengthen the

above theorem to P
NP[2αk−O(1)]
q ⊆ EQP

NP[k].

4.5 Functions computable with queries to NP Oracles

Now we turn our attention to function classes where the algorithm can output bit strings
rather than single bits. We will see that in this scenario the difference between classical
and quantum computation becomes more pronounced.

We start out by looking at functions that are computable with queries to a complete
set for the class NP. Classically the situation is not as well understood as the class of
decision problems. There is strong evidence that the analog of Fact 6 is not true.

Fact 7 The following holds for the classical, exact computation of functions:

1. If for some k ≥ 0 we have FP
NP[k+1]
q ⊆ FP

NP[k], then P = NP [17].

2. If for all polynomials q(n) (with n the size of the input string): FP
NP[q(n)]
q ⊆

FP
NP[O(log n)], then NP = R (and the polynomial hierarchy collapses) [12, 87,

98].

When we allow the adaptive query machine to be quantum mechanical the picture be-
comes again quite different. We will show for example that the inclusion FP

NP[q(n)]
q ⊆

FEQP
NP[2 log(q(n))] holds (and this does not imply NP = R as far as we know). In order

to do so we will use Fact 4.
Let us turn back now to our setting of bounded query classes. Using the quantum

tricks of Sections 2.4 and 2.5 we can establish the following result.

Theorem 5 For exact function calculation with the use of an oracle in NP it holds that

1. FP
NP[2k+1−2]
q ⊆ FEQP

NP[2k] for any k ≥ 0,

2. FP
NP

q
⊆ FEQP

NP[O(log n)].

Proof: Fix k ≥ 0, the input z of length m and let g be the function in FP
SAT[2k+1−2]
q .

Suppose that g(z) = (a1 · · · an) = a with n = mc for some c depending on g. The
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goal is to obtain the state:

|Output〉 =
1√
2n

∑

x∈{0,1}n

(−1)(x,a)|x〉, (4.1)

since with this state one application of H⊗n will give us a = g(z) (cf. 2.6). Clearly, we
can obtain this state if we have access to a function f with the property

fz(x) =
n
∑

i=1

aixi mod 2, (4.2)

for every x ∈ {0, 1}n.
The goal thus is to transform the function we have access to—SAT in our case—

into one that resembles the one in Equation 4.2. The way to do this is to make use of
a quantum subroutine. Observe the following: the binary function fz(x) = (x, a) is

in P
SAT[2k+1−2]
q because we can first compute g(z) = a with 2k+1 − 2 queries to SAT

and then determine (x, a). By Theorem 4 this function is computable in EQP
SAT[k].

Hence, when we use this adaptive EQP algorithm in superposition we have the desired
function f . There is however one problem with this approach. The algorithm that
comes out of Theorem 4 leaves several of the registers in states depending on the input
x and SAT. For example the algorithm that computes the parity of two function calls
in one generates a phase of (−1) depending on the value of the first function call (see
Equation 2.4). These changes in registers and phase shifts obstruct our base quantum
machine and as a consequence the sum computed in Equation 2.6 does not work out
the way we want (i.e., the interference pattern is different and terms do not cancel out
as nice as before.)

The solution to this kind of ‘garbage’ problem is as follows:

1. Compute fz(x) with k queries to SAT.

2. Copy the outcome onto an extra auxiliary qubit (by setting the auxiliary bit b to
the EXCLUSIVE OR of b and the outcome).

3. Reverse the computation of fz(x) making another k queries to SAT.

Observe that when we compute fz(x) in this way, all the phase changes and registers
are reset and are in the same state as before computing f , except for the auxiliary qubit
that contains the answer. Since the subroutine was exact (i.e., in EQP) the answer
bit is a classical bit and will not interfere with the rest of the computation. Note that
this corresponds exactly to one oracle call to f . Thus we simulated 1 call to f with
2k queries to SAT and hence have established a way of producing the desired state of
Equation 4.1.

The second part of the theorem is proved in a similar way now using part 2 of
Fact 6. ut
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4.6 Terseness, and other Complexity Classes

The quantum techniques described above are quite general and can be applied to sets
outside of NP. Classically the following question has been studied (see [12] for more
information). For any set A define the function F A

n (x1, . . . , xn) = (A(x1) · · ·A(xn))
which is an n bit vector telling which of the xi’s is in A and which ones are not. A
basic question now is: how many queries to A do we need to compute F A

n ? Sets for
which FA

n can not be computed with less than n queries to A (i.e., F A
n 6∈ FP

A[n−1])
are called P-terse. We call the decision problem A P-superterse if F A

n 6∈ FP
X[n−1] for

any set X . The next theorem shows that this last notion is not useful in the quantum
setting.

Theorem 6 Let A be a subset of N and let the function F A
n : Nn → An be defined

by FA
n (x1, . . . , xn) := (A(x1), . . . , A(xn)), where A(x) = 0 if x /∈ A and A(x) = 1

if x ∈ A. For any set A there exists a set X ⊆ N such that for all n we have F A
n ∈

FEQP
X[1].

Proof: Let X be the following set:

X = {〈z1 · · · zn, x1 · · · xn〉|(FA
n (z1, . . . , zn), x1 · · · xn) = 1}.

Using the same approach as the proof of Theorem 5 it is not hard to see that F A
n can be

computed relative X with only a single query. ut
Using the same idea we can prove the following general theorem about oracles for

complexity classes other than NP.

Theorem 7 Let C be a complexity class and the set A ≤p
m-complete for C.

1. If C is closed under ≤p
T -reductions then FP

C = FP
A ⊆ FEQP

A[1] = FEQP
C[1].

2. If C is closed under ≤p
tt -reductions then FP

C

q
= FP

A
q
⊆ FEQP

A[1] = FEQP
C[1].

Proof: Let f be the function we want to compute relative to A. Without loss of gener-
ality we assume that `(f(z)) = `(z)c for some c depending only on f . As before we
construct the following set:

X = {〈z, y〉|(f(z), y) = 1, and `(y) = `(z)c = `(f(z))}.

As in Theorem 6 it follows that f(z) is computable with one quantum query to X .
Since C is closed under ≤p

T -reductions and X≤p
TA, it follows that X ∈ C. Further-

more, since A is ≤p
m-complete for C it also follows that X≤p

mA. Thus the quantum
query can be made toA itself instead ofX . The proof of the second part of the theorem
is analogous to the first. ut

This last theorem gives us immediately the following two lemmas about quantum
computation with oracles for some known complexity classes.
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Lemma 4

FP
PSPACE ⊆ FEQP

PSPACE[1]

FP
EXP ⊆ FEQP

EXP[1]

FP
∆p

i ⊆ FEQP
∆p

i [1]

for the Delta levels ∆p
i in the polynomial time hierarchy.

Lemma 5

FP
PP

q
⊆ FEQP

PP[1]

FP
Θp

i
q ⊆ FEQP

Θp
i [1]

with Θp
i+1 = P

Σp
i

q .

The first lemma holds in particular for A = QBF (the set of true quantified Boolean
formulae) which is PSPACE-complete. Observe also that the situation is quite different
in the classical setting, since for EXP-complete sets the above is simply not true.

4.7 Conclusions and Open Problems

We have combined techniques from complexity theory with some of the known quan-
tum algorithms. In doing so we showed that a quantum computer can compute cer-
tain functions with fewer queries than classical deterministic computers. Many ques-
tion however remain. Is it possible to get trade-off results between the adaptive class
EQP

NP[k] and the non-adaptive EQP
NP[2k−1]
q for quantum machines? Are the results we

present here optimal? (Especially the recent results on exact searching in an ordered
list[42] and [56] deserve further analysis as they seem to suggest a reduction of the
quantum query complexity of Theorems 4 and 5 by a factor of two.)

What can one deduce from the assumption that PNP ⊆ EQP
NP[1]? Is it true that for

any set A we have PA ⊆ EQP
A[1] or are there sets where this is not true? A random set

would be a good candidate where more than one quantum query is necessary.
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Quantum Algorithms and Combinatorics

In this chapter we investigate how we can employ the structure of combinatorial
objects like Hadamard matrices and weighing matrices to devise new quantum
algorithms. We show how the properties of a weighing matrix can be used to con-
struct a problem for which the quantum query complexity is significantly lower
than the classical one. It is pointed out that this scheme captures both Bernstein
& Vazirani’s inner-product protocol, as well as Grover’s search algorithm.

In the second part we consider Paley’s construction of Hadamard matrices to
design a more specific problem that uses the Legendre symbol χ (which indicates
if an element of a finite field Fpk is a quadratic residue or not). It is shown how
for a shifted Legendre function fs(x) = χ(x + s), the unknown s ∈ Fpk can
be obtained exactly with only two quantum calls to fs. This is in sharp contrast
with the observation that any classical, probabilistic procedure requires at least
k log p queries to solve the same problem.

5.1 Combinatorics, Hadamard and Weighing Matrices

The matrix H associated with the Hadamard transform is—in the context of quantum
computation—called the ‘Hadamard matrix’. This terminology is perhaps unfortunate
because the same term has already been used in combinatorics to cover a much broader
concept. (See the 1893 article by Jacques Hadamard[50] for the origin of this term.)

Definition 7 (Hadamard matrix in combinatorics) A matrix M ∈ {−1,+1}n×n is
called a Hadamard matrix if and only if M · M T = n · In, where “T ” denotes the
transpose of a matrix.

Obviously, when M is a Hadamard matrix, then M√
n
∈ U(n) is a unitary matrix . The

following two standard results are easy to verify.

• If M is a Hadamard matrix, then the dimension of M will be 1, 2 or divisible by
4.

39
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• If M1 and M2 are Hadamard matrices, then their tensor product M1 ⊗M2 is a
Hadamard matrix as well.

It is a famous open problem whether or not there exists a Hadamard matrix for every
dimension 4k.

The H⊗n matrices, which we encountered before, form only a small subset of all
the Hadamard matrices that we know in combinatorics. Instead, the matrices

√
2n ·H⊗n

should perhaps be called “Hadamard matrices of the Sylvester kind” after the author
who first discussed this specific family of matrices.[96]

The properties of Hadamard matrices (especially the above mentioned 4k-question)
is an intensively studied topic in combinatorics, and its complexity is impressive given
the simple definition.[33, 51, 85, 86, 93] In 1933, Raymond Paley proved the exis-
tence of two families of Hadamard matrices that are very different from Sylvester’s
2n-construction.

Fact 8 (Paley construction I and II) I: For every prime p with p = 3 mod 4 and ev-
ery integer k, there exists a Hadamard matrix of dimension (pk + 1)× (pk + 1). II: For
every prime p with p = 1 mod 4 and every integer k, there exists a Hadamard matrix
of dimension (2pk + 2)× (2pk + 2).

Proof: See the original article [76]. ut
For here it suffices to say that Paley’s construction uses the theory of quadratic residues
over finite fields Fpk . We will discuss this topic in Section 5.3 in order to acquire the
necessary tools for the construction of the quantum algorithm of Theorem 9.

One can extend the notion of Hadamard matrices by allowing three possible matrix
elements {−1,+1, 0}, while still requiring the M ·M T ∝ In restriction. We thus reach
the following definition.

Definition 8 (Weighing matrix [33, 85]) A matrix M ∈ {−1, 0,+1}n×n is called a
weighing matrix if and only if M ·M T = k · In for some 0 ≤ k ≤ n. The set of such
matrices is denoted by W(n, k).

By looking at a row of a matrix M ∈ {−1, 0,+1}n×n, we see that M ·MT = k ·In im-
plies that this row has has n−k zeros, and k entries “+1” or “−1”. As a result, W(n, n)
are the Hadamard matrices again, whereas W(n, n−1) are called conference matrices.
The identity matrix In is an example of a W(n, 1) matrix. If M1 ∈ W(n1, k1) and
M2 ∈ W(n2, k2), then their tensor product M1 ⊗M2 is an element of W(n1n2, k1k2).
This implies that for every weighing matrix M ∈ W(n, k) we have in fact a whole
family of matrices M⊗t ∈ W(nt, kt), indexed by t ∈ N.

Example 1








+1 +1 +1 0
+1 −1 0 +1
+1 0 −1 −1

0 +1 −1 +1









⊗t

is a W(4t, 3t) weighing matrix.
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The observation that for every M ∈ W(n, k) the matrix 1√
k
·M ∈ U(n) is a unitary

matrix makes the connection between combinatorics and quantum computation that we
explore in this chapter. In the next section we will see how the mutually orthogonal ba-
sis of such a matrix can be used for a query efficient quantum algorithm. The classical
lower bound for the same problem is proven using standard, decision tree arguments.

5.2 Quantum Algorithms for Weighing Matrices

In this section we will describe a general weighing-matrix-problem and its quantum
solution. But before doing so, we first mention the following state-construction lemma
which follows directly from earlier results on Grover’s search algorithm.

Lemma 6 (State construction lemma) Let f : {1, . . . , n} → {−1, 0,+1} be a black-
box function. If we know that k of the function values are “+1” or “−1”, and the
remaining n− k entries are “0”, then the preparation of the state

|f〉 =
1√
k

n
∑

i=1

f(i)|i〉,

requires no more than
⌈

π
4

√

n
k

⌉

+ 1 quantum evaluations of the black-box function f .
When k = n, a single query is sufficient.

Proof: First, we use the amplitude amplification process of Grover’s search algorithm
[48] to create, exactly, the state

1√
k

n
∑

i=1
f(i)6=0

|i〉

with ≤
⌈

π
4

√

n
k

⌉

queries to f . (See the article by Boyer et al. [25] for a derivation of
this upper bound. Obviously, no queries are required if k = n.) After that, following
Fact 2, one additional f -call is sufficient to insert the proper amplitudes, yielding the
desired state |f〉. ut

We will now define the central problem of this chapter, which assumes the existence
of a weighing matrix.

Definition 9 (Weighing matrix problem) Let M be a W(n, k) weighing matrix. De-
fine a set of n functions fMs : {1, . . . , n} → {−1, 0,+1} for every s ∈ {1, . . . , n}
by

fM
s (i) = Msi.

Given a function fM
s in the form of a black-box, we want to calculate the parameter s.

The (probabilistic) query complexity of the weighing matrix problem is the minimum
number of calls to the function f that is necessary to determine the value s (with high
probability).
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With the quantum protocol of Lemma 6 we can solve this problem in a straightforward
way.

Theorem 8 (Quantum algorithm for the weighing matrix problem) Given a matrix
M ∈ W(n, k) with the corresponding query problem of Definition 9, there exists a
quantum algorithm that exactly determines s with

⌈

π
4

√

n
k

⌉

+ 1 queries to fM
s . (When

n = k, the problem can be solved with one query to the function.)

Proof: First, prepare the state |fM
s 〉 = 1√

k

∑n
i=1 f

M
s (i)|i〉 with

⌈

π
4

√

n
k

⌉

+ 1 queries to

the function f . Then, measure the state in the basis spanned by the vectors |fM
1 〉, |fM

2 〉,
. . . ,|fM

n 〉. Because M is a weighing matrix, this basis is orthogonal and hence the
outcome of the measurement gives us the value s (via the outcome fM

s ) without error.
ut

For every possible weighing matrix, this result establishes a separation between the
quantum and the classical query complexity of the problem, as is shown by the follow-
ing classical lower bound.

Lemma 7 (Classical lower bounds for the weighing matrix problem) Consider the
problem of Definition 9 for a weighing matrix M ∈ W(n, k). Let d be the number
of queries used by a classical algorithm that recovers s with an error probability of ε.
Then, this query complexity is bounded from below by

d ≥ log3(1− ε) + log3 n,

d ≥ (1− ε)n
k
− 1

k
,

d ≥ log((1− ε)n+ n− k)− log(n− k + 1).

(For the case where k = n, this lower bound equals d ≥ log(1− ε) + log n.)

Proof: We will prove these bounds by considering the decision trees that describe the
possible classical protocols. The procedure starts at the root of the tree and this node
contains the first index i that the protocol queries to the function f . Depending on the
outcome f(i) ∈ {−1, 0,+1}, the protocol follows one of the (three) outgoing edges to
a new node x, which contains the next query index ix. This routine is repeated until
the procedure reaches one of the leaves of the tree. At that point, the protocol guesses
which function it has been querying. With this representation, the depth of such a
tree reflects the number of queries that the protocol uses, while the number of leaves
(nodes without outgoing edges) indicates how many different functions the procedure
can distinguish.

For a probabilistic algorithm with error probability ε, we need to have decision
trees with at least (1 − ε)n leaves. Because the number of outgoing edges cannot be
bigger than 3, a tree with depth d has maximally 3d leaves. This proves the first lower
bound via 3d ≥ (1− ε)n.

For the second and third bound we have to analyze the maximum size of the optimal
decision tree as it depends on the values k and n. We know that for every index ix, there
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are only k different functions with f(ix) 6= 0. This implies that at every node x the joint
number of leaves of the two subtrees (associated with the outcomes f(ix) = −1 and
+1) cannot be bigger than k. Hence, by considering the path (starting from the root)
along the edges that correspond to the answers f(ix) = 0, we see that a decision tree
with d queries, can distinguish no more than dk + 1 functions. (Consider for example
the case where k = 1.) Similarly, we can use the observation that there are exactly
n− k functions with f(ix) = 0 for every node x. This tells us that a tree with depth d
has a maximum number of leaves of 2d + (2d − 1)(n− k). ut
The above bounds simplify significantly when we express them as functions of (big
enough) n. This gives us the following table (note that the quantum complexity holds
for the exact solution with ε = 0):

k quantum upper bound classical lower bound

o(n) dπ
4

√

n
k
e+ 1 (1− ε)n

k
−O(1)

Θ(n) O(1) log3 n+ log3(1− ε)
n 1 log n+ log(1− ε)

Note that the n-dimensional identity matrix is a W(n, 1) weighing matrix, and that
for this In the previous theorem and lemma are just a rephrasing (with k = 1) of the
results on Grover’s search algorithm for exactly one matching entry. The algorithm
of Bernstein & Vazirani is also captured by the above as the case where k has the
maximum value k = n (with the weighing matrices (

√
2 · H)⊗t ∈ W(2t, 2t)). Hence

we can think of those two algorithms as the extreme instances of the more general
weighing matrix problem.

As we phrased it, a weighing matrix M ∈ W(n, k) gives only a input-size specific
problem for which there is a classical/quantum separation, but not a problem that is
defined for every input size N , as is more customary. We know, however, that for
every such matrix M , the tensor products M⊗t are also W (nt, kt) weighing matrices
(for all t ∈ N). We therefore have the following direct consequence of our results.

Lemma 8 Every weighing matrixM ∈ W(n, k) leads—via the set of matricesM ⊗t ∈
W(nt, kt)—to a weighing matrix problem for N = n t and K = kt = N logn k. By
defining γ = 1 − logn k we have, for every suitable N , a quantum algorithm with
query complexity π

4

√
Nγ for which there is a classical, probabilistic lower bound of

(1− ε) ·Nγ .

Example 2 Using the W(4t, 3t) weighing matrices of Example 1, we have γ = 1 −
1
2
log 3 ≈ 0.21, and hence a quantum algorithm with query complexity π

4
N0.10.... The

corresponding classical probabilistic, lower bound of this problem is (1− ε) ·N 0.21....

A legitimate objection against the weighing-matrix-problem is that it does not seem
to be very useful (besides the known boundary cases k = 1 and k = n). In order
to obtain more natural problems one can try to look into the specific structure that
constitutes the weighing matrix or matrices. An example of such an approach will be
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given in the next two sections via Paley’s construction of Hadamard matrices. We will
see how this leads to the definition of a problem about quadratic residues of finite fields
with a quantum solution that is more efficient than any classical protocol.

5.3 Quadratic Residues of Finite Fields

This section describes some standard results about quadratic residues and Legendre
symbols over finite fields. Readers familiar with this topic can safely skip the next
paragraphs and continue with Section 5.6. For more background information one can
look up references like [32] or [57].

5.4 Finite Field Factoids

From now on p denotes an odd prime. It is known that there always exists a generator
ζ for the multiplicative group F?

pk = Fpk \{0}. [32, 57] This means that the sequence
ζ, ζ2, ζ3, . . . will generate all non-zero elements of Fpk . As this is a set of size pk − 1,
it follows that ζpk

= ζ , and hence ζ(pk−1) = 1. Hence we have the equality

ζ i = ζj if and only if i = j mod (pk − 1) (5.1)

for every integer i and j.
We now turn our attention to the definition of the generalized Legendre symbol.[32]

Definition 10 (Legendre symbol over finite fields) For every finite field Fpk , with p
an odd prime, the Legendre symbol-function χ : Fpk → {−1, 0,+1} indicates if a
number is a quadratic residue or not, and is thus defined by

χ(x) :=







0 if x = 0
+1 if ∃y 6= 0 : y2 = x
−1 if ∀y : y2 6= x.

By Equation 5.1, the quadratic expression (ζ j)2 = ζ2j = ζ i is correct if and only if
2j = i mod pk − 1. As p is odd, pk − 1 will be even, and hence there can only exists
a j with (ζj)2 = ζ i when i is even. Obviously, if i is even, then ζ j with j = i

2
gives a

solution to our quadratic equation. This proves that 50% of the elements of F?
pk are a

quadratic residue with χ(x) = +1, while the other half has χ(x) = −1. In particular,
χ(ζ i) = (−1)i, and hence for the total sum of the function values:

∑

x χ(x) = 0.

5.5 Multiplicative Characters over Finite Fields

The rule χ(ζ i) · χ(ζj) = χ(ζ i+j), in combination with χ(0) = 0, shows that the
Legendre symbol χ is a multiplicative character with χ(x) · χ(y) = χ(xy) for all
x, y ∈ Fpk .
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Definition 11 (Multiplicative characters over finite fields) The function χ : Fpk →
C is a multiplicative character if and only if χ(xy) = χ(x)χ(y) for all x, y ∈ Fpk . The
constant function χ(x) = 1 is called the trivial character. (We do not consider the other
trivial function χ(x) = 0.)

See [32, 57] for the usage of multiplicative characters in number theory. They have the
following elementary properties, which we present without proof:

• χ(1) = 1,

• for all nonzero x, the value χ(x) is a (pk − 1)th root of unity,

• if χ is nontrivial, we have χ(0) = 0,

• the inverse of nonzero x obeys χ(x−1) = χ(x)−1 = χ(x)∗,

• ∑x χ(x) = 0 for nontrivial χ.

The remainder of this section is used to prove a ‘near orthogonality’ property, typical
for nontrivial characters, which will be the crucial ingredient of the quantum algorithm
of the next section.

Lemma 9 (Near orthogonality of shifted characters) Consider a nontrivial charac-
ter χ : Fpk → C. For the ‘complex inner product’ between two χ-s that are shifted by
s and r ∈ Fpk it holds that

∑

x∈F
pk

χ(x+ r)∗χ(x+ s) =

{

pk − 1 if s = r
−1 if s 6= r.

Proof: Rewrite
∑

x∈F
pk

χ(x+ r)∗χ(x+ s) =
∑

x∈F
pk

χ(x)∗χ(x+ ∆)

with ∆ = s − r. If s = r this sum equals pk − 1. Otherwise, we can use the fact that
χ(x)∗χ(x+ ∆) = χ(1 + x−1∆) = χ(∆)χ(∆−1 + x−1) (for x 6= 0) to reach

∑

x∈F
pk

χ(x)∗χ(x+ ∆) = χ(∆)
∑

x∈F?

pk

χ(∆−1 + x−1).

Earlier we noticed that
∑

x χ(x) = 0, and therefore in the above summation (where
the value x = 0 is omitted) we have

∑

x χ(x−1 + ∆−1) = −χ(∆−1). This confirms
that indeed

χ(∆)
∑

x∈F?

pk

χ(x−1 + ∆−1) = −1,

which finishes the proof. ut
We will use this lemma in the setting where the character is the earlier described Leg-
endre symbol.
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5.6 The shifted Legendre Symbol Problem

Raymond Paley used the near orthogonality property of the Legendre symbol for the
construction of his Hadamard matrices.[76] Here we will use the same property to de-
scribe a problem that, much like the above weighing matrix problem, has a gap between
its quantum and its classical query complexity. In light of Theorem 8 and Lemma 7
the results of this section are probably not very surprising. Rather, we wish to give an
example of how we can borrow the ideas behind the construction of combinatorial ob-
jects to design new quantum algorithms. In this case this is done by stating a problem
that uses the Legendre symbol over finite fields.

Definition 12 (Shifted Legendre Symbol Problem) Assume that we have a black-
box for a shifted Legendre function fs : Fpk → {−1, 0,+1} that obeys

fs(x) = χ(x+ s),

with the—for us unknown—shift parameter s ∈ F pk . (Recall Definition 10 for a de-
scription of χ.) The task is to determine the value s with a minimum number of calls
to the function f .

First we will prove a lower bound for the classical query complexity of this problem.
This proof is almost identical to the lower bounds of Lemma 7 for the weighing matrix
problem.

Lemma 10 (Classical lower bound for the SLS problem) Assume a classical algo-
rithm that tries to solve the shifted Legendre symbol problem over a finite field Fpk .
To determine the requested value s with a maximum error rate ε, requires more than
k log p+ log(1− ε)− 1 queries to the function fs.

Proof: For every index ix there is exactly one function with f(ix) = 0. For the
decision tree of a classical protocol this implies that every node x can only have two
proper subtrees (corresponding to the answers f(i) = 1 and −1) and one deciding leaf
(the case f(−i)(i) = 0). Hence, a decision tree of depth d can distinguish no more than
2d+1 − 1 different functions. In order to be able to differentiate between (1 − ε)pk

functions, we thus need a depth d of at least log((1− ε)pk − 1). ut
The next theorem shows us how—with a quantum computer—we can recover s

exactly with only two queries.

Theorem 9 (Two Query Quantum Algorithm for the SLS Problem) For any finite
field Fpk , the problem of Definition 12 can be solved exactly with two quantum queries
to the black-box function fs.

Proof: We exhibit the quantum algorithm in detail. We start with the superposition

|start〉 =
1

√

pk + 1





∑

x∈F
pk

|x〉|0〉



+
1

√

pk + 1
|dummy〉|1〉.
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(The reason for the “dummy” part of state that we use will be clear later in the analysis.)
The first oracle call is used to calculate the different χ values for the non-dummy states,
giving

|start〉 7−→
fs

1
√

pk + 1





∑

x∈F
pk

|x〉|fs(x)〉



+
1

√

pk + 1
|dummy〉|1〉

=
1

√

pk + 1





∑

x∈F
pk

|x〉|χ(x+ s)〉



+
1

√

pk + 1
|dummy〉|1〉.

At this point, we measure the rightmost register to see if it contains the value “zero”.
If this is indeed the case (probability 1

pk+1
), the state has collapsed to | − s〉|0〉 which

directly gives us the desired answer s. Otherwise, we continue with the now reduced
state

1
√

pk





∑

x∈F
pk\{−s}

|x〉|χ(x+ s)〉



+
1
√

pk
|dummy〉|1〉, (5.2)

on which we apply a conditional phase change (depending on the χ values in the right-
most register). We finish the computing by ‘erasing’ this rightmost register with a
second call to fs. (For the dummy part, we just reset the value to “zero”.) This gives
us the final state ψ, depending on s, of the form

|ψs〉|0〉 =
1
√

pk





∑

x∈F
pk

χ(x+ s)|x〉



 |0〉+ 1
√

pk
|dummy〉|0〉.

(Notice how the χ(x + s) amplitude is zero for the missing entry x = −s in the
summation over Fpk .)

What is left to show is that {|ψs〉|s ∈ Fpk} forms a set of orthogonal vectors.
Lemma 9 tells us that for the inner product between two states ψs and ψr it holds that

〈ψr|ψs〉 =
1

pk





∑

x∈F
pk

χ(x+ r)∗χ(x+ s)



+
1

pk

=

{

1 if s = r
0 if s 6= r.

In other words, the states ψs for s ∈ Fpk are mutually orthogonal. Hence, by measuring
the final state in the ψ-basis, we can determine without error the shift factor s ∈ Fpk

after only two oracle calls to the function fs. ut
More recently, Peter Høyer has shown the existence of a one query protocol for the
same problem.[private communication]
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The above algorithm only reduces the query complexity to fs. The time complexity
of the protocol is another matter, as we did not explain how to perform the final mea-
surement along the ψ axes in a time-efficient way. In a recent article [37] it is shown
how one can implement the unitary mapping

|s〉 ←→ 1
√

pk





∑

x∈F
pk

χ(x+ s)|x〉



+
1
√

pk
|dummy〉

with an efficient quantum circuit of depth polylog(pk).

5.7 Conclusion

We have established a connection between the construction of weighing matrices in
combinatorics, and the design of new quantum algorithms. It was shown how every
weighing matrix leads to a query problem that has a more efficient quantum solution
than is possible classically.

Using the structure of quadratic residues over finite fields, we gave an explicit ex-
ample of a task with constant quantum query complexity, but logarithmic classical
query complexity.

The implicit goal of this chapter was to suggest new possibilities for the construc-
tion of useful quantum algorithms. Other results on Hadamard matrices that are espe-
cially interesting in this context are, for example, the complex Hadamard matrices of
Turyn[100] and the Hadamard matrices of the dihedral group type[61, 90].



Chapter 6

Self-Testing of Quantum Gates

This chapter concerns the problem how to test the behavior of a quantum gate. If
we think that we have a Hadamard gate H, how can we be sure that H behaves
indeed correctly on all possible input qubits α|0〉 + β|1〉? How can we test this
without having to rely on other quantum mechanical components that can be
equally unreliable? These questions concern the self-testability of quantum gates.

We show how some gates or families of gates are self-testable whereas others
are not. These self-testing procedures are also “robust”. By this we mean that the
error during the test-procedure and the error of the gate are proportional: If we
detect a small error during the testing-procedure, then this will always correspond
to a small error in the gate. The method is also extended to two-qubit gates.

6.1 Introduction

We consider the design of self-testers for quantum gates. A self-tester for the gates
F 1, . . . ,F m is a classical procedure that, given any gates G1, . . . ,Gm, decides with
high probability if each Gi is close to F i. This decision has to rely only on measuring
in the computational basis the effect of iterating the gates on the classical states. It
turns out that instead of individual gates, we can only design procedures for families
of gates. To achieve our goal we borrow some elegant ideas of the theory of program
testing: we characterize the gate families by specific properties, we develop a theory
of robustness for them, and show that they lead to self-testers. In particular we prove
that the universal and fault-tolerant set of gates consisting of a Hadamard gate, a CNot
gate, and a phase rotation gate of angle π

4
is self-testable.

The idea of self-testing in quantum devices is implicit in the work of Adleman, De-
marrais and Huang[1]. They have developed a procedure by which a quantum Turing
machine is able to estimate its internal angle by its own means under the hypothesis that
the machine is unitary. In the context of quantum cryptography Mayers and Yao[71]
have designed tests for deciding if a photon source is perfect. These tests guarantee that

49
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if source passes them then it is adequate for the security of the Bennett-Brassard[20]
quantum key distribution protocol.

Here we develop the theory of self-testing of quantum gates by classical proce-
dures. Given a completely positive super operator (CPSO) G for n qubits, and a fam-
ily F of unitary CPSOs, we would like to decide if G belongs to F . Intuitively, a
self-tester is a procedure that answers the question “G ∈ F ?” by interacting with
the CPSO G in a purely classical way. More precisely, it will be a probabilistic al-
gorithm that is able to access G as a black box in the following sense: it can prepare
the classical states w ∈ {0, 1}n, iterate G on these states, and afterwards, measure in
the computational basis. The access must be seen as a whole, performed by a spe-
cific, experimental oracle for G: once the basis state w and the number of iterations k
have been specified, the program in one step gets back one of the possible probabilistic
outcomes of measuring the state of the system after G is iterated k-times on w. The
intermediate quantum states of this process cannot be used by the program, which can-
not perform any other quantum operations either. For 0 ≤ δ1 ≤ δ2, such an algorithm
will be a (δ1, δ2)-tester for F if for every CPSO G, whenever the distance of G and
F is at most δ1 (in some norm), it accepts with high probability, and whenever the
same distance is greater than δ2, it rejects with high probability, where the probability
is taken over the measurements performed by the oracle and by the internal coin tosses
of the algorithm. Finally we will say that F is testable if for every δ2 > 0, there exists
0 < δ1 ≤ δ2 such that there exists a (δ1, δ2)-tester for F . These definitions can be
extended to several classes of CPSOs.

The study of self-testing programs is a well-established research area which was
initiated by the work of Blum, Luby and Rubinfeld[24], Rubinfeld[79], Lipton[69] and
Gemmel et al. [47]. The purpose of a self-tester for a function family is to detect by
simple means if a program which is accessible as an oracle computes a specific function
from the given family. This clearly inspired the definition of our self-testers which have
the peculiarity that they should test quantum objects that they can access only in some
restricted manner. The analogy with self-testing does not stop with the definition. One
of the main tools in self-testing of function families is the characterization of these
families by robust properties. Informally, a property is robust if whenever a function
satisfies the property approximately, then it is close to a function which satisfies it
exactly. The concept of robustness was introduced and its implication for self-testing
was first studied by Rubinfeld and Sudan[81] and by Rubinfeld[80]. It will play a
crucial role in our case as well.

We note in the Preliminaries that for any real φ the states |1〉 and eiφ|1〉 are ex-
perimentally indistinguishable. This implies that if both the input states and the mea-
surement basis vectors are the classical states |0〉 and |1〉, then there are ‘families’ of
CPSOs which are mutually indistinguishable. For example, let the CPSO H be the
well-known Hadamard gate with

|0〉 7→ 1√
2
(|0〉+ |1〉) and |1〉 7→ 1√

2
(|0〉 − |1〉),
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and let Hφ be the same gate expressed in the basis (|0〉, eiφ|1〉), hence

|0〉 7→ 1√
2
(|0〉+ eiφ|1〉) and |1〉 7→ 1√

2
(e−iφ|0〉 − |1〉),

for φ ∈ [0, 2π). Any experiment that uses H and starts with the state |0〉 or |1〉 will
produce the outcomes “0” and “1” with the same probabilities as the same experiment
with the Hφ gate. Thus, no experiment that uses this quantum gate alone can distin-
guish H from Hφ. Indeed, as stated later in Fact 15, we will have to consider a testable
‘family’ F = {Hφ|φ ∈ [0, 2π)} containing all Hφ gates.

The main result is Theorem 15 which states that for several sets of unitary CPSOs,
in particular, the Hadamard gates family, Hadamard gates together with CNot gates,
and Hadamard gates with CNot and phase rotation gates of angle ± π

4
, are testable.

This last family is of particular importance since every triplet in the family forms a
universal and fault-tolerant set of gates for quantum computation[26].

For the proof we will define the notion of experimental equations which are func-
tional equations for CPSOs corresponding to the properties of the quantum gate that
a self-tester can approximately test. These tests are done via the interaction with the
experimental oracle. The proof itself contains three parts. In Theorems 10, 11, and 12
we will exhibit experimental equations for the families of unitary CPSOs we want to
characterize. In Theorem 13 we will show that actually all experimental equations are
robust; in fact, the distance of a CPSO from the target family is polynomially related to
the error tolerated in the experimental equations. Finally Theorem 14 gives self-testers
for CPSO families which are characterized by a finite set of robust experimental equa-
tions.

In some cases, we are able to calculate explicitly the polynomial bound in the
robustness of experimental equations. Such a result will be illustrated in Lemma 14
for the equations characterizing the Hadamard family {Hφ}.

Technically, these results will be based on the representation of one-qubit states and
CPSOs in R3, where they are respectively vectors in the unit ball of R3, and particular
affine transformations. This correspondence is known as the Bloch Ball representation.

6.2 The Bloch Ball representation

Specific for the one-qubit case there is a very appealing way of describing both the
states and its unitary transformations in 3 dimensional Euclidean space, known as the
Bloch ball picture. This representation relies on the isomorphism between the group
U(2)/U(1) and the special rotation group SO(3), the set of 3 × 3 orthogonal matrices
with determinant 1. This allows us to view one-qubit states as vectors in the unit ball
of R3, and unitary superoperators as rotations on R3. We will now describe exactly this
correspondence.

The Bloch Ball B (respectively Bloch Sphere S) is the ball (sphere) with radius 1
of the Euclidean affine space R3. Any point ~u ∈ R3 determines a vector with the same
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coordinates which we will also denote by ~u. The inner product of ~u and ~v will be
denoted by (~u,~v), and the Euclidean norm of ~u by ‖~u‖.

Using spherical coordinates, we can characterize each point ~u ∈ R3 by its norm
r ≥ 0, its latitude θ ∈ [0, π], and its longitude φ ∈ [0, 2π). The latitude is the angle
between the z-axis and the vector ~u, and the longitude is the angle between the x-axis
and the orthogonal projection of ~u in the plane defined by z = 0. If ~u = (x, y, z)T ,
then these parameters satisfy x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ. For
every (x, y, z)T ∈ B ⊂ R3 there exists a unique density matrix such that





x
y
z



 =
1

2

−−−−−−−−−−−−−→[

1 + z x− iy
x+ iy 1− z

]

= ~ρ.

This mapping is a bijection that also obeys

−−−−→
ρ(p, α) =

−−−−−−−−→[

p α∗

α 1− p

]

=





α+ α∗

iα∗ − iα
2p− 1



 .

In this formalism, the pure states are nicely characterized in B by their norm.

Fact 9 A density matrix ρ represents a pure state if and only if ~ρ ∈ S , that is, ‖~ρ‖ = 1.

Also, if θ ∈ [0, π] and φ ∈ [0, 2π) are respectively the latitude and the longitude of
~ψ ∈ S , then the corresponding density matrix represents a pure state and satisfies
|ψ〉 = cos( θ

2
)|0〉+sin( θ

2
)eiφ|1〉. Observe that the pure states |ψ〉 and |φ〉 are orthogonal

if and only if ~ψ = −~φ. We will use the following notation for the six pure states along
the x, y and z axes: |ζ±x 〉 = 1√

2
(|0〉 ± |1〉), |ζ±y 〉 = 1√

2
(|0〉 ± i|1〉), |ζ+

z 〉 = |0〉, and
|ζ−z 〉 = |1〉, with the respective coordinates (±1, 0, 0), (0,±1, 0) and (0, 0,±1) in R3.

For each CPSO G, there exists a unique affine transformation ~G over R3, which
maps the ball B into B and is such that, for all density matrices ρ, ~G(~ρ) =

−−→
G(ρ).

Unitary superoperators have a nice characterization in B.

Fact 10 The map between U(2)/U(1) and SO(3) that sends A to ~A, is an isomor-
phism.

For α ∈ (−π, π], θ ∈ [0, π
2
], and φ ∈ [0, 2π), we will define the unitary transformation

Rα,θ,φ overH2. If |ψ〉 = cos( θ
2
)|0〉+eiφ sin( θ

2
)|1〉 and |ψ⊥〉 = sin( θ

2
)|0〉−eiφ cos( θ

2
)|1〉

then by definition Rα,θ,φ|ψ〉 = |ψ〉 and Rα,θ,φ|ψ⊥〉 = eiα|ψ⊥〉. If A is a unitary super-
operator then we have A = Rα,θ,φ for some α, θ, and φ. In R3 the transformation
~Rα,θ,φ is the rotation of angle α whose axis cuts the sphere S in the opposite points ~ψ
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and −~ψ =
−→
ψ⊥. Note that for θ = 0 the CPSO Rα,0,φ does not depend on φ. We will

denote this phase rotation by Rα.
The affine transformation in B which corresponds to the Von Neumann measure-

ment in the computational basis is the orthogonal projection to the z-axis. Therefore
it maps ~ρ = (x, y, z) into (0, 0, z), the point which corresponds to the density matrix
1+z
2
|0〉〈0|+ 1−z

2
|1〉〈1|. Thus Prob0[ρ] = 1+z

2
.

6.3 Norm and Distance

Consider the space of n × n dimensional, complex valued matrices. We define the
trace norm for this space as follows.

Definition 13 (Trace norm) Let A ∈ Mn(C) be a complex valued matrix, the trace
norm is defined by

‖A‖tr := tr
(√

A · A∗
)

=
n
∑

i=1

σi,

where A∗ is the conjugate transpose of A and σ1, σ2, . . . are the singular values of A.
(See the appendix of thesis or [54] for more information on these terms.)

Definition 14 (Euclidean norm) For A ∈ Mn(C) a complex valued matrix, its Eu-
clidean norm is define by

‖A‖2 :=

√

√

√

√

n
∑

i,j=1

|Aij|2 (6.1)

=
n
∑

i=1

σ2
i , (6.2)

with σi the singular values of the matrix A.

Both norms are matrix norms because they obey the following properties (see Chapter 5
in [54] for much more on this topic):

1. nonnegative: ‖A‖ ≥ 0

2. positive: ‖A‖ = 0 if and only if A = 0

3. homogeneous: ‖αA‖ = |α| · ‖A‖ for all α ∈ C

4. triangle inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖
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5. submultiplicative: ‖AB‖ ≤ ‖A‖ · ‖B‖.

In addition, for the tensor product between two matrices, we also have the equality

• ‖A⊗B‖ = ‖A‖ · ‖B‖.

A very useful relation between the trace and the Euclidean norm is easily established
by the inequalities

√
∑

i σ
2
i ≤

∑

i σi ≤
√
n
√
∑

i σ
2
i with the summation over the n

singular values. We thus have

‖A‖2 ≤ ‖A‖tr ≤
√
n‖A‖2 (6.3)

for all A ∈Mn(C).
The trace norm has several advantages when we consider the difference between

two quantum states ρ1 and ρ2. Given a measurement setting P = {Pi} (with the nor-
malization restriction

∑

i P
∗
i Pi = I), a density matrix ρ induces a probability distribu-

tion Prob(Pi|ρ) over the different projectors Pi. It can be shown that in this setting, the
trace norm of the difference ρ1 − ρ2 is the maximal total variation distance between
the two states:

‖ρ1 − ρ2‖tr = max
P

(

∑

Pi∈P
|Prob(“ρ1 = Pi”)− Prob(“ρ2 = Pi”)|

)

,

where the maximization is taken over all measurement settings P . This result suggests
that the expression ‖ρ1 − ρ2‖tr is a natural way of measuring the difference between
the two states ρ1 and ρ2. The following Fact strengthens this belief.

Fact 11 The trace-norm distance between two qubit states ρ1 and ρ2 is identical to the
Euclidean distance between −→ρ1 and −→ρ2 in the Bloch ball representation:

‖ρ1 − ρ2‖tr = ‖−→ρ1 −−→ρ2‖2.

For the density matrices ρ(p, α) and ρ(q, β) this value is explicitly expressed by

‖ρ(p, α)− ρ(q, β)‖tr = 2
√

(p− q)2 + |α− β|2.

6.4 Norms on Superoperators

Definition 15 (Trace Induced Superoperator Norm) For superoperators, the norm
induced by the trace norm is defined as

|||G|||tr := max
X 6=0

{‖G(X)‖tr
‖X‖tr

}

.
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We will denote by disttr the natural induced distance by the norm ||| · |||tr:

disttr(F ,G) := |||F − G|||tr
= max

X 6=0

{‖F (X)−G(X)‖tr
‖X‖tr

}

.

As ||| · |||tr is a norm, the usual properties like |||F + G|||tr ≤ |||F |||tr + |||G|||tr and
|||αF |||tr = |α||||F |||tr hold. Furthermore, we also have for every power k ∈ N:

disttr(F
k,Gk) ≤ k · disttr(F ,G),

which we will use later in this chapter.

6.5 Properties of CPSOs

Here we will establish the properties of CPSOs that we will need for the characteriza-
tion of our CPSO families.

Fact 12 (Monotonicity of the trace-norm distance [82]) Let G be a completely pos-
itive, trace preserving transformation (a CPSO). The trace-norm distance between two
states is non-increasing under the action of G:

‖G(ρ1)−G(ρ2)‖tr ≤ ‖ρ1 − ρ2‖tr,

for all quantum states ρ1 and ρ2.

Proof: First we rewrite the Hermitian difference matrix ρ1−ρ2 according to its spectral
decomposition ρ1 − ρ2 = λ1σ1 − λ2σ2 with λ1, λ2 ≥ 0, and σ1 and σ2 two unit
trace, Hermitian matrices that obey σ1σ2 = 0. Because the trace of the matrix (ρ1 −
ρ2) is zero and ‖σ1 − σ2‖tr = 2, we have λ1 = λ2 = 1

2
‖ρ1 − ρ2‖tr. We conclude

the proof by using the triangle inequality and the homogeneity of the norm ‖ · ‖tr, in
combination with the requirement that the G is a completely positive, trace preserving
linear superoperator:

‖G(ρ1 − ρ2)‖tr = ‖G(λ1σ1 + (−λ1)σ2)‖tr
≤ λ1 · ‖G(σ1)‖tr + λ1 · ‖G(σ2)‖tr
= ‖ρ1 − ρ2‖tr.

ut

Definition 16 (Constant transformation) A transformation is constant if it maps all
states to the same output state.

Fact 13 If the mixture pρ1+(1−p)ρ2 (with the non-degenerate probability 0 < p < 1)
is a pure state ϕ, then both ρ1 and ρ2 are identical to ϕ as well.
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Lemma 11 If a CPSO G : Mn(C) → Mm(C) maps the totally mixed state 1
n
In to a

pure state ϕ, then G is constant.

Proof: Take an n-dimensional state ρ. The density matrix ρ′ = n+1
n2 In− 1

n
ρ will repre-

sent a proper state, and by linearity we know that 1
n+1

G(ρ) + n
n+1

G(ρ′) = G( 1
n
In) =

|ϕ〉〈ϕ|. This is only possible if G(ρ) = |ϕ〉〈ϕ| (in combination with G(ρ′) = |ϕ〉〈ϕ|).
ut

Lemma 12 Let G be a quantum mechanical transformation of a single qubit, and let
ρ be a qubit state. If G is not constant and G(ρ) is a pure state, then ρ has to be a pure
state.

Proof: Let ρ be a mixed qubit and G(ρ) a pure state ϕ. We can decompose ρ always
as λ|ψ〉〈ψ| + (1 − λ)|ψ⊥〉〈ψ⊥|, with 1

2
≤ λ < 1 and |ψ〉 orthogonal to |ψ⊥〉. By

linearity, it follows that G(ρ) = (2λ− 1)G(ψ)+ (2− 2λ)G( 1
2
I2) equals the pure state

ϕ. Because 0 ≤ 2λ − 1 < 1 and 0 < 2 − 2λ ≤ 1, we can conclude that G maps
the total mixture 1

2
I2 to the pure state. By the previous lemma this implies that G is

constant. ut
The space of 2n × 2n matrices has dimension 4n, hence every n qubit CPSO is

uniquely defined by the images of 4n independent states. However, the following
lemma shows that for unitary transformations it is sometimes sufficient to know only
3n images.

Lemma 13 Let ρ1, ρ2, and ρ3 be three distinct qubit density matrices representing pure
states, such that there is a convex combination λ1ρ1 + λ2ρ2 + λ3ρ3 that represents the
totally mixed qubit 1

2
I2. If G is a CPSO for n qubits that acts as the identity on the set

{ρ1, ρ2, ρ3}⊗n, then G is the identity mapping I2n .

Proof: Let P be the set of convex combinations of the three density matrices: P =
{λ1ρ1 +λ2ρ2 +λ3ρ3|λ1 +λ2 +λ3 = 1;λ1, λ2, λ3 ∈ [0, 1]}. To simplify the discussion,
we suppose without loss of generality that P contains the states ζ±z and ζ±x . By linearity
of G, we know that it acts as the identity on all the states %1⊗· · ·⊗%n as long as %i ∈ P
for all 1 ≤ i ≤ n. It will be sufficient to show that G is the identity on density matrices
representing non-entangled pure states, since they form a basis for all density matrices.

For every k, letAk be the set of density matrices representing k-qubit non-entangled
pure states, and let Bn−k = {ζ±x , ζ±z }⊗n−k. We will show by induction on k that, for
every 0 ≤ k ≤ n, the CPSO G acts as the identity on Ak ⊗ Bn−k. The case k = 0
follows by the hypothesis of the lemma.

Suppose the statement is true for some k. Fix σ ∈ Ak and τ ∈ Bn−k−1. For every
one-qubit density matrix ρ let ρ̃ denote the n-qubit density matrix σ ⊗ ρ⊗ τ .

We now prove that G(ρ̃) = ρ̃, for every ρ ∈ A1. For this, we use the fact that the
density matrix Ψ+ representing the entangled EPR state 1√

2
(|00〉+|11〉), can be written

in terms of tensor products of the ζ states:

Ψ+ = 1
2
(ζ+

x ⊗ ζ+
x + ζ−x ⊗ ζ−x + ζ+

z ⊗ ζ+
z + ζ−z ⊗ ζ−z − ζ+

y ⊗ ζ+
y − ζ−y ⊗ ζ−y ).



6.6. Characterization of CPSO Families 57

This can be generalized for the pure state |Ψ̃+〉 = 1√
2
(|0̃〉|0̃〉+ |1̃〉|1̃〉):

Ψ̃+ = 1
2
(ζ̃+

x ⊗ ζ̃+
x + ζ̃−x ⊗ ζ̃−x + ζ̃+

z ⊗ ζ̃+
z + ζ̃−z ⊗ ζ̃−z )− 1

2
(ζ̃+

y ⊗ ζ̃+
y + ζ̃−y ⊗ ζ̃−y ).

If we apply the superoperator I2n ⊗G to the state Ψ̃+ we get:

(I2n ⊗G)(Ψ̃+) = +1
2
(ζ̃+

x ⊗ ζ̃+
x + ζ̃−x ⊗ ζ̃−x )

+1
2
(ζ̃+

z ⊗ ζ̃+
z + ζ̃−z ⊗ ζ̃−z )

−1
2
(ζ̃+

y ⊗G(ζ̃+
y ) + ζ̃−y ⊗G(ζ̃−y )).

If |ϕ〉 and |ϕ⊥〉 are orthogonal n-qubit pure states, then let Φ−
ϕϕ⊥ = 1√

2
(|ϕ〉|ϕ⊥〉 −

|ϕ⊥〉|ϕ〉). Since Φ−
ϕϕ⊥ is orthogonal to all symmetric 2n-qubit pure states of the form

ψ ⊗ ψ, by projecting (I2n ⊗G)(Ψ̃+) to Φ−
ϕϕ⊥ we obtain:

〈Φ−
ϕϕ⊥ |(I2n ⊗G)(Ψ̃+)|Φ−

ϕϕ⊥〉 = −1
2
〈Φ−

ϕϕ⊥ |ζ̃+
y ⊗G(ζ̃+

y )|Φ−
ϕϕ⊥〉

−1
2
〈Φ−

ϕϕ⊥ |ζ̃−y ⊗G(ζ̃−y )|Φ−
ϕϕ⊥〉.

Since G is a completely positive, the left-hand side of this equality has to be non-
negative and in the right-hand side both terms are non-positive. Therefore, for every
orthogonal n-qubit pure states |ϕ〉 and |ϕ⊥〉, we get

〈Φ−
ϕϕ⊥ |ζ̃+

y ⊗G(ζ̃+
y )|Φ−

ϕϕ⊥〉 = 〈Φ−
ϕϕ⊥ |ζ̃−y ⊗G(ζ̃−y )|Φ−

ϕϕ⊥〉 = 0.

A straightforward calculation then shows that G(ζ̃±y ) = ζ̃±y . Therefore G acts as
the identity on density matrices ζ̃±z , ζ̃+

x and ζ̃+
y , which generate all density matrices,

and thus G(ρ̃) = ρ̃. ut
We also use the property that for CPSOs unitarity and invertibility are equivalent.

Fact 14 Let G be a CPSO for n qubits. If there exists a CPSO F for n qubits such
that F ◦G is the identity mapping, then G is a unitary superoperator.

Proof: See, for example, Chapter 3.8 in [78]. ut

6.6 Characterization of CPSO Families

In this section, every CPSO will be for one qubit. First we define the notion of experi-
mental equations, and then we show that several important CPSO families are charac-
terizable by them.

Definition 17 (Experimental equation) An experimental equation in one CPSO vari-
able, is an equation of the form

Prob0[Gk(|b〉〈b|)] = r, (6.4)

where k is a nonnegative integer, b ∈ {0, 1}, and 0 ≤ r ≤ 1.
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We will call the left-hand side of the equation the probability term, and the right-hand
side the constant term. The size of this equation is k. A CPSO G will “almost” satisfy
the equations if, for example, it is the result of adding small systematic and random
errors (independent of time) to a CPSO that does. For ε ≥ 0, the CPSO G ε-satisfies
Equation 6.4 if |Prob0[Gk(|b〉〈b|)] − r| ≤ ε, and when ε = 0 we will just say that
G satisfies Equation 6.4. Let {E} be a finite set of experimental equations. If G ε-
satisfies all equations in {E} we say that G ε-satisfies {E}. If some G satisfies {E}
then {E} is satisfiable. The set {G : G satisfies {E}} will be denoted by F{E}. A
family F of CPSOs is characterizable if it is F{E} for some finite set {E} of experi-
mental equations. In this case we say that {E} characterizes F .

All these definitions generalize naturally for m-tuples of CPSOs for m ≥ 2. In
what follows we will need only the case m = 2. An experimental equation in two
CPSO variables is an equation of the form

Prob0[F k1 ◦Gl1 ◦ · · · ◦ F kt ◦Glt(|b〉〈b|)] = r,

where k1, . . . , kt, l1, . . . , lt are nonnegative integers, b ∈ {0, 1}, and 0 ≤ r ≤ 1.
We discuss now the existence of finite sets of experimental equations in one vari-

able that characterize unitary superoperators, that is, the operators Rα,θ,φ, for α ∈
(−π, π], θ ∈ [0, π

2
], and φ ∈ [0, 2π). First observe that due to the restrictions of exper-

imental equations, there are unitary superoperators that they cannot distinguish.

Fact 15 Let α ∈ [0, π], θ ∈ [0, π
2
], and φ1, φ2 ∈ [0, 2π) such that φ1 6= φ2. Let {E} be

a finite set of experimental equations in m variables. If

(Rα,θ,φ1 ,G2, . . . ,Gm) satisfies {E}

then there exist G′
2, . . . ,G

′
m and G′′

2, . . . ,G
′′
m such that

(R−α,θ,φ1 ,G
′
2, . . . ,G

′
m) and (Rα,θ,φ2 ,G

′′
2, . . . ,G

′′
m) both satisfy {E}.

In the Bloch Ball formalism this corresponds to the following degrees of freedom in the
choice of the orthonormal basis of R3. Since experimental equations contain exactly
the states |0〉〈0| and |1〉〈1| there is no freedom in the choice of the z-axis, but there
is complete freedom in the choice of the x and y axes. The indistinguishability of the
latitude φ corresponds to the freedom of choosing the oriented x-axis, and the indistin-
guishability of the sign of α corresponds to the freedom of choosing the orientation of
the y-axis.

We introduce the following notations. Let Rα,θ denote the superoperator family
{R±α,θ,φ|φ ∈ [0, 2π)}. For φ ∈ [0, 2π), let the Notφ transformation be defined by
Notφ|0〉 = eiφ|1〉 and Notφ(e

iφ|1〉) = |0〉, and recall that the Hadamard transformation
Hφ obeys Hφ|0〉 = 1√

2
(|0〉 + eiφ|1〉) and Hφ(e

iφ|1〉) = 1√
2
(|0〉 − eiφ|1〉). Observe that

Hφ = R
π,

π
4

,φ
and Notφ = R

π,
π
2

,φ
, for φ ∈ [0, 2π). Finally, let {Hφ} = {Hφ|φ ∈

[0, 2π)}, and {Notφ} = {Notφ|φ ∈ [0, 2π)}.



6.6. Characterization of CPSO Families 59

Since the sign of α cannot be determined, we will assume that α is in the interval
[0, π]. We will also consider only unitary superoperators such that α

π
is rational. This

choice is good enough since these superoperators form a dense subset of all unitary
superoperators. For such a unitary superoperator, let nα be the smallest positive integer
n for which nα = 0 mod 2π. Then either nα = 1, or nα ≥ 2 and there exists t ≥ 1
which is coprime with nα such that α = ( t

nα
)2π. Observe that the case nα = 1

corresponds to the identity superoperator.
Our first theorem shows that almost all families Rα,θ are characterizable by some

finite set of experimental equations. In particular {Hφ} is characterizable.

Theorem 10 Let (α, θ) ∈ (0, π] × (0, π
2
]\{(π, π

2
)} be such that α

π
is rational. Let

zk(α, θ) = cos2 θ+sin2 θ cos(kα). Then the following experimental equations charac-
terizeRα,θ:

Prob0[Gnα(|1〉〈1|)] = 0 and Prob0[Gk(|0〉〈0|)] = 1
2

+ 1
2
zk(α, θ),

for k ∈ {1, . . . , nα}.

Proof: First observe that every CPSO in Rα,θ satisfies the equations of the theorem

since the z-coordinate of
−−−−−−−−−→
Rk

α,θ,φ(|0〉〈0|) is zk(α, θ) for every φ ∈ [0, 2π). Let G be a
CPSO that satisfies these equations. We will prove that G is a unitary superoperator.
Then, Fact 16 implies that G ∈ Rα,θ.

Since z1(α, θ) 6= ±1, we know G(|0〉〈0|) 6∈ {|0〉〈0|, |1〉〈1|}. Observing that
Gnα(|0〉〈0|) = |0〉〈0|, Lemma 12 implies that G(|0〉〈0|) is a pure state. Thus |0〉〈0|,
|1〉〈1|, and G(|0〉〈0|) are distinct pure states, and since Gnα acts as the identity on
them, by Lemma 13 it is the identity mapping. Hence by Fact 14 G is a unitary super-
operator. ut

Fact 16 Let α ∈ (0, π], θ ∈ (0, π
2
], α′ ∈ (−π, π], θ′ ∈ (0, π

2
], with α

π
a rational and

nα the smallest positive integer such that nαα = 0 mod 2π, and let zk be the function
zk(α, θ) = cos2 θ + sin2 θ cos(kα). If zk(α, θ) = zk(α

′, θ′), for k ∈ {1, . . . , nα}, then
|α′| = α and θ′ = θ.

The remaining familiesRα,θ for which α
π

is rational are {R−α,Rα}, for α ∈ [0, π],
and {Notφ}. Let us recall that M is the CPSO that represents the Von Neumann
measurement in the computational basis. Since M satisfies exactly the same equa-
tions as R±α, and Not0 ◦M satisfies exactly the same equations as Notφ, for every
φ ∈ [0, 2π), these families are not characterizable by experimental equations in one
variable. Nevertheless it turns out that together with the family {Hφ} they become
characterizable. This is stated in the following theorem.

Theorem 11 The family {(Hφ,Notφ)|φ ∈ [0, 2π)} ⊂ {Hφ}× {Notφ} is character-
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ized by the experimental equations in two variables (F ,G):















































Prob0[F (|0〉〈0|)] = 1
2

Prob0[F 2(|0〉〈0|)] = 1
Prob0[F 2(|1〉〈1|)] = 0

Prob0[G(|0〉〈0|)] = 0
Prob0[G(|1〉〈1|)] = 1

Prob0[F ◦G ◦ F (|0〉〈0|)] = 1.

If α
π

is rational, then the family {Hφ} × {R±α} is characterized by the experimental
equations in two variables (F ,G):























































Prob0[F (|0〉〈0|)] = 1
2

Prob0[F 2(|0〉〈0|)] = 1
Prob0[F 2(|1〉〈1|)] = 0

Prob0[G(|0〉〈0|)] = 1
Prob0[G(|1〉〈1|)] = 0

Prob0[F ◦Gnα ◦ F (|0〉〈0|)] = 1
Prob0[F ◦G ◦ F (|0〉〈0|)] = 1

2
+ 1

2
cosα.

Proof: By the previous theorem, Hφ is characterized by the first three experimental
equations involving F . Because of this we know that F |0〉〈0| corresponds to the pure
state |ζφ

x 〉 = 1√
2
(|0〉+ eiφ|1〉).

In combination with the knowledge that G ◦ F |0〉〈0| also yields the state ζφ
x , this

tells us that G acts as the identity on ζφ
x . Consider now the combined CPSO Notφ ◦G.

This operator acts as the identity on the three density matrices |0〉〈0|, |1〉〈1|, ζφ
x , which,

following Lemma 13, implies that Notφ ◦G is indeed I2. This is only possible if G

equals Notφ.

For the second part of the theorem, we employ a proof method of similar vein.
Because F |0〉〈0| = ζφ

x and F ◦Gnα ◦ F (|0〉〈0|) = |0〉〈0|, We know that Gnα acts as
the identity on the pure state ζφ

x , and hence (using G|0〉〈0| = |0〉〈0| and G|1〉〈1| =
|1〉〈1|) that Gnα is I2, which is only possible if G is unitary. The eigenvectors of the
U(2)/U(1) rotation associated with G are |0〉 and |1〉, and because the nα-th power
of G is the identity, its two eigenvalues have to obey λnα

0 = λnα

1 . By the probability
Prob0[F ◦G ◦ F (|0〉〈0|)] = 1

2
+ 1

2
cosα it follows that λ1 = λ0e

±iα. Hence G equals
Rα or R−α. ut
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6.7 Characterization of CNot gates

In this section we will extend our theory of characterization of CPSO families for
several qubits. In particular, we will show that the family of CNot gates together with
the family {Hφ} is characterizable. First we need some definitions.

For every φ ∈ [0, 2π), we define CNotφ as the only unitary transformation over C4

satisfying CNotφ(|0〉|ψ〉) = |0〉|ψ〉 and CNotφ|1〉|ψ〉 = |1〉Notφ|ψ〉, for all |ψ〉 ∈ H2.
We extend the definition of the experimental equation for CPSOs given in Equa-

tion 6.5 for n qubits. It is an equation of the form

Probv[F k1 ◦Gl1 ◦ · · · ◦ F kt ◦Glt(|w〉〈w|)] = r, (6.5)

where in addition to the notation of Equation 6.5 v, w ∈ {0, 1}n, and Prv is the prob-
ability of measuring |v〉〈v|. For the variables F and G of Equation 6.5, we also allow
both the tensor product of two CPSO variables and the tensor product of a CPSO vari-
able with the identity. We now state the characterization.

Theorem 12 The family {(Hφ,CNotφ)|φ ∈ [0, 2π)} is characterized by the experi-
mental equations in two variables (F ,G):















































































































Prob0[F (|0〉〈0|)] = 1
2

Prob0[F 2(|0〉〈0|)] = 1
Prob0[F 2(|1〉〈1|)] = 0

Prob00[G(|00〉〈00|)] = 1
Prob01[G(|01〉〈01|)] = 1
Prob11[G(|10〉〈10|)] = 1
Prob10[G(|11〉〈11|)] = 1

Prob00[(I2 ⊗ F ) ◦G ◦ (I2 ⊗ F )(|00〉〈00|)] = 1
Prob10[(I2 ⊗ F ) ◦G ◦ (I2 ⊗ F )(|10〉〈10|)] = 1

Prob00[(F ⊗ I2) ◦G2 ◦ (F ⊗ I2)(|00〉〈00|)] = 1
Prob01[(F ⊗ I2) ◦G2 ◦ (F ⊗ I2)(|01〉〈01|)] = 1

Prob00[(F ⊗ F ) ◦G ◦ (F ⊗ F )(|00〉〈00|)] = 1.

Proof: Let F and G satisfy these equations. By Theorem 10, with α = π and θ = π
4
,

the first three equations imply that F = Hφ, for some φ ∈ [0, 2π). Using Lemma 13,
the remaining equations imply that G2 = I4, and it follows from Fact 14 that G is a
unitary CPSO. A straightforward verification then shows that indeed G = CNotφ.

ut
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6.8 Robustness

In this section we introduce the notion of robustness for experimental equations which
will be the crucial ingredient for proving self-testability. From now on, {E} will al-
ways denote a such a set of equations.

First we define the notion of the distance between a CPSO and a family of gates.

Definition 18 The distance between a CPSO G and a set F of gates is defined by the
minimization

disttr(G,F) := min
F ∈F

disttr(G,F ).

For a Euclidean metric, this distance would express the length of the shortest line
between a point and a set. We use this generalized distance to define a notion of
‘robustness’ for a set of experimental equations.

Definition 19 (Robustness) Let ε, δ ≥ 0, and let {E} be a set of experimental equa-
tions. We say that {E} is (ε, δ)-robust if whenever a CPSO G ε-satisfies {E}, we have
disttr(G,F{E}) ≤ δ.

When a CPSO family is characterized by a finite set of experimental equations {E},
one would like to prove that {E} is robust. The next theorem shows that this is the
case for δ ∈ O(ε1/k) with k depending on {E}.

Theorem 13 Let {E} be a finite satisfiable set of experimental equations. Then there
exists an integer k ≥ 1 and a real C > 0 such that for all ε ≥ 0, {E} is (ε, Cε1/k)-
robust.

Proof: We will use basic notions from algebraic geometry for which we refer the
reader for example to [18]. In the proof, C is identified with R2. Then the set K of
CPSOs for a fixed number of qubits is a real compact semi-algebraic set. Suppose that
in {E} there are d equations. Let f : K → R be the function that maps the CPSO G to
the maximum of the magnitudes of the difference between the probability term and the
constant term of the ith equation in {E}, for i = 1, . . . , d. By definition of f , we get
f−1(0) = F{E}. Moreover, f is a continuous semi-algebraic function, since it is the
maximum of the magnitudes of polynomial functions in the (real) coefficients of G.

Let g : K → R defined in G by g(G) = disttr(G,F{E}). Since K is a compact
semi-algebraic set, g is a continuous semi-algebraic function. Moreover, for all G ∈ K,
we have f(G) = 0 if and only if g(G) = 0. Then Fact 17 concludes the proof. ut

For a proof of the following fact, see for example [18, Prop. 2.3.11].

Fact 17 (Lojasiewicz’s inequality) Let X ⊆ Rm be a compact semi-algebraic set.
Let f, g : X → R be two continuous semi-algebraic functions. Assume that for all
x ∈ X , if f(x) = 0 then g(x) = 0. Then there exists an integer k ≥ 1 and a real C > 0
such that, for all x ∈ X , |g(x)|k ≤ C|f(x)|.
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In some cases we can explicitly compute the constants C and k of Theorem 13. We
will illustrate these techniques with the equations in Theorem 10 for the case α = π
and θ = π

4
. Let us recall that these equations characterize the set {Hφ}.

Lemma 14 For every 0 ≤ ε ≤ 1, the following equations are (ε, 1824
√
ε)-robust:

Prob0[G(|0〉〈0|)] = 1
2
, Prob0[G2(|0〉〈0|)] = 1, and Prob0[G2(|1〉〈1|)] = 0.

Proof: Let G be a CPSO that ε-satisfies the equations. First we will show there
is a point −→ρ ∈ S with z-coordinate 0 whose distance from

−−−−−−→
G(|0〉〈0|) is at most

10
√
ε. The last two equations imply that ‖G2(|b〉〈b|)− |b〉〈b|‖tr ≤ 3

√
ε, for b =

0, 1. Therefore ‖G2(|0〉〈0|)−G2(|1〉〈1|)‖tr ≥ 2 − 6
√
ε, and by Fact 12 we have

‖G(|0〉〈0|)−G(|1〉〈1|)‖tr ≥ 2 − 6
√
ε. Thus ‖−−−−−→G(|b〉〈b|)‖2 ≥ 1 − 6

√
ε, for b =

0, 1. Let τ = ρ(1
2
, α), where G(|0〉〈0|) = ρ(p, α). The first equation implies that

‖−→τ −−−−−−−→G(|0〉〈0|)‖2 ≤ 2ε. Therefore, for −→ρ = −→τ /‖−→τ ‖2 we get ‖G(|0〉〈0|)− ρ‖tr ≤
10
√
ε.

The point −→ρ on S uniquely defines φ ∈ [0, 2π) such that
−−−−−−→
Hφ(|0〉〈0|) = −→ρ . One

can verify that H−1
φ ◦G acts as the identity with error at most 19

√
ε on the four density

matrices |0〉〈0|, |1〉〈1|, Hφ(|0〉〈0|), and Hφ(|1〉〈1|). From Lemma 16 we conclude that
|||G−Hφ|||tr ≤ 1824

√
ε. ut

Lemma 15 Let G be a superoperator on M2(C). Let 0 ≤ ε ≤ 1 be such that
‖G(ζ±x )− ζ±x ‖tr, ‖G(ζ±y )− ζ±y ‖tr, ‖G(ζ±z )− ζ±z ‖tr ≤ ε; then |||G− I2|||tr ≤

√
10ε.

Proof: Define a four dimensional basis {bi} for the linear space C2×2 by b1 = ζ+
x ,

b2 = ζ−x , b3 = ζ+
y − ζ−z and b4 = ζ−y − ζ−z . Any 2 × 2 complex valued matrix

can now be expressed as Mα =
∑

i αibi, with αi ∈ C. This implies for the trace
norm of the matrix ‖Mα‖tr ≥ ‖Mα‖2 =

√

|α1|2 + |α2|2 + |α3|2 + |α4|2. By the as-
sumption of the lemma we have ‖(G− I2)(b1)‖tr, ‖(G− I2)(b2)‖tr ≤ ε, and also
‖(G− I2)(b3)‖tr, ‖(G− I2)(b4)‖tr ≤ 2ε. Combining these bounds yields

‖(G− I2)(Mα)‖tr ≤ (|α1|+ |α2|+ 2|α3|+ 2|α4|)ε.

We are thus left to maximize the fraction

‖G− I2(Mα)‖tr
‖Mα‖tr

≤ (|α1|+ |α2|+ 2|α3|+ 2|α4|)ε
√

|α1|2 + |α2|2 + |α3|2 + |α4|2

over all αi ∈ C. Clearly, we can assume all α-coefficients to be nonnegative reals and
impose the restriction

∑

i α
2
i = 1. With the use of Lagrange multipliers one can now

prove without much effort that the above fraction cannot be bigger than
√

10ε (which

is established by the values α1 = α2 =
√

1
10

and α3 = α4 =
√

2
5
). ut

Lemma 16 Let u and v represent two pure qubit states (and u⊥ and v⊥ the respec-
tive orthogonal dual states), with |〈u|v〉|2 = 1

2
. If G is a one-qubit CPSO such that

‖G(x)− x‖tr ≤ ε for 0 ≤ ε ≤ 1 and all x ∈ {u, v, u⊥, v⊥}, then |||G− I2|||tr ≤ 96ε.
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Proof: We can suppose without loss of generality that u = ζ+
x and v = ζ+

z . Consider
the state ρ = G(ζ+

y ), with its three parameters x, y, z in

ρ =
1

2

[

1 + z x− iy
x+ iy 1− z

]

.

From Fact 12 it follows that ‖G(ζ+
z )− ρ‖tr ≤ ‖ζ+

z − ζ+
y ‖tr =

√
2. By the assumption

of this lemma we have that ‖G(ζ+
z )− ζ+

z ‖tr ≤ ε, and hence ‖ζ+
z − ρ‖tr ≤

√
2+ε. The

same relation holds also for the other three fixed points ζ−z , ζ+
x , and ζ−x . As a result,

the three coordinates of ρ have to obey the four inequalities

x2 + y2 + (z ± 1)2 and (x± 1)2 + y2 + z2 ≤ (
√

2 + ε)2 ≤ 2 + 4ε (6.6)

A second set of restrictions on (x, y, z) comes from the complete positivity of G. Like
in the proof of Lemma 13 we use the decomposition of the EPR state Ψ+, to analyze
the two-qubit state:

(I2 ⊗G)(Ψ+) = +1
2
(ζ+

x ⊗G(ζ+
x ) + ζ−x ⊗G(ζ−x ))

+1
2
(ζ+

z ⊗G(ζ+
z ) + ζ−z ⊗G(ζ−z ))

−1
2
(ζ+

y ⊗G(ζ+
y ) + ζ−y ⊗G(ζ−y )).

Using the hypothesis, the projection of this state onto the anti-symmetrical entangled
qubit pair |Φ−〉 = 1√

2
(|01〉 − |10〉) yields

〈Φ−|(I2 ⊗G)(Ψ+)|Φ−〉 ≤ 2ε− 1
2
〈Φ−|ζ+

y ⊗G(ζ+
y )|Φ−〉

−1
2
〈Φ−|ζ−y ⊗G(ζ−y )|Φ−〉.

Since G is a CPSO, as in Lemma 13 we get 〈Φ−|ζ+
y ⊗ ρ|Φ−〉 ≤ 4ε. A straightfor-

ward calculation shows that this last relation is equivalent with a restriction on the y
coordinate: y ≥ 1− 16ε.

This last inequality implies y2 ≥ 1− 32ε, which combined with the restrictions of
Equation 6.6, leads to the conclusion that (x± 1)2 ≤ 2 + 4ε − y2 − z2 ≤ 1 + 36ε,
and similarly (z ± 1)2 ≤ 1 + 36ε. The x and z coordinates of ρ satisfy |x|, |z| ≤ 18ε.
Together these bounds imply

‖G(ζ+
y )− ζ+

y ‖tr =
√

x2 + (y − 1)2 + z2 ≤
√

904ε.

The same result can be proved for ζ−y . Therefore by Lemma 15 we can conclude the
proof. ut

6.9 Quantum Self-Testers

In this final section we formally define our testers and establish the relationship be-
tween robust equations and testability. The experimental oracle O[G] for G is a prob-
abilistic procedure that takes inputs (b, k) ∈ {0, 1} × N and generates outcomes from
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the set {0, 1} such that for every input bit b and size k

Pr[O[G](b, k) = 0] = Prob0[Gk(|b〉〈b|)].

An oracle program T with an experimental oracleO[G] is a program denoted by T O[G]

that can ask queries to the experimental oracle in the following sense. When T presents
a query (b, k) to the oracle, it receives the probabilistic outcome of O[G] in one com-
putational step. A query to the experimental oracle thus captures the notion of a single
experimental run of the black-box G.

Definition 20 (Tester) Let F be a family of CPSOs, and let 0 ≤ δ1 ≤ δ2 < 1. A
(δ1, δ2)-tester for F is a probabilistic oracle program T such that for every CPSO G,

• if disttr(G,F) ≤ δ1 then Pr[TO[G] says PASS] ≥ 2
3
,

• if disttr(G,F) > δ2 then Pr[TO[G] says FAIL] ≥ 2
3
,

where the probability is the expectation over the outcomes of the experimental oracle
and the internal coin tosses of the program.

Theorem 14 Let ε, δ > 0, and let {E} be a satisfiable set of d experimental equations
such that the size of every equation is at most k. If {E} is (ε, δ)-robust then there exists
an ( ε

3k
, δ)-tester for F{E} that makes O(d log(d)/ε2) queries.

Proof: We will describe a probabilistic oracle program T . Let G be a CPSO. We can
suppose that for every equation in {E}, T has a rational number r̃ such that |r̃−r| ≤ ε

6
,

where r is the constant term of the equation. By sampling the oracle O[G], for every
equation in {E}, T obtains a value p̃ such that |p̃ − p| ≤ ε

6
with probability at least

1 − 1
3d

, where p is the probability term of the equation. A standard Chernoff bound
argument shows that this is feasible with O(log(d)/ε2) queries for each equation. If
for every equation |p̃− r̃| ≤ 2ε

3
, then T says PASS, otherwise T says FAIL. Using the

robustness of {E} and Lemma 17, one can verify that T is a ( ε
3k
, δ)-tester forF{E}. ut

Lemma 17 Let {E} be a finite satisfiable set of experimental equations such that
the size of every equation is at most k, and let G be a CPSO. For every ε ≥ 0, if
disttr(G,F{E}) ≤ ε then G (kε)-satisfies {E}.

Proof: Let F be the CPSO inF such that disttr(G,F ) ≤ ε. Then disttr(G
j,F j) ≤ jε

for every j ∈ N. Hence, by the maximum size k of the experimental equations {E},
the lemma follows. ut

Our main result is the consequence of Theorems 10, 11, 12, 13, 14, and Lemma 14.

Theorem 15 Let F be one of the following families:

• Rα,θ for (α, θ) ∈ (0, π]× (0, π
2
]\{(π, π

2
)} where α

π
is rational,
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• {(Hφ,Notφ)|φ ∈ [0, 2π)},

• {Hφ} × {R±α} for α
π

rational,

• {(Hφ,CNotφ)|φ ∈ [0, 2π)},

• {(Hφ,Rsπ/4,CNotφ)|φ ∈ [0, 2π), s = ±1}.

Then there exists an integer k ≥ 1 and a real C > 0 such that, for all ε > 0, F has an
(ε, Cε1/k)-tester that makes O(1/ε2) queries. Moreover, for every 0 < ε ≤ 1, {Hφ}
has an ( ε

6
, 1824

√
ε)-tester that makes O(1/ε2) queries.

Note that each triplet of the last family forms a universal and fault-tolerant set of quan-
tum gates[26].



Chapter 7

Quantum Kolmogorov Complexity

In the classical setting, the Kolmogorov complexity of a string is the length of the
shortest program that can produce this string as its output, which is a measure of
the amount of innate randomness (or information) contained in the string. In this
chapter we define the quantum Kolmogorov complexity of a qubit string as the
length of the shortest quantum input to a universal quantum Turing machine that
produces the target qubit string with high fidelity.

In related work, Paul Vitányi [102, 103] proposes to count the amount of clas-
sical information that is necessary for an approximating scheme of the quantum
state, whereas here we consider the necessary amount of quantum information
for a similar scheme. We argue that our definition is a natural and accurate
representation of the amount of quantum information contained in a quantum
state. Peter Gács [45] has also proposed two measures of ‘quantum algorithmic
entropy’, which are based on the existence of a universal semi-density matrix.
These measures partially correspond, it turns out, to Vitányi’s definition and the
one presented in this chapter, respectively.

7.1 Introduction

In classical computations, the Kolmogorov complexity of a finite string is a measure
of its randomness.[30, 64, 94] The Kolmogorov complexity of x is the length of the
shortest program which produces x as its output. It can be seen as a lower bound
on the optimal compression that x can undergo, and its expectation in a probabilistic
ensemble is close to the Shannon entropy.[35, 89]

Kolmogorov complexity has been shown to have a windfall of applications in fields
as diverse as learning theory, complexity theory, combinatorics, graph theory, and anal-
ysis of algorithms.[67]

With the advent of quantum computation, it is natural to ask what is a good def-
inition for the Kolmogorov complexity of quantum strings. Our goal is to argue that

67
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our definition is a natural and robust measure the amount of quantum information con-
tained in a quantum string, and that it has several appealing properties.

Finding a robust definition for quantum Kolmogorov complexity has been of inter-
est for many years (see for example [95].) Paul Vitányi [102, 103] has also proposed
a definition for quantum algorithmic complexity. Our definition differs significantly
from Vitányi’s: the definition he proposes is a measure of the amount of classical in-
formation necessary to approximate the quantum state with a penalty depending in the
error of the approximation. More recently, Peter Gács [45] has also proposed two def-
initions for quantum Kolmogorov complexity, both of which are based on the notion
of a universal semi-density matrix. One of Gács’ definitions is close to ours, while the
other is related to Vitányi’s.

7.2 Desired Properties

A good definition of quantum Kolmogorov complexity should meet the following fun-
damental criteria. These are intended to insure that it gives an accurate representation
of the information content of a quantum string.

• It should be robust, that is, invariant up to an additive constant under the choice
of the underlying universal quantum Turing machine.

• It should bear a strong relationship with quantum information theory.

• It should be closely related to classical complexity on classical strings.

However, quantum Kolmogorov complexity should not be expected to always be-
have the way classical Kolmogorov complexity does. The reader may want to bear in
mind typical non-classical quantum phenomena such as the no-cloning theorem[107],
whose consequences we will discuss in Section 7.14.

A first attempt at defining quantum Kolmogorov complexity of a qubit string X is
to consider the length of the shortest quantum program that produces X as its output.
There are many questions that arise from this ‘definition’.
Bits or qubits? The first question to consider is whether we want to measure the
amount of algorithmic information of a string in bits, or in qubits. Note that bit
strings (programs) are countable, whereas qubit strings are uncountable, so any def-
inition that measures in bits would have to overcome this apparent contradiction. Paul
Vitányi [102, 103] considers classical descriptions of qubit strings, whereas we con-
sider qubit descriptions.
Exact or inexact? What does ‘produce’ mean? Is a minimal program required to
produce the string X exactly, or only up to some fidelity? In the latter case, is the
fidelity a constant? Otherwise, how is it parameterized? (For exact simulation, we
can only hope to simulate a subclass of the Turing machines, say by restricting the



7.3. Classical Kolmogorov complexity 69

set of possible amplitudes. What would be a reasonable choice?) We will use an
approximation scheme.
What model of computation? The size of quantum circuits is not an appropriate
measure because it is possible to have a large circuit that has nevertheless a small
description in terms of a generating computer program. For this reason we choice the
Turing model of computation.
What is meant by ‘quantum program?’ A program for a quantum Turing machine
is its input, and if we want to count program length in qubits, we must allow for ‘pro-
grams’ to be arbitrary qubit strings. (These can be viewed as programs whose code
may include some auxiliary ‘hard-coded’ qubit strings.)
One-time description or multiple generation? In the classical setting, the program
that prints a string x ∈ {0, 1}n can be run as many times as desired. Because of the no-
cloning theorem[107] of quantum physics however, we cannot assume that the shortest
program can be run several times to produce several copies of the same string. (This
will be due to the fact that it is not possible to recover the original program after it
has produced its output.) There is also a second, but related, reason not to choose the
multiple generation option. The complex-valued parameters α, β ∈ C of a qubit |q〉 =
α|0〉+β|1〉 can in principle contain an unbounded amount of information. If we would
be able to reproduce the state q over and over again and without error, then we would
be able to extract this information, and hence we would have to conclude that the single
qubit q contains an unlimited amount of information. This contradicts the fact that the
quantum mechanical system of a qubit q can only contain one bit of information.[53]
For the above two reason, we will not require a ‘reusability’ condition.

7.3 Classical Kolmogorov complexity

The Kolmogorov complexity of a string, in the classical setting, is the length of the
shortest program which prints this string on an empty input.[67]

Formally, this is stated first relative to a partial computable function, which as we
know can be computed by a Turing machine.

Definition 21 (Kolmogorov complexity) Fix a Turing machine T that computes a
universal function Φ . For any pair of strings x, y ∈ {0, 1}∗, the Kolmogorov com-
plexity C of x relative to y (with respect to T ) is defined as

CT (x|y) := min{`(p) : Φ(〈p, y〉) = x}.

When y is the empty string, we simply write CT (x).
The key theorem on which rests the robustness of Kolmogorov complexity is the

invariance theorem. This theorem states that the length of shortest programs does
not depend by more than an additive constant on the underlying Turing machine. In
the classical case, this theorem is proven with the existence of a particular type of
universal Turing machine. This machine has two inputs: a finite description of the
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original Turing machine, and the program that this Turing machine executes to output
the string.

More formally, the invariance theorem in the classical case can be stated as follows.

Fact 18 There is a universal Turing machine U such that for every Turing machine T
and pair of strings x, y,

CU(x|y) ≤ CT (x|y) + cT ,

where cT is a constant depending only on T .

Giving an invariance theorem will be key to showing that quantum Kolmogorov
complexity is robust.

Since for any string x of length n, C (x) ≤ n+O(1), a string which has complexity
at least n is called incompressible. The existence of incompressible strings is a crucial
fact of Kolmogorov complexity, and very useful in applications thereof.

Fact 19 For every string length n, there is a string x of length n such that C (x) ≥ n.

The proof that there exists incompressible strings is a simple application of the
pigeonhole principle. By comparing the number of strings of length n (2n) and the
number of programs of length smaller than n (2n − 1 in total), one must conclude that
there is at least one string of length n which is not the output of any of the program of
length < n.

7.4 Quantum Information Theory

In this section we describe the quantum, or Von Neumann, entropy of ensembles, and
important properties which will be used in the proofs of our results.

We start the section by defining the ‘χ quantity’ for ensembles.

Definition 22 (Holevo’s chi quantity [53]) For an ensemble E = {(ρi, pi)}, with ρ =
∑

i piρi, Holevo’s chi quantity equals

χ(E) := S(ρ)−
∑

i

piS(ρi).

Note that the χ quantity depends not only on ρ, but also on the specific pairs (ρi, pi).
The following monotonicity property of Lindblad and Uhlmann will be very useful

later on.

Fact 20 (Lindblad-Uhlmann monotonicity [68, 101]) Let E = {(ρi, pi)} be an en-
semble, and S a completely positive, trace preserving mapping. For every such E
and S, it holds that: χ(S(E)) ≤ χ(E), where S(E) is the transformed ensemble
{(S(ρi), pi)}.
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The entropy of finite systems is robust against small changes. This continuity of S
over the space of finite dimensional density matrices ρ is also called insensitivity, and
is expressed by the following lemma.

Fact 21 (Insensitivity of Von Neumann entropy (see Section II.A in [105])) If a se-
quence ρ1, ρ2, . . . , has limk→∞ ρk = ρ, then also limk→∞ S(ρk) = S(ρ).

Proof: The convergence of ρ1, ρ2, . . . to ρ is understood to use some kind of norm for
the density matrices that is continuous in the matrix entries 〈i|ρ|j〉. (The operator norm
|ρ| = tr(ρρ∗), for example.) The entropy S(ρ) is a continuous function of the finite set
of eigenvalues of ρ. These eigenvalues are also continuous in the entries of ρ. ut
Further background on these measures of quantum information and their properties can
be found in [78, Chapter 5] and [105]. Another good source is Nielsen’s thesis [73].

7.5 Symmetric Subspaces

We use the symmetric subspace of the Hilbert space to prove some of our results on
copies of quantum states. Let Hd be a Hilbert space of dimension d with the basis
states labeled |1〉, . . . , |d〉. The symmetric subspace H∨m

d or
∨mHd of the m-fold

tensor product space H⊗m
d contains the states that are invariant under permutation of

its m parts. As a consequence, it is a subspace spanned by as many basis vectors as
there are multisets of size m of {1, . . . , d}. If A = {i1, . . . , im} is such a multiset of
{1, . . . , d}, then |A〉 is the normalized superposition of all the different permutations
of i1, . . . , im. The set of the different vectors |A〉 (ranging over the multisets A) is an
orthogonal basis of the symmetric subspace H∨m

d . This shows that the dimension of
the symmetric subspace is

(

m+d−1
d−1

)

, because choosing such a multiset is equivalent to
splitting a sequence of m zeroes into d (possibly empty) intervals. (If ji is the size of
the of ith interval, then this number also represents that the element i ∈ {1, . . . , d}
appears ji times in the multiset. The number of ways of splitting a sequence of size m
into d intervals is

(

m+d−1
d−1

)

.)
The symmetric subspaceH∨m

d is the smallest subspace ofH⊗m
d that contains all the

pure states of the form |φ〉⊗m for all |φ〉 ∈ Hd.
As an example, consider the symmetric subspaceH∨3

2 . For every qubit α|0〉+β|1〉,
we can indeed express any three-fold copy in the four dimensions ofH∨3

2 :

(α|0〉+ β|1〉)⊗3 = α3|000〉 + α2β(|001〉+ |010〉+ |100〉) +

αβ2(|011〉+ |101〉+ |110〉) + β3|111〉
= α3|{0, 0, 0}〉 + α2β

√
3|{0, 0, 1}〉 +

αβ2
√

3|{0, 1, 1}〉 + β3|{1, 1, 1}〉.

We thus reach the important conclusion that there exists a unitary transformation from
the 3 qubits of the symmetric subspace H∨3

2 to the two qubits of the space spanned
by the vectors |{0, 0, 0}〉, |{0, 0, 1}〉, |{0, 1, 1}〉 and |{1, 1, 1}〉. The generalization of
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this compression result for all values d and m is presented in Section 7.14. For more
information on the symmetric subspace and its properties, see the paper by Barenco et
al. [8].

7.6 Accumulation of Errors

The following lemma is used to bound the error introduced when composing two in-
exact quantum procedures.

Lemma 18 (Fidelity of composition) Let ρ1, ρ2 and ρ3 be three density matrices.

If F(ρ1, ρ2) ≥ 1− δ1 and F(ρ2, ρ3) ≥ 1− δ2,

then F(ρ1, ρ3) ≥ 1− 2δ1 − 2δ2.

Proof: We say that a bi-partite, pure state φAB is the ‘purification’ of the (mixed)
state ρ if we obtain ρ by tracing out the B part of φAB: ρ = trB(φAB). The lemma
now follows from Uhlmann’s theorem[44], which says that the fidelity between two
(mixed) states ρ1 and ρ2 equals the maximum ‘pure state fidelity’ |〈φ1|φ2〉|, with φi the
purifications of ρi. ut
This lemma is especially powerful in combination with the monotonicity property: the
result that the fidelity between two states cannot decrease under a quantum mechanical
transformation.[9] It enables us to prove the following result that bounds the error of
two consecutive operations.

Lemma 19 (Fidelity after two transformations) If U1 and U2 are two quantum me-
chanical transformations and ρ1, ρ2, ρ3 are density matrices such that

F(ρ2, U1(ρ1)) ≥ 1− δ1 and F(ρ3, U2(ρ2)) ≥ 1− δ2, (7.1)

then, for the combined transformation U2U1,

F(ρ3, U2 · U1(ρ1)) ≥ 1− 2δ1 − 2δ2. (7.2)

Proof: From F(ρ2, U1(ρ1)) ≥ 1− δ1, and the nondecreasing property of the fidelity it
follows that F(U2(ρ2), U2 · U1(ρ1)) ≥ 1− δ1. Lemma 18 concludes the proof. ut

In order to give bounds on the complexity of several copies of a state, as we do in
Section 7.14, we also need the following bound on the total error in the n-fold tensor
product of the approximation of a given state.

Lemma 20 (Fidelity of copies) Let ρ⊗n
1 and ρ⊗n

2 be the n-fold copies of the mixed
states ρ1 and ρ2, then F(ρ⊗n

1 , ρ⊗n
2 ) = (F(ρ1, ρ2))

n. Hence, if F(ρ1, ρ2) ≥ 1 − δ, then
F(ρ⊗n

1 , ρ⊗n
2 ) ≥ 1− nδ.
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Proof: Apply the matrix properties A⊗nB⊗n = (AB)⊗n and tr(A⊗n) = (tr(A))n to
the definition of Equation 1.4 to obtain:

F(ρ⊗n
1 , ρ⊗n

2 ) = tr

(
√

√

ρ⊗n
1 · ρ⊗n

2 ·
√

ρ⊗1 n

)

= tr

(

√√
ρ1 · ρ2 ·

√
ρ1

⊗n
)

= tr

(

√√
ρ1 · ρ2 ·

√
ρ1

)n

.

ut

7.7 Quantum Kolmogorov Complexity

We define the quantum Kolmogorov complexity QC of a string of qubits X , relative
to a quantum Turing machine M , as the length of the shortest qubit string that, when
given as input to M , produces on the output register the qubit string X . (Note that we
only allow M that have computable transition amplitudes. See the articles [22, 38],
and particularly Definition 3.2.2 in [22], for a further description of this computational
model.)

7.8 Input/Output Conventions

First we will specify in more detail what is meant by the ‘input’ and ‘output’ of a
quantum computation.

We consider quantum Turing machines with two heads on two one-way infinite
tapes: one input/work tape, and one output tape. We allow both tapes to be changed
because we want to be able to move the input qubits to the output tape.

For a QTM M with a single input, when we say M starts with input Y , we mean
that M starts with the quantum state |Y $00 · · · 〉 on its input tape, and |00 · · · 〉 on the
output tape. The $ symbol is a special endmarker (or blank) symbol.

Note that testing for the end of the input can be done without disturbing the input,
since we assume that the ‘$’ state is orthogonal to the ‘0’ and ‘1’ states. (This is
analogous to the classical case, where where Turing machine inputs are encoded in a
three-letter alphabet; nevertheless we consider the actual input to be encoded only over
the characters 0 and 1.) A string is a proper input if there is only one position on the
tape where the the endmarker symbol ‘$’ appears. We dismiss any non-proper inputs
as this would allow the endmarker to be in a superposition of several positions, which
cannot be checked by the quantum Turing machine.

For a QTM with multiple inputs, we assume that there is a convention for en-
coding the multiple inputs so that they can be individually recovered. For exam-
ple, when we write M(Y1, Y2), we may assume that the input tape is initialized to
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|1`(Y1)0Y1Y2$00 · · · 〉: the sequence of ones 1`(Y1) is unambiguously delimited by the
leftmost zero in the string, and with the thus obtained value `(Y1) we can separate Y1

and Y2 from the remainder of the sequence. Likewise, for multiple outputs, if we write
M(Y1, Y2) = (X1, X2), we mean that X1 and X2 must be encoded according to a pre-
arranged convention so that X1 and X2 can be recovered individually from the output
tape. (We do not define prefix-free complexity in this thesis.)

We let MT (X) denote the contents of the output tape after T steps of computa-
tion. We consider only QTMs that do not modify their output tape after they have
‘halted’. (Because of reversibility, they may modify the input/work tape after reaching
the halting state.) The output string M(X) equals the content of the output tape at any
time after M has stopped changing this tape. We allow the content of the output tape
to be entangled with the input/work tape after M has halted. If this is the case, then
the output M(X) is the mixed state that one obtains by ‘tracing out’ the input/work
tape. Note that this output does not change when the computer continues to change the
input/work tape after is has officially halted.

7.9 Defining Quantum Kolmogorov Complexity

For some fidelity function f : N → [0, 1] we will now define the corresponding quan-
tum Kolmogorov complexity.

Definition 23 (Quantum Kolmogorov complexity with fidelity f ) For any quantum
Turing machine M and qubit string X , the f -approximation quantum Kolmogorov
complexity, denoted QC

f
M(X), is the length of the smallest qubit string P such that

for any fidelity parameter k we have F(X,M(P, 1k)) ≥ f(k).

Note that we require that the same string P be used for all approximation parameters
k. This way we do not have to consider a sequence of programs P1, P2, . . . , which may
not have a well defined limiting size limk→∞ `(Pk).

Note also that we allow both the string X , the program P , and the output M(P, 1k)
to be mixed states for the following reasons. There is no reason why the approximation
M(P, 1k) of a pure state X has to be pure as well. By allowing mixed states we avoid
this problem, and, as a bonus, get also a definition for the complexity of mixed states.
Because the fidelity and the time evolution of M is properly defined for mixtures this
causes no serious problems. (Clearly, the program Pρ that simply moves ρ from the
input to the output tape will have to be mixed as well, which explains the necessity of
mixed input strings.)

We will say that program P ‘M -computesX with fidelity f(k)’ if for all k we have
F(X,M(P, 1k)) ≥ f(k). If f is the constant function 1, we thus have the following
definition.

Definition 24 (Quantum Kolmogorov complexity with perfect fidelity) The perfect
fidelity quantum Kolmogorov complexity is QC1

M(X).
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The problem with this definition is that we do not know whether an invariance theo-
rem can be given for this perfect-fidelity Kolmogorov complexity. This is because the
invariance theorems that are known for quantum computers deal with approximating
procedures rather than with exact simulations. We therefore prove an invariance theo-
rem for a weaker, limiting version, where the output of M must have high fidelity with
respect to the target string X: F(X,M(P, 1k)) ≈ 1.

Definition 25 (Quantum Kolmogorov complexity with bounded fidelity) For a im-
perfect fidelity ε < 1, the complexity QCε

M(X) is the constant-fidelity quantum Kol-
mogorov complexity.

Again there are problems with this definition. First, it may be the case that some strings
are very easy to describe up to a given constant, but inherently very hard to describe for
a smaller error. Second, it may be the case that some strings are easier to describe up to
a given constant on one machine, but not on another machine. For these two reasons,
this definition does not appear to be robust.

A stronger notion of approximability is the existence of an approximation scheme.
(See, for example, the book by Garey and Johnson [46, Chapter 6] for more on approx-
imation algorithms and approximation schemes.) For constant-approximability, differ-
ent algorithms (with different sizes) can exist for different constants. In an approxima-
tion scheme, a single program takes as auxiliary input an approximation parameter k,
and produces an output that approximates the value we want within the approximation
parameter. This is the model we wish to adopt for quantum Kolmogorov complexity.

Definition 26 (Quantum Kolmogorov complexity with fidelity converging to one)
The complexity QC

↑1
M(X) is equal to QC

f
M(X), where f(k) = 1− 1

k
.

We choose to encode the fidelity parameter in unary, and the convergence function to
be f(k) = 1 − 1

k
so that the model remains robust when polynomial time bounds are

added. We discuss this further in Section 7.10.
We may also define QC

↑1
M(X|Y ), the complexity of producing X when Y is given

as an auxiliary input, in the usual way.

7.10 Invariance

To show that our definition is robust we must show that the complexity of a qubit
string is minimized by a particular type of universal machine, and is invariant, up to an
additive constant, under the choice of a different Turing machine.

We use the following result, proved in the paper of Bernstein and Vazirani [22]. To
be precise, we use the notation M to denote the classical description of the quantum
Turing machine M . (Recall that we only consider quantum Turing machines whose
amplitudes can be computed to arbitrary precision with a finite classical description.)
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Fact 22 (Universal quantum Turing machine [22]) There exists a universal quantum
Turing machine U with a finite classical description such that the following holds. For
any quantum Turing machine M (which has a finite classical description), for any pure
state X , for any approximation parameter k, and any number of time steps T , we have
F(U(M,X, 1k, T ),MT (X)) ≥ 1 − 1

k
. (Remember that MT is the contents of the

output tape of M after T time steps.)

Theorem 16 (Quantum invariance theorem) There is a universal quantum Turing
machine U such that for any quantum Turing machine M and qubit string X ,

QC
↑1
U (X) ≤ QC

↑1
M(X) + cM ,

where cM is a constant depending only on M .

Proof: The proof of this theorem follows from the existence of a universal quantum
Turing machine, as mentioned here in Fact 22. Let U be this UTM. The constant cM

represents the size of the finite description M that U requires to calculate the transition
amplitudes of the machineM . Let P be the state that witnesses that QC

↑1
M(X) = `(P ),

and hence F(X,M(P, 1k)) ≥ 1− 1
k

for every k.
With the description M (with length cM ), U can simulate with arbitrary accuracy

the behavior of M . Specifically, U can simulate machine M on input (P, 14k) with a
fidelity of 1− 1

4k
. Therefore, by Lemma 18, F(X,U(M,P, 14k)) ≥ 1− 1

k
. ut

The same holds true for the conditional complexity, that is, there exists a UTM U such
that for all quantum machines M and quantum strings X,Y we have QC

↑1
U (X|Y ) ≤

QC
↑1
M(X|Y ) + cM .
Henceforth, we will fix a universal quantum Turing machine U and simply write

QC (X) instead of QC
↑1
U (X). Likewise we write QC (X|Y ) instead of QC

↑1
U (X|Y ).

We also abuse notation and write M instead of M to represent the code of the quantum
Turing machine M used as an input to the universal Turing machine.

The simplest application of the invariance theorem is the following lemma.

Lemma 21 There exists a constant c, such that for any qubit string X , QC (X) ≤
`(X) + c. The value of c depends only on our choice of the underlying universal
Turing machine.

Proof: Consider the quantum Turing machine M that moves its input to the output
tape, yielding QC M(X) = `(X). The result follows by invariance. ut

We may also define time-bounded QC is the usual way, that is, fix T : N → N

a fully-time-computable function. Then QC T (X|Y ) is the length of the shortest pro-
gram which on input (Y, 1k), produces X on its output tape after T (`(X) + `(Y ))
computation steps. The simulation of Bernstein and Vazirani entails a polynomial time
blowup (polynomial in the length `(Y ) of the input and the length k of the fidelity
parameter), so there will be only a polynomial time blowup in the corresponding in-
variance theorem.
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7.11 Properties of Quantum Kolmogorov Complexity

In this part we compare classical and quantum Kolmogorov complexity by examining
several properties of both. We find that many of the properties of the classical com-
plexity, or natural analogs thereof, also hold for the quantum complexity. A notable
exception is the complexity of m-fold copies of arbitrary qubit strings.

7.12 Correspondence for Classical Strings

We would like to show that for classical states, classical and quantum Kolmogorov
complexity coincide, up to a constant additive term.

Lemma 22 There is a constant c, such that for every finite, classical string x, it holds
that QC (x) ≤ C (x) + c.

(The constant depends only on the underlying universal Turing machine.)
Proof: This is clear: the universal quantum computer can also simulate any classical
Turing machine. ut

The converse is also true, as shown by Peter Gács [45].

Fact 23 (See [45] for the proof.) There is a constant c, such that for every finite,
classical string x, it holds that C (x) ≤ QC (x) + c.

7.13 Quantum Incompressibility

In this section, we show that there exist quantum-incompressible strings. Our main
theorem is a very general form of the incompressibility theorem with some useful
special cases as corollaries.

Assume we want to consider the minimal-length programs that describe a set of
quantum states. In general, these may be pure or mixed states. We will use the
following notation throughout the proof. The mixed states ρ1, . . . , ρM be the target
strings (those we want to produce as output). Their minimal-length programs will be
σ1, . . . , σM , respectively. The central idea is that if the states ρi are sufficiently differ-
ent, then the programs σi must be different as well. We turn this into a quantitative
statement with the use of the insensitive chi quantity in combination with the mono-
tonicity of quantum mechanics.

Earlier, Michał Horodecki used a similar technique to prove a closely related result
[55], which shows that the Holevo quantity is a lower bound for the optimal compres-
sion rate for ensemble of mixed states.
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Theorem 17 For any set of strings ρ1, . . . , ρM such that ∀i,QC (ρi) ≤ l, this l is
bounded from below by

l ≥ S(ρ)− 1
M

∑

i

S(ρi),

where ρ is the ‘average’ density matrix ρ = 1
M

∑

i ρi. (Stated slightly differently, this
says that there is an i such that QC (ρi) ≥ S(ρ)− 1

M

∑

i S(ρi).)

Proof: Take ρ1, . . . , ρM and their minimal programs σ1, . . . , σM (and henceQC(ρi) =
`(σi)). Let Sk be the completely positive, trace preserving map corresponding to the
universal QTM U with fidelity parameter k. With this, we define the following three
uniform ensembles:

• the ensemble E = {(ρi,
1
M

)} of the original strings,

• Eσ the ensemble of programs {(σi,
1
M

)}, and

• the ensemble of the k-approximations Ẽk = Sk(Eσ) = {(ρ̃k
i ,

1
M

)}, with ρ̃k
i =

Sk(σi).

By the monotonicity of Fact 20 we know that for every k, χ(Ẽk) ≤ χ(Eσ). The chi
quantity of the ensemble Eσ is upper bounded by the maximum size of its strings:
χ(Eσ) ≤ maxi{`(σi)} ≤ l. Thus the only thing that remains to be proven is that χ(Ẽk),
for sufficiently big k, is ‘close’ to χ(E). This will be done by using the insensitivity of
the Von Neumann entropy.

By definition, for all i, limk→∞ F(ρi, ρ̃
k
i ) = 1, and hence limk→∞ ρ̃k

i = ρi. Because
the ensembles E and Ẽk have only a finite number (M ) of states, we can use Lemma 21,
to obtain limk→∞ χ(Ẽk) = χ(E). This shows that for any δ > 0, there exists a k such
that χ(E) − δ ≤ χ(Ẽk). With the above inequalities we can therefore conclude that
χ(E)− δ ≤ l holds for arbitrary small δ > 0, and hence that l ≥ χ(E). ut

The following four lemmas are straightforward with the above theorem.

Lemma 23 For every length n, there is an incompressible classical string of length n.

Proof: Apply Theorem 17 to the set of classical strings of n bits: ρx = |x〉〈x| for all
x ∈ {0, 1}n. All ρx are pure states with zero Von Neumann entropy, hence the lower
bound on l reads l ≥ S(ρ). The average state ρ = 2−n

∑

x |x〉〈x| is the total mixture
2−nI with entropy S(ρ) = n, hence indeed l ≥ n. ut

Lemma 24 For any set of orthogonal pure states |φ1〉, . . . , |φM〉, the smallest l such
that for all i, QC (φi) ≤ l is at least logM . (Stated differently, there is an i such that
QC (φi) ≥ logM .)

Proof: All the pure states have zero entropy S(φi) = 0, hence by Theorem 17: l ≥
S(ρ). Because all φis are mutually orthogonal, this Von Neumann entropy S(ρ) of the
average state ρ = 1

M

∑

i |φi〉〈φi| equals logM . ut
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Lemma 25 For every length n, at least 2n−2n−c+1 mutually orthogonal qubit strings
of length n have complexity at least n− c.

Lemma 26 For any set of pure states |φ1〉, . . . , |φM〉, the smallest l such that for all i,
QC (φi) ≤ l is at least S(ρ), where ρ = 1

M

∑

i |φi〉〈φi|.

7.14 The Complexity of Copies

It is trivial to copy a classical bit string x to the m-fold state x⊗m. As long as we know
the integer m, the complexity of x⊗m is no bigger than that of the single copy x, or in
Kolmogorov complexity terms: C (x⊗m|m) ≤ C (x) + O(1). This no longer holds in
the case of quantum information, as it is in general not possible to copy an unknown
quantum state.[107] Typically for a quantum state X , the complexity QC (X⊗m|m)
will grow as m gets bigger. This should not surprise us because a large number m of
copies enables us to estimate the amplitudes of X more accurately than a single copy
would. Hence, we can ‘extract’ more information from X⊗m if we have more copies
of X . An obvious upper bound on the quantum Kolmogorov complexity of X⊗m is
QC (X⊗m|m) ≤ m · QC (X). The two main theorems of this section tell us that,
despite the ‘no cloning’ phenomenon of quantum mechanics, it is possible to compress
copies of pure states. This result is established with the help of the theory of symmetric
subspaces. We start with the general upper bound.

Theorem 18 There exists a constant c, such that for an arbitrary pure state X and
integer m it holds that

QC (X⊗m|m) ≤ log

(

m+ 2QC (X) − 1

2QC (X) − 1

)

+ c, (7.3)

and hence QC (X⊗m) ≤ log
(

m+2QC(X)−1
2QC(X)−1

)

+O(logm).

Proof: First we outline the proof, omitting the effect of the approximation. Consider a
pure qubit string X whose minimal-length program is PX . To produce m copies of X ,
it suffices to produce m copies of PX and execute these m programs.

We can always assume that this PX is a pure state, because for a mixture of pro-
grams, any of the pure programs in the mixtures will produce X as well. Let l be
the length QC (X) of PX ; we denote the 2l-dimensional Hilbert space byH. Consider
H⊗m, them-fold tensor product ofH. The symmetric subspaceH∨m is d-dimensional,
where d =

(

m+2l−1
2l−1

)

. The sequence P⊗m
X sits in this symmetric subspace, and can

therefore be encoded exactly using log d+O(logm) qubits, where the m term is used
to describe the rotation from the d-dimensional space to the m copies inH⊗m. Hence,
given m, the quantum Kolmogorov complexity of X⊗m is bounded from above by
log d+O(1) qubits.
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For the full proof, we will need to take into account the effect of the imperfect
fidelities and prove that we can reach a fidelity not smaller than 1− 1

k
.

The first part of the computation consists of the mapping from the d dimensions to
the symmetric subspace H∨m. This is the transformation |i〉 7→ |Ai〉 for 1 ≤ i ≤ d,
which labels all the multisets Ai ⊆ {1, . . . , 2l} of size m. We approximate this unitary
transformation with enough accuracy such that the output has fidelity ≥ 1 − 1

4k
with

the perfect state P⊗m
X .

Next, we execute the programs PX with a fidelity parameter of 4km. Hence the
joint, m-fold evolution U⊗m

2 establishes F(X⊗m, U⊗m
2 (P⊗m

X )) ≥ 1− 1
4k

(Lemma 20).
We finish the proof by employing Lemma 19, which tells us that the overall fidelity-

error of the above two transformations cannot be bigger than 1
k

ut
This upper bound is also very close to being tight for some X , as we show in the

next theorem.

Theorem 19 (Incompressibility for copies of quantum states) For every m and n,
there is an n-qubit state X such that QC (X⊗m) ≥ log

(

m+2n−1
2n−1

)

.

Proof: Fix m and n and letH be the 2n-dimensional Hilbert space. Consider the (con-
tinuous) ensemble of all m-fold tensor product states X⊗m: E = {(X⊗m, µ)}, where
µ−1 =

∫

X∈H dX is the appropriate normalization factor. The corresponding average
state is calculated by the integral ρ = µ

∫

X∈HX
⊗mdX . This mixture is the totally

mixed state in the symmetric subspace H∨m (see Section 3 in [106]), and hence has
entropy S(ρ) = log

(

m+2n−1
2n−1

)

. Because all X⊗m are pure states, we can use Lemma 26
to prove the existence of an X for which QC(X⊗m) ≥ log

(

m+2n−1
2n−1

)

. ut
The results of this section can be viewed as a refinement of the no-cloning theorem,

in the following sense. The quantity QC (X⊗m|m), for any state X , gives a measure
of how clonable that particular state is. Theorem 19 tells us that there exist strings that
are ‘maximally non-clonable’.

7.15 Subadditivity

Consider the following subadditivity property of classical Kolmogorov complexity.

Fact 24 For any x and y, C (x, y) ≤ C (x) + C (y|x) +O(log(C (x))).

In the classical case, we can produce x, and then produce y from x, and print out the
combination of x and y. In the quantum case, producing Y from X may destroy X .
In particular, with X = Y , the immediate quantum analog of Fact 24 would contradict
the m = 2 case of Theorem 19.

A natural quantum extension of this result is as follows.

Lemma 27 For any pair of quantum stringsX,Y , we have QC (X,Y ) ≤ QC (X,X)+
QC (Y |X) +O(log(QC (X))).
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7.16 The Complexity of Correlations

In this section we will use quantum Kolmogorov complexity to quantify the complex-
ity of the correlation between two systems. For a bipartite state ρAB we denote this
quantity by QCor(ρAB), which is defined as follows.

Definition 27 (Quantum Kolmogorov Complexity of Correlations) Consider a bi-
partite state ρAB of n+m qubits where n qubits are onA’s side andB has the remaining
m qubits. The quantum Kolmogorov complexity QCor of the correlation between A
and B is defined by

QCor(ρAB) := QC (ρAB|ρA, ρB),

where ρA = trB(ρAB) and ρB = trA(ρAB).

Because the complexity QCor(ρAB) can never be bigger than QC (ρAB), the following
general upper bound holds.

Lemma 28 There exists a constant c such that for every bipartite, n + m-qubit state
ρAB we have

QCor(ρAB) ≤ n+m+ c. (7.4)

Proof: Apply Lemma 21 to the relation QCor(ρAB) ≤ QC (ρAB). ut
The gap between the correlation complexity QCor and the Kolmogorov complexity
can be made arbitrarily big as is shown by the next lemma.

Lemma 29 There exists a constant c such that for any combination of lengths n andm,
there is an n+m-qubit string ρAB with maximum Kolmogorov complexity QC (ρAB) ≥
n + m, combined with a constant lower bound on the complexity of the correlation
QCor(ρAB) ≤ c.

Proof: Consider the set of classical strings of length n+m. Clearly, these states can be
expressed as tensor products XAB = XA ⊗XB , where XA (XB) are n (m) bit strings.
By the program of size c that moves the inputs XA and XB to the output tape (thus
producing XAB) we obtain QCor(XAB) = QC (XAB|XA, XB) ≤ c. On the other
hand, by Lemma 23, at least one of these strings XAB also has to obey QC (XAB) ≥
n+m. ut

The central idea behind the definition of QCor is that we consider the complex-
ity of the correlations ‘high’ when the partial states ρA and ρB do not contain much
information about the total configuration ρAB . In this sense it is possible that all the
complexity of a state is contained in its correlations. The following lemma expresses
this result.

Lemma 30 For every length n, there exists a bipartite, n + n-qubit state ρAB with
maximum correlation complexity QCor(ρAB) ≥ 2n.
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Proof: First we consider the n = 1 case of two distributed qubits. Take the four Bell
states |φ1

AB〉 = 1√
2
(|00〉 + |11〉), |φ2

AB〉 = 1√
2
(|00〉 − |11〉), |φ3

AB〉 = 1√
2
(|01〉 + |10〉),

and |φ4
AB〉 = 1√

2
(|01〉 − |10〉). As these states are mutually orthogonal, we can use

the uniform source E = {(φi
AB,

1
4
)} to encode two bits of information.[21] It is also

straightforward to see that all the partially traced out states are identical to the same
totally mixed qubit: φi

A = φi
B = 1

2
(|0〉〈0| + |1〉〈1|) = 1

2
I for all i. Hence, for one of

the φ’s we must have QCor(φi
AB) = QC (φi

AB|14I ⊗ I) ≥ 2.
This result easily generalizes to the n + n-qubit case if we take the n-fold tensor

product of the above source. We can use the words of this E⊗n to encode 2n bits of
information, while the partially traced out words all equal the totally mixed n qubit
state 2−nI . This shows that for at least one of the words it must hold that its correlation
complexity is not smaller than 2n. ut

It would be incorrect to think that the complexity QCor is ‘yet another measure
of entanglement’. It is true that tensor product states XA ⊗ XB have a low correla-
tion complexity, but so have highly entangled states like ( 1√

2
|0A0B〉 + 1√

2
|1A1B〉)⊗n.

Moreover, the definition also covers the complexity of purely classical correlations.
Rather than quantifying entanglement, we expect the above definition to be useful in
the context of ‘communication complexity theory’. The last section of this chapter will
explain this point further.

7.17 Extensions and Future Work

We have argued that the QC of Definition 26 is a robust notion of Kolmogorov com-
plexity for the quantum setting. It would be interesting to see if an invariance theorem
can be shown for the ideal quantum Kolmogorov complexity of Definition 24. It would
also be interesting to see if the invariance theorem (Theorem 16) can be improved in
general.

Kolmogorov complexity in the classical setting is a good tool for showing lower
bounds in computational complexity. For instance, one can show lower bounds in clas-
sical communication by using classical Kolmogorov complexity. A simple example is
the following lower bound on the communication complexity of the equality function.
Assume that there is a protocol that decides whether two strings of length n are equal,
in which t bits are exchanged. Consider an incompressible string x of length n, and
simulate the protocol on input (x, x). Let T be the transcript of the communication
on that input. Now we argue that the Kolmogorov complexity of the string can be
bounded above by a function of t. To print x, we use the transcript and the protocol
to find x as follows. Without loss of generality, assume that the second player always
decides whether or not to accept the input. For every candidate z for x, simulate the
protocol for the second player on input z, and use the transcript to obtain the commu-
nication that the second player would have received from the first player. Because the
protocol is sound, the simulation will only accept if z = x. We output whenever a
string is found that causes the protocol to accept. This program which prints x is of
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size (roughly) t, and therefore we have n ≤ C (x) ≤ t, from which we can conclude
that the communication complexity of the equality function is at least n.

Could a similar argument be carried over to the quantum setting? If so, then by ap-
plying this framework to other problems in quantum complexity, quantum Kolmogorov
complexity could become a powerful new tool in proving lower bounds.

The number of applications of classical Kolmogorov complexity is countless, and
it is our hope that this definition will lead to a similar wide variety of applications in
quantum complexity theory.





Appendix A

Complexity Classes and Reductions

A.1 Complexity Classes

P: (Classical) polynomial time

NP: (Classical) nondeterministic, polynomial time

EQP: Exact, quantum, polynomial time

FP: Exact, polynomial time functions

FEQP: Exact, quantum, polynomial time functions

EXP: Exponential time

PSPACE: Polynomial space

PP: Probabilistic, polynomial time

CA: The class C with queries to the set A

CA
q

: The class C with non-adaptive queries to the set A

CA[k]: The class C with not more than k queries to the set A

C
A[k]
q : The class C with not more than k non-adaptive queries to the set A

Sigma classes: Σp
0 = P, and Σp

i+1 = NP
Σp

i

Delta classes: ∆p
i+1 = PΣp

i

Theta classes: Θp
i+1 = P

Σp
i

q

Computable Decision Problems: Σ0

85
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A.2 Reductions

many-one reducible “≤p

m
”: B≤p

mA, if there exists a poly-time reduction τ such that
x ∈ B if and only if τ(x) ∈ A.

truth-table reducible “≤p

tt
”: B≤p

ttA, if there exists an algorithm for B that answers
the question “x ∈ B?” with polynomial many non-adaptive queries to A.

Turing reducible “≤p

T ”: B≤p
TA, if there exists an algorithm for B that answers the

question “x ∈ B?” with polynomial many queries to A.

A.3 Query Complexity

n-bit black-box An (unknown) function f : {1, . . . , n} → {0, 1}. We say that the
black-box ‘contains’ the n-bit string f(1), . . . , f(n).

(Probabilistic) query complexity The number of times, as a function of n, that the
black-box f has to be queried to solve a problem (with high probability). The
worst-case distribution over all possible black-boxes is assumed.

Unstructured Problem A problem that is defined for all strings {0, 1}n, and hence
for all black boxes.

Structured Problem A problem that is only defined on a proper subset of {0, 1}n. We
say that there is a ‘promise’ on the input of the problem.
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Properties of Matrices

B.1 Properties and Transformations

For a finite dimensional, complex valued matrix A ∈Mn(C), we can define its

set of complex matrices Mn(C): the n by n dimensional matrices with complex val-
ued entries

set of real matrices Mn(R): the n by n dimensional matrices with real valued entries

transpose AT : defined by (AT )ij = Aji

conjugate transpose A∗ defined by (A∗)ij = (Aji)
∗

adjoint A∗ identical to the conjugate transpose

inverse A−1 For non-singular matrices A ∈ Mn(C) the inverse is defined by A ·
A−1 = In; otherwise A−1 is undefined.

square root
√

A The square root of A is the matrix such that
√
A ·
√
A = A. For

a diagonal matrix D, we thus have (
√
D)ij =

√

Dij . Using the spectral de-
composition we can see that the root of normal matrices can be expressed as√
A =

√
UΛU ∗ = U

√
ΛU ∗.

trace tr(A) the value
∑n

i=1Aii

A finite dimensional, complex valued, matrix A ∈ Mn(C) can have the following
properties.

Diagonal: if Aij = 0 for every i 6= j

Hermitian: if A = A∗

Normal: if A · A∗ = A∗ · A
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Unitary: if A · A∗ = In. The set of unitary n× n matrices is denoted by U(n).

Special Rotations: if a real-values matrix obeys A ·AT = In and det(A) = 1; the set
of these matrices is denoted by SO(n)

Positive definite: if all the eigenvalues of A are positive

Positive semidefinite: if all the eigenvalues of A are nonnegative

B.2 Decompositions

Singular value decomposition Every matrix A ∈ Mn(C) can be written as the prod-
uct A = V ΣW ∗, with V and W unitary matrices, and Σ a nonnegative diagonal
matrix. The values σi = Σii are the singular values of A.

Spectral decomposition of normal matrices Any normal matrix A can be decom-
posed as a productA = UΛU ∗, with U a unitary matrix, and Λ a diagonal matrix.
The diagonal entries Λii are the eigenvalues λi of A and the set {Λ11,Λ22, . . . }
is the spectrum of A.



Appendix C

Norms and Distances

C.1 Norms and Distances on Vectors and Matrices

absolute value |x|: For a complex value x ∈ C, its absolute value, or norm, is defined
by |x| =

√
xx∗.

Sum norm ‖x‖1: For a complex valued vector x ∈ Cn, the sum norm is defined
by ‖x‖1 =

∑

i |xi|. This norm is also called the `1, or Manhattan norm. For
bitvectors x ∈ {0, 1}n the sum norm corresponds with the Hamming weight of a
bit string: ‖x‖1 = “number of ones in x”.

Euclidean, or `2, vector norm ‖x‖2: For a complex valued vector x ∈ Cn, its norm
is defined by ‖x‖2 =

√
∑

i xix∗i .

Max, or `∞, norm ‖x‖∞: For a complex valued vector x ∈ Cn, the max norm is
defined by ‖x‖∞ = maxi |xi|.

Fidelity: The fidelity between two mixed states ρ and σ is defined by

F(ρ, σ) = tr

(

√√
ρ · σ · √ρ

)

,

although the reader should be warned that some authors use the square of this
value.

Euclidean matrix norm ‖A‖2: For a complex valued matrix A ∈ Mn(C), the Eu-
clidean norm is defined by

‖A‖2 =

√

∑

i,j

AijA∗
ij =

√

tr(A · A∗).

Alternative names are: `2, Frobenius, Hilbert-Schmidt, or Schur norm.
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We call this norm unitarily invariant because ‖U · A · V ‖2 = ‖A‖2 for unitary
U, V ∈ U(n). From this invariance it follows, using the SV decomposition, that
we have

‖A‖2 =

√

∑

i

σ2
i ,

with σi the singular values of A, and hence for normal matrices

‖A‖2 =

√

∑

i

|λi|2,

where λi are the eigenvalues of A.

Trace norm ‖A‖
tr

: For a matrix A ∈Mn(C), the trace norm is defined by

‖A‖tr = tr
(√

A · A∗
)

=
∑

i

σi,

with σi the singular values of A. From this definition it follows that for normal
matrices the trace norm equals

‖A‖tr =
∑

i

|λi|,

where λ1, λ2, . . . are the eigenvalues of A.

In the case of positive, semidefinite matrices we thus have ‖A‖tr = tr(A), hence
the name of this norm. (As a consequence, all proper density matrices obey
‖ρ‖tr = 1.)

The usefulness of this norm lies in the distance ‖ρ− σ‖tr it defines between
two density matrices ρ and σ. For any measurement setting P = {Pi} (with
∑

i P
∗
i Pi = I), the total variation distance between ρ and σ is bounded from

above by

‖ρ− σ‖tr ≥
∑

Pi∈P
|Prob(“ρ = Pi”)− Prob(“σ = Pi”)|,

with Prob(“ρ = Pi”) = (F(Pi, ρ))
2. If we choose the projectors Pi of P to be

the eigenvectors of ρ− σ, then we obtain the above bound, hence

‖ρ− σ‖tr = max
P

(

∑

Pi∈P
|Prob(“ρ = Pi”)− Prob(“σ = Pi”)|

)

.
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Both the Euclidean and the trace norm are matrix norms because they obey the follow-
ing properties (see Chapter 5 in [54] for much more on this topic):

1. nonnegative: ‖A‖ ≥ 0

2. positive: ‖A‖ = 0 if and only if A = 0

3. homogeneous: ‖αA‖ = |α| · ‖A‖ for all α ∈ C

4. triangle inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖

5. submultiplicative: ‖AB‖ ≤ ‖A‖ · ‖B‖.

In addition, for the tensor product between two matrices, we also have the equality

• ‖A⊗B‖ = ‖A‖ · ‖B‖.

A very useful relation between the trace and the Euclidean norm is easily shown
by the inequalities 1√

n

∑

i σi ≤
√
∑

i σ
2
i ≤

∑

i σi for any n nonnegative values
σ1, . . . , σn. If we take these σi to be the singular values of A, we see that

‖A‖2 ≤ ‖A‖tr ≤
√
n · ‖A‖2, (C.1)

for all A ∈Mn(C).

C.2 Norms on Superoperators

Trace induced superoperator norm: For a superoperator E : Mn(C)→Mm(C) we
can use the trace norm to define

|||E|||tr = max
A6=0

‖E(A)‖tr
‖A‖tr

.

If E is a positive, trace preserving mapping, then |||E|||tr = 1. A drawback of
this norm is that it can increase if we tensor E with the identity operator. Take
for example the one qubit transpose, with T (A) = AT , which has |||T |||tr = 1,
but also |||T ⊗ I2|||tr = 2.

Diamond superoperator norm: Let E : Mn(C) → Mm(C) be a linear superopera-
tor, the diamond norm can then be defined by

|||E|||� = |||E ⊗ In|||tr.

The reader is referred to the original articles [3, 62] by Alexei Kitaev et al. for
more details. One of the appealing properties of this norm is its robustness:
|||E ⊗ I|||� = |||E|||�.

If E is a completely positive, trace preserving transformation, then |||E|||� = 1.
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Euclidean induced superoperator norm: We define a norm for a superoperator E :
Mn(C)→Mm(C), by the maximization of the Euclidean norm for matrices:

|||E|||2 = max
A6=0

‖E(A)‖2
‖A‖2

.

It is straightforward to show that this norm is, like the diamond norm, robust:
|||E ⊗ I|||2 = |||E|||2, for the identity operator I.

By the bounds of Equation C.1, we have for any superoperator E : Mn(C)→Mm(C)

|||E|||2 ≤
√
n|||E|||tr and |||E|||tr ≤

√
m|||E|||2.

Because |||E ⊗ I|||2 = |||E|||2, we thus obtain an upper bound on the diamond norm in
terms of the trace norm:

|||E|||� = |||E ⊗ In|||tr ≤
√
nm|||E ⊗ In|||2 =

√
nm|||E|||2 ≤ n

√
m|||E|||tr,

in combination with the trivial lower bound |||E|||tr ≤ |||E|||�.
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Approximate Interrogation

In this appendix we calculate the expected number of correct bits for the ‘approximate
interrogation’ procedure of Section 3.6.

We can assume without loss of generality that the queried string is the all zeros
string z1 · · · zn = 0n, such that the Ak transformation is the identity operator, and the
Hamming weight ‖y‖ of a measured outcome y1 · · · yn equals the number of incorrect
bits. We thus set out to prove the following lemma.

Lemma 31 With the state

|Ψ〉 =
∑

x∈{0,1}n

α‖x‖|x〉,

the n-fold Hadamard transform of Ψ will have an expected Hamming weight of

E[#ones(H⊗n|Ψk〉)] =
n
∑

t=0

t ·
(

n

t

)

|〈1t0n−t|H⊗n|Ψk〉|2

=
n

2
−

k−1
∑

j=0

Re(αjα
∗
j+1)

√

j + 1
√

n− j.

Note that we are expressing here the number of incorrect bits, from which the equality

E[#zeros(H⊗n|Ψk〉)] =
n

2
+

k−1
∑

j=0

Re(αjα
∗
j+1)

√

j + 1
√

n− j.

follows directly.
The proof of this lemma requires some knowledge about the following family of

orthogonal polynomials.
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Definition 28 (Krawtchouk Polynomials [65]) For r, n ∈ N, the Krawtchouk Poly-
nomial Kr(·, n) : N→ Z is defined by

Kr(t;n) :=
r
∑

j=0

(−1)j

(

t

j

)(

n− t
r − j

)

.

From Chapter 5 in [70] we copy the following property of Krawtchouk polynomials:

n
∑

t=0

(

n

t

)

Kr(t;n)Ks(t;n) =

{

2n
(

n
r

)

if r = s,
0 if s 6= r.

(D.1)

Another important result is the following three-term recurrence relation that K satis-
fies:

(n− 2t)Kk(t, n) = (k + 1)Kk+1(t, n) + (n− k + 1)Kk−1(t, n). (D.2)

From this, the fact that K2
k(t, n) = K2

k(n− t, n) for all k, n, t, follows easily.
We now proceed with the proof of the lemma.

Proof: By rewriting the state in lemma according to

H⊗n|Ψk〉 =
k
∑

j=0

αj
√

(

n
j

)

‖x‖1=j
∑

x∈{0,1}n

H⊗n|x〉

=
1√
2n

∑

y∈{0,1}n

k
∑

j=0

αj
√

(

n
j

)

‖x‖1=j
∑

x∈{0,1}n

(−1)(y,x)|y〉,

we obtain the following expression for the expected Hamming weight:

D(α, n, k) := E[#ones(H⊗n|Ψk〉)]

=
n
∑

t=0

t ·
(

n

t

)

|〈1t0n−t|H⊗n|Ψk〉|2

=
1

2n

n
∑

t=0

t ·
(

n

t

)

∣

∣

∣

∣

∣

∣

k
∑

j=0

αj
√

(

n
j

)

||x||1=j
∑

x∈{0,1}n

(−1)(1t0n−t,x)

∣

∣

∣

∣

∣

∣

2

=
1

2n

n
∑

t=0

t ·
(

n

t

)

∣

∣

∣

∣

∣

∣

k
∑

j=0

αj
√

(

n
j

)

j
∑

i=0

(−1)i

(

t

i

)(

n− t
j − i

)

∣

∣

∣

∣

∣

∣

2

=
1

2n

n
∑

t=0

t ·
(

n

t

)

∣

∣

∣

∣

∣

∣

k
∑

j=0

αjKj(t, n)
√

(

n
j

)

∣

∣

∣

∣

∣

∣

2

.
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It is easy to see that D is a second degree, multivariate polynomial in the variables αi:

D(α, n, k) =
k
∑

i,j=0

βijαiα
∗
j

with βij ∈ R and βij = βji for all i, j, such that D(α, n, k) ∈ R for all α ∈ Cn. Our
task is thus to determine these β coefficients.

We start by considering the diagonal elements βjj , with:

βjj =
1

2n

n
∑

t=0

t

(

n

t

)

K2
j (t, n)
(

n
j

) .

Now, because of the symmetry
(

n
t

)

K2
j (t, n) =

(

n
n−t

)

K2
j (n − t, n), we can rewrite this

summation as (using Equation D.1 for the last line)

βjj =
1

2n
(

n
j

)

n
∑

t=0

n

2

(

n

t

)

K2
j (t, n)

=
n

2
.

Next, we look at the off-diagonal terms:

βij =
1

2n
√

(

n
i

)(

n
j

)

n
∑

t=0

t

(

n

t

)

Ki(t, n)Kj(t, n).

By rewriting the t in front of the
(

n
t

)

binomial as t = n
2
− 1

2
(n − 2t), and using i 6= j

with Equations D.1 and D.2, we get

βij =
−1

2n+1
√

(

n
i

)(

n
j

)

n
∑

t=0

(n− 2t)

(

n

t

)

Ki(t, n)Kj(t, n)

=
−1

2n+1
√

(

n
i

)(

n
j

)

n
∑

t=0

(

n

t

)

[(i+ 1)Ki+1(t, n) + (n− i+ 1)Ki−1(t, n)]Kj(t, n).

The orthogonality property of K shows that the above term is zero if i − j 6= ±1;
otherwise, we have

βij =

{

−1
2

√

(n− i)(i+ 1) if i+ 1 = j,
−1

2

√

(i)(n− i+ 1) if i− 1 = j.

This concludes our proof that indeed (using the normalization restriction
∑

i |α2
i | = 1)

D(α, n, k) =
n

2

k
∑

i=0

|α2
i | −

1

2

k−1
∑

i=0

√

(n− i)(i+ 1)(αiα
∗
i+1 + αiα

∗
i+1)

=
n

2
−

k−1
∑

i=0

√

(n− i)(i+ 1)Re(αiα
∗
i+1).

ut
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[53] Alexander S. Holevo. Bounds for the quantity of information transmitted by a
quantum communication channel. Problemy Peredachi Informatsii, 9(3):3–11,
1973. English Translation in Problems in Information Transmission, 9:177–183,
1973.

[54] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

[55] Michał Horodecki. Limits for compression of quantum information carried by
ensembles of mixed states. Physical Review A, 57(5):3364–3369, May 1998.

[56] Peter Høyer, Jan Neerbek, and Yaoyun Shi. Quantum complexities of ordered
searching, sorting, and element distinctness. In Proceedings of 28th Interna-
tional Colloquium on Automata, Languages, and Programming, volume 2076
of Lecture Notes in Computer Science, pages 346–357. Springer, 2001.

[57] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern Num-
ber Theory, volume 84 of Graduate Texts in Mathematics. Springer, second
edition, 1990.



102 Bibliography

[58] David S. Johnson. A catalogue of complexity classes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A, pages 67–161. Elsevier,
Amsterdam, 1990.

[59] Richard Jozsa. Characterizing classes of functions computable by quantum par-
allelism. Proceedings of the Royal Society of London A, 435:563–574, 1991.

[60] Jim Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy
collapses. SIAM Journal on Computing, 17(6):1263–1282, 1988.

[61] Hiroshi Kimura. Hadamard matrices and dihedral groups. Designs, Codes, and
Cryptography, 9(1):71–77, 1996.

[62] Alexei Kitaev. Quantum computations: Algorithms and error correction. Rus-
sian Mathematical Surveys, 52(6):1191–1249, 1997. English translation from
Uspekhi Matematicheskikh Nauk, Volume 52, Number 6, pp. 53–112.

[63] Donald E. Knuth. The Art of Computer Programming: Seminumerical Algo-
rithms, volume 2. Addison-Wesley, Reading, Massachusetts, third edition, 1998.

[64] Andrei K. Kolmogorov. Three approaches to the quantitative definition of infor-
mation. Problems of Information Transmission, 1:1–7, 1965.
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Samenvatting

“Over Quantumberekeningen”

Een quantumcomputer is een computers wiens gedrag cruciaal wordt bepaald door de
wetten van de quantummechanica. Dit is een ander soort machine dan de traditionele
computer die we kennen uit het dagelijkse leven aangezien deze functioneert volgens
de regels van de klassieke mechanica. Hoewel men er nog niet in is geslaagd om een
werkende quantumcomputer van behoorlijke grootte te bouwen, is het wel mogelijk
om de eigenschappen hiervan te onderzoeken. Dit theoretisch werk dat zich op het
grensgebied bevindt van de quantummechanica en de theoretische informatica is het
onderwerp van dit proefschrift.

In de hoofdstukken 1 en 2 geef ik een samenvatting van de aspecten van de quan-
tummechanische theorie die essentieel zijn om te begrijpen wat quantuminformatie
en quantumcomputers zijn. De twee belangrijkste ingrediënten hierbij zijn het zoge-
naamde superpositie principe en het interferentie fenomeen.

De toestand van een quantummechanisch systeem is in het algemeen een lineaire
combinatie van de eigentoestanden van dit systeem. Dit betekent dat een quantumbit
niet alleen “nul” of “één” kan zijn, maar ook een mengeling (superpositie) van deze
twee toestanden. Wiskundig wordt dit het best beschreven middels een 2-dimensionale,
vector (α, β) van lengte 1, waarbij de complexe waarde α de amplitude is van het
“nul”-gedeelte van de quantumbit, en β de complexe amplitude van het “één”-gedeelte
van de quantumbit. Als we een quantumbit (α, β) bekijken dan zullen we de waarde
“nul” waarnemen met waarschijnlijkheid |α2|, en de waarde “één” met waarschijnli-
jkheid |β2| (vandaar ook dat de lengte van de vector 1 moet zijn: |α2| + |β2| = 1).
Zodoende corresponderen (1, 0) en (0, 1) met een klassieke waardes “nul” en “één”,
terwijl ( 3

5
, 4

5
) een ‘(36%, 64%)-combinatie’ is van beide. Als we twee quantumbits

willen beschrijven dan hebben we een vier-dimensionale vector (α00, α01, α10, α11)
nodig, waarbij α00 de amplitude is voor de waarde “nul, nul”, α01 voor de waarde “nul,
één”, enzovoorts. In het algemeen beschrijft men dus de toestand van n quantumbits
met een een 2n-dimensionale vector.

107



108 Samenvatting

De tijdsevolutie van een quantummechanisch systeem kan beschreven worden als
een lineaire transformatie van bovengenoemde vectoren. De enige eis waaraan deze
functies moeten voldoen is dat ze de lengte van de vectoren niet veranderen. Wiskundig
gesproken zijn dit de ’unitaire transformaties’. Voor een n-bits quantumsysteem van
dimensie 2n hebben we dus een unitaire matrix met grootte 2n × 2n nodig om deze
tijdsevolutie te kunnen beschrijven.

Om informatie (bits) op een quantummechanische manier te bewerken hebben
we een quantumcomputer nodig die de gewenste unitaire transformaties kan imple-
menteren. Dit beschrijven we als volgt. In de theoretische informatica abstraheert men
computers vaak tot netwerk van elementaire poorten. Voor klassieke computers zijn
deze basispoorten de AND, de OR, en de NOT operatie; middels welke we elke andere
transformatie kunnen opbouwen. Voor quantumcomputers hebben we een soortgelijke
situatie, alleen zijn de basispoorten natuurlijk anders (deze moeten natuurlijk quantum-
mechanisch zijn). De complexiteit van een berekening kan men nu uitdrukken als de
minimale grootte van het netwerk (dat is: het minimale aantal van basispoorten), dat
nodig is om deze berekening uit te voeren. De klassieke complexiteit is zodoende het
minimale aantal klassieke poorten dat men nodig heeft voor de oplossing van een prob-
leem, terwijl de quantumcomplexiteit het minimale aantal quantumpoorten als maatstaf
heeft. Uit onderzoek is gebleken dat voor sommige berekeningen de quantumcomplex-
iteit veel kleiner is dan de bijbehorende klassieke complexiteit. Met andere woorden:
quantumcomputers zijn soms efficiënter dan traditionele computers.

De hoofdstukken 3, 4 en 5 hebben als onderwerp het quantummechanisch ‘on-
dervragen’ van informatie. In hoofdstuk 3 is deze informatie een rij x1, . . . , xn van n
onbekende bits. Op de vraag “wat is xi?” krijgt men als antwoord de waarde van de
bit xi. Ik laat zien dat het, middels een superpositie van vragen, mogelijk is om met
grote kans alle n bits te weten te komen met slechts n

2
+
√
n quantumvragen. Klassiek

is dit onmogelijk en zal men altijd om dit te bereiken alle n vragen “x1?”, . . . , “xn?”
moeten stellen. Dit ‘quantumvoordeel’ wordt verder uitgebuit in de volgende twee
hoofdstukken.

In hoofdstuk 4 wordt beschreven wat mogelijk is als men quantumvragen kan
stellen aan een ‘orakel’ dat bepaalde, zeer specifieke computationele problemen kan
oplossen. Door nu de juiste superpositie van verschillende vragen aan het orakel te
stellen kunnen meer algemene ‘meta-vragen’ beantwoord worden op een manier waar-
bij we het orakel veel minder hoeven te consulteren dan dat klassiek vereist is. Hoe
groot dit verschil tussen de quantummechanische and klassieke vraagcomplexiteit is
hangt af van het soort orakel dat men gebruikt en of men de vragen ‘interactief’ kan
stellen.

Hoe kunnen we andere orakel-problemen construeren waarvoor een quantumcom-
puter veel minder vragen hoeft te stellen dan een klassieke computer? Deze vraag
wordt behandeld in hoofdstuk 5. In de wiskunde van de combinatoriek bestudeert men
al meer dan een eeuw lang zogenaamde ‘Hadamard– en weegmatrices’ die zich ken-
merken doordat elke rij in deze matrices maximaal verschilt van alle andere rijen. Ik
laat zien dat deze constructies zeer geschikt zijn voor het definiëren van problemen die
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zich lenen voor een quantumoplossing die efficin̈ter is dan de klassieke oplossing van
hetzelfde probleem.

‘Zelftesten’ refereert aan de mogelijkheid van een apparaat om eigenhandig te con-
troleren of het naar behoren werkt. Quantumpoorten (zoals we die willen gebruiken in
een quantumcomputer) kunnen zichzelf inderdaad testen, zo bewijzen we in hoofdstuk
6. Dit is goed nieuws aangezien dit resultaat laat zien dat we de paradoxale situatie
kunnen vermijden waarin we de bruikbaarheid van een quantumcomputer alleen kun-
nen verifiëren met behulp van een reeds werkende quantumcomputer.

In hoofdstuk 7, tenslotte, proberen we een definitie te geven voor de ‘quantum-
Kolmogorov-complexiteit’ van quantuminformatie. In de klassieke informatietheorie
komt de Kolmogorov-complexiteit van een string x1, . . . , xn overeen met de grootte
van het kleinste computerprogramma dat x1, . . . , xn als uitvoer heeft. Zo ziet men dat
de Kolmogorov-complexiteit van een string van 1 miljoen nullen veel kleiner zal zijn
dan dat van een even grote string dat een adressenbestand beschrijft. Hoe deze definitie
te generaliseren voor quantuminformatie is geenszins voor de hand liggend aangezien
het niet duidelijk is hoe precies men de amplitudes (α, β) dient te benaderen. De sug-
gestie die we doen in dit laatste hoofdstuk bestaat eruit dat de quantum-Kolmogorov-
complexiteit van een rij van quantumbits wordt gedefinieerd als de lengte van het kort-
ste quantumcomputerprogramma dat deze rij met willekeurige accuratesse kan repro-
duceren, maar niet noodzakelijk perfect.
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