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Abstract—The stratified tree, also called van Emde Boas tree,
is a data structure implementing the full repertoire of instructions
manipulating a single subset A of a finite ordered Universe
U = [0...u − 1]. Instructions include member, insert, delete,
min, max, predecessor and successor, as well as composite
ones like extract −min. The processing time per instruction is
O(loglog(u)). Hence it improves upon the traditional comparison
based tree structures for dense subsets A; if A is sparse, meaning
that the size n = #A = O(log(u)) the improvement vanishes.

Examples exist where this improvement helps to speed-up
algorithmic solutions of real problems; such applications can be
found for example in graph algorithms, computational geometry
and forwarding of packets on the internet.

The structure was invented during a short postdoc residence
at Cornell University in the fall of 1974. In the sequel of this
paper I will use the original name Stratified Trees which was
used in my own papers on this data structure.

There are two strategies for understanding how this
O(loglog(u)) improvement can be obtained. Today a direct recur-
sive approach is used where the universe is divided into a cluster
of
√
u galaxies each of size

√
u; the set manipulation instructions

decompose accordingly in a instruction at the cluster and galaxy
level, but one of these two instructions is always of a special
trivial type. The processing complexity thus satisfies a recurrence
T (u) = T (

√
u) +O(1). Consequently T (u) = O(loglog(u)).

However, this recursive approach requires address calcula-
tions on the arguments which use multiplicative arithmetical
instructions. These instructions are not allowed in the Random
Access Machine model (RAM) which was the standard model
in the developing research area of design and analysis of al-
gorithms in 1974. Therefore the early implementations of the
stratified trees are based on a different approach which best is
described as a binary-search-on-levels strategy. In this approach
the address calculations are not required, and the structure can
be implemented using pointers. The downside of this approach is
that it leads to rather complex algorithms, which are still hard
to present correctly even today. Another bad consequence was
the super linear space consumption of the data structure, which
was only eliminated three years later.

In this paper I want to describe the historical backgrounds
against which the stratified trees were discovered and imple-
mented. I do not give complete code fragments implementing
the data structure and the operations; they can be found in the
various textbooks and papers mentioned, including a Wikipedia
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page. Code fragments appearing in this paper are copied verba-
tim from the original sources; the same holds for the figures1.

I. INTRODUCTION

The Stratified Trees which in the literature frequently are
named van Emde Boas Trees were discovered in the fall of
1974 during a short postdoc residence at Cornell University.
They were designed in order to improve the time complexity
of manipulating a subset A of some finite ordered set U , called
the Universe. The size of the Universe U is denoted u, and
without loss of generality we may assume that U = [0...u−1].
The size of the set A is denoted n. The case where U should
be considered an infinite set is realised in practice by letting
u be much larger than n.

Manipulation of such a dynamic set A is a core algorithmic
task in areas like graph algorithms, computational geometry
and databases, but also in applications like message passing
on the Internet; applications which still had to be invented in
1974.

The instructions which we consider are:

1) insert(x): adds element x to A
2) delete(x): removes x from A
3) member(x): tests whether x ∈ A
4) card: yields the size n of A
5) min: yields the smallest element in A
6) max: yields the largest element in A
7) successor(x): yields the smallest element in A

strictly larger than x
8) predecessor(x): yields the largest element in A

strictly smaller than x

.

There are also composite instructions like:

1) extract−min : yields the smallest element in A and
removes it from A

2) allmin(x) : removes all elements ≤ x from A

.

Finally there is an instruction which only can be understood
in terms of the binary representation of the numbers in U :

1Due to te IEEE two column format used by ISCIM 2013 the reader will
have to use a magnifying glass when reading a printed version; however the
proceedings are digital anyhow



neighbour(x) which yields either the predecessor or the
successor of x in A, selecting out of these two possible answers
the result which has the most significant bits in common with
x. The purpose of this instruction will become clear when we
consider the elements in U to be the leaves of a binary tree.
Then the neighbour of x is the element in A which is closest
in distance when traversing the edges of this tree.

These instructions have preconditions in order to be
properly defined: inserting an element already present in A
shouldn’t be allowed. Similarly removing an element which is
not in A is illegal as well. If A is empty, min and max are not
defined, and neither is the successor of an element x ≥ max.
It is left to the programmer to ensure that these errors either
don’t occur or are resolved by an appropriate action.

When implementing the above instructions there is a con-
flict between the efficiency requirement of the instructions best
supported by direct access like member, insert and delete,
and the instructions involving the ordering which are best
supported by a list structure like min, max, and predecessor
or successor for elements in the set. When implemented as an
array or a bit string, member, insert and delete take constant
time, while the order based instructions require linear time in
the worst case; on linked lists the situation is reversed.

In order to reduce the complexity of the complete set
of instructions several ingenious data structures where in-
vented. Examples exisiting in 1974 are AVL-trees, 2-3 trees,
heaps, etc. [2] yielding time complexity O(log(n)) for these
instructions, or subsets thereoff. A well known example of
such a subset is a priority queue, a data structure supporting
insert and extractmin with processing time O(log(n)) when
implemented on a binary heap.

The data structures mentioned above manipulate elements
based on binary comparisons; their behaviour is independent
of the size of the Universe u and therefore they work also
for infinite universes, like the set of real numbers. As a conse-
quence the time complexity O(log(n)) is perfectly reasonable,
given the fact that with the above instructions (in fact just
the two priority queue instructions are sufficient) we can sort
a set of real numbers, and it is well known that for sorting
numbers an Ω(nlog(n))-lower bound holds for comparison
based algorithms.

However, in 1974 is was known that this lower bound
on sorting numbers didn’t apply to non-comparison based
algorithms, as illustrated by the linear time complexity of
sorting methods like radix sort and bucket sort [22]. Therefore
the question whether the processing time O(log(n)) for our
instruction repertoire could be improved by going beyond the
comparison based model, was still open. The stratified trees
provided a positive answer to this question, substituting the
processing complexity O(log(n)) by O(loglog(u)) where u is
the size of the Universe rather than the size of the set being
manipulated. Consequently, the improvement vanishes when
the set A is sparse in the sense that n = O(log(u)). But
in areas like graph algorithms where the set A consists of
the nodes or edges in the graph, the set is non-sparse so an
improvement indeed is achieved.

The rest of this paper is structures as follows: sec-
tion II presents the two approaches towards obtaining the

O(loglog(u)) improvement, the recursive cluster galaxy de-
composition and the binary search on levels. Section III
describes the state of machine based complexity theory around
1974, and explains the prohibition of multiplicative instructions
in the RAM model. In section IV the binary search on levels
approach is explained, but for full details the reader is referred
to the original source [48]. Section V describes the develop-
ments during the first five years when I still was working on
stratified trees myself; how the original design was improved
and how the problem of super-linear space consumption was
solved. It also tells how the recursive decomposition approach
returned to the scene. Code fragments describing this approach
are presented; this approach has become the dominant one
today. Section VI gives a (necessarily incomplete) survey of
work on stratified trees by other authors, involving applica-
tions, improvements and lower bounds. Section VII gives a
conclusion.

II. TWO APPROACHES

There are two roads towards obtaining the processing time
improvement of O(loglog(u)). It is important to understand
these approaches and the difference between them.

A. The recursive cluster galaxy decomposition approach

Today the structure of the stratified trees is best understood
in terms of a recursive decomposition of the Universe: the
Universe consists of a cluster of galaxies both of size

√
u.

Each Galaxy covers the elements of some interval within the
universe, and the cluster represents the ordered sequence of
these intervals. Both cluster and galaxies can be decomposed
recursively until the universe has become sufficiently small. In
theoretical descriptions this means that the recursion terminates
at universes of size 2 ; more practice oriented approaches let
the recursion terminate at universe size equal the word size
of typical computers like 16, 32 or 64. Furthermore for each
(sub)structure we maintain the number of inserted elements
and the largest and smallest element in a few local variables.

The idea behind this recursive approach is simple. For
small universe size (bottom case of the recursion) all instruc-
tions take constant time. Similarly one can simply store all the
elements in the set A in a few local variables as long as n is
small (say n < 2). Consider now the case that we want to insert
an element x in A at a stage where A contains already some
elements. We find the galaxy where x should be inserted, and
two possible cases arise: either this galaxy is already populated
and it suffices to insert x in this galaxy by a recursive call, or
this galaxy is still uninhabited and we must insert this galaxy
in the cluster first, but then the action of inserting the element
in this newly inserted galaxy will be trivial since it will be its
only inhabitant.

A similar analysis holds for the delete instruction; if we
remove the last element from some galaxy this removal itself
is trivial but then the galaxy itself should be removed from the
cluster; otherwise the element only has to be removed from
its galaxy. For the successor instruction the decomposition
considers two cases as well: either the element is smaller than
the maximal element in its galaxy and then the successor is
to be found inside this galaxy, or the successor is the smallest
element in the successor galaxy in the cluster.



Inspection of these decompositions shows that each instruc-
tion is implemented by similar instructions on the cluster and
galaxy level (one of each) which would result in an estimate
of the processing time T (u) ≤ T (

√
u) + T (

√
u) + O(1) and

this recurrence solves to T (u) = O(log(u)) which means
that there is no improvement over the traditional comparison
based structures. However our analysis shows that one of
the two recursive calls is always of a special type which
can be performed in constant time. Hence the time estimate
becomes T (u) ≤ T (

√
u) + O(1) which resolves to T (u) =

O(loglog(u)).

B. The binary search on levels approach

Regardless the simplicity of the strategy as sketched above,
history shows that the stratified trees originally were designed
using a completely different approach. This second approach
is best described as a binary search on levels strategy.

In this approach the elements of the Universe U are
represented by the leaves of a complete binary tree of height
h = log(u). At each element of the tree (both at the leaves and
the internal nodes) we have a mark-bit. A set A is represented
by marking its elements together with all internal nodes on a
the path from a marked leaf to the root of the tree as illustrated
in figure 1. The marked nodes will be called present in the
sequel.

Fig. 1. Example of a five-element set represented using mark-bits

Additionally, we build a doubly linked list connecting the
leaves corresponding to the elements of A. This data structure
evidently supports the instructions member, card, min and
max in constant time.

insert(x) is implemented by traversing the path from the
leaf representing x towards the root until a marked internal
node v is encountered. This node v will become the lowest
branch point on the path of the newly inserted element x. All
nodes traversed during this walk are marked, Subsequently
starting at this already marked node a downward traversal
along marked nodes is performed, always selecting the right-
most (leftmost) marked son, depending on whether leaf x is
a right (left) descendant of node v. The leaf thus found is the
neighbour of x in the set A. It is either the predecessor or
the successor of x depending on whether x is a right or left
descendant of v. Having found this neighbour, the leaf x now
can be inserted in the doubly linked list in constant time.

In order to delete an element x ∈ A, a similar traversal
starting at leaf x is performed until a branch point (an
internal node with two marked sons) is encountered. Nodes
encountered during this traversal are unmarked. Next, leaf x
is removed from the doubly linked list in constant time.

In order to compute the predecessor and successor of x, a
similar upward traversal is performed, which yields the lowest
branch point. A downward traversal subsequently takes us to
the neighbour, from which the successor or predecessor can
be found in constant time in case we happen to arrive at the
wrong side of x in the sequence of leaves.

The time consumed by these traversals is bounded by the
height of the tree h. Therefore the resulting processing time
is O(h) = O(log(u)). But the actual time used is determined
by the distance of this lowest branch point from the leaves.

The simple observation that in the above approach time
saved by not traversing all the way up to the root could be used
for spending more time at the lowest branch point encountered,
allowed me to improve the worst case time bound. If the
lowest branch point is encountered at level k above the
leaves (counting from the leaves at level 0) we can spend the
remaining h− k time steps by allowing h− k+ 1 sons for all
nodes at level k. The consequence is that in the resulting tree of
height h we are not representing a Universe of size 2k but one
of size h!. When u = h! we have h = O(log(u)/loglog(u))
and this yields an improvement over the O(log(u)) bound.

Discussing this improvement to John Hopcroft it imme-
diately became clear that further improvements could be ex-
pected. The strategy as explained above uses a trivial linear
search strategy at this lowest branch point. If we organise
the sons of this branch point in a binary tree, we can allow
for branching degrees growing even faster: branching degree
2h−k+1 at level k which would result in a time complexity
O(

√
log(u)). A true application of the Divide and Conquer

heuristic propagated by the early researchers in the field of
algorithm design suggests the use of the very structure I was
designing, recursively, at the internal nodes.

There was yet another way of looking at the problem. In
this approach the key step is the location of the lowest branch
point on the path from a present leaf to the root, or the lowest
present ancestor in case the leaf is not present. If these points
could be located using binary search on the path connecting the
leaf with the root the time complexity could be reduced from
O(log(u)) to O(loglog(u)). Such a method of binary search on
levels had been used previously with success by Aho, Hopcroft
and Ullman for finding lowest common ancestors in trees [1].

By the end of 1974 a solution following these sugges-
tions had been obtained [45]. Conceptually it is far more
complicated than the recursive approach. Moreover I had to
struggle with yet another complication, having to do with the
required address calculations used by our algorithms. They use
multiplicative instructions, and these were not allowed on the
machine model I was using. This complication was, at this
stage of the history, fatal for the further exploration of the
recursive decomposition approach.

In order to understand why these multiplicative instructions
were problematic we first must take a look at the machine



model used for Analysis of Algorithms when this research
area was being created: the Random Access Machine.

III. MACHINE BASED COMPLEXITY THEORY AROUND
1974

Computability theory as we know it today was developed
in the years 1920-1940 with computational models described
by Post, Church, Gödel, Kleene and above all the simple and
widely accepted model invented by Turing. The idea of inves-
tigating also the time and space complexity of these models
of computation originates from the 1960-ies. The concept of a
“feasible computation” was introduced by Edmonds [13]. Hart-
manis and Stearns [18] started the research on the complexity
of the Turing machine model. Manuel Blum [8] created the
extension of Recursion Theory known as Abstract Complexity
Theory. By 1972 the fundamental Complexity Classes P, NP,
PSPACE, EXPTIME, . . . had been defined and the P = NP ?
problem became a part of our life.

None of these approaches provides definite answers for
the real life programmer who wants to solve real problems
on a real computer. The structural approach which focusses
on the relation between the fundamental complexity classes,
compares models based on mutual simulations with a polyno-
mial time bounded overhead and a constant factor overhead
in space [52]. However, for practical design and analysis of
algorithms a quadratic improvement is highly relevant. In the
abstract theory the situation is even worse: all models are
basically equivalent, including the pathological ones.

When Knuth started his book series on the art of computer
programming [21] he followed a different approach. He intro-
duces in this book a simplified model of a real von Neumann
computer called MIX. Algorithms are analysed by a precise
estimate of the number of machine instructions on this MIX
model. This immediately raises the question to which extent
the results obtained by Knuth depend on the details of the MIX
model.

When Aho, Hopcroft and Ullman wrote their textbook [2],
they based their work on a compromise between these two
extremes. They use the Random Access Machine (RAM) as
described by Cook and Reckhow [9] as a model. It differs from
the MIX by having a reduced set of instructions, but it is also
a theoretical model since it has unbounded memory and word
size. Furthermore they consider a stored program version of
the model called RASP, and prove that the two models can
simulate each other in real time.

They present their algorithms in a higher programming
language called Pidgin Algol which makes the basic control
features of programming like conditionals, loop constructs
procedures, functions and recursion directly available. It was
safe to do so since by 1974 it was well known how to
compile such features in machine instructions. There were
no hidden time overheads between the perceived instructions
in the Pidgin Algol program and the resulting Machine code
program on the RAM. What one looses is information on the
precise constant factors involved, but that was felt to be less
important; the asymptotic growth of the complexity was the
target of the research program, as illustrated by the abundant
invocation of the Landau O(f(n)) expressions.

The RAM model is basically a single register machine
having an infinite memory of infinite length storage cells called
words. The memory contents are non-negative integers. The
instruction code includes loading constants, and the contents
of memory locations using both direct and indirect addressing
(where the index of the memory cell being loaded is itself
the content of another memory location). For storing data
in memory the machine can use both direct and indirect
addressing. As flow of control the machine has unconditional
and conditional jumps (testing for = 0 or positiveness of
the accumulator contents). All arithmetic is performed on
the single accumulator register. The arithmetic instructions
allowed are addition, subtraction, multiplication and (integer)
division. The programmer should beware for typical errors like
the production of negative results or division by zero.

An earlier model of this type is the register machine
introduced already in 1963 by Shepherson and Sturgis [39].
This model in its basic form only has increment and decrement
as arithmetic instructions, and it lacks indirect addressing. It
is equivalent to the Minsky multi-counter machine [30]. Still
this model is Turing Universal, even if only two registers are
being used.

For the time complexity Aho and his colleagues use
two measures. In the uniform measure one just counts the
number of RAM instructions performed. In the logarithmic
time measure each instruction is charged for the number of
bits in the arguments of the instructions, regardless whether
these arguments are addresses or data. Similarly one can for a
space measure either count the number of memory locations
used, or weigh every location by the size of the values being
stored there.

They prove that with respect to the logarithmic time
measure the RAM and RASP model are equivalent to the
multi tape Turing machine modulo a quadratic time overhead.
But if the uniform time measure is used, there is a problem
with the multiplication and division instructions, since they can
generate exponentially large results in a linear number of steps.
Therefore one should exclude multiplicative arithmetic when
using the uniform time measure; if only additive arithmetic the
uniform time measure and the logarithmic time measure are
equivalent up to a quadratic overhead.

That there is a real problem here follows from results
obtained by Pratt and Stockmeyer [35], Hartmanis and Si-
mon [17] and Bertoni e.a. [7] or Schönhage [37]: the RAM
model with multiplicative arithmetic and uniform time measure
is equivalent to models of parallel computation, meaning that
it can perform PSPACE complete computations in polynomial
time. It is a member of the second machine class [52].

The Turing Universality of the two counter Minsky ma-
chine shows that just counting memory cells is not a good idea.
Therefore the uniform space measure is never used, unless
there is an explicit limit on the size of the values being stored.
For the logarithmic space measure there is an issue on how to
deal with storage cells which are unused during a computation
while cells further down in the program are used. Also the size
of the addresses of the memory cells should contribute to the
logarithmic cost of such a cell. For details see [40].

The question remains which of these measures is suitable
for analysing the complexity of the stratified trees. There



are several reasons for not using the logarithmic time mea-
sure. In the first place the main competitive algorithms use
comparison based manipulation of lists and trees which are
build using pointers. Frequently one just counts the number
of coomparisons. Address calculations hardly play a role and
arithmetic is hardly used at all other than for counting the size
of (sub)structures.

Another argument is that use of the logarithmic measure
will entail an operation complexity Ω(log(u)) for just looking
at the value being manipulated, so improvement to sub-
logarithmic cost is impossible anyhow.

The space measure was a less interesting topic; for the tree
based structures space is traditionally measured by the number
of nodes and edges in the structure which amounts to the use
of the uniform space measure.

However, using the combination of both uniform time and
space measures comes with a price: it is no longer appropriate
to use multiplicative instructions. These instructions were
perceived to be more expensive than the additive ones, both in
practice and in theory; the linear time multiplication algorithm
of Schönhage [38] still had to be invented.

It is not difficult to see that multiplicative instructions are
used in our recursive decomposition for address calculations.
Assume that u = v.w and that we divide the universe [0..u−
1] in a cluster of v galaxies each consisting of w elements
each. Then element x will be represented by entry x mod w
in galaxy x ÷ w ; conversely entry a in galaxy b represents
element w.b + a in the universe. This shows that the relation
between the arguments of our operations and those involved
in the recursive calls are computed using the multiplicative
operations.

Another construction we can’t use any more is a two-
dimensional array; its indexing formula uses a multiplication.

However, in our algorithms we will in general only mul-
tiply and divide by powers of two. This makes the restriction
even more unreasonable, since these arithmetical operations
are realized by bit-shifts which are available on many real life
computers. So we are facing a situation where theory seems
to be more restrictive than practice.

Fact is that most authors discussing stratified trees, in
particular when discussing the recursive approach, simply are
disregarding this prohibition of multiplicative instructions; as
long as the arguments don’t increase above the initial values
they consider them to be allowed.

IV. IMPLEMENTING BINARY SEARCH ON LEVELS

The binary search on levels approach uses a complicated
decomposition structure on the binary tree which was used
in the silly method in section II. I will explain how this tree
is decomposed in so-called canonical sub-trees, what sort of
static information we need in order to navigate this tree, and
how the dynamic set A is represented in this structure by
assigning appropriate values to fields located at the internal
nodes of the tree. By way of example the code fragment for the
neighbour instruction is presented and explained. Complete
details can be found in the source reference [48].

A. Canonical sub-trees

For reasons of simplicity we assume in this section that
u = 22

l

; the height of the tree structure we will describe equals
h = 2l, and the number l will be called the rank of the tree. The
cluster of galaxies decomposition of the universe corresponds
to dividing the tree in a top-tree of height h/2 = 2l−1 and
rank l−1 representing the cluster whereas the bottom trees of
rank l − 1 whose roots are actually the leaves of the top tree
represent the galaxies. Each of these trees can be decomposed
again in a top and bottom trees of rank l−2. The trees of rank
0 are trivial: a root with two sons. The trees obtained in this
recursive decomposition are called the canonical sub-trees in
the papers where the stratified trees were first introduced.

The concept of rank is also ascribed to the levels in the
tree and therefore also to the nodes in the tree. The leaves of
a tree are located at level 0 and the root is at level h = 2l. The
rank of level j > 0 is the largest number d such that 2d|j and
2d+1 6 |j. By default rank(0) = l+1. Note that if rank(j) = d
we have rank(j + 2d) > d and rank(j − 2d) > d; moreover
the ranks of these two numbers are different. All numbers i
with j − 2d < i < j + 2d and i 6= j have rank(i) < d.2 The
rank of some node v is the rank of its level in the tree.

A canonical sub-tree of rank d is a sub-tree of height 2d

with a root at some level j with rank(j) ≥ d and leaves at
the closest level with rank ≥ d. It follows that either the root
or the leaves have rank equal d. If the root has rank d the
canonical sub-tree is called a bottom tree, and it is called a
top tree otherwise.

Canonical sub-trees are furthermore divided in a left part
and a right part, the left (right) part consisting of the root
and its left (right) sons and their descendants within the sub-
tree. This division adds another element of complexity to our
structure which has no counterpart in the recursive cluster and
galaxies approach; we shall see in the sequel of this section
why this further division had to be added.

A final concept is the reach of some node v; if rank(v) =
d node v is leaf of an uniquely determined top tree of rank d
and the root of a bottom tree of rank d. The root of this top
tree and the leaves of this bottom tree have rank > d. Now
reach(v) consists of this bottom tree together with the left
or right part of the top tree containing v. See figure 2. This
figure introduces also names for the relevant sub-trees: C(v)
is the rank d + 1 canonical sub-tree containing v, UC(v) is
the top-tree of C(v) and LC(v) is the bottom-tree of C(v)
having v as its root. The left and right parts of LC(v) are
named LLC(v) and RLC(v).

B. Static information

The next topic to consider is how we can navigate in this
tree and its canonical sub-trees. A useful way of indexing
nodes in a binary tree is to assign index 1 to the root, and
assigning indices 2.m and 2.m + 1 to the left and right son
of the node with index m. Moving j levels up from the node
with index m yields node m÷2j . The 2j descendants of node
m have indices 2j .m, . . . 2j .m + 2j − 1. The leaves of our

2The idea of such a rank function is well illustrated by the lengths of the
lines on the British side of a ruler; an abstract definition which will work for
general heights h is sketched in [48].



Fig. 2. Canonical sub-trees and the reach of some node

complete tree which will represent the elements of the universe
have indices 2h, . . . 2h + u− 1.

The problem is that these expressions which allow us to
freely navigate in the tree use multiplicative operations; once
again - these operations look perfectly innocent since they are
easily evaluated by bit-shifts - but still they were considered
illegal in the RAM model with the uniform time measure in
1974. Therefore another solution was invented: pre-compute
sufficiently many of these navigation steps in advance, so that
you can use table look-up when you need to perform this step.

It turns out that the required navigation steps for our
algorithms to work are the ancestors at levels 1, 2, . . . 2d of
some node v of rank d; these are precisely the roots of those
canonical sub-trees of rank 0, 1, . . . d having v as a leaf. In
order to have a format which doesn’t depend on the rank of
some node it was decided to store at node v pointers toward
the roots of all canonical sub-trees containing v. There are
loglog(u) pointers of this type at every node yielding a space
consumption of Ω(u.loglog(u)) for storing just this static
information which will never change during the manipulation
of some subset A. The fact that you don’t need pointers to
ancestors at level 2l for l > rank(v) doesn’t help us since
the leaves at the bottom of the tree all have maximal rank
and represent a majority of the nodes in the tree. Using a rank
dependent format would save at best a constant factor in space.

This solution to our navigation problems also explains
why the original implementation of the stratified tree used
pointers rather than addresses; the stratified tree is a solution
of our set manipulation problem in the pointer based model
of computation, and this is relevant in relation to lower bound
results which we will encounter later in this survey.

C. Dynamic information

In our silly solution as illustrated in figure 1 we represent
some set A by marking all leaves representing the elements of
A and all ancestors of some marked node. Marked nodes are
called to be present. The various operations were implemented
by locating either the lowest branch-point (a present node
with two present sons) above some present node or the lowest
marked ancestor above some non-present node (for the Insert
and Neighbour instructions); this node will be called a focal-
point in our further discussion. The key challenge now is that

we don’t want to spend time Ω(log(u)) by a linear traversal of
these ancestor paths connecting leaves with the root; instead
we want to use binary search on levels.

Consider some canonical sub-tree T of rank d whose root
v is present. There are two cases to consider: either there is
just a single present leaf in this canonical sub-tree, and one
might as well store at v some information which will allow
us to locate this leaf; otherwise there are at least two present
leaves in T which means that somewhere in T a branch-point
exists (it may be the root v itself). Consider now the leaves of
the canonical sub-tree T ′ of rank d−1 with root v (the top-tree
in the recursive decomposition of T ). If there are at least two
present leaves in T ′ there will be a branch-point inside T ′;
otherwise if w is the unique present leaf in T ′ there will be a
branch-point inside the canonical sub-tree of rank d− 1 with
root w (one of the bottom-trees in the recursive decomposition
of T ). In order to determine which of the two cases arises we
should store some information at the present nodes on this
half-way level where w is located.

This leads to the concept of an active node. An internal
node is active if information is stored there which is required
for locating some focal-point or branch-point during some
possible operation. A leaf is active if it is present, and by
definition the root is active when A is non-empty (in our
original implementation this was achieved by stipulating that
u − 1 ∈ A permanently, but this restriction turned out to be
superfluous).

Whether some internal node should be active or not is de-
termined by an invariant called the properness condition [48]:
An internal node v is active iff there exists a branch-point in
the interior of the reach of v; i.e. there exists a branch-point
u ∈ R(v) which is neither the top nor a leaf of C(v).

At an inactive node no information is stored; its fields will
have default values.

The information stored at active leaves consists of two
pointers towards their present predecessor and successor in the
set A as far as they exist, together with a mark-bit indicating
that the leaf is present. For an active internal node v the
data consists of four pointers and a mark-bit 3; the pointers
lmin and lmax store the least and largest present leaf in
LLC(v) if such leaves exist, and rmin and rmax do so for
RLC(v). Note that these are leaves in LC(v) which means
that they are not necessarily leaves of the entire tree. The
mark-bit ub indicates whether there exists a branch-point in
between v and the top of UC(v). Note that an active internal
node is present and hence it must have at least one present
descendant leaf in LC(v), so at least two of the four pointers
lmin, lmax, rmin and rmax are defined. It is possible to
have lmin(v) = lmax(v) which indicates that there is no
branch-point in between v and lmin(v); if in this situation
also rmin(v) is defined the node v itself is a branch-point.
Figure 3 illustrates the assignment of values to these pointers
at internal nodes for a three-element set A.

The representation of a set A now is determined as follows:
the leaves representing the elements of A are declared to be

3Our implementation used different record formats for leaves and internal
nodes in the tree; the case-dependent record format in PASCAL made it easy
to implement this difference.



Fig. 3. Example of the internal pointers for a three-element set

present and active and the pointers in the doubly linked list are
given their appropriate values. If A 6= ∅ the root is declared to
be present and its four pointers are assigned their proper values.
Next for internal nodes, processing them by rank decreasing
from h − 1 to 0 it is checked whether they should be made
active according the properness condition, and if so their fields
obtain the required values. 4

D. Operations

Given the complexity of the representation of the dynamic
set A presented above it should come as no surprise that
the actual implementations of the operations are complex
as well. Certainly if compared with the code which results
from implementing the recursive cluster-galaxy decomposition
scheme which can be found in the textbook presentations
of my structure [10], [16], [27], [60]. The key operations
which do the work are insert, delete and neighbour. A full
explanation of these operations would require me to copy
the entire section 5 from our original publication [48] which
would fill many pages. Therefore I rather refer the reader to
the original sources. I include and discuss the code for the
neighbour instruction, directly copied from [48].

The programming language used is PASCAL [56]. This
code was produced by my students Kaas and Zijlstra [25]
who on behalf of this contribution earned co-authorship on
the journal publication of my FOCS 1975 paper [47].

The instruction neighbour has only a single argument when
called from the outside; however, in its recursive structure
it requires additional parameters for navigational purposes.
Hence the overall structure of this function consists of the
declaration of an internal function neighb which actually
performs the work, which is subsequently invoked on the
appropriate arguments.

4evidently this is not the algorithm which was used for maintaining the
representation of a dynamic set A in our implementation.

Fig. 4. The code for the neighbour instruction

The arguments of this internal function are: leaf (the
ancestor of the original argument at the bottom level of the
canonical sub-tree under consideration), top (the top of this
sub-tree), pmin and pmax (the leftmost and rightmost present
leaves in the half-tree containing leaf) and order (the rank of
the sub-tree). Of the four pointer fields at the node top we first
have to inspect those which are located on the same side as
leaf ; in order to simplify the code this choice has been hidden
into the auxiliary functions mymin, mymax, yourmin and
yourmax. The auxiliary functions minof and maxof yield
the least and largest leaves in the entire sub-tree. The left-right
comparison between two nodes is performed by comparing
the position field of the nodes which is part of the static
information and filled with the in-order number assigned to
the node when the tree is initialized in an in-order traversal.

There are several cases where the neighbour can be com-
puted without a recursive call: when the half-tree containing
leaf doesn’t contain a present leaf (pmin = nil), or when leaf
is actually its unique active leaf (pmin = pmax = leaf ); a
third case is when there are several active leaves but leaf is
outside the range between pmin and pmax.

Otherwise we must inspect the ancestor hl of leaf on
the level half way in between leaf and top. In case hl
has no (other) present leaf (indicated by hl being inactive
or minof(hl) = maxof(hl) = leaf ) a recursive call is
performed on the top-tree with root top yielding the neighbour
at that level nb. The neighbour of leaf now is minof(nb) or
maxof(nb) depending on the position of hl compared to nb.
If hl has another present leaf a recursive call is performed on
the bottom tree with root hl which yields the neighbour at the
right level directly.

As promised: this procedure either terminates in con-
stant time or performs a single recursive call with order
decreased by 1, and this suffices for obtaining time complexity
O(loglog(u)).

The reader should note however that this procedure in
fact behaves differently from what one would expect if one
follows the recursive cluster-galaxy decomposition approach.



It has to do with the conditions allowing the neighb function
to terminate without a recursive call. The cases where there
is no present leaf or when leaf is the unique present leaf in
the recursive approach will look at the entire sub-tree and not
just the half-tree to which leaf belongs; the very concepts of
left- and right sub-trees are simply not defined in the recursive
approach.

The operations insert and delete are structured in a similar
fashion, but they are even more intricate since they have side
effects on the structure.

Finally some remarks on the initialization routine. It per-
forms a mixture of a pre-order and an in-order traversal of
the tree being constructed and builds what is to become a
proper representation of the empty set A. When creating a
node it must assign proper values to the father pointers and
to the position fields. What are the proper values depends on
the rank and the level of a node. Multiplicative instructions
for evaluating the rank for a given level are prevented by pre-
computing these ranks and storing the results in a table. Details
can be found in [48] but the code is difficult to understand due
to various hidden side effects.

V. THE DEVELOPMENT OF THE ORIGINAL, AND THE
REVIVAL OF THE RECURSIVE DECOMPOSITION APPROACH

The code in the journal paper discussed in the previous sec-
tion represents the final stage of a sequence of presentations,
starting with the 1974 Cornell report. I describe in this section
how the perspective on what operations are essential gradually
changed during this development. Next we look at Knuth’s
classroom note from 1977 and its importance for reviving the
recursive decomposition approach.

A. The improvements of the original presentation

The first papers I published on the stratified trees all are
based on the binary search on levels approach sketched in
the previous section. The oldest paper is the Cornell technical
report [45]. The representation used in this original paper is
almost identical to the one used in the eventual journal pa-
per [48], but the perspective on the operations is quite different.
The primitive operations are the location of the lowest branch
(present) point above a given (non) present node (called the
focal point previously), and the deletion (insertion) of the path
segment between the argument leaf and the focal point. The
instruction neighbour is mentioned but its importance remains
unrecognised. And to my own dissatisfaction I was unable to
design a recursive version of the code for the delete instruction.

The second paper was written for a seminar talk at IRIA
in the spring of 1975 [46]. The same representation is used
but the operations are different and the neighbour instruction
has become more important. Hardly any code fragments are
given.

Around this time I had assigned the task of program-
ming a real implementation of my structure as a possible
assignment for a term project to a group of students in an
advanced programming course which I was teaching with some
colleagues during the spring of 1975. Two students, Kaas
and Zijlstra, accepted the challenge and eventually produced
the PASCAL code contained in a report of the department

of Mathematics in my institute [25]. Aside from repairing
some hideous errors in my original code and contributing
some valuable ideas they found a recursive version of the
delete instruction. Having this code available I submitted the
result for the FOCS 1975 conference in Berkeley, where it
was accepted and published [47]. The binary search on levels
approach still is used, but in the expository introduction the
idea of the recursive cluster galaxy approach is mentioned.
Nothing is done with this idea. The FOCS paper includes code
fragments from the Kaas and Zijlstra program.

The journal paper [48] actually merges the two previous
reports and Kaas and Zijlstra became co-authors. A preprint is
dated December 1975.

In August 1976 a symposium was organised on interfaces
between computer science and operations research. For this
symposium I gave a presentation on developments in data
structures. The text of this presentation was eventually pub-
lished in 1978 [50], but since this is two years later than
the presentation it is uncertain to what extent its contents
correspond with the talk given. Fact is that in this paper
the cluster galaxy decomposition idea is used as a starting
point and the stratified trees are presented as being the result
of unwinding the recursion in the recursive data structure
implementing this decomposition.

In 1977 I found a solution [49] to another nasty feature of
my original structure: its super-linear space consumption. It is
based on the cluster galaxy decomposition idea used in a non-
recursive way. The structure of the cluster and the galaxies
are different: the cluster representing m galaxies of size k
is implemented by the original structure, but the galaxies are
implemented by some structure using linear space with a worse
time complexity. A binary tree based structure like my silly
structure from figure 1 is OK, but even a linear list will work
here. When one realises that every instruction is decomposed
in an instruction operating on the cluster level and one on the
galaxy level, and uses the fact that the storage being used is
the sum of the space for the cluster and that for the galaxies,
one obtains the following estimates:

Time: O(loglog(m)) +O(k)

Space: O(m.loglog(m)) +m.O(k)

Taking m = u/loglog(u) and k = loglog(u) solves the
problem.

The code fragments from this paper illustrate the simplicity
of this approach. See figure 5. One of my worst mistakes
is that I, having arrived at this idea of a hybrid mixture of
data structures, didn’t use this for other purposes; it became
an important tool for designing dynamic data structures in
areas like computational geometry and was used extensively
by my colleagues from Utrecht Jan van Leeuwen and Mark
Overmars [32].

B. Knuth’s classroom note and its impact on reviving the
recursive decomposition approach

I had exchanged papers and reprints with Don Knuth. In
reply of the preprint of [49] he send me a copy of his classroom
note [23]. To my knowledge this is the first written version of
the fully recursive cluster and galaxy decomposition approach.



Fig. 5. Code fragments for the non recursive cluster galaxy decomposition

Multiplicative instructions are used without hesitation. Both
the asymptotic complexity and practical implementations for
small universes are considered (when u = 220 it consumes
242937 bytes, sufficiently small to fit in core on the IBM
360). For this case a three level decomposition with explicit
addresses and bit-shift operations is presented; see figure 6 for
the relevant code fragments. The programming language used
is inspired by Simula. Note also the final sentence in this page:
this is the source of the famous quote from Knuth on program
correctness.

Fig. 6. the final page of the classroom note by Knuth

In the letter which was included with the classroom note
Knuth observes that his recursive top-down approach elimi-
nates the need for the concepts of rank, canonical sub-trees
and the branch-points. Proving correctness would be much

easier, so Knuth claimed part of the $ 10.– prize for a
correctness proof for the procedures which I had offered in
my presentation at FOCS 1975 (I must have done so in my
talk - the text in the proceedings doesn’t mention this prize). In
my reply I conceded on the issue of the unneeded complexity
of my original structure, pointing towards the problem with
the multiplicative instructions which I was told not to use.
I also observe that due to the absence of the left-right half
sub-tree distinction the original structure can’t be obtained by
unwinding the recursive version, contrary to what I suggested
in [50]. The prize was intended for a correctness proof of the
original non-recursive version, so I rejected his claim but by
separate mail I have send him one of my traditional gifts (a
Dutch windmill tile).

Knuth also informed me that he intends to include my
structure in volume 4 of his series of textbooks. As we all
know, the production of this volume was delayed by some 30
years, and now that the first part of volume 4 has appeared,
I found that my structure is destined to be included in the
second part of volume 4.

The final paper on the stratified trees I wrote myself
is another contribution to a colloquium at the Mathematical
Centre in Amsterdam [51]. This paper is written in Dutch.
Three sections discuss the stratified trees. I first describe the
O(log(u)) recursive cluster galaxy decomposition approach
following the algorithms as presented in figure 5. The next
section sketches the tree model as presented in [48], [49]. In
the final section I present my own version of the fully recursive
O(loglog(u)) implementation suggested by Knuth with a full
reference to his classroom note. I show some code fragments,
this time written in some version of Algol 68 [55], in figure 7
and figure 8.

In figure 7 is shown how I dealt with the multiplicative
instructions. Thinking in terms of bit-strings they are called
head, tail and conc respectively, but since the implied galaxy
size q depends on the recursive level there is another hidden
argument called order. Therefore head and tail become
binary operators, and conc becomes a procedure since Algol 68
doesn’t allow to write ternary operators as operators. Actually
these operations were implemented by table look-up. Note
that we don’t use a two-dimensional array since its indexing
formula would reintroduce the multiplicative instructions we
want to eliminate. Instead we use an array of arrays. The final
code fragment shows how these tables are precomputed by
counting; another code fragment using side effects on s.

Figure 8 shows the insert operation in the recursive de-
composition scheme. The data structure itself consists of three
integers, a pointer towards the top structure representing the
cluster, and a pointer towards an array of bottom structures
representing the galaxies. It is not stated explicitly that these
pointers should be nil at the bottom of the recursion when
order = 0.

The next code fragment is the first insert procedure which
is invoked when inserting a first element; it only affects the
three integer fields, leaving the pointers untouched. The general
insert procedure uses the case construct of Algol 68 depending
on the current cardinality of the structure. If that equals 0
first insert is invoked and the procedure terminates; if the
cardinality equals 1, the existing element must be inserted in



Fig. 7. computing addresses without multiplicative instructions in the
recursive decomposition

the recursive structure first, but this generates an invocation of
first insert both at the top and the bottom level and therefore it
takes constant time. If the cardinality equals 2 or more this step
is skipped. Now we are ready for inserting the new element.
The galaxy to which it belongs is retrieved; if this galaxy is
non-empty the element is inserted in this galaxy by a recursive
call; otherwise the galaxy is inserted in the cluster and the
element is inserted in the galaxy using first insert. Finally the
min, max and card fields are adjusted.

In this code fragment it is assumed that the recursive data
structure has been built previously; no initialisation procedure
is described in this paper.

Fig. 8. the insert procedure for the recursive decomposition approach

The reader will find the = symbol used at position where an
assignment := would be expected; this is the Algol 68 feature

of constant declarations. No code is given in this seminar talk
for the delete and the neighbour instructions but they would
have been structured similarly.

All together it seems that the main problems with the
original presentation had been solved; the presentation had
been clarified5, the super linear space consumption had been
eliminated and the forbidden address calculations had been
replaced by something which was legal. So I considered the
project to be completed; in fact I have not seriously looked
at stratified trees since 1980 except for the fact that in my
valedictory address in 2010 they are mentioned as one of 12
topics I have worked on [53].

The first textbook presentations of the stratified trees known
to me are given by Mehlhorn [27] and Gonnet [16]. They both
use the recursive decomposition scheme. This holds also for
the modern presentation in the textbook by Cormen, Leiserson,
Rivest and Stein [10]. These authors dedicate an entire chapter
of their book to the stratified trees. They first present the silly
structure; next they give the O(log(u)) recursive decomposi-
tion version and finish their chapter with the fully recursive
O(loglog(u)) structure.

There are two differences with my own presentation in
[51]. They have changed the terminology: galaxies now are
called clusters, and the cluster part is called a summary.
Furthermore they have chosen to store the minimal element
in the structure only in the min field at the root, and not
to insert it in the recursive substructures. Evidently this will
save the recursive insertion of one of the two elements when
a second element arrives but it also complicates the code.

The wikipedia page on the van Emde Boas trees [60]
follows the same approach as Cormen et al. On the wikipedia
talk page [61], discussing the presentation on the main page,
the correctness of the delete procedure is under discussion.
Remember Knuth’s warning!

VI. LITERATURE ON STRATIFIED TREES: IMPROVEMENTS
AND APPLICATIONS

The day I am writing this section (August 26 2013) Google
scholar informs me that there are 550 papers referencing [48]
and 408 referencing [49]. In fact [48] used for several years
to be number 1 on the result list if one queries for the name
van Emde Boas in Google scholar 6.

Some of these involve applications leading to a more effi-
cient algorithm for some problem; others involve the complex-
ity of the set manipulation problems themselves. The variety of
machine models under consideration has grown. Finally there
are lower bound proofs for the operations holding for various
restricted machine models, some of which indicating that under
specific conditions the Ω(loglog(u)) processing time for the
instructions is optimal. There are other scenarios where this
lower bound is invalid and where the time for the operations
has been improved.

5in a footnote in [20] D.B. Johnson refers to [50] as a less inaccessible
simplified exposition by the original author

6Only this year I lost this position to another van Emde Boas who happens
to be my brother and who now occupies the first two places with papers on
the taxonomy of epileptic seizures. No bad feelings; the 7340 results produced
by Google scholar seem all to originate from seven authors, all close family
members.



The mere fact that some paper includes a reference to
our papers doesn’t entail that this paper also discusses it; it
may include this reference since it was referenced in some
other paper which is discussed. Moreover the context could be
negative (look guys, we improved this result). This literature
is far to extensive to be covered in this section 7. Therefore
I have selected just some noticeable examples which I could
access from home. And I won’t attempt to give much of an
explanation since I hardly understand the proofs myself. As
told before, I have not looked seriously at stratified trees for
over three decades.

A. Applications

In the four original papers there is a section dedicated to
reductions between set manipulation algorithms, both in the
on-line case where the instructions are to be performed upon
arrival, and in the off-line case where the entire instruction
sequence is given in advance and may be preprocessed. Re-
ductions should yield at worst a constant factor time overhead
and program expansion (in the off-line case). The problems
considered are insert and extract min, insert and allmin, and
union find. The results consist of establishing the impact of the
newly invented stratified trees on the earlier results bij Aho,
Hopcroft and Ullman [1], [2].

The final journal paper [48] moreover considers the prob-
lem of building a mergeable heap based on our structure.
This means that many sets are being manipulated and that
the instructions union and find are added. An approach based
on Tritter trees with stratified trees at the nodes is proposed.
Tritter trees are the trees used by the union-find algorithm by
Tarjan [41]. This extends a section in the FOCS paper where
the problem of manipulating multiple sets is considered.

There is an evident problem with manipulating multiple
sets: the space requirement is multiplied by the number of
sets being used leading to a worst case space complexity
O(u2.loglog(u)), which is outrageous. I suggest a solution to
this problem by a proposal amounting to dynamic allocation
of the structure: allocate only those parts of the stratified trees
which you actually need. Analysis shows that you always will
need the top tree, but you can allocate the bottom trees at the
time their root becomes active. Iterating this idea the space
requirement can be reduced to O(u1+ε) for every positive ε.

With hindsight you can observe that this idea also works
for a single stratified tree, so why didn’t I use this approach
for solving my problem of the super linear space? Once again
it has to do with the prohibition on multiplicative instructions
on the RAM and the way we had coped with this problem.
The space for the static structure (which in principle can be
shared between multiple copies of the stratified tree) already
uses space (u.loglog(u)) and so do the precomputed tables
used for the address calculations in the case of the recursive
decomposition approach as presented in [51].

One of the first applications of my structure by others is the
result on the longest common subsequence problem from Hunt
and Szymanski [19]. It is a dynamic programming method

7Frequently the search leads to the discovery that the source is hidden
behind a pay-wall, and therefore only very incomplete information on the
contents becomes available.

in string manipulation algorithms, which uses priority queue
operations on positions in the strings. Note that in the paper
as published, the resulting loglog(n) factor is not claimed in
the main theorem, but is added in a second theorem called a
theoretical result. At the time the paper was submitted (May
1975) the authors only had access to the Cornell report.

In order to have meaningful applications one needs to
consider problems where the universe is bounded and the
dynamic set being manipulated is not sparse. Such situations
arise for example in Graph theory, Dijkstra’s shortest path
algorithm being a representative example of an algorithm using
a priority queue. The size of the universe evidently depends on
the nature of the edge weights. Such an approach is considered
in the paper by Ahuja, Mehlhorn, Orlin and Tarjan [3], but
the result in this paper shows that further improvements are
possible. This result was further improved by Thorup [43].

An application in computational geometry was given by
de Berg, van Krevelt and Snoeyink [12]. This result was used
subsequently for packet switching on the internet by Lakshman
and Stiliadis [26].

B. Improvements

The first improvement known to me was proposed by
Donald B. Johnson [20]. He improves the operation time from
O(loglog(u)) to O(loglog(d)) where d denotes the distance
in the universe between the aregument and its neighbour in
the set A. The idea of the improvement uses the binary search
on levels approach. Rather than finding the focal point of an
operation by top-down binary search one should first inspect
the ancestors of the argument at levels 1,2,4,16, . . . (these
are the roots of the canonical sub-trees having the argument
as leaf) untill one locates an ancestor above the focal point
(something which can be recognized from the values being
stored there).

As observed by the author: there seems to be no way
to obtain this improvement when the recursive cluster galaxy
decomposition approach is used.

The key reason why space O(u) is required even in
situations where n << u is that the direct access of an array
element, given its index, requires that the storage space for the
array is allocated; as is well known from a famous exercise in
[2] it is not needed to also initialize this space. The solution
of this problem with direct access is to use dynamic perfect
hashing. Fredman, Komlós and Szemerédi [14] have shown
that you can do so without loss of the O(1) access time 8.

Dan Willard proposed this approach [57] in 1983; to-
gether with Fredman this evolved in the design of the Fusion
trees [15]. See also the survey paper [58].

Mehlhorn and Näher [29] obtained the optimal result
combining time O(loglog(u)) and space O(n), improving on
Willard who had obtained these bounds only for a static set
A.

Still the improvements don’t stop at this point. M. Tho-
rup [42] and Paul Beame and Faith E. Fich [6] obtain even

8In fact I have used the results of this paper in some other part of my
research [40], but never had the idea to use it for improving my stratified
trees



better bounds, but it all becomes very complicated. The word-
length of the RAM processor becomes another relevant pa-
rameter, and general AC0 instructions on integers are allowed.
This is far far away from my original intuitions. For example,
lemma 2.1 in [42] cites a result from [5] where two sorted
lists of at most k keys can be merged in time O(log(k)); the
snag being that the two lists are stored in a single RAM word,
and the result should be stored in two RAM words. Evidently
this will require the use of instructions way beyond what was
considered to be allowed in 1974.

For improvements in completely different directions: Wang
and Lin [59] obtain amortized processing time O(1) on a
pipelined system with O(loglog(u)) layers.

Finally the question remains whether any of these ideas
will work if used with real life computers on regular size data;
this has been investigated by Dementiev, Kettner, Mehnert and
Sanders [11].

C. Lower bounds

During one of our encounters in the 1980-ies Kurt
Mehlhorn told me that his students had proven that my
structure is time-optimal, at least in the pointer based model of
computation used in the original presentation. I presume that
he refers to the result by Mehlhorn, Näher and Alt presented
in [28].

This paper considers the union-split-find problem, but this
problem is equivalent to the insert-delete-predecessor problem.
Just consider the points in A to be the endpoints of intervals
which are split and merged by inserting or removing new
endpoints, and which are to be identified by their right bound-
ary point. The lower bound is proven using graph theoretic
arguments. One investigates the directed graph formed by the
pointers which can be created, destroyed or moved around, but
other operations on pointers have no meaning.

The situation changes when one moves to the cell-probe
model. Here the RAM computation is analysed as a big
decision tree where at any step inspecting some value stored
in a RAM memory location one branches depending on the
possible value stored there. The branching degree at these
decision nodes is exponential in the word-length of the proces-
sor. The arguments become information theoretical and involve
sometimes the use of communication complexity. An example
of this approach can be found in the paper by Peter Bro
Miltersen [31] who improves on earlier results by Ajtai [4].
He obtains a lower bound Ω(

√
loglog(u).

The final papers I want to mention, are papers by M.
Pǎtraşcu and M. Thorup. In their paper [33], presented at
STOC 38 in 2006, they give a refined lower bound analysis
in the cell probe model. The parameters involved are both the
universe size u and its logarithm l, the word length w, the
number of elements in the set n and the number of available
memory words S. The result shows that at least on part of this
parameter space the stratified trees are optimal. The results are
extended to a randomized model in [34].

VII. CONCLUSION

It is not exceptional that results in computer science or
mathematics do not obtain in their early publications the

transparent treatment which will eventually surface in the
literature. In most cases this is the result of the authors not yet
fully understanding the problems at hand. There are however
also instances where the original author is guided by scientific
social constraints into a direction which makes it hard if not
impossible to express his original intuition. A prime example
of this process is the history of Savitch’ theorem [36] stating
that PSPACE = NPSPACE. In his original publication he
was prohibited by the reviewers or the editor to use a recursive
procedure, and the result is that the paper is much harder to
read and to understand the simple idea behind the proof. For
a direct proof following modern intuition which doesn’t use
any machine simulation see [54].

The van Emde Boas tree, when explained today, is al-
ways presented in the recursive cluster galaxy decomposition
approach. This is not the way this structure was published
in the original papers in the period 1974 to 1977, since my
original papers from this period [45], [46], [47], [48] all follow
the binary search on levels approach. The simpler recursive
decomposition approach is worked out in details for the first
time in the unpublished classroom note from Knuth [23]. This
is sufficient reason for arranging to make this note finally
accessible and bibliographically traceable [24].

As I have indicated the two approaches are not equivalent.
The recursive approach is more abstract. There is a corre-
spondence between the cluster galaxy substructures and the
canonical sub-trees, but this correspondence breaks down when
the separation between the left and right half-trees becomes
part of the algorithms. The behaviour of the operations in
the two models are different, as illustrated by the fact that,
when the focal point happens to be located at the root of a
higher ranked canonical sub-tree, in the tree-based approach
recursion can terminate, while in the recursive decomposition
approach the recursion will proceed to the bottom level.
Another indication is the suggested impossibility to obtain
Johnson’s improvement [20] in the recursive decomposition
approach.

My choice was primarily motivated by the prohibition of
using multiplicative instructions in the RAM model; a clear
instance of scientific social control by the environment. On
the other hand it is evident from my writings that I was
fully committed to the tree-based approach, possibly for its
closeness to the silly mark-bit approach which allowed me
to break the O(log(n)) barrier originally. As explained there
is just a hint at the recursive decomposition approach in my
original papers.

In the superficial survey on work during the past 33 years
I have used the themes applications, improvements and lower
bounds. Applications frequently obtain the label of a mere the-
oretical result; by the lime the loglog(u)/log(n) improvement
is sufficiently large to absorb the constant factor the universe
size u has become large and the space consumption O(u) of
the improved original structure will have become prohibitive;
however the improvements based on perfect hashing give new
hope. I should also stress that these improvements (and also
the lower bounds) consider RAM models which from the
1974 perspective are unrealistic (arbitrary AC0 instructions
and word-size w >> log(u)).

There is a possible version of the structure which I have



not discovered in any of the papers I have looked at. People
like Gonnet [16] explicitly give the freedom to use special
structures when the universe size has become sufficiently
small. But the algorithmic decision to pass from storing the
information at the root to starting the allocation and use of
substructures always seems to occur when a second element
is going to be inserted in the structure under consideration.
An dually, the substructures are invalidated when this second
element is removed.

As far as the recurrence relation T (u) = T (
√
u) + O(1)

is concerned this transition might as well occur between 2
and 3, or between k and k + 1 for any fixed constant k. In
this variation of the original idea the constant time used for
setting up the substructures when the boundary is passed will
increase, but one may hope that there will be far less need for
going deeper into the recursion. Presumably this will not work
in the worst case since an adversory may submit a chain of
instructions crossing this boundary almost always, but it may
yield improvements in average or amortized complexity.
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[33] M. Pǎtraşcu & M Thorup Time-Space trade-offs for predecessor seach,
Proc. ACM STOC 38 (2006) 232-240; an extended version can be found
at http://arxiv.org/abs/cs/0603043.
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