
Mapping InferencesCon�raint Propagation and Diamond Sati�action

MI
CD
Rosella Gennari

Mapping Inferences
Constraint Propagation and Diamond Satisfaction

ILLC Dissertation Series DS-2002-05

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24

1018 TV Amsterdam
phone: +31-20-525 6051
fax: +31-20-525 5206

e-mail: illc@wins.uva.nl
homepage: http://www.illc.uva.nl/

Mapping Inferences
Constraint Propagation and Diamond Satisfaction

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.mr. P.F. van der Heijden

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
op maandag 2 december 2002, te 11.00 uur

door

Rosella Gennari

geboren te Pavia, Italië.

Promotie commissie:

Promotor: Prof.dr. K.R. Apt
Co-promotor: Dr. M. de Rijke
Institute for Logic, Language and Computation
Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam
Nederland

Overige leden:
Prof.dr. J.F.A.K. van Benthem
Dr. F. de Boer
Prof.dr. M. van Lambalgen
Prof.dr. J-J.Ch. Meyer
Prof.dr. F. Rossi
Dr. Zs.M. Ruttkay
Dr. L. Torenvliet

Copyright c© 2002 by Rosella Gennari

Printed and bound by Ipskamp, Enschede.

ISBN: 90–5776–095–9

To my greatest fixpoints

v

The story is extant, and writ in very choice Italian.
W. Shakespeare, Hamlet, Act III, Sc. 2.

vi

Contents

Acknowledgments xiii

1 Introduction 1

1.1 Who Could Benefit from This Thesis 1

1.2 Structure of This Thesis . 3

I Constraint Propagation 5

2 Constraints 7

2.1 Introduction . 7

2.1.1 Motivations . 7

2.1.2 Outline and Structure . 8

2.2 Constraint Problems and Their Solutions 9

2.2.1 What Constraint Satisfaction Problems Are 9

2.2.2 Global Satisfaction . 12

2.3 Examples . 13

2.3.1 Map Colourability . 13

2.3.2 Satisfiability Problems . 14

2.3.3 Image Understanding . 14

2.3.4 Temporal Reasoning . 15

2.4 Equivalent Problems . 17

2.4.1 Normalisation . 17

2.4.2 Completions . 19

2.5 Combining and Comparing Problems 20

2.5.1 Basic Operations . 20

2.5.2 Basic Orderings . 21

2.6 Conclusions . 26

vii

3 A Schema of Function Iterations 27

3.1 Introduction . 27

3.1.1 Motivations . 27

3.1.2 Outline . 28

3.1.3 Structure . 29

3.2 Iterations of Functions . 29

3.3 The Basic Iteration Schema . 30

3.3.1 The basic theory of SGI 31

3.3.2 Ordering Iterations . 34

3.3.3 Finale . 36

3.4 Variations of the Basic Schema 37

3.4.1 The Generic Iteration Schema 37

3.4.2 Iterations Modulo Function Properties 37

3.4.3 Iterations Modulo Equivalence 42

3.5 Conclusions . 45

3.5.1 Synopsis . 45

3.5.2 Discussion . 47

4 Constraint Propagation Algorithms 49

4.1 Introduction . 49

4.1.1 Motivations . 49

4.1.2 Outline . 49

4.1.3 Structure . 51

4.2 Arc and Hyper-arc Consistency 51

4.2.1 The Basic Arc and Hyper-arc Consistency Algorithms . . . 52

4.2.2 The HAC-3 and AC-3 Algorithms 55

4.2.3 The HAC-4 and AC-4 Algorithms 56

4.2.4 The HAC-5 and AC-5 Algorithms 61

4.3 Path Consistency . 65

4.3.1 The PC-1 Algorithm . 66

4.3.2 The PC-2 Algorithm . 68

4.3.3 The PC-4 Algorithm . 69

4.4 Local Consistency . 74

4.4.1 Local Consistency as k Consistency 74

4.4.2 The KS Algorithm . 75

4.5 Relational Consistency . 79

4.5.1 The RC(i,m) Algorithm . 80

4.6 Conclusions . 82

4.6.1 Synopsis . 82

4.6.2 Discussion . 83

viii

5 Soft Constraint Propagation 85
5.1 Introduction . 85

5.1.1 Motivations . 85
5.1.2 Outline . 86
5.1.3 Structure . 87

5.2 Soft Constraints . 88
5.2.1 Constraint Semirings . 88
5.2.2 Soft Constraints . 90
5.2.3 Examples . 90
5.2.4 Basic Operations on Soft Constraints 91
5.2.5 Solutions and Equivalent Problems 92

5.3 Soft Orders . 94
5.3.1 Constraint Order . 94
5.3.2 Constraint Set Order . 95
5.3.3 Problem Orderings . 96

5.4 Soft Constraint Propagation via SGI 98
5.4.1 Soft Constraint Propagation via Rules 98
5.4.2 Soft Constraint Propagation via the SGI Schema 100
5.4.3 The Role of Monotonicity 101
5.4.4 Termination . 102

5.5 Soft Constraint Propagation Algorithms 108
5.5.1 Probabilistic and Fuzzy Arc Consistency Algorithms . . . 109
5.5.2 Generalised Arc Consistency Algorithms 110
5.5.3 Maximal CSPs . 111

5.6 Conclusions . 112
5.6.1 Synopsis . 112
5.6.2 Discussion . 113

6 Constraint Propagation Functions 115
6.1 Introduction . 115

6.1.1 Motivations . 115
6.1.2 Outline and Structure . 115

6.2 Functions for CSPs . 116
6.2.1 Atomic Formulas . 116
6.2.2 Basic Functions . 118
6.2.3 Constraint Propagation Functions 118

6.3 Functions for SCSPs . 119
6.3.1 Soft Constraint Propagation Functions 119
6.3.2 On Optimal Strategies . 121

6.4 Conclusions . 122
6.4.1 Synopsis . 122
6.4.2 Discussion . 122

ix

II Diamond Satisfaction 125

7 Modal Logics 127
7.1 Introduction . 127

7.1.1 Motivations . 127
7.1.2 Outline and Structure . 128

7.2 Background . 129
7.2.1 Modal Languages . 129
7.2.2 Modal Models . 129
7.2.3 Basic Modal Logics . 130
7.2.4 Examples . 131

7.3 The Standard Translation . 132
7.4 Conclusions . 134

8 The Layered Translation 135
8.1 Introduction . 135

8.1.1 Motivations . 135
8.1.2 Outline . 136
8.1.3 Structure . 136

8.2 Modal Theorem Proving via the Standard Translation and Resolution137
8.2.1 Propositional Resolution 137
8.2.2 First-order Resolution . 139
8.2.3 Challenging Cases . 141

8.3 The Importance of Having Layers 142
8.3.1 Trees and Layers . 142
8.3.2 Modal Depth and Layers 143
8.3.3 The Tree Model Property: Layers at Work 144

8.4 Layer by Layer . 145
8.4.1 The Unimodal Case . 145
8.4.2 The Multimodal Case . 148
8.4.3 Finale . 149

8.5 Experimental Comparisons . 150
8.5.1 The Problem Set . 150
8.5.2 The Theorem Prover . 150
8.5.3 Experimental Comparisons 150

8.6 Conclusions . 156
8.6.1 Synopsis . 156
8.6.2 Discussion . 156

9 Diamonds and Constraints 157
9.1 Introduction . 157

9.1.1 Motivations . 157
9.1.2 Outline and Structure . 158

x

9.2 The SAT Based Approach . 158
9.3 Constraint Satisfaction and SAT Formulas 160

9.3.1 Mapping CNF Formulas into Constraints 161
9.3.2 Constraint Solving Algorithms 162
9.3.3 The Forward Checking Algorithm Schema 163

9.4 The KCSP Algorithm . 164
9.4.1 Examples . 164
9.4.2 Mapping Modal Formulas into CSPs 165
9.4.3 Mapping Modal Inferences into CSP Inferences 166

9.5 Experimental Assessment . 168
9.5.1 The Unsatisfiable Case . 168
9.5.2 The Satisfiable Case . 169
9.5.3 Finale . 170

9.6 Variations of KCSP . 171
9.6.1 Boolean CSPs and Constraint Propagation 171
9.6.2 When a Bit of Cross-eye Helps 172

9.7 Conclusions . 172
9.7.1 Synopsis . 172
9.7.2 Discussion . 173

III Finale 175

10 Conclusions and Questions 177

A Original Algorithms 181

Bibliography 185

Samenvatting 193

xi

Acknowledgments

Chi cerca trova, seek and you shall find, is what pulled me out of my home
town five years ago. Then I landed at the ILLC in Amsterdam, attracted by
the Master of Logic program. One year later, on completion of that masters
program, I decided to remain in the stimulating and international environment of
the ILLC, and thus embarked on a longer program: the Ph.D. In its beginning,
I was supposed to do a certain form of belief revision; as a matter of fact, in my
second Ph.D. year, I did this by drastically changing my research topic, and thus
started working on the problems gathered in this thesis.

From that moment, Krzysztof Apt and Maarten de Rijke took over the role of
my Ph.D. advisors, providing me with support and guidance in their respective
fields. Krzysztof opened the world of logic programming and constraint satis-
faction problems to me, introducing me to both communities. Maarten has an
inexhaustible supply of energy — some times I suspect that he owns the recipe of
the Panoramix (Getafix) potion — and I profited from it: ranging from his exper-
tise in automated reasoning and modal logics, to his help in amending even the
“samenvatting”of this thesis. I also wish to thank Carlos Areces, for he helped me
in the research transition during my second Ph.D. year, and his secure guidance
through modal logics.

Also, Martin Stokhof made my passage to the LIT group of the ILLC easier,
and helped me find my way through the unavoidable bureaucracy. Krzysztof also
introduced me to CWI, where I found another stimulating working environment.
There, I am also indebted to Lieke Schultze, who painstakingly made me utter
my first (and last) words in Dutch, and the CWI librarians for their efficiency
and patience with my delays.

However, my Ph.D. did not only mean Amsterdam, scientific readings and
writing, but also scientific travels, ranging from Washington to Singapore! In
particular, among those that I met in these trips, I wish to thank Geertjan Bex,
Georg Gottlob, Francesco Scarcello for many interesting discussions and unfor-
gettable social dinners.

xiii

Again at the intersection of science and friendship, a number of persons have
been a valuable support to me during these Amsterdam years. I list some of
them in my preferred, reversed, alphabetical order, just to keep things simple:
Renata Wassermann, Riccardo Re, Alessandra Palmigiano, Gwen Kerdiles, Juan
Heguiabehere, Caterina Caracciolo, Sebastian Brand, Raffaella Bernardi, Marco
Aiello. In particular, I thank Juan and Sebastian for their technical support
and comments, that I fully exploited for the tests in Sections 8.5 and 9.5 in this
thesis; Marco for organising my visit to the IRST in Trento and the meetings on
Temporal and Spatial Reasoning with Vera Stebletsova and Yde Venema. I am
also indebted to Yde for some precious clarifications concerning lattice theory.
All the members of the Constraint group at CWI, and the LIT group at the ILLC
provided useful discussions and recreation hours. I am also grateful to Breanndán
Ó Nualláin, who volunteered to amend the whole thesis of my Italian; an offer I
could not exploit due my absent-mindedness... But he did a great job, at high
speed, with a draft of these acknowledgments!

A number of people are also responsible for many “happy days” in these Am-
sterdam years. I list some of them in alphabetical order: Katia Bertoli, Elena
Brosio, Bart Dirks, Catarina Dutilh Novaes, Anne Frenkel, Jelle Gerbrandy, Gia-
comino Grassi, Lorenzo Grassi, Roeland Merks, Gabriella Morandi, Monica Naef,
Ronald de Wolf.

They say that out of sight means out of mind; but it is also true that every
rule has its exception, and my family proved to be a great one; on many occasions,
they provided me the serene atmosphere necessary to pursue any research work.
Last but not least, Piero Spinnato has his great share in this; he also wrote up
the first version of the “samenvatting”, made useful comments and remarks to the
thesis, and did more, much more than this. As a partial compensation for this,
the present thesis is dedicated to my family and Piero.

My final thanks go to the committee members for accepting to read this thesis,
and my coauthors for allowing me to reuse the material of our joint papers for
some parts of this thesis.

Amsterdam, October 14th 2002 Rosella Gennari

xiv

Chapter 1

Introduction

Writing my Ph.D. thesis consisted of several tasks. Above all it meant trying to
recast my research work in a homogeneous setting. As a result of this, two main
research fields converge in the present thesis: the field of constraint satisfaction
(Part I) and that of automated theorem proving in modal logics (Part II). Un-
derlying the material in both Parts I and II is a persistent shared concern with
knowledge representation and reasoning, on the chosen representation, in an ef-
ficient manner. This is the main link between both parts, which is in rationale
and methodology rather than subject matter.

The material of this thesis is thus organised into three main parts, as explained
below. This introduction is meant to be a guide for the reader through the tree
parts of the present thesis. In the remainder of this chapter, I attempt to explain
what follows: who could benefit from reading this thesis, and why so; the structure
of this thesis, i.e., how its parts and chapters are organised.

1.1 Who Could Benefit from This Thesis

Before starting the actual writing, I was suggested to always bear in mind an
idealised, non-expert reader for the thesis, the main reason being that the areas
of constraint programming and modal logics, both treated in the present thesis,
seem to pertain to two separate communities. As a matter of fact, the phrase
“modal logic” never occurs in the two main manuals for constraint programming
and satisfaction problems, see [MS98, Tsa93]; a similar fate is shared by the words
“constraint satisfaction problem” and “constraint programming” in manuals for
modal logics, for instance see [BdRV01].

Part I of the thesis is devoted to constraint satisfaction problems and, in
particular, to a theoretical analysis of a class of algorithms, devised to boost the
search for solutions to constraint satisfaction problems by inferring constraints.
Bearing in mind an idealised reader, non-expert of the constraint literature, I
devote part of Chapter 2 to introduce some basic concepts and fix the notation.

1

2 Chapter 1. Introduction

Part II of the thesis is concerned with boosting automated theorem proving
for basic modal logics. The non-expert readers of modal logics should find enough
background material in Chapter 7 to enjoy the remainder of this second part. In
particular, the background material could be useful to constraint programmers
who would like to see, in Chapter 9, how a constraint solver for basic modal logics
can be developed.

As anticipated at the start of this chapter, in both Parts I and II there is a
persistent shared concern with knowledge representation and reasoning, on the
chosen representation, in an efficient manner. This is the main link between both
parts of this thesis; even though Chapter 9 establishes a close connection between
algorithms for solving constraints (as explained in Part I) and modal reasoning
(as explained in Chapter 7, Part II). In Part III, I elaborate on these issues and
provide some conclusions.

Thus the material presented in the three parts of this thesis can be of interest
to an ensemble of various researchers such as:

1. the programmer who wishes to grab a general and uniform view of the
so-called constraint propagation algorithms, many of which are already im-
plemented in all constraint programming environments;

2. in particular, the constraint programmer, who might be interested in what
constraint programming can do for modal automated theorem proving, or
wish to get familiar with non-standard constraint problems, for which the
task is to return an optimal partial solution;

3. the logician or linguist with an interest in automated theorem proving or
constraint satisfaction problems;

4. the computer scientist, interested in satisfiability problems;

5. the relational database theorist who wishes to explore the similarities and
differences between her/his field and that of constraint satisfaction prob-
lems;

6. in general, everybody who is interested in Artificial Intelligence — e.g. Tem-
poral or Spatial Reasoning, Scheduling, Planning, Reasoning under Uncer-
tainty.

In the following subsection, I briefly explain the structure of this thesis: i.e., how
its parts and chapters are organised and what their dependencies are. This is
meant to facilitate, to each reader, the creation of a personal reading path.

1.2. Structure of This Thesis 3

1.2 Structure of This Thesis

Parts

As explained above, this thesis is tripartite. The parts are rather voluminous, so
a brief outline is given at the start of each of them.

Part I can be read independently of the remainder of the thesis. In addition,
Chapters 7 and 8 in Part II can be read without any prior knowledge of the first
part. Instead, Chapter 9 in Part II requires some knowledge of Chapter 2 in
Part I and Section 4.2. Part III can be read only after the other two parts.

Furthermore, both Parts I and II begin with a preliminary chapter (Chapters 2
and 7, respectively), where the terminology is fixed and the background material
is explained; in these preliminary chapters, a series of examples are proposed to
the non-expert reader, and each key definition is accompanied by a motivating
toy example, easy to grasp and remember.

Chapters

Instead of providing a detailed overview of the whole thesis in this introduction, I
decided to provide each of the remaining chapters with a rather detailed, mainly
non-technical introduction. Those introductions are organised in three subsec-
tions as explained below: motivations; outline; structure.

An analogous choice holds for the conclusions: in Parts I and II, each chapter
is concluded by a synopsis of the presented material, and its connections with the
remainder of this thesis; when pertinent, there is also a discussion on the chapter
results.

Motivations. At the beginning of each chapter, I go through the effort of
motivating why the proposed material could be of interest to the reader. For
instance, Chapter 2 pertains to the so-called constraint satisfaction problems;
thus that chapter begins by informally introducing the topic and surveying some
of its current applications. Similarly, Chapter 7, at the start of Part II (Diamond
Satisfaction), introduces the non-expert reader to modal logics by surveying some
of the areas where those logics can be traced, and have been successfully applied.

Outline. Each introduction continues with a preliminary account of the main
points that are covered in the chapter, in a brief and non-technical manner; ideally,
this should give a glimpse of the chapter contents, without the burden of too many
technical details at a first reading.

Structure. Finally, at the end of each introduction, the structure of the chapter
is illustrated so that the expert reader can easily navigate through this.

4 Chapter 1. Introduction

Origins of the chapters. Some examples and definitions in Chapter 2 are
taken from [Gen98]. Chapter 3 presents a new version of material first presented
in [Gen00] and [Gen02]. Chapter 5 is largely based on the following articles:
[BGR02], first appeared as [BGR00], both written with S. Bistarelli and F. Rossi;
[Gen01a], whose longer version is [Gen01b]. Chapter 8 is based on the joint
paper [AGHdR00], written with C. Areces, J. Heguiabehere and M. de Rijke.
Chapter 9 presents the results of on-going work with S. Brand and M. de Rijke.

Part I

Constraint Propagation

“Chi bene incomincia è già a metà dell’opera”,
disse il primo. (“A good start is half the battle”,
said the first.)
G. Rodari, Vecchi Proverbi, from Favole al Tele-
fono, Einaudi, 1971.

This part concerns itself with constraints satisfaction problems, and mainly a
class of efficient approximate algorithms for them.

Constraint satisfaction problems, which constitute the core of this thesis, are
introduced in Chapter 2.

A theoretical analysis of those algorithms follow in Chapter 3. First this
theory is applied to a number of efficient algorithms for constraint satisfaction
problems in Chapter 4. Then “non-standard” constraints are briefly introduced
in Chapter 5, and the theoretical analysis of Chapter 3 is extended to the cor-
related algorithms.

Finally, in Chapter 6, we collect and characterise the functions that are
used in the theoretical analysis of all those algorithms, for both the classical
(see Section 6.2) and the non-standard case (see Section 6.3).

The following diagram shows the dependencies of the chapters or sections in
this first part.

Chapter 4 // // Section 6.2,
Chapter 6

Chapter 2 // // Chapter 3

OOOO

����
Chapter 5 // // Section 6.3,

Chapter 6

Chapter 2

Constraints

2.1 Introduction

2.1.1 Motivations

Constraint programming originated from the logic programming community and
has become a flourishing programming paradigm, which is implemented in a num-
ber of heterogeneous environments, like: Eclipse (see [Agg95]), Constraint
Handling Rules (see [Frü98]), Oz (see [Smo95]), Chip (see [ADH+87]). As
stated in [MS98], constraint programming, “based on a strong theoretical foun-
dation, [. . .] is now becoming the method of choice for modelling many types of
optimization problems, in particular, those involving heterogeneous constraints
and combinatorial search”; thus “constraint programming has recently been iden-
tified by the ACM [Association for Computing Machinery] as one of the strategic
directions in computing research”.

The central notion of constraint programming is that of a so-called constraint
satisfaction problem, which in a nutshell consists of a finite collection of constraint
relations over a finite number of domains.

The only task left to the constraint programmer is to formulate a given prob-
lem as a constraint satisfaction problem. Then the problem is “solved” by the
constraint programming system, by means of general or domain specific methods.
Here “solving” can mean finding values, one from each domain, that “satisfy” the
problem constraints, or the optimal values, with respect to some criteria, for the
problem constraints. The latter task has grown into an independent area, and we
shall introduce and study it separately in Chapter 5.

Problems that can be expressed in a natural way by means of constraints are,
for instance, those that lack efficient solving algorithms; like the map coloura-
bility problem or the 3-SAT problem and, in general, combinatorial problems
that are computationally intractable. Yet constraint programming has grown fur-
ther than this and it can be traced in areas like Temporal Reasoning, Scheduling,

7

8 Chapter 2. Constraints

Planning and Spatial Reasoning, see [DAA95].

For most of the aforementioned problems, the search for a solution usually
involves a number of fruitless computations before any solution can be generated.
Nowadays, constraint programming incorporates a variety of methods that are
conceived for avoiding some fruitless explorations of the solution search space. In
Chapter 4, we survey a number of these methods.

Moreover, the relational aspect of constraints often allows the programmer to
re-use the same program for different purposes. In contrast, traditional program-
ming languages do not usually provide support for specifying relations among
the various components of programs. It is then the programmer who bears the
burden to specify and maintain those relations in a dynamic situation.

The use of relations for programming is also popular in the database commu-
nity, see the database relational model as for instance in [AHV95, Ull80, UW97].
Indeed, there are similarities between the two fields, as outlined in Chapter 6.
However, in a relational database, relations are usually extensionally charac-
terised, namely as tables; the task here is to efficiently query the database and
retrieve all solutions/answers to the query. On the other hand, constraints can
be assigned intensionally, like linear equations over real numbers are; the task is
to satisfy all the problem constraints, and the solving algorithms are designed to
cleverly produce a solution to the problem.

2.1.2 Outline and Structure

In this chapter we introduce the so-called constraint satisfaction problems, and
the basic notions necessary for the comprehension of the remainder of Part I.

Section 2.2 presents the core notions of constraints, constraint satisfaction
problems and their solutions; the terminology that we adopt usually follows the
standard one; whenever we introduce some new conventions or terms, we signal
these and explain their use.

A number of motivating examples are proposed in Section 2.3: these range
from combinatorial problems (see Subsection 2.3.1) to problems that arise in
areas like Image Understanding (see Subsection 2.3.3), Spatial and Temporal
Reasoning, Planning (see Subsection 2.3.4). Some of those examples return in the
remainder of this thesis: precisely when we explain the algorithms of Chapter 4,
and introduce non-classical constraints in Chapter 5.

The algorithms that occur in the remainder of this thesis (Chapter 4, Sec-
tions 5.4 and 5.5) are explained via transformations of problems, as presented in
Section 2.4, and via basic operations and orderings on problems, as illustrated in
Section 2.5.

2.2. Constraint Problems and Their Solutions 9

2.2 Constraint Problems and Their Solutions

In a constraint programming environment, problems are cast in terms of variables,
domains and constraints: each variable is associated with a domain of interpreta-
tion, from which it takes its possible values; constraints on variables restrict the
allowed domain values for variables. We define variables, domains, constraints
and, finally, constraint satisfaction problems precisely in Subsection 2.2.1.

The notion of a solution to such problems is explained in Subsection 2.2.2.
Intuitively, a solution to a problem assigns values, to each domain variable, ac-
cording to the constraints imposed by the problem. For instance: we need to
schedule a series of meetings on a certain date, so we open our agenda on that
date and start filling in columns, corresponding to different day hours; these are
the variables of our problem, and the events that can take place in those hours
are the variable values. A constraint for this problem could be that there are no
meetings that take place at the same hour.

In conclusion, the choice of variables and domains defines the search space
for solutions; in the above case, the set of meetings that we want to schedule.
Constraints characterise the structure of the solution search space; e.g., the fact
that there cannot be overlapping meetings.

2.2.1 What Constraint Satisfaction Problems Are

Variables

To define a constraint satisfaction problem, we need a finite sequence of n dis-
tinct variables, say r := 〈x1, . . . , xn〉. Consider a non-empty sequence s :=
〈xi1 , . . . , xim〉 of r variables such that, either ij < ij+1 for each 1 ≤ j < m,
or m = 1; then s is a scheme of r of length m.

We shall usually denote the scheme of variables of a constraint satisfaction
problem by X; then r, s, t, or the same with subscripts or superscripts, will
usually denote schemes of X.

Besides, in this thesis, we shall write a scheme s := 〈xi1 , . . . , xim〉 as s :=
xi1 , . . . , xim to avoid an overload of notation. Notice that, if a scheme r contains
n variables, then there are 2n − 1 possible schemes of r.

Example 2.2.1. The scheme s := x1, x2, x3 gives rise to 7 schemes: i.e., s1 := x1,
s2 := x2, s3 := x3; s4 := x1, x2, s5 := x1, x3, s6 := x2, x3; s itself.

There are two useful operations on schemes: if s and t are two different schemes
of r, then s ∪ t denotes the scheme of r on the variables in s and t; we call this
operation the join of s and t. Vice versa, if t is a scheme of s, different from s,
then s− t is the scheme on the variables of s minus those in t, and we shall refer
to it as the projection of t out of s.

10 Chapter 2. Constraints

Example 2.2.2. Let us consider r := x1, x2, x3, and its schemes s := x1, x2,
t := x2, x3. Then the join of s and t is r itself; the projection of t out of s is x1.

Domains

Each variable xi in a scheme r := x1, . . . , xn is interpreted over a domain, usually
denoted with Di. The Cartesian product of all variable domains

D := D1 × · · · ×Dn

is called the domain of r, whereas the set of pairs 〈Di, xi〉 is denoted by

D := {〈D1, x1〉, . . . , 〈Dn, xn〉} . (DS)

The set D in (DS) is referred to as the domain set of r. We shall usually adopt
a more compact notation and write a domain set in the form

D = D1, . . . , Dn

every time meaning (DS) as above.
Given a scheme s := xi1 , . . . , xim of r, we denote the Cartesian product

Di1 × · · · ×Dim

with D [s]. Notice that, if s is a singleton as xi, then Di = D [xi]. Similarly, if
di ∈ Di for every Di ∈ D, let d be the tuple

(d1, . . . , dn).

Then d [s] denotes the tuple (di1 , . . . , dim).
In case D [s] and d [s] reduce to singletons, we shall blur the above distinctions,

that is we shall feel free to write Di instead of D [xi], as well as di in place of
d [xi]. Also, if s is the singleton of xi, then the tuple d [s] corresponds to di.

In a number of cases that we investigate in the present thesis, domains are
finite. However, there are situations in which domains are allowed to be infinite,
as in the case of linear inequalities over real numbers; see the following example.

Example 2.2.3. Given a scheme r := x1, x2, x3, let the variables of r range over
real numbers. Precisely, let D1 be the closed interval [0, 1], whereas D2 and D3

are equal to [1, 3]. Then D is the Cartesian product D1 × D2 × D3. While D is
the following set:

{〈[0, 1] , x1〉, 〈[1, 3] , x2〉, 〈[1, 3] , x3〉} .

Notice that, being D2 equal to D3, if we cast D as a set of domains, we would
lose the association between variables and their domains.

2.2. Constraint Problems and Their Solutions 11

Constraints

In this thesis, constraints are usually described as relations; so each constraint is
associated to a scheme of variables, like in the database relational model.

Formally, given a scheme r and a domain D over r, let s := {xi1 , . . . , xim}
be a scheme of r. Then a constraint over s, written as C(s), is a subset of the
Cartesian product D [s]. If k is the length of s, then C(s) is a k-ary constraint.

The above definition of constraint has the advantage of being easily generalised
to non-standard constraints, as presented in Chapter 5. Moreover, it naturally
captures the intuitive meaning of constraints: i.e., that of relating variable values
and thereby restricting possible assignments, as we shall make precise in Subsec-
tion 2.2.2.

In the literature, constraints as relations can be represented extensionally, for
instance as tables, or intensionally. The following is an example of the latter
representation.

Example 2.2.4. Consider the following system of equations over real numbers:
2x1 + x2 + 2 = 3x4 − 1

x2 = 3x1

x1 + x2 = 7x3

x4 = x3 + x2 + 1

Variables are the unknown xi, for i = 1, . . . , 4. Domains are equal, for instance,
to R. Each equality in the above system is regarded as a constraint on the related
variables; for example, the first equality is interpreted as a constraint C(x1, x2, x4)
on the scheme x1, x2, x4.

In the case of Example 2.2.4, an extensional representation of constraints would
be impossible: it would have to list all the allowed triples of real numbers.

We conclude this part with some definitions. Consider k different constraints
on k schemes of r, say Ci(si) for i = 1, . . . , k. Then the set of pairs

C := {〈C(s1), s1〉, . . . , 〈C(sk), sk〉} (CS)

is referred to as a constraint set of r. If the number of involved constraints is of
relevance, then we call the above set a k-constraint set. As in the case of domain
sets, we shall usually adopt a more compact notation and denote constraint sets
as (CS) in the following way:

C := C(s1), . . . , C(sk).

We have now all the ingredients, namely variables, domain and constraint sets,
to formalise the notion of constraint satisfaction problem as below.

12 Chapter 2. Constraints

Constraint Satisfaction Problems

A constraint satisfaction problem, briefly CSP, is a tuple P := 〈X,D,C〉 defined
as follows:

1. X is a scheme;

2. D is a domain set of X;

3. C is a constraint set of X.

Whenever we need to be more specific and highlight the scheme X of a CSP, we
shall talk of a CSP over X. So, by writing the CSPs over X, we refer to all the
CSPs that have the same scheme X.

2.2.2 Global Satisfaction

Assignments

Given a scheme X of n variables and D := D1 × · · · × Dn, a domain over X, a
tuple d ∈ D is a total assignment or total instantiation. The name is motivated
by the fact that each tuple d ∈ D gives rise to a function that assigns a single
value in Di, namely d [i], to each variable xi ∈ X, thereby instantiating it; and
vice versa as well. We shall blur this distinction and consider assignments as
functions whenever convenient.

Given a scheme s of X, a total assignment for s, namely a tuple of D [s], is
an s assignment over D. If the scheme s of X is not relevant, we generically talk
of assignment.

Indeed, if r is a scheme of s, every s assignment d gives rise to an r assignment,
namely d [r]. In the literature, this is usually referred to as assignment restriction,
since assignments are usually defined as functions. Vice versa, every r assignment
e can be extended to an s assignment, possibly more than one, in an arbitrary
way. So, if e ∈ D [r], then d ∈ D [s] is an r extension of e to s iff d [r] = e.

Example 2.2.5. The system of equations in Example 2.2.4 gives rise to a CSP.
An example of a total assignment is the tuple d := (0, 1, 2, 3). If s is the scheme
x1, x2, x3, then d [s] is the s assignment (0, 1, 2).

Consistency and solutions

Let us consider a CSP P := 〈X,D,C〉, and let C(s) be a constraint on a scheme
s of P . Suppose that the scheme t extends s. If a t assignment d over D is such
that d [s] belongs to C(s), then we say that d satisfies or is consistent with the
constraint C(s).

Informally, a solution to the CSP P := 〈X,D,C〉 is a total assignment of
which each projection, over a scheme s of X, satisfies every constraint of P over

2.3. Examples 13

s. Formally, consider a total assignment d over D; if, for every C(s) over s of P ,
the tuple d [s] satisfies C(s), then we say that d satisfies or is consistent with P .
The assignment d is commonly referred to as a solution to P .

Thus a CSP P is consistent or satisfiable iff there exists a total assignment that
satisfies it. The subset Sol(P) of the domain set D denotes the set of solutions
to P .

Example 2.2.6. Let us consider the systems of equations in Example 2.2.4, that
gives rise to a CSP. The total assignment d := (0, 0, 0, 0) is not a solution because
of the fourth equation. If s is the scheme x1, x2, x3, then d [s] is an s assignment;
this can be extended to an assignment that is a solution to the system, namely
e := (0, 0, 0, 1). In fact, it is not difficult to check that the assignment e satisfies
all equations/constraints of the problem.

2.3 Examples

We started this chapter by claiming that CSPs are ubiquitous. In the remainder
of this section, we present some examples to support our claim.

2.3.1 Map Colourability

The first example we discuss is combinatorial. A planar map, like the one sketched
below, can be represented by means of a graph G := 〈V,E〉 and a finite set Di of
colours, one for each vertex xi in V . Hence the map colourability problem
(see [GJ79]) consists in colouring the graph vertices so that no two adjacent
vertices are painted with the same colour.

x1

↓
{aqua, cyan, blue}

x2

↓
{cyan}

x3 7→ {cyan, blue}

The instance of the map colourability problem which corresponds to the
above map is the following:

1. the set of vertices is V := {x1, x2, x3};

2. the set of colours are, respectively: D1 := {aqua, blue, cyan} for x1; then
D1 := {cyan} for x2; finally D3 := {blue, cyan} for x3;

3. the only arcs in the graph are (x1, x2), (x2, x3), (x1, x3).

14 Chapter 2. Constraints

The encoding of this as a CSP is straightforward:

1. variables correspond to the vertices in V ;

2. each colour set corresponds to a variable domain;

3. constraints are posted between those variables that are connected by an arc
in the graph: i.e., C(xi, xj) states that xi and xj have different colours, for
1 ≤ i < j ≤ 3.

A solution to the map colourability problem is an assignment of colours to
all the variables that satisfy all the given constraints. In the case of the depicted
map above, a solution is as follows: x1 is aqua, x2 is cyan and x3 is blue.

2.3.2 Satisfiability Problems

In Chapter 9, we shall also deal with propositional satisfiability. A conjunction φ
of propositional disjunctions of the form

p ∨ ¬q ∨ r (2.1)

can be encoded as a CSP as follows (other encodings have been devised in the
literature, see for instance [Wal00]):

• variables are proposition letters, such as p, q and r;

• domains only contain the Boolean values 0 (false) and 1 (true);

• constraints are posted between those variables/letters that occur in the same
disjunct. For instance, (2.1) corresponds to a constraint on the variables p,
q and r, that only rules out the tuple (0, 1, 0) from the set {0, 1}3.

A solution is thus an assignment, to all the variables/letters in the formula φ,
that satisfies φ.

2.3.3 Image Understanding

Computer vision is an important AI area, that arose as part of robotics. Nowa-
days, its applications have moved beyond robotics; for instance, we encounter
computer vision methods in the interpretation of satellite data.

Computer vision involves image analysis and understanding. A prototypical
problem in this sense (see [DAA95]) is the scene labelling problem. The task is to
reconstruct objects in a three dimensional scene by means of their bidimensional
representations. This problem was first encoded as a CSP by Waltz; see [Wal75]
as quoted in [DAA95]. The original problem is transformed from one of labelling
lines to one of labelling junctions between lines. Waltz’s procedure relies on two
physical constraints to make the problem tractable:

2.3. Examples 15

• a number of combinations of line labellings at a junction are not physically
realisable;

• each line connects two junctions; thereby the labellings at the two junctions
must both assign the same label to the line.

Thus the goal is to find a physically consistent set of labellings for junctions.
The procedure by Waltz dramatically reduces the search space size by means of
the algorithms that will be presented in Section 4.2. We invite the reader to
consult [DAA95] for a more detailed account of this.

Here we focus on another typical problem of image understanding, successfully
tackled as a CSP in [Aie02]: document understanding. In Aiello’s thesis (ib.),
given a set of labellings that identify the basic components of a document, a CSP
solver is used to reconstruct a reading order for the document. For instance, the
labelled layout of Figure 2.1 is encoded as the following CSP:

1. each rectangular box in the drawing is associated with one variable;

2. variable domains collect pairs of real numbers, interpreting the upper-left
corner and the lower-right corner of a rectangular box;

3. constraints are expressed through the bidimensional Allen relations. For
instance, in Figure 2.1, x1 and x2 are related as follows: x1 equalsY x2 states
that the projections of the two documents on the Y axis coincide; whereas
x1 precedesX x2 states that the horizontal component of x1 precedes that of
x2.

A solution to the above CSP is a reading order that satisfies all the Allen con-
straints of the problem.

2.3.4 Temporal Reasoning

Another example we consider pertains to Qualitative Temporal Reasoning and
Scheduling, see [Gen98]. Suppose to have a series of tasks, each one taking a
continuous interval of time, and to be all accomplished the same day, as in the
following simple plot.

Arie fidgets in his pocket, searching for his small agenda. Much to his
surprise, he realises to have lost it. All he can vaguely remember is
to have an important meeting that day in Amsterdam, in the meeting
room B2.24. He knows that he should meet Bert a long time before
Barbara starts her meeting with Kees in the B2.24 room. Arie re-
members Cees talking about his own meeting with Dick in that room,
and that this should be over by the time Dora meets Alfons there.
Besides, the meeting of Barbara and Kees should be before the meet-
ing of Dora and Alfons in the B2.24 room. Arie perfectly knows that

16 Chapter 2. Constraints

x1 x2

x3

Figure 2.1: A labelled layout of a document page.

all these events take place sequentially in the B2.24 room, with an
interval of at least ten minutes in between any two meetings. Arie
also remembers that everybody has precisely one meeting that day.
Are Arie’s memories consistent?

This story can be encoded as a CSP with four variables, one for each meeting
in the story. So, let us state the following: x1 means “Arie and Bert’s meeting”;
x2 is “Barbara and Kees’ meeting”; x3 denotes “Cees and Dick’s meeting”; x4

represents “Dora and Alfons’ meeting”. Each variable is interpreted over the real
line. Reading the story, we encounter four constraints between those variables;
the constraints are formalised through the Allen relation precedes and its inverse,
follows:

1. C(x1, x2) is x1 precedes x2; this states that Arie and Bert’s meeting takes
place before Barbara and Kees’ meeting;

2. C(x3, x4) is x3 precedes x4; this encodes the fact that Cees and Dick’s meet-
ing takes place before Dora and Alfons’ meeting;

3. C(x2, x4) is x2 precedes x4; this translates the fact that Barbara and Kees’
meeting takes place before Dora and Alfons’ meeting;

4. C(x1, x4) is x1 precedes ∨ follows x4; this translates the fact that Arie and
Bert’s meeting has to take place before or after Dora and Alfons’ meeting.

Then a solution is found when all the above constraints are satisfied.
A more challenging application for constraint programming, involving Tempo-

ral Reasoning, is provided by planning. We refer the reader to [KvB97] for a clear
introduction to planning as CSP, and a comparison of the constraint programming
planner CPlanner with other state-of-the-art planners.

2.4. Equivalent Problems 17

2.4 Equivalent Problems

A number of CSP algorithms, like those that we present in Chapter 2, are better
understood if we assume that the input problem has at most one constraint per
scheme, or even precisely one per scheme. These two properties are obtained,
respectively, by means of two procedures, named ‘normalisation’ and ‘completion’.
We describe those procedures in this subsection, and show that neither of them
add or remove solutions with respect to the original problem; thus they preserve
equivalence, which is precisely defined as follows — we remind that Sol(P) denotes
the set of all solutions to P , see p. 13.

Definition 2.4.1. Consider two CSPs P := 〈X,D,C〉 and P ′ := 〈X,D′,C ′〉
on the same scheme X. Then P and P ′ are equivalent CSPs if they have the same
solution set: i.e., Sol(P) = Sol(P ′).

Example 2.4.2. Consider the CSP in Example 2.2.4 and the CSP with the same
scheme and domains, that has as constraints the following equations over real
numbers: 

5x1 + 2 = 3x4 − 1

x2 = 3x1

4x1 = 7x3

x4 = x3 + 3x1 + 1

The former CSP and the latter are equivalent, since they have the same solutions
over real numbers. In fact, the latter CSP is obtained from the former by replacing
the occurrences of x2 by 3x1 in the first, third and fourth equations; this is an
equivalence-preserving transformation, which is taught in high schools.

The above definition can be easily extended to compare CSPs on different schemes;
yet, we shall not be in need of such extension in the present thesis.

2.4.1 Normalisation

If we transform a CSP so that it has at most one constraint on each scheme of
variables, we obtain a normal form for it, as explained in the following definition.

Definition 2.4.3. Consider a CSP P := 〈X,D,C〉. The normalisation of P is
a CSP P ′ := 〈X,D,C ′〉 that shares the variable scheme X and domain set D
with P . Then, for each scheme s of X such that there exist k ≥ 1 constraints
C1(s), . . . , Ck(s) on s in P ,

• there exists precisely one constraint C ′(s) in C,

• and C ′(s) is the constraint on s that is equal to
⋂k
i=1Ci(s).

18 Chapter 2. Constraints

The problem P is normalised if it satisfies the above requirements.

The above definition is consistent due to the following fact.

Fact 2.4.4. Every CSP has precisely one normalisation. 2

Example 2.4.5. The Temporal Reasoning problem in Subsection 2.3.4 is nor-
malised, since there is at most one constraint on each scheme.

Notice that, in the above example, the original CSP has only binary con-
straints and so does its normalisation. Indeed, intersection does not modify the
arity of constraints, hence the following fact.

Fact 2.4.6. A CSP has a k-ary constraint iff its normalisation does. 2

The above fact is trivial but not to overlook; in fact, some CSP algorithms only
deal with constraints of a fixed arity, like binary ones. Thus the above fact ensures
that normalisation does not modify the nature of a CSP, so to speak; passing to
the normalisation is just to simplify the description of the algorithms.

Solving a CSP also means finding a total instantiation that is consistent with
every constraint of the problem. Therefore, the following question is of primary
concern: do we add or remove any solution by normalising a CSP? The answer is
clearly negative, and its simple proof is outlined in the following lemma; it relies
on the fact that an instantiation is consistent with a CSP it if satisfies all its
constraints.

Lemma 2.4.7. A CSP P and its normalisation are equivalent CSPs.

Proof. Let d be a tuple in D that is consistent with all the constraints C(s) of
P . Then consider a scheme s of X and analyse the following three cases.

1. If there is only one constraint C(s) in P , then the same constraint on s and
no other one is in the normalisation of P ; hence d is consistent with the
constraint C(s) of the normalisation of P .

2. If there is more than one constraint on s in P , then d [s] has to be consistent
with all of them, thereby with their intersection as well.

3. Finally, if there are no constraints in P on s, then there are no constraints
in the normalisation of P either.

The other implication follows by inspecting the same three cases and assuming
that d is consistent with all the constraints of the normalisation of P . 2

2.4. Equivalent Problems 19

2.4.2 Completions

Several constraint propagation algorithms can be better described by assuming
a stronger working hypothesis than normalisation: i.e., that the input problem
has precisely one constraint on each scheme of variables, so that the problem is
complete in the following sense.

Definition 2.4.8. Consider a CSP P and its normalisation PN := 〈X,D,C〉.
The completion of P is the problem P̄ := 〈X,D, C̄〉 whose constraint set C̄
enjoys the following properties:

• for each scheme s of X, if C(s) belongs to C of PN , then it is also the only
constraint on s in C̄;

• if PN has no constraints on s, then C̄ has precisely one constraint C̄(s) on
s, that is D [s].

We say that a CSP P is complete iff P = P̄ .

The completion of a CSP is obtained by normalising the problem, and adding the
necessary constraints as in the above definition.

While normalisation does not alter the nature of a CSP (i.e. if it is binary
its normalisation is binary too), its completion instead modifies it. For instance,
if P is a binary CSP, the choice of P̄ is by no means optimal: it may have too
many constraints with respect to those in P . Some CSP algorithms (see Subsec-
tion 4.4.2), require the input problem to be complete but only up to constraints
of arity at most k, so to speak. Hence, we refine the above definition as follows.

Definition 2.4.9. Consider a CSP P := 〈X,D,C〉 on n > 0 variables, and let
k be a natural number, not greater than n and different from 0.

• The CSP P̄k is the k completion of P if the constraints of P̄k are all the
k-ary constraints of P̄ . The problem P is k complete iff P = P̄k.

• While P̄ s
k is the strong k completion of P iff the constraints of P̄ s

k are all
the i-ary constraints of P̄ for every 0 < i ≤ k. The problem P is strongly k
complete iff P = P̄ s

k .

Example 2.4.10. The Temporal Reasoning problem in Subsection 2.3.4 is 2
complete, since it has precisely one binary constraint on each scheme of x1, x2, x3,
x4 of length 2.

The above definitions of completions are consistent due to the following fact.

20 Chapter 2. Constraints

Fact 2.4.11.
(i). Every CSP P := 〈X,D,C〉 on n variables has precisely one k completion
and one strong k completion, for every k ≤ n.
(ii). The completion of P := 〈X,D,C〉 is the strong n completion of P , for n
equal to the cardinality of X. 2

As in the case of normalisation, the completion of a CSP P is equivalent to
P . The proof of the following lemma is analogous to that of Lemma 2.4.7.

Lemma 2.4.12.
(i). A CSP P and its k completion are equivalent problems, for every k ≥ 0 that
is not greater than the number of variables in P .
(ii). A CSP P and its strong k completion are equivalent problems, for every
k ≥ 0 that is not greater than the number of variables in P .
(iii). A CSP P and its completion P̄ are equivalent problems. 2

2.5 Combining and Comparing Problems

2.5.1 Basic Operations

Most algorithms for solving or simplifying CSPs (see Chapter 4) can be described
by means of functions and their iterations. These functions are obtained by means
of some basic functions on relations, common to most of those algorithms, and
in addition some specific ones. We introduce the basic functions as below, since
this will allow us to obtain a more general and compact notation to describe all
the algorithms presented in Chapter 4.

Consider a domain D over X := x1, . . . , xn and a scheme s of X. Given
B ⊆ D [s] and a scheme t := xj1 , . . . , xjk of s, the projection of B over t is defined
as follows:

Πs
t(B) := Bj1 × · · · ×Bjk .

When the reference to s is clear, we shall write Πt instead of Πs
t . So, for instance,

D [t] is equal to Πt(D) for every scheme t of X; in particular D = ΠX(D). We
extend the operation on tuples d ∈ D [s] in the obvious way, and call Πt(d) the
projection of the tuple d on t, for t a scheme of s.

We shall abuse notation and write Πi(B) and Πi(d), respectively, whenever
the scheme reduces to the singleton scheme xj, and refer to it as the projection
over the variable xj.

There is a sort of inverse operation to projection of domains and tuples, namely
their join. To define this, let us consider two schemes s := xi1 , . . . , xim and

2.5. Combining and Comparing Problems 21

t := xj1 , . . . , xjk on X, and let r denote the scheme s ∪ t. Then, if B ⊆ D [s] and
E ⊆ D [t], the join of B and E, denoted by

B 1 E,

is the subset of D [r] of tuples d such that d [s] ∈ B and d [t] ∈ E. This implies
that, if r′ stands for the scheme of the variables which are common to s and t,
then d ∈ D [r] yields d [r′] ∈ B [r′] ∩ E [r′]. The join of tuples is defined similarly
and, if d ∈ D [s], e ∈ D [t], their join is denoted by d 1 e.

Example 2.5.1. Consider the scheme X := x1, x2, x3, and the domains D1 :=
{apple, banana}, D2 := {chocolate, sugar}, D3 = {dentist}. If s is the
scheme x1, x2, then D [s] = D1 ×D2; i.e., the set

{(apple, chocolate), (banana, chocolate), (apple, sugar), (banana, sugar)} .

Consider the subset B := {(apple, chocolate), (banana, chocolate)} of D [s].
Then the projection of B over x2 is the set that only contains chocolate, whereas
its projection over x1 collapses into D1. Similarly, if we consider the tuple d :=
(banana, chocolate, dentist) from the Cartesian product D1 ×D2 ×D3, then
d [s] is (banana, chocolate). While, if t is the scheme x1, x3, the tuple d [t] is
(banana, dentist).

Now, consider again the above subset B of D [s], the scheme t = x1, x3, and
the subset E := {(apple, dentist)} of D [t]. Then the join B 1 E is the set

{(apple, chocolate, dentist)} ;

whereas the join of E and the subset {dentist} of D3 is E itself.

2.5.2 Basic Orderings

As we shall clarify in Chapter 3, all the algorithms that we present in Chapter 4
transform a given CSP into another, but variables are neither added nor removed
during this transformation process, so that only domains and constraints are
modified.

Besides, those algorithms neither insert new values in the input domains, nor
add domain elements to the input constraints. In other words, the algorithms
in Chapter 4 transform CSP domains or constraints along a certain partial order,
without backtracking in the order; in Chapter 3, we shall provide mathematical
contents to these still vague claims. However, in the present section, we start
introducing the main orders along which those algorithms transform CSPs.

22 Chapter 2. Constraints

The upward closure of CSPs

The notions of completion and its variants will allow us to easily define the order-
ings on CSPs that we shall encounter when dealing with constraint propagation.

Given two CSPs P1 and P2 on the same variable set, let us consider their
completion P̄1 := 〈X,D1,C1〉 and P̄2 := 〈X,D2,C2〉. Then we write

P1 v P2,

if the following statements both hold:

• for each xi ∈ X, we have D1, i ⊇ D2, i, where D1, i is the domain of xi in P1

and D2, i the domain of xi in P2;

• for each C1(s) in P̄1 and C2(s) in P̄2, the relation C1(s) ⊇ C2(s) holds.

Therefore, two CSPs on the same variable scheme are comparable through v
iff the domains and constraints of their respective completions are comparable
through the ⊇ relation. Notice that, here and in the remainder of this thesis,
we consistently choose to adopt v instead of its reverse v to denote the above
relation. The motivation for this choice is that it has become standard in the
mathematics and computer science literature (see [DP90]) to deal with partial
orders or pre-orders with bottom, or complete partially ordered sets (CPOs) with
bottom, least common fixpoints etc.; in other words, to use the v relation.

Algorithms as in Chapter 4 receive in input a CSP P , and transform it into
a CSP P ′ such that the relation P v P ′ holds. Therefore, it is sensible to cir-
cumscribe the set of problems those algorithms can produce, so to speak, starting
from the input CSP P , as specified in the following definition.

Definition 2.5.2. Consider a CSP P := 〈X,D,C〉 and the family P↑ of all
problems P ′ on X for which the relation P v P ′ holds. We call the family P↑
the upward closure or closure of P .

The above definition is commonly known in the theory of partial orders and pre-
orders as the upward closure with respect to the given relation, see [DP90]. The
first of the following results holds in general for all upward closures; the other
follows immediately from Definition 2.5.2.

Fact 2.5.3. Consider a CSP P and its closure P↑. Then the following state-
ments hold:

1. if P1 v P2 and P1 ∈ P↑, then P2 ∈ P↑;

2. if P1 v P2, then P2↑ ⊆ P1↑. 2

2.5. Combining and Comparing Problems 23

Example 2.5.4. Consider the CSP P with three variables, x1 x2 and x3, whose
domains are equal to {0, 1}, and with only two constraints, defined as follows:
C(x1, x2) states that x1 6= x2, so it only contains the pairs (0, 1) and (1, 0);
C(x2, x3) states that x2 6= x3, so it contains the same pairs as C(x1, x2). The
completion P̄ has constraints on all the schemes of x1, x2, x3. Therefore, a part
from the P constraints, P̄ also has the following additional constraints:

• unary constraints on the given variables, C(x1), C(x2) and C(x3), all equal
to {0, 1};

• C(x1, x3) is equal to {0, 1}2; i.e., it contains all pairs of 0 and 1;

• C(x1, x2, x3) is the set {0, 1}3.

Problems in P↑ can differ in domains or constraints from P . An instance of a CSP
in P↑ is the problem that is as P , except that its constraint C(x1, x3) is equal
to {(0, 1), (1, 0)} — corresponding to the inequality x1 6= x3. Another example is
the P↑ problem that has all domains empty, and constraints as P .

Unfortunately, the family P↑ is too large, as the above example suggests: it
still contains too many subproblems which are not related to any of the algorithms
in Chapter 4. Thereby, in the remainder of this subsection, we carve out those
subfamilies of P↑ that are related to specific classes of algorithms in Chapter 4:
i.e., domain orderings and constraint orderings.

Domain orderings

There are some algorithms for CSPs, such as arc consistency ones in Section 4.2,
that only modify domains. Thus, consider a CSP P := 〈X,D,C〉, and the closure
P↑. Let F(P) be a subfamily of P↑, and assume that all problems in F(P) differ
at most in their domains, but have the same constraints: i.e.,

if P ′ ∈ F(P) and P ′ = 〈X,D′,C ′〉, then C ′ = C. (2.2)

Then, if P belongs to F(P), a partial ordering

〈F(P),v, P 〉

is a domain ordering over P . Notice that P is the bottom (i.e., the least element)
of such orderings.

When the family F(P) contains all the problems P ′ that satisfy the prop-
erty (2.2), we refer to the structure 〈F(P),v, P 〉 as the domain ordering on P .

The CSP algorithms presented in Section 4.2 are explained via iterations of
functions that only modify CSP domain sets. So, given a domain ordering over
P , say 〈F(P),v,⊥〉, we name a function of the form

f : F(P) 7→ F(P) (2.3)

24 Chapter 2. Constraints

a domain function. However, all the problems in a domain ordering differ at most
in their domains. Therefore, it is natural to regard a domain function as defined
on the domains of F(P); i.e., if we introduce the family of domains

D(P) := {D′ : there exists P ′ ∈ F(P) such that P ′ := 〈X,D′,C〉}

and restrict the ordering v on F(P) to the domains in D(P), then we can equiv-
alently regard a function as in (2.3) as a function of the form

f : D(P) 7→ D(P)

on the structure 〈D(P),v,D〉, in which D is the domain set of P . Notice that
D is the bottom of such orderings.

Example 2.5.5. Consider the problem P in Example 2.5.4. The domain order-
ing on P only contains problems that have the same constraints as P , and differ in
their domains. Thus problems whose domains contain 0 or 1; problems that have
some or all domains empty. The domain ordering on P contains all such prob-
lems. A domain function is σ(x1;x1, x2) defined as follows on the domain family
D(P) of P : if B := B1, B2, B3 is in D(P), then σ(x1;x1, x2)(B) has domains B′

1,
B′

2 and B′
3 defined as follows:

B′
1 := Π1(C(x1, x2) ∩B1 ×B2),

B′
2 := B2,

B′
3 := B3.

The set B′ is still in the domain ordering of P , hence σ(x1;x1, x2) is a domain
function. Analogously, functions of the form σ(xi;xi, xj) and σ(xj;xi, xj) can
be defined for each pair of the problem variables xi and xj such that i < j.
Such functions return in Section 4.2, where they are used to characterise certain
algorithms for CSPs.

Constraint orderings

Algorithms for CSPs such as those in Section 4.3 (the so-called path consistency
algorithms) do not modify domains, but alter constraints. These algorithms usu-
ally require to first complete the input CSP (see Definition 2.4.8).

Thus, consider a CSP P := 〈X,D,C〉 with n variables, and the closure P↑
of P . Let F(P) be a subfamily of P↑, and assume that all the problems in F(P)
are k complete, for k ≤ n, and differ at most in their constraint sets: i.e.,

if P ′ := 〈X,D′,C ′〉 ∈ F(P), then P ′ = P̄ ′
k and D′ = D. (2.4)

Then, if P̄k belongs to F(P), the structure

〈F(P),v, P̄k〉 (2.5)

is a k-constraint ordering over P . Notice that P̄k is the bottom of such orderings.

2.5. Combining and Comparing Problems 25

Example 2.5.6. Consider the problem in Example 2.5.4. All 2-constraint or-
derings will contain P̄2, that is the problem that has the same scheme, domain
and constraints as P , plus the additional constraint C(x1, x3) equal to the whole
set {0, 1}2. Those constraint orderings will differ for the binary constraints, that
must be subsets of those of P̄2. An example is the 2-constraint ordering that only
contain P̄2 and the problem whose constraints are all equal to {(0, 1)}.

Suppose that all the problems in a subfamily F(P) of P↑ are strongly k complete
and differ at most in their constraints: i.e.,

if P ′ := 〈X,D′,C ′〉 ∈ F(P), then P ′ = P̄ ′ s
k and D′ = D. (2.6)

If the strong k completion of P , namely P̄ s
k , belongs to F(P), then the structure

〈F(P),v, P̄ s
k 〉 (2.7)

is a strong k-constraint ordering over P . Clearly, P s
k is the bottom of such order-

ings.

Example 2.5.7. Let us consider Example 2.5.6. Every strong 2-constraint or-
dering will contain P̄ s

2 , namely the problem that is as P̄2 in Example 2.5.6, and
has in addition the unary constraints on x1, x2 and x3, all equal to {0, 1}. An in-
stance of a strong 2-constraint ordering is given by the family of problems P̄ s

2 and
P ′, which is defined as follows: P ′ only differs from P̄ s

2 in its unary constraints,
which are all equal to the empty set.

Suppose that a family F(P) contains all the k complete problems that satisfy the
property (2.4). In this case, 〈F(P),v, P̄k〉 is called the k-constraint ordering on
P . If F(P) contains all the strongly k complete problems that satisfy (2.6), then
we refer to the structure 〈F(P),v, P̄ s

k 〉 as the strong k-constraint ordering on P .
Domain orderings are useful to characterise some functions for certain CSP al-

gorithms, and so are constraint orderings. Thus, given a constraint ordering (2.5)
or (2.7), we name a function of the form

f : F(P) 7→ F(P) (2.8)

a constraint function. Since all the problems in a constraint ordering (2.5) or (2.7)
differ at most in their constraints, we can redefine a constraint function as a
function on the constraint set C of the constraint ordering (2.5) or (2.7). In fact,
if we introduce the family of constraint sets

C(P) := {C ′ : there exists P ′ ∈ F(P) such that P ′ := 〈X,D,C ′〉}

and restrict the ordering v on F(P) to the constraint sets in C(P), then we can
equivalently regard a function as in (2.8) as a function of the form

f : C(P) 7→ C(P)

on the structure 〈C(P),v,C〉. Notice that C is the bottom of such orderings.

26 Chapter 2. Constraints

Example 2.5.8. A constraint function on the 2-constraint ordering in Exam-
ple 2.5.6 is the function σ(x1, x2;x3) defined as follows. Consider the constraint
set B := B(x1, x2), B(x2, x3), B(x1, x3) in C(P); then σ(x1, x2;x3)(B) has con-
straints B′

1(x1, x2), B
′
2(x2, x3) and B′

3(x1, x3) defined as

B′(x1, x2) := B(x1, x2) ∩ Πx1,x2(B(x1, x2) 1 B(x2, x3)),

B′(x2, x3) := B(x2, x3),

B′(x1, x3) := B(x1, x3).

Thus σ(x1, x2;x3)(B) is still in the 2-constraint ordering on P , hence σ(x1, x2;x3)
is a constraint function. Analogously, functions like σ(xi, xj;xk) can be defined
for each pairwise distinct i < j and k, from 1 to 3. These functions return in
Section 4.3, where they are used to characterise certain algorithms for CSPs.

2.6 Conclusions

In this chapter, CSPs are introduced: these are shown to generalise a number
of well-known problems, such as map colourability, n-SAT, temporal and spatial
reasoning, scheduling and planning problems. In general, the task of finding
a solution to these problems is intractable. In the CSP community, a number
of approximate algorithms were devised for removing inconsistencies from the
solution search space of CSPs; these algorithms are used before the search for
solutions, or to this alternated.

In the following chapter, we present a simple theory to describe and analyse
all those algorithms, and we put it at work in Chapters 4 and 5.

Chapter 3

A Schema of Function Iterations

3.1 Introduction

3.1.1 Motivations

In the remainder of the first part of our thesis, we shall gradually zoom on con-
straint propagation. Under this name gathers a number of mainly polynomial-
time algorithms; each of these iteratively remove certain inconsistencies from
CSPs, thereby attempting to limit the combinatorial explosion of the solution
search space. More interestingly, all these algorithms avoid backtracking: at each
iteration, a constraint propagation algorithm may remove values from CSPs, but
never add them back in subsequent iterations.

Constraint propagation algorithms are known in the literature under other
various names: filtering, narrowing, local consistency (which is, for some au-
thors, a more specific notion), constraint enforcing, constraint inference, Waltz
algorithms, incomplete constraint solvers, reasoners. However, here and in the
remainder of this thesis, we adopt the most popular name, and always refer to
them as constraint propagation algorithms.

In [Apt00a], the author states that “the attempts of finding general principles
behind the constraint propagation algorithms repeatedly reoccur in the literature
on constraint satisfaction problems spanning the last twenty years”.

On a larger scale, the search for general principles is a common drive, shared
by theoretical scientists of diverse disciplines: a series of methods to solve certain
problems are devised; in turn, at a certain stage, this process calls for a uniform
and general view if a common pattern can be envisaged. For instance, think
of polynomial equations. Until the fifteenth century, algebra was a mere collec-
tion of stratagems for solving only numerical equations; these were expressed in
words, and the account of the various solving methods was, sometimes, pure liter-
ature∗. It was Viète in his Opera Arithmetica (1646) to introduce the use of vowels

∗Cf. “La ‘grande arte’: l’algebra nel Rinascimento”, U. Bottazzini, in Storia della scienza

27

28 Chapter 3. A Schema of Function Iterations

for unknown values; this simplified notation paved the way to a general theory
of polynomial equations and solving methods, no more restricted to numerical
equations.

In this chapter, we propose a simple theory for describing constraint propaga-
tion algorithms by means of function iterations; the aim is to give a more general
view on constraint propagation, based on functions and their iterations. It is
well known that partial functions can be used for the semantics of deterministic
programs; for instance, see [Jon97, LP81, Pap94]. The primary objective of our
theorisation thus becomes that of tackling the following issues:

• abstracting which functions perform the task of pruning or propagation of
inconsistencies in constraint propagation algorithms,

• describing and analysing how the pruning and propagation process is carried
through by constraint propagation algorithms.

In this chapter, we mainly focus on the latter item, that is on how functions
remove certain inconsistencies from CSPs and propagate the effects of this prun-
ing. The basic theory, proposed in this chapter, will provide a uniform reading of
a number of constraint propagation algorithms. Then, in Chapter 6, only after
describing and analysing those algorithms in Chapters 4 and 5 via that theory,
we specify which functions are traced in their study.

3.1.2 Outline

The topic of this chapter is a basic theory of iterations of functions for constraint
propagation algorithms.

We first characterise iterations of functions (see Section 3.2) and then in-
troduce the basic algorithm schema that iterates them by following a certain
strategy (see Section 3.3). Thus, in the remainder of this chapter, we investi-
gate some properties of the proposed algorithm schema by studying those of the
iterated functions and the iterations themselves, see Section 3.4. For example,
idempotency of functions will be related to fruitless loops, in terms of pruning,
that can be thereby cut off. In turn, this property of functions will be traced
in some specific constraint propagation algorithms in which it is used to avoid
redundant computations, see Chapter 4.

On the one hand, the proposed algorithm schema is sufficient for describing
many constraint propagation algorithms in terms of functions on a generic set,
see Subsection 3.3.1, or on an equivalent set, see Subsection 3.4.3. On the other
hand, a partial order on the function domain provides a sharper tool for analysing
and studying the behaviour of these algorithms, loosely speaking. More precisely,
a partial order on the function domain gives us a means to partially order the

moderna e contemporanea, vol. I, TEA.

3.2. Iterations of Functions 29

possible computations of algorithms, see Subsection 3.3.2. Thereby, by means of
the domain order, we can pose and answer the following sort of questions about
the behaviour of constraint propagation algorithms.

• Can the order of constraint propagation affect the result?

• Or is the output problem independent of the specific order in which con-
straint propagation is performed (see Theorem 3.3.8)?

• Do constraint propagation algorithms always terminate?

• Or what is sufficient to guarantee their termination (see Theorem 3.3.9 and
Corollary 3.3.10)?

In all the analysed cases in Chapter 4, functions for constraint propagation al-
gorithms turn out to be inflationary with respect to a suitable partial order on
their domain, see p. 32. This property of functions also accounts for the absence
of backtracking in constraint propagation algorithms: pruning of values is never
resumed, since every execution of a constraint propagation algorithm always pro-
ceeds along an order.

Other properties of functions, related to the order, can be further used to
prune branches from the algorithm search tree; we shall study this issue in Sub-
section 3.4.2. For instance, a property that we call stationarity will be introduced
as a stronger form of idempotency; hence functions that enjoy it need to occur at
most once in any execution of the algorithm schema.

3.1.3 Structure

First, we introduce iterations of functions in Section 3.2, and the basic schema
to iterate them in Section 3.3. Variations of the basic schema, along with the
related properties of functions, are treated in details in Section 3.4. Finally, we
summarise and discuss the results of this chapter in Section 3.5.

3.2 Iterations of Functions

Given a finite set F of functions f : O 7→ O over a set O, we define a sequence
〈on : n ∈ N〉 with values in O as follows:

1. o0 := ⊥, where ⊥ is a selected element of O;

2. on+1 := f(on), for some f ∈ F .

Each sequence 〈on : n ∈ N〉 is called an iteration of F functions (based on ⊥).
An iteration of F functions 〈on : n ∈ N〉 stabilises at on if on+k = on for every
k ≥ 0.

30 Chapter 3. A Schema of Function Iterations

In this chapter, we shall mainly be concerned with iterations of F functions
that stabilise at some specific points: in fact, we shall be interested in iterations
that stabilise at a common fixpoint of all the functions: namely, an element o ∈ O
such that

f(o) = o for all f ∈ F .

Indeed, it is not sufficient for an iteration to stabilise at o for this to be a common
fixpoint of all the F functions, as the following simple example illustrates.

Example 3.2.1. Consider O := {0, 1, 2} and the set F with the following two
functions:

f(0) := 0, f(1) := 2 and f(2) := 2,

g(0) := 1, g(1) := 1 and g(2) := 2.

Now, consider the iteration 〈on : n ∈ N〉 based on 0 such that on+1 := f(on) for
every n ∈ N. Indeed, the iteration stabilises at 0; but this is not a fixpoint of g
since g(0) 6= 0.

In the above Example 3.2.1, the function g is never selected. Would it be sufficient
to choose g after f to guarantee that o is a common fixpoint of the F functions?
Certainly not: define first o1 := f(o0) = 0, then oj+1 := g(oj) for j > 0. This
iteration stabilises at 1 and not at 2, which is the only common fixpoint of the
two functions f and g. We can repeat the above trick infinitely many times, one
for every k > 0: in fact, it is sufficient to set oi+1 = f(oi) for 0 ≤ i < k, and
oj+1 := g(oj) for j ≥ k; still the resulting iteration stabilises at 1. How can we
remedy this? The answer is given below, by the algorithm schema in Section 3.3:
this is designed to compute a common fixpoint of finitely many functions.

3.3 The Basic Iteration Schema

The Structured Generic Iteration algorithm, briefly SGI, is a slightly more general
version of the Generic Iteration algorithm of [Apt00a]. Both of them aim at
computing a common fixpoint of finitely many functions, simply by iterating
them until such a fixpoint is computed. The SGI algorithm is more general in
that its first execution can start with a subset of all the given functions; then
these are introduced, only if necessary, in subsequent iterations. So SGI covers
more algorithms than the Generic Iteration algorithm does.

The SGI algorithm is displayed as Algorithm 3.3.1. Its parameters are char-
acterised as follows.

Convention 3.3.1 (SGI).

• F is a finite set of functions, all defined on the same set O;

3.3. The Basic Iteration Schema 31

• ⊥ is an element of O;

• F⊥ is a subset of F that enjoys the following property: every F function f
such that f(⊥) 6= ⊥ belongs to F⊥;

• G is a subset of F functions;

• update instantiates G to a subset of F .'

&

$

%

Algorithm 3.3.1: SGI(⊥, F⊥, F)

o := ⊥;
G := F⊥;
while G 6= ∅ do
choose g ∈ G;
G := G− {g} ;
o′ := g(o);
if o′ 6= o then
G := G ∪ update(G,F, g, o);
o := o′

As we shall see below, the update operator returns a subset of F according to the
functions in G, the current O value o and F function g; its computation can be
expensive, unless some information on the chosen function g and input value o
is provided that can help to compute the F functions returned by update, as we
shall see in Chapter 4. Besides, in the SGI schema below, the function g is chosen
non deterministically; no strategy for choosing g is imposed in this schema; but
this is done on purpose, since SGI aims at being a general template for a number
of CSP algorithms. Indeed, the complexity of the algorithm will vary according to
the way in which the update operator will be specified and the function g chosen.

3.3.1 The basic theory of SGI

The SGI algorithm is devised to compute a common fixpoint of the F functions:
i.e., an element o ∈ O such that f(o) = o for every f ∈ F . Suppose that the
following predicate

∀ f ∈ F −G f(o) = o (Inv)

is an invariant of the while loop of the SGI algorithm. If o is the last input of
a terminating execution of SGI, then G is the empty set and the predicate Inv
above implies that o is a common fixpoint of all the F functions. We restate this
as the following fact, which is used over and over in the remainder of this chapter.

32 Chapter 3. A Schema of Function Iterations

Fact 3.3.1 (common fixpoint). Suppose that the above predicate Inv is an
invariant of the while loop of SGI. If o is the last input of a terminating execu-
tion of SGI, then o is a common fixpoint of the F functions. 2

Common fixpoint

The Common Fixpoint Fact 3.3.1 above suggests a simple, yet sufficient condition
for SGI to compute a common fixpoint of the F functions: after an iteration of
the while loop, we only need to keep, in G, the functions for which the input
value of the while loop is not a fixpoint. As for this, it is sufficient that the
update operator in SGI satisfies the following axiom.

Axiom 3.3.1 (common fixpoint). Let o′ := g(o) for g ∈ F , and Id(g, o′) :=
{g} if g(o′) 6= o′, else Id(g, o′) is the empty set. If o′ 6= o, then

update(G,F, g, o) ⊇ {f ∈ (F −G) : f(o) = o and f(o′) 6= o′} ∪ Id(g, o′);

otherwise update(G,F, g, o) is the empty set.

In other words, the update operator adds to G a least all the F functions, not
already in G, for which o is a fixpoint and the new value o′ is not; besides, g has
to be added back to G if g(o′) 6= o′.

Lemma 3.3.2 (invariance). Let us assume the Common Fixpoint Axiom 3.3.1.
Then the Inv predicate on p. 31 is an invariant of the while loop of SGI.

Proof. The base step follows from the definition of F⊥ (see Convention 3.3.1
above), and the induction step is easily proved by means of the Common Fix-
point Axiom 3.3.1. 2

The above Common Fixpoint Fact 3.3.1 and Invariance Lemma 3.3.2 immediately
imply the following theorem.

Theorem 3.3.3 (common fixpoint). Let us assume the Common Fixpoint Ax-
iom 3.3.1. If o is the last input of a terminating execution of the SGI algorithm,
then o is a common fixpoint of all the F functions. 2

Example 3.3.4. Let us consider Example 3.2.1 as input to SGI so that ⊥ := 0
and F⊥ := {g}. In the first while loop, only g can be chosen and applied; so,
after the loop, v is set equal to 1. In the same loop, update adds f to G and
leaves g in G. So, at the end of the first loop, G = {f, g} and o = 1. Then, if
f is chosen and applied to 1, o is set equal to 2 and G to the empty set at the
end of the fourth loop. So SGI terminates by computing 2, a common fixpoint of

3.3. The Basic Iteration Schema 33

the two functions. Instead, if g is chosen again in the second loop, then it is also
removed and only f can be chosen in the third loop; so the computation of SGI
terminates with 2 at the end of the fourth loop. Notice that, given Axiom 3.3.1,
there are three different executions of the SGI algorithm with f and g.

SGI iterations

We started this chapter with generic iterations of functions, and provided a
schema that computes a common fixpoint of finitely many functions. Hereby
we show how function iterations and the SGI schema are related. First of all, let
us denote by id the identity function on the domain of the iterated functions of
F ; indeed all the common fixpoints of the F functions are, trivially, fixpoint of id.
Then every execution of SGI gives rise to an iteration of the F ∪ {id} functions.
To explain how, we first introduce traces of SGI executions.

Consider an execution of the SGI algorithm — see Algorithm 3.3.1. The SGI

trace 〈(on, Gn) : n ∈ N〉 of the execution is defined as follows:

• o0 := ⊥, G0 := F⊥;

• suppose that on and Gn are the input of the n-th while loop of SGI. If Gn

is the empty set, then on+1 := id(on) and Gn+1 := ∅. Otherwise, let g be the
chosen function and set on+1 equal to g(on). Then we define Gn+1 as the set
Gn ∪ update(Gn, F, o, on) if on+1 6= on, otherwise as the set Gn − {g}.

Then 〈on : n ∈ N〉 is an SGI iteration of the F functions.

Example 3.3.5. Let us revisit Example 3.3.4. There we have the following three
SGI traces:

1. 〈(0, {g}), (1, {f, g}), (2, {f, g}), (2, {f}), (2, ∅), . . .〉;

2. 〈(0, {g}), (1, {f, g}), (2, {f, g}), (2, {g}), (2, ∅), . . .〉;

3. 〈(0, {g}), (1, {f, g}), (1, {f}), (2, {f}), (2, ∅), . . .〉.

The first two traces give rise to the same SGI iteration 〈0, 1, 2, . . .〉; whereas the
SGI iteration in the third item is 〈0, 1, 1, 2, . . .〉.

Traces provide another tool to formulate and study properties of SGI, like
termination. We shall say that the trace 〈(on, Gn) : n ∈ N〉 stabilises at ok iff the
iteration 〈on : n ∈ N〉 does so and Gk = ∅. Now, the termination condition for
the while loop in SGI is that G must be empty; the last input o of a terminating
execution of SGI is the value computed by SGI. Hence it is easy to check that the
following statements are equivalent:

1. the SGI algorithm terminates by computing o;

34 Chapter 3. A Schema of Function Iterations

2. the SGI trace stabilises at ok = o.

We reformulate this equivalence as the following fact, as it will allow us to switch
from executions of SGI to traces, and vice versa, when dealing with the termina-
tion of SGI.

Fact 3.3.6. An execution of the SGI algorithm terminates by computing o iff the
associated trace stabilises at o. 2

3.3.2 Ordering Iterations

Suppose that we can define a partial order v over the set O. Then this can be
used to order iterations.

Least common fixpoint

Suppose that the F functions are monotone with respect to a partial order v on
O; namely, for every f ∈ F ,

o v o′ implies f(o) v f(o′).

Then we can prove that the common fixpoints of the F functions, as computed
by SGI, coincide with the least fixpoint of the F functions. So let us assume the
following statement.

Axiom 3.3.2 (least fixpoint).
(i). The structure 〈O,v,⊥〉 is a partial ordering with bottom ⊥ ∈ O.
(ii). The F functions are all monotone with respect to v.

Given the above axiom, we have the following lemma as in [Apt00a].

Lemma 3.3.7 (stabilisation). Assume the Common Fixpoint Axiom 3.3.1 and
the Least Fixpoint Axiom 3.3.2. Consider a fixpoint w of the F functions. Let
〈oi : i ∈ N〉 be a generic iteration of F that satisfies the following properties:

• o0 := ⊥;

• oi+1 := g(oi), for some g ∈ F .

Then oi v w, for every f ∈ F and oi in the iteration 〈oi : i ∈ N〉.

Proof. The proof is by induction on i ∈ N. The base case is trivial since ⊥ is
the bottom of the ordering. As for the induction step, let us assume that oi v w.
Thus, we invoke monotonicity (see Axiom 3.3.2) and obtain oi+1 := g(oi) v w. 2

The above lemma shows how a partial ordering can be used to compare com-
putations of SGI with functions on the ordering, and highlights the role of mono-
tonicity in the following result, which follows from the lemma and Theorem 3.3.3.

3.3. The Basic Iteration Schema 35

Theorem 3.3.8 (least fixpoint). Let F be a finite set of functions over O,
and assume the Common Fixpoint Axiom 3.3.1 and the Least Fixpoint Axiom 3.3.2.
Then all the terminating executions of SGI compute the same value: i.e., the least
common fixpoint of all the F functions with respect to the partial order on O. 2

Termination

From this point onwards, let us write o @ o′ whenever o v o′ and o 6= o′. A
@-chain in O is any subset of O, that is totally ordered by @.

In order to ensure the termination of SGI, for any input, we must ascertain
that every SGI iteration stabilises. If all the F functions are computable, every
SGI iteration is totally ordered by v, and all @-chains are finite, then we can
guarantee termination. The following axiom formalises these ideas.

Axiom 3.3.3 (termination).
◦ Each f ∈ F is a computable function over a partial ordering with bottom

O := 〈O,v,⊥〉.
◦ The F functions are inflationary with respect to the partial order: namely,

o v f(o) for every o ∈ O and f ∈ F .
◦ The ordering 〈O,v〉 satisfies the ascending chain condition (ACC), i.e. each

@-chain in O is finite.

Now, given the above axiom, we can prove the following termination result.

Theorem 3.3.9 (termination 1). Assume the Common Fixpoint Axiom 3.3.1
and the Termination Axiom 3.3.3. Then SGI always terminates, by computing a
common fixpoint of the F function.

Proof. At each iteration of the while loop, either o @ o′ — due to inflationarity,
see Axiom 3.3.3 — or g is removed from G. Axiom 3.3.3 yields that all @-chains
are finite; since G ⊆ F is finite too, the algorithm terminates. 2

Notice that every finite partial ordering satisfies the ACC in Axiom 3.3.3; more-
over, every function on a finite set is computable. Thus we draw the following
conclusion as a corollary of Theorem 3.3.9.

Corollary 3.3.10 (termination 2). Let us assume the Common Fixpoint Ax-
iom 3.3.1 and that the F functions are defined on a finite partial ordering with
bottom 〈O,v,⊥〉. Suppose that the F functions are inflationary with respect to
v. Then every execution of SGI terminates. 2

Note 3.3.11. Many algorithms for CSPs deal with finite domains. Whenever
those algorithms are instances of SGI, the above Corollary 3.3.10 will ensure that

36 Chapter 3. A Schema of Function Iterations

a simple condition on the iterated functions is sufficient to guarantee the termi-
nation of the instance algorithms. However, functions for non-standard CSPs as
in Chapter 5, often, have infinite domains; then Corollary 3.3.10 will not be of
help, and we shall need to resort to the above Theorem 3.3.9.

3.3.3 Finale

The main results concerning the basic SGI algorithm schema are collected in the
following corollary; this gathers Theorems 3.3.3, 3.3.8, 3.3.9 and Corollary 3.3.10.
Figure 3.3.3 depicts a search tree of SGI, under the assumptions of either one of
the statements in the following corollary.

Corollary 3.3.12.
(i). Assume the Common Fixpoint Axiom 3.3.1, the Least Fixpoint Axiom 3.3.2
and the Termination Axiom 3.3.3. Then every execution of SGI terminates by
computing the least common fixpoint o of the iterated functions.
(ii). Assume the Common Fixpoint Axiom 3.3.1 and that the F functions are
defined on a finite partial ordering with bottom 〈O,v,⊥〉. Suppose that the F
functions are all monotone and inflationary with respect to v. Then every exe-
cution of SGI terminates by computing the least common fixpoint o of the iterated
functions. 2

'

&

$

%

⊥

��
���

����

HH
HHH

HHHH

...

�
��

H
HH

...
�� HH

o ...

o

o

...

���
HHH

...

o

...
�� HH
...

o

o

...
�� HH
...

o

o

Figure 3.1: SGI search tree.

3.4. Variations of the Basic Schema 37

3.4 Variations of the Basic Schema

3.4.1 The Generic Iteration Schema

We started Section 3.3 by claiming that SGI is a slightly more general version of
the Generic Iteration (GI) algorithm of [Apt00a]. We shall also need to refer to
the latter schema in Chapter 4, and hence we explain it in more details as below.

The difference between the two basic schemas is that the set of functions G in
GI is initialised to the whole set of functions F : i.e., F⊥ is the whole set F . There-
fore, we have the following results for GI as a consequence of Corollary 3.3.12.

Theorem 3.4.1.
(i). Assume the Common Fixpoint Axiom 3.3.1, the Least Fixpoint Axiom 3.3.2
and the Termination Axiom 3.3.3. Then GI always terminates by computing the
least common fixpoint of the iterated functions.
(ii). Assume the Common Fixpoint Axiom 3.3.1 on update and that the F func-
tions are defined on a finite partial ordering with bottom 〈O,v,⊥〉. Suppose that
the F functions are monotone and inflationary with respect to v. Then GI always
terminates, computing the least common fixpoint of the iterated functions. 2

3.4.2 Iterations Modulo Function Properties

The GI algorithm is a variation of SGI in that G is differently initialised. Other
variations of the basic schema SGI are obtained by optimising the instantiation
of G in the while loop via update: in SGI, all the functions for which the new
computed value o′ = g(o) is not a fixpoint are added to G. Indeed, more functions
are added to G, more executions of the while loop are needed. In the following,
we study some properties of functions that allow us to reduce the number of
executions of the while loop by an efficient instantiation of G via update. Each
property is studied separately and gives rise to a different version of the SGI

schema; all these or their combinations will be used in Chapter 4.

Idempotent functions

Notice that the chosen function g is removed from the set G of iterated functions
in SGI if the test gg(o) = g(o) returns true. This is always true, independently of
the specific value o, if g is idempotent, as specified below.

Definition 3.4.2. A function g : O 7→ O is idempotent if gg(o) = g(o) for every
o ∈ O.

38 Chapter 3. A Schema of Function Iterations

As suggested above, an idempotent function can always be removed after being
chosen. The following diagram shows what happens otherwise.

// o // g(o) // gg(o)

=

y�

So any iteration as above can be equivalently reduced to one in which the second
application of g is removed, if this function is idempotent; i.e., Id(g, o′), as in the
Common Fixpoint Algorithm refaxiom:sgi:1, is always set to the empty set for
g idempotent. The following lemma is an immediate consequence of that axiom
and Definition 3.4.2 above.

Lemma 3.4.3 (idempotency). Consider a finite set F of idempotent functions
on O. Then

update(G,F, g, o) ⊇ G ∪ {f ∈ F −G : f(o) = o and f(o′) 6= o′}

satisfies the Common Fixpoint Axiom 3.3.1. 2

Let us call SGII the version of SGI with the update operator as in Lemma 3.4.3,
where the second I stands in for Idempotent. Then the following theorem is a
trivial consequence of that lemma and Corollary 3.3.12.

Theorem 3.4.4.
(i). Assume the Least Fixpoint Axiom 3.3.2 and the Termination Axiom 3.3.3.
Then every execution of SGII terminates by computing the least common fixpoint
of the iterated functions, if these are all idempotent.
(ii). Assume that the F functions are defined on a finite partial ordering with
bottom 〈O,v,⊥〉. Suppose that the F functions are all monotone and inflationary
with respect to v. Then every execution of SGII terminates, computing the least
common fixpoint of the iterated functions, if these are all idempotent. 2

Commutative functions

Commutativity of an operation is a useful property in computations: it means
that the operation provides the same result regardless of permutations of the
combined elements. Function composition is not, in general, a commutative op-
eration. However there are classes of functions on which composition is commu-
tative; thereby the order in which these functions are composed is irrelevant. The
following definition aims at capturing precisely this, and it is a special case of the
notion of centraliser of an element with respect to a given operation, like in group
theory; see for instance [Her75].

3.4. Variations of the Basic Schema 39

Definition 3.4.5. Let F be a set of functions over a set O, consider a function
g : O 7→ O, and the subset Comm(F, g) of F of all functions f such that

fg(o) = gf(o), for all o ∈ O.

Then the set Comm(F, g) is the set of F functions that commute with g.

As stated and proved in [Apt00a], commutativity can be exploited to reduce
executions in the GI algorithm. This carries over to the SGI schema in the same
manner.

Lemma 3.4.6. If the update operator satisfies the Common Fixpoint Axiom 3.3.1,
then so does update(G,F, g, o)− Comm(F, g).

Proof. Suppose that fg(o) = gf(o); then f(o) = o implies gf(o) = g(o); thus
update− Comm satisfies the Common Fixpoint Axiom 3.3.1 if update does. 2

Let us rename SGI with Commutativity, briefly SGIC, the SGI algorithm with
update−Comm in place of update. The above Lemma 3.4.6 allows us to transfer,
to SGIC, all the results concerning SGI as summarised in Corollary 3.3.12.

Theorem 3.4.7.
(i). Assume Assume the Common Fixpoint Axiom 3.3.1, the Least Fixpoint Ax-
iom 3.3.2 and the Termination Axiom 3.3.3. Then SGIC always terminates by
computing the least common fixpoint of the iterated functions.
(ii). Assume the Common Fixpoint Axiom 3.3.1 on update and that the F func-
tions are defined on a finite partial ordering with bottom 〈O,v,⊥〉. Suppose that
the F functions are all monotone and inflationary with respect to v. Then SGIC

always terminates, computing the least common fixpoint of the iterated functions.
2

Stationary functions

While the properties of idempotency and commutativity do not rely on any partial
order on the given set O, the following property does.

Definition 3.4.8. Let f be an inflationary function, defined over a partial or-
dering 〈O,v〉. Then the function f is stationary from o ∈ O and o′ if it enjoys
the following property:

if f(o) 6= o, o v o′ and f(o′) @ o′′ then f(o′′) = o′′.

More in general, an inflationary function f is stationary if there exist o, o′ ∈ O
such that f is stationary from them.

40 Chapter 3. A Schema of Function Iterations

In other words: consider a totally ordered iteration and suppose that a stationary
function f is known to affect a value o in it; after the first application of f to o or
a subsequent value o′ in the iteration, f does not change any value that follows in
the iteration. The following diagram shows schematically what happens whenever
a stationary function f is applied again, after f modifies a value in the iteration.

f(o)
6=

#+// o //

v

>Fo
′ //

v

=E
f(o′) //

@

=Eo
′′ // f(o′′)

=

}�

In brief, the iteration in the above diagram can equivalently be reduced to one in
which the second application of f is removed, if this function is stationary. The
below lemma states precisely that stationary functions can be added at most once
to G, namely the set of functions to iterate.

In order to formulate the lemma properly, we resort to traces and state the
following axiom.

Axiom 3.4.1 (stationarity).
(i). The F functions are all stationary on 〈O,v,⊥〉 and, if f ∈ F⊥ and f(⊥) = ⊥,
then f is the identity on O.
(ii). If 〈(on, Gn) : n ∈ N〉 is the trace of an execution of SGI, Gn denotes the set
of G functions at the n-th while loop of SGI; then put

update(Gn, F, g, on) :=

{
f ∈ F−

⋃
k≤n

Gk : f(on) = on, f(on+1) 6= on+1

}
;

this for every n.

Now we can formulate the following Stationarity Lemma: there we assume that
the F functions are idempotent, since this simplifies the proof, even tough the
extension to the non-idempotent case is possible.

Lemma 3.4.9 (stationarity). Assume the Stationarity Axiom 3.4.1 and that
all the F functions are idempotent. Then update satisfies the Common Fixpoint
Axiom 3.3.1.

Proof. We only need to prove that, if f ∈
⋃
k<nGk and f 6∈ Gn, then f(on+1) =

on+1. If f ∈ F⊥ and f(⊥) = ⊥, then f(on+1) = on+1 by Axiom 3.4.1. Else, there
must be oi in the iteration such that i < n and f(oi) 6= oi, due to Axiom 3.4.1
again. Since f 6∈ Gn, then there exists i ≤ j < n and oj in the iteration such that
oj+1 = f(oj). Therefore, inflationarity yields the following:

oi v oj and f(oj) = oj+1 v on @ on+1.

3.4. Variations of the Basic Schema 41

Thus we can conclude that oi 6= f(oi), oi v oj and f(oj) @ on+1 hold. Then
Definition 3.4.8 yields f(on+1) = on+1. 2

In Chapter 4, we make an extensive use of the variation of the SGI algorithm
with stationary and idempotent functions. So we rewrite SGI with Stationary
and Idempotent functions as the SGIIS Algorithm 3.4.1.

'

&

$

%

Algorithm 3.4.1: SGIIS(⊥, F⊥, F)

v := ⊥;
G := ∅;
while F⊥ 6= ∅ do
choose g ∈ F⊥;
F⊥ := F⊥ − {g} ;
o′ := g(o);
if o′ 6= o then
G := G ∪ update(G,F, g, o);
F := F − update(G,F, g, o);
o := o′;

while G 6= ∅ do
choose g ∈ G;
G := G− {g} ;
o′ := g(o);
if o′ 6= o then
G := G ∪ update(G,F, g, o);
F := F − update(G,F, g, o);
o := o′;

The Stationarity Lemma 3.4.9 and the Idempotency Lemma 3.4.3 allow us
to transfer, to SGIIS, all the results concerning SGI as summarised in Corol-
lary 3.3.12.

Theorem 3.4.10.
(i). Assume the Stationarity Axiom 3.4.1, the Least Fixpoint Axiom 3.3.2 and the
Termination Axiom 3.3.3. Then every execution of SGIS terminates by computing
the least common fixpoint of the iterated functions.
(ii). Assume the Stationarity Axiom 3.4.1, the Least Fixpoint Axiom 3.3.2, and
that the F functions are defined on a finite partial ordering with bottom 〈O,v,⊥〉.
Then every execution of SGIS terminates by computing the least common fixpoint
of the iterated functions. 2

42 Chapter 3. A Schema of Function Iterations

3.4.3 Iterations Modulo Equivalence

The SGI algorithm with Equivalence (SGIE) is SGI with functions defined on an
equivalence structure 〈V,≡〉, and such that the if conditional depends on the
equivalence of the input and output values, and not necessarily their identity;
see Algorithm 3.4.2. Like for SGI, the update operator selects and returns func-
tions of F . Thus this algorithm iterates functions from a set F until a value v is
found for which gV (v) ≡ v. Indeed, if the equivalence relation ≡ collapses into
the identity, we have the SGI algorithm back.

'

&

$

%

Algorithm 3.4.2: SGIE(⊥,≡, F⊥, F)

v := ⊥V ;
GV := F V

⊥V ;
while GV 6= ∅ do
choose gV ∈ GV ;
GV := GV −

{
gV

}
;

v′ := gV (v);
if v′ 6≡ v then GV := GV ∪ update(F V , gV , v);
v := v′;

Note 3.4.11. We let update(F V , gV , v) be an unspecified subset of G. In fact,
in the case of the SGIE algorithm schema, the update operator varies according to
the instance CSP algorithms. However, as for the results in this part, we do not
need to assume anything more of update that it is returns a subset of F functions.

SGIE iterations

As in the case of SGI, we associate SGIE traces with executions of an SGIE al-
gorithm. Again, notice that the identity function idV on V does not affect any
value in any computation of SGIE; i.e., idV (v) ≡ v for every v ∈ V .

The SGIE traces 〈(vn, GV
n) : n ∈ N〉 of executions of the SGIE algorithm are

defined like the SGI traces:

• v0 := ⊥V , GV
0 := F V

⊥ ;

• suppose that vn and GV
n are the input of the n-th while loop of SGIE. If GV

n

is the empty set, then vn+1 := vn and GV
n+1 := ∅. Otherwise, let gV be the

chosen function and set vn+1 equal to gV (vn). Then the set GV
n+1 is defined

as GV
n −

{
gV

}
∪ update(F V , GV

n , g
V , vn) if vn+1 6≡ vn, otherwise as the set

GV
n −

{
gV

}
.

3.4. Variations of the Basic Schema 43

The iteration 〈vn : n ∈ N〉 is called an SGIE iteration of SGIE.
As in the case of SGI, traces are useful to formulate and study termination

conditions on SGIE. So we shall say that the SGIE trace stabilises at vn if the
iteration 〈vn : n ∈ N〉 does so and GV

n = ∅. The following equivalence will be
useful in the below part.

Fact 3.4.12. An iteration of an SGIE algorithm terminates by computing v iff
the associated trace stabilises at v. 2

The least ≡-class and termination

Suppose that we can devise a partial order v on a quotient set O isomorphic to
V/≡, such that 〈O,v,⊥O〉 turns out to be a partial ordering with bottom. Then
we can try to transfer the analysis and results concerning SGI, over the partial
ordering 〈O,v,⊥O〉, to SGIE over the equivalence structure 〈V,≡〉.

Let F V and FO be, respectively, a finite set of functions over V and O. Con-
sider a bijective map f : FO 7→ F V that maps the identity of FO to the identity
function of F V . Let us denote

fV := f(fO),

for each fO ∈ FO. Now, suppose that an SGIE trace 〈(vn, GV
n) : n ∈ N〉 of F V

functions can be associated with an SGI trace 〈(on, GO
n) : n ∈ N〉 of FO functions

via f, and that such traces enjoy the following property:

1. v0 ∈ o0;

2. for every n ≥ 0, if vn+1 = fV (vn) for fV ∈ GV
n then on+1 = fO(on) for

fO ∈ GO
n , and the following property holds:

there exists m ≥ n+ 1 such that vm ∈ om.

Then the two traces 〈(vn, GV
n) : n ∈ N〉 and 〈(on, GO

n) : n ∈ N〉 are called
≡-equivalent via f.

The characterisation of ≡-equivalence, via a function f, is sufficient to obtain
the following result.

Lemma 3.4.13. Consider an SGI trace o := 〈on : n ∈ N〉 and an ≡-equivalent
SGIE trace v := 〈vn : n ∈ N〉.

• The trace v stabilises at a value v ∈ V if the trace o does so at a value
o ∈ O;

• furthermore, the value o ∈ O (where O is isomorphic to V/≡) corresponds
to the ≡-class of v.

44 Chapter 3. A Schema of Function Iterations

Proof. Suppose that 〈on : n ∈ N〉 stabilises at on. Then GO
n = ∅, hence GV

n is
empty due to the definition of equivalent traces above. Then vn ∈ on follows from
the above definition. Therefore 〈(vn, GV

n) : n ∈ N〉 stabilises at vn ∈ on. 2

The following definition extends the notion of ≡-equivalence between traces to an
analogous between algorithm executions.

Definition 3.4.14. If there exists a map f such that every SGIE trace with
F V is ≡-equivalent to an SGI trace with FO via f, then SGIE with F V is called
≡-equivalent to SGI with FO.

The following theorem is a consequence of Facts 3.3.6 and 3.4.12, and the above
Lemma 3.4.13.

Theorem 3.4.15. Suppose that every execution of SGI terminates by comput-
ing the least common fixpoint o of the FO functions. If SGIE with F V functions
over 〈V,≡〉 is ≡-equivalent to SGI, then every execution of SGIE terminates by
computing ≡-equivalent values; i.e. values v in the ≡-class that corresponds to o.2

Theorem 3.4.15 above implies that we can study instances of the SGIE schema
— that takes in input a set V with an equivalence relation — if we can provide,
for them, equivalent instances of the SGI algorithm schema:

1. we devise a partial ordering with bottom on a set O, isomorphic to the
quotient set V/≡;

2. then we check whether the given instance of SGIE on V is ≡-equivalent to
an instance of SGI on O, with suitable functions on O;

3. if this equivalence holds, then Theorem 3.4.15 implies that, if SGI termi-
nates by always computing the same value, then SGIE terminates by always
computing values which belong to the same equivalence class.

These transfer results, summarised as in the below corollary, are consequences of
Theorem 3.4.15, and Corollary 3.3.12 for SGI.

Corollary 3.4.16. Consider an instance of SGI with FO functions on a finite
partial ordering O := 〈O,v,⊥O〉. Let SGIE be instantiated with F V functions on
an equivalence structure V/≡ that is isomorphic to O. Furthermore, suppose that
this instance of SGIE is ≡-equivalent to the instance of SGI with the FO functions
on the partial ordering O. Thus we have the following results:

• if the FO functions are inflationary, then every execution of SGIE with the
F V functions on V terminates;

3.5. Conclusions 45

• if the FO functions are also monotone, then every execution of SGIE with
the F V functions and V terminates, by computing values which are all in
the ≡-class of the least common fixpoint of the FO functions. 2

Variations of SGIE

All versions of SGI can be modified similarly and so generate a corresponding
version of SGIE. However, in Chapter 4, we only deal with the following variations
of SGIE:

◦ the GI algorithm (see Subsection 3.4.1) with equivalence, namely GIE;

◦ the SGIIS algorithm (see Algorithm 3.4.1) with equivalence, denoted by
SGIISE.

All these algorithms share the same parameters, which are specified as follows:

• an equivalence structure, namely a set V and an equivalence binary relation
≡ on it;

• ⊥V , an element of V ;

• a finite set F V of functions fV : V 7→ V ;

• a subset F V
⊥ of F V that contains every F V function fV for which fV (⊥) 6≡ ⊥;

• the update operator that selects and returns a subset of F functions.

The definitions and results given above for SGIE are easily extended to the cases
of GIE and SGIISE. We leave the task to fill in the details to the reader.

3.5 Conclusions

3.5.1 Synopsis

This chapter presents a basic algorithm schema, SGI, and some of its variations.
The SGI schema iteratively applies functions until a common fixpoint of theirs is
found: the Common Fixpoint Axiom 3.3.1 provides a sufficient property for this,
and characterises the basic strategy of SGI. Then Axioms 3.3.1 and 3.3.2 state
sufficient properties for SGI to find the least common fixpoint of the functions and
terminate, respectively. Notice that all those properties are encountered in most
constraint propagation algorithms, see Chapter 4 below; there, the SGI schema or
its variations are used as“templates”to explain and differentiate those algorithms.

Variations of the basic schema are thus studied in Section 3.4: they are differ-
entiated in terms of update and properties of functions; these differences account

46 Chapter 3. A Schema of Function Iterations

for different strategies of the algorithms in Chapter 4. Besides, some of those al-
gorithms use additional support structures, so to speak: i.e., they remove values
from the given CSP domains or constraints by storing information in other struc-
tures. In those cases the SGIE, namely SGI on an set equipped with an equivalence
relation, proves useful: first the algorithms are instantiated to SGIE; then the ad-
ditional structures are “scraped away” through the adopted equivalence relation,
so that SGI can be used to analyse those algorithms too. These instances of SGI
iterate functions that only remove values from domains or constraints, and do it
in a monotone and inflationary manner; thus we are able to transfer the results
obtained for SGI instances to SGIE instances.

Some of the main variations of SGI and SGIE are summarised in the following
table that contains in each cell, from left to right:

• a variation of SGI or SGIE;

• the related properties of functions;

• where the related update operator is characterised;

• where a variation is applied in Chapter 4, which deals with constraint prop-
agation algorithms for CSPs — these are introduced in Chapter 2.

SGI & SGIE Properties The update Where in
Variations of Functions Operator Chapter 4

SGIIS idempotency, Idempotency Lemma 3.4.3, (H)AC-4,
SGIISE stationarity Stationarity Lemma 3.4.9 (H)AC-5,

PC-4

GI Common Fixpoint (H)AC-1,
Axiom 3.3.1 PC-1,

RC(i,m)

GIC commutativity Commutativity Lemma 3.4.6 AC-3

PC-2

GIIS idempotency, Idempotency Lemma 3.4.3, KC

GIISE stationarity Stationarity Lemma 3.4.9

Chapter 5 concerns itself with non-standard CSPs that allow to obtain optimal
partial solutions, according to certain criteria: the original algorithm schema for
constraint propagation is extended via SGI. In Chapter 2 and Sections 5.4, 5.5 of
Chapter 5, we also apply the results of the present chapter as displayed in the
following table: this shows how properties of functions or update are correlated
to properties of algorithms in both Chapters 2 and 5.

3.5. Conclusions 47

Properties Properties Where in Where in
of update of Algorithms Chapter 4 Chapter 5

or Functions

Common partial correctness Corollaries 4.2.4, Corollary 5.4.4
Fixpoint 4.2.6, 4.2.12, 4.2.15,

Axiom 3.3.1 4.2.16, 4.3.5, 4.3.7,
4.3.12, 4.4.7, 4.5.4

Monotonicity confluence as above Corollaries 5.4.5
Axiom 3.3.2 and 5.4.6
Inflationarity termination as above Corollaries 5.4.7,
Axiom 3.3.2 5.4.14 and 5.4.15

3.5.2 Discussion

Using a single framework for presenting constraint propagation algorithms makes
it easier to verify and compare these algorithms. Again from a theoretical view-
point, this approach allows us to separate the properties that concur in the def-
inition of a constraint propagation algorithm: e.g., inflationarity is related to
termination and absence of backtracking; monotonicity to confluence; station-
arity, commutativity and idempotence explain optimised strategies for various
constraint propagation algorithms. Preserving equivalence is another important
property of those algorithms: in such a general setting, we cannot tackle it, since
we study functions on “generic” sets, i.e., not on CSPs. Nonetheless, in Chap-
ter 4, it is always easy to prove, by means of the adopted functions, that constraint
propagation algorithms maintain equivalence.

From an applicative viewpoint, this approach allows us to parallelise constraint
propagation algorithms in a simple and uniform way and result in a general frame-
work for distributed constraint propagation algorithms; see [Mon00]. This shows
that constraint propagation can be viewed as the coordination of cooperative
agents. Additionally, such a general framework facilitates the combination of
these algorithms, a property often referred to as solver cooperation or combi-
nation. Finally, the generic iteration algorithm SGI and its specializations can
be used as a template for deriving specific constraint propagation algorithms in
which specific scheduling strategies are employed.

Chapter 4

Constraint Propagation Algorithms

4.1 Introduction

4.1.1 Motivations

In general, satisfying a constraint problem means computing a solution to it.
CSPs can be so satisfied by a generate-and-test procedure: each possible combi-
nation of assignments is generated and tested against the given constraints. More
refined strategies rely on the backtracking method: variables are instantiated
sequentially; when a partial assignment is found inconsistent with a constraint,
backtracking is performed to the last instantiated variable and, if possible, an-
other value gets assigned to it. There are several variations of this basic form
of backtracking, for instance see [Bac01, KvB97]. However, the run-time per-
formance of backtracking is in general exponential for most CSPs, see [Kum92].
In [KvB97], the authors propose a theoretical comparison of backtracking algo-
rithms for CSPs, based on a graph representation of these and on the number of
visited nodes and edges.

What emerges from the analysis of the basic backtracking algorithm is that
the reason for its poor performance is due to “trashing”: search keeps failing on
the same type of subspace of the solution search space. Constraint propagation
algorithms attempt to tackle this problem in various ways. For instance, con-
straint propagation algorithms, known as arc consistency algorithms, prune a
CSP’s domains from values that are inconsistent with the binary constraints of
the CSP. Others, known as path consistency algorithms, prune inconsistent values
from binary constraints of CSPs.

4.1.2 Outline

In this chapter, we present various algorithms for constraint propagation, and
make use of the SGI schema (see Chapter 3) to explain these algorithms: by

49

50 Chapter 4. Constraint Propagation Algorithms

representing them as instances of SGI or one of its variations; by analysing them,
applying the theoretical results studied in Chapter 3.

Instantiation. Every time we need to represent an algorithm as an instance of
SGI, we need to specify for SGI:

• an appropriate set,

• functions and a suitable partial order on the function domain, or on an
equivalent set (see Subsection 3.4.3),

• the update operator, which is in charge of returning the necessary functions
to iterate in SGI.

Analysis. Thus the general results obtained for SGI and its variations are used
to analyse constraint propagation algorithms. For instance, inflationarity of func-
tions is related to termination of algorithms and the absence of backtracking.
Stationarity (see Definition 3.4.8) explain why some algorithms do not repeat the
same kind of pruning. But these are still too general statements; let us try to
specialise and clarify them in the context of the algorithms in this chapter.

Classification. Constraint propagation algorithms differentiate for the way and
the type of pruning they perform on CSPs: i.e., in the terminology of Chapter 3,
they correspond to different domain functions (see p. 23) or constraint functions
(see p. 24). Thus a first broad classification separates constraint propagation algo-
rithms according to this criterion; the sections of the present chapter correspond
to the different constraint propagation classes that so emerge.

Section 4.2 is dedicated to the so-called arc and hyper-arc consistency algo-
rithms; the SGI schema of Chapter 3 explains how those algorithms remove values
from domains, and how the effects of the removals are propagated. In Section 4.3,
we describe and study the so-called path consistency algorithms by means of SGI;
the analysis there conducted also highlights how inconsistencies, at the level of
binary constraints, are inferred and propagated along a 2-constraint ordering on
the problem (see Subsection 2.5.2). Sections 4.4 and 4.5 deal with generalisa-
tions of the above algorithm classes; again, the SGI schema is sufficiently general
to cover also these cases, and explain how pruning is performed (via functions)
and propagation of inconsistencies is carried over (in particular, via the update
operator).

Separation. A further, subtler analysis detects how each algorithm of a given
class enforces and reaches its level of consistency, and so differentiates such an
algorithm from the others that pertain to the same class. For instance, in Sec-
tion 4.2, we describe and analyse in total four arc consistency algorithms; their

4.2. Arc and Hyper-arc Consistency 51

differences are easily grasped via the common language and framework of SGI
function iterations (see Chapter 3). In fact, when these algorithms are shown to
be all instances of the SGI schema, their differences can be explained in terms of
diverse function iterations: e.g., through the use of diverse functions; through the
use of some properties of functions like commutativity (see Definition 3.4.5), or
stationarity (see Definition 3.4.8).

4.1.3 Structure

Section 4.2 is concerned with arc consistency and its generalisation, namely hyper-
arc consistency. Then path consistency is described and studied in Section 4.3.
We present an algorithm for k-consistency and discuss it in Section 4.4, and finally
relational consistency in Section 4.5. This chapter is concluded by a summary
table, see Section 4.6.

4.2 Arc and Hyper-arc Consistency

In this section, we deal with constraint propagation algorithms that only modifies
domains of CSPs. We begin by introducing these notions, and then show how
various algorithms for enforcing them can be recast in the framework of SGI.

First of all, let us introduce the main of those CSP properties that we deal
with in this section: i.e., hyper-arc consistency as defined by Mohr and Masini,
see [MM88].

Definition 4.2.1. Consider a CSP P := 〈X,D,C〉 and a constraint C(s) of C.
Then the constraint C(s) is hyper-arc consistent if the following condition is met:

for every xi ∈ s and a ∈ Di there exists d ∈ C(s) such that a = d [i] .

We call the CSP P hyper-arc consistent iff all its constraints are hyper-arc con-
sistent.

In other words: a CSP is hyper-arc consistent if, for each variable xi of the prob-
lem, each value in Di (the xi domain) is part of each constraint of the problem
that involves xi. For instance, the map colourability problem in Subsec-
tion 2.3.1 is not hyper-arc consistent: in fact, the value cyan for x1 is forbidden
by the constraint (arc) on x1 and x2.

The better known notion of arc consistency of [Mac97] is obtained by restrict-
ing the above definition to the case of CSPs with only binary constraints; as in the
case of the aforementioned map colourability problem. Hence, that notion
can be recast as follows: a binary constraint C(xi, xj) is arc consistent if

for every a ∈ Di there exists b ∈ Dj such that (a, b) ∈ C(xi, xj),

for every b ∈ Dj there exists a ∈ Di such that (a, b) ∈ C(xi, xj).

52 Chapter 4. Constraint Propagation Algorithms

A CSP with only binary constraints is arc consistent if all of its constraints are.

Example 4.2.2. The map colourability problem Pmap of Subsection 2.3.1
is not arc consistent, hence hyper-arc consistent. In fact, if we choose the variable
x1 and look up for its values in D1, we see that cyan is forbidden by the constraint
on x1 and x2; also blue is forbidden by the constraint on x1 and x3. Therefore,
an arc consistency algorithm will remove the value cyan and blue from D1, so
obtaining a new CSP, with the same scheme and constraints as Pmap, and domain
D1 := {aqua}. No value will be removed from the domain of x2, since cyan is not
forbidden by any constraints that involves x2. On the contrary, the value cyan
for x3 will be removed from the domain of x3 because of the constraint on x2 and
x3. Therefore, the obtained CSP, on x1, x2, x3, has the same constraints as the
map colourability problem Pmap but domains which are subsets of the Pmap

ones: i.e., D1 = {aqua}, D2 = {cyan}, D3 = {blue}.

4.2.1 The Basic Arc and Hyper-arc Consistency Algo-
rithms

In this part, we describe and study the basic arc and hyper-arc consistency algo-
rithms. First we introduce the basic algorithm for hyper-arc consistency, namely
HAC-1, of which the one for arc consistency, namely AC-1, represents a special
case. Then we show how GI can be instantiated to HAC-1, hence to AC-1. Finally
we infer some properties concerning those basic algorithms by studying their GI

instances.

The HAC-1 and AC-1 algorithms

The basic hyper-arc consistency algorithm HAC-1 enforces hyper-arc consistency
by choosing a variable domain and iteratively enforcing hyper-arc consistency on
this; AC-1 is like HAC-1 but it enforces arc consistency, i.e., only binary constraints
are taken in consideration. In what follows, we first instantiate GI to both HAC-1

and AC-1, and then analyse these via the correlated instantiations of GI.

Instantiation

To prove that the algorithm HAC-1 for hyper-arc consistency is an instance of the
GI algorithm, we need to specify, in the order, the following components:

1. a partial ordering with bottom;

2. a finite set of functions over the partial ordering;

3. the update operator.

4.2. Arc and Hyper-arc Consistency 53

Partial ordering with bottom. Consider a CSP P := 〈X,D,C〉. As partial
ordering for HAC-1, we adopt the domain ordering on P , written as

〈D(P),v,D〉,

and partially ordered by the reverse of the subset relation, see Subsection 2.5.2.
Therefore, given two domain sets B := B1, . . . , Bn and B′ := B1, . . . , Bn of prob-
lems in the domain ordering, we have

B v B′ iff Bi ⊇ B′
i for every i = 1, . . . , n.

Remember that the input domain D is the bottom of such a domain ordering.

Functions. We associate a function σ(xi; s) to each domain Di in D, and con-
straint C(s) of the given input problem P such that xi ∈ s. Then we define the
function σ(xi; s) as follows over the domain ordering: if B is a domain set in D(P),
then B′ := σ(xi; s)(B) differs from B at most in the domain B′

i of xi, this being

B′
i := Πi(C(s) ∩B [s]).

So B′ is always greater than B with respect to v, the domain order. Therefore
each such function σ(xi; s) is trivially inflationary and monotone with respect to
v. Moreover, all these functions are idempotent, since intersection and projection
are.

By taking into account only the binary constraints we obtain an analogous
characterisation of arc consistency. The partial ordering is still the domain or-
dering but now on a binary CSP; see also Subsection 2.5.2. Then we associate
two functions, σ(xi;xi, xj) and σ(xj;xi, xj), with, respectively, the domain Di and
Dj, for each problem constraint C(xi, xj) of the input problem. Thereby we de-
fine such functions over D(P) as follows, where B is a domain set in the domain
ordering on P :

• B′ := σ(xi;xi, xj)(B) differs from B at most in the domain B′
i on xi, since

B′
i := Πi(C(xi, xj) ∩ Bi ×Bj);

• B′ := σ(xj;xi, xj)(B) differs from B at most in the domain B′
j on xj, since

B′
j := Πj(C(xi, xj) ∩ Bi ×Bj).

Update. The update operator for HAC-1 is characterised as follows:

update(G,F, σ(xi; s), B) := F −G.

Clearly, the above characterisation of update satisfies Axiom 3.3.1. Indeed, it
is not an optimal instantiation of update in terms of space and executions of

54 Chapter 4. Constraint Propagation Algorithms

the main while loop of GI. We shall see that the HAC-3 algorithm has a better
instantiation of the update operator, and hence that algorithm does not suffer
from these drawbacks of HAC-1.

A similar characterisation of update can be given for AC-1, and we leave it to
the reader.

Analysis

The use of the above defined functions is clarified by the following lemma, which
also sums up the relevant properties of the σ(xi; s) functions.

Lemma 4.2.3.
(i) A CSP P := 〈X,D,C〉 is hyper arc consistent iff D is a common fixpoint
of all the functions of the form σ(xi; s), hence the last one with respect to the
domain order on P .
(ii) Each function σ(xi; s) is idempotent, monotone and inflationary with respect
to the order of the domain ordering on P . 2

Fix now a CSP P . By instantiating the GII algorithm with the above defined
functions σ(xi; s), we get the basic arc consistency algorithm AC-1. So we can
prove that this algorithm enjoys the following properties as a consequence of the
theoretical results for SGII, hence for GII — see Theorem 3.4.4.

Corollary 4.2.4 (HAC-1 and AC-1). Consider a finite CSP P := 〈X,D,C〉.

• Assume that P is not binary. Then the hyper-arc consistency algorithm
HAC-1 on P terminates by computing the greatest hyper-arc consistent prob-
lem that is equivalent to P ; that is the least common fixpoint of the σ(xi; s)
functions, defined as above.

• Suppose that P is binary. Then the arc consistency algorithm AC-1 on P
always terminates by computing the greatest arc consistent problem that is
equivalent to P ; that is the least common fixpoint of the σ(xi;xi, xj) and
σ(xj;xi, xj) functions, defined as above.

Proof. We only need to observe that each σ(xi; s) function preserves equivalence
and then apply the results of Theorem 3.4.4. As for the equivalence, it is sufficient
to notice that projection does not remove solutions from a CSP; therefore, neither
its composition with intersection does. 2

4.2. Arc and Hyper-arc Consistency 55

4.2.2 The HAC-3 and AC-3 Algorithms

In the HAC-1 algorithm, each function σ(xi; s) is associated with a variable do-
main Di and a constraint C(s) on a scheme to which the variable belong; each
time σ(xi; s) is applied and modifies its arguments, all functions of type σ that
are associated with a constraint involving the variable xi are added to the set
G of functions to iterate. In this section we show how this information about
the commutativity can be exploited to add less projection functions of the form
σ(xi; s) to the set G. What follows was devised in [Apt00a].

Recall that, in Definition 3.4.5, we introduced the notion of commutativity
between two functions, f and g, on the same domain O as follows:

fg(o) = gf(o) for all o ∈ O.

First, it is worthwhile to note that not all pairs of HAC-1 functions commute.
In general, functions like σ(xi;xi, xj) and σ(xk;xi, xk) do not need to commute;
see [Apt00a] for an example of this phenomenon.

The following lemma clarifies which of the above functions commute.

Lemma 4.2.5 (Commutativity). Consider a CSP P and a constraint C(s) of
P on the scheme s.

• For xi, xj ∈ s the functions σ(xi; s) and σ(xj; s) commute.

• If C ′(t) is a constraint of P on a scheme t and the variable xi occurs in
both schemes s and t, then σ(xi; s) and σ(xi; t) commute.

Proof. We only sketch how the first claim is proved, and refer the reader to
[Apt00a] for a full proof.

Consider σ(xi; s) and σ(xj; s), for i 6= j. Let B be a domain set in the domain
ordering of the given problem. The former function can only modify Bi, the do-
main of xi; whereas the latter function can only modify Bj, the domain of xj.
Both functions do it by looking up for d in C(s) such that d ∈ B [s]. Whenever
d ∈ B [s] and d 6∈ C(s), σ(xi; s) and σ(xj; s) remove the projections of d from
Bi and Bj, respectively. Instead, if d ∈ C(s), neither d [i] nor d [j] are removed
from Bi and Bj by σ(xi; s) and σ(xj; s), respectively. Therefore these functions
commute. 2

Fix now a CSP. We derive a modification of the hyper-arc consistency algo-
rithm HAC-1 from Subsection 4.2.1 by instantiating, this time, the GIC algorithm
schema, see Subsection 3.4.1 and Theorem 3.4.7. We use the same set of functions
σ(xi; s) as for HAC-1. Additionally we employ the functional Comm (see Defini-
tion 3.4.5) that, given a function σ(xi; s) from F , returns the set of functions that
σ(xi; s) commute with:

Comm(σ(xi; s), F) := {σ(xj; s), σ(xi; t) : xj ∈ s and xi is in s and t} .

56 Chapter 4. Constraint Propagation Algorithms

By virtue of the Commutativity Lemma 4.2.5 each set Comm(σ(xi; s), F) satisfies
the assumptions of Lemma 3.4.6.

By limiting oneself to the set of functions σ(xi;xi, xj) and σ(xj;xi, xj) asso-
ciated with the binary constraints, we obtain an analogous modification of the
corresponding arc consistency algorithm. Using now the commutative version
GIIC of GII, we conclude that the AC-3 algorithm enjoys the same properties as
the AC-1 algorithm. A more general conclusion holds for HAC-1 and the instanti-
ation of GIIC with the above functions σ(xi; s).

We can now state that the HAC-3 and AC-3 algorithms enjoy the following
properties, which are immediate consequences of the Commutativity Lemma 4.2.5
and the theoretical results for SGIIC, hence for GIIC: i.e., Theorems 3.4.4 and 3.4.7.

Corollary 4.2.6 (HAC-3 and AC-3). Consider a finite CSP P := 〈X,D,C〉.

• Assume that P is not binary. Thus the hyper-arc consistency algorithm
HAC-3 on P , namely GIIC with the above defined σ(xi; s) functions, always
terminates by computing the greatest hyper-arc consistent problem that is
equivalent to P .

• Suppose that P is binary. The arc consistency algorithm AC-3 is an instance
of GIIC on P with the above defined σ(xi;xi, xj) and σ(xj;xi, xj) functions.
Thus it always terminates by computing the greatest arc consistent problem
that is equivalent to P . 2

The difference between (H)AC-3 and (H)AC-1 relates to the different specifica-
tions of the update operator. As a consequence of this, the former will gain in
execution time.

4.2.3 The HAC-4 and AC-4 Algorithms

In this part, we describe and study the HAC-4 algorithm of [MM88] via the SGIISE
— see p. 42 — and SGIIS algorithms — see p. 41. First we introduce the original
algorithm; then we display the necessary set and functions for the algorithm HAC-4

to become an instance of SGIISE; finally, we infer properties of HAC-4 by studying
an equivalent SGIIS instance.

The AC-4 algorithm is HAC-4 for binary constraints. We limit ourselves to the
description and analysis of HAC-4, since AC-4 is a specialisation of HAC-4. For
a detailed analysis of AC-4 via iterations of functions, we invite the reader to
consult [Gen00].

Notice that the HAC-4 and AC-4 algorithms assume the input CSP to be nor-
malised, i.e. to have at most one constraint on each scheme; see Subsection 2.4.1.
Otherwise, the CSP is first normalised, and then propagation takes place on its
normalisation.

4.2. Arc and Hyper-arc Consistency 57

The original algorithm

The HAC-4 algorithm enforces hyper-arc consistency by first constructing a set of
elements, called G, that do not participate in any consistent instantiation for any
of the input problem constraints. Then the propagation phase is carried on as in
Algorithm A.4, see Appendix A.

In the initial phase of HAC-4, a construction of structures and an initial pruning
take place. Each a ∈ Di, for every variable domain xi of the problem, is checked:
i.e., for each constraint problem C(s) such that xi ∈ s, only all d ∈ C(s) for which
d [xi] = a holds are stored in C(xi, a; s). If one of the C(xi, a; s) is empty, then a
is removed from Di and the pair (xi, a) is added to G.

In the HAC-4 algorithm propagation phase (see Algorithm A.4, Appendix A),
a pair (xi, a) is non-deterministically chosen from G and the effects of the removal
of a from Di are propagated through all C(xj, b; s).

Instantiation

Since we want to instantiate SGISE to HAC-4, we are in need to define what follows:

• an equivalence set;

• suitable functions;

• the update operator.

Equivalence set. Assume that P := 〈X,D,C〉 is a CSP with n variables. Thus
consider subsets of the form C(xi, a; s) of each input constraint C(s), i.e., one for
each xi ∈ s and a ∈ Di. Denote with CHAC−4 a set of relations and sequences,
defined as follows: create a sequence of the form 〈xi, a, s〉, for each xi, a ∈ Di and
scheme s of X; then CHAC−4 collects all pairs of the form 〈C(s), (xi, a, s)〉. We
usually denote each such pair as C(xi, a; s).

For instance, if C(s) = C(x1, x2) and D1 = {a} and D2 = {a, b}, then we have
three “copies” of C(s): C(x1, a; s), C(x2, a; s), C(x2, b; s).

Given CHAC−4, we can finally define CHAC−4 as follows:

• CHAC−4 belongs to CHAC−4;

• if E belongs to CHAC−4, then E collects pairs of the form E(xi, a; s) :=
〈E(s), 〈xi, a; s〉〉, where E(s) ⊆ C(s), and 〈xi, a; s〉 is specified as for C(xi, a; s).
There is precisely one E(xi, a; s) in E, for each C(xi, a; s) in CHAC−4.

Given CHAC−4 as above, we define the equivalence structure 〈PHAC−4,≡HAC−4〉 as
follows:

• its elements are subsets of tuples 〈B,E〉 in which: B is a domain set in the
domain ordering on P (see Subsection 2.5.2); whereas E is in CHAC−4;

58 Chapter 4. Constraint Propagation Algorithms

• the equivalence relation 〈B,E〉 ≡HAC−4 〈B′, E ′〉 holds iff B = B′;

• the input element ⊥HAC−4 is set equal to the pair 〈D, CHAC−4〉.

Indeed, the binary relation ≡HAC−4 is an equivalence relation, since it is reflexive,
symmetric and transitive.

We introduce the functions over PHAC−4 that we shall use to instantiate SGISE

to HAC-4 as below.

Functions. In the following, we define two types of functions for HAC-4: one
type is used for the first while loop, the other type is for the second while loop.

• Let us define a function θ(xi, a; s) for each input domain problem Di and
element a ∈ Di. Such function is the identity everywhere except, possibly,
on each E(xi, a; s) and Bi:[

E ′(xi, a; s) := seli=aC(xi, a; s),
B′
i := Bi − ({a} − Πi(E

′(xi, a; s))),

where seli=a selects all the tuples d in C(xi, a; s) such that d [i] = a. In
words: E(xi, a; s) is mapped into its subset E ′(xi, a; s) of all d ∈ C(xi, a; s)
— that is equal to C(s) — the i-th component of which is a. Then B′

i differs
in a from Bi if E ′(xi, a; s) turns out to be empty.

• We define a function φ(xi, a; s), for each C(xi, a; s). If a ∈ Bi, then φ(xi, a; s)
is the identity. Otherwise it is the identity everywhere except on each cur-
rent domain Bj and current E(xj, b; s), for all xj ∈ s different from i and
b ∈ Dj, that are mapped to B′

j and E ′(xj, b; s), respectively, as follows:[
E ′(xj, b; s) := E(xj, b; s)− E(xi, a; s);
B′
j := Bj −

⋃
b∈Dj

Πj(E(xj, b; s)− E ′(xj, b; s)).

So, whereas θ(xi, a; s) prunes the value a from the current domain Bi if it
has no supports in C(s), the function φ(xi, a; s) takes care of propagating
the effects of the removal of a from its domain. So φ(xi, a; s) visits each set
E(xj, b; s), for xj ∈ s different from xi and b ∈ Bj; it removes the tuples in
which a occurs from the supports of b, thus determines whether b should be
removed.

Note 4.2.7. Observe that all the functions of type φ as described in the latter
item are the identity on the input problem: in fact, for each φ = φ(xi, a; s), the
element a belongs to Di, the input domain of xi, by definition of φ(xi, a; s). So the
only functions that can modify the input problem are the θ functions defined in
the former item. Besides, the θ functions that do not modify the input problem
collapse into the identity function.

4.2. Arc and Hyper-arc Consistency 59

The update operator. We characterise the update operator as follows.

• If θ(xi, a; s)(B,E) 6≡ 〈B,E〉, then update(G,F, θ(xi, a; s), P)) is the set of
functions φ(xi, a; t) from (F − F⊥)−G.

• Similarly, if φ(xi, a; s)(B,E) 6≡ 〈B,E〉, then the set update(G,F, φ(xi, a; s))
only contains all the functions φ(xj, b; t) of (F − F⊥) − G that satisfy the
following conditions: xj ∈ s, j 6= i, b ∈ Bj −B′

j.

The following result is trivial, hence we state it as a fact.

Fact 4.2.8. The HAC algorithm is an instance of the SGIISE with the above de-
fined equivalence set and functions. 2

Analysis

Now, we also set up to study SGIISE, once this is instantiated with the above
set and functions. As for that, we need some technical lemmas; they are useful
to prove that each SGIISE trace with θ and φ functions over the equivalence set
PHAC−4 can be mapped into an ≡HAC−4-equivalent SGIIS trace over PHAC−4/ ≡HAC−4,
and that this computes the greatest hyper-arc consistent problem that is equiva-
lent to the input problem.

We start considering the following functions that are then iterated by SGIIS.
These functions are defined on the domain ordering of P , see Subsection 2.5.2:

• Θ(xi, a; s) is the identity on each Bj with j 6= i, whereas it maps Bi to
B′
i := Bi − ({a} − Πi(C(s)));

• Φ(xi, a; s) is the identity on Bk with k = i or k 6∈ s; whereas it maps every
other Bj to B′

j := Bj−Ej, where Ej is the set of all b ∈ Bj that enjoy both
the following properties:[

∃d ∈ C(s) such that d [i] = a and d [j] = b,
∀d′ ∈ B(s) ∩ C(s) d′ [j] 6= b.

The update operator is characterised like in Lemmas 3.4.3 and 3.4.9:

• if Θ(xi, a; s)(B) = B, then update(G,F,Θ(xi, a; s), P) is the empty set;
otherwise update(G,F,Θ(xi, a, s), P)) is the set of functions Φ(xi, a; t) from
the set (F − F⊥)−G;

• similarly, if Φ(xi, a; s)(B) = B, then update(G,F,Φ(xi, a; s), P) is the empty
set. If that is not the case, then the set update(G,F,Φ(xi, a; s) only con-
tains all the functions Φ(xj, b; t) of (F − F⊥)−G that satisfy the following
conditions: xj ∈ s, j 6= i, b ∈ Bj −B′

j.

60 Chapter 4. Constraint Propagation Algorithms

Clearly, the following statement holds, and it is proved as Lemma 4.2.3.

Lemma 4.2.9.
(i) A CSP P := 〈X,D,C〉 is hyper-arc consistent iff D is a common fixpoint of
all functions of type Θ and Φ, hence the last one with respect to the domain order
on P .
(ii) Each function of type Θ and Φ is stationary, monotone and inflationary with
respect to the domain order on the input problem; besides, if a Θ function is the
identity on the input problem, then it is the identity function. 2

At this point, we need to prove the following two lemmas, concerning executions
of SGIIS with the φ and θ functions, before we can state our main equivalence
results.

Lemma 4.2.10. Consider a CSP P and the associated PHAC−4 equivalence set.
Let F⊥ be the set of all the θ functions as above. Suppose that B and E are
the current input in an execution of the second while loop. Then we have the
following:

• if d ∈ E(xi, a; s) then d [i] = a;

• if φ(xj, b; s) ∈ G then b 6∈ Bj;

• if φ(xi, a; s) is the chosen function and d ∈ E(xj, b; s) − E(xi, a; s), then
d [i] 6= a or b 6∈ Bj.

Proof. The first item relies on the definition of θ(xi, a; s) and update. Similarly,
the statement in the second item follows from the definition of θ(xj, b; s) and
update.

As for the last item, observe that every d ∈ E(xj, b; s) belongs to C(s). If
d [i] = a then the fact that d 6∈ E(xi, a; s) is not due to θ(xi, a; s) but to some
function of the form φ(xk, c; s). If k 6= j, then d cannot belong to E(xj, b; s) ei-
ther, due to the same function φ(xk, c; s). Hence d [i] 6= a. Finally, if k = j, then
b = d [j] = c, hence φ(xk, c; s) is equal to φ(xj, b; s). Thus the second item yields
that b 6∈ Bj. 2

Given the above lemma, it is easy to conclude the following one concerning the
equivalence of the SGIISE algorithm, with θ and φ functions, and SGIIS with Θ
and Φ functions.

Lemma 4.2.11. The SGIISE algorithm with PHAC−4, θ and φ functions is ≡HAC−4-
equivalent to SGIIS with PHAC−4/ ≡HAC−4, Θ and Φ functions.

4.2. Arc and Hyper-arc Consistency 61

Proof. Consider an execution of the SGIISE algorithm with input Θ, Φ functions
and ⊥ := D; notice that the domain of functions is isomorphic to PHAC−4/ ≡HAC−4.
Then the equivalence of the iterations with θ and Θ functions is obvious. On the
other hand, the equivalence of executions with φ and Φ functions follows from
Lemma 4.2.10 and the above definition of update. In fact, if a 6∈ Bi, then[

E ′(xj, b; s) := E(xj, b; s)− E(xi, a; s),
B′
j := Bj −

⋃
b∈Dj

Πj(E(xj, b; s)− E ′(xj, b; s)),

and Lemma 4.2.10 entails B′ = Φ(B). A similar argument proves the opposite
implication. 2

Therefore, we get the following result concerning HAC-4 and its specialisation
AC-4 to binary CSPs.

Corollary 4.2.12 (HAC-4 and AC-4).
(i). Every execution of the HAC-4 algorithm terminates by computing the least
fixpoint of the above defined Θ and Φ functions; i.e., the greatest hyper-arc con-
sistent problem equivalent to the input one.
(ii). Every execution of the AC-4 algorithm terminates by computing the least
fixpoint of the above defined Θ and Φ functions on binary constraints; i.e., the
greatest arc consistent problem equivalent to the input one.

Proof. Theorem 3.4.10 and Lemma 4.2.9 imply that every execution of the
SGIIS algorithm terminates, by computing the least common fixpoint of the Θ
and Φ functions; this is the greatest hyper-arc consistent problem that is equiv-
alent to the input one, due to Lemma 4.2.9 again. Thus Lemma 4.2.11 and
Corollary 3.4.16 yield our corollary. 2

4.2.4 The HAC-5 and AC-5 Algorithms

The AC-5 algorithm of [vHDT92] is itself an algorithm schema, devised to enforce
arc consistency on binary CSPs. As AC-4, the AC-5 algorithm is split in two
main procedures: in the initial phase, a construction of structures takes place;
then the real propagation part starts, and elements that do not participate in any
consistent instantiation to some problem constraints are iteratively removed from
their respective domain.

The original algorithm

The algorithm by [vHDT92] is split into two main steps. We describe the following
version of AC-5, as proposed in [vHDT92].

62 Chapter 4. Constraint Propagation Algorithms

1. In the first step, for any constraint C(xi, xj) of the given CSP, the procedure
arc-cons creates a subset ∆(i) of Di, for each xi of the problem; the set ∆(i)
collects all the elements a ∈ Di for which no elements b exist in Dj such
that (a, b) ∈ C(xi, xj). Then, for each a ∈ ∆(i), all triples 〈(xk, xi), a〉 such
that C(xi, xj) is a constraint of the problem are stored for future iterations,
and the elements of the set ∆(i) are deleted from Di.

2. In the second step, a triple 〈(xi, xj), b〉 is non-deterministically chosen and
deleted from G; if b has been removed from Dj, then loc-arc-cons updates
the set ∆(i) ⊆ Di by adding all elements a that are no (more) supported in
C(xi, xj) by any element of Dj (after b has been removed from Dj); then,
for each a ∈ ∆(i), all triples 〈(xk, xi), a〉 such that C(xk, xi) is a constraint
of the problem are stored for future iterations, and the elements of ∆(i) are
removed from the domain Di.

As pointed out in [vHDT92], AC-5 is a generic algorithm: in fact, it can also
be instantiated to AC-4 by slightly changing the definition of the sets ∆(i). In the
latter case, the functions that we used for AC-4 are adopted. In case the definition
of ∆(i) is chosen as stated item 1 and 2 above, we need a new equivalence relation
and new functions to instantiate SGI to this version of AC-5.

Instance

In the following, we define the main ingredients to instantiate SGISE to the afore-
mentioned version of AC-5:

• an equivalence set;

• suitable functions;

• the update operator.

Equivalence set. Consider a CSP P := 〈X,D,C〉 and define PAC−5 as the set
of pairs 〈B,E〉, where B and E are both domain sets of the domain ordering on
P , see Subsection 2.5.2. Then the binary relation ≡AC−5 over PAC−5 is defined as
follows:

〈B,E〉 ≡ 〈B′, E ′〉 iff B = B′.

The element ⊥ is set equal to 〈D,D〉, where D is the input domain set. Indeed,
the above defined relation is of equivalence.

Functions. The set F contains two sorts of functions that we describe as below.

4.2. Arc and Hyper-arc Consistency 63

(θ). The function θ(xi;xi, xj) corresponds to arc consistency(xi, xj,∆i): in fact,
the function θ(xi;xi, xj) maps 〈B,E〉 into 〈B′, E ′〉 so that B and B′ and,
respectively, E and E ′ differ at most in Bi and B′

i as follows:[
E ′
i := Ei − Πi(C(xi, xj)),

B′
i := Bi − E ′

i.

The function θ(xj;xi, xj) is characterised in a similar way; we leave it to
the reader.

(φ). The function φ(xj, b;xi, xj) corresponds to the AC-5 procedure that is called
local arc consistency(xi, xj, b,∆i). In fact, if b 6∈ Bj, then φ(xj, b;xi, xj)
maps 〈B,E〉 into 〈B′, E ′〉 so that B and B′ and, respectively, E and E ′

differ at most in Bi and B′
i as follows:[

E ′
i := {a ∈ Bi : P1(a, xj, b; a;xi, xj) and P2(xj, b; a;xi, xj) hold } ,

B′
i := Bi − E ′

i,

where P1(xj, b; a;xi, xj) and P2(xj, b; a;xi, xj) are, respectively,

∃d∈C(s) (d [i] = a ∧ d [j] = b), (P1) ∀d∈C(s) ∩B(s) d [i] 6= a, (P2)

Otherwise, if b ∈ Bj, the function φ(xj, b;xi, xj) is the identity function.
The function φ(xi, a;xi, xj) is characterised in a similar manner.

The set F contains all the above defined functions. The subset F⊥ contains the
functions of type θ, which are the only F functions that can modify the input
value 〈D,D〉. So F − F⊥ contains all the remaining functions of type φ.

The update operator. The first part of the proposed version of the algo-
rithm AC-5 is encoded in the actions of inspecting and deleting all functions
like θ(xi;xi, xj) or θ(xj;xi, xj) from G in SGIISE; when, for instance, θ(xi;xi, xj)
is chosen and applied, the operator update propagates the effects of the eventual
reduction of Bi by adding the suitable functions φ(xj, b;xi, xj) to G. Besides we
want to instantiate SGIISE to the second part of the algorithm AC-5 by means of
the functions φ(xj, b;xi, xj) of F . Therefore we define update as follows:

• if θ(xi;xi, xj)(B,E) 6≡ 〈B,E〉, then update(G,F, θ(xi;xi, xj), 〈B,E〉) is the
subset of F −G functions φ(xi, a;xi, xk) or φ(xi, a;xk, xi) such that a ∈ E ′

i;
the function θ(xj, (xi, xj)) is characterised analogously;

• if φ(xj, b;xi, xj)(B,E) 6≡ 〈B,E〉, then update(G,F, φ(xj, b;xi, xj), 〈B,E〉) is
the subset of F −G functions φ(xi, a;xi, xk) or φ(xi, a;xk, xi) of F −G such
that a ∈ E ′

i; otherwise it is the empty set. An analogous characterisation
can be given for φ(xi, a;xi, xj).

64 Chapter 4. Constraint Propagation Algorithms

Now it is trivial to check that AC-5 becomes an instance of SGIISE by means of
the above θ and φ functions.

Fact 4.2.13. The AC-5 algorithm is an instance of SGIISE. 2

Analysis

It is as well easy to check that SGIISE with the above θ and φ functions is
≡AC−5 equivalent to SGIS with the functions Θ and Φ for AC-4, as described in
Subsection 4.2.3.

Lemma 4.2.14. The SGISE algorithm with the above θ and φ functions is ≡AC−5-
equivalent to the SGIS algorithm with the Θ and Φ functions in Subsection 4.2.3,
for binary constraints, and defined on the 2 domain ordering on P . 2

We have now all we need to prove the following results concerning AC-5.

Corollary 4.2.15 (AC-5). Given a finite CSP P , the AC-5 algorithm always
terminates by computing the greatest arc consistent problem equivalent to P ; that
is, the least common fixpoint of the functions of type Θ and Φ defined as above.

Proof. Our thesis follows from Lemma 4.2.9 and Theorem 3.4.10, concerning
the Θ and Ψ functions, via Lemma 4.2.14 and Corollary 3.4.16. 2

A hyper-arc consistency version of AC-5

By exploiting the generality of SGIISE, we can extend AC-5 to an algorithm
schema that enforces hyper-arc consistency like AC-5 enforces arc consistency.
Indeed, it is sufficient to recast the above functions θ and σ for AC-5 as follows.

(θ). The function θ(xi; s), where xi ∈ s and C(s) is a constraint of the input
problem, maps 〈B,E〉 into 〈B′, E ′〉 so that B and B′, and respectively E
and E ′ differ at most in their i-th components as follows:[

E ′
i := Ei − Πi(C(s)),

B′
i := Bi − E ′

i.

(φ). The function φ(xj, b; s) maps 〈B,E〉 into 〈B′, E ′〉 so that B and B′, and
respectively E and E ′ differ at most in their i-th components as follows, for
every xi ∈ s different from xj:[

E ′
i := {a ∈ Bi : P1(xj, b; a;xi, xj) and P2(xj, b; a;xi, xj) hold } ,

B′
i := Bi − E ′

i,

4.3. Path Consistency 65

where P1(xj, b; a;xi, xj) and P2(xj, b; a;xi, xj) are, respectively,

∃d∈C(s) (d [i] = a ∧ d [j] = b), (P1) ∀d′∈B(s) ∩ C(s) d′ [j] 6= b, (P2)

Otherwise, i.e. if b ∈ Bj, the function φ(xj, b; s) behaves like the identity
function.

As for AC-5, we can derive the following result by Theorem 3.4.10, via Lemma 4.2.9,
and Corollary 3.4.16.

Corollary 4.2.16 (HAC-5). Given a finite CSP P , the SGIIS algorithm with
the above defined functions θ and φ always terminates, by computing the greatest
hyper-arc consistent problem equivalent to P . 2

4.3 Path Consistency

The notion of path consistency was introduced in [Mon74]. It is defined for a
special type of CSPs. For simplicity we limit ourselves to binary CSPs: i.e., their
constraints are only binary.

In Subsection 2.5.1, we introduced the join operation on constraints. In case
of binary relations like R ⊆ Di×Dj and S ⊆ Dj ×Dk, the composition of R and
S, which is defined as follows

R · S := {(a, b) : (a, c) ∈ R and (c, b) ∈ S} ,

amounts to a sequential application of join and projection to R and S. Note that,
if C(xi, xj) is a constraint on the variables xi and xj, and C(xj, xk) is a constraint
on the variables xj and xk, then Πxi,xj

(C(xi, xj) ·C(xj, xk)) is a constraint on the
variables xi and xk. Whereas, if k < j, then the composition of C(xi, xj) with
C(xk, xj) is not defined; yet, their join is. This is due to the commutativity of
join, as defined in Subsection 2.5.1.

We first introduce the standard notion of path consistency, and then see how
we can recast it through the join operation. In the following definition, instead
of schemes, we have sets of variables.

Definition 4.3.1. We call a CSP P := 〈X,D,C〉 path consistent if its 2
completion P̄ 2 enjoys the following property: for each set of distinct variables
{xi, xj, xk} of P , we have

C(xi, xk) = C(xi, xk) ∩ (C(xi, xj) · C(xj, xk)).

In other words, a CSP is path consistent if, for each triple of its variables, xi, xj
and xk, the following holds: if (a, c) ∈ C(xi, xk), then there exists b ∈ Dj such
that (a, b) ∈ C(xi, xj) and (b, c) ∈ C(xj, xk).

66 Chapter 4. Constraint Propagation Algorithms

We provide an alternative characterisation of path consistency. In fact, in the
above definition, relations of the form C(x, x′) are used, for any subset {x, x′}
of the considered sequence of variables. If {x, x′} is not a scheme of the given
CSP scheme of variables, then C(x, x′) is a supplementary relation that is not
a constraint of the original CSP. At the expense of some redundancy we can
rewrite the above definition so that only the constraints of the considered CSP
are involved. This is the contents of the following characterisation, whose proof
follows from the definition of join, projection, intersection and composition.

Fact 4.3.2 (alternative path consistency). A 2 complete CSP is path con-
sistent iff the three following relations hold all true C(xi, xj) := C(xi, xj) ∩ Πxi,xj

(C(xi, xj) 1 C(xj, xk)),
C(xi, xk) := C(xi, xk) ∩ Πxi,xk

(C(xi, xk) 1 C(xj, xk)),
C(xj, xk) := C(xj, xk) ∩ Πxj ,xk

(C(xi, xj) 1 C(xi, xk)),

for each scheme xi, xj, xk of the CSP variable. 2

Example 4.3.3. The Temporal CSP in Subsection 2.3.4 is not path consistent:
in fact, the relation follows in C(x1, x4) is not consistent with Πx1x4(C(x1, x2) 1

C(x2, x4)). Thereby, path consistency algorithms will remove follow, and so
reduce C(x1, x4) to the singleton relation precedes.

4.3.1 The PC-1 Algorithm

The PC-1 is the basic algorithm for path consistency; it is presented in Ap-
pendix A. In the present subsection, we show that PC-1 is an instance of GI, and
then we analyse it through GI iterations.

Instantiation

To instantiate the GII algorithm to PC-1 we need to specify the following com-
ponents:

• a partial ordering,

• finitely many function on this,

• and the update operator.

We do it as below.

Partial ordering. To study path consistency, given a 2 complete CSP P :=
〈X,D,C〉, we consider the 2-constraint ordering defined in Subsection 2.5.2.

4.3. Path Consistency 67

Functions. Next, given a scheme xi, xj, xk of the variables of P we introduce
three functions on the partial ordering on P as below. Denote an element of the
partial ordering with B.

• The function σ(xi, xk;xj) only modifies the binary constraint B(xi, xk) of
B, by returning the following set B′(xi, xk):

B′(xi, xk) := B(xi, xk) ∩ Πxi,xk
(B(xi, xj) 1 B(xj, xk)).

• The function σ(xi, xj;xk) only modifies the binary constraint B(xi, xj) of
B, by returning the following set B′(xi, xj):

B′(xi, xj) := B(xi, xj) ∩ Πxi,xj
(B(xi, xk) 1 B(xj, xk)).

• The function σ(xj, xk;xi) only modifies the binary constraint B(xj, xk) of
B, by returning the following set B′(xj, xk):

B′(xj, xk) := B(xj, xk) ∩ Πxj ,xk
(B(xi, xj) 1 B(xi, xk)).

In what follows, when using a function σ(xj, xk;xi), we implicitly assume that
the variables xi, xj, xk are pairwise different and that j < k.

Finally, the notion of path consistency is clearly related to the common fix-
points of the above defined functions, and these are idempotent, monotone and
inflationary over the constraint ordering. We collect these properties as in the
following lemma, whose proof is just a consequence of the given characterisation
of the functions σ as above.

Lemma 4.3.4.
(i). A CSP is path consistent if it a common fixpoint of the functions σ(xi, xk;xj)
defined as above.
(ii). The functions σ(xi, xk;xj) are idempotent, monotone and inflationary over
the 2-constraint ordering of the given CSP.
(iii). The functions σ(xi, xk;xj) do not remove solutions from the given CSP.

The update operator. The update operator is specified as follows:

update(σ(xi, xk;xj), F,G,B) := {σ(xl, xm;xn) : | {xi, xk} ∩ {xl, xm, xn} | ≥ 2} .

In other words: each time a function σ(xi, xk;xj) modifies B, all functions that
involve at least two of the variables xi and xk are added to G. Indeed, this is
not an optimal instantiation of update. We shall see how it can be optimised
by resorting to commutativity again, as in the case of the AC-3 algorithm in
Subsection 4.2.2.

68 Chapter 4. Constraint Propagation Algorithms

Analysis

Given the above lemma, it is now easy to prove the following result, as a conse-
quence of Corollary 3.3.12; it is sufficient to proceed as for HAC-1 and AC-1. The
reader is invited to consult [Apt99a, Apt00a] for a more detailed analysis.

Corollary 4.3.5 (PC-1). Consider a 2 complete CSP P := 〈X,D,C〉, such
that all constraints in C are finite. Let P be the input of PC-1. Then every
execution of PC-1 terminates, by computing the greatest path consistent problem,
equivalent to P ; i.e., the least common fixpoint of all the functions σ(xi, xk;xj)
defined above.

4.3.2 The PC-2 Algorithm

In Section 4.2, we illustrated how the AC-3 constitutes an improvement of AC-
1, by a clever instantiation of the update operator. The PC-2 algorithm is an
improvement of PC-1 much in the same spirit as AC-3 is of AC-1.

In the PC-1 algorithm, each time a function σ(xi, xk;xj) is applied and modifies
its arguments, all functions associated with a triplet of variables including xi and
xk are added to the set G of functions to iterate. This is not, indeed, an optimal
choice of update.

In [Apt00a], the author proves how fewer functions can be added via update,
by taking into account commutativity. To this end, the following lemma is proved.
Its proof is as for the case of AC-3, thus we invite the reader to consult the latter
or ib.

Lemma 4.3.6. Consider a 2 complete CSP, involving among others the variables
xi, xj, xk and xl. Then the functions σ(xi, xk;xj) and σ(xi, xk;xl) commute. 2

In other words, each pair of functions of the form σ(xi, xk;) commute; this for
every variable scheme 〈xi, xk〉 of the problem. The functional Comm(σ(xi, xk;xj))
is then defined as follows, for each variable xj such that j 6= i, 6= k — consult also
Definition 3.4.5:

Comm(σ(xi, xk;xj), F) = {σ(xi, xk;xl) : xl is different from xi, xk} .

Thus, for each function of type σ, the set Comm(σ, F) contains precisely n − 3
elements, where n is the number of variables of the considered CSP. This quanti-
fies the maximal gain obtained by using the commutativity information, loosely
speaking: more precisely, update will need less functions at each iteration of the
instance of GIIC for PC-2, than in the correlated instance of GI for PC-1.

By virtue of the above lemma and Theorem 3.4.7, the following result is easily
proved.

4.3. Path Consistency 69

Corollary 4.3.7 (PC-2). Consider a 2 complete CSP P := 〈X,D,C〉, such
that all constraints in C are finite. Let P be the input of PC-2. Then every
execution of PC-2 terminates, by computing the greatest path consistency problem,
equivalent to P ; i.e., the least common fixpoint of all the functions σ(xi, xk;xj)
defined above. 2

4.3.3 The PC-4 Algorithm

The PC-3 algorithm was devised in [MH86]. However here we refer to its corrected
version, named PC-4, presented in [HL88]. This algorithm enforces path consis-
tency on binary CSPs, by exploiting additional structures in the same fashion as
(H)AC-4 and AC-5. So, in the following, we shall restrict our attention to binary
CSPs, and prove that PC-4 is an instance of the SGIISE algorithm schema.

Notice that we assume that the input problem P is 2 complete — see Sub-
section 2.4.2. This will help us to reduce the overload of notations, and it is a
minor change, since the initialisation phase of PC-4 reduces the input problem to
its 2 completion. Therefore, constraint propagation takes place on a 2 complete
problem.

The algorithm

The PC-4 algorithm is split into two parts:

• the first part of the algorithm consists in an initialisation of structures such
that, at the end of it, the following properties hold: if E is the current
constraint set and C the input one, then

1. (xk : d , xl : e) ∈ G iff (xk : d , xl : e) ∈ C(xk, xl)− E(xk, xl),

2. each C(xk : d , xj : c ; xl) is a subset of Dl, and e ∈ C(xk : d , xj : c ; xl)
iff (d, e) ∈ C(xk, xl) and (e, c) ∈ C(xl, xj);

• in the second part, the real propagation phase takes place, see Algorithm A.5
in Appendix A. In fact, every tuple (xk : d , xl : e) ∈ G is chosen and
removed from G, each only once; then the pairs, affected by the removal
of (d, e) from C(xk, xl), are all inspected. So, if one of them has no more
supporting pairs in E(xk, xl), it gets removed from its corresponding binary
constraint; then it is added to G in order to propagate the effect of its
removal.

We have slightly changed PC-4 (see Algorithm A.5 in Appendix A) for this makes
it easier to instantiate SGIISE to PC-4. Notice that this new version is equivalent
to the original one by [HL88] and retains its worst time and space complexity;
the difference is in the use of structures of the form C(xk : d , xj : c ; xl) instead
of so-called counters.

70 Chapter 4. Constraint Propagation Algorithms

Instantiation

Equivalence set. We can assume that the input CSP P := 〈X,D,C〉 is 2
complete, see Subsection 2.4.2; else we add the necessary constraints to it.

While arc consistency algorithms remove elements from domains, path con-
sistency algorithms such as PC-1 and PC-2 (see Subsections 4.3.1 and 4.3.2, re-
spectively) propagate constraints by modifying binary constraints; so does PC-4.
However, contrary to PC-2 and PC-1, the PC-4 algorithm has also support struc-
tures, like AC-4, AC-5 and their respective hyper-arc versions. Those structures
are used to avoid checking, more than once, that a given pair is consistent with
the input constraints in P := 〈X,D,C〉.

In order to define the equivalence set, for instantiating SGIIE to PC-4, we
introduce supplementary structures as follows. For each scheme 〈xi, xj〉 of the
problem, variable xk such that i, j 6= k, we put, for each a ∈ Di, b ∈ Dj, and
c ∈ Dk:

E(xi : a , xk : c ; xj) :=〈Ej, 〈i, a, k, c, j〉〉 if i < k and Ej ⊆ Dj, (IK)

E(xk : c , xi : a ; xj) :=〈Ej, 〈k, c, i, a, j〉〉 if k < i and Ej ⊆ Dj; (KI)

E(xk : c , xj : b ; xi) :=〈Ei, 〈k, c, j, b〉〉 if k < j and Ei ⊆ Di, (KJ)

E(xj : b , xk : c ; xi) :=〈Ei, 〈j, b, k, c, i〉〉 if j < k and Ei ⊆ Di. (JK)

Let E denote the set that contains all such structures: precisely, either (IK) if
i < k or (KI) otherwise, and (KJ) if k < j or (JK) otherwise; this for each scheme
〈xi, xj〉, xk such that k 6= i, a ∈ Di, b ∈ Dj and c ∈ Dk. Thus CPC−4 collects all
sets like E, whose elements are structures as above.

Finally, we can define the equivalence set PHAC−4, that contains all pairs 〈B,E〉
defined as follows:

• B belongs to the 2-constraint ordering on the problem P ;

• E belongs to CPC−4, i.e., is a collection of structures as above.

The equivalence relation ≡HAC−4 we need to define is, clearly, the following one:
〈B,E〉 ≡ 〈B′, E ′〉 iff B = B′.

Functions. As in the cases of (H)AC-4 and (H)AC-5, there are two types of
functions: the former, denoted by θ, is used in the first while loop of SGIIE; the
latter, denoted by φ, is used in the second while loop of SGIIE. We describe them
as below.

The θ functions. For each (a, c) ∈ C(xi, xk) and j = 1, . . . , n different from i
and k, we define a function θ(xi : a , xk : c ; xj) that is the identity everywhere
except, possibly, on the following sets:

4.3. Path Consistency 71

• the subset E(xi : a , xk : c ; xj) of Dj is mapped into the subset E ′(xi :
a , xk : c ; xj) of Dj, such that b ∈ E ′(xi : a , xk : c ; xj) iff both the
following properties hold:[

(a, b) ∈ C(xi, xj) if i < j, otherwise (b, a) ∈ C(xj, xi),
(b, c) ∈ C(xj, xk) if j < k, otherwise (c, b) ∈ C(xj, xk);

• the subsetB(xi, xk) of the input C(xi, xk) is mapped into its subsetB′(xi, xk)
so that

B′(xi, xk) :=

{
B(xi, xk)− {(a, c)} if E ′(xi : a , xk : c ; xj) = ∅,
B(xi, xk) else.

The φ functions. For each (a, c) ∈ C(xi, xk) and j = 1, . . . , n different from
i and k, we define a function φ(xi : a , xk : c ; xj) that is the identity if (a, c) ∈
B(xi, xk); else, it is the identity almost everywhere except, possibly, on the fol-
lowing sets — where b ranges over Dj:

• If i < j each subset E ′(xi : a , xj : b ; xk) of Dk is mapped into its subset

E ′(xi : a , xj : b ; xk) := E(xi : a , xj : b ; xk)− {c} ,

else each E ′(xj : b , xi : a ; xk) of Dk is mapped into its subset

E ′(xj : b , xi : a ; xk) := E(xj : b , xi : a ; xk)− {c} .

Similarly, if j < k each E ′(xj : b , xk : c ; xi) is mapped into

E ′(xj : b , xk : c ; xi) := E(xj : b , xk : c ; xi)− {a} ,

else each E ′(xk : c , xj : b ; xi) is mapped into

E ′(xk : c , xj : b ; xi) := E(xk : c , xj : b ; xi)− {a} .

• Then the set B(xi, xj) is mapped into

B′(xi, xj) :=

{
B(xi, xj)− {(a, b)} if E ′(xi : a , xj : b ; xk) = ∅,
B(xi, xj) else,

if i < j, else the set B(xj, xi) is mapped into

B′(xj, xi) :=

{
B(xj, xi)− {(b, a)} if E ′(xj : b , xi : a ; xk) = ∅,
B(xj, xi) else.

72 Chapter 4. Constraint Propagation Algorithms

Similarly, the set B(xj, xk) is mapped into

B′(xj, xk) :=

{
B(xj, xk)− {(b, c)} if E ′(xj : b , xk : c ; xi) = ∅,
B(xj, xk) else.

if j < k, else the set B(xk, xj) is mapped into

B′(xk, xj) :=

{
B(xk, xj)− {(c, b)} if E ′(xk : c , xj : b ; xi) = ∅,
B(xk, xj) else.

The update operator Given the above functions of type θ and φ, we can define
the update operator as follows:

(θ). if Π1θ(xi : a , xk : c ; xj)(B,E) 6= B, then update adds to G all the φ
functions of the form φ(xi : a , xk : c ; xl), for l 6= i, k, j;

(φ). if Π1φ(xi : a , xk : c ; xj)(B,E) 6= B, then update adds to G all the φ
functions of the following form: if i < j, all functions φ(xi : a , xj : b ; xl) for
(a, b) ∈ E(xi, xj)− E ′(xi, xj) and l 6= i, j, k, else all functions φ(xj : b , xi :
a ; xk) for (b, a) ∈ E(xj, xi)−E ′(xj, xi) and l 6= i, j k; if j < k, all functions
φ(xj : b , xk : c ; xl) for (b, c) ∈ E(xj, xk) − E ′(xj, xk) and l 6= i, j, k, else
all functions φ(xk : c , xj : b ; xl) for (c, b) ∈ E(xk, xj) − E ′(xk, xj) and
l 6= i, j, k.

Now it is easy to check that the following statement holds.

Fact 4.3.8. The PC-4 algorithm is an instance of SGIISE whenever this algo-
rithm iterates the above defined functions of type θ and ψ.

Analysis

As in the case of (H)AC-4 and (H)AC-5, we need to define functions on the quotient
set P≡HAC−4

/ ≡HAC−4 to study PC-4 by means of SGIIS. Hence we define functions
of two types, Θ and Φ, as below.

In order to obtain a more compact notation, we introduce the following short-
hand in the remaining of this subsection.

Convention 4.3.1. For every pair of distinct i, j = 1, . . . , n, let
−−−−−→
B(xi, xj) de-

note B(xi, xj) if i < j, else B(xj, xi).

Thus
−−−−−→
B(xi, xj) =

−−−−−→
B(xj, xi), and this will simplify the presentation of the functions

for SGIIS as below.
The Θ functions. For each pair (a, c) ∈ C(xi, xk) in the 2 completion of P ,

and j = 1, . . . , n different from i and k, we define a function θ(xi : a , xk : c ; xj)

4.3. Path Consistency 73

that is the identity if (a, c) belongs to Πxi,xk
(
−−−−−→
C(xi, xj) 1

−−−−−−→
C(xj, xk)); else it is the

identity almost everywhere except, possibly, on the set B(xi, xk) that is mapped
into B′(xi, xk), defined as follows:

B′(xi, xk) := B(xi, xk)− {(a, c)} .

The Φ functions. For each pair (a, c) ∈ C(xi, xk) in the 2 completion of P ,
and j 6= i, k, we define a function Φ(xi : a , xk : c ; xj) that is the identity if
(a, c) ∈ B(xi, xk); else it is the identity almost everywhere except, possibly, on
the constraint on the variables xi and xj, and on the constraint on the variables
xj and xk:[

B′(xi, xj) := B(xi, xj) ∩ Πxi,xj
(B(xi, xk) 1k 6=c

−−−−−−→
B(xk, xj)) if i < j,

B′(xj, xi) := B(xj, xi) ∩ Πxj ,xi
(B(xi, xk) 1k 6=c

−−−−−−→
B(xk, xj)) else,

where 1k 6=c results from the composition of first 1 and then selk 6=c;[
B′(xj, xk) := B′(xj, xk) ∩ Πxj ,xk

(
−−−−−→
B(xi, xj) 1i6=a B(xi, xk)) if j < k,

B′(xk, xj) := B′(xk, xj) ∩ Πxk,xj

−−−−−−→
(B(xi, xj) 1i6=a B(xi, xk)) else,

where 1i6=a results from the composition of first 1 and then seli6=a.
Consider now the 2-constraint ordering on P , see Subsection 2.5.2. We sum-

marise the main properties of the above functions Θ and Σ as in the following
lemma.

Lemma 4.3.9. The above defined Θ and Φ are monotone, stationary and infla-
tionary on the 2-constraint order on the input problem; besides, if a Θ function
is the identity on the input problem, then it is the identity function. 2

Given Lemma 4.3.9 we can infer the following result as a corollary of Theo-
rem 3.4.10.

Corollary 4.3.10. Every execution of SGIIS, with input a finite CSP P and
the above defined functions of type Θ and Φ, always terminates by computing the
greatest path consistent problem that is equivalent to P . 2

The following lemma can be proved by an argument similar to that used in
Lemma 4.2.11 for AC-4.

Lemma 4.3.11. Every SGISE execution with θ and φ functions is ≡PC−4-equivalent
to an SGIS iteration with Θ and Φ functions. 2

74 Chapter 4. Constraint Propagation Algorithms

Now we have all the technical results for proving the following statement.

Corollary 4.3.12 (PC-4). The PC-4 algorithm, with input a finite CSP P ,
always terminates by computing the least common fixpoint of the above defined
Θ and Φ functions, that is the greatest path consistent problem, equivalent to the
input problem P .

Proof. The claim follows by Lemma 4.3.11, Corollaries 3.4.16 and 4.3.10. 2

Note 4.3.13. Note the difference in the termination conditions for PC-1 or PC-2
versus PC-4. In the former two cases, we only need that the constraints are finite
to ensure termination; hence, those algorithms can be applied and terminate in
the case of the Temporal CSP in Subsection 2.3.4. However, this is not the case
for PC-4: in fact the termination condition in Corollary 4.3.12 assumes that also
domains are finite. The reason is easy to explain via the functions used for PC-4 in
SGIIISE or SGIIIS: these functions are parametrised by domain elements, hence
we have a finite number of F functions only if the input CSP domains are finite.

4.4 Local Consistency

4.4.1 Local Consistency as k Consistency

In Section 4.2 and 4.3, we defined two properties of CSPs that gave rise to a
number of constraint propagation algorithms: arc and path consistency. Freuder
generalised both those properties to a general form of local consistency in [Fre78].
There are two versions of this notion, a weak and a strong one, defined as below.

Weak consistency

Consider a CSP P := 〈X,D,C〉 with n variables in X, and a scheme s of X of
length k. An assignment d for s is k consistent iff it satisfies every constraint C(s′)
of P over a scheme s′ of s. So, different levels, hence notions of local consistency
can be defined for the same problem P := 〈X,D,C〉:

• the problem P is 1 consistent, or node consistent, iff, for every variable xi
of P , the unary constraint C(xi) on xi is contained in the domain Di of xi;

• given 1 < k ≤ |X|, P is k consistent iff every (k−1) consistent assignment d
for P on s can be extended to a k consistent instantiation, for every possible
extension s′ = s ∪ xj of s.

Suppose that k is equal to 2. Then arc consistency on binary CSPs, that are
node consistent, clearly coincide with 2 consistency. The same holds for path
consistency: a binary CSP, node consistent, is path consistent iff it is 3 consistent.
We summarise these properties as follows.

4.4. Local Consistency 75

Fact 4.4.1.
(i). A binary CSP, 1 consistent, is arc consistent iff it is 2 consistent.
(ii). A binary CSP, 1 consistent and 2 complete, is path consistent iff it is 3
consistent. 2

Strong local consistency

A stronger notion of local consistency can be defined as follows: a problem P :=
〈X,D,C〉 is strongly k-consistent, for 1 ≤ k < |X|, iff it is j-consistent for every
j ≤ k.

Notice that requiring a problem to be strongly k consistent is by far more
demanding than requiring it to be k consistent. A problem can be trivially k+ 1
consistent, if there are not k consistent instantiations, which is not the case for
strong k consistency. Consider the following example.

Example 4.4.2. Let P be the CSP on two variables, x1 and x2, and x3, domains
equal to {0, 1}, and constraints on each scheme of two variables, forbidding that
these are equal (see Example 2.5.4). This problem is clearly arc consistent, hence
2 consistent: in fact, for each variable, there is an instantiation for it that satisfies
all binary constraints of P . However, P is not strongly 2 consistent, nor consistent.

As the above toy example suggests, if a problem is “sufficiently” strong consistent,
then it is also consistent. We make the above claim precise as follows. The
proof is easy, and the requirement that at least one domain should not be empty
is fundamental to guarantee the existence of a 1 consistent instantiation; see
also [Fre78].

Fact 4.4.3. Consider a CSP P with k ≥ 1 variables. If P is strongly k consis-
tent, with at least one not-empty domain, then P is consistent. 2

Thus, a strongly n consistent CSP is globally consistent, i.e., any consistent in-
stantiation of a scheme of the variables can be extended to a consistent instanti-
ation of all of the variables without backtracking.

4.4.2 The KS Algorithm

The KS algorithm by Cooper [Coo89] is an optimisation of the synthesis algorithm
by Freuder [Fre78]. Both algorithms enforce strong k consistency over a CSP; the
former can enforce k consistency with a minor simplification. We shall account
for the whole strong k consistency algorithm by Cooper here, and explain how
the GIISE schema can be instantiated to it.

In the following part, we need to extend a scheme or remove a variable from
it, i.e. to make use of both projection and join, see Subsection 2.5.1. Hereby, we

76 Chapter 4. Constraint Propagation Algorithms

remind the following abbreviations: if s is a scheme of variables and xj 6∈ s, then
t := s∪xj will denote the scheme on the set of variables of s plus xj. Similarly, if
xi is one of the variables in s, then r := s− {xi} will stand in for the scheme on
the variables of s minus xi. Finally, if d ∈ C(s), the variable xj does not occur in
s and a ∈ Dj, then e := d 1 a is the tuple of D [s ∪ {xj}] such that e [s] = d and
e [j] = a.

The original algorithm

As in the case of PC-4, also the Cooper algorithm enforces propagation at the level
of constraints by exploiting additional structures for efficiency reasons; namely to
store already checked values.

The algorithm by Cooper is split in two main sub-programs: the initialisation
process takes place in the first step; then propagation is achieved by iteratively
pruning i inconsistent values, for all i ≤ k.

However, the first sub-program of KS is only meant to construct structures,
there is no pruning of values. There, the KS algorithm reduces the input problem
P to a k strong complete one, for some k not greater than the number of variables
in P ; so to an equivalent problem that has precisely one constraint per scheme, the
length of which is not greater than k, see also Subsection 2.4.2. In Appendix A,
we present the initialisation and propagation phases in Algorithm A.1; these are
slightly modified versions of the original, in which counters (e.g. Counter [d, r, j])
are used to store the number of support values in place of the support values
themselves, as we instead do (e.g. via C(d, r, j)). In the second sub-program, a
pruned tuple d is chosen and the effects of its removal from C(t) are propagated
in two stages. Let i be the length of t. If i < k, first all (i + 1) consistent
instantiations d′ such that d′ [t] = d are considered; then, if i > 1, all (i − 1)
consistent instantiations d′ on schemes s of t are checked for supports if d′ = d [s].

Therefore we shall overlook the initialisation phase of KS when defining func-
tions to instantiate SGIISE. Nevertheless, we are able to devise functions for SGIE
that account for the optimal behaviour of the propagation phase of KS, compared
to the synthesis algorithm by Freuder; in fact, those functions are defined on a set
that exploits further structures than constraint orderings. Hence we shall define
an appropriate equivalence relation on the domain of those functions, and show
that we can devise a constraint ordering on the quotient set. Then we shall study
this instance of SGIISE by passing to the quotient set and functions on this for
SGIS.

Instantiation

The equivalence structure. Consider a CSP P := 〈X,D,C〉 and assume
that it is strongly k complete. Remind, from Subsection 2.4.2, that the process
of strong k completion amounts to constructing an equivalent problem that has

4.4. Local Consistency 77

the same variable scheme and domain set as the original one, but precisely one
constraint over each scheme.

Now, let PKS be the class of pairs 〈B,E〉 in which B is a constraint set in
the strong k-constraint ordering on P (see Subsection 2.5.2), and E is a family
of structures, defined as follows: for each scheme s on X, xj 6∈ s and d ∈ C(s),
precisely one structure of the form

E(d, s, xj) := 〈Ej, 〈d, s, xj〉〉,

for Ej a subset of Dj, belongs to E.
The binary relation ≡KS on PKS is defined as follows:

〈B,E〉 ≡KS 〈B′, E ′〉 iff B = B′.

Indeed, ≡KS is an equivalence relation and the quotient set PKS/≡KS is isomorphic
to the universe Ok of the strong k-constraint ordering on P .

Functions. For each scheme s of X of length i and d ∈ D [s], we define a
function φ(d, s, i) that propagates the i inconsistent instantiation d to all the
i− 1 and i+1 instantiations. Namely, if 〈B,E〉 is the input to φ(d, s, i), then the
output value 〈B′, E ′〉 differs from 〈B,E〉 at most in the following components if
d 6∈ B(s), else φ(d, s, i) is the identity everywhere:

• in case i, the length of s, is less than k, then φ(d, s, i) considers every xk 6∈ s
and the resulting join scheme t := s ∪ {xk}, and maps each such B(t) into

B′(t) := B(t)−
⋃
a∈Dk

{d 1 a} ;

• if i, the length of s, is greater than 1, then φ(d, s, i) considers every xj ∈ s,
the resulting projection scheme r := s−{xj}, and modifies the sets E(r, e, j),
for each e ∈ D(r), and B(r) as follows:[

E ′(r, e, j) := E(r, e, j)− {d [j]} ,
B′(r) := B(r)− {e : E ′(r, e, j) = ∅} .

The update operator. At this point, we are left to characterise the update
operator: if Π1φ(e, s, i)(B) 6= B, then update adds to G all the remaining F
functions φ(e, r, i − 1) or φ(e′, t, i + 1) such that e ∈ B(r) − B′(r) and e′ ∈
B(t)−B′(t).

Given the above definitions of the functions φ and update, we can state the
following result as fact.

Fact 4.4.4. The propagation phase of Algorithm A.1 in Appendix A is an in-
stance of SGIISE: ⊥ is the input PKS; the set F collects all the φ functions
as defined above; the set F⊥ collects all the φ(d, s, i) functions such that d ∈
D [s]− C(s); the update operator is instantiated as above.

78 Chapter 4. Constraint Propagation Algorithms

Analysis

Given the CSP P , we have to define functions, say Φ, over the strong k-constraint
ordering on P . If we let Ok denote the universe of such constraint ordering on
P , then, clearly, Ok is isomorphic to PKS/≡KS. Moreover, we want each GIISE

iteration with the functions φ over PKS to be ≡KS-equivalent to an GIIS iteration
with the functions Φ over Ok. Therefore, we define such functions Φ as below.

Functions over Ok. We define a set of functions Φ over the strong k-constraint
ordering on P . For each scheme s of length i of X and d ∈ C(s), let Φ(s, d, i) be
the identity if d ∈ B(s), else it modifies only the following subsets of the input B:

• if i, the length of s, is strictly less than k, then Φ(s, d, i) considers every
xk 6∈ s and the resulting join scheme t := s ∪ {xk}, and maps B(t) into

B′(t) := B(t)−
⋃
a∈Dk

{d 1 a} ;

• if i, the length of s, is strictly greater than 1, then Φ(d, s, i) considers every
xj ∈ s, the resulting projection scheme r := s− {xj}, and modifies B(r) as
follows:

B′(r) :=


B(r)− {d [r]} if, for all d′ ∈ B(s), d′ [r] = e

yields d′ [xj] = d [xj] ,

B(r) else.

Clearly, the Φ functions are monotone, inflationary and stationary with respect
to the strong k-constraint ordering on P . The following lemma collects the main
properties of these functions that will be used to study SGIIS for the Cooper
algorithm.

Corollary 4.4.5.
(i). A CSP P is strongly k consistent iff it is a common fixpoint of the Φ func-

tions, hence their least one with respect to the strong k-constraint order on P .
(ii). The Φ functions are monotone, stationary and inflationary with respect to
the strong k-constraint order on P ; besides, each F⊥ function that does not modify
the input problem is the identity. 2

The proof of the equivalence of the considered instantiations of SGIISE and
SGIIS is analogous to that for HAC-4.

4.5. Relational Consistency 79

Lemma 4.4.6. SGIISE with the φ functions over PKS is ≡KS-equivalent to SGIIS

with the Φ functions over Ok
∼= PKS/ ≡KS. 2

Therefore, we infer the following result from Corollary 4.4.5, Theorem 3.4.10,
the above Lemma 4.4.6 and Corollary 3.4.16.

Corollary 4.4.7 (KS). The KS algorithm over a finite problem P terminates by
computing the least fixpoint of the functions Φ as above defined; i.e., the greatest
strongly k consistent problem that is equivalent to P . 2

4.5 Relational Consistency

Whereas in k and strong k consistency, variables and their instantiations are
the key notions, in the definition of relational consistency as below, relations
rather than variables are under analysis. In this section we define this new notion
of consistency, as in [DvB97], and prove that the basic algorithm schema for
enforcing it is an instance of GI.

Definition 4.5.1. Consider a CSP with constraint set C, and scheme X. As-
sume that C ′ := {C(s1), . . . , C(sn)} is a subset of distinct constraints in C, and
s is the join scheme of s1, . . . , sn.

• Let t be a scheme of s. Then C ′ is relationally m consistent relative to t
if any t consistent instantiation can be extended to an s instantiation that
satisfies 1n

i R(si).

• The set C ′ is relationally (i,m) consistent if it is relationally m consistent
relative to each scheme t of s, that has length i. If C ′ is relationally (i,m)
consistent for every i ≤ m, then it is relationally m consistent.

• A CSP is relationally (i,m) consistent if every subset of m constraints in C
is such. The characterisation of relational m consistency is analogous.

• A CSP is strongly relational (i,m) consistent if it is (i, k) relational consis-
tent for each k ≤ m. The characterisation of strong relationally m consis-
tency is analogous.

To illustrate the above defined notions, we copy the following example directly
from [DvB97].

80 Chapter 4. Constraint Propagation Algorithms

Example 4.5.2. Consider the CSP over the schemeX := x1, x2, x3, x4, x5, where
the domains of the variables are all D = {a, b, c} and the relations are given by,

C(x2, x3, x4, x5) := {(a, a, a, a), (b, a, a, a), (a, b, a, a), (a, a, b, a), (a, a, a, b)}
C(x1, x2, x5) := {(b, a, b), (c, b, c), (b, a, c)} .

The constraints are not relationally 2 consistent. For example, the instantiation
x2 = a, x3 = b, x4 = b is a consistent instantiation as it trivially satisfies all
the applicable constraints. Similarly, the constraints are not relationally 3 con-
sistent. For example, the instantiation x1 = c, x2 = b, x3 = a, x4 = a is, trivially,
a consistent instantiation, but it does not have an extension to x5 that satis-
fies C(x2, x3, x4, x5) and C(x1, x2, x5) simultaneously. If we add the constraints
C(x2) = C(x3) = C(x4) = {a} and C(x1) = C(x5) = {b}, the set of solutions of
the CSP does not change, and it can be verified that the CSP is both relationally
2 and 3 consistent.

As the authors of [DvB97] remark, when all the problem constraints are binary,
relational m consistency is identical (up to minor preprocessing) to variable-based
m consistency. The virtue in their notion of relational m consistency is that it can
be embedded, naturally, into algorithms for enforcing desired levels of relational
m consistency, and it allows a simple generalisation of k consistency.

However, as for k consistency and hyper-arc consistency, verifying relational
m consistency can be exponential even for relational 2 consistency, if the arity of
the constraints is not bound.

4.5.1 The RC(i,m) Algorithm

The original algorithm for relational m consistency, called RCm, is, in the authors’
words, “a brute-force algorithm for enforcing strong relational m consistency on a
CSP”. In the remainder of the present subsection, we use GI to enforce relational
(i,m) consistency in the spirit of RCm (cf. [DvB97]), and then analyse this is
instance of GI.

Instantiation

Consider a CSP P := 〈X,D,C〉. To instantiate the GII algorithm to RC(i,m) on
P , we need to provide the following components:

1. a partial ordering on P ;

2. functions on the chosen partial ordering;

3. the specification of the update operator.

4.5. Relational Consistency 81

Partial ordering. To enforce relational (i,m) consistency, we employ the i
constraint ordering on P as partial ordering. Thus we assume P := 〈X,D,C〉 to
be i complete; else we complete it as in Subsection 2.5.2.

Functions. Consider B in the i constraint ordering on P . Assume a scheme s,
and a scheme t of s such that the length of t is i. Thus consider m constraints
B(s1), . . . , B(sm) of B such that s =

⋃m
i si, and denote

s := 〈s1, . . . , sm〉 .

Finally, define the function σ(t, s, s) as follows on B: if B′ := σ(t, s, s)(B), then
B′ differs from B for the constraint on t, this being

B′(t) :=B(t) ∩ Πt(1si∈s B(si)).

If B′(t) is the empty set, then σ(t, s, s) sets the whole B to the empty set. Else
all the other constraints in B are unaffected by σ(t, s, s).

The update operator. The update operator returns the empty set if B′(t) is
empty. Else, it adds all the constraints of the problem to G for further inspection.
Clearly, this choice of the update operator could be optimised in a number of
ways; for instance, by requiring that update should only add the relations which
are affected by the change of B(t).

Analysis

At this point, it is routine to check that the functions σ(t, s, s) are idempotent,
monotone and inflationary over the i constraint ordering.

Lemma 4.5.3.
(i) A CSP P := 〈X,D,C〉 is relational (i,m) consistent iff C is a common
fixpoint of all the functions of the form σ(t, s, s), hence the last one with respect
to the i constraint ordering on P .
(ii) Each function σ(t, s, s) is idempotent, monotone and inflationary with respect
to the i constraint ordering on P . 2

Fix now a CSP P . By instantiating the GII algorithm with the above defined
functions σ(t, s, s), we get the algorithm RC(i,m). Thus we can prove that this
algorithm enjoys the following properties as a consequence of Theorem 3.4.4.

Corollary 4.5.4 (RC(i,m)). Consider a CSP P := 〈X,D,C〉 with finite con-
straints. Suppose that P is binary. Then RC(i,m) on P always terminates by
computing the greatest relational (i,m) consistent problem that is equivalent to
P ; that is the least common fixpoint of the σ(t, s, s) functions, defined as above.
2

82 Chapter 4. Constraint Propagation Algorithms

The above result completes our analysis of quite a number of constraint propa-
gation algorithms. In the following section, we summarise what we have learnt
from this analysis, and so conclude the present chapter.

4.6 Conclusions

4.6.1 Synopsis

In this chapter, we describe and analyse a series of constraint propagation algo-
rithms through the unifying framework of SGI iterations, see Chapter 3. Prop-
erties of the algorithms are interpreted as properties of functions, so that the
verification of the algorithms becomes a straightforward application of the theo-
retical results obtained for SGI function iterations.

Thus these algorithms are separated into classes, according to the space the
correlated functions prune of inconsistencies: see the rightmost column in Ta-
ble 4.1. Then a more refined analysis differentiates between the algorithms that
pertain to the same class. In Table 4.1, such differences are expressed in the
following terms: functions, whether these are related to sets (i.e., domains or
constraints) or points (i.e., values in domains or tuples in constraints); properties
of functions, (i.e. commutativity, inflationarity, stationarity and idempotency)
used to avoid fruitless while loops, via an efficient instantiation of update.

Algorithms Functions update Search Space

AC-1 set Axiom 3.3.1 domain ordering
AC-3 set commutativity domain ordering

and idempotency
AC-4 point stationarity, domain ordering

inflationarity
idempotency

PC-1 set Axiom 3.3.1 2-constraint ordering
PC-2 set commutativity 2-constraint ordering

and idempotency
PC-4 point stationarity, 2-constraint ordering

inflationarity
and idempotency

KC point stationarity, (strong) k-constraint ordering
inflationarity

and idempotency

RC(i,m) set idempotency i-constraint ordering

Table 4.1: Constraint propagation algorithms and their comparison through SGI.

4.6. Conclusions 83

4.6.2 Discussion

The framework of SGI iterations allows us to verify various constraint propaga-
tion algorithms in a systematic and uniform way, and compare them as above.
The more traditional ways of verifying the correctness of those algorithms are
complicated by the diversity of structures or representation of CSPs adopted in
them; cf. the algorithms in Appendix A. Besides, this heterogeneity complicates
their direct comparison, which is usually done only by examples.

In the cases of (H)AC-4, (H)AC-5, PC-4 and KS, CSP constraints and domains
are pruned of inconsistencies by means of additional support structures, used for
time efficiency reason; these have to be “scraped away” through an equivalence
relation (i.e., passing from SGIISE to SGIIS) to obtain functions that modify do-
mains or constraints in a monotonic manner. This complicates the verification
proofs and the simplicity of GI gets slightly lost. Nevertheless, at the level of do-
mains and constraints, also those algorithms work in a monotone and inflationary
manner: i.e., they all iterate functions that satisfy our Axioms 3.3.1 and 3.3.2.
This results from the analysis conducted in this chapter.

This same analysis can be extended to algorithms like bound-consistency
(see [Apt99a]) that iterates functions defined on specific domains: intervals of
real numbers. Other algorithms for arc consistency such as AC-6 can be studied
through SGI as well.

The AC-6 algorithm exploits the same intuitions behind AC-4: functions are
set based, in that each function f is associated with a specific value c in a domain,
and searches whether c is consistent with a given constraint of the problem. The
main difference is that AC-6 functions searches for only a single value b such that
the pair of b and c belongs to the given constraint; whereas AC-4 searches for all
such b. Therefore, functions for AC-6 do not perform a universal selection but a
sort of existential selection: i.e., they stop their search when a value that satisfies
certain properties is found. In AC-6, this is achieved by imposing a total order
on each domain and selecting always the minimum value in the ordering that
satisfies the required properties.

We shall clarify this difference, between the so-called universal and existen-
tial selection in Chapter 6. First, we enrich our class of constraint propagation
algorithms by studying non-standard constraints. The new algorithms are briefly
presented in the following chapter, where they are still described and analysed
via SGI iterations.

Chapter 5

Soft Constraint Propagation

5.1 Introduction

5.1.1 Motivations

The standard approach to constraint programming, as in Chapters 2 and 4, as-
sumes as constraints only the so-called crisp, hard or classical constraints. As
stated in Chapter 2 on p. 11, in the classical constraint programming paradigm
a constraint can only assign one out of two values to an instantiation: either
true, the instantiation is consistent with the constraint, or false, it is inconsis-
tent. While this approach leads to efficient constraint solving and propagation
algorithms, in some real life situations, it can be too restrictive, and a more
expressive framework is regarded as more adequate and natural.

For instance, suppose a user is uncertain whether a constraint should either
allow or forbid a certain instantiation; namely the user cannot decide, on the
evidence of the available information, whether a certain set of values is consistent
or inconsistent with the constraint. Then the user has only two alternatives, either
yes or no, in a crisp constraint setting. Instead, in a soft constraint environment
the user would be able to choose to what extent an instantiation can satisfy
a constraint. This is the case of systems for user interface applications, based
on constraint hierarchies (see [BFBW92, WB93, SMFBB93, BAFB96, Jam96,
BMSX97, Bar97a, Bar97b, Hos98, Bar98, BFB98]): a user can set preferences on
geometrical constraints, for example, between the cursor and the lines that the
user wants to draw on a computer screen; some constraints will have a higher
priority over the others, so that any optimal partial solution to the problem has
always to satisfy them.

In general, soft constraints allow users to model, naturally, those real life
problems which possess features like preferences, uncertainties, costs, levels of
importance or absence of solutions.

85

86 Chapter 5. Soft Constraint Propagation

5.1.2 Outline

There are several formalisations of soft constraint problems. In this thesis, we
consider the one based on semirings [BMR97]. A semiring structure provides:

• a non-empty set of elements that represent the desired features, like uncer-
tainties, preferences or others;

• a partial order to compare those and thus constraints;

• two operations for combining features and hence constraints: one returns
the least upper bound with respect to the semiring order; whereas the other
returns a lower bound with respect to the same order.

This formalism is a generalisation of existing approaches to soft CSPs. For in-
stance, the semiring based framework is a generalisation of the following others:
crisp CSPs, see Chapter 2; weighted or optimisation CSPs, see [DKL01]; valued
CSPs, see [SFV95, dGVS97, Sch00]; some fuzzy ([DFP93, Rut94]) and probabilis-
tic ([FL93]) CSPs.

In the literature, some of the standard constraint propagation algorithms for
crisp CSPs were successfully extended, and adapted, to semiring based CSPs.
This has lead to an algorithm schema, based on rules, for soft constraint propa-
gation. At each step of that schema, a subproblem of the original input problem
is solved, see [BMR97]. In this chapter, we briefly recall this rule based schema
and show how it can be recast through iterations of functions, see Section 5.4
below.

Constraint propagation over crisp constraints was studied in depth in Chap-
ter 4 by means of the SGI schema presented in Chapter 3. In this chapter, we
prove that the SGI schema can also be instantiated to a number of soft constraint
propagation algorithms: all those that are instances of the rule based schema,
since this is generalised by the SGI schema, see Section 5.4; a series of algorithms
which the original rule based schema cannot account for, see Section 5.5. In or-
der to prove this, it is sufficient to define appropriate partial orders between soft
CSPs, see Section 5.3.

Moreover, by analysing the types of functions that SGI iterates, we shall prove
in Section 5.4 that soft constraint propagation can be enforced by means of func-
tions which are not necessarily idempotent, as instead originally demanded by
the rule based schema. Thus ours is a double generalisation: in fact, we neither
require that functions for soft constraint propagation should solve a subproblem;
nor that they should be idempotent, see Section 5.4. The relaxation of these as-
sumptions allows us to account for further notions of soft constraint propagation
that are not expressible through the rule based schema, see Section 5.5.

Therefore, the SGI algorithm provides a general schema for soft constraint
propagation as well. Properties of the schema are applicable to all its instances.

5.1. Introduction 87

In particular in Section 5.4 we apply SGI to soft CSPs and attack not so easy
tasks, like the following, in the context of soft constraint propagation:

• Is it true that each execution of a soft constraint propagation algorithm
always return the same result? When does it happen (see Subsection 5.4.3)?

• Under which conditions does every execution of a soft constraint propaga-
tion algorithm terminate (see Subsection 5.4.4)?

In Chapter 4, we prove that the SGI algorithm always terminates whenever
it iterates inflationary functions over finite domains or constraints; this finiteness
hypothesis turn out to be common to all the analysed constraint propagation
algorithms in Chapter 4. However, when we deal with semiring based constraints
the set of preferences (i.e., the semiring universe) can be infinite, although the
domain and constraint set are finite: for example, probabilistic constraints can
be defined through a semiring that contains all the real numbers in the ordered
interval [0, 1]. Furthermore, the semiring structure for weighted constraints con-
tains either all real or all natural numbers. Thus it is not realistic to assume
that semiring based CSPs have finite constraints, hence we need to find another
property than finiteness to guarantee the termination of the SGI schema.

Our first termination result is mainly concerned with the partial order over soft
constraint satisfaction problems. It can be used to prove the termination of soft
constraint propagation algorithms over weighted constraints, if preferences range
over natural numbers and suitable functions are used for soft propagation. Our
second result for the termination of SGI is related to the two semiring operations
and its order. In turn, the latter result can be used to guarantee the termination
of soft constraint propagation algorithms over probabilistic constraints.

Both the aforementioned results guarantee termination in a number of cases,
however their hypotheses may be difficult to check. Nevertheless, when the second
semiring operation coincides with the greatest lower bound operation, the semir-
ing is also a distributive lattice; then all finitely generated sets, via the semiring
operations, are finite; thereby, functions for constraint propagation, expressed
through the semiring operations, can only return finitely many values. For in-
stance, this is the case of crisp constraints, and also that of fuzzy constraints,
e.g. functions for constraint propagation are combinations of max and min on the
interval [0, 1] of real numbers. Thus in such cases we obtain a third termination
result, whose range of applicability is the most restricted, but whose hypotheses
are the easiest to check.

5.1.3 Structure

The chapter is organised as follows. First, Section 5.2 introduces semirings, the
semiring based formalism for soft constraints, and its basic operations on con-
straints. Section 5.3 treats some orders among semirings, constraints, and prob-
lems, necessary for defining soft constraint propagation via rules and SGI. So, in

88 Chapter 5. Soft Constraint Propagation

Section 5.4, the SGI algorithm schema is extended to soft CSPs, and is proved to
encompass the rule based schema for soft constraint propagation. Subsection 5.4.4
is concerned with the termination of the SGI schema. Finally, in Section 5.5 we
display some arc constraint propagation algorithms and study them via SGI, and
in Section 5.6 we discuss some limitations of our approaches and possible future
directions.

5.2 Soft Constraints

In the semiring based formalism of [BMR97], a soft constraint is like a classical
constraint, namely a relation, such that each of its tuples gets assigned a pref-
erence value. So, if we recast relations through their respective characteristic
functions, passing from crisp to soft constraints means allowing the characteristic
function of a constraint to range over more values than just > (true) and ⊥ (false).
Once additional values are provided for constraints, suitable operations for their
combination and comparison have to be provided as well. Semiring structures, as
characterised below, give us all those ingredients.

5.2.1 Constraint Semirings

Constraint semirings and lattices

A constraint semiring, briefly c-semiring, is a structure S := 〈S,<S,×,⊥,>〉 that
enjoys the following properties:

• 〈S,<S,⊥,>〉 is a complete lattice, with bottom ⊥, and top >;

• × is a binary operation on S, which is commutative, associative, has ⊥ as
absorbing element and > as unit one. Moreover, × distributes over the least
upper bound operation, denoted with ∨.

Notice that the above definition is not the original one that is adopted in ib.,
nevertheless ours is equivalent to the latter. In this thesis, we prefer the lattice
characterisation of c-semirings because it directly highlights the partial order
relation, which plays a central role in the study of termination for soft constraint
propagation.

Some useful properties of c-semirings

The greatest lower bound operation and × are related. In fact, if ∧ denotes the
greatest lower bound operation of S, then

a× b ≤S a ∧ b,

5.2. Soft Constraints 89

for every pair of elements a and b in S. The above relation holds iff both the
following ones do:

a× b ≤S a and a× b ≤S b.

To prove the above relations, it is sufficient to ascertain that× enjoys the following
property:

a× c ≤S a (5.1)

for every pair of elements a and c in S; this amounts to saying that× is inflationary
with respect to the reverse ≥S order relation. Now, the relation (5.1) holds iff
× is monotone with respect to ≤S. This can be proved to hold iff the following
relation holds:

a× c ≤S a× b if c ≤S b. (5.2)

Then we exploit the fact that the top element > is the unit of × and infer (5.1).
So we are left to prove the monotonicity relation as in (5.2). But this is easy,
because the hypothesis c ∨ b = b yields the equality

a× (c ∨ b) = a× b,

and because × distributes over ∨.
We collect all the above results and some well-known facts concerning the

least upper bound operation ∨ in the following lemma, as they will be used over
and over in this chapter; see also ib.

Lemma 5.2.1.

• For every pair of elements a and b in S, we have that a× b ≤S a ∧ b.

• The × operation is inflationary with respect to ≥S, whereas ∨ is inflationary
with respect to ≤S: i.e., a ≤S a ∨ c and a× c ≤S c, for every a and c in S.

• Both × and ∨ are monotone with respect to ≤S: i.e., a × b ≤S c × d,
a ∨ b ≤S c ∨ d whenever a ≤S c and b ≤S d.

• The ∨ operation is idempotent: i.e., a ∨ a = a, for every a ∈ S. If ×
is idempotent as well, then this coincides with ∧ and the c-semiring is a
complete distributive lattice.

Proof. We are only left to prove the second part of the last item. So, let us
assume that × is idempotent. Then the relations{

a ∧ b ≤S a,

a ∧ b ≤S b,

and the monotonicity of × with respect to ≤S entail the relation

(a ∧ b)× (a ∧ b) ≤S a× b. (5.3)

90 Chapter 5. Soft Constraint Propagation

By hypothesis, × is idempotent, hence (a∧ b)× (a∧ b) is equal to a∧ b. This and
(5.3) yield the relation

a ∧ b ≤S a× b.

Thus the equality a ∧ b = a × b follows now from the last relation above and its
reverse as in the first item. 2

5.2.2 Soft Constraints

Given a c-semiring S := 〈S,<S,×,⊥,>〉, a domain scheme X and a domain D
over X (see Chapter 2), we can now define an S soft constraint C(s), over a
scheme s of X and the domain D on X, as a function

C(s) : D [s] 7→ S.

Intuitively, C(s) provides each tuple d ∈ D [s] with a preference value in the
c-semiring universe S.

A soft constraint satisfaction problem (SCSP) on S is a structure P = 〈X,D,C〉
that is defined as follows:

• X is a variable scheme and D is a domain set over X,

• C is a set of S soft constraints over schemes in X.

Whenever the semiring S to which we refer is clear from the context, we shall not
mention it; hence we shall usually write soft constraints and SCSP.

5.2.3 Examples

Crisp CSPs

Crisp CSPs are SCSPs for which the chosen c-semiring is the Boolean algebra

Bool = 〈{>,⊥},≤,∧,>,⊥〉,

in which ≤ is defined via the Boolean disjunction: a ≤ b iff a ∨ b = b.
By means of Bool we can associate a Boolean value, either ⊥ (false) or >

(true), with each tuple of elements in D. So here a constraint over Bool corre-
sponds to the characteristic function of a crisp constraint as in Chapter 2.

Weighted CSPs

Weighted or optimisation CSPs over natural numbers (see [DKL01]) can be de-
fined by means of the c-semiring

Weight = 〈N,≤N,+, 0,+∞〉,

in which ≤N is the standard total order over the set of natural numbers.

5.2. Soft Constraints 91

Example 5.2.2. Reconsider the map colourability problem as in Subsec-
tion 2.3.1 and suppose now to have exactly two colours, aqua and blue, for every
variable x1, x2 and x3 of the problem. Clearly, the problem does not admit any
solution if expressed as a crisp CSP. But suppose now that we want to find an op-
timal solution; in that, we want to maximise the number of satisfied constraints.
Then it is sufficient to recast the same constraints we had in Subsection 2.3.1 as
weighted constraints. Each of them will assign 0 to the pairs (aqua, aqua) and
(blue, blue), and 1 to all the remaining pairs. In this case, given a total assign-
ment, we shall count the number of constraints it satisfies (via

∑
), and if this

this number is the maximum (with respect to ≤) we shall regard this assignment
as a “solution”’ to this weighted map colourability problem.

Probabilistic and fuzzy CSPs

Probabilistic CSPs with minimum and maximum (see [FL93]) can be defined via
the c-semiring

Prob(min, max) = 〈[0, 1] ,≥R,max, 0, 1〉,
in which ≥R is the standard linear order over real numbers and max the corre-
sponding maximum operator.

On the other hand, fuzzy CSPs with maximum and minimum (see [DFP93,
Rut94]) can be defined via the c-semiring

Fuzzy(max, min) = 〈[0, 1] ,≤R,min, 0, 1〉,

in which ≤R is the standard linear order over real numbers and min the corre-
sponding minimum operator.

Example 5.2.3. Let us consider the map colourability problem as in Ex-
ample 5.2.2 again, and suppose that now we have a slight preference towards
any assignment that gives x3 the colour aqua; that is, we are not happy with
maximising the number of satisfied constraints, but we have a preference towards
a specific colour for a specific country. Then we could express this preference
by recasting C(x1, x3) and C(x2, x3) as fuzzy constraints, so that these assign a
greater value in the interval [0, 1] to the tuple (blue, aqua) than to (aqua, blue).
A “solution” is such that the returned value for the assignment aqua to x3 is the
maximum over all the minimum values for the assignments in which the colour
aqua is given to x3.

5.2.4 Basic Operations on Soft Constraints

Having defined soft constraints, we can now extend the basic operations for crisp
constraints, namely projection and join, to analogous operations for soft ones.
These are easily provided by means of the c-semiring operation × and the least
upper bound one; see [BMR97], where join is called combination.

92 Chapter 5. Soft Constraint Propagation

Join

Given two constraints, C1 := C1(s1) and C2 := C2(s2), their join C1 1 C2 is the
constraint over the scheme t := s1 ∪ s2 such that

C1 1 C2 (d) := C1(d [s1])× C2(d [s2]),

for every d ∈ D [t] (remember that d [si] is the projection of the tuple d over si).
In other words, the join of two constraints assigns, to each tuple, a value that

is the product (via the c-semiring ×) of the respective values returned by the two
joint constraints.

The join operation is associative, since × is. Therefore 1, which is defined as
a binary operation, is easily extended to an operation over any finite number of
constraints.

Example 5.2.4. In Example 5.2.3 the join of the two fuzzy constraints C1 :=
C(x1, x3) and C2 := C(x2, x3) is a constraint on C(x1, x2, x3) that assigns, for
instance, to (aqua, blue, aqua) the minimum between the values C1(aqua, aqua)
and C2(blue, aqua). While, in the case of Example 5.2.2, the join of the constraints
C1 and C2, now interpreted over the weighted c-semiring with natural numbers,
is the sum of C1(aqua, aqua) and C2(blue, aqua).

Projection

Given a constraint C := C(s) and a scheme t of s, the projection of C over t,
denoted by Πt(C), is the unique constraint over t such that

Πt(C)(d) :=
∨
{C(e) : e ∈ D [s] and e [t] = d} .

So, the projection of a constraint over s assigns, to each tuple d, the least upper
bound of the values assigned, by the original constraint, to all the tuples that are
equal to d when projected over s.

Example 5.2.5. Let us consider Example 5.2.3 and assume that C := C(x1, x3)
assigns 1/2 to (aqua, blue), then 1 to the most preferred assignment (blue, aqua),
and 0 to all the other ones. Then the projection of C over x3 is the constraint
C(x3) on x3 that assigns 1 to aqua, and 1/2 to blue. If C assigns +∞ to
(blue, aqua), 1 to (aqua, blue), 0 to the remaining pairs, and is hence recast as
a weighted constraint as in Example 5.2.2, then the projection of C over x3 will
assign +∞ to aqua and 1 to blue.

5.2.5 Solutions and Equivalent Problems

Solutions

In case of a crisp CSP P := 〈X,D,C〉, a solution to P is a tuple of D that
belongs to each constraint in C, see Chapter 2. In other words, a solution is

5.2. Soft Constraints 93

a tuple to which every P constraint assigns the value true, namely >, in the
Boolean structure Bool, see Subsection 5.2.3.

We repeat the same procedure for computing soft solutions. First, we need to
complete the soft problem P and obtain its completion P̄ , like in Subsection 2.4.2
in case of crisp CSPs:

• if there is more than one constraint on a scheme s, say C1, . . . , Ck, then we
replace them with the constraint on s equal to 1k

i=1 Ci — that corresponds
to intersection in the crisp case;

• if there are no constraints on a scheme s in P , then we create a new con-
straint C := C(s) that assigns the top value to every tuple in D [s], namely
C(d) := >, for every d ∈ D [s].

Consider the completion P̄ = 〈X,D,C〉 of an SCSP P . Then the solution to P
is the constraint

Sol(P) =1C∈P̄ C;

that is the constraint which assigns, to each tuple, the product via × of the values
assigned by the constraints in the completed problem.

If we are only interested in a solution over a scheme s of X, then we obtain a
solution to P over s by projecting Sol(P) over s; so we define it as

Sol(P, s) = ΠsSol(P).

Clearly, Sol(P) = Sol(P,X).

Equivalence

In the case of crisp constraints, two CSPs on the same scheme are equivalent if
they have the same set of solutions; see Definition 2.4.1. A similar characterisation
of equivalence among problems is found in the semiring based case, with the
requirement that the problems share the same c-semiring and domain set.

Two SCSPs on the same c-semiring S, scheme X and domain set D, say
P1 := 〈X,D,C1〉 and P2 := 〈X,D,C2〉, are equivalent if Sol(P1) = Sol(P2). In
this case, we write P1 ≡ P2.

Since two equivalent SCSPs are defined on the same c-semiring and domain
set, they also have equal solutions on each scheme of X: i.e., their equivalence
yields

Sol(P1, s) := Sol(P2, s) (5.4)

for every scheme s of X. Notice that, if the two domains were different, there
would be no guarantee for (5.4) to hold. Indeed, the concept of equivalence and,
more specifically, that of solution in case of SCSPs are interesting and subtle
issues, see [BCR00, Gen01a, Gen01b].

94 Chapter 5. Soft Constraint Propagation

Example 5.2.6. The solution to the max-min fuzzy CSP P of Example 5.2.3
assigns, to each state xi and colour for xi, a value in [0, 1]. For instance, let us
consider the tuple of colours (aqua, blue, aqua) for x1, x2, x3. If C(x1, x2) assigns
1/2 to (aqua, blue), C(x2, x3) assigns 1 to (blue, aqua) and C(x1, x3) assigns 1/3
to (aqua, aqua), then Sol(P) will assign the minimum of all these values, i.e.
1/3, to (aqua, blue, aqua). Suppose that Sol(P) assigns 1/4 to (aqua, blue, blue).
Then Sol(P, 〈x1, x2〉) will assign 1/3, i.e. the maximum between 1/3 and 1/4, to
(aqua, blue).

5.3 Soft Orders

As in the case of crisp CSPs, we need partial orders on SCSPs, to compare both
them and the iterations of functions defined on them. In the crisp case, partial
orders are based on the subset relation, see Subsection 2.5.2. For instance, in the
crisp case, we can compare the constraint C1(s) and C2(s) if C1(s) ⊆ C2(s). If we
recast the subset relation in terms of characteristic functions, we can rewrite it
as follows:

χC1(d) ≤ χC2(d), (5.5)

for every d in the domain on s, where ≤ can only compare > and ⊥.
Now, there is an obvious candidate for ≤ in (5.5) when we generalise crisp to

semiring based constraints: that is, the partial order relation ≤S of the c-semiring.
Following this idea, we first introduce a partial order relation among con-

straints via ≤S, see Subsection 5.3.1; then we lift such order to a partial order on
constraint sets in Subsection 5.3.2, and finally to problems, see Subsection 5.3.3.

In order to simplify the discussion, we adopt a common convention when
dealing with soft constraints: we always assume that SCSPs are complete. If
necessary, incomplete SCSPs can first be completed.

Convention 5.3.1. In the remainder of this chapter, we always assume that
every SCSP P is complete.

The above assumption, strictly speaking, is not necessary for the results in
the remainder of this chapter. However, it simplifies our discussion and notation.

5.3.1 Constraint Order

Given the partial ordering ≤S of a c-semiring S, we can define a new partial order
relation among constraints, as follows.

Definition 5.3.1. Let S := 〈S,<S,×,⊥,>〉 be a c-semiring, X a scheme and D
a domain set over X. Then consider two constraints C1 := C1(s) and C2 := C2(s)
over the scheme s of X. We write C1 @S C2 if the following conditions are both
satisfied:

5.3. Soft Orders 95

1. for all the tuples d ∈ D [s], C2(d) ≤S C1(d);

2. there exists a tuple d ∈ D [s] for which C2(d) <S C1(d).

We write C1 vS C2 in case only the first relation holds.

In other words, the constraint C1 is smaller than or equal to C2 in the order
vS if the former constraint assigns, to each tuple, either the same value as C2, or
a greater value with respect to <S. Loosely speaking, C2 is preferred to C1 if the
former constraint is possibly more restrictive than the latter, loosely speaking.

Theorem 5.3.2. The relation vS is a partial order among constraints defined
on the same c-semiring S := 〈S,<S,×,⊥,>〉, scheme X and domain set D.

Proof. We need to prove that vS is a reflexive, antisymmetric and transitive re-
lation. Reflexivity holds trivially. To prove antisymmetry, suppose that C1 vS C2

and C2 vS C1; this yields that both constraints share the same scheme, say s.
Now, for all tuples d ∈ D [s], we have both C1(d) ≤S C2(d) and C2(d) ≤S C1(d),
hence C1(d) = C2(d). Therefore, C1 = C2. The transitivity of vS follows from the
transitivity of ≤S. 2

5.3.2 Constraint Set Order

We can now easily extend the order vS over constraints to a new order between
constraint sets as follows.

Definition 5.3.3. Let S := 〈S,<S,×,⊥,>〉 be a c-semiring, X a scheme and
D a domain set over X. Consider two sets of constraints, C1 and C2, over X, D
and S. We write C1 vC C2 if the following two properties both hold:

1. there exist precisely one constraint C1(s) in C1 on s, and precisely one
constraint C2(s) in C2 on s, for each scheme s of X;

2. for each scheme s on X, we have that the relation C1(s) vS C2(s) holds
between the constraints of C1 and C2 on s.

The intuitive reading of C1 vC C2 is that the problems that C2 yield are at least
as constraining as those of C1, because C2 has at least as many more or equally
restrictive constraints as C1 has, loosely speaking.

Theorem 5.3.4. Consider a collection C of constraint sets on the same c-semiring
S := 〈S,<S,×,⊥,>〉, scheme X and domain set D. Then the relation vC is a
partial order between constraint sets in C.

96 Chapter 5. Soft Constraint Propagation

Proof. Reflexivity trivially holds. As for antisymmetry, suppose that both
C1 vC C2 and C2 vC C1 hold. Thus both the following relations hold for
each scheme s on X: C1(s) vS C2(s) and C1(s) vS C2(s), for C1 ∈ C1 and
C2 ∈ C2. Hence C1(s) = C2(s) for each scheme s on X, because vS is a partial
order relation, see Theorem 5.3.2. Transitivity follows similarly, by exploiting the
transitivity of vS. 2

5.3.3 Problem Orderings

At this point, we know two partial orders for SCPS: a partial order among con-
straints (vS); this lifted to constraint sets (vC). However, constraint propagation
algorithms have SCSPs in input; therefore, we need a partial order relation among
SCSPs to enforce soft constraint propagation by means of the SGI algorithm.

Definition 5.3.5. Given a c-semiring S := 〈S,<S,×,⊥,>〉, consider two prob-
lems over it, with the same scheme X and domain set D; say P1 = 〈X,D,C1〉
and P2 = 〈X,D,C2〉. Then we write P1 vP P2 if C1 vC C2.

Note 5.3.6. Notice how the above relation does not involve the domain set D
at all; the comparison of semiring-based problems takes place at the level of
constraint sets. Compare it to the definition of partial orders on CSPs, see Sub-
section 2.5.2. There are at least two reasons for such a difference, the latter
following from the former:

1. the definition of equivalence among SCSPs is meaningful only if the prob-
lems share the same variable domains, see Subsection 5.2.5;

2. arc consistency for SCSPs modifies unary constraints instead of variable
domains; in general, constraint propagation algorithms for SCSPs do not
alter the domains of variables.

We are in the position to define a partially ordered structure that contains all of
the SCSPs that constraint propagation algorithms step-by-step compute, start-
ing from their input SCSP. The following definition is a generalisation of Defini-
tion 2.5.2 to the case of semiring based soft constraints.

Definition 5.3.7. Consider a c-semiring S := 〈S,<S,×,⊥,>〉 and an SCSP
P := 〈X,D,C〉 over it. Then the soft closure of P , denoted by P ↑, is the class
of all problems P ′ on S, X and D such that the relation P vP P

′ holds.

Theorem 5.3.8. Consider a c-semiring S := 〈S,<S,×,⊥,>〉, and an SCSP
P := 〈X,D,C〉 over it. Then the following statements hold:

• 〈P ↑,vP 〉 is a partial ordering;

5.3. Soft Orders 97

• the bottom of 〈P ↑,vP 〉 is P itself.

Proof. We prove the first claim, the other one is immediate from the definition
of P ↑. As usual, we only prove that the relation is antisymmetric, because transi-
tivity can be proved similarly and reflexivity is trivial. Hence, suppose that both
P1 vP P2 and P2 vP P1 hold between two SCSPs in P ↑. So both those SCSPs
are defined on the same scheme X and domain set D. Moreover, C1 vC C2 and
C2 vC C1. From the two last relations and Theorem 5.3.4, we infer the identity
C1 = C2. Thus P1 = P2. 2

Again, we have an analogous result for crisp and soft CSPs.

Fact 5.3.9. Consider an SCSP P over a c-semiring S, and its soft closure P ↑.
Then the following statements hold:

1. if P1 vP P2 and P1 ∈ P ↑, then P2 ∈ P ↑;

2. if P1 vP P2, then P2 ↑⊆ P1 ↑. 2

The above statement has a counterpart in the crisp case: Fact 2.5.3.
We have now obtained a partial ordering 〈P ↑,v, P 〉, for every problem P . The

problems in P ↑ differ at most in their constraint components. However, such a
partial ordering on a SCSP P may contain too many problems with respect to
those that specific soft constraint propagation algorithms step-by-step compute,
starting from the given SCSP P .

We faced a similar situation with crisp CSPs: as our analysis in Chapter 4
clarifies, the closure of a problem carries over too many subproblems, that are not
iterated by certain constraint propagation algorithms. So, in Subsection 2.5.2, we
carved out those orderings — each based on a different subfamily of P ↑ — that
are of interest in the analysis of constraint propagation algorithms as in Chapter 4.

In the case of crisp CSPs, we distinguished between domain orderings (see
p. 24) and constraint orderings (see p. 25) on CSPs. We do not have this dis-
tinction for SCSPs, since soft problem orderings are based on the comparison of
constraint sets only; see also Note 5.3.6. So all we shall need in the analysis of
soft constraint propagation is the following refinement of the problem ordering
on SCSPs.

Definition 5.3.10. Let P be a problem over a c-semiring S, and consider its
soft closure P ↑. Assume that F(P) is a family of problems P ′ ∈ P ↑. If P belongs
to F(P), then the structure

〈F(P),v, P 〉
is called a problem ordering on P .

Given the above definition, any subset of P ↑, to which the complete problem P
belongs, gives rise to a problem ordering on P . This generality will prove helpful
when studying termination conditions, see Subsection 5.4.4 below.

98 Chapter 5. Soft Constraint Propagation

5.4 Soft Constraint Propagation via SGI

Our goal in this section is to analyse soft constraint propagation. First we define
a schema for constraint propagation which is based on functions that are called
“rules”, as originally defined in [BMR97], see Subsection 5.4.1; each of those rules
is limited to a combination of projection and join, in that they solve a subproblem
of the input problem. Then we extend soft constraint propagation based on rule
iterations by means of SGI iterations — see also Subsection 5.4.2 — and conclude
by tackling the issue of termination for soft constraint propagation algorithms
in Subsection 5.4.4.

5.4.1 Soft Constraint Propagation via Rules

Several traditional constraint propagation algorithms for crisp CSPs can be ex-
tended to SCSPs. For this purpouse, the notion of constraint propagation rule
was introduced in ib.

Rule iterations

Let us consider a c-semiring S := 〈S,<S,×,⊥,>〉, a domain D over X and a
constraint C ′(s) on a scheme s of X and the domain D. Assume that P :=
〈X,D,C〉 is a problem over S, and C(s) is the constraint on s of P . Then
P [C(s)/C ′(s)] denotes the problem that differs from P only in the constraint on
s, which is set equal to C ′(s).

Let P be an SCSP as above; then consider a scheme s of X and a scheme t of
s itself. A constraint propagation rule rst for P , on s and t, is a function on P↑
that is defined as follows:

rst (P
′) := P ′ [C(t)/ΠtSol(P, s)] ,

for any P ′ ∈ P↑.
In other words, the application of rst to P ′ ∈ P↑ adds the constraint ΠtSol(P

′, s)
over the scheme t to P ′. That constraint is obtained by combining all the con-
straints of P ′ on s, and then projecting the resulting constraint over t.

Once a c-semiring S := 〈S,<S,×,⊥,>〉 and an SCSP P := 〈X,D,C〉 are
given, a rule based on X is any rule rst for P , on two schemes, s of X, and t of s.

The application of a sequence of rules to a problem is obtained by composing
the rules in their order of occurrence in the sequence. An infinite sequence of
rules from a finite set R is fair if each rule of R occurs in the sequence infinitely
often.

So, given a problem P := 〈X,D,C〉 and a finite set of rules R on X, rule-
based constraint propagation R on X, starting from P , is defined as a fair iteration
of rules from R so that the first rule in the sequence is applied to P . The following
statement concerns itself with some properties of constraint propagation via rules.

5.4. Soft Constraint Propagation via SGI 99

Theorem 5.4.1 ([BMR97]). Consider a rule-based constraint propagation R,
starting from an SCSP P . If R stabilises at P ′, then P ′ is a common fixpoint of
all the rules from R. This common fixpoint P ′ is both unique and equivalent to
P , provided that × is idempotent. 2

Notice that fairness is assumed to ensure that the problem at which the iteration
stabilises is a common fixpoint of all the rules; and the idempotency of × is used
to ensure both the uniqueness of the result and the equivalence.

However, the additional hypothesis of fairness is redundant for the SGI al-
gorithm schema, as its task is accomplished by the update operator, see Sub-
section 5.4.2. So we shall drop the assumption of fairness and only restrict our
attention to bare iterations of rules. Still, we shall be able to prove that the
stabilisation point is always unique due to the monotonicity of rules, see Sub-
section 5.4.3. In the following part, we list the main properties of rules — as
functions — as they are used in Subsection 5.4.3.

Order-related Properties of Soft Constraint Propagation Rules

We recall, from Subsection 5.2.5, that two problems P1 and P2, defined on the
same scheme and domain, are equivalent if they have the same solution constraint;
if this is the case, we write P1 ≡ P2.

The following lemma lists the main properties of soft constraint propagation
rules that are related to the SCSP order, see Definition 5.3.5.

Lemma 5.4.2. Consider a problem P := 〈X,D,C〉 on a c-semiring S, and a
rule r based on X.

• If P ′ ∈ P↑, then r(P ′) is still in P↑. So r, defined on X, is a function on
P↑. Moreover, P ′ ≡ r(P ′) if × is idempotent.

• Furthermore, P ′ vP r(P
′), for every P ′ ∈ P↑.

• Consider two SCSPs, P1 and P2 in P↑. If P1 vP P2, then r(P1) vP r(P2).

Proof. The second property states that rules are inflationary functions over any
constraint ordering on P . This is based on the inflationarity of × and ∨, as in
Lemma 5.2.1, and the definition of SCSP order. Whereas the last property is
concerned with the monotonicity of rules, and again follows from Lemma 5.2.1
and the definition of SCSP order. 2

100 Chapter 5. Soft Constraint Propagation

5.4.2 Soft Constraint Propagation via the SGI Schema

The functions that are iterated in a rule based constraint propagation are of a
specific form: they are obtained from join and projection, so that each of them
solves a subproblem of the input problem. Whereas the SGI algorithm does not
impose any specific request on the iterated functions. Functions can be of any sort
in the SGI schema; so we are able to generalise rule-based constraint propagation
as follows.

Definition 5.4.3. Consider an SCSP problem P over a c-semiring S. A soft
constraint function for P is a function f : P↑ 7→ P↑.

Notice that a function f on a family F(P) of P↑, i.e.,

f : F(P) 7→ F(P), (5.6)

can be uniquely extended to a function on the whole set P↑: that is to a constraint
function as in Definition 5.4.3. We only need to define it equal to the identity
on every problem that does not belong to F(P). Vice versa, if f is a constraint
function and F(P) is closed for it as in (5.6), then f can be restricted to a
function over F(P). The distinction is only notational in this context, therefore
we shall usually ignore it, and freely refer to any function for which (5.6) holds
as a constraint function over F(P).

Functions versus rules. The characterisation of soft constraint function given
in Definition 5.4.3 abandons a number of assumptions and attributes of rules and
rule-based constraint propagations (see Subsection 5.4.1):

• soft constraint functions do not necessarily compute solutions to subprob-
lems;

• soft constraint functions are neither assumed to be monotone and inflation-
ary, nor idempotent if × is;

• the fairness assumption on iterations of soft constraint functions is not re-
quired.

The first generalisation is the most rewarding one, in that a number of constraint
propagation algorithms do not exactly solve subproblems, but compute an ap-
proximation of its solutions; see, for example, the basic algorithm for bound-
consistency in [MS98], or generalised arc consistency for SCSPs as in Section 5.5
below. Thus SGI for SCSPs allows us to instantiate more algorithms than the
original rule based schema.

As for the fairness hypothesis, there is no loss in abandoning it, as update takes
its role. In fact, as far as the update operator satisfies Axiom 3.3.1, see Chapter 3,

5.4. Soft Constraint Propagation via SGI 101

the SGI schema computes a common fixpoint of all the iterated functions. We
rewrite that axiom and the SGI algorithm below for the reader’s convenience, and
specialise them to SCSPs. Remember that FP is the F subset that collects all
the F functions which could alter the input problem P .

Axiom 5.4.1 (common fixpoint). Let F be a set of functions on P↑. Suppose
that g(P ′) 6= P ′, for g ∈ F and P ′ ∈ P . Then the update operator adds to G all
the F −G functions f such that f(P ′) = P ′ while fg(P ′) 6= g(P ′).'

&

$

%

Algorithm 5.4.1: SGI(P, FP , F)

o := P % complete input problem;
G := FP ;
while G 6= ∅ do
choose g ∈ G;
G := G− {g} ;
o′ := g(o);
if o′ 6= o then
G := G ∪ update(G,F, g, o);
o := o′

The following result is a corollary of Theorem 3.3.3 in Chapter 3, and it states
the every execution of the SGI schema on SCSPs computes a common fixpoint of
the iterated functions.

Corollary 5.4.4. Consider an SCSP P on S := 〈S,<S,×,⊥,>〉 and a finite
set F of functions on a family F(P) of P↑ problems, to which P belongs. Then
every terminating execution of the SGI algorithm that satisfies the Common Fix-
point Axiom 5.4.1, with input P and F , computes a common fixpoint of all the
functions from F . 2

5.4.3 The Role of Monotonicity

As in the case of crisp constraints, if an instance of SGI for soft SCSPs iterates
functions which are monotone, with respect to a certain problem order, than
that instance of SGI always returns the same common fixpoint of the iterated
functions; i.e., the least problem, with respect to the assigned problem order, that
is a common fixpoint of all the iterated functions. So let us first recast Axiom 3.3.2
for generic problem orderings — as for these, see Definition 5.3.10.

Axiom 5.4.2 (least fixpoint). The finite set F only contains monotone con-
straint functions over a problem ordering 〈F(P),v, P 〉.

102 Chapter 5. Soft Constraint Propagation

Given the above axiom, we infer the following corollary of Theorem 3.3.8.

Corollary 5.4.5. Consider an SCSP P on S := 〈S,<S,×,⊥,>〉, a finite set
F of functions on a problem ordering 〈F(P),vP , P 〉, and assume the Common
Fixpoint Axiom 5.4.1 and the Least Fixpoint Axiom 5.4.2. Then every terminating
execution of SGI, with input P and F , computes the same problem: i.e., the least
common fixpoint of all the F functions with respect to the problem ordering. 2

The above corollary is interesting in that it highlights the role of monotonicity in
the confluence of SGI on SCSPs. This property for rule based constraint prop-
agation was originally restricted in [BMR97] to the case of c-semirings with an
idempotent × operation, see Theorem 5.4.1. Instead, Corollary 5.4.5 allows us to
extend this to all executions of SGI with rules, independently of the idempotency
of ×, or the fairness hypothesis.

Corollary 5.4.6. Let R be a finite set of rules for an SCSP P := 〈X,D,C〉.
Then all the terminating executions of SGI, with R rules and P as input, compute
the same problem. This is the least common fixpoint of all the rules of F with
respect to the problem ordering on P .

Proof. Lemma 5.4.2 yields that any rule based on X is an inflationary and
monotone soft constraint propagation function on 〈P↑,vP , P 〉. Corollary 5.4.5
implies now our claim. 2

We now turn our efforts towards the issue of termination of SGI with SCSPs
and soft constraint functions. This is not an easy task in case of SCSPs; in fact,
even if SCSP domains are finite, the c-semiring may be infinite, which is obviously
a source of possible non-termination. So, whereas for crisp CSPs inflationarity of
functions and finite domains are feasible and sufficient assumptions to ensure the
termination of SGI (see Corollary 3.3.10), we shall see, in the following subsection,
that this is not the case for all SCSPs.

5.4.4 Termination

As remarked in the preceding subsection, the presence of an infinite c-semiring
universe may lead to a constraint propagation algorithm which does not always
terminate. In this subsection we focus on the issue of termination and investigate
under which conditions the SGI schema always terminates. We obtain general
termination conditions, that yield the termination of every soft constraint prop-
agation algorithm that is an instance of SGI.

5.4. Soft Constraint Propagation via SGI 103

Problem orderings and termination

Our first termination result below, concerns itself with the problem order (see Def-
inition 5.3.5): instead of demanding the finiteness of the ordering, we assume that
its ascending chains have finite length. Then Theorem 3.3.9 guarantees the termi-
nation of the SGI schema, in case of soft constraint propagation functions which
are inflationary and computable. In other words, if Axiom 3.3.3 is satisfied. We
rewrite that axiom as follows, and specialise it to the case of SCSPs and soft
constraint propagation functions.

Axiom 5.4.3 (termination).
◦ Each soft constraint function f ∈ F is computable over a problem ordering

〈F(P),vP , P 〉.
◦ The F functions are inflationary with respect to the assigned problem order.
◦ The ordering 〈F(P),vP , P 〉 satisfies the ascending chain condition (ACC):

i.e., each @P -chain in P↑ is finite.

The following statement is an immediate consequence of Theorem 3.3.9.

Corollary 5.4.7 (termination 1). Let us consider an SCSP problem P on
a c-semiring S and a problem ordering FP := 〈F(P),vP , P 〉 on P . Let us in-
stantiate SGI with P and a finite set F of functions on FP. Furthermore, let us
assume the Common Fixpoint Axiom 5.4.3. Then every execution of this instance
of SGI terminates, computing a common fixpoint of the F functions. 2

The above corollary can be used to prove termination in some cases, like the ones
discussed in Section 5.5. However, it is a highly general result, so its hypothesis
might be sometimes difficult to check. In turn, in some circumstances, specific
properties of the adopted functions or c-semiring, easier to verify, can imply the
assumptions of the above corollary, and thus immediately ensure the termination
of SGI. This is the case of problem orderings step-by-step computed from the
c-semiring operations, as made precise in the remainder of this section.

Semiring based functions and termination

The termination result in Corollary 5.4.7 refers to any inflationary functions on
a problem ordering. In the following part, we explore and characterise some
problem orderings and functions that satisfy Axiom 5.4.3.

The main motivation for relaxing the assumptions of Axiom 5.4.3 to a generic
family of problems in P↑ is that, in general, the whole family P↑ contains too
many problems with respect to those generated by specific constraint propagation
algorithms. Above all, this is the case if we analyse constraint propagation algo-
rithms to establish whether and under which conditions they termination. The

104 Chapter 5. Soft Constraint Propagation

following simple example, that pertains to a type of SCSPs of primary interest,
explains our concern.

Example 5.4.8. We consider the fuzzy c-semiring 〈[0, 1] ,≤,min, 0, 1〉, and a
fuzzy CSP P over it. The problem P has variable domains equal to {a} for
both of its variables, x and y; P has just the trivial constraint c = 〈1, {x, y}〉,
where 1 is the constant function that assigns the value 1 to each possible instan-
tiation of x and y in D. Then P↑ is the class of all problems on x and y. It is
evident that the problem order on P↑ cannot satisfy the ACC.

Consider, for instance, the set of problems Pn in P↑, the constraints of which
are defined as follows:

• both unary constraints on x and y assign 1 to a, their only possible instan-
tiation;

• the constraint of Pn on x and y assigns the value 1/n+ 1 to the pair (a, a).

The relation Pn @ Pn+1 is of strict order for every n ∈ N, since 〈1/n : n ∈ N〉 is
an infinite <-descending chain. So we have an infinite @-chain in P↑.

A similar example applies to probabilistic CSPs with max instead of min.

However, if we restrict our attention to soft constraint functions and families of
problems that are, in some sense, finitely generated via those functions, we may
avoid the flaws of the above example. First we characterise such families and then
study SGI with them.

Definition 5.4.9. Consider an SCSP P := 〈X,D,C〉 on a c-semiring S, and a
finite set F of constraint functions on P↑. Define F (P) to be the following subset
of P↑:

• P belongs to F (P);

• if P ′ belongs to F (P), then there are finitely many F functions, say g1, . . . , gk,
such that P ′ is equal to g1 · · · gk(P);

• nothing else belongs to F (P).

Then 〈F (P),v, P 〉 is the problem ordering that is finitely generated by F on P .

This is a typical construction in set theory, see [DP90].

The following statement is only Corollary 5.4.7 rephrased for orderings gen-
erated by F functions; there is nothing really new about it but the choice of
orderings. However, we shall use it as follows in the remainder of this section.

5.4. Soft Constraint Propagation via SGI 105

Lemma 5.4.10. Given a c-semiring S and an SCSP problem P on it, instantiate
the SGI algorithm with a finite set F of constraint functions and P . Suppose that
Axioms 5.4.1 and 5.4.3 hold for 〈F (P),vP , P 〉 and the F functions. Then every
execution of the SGI algorithm terminates, computing a common fixpoint of the
F functions. 2

In case of crisp constraints, such lemma could be applied to arc consistency prob-
lems and the ordering F (P) would be contained in the domain ordering over P ,
see Section 4.2. However, in the soft case it may not be trivial to envisage F (P),
or a family that contains it and for which Axiom 5.4.3 holds. However, we do
have the c-semiring ordering and operations, and so the question is whether these
can be used to construct F (P) as in the above lemma.

In the following, we focus on the c-semirings operations and partial order, and
introduce the notion of semiring closure of a soft constraint problem; this mirrors
the notion of ordering generated by functions.

Definition 5.4.11. Consider an SCSP P := 〈X,D,C〉 over a c-semiring S :=
〈S,<S,×,⊥,>〉, and the set C(P) of c-semiring values that occur in P : i.e.,

C(P) :=
⋃
C∈C

{C(d) : d ∈ D [s]} .

Then the semiring closure of P , denoted by C̄(P), is the smallest (with respect
to set inclusion) of all sets B that enjoy the following properties:

1. C(P) ⊆ B ⊆ S;

2. B is closed under ∨ and ×.

Notice that the previous definition is meaningful, since there always is a set that
satisfies the two properties as above; that is, the c-semiring universe S itself.

What we need now is to single out those constraint functions that, applied to a
problem P , compute values that are in the semiring closure of P . Such functions,
intuitively, are defined via the two semiring operations, ∨ and ×. So, given an
SCSP P , those functions will return values that are either in C(P) or obtained
from elements of C(P) by means of ∨, ×, or their composition.

Definition 5.4.12. Consider an SCSP P over S, and a soft constraint function
g : P↑ 7→ P↑. Then g is a semiring based function if, for every P ′ ∈ P↑, it enjoys
the following property:

C̄(g(P ′)) ⊆ C̄(P ′).

106 Chapter 5. Soft Constraint Propagation

In other words, the c-semiring values that a semiring based function associates
with a problem P ′ can all be found in the semiring closure of P ′.

The line of our argument should be clear by now: since semiring based func-
tions can only return values in the semiring closure of their input problem, the
termination of SGI with such functions can be established by studying semiring
closures.

So, let us turn our attention to semiring closures and semiring based functions
as in the following lemma.

Lemma 5.4.13. Consider an SCSP P on S and a finite set of semiring based
functions F . Assume also that the c-semiring order <S satisfies the Descending
Chain Condition (DCC), when restricted to C̄(P): i.e., there are no infinite de-
scending <S-chains of C̄(P) elements. Then the problem ordering F (P) satisfies
the ACC.

Proof. Suppose that the thesis of this lemma does not hold. That is, suppose
that there is an infinite chain of F (P) problems,

P = P0 @P · · · @P Pn @P Pn+1 @P · · · (5.7)

where, for each n ≥ 1, Pn := g1 · · · gk (P), for some g1, . . . , gk ∈ F . Since all the
F functions g are semiring based, we also have

C̄(Pn) ⊆ C̄(P), (5.8)

for every n ∈ N. We now aim at proving that an infinite descending <S-chain can
be extracted from (5.7), thereby contradicting our assumption on <S.

In fact, (5.7) yields the existence of a constraint Cn ∈ Pn that is strictly
greater than Cn+1 ∈ Pn+1; that is for which Cn @S Cn+1 holds. This is true for
every n ∈ N. As the chain in (5.7) is infinite, while the scheme X is finite, we can
extract (at least) an infinite chain of constraints, all on the same scheme s, from
the chain (5.7):

· · · @S Cm(s) @S Cm+1(s) @S · · · (5.9)

Now, Cm(s) @S Cm+1(s) means that there exists a tuple d ∈ D [s] for which the
following relation holds:

Cm(s)(d) >S Cm+1(s)(d).

As the variable domain set D is finite while the chain in Equation (5.9) is infinite,
we can extract an infinite chain of semiring elements from the chain (5.9) of the
following form:

· · · >S Ck(d
′) >S Ck+1(d

′) >S · · · (5.10)

5.4. Soft Constraint Propagation via SGI 107

All the c-semiring elements that occur in (5.10) belong to C̄(P) due to (5.8).
Therefore, the restriction of the order <S to the set C̄(P) does not satisfy the
DCC, which contradicts our hypothesis. 2

The following corollary follows now from Lemma 5.4.10 (which is Corollary 5.4.7,
specialised to finitely generated orderings) via Lemma 5.4.13.

Corollary 5.4.14 (termination 2). Consider an SCSP P over S and a fi-
nite set F of semiring based functions. Assume the Common Fixpoint Axiom 5.4.1.
Suppose that the F functions are computable and inflationary over a problem or-
dering of the form 〈F (P),vP , P 〉. Assume, also, that the c-semiring order <S sat-
isfies the Descending Chain Condition (DCC) when restricted to C̄(P); namely,
there are no infinite descending <S-chains of C̄(P) elements. Then every exe-
cution of the SGI algorithm terminates, computing a common fixpoint of the F
functions. 2

Nevertheless, even the assumptions of Corollary 5.4.14 may be difficult to
check. In fact, it might not always be trivial to determine the semiring closure
of a given SCSP P ; furthermore, we should also check that the restriction of the
semiring order to the closure satisfies the DCC. Nevertheless, if the multiplicative
operation of the semiring is idempotent, then the semiring closure of any given
problem is always finite, and hence satisfies the DCC.

Corollary 5.4.15 (termination 3). Consider an SCSP P on S and a finite
set of F of semiring based functions. Assume the Common Fixpoint Axiom 5.4.1.
Suppose that these are inflationary on a problem ordering defined on F (P). As-
sume, also, that the × operation of S is idempotent.

• Then the semiring closure of P is finite.

• Thus every execution of the SGI algorithm terminates, computing a common
fixpoint of the F functions.

Proof. We only need to prove the first item, and the second follows then from
Corollary 5.4.14. First, let us recall that a c-semiring with an idempotent ×
operation is a distributive complete lattice, see Lemma 5.2.1. Furthermore, every
finitely generated sublattice of a distributive lattice is finite, see [DP90]. Thus
every finitely generated sublattice of a c-semiring with idempotent × operation
is finite.

Now, the set C(P) of all semiring elements in P is finite, since every SCSP
has finitely many constraints, finite domains and finitely many variables. So the
semiring closure of P is finitely generated. Therefore the semiring closure of P is
finite, due the aforementioned result of lattice theory. 2

108 Chapter 5. Soft Constraint Propagation

Notice that the above two results concerning terminations are the analogues
of Theorem 4.14 in [BMR97]. However there the set C̄(s) is assumed to be finite
in order to guarantee the termination of a constraint propagation algorithm. This
hypothesis is much more restrictive, and implies ours in Corollary 5.4.14. Thus
Theorem 4.14 in ib. is a special case of our Corollaries 5.4.14 and 5.4.15.

Finale

Our results concerning termination can suggest various strategies for proving the
termination of SGI instances, like the following ones.

• If the constraint functions are semiring based and the multiplicative opera-
tion × of the c-semiring is idempotent, then we resort to Corollary 5.4.15.

• If × is not idempotent, but the soft constraint functions are semiring based,
we can check whether the restriction of the semiring order to the semiring
closure of P satisfies the DCC and appeal to Corollary 5.4.14.

• If the restriction of the semiring order to the semiring closure of P does
not satisfy the DCC or the soft constraint functions are not all semiring
based, then we can try to prove that the problem order on P↑, or a smaller
problem ordering on P satisfies the ACC. If the F functions are inflationary
with respect to that ordering, then SGI terminates by Corollary 5.4.7.

In Section 5.5 below, we investigate some examples of constraint propagation
algorithms for SCSPs, and briefly analyse them by means of the theoretical results
of the present section.

5.5 Soft Constraint Propagation Algorithms

In this section, we briefly survey several soft constraint propagation algorithms
and show how the general results concerning SGI over soft CSPs can be used to
both describe and analyse those specific algorithms. We restrict our attention
to arc consistency algorithms over SCSPs; for these are the most used constraint
propagation algorithms over SCSPs and easier to explain.

Our account of constraint propagation algorithms in this section has no pre-
tence of completeness. However, it proves that a number of constraint propagation
algorithms for SCSPs are extensions of their corresponding crisp counterparts,
since all of them are instances of SGI. By these claims, we mean that the basic
process of “prune-and-propagate” is carried over, and only slightly modified by
passing from crisp to soft CSPs:

• pruning of domain or constraint values is transformed as reduction to more
restrictive constraint problems, so to speak;

5.5. Soft Constraint Propagation Algorithms 109

• whereas the propagation phase is characterised as in the crisp case, because
update is not substantially different.

We start our survey and analysis with the fuzzy and probabilistic cases, based
on the ≤R total order over real numbers, and the max or min operator. Then
we deal with a form of generalised arc consistency for soft constraint problems,
that is defined through functions which are not finitely generated by means of the
two c-semiring operations. Finally, we briefly present the partial arc consistency
counter algorithm by Freuder and Wallace, and show that this simple constraint
propagation algorithm is an instance of SGI too.

5.5.1 Probabilistic and Fuzzy Arc Consistency Algorithms

Let us consider, as in Subsection 5.2.3, a fuzzy CSP P := 〈X,D,C〉 based on the
c-semiring 〈[0, 1] ,≤R,min, 0, 1〉. Notice that × is the minimum operator, so it is
idempotent and the underlying c-semiring is a distributive lattice.

Then, given a unary constraint Ci, we define, for each xj such that i 6= j, a
function of the form f(xi, s); the scheme s is equal either to 〈xi, xj〉 if i < j, or to
〈xj, xi〉 if j < i. Then, f(xi, s), if applied to P , returns a problem P ′ that differs
from P at most in its unary constraint C ′(xi), that is defined as follows:

E(s)(d) := min {C(xi)(d [xi]), C(s)(d), C(xj)(d [xj])}, for every d ∈ D [s] ,

C ′(xi)(a) := max {E(s)(d) : d ∈ D [s] and d [xi] = a}, (5.11)

in which C(xi), C(xj) and C(s) are all P constraints. Each f(xi, s) function is a
soft constraint function on F (P), that collects all problems P ′ such that P v P ′,
and P differs from P ′ at most in the unary constraints.

Thus, Corollary 5.4.15 can be directly employed to prove that any constraint
propagation algorithm with f(xi, s) functions such as (5.11) always terminates,
whenever it is an instance of SGI. The returned problem is a common fixpoint of
the iterated functions as in (5.11).

Since those functions are also monotone with respect to the problem order v
on F (P), then all the executions of the SGI algorithm with them computes the
same problem; namely, the least common fixpoint with respect to the problem
order, that is more constraining than P . This is due to Corollary 5.4.5.

Notice that each function f := f(xi, s) such as (5.11) preserves equivalence:

Sol(P) = Sol(f(P)).

It is not a difficult exercise to verify that the above relation holds, since max and
min are both idempotent. We refer the reader to [Gen01a, Gen01b] for a deeper
analysis on this topic.

Finally, let us consider a probabilistic CSP P := 〈X,D,C〉 based on the c-
semiring 〈[0, 1] ,≥R,max, 0, 1〉. Notice that × is the maximum operator, so it is
idempotent and the underlying c-semiring is a distributive lattice.

110 Chapter 5. Soft Constraint Propagation

As in the fuzzy case, arc consistency is enforced by means of functions of the
form f(xi, s). When this function is applied to P , it returns a problem P ′ that
differs from P at most in its unary constraint C ′(xi), that is defined as follows:

E(s)(d) := max {C(xi)(d [i]), C(s)(d), C(xi)(d [j])}, for every d ∈ D [s] ,

C ′(xi)(a) := min {E(s)(d) : d ∈ D [s] and d [xi] = a}, (5.12)

in which C(xi), C(xj) and C(s) are all P constraints. As in the case of fuzzy
CSPs, we conclude that any constraint propagation algorithm with f(xi, s) func-
tions as in (5.12) always terminates, whenever it is an instance of SGI (by Corol-
lary 5.4.15). The returned problem is the least common fixpoint of the iterated
functions as in (5.12), with respect to the problem order (by Corollary 5.4.5).

5.5.2 Generalised Arc Consistency Algorithms

The above functions in Equations (5.11) and (5.12) are semiring based functions,
as characterised in Definition 5.4.12. However, the user may profit from having at
her/his disposal further functions than those provided by the chosen c-semiring.

To our knowledge, it was first Schiex to underline the faults of soft arc con-
sistency for weighted CSPs and propose a solution to it. In fact, as shown for
instance in [Sch00], if only addition is used to enforce soft constraint propagation,
equivalence gets lost. So, in [Sch00, CS01], arc consistency is refined by intro-
ducing a sort of inverse operation to addition; this new operation is not — in our
terminology — semiring based.'

&

$

%

Algorithm 5.5.1: AC-proj and AC-join

procedure AC-proj(C(s), xi, a)
β := min {C(s)(t ∪ {a}) : t ∈ D [s− {xi}]};
C ′(xi)(a) := min {C(xi)(a), β} ;
if C ′(xi)(a) 6= C(xi)(a) then
C(xi)(a) := C ′(xi)(a);
for d ∈ D [s] do C(s)(d, a) := C(s)(d, a)− β;

procedure AC-join(C(s), xi, a)
for d ∈ D [s− {xi}] do
β :=

∑
xj∈sC(xj)((d ∪ {a}) [xj]);

γ := max
{
C(s)(d ∪ {a}),

∑
xj∈sC(xj)((d ∪ {a}) [xj])

}
;

The resulting algorithm in [CS01] iterates two sorts of functions, illustrated as
in Algorithms 5.5.1. The algorithm of [CS01] can be easily turned into an instance
of SGI. Hence this explains how the algorithm computes a common fixpoint of

5.5. Soft Constraint Propagation Algorithms 111

all the iterated functions. The algorithm of [CS01] preserves equivalence, but
neither its confluence nor its termination can be ensured in the general case;
in fact, functions for this are neither inflationary nor monotone over the soft
constraint orderings.

5.5.3 Maximal CSPs

An interesting case of weighted CSPs, see Subsection 5.2.3, is constituted by
maximal CSPs, briefly max-CSPs. Given an over constrained CSP, namely a
CSP that does not admit solutions, Freuder et al. (see [FW92]) devised a series
of algorithms to maximise the number of satisfied constraints, regardless of their
importance. In other words, each constraint can assign one out of two levels of
preference to each constraints; either 0 (yes), or 1 (no). Then, at each step of the
basic algorithm in [FW92], the number of constraints, unsatisfied by the extension
d′ of the current assignment d, gets computed; then this number is compared
with the stored number of unsatisfied constraints by a previously computed total
assignment — the initial stored number being 0 or another lower bound, chosen
by the programmer. If the stored number is less than the new computed value,
then search is abandoned along the path of d′; else it continues to extend it to
another variable. This basic branch-and-bound algorithm terminates when the
number of violated constraints is minimised, and a total assignment that does so
is returned.

In [FW92], Freuder and Wallace devise also a form of arc consistency for
max-CSPs, named partial arc consistency. Their partial arc consistency counter
(PACC) algorithm computes the number of satisfied constraints for each variable
instantiation. The PACC algorithm is extended, by means of SGI, to its hyper
arc version, namely the Partial Generalised Arc Consistency Counter (PGACC)
Algorithm 5.5.2 displayed as below. This is a naive algorithm, and it could be
improved in a number of way, for instance by ordering variables. However, we
only aim at showing that PACC is an instance of the more general schema, SGI,
for soft constraint propagation.

First we regard the given max-CSP as a weighted CSP, so that its constraints
can only assign either 0 or 1 to their tuples. Therefore our extension of the par-
tial arc consistency counter algorithm becomes straightforward. In fact, instead of
assuming only binary constraints, we check that a variable instantiation is consis-
tent with constraints of any arity. As for this, we introduce new unary constraints
in the original problem; namely we define a “counter constraint” CC(i) for each
variable xi of the problem. So each CC(i) assigns a natural number to each value
of the original CSP domain Di; whereas all the original problem constraints can
only assign either 0 or 1 to their tuples. In other words, CC(i) is assumed to
count the number of satisfied constraints for each assignment a of the variable
xi. If no prior knowledge is assumed, each CC(i) of the extended input problem,
denoted by P , assigns 0 to each value in Di.

112 Chapter 5. Soft Constraint Propagation

The functions, iterated by the PGACC algorithm, are defined as follows: for
each value a in Di, the input problem domain, we define a function f(xi, a) of
the form min { ,

∏ ∑
}(a). So, given a problem Pi ⊇ P , the computed problem

Pk+1 := f(xi, a)(Pk) differs from Pk at most in the added constraint CCk+1(xi)
that is characterised as follows:

CCk+1(xi)(a) := min

{
Ck(xi),

∏
i

∑
{Ck(s) : xi ∈ s, s 6= xi}

}
(a).

Notice that each selected function is removed after being applied in PGACC,
and that update is always empty; in fact the adopted functions f(i, a) are all
idempotent and commutative. Therefore, there is no propagation as, commonly,
in the case of classical crisp constraints.'

&

$

%

Algorithm 5.5.2: PGACC(P, F)

P := given problem, extended with GC;
G := F ;
while G 6= ∅ do
choose f(xi, a) ∈ G;
P ′ := f(xi, a)(P);
G := G− {f(xi, a)}

The above algorithm can only count the number of constraint violations for each
assignment. It could be modified so as to incorporate a propagation phase, as
suggested in see [FW92].

The fact that PGACC terminates is obviously true, since there is no propagation
phase; i.e., update is empty. The termination of the PGACC algorithm is also a
trivial consequence of Corollary 5.4.7, since the generated problem order on P is
always finite, and hence it satisfies the ACC.

5.6 Conclusions

5.6.1 Synopsis

In the present chapter, constraints with preference values, i.e., soft constraints,
are introduced and a number of constraint propagation algorithms for these are
studied. So, the SGI schema is used to represent and analyse semiring-based con-
straint propagation algorithms, as we did in Chapter 4 for classical constraints.
Therefore, the SGI algorithm provides a general schema for soft constraint prop-
agation as well. Again, the results obtained for the schema are applicable to all
its soft instances as straightforward corollaries.

5.6. Conclusions 113

In particular, termination is not an easy issue in the context of soft constraint
propagation algorithms: yet our analysis stresses the role that, in this, inflationar-
ity of soft constraint functions and well-founded orders play. This results in three
general termination properties that can be applied in different soft frameworks,
as we summarise at the end of Subsection 5.4.4.

5.6.2 Discussion

The SGI algorithm schema iterates functions according to a certain strategy;
however these are not required to have special properties for the algorithm to
compute a common fixpoint of theirs. Due to this generality, we are able to
instantiate this schema to a larger class of soft constraint propagation algorithms
than the rule based schema of [BMR97] can account for, see Section 5.5.

Also, properties of functions, i.e. monotonicity and inflationarity, are studied
as separate issues in Chapter 3. Thus their respective roles in connection with
certain behaviours of soft constraint propagation algorithms are differentiated.
This is already an achievement: in the soft constraint literature, often, the two
properties are studied together and the role of each in the analsys of soft con-
straint propagation thus gets lost. This distinction can help in the design of new
algorithms: e.g., it is often the case that in planning we do not want an algorithm
to terminate, and an optimal solution is the one that maximises the number of
satisfied constraints; hence inflationarity is a property that should be overlooked
in the design of algorithms for such problems. On the other hand, the capability
to predict the outcome of the algorithms’ computations could be essential; thus
monotonicity becomes an important requirement.

In the remainder of this part, we conclude our theoretical analysis of constraint
propagation algorithms: in the following chapter, we summarise and specify all
the functions used to characterise them.

Chapter 6

Constraint Propagation Functions

6.1 Introduction

6.1.1 Motivations

The relational model is one of the best-known database models, see [Ull80]: the
primitive entities are relations, represented as tables, and operations on these.
The relational model has at least two advantages: it is easy to grasp; it supports
a high-level programming language called SQL (Structured Query Language) that
allows the user to query the database, update and retrieve data stored in tables
through a number of functions.

In Chapters 4 and 5 we described and analysed, via iterations of certain
functions, a number of constraint propagation algorithms for classical and soft
constraints, respectively. At this point, we collect all those functions in a ho-
mogeneous setting, thereby putting forward the resemblances and differences of
those constraint propagation algorithms and the query programs in the relational
database model.

6.1.2 Outline and Structure

In the introduction to Chapter 3, we claim that our theorisation of constraint
propagation algorithms has two aims:

• one of describing and analysing constraint propagation algorithms in terms
of function iterations; this is accomplished in Chapter 3;

• the other of abstracting which functions perform the task of pruning or
propagation of inconsistencies in constraint propagation algorithms, in both
the crisp (see Chapter 4) and soft (see Chapter 5) cases.

In Chapter 3 we do not specify which functions are used for constraint propagation
— there we only study properties of functions as traced in constraint propagation

115

116 Chapter 6. Constraint Propagation Functions

algorithms. We do so in this chapter; thus we complete our theoretical work and
tackle the task in the latter item.

Section 6.2 characterises the basic and derived operations that are traced in
the representation and analysis of classical constraint propagation algorithms in
Chapter 4. Finally, in Section 6.3, we define functions useful in the description
and analysis of soft constraint propagation algorithms as in Section 5.5.

6.2 Functions for CSPs

In what follows, we usually need to fix a scheme X and a domain set D on X.
Since structures of the form

CS := 〈X,D〉
will often recur in the remainder of this chapter, we name them constraint systems.
We follow the conventions of Subsection 2.2.1, and let D denote the domain
D1 × · · · × Dn. Then for a constraint C(s) of CS we mean a constraint on a
scheme s of X, that is a subset of D [s]. In the limit, D [s] is a CS constraint as
well; i.e., the universal constraint on s.

6.2.1 Atomic Formulas

The user of a database will often query the database to select information that
matches some criteria: for instance, the database could store bibliographical data,
and the user, a librarian, could be interested in selecting all books in a category
that were published before or after a certain year. Such criteria are usually
expressed through numerical formulas such as 2 < 3, meaning that every value in
the second column must be less than the one in the third column that is in the
same row.

We use something similar to formulas like 2 < 3 for defining functions for
constraint propagation in Chapter 4: for instance, functions for HAC-4 (see Sub-
section 4.2.3) are defined through a selection operation such as

selxi=aR(s)

that extracts all tuples d from R(s) for which the equality d [xi] = a holds. The
following definition then aims at characterising the basic formulas, such as xi = a,
that are used to express criteria for selecting data from CSP domains.

Definition 6.2.1.
(i). Consider a constraint system CS := 〈X,D〉 with variable scheme X :=
〈x1, . . . , xn〉 and domain D := D1 × · · · ×Dn. The set of CS atomic formulas is
defined as follows:

• t = d and t 6= d are atomic formulas for each scheme, scheme t of X and
tuple d ∈ D [t];

6.2. Functions for CSPs 117

• t ∈ S [t] is an atomic formula for each scheme t of X and constraint S(t) of
CS;

• nothing else is an atomic formula.

(ii). Consider a scheme s of X, a scheme t of s, and assume that C(s) is a
constraint of CS on the scheme s. Given a tuple e ∈ C(s) and an atomic formula
of the form t = d, we say that C(s) satisfies t = d in d if e [t] = d; similarly, C(s)
satisfies t 6= d in e if e [t] 6= d; it satisfies t ∈ S in e if e [t] ∈ S.
(iii). A CS formula ψ(t) is an atomic formula or a finite conjunction of CS
formulas: i.e.,

ψ(t) :=
n∧
i=1

ψi(ti)

where each ψi(ti) is an atomic formula and t is the join
⋃n
i=1 ti. If C(s) is a

constraint of CS and t is a scheme of s, then C(s) satisfies ψ(t) in e ∈ C(s) if it
satisfies each atomic subformula ψi(ti) of ψ(t) in e.

The definition of conjunctive formula is not, loosely speaking, necessary if
we do not mind the order in which elements are selected: in this case, its effect
can be obtained by composing a finite number of basic functions, as defined in
Subsection 6.2.2 below. However, conjunctions of atomic formulas are useful to
introduce derived formulas such as the following, which is itself a convenient
shorthand: given a scheme s of X, a finite number of schemes t1, . . . , tk of s, and
t equal to the join of these, put

t ⊆ D [s] := t1 ∈ D [s] ∧ · · · ∧ tk ∈ D [s] .

Notice also that, if S is a finite constraint over s, i.e.,

S = {d1, . . . , dn} ,

then the formula t ∈ S [t] is equivalently rewritten as the conjunctive formula

t = d1 [t] ∧ · · · ∧ t = dn [t] .

Hence, if S is as above, we can also introduce the following shorthand

t 6∈ S [t]

to denote the finite conjunction t 6= d1 [t] ∧ · · · ∧ t 6= dn [t].

118 Chapter 6. Constraint Propagation Functions

6.2.2 Basic Functions

In what follows, we assume that a constraint system CS := 〈X,D〉 is given.
As usual, D denotes the domain D1 × · · · × Dn and D [s] the domain over the
scheme s. Constraints and domains over CS are denoted by the letters R or S,
with additionally superscripts. At this point, we can distinguish a number of
effectively computable basic functions over CS as follows.

Union. Set-union of R and S over the same scheme s.

Join. Let R be over the scheme s and R′ over the scheme t. The join of R and
S, denoted by R1S, is a relation over the scheme s ∪ t defined as follows:
e ∈ R1S iff there exists d ∈ R and d′ ∈ R′ such that d(s) = e(s) and
d′(t) = e(t).

Projection. Given R over s and a subsequence t of s, the projection Πt(R) of
R over t is the set of tuples d for which there exists e ∈ R and e [t] = d.

Universal selection. Consider a CS constraint R(s) and a CS formula ψ(t),
for t a subscheme of s. Then ∀ selψR is the subset of all R tuples d such
that d [t] satisfy ψ(t).

Existential selection. Consider a CS constraint R(s) and let ψ(t) be a CS
formula, for t subscheme of s. Then ∃ selψR is either a singleton {d} for
d ∈ R such that d [t] satisfies ψ(t), or the empty set if no tuple in R satisfies
ψ(t).

6.2.3 Constraint Propagation Functions

The set of constraint propagation functions over CS is the smallest inductive set
of functions that contains the basic functions and is closed under composition.

Simple examples are the difference function and the Cartesian product.

Example 6.2.2.

Intersection. Set-intersection of R and S, over the same scheme s, is defined
by means of the join operation: R ∩ S := R 1 S.

Difference. Consider two finite constraints R and S over the same scheme s.
Then the difference of R and S, denoted by R− S, is ∀ sels 6∈SR.

Cartesian product. Let R be over s and S over s′ such that s and s′ are disjoint
schemes. Then R×S is the join of R and S: i.e., R1S.

The two relations in Example 6.2.2, finite difference and Cartesian product, are
obtained, by means of composition, from basic constraint propagation functions.
The following example proposes a constraint propagation function that is instead

6.3. Functions for SCSPs 119

generated from a derived constraint propagation function, i.e., the Cartesian prod-
uct.

Example 6.2.3.

Cartesian product operator. Given two constraint propagation functions f
and g, let f×g be the function defined as

f×g(R,S) := f(R)× g(S)

for every R and S. Then f×g is the Cartesian product of f and g.

6.3 Functions for SCSPs

In Chapter 5, we surveyed some constraint propagation algorithms for soft con-
straints. The definition of basic functions for those algorithms is complicated by
the presence of preference structures as c-semirings.

A c-semiring constraint system CS carries over the c-semiring structure S :=
〈S,<S,×,⊥,>〉 used to define soft constraints, see also [BMR97]:

CS := 〈X,D,S〉,

where X and D are as in the classical case. As for the rest, we follow the
conventions introduced in Section 5.2, and define a soft constraint of CS as a soft
constraint on a scheme s of X, that maps D [s] into the c-semiring universe S.

In Section 5.5, it is shown how a number of soft constraint propagation al-
gorithms employ different functions from, in our terminology, the semiring based
functions (see Definition 5.4.12). Those functions are strictly dependent on the
specific c-semiring structure adopted, or depend on some extensions of it, see Sub-
section 5.5.2. Therefore, it is rather difficult to provide a sufficiently general
definition, unless the c-semiring framework is replaced by a more general struc-
ture; such as universal algebras, with a lattice structure on the underlying uni-
verses, [Gen01a].

6.3.1 Soft Constraint Propagation Functions

Here we limit ourselves to summarise the basic functions used for soft constraint
propagation, without any pretence of completeness.

Union. Given two constraints R and S over the same scheme s, the union of R
and S is the constraint on s defined as follows: R∪S(d) = R(d) ∨ S(d), for
each d ∈ D [s].

120 Chapter 6. Constraint Propagation Functions

Join. Let R be over the scheme s and R′ over the scheme t. The join of R and S,
denoted by R1S, is a relation over the scheme r := s∪ t defined as follows:

R1S(e) = R(e)× S(e),

for every e ∈ D [r]; see p. 92.

Projection. Given R over s and a subsequence t of s, the projection Πt(R) of
R over t is the function from D [s] to the c-semiring universe S that maps
each d ∈ D [s] to the c-semiring value

∨
{e ∈ D [s] : e [t] = d}; see p. 92.

It is also possible to generalise, to some extent, the operations of selection from
the classical to the soft case. We do it as below and then explain how these could
be useful in the design of constraint propagation or solving algorithms for SCSPs.

First of all, notice that universal selection amounts to assigning > to all the
tuples for which a certain formula holds true; and implicitly assigning ⊥ to all the
other ones. On the other hand, existential selection returns > only to the first
tuple that is found to satisfy a certain formula; ⊥ to all tuples if none satisfies the
formula. However, a c-semiring offers us more than two values. Thus, we modify
the definition of CS formulas in Definition 6.2.1 as follows.

Definition 6.3.1.
(i). Consider a constraint system CS := 〈X,D,S〉 with variable scheme X :=
〈x1, . . . , xn〉 domain D := D1×· · ·×Dn, and c-semiring S. The set of CS atomic
formulas is defined as follows:

• t = a and t ≤ a are atomic formulas for each scheme t of X, tuple d ∈ D [t]
and c-semiring value a;

• t 6= a and t ≥ a are atomic formulas for each scheme t of X, tuple d ∈ D [t]
and c-semiring value a;

• nothing else is an atomic formula.

(ii). Consider a scheme s of X, a subsequence t of s, and assume that C := C(s)
is a soft constraint of CS on the scheme s. Given a tuple e ∈ D(s) and an atomic
formula of the form t = a, we say that C satisfies t = a in e if Πt(C(e)) = a;
similarly, C satisfies t 6= a in e if Πt(C(e)) 6= a; it satisfies t ≤ a in e if Πt(C(e)) ≤
a, and t ≥ a in e if Πt(C(e)) ≥ a.
(iii). A CS formula ψ(t) is an atomic formula or a finite conjunction of CS
formulas: i.e.,

ψ(t) :=
n∧
i=1

ψi(ti)

where each ψi(ti) is an atomic formula and t is the join
⋃n
i=1 ti. If C(s) is a

constraint of CS and t is a subsequence of s, then C(s) satisfies ψ(t) in e ∈ C(s)
if it satisfies each atomic subformula ψi(ti) of ψ(t) in e.

6.3. Functions for SCSPs 121

Note that we choose a local definition of satisfiability: we evaluate ψ(t) true in
C(s) and a tuple e ∈ D(s). Other choices are possible: for instance, we could
define satisfiability with respect to C(s) and the maximum value returned by
C(s) on D [s], i.e., by using the projection function Πt on the whole domain D [s].
However, this local definition of satisfiability is sufficient to characterise a univer-
sal selection function for soft constraints as a generalisation of the corresponding
function for classical constraints.

Universal selection. Consider a relation R(s) and a CS formula ψ(t), for t a
subscheme of s. Then ∀ selψR is defined as follows: for each d ∈ D [s],

selψR(d) :=

{
R(d) if R satisfies ψ in d,

⊥ otherwise.

The definition of selection could be more general: for each c-semiring value a,
we could have a selection function ∀ selψ,a that maps each tuple d that does not
satisfy ψ to a.

6.3.2 On Optimal Strategies

At this point, let us revisit the definition of solution constraint for an SCSP
P := 〈X,D,C〉, cf. p. 92:

Sol(P, s) := Πs 1C∈P̄ C,

Suppose that the user queries a soft constraint system and only wants to retrieve
all those tuples d ∈ D [s] from the system for which Sol(P, s) ≥ a, where a is a
certain preference value in the c-semiring universe, that the user chooses. Then
∀ sels≥a, applied to Sol(P, s), will return the user only those tuples to which
Sol(P, s) assigns a value greater than a.

Incidentally, notice that the above method for computing solutions does not
seem highly efficient: in fact, first we have to compute 1, then Π and, only
afterwards, select those tuples. A better choice would be to apply a selection
function as soon as possible, that is before applying 1. But then 1 would return
a constraint on X, the scheme of the CSP P , that assigns ⊥ to all the tuples
in the domain D. The situation can be remedied by adopting the more general
definition of selection so that this assigns to each tuple, that do not satisfy a
formula, the maximum value > of the c-semiring.

It would be interesting to see whether this abstract view on constraint prop-
agation and solving functions could be useful to tackle optimisation tasks, as in
the above case:

• which function is it better to apply first to satisfy the user’s query in an
“economic” manner from the viewpoint of computations?

122 Chapter 6. Constraint Propagation Functions

Finally, a soft generalisation of existential selection can be given as in the case
of the universal selection function; we let the reader spell out the details. This
function could be applied, for instance, whenever a user wants to retrieve only a
solution that satisfies a given formula, and not all of them.

6.4 Conclusions

6.4.1 Synopsis

In Chapter 3, a template for constraint propagation algorithms is proposed: that
is the SGI algorithm schema, which iterates functions according to a certain strat-
egy. The present chapter collects the functions used for constraint propagation,
in both the crisp and soft case, in a homogeneous setting; the class of functions
in SGI iterations is thus restricted to those that are actually traced in constraint
propagation algorithms in Chapters 4 and 5.

Also, this digest highlights that a number of operations are common to con-
straint propagation algorithms and to languages for manipulating data in rela-
tional database systems. We briefly elaborate on this issue as below.

6.4.2 Discussion

The theoretical analysis of constraint propagation algorithms, proposed in this
chapter and in Chapter 3, can immediately be used for optimisation tasks. Query
optimisation is already a well explored topic in the database community. Most
optimisation strategies involve transforming algebraic expressions; for instance,
if two operations commute, then the order in which these are applied is not
relevant; therefore, the optimal sequence of applications is obtained by applying
first the least expensive operation. We encounter something similar in Chapter 3:
a number of properties of functions, such as stationarity or commutativity, are
proved to optimise the performance of the basic SGI schema; these properties are
traced in a number of constraint propagation algorithms in Chapter 4.

Therefore, a closer investigation of the similarities and differences between the
two worlds, that of constraint algorithms and that of database query languages,
appears to be promising for optimisation tasks. The fact that there is a common
language, that of operations on relations as explained in this chapter, helps to
clarify further the connections between database theory and CSP algorithms, and
should help in transferring the acquired knowledge and the developed strategies
from one field to the other.

In [Var00], the author showed how certain classes of finite CSPs can be re-
duced, in polynomial time, to Datalog programs or view-based query answering,
and vice versa; notice that, there, the aim is to identify tractable classes of CSPs;
not to analyse the behaviour of each single algorithm, as instead we do. Also,

6.4. Conclusions 123

the analyses in [GLS99] have the same objective as those of [Var00]. However,
the theoretical analysis of constraint propagation algorithms, proposed in this
chapter and in Chapter 3, could also help in this respect.

In the following part, relations continue to be the protagonists of this the-
sis. Relations and relational structures are in fact at the basis of modal logics;
these make use of restricted formal languages for describing relations and rela-
tional structures: loosely speaking, properties of these are expressed as theorems
of modal logics. Thus we shall also see how constraint programming, which ma-
nipulates relations, can be used for automated theorem proving in modal logics.

Part II

Diamond Satisfaction

“Niente affatto”, disse il secondo, “la virtù sta nel
mezzo”. (“Not at all”, said the second, “virtue is
most often found in the middle of the road”.)
G. Rodari, Vecchi Proverbi, from Favole al Tele-
fono, Einaudi, 1971.

After five chapters devoted to CSPs and efficient reasoning on them, we change
tack quite drastically. This part of the thesis is concerned with automated the-
orem proving in modal logics. The standard relational translation of modal lan-
guages into first-order languages is introduced in Chapter 7. Then its refinement,
called the “layered translation”, is presented in Chapter 8, and proved to pre-
serve satisfiability in the case of basic modal logics. In Chapter 9, we see how
the same semantic intuitions which motivate the layered translation give rise to
constraint satisfaction solvers for basic modal logics. So in the end we return to
constraints and CSPs after all.

Chapter 2 and the introduction to Section 4.2 are needed for the comprehen-
sion of Chapter 9. The following diagram summarises the dependencies of the
chapters or sections in this second part, and their dependencies on some material
in Part I (see the dotted box).

Chapter 2,
Section 4.2

Chapter 9

Chapter 7

// //

// // Chapter 8

Chapter 7

Modal Logics

7.1 Introduction

7.1.1 Motivations

Modal logic [BdRV01] was originally conceived as the logic of necessity and pos-
sibility. Indeed, for many years modal logic was viewed as an extension of propo-
sitional logic by the addition of the modal operators 3 (possibly) and 2 (nec-
essarily). To some extent this picture is still valid and useful. For instance, in
the branch of modal logic that is known as epistemic logic, the modal language is
used to reason about the knowledge of an agent. Under this reading, 2φ stands
for “the agent knows that φ”.

But over the past decade or so, the picture has changed, or rather, broadened
considerably: modal logic has developed into a powerful discipline on the interface
of computer science and mathematics that deals with restricted logical languages
for talking about various kinds of relational structures (see [Are00]). Let us elab-
orate on this. First, relational structures (that is, sets equipped with relations
on them) are to be found just about everywhere. For example, in computer sci-
ence, we use labelled transition systems (LTSs) to model program executions,
but an LTS is just a set (the states) together with a collection of binary relations
(the transition relations) that model the behaviour of programs [HR00]. Second,
modal languages are restricted languages because they talk about relational struc-
tures in a special way: modal formulas are evaluated locally, at a particular state,
and only the states that are linked to the current state through a relation may
be explored. Because of such restrictions, many modal logics end up being frag-
ments of first-order logic. Moreover, they often end up being decidable fragments
of first-order logic. The decidability of many important modal systems stems
from the step-by-step way that modal formulas are evaluated. More generally,
the latter helps to explain why many modal logics enjoy the so-called tree model
property : if a formula has a model, it has a model that looks like a tree. The tree

127

128 Chapter 7. Modal Logics

model property has become a key tool in establishing decidability and complexity
results for modal languages [Grä99, Var97]. And as we shall see below, a very
strong form of the tree model property can be used to devise practical algorithms
for modal languages — but this is running ahead of things.

We have to address another issue first: what do constraints and constraint
propagation have to do with modal logic? Sitting, as it does, between first-order
and propositional logic, two natural strategies suggest themselves for reasoning
with modal logic:

• constrain first-order methods so that they become decision procedures for
modal logics,

• boost propositional reasoning methods so that they fit modal languages.

In this part of the thesis, we follow both strategies. More specifically, in Chapter 8,
we follow the first strategy when we exploit the stepwise way of evaluating modal
formulas, and use it to devise a new translation from the modal language into a
highly constrained fragment of first-order logic. We provide ample experimental
evidence to show that this translation into a fragment of first-order logic yields
significant improvements in processing times.

Then, in Chapter 9, we follow the other strategy: boosting propositional meth-
ods to make them work for modal languages. Various computational problems
have been solved by reformulating them as propositional satisfiability (SAT) prob-
lems. Even problems for higher complexity classes than SAT can be efficiently
solved by reformulating them as (a sequence of) SAT problems. This is what
we do: to solve the modal satisfiability problem we reformulate it as a sequence
of SAT problems, and each of those SAT problems is then reformulated as a
constraint satisfaction problem — see also Subsection 2.3.2.

7.1.2 Outline and Structure

The present chapter introduces the non-expert reader to the basics of modal
logics. In Section 7.2, we briefly touch on modal languages, the basic modal
logics and their semantics, as needed for the comprehension of the remaining two
chapters of this thesis. We only assume from the reader a working knowledge
of propositional logic, so to speak. Section 7.3 treats the standard relational
translation from modal to first-order languages; as for the latter languages, it is
sufficient to know them as extensions of propositional languages through variables
and quantifiers, relation and function symbols.

7.2. Background 129

7.2 Background

7.2.1 Modal Languages

Formulas of a unimodal language are built up from proposition letters p, using
the propositional operators ¬. ∨, ∧ and the modal operators 3 and 2. Formally,
let P be a set of proposition letters, that we usually denote as p or q, or possibly
these with indices. So, consider all sets B of finite strings of modal operators,
proposition letters and operators, that enjoy the following properties:

1. P ⊆ B;

2. if φ belongs to B, then so does ¬φ;

3. if φ and ψ belong to B, then so do ψ ∧ φ and ψ ∨ φ;

4. if φ belongs to B, then so does 2φ.

Then the unimodal language ML(P) is the smallest (with respect to subset in-
clusion) of such sets. We denote formulas of ML(P) by means of Greek alphabet
letters, usually φ and ψ.

The dual of the box operator 2, namely the diamond operator 3, is introduced
as an abbreviation: i.e., 3φ stands for ¬2¬φ, for every φ in ML(P).

Let Index be some index set. Formulas of the multimodal language denoted by
MML(Index,P) are built up, as in the unimodal case, from proposition letters,
by using ∨, ∧ as above, and modal operators 2i, for i ∈ Index.

Since the extension to the multimodal language is often straightforward, we
usually state definitions and results for the unimodal language, and only sketch
the corresponding ones for the multimodal case.

7.2.2 Modal Models

Models for ML(P) are structures of the form M = 〈M,R, V 〉, where:

• W is a non-empty domain,

• R is a binary relation on W ,

• V is a function from P into the power set ℘(W).

The elements of W are often referred to as states or worlds. They are supposed
to represent the states/worlds in which a proposition p holds true.

In fact, truth is defined relative to a state in a model, following the classical
interpretation of propositional operators. The important case is given by formulas
with modal operators. Formally, consider a model M and a world w ∈ W . Then
we write M,w |= φ, and read it as M satisfies φ at w, iff the following is true:

130 Chapter 7. Modal Logics

1. in case φ is p ∈ P , w ∈ V (p) holds;

2. in case φ is ¬ψ, M, w |= ψ holds;

3. in case φ is ψ1 ∨ ψ2, M, w |= ψ1 or M, w |= ψ2 hold;

4. in case φ is ψ1 ∧ ψ2, both M, w |= ψ1 and M, w |= ψ2 hold;

5. in case φ is 2ψ, for any v ∈ W , we have that either Rwv does not hold or
M, v |= φ does.

Formulas of the form 3ψ are interpreted dually:

M, w |= 3ψ iff there exists v ∈M such that M, v |= φ and Rwv.

Models for MML(Index,P) are structures of the form

〈W, {Ri : i ∈ Index} , V 〉,

on which modal operators 2i, for i ∈ Index, are interpreted using the associated
binary relation Ri, marked by the same index i ∈ Index.

A natural generalisation of the above definition is that of satisfiability of φ in
a model M for the language of φ: the modal formula φ is satisfiable in the model
M, or the model satisfies φ, if φ holds true at some world of M. The formula φ
is satisfiable if there exists a model, for the language of φ, that satisfies φ.

The notion of unsatisfiability is then derived in the obvious manner.

7.2.3 Basic Modal Logics

At this point, we have seen both modal languages (see Subsection 7.2.1) and
structures for interpreting those languages, namely models (see Subsection 7.2.2).
The next step consists in defining logics in those languages, and see if and how
each is the perfect counterpart of some class of models: i.e., if soundness or
completeness holds for the logic with respect to a certain class of models. In the
remainder of this subsection, we introduce the non-expert reader to basic modal
logics, and state their soundness and completeness with respect to the class of
all models; we refer those interested in a complete introduction to modal logics
to [BdRV01]. In what follows, we only assume some basic knowledge of logics like
propositional logic: i.e., the notion of tautology, axiom and inference rule.

We start with the basic unimodal logic, as in the following definition.

Definition 7.2.1. Given a unimodal language ML := ML(P), the basic modal
logic K in ML has the following set of axioms, where ψ, φ and θ range over all
the modal formulas in ML:

(P1). φ → (ψ → φ);

7.2. Background 131

(P2). (φ→ ψ) → (¬ψ → ¬φ);

(P3). (φ→ (ψ → θ)) → ((ψ → φ) → (ψ → θ));

(K1). 2(φ→ ψ) → (2φ→ 2ψ).

The inference rules of K are as follows:

(MP). φ, φ→ ψ /ψ;

(NEC). φ /2φ.

An ML formula φ is a K theorem if it is either an axiom of the above form, or
is obtained by applying one of the rules MP or NEC to K theorems.

If φ is a K theorem, then we write `K φ or simply ` φ.
The definition for K(Index) is analogous to the above one, the only difference

being in the language: all the K axioms and rules come with indices.
As stated at the opening of the present part, we are interested in automated

theorem proving. In this setting, a strategy to prove that a formula is a theorem
of a logic appeals to the related semantics: the prover has to derive that the
negation of the formula is unsatisfiable. Hence, if the logic is sound and complete
with respect to its semantics, this strategy allows us to test whether a formula
is or is not a theorem of a logic. As far as basic modal logics are concerned,
soundness and completeness hold as follows.

Theorem 7.2.2.
i. A unimodal formula is a theorem of K iff its negation is unsatisfiable.
ii. A multimodal formula is a theorem of K(Index) iff its negation is unsatisfi-
able. 2

For a proof of Theorem 7.2.2, the reader is invited to consult [BdRV01].

7.2.4 Examples

Now that we have introduced some basic formal machinery for modal logic, let
us return to the informal discussion in Section 7.1, and provide some examples to
complement it with.

Recall that in epistemic logic, 2φ is read as “the agent knows that φ” and
for that reason one often writes Kφ in stead of 2φ. Given that we are talking
about knowledge in epistemic logic (as opposed to, say, belief or rumour), it seems
natural to view all instances of 2φ→ φ as true: if the agent really knows that φ,
then φ must hold. On the other hand (assuming that the agent is not omniscient)
we would regard φ→ Kφ as false.

132 Chapter 7. Modal Logics

We pointed out, in Section 7.1, that labelled transition systems are an espe-
cially important kind of relational structures, and, hence, of modal models. They
are typically described using temporal logic, where one has modal operators [G]
and [H]. The intended interpretation of a formula [G]φ is “φ is always going to be
the case”, and the intended interpretation of [H]φ is “φ has always been the case”.
We can express many interesting assertions involving time with this language; for
instance, we could use requesti → ¬[G]ignoredi to say that, whenever resource i
is requested, it is eventually granted.

Researchers developing formalisms for reasoning about graphs have sometimes
come up with notational variants of modal logic. For example, computational lin-
guists use Attribute-Value Matrices (avms) for describing feature structures (di-
rected acyclic graphs that encode linguistic information). Here is a fairly typical
avm:  agreement

[
person 1st
number plural

]
case dative


But this is just a two dimensional notation for the following modal formula:

〈agreement〉(〈person〉1st ∧ 〈number〉plural) ∧ 〈case〉dative.

Similarly, researchers in artificial intelligence needing a notation for describing and
reasoning about ontologies developed description logic. For example, the concept
of “being a free-lance musician” is true of any individual who is a musician and
is employed by someone who organizes a birthday party. In description logic we
can define the latter concept as follows:

musician u ∃employer.organizer.

But this is simply the following modal formula lightly disguised:

musician ∧ 〈employer〉organizer.

The links between modal logic on the one hand, and feature and description logic
on the other, are far more interesting than these rather simple examples might
suggest; see [BdRV01] for details and references on these connections.

7.3 The Standard Translation

As we pointed out in the introduction to the present chapter, modal languages
can often be mapped into fragments of suitable first-oder languages. To make
this annotation precise, we need some basic definitions.

The begin with, the vocabulary of the first-order language FO(P) has a unary
predicate symbol P for each proposition letter p in P , and a single binary relation
symbol R. Instead of a single binary relation symbol, the vocabulary of the first-
order language FO(Index,P) has a binary relation symbols Ri for each i ∈ Index .

7.3. The Standard Translation 133

Definition 7.3.1. [vB83] The standard relational translation ST (φ) of unimodal
formulas into first-order formulas of FO(P) is defined as below. In what follows,
let x and y be distinct individual variables:

ST x(p) := P (x), (7.1)

ST x(¬φ) := ¬ST x(φ), (7.2)

ST x(φ ∧ ψ) := ST x(φ) ∧ ST x(ψ),

ST x(φ ∨ ψ) := ST x(φ) ∨ ST x(ψ),

ST x(3φ) := ∃y (Rxy ∧ ST y(φ)), (7.3)

ST x(2φ) := ∀y (¬Rxy ∨ ST y(φ)). (7.4)

The translation ST is defined to be ST x for a generic individual variable x.

The above is easily extended to a translation taking multimodal formulas into
FO(Index,P), by means of the relation symbol Ri instead of R in the translation
of the operators 3i and 2i, for i ∈ Index.

Note 7.3.2. In (7.1) and (7.2), P is the unary predicate symbol corresponding to
the proposition letter p. Observe how (7.3) and (7.4) reflect the truth definitions
of the modal operators.

As a consequence of Note 7.3.2, models for the unimodal language ML(P) and
the multimodal language MML(Index,P) can be recast as structures for the
corresponding first-order languages FO(P) and FO(Index,P), respectively. To
interpret the unary predicate symbols, we look up the values of the corresponding
proposition letters in the valuation.

Example 7.3.3.

• The unimodal formula 2(¬p ∨ 3p) translates into the first-order formula
∀y (¬Rxy ∨ (¬Py ∨ ∃z (Ryz ∧ Pz))).

• The multimodal formula 2i(¬p∨3kp) translates into the first-order formula
∀y (¬Rixy ∨ (¬Py ∨ ∃z (Rkyz ∧ Pz))).

Theorem 7.3.4 ([vB83]). A modal formula is satisfiable iff its standard rela-
tional translation is.

The above result effectively embeds the modal languages considered here into
first-order languages, and paves the way to deciding modal satisfiability by first-
order means, as explained in Subsection 8.2.2.

134 Chapter 7. Modal Logics

7.4 Conclusions

The standard translation from modal to first-order languages, devised in [vB83], is
at the base of correspondence theory: in this setting, the translation is conceived as
a first step in the study of the expressivity of modal languages for describing both
models and the relational structures models are based on, namely frames. Thus
the standard translation is devised to preserve satisfiability, as quoted above, and
also satisfiability at every world of certain relational structures, that is validity
with respect to classes of frames.

As we prove in Chapter 8, our translation preserves satisfiability, but not
validity. Our aim is to make use of automated theorem provers to decide whether
a modal formula is a theorem of a certain modal logic or not. For this task,
preserving satisfiability is sufficient, due to the soundness and completeness of
the logics we are interested in, see Subsection 7.2.3. Given this, the goal of our
translation becomes to convey information that boosts automated theorem proving.
Therefore, our translation aims at preserving the structure of the original modal
formula, as much as possible, and encoding semantic properties of basic modal
logics that are computationally relevant, loosely speaking. Chapter 8 explains
how this is achieved.

Chapter 8

The Layered Translation

8.1 Introduction

8.1.1 Motivations

The need for efficient automated reasoning methods for modal logics is increas-
ingly being felt in areas such as knowledge representation, reasoning about pro-
grams, and reasoning systems for autonomous agents [Are00, Was00]. We can
identify at least four general strategies for modal theorem proving:

1. develop purpose-built calculi and tools, like tableaux systems;

2. translate modal problems into automata-theoretic problems, and then adopt
automata-theoretic methods to obtain answers;

3. translate modal problems into first-order problems, and use general first-
order tools;

4. build dedicated solvers for modally quantified formulas on top of solvers
for propositional formulas; for instance, in [Seb97, GS00], a tableux-based
procedure for modal logic is built on top of the Davis-Logemann-Loveland
procedure for the propositional component, known as DPLL or DP in the SAT
community — where the letter P stays for Putnam.

The advantage of indirect methods such as (2), (3) and (4) is that they allow
us to re-use well-developed and well-supported tools instead of having to develop
new ones from scratch.

In this chapter, we focus on the third option: translation-based theorem prov-
ing for modal logics, where modal formulas are translated into first-order formu-
las and reasoning problems are to be fed to first-order provers. Our starting

135

136 Chapter 8. The Layered Translation

point is the standard relational translation introduced in Section 7.3. First-
order theorem provers perform poorly on the standard outputs of this transla-
tion [ONdRG01, HS97]. To overcome this, very sophisticated decision procedures
have been developed [dNdR02] together with alternative translations [ONdRG01].

Our proposal in this chapter consists in a simple refinement of the standard
relational translation that allows us to encode additional modal information. In
fact, this new translation centres around a strong form of the tree modal property,
which is often identified, nowadays, as one of the main reasons for the good
computational behaviour of those modal logics that enjoy it (see [Grä99, Var97]
and also Section 8.3 below): a modal formula is satisfiable (or more precisely:
K(Index)-satisfiable) if and only if it is satisfiable at the root of a model based
on a tree.

8.1.2 Outline

We divide the material of this chapter in two main parts. First, we propose our
new translation of modal formulas. Our translation results from the composition
of the standard relational translation and a translation that maps modal formulas
into an intermediate multimodal language. It is in this intermediate multimodal
language that we first encode the semantic property known as the tree model
property — this fact is also used in Chapter 9. This semantic information is then
partially encoded by the relational translation into the layered fragment: i.e., the
first-order fragment that is carved out by the new translation. This fragment
is contained in the one identified by the standard translation; more precisely,
the former fragment is strictly contained in the latter in the case of multimodal
languages.

In the second part of the present chapter, we show how to use a first-order
theorem prover on the first-order fragments identified by the standard translation
and the new one, respectively. The theorem prover Spass is used to perform the
experimental comparison between the outcome of the two translations: hence the
analysis of the comparison results, that we illustrate in Section 8.5, highlights
that Spass performs up to several orders of magnitude better on the outcome of
the new translation than on the standard one, in terms of both memory space
and execution times.

The encoding of formula layers, carried over by our translation, is the key
factor behind the improvement in performance: it is this encoding that allows us
to partially exploit the tree-model property of K(Index) at the purely syntactic
level of the theorem proving process.

8.1.3 Structure

The chapter is organised as follows. In Section 8.2, we provide the base infer-
ence rules behind first-order theorem proving, as this is used then in Section 8.5:

8.2. Modal Theorem Proving via the Standard Translation and Resolution 137

i.e, propositional and first-order resolution. Then Section 8.3 is devoted to the
so-called tree model property of basic modal logics. That property is used in
Section 8.4 to define our refinement of the standard translation from modal into
first-order logics. In that section, we also introduce the layered fragment of first-
order logic, as carved out by the new translation. We then show, in Section 8.5,
how the theorem prover Spass performs better on that fragment than on the full
first-order fragment carved out by the standard translation. We conclude this
chapter with Section 8.6.

8.2 Modal Theorem Proving via the Standard

Translation and Resolution

Resolution is at the core of most automated theorem provers for first-order logic.
It is a refutation procedure, whose goal is to derive a logical contradiction from
a given formula. The basic rule applies to conjunctions of disjunctions, and is
essentially based on the following propositional tautology:

M ∧
(∨

L ∨ ¬M
)
→

∨
L.

In other words: the occurrence of both M and ¬M as in the antecedent of the
above formula is irrelevant with respect to the truth value of the overall formula.
Thus M and ¬M can be safely removed.

In what follows, we give a precise content to this brief introduction, as much
as space allows. We only assume the reader to have an idea of what substitutions
and variable renamings are. For a complete introduction to the topic, there are
a number of good texts in the literature: we refer the interested reader to [RV01]
for a comprehensive overview of automated reasoning methods, to [Lov78] for an
introduction to them, based on logics; to [Doe94] for a more logic-programming
approach to resolution, and to [Apt97] as its natural companion for the logic
programming language Prolog.

8.2.1 Propositional Resolution

Before passing a propositional formula to a theorem prover based on resolution,
the formula has to be in “conjunctive normal form”. This is essentially a conjunc-
tion of disjunctions, where negations are pushed inwards. We provide a bit of
terminology below, as it will be used over and over in the remainder of the thesis.

A propositional literal is either an atom, like p, or a negation of an atom,
like ¬p. We shall mainly consider disjunctions of literals in the remainder of this
chapter: for instance, formulas like p ∨ ¬q. Literals of the form L and ¬L are
complementary.

138 Chapter 8. The Layered Translation

The following definition is used over and over in the remainder of this thesis,
thus we highlight it as follows.

Definition 8.2.1. A propositional formula φ is in conjunctive normal form
(CNF) if it is a conjunction of disjunctions of literals.

For instance: ¬p∧ (¬q ∨ p) is in conjunctive normal form, whereas ¬(p∨ q)∧ p is
not. There is a standard procedure, based on the famous De Morgan tautologies
of classical logic

¬φ ∧ ¬ψ ↔ ¬(φ ∨ ψ), ¬φ ∨ ¬ψ ↔ ¬(φ ∧ ψ),

that reduces any given formula to its conjunctive normal form. In the above
example, the formula ¬(p∨q)∧p is reduced to the equivalent formula ¬p∧¬q∧p.

Literal disjunctions are transformed into the set of their literals, called clauses
(this is the clausification process); for instance, p ∨ ¬q is reduced to {p, ¬q}.
Here and in the following, we adopt the standard convention of representing a
clause without parentheses; for instance, {p,¬q} will be rewritten as p, q. Then
a conjunction of literal disjunctions is represented as a set of clauses. These are
usually represented as list. For instance, the formula ¬p ∧ (p ∨ q) corresponds to
the clause set represented as the following clause list:

1. ¬p,

2. p, q.

Thus the binary ground resolution rule can be applied to a clause set and return
a clause set as displayed in the following.

L, L1, . . . , Ln ¬L, L′1, . . . , L
′
m

L1, . . . , L′n, L
′
1, . . . L

′
m

(Res)

A derivation via (Res) of the empty clause from a given clause set C is a sequence
of clause sets, each of which is either C or obtained from antecedent clause sets
in the sequence via (Res).

This simple rule is sufficient for determining whether a formula is a classical
tautology, due to the following result.

Theorem 8.2.2. A propositional formula is unsatisfiable iff the empty clause
can be derived from it by means of (Res).

A proof of the above statement can be found, for instance, in [Lov78].

8.2. Modal Theorem Proving via the Standard Translation and Resolution 139

8.2.2 First-order Resolution

The first-order case is more complicated than the propositional one due to the
presence in the language of variables, function symbols and quantifiers.

Let us assume that the only logical symbols that occur in the formula φ are
conjunction, disjunction and negation; this is not a restricted assumption, since
the other logical symbols can be defined in terms of this.

A first-order formula like φ is first reduced by pushing all negation symbols
inwards, and so obtaining its negated normal form. This is done by using the
following classical equivalences:

∀xφ↔ ¬∃¬φ, ∃xφ↔ ¬∀¬φ,
¬φ ∧ ¬ψ ↔ ¬(φ ∨ ψ), ¬φ ∨ ¬ψ ↔ ¬(φ ∧ ψ),

Then the resulting formula is reduced to its Skolem form (there are different and
equivalent versions of this, see [dN94]). This amounts to substituting variables,
bound by only existential quantifiers, by new different constant symbols (i.e., not
occurring elsewhere in the formula). Moreover, each occurrence of an existential
quantifier, within the scope of n + 1 occurrences of universal quantifiers of the
form ∀x0 · · · ∀xn, results in the removal of the variables bound by the existential
quantifier, and their substitutions with new different function symbols, applied to
the variables bound by the universal quantifiers; e.g., f(x1, . . . , xn). The resulting
formula is satisfiable iff the original formula is.

As soon as a formula is in Skolem form, all universal quantifiers are moved
leftwards, renaming variables if needed; then all these universal quantifiers are
removed. For instance, ∀x(Rx∧∀xSx) is equivalently transformed into ∀x∀y(Rx∧
Sy), and then into Rx ∧ Ry, where we implicitly read all variables as being
universally quantified over.

Finally, the resulting formula is reduced to its conjunctive normal form (see Sub-
section 8.2.1), and this into a clause set as in Subsection 8.2.1. In the first-order
case, literals are atomic formulas or their negations. For instance, Rx, ¬Ry and
Rx are first-order clauses; the set that contains both of them is a clause set.

The resulting clause sets can be passed to the resolution rule for first-order
logic. However, the presence of universally quantified variables forces us to“unify”
variables in the resolution inference. For instance, Rx and ¬Rc do not contradict
each others propositionally. But remind that Rx is implicitly universally quanti-
fied over; thus Rx stands also for Rc, so to speak; therefore the two clauses Rc
and ¬Rx constitute a contradiction in first-order logic. Roughly speaking, the
way we can put forward this contradiction is by interleaving propositional reso-
lution steps and substitutions. In our example, first Rx would be instantiated
to Rc, and afterwards a propositional resolution step would infer a contradiction,
by generating the empty clauses. Put more precisely, we need to incorporate
unification, as defined below, in the first-order resolution inferences.

The unification procedure by Martelli and Montanari, as quoted in [Apt97],
returns the most general unifier θ of a set of terms. Initially, θ is instantiated to

140 Chapter 8. The Layered Translation

the set containing t = s, where t and s are the given two terms to unify. Non-
deterministically, an equation t = s is chosen from θ, and the associated action is
performed:

1. in case t = s is of the form ft1 · · · tn = gs1 · · · sm, then the procedure halts
and returns failure if f and g are two different function symbols; else
m = n and the procedure restarts with θ equal to the union of (θ−{t = s})
and the set {x1 = y1, . . . , xn = yn};

2. in case t = s is x = s and x occurs elsewhere in θ, then each occurrence of
x in θ′ := θ− {s = t} is simultaneously substituted by s, and θ is set equal
to θ′ ∪ {x = s};

3. in case t = s is x = s and x occurs in s, then the procedure halts and
returns failure;

4. in case t = s is t = x, then E is set to (E − {s = t}) ∪ {x = t};

5. in case t = s is x = x, then remove it from θ.

The same procedure is applicable with atoms in place of terms. In both cases,
it terminates (see [Apt97]) by producing either failure, or a most general unifier
only if it exists; this is unique modulo variable renamings.

Resolution calculus, in the first-order case, can be cast in terms of two rules:
resolution and factorisation. These embed unification and, if applied to a clause
set, each returns a clause set as displayed in the following:

M , L1, . . . , Ln M ′, L′1, . . . , L
′
m

L1µ, . . . , L′nµ, L
′
1µ, . . . L

′
mµ

(Res’)
N , L1, . . . ,N

′, . . . , Ln
Nµ, L1µ, . . . , Lnµ

, (Fact)

where µ is the most general unifier of the literals, respectively, in {M ,¬M}
and {N ,N ′}. The (Res’) rule is applied to two clauses that have no variables in
common. This requirement of variable disjointness can be easily met by renaming
variables, if necessary.

A derivation via (Res’) and (Fact) of the empty clause from a given clause
set C is a sequence of clause sets, each of which is either C or obtained from
antecedent clause sets in the sequence via (Res’).

Again, we have a result similar to the one in Theorem 8.2.2; see [Lov78] for a
proof.

Theorem 8.2.3. A first-order formula is unsatisfiable iff the empty clause can
be derived from it by means of (Res’) and (Fact).

8.2. Modal Theorem Proving via the Standard Translation and Resolution 141

8.2.3 Challenging Cases

Consider the formula 2(¬p∨3p) of Example 7.3.3 again; that formula is clearly
satisfiable, for instance, on a model with only one world and no relations. Proving
this in first-order logic, by means of resolution, amounts to showing that the set
with the following clauses is satisfiable:

1. ¬R(a, y), ¬P (y), R(y, f(y)),

2. ¬R(a, z), ¬P (z), P (f(z)).

Observe now that the above clauses have two resolvents:

3. ¬R(a, a), ¬P (a), ¬P (f(a)), P (f(f(a)))

4. ¬R(a, f(z)), R(f(z), f(f(z))), ¬R(a, z), ¬P (z).

Clauses 2 and 4 resolve to produce the following new clause:

5. ¬R(a, f(f(z))), R(f(f(z)), f(f(f(z)))),¬R(a, f(z)),¬R(a, z),¬P (z).

Clauses 2 and 5 resolve again to produce an analogue of 5, with even higher
term-complexity etc. None of the clauses is redundant and can be deleted; in
the limit our input set has infinitely many resolvents. This shows that standard
resolution may not terminate in the case of clauses that result from the standard
translation of satisfiable modal formulas, even though the satisfiability problem
for basic modal logics is decidable — in non-deterministic space.

An obvious question suggests itself: What went wrong in the above example?
More precisely: Which features of the original modal formula get lost when clauses
are generated from the first-order formulas returned by the standard translation,
that is instead needed by the above resolution based method to terminate? How
can we recover that information?

Observe that, to obtain the resolvent in line 4, the unary P literals were
resolved upon; these literals (or rather the modal operators in which scope the
literals are) occur at different modal depths in the original formula 2(p → 3p).
Thus this resolution step is pointless, from the perspective of modal logics like K:
the negative P literal derives from the 2-operator, so this literal occurs at modal
depth 1; whereas the positive P literal is also bound by the 3-operator, hence this
literal occurs at modal depth 2. Unless we stipulate so, by means of additional
axioms, distinct modal depths are independent. A similar comment pertains to
the resolvent obtained in line 3, where again we resolved upon binary R literals
that correspond to modal operators occurring in the formula at different modal
depths.

Similar examples as the above one, and the questions they pose triggered our
refinement of the standard relational translation. In [AGHdR00], the latter was
refined by marking literals, with distinct modal depths, by means of syntactically
distinct indices. The mathematical justification is provided by a strong form of
the tree model property, as we explain below, in Section 8.3.

142 Chapter 8. The Layered Translation

8.3 The Importance of Having Layers

The example in Section 8.2.3 is interesting in many ways. Above all, it high-
lights how the structure of the original modal formula gets lost in the standard
translation process from modal to first-order formulas in clausal form, and nat-
urally suggests how this information could help to avoid the flaws of first-order
resolution in deciding the satisfiability of modal formulas. In fact, in our remark
following the quoted example, we propose to consider “layers” of modal formulas
as key information to be retrieved and passed to the theorem prover. We explain
precisely what we mean by layers and their use with respect to first-order theorem
proving in the remainder of the present section.

8.3.1 Trees and Layers

In what follows, S+ and S∗ denote the transitive and reflexive, transitive closure
of the relation S, respectively.

Definition 8.3.1. A rooted tree, or simply a tree is a relational structure of the
form T := 〈T, S〉 that enjoys the following properties:

1. T , the set of nodes, contains a special node r ∈ T , called the root ;

2. the root r is the only node in T such that ∀t ∈ T (S∗rt);

3. every element of T , distinct from r, has a single S predecessor: that is,
∀t ∈ T (∃s ∈ T ∧ Sst ∧ ∀s′ ∈ T (Ss′t → s′ = t)); the root has no S
predecessors;

4. S+ is acyclic: i.e., ∀t ∈ T (¬S+tt).

A path in a tree T is a finite sequence of T nodes of the form s := 〈ti : i ≤ n〉
such that Stiti+1 holds for every two adjacent nodes ti and ti+1 in the sequence
and t0 is the root r of T . The length of the path s is the number n of nodes in s

minus 1.

The above properties are quite intuitive if we keep in mind the image of a tree.
The first property states that a tree cannot be empty, at least its root must belong
to it. The second property qualifies the root as the only node from which all the
other nodes can be reached, via a finite number of S transitions. Then the third
property requires that any node, different from the root, should have precisely one
predecessor via an S transition; moreover, the root cannot be reached via any S
transition. The last property imposes a tree to be free of loops: i.e., there cannot
be a finite number of S transitions starting and finishing at the same node.

8.3. The Importance of Having Layers 143

Definition 8.3.2.

• A tree model for the unimodal language ML(P) is a model M = (W,R, V)
such that the relational structure 〈W,R〉 is a tree.

• A tree-like model for the multimodal language MML(Index,P) is a model
〈W, {Ri : i ∈ Index}, V 〉 such that 〈W,

⋃
iRi〉 is a tree.

• A logic L has the tree model property if every L-satisfiable formula is satis-
fiable at the root of a tree or tree-like model for L.

The advantage of dealing with a tree-like structure T is that every world of T
can be reached through a unique path of T ’s relations starting from w. We state
this well-known property of trees as a fact (for instance, see [Wil96]), and it is
immediate to prove given our Definition 8.3.1.

Fact 8.3.3. There is precisely one path terminating at each node of a tree-like
structure. 2

The above fact is used over and over in the remaining proofs of this chapter, to
well define valuations in models via paths of trees or tree-like structures.

8.3.2 Modal Depth and Layers

The notion of layering for basic modal logics emerges at both the semantic level,
via tree models, and the syntactic level of modal formulas. In fact, tree or tree-
like models as introduced above come with a layering induced by paths. Likewise,
the parse tree of a modal formula induces a natural formula layering, where new
layers begin at nodes labelled by modal operators. For instance, in 2(¬p ∨3p),
the operator 2 occurs in layer 1, while the operator 3 and its argument occur
in layer 2. The following definition captures precisely this sort of syntactical
layering.

Definition 8.3.4. Let φ be a modal formula. The modal depth mdepth(φ) of φ
is defined as:

mdepth(p) = mdepth(¬p) = 0
mdepth(ψ ∧ χ) = mdepth(ψ ∨ χ) = max{mdepth(ψ),mdepth(χ)}

mdepth(3ψ) = mdepth(2ψ) = 1 + mdepth(ψ).

There is a direct correlation between formula layers and layers in a tree or tree-
like models; we state and prove it in the following section. As a consequence of
the results below, literals occurring in distinct formula layers will not be resolved
upon, and not be combined; in this manner, we avoid the problems encountered
in the example discussed in Subsection 8.2.3.

144 Chapter 8. The Layered Translation

8.3.3 The Tree Model Property: Layers at Work

Since we are only concerned with satisfiability in a world, the theorem below
allows us to restrict our attention to a tree model and its root. Furthermore, the
result below highlights the link between the modal depth of a formula, on which
our translation is based (see Definitions 8.4.1 and 8.4.7 below), and the layering
that comes with a tree-like model, as remarked after Definition 8.3.4.

The proof of the following statement can be found in books of modal logic
like [dR93, BdRV01].

Theorem 8.3.5 (tree model property). Let L be any multimodal language,
φ an L formula, and M an L model. Then there exists an L tree-like model T
that enjoys the following properties:

• φ is satisfiable at the root of T iff it is satisfiable in M;

• consider a natural number i such that 0 ≤ i ≤ mdepth(φ), and assume that
ψ is a subformula at modal depth i in φ; then the satisfiability of ψ can be
tested in a T world t such that, if k is the length of the T path to t, then
i ≤ k ≤ mdepth(φ). 2

Figure 8.1 below illustrates Theorem 8.3.5 for the simple case of φ := 33p∨3q:
to test the satisfiability of φ and 33p we need to walk, from the root, along paths
of length at most 2; the satisfiability of both 3p and 3q can be tested starting
from layer 1, and reaching at most layer 2; finally, the satisfiability of p and q can
be tested in the layer 2.

33p ∨3q

3q

33p

q

3p

p

0

1

2

�
�	

?

?

A
A
A
A
AU

?

-

-

-

Figure 8.1: The Tree Model Property.

Observe that the tree model property and the finite model property are inde-
pendent: in fact, there are modal logics for which the former fails but the latter
holds, and vice versa. We refer the reader to any introduction to modal logic for
these; see [BdRV01], for instance.

8.4. Layer by Layer 145

8.4 Layer by Layer

In this section we exploit the tree model property to devise our refinement of the
standard translation of modal formulas into first-order formulas.

The new translation proceeds in two steps. First, modal formulas are trans-
lated into formulas of an intermediate modal language. It is in this intermediate
step that the layering induced by trees (see Theorem 8.3.2) is made explicit at the
syntactical level: the modal depths of formulas (see Definition 8.3.4), which are
related to the layers of tree-like structures as in Theorem 8.3.5, are encoded as in-
dices. In turn, these intermediate formulas with layers as indices are passed to the
standard translation (see Definition 7.3.1), and thus transformed into formulas of
a first-order language.

All in all, the new translation will mark relations and propositions according to
the number of modal operators in whose scope a given modal subformula occurs;
i.e., the modal depth at which the subformula occur. For instance, the modal
formula

33p

is translated into a multimodal formula with diamonds and proposition letters
labelled according to the modal depth at which these occur in the above formula:

3132p2.

The standard relational translation into first-order logic transforms the latter into
the following formula:

∃y (R1xy ∧ ∃z(R2yz ∧ P2z)).

Similarly, 2(p→ 3p) becomes first 21(p1 → 32p2); then the standard translation
generates the first-order formula

∀y (R1xy → (P1(y) → ∃x(R2yx→ P2x))).

In the remainder of the present section, we focus on the unimodal case (see Sub-
section 8.4.1 below), and briefly touch on the multimodal one (see Subsection 8.4.2
below), since this constitutes a trivial extension of the former.

8.4.1 The Unimodal Case

As the above example illustrates, our final relational translation is reached via
an intermediate step through an intermediate multimodal language. This collects
the modal operator and the proposition letters of the given unimodal language,
and mark them with natural numbers, as formalised in the following definition.

Definition 8.4.1. Consider a modal language ML := ML(Index,P), and a
multimodal language IML := IML(P) with set of propositions equal to {pn :
p ∈ P}, and modal operators in {2i, 3i : i ≥ 0}.

146 Chapter 8. The Layered Translation

• Suppose that φ is a modal formula of ML. Let n be a natural number. The
translation Tr(φ, n) of φ into the intermediate multimodal language IML
is defined as follows:

Tr(p, n) := pn, Tr(¬ψ, n) := ¬Tr(ψ, n),

Tr(ψ ∧ χ, n) := Tr(ψ, n) ∧ Tr(χ, n), Tr(ψ ∨ χ, n) := Tr(ψ, n) ∨ Tr(χ, n),

Tr(3ψ, n) := 3n+1Tr(ψ, n+ 1), Tr(2ψ, n) := 2n+1Tr(ψ, n+ 1).

• Denote by LTx the composition of Tr(, 0) and ST x: i.e., for every modal
formula φ,

LTx(φ) := ST x ◦ Tr(φ, 0).

The layered relational translation LT is LTx, for a generic first-order variable
x.

In the two lemmas below, we adopt the following notational convention.

Convention 8.4.2. If T is a tree or tree-like structure with root r, then let
path(t) denote the length of the T path to t.

Notice that this path is unique in virtue of Fact 8.3.3.

Lemma 8.4.3. Let φ be a unimodal formula and T a tree-like model in the lan-
guage of φ. If the intermediate multimodal formula Tr(φ, n) is satisfiable at a
world t in the model T such that path(t) = n, then the unimodal formula φ is
satisfiable as well.

Proof. Let T be a tree model as in the above statement, with universe T , a
finite number of labelled relations Ri and valuation V .

Now, let us construct a unimodal model N on T whose relation R is defined
as follows:

R := {(t, u) ∈ T × T : Rjtu for some Rj of T } . (Rel)

The valuation V ′ of the model N is defined as follows: for every proposition letter
p and for every t such that path(t) = n, t ∈ V ′(p) iff t ∈ V (Tr(φ, n)).

Given this model N and our tree-like model T , we can prove the following
stronger claim, from which follows our lemma:

T , t |= Tr(φ, n) iff N , t |= φ,

for every t ∈ T such that n is equal to path(t).
We prove the above claim by structural induction on φ. The atomic and

Boolean cases are easy to spell out, since both immediately follow from the above

8.4. Layer by Layer 147

choice of V ′ and the fact that the intermediate translation Tr is a homomorphism
on Boolean formulas, see Definition 8.4.1. Next, assume that φ is a formula of
the form 3ψ. In this case,

Tr(φ, n) = 3n+1Tr(ψ, n+ 1).

Assume that t is a node of T , and the length of the T path to t is n; i.e.,
path(t) = n. We have that T , t |= Tr(φ, n) iff there exist u and Rj in T such that
Rjtu, and T , u |= Tr(ψ, n). Since path(u) is equal to the length of the path to t
plus 1 (i.e., the length of the Rj transition from t to u), by induction hypothesis
we know that T , u |= Tr(ψ, n+ 1) is equivalent to N , u |= ψ. Therefore, this and
(Rel) yield that T , t |= Tr(φ, n) iff N , t |= φ. 2

In the following lemma, we prove the reverse implication of the above lemma.

Lemma 8.4.4. Let φ be a unimodal formula and T a tree model in the language
of φ. If φ is satisfiable at the world t in the model T such that path(t) = n, then
the intermediate multimodal translation Tr(φ, n) of φ is satisfiable as well.

Proof. We define a model N := 〈T, {Rn+1 : n ≥ 0} , V ′〉 that has the same
universe T as T . The relations of N are defined by stipulating the following:

Rn+1uv holds iff both path(u) = n and Ruv hold.

We complete the characterisation of N by defining its valuation V ′ as follows:
for every proposition letter p and every world t ∈ T such that path(t) = n, we
stipulate that t ∈ V ′(Tr(p, n)) holds iff t ∈ V (p).

The following intermediate claim follows easily now by structural induction
on φ, like in Lemma 8.4.3: for every unimodal formula φ, every world t and n
such that path(t) = n, we have

T , t |= φ iff N , t |= Tr(φ, n) holds.

Our lemma is clearly an immediate consequence of the above claim. 2

We now combine the above lemmas and prove that the intermediate transla-
tion Tr preserves satisfiability.

Theorem 8.4.5. Assume a modal formula φ. Thus the following holds true:

• φ is satisfiable iff its intermediate modal translation Tr(φ, n) is satisfiable;

• φ is satisfiable iff its intermediate modal translation Tr(φ, 0) is satisfiable.

148 Chapter 8. The Layered Translation

Proof. The first item is an immediate consequence of Lemmas 8.4.4 and 8.4.3,
via Theorem 8.3.5, and it yields the second item. 2

Finally, the combination of Theorems 8.4.5 and 7.3.4 yields that the layered trans-
lation, being the composition of Tr and the standard translation, preserves sat-
isfiability too.

Theorem 8.4.6. Let φ be a modal formula. Then φ is satisfiable iff LTx(φ) is
so, for any first-order variable x.

Proof. The statement follows from Theorems 8.4.5 and 7.3.4, since LTx results
from the composition of the standard translation STx and Tr(, 0), see Defini-
tion 8.4.1. 2

In the subsection below, we reformulate some of the above definitions and state-
ments for the case of the multimodal logics K(Index).

8.4.2 The Multimodal Case

The layered relational translation is easily extended to the multimodal language
MML(Index,P) by means of a slightly more complex encoding. We need strings
of labels instead of natural numbers to capture the different relations involved.
The result is an analogous of Definition 8.4.1.

The set of operators of the intermediate language is now labelled by sequences,
whose values are the indices of the modal operators of the original language; so
is its set of proposition letters, as we specify below.

Definition 8.4.7. Consider a multimodal languageMML := MML(Index,P),
with modal operators in {2a, 3a : a ∈ Index}. Then the multimodal language
IMML := IMML(Index,P) is the multimodal language with set of proposi-
tions equal to {ps : p ∈ P and s ∈ Index∗}, and modal operators in {2s, 3s :
s ∈ Index∗}.

• Suppose that φ is a multimodal formula in MML. Let s ∈ Index ∗. The
intermediated translation Trm(φ, s) of φ into the intermediate multimodal
language IMML, for a string s in Index∗, is defined as follows:

Trm(p, n) := pn,

Trm(¬ψ, n) := ¬Trm(ψ, n),

Trm(ψ ∧ χ, n) := Trm(ψ, n) ∧ Trm(χ, n),

Trm(ψ ∨ χ, n) := Trm(ψ, n) ∨ Trm(χ, n),

Trm(3aψ, s) := 3s∗〈a〉Trm(ψ, s ∗ 〈a〉),
Trm(2aψ, s) := 2s∗〈a〉Trm(ψ, s ∗ 〈a〉).

8.4. Layer by Layer 149

• MLTx denotes the composition of the translation Trm(, ε) above and ST x:
i.e., for every multimodal formula φ of MML,

MLTx(φ) := ST x ◦ Trm(φ, ε),

where ε is the empty sequence. The multimodal layered relational translation
MLT is MLTx for some first-order variable x.

• The layered fragment of first-order logic is the range of the multimodal
layered translation.

The following result is proved as in the unimodal case. We let the reader spell
out the details or check the proof in [AGHdR00].

Theorem 8.4.8. Let φ be a multimodal formula. Then φ is satisfiable iff MLTx(φ)
is so, for any first-order variable x. 2

8.4.3 Finale

The layered translation constitutes a new way of turning modal problems into
first-order problems. The new translation, and the intermediate translation into
multimodal languages are both conservative, in the sense that they can work on
top of existing strategies for first-order and modal logics, respectively. We discuss
the latter fact in Chapter 9, and put at work the former in Section 8.5 below.

In particular, the layered translation is a refinement of the standard transla-
tion; hence the layered fragment is contained in the fragment identified by the
standard translation and in its generalisation, i.e., the guarded fragment. Thus
we can use any decision procedure and strategy tuned for the latter, see [dNdR02].
We state this precisely as follows.

Theorem 8.4.9. Let RST (φ) and RLT (φ) denote the sets of clauses derivable
by means of resolution and factoring from ST (φ) and LT (φ) respectively. Then
|RST (φ)| ≤ |RLT (φ)|. The same result holds with LT replaced by MLT . 2

The above result yields that first-order theorem provers will perform at least as
well on the layered translations as on the standard one. In the section below, we
report our experimental comparison between the two translations. This witnesses
the improvements — up to orders of magnitude better — that the theorem prover
spass gains by means of the new translation LT .

150 Chapter 8. The Layered Translation

8.5 Experimental Comparisons

In this section, we compare the two translations, the standard versus the layered
one, by running some experimental tests. First we briefly introduce and comment
on the problem set and prover used in our experiments, then we display and
explain the results.

8.5.1 The Problem Set

Our tree-based heuristics was evaluated by running a series of tests on a number
of problem sets. Our main focus was on the modal QBF benchmark. This bench-
mark is the basic yardstick for the Tableaux Non-Classical Systems Comparisons
(TANCS) competition on theorem proving and satisfiability testing for non-classical
logics, see [TAN00]. It is a random problem generator that has been designed to
evaluate solvers of either satisfiable or unsatisfiable problems of the modal logic
K.

The modal formulas of this benchmark are generated by means of quanti-
fied Boolean formulas. For the generation, first a quantified Boolean formula is
generated with C clauses, quantifier alternation depth equal to D, and maximum
number of variables V for each alternation. Then the resulting quantified Boolean
formula is translated into modal logic via an encoding that was originally pro-
posed by Halpern, see [Hal95]. See [HdR01] for a detailed analysis of the QBF
test set.

The output of the QBF generator is is a file named p-qbf-cnf-K4-Cn-Vm-Dl,
in which the numerical parameters are explained as follows: n is the number of
clauses; m the number of variables; D the quantifier depth.

8.5.2 The Theorem Prover

Tests were performed on a Sun ULTRA II (300 MHz) with 1Gb RAM, under
Solaris 5.2.5, with the automated theorem prover Spass version 1.0.3. This is
an automated theorem prover for full sorted first-order logic with equality that
extends superposition by sorts and a splitting rule for case analysis; it has been
in development at the Max-Planck-Institut für Informatik for a number of years,
see [SPA00]. Spass was invoked with the automode switched on; no sort con-
straints were built, and both optimized and strong Skolemization were disabled.

8.5.3 Experimental Comparisons

The modal QBF benchmark

To explore the behaviour of our heuristics in a large portion of the landscape of
the K-satisfiability problem, we randomly generated sets of 10 problems by means

8.5. Experimental Comparisons 151

C/V/D ST Average Time LT Average Time M
5/2/1 9.6222 0.53469 1
10/2/1 3.9909 0.41734 1
15/2/1 0.13172 0.10859 0
5/2/2 450.44 0.66141 3
10/2/2 370.09 0.78297 3
15/2/2 147.38 0.75656 2
5/2/3 N/A 36.048 N/A
10/2/3 N/A 58.886 N/A
15/2/3 2094.4 94.192 1
5/2/4 N/A 20.362 N/A
10/2/4 N/A 33.084 N/A
15/2/4 2094.4 35.068 1
5/2/5 N/A 1136.1 N/A
10/2/5 N/A 2896 N/A
15/2/5 N/A 3758.2 N/A

5/3/1 7.1862 2047.9 2
10/3/1 9.752 2324.2 2
15/3/1 14.066 1506.8 2
5/3/2 N/A 7.0931 N/A
10/3/2 N/A 8.3192 N/A
15/3/2 N/A 9.3902 N/A
5/3/3 N/A 1445.2 N/A
10/3/3 N/A 4045.1 N/A
15/3/3 N/A 4865.4 N/A

Table 8.1: Comparison by average time.

of the modal QBF generator for different sets of parameters. Table 8.1 compares
the average time in CPU seconds, while Table 8.2 compares the average number of
clauses for two methods: layered (our improved translation, see Definition 8.4.1)
and standard (the relational method, see Definition 7.3.1). The shorthand C/V/D
in the first column denotes the number of clauses, the number of variables, and
the depth used in the generation. Columns labelled by M show the magnitude
of the difference between the preceding two columns, i.e., round(logN/N ′). We
used a time out of 3 hours on a shared machine; N/A indicates that a value is
not available due to a time out.

As can easily be seen from Tables 8.1 and 8.2, our improved translation method
outperformed the standard translation in every case, both in computing time
(CPU time) and number of clauses generated. This is not only an average be-
haviour, but it was observed in each instance. For some configurations the drop

152 Chapter 8. The Layered Translation

C/V/D ST Average LT Average M
Clause Number Clause Number

5/2/1 5695 726 1
10/2/1 2367 546 1
15/2/1 10 10 0
5/2/2 27209 437 2
10/2/2 22306 500 2
15/2/2 11368 473 1
5/2/3 N/A 10714 N/A
10/2/3 N/A 15395 N/A
15/2/3 45789 20786 1
5/2/4 N/A 3121 N/A
10/2/4 N/A 4971 N/A
15/2/4 N/A 5358 N/A
5/2/5 N/A 48546 N/A
10/2/5 N/A 91767 N/A
15/2/5 N/A 106870 N/A

5/3/1 105960 4372 1
10/3/1 108110 5390 1
15/3/1 72605 6687 1
5/3/2 N/A 1804 N/A
10/3/2 N/A 2221 N/A
15/3/2 N/A 2687 N/A
5/3/3 N/A 52153 N/A
10/3/3 N/A 107800 N/A
15/3/3 N/A 119150 N/A

Table 8.2: Comparison by average number of generated clauses.

in computing time is as much as three orders of magnitude or two. This is al-
ways the case when the depth of the formula increases, as our translation cleverly
exploits the modal depth information. The average number of clauses generated
was nearly always smaller by one order of magnitude.

In Figure 8.2 we display a sample from our experimental results: 64 instances
of the 10/3/1 configuration. The top curve indicates the CPU time needed by the
standard relational translation, and the bottom one the CPU time needed by the
layered translation. Note that the standard translation can be very sensitive to
certain hard problems, which results in significant differences between easy and
hard instances; the layered method responds in a much more controlled way to
hard problems. Interestingly, the curves follow each other, even at many orders
of magnitude of difference. This shows that our heuristics does not change the

8.5. Experimental Comparisons 153

10 20 30 40 50 60
10

0

10
1

10
2

10
3

Test in p−qbf−cnf−K4−C10−V3−D1

T
ot

al
 u

se
r

tim
e

Formula number

Standard
Layered

Figure 8.2: A sample from the tests.

nature of the problem: it simply makes it much easier for the resolution prover.

The latter phenomenon can also be observed more globally. The plots in
Figure 8.3 were obtained with the following settings: V = D = 2, while C ranged
from 2 to 40. Figures 8.3 (a) and (b) show the number of clauses generated
and the CPU time needed, respectively, for the standard and layered method,
while 8.3 (c) plots the proportion of satisfiable instances as C increases. The
curves for the standard and layered methods are very similar, with the layered
method lacking the sharp lows and highs that seem to be characteristic for the
relational method. Both display a clear easy-hard-easy behaviour, but the layered
translation is better by several orders of magnitude.

Note that the biggest improvements are achieved in the satisfiable region, i.e.,
for C < 26. Once we were confident that the layered method consistently displayed
a good behaviour and a significant improvement over the standard translation,
we ran the standardized tests provided by TANCS (64 instances randomly gener-
ated with the 20-clauses/2-variables/2-depth parameters); see Figure 8.4 for the
outcomes.

Finally, to obtain the results in Figure 8.5 we generated 64 instances of prob-
lems for 2 and 3 variables with depths ranging from 1 to 6, again with a time
out of 3 hours. The figure shows the average values we obtained. We ran the

154 Chapter 8. The Layered Translation

5 10 15 20 25 30 35 40
10

2

10
3

10
4

Test for V=2, D=2, C=2−40

C
la

us
es

 g
en

er
at

ed

Number of clauses in original formula

Standard clauses
Layered clauses

5 10 15 20 25 30 35 40

10
0

10
1

10
2

10
3

T
im

e
el

ap
se

d

Number of clauses in original formula

Test for V=2, D=2, C=2−40

Standard user time
Layered user time

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Test for V=2, D=2, C=2−40

Number of clauses in original formula

S
at

is
fia

bl
e

pr
op

or
tio

n

Figure 8.3: Easy-hard-easy.

8.5. Experimental Comparisons 155

10 20 30 40 50 60

10
0

10
1

10
2

10
3

10
4

10
5

Test in p−qbf−cnf−K4−C20−V2−D2

Formula number

T
im

e
el

ap
se

d
−

 C
la

us
es

 g
en

er
at

ed
Standard Clauses
Layered Clauses
Standard Time
Layered Time
Satisfiable

Figure 8.4: Standard TANCS Test 20/2/2.

1 2 3 4 5 6

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Depth

T
im

e
el

ap
se

d
−

 T
ot

al
 c

la
us

es
 g

en
er

at
ed

C5 clauses, V=2
C5 time, V=2
C10 clauses, V=2
C10 time, V=2
C15 clauses, V=2
C15 time, V=2
C5 clauses, V=3
C5 time, V=3
C10 clauses, V=3
C10 time, V=3
C15 clauses, V=3
C15 time, V=3

Figure 8.5: LT Tests on 64 Problem Instances.

156 Chapter 8. The Layered Translation

same tests with the standard instead of the layered translation, but even for mod-
erate depths the computing time and number of clauses exceeded the available
resources.

Additional Tests

Given that the problems returned by the QBF generator were generally too hard
for the prover using the standard translation, we also performed tests with a
number of easier problem sets — so to speak — that include the one proposed
by Heuerding and Schwendimann in [HS96], which were used in, for example,
Tableaux’98. Invariably, the layered translation outperformed the standard one;
it was able to solve substantially harder instances in all categories.

8.6 Conclusions

8.6.1 Synopsis

In this chapter, a new relational translation of modal formulas into first-order
formulas is described. The key idea underlying this refinement is to encode a
very strong form of the tree model property in an intermediate translation into
multi-modal languages, and hence in a translation into first-order languages — see
Definition 8.4.1.

Using our tree-based heuristics, we have consistently observed improvements,
both in terms of the number of clauses generated and in terms of CPU time used.

8.6.2 Discussion

So the methodology used pays off: instead of modifying theorem provers, or de-
velop new ones from scratch, we reuse existing ones and optimise their behaviour
by refining the encoding of the modal problems. In the future, it could be inter-
esting to explore the behaviour of our heuristics in larger parts of the problem
space.

It could also be interesting to see how to encode weaker forms of the tree model
property to boost the performance of resolution provers on input from different
modal logics, such as K4, S4, and temporal logic.

In Chapter 9, we appeal to the same semantic intuitions underpinning the
results of this chapter. As noticed above, the intermediate translation is already
based on these: it makes explicit, at the syntactic level, that the satisfiability of a
modal formula can be tested propositionally, proceeding layer by layer (i.e., index
by index) in the modal formula. It is precisely this semantic property which is
used in procedures for modal logics that are based on propositional solvers, as
explained in the following chapter.

Chapter 9

Diamonds and Constraints

9.1 Introduction

9.1.1 Motivations

In Chapter 8 we base the satisfiability procedure for K and K(Index) on a
translation from modal logic into the layered fragment of first-order logic. This
translation goes through an intermediate translation which maps modal formulas
into formulas of an intermediate multimodal language. This intermediate trans-
lation itself possesses interesting features:

• it encodes a very strong form of the tree model property,

• it preserves satisfiability,

• and, as a consequence, it could be directly employed to check the satisfia-
bility of the original modal formulas.

The work of [GS00] exploits similar semantic intuitions but without appealing to
the tree model property directly. In fact, Giunchiglia and Sebastiani prove that
a refinement of a SAT solver, called K-SAT, can be used for K(Index) theorem
proving: this decision procedure for K(Index) logics is built on top of the Davis-
Logemann-Loveland (DP) procedure for propositional logics. The SAT solver DP

is called on a modal formula. The propositional satisfiability of the input formula
is first checked. If the result is positive, search is not abandoned, but the modal
components of the formula are examined: one by one, each subformula with a
diamond as its main operator is checked against all the subformulas that have a
box as their main operator; this is done by means of DP again.

In this chapter, we follow a similar approach: however, instead of using DP, we
want to use constraint propagation (see Chapter 4) and solving algorithms. At
this early stage of our work, we are not aiming to be competitive with today’s high-
performance modal provers, such as DLP [PS02], FaCT [Hor02] and RACER [HM02].

157

158 Chapter 9. Diamonds and Constraints

Our aim in this chapter is to explore to what extent existing constraint satisfaction
techniques, developed for propositional satisfiability, can be used in automated
theorem proving for modal logics.

9.1.2 Outline and Structure

In this chapter, we propose to use constraint solving and propagation algorithms
to determine the satisfiability of modal logics. These procedures are all based on
constraint algorithms for propositional formulas, as the aforementioned K-SAT
algorithm is based on DP.

Our work in this chapter consists of two stages. The modal formula is first
transformed into a CSP, see Subsection 9.4.2. Then a preliminary constraint based
procedure for this encoding is proposed in Subsection 9.4.3. Search for solutions
is alternated with a hyper-arc consistency algorithm, as described in Chapter 4.
We sketch a proof of the correctness and completeness of the procedure for K
formulas. A refinement of this procedure and alternatives to it, still based on
CSP solvers, are proposed in Section 9.6.

In the literature, a number of constraint propagation and solving algorithms
have been studied for reasoning about satisfiability problems. Thus, our work
constitutes a first attempt to exploit well-known and corroborated techniques
of constraint propagation and satisfaction for these problems to tackle modal
satisfiability. We also report on preliminary experimental work aimed at testing
the procedures proposed in this chapter on benchmark modal formulas.

9.2 The SAT Based Approach

In the remainder of this chapter, we implicitly assume that we are dealing with
modal languages in which every occurrence of the 3 operator has been replaced
by ¬2.

Convention 9.2.1. We assume that, in the modal language ML(P), each oc-
currence of all modal operators 3 is replaced by the equivalent ¬2¬.

This will avoid that the solver treats modal formulas such as 3¬p and 2p in a
different way.

The following further convention on propositional formulas is consistent with
the actual implementations of the DP procedure as in [Seb97], and does not con-
stitute a theoretical limitation; see also ib.

Convention 9.2.2. The set of atoms in propositions or clause sets are totally
ordered.

9.2. The SAT Based Approach 159

Convention 9.2.2 avoids that theorem provers based on DP treat formulas such
as p ∨ q and q ∨ p as different. The original DP procedure receives as input a
CNF formula and determines whether the formula is satisfiable or not. The basic
K-SAT algorithm, displayed as Algorithm 9.2.1, applies a modified version of the
DP procedure, recursively, on sequences of modal formulas.

We interpret what the K-SAT procedure does by resorting to the tree model
property, see Definition 8.3.2. We recall that the intermediate translation (see Def-
inition 8.4.1) is already based on this property: i.e., a multimodal K(Index) for-
mula ψ is satisfiable iff it is so at the root of a tree-like model. This means that
subformulas of ψ can be evaluated layer by layer: first subformulas in layer 0 are
evaluated; if these are found consistent, subformulas at deeper layers are evalu-
ated, in a top-down manner. This is also what Algorithm 9.2.1 does in tree-like
terms. '

&

$

%

Algorithm 9.2.1: K-SAT(ψ)

procedure K-SAT(ψ)
return K-SATW (ψ, true);

procedure K-SATW (ψ, µ)
if µ = false then return false; % backtrack

if µ = true then return KSATA(µ);
if a unit disjunct L is in ψ then

return K-SATW (Unit-propagate(L, ψ), µ ∧ L);
L := Select-branch-variable(ψ);
return K-SATW (Unit-propagate(ψ,L), ν ∧ L) or

K-SATW (Unit-propagate(ψ,¬L), ν ∧ ¬L)

procedure K-SATA(µ)
Φ :=

∧
{φ : 2φ occurs in µ} ;

for each 2θ such that ¬2θ occurs in µ do
θ := ¬θ;
if not KSAT(θ ∧ Φ) then return false; % backtrack

return true;

Algorithm 9.2.1 presents only the basic version for K, restricted to CNF formulas.
Thus, given a CNF formula φ and a literal L of φ, Unite-propagate performs
unit propagation, which is explained as below.

Definition 9.2.3. Given a CNF formula φ and a literal L in φ, unit propagation
of L in φ consists of the following procedures:

• unit resolution: replace each disjunct of the form ¬L ∨ ψ by ψ in φ;

160 Chapter 9. Diamonds and Constraints

• unit substitution: remove each disjunct of the form L ∨ ψ from φ.

The original algorithm K-SAT can deal with formulas of any format by refining
Unite-propagate, see [GS00]. The correctness of Algorithm 9.2.1 is based on
the result below. To formulate it, we need to briefly explain how a propositional
assignment can generate a formula.

Definition 9.2.4. Consider a finite propositional language and an assignment
µ of truth values to the set of its proposition letters P : i.e., µ : P 7→ {0, 1}.
Then the formula generated by µ is∧

{pi : µ(pi) = 1} ∧
∧
{¬pj : µ(pi) = 0} .

We denote the formula generated by a propositional assignment µ by P (µ). The
above definition is essential for the formulation of the following result; for a proof,
see [Seb97].

Theorem 9.2.5. Consider a modal language ML and an ML formula φ of the
form

ri∨
j

2φij ∨
r′
i′∨
j′

¬2θij′︸ ︷︷ ︸
modal part

∨
mi∨
l

Lil.︸ ︷︷ ︸
proposition

Then φ is satisfiable in an ML model iff there exists a truth-value assignment µ
to the propositional variables in the propositional language

P :=
{
p : p occurs in some Lil in φ

}
∪

{
2φij, 2θij′ ∈ φ

}
such that the P formula P (µ) generated by µ is ML satisfiable, and µ satisfies
the P formula φ.

9.3 Constraint Satisfaction and SAT Formulas

There is one obvious way of reformulating a SAT problem as a CSP. It requires a
proposition to be reduced to its CNF; hence each resulting conjunct is regarded
as a constraint. For instance, the disjunction

¬x ∨ y ∨ z (9.1)

is regarded as the constraint C(x, y, z), the explicit description of which only rules
out the triple (1, 0, 0) from the interpretation domains of the variables x, y and z.
In this formulation, arc consistency or hyper-arc consistency can take the place
of unit propagation as proved in [Apt00b].

9.3. Constraint Satisfaction and SAT Formulas 161

In the remainder of this section, we focus on the aforementioned encoding
of formulas as (9.1) into constraints, and analyse a constraint propagation and
solving algorithm for it. In Section 9.6, we suggest possible improvements to this,
and how a different encoding of formulas as CSPs could be used for performing
modal automated reasoning.

At this point, we fix the type of CSPs we deal with in the remainder of the
present chapter.

Definition 9.3.1. A Boolean CSP P := 〈X,D,C〉 has domains that only con-
tain 0 or 1.

Hence, Boolean constraints have the same domains and only differ in the chosen
representation of constraints in this chapter; see [Wal00] for three other different
encodings of propositional formulas as CSPs.

9.3.1 Mapping CNF Formulas into Constraints

Given Definition 9.3.1, it is not difficult to map CNF formulas into equivalent
Boolean constraints. In this subsection, a constraint corresponds to a disjunction
of literals — these are atoms or their negation, see Subsection 8.2.1. An explicit
representation of such a constraint gives just the truth assignments that satisfy
the clause. We provide the translation below.

Definition 9.3.2. Consider a CNF formula ψ. First, remove all propositional
tautologies from ψ and let ψ′ be the resulting CNF formula. Denote by At the
ordered set of atoms that occur in ψ′ (see Convention 9.2.2). Then apply the
following procedure on all disjuncts φ in ψ′:

• if φ is a unit disjunct L, then: if L is a propositional atom pi, set Di = {1};
if L is the negation of a propositional atom pi, then set Di := {0};

• else, create a constraint C(φ) on the ordered set of variables {pi1 , . . . , pim}
that occur in φ: a tuple d of 0’s and 1’s belongs to C(φ) iff the set of truth
assignments

µ :=
{
pij 7→ d [ij] : j = 1, . . . ,m

}
satisfies the formula φ;

• associate the domain {0, 1} with all the atoms that do not occur in unit
clauses in ψ′.

Denote by TCSPSAT (ψ) the resulting Boolean CSP.

The following result clearly holds.

Fact 9.3.3. An assignment µ satisfies a CNF formula ψ iff its restriction to the
variables in TCSPSAT (ψ) satisfies ψ viewed as a Boolean CSP. 2

162 Chapter 9. Diamonds and Constraints

9.3.2 Constraint Solving Algorithms

In Subsection 4.1.1, we briefly discussed constraint solving algorithms, by men-
tioning two well-known schemas: generate and test (GT) and backtracking (BT).
We now provide some more details on them. In GT, all variables are instantiated
(generation), and the resulting total assignment is tested against the problem
constraint. In the BT schema, variables are instantiated sequentially; as soon as
all the variables relevant to a constraint of the problem are instantiated, the re-
sulting partial assignment is checked against the constraint. Whenever a partial
assignment violates any of the constraints, BT backtracks to the last instantiated
variable, whose current domain is non-empty. Thus BT searches through the space
for solutions in a depth-first manner, see [Kum92].

In this subsection, we discuss a constraint solving methodology based on BT:
this amounts to embedding one of the constraint propagation algorithms that we
explained in Chapter 2 in BT. We explain this below, following the presentation
of [Kum92].

The generic BT schema with some form of constraint propagation receives a
CSP as input and computes a new CSP at each step. For instance, suppose that
constraint propagation amounts to enforcing hyper-arc consistency in BT; then
hyper-arc consistency is performed on each CSP that is step-by-step computed
in the BT algorithm. If the current CSP has singleton domains (i.e., variable
domains have precisely 1 element) and is hyper-arc consistent, then the problem
is solved: i.e, the solution consists in assigning to the variables the unique value
found in their respective domains. If during constraint propagation the domain
of any variable becomes empty, then this CSP is removed from the search space.
Otherwise, one of the variables, whose current domain has more than one element,
is selected and a new CSP is computed, for each possible assignment of this
variable. A BT algorithm checks the consistency of these computed CSPs in a
depth-first manner until a solution is generated.

This brief outline is just one of many algorithms based on the schema “BT
+ constraint propagation”. Those algorithms differ in the backtracking method
used and, more interestingly for us, in the specific constraint propagation algo-
rithm used. Moreover, there is not just the issue of which constraint propagation
algorithm should be employed, we also have to decide when to use the algorithm,
and till what point in the search space. In what follows, we shall not concern our-
selves with this last aspect of backtracking schemas: a good introduction to this
is still, to our knowledge, [Kum92]. Instead, in Subsection 9.3.3 below, we shall
focus our attention on a specific algorithm schema that fits in the “BT+constraint
propagation” methodology: forward checking.

9.3. Constraint Satisfaction and SAT Formulas 163

9.3.3 The Forward Checking Algorithm Schema

Forward Checking (FC) is an algorithm schema that works like BT, except that
domains of still unassigned variables change dynamically: when a variable xi is
assigned a value, the algorithm performs hyper-arc consistency checks on domains
of variables that are still unassigned, by inspecting constraints on those variables
and xi. When hyper-arc inconsistency is detected, backtracking to the last as-
signment for xi occurs; another value is assigned and, if this is inconsistent with
a constraint on it, backtracking resorts to the variable instantiated before xi.
Nowadays, there are a number of variants of this basic schema; they mainly differ
in the choice of domains and constraints on which hyper-arc consistency is per-
formed, see [BMFL02]. The algorithm schema FC is displayed as Algorithm 9.3.1
below. Variables are partitioned in two sets, A and U :

• A stores the set of variables that occur in the current assignment;

• U stores the remaining set of variables.

The algorithm HAC is called when the currently inspected variable xi is assigned
a value a ∈ Di, and there are constraints in the current CSP P := 〈X,D,C〉
that involve xi. Thus HAC performs a limited form of hyper-arc consistency on the
problem which has constraints C(s) such that xi is in s, and domains of the form
Dj such that xj is in s. The specific choice of which and how many variables xj,
from U or A, can occur in the constraints C(s) of this problem varies according
to the specific FC algorithm chosen.'

&

$

%

Algorithm 9.3.1: FC(A,U , µ,D)

if F = ∅ then return µ;
choose xi from U ;
stop := false;
while Di 6= ∅ and not stop do
choose a ∈ Di;
Tempµ := µ ∪ {xi := a} ;
TempD := HAC(xi, a,U − {xi} ,D − {Di});
if not TempD = ∅ then

return FC(A ∪ {xi} ,U − {xi} , T empµ, TempD);
else stop = true; % backtrack

Walsh [Wal00] provides a theoretical analysis of CSP-based approaches to SAT,
and shows that a version of FC, called nFC1, outperforms the basic DP procedure
on the encoding in Definition 9.3.2. The correctness and completeness of nFC1 is
proved in [BMFL02]. To state the result, we need the following terminology, that
also explains the name nFC1:

164 Chapter 9. Diamonds and Constraints

• denote by Cn
c1 the set of constraints on a scheme s in which the current

variable xi and exactly one variable from U occur;

• denote by CP n
c1 the set of constraint projections on a scheme t in which the

current variable xi and exactly one variable from U occur.

• If xi is the current variable passed to HAC, then perform hyper-arc consis-
tency on the problem with domain Di = a, constraints in C ′ := Cn

c1∪CP n
c1,

and domains of variables, different from xi, that occur in the schemes of C ′.
If an empty domain is generated, then return an empty domain set, else
return the hyper-arc consistent domain set so generated.

Hence nFC1 is the resulting version of FC. The name nFC1 is motivated by the
choice of constraints: n means that hyper-arc consistency is performed, and this
involves constraints of any arity n; instead, 1 refers to the fact that exactly one
uninstantiated variable is chosen to enforce hyper-arc consistency.

Theorem 9.3.4 ([BMFL02]). If the given CSP is consistent, then nFC1 returns
a consistent assignment for it; else it reports that the problem is inconsistent. 2

9.4 The KCSP Algorithm

In the remainder of this chapter, we focus on a procedure for satisfying modal
formulas via constraint propagation and satisfaction, that is based on the semantic
intuitions underlying the intermediate translation in Definition 9.3.2. We suggest
a number of other similar procedures in Section 9.6 below.

9.4.1 Examples

Before explaining the procedure KCSP in Subsection 9.4.2 below, we start by con-
sidering an example formula in CNF, its encodings as CSP and how the procedure
KCSP works on it. Let us consider the following modal formula:

ψ := 2(p ∨ q) ∧ ¬2(p ∧ q) ∧ p.

After the minimum layer of the formula is computed, i.e., 0, the following CSP is
returned — with propositional formulas as variables:

1. three propositional variables: 2(p ∨ q); 2(p ∧ q); p;

2. the variable domains of 2(p ∧ q) and p are set to {1}; the variable domain
of 2(p ∧ q) is set to {0};

3. no constraints.

9.4. The KCSP Algorithm 165

Then the CSP is passed to the CSP propositional solver that returns the only
possible assignment µ (unique for this formula; in general, split may be needed to
choose among alternative assignments): µ maps the three variables, in the order
given above, to the triple (1, 1, 0).

The modal procedure, invoked on µ, does the following: selects all formulas,
within the scope of a 2 operator, and join them in a conjunction Φ:

Φ := p ∨ q.

This is the universal theory: in model-theoretic terms, this is the formula that is
to be satisfied by each modal successor at level 1 of a state satisfying 2(p∨ q) at
level 0. Then, each formula that occurs in the scope of a negative occurrence of
a 2 operator is negated, hence transformed in CNF: in this case, the result is a
formula Θ defined as

Θ := ¬p ∨ ¬q.

There may of course be multiple such existential theories Θ, which have to be
satisfied at level 1, not necessarily at the same state. The conjunction Φ ∧ Θ is
passed to the propositional procedure; in this case, the conjunctive formula that
is passed on is

(p ∨ q) ∧ (¬p ∨ ¬q).

The formula is translated into a new CSP and its consistency is checked; this
results into two possible assignments, hence the procedure halts returning that
the original formula is satisfiable.

9.4.2 Mapping Modal Formulas into CSPs

As the example in Subsection 9.4.1 illustrates, proposition letters and modally
quantified formulas are both treated as propositional variables; namely variables
with only two possible values, 0 or 1.

Consider a unimodal language ML := ML(P), and an ML conjunction φ of
n disjunctions of the form

ri∨
j

2φij ∨
r′
i′∨
j′

¬2θij′︸ ︷︷ ︸
modal part

∨
mi∨
l

Lil︸ ︷︷ ︸
proposition

(9.2)

for i = 1, . . . , n, where each Lil is either a proposition letter or its negation. The
disjunction is then encoded as a constraint by treating all formulas of the form
2φij or ¬2θij′ as propositional literals, and applying the encoding TCSPSAT as in
Definition 9.3.2. Formally, we have the following definition.

166 Chapter 9. Diamonds and Constraints

Definition 9.4.1. Consider a modal formula φ in CNF. Suppose that φ is a
conjunction of n formulas such as (9.2). Let L(φ) be the set of distinct propo-
sitions that occur in the set of literals Lil in φ. Thus consider the propositional
language whose set of proposition variables is

Prop := L(φ) ∪
{
2φij, 2θij : i = 1, . . . , n

}
,

and consider φ as a proposition in this language; call it φProp. Then the CSP
translation of the modal formula ψ into CSP form is

CSP (φ) := TCSPSAT (φProp).

Using Fact 9.3.3, we obtain an analogue of Theorem 9.2.5.

Corollary 9.4.2. Consider a modal language ML and a formula ψ in CNF.
The formula ψ is satisfiable in an ML model iff there exists a truth-value as-
signment µ that satisfies CSP (ψ), and such that the propositional formula P (µ)
generated by µ is ML satisfiable.

Proof. Assume that φ is a conjunction of disjunctions (9.2), and that all tau-
tological formulas such as p ∨ ¬p have been removed from φ. Let L(φ) be the
set of distinct propositions that occur in the set of literals Lil in φ. Denote by P
the propositional language whose letters are the L(φ) propositions and all the φ
disjuncts 2ψij and 2θij′ .

Suppose that µ is an assignment that satisfies CSP (φ). Then it satisfies φ
as a P formula, by Fact 9.3.3. Assume that P (µ) is satisfiable in an ML model
M and world w. This implies that, if µ assigns 1 to a P letter in φ, then this
holds true at w in M; else it holds false. If µ does not assign any value to an
ML proposition letter p, than we extend µ to p by means of the valuation in M.
Thus M satisfies φ at w.

Vice versa, suppose that M, w |= φ. Then define the P assignment µ as

µ(φi) = 1 iff M, w |= φi,

for each proposition letter φi of P . It is not difficult to prove by structural in-
duction that µ makes φ true as a P formula and that M, w |= P (µ). The result
now follows from Fact 9.3.3. 2

9.4.3 Mapping Modal Inferences into CSP Inferences

In Algorithm 9.4.1 below, FC returns an assignment for the input CSP. During
search, an empty assignment (false) is generated iff the current CSP is detected to

9.4. The KCSP Algorithm 167

be inconsistent; i.e., the corresponding formula is unsatisfiable. Then backtrack-
ing takes place and another value for the last instantiated variable is checked etc.
If no assignment can be found, the FC algorithm concludes that the input CSP is
unsatisfiable. Thus the propositional search space is explored by FC, interleaving
backtracking with hyper-arc consistency, in a depth-first manner.

The subprocedure KFC has to handle modal satisfiability: more precisely,
KFC determines modal satisfiability by calling constraint satisfaction procedures
over Boolean CSPs.

We only sketch a proof of the correctness and completeness of Algorithm 9.4.1.

Theorem 9.4.3. The KCSP procedure returns a non-empty assignment iff the
input modal formula is satisfiable.

Proof. The procedure BoolCSP transforms the given formula into as CSP as
in Definition 9.4.1. This is proved consistent by FC iff the formula is satisfiable
as a propositional formula, see Theorem 9.3.4 and Fact 9.3.3. Our theorem now
follows from Corollary 9.4.2. 2

'

&

$

%

Algorithm 9.4.1: KCSP

procedure BoolCSP(ψ)
return BoolFC(CSP (ψ));

procedure BoolFC(CSP (ψ))
µ := FC(CSP (ψ));
if µ = false then return false; % backtrack

else return KFC(µ);

procedure KFC(µ)
Φ :=

∧
{φ : 2φ is assigned 1 in µ} ;

for each 2θ in µ that is assigned 0 do
θ := CNF(¬θ);
if not BoolCSP(θ ∧ Φ) then return false; % backtrack

return true;

Notice that the KCSP algorithm interleaves steps in which modal information is
“hidden” — within the scope of modal operators — so as to get a propositional
problem, with steps in which modal information is “unpacked” — i.e., the KFC

subprocedure is called on the modally quantified formulas.

168 Chapter 9. Diamonds and Constraints

9.5 Experimental Assessment

This section contains a brief experimental discussion of KCSP. In order to test
our preliminary procedure, we considered two test sets:

• manually coded formulas: these were devised following the criteria proposed
in [HS96] for the creation of benchmark formulas;

• several formulas from the problem sets proposed by Heuerding and Schwendi-
mann in [HS96], which were used in, for example, Tableaux’98 — see also
p. 155, where this set is used to compare the output of the layered transla-
tion to the one of the standard translation.

The KCSP algorithm was implemented in ECLiPSe, version 5.4, by Sebastian
Brand; the implementation is called mc.pl. A translator from the [HS96] format
into the format of mc.pl was provided by Juan Heguiabehere. We ran our exper-
iments on an AMD Athlon Processor (1.1 GHz), with 512 MB RAM, under Red
Hat Linux 7.1.

The program mc.pl returns a full search tree for the input formula. This is not
an efficient choice, and in future experiments we shall also take this feature into ac-
count. Yet, this choice gave us a better idea of the behaviour of the algorithm, and
this is our major concern at this stage of the work. Several formulas used in the
experiments are available at http://www.cwi.nl/~gennari/thesis/kcsp.html.

By running the tests in [HS96], we noticed a clear difference between the be-
haviour of mc.pl on unsatisfiable and satisfiable formulas. So our discussion is
divided in two subsections as below: results with unsatisfiable formulas; experi-
ments with satisfiable formulas.

The current implementation of KCSP is still a prototype, and it cannot com-
pete with highly optimised theorem provers for modal logics as those discussed
in Section 8.1. In the final Subsection 9.5.3, we elaborate on this issue and some
possible improvements to the basic procedure KCSP, that are triggered by the
experimental work presented as below.

9.5.1 The Unsatisfiable Case

Our experiments with manually coded formulas were rather promising: we passed
to mc.pl a series of modal formulas with at most 18 distinct proposition letters,
modal depth between 0 and 3, and at most 18 disjuncts; no redundant propo-
sitional tautologies occur in those formulas. On each instance, the program an-
swered correctly within 0.36 seconds; a number of these formulas, and the related
search trees explored by mc.pl are on the aforementioned web page.

Once we were confident that our algorithm consistently displayed a good be-
haviour on manually coded formulas, we considered a number of K theorems,
as provided in [HS96]: there, theorems are partitioned into sets, and formulas

9.5. Experimental Assessment 169

in a set usually differ in the number of propositional letters (V) and the modal
depth (D). To run our experiments, first those K theorems were negated, then the
obtained unsatisfiable formulas were transformed in CNF — see Definition 8.2.1.

Figure 9.1 below displays some of the tests that we ran: each label on the
horizontal axis corresponds to a different test set; thus the results for the first
two formulas from the considered test set are compared in terms of CPU seconds,
as displayed along the vertical axis.

1 2 1 2 1 2 1 2 1 2

k_branch k_d4 k_line k_path k_poly k_t4

1 2

166

0

5

10

15

20

25

30

35

Test formulas from [HS96]

cp
u

tim
e

in
 s

ec
on

ds

Figure 9.1: Comparison of the first two formulas from test sets in [HS96].

Table 9.1, displayed below, reports more formulas than those compared in Fig-
ure 9.1; the parameter C stands for the maximum number of distinct atoms (i.e.,
variables) in clauses (i.e., constraints) of the tested CNF formula. As in Sec-
tion 8.5, we gave the theorem prover a time out of an hour; thus the abbreviation
NA means that we did not obtain an answer within this time bound. As it is
clear from Figure 9.1 and Table 9.1, tests become harder for the KCSP algorithm
when C≥ 3, and D≥ 4 or V≥ 4; in fact, such values can result in more calls to
the KCSP procedure, and more backtracking points.

9.5.2 The Satisfiable Case

The best performances of the KCSP algorithm was achieved in the unsatisfiable
case, and the algorithm does not seem to be efficient in the satisfiable case yet.
We believe that this behaviour of the algorithm does not depend on its current
implementation, but on the design of the algorithm itself. For instance, the KCSP

algorithm does not fully exploit the fact that the input formulas are disjunctions;

170 Chapter 9. Diamonds and Constraints

Test formula V D C CPU seconds
k branch p1 5 2 3 0.03
k branch p2 7 3 3 32.15
k d4 p1 1 4 2 0.00
k d4 p2 1 5 2 1.03
k dum p1 1 4 4 8.55
k dum p2 1 5 4 NA
k lin p1 2 2 4 0.11
k lin p2 3 3 4 0.47
k path p1 6 1 1 0.00
k path p2 6 2 2 0.47
k ph p1 3 1 2 0.00
k ph p2 6 6 3 NA
k poly p1 7 3 2 0.01
k poly p2 15 6 2 0.02
k t4 p1 4 6 3 15.54
k t4 p2 4 7 3 165.69

Table 9.1: Test K theorems from [HS96]

i.e., it tries to return a total assignment, even when a partial assignment to
its variables could be sufficient for determining satisfiability. As for this, let us
consider a conjunction of 2n ≥ 2 formulas of the form

p ∨ qi1 ∨ · · · ∨ qin,
p ∨ ¬qi1 ∨ · · · ∨ ¬qin,

with 1 ≤ i ≤ n. Such a formula is clearly satisfied by assigning 1 to p, and
any other value to the remaining propositional letters. Still the Boolean forward
checking procedure in KCSP will search for a consistent total assignment, and
uselessly enforce hyper-arc consistency. The situation becomes even worse when
each qij is substituted by a modally quantified formula; in fact this results in
useless calls to the KFC modal procedure.

9.5.3 Finale

As remarked in Subsection 9.5.2 above, the KCSP algorithm still explores fruitless
branches of the search tree. Such useless explorations depend on the basic FC

algorithm schema: this is a complete solver that returns a total assignment to the
input problem. In contrast, the DP procedure does not suffer from this drawback,
thanks to unit substitution: unit substitution removes, from the search tree,
those disjunctions in which the current variable that is assigned the value either
true or false occurs positively or negatively, respectively. Therefore, a natural

9.6. Variations of KCSP 171

optimisation of the basic KCSP algorithm will consist in embedding some form of
unit substitution into KCSP; then it will be meaningful and interesting to have
both a theoretical and an experimental comparison of such a variation of the basic
KCSP procedure and the K-SAT algorithm.

In the following section, we propose other possible variations of the basic
KCSP module: there, either hyper-arc consistency (see Subsection 9.6.1) or for-
ward checking (see Subsection 9.6.2) are replaced by different constraint based
algorithms.

9.6 Variations of KCSP

In this section, we briefly propose two other possible approaches to determining
modal satisfiability via constraint propagation and solving algorithms.

9.6.1 Boolean CSPs and Constraint Propagation

There is at least one other main reformulation of a SAT problem as a CSP. This
makes use of so-called Boolean constraints. These are represented implicitly as
Boolean formulas and equality constraints of the following forms, where x, y and
z stand in for generic CSP variables:

x = y is an EQ constraint; (EQ)

¬x = y is a NOT constraint; (NOT)

x ∧ y = z is an AND constraint; (AND)

x ∨ y = z is an OR constraint. (OR)

The equality symbol in the constraints above is interpreted as ↔, the logical
connective of bi-implication. We can now provide a formal definition for Boolean
CSPs with the above types of constraints.

Definition 9.6.1. A Boolean CSP P := 〈X,D,C〉 is a BOOL CSP if its con-
straints are of the form (EQ), (NOT), (AND) or (OR) as above, that we call
BOOL constraints.

To reason about such constraints, rules such as the following one are employed:

x ∨ y = z, x = 0, z = 1 ` y = 1, (9.3)

the intuitive reading of which is: if x or y have the same truth values as z, x is
false and z is true, then y must be true. A set of independent rules, called BOOL,
is provided in [Apt00b]. As the author proves, applying the set of rules BOOL is
“equivalent” to performing unit propagation. To formulate this equivalence, first

172 Chapter 9. Diamonds and Constraints

a mapping of BOOL constraints into clause sets is provided (by interpreting the
equality symbol = in the BOOL constraints as the logical connective ↔); hence
by providing the opposite translation. Thus the author can prove, through those
translations, that unit propagation and the BOOL rule system can simulate each
others in constant time, but “the simulation of the unit propagation by means of
the Boolean constraint propagation [i.e., the BOOL rules] leads to a generation of
redundant constraints”, due to the introduction of redundant variables. However,
what is more interesting to us is the following equivalence.

Theorem 9.6.2 ([Apt00b]). A CSP, without empty domains, is hyper-arc con-
sistent iff it is closed under the applications of the rules of the BOOL system.

Hence, the BOOL system could be used instead of hyper-arc consistency in
KCSP to enforce modal consistency.

9.6.2 When a Bit of Cross-eye Helps

A third interesting approach is that of incorporating look-back enhancements of
BT, like Conflict Direct Backjumping (CDB), into the basic DP procedure; see [BS97].
Look-back algorithms go in the opposite direction with respect to forward check-
ing: more precisely stated, look-back algorithms exploit information about search
that has already taken place, i.e., the set of the assigned variables A in the termi-
nology of FC. The advantage of an algorithm like DP with CDB with respect to FC

is that, like DP, the first does not need to return a total assignment. In fact, unit
propagation is present in this improved version of DP; it is implemented by main-
taining a pointer to the constraint, in the input CSP, that causes the exclusion of
a specific assignment. We refer the reader to [BS97] for an accurate description
of it and the related experimental work.

Given that also this improvement of DP is complete and correct, it could be
interesting to see how it could improve the basic K-SAT algorithm for modal
logics. Not only could this be worth more exploration, but also a combination
of look-ahead techniques, like FC, and look-back techniques, like CDB, already
developed in the CSP community: in fact, as the experimental work in [BS97]
highlights, “the dramatic performance improvements resulting from the incorpo-
ration of look-back is in fact due to a synergy between the look-ahead techniques
and look-back techniques applied”.

9.7 Conclusions

9.7.1 Synopsis

In Chapter 8 we partially encode the tree model property in a translation from
modal to first-order logics; as shown in that chapter, this does pay off, and it

9.7. Conclusions 173

allows us to reuse existing, sophisticated theorem provers for modal logics, without
modifying them.

In the present chapter, the tree model property is still behind a series of
procedures for modal logics. In fact, all these “reason” propositionally, layer by
layer, on the input modal formula. They differentiate according to the basic
propositional solver adopted.

Again, we try to reuse the“existing technology”for CSPs, and make it work for
modal reasoning: this time, the encoding is not into first-order formulas but into
sequences of CSPs, so to speak. These are passed to a propositional solver, that
is slightly modified so as to “open” boxes and diamonds, and enforce satisfiability
within them too, in a top-down manner.

9.7.2 Discussion

As shown in the first part of this thesis, a number of constraint techniques have
been developed in the literature for tackling constraint satisfiability and, in partic-
ular, propositional satisfiability in an efficient manner. This chapter constitutes
a first attempt to use constraint satisfaction algorithms for propositional satisfi-
ability in the field of automated theorem proving for modal logics. Besides, we
spend an entire section, namely Section 9.6 above, on possible variations of the
solving schema proposed in this chapter, and possible optimisations to the latter.

It would also be interesting to study whether soft constraint propagation and
solving algorithms could be used for testing a limited form of modal satisfiability.
In some cases, we would like to set preferences on properties of the system: so
that, even when not all properties can be satisfied, an optimal solution, with
respect to our preferences, could still be returned. This could also constitute an
interesting test-bed for soft constraint solving and propagation algorithms.

Part III

Finale

“Gravissimo errore”, esclamò il terzo “il dolce è
in fondo”. (“Terrible mistake”, exclaimed the
third, “the sweet comes at the end”.)
G. Rodari, Vecchi Proverbi, from Favole al Tele-
fono, Einaudi, 1971.

In this part we formulate the conclusions to the thesis and discuss some re-
maining questions.

Chapter 10

Conclusions and Questions

Looking Backwards

The main themes shared by the two parts of this thesis are knowledge represen-
tation, and efficient automated reasoning on the chosen representation: Part I
is concerned with a theoretical analysis of CSP algorithms, described through
function iterations; Part II deals with efficient reasoning in the context of modal
logics, by refining the way in which modal formulas are represented and passed
to theorem provers. These parts are thus closer in rationale and methodology
rather than in their contents. Below, we further motivate this claim by outlining
the results in this thesis.

Back to Part I. This part describes and analyses a number of efficient algo-
rithms for CSPs: the constraint propagation algorithms. Our aim, there, is purely
theoretical: a unifying theory underpinning these algorithms, capable also to dif-
ferentiate between them. Thus, in Chapter 3, we propose an algorithm schema,
SGI, for constraint propagation algorithms. A simple theory for SGI is there de-
veloped. One of the primary objectives of our theorisation is declared to be the
following (p. 28):

using SGI or some of its variations for describing and analysing how the
prune-and-propagate process is carried through by constraint propa-
gation algorithms.

Hence, in Chapter 4, different domains of functions (e.g., domain orderings) are
related to different classes of constraint propagation algorithms (e.g., arc consis-
tency algorithms); thus each class of constraint propagation algorithms is associ-
ated with a type of function domains, and so separated from the others. Then
we analyse each such class: we distinguish functions on the same domains for
their different ways of performing pruning (point or set based), and consequently

177

178 Chapter 10. Conclusions and Questions

differentiate between algorithms of the same class (e.g., AC-1 and AC-3 versus
AC-4 or AC-5).

Besides and foremost, we also correlate properties of functions (e.g., commu-
tativity or stationarity) to different strategies of propagation in constraint algo-
rithms (see, for instance, AC-1 versus AC-3), and suggest that these can be used
for optimisation tasks.

In Chapter 5 the SGI schema is applied to soft CSP algorithms, thereby clari-
fying some of the similarities and differences between the crisp and soft constraint
propagation algorithms. Also, properties of functions, e.g., monotonicity and in-
flationarity, are studied as separate issues in Chapter 3. Thus their respective
roles in connection with certain behaviours of soft constraint propagation algo-
rithms are differentiated. This is an achievement per se: in the soft constraint
literature, often, the two properties are studied together and the role of each
in the analysis of soft constraint propagation thus gets lost. Furthermore, we
also obtain three new general conditions for the termination of semiring-based
constraint propagation algorithms via this abstract approach.

Therefore, the adopted schema proves to be suitable for verifying constraint
propagation algorithms, classifying them, comparing them, explaining and sepa-
rating their properties. All these is done through the unifying framework of SGI
function iterations. See also Table 4.1, p. 82.

Finally we characterise all the functions used for constraint propagation; in
fact the other goal of our theorisation is (see Chapter 3):

abstracting which functions, iterated as in SGI or its variations, per-
form the task of pruning or propagation of inconsistencies in constraint
propagation algorithms.

We accomplish this in Chapter 6, restricting the field of domain or constraint
functions to those that are actually traced in the surveyed constraint propagation
algorithms.

Back to Part II. In this part we shift perspective and approach, even though
this part is concerned with relations and relational structures too, but in the
context of modal logics. While the aim in the first part of this thesis is purely
theoretical, in Part II our task is described as follows, see Subsection 7.1.1:

determining the satisfiability of modal formulas in an efficient manner.

In Chapter 8, we focus on one way of doing this: we refine the standard translation
as the layered translation, and use existing theorem provers for first-order logic on
the output of this refined translation. We provide ample experimental evidence
on the improvements in performances that are gained through the refinement,
see Section 8.5.

The refinement of the standard translation has strong semantic motivations:
a strong form of the tree modal property. This property is also used in the basic

179

algorithm schema in Chapter 9. In fact, that property is behind the proposed
algorithms based on constraint satisfaction methods. First modal formulas are
encoded into propositional formulas and these into CSPs. The chosen constraint
solver thus proceeds “layer by layer” in the encoding of the modal formula and in
its candidate models, by applying a CSP solver for propositional satisfiability at
each layer.

Chapter 9 brings us back to constraint algorithms, and apply them to modal
reasoning problem. It constitutes a first attempt to tackle modal satisfiability by
means of constraint propagation algorithms, as explained in Chapter 4, or various
refinements of the basic backtracking schema for constraint satisfaction.

With Chapter 9, we wish to draw the attention of constraint programmers to
modal logics, and of modal logicians to CSPs. Modal logics themselves express
interesting problems in terms of relations and unary predicates, like temporal
reasoning tasks (see also Subsection 7.2.4). On the other hand, constraint al-
gorithms manipulate relations in the form of constraints, and unary predicates
in the form of domains or unary constraints, see Chapter 6. Thus the question
of how efficiently those algorithms can be applied to modal reasoning problems
seems quite natural and challenging.

Back to the origins. The general approach to constraint propagation via func-
tion iterations, presented in Part I, was first devised by Apt [Apt99a, Apt00a].
We extended it in [Gen00] to explain the AC-4 algorithm of Mohr and Henderson
[1986], the AC-5 algorithm of Van Hentenryck et al. [1992], and the HAC-4 algo-
rithm of Mohr and Masini [1988]. In [Gen02], we showed how another modification
of the original iteration schema can be used to explain the PC-4 path consistency
algorithm of Han and Lee [1988] and the KS algorithm of Cooper [1989], that can
achieve either k-consistency or strong k-consistency. We also extended the theory
of function iterations to soft constraints in the joint papers [BGR00, BGR02].
The work in Part I of this thesis presents a unifying framework that explains all
those algorithms, and the basic strong relational consistency algorithm of Dechter
and van Beek [1997].

In Part II, the work in Chapter 9 is based on a joint paper [AGHdR00] with
Areces, Heguiabehere and de Rijke. This is based on the standard translation
of van Benthem [1983]. Our refinement there is semantic driven. This same
semantic intuition triggers the work in Chapter 9: the design of a constraint
solver for modal logics, based on the propositional solver of [GS00].

Looking Ahead

As the above section highlights, a number of questions follow up from this thesis.
We briefly discuss some of them as below, starting with those related to CSPs
and then passing to modal logics.

180 Chapter 10. Conclusions and Questions

Constraint Propagation

In the above section, we conclude that the SGI schema appears to be sufficiently
general to abstract the common features of constraint propagation algorithms.
Besides and foremost, the SGI schema is sufficiently expressive and ductile to
allow us to distinguish each of those algorithms according to its specific strategy
in iterating functions, so to speak. Certainly, a proof theoretic view of constraint
propagation algorithms would be more general than the SGI based one. It seems
thus natural to investigate whether such a proof theoretic view can be as expres-
sive as the SGI based approach.

In the conclusions to Chapter 6, we suggest that it would be interesting to
compare the given characterisation of constraint algorithms in terms of functions
to the database relational model: in particular, this could be useful for optimisa-
tion tasks as our discussion on p. 122 pinpoints. We also suggest how this view
can be extended to soft CSPs; we spotlight the problems that we face in this
extension, and how these can be tackled.

In the conclusions to Chapters 4 and 5 we also suggest how the approach via
functions, adopted in this thesis, could be useful in devising new algorithms, or
new notions of constraint propagation; the basic algorithm schema can be SGI or
a variation of it, the iterated functions should be polynomial-time computable.
In what follows, we touch on this issue in the context of modal logics.

Diamonds

A question emerges from the second part of this thesis: how efficiently constraint
based algorithms can be applied to modal reasoning problems. The question can
be investigated by working further on both the following issues:

• mapping modal formulas into CSPs,

• mapping inferences on modal formulas into constraint propagation and sat-
isfaction steps.

For instance, efficient reasoning in this setting can be achieved by refining the
encodings of modal formulas into CSPs, as proposed in Chapter 9; just like we do
in Chapter 8 where we refine the standard translation of modal formulas into first-
order formulas. In turn, these refined encodings could provide more information
to constraint-based propagation and satisfaction algorithms, and this information
could result in more efficient constraint-based algorithms.

The area of automated theorem proving for modal logics could also constitute
a test-bed for soft constraint algorithms, as suggested in Section 9.7. In real
time systems, modal formulas are used to express properties of the systems; in
this context, the user is often interested in retrieving an optimal solution, that
prioritises certain properties. Hence soft CSPs and algorithms may be employed
in such situations, or existing algorithms may be optimised for these tasks.

Appendix A

Original Algorithms

Algorithm A.1: KS(X,D,C)

G := ∅;
F := {(d, s) : d ∈ D [s] , s a scheme on X} ;
for each i := 1, . . . , n and (d, s) ∈ F s.t. the length of s is i do

for each xj 6∈ s do C(d, s, xj) := Dj;
if (d, s) 6∈ C(s) for some constraint on s then
G := G ∪ {(d, s, i)} ;
F := F − {(d, s)} ; % to inspect it at most once

while G 6= ∅ do
choose (s, d, i) ∈ G;
G := G− {(d, s, i)} ;
if i < k then

for each scheme t = s ∪ {xk} s.t. xk 6∈ s and a ∈ Dk do
e = d 1 a;
if (t, e) ∈ F then
G := G ∪ {(t, e, i+ 1)} ;
F := F − {(e, t)} ; % to inspect it at most once
C(t) := C(t)− {e} ;

if i > 1 then
for each j = 1 . . . i do
r := s− {xj} ;
e := d [r] ;
C(e, r, j) := C(e, r, j)− {d [xj]} ;
if C(e, r, j) = ∅ and (e, r) ∈ F then
G := G ∪ {(e, r, i− 1)} ;
F := F − {(e, r)} ; % to inspect it at most once
C(r) := C(r)− {e} ;

181

182 Appendix A. Original Algorithms

Algorithm A.2: HAC-1(X,D,C)

S := {C(s) : C(s) is a constraint of the problem constraint set C} ;
D′ := D;
while S 6= ∅ do
choose C(s) ∈ S;
S := S − {C(s)} ;
for each xi ∈ s
D′
i := {a ∈ Di, : ∃d ∈ C(s) ∩D [s] s.t. d [xi] = a} ;

if D′
i 6= Di then

S := S ∪ {C(t) : ∃j ∈ s s.t. j ∈ t} ;
Di := D′

i;

Algorithm A.3: AC-3(X,D,C)

S := {C(xi, xj), C(xj, xi) : C(xi, xj) is in the problem constraint set C} ;
D′ := D;
while S 6= ∅ do
choose C(xk, xl) ∈ S;
S := S − {C(xk, xl)} ;
D′
k := {a ∈ Dk, : ∃(a, b) ∈ C(xk, xl) ∩D [xk, xl] s.t. d [xk] = a} ;

if D′
k 6= Dk then

S := S ∪ {C(xk, xi), C(xi, xk) : k 6= i, l} ;
Dk := D′

k;

Algorithm A.4: HAC-4(X,D,C, G)

while G 6= ∅ do
choose (xi, a) ∈ G;
G := G− {(xi, a)} ;
for each C(xi, a; s) do

for each xj ∈ s− {i} do
for each b ∈ Dj do
C(xj, b; s) := C(xj, b; s)− {d} ;
if C(xj, b; s) = ∅ and (xj, b) then
G := G ∪ {(xj, b)} ;
F := F − {(xj, b)} ; % to choose it only once
D [j] := D [j]− {b} ;

183

Algorithm A.5: PC-4(X,D,C)

while G 6= ∅ do
choose (xk : d xl : e) ∈ G;
G := G− {(xk : d , xl : e)} ;
for each j = 1, . . . , n and c ∈ Dj do

if k < j then
C(xk : d , xj : c ; xl) := C(xk : d , xj : c ; xl)− {e} ;
if C(xk : d , xj : c ; xl) = ∅ and (xk : d , xj : c) ∈ F then
G := G ∪ {(xk : d , xj : c)} ;
F := F − {(xk : d , xj : c)} ; % to choose it once
C(xk, xj) := C(xk, xj)− {(d, c)} ;
else
C(xj : c , xk : d ; xl) := C(xj : c , xk : d ; xl)− {e} ;
if C(xk : d , xj : c ; xl) = ∅ and (xj : c , xk : d) ∈ F
G := G ∪ {(xj : c , xk : d)} ;
F := F − {(xj : c , xk : d)} ; % to choose it once
C(xj, xk) := C(xj, xk)− {(c, d)} ;

if j < l then
C(xj : c , xl : e ; xk) := C(j : c , l : e ; k)− {d} ;
if C(xj : c , xl : e ; xk) = ∅ and (xj : c , xl : e) ∈ F then
G := G ∪ {(xj : c , xl : e)} ;
F := F − {(xj : c , xl : e)} ; % to choose it once
C(xj, xl) := C(xj, xl)− {(c, e)} ;
else
C(xl : e , xj : c ; xk) := C(xl : e , xj : c ; xk)− {d} ;
if C(xl : e , xj : c ; xk) = ∅ and (xl : e , xj : c) ∈ F then
G := G ∪ {(xl : e , xj : c)} ;
F := F − {(xl : e , xj : c)} ; % to choose it once
C(xl, xj) := C(xl, xj)− {(e, c)} ;

Bibliography

[ADH+87] A. Aggoun, M. Dincbas, A. Herold, H. Simonis, and P. van Henten-
ryck. The CHIP System. Technical Report TR-LP-24, European
Computer Industry Research Centre, Munich, June 1987.

[Agg95] A. Aggoun, et al. ECLiPSe User Manual. Munich, Germany, 1995.

[AGHdR00] C. Areces, R. Gennari, J. Heguiabehere, and M. de Rijke. Tree-
based Heuristics in Modal Theorem Proving. In Proc. of the 14th
European Conference on Artificial Intelligence 2000, pages 199–203.
IOS Press, 2000.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley Publishing Company, 1995.

[Aie02] M. Aiello. Spatial Reasoning. Theory and Practice. PhD thesis,
ILLC, Universiteit van Amsterdam, February 2002.

[Apt97] K.R. Apt. From Logic Programming to Prolog. Prentice Hall, Lon-
don, U.K., 1997.

[Apt99a] K.R. Apt. The Essence of Constraint Propagation. Theoretical Com-
puter Science, 221(1-2):179–210, 1999.

[Apt99b] K.R. Apt. The Rough Guide to Constraint Propagation. In Proc. of
the 5th International Conference on Principles and Practice of Con-
straint Programming (CP’99), Lecture Notes in Computer Science,
pages 1–23. Springer-Verlag, 1999.

[Apt00a] K.R. Apt. The Role of Commutativity in Constraint Propagation
Algorithms. ACM TOPLAS, 22(6):1002–1036, 2000.

185

186 Bibliography

[Apt00b] K.R. Apt. Some Remarks on Boolean Constraint Propagation. In
New Trends in Constraints, volume 1865 of Lecture Notes in Artifi-
cial Intelligence, pages 91–107, 2000.

[Are00] C.E. Areces. Logic Engineering. The Case of Hybrid and Description
Logics. PhD thesis, ILLC, Universiteit van Amsterdam, May 2000.

[Bac01] F. Bacchus. A Uniform View of Backtracking. Accessed via http://

www.cs.toronto.edu/~fbacchus/on-line, December 2001.

[BAFB96] A. Borning, R. Anderson, and B. Freeman-Benson. Indigo: A lo-
cal Propagation Algorithm for Inequality Constraints. In Proc. of
the 10th Annual ACM Symposium on User Interface Software and
Technology, pages 129–136, 1996.

[Bar97a] R. Barták. A Generalized Algorithm for Solving Constraint Hierar-
chies. Technical Report 97/1, Department of Theoretical Computer
Science, Charles University, Prague, 1997.

[Bar97b] R. Barták. A Plug-in Architecture of Constraint Hierarchy Solvers.
In Proc. of the 3rd International Conference on the Pratical Appli-
cation of Constraint Technology (PACT’97), pages 359–371, 1997.

[Bar98] R. Barták. Constraint Hierarchy Networks. In Proceedings of the
3rd ERCIM/Compulog Workshop on Constraints, Lecture Notes in
Computer Science. Springer, 1998.

[BCR00] S. Bistarelli, P. Codognet, and F. Rossi. An Abstraction Framework
for Soft Constraints and its Relationship with Constraint Propaga-
tion. In Proc. of the Symposium on Abstraction, Reformulation, and
Approximation (SARA 2000), volume 1864 of Lecture Notes in Ar-
tificial Intelligence, pages 71–86. Springer-Verlag, 2000.

[BdRV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[BFB98] A. Borning and B. Freeman-Benson. Ultraviolet: A Constraint
Satisfaction Algorithm for Interactive Graphics. CONSTRAINTS,
3(1):9–32, April 1998.

[BFBW92] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint Hier-
archies. Lisp and Symbolic Computation, 5(3):223–270, 1992.

[BGR00] S. Bistarelli, R. Gennari, and F. Rossi. Constraint Propagation for
Soft Constraint Satisfaction Problems: Generalization and Termi-
nation Conditions. In Proc. of the 6th International Conference on

Bibliography 187

Principles and Practice of Constraint Programming, volume 1894 of
Lecture Notes in Computer Science, pages 83–97. Springer, 2000.

[BGR02] S. Bistarelli, R. Gennari, and F. Rossi. General Properties and
Termination Conditions for Soft Constraint Propagation. CON-
STRAINTS, 2002. In press.

[BMFL02] C. Bessière, P. Meseguer, E.C. Freuder, and J. Larrosa. On
Forward Checking for Non Binary Constraint Satisfaction. Ar-
tificial Intelligence, 2002. To appear, available via http://

www.lirmm.fr/~bessiere.

[BMR97] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint
Satisfaction and Optimization. Journal of ACM, 44(2):201–236,
1997.

[BMSX97] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving Linear
Arithmetic Constraints for User Interface Applications. In Proc. of
the 11th Annual ACM Symposium on User Interface Software and
Technology, pages 87–96, October 1997.

[BS97] R.J.Jr. Bayardo and R.C. Schrag. Using CSP Look-back Techniques
to Solve Real-world SAT Instances. In Proc. of the Fourteenth Na-
tional Conference on Artificial Intelligence, pages 203–208, 1997.

[Coo89] M.C. Cooper. An Optimal k-Consistency Algorithm. Artificial In-
telligence, 41:89–95, 1989.

[CS01] M.C. Cooper and T. Schiex. Arc Consistency for Soft Constraints.
arXiv:cs:AI/0111038 v3, November 30 2001.

[DAA95] T. Dean, J. Allen, and Y. Aloimonos. Artificial Intelligence. Theory
and Practice. Addison-Wesley Publishing Company, 1995.

[DFP93] D. Dubois, H. Fargier, and H. Prade. The Calculus of Fuzzy Re-
strictions as a Basis for Flexible Constraint Satisfaction. In Proc. of
the 2nd IEEE International Conference on Fuzzy Systems (IEEE),
pages 1131–1136, 1993.

[dGVS97] S. de Givry, G. Verfaillie, and T. Schiex. Bounding the Optimum
of Constraint Optimization Problems. In Proc. of the 3rd Interna-
tional Conference on Principles and Practice of Constraint Program-
ming (CP97), volume 1330 of Lecture Notes in Computer Science.
Springer, 1997.

188 Bibliography

[DKL01] R. Dechter, K. Kask, and J. Larrosa. A General Scheme for Mul-
tiple Lower Bound Computation in Constraint Optimization. In
T. Walsh, editor, Proc. of the 7th International Conference of Prin-
ciple and Practice of Constraint Programming (CP 2001), volume
2239 of Lecture Notes in Computer Science, pages 346–359. Springer,
2001.

[dN94] H. de Nivelle. Ordering Refinements of Resolution. PhD thesis,
Technische Universiteit Delft, Delft, October 1994.

[dNdR02] H. de Nivelle and M. de Rijke. Deciding the Guarded Fragments by
Resolution. Journal of Symbolic Computation, 2002.

[Doe94] H.C. Doets. From Logic to Logic Programming. The MIT Press,
Cambridge, MA, 1994.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[dR93] M. de Rijke. Extending Modal Logic. PhD thesis, ILLC, Universiteit
van Amsterdam, December 1993.

[DvB97] R. Dechter and P. van Beek. Local and Global Relational Consis-
tency. Theoretical Computer Science, 173:283–308, 1997.

[FL93] H. Fargier and J. Lang. Uncertainty in Constraint Satisfaction Prob-
lems: a Probabilistic Approach. In Proc. of European Conference on
Symbolic and Qualitative Approaches to Reasoning and Uncertainty
(ECSQARU), volume 747 of Lecture Notes in Computer Science,
pages 97–104. Springer, 1993.

[Fre78] E.C. Freuder. Synthesizing Constraint Expressions. Communication
of ACM, 21:958–966, 1978.

[Frü98] T. Frühwirth. Theory and Practice of Constraint Handing Rules.
Journal of Logic Programming, 31(1-3):95–138, 1998.

[FW92] E.C. Freuder and R.J. Wallace. Partial Constraint Satisfaction. Ar-
tificial Intelligence, 58:21–70, 1992.

[Gen98] R. Gennari. Temporal Constraint Programming: a Survey. CWI
Quarterly, 11(2-3), 1998.

[Gen00] R. Gennari. Arc Consistency via Subsumed Functions. In Lloyd
et al., editor, Proc. of Computational Logic 2000 (CL 2000), vol-
ume 1861 of Lecture Notes in Artificial Intelligence, pages 358–372.
Springer, 2000.

Bibliography 189

[Gen01a] R. Gennari. Solution Preserving Translations for Comparing Soft
Frameworks. Available via http://www.wins.uva.nl/∼rgennari,
2001.

[Gen01b] R. Gennari. Translations for Comparing Soft Frameworks. In
T. Walsh, editor, Proc. of the 7th International Conference on Prin-
ciple and Practice of Constraint Programming (CP 2001), volume
2239 of Lecture Notes in Computer Science, page 764. Springer, 2001.

[Gen02] R. Gennari. The GIF Algorithm. A General Schema for Constraint
Propagation. Joint Bulletin of of the Novosibirsk Computing Center
and Institute of Informatics Systems, 2002. In press.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability. A
Guide to the Theory of NP -completeness. Freeman, 1979.

[GLS99] G. Gottlob, N. Leone, and F. Scarcello. Hypertree Decomposition
and Tractable Queries. In Proc. of the 18th ACM Symposium on
Principles of Database Systems, pages 21–32, 1999.

[Grä99] E. Grädel. Why Are Modal Logics so Robustly Decidable? In
Bulletin EATCS, volume 68, pages 90–103. 1999.

[GS00] F. Giunchiglia and R. Sebastiani. Building Decision Procedures
for Modal Logics from Propositional Decision Procedures. The Case
Study of Modal K(m). Information and Computation, 162(1–2):158–
178, 2000.

[Hal95] J.Y. Halpern. The Effect of Bounding the Number of Primitive
Propositions and the Depth of Nesting on the Complexity of Modal
Logics. Artificial Intelligence, 1995.

[HdR01] J. Heguiabehere and M. de Rijke. The Random Modal QBF Test
Set. In Proc. of IJCAR Workshop on Issues in the Design and Ex-
perimental Evaluation of Systems for Modal and Temporal Logics,
2001.

[Her75] I.N. Herstein. Topics in Algebra. Xeros Corporation, 1975.

[HL88] C.-C. Han and C.-H. Lee. Comments on Mohr and Henderson’s Path
Consistency Algorithms. Artificial Intelligence, 36:125–130, 1988.

[HM02] V. Haarslev and R. Möller. RACER. Accessed via http://

kogs-www.informatik.uni-hamburg.de/~race/, September 2002.

[Hor02] I. Horrocks. FaCT. Accessed via http://www.cs.man.ac.uk/

~horrocks/FaCT/, September 2002.

190 Bibliography

[Hos98] H. Hosobe. Theoretical Properties and Efficient Satisfaction of Hier-
archical Constraint Systems. PhD thesis, Department of Information
Science, University of Tokyo, March 1998.

[HR00] M.R.A. Huth and M.D. Ryan. Logic in Compuer Science. Cambridge
University press, 2000.

[HS96] A. Heuerding and S. Schwendimann. A Benchmark Method for the
Propositional Modal Logics k, kt, s4. Technical Report IAM-96-015,
University of Bern, 1996.

[HS97] U. Husdtadt and R.A. Schmidt. On Evaluating Decision Procedures
for Modal Logics. In M. Pollack, editor, Proceedings of the Interna-
tional Joint Conference of Artificial Intelligence (IJCAI97), pages
202–207, 1997.

[Jam96] M. Jampel. Over-constrained Systems in CLP and CSP. PhD thesis,
Department of Computer Science, City University, September 1996.

[Jon97] N.D. Jones. Computability and Complexity. From a Programming
Perspective. MIT Press, 1997.

[Kum92] V. Kumar. Algorithms for Constraint Sastisfaction Problems: a
Survey. AI Magazine, 13(1):32–44, 1992.

[KvB97] G. Kondrak and P. van Beek. A Theoretical Evaluation of Selected
Backtracking Algorithms. Artificial Intelligence, 89:365–387, 1997.

[Lov78] D.W. Loveland. Automated Theorem Proving: A Logical Basis, vol-
ume 6 of Fundamental Studies in Computer Science. North-Holland,
1978.

[LP81] H. Lewis and C.H. Papadimitriou. Elements of the Theoy of Com-
putation. Prentice-Hall, 1981.

[Mac97] A. Mackworth. Consistency in Network of Relations. Artificial In-
telligence, 8(1):99–118, 1997.

[MH86] R. Mohr and T.C. Henderson. Arc and Path Consistency Revisited.
Artificial Intelligence, 28:225–233, 1986.

[MM88] R. Mohr and G. Masini. Good Old Discrete Relaxation. In Proc.
of the 8th European Conference on Artificial Intelligence (ECAI’88),
pages 651–656. Pitman Publisher, 1988.

[Mon74] U. Montanari. Networks of Constraints: Fundamental Proper-
ties and Applications to Picture Processing. Information Science,
7(2):95–132, 1974.

Bibliography 191

[Mon00] E. Monfroy. A coordination-based chaotic iteration algorithm for
constraint propagation. In Proc. of the 2000 ACM Symposium on
Applied Computing (SAC’2000), pages 262–270. ACM, 2000.

[MS98] K. Marriott and P. Stuckey. Programming with Constraints. MIT
Press, 1998.

[ONdRG01] H.J. Ohlbach, A. Nonnegart, M. de Rijke, and D.M. Gabbay. Encod-
ing Two-valued Non-classical Logics in Classical Logic. In J. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning.
Elsevier, 2001.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley
Publishing Company, 1994.

[PS02] P.F. Patel-Schneider. DLP. Accessed via http://www.bell-labs.

com.user/pfps/dlp/, September 2002.

[Rut94] Zs. Ruttkay. Fuzzy Constraint Satisfaction. In Proc. of the 3rd IEEE
International Conference on Fuzzy Systems, pages 1263–1268, 1994.

[RV01] J. Robinson and A. Voronkov, editors. Handbook of Automated Rea-
soning. Elsevier, 2001.

[Sch00] T. Schiex. Arc Consistency for Soft Constraints. In R. Dechter,
editor, Proc. of the 6th International Conference on Principles and
Practice of Constraint Programming (CP 2000), volume 1894 of Lec-
ture Notes in Computer Science 1894, pages 411–424. Springer, 2000.

[Seb97] R. Sebastiani. Una Nuova Classe di Procedure di Decisione per le
Logiche Modali e Terminologiche. Teoria, Implementazione e Test-
ing. PhD thesis, Facolt‘a di Ingegneria, Università di Genova, 1997.

[SFV95] T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satis-
faction Problems: Hard and Easy Problems. In Proc. of the 14th
International Joint Conference on Artificial Intelligence, pages 631–
637. Morgan Kaufmann, 1995.

[SMFBB93] M. Sannella, J. Maloney, B. Freeman-Benson, and A. Borning.
Multi-way versus One-way Constraints in User Interfaces: Expe-
rience with the DeltaBlue Algorithm. Software–Practice and Expe-
rience, 23(5):529–566, May 1993.

[Smo95] G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor,
Computer Science Today, volume 1000 of Lecture Notes in Computer
Science, pages 324–343. Springer, 1995.

192 Bibliography

[SPA00] Spass 1.0.3. Accessed via http://www.spass.mpi-sb.mpg.de/,
May 2000.

[TAN00] TANCS: Tableaux Non Classical Systems Comparison. Accessed via
http://www.dis.uniroma1.it/∼tancs, January 2000.

[Tsa93] E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic
Press, 1993.

[Ull80] J.D. Ullman. Principles of Database Systems. Pitman, Computer
Science Press, 1980.

[UW97] J.D. Ullman and J. Widom. A First Course in Database Systems.
Pitman, Prentice-Hall, 1997.

[Var97] M.Y. Vardi. Why is modal logic so robustly decidable? DIMACS
Series in Discrete Mathematics and Theoretical Computer Science,
31:149–184, 1997.

[Var00] M.Y. Vardi. Constraint Satisfaction and Database Theory: a Tuto-
rial. In Proc. of the 19th International Conference on Management
Data ACM SIGMOD-SIGACT-SIGART and Symposium on Princi-
ples of Database Systems, pages 76–85. ACM Press, 2000.

[vB83] J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1983.

[vHDT92] P. van Hentenryck, Y. Deville, and C.-M. Teng. A Generic Arc-
consistency Algorithm and its Specializations. Artificial Intelligence,
57:291–321, 1992.

[Wal75] D. Waltz. Understanding Line Drawings of Scenes with Shadows.
In P.H. Winston, editor, The Psychology of Computer Vision, pages
19–91. McGraw-Hill, 1975.

[Wal00] T. Walsh. SAT v CSP. In R. Dechter, editor, Proc. of the 6th
International Conference on Principles and Practice of Constraint
Programming, volume 1894, pages 441–456, 2000.

[Was00] R. Wassermann. Resource-bounded Belief Revision. PhD thesis,
ILLC, Universiteit van Amsterdam, January 2000.

[WB93] M. Wilson and A. Borning. Hierarchical Constraint Logic Program-
ming. Journal of Logic Programming, 16(3–4):227–318, July, August
1993.

[Wil96] R. Wilson. Introduction to Graph Theory. Longman, 1996.

Samenvatting

Dit proefschrift gaat over efficient automatisch redeneren. Het bestaat uit drie
delen.

Deel I behandelt zogeheten constraint propagation algoritmes. Dit zijn ef-
ficiënte algoritmes voor het oplossen van constraint satisfaction problems. In
Hoofdstuk 2 geven we een inleiding tot dergelijke algoritmes: constraints worden
gekarakteriseerd als relaties op domeinen waarin variabelen hun waarden nemen.
De doelstellingen in Deel I zijn van een theoretische aard: een algemene theorie
waarin de voornoemde algoritmes geformuleerd en begrepen kunnen worden. Om
precies te zijn, de theorie die we in Deel I ontwikkelen, beoogt nieuwe inzichten
te verschaffen omtrent de volgende vragen:

1. Volgen constraint propagation algoritmes een gezamenlijk strategie?

2. Wat zijn de verschillen en overeenkomsten tussen die algoritmes?

Om de eerste vraag te beantwoorden wordt in Hoofdstuk 3 een algemene algoritme-
schema SGI voorgesteld: binnen dit schema wordt, volgens een bepaalde strategie,
een verzameling functies herhaald met als doel het vinden van een gezamenlijk
dekpunt. Het algemene algoritme-schema, en een aantal varianten op dit schema,
worden in Hoofdstuk 3 bestudeerd. De varianten zijn essentieel bij het beantwo-
orden van de tweede vraag die we hierboven noemden.

De theorie van Hoofdstuk 3 wordt in Hoofdstuk 4 toegepast om klassieke con-
straint propagation algoritmes door middel van iteraties van functies te beschri-
jven en analyseren. Soft constraints zijn expressiever dan klassieke constraints, en
ze worden voornamelijk gebruikt om onzekerheid te modelleren. Desondanks is
de theorie van Hoofdstuk 3 algemeen en expressief genoeg om ook soft constraint
propagation algoritmes te beschrijven en analyseren.

Nadat we hebben laten zien dat constraint propagation algoritmes instanties
zijn van ons algemen SGI schema, doet zich de volgende vraag voor:

• welke functies verwijderen inconsistenties in constraint propagation algo-
ritmes?

193

194 Samenvatting

Om deze vraag te beantwoorden geven we in Hoofdstuk 6 een karakterisering van
functies voor zowel klassieke als soft constraint propagation algoritmes. Hiermee
besluiten we Deel I.

In Deel II werken we opnieuw met relaties. Dit deel betreft de modale logica,
waartoe we in Hoofdstuk 7 een inleiding verschaffen. In dit tweede deel van het
proefschrift twee manieren voor om de volgende vraag te antwoorden:

• hoe kan de vervulbaarheid van modale formulas op een efficiënte manier
bepaald worden?

In Hoofdstuk 8 beantwoorden we deze vraag door modale logica in eerste-orde log-
ica te vertalen: we verfijnen de standaard vertaling van modale naar eerste-orde
logica, en tonen aan hoe de nieuwe vertaling de het gedrag van op resolutiemeth-
oden gebaseerde stellingbewijzers op modale formules verbetert.

Hoofdstuk 9 exploreert een interessant nieuw onderzoekthema: hoe efficiënt
zijn constraint propagation en satisfaction algoritmes voor modale logica? In
dit hoofdstuk reduceren we de vervulbaarheid van algemene modale logica tot
vervulbaarheid van propositielogica, waarna we constraint algoritmes gebruiken
het laatste probleem op te lossen, in plaats van meer gangbare Davis-Putnam
algoritmes.

Deel III geeft een samenvatting van de inhoud van het proefschrift, en besluit
met een discussie over een aantal open vragen.

Titles in the ILLC Dissertation Series:

ILLC DS-1999-01: Jelle Gerbrandy
Bisimulations on Planet Kripke

ILLC DS-1999-02: Khalil Sima’an
Learning efficient disambiguation

ILLC DS-1999-03: Jaap Maat
Philosophical Languages in the Seventeenth Century: Dalgarno, Wilkins, Leib-
niz

ILLC DS-1999-04: Barbara Terhal
Quantum Algorithms and Quantum Entanglement

ILLC DS-2000-01: Renata Wassermann
Resource Bounded Belief Revision

ILLC DS-2000-02: Jaap Kamps
A Logical Approach to Computational Theory Building (with applications to
sociology)

ILLC DS-2000-03: Marco Vervoort
Games, Walks and Grammars: Problems I’ve Worked On

ILLC DS-2000-04: Paul van Ulsen
E.W. Beth als logicus

ILLC DS-2000-05: Carlos Areces
Logic Engineering. The Case of Description and Hybrid Logics

ILLC DS-2000-06: Hans van Ditmarsch
Knowledge Games

ILLC DS-2000-07: Egbert L.J. Fortuin
Polysemy or monosemy: Interpretation of the imperative and the dative-
infinitive construction in Russian

ILLC DS-2001-01: Maria Aloni
Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch
Rationality in Discovery - a study of Logic, Cognition, Computation and Neu-
ropharmacology

ILLC DS-2001-03: Erik de Haas
Logics For OO Information Systems: a Semantic Study of Object Orientation
from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff
Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland
Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf
Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki
Logics and Provability

ILLC DS-2001-08: Allard Tamminga
Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles
Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly
Logic for Social Software

ILLC DS-2002-01: Nikos Massios
Decision-Theoretic Robotic Surveillance

ILLC DS-2002-02: Marco Aiello
Spatial Reasoning: Theory and Practice

ILLC DS-2002-03: Yuri Engelhardt
The Language of Graphics

ILLC DS-2002-04: Willem Klaas van Dam
On Quantum Computation Theory

