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Chapter 1

Introduction

This thesis is about the logic of knowledge, chance and change. In logic one is
engaged with inferences and one tries to answer the question whether an inference
is correct. One does this by looking at the abstract form of inferences. Logical
languages are often tailored to inferences where a certain concept is paramount.
All sorts of logics have been developed, each with their own application areas.
In this thesis three logics are studied: epistemic logic, dynamic logic, and proba-
bilistic logic. A chapter is dedicated to each of them. There is a chapter on the
combination of dynamic logic and epistemic logic. The central chapter of this
thesis is dedicated to the combination of all three of these logics. With this logic
one can study inferences about probabilistic information change.

In epistemic logic one focuses on inferences where knowledge (or more gener-
ally information) plays a crucial role. Reasoning about knowledge is particularly
interesting in situation involving more than one individual. In that case someone
can know whether someone else knows something or does not know something.
Chapter 2 provides a short introduction to epistemic logic, without any new re-
sults. Readers familiar with epistemic logic can skip this chapter, or skim through
it to get acquainted with my notation.

Dynamic logic is the logic of change. It is mostly applied to changes that occur
due to the execution of computer programs. In chapter 3 some technical results
about propositional dynamic logic are presented. Propositional dynamic logic is
not compact, and therefore a finitary proof system can never be strongly complete.
In chapter 3 a strongly complete proof system is presented and a straightforward
completeness proof is provided. A curious property of the canonical model, called
disharmony, is also examined. This chapter is the result of joint work with Gerard
Renardel and Rineke Verbrugge, which has already resulted in a publication (see
Renardel de Lavalette, Kooi, and Verbrugge (2002)).

Epistemic logic and dynamic logic can be combined to study inferences about
information change. The main part of chapter 4 is dedicated to providing an
overview of all dynamic epistemic logics, but a new system is also presented.

1



2 Chapter 1. Introduction

These logics differ from other approaches to information change in that higher-
order information is explicitly taken into account.

In probabilistic logic inferences about probability are studied. There are many
different philosophies about the nature of probability. In chapter 5 I investigate
the relationship between two probabilistic logics, that have arisen from two dif-
ferent notions of probability.

In chapter 6 I develop a probabilistic dynamic epistemic logic, which combines
the logics that were treated in the earlier chapters. It is suited to analyze infer-
ences about the probabilistic information change, especially when higher-order
probabilities play a role. The paper on which this article is based will appear
later this year (see Kooi (2003)).

Once these logics are presented some problems in the area of knowledge,
chance and change are explicitly discussed: the Monty Hall dilemma is ana-
lyzed in chapter 7, the game Mastermind is examined in chapter 8, and the two
envelope paradox discussed in chapter 9.

Finally in chapter 10 I draw some conclusions.



Chapter 2

Epistemic logic

2.1 Introduction

In Knowledge and Belief Jaakko Hintikka (1962), for the first time, described
knowledge in terms of possible worlds. This research area has become known as
epistemic logic. It stems from the Greek word for knowledge:

����� ���	��

�
. In this

thesis I take the term “epistemic” broader, applying it to belief and other ways an
agent might have information as well. This concurs with much of the literature
in this area. In this chapter I give an outline of epistemic logic. The notions that
are explained in this chapter are used throughout this thesis. This chapter is a
rather brief introduction to the subject. For a more extensive introduction see
Fagin, Halpern, Moses, and Vardi (1995) or Meyer and Van der Hoek (1995).

2.2 Language and semantics

Epistemic logic can be used to model the information agents have about the world,
but it is especially suited to model the information agents have about each other’s
information. Suppose for example that there is a situation involving two agents,
a and b. If the proposition ‘p’ means ‘it is raining’, then ‘a knows it is raining’ can
be formalized as ‘¤ap’. The subscript indicates that we are concerned with a’s
knowledge. The sentence ‘b knows that a knows it is raining’ can be formalized
as ‘¤b¤ap’.

Definition 2.1 (Language of epistemic logic LPA)

Let a countable set of propositional variables P and a finite set of agents A be
given. The language of epistemic logic LPA is given by the following rule in
Backus-Naur Form (BNF):

ϕ ::= ⊥ | p | ¬ϕ | (ϕ1 ∧ ϕ2) | ¤aϕ

3



4 Chapter 2. Epistemic logic

where p ∈ P and a ∈ A. Moreover > is an abbreviation for ¬⊥, (ϕ ∨ ψ) is
an abbreviation for ¬(¬ϕ ∧ ¬ψ), (ϕ → ψ) is an abbreviation for (¬ϕ ∨ ψ) and
(ϕ ↔ ψ) is an abbreviation for ((ϕ → ψ) ∧ (ψ → ϕ)). ¤aϕ is an abbreviation
for ¬¤a¬ϕ. I will also use the convention to omit the outermost parentheses of
a sentence. ¤

Epistemic logic is a modal logic. The standard semantics for epistemic logic
does not differ much from standard semantics for modal logic. The only difference
is that there is an accessibility relation for every agent.

Definition 2.2 (Epistemic models)
An epistemic model for LPA is triple M = (W,R, V ) such that:

• W , ∅; a set of states or possible worlds;

• R : A → 2W×W ; assigns an accessibility relation to each agent;

• V : P → 2W ; assigns a set of possible worlds to each propositional variable.

If M = (W,R, V ) is a model, a pair (M,w), where w ∈ W is called a pointed
model. A pair F = (W,R) is called a frame and a pair (F,w), where w ∈ W ,
is called a pointed frame. A pair (F, V ) is also a model. But I will be somewhat
sloppy with the terminology. ¤

The class of all frames is called KA. The class of all pointed frames is called
∗KA. The class of all models for LPA is called KPA, and ∗KPA is the class of all
pointed models for that language.

Definition 2.3 (Semantics for LPA)
Let an epistemic model (M,w) whereM = (W,R, V ) be given. Let p ∈ P , a ∈ A,
and ϕ, ψ ∈ LPA.

(M,w) 6|= ⊥
(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= (ϕ ∧ ψ) iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= ¤aϕ iff (M, v) |= ϕ for all v such that wR(a)v

where wR(a)v is an abbreviation for (w, v) ∈ R(a). ¤

Consider the following example. Suppose two children, a and b, have been playing
outside. Both of them can see whether the other child’s face is muddy, yet they
cannot see their own faces. This situation can be analyzed using an epistemic
logic by making a model for this situation. A picture of this model is shown in
figure 2.1. The states are indicated by pairs (x, y), where x and y stand for the
state a’s respectively b’s face is in. The number 0 means the child’s face is not
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(0,0)

(0,1)

(1,0)

(1,1)

Figure 2.1: A Kripke model. The solid lines represent the accessibility relation as-
signed to a. The dashed lines represent the accessibility relation assigned
to b.

muddy, 1 means it is muddy. The solid and dashed lines represent the accessibility
relations of a and b respectively. In (0, 1) for example, a cannot rule out her face
is muddy, but she also cannot rule out she is not muddy (which is actually the
case). Therefore (0, 1) and (1, 1) are both accessible to a. She does know that
b’s face is muddy. Therefore in both worlds that are accessible to her b’s face is
muddy. This example is a specific instance of the initial situation of the muddy
children puzzle, which is discussed in chapter 4 (page 35).

These so-called Kripke models have an important property. They do not only
model what information the agents have about the world, they also model ‘higher-
order information’, i.e. the information the agents have about the information that
the agents have, and so on. For example, in the Kripke model above, a knows that
b does not know whether she is muddy or not. But it does not stop there, because
the model also gives us that b knows that a does not know that b knows that a
is muddy. In this way the model allows us to stack these kinds of constructions
indefinitely, and thus it models all higher-order information at once.

For the notion of validity we overload |= with the following notions.

Definition 2.4 (Validities)
Let M = (W,R, V ) be a model, F = (W,R) be a frame w ∈ W be a world. Let
SPA and ∗SPA be classes of models and pointed models respectively.

|=(M,w) ϕ iff (M,w) |= ϕ
|=∗SPA

ϕ iff |=(M,w) ϕ for every (M,w) ∈ ∗SPA
|=M ϕ iff |=(M,w) ϕ for every w ∈ W
|=SPA

ϕ iff |=M ϕ for every M ∈ SPA
|=(F,w) ϕ iff |=((F,V ),w) ϕ for every V : P → 2W

|=∗SA
ϕ iff |=(F,w) ϕ for every (F,w) ∈ ∗SA

|=F ϕ iff |=(F,w) ϕ for every w ∈ W
|=SA

ϕ iff |=F ϕ for every F ∈ SA

Generally by |= ϕ we mean |=∗SPA
ϕ, and by Γ |= ϕ we mean local logical
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consequence, i.e. for every pointed model (M,w) ∈ ∗SPA, if (M,w) |= ψ for every
ψ ∈ Γ, then (M,w) |= ϕ. ¤

Whether these notions coincide depends on the choice of models, frames, and
classes of these.

2.3 Proof systems

The simplest proof system for epistemic logic is KPA.

Definition 2.5 (Proof system KPA)

Let ϕ, ψ be sentences in LPA and let a be an agent in A. The proof system KPA
consists of the following axioms and derivation rules.

Taut all instantiations of propositional tautologies

Distr ¤a(ϕ→ ψ)→ (¤aϕ→ ¤aψ) (distribution)

MP
ϕ ϕ→ ψ

ψ
(modus ponens)

Nec
ϕ

¤aϕ
(necessitation)

Let us now introduce a general notion of provability that can be used for other
proof systems as well.

Definition 2.6 (Provability)

Let S be a proof system and L a logical language. A derivation or proof in S

consists of a sequence of sentences of L each of which is an instance of an axiom
or is the result of applying a derivation rule to sentences that occur earlier in
the sequence. If ϕ is the last sentence in a derivation, then ϕ is provable, or
deducible, in S, notation `S ϕ. ¤

Note that this notion of provability excludes the possibility of premises of an
inference. The rules MP and Nec can only be applied when the formulas above
the line have already been deduced.

The system KPA is sound and complete with respect to the class of models
KPA. That is the notion of validity and deducibility coincide.

Theorem 2.1 (Soundness and completeness of KPA)

`KPA
ϕ iff |=∗KPA

ϕ

for every sentence ϕ ∈ LPA. The if above is called completeness, the only if is
called soundness. ¤
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Soundness is often easy to prove by induction on the length of the proof. Com-
pleteness is usually shown by contraposition and involves the construction of a
canonical model. The notion of completeness presented here is called weak com-
pleteness. For strong completeness, see chapter 3.

Epistemic logic is used for many notions involving information. The axioms
and rules of KPA, are minimal requirements these notions should meet. For many
epistemic notions there are more requirements that should be met. For example
in the case of knowledge, you want that if an agent knows something, then it is
true:

T ¤aϕ→ ϕ (factivity)

There are two systems that are especially relevant for epistemic logic, viz. KD45PA
and S5PA

1. The system KD45PA is usually considered to be the best system to
model belief, and S5PA is considered to be the best system to model knowledge.

D ¤aϕ→ ¤aϕ

4 ¤aϕ→ ¤a¤aϕ (positive introspection)

5 ¤aϕ→ ¤a ¤aϕ (negative introspection)

The system S5PA consists of all axioms and rules of KPA and the axioms T, 4,
and 5 for sentences of LPA. The system KD45PA consists of all axioms and rules
of KPA and the axioms D, 4, and 5 for sentences of LPA.

By a class of pointed models ∗SPA that is intended to be complete with respect
to a proof system S, the following is meant. Take the subclass of frames ∗SA such
that all the axioms and the rules of S are valid in those models. Then take the
class of pointed models ∗SPA associated with ∗SA

2. It turns out that the axioms
of KD45PA are valid on the class of serial, transitive, and euclidean frames. The
axioms of S5PA are valid on those frames where the accessibility relations are all
equivalence relations.

2.4 General and common knowledge

There are two more important concepts in epistemic logic: general knowledge and
common knowledge. If something is general knowledge, it means that everybody
knows it. Common knowledge is a typical concept for epistemic logic. It is con-
cerned with information about information. If something is common knowledge,
then it is general knowledge, but it is also general knowledge that it is general

1The systematic name of S5PA would be KT45PA, however this name is not commonly used.
Moreover there are more systems that would have the same set of valid sentences. For example
KT5PA or KDB5PA or KTB4PA. So I choose for S5PA.

2Sometimes completeness is proved with respect to a smaller class of models than those
where the axioms hold. For example the logic of linear time is valid on all linear frames, but
also on other frames.
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knowledge, and it is also general knowledge that it is general knowledge that it is
general knowledge, and so on ad infinitum. Common knowledge is a very useful
concept, especially in the context of games.

To incorporate these two notions in the formal language two modal operators
have to be added; EBϕ, which can be read as ‘every member of group B knows
that ϕ’ and CBϕ, which can be read as ‘it is common knowledge among members
of B that ϕ.’ Let L

EC
PA be the language extended with these two operators. The

models do not have to be changed or adapted to interpret sentences in which
these operators occur.

Definition 2.7 (Semantics for E and C)
Let a model (M,w) where M = (W,R, V ) be given. Let p ∈ P , ϕ ∈ L

EC
PA , and

B ⊆ A.

(M,w) |= EBϕ iff (M, v) |= ϕ for all v such that wR(B)v
(M,w) |= CBϕ iff (M, v) |= ϕ for all v such that wR(B)+v

where R(B) =
⋃

a∈B R(a), and R(B)
+ is the transitive closure of this relation.

In this definition the accessibility relation corresponding to the common knowl-
edge operator is interpreted as the transitive closure of the union of the acces-
sibility relations of the agents in the group. In other approaches it is taken to
be the reflexive transitive closure of this relation. However, this is not practical
when other epistemic notions such as belief are studied. Nevertheless, when we
are working within the class S5PA it is the reflexive transitive closure.

For the proof system, we need two additional axioms and an additional rule.

E EBϕ↔
∧

a∈B

¤aϕ

Mix CBϕ→ EB(ϕ ∧ CBϕ)

Ind
ϕ→ EB(ψ ∧ ϕ)

ϕ→ CBψ
(induction rule)

The system KEC
PA consist of all axioms and rules of KPA and the axioms E, Mix,

and rule Ind for sentences of L
EC
PA . And in the same fashion we get KD45ECPA

and S5ECPA. Again these systems are sound and complete with respect to ∗KPA,
∗KD45PA, and ∗S5PA.

2.5 Bisimulation

A useful notion that stems from modal logic is bisimulation.

Definition 2.8 (Bisimulation)
Let two models M = (W,R, V ) and M ′ = (W ′, R′, V ′) in the class KPA be given.
A relation R ⊆ W ×W ′ is a bisimulation iff for all w ∈ W and w′ ∈ W ′ with
wRw′:
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atoms w ∈ V (p) iff w′ ∈ V ′(p)) for all p ∈ P

forth for all a ∈ A and all v ∈ W , if wR(a)v, then there is a v ′ ∈ W ′ such that
w′R′(a)v′ and vRv′

back for all a ∈ A and all v′ ∈W ′, if w′R′(a)v′, then there is a v ∈ W such that
wR(a)v and vRv′

We write (M,w)↔(M ′, w′), iff there is a bisimulation between M and M ′ linking
w and w′. Then we call (M,w) and (M ′, w′) bisimilar. ¤

The main theorem about bisimulation is:

Theorem 2.2
Let two models (M,w) and (M ′, w′) in KPA be given. If (M,w)↔(M ′, w′), then
for every ϕ ∈ L

EC
PA it holds that (M,w) |= ϕ iff (M ′, w′) |= ϕ. ¤

It generally does not hold vice versa. There are a number of cases when it does
hold vice versa, for example if for every world the set of accessible worlds is finite.
A generalization of bisimulation will play an important role in section 6.5.





Chapter 3

Strong completeness and disharmony

3.1 Introduction

Dynamic logic is a modal logic that was developed to reason about computer
processes. The branch of logic was started by Pratt (1976). The propositional
part of his logic (PDL) became an object of study in itself. Segerberg (1977) gave
an axiomatization of it, that is mostly used today, but a completeness proof was
not easily obtained. It took some time before several proofs were produced. The
proof by Kozen and Parikh (1981) is considered to be one of the most elegant. The
problem is that the canonical model method for proving completeness cannot be
applied successfully. (A canonical model is a model such that every non-provable
formula has a counterexample in the model, see (Blackburn, de Rijke, and Venema
2001).) The axiomatization by Segerberg is only weakly complete, because PDL

is not compact (see below). The topic of this chapter is a strongly complete proof
system for propositional dynamic logic, for which the canonical model method
can be used to prove completeness.

Strong completeness (also called extended completeness) with respect to a
class of frames S is the following property of a modal logical system S:

Γ |=S ϕ implies Γ `S ϕ, for all formulas ϕ and all sets of formulas Γ.

This generalizes weak completeness, where Γ is empty. Observe that weak com-
pleteness implies strong completeness whenever the logic in question is seman-
tically compact, i.e. when Γ |=S ϕ implies that there is a finite Γ′ ⊆ Γ with
Γ′ |=S ϕ, hence |=S

∧

Γ′ → ϕ. This is, for example, the case in modal logics such
as K and S5.

Propositional dynamic logic is a well known example of a non-compact logic:
we have for the relevant class of frames S, that {[an]p | n ∈ N} |=S [a∗]p but there
is no natural number k with {[an]p | n ≤ k} |=S [a∗]p. As a consequence, we do
not have strong completeness for any finitary axiomatization, a fortiori not for its

11
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usual, weakly complete proof system (see definition 3.3). So strong completeness
requires an infinitary proof system.

The infinitary proof system presented in this paper is not the only strongly
complete proof system for propositional dynamic logic. A detailed comparison
to other work is provided in section 3.5. What is new about our system is that
it is relatively simple, which makes the proof relatively simple. It can easily be
extended to other modal logics. Moreover our study of the proof system has
revealed a very peculiar feature of the canonical model, which we have dubbed
program disharmony. In the standard completeness proof for modal logic, the
truth lemma states that the set of formulas that is true in a world of the canonical
mode is exactly the maximal consistent set of formulas, which is identified with
that world. This we call formula harmony and its analogue for programs we call
program harmony. The word harmony is used because when the model would
have both formula and program harmony the semantics and proof theoretical
aspects of the canonical model are in complete agreement. We show that the
canonical model lacks program harmony while at the same time it does have
formula harmony.

The rest of the chapter is structured as follows. Section 3.2 presents the
infinitary proof system PDLω, as well as proofs of some derived rules, which are
used in the central section 3.3 to prove that PDLω is strongly complete. Section 3.4
generalizes the method to prove strong completeness for enumerably axiomatized
modal logics, in particular epistemic logic with a common knowledge operator.
A comparison with related work is given in section 3.5. In section 3.6 it is shown
that the canonical model for PDLω does not satisfy program harmony. Finally
section 3.7 contains a conclusion and ideas for further research. This chapter is
the result of joint work with Gerard Renardel and Rineke Verbrugge (see Renardel
de Lavalette, Kooi, and Verbrugge (2002)).

3.2 The infinitary proof system PDLω

The infinitary proof system PDLω is an extension of the usual axiom system for
PDL, with respect to the same language and the same Kripke semantics. As a
reminder, we repeat the definitions of both language and semantics (for more
information on PDL, see Harel, Kozen, and Tiuryn (2000)).

Definition 3.1 (Language of PDL)
Let a countable set of propositional variables P and a countable set of atomic
programs Π be given. The language of PDL LPΠ consists of a set of formulas ϕ
and the set of programs α, given by the following rules in BNF:

ϕ ::= ⊥ | p | ¬ϕ | (ϕ1 ∧ ϕ2) | [α]ϕ
α ::= a | α1;α2 | α1 ∪ α2 | α

∗ | ?ϕ

where p ∈ P , and a ∈ Π. ¤
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Definition 3.2 (Propositional dynamic models)
A propositional dynamic model for LP,Π is a tuple M = (W,R, V ) such that:

• W , ∅: a set of states or possible worlds;

• R(a): a binary relation on W for each atomic program a;

• V : P → 2W ; assigns a set of states to each propositional variable.

If M = (W,R, V ) is a model, a pair (M,w), where w ∈ W is is called a pointed
model. A pair F = (W,R) is called a frame and a pair (F,w), where w ∈ W , is
called a pointed frame. A pair (F, V ) is also a model. ¤

The truth definition is as expected for normal modal logics. As a reminder, here
follows the modal clause:

(M,w) |= [α]ϕ iff (M, v) |= ϕ for all v with wR(α)v

where R is extended in the following way

• R(α; β) = R(α) ◦R(β);

• R(α ∪ β) = R(α) ∪R(β);

• R(α∗) = R(α)∗ = reflexive transitive closure of R(α);

• R(?ϕ) = {(w,w) | (M,w) |= ϕ}.

Let S be the class of propositional dynamic frames. We show that PDLω is
complete with respect to this class of frames S:

Γ |=S ϕ implies Γ `PDLω
ϕ, for all formulas ϕ and all sets of formulas Γ.

Below |=S and `PDLω
are abbreviated to |= and ` respectively. By Γ |= ϕ we

mean the local consequence relation, i.e. Γ |= ϕ iff for every model M such
that the corresponding frame is in S, (M,w) |= ψ for every ψ ∈ Γ implies that
(M,w) |= ϕ.

Definition 3.3 (Axioms for PDL)
Here follows the usual set of axioms for PDLwithout the induction axiom.

Taut all instantiations of propositional tautologies

Distr [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

?AX [?ϕ]ψ ↔ (ϕ→ ψ)

;AX [α; β]ϕ↔ [α][β]ϕ

∪AX [α ∪ β]ϕ↔ ([α]ϕ ∧ [β]ϕ)

∗AX [α∗]ϕ↔ (ϕ ∧ [α][α∗]ϕ)

where ϕ, α ∈ LPΠ. ¤
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In the following we extend the system PDL to an infinitary proof system PDLω by
inductively defining a derivation relation Γ ` ϕ (ϕ a formula, Γ a set of formulas).
Notice that in the following definition, the language remains finitary (all formulas
have finite length) and only the rule Inf ∗ is non-standard.

Besides the usual shorthand notation Γ, ϕ for Γ∪{ϕ}, Γ,∆ for Γ∪∆, ` ϕ for
∅ ` ϕ, and ϕ1, . . . , ϕn ` ψ for {ϕ1, . . . , ϕn} ` ψ, we shall also write:

Γ ` ∆ for Γ ` ϕ for all ϕ ∈ ∆
[α]Γ for {[α]ϕ | ϕ ∈ Γ}
ϕ→ Γ for {ϕ→ ψ | ψ ∈ Γ}

Definition 3.4 (Infinitary derivation relation for PDLω)
Γ ` ϕ is defined as the smallest relation closed under the following rules:

AX ` ϕ if ϕ is an axiom of PDL

MP ϕ, ϕ→ ψ ` ψ (modus ponens)

Inf∗ {[α; βn]ϕ | n ∈ N} ` [α; β∗]ϕ (infinitary ∗-introduction)

Nec if ` ϕ then ` [α]ϕ (necessitation)

W if Γ ` ϕ then Γ,∆ ` ϕ (weakening)

Cut if Γ ` ∆ and Γ,∆ ` ϕ then Γ ` ϕ

where ϕ, ψ, α, β ∈ LPΠ and Γ,∆ ⊆ LPΠ. ¤

The usual induction axiom for iteration (ϕ∧ [α∗](ϕ→ [α]ϕ)→ ϕ) is derivable in
this system.

It is not hard to verify that these rules are sound with respect to the semantics
of PDL (i.e. Γ ` ϕ implies that Γ |= ϕ). We shall show in section 3.3 that the
system PDLω is also strongly complete with respect to these semantics. For this,
we shall use some derived rules that we introduce now. The most important of
these are deduction (Ded) and strong necessitation (SNec), while the other rules
are only used to prove Ded and SNec. Ded will be used in the Lindenbaum
lemma and both Ded and SNec in the Truth lemma. We remark that the fact
that SNec holds while only Nec is part of the proof system, is essential in our
proof of strong completeness.

Lemma 3.1 (Derived rules of PDLω)
We can prove the following derived rules:

SCut if Γ ` ∆ and Γ′,∆ ` ϕ then Γ,Γ′ ` ϕ (strong cut)

Det if Γ ` ϕ→ ψ then Γ, ϕ ` ψ (detachment)

Cond if Γ ` ϕ then (ψ → Γ) ` ψ → ϕ (conditionalization)

Ded if Γ, ϕ ` ψ then Γ ` ϕ→ ψ (deduction)

SNec if Γ ` ϕ then [α]Γ ` [α]ϕ (strong necessitation)

where ϕ, ψ, α, β ∈ LPΠ and Γ,Γ′,∆ ⊆ LPΠ. ¤
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Proof Notice that the structure of the proof below is an infinitary induction over
derivations; this is not a problem because of the well-foundedness of derivations.

SCut is easy to prove using W and Cut. Det is also easy, with MP and
SCut.

Cond : Proof by induction over a derivation of Γ ` ϕ. The cases below are
named by the rule applied last:

AX In this case ϕ is an axiom, Γ = ∅, and ` ϕ; also ` ϕ → (ψ → ϕ) for
it is a tautology. By MP we have ϕ, ϕ → (ψ → ϕ) ` ψ → ϕ. Now
apply SCut twice to obtain ` ψ → ϕ.

MP Follows via tautologies and Det.

Inf∗ By ?AXand ;AX, we have ` (ψ → [α; βn]ϕ)→ [?ψ;α; βn]ϕ for all n,
and ` [?ψ;α; β∗]ϕ→ (ψ → [α; β∗]ϕ); now the result follows via SCut,
;AX, and Det.

Nec If ` ϕ, then by Nec ` [?ψ;α]ϕ, so with ?AX, ;AX and MP we get
` ψ → [α]ϕ.

W, Cut Easy application of the induction hypothesis.

Ded : if Γ, ϕ ` ψ, then (by Cond) (ϕ → Γ), (ϕ → ϕ) ` (ϕ → ψ). With SCut
we remove the tautology ϕ → ϕ and obtain (ϕ → Γ) ` ϕ → ψ. Now the
result follows via SCut from Γ ` (ϕ → Γ), i.e. Γ ` ϕ → χ for all χ ∈ Γ.
But this follows via W from χ ` ϕ → χ, which is a consequence of Taut
and Det.

SNec : induction over a derivation of Γ ` ϕ.

AX Easy, with Nec.

MP Take Distr and apply Det twice.

Inf∗ We have {[γ;α; βn]ϕ | n ∈ N} ` [γ;α; β∗]ϕ; via ;AX and SCut we
obtain

[γ]{[α; βn]ϕ | n ∈ N} ` [γ][α; β∗]ϕ

Nec Easy, with Nec.

W,Cut These cases follow directly by the induction hypothesis.

¤

An immediate consequence of Ded is that if Γ, ϕ is PDLω-inconsistent, then
Γ ` ¬ϕ.
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3.3 Strong completeness: the canonical model

for PDLω

In this section, we consider a fixed language LPΠ. We shall prove strong com-
pleteness of PDLω via the Henkin construction of a canonical model. There are
two steps: first we show that every PDLω-consistent set can be extended to a
maximal PDLω-consistent set, then we construct a Kripke model consisting of
maximal PDLω-consistent sets. In section 3.6 we show that this model does not
satisfy program harmony, by giving a countermodel.

We recall the obvious fact that a collection of formulas Γ is maximal PDLω-
consistent iff it is PDLω-consistent (i.e. Γ 6` ⊥) and Γ contains exactly one from
ϕ,¬ϕ for every formula ϕ in the language LP,Π. In the remainder of this section,
we will omit the prefix PDLω before “consistent”.

Lemma 3.2 (Lindenbaum lemma for PDLω)
Every consistent set can be extended to a maximal consistent set. ¤

Proof Let ∆ be a consistent set, i.e. ∆ 6` ⊥. Let {ϕn | n ∈ N} be an enumera-
tion of all formulas in LP,Π. We shall inductively define an increasing sequence
{Γn | n ∈ N} of formula sets extending ∆, and show that Γ =

⋃

{Γn | n ∈ N} is
maximal consistent.

Γ0 = ∆

Γn+1 =















































Γn ∪ {ϕn} if Γn ` ϕn
Γn ∪ {¬ϕn} if Γn 6` ϕn and ϕn is not

of the form [α; β∗]ψ
Γn ∪ {¬ϕn,¬[α; β

k]ψ} otherwise, where k is the
least natural number
such that Γn 6` [α; βk]ψ
(and ϕn is of the form
[α; β∗]ψ)

We observe that the k in the last case always exists: for if Γn ` [α; βk]ψ for all
k ∈ N, then (by Inf ∗ and Cut) Γn ` [α; β∗]ψ, contradicting Γn 6` ϕn. So the
definition of Γn is correct. ¤

Now we claim the following for all formulas ϕ, ψ; from these claims, especially
from (3) and (6), it follows immediately that Γ is maximal consistent:

1. every Γn is consistent;

2. ` ϕ⇒ ϕ ∈ Γ;

3. ϕ < Γ⇔ ¬ϕ ∈ Γ;
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4. (ϕ→ ψ) ∈ Γ⇔ (ϕ ∈ Γ⇒ ψ ∈ Γ);

5. Γ ` ϕ⇒ ϕ ∈ Γ;

6. Γ 6` ⊥.

The proofs of (2), (3), and (4) are as usual. We give the proofs in the three
unusual cases:

1. Induction over n. For n = 0, consistency of ∆ is given. Now assume that Γn
is consistent. If, in the definition of Γn+1, the first or second case applies,
it is clear that Γn+1 is consistent. If the last case applies and Γn+1 were
inconsistent, then Γn ` [α; β∗]ψ ∨ [α; βk]ψ via Ded, so, by using ∗AX k
times, Γn ` [α; βk]ψ, contradicting the definition of k.

5. We shall prove a more general statement with induction over a derivation of
Γ′ ` ϕ: if Γ′ ⊆ Γ and Γ′ ` ϕ, then ϕ ∈ Γ.

• ϕ is an axiom: by (2).

• MP: by (4).

• Inf∗: Let {[α; βn]ϕ | n ∈ N} ⊆ Γ. To show that [α; β∗]ϕ ∈ Γ, assume
using contraposition that this is not the case: then by (3), ¬[α; β∗]ϕ ∈
Γ. Let n be the index with ϕn = [α; β∗]ϕ, then Γn 6` ϕn (for otherwise,
by the first case in the definition of Γn+1, [α; β

∗]ϕ ∈ Γn+1 ⊆ Γ), so
¬[α; βk]ϕ ∈ Γn+1 ⊆ Γ for some k by the last case of the definition of
Γn+1. But also, by assumption, [α; βk]ϕ ∈ Γ, so {¬[α; βk]ϕ, [α; βk]ϕ} ∈
Γm for some m > n, contradicting the consistency of Γm (1).

• Nec: by (2).

• W: direct consequence of the induction hypothesis.

• Cut: so Γ′ ` Γ′′ and Γ′ ∪ Γ′′ ` ϕ for some Γ′′. By the induction
hypothesis, we get Γ′′ ⊆ Γ, so Γ′ ∪ Γ′′ ⊆ Γ; by applying the induction
hypothesis again we obtain ϕ ∈ Γ.

6. Suppose Γ ` ⊥, then ⊥ ∈ Γ (by 5), but then ⊥ ∈ Γn for some n, which
contradixts 1.

Now we can define the canonical model needed for strong completeness.

Definition 3.5 (Canonical model)
We define the canonical Kripke model
M = (W,R, V ) by

• W = {Γ | Γ maximal consistent}

• R(a) = {(Γ,∆) ∈W 2 | ϕ ∈ ∆ for all ϕ such that [a]ϕ ∈ Γ}
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• V (p) = {Γ ∈ W | p ∈ Γ} ¤

The Truth lemma shows that (M,Γ) |= p⇔ p ∈ Γ extends to all formulas of the
language:

Lemma 3.3 (Truth lemma)
For all Γ ∈ W and for all formulas ϕ ∈ LPΠ, we have (M,Γ) |= ϕ iff ϕ ∈ Γ. ¤

Proof Induction over ϕ. The atomic and propositional cases are standard. We
will prove the case ϕ = [α]ψ, by induction over α; the cases for complex programs
α of the forms ?χ, β; γ and β ∪ γ are easy (with the corresponding axioms), so
we only give the proofs of the remaining two unusual cases. Note that the proof
as a whole has the form of an induction over a well-ordering of formulas, where
[αn]ϕ is considered to be a subformula of [α∗]ϕ.

1. α = a, atomic. Using the definition of the truth relation and the induction
hypothesis (M,∆) |= ψ ⇔ ψ ∈ ∆ for all ∆ ∈ W , we see that (M,Γ) |= [a]ψ
is equivalent to

for all ∆ ∈W (for all χ([a]χ ∈ Γ⇒ χ ∈ ∆)⇒ ψ ∈ ∆) (A)

It is evident (A) follows from [a]ψ ∈ Γ. To see that (A) implies [a]ψ ∈ Γ
as well, we argue via contraposition. So assume [a]ψ < Γ, i.e. (by maximal
consistency) ¬[a]ψ ∈ Γ. We shall show that there is a maximal consistent
∆ with θ ∈ ∆ for all θ such that [a]θ ∈ Γ, and ¬ψ ∈ ∆. By the Lindenbaum
lemma, it suffices to show that {χ | [a]χ ∈ Γ}∪{¬ψ} is consistent. Assume
it is not, i.e. {χ | [a]χ ∈ Γ} ∪ {¬ψ} ` ⊥, then {χ | [a]χ ∈ Γ} ` ψ via Ded.
Thus, with SNec: {[a]χ | [a]χ ∈ Γ} ` [a]ψ. Hence a fortiori Γ ` [a]ψ and
[a]ψ ∈ Γ, contradicting the assumption [a]ψ < Γ. Therefore ∆ is consistent,
and for all χ([a]χ ∈ Γ⇒ χ ∈ ∆), however ψ < ∆. Therefore (A) is not the
case.

2. α = β∗: (M,Γ) |= [β∗]ψ ⇔ for all n ∈ N (M,Γ) |= [βn]ψ ⇔ ([βn]ψ ∈
Γ for all n ∈ N)⇔ [β∗]ψ ∈ Γ, using the induction hypothesis in the second
step, and ∗AX, Inf ∗ in the last step.

¤

Note that in the Truth lemma, we do not prove the dual property for programs,
namely, ΓR(α)∆ iff ϕ ∈ ∆ for all ϕ such that [α]ϕ ∈ Γ (it holds by definition for
atomic programs a). In section 3.6 we elaborate on this lack of “full harmony”
(definition 3.8). By full harmony we mean that the semantics of the canonical
model agree with its proof theoretical aspects.

Theorem 3.1 (Strong completeness of PDLω)
Let S be the class of all Kripke frames for the language LP,Π. Then for all
formulas ϕ and all sets of formulas Φ, Φ |=S ϕ implies Φ ` ϕ. ¤
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Proof By contraposition. Suppose Φ 6` ϕ, then Φ ∪ {¬ϕ} is consistent. By
lemma 3.2, Φ ∪ {¬ϕ} is extended to a maximal consistent set Γ with ¬ϕ ∈ Γ
and Φ ⊆ Γ. Now by lemma 3.3, we conclude that in the canonical Kripke model,
(M,Γ) 6|= ϕ and (M,Γ) |= Φ, as desired. ¤

Note that the completeness proof immediately gives a canonical standard model,
contrary to the early proofs of weak completeness for PDL as they appear in Kozen
and Parikh (1981, Harel, Kozen, and Tiuryn (2000), which use nonstandard mod-
els.

3.4 Generalization to other modal logics

The approach of sections 3.2 and 3.3 may be generalized to other denumerably
axiomatized modal logics. We briefly describe the general method. Take a denu-
merable modal language and define the derivability relation ` generated by Taut,
Distr, MP, Nec, W, Cut as well as the following denumerable set of rules:

Rules = {(Γi, ϕi) | i ∈ N}

Here we assume without loss of generality that Rules is closed under Cond and
SNec. For, one can close off a denumerable set of rules under Cond and SNec
in denumerably many steps, so that the resulting set of rules is still denumerable.
(This is similar to Segerberg (1994, Goldblatt (1993), even though we consider
the smallest set of rules closed under Cond and SNec and not just any).

Then one can prove a lemma about derived rules analogous to lemma 3.1. For
the analogue of the Lindenbaum lemma 3.2, the following adaptation is needed.

Lemma 3.4 (General Lindenbaum lemma)
Every consistent set can be extended to a maximal consistent set. ¤

Proof The idea of this proof is that, just as in the proof of lemma 3.2 we build a
maximal consistent set step by step. We want to ensure that the set is consistent
at the end of its construction. We do not want to accidentally add all the elements
of a Γi to the set without adding ϕi to it (if (Γi, ϕi) ∈ Rules). Therefore when
we add the negation of a formula that occurs as the conclusion of a rule, we also
add a witness to make sure that the rule cannot be applied. Since there can be
infinitely many rules which have the same formula as its conclusion we have to
take an enumeration of all formulas where every formula occurs infinitely often.
Every time we encounter a formula we deal with another rule.

Let ∆ be a consistent set, i.e. ∆ 6` ⊥. Let {ψn | n ∈ N} be an enumeration
of all formulas in the language, such that every formula appears infinitely many
times. This yields a set of numbers Jϕ = {n | ψn = ϕ} for every formula ϕ.
Moreover we have a set of numbers Iϕ = {i | (Γi, ϕ) ∈ Rules} for every formula
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ϕ. With these two sets we can define a function fϕ : Iϕ → Jϕ such that fϕ(ik) = jk
(the k-th number in Iϕ is mapped to the k-th number in Jϕ). We shall inductively
define an increasing sequence {∆n | n ∈ N} of formula sets extending ∆; then
Γ =

⋃

{∆n | n ∈ N} is maximal consistent.

∆0 = ∆

∆n+1 =































∆n ∪ {ψn} if ∆n ` ψn
∆n ∪ {¬ψn,¬γ} if ∆n 6` ψn and there is an i with fψn

(i) = n
(i.e. there exists a (Γi, ψn) ∈ Rules)
and γ is the smallest formula in Γi
such that ∆n ∪ {¬ψn,¬γ} is consistent.

∆n ∪ {¬ψn} otherwise

In the second case such a γ always exists. If there were no such γ then ∆n ∪
{¬ψn} ` Γi and therefore ∆n∪{¬ψn} ` ψn by SCut on all formulas in Γi, which
would mean that ∆n ` ψn contradicting the assumption that ∆n 6` ψn.

Now we can prove Γ is consistent analogously to the Lindenbaum lemma for
PDL. ¤

Then, to complete the completeness proof, we define a canonical model as
follows, analogously to definition 3.5:

Definition 3.6 (Canonical model)

We define the canonical Kripke model
M = (W, {R(α) : α is a modality in the language }, V ) by

• W = {Γ | Γ maximal consistent}

• R(α) = {(Γ,∆) ∈W 2 | ϕ ∈ ∆ for all ϕ such that [a]ϕ ∈ Γ}

• V (p) = {Γ ∈ W | p ∈ Γ} ¤

Proving the Truth lemma for this canonical model is straightforward, cf.
lemma 3.3. Now soundness and strong completeness of ` with respect to Rules-
models follows easily.

Note that the strong completeness result for PDLω does not follow straight-
forwardly from the above proof, and in that sense it is not a true generalization.
This is because PDL obeys a structure among its modalities, so that some more
work is required. The same is true for epistemic logic with common knowledge,
to which we will turn next.
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3.4.1 Epistemic logic

In this section, we extend the strong completeness result for PDLω to epistemic
logic with common knowledge. For the relevant definitions of the language and
semantics, see chapter 2. Here we limit general knowledge and common knowledge
operators to the whole group of agents A, and therefore we abbreviate EAϕ and
CAϕ as Eϕ and Cϕ respectively.

The similarity between PDL and epistemic logic with common knowledge has
long been noted. In fact, strong completeness of the latter immediately reduces
to the former by the following embedding ′. Suppose the set of agents A =
{a1, . . . , an}, and define:

(¤ai
ϕ)′ = [ai]ϕ

′

(Eϕ)′ = [a1 ∪ . . . ∪ an]ϕ
′

(Cϕ)′ = [(a1 ∪ . . . ∪ an)
∗]ϕ′

However, we can prove something stronger if we take a direct approach. It turns
out that the Henkin method can, in addition to K, also be used for systems like
T, S4 and S5 with common knowledge.

We extend all four axiom systems to infinitary proof systems KECPAω, TECPAω,
S4ECPAω, and S5ECPAω by retaining all the axioms and adding a fixed set of
derivation rules. We first introduce some notation in order to describe the infini-
tary introduction rule for C. We want this rule to contain all instances of the
form

{ϕ1 → ¤a(ϕ2 → ¤b(. . .→ Enψ)) | n ∈ N, n ≥ 1} `
ϕ1 → ¤a(ϕ2 → ¤b(. . .→ Cψ)),

where Enψ is the obvious abbreviation defined inductively by E0ψ = ψ and
En+1ψ = EEnψ. The neat way to formulate the infinitary rule is to introduce
finite sequences π = (π1, . . . , πn) where the πi are either formulas or modalities
¤a for a ∈ A, with

()ϕ = ϕ
(ψ;π)ϕ = ψ → (π)ϕ
(¤a;π)ϕ = ¤a((π)ϕ)

The infinitary rule may then be formulated as {(π)Enϕ | n ∈ N, n ≥ 1} `
(π)Cϕ. This formulation is needed for obtaining strong necessitation and strong
conditionalization. We give the derivation rules for the infinitary systems.

Definition 3.7 (Infinitary derivation relations)

Let S be any of KECPAω, TECPAω, S4ECPAω, and S5ECPAω. Γ `S ϕ is defined as
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the smallest relation closed under the following rules:

AX `S ϕ if ϕ is an axiom of S

MP ϕ, ϕ→ ψ `S ψ (modus ponens)

InfC {(π)Enϕ | n ∈ N, n ≥ 1} `S (π)Cϕ (infinitary C-introduction)

Nec if `S ϕ then `S ¤aϕ (necessitation)

W if Γ `S ϕ then Γ,∆ `S ϕ (weakening)

Cut if Γ `S ∆ and Γ,∆ `S ϕ then Γ `S ϕ

where ϕ, ψ ∈ LPA and Γ,∆ ⊆ LPA and π is a sequence of formulas or modalities.
¤

The usual rule for common knowledge Ind (see page 2.4) is derivable in this
system.

Now the reader may check that for these systems, the derived rules SCut,
Det, Cond, and Ded of lemma 3.1 can be proved, as well as the following
analogue of strong necessitation SNec:

SNecK if Γ `S ϕ then ¤aΓ `S ¤aϕ (strong necessitation for knowledge)

It is immediate that all four systems are sound with respect to the appropriate
semantics: KECPAω for all Kripke frames, TECPAω for reflexive ones, S4ECPAω
for reflexive transitive ones, and S5ECPAω for equivalence relations.

Theorem 3.2
Let S be any of the systems KECPAω, TECPAω, S4ECPAω, and S5ECPAω. Then S

is strongly complete with respect to the appropriate set of frames. ¤

Proof sketch By a Henkin construction of a canonical model, analogously as
in section 3.3. The presence of the appropriate axioms from T, 4, and 5 in the
maximal consistent sets induces the appropriate properties of the accessibility
relations in the canonical model. In the analogue of the Lindenbaum lemma, the
last clause for Γn+1 should be “Γn+1 = Γn ∪ {¬ϕn,¬(π)E

kψ} otherwise, where k
is the least natural number ≥ 1 such that Γn 6` (π)Ekψ (and ϕn is of the form
(π)Cψ)”. The definition of the canonical model is as usual for epistemic logics.
The main difference from the proof of the Truth lemma 3.3 is the induction step
for operator C, which works very smoothly: (M,Γ) |= Cψ ⇔ for all n ∈ N, n ≥
1 (M,Γ) |= Enψ ⇔ (Enψ ∈ Γ for all n ∈ N, n ≥ 1) ⇔ Cψ ∈ Γ, using the
induction hypothesis in the second step, and Mix (see section 2.4), InfC in the
last step.

It is clear from the proof sketch that all four epistemic logics with common
knowledge are canonical: on their canonical frames, all their axioms are valid, see
Blackburn, de Rijke, and Venema (2001).
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3.5 Comparison to other work

As was noted in the introduction, the main class of logics for which strong
completeness is hard to obtain is the class of non-compact logics. When non-
compactness is caused by a modality that is interpreted as a (reflexive) transitive
closure of another modality it seems rather natural to consider infinitary proof
systems due to the infinitary character of these modal operators. The proof sys-
tem presented in this chapter is by no means the first attempt to devise a proof
system that is strongly complete for such a non-compact logic. In this section we
provide a historic overview of the results that were established in the past.

Sundholm (1977) proves strong completeness for Von Wright’s temporal logic.
This is a logic with two modalities, the next-time (or tomorrow) operator, and
the always operator, where the latter is the reflexive transitive closure of the
former. The intended model for this logic consists of the natural numbers as the
set of possible worlds with the relations ’successor’ and ‘less than or equal’ for
the two modalities. Sundholm proved this theorem when Segerberg was studying
Von Wright’s tense logic and he found that the Lindenbaum Lemma could not be
applied successfully, because of the infinitary rules. Von Wright’s logic is a logic
of linear time, and consequently the next time operator is deterministic, which
makes some things easier compared to PDL.

A strongly complete infinitary proof system for Propositional Algorithmic
Logic (PAL) is presented in Mirkowska (1981). PAL is very similar to PDL,
the construction of formulas is identical, but different program constructions are
used. Apart from atomic programs, sequential composition and non-deterministic
choice, there are “if . . . then . . . else . . . ” statements and “while . . . do . . . ” loops.
The infinitary character of iteration is mimicked by the while loops. Note that
PAL does not contain tests. The semantics of PAL are based on Kripke models.
Although in the general setting there are no constraints on the semantics, strong
completeness is only proved in the case where atomic programs are deterministic
or when the indeterminism is bounded (in the sense that for every atomic pro-
gram there is a bound on the number of different executions). This restriction
is made because otherwise the infinitary proof rule is not sound. Therefore the
results are not directly applicable to PDL.

Goldblatt (1982) proves strong completeness for a (nameless) logic that is
also very similar to PDL, but there are important differences. The language is
different from PDL in two ways. There is a distinction made between expres-
sions, commands, and formulas. The commands and formulas are just like the
programs and formulas of PDL. The commands differ from programs of PDL in
program constructions: commands are atomic programs, sequential composition,
“if . . . then . . . else” statements, or “while . . . do . . . ” loops. Note that there
are no nondeterministic choices, or tests. The expressions form a distinct set of
formulas. The main feature of these is that the interpretation can be undefined,
where undefinedness is inherited by sequentially evaluating an expression from
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left to right. So if the truth value of ϕ is undefined and the truth value of ψ is 0,
then the truth value of ϕ∧ψ is undefined, but the truth value of ψ∧ϕ is 0. There
are separate axioms and proof rules for these expressions. The general outline of
the completeness proof for this logic is similar to the proof given in this chapter.
The different features make the proof rather cumbersome. An extension of this
logic with nondeterministic choice is also considered.

In Knijnenburg (1988), Knijnenburg gives an infinitary axiomatization of
PDLİt contains the ∞-rule from {ψ → [αi]ϕ | i < ω} infer ψ → [α∗]ϕ. Weak
completeness for this axiomatization is claimed, but we suspect that the proof
is incorrect. In Knijnenburg and van Leeuwen (1991), another proof of strong
completeness is presented with respect to a specific model. Although we think
that the result holds, we have trouble with some of the details of the paper. For
example in the proof of theorem 5.10 of Knijnenburg and van Leeuwen (1991)
in order to extend a set of formulas to a maximally consistent one, a reference
is made to Lindenbaum’s theorem. It seems to us that this technique cannot be
applied directly in the case of infinitary proof systems. This is the same difficulty
that prompted Sundholm to start his investigations.

In Goldblatt (1992), Goldblatt introduces the Omega-Iteration proof rule from
{ϕ→ [β;αn]ψ | n ∈ ω} deduce ϕ→ [β;α∗]ψ in the context of first-order dynamic
logic, and proves weak completeness. In Goldblatt (1993, chapter 9) a general
approach for infinitary proof systems for normal modal logics containing modali-
ties with arbitrary arity is given. Goldblatt shows that the addition of rules that
satisfy certain properties to a basic proof system, yields a proof system that is
strongly complete with respect to the appropriate class of models. In that frame-
work it is not hard to make a strongly complete proof system for PDL, although
Goldblatt does not discuss any applications. Goldblatt starts out by taking a
fairly strong basic proof system. Strong necessitation (SNec), and the deduction
theorem (Ded) are rules in his basic system. This makes his completeness proof
more difficult than the one presented in this chapter.

Segerberg (1994) proves strong completeness for a whole class of modal logics
that are not compact. This includes logics with (reflexive) transitive closure
modalities such as Von Wright’s temporal logic (see above), Goldblatt’s ancestral
logic (a logic with two modalities ¤ and ¤∗, where the latter is the reflexive
transitive closure of the former), PDL without tests, and epistemic logic with
common knowledge. Interestingly it also includes logics that are not compact
due to other reasons. Segerberg discusses logics that satisfy the bounded chain
condition, which states that any path in the model has a length bounded by some
natural number n, in other words there are no paths with a length longer than
n. Consequently the logic for the class of all frames that satisfy a bounded chain
condition is not compact. The set of formulas { ¤

n
> | n ∈ N} is not satisfiable,

however every finite subset is. These logics are axiomatized by adding infinitary
rules to a finitary proof system for modal logic. He considers a very general case,
where the only requirement is that the set of all instances of the infinitary rules
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are countable, and all the examples mentioned above fall into this category. The
role played by maximal consistent sets in many completeness proofs, is played by
saturated sets in his approach. The key feature is that a saturated set contains
a witness formula for every infinitary rule of which the conclusion is not in the
set. These sets form the possible worlds in the canonical models. In many cases
it turns out that maximal consistency and saturation coincide.

In Tanaka (2001) Segerberg’s results are extended to first-order modal logic.
This is done by algebraic methods where representation theorems for modal al-
gebras correspond to completeness for modal logics.

Our contribution to this ongoing research is that the base system of axioms
and rules is quite simple. The strong versions of the rules are derived rules in
our system, whereas they are part of the system in the systems discussed in this
section. This makes some proofs easier. Another contribution is that we show a
counterexample to program harmony, to which we turn now.

3.6 Program (dis)harmony

In this section we take a closer look at the canonical model defined in section 3.3.
The construction of a canonical model is one of the most used techniques in com-
pleteness proofs for modal logics. Maximal consistent sets provide the bridge
between syntax and semantics that facilitates the completeness theorem. There-
fore one would expect the following property for the canonical model.

Definition 3.8 (Full harmony)
A canonical modelM is fully harmonious iff for all maximal consistent sets Γ and
∆, and for all ϕ and all α:

formula harmony: (M,Γ) |= ϕ iff ϕ ∈ Γ and
program harmony: ΓR(α)∆ iff {ϕ | [α]ϕ ∈ Γ} ⊆ ∆

Formula harmony generalizes a property of atomic formulas that holds in the
canonical model by definition. Program harmony generalizes a property of atomic
programs that holds in the canonical model by definition. We proved that the
canonical model has formula harmony in the Truth Lemma, which is used in the
Completeness Theorem. We only needed program harmony for atomic programs:
the semantic properties of the accessibility relations for more complex programs
are sufficient to prove the Truth Lemma.

Only when one focuses on program harmony as an interesting property in
itself does one notice that it does not hold for the canonical model. In Kozen and
Parikh (1981) program disharmony (i.e. failure of program harmony) was claimed
without proof for finite canonical models of PDL. We found it quite surprising
that the infinite canonical model for PDLω also lacks program harmony. It does
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Figure 3.1: the countermodel M .

hold from left to right however. For this there is an easy proof that uses the
Truth Lemma. Although it is preserved from right to left under tests, sequential
composition and non-deterministic choice, it is not preserved under iteration. The
remainder of this section is devoted to showing this.

We show that the canonical model is disharmonious by giving a countermodel.
In principle any model which has no distinct bisimilar worlds can be seen as a part
of the canonical model by taking the maximal consistent sets that are associated
with the worlds in the model. Showing that program harmony fails for any two
of those sets, implies that the whole canonical model is disharmonious.

The rest of this section is organised as follows. In order to prove the theorem
that the canonical model is disharmonious we provide a countermodel to program
harmony in definition 3.9. The proof of the theorem depends on two lemmas. The
first lemma (Lemma 3.5) shows that in the countermodel there is a world, ω, which
cannot be reached by the reflexive transitive closure of R(a) from another world,
η. The second lemma (Lemma 3.8) shows among other things that a formula is
true in ω iff its extension is cofinite. This can be used to show that η |= [α∗]ϕ
implies that ω |= ϕ, because if η |= [α∗]ϕ, then the extension of ϕ is cofinite. In
order to prove Lemma 3.8 we need to study the structure of the countermodel
in great detail. The relevant properties of the countermodel are summed up in
Lemma 3.7. This is a rather involved technical Lemma which can be skipped by
those readers who are not interested in the details of the proof.

Definition 3.9 (Countermodel)
Let M = 〈Z ∪ {ω, η}, R(a), V 〉 be a model for language L∅,a, where

R(a) = {(x, y) ∈ N2 | x > y} ∪
{(−x, x), (−x,−x− 1) | x ∈ [1, ω)} ∪
{(ω, x) | x ∈ N} ∪ {(η,−1)}

and V = ∅. ¤

See Figure 3.1 for a picture of this model. The idea is that program harmony
fails at the worlds η and ω for the program a∗.

From the picture of the model it is quite clear that ω is not reachable from η in
a finite number of steps. But we have to prove it for the maximal consistent sets
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associated with these worlds. Let Γ = {ϕ | (M, η) |= ϕ} and ∆ = {ϕ | (M,ω) |=
ϕ}.

Lemma 3.5 (Unreachability of ω)
It is not the case that ΓR(a∗)∆. ¤

Proof If it would be the case that ΓR(a∗)∆, then there would be an n such that
ΓR(an)∆. As was noted above program harmony does hold from left to right, so
that would imply that {ϕ | (M, η) |= [an]ϕ} ⊆ ∆. We prove that this is not the
case by showing that for any n there is a ϕn such that

(η |= [an]ϕn and ω |= ¬ϕn)

To establish the statement take ϕn = (〈a〉[a]⊥ → [an]⊥), i.e. we have, for all n

η |= [an](〈a〉[a]⊥ → [an]⊥)
ω |= ¬(〈a〉[a]⊥ → [an]⊥)

to see this, use x |= 〈a〉[a]⊥ ⇔ x ∈ N ∪ {ω} and ∀x ∈ N(x |= [an]⊥ ⇔ x < n).
Furthermore none of the negative integers satisfy 〈a〉[a]⊥. ¤

Now we move to the other part of showing that the model is disharmonious.
We have to show that if a formula of the form [a∗]ϕ holds in η then ϕ holds in
ω. It is rather difficult to show this in a direct way. Instead we characterize the
set of all formulas that hold in ω. The idea of ω being the limit of the natural
numbers gives the impression that if a formula holds from a natural number up,
then it holds in ω, and vice versa. But why would the set of formulas that hold
from a natural number up be a maximal consistent set? This is because any
formula either holds from a certain natural number up or it does not hold from
a certain natural number up, i.e. the interpretation of any formula is either finite
or cofinite (a set is cofinite if its complement is finite.) In order to show this for
formulas we need a similar property for programs.

Definition 3.10 (ADMS and ADMR)
The admissible sets ADMS ⊆ 2N are defined as follows.

ADMS =
⋃

{ADMS(n) | n ∈ N}

where

ADMS(n) = {X ∪ Y | X ⊆ [0, n), Y ∈ {∅, [n, ω)}}

The admissible relations ADMR ⊆ 2N×N are defined as follows.

ADMR =
⋃

{ADMR(n, k, p) | n ∈ N, k ∈ [1, ω], p ∈ [n, ω)}
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Figure 3.2: A typical element of ADMR

where ADMR(n, k, p) is the collection

{T ∪D ∪ I(k, n) ∪ L(n, p, f) |
T ⊆ T (n),
D ∈ {∅, D(n)},
f : [0, n)→ ([n, p] ∪ {ω})}

and
T (n) = {(x, y) | n > x ≥ y}
D(n) = {(x, x) | x ≥ n}
I(k, n) = {(x, y) | x ≥ y + k, y ≥ n}
L(n, p, f) = {(x, y) | x ≥ f(y), n > y}

where x+ ω = ω. ¤

The admissible sets ADMS are simply the finite and cofinite subsets of the natural
numbers. The formulation given in the definition was chosen because it suits our
purposes better. See Figure 3.2 for a picture of a typical ADMR(n, k, p). We
will show that every formula and every program is admissable. But to increase
readibility we now prove the following auxiliary lemma concerning ADMR.

Lemma 3.6
ADMR is closed under composition, union, and reflexive transitive closure. ¤

Proof



3.6. Program (dis)harmony 29

composition To show that R ◦R′ ∈ ADMR given that R,R′ ∈ ADMR, we argue
as follows. First note that

ADMR(n, k, p) ⊆ ADMR(n+ 1, k,max(p, n+ k))
ADMR(n, k, p) ⊆ ADMR(n, k, p+ 1)

So given that R,R′ ∈ ADMR, we may assume that there are n, p and k, k′

such that R = T ∪ D ∪ I(k, n) ∪ L(n, p, f) ∈ ADMR(n, k, p) and R′ =
T ′ ∪ D′ ∪ I(k′, n) ∪ L(n, p, f ′) ∈ ADMR(n, k′, p) with T, T ′ ⊆ T (n) and
D,D′ ∈ {∅, D(n)}. The results of the composition of the components of
these R and R′ are given in the following table (where f ′k = λy.f ′(y) + k ,
and fT ′ = λy.min{f(z) | zT ′y} and min(∅) = ω):

◦ T ′ D(n) I(k′, n) L(n, p, f ′)

T T ◦ T ′ ⊆ T (n) ∅ ∅ ∅
D(n) ∅ D(n) I(k′, n) L(n, p, f ′)
I(k, n) ∅ I(k, n) I(k + k′, n) L(n, p+ k, f ′k)
L(n, p, f) L(n, p, fT ′) ∅ ∅ ∅

So we have

R ◦R′ ∈ ADMR(n, k′′, p+ k) for some k′′ ∈ {k, k′, k + k′}

and we conclude that R ◦R′ ∈ ADMR.

union To see that that R ∪ R′ ∈ ADMR we can again assume that there are
n, p and k, k′ such that R ∈ ADMR(n, k, p) and R′ ∈ ADMR(n, k′, p). So
R = T ∪ D ∪ I(k, n) ∪ L(n, p, f), R′ = T ′ ∪ D′ ∪ I(k′, n) ∪ L(n, p, f ′) for
certain T, T ′ ⊂ T (n), D,D′ ∈ {∅, D(n)}, f, f ′ : [0, n) → ([n, p] ∪ {ω}) Now,
since

I(k, n) ∪ I(k′, n) = I(min(k, k′), n)
L(n, p, f) ∪ L(n, p, f ′) = L(n, p, λy.min(f(y), f ′(y)))

we see that R ∪ R′ ∈ ADMR(n,min(k, k′), p) ⊆ ADMR, and we conclude
that ADMR is closed under union.

reflexive transitive closure To see that R∗ ∈ ADMR given that there are
n, k, p such that R ∈ ADMR(n, k, p), we observe that R∗ = (R ∪ D(n))∗,
because of reflexivity. So we may assume that D = D(n). Because of the
properties of composition given in the table above we have that I(k, n) ⊆
R ◦ R. Observe that I(2k, n) ⊆ I(k, n). Because L(n, p, f ′) ∪ L(n, p +
k, f ′k) = L(n, p, f ′k) we have R ∪ (R ◦ R) ∈ ADMR(n, k, p). We now see
that Rm ∈ ADMR(n, k, p) for all m. Since ADMR(n, k, p) is finite and
closed under finite unions, it is closed under arbitrary unions and we have
R∗ =

⋃

{Rm | m ∈ N} ∈ ADMR(n, k, p) ⊆ ADMR.
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¤

Now we prove the following.

Lemma 3.7
For every formula ϕ ∈ L∅,a and every program α ∈ L∅,a

[[ϕ]] ∈ ADMS

[[α]] ∈ ADMR

where [[ϕ]] = {x ∈ N | x |= ϕ} and [[α]] = R(α) ∩ N× N. ¤

Proof We prove this by simultaneous induction on the structure of ϕ and α.

programs For the base case, the program a, observe that [[a]] = I(1, 0). Moreover
T (0) = ∅, therefore, we can take D = ∅, and L(0, p, f) = ∅ for every p and
f . Therefore [[a]] ∈ ADMR(0, 1, 2).

For programs the case for tests ?ϕ is also simple. The induction hy-
pothesis implies that [[ϕ]] ∈ ADMS, therefore there is some n such that
[[ϕ]] ∈ ADMS(n). Note that [[?ϕ]] = {(x, x) | x ∈ [[ϕ]]}. Now we show that
[[?ϕ]] ∈ ADMR(n, ω, n). For D we take {(x, x) | n ≤ x and x ∈ [[ϕ]]}, and
for T we take {(x, x) | n > x and x ∈ [[ϕ]]}. The set I(ω, n) is empty and
we can take L(n, p, f) to be empty by letting f(x) be ω for all x ∈ [0, n).
Therefore [[?ϕ]] ∈ ADMR.

The cases for sequential composition, nondeterministic choice and iteration
follow from the fact that ADMR is closed under composition, union, and
reflexive transitive closure. See lemma 3.6.

formulas For the base case we only have to consider the formula ⊥ and the
program a. Now [[⊥]] = ∅ and ∅ ∈ ADMS(0).

The induction step for formulas is easy for negations and conjunctions. It
is obvious that each ADMS(n) is closed under complementation and inter-
section. Consequently the whole set ADMS is (so it is also closed under
union).

In order to finish the proof of Lemma 3.7 we have to show that [[〈α〉ϕ]] ∈
ADMS given that [[α]] ∈ ADMR and [[ϕ]] ∈ ADMS. So we may assume
by the induction hypothesis that for some n, k, p, [[ϕ]] ∈ ADMS(n) and
[[α]] ∈ ADMR(n, k, p), so [[α]] = T ∪D ∪ I(k, n) ∪ L(n, p, f) with T ⊆ T (n)
and D ∈ {∅, D(n)}. Now [[〈α〉ϕ]] is a subset of the domain of [[α]]. In
fact [[〈α〉ϕ]] = (dom(T )∩ [[〈α〉ϕ]])∪ (dom(D(n))∩ [[〈α〉ϕ]])∪ (dom(I(k, n))∩
[[〈α〉ϕ]]) ∪ (dom(L(n, p, f)) ∩ [[〈α〉ϕ]]). We have

dom(T ) ∩ [[〈α〉ϕ]] ⊆ [0, n)
dom(D(n)) ∩ [[〈α〉ϕ]] = [[ϕ]] ∩ [n, ω)
dom(I(k, n)) ∩ [[〈α〉ϕ]] = {x | x ≥ min([[ϕ]] ∩ [n, ω)) + k}
dom(L(n, p, f)) ∩ [[〈α〉ϕ]] = {x | x ≥ min{f(y) | y ∈ [[ϕ]] ∩ [0, n)}}
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As a consequence, [[〈α〉ϕ]] ∈ ADMS(max(n+ k, p)) ⊆ ADMS.

This concludes the proof of Lemma 3.7. ¤

Now we are ready to show that as far as formulas are concerned, ω is the limit of
the natural numbers.

Lemma 3.8
For every ϕ ∈ L∅,a and for all programs α ∈ L∅,a:

ω |= ϕ iff [[ϕ]] is cofinite (1)

ωR(α)y iff {x | (x, y) ∈ [[α]]} is cofinite (2)

ωR(α)ω iff {x | (x, x) ∈ [[α]]} is cofinite (3)

Proof The proof is by induction on the structure of ϕ and α simultaneously.
For formulas the atomic case and the cases for negation and conjunction follow
directly from Lemma 3.7. In the case for modal formulas [α]ϕ we take the dual
formula 〈α〉ϕ. For the induction hypothesis, suppose that (1),(2), and (3) hold
for ϕ and α. It follows from the semantics that ω |= 〈α〉ϕ is equivalent with

there is a y ∈ N such that ωR(α)y and y |= ϕ or ωR(α)ω and ω |= ϕ

By the induction hypotheses this is equivalent with

∃y ∈ N({x | (x, y) ∈ [[α]]} is cofinite and y |= ϕ, or
{x | (x, x) ∈ [[α]]} is cofinite and [[ϕ]] is cofinite

It is clear that this implies that [[〈α〉ϕ]] is cofinite. In the first case the set of
worlds that can reach y is cofinite. In the second case the set of worlds where ϕ
holds that can reach themselves is cofinite.

To see this the other way around follows from properties of ADMR. One
mainly needs the property that if the domain of α is cofinite, then its intersection
with D(0) is cofinite (i.e. {x | (x, x) ∈ [[α]]} is cofinite, or there is a world y such
that {x | (x, y) ∈ betekenisα} is cofinite.

For (2) the case from right to left with α = β; γ is the most complicated.
Assume {x | (x, y) ∈ [[β; γ]]} is cofinite, therefore the domain of [[β]] is cofinite. If
{x | (x, y) ∈ [[γ]]} finite, then there must be a z ∈ N such that {x | (x, z) ∈ [[β]]}
and zR(γ)y, therefore we can conclude ωR(β; γ)y using the induction hypothesis
(2) for β. On the other hand if {x | (x, y) ∈ [[γ]]} is cofinite, then it follows from
the induction hypothesis (2) for γ that ωR(γ)y. If {x | (x, x) ∈ [[β]]} is cofinite,
then from the induction hypothesis (3) for β it follows that ωR(β; γ)y. Otherwise
there is a z ∈ N such that {x | (x, z) ∈ [[β]]} is cofinite and we can find one such
that zR(γ)y. Therefore also in this case ωR(β; γ)y using the induction hypothesis
for β.

The proof of (3) is not too difficult and we do not provide details here. ¤
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Theorem 3.3
The canonical model for PDLω does not have program harmony ¤

Proof This follows directly from Lemma 3.5 and Lemma 3.8 together with the
observation that if η |= [a∗]ϕ, then [[ϕ]] = N and therefore cofinite. ¤

3.7 Conclusion

In this chapter we have presented a proof system for propositional dynamic logic
which is strongly complete. The method can be generalized and applied to other
denumerably axiomatized modal logics as well as epistemic logic with common
knowledge.

We suspect that the reason that the canonical model method works for this
axiomatization, is that the infinitary ∗-introduction rule is much closer to the
semantics than the usual induction axiom or rule. The latter links up with the
idea of the Kleene star as a fixed point, whereas our rule links up with the
idea that it is an infinitary conjunction. However, as we showed in section 3.6,
there is no complete harmony between the proof system and the semantics. The
countermodel used in the completeness proof has formula harmony. This is shown
in the truth lemma. Program harmony is unattainable. To our surprise it was
not needed for the completeness proof. To our astonishment it was not even
true. Although we came up with a countermodel rather quickly, the subtlety of
the arguments involved, was also unexpected. It would be interesting to try to
construct a fully harmonious canonical model for PDLω. As of yet we did not find
one in the literature.

There still remain some issues that need to be investigated further. Proposi-
tional dynamic logic and epistemic logic with common knowledge are examples
where the introduction of an infinitary rule can be used to attain strong complete-
ness, although the logics are not semantically compact. It should be investigated
how to characterize the class of non-compact logics where the introduction of
such an infinitary rule can also lead to a strong completeness result. The general
approach of Goldblatt (1993) seems to be a good starting point.

Another interesting issue is whether the relation Γ ` ϕ between recursively
enumerable sets of formulas Γ and formulas ϕ is decidable.



Chapter 4

Information change

4.1 Introduction

Information pervades so many aspects of our daily lives that the present age has
been dubbed ‘the information age’. During the first Gulf War in 1991, operation
Desert Storm started with Apache helicopters destroying radar defense systems.
China has recently denied its citizens access to the Internet search engine Google.
The international forum on urban poverty has put information and communica-
tion technologies on the agenda of fighting poverty. The ability of human beings
to use information and to communicate is one of the most empowering abilities
that exist. Information and power are strictly related in the information age.

Just like many other aspects of our daily lives information enjoys the interest
of scientists. There are many scientific theories about information: information
theory, situation theory, probability theory, statistics, computer science, game
theory, philosophy of science, logic. All seem to focus on a different aspect of
information. It is debatable whether a unified theory of information can ever
be attained or whether it would even be worthwhile. The focus on higher-order
information is distinctive for (dynamic) epistemic logic. Let us take a brief look
at some of the theories about information to see what the merits of each of these
theories are.

The oldest scientific theory that explicitly mentions information is information
theory. Originally developed by Shannon (1948), it deals with quantitative
questions about information. How much information does a message contain?
How much information can be communicated? How can information be sent
efficiently? Information theory was generalized by Kolmogorov (1956). This
area is now known as Kolmogorov Complexity. For a modern introduction to
information theory or Kolmogorov complexity see Cover and Thomas (1991) and
Li and Vitányi (1993) respectively.

Situation theory deals with fundamental issues of information and information
flow. This research program, initiated by Barwise and Perry (1983), was inspired
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by problems in the semantics of natural language. Situation theory deals with
the question what information actually is and how it is possible that information
is passed at all. How can it be that one thing carries information about another
thing?

A discipline that looks at information change from a somewhat higher view-
point is philosophy of science. Science is by no means static; scientific theories
often change. Theories can even be replaced entirely. Philosophy of science tries
to answer the question how such changes occur and whether such changes are for
the best.

Probability theory and Statistics also deal with information change. A series
of observations tells you something about the world. And although you have only
made a limited number of observations, there are still general statements that
are justified by these observations. The question is how certain you are about
these general statements. I will come back to probability theory and statistics in
chapter 5 and 6.

Computer science deals with information change because computers commu-
nicate with each other. In that case information is communicated. Many of
the communication protocols used on the Internet were developed by computer
scientists to ensure ‘good’ communication.

In games information change also occurs. Moves in a game can change physical
reality or they can change the information the players have. In game theory a
distinction is made between games of perfect information (such as chess) and
games of imperfect information (such as poker). When a game of imperfect
information is represented by a tree, players are uncertain about which node of
the tree they are in. In games of perfect information they know exactly where they
are. The set of nodes a player cannot distinguish thus represents the uncertainty
of a player, which can be seen as representing the (lack of) information a player
has.

From a meta-perspective logic can also be seen as a study of information.
Logic focuses on inferences and their validity. The premises represent some of
the information of the person performing the inference. And the inference shows
that the conclusion follows from these and that in a sense the conclusion also
represents some of the information of that person.

Within logic there are fields that deal with information explicitly. Especially
belief revision and epistemic logic deal with information. As a discipline of logic
belief revision began with the famous paper by Alchourrón, Gärdenfors, and
Makinson (1985), which was followed by many papers that tried to refine it and
expand on it. Belief revision tries to model how new information is processed. It
focuses especially on non-monotonic reasoning and processing information that
is inconsistent with the information a system already had. See Gärdenfors and
Rott (1995) for a general introduction. Epistemic logic is a modal logic, initially
developed by Hintikka (1962). His main goal was a conceptual analysis of knowl-
edge and belief. Epistemic logic typically deals with what an agent considers to
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be possible given his current information. This information also contains infor-
mation about information other agents have, because epistemic logic is suited to
deal with situations involving more than one agent. In this way epistemic logic
also deals with higher-order information, i.e. information about information. The
ability to deal with higher-order information is what distinguishes epistemic logic
from most other approaches to information. Let us look at a number of problems
that are often used as examples that help to explain the notion of higher-order
information. These examples also show that it is sometimes necessary to take
higher-order information into account in order to give a satisfactory analysis of a
situation or a problem.

4.1.1 Muddy children

The muddy children puzzle is one of the best known puzzles having to do with
higher-order information. It is known that versions of this puzzle were circulating
in the fifties. The earliest source of the puzzle I could find is a puzzle book by
Gamow and Stern (1958). They present the ‘cheating wives’ version.

The great Sultan Ibn-al-Kuz was very much worried about the large
number of unfaithful wives among the population of his capital city.
There were forty women who were openly deceiving their husbands,
but, as often happens, although all these cases were a matter of com-
mon knowledge, the husbands in question were ignorant of their wives’
behavior. In order to punish the wretched women, the sultan issued a
proclamation which permitted the husbands of unfaithful wives to kill
them, provided, however, that they were quite sure of the infidelity.
The proclamation did not mention either the number or the names
of the wives known to be unfaithful; it merely stated that such cases
were known in the city and suggested that the husbands do something
about it. However, to the great surprise of the entire legislative body
and the city police, no wife killings were reported on the day of the
proclamation, or on the days that followed. In fact, an entire month
passed without any result, and it seemed the deceived husbands just
did not care to save their honor.

“O Great Sultan,” said the vizier to Ibn-al-Kuz, “shouldn’t we
announce the names of the forty unfaithful wives, if the husbands are
too lazy to pursue the cases themselves?”

“No,” said the sultan. “Let us wait. My people may be lazy, but
they are certainly very intelligent and wise. I am sure action will be
taken very soon.”

And, indeed, on the fortieth day after the proclamation, action
suddenly broke out. That single night forty women were killed, and
a quick check revealed that they were the forty who were known to
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have been deceiving their husbands. (Gamow and Stern (1958, pp. 20
– 21)1)

Apparently this version was not considered politically correct, because in the best
known version of the puzzle, there are children whose forehead may be muddy or
not and a father announces that at least one of them is muddy and that those
children who are sure that their own face is muddy should step forward. If there
are n children, then the n-th time he announces this all muddy children step
forward.

To solve this puzzle a number of additional assumptions have to be made.
All children are perfect logicians and this is common knowledge. Moreover every
child can see all the other children and this is also common knowledge. Why
the children step forward can be seen by induction. If there is only one child,
then this child will step forward after the first announcement. Assume that if
there are n for n ≥ 1 muddy children, they will all step forward after the n-th
announcement. Now, if there are n+ 1 muddy children, all of these children will
reason as follows: ‘I can see n muddy children. If I am not muddy they will all
step forward after the n-th announcement. If they do not step forward, then there
are not n muddy children. Therefore there must be one more. It’s me!’ Therefore
all n + 1 muddy children will step forward the n + 1-th time the announcement
is made.

It may seem counterintuitive that the repetition of the same announcement
can give information. The repetition of the announcement itself does not give
any additional information. The fact that the children do not step forward gives
information. By doing nothing they all say that they do not know whether they
are muddy or not, this then becomes common knowledge. So even if nothing
happens this still gives information. Moreover all children can see this. One may
wonder how information about what information the children have can help a
child to decide what the actual situation is. This is because the actual situa-
tion determines what information the children have, and therefore knowing what
everyone knows gives information about the situation.

4.1.2 Byzantine generals

An example of a problem that is often used to illustrate the problems for good
communication protocols is the Byzantine generals problem. It is also known as
the generals paradox or the coordinated attack problem. The earliest reference
to the problem I could find was in Gray (1978). But it is probably older than
that.

There are two generals on campaign. They have an objective (a
hill) which they want to capture. If they simultaneously march on the

1Erik Krabbe pointed out to me that Gamow and Stern made a slight error and should have
said action suddenly broke out on the thirty-ninth day instead of the fortieth.
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objective they are assured of success. If only one marches, he will be
annihilated.

The generals are encamped only a short distance apart, but due to
technical difficulties, they can communicate only via runners. These
messengers have a flaw, every time they venture out of camp they
stand some chance of getting lost (they are not very smart.)

The problem is to find some protocol which allows the generals to
march together even though some messengers get lost. (Gray (1978,
p.465))

There is no real solution to this problem, because the generals are never sure
that a messenger arrives. Let us call these generals Belisarius and Narses. Sup-
pose that one of Belisarius’ messengers arrives at Narses’ camp. Belisarius will
not know his messenger has arrived and Narses knows this. The only way for
Belisarius to obtain the information that his messenger has arrived is by getting
a message from Narses that states that his messenger has arrived. But when
that messenger arrives, Narses does not know that he has. Therefore the problem
still remains, because it will never be common knowledge among Belisarius and
Narses that the first messenger arrived. The same problem occurs in communica-
tion between computers over the Internet for instance, where the computers can
be thought of as the generals and the messengers are packages of information sent
over the Internet. There are protocols that ensure messages get across, but addi-
tional safety conditions (certain events occur the way they should) and liveness
conditions (certain events eventually occur) have to be met.

4.1.3 Sum and product

There are two people in a room: Mr. Sum and Mr. Product, who do not know the
length or width of the room. They do know that these are both natural numbers
between 2 and 99. Moreover the length is larger than the width. (2 < w < l < 99.)
The sum of these two number is given to Mr. Sum, and the product of these two
numbers is given to Mr. Product. And all this is common knowledge. The
following conversation takes place:

Mr. Product: I don’t know what the numbers are.
Mr. Sum: I knew you didn’t know them.
Mr. Product: Now I know what they are!
Mr. Sum: Now I know them too!

The length and the width of the room can be deduced from the previous dialogue
by an outsider.

The original formulation and solution of the problem can be found in Freuden-
thal (1969) and (1970) in Dutch. See McCarthy (1990) for a formulation and
solution in English.
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4.1.4 Cluedo

The game cluedo served as the main inspiration for the dissertation Knowledge
Games by van Ditmarsch (2000). Cluedo has many specific features, but most
important is that it is a knowledge game. A knowledge game is a game where
the state of the world does not change, but only what the players know about it
changes. In fact in many of these games the goal of the game is to find out what
the state of the world is.

There are many actions in such a game that have epistemic consequence, such
as answers to questions which are audible for all players. The more interesting
actions are those where one player is shown a card and the other can see that a
card is being shown, but they cannot see which card it is. But one of the most
interesting actions in this game is the action of not winning. At the end of a turn
a player who knows the state of the world can say that she knows. If she does
not say so, this means she does not know the state of the world. Just like in the
muddy children example it may seem that nothing happens, but information is
exchanged.

4.1.5 Lecture or Amsterdam

Suppose Anne and Bert are sitting at a table in a bar. A messenger arrives and
gives a letter to Anne. She tells them that the letter either contains an invitation
to give a lecture or an invitation for a night out in Amsterdam. Various scenarios
could unfold. Anne could read the letter out loud, so that its contents would
become common knowledge among Anne and Bert. She could read the letter to
herself, so that Bert would not know what the letter said, but she would, and Bert
would know that she would know. Bert could also respect Anne’s privacy and
order a drink at the bar so that she could read the letter alone. When he would
return he would not know whether Anne read the letter or not. They could also
both leave the table simultaneously and get back to the table each suspecting the
other person to have read the letter. There are many more possibilities.

This it is not a problem in the sense that the muddy children puzzle is a
problem. Most people have good intuitions about what the effects of these actions
are. It is a problem to describe these actions within a formal framework. In the
scenarios above there are many actions by which Anne could have learned what
the letter says, but the settings are all different. How can we give an account of
this? I will use this setting as a running example in this chapter.

What all these examples have in common is that higher-order information has
to be included if a satisfactory analysis is to be given. Moreover in many of these
examples information change occurs. In any formal system information change
also has to be taken into account, including the way higher-order information
changes.
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4.2 Multi-agent systems

One of the most influential attempts to model information change in the context
of epistemic logic is due to Fagin, Halpern, Moses, and Vardi (1995). They
are interested in multi-agent systems. These are systems where many agents
interact. They are not exactly clear on what counts as an agent, but they seem
to take a very broad approach and consider computer processing units and robots
as well as persons as agents. The focus is on distributed systems (systems of
communicating computer processors.) Consequently much of their terminology
stems from computer science. The main aim of the authors is to be able to reason
about what goes on in these systems from the outside. Epistemic logic on its own
cannot provide a good model for multi-agent systems, because the states the
agents of the system are in, must be capable of change, as a result of interaction
for example.

In multi-agent systems agents can find themselves in any of a number of states.
These are also called local states, because they involve only one agent. In the case
of distributed systems, local states can be thought of as states of a processor’s
memory. But if you want to model a game like poker, for instance, the local
states can be thought of as the cards an agent holds. To give a complete picture
of a system the environment has to be taken into account as well. A state of
the environment in a distributed system might yield information about whether
a certain communication line is working or not. In case of a poker game the state
of the environment might consist of the cards that are still in the deck on the
table. In general there is one set of states for the environment Se and there is one
set of local states Sai

for each agent ai where the set of agents is A = {a1, . . . , an}.

Se = {s | s is a state of the enviroment}
Sai

= {s | s is a local state of agent ai}

A global state of the system is nothing more than a state of the environment com-
bined with the local states of the agents. A global state is a tuple (se, s1, . . . , sn).
The set of global states G of a system is defined as:

G = Se × Sa1 × · · · × San

As was noted above, multi-agent systems are subject to change. The state of
the environment changes and the local states of the agents can change. So the
global state of the system can change. One of the assumptions that is made is
that time is discrete. Although this may give a distorted picture of time as it is
usually conceived of, it is quite suitable for computer processors, because they
change in discrete steps. The natural numbers are taken to model time. The
advantage of the natural numbers is that they have a clear starting point, as do
many computer programs.

A real system cannot simply go from any global state to any other. The ways
in which a system can develop is usually limited. Such possible developments are
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called runs. A run is a function from the natural number to the set of global
states of the system.

r : N → G

A multi-agent system R is defined as a set of runs.

Definition 4.1 (Multi-agent system)
Let a set of global states G = Se×Sa1×· · ·×San

be given. A multi-agent system
is a set

R ⊆ {r : N → G}

The global state of a system in a run r at time n is r(n). A pair (r, n) consisting
of a run r and a time n is called a point. The global state at a point (r, n) is r(n).
Points will be used as the possible worlds in a Kripke model. The local state of
an agent a at a point (r, n) is indicated by ra(n) (note the subscript). ¤

In an interpreted system the truth value of every propositional variable in a
global state is defined.

Definition 4.2 (Interpreted system)
Let a multi-agent system R ⊆ {r : N → G} be given. Let a function π be given
which assigns a valuation function to every global state.

π : G → (P → {0, 1})

An interpreted system I is defined to be a pair (R, π). ¤

In order to introduce the concept of an agent’s knowledge in an interpreted system
a Kripke model has to be defined based on the interpreted system. The set of
points is taken as the set of possible worlds. The set of global states is not taken
as the set of possible worlds, because a system can have the same global state
in different runs and even at different times in the same run. The accessibility
relation R(a) of an agent a is defined as follows. A point (r′,m′) is accessible to
a from a point (r,m) iff a has the same local state in both (r,m) and (r′,m′).
This construction ensures that the accessibility relations are equivalence relations.
Hence the models are S5 models.

Definition 4.3 (Kripke models for multi-agent systems)
Let a countable set of propositional variables P and a finite set A of agents be
given. Given an interpreted system I the Kripke model MI is a triple (W,R, V )
such that

• W is the set of points of I

• R is a set of accessibility relations that contains an accessibility relation
R(a) ⊆ W×W for each agent a ∈ A such that (r,m)R(a)(r′,m′) iff ra(m) =
r′a(m

′)
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Kripke models

interpreted systems

systems

runs

global states

local states and the state of the environment

Figure 4.1: The construction of the logic for multi-agent systems

• V is a function that assigns a set of points to each proposition p ∈ P such
that V (p) = {(r,m) | π(r(m))(p) = 1}. ¤

This construction is represented schematically in figure 4.1. The language of
epistemic logic can now be extended with temporal operators in several ways to
be able to reason about knowledge and time, and therefore about the change
of knowledge over time along a run. We will not go into this here. For more
information on temporal operators see Emerson (1990).

However, there is something that is not quite satisfactory about this way of
reasoning about information and information change. It seems the focus in Fagin
and Halpern (1994) is too much on the model theoretical aspects of multi-agent
systems, rather than on the inferences made by the agents in such a system. The
analysis of a multi-agent system in this framework often starts by defining the
local states and continue from there as was indicated in figure 4.1. Then one
can simply look which formulas hold in the resulting model. But one might also
be interested in the question whether a certain inference is valid in a class of
multi-agent systems.

Consider as an example a game such as Cluedo (see section 4.1.4). One can
build a multi-agent system for this game. But it might be the case that one is not
interested in the whole system, but just in what goes on in one move in the game.
For example, one may wonder whether it generally holds that when one player,
say a, shows one of his cards, say c, to another player, say b, that player b will
know afterwards that player a has card c. It seems rather cumbersome to define
the whole multi-agent system just to answer such a question. Moreover, that
multi-agent system is specifically built for Cluedo. In the framework of Fagin
and Halpern (1994) it seems difficult to answer the question whether such an
inference is valid generally, not just for Cluedo, because one cannot refer to the
act of showing a card in the logical language.
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It also seems that as a model theoretical analysis the framework puts too much
emphasis on the local states. The local states of the agents completely determine
the accessibility relations of the agents. So the local states also determine higher-
order information and the way higher-order information can change. It seems
strange to put the way things can change in the states of the agents. When one
wants to make a multi-agent system for Cluedo, one firstly has to define the local
states of the agents. It does not suffice to let the local state of an agent simply
consist of the cards that agent is holding. In Cluedo cards never change hands,
therefore the local state must also contain information about the history of the
game. But in order to put information about the history of the game in the
states, one has to have quite a clear picture of the game beforehand.

In the next section we will be looking at logics that deal with information
change by having modalities for different actions. These modalities explicitly deal
with higher-order information, and also deal with the interaction between actions
with higher-order information aspects and states with higher-order information
aspects.

4.3 Dynamic epistemic logic

Dynamic epistemic logic is a relatively new field of research. Its aim is to provide
formal means of analysis of information change. It therefore consists of two parts.
One part deals with information, the other with change. The part dealing with
information is epistemic logic. So it also deals with higher-order information.
The part dealing with change is very much like the programs from propositional
dynamic logic PDL (see chapter 3), except that in this case there are programs that
explicitly deal with higher-order information change. In fact, in many dynamic
epistemic logics, the focus is on higher-order information change to such an extent
that changes in the world itself are no longer considered. In most of the examples
mentioned in section 4.1 the only changes occur in the information of the agents,
but the world itself stays the same.

The transition relations of PDL can be seen as relations between propositional
models. The same holds for first-order dynamic logic, where the programs could
be seen as relations between first-order models. In the same way the programs
of dynamic epistemic logic can be seen as relations between Kripke models. The
question is in which relations one is specifically interested. For PDL it is quite
clear that one is interested in being able to prove the correctness of certain types
of programs. The same holds for first-order dynamic logic. But what are the
interesting programs that we want to reason about with dynamic epistemic logic?
In this section I give four examples of dynamic epistemic logics. In section 4.3.1
DEL is dicussed, which is one of the first dynamic epistemic logics. Secondly, in
section 4.3.2, the dynamic epistemic logic KAL is discussed, which was developed
to deal with knowledge only. In section 4.3.3 the logic LEA is introduced, which
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is one of the most original and influential approaches in dynamic epistemic logic.
Lastly, in section 4.3.4, the logic DML is presented, which is not so much a
dynamic epistemic logic as it is a general dynamic modal logic. The various
logics presented in this section provide some examples of programs that deal with
higher-order information change.

4.3.1 Updating with programs

One of the systems that was first studied is DEL, developed by Gerbrandy and
Groeneveld (1997) and Gerbrandy (1999), which was inspired by the work by
Veltman (1996). It is a system where besides the programs of PDL, ‘updates’ on
programs are executed. The intuition behind it is quite clear. An update in this
system means that a group of agent consciously learns that a program has been
executed. “Consciously” means that in the resulting Kripke model, it is not just
the case that they know that the program has been executed, they also know that
all the members of the group know that the program has been executed, and so
on. In fact, it is common knowledge among the members of the group that the
program has been executed. So not only the information of the agents has been
updated, but also their information about the information, and so on.

The language is defined as follows:

Definition 4.4 (Language of DEL)
Let a countable set of propositional variables P and a finite set of agents A be
given. The language of DEL L

U
PA consists of a set of sentences ϕ and a set of

actions α, given by the following rules in BNF:

ϕ ::= ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | ¤aϕ | [α]ϕ
α ::= ?ϕ | α1;α2 | α1 ∪ α2 | UBα

where p ∈ P , a ∈ A, and B ⊆ A. ¤

A sentence of the form [UBα]ϕ is to be read as: ‘after everyone in B has commonly
learned that α has been executed, ϕ holds.’

This means that for a Kripke model a lot needs to change. Intuitively one
would say that for agents who are not members of the group of updated agents
nothing changes. It turns out to be quite difficult to obtain this property. The idea
of a multi-agent model is that the accessibility relations model the information
the agents have. If the information of an agent changes, one would expect that
only the accessibility relations have to be altered. The problem for a multi-agent
Kripke model is that an element of an accessibility relation (an arrow) serves
many purposes. Consider the model of figure 4.2. Suppose agent a learns which
world is the actual world. If one models this by removing all arrows for a except
the reflexive arrows, the information of agent b also changes. In the model that
results, b knows that a knows which world is the actual world. This is of course



44 Chapter 4. Information change

Figure 4.2: A multi-agent model for two agents. The solid node indicates that p is
true and the open node indicates that p is false. The solid lines repre-
sent the accessibility relation for agent a, the dashed lines represent the
accessibility relation for agent b.

due to the fact that the accessibility relations do not only model the information
of the agents about the world, but also the information they have about each
other. This makes Kripke models a very compact way of representation. But it
makes it difficult to change it in such a way that all those levels of information
in the situation you wish to model, are accurately described.

To solve this type of problem, Gerbrandy introduces a structure in which the
different purposes of an element of an accessibility relation can be distinguished.
This is done by using non-well-founded set theory, which was developed by Aczel
(1988). In section 4.3.4 we will see a similar solution of this problem. The models
for epistemic logic that Gerbrandy uses are called possibilities.

Definition 4.5 (Possibilities)
Let A, a set of agents, and P , a set of propositional variables, be given. The class
of possibilities is the largest class such that:

• A possibility w is a function that assigns to each propositional variable
p ∈ P a truth value w(p) ∈ {0, 1} and to each agent a ∈ A an information
state w(a).

• An information state is a set of possibilities. (Gerbrandy (1999, p.12)) ¤

It is clear that this definition is circular. Possibilities are defined in terms of
information states and information states are defined in terms of possibilities.
In non-well-founded set theory this is not a problem. The more modern versions of
such definitions are given in terms of coalgebras. If we want to have an equivalent
in ordinary set theory, the best way to think about possibilities is as trees. The
relation between possibilities and Kripke models is the following. We can think
of these trees as Kripke models quite easily; Kripke models are graphs, and a tree
is just a special kind of graph. If we have a Kripke model with a specified world,
we can unfold it into a tree, which can be viewed as a possibility. In figure 4.3
the possibility is shown, which represents the same situation as the Kripke model
of figure 4.2. The model is unrolled for the agents separately.

The language of ordinary epistemic logic can be interpreted on possibilities.
But because we now can distinguish the different purposes an element of an ac-
cessibility relation serves, we can define updates easier. How for example would
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Figure 4.3: A picture of a part of the possibility bisimilar to the Kripke model of
figure 4.2, where the left world of the Kripke model of figure 4.2 is taken
to be the actual world. The solid nodes indicate that p is true and the open
nodes indicate that p is false. The solid lines represent the accessibility
relation for agent a, the dashed lines represent the accessibility relation
for agent b.

one want to interpret that a group B commonly learns that a test on ϕ is suc-
cessful? This means that, whereas the information states of all agents not in B
do not change, the information states for members of B are changed such that
those possibilities where ϕ does not hold are removed. Then the remaining pos-
sibilities in the information states of members of B are updated. This is done to
make sure that the update is conscious, which means that the information about
information is also changed.

This is an example of how an update with a test is executed, but in general
an update can be executed on programs. We have the following semantics for the
language of DEL:

Definition 4.6 (Semantics for L
U
PA)

Given a countable set of propositional variables P and a finite set of agents A,
let w be a possibility, let p ∈ P and ϕ, ψ be sentences of L

U
PA and α be an action

of L
U
PA

w 6|= ⊥
w |= p iff w(p) = 1
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ¬ϕ iff w 6|= ϕ
w |= ¤aϕ iff for all v ∈ w(a) : v |= ϕ
w |= [α]ϕ iff for all v: if w[[α]]v then v |= ϕ

w[[?ϕ]]v iff w |= ϕ and w = v
w[[UBα]]v iff w ¹ ((A \ B) ∪ P) = v ¹ ((A \ B) ∪ P) and

for all a ∈ B : v(a) = {v′ | ∃w′ ∈ w(a)∃u : w′[[α]]u[[Uaα]]v
′}

w[[α;α′]]v iff there is a u such that w[[α]]u[[α′]]v
w[[α ∪ α′]]v iff w[[α]]v or w[[α′]]v

Consider the following example to see how this definition works. Let us take the
possibility given in figure 4.3. Let us say that in the filled nodes the propositional
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Figure 4.4: A picture of the possibility obtained by executing Ua?p in the possibility
of figure 4.3. The solid nodes indicate that p is true and the open nodes
indicate that p is false. The solid lines represent the accessibility relation
for agent a, the dashed lines represent the accessibility relation for agent
b.

Figure 4.5: A picture of the Kripke model that can be unfolded to the possibility of
figure 4.4. The solid nodes indicate that p is true and the open node
indicates that p is false. The solid lines represent the accessibility relation
for agent a, the dashed lines represent the accessibility relation for agent
b.

variable p is true and that p is false in the open nodes. Suppose the update
Ua?p is executed. For agent b nothing changes, because only a is involved. For
a those possibilities where p is not true are removed from her information state.
Now the same happens to the possibilities remaining in her information state. See
figure 4.4. See figure 4.5 for the corresponding Kripke model. In Gerbrandy (1999)
a sound and complete proof system with respect to the semantics of definition 4.6
is also provided.

Definition 4.7 (Proof system DEL)
Let ϕ be a sentence in L

U
PA and let α be an action in L

U
PA. The proof system

DEL consists of all axioms and rules of KPA and the following axioms

Distr [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ) (distribution)

?AX [?ϕ]ψ ↔ (ϕ→ ψ) (test)

F ¬[UBα]ϕ↔ [UBα]¬ϕ (functionality)

AP [UBα]p↔ p (atomic permanence)

RAX [UBα]¤aϕ↔ ¤a[α][UBα]ϕ if a ∈ B (generalized Ramsey axiom)
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P [UBα]¤aϕ↔ ¤aϕ if a < B (privacy)

;AX [α; β]ϕ↔ [α][β]ϕ

∪AX [α ∪ β]ϕ↔ ([α]ϕ ∧ [β]ϕ)

This system can be extended to DELD45 and DELS5 by adding the usual axioms
(see chapter 2). Completeness can be proved using a canonical model method.
But a simpler completeness proof uses a translation of L

U
PA into LPA, i.e. all

sentences with dynamic operators can be translated into sentences without any
dynamic operators is such a way that any sentence is provably equivalent to its
translation. The translation simply follows the axioms above.

There are still however some problems with this system. The first problem is
the semantics. The use of non-well-founded set theory is troublesome.

The main shortcoming of this system is that common knowledge is not part
of the system. One of the aspects that is so interesting in the context of higher-
order information is common knowledge. Especially in games such as Cluedo it
plays such an important role that you want to know how common knowledge
changes. The difficulty with adding common knowledge is that a completeness
proof with a translation is not that easy anymore. One could add it and try
to prove completeness in the same way it is proved for the system presented in
section 4.3.3.

Another problem is that updates construed as in DEL can sometimes result in
a non-reflexive model, whereas one started out with a reflexive one. For example
when an update occurs with a sentence that is not true in the actual world, the
result of the update will not be S5. This means that if you want to preserve the
validity of the S5 axioms, you need to be careful. The proof system does not have
a necessitation rule for [α] operators, because of this. In DELS5 necessitation is
not sound. Nevertheless for many programs necessitation is a derived rule.

4.3.2 Learning to preserve S5

Hans van Ditmarsch provided a system of dynamic epistemic logic specifically
developed for knowledge, i.e. S5 (see chapter 2). In this system, which I call KAL

(knowledge action logic), the execution of actions preserves the S5 properties.
Moreover KAL works with ordinary Kripke models and not with non-well-founded
set-theoretic objects. The main inspiration is the game Cluedo, which is an
example of a game that KAL can be applied to. This section uses the definitions
as provided in van Ditmarsch (2002).

The set of programs is an extension of PDL without the Kleene star. The
language is defined as follows:

Definition 4.8 (Language of KAL)
Let a countable set of propositional variables P and a finite set of agents A be
given. The language of KAL L

L
PA consists of a set of sentences ϕ and a set of
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actions α, given by the following rules in BNF:

ϕ ::= ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | ¤aϕ | CBϕ | [α]ϕ
α ::= ?ϕ | α1;α2 | α1 ∪ α2 | α1!α2 | LBα

where p ∈ P , a ∈ A, and B ⊆ A. We call the ϕ expressions the sentences of L
L
PA

and the α expressions the actions of L
L
PA. ¤

The additional operators are the local choice operator (the exclamation mark) and
the learn operator (L). The local choice operator is a bit strange when studied
in isolation, but its use becomes clear when it is applied in combination with the
learning operator. The meaning of the local choice operator (α!β) in isolation
is ‘from α and β choose α locally’, so the interpretation of α!β is equal to the
interpretation of α. The learn operator LBα is interpreted as that it is common
knowledge among all members of B that α is being executed. But the agents in
B do not necessarily know exactly what α is. For example if one agent shows
another agent a card and a third agent can see this, but he cannot see which card
is being shown, then he does not know exactly what action is executed, but he
does know what type of action is executed. This can be formalized as follows.

Definition 4.9 (Action type)
The action type is a function on the actions of the language of KAL: t : {α | α ∈
L

L
PA} → {α | α ∈ L

L
PA}L

L
PA.

t(?ϕ) = ?ϕ
t(α ∪ α′) = t(α) ∪ t(α′)
t(α;α′) = t(α); t(α′)
t(α!α′) = t(α) ∪ t(α′)
t(LBα) = LBt(α)

So basically, the type of α is the expression that is obtained by replacing all
occurrences of the local choice operator with nondeterministic choices, except
those that occur in the scope of a test.

Let us look at the truth definition to see the interplay between the local choice
operator and the learning operator.

Definition 4.10 (Semantics for L
L
PA)

Let a model M = (W,R, V ) in S5PA and a world w ∈ W be given. Let p ∈ P ,
and let ϕ and ψ be sentences and α be an action of L

L
PA.

(M,w) 6|= ⊥
(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= ¤aϕ iff (M, v) |= ϕ for all v such that wR(a)v
(M,w) |= CBϕ iff (M, v) |= ϕ for all v such that wR(B)+v see section 2.4
(M,w) |= [α]ϕ iff (M ′, w′) |= ϕ for all (M ′, w′) such that (M,w)[[α]](M ′, w′)
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Let Wϕ = {v ∈ W | (M,w) |= ϕ}.

(M,w)[[?ϕ]](M ′, w′) iff M ′ = (Wϕ, ∅, V ¹ Wϕ) and w
′ = w

(M,w)[[α ∪ α′]](M ′, w′) iff (M,w)[[α]](M ′, w′) or (M,w)[[α′]])(M ′, w′)
(M,w)[[α;α′]](M ′, w′) iff (M,w)([[α]] ◦ [[α′]])(M ′, w′)
(M,w)[[α!α′]](M ′, w′) iff (M,w)[[α]](M ′, w′)
(M,w)[[LBα]](M

′, w′) iff M ′ ∈ S5PB and (M,w)[[α]]w′ and M ′ = (W ′, R′, V ′)

where in the last clause for the interpretation of LBα, the set of worlds W ′, the
accessibility relations R′, and the valuation V ′ are defined as follows:

• W ′ = {(M ′′, v′′) | ∃v ∈W : wR(B)+v and (M, v)[[t(α)]](M ′′, v′′)}

• (M ′′, v′′)R′(a)(M ′′′, u′′′) iff there is a u′′ such that v′′R′′(a)u′′ and
(M ′′, u′′)↔(M ′′′, u′′′) see definition 2.8, or
a < (gr(M ′′) ∪ gr(M ′′′)) and there are v, u ∈ W
such that vR(a)u and (M, v)[[t(α)]](M ′′, v′′) and
(M,u)[[t(α)]](M ′′, u′′)

• V ′(p) = {(M ′′, v′′) ∈ W ′ | (M ′′, v′′) |= p}

where in the definition of R′ the group of a model gr(M) with M = (W,R, V ) is
the domain of R. ¤

Note that the relations associated with actions are from S5PA-models to S5PB-
models where B ⊆ A. In the extreme case of a test we end up in an S5P∅-model.
It may seem strange, but by defining it in this way it is ensured that the system
is entirely S5. One could let the accessibility relation for all the other agents
be empty, but then those relations are not reflexive. By leaving the relations
undefined in such cases, the models are always S5.

A learn action works as follows. When a group B learns that α in a model
(M,w) we move to a S5PB-model (M ′, w′). The worlds of this model are models
themselves, namely those models that can be reached by executing an action of
type α in a pointed model (M, v), such that v is accessible from w to the learning
group of agents B. The valuation of a propositional variable simply consists of
those world-models where the propositional variable holds. For the accessibility
relations, a world model (M ′′′, u′′′) is accessible from (M ′′, v′′) to a iff there is a
world inM ′′ that is accessible from v′′ to a and that world is bisimilar to (M ′′′, u′′′),
or a is not involved in any of the actions of type α (hence a < (gr(M ′′)∪ gr(M ′′′),
and the ‘original’ worlds were in the accessibility relation of a. Consequently
agents that are not involved in α will know less about α than agents that are
involved in it.

Consider again the example of figure 4.2, where p is true in the world on the
left and false in the one on the right. Suppose that agent a now learns whether
p holds and it is common knowledge among a and b that a learns this. This
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action can be described as Lab(La?p ∪ La?¬p). This action type has only one
possible execution in each of the worlds of the model. Before we look at the effect
of the entire program let us see what the effects of the subprograms are. The
program ?p can only be executed in the left world. It yields a one-world model
for the empty set of agents. The program La?p is interpreted as follows. The
set of worlds are the models that result from executing ?p, which is the model
described above. The accessibility is only defined for a as he is the only agent
involved in the update. The model is accessible to him from the model, because
the world was accessible to him in the original model and he is not in the group
of the submodel. The valuation remains the same. A similar model result from
executing La?¬p in the other world. These two models are the worlds of the model
that results from executing Lab(La?p∪La?¬p). For a only those models themselves
are accessible from themselves, because every model is bisimilar to itself. Agent
b cannot distinguish between the two because he could not distinguish the worlds
in which the actions were executed. This is all shown in figure 4.6.

One of the problems of van Ditmarsch’ approach is the non-standard inter-
pretation of tests. The semantics requires that after an action we are in a model
for the group of that action. Because a test has an empty group, executing a
test will yield a borderline case of a multi-agent model: a model for no agents.
The result of this is that not every sentence of the language can be interpreted.
A sentence of the form [?ψ]¤aϕ cannot be interpreted, because ¤aϕ cannot be
interpreted in a model where a is not in the set of agents of the model. See for
example the models in figure 4.6.

Until recently a sound and complete proof system is also lacking, but a lot of
progress has been made by Van Ditmarsch, van der Hoek, and Kooi (2003).

4.3.3 Epistemic actions

When one thinks about actions that have epistemic aspects one notices that what
is said about them, is quite similar to what is said about situations that have
epistemic aspects. For example in the action Lab(La?p ∪ La?¬p) it is common
knowledge among a and b that a knows whether a test on p is being executed or
a test on ¬p is being executed. In Baltag, Moss, and Solecki (1999) this idea is
taken seriously. In their approach actions are seen as multi-agent Kripke models,
where instead of a valuation of propositional variables there is a precondition
function. The conceptual advantage of this is that actions are modeled in the
same way as situations. This is very different from a PDL style dynamic logic.

Action models are defined as follows.

Definition 4.11 (Action models)
Let a finite set of agents A be given. An action model for L is a triple M =
(W,R, pre) such that:

• W , ∅; a set of action worlds;
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La1a2(La1?p ∪ La1?¬p)?¬p

?p?¬p

La1?p La1?¬p

La1a2(La1?p ∪ La1?¬p)

Figure 4.6: The result of executing various programs in Van Ditmarsch’ approach.
The two models on the left are the result of execution in the world on the
left, the two models on the right are the result of executing in the world
on the right. The model at the bottom is the result of execution in either
world. The solid nodes indicate that p is true and the open nodes indicate
that p is false. The solid lines represent the accessibility relation for agent
a, the dashed lines represent the accessibility relation for agent b. The
double solid lines represent the relations between the models associated
with the actions on those lines. The grey, dashed, double arrows indicate
that a model is a world in the model it is pointing to.
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• R : A → 2W×W; assigns an accessibility relation to each agent;

• pre : W → L ; assigns a precondition to every action.

• w ∈ W

A pair (M,w) is a pointed action model. ¤

In this definition L is not specified. These models can be seen as special cases of
the models of definition 2.2 (see page 4), where the set of propositional variables
is L . So we can interpret L

LA in these models and the class of all action models
for L

LA is KLA. For now it is only important that L is some language that can
be interpreted in models for epistemic logic of definition 2.2 (for the rest of this
section we will call those models static models to distinguish them from action
models). The question is what the effect of executing an action is.

Definition 4.12 (Execution)
Given a static model (M,w) and and action model (M,w) such that (M,w) |=
pre(w), we say that the result of executing (M,w) in (M,w) is (M ·M, (w,w)) =
((W ′, R′, V ′), (w,w)) where

• W ′ = {(v, v) | (M, v) |= pre(v)}

• R′(a) = {((v, v), (u, u)) | vR(a)u ∧ vR(a)u}

• V ′(u, v) = V (u) ¤

It is a very attractive way to view the definitions above as the semantics of some
logic. The question is which language is appropriate. In the logic of epistemic
action (LEA), presented in Baltag, Moss, and Solecki (1999), these models are
part of the dynamical logical language.

Definition 4.13 (Language of LEA)
Let a countable set of propositional variables P and a finite set of agents A be
given. The language of LEA L M

PA is given by the following rule:

ϕ ::= ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | ¤aϕ | EBϕ | CBϕ | [(M,w)]ϕ

where p ∈ P , a ∈ A, B ⊆ A and (M,w) is a finite action model for L M
PA. ¤

The way to read sentences of the form [(M,w)]ϕ is ‘every execution of (M,w) yields
a model where ϕ holds.’ One of the features of this logic which is a problem for
many other approaches is that common knowledge is also included in the language
(see section 2.4). If one is interested in higher-order information, it is quite natural
to incorporate this in the language.
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Definition 4.14 (Semantics for L M
PA)

Let a static model (M,w) where M = (W,R, V ) be given.

(M,w) 6|= ⊥
(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= (ϕ ∧ ψ) iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= ¤aϕ iff (M, v) |= ϕ for all v such that wR(a)v
(M,w) |= EBϕ iff (M, v) |= ϕ for all v such that wR(B)vsee section 2.4
(M,w) |= CBϕ iff (M, v) |= ϕ for all v such that wR(B)∗vsee section 2.4
(M,w) |= [(M,w)]ϕ iff (M,w) |= pre(w) implies that (M ·M, (w,w)) |= ϕ

where R(B)∗ is the reflexive transitive closure of R(B).

Note that the interpretation of common knowledge is the reflexive transitive clo-
sure contrary to the definition of common knowledge in chapter 2. As an example
consider the model given in figure 4.2 again. Suppose now that a learns whether p
holds, by being whispered something in his ear. Agent b can see this but he does
not know whether a was given any information regarding p. Let us assume that
any information given is true and that this is common knowledge among a and
b. The way this action is modeled is as an action model with three worlds, one
where a learns that p, one where he learns that ¬p, and one where he does not
learn anything about p. Agent a can distinguish all these actions, but b cannot.
This action model can be multiplied with the static model given in figure 4.2.
This is shown in figure 4.7. Executing this action works as follows. The resulting
model contains four worlds. Those actions where a learns something about p can
only be executed in the worlds where that information is true. The action where
a learns nothing about p can be executed in both worlds. These are the four
worlds in the resulting model. As agent b considered every world possible in the
static model as well as in the action model, this also holds in the resulting model.
Agent a knows exactly which action was executed. The valuation is copied from
the static model.

In Baltag, Moss, and Solecki (1999) a proof system for LEA is also provided.
In the next definition the notation has been adapted to the notation used in this
chapter.

Definition 4.15 (Proof system LEA)
Let ϕ be a sentence in L M

PA and let (M,w) be an action in L M
PA. The proof system

LEA consists of all axioms and rules of KEC
PA (see section 2.4) and the following

axioms and rule:

Distr [(M,w)](ϕ→ ψ)→ ([(M,w)]ϕ→ [(M,w)]ψ) (distribution)

AP [(M,w)]p↔ (pre(w)→ p) (atomic
permanence)
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⊗

=

Figure 4.7: An illustration of how multiplication of a static model with an action
model works in the approach of Baltag, Moss and Solecki. The model
on the left is the static model. The model in the middle is the action
model. The model on the right is the result of the multiplication of these
two models. In the action model, the preconditions are as follows: the
top world has precondition >, the left world has precondition p, the right
world has precondition ¬p. The solid nodes in the left and right model
indicate that p is true and the open nodes in the left and right model
indicate that p is false. The solid lines represent the accessibility relation
for agent a, the dashed lines represent the accessibility relation for agent
b.

PF [(M,w)]¬ϕ↔ (pre(w)→ ¬[(M,w)]ϕ) (partial
functionality)

AK [(M,w)]¤aϕ↔ (pre(w)→
∧

{¤a[(M, v)]ϕ | wR(a)v}) (action-
knowledge)

Nec
ϕ

[(M,w)]ϕ
(necessitation)

ACK (action-common-knowledge)
Let an action model (M,w) be given. Let χv be sentences for all v such that
wR(B)∗v

{χv → [(M, v)]ϕ | wR(B)∗v} {(χv ∧ pre(v))→ ¤aχu | wR(B)∗v, a ∈ B, vR(a)u}

χw → [(M,w)]CBϕ

This proof system is sound and complete with respect to the semantics given in
definition 4.14. It is difficult to see that the action-common-knowledge rule is
sound. To see this I will first show that it is sound in a very simple case. Let
us take the very simple action where nothing really happens, i.e. the one-world
model with precondition > accessible to all agents. The execution of this action
does not change the static model. So if it can be deduced that a sentence is
common knowledge after the execution, it must have been common knowledge
already. So we should get an instantiation of the common knowledge induction
rule. There is only one world, and its precondition is >. So we get:

χ→ ϕ χ→ EBχ

χ→ CBϕ
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w0

w1

wk−1

wk

w′0

w′1

w′k−1

w′k¬ϕ

w0

w1

wk−1

wk

Figure 4.8: A sketch of the situation when a sentence ϕ is not common knowledge
after action execution, by which one can see the soundness of the action-
common-knowledge rule.

Clearly this is sound for ordinary common knowledge. To see the soundness of
the whole rule suppose that the premises of the action-common-knowledge rule
hold. Suppose moreover that ϕ is not common knowledge for group B after the
execution of the action (M,w0), while χw0 is true. That means that in the updated
model there is a path of worlds w′0, . . . , w

′
k linked by accessibility relations of

members of group B, such that ¬ϕ holds in w′k. That means that in the original
model there is a sequence of worlds w0, . . . , wk and in the action model there
are sequences of actions worlds w′0, . . . ,w

′
k such that every action in the action

sequence is executable in the corresponding world, i.e. (M,wi) |= pre(wi). This
situation is sketched in figure 4.8. It is clear that pre(w0) holds in w0, therefore by
the premises of the action-common-knowledge rule it also holds that in w0 that
¤aχw1 . We can continue this line of reasoning until we reach wk. There χwk

must
hold, and therefore by one of the premises [(M,wk)]ϕ. Therefore it cannot be the
case that ¬ϕ holds in w′k.

The main objection to this approach to dynamic epistemic logic is that the
distinction between syntax and semantics is blurred. The action models are
syntactic objects and semantic objects at the same time. I do not find this
very elegant.
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Suppose for example that you are interested in knowledge, for which the proof
system S5PA is usually taken. The extra axioms of S5PA could also be added to
the logic of epistemic actions. Given that we are now working with S5PA, a
natural constraint would be, that the kind of actions that you are interested in
should also be S5 epistemic actions. That would mean that the non-S5 epistemic
actions should be taken out of the language. To me this is not very appealing.

4.3.4 Changing modalities

A recent contribution by Renardel de Lavalette (2002) is based on the observation
also made by Gerbrandy (see section 4.3.1) that in a Kripke model an element of
an accessibility relation (an arrow) serves many purposes. Instead of using the
non-well-founded possibilities, Renardel uses trees to overcome the difficulty of an
arrow serving many purposes. For the use of these structures he was inspired by
Fagin and Vardi (1985). The trees are called lean modal structures by Renardel.

Definition 4.16 (Lean modal structures)
Let a countable set of propositional variables P and a finite set of agents A be
given. First lean modal structures for finite depth are given.

MS0 = ∅
MSn+1 = (P → {0, 1})⊕ (A → 2MSn)

where (X → Y )⊕(A→ B) is defined as {f∪g | f ∈ (X → Y ) and g ∈ (A→ B)}.
The class of lean modal structures is the union of all these.

MS =
⋃

n

MSn

A good graphical representation of a lean modal structure is the same as the
graphical representation of Gerbrandy’s possibilities. The main difference is that
modal structures correspond to finite trees whereas possibilities correspond to
infinite trees.

Definition 4.17 (Semantics for LPA using lean modal structures)
Let a lean modal structure f be given. Let p ∈ P , ϕ, ψ ∈ LPA, and a ∈ A.

f |= p iff f(p) = 1
f |= ¬ϕ iff f 6|= ϕ
f |= ϕ ∧ ψ iff f |= ϕ and f |= ψ
f |= ¤aϕ iff g |= ϕ for all g such that g ∈ f(a)

Note that the whole language LPA can be interpreted in such a structure, because
if f(a) is empty then any sentence of the form ¤aϕ is true.

Just as in possibilities we can now clearly distinguish the different roles of
the elements of accessibility relations. Renardel is interested in changing some
modalities (for example ¤a) while leaving other modalities intact (for example
¤b¤a). This yields a general dynamic modal logic DML.
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Definition 4.18 (Language of DML)
Let a countable set of propositional variables P and a finite set of agents A be
given. The language of changing modalities L :=

PA consists of a set of sentences ϕ
and a set of actions α, given by the following rules

ϕ ::= ⊥ | p | ¬ϕ | (ϕ1 ∧ ϕ2) | ¤aϕ | [α]ϕ
α ::= a | ?ϕ | p := ϕ | a := α | (α1;α2) | (α1 ∪ α2)

where p ∈ P and a ∈ A. ¤

It is easily seen that agents are special cases of actions. As far as the semantics
is concerned we have the following addition to definition 4.17.

Definition 4.19 (Semantics for actions of L :=
PA)

Let a lean modal structure f be given. Let p ∈ P , let ϕ, ψ be sentences of L :=
PA,

and α be an action of L :=
PA and a ∈ A.

f |= [α]ϕ iff g |= ϕ for every g such that f [[α]]g

where
f [[a]]g iff g ∈ f(a)
f [[?ϕ]]g iff f |= ϕ and f = g
f [[p := ϕ]]g iff g = f [p 7→ (f |= ϕ)])
f [[a := α]]g iff g = f [a 7→ f [[α]]]
f [[α; β]]g iff there is an h such that f [[α]]h[[β]]g
f [[α ∪ β]]g iff f [[α]]g or f [[β]]g

where f [p 7→ (f |= ϕ)] = (f \ {(p, f(p))}) ∪ {(p, x) | (x = 0 and f 6|= ϕ) or (x =
1 and f |= ϕ)} and f [a 7→ f [[α]]] = (f \ {(a, f(a))})∪{(a, f [[α]])} and f [[α]] = {g |
f [[α]]g}. ¤

Definition 4.20 (Proof system DML)
Let ϕ, ψ be sentences in L :=

PA and let α, β be actions in L :=
PA. Let a ∈ A and

p ∈ P . The proof system DML consists of the following axioms and rules

Taut all instantiations of propositional tautologies

Distr [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

?AX [?ϕ]ψ ↔ (ϕ→ ψ)

;AX [α; β]ϕ↔ [α][β]ϕ

∪AX [α ∪ β]ϕ↔ ([α]ϕ ∧ [β]ϕ)

SUB1 [p := ϕ]p↔ ϕ (shallow substitution)

AP1 [p := ϕ]q ↔ q (atomic permanence)

F1 [p := ϕ]¬ψ ↔ ¬[p := ϕ]ψ (functionality)

I1 [p := ϕ][a]ϕ↔ [a]ϕ (independence)

SUB2 [a := α][a]ϕ↔ [α]ϕ (shallow substitution)
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AP2 [a := α]p↔ p (atomic permanence)

F2 [a := α]¬ϕ↔ ¬[a := α]ϕ (functionality)

I2 [a := α][b]ϕ↔ [b]ϕ (independence)

MP
ϕ ϕ→ ψ

ψ
(modus ponens)

Nec
ϕ

[α]ϕ
(necessitation)

This proof system is sound and complete with respect to the semantics provided
in definition 4.17.

The main problem with shallow substitutions is that higher-order informa-
tion can only be captured to a certain depth (i.e. the depth of the substitution).
Higher-order information has an arbitrary depth. To overcome this problem Re-
nardel extends his system with fixed points. This extension, µDML, can han-
dle higher-order information change satisfactory. Adding common knowledge to
µDML presumably makes it quite hard to axiomatize.

4.4 From action terms to action sentences

What is striking about all these dynamic epistemic logics is that there seems to
be a tension between syntax and semantics. A clear syntax (clearly distinct from
semantics), such as with the systems of Gerbrandy, Van Ditmarsch and Renardel,
seems to lead to complicated semantics. And clear semantics, such as with Baltag,
Moss and Solecki seems to lead to unclear syntax.

As was indicated earlier, one of the semantical problems has to do with the
way Kripke models represent information. The accessibility relations represent
information about the world but also higher-order information. To incorporate
new information sometimes requires the addition of new worlds and also acces-
sibility relations for those new worlds. The question is where those worlds come
from. In Gerbrandy and Renardel’s approaches this is solved essentially by view-
ing Kripke models as trees. In that way every role a possible world or an arrow
plays in the interpretation of sentences can be distinguished. Then the execution
of an action that affects certain information that certain agents have can focus on
that part of the tree that models that information for those agents, while leaving
the rest of the tree undisturbed. So the problem is solved by unraveling a Kripke
model, and thus obtaining more worlds and more arrows.

The idea of the solution for this problem provided by Van Ditmarsch is rather
elegant, although it makes the semantics rather cumbersome. If the agents in a
group B learn that α takes place, the models that result from executing α are
taken and those models are taken to be the worlds in the updated model. So
new worlds can be created by having nondeterministic actions. The accessibility
relation is then determined by the internal structure of the model-worlds.
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The solution that Baltag et al. provide is that you take the worlds that are in
the product of the worlds of the static model and the action model. In that way
new worlds are created and the new accessibility relation is based on the acces-
sibility relations in the static model and the action model. The main distinctive
feature of this approach is that semantics is taken a the starting point, whereas
a language was the starting point of the other approaches. The question is what
language is appropriate for these semantics. The solution of Baltag et al. is that
all the action models are inserted in the language.

Whether this is appropriate depends on the level at which you want to reason
about actions. A logical language is usually developed to formalize inferences from
a particular domain. Which features are considered important in that domain
determine which features are in the language. If quantification is not considered
important, there is no need to have quantifiers in the language. Or if arithmetic is
the domain one is interested in, it seems that natural numbers must be expressible
in the language. Modal logic is applied to many domains, such as knowledge,
time, and programs. Yet temporal logic can be developed without reference to
particular points in time. What about epistemic actions? If these actions are
inserted into the language it means that every detail is considered important. In
modal logic Kripke models are not inserted into the language. One cannot even
refer to particular models in the language. This is not a desideratum. A sentence
is true in a whole class of models. That makes the notion of validity a useful
notion. If it is just the case that a certain inference is correct in one model, this
is not very useful. If that inference is valid, i.e. correct in all models, then it is
useful to know that it is. A sentence ϕ can only refer to classes of models (i.e.
those based on frames that satisfy ϕ.) Why should we not take a similar point
of view with epistemic actions? Since epistemic actions are Kripke models, why
would we not treat them in the same way modal logic treats them?

4.4.1 Action language

We take this idea seriously in this section by studying a new logic ALL (action
language logic). The first observation is that if epistemic actions can be construed
as Kripke models, then surely, there is a modal language that can be interpreted
in these models.

Definition 4.21 (Action language)
The action language L A

PA is given by the following rule:

α ::= ⊥ | ?ϕ | ¬α | (α1 ∧ α2) | ¤aα | CBα

where ϕ ∈ L
EC
PA , a ∈ A, and B ⊆ A. ¤

This idea is introduced in Baltag, Moss, and Solecki (1999), where this language
is introduced as an auxiliary language. It is auxiliary in the sense that it can
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help to find the appropriate action model. It is just like the language of epistemic
logic, but instead of a set of propositional variables, we now have a set of tests
from LPA, so it is very much like the language L

LPAA
. The language LPA can

be seen as a parameter of the action language. Given another language that can
be interpreted on Kripke models, we could let the basic action sentences be tests
on sentences of that language.

Definition 4.22 (Semantics for L A
PA)

Let an action model M = (W,R, pre) for LPA and an action w ∈ W be given.

(M,w) |=act?ϕ iff pre(w) |=stat ϕ
(M,w) |=act ¬α iff (M,w) 6|=act α
(M,w) |=act (α ∧ β) iff (M,w) |=act α and (M,w) |=act β
(M,w) |=act ¤aα iff (M, v) |=act α for all v such that wR(a)v
(M,w) |=act CBα iff (M, v) |=act α for all v such that wR(B)+v

where in the second clause pre(w) |= ϕ is interpreted as local logical consequence
(see definition 2.4). ¤

The question is how such a language could be used to reason about actions. We
are interested in the effect that actions have. We now have a way of describing a
whole class of actions with just one action sentence. So we can now ask ourselves
what the effect is of executing an action of type α. That means that we could
somehow view the sentences of ALL as dynamic operators, thus we will look at
sentences of the form [α]ϕ2. So we get the following definition.

Definition 4.23 (Language of ALL)
The dynamic language L D

PA is given by the following rule in BNF:

ϕ ::= ⊥ | p | ¬ϕ | (ϕ1 ∧ ϕ2) | ¤aϕ | CBϕ | [α]ϕ

where p ∈ P , a ∈ A, B ⊆ A, and α ∈ L A
PA. ¤

A sentence of the form [α]ϕ is to read as ‘ϕ after an action that satisfies α is
executed.’ The language is interpreted according to the following definition.

Definition 4.24 (Semantics for L D
PA)

Let a static model M = (W,R, V ), a state w ∈ W , an action model M =
(W,R, pre) and an action w ∈ W be given.

(M,w) 6|=stat ⊥
(M,w) |=stat p iff w ∈ V (p)
(M,w) |=stat ¬ϕ iff (M,w) 6|=stat ϕ
(M,w) |=stat (ϕ ∧ ψ) iff (M,w) |=stat ϕ and (M,w) |=stat ψ

2First I considered a two-sorted language where tests on the static sentences were allowedd,
but it proved very difficult to give good semantics for this language. One could consider a se-
quence of static and action languages, where the nesting of test operators and dynamic operators
is allowed to get deeper and deeper. But I do not do so here.
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(M,w) |=stat ¤aϕ iff (M, v) |=stat ϕ for all v such that wR(a)v
(M,w) |=stat CBϕ iff (M, v) |=stat ϕ for all v such that wR(B)+v
(M,w) |=stat [α]ϕ iff (M ·M′, (w,w′)) |=stat ϕ for all (M′,w′) such that

(M,w) |= pre(w′) and (M′,w′) |=act α

Where pre(w) |=stat ϕ is again interpreted as local logical consequence. ¤

The following theorem about bisimilarity holds. For the definition of bisimu-
lation see definition 2.8 on page 8.

Theorem 4.1 (Preservation of bisimulation)
Let two static models (M,w) and (M ′, w′), and an action model (M,w) be given.
If (M,w)↔(M ′, w′), then for every sentence α ∈ L A

PA it holds that (M,w) |=
pre(w) implies that (M ·M, (w,w))↔(M ′ ·M, (w′,w)). ¤

Proof Suppose that (M,w) |= pre(w) . From theorem 2.2 it follows that (M ′, w′) |=
pre(w), therefore both (M ·M, (w,w)) and (M ′ ·M, (w′,w)) exist. Now we have
to prove that (M ·M, (w,w))↔(M ′ ·M, (w′,w)).

Let R be a bisimulation that establishes (M,w)↔(M ′, w′). Now define

(v, v)R′(v′, v) iff vRv′

We have to show that R′ is a bisimulation. Suppose (v, v)R′(v′, v), therefore vRv′

atoms trivial

forth Suppose (v, v)R · R(a)(u, u), where R · R(a) is the accessibility relation
assigned to a in (M ·M). Therefore vR(a)u and vR(a)u and (M,u) |= pre(u).
From the definition of bisimulation it follows that there is a world u′ such
that v′R′(a)u′ and uRu′. From (M,u) |= pre(u) and theorem 2.2 it follows
that (M ′, u′) |= pre(u). Therefore (u′, u) exists in (M ′ · M, (w′,w)). And
therefore (v′, v)R′ · R(a)(u′, u) and (u, u)R′(u′, u).

back Analogous to forth.

Therefore R′ establishes that (M ·M, (w,w))↔(M ′ ·M, (w′,w)). ¤

Theorem 4.2
Let two static models (M,w) and (M ′, w′), be given. If (M,w)↔(M ′, w′), then
for every sentence ϕ ∈ L D

PA it holds that (M,w) |= ϕ iff (M ′, w′) |= ϕ ¤

Proof By induction on ϕ. The cases for when ϕ is a propositional variable,
negation, conjunction, individual epistemic operator, or a common knowledge
operator, are fairly straightforward.

Suppose ϕ is of the form [α]ψ and (M,w) |= [α]ψ. Take an arbitrary action
model (M,w) such that (M,w) |= α and (M,w) 6|= pre(w). If such an action model
does not exist, then neither does such a model exist where (M ′, w′) |= pre(w)
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(by theorem 2.2). In that case we would be done. Otherwise it follows from
theorem 4.1 that (M ·M, (w,w))↔(M ′ ·M, (w′,w)). From the semantics and our
assumptions it follows that (M ·M, (w,w)) |= ψ, and therefore (M ′ ·M, (w′,w)) |=
ψ as well. Therefore (M ′, w′) |= [α]ψ. ¤

Now we can attempt to construct a proof system for ALL. The following are two
lists of obvious validities. The question is whether these lists are enough to ensure
completeness.

Definition 4.25 (Static axioms and rules of ALL)
The static axioms and rules of ALL consist of all axioms and rules of KEC

PA and
the following axioms and rule:

Distr[α] [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ) ([α]-distribution)

EX ϕ↔ [?¬ϕ]⊥ (executability)

AF 〈α〉p→ [α]p (atomic functionality)

AP [α]p↔ (〈α〉> → p) (atomic permanence)

C ([α]ϕ ∧ [β]ϕ)→ [α ∨ β]ϕ (choice)

KA ¤a[α]ϕ↔ [¤aα]¤aϕ (knowledge-action)

CKA CB[α]ϕ↔ [CBα]CBϕ (common-knowledge-action)

Nec[α]
ϕ

[α]ϕ
([α]-necessitation)

AS
α→ β

[β]ϕ→ [α]ϕ
(action-static rule)

Definition 4.26 (Action axioms and rules of ALL)
The action axioms and rules of ALL consists of all axioms and rules of KEC

PA and
the following axiom and rule:

Distr? ?(ϕ→ ψ)→ (?ϕ→?ψ) (?-distribution)

Nec?
ϕ

?ϕ
(?-necessitation)

A derivation in this system consists of a sequence of sentences of L A
PA and L D

PA

each of which is an instance of an axiom or is the result of applying a derivation
rule to sentences that occur earlier in the sequence. Moreover static axioms and
rules are only applied to sentences of L D

PA and action axioms and rules are only
applies to sentences of L A

PA. If ϕ is the last sentence in a derivation, then ϕ is
provable, or deducible, notation `stat ϕ. If α is the last sentence in a derivation,
then α is provable, or deducible, notation `act α.

Here is a proof of the soundness of the Knowledge-Action axiom.
(M,w) 6|= ¤a[α]ϕ
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≡ {Definition 4.24 }
∃v(wR(a)v and (M, v) 6|= [α]ϕ)
≡ {Definition 4.24 }
∃v(wR(a)v and ∃(M1, v)((M, v) |= pre(v) and (M1, v) |= α and (M ·M1, (v, v)) 6|=
ϕ))
≡ {
⇒ Construct a model (M2,w) by adding a fresh world w to M1 such that v is the
only world accessible from w to a and pre(w) = >
⇐ Let (M1, v) be (M2, v).
}
≡
∃v(wR(a)v and ∃(M2,w)((M,w) |= pre(w) and ∀v(wR(a)v → (M2, v) |= α) and
∃v(wR(a)v and (M, v) |= pre(v) and (M ·M2, (v, v)) 6|= ϕ)
≡ { Predicate Logic }
∃(M2,w)((M,w) |= pre(w) and ∀v(wR(a)v → (M2, v) |= α) and ∃v∃v(wR(a)v and
wR(a)v and (M, v) |= pre(v) and (M ·M2, (v, v)) 6|= ϕ)
≡ { Definition 4.24 }
∃(M2,w)((M,w) |= pre(w) and ∀v(wR(a)v → (M2, v) |= α) and (M ·M2, (w,w)) 6|=
¤aϕ)
≡ { Definition 4.24 }
∃(M2,w)((M,w) |= pre(w) and (M2,w) |= ¤aα and (M ·M2, (w,w)) 6|= ¤aϕ)
≡ { Definition 4.24 }
(M,w) 6|= [¤aα]¤aϕ

From these lists of axioms we can deduce some very nice other formulas and
rules.

Deduced theorems

• [α ∨ β]ϕ→ ([α]ϕ ∧ [β]ϕ).

1. α→ α ∨ β Taut

2. β → α ∨ β Taut

3. [α ∨ β]ϕ→ [α]ϕ AS

4. [α ∨ β]ϕ→ [β]ϕ AS

5. [α ∨ β]ϕ→ ([α]ϕ ∧ [β]ϕ) Propositional logic 3,4

• for all propositional ϕ it holds that `stat [α]ϕ ↔ (〈α〉> → ϕ) and `stat
〈α〉ϕ→ [α]ϕ

Proof By induction on ϕ

base For atoms we have the axiom of propositional functionality and the
axiom of atomic permanence.
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induction hypothesis Suppose `stat [α]ϕ↔ (〈α〉> → ϕ) and `stat 〈α〉ϕ→
[α]ϕ and `stat [α]ψ ↔ (〈α〉> → ψ) and `stat 〈α〉ψ → [α]ψ

induction step negation: functionality and permanence

1. 〈α〉ϕ→ [α]ϕ Induction hypothesis

2. ¬[α]ϕ→ ¬〈α〉ϕ Contraposition 1

3. 〈α〉¬ϕ→ [α]¬ϕ def. [α]↔ ¬〈α〉¬

4. [α]ϕ↔ (〈α〉> → ϕ) Induction hypothesis

5. ¬ϕ→ (ϕ→ ⊥) Propositional tautology

6. [α]¬ϕ→ ([α]ϕ→ [α]⊥) [α]-necessitation and -distribution

7. [α]¬ϕ→ ((〈α〉> → ϕ)→ [α]⊥) Replacement 4,6

8. [α]¬ϕ→ ((¬ϕ→ [α]⊥)→ [α]⊥) Contraposition

9. [α]¬ϕ→ (〈α〉> → ¬ϕ) Propositional logic

10. [α]ϕ→ (〈α〉> → ϕ) Propositional logic 4

11. ¬(〈α〉> → ϕ)→ ¬[α]ϕ Contraposition 10

12. ¬(〈α〉> → ϕ)→ [α]¬ϕ Replacement 1, 11

13. 〈α〉> ∨ [α]⊥ Propositional tautology

14. ⊥ → ¬ϕ Propositional tautology

15. [α]⊥ → [α]¬ϕ [α]-necessitation and -distribution

16. 〈α〉> ∨ [α]¬ϕ Propositional logic 13, 15

17. (〈α〉> → ¬ϕ)→ [α]¬ϕ Propositional logic 12, 16

18. [α]¬ϕ↔ (〈α〉> → ¬ϕ) Propositional logic 10, 17

conjunction: functionality

1. 〈α〉ϕ→ [α]ϕ Induction hypothesis

2. 〈α〉ψ → [α]ψ Induction hypothesis

3. 〈α〉(ϕ ∧ ψ)→ 〈α〉ϕ ∧ 〈α〉ψ Modal logic

4. 〈α〉ϕ ∧ 〈α〉ψ → [α]ϕ ∧ [α]ψ Propositional logic 1,2

5. [α]ϕ ∧ [α]ψ → [α](ϕ ∧ ψ) Modal logic

6. 〈α〉(ϕ ∧ ψ)→ [α](ϕ ∧ ψ) Propositional logic 3,4,5

conjunction: permanence

1. [α]ϕ↔ (〈α〉> → ϕ) Induction hypothesis

2. [α]ψ ↔ (〈α〉> → ψ) Induction hypothesis

3. [α]ϕ ∧ [α]ψ ↔ (〈α〉> → ϕ) ∧ (〈α〉> → ψ) Propositional logic 1,2

4. [α]ϕ ∧ [α]ψ ↔ [α](ϕ ∧ ψ) Modal logic

5. [α](ϕ ∧ ψ)↔ (〈α〉> → ϕ) ∧ (〈α〉> → ψ) Propositional logic 3,4

6. ((〈α〉> → ϕ) ∧ (〈α〉> → ψ))↔ 〈α〉> → (ϕ ∧ ψ) Propositional
tautology
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7. [α](ϕ ∧ ψ)↔ (〈α〉> → (ϕ ∧ ψ)) Propositional logic 5,6

¤

• for all propositional sentences ϕ it holds that `stat [?ϕ]ϕ

1. ϕ→ (〈?ϕ〉> → ϕ) Taut

2. [?ϕ]ϕ↔ (〈?ϕ〉> → ϕ) see deduced theorem above

3. ϕ→ [?ϕ]ϕ Replacement 1,2

4. ¬ϕ↔ [?ϕ]⊥ EX

5. [?ϕ]⊥ → [?ϕ]ϕ Modal logic

6. ¬ϕ→ [?ϕ]ϕ Propositional logic 4,5

7. [?ϕ]ϕ Propositional logic 3,6

Completeness for `act

The completeness proof is based on Dunin-Kȩplicz and Verbrugge (2002), which
in turn is based on Fagin, Halpern, Moses, and Vardi (1995).

Definition 4.27 (Action closure)
The action closure of α is the minimal set Π ⊆ L D

PA such that

1. α ∈ Π.

2. If β ∈ Π and γ is a subaction of β (outside the scope of a test operator),
then γ ∈ Π.

3. If β ∈ Π and β itself is not a negation, then ¬β ∈ Π

4. If CBβ ∈ Π, then ¤aCBβ ∈ Π for all a ∈ B ¤

Note that the closure of any action α yields a finite set of sentences Π.

Definition 4.28 (Maximal consistent in Π)
Let Π be an action closure. A finite set of sentences Γ such that Γ ⊆ Π is maximal
consistent in Π iff:

1. Γ is consistent, i.e. 0act ¬(
∧

β∈Γ β).

2. There is no Γ′ ⊆ Π, such that Γ ⊂ Γ′ and Γ′ is consistent. ¤

Lemma 4.1 (Lindenbaümchen)
Let Π be the closure of a consistent β. If Γ ⊆ Π is consistent, then there is a set
Γ′ ⊆ Π such that Γ ⊆ Γ′ and Γ′ is maximal consistent. ¤



66 Chapter 4. Information change

Proof As Π is finite, the members of Π can be enumerated. Let us suppose
#(Π) = k and that αi (1 ≤ i ≤ k)is the i-th action sentence of this enumeration.
Now define Γi (0 ≤ i ≤ k) as follows:

Γ0 = Γ

Γi+1 =

{

Γi if Γi ∪ {αi+1} is inconsistent
Γi ∪ {αi+1} otherwise

It is easily seen that Γk is maximal consistent in α. ¤

Definition 4.29 (Countermodel)
Let an action sentence α be given the countermodel for this sentence Mα =
(Wα,Rα, preα) is given by

• Wα = {Γ ⊆ Π | Γ is maximal consistent}

• ΓRα(a)∆ iff β ∈ ∆ for all β such that ¤aβ ∈ Γ.

• preα(Γ) =
∧

?ϕ∈Γ ϕ ¤

Lemma 4.2 (Finite Valuation)
Let Γ be a maximal consistent set in Π.

1. If ¬β ∈ Π, then ¬β ∈ Γ iff β < Γ.

2. If β ∧ γ ∈ Π, then β ∧ γ ∈ Γ iff β ∈ Γ and γ ∈ Γ.

3. If ¤aβ ∈ Π, then ¤aβ ∈ Γ iff β ∈ ∆ for all ∆ with ΓR(a)∆

4. If CBβ ∈ Π, then CBβ ∈ Γ iff β ∈ ∆ for all ∆ such that ΓR(B)+∆ ¤

Proof see Dunin-Kȩplicz and Verbrugge (2002). ¤

Lemma 4.3 (Finite Truth)
If Γ ∈ Wα, then for all β ∈ Π it holds that (Mα,Γ) |=act β iff β ∈ Γ. ¤

Proof By induction on β. Suppose β is of the form ?ϕ and ?ϕ ∈ Π. If
(Mα,Γ) |=act?ϕ, then preα(Γ) |=stat ϕ. Both preα(Γ), and ϕ are in L

EC
PA . Therefore

by completeness of KEC
PA and preα(Γ) `stat ϕ. Since Γ `stat?preα(Γ), by repeated

Distr? and MP we get ?ϕ ∈ Γ. It also holds the other way around. For the
other cases see Dunin-Kȩplicz and Verbrugge (2002) ¤

Theorem 4.3 (Completeness)
If |=act α, then `act α. ¤

Proof Suppose 0act α, therefore i.e. ¬α is consistent, therefore there is a maximal
consistent set Γ in the action closure Π of ¬α such that ¬α ∈ Γ. Because of
the finite truth lemma we may conclude that (M¬α,Γ) |=act ¬α, and therefore
(M¬α,Γ) 6|=act α ¤
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Lecture or Amsterdam

We can already deal with some of the settings of the lecture or Amsterdam prob-
lem (see page 38). Suppose Anne opens the letter and reads the contents. Then
afterwards Anne will know the contents. This can be formalized with ALL. Let a
be Anne. The action of reading the letter will lead to either Anne learning that
p or learning that ¬p. If Anne learns that p, this is an action that must satisfy
¤a?p. That is, she believes that a precondition of the action is that p holds.
Therefore we would like to prove:

[¤a?p ∨¤a?¬p](¤ap ∨¤a¬p)

We can prove this in the following way

1. [?p]p see deduced theorems

2. ¤a[?p]p ¤a-necessitation 1

3. ¤a[?p]p→ [¤a?p]¤ap Knowledge-Action

4. [¤a?p]¤ap Modus Ponens 2,3

5. [¤a?p](¤ap ∨¤a¬p) Modal Logic 4

6. [¤a?¬p](¤ap ∨¤a¬p) Analogous to 1 – 5

7. ([¤a?p](¤ap∨¤a¬p)∧[¤a?¬p](¤ap∨¤a¬p))→ [¤a?p∨¤a?¬p](¤ap∨¤a¬p)
Choice

8. [¤a?p ∨¤a?¬p](¤ap ∨¤a¬p) Propositional Logic 5,6,7

Suppose now that Bill is also present at the table, and sees Anne opening the
letter and reading it. Afterwards he knows that Anne knows what the letter said.
Let b be Bill. Now we want to prove the following:

[¤b(¤a?p ∨¤a?¬p)]¤b(¤ap ∨¤a¬p)

This is quite simple given the previous result:

1. [¤a?p ∨¤a?¬p](¤ap ∨¤a¬p) Previous result

2. ¤b[¤a?p ∨¤a?¬p](¤ap ∨¤a¬p) ¤b-necessitation 1

3. ¤b[¤a?p ∨ ¤a?¬p](¤ap ∨ ¤a¬p) ↔ [¤b(¤a?p ∨ ¤a?¬p)]¤b(¤ap ∨ ¤a¬p)
Knowledge-Action

4. [¤b(¤a?p ∨¤a?¬p)]¤b(¤ap ∨¤a¬p) Modus Ponens 2,3
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Knowledge actions and public announcements

There are various subclasses of epistemic actions that are worth studying in their
own right. For example, public announcements and knowledge actions, i.e. actions
that preserve the S5 axioms. One of the nice features of ALL is that we can try
to characterize these simply by adding axioms, which would constrain the class
of action frames at our disposal. Since completeness was proved we can do this
by well-known modal techniques. The S5 axioms can be added to get the class
of knowledge actions for example. These axioms ensure that the accessibility
relation in the action models are equivalence relations.

Public announcements can be seen as one-world models, where that world is
accessible to all agents. The axiom Triv added to K is sound and complete with
respect to the class frames where each world is accessible to itself and tot itself
alone, i.e. ∀w, v(wRv ↔ w = v). See Hughes and Cresswell (1996, pp.121,122).

Triv ¤aα↔ α

Each generated subframe of a frame that validates this axiom is a one-world
frame. In that case for example, the following axiom is valid by the knowledge
action axiom and the action static rule.

Perfect recall ¤a[α]ϕ→ [α]¤aϕ

The idea is that agents do not forget any information they had. See van Benthem
(2001).

Contrary to Baltag, Moss, and Solecki (1999) the language does not need to
be changed if we are interested in limited classes of epistemic actions. There is a
big problem however. Although we have completeness for these logics, it seems
very hard to provide a complete proof system for the whole system.

Incompleteness

There are serious problems with constructing a complete proof system for ALL.
The question is whether it can be done at all. Let us look at the notion of
completeness in general. Suppose we have a class of models KS ⊆ KPA. Let Λ
be the set of all sentences in a certain language L that are true in every pointed
model in KS, i.e. Λ = {ϕ | (M,w) |= ϕ for every M ∈ KS}. A proof system S is
said to be complete with respect to KS iff for every ϕ ∈ L it holds that ϕ ∈ Λ
implies that ϕ is provable in S. Note that we have the following in general: if
KS ′ ⊆ KS, then Λ ⊆ Λ′. So the less models are allowed by the semantics, the
more validities there are. But not only that: if a sentence was valid in all the
models in the larger set, then certainly it is valid in all the models in the smaller
set. If one wants to construct a complete proof system for an intended class of
models that is a subset of a class of models for which there is a complete proof
system, one adds axioms and rules to this system.
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It seems this general picture does not apply to ALL. In this case there are two
classes of models, static models KPA and action models KPA. Let us look at the
following sentence:

ϕ = 〈>〉¤a⊥

We can establish that this sentence is true in all static models in KPA given
the class of action models KPA. Think of the one world action model where
all accessibility relations are empty and the precondition of the only world is >.
This action model can be executed in any static model. The result will be a static
model with empty accessibility relations for all agents. Therefore the sentence
above is true in all models. Consequently this sentence should be deducible in a
proof system for ALL.

Now suppose we want to limit actions to the class S5PA and static models to
the class S5PA. Now the action described above is no longer available. So the
sentence ϕ is not true in any models in S5PA given the class S5PA. This makes
it very difficult to axiomatize this logic, if not impossible.

A similar problem arises when we limit actions to public announcements. In
this case, the knowledge action axiom is no longer valid from right to left. The
soundness proof depended essentially on adding a world to the action model. This
is no longer allowed with public announcements.

The main problem seems to be that the validity of sentences of the form [α]ϕ
depends on whether there exist models that satisfy α. It may well be that ALL

is undecidable. One may try to prove this by trying to reduce a tiling problem
to the question of satisfiability, or find an appropriate undecidable fragment of
second order logic which can be faithfully translated to the language of ALL. See
Blackburn, de Rijke, and Venema (2001, chapter 6).

4.4.2 Dyadic hybrid epistemic logic

The idea of treating states and actions in the same way is taken even further in
ten Cate (2002). In his paper ten Cate puts static models and action models
together in bigger models. This means that it is no longer the case that all action
models are available, only the ones that occur in the bigger models. In most
of the previous dynamic epistemic logics, executing an action meant that a new
model was constructed which resulted from executing the action. In this case
however we have both the static and the action model in the same model, and
executing an action can be seen as a ternary relation between static worlds, action
worlds, and static worlds. In that sense we have left dynamic logic and entered a
branch of logics known as multi-dimensional logics, in this case a two dimensional
logic, which has dyadic modal operators. The idea is to generalize usual modal
operators. The modal operator ¤a for example gets its interpretation due to a
binary relation defined on the set of worlds. By generalizing this one gets an
n-ary modality for every (n+1)-ary relation on the set of possible worlds. Arrow
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logic, see van Benthem (1994), is an example of such a logic. See Blackburn,
de Rijke, and Venema (2001) for an introduction to these kinds of modalities.

As we saw in the previous section much depends on the level at which one
wants to describe actions. On the one hand one wants to be able to make as-
sertions about actions of certain types, on the other hand one sometimes wants
to make assertions about very concrete actions. The other feature of ten Cate’s
approach is to add the technical machinery of hybrid logic to the system. Hybrid
logic has advanced considerably over the last years. Hybrid logics are extensions
of modal logic, where a few key items are added to the language. The first thing
that is added is a set of nominals, I. These are propositional variables i, j, k, . . .
whose extensions are singleton sets. So one could say that they name worlds. A
world can have many names, or no name at all. Those names can be used just
as individual variables can be used in first order logic. So a sentence ϕ(i) could
be interpreted as saying that i is a ϕ-world. But then we would have to interpret
sentences on the level of models rather than on the level of pointed models. To
keep things modal, and ‘local’, @-modalities are introduced. A sentence of the
form @iϕ means that ϕ is true in the world called i, or ‘at i ϕ holds’. More oper-
ators can be added such as ↓, where a sentence of the form ↓ i ϕ, means that ϕ is
true if you call the actual world i. This operator will not be used here. The nice
thing about hybrid logic is that one gains much of the expressivity of first-order
logic, while preserving many of the nice computational properties of modal logic.
Irreflexivity can for example be expressed as the axiom scheme @i¤a¬i. This
cannot be expressed by any scheme in epistemic logic (see van Benthem (1984)).
Moreover it has a nice axiomatization that can easily be extended for restricted
classes of frames. But let us start with the language of Ten Cate’s system.

Definition 4.30 (Language of DHEL)
Let a countable set of propositional variables P with a subset I of nominals, and
a finite set of agents A be given. The language of DHEL L

.@iA
PIA is given by the

following rule in BNF:

ϕ ::= ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | ¤aϕ | ϕ . ϕ | @iϕ | A

where p ∈ P , and a ∈ A. Besides the usual abbreviations, 〈ϕ〉ψ is an abbreviation
for ϕ.ψ, which has as a dual ¬〈ϕ〉¬ψ (also written as [ϕ]ψ, but also ϕ/ψ, which is
another dual, namely ¬(¬ϕ.¬ψ). Note that these dualities differ in one negation.
The sentence ¬A is abbreviated as S. ¤

Besides the usual connectives of epistemic logic, there are nominals i (p ∈ P
also ranges over nominals), the @ operator, and the . connective, which is the
operator that takes care of action execution. Besides these, there is also a special
nullary modality A. A nullary modality is like a propositional variable, except
that it is not variable. If one considers models based on the frame associated with
the model, the interpretation of A is still the same. It indicates that a world is
an action world and not a state.
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Definition 4.31 (Models for dyadic hybrid epistemic logic)
A model for L

.@iA
PA is a quintuple M = (W,W, R, result, V ) such that:

• W , ∅; a set of states or possible worlds;

• W , ∅; a set of action worlds;

• R : A → 2W×W ∪ 2W×W; assigns an accessibility relation to each agent (in
both states and actions);

• result : W → (W ⇀W ); assigns a (partial) result function to each world;

• V : P → 2W∪W; assigns a set of states and/or actions to each propositional
variable and a single world to each nominal.

• w ∈ W ∪W ¤

Definition 4.32 (Semantics for L
.@iA
PA )

Let an action model (M,w) be given.

(M,w) 6|= ⊥
(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= (ϕ ∧ ψ) iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= ¤aϕ iff (M, v) |= ϕ for all v such that wR(a)v
(M,w) |= ϕ . ψ iff there is a w ∈ W such that

(M,w) |= ϕ and result(w)(w) = v and (M, v) |= ψ
(M,w) |= A iff w ∈ W

(M,w) |= @iϕ iff (M, v) |= ϕ for V (i) = {v}

Let me give an example of how these semantics work. We take the model from
Figure 4.7, and convert it for this system. This is shown in figure 4.9. It is one
of the intended models of the logic. But in the semantics there is no restriction
on the result relation that ensures that the result relation is anything like the
multiplication of the static part of the model with the action part of the model
as defined in section 4.3.3, defintion 4.12. This matter will be dealt with below.
For the semantics where the restrictions on result are relaxed so that it can be
any ternary relation on W ∪W, Ten Cate provides a Hilbert style axiomatization
of hybrid logic with multidimensional modalities and a tableau calculus. Here I
present the axiom system for the general logic given above.

Definition 4.33 (Proof system DHEL)
The proof system DHEL consists of all axioms and rules of KPA and the following
axioms and rules

Distr·/ ((p1 → p2) / p3)→ ((p1 / p3)→ (p2 / p3)) (·/-distribution)

Distr/· (p1 / (p2 → p3))→ ((p1 / p2)→ (p1 / p3)) (/·-distribution)

Distr@i
@i(p1 → p2)→ (@ip1 → @ip2) (@i-distribution)
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Figure 4.9: A model for dyadic hybrid epistemic logic. The cluster of worlds on the
left and the cluster on the right are static possible worlds. The cluster of
worlds in the middle are action worlds. The double-lined arrows indicate
the ternary result relation. The solid nodes indicate that p is true and
the open nodes indicate that p is false. The solid lines represent the ac-
cessibility relation for agent a, the dashed lines represent the accessibility
relation for agent b. This picture models the same situation as figure 4.7

SD @ip↔ ¬@i¬p (@i-selfdual)

@iT @ii

AG @i@jp↔ @jp (agree)

IN i → (p↔ @ip) (introduction)

SUB
ϕ

ϕ[ψ/p]
(uniform substitution)

Nec·/
ϕ

ϕ /⊥
(·/-necessitation)

Nec/·
ϕ

⊥ / ϕ
(/·-necessitation)

Nec@i

ϕ

@iϕ
(@i-necessitation)

N
@iϕ

ϕ
where i does not occur in ϕ (name)

P
(@i(j1 . j2) ∧@j1ϕ1 ∧@j2ϕ2)→ ψ

@i(ϕ1 . ϕ2)→ ψ
(paste)

where i , j1 and i , j2 and
j1, j2 do not occur in ϕ1, ϕ2, ψ

This is only a general proof system for dyadic hybrid epistemic logic. It is sound
and complete with respect to the class of models where the result relation is an
arbitrary ternary relation.

There is a nice theorem in hybrid logic which states that any extension of the
proof system presented above, with pure axioms or rules, i.e. rules in which no



4.4. From action terms to action sentences 73

propositional variables occur in the sentences, is complete for the class of frames
in which those axioms and rules are valid. So Ten Cate continues by capturing
the additional restrictions on the models that make the result relation an action
execution relation in pure axioms and rules. The logic for epistemic actions has
some added features such as the nullary modality A. In the models introduced by
Ten Cate an accessibility relation never crosses the bound between actions and
states. Therefore the following axioms hold:

A → ¤aA

¬A → ¤a¬A

Note that these are all pure sentences, because A is a fixed nullary modality. So
the substitution rule is still valid.

The result relation is defined as a ternary relation where the first and last
argument must be states and the second argument is an action. So the result

relation always crosses the bounds between actions and states. This is captured
by the following axioms.

A → [>]⊥
[¬A]⊥
[>]¬A

The result relation is a partial function. This is captured by the following pure
axiom.

〈i〉j → [i]j

The result relation furthermore has what Ten Cate calls the product property.
Basically it says that a world v′ is accessible after the execution of an action w,
iff there is a world v accessible now and there is an action v accessible from w

such that v′ is the result of executing v in v, and vice versa. This is captured by
the following axiom and rule.

¤a〈i〉j → 〈 ¤ai〉 ¤aj

@i〈j〉 ¤ak ∧@i ¤ai
′ ∧@j ¤aj

′ ∧@i′〈j
′〉k → ϕ

@i〈j〉 ¤ak → ϕ

Adding these makes the system complete for the semantics of definition 4.32.
There are things that are not captured yet by this system. Most other dynamic

epistemic logics have actions that only affect information. The execution of an
action does not change the truth value of propositional variables. This is captured
by the atomic permanence axioms. A similar axiom in this system would be
something like p → [T ]p. These axioms are essentially impure, because they
have to mention propositional variables. The impurity of these axioms does not
prevent them from being added to the axiom system, but completeness is no
longer guaranteed. Also this would render the substitution rule invalid, because
sentences with epistemic operators can change due to action execution: this is
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the feature that makes it worthwhile to study these logics. So we would have to
look for other completeness proof techniques.

Moreover there are no longer explicit preconditions in the action models. It
seems difficult to regain these in the semantics. One would also like the property
that bisimulation is preserved by action execution. In the system as it currently
stands this is not the case. Moreover it is problematic to incorporate the notion of
common knowledge into the system. This is of course one of the desired features
of a logic that deals with higher-order information.

4.5 Where do we go?

In conclusion we can say that there is no definitive logic for information and
information change. It seems that a lot has been accomplished in the various
systems presented in this chapter. It is quite clear what the effect of actions
with epistemic aspects is on higher-order information. Still a large number of
problems remain. The main desideratum is common to all logics, to have the
following three things at the same time: a language that is expressive enough,
clear semantics, and an elegant proof system.

As far as the language is concerned one would like to have two things. In
the first place one would like the usual language of epistemic logic. This is not
a major problem. All systems presented in this chapter have the usual epistemic
modalities. Common knowledge is only present in some of these systems, although
it is a highly desirable feature in any system that aims to describe higher-order
information. In the second place one would like to be able to describe the actions
that cause information change within the language. We have seen many examples
of ways to describe actions. On the one hand the language should be able to
describe the actions in such detail that it is clear what is going on. On the other
hand it must also be abstract enough so that useful statements can be made
about actions in general. There is a tension between these two desiderata. The
one extreme is LEA, where action models were inserted into the language. On
the other hand we saw ALL, where only very general classes of actions could be
described. In the middle we have the systems where actions are described by
means of PDL-like actions or by means of nominals that allow the description of
action models in more detail. What the PDL-type action algebras are concerned,
the one thing that has remained absent is the iteration operator or Kleene star
(see chapter 3), which allows the description of while-loops and such. Recent
results by Larry Moss and Joseph Miller (which have not been published) say
that the logic of public announcements with Kleene star is undecidable. So it
remains difficult to choose a good language.

As to the semantics: we would like it to be clear. The main problem for
epistemic logics where things change is that sometimes you would like to add or
to remove worlds and arrows, as was said earlier. In order to obtain extra worlds
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Kripke models can be rolled out, or multiplied, or one can construct Kripke
models in such a way that the resulting model is already present in it. An elegant
way to solve this remains to be found. It is worth noting that adding the Kleene
star to PDL-like actions is not a problem of semantics. One can easily define the
reflexive transitive closure of a relation. The main problem of the Kleene star lies
with the proof system.

As to proof systems, they remain to be the bottlenecks of most of the logics
presented above. It turns out that it is very difficult to add common knowledge
to a system and give a proof system where the interaction between common
knowledge and actions is captured. A lot of work can be done in this area.

What of the future? Although these problems remain, it seems that due to
all these systems we do have quite a clear picture of what effects the execution
of actions can have on higher-order information. There is an issue that is not
touched upon by any of these systems. Although they give an accurate account
of the effects of actions, they do not provide an answer to the question how these
actions come about in the first place. The motivation of many of these systems is
the analysis of games involving higher-order information and semantics of natural
language. In both cases the actions come about because of the intentions of the
agents performing the actions. Players of a game often play because they want to
win. Natural language is used because those who utter natural language wish to
communicate. The actions in the systems presented in this chapter are completely
detached from the agents performing them, although in the examples it is clear
that they are performed by agents. One cannot even say whose turn it is.

If intentions were added we could view actions as strategies executed by agents.
We would then also be able to compare the quality of two actions, given the
intentions of the agents. It would allow us to study agent interactions at another
level. In the multi-agent community there is much interest in intentions and goals
of agents, including higher-order intentions, see Rao and Georgeff (1991, Dunin-
Kȩplicz and Verbrugge (2002). It would be very interesting to see what insights
from that area could add to the study of information and information change.





Chapter 5

Intensional and statistical probability

5.1 Introduction

In the literature about the philosophy of probability theory it is stated that there
is widespread consensus about the mathematics of probability theory, contrary to
the philosophy of probability theory, where there is almost no consensus but fierce
debate Gillies (2000, p.1), Weatherford (1982, p.5), Reichenbach (1949, pp.67–68).
In philosophy of probability many viewpoints are distinguished. One of the main
classifications of these viewpoints is the distinctions between objective theories of
probability – probability is taken to be a part of physical reality – and epistemic
theories of probability – they see probability as degree of belief. (See Gillies
(2000) or Weatherford (1982) for an overview.) This distinction seems related
to a distinction made by Bacchus (1990) between statistical and propositional
probabilities. A statistical probability statement is about the proportion of
individuals that have a certain property, or in other words the probability that a
randomly chosen individual has a certain property. A propositional probability
statement expresses the probability that a particular individual has a certain
property, or in more general terms the probability that a certain proposition is
true. In Bacchus (1990) these two viewpoints are both developed into logics.
These two logics are different, and the question is whether one can still maintain
that there is consensus about the mathematics of probability, since logic is quite
mathematical.

In general it is very enlightening when philosophically different notions are
investigated formally such as in a logic, so that one can see the differences be-
tween related notions at a level that is difficult to attain to informally. Before
I turn to these logics and the relationship between these I want to make some
comments on the terminology I will use. There are a lot of terms for different
notions of probability available in the literature: objective probabilities, subjec-
tive probabilities, epistemic probabilities, logical probabilities, statistical prob-
abilities, propositional probabilities, personal probabilities, direct probabilities,

77
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indirect probabilities, probability1, probability2, etcetera. All are distinct. I wish
to add one to this list. Bacchus uses the term propositional probability, I think,
mainly for the reason that a propositional probability is a propositional attitude.
The term however can be quite confusing in the context of logic. Bacchus devel-
ops a first-order logic for propositional probabilities. It could be quite confusing
to call this “first-order propositional probability logic”. Especially if one is also
interested in “propositional propositional probability logic”. Therefore I use the
term intensional probability rather than propositional probability. On the one
hand it does not interfere with any other terminology. On the other hand it is in
line with modal approaches to other intensional concepts.

Intensional-with-an-s should not be confused with intentional-with-a-t. In-
tentionality is a term that is often used in the philosophy of mind where it is
interpreted as “aboutness”. Many mental attitudes such as fear, hope, doubt,
belief, anger, intention, and others have this property. If someone hopes that
the weather will be nice, then this hope is about the weather. Intensionality is
an aspect of language, which often occurs in – what Quine calls – referentially
opaque contexts Quine (1980, chapter 8). It is opposite to extensionality. In
first-order logic the meaning of a predicate is defined as the set of objects to
which the predicate applies: its extension. Consequently, if two predicates such
as “has a heart” and “has kidneys” happen to have the same extension, then
their meaning is the same and a sentence where one such predicate occurs must
be equivalent to the sentence where that predicate has been replaced by the other.
The intension or “conceptual content” however is quite different. There are con-
texts where one cannot interchange two terms with the same extension, but with
different intensions. Such a context is said to be intensional and sometimes the
terms that are used are also said to be intensional. (More on intensionality and
extensionality can for instance be found in Gamut (1991, volume 2, page 14,
15).) For terms referring to objects that means that Leibniz’s law (the principle
of indiscernability of identicals), which states that if two terms refer to the same
object one can substitute the one term for the other salva veritate, fails: it is
necessary that nine is greater than seven. It is also the case that the number of
planets is nine. However it is not necessary that the number of planets is greater
than seven. Therefore necessity is considered to be an intensional concept. Other
concepts such as belief, obligation, all have examples where extensionality fails.
They have all been analyzed within modal logic. When probability is viewed as
degree of belief extensionality fails for it just as it does for belief. Therefore it
seems appropriate to call it intensional probability.

Let me give an example to make these notions more clear. Suppose that there
is a lottery, where a winner is drawn from 200 tickets. Let us suppose that there
are one hundred people who have bought tickets: 50 people bought one ticket
and the remaining 50 people bought three tickets each. Now let us focus on the
following sentences.
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1. “The probability that someone wins equals 1
100

.”

2. “The probability that someone wins equals 1
200

.”

3. “The probability that someone wins equals 3
200

.”

4. “The probability that someone wins equals 1.”

Sentence number 1 is true if we consider it to express a statistical probability,
because there is exactly one winner the proportion of winners is 1%.

We can interpret sentence 2, 3, and 4 to be true when we consider them to
express intensional probabilities. As an intensional probability expresses a degree
of belief, we must decide whose degree of belief we are concerned with. In most
contexts it seems fine to take oneself or an ideal rational agent to be that person
(where it is unclear whether these coincide). Usually an external perspective is
chosen. So it is not the perspective of some participant of the lottery or the person
who draws the tickets, but the perspective of someone who is completely ignorant
about the exact situation, and does know the rules of the game (including the
probability distributions).

In first-order modal logic there is a distinction between de re and de dicto
readings of sentences that involve a modality and a quantifier. As an example
Quine (1956) gives the sentence “Ralph believes that someone is a spy”, which
can be read as “Ralph believes that there are spies” and “There is someone
whom Ralph believes to be a spy”. These are the de dicto and the de re reading
respectively. A similar ambiguity is found in the sentences about the lottery when
these are taken to express intensional probabilities. We can give a de re and a de
dicto reading of these sentence. The de re reading is “There is someone such that
the probability that he or she wins equals q”. In that case the sentence is true for
both q = 1

200
and q = 3

200
(i.e. sentence 2 and 3), because there is someone such

that the probability that he or she wins equals 1
200

and there is someone such that
the probability that he or she wins equals 3

200
, and there is nobody for whom the

probability is different from 1
200

or 3
200

. Now if we take the de dicto reading we
find that sentence 4 is true, because it is certain that there is someone who wins.

These different notions of probability are often confused. This is not surpris-
ing since they are related, and sometimes equal. If in the lottery example every
person would have had two tickets, then the statistical probability that someone
wins would have been the same as the de re intensional probability for someone
to win (i.e. 1

100
). Under certain conditions it is possible to derive an intensional

probability from a statistical probability. This is called direct inference and is
studied by Bacchus (1990). It seems rather natural that randomly selecting from
a group of individuals yields possible worlds where in each world a different in-
dividual was selected. But these probabilities also interact in other ways. In
mathematical statistics statements such as “the probability is 0.95 that between
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55% and 65% of all birds fly” can be viewed as intensional probabilities about
statistical probabilities.

In this chapter I want to make clear how intensional probability logic and sta-
tistical probability logic are related. In intensional probability logic probabilities
are assigned to possible worlds. The probability operators are therefore very much
like modal operators. In statistical probability logic probabilities are assigned to
objects. The probability operators are very much like quantifiers. The relation
between these logics therefore is very much like the relation between modal logic
and first-order logic. Modal logic and predicate logic are related by what is called
the standard translation. It was systematically studied by van Benthem (1984).
See Blackburn, de Rijke, and Venema (2001) for a modern textbook introduc-
tion. One can view the set of possible worlds of a Kripke model for modal logic
as the domain of a first-order model. The accessibility relation between possible
worlds can be viewed as a relation between elements of the domain, and proposi-
tional variables that are true or false in a possible world can be viewed as unary
predicates. The language of modal logic can be translated into the language of
first-order logic in such a way that a sentence of modal logic is true in a certain
model iff the translation of that sentence is true in the same model viewed as a
first-order model. So the models are the same mathematically, but the languages
that are interpreted in these models are not the same. The same is the case for
intensional probability logic and statistical probability logic.

Abadi and Halpern (1994) translate between first-order intensional probability
logic and statistical probability logic. In this chapter the focus is on translating
propositional intensional probability logics to statistical probability logics. These
translations make it possible to define fragments of statistical probability logics
that have favourable computational properties.

5.2 Languages and Models

Before any kind of translation is presented it must first be clear which logics we
are talking about. To get started I first present one of the simplest intensional
probability logics: IPL. Then I present the statistical probability logic SPL into
which the former logic can be translated.

5.2.1 The intensional probability logic IPL

The logic presented in this section is one of the simplest intensional probability
logics. It can be found in Halpern (1991), which is based on Nilsson (1986). I call
it IPL. The idea is that there is a set of possible worlds and every possible world
has a certain probability. The probability of a sentence is equal to the sum of the
probabilities of the worlds in which that sentence holds. The language with which
we can express intensional probabilities is simply the language of propositional
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logic with special sentences to express what the probability of sentences is.

Definition 5.1 (Language of IPL)
Let a countable set of propositional variables P be given. The language of IPL

L P
P is given by the following rule in extended Backus-Naur form :

ϕ ::= ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | q1P(ϕ1) + · · ·+ qnP(ϕn) ≥ q

where p ∈ P and q1, . . . , qn, q ∈ Q (no distinction is made between rationals and
the names of rationals). Besides the usual abbreviations, we have the following:

∑n

i=1qiP(ϕi) ≥ q : q1P(ϕ1) + · · ·+ qnP(ϕn) ≥ q

We also use >, <, and ≤ in the usual way. ¤

A sentence of the form P(ϕ) ≥ q can be read as “the probability that ϕ holds is
greater than or equal to q”. This language can be interpreted in models that are
very much like Kripke models for modal logic. The main difference is that there
is no accessibility relation, but a probability function that assigns probabilities
to all possible worlds.

Definition 5.2 (Intensional probability models)
An intensional probability model M for L P

P is a triple (W,P, V ) such that:

1. W , ∅; a set of possible worlds;

2. P : W → [0, 1]; assigns a probability to each world such that

∑

w∈W

P (w) = 1

3. V : P → 2W ; assigns a set of worlds to each propositional variable;

Below we often use the notion of a pointed model (M,w). This is a model with
a designated world, called its point, which is taken to be the actual world. We
also want to generalize the probability function to sets of worlds. If E is a subset
of W , then P (E) =

∑

v∈E P (v). ¤

The semantics for L P
P is standard except for the last clause, which deals with

probability sentences. Note that the truth value of these sentences does not
depend on the world in which the sentence is evaluated. This is because the
probability function is defined for the whole model. Note also that there is no
restriction on the cardinality of the set of worlds, but the restriction on the
probability function is such that the set of worlds for which the probability is
non-zero is at most countable.
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1
2

1
2

Figure 5.1: An intensional probability model for the tossing of a fair coin. The solid
world indicates the outcome is heads. The open node indicates the out-
come is tails.

Definition 5.3 (Semantics for L P
P )

Let a propositional probability modelM = (W,P, V ) for L P
P and a world w ∈ W

be given.

(M,w) 6|= ⊥
(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= (ϕ ∧ ψ) iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |=

∑n

i=1qiP(ϕi) ≥ q iff
∑n

i=1 qiP (ϕi) ≥ q

where P (ϕi) is an abbreviation of P{v ∈ W | (M, v) |= ϕi}. ¤

As an example consider the situation where a fair coin has been tossed but the
outcome has not been observed yet. Thus there are two possibilities: the outcome
is heads or the outcome is tails. Because the coin is fair each of these outcomes
is equally likely. A picture of the intensional probability model for this situation
is given in Figure 5.1. Let p be the propositional variable that expresses that
the outcome is heads. In this model the sentence P(p) = 1

2
is true, whether the

actual world is the world where p holds or whether it is not.

5.2.2 The statistical probability logic SPL

The statistical probability logic SPL is a first-order logic, which views probabilities
as terms. However, these terms do not denote elements of the domain of discourse,
but they denote elements of the set of rational numbers or the reals. To take this
into account the language of SPL has two kinds of terms: object terms and field
terms. Object terms denote elements of the domain of discourse, field terms
denote numbers (in R). By distinguishing these, it is also possible to distinguish
predicates and functions that apply to either object terms or field terms. The
logic SPL can be found in Halpern (1990). It is different from the statistical
probability logic presented in Bacchus (1990) in that predicates and functions are
strictly typed and the set of predicates and functions for field terms is fixed and
has the same interpretation in every model.

Definition 5.4 (Language of SPL)
Let a countable set Xo of object-variables xo1, x

o
2, . . ., a countable set Xf of field-

variables xf1, x
f
2, . . ., a countable set Fn of n-ary object-function symbols fn1 , f

n
2 , . . .
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for each n ∈ N, and a countable set Rn of n-ary object-predicate symbolsRn
1 , R

n
2 , . . .

for each n ∈ N be given, where all these sets are disjoint. Let X = Xo ∪ Xf,
F = ∪n∈NFn, and R = ∪n∈NRn. The language of SPL L P(X,F,R) consisting of
object terms τ o, field terms τ f and formulas ϕ is given by the following rules in
extended Backus-Naur form:

τ o ::= xo | fn(τ o1 , . . . , τ
o
n)

τ f ::= xf | 0 | 1 | τ f1 + τ f2 | τ
f
1 × τ f2 | Px

o
1 . . . x

o
n(ϕ)

ϕ ::= ⊥ | Rn(τ o1 , . . . , τ
o
n) | τ

f
1 = τ f2 | τ

f
1 > τ f2 | ¬ϕ | (ϕ1 ∧ ϕ2) | ∀x

oϕ | ∀xfϕ

where xo ranges over Xo, xf ranges over Xf, f ranges over Fn and R ranges over
Rn. The 0-ary function symbols are called individual constants and the 0-ary
predicate symbols are called propositional variables. Below I omit the various
superscripts and subscripts where it is clear from context what is meant. Besides
the usual abbreviations, natural numbers such as 3 are used as abbreviations for
terms such as (1+ 1+ 1). Formulas such as τ > q, where q is a rational number
(i.e. there are k, n ∈ Z such that q = k

n
) are abbreviations for n× τ > k. ¤

A term of the form Px(ϕ) can be read “the probability of picking an individual x
such that ϕ(x) is true”. The operator Px binds the variable x in ϕ(x). Note that
not all numbers in R are expressible in L P(X,F,R), for there are only countably
many expressions and uncountably many reals.

Definition 5.5 (Statistical probability models)
A statistical probability model for L P(X,F,R) is a triple M = (D, I, µ) such
that:

1. D , ∅ a set of individuals;

2. I: an interpretation function which assigns an n-ary function over D to
every n-ary object-function symbol. It assigns an n-ary relation over D to
every n-ary predicate symbol.

3. µ : D → [0, 1]; assigns a probability to each individual such that

∑

d∈D

µ(d) = 1

Below we often use models with assignments (M, g), where g assigns an element
of the domain to every object variable and an element of R to every field variable.
We also generalize the probability measure to sets of tuples of individuals. If E
is a subset of Dn, then µ(E) =

∑

(d1,...,dn)∈E
µ(d1)× · · · × µ(dn). ¤

The idea behind the probability measure µ is that it gives the probability that an
individual is chosen. In that sense µ is a selection function. This justifies taking
the product measure for the probability of selecting a tuple. The assumption is
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made that selection is done with replacement. Therefore we want Pxy(ϕ) to be
equivalent to Pyx(ϕ).

The language of SPL was defined by simultaneous induction over terms and
formulas. Therefore the semantics are also defined for terms and formulas simul-
taneously.

Definition 5.6 (Semantics for L P(X, F, R))
Let a statistical probability model M = (D, I, µ) for L P(X,F,R) and an assign-
ment g, which assigns an element of the domain to every object variable and an
element of R to every field variable, be given.

[[x]](M,g) = g(x)
[[f(τ1, . . . , τn)]](M,g) = I(f)([[τ1]](M,g), . . . , [[τn]](M,g))
[[0]](M,g) = 0
[[1]](M,g) = 1
[[τ1 + τ2]](M,g) = [[τ1]](M,g) + [[τ2]](M,g)

[[τ1 × τ2]](M,g) = [[τ1]](M,g) × [[τ2]](M,g)

[[Pxo1 . . . x
o
n(ϕ)]](M,g) = µ{(d1, . . . , dn) | (M, g[x1 7→ d1, . . . , xn 7→ dn]) |= ϕ}

(M, g) 6|= ⊥
(M, g) |= R(τ1, . . . , τn) iff ([[τ1]], . . . , [[τn]]) ∈ I(R)
(M, g) |= τ1 = τ2 iff [[τ1]] = [[τ2]]
(M, g) |= τ1 > τ2 iff [[τ1]] > [[τ2]]
(M, g) |= ¬ϕ iff (M, g) 6|= ϕ
(M, g) |= (ϕ ∧ ψ) iff (M, g) |= ϕ and (M, g) |= ψ
(M, g) |= ∀xϕ iff (M, g[x 7→ d]) |= ϕ for all d ∈ D

where g[x 7→ d] is the function that assigns d to x and differs from g at most with
regard to the value of x. ¤

As an example consider a vase with nine marbles: five are black and four are
white. Let us assume that one is equally likely to pick any marble. A picture of
a statistical probability model for this situation is given in Figure 5.2. Suppose
that the interpretation of the unary predicate R is the set of black marbles.
The sentence Px(R(x)) = 5

9
is true in this model regardless the assignment. As

another example the sentence Pxy(R(x)∧¬R(y)) = 20
81

is also true in this model.

5.3 The relation between IPL and SPL

The relation between IPL and SPL is that the language of IPL can be faithfully
translated into the language of SPL. First observe that a model for intensional
probability logic can be seen as a model for statistical probability logic if we take
the set of worlds to be a domain of individuals, D = W , and if we view the
propositional variables of intensional probability logic as unary predicates. For
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Figure 5.2: A statistical probability model for picking a marble from a vase. The
solid nodes represent the black marbles, the open nodes indicate the white
marbles.

every propositional variable p ∈ P there is a unary predicate Rp ∈ R1. The
probability function over sets of worlds is then taken as a probability measure
over the domain: µ = P . The translation tells us that if the original sentence of
intensional probability logic is true in the model at a world, then the translation of
that sentence is true in the statistical probability model with an assignment that
assigns the actual world to the variable with respect to which the sentence was
translated. Thus, the variable with respect to which the sentence is translated
has the role of the actual world.

Definition 5.7 (Translation from L P
P to L P(X, F, R))

The translation t : (Xo ×L P
P )→ L P(X,F,R) is defined inductively as follows:

1. tx(⊥) = ⊥

2. tx(p) = Rp(x)

3. tx(¬ϕ) = ¬tx(ϕ)

4. tx(ϕ ∧ ψ) = tx(ϕ) ∧ tx(ψ)

5. tx(q1P(ϕ1) + · · ·+ qnP(ϕn) ≥ q) =
(q1 ×Px(tx(ϕ1))) + · · ·+ (qn ×Px(tx(ϕn))) ≥ q

where the first argument of t is written as a subscript. ¤

Theorem 5.1
Let M = (W,P, V ) be a intensional probability model for L P

P and let M ′ =
(D, I, µ) be a statistical probability model for L P(X,F,R). Suppose D = W ,
µ = P and for every p ∈ P there is an Rp ∈ R1 such that I(Rp) = V (p). Then:

(M,w) |= ϕ iff (M ′, g[x 7→ w]) |= tx(ϕ)

for all ϕ ∈ L P
P . ¤
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Proof By induction on ϕ. The case for absurdity, propositional variables, nega-
tion and conjunction is trivial. Suppose ϕ is of the form

∑n

i=1qiP(ϕi) ≥ q.

(M,w) |=
∑n

i=1qiP(ϕi) ≥ q
≡ {semantics of intensional probability logic}
∑n

i=1 qiP ({v ∈W | (M, v) |= ϕi}) ≥ q
≡ {induction hypothesis}
∑n

i=1 qiµ({v ∈ W | (M ′, g[x 7→ v]) |= tx(ϕi)}) ≥ q
≡ {semantics of intensional probability logic}
(M ′, g) |=

∑n

i=1 qiPx(tx(ϕi)) ≥ q
≡ {by definition of tx and x does not occur free in Px(tx(ϕi))}
(M ′, g[x 7→ w]) |= tx(

∑n

i=1qiP(ϕi) ≥ q)
¤

So intensional probability models can be seen as a subclass of statistical proba-
bility models, and the language of intensional probability logic can be seen as a
sublanguage of the language of SPL.

5.4 The probabilistic epistemic logic PEL

5.4.1 Language and semantics

There is a natural way to generalize intensional probability logic. When proba-
bility is viewed as degree of belief, then the agent who assigns these degrees of
belief can be made explicit. Thus we enter the realm of multi-agent probability
logics. In Fagin and Halpern (1994) and Halpern and Tuttle (1993) a very nice
general approach to this is given. It also includes epistemic logic, which can be
motivated in two ways. The first is that a distinction must be made between
knowledge and certainty. By certainty I mean that if some agent a is certain of
something, then the probability a assigns to it equals one (notation certa(ϕ)).
Now when a coin is tossed repeatedly, it can be shown that the probability that
a certain infinite sequence of coin tosses occurs is smaller than any positive ratio-
nal number. Therefore every infinite sequence of coin tosses has probability zero.
Hence it is certain for any infinite sequence that it will not occur. For example
it is certain that an infinite sequence of heads will not occur. On the other hand
one does not know that an infinite sequence of heads will not occur, because that
it would occur happens to be consistent with all the information given. Therefore
it is appropriate to distinguish certainty and knowledge at a formal level, even
though this only matters within infinite contexts.

Secondly one might want to model ignorance about probabilities. This typ-
ically occurs when dealing with de re probabilities. Suppose for example that
there are two coins. One is fair, and one lands heads one third of the times. Now
suppose that an agent cannot distinguish the two coins and one of the coins is
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tossed, and she knows that it is one of those coins, but not which one. What is
the probability according to her that the coin lands heads? If one reads this as
a de re probability, then it seems natural to say that she does not know whether
the probability of heads is one half or one third. Note that these two de re prob-
abilities yield a unique statistical probability. Picking one of the coins at random
and tossing it yields the statistical probability of the coin landing heads, which, if
the coins are selected according to a uniform probability distribution, equals 5

12
.

In order to capture the de re probabilities one needs to be able to express that
an agent is ignorant about probabilities. Therefore one needs to add epistemic
operators. The probabilistic epistemic logic presented in this section is called
PEL. It will also play an important role in chapter 6.

Definition 5.8 (Language of PEL)
Let a countable set of propositional variables P and a finite set of agents A
be given. The language of PEL L P

PA is given by the following rule in extended
Backus-Naur form :

ϕ ::= ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | ¤aϕ | q1Pa(ϕ1) + · · ·+ qnPa(ϕn) ≥ q

where p ∈ P , a ∈ A and q1, . . . , qk and q are rationals. Again, the usual abbrevi-
ations are used. ¤

A sentence of the form Pa(ϕ) ≥ q should be read as “the probability agent a
assigns to ϕ is greater than or equal to q”. Note that in this language higher-
order probability statements can be expressed, such as Pa(Pb(ϕ) ≥ q1) ≥ q2. This
expresses that the probability a assigns to the sentence that the probability b
assigns to ϕ is greater or equal to q1, is greater or equal to q2. This is higher-
order in the sense that it expresses what information an agent has about the
information of an(other) agent, completely analogous to the case in epistemic
logic where sentences such as ¤a¤bp express that a has information about b’s
information.

This language is interpreted in probabilistic epistemic models. These are
epistemic models together with a function P that assigns a probability function
to each agent in each world. Fagin and Halpern define probabilistic epistemic
models. For those readers familiar with probability theory, in their probabilistic
epistemic models a probability space is assigned to each agent in each world. In
this chapter I limit this to models where the σ-algebra of measurable sets is always
the powerset of the sample space. Therefore the definition is a bit simpler. Most
of the results in this chapter and the next however equally apply to the more
general notion of probabilistic epistemic models.

Definition 5.9 (Probabilistic epistemic models)
A probabilistic epistemic modelM for L P

PA is a quadruple (W,R, V, P ) such that:

1. W , ∅; a set of possible worlds;
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2. R : A → 2W×W ; assigns an accessibility relation to each agent;

3. V : P → 2W ; assigns a set of worlds to each propositional variable;

4. P : (A×W )→ (W ⇀ [0, 1]); such that

∀a ∈ A∀w ∈ W
∑

v∈dom(P (a,w))

P (a, w)(v) = 1

assigns a probability function to each agent at each world such that its
domain is a non-empty subset of the set of possible worlds. (⇀ means
that it is a partial function; some worlds may not be in the domain of the
function.) ¤

We saw that in Fagin and Halpern (1994) more general models are presented
where a probability space is assigned to each agent and each world. The prob-
ability functions of the definition above are a special case of these. They are a
lot simpler, and in this chapter there is no need for the full generality of proba-
bility spaces. The main difference with intensional probability models is that the
probability functions assigned to the agents need not be the same in the whole
model, they can differ from world to world. Consequently, the question whether
a probability sentence holds, does depend on the world in which the sentence is
evaluated. Note that definition 5.9 leaves the connection between the epistemic
accessibility relation and the probability function completely open.

Definition 5.10 (Semantics for L P
PA)

Let a probabilistic epistemic modelM = (W,R, V, P ) for L P
PA and a world w ∈ W

be given.

(M,w) 6|= ⊥
(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= (ϕ ∧ ψ) iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= ¤aϕ iff (M, v) |= ϕ for all v such that wR(a)v
(M,w) |=

∑n

i=1qiPa(ϕi) ≥ q iff
∑n

i=1 qiP (a, w)(ϕi) ≥ q

where P (a, w)(ϕi) = P (a, w)({v ∈ dom(P (a, w)) | (M, v) |= ϕi}). ¤

5.4.2 Sample space assignments

Before we continue with the general case, let us first focus on an interesting
subclass of probabilistic epistemic models which I will explain now: those gen-
erated by a sample space assignment and a prior probability distribution. The
idea for models such as these is introduced in Halpern and Tuttle (1993) in the
context of multi-agent systems (see section 4.2). A multi-agent system is a non-
probabilistic system. A probability distribution can be defined on the runs of the
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system. This together with a sample space assignment determines the probabil-
ities the agents assign to points in the system (a run at a certain time). In the
context of probabilistic epistemic models a sample space assignment is a function
S : A × W → 2W . Given a prior probability distribution P prior on the set of
worlds, the domain of the probability function P for each agent in each world is
S(a, w). The probability function for elements of the domain is then defined as:

P (a, w)(v) =
P prior(v)

P prior(S(a, w))

In this way a probabilistic model is acquired iff P prior(S(a, w)) > 0 for every
agent a and every world w. We can view such a model as a statistical probability
model in the following way. The domain D is the set of worlds W . For every
propositional variable p there is a unary predicate Rp such that I(Rp) = V (p).
For every agent a there is a binary relation symbol Ra for the accessibility relation
such that I(Ra) = R(a). For every agent a there is also a binary relation symbol
Sa for the sample space such that I(Sa) = {(w, v) | v ∈ S(a, w)}. And we take
µ = P prior.

Now we can give the following translation for the language of PEL. In this
definition conditional probabilities are used. Conditional probabilities can be
calculated using Kolmogorov’s definition Kolmogorov (1956):

P(X|Y ) =
P(X ∩ Y )

P(Y )
if P(Y ) > 0

In the language of PEL sentences with conditional probabilities can be seen as
abbreviations as will be shown below.

Definition 5.11 (Translation from L P
PA to L P(X, F, R))

The translation t : (Xo ×L P
PA)→ L P(X,F,R) is defined as follows:

1. tx(⊥) = ⊥

2. tx(p) = Rp(x)

3. tx(¬ϕ) = ¬tx(ϕ)

4. tx(ϕ ∧ ψ) = tx(ϕ) ∧ tx(ψ)

5. tx(¤aϕ) = ∀y(Ra(x, y)→ ty(ϕ))

6. tx(q1Pa(ϕ1) + · · ·+ qnPa(ϕn) ≥ q) =
q1Py(ty(ϕ1)|Sa(x, y)) + · · ·+ qnPy(ty(ϕn)|Sa(x, y)) ≥ q

where the last formula is an abbreviation for a much longer formula without condi-
tional probabilities. For example q1Py(ty(ϕ1)|Sa(x, y))+ q2Py(ty(ϕ2)|Sa(x, y)) ≥
q is an abbreviation of

(q1 ×Py(ty(ϕ1) ∧ Sa(x, y))) + (q2 ×Py(ty(ϕ2) ∧ Sa(x, y))) ≥ q ×Py(Sa(x, y))
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where there are no conditional probabilities. ¤

Note the resemblance between the clauses for the individual epistemic operators
tx(¤aϕ):

∀y(Ra(x, y)→ ty(ϕ))

versus the probability operators tx(Pa(ϕ1) ≥ q):

Py(ty(ϕ)|Sa(x, y)) ≥ q

It is quite tempting to think of the probability operator as a universal quantifier
and conditional probability as an implication.When we look at the dual cases
tx( ¤aϕ):

∃y(Ra(x, y) ∧ ty(ϕ))

versus tx(¬(Pa(ϕ1) ≥ q)):

Py(ty(ϕ)|Sa(x, y)) < q

we see that the probability operator is also like an existential quantifier and
conditional probability is like a conjunction.

Note also that now the variable with respect to which a sentence is translated
is always free in the resulting sentence, contrary to definition 5.7.

Theorem 5.2
Let M = (W,R, V, P ) be a probabilistic epistemic model for L P

PA based on a
sample space assignment S, and a prior probability distribution P prior. Let M =
(D, I, µ) be a statistical probability model for L P(X,F,R). Suppose D =W ; for
every propositional variable p there is a unary predicate Rp such that I(Rp) =
v(p); for every agent a there is a binary relation symbol Ra such that I(Ra) =
R(a); for every agent a there is a binary relation symbol Sa such that I(Sa) =
{(w, v) | v ∈ S(a, w)}. And suppose µ = P prior. Then

(M,w) |= ϕ iff (M, g[x 7→ w]) |= tx(ϕ)

for all ϕ ∈ L P
PA. ¤

The proof is very similar to the proof of Theorem 5.1.
This result however holds only for the class of models where there is a common

prior probability distribution.

5.4.3 The generalized statistical probability logic GSPL

The question is whether we can view every probabilistic epistemic models as a
statistical probability model. The answer is no. In order to translate the language
of PEL into the language of a statistical probability logic we need a more general
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statistical probability logic than SPL. In this section a new generalized statistical
probability logic GSPL is presented. In probabilistic epistemic models a proba-
bility function is assigned to each agent and world. Essentially this probability
function says what probability the agent assigns to some world that she is in a
particular world. If we want to have a similar approach to this as we gave for
SPL, we want to view the set of worlds of the probabilistic epistemic model as the
domain of a statistical probability model. But now the probability of selecting
an element d2 after first selecting an element d1 need not be the same as the
probability of selecting d2 first. Thus we need a more general approach to selec-
tion functions. A selection function determines the probability that an element
is selected from the domain. There are a lot of choices to be made. For example
is the selection made with replacement or without? If it is without replacement
then the selection is not independent of any previous selection. In general we
have a protocol that determines the probabilities of selecting elements from the
domain, possibly dependent upon previous selection. Let us associate an agent
with every such protocol.

Definition 5.12 (Language of GSPL)
Let a countable set Xo of object-variables xo1, x

o
2, . . ., a countable set Xf of field-

variables xf1, x
f
2, . . ., a countable set Fn of n-ary object-function symbols fn1 , f

n
2 , . . .

for each n ∈ N, a countable set Rn of n-ary object-predicate symbols Rn
1 , R

n
2 , . . .

for each n ∈ N, and a finite set of agents A be given, where all these sets are
disjoint. Let X = Xo ∪ Xf, F = ∪n∈NFn, and R = ∪n∈NRn. The language of GSPL

L P(X,F,R,A) consisting of object terms τ o, field terms τ f and formulas ϕ is
given by the following rules in extended Backus-Naur form:

τ o ::= xo | f(τ o1 , . . . , τ
o
n)

τ f ::= xf | 0 | 1 | τ f1 + τ f2 | τ
f
1 × τ f2 | Pax

o
1 . . . x

o
n(ϕ)

ϕ ::= ⊥ | R(τ o1 , . . . , τ
o
n) | τ

f
1 = τ f2 | τ

f
1 > τ f2 | ¬ϕ | (ϕ1 ∧ ϕ2) | ∀x

oϕ | ∀xfϕ

where xo ranges over Xo, xf ranges over Xf, f ranges over Fn, R ranges over Rn,
and a ranges over A. ¤

The only difference with the language of SPL L P(X,F,R) provided in defini-
tion 5.4 is that now the probability operators have a subscript, which indicates
which agent is performing the selection. So now a term of the form Pax1 . . . xn(ϕ)
can be read as the probability that the sequence x1 . . . xn randomly selected by
agent a satisfies ϕ. In this case we do not want Paxy(ϕ) to be equivalent to
Payx(ϕ), because earlier choices affect future choices.

Definition 5.13 (Generalized statistical probability models)
A statistical probability model for L P(X,F,R,A) is a triple M = (D, I, µ) such
that:

1. D , ∅ a set of individuals;
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2. I: an interpretation function which assigns an n-ary function over D to
every n-ary object-function symbol. It assigns an n-ary relation over D to
every n-ary predicate symbol.

3. µ : (A × N) → (Dn → [0, 1]); assigns a probability to each element of
Dn for each agent a and each n ∈ N, such that for each n ∈ N and each
(d1, . . . dn−1)

∑

d∈D

µ(a, n)(d1, . . . dn−1, d) = 1

Below we often use models with assignments (M, g), where g assigns an element
of the domain to every object variable and an element of R to every field variable.
We also want to generalize the measure µ in this case. If E is a subset of Dn,
then µ(a, n)(E) =

∑

(d1,...,dn)∈E
µ(a, 1)(d1)× · · · × µ(a, n)(d1, . . . , dn). This yields

a probability function over Dn. ¤

We can see that this is a generalization of the models given in Definition 5.5. In
that case there was just one function assigning probabilities to the domain that
was generalized to tuples by taking the product measure. Here we can do this by
taking one agent where all the probability measures are independent of previous
choices. The definition of the semantics is equal to Definition 5.6, but now in the
clause

[[Pax
o
1 . . . x

o
n(ϕ)]](M,g) = µ(a){(d1, . . . , dn) | (M, g[x1 7→ d1, . . . , xn 7→ dn]) |= ϕ}

the function µ is interpreted differently, and an agent must be specified.
Let me give an example of how these semantics can be used to analyze simple

problems of probability. This is an example adapted from one of the puzzle books
by Smullyan (1997). There is a cabinet with three drawers. Each contains two
jewels. One drawer contains two rubies. One drawer contains two emeralds. One
drawer contains one emerald and one ruby. Now an agent a picks a drawer at
random and picks a jewel from that drawer at random. Then he picks the other
jewel from the same drawer. We can make a generalized statistical probability
model for this. As the domain D we take the six jewels {j1, . . . , j6}. We have
two predicates R1 and R2 such that I(R1) = {j1, j2, j3} (the rubies) and I(R2) =
{j4, j5, j6} (the emeralds). The probability of selecting any one of these initially
is the same: thus µ(a, 1)(ji) =

1
6
. However the probabilities of selecting the next

jewel are not all the same. Let us say that the drawers contain {j1, j2}, {j3, j4},
and {j5, j6}. Then µ(a, 2) should be defined as follows µ(a, 2)(j1, j2) = 1 and
µ(a, 2)(j1, jk) = 0 for jk , j2. Similarly µ(a, 2)(j2, j1) = 1 and µ(a, 2)(j2, jk) = 0
for jk , j1. And we can define µ(a, 2) analogously for the other drawers. We leave
µ(a, 3) and higher-probability measure functions undefined. Now we can answer
questions such as: what is the probability of picking two rubies?

Paxy(R1(x) ∧R1(y))
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According to the semantics, the interpretation of this term is equal to

µ(a, 2){(d1, d2) | d1 ∈ I(R1) and d2 ∈ I(R1)}

This is equal to µ(a, 2){j1, j2, j3}×{j1, j2, j3}. However µ(a, 2) equals 1 for (j1, j2)
and (j2, j1) and is zero for the other pairs. Therefore these are the only factors
that count. And so we multiply µ(a, 1)(j1) = 1

6
with 1 and add µ(a, 1)(j2) =

1
6

multiplied with 1. This yields 1
3
.

The question posed in the puzzle is what the probability is of picking another
ruby given that you initially picked a ruby, i.e.

Paxy(R1(y)|R1(x))

By defining conditional probability in the standard way we get that the interpre-
tation of this term is

µ(a, 2){(d1, d2) | d1 ∈ I(R1), d2 ∈ I(R1)}

µ(a, 2){(d1, d2) | d1 ∈ I(R1)}
=

2

3

Note that in the denominator d2 is vacuous. This corresponds to the validity

Pax1 . . . xny(ϕ) = Pax1 . . . xn(ϕ)

if y does not occur free in ϕ.

Now a probabilistic epistemic model can simply be seen as agents selecting
worlds.

Definition 5.14 (Translation from L P
PA to L P(X, F, R, A))

The translation t : L P
PA → L P(X,F,R,A) is defined as follows:

1. tx(⊥) = ⊥

2. tx(p) = Rp(x)

3. tx(¬ϕ) = ¬tx(ϕ)

4. tx(ϕ ∧ ψ) = tx(ϕ) ∧ tx(ψ)

5. tx(¤aϕ) = ∀y(Ra(x, y)→ ty(ϕ))

6. tx(q1Pa(ϕ1) + · · ·+ qnPa(ϕn) ≥ q) =
onzichtbaar q1Payz(tz(ϕ1)|x = y) + · · ·+ qnPayz(tz(ϕn)|x = y) ≥ q

where again the first argument is written as a subscript. ¤
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The last clause again is an abbreviation of a much longer formula without condi-
tional probability. The basic idea is best explained in a simple case where n = 1

tx(Pa(ϕ) ≥ q) = Payz(tz(ϕ)|x = y) ≥ q = Payz(tz(ϕ) ∧ x = y) ≥ q ×Pay(x = y)

The identity x = y is used such that x is still free in the translation. The analogy
between the similarity of the translation of ¤aϕ and Pn(ϕ) ≥ q is a little more
difficult to see than in the case where models were generated by a sample space
assignment and a prior probability distribution presented in section 5.4.2, because
the sample space assignment is no longer actually present, but hidden in the order
of the variables. The idea of the translation is that we need the probability that
the agent will select a ϕ world given that the actual world was first selected. To
view a probabilistic epistemic model as a generalized statistical probability model
we need the following:

1. D =W

2. for every p ∈ P there is a Rp ∈ R1 such that I(Rp) = V (p)

3. for every agent a ∈ A there is a Ra ∈ R2 such that I(Ra) = R(a)

4. µ(a, 1)(w) , 0 for all a ∈ A and all w ∈W

5. µ(a, 2)(w, v) = P (a, w, v) for all a ∈ A and all w, v ∈ W

The requirement on µ(a, 1) ensures that there are no divisions by zero. This
requirement does affect the generality of the theorem stated below, because to be
able to satisfy the requirement the set of worlds W must be countable. Now we
can state the familiar theorem.

Theorem 5.3
Let M = (W,R, V, P ) be a probabilistic epistemic model for L P

PA and let M =
(D, I, µ) be a generalized statistical probability model for L P(X,F,R,A). Sup-
pose the requirements stated above are satisfied. Then

(M,w) |= ϕ iff (M, g[x 7→ w]) |= tx(ϕ)

for all ϕ ∈ L P
P,A. ¤

Again the proof is very similar to the proof of theorem 5.1.

5.5 Toward correspondence theory for probabil-

ity logics

In the case of modal logic and predicate logic the standard translation has given
rise to an area of research known as correspondence theory: a systematic study of



5.5. Toward correspondence theory for probability logics 95

the expressiveness of modal logic and first-order logic. In this section I sketch how
these theorems can be used to do a similar investigation for probability logics. In
Abadi and Halpern (1994) the relation between first-order intensional probability
logic and statistical probability logic is investigated. The language of first-order
intensional probability logic can also be translated into the language of statistical
probability logic. Abadi and Halpern show that the reverse is also possible, which
is quite interesting. These translations are also used to investigate the expressive
power of these logics.

5.5.1 Correspondences

In probabilistic epistemic logics there are a number of axioms that are intuitively
appealing. In Fagin and Halpern (1994) a number of these axioms are discussed. If
one takes probability to represent the degree of belief it seems natural to introduce
axioms for probability that also hold for belief. Let us for simplicity consider the
class of models that are generated by a prior probability distribution and a sample
space assignment. What is the probabilistic version of axiom D (¤aϕ → ¤aϕ)?
One might expect it is Pa(ϕ) ≥ q → ¬Pa(¬ϕ) ≥ q. This axiom however does
not hold in any probabilistic epistemic model. Take ϕ = > and q = 0. Now the
probability of > is definitely greater that 0, however the probability of ⊥ is not
less than 0. So we have to consider another version of D. In the case of epistemic
logic the axiom says that the accessibility relation is serial. In the context of
probabilistic epistemic logic seriality means that the domain of the probability
function is non-empty, but this is automatically the case. In fact we have to
consider the following formulation of the axiom in terms of certainty

(PD) certaϕ→ ¬certa¬ϕ

Let us see what the translation of this axiom is. We want it to hold in all the
worlds so we add a universal quantifier:

∀x(Py(ty(ϕ)∧ Sa(x, y))) = Py(Sa(x, y))→ Py(¬ty(ϕ) ∧ Sa(x, y)) , Py(Sa(x, y))

This should really be read as a formula where there is an implicit second order
quantification over ϕ. In that case the formula holds in a statistical probability
model iff ∀xPy(Sa(x, y)) > 0, which means that the sample space assigned to a
has a probability greater than zero, and therefore is non-empty. The lesson is
that we have to be careful how we render the axioms for belief in a probabilistic
context. The epistemic operators can not simply be replaced by probabilistic
operators.

We can also see this with the axioms corresponding to positive and negative
introspection. In epistemic logic these correspond respectively to transitivity and
euclidicity of the accessibility relation. In the light of the analogue of axiom
D one might want to formulate these as certaϕ → certacertaϕ and ¬certaϕ →



96 Chapter 5. Intensional and statistical probability

certa¬certaϕ. These axioms do indeed correspond to the property that the sample
space assignment is transitive and euclidean, which can be seen by translating
these axioms. However in probabilistic epistemic logic in general these axioms
do not represent positive and negative introspection. Although it does ensure
that the sample space assigned to a world is the same for all the worlds in its
sample space, the probabilities assigned to these worlds may vary wildly. The
point about introspection is that an agent is fully aware of his own beliefs. This
is better expressed by the following two axioms, because these express that the
agents know their degree of their own beliefs.

(P4)
∑n

i=1qiPa(ϕi) ≥ q → Pa(
∑n

i=1qiPa(ϕi) ≥ q) = 1

(P5) ¬
∑n

i=1qiPa(ϕi) ≥ q → Pa(¬
∑n

i=1qiPa(ϕi) ≥ q) = 1

These together are called UNIF in Fagin and Halpern (1994). UNIF implies that
the probabilities assigned to all the worlds in the sample space are the same for
all the worlds in the sample space.

As was said earlier in the general case there is no connection between the
epistemic accessibility relation of an agent and the probability function assigned
to an agent. If one wants to impose a connection, one of the natural requirements
is expressed by the following axiom:

CONS ¤aϕ→ Pa(ϕ) = 1

The name for this axiom is also introduced in Fagin and Halpern (1994). It says
that knowledge implies certainty. This axiom is valid on a frame iff the domain
of the probability function assigned to a is a subset of the set of worlds accessible
through the epistemic accessibility relation of the agent: domP (a, w) ⊆ {v |
wR(a)v} for all w ∈ W . This can easily be seen by the translation of the axiom
into statistical probability logic.

∀x(y(Ra(x, y)→ ty(ϕ))→ Py(ty(ϕ)|Sa(x, y)) = 1)

This must be seen as a universal second order formula, where tx(ϕ) is a free
variable over relations. We can choose Ra(x, y). Then the formula is equivalent
to:

∀x(Py(Ra(x, y)|Sa(x, y)) = 1)

which is equivalent to ∀xy(Sa(x, y)→ Ra(x, y)).
It is nice to see these correspondences as they give a better picture of the

notions of probability involved and the relationship between intensional and sta-
tistical probability. One of the interesting open questions is whether it is possible
to express that the agents have a common prior, which was assumed for an inter-
esting subclass of probabilistic epistemic models. A common prior is also often
assumed in game theory Aumann (1976).
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5.5.2 Complexity

One of the main differences between intensional probability logics and statistical
probability logics is that the former are usually decidable whereas the latter are
not. In Fagin, Halpern, and Megiddo (1990) and Fagin and Halpern (1994) a
lot of interesting results are presented about the complexity of the decidability
problems for intensional probability logics. It can be seen that the complexity of
propositional intensional probability logic is very much like propositional logic,
and the complexity of probabilistic epistemic logic is very much like modal logic.
Both are decidable, but for most decision problems it is not computationally
feasible to decide the problem.

The complexity of statistical probability logic is very much like first-order
logic. In Abadi and Halpern (1994) the complexity issues regarding statistical
probability logic and first-order intensional probability logic are investigated. One
can translate first-order intensional probability logic into statistical probability
logic, but it is also possible to do so the other way around. The complexity of
these logics is also investigated in Abadi and Halpern (1994). In short, statistical
probability logic is in general undecidable. It is an even worse case than first-order
logic, where the set of validities is recursively enumerable, whereas this is not the
case here. I suspect that the situation might again be worse for GSPL. When
the class of models is restricted to rational numbers, then it gets a little bet-
ter. And as with monadic first-order logic, monadic statistical probability logic
is decidable. One of the interesting questions that arises when viewing these re-
sults is which fragment of statistical probability logic still has nice computational
properties. It seems that the translations presented in this chapter could yield
something interesting since the translation of probabilistic epistemic logic does
contain binary predicate symbols and equality, although the models are restricted
to rational numbers. The notion of bisimulation for probabilistic epistemic logic
presented in section 6.5 might also shed some light on these issues.

5.6 Conclusion

In this chapter the relationship between intensional probability and statistical
probability was investigated. In intensional probability logic probabilities are as-
signed to possible worlds, in statistical probability logic probabilities are assigned
to individuals. When worlds are taken to be individuals one can translate the lan-
guage of intensional probability logic into the language of statistical probability
logic in such a way that truth is preserved. This makes it possible to investigate
the expressive power and complexity of these logics.





Chapter 6

Probabilistic dynamic epistemic logic

6.1 Introduction

Epistemic logic is a modal logic used to reason about information, including
higher-order information (see chapter 2). Dynamic epistemic logics are extensions
of epistemic logic which can be used to reason about information and information
change (see chapter 4). In probability theory Bayesian updating can be seen as a
model for information change, but higher-order information is overlooked. This
is a problem when one wants to formalize inferences about changing probabilistic
higher-order information.

In this chapter I combine the probabilistic logic PEL (see section 5.4) with
the dynamic epistemic logic DEL (see section 4.3.1) yielding a new logic, PDEL,
that deals with changing probabilities and takes higher-order information into
account. The semantics of PDEL are introduced in section 6.3. In section 6.4 I
give a method for making models for specific situations and I provide a sound and
complete proof system for PDEL. Bisimulation for probabilistic epistemic models
is introduced in section 6.5. In section 6.6 some examples of application are
discussed. Finally, in section 6.7 some conclusions are drawn and some directions
for further research are indicated. But before that I want to make clear why I
develop PDEL in the first place.

6.2 Motivation

In this section I will make clear why a combination of dynamic epistemic logic
and probability theory is worthwhile and what the scope of this chapter is.

Just as in the case of epistemic logic, in probability theory the matter of
incorporating newly acquired information has been investigated. In probability
theory this is done by taking posterior probabilities instead of prior probabilities,
i.e. the conditional probabilities given the new information, which is also called

99



100 Chapter 6. Probabilistic dynamic epistemic logic

Bayesian updating. Posterior probabilities can be calculated using Kolmogorov’s
definition (see page 89). The idea is that P(X|Y ) gives one the probability of X
after one gets the information that Y is the case. So posterior probability can be
used to model information change.

Although the distinction between improbable and impossible events and ig-
norance about probabilities make PEL an appealing system for reasoning about
probability, the main motivation for using PEL as the basis for PDEL is that
probabilistic higher-order information can be studied in PEL, and that by mak-
ing a dynamic version of PEL we can study probabilistic higher-order information
change. It is interesting to note that both in dynamic epistemic logic and in
probability theory, the incorporation of new information is studied. But they
seem to come up with different answers to how this is to be done properly. The
difference is that in dynamic epistemic logic more kinds of information change
are distinguished that explicitly take higher-order information into account. The
intriguing question that pops up is what these two fields could learn from each
other with respect to information change.

Fortunately a formal connection between the two areas has been established
(see Bacchus (1990) and Halpern (1991) for details), showing that probabilistic
logic can be seen as an extension of (non-dynamic) epistemic logic. The language
of epistemic logic can be seen as a fragment of the language of probabilistic logic.
This is done by relating belief and certainty. Standard probability theory can be
seen as an extension of KD45. Now let us focus on certainty and conditional
certainty: P(ϕ) = 1, which is abbreviated by cert(ϕ) and P(ϕ | ψ) = 1, which
is abbreviated by cert(ϕ | ψ). We get the following sentence for conditional
certainty:

P(ψ) > 0→ (cert(ϕ | ψ)↔ cert(ψ → ϕ))

The consequent of this implication is very much like the Knowledge-Update ax-
iom (also called the generalized Ramsey axiom) of dynamic epistemic logic (see
figure 6.2 on page 109).

[ψ]¤ϕ↔ ¤(ψ → [ψ]ϕ)

The only difference, apart from notation (see section 6.3 for the definitions),
is that instead of ψ → ϕ in the case of probabilistic logic, we have ψ → [ψ]ϕ
in dynamic epistemic logic. This crucial difference is due to a difference in per-
spective on information change: in dynamic epistemic logic learning that ψ can
change the truth value of ϕ. In probabilistic logic this is assumed not to be the
case. This difference in perspective only becomes apparent when one is inter-
ested in higher-order information. Assuming that learning something does not
change facts (i.e. truth values of propositional variables), the truth value of ϕ can
only change if an agent learns that ψ, if ϕ somehow involves a statement about
the information the agent has. In this chapter I develop a probabilistic dynamic
epistemic logic that does take into account that the truth value of sentences can
change due to information change. To keep this chapter simple I limit updates
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to public announcements, i.e. all agents simultaneously get the same information
it being common knowledge that they receive it. This simple dynamic epistemic
logic is introduced in Gerbrandy and Groeneveld (1997) and I will call it DEL in
this chapter. I think that probability theory could greatly benefit from the theory
of information change provided by dynamic epistemic logic.

6.3 Language and semantics

We extend the language of PEL with update operators from DEL, thus obtaining
a new language for reasoning about probability and information change.

Definition 6.1 (Language of PDEL)
Let a countable set of propositional variables P and a finite set of agents A be
given. The language of PDEL L

P[·]
PA is given by the following rule in extended

Backus-Naur form :

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ¤aϕ | [ϕ1]ϕ2 | q1Pa(ϕ1) + · · ·+ qnPa(ϕn) ≥ q

where p ∈ P , a ∈ A and q1, . . . , qk and q are rationals. Besides the usual abbre-
viations, we have the following.

∑n

i=1qiPa(ϕi) ≥ q : q1Pa(ϕ1) + · · ·+ qnPa(ϕn) ≥ q

q1Pa(ϕ) ≥ q2Pa(ψ) : q1Pa(ϕ)− q2Pa(ψ)) ≥ 0
∑n

i=1qiPa(ϕi) ≤ q :
∑n

i=1 − qiPa(ϕi) ≥ −q
∑n

i=1qiPa(ϕi) < q : ¬(
∑n

i=1qiPa(ϕi) ≥ q)
∑n

i=1qiPa(ϕi) > q : ¬(
∑n

i=1qiPa(ϕi) ≤ q)
∑n

i=1qiPa(ϕi) = q : (
∑n

i=1qiPa(ϕi) ≤ q) ∧ (
∑n

i=1qiPa(ϕi) ≥ q)

The language of PEL L P
PA consists of those sentences of L

P[·]
PA in which no update

operators occur. ¤

A sentence of the form [ϕ]ψ can be read as “ψ is the case, after everyone simul-
taneously and commonly learns that ϕ is the case”. In order to interpret this
language we have to give two definitions simultaneously, i.e. a truth-definition
and a definition of updated models. These definitions are interdependent, but
not circular.

Definition 6.2 (Semantics for L
P[·]
PA )

Let a probabilistic epistemic model M = (W,R, V, P ) and a world w ∈ W be
given (see section 5.4).

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= (ϕ ∧ ψ) iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= ¤aϕ iff (M, v) |= ϕ for all v such that wR(a)v
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(M,w) |= [ϕ]ψ iff (Mϕ, wϕ) |= ψ (see definition 6.3)
(M,w) |=

∑n

i=1qiPa(ϕi) ≥ q iff
∑n

i=1 qiP (a, w)(ϕi) ≥ q

where P (a, w)(ϕi) = P (a, w)({v ∈ dom(P (a, w)) | (M, v) |= ϕi}). ¤

Definition 6.3 (Semantics for updates)
Let a probabilistic epistemic model M = (W,R, V, P ) and a world w ∈ W be
given. The updated model Mϕ = (Wϕ, Rϕ, Vϕ, Pϕ) is defined as follows.

Wϕ = W
Rϕ(a) = {(u, v) | (u, v) ∈ R(a) and (M, v) |= ϕ}
Vϕ = V

dom(Pϕ(a, u)) =

{

dom(P (a, u)) if P (a, u)(ϕ) = 0
{v ∈ dom(P (a, u)) | (M, v) |= ϕ} otherwise

Pϕ(a, u)(v) =















P (a, u)(v) if P (a, u)(ϕ) = 0

P (a, u)(v)

P (a, u)(ϕ)
otherwise given that v ∈ dom(Pϕ(a, u))

For a pointed model (M,w) the updated model is (Mϕ, w) (i.e. wϕ = w). ¤

Announcing ϕ yields an updated model which is a copy of the original model.
It is not an identical copy of the original model, for the accessibility relations
and the probability functions differ. Worlds where ϕ does not hold are no longer
accessible to any of the agents. The probability functions are treated similarly to
accessibility relations. Worlds where ϕ does not hold are no longer in the domain
of the function. Note that the announcement of ϕ does not presume that ϕ is
actually true. Consequently an update can always be executed1, i.e. it holds in
general that 〈ϕ〉>.

However an update only changes the probability functions of those agents who
assign non-zero probability to ϕ. There are some approaches in probability theory
for updating with sentences that have probability zero. The most common one
is to leave it undefined. If we would take this approach in case of probabilistic
logic, there would be truth value gaps, which would make it very difficult to
give a complete proof system. Another approach is to assign probability zero
to everything after an update with a sentence that has probability zero. This
approach is found in Bacchus (1990), but also in probability theory, for example
in Prohorov and Rozanov (1969). This would seem to go against the laws of
modal logic; after learning a sentence with probability zero, even the truth would
be assigned probability zero. By analogy to ex falso sequitur quodlibet it would be
more appropriate to assign probability one to everything in that case. This on the
other hand would go against the laws of probability theory. So both choices would

1There are other dynamic epistemic logics which limit public announcements to truthful

public announcements where only true announcements can be made.
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make it difficult to provide a complete proof system. There are more advanced
approaches to updating with sentences with probability zero (see Halpern (2001)
for an overview of the different approaches and references). All these approaches
handle updating with sentences that have a non-empty set of worlds where that
sentence holds. However updating with a sentence that does not hold in any
world such as the absurdity remains a problem, and would still result in truth
value gaps.

Dynamic epistemic logic cannot deal well with updates with inconsistent in-
formation as well. Typically, the accessibility relations become empty after an
inconsistent update. A method of revision such as it is studied in belief revision
is not available here. In PDEL too, we must also deal with updates with infor-
mation that has probability zero in a way that is not intuitively appealing. The
approach given in definition 6.3 is simply to ignore the information. This is to
ensure that one does not divide by zero. There is no compelling philosophical
reason for this choice, except maybe that the agent would just not believe the
information received, and would therefore leave things as they were. This makes
the proof system relatively simple.

Lemma 6.1
If (M,w) is a probabilistic epistemic model, then (Mϕ, wϕ) is a probabilistic
epistemic model too. ¤

Proof The only difficulty lies in whether Pϕ assigns a probability function to
each agent in each world. Take a world u and an agent a. If P (a, u)(ϕ) = 0, then
Pϕ(a, u) = P (a, u) and therefore it is a probability function. If P (a, u)(ϕ) , 0,
then the domain of Pϕ(a, u) is exactly the set of worlds in the original domain
where ϕ holds, therefore:
∑

v∈dom(Pϕ(a,u))
Pϕ(a, u)(v)

={definition of the domain}
∑

v∈dom(P (a,u)) and (M,v)|=ϕ Pϕ(a, u)(v)

={definition of the probability}
∑

v∈dom(P (a,u)) and (M,v)|=ϕ
P (a,u)(v)
P (a,u)(ϕ)

={algebra}
∑

v∈dom(P (a,u)) and (M,v)|=ϕ P (a, u)(v)

P (a, u)(ϕ)

={definition P (a, u)(ϕ)}

P (a, u)(ϕ)

P (a, u)(ϕ)
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={P (a, u)(ϕ) , 0}

1

Moreover P (a, u)(v) ∈ [0, 1] for all v ∈ dom(Pϕ(a, u)) and P (a, u)(v) ≤ P (a, u)(ϕ).
Therefore Pϕ(a, u)(v) ∈ [0, 1]. ¤

As one can see this notion of updating is quite similar to Bayesian updating. In
fact for many sentences it holds that

Pa(ϕ|ψ) = q iff [ψ]Pa(ϕ) = q

Here notation is abused by adding conditional probabilities to the language, where

conditional probability is defined as Pa(ϕ|ψ) =
Pa(ϕ∧ψ)
Pa(ψ)

. The equivalence holds if

the truth value of ϕ is not changed by learning that ψ. However the equivalence
above does not hold in general. An example of this failure is in the case of
an unsuccessful update. A successful update with ϕ will result in a state where
the agents believe that ϕ. But for example when you get the information
that ‘you do not know that it is raining and it is raining’, afterwards you will
not believe that you do not know that it is raining2. In Gerbrandy (1999) this
topic is discussed more extensively, including the muddy children puzzle, where
an interesting example of unsuccessful updating occurs. The probabilistic version
of this is quite similar. Suppose I flip a fair coin, such that you cannot see the
outcome, but I can. Then I tell you that the probability you assign to heads is not
zero and that the outcome is tails. After that update you do assign probability
zero to the outcome being heads.

[Pa(heads) > 0 ∧ tails]Pa(Pa(heads) > 0 ∧ tails) = 0

However
Pa(Pa(heads) > 0 ∧ tails|Pa(heads) > 0 ∧ tails) = 1

This is due to the difference of perspective on information change in probability
theory and dynamic epistemic logic as was explained in the introduction. Al-
though after a public announcement it is common knowledge that ϕ is true at
the time of the announcement, it need not be common knowledge that ϕ after
the announcement, because ϕ may involve statements about information.

One remaining open question about DEL is to give a syntactic characterization
of those sentences which may lead to an unsuccessful update. This is also unsolved
for PDEL.

Although acquiring new information can now be modeled in a way that takes
higher-order information into account, the language is not very sophisticated yet

2Some people argue that the occurrence of unsuccessful updates is due to the fact that these
sentences are not properly labeled with time indices. In that case propositions can never change
in truth value. In the context of dynamic logic however it seems more useful to have a notion
of propositions that can change truth values.
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with regard to how an update came about. When one models games, public
announcements are made by the players using some sort of strategy. Perhaps
they do not reveal all they know, or perhaps their actions depend on very complex
protocols. For the kind of updates we are considering we have to assume that
“the announcement that ϕ” came about by some process of which the result was
either an announcement of ϕ or an announcement of ¬ϕ. For example when it is
an answer to a question regarding ϕ. Consider the following example by Albers
(2003, chapter 1). A fair die is thrown and one agent b can see the outcome,
whereas a cannot. Now b can inform a about the outcome by saying either that
the outcome is odd, or that the outcome is even, or that it is a multiple of three.
Now if b truthfully states that the outcome is even, what is the probability that
the outcome is 6? The answer depends on b’s strategy or protocol. This kind
of update cannot be dealt with in PDEL. For more sophisticated extensions of
PDEL see section 6.7.

6.4 Reasoning about probability

In probability theory, inferences are often justified by making a model of the
situation that is being investigated. Then the relevant propositions are analyzed
in that model. In logic, inferences are usually shown to be valid by translating
them into a formal language and showing that the conclusion can be deduced
from the premises in a formal proof system. In this section I provide a way to
make models of particular situations and a formal proof system for probabilistic
dynamic epistemic logic. In section 6.6 an example of an application of each of
these approaches is given.

6.4.1 Building a Model

Although I introduced probabilistic epistemic models in section 6.3, it is still not
immediately clear how one can model a specific situation. In Halpern and Tuttle
(1993) an approach for this is given. In this section I give a similar approach,
which differs from the approach in Halpern and Tuttle (1993) in the sense that
I introduce a new notion, namely purely probabilistic models. From that per-
spective one could say that in Halpern and Tuttle (1993) a special case of purely
probabilistic models is considered, where only purely probabilistic models are
considered that are S5 and connected. The interesting feature that these models
have is that the agents have a common prior, which means that if they were to
forget everything they have learned, then they would agree on all the probabili-
ties. It is still an open question whether this class of models can be characterized
by a sentence in the language of PDEL. The importance of having a common
prior is that it is often assumed in game theory, see Aumann (1976).

As before, suppose an agent knows that a coin lands heads in one third of



106 Chapter 6. Probabilistic dynamic epistemic logic

the cases or is fair, but she does not know which of these is the case. It is not
easy to make a model of this at once. In this section I show how to construct
a probabilistic epistemic model from two models: one for the non-probabilistic
information (i.e. propositional and epistemic information) and another for the
probabilistic information. It is often easier to think about these domains of infor-
mation separately. The idea is to multiply an epistemic model with what I call a
purely probabilistic model.

Definition 6.4 (Purely probabilistic models)

Let a nonempty set E and a finite set of agents A be given. A purely probabilistic
epistemic model M is a triple (W,R,P) such that:

• W , ∅

• R : A → 2W×W

• P : W → {P | P is a probability functions with domain E} ¤

Thus a probability function is assigned to each world and the domain of all of these
is E. I call these models purely probabilistic, because there are no propositional
variables in them, but probability functions have a similar role. Nevertheless the
accessibility relations will be interpreted epistemically.

Given an epistemic model M and a purely probabilistic model M we can make
a probabilistic epistemic model M. Both models must be defined with respect to
the same agents, and the set of possible worlds W of the epistemic model must
be the domain of all probability spaces in the range of P (i.e. E = W ). Worlds
in the purely probabilistic model provide prior probability distributions over the
set of worlds of the epistemic model. The probability an agent assigns to a set of
worlds is its prior probability conditionalized on the agent’s knowledge.

Definition 6.5 (Multiplication)

Given an epistemic model M and a purely probabilistic model M, such that
M = (W,R, V ) and M = (W,R,P)

M ⊗M = M = (W,R,V,P)

iff
W = W ×W

R(a) = {((w,w), (v, v)) | wR(a)v ∧ wR(a)v}
V(p) = V (p)×W

dom(P(a, (w,w))) = {v | wR(a)v} × {w}

P(a, (w,w))(v,w) =
P(w)(v)

∑

(u,w)∈dom(P(a,(w,w))) P(w)(u)
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⊗

1
3
:2
3

1
2
:1
2

=

1
3

1
2

2
3

1
2

Figure 6.1: An example of multiplication. The epistemic model is on the left, the
purely probabilistic model is in the middle, and the probabilistic epistemic
model is on the right. In the probabilistic epistemic models the solid
nodes indicate that the outcome is heads, and an open node indicates the
outcome is tails. The dashed boxes indicate the domains of the probability
functions.

The domain of the probability function that is assigned to an agent at a pair
(w,w) contains those pairs (v,w) such that v is accessible to the agent in the
epistemic model from w. So the domain is a probabilistic copy of the set of
worlds accessible to the agent in the epistemic model. The probability assigned
to a world by an agent is its conditional probability given that it is in the domain
of the agent’s probability function (disregarding the second element of the pair).

Now we can deal with the initial example: a coin is tossed and an agent a
does not know the outcome. So she cannot distinguish worlds where the outcome
is heads from worlds where it is tails. She knows the coin is fair or that it lands
heads one third of the times, but she does not know which is the case. Hence she
cannot distinguish worlds where the probability of heads is 1

2
from worlds where

it is 1
3
. I can make an epistemic model for a’s information about the outcome and

a purely probabilistic model for a’s information about the coin. These two models
and the result of multiplying these models are shown in figure 6.1. Now we can
see that a sentence Pa(ϕ) ≥ q should not be read as ‘the probability a assigns to
ϕ is greater than or equal to q,’ because there need not be a unique probability q
assigns to ϕ. In the example a cannot distinguish two probability distributions.
Pa(ϕ) ≥ q should be read as ‘the probability a should assign to ϕ is greater than
or equal to q, given the “actual” probability distribution over the worlds and
given a’s other information.’ Hence we should be interested in sentences of the
form ¤a(Pa(ϕ) ≥ q). Such a sentence holds iff a knows the probability she should
assign to ϕ is greater than or equal to q.

There is one requirement the underlying models should meet for multiplica-
tion to work: the sets of worlds accessible to the agents should have non-zero
probabilities. This ensures that the probability functions are well-defined, be-
cause it ensures that the set of worlds accessible to an agent is not empty and
that no division by zero occurs.
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6.4.2 Proof system, soundness and completeness

The proof system PDEL provided in this section is based on the proof system DEL

in Gerbrandy (1999) for dynamic epistemic logic, and the proof system AXMEAS

in Fagin and Halpern (1994) for probabilistic epistemic logic. These two systems
joined with the axioms Probability-Update 1 and Probability-Update 2 constitute
the proof system for probabilistic dynamic epistemic logic.

Definition 6.6 (Proof System)
The proof system of probabilistic dynamic epistemic logic, PDEL, is provided in
Figure 6.2.

Let us call the axioms and rules for propositional logic, epistemic logic and update
logic without the Probability-Update axioms DEL, and the axioms and rules for
propositional logic, epistemic logic, linear inequalities and probability logic PEL.
In Gerbrandy and Groeneveld (1997) the soundness and completeness of DEL

is proved, although it is proved with respect to non-well-founded objects, the
correspondence between these and epistemic models implies it is also sound and
complete for epistemic models. In Fagin and Halpern (1994) the soundness and
completeness of PEL is proved. Although it is proved for a more general class
of models than the models of definition 5.9, the models of definition 5.9 form a
subclass, therefore PEL is still sound. Furthermore, in the completeness proof,
the countermodels are probabilistic epistemic models in the sense of definition 5.9
(their system has the finite model property). Therefore this logic is also complete
for these models.

The axiom Probability-Update 1 clarifies the relationship between conditional
probability and the notion of updating probabilities in this chapter. The rela-
tionship is best captured by the following equivalence, which was pointed out to
me by Johan van Benthem:

[ψ](Pa(ϕ) = q) iff Pa([ψ]ϕ | ψ) = q

Note that it is not a normal modal logic, because we do not have universal
substitution. This is due to the existence of unsuccessful updates. For example,
` [p]¤ap is a theorem, but ` [¬¤ap ∧ p]¤a(¬¤ap ∧ p) is not, although it is
a substitution instance. There are more principles in dynamic epistemic logics
which are valid but not derivable schematically (see van Benthem (2002b)).

Theorem 6.1 (Soundness)
If ` ϕ then |= ϕ. ¤

Proof The soundness of the axioms of DEL and PEL I do not prove. The proof of
their soundness can be found in Gerbrandy (1999) or Gerbrandy and Groeneveld
(1997), and Fagin and Halpern (1994).
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Propositional Logic

PC ` ϕ where ϕ is an instance of a propositional
tautology

Epistemic Logic

¤a-distribution ` ¤a(ϕ→ ψ)→ (¤aϕ→ ¤aψ)

¤a-necessitation From ` ϕ, infer ` ¤aϕ

Update Logic

[ϕ]-distribution ` [ϕ](ψ → χ)→ ([ϕ]ψ → [ϕ]χ)

Functionality ` ¬[ϕ]ψ ↔ [ϕ]¬ψ

Atomic Permanence ` p↔ [ϕ]p

Knowledge-Update ` [ϕ]¤aψ ↔ ¤a(ϕ→ [ϕ]ψ)

Probability-Update 1 ` Pa(ϕ) > 0→ (([ϕ]
∑n

i=1qiPa(ϕi) ≥ q)↔

(
∑n

i=1qiPa(ϕ ∧ [ϕ]ϕi) ≥ qPa(ϕ)))

Probability-Update 2 ` Pa(ϕ) = 0→ (([ϕ]
∑n

i=1qiPa(ϕi) ≥ q)↔

(
∑n

i=1qiPa([ϕ]ϕi) ≥ q))

[ϕ]-necessitation From ` ψ, infer ` [ϕ]ψ

Linear Inequalities

0 terms `
∑n

i=1qiPa(ϕi) ≥ q ↔

(
∑n

i=1qiPa(ϕi)) + 0Pa(ϕk+1) ≥ q

Permutation `
∑n

i=1qiPa(ϕi) ≥ q →
∑n

i=1qjiPa(ϕji) ≥ q

where j1, . . . , jk is a permutation of 1 . . . k

Addition `
∑n

i=1qiPa(ϕi) ≥ q ∧
∑n

i=1q
′
iPa(ϕi) ≥ q′ →

∑n
i=1(qi + q′i)Pa(ϕi) ≥ (q + q′)

Multiplication ` (
∑n

i=1qiPa(ϕi) ≥ q)↔ (
∑n

i=1dqiPa(ϕi) ≥ db)

where d > 0

Dichotomy ` (t ≥ q) ∨ (t ≤ q)

Monotonicity ` (t ≥ q)→ (t > q′) where q > q′

Probability Logic

Nonnegativity ` Pa(ϕ) ≥ 0

Probability of truth ` Pa(>) = 1

Additivity ` Pa(ϕ ∧ ψ) +Pa(ϕ ∧ ¬ψ) = Pa(ϕ)

Equivalence From ` ϕ↔ ψ, infer ` Pa(ϕ) = Pa(ψ)

Figure 6.2: The proof system PDEL for probabilistic dynamic epistemic logic



110 Chapter 6. Probabilistic dynamic epistemic logic

For Probability-Update 1, first of all note that, if (M,w) |= Pa(ϕ) > 0:

{v | (M, v) |= [ϕ]ψ ∧ ϕ and v ∈ dom(P (a, w))}
=
{vϕ | (Mϕ, vϕ) |= ψ and vϕ ∈ dom(Pϕ(a, wϕ))}

(6.1)

Suppose (M,w) |= Pa(ϕ) > 0. Now the following equivalences hold:
(M,w) |= [ϕ]

∑n

i=1qiPa(ϕi) ≥ q)
≡ {truth definition}
(Mϕ, wϕ) |=

∑n

i=1qiPa(ϕi) ≥ q)
≡ {truth definition}
∑k

i=1 qiPϕ(a, wϕ)(ϕi) ≥ q
≡ {truth definition}
∑k

i=1 qiPϕ(a, wϕ)({vϕ | (Mϕ, vϕ) |= ϕi and vϕ ∈ dom(Pϕ(wϕ))}) ≥ q
≡ {By (6.1)}
∑k

i=1 qiPϕ(a, wϕ)({v | (M, v) |= [ϕ]ψ ∧ ϕ and v ∈ dom(P (a, w))}) ≥ q
{the definition of Pϕ, and (M,w) |= Pa(ϕ) > 0}
k
∑

i=1

qi
P (a, w)([ϕ]ϕi ∧ ϕ)

P (a, w)(ϕ)
≥ q

≡ {algebra}
∑k

i=1 qiP (a, w)([ϕ]ϕi ∧ ϕ) ≥ qP (a, w)(ϕ)
≡ {truth definition}
(M,w) |=

∑n

i=1qiPa([ϕ]ϕi ∧ ϕ) ≥ qPa(ϕ))

The soundness of probability-update 2 is immediate from the definition of
update, because if ϕ has probability zero, nothing happens to the domain of the
probability function after updating with ϕ.

¤

To prove completeness I provide a translation of the sentences of probabilistic
dynamic epistemic logic to the sentences of probabilistic epistemic logic. Given
that PEL is complete for probabilistic epistemic logic, it then suffices to show that
a sentence is provably equivalent in PDEL to its translation.

Definition 6.7 (Translation from L
P[·]
PA to L P

PA)

The translation t : L
P[·]
PA → L P

PA is defined as follows:

1. t(p) = p

2. t(¬ϕ) = ¬t(ϕ)

3. t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)

4. t(¤aϕ) = ¤at(ϕ)
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5. t(
∑n

i=1qiPa(ϕi) ≥ q) = (
∑n

i=1qiPa(t(ϕ1)) ≥ q)

6. t([ϕ]p) = p

7. t([ϕ]¬ψ) = ¬t([ϕ]ψ)

8. t([ϕ](ψ ∧ χ)) = t([ϕ]ψ) ∧ t([ϕ]χ)

9. t([ϕ]¤aψ) = ¤a(t(ϕ)→ t([ϕ]ψ))

10. t([ϕ](
∑n

i=1qiPa(ϕi) ≥ q)) =

11. t([ϕ][ψ]χ = t([ϕ]t([ψ]χ))

(Pa(t(ϕ)) > 0 ∧ (
∑n

i=1qiPa(t(ϕ) ∧ t([ϕ]ϕi)) ≥ qPa(t(ϕ))))
∨
(Pa(t(ϕ)) = 0 ∧

∑n

i=1qiPa(t([ϕ]ϕi)) ≥ q)

Note that although the update operator has an infinitary character (it has effects
for the entire model), when evaluating a sentence the effect only needs to be given
for the finite intention depth (the number of stacked modal operators). The proofs
about this translation uses the following complexity measure.

Definition 6.8 (Complexity)
The complexity of sentences is defined as follows:

1. c(p) = 1

2. c(¬ϕ) = 1 + c(ϕ)

3. c(ϕ ∧ ψ) = 1 + max(c(ϕ), c(ψ))

4. c(¤aϕ) = 1 + c(ϕ)

5. c(
∑n

i=1qiPa(ϕi) ≥ q) = 1 + max1≤i≤k c(ϕi)

6. c([ϕ]ψ) = c(ϕ) + c(ψ) ¤

Lemma 6.2
For every sentence ϕ of PDEL, the translation of that sentence t(ϕ) is a sentence
in probabilistic epistemic logic to which it is provably equivalent in PDEL.

Proof By induction on the complexity of ϕ

base Trivial

induction hypothesis For every sentence ϕ of PDEL such that c(ϕ) ≤ n, the
translation of that sentence t(ϕ) is a sentence in probabilistic epistemic logic
and ϕ and t(ϕ) are provably equivalent in PDEL.
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induction step Suppose c(ϕ) = n+1. The cases where ϕ is a negation, conjunc-
tion, or an epistemic, or probabilistic sentence are fairly straightforward.

1. Suppose ϕ is a sentence of the form [ψ]p. Then t([ψ]p) = p. Therefore
t([ψ]p) is a sentence of probabilistic epistemic logic. It follows from
the axiom of atomic permanence that these are equivalent.

2. Suppose ϕ is a sentence of the form [ψ]¬χ. Then t([ψ]¬χ) = ¬t([ψ]χ).
By the induction hypothesis t([ψ]χ) is a sentence of probabilistic epis-
temic logic. Therefore t([ψ]¬χ) is a sentence of probabilistic epistemic
logic. By the induction hypothesis t([ψ]χ) is equivalent to [ψ]χ. There-
fore ¬t([ψ]χ) is equivalent to ¬[ψ]χ, which by the functionality axiom
is equivalent to [ψ]¬χ.

3. Suppose ϕ is a sentence of the form [ψ](χ ∧ ξ). Then t([ψ](χ ∧ ξ)) =
t([ψ]χ) ∧ t([ψ]ξ). By the induction hypothesis t([ψ]χ) and t([ψ]ξ) are
sentences of probabilistic epistemic logic. Therefore t([ψ](χ ∧ ξ)) is a
sentence of probabilistic epistemic logic. By the induction hypothe-
sis t([ψ]χ) and t([ψ]ξ) are equivalent to [ψ]χ and [ψ]ξ. Some modal
reasoning suffices to see that [ψ](χ ∧ ξ) is equivalent to [ψ]χ ∧ [ψ]ξ.

4. Suppose ϕ is a sentence of the form [ψ]¤aχ. Then t([ψ]¤aχ) =
¤a(t(ψ) → t([ψ]χ)). By the induction hypothesis t(ψ) and t([ψ]χ)
are sentences of probabilistic epistemic logic. Therefore t([ψ]¤aχ) is
a sentence of probabilistic epistemic logic. By the induction hypoth-
esis t(ψ) and t([ψ]χ) are equivalent to ψ and [ψ]χ respectively. By
the knowledge update axiom we have that [ψ]¤aχ is equivalent to
¤a(ψ → [ψ]χ)

5. Suppose ϕ is a sentence of the form [ψ](
∑n

i=1qiPa(ϕi) ≥ q). Then
t([ψ](

∑n

i=1qiPa(ϕi) ≥ q)) =

(Pa(t(ψ)) > 0 ∧ (
∑n

i=1qiPa(t(ψ) ∧ t([ψ]ϕi)) ≥ qPa(t(ψ))))
∨
(Pa(t(ψ)) = 0 ∧

∑n

i=1qiPa(t([ψ]ϕi)) ≥ q))

By the induction hypothesis t(ψ) and t([ψ]ϕi) are sentences in proba-
bilistic epistemic logic. Therefore t([ψ]

∑n

i=1qiPa(ϕi) ≥ q)) is a sentence
of probabilistic epistemic logic. By the induction hypothesis t(ψ) and
all t([ψ]ϕi) are equivalent to ψ and [ψ]ϕi respectively. It is deducible
that Pa(ϕ) > 0∨Pa(ϕ) = 0. By the probability-update axioms we get
the desired result.

6. Suppose ϕ is a sentence of the form [ϕ][ψ]χ. Then t([ϕ][ψ]χ) =
t([ϕ]t([ψ]χ)). By applying the induction hypothesis to t([ψ]χ) we get
a formula with a lower complexity than [ψ]χ, then we can apply the
induction hypothesis to t([ϕ]t([ψ]χ)) to get the desired result.

¤
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Theorem 6.2 (Completeness)

If |=PDEL ϕ, then `PDEL ϕ. ¤

Proof Suppose that |=PDEL ϕ. From lemma 6.2 and soundness we get that
|=PDEL t(ϕ). Therefore |=PEL t(ϕ), and by completeness of PEL we get `PEL t(ϕ)
Now we can conclude from lemma 6.2 that `PDEL ϕ. ¤

Corollary 6.1

The language of probabilistic dynamic epistemic logic is just as expressive as the
language of probabilistic epistemic logic. ¤

Corollary 6.2

The validity problem for probabilistic dynamic epistemic logic is decidable. ¤

Proof This follows directly from the decidability result in Fagin and Halpern
(1994). ¤

As to complexity, the validity problem for probabilistic epistemic logic is complete
for polynomial space. However the translation from definition 6.7 is exponential
in space in the depth of probabilistic operators after an update, i.e. sentences
of the form [ϕ](Pa(Pa(. . .))). We can of course conclude that polynomial space
is a lower bound on complexity and exponential space is an upper bound on
complexity.

Strong completeness fails, because probabilistic epistemic logic is not compact.

Lemma 6.3 (Non-compactness)

Probabilistic epistemic logic is not compact.

Proof Consider the following set of sentences

Γ = {Pa(p) > 0} ∪ {Pa(p) ≤ 2−i | i ∈ N}

Every finite subset of Γ has a model, but the whole set Γ does not. ¤

This lemma is based on Keisler (1985), where a similar result is proved for a
probability logic for statistical probabilities. This ‘Zeno’-example applies equally
well to other probability logics. In Keisler (1985) the main focus is on infinitary
probability logics, where compactness can be regained in some cases.
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6.5 Bisimulation for probabilistic dynamic epis-

temic logic

Bisimulation is a useful notion in modal logic. It generally holds that if two
structures are bisimilar, then they are behaviorally indistinguishable. In the case
of probabilistic epistemic models, behaviorally indistinguishable means satisfy-
ing the same sentences. A well-known result in modal logic is that if two pointed
models are bisimilar, then they satisfy the same sentences (see for example Black-
burn, de Rijke, and Venema (2001) for a textbook explanation of this notion.) In
this section I show that such a result holds for probabilistic dynamic epistemic
logic as well.

Definition 6.9 (Bisimulation)
I use the following abbreviations.

forth(E,E ′) := ∀x ∈ E∃y ∈ E ′(xBy)
back(E,E ′) := ∀y ∈ E ′∃x ∈ E(xBy)

Let two probabilistic epistemic models M and M ′ be given. A relation B ⊆
W ×W ′ is a bisimulation iff for all w ∈ W and w′ ∈ W ′, if wBw′, then for all
n ∈ A the following hold:

atoms w ∈ V (p) iff w′ ∈ V ′(p)) for every p ∈ P

forth forth({v | wR(a)v}, {v′ | w′R′(a)v′})

back back({v | wR(a)v}, {v′ | w′R′(a)v′})

pforth For every E ⊆ dom(P (a, w)) there is an E ′ ⊆ dom(P ′(a, w′)) such that

P (a, w)(E) ≤ P ′(a, w′)(E ′) and back(E,E ′)

pback For every E ′ ⊆ dom(P ′(a, w′)) there is an E ⊆ dom(P (a, w)) such that

P ′(a, w′)(E ′) ≤ P (a, w)(E) and forth(E,E ′)

I write (M,w)↔(M ′, w′), if there is a bisimulation between M and M ′ linking w
and w′. ¤

Atoms, forth and back are the usual conditions for bisimulation. I added
pforth and pback to accommodate probabilistic sentences. For those readers
familiar with probability theory, this definition can easily be extended to the
more general notion of probabilistic epistemic models given in Fagin and Halpern
(1994) with probability spaces, where one takes the inner measure instead of the
probability function in pforth and pback. The theorem below also holds for
these models.
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Theorem 6.3
For all models (M,w) and (M ′, w′) and for all sentences ϕ, if (M,w)↔(M ′, w′),
then (M,w) |= ϕ iff (M ′, w′) |= ϕ ¤

Proof By induction on ϕ. Suppose (M,w)↔(M ′, w′). The base case and cases
for conjunction, negation and individual epistemic operators ¤a are straightfor-
ward. By lemma 6.2, we get the case for updates for free.

Suppose uBu′ and (M,u) |=
∑n

i=1qiPa(ϕi) ≥ q. Let

Ei = {v ∈ dom(P (a, u)) | (M, v) |= ϕi}

and
E ′i = {v

′ ∈ dom(P ′(a, u′)) | (M ′, v′) |= ϕi}

If we show that P (a, u)(Ei) ≤ P ′(a, u′)(E ′i) we are done. From uBu′ and pforth
it follows that there is an S ′ ⊆ dom(P ′(a, w′)) such that

P (a, w)(Ei) ≤ P ′(a, w′)(S ′) and back(Ei, S
′)

The induction hypothesis together with back(Ei, S
′) imply that (M ′, v′) |= ϕi for

every v′ ∈ S ′. Therefore S ′ ⊆ E ′i and therefore P ′(a, u′)(S ′) ≤ P ′(a, u′)(E ′i). Now
we conclude that

P (a, u)(Ei) ≤ P ′(a, w′)(S ′) ≤ P ′(a, u′)(E ′i)

The case for right to left is analogous. Which gives as an additional result that
P (a, u)(Ei) = P ′(a, u′)(E ′i).

Therefore for all models (M,w) and (M ′, w′), if (M,w)↔(M ′, w′), then for
all sentences ϕ: (M,w) |= ϕ iff (M ′, w′) |= ϕ ¤

The converse of theorem 6.3 also holds when the models are finite or when one uses
an infinitary language which allows conjunctions over arbitrary sets of sentences.

The notion of bisimulation presented in this chapter can also be applied to
probability spaces, which can be seen as special cases of probabilistic epistemic
Kripke models, and therefore it is also interesting for probability theory, to see
whether two models of the same experiment are equivalent. It would be worth-
while to investigate the mathematics of this further.

There are richer languages for reasoning about probability which are able
to distinguish bisimilar models, such as the language of SPL (see chapter 5).
Dependent upon the language which is used in reasoning about probability, one
might wonder whether there is information being modeled which is not needed.
This leads to the question whether one can define minimal models. In modal logic
one can define a minimal model with respect to an arbitrary Kripke model by
identifying all bisimilar worlds. The result for modal logic seems to be folklore.
This can also be done for probabilistic epistemic models.
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Definition 6.10 (Minimal models)
Let a probabilistic epistemic model M = (W,R, V, P ) be given. The minimal
model associated with M is the model M ′ = (W ′, R′, V ′, P ′), where:

• W ′ = {E ⊆ W | for all w, v ∈ E : (M,w)↔(M, v)}

• R′(a) = {(E,E ′) ∈ (W ′ ×W ′) | there is a w ∈ E and a v ∈ E ′ such that
wR(a)v}

• V ′(p) = {E | there is a w ∈ E such that w ∈ V (p)}

• dom(P ′(a,E)) = {E ′ ∈ W ′ | there is a w ∈ E and a v ∈ E ′ such that
v ∈ dom(P (a, w))}

• P ′(a,E)(E ′) = sup{q ∈ R | there is a w ∈ E such that q = P (a, w)(E ′ ∩
dom(P (a, w)))}

where in the last clause E ′ ∈ dom(P ′(a,E)). ¤

Lemma 6.4
A minimal model is an probabilistic epistemic model. ¤

Proof Let M ′ be a minimal model. The only difficulty lies in showing that P ′

is a probability function. We have to show that

∀a ∈ A∀E ∈W ′
∑

E′∈dom(P ′(a,E))W ′

P ′(a,E)(E ′) = 1

Take an arbitrary agent a ∈ A, an arbitrary world E ∈ W ′, and an arbitrary
E ′ ∈ dom(P ′(a,E)). The probability P ′(a,E)(E ′) is defined as

sup{q ∈ R | there is a w ∈ E such that q = P (a, w)(E ′ ∩ dom(P (a, w)))}

Suppose there are two worlds w and v in E. Suppose moreover that P (a, w)(E ′∩
dom(P (a, w))) , P (a, v)(E ′ ∩ dom(P (a, v)))}. Assume without loss of generality
that the former is greater than the latter. Because w and v are both in E they
are bisimilar. Let B be a bisimulation that establishes (M,w)↔(M, v). It follows
from pforth that there is a set F ′ ⊆ dom(P (a, v) such that

P (a, w)(E ′ ∩ dom(P (a, w)))(a, w) ≤ P (a, v)(F ′)

and back(E ′∩dom(P (a, w)), F ′). From back(E ′∩dom(P (a, w)), F ′) it follows that
F ′ ⊆ E ′ ∩ dom(P (a, v)), since all worlds bisimilar to world in E ′ are also in E ′.
But then it cannot be the case that P (a, w)(E ′ ∩ dom(P (a, w))) > P (a, v)(E ′ ∩
dom(P (a, v)))}. Therefore {q ∈ R | there is a w ∈ E such that q = P (a, w)(E ′ ∩
dom(P (a, w)))} is a singleton set. Therefore

∑

E′∈dom(P ′(a,E))W ′ P ′(a,E)(E ′) = 1.
¤
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Lemma 6.5
Every model M is bisimilar to the minimal model M ′ associated with it. ¤

Proof Let M = (W,R, V, P ) and M ′ = (W ′, R′, V ′, P ′) as in definition 6.10.
Now we will show that the ∈ relation on W ×W ′ is a bisimulation. The case for
atoms, forth, and back are straightforward.

For the case for pforth assume that w ∈ E, where E ∈ W ′. Suppose S ⊆
dom(P (a, w)). Now we have to show that there is a subset S of the domain
of P ′(a,E) such that the probability assigned to it is greater or equal to the
probability assigned to S and back(S,S). Let S =

{E ′ ∈W ′ | there is a v ∈ S such that v ∈ E ′}

From the definition of dom(P ′(a,E)) it follows that S ⊆ dom(P ′(a,E)). It
is also easily seen that back(S,S). From the definition of P ′(a,E) it follows
that P (a, w)(E ′ ∩ dom(P (a, w))) ≤ P ′(a,E)(E ′), for every E ′ ∈ S. Therefore
P (a, w)(S) ≤ P ′(a,E)(S).

For the case of pback assume that w ∈ E, where E ∈ W ′. Suppose S ⊆
dom(P ′(a,E)). Now we have to show that there is a subset Sw of the domain
of P (a, w) such that the probability assigned to it is greater or equal to the
probability assigned to S and forth(S,S). Let Sw =

{v | there is an E ′ ∈ S such that v ∈ E ′ and v ∈ dom(P (a, w))}

It is obviously the case that Sw ⊆ dom(P (a, w)) and forth(Sw,S). Suppose,
towards a contradiction that P ′(a,E)(S) > P (a, w)(Sw). Therefore there is a
u ∈ E such that for the set Su =

{v | there is an E ′ ∈ S such that v ∈ E ′ and v ∈ dom(P (a, u))}

it is the case that P (a, u)(Su) > P (a, w)(Sw). But because both w and u are
in E they must be bisimilar, given that E ∈ W ′. Let B be a bisimulation
that establishes that (M,w)↔(M,u). From pback it follows that for Su there
is a set S ⊆ dom(P (a, w)) such that P (a, u)(Su) ≤ P (a, w)(S) and forth(S, Su).
Therefore for every world v in S there is a world v′ in Su bisimilar to it. Therefore
v and v′ end up in the same world in E ′ ∈ S. Since S ⊂ dom(P (a, w)), it is the
case that S ⊆ Sw. But this leads to a contradiction, because it now follows that
P (a, w)(S) ≤ P (a, w)(Sw). But we had assumed that P (a, w)(Sw) < P (a, u)(Su),
and had concluded that P (a, u)(Su) ≤ P (a, w)(S).

Therefore M↔M ′. ¤

In the literature on probabilistic transition systems, notions of probabilistic bisim-
ulation have also been put forward: notably those by Larsen and Skou (1991),
who introduce a notion of bisimulation for discrete systems, and de Vink and
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Rutten (1999), which is a generalization of Larsen en Skou’s approach to general
probabilistic transition systems. There are some small differences between these
notions of probabilistic bisimulation and the notion presented in this chapter,
and the question whether the notions coincide, or that one is more general than
the other requires further investigation. However as far as I know, the result
that bisimilarity of two probabilistic epistemic models implies that they have the
same probabilistic dynamic epistemic theory is new, as well as the result about
minimal models.

6.6 Example

In this section an example will be given that applies the theory presented in this
chapter, which links up with the approach of building models of section 6.4.1. It
shows that when higher-order information is involved it can be useful to formalize
the inferences that are involved in the example with the language introduced in
this chapter. In chapter 7 more examples can be found.

Let us look at the following game, which is based on an example by Van Rooy
(2003), which is in turn based on an example by Hirshleifer and Riley (1992, p.
220). Suppose there are two players, a and b. A coin is tossed and the players
have to guess the outcome. Player b guesses first, and after hearing player b’s
guess player a guesses the outcome. If they guess the same outcome both players
receive a payoff of 12 euros regardless of the outcome, otherwise, when the guesses
differ, the player who guessed the outcome correctly receives 30 euros.

Suppose that it is not known to player a whether the coin is fair, or whether
the coin lands heads with probability one third, but player b does know, and this
is common knowledge. Consequently player a does not really know which game
she is playing: it is a game of incomplete information (see Binmore (1992, chap-
ter 11)). One can construct a probabilistic epistemic model for this situation in
the way described in section 6.4.1 (see Figure 6.3 below) . A game theoretical
analysis of this situation tells us that when the coin is fair and player a is risk
neutral, the best strategy for a is to guess the opposite of player b’s guess. The
expected payoff is 15 euros. But when the coin is not fair and player a is risk
neutral, the best strategy for player a is to guess the same outcome as player b.
This strategy guarantees an outcome of 12 euros. If player a would guess dif-
ferently, the expected outcome is only 10 euros, because player b’s best strategy
is to guess the outcome that is most likely (in this case tails). In that case the
probability that player a wins 30 euros is 1

3
.

Now suppose a public announcement is made as to which probabilities player b
assigns to the outcome tails. Afterwards player a will know what strategy to
follow. Note that the announcement does not say anything about what the actual
outcome is. Player a only learns about the probabilities player b assigns to the
outcomes. This higher-order information determines what the best strategy is.
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Figure 6.3: The construction of a probabilistic epistemic model for the situation where
player a does not know whether the coin is fair or not, but player b does.
In the (probabilistic) epistemic models the solid nodes indicate that the
outcome is heads, and an open node indicates the outcome is tails. The
solid lines represent the accessibility relation of player a, the dashed lines
represent the accessibility relation of player b. The dashed boxes indicate
the domains of the probability functions.

6.7 Conclusion and further research

In this chapter I presented a probabilistic dynamic epistemic logic, which can
be used to reason about probability, information, and information change. The
difference between information change as it is modeled in this logic and as it
is modeled in probability theory is that higher-order information is taken into
account. Besides semantics I have provided a method to build models and a
sound and complete proof system. Moreover the notion of bisimulation has also
been defined for this logic. It can be applied to game situations such as card games
with public announcements, but also the Monty Hall Dilemma (see chapter 7).

The principal advantage PDEL has with respect to probability theory is that
it can be used to formalize inferences into a formal language, such that standard
logical tools can be used to see whether it is a good inference. Therefore it is very
suitable to model reasoning. In probability theory probabilities are assigned to
sets of worlds. These sets appear in the ‘language’ of probability theory, which
means one is always working with a specific model. This makes it difficult to
assess whether inferences hold in all models, which is exactly what logic provides.
Moreover, by having a language such as PDEL one can explicitly deal with higher-
order information.

As a contribution to the study of information change, PDEL provides a novel
approach to probabilistic updating. Updating in probability theory and PDEL are
very similar. In probability theory new information is usually represented as a
set of possible worlds. One learns that the actual world is an element of that set.
In PDEL new information is represented as a sentence. By definition 6.2 every
sentence is associated with a set of possible worlds. One learns that the actual
world is an element of that set, just as in probability theory. But by having this
linguistic component that can express higher-order information, we can take into
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account that the truth value of sentences can change due to an update. Updating
with the same sentence twice may yield different results than updating once.
Updating with one sentence and then another may be different from updating the
other way around. These phenomena are not taken into account in probability
theory, where receiving the same information twice is always the same as receiving
it once, and the order in which information is received does not matter.

Now let us turn our attention to further research. Publicly learning a sentence
is not the only way one can acquire new information. There are changes in
information that cannot be modeled with PDEL. In the future we want to model
game actions such as: one player showing another player a card, while a third
player can see this is going on, but cannot see which card is being shown. To be
able to handle these kinds of actions, we need to bring more of dynamic epistemic
logic into PDEL, by making the dynamic operators more program-like (in the
style of PDL (see chapter 3)). An extension with test, non-deterministic choice,
sequential composition, and subgroup updates does not involve many difficulties.
Subgroup updates are updates where some agents get new information, whereas
the other agents do not get that information. The same proof technique, i.e. by
a translation, for completeness applies.

There are more phenomena we would like to capture such as common knowl-
edge, because common knowledge plays an important role in many game situ-
ations. This poses some problems for the proof system. In Baltag, Moss, and
Solecki (1999) a complete proof system for dynamic epistemic logic with common
knowledge is provided, which gives good hopes that it can also be added to PDEL.

Another direction for further research is to develop a logic along the lines
of Baltag (2002), where epistemic actions are viewed as epistemic action models
that can be multiplied with epistemic models, yielding the result of executing
the action. All these models could be made into probabilistic models. A step in
this direction is made in van Benthem (2002a). However the problem mentioned
at the end of section 6.3 cannot be solved yet. This problems arises when the
preconditions of the actions do not form a partition of the set of possible worlds.
In order to solve this problem one would have to be able to model strategies and
protocols.

In probability theory there are other, more complex ways of incorporating new
information, such as Jeffrey’s rule of conditioning, see Jeffrey (1983), Dempster’s
rule of combination, see Dempster (1967), and cross entropy, see Kullback and
Leibler (1951). All these ideas were born out of different kinds of dissatisfac-
tion with conditional probability as a model for incorporating new information.
It would also be interesting to investigate to what kinds of dynamic epistemic
updates these kinds of information change correspond.

This chapter is a first step in combining epistemic logic with probability theory
and there are many more steps to make.



Chapter 7

The Monty Hall dilemma

7.1 Introduction

The Monty Hall Dilemma is a puzzle that often leads to furious discussions. The
puzzle received worldwide attention when it was discussed in Marilyn vos Savant’s
column in Parade Magazine (Vos Savant (1990)). In her column ‘Ask Marilyn’
she answers questions sent in by the readers.

Suppose you’re on a game show, and you’re given the choice of three
doors. Behind one door is a car, behind the others, goats. You pick
a door, say number 1, and the host, who knows what’s behind the
doors, opens another door, say number 3, which has a goat. He says
to you, “Do you want to pick door number 2?” Is it to your advantage
to switch your choice of doors?

Craig. F. Whitaker
Columbia, MD

The Monty Hall Dilemma got its name from the American game show host Monty
Hall, who figured in the problem in an article by Selvin (1975). Other versions
of this puzzle circulated at least as early as the sixties, see Mosteller (1965, p.4,
for example). Answering this question, Vos Savant argued that it is to your
advantage to switch. If you switch you lose in one third of the cases and win in
two thirds of the cases.

The claim made by Vos Savant, who is listed in the Guinness Book of World
Records for the highest IQ, can be argued as follows. If you switch you get a goat
in one third of the cases and win the car in two third of the cases. This could
be argued as follows. Suppose you initially pick the door with the car, then you
should not switch. This happens in one third of the cases. Suppose on the other
hand you initially pick a door that contains a goat, which happens in two third
of the cases. Monty Hall cannot open the door with the car and he cannot open

121
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the door you picked. He has to open the other door with a goat. So, if you pick
a door with a goat, Monty Hall only has one option. After he opens that door,
the remaining unopened door you did not pick must contain the car. Therefore,
if you initially pick a door with a goat, switching will guarantee that you win the
car. You pick such a door in two third of the cases. Hence by switching you lose
in one third of the cases and you win in two third of the cases.

Many people did not agree with this solution. They argued the chances of
winning do not increase when you switch. Among them are some considered
to be experts in the field of probability. Three Ph.D.’s wrote letters explaining
that Vos Savant was wrong. The mathematician Paul Erdös also did not want
to believe switching is to your advantage. The discussion made its way to the
Netherlands after Rob van den Berg reported the discussion in the newspaper
NRC-Handelsblad (May 18th, 1995). The response to his article was overwhelm-
ing. People called to say they could not sleep because they were thinking about
the puzzle and demanded an explanation, many e-mails were sent and the news-
paper received over eighty letters. Some of these letters were published (the
1st, 8th, and 15th of June). I found the letter by H. von Saher to be the most
surprising:

I will show with an analogous example that her thesis is incorrect.
Marilyn vos Savant wins a quiz (naturally), at the back of the stage a
wall is placed with 100 doors. She takes her stand in front of door 1;
in that case she has a 1% chance of standing in front of the right door
and there is a 99% chance that the prize is behind one of all the other
doors. Then the quiz master comes along; he opens all doors from 2
to 99, so 98 doors in total. Behind none of these doors is the prize. It
must be behind door 1 or 100. According to Marilyn vos Savant the
whole 99% chance passes to door 100. It is evident that this is absurd.
Here too another situation has arisen with only two alternatives and
therefore equal chances for each of the remaining doors. (NRC June
1st, 1995, my translation)

Although it seems that some of the crucial information eludes Von Saher, namely
that the quiz master only opens a door if he knows it does not contain a prize, he
apparently presents a good argument for Vos Savants thesis, instead of against it.
Suppose you pick door number one and all the other doors except door number 53
are opened; to me it seems even more obvious that in that case you should switch
than in the three door case. These arguments seem to be difficult to understand
and can even make people quite angry. Marilyn vos Savant was ridiculed in many
of the letters written to her.

There were also letters by people who reported that they had actually played
the game or had made a computer simulation of the game confirming Vos Savant’s
claim. Several good simulations of the Monty Hall Dilemma can be found on the
Internet by searching for the Monty Hall Dilemma. Theo Kuipers wrote that
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playing the game with his wife not only convinced his wife, but also made them
find an elegant solution, see Wouters (1991). Yet some who reported that their
findings concurred with Vos Savant were still not convinced. Some even offered
their computer programs to be distributed hoping that someone could find a bug.
Experimental data can give a correct answer to the question whether you should
switch, but experimental data alone do not yield an intuitively appealing analysis
of the problem.

The Monty Hall Dilemma is a puzzle for which intuitions fail many people.
It is surprising that these wrong intuitions are very strong. But there are many
puzzles and paradoxes where one can have strong intuitions that are wrong. One
might think for example that there are more natural numbers than there are prime
numbers, but this is not true. The best way to show that such counterintuitive
results are in fact correct is to use some formal method such as logical analysis.
In this chapter I use the logic that was introduced in chapter 6 to analyze this
puzzle.

7.2 A semantical analysis

In section 6.4.1 a method was introduced to build a model for specific situations.
In this section this method is applied to the Monty Hall Dilemma. The set of
propositional variables P is the union of the three sets A = {A1, A2, A3} (where Ai

means that the car is behind door number i), C = {C1, C2, C3} (where Ci means
that the contestant initially chooses door number i), and O = {O1, O2, O3},
(where Oi means that door number i is opened by Monty Hall).

There are twelve possible outcomes, which can be seen as follows. There are
three possible locations for the car. For each of these the contestant can choose
three doors. For each of these choices Monty Hall can either open one or two
doors. If the same door is chosen as where the car is, both the other doors can
be opened. If another door is chosen, the remaining door that does not contain
the car must be opened. Initially the contestant cannot distinguish any of these
possibilities, and Monty Hall just knows where the car is. An epistemic model
for this situation is given in figure 7.1.

The question is what would be considered an appropriate prior probability
distribution over these worlds. In the face of ignorance, the usual approach is to
consider a uniform probability distribution. But that is inappropriate. There are
twelve possible worlds and all would get a probability of 1

12
. If we were to calculate

the probabilities assigned to worlds according to Monty Hall we get something
odd. Suppose the car is behind door number one. In this case, the domain of
the probability function assigned to Monty Hall consists of those worlds where
the car is behind door number one only. These are four worlds and each would
get probability 1

4
. Consequently Monty Hall would assign probability 1

2
that the

contestant initially chooses door number one. But it seems more appropriate that
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A1
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A3
C1
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C3

O1

O2

O3

Figure 7.1: An epistemic model of the initial situation of the Monty Hall Dilemma.
The solid arrows indicate indistinguishability for both the contestant and
Monty Hall. The dashed arrows indicate indistinguishability for the con-
testant only. Transitive and reflexive arrows are omitted.

Monty Hall would assign probability 1
3
to that. What the contestant is concerned

a uniform distribution would also be inappropriate. Suppose that in that case the
player chooses door number one. After updating with his own choice there are
only four worlds remaining with probability 1

4
each. But that would mean that

although the contestant initially assigned probability 1
3
to the car being behind

door number one, after choosing door number one it would be 1
2
. It seems that

afterwards it should still be 1
3
. So a uniform distribution is not appropriate.

So the requirements seem to be that Monty Hall should assign probability 1
3
to

all choices the contestant can make and the contestant should assign probability
1
3
to all the possible locations of the car, before and after choosing a door. There

are many ways to satisfy these constraints, but these requirements do fix the
probability assigned to worlds where the door chosen by the contestant is not
the door with the car: this probability must be 1

9
. The rest depends on what

Monty Hall does if the contestant chooses the door with the car. In that case
he can open either of the two remaining doors. Let us assume that in that case
he chooses according to a uniform distribution over those two doors. This seems
reasonable. The model is shown in figure 7.2.

Now we can use the semantics of probabilistic dynamic epistemic logic to see
what happens to the information of both the contestant and Monty Hall during
the quiz. The contestant chooses a door, let us assume it is door number one and
Monty Hall opens a door containing a goat, let us assume it is door number three.
Let us also assume that in fact the car is behind door number two. So now we
want to know whether the sentence [C1][O2](Pc(A1) =

1
3
∧Pc(A2) =

2
3
) is true in

the world where the car is behind door number two, door number one is chosen
and door number three is opened. Therefore we have to calculate the results of
the updates. This is shown in figure 7.3, and indeed in the resulting model the
probability that the car is behind door number one is one third according to the
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Figure 7.2: The probabilistic epistemic model of the initial situation of the Monty
Hall Dilemma. The probabilities shown are the prior probabilities of the
worlds.
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a. The relevant part of the proba-
bilistic epistemic model after the
contestant chooses door number
one.

b. The relevant part of the prob-
abilistic epistemic model after
Monty Hall opens door number
three.

Figure 7.3:

contestant and the probability that the car is behind door number two is two
thirds. Therefore he should switch.

7.3 A syntactic analysis

In a syntactic approach the idea is that we try to represent the inference in the
language of probabilistic epistemic logic, and show that it is valid. So, what are
the premises of the inference. One of the rules is that there is only one car behind
the doors, the contestant may only choose one door, and Monty Hall may only
open one door. We use the same sets of propositional variable as in the previous
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section.
onecar =

⊕

A
onechoice =

⊕

C
oneopen =

⊕

O

Where
⊕

means exclusive or. I assume that the contestant should assign a
probability of 1

3
to the car being behind a particular door. This is an assumption

that has to be made to get vos Savant’s answer. Moreover I assume the contestant
does not learn anything about the location of the car by picking a door. Therefore
the contestant should still assign a probability of 1

3
after picking a door: the

contestant’s choice is independent of where the car is.

equal =
∧

i∈{1,2,3}

Pc(Ai) =
1
3

independentAC =
∧

j∈{1,2,3}

[Cj]equal

This is a nice way of expressing independence. This assumption remains implicit
in most other analyses I found of the Monty Hall Dilemma. The crucial part of
the analysis of the Monty Hall Dilemma is to see under what conditions Monty
Hall opens a door. He opens exactly one door such that the contestant did not
pick it and the car is not behind it.

conditions =
∧

i,j={1,2,3}

[Ci](Oj ↔ (¬Aj ∧ ¬Cj ∧
∧

k∈{1,2,3}
k,j

¬Ok))

Let us use initial as an abbreviation for the conjunction of onecar, onechoice,
oneopen, equal, independentAC, and conditions.

The question is whether the contestant should switch or not:

switch = [C1][O3]Pc(A1) ≤ Pc(A2)

If this sentence is true, then the chances that the contestant wins the car do not
decrease by switching. It turns out that initial is not enough to deduce this result.
What is needed is that the contestant is informed about the game: Pc(initial) = 1.
We also need two other very natural assumptions, namely that Pc(C1) > 0 and
[C1]Pc(O3) > 0. This suffices to deduce switch.

The independentAC assumption implies that [C1]Pc(A1) =
1
3
, and therefore:

[C1]Pc(O3 ∧ A1) ≤
1
3

By conditions, onechoice, and oneopen we get [C1]Pc(A2 → O3) = 1. Some prob-
abilistic reasoning gives us that [C1]Pc(O3 ∧ A2) = Pc(A2). This, together with
[C1]Pc(A2) =

1
3
(from independentAC), allows us to infer that [C1]Pc(O3∧A2) =

1
3
,

which yields
[C1]Pc(O3 ∧ A1) ≤ Pc(O3 ∧ A2)
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By atomic permanence we get

[C1]Pc(O3 ∧ [O3]A1) ≤ Pc(O3 ∧ [O3]A2)

From the Probability-Update 1 axiom it follows (using some rewriting and the
0-terms axiom) that

Pc(O3) > 0→ (([O3]Pc(A1) ≤ Pc(A2))↔ (Pc(O3 ∧ [O3]A1) ≤ Pc(O3 ∧ [O3]A2)))

By applying necessitation with [C1], distribution, the assumption that [C1]Pc(O3) >
0, and propositional reasoning we get:

[C1][O3]Pc(A1) ≤ Pc(A2)

Thus far we have made no assumptions about the strategy used by the con-
testant or Monty Hall. We do not need this to deduce switch, but we do need to
assume something about the strategy of Monty Hall if we want to deduce that
the probability that the contestant wins the car by switching equals two thirds.
Then we need to assume that if Monty Hall can choose between opening two
doors (if the door the contestant picked is the same as where the car is), then the
probability he opens one door is the same as the probability he opens the other
door. This boils down to:

equalopen =
∧

{i, j, k} = {1, 2, 3}
i , j

i , k

[Ci]Pc(Oj) = Pc(Ok)

With this we can deduce:

Savant = [C1][O3]Pc(A1) =
1
3
∧Pc(A2) =

2
3

In order to deduce this, first of all we have to see that using conditions and onecar

we can get
[C1]Pc(O3) = Pc(O3 ∧ A1) +Pc(O3 ∧ A2)

Moreover given similar reasoning as before we get [C1]Pc(O3 ∧ A1) = Pc(A1).
Therefore using independentAC we get

[C1]Pc(O3) = Pc(O3 ∧ A1) +
1
3

Moreover from oneopen and equalopen and conditions we get that Pc(O3) = 1
2
.

Therefore Pc(O3∧A1) =
1
6
. In order to apply the Probability-Update 1 axiom we

need to get the right form. But given what we have we can deduce

[C1]Pc(O3 ∧ A1) =
1
3
×Pc(O3)
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with atomic permanence we get

[C1]Pc(O3 ∧ [O3]A1) =
1
3
×Pc(O3)

As before, using Probability-Update 1, we get

[C1][O3]Pc(A1) =
1
3

Given conditions we have that

[C1][O3]Pc(A1) +Pc(A2) = 1

From this we can deduce Savant.

7.4 Conclusion

There are other formal methods one might use to analyze the Monty Hall Dilemma.
One might use a Bayesian approach. One can also think of decision theory or
game theory. I do not at all reject these methods as successful means of analyz-
ing the Monty Hall Dilemma. There is a vast literature about the Monty Hall
Dilemma. In my view a logical approach to the problem is the best.

Why does the solution of the Monty Hall Dilemma seem so counterintuitive?
The question whether the contestant should switch door in order to increase his
chance of winning the car is usually answered by stating that it does not matter
whether you should switch or not. There is one very natural way by which to
arrive at this answer. The information Monty Hall provides by opening door
number three is simply seen as an update with the sentence ¬A3. If one updates
with this sentence, then the probability that the car is behind any of the remaining
doors equals 1

2
. But this is not the only information Monty Hall provides. The

conditions that must hold in order for him to be able to provide the information
that the car is not behind door number three are also provided. The question is
whether the formalism employed to analyze the dilemma is rich enough to be able
to express these conditions. In other words, one should be able to write them
down. As was seen in the previous section the logic presented in chapter 6 is such
a system. Because logic deals with the question whether an inference is valid, I
think logic is the best way to analyze problems such as the Monty Hall Dilemma.



Chapter 8

Mastermind

The subject of this chapter lies somewhat outside the scope of the central issues
in this thesis. Logic and higher-order information do not really play a role.
Information change is the only link to the rest of the thesis. However I find
this chapter worthwhile on its own, and therefore it is included in this thesis.

8.1 Introduction

Mastermind is a two-player zero-sum game of imperfect information. player i
must choose a combination of four pawns drawn from six colors (hence there are
64 possible combinations). Player II does not know the choice player I made. Then
player II can ask eight questions in the form of a combination. If she asks the
secret combination, she wins the game, otherwise player I wins the game. Each
time player II asks a question, she gets an answer that expresses the accuracy of
the question. She gets to know how many colors are in the right place and she
gets to know how many colors are in the combination, but not in the right place.
For example:

AABB the secret combination
BBAB the question

The answer given in this case is: 1 in the right place and 2 are the right color but
are not in the right place (I will abbreviate this as (1,2)).

In this chapter some strategies that can be calculated quite easily are dis-
cussed including their quality. The game mastermind is so interesting because it
provides examples in which one can play around with notions of quality of differ-
ent questioning stategies. These strategies could be generalized to more general
question-answer settings.

129
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8.2 Game theoretic analysis

Although giving an answer seldom gives rise to any problems for people playing
the game, the rules of the game formulate quite vaguely how an answer should be
determined. My interpretation is the following. Take the set of all combinations
that could be made from the pawns that the question was made of (the set of
anagrams of the question). Take from this set the element that matches the
secret combination best. This yields the maximum number of pawns one could
put in the right place, given the pawns of one’s question. This number minus the
number of pawns in the right place is the second number. It can be calculated
by counting for every color the number of pawns that occur in the question and
the number of pawns that occur in the secret combination of that color. Take the
minimum of these numbers. Add them all up, and subtract the number of pawns
in the right place. Formally: let p pawns be drawn from a set C of c different
colors (Let us also assume that C is (alphabetically) ordered and let ci be the
i-th element of that ordering). The answer function a : (Cp × Cp) → (N × N)
can be defined as follows. Let s = (s1, . . . , sp) ∈ C

p be a secret combination and
g = (g1, . . . , gp) ∈ C

p be a question

a(s, g) = (#({j | sj = gj}),

(
c
∑

i=1

min(#({j | sj = ci}),#({j | gj = ci})))−#({j | sj = gj}))

As I mentioned, people playing the game do not find the definition vague. So for
the example where s = AABB and g = BBAB, the first number of the answer
is 1, because s and g are equal on the fourth pawn only. There are two A’s in s
and there is one A in g, the minimum of which is one. For B we get two. From
the sum of these the first number of the answer is subtracted, which yields two.

In principle mastermind can be analyzed using standard game-theoretic tech-
niques. Simply draw the game tree and apply Zermelo’s algorithm to calculate
the value of the game (see Binmore (1992)). For mastermind we have a finite tree.
First player I chooses a combination and then player II can choose a combination
8 times. So the tree is finite. It contains at most (64)

9
≈ 1.1028 terminal nodes.

This is quite a large tree.
For mastermind, however, the value of the game is known, because strategies

have been found that need eight or less questions. Because one wants to be able
to say something about the quality of these strategies, other than being a strategy
that will win the game, one has to change some of the rules. For example, one
could imagine that the players split eight dollars by playing mastermind. Player
I gets as many dollars as the number of questions it takes player II to win and
player I gets the rest. Or one could limit the number of questions, for example to
five questions. The first of these is more often taken as the measure of quality of
a strategy. The optimal strategy for this measure of quality has been found by
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Koyoma and Lai (1993) by a depth first computer search. Assuming a uniform
distribution over the possible combinations, the value of the game for player II is
4.340. The strategy needs a total of 5625 questions. This strategy is difficult to
generalize. Therefore I will focus on strategies that are more easy to calculate.

8.3 A simple strategy

The first strategy I want to discuss is by Shapiro (1983) (it is also published
in Sterling and Shapiro (1994)). What his algorithm does is the following. The
combinations are somehow ordered (usually alphabetically), then it asks the first.
The answer is received. The next question is the first one in the ordering that
is consistent with the answers given so far. And so on until the combination is
cracked. A crucial drawback to this strategy, however, is that it looks at the
informativity of questions very marginally. one can only be certain that one does
not know the answer already, but that is all. We will see in section 8.6 that a
question, which cannot be the secret combination can be very informative.

8.4 Looking one step ahead

In mastermind a question partitions the set of possible combinations. This can
be seen in the following example. Consider a simplified mastermind game with
two pawns and four colors. The set of possible combinations can be represented
as follows:

DA DB DC DD

CA CB CC CD

BA BB BC BD

AA AB AC AD

The questions AA and DA can be represented by the corresponding answers as:

1, 0 0, 0 0, 0 0, 0

1, 0 0, 0 0, 0 0, 0

1, 0 0, 0 0, 0 0, 0

2, 0 1, 0 1, 0 1, 0

2, 0 1, 0 1, 0 1, 0

1, 0 0, 0 0, 0 0, 1

1, 0 0, 0 0, 0 0, 1

1, 0 0, 1 0, 1 0, 2

It is obvious that the second question is more informative than the first, but how
can we motivate this intuition?

Let us look at the partitions for the standard mastermind game; four pawns
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and six colors.

A
A
A
A

A
A
A
B

A
A
B
B

A
A
B
C

A
B
C
D

(0,0) 625 256 256 81 16
(0,1) 0 308 256 276 152
(0,2) 0 61 96 222 312
(0,3) 0 0 16 44 136
(0,4) 0 0 1 2 9
(1,0) 500 317 256 182 108
(1,1) 0 156 208 230 252
(1,2) 0 27 36 84 132
(1,3) 0 0 0 4 8
(2,0) 150 123 114 105 96
(2,1) 0 24 32 40 48
(2,2) 0 3 4 5 6
(3,0) 20 20 20 20 20
(4,0) 1 1 1 1 1

One can look at this table from the perspective of wanting to minimize the max-
imum number of questions required to win the game and one can look at it from
the perspective of wanting to minimize the average number of questions required
to win. From the first perspective, a worst case perspective, one wants to look
at the maximum number of questions required for each of the resulting partition
elements. As we are looking only one step ahead, the only estimate we can make
of this must be based on the size of the partition element. One can assume that
the larger the element is, the more questions are required.

A
A
A
A

A
A
A
B

A
A
B
B

A
A
B
C

A
B
C
D

size largest partition element 625 317 256 276 312

So the first question we should ask is a question like AABB. This idea is worked
out in the strategy by Knuth (1977).

From the perspective of wanting to minimize the average number of questions,
other considerations play a role. There are several approaches one can take here.
First one could say that now the selection should not be based on the worst case,
but on the ‘average case’. In other words, one should look at the expected size
of the partition element one ends up in. The expected size of a partition element
is the probability of getting the answer corresponding to that partition element
multiplied with the size of the partition element. This expectation is defined as
follows for the first question. Let A be the set of possible answers to questions.
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Let g be a question, then the expected size of the partition element one ends up
in is:

∑

ai∈A

Pg(ai).#({x | x ∈ Cp ∧ a(x, g) = ai})

where Pg(ai) is the probability that the answer to g is ai. If one assumes the
distribution over the possible combinations to be uniform, then:

Pg(ai) =
#({x | x ∈ Cp ∧ a(x, g) = ai})

#(Cp)

For example PAAAA(0, 0) =
625
1296

, because 64 = 1296. So the expected size is

∑

ai∈A

#({x | x ∈ Cp ∧ a(x, g) = ai})
2

#(Cp)

For the first question the expected sizes are shown in the table below

A
A
A
A

A
A
A
B

A
A
B
B

A
A
B
C

A
B
C
D

expected size 511.9 235.9 204.5 185.3 188.2

From this pont of view, one should select AABC as the first question. This
approach is taken by Irving (1979).

One can also take another approach, which can be motivated as follows. Sup-
pose that a player has to guess which card another player chose from an ordinary
deck of cards. Let us assume that this is random in the sense that the probability
distribution is uniform. The player wins 1$ if the guess is correct. There are 52
possibilities. Before the player guesses she can ask one question. She must divide
the cards into two (nonempty) piles and ask to which of the piles the card belongs
(for example red and black, or spades and non-spades, or even the queen of hearts
and not the queen of hearts). Which question is best? They are all equally good.
This can be seen as follows. Suppose the two piles have sizes x and y. The card
is in group x with probability x

52
. The probability of guessing the right card if it

is in this group is 1
x
. The card is in group y with probability y

52
. The probability

of guessing the right card if it is in this group is 1
y
. Hence, the expected gain is:

x

52
·
1

x
· 1$ +

y

52
·
1

y
· 1$ =

2

52
$

So it does not matter what the sizes of x and y are.
This can be generalized. Suppose there is a set A and we have to guess what

element of A we are dealing with. We also have to assume that the probability
distribution on A is uniform. Before we guess we can ask a question that can be
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seen as a partition V = {Vi, . . . , Vn}. The probability of guessing correctly, once
we learn in which part of V the element is:

n
∑

i=1

#(Vi)

#(A)
·

1

#(Vi)
=

n

#(A)

So in these cases the sizes of the elements of the partition do not matter. The
only thing that matters is the size of the partition, i.e. the number of elements of
the partition.

This can be generalized to games with more rounds. Assume that the prob-
ability of guessing the element of any set S correctly in a game with r rounds
is the number of parts that one can partition S in with r questions, divided by
the cardinality of S, where the player’s question can depend on the answer to
the previous questions. Let us look at a game with r + 1 rounds. A player can
ask r + 1 questions, and then has to guess which element of A the other player
chose. Let the first question be a partition V = {V1 . . . Vn}. Let ni indicate the
number of parts Vi can be partitioned in with the rest of the questions. Using
the induction hypothesis we infer that when the game is played in r rounds for Vi
the probability of guessing the element of Vi equals ni divided by the cardinality
of Vi. Then the probability of guessing correctly in r + 1 rounds for the set A is:

m
∑

i=1

#(Vi)

#(A)
·

ni
#(Vi)

=
m
∑

i=1

ni
#(A)

So the probability of guessing the element of set A correctly in a game with r+1
rounds equals the number of parts that one can partition A in with r+1 questions
divided by the cardinality of A. By induction one can conclude that this holds
for any r and any set S.

So in mastermind, if one wants to maximize the number of combinations for
which one would win in a certain round, then one should maximize the number
of parts the set of all combinations is partitioned in, in the previous round. It
is still not feasible to calculate this for an interesting number of rounds, such as
five, but it can be used as a motivation for a strategy. It is interesting both from
the point of view of minimizing the average number of questions required as from
the point of view of minimizing the maximum number of questions required. Let
us look at the first question again, then we see:

A
A
A
A

A
A
A
B

A
A
B
B

A
A
B
C

A
B
C
D

number of parts 5 11 13 14 14

So this strategy should start with either AABC or ABCD. When one writes a
computer-program, however, one has to make a choice. In most of the literature
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an alphabetical ordering is used and those combinations are preferred that are
still possible. This strategy, which maximizes the number of partition elements,
is not discussed in the literature on mastermind that I found.

One might argue that the strategy where only the number of parts matter is
not specific enough. Consider again the example of the cards given above. Surely,
when considering a game with more than one round, a question splitting the cards
in exactly two equally large piles is better than a question splitting it into one
pile with one card and the other cards in the other pile, because if the answer is
the smaller pile, on cannot ask any non-trivial question. Therefore the partition
would not be maximal given a limited number of rounds.

There is a measure that gives an ordering on partitions which is called entropy
(see Cover and Thomas (1991)), which in the case of the cards would select
a question with two piles of 26 cards. This can be motivated by the following
example. Suppose we have another guessing game. Player I picks a card randomly
from a deck of cards. Player II has to determine which card Player I picked using
a minimal number of yes/no questions. If there are eight cards for example, one
needs three questions to determine which card it is. This is the log2(8). The
logarithm gives an approximation of the expected number of yes/no questions
needed. (It is not exactly the expected number of questions, because one should
look at the logarithm as the limit of the expected number of questions, if one
can play a number of these games simultaneously.) Suppose we have a partition

V = {V1, . . . , Vm} of a set A. Let pi be #(Vi)
#(A)

. (This is the probability that
an element of Vi is in A. If the probability distribution is not uniform another
definition is needed.) Then the expected number of yes/no questions could be
represented as

n
∑

i=1

pi log(#(Vi))

Trying to minimize this measure is the same as trying to maximize the entropy,
S, which is defined as

S(V ) = −
n
∑

i=1

pi log(pi)

since log pi = log(#(Vi)
#(A)

) = log(#(Vi)) − #(A). In figure 8.1 a graph displaying
the entropy for partitions with two elements is drawn. The variable for the x-axis
is the probability p of one of the elements of the partition, the entropy is given
on the y-axis. So the graph shows the function −p log p+−(1− p) log(1− p).

Let us look at the entropies of the first questions.

A
A
A
A

A
A
A
B

A
A
B
B

A
A
B
C

A
B
C
D

entropy 1.498 2.693 2.885 3.044 3.057
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Figure 8.1: Entropy of a partition with two elements.

This strategy is one of the strategies studied by Neuwirth (1982). He has in-
troduced another strategy that seems to perform quite well. I do not discuss it
here.

8.5 Empirical results

The first table shows for each strategy for how many combinations the game is
won in a particular round of the game. Or put in other words: each strategy
produces a game tree, the table shows for each depth of the tree how many leafs
(nodes without successors) there.

Round number 1 2 3 4 5 6 7 8 9

Shapiro 1 4 25 108 305 602 196 49 6
Maximum size 1 6 62 533 694 0 0 0 0
Expected size 1 10 54 645 583 3 0 0 0
Most parts 1 12 72 635 569 7 0 0 0
Entropy 1 4 71 612 596 12 0 0 0

The second table shows the same results, but shows for how many combinations
the game has been won before or at the end of a particular round, i.e. the numbers
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in the table above are added.

Round number 1 2 3 4 5 6 7 8 9

Shapiro 1 5 30 138 443 1045 1241 1290 1296
Maximum size 1 7 69 602 1296 1296 1296 1296 1296
Expected size 1 11 65 710 1293 1296 1296 1296 1296
Most parts 1 13 85 720 1289 1296 1296 1296 1296
Entropy 1 5 76 688 1284 1296 1296 1296 1296

The third table shows how many questions are needed in total in the strategy
and the average number of questions needed (the average length of a path to a
leaf). The numbers in the second column are rounded.

total number of questions average number of questions

Shapiro 7471 5.765

Maximum size 5801 4.476
Expected size 5696 4.395
Most parts 5668 4.373
Entropy 5722 4.415

8.6 Evaluation

In this section I will try to say something more about the empirical results. It
seems quite surprising that Shapiro’s strategy performs so badly regarding the
maximum number of rounds required and the average number of rounds required.
It does not even guarantee that one wins in eight rounds. It seems that the first
question that is asked is not a good choice. This can easily be improved by
choosing another combination than AAAA to be the first combination that is
asked and let the rest be ordered alphabetically. AABB for example gives the
following results:

Round number 1 2 3 4 5 6 7 8 9

Shapiro starting with AABB 1 12 71 253 588 286 78 7 0

which is considerably better. But it still performs badly in comparison to the
other strategies. Why the maximum is higher can be explained by the following
example. If one uses the entropy strategy and the secret combination is CCCC,
the following game will be played.

round question answer
1 ABCD (1, 0)
2 BEEF (0, 0)
3 AAAC (1, 0)
4 CCCC (4, 0)
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After the second question, only three secret combinations are possible, AAAA,
CCCC, and DDDD. Now look at the following table, where for each of these
remaining possibilities the answers is shown for asking the question in the column.

A
A
A
A

C
C
C
C

D
D
D
D

A
A
A
C

AAAA (4, 0) (0, 0) (0, 0) (3, 0)
CCCC (0, 0) (4, 0) (0, 0) (1, 0)
DDDD (0, 0) (0, 0) (4, 0) (0, 0)

A consistent question would not be able to distinguish all three combinations,
but the question AAAC can, as can be seen in the table. In this way the maxi-
mum number of questions required can be reduced. In all other strategies except
Shapiro’s inconsistent questions occur. An interesting question related to this
example is whether any set of three combinations can be separated with one
question. Maybe even every set of four or five.

One of the other interesting results is that, although strategies often have no
theoretic way to distinguish two questions, but only alphabetic ways of distin-
guishing, the empirical results give a different answer. Due to a programming
error the first tests that I ran had strategies that picked the alphabetically last
optimal combination if a unique optimal combination was not in the set of re-
maining possibilities. These give a slightly different picture.

Round number 1 2 3 4 5 6 7 8 9

Maximum size 1 8 65 522 696 4 0 0 0
Expected size 1 10 54 646 582 3 0 0 0
Most parts 1 12 72 636 568 7 0 0 0
Entropy 1 4 70 613 596 12 0 0 0

Shapiro’s strategy has been left out of this table, because these considerations
do not affect his strategy. These differences are very small. They are greatest
in case of Knuth’s strategy of minimizing on the maximum size of the partition
elements. I think this means none of the strategies proposed here can be defended
theoretically in a satisfactory manner.

Why the results are so very different in the Knuth’s case is because of the
following. After the first question has been answered, the number of ways the set
of remaining possibilities can be partitioned in is quite large. As we know there
are only five types of question that can be asked in the initial state. But after
the first question has been answered there are much more. The following table
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shows the number of questions that can be asked if the first answer is (1, 0).

question answer number of different questions
AAAA (1, 0) 12
AAAB (1, 0) 53
AABB (1, 0) 34
AABC (1, 0) 125
ABCD (1, 0) 52

So in Knuth’s strategy, there are already 34 different kinds of partitions that can
be made. His strategy only looks at one aspect of these partitions and apparently
this is not fine-grained enough to result in a robust strategy. If there are already
34 questions that can be asked after the first question, this will be worse after
more.

Irving’s strategy of minimizing on the expected size of the set of remaining
possibilities is straightforward, but his paper contains a number of strange (irre-
producible) results. First of all he claims that a closer investigation of Knuth’s
strategy reveals that the total number of questions required for all 1296 com-
bination is 5804, whereas it is 5801 according to my calculations. This can be
explained by a minor programming error (the same that I made), but I cannot
explain any of his other results. He says his strategy selects the first two questions
on the basis of the expected number of remaining possibilities and the rest by
exhaustive search. When I look at the second question he makes after the first
reply I disagree with him on five questions. In four of those it is simply the case
that he does not take the first one out of the list that is available to him. In one
case it is simply wrong. His first question is AABC. If the reply to this question
is (3,0), according to Irving the next question should be FBAC. (One immedi-
ately wonders why not DBAC.) According to my calculations, the expected size
of the set of remaining possibilities after this question is 4.7. However, if one asks
ABCC the expected size is 3.6, which is quite different. One difference between
these two questions is that Irving’s question partitions the remaining possibilities
in 8 parts, whereas ABCC partitions the set of remaining possibilities in 7 parts.
So it might be the case he took the average number of remaining possibilities,
instead of the expected size, but I still cannot reproduce his results.

The “most parts” strategy results in the best strategy when one looks at the
average number of questions, the only problem is that the theory behind it tells
you that the number of rounds really matters, whereas this is ignored in selecting
a question. Each time one only looks one step ahead. I found the following
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looking two steps ahead.

A
A
A
A

A
A
A
B

A
A
B
B

A
A
B
C

A
B
C
D

(0,0) 14 14 14 13 8
(0,1) 0 14 14 14 13
(0,2) 0 9 12 14 14
(0,3) 0 0 7 10 11
(0,4) 0 0 1 2 4
(1,0) 13 14 14 14 13
(1,1) 0 13 14 14 14
(1,2) 0 7 10 11 11
(1,3) 0 0 0 4 4
(2,0) 11 12 12 12 12
(2,1) 0 9 10 11 9
(2,2) 0 3 4 4 4
(3,0) 5 8 8 8 7
(4,0) 1 1 1 1 1

total 44 104 121 132 125

The numbers in the table is the number of different answers one could get by
asking a question, after the initial question given and the initial answer. So the
total number at the bottom is the total number of parts of the partition that
results from asking two questions. So if the game consists of three rounds, it is
best to start with AABC.

8.7 Conclusion

My conclusion is that Shapiro’s strategy is not very good, but that I cannot order
the other strategies in any way, when one wants to apply these strategies to other
areas. To be able to say something more about this, empirical results about more
difficult variants of mastermind (more pawns or more colors) are needed. I suspect
that if one makes it easier (less pawns or less colors) the different strategies will
again lead to approximately the same results.



Chapter 9

Trying to resolve the two-envelope
problem

The subject of this chapter lies somewhat outside the scope of the central issues in
this thesis. Higher-order information does not really play a role. Although logic
and probability theory do play a role, and the focus is on other issues regarding
logic and probability theory than in the rest of this thesis. However I find this
chapter worthwhile on its own, and therefore it is included in this thesis.

9.1 Introduction

The two-envelope paradox is a problem that can baffle people. The earliest form of
the paradox appeared in Kraitchik (1943) (see also Nalebuff (1989)). He discusses
the paradox of the neckties.

‘Each of two persons claims to have the finer necktie. They call in
a third person who must make a decision. The winner must give his
necktie to the loser as consolation. Each of the contestants reasons as
follows: ‘I know what my tie is worth. I may lose it, but I may also
win a better one, so the game is to my advantage’. How can the game
be to the advantage of both?’

Kraitchik also formulated a variant where two people compare the number of
pennies in their purses. This form also appears in Gardner (1982), where it is
called the wallet game. It is unclear who gave the problem its modern form.
Zabell (1988a), (1988b) heard it from Steve Budrys (see Nalebuff (1989)). It goes
along the following lines.

There are two indistinguishable envelopes. Both envelopes contain a check,
upon which an amount of money is written. One of the checks is worth twice as
much as the other check. One picks one of the envelopes, opens it and observes
the amount on the check. Then one is allowed to decide between

141



142 Chapter 9. Trying to resolve the two-envelope problem

1. keeping the envelope one has;

2. returning the envelope and take the other one.

Two variants are distinguished: the discrete case, where the amount is a natural
number; the continuous case, where the amount is a positive real number.

In the Encyclopedia of Philosophy, Van Heijenoort defines a paradox, espe-
cially a logical paradox, as follows:

A paradox, in the original sense of the word, is a statement that goes
against generally accepted opinion. In logic the word has taken on
a more precise meaning. A logical paradox consists of two contrary
or even contradictory propositions to which we are led by apparently
sound arguments. The arguments are considered sound because when
used in other contexts they do not seem to create any difficulty. (Van
Heijenoort, 1967)

Take the liar paradox for example:

L: The sentence L is false.

There is a sound argument that the sentence is true: suppose L is false, therefore
it is not the case that L is false. Therefore, by tertium non datur L is true.
There is also a good argument that L is false: suppose that L is true, but L says
that L is false. Therefore it is false. The two propositions “L is true” and “L is
false” are contradictory. The line of argument that led to both conclusions seems
unexceptionable.

In case of the two-envelope problem, there are also two contrary propositions
to which we are led by apparently sound arguments. The first proposition is
that one should switch. Let us first introduce some notation. Let y be the lesser
amount on the checks. Let z be 1 if one picks the envelope with y, and 2 otherwise.
The amount found in the envelope is x(= zy). Now one can argue as follows: the
probability of picking the envelope with the larger amount is 1

2
. One observes an

amount of x. Therefore the probability that the other envelope will contain 1
2
x

equals 1
2
and the probability that it will contain 2x is also 1

2
. The expected value

of the amount in the other envelope therefore equals 5
4
x(= 1

2
× 1
2
x+ 1

2
× 2x). The

expected value is greater than x, therefore one should switch.
The other proposition is that it does not matter whether one switches or not.

The strange thing is that it follows from the argument above. It is clear that
the argument above applies regardless of the observed amount x. Therefore one
should switch anyway. In that case it seems that one could just as well choose the
other envelope initially. As this is true for both envelopes it does not matter which
envelope one chooses, and therefore it does not matter whether one switches or
not.
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This chapter is the result of joint work with Casper Albers and Willem Schaaf-
sma (see Albers, Kooi, and Schaafsma (2002)). It contains three parts, in which
three distinct problems are discussed. In section 9.2, the two-envelope paradox
is regarded as a purely logical paradox. In section 9.3 the two-envelope paradox
is regarded as a paradox in probability theory. Even when the logical paradox is
solved, this paradox remains. Finally a few words are spent on the two-envelope
problem. Even when the two-envelope paradox is solved, there still is the problem
of choosing between keeping the envelope one has and returning the envelope and
taking the other one.

9.2 A purely logical paradox

Smullyan (1997) maintained that ‘probability is really quite inessential to the
heart of this paradox’. He presents it as a purely logical paradox with no reference
to probability or expected values.

Proposition 1: The amount you will gain by trading, if you do gain, is greater
than the amount you will lose, if you do lose.

Proposition 2: The two amounts are really the same.

He proves both of them in the following way1:“To prove Proposition 1, let x be
the amount you are now holding. Then the other envelope either contains 2x
or x/2. If you gain by trading, you will gain x dollars (moving from x to 2x),
whereas if you lose by trading, you will lose only x/2. Since x is greater than
x/2, then Proposition 1 is established.

To prove Proposition 2, let d be the difference between the two amounts in
the envelopes (or what is the same thing, the lesser of the two amounts). Well, if
you gain on the trade, you will gain d dollars. If you lose on the trade, you will
lose d dollars. Since d is equal to d, then Proposition 2 is established.” (Smullyan
(1997, p.174))

Thus we are truly dealing with a logical paradox. The solution of a paradox
must meet a number of conditions. Susan Haack indicates these in her book
Philosophy of Logics.

[. . . ] This suggests two requirements on a solution; that it should
give a consistent formal theory [. . . ] in other words, indicate which
apparently unexceptionable premises or principle of inference must
be disallowed (the formal solution); and that it should, in addition,
supply some explanation of why that premise or principle is, despite
appearances, exceptionable (the philosophical solution). [. . . ] Further

1In his book Smullyan uses the letter n in his proof of proposition 1. We have replaced it
with x to keep a uniform notation.
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requirements concern the scope of a solution; it should not be so broad
as to cripple reasoning we want to keep (the ‘don’t cut off your nose
to spite your face’ principle); but it should be broad enough to block
all relevant paradoxical arguments (the ‘don’t jump out of the frying
pan into the fire’ principle); the ‘relevant’, of course, glosses over some
problems. (Haack (1978, pp. 138 – 139))

This indicates several ways of tackling a paradox. One can develop a philosoph-
ically well motivated formal system in which at least one of the arguments is
flawed. One can claim the propositions are not truly contrary, by for example
claiming that they are not propositions at all. In the case of the logical two-
envelope paradox I claim that the propositions are not contrary because they are
ambiguous. This will be argued by using Lewis’s theory of counterfactuals.

Lewis’s theory of counterfactuals was developed by a certain dissatisfaction
with material implication and strict implication. Material implication, which is
denoted by ϕ → ψ, is equivalent to ¬(ϕ ∧ ¬ψ). Strict implication, which is
denoted by ϕ J ψ, is equivalent to ¤(ϕ → ψ) in ordinary alethic modal logic.
Yet neither can capture the conditional expressed in the following sentence.

If kangaroos had no tails, they would topple over.

It is clear that these kinds of sentences are not to be interpreted as material
implications. Lewis argues that they cannot be interpreted as strict implications
either, because of their non-monotone behavior. (See Lewis (1973)).

In Lewis’s system these kind of conditionals are denoted by ϕ� ψ. They
differ from both material implication and strict implication. If one would consider
the conditional above to be a material implication it would be true merely because
the antecedent is false. This is rather counterintuitive. On the other hand if it is
read as a strict implication, then there are other counterintuitive results. This is
best illustrated by the following sentences.

If Oswald did not kill Kennedy, then someone else did.

If Oswald had not killed Kennedy, someone else would have.

The first sentence is best read as a strict implication: in all possible worlds where
Oswald did not kill Kennedy, someone else did kill him, because in fact he was
killed. The other sentence is different. It cannot be read as a strict implication.
The antecedent expresses a counterfactual situation, and assumes that in fact
Oswald did kill Kennedy. Lewis reads this sentence as follows. Someone else
killed Kennedy in all those possible worlds that are as similar as possible to the
actual world, except that Oswald did not kill Kennedy. Assuming that there
was no conspiracy, and that no one else tried to kill Kennedy, those possible
worlds include some where no one killed Kennedy and he would still be alive, or
died in some other way than by someone killing him. It is quite vague what it
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y = 50

w1

z = 1

w2

z = 2

y = 100

w3

z = 1

w4

z = 2

Figure 9.1: A picture of the game tree of the two-envelope problem. The dotted lines
indicate other possibly choices for y.

means to be ‘as similar as possible’ to the actual world, but the important thing
is that this notion of conditionals seems to capture a lot of our intuition about
counterfactuals.

Now let us return to the logical two-envelope paradox. Consider the following
term:

the amount you will gain by trading, if you do gain

Let us assume that the condition in this term expresses a counterfactual situation
and that in fact you do not gain by trading. (Using first order logic and the iota-
operator (see (Gamut 1991), volume 1, section 5.2) with counterfactuals this term
could be represented as ιx(∃yG(y)� G(x)), where G(x) is to be read as “you
gain x by trading”.) What possible worlds are as similar as possible to the actual
world, where you do gain by trading? To make clear what choices we can make,
let us look at a picture of the game tree for this problem shown in Figure 9.1.
First an amount y and an amount 2y are put into two envelopes. Then you pick
one of these envelopes, containing the check with 2y, then z = 2, or the check
containing y, then z = 1. Let us assume that in fact y = 50 and that z = 2. In
that case you lose by trading. The actual world is thus w2. In both world w1
and world w3 you gain by trading. Which of these is more similar to w2? There
are three possible answers: w1 is more similar, w3 is more similar, and they are
equally similar (assuming that similarity defines a total order). Any choice that
is made resolves the paradox. In the case where another world is the actual world
we can resolve the paradox analogously.

It seems a matter of perspective which of these worlds is regarded as most
similar. To you world w3 seems closer, because according to the information you
have it is still possible. It is a world in which you have the same information, and
therefore is similar to the actual world. In this case the amount you would gain
would be 100 dollars. On the other hand from the perspective of the envelopes
that were available to you, world w1 seems closer. If you had chosen the other
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envelope, you would have ended up in w1. It is a world which has most history
in common with the actual world, and therefore it is similar to the actual world.
In this case the amount you would gain would be 50 dollars. If you consider both
worlds as similar as possible to the actual world there is no fixed amount you win
by trading. It is either 50 or 100 dollars. So the term “the amount you will gain
by trading, if you do gain” is ambiguous. This ambiguity is exploited in the two
arguments for Proposition 1 and Proposition 2. In the proof of Proposition 1 the
perspective is taken that w3 is more similar to the actual world. In the proof of
Proposition 2, w1 is more similar to the actual world.

A similar analysis is given by Chase (2002), but he argues that one interpre-
tation is better than the other. I do not think that one interpretation is better
than the other. It is clear that it depends on which meaning one gives to the
words, and one can choose as one likes. It is important to note that whichever
interpretation is chosen, this does not resolve the other paradox, where we were
led to the conclusion that it is better to switch and to the conclusion that it does
not matter if one switches. We now turn to resolving this.

9.3 The two-envelope paradox

As many authors have noted the two-envelope paradox can be explained quite
easily Zabell (1988a), Zabell (1988b), Nalebuff (1989), Nalebuff (1988), Broome
(1995), Clark and Shackel (2000), Chalmers (1994), Jackson, Menzies, and Oppy
(1994), Linzer (1994), McGrew, Shier, and Silverstein (1997), and many, many
more. The mistake in the argument that the expected value of the amount on
the cheque in the other envelope is 5

4
x, is that in the calculation the prior proba-

bility of picking the larger and the lesser amount is used, instead of the posterior
probabilities of picking the larger or the lesser amount after observing x. To cal-
culate the expected utility of switching as a general strategy one must know the
prior probability that x and 2x are in the envelopes, and the prior probability
that 1

2
x and x are in the envelopes. For example if there is always 100 and 50

in the envelopes, the expected value of switching, after finding 100, equal −50
rather than 125. In short, one must know what the distribution over y is, before
one can calculate the expected value of switching. And one does not know this
distribution, so one cannot calculate the expected value.

9.4 The two-envelope problem

So the paradox is solved, but a problem remains. What should one do? Should
one switch or not in a particular case? This is discussed extensively in Albers,
Kooi, and Schaafsma (2002) and I will not go into details here. The problem
is discussed from the perspective of economy, psychology, logic, probability, and
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mathematical statistics, respectively, as well as through an in-depth contribution
from game theory. The conclusion is that the two-envelope problem does not
allow a satisfactory solution.





Chapter 10

Conclusion

In this thesis I have investigated the notions of knowledge, chance, and change,
separately and I have investigated how they interact. The logic of knowledge and
information, epistemic logic, is a subject worth studying on its own. There are
many approaches to representing information and reasoning about information.
Epistemic logic deserves a special status among all these approaches because it
deals with higher-order information in a very good way. The concept of common
knowledge is a prime example of this.

The logic of change, dynamic logic, was studied in chapter 3. One of the best
known dynamic logics PDL has a property called non-compactness. This makes
it difficult to provide a strongly complete proof system for it. An infinitary sys-
tem was presented and studied in chapter 3. And generalizations are considered
for epistemic logic with common knowledge. Moreover it was shown that the
canonical model for this proof system lacked program harmony. There are still
interesting application areas remaining.

Epistemic logic can only provide a static picture of knowledge and information.
If one is interested in information change there are also many approaches available.
If one is especially interested in the change of higher-order information, one enters
the realm of dynamic epistemic logics. As we saw in chapter 4, there are many
approaches and there is not one approach that is clearly superior to the others.
There are also many problems that have not been solved in this area. It remains
worth studying.

Another way to generalize epistemic logic is to incorporate probabilistic in-
formation. Probability can be interpreted as a degree of belief. There are also
other views of probability, but in this thesis the focus is on ‘degree of belief’ as
a generalization of epistemic logic. The relation between this view of probability
and the notion of statistical probability was investigated in chapter 5. Of course
as a generalization of epistemic logic, multi-agent probability logic and higher-
order probability are very interesting subjects. Especially when one is interested
in the change of higher-order probabilities one notices that taking conditional
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probabilities is just one way of handling higher-order probability change. A novel
approach to this was presented in chapter 6.

A few problems in the area where knowledge, chance, and change meet were
studied in chapters 8, 7, and 9. When higher-order information does not play a
role in a certain problem most approaches to representing information and infor-
mation change seem to be equivalent. For example expansion in belief revision
comes up with the same results as updates in dynamic epistemic logic, as far
as information about the state of the world is concerned. There is a paper by
Segerberg (1999) which links these two approaches. Also as we saw in chapter 6
on page 100, when higher-order information does not play a role, reasoning about
conditional certainty is the same as reasoning about information change. There-
fore one might just as well use an alternative to (dynamic) epistemic logic when
one is not interested in higher-order information. In the analysis of mastermind
for instance higher order information plays no role whatsoever. Sjoerd Druiven
and Maarten Grachten have proposed a variant of the game where higher-order
information does play a role: MastersMinds. In MastersMinds two players try to
find out the other player’s secret combination, but when they ask a question they
also have to answer it themselves. In this way they have to reason about what
the other player knows. But when it does play a role (dynamic) epistemic logic
provides the best understanding of higher order information.

But what are the remaining challenges in these areas? There are two that I
think are very much worthwhile.

A unified theory of information As was indicated in chapter 4 there are a
lot of approaches to information. It would be very good to know what
the relations between all these approaches are. At the moment it seems
that many scientists working in these separate areas of research are very
much focused on their own approach. For a large part I do not think this is
problematic. This is the case in many sciences. A field can be so broad that
someone specialized in one area does not even have to know of the existence
of another very specialized area. Let me use an analogy. In a car factory
there are several very specialized tasks. Someone who puts the windows
into a car does not need to know how the engine works to do this efficiently.
Someone who puts the engine into a car does not need to know how the
windows work. However they know this: it is common knowledge. They do
have a general picture of the car that tells them that the proper functioning
of the engine has nothing to do with the windows and vice versa. In the
study of information, however, the engineers do not seem to know how all
the different theories go together: there seem to be interrelations, but it is
not clear how one area is related to another. This needs to be found out!

Philosophy of probability for all In chapter 5 I sketched some of the posi-
tions in the philosophy of probability. It seems, however, that consensus



151

about the subject is still difficult to find. In my view probability logic can
be the bridge between the mathematics of probability and the philosophy
of probability. Different philosophies can bring about different logics. But
the interrelations between these logics can be studied. I think this can be so
successful that probability theorists would sit up and take notice. For exam-
ple in the two envelope problem as it was presented by Raymond Smullyan
it seems that it is unclear which value one should take as fixed. Should one
consider the amount in the envelope you chose to be fixed? Or should one
consider the difference between the amounts in the envelopes to be fixed? In
probability theory these amounts are taken to be random variables. From
the point of view of first-order modal logic one would consider them to be
nonrigid desigators (referring to different things in different worlds). The
lesson from logic that things might go astray when one applies Leibniz’ law
to nonrigid designators, is quite useful in this context.





Samenvatting

Stel je bent doorgedrongen tot de laatste ronde van een televisiequiz. Je kunt
een auto winnen, die achter een van drie deuren staat. De quizmaster vraagt
je een deur te kiezen. Nadat je een deur gekozen hebt, moet de quizmaster
je helpen. Hij weet waar de auto staat en moet een deur openmaken die je niet
gekozen hebt en waar de auto niet achter staat. Nu mag je nog eens kiezen tussen
de overgebleven deuren. Als de auto achter de deur staat die je uiteindelijk kiest
win je de auto. De vraag is of het voordelig is om van je initiële keuze af te wijken
en dus de andere deur te kiezen. Dit is het Monty Hall Dilemma, genoemd naar
een quizmaster uit de Verenigde Staten. Het was een van de problemen die de
aanleiding vormde voor mijn promotieonderzoek.

De voor velen tegenintüıtieve oplossing van het Monty Hall Dilemma is dat het
voordelig is om van je initiële keuze af te wijken. Je wint dan de auto in twee derde
van de gevallen. Om deze conclusie te trekken moet rekening gehouden worden
met de kennis van de quizmaster, de waarschijnlijkheid dat de auto achter een
deur staat en de informatieverandering die optreedt ten gevolge van het openen
van een deur. Dit proefschrift gaat over de logica van kennis, waarschijnlijkheid,
en verandering.

Logica wordt gebruikt bij onder andere informatica, wiskunde, wijsbegeerte,
taalkunde, rechtsgeleerdheid en kunstmatige intelligentie. In de logica houdt men
zich bezig met redeneringen en dan vooral met de vraag of een redenering klopt.
Bij het beantwoorden van deze vraag wordt niet gekeken naar specifieke redene-
ringen, maar kijkt men naar de abstracte vorm van redeneringen. Dit gebeurt
door redeneringen te vertalen naar een logische taal. Zo kunnen de redeneringen
“Alle mensen zijn sterfelijk en Socrates is een mens. Dus Socrates is sterfelijk”
en “Alle honden zijn vals en Lassie is een hond. Dus Lassie is vals” na vertaling
dezelfde vorm hebben. Zo’n logische taal is toegesneden op redeneringen waarbij
een bepaald aspect centraal staat. Zo ontstaan allerlei logica’s, elk met een eigen
toepassingsgebied. Bij kennislogica, probabilistische logica en dynamische logica
staan respectievelijk kennis, waarschijnlijkheid en verandering centraal; de aspec-
ten die bij het Monty Hall Dilemma een rol spelen. Deze logica’s komen ook aan
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bod in dit proefschrift.
In kennislogica ligt de nadruk op redeneringen waarbij kennis centraal staat.

Redeneren over kennis is vooral interessant in situaties waarbij meerdere personen
betrokken zijn. Dan kan iemand iets weten over wat iemand anders weet of niet
weet. Dergelijke hogere-orde kennis speelt in veel situaties een cruciale rol. Zo
begon tijdens de eerste Golfoorlog de operatie “Desert Storm” met de vernietiging
van een aantal radarsystemen van Irak. Op die manier hadden de Verenigde
Staten een voordeel boven Irak, omdat ze gebruik konden maken van hun kennis
dat Irak bepaalde informatie niet meer had. Hoofdstuk 2 is een inleiding op de
kennislogica.

Hoofdstuk 5 gaat over probabilistische logica. Hierbij richt men zich op redene-
ringen over waarschijnlijkheden. In filosofische debatten over waarschijnlijkheid
worden theorieën, over de vraag wat waarschijnlijkheid is, in twee categorieën ver-
deeld. In de ene categorie wordt waarschijnlijkheid als deel van de werkelijkheid
gezien. Als bijvoorbeeld een knikker uit een vaas met knikkers wordt gepakt is
de waarschijnlijkheid dat de knikker groen is, de relatieve verhouding van groene
knikkers. Bij de andere wordt waarschijnlijkheid gezien als iets wat de graad van
vertrouwen van iemand uitdrukt. Als bijvoorbeeld een dobbelsteen onder een be-
ker ligt, is de waarschijnlijkheid dat de uitkomst zes is de relatieve verhouding van
zes in alle uitkomsten die de waarnemer voor mogelijk houdt. In het eerste geval
worden waarschijnlijkheden toegekend aan objecten (aan iedere knikker wordt
een waarschijnlijkheid toegekend om gepakt te worden), in het tweede geval aan
situaties (aan iedere mogelijke uitkomst wordt een waarschijnlijkheid toegekend
door de waarnemer). Ik laat zien hoe de logica’s die bij deze twee perspectieven
horen aan elkaar gerelateerd zijn.

Dynamische logica spitst zich toe op redeneringen over veranderingen, zoals
die bijvoorbeeld optreden in een computer ten gevolge van het uitvoeren van een
computerprogramma. Men kan met dynamische logica bewijzen dat een com-
puterprogramma doet wat het behoort te doen. Dat is voor veel programma’s
van essentieel belang. In hoofdstuk 3 worden enkele technische resultaten over
propositionele dynamische logica gepresenteerd. Met propositionele dynamische
logica worden redeneringen over eenvoudige computerprogramma’s bestudeerd.
Stel bijvoorbeeld dat gegeven is dat p geldt nadat het programma a wordt uit-
gevoerd. Bovendien is gegeven dat p ook geldt nadat het programma a twee
keer wordt uitgevoerd. Enzovoorts. Uit al deze gegevens – oneindig veel – kan
geconcludeerd worden dat p geldt nadat programma a willekeurig vaak herhaald
wordt. In de gebruikelijke bewijssystemen voor deze logica kan dit echter niet
bewezen worden omdat daarin slechts eindige redeneringen bestudeerd worden.
In het bewijssysteem dat in hoofdstuk 3 gepresenteerd wordt, kunnen oneindige
redeneringen wel bestudeerd worden.

Elk van de bovengenoemde logica’s richt zich dus op een van de aspecten die
bij het Monty Hall Dilemma van belang zijn. De laatste jaren is grote interesse
uitgegaan naar logica’s voor twee van deze aspecten, namelijk combinaties van dy-
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namische logica en kennislogica. Dynamische kennislogica, waarmee redeneringen
over verandering van kennis bestudeerd kunnen worden, wordt in hoofdstuk 4 be-
handeld. Dynamische kennislogica onderscheidt zich van andere vakgebieden die
zich bezighouden met informatieverandering doordat de verandering van hogere-
orde kennis centraal staat, dat wil zeggen dat rekening wordt gehouden met de
verandering van kennis over andermans kennis.

Voor het Monty Hall Dilemma is echter een combinatie van kennislogica, pro-
babilistische logica en dynamische logica nodig. Deze logica wordt ontwikkeld in
hoofdstuk 6. Ik definieer een logische taal waarin redeneringen over zowel ken-
nis, waarschijnlijkheden als verandering uitgedrukt kunnen worden. Tevens geef
ik aan wanneer een uitspraak in die logische taal waar is en wanneer onwaar.
Bovendien wordt een bewijssysteem verschaft dat bestaat uit axioma’s en aflei-
dingsregels. Hiermee kan stap voor stap worden aangetoond dat een redenering
klopt. Deze logica is uitermate geschikt voor de analyse van redeneringen over
kennis, waarschijnlijkheid en verandering.

De analyse van het Monty Hall Dilemma met een probabilistische dynamische
kennislogica staat in hoofdstuk 7. De redenering, die als conclusie heeft dat de
auto met een kans van twee derde achter de overgebleven deur zit die in eerste
instantie niet gekozen werd, wordt vertaald naar de logische taal van probabilis-
tische dynamische kennislogica. Met het bewijssysteem kan aangetoond worden
dat deze redenering klopt.
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Chvátal, V. (1983). Mastermind. Combinatorica 3, 325 –329.

Clark, M. and N. Shackel (2000). The two-envelope paradox. Mind 109 (435),
415–442.

Cover, T. and J. Thomas (1991). Elements of Information Theory. Wiley Series
in Telecommunications. John Wiley & Sons Inc.

de Vink, E. and J. Rutten (1999). Bisimulation for probabilistic transition
systems: a coalgebraic approach. Theoretical Computer Science 221, 271–
293.

Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued
mapping. Annals of Mathematical Statistics 38, 325–329.
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Notation

⊥ : absurdity (generally equiva-
lent to p ∧ ¬p)

@i : at operator

¤ : denotes the end of a proof or
definition or the alethic modality

¤a : individual epistemic opera-
tor

¤a : dual of ¤a ( ¤aϕ is equiva-
lent to ¬¤a¬ϕ)

[[·]] : interpretation function

[·] : dynamic modality

〈·〉 : dual of [·]

¬ : negation

∧ : conjunction

∧

: conjunction over a set

∨ : disjunction

∨

: disjunction over a set

→ : material implication, or to
indicate the domain and range of
a function

↔ : double implication

7→ : in assigments: g[x 7→ d]
means the assignment (g \ ({x}×
D)) ∪ {(x, d)}.

↔ : bisimulation relation be-
tween models

∪ : union, or nondeterministic
choice

∩ : intersection

\ : difference

2· : powerset

· × · : cartesian product, or mul-
tiplication

#(·) : cardinality

¹ : restriction of a function

| : separator in BNF, or condi-
tional probability, or the exten-
sion of a set

certa : certainty operator

/ : dual of .
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166 Notation

. : dyadic modality for DHEL

∗ : indicates the set of pointed
models or frames

pre : precondition

a : agent

b : agent

c : agent, or individual constant

d : element of the domain

f : function (lean modal struc-
ture)

g : function (lean modal struc-
ture) (assignment)

h : function (lean modal struc-
ture)

i : index

j : index

k : index

n : index

p : proposition

q : rational number

r : run

s : state (local)

t : translation function, or type of
an action

u : world or possibility

v : world or possibility

w : world or possibility

x : variable

y : variable

z : variable

A : a set

B : a set

C : common knowledge operator

D : domain

E : everybody knows operator

F : frame

I : interpretation

K : class of Kripke frames or
models

L : learn operator

M : model

P : probability function

R : accessibility relation, or pred-
icate symbol

S : set of (local) states, or sam-
ple space assignment, or predicate
symbol

U : update operator

α : action

β : action

γ : action

λ : lambda abstractor

µ : probability measure

π : sequence of formulas or
modalities

τ : term



Notation 167

ϕ : sentence or formula

χ : sentence or formula

ψ : sentence or formula

ω : the first transfinite ordinal

Γ : set of sentences or formulas

∆ : set of sentences or formulas

Λ : set of sentences or formulas

Σ : summation

Φ : sentence or formula

Ψ : sentence or formula

A : set of agents

B : group of agents

F : set of function symbols

G : set of global states

I : interpreted multi-agent sys-
tem

P : set of propositions

R : multi-agent system

i : nominal

j : nominal

k : nominal

u : actionworld

v : actionworld

w : actionworld

A : action modality

C : set of constants

I : set of nominals

K : the minimal modal logic

R : action model relation, or set
of predicate symbols

S : proof system

W : set of action worlds

X : set of variables

D : nonempty access axiom

E : everybody axiom

K : the distribution axiom

P : probability operator

N : set of natural numbers

Q : set of rational numbers

R : set of real numbers

L : a language

R : a bisimulation relation be-
tween worlds
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material implication, 144
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McCarthy, 37
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Tanaka, 25
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