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Abstract We study a particular multiagent resource allocation problem with indivis-
ible, but sharable resources. In our model, the utility of an agent for using a bundle
of resources is the difference between the value the agent would assign to that bundle
in isolation and a congestion cost that depends on the number of agents she has to
share each of the resources in her bundle with. The valuation function determining the
value and the delay function determining the congestion cost can be agent-dependent.
When the agents that share a resource also share control over that resource, then the
current users of a resource will require some compensation when a new agent wants
to join them using the resource. For this scenario of shared control, we study the ex-
istence of distributed negotiation protocols that lead to a social optimum. Depending
on constraints on the valuation functions (mainly modularity), on the delay functions
(such as convexity), and on the structural complexity of the deals between agents,
we prove either the existence of a sequences of deals leading to a social optimum or
the convergence of all sequences of deals to such an optimum. We also analyse the
length of the path leading to such optimal allocations. For scenarios where the agents

This is an extended version of a paper presented at the 9th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2010) [2].
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using a resource do not have shared control over that resource (i.e., where any agent
can use any resource she wants), we study the existence of pure Nash equilibria, i.e.,
allocations in which no single agent has an incentive to add or drop any of the re-
sources she is currently holding. We provide results for modular valuation functions,
we analyse the length of the paths leading to a pure Nash equilibrium, and we relate
our findings to results from the literature on congestion games.

Keywords Multiagent Resource Allocation, Congestion Games

1 Introduction

The generic problem of allocating a set of resources to a group of agents is a key
problem in multiagent systems [5]. Some independent dimensions of a resource al-
location problem are the type of resource (e.g., resources can be divisible or not,
sharable or not), the allocation procedure (e.g., auctions or distributed mechanisms),
and the criteria used to specify what makes an allocation optimal (e.g., maximising
utilitarian or egalitarian social welfare, obtaining an envy-free division). Hence, there
are many classes of problems to study in multiagent resource allocation (MARA).

Thus far, most work on distributed approaches to MARA has focussed on the
case of indivisible nonsharable resources [6,7,9–12,14,22,23]. In this setting, each
resource is owned by one and only one agent, and each agent assigns a certain value
to the set of resources she holds. To improve an allocation, agents can exchange re-
sources (sometimes in combination with a monetary transfer). This line of research
has identified protocols that converge to optimal allocations for certain classes of val-
uation functions. In some cases, simple protocols (e.g., involving only two agents
and one resource at a time) are sufficient, while more complex protocols are required
in others. Simple protocols exist, for instance, for maximising utilitarian social wel-
fare [7] and for finding envy-free divisions [6]. The main goal of this paper is to
extend this line of research to the case of indivisible resources that are sharable, as
many resources are by their very nature sharable (e.g., roads or supercomputers).

The problem of sharing a set of resources is not new, and has received much
attention in the game theory literature. In particular, congestion games [21] feature
agents that share a set of resources and obtain utility for each resource they use. For a
resource, the utility obtained is a function of the number of agents using that resource.
This class of games is of particular interest, as congestion games have the property
of possessing pure-strategy Nash equilibria. In the seminal paper by Rosenthal [21],
agents using the same resource receive the same payoff, and this payoff depends only
on the number of agents that use that resource. Milchtaich [16] extended the model by
allowing the payoffs to be agent-dependent, but the existence of pure-strategy Nash
equilibria is guaranteed only when each of the agents uses a single resource. More
recently, Ackermann et al. [1], Byde et al. [4], and Voice et al. [26] extended the
classes of games possessing Nash equilibria in pure strategies.

We introduce a model where the utility of an agent is the difference between the
benefit derived from the set of resources she uses (defined in terms of a valuation
function, as in the MARA framework for nonsharable items) and a cost that depends
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on the congestion of each resource (defined in terms of a delay function, as in con-
gestion games). In doing so, we can study separately the effect of constraining the
valuation or the congestion. For example, we will study a simple class of problems
with modular valuation functions—which allows to consider a problem resource by
resource—and we will present a variety of results that depend on the properties on
the delay functions.

We distinguish between two types of scenarios. In the first one, we assume that
the agents sharing a resource also share control over that resource. This means that
they will ask for some (monetary) compensation when an additional agent wants to
start using this resource, in return for the loss in utility they suffer as a result of
the increased congestion. For this scenario we are interested in the design of simple
negotiation protocols that agents might follow when agreeing on an allocation and
we are interested in results that establish under what circumstances such a protocol
will help the agents move towards an allocation with good social properties. Specif-
ically, we are interested in convergence results similar to known results for the case
of nonsharable resources [7,14] that identify parameters for which any sequence of
deals permitted by the protocol will eventually result in an allocation that is socially
optimal (in the sense of maximising utilitarian social welfare, i.e., the sum of indi-
vidual utilities). As we shall see, because of the increased expressive power of our
framework with respect to the more widely studied case of nonsharable resources,
such convergence results are harder to come by and the restrictions we need to im-
pose to obtain positive results are more severe than they are for similar results for
nonsharable resources. We also study the length of paths to a social optimum, i.e.,
the number of deals that will have to be implemented, in the worst case, to reach an
optimal allocation under a given protocol, and we compare these results to similar
results for the case of nonsharable resources [9,12].

In the second scenario we consider, agents do not share control over the resources
they use. Instead, any agent may start using any resource at any time. As long as a
given resource has very few users, it will be attractive for other agents to join. Once
it has a large number of users, for some agents the congestion cost they experience
will outweigh the valuation they gain and they will decide to drop the resource from
their bundle. The question then arises whether this kind of dynamic will terminate.
In other words, for this scenario we are interested in the existence of Nash equilibria
(in pure strategies), i.e., allocations in which no agent has an incentive to either add a
new resource to its bundle or to drop a resource it currently holds.

The remainder of this paper is organised as follows. Section 2 defines the model
of MARA we shall be working with and recalls a number of relevant results from the
literature. In Section 3 we present our results regarding the reachability of allocations
that maximise utilitarian social welfare when agents using a resource share control
over that resource. These results show that for several simple but relevant instances of
the general problem, it is possible to design simple negotiation protocols that are guar-
anteed to converge to a socially optimal allocation when individually rational agents
negotiate. In other cases we are able to at least show that certain protocols permit
a sequence of deals that will lead to an optimal allocation, even if not all sequences
sanctioned by the protocol have that property. In Section 4 we then complement these
results by providing bounds on the length of sequences of deals converging to an op-
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timal allocation. In Section 5 we turn to allocation problems where agents need not
seek each other’s agreement before claiming a resource for their own use and we look
for Nash equilibria for the congestion games induced by our model. In case agents
have modular valuation functions, we are able to show that there always exists a pure
Nash equilibrium, a result that is reminiscent of general equilibrium existence results
for congestion games. We also discuss additional assumptions that ensure that agents
will converge to such an equilibrium. Section 6 is a short review of related work and
Section 7 concludes.

2 The Model

In this section, we introduce our model of MARA with sharable items; but first, we
recall some details regarding the MARA framework with nonsharable items. Then
we briefly discuss one specific issue arising in the context of sharable resources: the
question of control of the resources.

2.1 MARA with Nonsharable Items

A MARA problem with indivisible nonsharable items [14] is defined as a triplet
(N ,R,V ), where N = {1,2, . . . ,n} is a finite set of agents, R is a finite set of
m resources (or items), and V = 〈v1, . . . ,vn〉 is a profile of valuation functions with
vi : 2R → R for each agent i ∈N . That is, each valuation function vi is a mapping
from bundles of resource agent i might obtain (subsets of R) to real numbers re-
flecting their value to the agent. An allocation σ is a partition of the set of resources
between the agents. We write σi for the bundle assigned to agent i under allocation σ .

A solution to a MARA problem is an allocation that satisfies certain properties.
For example, we may want a solution to maximise utilitarian social welfare (i.e., the
sum of the valuations of all agents), or to be envy-free (with no agent wanting to
swap resources with any other agent). The question then arises of how to reach such
a solution from a given initial allocation. A deal δ = (σ ,σ ′) is a transformation from
one allocation σ to another allocation σ ′. A 1-deal is a deal involving the exchange
of exactly one resource between two agents. Besides exchanging resources, we may
also allow agents to make monetary side-payments. A payment function is a vector
p = 〈p1, ..., pn〉 such that ∑i∈N pi = 0. When pi > 0, agent i must make a payment.
When pi < 0, agent i receives a payment. Now a deal δ =(σ ,σ ′) is called individually
rational (IR) if there exists a payment function p such that vi(σ

′
i )− vi(σi) > pi for

every agent i∈N , except for agents i with σi =σ ′i for whom pi = 0 is also permitted.
Sandholm [23] showed that if agents only implement IR deals and if negotia-

tion continues as long as there still are IR deals possible, then any such system will
eventually converge to an optimal allocation:1

Theorem 1 For allocation problems with nonsharable items, any sequence of IR
deals will eventually result in an allocation with maximal utilitarian social welfare.

1 To be precise, Sandholm’s work deals with the (mathematically equivalent) problem of task allocation.
For a statement in the context of resource allocation and for a full proof, refer to Endriss et al. [14].
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In other words, this framework does not permit any infinite sequence of IR deals
and once an allocation that does not permit any follow-up deal that is IR has been
reached, we can be certain that this allocation will be socially optimal. One drawback
is that IR deals may be complex and involve many agents and resources. For modular
valuation functions, satisfying v(S∪S′) = v(S)+v(S′)−v(S∩S′) for any sets S,S′ ⊆
R, however, much simpler deals are sufficient to reach a social optimum, as shown
by the following theorem [7,14]:

Theorem 2 For allocation problems with nonsharable items, if all valuation func-
tions are modular, then any sequence of IR 1-deals will eventually result in an allo-
cation with maximal utilitarian social welfare.

2.2 MARA with Sharable Items

We now introduce a variant of the above MARA framework where resources are
sharable. This is the framework we shall be working with for the remainder of
this paper. A MARA problem with indivisible sharable items is defined as a tuple
(N ,R,V ,D), where the set of agents N , the set of resources R, and the profile of
valuation functions V are defined as before (and we shall turn to the definition of D
in a moment). To simplify presentation, we shall assume that all valuation functions
are normalised, i.e., vi( /0) = 0 for all agents i ∈N (this assumption does not affect
any of our results). For modular valuation functions (as defined in Section 2.1), we
sometimes write vi(r) for vi({r}).

Rather than being a partition of the resources amongst the agents, an allocation
σ now is merely a mapping of agents to subsets of R. We again write σi ⊆R for the
bundle of resources used by agent i ∈N under allocation σ . With reference to the
literature on congestion games, we also call σi the strategy employed by agent i. In
case R consists of only a single resource r, we shall sometimes identify σ with the
set of agents using r.

D , the fourth component of a MARA problem, is a set of functions di,r :
{1, . . . ,n} → R, one for each pair of agents i ∈N and resources r ∈R. For a given
number k of agents (between 1 and n), di,r(k) is the delay perceived (or the cost ex-
perienced) by agent i when she is one of k agents using resource r . Let nr(σ) be the
number of agents that use resource r in allocation σ , i.e., nr(σ) = |{i ∈N | r ∈ σi}|.
That is, the delay of r experienced by agent i in allocation σ is di,r(nr(σ)). We
shall assume that the delay is a nondecreasing function in the number of agents
using the resource, i.e., di,r(k + 1) > di,r(k) for all k < n. This models situations
where an agent always prefers not to share a resource. A (delay) function d is
convex if d(k + 2)− d(k + 1) > d(k + 1)− d(k) for all k < n− 1; it is concave if
d(k+2)−d(k+1)6 d(k+1)−d(k) for all k < n−1; and it is linear if it is both con-
vex and concave. That is, if d is linear, then there exists an α ∈R such that d(k)= k ·α
for all k 6 n.

The utility of agent i ∈N under allocation σ is defined as

ui(σ) = vi(σi)− ∑
r∈σi

di,r(nr(σ)).
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That is, agent i receives a benefit from using the resources of the bundle σi, but this
benefit is reduced by the effects of the congestion.

We say that a MARA problem with sharable resources is symmetric when, for any
given resource, all agents use the same delay function, i.e., di,r = dr for all agents i ∈
N (for some function dr).

Observe that the original MARA framework can be simulated within the MARA
framework with sharable items: using a delay function with a very high delay for
n> 2, it will not be rational for any agent to share any item (for example, di,r(1) = 0
and ∀k > 2, di,r(k)> max

σi∈2R vi(σi), assuming positive valuation functions).
When the valuation functions are modular, we get a congestion game with the

delay function of resource r for agent i being d?
i,r(k) = vi({r})−di,r(k), i.e., an agent-

specific game as in the work of Milchtaich [16] and Ackermann et al. [1].
As before, a deal δ = (σ ,σ ′) is a pair of allocations. We consider the following

types of simple deals:

– ADD(i,r): agent i adds to its bundle a single resource she is not currently using.
For r /∈ σi, agent i will have σi∪{r} after the ADD(i,r) action.

– DROP(i,r): agent i drops a resource she is currently using, i.e., after the drop,
agent i will use σi \{r}.

– SWAP(i, j,r): agent i swaps the use of resource r with agent j, i.e., agent i drops
the use of r and agent j adds the resource.2

As before, a 1-deal is a deal that concerns a single item, but observe that now such a
deal may involve more than just two agents. For instance, a deal in which ten agents
each add the same resource to their bundle is a 1-deal. An ADD-deal, in which one
agent adds a single resource to her bundle, is also a 1-deal. But note that it does not
just involve that one agent, but also all the current users of the resource in question.
DROP- and SWAP-deals are also 1-deals. Also note that, while with nonsharable re-
sources, the utility of agents not actively taking part in a deal does not change, with
sharable resources, the utility of agents currently using a resource that is part of a
deal can be affected.

Deals may be coupled with monetary side payments. As in Section 2.1, a payment
function is a vector p = 〈p1, ..., pn〉 such that ∑i∈N pi = 0. A deal δ = (σ ,σ ′) is
individually rational (IR) if there exists a payment function p such that ui(σ

′)−
ui(σ) > pi for every agent i ∈ N , except for agents i unaffected by δ for whom
pi = 0 is also permitted. Here, an agent i is unaffected by a deal δ = (σ ,σ ′) if σi = σ ′i
and |{ j ∈N | r ∈ σ j}|= |{ j ∈N | r ∈ σ ′j}| for all r ∈ σi. Note that an agent i that
does not change her bundle may still receive a payment (from agents starting to use
resources i uses) or may make a payment (to agents that stop using resources i uses).
Side payments are important as they make it possible for a single agent to start using
a resource without affecting the utility of other agents already using that resource,
even when the bundles of those other agents remain the same.

2 SWAP-deals should not to be confused with the S(wap)-contracts of Sandholm [23], which would
correspond to the exchange of two resources between two agents.
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2.3 Resource Control

With nonsharable resources, agents have complete control over the resources they
own. For example, if agent i wants to use a particular resource owned by agent j, j
must first agree to give up the item to i. With sharable resources, the notion of control
is less clear. We can differentiate two variants:

(1) In the first variant, agents are free to use any resource they wish. This means that
there is no mechanism to prevent an agent from starting to use a resource. This
relates to strategic games with self-interested agents.

(2) In the second variant, agents must receive the consent of the agents using a re-
source before starting to use that resource. If the agents are rational, they will not
accept that a new agent uses the resource if the delay function is strictly increas-
ing. The only way to get access to a resource is either to compensate the current
users with a side payment, or to perform a swap: to free other resources that are
also used by the current users.

In this paper, we study both variants. In Sections 3 and 4, we assume that agents ac-
cept and allow deals only when they are beneficial. In particular, all agents owning
a resource must agree before allowing another agent to use that resource. We study
mechanisms that lead to allocations maximising utilitarian social welfare. In Sec-
tion 5, we assume that agents are noncooperative and are free to use any resource they
want. In that context, we investigate the problem of the existence of a pure-strategy
Nash equilibrium.

Note that we could also assume that each resource has a single owner, who per-
mits other agents to use the resource. This is the case studied in the work of Bachrach
and Rosenschein [3], in which an owner knows the private production function of the
resource and other agents can bid to use it. The goal of that work is to find protocols
where no agent has an incentive to lie (e.g., the owner of a resource should not lie
about the production function). In our work, we assume that the resources are initially
allocated to the agents, and they have to find an optimal allocation to use them.

3 Convergence to an Optimal Allocation

We now investigate a MARA problem with the following properties: (1) the resources
are indivisible and sharable; (2) agents using a resource also share the control of that
resource; and (3) side payments between agents are allowed. In the following, we
shall seek to identify protocols that lead to an allocation that maximises utilitarian
social welfare, i.e., that maximise the function sw(σ) = ∑i∈N ui(σi) (in the remain-
der of the paper, we will mostly just write “social welfare”).

We will first show that the convergence results for the framework with non-
sharable items (Theorems 1 and 2) generalise to the case of sharable items. That is,
we can guarantee convergence by means of arbitrarily complex deals and for modular
valuation functions we can also guarantee convergence by means of deals involving
just one resource (but possibly many agents). Then, we will present a series of results
in which we allow only certain types of simple deals which also limit the number of
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agents involved. We will prove the existence of a path to a social optimum in some
cases, and convergence of all paths in others.

3.1 General Convergence Results

We first show that Theorems 1 and 2 from Section 2.1 also apply to the framework
with sharable resources. Closely following the approach familiar from the framework
with nonsharable resources [14], we first establish an important lemma showing that
side payments can be arranged in such a way that a given deal is beneficial for all the
agents involved if and only if that deal increases social welfare.

Lemma 1 A deal δ = (σ ,σ ′) is IR iff sw(σ)< sw(σ ′).

Proof The proof of Lemma 1 of Endriss et al. [14] goes through: That an IR deal
necessarily increases social welfare is shown by summing the inequalities ui(σ

′)−
ui(σ)> pi over all agents and noting that the sum of the payments must be zero. To
prove that a deal is IR when social welfare increases, one can check that the following
function is a valid payment function: pi = ui(σ

′)−ui(σ)− (sw(σ ′)− sw(σ ′))/n. �

It is now easy to prove the counterpart of Theorem 1:

Theorem 3 Any sequence of IR deals will eventually result in an allocation of re-
sources with maximal utilitarian social welfare.

Proof The proof is very close to the proof of Theorem 1 in the work of Endriss et
al. [14]: the number of allocations is finite and, by Lemma 1, any IR deal increases
social welfare and any improvement in social welfare corresponds to an IR deal; so
we must eventually reach an allocation maximising social welfare. �

The significance of the theorem is that agents have no need to consider anything but
their individual interests. Every single deal is bound to increase social welfare and
there are no local optima the system could get stuck in. However, an IR deal may be
quite complex as it may involve many agents and many resources at the same time.
Finding such complex deals may turn out to be a difficult task. Indeed, as is well
known, finding an allocation with maximal social welfare is NP-hard for the case of
nonsharable items (see, e.g., [5]), and this result immediately extends to the more
general framework of sharable items.

Under certain constraints, it is possible to reduce the complexity of the problem
and work with simpler deals. Indeed, we can prove a counterpart of Theorem 2:

Theorem 4 If all valuation functions are modular, then any sequence of IR 1-deals
will eventually result in an allocation with maximal utilitarian social welfare.

Proof We adapt the proof of Theorem 3 of Endriss et al. [14]. Note that for a nor-
malised modular valuation function v, we have v(R) = ∑r∈R v(r) for any R⊆R.

The set of resources and agents is finite, hence there is a finite number of alloca-
tions. Moreover, any IR deal strictly increases social welfare (see Lemma 1). Hence,
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the search for an allocation with maximal social welfare must terminate after a finite
number of deals. As termination is guaranteed, we now must ensure there always
exists an IR 1-deal from a suboptimal allocation.

Let σ and σ? be two allocations such that σ? maximises social welfare and
sw(σ) < sw(σ?). We denote by δσi,r the characteristic function that returns 1 when
resource r is in σi and 0 otherwise. We can write the social welfare of σ as follows:

sw(σ) = ∑
i∈N

(
vi(σi)− ∑

r∈σi

di,r(nr(σ))

)
= ∑

r∈R
∑

i∈N
δσi,r · (vi({r})−di,r(nr(σ)))

This expression shows that the utility generated by at least one resource must increase
for social welfare to increase. Hence, a deal involving that single resource must exist
for improving social welfare. In addition, by Lemma 1, this deal will be IR, which
concludes the proof of the theorem. �

Theorem 4 is independent of any assumptions regarding the delay functions; only the
valuation functions are required to be modular. Under this condition, by means of a
sequence of deals concerning a single resource each, it is possible to reach an alloca-
tion that maximises social welfare. However, each deal may involve many agents at
the same time.

It is not always possible to decompose a complex deal into a sequence of only
ADD- or only DROP-deals: SWAP-deals are sometimes needed. For example, consider
the following resource allocation problem with two agents i and j and one resource
r: the valuation functions are vi(r) = 4 and v j(r) = 6 and both agents have the same
delay function defined by dr(1) = 2 and dr(2) = 5. Let us assume that agent i uses
r, obtaining a utility of 4− 2 = 2. The action ADD( j,r) is not rational as the utility
of agent i would drop to 4− 5 = −1 and agent j would receive 6− 5 = 1, which is
not sufficient to compensate the drop in utility of agent i. Only SWAP(i, j,r) would
be rational: agent j would get a utility of 6−2 = 4, which is enough to compensate
the drop in utility of agent i (who loses 2 units of utility).

We now may ask whether Theorem 4 can be strengthened by only allowing certain
types of 1-deals, in particular ADD-, DROP-, and SWAP-deals.

3.2 ADD-Deals only from Empty Allocation

Let us first consider the case of protocols that only permit ADD-deals. Clearly, for this
case we cannot hope for a convergence theorem, even under the strongest assumptions
on the delay functions, and even if the initial allocation is the empty allocation. A
simple counterexample would be the case where an agent who has low (but above
zero) valuation for a resource r claims that resource first, after which no sequence of
ADD-deals could possibly still lead to an optimal allocation (assuming there are many
slower agents who place a higher valuation on r).

For the case of MARA with nonsharable items, in the face of failure of conver-
gence by means of simple IR deals, Dunne et al. [11] and Dunne and Chevaleyere [10]
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have studied the problem of checking whether it is at least the case that a sequence of
deals of the desired type leading to an optimal allocation exists for a given scenario
(the cited works analyse the computational complexity of this kind of problem). This
is an interesting question also for our framework: For a given allocation problem,
does there exist a sequence of IR ADD-deals leading from the initial allocation to an
optimal allocation? Maybe somewhat surprisingly, we will be able to give a positive
answer to this question whenever the initial allocation is the empty allocation and all
delay functions are nondecreasing and convex (symmetry is not required). We first
prove the following lemma:

Lemma 2 For allocation problems with a single resource r, if all delay functions are
nondecreasing and convex, and if sw(σ) < sw(σ?) and N ⊂ N? for two allocations
σ and σ? with corresponding sets N = {i ∈ N | r ∈ σi} and N? = {i ∈ N | r ∈
σ?

i }, then there exists an agent j ∈ N? \N such that the deal ADD( j,r) will be IR in
allocation σ .

Proof We will show that ADD( j,r) is IR for any agent j ∈ argmaxi{vi(r)−di,r(|N|) |
i ∈ N? \N}. From sw(σ?)> sw(σ) we get:

∑
i∈N?

vi(r)−di,r(|N?|) > ∑
i∈N

vi(r)−di,r(|N|)

Let `= |N? \N|. Simplifying above inequality, and dividing by ` yields:

1
` ∑

i∈N?\N
vi(r)−di,r(|N|)>

1
` ∑

i∈N?

di,r(|N?|)−di,r(|N|)

Given our constraints on j, this entails:

v j(r)−d j,r(|N|) >
1
` ∑

i∈N?

di,r(|N?|)−di,r(|N|)

As each di,r is convex, we have 1
` [di,r(|N?|)−di,r(|N|)]> di,r(|N|+1)−di,r(|N|) for

any agent i; and thus:

v j(r)−d j,r(|N|) > ∑
i∈N?

di,r(|N|+1)−di,r(|N|)

Now we subtract d j,r(|N|+1)−d j,r(|N|) on either side of the inequality:

v j(r)−d j,r(|N|+1) > ∑
i∈N?\{ j}

di,r(|N|+1)−di,r(|N|)

As each di,r is nondecreasing, the term di,r(|N|+ 1)− di,r(|N|) is nonnegative for
all i, and we can subtract it from the righthand side any number of times. Note that
N ⊆ N? \{ j}. Thus:

v j(r)−d j,r(|N|+1) > ∑
i∈N

di,r(|N|+1)−di,r(|N|)

The lefthand side of this inequality is the utility gain of agent j for adding r to her
bundle in allocation σ ; the righthand side is the loss in utility of the agents already
holding r. That is, the above inequality expresses that the deal ADD( j,r) will be IR
in allocation σ . �
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The existence of an ADD-path from the empty allocation to an optimal allocation now
follows almost immediately:

Theorem 5 If all valuation functions are modular and all delay functions are nonde-
creasing and convex, then there exists a sequence of IR ADD-deals leading from the
empty allocation to an allocation with maximal utilitarian social welfare.

Proof We have seen earlier that in modular domains we can let agents negotiate over
resources on an item-by-item basis. So it suffices to prove the claim for scenarios
with just a single resource r.

Let σ? be an optimal allocation and let N? = {i∈N | r ∈ σ?
i } be the set of agents

holding r in that allocation. Now consider any suboptimal allocation σ with N ⊂ N?

for N = {i ∈N | r ∈ σi}. By Lemma 2, there exists an agent j ∈ N? \N such that
the deal ADD( j,r) is IR from σ . As the initial allocation (i.e., the empty allocation)
satisfies the conditions required for Lemma 2 to apply and as any new allocation
produced this way satisfies the same conditions, this shows that there always exists a
finite sequence of IR ADD-deals leading from the initial allocation to σ?. �

Note that this result does not suggest any obvious protocol for finding such an optimal
sequence. The reason is that it will be difficult for the agents to find out which agent j
should claim r at any given stage: in the proof (of Lemma 2), j is defined as an agent
belonging to the set N? \N, which is unknown to the agents.

The restriction to convex delay functions in Theorem 5 is not redundant. If we
omit this condition, the result may no longer hold. For example, if (some) agents
have strictly concave delay functions, then we can construct examples where there
exists no IR ADD-path from the empty to an optimal allocation. For instance, suppose
there are a single resource r and three agents with the same valuation function v with
v(r) = 5 and v( /0) = 0, and the same concave delay function dr with dr(1) = 0 and
dr(k) = 3 for k > 1. Then, if no agent claims r, social welfare will be 0; if one agent
claims r, social welfare will be 5; if two agents do, it will be 2 · (5− 3) = 4; and if
all three claim r, it will be 3 · (5− 3) = 6 (maximal). But the full allocation cannot
be reached from the empty allocation via an IR ADD-path, since adding the second
agent would result in a loss of social welfare and thus not be IR (cf. Lemma 1).
This situation is reminiscent of the maximality theorems of Chevaleyre et al. [7], who
amongst other things show that no class of valuation functions strictly including the
modular functions will permit convergence by means of IR 1-deals (for allocation
problems with nonsharable items).

3.3 DROP-Deals only from Full Allocation

Next, we present a similar result for protocols that only allow for IR DROP-deals. Here
we are able to establish a path-existence property if we start from the full (rather than
the empty) allocation. Again, the core of the argument is in a technical lemma:

Lemma 3 For allocation problems with a single resource r, if all delay functions are
nondecreasing and convex, and if sw(σ) < sw(σ?) and N ⊃ N? for two allocations
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σ and σ? with corresponding sets N = {i ∈N | r ∈ σi} and N? = {i ∈N | r ∈ σ?
i },

then there exists an agent j ∈ N \N? such that the deal DROP( j,r) will be IR in
allocation σ .

Proof The proof is similar to that of Lemma 2; so we only give a compressed version
here. We will show that DROP( j,r) is IR for any agent j ∈ argmini{vi(r)−di,r(|N|) |
i∈N \N?}. Let `= |N \N?|. From sw(σ?)> sw(σ), after some rewriting and dividing
by `, we get:

1
` ∑

i∈N?

di,r(|N|)−di,r(|N?|)> 1
` ∑

i∈N\N?

vi(r)−di,r(|N|)

Given our constraints on j, this entails:

1
` ∑

i∈N?

di,r(|N|)−di,r(|N?|) > v j(r)−d j,r(|N|)

As each di,r is convex, we have di,r(|N|)−di,r(|N|−1)> 1
` [di,r(|N|)−di,r(|N?|)] for

all i; and as each di,r is nondecreasing, we have di,r(|N|)− di,r(|N|− 1) > 0 and we
can add this term any number of times on the lefthand side:

∑
i∈N

di,r(|N|)−di,r(|N|−1) > v j(r)−d j,r(|N|)

The righthand side of this inequality is the utility lost by agent j if she drops r; the
lefthand side is the cost saved by the other agents holding r. That is, this inequality
states that the deal DROP( j,r) is IR in σ . �

Theorem 6 If all valuation functions are modular and all delay functions are non-
decreasing and convex, then there exists a sequence of IR DROP-deals leading to an
allocation with maximal utilitarian social welfare from the full allocation.

Proof The claim follows from Lemma 3 in the same way as Theorem 5 did follow
from Lemma 2. �

3.4 Mix of ADD/DROP/SWAP-Deals

We now turn our attention to more powerful protocols, with the aim of deriving con-
vergence rather than just path-existence theorems. An important first result shows
that if we allow all of our three simple types of deals (ADD, DROP, and SWAP), then
we can get convergence from any initial allocation, albeit under stronger restrictions
on the delay functions (namely, we now require symmetry):

Theorem 7 If all valuation functions are modular and all delay functions are sym-
metric as well as nondecreasing and convex, then any sequence of IR ADD-, DROP-,
and SWAP-deals will converge to an allocation with maximal utilitarian social wel-
fare.
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Proof As we are operating in modular domains, it suffices to prove the claim for
allocation problems with a single resource r. Let σ be any suboptimal allocation and
let N = {i∈N | r ∈ σi}. All we need to prove is that there exists an IR ADD-, DROP-,
or SWAP-deal starting from σ . This will show that even when the protocol is restricted
to these deal types, we can never get stuck in a suboptimal allocation; and as social
welfare improves with every IR deal (cf. Lemma 1), we must eventually reach an
optimal allocation.

To simplify the presentation, we shall assume that no two agents give the same
value to r, i.e., vi(r) 6= v j(r) whenever i 6= j, but the proof easily extends to the general
case. Define for each k 6 n the allocation σ k as follows: r ∈ σ k

i if and only if #{ j ∈
N | v j(r)> vi(r)}< k, i.e., this is the allocation where the k top agents (in terms of
valuing r) obtain r. Observe that, since the delay functions are symmetric, amongst all
allocations assigning exactly k agents to r, allocation σ k has maximal social welfare.

Now, let k = |N| be the number of agents holding r in the current allocation σ .
We distinguish three cases:
(1) σ 6= σ k: Then there exists an agent j with r 6∈ σ j such that v j(r) > vi(r) for

some agent i with r ∈ σi, i.e., the deal SWAP(i, j,r) will be IR (here we use the
assumption that delay functions are symmetric).

(2) σ = σ k and there exists a k? > k with sw(σ k?)> sw(σ): Then we must have N ⊂
N? for N? = {i∈N | r ∈ σ k?

i }, because in both allocations the k top agents obtain
r. Thus, as delay functions are nondecreasing and convex, Lemma 2 applies and
we can infer that there exists an IR ADD-deal.

(3) σ = σ k and there exists a k? < k with sw(σ k?) > sw(σ): Then we must have
N ⊃ N? (with N? defined as before). Thus, as delay functions are nondecreasing
and convex, Lemma 3 applies and there exists an IR DROP-deal.

There are no further cases, so we are done. �

This result is stronger than Theorem 4 in the sense that it relies on a simpler class
of deals (never involving more than two agents at a time); it is weaker in the sense
that it requires stronger (but not unreasonable) restrictions to the range of admissi-
ble delay functions. Compared to Theorems 5 and 6, Theorem 7 establishes again a
convergence property, rather than just the existence of a path.

The symmetry assumption in Theorem 7 is not redundant. For example, if v1(r) =
10 and d1,r(k) = 6k, and vi(r) = 5 and di,r(k) = k for i ∈ {2,3}, then the optimal
allocation where agents 2 and 3 hold r is not reachable from the allocation where
only agent 1 holds r by means of ADD-, DROP-, and SWAP-deals alone. Convexity is
also a not a redundant condition (see the example at the end of Section 3.2).

3.5 Mix of ADD/SWAP-Deals with Control

Finally, we want to explore convergence for protocols using just two of our simple
deals, namely ADD and SWAP. As we shall see, in this case we can prove convergence
(from the empty allocation) if we add an additional “control component” that allows
agents to avoid certain dead-ends. We shall suggest two such control mechanisms for
this setting. Both results will heavily rely on the following technical lemma:
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Lemma 4 For allocation problems with a single resource r, if all delay functions
are symmetric as well as nondecreasing and convex, then any sequence of IR ADD-
and SWAP-deals starting from the empty allocation will converge to an allocation
with maximal utilitarian social welfare, provided no ADD-deals are applied once k?

agents are holding r, where k? is the maximum number of agents holding r in any
allocation with maximal utilitarian social welfare.

Proof Inspection of the proof of Theorem 7 shows that as long as the number of
agents currently holding r is at most k?, either an IR ADD- or an IR SWAP-deal will
be available (or an optimal allocation has already been reached). Provided we never
apply an ADD-deal once k? agents hold r, this condition will continue to be satisfied.
The claim of the lemma follows. �

The next theorem shows that there are natural protocols for which the (seemingly
cumbersome) precondition for the applicability of Lemma 4 is satisfied:

Theorem 8 If all valuation functions are modular and all delay functions are sym-
metric as well as nondecreasing and convex, then any sequence of IR ADD- and
SWAP-deals starting from the empty allocation will converge to an allocation with
maximal utilitarian social welfare, provided ADD-deals are only applied when no
SWAP-deal is IR.

Proof Due to modularity, we can restrict attention to allocation problems with a sin-
gle resource r and Lemma 4 becomes applicable. Let k? be the maximal number of
agents holding r in an optimal allocation. All we need to show is that once k? agents
do hold r, no ADD-deal will ever be applied. But this is clearly so if ADD-deals are
only applied when no more SWAP-deals are IR. �

In allocation σ , we say that an IR deal δ = (σ ,σ ′) is greedy with respect to a set ∆

of deals applicable in σ , if it produces maximal social surplus of all the deals in ∆ ;
that is, if sw(σ ′)> sw(σ ′′) for all σ ′′ ∈ ∆ . A sequence of greedy deals of a given type
is a sequence of deals for which the next deal is always the deal maximising social
surplus over all applicable deals of the given type.

Theorem 9 If all valuation functions are modular and all delay functions are sym-
metric as well as nondecreasing and convex, then any sequence of greedy IR ADD-
and SWAP-deals starting from the empty allocation will converge to an allocation
with maximal utilitarian social welfare.

Proof Restricting once again attention to scenarios with a single resource r (permis-
sible due to modularity), let k? be the maximal number of agents holding r in an
optimal allocation. We need to show that whenever a greedy protocol chooses an
ADD-deal, then the number of agents currently holding r is still less than k?. By The-
orem 8, the only critical case we need to account for is when there are both IR ADD-
and SWAP-deals available.

To simplify presentation, assume vi(r) 6= v j(r) whenever i 6= j (this restriction is
not crucial and the proof generalises easily). Let σ be the current allocation, let N =
{i ∈N | r ∈ σi}, and let k = |N|. Let j ∈ argmini{vi(r) | r ∈ σi} be the agent placing
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the lowest value on r amongst those holding r in σ ; and let j′ = argmaxi{vi(r) | r 6∈
σi} be the agent putting the highest value on r of those not holding r.

Then the best possible SWAP-deal is SWAP( j, j′,r). It increases social welfare by a
margin of v j′(r)−v j(r). The best possible ADD-deal is ADD( j′,r). It increases social
welfare by v j′(r)− (k+1) ·dr(k+1)+ k ·dr(k). Hence, under a greedy protocol, an
ADD-deal will only be chosen if the former quantity does not exceed the latter, i.e.,
if:

v j(r)− (k+1) ·dr(k+1) > − k ·dr(k)

Now, let Nk be the set of the top k agents in terms of valuing r. As j valued r the least
of all the k+ 1 agents in N ∪{ j′}, we know that j 6∈ Nk, and we can rewrite above
inequality as follows (by adding ∑i∈Nk vi(r)):

∑
i∈Nk∪{ j}

vi(r)−dr(k+1) > ∑
i∈Nk

vi(r)−dr(k)

The lefthand side of this inequality is the social welfare generated if the k+1 agents in
Nk∪{ j} hold r; the righthand side is the social welfare for the best possible allocation
in which k agents hold r. That is, there are allocations in which k+1 agents claim r
that are at least as good as the best allocation in which k agents do. Hence, k? > k,
which means that under a greedy protocol, an ADD-deal will only ever get applied if
k? has not yet been reached. The claim then follows from Lemma 4. �

The control mechanism of Theorem 9 (greediness) may be more relevant in practice
than that of Theorem 8 (giving SWAP precedence over ADD) because it is reasonable
to assume that agents will actively search for deals giving them high profit first and
thereby indirectly implement a sequence of deals that will at least be approximately
greedy.

3.6 Mix of DROP/SWAP-Deals with Control

It is possible to derive results corresponding to those in Section 3.5 for protocols
allowing for DROP- and SWAP-deals only, starting from the full allocation. We only
state the results here; the proofs are similar to those in Section 3.5.

Lemma 5 For allocation problems with a single resource r, if all delay functions
are symmetric as well as nondecreasing and convex, then any sequence of IR DROP-
and SWAP-deals starting from the full allocation will converge to an allocation with
maximal utilitarian social welfare, provided no DROP-deals are applied once only
k? agents are holding r, where k? is the minimal number of agents holding r in any
allocation with maximal utilitarian social welfare.

Theorem 10 If all valuation functions are modular and all delay functions are sym-
metric as well as nondecreasing and convex, then any sequence of IR DROP- and
SWAP-deals starting from the full allocation will converge to an allocation with max-
imal utilitarian social welfare, provided DROP-deals are only applied when no SWAP-
deal is IR.
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Theorem 11 If all valuation functions are modular and all delay functions are sym-
metric as well as nondecreasing and convex, then any sequence of greedy IR DROP-
and SWAP-deals starting from the full allocation will converge to an allocation with
maximal utilitarian social welfare.

4 Path Length to an Optimal Allocation

We have seen that when we do not impose any structural restrictions on deals, then
any sequence of IR deals will culminate in an allocation that maximises social welfare
(cf. Theorem 3). Actually, it is possible to reach the optimal allocation using a single
complex deal (cf. Lemma 1), but such a deal may be difficult to compute. To ease this
computational burden, we have focused on structurally simple IR deals, which are
easier to identify and which are sufficient to ensure convergence if certain conditions
are satisfied. However, so far we have not yet analysed the number of deals required
to reach an optimal allocation for the various scenarios considered. This, the length
of paths to an optimal allocation, is the topic of this section.

Results on the path length for MARA problems with nonsharable resources have
previously been derived by Endriss and Maudet [12] and Dunne [9].

4.1 Paths of Deals without Restrictions

We first consider the case where there is no restrictions on the deals, except being IR.
As pointed out above, in this case it is always possible to reach the optimal allocation
by means of a single deal, i.e., the length of the shortest path is bounded from above
by 1. But what about the longest path? To answer this question, we adapt the method
used for the case of nonsharable resources [12]. We start with a lemma that will
be useful for the coming results. Recall that n = |N | is the number of agents and
m = |R| is the number of resources.

Lemma 6 There exist utility functions such that any two distinct allocations have
distinct utilitarian social welfare.

Proof To prove this lemma, we provide an example of such a function. We first define
a bijective function v : 2R →{0, . . . ,2m−1} that maps each bundle of resources to a
unique integer in {0, . . . ,2m−1}. We then define the valuation function of agent i as
vi : σi 7→ v(σi) ·2m·i. We furthermore stipulate that there are no delays involved, i.e.,
di,r = 0 for all i ∈N and all r ∈R.

The social welfare for an allocation σ is then sw(σ) = ∑i∈N v(σi) · 2m·i. This
sum can be thought of as the representation of sw(σ) in a number system with base
2m, v(σi) playing the role of the digit, and i contributing to the position of that digit.
Hence, for two distinct allocations σ and σ ′, sw(σ) differs from sw(σ ′) in at least
one digit. Hence, they have different values. �

In the most general case, where there is no restriction on the valuation function or
the delay, the number of deals required may be very large, as shown by the following
theorem, which puts the general convergence result of Theorem 3 into perspective.
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Theorem 12 A sequence of IR deals can include up to (but no more than) 2n·m− 1
deals.

Proof First, observe that there are 2n·m distinct allocations: for each of the n agents
and each of the m resources we have to choose whether the agent in question shall
use the resource in question. Lemma 1 implies that no allocation can be visited twice
on a path of IR deals. Hence 2n·m−1 certainly is an upper bound.

Next we show that it is a tight upper bound. By Lemma 6, we know that there
are utility functions such that all allocations have distinct social welfare. We can now
build a sequence visiting all allocations: start from the allocation with minimal social
welfare and each deal is the one leading to the next best allocation. Since social
welfare increases for each deal, by Lemma 1, they all must be IR. Hence, we have a
sequence of 2n·m−1 IR deals. �

That is, the longest path to an optimal allocation is bounded from above by 2n·m−1
and it is possible to exhibit paths of exactly that length. For comparison, the cor-
responding bound on the longest path for allocation problems with nonsharable re-
sources is only nm−1 [12].

4.2 Paths of Simple Deals

Above we have looked at the general case of a sequence of IR deals, which may
involve many resources and agents at the same time. We now turn to the case of
simple deals, specifically those that involve only a single resource each (1-deals). We
know from Theorem 4 that convergence by means of 1-deals is guaranteed when the
valuation functions are modular. Under this condition, the following result is an upper
bound for the longest 1-deal path.

Theorem 13 For modular valuation functions, any sequence of IR 1-deals will have
a length of at most O(2n ·m).

Proof For a single resource, there are 2n possible allocations. Since convergence is
guaranteed, there cannot be any cycle of IR deals, so there are at most 2n− 1 deals
to reach an optimal allocation when there is only a single resource in the system.
Since the valuation functions are modular, at most (2n−1) ·m 1-deals are necessary
to reach the optimal allocation when there are m resources. �

Note that this bound is not claimed to be tight. Unlike for the scenario analysed for
Theorem 12, here it may not be possible to fix the utility functions of the agents in
such a way that there is a path of IR deals that goes through every possible allocation.
The difficulty is that once an agent with high valuation starts using a resource, it may
not be rational to stop using the resource. Proving a tighter bound is left as an open
problem. The shortest path to an optimal allocation is never longer than m in this
setting of 1-deals and modular valuations: using 1-deals we can move each resource
to its optimal location in a single step.

If there are more severe restrictions on the type of deals allowed, reaching an
optimal allocation can be considerably faster. This is the case, for instance, if either
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only ADD-deals or only DROP-deals are permitted (recall that we have considered this
kind of scenario in our existence results Theorem 5 and Theorem 6).

Theorem 14 A sequence of IR deals consisting only of ADD-deals (or only of DROP-
deals) can include up to (but no more than) n ·m deals.

Proof The proof is immediate: For ADD-deals, in the worst case, the agents start with
no resources and then each agent adds each resource, one at a time (an similarly, for
DROP-deals, we can start with the allocation where all agents claim all resources and
then drop them one at a time). �

Observe that these longest paths are also shortest paths: if we are only allowed ADD-
deals then for some choice of utility functions and in case we start from the empty
allocation, the shortest possible path to the social optimum may have length n ·m.
This is in contrast to the scenario considered in Theorem 12, where, as we have seen,
the shortest path always has length 1, i.e., is much shorter than the corresponding
longest path.

We now consider sequences of deals containing ADD-, DROP- and SWAP-deals.
We assume modular domains and symmetric convex delays, as our corresponding
convergence result, Theorem 7, used those assumptions. Consequently, we can con-
centrate our study on a single resource r at a time. To simplify presentation, we as-
sume that the agents are indexed in increasing order of the valuation function and that
the agents have distinct values for the resource, i.e., we have v1(r) < v2(r) < · · · <
vn(r).

Let us consider a graph in which a node represents an allocation—i.e., the agents
that use resource r—and the edges are the possible deals (of type ADD, DROP or
SWAP). We can think of nodes as being located at one of n levels, where one level,
say k, contains the allocations in which exactly k agents use r. Then the bottom level
contains the empty allocation and the top level contains the full allocation. ADD- and
DROP-deals involve allocations located at two consecutive levels, whereas SWAP-
deals involve allocations at the same level. Since, by Lemma 1, social welfare must
increase with every IR deal, we can use a directed graph: the direction of an edge
corresponds to an increase in social welfare, i.e., an edge goes from the allocation
with the lower social welfare to the allocation with the higher social welfare. A walk
in the graph corresponds to a sequence of deals that improves social welfare. As a
consequence, this directed graph must be acyclic. An example of such graph for the
case of three agents is given in Figure 1.

We are now ready to provide upper bounds on the number of deals in a sequence
of ADD-, DROP- and SWAP-deals. We start by investigating the maximal number of
SWAP-deals that can occur within a single level. At level k, there are

(n
k

)
allocations,

but the following result shows that, actually, only a quadratic number of allocations
can be present in a sequence of SWAP-deals. This case is illustrated in Figure 2 with
a population of n = 6 agents and for level k = 2. Although there are 15 possible
allocations, the longest sequence of IR SWAP-deals is k · (n− k) = 8.

Lemma 7 For allocation problems with a single resource r, if all delay functions are
symmetric as well as nondecreasing and convex, then any sequence of IR SWAP-deals
at level k can include up to (but no more than) k · (n− k) deals.
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{1,2,3}

{1,2}

{1}

{1,3}

{2}

/0

{2,3}

{3}

full allocation

2 agents use the resource

1 agent uses the resource

empty allocation

Fig. 1 Allocation graph for one resource shared between agents 1, 2 and 3, assuming v1(r)< v2(r)< v3(r);
solid edges are ADD- or DROP-deals; dashed edges are SWAP-deals.

{1,2}

{1,3}

{1,4}

{1,5}

{1,6}

{2,3}

{2,4} {3,4}

{2,5} {3,5} {4,5}

{2,6} {3,6} {4,6} {5,6}

Fig. 2 Longest sequence of SWAP-deals at level k = 2 with n = 6 agents.

Proof At level k, k agents are using the resource r. An agent i can swap the use of
r with an agent j if and only if i < j. To make a path of maximal length, all deals
must be of the form where an agent i swaps with the next agent i+1 (otherwise, one
transition is missed). Now consider the sum of the indices of the agents using r in
two consecutive allocations along the path: it increases by exactly +1. Furthermore,
the first allocation of the longest path must be σ start

k = {1, . . . ,k} and the final alloca-
tion must be σ end

k = {n− k+1, . . . ,n}. Hence, the number of SWAP-deals along this
longest path will be ∑σ end

k −∑σ start
k = ∑

k
i=1(n− k+ i)−∑

k
i=1 i = k · (n− k). �

Hence, the number of allocations visited on a pure SWAP-path is at most k ·(n−k)+1.
When ADD-, DROP- and SWAP-deals are allowed, it is possible that the path goes
through an allocation at level k and later comes back to a different allocation at level k.
This might suggest that the number of allocations at level k visited on such a path
could be higher than the number we can visit if we are forced to remain at level k
throughout. Lemma 8 will show that this is not the case.

Lemma 8 For allocation problems with a single resource r, if all delay functions
are symmetric as well as nondecreasing and convex, then any sequence of IR ADD-,
DROP- and SWAP-deals will visit at most k · (n− k)+1 allocations at level k.
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Proof As we allow for sequences of IR ADD-, SWAP- and DROP-deals, it it possible
that a path goes through an allocation σ1

k at level k, leaves it and comes back to a node
σ2

k at level k. We shall prove that there exists a sequence of IR SWAP-deals that starts
in σ1

k and ends in σ2
k , i.e., it is also possible to reach σ2

k from σ1
k using a sequence of

IR SWAP-deals alone (i.e., we can reach σ2
k from σ1

k without having to leave level k).
The claim will then follow immediately from Lemma 7.

Observe that an ADD-deal followed by a SWAP-deal can be turned into either
a SWAP-deal followed by an ADD-deal or into a single ADD-deal: if ADD(i,r)–
SWAP(i′, i′′,r) is a sequence of IR deals leading from allocation σ to allocation σ ′,
then either so is SWAP(i′, i′′,r)-ADD(i,r) (in case i 6= i′′)3 or so is ADD(i′′,r) (in case
i = i′′). That is, any SWAP-deal to the right of an ADD-deal can either be eliminated
or moved to the left of the ADD-deal. The same is true from DROP-SWAP sequences.
Also observe that an ADD-DROP sequence can be reduced to a single SWAP-deal: if
ADD(i,r)-DROP(i′,r) is an IR path from σ to σ ′ (note that this implies i 6= i′), then
SWAP(i′, i,r) is an IR deal from σ to σ ′. DROP-ADD sequences can be reduced in the
same manner. To summarise, we can use the following simplification steps:

ADD-SWAP ; SWAP-ADD | ADD DROP-SWAP ; SWAP-DROP | DROP
ADD-DROP ; SWAP DROP-ADD ; SWAP

Now, by a simple inductive argument, any sequence of IR-deals of type ADD, DROP
or SWAP can be transformed into a sequence of SWAP-deals followed by a sequence
consisting either only of IR ADD-deals or only of IR DROP-deals. Furthermore, if the
original sequence ends at the same level it started in, then this second sequence must
in fact be empty, i.e., we are left with only SWAP-deals. This proves our claim that
we can reach σ2

k from σ1
k by means of IR SWAP-deals alone and thereby completes

the proof of the lemma. �

Lemma 8 allows us to provide an upper bound on the maximal number of deals
required to reach an optimal allocation for the type of scenario covered by Theorem 7.

Theorem 15 If all valuation functions are modular and all delay functions are sym-
metric as well as nondecreasing and convex, then any sequence of IR ADD-, DROP-
and SWAP-deals will have a length of at most O(n3 ·m).

Proof Due to modularity, we can consider each of the m resources independently.
By Lemma 8, each sequence of deals involving r will visit at most k · (n− k) + 1
allocations at level k. Hence, ∑

n
k=0[k · (n− k)+1] = O(n3) is an upper bound on the

number of allocations visited across all levels when reassigning r. As we have to do
this for each of the m resources, we obtain on overall upper bound of O(n3 ·m). �

The corresponding shortest path is n ·m. To see this, observe that for each of the m
resources, the following sequence of deals will lead us to an optimal allocation: First,
if too many agents currently use r, let those with the lowest valuation for r DROP it
until the number of agents holding it is right (or, if there are too few agents holding

3 Observe that at this point we are using our assumption that delays are symmetric, which entails that
if a SWAP-deal is IR at one level it will also be IR at any other level.
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r, let those with the highest valuation ADD it). Second, perform a sequence of SWAP-
deals (asking the agent with the lowest valuation currently holding r to swap with
the agent with the lowest valuation who should hold it but does not, and so forth). In
case we need to go from the empty sequence to the full sequence (or vice versa), this
amounts to a sequence of exactly n ·m ADD-deals (or DROP-deals, respectively); in
all other cases the sequence is shorter than that.

Clearly, the upper bound of Theorem 15 is also valid for sequences of ADD/SWAP-
deals and DROP/SWAP-deals with control (as analysed in Sections 3.5 and 3.6).

However, we can provide better bounds for protocols that not only restrict the
type of deals available but also control the order of deals. For Theorem 8, the protocol
used suggests that, starting from an empty allocation, we first make all the possible
SWAP-deals before making an ADD-deal. In the worst case, the sequence will visit all
the allocations at level 1 and end up with the allocation {n}, thus using n− 1 deals
at level 1. Then, in the worst case, the agent that values the resource the least (i.e.,
agent 1) also starts using the resource. From this allocation, ({1,n}), n− 2-swaps
are left to reach the allocation {n− 1,n} (since it is not possible that another agent
performs a SWAP-deal with agent n). Again, in the worst case, agent 1 performs a
further ADD-deal. Generalising, after moving to level k, only n− k SWAP-deals are
possible at level k. Hence, there are at most n ADD-deals and (n− 1) + (n− 2) +
(n− 3) + · · ·+ 1 = n·(n−1)

2 SWAP-deals. That is, there are a maximum number of
n·(n+1)

2 =O(n2) deals possible involving a given resource r, and thus at most O(n2 ·m)
deals overall.

For Theorem 9, the protocol starts from an empty allocation and the next deal is
the one with maximal social surplus. Hence, the first deal will be agent n performing
an ADD-deal. Then, the only possible deal is n−1 performing an ADD-deal. Thus, in
the worst case, all agents add the resource in reverse order of their index, and hence,
the maximum number of ADD-deals involving r is n. Observe that this upper bound
does not change when we start from an allocation that is different from the empty
allocation. Hence, in this case we obtain an upper bound of n ·m. That is, the greedy
policy leads to shorter paths to the optimum than the precedence policy (at least in
the worst case). On the other hand, identifying the next deal to implement is more
costly under the greedy policy.

The same bounds apply to the scenarios of Theorems 10 and 11, which deal with
the combination of DROP- and SWAP-deals with control.

5 Nash Equilibria in Noncooperative MARA

Our results on convergence and path length all pertain to scenarios where the users
of a resource also share control of that resource: a deal is acceptable when no agent
involved in that deal is worse off and at least one agent involved in the deal benefits,
and we said that such a deal is IR. We now consider situations where no such control
exists: an agent is free to use any resource she likes. In particular, if an agent can
gain utility by using an additional resource, she will do so, regardless of the conse-
quences for other agents using the resources. Hence, agents are selfish and do not
take into account the utility of other agents. This situation can be modelled using
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standard concepts from (noncooperative) game theory [18]. For an agent the bundle
of resources σi she claims now corresponds to the strategy (or action) she chooses
to take. An allocation σ = 〈σ1, . . . ,σn〉 corresponds to a strategy profile (also known
as joint action) and each agent receives a payoff corresponding to her utility for σ .
More concretely, our allocation problems may be interpreted as a class of congestion
games [21,16,1,4,26]: the payoff of each agent depends, in part, on the congestion
created as a result of several agents claiming the same resources (that is, each agent’s
utility function is, in part, defined in terms of its delay function).

In our model, agents can only play pure (rather than mixed) strategies (as in our
model an agent uses a resource or not, but we do not model partial use of the resource
or probabilities of using a resource). A natural question that arises in this context is
under what circumstances an allocation game (i.e., an allocation problem interpreted
as a game) has a (pure) Nash equilibrium (NE), i.e., an allocation (strategy profile)
such that no agent has an incentive to change the bundle she claims (the strategy she
plays). A second question that arises is whether we can find such a NE by means of a
sequence of moves that are in the interest of the agents performing them. This section
will be devoted to the discussion of these two questions.

Formally, a strategy profile σ = 〈σ1, . . . ,σn〉 is called a Nash equilibrium in pure
strategies (or pure NE) if for no agent i ∈N there exists an alternative strategy σ ′i ⊆
R such that ui(σ−i,σ

′
i ) > ui(σ), where (σ−i,σ

′
i ) = 〈σ1, . . . ,σi−1,σ

′
i ,σi+1, . . . ,σn〉.

Equilibria are important, because if no NE exists, then we should not expect agents
to ever agree on an allocation. And in case a NE does exist, the question is whether
the agents will be able to (easily) find this allocation.

In this section, after presenting an instance of the allocation problem that does
not admit a pure NE, we discuss classes of games that always possess pure equilibria.
In particular, this is the case for allocation games with modular valuation functions
and nondecreasing delay functions. This may be shown by proving that this class of
games is a special case of the class of so-called congestion-averse games, for which
existence of a pure NE is a known result [4,26]. However, in the sequel, we do not
rely on this more general class of games, but instead present a simple and direct proof.
We also prove convergence to a NE for this class of games by means of simple moves
and provide an upper bound on the number of such moves before convergence.

5.1 Examples

Let us first demonstrate that in the most general case for a MARA problem with
sharable resources, there may exist no pure NE. Consider the example in Figure 3,
adapted from Milchtaich [17], with two agents and six resources. Agents have the
same delay when they share a resource, and a different one when they use it on their
own. For any bundle other than the ones indicated in the table the agents do not get
any valuation. One can check that there is a cycle of best responses: when agent 2
uses {b,d}, the best response of agent 1 is to use f ; if 1 uses f , 2’s best response is
to use {a,c}; when 2 uses {a,c}, 1 should in turn use {a,d,e}; and finally, when 1
uses {a,d,e}, 2 should use {b,d}. Hence, there is no pure NE. This is depicted in
Figure 3.
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r = a b c d e f v1({a,d,e}) = 100

d1,r(1) = 20 45 48 20 16 65 v1({ f}) = 100

d2,r(1) = 24 45 48 28 32 130 v2({b,d}) = 100

di,r(2) = 28 45 48 30 48 195 v2({a,c}) = 100

σα = 〈{a,d,e} , {b,d}〉
u1(σ

α )=100-20-30-16
=34

u2(σ
α )=100-45-30
=25

σβ = 〈{a,d,e} , {a,c}〉
u1(σ

β )=100-28-20-16
=36

u2(σ
β )=100-28-48
=24

σ γ = 〈{ f} , {b,d}〉
u1(σ

γ )=100-65
=35

u2(σ
γ )=100-45-28
=27

σδ = 〈{ f} , {a,c}〉
u1(σ

γ )=100-65
=35

u2(σ
γ )=100-24-48
=28

2 changes

1 changes

2 changes

1 changes

Fig. 3 Example of an allocation game with no pure NE.

Furthermore, when a pure NE does exist, the corresponding allocation need not
have maximal social welfare. For example, consider the following symmetric prob-
lem with two agents, called 1 and 2, and a single resource r: v1(r) = 4, v2(r) = 3,
d(1) = 0 and d(2) = 2. The social optimum is when agent 1 uses the resource, with
a value of 4− 0 = 4. However, agent 2 has an incentive to also use r as it can get
utility 3− 2 = 1 instead of 0. In that situation, however, the social welfare drops to
4−2+3−2 = 3, and neither agent has an incentive to drop the resource. Hence, in
this case a suboptimal allocation is a NE.

5.2 Existence of Pure Nash Equilibria

Next, we focus on identifying classes of MARA problems possessing pure Nash equi-
libria. We begin with a simple observation regarding games where the cost of con-
gestion is smaller than the marginal valuation of bundles: in this case the allocation
where all agents use all resources is a pure NE.

Fact 1 Every allocation game in which marginal valuation always exceeds delay,
i.e., in which vi(S∪ {r})− vi(σ) > di,r(k) for any k 6 n (for all i ∈ N , S ⊆ R,
r ∈R \S), has got a pure NE.

Proof The allocation where every agent claims every resource is a NE in this kind of
game. (In fact, above inequality only needs to hold for k = n.) �

This result is interesting only in so far as it shows that existence results are achiev-
able in principle, even if we do not constrain the range of valuation functions (of
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course, this freedom is gained at the expense of a very severe restriction on the delay
function).

To obtain more interesting results, we may consider games that are congestion-
averse in the sense of Byde et al. [4]. Specifically, Voice et al. [26] have identified
three axioms that together provide a sufficient condition for the existence of a NE.
One can show that modular games with nondecreasing delay functions satisfy these
axioms, and so are guaranteed to possess a pure NE. Instead of introducing the defini-
tion of congestion-averse games and of proving that this particular class of allocation
games is also congestion-averse, we provide a simple and direct proof.

Before doing so, we momentarily focus on allocation games with just a single
resource r and show that when delay functions are nondecreasing, a pure NE always
exists. Let us introduce some notation that will be useful for our proofs. For k > 1,
we call Ak the set of agents that have nonnegative utility when k agents are using the
resource r, i.e., Ak = {i ∈N | vi(r)−di,r(k)> 0}. Let furthermore A0 = N , which
is a reasonable choice as all agents get the nonnegative utility 0 when 0 agents use
r. Since the delay functions are nondecreasing by assumption, we have the following
inclusions: An ⊆ An−1 ⊆ . . . ⊆ A2 ⊆ A1 ⊆ A0. If all agents enjoy nonnegative utility
if they use r on their own, then we have A1 = N ; otherwise A1 ⊂N . Note that if
we have |Ak| < k, then it is not possible that k agents use the resource and all derive
a nonnegative utility from doing so. Finally, let k? = max{k ∈ {0, . . . ,n} | |Ak|> k}.
Observe that k? is well-defined: at least k = 0 will be an element of the set (that k?

is the maximum of), because |A0| = |N | > 0 for any game. As we shall see, in a
NE there will be k? agents using the resource; it is not possible that more agents
use the resource (otherwise some agents would get a negative utility by definition of
k?), and the agents using the resource do not have an incentive to drop as they enjoy
nonnegative utility.

Lemma 9 Every allocation game with a single resource and nondecreasing delay
functions has got a pure NE.

Proof Let k? be defined as above and let A be a set of k? agents such that Ak?+1 ⊆
A⊆ Ak? . Such a set A exists, because Ak?+1 ⊆ Ak? by nondecreasingness of the delay
functions and |Ak?+1|6 k? by maximality of k?. We claim that the allocation σ where
all agents in A use the resource and all other agents do not use it (i.e., ∀i∈ A, σi = {r}
and ∀i∈N \A, σi = /0) is a pure NE. If i∈A, agent i gets a nonnegative utility; hence,
i has no incentive to drop the resource. If i /∈ A, then i /∈ Ak?+1. Consequently, agent i
would not get a (strictly) positive utility if it were to add the resource. �

This result is not surprising given the result of Milchtaich [16]. Our next result intro-
duces a difference with respect to the model of Milchtaich, in which each agent can
only use a single resource. For our result, on the other hand, agents may use several
resources, although the valuation function is required to be modular.

Theorem 16 Every allocation game with modular valuation functions and nonde-
creasing delay functions has got a pure NE.

Proof For each resource r ∈R, Lemma 9 guarantees the existence of a pure NE σ r.
Let σ be the allocation where the strategy of each agent i is the union of strategies
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in σ r
i . Given that for modular valuation functions we can treat the problem item-by-

item, the allocation σ is a pure NE. �

5.3 Convergence to Pure Nash Equilibria

Existence of a NE alone does not ensure that agents will actually settle on a NE.
Therefore, we now explore protocols under which we can ensure convergence to a
NE. That is, we are now turning to a similar question as we have investigated in
Section 3, except that now we do not focus on IR deals but rather on moves that each
agent can perform on her own, without consideration for the payoff of other agents.
We use the same terminology and notation as before: ADD(i,r) is the move of agent i
adding resource r to her bundle and DROP(i,r) is the move of agent i dropping r
from her bundle (we avoid the term “deal”, as now consent from other agents is not
required). Amongst those moves that only involve a single resource at a time, these
are the only moves an agent can execute on her own. We call a move profitable if it
increases the utility of the agent executing it.

Suppose all valuation functions are modular and all delay functions are nonde-
creasing, i.e., there exists at least one pure NE (cf. Theorem 16). If we start with
some arbitrary initial allocation and allow agents to implement any profitable ADD-
or DROP-move they wish, can we be sure to end up in a NE? The following result
provides a positive answer to this question.

Theorem 17 For allocation games with modular valuation functions and nonde-
creasing delay functions, any sequence of profitable ADD- and DROP-moves will con-
verge to a pure NE.

Proof W.l.o.g., due to the modularity of the valuation functions and due to the fact
that we are only considering moves involving a single resource at a time, we can focus
on the case where there only is one resource r in the system. In this case an allocation
σ is a pure NE if and only if there exists no profitable ADD- or DROP-move starting
in σ . That is, we have convergence if and only if we can show that any sequence of
profitable moves must eventually terminate, i.e., reach an allocation where there are
no more profitable moves possible. As the set of allocations if finite, there can be no
acyclic infinite path. Hence, any sequence of profitable moves must either terminate
or amount to a cycle. That is, if we can show that assuming there is a cycle leads to a
contradiction, then we are done.

So suppose there exists a sequence of profitable ADD- or DROP-moves that is a
cycle. This cycle must include an allocation σ? that maximises the number of agents
claiming r amongst all allocations along the cycle (there may be more than one allo-
cation that is maximal in this sense; let σ? be one of them). By definition, the move
leading to σ? must be an ADD-move. Let i? be the agent executing that move. That
is, agent i? must derive a strictly positive utility from holding r in σ?. Given that we
assume her delay function to be nondecreasing, she also must derive a strictly posi-
tive utility from any of the other allocations on our cyclic path in which she holds r
(because they all involve equally many or fewer agents claiming r). But this means
that at no point on this path it would be profitable for i? to DROP r again. This in turn
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means that the move ADD(i?,r) actually cannot have been part of the cycle in the first
place, and we have derived our contradiction. �

Our proof may suggest that the games we consider have the finite improvement prop-
erty (FIP). This property says that sequences of profitable moves, implemented by
one agent at a time, are finite. When a game has the FIP, it is guaranteed to have a
pure NE. We stress that our result does not imply that the resource allocation games
considered here have the FIP. The reason is that an agent could in principle perform
what we will call a SWITCH-move: the same agent drops one or more resources and
adds one or more other resources at the same time.4 With such SWITCH-moves, it
is possible to build a cycle of allocations where one agent at a time changes her al-
location and improves her utility. This is demonstrated by the example in Figure 4,
which we have adapted from an example due to Milchtaich [16]. Hence, our class of
allocation games does not have the FIP (even under the assumptions of Theorem 17).

σα = 〈{c},{b}〉

u1(σ
α ) = 2 u2(σ

α ) = 5

σβ = 〈{b},{b}〉

u1(σ
β ) = 3 u2(σ

β ) = 0

σ γ = 〈{b},{c}〉

u1(σ
γ ) = 4 u2(σ

γ ) = 2

σδ = 〈{a},{c}〉

u1(σ
δ ) = 5 u2(σ

δ ) = 2

σ ε = 〈{a},{a}〉

u1(σ
ε ) = 0 u2(σ

ε ) = 3

σζ = 〈{c},{a}〉

u1(σ
ζ ) = 2 u2(σ

ζ ) = 4

1 changes2 changes

1 changes

2 changes 1 changes

2 changes

Preferences

agent 1

v1({a}) = 5 d1
a(1) = 0 d1

a(2) = 5
v1({b}) = 4 d1

a(1) = 0 d1
a(2) = 1

v1({c}) = 2 d1
a(1) = 0 d1

a(2) = 1

agent 2

v2({a}) = 4 d1
a(1) = 0 d1

a(2) = 1
v2({b}) = 5 d1

a(1) = 0 d1
a(2) = 5

v2({c}) = 2 d1
a(1) = 0 d1

a(2) = 1

Fig. 4 Example of a cycle of a sequence of improving IR moves.

As we have seen, while there is no convergence to a NE in general, convergence
can be guaranteed if agents only implement moves that concern a single resource
each. It is reasonable to assume that agents will do so. In particular, the moves used
in our example for a cycle are artificial in the sense that they combine two actions
in one move—one that decreases the agent’s payoff (or keeps it at the same level)
and another that increases her payoff by a larger margin, which together is not a best-
response move. The agent could increase her immediate payoff by only implementing
the second part of this move. The game in the example is also congestion-averse and
the convergence result of Voice et al. [26] still holds as it relies on best-response dy-
namics. Note that Byde et al. had already remarked that the larger class of congestion-
averse games may not have the FIP.

4 Note that this is different from the SWAP-deal in which an agent drops a resource and another agent
starts using the same resource.
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Finally, in analogy to the results on path length we have established for the coop-
erative case, we may ask how many profitable moves the agents must implement in
the worst case before reaching a NE.

Theorem 18 For allocation games with modular valuation functions and nonde-
creasing delay functions, any sequence of profitable ADD- and DROP-moves will have
a length of at most O(n2 ·m).

Proof First, observe that due to the modularity assumption, any upper bound on the
length of a path of profitable moves must be linear in m. In fact, w.l.o.g., we may
assume that initially all moves concerning the first resource are implemented, then all
moves regarding the second resource, and so forth. That is, it is sufficient to consider
the case of a single resource r to see how the number of agents n affects the overall
bound.

Note the following important effect of our assumption of the delay functions be-
ing nondecreasing. This assumption entails that each agent i has a (personal) toler-
ance value ti: if the current number of agents claiming r (including i herself) is strictly
above ti, then i will want to drop r at the next opportunity; if the current number of
agents claiming r (now excluding i) is strictly below ti, then she will want to add r at
the next opportunity.

Now consider the following equivalence relation on moves (recall that a move is
a pair of allocations): two moves are equivalent if (a) they either are both an ADD-
move or both a DROP-move (two possibilities), if (b) it is the same agent performing
both moves (n possibilities), and if (c) the congestion level immediately before the
move is the same for both of them (n possibilities: it can be anything from 0 to n−1
for an ADD-move and anything from 1 to n for a DROP-move). That is, we obtain 2n2

equivalence classes of moves. For example, two ADD-moves performed by agent i
are in the same equivalence class if the number of agents holding r before the move
is the same for both of them.

We shall now argue that after every move we observe, we can completely exclude
one of the above equivalence classes from further consideration: no move from that
class can ever be performed again later on.

Suppose that at the very beginning of the process we observe agent i perform, say,
a DROP-move, with the prior level of congestion being x. Then we know that ti < x.
We then also know that she will certainly never be observed to perform an ADD-move
when the current level of congestion is n−1 (because of x 6 n and ti < x we know
ti 6 n−1). That is, we can exclude the equivalence class of ADD-moves by i from
level n−1 from further consideration. But this means that the level of congestion will
never again be n. The reason is that this would require agent i to perform an ADD
at some point, which in turn would require the level of congestion to first fall below
ti. This, in turn, would require a second agent to first perform a DROP. But then that
agent would require congestion to drop even further, before she would be willing to
join again, and so forth. To summarise: observing a DROP-move at the start of the
process means that the the maximally achievable congestion level goes down to n−1.

Now suppose we observe a second agent j perform a DROP-move at some later
point in time, when congestion is y6 n−1. Then j will never again perform an ADD-
move when congestion is n−2 (because t j < y and y6 n−1 entail t j 6 n−2). And so
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forth: every time we observe a DROP-move by a new agent, we can lower the maximal
congestion achievable later on by 1 (if an agent performs a DROP-move who has done
so before, the maximal level of congestion achievable later on is not directly affected).
Thus, every time an agent performs a DROP (whether she does so for the first time
or not) we can exclude one more type of ADD-move (the one starting from the level
of congestion immediately below the current maximal level of congestion, for that
particular agent). Of course, the converse also holds: every observed ADD (by an
agent who did not ADD before) reduces the range of available types of DROP-moves
by 1.

To summarise, after every move we can exclude one of the 2n2 equivalence
classes. Hence, the number of moves involving a given resource r must be bounded
from above by 2n2 ∈O(n2). This in turn means that the number of all moves must be
bounded from above by O(n2 ·m). �

In related work on congestion-averse games, Voice et al. [26] provide an algorithm
that converges to a NE in time polynomial in the number of players and resources.
However, the elementary changes considered in their work also include a SWITCH-
move that consists of adding a resource while dropping another at the same time,
while we focus on ADD- and DROP-moves only. We used such SWITCH-moves in the
example of Figure 4 showing that a sequence of improving moves could be infinite.

6 Related Work

There is a vast literature on solving allocation problems using different ap-
proaches [5], ranging from centralised procedures such as combinatorial auctions [8]
to decentralised ones such as exchange economies (examples for which include work
on Walrasian equilibria [15] for divisible goods as well as applications of concepts
from cooperative game theory [25]). Our focus has been on decentralised mechanisms
for allocating indivisible resources the use of which can be shared amongst several
agents. Our mechanisms allow agents to implement a sequence of simple agents that
improve their immediate payoff, i.e., we have focussed on agents that are myopic.

In this section, we briefly review related work regarding both the “cooperative”
and the “noncooperative” instance of our framework. We start with the topic of con-
vergence to a socially optimal allocation by means of negotiation using IR deals
(including the length of paths exhibited by these convergence results) and then move
on to the existence of Nash equilibria for the congestion games induced by allocation
problems with sharable resources.

6.1 Negotiating Socially Optimal Allocations

While our focus on sharable resources is new, there has been a significant amount of
work on negotiating socially optimal allocations of nonsharable resources. The first
convergence result, formulated as Theorem 1 in this paper, is due to Sandholm [23].
Endriss et al. [13,14] later showed how this convergence result can be reduced to
an equivalence between individual rationality and social welfare improvements (by
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means of a result similar to our Lemma 1) and broadened the research agenda on
convergence by also considering negotiation without monetary side payments, opti-
mality criteria not defined in terms of utilitarian social welfare, and the analysis of
scenarios with valuations drawn from certain restricted classes. Regarding alternative
notions of optimality, both egalitarian social welfare [14] and envy-freeness [6] have
been considered in this literature. Dunne et al. [11] initiated the study of the computa-
tional complexity of problems that arise in the context of considerations pertaining to
convergence, such as the question of deciding whether reaching an optimal allocation
is possible by means of 1-deals. Others, e.g., Saha and Sen [22] and Bachrach and
Rosenschein [3], have focussed on the design of practical negotiation protocols.

Most of our convergence results concern very simple types of deals, each in-
volving only a single resource. Sandholm [23] already distinguished different types
of deals. His “original contracts” correspond to our 1-deals. He also considered,
amongst others, “cluster-contracts” (involving the reallocation of a set of resources
from one agent to another) and “swap-contracts” (which, unlike our SWAP-deals, con-
cern the exchange of two resources between two agents). Because of the fact that we
deal with sharable resources, the space of simple deals is much richer than for the
framework with nonsharable resources. Indeed, while for nonsharable resources, 1-
deals are the simplest possible type of deal, for sharable resources we have been able
to introduce a number of different types of deal (ADD, DROP and SWAP) that are all
special cases of the class of 1-deals. For sharable resources, Chevaleyre et al. [7] have
studied convergence by means of simple deals in depth. One of their main results,
for instance, shows that the class of modular valuation functions is in fact maximal
amongst those classes that can ensure the kind of convergence results for 1-deals
given by Theorem 2. There are no results in the literature that closely resemble our
results for convergence by means of ADD-, DROP- and SWAP-deals, simply because
this fine-grained ontology of deals does not exist for the standard framework with
nonsharable resources.

Our first result on the longest path to an optimal allocation (Theorem 12) mimics a
similar result for nonsharable resources by Endriss and Maudet [12]. In related work,
Dunne [9] has established bounds on the number of simple deals (particularly 1-deals)
required to reach an optimal allocation in settings where convergence by such deals
is not guaranteed in general. Our results on path length for various combinations of
ADD-, DROP- and SWAP-deals are not closely related known results in the literature.
Both the results (with relatively low bounds) and the techniques employed differ from
previous work.

6.2 Congestion Games

In the model proposed by Rosenthal in his seminal paper on congestion games [21],
each agent must choose from a fixed set of strategies available to that agent, with each
strategy corresponding to a particular bundle of resources. The available strategies in
our model are all possible sets of resources while Rosenthal’s model is more general
as one can restrict the set of strategies. Each agent derives a cost (i.e., negative utility)
from the congestion of the resources in her bundle. Her overall cost is the sum of the
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costs of using each of her resources (i.e., utility is additive with respect to delays, as
in our model). Two important restrictions are that (1) all agents are assumed to use the
same delay function (i.e., delays are symmetric) and that (2) costs (i.e., utilities) only
depend on the number of agents using the same resources, not on their identities. We
can embed Rosenthal’s model into ours as follows: First, for each σi in the fixed set of
strategies available to agent i, let vi(σi)=Ω for some sufficiently large number Ω and
let vi be equal to 0 for all other bundles. Second, pick a single delay function d that not
only is independent of the agent (i.e., that is symmetric) but that is also independent
of the resource it is applied to. To be precise, we require Ω to be strictly larger than
m multiplied with the maximal value of d. Now any bundle that is part of agent i’s
“allowed” set will result in a strictly positive utility (even under maximal congestion),
while all other bundles will result in negative utility or at best in utility 0.This ensures
that rational agents will only pick allowed bundles. Furthermore, once every agent
chooses an allowed bundle, their utility will only depend on congestion in exactly the
same way as in Rosenthal’s model.

Rosenthal showed that every game belonging to the class of congestion games he
defined must possess a pure NE. He proved this result using potential functions. Later
Monderer and Shapley [24] showed that the class of finite potential games coincides
with the class of Rosenthal’s congestion games. Our Theorem 16 neither implies nor
is implied by Rosenthal’s result. On the one hand, our result applies to modular val-
uation functions only, while the dichotomous valuation functions (assigning either
0 or Ω to any given bundle) we have used to model Rosenthal’s restricted strategy
space are not modular. On the other hand, the class of games covered by our theorem
is richer in other respects: it allows for arbitrary valuations given to individual re-
sources and it allows for delay functions that are both agent- and resource-dependent.

The basic model of Rosenthal can be made more realistic in many ways. One op-
tion is to assume that each agent has a weight, and that the congestion of a resource
is the weight of all agents using it (weighted congestion games). Rosenthal showed
that in general, such a game need not have a pure NE. Another option is to allow
for agent-specific payoffs. Milchtaich [16] introduced a model where the payoff is
agent-specific. To prove that any game in that class also posses a pure NE, Milch-
taich however had to restrict the strategy space of the agents to the use of a single
resource (and he also required the payoff to be nonincreasing in the congestion, i.e.,
the delay function to be nondecreasing). We can embed Milchtaich’s model into our
model in the same way in which we have accommodated Rosenthal’s model, namely
by working with dichotomous valuations functions that map ever singleton to Ω and
all other bundles to 0. Clearly, our Theorem 16 (allowing agents to claim several re-
sources, but not applying to dichotomous valuation functions) neither implies nor is
implied by Milchtaich’s existence result. Later, Ackermann et al. [1] further gener-
alised Milchtaich’s model by allowing agents to use certain sets of resources (sets
forming the base of a matroid), and also by allowing for weighted congestion.

Another generalisation is to consider that resources execute tasks that are sent
by users. In this setting, the delay of a user may not only depend on the number of
agents using that resource, but also on the order at which the tasks are executed. To
minimise the delay, a user may want to send her task to multiple resources. The user
may behave similarly when resources can fail, but this time to improve the likelihood
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that the task is performed. Each of these situations were modelled in separate games
(asynchronous congestion games in [19] and congestion games with load-dependent
failures [20]).

An even more general class of games possessing a pure NE is the class of games
with congestion-averse utilities introduced by Byde et al [4]. This class of games is
defined axiomatically and contains all the classes of games we have just described.
When the valuation functions are modular, our games are also congestion-averse,
although this may no longer be the case when valuations are not modular. The main
tool used are two types of sequences of simple moves: the first type is called a drop
ladder and is composed of one DROP-move followed by successive SWITCH-moves;
the second type is a drop ladder followed by by a maximally profitable ADD-move.
Byde et al. use these ladders both in the proof of the existence of a pure NE and in
the corresponding algorithm to find those equilibria. These ladders are reminiscent of
our protocols with simple moves. In a later paper, Voice et al. [26] generalised this
class of games further by defining matroid congestion-averse games. The conditions
of their model are shown to be necessary for guaranteeing the existence of pure NE,
as relaxing some constraints can lead to games without a pure NE. This is interesting
as this provides some boundary for investigating extensions of our model that are
guaranteed to possess a pure NE.

7 Conclusion

We have introduced a powerful and flexible model of multiagent resource allocation
with sharable items. The model integrates features from models developed in two
different strands of the literature: the distributed approach to resource allocation in
multiagent systems and congestion games studied in game theory. Most of our tech-
nical contributions focus on specific instances of the general model, particularly (but
not exclusively) the case of allocation problems with agents that have modular valu-
ation functions.

Our first set of results all concern conditions for the convergence to a social op-
timum by means of simple negotiation protocols. As for the previously studied case
of nonsharable resources, we have seen that convergence can always be guaranteed
when arbitrarily complex deals are available, and that deals involving just one re-
source suffice in modular domains. Unlike for nonsharable resources, in our scenario
the latter type of deal may involve more than two agents, which calls for a finer anal-
ysis. We have been able to show that three simple types of deals (one in which one
agent is starting using a resource; another one in which one agent is stopping us-
ing a resource; and a last one in which one agent is stopping using a resource that a
different agent is starting to use) suffice when the delay functions meet certain con-
ditions. We also have shown that the protocols can be further simplified by assuming
that agents are greedy in the sense of making the most profitable deal first. We have
proved the existence of a path to an optimum under weaker conditions. These re-
sults, summarised in Table 1, complement existing ones on convergence for different
MARA scenarios and deepen our understanding of the area as a whole.
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Thm Result Path Val. Delay Symm. Deals Init. Alloc. Control

3 convergence 2n·m−1 any any no all any none

4 convergence O(2n ·m) modular any no 1-deals any none

5 existence n ·m modular n.d.+convex no ADD empty none

6 existence n ·m modular n.d.+convex no DROP full none

7 convergence O(n3 ·m) modular n.d.+convex yes ADD-DROP-SWAP any none

8 convergence O(n2 ·m) modular n.d.+convex yes ADD-SWAP empty precedence

9 convergence n ·m modular n.d.+convex yes ADD-SWAP empty greedy

10 convergence O(n2 ·m) modular n.d.+convex yes DROP-SWAP full precedence

11 convergence n ·m modular n.d.+convex yes DROP-SWAP full greedy

Table 1 Reachability results and corresponding bounds on the longest path (for n agents and m resources).

Table 1 also covers our results on the maximal length of a path of deals leading to
a socially optimal allocation. These bounds put our convergence results into perspec-
tive by demonstrating that, while convergence is guaranteed for general allocation
problems, in practice it might require a prohibitively long sequence of deals. On the
positive side of things, our convergence results for simpler instances of the frame-
work are complemented by significantly better upper bounds on the length of paths
to the optimum.

In the final part of the paper, we have focussed on a noncooperative variant of
our framework, where each agent can claim and release resources at will. Allocation
problems then become allocation games that are similar to congestion games studied
in the literature. We have been able to show that when valuation functions are modular
(a strong condition) and when delay functions are nondecreasing (a very common
and unproblematic assumption), then such a game always has a Nash equilibrium in
pure strategies. This ties in nicely with existing results in the literature on congestion
games. We have also been able to show that any sequence of moves in which a single
purely self-interested agent either claims or releases a resource will always converge
to such a Nash equilibrium, which provides a connection to the convergence results
for the cooperative variant of our framework studied in the main part of the paper.

Most of our results apply to particular instances of the general model for mul-
tiagent resource allocation with sharable items, by imposing relevant restrictions on
valuation functions, delay functions, or both. Future work should seek to explore fur-
ther such instances. For instance, we may ask what types of protocols can guarantee
convergence to a social optimum if the class of potential valuation functions is nei-
ther the class of modular functions nor the class of all set functions. We may also
investigate conditions for convergence to allocations that are optimal in the sense of
maximising the utility of the weakest agent (egalitarian social welfare) or in the sense
of being envy-free.
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