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Chapter 1

Introduction

Brief history

In this thesis we investigate classes of intuitionistic and modal logics. The ori-
gins of intuitionistic logic and modal logic go back to the beginning of the 20th
century. Intuitionistic logic was introduced by Heyting [61] as a formalization
of Brouwer’s ideas about intuitionism and constructive mathematics. Investi-
gations into modal logics started with the work of Lewis [86], who introduced
the modal systems S1–S5. Lewis’ original goal was to axiomatize the so-called
strict implication and thus provide alternatives to material implication. The first
systematic semantics for intuitionistic and modal logics was provided by McK-
insey and Tarski [96, 97, 98, 119]. (The precursor to this semantics was the
semantics based on the so-called Jaśkowski matrices [66].) McKinsey and Tarski
interpreted the intuitionistic propositional calculus IPC and the modal logic S4
in topological spaces. Their work can also be seen as the beginning of an al-
gebraic approach towards intuitionistic and modal logics. Moreover, McKinsey
and Tarski were the first who treated intuitionistic and modal logics in a single
framework. They showed that the modal logic S4 is complete with respect to
the class of closure algebras (one might say: the algebras of topological spaces)
and that the intuitionistic propositional calculus is complete with respect to the
class of Heyting algebras1, which basically consists of the open elements of clo-
sure algebras. This topological semantics works nicely for intuitionistic logic and
the modal logic S4. However, it becomes less transparent when applied to other
logics. In contrast, closure algebras can be very naturally generalized to Boolean
algebras with operators (BAOs, for short). There is a class (a variety) of BAOs
that corresponds to every modal logic, and every modal logic is complete with
respect to this class. Thus, before Kripke’s discovery of relational semantics for
intuitionistic and modal logics [76, 77, 78], algebraic semantics was the main tool

1In fact, McKinsey and Tarski studied the Brouwerian algebras that are the order duals of
Heyting algebras.

1



2 CHAPTER 1. INTRODUCTION

for investigating these logics.
After the introduction of relational semantics, interest shifted from the al-

gebraic semantics of intuitionistic and modal logics to Kripke semantics. But
researchers continued to investigate these logics using algebraic methods and the
field remained active. We mention a few important contributions of this early
period which are directly related to the subject of this thesis. Tarski and his stu-
dents developed the theory of cylindric algebras [60], which provide an algebraic
semantics for the classical first-order logic, Halmos studied monadic and polyadic
algebras [58], Jankov introduced characteristic formulas for finite Heyting alge-
bras and used them to prove that there are continuum many logics between
the classical propositional calculus CPC and intuitionistic propositional calculus
IPC [64, 65]. These logics are nowadays called “intermediate logics” or “super-
intuitionistic logics”. Independently, de Jongh [69] introduced similar formulas
and used them to characterize intuitionistic logic, applying a mix of algebraic
and relational semantics. Rieger [106] described the one-generated free Heyting
algebra and showed that it is infinite. Independently, Nishimura [102] obtained
the same result using proof-theoretic methods. Kuznetsov [80, 81, 82] began a
systematic study of intermediate logics using algebraic methods. It turned out
that most logical notions can be translated into statements about varieties of
algebras. Therefore, a whole range of techniques of universal algebra can be ap-
plied to problems of intermediate and modal logics. For example we consider the
well-known property of interpolation, which is purely syntactical. It was shown
by Maksimova [89, 91] that an intermediate or modal logic has the interpolation
property if and only if the corresponding variety of algebras has the superamal-
gamation property. This directly links the interpolation property with a purely
algebraic property concerning varieties of Heyting algebras and BAOs. The field
of logic that studies logic via algebraic methods is nowadays called algebraic logic.

There were two observations that made algebraic logic even more attractive.
First, in the ’70s a number of Kripke-incomplete logics were discovered. Thoma-
son [120] constructed a Kripke incomplete temporal logic. Fine [40] and van
Benthem [5] found examples of Kripke incomplete modal logics. Shehtman [114]
constructed an incomplete intermediate logic. Therefore, there are logics that
cannot be investigated using only Kripke semantics. In contrast to this, every
intermediate and modal logic is complete with respect to its algebraic semantics.

The second main observation is that algebraic and Kripke semantics are, in
fact, very closely related. They are in a sense dual to each other. This connection
goes through the Stone duality. There is a one-to-one correspondence between
algebraic models of intuitionistic and modal logics and Kripke frames augmented
with a special topology, the so-called Stone topology. This correspondence can
be extended to a duality between varieties of algebras and categories of these
topological Kripke frames. For Heyting algebras and closure algebras this duality
was discovered by Esakia [38]. Goldblatt [51, 52] worked it out for BAOs and
descriptive frames. However, the idea of a duality between Boolean algebras with
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operators and Kripke frames equipped with a special structure can be traced all
the way back to the important work of Jónsson and Tarski [71]. Note that the
duality between Heyting algebras and intuitionistic descriptive frames, on the one
hand, and the duality between BAOs and modal descriptive frames, on the other,
imply that every intermediate and modal logic is complete with respect to a class
of descriptive frames. This duality allows us to approach problems in interme-
diate and modal logics from different perspectives. As we already mentioned,
properties of a logic can be translated into algebraic terms. Now, using the du-
ality between algebras and descriptive frames these properties can be translated
into terms of descriptive frames. The interpolation property again provides us
with a good example. As we mentioned above, an intermediate or modal logic has
the interpolation property if and only if the corresponding variety of algebras has
the superamalgamation property. However, as is shown in [90], the easiest way
to either prove or refute the superamalgamation property is to translate it into
terms of descriptive frames and then use order-topological techniques. Thus, we
have three powerful tools for studying intermediate and modal logics: purely logi-
cal (syntactical), algebraic, and order-topological. Our investigations throughout
this thesis will be based on algebraic and order-topological techniques and on the
correspondence between them.

We continue by mentioning some other important contributions to the field of
algebraic logic. Rautenberg [105] and Blok [21] started a systematic investigation
of the lattices of varieties of BAOs. They thoroughly studied the splitting varieties
of BAOs. Blok [20] also defined and investigated the degree of incompleteness of
modal logics. In [19] Blok constructed an embedding of the lattice of intermediate
logics into the lattice of normal extensions of the modal logic S4. Blok’s proof
of this theorem used only algebraic methods. On the other hand, Esakia [34]
independently arrived at the same embedding using the duality between Heyting
algebras and topological Kripke frames.

The next important step was made by Zakharyaschev [132, 133, 134] who
generalized the notion of Jankov’s characteristic formula. Zakharyaschev defined
canonical formulas for intermediate and transitive modal logics and showed that
every such logic is axiomatizable by canonical formulas. The technique of Za-
kharyaschev was again based on a duality between descriptive frames and their
corresponding Heyting algebras and BAOs. Wolter [129, 130] and Kracht [73, 74]
studied tense logics, extensions of basic modal logic K and various intermediate
and modal logics using the splitting technique.

Finally, we mention yet another important line of research in algebraic logic.
This is the theory of canonicity and canonical extensions. These topics will not
be considered in this thesis at all, so we will only give a few important references:
Sahlqvist [109], Ghilardi and Meloni [49], Goldblatt [53], Gehrke and Jónsson
[47], Gehrke, Harding, Venema [45], Goldblatt, Hodkinson, Venema [54]. For a
systematic overview of these results as well as other useful material on algebraic
logic see Venema [126].
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Main results

Now that we have briefly discussed the main techniques of our investigations in
this thesis, we turn to the type of questions that we are going to study. As we
mentioned in our short historical overview, the investigation of intuitionistic logic
and modal logics started with a study of particular systems. Later on this study
was extended to the investigation of classes of intermediate and modal logics, of-
ten all extensions of a particular interesting logic. This approach provides us with
a uniform perspective on the field. It usually gives a better understanding of why
a logical system does or does not have a particular property. There are many
such examples, of which we mention only a few here. Segerberg [112] showed
that every transitive modal logic of finite depth has the finite model property,
Fine [42] proved that every transitive logic of finite width is Kripke complete.
Therefore, instead of proving the finite model property and Kripke completeness
for every given logic of finite depth or width we simply apply these general re-
sults. Sahlqvist’s theorem [109] (see also [18, §3.6], [24, §10.3]) provides us with
a different general completeness result, which says that if a logic is axiomatized
by the formulas of some particular shape, then it is Kripke complete. Again,
this theorem gives us for free a Kripke completeness result for large classes of
logics. Maksimova’s characterization of all intermediate logics with the interpola-
tion property can be seen as a general result of a similar nature. In this thesis we
follow this “global” approach to intermediate and modal logics. The precursors of
this approach were Scroggs [111], who studied all extensions of S5, Dummett and
Lemmon [31], who investigated modal logics between S4 and S5, and Bull [22],
Fine [39], and later Hemaspaandra [118], who showed that all extensions of S4.3
have the finite model property, are finitely axiomatizable, and are NP-complete,
respectively. Segerberg [112] investigated various classes of modal logics, Blok
[19] and Esakia [34] studied isomorphisms of lattices of modal and intermediate
logics, and Fine [41, 42] and Zakharyaschev [132, 133, 134, 135] investigated the
classes of subframe and cofinal subframe logics, to name only a few; see [131] for
an overview of these results.

The results in this thesis should be seen as a continuation of this line of
research. We also concentrate on the classes of extensions of some particular
logics. In this thesis we investigate:

1. The intermediate logic RN of the Rieger-Nishimura ladder and its exten-
sions.

2. Cylindric modal logics. In particular:

(a) The two-dimensional cylindric modal logic S52 (without the diagonal).

(b) The two-dimensional cylindric modal logic CML2 (with the diagonal).
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We first discuss these two topics and then concentrate on the particular questions
that we are going to address in this thesis.

The Rieger-Nishimura ladder is the dual frame of the one-generated free Heyt-
ing algebra described by Rieger [106] and Nishimura [102]. We study the inter-
mediate logic RN of the Rieger-Nishimura ladder. This logic is the greatest
1-conservative extension of IPC. It was studied earlier by Kuznetsov and Gerciu
[83], Gerciu [48] and Kracht [73]. We provide a systematic analysis of this sys-
tem and its extensions. We also study an intermediate logic KG, introduced by
Kuznetsov and Gerciu. It is closely related to RN and will play an important role
in our investigations. The logic RN is a proper extension of KG. By studying
extensions of KG and RN we introduce some general techniques. For exam-
ple, we give a systematic method for constructing intermediate logics without
the finite model property, we give a method for constructing infinite antichains
of finite Kripke frames that implies the existence of a continuum of logics with
and without the finite model property. We also introduce a gluing technique for
proving the finite model property for large classes of logics.

Cylindric modal logics are the direct logical analogues of Tarski’s cylindric
algebras. The theory of cylindric algebras was originally introduced and developed
by Tarski and his collaborators in an attempt to algebraize the classical first-order
logic FOL [60]. Finite-dimensional cylindric algebras provide algebraic models for
the finite variable fragments of FOL, and so finite-dimensional cylindric algebras
give an “approximation” of FOL.

Cylindric modal logics were first formulated explicitly in [125]. They are
closely related to n-dimensional products of the well-known modal logic S5. The
lattice of extensions of S5, i.e., the lattice of extensions of the one-dimensional
cylindric modal logic, is very simple: every extension of S5 is finitely axiomati-
zable and decidable. Moreover, every proper extension of S5 is complete with
respect to a single finite frame. In contrast to this, the lattice of extensions
of the three-dimensional cylindric modal logic is very complicated. The three-
dimensional cylindric modal logic is undecidable and has continuum many un-
decidable extensions. In this thesis we concentrate on two-dimensional cylindric
modal logics. We consider two similarity types: two-dimensional cylindric modal
logics with and without diagonal. Cylindric modal logic with the diagonal cor-
responds to the full two-variable fragment of FOL and the cylindric modal logic
without the diagonal corresponds to the two-variable substitution-free fragment
of FOL. We study the lattices of two-dimensional cylindric modal logics.

There is a two-fold connection between these two themes of the thesis. First,
for all these systems, we investigate the same properties of axiomatization, finite
model property, local tabularity, etc. Second, in both cases we use the same tech-
niques. Our main tools are algebras and their dual frames. In the intuitionistic
case we use the duality between Heyting algebras and intuitionistic descriptive
frames (resp. ordered topological spaces). In the modal case we use the dual-
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ity between Boolean algebras with operators and modal descriptive frames (resp.
Stone spaces with point-closed and clopen relations). As we pointed out above,
we approach the problems of intermediate and modal logics both from an al-
gebraic and from frame-theoretic, (or rather order-topological) perspective and
jump back and forth between these two frameworks at our convenience.

Our investigations mostly concern the following topics:

• Axiomatization. Our main tools for obtaining positive or negative results
concerning axiomatization of intermediate and modal logics are the so-called
frame-based formulas. In particular, the Jankov-de Jongh formulas for in-
termediate logics, the Jankov-Fine formulas for modal logics, and subframe
and cofinal subframe formulas for intermediate and modal logics. In Chap-
ter 3 we put all these formulas into a unified framework. We use these
formulas for showing that RN is finitely axiomatizable. We also prove that
every normal extension of S52 is finitely axiomatizable, and that there are
non-finitely axiomatizable extensions of CML2.

• The finite model property. Using the technique of gluing models we prove
that every extension of the logic RN of the Rieger-Nishimura ladder has
the finite model property. Using the Jankov-de Jongh formulas we develop
a systematic method for constructing intermediate logics without the finite
model property. We also prove that every normal extension of S52 has
the finite model property. We leave it as an open problem whether every
extension of CML2 has the finite model property.

• Local tabularity. This property is especially useful since every locally tabular
logic has the finite model property. We derive a criterion for recognizing
when an extension of RN, KG, S52, or CML2 is locally tabular.

• Pre-P -properties. Let P be a property of logics. A logic L has a pre-P -
property if L lacks P but every proper extension of L has P . We characterize
the only extension of KG that has the pre-finite model property. We also
describe all pre-tabular and all pre-locally tabular extensions of KG, S52

and CML2.

• Decidability/complexity. In Chapter 8 we prove that every proper normal
extension of S52 is decidable and has an NP-complete satisfiability problem.
This result together with the finite model property and finite axiomatiza-
tion of normal extensions of S52 gives us the analogue of the Bull-Fine-
Hemaspaandra theorem for normal extensions of S52.
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Contents

This thesis has two parts. First we describe the contents of Part I. It is a well-
known result of universal algebra that every variety of algebras is generated by
its finitely generated members. Therefore, an understanding of the structure of
finitely generated algebras of a given variety provides the key for understanding
this variety. That is why we start our investigation of intermediate logics with
an investigation of finitely generated Heyting algebras. Many facts about these
algebras are known. However, these results are scattered in the literature. Our
aim is to give a coherent exposition of finitely generated Heyting algebras. We
show that their dual frames can be seen as “icebergs” consisting of the upper
part (the tip of the iceberg) and the lower part. We give a full description of the
upper part of these frames.

We also discuss the Jankov-de Jongh formulas, subframe formulas and cofinal
subframe formulas in a uniform framework of frame-based formulas. We define
subframe formulas and cofinal subframe formulas in a new way which connects
them with the NNIL formulas of [127]. We give a general criterion for an interme-
diate logic to be axiomatized by frame-based formulas and show that in general
not every logic is axiomatized by frame-based formulas. This gives another ex-
planation of why we need to enrich these formulas with an additional parameter
as in Zakharyaschev’s canonical formulas.

Next we use finitely generated Heyting algebras, the Jankov-de Jongh formulas
and subframe formulas in the study of the lattice of extensions of one particular
intermediate logic, the logic of the Rieger-Nishimura ladder. We will see that the
complicated construction of finitely generated Heyting algebras becomes surpris-
ingly simple in this case. We define the n-scheme logics of IPC and n-conservative
extensions of IPC. We show that the logic of the Rieger-Nishimura ladder is the
1-scheme logic of IPC and, by virtue of that, the greatest 1-conservative exten-
sion of IPC. We show that every extension of RN has the finite model property.
We also study the Kuznetsov-Gerciu logic KG. The logic RN is a proper exten-
sion of KG, but in contrast to RN, the logic KG has continuum many extensions
without the finite model property. Finally, we give a criterion of local tabularity
in extensions of RN and KG.

In Part II we investigate in detail lattices of the two-dimensional cylindric
modal logics. Cylindric modal logic without the diagonal is the two-dimensional
product of S5, which we denote by S52. It is well-known that S52 is finitely ax-
iomatizable, has the finite model property, is decidable [60] and has a NEXPTIME-
complete satisfiability problem [93]. We show that every proper normal extension
of S52 is also finitely axiomatizable, has the finite model property, and is decid-
able. Moreover, we prove that in contrast to S52, every proper normal extensions
of S52 has an NP-complete satisfiability problem. We also show that the situa-
tion for cylindric modal logics with the diagonal is different. There are continuum
many non-finitely axiomatizable extensions of the cylindric modal logic CML2.
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We leave it as an open problem whether all of them have the finite model prop-
erty. We also give a criterion of local tabularity for two-dimensional cylindric
modal logics with and without diagonal and characterize pre-tabular cylindric
modal logics.

The thesis is organized as follows. In Chapter 2 we discuss the Kripke, alge-
braic and order-topological semantics of the intuitionistic propositional calculus.
In Chapter 3 we give a systematic overview of finitely generated Heyting algebras,
universal models for intuitionistic logic, and of frame-based formulas. Chapter
4 investigates in detail the lattice of extensions of the logic RN of the Rieger-
Nishimura ladder, and the lattice of extensions of the Kuznetsov-Gerciu logic
KG. In Chapter 5 we introduce the basic notions of cylindric modal logic and de-
fine cylindric algebras. Chapter 6 investigates the lattice of normal extensions of
S52—the two-dimensional cylindric modal logic without the diagonal. In Chap-
ter 7 we study the lattice of normal extensions of CML2—the two-dimensional
cylindric modal logic with the diagonal. Finally, in Chapter 8 we prove that every
proper normal extension of S52 is finitely axiomatizable, has the poly-size model
property and has an NP-complete satisfiability problem.

We close the introduction by mentioning prior work on which some of the
chapters are based. Chapter 3 is partially based on [13]. Chapter 4 is based on
joint work with Dick de Jongh and Guram Bezhanishvili [8]. Chapters 5 and 6
are based on [12], Chapter 7 is based on [14], and Chapter 8 is based on joint
work with Maarten Marx [17] and Ian Hodkinson [16].



Part I

Lattices of intermediate logics
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Chapter 2

Algebraic semantics for intuitionistic
logic

In this chapter we give an overview of the basic facts about intuitionistic logic and
its extensions. In particular, we recall their Kripke, algebraic and general frame
semantics, and the duality between Heyting algebras and descriptive frames.

2.1 Intuitionistic logic and intermediate logics

2.1.1 Syntax and semantics

Let L denote a propositional language consisting of

• infinitely many propositional variables (letters) p0, p1, . . .,

• propositional connectives ∧, ∨, →,

• a propositional constant ⊥.

We denote by Prop the set of all propositional variables. Formulas in L are de-
fined as usual. Denote by Form(L) (or simply by Form) the set of all well-formed
formulas in the language L. We assume that p, q, r, . . . range over propositional
variables and φ, ψ, χ, . . . range over arbitrary formulas. For every formula φ and ψ
we let ¬φ abbreviate φ→ ⊥ and φ↔ ψ abbreviate (φ→ ψ)∧ (ψ → φ). We also
let > abbreviate ¬⊥. First we recall the definition of intuitionistic propositional
calculus.

2.1.1. Definition. Intuitionistic propositional calculus IPC is the smallest set
of formulas containing the axioms:

1. p→ (q→ p),

2. (p→ (q→ r))→ ((p→ q)→ (p→ r)),

11
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3. p∧ q→ p,

4. p∧ q→ q,

5. p→ p∨ q,

6. q→ p∨ q,

7. (p→ r)→ ((q→ r)→ ((p∨ q)→ r))),

8. ⊥→ p.

and closed under the inference rules:

Modus Ponens (MP) : from φ and φ→ ψ infer ψ,

Substitution (Subst) : from φ(p1, . . . , pn) infer φ(ψ1, . . . , ψn).

For an introduction to intuitionism and the connection between intuitionistic logic
and intuitionism we refer to [62], [28], [123] and [15].

2.1.2. Definition. Let CPC denote classical propositional calculus.

It is well known (see e.g., [24, §2.3]) that CPC properly contains IPC. Indeed,
we have p ∨ ¬p,¬¬p→ p ∈ CPC, but p ∨ ¬p,¬¬p→ p /∈ IPC. In fact, we have
the following theorem; see e.g., [24, §2.6].

2.1.3. Theorem.

1. CPC is the smallest set of formulas that contains IPC, the formula p∨¬p,
and is closed under (MP) and (Subst).

2. CPC is the smallest set of formulas that contains IPC, the formula ¬¬p→
p, and is closed under (MP) and (Subst).

2.1.4. Definition. A set of formulas L ⊆ Form closed under (MP) and (Subst)
is called an intermediate logic if IPC ⊆ L ⊆ CPC.

Thus, the intermediate logics are “intermediate” between classical and intuitionis-
tic propositional logics. Next we introduce a class containing all the intermediate
logics.

2.1.5. Definition. A set of formulas L ⊆ Form closed under (MP) and (Subst)
is called a superintuitionistic logic if L ⊇ IPC.
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A superintuitionistic logic L is said to be consistent if ⊥ /∈ L, and inconsistent
if ⊥ ∈ L. By (8) and (MP), L is inconsistent iff L = Form. We will use the
notation L ` φ to denote φ ∈ L. The next proposition tells us that not only
every intermediate logic is superintuitionistic, but that for consistent logics, the
converse obtains as well. For a proof see, e.g., [24, Theorem 4.1].

2.1.6. Proposition. For every consistent superintuitionistic logic L ( Form

we have L ⊆ CPC. That is, L is intermediate.

Therefore, every consistent superintuitionistic logic is intermediate and vice versa.
From now on we will use the term “intermediate logic” only. Let L1 and L2 be
intermediate logics. We say that L2 is an extension of L1 if L1 ⊆ L2.

2.1.7. Remark. In contrast to the propositional case, not every extension of
the intuitionistic first-order logic is contained in the classical first-order logic.
Indeed, it is known that the classical first-order logic has continuum many exten-
sions. Every one of these is an extension of the intuitionistic first-order logic not
contained in the classical first-order logic. Thus, the notions of superintuitionistic
and intermediate logics do not coincide in the first-order case.

For every intermediate logic L and a formula φ, let L + φ denote the smallest
intermediate logic containing L ∪ {φ}. Then we can reformulate Theorem 2.1.3
as:

CPC = IPC + (p ∨ ¬p) = IPC + (¬¬p→ p).

Now we recall the Kripke semantics for intuitionistic logic. Let R be a binary
relation on a set W . For every w, v ∈ W we write wRv if (w, v) ∈ R and we write
¬(wRv) if (w, v) /∈ R.

2.1.8. Definition.

1. An intuitionistic Kripke frame is a pair F = (W,R), where W 6= ∅ and R is
a partial order; that is, a reflexive, transitive and anti-symmetric relation
on W .

2. An intuitionistic Kripke model is a pair M = (F, V ) such that F is an
intuitionistic Kripke frame and V is an intuitionistic valuation; that is, a
map V : Prop → P(W ),1 satisfying the condition:

w ∈ V (p) and wRv implies v ∈ V (p).

1By P(W ) we denote the powerset of W .
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All the Kripke frames and Kripke models that we consider in Part I of this thesis
are intuitionistic. So, we will simply call them Kripke fames and Kripke models
or just frames and models.

Let M = (W,R, V ) be an intuitionistic Kripke model, w ∈ W and φ ∈ Form.
The following provides an inductive definition of M, w |= φ.

1. M, w |= p iff w ∈ V (p),

2. M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ,

3. M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ,

4. M, w |= φ→ ψ iff for all v with wRv, if M, v |= φ then M, v |= ψ,

5. M, w 6|= ⊥.

If M, w |= φ, we say “φ is true at w” or “w satisfies the formula φ in M”. We
write w |= φ instead of M, w |= φ if the model M is clear from the context. Since
¬φ abbreviates φ → ⊥, we can spell out the truth definitions of formulas with
negation as follows:

• M, w |= ¬φ iff M, v 6|= φ for all v with wRv,

• M, w |= ¬¬φ iff for all v with wRv there exists u such that vRu and
M, u |= φ.

2.1.9. Definition. Let φ ∈ Form, F be a Kripke frame, M be a model on F,
and K be a class of Kripke frames.

1. We say that φ is true in M, and write M |= φ, if M, w |= φ for every w ∈ W .

2. We say that φ is valid in F, and write F |= φ, if for every valuation V on F

we have that M |= φ, where M = (F, V ).

3. We say that φ is valid in K, and write K |= φ, if F |= φ for every F ∈ K.

For every intermediate logic L let Fr(L) be the class of Kripke frames that validate
all the formulas in L. We call Fr(L) the class defined by L.

2.1.10. Definition.

1. For every Kripke frame F let Log(F) denote the set of all formulas that are
valid in F, i.e., Log(F) = {φ : F |= φ}.

2. For a class K of Kripke frames, let Log(K) =
⋂
{Log(F) : F ∈ K}.
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3. An intermediate logic L is called Kripke complete if there exists a class K

of Kripke frames such that L = Log(K). In such a case we say that L is
complete with respect to K.

It is easy to check that for every frame F the set Log(F) is an intermediate logic.
We call it the logic of F. Then Log(K) is an intermediate logic which we call the
logic of K. It is easy to see that if an intermediate logic L is Kripke complete,
then L = Log(Fr(L)).

It is well known that IPC and CPC are Kripke complete. The proof of the
following theorem is standard and uses the so-called canonical model argument.
See, e.g., [24, Theorems 1.16 and 5.12], [28], [15].

2.1.11. Theorem. The following holds.

1. IPC is complete with respect to the class of all partially ordered frames.

2. CPC is complete with respect to the frame consisting of one reflexive point.

Next we recall the main operations on Kripke frames and models.

Generated subframes and generated submodels. Let F = (W,R) be
a Kripke frame. A subset U ⊆ W is called an upset of F if for every w, v ∈ W
we have that w ∈ U and wRv imply v ∈ U . A frame F′ = (U,R′) is called a
generated subframe of F if U ⊆ W , U is an upset of F and R′ is the restriction
of R to U , i.e., R′ = R ∩ U 2. Let M = (F, V ) be a Kripke model. A model
M′ = (F′, V ′) is called a generated submodel of M if F′ is a generated subframe
of F and V ′ is the restriction of V to U , i.e., V ′(p) = V (p) ∩ U . Let F = (W,R)
be a Kripke frame and let w ∈ W . Let the subframe of F generated by w be the
frame Fw := (R(w), R′), where R(w) = {v ∈ W : wRv} and R′ is the restriction
of R to R(w). Let M = (F, V ) be a Kripke model and w ∈ W . The submodel of
M generated by w is the model Mw := (Fw, V

′), where Fw is the subframe of F

generated by w and V ′ is the restriction of V to R(w).

p-morphisms. Let F = (W,R) and F′ = (W ′, R′) be Kripke frames. A map
f : W → W ′ is called a p-morphism between F and F′ if for every w, v ∈ W and
w′ ∈ W ′:

1. wRv implies f(w)R′f(v),

2. f(w)R′w′ implies that there exists u ∈W such that wRu and f(u) = w′.

Some authors call such maps bounded morphisms; see, e.g., [18]. We call the
conditions (1) and (2) the “forth” and “back” conditions, respectively. We say
that f is monotone if it satisfies the forth condition. If f is a surjective p-morphism
from F onto F′, then F′ is called a p-morphic image of F. Let M = (F, V ) and



16CHAPTER 2. ALGEBRAIC SEMANTICS FOR INTUITIONISTIC LOGIC

M′ = (F′, V ′) be Kripke models. A map f : W → W ′ is called a p-morphism
between M and M′ if f is a p-morphism between F and F′ and for every w ∈ W
and p ∈ Prop:

M, w |= p iff M′, f(w) |= p.

If f is surjective, then M is called a p-morphic image of M′. p-morphic images
are also called reductions; see, e.g., [24].

Disjoint unions. Let {Fi}i∈I be a family of Kripke frames, where Fi =
(Wi, Ri), for every i ∈ I. The disjoint union of {Fi}i∈I is the frame

⊎
i∈I Fi :=

(
⊎
i∈IWi, R) such that

⊎
i∈IWi is the disjoint union of Wi’s and R is defined by

wRv iff there exists i ∈ I such that w, v ∈Wi and wRiv.

Let {Mi}i∈I be a family of Kripke models, where Mi = (Fi, Vi), for every
i ∈ I. The disjoint union of {Mi}i∈I is the model

⊎
i∈I Mi := (

⊎
i∈I Fi, V ) such

that
⊎
i∈I Fi is the disjoint union of Fi’s and V (p) =

⋃
i∈I Vi(p).

Now we formulate the truth-preserving properties of these operations. For a
proof we refer to [24, §2.3].

2.1.12. Theorem.

1. If a model M′ = (W ′, R′, V ′) is a generated submodel of a model M =
(W,R, V ), then for every φ ∈ Form and v ∈W ′ we have

M, v |= φ iff M′, v |= φ.

2. If a model M′ = (W ′, R′, V ′) is a p-morphic image of a model M =
(W,R, V ) via f , then for every φ ∈ Form and w ∈W we have

M, w |= φ iff M′, f(w) |= φ.

3. Let {Mi}i∈I be a family of Kripke models, where Mi = (Wi, Ri, Vi), for
every i ∈ I. Let φ ∈ Form and w ∈Wi for some i ∈ I. Then

⊎
i∈I Mi, w |= φ iff Mi, w |= φ.

Now we formulate the truth-preserving properties for frames.

2.1.13. Theorem.

1. If a frame F′ is a generated subframe of a frame F, then for every φ ∈ Form

we have

F |= φ implies F′ |= φ.
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2. If a frame F′ is a p-morphic image of a frame F via f , then for every
φ ∈ Form we have

F |= φ implies F′ |= φ.

3. Let {Fi}i∈I be a family of Kripke frames and let φ ∈ Form. Then

⊎
i∈I Fi |= φ iff Fi |= φ for all i ∈ I.

2.1.14. Definition. Let F = (W,R) be a Kripke frame. F is called rooted if
there exists w ∈W such that for every v ∈ W we have wRv.

Then Theorem 2.1.13 entails the following useful corollary; see, e.g., [24, Theorem
8.58].

2.1.15. Corollary. If an intermediate logic L is Kripke complete, then L is
Kripke complete with respect to the class of its rooted frames.

This means that we can restrict ourselves to rooted Kripke frames.

2.1.2 Basic properties of intermediate logics

Next we look at the important properties of intermediate logics that we will be
concerned with in this thesis.

The fmp. First we recall the definition of the finite model property.

2.1.16. Definition. An intermediate logic L is said to have the finite model
property, the fmp for short, if there exists a class K of finite Kripke frames such
that L = Log(K).2

Recall that a Kripke frame F = (W,R) is a chain if for every w, v ∈ W we
have wRv or vRw. Also recall that a finite tree is a finite rooted Kripke frame
F such that the predecessors of every point of F form a chain [24, p.32]. A
standard argument using the techniques of filtration and unraveling shows that
the following theorem holds. For the proof see, e.g., [24, Corollary 2.33].

2.1.17. Theorem. IPC has the finite model property with respect to rooted par-
tial orders. Moreover, IPC is complete with respect to the class of finite trees.3

2Some authors define the finite model property in the following way: L has the fmp iff there
is a class M of finite models such that for every formula φ, we have φ ∈ L ⇔ M |= φ for every
M ∈ M. The property defined in Definition 6.1.1 is then called the finite frame property. It
can be shown that for intermediate logics these two properties coincide; see, e.g., [24, Theorem
8.47].

3This result can be improved by considering the so-called Jas̀kowski frames, which are a
special kind of finite trees [24, p.56].
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Clearly every logic that has the finite model property is complete. The converse,
in general, does not hold. In the next chapter we will see examples of complete
logics that lack the fmp.

Tabularity. Let L be an intermediate logic. If L has the fmp, then it is
complete with respect to a class K of finite frames. Clearly K can be very big.
Now we define a very restricted notion of the fmp.

2.1.18. Definition. A logic L is called tabular if there exists a finite (not nec-
essarily rooted) frame F such that L = Log(F).

Obviously, if L is tabular, then L has the fmp. However, there are logics with the
fmp that are not tabular. In particular, IPC enjoys the fmp but is not tabular
[24, Theorem 2.56]. The best known example of a tabular logic is the classical
propositional calculus CPC, which is the logic of a frame consisting of a single
reflexive point.

Local tabularity. We say that two formulas φ and ψ are L-equivalent if
L ` φ↔ ψ.

2.1.19. Definition. A logic L is called locally tabular if for every n ∈ ω there
are only finitely many pairwise non-L-equivalent formulas in n variables.

Every tabular logic is locally tabular. Therefore, CPC is locally tabular. How-
ever, there are locally tabular logics that are not tabular.

2.1.20. Definition. Let LC = IPC + (p → q) ∨ (q → p). LC is called the
linear calculus or Dummett’s logic.

For the proof of the next theorem consult, e.g., [24, Theorems 5.33 and 12.15 and
§12.4, p.428].

2.1.21. Theorem. The following holds.

1. LC is complete with respect to the class of all finite chains.

2. LC is not tabular.

3. LC is locally tabular.

The fact that LC is locally tabular and has the fmp is not a pure coincidence.
The following theorem explains this connection; see, e.g., [23, Theorem 10.15].

2.1.22. Theorem. If a logic L is locally tabular, then L enjoys the finite model
property.

The intuitionistic propositional calculus IPC provides a counter-example to the
converse of Theorem 2.1.22. As we mentioned above, IPC has the finite model
property, but as we will see in Chapter 3, it is not locally tabular.
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Finite axiomatization. Now we recall the notion of finite axiomatization.

2.1.23. Definition. An intermediate logic L is called finitely axiomatizable or
finitely axiomatized if there exist finitely many formulas φ1, . . . , φn such that L =
IPC + φ1 + . . .+ φn.

4

Even though most of the well-known logics are finitely axiomatizable, there are
also non-finitely axiomatizable logics. In Chapter 4 we will construct non-finitely
axiomatizable intermediate logics.

Decidability. One of the most crucial properties of logics is decidability.

2.1.24. Definition. A logic L is called decidable if for every given formula φ
there exists an algorithm deciding whether φ ∈ L.

It is well known that every finitely axiomatizable logic that has the fmp is de-
cidable. This result is due to Harrop; see, e.g., [24, Theorem 16.13]. Therefore,
CPC, IPC and LC are decidable. There are also undecidable intermediate logics
[24, §16.5].

Finally, notice that we can define lattice-theoretic operations on the class of
intermediate logics. Suppose {Li}i∈I is a set of intermediate logics. Let

∧
i∈I Li :=⋂

i∈I Li and
∨
i∈I Li be the smallest intermediate logic containing

⋃
i∈I Li. For

every intermediate logic L, let Λ(L) be the set of all intermediate logics containing
L. Then (Λ(L),

∨
,
∧
, L,CPC) is a complete lattice. In fact, as we will see below,

it is a Heyting algebra.5, The greatest element of (Λ(L),
∨
,
∧
, L,CPC) is CPC

and the least element is L. If we do not restrict ourselves to consistent logics
then the greatest element of Λ(L) is the inconsistent logic Form. For every
intermediate logic L, we call (Λ(L),

∨
,
∧
, L,CPC) the lattice of extensions of L.

From now on we will use the shorthand Λ(L) for (Λ(L),
∨
,
∧
,CPC, L).

2.2 Heyting algebras

In this section we define Heyting algebras, formulate algebraic completeness of
intermediate logics, and spell out the connection between Heyting algebras and
Kripke frames.

2.2.1 Lattices, distributive lattices and Heyting algebras

Kripke semantics, discussed in the previous section, provides a very intuitive se-
mantics for intermediate logics. However, there are intermediate logics that are

4Clearly, we can substitute for φ1 + . . . + φn one formula φ =
∧

n

i=1
φi. Therefore, if an

intermediate logic is finitely axiomatizable, then it is axiomatizable by adding one extra axiom
to IPC.

5For a definition of a complete lattice and a Heyting algebra consult the next section.
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not Kripke complete [24, §6]. So we cannot restrict the study of intermediate
logics to the study of their Kripke semantics. In this section we recall an alge-
braic semantics of IPC. As we will see below, an attractive feature of algebraic
semantics is that every intermediate logic is complete with respect to its algebraic
models.

We begin by introducing some basic notions. A partially ordered set (A,≤)
is called a lattice if every two element subset of A has a least upper bound and a
greatest lower bound. Let (A,≤) be a lattice. For a, b ∈ A let a ∨ b := sup{a, b}
and a ∧ b := inf{a, b}. We assume that every lattice is bounded, i.e., it has a
least and greatest element denoted by 0 and 1, respectively. The next proposition
shows that lattices can also be defined axiomatically, see, e.g., [2, Theorem 1, p.44]
and [23, p.8].

2.2.1. Proposition. A structure (A,∨,∧, 0, 1), where A 6= ∅, ∨ and ∧ are bi-
nary operations and 0 and 1 are elements of A, is a bounded lattice iff for every
a, b, c ∈ A the following holds:

1. a ∨ a = a, a ∧ a = a,
2. a ∨ b = b ∨ a, a ∧ b = b ∧ a,
3. a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c,
4. a ∨ 0 = a, a ∧ 1 = a,
5. a ∨ (b ∧ a) = a, a ∧ (b ∨ a) = a.

Proof. It is a matter of routine checking that every lattice satisfies the axioms
1–5. Now suppose (A,∨,∧, 0, 1) satisfies the axioms 1–5. We say that a ≤ b if
a ∨ b = b or equivalently if a ∧ b = a. Checking that (A,≤) is a lattice with least
and greatest elements 0 and 1, respectively, is routine. ¤

From now on we let (A,∨,∧, 0, 1) denote a bounded lattice. We say that a lattice
(A,∨,∧, 0, 1) is complete if for every subset X ⊆ A there exist

∨
X = sup(X) and∧

X = inf(X).

2.2.2. Definition. A bounded lattice (A,∨,∧, 0, 1) is called distributive if it
satisfies the distributivity laws6:

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Note that the lattices shown in Figure 2.1 are not distributive. The next theorem,
due to Birkhoff, shows that, in fact, these are typical examples of non-distributive
lattices. For the proof the reader is referred to [2, Theorem 9, p.51] and [23,
Theorem 3.6].

6In fact, each of these two axioms implies the other. Nevertheless, we list them both.
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M5 N5

Figure 2.1: Non-distributive lattices M5 and N5

2.2.3. Theorem. A lattice (A,∨,∧, 0, 1) is distributive iff M5 and N5 are not
sublattices of (A,∨,∧, 0, 1).

We are ready to define the main notion of this section.

2.2.4. Definition. A distributive lattice (A,∨,∧, 0, 1) is said to be a Heyting
algebra if for every a, b ∈ A there exists an element a → b such that for every
c ∈ A we have:

c ≤ a→ b iff a ∧ c ≤ b.

We call → a Heyting implication or simply an implication. For every element a
of a Heyting algebra, let ¬a := a→ 0.

2.2.5. Remark. It is easy to see that if A is a Heyting algebra, then → is a binary
operation on A, as follows from Proposition 2.2.7(1). Therefore, we should add
→ to the signature of Heyting algebras. Note also that 0 → 0 = 1. Hence, we
can exclude 1 from the signature of Heyting algebras. From now on we will let
(A,∨,∧,→, 0) denote a Heyting algebra.

Similarly to the case of lattices, Heyting algebras can be defined in a purely
axiomatic way; see, e.g., [68, Lemma 1.10].

2.2.6. Theorem. A distributive lattice7 A = (A,∨,∧, 0, 1) is a Heyting algebra
iff there is a binary operation → on A such that for every a, b, c ∈ A:

1. a→ a = 1,

2. a ∧ (a→ b) = a ∧ b,

3. b ∧ (a→ b) = b,

7In fact, it is not necessary to state that A is distributive. Every lattice satisfying conditions
1–4 of Theorem 2.2.6 is automatically distributive [68, Lemma 1.11(i)].
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4. a→ (b ∧ c) = (a→ b) ∧ (a→ c).

Proof. Suppose A satisfies the conditions 1–4. Assume c ≤ a → b. Then
by (2), c ∧ a ≤ (a → b) ∧ a = a ∧ b ≤ b. For the other direction we first
show that for every a ∈ A the map (a → ·) is monotone, i.e., if b1 ≤ b2 then
a → b1 ≤ a → b2. Indeed, since b1 ≤ b2 we have b1 ∧ b2 = b1. Hence, by (4),
(a → b1) ∧ (a → b2) = a → (b1 ∧ b2) = a → b1. Thus, a → b1 ≤ a → b2. Now
suppose c ∧ a ≤ b. By (3), c = c ∧ (a → c) ≤ 1 ∧ (a → c). By (1) and (4),
1 ∧ (a → c) = (a → a) ∧ (a → c) = a → (a ∧ c). Finally, since (a → ·) is
monotone, we obtain that a→ (a ∧ c) ≤ a→ b and therefore c ≤ a→ b.

It is easy to check that → from Definition 2.2.4 satisfies the conditions 1–4.
We skip the proof. ¤

For the next proposition consult [68, Theorem 4.2] and [35].

2.2.7. Proposition.

1. In every Heyting algebra A = (A,∨,∧,→, 0) we have that for every a, b ∈ A:

a→ b =
∨

{c ∈ A : a ∧ c ≤ b}.

2. A complete distributive lattice (A,∧,∨, 0, 1) is a Heyting algebra iff it sat-
isfies the infinite distributive law

a ∧
∨

i∈I

bi =
∨

i∈I

(a ∧ bi)

for every a, bi ∈ A, i ∈ I.

Proof. (1) Clearly a → b ≤ a → b. Hence, a ∧ (a → b) ≤ b. So, a → b ≤
∨
{c ∈

A : a ∧ c ≤ b}. On the other hand, if c is such that c ∧ a ≤ b, then c ≤ a → b.
Therefore,

∨
{c ∈ A : a ∧ c ≤ b} ≤ a→ b.

(2) Suppose A is a Heyting algebra. For every i ∈ I we have that a ∧ bi ≤
a ∧

∨
i∈I bi. Hence,

∨
i∈I(a ∧ bi) ≤ a ∧

∨
i∈I bi. Now let c ∈ A be such that∨

i∈I(a∧ bi) ≤ c. Then a∧ bi ≤ c for every i ∈ I. Therefore, bi ≤ a→ c for every
i ∈ I. This implies that

∨
i∈I bi ≤ a → c, which gives us that a ∧

∨
i∈I bi ≤ c.

Thus, taking
∨
i∈I(a ∧ bi) as c we obtain a ∧

∨
i∈I bi ≤

∨
i∈I(a ∧ bi).

Conversely, suppose that a complete distributive lattice satisfies the infinite
distributive law. Then we put a → b =

∨
{c ∈ A : a ∧ c ≤ b}. It is now easy to

see that → is a Heyting implication. ¤

Next we will give a few examples of Heyting algebras.
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2.2.8. Example.

1. Every finite distributive lattice is a Heyting algebra. This immediately
follows from Proposition 2.2.7(2), since every finite distributive lattice is
complete and satisfies the infinite distributive law.

2. Every chain C with a least and greatest element is a Heyting algebra and
for every a, b ∈ C we have

a→ b =
{

1 if a ≤ b,
b if a > b.

3. Every Boolean algebra B is a Heyting algebra, where for every a, b ∈ B we
have

a→ b = ¬a ∨ b

The next proposition characterizes those Heyting algebras that are Boolean alge-
bras. For the proof see, e.g., [68, Lemma 1.11(ii)].

2.2.9. Proposition. Let A = (A,∨,∧,→, 0) be a Heyting algebra. Then the
following three conditions are equivalent:

1. A is a Boolean algebra,

2. a ∨ ¬a = 1 for every a ∈ A,

3. ¬¬a = a for every a ∈ A.

2.2.2 Algebraic completeness of IPC and its extensions

In this section we discuss the connection between intuitionistic logic and Heyting
algebras. We first recall the definition of basic algebraic operations.

2.2.10. Definition. Let A = (A,∨,∧,→, 0) and A′ = (A′,∨′,∧′,→′, 0′) be
Heyting algebras. A map h : A → A′ is called a Heyting homomorphism or
simply a homomorphism if

• h(a ∨ b) = h(a) ∨′ h(b),

• h(a ∧ b) = h(a) ∧′ h(b),

• h(a→ b) = h(a) →′ h(b),

• h(0) = 0′.

A Heyting algebra A′ is called a homomorphic image of A if there exists a Heyting
homomorphism from A onto A′.
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2.2.11. Definition. Let A and A′ be two Heyting algebras. We say that an
algebra A′ = (A′,∨′,∧′,→′, 0′) is a subalgebra of A = (A,∨,∧,→, 0) if A′ ⊆ A,
the operations ∨′, ∧′, →′ are the restrictions of ∨, ∧, → to A′ and 0′ = 0.

It is easy to see that if A′ is a subalgebra of A, then for every a, b ∈ A′ we have
a ∨ b, a ∧ b, a→ b, 0 ∈ A′. Next we define products of Heyting algebras.

2.2.12. Definition.

1. Let A1 = (A1,∨1,∧1,→1, 01) and A2 = (A2,∨2,∧2,→2, 02) be Heyting al-
gebras. The product of A1 and A2 is the algebra A1 ×A2 := (A1 ×A2,∨,∧,
→, 0), where

• (a1, a2) ∨ (b1, b2) := (a1 ∨1 b1, a2 ∨2 b2),

• (a1, a2) ∧ (b1, b2) := (a1 ∧1 b1, a2 ∧2 b2),

• (a1, a2) → (b1, b2) := (a1 →1 b1, a2 →2 b2),

• 0 := (01, 02).

2. More generally, let {Ai}i∈I be a family of Heyting algebras, where Ai =
(Ai,∨i,∧i,→i, 0i). The product of {Ai}i∈I is the Heyting algebra

∏
i∈I Ai :=

(
∏

i∈I Ai,∨,∧,→, 0), where for every f1, f2 ∈
∏

i∈I Ai, i.e., maps f1, f2 : I →⋃
i∈I Ai such that f1(i), f2(i) ∈ Ai, we have:

• (f1 ∨ f2)(i) := f1(i) ∨i f2(i),

• (f1 ∧ f2)(i) := f1(i) ∧i f2(i),

• (f1 → f2)(i) := f1(i) →i f2(i),

• 0(i) := 0i.

Let K be a class of algebras of the same signature. We say that K is a variety
if K is closed under homomorphic images, subalgebras and products. It can be
shown that K is a variety iff K = HSP(K), where H, S and P are the operations
of taking homomorphic images, subalgebras and products, respectively. The next
theorem, due to Birkhoff, gives another characterization of varieties. For the proof
we refer to any textbook in universal algebra, e.g., Burris and Sankappanavar [23,
Theorem 11.9] or Grätzer [56, Theorem 3, p.171].

2.2.13. Theorem. A class of algebras forms a variety iff it is equationally de-
finable.

Let HA denote the class of all Heyting algebras.

2.2.14. Corollary. HA is a variety.
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Proof. The result follows immediately from Theorems 2.2.1, 2.2.6 and 2.2.13. ¤

We are now ready to spell out the connection between Heyting algebras and
intuitionistic logic and state an algebraic completeness result for IPC.

2.2.15. Definition. Let A = (A,∨,∧,→, 0) be a Heyting algebra. A function
v : Prop → A is called a valuation into the Heyting algebra A. We extend the
valuation from Prop to the whole of Form via the recursive definition:

• v(φ ∨ ψ) = v(φ) ∨ v(ψ),

• v(φ ∧ ψ) = v(φ) ∧ v(ψ),

• v(φ→ ψ) = v(φ) → v(ψ),

• v(⊥) = 0.

A formula φ is true in A under v if v(φ) = 1; φ is valid into A if φ is true
for every valuation in A. Using the well-known Lindenbaum-Tarski construction
(which is very similar to the canonical model construction) we obtain algebraic
completeness of IPC, see, e.g., [24, Theorem 7.21].

2.2.16. Theorem. IPC ` φ iff φ is valid in every Heyting algebra.

We also recall algebraic completeness of classical propositional calculus; see e.g.,
[24, Theorem 7.22].

2.2.17. Theorem. CPC ` φ iff φ is valid in every Boolean algebra.

We can extend the algebraic semantics of IPC to all intermediate logics. With
every intermediate logic L ⊇ IPC we associate the class VL of Heyting algebras
in which all the theorems of L are valid. It follows from Theorem 2.2.13 that
VL is a variety. For example VIPC = HA and VCPC = BA, where BA denotes
the variety of all Boolean algebras. For every variety V ⊆ HA let LV be the
logic of all formulas valid in V. Note that LHA = IPC and LBA = CPC. The
Lindenbaum-Tarski construction shows that every intermediate logic is complete
with respect to its algebraic semantics, see, e.g., [24, Theorem 7.73(iv)].

2.2.18. Theorem. Every extension L of IPC is sound and complete with respect
to VL.

The connection between varieties of Heyting algebras and intermediate logics
which we described above is one-to-one. That is, LVL

= L and VLV
= V.

For every family {Vi}i∈I of subvarieties of V we have
∧
i∈I Vi :=

⋂
i∈I Vi and∨

i∈I Vi := HSP(
⋃
i∈I Vi), i.e., the smallest variety containing all Vi’s. For every

variety V of algebras the set of its subvarieties forms a complete lattice which
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we denote by (Λ(V),
∨
,
∧
,BA,V). The variety BA of all Boolean algebras is

the least element of this lattice and V is the greatest element. Moreover, it
can be shown that (Λ(V),

∨
,
∧
,BA,V) satisfies the infinite distributive law and

hence by Proposition 2.2.7, (Λ(V),
∨
,
∧
,BA,V) is a Heyting algebra. However,

if we also consider the trivial variety Triv generated by the one element Heyting
algebra, then Triv will be the least element of Λ(V). From now on we will use
the shorthand Λ(V) for (Λ(V),

∨
,
∧
,BA,V).

We have that for every L1, L2,⊇ IPC, L1 ⊆ L2 iff VL1 ⊇ VL2 and moreover
this correspondence is a lattice anti-isomorphism; see, e.g., [24, Theorem 7.56(ii)].

2.2.19. Theorem. The lattice of extensions of IPC is anti-isomorphic to the
lattice of subvarieties of HA.

2.2.3 Heyting algebras and Kripke frames

Next we spell out in detail a connection between Kripke frames and Heyting
algebras. Let F = (W,R) be a partially ordered set (i.e., an intuitionistic Kripke
frame). For every w ∈W and U ⊆ W let

R(w) = {v ∈ W : wRv},

R−1(w) = {v ∈W : vRw},

R(U) =
⋃
w∈U R(w),

R−1(U) =
⋃
w∈U R

−1(w).

Recall that a subset U ⊆ W is an upset if w ∈ U and wRv imply v ∈ U . Let
Up(F) be the set of all upsets of F. Then (Up(F),∪,∩,→, ∅) forms a Heyting
algebra, where

U1 → U2 := {w ∈ W : ∀v(wRv ∧ v ∈ U1 → v ∈ U2)} = W \R−1(U1 \ U2).

For example the Heyting algebra shown in Figure 2.2(b) corresponds to the
2-fork frame shown in Figure 2.2(a). Now we show how to construct a Kripke
frame from a Heyting algebra.

2.2.20. Definition. Let A = (A,∨,∧,→, 0) be a Heyting algebra. A proper
subset F of A is called a filter if

• a, b ∈ F imply a ∧ b ∈ F

• a ∈ F and a ≤ b imply b ∈ F

A filter F is called prime if
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(a) (b)

1

0

Figure 2.2: A Kripke frame and the corresponding Heyting algebra

• a ∨ b ∈ F implies a ∈ F or b ∈ F

In a Boolean algebra every prime filter is maximal. However, this is not the case
for Heyting algebras. For instance, the unit filter {1} of the Heyting algebra
shown in Figure 2.2(b) is a prime filter but is not maximal.

Now let
WA := {F : F is a prime filter of A}.

For F, F ′ ∈ WA we put
FRAF

′ if F ⊆ F ′.

It is clear that RA is a partial order and hence (WA, RA) is an intuitionistic Kripke
frame.

This correspondence is one-to-one for finite Heyting algebras and Kripke
frames. For the proof see, e.g., [24, Theorem 7.30].

2.2.21. Theorem. For every finite Heyting algebra A there exists a Kripke frame
F such that A is isomorphic to Up(F).

However, in the infinite case the situation is more complicated. Not every
Heyting algebra arises from a Kripke frame and vice versa, not every Kripke frame
can be obtained from a Heyting algebra. We will give a simple argument why
not every Heyting algebra can be obtained from a Kripke frame. Let F = (W,R)
be a Kripke frame. Then the lattice Up(F) is complete. To see this, first observe
that arbitrary unions and intersections of upsets are upsets again. Now it is rou-
tine to check that for every {Ui}i∈I ⊆ Up(F), we have that

∧
i∈I Ui =

⋂
i∈I Ui

and
∨
i∈I Ui =

⋃
i∈I Ui. Hence, a non-complete Heyting algebra (for instance any

Heyting algebra based on a non-complete linear order with a least and greatest
elements) cannot be obtained from a Kripke frame. For a purely algebraic char-
acterization of the Heyting algebras that arise from Kripke frames see [29], [46] or
[6]. As we will see in Theorem 2.3.24, the Kripke frames that arise from Heyting
algebras have maximal elements. Therefore, every Kripke frame without maximal
elements (for example, the set of natural numbers with the standard ordering) is
an example of a Kripke frame that cannot be obtained from a Heyting algebra.
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2.3 Duality for Heyting algebras

Next we generalize the notion of a Kripke frame to that of a descriptive frame
(resp. Esakia space) and illustrate the duality between descriptive frames (resp.
Esakia spaces) and Heyting algebras.

2.3.1 Descriptive frames

In this section we discuss the duality between Heyting algebras and descriptive
frames. We first recall from [24, §8.1 and 8.4] the definitions of general frames
and descriptive frames.

2.3.1. Definition. An intuitionistic general frame or simply a general frame is
a triple F = (W,R,P), where (W,R) is an intuitionistic Kripke frame and P is a
set of upsets, i.e., P ⊆ Up(F) such that ∅ and W belong to P , and P is closed
under ∪, ∩ and → defined by

U1 → U2 := {w ∈ W : ∀v(wRv ∧ v ∈ U1 → v ∈ U2)} = W \R−1(U1 \ U2).

Every Kripke frame can be seen as a general frame where P is the set of all upsets
of F.

2.3.2. Definition. Let F = (W,R,P) be a general frame.

1. We call F refined if for every w, v ∈ W : ¬(wRv) implies that there is U ∈ P
such that w ∈ U and v /∈ U .

2. We call F compact if for every X ⊆ P and Y ⊆ {W \ U : U ∈ P}, if X ∪ Y
has the finite intersection property (that is, every intersection of finitely
many elements of X ∪ Y is nonempty) then

⋂
(X ∪ Y) 6= ∅.

3. We call F descriptive if it is refined and compact.

We call the elements of P admissible sets.

Note that if F = (W,R,P) is a descriptive frame, then (P ,∪,∩,→, ∅) is a Heyting
subalgebra of (Up(F),∪,∩,→, ∅). Moreover, as follows from the next theorem,
every Heyting algebra can be obtained in such a way. For the proof see, e.g., [24,
Theorem 8.18].

2.3.3. Theorem. For every Heyting algebra A there exists an intuitionistic de-
scriptive frame F = (W,R,P) such that A is isomorphic to (P ,∪,∩,→, ∅).

Proof. (Sketch) The construction of F is similar to the one defined in the previous
section. We take the frame (WA, RA) of all prime filters of A ordered by inclusion
and put PA = {â : a ∈ A}, where â = {w ∈ WA : a ∈ w}. Then (WA, RA,PA) is
a descriptive frame and A is isomorphic to (PA,∪,∩,→, ∅). ¤
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For every Heyting algebra A, let A∗ denote the descriptive frame of all prime
filters of A. For every descriptive frame F, let F∗ denote the Heyting algebra of
all admissible sets of F. Then we have the following duality [24, §8.4].

2.3.4. Theorem. Let A be a Heyting algebra and F be a descriptive frame. Then

1. A ' (A∗)
∗.

2. F ' (F∗)∗

For every Heyting algebra A, we call A∗ the dual of A or the descriptive frame
corresponding to A; and for every descriptive frame F, we call F∗ the dual of F or
the Heyting algebra corresponding to F.

2.3.5. Definition. Let F = (W,R,P) be a descriptive frame. A descriptive
valuation is a map V : Prop → P . A pair (F, V ) where V is a descriptive
valuation is called a descriptive model.

Validity of formulas in a descriptive frame (model) is defined in exactly the same
way as for Kripke frames (models).

Note that in the same way descriptive frames correspond to Heyting alge-
bras, descriptive models correspond to Heyting algebras with valuations, where
a Heyting algebra with a valuation is a pair (A, v) such that v : Prop → A.

Next we recall the definitions of generated subframes, p-morphisms, and dis-
joint unions of descriptive frames.

2.3.6. Definition.

1. A descriptive frame F′ = (W ′, R′,P ′) is called a generated subframe of a
descriptive frame F = (W,R,P) if (W ′, R′) is a generated subframe of
(W,R) and P ′ = {U ∩W ′ : U ∈ P}.

2. A map f : W → W ′ is called a p-morphism between F = (W,R,P) and
F′ = (W ′, R′,P ′) if f is a p-morphism between (W,R) and (W ′, R′) and for
every U ′ ∈ P ′ we have f−1(U ′) ∈ P and W \ f−1(W \ U ′) ∈ P .8

3. Let {Fi}
n
i=1 be a finite set of descriptive frames.9 The disjoint union of

{Fi}
n
i=1 is a descriptive frame

⊎n
i=1 Fi = (

⊎
Wi, R,P), where (

⊎n
i=1Wi, R)

is a disjoint union of {(Wi, Ri)}
n
i=1 and P =

⋃n
i=1 Pi.

8The motivation for this definition is to make sure that p-morphisms preserve the validity
of formulas. Moreover, this definition guarantees that f−1 is a Heyting algebra homomorphism
between P ′ and P, see Theorems 2.3.7 and 2.3.25.

9The disjoint union of infinitely many descriptive frames is not a descriptive frame (it is not
compact). This is the reason why we define disjoint unions only for finitely many descriptive
frames.
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Generated submodels, p-morphisms between descriptive models, and finite
disjoint unions of descriptive models are defined as in the case of Kripke semantics.
The analogues of Theorems 2.1.13 and 2.1.12 also hold for descriptive frames and
models. We will not formulate them here. All one needs to do is simply to replace
everywhere “Kripke frames” with “descriptive frames”.

The next theorem spells out the connection between homomorphisms, subal-
gebras and products with generated subframes, p-morphisms and disjoint unions.
For the proof the reader is referred to [24, §8.5]. Theorem 2.3.7 for finite Heyting
algebras and finite Kripke frames was first established by de Jongh and Troelstra
[70].

2.3.7. Theorem. Let A and B be Heyting algebras and F and G be descrip-
tive frames. Let also {Ai}

n
i=1 and {Fi}

n
i=1 be the sets of Heyting algebras and

descriptive frames, respectively. Then

1. (a) A is a homomorphic image of B iff A∗ is isomorphic to a generated
subframe of B∗.

(b) A is a subalgebra of B iff A∗ is isomorphic to a p-morphic image of B∗.

(c) (
∏n

i=1 Ai)∗ is isomorphic to the disjoint union
⊎n
i=1(Ai)∗, for any n ∈ ω.

2. (a) F is isomorphic to a generated subframe of G iff F∗ is a homomorphic
image of G∗.

(b) F is a p-morphic image of G iff F∗ is isomorphic to a subalgebra of G∗.

(c) (
⊎n
i=1 Fi)

∗ is isomorphic to
∏n

i=1 F∗
i , for any n ∈ ω.

Note that every surjective p-morphism f from F = (W,R,P) onto F′ =
(W ′, R′,P ′) gives rise to an equivalence relation Ef on F defined by

wEfv iff f(w) = f(v).

Then for every w ∈ W we have that EfR(w) ⊆ REf (w) and non-Ef -equivalent
points can be separated by an element of P . On the other hand, with any equiv-
alence relation E on F we can associate a quotient frame F/E = (W/E,R′,PE)
such that

WE := {E(w) : w ∈ W}, where E(w) = {v ∈ W : wEv},

E(w)R′E(v) iff w′Rv′ for some w′ ∈ E(w) and v′ ∈ E(v),

and
PE := {U ∈ P : E(U) = U}.

We define a map fE : W → W/E by

fE(w) = E(w).
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Then if ER(w) ⊆ RE(w) and non-E-equivalent points can be separated by an
element of P , then fE is a p-morphism. We now look at the connection between
p-morphisms and these equivalence relations in more detail.

2.3.8. Definition. Let F = (W,R,P) be a descriptive frame. An equivalence
relation E on W is called a bisimulation equivalence10 on F if the following two
conditions are satisfied:

1. For every w, v, u ∈ W , wEv and vRu imply that there is z ∈ W such that
wRz and zEu. In other words, RE(w) ⊆ ER(w) for every w ∈W .

2. For every w, v ∈W If ¬(wEv) then w and v are separated by an E-saturated
admissible upset. That is, there exists U ∈ P such that E(U) = U and
either w ∈ U and v /∈ U or w /∈ U and v ∈ U .

For a full proof of the next theorem we refer to [35] and [6].

2.3.9. Theorem. Let F = (W,R,P) be a descriptive frame. Then there is a
one-to-one correspondence between bisimulation equivalences on F and p-morphic
images of F.

Proof. Suppose f : W → W ′ is a p-morphism from F onto F′, where F′ =
(W ′, R′,P ′). Define Ef on W by

wEfv iff f(w) = f(v).

Let wEfv and vRu. Then f(w) = f(v) and therefore f(w)Rf(u). Since f is a
p-morphism there exists z ∈ W such that wRz and f(z) = f(u), which means
that zEfu. Now suppose that ¬(wEfv). Then f(w) 6= f(v). This means that
¬(f(w)Rf(v)) or ¬(f(v)Rf(w)). Without loss of generality we may assume that
¬(f(w)Rf(v)). Since F′ is a descriptive frame, there exists U ∈ P ′ such that
f(w) ∈ U and f(v) /∈ U . As f is a p-morphism, we have f−1(U) ∈ P and clearly
w ∈ f−1(U) and v /∈ f−1(U).

For the converse we need to check that if E is a bisimulation equivalence,
then fE : W → W/E defined by fE(w) = E(w) is a p-morphism. We will
sketch the proof. That fE is monotone follows from the definition of R′. That fE
satisfies the “back” condition is implied by Definition 2.3.8(1). Therefore, fE is
a p-morphism between the Kripke frames. Finally, fE is a p-morphism between
descriptive frames since E satisfies Condition (2) of Definition 2.3.8. ¤

The next theorem was first established by Esakia [38] (see also [6]).

10Some authors call such equivalence relations correct partitions [35], [6].
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2.3.10. Corollary. Let A be a Heyting algebra. There is a one-to-one corre-
spondence between the subalgebras of A and the bisimulation equivalences of A∗.

11

Proof. The result follows immediately from Theorems 2.3.7 and 2.3.9. Never-
theless, since we will use this theorem in subsequent sections, we briefly sketch
the main idea of a direct proof.

With any subalgebra A′ of A we associate an equivalence relation EA′ on
A∗ = (W,R,P) defined by

wEA′v iff w ∩ A′ = v ∩ A′.

It is routine to check that EA′ is a bisimulation equivalence.
Conversely, with every bisimulation equivalence E of A∗ we associate the

algebra PE of all E-saturated elements of P , i.e., those U ∈ P that satisfy
E(U) = U . It is again easy to show that PE is a Heyting subalgebra of P and
that this correspondence is one-to-one.

¤

2.3.2 Subdirectly irreducible Heyting algebras

As in the case of Boolean algebras, for Heyting algebras there exists a one-to-one
correspondence between congruences (that is, equivalence relations preserving the
operations ∨, ∧, → and 0) and filters.12 For the proof of the next theorem see,
e.g., [2, Lemma 4, p. 178] and [24, Theorem 8.57].

2.3.11. Theorem. Let A be a Heyting algebra. There exists a one-to-one corre-
spondence between:

1. congruences of A,

2. filters of A,

3. generated subframes of A∗.

2.3.12. Definition. An algebra A is said to be subdirectly irreducible, s.i. for
short, if among its non-trivial congruence relations there exists the least one.

Subdirectly irreducible algebras play a crucial role in investigating varieties be-
cause of the next theorem due to Birkhoff. For the proof see, e.g., [23, Theorem
8.6 and Corollary 9.7] and [56, Theorem 3, p.124]. For every class of algebras K,
let SI(K) denote the class of all s.i. members of K.

11In fact, there is a lattice anti-isomorphism between the lattice of subalgebras of A and the
lattice of bisimulation equivalences of A∗.

12Note that in contrast to Boolean algebras, for Heyting algebras there is no one-to-one
correspondence between congruences and ideals.
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2.3.13. Theorem. Let V be a variety of algebras. Then V = HSP(SI(V)).

Therefore, every variety is generated by its subdirectly irreducible algebras. The
following characterization of s.i. Heyting algebras was first established by Jankov
[65]. For the proof see, e.g., [2, Theorem 5, p.179].

2.3.14. Theorem. Let A be a Heyting algebra. Then the following conditions
are equivalent.

1. A is subdirectly irreducible,

2. A contains a least prime filter (least with respect to the inclusion relation),

3. A has a second greatest element.

To obtain the dual characterization of subdirectly irreducible Heyting algebras
we need to extend the definition of rooted Kripke frames to descriptive frames.

2.3.15. Definition. A descriptive frame F = (W,R,P) is called rooted if (W,R)
is a rooted Kripke frame and W \ {r} ∈ P , where r is the root of F.

The following theorem is due to Esakia [35] (see also [6]).

2.3.16. Theorem. Let A be a Heyting algebra. A is subdirectly irreducible iff
A∗ is a rooted descriptive frame.

We will use this characterization of s.i. Heyting algebras throughout this thesis.

2.3.3 Order-topological duality

Here we will sketch the so-called Priestley-Esakia duality between Heyting alge-
bras and descriptive frames in terms of order and topology. First we recall some
basic definitions from general topology.

2.3.17. Definition. A pair X = (X,O) is called a topological space if X 6= ∅
and O is a set of subsets of X such that

1. X, ∅ ∈ O,

2. If U, V ∈ O, then U ∩ V ∈ O,

3. If Ui ∈ O for every i ∈ I, then
⋃
i∈I Ui ∈ O.

Elements of O are called open sets and their complements are called closed sets.
Let X = (X,O) be a topological space.



34CHAPTER 2. ALGEBRAIC SEMANTICS FOR INTUITIONISTIC LOGIC

• X is called Hausdorff if for every x, y ∈ X, x 6= y implies there are U1, U2 ∈
O such that x ∈ U1, y ∈ U2 and U1 ∩ U2 = ∅.

• X is called compact if for every family F of closed sets with the finite
intersection property (see Definition 2.3.2(2)) we have

⋂
F 6= ∅.

• X is called 0-dimensional if every U ∈ O is the union of clopens, i.e., sets
that are simultaneously closed and open.

2.3.18. Definition.

• A topological space X = (X,O) is called a Stone space if it is 0-dimensional,
compact and Hausdorff.

• For every Stone space X = (X,O) let CP(X) denote the Boolean algebra
of all clopens of X .

Then the celebrated Stone representation theorem states that:

2.3.19. Theorem. For every Boolean algebra B there exists a Stone space X =
(X,O) such that B is isomorphic to CP(X).

2.3.20. Definition. Let X = (X,O, R) be such that X = (X,O) is a Stone
space and R is a partial order on X.

1. R satisfies the Priestley separation axiom if for every x, y ∈ X:

¬(xRy) implies there is a clopen upset U such that x ∈ U and y /∈ U .

2. R is called point-closed if R(x) is closed for every x ∈ X.

3. R is called clopen if R−1(U) is clopen for every clopen set U .

4. X = (X,O, R) is said to be a Priestley space if X is a Stone space and R
satisfies the Priestley separation axiom.

5. X is called an Esakia space if (X,O, R) is a Priestley space and R is a
clopen relation.

Esakia spaces can be characterized by avoiding the Priestley separation axiom.
For item (1) of the next proposition consult Esakia [35] and for (2) see Priestley
[103].
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2.3.21. Proposition.

1. X = (X,O, R) is an Esakia space iff (X,O) is a Stone space and R is a
point-closed and clopen partial order.

2. For every Priestley space X = (X,O, R), the relation R is point-closed and
for every x ∈ X the set R−1(x) is closed.

Next we spell out the connection between descriptive frames and Esakia
spaces. Let X = (X,O, R) be an Esakia space and PX = {U ⊆ X : U is a
clopen upset}. Then (X,R,PX ) is a descriptive frame.

Conversely, let F = (W,R,P) be a descriptive frame. Let −P denote the
set {W \ U : U ∈ P}. Define a topology on W by declaring P ′ = P ∪ −P as
a sub-basis. That is, we define the topology OP such that U ∈ OP iff U is a
union of finite intersections of elements of P ′. (In the literature OP is called the
patch topology; see, e.g., [68].) Then one can show that F = (W,OP , R) is an
Esakia space. Moreover, every clopen of F is a finite union of finite intersections
of elements of P ′. Therefore, we can formulate the representation theorem of
Heyting algebras in terms of Esakia spaces.13

2.3.22. Theorem. For every Heyting algebra A there exists an Esakia space X
such that A is isomorphic to the Heyting algebra of all clopen upsets of X .

Now we reformulate the notions of generated subframes, p-morphisms and disjoint
unions of descriptive frames in topological terms.

Let X = (X,O, R) and X ′ = (X ′,O′, R′) be Esakia spaces.

• X ′ is a generated subframe of X iff (X ′, R′) is a generated subframe of
(X,R) and (X ′,O′) is a (topologically) closed subspace of (X,O).

• A map f : X → X ′ is a p-morphism iff it is a p-morphism between (X,R)
and (X ′, R′) and is continuous, i.e., f−1(U) is an open set of X (f−1(U) ∈ O)
for every open set U of X ′ (U ∈ O′).

• Let {Xi}
n
i=1 be a finite set of Esakia spaces, where Xi = (Xi,Oi, Ri) for every

i = 1, . . . , n. The disjoint union of {Xi}
n
i=1 is the Esakia space

⊎n
i=1 Xi =

(X,O, R), where (X,R) is the disjoint union
⊎n
i=1(Xi, Ri) of the (Xi, Ri),

and (X,O) is the topological sum of the (Xi,Oi).

From now on we will move “back and forth” between descriptive frames and
Esakia spaces at our convenience.

We illustrate the usefulness of the topological approach by showing that every
Esakia space (descriptive frame) has a nonempty maximum. In fact, we will show
more: that for every point x there is a maximal point y such that xRy.

13Note that the representation theorem for Heyting algebras was first proved in [38] and
formulated in topological terms as in Theorem 2.3.22. The representation of distributive lattices
in terms of Priestley spaces was proved in [103].
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2.3.23. Definition. Let F = (W,R) be a (descriptive or Kripke) frame.

• Call a point w of F maximal (minimal) if for every v ∈ W we have that
wRv (vRw) implies w = v.

• For every frame F let max(F) and min(F) denote the sets of all maximal
and minimal points of F, respectively.

The next theorem is due to Esakia [35].

2.3.24. Theorem. Let X = (X,O, R) be an Esakia space.

1. For every x ∈ X there exists y ∈ max(X ) such that xRy.

2. For every x ∈ X there exists z ∈ min(X ) such that zRx.

Proof. (1) Let C be an arbitrary R-chain of X. Consider the family F =
{R(x) : x ∈ C}. The fact that C is a chain implies that F has the finite
intersection property. Since R is point-closed, the elements of F are closed.
Hence, by compactness,

⋂
F 6= ∅ and every element x ∈

⋂
F is greater than

every element in C. Therefore, every chain in X has an upper bound. By Zorn’s
lemma,14 X has a maximal element. Now if we do the same for a generated
subframe of X based on the set R(x) we obtain that for every point x ∈ X there
is y ∈ max(X ) such that xRy.

(2) The proof is analogous to that of (1) and uses the fact, stated in Proposi-
tion 2.3.21(2), that R−1(x) is a closed set for every x ∈ X. ¤

Note that in this proof we only used compactness of X and the fact that R is
point-closed. Hence, it also holds in every Priestley space. However, as follows
from [35], in every Esakia space X the set max(X ) is always topologically closed,
which need not be the case for Priestley spaces.

2.3.4 Duality of categories

In this section we extend the correspondence between Heyting algebras and de-
scriptive frames (resp. Esakia spaces) to the duality of the corresponding cate-
gories.15 These results will not be used subsequently, but we include this material
for the sake of completeness.

Let HA be the category of Heyting algebras and Heyting homomorphisms,
DF be the category of descriptive frames and descriptive p-morphisms, and let
ES be the category of Esakia spaces and continuous p-morphisms. The next fact
was first established by Esakia [38].

14Recall that Zorn’s lemma is equivalent to the axiom of choice and states that if in a partially
ordered set every chain has an upper bound, then this partial order has a maximal element.

15We assume that the reader is familiar with the very basic notions of category theory, such
as a category and (covariant and contravariant) functor. For basic facts about category theory
the reader is referred to [87].
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2.3.25. Theorem.

1. HA is dually equivalent to DF.

2. HA is dually equivalent to ES.

Proof. (1) (Sketch) We will define contravariant functors Φ : HA → DF and Ψ :
DF → HA. For every Heyting algebra A let Φ(A) be A∗. For a homomorphism
h : A → A′ define Φ(h) : Φ(A′) → Φ(A) by Φ(h) = h−1; that is, for every
element F ∈ Φ(A′) (a prime filter of A′) we let Φ(h)(F ) = h−1(F ). Then Φ(h) is
a well-defined descriptive p-morphism and Φ is a contravariant functor.

We now define a functor Ψ : DF → HA. For every descriptive frame F let
Ψ(F) = F∗. If f : F → F′ is a descriptive p-morphism, then define Ψ(f) : Ψ(F′) →
Ψ(F) by Ψ(f) = f−1; that is, for every element of U ∈ Ψ(F′) (an upset of F′) we
let Ψ(f)(U) = f−1(U).

Then Ψ(f) is a well-defined Heyting homomorphism and Ψ is a contravariant
functor. Then it can be shown that the functors Φ and Ψ establish a duality
between HA and DF.

(2) The proof is similar to (1). ¤

2.3.5 Properties of logics and algebras

In this section we discuss the algebraic counterparts of the logical properties that
we introduced in Section 2.1.2. We say that a class K generates a variety V if
V = HSP(K). Now we recall the basic definitions from universal algebra; see,
e.g., [23, Definitions 9.4, 10.14] and [56, §60].

2.3.26. Definition. Let V be a variety of algebras.

1. V is finitely approximable if is generated by its finite members,

2. V is finitely generated if it is generated by a single finite algebra, i.e., if
there is a finite algebra A such that V = HSP(A),

3. V is locally finite if every finitely generated algebra in V is finite,

4. V is finitely axiomatizable16 if V is defined by finitely many equations.

Then we have the following correspondence between the logical and algebraic no-
tions, which we will use throughout this thesis. It was first observed by Kuznetsov
[81].

2.3.27. Theorem. Let L be an intermediate logic and VL be the corresponding
variety of Heyting algebras.

16Finitely axiomatizable varieties are also called finitely based; see, e.g., [56].
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1. L has the finite model property iff VL is finitely approximable.

2. L is tabular iff VL is finitely generated.

3. L is locally tabular iff VL is locally finite.

4. L is finitely axiomatizable iff VL is finitely axiomatizable.

5. L is decidable iff the equational theory of VL is decidable.

Throughout this thesis we will jump back and forth between algebraic and logical
notions at our convenience.

This finishes the introductory chapter. In the next chapters we will apply this
framework in studying some intermediate and modal logics.



Chapter 3

Universal models and frame-based
formulas

In this chapter we provide a unified treatment of finitely generated Heyting alge-
bras, their dual descriptive frames, and the frame-based formulas. Many results
and constructions related to these topics are scattered throughout the literature.
Here, we give a coherent overview of these topics. We discuss in detail the struc-
ture of Henkin models and universal models of IPC and their connection with
free Heyting algebras. We introduce the Jankov-de Jongh formulas, subframe
formulas, and cofinal subframe formulas. The subframe formulas and cofinal sub-
frame formulas are defined in a new way which connects them with the NNIL
formulas of [127]. We apply Jankov-de Jongh formulas and (cofinal) subframe
formulas to axiomatize large classes of intermediate logics. We also show how to
place these formulas in a unified framework of frame-based formulas. The results
presented in this chapter are formulated for intermediate logics, but they can be
generalized to transitive modal logics.

The chapter is organized as follows. In the first section we discuss finitely gen-
erated Heyting algebras. In Section 3.2 we define n-universal models for IPC and
prove that these form the upper parts of the n-Henkin models of IPC. Section
3.3 introduces the Jankov-de Jongh formulas, subframe formulas and cofinal sub-
frame formulas. In the final section we show how to axiomatize some intermediate
logics using these formulas, define the precise notion of frame-based formulas and
show how this notion unifies the previously defined formulas.

3.1 Finitely generated Heyting algebras

We start by recalling the definition of finitely generated algebras; see, e.g., [23,
Definition 3.4].

3.1.1. Definition. Let A be an algebra and let X be a set of elements of A.
We say that X generates A if there is no proper subalgebra of A that contains

39
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X. The elements of X are called the generators of A. We say that A is finitely
generated if it has a finite set of generators. A is called α-generated, for some
cardinal α, if A is generated by X and |X| = α.

In other words, A is finitely generated if there are elements g1, . . . , gn of A such
that for every element a of A, we have a = P (g1, . . . , gn), where P is a polynomial
over A. Finitely generated algebras play a crucial role in investigating varieties
of universal algebras because of the following theorem; see, e.g., [56, Lemma 3,
p.130, Theorem 4, p.137] and [23, Corollary 11.5].

3.1.2. Theorem. Every variety of algebras is generated by its finitely generated
members.

Below we will study the structure of finitely generated Heyting algebras and their
dual descriptive frames.

3.1.3. Definition. Let A be a Heyting algebra and F be its corresponding de-
scriptive frame. F is said to be finitely generated if A is a finitely generated
Heyting algebra. We call F α-generated if A is an α-generated Heyting algebra.

For each n ∈ ω let Propn denote the set {p1, . . . , pn} of propositional variables.
Let A be a Heyting algebra, and F be its dual descriptive frame. Fix g1, . . . , gn
in A. Then we can think of A together with these fixed elements as a Heyting
algebra with a valuation v : Propn → A such that v(pi) = gi, for i = 1, . . . , n.
From now on we will not distinguish between a Heyting algebra A with fixed
elements g1, . . . , gn and A with the valuation defined above. Let M = (F, V ) be
the descriptive model corresponding to (A, v).

3.1.4. Definition. With every point w of M, we associate a sequence i1 . . . in
such that for k = 1, . . . , n:

ik =

{
1 if w |= pk,
0 if w 6|= pk.

We call the sequence i1 . . . in associated with w the color of w and denote it by
col(w).

Let W be a non-empty set and E, an equivalence relation on W . E is called
proper if there are distinct points w, v ∈ W such that wEv. A subset U of W is
called E-saturated or simply saturated if E(U) = U . A map f : W → W ′ is called
proper if there exist distinct w, v ∈ W such that f(w) = f(v).

Now we are ready to give a criterion for recognizing whether A is generated
by g1, . . . , gn. This criterion was first established in [37].
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3.1.5. Theorem. (Coloring Theorem) Let A be a Heyting algebra, g1, . . . , gn be
fixed elements of A, and (F, V ) be the corresponding descriptive model. Then the
following conditions are equivalent:

1. A is generated by g1, . . . , gn.

2. For every proper onto p-morphism f : F → F′, there exist points u and v in
F such that f(u) = f(v) and col(u) 6= col(v).

3. For every proper bisimulation equivalence E of F, there exists an E-equiva-
lence class containing points of different colors.

Proof. (2) ⇔ (3) follows from Theorem 2.3.9. We show that (1) ⇔ (3). Suppose
A is generated by g1, . . . , gn, and E be a proper bisimulation equivalence on F. Let
AE be the Heyting algebra corresponding to E, i.e., the algebra of all E-saturated
admissible subsets of F. Since E is proper, AE is a proper subalgebra of A. As
A is generated by g1, . . . , gn, there is i ≤ n such that gi does not belong to AE.
This means that V (pi) (where pi is such that v(pi) = gi) is not E-saturated, i.e.,
E(V (pi)) 6⊆ V (pi). Therefore, there are two elements u, v in F such that uEv,
u ∈ V (pi) and v /∈ V (pi), which implies that col(u) 6= col(v).

Conversely, suppose A is not generated by g1, . . . , gn. Denote by A′ the sub-
algebra generated by g1, . . . , gn. Obviously, A′ is a proper subalgebra of A. Let
EA′ be the proper bisimulation equivalence of F corresponding to A′. Since every
gi belongs to A′, we have that every V (pi) is EA′-saturated. Therefore, every
EA′-equivalence class contains points of the same color. ¤

Next we will recall from [70] two lemmas about p-morphisms that will enable us
to decide quickly whether there exists a p-morphism between two finite rooted
frames.

For a frame F = (W,R) and w, v ∈W , we say that a point w is an immediate
successor of a point v if vRw, w 6= v, and there are no intervening points, i.e.,
for every u ∈ W such that vRu and uRw we have u = v or u = w. We call v an
immediate predecessor of w if w is an immediate successor of v.

3.1.6. Lemma. Let F = (W,R,P) be a descriptive frame and w, v ∈W .

1. Suppose R(w) \ {w} = R(v) (i.e., v is the only immediate successor of w).
Let E be the smallest equivalence relation that identifies w and v, i.e., E =
{(u, u) : u ∈ W} ∪ {(w, v), (v, w)}. Then E is a bisimulation equivalence.
We call the corresponding map fE : W → W/E an α-reduction.

2. Suppose R(w) \ {v} = R(v) \ {w} (i.e., the set of immediate successors of
w and v coincide). Let E be the smallest equivalence relation that identifies
w and v. Then E is a bisimulation equivalence. We call the corresponding
map fE : W → W/E a β-reduction.
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Proof. The proof is a routine check. ¤

3.1.7. Lemma. Let F = (W,R) and G = (W ′, R′) be finite frames. Suppose
f : W → W ′ is a proper p-morphism. Then there exists a sequence f1, · · · , fn of
α- and β-reductions such that f = f1 ◦ · · · ◦ fn.

Proof. Let f be a proper p-morphism from F onto G. Let w be a maximal
point of G that is the image under f of at least two distinct points of F. Let
u, v ∈ max(f−1(w)). Then, by the conditions on a p-morphism, the sets of
successors of u and v in F, disregarding u and v themselves, are the same. There
are two possibilities:

Case 1. u and v are incomparable in F. Let E be the smallest equivalence
relation that identifies u and v. Then there exists a β-reduction fE : W →
W/E from F onto F/E = (W/E,RE). It suffices to construct a p-morphism
g from F/E onto G such that g◦fE = f (and apply induction on the number
of points that are identified by f). We define g : W/E → W ′ by

g(E(x)) = f(x),

for every E(x) ∈ W/E. Checking that g satisfies the definition of p-
morphism is trivial.

Case 2. u is the unique immediate successor of v or v is the unique immediate
successor of u. We do exactly the same as in Case 1 (i.e., we consider the
smallest equivalence relation E that identifies the points u and v), except
that the map fE : W → W/E is now an α-reduction.

¤

We now begin our investigation of the structure of finitely generated descriptive
frames.

3.1.8. Theorem. Let A be a Heyting algebra generated by g1, . . . , gn and let
F = (W,R,P) be the corresponding descriptive frame. Then max(F) is a finite
admissible subset of F of size at most 2n.

Proof. Let v : Propn → A be such that v(pi) = gi, for every i = 1, . . . , n.
Therefore, we can assume that we have a coloring of F. First we show that for
every w, v ∈ max(F), if u 6= v, then col(u) 6= col(v). Suppose there exist distinct
points u, v ∈ max(F) such that col(u) = col(v). We consider the smallest equiv-
alence relation E on W that identifies the points u and v. By Lemma 3.1.6(2),
E is a bisimulation equivalence. By the Coloring Theorem, this implies that A is
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not generated by g1, . . . , gn, which is a contradiction. Therefore, distinct maximal
points have different colors. There are 2n different colors. Thus, there are at most
2n points in max(F).

Now consider the formula

τ :=
n∧

i=1

(pi ∨ ¬pi)

We will prove that V (τ) = {w ∈ W : w |= τ} is equal to max(F). It is easy
to check that if w ∈ max(F), then w |= pi ∨ ¬pi, for each i = 1, . . . , n. Hence,
w |= τ . For the other direction suppose a point w is such that w |= τ . We show
that w ∈ max(F). Let J = {pi : w |= pi} and J ′ = {¬pi : w 6|= pi}, where
i = 1, . . . , n. Let also ξ :=

∧
J ∧

∧
J ′ and V (ξ) = {u ∈ W : u |= ξ}. Obviously,

V (ξ) is an admissible upset, and by definition of ξ every point of V (ξ) has the
same color as w. We show that w ∈ V (ξ). It is clear that w |=

∧
J . On the other

hand, w 6|= pi and w |= τ imply that w |= ¬pi. It follows that w |=
∧
J ′ and

therefore w |= ξ. Now consider the smallest equivalence relation E that identifies
points in V (ξ). In other words let

E = {(z, z) : z ∈W} ∪ {(u, v) : u, v ∈ V (ξ)}.

We show that E is a bisimulation equivalence. That E satisfies Defini-
tion 2.3.8(1) follows from the fact that V (ξ) is an upset. Indeed, if zEv and
z 6= v, then z, v ∈ V (ξ). Now suppose vRu. Then as V (ξ) is an upset and
v ∈ V (ξ), we have u ∈ V (ξ), and so zEu. To show that E satisfies Defini-
tion 2.3.8(2) assume that ¬(zEv). If z ∈ V (ξ) and v /∈ V (ξ), then V (ξ) is an
E-saturated admissible upset that separates z and v. In case z, v /∈ V (ξ), we
have ¬(zRv) or ¬(vRz). Therefore, by the definition of a descriptive frame, there
exists an admissible upset U that separates z and v. If U ∩ V (ξ) = ∅, then U
is E-saturated. If U ∩ V (ξ) 6= ∅, then U ∪ V (ξ) = V (ξ) ∪ (U \ V (ξ)). By the
definition of E, both U \ V (ξ) and V (ξ) are E-saturated. Therefore, U ∪ V (ξ)
is an E-saturated admissible upset that separates z and v. Note that, by the
definition of E, if there are at least two distinct points in V (ξ), then E is proper.
Since V (ξ) is an upset, V (ξ) is a singleton set iff V (ξ) consists of one maximal
point of F. Therefore we have:

E is not proper iff V (ξ) = {w} and w ∈ max(F).

If E is proper, then by the Coloring Theorem, A is not generated by g1, . . . , gn,
which is a contradiction. Therefore, E is not proper and w ∈ max(F). Hence,
V (τ) = max(F), which implies that max(F) ∈ P . Thus, max(F) is admissible
and |max(F)| ≤ 2n. ¤

Next we give a rough description of the structure of finitely generated descrip-
tive frames.
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3.1.9. Definition. Let F be a (descriptive or Kripke) frame.

1. We say that F is of depth n < ω, denoted d(F) = n, if there is a chain of
n points in F and no other chain in F contains more than n points. The
frame F is of finite depth if d(F) < ω.

2. We say that F is of an infinite depth, denoted d(F) = ω, if for every n ∈ ω,
F contains a chain consisting of n points.

3. The depth of a point w ∈ W is the depth of Fw, i.e., the depth of the
subframe of F generated by w. We denote the depth of w by d(w).

For a descriptive frame F = (W,R,P), let Upper(F) = {w ∈ W : d(w) < ω},
and Lower(F) = {w ∈ W : d(w) = ω}. Clearly, W = Upper(F) ∪ Lower(F) and
Upper(F) ∩ Lower(F) = ∅. If F has finite depth, then Lower(F) = ∅. Note that
because of Theorem 2.3.24, we have that Upper(F) 6= ∅. For every m ∈ ω, let
Dm = {w ∈ W : d(w) = m} and D≤m = {w ∈ W : d(w) ≤ m}. We call Dm the
m-th layer of F. The next theorem gives an intuitive description of the structure
of finitely generated descriptive frames. They are built layer by layer from the
points of finite depth. Moreover, every point of an infinite depth is related to
infinitely many points of finite depth.

3.1.10. Theorem. Let F = (W,R,P) be a finitely generated infinite descriptive
frame. Then

1. For every m ∈ ω, the set Dm is finite.

2. For every m ∈ ω, the set D≤m is admissible.

3. Upper(F) =
⋃
m∈ωDm, and Dm ∩Dk = ∅ for m 6= k.

4. For every x ∈ Lower(F) and m ∈ ω, there is a point y ∈ Dm such that
xRy.

Proof. Let A be the Heyting algebra corresponding to F and let g1, . . . , gn be the
generators of A. We define v : Propn → A by v(pi) = gi for every i = 1, . . . , n.
This defines a coloring of F. We first prove (1) and (2) by an induction on m ≥ 1.
The case when m = 1 is given by Theorem 3.1.8. Now we assume that (1) and
(2) hold for some m > 1 and show that they also hold for m+ 1.

Let Wm = W \D≤m and let Fm = (Wm, Rm,Pm) where Rm is the restriction of
R to Wm and Pm = {U ∩Wm : U ∈ P). In other words, Fm is the frame obtained
from F by cutting out the first m layers of F. Then Fm is also a descriptive frame.1

1The simplest argument for this claim is topological. Since D≤m is admissible, it is a clopen
subset of an Esakia space. Therefore, Wm is also clopen, and thus an Esakia space, see [35].
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Since D≤m, is admissible there is a formula τm that defines D≤m. Moreover,
since D≤m is finite, we have that every upset U of F that is contained in D≤m, is
also admissible. Let φ1, . . . , φk be the formulas that define these upsets. (These
formulas are called the de Jongh formulas. In Section 3.3.2 we will define them
explicitly.)

3.1.11. Claim. Fm is finitely generated.2

Proof. Consider the following elements of A:

g′1 = v(τm ∨ p1), . . . , g
′
n = v(τm ∨ pn),

g′n+1 = v(τm ∨ (τm → φ1)), . . . , g
′
n+k = v(τm ∨ (τm → φk)).

The elements g′1, . . . , g
′
n+k provide a new coloring of F, and hence of Fm. Let

g′′1 , . . . , g
′′
n+k be the elements of Am corresponding to this new coloring. We show

that Am is generated by g′′1 , . . . , g
′′
n+k. For every w ∈ W let col(w) denote the

color of w according to the old coloring, and let colN(w) denote the color of w
according to the new coloring. It is easy to see that for every w, v ∈ Wm, if
colN(w) = colN(v), then col(w) = col(v).

Now suppose Am is not generated by g′′1 , . . . , g
′′
n+k. By the Coloring Theorem,

there exists a proper bisimulation equivalence E of Fm such that for every x, y ∈
Wm, if E(x) = E(y), then colN(x) = colN(y). Define Q on W by

Q = E ∪ {(w,w) : w ∈ D≤m}.

As E is proper, Q is also proper. We show that Q is a bisimulation equivalence
of F. Let ¬(xQy). Then there are two cases:

Case 1.1. x ∈ D≤m or y ∈ D≤m. Then ¬(xQy) implies x 6= y. Without loss
of generality we may assume that ¬(xRy) and also that x ∈ D≤m. Then
R(x) ⊆ D≤m is a finite upset. Therefore, it is admissible. Moreover, R(x)
is Q-saturated since, by the definition of Q, every subset of D≤m is Q-
saturated. Thus, we found an admissible upset of F that separates x and
y.

Case 1.2. x, y ∈ Wm. Then we have ¬(xEy). Therefore, as E is a bisimulation
equivalence of Fm, there exists an E-saturated admissible upset U of Fm that
separates x and y. Then it is easy to see that U ∪ D≤m is a Q-saturated
admissible upset of F that separates x and y.

Thus, Q satisfies Definition 2.3.8(2). Next we prove that Q satisfies Defini-
tion 2.3.8(1). Suppose x, y, z ∈ W are such that xQy and yRz. If x, y ∈ D≤m,
then xQy implies x = y, and so xRz. Thus, we may assume x, y ∈ Wm and xEy.
Then two cases are possible:

2This claim was first proved by Kuznetsov using an algebraic technique [80]; see also [26]
and [11, Lemma 2.2(3)]. Our proof uses the Coloring Theorem.
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Case 2.1. R(x)∩D≤m 6= R(y)∩D≤m. Without loss of generality we may assume
that R(x) ∩ D≤m 6⊆ R(y) ∩ D≤m. Then there is t ∈ R(x) ∩ D≤m and a
formula φi, for some i = 1, . . . , k, such that for every u ∈ R(y) ∩ D≤m we
have u |= φi and t 6|= φi . Then x 6|= τm → φi and y |= τm → φi. This means
that colN(x) 6= colN(y), which is a contradiction.

Case 2.2. R(x) ∩D≤m = R(y) ∩D≤m. If z ∈ D≤m, then xRz. And if z ∈ Wm,
as E is a bisimulation equivalence of Fm, there is a point u ∈Wm such that
xRu and uEz. Thus, there exists u such that xRu and uQz.

Consequently, Definition 2.3.8(1) is satisfied and Q is a bisimulation equivalence
of F. Now since colN(x) = colN(y), implies col(x) = col(y) we obtain that Q is
a proper bisimulation equivalence of F such that every Q-equivalence class has
the same (old) color. By the Coloring Theorem, A is not generated by g1, . . . , gn.
This contradiction finishes the proof of the claim. ¤

Continuing the proof of Theorem 3.1.10, by Theorem 3.1.8, max(Fm) = Dm+1,
is a finite admissible subset of Fm. In topological terms this means that Dm+1

is a clopen upset of Fm, and so Dm+1 is a clopen subset of F. By the induction
hypothesis, D≤m is also clopen in F. Thus, D≤m+1 = D≤m ∪ Dm+1 is a clopen
upset of F, which means that D≤m+1 is admissible.

(3) follows immediately from the definition of Upper(F).
(4) follows from Claim 3.1.11 and Theorem 2.3.24. ¤

3.2 Free Heyting algebras and n-universal mod-

els

In this section we define the n-universal models of IPC and spell out in detail
the connection between n-universal models and finitely generated free Heyting
algebras. In particular, we show that universal models are the upper parts of n-
Henkin models—the dual descriptive frames of n-generated free Heyting algebras.

3.2.1 n-universal models

For n ∈ ω let Ln be the propositional language built on a finite set of propositional
letters Propn = {p1, . . . , pn}. Let Formn denote the set of all formulas of Ln.
Let M be an intuitionistic Kripke model. As we mentioned in the previous section,
with every point w of M, we associate the color col(w).

3.2.1. Definition. Let i1 . . . in and j1 . . . jn be two colors. We write

i1 . . . in ≤ j1 . . . jn iff ik ≤ jk for each k = 1, . . . , n.

We also write i1 . . . in < j1 . . . jn if i1 . . . in ≤ j1 . . . jn and i1 . . . in 6= j1 . . . jn.
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Thus, the set of colors of length n ordered by ≤ forms a 2n-element Boolean
algebra. Let F = (W,R) be a Kripke frame. We say that a set A ⊆ W totally
covers a point v and write v ≺ A if A is the set of all immediate successors of
v. Note that ≺ is a relation relating points and sets. We will use the shorthand
v ≺ w for v ≺ {w}. Thus, v ≺ w means not only that w is an immediate
successor of v, but that w is the only immediate successor of w. It is easy to see
that if every point of W has only finitely many successors, then R is the reflexive
and transitive closure of the immediate successor relation. Therefore, if (W,R) is
such that every point of W has only finitely many successors, then R is uniquely
defined by the immediate successor relation and vice versa. Thus, to define such
a frame (W,R), it is sufficient to define the relation ≺. A set A ⊆ W is called an
anti-chain if |A| > 1 and for each w, v ∈ A, w 6= v implies ¬(wRv) and ¬(vRw).

Now we are ready to construct the n-universal model of IPC for each n ∈ ω.
As we mentioned above, to define U(n) = (U(n), R, V ), it is sufficient to define
the set U(n), the relation ≺ relating points and sets, and the valuation V on
U(n). Let P be a property of Kripke models. We say that a model M is the
minimal model with property P if M satisfies P and no proper submodel of M

satisfies P .

3.2.2. Theorem.

1. For every n ∈ ω there exists a minimal model U(n) satisfying the following
three conditions.

(a) max(U(n)) consists of 2n points of distinct colors.

(b) For every w ∈ U(n) and every color i1 . . . in < col(w), there exists a
unique v ∈ U(n) such that v ≺ w and col(v) = i1 . . . in.

(c) For every finite anti-chain A in U(n) and every color i1 . . . in with
i1 . . . in ≤ col(u) for all u ∈ A, there exists a unique v ∈ U(n) such
that v ≺ A and col(v) = i1 . . . in.

2. For every n ∈ ω a minimal model satisfying conditions (a), (b), (c) is unique
up to isomorphism.

Proof. (1) For every n ∈ ω we construct U(n) by induction on layers. We start
with 2n points x1, . . . , x2n of different color such that R(xi) = {xi}. For every
point w of depth m and each color i1 . . . in < col(w) we add to the model a unique
point v such that R(v) = R(w) ∪ {v} and col(v) = i1 . . . in. For every finite anti-
chain A of points of depth ≤ m with at least one point of depth m, and each color
i1 . . . in with i1 . . . in ≤ col(u) for all u ∈ A we add to the model a unique point
v such that R(v) = R(A) ∪ {v} and col(v) = i1 . . . in. It is now easy to see that
the model constructed in such a way is a minimal model satisfying Conditions
(a)–(c).
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Figure 3.1: The 1-universal model

(2) Let W(n) be a minimal model satisfying Conditions (a)–(c). Then every
point of W(n) has finite depth. We prove by induction on the number of layers
of W(n) that U(n) and W(n) are isomorphic. By Condition (a), max(U(n)) and
max(W(n)) are isomorphic Kripke models. Now assume that first m layers of
U(n) and W(n) are isomorphic. Then by the minimality of W(n) and Conditions
(b) and (c), it follows that the first m + 1 layers of U(n) and W(n) are also
isomorphic, which finishes the proof of the proposition. ¤

3.2.3. Definition. The n-universal model U(n) is the minimal model satisfying
the following three conditions.

1. max(U(n)) consists of 2n points of distinct colors.

2. For every w ∈ U(n) and every color i1 . . . in < col(w), there exists a unique
v ∈ U(n) such that v ≺ w and col(v) = i1 . . . in.

3. For every finite anti-chain A in U(n) and every color i1 . . . in with i1 . . . in ≤
col(u) for all u ∈ A, there exists a unique v ∈ U(n) such that v ≺ A and
col(v) = i1 . . . in.

By Theorem 3.2.2 for every n ∈ ω the n-universal model of IPC exists and is
unique up to isomorphism. The 1-universal model of IPC is shown in Figure 3.1.
The 1-universal model is often called the Rieger-Nishimura ladder (for more in-
formation on the Rieger-Nishimura ladder, see Chapter 4). More generally, for
each n > 1, one can think of the n-universal model of IPC as it is shown in
Figure 3.2.

3.2.4. Definition. We call the underlying frame U(n) = (U(n), R) of U(n) the
n-universal frame.
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Figure 3.2: The n-universal model

3.2.5. Lemma. For every m,n ∈ ω, the frame Gm = (D≤m, R ¹ D≤m) consisting
of the first m-layers of U(n) is n-generated.

Proof. Let V ′ be the restriction of the valuation V of U(n) to Gm. Suppose
f : Gm → F′ is a proper onto p-morphism, where F′ is some finite frame. Then by
Lemma 3.1.7, f is a composition of finitely many α- and β-reductions. It follows
from the construction of U(n) that any α- or β-reduction of Gm identifies points
of different colors. Therefore, by the Coloring Theorem, Gm is n-generated. ¤

3.2.2 Free Heyting algebras

In this section we show that universal models constitute the upper part of the dual
frames of finitely generated free Heyting algebras. First we recall the definition
of free algebras; see, e.g., [23, Definition 10.9].

3.2.6. Definition. Let V be a variety of algebras. For every set X, the free X-
generated V-algebra, denoted F (X), is the V-algebra containingX and satisfying
the following property: for every V-algebra A, every map f : X → A can be
extended uniquely to a homomorphism h : F (X) → A.

There is a close connection between free Heyting algebras and canonical or Henkin
models of intuitionistic logic. In fact, the descriptive frame dual to the n-
generated free Heyting algebra is isomorphic to the n-Henkin frame of intuition-
istic logic; see, e.g., [24, §7].

3.2.7. Definition.

1. Let F (n) be the free n-generated Heyting algebra. Let H(n) denote the
descriptive frame of F (n). We call H(n) the n-Henkin frame of IPC.
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2. Let g1, . . . , gn be the generators of F (n). These generators define a coloring
of H(n). We call the n-Henkin frame with this coloring the n-Henkin model
and denote it by H(n) = (H(n), V ).3

3.2.8. Lemma. Let A be a Heyting algebra generated by g′1, . . . , g
′
n, for some n ∈

ω, and let (F, V ′) be the corresponding descriptive model. Then (F, V ′) is up to
isomorphism a generated submodel of H(n).

Proof. Let g1, . . . , gn be the generators of F (n). Then there exists an onto
homomorphism h : F (n) → A such that h(gi) = g′i for every i = 1, . . . , n.
Therefore, by Theorem 2.3.7(1), F is a generated subframe of H(n). Let F =
(W,R,P). Then h(gi) = g′i, for every i = 1, . . . , n, implies that V ′(pi) = V (pi) ∩
W , where V is the valuation of H(n). Thus, (F, V ′) is a generated submodel of
H(n). ¤

For the next theorem consult either of [24, Sections 8.6 and 8.7], [57, §2], [4], [116]
and [108].

3.2.9. Theorem. The generated submodel of H(n) consisting of all the points of
finite depth is isomorphic to the universal model U(n); that is, Upper(H(n)) is
isomorphic to U(n).

Proof. By Theorem 3.1.10, Upper(H(n)) =
⋃
m∈ωDm, where Dm ∩Dk = ∅, for

m 6= k. By Lemmas 3.2.5 and 3.2.8, the generated submodel max(U(n)) of U(n)
consisting of the maximal points of U(n) is isomorphic to a generated submodel
of H(n). Moreover, by Definition 3.2.3(1) and Theorem 3.1.8, |max(U(n))| = 2n

and |max(H(n))| ≤ 2n. Therefore, max(H(n)) and max(U(n)) are isomorphic.
Now assume that for each k ∈ ω, the first k layers of H(n) and U(n) are

isomorphic. We will prove that the first k + 1 layers of U(n) and H(n) are
isomorphic as well. By Lemmas 3.2.5 and 3.2.8 we know that the model Mk+1

consisting of the first k + 1 layers of U(n) is n-generated and is isomorphic to a
generated submodel of H(n). (We identify Mk+1 with the generated submodel of
H(n) that it is isomorphic to.) Now suppose there is u in H(n) of depth k + 1
such that u does not belong to Mk+1. Let {u1, . . . , um} be the set of immediate
successors of u. By the induction hypothesis, each ui belongs to Mk+1. By
Theorem 3.1.10(1), {u1, . . . , um} is finite. Moreover, m > 0 as u is not a maximal
point. If m = 1, two cases are possible:

Case 1. col(u) = col(u1); see Figure 3.3(a). In this case we consider the α-
reduction that identifies u and u1.

3As we mentioned above Henkin frames and Henkin models are also called canonical frames
and canonical models.
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Figure 3.3: The α- and β-reductions

Case 2. col(u) < col(u1). In this case, by the construction of the n-universal
model, there is v in Mk+1 such that v is totally covered by u1 and col(v) =
col(u); see Figure 3.3(b). Then we consider the β-reduction that identifies
u and v.

In either case the Coloring Theorem ensures that F (n) is not generated by
g1, . . . , gn, which is a contradiction.

If m > 1 we have that col(u) ≤ col(ui) for every i = 1, . . . ,m. Again, by the
construction of U(n), there exists a point v of Mk+1 that is totally covered by
{u1, . . . , um}, and col(u) = col(v); see Figure 3.3(c), where m = 3. Consider the
β-reduction that identifies u and v. The Coloring Theorem ensures that F (n)
is not generated by g1, . . . , gn, which is again a contradiction. Therefore, the
first k + 1 layers of H(n) and U(n) are isomorphic. Thus, by induction, U(n) is
isomorphic to Upper(H(n)). ¤

From now on we will identify U(n) with Upper(H(n)). For every intermediate
logic L, let HL(n) be defined by replacing IPC by L in Definition 3.2.7. It is
well known that every logic is characterized by its n-Henkin models; see, e.g., [24,
Theorem 5.5]:

3.2.10. Theorem. Let L be an intermediate logic. Then for every n ∈ ω and
every formula φ in n variables, we have

L ` φ iff HL(n) |= φ.

Next we recall the definition of the disjunction property for intermediate logics;
see, e.g., [24, p.19 and p.471].

3.2.11. Definition. An intermediate logic L has the disjunction property if L `
φ ∨ ψ implies L ` φ or L ` ψ.

The following theorem can be found with a different proof in [24, Theorem
15.5(ii)].
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U(n)

H(n) \ U(n)

Figure 3.4: The n-Henkin model

3.2.12. Theorem. An intermediate logic L has the disjunction property iff the
n-Henkin model HL(n) of L is rooted, for every n ∈ ω.

Proof. Suppose L has the disjunction property. Let FL(n) be the n-generated
free algebra dual to HL(n). We show that the filter {1} is prime. Recall that
elements of FL(n) are the equivalence classes of the relation ≡ defined on Formn

by

φ ≡ ψ iff L ` φ↔ ψ.

Suppose [φ]∨ [ψ] = 1 for some [φ], [ψ] ∈ FL(n). Then L ` φ∨ψ. Since L has the
disjunction property, we have that L ` φ or L ` ψ. Therefore, [φ] = 1 or [ψ] = 1.
Thus, {1} is a prime filter. This proves that {1} is a prime filter. Clearly, for
every filter F of FL(n) we have {1} ⊆ F . Therefore, {1} is the root of HL(n).

Conversely, suppose HL(n) is rooted for every n ∈ ω, and L ` φ∨ψ. Let n be
the number of distinct variables occurring in φ and ψ. Then, by Theorem 3.2.10,
HL(n), r |= φ∨ψ, where r is the root of HL(n). Thus HL(n), r |= φ or HL(n), r |=
ψ, which by Theorem 3.2.10, shows that L ` φ or L ` ψ. Therefore, L has the
disjunction property. ¤

Since IPC has the disjunction property its n-Henkin models are rooted. There-
fore, we can think of H(n) as it is shown in Figure 3.4. It is rooted and its upper
part is isomorphic to U(n). We will see in the next section that for n > 1, the
cardinality of H(n) \ U(n) is that of the continuum (see Theorem 3.4.21).

3.2.13. Theorem.

1. H(n) \ U(n) 6= ∅, for every n ≥ 1.
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2. H(1) \ U(1) is a singleton set. Therefore, H(1) is isomorphic to the model
shown in Figure 3.5.

Proof. (1) Suppose H(n) \ U(n) = ∅. Then H(n) is isomorphic to U(n). This
implies that U(n) is a descriptive frame. Therefore, by Theorem 2.3.24(2) every
point of U(n) is seen by some minimal point. This is a contradiction because, by
the construction of U(n), we have min(U(n)) = ∅.

(2) By (1), H(1) \ U(1) 6= ∅. By Theorems 3.2.9 and 3.1.10, for every w ∈
H(1)\U(1) and m ∈ ω, there is a point v of depth m such that wRv. Looking at
the coloring of U(1), (see Figure 3.1) we see that for every v ∈ U(1) with d(v) > 1
we have col(v) = 0. By Theorem 3.2.9, for every w ∈ H(1) \ U(1) there exists
v ∈ U(1) such that wRv and col(v) = 0. Then col(w) ≤ col(v) and therefore
col(w) = 0. Consider an equivalence relation E on H(1) such that

E = {(w,w) : w ∈ U(1)} ∪ {(w, v) : w, v ∈ H(1) \ U(1)}.

Then E is a bisimulation equivalence. If E is proper, then by the Coloring
Theorem, H(1) is not 1-generated, which is a contradiction. Thus, E is not
proper, which means that H(1) \ U(1) is a singleton set. ¤

3.2.14. Remark. We point out on some topological properties of the Esakia
space corresponding to H(n). One can show that U(n) is an open subset of H(n)
consisting of all the points that are topologically isolated, and that the topological
closure of U(n) is equal to H(n). Since U(n) is open, the set H(n)\U(n) is closed.
Therefore, it is also an Esakia space. Thus, by Theorem 2.3.24(1), every point in
H(n) \ U(n) sees some maximal point of H(n) \ U(n). In fact, H(n) is an order
compactification of U(n) with the discrete topology.

In the remainder of this section we state some properties of the n-universal and
n-Henkin models that will be used subsequently. These results have previously
appeared in [24, Sections 8.6 and 8.7], [57], [4], [116] and [108].

3.2.15. Lemma.

1. Let A be a Heyting algebra and v : Propm → A be a valuation on A.
Then for every n ∈ ω, there exist a subalgebra A′ of A and a valuation
v′ : Propn → A′ such that A′ is generated by {v′(p) : p ∈ Propn}, and
v′(p) = v(p) for every p ∈ Propk, where k = min(m,n).

2. For every descriptive model M = (F, V ) and n ∈ ω there exists a generated
submodel M′ = (F′, V ′) of H(n) such that M′ is a p-morphic image of M.

Proof. (1) Suppose n > m. Then we let A′ be the subalgebra of A generated
by {v(p) : p ∈ Propm}, we let v′(p) = v(p) for all p ∈ Propm and v′(p) = v(p1)
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Figure 3.5: The 1-Henkin model

for all other p ∈ Propn. Now suppose n ≤ m then we let A′ be the subalgebra
generated by {v(p) : p ∈ Propn} and we let v′ be the restriction of v to Propn.

(2) follows from (1) and the duality between Heyting algebras and descriptive
frames. ¤

3.2.16. Theorem. For every finite frame F, there exist a valuation V and n ≤
|F| such that M = (F, V ) is a generated submodel of U(n).

Proof. The result follows immediately from the fact that every finite algebra
is finitely generated and hence is a homomorphic image of F (n) for some n ≤
|F|. One can observe this directly too. For every point w of F introduce a new
propositional variable pw and define a valuation V on F by putting V (pw) = R(w).
It is easy to see that the model (F, V ) is a generated submodel of the |F|-universal
model.4 ¤

Recall that Ln is the propositional language built from Propn = {p1, . . . , pn}.

3.2.17. Corollary. For every formula φ in the language Ln, we have

IPC ` φ iff U(n) |= φ.

Proof. It is clear that if IPC ` φ, then U(n) |= φ. Conversely, suppose IPC 6` φ.
Then by Theorems 2.1.17 and 2.3.27, there exists a finite Heyting algebra A with
a valuation v : Propn → A such that v(φ) 6= 1A. Let A′ be the subalgebra of
A generated by the elements v(p1), . . . , v(pn). Then A′ is finite, n-generated and

4However, in most cases n may be taken much smaller than |F|.
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v(φ) 6= 1A′ . Therefore, A′ is a homomorphic image of F (n). This, by Lemma 3.2.8,
means that the corresponding model M is a generated submodel of H(n). Since
M is finite, M is a generated submodel of U(n). This implies that U(n) 6|= φ. ¤

3.2.18. Definition. We call a set U ⊆ U(n) definable if there is a formula
φ(p1, . . . , pn) such that U = {w ∈ U(n) : w |= φ}. In other words, a subset U of
U(n) is definable if there exists a formula φ such that U = V (φ) ∩ U(n), where
V is the valuation of H(n).

3.2.19. Theorem.

1. For every n > 1, the set Z(n) := {w ∈ U(n) : col(w) > 0 . . . 0︸ ︷︷ ︸
n times

} is infinite.

2. For every n > 1, there are continuum many distinct upsets of U(n).

Proof. (1) Consider the maximal points w and v of U(n) such that col(w) >
col(v) > 0 . . . 0︸ ︷︷ ︸

n times

. It is easy to see that if n > 1, such w and v always exist (if n = 2

we can take the points w and v such that col(w) = 11 and col(v) = 10). Let
M be the model obtained from the 1-universal model U(1) (shown in Figure 3.1)
by replacing everywhere the color 0 by col(v) and the color 1 by col(w). Then
it follows from Definition 3.2.3 that M is a generated submodel of U(n). Every
point of M belongs to Z(n). Therefore, Z(n) is infinite.

(2) We will construct an infinite antichain of points of U(n). By the con-
struction of U(n), for every v ∈ Z(n) there exists u such that u ≺ v (that is, v
totally covers u) and col(u) = 0 . . . 0︸ ︷︷ ︸

n times

. Let T (n) be the set of all such u’s. Now

we show that T (n) forms an antichain. Suppose u1, u2 ∈ T (n), u1 6= u2 and
u1Ru2. Let u′1 ∈ Z(n) be the point that totally covers u1. Then, we have u′1Ru2

and col(u′1) ≤ col(u2). This is a contradiction since col(u′1) > col(u1) = col(u2).
Therefore, T (n) is an antichain. This implies that for every U,U ′ ⊆ T (n), if
U 6= U ′, then R(U) 6= R(U ′). By (1), Z(n) is countably infinite. Thus, T (n) is
also infinite, and so there are continuum many distinct upsets of U(n).

¤

By Theorem 3.2.19(2), there are continuum many upsets of U(n), whereas there
are only countably many formulas in n variables. Therefore, not every upset of
U(n) is definable.

3.2.20. Theorem. The Heyting algebra of all definable upsets of the n-universal
model is isomorphic to the free n-generated Heyting algebra.
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Proof. Because of Theorem 3.2.9, all we need to show is that for all formulas φ
and ψ in n variables, if V (φ) 6= V (ψ) in H(n), then V (φ)∩U(n) 6= V (ψ)∩U(n),
where V is the valuation of H(n). If V (φ) ∩ U(n) = V (ψ) ∩ U(n), then U(n) |=
φ ↔ ψ. This by Corollary 3.2.17, implies IPC ` φ ↔ ψ. Thus, H(n) |= φ ↔ ψ,
which means that V (φ) = V (ψ). ¤

3.3 The Jankov-de Jongh and subframe formu-

las

Next we discuss three types of frame based formulas. We define the Jankov-de
Jongh formulas, subframe formulas and cofinal subframe formulas. In subsequent
sections we show how to use these formulas to axiomatize large classes of inter-
mediate logics.

3.3.1 Formulas characterizing point generated subsets

In this section we introduce the so-called de Jongh formulas and prove that they
characterize point-generated submodels of n-Henkin models. We also show that
the de Jongh formulas do the same job as Jankov’s characteristic formulas for
IPC. The de Jongh formulas were introduced in [69, §4], see also [59, §2.5].

3.3.1. Definition. Let w be a point in the n-universal model (a point of finite
depth in the n-Henkin model). We inductively define formulas φw and ψw. If
d(w) = 1, then let

φw :=
∧

{pk : w |= pk} ∧
∧

{¬pj : w 6|= pj} for each k, j = 1, . . . , n

and

ψw := ¬φw.

If d(w) > 1, then let {w1, . . . , wm} be the set of all immediate successors of w.
We let

prop(w) := {pk : w |= pk}

and

newprop(w) := {pk : w 6|= pk and wi |= pk for each i such that 1 ≤ i ≤ m}.

We define φw and ψw by

φw :=
∧

prop(w) ∧

(
(
∨

newprop(w) ∨
m∨

i=1

ψwi
) →

m∨

i=1

φwi

)
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and

ψw := φw →
m∨

i=1

φwi

We call φw and ψw the de Jongh formulas.

3.3.2. Theorem. For every w ∈ U(n) (w ∈ H(n) such that d(w) is finite) we
have that:

• R(w) = {v ∈ H(n) : v |= φw}, i.e., V (φw) = R(w).

• H(n) \R−1(w) = {v ∈ H(n) : v |= ψw}, i.e., V (ψw) = H(n) \R−1(w).

Proof. We prove the theorem by induction on the depth of w. Let the depth
of w be 1. This means, that w belongs to the maximum of H(n). By Definition
3.2.3(1) for every v ∈ max(H(n)) such that w 6= v we have col(v) 6= col(w) and
thus v 6|= φw. Therefore, if u ∈ H(n) is such that uRv for some maximal point
v of H(n) distinct from w, then u 6|= φw. Finally, assume that vRw and v is not
related to any other maximal point. By Definition 3.2.3(2) and (3), this implies
that col(v) < col(w). Therefore, v 6|= φw, and so v |= φw iff v = w. Thus,
V (φw) = {w}. Consequently, by the definition of the intuitionistic negation, we
have that V (ψw) = V (¬φw) = H(n) \R−1(V (φw)) = H(n) \R−1(w).

Now suppose the depth of w is greater than 1 and the theorem holds for
the points with depth strictly less than d(w). This means that the theorem
holds for every immediate successor wi of w, i.e., for each i = 1, . . . ,m we have
V (φwi

) = R(wi) and V (ψwi
) = H(n) \R−1(wi).

First note that, by the induction hypothesis, w 6|=
∨m
i=1 ψwi

; hence, by the
definition of newprop(w), we have w 6|=

∨
newprop(w) ∨

∨m
i=1 ψwi

. Therefore,
w |= φw, and so, by the persistence of intuitionistic valuations, v |= φw for every
v ∈ R(w).

Now let v /∈ R(w). First assume that v ∈ U(n). If v 6|=
∧
prop(w), then

v 6|= φw. Thus, suppose v |=
∧
prop(w). This means that col(v) ≥ col(w). Then

two cases are possible:

Case 1. v ∈
⋃m
i=1H(n) \ R−1(wi). Then by the induction hypothesis, v |=∨m

i=1 ψwi
and since v /∈ R(w), we have v 6|=

∨m
i=1 φwi

. Therefore, v 6|= φw.

Case 2. v /∈
⋃m
i=1H(n)\R−1(wi). Then vRwi for every i = 1, . . . ,m. If vRv′ and

v′ ∈
⋃m
i=1H(n) \ R−1(wi), then, by Case 1, v′ 6|= φw, and so v 6|= φw. Now

assume that for every v′ ∈ U(n), vRv′ implies v′ /∈
⋃m
i=1H(n) \ R−1(wi).

By the construction of U(n) (see Definition 3.2.3(3)), there exists a point
u ∈ U(n) such that u ≺ {w1, . . . , wm} and vRu. We again specify two cases.

Case 2.1. u = w. Then there exists t ∈ U(n) such that t ≺ w and vRt. So,
col(v) ≤ col(t) and by Definition 3.2.3(2), col(t) < col(w), which is a con-
tradiction.
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Case 2.2. u 6= w. Since vRu and col(v) ≥ col(w), we have col(u) ≥ col(v) ≥
col(w). If col(u) > col(w), then there exists pj, for some j = 1, . . . , n,
such that u |= pj and w 6|= pj. Then wi |= pj, for every i = 1, . . . ,m, and
hence pj ∈ newprop(w). Therefore, u |=

∨
newprop(w) and u 6|=

∨m
i=1 φwi

.
Thus, u 6|= φw and so v 6|= φw. Now suppose col(u) = col(w). Then by
Definition 3.2.3(3), u = w which is a contradiction.

Therefore, for every point v of U(n) we have:

v |= φw iff wRv.

Finally, if v ∈ H(n) \ U(n), by Theorem 3.2.9, v sees a point v ′ ∈ U(n) of depth
greater than d(w). Then, v′ 6|= φw. Therefore v 6|= φw and V (φw) = R(w).

Now we show that ψw defines H(n) \R−1(w). For every v ∈ H(n), v 6|= ψw iff
there exists u ∈ H(n) such that vRu and u |= φw and u 6|=

∨m
i=1 φwi

, which holds
iff u ∈ R(w) and u /∈

⋃m
i=1R(wi), which, in turn, holds iff u = w. Hence, v 6|= ψw

iff v ∈ R−1(w). This finishes the proof of the theorem. ¤

3.3.2 The Jankov-de Jongh theorem

In [64] Jankov introduced the so-called characteristic formulas and proved The-
orem 3.3.3 formulated below. In this subsection we show that the de Jongh
formulas do the same job as Jankov’s characteristic formulas. We first state the
Jankov-de Jongh theorem. Note that Jankov’s original result was formulated in
terms of Heyting algebras. We will formulate it in logical terms. Most of the
results in this and subsequent sections have their natural algebraic counterparts
but we will not discuss these here. For an algebraic treatment of the Jankov
formulas we refer to [107, §5.2] and [121]. Note that analogues of these formulas
for transitive modal logic were introduced by Fine [41]. In modal logic these for-
mulas are called the Jankov-Fine formulas (see Chapter 8, for the details). Now
we formulate the Jankov-de Jongh theorem; see [64], [69] and [24, Proposition
9.41].

3.3.3. Theorem. For every finite rooted frame F there exists a formula χ(F)
such that for every descriptive frame G:

G 6|= χ(F) iff F is a p-morphic image of a generated subframe of G.

Here we give a proof of Theorem 3.3.3 using the de Jongh formulas. An alterna-
tive proof is given in [24, §9.4], where Jankov formulas are treated as particular
instances of more general “canonical formulas”. First we prove one additional
lemma.

3.3.4. Lemma. A descriptive frame F is a p-morphic image of a generated sub-
frame of a descriptive frame G iff F is a generated subframe of a p-morphic image
of G.
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Proof. The proof follows from Theorem 2.3.7 and a result in universal algebra
which says that if a variety V has the congruence extension property, then for
every algebra A ∈ V we have HS(A) = SH(A). It is well known that the variety
of Heyting algebras has the congruence extension property [2, §4, p. 178]. The
result now follows from the duality established in Theorem 2.3.7. ¤

Proof of Theorem 3.3.3

Suppose F is a finite rooted frame. By Theorem 3.2.16, there exists an n ∈ ω
and a valuation V on F such that (F, V ) is (isomorphic to) a generated submodel
of U(n). Let w ∈ U(n) be the root of F. Then F is isomorphic to Fw. We show
that we can take ψw as χ(F). By Lemma 3.3.4, for proving Theorem 3.3.3 it is
sufficient to show that for every frame G:

G 6|= ψw iff Fw is a generated subframe of a p-morphic image of G.

Suppose Fw is a generated subframe of a p-morphic image of G. Clearly, w 6|= ψw.
Therefore, Fw 6|= ψw, and since p-morphisms preserve the validity of formulas,
G 6|= ψw.

Now suppose G 6|= ψw. Then, there exists a model M = (G, V1) such that
M 6|= ψw. By Lemma 3.2.15(2), there exists a generated submodel M′ = (G′, V ′)
of H(n) such that M′ is a p-morphic image of M. This implies that M′ 6|= ψw.
Now, M′ 6|= ψw iff there exists v in G′ such that vRw, which holds iff w belongs
to G′. Therefore, w is in G′, and Fw is a generated subframe of G′. Thus, Fw is a
generated subframe of a p-morphic image of G. ¤

3.3.5. Remark. We point out one essential difference between the Jankov for-
mulas and the de Jongh formulas: the number of propositional variables used
in the Jankov formula depends on the cardinality of F, whereas the number of
variables in the de Jongh formula is the smallest n such that U(n) contains F

as a generated subframe. Therefore, in general, the de Jongh formula contains
fewer variables than the Jankov formula. From now on we will use the general
term “the Jankov-de Jongh formula” to refer to the formulas having the property
formulated in Theorem 3.3.3 and denote them by χ(F).

3.3.3 Subframes, subframe and cofinal subframe formulas

In this section we introduce subframe formulas and cofinal subframe formulas.
The subframe formulas for modal logic were first defined by Fine [42]. Sub-
frame formulas for intuitionistic logic were introduced by Zakharyaschev [133].
Zakharyaschev also defined cofinal subframe formulas for intuitionistic and tran-
sitive modal logic [135]. For an overview of these results see [24, §9.4]. We define
the subframe and cofinal subframe formulas differently and connect them to the
NNIL formulas of [127], i.e., the formulas that are preserved under submodels.
For an algebraic approach to subframe formulas we refer to [9].
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3.3.6. Definition.

1. Let F = (W,R) be a Kripke frame. A frame F′ = (W ′, R′) is called a
subframe of F if W ′ ⊆ W and R′ is the restriction of R to W ′.

2. Let F = (W,R,P) be a descriptive frame. A descriptive frame F′ =
(W ′, R′,P ′) is called a subframe of F if (W ′, R′) is a subframe of (W,R),
P ′ = {U ∩ W ′ : U ∈ P} and the following condition, which we call the
topo-subframe condition, is satisfied:

For every U ⊆ W ′ such that W ′ \ U ∈ P ′ we have W \R−1(U) ∈ P .

In topological terms the formulation becomes simpler. An Esakia space X ′ =
(X ′,O′, R′) is a subframe of an Esakia space X = (X,O, R) if (X ′, R′) is a sub-
frame of (X,R), and (X ′,O′) is a subspace of (X,O),5 and

For every clopen U of X ′ we have that R−1(U) is a clopen subset of X .

3.3.7. Remark. The reason for adding the topo-subframe condition to the def-
inition of subframes of descriptive frames is explained by the next proposition.
The topo-subframe condition allows us to extend a descriptive valuation V ′ de-
fined on a subframe F′ of a descriptive frame F to a descriptive valuation V of
F such that the restriction of V to F′ is equal to V ′. A correspondence between
subframes and nuclei (special operations on Heyting algebras) is established in
[9]. This correspondence gives another motivation for defining the subframes of
descriptive frames in this way.

Now we prove one of the main properties of subframes. Note that the proof makes
essential use of the topo-subframe condition.

3.3.8. Proposition. Let F = (W,R,P) and F′ = (W ′, R′,P ′) be descriptive
frames. If F′ is a subframe of F, then for every descriptive valuation V ′ on F′

there exists a descriptive valuation V on F such that the restriction of V to W ′

is V ′.

Proof. For every p ∈ Prop let V (p) = W \ R−1(W ′ \ V ′(p)). By the topo-
subframe condition, V (p) ∈ P . Now suppose x ∈ W ′. Then x /∈ V (p) iff
x ∈ R−1(W ′ \ V ′(p)) iff (there is y ∈ W ′ such that y /∈ V ′(p) and xRy) iff
x /∈ V ′(p), since V ′(p) is an upset of F′. Therefore, V (p) ∩W ′ = V ′(p). ¤

Next we introduce cofinal subframes.

5Since a compact subset of a Hausdorff space is closed (see e.g., [32]) every subframe of an
Esakia space is topologically closed.
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3.3.9. Definition.

1. Let (W,R) and (W ′, R′) be Kripke frames. F′ is called a cofinal subframe of
F if F′ is a subframe of F and R(W ′) ⊆ R−1(W ′), that is, for every w, v ∈ W
if w ∈W ′ and wRv, there exists u ∈ W ′ such that vRu.

2. Let F = (W,R,P) be a descriptive frame. A subframe F′ = (W ′, R′,P ′) of
F is called a cofinal subframe if (W ′, R′) is a cofinal subframe of (W,R).

We extend the notion of subframes and cofinal subframes to descriptive models
and Kripke models.

3.3.10. Definition. Let M = (F, V ) and M′ = (F′, V ′) be (descriptive or
Kripke) models. We say that M′ is a (cofinal) submodel of M if F′ is a (cofi-
nal) subframe of F and V ′ is the restriction of V .

Let F be a finite rooted frame. For every point w of F we introduce a propo-
sitional letter pw and let V be such that V (pw) = R(w). We denote by M the
model (F, V ). It is easy to see that M is isomorphic to a generated submodel of
the n-Henkin model, where n = |F| (see Theorem 3.2.16).

3.3.11. Proposition. Let (F, V ) be as above. Then for every w, v ∈ W we
have:

1. w 6= v and wRv iff col(w) < col(v),

2. w = v iff col(w) = col(v).

Proof. The proof is just spelling out the definitions. ¤

Next we inductively define the subframe formula β(F). Note that this definition
is different from that of [24, §9.4].

For every v ∈ W let

notprop(v) := {pk : v 6|= pk, k ≤ n}.

3.3.12. Definition. We define β(F) by induction. If v is a maximal point of M

then let
β(v) :=

∧
prop(v) →

∨
notprop(v)

Let w be a point in M and let w1, . . . , wm be all the immediate successors of w.
We assume that β(wi) is already defined, for every wi. We define β(w) by

β(w) :=
∧

prop(w) →
(∨

notprop(w) ∨
m∨

i=1

β(wi)
)
.

Let r be the root of F. We define β(F) by

β(F) := β(r).

We call β(F) the subframe formula of F.
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We will need the next three lemmas for establishing the crucial property of sub-
frame formulas and cofinal subframe formulas.

3.3.13. Lemma. Let F = (W,R) be a finite rooted frame and let V be defined as
above. Let M′ = (W ′, R′, V ′) be an arbitrary (descriptive or Kripke) model. For
every w, v ∈ W and x ∈ W ′, if wRv, then

M′, x 6|= β(w) implies M′, x 6|= β(v).

Proof. The proof is a simple induction on the depth of v. If d(v) = d(w) − 1
and wRv, then v is an immediate successor of w. Then M′, x 6|= β(w) implies
M′, x 6|= β(v), by the definition of β(w). Now suppose d(v) = d(w)− (k + 1) and
the lemma is true for every u such that wRu and d(u) = d(w) − k, for every k.
Let u′ be an immediate predecessor of v such that wRu′. Such a point clearly
exists since we have wRv. Then d(u′) = d(w)−k and by the induction hypothesis
M, x 6|= β(u′). This, by definition of β(u′), means that M′, x 6|= β(v). ¤

3.3.14. Lemma. Let M1 = (W1, R1,P1, V1) and M2 = (W2, R2,P2, V2) be de-
scriptive models. Let M2 be a submodel of M1. Then for every finite rooted
frame F = (W,R) we have M2 6|= β(F) implies M1 6|= β(F).

Proof. We prove the lemma by induction on the depth of F. If the depth of
F is 1, i.e., it is a reflexive point, then the lemma clearly holds. Now assume
that it holds for every rooted frame of depth less than the depth of F. Let r be
the root of F. Then M2 6|= β(F) means that there is a point t ∈ W2 such that
M2, t |=

∧
prop(r), M2, t 6|=

∨
notprop(r) and M2, t 6|= β(r′), for every immediate

successor r′ of r. By the induction hypothesis, we get that M1, t 6|= β(r′). Since
V2(p) = V1(p) ∩W2 we also have M1, t 6|=

∨
notprop(r) and M1, t |=

∧
prop(r).

Therefore, M1, t 6|= β(F). ¤

Subsequently we will use the following auxiliary lemma.

3.3.15. Lemma. Let F = (W,R,P , V ) be a descriptive model and let X =
(X,O, R, V ) be an Esakia space with a valuation.

1. For every color c = i1 . . . in the set C = {w ∈ W : col(w) = c} is a finite
intersection of elements of P ∪ −P, where −P = {W \ U : U ∈ P}.

2. For every color c = i1 . . . in the set C = {x ∈ X : col(x) = c} is a clopen of
X .

Proof. (1) It is a easy to see that C =
⋂n
k=1 I

εk , where

Iεk =

{
V (pk) if εk = 1,
W \ V (pk) if εk = 0.

(2) The result follows from (1) and the duality between descriptive frames and
Esakia spaces, see Section 2.3.3. ¤
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The next theorem states the crucial property of subframe formulas.

3.3.16. Theorem. Let G = (W ′, R′,P ′) be a descriptive frame and let F =
(W,R) be a finite rooted frame. Then

G 6|= β(F) iff F is a p-morphic image of a subframe of G.

Proof. Suppose G 6|= β(F). Then there exists a valuation V ′ on G such that
(G, V ′) 6|= β(F). For every w ∈W , let {w1, . . . wm} denote the set of all immediate
successors of w. Let p1, . . . , pn be the propositional variables occurring in β(F)
(in fact n = |W |). Therefore, V ′ defines a coloring of G. Let

Pw := {x ∈ W ′ : col(x) = col(w) and x 6|=
∨m
i=1 β(wi)}.

Let Y :=
⋃
w∈W Pw and let H := (Y, S,Q), where S is the restriction of R′ to

Y and Q = {U ′ ∩ Y : U ′ ∈ P ′}. We show that H is a subframe of G and F is a
p-morphic image of H.

First we show that H is a subframe of G. The definition of H ensures that
(Y, S) is a subframe of (W ′, R′). We need to show that H satisfies the topo-
subframe condition. To simplify the proof we will use the topological terminology.
First note that for every w ∈W , Pw = Cw ∩Dw, where Cw = {x ∈W ′ : col(x) =
col(w)} and Dw = {x ∈ W ′ : x 6|=

∨m
i=1 β(wi)}. By Lemma 3.3.15, Cw is a clopen

set. For every w ∈ W we have Dw ∈ −P ′, i.e., W \ Dw ∈ P ′. This means that
Dw is also clopen. Hence Pw is an intersection of two clopens and thus is again a
clopen. Then Y is a finite union of clopens and therefore is also a clopen. Thus,
every clopen subset U of H is a clopen subset of G and by Definition 2.3.20(5),
R−1(U) is clopen. Therefore, H satisfies the topo-subframe condition and H is a
subframe of G.

Define a map f : Y → W by

f(x) = w if x ∈ Pw.

We show that f is a well-defined onto p-morphism. By Proposition 3.3.11, distinct
points of W have distinct colors. Therefore, Pw ∩ Pw′ = ∅ if w 6= w′. This means
that f is well defined.

Now we prove that f is onto. By the definition of f , it is sufficient to show
that Pw 6= ∅ for every w ∈ W . If r is the root of F, then since (G, V ′) 6|= β(F),
there exists a point x ∈ W ′ such that x |=

∧
prop(r) and x 6|=

∨
notprop(r) and

x 6|=
∨m
i=1 β(ri). This means that x ∈ Pr. If w is not the root of F then we have

rRw. Therefore, by Lemma 3.3.13, we have x 6|= β(w). This means that there is
a successor y of x such that y |=

∧
prop(w), y 6|=

∨
notprop(w) and y 6|= β(wi),

for every immediate successor wi of w. Therefore, y ∈ Pw and f is surjective.
Next assume that x, y ∈ Y and xSy. Note that by the definition of f , for

every t ∈ Y we have
col(t) = col(f(t)).
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Obviously, xSy implies col(x) ≤ col(y). Therefore, col(f(x)) = col(x) ≤ col(y) =
col(f(y)). By Proposition 3.3.11, this yields f(x)Rf(y). Now suppose f(x)Rf(y).
Then by the definition of f we have that x 6|= β(f(x)) and by Lemma 3.3.13,
x 6|= β(f(y)). This means that there is z ∈ W ′ such that xR′z, col(z) = col(f(y)),
and z 6|= β(u), for every immediate successor u of f(y). Thus, z ∈ Pf(y) and
f(z) = f(y). Therefore, F is a p-morphic image of H.

Conversely, suppose H is a subframe of a descriptive frame G and f : H → F

is a p-morphism. Clearly, F 6|= β(F) and since f is a p-morphism, we have that
H 6|= β(F). This means that there is a valuation V ′ on H such that (H, V ′) 6|=
β(F). By Proposition 3.3.8, V ′ can be extended to a valuation V on G such that
the restriction of V to G′ is equal to V ′. This, by Lemma 3.3.14, implies that
G 6|= β(F). ¤

3.3.17. Remark. We remark on a close connection between subframe formulas
and NNIL formulas introduced in [127]. NNIL formulas are the formulas without
nestings of implications to the left. In [127] it is proved that NNIL formulas are
exactly those formulas that are preserved under taking submodels, and therefore
they are also preserved under taking subframes. It is easy to see that every β(F)
is a NNIL formula. It will follow from Theorem 3.4.16 that every subframe logic
is axiomatized by NNIL formulas.

Next we define cofinal subframe formulas in a fashion similar to subframe
formulas. Let F be a finite rooted frame. For every point w of F introduce a
propositional letter pw and let V be such that V (pw) = R(w). For the root r of
F let r1, . . . , rm be the immediate successors of r and u1, . . . , uk be the maximal
points of F. For every w ∈W let β(w) be as in Definition 3.3.12. Let

µ(F) := ¬¬
(
(
∧
prop(u1) ∧ ¬

∨
notprop(u1)) ∨ . . .∨

(
∧
prop(uk) ∧ ¬

∨
notprop(uk))

)
.

We are now ready to define cofinal subframe formulas.

3.3.18. Definition. The formula

γ(F) :=
(∧

prop(r) ∧ µ(F)
)
→
(∨

notprop(r) ∨
m∨

i=1

β(ri)
)

is called the cofinal subframe formula of F.

3.3.19. Theorem. Let G = (W ′, R′,P ′) be a descriptive frame and F = (W,R)
a finite rooted frame. Then

G 6|= γ(F) iff F is a p-morphic image of a cofinal subframe of G.
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Proof. The proof is similar to the proof of Theorem 3.3.16. We follow the
notations of the proof of Theorem 3.3.16. For every w ∈W we define

Pw := { x ∈W ′ : col(x) = col(w) and x 6|=
∨k
i=1 β(wi) and x |= µ(F) }.

We proceed as in the proof of Theorem 3.3.16. Define Y as the union of all Pw, for
w ∈W . The frame H is obtained by restricting to Y the valuation and the order of
G. Exactly the same argument as in the proof of Theorem 3.3.16 shows that H is a
subframe of G and that F is a p-morphic image of H. All we need to show is that in
this case, H is a cofinal subframe of G. Let x ∈ Y and xR′y. We need to find z ∈ Y
such that yR′z. By Theorem 2.3.24, there exists z ∈ max(G) such that yR′z.
We show that z ∈ Y . Since (G, V ′), x |= µ(F), we have z |= µ(F) and moreover

z |=
(∧

prop(u1)∧ ¬
∨
notprop(u1))∨ . . .∨ (

∧
prop(uk)∧¬

∨
notprop(uk)

)
, (for

the truth definition of the formulas with double negations consult Section 2.1).
This means that z |= µ(F) and there exists a maximal point ui of F, for some
i = 1, . . . , k, such that col(ui) = col(z). Thus, z ∈ Pui

and z ∈ Y . Therefore, H

is a cofinal subframe of G. ¤

3.4 Frame-based formulas

In this section we will treat the Jankov-de Jongh formulas, subframe formulas
and cofinal subframe formulas in a uniform framework. This will enable us to
get simple proofs of some old results and also derive some new results. We give
a definition of frame-based formulas and show that these three types of formulas
are particular cases of frame-based formulas. We prove a criterion for recognizing
whether an intermediate logic is axiomatized by frame-based formulas. Using this
criterion we show that every locally tabular intermediate logic is axiomatized by
the Jankov-de Jongh formulas and that every tabular logic is finitely axiomatized
by these formulas. We also recall the definitions of subframe logics and cofinal
subframe logics and show that every subframe logic is axiomatized by subframe
formulas and every cofinal subframe logic is axiomatized by cofinal subframe
formulas. At the end of the section we show that there are intermediate logics
that are not axiomatized by frame-based formulas. We first recall some basic
definitions and results.

3.4.1. Definition. Let L be an intermediate logic.

1. A descriptive frame F is called an L-frame if F validates all the theorems
of L.

2. Let FG(L) denote the set of all finitely generated rooted descriptive L-
frames modulo isomorphism.
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3. Let FL denote the set of all finite rooted L-frames modulo isomorphism.

Then FIPC is the set of all finite rooted frames modulo isomorphism. As we men-
tioned in the beginning of this chapter, every variety of algebras is generated by
its finitely generated members. This result can be extended to finitely generated
subdirectly irreducible algebras; see, e.g., [23].

3.4.2. Theorem. Every variety of algebras is generated by its finitely generated
subdirectly irreducible algebras.

Translating this theorem in terms of intermediate logics we obtain the following
corollary.

3.4.3. Corollary. Every intermediate logic L is complete with respect to its
finitely generated rooted descriptive frames, i.e., L is complete with respect to
FG(L).

Next we define three relations on descriptive frames.

3.4.4. Definition. Let F and G be descriptive frames. We say that

1. F ≤ G iff F is a p-morphic image of a generated subframe of G.6

2. F 4 G iff F is a p-morphic image of a subframe of G.

3. F 4′ G iff F is a p-morphic image of a cofinal subframe of G.

We write F < G, F ≺ G and F ≺′ G if F ≤ G, F 4 G and F 4′ G, respectively,
and F is not isomorphic to G.

The next proposition discusses some basic properties of ≤, 4 and 4′. The
proof is simple and we will skip it.

3.4.5. Proposition.

1. Each of ≤, 4 and 4′ is reflexive and transitive.

2. If we restrict ourselves to finite frames, then each of ≤, 4 and 4′ is a partial
order.

3. In the infinite case none of ≤, 4, 4′ is in general anti-symmetric.

4. Let F and F′ be two finite rooted frames. Let G be an arbitrary descriptive
frame. Then

6By Lemma 3.3.4, this is equivalent to saying that F is a generated subframe of a p-morphic
image of G.
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(a) F ≤ F′ and G |= χ(F) imply G |= χ(F′).

(b) F 4 F′ and G |= β(F) imply G |= β(F′).

(c) F 4′ F′ and G |= γ(F) imply G |= γ(F′).

Note that Theorems 3.3.3, 3.3.16 and 3.3.19 can be formulated in terms of the
relations ≤, 4 and 4′ as follows:

3.4.6. Theorem. For every finite rooted frame F there exist formulas χ(F), β(F)
and γ(F) such that for every descriptive frame G:

1. G 6|= χ(F) iff F ≤ G.

2. G 6|= β(F) iff F 4 G.

3. G 6|= γ(F) iff F 4′ G.

Proposition 3.4.5 and Theorem 3.4.6 clearly indicate that these three types of for-
mulas can be treated in a uniform framework. Next we give a general definition
of frame-based formulas and show that the Jankov-de Jongh formulas, subframe
formulas and cofinal subframe formulas are particular cases of frame-based for-
mulas. Let E be a relation on FG(L). We write F C G if F E G and F and G are
not isomorphic.

3.4.7. Definition. Call a reflexive and transitive relation E on FG(IPC) a
frame order if the following two conditions are satisfied:

1. For every F,G ∈ FG(L), G ∈ FIPC and F C G imply |F| < |G|.

2. For every finite rooted frame F there exists a formula α(F) such that for
every G ∈ FG(IPC)

G 6|= α(F) iff F E G.

We call the formula α(F) the frame-based formula for E or simply the α-formula
of F.

Obviously, the Jankov-de Jongh formulas, subframe formulas and cofinal sub-
frame formulas are frame-based formulas for ≤, 4 and 4′, respectively.

3.4.8. Lemma.

1. The restriction of E to FIPC is a partial order.

2. FIPC is a E-downset, i.e., F ∈ FIPC and F′EF imply F′ ∈ FIPC.
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Proof. The relation E is reflexive and transitive by definition. That the restric-
tion of E is anti-symmetric on finite frames follows from Definition 3.4.7(1). That
FIPC is a E-downset, also follows immediately from Definition 3.4.7(1). ¤

3.4.9. Lemma. Let F and F′ be finite rooted frames.

If FEF′, then IPC + α(F) ` α(F′).

Proof. Let G ∈ FG(IPC) and G 6|= α(F′), then F′EG. By the transitivity
of E we then have that FEG and G 6|= α(F). By Corollary 3.4.3 we get that
IPC + α(F) ` α(F′). ¤

3.4.10. Definition. Let L be an intermediate logic and let E be a frame order
on FG(IPC). We say that L is axiomatized by frame-based formulas for E if
there exists a family {Fi}i∈I of finite rooted frames such that L = {α(Fi) : i ∈ I}.

For every subset U of FG(L) let minE(U) denote the set of the E-minimal
elements of U .

3.4.11. Definition. Let L be an intermediate logic. We let

M(L,E) := minE(FG(IPC) \ FG(L))

We give a criterion recognizing whether an intermediate logic is axiomatized by
frame-based formulas.

3.4.12. Theorem. Let L be an intermediate logic and let E be a frame order on
FG(IPC). Then L is axiomatized by frame-based formulas for E iff the following
two conditions are satisfied.

1. FG(L) is a E-downset. That is, for every F,G ∈ FG(IPC), if G ∈ FG(L)
and F E G, then F ∈ FG(L).

2. For every G ∈ FG(IPC) \ FG(L) there exists a finite F ∈ M(L,E) such
that F E G.

Proof. Suppose L is axiomatized by frame-based formulas for E. Then L =
IPC + {α(Fi) : i ∈ I}, for some family {Fi}i∈I of finite rooted frames. First we
show that FG(L) is E-downset. Suppose, for some F,G ∈ FG(IPC) we have
G ∈ FG(L) and FEG. Assume that F /∈ FG(L). Then there exists i ∈ I such
that F 6|= α(Fi). Therefore, by Definition 3.4.7(2), FiEF. By the transitivity of
E, we have that FiEG, which implies G 6|= α(Fi), a contradiction. Thus, FG(L)
is a E-downset.

Suppose there exist i, j ∈ I such that i 6= j and FiEFj. Then by Lemma 3.4.9,
IPC + α(Fi) ` α(Fj). Therefore, we can exclude α(Fj) from the axiomatization
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of L. So it is sufficient to consider only E-minimal elements of {Fi}i∈I . (By
Definition 3.4.7(1), the set of E-minimal elements of an infinite set of finite rooted
frames is non-empty.) Thus, without loss of generality we may assume that ¬(FiE
Fj), for i 6= j. To verify the second condition suppose G ∈ FG(IPC) \ FG(L).
Then G 6|= α(Fi) for some i ∈ I, which implies Fi E G. Hence, if we show that
Fi ∈ M(L,E), then Condition (2) of the theorem is satisfied.

We now prove that every Fi belongs to M(L,E). By the reflexivity of E,
we have Fi 6|= α(Fi) for every i ∈ I. Therefore, Fi ∈ FG(IPC) \ FG(L). Now
suppose F C Fi. By Definition 3.4.7(1), |F| < |F′| implying that F is finite. By
Lemma 3.4.8, E is anti-symmetric on finite frames, hence ¬(FiEF). If FjEF,
for some j ∈ I and j 6= i, then by the transitivity of E we have FjEFi, which
is a contradiction. Therefore, ¬(FjEF), for every j ∈ I. Thus, F |= α(Fj), for
every j ∈ I, which implies that F ∈ FG(L) and that Fi is a minimal element of
FG(IPC) \ FG(L). Thus, Fi ∈ M(L,E) and Condition (2) is satisfied.

For the right to left direction, first note that, by our assumption, M(L,E)
consists of only finite frames. We show that L = IPC + {α(F) : F ∈ M(L,E)}.
We prove this by showing that the finitely generated rooted descriptive frames
of L and of IPC + {α(F) : F ∈ M(L,E)} coincide. Let G ∈ FG(L), then since
FG(L) is a E-downset, for every F ∈ M(L,E) we have that ¬(F E G) and hence
G |= α(F). On the other hand, if G ∈ FG(IPC)\FG(L), then by our assumption
there exists F ∈ M(L,E) such that F E G. Therefore, G 6|= α(F) and G is
not a frame for IPC + {α(F) : F ∈ M(L,E)}. Since every intermediate logic
is complete with respect to its finitely generated rooted descriptive frames (see
Corollary 3.4.3), we obtain that L = IPC + {α(F) : F ∈ M(L,E)}. ¤

Next we apply this criterion to the Jankov-de Jongh formulas, subframe formulas
and cofinal subframe formulas.

3.4.13. Theorem. Let L be an intermediate logic.

1. FG(L) is a ≤-downset.

2. For every G ∈ FG(IPC) \ FG(L) there exists a finite F ∈ M(L,4) such
that F 4 G.

3. For every G ∈ FG(IPC) \ FG(L) there exists a finite F ∈ M(L,4′) such
that F 4′ G.

Proof. (1) is trivial since generated subframes and p-morphisms preserve the
validity of formulas. The proofs of (2) and (3) are quite involved, we will skip
them here. For the proofs we refer to [24, Theorem 11.15]. ¤

These results allow us to obtain the following criterion.
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3.4.14. Corollary. Let L be an intermediate logic.

1. L is axiomatized by the Jankov-de Jongh formulas iff for every frame G in
FG(IPC) \ FG(L) there exists a finite F ∈ M(L,≤) such that F ≤ G.

2. L is axiomatized by subframe formulas iff FG(L) is a 4-downset.

3. L is axiomatized by cofinal subframe formulas iff FG(L) is a 4′-downset.

Proof. The result is an immediate consequence of Theorems 3.4.12 and 3.4.13.
¤

3.4.15. Definition. Let L be an intermediate logic.

1. L is called a subframe logic if for every L-frame G, every subframe G′ of G

is also an L-frame.

2. L is called a cofinal subframe logic if for every L-frame G, every cofinal
subframe G′ of G is also an L-frame.

For the next theorem consult [24, Theorem 11.21].

3.4.16. Corollary. Let L be an intermediate logic.

1. L is axiomatized by subframe formulas iff L is a subframe logic.

2. L is axiomatized by cofinal subframe formulas iff L is a cofinal subframe
logic.

Proof. Since every intermediate logic L is complete with respect to FG(L), it is
easy to see that L is a subframe logic iff FG(L) is a 4-downset and L is a cofinal
subframe logic iff FG(L) is a 4′-downset. The proof now follows from Theorem
3.4.13. ¤

Next we mention yet another general result about subframe logics and cofinal
subframe logics; see [24, Theorem 11.20]. An algebraic proof of the result can be
found in [9].

3.4.17. Theorem. All subframe logics and cofinal subframe logics enjoy the fi-
nite model property.

Proof. We prove the theorem for subframe logics only. The proof for cofinal
subframe logics is identical. Let L be a subframe logic. Suppose L 6` φ. Then
there exists F ∈ FG(L) such that F 6|= φ. Consider L+φ. If it is inconsistent then
every finite L-frame refutes φ. Thus, assume L+ φ is consistent. By Proposition
2.1.6, it is an intermediate logic. Then by Theorem 3.4.13(2), there is F′ ∈
M(L + φ,4) such that F′ 4 F. Since F′ ∈ M(L + φ,4) we have F′ 6|= φ and as
L is a subframe logic, by Corollary 3.4.14(2), FG(L) is a 4-downset. Therefore,
F′ ∈ FL and L has the fmp. ¤
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F0 F1 F2

Figure 3.6: The sequence ∆

Next we show that every locally tabular intermediate logic is axiomatized by the
Jankov-de Jongh formulas, and that every tabular logic is finitely axiomatized by
the Jankov-de Jongh formulas. We also construct intermediate logics that can
be axiomatized by Jankov-de Jongh formulas but not by subframe and cofinal
subframe formulas, and vice versa. First we show that there are continuum many
intermediate logics.

We discuss a method for constructing continuum many intermediate logics.
Let E be a frame order on FG(IPC). A set of frames ∆ is called an E-antichain
if for every distinct F,G ∈ ∆ we have ¬(FEG) and ¬(GEF).

3.4.18. Theorem. Let ∆ = {Fi}i∈ω be an E-antichain. For every Γ1,Γ2 ⊆ ∆,
if Γ1 6= Γ2, then Log(Γ1) 6= Log(Γ2).

Proof. Without loss of generality assume that Γ1 6⊆ Γ2. This means that there is
F ∈ Γ1 such that F /∈ Γ2. Consider the α-formula α(F). Then, by the reflexivity
of E, we have F 6|= α(F). Hence, Γ1 6|= α(F) and α(F) /∈ Log(Γ1). Now we
show that α(F) ∈ Log(Γ2). Suppose α(F) /∈ Log(Γ2). Then there is G ∈ Γ2

such that G 6|= α(F). This means that FEG, which contradicts the fact that ∆
forms an E-antichain. Therefore, α(F) /∈ Log(Γ1) and α(F) ∈ Log(Γ2). Thus,
Log(Γ1) 6= Log(Γ2). ¤

Now we construct an infinite ≤-antichain. Consider the sequence ∆ of finite
rooted frames shown in Figure 3.6.

3.4.19. Lemma. ∆ forms an ≤-antichain.

Proof. Suppose there are distinct frames F,G ∈ ∆ such that F ≤ G. Then
there is a generated subframe G′ of G and an onto p-morphism f : G′ → F. By
Proposition 3.1.7, there are finitely many α- and β-reductions f1, . . . , fn such that
f = fn ◦ · · · ◦ f1. Looking at the structure of G (see Figure 3.6) we see that there
is no point that has a unique immediate successor and that the only points w
and v such that R(w) \ {w} = R(v) \ {v} are the maximal points. Therefore, f1

can only be the β-reduction identifying two maximal points of G′. Thus, f(G′)
cannot be isomorphic to F. ¤
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Figure 3.7: The coloring of F2

In the next chapter we construct more antichains of finite rooted frames. We
have the following corollary of Theorem 3.4.18 and Lemma 3.4.19 first observed
by Jankov [65].

3.4.20. Corollary. There are continuum many intermediate logics.

Proof. Consider the countable sequence ∆ of finite rooted frames. Then by
Lemma 3.4.19, ∆ forms an ≤-antichain. By Theorem 3.4.18, this implies that
there are continuum many intermediate logics. ¤

For the examples of infinite 4 and 4′-antichains of finite rooted frames consult
[24, Lemma 11.18 and Theorem 11.19]. Now we determine the size of H(n) using
the Jankov-de Jongh formulas.

3.4.21. Theorem. The cardinality of H(n), for every n > 1 is that of the con-
tinuum.

Proof. (Sketch) We first show that if there is a sequence of formulas {φi}i∈ω in
n variables such that for every finite Φ,Ψ ( {φi}i∈ω we have IPC 6`

∧
Φ →

∨
Ψ,

then the cardinality of H(n) is that of continuum. Obviously, the n-generated
free Heyting algebra F (n) is countable; there are only countably many formulas
in n variables. Therefore, there are at most continuum many prime filters of
F (n) and the cardinality of H(n) is at most continuum. For every subset I ⊆ ω
consider {φi}i∈I and let FI be the filter generated by {φi}i∈I . Then φi ∈ FI iff
i ∈ I. Now using the standard Lindenbaum construction (see e.g., [24, Lemma
5.1]) we extend FI to a prime filter F ′

I such that φj /∈ F ′
I for every j /∈ I. Now let

I, J ⊆ ω and I 6= J . Then w.l.o.g. there is i ∈ I such that i /∈ J . It follows that
φi ∈ FI ⊆ F ′

I and φi /∈ F ′
J . Therefore, F ′

I 6= F ′
J , for every I, J ⊆ ω and I 6= J .

Therefore, all we need to do is to construct such a sequence of formulas. Let
∆ be the sequence of frames shown in Figure 3.6. Then every F ∈ ∆ is finitely
generated. To see this, consider the coloring shown in Figure 3.7. Now it is
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easy to see that every F ∈ ∆ with this coloring is a generated submodel of U(2).
Indeed, the maximal points of F have different colors. No point is totally covered
by a singleton set and if a point is totally covered by an antichain then there is no
other point that is totally covered by the same antichain. This guarantees that
F with this coloring is a generated submodel of U(2).

Therefore, {χ(Fi) : i > 1 and Fi ∈ ∆} is a sequence of formulas in two
variables. Finally, we will sketch the proof of IPC 6`

∧
Φ →

∨
Ψ for Φ,Ψ ⊆

{χ(Fi) : i > 1 and Fi ∈ ∆}. Let Φ = {χ(Fi1), . . . , χ(Fik)} and let Ψ =
{χ(Fj1), . . . , χ(Fjm)}. Let F be the frame obtained by adjoining a new root to
the disjoint union of Fj1 , . . . ,Fjm . Obviously, every Fjs is a generated subframe
of F. So F 6|= χ(Fjs), which implies F 6|=

∨
Ψ. Moreover, we can show that for

every j > 1 and j /∈ {j1, . . . , jm} we have Fj 6≤ F. It follows that F |=
∧

Φ. Thus,
F 6|=

∧
Φ →

∨
Ψ, which finishes the proof of the theorem. ¤

Next we axiomatize some intermediate logics using the Jankov-de Jongh formulas.
Intuitively speaking the Jankov-de Jongh formula of a frame F axiomatizes the
least logic that does not have F as its frame.

3.4.22. Lemma. Let L be an intermediate logic. Then

1. (FL,≤) is well-founded.

2. For every finite rooted frame G ∈ FG(IPC) \ FG(L), there exists a finite
rooted F ∈ M(L,≤) such that F ≤ G.

Proof. (1) The proof follows immediately from the fact that if F,G ∈ FL then
F < G implies |F| < |G|.

(2) The proof is similar to the proof of (1). ¤

To prove that every locally tabular intermediate logic is axiomatized by the
Jankov-de Jongh formulas, we use the following criterion of local tabularity es-
tablished by G. Bezhanishvili [7].

3.4.23. Theorem. A logic L is locally tabular iff the class of rooted descriptive
L-frames is uniformly locally tabular. That is, for every natural number n there
exists a natural number M(n) such that for every n-generated rooted descriptive
L-frame F we have |F| ≤M(n).

3.4.24. Theorem. Every locally tabular intermediate logic is axiomatized by
Jankov-de Jongh formulas.

Proof. Let L be a locally tabular intermediate logic. By Corollary 3.4.14(1),
we need to show that for every G ∈ FG(IPC) \ FG(L) there exists a finite
F ∈ M(L,≤) such that F ≤ G. Suppose G ∈ FG(IPC) \ FG(L). If G is
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finite, then by Lemma 3.4.22(2), there exists a finite rooted F ∈ M(L,≤) such
that F ≤ G. Now assume that G is infinite. Let G′ be a finite rooted frame
such that G′ < G. If G′ ∈ FG(IPC) \ FG(L), then by Lemma 3.4.22(2), there
exists F ∈ M(L,≤) with F ≤ G′. Since ≤ is transitive, we have F ≤ G. Now
suppose, for every finite rooted G′ such that G′ < G we have G′ ∈ FG(L). By
Theorem 3.1.10, for every i ∈ ω there exists a point xi of G of depth i. Let Hi be
the xi-generated subframe of G. Then Hi is finite and n-generated (since Hi is a
generated subframe of G). Moreover, sup{|Hi| : i ∈ ω} = ω. Therefore, the set of
all rooted finitely generated descriptive L-frames is not uniformly locally finite.
By Theorem 3.4.23, L is not locally tabular, which is a contradiction. Thus, by
Corollary 3.4.14(1) L is axiomatized by the Jankov-de Jongh formulas. ¤

Since every tabular logic is locally tabular, it follows from Theorem 3.4.24 that
every tabular logic is also axiomatized by the Jankov-de Jongh formulas. Next
we show that every tabular logic is in fact finitely axiomatized by the Jankov-de
Jongh formulas. For an alternative proof of the theorem consult [24, Theorem
12.4]. First we prove two auxiliary lemmas.

3.4.25. Lemma. For every finite rooted frame F, consisting of at least two points,
there exists a frame G and f : F → G such that f is an α- or β-reduction.

Proof. If max(F) contains more than one point, consider the β-reduction that
identifies two distinct maximal points of F. If max(F) is a singleton set, we
consider the second layer of F. By our assumption the second layer is not empty.
If the second layer of F consists of one point, then consider the α-reduction that
identifies the point of the second layer with the maximal point. If the second
layer of F consists of at least two points, we consider a β-reduction that identifies
two points from the second layer. ¤

3.4.26. Lemma. Let E be a frame order on FG(IPC). Suppose that F is a finite
rooted L-frame, where L = Log(G) for some G ∈ FG(IPC). Then FEG.

Proof. Suppose ¬(FEG). Then G |= α(F), where α(F) is the frame-based
formula for E. Therefore, since F is an L-frame, F |= α(F). This is a contradiction
since E is reflexive. ¤

3.4.27. Theorem. Every tabular logic is finitely axiomatizable by Jankov-de
Jongh formulas.

Proof. Let L be tabular. Then L = Log(F) for some finite frame F. By Lemma
3.4.26, for every rooted L-frame F′ we have F′ ≤ F. Therefore, if F′ ∈ FL, then
|F′| ≤ |F|. Hence, every finite rooted L-frame contains at most |F| points. We
will show that M(L,≤) is finite.



3.4. FRAME-BASED FORMULAS 75

3.4.28. Claim. For every H ∈ M(L,≤) we have |H| ≤ |F| + 1.

Proof. Assume H ∈ M(L,≤). If |H| = 1, then trivially |H| ≤ |F| + 1. Now
suppose H is such that |H| > 1. Then by Lemma 3.4.25, there exists a frame H′

such that H′ < H. If H′ /∈ FL, then H is not a minimal element of FG(IPC) \
FG(L), that is, H /∈ M(L,≤), which is a contradiction. If H′ ∈ FL, then since α-
and β-reductions identify only two points, |H| = |H′| + 1. As H′ is an L-frame,
|H′| ≤ |F|. Thus, |H| ≤ |F| + 1. ¤

There are only finitely many non-isomorphic frames consisting of m points for
m ∈ ω. Therefore, M(L,≤) is finite. Let M(L,≤) = {G1, . . . ,Gk}. Then, by the
proof of Theorem 3.4.12, we have L(F) = IPC + χ(G1) + . . .+ χ(Gk). ¤

However, not every intermediate logic is axiomatized by Jankov-de Jongh formu-
las. We construct a subframe logic that is not axiomatized by Jankov-de Jongh
formulas. We first introduced the notion of width of an intermediate logic. For
modal logics this notion was defined by Fine [42] and for intermediate logics by
Sobolev [117].

3.4.29. Definition. Let F be a rooted (descriptive or Kripke) frame. We say
that

1. F has (cofinal) width n if there is an antichain of n points in F (in max(F))
and no other antichain in F (in max(F)) contains more than n points.

2. An intermediate logic L ⊇ IPC has width (cofinal width) n ∈ ω if every
descriptive rooted L-frame has width (cofinal width) ≤ n.

We denote by w(F) the width of F and by wc(F) the cofinal width of F.

3.4.30. Definition. For every n ∈ ω let

1. Lw(n) := Log(Γn), where Γn = {F : |F| < ω and w(F) ≤ n}.

2. L′
w(n) := Log(Γ′

n), where Γ′
n = {F : |F| < ω and wc(F) ≤ n}.

It can be shown that Lw(n) is the least logic of width n and L′
w(n) is the least

logic of cofinal width n.

We sketch a proof that L′
w(5) is not axiomatizable by the Jankov-de Jongh

formulas. For the details we refer to [24, Proposition 9.50].

3.4.31. Theorem. L′
w(5) is not axiomatizable by Jankov-de Jongh formulas.
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z

z1 z2

Figure 3.8: The frame G

Proof. (Sketch) By Corollary 3.4.14, it is sufficient to construct a finitely gener-
ated rooted descriptive frame G such that G is not an L′

w(5)-frame and if a finite
rooted F is such that F ≤ G, then F is an L′

w(5)-frame.
We will modify the example used in [24, Proposition 9.50]. Consider the frame

G = (W,R,P) shown in Figure 3.8, where P = {R(z1)∪R(z2),W, ∅, U, U∪R(zi) :
U is a finite upset of G, i = 1, 2}. Then it can be shown that G is a finitely
generated descriptive frame. It is obvious that G has width 6 and hence is not
an L′

w(5)-frame.
The main idea of the proof is that every finite rooted generated subframe of G

has width ≤ 5 and every p-morphism identifies at least two maximal points of G.
Therefore, for every finite F < G we have wc(F) ≤ 5 and F is an L′

w(5)-frame. By
Corollary 3.4.14(1), this means that L′

w(5) is not axiomatized by the Jankov-de
Jongh formulas. We skip the details. ¤

3.4.32. Theorem. For every n ∈ ω the following holds.

1. Lw(n) is axiomatized by subframe formulas.

2. L′
w(n) is axiomatized by cofinal subframe formulas.

Proof. By Corollary 3.4.14, it is sufficient to observe that for every frame F of
width ≤ n every subframe and cofinal subframe of F also has width ≤ n. Thus
Lw(n) is a subframe logic and L′

w(n) is a cofinal subframe logic and therefore
by Corollary 3.4.16, they are axiomatizable by subframe formulas and cofinal
subframe formulas, respectively. ¤
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Now we prove the converse of Theorem 3.4.31.

3.4.33. Theorem. There are intermediate logics that are axiomatized by Jankov-
de Jongh formulas but not axiomatized by subframe formulas or by cofinal sub-
frame formulas.

Proof. Let ∆ be as in Lemma 3.4.19. Consider Fi ∈ ∆ such that i > 0. Then
L = Log(Fi) is tabular and by Theorem 3.4.27, L is finitely axiomatized by the
Jankov-de Jongh formulas. Now we show that L is neither a subframe nor a
cofinal subframe logic. It is easy to see that F0 is a subframe of Fi, moreover it is
a cofinal subframe. By Lemma 3.4.26, if F0 is an L-frame, then F0 ≤ Fi. This is
a contradiction because by Theorem 3.4.18, ∆ is an ≤-antichain. Therefore L is
neither a subframe nor a cofinal subframe logic and by Corollary 3.4.16, it is not
axiomatized by subframe formulas. ¤

We will close this section by showing that there are intermediate logics that are
not axiomatized by frame-based formulas. Note that this proof is very non-
constructive.

3.4.34. Theorem. For every frame order E on FG(IPC) there are intermediate
logics that are not axiomatized by frame-based formulas for E.

Proof. Suppose every intermediate logic is axiomatized by frame-based formulas
for E. We show that this implies that every intermediate logic has the fmp, which
contradicts the fact that there are continuum many intermediate logics without
the fmp, e.g., [24, Theorem 6.3], see also Chapter 4. Let L be an intermediate
logic. Suppose L 6` φ. Then there exists a finitely generated rooted L-frame G

such that G 6|= φ. Consider the logic L + φ. If L + φ is inconsistent, then every
finite L-frame refutes φ. So, assume that L+φ is consistent. By our assumption,
L + φ is also axiomatized by frame-based formulas for E. Then G is not an
(L+φ)-frame and by applying Theorem 3.4.12 to the logic L+φ, we obtain that
there exists a frame H ∈ M(L,E) such that HEG. Since FG(L) is a E-downset,
H is an L-frame. Since H ∈ M(L + φ,E) we have that H 6|= φ. Therefore, we
found a finite L-frame that refutes φ. This means that L has the fmp. This
contradiction finishes the proof of the theorem.

¤

Thus, it is impossible to axiomatize all the intermediate logics by frame-based
formulas only. In order to axiomatize all intermediate logics by formulas arising
from finite frames one has to generalize frame-based formulas by introducing a
new parameter. Zakharyaschev’s canonical formulas are extensions of the Jankov-
de Jongh formulas and (cofinal) subframe formulas with a new parameter. Instead
of considering just finite rooted frame F we need to consider a pair (F,D), where
D is some set of antichains of F. We would also need to modify the definition of E
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to take this parameter into account. Formulas arising from such pairs are called
“canonical formulas”. They provide axiomatizations of all intermediate logics.
We do not discuss canonical formulas here. For a systematic study of canonical
formulas the reader is referred to [24, §9].



Chapter 4

The logic of the Rieger-Nishimura
ladder

In this chapter, which is based on [8], we apply the tools and techniques devel-
oped in the previous chapter to the logic RN of the Rieger-Nishimura ladder. The
logic RN was first studied by Kuznetsov and Gerciu [83], Gerciu [48], and inde-
pendently by Kracht [73]. Kuznetsov and Gerciu [83] introduced an intermediate
logic KG of which RN is a proper extension. This logic will play an important
role in our investigations. We show that the structure of finitely generated KG
and RN-frames is quite simple. These frames are the finite sums of 1-generated
descriptive frames.

We apply the technique of frame-based formulas in two ways. Firstly, using
the Jankov-de Jongh formulas we construct a continuum of extensions of KG that
do not have the finite model property. Secondly, we give a simple axiomatization
of RN using subframe formulas and the Jankov-de Jongh formulas. In contrast to
the extensions of KG, every extension of RN does have the finite model property.
This result was first proved by Gerciu [48], and independently by Kracht [73].
However, both proofs contain some gaps. We will develop the technique of gluing
models and provide a rather simple proof of this theorem.

Finally, we show that RN.KC = RN + (¬p ∨ ¬¬p) is the unique pre-locally
tabular extension of KG. It follows that an extension L of KG (RN) is not locally
tabular iff L ⊆ RN.KC. For extensions of RN we establish another criterion of
local tabularity. For every L ⊇ RN we define the internal depth of L and prove
that L is locally tabular iff its internal depth is finite.

This chapter is organized as follows: in the first section we introduce RN,
define the n-scheme logics over IPC and n-conservative extensions of IPC. We
prove that RN is the 1-scheme logic over IPC and the greatest 1-conservative
extension of IPC. In Section 4.2 we describe the finite rooted frames of RN. The
next section introduces the logic KG and characterizes the finitely generated
descriptive frames of KG. In Section 4.4 we prove that every extension of RN
has the fmp. In Section 4.5, continuum many extensions of KG without the finite

79
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model property are constructed. In the last two section we give an axiomatization
of RN using the Jankov-de Jongh formulas and subframe formulas and investigate
locally tabular extensions of KG and RN.

4.1 n-conservative extensions, linear and verti-

cal sums

In this section we recall the structure of the 1-generated free Heyting algebra and
its dual 1-Henkin frame. We call them the Rieger-Nishimura lattice and ladder
respectively. We will also introduce the n-conservative and the n-scheme logics
over IPC and show that the logic of the n-Henkin model is the n-scheme logic
over IPC and the greatest n-conservative extension of IPC. In the last section
we define the linear and vertical sums of descriptive frames and Heyting algebras
and prove that these operations are dual to each other.

4.1.1 The Rieger-Nishimura lattice and ladder

In the previous chapter we discussed finitely generated free Heyting algebras and
their dual Henkin models. In this chapter we will take a closer look at the simplest
finitely generated free Heyting algebra, namely, the 1-generated free Heyting alge-
bra. The 1-generated free Heyting algebra was described independently by Rieger
[106] and Nishimura [102] and is called the Rieger-Nishimura lattice after them.
Recall that by Theorem 3.2.13(2), the 1-Henkin model of IPC is isomorphic to
the model shown in Figure 4.1, where V (p) = {w0}.

4.1.1. Definition.

1. Denote by L the 1-Henkin frame. We call L the Rieger-Nishimura ladder.
We also let L0 denote the upper part of L, i.e., the frame L \ {ω}.

2. Denote by N the 1-generated free Heyting algebra. We call N the Rieger-
Nishimura lattice.

By Theorem 3.2.9, L0 is isomorphic to the 1-universal frame. By Theorem 3.3.2,
every finite upset of L is admissible. It is also easy to see that the carrier set of L0

is not admissible. We will give a topological argument to this fact. Suppose the
carrier set of L0 is admissible. Then it is (topologically) closed. Every closed sub-
set of a compact space is compact. Thus L0 is compact, which is a contradiction;
F = {R−1(wi)}i∈ω is a family of closed subsets of L0 with the finite intersection
property but

⋂
F = ∅.

By the duality between descriptive frames and Heyting algebras, the Rieger-
Nishimura lattice N is isomorphic to the Heyting algebra of all admissible subsets
of L. The generator of N is the upset V (p) = {w0}. It is easy to check that N is
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w0 w1

w3

w4

w6 w7

w2

w5

ω

Figure 4.1: The Rieger-Nishimura ladder L

isomorphic to the lattice shown in Figure 4.2 and every element of N is represented
by one of the Rieger-Nishimura polynomials:

4.1.2. Definition. The Rieger-Nishimura polynomials are given by the follow-
ing recursive definition:

1. g0(p) := p,

2. g1(p) := ¬ p,

3. f1(p) := p ∨ ¬p,

4. g2(p) := ¬¬ p,

5. g3(p) := ¬¬ p→ p,

6. gn+4(p) := gn+3(p)→ (gn(p)∨ gn+1(p)),

7. fn+2(p) := gn+2(p)∨ gn+1(p).

Let A = (A,∨,∧,→, 0) be a Heyting algebra. For every element a ∈ A let

[a) = {b ∈ A : a ≤ b}

and
(a] = {b ∈ A : b ≤ a}.

[a) and (a] are called the principal filter and the principal ideal generated by a,
respectively. It is obvious that the principal filters [gk(p)) and [fk(p)) are proper
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0

g4(p)

1

g3(p)f2(p)

f3(p)

g2(p)

g1(p)

f1(p)

g0(p)

Figure 4.2: The Rieger-Nishimura lattice N

filters of N for every k ∈ ω. Moreover, it is obvious that the unit filter {1} is a
proper filter of N, and that every proper filter of N is principal. Furthermore,
{1} and [gk(p)), for every k ∈ ω, are the only prime filters of N.

4.1.3. Definition. Let L be labeled by wk’s as it is shown in Figure 4.1. For
every k ∈ ω:

1. Let Lgk
denote the generated subframe of L generated by the point wk, i.e.,

Lgk
= (R(wk), R ¹ R(wk)),

2. Let Lfk
denote the generated subframe of L generated by the points wk and

wk−1, i.e., Lfk
= (R(wk) ∪R(wk−1), R ¹ R(wk) ∪R(wk−1)),

3. Let Ngk
denote the algebra corresponding to Lgk

,

4. Let Nfk
denote the algebra corresponding to Lfk

.

The next proposition shows that Lgk
and Lfk

are precisely those generated sub-
frames of L that satisfy gk(p) and fk(p), respectively.

4.1.4. Proposition. For every k ∈ ω we have:

1. R(wk) = {w ∈ L : w |= gk(p)},

2. R(wk) ∪R(wk−1) = {w ∈ L : w |= fk(p)}.

Proof. The proof is a routine check. ¤
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Now we introduce the logic that we are going to study in this chapter.

4.1.5. Definition.

1. Let RN denote the logic of L, i.e., RN = Log(L).

2. Let RN denote the variety generated by N, i.e., RN = HSP(N).

The rest of this chapter will be devoted to the investigation of RN (RN ) and
other intermediate logics (varieties of Heyting algebras) related to RN (to RN ).

4.1.6. Remark. Before engaging into the technical details we mention one more
example of a very natural “appearance” of the Rieger-Nishimura ladder from a
different perspective. This fact was first observed by L. Esakia [36]. Consider the
ordered set (N,≤) of natural numbers. Define the relation R on N by putting:
nRm if n −m ≥ 2. It is now easy to check that the frame (N, R) is isomorphic
to L0, the upper part of the Rieger-Nishimura ladder.

4.1.2 n-conservative extensions and the n-scheme logics

In this section we describe some syntactic properties of RN. They will not be
used subsequently but give some motivation for studying RN.

4.1.7. Definition. Suppose L and S are intermediate logics. We say that S is
an n-conservative extension of L if L ⊆ S and for every formula φ(p1, . . . , pn) in
n variables we have L ` φ iff S ` φ.

Note that this definition, as well as the next one, apply not only to intermediate
logics, but to any propositional logic. By a propositional logic we mean any set
of formulas (not necessarily in the language L), closed under (Subst).

4.1.8. Definition. Let L be an intermediate logic. A set of formulas L(n) is
called the n-scheme logic of L if for every ψ(p1, . . . , pk) and k ∈ ω:

ψ(p1, . . . , pk) ∈ L(n) ⇔ for all χ1(p1, . . . pn), . . . , χk(p1, . . . , pn)

we have L ` ψ(χ1, . . . , χk).

It is easy to see L(n) is closed under (MP) and (Subst). Therefore, L(n) is an
intermediate logic, for every n ∈ ω.

4.1.9. Proposition. Let L be an intermediate logic.

1. L′ is an n-conservative extension of L iff L ⊆ L′ ⊆ L(n).

2. L(n) is the largest n-conservative extension of L.
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Proof. Suppose L′ is n-conservative. Let L′ ` ψ(p1, . . . , pk). Then for ar-
bitrary χ1(p1, . . . , pn), . . . , χk(p1, . . . , pn) we have that L′ ` ψ(χ1, . . . , χk). By
n-conservativity L ` ψ(χ1, . . . , χk). By the definition of the n-scheme logic
L(n) ` ψ(p1, . . . , pk). Therefore, L′ ⊆ L(n).

For the converse it is sufficient to show that L(n) is n-conservative over L.
Let L(n) ` ψ(p1, . . . , pk). Then L ` ψ(ψ1, . . . , ψk), for every ψi(p1, . . . , pn), i ≤ k
and k ∈ ω. This obviously holds for ψi = pi, for i ≤ k. Thus, L ` ψ(p1, . . . , pk).

(2) The result follows from (1). ¤

The next theorem spells out the connection between the n-scheme logic of IPC
and the n-universal and n-Henkin models. Recall from the previous chapter that
for every n ∈ ω H(n) = (H(n), R,P) and U(n) = (U(n), R′,P ′) denote the n-
Henkin frame and the n-universal frame, i.e., the underlying descriptive frames of
the n-Henkin model H(n) and the n-universal model U(n), respectively. Recall
also that for every frame F, we denote by Log(F) the set of formulas that are
valid in F.

4.1.10. Theorem.

1. Log(U(n)) is the greatest n-conservative extension of IPC.

2. Log(H(n)) = Log(U(n)) = IPC(n).

Proof. (1) Clearly, Log(U(n)) is an intermediate logic. Therefore, IPC ⊆
Log(U(n)). Now suppose Log(U(n)) ` φ(p1, . . . , pn), then φ is valid in the n-
universal frame and hence it is valid in the n-universal model. Thus, by Theo-
rem 3.2.17, IPC ` φ. Therefore, Log(U(n)) is n-conservative over IPC.

Let L be an n-conservative extension of IPC. If L 6⊆ Log(U(n)), then there
exists a formula φ such that φ ∈ L and φ /∈ Log(U(n)). Therefore, there exists x ∈
U(n) such that x 6|= φ. Let F be the rooted upset of U(n) generated by x. Then F

is finite and F 6|= φ. Let χ(F) be the de Jongh formula of F. By the definition of
the de Jongh formulas χ(F) is in n variables.1 If χ(F) /∈ L, then F is an L-frame
refuting φ, which contradicts the assumption φ ∈ L. Therefore, χ(F) ∈ L. But
then χ(F) ∈ IPC as L is n-conservative over IPC, which is obviously false. Thus,
L ⊆ Log(U(n)) and Log(U(n)) is the greatest n-conservative extension of IPC.

(2) That Log(H(n)) is the greatest n-conservative extension of IPC is proved
in a similar way as (1), using the fact that H(n) is completely determined by
U(n). That is, H(n) |= φ iff U(n) |= φ The result now follows from (1). ¤

4.1.11. Corollary. RN is the 1-scheme logic of IPC and the greatest 1-con-
servative extension of IPC.

Proof. The result is an immediate consequence of Theorem 4.1.10. ¤

1Note that in this case it is essential that we take the de Jongh formula and not the Jankov
formula. This ensures us that this formula is in n propositional variables.
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4.1.3 Sums of Heyting algebras and descriptive frames

In this section we recall the constructions of the linear sum of descriptive frames
and the vertical sum of Heyting algebras used subsequently in this chapter.

4.1.12. Definition. (see e.g., [30, p.17 and p.179]) Let F1 = (W1, R1) and
F2 = (W2, R2) be Kripke frames. The linear sum of F1 and F2 is the Kripke
frame F1 ⊕ F2 := (W1 ]W2, R) such that W1 ]W2 is a disjoint union of W1 and
W2 and for every w, v ∈W1 ]W2 we have

wRv iff w, v ∈ W1 and wR1v,
or w, v ∈ W2 and wR2v,
or w ∈ W2 and v ∈W1.

In other words, R = R1 ∪R2 ∪ (W2 ×W1).

Figuratively speaking, the operation ⊕ puts F1 on top of F2. Now we define the
dual operation of ⊕ for Heyting algebras.

4.1.13. Definition. Let A1 and A2 be Heyting algebras. The vertical sum
A1⊕A2 of A1 and A2 is obtained from a linear sum of A2 ⊕ A1 by identifying
the greatest element of A1 with the least element of A2.

Figuratively speaking, ⊕ puts A2 on top of A1. The next proposition was first
observed by Troelstra [122].

4.1.14. Proposition. For every Heyting algebra A1 and A2 the vertical sum
A1⊕A2 is also a Heyting algebra.

Proof. The proof is just spelling out the definitions. ¤

Next we extend the definition of a linear sum to descriptive frames.

4.1.15. Definition. Let F1 = (W1, R1,P1) and F2 = (W2, R2,P2) be descriptive
frames. The linear sum of F1 and F2 is the descriptive frame F1⊕F2 = (W,R,P),
where (W,R) is the linear sum of (W1, R1) and (W2, R2) and P is such that

U ∈ P iff U ∈ P1 or U = W1 ∪ S, where S ∈ P2.
2

The operations of the vertical sum of Heyting algebras and the linear sum of
descriptive frames are dual to each other.

4.1.16. Theorem. Let A1 and A2 be Heyting algebras and F1 = (W1, R1,P1)
and F2 = (W2, R2,P2) be descriptive frames. Then

2In topological terminology we take the linear sum of the Kripke frames and the topological
sum of the corresponding topologies.
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1. (F1 ⊕ F2)
∗ is isomorphic to F∗

1⊕F∗
2.

2. (A1⊕A2)∗ is isomorphic to (A1)∗ ⊕ (A2)∗.

Proof. (Sketch) (1) We define h : (F1 ⊕ F2)
∗ → F∗

1⊕F∗
2 by putting for every

element of (F1 ⊕ F2)
∗, i.e., an admissible upset U of F1 ⊕ F2:

h(U) =

{
U if U ⊆ W1,
U ∩W2 otherwise.

(2) We define f : (A1⊕A2)∗ → (A1)∗ ⊕ (A2)∗ by putting for every point of
(A1⊕A2)∗, i.e., a prime filter F of A1⊕A2:

f(F ) =

{
F if F ( A2,
F ∩ A1 otherwise.

We exclude the case F = A2 in the definition of f , since in that case F is not a
proper subset of A2 and therefore is not a filter of A2. It is not hard to see that
f and h are isomorphisms.

¤

Next we generalize the notions of the vertical sum of two Heyting algebras and
the linear sum of two descriptive frames to countable sums; see [10].

4.1.17. Definition. Let {Ai}i∈ω be a countable family of Heyting algebras.
The vertical sum of {Ai}i∈ω is the partially ordered set

⊕
i∈ωAi = (

⋃
i∈ω Ai ∪

{1},≤), where Ai = (Ai,∨i,∧i,→i, 0i) is an isomorphic copy of Ai, such that
Ai ∩Ai+1 = {1i} = {0i+1}. Let ≤i be the order of Ai. The order ≤ is defined by
letting for every a, b ∈

⋃
i∈ω Ai:

a ≤ b iff a ∈ Ai, b ∈ Aj and i < j,
or there is i ∈ ω such that a, b ∈ Ai and a ≤i b,
or b = 1.

Figuratively speaking, we form a tower from a countable family of Heyting alge-
bras by putting all algebras on top of each other, and then adjoining a new top
element. The reason that we adjoin a new top to the vertical sum of Heyting
algebras is to make sure that the resulting object is again a Heyting algebra.

4.1.18. Proposition. A vertical sum of a countable family of Heyting algebras
is also a Heyting algebra.

Proof. The proof is a routine check. ¤
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Note that the filter {1} of ⊕i∈ωAi is a prime filter, which implies that the corre-
sponding descriptive frame should have a root. This is the motivation behind the
following definition of the linear sum of a countable family of descriptive frames.

4.1.19. Definition. Let {Fi}i∈ω be a countable family of descriptive frames,
where Fi = (Wi, Ri,Pi) for every i ∈ ω. The linear sum of {Fi}i∈ω is a frame⊕

i∈ω Fi = ({∞} ∪
⊎
i∈ω,Wi, R,P) such that for every w, v ∈

⊎
i∈ωWi:

wRv iff w ∈ Wi, v ∈ Wj and i > j,
or there is i ∈ ω such that w, v ∈ Wi and wRiv,
or w = ∞.

and P is such that

U ∈ P iff U is an upset, U 6=
⊎
i∈ωWi and U ∩Wi ∈ Pi, for every i ∈ ω.

Figuratively speaking, we form a tower from a countable family of descriptive
frames by putting all frames below each other, and then adjoining a new root to
it. Moreover, the complement of the root is not admissible.

4.1.20. Proposition. A linear sum of a countable family of descriptive frames
is also a descriptive frame.

Proof. The proof is a routine check. ¤

We have the following infinite analogue of Theorem 4.1.16.

4.1.21. Theorem. Let {Ai}i∈ω be a family of Heyting algebras and {Fi}i∈ω a
family of descriptive frames. Then

1. (
⊕

i∈ω Fi)
∗ is isomorphic to

⊕
i∈ωF

∗
i .

2. (
⊕

i∈ωAi)∗ is isomorphic to
⊕

i∈ω(Ai)∗.

Proof. The proof is similar to the proof of Theorem 4.1.16. ¤

If each Ai and Fi is equal to A or F respectively, then we simply write
⊕

ωA or⊕
ω F. Next we consider linear sums of finitely generated frames.

4.1.22. Theorem. If a descriptive finitely generated frame F is isomorphic to
G⊕H and both G and H are descriptive, then G and H are also finitely generated.
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Proof. Let F be n-generated, for some n ∈ ω. This means that there is a
valuation V : Propn → F such that the upsets V (p1), . . . , V (pn) generate F∗.
As was shown in the previous chapter, V defines a coloring of F. Let V ′ be the
restriction of V to G. We show that V ′(p1), . . . , V

′(pn) generate G∗, which implies
that G is finitely generated. Suppose G∗ is not generated by V ′(p1), . . . , V

′(pn).
Then by the Coloring Theorem, (see Theorem 3.1.5) there exists a descriptive
frame T and a p-morphism f : G → T such that for every u, v ∈ G, f(u) = f(v)
implies col(u) = col(v). Consider the frame T⊕H and let f̄ : G⊕H → T⊕H be
such that

f̄(x) =

{
f(x) if x ∈ G,
x if x ∈ H.

Then it is easy to see that f̄ is a p-morphism and for every u, v ∈ G ⊕ H,
f̄(u) = f̄(v) implies col(u) = col(v). By the Coloring Theorem, this means that
G⊕H is not generated by V (p1), . . . , V (pn), which is a contradiction. Therefore,
G is n-generated. The proof that H is n-generated is similar. ¤

The next lemma shows that an n-generated descriptive frame cannot be a linear
sum of more than 2n frames.

4.1.23. Lemma. Suppose F is an n-generated descriptive frame isomorphic to
F1 ⊕ . . .⊕ Fm. Then m ≤ 2n.

Proof. Let V : Propn → F be such that V (p1), . . . , V (pn) generate the Heyting
algebra F∗. Then V defines a coloring of F. Suppose m > 2n. Given the fact
that every V (pi) is an upset of F, for each i there can be at most one j such that
Fj contains both points that make pi true, and points that make pi false. So,
if m > 2n there exists j < m such that col(x) = col(y) for every x, y in Fj or
Fj+1. Consider the smallest equivalence relation that identifies all the points in
Fj and Fj+1. Then E is a bisimulation equivalence and every E-equivalence class
contains points of the same color. This, by the Coloring Theorem, implies that
F∗ is not generated by V (p1), . . . , V (pn), which is a contradiction. ¤

4.2 Finite frames of RN

This section is devoted to finite frames of RN. We characterize the finite rooted
RN-frames and the finite subdirectly irreducible algebras of RN in terms of
linear and vertical sums. First we characterize the generated subframes of L and
the homomorphic images of N.

4.2.1. Theorem.

1. A descriptive frame F is a generated subframe of L iff F is isomorphic to
L, Lgk

or Lfk
for some k ∈ ω.
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2. Every proper generated subframe of L is finite.

Proof. The proof is a routine verification. The only fact that needs to be pointed
out is that since the carrier set of L0 is not compact, see Section 4.1.1, L0 is not
a generated subframe of L. ¤

4.2.2. Corollary.

1. A Heyting algebra A is a homomorphic image of N iff A is isomorphic to
N, Ngk

or Nfk
for some k ∈ ω.

2. Every proper homomorphic image of N is finite.

Proof. The theorem follows immediately from Theorem 4.2.1 and the duality
between Heyting algebras and descriptive Kripke frames. ¤

Similarly to Theorem 4.2.1 and Corollary 4.2.2 we can characterize the gener-
ated subframes of Lgk

and Lfk
, and the homomorphic images of Ngk

and Nfk
,

respectively.

4.2.3. Theorem. For every k ∈ ω:

1. A frame F is a generated subframe of Lgk
iff F is isomorphic to Lgj

for some
j ≤ k and j 6= k − 1, or F is isomorphic to Lfj

for some j ≤ k − 2.

2. A frame F is a generated subframe of Lfk
iff F is isomorphic to Lgj

for some
j ≤ k, or F is isomorphic to Lfj

for some j ≤ k.

3. A Heyting algebra A is a homomorphic image of Ngk
iff N is isomorphic

to Ngj
for some j ≤ k, and j 6= k − 1 or N is isomorphic to Nfj

for some
j ≤ k − 2.

4. A frame N is a generated subframe of Nfk
iff N is isomorphic to Ngj

for
some j ≤ k, or N is isomorphic to Nfj

for some j ≤ k.

Proof. The proof is a routine verification. ¤

Next we characterize the p-morphic images of L and the subalgebras of N. We
will show that up to isomorphism there are three different types of p-morphic
images of L and subalgebras of N. In order to describe them, we will use the
linear sums of descriptive frames and vertical sums of Heyting algebras.

4.2.4. Definition.

1. Let 2 denote the two-element Boolean algebra.

2. Let 4 denote the the four-element Boolean algebra.
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4.2.5. Proposition.

1. The frame 2∗ consists of a single reflexive point.

2. The frame 4∗ is isomorphic to 2∗ ] 2∗.

Proof. The proof is easy. ¤

The following result was first established by Kracht [73] using descriptive frames
for IPC, see also [10]. Below we will give a purely algebraic proof, which in our
opinion is the simplest one.

4.2.6. Theorem. A Heyting algebra A is a subalgebra of N iff A is isomorphic
to N,

⊕
i∈ωBi, (

⊕n

i=1Bi)⊕2, or (
⊕n

i=1Bi)⊕N, for some n ∈ ω, where each Bi

is isomorphic to 2 or 4.

Proof. Suppose A = (A,∨,∧,→, 0) is a subalgebra of N. If A is a chain, then A is
isomorphic to

⊕
i∈αBi, for α ≤ ω, where each Bi is isomorphic to 2. Now assume

that A is not isomorphic to a chain. Then there are at least two incomparable
elements a and b in A. Since N is well-founded we can assume that a and b are
the least two incomparable elements of A; that is, the set {c ∈ A : c ≤ a or c ≤ b}
is a chain. Then from the structure of N it follows directly that there is k ∈ ω
such that one of the following four cases holds:

1. {a, b} = {f2k, g2k+1}.

2. {a, b} = {g2k, f2k−1}.

3. {a, b} = {g2k, g2k−1}.

4. {a, b} = {g2k, g2k+1}.

Case 1. If {a, b} = {f2k, g2k+1}, then the element f2k−1 = f2k ∧ g2k+1 belongs to
A. Looking at the filter [f2k−1) we see that it is isomorphic to N. Moreover,
in the same way as g0 generates N, f2k generates [f2k−1). So the whole filter
[f2k−1) is contained in A. Now since a and b are the least two incomparable
elements in A, we have that A\[f2k−1) is a chain. Therefore, A is isomorphic

to N or
⊕n

i=1Bi⊕N, where each Bi is isomorphic to 2.

Case 2. The proof is similar to the proof of Case 1. If {a, b} = {g2k, f2k−1}, then
the element f2k = g2k ∧ f2k−1 belongs to A, and so the whole filter [f2k) is
contained in A. Now [f2k) is isomorphic to N, and A\ [f2k) is a chain. Thus

A is isomorphic to N or
⊕n

i=1Bi⊕N, where each Bi is isomorphic to 2.
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Case 3. If {a, b} = {g2k, g2k−1}, then f2k−1 = g2k ∧ g2k−1 and f2k = g2k ∨ g2k−1

belong to A. Since g2k and g2k−1 are the least two incomparable elements,
none of g2(k−1), f2k−1, f2k, g2k+1 are in A. Therefore, every element of A is
below a ∧ b, above a ∨ b, or in {a, b, a ∧ b, a ∨ b}, which is isomorphic to 4.
Moreover, (a ∧ b] is a chain. If [a ∨ b) is also a chain, then A is isomorphic

to
⊕

i∈ωBi or (
⊕n

i=1Bi)⊕2, where each Bi is isomorphic to 2 or 4. (In fact
there will be exactly one Bi isomorphic to 4.) If [a∨ b) is not a chain, then
let c and d be the least incomparable elements in [a ∨ b). Then one of the
above four possibilities holds for {c, d}, and we are back in one of the four
cases, but this time for {c, d}. Repeating this process we eventually obtain

that A is isomorphic to one of N,
⊕

i∈ωBi, (
⊕n

i=1Bi)⊕2, or (
⊕n

i=1Bi)⊕N,
where each Bi is isomorphic to 2 or 4.

Case 4. The proof is similar to the proof of Case 3. If {a, b} = {g2k, g2k+1}, then
f2k = g2k ∧ g2k+1 and f2k+1 = g2k ∨ g2k+1 are in A, and none of g2k−1, f2k−1,
f2k, and g2(k+1) belong to A. Therefore, every element of A is either below
a ∧ b, above a ∨ b, or in {a, b, a ∧ b, a ∨ b}, and (a ∧ b] is a chain; and we
proceed as in 3.

¤

4.2.7. Corollary. A descriptive frame F is a p-morphic image of L iff F is
isomorphic to L,

⊕
i∈ω Fi, (

⊕n
i=1 Fi) ⊕ 2∗ or (

⊕n
i=1 Fi) ⊕ L, where each Fi is

isomorphic to either 2∗ or 4∗ and n ∈ ω.

Proof. Follows immediately from Theorem 4.2.6 and the duality between Heyting
algebras and descriptive frames. ¤

Theorem 4.2.1 and Corollary 4.2.7 enable us to characterize generated subframes
of p-morphic images of L.

4.2.8. Theorem.

1. An infinite descriptive frame F is a generated subframe of a p-morphic image
of L iff F is isomorphic to

⊕
i∈ω Fi or (

⊕n
i=1 Fi) ⊕ L, where each Fi is

isomorphic to 2∗ or 4∗ and n ∈ ω.

2. A finite frame F is a generated subframe of a p-morphic image of L iff
F is isomorphic to (

⊕n
i=1 Fi) ⊕ Lgk

or (
⊕n

i=1 Fi) ⊕ Lfk
, where each Fi is

isomorphic to 2∗ or 4∗ and k, n ∈ ω.

3. A finite rooted frame F is a generated subframe of a p-morphic image of L

iff F is isomorphic to (
⊕n

i=1 Fi)⊕Lgk
, where each Fi is isomorphic to 2∗ or

4∗ and k, n ∈ ω.
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Proof. (1) The right to left implication follows immediately from Corollary 4.2.7.
Conversely, suppose an infinite descriptive frame F is a generated subframe of a
p-morphic image of L. Then there exists an infinite descriptive frame G such
that F is a generated subframe of G and G is a p-morphic image of L. Then
by Corollary 4.2.7, G is isomorphic to

⊕
i∈ω Fi or (

⊕n
i=1 Fi) ⊕ L. It is easy to

see that neither
⊕

i∈ω Fi nor (
⊕n

i=1 Fi) ⊕ L contains a proper infinite generated
subframe. Therefore, F is isomorphic to either

⊕
i∈ω Fi or (

⊕n
i=1 Fi) ⊕ L.

(2) The right to left implication again follows from Corollary 4.2.7. Conversely,
suppose G is a p-morphic image of L and F is a finite generated subframe of
G. Then by Corollary 4.2.7, G is isomorphic to L,

⊕
i∈ω Fi, (

⊕n
i=1 Fi) ⊕ 2∗, or

(
⊕n

i=1 Fi) ⊕ L. Consequently, in the first case F is isomorphic to Lgk
or Lfk

, in
the second and third cases F is isomorphic to

⊕n
i=1 Fi, and in the fourth case F

is isomorphic to (
⊕n

i=1 Fi)⊕Lgk
or (
⊕n

i=1 Fi)⊕Lfk
, where each Fi is isomorphic

to 2∗ or 4∗.
(3) The result follows immediately from (2) since for every k > 0 the frame

Lfk
is not rooted. ¤

We recall that for a class of algebrasK, H(K), S(K), and P(K) denote the classes
of all homomorphic images, subalgebras, and direct products of the algebras from
K, respectively.

4.2.9. Corollary.

1. An infinite Heyting algebra A belongs to HS(N) iff A is isomorphic to⊕
i∈ωBi or (

⊕n

i=1Bi)⊕N, where each Bi is isomorphic to 2 or 4 and
k, n ∈ ω.

2. A finite Heyting algebra A belongs to HS(N) iff A is isomorphic to (
⊕n

i=1Bi)
⊕Nk, where each Bi is isomorphic to 2 or 4 and k, n ∈ ω.

Proof. The result follows immediately from Corollary 4.2.8 and the duality
theory for Heyting algebras. ¤

4.2.10. Corollary. A finite rooted frame F is an RN-frame iff F is isomorphic
to (
⊕n

i=1 Fi) ⊕ Lgk
, where each Fi is isomorphic to 2∗ or 4∗ and k, n ∈ ω.

Proof. It is obvious that if a finite rooted frame F is isomorphic to (
⊕n

i=1 Fi) ⊕
Lgk

⊕, where each Fi is isomorphic to 2∗ or 4∗, then F is an RN-frame. Con-
versely, suppose a finite rooted frame F is an RN-frame. Then F is a generated
subframe of a p-morphic image of L. To see this, note that if F is not a generated
subframe of a p-morphic image of L, by Theorem 3.3.3, we have L |= χ(F). Then,
as RN = Log(L) and F is an RN-frame we have F |= χ(F), which is a contradic-
tion. Thus F is a generated subframe of a p-morphic image of L. Therefore, by
Theorem 4.2.8(3), F is isomorphic to (

⊕n
i=1 Fi)⊕Lgk

, where each Fi is isomorphic
to 2∗ or 4∗. ¤
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4.2.11. Theorem. A finite subdirectly irreducible algebra A belongs to RN if
A is isomorphic to (

⊕n

i=1Bi)⊕Ngk
, where each Bi is isomorphic to 2 or 4 and

k, n ∈ ω.

Proof. The theorem follows immediately from Theorem 4.2.10 and the duality
theory for Heyting algebras. ¤

Similarly to Theorem 4.2.6 and Corollary 4.2.7 we can characterize subalgebras
and p-morphic images of Lgk

’s and Ngk
’s.

4.2.12. Theorem. For every k, n ∈ ω:

1. The frame
⊕n

i=1 Fi⊕Lgk
is a p-morphic image of Lg(k+3n)

, where each Fi is
isomorphic to 2∗ or 4∗.

2. The algebra
⊕n

i=1Bi⊕Ngk
, is a subalgebra of Ng(k+3n)

, where each Bi is
either empty of isomorphic to 2 or 4.

Proof. The proof is an adaptation of the proofs of Theorem 4.2.6 and Corol-
lary 4.2.7. ¤

4.2.13. Lemma. Lgk
is not a p-morphic image of Lgm

, for m 6= k.

Proof. Suppose there exists a p-morphism f : Lgm
→ Lgk

, then by Proposi-
tion 3.1.7, f is a composition of α and β-reductions. It is easy to see that by
applying α and β-reductions to Lgm

we cannot obtain a frame isomorphic to Lgk
.

¤

4.3 The Kuznetsov-Gerciu logic

In this section we introduce the logic whose finitely generated frames are the finite
linear sums of 1-generated frames. This logic and the corresponding variety were
first introduced and studied by Kuznetsov and Gerciu [83].

4.3.1. Definition. Let

φKG := (p→ q) ∨ (q → r) ∨ ((q → r) → r) ∨ (r → (p ∨ q))

We call IPC+φKG the Kuznetsov-Gerciu logic and denote it by KG. We denote
the corresponding variety by KG.

Our first task is to show that KG is a subframe logic. Consider the frames K1,
K2, and K3 shown in Figure 4.3.
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w2 w3 w4

K1

w1

v2 v4

K2

v1

v3 v5

u2 u3

K3

u1

u4

u5

Figure 4.3: The frames K1,K2, and K3

4.3.2. Lemma. Suppose F = (W,R,P) is a descriptive frame.

1. If either K1, K2 or K3 is a p-morphic image of a subframe of F, then F 6|=
φKG.

2. If F |= φKG, then F |= β(K1) ∧ β(K2) ∧ β(K3).

Proof. (1) First we show that Ki 6|= φKG for every i = 1, 2, 3. In case i = 1 we let
V1(p) = {w2}, V1(q) = {w3} and V1(r) = {w4}. If i = 2, then let V2(p) = {v2, v3},
V2(q) = {v3} and V2(r) = {v5}. And if i = 3, then we put V3(p) = {u5},
V3(q) = {u2} and V3(r) = {u4, u5}. It is easy to check that (Ki, Vi) 6|= φKG for
each i = 1, 2, 3. Now assume that G is a subframe of F such that Ki is a p-morphic
image of G for some i = 1, 2, 3. Suppose f : G → Ki is this p-morphism. Let V ′

be a valuation on G defined by

V ′(p) = f−1(Vi(p))

Then (G, V ′) 6|= φKG. Now let us extend the valuation V ′ on G to a valuation V
on F as in the proof of Lemma 3.3.14. That is, we put

V (p) = W \R−1(V ′(p)).

Then it is easy to see that (F, V ) 6|= φKG.
(2) is an immediate consequence of (1). ¤

Next we prove the converse of Lemma 4.3.2 for Kripke frames. Consequently, we
will axiomatize KG by the subframe formulas of K1,K2, and K3.

4.3.3. Lemma. Suppose F = (W,R) is a rooted Kripke frame.

1. If neither K1, K2, nor K3 is a subframe of F, then F |= φKG.
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2. If F |= β(K1) ∧ β(K2) ∧ β(K3), then F |= φKG.

Proof. (1) Suppose F 6|= φKG. Let w0 be the root of F. Then there exists a
valuation V on W such that M, w0 6|= φKG, where M = (F, V ). Therefore, there
exist w1, w2, w3, w4 ∈ R(w) such that M, w1 |= p and M, w1 6|= q, M, w2 |= q and
M, w2 6|= r, M, w3 |= q → r and M, w3 6|= r, and M, w4 |= r, M, w4 6|= p and
M, w4 6|= q.

Let us assume that K1 is not a subframe of F, and show that then either K2 or
K3 is a subframe of F. Since M, w2 |= q, M, w4 6|= q and M, w4 |= r, M, w2 6|= r,
we have that w2 and w4 are incomparable. As M, w3 |= q → r and M, w3 6|= r, it
follows that M, w3 6|= q, which together with M, w2 |= q gives us ¬(w2Rw3). Also
since M, w3 |= q → r, M, w2 |= q and M, w2 6|= r, we have that ¬(w3Rw2). Thus,
w2 and w3 are incomparable as well. As M, w4 |= r and M, w3 6|= r, we also have
that ¬(w4Rw3). Therefore, as K1 is not a subframe of F, we have that w3Rw4.
Otherwise the subframe of F based on {w0, w2, w3, w4} would be isomorphic to
F1. Moreover, M, w2 |= q and M, w1 6|= q give us ¬(w2Rw1), and M, w1 |= p and
M, w4 6|= p give us that ¬(w1Rw4), and hence that ¬(w1Rw3). Since K1 is not a
subframe of F, we have that either w1Rw2 or w4Rw1. First suppose that w1Rw2.
Then as w3 and w2 are incomparable we have that ¬(w3Rw1) and ¬(w4Rw1).
Therefore, K2 is a subframe of F. Now suppose that w4Rw1. Then as w4 and w2

are incomparable we have that ¬(w1Rw2), which implies that K3 is a subframe
of F. Thus, if F 6|= φKG, then either K1, K2 or K3 is a subframe of F.

(2) is an immediate consequence of (1). ¤

4.3.4. Theorem. KG = IPC + β(K1) ∧ β(K2) ∧ β(K3).

Proof. Suppose F is a descriptive KG-frame. Then, by Lemma 4.3.2(2), F |=
β(K1) ∧ β(K2) ∧ β(K3). Therefore, IPC + β(K1) ∧ β(K2) ∧ β(K3) ⊆ KG. Now
suppose F is a Kripke frame such that F |= β(K1) ∧ β(K2) ∧ β(K3). Then,
by Lemma 4.3.3(2), F is a KG-frame. As IPC + β(K1) ∧ β(K2) ∧ β(K3) is
a subframe logic, see Corollary 3.4.16(2), it follows from Theorem 3.4.17 that
IPC + β(K1) ∧ β(K2) ∧ β(K3) has the finite model property, and hence is Kripke
complete. Therefore, KG ⊆ IPC+β(K1)∧β(K2)∧β(K3), and our result follows.

¤

4.3.5. Corollary. KG = HA + [β(K1) ∧ β(K2) ∧ β(K3) = 1].

Subsequently in the paper we will use the following shorthand.

4.3.6. Definition. A frame F is called cyclic if it is a 1-generated3 descriptive
frame.

Then we have the following immediate characterization of cyclic frames.

3Recall that n-generated frames were defined in Definition 3.1.3.
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4.3.7. Theorem. A descriptive frame F is cyclic iff F is isomorphic to L, Lgk

or Lfk
, for some k ∈ ω.

Proof. Every 1-generated Heyting algebra is a homomorphic image of the 1-
generated free Heyting algebra. By the duality, this means that every cyclic
frame is a generated subframe of L.

By definition, F is cyclic iff F is a generated subframe of L. The result now
follows from Theorem 4.2.1. ¤

Thus, every cyclic frame is descriptive, moreover except for L, every cyclic frame
is finite. To characterize the finitely generated rooted KG-frames, we will need
the following technical lemma.

4.3.8. Lemma. Let F be a finitely generated rooted descriptive KG-frame.

1. There exist descriptive frames G′ and H′ such that H′ is cyclic and F is
isomorphic to G′ ⊕ H′.

2. Suppose F is isomorphic to H⊕G, where G is a non-cyclic descriptive frame
and H is a cyclic descriptive frame. Then there exist descriptive frames G′

and H′ such that H′ is cyclic and F is isomorphic to H ⊕ H′ ⊕ G′.

Proof. (1) Let r be the root of F. As F is a KG-frame, K1 is not a subframe
of F, implying that |max(F)| ≤ 2. If max(F) = {x}, then let H′ = ({x},=),
and let G′ = F \ H′. It is then obvious that H′ is a cyclic frame, and that F is
isomorphic to H′ ⊕ G′. Moreover, by Theorem 3.1.10 (see also Claim 3.1.11), G′

is a descriptive frame. If max(F) = {x, y}, then two cases are possible: either the
next layer of F consists of a single point z, or the next layer of F consists of two
distinct points z and u.

Case 1. Suppose that the next layer of F consists of a single point z, and that
zRx and zRy. Then we put H′ = ({x, y},=) and G′ = G\H′. It then follows that
H′ is a cyclic frame. By Theorem 3.1.10, G′ is a descriptive frame, and therefore
F is isomorphic to H′ ⊕ G′. Now suppose that zRx and ¬(zRy). Then we again
have two cases: either the next layer of F consists of a single point v, or the next
layer of F consists of two distinct points v and w.

Case 1a. Suppose the next layer of F consists of a single point v. Then vRz.
If ¬(vRy), then ({r, v, z, x, y}, R ¹ {r, v, z, x, y}) is a subframe of F, isomorphic
to K3, which is a contradiction. Therefore, we have vRy, and we put H′ =
({v, z, x, y}, R ¹ {v, z, x, y}) and G′ = F \ H′. It then follows that H′ is a cyclic
frame. Again by Theorem 3.1.10, G′ is a descriptive frame, and therefore F is
isomorphic to H′ ⊕ G.

Case 1b. Suppose the next layer of F consists of two distinct points v and w.
Then vRz and wRz. If ¬(vRy) and ¬(wRy), then ({r, v, w, y}, R ¹ {r, v, w, y})
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is a subframe of F isomorphic to K1, which is a contradiction. Therefore, vRy or
wRy. If ¬(vRy) and wRy, then ({r, v, z, x, y}, R ¹ {r, v, z, x, y}) is a subframe of F

isomorphic to K3; and if vRy and ¬(wRy), then ({r, w, z, x, y}, R ¹ {r, w, z, x, y})
is a subframe of F isomorphic to K3. In both cases we arrive at a contradiction.
Thus, vRy and wRy. But then we put H′ = ({z, x, y}, R ¹ {z, x, y}) and G′ =
F \H′. It follows that H′ is a cyclic frame. By Theorem 3.1.10, G′ is a descriptive
frame, and F is isomorphic to H′ ⊕ G′.

Case 2. Suppose the next layer of F consists of two distinct points z and u. If
zRx, uRx, ¬(zRy) and ¬(uRy), then ({r, z, u, y}, R ¹ {r, z, u, y}) is a subframe of
F isomorphic to K1, which is a contradiction. If zRx, ¬(zRy), uRy and ¬(uRx),
then ({r, z, u, x, y}, R ¹ {r, z, u, x, y}) is a subframe of F isomorphic to K2, which
is also a contradiction. If zRx, zRy, uRx and uRy, then we put H′ = ({x, y},=)
and G′ = F\H′. It then follows that H′ is a cyclic frame, by Theorem 3.1.10, G′ is
a descriptive frame, and F is isomorphic to H′⊕G′. Finally, if zRx, ¬(zRy), uRx
and uRy, then there are two possible cases: either the next layer of F consists of
a single point z1, or the next layer of F consists of two distinct points z1 and u1.

Case 2a. Suppose the next layer of F consists of a single point z1. If z1Rz
and z1Ru, then we put H′ = ({z, u, x, y}, R ¹ {z, u, x, y}) and G′ = F \ H′. It
then follows that H′ is a cyclic frame, by Theorem 3.1.10, G′ is a descriptive
frame, and F is isomorphic to H′ ⊕ G′. Otherwise we have that either z1Rz and
¬(z1Ru), or z1Ru and ¬(z1Rz). If z1Ru and ¬(z1Rz), then ({r, z1, z, x, y}, R ¹

{r, z1, z, x, y}) is a subframe of F isomorphic to K2, which is a contradiction. So
we can assume that z1Rz and ¬(z1Ru). If ¬(z1Ry), then we have that ({r, z1, z,
x, y}, R ¹ {r, z1, z, x, y}) is a subframe of F isomorphic to K3, which is a con-
tradiction. Therefore z1Ry, and we again have two cases: either the next layer
of F consists of a single point v1, or the next layer of F consists of two distinct
points v1 and w1. In the former case, the same argument as in Case 1a gives us
that v1Rz1 and v1Ru. Thus we put H′ = ({z1, z, u, x, y}, R ¹ {z1, z, u, x, y}) and
G′ = F \ H′. It then follows that H′ is a cyclic frame (in fact H′ is isomorphic
to Lg5). By Theorem 3.1.10, G′ is a descriptive frame, and F is isomorphic to
H′ ⊕G′. In the latter case, the same argument as in Case 1b gives us that v1Rz1,
w1Rz1, v1Ru and w1Ru. Thus, we put H′ = ({z1, z, u, x, y}, R ¹ {z1, z, u, x, y})
and G′ = F \H′. It then follows that H′ is a cyclic frame, that G′ is a descriptive
frame, and that F is isomorphic to H′ ⊕ G′.

Case 2b. Suppose the next layer of F consists of two distinct points z1 and u1.
Then the same argument as in the beginning of Case 2 guarantees that z1Rz,
z1Ry, u1Rz and u1Ru, and we move on to the next layer of F.

Continuing in this fashion, if our process terminates after finitely many steps,
we obtain that either F is isomorphic to a finite cyclic frame or that F is isomorphic
to H′ ⊕ G′ with H′ cyclic and G′ descriptive. Otherwise we obtain that F is
isomorphic to L or that F is isomorphic to L ⊕ G′ with G′ descriptive. In either
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case, our result follows.
(2) Suppose F is isomorphic to H ⊕ G, where G is a non-cyclic descriptive

frame and H is a cyclic descriptive frame. Since F is finitely generated, so is G

by Theorem 4.1.22. Therefore, by (1) there exist descriptive frames G′ and H′

such that H′ is cyclic and G is isomorphic to H′ ⊕ G′. Then F is isomorphic to
H ⊕ H′ ⊕ G′. This finishes the proof of the lemma. ¤

Recall from Definition 2.3.15 that descriptive rooted frames are such rooted frames
that the complement of the root is admissible.

4.3.9. Corollary. A rooted descriptive KG-frame F is finitely generated iff F

is isomorphic to (
⊕n

i=1 Fi) ⊕ Lgk
, where each Fi is a cyclic frame and k ∈ ω.

Proof. It is obvious that if F is isomorphic to (
⊕n

i=1 Fi) ⊕ Lgk
, where each

Fi is a cyclic frame, then F is finitely generated. Conversely, suppose F is a
finitely generated rooted descriptive KG-frame. If F is cyclic, then we are done.
Otherwise, by Lemma 4.3.8 (1), F is isomorphic to H ⊕ G, where H is cyclic and
G is descriptive. If G is cyclic, then we are done. If not, by Lemma 4.3.8(2), F is
isomorphic to H⊕H′⊕G, where H′ is cyclic and G′ is descriptive. Continuing this
process we obtain that F is isomorphic to

⊕
i∈α Fi, where each Fi is a cyclic frame.

If ω ≤ α, then by Lemma 4.1.23,
⊕

i∈α Fi is not finitely generated. Therefore,
α < ω. This means that min(F) = min(Fα). Thus, if Fα is isomorphic to
Lfm

for some m > 0, then F is not rooted. If Fα is isomorphic to L, then
by Definition 4.1.15, the complement of the root of F is not an admissible set.
Therefore, by Definition 2.3.15, F is not a rooted descriptive frame. Thus, we
obtain that Fα is isomorphic to Lgk

for some k ∈ ω. ¤

4.3.10. Corollary. A subdirectly irreducible algebra A ∈ KG is finitely gen-
erated iff A is isomorphic to (

⊕n

i=1Ai)⊕Ngk
, where each Ai is a cyclic Heyting

algebra and k ∈ ω.

Proof. The result follows immediately from Corollary 4.3.9 and the duality
theory for Heyting algebras. ¤

4.4 The finite model property in extensions of

RN

In this section we characterize finitely generated rooted RN-frames and prove
that every extension of RN has the finite model property. First we show that
RN is a proper extension of KG.
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4.4.1. Theorem.

1. RN ) KG.

2. RN ( KG.

Proof. (1) That none of K1,K2,K3 is a subframe of L is routine to check. There-
fore, by Theorem 4.3.4, L is a KG-frame. Hence, Log(L) = RN ⊇ KG. Now
we show that RN 6= KG. Consider the frame Lg4 ⊕ 2∗. By Theorem 4.3.4,
Lg4 ⊕ 2∗ is a rooted KG-frame. On the other hand, by Corollary 4.2.10, Lg4 ⊕ 2∗

is not an RN-frame. Consider the Jankov-de Jongh formula χ(Lg4 ⊕ 2∗). Then
χ(Lg4 ⊕ 2∗) ∈ RN and χ(Lg4 ⊕ 2∗) /∈ KG. Therefore, RN 6⊆ KG.

(2) is an immediate consequence of (1). ¤

Therefore, by Corollary 4.3.9 and Theorem 4.4.1, every finitely generated rooted
descriptive RN-frame is a finite linear sum of cyclic frames. In this section we
characterize those finitely generated rooted KG-frames that are also RN-frames.

4.4.2. Theorem. Let F be a finitely generated descriptive rooted KG-frame and
A a subdirectly irreducible Heyting algebra in KG.

1. If F is an RN-frame, then there exist k, n ∈ ω such that F is isomorphic to
(
⊕n

i=1 Fi) ⊕ Lgk
, where each Fi is isomorphic to L, 2∗ or 4∗.

2. If A belongs to RN , then there exist k, n ∈ ω such that A is isomorphic to
(
⊕n

i=1Bi)⊕Ngk
, where each Bi is isomorphic to N, 2 or 4.

Proof. By Theorems 4.4.1 and 4.3.9, F is isomorphic to a linear sum (
⊕n

k=1 Gi)⊕
Lgk

, where each Gi is a cyclic frame and k ∈ ω. If for every j ≤ n we have that
Gj is isomorphic to L, 2∗ or 4∗, then F satisfies the condition of the theorem.
Therefore, assume that there exists j ≤ n, such that Gj is isomorphic to Lgm

for
some m ≥ 4 or Gj is isomorphic to Lfl

for some l ≥ 2. (For m < 4 and l < 2 the
frames Lgm

and Lfl
are isomorphic to linear sums of 2∗’s and 4∗’s.) Let j ≤ n be

the the least such j. We show that F is not an RN-frame.
We first discuss the idea of the proof. We show that there exists a finite

rooted F′ such that F′ is not an RN-frame and F′ is a p-morphic image of F.
Thus, if F is an RN-frame then so is F′, which is a contradiction. To construct
this p-morphism we consider a bisimulation equivalence on F which identifies:
all the points above Gj, all the points below Gj and leaves the points of Gj

untouched. Then the resulting rooted frame is a p-morphic image of F, but by
our characterization of finite rooted RN-frames (see Theorem 4.2.10) it is not an
RN-frame.

We will now make this more precise. We only consider the case when Gj is
isomorphic to Lgm

. The proof for the other case is similar. Thus, assume Gj is
isomorphic to Lgm

, for some m ≥ 4. Then two cases are possible:
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Case 1. 1 < j ≤ n. We define an equivalence relation E on F by

• wEv if w = v for every w, v ∈ Gj,

• wEv if w, v ∈ G1 ⊕ . . .⊕ Gj−1,

• wEv if w, v ∈ Gj+1 ⊕ . . .⊕ Gn ⊕ Lgk
.

It is easy to check that E is a bisimulation equivalence and that F/E is
isomorphic to 2∗ ⊕ Gj ⊕ 2∗. Since Gj is isomorphic to Lgm

, we obtain that
2∗ ⊕ Lgm

⊕ 2∗ is a p-morphic image of F. This, by Theorem 4.2.10, is a
contradiction.

Case 2. j = 1. The proof is similar to that of Case 1, except that, in this case
we obtain that Lgm

⊕2∗ is a p-morphic image of F, which again contradicts
to Theorem 4.2.10.

(2) follows form (1) by the duality theory of Heyting algebras. ¤

To show that the converse of Theorem 4.4.2 also holds we need to define a new
operation on frames.

4.4.3. Definition.

1. Let F1 = (W1, R1) and F2 = (W2, R2) be two Kripke frames and let x ∈
min(F1) and y ∈ max(F2). The gluing sum of the pairs (F1, x) and (F2, y)
is a frame (F1, x)⊕̂(F2, y) = (W ]W ′, S) such that W ]W ′ is the disjoint
union of W and W ′ and

S := R1 ∪R2 ∪ (W2 ×W1 \ {(y, x)}).

2. Let F1 = (W1, R1,P1) and F2 = (W2, R2,P2) be descriptive frames and let
x ∈ min(F1) and y ∈ max(F2). The gluing sum of (F1, x) and (F2, y) is the
descriptive frame (F1, x)⊕̂(F2, y) = (W1 ]W2, S,P) such that (W1 ]W2, S)
is the gluing sum of ((W1, R1), x) and ((W2, R2), y) and

P := {U ⊆ W1 ]W2 : U is an S-upset and U ∩W1 ∈ P1 and U ∩W2 ∈ P2}.

Figuratively speaking, we take the linear sum of F1 and F2 and erase an arrow
going from y to x. This definition is motivated by the next lemma, which states
that we can “glue” two cyclic frames together in such a way that the resulting
frame is again a cyclic frame. We will need the operation of gluing models for
proving the main theorem of this section that every extension of RN has the fmp.

4.4.4. Proposition. The gluing sum of two descriptive frames is again a de-
scriptive frame.
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Proof. The proof is just spelling out the definitions. ¤

For every k ∈ ω we assume that Lgk
and Lfk

are labeled as in Figure 4.1.

4.4.5. Lemma. Suppose k,m ∈ ω and m is odd. Then the following holds.

1. (Lfm
, wm)⊕̂(L, w0) is isomorphic to L.

2. (Lfm
, wm)⊕̂(Lgk

, w0) is isomorphic to Lgk+m
.

Proof. The proof is a routine check. ¤

Next we recall the definition of the complexity of a formula.

4.4.6. Definition. We define the complexity c(φ) of a formula φ as follows:

c(p) = 0,

c(⊥) = 0,

c(φ ∧ ψ) = max{c(φ), c(ψ)},

c(φ ∨ ψ) = max{c(φ), c(ψ)},

c(φ→ ψ) = 1 +max{c(φ), c(ψ)}.

Recall from the previous chapter that for every point x of a frame F the depth of
x is denoted by d(x). Let U be an upset of F, then the depth d(U) of U is defined
as

d(U) := sup{d(x) : x ∈ U}.

4.4.7. Definition. Let V : Propn → L be a descriptive valuation on L.

1. The rank of V is the number

rank(V ) := max{d(V (pi)) : V (pi) ( L}.

2. For every formula φ(p1, . . . , pn), let

MV (φ) = rank(V ) + c(φ) + 1.

4.4.8. Lemma. Let V be any descriptive valuation on L. Then for an arbitrary
formula φ(p1, . . . , pn) and for every x, y ∈ L such that d(x), d(y) > MV (φ), we
have

x |= φ iff y |= φ.
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Proof. We will prove the lemma by induction on the complexity of φ. If c(φ) = 0,
that is, φ is either ⊥ or a propositional letter then the the lemma obviously holds.
Now assume that c(φ) = k and the lemma is correct for every formula ψ such
that c(ψ) < k. The cases when φ = ψ1 ∧ ψ2 and φ = ψ1 ∨ ψ2 are trivial. So,
suppose φ = ψ1 → ψ2, for some formulas ψ1 and ψ2. Clearly, c(ψ1), c(ψ2) < k.
Let x, y ∈ L be such that d(x), d(y) > MV (φ). Without loss of generality assume
x 6|= φ and show that y 6|= φ. Then x 6|= ψ1 → ψ2 implies that there exists
x′ such that xRx′, x′ |= ψ1 and x′ 6|= ψ2. If d(x′) < d(y) − 1, because of the
structure of L, we have yRx′ and so y 6|= φ. If d(x′) ≥ d(y) − 1, then d(x′) >
MV (φ) − 1 = rank(V ) + c(φ) ≥ rank(V ) + c(ψi) + 1 = M(ψi), for each i = 1, 2.
Thus, d(x′), d(y) > M(ψi) and by the induction hypothesis y |= ψ1 and y 6|= ψ2,
which again implies y 6|= φ. ¤

Observe that if c(φ) > c(ψ), then MV (φ) > MV (ψ). The analogue of Lemma
4.4.9(1) is proved in Kracht [75].

4.4.9. Lemma. Let L1 and L2 be two distinct isomorphic copies of L. For an
arbitrary formula φ(p1, . . . , pn) the following holds.

1. If L1 ⊕ L2 6|= φ, then L 6|= φ.

2. If L1 ⊕ L2 ⊕ G 6|= φ, for some frame G, then L ⊕ G 6|= φ.

3. If F ⊕ L1 ⊕ L2 6|= φ, for some frame F, then F ⊕ L 6|= φ.

4. If F ⊕ L1 ⊕ L2 ⊕ G 6|= φ, for some frames F and G, then F ⊕ L ⊕ G 6|= φ.

5. If for some k ∈ ω, L ⊕ Lgk
6|= φ, then Lgm

6|= φ, for some m ≥ k.

6. If for some k ∈ ω, L ⊕ Lgk
⊕ G 6|= φ, then Lgm

⊕ G 6|= φ, for some m ≥ k.

7. If for some k ∈ ω and some frame F, F ⊕ L ⊕ Lgk
6|= φ, then F ⊕ Lgm

6|= φ,
for some m ≥ k.

8. If for some k ∈ ω and some frames G and F, F ⊕ L ⊕ Lgk
⊕ F 6|= φ, then

F ⊕ Lgm
⊕ G 6|= φ, for some m ≥ k.

Proof. (1) Let V be a descriptive valuation on L1⊕L2 such that (L1⊕L2, V ) 6|= φ.
Let V1 and V2 be the restrictions of V to L1 and L2, respectively. That is,
Vi(p) = V (p)∩Li for each i = 1, 2. Let M1(φ) = rank(V1)+c(φ)+1 and let m :=
2 ·M1(φ)+1. Assume that on L1 and L2 we have the labeling shown in Figure 4.1.
Consider the gluing sum (Lfm

, wm)⊕̂(L2, w0) and let V ′ be the restriction of V
to (Lfm

, wm)⊕̂(L2, w0). By Lemma 4.4.5, (Lfm
, wm)⊕̂(L2, w0) is isomorphic to L.

Thus, to finish the proof we only need to show that ((Lfm
, wm)⊕̂(L2, w0), V

′) 6|= φ.
The next claim finishes the proof.
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4.4.10. Claim. ((Lfm
, wm)⊕̂(L2, w0), V

′) 6|= φ.

Proof. We prove the claim by induction on the complexity of φ. The cases when
φ is either ⊥, a propositional variable, a conjunction or disjunction of two formulas
are simple. Now let φ = ψ → χ. Then since (L1 ⊕ L2, V ) 6|= φ, there exists y in
L1 ⊕ L2 such that (L1 ⊕ L2, V ), y |= ψ and (L1 ⊕ L2, V ), y 6|= χ. If y belongs to
(Lfm

, wm)⊕̂(L2, w0) then we are done. If y does not belong to (Lfm
, wm)⊕̂(L2, w0),

then we take a point y′ in Lfm
of depth M1(φ). Since c(ψ), c(χ) < c(φ) we have

M1(ψ),M1(χ) < M1(φ) and it follows from Lemma 4.4.8, that (L1 ⊕L2, V ), y′ |=
ψ and (L1 ⊕ L2, V ), y′ 6|= χ. Therefore, ((Lfm

, wm)⊕̂(L2, w0), V
′), y′ |= ψ and

((Lfm
, wm)⊕̂(L2, w0), V

′), y′ 6|= χ. Thus, ((Lfm
, wm)⊕̂(L2, w0), V

′), y′ 6|= φ.
¤

(2) The proof is similar to (1).
(3),(4) The proof is similar to (1) and (2) with the only difference that in

these cases instead of Lfm
we should consider F ⊕ Lfm

.
(5) The proof is similar to (1). We take the upset F′ consisting of MV (φ)

layers of L and then consider a gluing sum of this frame with Lgk
.

(6), (7) and (8) are similar to (5).
¤

4.4.11. Lemma. For every RN-frame F there exist k,m ∈ ω such that F is a
p-morphic image of (

⊕n
i=1 Li) ⊕ Lgk

, where Li is an isomorphic copy of L, for
each i = 1, . . . ,m.

Proof. By Theorem 4.4.2, F is isomorphic to (
⊕n

i=1 Fi) ⊕ Lgk
, where every Fi is

isomorphic to either L, 2∗ or 4∗. Let m be the number of copies of L occurring in⊕n
i=1 Fi. Then F is isomorphic to a frame

⊕m
i=1(
⊕mi

j=1(Gj⊕Li))⊕
⊕s

j=1 Gj⊕Lgk
,

for some k ∈ ω, where each Gj is isomorphic to 2∗ or 4∗ and mi ∈ ω. By
Corollary 4.2.7, the frame (

⊕mi

j=1 Gj) ⊕ Li is a p-morphic image of Li. On the
other hand, by Theorem 4.2.12, the frame (

⊕s
j=1 Gj)⊕Lgk

is a p-morphic image
of Lgk+3s

. Therefore, F is a p-morphic image of the frame (
⊕m

i=1 Li) ⊕ Lgk+3s
,

where each Li is an isomorphic copy of L for every i = 1, . . . ,m. ¤

We are now ready to characterize the finitely generated rooted descriptive RN-
frames and subdirectly irreducible algebras in RN .

4.4.12. Theorem.

1. A finitely generated rooted descriptive KG-frame F is an RN-frame iff F

is isomorphic to (
⊕n

i=1 Fi) ⊕ Lgk
, where each Fi is isomorphic to either L,

2∗ or 4∗ and k ∈ ω.

2. A finitely generated subdirectly irreducible KG-algebra A belongs to RN iff
A is isomorphic to (

⊕n

i=1Bi)⊕Ngk
, where each Bi is isomorphic to either

L, 2 or 4, and k ∈ ω.
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Proof. (1) The direction from left to right is proved in Theorem 4.4.2. For the
other direction, by Lemma 4.4.11, it is sufficient to show that if a frame F is
isomorphic to (

⊕m
i=1 Li) ⊕ Lgk

, where Li is an isomorphic copy of L, for each
i = 1, . . . ,m and k,m ∈ ω, then F is an RN-frame.

We will prove that for every formula φ, if φ ∈ RN then F |= φ. So, assume that
F 6|= φ. By applying Lemma 4.4.9 (2), (m−1) times, we obtain that L⊕Lgk

6|= φ.
By Lemma 4.4.9 (5), there is m ≥ k such that Lgm

6|= φ. Thus, we found an
RN-frame that refutes φ. Since φ ∈ RN, this is a contradiction. Hence, F |= φ
for every φ ∈ RN and therefore F is an RN-frame.

(2) The result follows immediately from (1) by the duality theory of Heyting
algebras. ¤

The next result was proved independently by Gerciu [48] and Kracht [73]. How-
ever, both proofs contain some gaps. We will provide a simple proof of this result.
Our technique is very similar to the one from [73]. However, [73] claims that every
extension of KG has the fmp, which, as we will see in the next section, is not the
case.

4.4.13. Theorem.

1. Every extension of RN has the finite model property.

2. Every subvariety of RN is finitely approximable.

Proof. (1) Suppose L ⊇ RN and let φ /∈ L. Then there exists a finitely
generated rooted descriptive L-frame F such that F 6|= φ. By Theorem 4.4.12, F

is isomorphic to (
⊕n

i=1 Gi)⊕Lgk
, where every Gi is isomorphic to L, 2∗ or 4∗ for

every i = 1, . . . , n. Let j ≤ n be the least such that Gj is isomorphic to L. If
such j does not exist then F is finite and there is nothing to prove. Denote by G′,
the finite frame G1 ⊕ . . .⊕ Gj−1. Then F is isomorphic to G′ ⊕ Gj ⊕ . . .⊕ Gn ⊕
Lgk

. By Lemma 4.4.11, Gj ⊕ . . . ⊕ Gn ⊕ Lgk
is a p-morphic image of the frame

L1 ⊕ . . .⊕Ls⊕Lgm
, where Li is an isomorphic copy of L for each i = 1, . . . , s and

s,m ∈ ω. Therefore, F is a p-morphic image of G = G′ ⊕ L1 ⊕ . . . ⊕ Ls ⊕ Lgm
.

Since p-morphisms preserve the validity of formulas G 6|= φ. Now we apply
Lemma 4.4.9(4) and (7) to obtain a t ≥ m such that G′ ⊕ Lgt

6|= φ, for some
t ≥ m. To finish the proof it is sufficient to show that G′ ⊕ Lgt

is an L-frame.
To see this, observe that G′ ⊕ Lgt

is a generated subframe of G′ ⊕ L, which is a
generated subframe of F. Therefore, G′ ⊕ Lgt

is an L-frame and thus L has the
finite model property.

(2) The result follows immediately from (1). ¤

4.4.14. Remark. In fact, Theorem 4.4.13 can be strengthened. It is proved in
[8] that every extension of RN has the poly-size model property. This means that
every non-theorem of L can be refuted in a frame which has the size polynomial
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in the length of φ. It is also shown in [8] that for every function f : N → N,
where N is the set of natural numbers, there exists an extension of KG that has
the fmp but does not have the f -size model property.

4.5 The finite model property in extensions of

KG

In this section we show that in extensions of KG the situation is completely
different. We prove that there are continuum many extensions of KG without
the finite model property. We also show that there is exactly one extension of
KG that has the pre-finite model property.

4.5.1 Extensions of KG without the finite model property

First we discuss a systematic method of constructing logics without the fmp. Let
G be a finite rooted KG-frame that is not isomorphic to an RN-frame. The
simplest such frame is Lg4 ⊕ 2∗. Let H be isomorphic to L ⊕ G and suppose
L = Log(H). If G is isomorphic to Lg4 ⊕ 2∗, then the frame H is isomorphic
to the frame shown in Figure 4.4. We will prove that L lacks the finite model
property. First we characterize the finite rooted L-frames.

4.5.1. Theorem. Let G be a finite rooted KG-frame that is not isomorphic to
an RN-frame. Let H be isomorphic to L ⊕ G and suppose L = Log(H). A finite
rooted KG-frame F is an L-frame iff either of the following two conditions is
satisfied.

1. F is an RN-frame.

2. F is isomorphic to a p-morphic image of a generated subframe of
⊕n

i=1 Fi⊕
2∗ ⊕ G, where each Fi is either empty or isomorphic to 2∗ or 4∗.

Proof. First we show that if a finite rooted frame satisfies the conditions of the
theorem, then it is an L-frame. Since L is a generated subframe of H we have
that every RN-frame is an L-frame. By Theorem 4.2.7, every frame of the form⊕n

i=1 Fi⊕2∗, where each Fi is isomorphic to either 2∗ or 4∗, is a p-morphic image
of L. Therefore,

⊕n
i=1 Fi ⊕ 2∗ ⊕ G is a p-morphic image of L ⊕ G. Thus if F is

a p-morphic image of a generated subframe of
⊕n

i=1 Fi ⊕ 2∗ ⊕ G, then F is an
L-frame.

Conversely, let F be a finite rooted L-frame. Then by Lemma 3.4.26, F is a
p-morphic image of a generated subframe H′ of H. If H′ is a generated subframe
of L, then F is an RN-frame. Now suppose that H′ is isomorphic to L ⊕ H′′,
where H′′ is a generated subframe of G. By Theorem 4.2.7, every finite p-morphic
image of L has the form

⊕n
i=1 Fi ⊕ 2∗, where each Fi is isomorphic to either 2∗
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Figure 4.4: The frame L ⊕ Lg4 ⊕ 2∗

or 4∗. Thus, if F is a p-morphic image of H′, then F is a p-morphic image of
(
⊕n

i=1 Fi)⊕ 2∗ ⊕H′′, where each Fi is isomorphic to either 2∗ or 4∗. It is easy to
see that (

⊕n
i=1 Fi) ⊕ 2∗ ⊕ H′′ is a generated subframe of (

⊕n
i=1 Fi) ⊕ 2∗ ⊕ G.

¤

4.5.2. Theorem. Let G be a finite rooted KG-frame that is not isomorphic to
an RN-frame. Let H be isomorphic to L ⊕ G and suppose L = Log(H). Then L
does not have the finite model property.

Proof. Consider the Jankov-de Jongh formulas χ1 = χ(2∗⊕G) and χ2 = χ(Lg4)
with separated variables. Let φ = χ1 ∨ χ2. It is easy to see that 2∗ ⊕ G is a
p-morphic image of H (we just map all the points in L to the top node of 2∗⊕G).
Hence, H 6|= χ1. Obviously, Lg4 is a generated subframe of H. This means that
H 6|= χ2. Therefore, H 6|= φ. Now suppose there is a finite rooted L-frame F such
that F 6|= φ, whence F 6|= χ1 and F 6|= χ2. Then F 6|= χ1 implies that 2∗ ⊕ G is a
p-morphic image of a generated subframe of F. Hence, if F is an RN-frame, then
2∗ ⊕G is also an RN-frame, which is a contradiction, by Theorem 4.2.10. Thus,
F 6|= χ1 implies F is not an RN-frame. By (2) of Theorem 4.5.1, this means that
F is a p-morphic image of some (

⊕n
i=1 Fi) ⊕ 2∗ ⊕ H′′, where H′′ is a generated

subframe of G and each Fi is isomorphic to either 2∗ or 4∗.
Next we show that Lg4 cannot be a p-morphic image of a generated subframe

of F. Let F′ be a generated subframe of F and f : F′ → Lg4 be a p-morphism. If
|max(F′)| = 1, then clearly Lg4 cannot be a p-morphic image of F′. Now suppose
F′ has two maximal points u1 and u2. Then f(u1) 6= f(u2) and f(u1) and f(u2)
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are the maximal points of Lg4 . Let u be a point of the second layer of F′. Then
since the top layers of F′ are sums of 2∗’s and 4∗’s we have uRu1 and uRu2.
Therefore, f(u) 6= f(u1) and f(u) 6= f(u2). But then u should be mapped to a
point of the second layer of Lg4 , which consists of only one point. This implies that
this point of the second layer of Lg4 sees both maximal points of Lg4 , which is a
contradiction. Hence, no generated subframe of F can be p-morphically mapped
onto Lg4 , and F |= χ2. This contradicts our earlier assumption that F 6|= χ2.
Thus, there is no finite L-frame that refutes both χ1 and χ2. This means that L
does not have the finite model property. ¤

Next we show that there are continuum many extensions of KG without the finite
model property. To construct these extensions we will need to construct infinite
antichains of finite KG-frames.

Recall from the previous chapter that for every frame F and G:

F ≤ G iff F is a p-morphic image of a generated subframe of G.

If A and B are Heyting algebras. Then

A ≤ B iff A is a subalgebra of a homomorphic image of B.

In the next lemma we show how to construct antichains of finite KG and RN-
frames. These antichains will allow us to show that both KG and RN have
continuum many extensions. The antichain in Lemma 4.5.3(3) was constructed
by Kracht [73].

4.5.3. Lemma.

1. The sequence Γ = {Lgk
⊕ 2∗ : k ≥ 4} of rooted KG-frames forms an ≤-

antichain.

2. The sequences ∆1 = {2∗ ⊕ Lf3 ⊕ Lgk
⊕ 2∗ : k ≥ 4 and k is even} and

∆2 = {2∗ ⊕Lf3 ⊕Lgk
⊕ 2∗ : k ≥ 5 and k is odd} of rooted KG-frames form

≤-antichains.

3. (
⊕n

i=1 Fi)⊕ 2∗ ⊕Lf3 ⊕Lgk
⊕2∗ 6≤ (

⊕n
i=1 Fi)2∗ ⊕Lf3 ⊕Lgm

⊕2∗ where each
Fi is isomorphic to 2∗ or 4∗ and k 6= m.

4. The sequences Υ1 = {
⊕k

i=1 4∗ ⊕ Lg4 : k ∈ ω} and Υ2 = {
⊕k

i=1 4∗ ⊕ Lg5 :
k ∈ ω} of rooted RN-frames form ≤-antichains.

Proof. (1) Consider any two frames Lgk
⊕ 2∗ and Lgm

⊕ 2∗ in Γ and suppose
m > k. Then |Lgk

⊕ 2∗| < |Lgm
⊕ 2∗| and clearly Lgk

⊕ 2∗ cannot be a p-morphic
image of a generated subframe of Lgm

⊕2∗. Now suppose there exists a generated
subframe H of Lgm

⊕ 2∗ such that Lgk
⊕ 2∗ is a p-morphic image of H. If H is

a proper generated subframe of Lm ⊕ 2∗, then H is an RN-frame. On the other
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Figure 4.5: The frames Lg4 ⊕ 2∗, Lg6 ⊕ 2∗ and Lg8 ⊕ 2∗

hand, by Theorem 4.2.10, Lgm
⊕ 2∗ is not an RN-frame and therefore cannot be

a p-morphic image of H. Thus, H is isomorphic to Lgm
⊕ 2∗ and Lgk

⊕ 2∗ is a
p-morphic image of Lgm

⊕ 2∗. Then the least point of Lgm
⊕ 2∗ is mapped to the

least point of Lgk
⊕ 2∗ and no other point of Lgm

⊕ 2∗ is mapped to the least
point of Lgk

⊕ 2∗; otherwise Lk ⊕ 2∗ would be a p-morphic image of Lgm
which

is a contradiction, since Lgk
⊕ 2∗ is not an RN-frame. This gives us that Lgk

is
a p-morphic image of Lgm

, which is a contradiction by Lemma 4.2.13.

(2) We prove that ∆1 is a ≤-antichain. Suppose for m > k we have that 2∗ ⊕
Lf3⊕Lgk

⊕2∗ is a p-morphic image of a generated subframe of 2∗⊕Lf3⊕Lgm
⊕2∗.

Then there exist H and f such that H is a generated subframe of 2∗⊕Lf3⊕Lgm
⊕2∗

and f : H → 2∗ ⊕Lf3 ⊕Lgk
⊕ 2∗ is a p-morphism. Obviously H contains the first

three layers of 2∗ ⊕ Lf3 ⊕ Lgm
⊕ 2∗. Moreover, the restriction of f to the first

three layers of H is an isomorphism. To see this, observe that if not then the first
three layers of H should be mapped to the top point of 2∗⊕Lf3 ⊕Lgk

⊕2∗. Then
Lf3 ⊕Lgk

⊕2∗ would be a p-morphic image of 2∗⊕Lgm
. This implies that Lgk

is a
p-morphic image Lgm

, which contradicts Theorem 4.2.12. Hence, the restriction
of f to the first three layers of H is an isomorphism. Then there exists a point x
in H of depth d(x) > 3 such that d(f(x)) ≤ 3. Otherwise, Lgk

⊕2∗ is a p-morphic
image of a generated subframe of Lgm

⊕ 2∗ which, by (1), is a contradiction. For
every point y of H of depth d(y) ≤ 3 we have that xRy and hence f(x)Rf(y).
This is a contradiction because for every point u of 2∗ ⊕ Lf3 ⊕ Lgk

⊕ 2∗ of depth
≤ 3 there exists a point z of depth ≤ 3 such that ¬(uRz). Therefore, there is
no generated subframe of 2∗ ⊕Lf3 ⊕Lgm

⊕ 2∗ that can be p-morphically mapped
onto 2∗ ⊕ Lf3 ⊕ Lgk

⊕ 2∗.

(3) The proof is a routine adaptation of the proof of (2).

(4) The proof is similar to (1) and (2) and is based on the fact that there is
no p-morphism from

⊕n
i=1 4 onto

⊕m
i=1 4 for m,n ∈ ω and m 6= n.

¤
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Figure 4.6: The frames in ∆1

Figure 4.7: The frames in Υ1
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4.5.4. Theorem.

1. There are continuum many extensions of RN.

2. There are continuum many subvarieties of RN .

3. There are continuum many extensions of KG with the finite model property.

4. There are continuum many finitely approximable subvarieties of KG.

Proof. The theorem is proved in the same way as Lemma 3.4.19 and Theorem
3.4.20. ¤

Denote by Hk the frame 2∗⊕Lf3 ⊕Lgk
⊕L, where k ≥ 4 is even. Let Θ = {Hk : k

is even ≥ 4}. For every subset Θ′ ⊆ Θ, let Log(Θ′) =
⋂
{Log(Hk) : Hk ∈ Θ′}.

4.5.5. Theorem.

1. Log(Hk) lacks the finite model property, for every k ≥ 4.

2. For every Θ′ ⊆ Θ, the logic Log(Θ′) lacks the finite model property.

3. For every Θ1,Θ2 ⊆ Θ, such that Θ1 6= Θ2 we have Log(Θ1) 6= Log(Θ2).

Proof. (1) The result follows immediately from Theorem 4.5.2, since Lf3⊕Lgk
⊕2∗

is not an RN-frame.
(2) First we show that a finite rooted frame F is a Log(Θ′)-frame iff F is

a Log(Hk)-frame for some Hk ∈ Θ′. Let F be a finite rooted Log(Θ′)-frame.
Let Log(F) be the logic of F. Then Log(F) ⊇ Log(Θ′). Since in the lattice of
intermediate logics the logic of a finite rooted frame is a splitting [24, Theorem
10.49] and every splitting is completely meet irreducible4 [24, Proposition 10.46]
we have that there is Hk ∈ Θ′ such that Log(F) ⊇ Log(Hk). This means that F is
a Log(Hk)-frame. Now the same technique as in the proof of Theorem 4.5.2 and
(1) shows that Log(Θ′) lacks the fmp for every Θ′ ⊆ Θ.

(3) Suppose Θ1,Θ2 ⊆ Θ, such that Θ1 6= Θ2. Without loss of generality
assume that there is Hk ∈ Θ1 and Hk /∈ Θ2. Then it is easy to see that Gk :=
2∗⊕Lf3 ⊕Lgk

⊕2∗ is a p-morphic image of Hk and hence Gk is a Log(Θ1)-frame.
Suppose Gk is a Log(Θ2)-frame. Then, as was shown in (2), there exists Hm ∈ Θ2

such that m 6= k and Gk is a Log(Hm)-frame. Similarly to Theorem 4.5.1 we
can show that all finite rooted frames of Log(Hm) are finite rooted RN-frames
or p-morphic images of generated subframes of (

⊕n
i=1 Fi) ⊕ 2∗ ⊕ Lf3 ⊕ Lgm

⊕ 2∗,
where each Fi is isomorphic to either 2∗ or 4∗. Then Gk is a p-morphic image of
a generated subframe of (

⊕n
i=1 Fi)⊕2∗⊕Lf3 ⊕Lgm

⊕2∗, which is a contradiction
by Lemma 4.5.3(3). Therefore, Gk is not a Log(Θ2)-frame. Then the Jankov-de
Jongh formula of Gk belongs to Log(Θ2) but does not belong to Log(Θ1). Thus,
Log(Θ1) 6= Log(Θ2). ¤

4Recall that an element a of a lattice λ is called completely meet irreducible if
∧

i∈I
bi ≤ a

implies that there is i0 ∈ I such that bi0
≤ a.
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4.5.6. Corollary.

1. There are continuum many extensions of KG without the finite model prop-
erty.

2. There are continuum many subvarieties of KG that are not finitely approx-
imable.

Proof. The proof follows immediately from Theorem 4.5.5. ¤

4.5.2 The pre-finite model property

We will now characterize the logics that bound the finite model property in ex-
tensions of KG.

4.5.7. Definition. A logic L is said to have the pre-finite model property if L
does not have the fmp, but all proper extensions of L do have the fmp.

Let T1 and T2 denote the frames 2∗ ⊕ Lg4 ⊕ L ⊕ 2∗ and 2∗ ⊕ Lg5 ⊕ L ⊕ 2∗,
respectively. The frames T1 and T2 are shown in Figure 4.8.

4.5.8. Lemma.

1. 2∗ ⊕ Lg4 ⊕ 2∗ is a p-morphic image of 2∗ ⊕ Lg5 ⊕ 2∗.

2. T1 is a p-morphic image of T2.

Proof. (1) Let 2∗⊕Lg4⊕2∗ and 2∗⊕Lg5⊕2∗ be labeled as it is shown in Figure 4.9.
Define a map f : 2∗ ⊕ Lg5 ⊕ 2∗ → 2∗ ⊕ Lg4 ⊕ 2∗ by putting: f(yi) = xi, for every
i = 1, . . . , 5 and f(y6) = x5. It is now easy to check that f is a p-morphism.

(2) The proof is a simple adaptation of the proof of (1). ¤

The next theorem was first established by Gerciu [48]. However, his proof was
very sketchy. Here we give a full proof of this result skipping just some technical
details.

4.5.9. Theorem. Let L ⊇ KG.

1. If L does not have the fmp, then L ⊆ Log(T1).

2. Log(T1) is the only extension of KG with the pre finite model property.
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Figure 4.8: The frames T1 and T2

x0

x1

x2

x3 x4

x5

y4

y5 y3

y6

y0

y1

y2

Figure 4.9: The frames 2∗ ⊕ Lg4 ⊕ 2∗ and 2∗ ⊕ Lg5 ⊕ 2∗ with the labels
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Proof. (1) Suppose L ⊇ KG and L does not have the finite model property.
Then there is a formula φ such that L 6` φ and for every finite L-frame G we
have G |= φ. By Corollary 3.4.3, there is a finitely generated, rooted descriptive
L-frame F such that F 6|= φ. By our assumption, F is infinite. This implies that
Log(F) also lacks the fmp. Obviously, we have L ⊆ Log(F). Hence, to prove that
L ⊆ Log(T1), it is sufficient to show that Log(F) ⊆ Log(T1). We will prove this
by showing that T1 is a p-morphic image of F.

By Theorem 4.3.10, F is isomorphic to (
⊕n

i= Fi) ⊕ Lgk
, where k, n ∈ ω and

each Fi is a cyclic frame. Since F is infinite, there is j ≤ n such that Fj is
isomorphic to L. Let j be the least such. First suppose j > 1. This means that F

is isomorphic to G⊕Fj ⊕ Fj−1 ⊕ . . .⊕ Fn⊕Lgk
, where Fj is isomorphic to L and

G is a finite frame. If there is no i with n ≥ i ≥ j − 1 such that Fi is isomorphic
to Lgm

or Lfl
for some m ≥ 4 and l ≥ 2, then the same argument as in the

proof Theorem 4.4.13 shows that Log(F) has the fmp, which is a contradiction.
So, there is such i and we take the least. Then two cases are possible: Fi is
isomorphic to Lgm

, for m ≥ 4 or Fi is isomorphic to Lfl
, for l ≥ 2. We only

consider the case when Fi is isomorphic to Lgm
, for m ≥ 4. The case when Fi is

isomorphic to Lfl
, for l ≥ 2 is similar. Next we define an equivalence relation on

F which leaves Fi and Fj untouched and identifies all the points above Fj, all the
points below Fi and all the points between Fi and Fj. Now we will define this
relation more precisely. Let E be an equivalence relation on F such that for every
w, v ∈ F:

• wEv if w, v ∈ G,

• wEv if w = v, for w, v ∈ Fj,

• wEv if w, v ∈ Fj−1 ⊕ . . .⊕ Fi−1,

• wEv if w = v, for w, v ∈ Fi,

• wEv if w, v ∈ Fi+1 ⊕ . . .⊕ Lgk
.

Then E is a bisimulation equivalence and F/E is isomorphic to 2∗⊕Fj⊕2∗⊕Fi⊕2∗,
where Fj is isomorphic to L and Fi is isomorphic to Lgm

for m ≥ 4. Suppose
m ≥ 4. Looking at the structure of Lgm

we see that if m is even, then the
subframe of Lgm

consisting of the last three layers of Lgm
is isomorphic to Lg4 ,

and if m is odd, then the subframe of Lgm
consisting of the last three layers of

Lgm
is isomorphic to Lg5 . Therefore, if m is even and m > 4 then by identifying

all but the points of the last three layers of Lgm
we obtain a p-morphic image of

Lgm
that is isomorphic to 2∗⊕Lg4 and if m is odd and m > 5 then by identifying

all but the points of the last three layers of Lgm
we obtain a p-morphic image

of Lgm
that is isomorphic to 2∗ ⊕ Lg5 . Thus, if m > 4 and m is even the frame

H1 := 2∗ ⊕L⊕ 2∗ ⊕ 2∗ ⊕Lg4 ⊕ 2∗ is a p-morphic image of F/E and if m > 5 and
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m is odd the frame H2 := 2∗⊕L⊕2∗⊕2∗⊕Lg5 ⊕2∗ is a p-morphic image of F/E.
Clearly, if m = 4, then F/E is isomorphic to H′

1 := 2∗ ⊕ L ⊕ 2∗ ⊕ Lg4 ⊕ 2∗ and
if m = 5, then F/E is isomorphic to H2 := 2∗ ⊕ L ⊕ 2∗ ⊕ Lg5 ⊕ 2∗. It is easy to
see that H′

1 is a p-morphic image of H1 and that H′
2 is a p-morphic image of H2.

Now by identifying the greatest element of 2∗ ⊕ Lg4 ⊕ 2∗ with the least point of
L⊕2∗ we obtain that T1 is a p-morphic image of H′

1. Exactly the same argument
shows that T2 is a p-morphic image of H′

2. Finally, Lemma 4.5.8(2) ensures that
T1 is a p-morphic image of T2, which means that T1 is a p-morphic image of F.

The proof in case j = 1 is analogous, with the only difference that we also
use that, by Theorem 4.2.7, 2∗ ⊕ L is a p-morphic image of L, and hence 2∗ ⊕
L ⊕ Lg4 ⊕ 2∗ is a p-morphic image of L ⊕ Lg4 ⊕ 2∗ and 2∗ ⊕ L ⊕ Lg5 ⊕ 2∗ is a
p-morphic image of L ⊕ Lg5 ⊕ 2∗. Therefore, T1 is a p-morphic image of F and
Log(T1) ⊇ Log(F).

(2) Suppose L has the pre-fmp. Then by (1) L ⊇ Log(T1). If L ) Log(T1),
then L does not have the pre-fmp. Therefore, L = Log(T1). ¤

4.5.3 The axiomatization of RN

First we show that RN is not a subframe logic and hence by Theorem 3.4.16,
cannot be axiomatized by subframe formulas. Denote by K4, K5 and K6 the frames
Lg4 ⊕ 2∗, 2∗ ⊕ Lg4 ⊕ 2∗, and Lg5 ⊕ 2∗, respectively (see Figure 4.11).

4.5.10. Theorem. The following holds.

1. RN is not a subframe logic.

2. RN is not a cofinal subframe logic.

Proof. By Theorem 4.2.10, neither K4 nor K6 is an RN-frame. However, as
follows from Figure 4.10, both K4 and K6 are subframes of L. Moreover, they
are cofinal subframes. Therefore, RN is neither a subframe logic nor a cofinal
subframe logic.5

¤

Next we show that RN is finitely axiomatizable by subframe formulas and Jankov-
de Jongh formulas. That RN is finitely axiomatizable was first shown by Kuznets-
ov and Gerciu [83] without using these formulas. Kracht [73] gave an axiomati-
zation of RN by subframe and Jankov-de Jongh formulas. However, the formula
χ(K6), see below, is missing in his axiomatization. Consider the frames K4,K5,K6

shown in Figure 4.11 and let A4,A5,A6 be the corresponding Heyting algebras
shown in Figure 4.12. Recall that the frames K1,K2,K3 are shown in Figure 4.3.

5For proving the theorem it is of course sufficient to find one (cofinal) subframe of L that is
not an RN-frame. However, both frames K4 and K6 play an important role in our investigations
and it is useful to know that, in fact, both of them are subframes of L.
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Figure 4.10: Subframes of L

Figure 4.11: The frames K4,K5,K6

4.5.11. Theorem.

1. (a) RN = IPC +
∧3
i=1 β(Ki) +

∧6
i=4 χ(Ki).

(b) RN = HA + [
∧3
i=1 β(Ki) = 1] + [

∧6
i=4 χ(Ai) = 1]).

2. (a) RN = IPC + φKG +
∧6
i=4 χ(Ki).

(b) RN = HA + [φKG = 1] + [
∧6
i=4 χ(Ai) = 1].

Proof. (1) As was mentioned above RN ⊇ KG. Moreover, by Theorem 4.2.10
none of Ki for i = 4, 5, 6 is an RN-frame. We first prove the following claim.

4.5.12. Claim. A finitely generated rooted KG-frame F is an RN-frame iff Ki 6≤
F, for each i = 4, 5, 6. 6

6In terms of the previous chapter, this means that for every F ∈ FG(KG) \ FG(RN) there
exists some i = 4, 5, 6 such that Ki ≤ F.
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Figure 4.12: The algebras A4,A5,A6

Proof. Suppose F is an RN-frame and Ki ≤ F, for each i = 4, 5, 6. Then
the Kis are also RN-frames, for every i = 4, 5, 6, which is a contradiction by
Theorem 4.2.10.

Conversely, since F is a KG-frame, by Theorem 4.3.9, F is isomorphic to
(
⊕n

i=1 Fi) ⊕ Lgk
, where all Fi’s are cyclic frames. As F is not an RN-frame, by

Theorem 4.4.12, there exists i ≤ n such that Fi is isomorphic to Lgm
or Lfl

, for
some m ≥ 4 and l ≥ 2. We take the least such i. We again consider the case
when Fi is isomorphic to Lgm

for some m ≥ 4. The proof for the other case is
similar. We define a bisimulation equivalence that identifies all the points above
Fi, identifies all the points below Fi and leaves the points of Fi untouched. Now
we define this relation more precisely. Two cases are possible.

Case 1. i > 1. Define an equivalence relation E on F by putting for every
w, v ∈ F:

• wEv for w, v ∈ F1 ⊕ . . .⊕ Fi−1,

• wEv if w = v, for w, v ∈ Fi,

• wEv for w, v ∈ Fi+1 ⊕ . . .⊕ Fn ⊕ Lgk
.

Then E is a bisimulation equivalence and F/E is isomorphic to 2∗⊕Fi⊕2∗.
Next we apply exactly the same argument as in the proof of Theorem 4.5.9.
If m > 4 is even then 2∗ ⊕ Lg4 is a p-morphic image of Lgm

and if m > 4 is
odd, then 2∗ ⊕Lg5 is a p-morphic image of Lgm

. Therefore, if m > 4 and m
is even then G1 := 2∗ ⊕ 2∗ ⊕ Lg4 ⊕ 2∗ is a p-morphic image of F/E and if
m > 4 is odd then G2 := 2∗ ⊕ 2∗ ⊕ Lg5 ⊕ 2∗ is a p-morphic image of F/E.
Clearly, if m = 4, F/E is isomorphic to K5 = 2∗ ⊕ Lg4 ⊕ 2∗ and if m = 5
then F/E is isomorphic to K′

5 = 2∗⊕Lg5 ⊕2∗ is a p-morphic image of F/E.
It is easy to see that K5 is a p-morphic image of G1 and K′

5 is a p-morphic
image of G2. Finally, by Lemma 4.5.8, K5 is a p-morphic image of K′

5, which
gives us that K5 is a p-morphic image of F.
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Case 2. i = 1. This case is similar to Case 1, except that if Fi is isomorphic to
Lg4 , then K4 is a p-morphic image of F and if Fi is isomorphic to Lg5 then
K6 is a p-morphic image of F.

¤

The result now follows from Corollary 3.4.14 by replacing FG(IPC) with
FG(KG).

(2) is an immediate consequence of (1), Theorem 4.3.4 and Corollary 4.3.5.
¤

4.6 Locally tabular extensions of RN and KG

In this section we give criteria of local tabularity in extensions of KG and RN.
For the definition of locally tabular intermediate logics and locally finite varieties
of Heyting algebras consult Sections 2.1.2 and 2.3.5.

4.6.1. Definition.

1. A logic L is called pre-locally tabular if L is not locally tabular but every
proper extension of L is locally tabular.

2. A variety V is called pre-locally finite if V is not locally finite but every
proper subvariety of V is locally finite.

Pre-local tabularity and pre-local finiteness are dual notions. That is, an interme-
diate logic is pre-locally tabular iff the corresponding variety of Heyting algebras
is pre-locally finite. Now we prove that there is only one pre-locally tabular ex-
tension of KG. This fact will immediately provide us with a criterion of local
tabularity in extensions of KG.

Let K denote the frame 2∗ ⊕ L. K is shown in Figure 4.13. It is easy to see
that K is obtained from L by identifying the two maximal nodes of L.

4.6.2. Theorem. Log(K) is complete with respect to {2∗ ⊕ Lgk
: k ∈ ω}.

Proof. Suppose K 6|= φ, for some formula φ. Then by Lemma 4.4.9, there exists a
descriptive valuation V and a point x of K of finite depth such that (K, V ), x 6|= φ.
We consider the generated subframe Fx of K generated by the point x. Then it
is easy to see that Fx is isomorphic to 2∗ ⊕ Lgk

for some k ∈ ω and that Fx 6|= φ.
Therefore, Log(K) is complete with respect to {2∗ ⊕ Lgk

: k ∈ ω}. ¤

4.6.3. Definition. Let RN.KC = RN + (¬p ∨ ¬¬p).
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Figure 4.13: The frame K

4.6.4. Theorem. Log(K) = RN.KC.

Proof. It is well known see, e.g., [24, Proposition 2.37] that a descriptive frame
F validates ¬p ∨ ¬¬p iff max(F) is a singleton set. K is a p-morphic image of L

therefore it is an RN-frame. K has a greatest element, thus K is an RN.KC-frame
and Log(K) ⊇ RN.KC.

Conversely, RN.KC is an extension of RN. By Theorem 4.4.13, RN.KC has
the finite model property. Finite rooted RN.KC-frames, then are finite rooted
RN-frames with a greatest element. Similar arguments as in Theorem 4.2.8
show that every finite rooted RN.KC-frame is a p-morphic image of a generated
subframe of K. Therefore, RN.KC ⊇ Log(K).

¤

Now we are ready to prove a criterion of local tabularity for extensions of RN.
We will again use the criterion formulated in Theorem 3.4.23.

4.6.5. Theorem. For every L ⊇ KG:

L is not locally tabular iff L ⊆ Log(K).

Proof. We first show that Log(K) is not locally tabular. Observe that for every
point x of K the point-generated subframe Fx is 2-generated and sup({|Fx| : x ∈
K}) = ω. Therefore, by Theorem 3.4.23, Log(K) is not locally tabular. Thus,
if there are infinitely many pairwise non-equivalent formulas in n variables in
Log(K), then there are infinitely many pairwise non-equivalent formulas in n
variables in every L ⊆ Log(K). Therefore, if L ⊆ Log(K), then L is not locally
tabular.

Now suppose L is not locally tabular. Then by Theorem 3.4.23, there are two
cases:
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Case 1. There exists n ∈ ω such that there is an n-generated infinite rooted L-
frame F. By Theorem 4.3.10, F is isomorphic to

⊕m
i=1 Gi, where each Gi is

a cyclic frame. Since F is infinite there is j ≤ m such that Gj is isomorphic
to L. Again two cases are possible:

Case 1.1. j > 1. Similarly to the other cases we define a bisimulation equiv-
alence that identifies all the points above Gj, all the points below Gj and
leaves the points in Gj untouched. More precisely, let E be an equivalence
relation on F such that for every w, v ∈ F:

• wEv if w, v ∈ Gj+1 ⊕ . . .⊕ Gn,

• wEv if w = v, for w, v ∈ Gj,

• wEv if w, v ∈ G1 ⊕ . . .⊕ Gj−1.

Then E is a bisimulation equivalence and F/E is isomorphic to 2∗⊕L⊕2∗.
Finally, by identifying the least two points of 2∗ ⊕ L ⊕ 2∗ we obtain a p-
morphic image of 2∗ ⊕L⊕ 2∗ isomorphic to K. Therefore, K is a p-morphic
image of F and L ⊆ Log(F).

Case 1.2. j = 1. In the same way as in Case 1 we obtain that L is a p-morphic
image of F. As we mentioned above the p-morphism that identifies the two
maximal points of L give us a frame isomorphic to K.

Case 2. There exists n ∈ ω such that the cardinality of sup({|H| : H is a n-
generated finite rooted L-frame }) = ω. This means that for every m ∈ ω
there is a finite rooted n-generated frame H such that |H| > m. Since
every H is a KG-frame, every H is isomorphic to

⊕s
i=1 Hi, where every Hi

is finite and cyclic. Now consider these Hi’s. We again have two cases: the
cardinality of the family Hi’s is bounded or it is not bounded.

Case 2.1. For every m ∈ ω there exists an n-generated finite rooted frame H =⊕s
i=1 Hi and a cyclic frame Hi, for i ≤ s such that |Hi| > m. Then the same

technique as in Case 1 shows that for every k ∈ ω the frame 2∗ ⊕ Lgk
is an

L-frame. By Theorem 4.6.2 this implies that L ⊆ Log(K).

Case 2.2. There is m ∈ ω such that for every n-generated finite rooted L-frame
H =

⊕s
i=1 Hi, we have |Hi| ≤ m, for i = 1, . . . , s. By Claim 4.5.12, s ≤ 2n.

Therefore, |H| ≤ m · 2n and by Theorem 3.4.23, L is locally tabular, which
contradicts our assumptions.

¤
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4.6.6. Corollary. If L ⊇ KG is decidable, then it is decidable whether L is
locally tabular.

Proof. By Theorem 4.6.5, L is not locally tabular iff L ` φ for every axiom φ of
RN.KC. This problem is clearly decidable if L is decidable. ¤

Next we give another criterion of local tabularity in extensions of RN. By Theo-
rem 4.2.10 every finite rooted L-frame is isomorphic to Lgk

⊕
⊕n

i=1 Fi, where each
Fi is isomorphic to 2∗ or 4∗, and k, n ∈ ω.

4.6.7. Definition.

1. The initial segment of a frame (
⊕n

i=1 Fi)⊕Lgk
, where each Fi is isomorphic

to 2∗ or 4∗, is the frame Lgk
.

2. The internal depth of a finite rooted RN-frame F is the depth of its initial
segment. Denote by dI(F) the internal depth of a frame F.

3. Define the internal depth of a logic L ⊇ RN as sup{dI(F) : F is a finite
rooted L-frame}. We denote by dI(L) the internal depth of L.

4.6.8. Theorem. A logic L ⊇ RN is locally tabular iff dI(L) < ω.

Proof. First suppose dI(L) = ω. Then for every m ∈ ω there exists k > m
such that (

⊕n
i=1 Fi)⊕Lgk

is an L-frame, where each Fi is isomorphic to 2∗ or 4∗.
Then 2∗ ⊕ Lgk

is a p-morphic image of (
⊕n

i=1 Fi) ⊕ Lgk
. We map all the points

in
⊕n

i=1 Fi onto the top node of 2∗ ⊕ Lgk
. Then by Theorem 4.1.23, Log(K) ⊆ L

and by Theorem 4.6.5, L is not locally tabular.
Now suppose dI(L) = m < ω. Let F be an n-generated rooted L-frame.

Then, by Lemma 4.6.2, F isomorphic to a finite sum of cyclic frames, therefore F

is isomorphic to (
⊕s

i=1 Fi) ⊕ Lgk
, where each Fi is isomorphic to 2∗ or 4∗. Then

since dI(L) = m we have |Lgk
| ≤ m, and by Lemma 4.6.2, s ≤ 2n. Therefore,

|H| ≤ (m+ 2n) · 2. Thus, the cardinality of every n-generated rooted L-frame is
bounded by |H|. Therefore, by Theorem 3.4.23, L is locally tabular.

¤



Part II

Lattices of cylindric modal logics

121





Chapter 5

Cylindric modal logic and cylindric
algebras

In the second part of this thesis we investigate lattices of two-dimensional cylindric
modal logics. Cylindric modal logics can be seen as finite variable fragments of
the classical first-order logic FOL and also arise naturally as multi-dimensional
products of the well-known modal logic S5.

The idea of “approximating” FOL by its finite variable fragments goes back to
Tarski. Tarski and his collaborators developed the theory of cylindric algebras—
the algebraic models of FOL [60]. In particular, cylindric algebras of dimension
n are Boolean algebras with n additional operators. They are algebraic models of
the n-variable fragment of FOL. Therefore, finite dimensional cylindric algebras
provide an algebraic semantics for finite variable fragments of FOL, and so give
their algebraic “approximation”.

Because of the close connection between Boolean algebras with additional
operators and modal logic, which we will discuss in this chapter, this approach
can be formulated purely in modal logic terms. Venema [125] defined cylindric
modal logic—the modal logic counterpart of cylindric algebras—which gives a
modal approximation of FOL. Cylindric modal logic can be also approached
from the point of view of products of modal logics of Gabbay and Shehtman [44].
In the framework of products of modal logics, cylindric modal logics constitute a
special case, namely products of the well-known modal logic S5.

The one variable fragment of FOL is S5. This logic has a lot of “nice”
properties: S5 is finitely axiomatizable, has the finite model property and is de-
cidable. Moreover, the lattice of normal extensions of S5 is rather simple: it
is an (ω + 1)-chain. Every proper normal extension of S5 is tabular, is finitely
axiomatizable and is decidable (see Scroggs [111]). In contrast to this, the three
variable fragment of FOL—the three dimensional cylindric modal logic is much
more complicated and no longer has “nice” properties. It has been shown by
Maddux [88] that three-dimensional cylindric modal logic is undecidable and has
continuum many undecidable extensions. Kurucz [79] strengthened this by show-

123
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ing that the fmp also fails for all these logics [43, Theorem 8.12]. It follows from
Monk [99] and Johnson [67] that three dimensional cylindric modal logics are not
finitely axiomatizable.

In this thesis we investigate in detail two-dimensional cylindric modal logic.
We will show that the two-dimensional case is not as complicated as the three-
dimensional, but is not as simple as the one-dimensional case. We consider two
different formalisms: cylindric modal logic without diagonal and cylindric modal
logic with diagonal. As we will see below, the former corresponds to the two-
dimensional substitution-free fragment of FOL, whereas the latter corresponds
to the full two-dimensional fragment of FOL.

The chapter is organized as follows. In the first section we recall some ba-
sic facts from modal logic. In section two we discuss many-dimensional modal
logics. Section three introduces two-dimensional cylindric modal logic. In the
final section we discuss two-dimensional cylindric algebras and their topological
representation.

5.1 Modal Logic

In this section we recall the basic facts about modal logic. Most of these were
already discussed in Chapter 2 for intermediate logics. Let ML be an extension
of the propositional language L with the modal operator ♦ and let Form(ML)
be the set of all formulas of ML.

5.1.1. Definition. The basic modal logic K is the smallest set of formulas that
contains CPC and the axioms:

1. ¤(p→ q) → (¤p→ ¤q).

2. ¤p↔ ¬♦¬p.

and is closed under the rules (MP), (Subst) and

Necessitation (N) : from φ infer ¤φ.

A normal modal logic is a set of formulas L ⊆ Form(ML) that contains K and
is closed under (MP), (Subst) and (N).

Next we recall the Kripke semantics for normal modal logics; see, e.g., [18, Defi-
nitions 1.19 and 1.20] and [24, §3.2].

5.1.2. Definition.

1. A modal Kripke frame is a pair F = (W,R), where W 6= ∅ and R is a binary
relation on W .
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2. A modal Kripke model is a pair M = (F, V ), where F is a Kripke frame and
V is an arbitrary map V : Prop → P(W ), called a valuation.

Let M = (W,R, V ) be a modal Kripke model and consider an element w of W .
For a formula φ ∈ Form(ML) the following provides an inductive definition of
M, w |= φ.

1. M, w |= p iff w ∈ V (p),

2. M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ,

3. M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ,

4. M, w |= φ→ ψ iff M, w 6|= φ or M, w |= ψ,

5. M, w 6|= ⊥,

6. M, w |= ♦φ iff there exists v such that wRv and M, v |= φ,

7. M, w |= ¤φ iff for all v such that wRv we have M, v |= φ.

Since in Part II of this thesis we will only be concerned with modal logics, we call
“modal Kripke frames” simply “Kripke frames”.

5.1.3. Remark. The definitions of truth, validity, completeness, and the fmp re-
main the same as in the intuitionistic case. The same holds for all the definitions,
constructions and theorems in Section 2.1.1. We will refer to these theorems as
the modal analogues of the corresponding theorems for intermediate logics.

5.1.4. Definition. Let F = (W,R) be a Kripke frame. F is called rooted if there
exists w ∈ W such that for every v ∈W we have wR∗v, where R∗ is the reflexive
and transitive closure of R.

We have the following analogue of Corollary 2.1.15; see e.g., [24, Proposition
1.11].

5.1.5. Theorem. If a modal logic L is Kripke complete, then L is Kripke com-
plete with respect to the class of its rooted frames.

Next we recall the axiomatizations of some well-known modal logics; see, e.g.,
[18, §4.1] and [24, §3.8].

5.1.6. Definition. Let

1. K4 = K + (♦♦p→ ♦p),

2. S4 = K4 + (p→ ♦p),
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3. S5 = S4 + (p→ ¤♦p).

We also recall the completeness results for these logics; see, e.g., [18, §4.2 and
§4.3] and [24, §5.2].

5.1.7. Theorem.

1. K is complete with respect to the class of all finite rooted frames.

2. K4 is complete with respect to the class of all finite transitive rooted frames.

3. S4 is complete with respect to the class of all finite transitive and reflexive
rooted frames.

4. S5 is complete with respect to the class of all finite transitive, reflexive and
symmetric rooted frames.

5.1.1 Modal algebras

In this section we discuss the algebraic semantics for modal logic. In the same way
as Boolean algebras provide an algebraic semantics for the classical propositional
calculus modal algebras provide an algebraic semantics for modal logic.

5.1.8. Definition. A modal algebra is a pair B = (B,♦), where B is a Boolean
algebra and ♦ : B → B is a map satisfying the following two conditions for every
a, b ∈ B:

1. ♦(a ∨ b) = ♦a ∨ ♦b,

2. ♦0 = 0.

We also assume that ¤ : B → B is defined by ¤a = −♦− a, for every a ∈ B.

The interpretation of a modal formula in a modal algebra is defined in the same
way as in Section 2.2.2; the interpretation of the modal operators is as follows:

• v(♦φ) = ♦v(φ),

• v(¤φ) = ¤v(φ).

As in Section 2.2.2 with every normal modal logic L we associate a variety
VL of modal algebras that validate all the theorems of L. Using the standard
Lindenbaum-Tarski construction we can show that every normal modal logic is
complete with respect to its algebraic semantics; see, e.g., [18, Theorem 5.27] and
[24, Theorem 7.52].

5.1.9. Theorem. Every normal modal logic L is complete with respect to VL.
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Moreover, we have that the lattice of all normal modal logics is dually isomorphic
to the lattice of all varieties of modal algebras; see, e.g., [24, Theorem 7.54].

5.1.10. Theorem. There exists a lattice anti-isomorphism between the lattice of
normal extensions of a normal modal logic L and the lattice of subvarieties of
VL.

The notion of a filter was defined in Section 2.2.3. Next we recall the definitions
of ultrafilters and modal filters; see, e.g., [24, §7.4 and §7.7].

5.1.11. Definition. Let B = (B,♦) be a modal algebra and F ⊆ B be a filter.
Then

1. F is called an ultrafilter if for every a ∈ B we have

a ∈ B or −a ∈ B.

2. F is called a modal filter if for every a ∈ B we have

a ∈ B implies ¤a ∈ B.

The next theorem is an analogue of Theorem 2.3.11 (1)–(2); see, e.g., [24, Propo-
sition 7.69].

5.1.12. Theorem. Let B be a modal algebra. Then there is a lattice anti-
isomorphism between the lattice of congruences on B and the lattice of modal
filters of B.

We will use this correspondence in the subsequent chapters.

5.1.2 Jónsson-Tarski representation

The dual frames of modal algebras are similar to the descriptive frames of in-
tuitionistic logic. This duality was explicitly formulated by Goldblatt [51, 52].
However, the idea of this duality goes back to Jónsson and Tarski [71].

5.1.13. Definition. A modal general frame is a triple F = (W,R,P), where
(W,R) is a modal Kripke frame and P is a set of subsets of W , i.e. P ⊆ P(W )
such that

1. ∅,W ∈ P ,

2. If U1, U2 ∈ P , then U1 ∩ U2 ∈ P ,
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3. If U ∈ P , then (W \ U) ∈ P ,1

4. If U ∈ P , then R−1(U) ∈ P .

Next we introduce descriptive frames for modal logic; see, e.g., [18, Definition
5.65] and [24, §8.4].

5.1.14. Definition. Let F = (W,R,P) be a modal general frame.

1. F is called differentiated if for each w, v ∈W ,

w 6= v implies there is U ∈ P such that w ∈ U and v /∈ U .

2. F is called tight if for every w, v ∈ W ,

¬(wRv) implies that there is U ∈ P such that v ∈ U and w /∈ R−1(U).

3. F is called refined if it is differentiated and tight.

4. F is called compact if for every Γ ⊆ P with the finite intersection property
we have

⋂
Γ 6= ∅.

5. F is called descriptive if it is refined and compact.

Note that for every descriptive frame F = (W,R,P) the algebra (P ,∪,∩, \, ∅, R−1)
is a modal algebra. In fact, every modal algebra can be represented in such a
way; see, e.g., [18, Theorem 5.43] and [24, Theorem 8.51].

5.1.15. Theorem. For every modal algebra B there exists a descriptive frame
F = (W,R, P) such that B is isomorphic to (P ,∪,∩, \, ∅, R−1).

We quickly sketch the main idea of the proof. Let WB be the set of all ultrafilters
of B, and let PB = {â : a ∈ B}, where â = {w ∈ WB : a ∈ w}. We define RB on
WB by

wRBv iff a ∈ v implies ♦a ∈ w for each a ∈ B,

which is equivalent to

wRBv iff ¤a ∈ w implies a ∈ v.

Then (WB, RB,PB) is a descriptive frame and B is isomorphic to the modal
algebra (PB,∪,∩, \, ∅, R

−1
B

).

1Therefore, P is a Boolean subalgebra of the powerset algebra P(W ).
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5.1.16. Remark. The notions of generated subframes, generated submodels, p-
morphisms and disjoint unions of modal descriptive frames and the preservation
results are exactly the same as in Section 2.3.1.

We will finish this section by reformulating the representation theorem for modal
algebras in topological terms.

5.1.17. Definition. A triple X = (X,O, R) is called a modal space if (X,O)
is a Stone space and R is a point-closed and clopen relation; that is, for every
x ∈ X, the set R(x) is closed and for every clopen U ⊆ X, the set R−1(U) is
clopen.

Similar to Esakia spaces, a triple X = (X,O, R) is a modal space iff R is a clopen
relation on X satisfying the following condition:

¬(xRy) implies there is a clopen U such that y ∈ U and x /∈ R−1(U).

Note that in the case R is a partial order, this condition becomes equivalent to
the Priestley separation axiom. We also note that for every clopen relation R
we have that R−1(U) is closed for every closed set U . Then the representation
theorem of modal algebras can be formulated as follows.

5.1.18. Theorem. For every modal algebra B there exists a modal space X =
(X,O, R) such that B is isomorphic to (CP(X),∪,∩,\, ∅,R−1), where CP(X) is
the Boolean algebra of all clopens of X .

The correspondence between modal descriptive frames and modal spaces is even
more straightforward than in the intuitionistic case. For every modal space X =
(X,O, R), the triple (X,R, CP(X)) is a modal descriptive frame. Conversely, if
F = (W,R,P) is a modal descriptive frame, then define topology on W by letting
P be a basis for the topology. Then the triple (W,OP , R) is a modal space.

In Part I we defined bisimulation equivalences for intuitionistic descriptive
frames. Now we will give an analogous definition of bisimulation equivalence for
modal descriptive frames.

5.1.19. Definition. Let F = (W,R,P) be a descriptive frame. An equivalence
relation Q onW is called a bisimulation equivalence if the following two conditions
are satisfied:

1. For every w, v, u ∈ W , wQv and vRu imply there is u′ ∈W such that wRu′

and u′Qu. In other words, RQ(w) ⊆ QR(w).

2. For every w, v ∈W , if ¬(wQv) then w and v are separated by a Q-saturated
admissible set; that is, there exists U ∈ P such that Q(U) = U , w ∈ U and
v /∈ U .
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We reformulate the definition of bisimulation equivalence in topological terms.

5.1.20. Definition. Let X = (X,O, R) be a modal space. An equivalence
relation Q onW is called a bisimulation equivalence if the following two conditions
are satisfied:

1. For every x, y, z ∈ X, xQy and yRz imply there is z ′ ∈ X such that xRz′

and z′Qz. In other words, RQ(x) ⊆ QR(x).

2. For every x, y ∈ X, if ¬(xQy) then x and y are separated by a Q-saturated
clopen; that is, there exists a clopen U ⊆ X such that Q(U) = U , x ∈ U
and y /∈ U .

We order the set of all bisimulation equivalences of X by set-theoretic inclusion.
Then we have the following analogue of Theorem 2.3.10.

5.1.21. Theorem. The lattice of subalgebras of a modal algebra B is dually
isomorphic to the lattice of bisimulation equivalences of its dual X .

As in the case of Heyting algebras, the category of modal descriptive frames
is isomorphic to the category of modal spaces, and is dual to the category of all
modal algebras. In this part of the thesis we mostly use the topological duality
between modal algebras and modal spaces.

5.2 Many-dimensional modal logics

In this section we extend the notions defined in the previous section for modal
logics to their multi–dimensional analogues.

5.2.1 Basic definitions

Let MLn be an extension of the propositional language L with n modal oper-
ators ♦1, . . . ,♦n. Let Form(MLn) be the set of all formulas of MLn. Many-
dimensional normal modal logics are obtained as straightforward generalizations
of normal modal logics; see, e.g., [43, §1.4].

5.2.1. Definition. The minimal n-modal logic Kn is the smallest set of formulas
that contains CPC, the following axioms for i ≤ n:

1. ¤i(p→ q) → (¤ip→ ¤iq),

2. ¤ip↔ ¬♦i¬p.

and is closed under the rules (MP), (Subst) and
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Necessitation (N)i : from φ infer ¤iφ.

An n-normal modal logic is a set L ⊆ Form(MLn) that contains Kn and is
closed under (MP), (Subst) and (N)i, for each i ≤ n.

5.2.2. Remark. The Kripke semantics for many-dimensional modal logics is ob-
tained by a straightforward generalization of the uni-modal case.

Throughout, we will skip the prefix n in “n-normal modal logics” if it is clear
from the context. As we saw in Part I, an important class of frames is the class
of rooted frames. Next we discuss rooted Kripke frames for many-dimensional
modal logics; see, e.g, [43, §1.4].

5.2.3. Definition. Let F = (W,R1, . . . , Rn) be a many-dimensional Kripke
frame. Then F is called rooted if there is a point w ∈ W that is related to
every point v ∈W by the reflexive and transitive closure of the relation

⋃n
i=1Ri.

The point w is called a root of F .

We have the following analogue of Theorem 5.1.5; see, e.g., [43, Proposition 1.11]

5.2.4. Theorem. If a many-dimensional modal logic L is Kripke complete, then
L is Kripke complete with respect to the class of its rooted frames.

5.2.2 Products of modal logics

In this section we recall the fusion and product of modal logics. For an extensive
study of many-dimensional modal logics we refer to [43] and [95].

5.2.5. Definition. Let L1 and L2 be normal modal logics with the modal op-
erators ♦1 and ♦2, respectively. The fusion L1 ⊗ L2 of L1 and L2 is the smallest
normal modal logic, in the language ML2, containing L1 ∪ L2.

Consider the following formulas called right and left commutativity formulas, and
the Church-Rosser formula.

1. comr := ♦1♦2p→ ♦2♦1p

2. coml := ♦2♦1p→ ♦1♦2p

3. chr := ♦1¤2p→ ¤2♦1p.

The next theorem gives a semantic characterization of comr, coml and chr; see,
e.g., [43, §5.1].

5.2.6. Theorem. For every frame F = (W,R1, R2) we have
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1. F |= comr iff (∀w, v, u ∈W )(wR1v ∧ vR2u → (∃z)(wR2z ∧ zR1u)),

2. F |= coml iff (∀w, v, u ∈W )(wR2v ∧ vR2u → (∃z)(wR1z ∧ zR2u)),

3. F |= chr iff (∀w, v, u ∈W )(wR1v ∧ wR2u → (∃z)(vR1z ∧ uR2z)).

Proof. The proof follows directly from the Sahlqvist correspondence, because
comr, coml and chr are Sahlqvist formulas; see, e.g., [18, §3.6]. ¤

Next we define the product of Kripke frames and the product of modal logics.
These constructions were introduced in [115] and [44], (see also [43, §5.1]).

5.2.7. Definition.

1. Let F = (W,R) and F ′ = (W ′, R′) be Kripke frames. The product of F
and F ′ is the frame F × F ′ := (W ×W ′, R1, R2), where

(w,w′)R1(v, v
′) iff wRv and w′ = v′,

and
(w,w′)R2(v, v

′) iff w′R′v′ and w = v.

The frame F × F ′ is called a product frame.

2. Let L1 and L2 be Kripke complete normal modal logics. The product L1×L2

of L1 and L2 is defined as

L1 × L2 := Log({F × F ′ : F is an L1-frame and F ′ is an L2-frame})

Product logics can be axiomatized by the commutativity and the Church-Rosser
formulas. Let

com = comr ∧ coml.

The next theorem, gives a sufficient condition when a product logic is axiomatized
by com and chr; see, e.g., [43, Theorem 5.9].

5.2.8. Theorem. If L1 and L2 are normal uni-modal logics axiomatized by Sahl-
qvist formulas, then

L1 × L2 = L1 ⊗ L2 + com + chr.

The rest of this thesis is devoted to the two-dimensional products of the modal
logic S5.

5.3 Cylindric modal logics

In this section we introduce cylindric modal logics, investigate their Kripke se-
mantics, and discuss the connection with FOL. We start with the logic S52,
which is the substitution-free fragment of FOL.
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5.3.1 S5 × S5

We consider a very special case of products of modal logics. In particular, we look
at the product L1 × L2, for L1 = L2 = S5. We first simplify the axiomatization
of S5 × S5.

5.3.1. Lemma. Let F = (W,R1, R2) be a frame such that R1 and R2 are sym-
metric relations. Then the following three conditions are equivalent:

1. F |= comr,

2. F |= coml,

3. F |= chr.

Proof. (1) ⇒ (2). Let F |= comr. We will show that F |= coml. Suppose
w, v, u ∈ W , wR2v and vR1u. Then since R1 is symmetric, we have uR1v and
vR2w. From F |= comr and Theorem 5.2.6(1) it follows that there exists z ∈ W
such that uR2z and zR1w. By the symmetry of R1, we get wR1z and zR2u. By
Theorem 5.2.6(2), this means that F |= coml. The proof of (2) ⇒ (3) and (3)
⇒ (1) is similar. ¤

It is well known that the axioms of S5 are Sahlqvist formulas; see, e.g., [18, §3.6].
Thus we have the following corollary of Theorem 5.2.8; see, e.g., [43, Corollary
5.11 and Theorem 5.12].

5.3.2. Corollary.

S5 × S5 = S5 ⊗ S5 + comr = S5 ⊗ S5 + coml = S5 ⊗ S5 + chr.

Proof. Apply Lemma 5.3.1 and Theorem 5.2.8. ¤

Warning. From now on we use the abbreviation S52 for S5×S5. We denote by
F , G, . . ., the frames of S52. We also denote by F,G, . . ., the frames in a similarity
type with an additional constant d (see Section 5.3.2). Since the relations in S52-
frames are equivalence relations we denote them by E1 and E2.

In Definition 5.2.3 we defined rooted frames for many-dimensional modal logics.
The next lemma characterizes the rooted S52-frames.

5.3.3. Lemma. Let F = (W,E1, E2) be an S52-frame. Then F is rooted iff for
every w, v ∈ W , there exists u ∈ W such that wE1u and uE2v.
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Proof. It is easy to see that if F satisfies the above condition, then every point
of W is a root of F . Conversely, suppose F is rooted. Let w, v ∈ W , and let r
be a root of F . Then there are two finite sequences r0, . . . , rk and r′0, . . . , r

′
m such

that r0 = r′0 = r, rk = w, r′m = v and ri(E1∪E2)ri+1 for i < k and r′i(E1∪E2)r
′
i+1

for i < m. It follows that there is a sequence w0, . . . , wn for n = k +m such that
w0 = w, wn = v and wi(E1 ∪ E2)wi+1 for i < n. We will prove the lemma by
induction on the length of this sequence. If n = 1, then w(E1 ∪ E2)v. Without
loss of generality we may assume that wE1v. So, wE1v and vE2v. Now suppose
that n > 1. Then, by the induction hypothesis, there is a u such that wE1u and
uE2wn−1. If wn−1E2v, then uE2v and the statement of the lemma is satisfied. If
wn−1E1v, then there exists u′ such that uE1u

′ and u′E2v. This means that wE1u
′

and u′E2v, and so, the condition of the lemma is satisfied. ¤

Next we introduce general definitions that will be used in subsequent chapters.
Note that for every S52-frame F = (W,E1, E2) the intersection E1 ∩ E2 of E1

and E2 is also an equivalence relation.

5.3.4. Definition. Let F = (W,E1, E2) be an S52-frame.

1. Let E0 denote the equivalence relation E1 ∩ E2.

2. For i = 1, 2, 3 we call the Ei-equivalence classes the Ei-clusters.

3. For w ∈ W and i = 1, 2, 3 let Ei(w) denote the Ei-cluster containing w.

4. For X ⊆ W and i = 1, 2, 3 we let Ei(X) denote
⋃
x∈X Ei(x).

5.3.5. Lemma. Let F = (W,E1, E2) be an S52-frame. Then F is isomorphic to
a product frame iff E0(w) = {w} for every w ∈ W .

Proof. It is easy to see that if F is (isomorphic to) a product S52-frame, then
E0(w) = {w} for every w ∈ W . Conversely, let F be such that E0(w) = {w}
for every w ∈ W . Fix w ∈ W and let F ′ := (E1(w), E1 ¹ E1(w)) and F ′′ :=
(E2(w), E2 ¹ E2(w)). Obviously F ′ and F ′′ are S5-frames. It is now routine to
check that F ′ ×F ′′ is isomorphic to F . ¤

The next lemma gives a characterization of rooted S52-frames.

5.3.6. Lemma. Let F = (W,E1, E2) be an S52-frame. Let {Ci}i∈I and {Cj}j∈J
be the families of all E1 and E2-clusters of F , respectively. Then F is rooted iff
Ci ∩ C

j 6= ∅ for every i ∈ I and j ∈ J .

Proof. It is easy to see that if the condition of the lemma is satisfied, then for
every w, v ∈ W we have E1(w) ∩ E2(v) 6= ∅. Therefore, by Lemma 5.3.3, F is
rooted. Conversely, let Ci and Cj be an E1 and E2-cluster of F , respectively.
Suppose w ∈ Ci and v ∈ Cj. Then, by Lemma 5.3.3, there exists z ∈ W such
that wE1z and zE2v, which means that z ∈ Ci ∩ C

j, and so Ci ∩ Cj 6= ∅. ¤
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We use the terms rectangles, squares, and quasi-squares to denote the following
rooted S52-frames.

5.3.7. Definition.

1. We call rooted product frames rectangles. Let Rect denote the class of
all rectangles. We denote by n × m the finite rectangle consisting of n
E1-clusters and m E2-clusters.

2. A rectangle that is isomorphic to G × G, for some S5-frame G, is called a
square. We denote by Sq the class of all squares. Let n × n denote the
finite square consisting of n E1 and E2-clusters.

3. Call a rooted S52-frame F a quasi-square if the cardinality of E1-clusters
of F is the same as the cardinality of E2-clusters of F .

It is clear that Sq ⊆ Rect. We will see in the next chapter that S52 is complete
with respect to the classes of finite rectangles and finite squares.

5.3.2 Cylindric modal logic with the diagonal

Let MLd2 be the extension of ML2 with a constant d. We call this constant the
diagonal. Let Form(MLd2) be the set of all formulas of MLd2.

5.3.8. Definition. The two-dimensional cylindric modal logic CML2 is the
smallest set of formulas of Form(MLd

2) that contains S52, the axioms:

1. ♦i(d),

2. ♦i(d ∧ p) → ¬♦i(d ∧ ¬p),

and is closed under (MP), (Subst) and (N)i, for i = 1, 2.

We now define the Kripke semantics for this new similarity type.

5.3.9. Definition.

1. A frame of the language MLd2 is a quadruple (W,R1, R2, D) such that
(W,R1, R2) is a two-dimensional Kripke frame and D ⊆ W .

2. A model of the language MLd2 is a tuple (W,R1, R2, D, V ), where (W,R1, R2,
D) is a frame of MLd2 and V : Prop ∪ {d} → W is a valuation such that
V (d) = D. If w ∈ V (d) we write w |= d.

The next proposition characterizes the frames of CML2; see, e.g., [60] and [125].
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5.3.10. Proposition. A frame F = (W,E1, E2, D) is a CML2-frame iff the
following three conditions are satisfied:

1. (W,E1, E2) is an S52-frame,

2. For each i = 1, 2, every Ei-cluster of F contains a unique point from D.

Proof. The right to left direction is straightforward. Now assume F is a CML2-
frame. Since CML2 contains S52 we have that (1) is satisfied. To show (2)
suppose for i = 1, 2 there exists an Ei-cluster C such that D ∩ C = ∅. Then for
every w ∈ C we have that w 6|= ♦id, which contradicts Definition 5.3.8(1). Now
suppose that for i = 1, 2 there exists an Ei-cluster C such that D ∩ C = {w, v}
and w 6= v. Let V be a valuation such that V (p) = {w}. Then w |= ♦i(d∧p). On
the other hand, v |= d∧¬p. Hence, w |= ♦i(d∧¬p), which contradicts Definition
5.3.8(2). ¤

5.3.11. Corollary. For every CML2-frame F = (W,E1, E2, D), the cardinal-
ity of the set of all E1-clusters of F is the same as the cardinality of the set of all
E2-clusters of F.

Proof. Let E1 and E2 denote the sets of all E1 and E2-clusters of F, respectively.
Define f : E1 → E2 by putting f(C) = E2(C ∩D). Suppose C1, C2 ∈ E1, C1 6= C2,
C1 ∩D = {x}, and C2 ∩D = {y}. Since every Ei-cluster of X contains a unique
point from D, it follows that f(C1) = E2(x) 6= E2(y) = f(C2). Therefore, f is
an injection. Now suppose C ′ ∈ E2 and C ′ ∩ D = {x}. If we let C = E1(x),
then f(C) = E2(x) = C ′. Thus, f is a surjection. Hence, we obtain that f is a
bijection. ¤

The next theorem shows the completeness of CML2 with respect to its Kripke
semantics; see, e.g., [124, §3.2.2].

5.3.12. Theorem. CML2 is Kripke complete.

Proof. The result follows immediately from the Sahlqvist correspondence, be-
cause (1) and (2) are Sahlqvist formulas. ¤

The definition of rooted frames in this similarity type is the same as for ML2.

5.3.13. Proposition. Let F = (W,E1, E2, D) be a CML2-frame. F is rooted iff
(W,E1, E2) is a rooted S52-frame.

Proof. Apply Lemma 5.3.3. ¤
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5.3.3 Product cylindric modal logic

Similar to the diagonal-free case we can define product frames in the signature
with the diagonal.

5.3.14. Definition.

1. A rooted CML2-frame F = (W ×W,E1, E2, D) is called a cylindric square
or square CML2-frame, if (W ×W,E1, E2) is a square and D = {(w,w) :
w ∈ W}. Let CSq denote the class of all cylindric squares.

2. Let PCML2 denote the logic of CSq; that is, PCML2 = Log(CSq). We
call PCML2 the product cylindric modal logic.

We note that CML2 6= PCML2. In fact, PCML2 can be obtained by adding to
CML2 the Henkin axiom:

(H) = ♦i(p ∧ ¬q ∧ ♦j(p ∧ q)) → ♦j(¬d ∧ ♦ip), i 6= j, i, j = 1, 2.

or the Venema axiom

(V) = d ∧ ♦i(¬p ∧ ♦jp) → ♦j(¬d ∧ ♦ip), i 6= j, i, j = 1, 2.

For the next theorem see [60, Theorem 3.2.65(ii)] and [124, Proposition 3.5.8].

5.3.15. Theorem. PCML2 = CML2+(H)= CML2+(V).

Since both (H) and (V) are Sahlqvist formulas we have the following theorem;
see, e.g., [124, Theorem 3.5.4].

5.3.16. Theorem. PCML2 is Kripke complete.

Now we give a useful characterization of PCML2-frames, which will allow us
to construct rather simple finite CML2-frames that are not PCML2-frames.
Suppose (W,E1, E2, D) is a CML2-frame. We call w ∈ D a diagonal point, and
w ∈W \D a non-diagonal point. Also, call an E0-cluster C a diagonal E0-cluster
if it contains a diagonal point. Otherwise we call C a non-diagonal E0-cluster.

5.3.17. Definition. Let F = (W,E1, E2, D) be a CML2-frame. F is said to
satisfy (∗) if there exists a diagonal point x0 ∈ D such that E0(x0) = {x0} and
there exists a non-singleton E0-cluster C which is either E1 or E2-related to x0.

The next theorem characterizes PCML2-frames. A similar characterization can
be found in [60, Lemma 3.2.59, Theorem 3.2.65]. However, our characterization
uses Venema’s axiom, while the one in [60] uses Henkin’s axiom. Moreover, our
proof below appears to be simpler than the original one in [60].
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Figure 5.1: CML2 and PCML2-frames

5.3.18. Theorem. Let F = (W,E1, E2, D) be a CML2-frame. Then F is an
PCML2-frame iff F does not satisfy (∗).

Proof. Suppose F satisfies (∗). We show that (V) does not hold in F, implying
that F is not a PCML2-frame. Let x0 be a diagonal point with E0(x0) = {x0}
and C be a non-singleton E0-cluster, say E1-related to x0 (the case when C is
E2-related to x0 is proved similarly). Choose two different points y and z from C.
Then y ∈ (W \{z})∩E2(z), and so x0 ∈ D∩E1((W \{z})∩E2(z)). On the other
hand, E1(z) = E1(x0). If x0 ∈ E2((W \D)∩E1(z)), then there exists u ∈W \D
that is E1 and E2 related to x0, which contradicts the fact that E0(x0) = {x0}.
Finally, if we define a valuation V on F by V (p) = {z}, then (F, V ), x0 6|= (V ).
Thus, by Theorem 5.3.15, F is not a PCML2.

Conversely, suppose F is not a PCML2-frame. We show that (∗) holds in F.
We know that (V) does not hold in F. Therefore, there exist a point x ∈ W and
a set A ⊆ X such that x ∈ D∩Ei((W \A)∩Ej(A)) but x /∈ Ej((W \D)∩Ei(A))
for i, j = 1, 2 and i 6= j. Since x ∈ D ∩ Ei((W \ A) ∩ Ej(A)), we have x ∈ D
and there exist points y, z ∈ W such that xEiy, yEjz, y /∈ A and z ∈ A. From
y /∈ A and z ∈ A it follows that y and z are different. Also xEiy and yEjz imply
that there exists a point u ∈ W such that xEju and uEiz. If u 6= x, then, by
Proposition 5.3.10, u is a non-diagonal point, and so u ∈ (W \D) ∩ Ei(A). But
then x ∈ Ej((W \D) ∩ Ei(A)), which contradicts our assumption. Thus, u = x
and xEiz. Therefore, yE0z and both y and z are Ei-related to x. Moreover, if
E0(x) 6= {x}, then by choosing a point u ∈ E0(x) different from x we again obtain
that u ∈ (W \D)∩Ei(A), and so x ∈ Ej((W \D)∩Ei(A)), which is impossible.
Therefore, E0(x) = {x} and E0(y) is a non-singleton E0-cluster Ei-related to x0.
Thus, (∗) holds in F. ¤

Using this criterion it is easy to see that the CML2-frames shown in Figure 5.1(b)
are PCML2-frames, while the CML2-frames shown in Figure 5.1(a) are not.
Moreover, the smallest CML2-frame that is not a PCML2-frame is the frame
shown in Figure 5.1(a), where the non-singleton E0-cluster contains only two
points.
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5.3.4 Connection with FOL

As we mentioned in the introduction to this chapter, one of the main reasons
for studying S52 and CML2 (PCML2) is that they axiomatize the two-variable
fragments of FOL. S52 corresponds to a “clean”, substitution-free fragment of
FOL, whereas PCML2 is the full fragment of FOL. To see this, consider the
following translation of the formulas of the language of S52 and CML2 to the
first order language:

• pt = P (x1, x2),

• (·)t is a homomorphism for the Booleans,

• (♦1ϕ)t = ∃x1ϕ
t,

• (♦2ϕ)t = ∃x2ϕ
t,

• dt = (x1 = x2).

This translation preserves the validity of formulas; see, e.g., [43, §3.5] and [124,
Proposition 4.1.7].

5.3.19. Theorem. Let φ ∈ Form(ML2) and ψ ∈ Form(MLd2). Then

1. S52 ` φ iff FOL ` φt.

2. PCML2 ` ψ iff FOL ` ψt.

Note that the analogue of this theorem for the one-variable fragment of FOL was
first proved by Wajsberg [128], who showed that S5 axiomatizes the one-variable
fragment of FOL. Similarly one can show that the logics S5n and PCMLn of
n-ary products of S5-frames are the substitution-free and full n-variable subfrag-
ments of FOL. However, for n ≥ 3 the logics S5n and PCMLn no longer have
“good” properties. That S5n is not finitely axiomatizable for n ≥ 3 follows from
Johnson [67], and that PCMLn is not finitely axiomatizable for n ≥ 3 follows
from Monk [99] (see also [43, Theorems 8.1 and 8.2]).

5.4 Cylindric algebras

Two-dimensional cylindric algebras are algebraic models of two-dimensional cylin-
dric modal logics. Note that historically cylindric algebras were introduced by
Tarski much earlier than cylindric modal logics.
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5.4.1 Df2-algebras

5.4.1. Definition. [60, Definition 1.1.2] An algebra B = (B,♦1,♦2) is said to
be a two-dimensional diagonal-free cylindric algebra, or a Df 2-algebra for short,
if B is a Boolean algebra and each ♦i : B → B, i = 1, 2, satisfies the following
axioms for every a, b ∈ B:

1. ♦i0 = 0,

2. a ≤ ♦ia,

3. ♦i(♦ia ∧ b) = ♦ia ∧ ♦ib,

4. ♦1♦2a = ♦2♦1a.

Since Df2-algebras are equationally defined, the class of all Df 2-algebras forms a
variety.

5.4.2. Definition. Let Df 2 denote the variety of all two-dimensional diagonal-
free cylindric algebras.

Using the standard Lindenbaum-Tarski construction we can show that S52 is
complete with respect to Df2; see, e.g., [124, §4.2].

5.4.3. Theorem. S52 ` φ iff φ is valid in every Df 2-algebra.

Let Λ(S52) denote the lattice of all normal extensions of S52 and let Λ(Df 2)
denote the lattice of subvarieties of Df 2. Then we have the following corollary of
Theorem 5.4.3 and the modal logic analogue of Theorem 2.2.19.

5.4.4. Corollary. Λ(S52) is dually isomorphic to Λ(Df 2).

By adapting Definition 5.1.11 to the case of Df 2 we obtain that a filter F of a
Df2-algebra B = (B,♦1,♦2) is a Df 2-filter provided for each a ∈ B, if a ∈ F ,
then ¤ia ∈ F . Therefore, we have the following corollary; see, e.g., [60, Theorem
2.3.4 and Remark 2.3.6].

5.4.5. Corollary. There exists a lattice isomorphism between the lattice of con-
gruences of (B,♦1,♦2) and the lattice of Df2-filters of (B,♦1,♦2).

Recall from [23] that every algebra A has at least two congruence relations, the
diagonal ∆ = {(a, a) : a ∈ A} and A2. Recall also that an algebra A is simple
if ∆ and A2 are the only congruence relations of A. It is well known that every
simple algebra is subdirectly irreducible. In the case of Df 2, the converse is also
true; see [60, Theorems 2.4.43, 2.4.14].
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5.4.6. Theorem. Let B = (B,♦1,♦2) be a Df 2-algebra. Then B is subdirectly
irreducible iff B is simple.

5.4.7. Remark. We mention that a Df1-algebra or Halmos’ monadic algebra is
a pair (B,♦) such that B is a Boolean algebra and ♦ is an unary operator on
B satisfying conditions 1–3 of Definition 5.4.1; see e.g., [58, p.40]. The unary
operator ♦ is called a monadic operator, and Df1-algebras are widely known as
monadic algebras. They provide algebraic completeness for S5. Some of the most
important proprieties of Df1-algebras are:

• Every finitely generated Df1-algebra is finite. Therefore, Df1 is locally finite
and Df1 is generated by its finite algebras.

• The lattice of all subvarieties of Df1 is a countable increasing chain V1 (

V2 ( . . . that converges to Df1.

For a proof of these and other related results we refer to Halmos [58], Bass [3],
Monk [100], and Kagan and Quackenbush [72].

5.4.2 Topological representation

The dual spaces of Df2-algebras can be obtained by adjusting the general duality
between modal algebras and modal spaces.

5.4.8. Definition. A triple X = (X,E1, E2) is said to be a Df2-space, if (X,E1)
and (X,E2) are modal spaces and (X,E1, E2) is an S52-frame.

We have the following representation theorem for Df 2-algebras.

5.4.9. Theorem. Every Df2-algebra can be represented as (CP(X), E1, E2) for
the corresponding Df2-space (X,E1, E2).

Proof. (Sketch). By Theorem 5.1.18 we need to verify that in the dual space X =
(X,E1, E2) of (B,♦1,♦2), the relations E1 and E2 commute; that is (∀x, y, z ∈
X)(xE1y∧ yE2z → (∃u)(xE2u∧uE1z)); and conversely, that in every Df2-space
we have E1E2(A) = E2E1(A) for every A ∈ CP(X). The former follows immedi-
ately from the Sahlqvist correspondence (see [18, Theorems 3.54 and 5.91]), and
the latter is obvious, since Ei(A) =

⋃
x∈AEi(x) and Ei commutes with

⋃
for

i = 1, 2. ¤

Consequently, every finite Df2-algebra is represented as an algebra (P(X), E1, E2),
where P(X) denotes the power set algebra of X, for the corresponding finite S52-
frame (X,E1, E2).

Now we can obtain dual descriptions of algebraic concepts of Df2-algebras.
To obtain the dual description of Df2-filters we need the following definition.
Let X = (X,E1, E2) be Df2-space. A subset U of X is said to be saturated if
E1(U) = E2(U) = U .
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5.4.10. Theorem. Let B = (B,♦1,♦2) be a Df2-algebra and X = (X,E1, E2)
be its dual Df 2-space.

1. The lattice of Df2-filters of B is isomorphic to the lattice of closed saturated
subsets of X .

2. Congruences of B correspond to closed saturated subsets of X .

Proof. The proof is an easy adaptation of Theorem 2.3.11. ¤

Bisimulation equivalences for modal descriptive frames and modal spaces were
defined in Section 5.1 (see Definitions 5.1.19 and 5.1.20). For convenience we
formulate the definition for Df 2-spaces.

5.4.11. Definition. Let X = (X,E1, E2) be a Df2-space. An equivalence rela-
tion Q on W is called a bisimulation equivalence if:

1. For every x, y, z ∈ X and i = 1, 2, xQy and yEiz imply that there is u ∈ X
such that xEiu and uQz. In other words, EiQ(x) ⊆ QEi(x).

2. For every x, y ∈ X and i = 1, 2, if ¬(xQy) then x and y are separated
by a Q-saturated clopen; that is, there exists a clopen U ⊆ X such that
Q(U) = U , x ∈ U and y /∈ U .

Note that since E1, E2 and Q are equivalence relations, Q is a bisimulation
equivalence iff it is separated and QEi(x) = EiQ(x) for every x ∈ X and i = 1, 2.
To obtain the dual description of subalgebras of Df2-algebras, we order the set
of all bisimulation equivalences of a Df2-space X by set-theoretical inclusion.

5.4.12. Theorem. The lattice of subalgebras of B ∈ Df 2 is dually isomorphic
to the lattice of bisimulation equivalences of its dual X .

Proof. The proof is a routine adaptation of the proof of Theorem 2.3.10. ¤

For any Df2-space X = (X,E1, E2) and a bisimulation equivalence Q, let X /Q
denote the quotient space of X by Q. That is, X /Q is a Df 2-space X /Q =
(X/Q, (E1)Q, (E2)Q), where X/Q = {Q(x) : x ∈ X}, the topology on X/Q is
the quotient topology (i.e., the opens of X /Q are, up to homeomorphism, the Q-
saturated opens of X ) and Q(x)(Ei)QQ(y) iff there are x′ ∈ Q(x) and y′ ∈ Q(y)
such that x′Eiy

′ for i = 1, 2. The next lemma can be found in [60, Theorem
2.7.17].

5.4.13. Lemma. Let B = (B,♦1,♦2) be a Df2-algebra and X = (X,E1, E2) be
its dual Df 2-space. Then B is simple iff X and ∅ are the only saturated subsets
of X .
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Proof. Suppose there is a closed saturated subset of X distinct from X and
∅. Then by Theorem 5.4.10 the corresponding congruence relation of B will be
proper and non-trivial. This is a contradiction since B is simple. The proof for
the other direction is similar. ¤

The next theorem connects the simple Df 2-algebras and rooted Df 2-spaces; see
e.g., [60, Theorem 2.7.17].

5.4.14. Theorem. Let B = (B,♦1,♦2) be a Df2-algebra and X = (X,E1, E2)
its dual Df 2-space. Then B is simple iff X is rooted.

Proof. By Lemma 5.4.13, all we need to show is that X is rooted iff X and ∅ are
the only closed saturated subsets of X . If X is rooted, then there exists x ∈ X
such that E1E2(x) = X. Thus, X and ∅ are the only saturated subsets of X .
Now we show that if X is not rooted, then there exists a closed saturated subset
U different from X and ∅. Suppose X is not rooted. Then there are two distinct
points x and y such that there is no u with xE1u and uE2y. Let U = E1E2(x).
By the commutativity of E1 and E2 we have U = E2E1(x). Therefore, U is
saturated. Since E1 and E2 are closed relations, U is a closed set. Moreover,
x ∈ U and y /∈ U imply that U is different from X and ∅. Therefore, if X is not
rooted there exists a closed saturated subset of X that is different from X and ∅.

¤

5.4.3 CA2-algebras

In this section we define cylindric algebras with the diagonal. They represent
algebraic models of cylindric modal logic with the diagonal.

5.4.15. Definition. [60, Definition 1.1.1] A quadruple B = (B,♦1,♦2, d) is
said to be a two-dimensional cylindric algebra, or a CA2-algebra for short, if
(B,♦1,♦2) is a Df2-algebra and d ∈ B is a constant satisfying the following
conditions for all a ∈ B and i = 1, 2.

1. ♦i(d) = 1;

2. ♦i(d ∧ a) ≤ −♦i(d ∧ −a).

Let CA2 denote the variety of all two-dimensional cylindric algebras.

Again the standard Lindenbaum-Tarski argument shows that CML2 is complete
with respect to CA2; see, e.g., [125, §4.2].

5.4.16. Theorem. CML2 ` φ iff φ is valid in every CA2-algebra.
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Let Λ(CML2) denote the lattice of normal extensions of CML2 and let Λ(CA2)
denote the lattice of subvarieties of CA2. Then we have the following corollary
of Theorem 5.4.16 and the modal logic analogue of Theorem 2.2.19.

5.4.17. Corollary. Λ(CML2) is dually isomorphic to Λ(CA2).

Since we will only deal with two-dimensional cylindric algebras, we simply refer to
them as cylindric algebras. Below we will generalize the duality for Df 2-algebras
to CA2-algebras.

5.4.18. Definition. A quadruple (X,E1, E2, D) is said to be a cylindric space
if the triple (X,E1, E2) is a Df2-space and D is a clopen subset of X such that
every Ei-cluster i = 1, 2) of X contains a unique point from D.

The following is an immediate consequence of this definition. For an algebraic
analogue see [60, Theorem 1.5.3].

5.4.19. Proposition. Suppose X is a cylindric space. Then the cardinality of
the set of all E1-clusters of X is equal to the cardinality of the set of all E2-clusters
of X .

Proof. The proof is identical to the proof of Corollary 5.3.11. ¤

We have the following topological representation of cylindric algebras.

5.4.20. Theorem. Every cylindric algebra B = (B,♦1,♦2, d) can be represented
as (CP(X), E1, E2, D) for the corresponding cylindric space X = (X,E1, E2, D).

Proof. The proof is a routine adaptation of Theorem 5.4.9 to cylindric algebras.
¤

Consequently, every finite cylindric algebra is represented as the algebra (P(X),
E1, E2, D) for the corresponding finite CML2-frame (X,E1, E2, D) (see also [60,
Theorem 2.7.34]).

In order to obtain the dual description of homomorphic images and subalge-
bras of cylindric algebras, as well as subdirectly irreducible and simple cylindric
algebras, we need the following two definitions. Suppose X is a cylindric space.
A bisimulation equivalence Q of X is called a cylindric bisimulation equivalence
if Q(D) = D. A cylindric space X is called a cylindric quasi-square if its D-free
reduct is a quasi-square Df2-space (see Definition 5.3.7). In other words, a cylin-
dric space is a quasi-square if it is rooted; that is E1E2(x) = X for every x ∈ X.
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5.4.21. Theorem.

1. The lattice of congruences of a cylindric algebra B is isomorphic to the
lattice of closed saturated subsets of its dual X .

2. The lattice of subalgebras of a cylindric algebra B is dually isomorphic to
the lattice of cylindric bisimulation equivalences of its dual X .

3. A cylindric algebra B is subdirectly irreducible iff it is simple iff its dual X
is a cylindric quasi-square.

Proof. A routine adaptation of Theorems 5.4.6, 5.4.10, 5.4.12 and 5.4.14 to
cylindric algebras. For (3) also see [60, Theorems 2.4.43, 2.4.14]. ¤

5.4.4 Representable cylindric algebras

In this final section we discuss the representable cylindric algebras, that is, the
cylindric algebras corresponding to PCML2.

5.4.22. Definition.

1. For a rectangle F = (W×W ′, E1, E2) let F+ = (P(W×W ′), E1, E2) denote
the complex algebra of F . We call F+ a rectangular algebra.2 Let RECT

denote the class of all rectangular Df2-algebras.

2. Call a rectangular algebra F+ a square algebra if F is isomorphic to a
square. Let SQ denote the class of all square algebras.

3. For a CML2-square F = (W×W,E1,E2,D) let F+ = (P (W×W ), E1, E2, D)
denote the complex algebra of F. We call F+ the cylindric square algebra.
Let CSQ denote the class of all cylindric square algebras.3

4. Also let FinRECT, FinSQ and FinCSQ denote the classes of all finite rect-
angular, square and cylindric square algebras, respectively.

5.4.23. Definition. [60, Definitions 5.1.33(v), 3.1.1(vii) and Remark 1.1.13]

• A Df2-algebra B is said to be rectangularly (square) representable if B ∈
SP(RECT) (B ∈ SP(SQ)).

2Note that the concept of a “rectangular algebra” is different from the one of a “rectangular
element” defined in [60, Definition 1.10.6].

3The rectangular and square algebras are defined in [60, Definitions 3.1.1(v) and 5.1.33(iii)],
where they are called “two-dimensional (diagonal-free) cylindric set and uniform cylindric set
algebras”. However, since we only work with two-dimensional cylindric algebras, we find the
terms “rectangular algebra” and “square algebra” more convenient.
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• A cylindric algebra B is called representable if B ∈ SP(CSQ).4

It is known that a Df2-algebra is rectangularly representable iff it is square rep-
resentable. We simply call such algebras representable [60, Definition 3.1.1]. The
classes of representable Df2 and CA2-algebras are also closed under homomorphic
images, and so form varieties which are usually denoted by RDf 2 and RCA2,
respectively. For the proof of the next theorem consult [60, Theorem 5.1.47] and
[43, Corollary 5.10].

5.4.24. Theorem.

1. RDf2 = Df2 = HSP(RECT) = HSP(SQ) = SP(RECT) = SP(SQ).

2. RCA2 = HSP(CSQ) = SP(CSQ).

3. RCA2 ( CA2.

Let

(H) := ♦i(a ∧ −b ∧ ♦j(a ∧ b)) ≤ ♦j(−d ∧ ♦ia), i 6= j, i, j = 1, 2.

and
(V) := d ∧ ♦i(−a ∧ ♦ja) ≤ ♦j(−d ∧ ♦ia), i 6= j, i, j = 1, 2.

We call (H) and (V) the Henkin and Venema inequalities, respectively. Then
RCA2 is axiomatized by adding either of these inequalities to the axiomatization
of CA2; see, e.g., [60, Theorem 3.2.65(ii)] or [124, Proposition 3.5.8]).

5.4.25. Theorem. RCA2 = CA2+(H)= CA2+(V).

Note that Theorem 5.4.24(1) is an algebraic formulation of Theorem 5.3.2(3).
Therefore, we have that PCML2 is complete with respect to RCA2 [124, §4.2].

5.4.26. Theorem. PCML2 ` φ iff φ is valid in every RCA2-algebra.

Let Λ(PCML2) denote the lattice of normal extensions of CML2 and let Λ(RCA2)
denote the lattice of subvarieties of CA2. We again have the following corollary
of Theorem 5.4.16 and the modal logic analogue of Theorem 2.2.19.

5.4.27. Corollary. Λ(PCML2) is dually isomorphic to Λ(RCA2).

As in Section 5.3.3 (see Theorem 5.3.18), we can give the dual characteriza-
tion of representable cylindric algebras, and construct rather simple finite non-
representable cylindric algebras. We say that a cylindric space X satisfies (∗) if its
underlying CML2-frame satisfies (∗) (see Definition 5.3.17). In the terminology
of [60], a cylindric space satisfies (∗) iff the corresponding cylindric algebra has
at least one defective atom (see [60, Lemma 3.2.59]).

4The definition of representability is not quite the same as the original one from [60] but is
equivalent to it.
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5.4.28. Theorem. A cylindric algebra B is representable iff its dual cylindric
space X does not satisfy (∗).

Proof. The proof is almost identical to the one of Theorem 5.3.18. For the
details we refer to [14, Theorem 3.4]. ¤

For an algebraic analogue of Theorem 5.4.28 see [60, Lemma 3.2.59, Theorem
3.2.65]. Using this criterion it is easy to see that the cylindric algebras corre-
sponding to the cylindric spaces shown in Figure 5.1(b) are representable, while
the cylindric algebras corresponding to the cylindric spaces shown in Figure 5.1(a)
are not. Moreover, the smallest non-representable cylindric algebra is the al-
gebra corresponding to the cylindric space shown in Figure 5.1(a), where the
non-singleton E0-cluster contains only two points.





Chapter 6

Normal extensions of S52

In this chapter, which is based on [12], we study the lattice of normal extensions
of S52. It is known that S52 has the finite model property and is decidable
[110]; in fact, it has a NEXPTIME-complete satisfiability problem [93]. It is
neither tabular nor locally tabular [60] and it lacks the interpolation property
[27]. In addition, we show that every proper normal extension of S52 is locally
tabular, i.e., S52 is pre-locally tabular. As a corollary we obtain that every normal
extension of S52 has the finite model property. We also characterize all tabular
extensions of S52 by showing that there are exactly six pre-tabular extensions of
S52. A classification of normal extensions of S52 will also be provided.

The lattice of normal extensions of S5 has been well-investigated. It is known
that it forms an (ω + 1)-chain, and that every normal extension of S5 is finitely
axiomatizable, has the finite model property and is decidable (see [111]). More-
over, every proper normal extension of S5 is tabular. On the other hand, the
lattice of normal extensions of S53 is much more complicated. It has been shown
that S53 is not finitely axiomatizable (see Monk [99] and Johnson [67]), that there
are continuum many undecidable extensions of S53 (see Maddux [88] and Gabbay
et al. [43, Theorem 8.5]), and that each of these extensions lacks the finite model
property (see Kurucz [79] and Gabbay et al. [43, Theorem 8.12]). We show that
the lattice of all normal extensions of S52, although complex, is still manageable
to some extend.

6.1 The finite model property of S52

In this section we prove that S52 has the finite model property. Moreover, we
show that it is complete with respect to the classes of finite rectangles and finite
squares. We also state algebraic analogues of these results.

There is a wide variety of proofs available for the decidability of the classical
first-order logic with two variables. Equivalent results were stated and proved

149



150 CHAPTER 6. NORMAL EXTENSIONS OF S52

using quite different methods in first-order, modal and algebraic logic. We present
a short historic overview.

Decidability of the validity of equality-free first-order sentences in two vari-
ables was proved by Scott [110]. The proof uses a reduction to the set of prenex
formulas of the form ∃2∀nϕ, whose validity is decidable by Gödel [50]. Scott’s
result was extended by Mortimer [101], who included equality in the language
and showed that such sentences cannot enforce infinite models, obtaining decid-
ability as a corollary. A simpler proof was provided in Grädel et al. [55]. They
showed that any satisfiable formula can actually be satisfied in a model whose
size is single exponential in the length of the formula. Segerberg [113] proved the
fmp and decidability for the so-called “two-dimensional modal logic”, which is a
cylindric modal logic enriched with the operation of involution. For an algebraic
proof see [60, Lemma 5.1.24 and Theorem 5.1.64]. A mosaic type proof can be
found in Marx and Mikulás [94]. A proof using quasimodels is provided in [43,
Theorem 5.22]. Here we give a proof via the filtration method.

6.1.1. Theorem. S52 has the finite model property.

Proof. Suppose S52 6` φ. Then, by Theorems 5.3.2 and 5.2.4, there exists a
rooted S52-frame F = (W,E1, E2) and a valuation V on F such that (F , V ) 6|= φ.
Let Sub(φ) be the set of all subformulas of φ. Define an equivalence relation ≡
on W by

w ≡ v iff w |= ψ ⇔ v |= ψ for all ψ ∈ Sub(φ).

Let [w] denote the ≡-equivalence class containing the point w, let W/≡ = {[w] :
w ∈W}. We define Ef

i on W/≡ by

[w]Ef
i [v] iff w |= ♦iψ ⇔ v |= ♦iψ for all ♦iψ ∈ Sub(φ).

Let Ff = (W/≡, E
f
1 , E

f
2 ) and define V f on Ff by [w] ∈ V f (p) iff w ∈ V (p). The

standard filtration argument (see e.g. [18, Theorem 2.39]) shows that for every
ψ ∈ Sub(φ):

(F , V ), w |= ψ iff (F f , V f ), [w] |= ψ.

Therefore, (F f , V f ) 6|= φ. We show that F f is an S52-frame. It follows immedi-
ately from the definition of Ef

i that Ef
i is an equivalence relation. Note that for

w, v ∈W we have:

wEiv implies [w]Ef
i [v].

We prove that Ef
1 and Ef

2 commute. Suppose [w]Ef
1 [v] and [v]Ef

2 [u]. Then since
F is rooted, by Lemma 5.3.3, there exists z ∈ W such that wE2z and zE1u.
Therefore, [w]Ef

2 [z] and [z]Ef
1 [u], which means that Ef

1 and Ef
2 commute and

thus Ff is an S52-frame.
¤
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6.1.2. Corollary.

1. S52 is decidable.

2. Df2 is finitely approximable.

3. The equational theory of Df 2 is decidable.

Proof. (1) The result follows immediately from Theorem 6.1.1 since every finitely
axiomatizable logic with the fmp is decidable (see Section 2.1.2).

(2) The result follows immediately from Theorem 6.1.1 and the modal logic
analogue of Theorem 2.3.27(1).

(3) Apply (1) and the modal logic analogue of Theorem 2.3.27(6). ¤

Questions concerning the computational complexity of S52 and its normal exten-
sions will be addressed in Chapter 8. Here we show that S52 is not only complete,
for finite S52-frames, but also complete for finite rectangles and finite squares.

6.1.3. Definition. For a class K of algebras or frames let Fin(K) denote the
class of finite members of K.

We now show that S52 is complete with respect to Fin(Rect) and Fin(Sq). The
next lemma is an analogue of Theorem 2.3.9. It shows a connection between
p-morphisms and bisimulation equivalences.

6.1.4. Lemma. Let F = (W,E1, E2) be a finite S52-frame and Q an equivalence
relation on W . Let F/Q = (W/Q,E ′

1, E
′
2), where for i = 1, 2:

Q(w)E ′
iQ(v) iff there exist w′ ∈ Q(w) and v′ ∈ Q(v) with w′Eiv

′.

Let the function fQ : W → W/Q be defined by fQ(w) = Q(w) for any w ∈ W .
Then the following two conditions are equivalent:

1. Q is a bisimulation equivalence,

2. fQ is a p-morphism.

Proof. The proof is similar to the proof of Theorem 2.3.9. ¤

Next we prove a number of auxiliary lemmas.

6.1.5. Lemma. For every finite rectangle F , there exists a finite square G such
that F is a p-morphic image of G.
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Figure 6.1: A bisimulation equivalence of a finite square

Proof. Suppose F is isomorphic to m × n with n > m. Let G be the square
n × n. Define Q on n × n by identifying all points (k, i), (k, j) such that k ∈ n
and m − 1 ≤ i, j < n (see Figure 6.1, where the points of the same color are
identified). It is routine to check that Q is a bisimulation equivalence of n × n,
and that the quotient of n × n by Q is a rectangle isomorphic to m × n. Thus,
by Lemma 6.1.4, F is a p-morphic image of G. ¤

6.1.6. Definition. Let F = (W,E1, E2) be a rooted S52-frame.

1. F is said to be a bicluster if E1(w) = E2(w) = W for each w ∈W .

2. F is said to be regular if every E0-cluster of F has the same cardinality.

6.1.7. Lemma. For every finite bicluster F , there exists a finite square G such
that F is a p-morphic image of G.

Proof. Suppose F consists of n points. Consider the square n × n. Define an
equivalence relation Q on n × n by

(k,m)R(k′,m′) iff k −m ≡ k′ −m′ (mod n).

This means that every Q-equivalence class contains a unique point from every
Ei-cluster (see Figure 6.2, where points of the same color are identified). Since
QEi(k,m) = n × n = EiQ(k,m) for each k,m ∈ n and i = 1, 2, we have that Q
is a bisimulation equivalence of n × n. It should be clear now that the quotient
of n× n by Q is isomorphic to F , thus by Lemma 6.1.4, F is a p-morphic image
of n × n.

¤

6.1.8. Lemma. For every finite regular rooted F , there exists a finite rectangle
G such that F is a p-morphic image of G.
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Figure 6.2: The partition of a finite square

Proof. Let {Ci}
n
i=1 and {Cj}mj=1 be the sets of all E1 and E2-clusters of F ,

respectively. Also let Cj
i denote the E0-cluster Cj

i = Ci ∩C
j. Since F is regular,

the cardinality of every Cj
i is the same. Let |Cj

i | = k > 0 for every i ≤ n and
j ≤ m. Now consider the rectangle nk×mk. Let ∆j be (jk×nk)\((j−1)k×nk)
and ∆i be (mk × ik)\(mk × (i− 1)k). Therefore, if we think of nk× mk as the
rectangle shown in Figure 6.3, then ∆i is the rectangle consisting of all the rows of
nk×mk between the (i−1)k-th and ik-th rows and ∆j is the rectangle consisting
of all the columns of nk×mk between the (j − 1)k-th and jk-th columns. Also
let ∆j

i = ∆i ∩ ∆j. Then ∆j
i is the square with k E1 and E2-clusters. Define

a partition Q on nk × mk by sewing each square ∆j
i into a bicluster as in the

proof of Lemma 6.1.7. It follows that Q is a bisimulation equivalence, and that
the quotient of nk × mk is isomorphic to F . Hence, F is a p-morphic image of
nk × mk.

¤
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Figure 6.3: The rectangle nk × mk.

6.1.9. Lemma. For every finite rooted S52-frame F , there exists a finite regular
frame G such that F is a p-morphic image of G.



154 CHAPTER 6. NORMAL EXTENSIONS OF S52

Proof. Let Ci, C
j and Cj

i be the same as in the proof of Lemma 6.1.8. Also
let k = max{|Cj

i | : i ≤ n, j ≤ m}. Obviously all |Cj
i | > 0 and therefore k > 0.

Consider the regular frame G which is obtained from F by replacing every E0-
cluster of F by an E0-cluster containing k points. LetQ be an equivalence relation
on G identifying k−(|Cj

i |+1) points in each E0-cluster of G, (see Figure 6.4, where
filled circles represent the identified points). Note that in the E0-clusters with k
points we do not identify any points. It should be clear that Q is a bisimulation
equivalence of G, and that the quotient of G by Q is isomorphic to F . Therefore,
F is a p-morphic image of G. ¤
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Figure 6.4: The identifications in a regular frame

Now we are ready to prove that S52 is complete with respect to finite rectangles
and squares. This result was first proved by Segerberg [113]. His technique is very
similar to ours with the exception that he considers the similarity type with one
additional unary operation, the involution. The result also follows from Mortimer
[101]. A short algebraic proof can be found in Andréka and Nemeti [1]. For a
different frame theoretic proof using quasi-models see [43, Theorem 5.25].

6.1.10. Theorem. S52 is complete with respect to Fin(Rect) and Fin(Sq).

Proof. By Theorem 6.1.1, if S52 6` φ, then φ is refuted in a finite rooted S52-
frame. By Lemmas 6.1.7–6.1.9, every finite rooted S52-frame is a p-morphic image
of a finite rectangle and by Lemma 6.1.5, it is a p-morphic of a finite square. Since
p-morphic images preserve validity of formulas, the result follows. ¤

6.1.11. Theorem. Df2 is generated by finite rectangular (square) algebras, that
is Df2 = HSP(FinRECT) = HSP(FinSQ).

Proof. Follows immediately from Theorems 6.1.10 and 5.4.3. ¤

6.1.12. Remark. More algebraic properties of Df 2 are discussed in [12]. In
particular, a characterization of finitely approximable Df 2-algebras, projective
and injective Df 2-algebras, and absolute retracts of Df 2 is given in [12, §3.1 and
§3.2].
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6.2 Locally tabular extensions of S52

In this section we investigate locally tabular extensions of S52 and locally finite
subvarieties of Df 2. We recall that a logic L is locally tabular if for every n ∈ ω
there are only finitely many pairwise non-L-equivalent formulas in n variables,
and that a variety V is locally finite if every finitely generated V-algebra is finite.
As follows from Theorem 2.3.27, a logic is locally tabular iff its corresponding
variety of algebras is locally finite. It is well known that S5 is locally tabular;
see, e.g, [58]. Now we show that S52 is not locally tabular. We will approach the
problem from an algebraic perspective. It was Tarski who first noticed that Df2
is not locally finite. Below we sketch Tarski’s example. It can also be found in
any of these references: Henkin, Monk and Tarski [60, Theorem 2.1.11], Halmos
[58, p.92], Erdős, Faber and Larson [33].

6.2.1. Example. Consider the infinite square ω×ω. Let g = {(n,m) : n ≤ m}.
Then the Df2-algebra G ⊆ P (ω × ω) generated by g is infinite. Indeed, let
g1 = (ω × ω) \ E2((ω × ω) \ g) and g2 = (ω × ω) \ E1(g \ g1). Then it is easy
to check that g1 = {(0, n) : n ∈ ω} and g2 = {(n, 0) : n ∈ ω}. Then clearly
g1 ∩ g2 = {(0, 0)}. Now let S := (ω×ω) \ (g1 ∪ g2) and g′ := g ∩S1. We define g′1
and g′2 for the infinite square S in the same way we defined g1 and g2 for ω × ω.
That is, g′1 = S \ E2(S \ g′) and g′2 = S \ E1(g

′ \ g′1) Then g′1 = {(1, n) : n > 0}
and g′2 = {(n, 1) : n ∈ ω}. Therefore, g′1 ∩ g

′
2 = {(1, 1)}. Continuing this process

we obtain that every element of the diagonal ∆ = {(n, n)}n∈ω is an element of
G. Hence G is infinite. In fact, every singleton {(n,m)} of ω × ω belongs to G,
since {(n,m)} = E2(n, n) ∩ E1(m,m).

In contrast to this, we will prove that every proper subvariety of Df2 is locally
finite. First we prove an auxiliary lemma.

6.2.2. Lemma.

(i) The rectangle k × m is a p-morphic image of every rooted S52-frame F =
(W,E1, E2) containing k E1-clusters and m E2-clusters.

(ii) The rectangle k′ ×m′ is a p-morphic image of k×m for every k ≥ k′ and
m ≥ m′.

Proof. (i) Consider F/E0 = (W/E0, E
′
1, E

′
2). It is easy to see that E0 is a

bisimulation equivalence and that F/E0 is isomorphic to k × m. Hence, k × m
is a p-morphic image of F .

(ii) A similar argument to Lemma 6.1.5 shows that k′ × m′ is a p-morphic
image of k × m for k′ ≤ k and m′ ≤ m. ¤

6.2.3. Definition. Let a simple Df2-algebra B and its dual X be given, i = 1, 2
and n > 0.
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1. X is said to be of Ei-depth n if the number of Ei-clusters of X is exactly n.

2. The Ei-depth of X is said to be infinite if X has infinitely many Ei-clusters.

3. B is said to be of Ei-depth n < ω if the Ei-depth of X is n.

4. The Ei-depth of B is said to be of infinite if X is of infinite Ei-depth.

5. V ⊆ Df2 is said to be of Ei-depth n < ω if n is the maximal Ei-depth of
the simple members of V, and V is of Ei-depth ω if there is no bound on
the Ei-depth of simple members of V.

For a simple Df2-algebra B and its dual X , let di(B) and di(X ) denote the Ei-
depth of B and X , respectively. Similarly, let di(V) denote the Ei-depth of a
variety V ⊆ Df 2.

Consider the following formulas:

Dn
i :=

n∧

k=1

♦pk →
∨

k 6=l, 1≤k,l≤n

♦(pk ∧ ♦ipl)

where n ∈ ω, i = 1, 2 and ♦φ := ♦1♦2φ, for every formula φ.
We have the following characterization of varieties of Ei-depth n, where i =

1, 2 and 0 < n < ω:

6.2.4. Theorem. Let B a simple Df2-algebra, and V be a variety of Df2-algebras.

1. Dn
i is valid in a simple B iff the Ei-depth of B is less than or equal to n.

2. V is of Ei-depth n iff V ⊆ Df 2 +Dn
i and V 6⊆ Df 2 +Dn−1

i .

Proof. It is easy to see that Dn
i is a Sahlqvist formula, for every n ∈ ω. Now

apply the standard Sahlqvist algorithm (see [18, §3.6] for the details). ¤

6.2.5. Definition. For a variety V, let SI(V) and S(V) denote the classes of
all subdirectly irreducible and simple V-algebras, respectively. Let also FinSI(V)
and FinS(V) denote the classes of all finite subdirectly irreducible and simple
V-algebras, respectively.

Now we reformulate Theorem 3.4.23 in algebraic terms; see [7].

6.2.6. Theorem. A variety V of a finite signature is locally finite iff the class
SI(V) is uniformly locally finite; that is, for each natural number n there is a
natural number M(n) such that |A| ≤M(n) for each n-generated A ∈ SI(V).
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6.2.7. Lemma. Df 2 +Dm
i is locally finite for any 0 < m < ω and i = 1, 2.

Proof. Since SI(Df 2) = S(Df2) and Df2 has a finite signature, it is sufficient
to show that S(Df 2 + Dm

i ) is uniformly locally finite for each i = 1, 2. We will
prove that S(Df 2 + Dm

1 ) is uniformly locally finite. The case of S(Df 2 + Dm
2 )

is completely analogous. Suppose B = (B[g1, ..., gn],♦1,♦2) is an n-generated
simple algebra from the variety Df 2 +Dm

1 , where g1, ..., gn denote the generators
of B. Then for each a ∈ B[g1, ..., gn], there is a polynomial P (g1, ..., gn), including
Boolean operations as well as ♦1 and ♦2, such that a = P (g1, ..., gn). Let B1 =
{♦1b : b ∈ B}, and let X be the dual of B. Every E1-saturated subset of X is a
union of E1-clusters. Since there are at mostm E1-clusters of X , there are at most
2m distinct E1-saturated sets. Since elements of B of the form ♦1b correspond to
E1-saturated clopens, we obtain that |B1| ≤ 2m. Suppose B1 = {a1, ..., ak}, k ≤
2m. Then for every element b of B, there exists aj ∈ B1 such that ♦1b = aj.
Therefore, by substituting every subformula of P (g1, . . . , gn) of the form ♦1b by aj,
we obtain that a = P ′(g1, ..., gn, a1, . . . , ak), where P ′ is a new ♦1-free polynomial.
Thus, B[g1, ..., gn] is generated by g1, ..., gn, a1, ..., ak as a Df1-algebra. Since Df1
is locally finite, there exists M(n) such that |B[g1, ..., gn]| ≤ M(n). Therefore,
S(Df2 +Dm

i ) is uniformly locally finite. ¤

We proceed by showing that the join of two locally finite varieties is locally finite.

6.2.8. Lemma. The join of two locally finite varieties is locally finite.

Proof. Suppose V = V1 ∨ V2, where V1 and V2 are locally finite varieties. In
order to arrive at a contradiction, suppose that A ∈ V = HSP(V1 ∪ V2) is a
finitely generated infinite algebra. A ∈ V implies there exists a family {Ai}i∈I
with Ai ∈ V1∪V2 such that A ∈ HS(

∏
i∈I Ai). For each i ∈ I we have Ai ∈ V1 or

Ai ∈ V2. Let I1 = { i ∈ I | Ai ∈ V1 } and I2 = { i ∈ I | Ai ∈ V2\V1 }. Obviously∏
i∈I Ai is isomorphic to

∏
i∈I1

Ai ×
∏

i∈I2
Ai. Since V1 and V2 are varieties,∏

i∈I1
Ai ∈ V1 and

∏
i∈I2

Ai ∈ V2. Hence, there exist algebras A1 =
∏

i∈I1
Ai

in V1 and A2 =
∏

i∈I2
Ai in V2 such that A ∈ HS(A1 × A2). Therefore there

is an algebra A′ ∈ V such that A is a homomorphic image of A′ and there is
an embedding ι of A′ into A1 × A2. Without loss of generality we may assume
that A′ is finitely generated.1 Since A is infinite, A′ is infinite as well. Let πi
be the natural projection of A1 × A2 onto Ai (i = 1, 2). Then A′ is (isomorphic
to) a subalgebra of π1ι(A

′)× π2ι(A
′). Therefore at least one of πiι(A

′) is infinite.
On the other hand, the latter two algebras, being homomorphic images of A′,
are finitely generated. Hence, at least one of Vi is not locally finite, which is a
contradiction. ¤

1If A′ is not finitely generated then we consider a finitely generated subalgebra of A′ gener-
ated by the elements of A′ that are mapped to the generators of A.
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Now we are in a position to prove that every proper subvariety of Df2 is locally
finite.

6.2.9. Lemma. If a variety V ⊆ Df 2 is not locally finite, then V = Df 2.

Proof. Suppose V is not locally finite. Then there exists a finitely generated
infinite V-algebra B. Let X be the dual of B. Then either there exists an infinite
rooted generated subframe of X , or X consists of infinitely many finite rooted
generated subframes.

First suppose that X contains an infinite rooted generated subframe X0. If
either the E1 or E2-depth of X0 is finite, then the Df 2-algebra corresponding to
X0 belongs to Df 2 +Dn

i for some n ∈ ω. Let B0 be the Df2-algebra dual to X0.
Then B0 is a homomorphic image of B and is finitely generated. Moreover, by
our assumption this algebra is infinite. This is a contradiction by Lemma 6.2.7.
Thus, both the E1 and E2-depths of X0 are infinite. Consider X0/E0 and denote
it by Y . Since both depths of X0 are infinite, Y is an infinite rectangle of infinite
E1 and E2-depths. We will show that the complex algebra (P(n × n), E1, E2) is
a subalgebra of (CP(Y), E1, E2) for any n < ω.

6.2.10. Claim. There exists a bisimulation equivalence Q of Y such that Y/Q
is isomorphic to the square n × n.

Proof. Pick n − 1 points x1, . . . , xn−1 ∈ Y such that ¬(xpEixq), p 6= q, 1 ≤
p, q ≤ n − 1 and i = 1, 2. Obviously

⋃n−1
k=1 E1(xk) is a closed E1-saturated set

and U1 = Y \
⋃n−1
k=1 E1(xk) is an open E1-saturated set. Hence, there exists a

non-empty E1-saturated clopen C1 ⊆ U1. Clearly, Y = C1 ∪ (Y \ C1). Now
consider U2 = Y \ (C1 ∪

⋃n−1
k=2 E1(xk)). Since x1 ∈ U2, U2 is non-empty and

obviously is an E1-saturated open set. Hence, there exists an E1-saturated clopen
C2 such that x2 ∈ C2 and C2 ⊆ U2. Then (Y \ C1) = C2 ∪ ((Y \ C1) \ C2).
Now let U3 = Y \ (C1 ∪ C2 ∪

⋃n−1
k=3 E1(xk)). Since x2 ∈ U3, U3 is a non-empty

E1-saturated open set, and there exists an E1-saturated clopen C3 such that
x3 ∈ C3 and C3 ⊆ U3. Therefore, (Y \ (C1 ∪ C2) = C3 ∪ (((Y \ C1) \ C2) \ C3).
We continue this process (n − 1) times. At each stage Uk is non-empty, since
xk−1 ∈ Uk. As a result we get a partition of Y into n E1-saturated clopens
C1, C2, . . . Cn−1, Cn = Y \

⋃n−1
j=1 Cj. Now in exactly the same way we select n

E2-saturated clopens D1, D2, . . . Dn such that
⋃n
i=1Di = Y and Di ∩ Dj = ∅.

Consider the partition Q = {Cj ∩Dk}1≤j,k≤n (see Figure 6.5).
Since every Cj is E1-saturated and every Dk is E2-saturated, by Lemma 5.3.6,

we have that Cj ∩ Dk 6= ∅, for every 1 ≤ j, k ≤ n. Moreover, as Cj and Dk are
clopens, Cj ∩ Dk is also clopen for every 1 ≤ j, k ≤ n. Thus, Q is a partition
of Y into n2 clopens. Now we show that QEi(x) ⊆ EiQ(x) for each x ∈ Y
and i = 1, 2. If y ∈ QE1(x), then there exists z ∈ E1(x) such that yQz. Also
suppose that x ∈ Cj ∩ Dk. Then z, y ∈ Cj ∩ Dl for some l. As Y is rooted,
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D1 D2 Dn
p p p

C1

C2

ppp

Cn

Y

Figure 6.5: The partition of Y

by Lemma 5.3.6, E1(y) ∩ Dk 6= ∅. Moreover, since Cj is E1-saturated, we have
that E1(y) ⊆ Cj. Therefore, E1(y) ∩ (Cj ∩ Dk) = E1(y) ∩ Dk 6= ∅. Hence,
there exists u ∈ E1(y) ∩ (Cj ∩Dk), which means that u ∈ E1(y) and u ∈ Q(x).
Thus, y ∈ E1Q(x) and QE1(x) ⊆ E1Q(x). That QE2(x) ⊆ E2Q(x) is proved
similarly. Thus, Q is a bisimulation equivalence of Y . Moreover, it follows from
the construction of Q that Y/Q is isomorphic to n × n. ¤

Therefore, (n × n)+ = (P(n × n), E1, E2) is a subalgebra of (CP(Y), E1, E2).
Since Df2 is generated by finite square algebras (see Theorem 5.4.24) it follows
that V = Df 2.

Now suppose that X consists of infinitely many finite rooted frames which we
denote by {Xj}j∈J . If both the E1 and E2-depths of the members of {Xj}j∈J are
bounded by some integer n, then their corresponding algebras belong to Df 2+Dn

i

for some i = 1, 2. This means that there is an infinite finitely generated algebra in
Df2 +Dn

i , which, by Lemma 6.2.7, is a contradiction. Therefore, we can assume
that either the E1 or E2-depth of {Xj}j∈J are not bounded by any integer. We
distinguish the following two cases:

Case 1. X consists of two families {X ′
j}j∈J ′ and {X ′′

j }j∈J ′′ such that the E2-
depth of the members of the first family is bounded by some integer n, but
the E1-depth of them is not bounded by any integer; and conversely, the
E1-depth of the members of the second family is bounded by some integer
m, but the E2-depth of them is unbounded.

Consider the varieties V1 and V2, where V1 denotes the variety generated
by the algebras corresponding to the members of the first family, while V2

denotes the variety generated by the algebras corresponding to the mem-
bers of the second family. Observe that B ∈ V1 ∨ V2 = HSP(V1 ∪ V2).
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Now from Lemma 6.2.7 it follows that both V1 and V2 are locally finite.
By Lemma 6.2.8, V1 ∨ V2 is locally finite. Therefore, B is finite, which
contradicts our assumption.

Case 2. Both the E1 and E2-depths of Xj are not bounded by any integer. There-
fore, for every n ∈ ω, there exists Xj such that d1(Xj), d2(Xj) > n. By
Lemma 6.2.2, n × n is a p-morphic image of Xj, which by Theorem 6.1.11
means that V = Df 2.

Thus, if V is not locally finite, then V = Df 2, which completes the proof of the
lemma. ¤

Recall from Chapter 4 that a variety V is called pre-locally finite if V is not
locally finite but every proper subvariety of V is locally finite, and that a logic L
is called pre-locally tabular if L is not locally tabular but every proper extension
of L is locally tabular.

6.2.11. Corollary.

1. V ∈ Λ(Df 2) is locally finite iff V is a proper subvariety of Df2.

2. Df2 is the only pre-locally finite subvariety of Df 2.

3. Every variety V ⊆ Df 2 is finitely approximable.

Proof. The result follows immediately from Lemma 6.2.9 and Corollary 6.1.2(2).
¤

6.2.12. Corollary.

1. L ∈ Λ(S52) is locally tabular iff L is a proper normal extension of S52.

2. S52 is the only pre-locally tabular extension of S52.

3. Every normal extension of S52 has the finite model property.

Proof. The result is an immediate consequence of Corollary 6.2.11 and Theorem
5.4.3. ¤

6.3 Classification of normal extensions of S52

In this section we prove a more specific version of Theorem 6.2.12. In particular,
for each proper normal extension of S52, we describe the class of its finite rooted
frames in terms of their E1 and E2-depths. The E1 and E2-depth of an S52-
frame F is defined in exactly the same way as in Definition 6.2.3. For every logic
L ⊇ S52 let FL denote the set of all finite L-frames modulo isomorphism. It
follows from Theorem 6.2.12 that every extension of S52 is complete with respect
to FL.
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6.3.1. Definition. For every logic L ⊇ S52 let di(L) = di(FL).

6.3.2. Theorem. For every proper normal extension L of S52 there exists a
natural number n such that FL can be divided into three disjoint classes FL =
F1 ]F2 ]F3, where d2(F1), d1(F2) ≤ n and d1(F3), d2(F3) ≤ n. (Note that any
two of the classes F1,F2 and F3 may be empty.)

Proof. Suppose L is a proper normal extension of S52. By Theorem 6.1.10, S52

is complete with respect to the class of all finite squares. Therefore, there exists
a square n × n such that n × n /∈ FL. Let n be the minimal number such that
n×n /∈ FL. Consider three subclasses of FL: F1 = {F ∈ FL : d1(F) > n}, F2 =
{F ∈ FL : d2(F) > n} and F3 = {F ∈ FL : d1(F), d2(F) ≤ n}. It is obvious
that FL = F1 ∪ F2 ∪ F3. We prove that F1, F2 and F3 are disjoint.

Let us show that if F ∈ F1, then d2(F) ≤ n and if F ∈ F2, then d1(F) ≤
n. Suppose F ∈ F1 ∪ F2, d1(F) = k, d2(F) = m and both k,m > n. By
Lemma 6.2.2(i), k×m is a p-morphic image of F , and by Lemma 6.2.2(ii), n×n
is a p-morphic image of k × m. So, n × n is a p-morphic image of F , and hence
n × n belongs to FL, which is a contradiction. Thus, F ∈ F1 implies d1(F) > n
and d2(F) ≤ n, and F ∈ F2 implies d1(F) ≤ n and d2(F) > n. Also, if F ∈ F3,
then d1(F), d2(F) ≤ n. This shows that all the three classes are disjoint. ¤

From this theorem we obtain the following classification of normal extensions of
S52.

6.3.3. Theorem. For every L ∈ Λ(S52), either L = S52, or L =
⋂
i∈S Li for

some S ⊆ {1, 2, 3}, where d1(L1), d2(L2), d1(L3), d2(L3) < ω.

Proof. The theorem follows immediately from Theorem 6.3.2 by taking Li =
Log(Fi) for i = 1, 2, 3. ¤

6.3.4. Theorem. For every V ∈ Λ(Df 2), either V = Df 2, or V =
∨
i∈S Vi for

some S ⊆ {1, 2, 3}, where d1(V1), d2(V2), d1(V3), d2(V3) < ω.

Proof. The result is an immediate consequence of Theorem 6.3.3. ¤

6.4 Tabular and pre tabular extension of S52

Recall that a logic is tabular if it is the logic of a single finite frame, and that a
logic is pre-tabular if it is not tabular, but all its proper normal extensions are
tabular. Also recall that a variety is finitely generated if it is generated by a
single finite algebra, and that a variety is pre-finitely generated if it is not finitely
generated, but all its proper subvarieties are finitely generated. In this section
we characterize the tabular logics over S52 by showing that there exist exactly
six pre-tabular logics in Λ(S52). The characterization of finitely generated and
pre-finitely generated subvarieties of Df 2 will follow from the characterization of
tabular and pre-tabular logics.
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Figure 6.6: The frames F 1
n −F3

n.

6.4.1. Definition. Let F = (W,E1, E2) be a finite rooted S52-frame.

1. F is said to be Ei-discrete if for every w ∈ W , i, j = 1, 2 and i 6= j,
Ei(w) = {w} and Ej(w) = W .

2. F is said to be an Ei-quasi-bicluster if F consists of two Ei-clusters, one of
these clusters is a singleton set, and Ej(w) = W for every w ∈W , i, j = 1, 2
and i 6= j.

3. F is said to be a quasi-rectangle of type (n,m) if it is obtained from n×m
by replacing a point of n × m by a finite E0-cluster.

4. F is said to be a quasi-square of type (n, n) if it is obtained from n× n by
replacing a point of n × n by a finite E0-cluster.

We also recall that F is a bicluster if E1(w) = E2(w) = W for every w ∈ W . We
will use the following notation (see Figures 6.6 and 6.7):

1. Let F1
n be a bicluster consisting of n points,

2. Let F2
n be a E2-discrete frame consisting of n points,

3. Let F3
n be a E1-discrete frame consisting of n points,

4. Let F4
n be a E2-quasi-bicluster frame, whose non-singleton E2-cluster con-

sists of n points,

5. Let F5
n be a E1-quasi-bicluster F , whose non-singleton E1-cluster consists

of n points,

6. Let F6
n be a quasi-square frame of type (2, 2), whose non-singleton E0-cluster

consists of n points.

6.4.2. Definition. For every i = 1, . . . , 6, let Li := Log({F i
n}n∈ω).
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We will prove that L1, . . . , L6 are the only pre-tabular logics in Λ(S52). For
this we need to show that every non-tabular logic is contained in one of the six
logics described above. In the previous section we defined the E1 and E2-depths
of a logic L ⊇ S52. Now we define the girth of L.

6.4.3. Definition. For a finite rooted S52-frame F and w ∈W :

1. We call the number of elements of E0(w) the girth of w and denote it by
g(w).

2. We define the girth of F as sup{g(w) : w ∈ W}, and denote it by g(F).

3. The girth of L ⊇ S52, is n > 0, if there is F ∈ FL whose girth is n, and the
girths of all the other members of FL are less than or equal to n.

4. The girth of L ⊇ S52 is said to be ω if the girths of the members of FL are
not bounded by any integer. Let g(L) denote the girth of L.

6.4.4. Lemma. Let L ∈ Λ(S52). Then L is tabular iff the E1-depth, the E2-depth
and the girth of L are bounded by some integer.

Proof. There exist only finitely many finite non-isomorphic rooted frames whose
E1-depth, E2-depth and girth are all bounded by some integer. Thus, if the
E1-depth, the E2-depth and the girth of L are bounded by some n, then L is
tabular. Conversely, suppose L is tabular. Then L = Log(F) for some finite
frame F . It follows from Jónsson’s Lemma that every finite rooted L-frame is a
p-morphic image of a generated subframe of F , and therefore, has the cardinality
≤ |F|. Thus, the E1-depth, the E2-depth and the girth of FL are bounded by
some integer n, and so the E1-depth, the E2-depth and the girth of L are bounded
by n. ¤

It follows that if L is not tabular, then either the E1-depth, the E2-depth or the
girth of L is not bounded. Consequently, no Li is tabular for i = 1, . . . , 6. Now
we show that these logics are the only pre-tabular normal extensions of S52.
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6.4.5. Theorem.

1. If L is not tabular, then L ⊆ Li for some i = 1, . . . , 6.

2. L1, . . . , L6 are the only pre-tabular logics in Λ(S52).

Proof. (1) Suppose L is not tabular. Then by Lemma 6.4.4, the E1-depth, the
E2-depth or the girth of L is not bounded. We distinguish the following cases:

Case 1. If the E1-depth of L is not bounded, then for any n ∈ ω, there is a finite
rooted L-frame F = (W,E1, E2) whose E1-depth is ≥ n. It is easy to see
that E1 is a bisimulation equivalence of F . Consider the quotient of F by
E1. Then F/E1 is isomorphic to F 3

d1(F). Hence, F3
d1(F) is a p-morphic image

of F , and so F3
d1(F) ∈ FL. Therefore, for every n ∈ ω, there exists m > n

such that F3
m is an L-frame. Thus, L3 ⊇ L.

Case 2. If the E2-depth of L is not bounded, then similar to Case 1 we have
L2 ⊇ L.

Case 3. If the girth of L is not bounded, then for any n there is a finite rooted
F = (W,E1, E2) such that F ∈ FL and g(F) ≥ n. But then, at least one
of the following four cases holds:

Case 3.1. For every w ∈ W , E1(w) = E2(w) = W . This means that F consists
of one E1-cluster and one E2-cluster. In this case F is isomorphic to F 1

g(F)

and therefore, F 1
g(F) is an L-frame.

Case 3.2 For every w ∈ W , we have E1(w) = W but E2(w) 6= W . This means
that F consists of one E1-cluster and at least two E2-clusters. Let C denote
an E0-cluster of F containing g(F) ≥ n points. We define an equivalence
relation Q on W that leaves all the points in C untouched and identifies all
the other points of F :

• vQu for any v, u ∈ W \ C,

• vQu iff v = u, for any v, u ∈ C.

It is routine to check that Q is a bisimulation equivalence of F , and that
the quotient of F by Q is isomorphic to F 4

g(F). Thus, F4
g(F) is a p-morphic

image of F , and so F 4
g(F) is an L-frame.

Case 3.3. For every w ∈ W we have E2(w) = W but E2(w) 6= W . Then the
same argument as in Case 3.2 shows that F 5

g(F) is an L-frame.
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Case 3.4. For every w ∈ W we have E1(w) 6= W and E2(w) 6= W . This means
that F consists of at least two E1 and at least two E2-clusters. Let C denote
an E0-cluster containing g(F) ≥ n points. First we define an equivalence
relation Q on W that leaves points in C untouched and identifies all the
points in other E0-clusters of F :

• vQu iff vE0u, for every v, u ∈ W \ C,

• vQu iff w = v, for every v, u ∈ C.

It is routine to check that Q is a bisimulation equivalence. Let G = F/Q.
Then G is isomorphic to a quasi-rectangle with just one non-singleton E0-
cluster C (i.e., a frame obtained from a finite rectangle by replacing one
point by the E0-cluster C). Let G = (W ′, E ′

1, E
′
2). Next we define an

equivalence relation Q′ on W ′ that leaves points of C untouched, identifies
all the other points in the E1-cluster containing C, identifies all the other
points in the E2-cluster containing C, and identifies all the remaining points:

• wQ′v, for any w, v ∈ W ′ \ (E ′
1(C) ∪ E ′

2(C)),

• wQ′v, for any w, v ∈ E ′
2(C) \ C,

• wQ′v, for any w, v ∈ E ′
1(C) \ C,

• wQ′v if w = v, for any w, v ∈ C.

Then it is again routine to check that Q′ is a bisimulation equivalence
and that G/Q′ is isomorphic to a quasi-square of type (2, 2) with the non-
singleton E ′

0-cluster C. Therefore, F 6
g(F) is a p-morphic image of F . Thus,

F6
g(F) is an L-frame.

Consequently, for every n ∈ ω there exists m ≥ n such that one of F 1
m, F4

m,
F5
m, F6

m is an L-frame. This implies that one of L1, L4, L5, L6 contains L. This
concludes the proof that if L is not tabular, then L is contained in one of the six
logics L1, . . . , L6.

(2) First we show that every Li, for i = 1, . . . , 6 is a pre-tabular logic. As we
mentioned above, by Lemma 6.4.4, no Li is tabular. It is also easy to see that all
these logics are incomparable. Now suppose L is a proper normal extension of Li
for some i = 1, . . . , 6. If L is not tabular, then L ⊆ Lj for some j = 1, . . . , 6 and
j 6= i. This implies that Lj is a proper extension of Li, which is a contradiction
because these logics are incomparable. Therefore, all the Li are pre-tabular. Now
suppose L is a pre-tabular logic. Then L is not tabular and by (1), L ⊆ Li for
some i = 1, . . . , 6. If L ( Li, then L is not pre-tabular, because Li is a non-
tabular extension of L. Therefore, L = Li. This means that L1, . . . , L6 are the
only pre tabular logics in Λ(S52). ¤
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6.4.6. Corollary. A logic L ⊇ S52 is tabular iff none of L1 − L6 contains L.

Proof. Suppose L is not tabular. Then, by the proof of Theorem 6.4.5, Li
contains L for some i = 1, . . . , 6. On the other hand, if L is tabular, by Lemma
6.4.4, it cannot have a non-tabular normal extension. Therefore, Li 6⊇ L for every
i = 1, . . . , 6. ¤

For i = 1, . . . , 6 let Vi be the subvariety of Df 2 corresponding to Li. It is easy to
see that Vi is generated by the complex algebras of the frames F i

n, n ∈ ω. Then
we have the following algebraic analogue of Theorem 6.4.5.

6.4.7. Corollary.

1. V1, . . . ,V6 are the only pre-finitely generated varieties in Λ(Df 2).

2. A variety V ⊆ Df 2 is finitely generated iff none of V1 −V6 is a subvariety
of V.

Proof. Follows from Theorem 6.4.5 and Corollary 6.4.6. ¤

Another characterization of tabular logics in Λ(S52) can be found in [12, §5] and
[14, §7].



Chapter 7

Normal extensions of CML2

In Chapter 6, we investigated the lattice Λ(S52) of normal extensions of S52

and its dual lattice Λ(Df 2) of all subvarieties of Df 2. In this chapter, which is
based on [14], we investigate the lattice Λ(CML2) of all normal extensions of
CML2 and its dual lattice Λ(CA2) of all subvarieties of CA2. We show that
there exists a continuum of normal extensions of PCML2 and continuum many
subvarieties of RCA2. We also show that there exists a continuum of normal
logics in between CML2 and PCML2 and a continuum of varieties in between
RCA2 and CA2. In Section 7.2 we describe the only pre-locally tabular extension
of CML2 and the only pre-locally finite subvariety of CA2. We also characterize
locally tabular extensions of CML2 and locally finite subvarieties of CA2. In
Section 7.3 a characterization of the tabular and pre-tabular logics in Λ(CML2)
will be given together with a characterization of the finitely generated and pre-
finitely generated subvarieties of CA2. Finally, we give a rough classification of
the lattice structure of Λ(CML2) and Λ(CA2).

7.1 Finite CML2-frames

In this section we discuss the finite model property of CML2 and PCML2. We
show that PCML2 is complete with respect to finite cylindric squares, construct
an infinite antichain of finite cylindric squares, and prove that the cardinality of
both Λ(CML2) and of Λ(PCML2) is that of the continuum.

7.1.1 The finite model property

We start by showing that CML2 has the finite model property. This result was
first proved in [60, Theorem 4.2.7] using algebraic technique. Here we present a
proof using the filtration method.
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7.1.1. Theorem.

1. CML2 has the finite model property.

2. CML2 is decidable.

Proof. (1) The proof is similar to the proof of the fmp of S52 (see Theorem 6.1.1).
It is based on the filtration method. Suppose CML2 6` φ. Then by Theorems
5.3.12 and 5.2.4, there exists a rooted CML2-frame F = (W,E1, E2, D) and a
valuation V such that (F, V ) 6|= φ. Let

• Σ := Sub(φ) ∪ {d} ∪ {♦1(d ∧ ψ),♦2(d ∧ ψ) : ψ ∈ Sub(φ)}.

We filter out (F, V ) through Σ in the same way as in the proof of Theorem 6.1.1.
Let Ff := (W f , Ef

1 , E
f
2 , [D], V f ) denote the resulting model, where (W f , Ef

1 , E
f
2 ,

V f ) is defined as in the proof of Theorem 6.1.1 and [D] =
⋃
y∈D[y]. Similar to

the proof of Theorem 6.1.1, we can show that (W f , Ef
1 , E

f
2 ) is a finite rooted

S52-frame and (Ff , V f ) 6|= φ. By Proposition 5.3.10, in order to show that Ff is
a CML2-frame, we need to prove that for each i = 1, 2, every Ef

i -cluster of Ff

contains a unique point of [D]. Suppose C ⊆ W f is an Ef
i -cluster and [x] ∈ C.

Since F is a CML2-frame, by Proposition 5.3.10, there exists y ∈ D such that
xEiy. Therefore, [x]Ef

i [y] and [y] ∈ [D], implying that every Ef
i -cluster contains

a point from [D]. Now we show that such a point is unique. Assume there
are [y], [z] ∈ W f such that [y], [z] ∈ [D], [y] 6= [z] and [y]Ef

i [z]. (Note that,
[y], [z] ∈ [D] and [y] 6= [z] imply ¬(yEiz) for each i = 1, 2.) Then y |= d and
z |= d, and there is ψ ∈ Σ such that w.l.o.g. y |= ψ and z 6|= ψ. There are two
cases:

Case 1. ψ ∈ Sub(φ). Then y |= ♦i(d ∧ ψ) and z 6|= ♦i(d ∧ ψ), which is a
contradiction since [y]Ef

i [z] and ♦i(d ∧ ψ) ∈ Σ.

Case 2. ψ = ♦j(d ∧ χ) (for some j = 1, 2) and χ ∈ Sub(φ). This implies that
y |= χ and z 6|= χ and we are back to Case 1.

Therefore, [y] = [z] and every Ef
i -cluster contains a unique point from [D]. Thus,

Ff is a CML2-frame.
(2) The result follows immediately from (1) and the fact that CML2 is finitely

axiomatizable. ¤

7.1.2. Corollary.

1. CA2 is finitely approximable.

2. The equational theory of CA2 is decidable.
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Proof. The result follows from Theorems 7.1.1, 5.4.16 and an analogue of The-
orem 2.3.27 for modal logics. ¤

The product cylindric modal logic PCML2 also has the finite model property.
This result follows from Mortimer [101], see also [60, Theorem 4.2.9], [95, Theorem
2.3.5] and [92]. However, the proof of this result is much more complicated than
the proof of the fmp of CML2. We will skip it.

7.1.3. Theorem. PCML2 has the finite model property and is decidable.

7.1.4. Corollary. RCA2 is finitely approximable and its equational theory is
decidable.

Proof. The result follows immediately from Theorems 7.1.3 and 5.4.26. ¤

Next we define cylindric p-morphisms and cylindric bisimulation equivalences for
CML2-frames.

7.1.5. Definition.

1. Let F = (W,E1, E2, D) and G = (W ′, E ′
1, E

′
2, D

′) be CML2-frames. A map
f : W → W ′ is called a cylindric p-morphism if f is a p-morphism between
(W,E1, E2) and (W ′, E ′

1, E
′
2), and f−1(D′) = D.

2. Let F = (W,E1, E2, D) be a CML2-frame. An equivalence relation Q on W
is called a cylindric bisimulation equivalence if Q is a bisimulation equiva-
lence of (W,E1, E2) and Q(D) = D.

Now similar to the diagonal-free case we will spell out the connection between
cylindric p-morphisms and cylindric bisimulation equivalences.

7.1.6. Lemma.

1. Let F = (W,E1, E2, D) be a CML2-frame and Q an equivalence relation on
W . Let the map fQ : W → W/Q be defined by fQ(w) = Q(w) for every
w ∈ W . Then the following two conditions are equivalent:

(a) Q is a cylindric bisimulation equivalence,

(b) fQ is a cylindric p-morphism.

2. Let F = (W,E1, E2, D) and F′ = (W ′, E ′
1, E

′
2, D

′) be CML2-frames and
f : W → W ′ a map. Let the relation Qf ⊆ W ×W be defined by wQfv
iff f(w) = f(v) for any w, v ∈ W . Then the following two conditions are
equivalent:
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(a) f is a cylindric p-morphism,

(b) Qf is a cylindric bisimulation equivalence.

Proof. The proof is an easy generalization of the proof for the case of S52. ¤

In order to prove that PCML2 is complete with respect to the class of finite
cylindric squares CSq we will show that every finite PCML2-frame is a cylindric
p-morphic image of a finite cylindric square.

7.1.7. Lemma. For every finite rooted PCML2-frame F there is a finite cylindric
square G such that F is a cylindric p-morphic image of G.

Proof. (Sketch) By Theorem 5.3.18, we have to show that every CML2-frame
F that does not satisfy (∗) is a cylindric p-morphic image of some finite cylindric
square G. All we need to do is to check that Lemmas 6.1.7–6.1.9 hold for CML2-
frames not satisfying the (∗)-condition. We will skip the technical details. ¤

Now we are ready to prove that PCML2 is complete with respect to the class
of all finite cylindric squares (see [101], [60, Theorem 4.2.9] and [95, Theorem
2.3.10]).

7.1.8. Theorem. PCML2 is complete with respect to Fin(CSq).

Proof. Let PCML2 6` φ. By Theorem 7.1.3, there is a finite rooted PCML2-
frame F that refutes φ. By Lemma 7.1.7, F is a p-morphic image of some finite
cylindric square G. Therefore, G also refutes φ. ¤

The next corollary is an algebraic version of Theorem 7.1.8.

7.1.9. Corollary. RCA2 is generated by Fin(CSQ).

7.1.2 The Jankov-Fine formulas

The modal logic analogues of the Jankov-de Jongh formulas are known in the
literature as Jankov-Fine formulas and were first defined by Fine [41] (see also
Rautenberg [105]) for an algebraic version. We consider the Jankov-Fine formulas
for S52 and CML2 (see [18, §3.4] and [43, §8.4 p. 399]). Let F = (W,E1, E2) be
a finite S52-frame. For each point w ∈ W we introduce a propositional variable
pw, and consider the formulas

δ(F) := ¤1¤2

( ∨

w∈W

(pw ∧ ¬
∨

v∈W\{w}

pv)

∧
∧

i=1,2
w,v∈W,wEiv

(pw → ♦ipv) ∧
∧

i=1,2
w,v∈W,¬(wEiv)

(pw → ¬♦ipv)
)
,

χ(F) := ¬δ(F).
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7.1.10. Theorem. Let F = (W,E1, E2) be a finite rooted S52-frame and let
G = (U, S1, S2) be a rooted (descriptive) S52-frame. Then

G 6|= χ(F) iff F is a p-morphic image of G.

Proof. (Sketch) Suppose F is a p-morphic image of G. Define a valuation V
on F by V (pw) = {w} for any w ∈ W . Then (F , V ) 6|= χ(F) by the definition
of χ(F). Now if G |= χ(F), then since p-morphic images preserve validity of
formulas, we would also have F |= χ(F), a contradiction. Therefore, G 6|= χ(F).

For the converse, we use the argument of [43, Claim 8.36]. Suppose that
G 6|= χ(F). Then there is a valuation V ′ on G and a point u ∈ W ′ such that
(G, V ′), u 6|= χ(F). Therefore, (G, V ′), u |= δ(F). Define a map f : U → W by

f(t) = w ⇐⇒ (G, V ′), t |= pw,

for every t ∈ U and w ∈ W . From G being rooted and the truth of the first
conjunct of δ(F) it follows that f is well defined. The truth of the first two
conjuncts of δ(F) together with F being rooted implies that f is surjective.
Finally, the truth of the second and third conjuncts of δ(F) guarantee that f is
a p-morphism. (If G is a descriptive frame, then it immediately follows from the
definition of f that the inverse image of every point of F is an admissible subset
of G.) Therefore, F is a p-morphic image of G. ¤

7.1.11. Remark. Theorem 7.1.10 is an analogue of Theorem 3.3.3 for S52-
frames. In this case we do not require that F is a p-morphic image of a gen-
erated subframe of G (F is simply a p-morphic image of G), because G is a rooted
S52-frame.

Suppose F = (W,E1, E2, D) is a finite rooted CML2-frame, F = (W,E1, E2)
diagonal-free reduct of F, and δ(F)—the Jankov-Fine formula of F .

Let

δd(F) := δ(F) ∧¤1¤2

(∧

w∈D

(pw → d) ∧
∧

w/∈D

(pw → ¬d)
)
,

χd(F) := ¬δd(F).

7.1.12. Theorem. Let F = (W,E1, E2, D) be a finite rooted CML2-frame and
G = (W ′, E ′

1, E
′
2, D

′) be a rooted (descriptive) CML2-frames. Then

G 6|= χd(F) iff F is a cylindric p-morphic image of G.

Proof. The proof is similar to the proof of Theorem 7.1.10. The additional
conjunct of δd(F) guarantees that the map f constructed in the proof of Theorem
7.1.10 is a cylindric p-morphism, i.e., f−1(D′) = D. ¤
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7.1.3 The cardinality of Λ(CML2)

Let F and G be rooted S52-frames, and let F and G be rooted CML2-frames.
We write

F ≤ G iff F is a p-morphic image of G.

F ≤ G iff F is a cylindric p-morphic image of G.

It follows from Theorems 7.1.10 and 7.1.12 that if F and F are finite then

1. G 6|= χ(F) iff F ≤ G,

2. G 6|= χd(F) iff F ≤ G.

Now we show that the cardinality of Λ(PCML2) as well as the cardinality of
Λ(CML2) \ Λ(PCML2) is that of the continuum. In the next chapter we prove
that the cardinality of Λ(S52) is countable. First we construct ≤-antichains of
finite CML2-frames.

7.1.13. Lemma. Every two non-isomorphic finite squares are ≤-incomparable.

Proof. Let F and G be two non-isomorphic finite squares. Then F is isomorphic
to (n × n,E1, E2, D) and G is isomorphic to (m ×m,E ′

1, E
′
2, D

′) where n 6= m.
Without loss of generality we may assume that n > m. Then obviously F can not
be a cylindric p-morphic image of G. Suppose G is a proper cylindric p-morphic
image of F. Then by Lemma 7.1.6(2), there exists a cylindric bisimulation equiv-
alence Q of F such that F/Q = (W/Q,E ′

1, E
′
2, D

′) is isomorphic to G. Therefore,
Q must identify points from different E1 or E2-clusters of F. Without loss of gen-
erality we may assume that Q identifies points from different E1-clusters C1 and
C2. Let x1 ∈ C1 be the diagonal point of C1 and x2 ∈ C2 be the diagonal point
of C2. Since Q(D) = D, we have that x1Qx2. Let E1(x1) ∩E2(x2) = {y1}. Since
x2Qx1 and x1E1y1, there exists y2 in F such that y1Qy2 and y2E1x2. Consider
Q(x1) and Q(y1). It is obvious that Q(x1)E

′
1Q(y1). Also since Q(x1) = Q(x2)

and Q(y1) = Q(y2) it follows that Q(x1)E
′
2Q(y1). Therefore, Q(x1)E

′
0Q(y1). Also

Q(x1) 6= Q(y1) since x1 ∈ D, y1 /∈ D and Q(D) = D. Therefore, there exists a
non-singleton E0-cluster of F/Q, which is impossible since F/Q is isomorphic to
G and G is a square. Thus, G is not a proper p-morphic image of F, and so every
two non-isomorphic finite squares are ≤-incomparable. ¤

As an immediate consequence of Lemma 7.1.13 we obtain the following theorem.

7.1.14. Theorem.

1. The cardinality of Λ(PCML2) is that of the continuum.

2. The cardinality of Λ(RCA2) is that of the continuum.
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Proof. (1) Let Fn be the square (n × n,E1, E2, D). Consider the family ∆ =
{Fn}n∈ω. From Lemma 7.1.13 it follows that ∆ forms a ≤-antichain. Now the
result follows from Theorem 7.1.12 and the modal logic analogues of Theorems
3.4.18 and 3.4.20.

(2) follows from (1). ¤

For n > 1 let Gn denote the finite cylindric space obtained from Fn by replacing
a singleton non-diagonal E0-cluster by a two-element E0-cluster. For example,
G2 is shown in Figure 5.1(a) on page 138, where the non-singleton E0-cluster
contains two points. Obviously Gn satisfies (∗), and so is not a PCML2-frame.
Similar to Lemma 7.1.13, we can prove the following lemma.

7.1.15. Lemma. The family {Gn}n∈ω forms a ≤-antichain.

As an immediate consequence of Lemma 7.1.15 and the fact that every Gn is a
CML2-frame but not a PCML2-frame, we obtain the following theorem.

7.1.16. Theorem.

1. The cardinality of Λ(CML2) \ Λ(PCML2) is that of the continuum.

2. The cardinality of Λ(CA2) \ Λ(RCA2) is that of the continuum.

Finally, note that because Gn is not a PCML2-frame, the Fine-Jankov formula
χd(Gn) of Gn belongs to PCML2. Then the same argument as in Theorem 7.1.14
shows that Γ,Γ′ ⊆ {Gn}n∈ω and Γ 6= Γ′ imply PCML2 ∩Log(Γ) 6= PCML2 ∩
Log(Γ′). Therefore, we obtain the following corollary.

7.1.17. Corollary.

1. There exists a continuum of logics in between CML2 and PCML2.

2. There exists a continuum of varieties in between RCA2 and CA2.

Note that there are only countably many finitely axiomatizable logics. There-
fore, Theorem 7.1.14 also implies that there exist continuum many non-finitely
axiomatizable extensions of PCML2 and of CML2.

7.2 Locally tabular extensions of CML2

In the previous chapter we proved that Df2 is pre-locally finite. It is known (see,
e.g., [60, Theorem 2.1.11]) that RCA2, and hence every variety in the interval
[RCA2,CA2], is not locally finite (the result could be obtained by using the
Example 6.2.1). In this section, we present a criterion for a variety of cylindric
algebras to be locally finite, and show that there exists exactly one pre-locally
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finite subvariety of CA2. The corresponding results for cylindric modal logics
will also be stated.

Let B be a cylindric algebra and X be its dual cylindric space. Recall that
a cylindric space is a quasi-square if it is rooted and the number of the E1 and
E2-clusters of X is the same. We have that B is simple iff X is a quasi-square
(see Theorem 5.4.21(3)). Therefore, we have that the cardinalities of the sets E1

and E2-clusters of X coincide.

7.2.1. Definition.

1. A quasi-square X is said to be of depth n (0 < n < ω) if the number of
E1-clusters (E2-clusters) of X is equal to n.

2. A quasi-square X is said to be of an infinite depth if the cardinality of the
set of E1-clusters (E2-clusters) of X is infinite.

3. A simple cylindric algebra B is said to be of depth n if its dual X is of
depth n.

4. A simple cylindric algebra B is said to be of an infinite depth if its dual X
is of an infinite depth.

5. A variety V of cylindric algebras is said to be of depth n if there is a simple
V-algebra of depth n and the depth of every other simple V-algebra is less
than or equal to n.

6. A variety V is said to be of depth ω if the depth of simple members of V is
not bounded by any natural number.

Recall that there exists a formula measuring the depth of a variety of cylindric
algebras (see Theorem 6.2.4). Let d(V) denote the depth of the variety V. Our
goal is to show that a variety V of cylindric algebras is locally finite iff d(V) < ω.
For this we need the following definition.

7.2.2. Definition.

1. Call a quasi-square X uniform if every non-diagonal E0-cluster of X is a
singleton set, and every diagonal E0-cluster of X contains only two points.

2. Call a simple cylindric algebra B uniform if its dual quasi-square X is
uniform.

Finite uniform quasi-squares are shown in Figure 7.1, where big dots denote
the diagonal points. Let Xn denote the uniform quasi-square of depth n. Also
let Bn denote the uniform cylindric algebra of depth n. It is obvious that Xn

is (isomorphic to) the dual cylindric space of Bn. Let U denote the variety
generated by all finite uniform cylindric algebras; that is U = HSP({Bn}n∈ω).
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E1 = E2
E2

E1

E1

E2

Figure 7.1: Uniform quasi-squares

7.2.3. Proposition. U ⊆ RCA2.

Proof. Since none of the diagonal E0-clusters of Xn is a singleton set, Xn does
not satisfy (∗). Therefore, each Bn is representable by Theorem 5.4.28. Thus,
{Bn}n∈ω ⊆ RCA2, implying that U ⊆ RCA2. ¤

7.2.4. Lemma.

1. If B is a simple cylindric algebra of an infinite depth, then each Bn is a
subalgebra of B.

2. If B is a simple cylindric algebra of depth 2n, then Bn is a subalgebra of
B.

Proof. (1) Suppose that B is a simple cylindric algebra of an infinite depth. Let
X be the dual cylindric space of B. Then X is a quasi-square with infinitely many
E1 and E2-clusters. As in the proof of Claim 6.2.10, for each n, we can divide X
into n-many E1-saturated disjoint clopen sets G1, . . . , Gn. We let Di = D ∩ Gi

and Fi = E2(Di) for i = 1, . . . , n. Obviously each of the Di’s and Fi’s is clopen.
Define an equivalence relation Q of X by

• xQy if x, y ∈ D and there exists i = 1, . . . , n such that x, y ∈ Di,

• xQy if x, y ∈ X \D and there exist 1 ≤ j, k ≤ n such that x, y ∈ Gj ∩ Fk.

It is easy to check, or transform the proof of Claim 6.2.10, that Q is a cylindric
bisimulation equivalence of X , and that X /Q is isomorphic to Xn. Therefore, by
Theorem 5.4.21(2), each Bn is a subalgebra of B.

(2) Suppose that B is a simple cylindric algebra of depth 2n. Let X be the
dual cylindric space of B. Then X is a quasi-square. Moreover, there are exactly
2n E1-clusters and exactly 2n E2-clusters of X . Obviously all of them are clopens.
Let C1, . . . , C2n be the E1-clusters of X and let Gi = C2i−1 ∪C2i for i = 1, . . . , n.
Obviously every Gi is an E1-saturated clopen. Now applying the same technique
as in (1), we obtain that Bn is a subalgebra of B. ¤
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Figure 7.2: Generators of square and uniform quasi-square algebras

7.2.5. Theorem. For a variety V of cylindric algebras, d(V) = ω iff U ⊆ V.

Proof. It is obvious that d(U) = ω. So, if U ⊆ V, then obviously d(V) = ω.
Conversely, suppose d(V) = ω. We want to show that every finite uniform
cylindric algebra belongs to V. Since d(V) = ω, the depth of the simple members
of V is not bounded by any integer. So, either there exists a family of simple
V-algebras of increasing finite depth, or there exists a simple V-algebra of an
infinite depth. In either case, it follows from Lemma 7.2.4 that {Bn}n∈ω ⊆ V.
Therefore, U ⊆ V since {Bn}n∈ω generates U. ¤

Our next task is to show that U is not locally finite. For this we will need the
following lemma.

7.2.6. Lemma.

1. Every finite square algebra is 1-generated.

2. Every finite uniform algebra is 1-generated.

Proof. (1) For a finite cylindric square Fn = (n× n,E1, E2, D), consider the set
g = {(k,m) : k < m}. It follows from Example 6.2.1 that the cylindric algebra
generated by g contains all singleton subsets of n×n. Hence, (P (n×n), E1, E2, D)
is generated by g.

(2) is proved similar to (1). Let B be a finite uniform algebra, and let X be
its dual cylindric quasi-square. Then the same argument as above shows that
every E0-cluster of X belongs to the algebra generated by the lower triangle g ′

(see Figure 7.2, where big dots represent the diagonal points and points in circles
represent the points that belong to the sets g and g′, respectively). Hence it is
left to show that for every diagonal E0-cluster C and x ∈ C, the singleton set
{x} belongs to the algebra generated by g′. But for any x ∈ C, either x ∈ D and
hence {x} = C ∩D or x /∈ D and {x} = C \D. Thus, every singleton set belongs
to the cylindric algebra generated by g′, and so g′ generates B. ¤
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7.2.7. Remark. Note that the Df 2-reducts of finite uniform algebras are not
generated by g′. Indeed, the Df2-algebra generated by g′ does not contain the
singleton sets from non-singleton E0-clusters.

7.2.8. Corollary. U is not locally finite.

Proof. Follows from Lemma 7.2.6 and Theorem 6.2.6. ¤

Next we show that if a variety of cylindric algebras is of finite depth, then it is
locally finite.

7.2.9. Theorem. If d(V) < ω, then V is locally finite.

Proof. The proof is similar to the proof of Lemma 6.2.7 for the diagonal-free
case: To show V is locally finite, by Theorem 6.2.6, it is sufficient to prove
that the cardinality of every n-generated simple V-algebra is bounded by some
natural number M(n). Let B be an n-generated simple V-algebra. Let also
Bi = {♦ib : b ∈ B}, for i = 1, 2. Since d(V) < ω, we have |B1| = |B2| < ω.
Suppose B is generated by G = {g1, . . . , gk}. Then as a Boolean algebra B is
generated by G ∪ B1 ∪ B2 ∪ {d}. Since the variety of Boolean algebras is locally

finite, there exists M(n) < ω such that |B| ≤ M(n) (in fact, |B| ≤ 22n+2|B1|+1
).

Thus, V is locally finite. ¤

Finally, combining Theorem 7.2.5 with Corollary 7.2.8 and Theorem 7.2.9, we
obtain the following characterization of locally finite varieties of cylindric algebras.

7.2.10. Theorem.

1. For V ∈ Λ(CA2) the following conditions are equivalent:

(a) V is locally finite,

(b) d(V) < ω,

(c) U 6⊆ V.

2. U is the only pre-locally finite subvariety of CA2.

Proof. (1) The equivalence (b) ⇔ (c) is shown in Theorem 7.2.5. The implication
(b) ⇒ (a) is proved in Theorem 7.2.9. Finally, by Corollary 7.2.8, U is not locally
finite. Therefore, if V ⊇ U, then V is not locally finite either. Thus, (a) ⇒ (c).

(2) First we show that U is pre-locally finite. Suppose V ( U. Then by
Theorem 7.2.5, d(V) < ω, and so by Theorem 7.2.9, V is locally finite. Now
suppose V is pre-locally finite. Then again by Theorem 7.2.9, d(V) = ω. By
Theorem 7.2.5, U ⊆ V and since V is pre-locally finite, V = U. ¤
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In order to formulate Theorem 7.2.10 in terms of logics, we need the following
terminology. We define the depth of a logic L ⊇ CML2 as the depth of its
corresponding variety of cylindric algebras. We denote by d(L) the depth of L.
Let LU denote the logic of all finite uniform quasi-squares (rooted CML2-frames);
that is LU = Log({Xn}n∈ω).

7.2.11. Corollary.

1. For L ∈ Λ(CML2) the following conditions are equivalent:

(a) L is locally tabular,

(b) d(L) < ω,

(c) LU 6⊇ L.

2. LU is the only pre-locally tabular extension of CML2.

Proof. The result follows from Theorem 7.2.10. ¤

Therefore, in contrast to the diagonal-free case, there exist uncountably many
normal extensions of CML2 (PCML2) which are not locally tabular. Since
every locally tabular logic has the finite model property we obtain from Theo-
rem 7.2.10 that every normal extension of CML2 of finite depth has the finite
model property. We leave it as an open problem whether every normal extension
of CML2 has the finite model property.

7.2.12. Open Question.

1. Does every normal extension of CML2 (PCML2) have the finite model
property?

2. Is every subvariety of CA2 (RCA2) finitely approximable?

7.3 Tabular and pre-tabular extensions of CML2

In Chapter 6 we showed that there are exactly six pre tabular logics in Λ(S52)
(Theorem 6.4.5). The situation is more complex in Λ(CML2). In this section we
show that there exist exactly fifteen pre-tabular logics in Λ(CML2), and that six
of them belong to Λ(PCML2). It trivially implies a characterization of tabular
logics of Λ(CML2).

Consider the finite quasi-squares Fin shown in Figures 7.3 and 7.4, where i =
1, . . . , 15 and n ≥ 2. Again big dots represent the diagonal points. The pattern
according to which the quasi-squares are depicted is the following: First come the
frames of depth 1, then the frames of depth 2, and finally the frames of depth 3;
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Figure 7.3: Quasi-squares F1
n − F7

n

quasi-squares with more clusters come later in the list; the first and last quasi-
squares (of the same depth) do not satisfy (∗). As can be seen from the figure,
each E0-cluster of Fin consists of one, two or n points. For each i = 1, . . . , 15 let
Li := Log({Fin : n ≥ 2}). From Theorem 5.3.18 it follows that only F1

n F2
n, F3

n,
F7
n, F14

n and F15
n are PCML2-frames, and so only L1, L2, L3, L7, L14 and L15

belong to Λ(PCML2).
Now we are in a position to prove that L1 − L15 are the only pre-tabular

normal extensions of CML2. As we saw in the proof of Theorem 6.4.5, for this
it is sufficient to show that L1 −L15 are incomparable, they are not tabular, and
that every normal extensions of CML2 that is not tabular is contained in exactly
one of L1 − L15.

7.3.1. Lemma. L3 ⊇ LU.

Proof. Suppose Xn is the finite uniform square of depth n. We show that F3
n is

a cylindric p-morphic image of Xn. Fix a diagonal E0-cluster, say C of Xn, and
let D ∩ C = {x0}. Define an equivalence relation Q on Xn by

• xQy if x = y for all x, y ∈ C,
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• xQy for all x, y ∈ E1(C) \ C,

• xQy for all x, y ∈ E2(C) \ C,

• xQy for all x, y ∈ D \ {x0},

• Finally, looking at the subframe of Xn based on the set Y = X \ (E1(C) ∪
E2(C) ∪ D) we see that it is isomorphic to the (n − 1) × (n − 1)-square.
Then Q is defined on Y in the same way as in Lemma 6.1.7; that is, we let
each of the remaining n − 1 Q-equivalence classes consist of n − 1 points
chosen so that each Q-equivalence class contains exactly one point from
each Ei-cluster of Y for i = 1, 2.

It is a matter of routine verification that Q is a cylindric bisimulation equivalence
of Xn, and that Xn/Q is isomorphic to F3

n. Therefore, by Lemma 7.1.6(1), F3
n is

a cylindric p-morphic image of Xn for every n, implying that L3 ⊇ LU. ¤

Consequently, if d(L) = ω, then L3 ⊇ L. Suppose d(L) < ω. Then L is locally
tabular by Corollary 7.2.11. Recall that FL denotes the class of finite rooted
L-frames modulo isomorphism. Since L is locally tabular, L is complete with
respect to FL.

7.3.2. Definition. Let X = (X,E1, E2, D) be a finite quasi-square. Fix x ∈ X.

1. The girth of x is the number of elements of E0(x).

2. The diagonal girth of X is the maximum of the girths of all x ∈ E0(D).

3. The non-diagonal girth of X is the maximum of the girths of all x ∈ X \
E0(D).

4. The diagonal (resp. non-diagonal) girth of L is n if there is X ∈ FL whose
diagonal (resp. non-diagonal) girth is n, and the diagonal (resp. non-
diagonal) girth of every other member of FL is less than or equal to n.

5. The diagonal (resp. non-diagonal) girth of L is ω if the diagonal (resp.
non-diagonal) girths of the members of FL are not bounded by any integer.

7.3.3. Lemma. Let L ∈ Λ(CML2). Then L is tabular iff the depth, the diagonal
girth and the non-diagonal girths of L are bounded by some integer.

Proof. The proof is the same as the proof of Lemma 6.4.4. ¤

It follows that if a a normal extension L of CML2 has a finite depth and is not
tabular, then either the diagonal girth or non-diagonal girth of L is ω.
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7.3.4. Lemma. If L ∈ Λ(CML2) has a finite depth and an infinite diagonal
girth, then one of L1 − L3 contains L.

Proof. Since the diagonal girth of L is ω, for each n there is X ∈ FL whose
diagonal girth is m ≥ n. Let C denote a diagonal E0-cluster of X containing m
points. Then two cases are possible:

Case 1. d(X ) = 1. Then X is isomorphic to F1
m.

Case 2. d(X ) ≥ 2. Then we define an equivalence relation Q on X such that Q
leaves points of C untouched, identifies all the points in every non-diagonal
E0-cluster of X, and identifies all the non-diagonal points in every diagonal
E0-cluster of X different from C:

• xQy if x = y for any x, y ∈ C ∪D,

• xQy if xE0y for any x, y ∈ X \ (C ∪D).

It is easy to see that Q is a cylindric bisimulation equivalence. Let Y denote
X /Q. Then by the definition of Q, every non-diagonal E0-cluster of Y is a
singleton set and every diagonal E0-cluster different from C contains either
one or two points. Again two cases are possible:

Case 2.1. d(Y) = 2. Then Y is isomorphic to F2
m or F3

m.

Case 2.2. d(Y) > 2. Then we define an equivalence relation Q′ on Y such that
Q′ leaves the points of C untouched, identifies all the other points in the
E1-cluster containing C, identifies all the other points in the E2-cluster
containing C, identifies all the other diagonal points, and identifies all the
other remaining points:

• xQ′y if x = y for any x, y ∈ C,

• xQ′y for any x, y ∈ E1(C) \ C,

• xQ′y for any x, y ∈ E2(C) \ C,

• xQ′y for any x, y ∈ D \ C,

• xQ′y for any x, y ∈ Y \ (E1(C) ∪ E2(C) ∪D).

It is routine to check that Q′ is a cylindric bisimulation equivalence, and
that Y/Q′ is isomorphic to F3

m.

Therefore, by Lemma 7.1.6(1), for every n ∈ ω, there exists m > n such that
either F1

m, F2
m or F3

m is a cylindric p-morphic image of X . Thus, L1 ⊇ L, L2 ⊇ L
or L3 ⊇ L.

¤
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7.3.5. Lemma. If L ∈ Λ(CML2) has a finite depth and an infinite non-diagonal
girth, then one of L4 − L15 contains L.

Proof. Since the non-diagonal girth of L is ω, for each n there is X ∈ FL

whose non-diagonal girth is m ≥ n. Let C denote a non-diagonal E0-cluster of X
containing m points. Since non-diagonal E0-clusters exist only in quasi-squares
of depth > 1, we have d(X ) > 1. As in the previous lemma, define an equivalence
relation Q on X by

• xQy if x = y for any x, y ∈ C ∪D,

• xQy if xE0y for any x, y ∈ X \ (C ∪D).

It is easy to see that Q is a cylindric bisimulation equivalence. By the definition
of Q, every non-diagonal E0-cluster of X /Q is a singleton set and every diagonal
E0-cluster different from C contains either one or two points. Since d(X ) > 1,
three cases are possible:

Case 1. d(X ) = 2. Then X /Q is isomorphic to one of F4
m − F7

m.

Case 2. d(X ) = 3. Then X /Q is isomorphic to one of F8
m − F15

m .

Case 3. d(X ) > 3. Let Y = X /Q. Let C ′ denote the diagonal E0-cluster E1-
related to C, and let C ′′ denote the diagonal E0-cluster E2-related to C. Let
also C ′′′ be the non-diagonal E0-cluster E1(C

′′)∩E2(C
′). Next we define an

equivalence relation Q′ on Y such that Q′ leaves the points of C untouched,
identifies all the non-diagonal points in C ′ (if such points exists), identifies
all the non-diagonal points in C ′′ (if such points exist), identifies all the
remaining points in the E1-cluster containing C and C ′′, identifies all the
remaining points in the E2-cluster containing C and C ′′, identifies all the
points in C ′′′, identifies all the remaining points in the E1-cluster containing
C ′′ and C ′′′, identifies all the remaining points in the E2-cluster containing
C ′ and C ′′′, identifies all the remaining diagonal points, and identifies all
the remaining non-diagonal points:

• xQ′y if x = y for any x, y ∈ C ∪ ((C ′ ∪ C ′′) ∩D),

• xQ′y for any x, y ∈ D \ (C ′ ∪ C ′′),

• xQ′y for any x, y ∈ X \ (D ∪ E1(C
′) ∪ E2(C

′) ∪ E1(C
′′) ∪ E2(C

′′),

• xQ′y if xE0y for any x, y ∈ (C ′ ∪ C ′′ ∪ C ′′′) \D),

• xQ′y for any x, y ∈ E2(C) \ (C ∪ C ′′),

• xQ′y for any x, y ∈ E1(C) \ (C ∪ C ′),

• xQ′y for any x, y ∈ E2(C
′) \ (C ′′′ ∪ C ′),
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• xQ′y for any x, y ∈ E1(C
′′) \ (C ′′′ ∪ C ′′).

It is a matter of routine verification that Q′ is a cylindric bisimulation
equivalence. Moreover, there are four cases possible. Either both C ′ and
C ′′ are singleton sets, C ′ is a singleton set and C ′′ is not, C ′′ is a singleton
set and C ′ is not, or neither C ′ nor C ′′ are singleton sets. In the first case
Y/Q′ is isomorphic to F11

m , in the second case Y/Q′ is isomorphic to F13
m ,

in the third case Y/Q′ is isomorphic to F12
m , and finally in the fourth case

Y/Q′ is isomorphic to F15
m .

Consequently, going through all these cases for every n ∈ ω there exists m ≥ n
such that at least one of F4

m−F15
m is a cylindric p-morphic image of X . Therefore,

at least one of L4 − L15 contains L. ¤

7.3.6. Corollary.

1. L1 − L15 are the only pre tabular logics in Λ(CML2).

2. L1, L2, L3, L7, L14 and L15 are the only pre tabular logics in Λ(PCML2).

Proof. (1) The proof is similar to the proof of Theorem 6.4.5. It is easy to see
that all Li’s are incomparable. By Lemma 7.3.3, none of L1–L15 is tabular. If
L ) Li and L is not tabular, then by Lemmas 7.3.1, 7.3.4 and 7.3.5, there is j 6= i
such that Lj ⊇ L ) Li. This is a contradiction since all Li’s are incomparable.
Therefore, every Li is pre-tabular. Finally, if L is pre-tabular, then again by
Lemmas 7.3.1, 7.3.4 and 7.3.5, Li ⊇ L for some i = 1, . . . , 15. Since L is pre-
tabular, Li cannot be a proper extension of L. Therefore, L = Li.

(2) The result is an immediate consequence of (1) since, as we mentioned
above, out of L1 − L15, only L1, L2, L3, L7, L14, L15 belong to Λ(PCML2).

¤

For every i = 1, . . . 15 let Vi be the subvariety of CA2 corresponding to Li. Then
we have the following analogue of Theorem 7.3.6.

7.3.7. Corollary.

1. V1 − V15 are the only pre-finitely generated varieties in Λ(CA2).

2. V1,V2,V3, V7, V14 and V15 are the only pre-finitely generated varieties in
Λ(RCA2).

It follows from Corollary 7.3.6 that a logic L ⊇ CML2 (resp. L ⊇ PCML2) is
tabular iff L is not contained in one of the fifteen (resp. six) pre-tabular logics.
Another characterization of tabular logics in Λ(CML2) can be found [14, §7].

We close this section with a very rough description of the lattice structure of
normal extensions of CML2. We need the following notation:
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Form(MLd2)

DF

pre-tabular logics

T

Dω

CML2

U

PCML2

Figure 7.5: Rough picture of Λ(CML2)

T = {L ∈ Λ(CML2) : L is tabular},

DF = {L ∈ Λ(CML2) : d(L) < ω and L /∈ T},

Dω = {L ∈ Λ(CML2) : d(L) = ω}.

Let also Form(MLd2) denote the inconsistent logic.

7.3.8. Theorem.

1. {T,DF ,Dω} is a partition of Λ(CML2).

2. Form(MLd2) is the greatest element of T.

3. T does not have minimal elements.

4. DF has precisely fifteen maximal elements.

5. DF does not have minimal elements.

6. LU and CML2 are the greatest and least elements of Dω, respectively.

Proof. (1) and (2) hold by definition. For (3) observe that for every tabular
extension of CML2, there is a tabular extension of CML2 properly contained in
it. Therefore, T cannot have a minimum. (4) follows from Corollary 7.3.6. For
(5) observe that for every extension of CML2 of finite depth there is an extension
of CML2 of finite depth properly contained in it. (6) follows from Theorem 7.2.5.

¤
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The lattice Λ(CML2) can be roughly depicted as shown in Figure 7.5. The
detailed investigation of the upper part of Λ(CML2) can be found in [14, §7]. In
particular, a complete characterization of the lattice structure of the extensions
of CML2 of depth one is given in [14, 7.1]. Obviously, there is a close connection
between S52 and CML2. S52 can be seen as a diagonal-free reduct of CML2.
Moreover, we can define a reduct functor from the lattice Λ(CML2) into the
lattice Λ(S52). This reduct functor and the properties that are preserved and
reflected by it are investigated in [14, §7].



Chapter 8

Axiomatization and computational
complexity

In this chapter, based on [17] and [16], we show that every normal extension of
S52 is finitely axiomatizable, and that every proper normal extension of S52 has
the polynomial size model property and an NP-complete satisfiability problem.

Warning. In this chapter, by the complexity of a logic we mean the complexity
of its satisfiability problem.

It is well known that the logic S5 is NP-complete (see [84] and [43, Theorem
16(i)]) and that S52 is NEXPTIME-complete (see [93] and [43, Theorem 5.26]).
Explicit bounds on the size of finite models are known. Every S5-consistent
formula φ is satisfiable in a model of size |φ| + 1 [84]. For S52 the models need
to be much larger. Every S52-consistent formula φ can be satisfied in a product
model of size 2f(|φ|), where f is a linear function (see [55] and [43, Theorem 5.25]).
Both bounds are optimal. Here we recall that |φ| is the length of φ.

In Corollary 6.2.12 we proved that every normal extension of S52 has the finite
model property. Using this result we show that every proper normal extension
L of S52 has the poly-size model property. That is, there is a polynomial P (n)
such that every L-consistent formula φ is satisfied in an L-frame consisting of at
most P (|φ|) points. We recall that φ is L-consistent if ¬φ /∈ L.

With every proper normal extension L of S52 we associate a natural number
b(L)—the bound of L. We show that for every L, there exists a polynomial P (·)
of degree b(L) + 1 such that every L–consistent formula φ is satisfiable on an
L-frame whose universe is bounded by P (|φ|). We also show that this bound is
optimal.

In addition, we show that every proper normal extension L of S52 is axiom-
atizable by Jankov-Fine formulas. In fact, for every proper normal extension L
of S52, we find a finite set ML of finite rooted S52-frames such that an arbitrary
finite rooted S52-frame is a frame for L iff it does not have any frame in ML

187
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as a p-morphic image. This condition yields a finite axiomatization of L. Fur-
thermore, we show that whether F is an L-frame is decidable in deterministic
polynomial time. This, together with the poly-size model property of L, implies
NP-completeness of (satisfiability for) L.

Finally, we note that general complexity results for (uni)modal logics were
investigated before. Bull and Fine proved that every normal extension of S4.3
has the finite model property, is finitely axiomatizable and therefore is decid-
able (see [18, Theorems 4.96, 4.101]). Hemaspaandra strengthened the second
result by showing that every normal extension of S4.3 is NP-complete (see, e.g.,
[18, Theorem 6.41]). The proof of finite axiomatizability uses Kruskal’s theo-
rem on well-quasi-orderings [18, Theorem 4.99]. Kracht uses the same technique
for showing that every extension of the intermediate logic of leptonic strings is
finitely axiomatizable [73, Theorem 14, Proposition 15]. We take the same line
of research beyond unimodal logics. However, as we will see below, the theory of
well-quasi-orderings does not suffice for our purposes; instead, we will use better-
quasi-orderings.

8.1 Finite axiomatization

In this section we prove that every normal extension of S52 is finitely axioma-
tizable. Let FS5

2 be the class of finite rooted S52-frames modulo isomorphism
Recall that for F ,G ∈ FS5

2 we put

F ≤ G iff F is a p-morphic image of G.

It is routine to check that ≤ is a partial order on FS5
2 . We write F < G if

F ≤ G and G 6≤ F . Then F < G implies |F| < |G| and we see that there are no
infinite descending chains in (FS5

2 , <). Thus, for any non-empty A ⊆ FS5
2 , the

set min(A) of <-minimal elements of A is non-empty, and indeed for any G ∈ A
there is an F ∈ min(A) such that F ≤ G.

Now we again apply the technique of frame-based formulas to show that every
normal extension of S52 is axiomatizable by Jankov-Fine formulas. Since every
normal extension of S52 has the finite model property, instead of considering the
finitely generated rooted descriptive frames, as in the case of intermediate logics
(see Chapter 3), we restrict ourselves to finite rooted S52-frames. In order to
make this chapter more self-contained we supply proofs for the next results, even
though they can be easily derived from the results of Section 3.4.

Let L be a proper normal extension of S52. By completeness of S52 with
respect to FS5

2 , the set FS5
2 \FL is non-empty. Let ML = min(FS5

2 \FL). Note
that ML is a shorthand of M(L,≤) used in Section 3.4.

8.1.1. Theorem. For any proper normal extension L of S52 and G ∈ FS5
2,

G ∈ FL iff no F ∈ ML is a p-morphic image of G.
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Proof. Let G ∈ FL. Then since p-morphisms preserve validity of formulas, every
p-morphic image of G belongs to FL and hence can not be in ML. Conversely, if
G ∈ FS5

2 \ FL then there is F ∈ ML such that F ≤ G; that is, F is a p-morphic
image of G. ¤

8.1.2. Theorem. Every proper normal extension L of S52 is axiomatizable by
the axioms of S52 plus {χ(F) : F ∈ ML}.

Proof. Let G ∈ FS5
2 . Then by Theorem 8.1.1, G ∈ FL iff there is no F ∈ ML

with F ≤ G, iff (by Theorem 7.1.10) there is no F ∈ ML with G 6|= χ(F), iff
G |= χ(F) for all F ∈ ML. Thus, G |= {χ(F) : F ∈ ML} iff G ∈ FL.

Let L′ be the logic axiomatized by the axioms of S52 plus {χ(F) : F ∈ ML}.
From the above it is clear that FL′ = FL. But L (resp. L′) is sound and complete
with respect to FL (resp. FL′). So, L′ = L. ¤

It follows that a proper normal extension L of S52 is finitely axiomatizable when-
ever ML is finite. We now proceed to show that ML is indeed finite for every
proper normal extension L of S52.

Fix a proper normal extension L of S52. Since S52 is complete with respect
to {n × n : n ≥ 1} (see Theorem 6.1.10), there is n ≥ 1 such that n × n /∈ FL.
Let n(L) be the least such.

8.1.3. Lemma. Let L be as above, and write n for n(L).

1. If G ∈ FL, then d1(G) < n or d2(G) < n.

2. If G ∈ ML, then d1(G) ≤ n or d2(G) ≤ n.

Proof.

1. If G ∈ FL and d1(G) ≥ n and d2(G) ≥ n, then by Lemma 6.2.2, n × n is a
p-morphic image of G. So, n × n ∈ FL, a contradiction.1

2. If G ∈ ML and both depths of G are greater than n, then again n × n is
a p-morphic image of G. Therefore, n × n < G. However, G is a minimal
element of FS5

2 \ FL, implying that n × n belongs to FL, which is false.

¤

8.1.4. Corollary. ML is finite iff {F ∈ ML : di(F) = k} is finite for every
k ≤ n(L) and i = 1, 2.

Proof. By Lemma 8.1.3, ML =
⋃
k≤n(L){F ∈ ML : d1(F) = k} ∪

⋃
k≤n(L){F ∈

ML : d2(F) = k}. Thus, ML is finite if and only if {F ∈ ML : di(F) = k} is
finite for every k ≤ n(L) and i = 1, 2. ¤

1This result also follows immediately from Theorem 6.3.2.
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Since ML is a ≤-antichain in FS5
2 , to show that {F ∈ ML : di(F) = k} is

finite for every k ≤ n(L) and i = 1, 2, it is enough to prove that for any k, the
set {F ∈ FS5

2 : di(F) = k} does not contain an infinite ≤-antichain. Without
loss of generality we can consider the case when i = 2.

Fix k ∈ ω. For every n ∈ ω let Mn denote the set of all n×k matrices2 (mij)
with coefficients in ω (i < n, j < k). Let M =

⋃
n∈ωMn. Define 4 on M by

putting (mij) 4 (m′
ij) if we have (mij) ∈ Mn, (m′

ij) ∈ Mn′ , n ≤ n′, and there is
a surjection f : n′ → n such that mf(i)j ≤ m′

ij for all i < n′ and j < k. It is easy
to see that (M,4) is a quasi-ordered set (i.e., 4 is reflexive and transitive).

Let Fk
S5

2 = {F ∈ FS5
2 : d2(F) = k}. For each F ∈ Fk

S5
2 we fix enumerations

F0, . . . , Fn−1 of the E1-clusters of F (where n = d1(F)) and F 0, . . . , F k−1 of the
E2-clusters of F . Define a map H : Fk

S5
2 → M by putting H(F) = (mij) if

|Fi ∩ F
j| = mij for i < d1(F) and j < k. As F ∈ FS5

2 , it follows that mij > 0
for each such i, j. Recall that a map f : P → P ′ between ordered sets (P,≤) and
(P ′ ≤′) is order reflecting if f(w) ≤′ f(v) implies w ≤ v for any w, v ∈ P .

8.1.5. Lemma. H : (Fk
S5

2 ,≤) → (M,4) is an order-reflecting injection.

Proof. Since FS5
2 consists of non-isomorphic frames, H is one-one. Now let

F = (W,E1, E2), G = (U, S1, S2), F ,G ∈ Fk
S5

2 , and (mij), (m
′
ij) ∈ M be such that

H(F) = (mij), H(G) = (m′
ij), and (mij) 4 (m′

ij). We need to show that F ≤ G.
Suppose (mij) ∈ Mn and (m′

ij) ∈ Mn′ . Then there is surjective f : n′ → n such
that mf(i)j ≤ m′

ij for i < n′ and j < k. Then |Gi ∩ Gj| ≥ |Ff(i) ∩ F j| > 0 for

any i < n′ and j < k. Hence there exists a surjection hji : Gi ∩ G
j → Ff(i) ∩ F

j.

Define h : U → W by putting h(u) = hji (u), where i < n′, j < k, and u ∈ Gi∩G
j.

It is obvious that h is well defined and onto.
Now we show that h is a p-morphism. If uS1v, then u, v ∈ Gi for some i < n′.

Therefore, h(u), h(v) ∈ Ff(i), and so h(u)E1h(v). Analogously, if uS2v, then
u, v ∈ Gj for some j < k, h(u), h(v) ∈ F j, and so h(u)E2h(v). Now suppose
u ∈ Gi ∩G

j for some i < n′ and j < k. If h(u)E2h(v), then h(u), h(v) ∈ F j and
v ∈ Gj. As both u and v belong to Gj it follows that uS2v. Finally, if h(u)E1h(v),
then h(u) ∈ Ff(i) ∩ F

j and h(v) ∈ Ff(i) ∩ F
j′ , for some j ′ < k. Therefore, there

exists z ∈ Gi ∩ G
j′ (since z ∈ Gi we have uS1z) such that h(z) = h(v). Thus, h

is an onto p-morphism, implying that F ≤ G. Thus, H is order reflecting. ¤

8.1.6. Corollary. If ∆ ⊆ Fk
S5

2 is a ≤-antichain, then H(∆) ⊆ M is a 4-
antichain.

Proof. Immediate. ¤

Now we will show that there are no infinite 4-antichains in M. For this we
define a quasi-order v on M included in 4 and show that there are no infinite

2By an n × k matrix we mean a matrix with n rows and k columns.
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v-antichains in M. To do so we first introduce two quasi-orders v1 and v2 on
M and then define v as the intersection of these quasi-orders. For (mij) ∈ Mn

and (m′
ij) ∈ Mn′ , we say that:

• (mij) v1 (m′
ij) if there is a one-one order-preserving map ϕ : n → n′ (i.e.,

i < i′ < n implies ϕ(i) < ϕ(i′)) such that mij ≤ m′
ϕ(i)j for all i < n and

j < k;

• (mij) v2 (m′
ij) if there is a map ψ : n′ → n such that mψ(i)j ≤ m′

ij for all
i < n′ and j < k.

Let v be the intersection of v1 and v2.

8.1.7. Lemma. For any (mij), (m
′
ij) ∈ M, if (mij) v (m′

ij), then (mij) 4 (m′
ij).

Proof. Suppose (mij) ∈ Mn and (m′
ij) ∈ Mn′ . If (mij) v (m′

ij), then (mij) v1

(m′
ij) and (mij) v2 (m′

ij). By (mij) v1 (m′
ij) there is a one-one order-preserving

map ϕ : n→ n′ with mij ≤ m′
ϕ(i)j for all i < n and j < k; and by (mij) v2 (m′

ij)
there is a map ψ : n′ → n such that mψ(i)j ≤ m′

ij for all i < n′ and j < k. Let
rng(ϕ) = {ϕ(i) : i < n}. Define f : n′ → n by putting

f(i) =

{
ϕ−1(i), if i ∈ rng(ϕ),
ψ(i), otherwise.

Then f is a surjection. Moreover, for i < n′ and j < k, if i ∈ rng(ϕ), then
mf(i)j = mϕ−1(i)j ≤ m′

ij by the definition of v1; and if i /∈ rng(ϕ), then mf(i)j =
mψ(i)j ≤ m′

ij by the definition of v2. Therefore, mf(i)j ≤ m′
ij for all i < n′ and

j < k. Thus, (mij) 4 (m′
ij). ¤

Thus, it is left to show that there are no infinite v-antichains in M. For this
we use the theory of better-quasi-orderings (bqos). Our main source of reference
is Laver [85].

For any set X ⊆ ω let [X]<ω = {Y ⊆ X : |Y | < ω}, and for n < ω let
[X]n = {Y ⊆ X : |Y | = n}. We say that Y is an initial segment of X if there is
n ∈ ω such that Y = {x ∈ X : x ≤ n}.

8.1.8. Definition. Let X be an infinite subset of ω. We say that B ⊆ [X]<ω is
a barrier on X if ∅ /∈ B and:

• for every infinite Y ⊆ X, there is an initial segment of Y in B;

• B is an antichain with respect to ⊆.

A barrier is a barrier on some infinite X ⊆ ω.

Note that for any n ≥ 1, [ω]n is a barrier on ω.
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8.1.9. Definition.

1. If s, t are finite subsets of ω, we write s C t to mean that there are i1 <
. . . < ik and j (1 ≤ j < k) such that s = {i1, . . . , ij} and t = {i2, . . . , ik}.

2. Given a barrier B and a quasi-ordered set (Q,≤), we say that a map f :
B → Q is good if there are s, t ∈ B such that s C t and f(s) ≤ f(t).

3. Let (Q,≤) be a quasi-order. We call ≤ a better-quasi-ordering (bqo) if for
every barrier B, every map f : B → Q is good.

Now we recall basic constructions and properties of bqos.

8.1.10. Proposition. If (Q,≤) is a bqo, there are no infinite ≤-antichains in
Q.

Proof. Let (ξn)n∈ω be an infinite sequence of distinct elements of Q. As we
pointed out, B = [ω]1 = {{n} : n < ω} is a barrier. Define a map θ : B → Q by
θ({n}) = ξn. Since (Q,≤) is a bqo, θ is good. Therefore, there are {n}, {m} ∈ B
such that {n} C {m} (i.e., n < m) and ξn ≤ ξm. So, no infinite subset of Q forms
a ≤-antichain. ¤

We write On for the class of all ordinals. Let (Q,≤) be a quasi-order. Define
≤∗ on the class

⋃
α∈OnQ

α, and on any set contained in it, by (xi)i<α ≤∗ (yi)i<β
if there is a one-one order-preserving map ϕ : α → β such that xi ≤ yϕ(i) for all
i < α.

Let P(Q) be the power set of Q. The order ≤ can be extended to P(Q) as
follows: For Γ,∆ ∈ P(Q), we say that Γ ≤ ∆ if for all δ ∈ ∆ there is γ ∈ Γ with
γ ≤ δ. Recall that (P,≤′) is a suborder of (Q,≤) if P ⊆ Q and ≤′ = ≤ ∩ P 2.

8.1.11. Theorem.

1. (ω,≤) is a bqo.

2. Any suborder of a bqo is a bqo.

3. If ≤ and ≤′ are bqos on Q, then ≤ ∩ ≤′ is also a bqo on Q.

4. If (Q,≤) is a bqo, then (
⋃
α∈OnQ

α,≤∗) is also a (proper class) bqo. Hence,
by (2), its suborders (Qk,≤∗) and (

⋃
n<ω Q

n,≤∗) are bqos.

5. If (Q,≤) is a bqo, then (P(Q),≤) is a bqo.
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Proof. (1) follows from Lemma 1.2 of [85]. (2) is trivial.

(3): By [85, Lemma 1.8], (Q×Q,≤⊗≤′) is a bqo, where we define (x, x′) ≤⊗≤′

(y, y′) iff x ≤ y and x′ ≤′ y′. By (2), its suborder ({(q, q) : q ∈ Q},≤⊗≤′) is also
a bqo, and this is isomorphic to (Q,≤ ∩ ≤′).

(4) See [85, Theorem 1.10].

(5) Finally to show (P(Q),≤) is a bqo we adapt the proof of Lemma 1.3
of [85]. Let B be a barrier and consider f : B → P(Q). Suppose f is not good.
Then for each s, t ∈ B with s C t we have f(s) 6≤ f(t). Let B(2) = {s∪ t : s, t ∈ B
and s C t}. Thus for every element s ∪ t ∈ B(2) there is an element δst ∈ f(t)
such that for every γ ∈ f(s) we have γ 6≤ δst.

Define a map h : B(2) → Q by putting h(s∪ t) = δst for every s∪ t ∈ B(2). It
is easy to see that h is well defined. It is known (see, e.g., [85, p. 35]) that B(2) is
a barrier. Since (Q,≤) is a bqo, h is good, so there exist s∪ t, s′ ∪ t′ ∈ B(2) with
s ∪ t C s′ ∪ t′ and h(s ∪ t) ≤ h(s′ ∪ t′). It is easy to check (see [85, p. 35]) that
t = s′. But now δs′t′ = h(s′ ∪ t′) ≥ h(s ∪ t) ∈ f(t) = f(s′). This contradicts the
definition of δs′t′ , hence f is good and therefore (P(Q),≤) is a bqo. ¤

8.1.12. Remark. A quasi-order ≤ on a set Q is called a well-quasi-ordering
(wqo) if for any sequence (xi)i<ω in Q there exist i < j < ω with xi ≤ xj. As
we said in the introduction to this chapter, wqos have been used to prove finite
axiomatizability results in modal logic on many previous occasions. The following
facts are known about them (see e.g. [85]):

1. Any bqo is a wqo.

2. If ≤ and ≤′ are wqos on Q, then ≤ ∩ ≤′ is also a wqo on Q.

3. (Higman’s Lemma, proved in [63]) If (Q,≤) is a wqo then (
⋃
n∈ω Q

n,≤∗) is
also a wqo.

An example of a wqo (Q,≤) for which (
⋃
α∈OnQ

α,≤∗) is not a wqo, was con-
structed by Rado [104]: let Q = {(i, j) : i < j < ω}, ordered by (i, j) ≤ (k, l) iff
either i = k and j ≤ l, or else i, j < k. This is a wqo on Q. Now for i < ω let ξi
be the sequence ((i, i + 1), (i, i + 2), . . .). Then ξi 6≤

∗ ξj for all i < j < ω. This
example can be used to show that for a wqo (Q,≤), in general (P(Q),≤) fails
to be a wqo, even if we restrict to finite subsets of Q (see also the discussion on
p. 33 of [85]). This failure is why we use bqos and not wqos here.

By Proposition 8.1.10, to show that there are no v-antichains in M it suffices to
show that (M,v) is a bqo. It follows from Theorem 8.1.11(3) that the intersection
of two bqos is again a bqo. Hence, it is enough to prove that (M,v1) and (M,v2)
are bqos.
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8.1.13. Lemma. (M,v1) is a bqo.

Proof. By Theorem 8.1.11(1), (ω,≤) is a bqo. By Theorem 8.1.11(4), (ωk,≤∗)
is also a bqo. Note that ωk is the set of all k-tuples of natural numbers. It follows
from the definition of ≤∗ that (m1, . . . ,mk) ≤

∗ (m′
1, . . . ,m

′
k) iffmi ≤ m′

i, for every
i ≤ k. Then (ωk)n is the set of all matrices with coefficients in ω that have n
rows and k columns. Now, by spelling out the definition of ≤∗∗ we obtain that for
(m)ij ∈ (ωk)n and (m)′ij ∈ (ωk)n

′
, we have (m)ij ≤

∗∗ (m)′ij iff there is a one-one
order-preserving map ϕ : n → n′ such that (mi1, . . . , ,ik ) ≤∗ (mϕ(i)1, . . . ,mϕ(i)k),
which means that for each j ≤ k, we have mij ≤ mϕ(i)j. Therefore, (m)ij v1 (m)′ij
and (M,v1) ∼= (

⋃
n<ω(ω

k)n,≤∗∗). By Theorem 8.1.11(4), (
⋃
n<ω(ω

k)n,≤∗∗) is a
bqo, implying that (M,v1) is a bqo as well.3 ¤

It remains to show that (M,v2) is a bqo.

8.1.14. Lemma. (M,v2) is a bqo.

Proof. For a matrix (mij) ∈ Mn let mi = (mi0, . . . ,mik−1) denote the i-th row
of (mij). Note that each row of (mij) is a 1 × k matrix, and so mi ∈ M1 for
any i < n. We write row(mij) for the set {mi : i < n}. Obviously, row(mij) ∈
P(M1) ⊆ P(M). Consider an arbitrary barrier B and a map f : B → M.
We need to show that f is good with respect to v2. Define g : B → P(M) by
g(s) = row(f(s)). Since (M,v1) is a bqo, by Theorem 8.1.11(5), (P(M),v1) is
also a bqo. Hence, there are s, t ∈ B such that s C t and g(s) v1 g(t). Therefore,
for each δ ∈ g(t) there is γ ∈ g(s) with γ v1 δ.

Now we show that f(s) v2 f(t). Write (mij) for f(s) and (m′
ij) for f(t).

Suppose that (mij) ∈ Mn and (m′
ij) ∈ Mn′ . We define ψ : n′ → n as follows.

Let i < n′. Then m′
i ∈ g(t). By the above, we may choose ψ(i) < n such that

mψ(i) v1 m
′
i. This defines ψ, and we have mψ(i)j ≤ m′

ij for any i < n′ and j < k.
Thus, f(s) v2 f(t), f is a good map, and so (M,v2) is a bqo. ¤

It follows that (M,v) is a bqo. Therefore, there are no infinite v-antichains in
M. Thus, by Lemma 8.1.7, there are no infinite 4-antichains in M.

Now we are in a position to prove the first main result of this chapter, which
was obtained jointly with I. Hodkinson, see [16, Theorem 3.16].

8.1.15. Theorem. Every normal extension of S52 is finitely axiomatizable.

Proof. Clearly, S52 is finitely axiomatizable. Suppose L is a proper normal
extension of S52. Then, by Theorem 8.1.2, L is axiomatizable by the S52 axioms
plus {χ(F) : F ∈ ML}. Since there are no infinite 4-antichains in M, by
Corollary 8.1.6, there are no infinite antichains in Fk

S5
2 , for each k ∈ ω. Therefore,

{F ∈ ML : di(F) = k} is finite for every k ≤ n(L) and i = 1, 2. Thus, ML is
finite by Corollary 8.1.4. It follows that L is finitely axiomatizable. ¤

3To apply this theorem, we needed to require in the definition of v1 on M that ϕ is order
preserving.
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8.1.16. Corollary. The lattice of normal extensions of S52 is countable.

Proof. This immediately follows from Theorem 8.1.15 since there are only count-
ably many finitely axiomatizable normal extensions of S52. ¤

8.1.17. Corollary.

1. Every subvariety of Df2 is finitely axiomatizable.

2. The lattice of subvarieties of Df2 is countable.

8.1.18. Remark. Note that Theorem 8.1.15 and Corollaries 8.1.16 and 8.1.17
show one more difference between the diagonal free case and the case with the
diagonal. As follows from Theorem 7.1.14 CML2 and PCML2, (resp. CA2

and RCA2) have continuum many normal extensions (resp. subvarieties) and
continuum many of them are not finitely axiomatizable.

8.2 The poly-size model property

In this section we prove that every proper normal extension of S52 has the poly-
size model property. First we introduce some terminology.

Recall from Theorem 6.3.2 that for every proper normal extension L of S52,
we have that FL = F1 ] F2 ] F3, where d1(F2), d2(F1), d1(F3) and d2(F3) are
bounded by some natural number n. Now we introduce the following parameters:
for i ∈ {1, 2}, k ∈ {1, 2, 3}, let pki = di(Fk). The parameter pki gives the Ei-depth
of the class Fk. We call a parameter finite, if it is not ω. Note that the only
parameters which may be infinite are p1

1 and p2
2. Let b(L) denote the maximum

between all the finite parameters of L, and call it the bound of L. Note that if p1
1

and p2
2 are ω, then b(L) = n, where n is the minimal natural number such that

n × n /∈ FL.
Let |φ| denote the modal size of the formula φ, that is the number of subfor-

mulas of φ of the form ♦1ψ and ♦2χ. Recall that a polynomial P (n) is said to be
of degree k if nk occurs in P (n) and nm does not occur in P (n) for any m > k.

8.2.1. Theorem. Let L be a proper normal extension of S52 with bound b(L).
Then every L–satisfiable formula φ is satisfiable in an L-frame of size P (|φ|), for
P (|φ|) a polynomial of degree b(L) + 1. Moreover, if all the parameters of L are
finite, then P (|φ|) is just linear in |φ|.

In the proof we create small models from large ones taking care that 1) the
frame of the small model is still a frame of the logic, and 2) certain formulas are
still satisfied in the small model. For this we will need two lemmas proved below.
For the first part we use Lemma 8.2.2, for the latter part we use Lemma 8.2.3.
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8.2.2. Lemma. Let F = (W,E1, E2) be a finite S52-frame and Q an equivalence
relation on W . If either of the following three cases (1), (2a), (2b) holds, then Q
is a bisimulation equivalence and fQ : W → W/B is a p-morphism from F onto
F/Q.

1. Q ⊆ E0 (that is, Q identifies only points from E0-clusters).

(2a). Q ⊆ E2 and uQv implies that for every u′ ∈ E1(u) there exists some v′ ∈
E1(v) with u′Qv′.

(2b). Q ⊆ E1 and uQv implies that for every u′ ∈ E2(u) there exists some v′ ∈
E2(v) with u′Qv′.

Proof. The proof is a routine verification. ¤

8.2.3. Lemma. For any proper normal extension L of S52, if φ is L-satisfiable,
then it is satisfiable in an L-frame F = (W,E1, E2) such that

|W | ≤ d1(F)|φ| + d2(F)|φ| + d1(F) · d2(F) + 1.

Moreover, the size of any E0-cluster in F is at most |φ|.

Proof. Let F = (W,E1, E2) be an L-frame satisfying formula φ. Then there
exists a valuation V on F and a point w ∈ W such that (F , V ), w |= φ. The next
claim is the analogue of what is known as Tarski’s test in first-order logic; see,
e.g., Chang and Kiesler [25, Proposition 3.1.2]

8.2.4. Claim. Let M = (F , V ) be a model based on some S52-frame F =
(W,E1, E2). Let W ′ ⊆ W and let M′ = (W ′, E ′

1, E
′
2, V

′) be a submodel of M

obtained by restricting E1 and E2 and V to W ′. Suppose W ′ satisfies the next
two conditions:

(i) For every ♦1ψ ∈ Sub(φ) and E1-cluster Ci of F , if there exists x ∈ Ci such
that M, x |= ψ, then there exists y ∈ Ci ∩W

′ such that M, y |= ψ.

(ii) For every ♦2ψ ∈ Sub(φ) and E2-cluster C
j of F , if there exists x ∈ Cj such

that M, x |= ψ, then there exists y ∈ C j ∩W ′ such that M, y |= ψ.

Then for every v ∈W ′ and ψ ∈ Sub(φ), we have

M, v |= ψ iff M′, v |= ψ.

Proof. We prove the claim by induction on the size of ψ ∈ Sub(φ). The Boolean
clauses are trivial. Let ψ = ♦iχ, i = 1, 2. Then M′, v |= ♦iχ implies that
there exists v′ ∈ W ′ such that vEiv

′ and M′, v′ |= χ. But then by the induction
hypothesis M, v′ |= χ, and hence M, v |= ♦iχ. Conversely, M, v |= ♦iχ implies
that χ is satisfied in Ei(v). From (i) and (ii) it follows that there exists y ∈ W ′

such that vEiy and y |= χ. But then by the induction hypothesis M′, y |= χ, and
hence M′, v |= ♦iχ. ¤



8.2. THE POLY-SIZE MODEL PROPERTY 197

Now we will create a small satisfying model from F . For every E1-cluster Ci (1 ≤
i ≤ d1(F)) and every ♦1ψ ∈ Sub(φ), we choose a point x ∈ Ci such that x |= ψ
(if such a point exists at all). We do the same for E2-clusters and ♦2ψ ∈ Sub(φ).
Moreover, if there are E0-clusters of W which do not contain any selected points,
we choose one point from each of them. LetW ′ denote the set of all selected points
plus w. (Note that if F is a product-frame, then W = W ′.) Define the relation
Q on W as follows: By the definition of W ′, for each E0-cluster Cj

i of F we have
chosen at least one point witness(Cj

i ) ∈ Cj
i to be in W ′. Let F ′ = (W ′, E ′

1, E
′
2)

be the frame obtained by restricting E1 and E2 to W ′. Now let Q be the smallest
equivalence relation which identifies the points from C j

i \W
′ with witness(Cj

i ) and
define fQ : F → F/Q by putting fQ(w) = Q(w) for any w ∈ W . Then it is easy
to see that FQ is isomorphic to F ′, and Q ⊆ E0. Therefore, by Lemma 8.2.2(1),
F ′ is (isomorphic to) a p-morphic image of F . Thus, F ′ is also an L-frame.

Finally, consider the model M′ = (F ′, V ′), where V ′ is the restriction of V
to W ′, i.e., V (p) = V ′(p) ∩ W ′, for every p ∈ Prop. Then W ′ satisfies the
conditions of Claim 8.2.4, and so M′, w |= φ. Note, that |W ′| ≤ d1(F)|φ| +
d2(F)|φ| + d1(F) · d2(F) + 1. Indeed, there exist d1(F)-many E1-clusters and
d2(F)-many E2-clusters of W . From every Ei-cluster, i = 1, 2, we select at most
|φ| points. So, we select (d1(F)|φ|+ d2(F)|φ|)-many points, and then from every
E0-cluster which does not contain any selected point, we choose an additional
point. Obviously there are d1(F) · d2(F)-many E0-clusters in W , hence |W ′| ≤
d1(F)|φ| + d2(F)|φ| + d1(F) · d2(F) + 1. ¤

Now we can prove Theorem 8.2.1.

Proof of Theorem 8.2.1. Let L be as in the theorem with bound b(L). Let φ
be L-satisfiable. Then there exist an L-frame F = (W,E1, E2), a valuation V on
F and w ∈ W such that (F , V ), w |= φ. By Lemma 8.2.3, we may assume that

|W | ≤ d1(F)|φ| + d2(F)|φ| + d1(F) · d2(F) + 1.

Moreover, the size of any E0-cluster in F is at most |φ|. Hence, every E1-cluster
of F contains at most d2(F)|φ| points and every E2-cluster contains at most
d1(F)|φ| points. We split the proof in three cases.

Case 1: [All parameters are finite or F ∈ F3]. In this case, d1(F) and
d2(F) are both smaller than b(L), whence φ is satisfied in a frame with at most
2b(L)|φ| + b(L)2 + 1 points, which is a linear function in |φ|.

Case 2: [F ∈ F2 and d2(F) is unbounded]. Because F ∈ F2, d1(F) ≤ b(L),
but d2(F) is unbounded, whence the frame might be too large. We make it
smaller by defining an equivalence relation Q on W , and factoring F through it.
To this end we say that two E2-clusters Cp and Cq are equivalent if

|Ci ∩ C
p| = |Ci ∩ C

q| for all i between 1 and d1(F).
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Because the size of the E0-clusters Ci ∩ Cj is bounded by |φ|, the number of
non-equivalent E2-clusters is bounded by |φ|d1(F). Indeed, to every E2-cluster Cp

of F corresponds the sequence of natural numbers n = (n1, . . . , nd1(F)), where
n1 = |Cp

1 |, . . . , nd1(F) = |Cp
d1(F)|. Obviously, nj ≤ |φ| for 1 ≤ j ≤ d1(F), and to

equivalent E2-clusters correspond the same sequences. Now since there exist only
|φ|d1(F)-many different sequences n = (n1, . . . , nd1(F)), there exist only |φ|d1(F)-
many non-equivalent E2-clusters.

Next we define a submodel of M = (F , V ) which still satisfies φ, its underlying
frame is a p-morphic image of F and it is of the right (small) size.

For every E1-cluster Ci of F (1 ≤ i ≤ d1(F)) and every ♦1ψ ∈ Sub(φ), we
choose a point x ∈ Ci such that M, x |= ψ (if such a point exists at all). Denote
by S the set of selected points plus w. It is easy to see that

|E2(S)| ≤ (d1(F)|φ| + 1)d1(F)|φ|

Indeed, from every E1-cluster we select at most |φ| points. There are d1(F) E1-
clusters in F . So, we select points from at most d1(F)|φ|+1 different E2-clusters
and every E2-cluster of F contains at most d1(F)|φ| points.

Now from each equivalence class of E2-clusters (see above) let us choose one
representative Cp and letW ′ be E2(S) plus this set of representatives. For i = 1, 2,
let E ′

i and V ′ be the restrictions of Ei and V to W ′. Consider F ′ = (W ′, E ′
1, E

′
2)

and M′ = (F ′, V ′). Then W ′ again satisfies the conditions of Claim 8.2.4. There-
fore, M′, w |= φ. The number of points in W ′ is bounded by

|E2(S)| + (|φ|d1(F) · d1(F)|φ|) ≤ b(L)2|φ|2 + b(L)|φ| + b(L)|φ|b(L)+1.

Finally, almost the same construction as in Lemma 8.2.3 will provide us with
a p-morphism from F to F ′. For every E2-cluster Cq ⊆ W \W ′, let Cp ⊆ W ′ be a
E2-cluster which is equivalent to Cq. Then the E0-clusters Cp

i and Cq
i contain the

same number of points for every i = 1, . . . , d1(F). Suppose Cp
i = {wi1 , . . . , wini

}
and Cq

i = {vi1 , . . . , vini
}. Let Q be the smallest equivalence relation such that

wirQvir holds for all r = 1, . . . , ni and i = 1, . . . , d1(F). Then Q satisfies condition
(2b) of Lemma 8.2.2. Thus by Lemma 8.2.2, fQ is a p-morphism from F onto
F/Q. But F/Q is isomorphic to F ′, so the latter is in FL.

Therefore, φ is satisfiable in an L-frame containing at most P (|φ|)-many
points, for P (·) a polynomial of degree b(L) + 1.

Case 3: [F ∈ F1 and d1(F) is unbounded]. This case is symmetric to Case 2.
This finishes the proof of the theorem. ¤

The next corollary is a joint result with M. Marx [17, Corollary 9].

8.2.5. Corollary. Every proper normal extension of S52 has the poly-size model
property.
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Proof. Let L be a proper normal extension of S52 and φ an L-consistent formula.
Then ¬φ /∈ L and by Corollary 6.2.12, there is a finite L-frame F refuting ¬φ.
Thus, F satisfies φ, and by Theorem 8.2.1, there exists an L-frame F ′ which
satisfies φ and whose universe is bounded by a polynomial of degree b(L) + 1 in
|φ|. Therefore, L has the poly-size model property. ¤

8.3 Logics without the linear-size model pro-

perty

In the previous section we showed that all proper normal extensions of S52 have
the poly-size model property. In this section we show that our bound is indeed
optimal by constructing proper normal extensions Lk of S52 and formulas φnk
such that the size of the smallest Lk-frame satisfying φnk is a polynomial of degree
b(Lk)+1 in |φnk |. (Of course, the logics Lk will have an infinite parameter, namely
p2

2(Lk) will be ω.)
Let a finite S52-frame F be given and let {Ci}

n
i=1 and {Cj}mj=1 be the sets of

E1 and E2-clusters of F , respectively. Recall from the previous section that two
distinct E2-clusters Cp and Cq are equivalent if

|Ci ∩ C
p| = |Ci ∩ C

q| for all i between 1 and n.

Fix any natural number k ≥ 2. For any natural number n, let Gnk be an
S52-frame of E1-depth k such that every E2-cluster of Gnk contains exactly k + n
points and no two distinct E2-clusters of Gnk are equivalent to each other. Note
that Gnk is not unique, since there are several (though finitely many) frames with
this property. Let Fn

k be the maximal one with this property, that is |Gnk | ≤ |Fn
k |,

for any Gnk . The cases for k = 2 and k = 3 are shown in Figure 8.1.
Let Lk =

⋂
n∈ω Log(F

n
k ), where Log(Fn

k ) is the logic of the frame Fn
k for

n ∈ ω. Obviously, p2
2(Lk) = ω and b(Lk) = k.

Now for n > k, let φnk = Qk ∧ ψ
n, where

Qk =
∧k
i=1 ♦1♦2pi ∧¤1¤2[

∧k
i=1(♦1pi ↔ pi) ∧

∧
1≤i6=j≤k ¬(pi ∧ pj)],

ψn = ¤1[
∧n
i=1 ♦2qi ∧¤2(

∧
1≤i6=j≤n ¬(qi ∧ qj))].

It is not difficult to show that

Qk is satisfiable in F iff F contains at least k-many E1-clusters (8.1)

ψn is satisfiable in F iff all E2-clusters of F contain at least n points (8.2)

Thus, the formula φnk is satisfiable in the frame Fn−k
k . The next claim states that

in the logic Lk we cannot do better.

Fn−k
k is the smallest Lk-frame satisfying φnk . (8.3)
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Figure 8.1: Fn
k frames for k = 2 and k = 3.
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In order to prove (8.3), suppose φnk is satisfiable in a finite Lk-frame F . Then
F is a p-morphic image of some F i

k, i ∈ ω; that is, there is an onto p-morphism
f : F i

k → F . As ψn is satisfied in F , by (8.2), i ≥ n− k.
Let i = n−k. The argument when i > n−k is similar. Since Qk is satisfiable

in F , (8.1) implies that F contains k-many E1-clusters. Thus, f cannot identify
points from different E1-clusters of Fn−k

k . Also note that since ψn is satisfiable in
F and every E2-cluster of Fn−k

k contains n points, f cannot identify points from
the same E2-cluster. Let us show that f cannot identify points from different
E2-clusters either. To see this, suppose there exist w ∈ Cp

i and v ∈ Cq
i such

that f(w) = f(v). Since f is a p-morphism, for any j = 1, . . . , k and w′ ∈ Cp
j

there exists v′ ∈ Cq
j such that f(w′) = f(v′). Now since Cp is not equivalent

to Cq, at least two points from some Cp
j will be identified by f . Hence the

number of points of the E2-cluster f(Cp) of F is strictly less than n, which again
contradicts the satisfiability of ψn in F . Therefore, f should be the identity map,
and so F = Fn−k

k .
Now we compute the size of Fn−k

k . As in Theorem 8.2.1, to every E2-cluster Cp

of Fn−k
k we correspond the sequence of natural numbers (m1, . . . ,mk), wherem1 =

|Cp
1 |, . . . ,mk = |Cp

k |. From the definition of Fn−k
k it follows that m1+. . .+mk = n.

But then the number of different sequences (m1, . . . ,mk) will be

(
n− 1

k

)
=

(n− 1)!

k!(n− (k + 1))!
=

(n− 1) . . . (n− k)

k!
≥

(n− k)k

k!
.

Furthermore, every E2-cluster of Fn−k
k contains precisely n points. So the size of

Fn−k
k is at least n(n−k)k

k!
, hence

The size of Fn−k
k is a polynomial of degree k + 1 in n. (8.4)

Putting (8.3) and (8.4) together we obtain the following theorem, which is a joint
result with M. Marx, see [17, Theorem 10].

8.3.1. Theorem. There exist infinitely many proper normal extensions Lk of
S52 and formulas φnk such that the size of the smallest Lk-frame satisfying φnk is
a polynomial of degree b(Lk) + 1 in |φnk |.

8.4 NP-completeness

Note that Theorem 8.1.15 and the fact that every normal extension L of S52 is
complete with respect to the class of finite frames FL, for which the membership
is decidable (up to isomorphism), imply that L is decidable. This section will
be devoted to showing that if L is a proper normal extension of S52, then the
satisfiability problem for L is NP-complete. Fix such an L. We will see in
Corollary 8.4.3 below that NP-completeness follows from the poly-size model
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property if we can decide in time polynomial in |W | whether a finite structure
S = (W,R1, R2) is in FL (up to isomorphism). It suffices to decide in polynomial
time (1) whether S is a (rooted S52-) frame; (2) whether a given frame is in FL.
The first is easy. We concentrate on the second.

By Lemma 8.1.3(1), there is n(L) ∈ ω such that for each frame G = (U, S1, S2)
in FL we have d1(G) < n(L) or d2(G) < n(L). So, if both depths of a given frame
G are greater than or equal to n(L) (which obviously can be checked in polynomial
time in the size of G), then G /∈ FL. So, without loss of generality we may assume
that d1(G) < n(L).

By Theorem 8.1.1, G is in FL iff it has no p-morphic image in ML. Because
ML is a fixed finite set, it suffices to provide, for an arbitrary fixed frame F =
(W,E1, E2), an algorithm that decides in time polynomial in the size of G whether
there is a p-morphism from G onto F . If we considered every map f : U → W
and checked whether it is a p-morphism, it would take exponential time in the
size of G (since there are |W ||U | different maps from U to W ). Now we will give
a different algorithm to check in polynomial time in |U | whether the fixed frame
F is a p-morphic image of a given frame G = (U, S1, S2) with d1(G) < n(L). We
show that F is a p-morphic image of G iff there exists a partial map g from G to
F satisfying conditions that can be checked in polynomial time.

8.4.1. Lemma. F is a p-morphic image of G iff there is a partial surjective map
g : U → W with the following properties:

1. For each u ∈ U , there is v ∈ dom(g) such that uS1v.

2. For each v ∈ dom(g), the restriction g ¹ (dom(g) ∩ S1(v)) is one-one and
has range E1(g(v)).

3. For each u ∈ U there is w ∈W such that

(a) g(v)E2w for all v ∈ dom(g) ∩ S2(u),

(b) for each E0-cluster Y ⊆ E2(w),

if XY = S1(g
−1(Y )) ∩ S2(u), then |Y \ g(XY )| ≤ |XY \ dom(g)|.

Proof. It is easy to see that a map f : U → W is a p-morphism iff the f -image
of every Si-cluster of G is an Ei-cluster of F , for i = 1, 2.

Suppose there is a surjective p-morphism f : U → W . Then for each S1-
cluster C ⊆ U , the map f ¹ C is a surjection from C onto E1(f(u)) for any
u ∈ C, so we may choose C ′ ⊆ C such that f ¹ C ′ is a bijection from C ′ onto
E1(f(u)). Let U ′ =

⋃
{C ′ : C is an S1-cluster of G}. Then it is easy to check

that g = f ¹ U ′ satisfies Conditions 1–2 of the lemma. To check Condition 3,
take any u ∈ U , and put w = f(u). Fix any E0-cluster Y ⊆ E2(w). Pick any
x ∈ S2(u). Note that f(x) ∈ E2(w). Define XY as in the lemma. Then x ∈ XY
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iff x ∈ S1(g
−1(Y )), iff there is z ∈ U ′ such that xS1z and g(z) ∈ Y , iff f(x)E1f(z)

and f(z) ∈ Y , iff f(x) ∈ Y . Now f maps S2(u) onto E2(w). Therefore, f maps
XY onto Y . Thus, f must map a subset of XY \ U ′ onto Y \ g(XY ∩ U ′), so we
have |XY \ U ′| ≥ |Y \ g(XY ∩ U ′)| as required.

Conversely, let g be as stated. By Condition 2 of the lemma, g is surjective.
We will extend g to a p-morphism f : U → W . Since U is a disjoint union of
S2-clusters, it is enough to define f on an arbitrary S2-cluster of G. Pick u ∈ U .
We will extend g ¹ S2(u) to the whole of S2(u). Pick w ∈ W according to
Condition 3 of the lemma. By Condition 3a, g(S2(u)) ⊆ E2(w). Now we extend
g to f such that f(S2(u)) = E2(w) and f(x)E1g(v) whenever v ∈ dom(g) and
x ∈ S2(u) ∩ S1(v).

For each E0-cluster Y ∈ E2(w), define XY as in the lemma. By Conditions 1
and 2, S2(u) =

⋃
{XY : E0(Y ) = Y and Y ⊆ E2(w)}, and XY ∩XY ′ = ∅ whenever

E0(Y ) = Y , E0(Y
′) = Y ′ and Y ∩ Y ′ = ∅. For each E0-cluster Y ⊆ E2(w), we

consider the restriction of g to XY (this restriction may be empty), observe that
its image is a subset of Y . We extend g ¹ XY to a surjection from XY onto
Y . By Condition 3, |XY \ dom(g)| ≥ |Y \ g(XY )|. So, there exists a surjection
fXY

: XY → Y extending g. Repeating this for every Y ⊆ E2(w) in turn yields
an extension of g to S2(u). Repeating for a representative u of each S2-cluster in
turn yields an extension of g to U as required.

It is left to show that f is a p-morphism. But it follows immediately from the
construction of f that f ¹ Si(u) : Si(u) → Ei(f(u)) is surjective for each u ∈ U
and i = 1, 2. As we pointed out above, this implies that f is a p-morphism.

¤

8.4.2. Corollary. It is decidable in polynomial time in the size of G whether
F is a p-morphic image of G.

Proof. By Lemma 8.4.1, it is enough to check whether there exists a partial map
g : U → W satisfying Conditions 1–3 of the lemma. There are at most n(L)
S1-clusters in G, and the restriction of g to each S1-cluster is one-one; hence,
d = |dom(g)| ≤ n(L) · |W |, and this is independent of G. There are at most d|W |

maps from a set of size at most d into W . Obviously, there are
(
|U |
d

)
≤ |U |d subsets

of U of size d. Hence there are at most d|W ||U |d partial maps which may satisfy
Conditions 1 and 2 of the lemma. Our algorithm enumerates all partial maps
from U to W with domain of size at most d, and for each one, checks whether
it satisfies Conditions 1–3 or not. It is not hard to see that this check can be
done in P-time; indeed, it is clear that Conditions 1 and 2 can be checked in time
polynomial in |U | and there is a first-order sentence σF such that G |= σF iff G
satisfies Condition 3. The algorithm states that F is a p-morphic image of G if
and only if it finds a map satisfying the conditions. Therefore, this is a P-time
algorithm checking whether F is a p-morphic image of G. ¤

The next corollary is a joint result with I. Hodkinson, see [16, Corollary 4.3].
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8.4.3. Corollary. Let L be a proper normal extension of S52.

1. It can be checked in polynomial time in |U | whether a finite S52-frame G =
(U, S1, S2) is an L-frame.

2. The satisfiability problem for L is NP-complete.

3. The validity problem for L is co-NP-complete.

Proof.

1. Follows directly from Theorem 8.1.1, Corollary 8.4.2, and the fact (shown
in the proof of Theorem 8.1.15) that ML is finite.

2. It is a well-known result of modal logic (see, e.g., [18, Lemma 6.35]) that if
L is a consistent normal modal logic having the poly-size model property,
and the problem of whether a finite structure A is an L-frame is decidable
in time polynomial in the size of A, then the satisfiability problem of L is
NP-complete. The poly-size model property of every L ) S52 is proved in
Corollary 8.2.5. (1) implies that the problem G ∈ FL can be decided in
polynomial time in the size of G. The result follows.

3. Follows directly from (2).
¤



Summary

In this thesis we study classes of intermediate and cylindric modal logics. Inter-
mediate logics are the logics that contain the intuitionistic propositional calculus
IPC and are contained in the classical propositional calculus CPC. Cylindric
modal logics are finite variable fragments of the classical first-order logic FOL.
They are also closely related to n-dimensional products of the well-known modal
logic S5. In this thesis we investigate:

1. The lattice of extensions of the intermediate logic RN of the Rieger-Nishi-
mura ladder.

2. Lattices of two-dimensional cylindric modal logics. In particular, we study:

(a) The lattice of normal extensions of the two-dimensional cylindric modal
logic S52 (without the diagonal).

(b) The lattice of normal extensions of the two-dimensional cylindric modal
logic CML2 (with the diagonal).

Our methods are a mixture of algebraic, frame-theoretic and order-topological
techniques. In Part I of the thesis we give an overview of Kripke, algebraic and
general-frame semantics for intuitionistic logic and we study in detail the structure
of finitely generated Heyting algebras and their dual descriptive frames. We also
discuss what we call frame-based formulas. In particular, we look at the Jankov-
de Jongh formulas, subframe formulas and cofinal subframe formulas and we
construct a unified framework for these formulas.

After that we investigate the logic RN of the Rieger-Nishimura ladder. The
Rieger-Nishimura ladder is the dual frame of the one-generated free Heyting al-
gebra described by Rieger [106] and Nishimura [102]. Its logic is the greatest
1-conservative extension of IPC. It was studied earlier by Kuznetsov and Gerciu
[83], Gerciu [48] and Kracht [73]. We describe the finitely generated and finite
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descriptive frames of RN and provide a systematic analysis of its extensions. We
also study a slightly weaker intermediate logic KG, introduced by Kuznetsov and
Gerciu. KG is closely related to RN and plays an important role in our inves-
tigations. While studying extensions of KG and RN we introduce some general
techniques. For example, we give a systematic method for constructing interme-
diate logics without the finite model property, we give a method for constructing
infinite antichains of finite Kripke frames that implies the existence of a contin-
uum of logics with and without the finite model property. We also introduce a
gluing technique for proving the finite model property for large classes of logics.
In particular, we show that every extension of RN has the finite model property.
Finally, we give a criterion of local tabularity in extensions of RN and KG.

In Part II of the thesis we investigate in detail lattices of two-dimensional cylin-
dric modal logics. The lattice of extensions of one-dimensional cylindric modal
logic, is very simple: it is an (ω+ 1)-chain, Scroggs [111]. In contrast to this, the
lattice of extensions of the three-dimensional cylindric modal logic is too com-
plicated to describe. In this thesis we concentrate on two-dimensional cylindric
modal logics. We consider two similarity types: two-dimensional cylindric modal
logics with and without diagonal. Cylindric modal logic with the diagonal cor-
responds to the full two-variable fragment of FOL and the cylindric modal logic
without the diagonal corresponds to the two-variable substitution-free fragment
of FOL.

Cylindric modal logic without the diagonal is the two-dimensional product of
S5, which we denote by S52. It had been shown that the logic S52 is finitely
axiomatizable, has the finite model property, is decidable Henkin et al. [60],
Segerberg [113], Scott [110] and has a NEXPTIME-complete satisfiability problem
Marx [93]. We show that every proper normal extension of S52 is also finitely
axiomatizable, has the finite model property, and is decidable. Moreover, we
prove that in contrast to S52 itself, each of its proper normal extensions has an
NP-complete satisfiability problem. We also show that the situation for cylindric
modal logics with the diagonal is different. There are continuum many non-
finitely axiomatizable extensions of the cylindric modal logic CML2. We leave it
as an open problem whether all of them have the finite model property. Finally,
we give a criterion of local tabularity for two-dimensional cylindric modal log-
ics with and without diagonal and characterize the pre-tabular cylindric modal
logics.



Samenvatting

In dit proefschrift bestuderen we klassen van intermediaire en cylindrische modale
logica’s. Intermediaire logica’s zijn die logica’s die de intuitionistische propositie-
logica IPC omvatten en bevat zijn in de klassieke propostielogica CPC. Cylin-
drische modale logica’s zijn eindige-variabele fragmenten van de klassieke eerste-
orde logica FOL. Ze zijn ook sterk gerelateerd aan de n-dimensionale producten
van de bekende modale logica S5. In dit proefschrift bestuderen we :

1. De tralie van uitbreidingen van de intermediaire logica RN van de Rieger-
Nishimuraladder.

2. Tralies van twee-dimensionale cylindrische modale logica’s. In het bijzonder
bestuderen we:

(a) De tralie van de normale uitbreidingen van de twee-dimensionale cylin-
drische modale logica S52 (zonder de diagonaal).

(b) De tralie van de normale uitbreidingen van de twee-dimensionale cylin-
drische modale logica CML2 (met de diagonaal).

Onze methoden zijn een mengsel van algebraische, orde-topologische en gegenera-
liseerde-frametechnieken. In Deel I van het proefschrift geven we een overzicht van
de algebraische, Kripke- and gegeneraliseerde-framesemantiek voor de intuitionis-
tische logica en bestuderen we in detail de structuur van de eindig gegenereerde
Heytingalgebra’s en hun duale descriptieve frames. We bediscussieren ook wat
we frame-gebaseerde formules zullen noemen. In het bijzonder bekijken we de
Jankov-deJongh-formules, subframeformules en cofinale-subframeformules en con-
strueren we een algemeen kader voor dergelijke formules.

Hierna onderzoeken we de logica RN van de Rieger-Nishimuraladder. De
Rieger-Nishimuraladder is het duale frame van de vrije Heytingalgebra op 1 ge-
nerator zoals beschreven door Rieger [106] en Nishimura [102]. De logica van dit
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tralie is de sterkste 1-conservatieve uitbreiding van IPC. RN is eerder bestudeerd
door Kuznetsov en Gerciu [83], Gerciu [48] en Kracht [73]. We geven een sys-
tematische analyse van dit systeem en zijn uitbreidingen. We bestuderen ook
een iets zwakkere intermediaire logica KG, geintroduceerd door Kuznetsov and
Gerciu. KG is sterk gerelateerd aan RN en speelt een belangrijke rol in ons on-
derzoek. Bij het bestuderen van de uitbreidingen van KG en RN introduceren we
enkele algemene technieken. Bijvoorbeeld geven we een systematische methode
voor de constructie van intermediaire logica’s zonder de eindige modeleigenschap,
en verder een methode voor de constructie van oneindige antiketens van eindige
Kripkeframes die het bestaan impliceert van een continuum van logica’s met en
zonder de eindige modeleigenschap. We introduceren ook een lijmtechniek voor
het bewijzen van de eindige modeleigenschap voor grote klassen van logica’s.
In het bijzonder laten we zien dat iedere uitbreiding van RN de eindige mod-
eleigenschap heeft. Tenslotte geven we een criterium voor locale tabulariteit in
uitbreidingen van RN en KG.

In Deel II van het proefschrift onderzoeken we in detail tralies van de twee-
dimensionale cylindrische modale logica’s. De tralie van de uitbreidingen van de
één-dimensionale cylindrische modale logica is erg eenvoudig: het is een (ω + 1)-
keten; [111]. Daarentegen is de tralie van uitbreidingen van de drie-dimensionale
cylindrische modale logica te gecompliceerd om te beschrijven. In dit proef-
schrift concentreren we ons op twee-dimensionale cylindrische modale logica’s.
We beschouwen twee similariteitstypen: twee-dimensionale cylindrische modale
logica’s met en zonder diagonaal. Cylindrische modale logica met diagonaal cor-
respondeert met het volledige twee-variabele fragment van FOL en de cylin-
drische modale logica zonder diagonaal correspondeert met het substitutievrije
twee-variabele fragment van FOL.

Cylindrische modale logica zonder diagonaal is het twee-dimensionale product
van S5, dat we aanduiden met S52. Het was al bewezen dat de logica S52 eindig
axiomatiseerbaar is, de eindige modeleigenschap heeft, beslisbaar is Henkin et al.
[60], Segerberg [113], Scott [110] en een NEXPTIME-volledig satisfactieprobleem
heeft Marx [93]. We laten zien dat iedere echte normale uitbreiding van S52

ook eindig axiomatiseerbaar is, de eindige modeleigenschap heeft en beslisbaar
is. Bovendien bewijzen we dat, in tegenstelling tot S52, iedere echte normale
uitbreiding van S52 een NP-volledig satisfactieprobleem heeft. We tonen tevens
aan dat de situatie bij cylindrische modale logica’s met diagonaal anders is. Er
zijn continuum veel niet eindig axiomatiseerbare uitbreidingen van de cylindrische
modale logica CML2. We laten het probleem open of al deze uitbreidingen de
eindige modeleigenschap hebben. Tenslotte geven we een criterium voor locale
tabulariteit van twee-dimensionale cylindrische modale logica’s met en zonder
diagonaal en karakteriseren we de pretabulaire cylindrische modale logica’s.
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Act. Sc. Et Ind 393, pages 58–61. Paris, 1936.

[67] J. Johnson. Nonfinitizability of classes of representable polyadic algebras.
Journal of Symbolic Logic, 34:344–352, 1969.

[68] P. Johnstone. Stone Spaces. Cambridge University Press, 1982.

[69] D. de Jongh. Investigations on the Intuitionistic Propositional Calculus.
PhD thesis, University of Wisconsin, 1968.

[70] D. de Jongh and A. Troelstra. On the connection of partially ordered sets
with some pseudo-Boolean algebras. Indagationes Mathematicae, 28:317–
329, 1966.

[71] B. Jónsson and A. Tarski. Boolean algebras with operators, Part I. Amer-
ican Journal of Mathematics, 73:891–939, 1951.



214 Bibliography

[72] J. Kagan and R. Quackenbush. Monadic algebras. Reports on Mathematical
Logic, 7:53–62, 1976.

[73] M. Kracht. Prefinitely axiomatizable modal and intermediate logics. Math-
ematical Logic Quarterly, 39:301–322, 1993.

[74] M. Kracht. Splittings and the finite model property. Journal of Symbolic
Logic, 58:139–157, 1993.

[75] M. Kracht. Tools and Techniques in Modal Logic. North-Holland, 1999.

[76] S.A. Kripke. Semantical analysis of modal logic, Part I. Zeitschrift für
mathematische Logic und Grundlagen der Mathematik, 9:67–96, 1963.

[77] S.A. Kripke. Semantical considerations on modal logic. Acta Philosophica
Fennica, 16:83–94, 1963.

[78] S.A. Kripke. Semantical analysis of intuitionistic logic. I. In Formal Systems
and Recursive Functions, Proceeedings of the 8th Logic Colloquium, pages
92–130. North-Holland, 1965.

[79] A. Kurucz. S5 × S5 × S5 lacks the finite model property. In F. Wolter,
H. Wansing, M. de Rijke, and M. Zakharyaschev, editors, Advances in
Modal Logic, volume 3 of CSLI Lecture Notes, pages 321–328. CSLI Publi-
cations, Stanford, 2002.

[80] A. Kuznetsov. On finitely generated pseudo-Boolean algebras and finitely
approximable varieties. In Proceedings of the 12nd USSR Algebraic Collo-
quium, page 281, Sverdlovsk, 1973. in Russian.

[81] A. Kuznetsov. On superintuitionistic logics. In Proceedings of the Interna-
tional Congress of Mathematicians, volume 1, pages 243–249, Vancouver,
1974.

[82] A. Kuznetsov. Some classification problems for superintuitionistic logics.
In Proceedings of the 3rd USSR Conference in Mathematical Logic, pages
119–122, Novosibirsk, 1974. in Russian.

[83] A. Kuznetsov and V. Gerciu. Superintuitionistic logics and finite approx-
imability. Soviet Mathematics Doklady, 11(6):1614–1619, 1970.

[84] R. Ladner. The computational complexity of provability in systems of modal
propositional logic. SIAM journal of computing, 6(3):467–480, 1977.

[85] R. Laver. Better-quasi-orderings and a class of trees. In Gian-Carlo Rota,
editor, Studies in Foundations and Combinatorics, volume 1 of Advances in
Mathematics Supplementary Studies, pages 31–48. Academic Press, 1978.



Bibliography 215

[86] C.I. Lewis. A Survey in Symbolic Logic. University of California Press,
Berkeley, 1918.

[87] S. MacLane. Category Theory for the Working Mathematician. Springer,
Berlin, 1971.

[88] R. Maddux. The equational theory of CA3 is undecidable. Journal of
Symbolic Logic, 45:311–317, 1980.

[89] L. Maksimova. Craig’s theorem in superintuitionistic logics and amalgam-
able varieties of pseudo-Boolean algebras. Algebra and Logic, 16:427–455,
1977.

[90] L. Maksimova. Interpolation properties of superintuitionistic logics. Studia
Logica, 38:419–428, 1979.

[91] L. Maksimova. Interpolation theorems in modal logic and amalgamable
varieties of topological Boolean algebras. Algebra and Logic, 18:348–370,
1979.

[92] M. Marx. Mosaics and cylindric modal logic of dimension two. In M. Kracht,
M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in
Modal Logic, number 87 in CSLI Lecture Notes, pages 141–157. CSLI Pub-
lications, Stanford, 1997.

[93] M. Marx. Complexity of products of modal logics. Journal of Logic and
Computation, 92:221–238, 1999.

[94] M. Marx and Sz. Mikulás. Decidability of cylindric set algebras of dimension
two and first-order logic with two variables. Journal of Symbolic Logic,
64:1563–1572, 1999.

[95] M. Marx and Y. Venema. Multi-dimensional Modal Logic. Applied Logic
Series. Kluwer Academic Publisher, 1997.

[96] J.C.C. McKinsey and A. Tarski. The algebra of topology. Annals of Math-
ematics, 45:141–191, 1944.

[97] J.C.C. McKinsey and A. Tarski. On closed elements of closure algebras.
Annals of Mathematics, 47:122–162, 1946.

[98] J.C.C. McKinsey and A. Tarski. Some theorems about the sentential calculi
of Lewis and Heyting. Journal of Symbolic Logic, pages 1–15, 1948.

[99] D. Monk. Nonfinitizability of classes of representable cylindric algebras.
Journal of Symbolic Logic, 34:331–343, 1969.



216 Bibliography

[100] D. Monk. On equational classes of algebraic versions of logic I. Mathematica
Scandinavica, 27:53–71, 1970.

[101] M. Mortimer. On languages with two variables. Zeitchrift für mathematis-
che Logik und Grundlagen der Mathematik, 21:135–140, 1975.

[102] I. Nishimura. On formulas of one variable in intuitionistic propositional
calculus. Journal of Symbolic Logic, 25:327–331, 1960.

[103] H. Priestley. Ordered topological spaces and the representation of distribu-
tive lattices. Proceedings of the London Mathematical Society, 24:507–530,
1972.

[104] R. Rado. Partial well ordering of sets of vectors. Mathematica, 1:89–95,
1954.

[105] W. Rautenberg. Splitting lattices of logics. Archiv für Mathematische Logik,
20:155–159, 1980.

[106] L. Rieger. On the lattice theory of Brouwerian propositional logic. Acta
fac. rerum nat. Univ. Car., 189:1–40, 1949.

[107] V. V. Rybakov. Admissibility of Logical Inference Rules. Elsevier, 1997.

[108] V.V. Rybakov. Rules of inference with parameters for intuitionistic logic.
Journal of Symbolic Logic, 57:33–52, 1992.

[109] H. Sahlqvist. Completeness and correspondence in the first and second
order semantics for modal logic. In S. Kanger, editor, Proceedings of the
Third Scandinavian Logic Symposium, pages 110–143, Amsterdam, 1975.
North-Holland.

[110] D. Scott. A decision method for validity of sentences in two variables.
Journal of Symbolic Logic, 27:477, 1962.

[111] S. G. Scroggs. Extensions of the Lewis system S5. Journal of Symbolic
Logic, 16:111–120, 1951.

[112] K. Segerberg. An essay in classical modal logic, volume 13 of Philosophical
Studies. Uppsala, 1971.

[113] S. Segerberg. Two-dimensional modal logic. Journal of Philosophical logic,
2:77–96, 1973.

[114] V. Shehtman. On incomplete propositional logic. Soviet Mathematics Dok-
lady, 18:985–989, 1977.



Bibliography 217

[115] V. Shehtman. Two-dimensional modal logics. Mathematical Notes, 5:759–
772, 1978. (in Russian).

[116] V.B. Shehtman. Rieger-Nishimura lattices. Soviet Mathematics Doklady,
19:1014–1018, 1978.

[117] S.K. Sobolev. On the finite approximability of superintuitionistic logics.
Mathematics of the USSR, Sbornik, 31:257–268, 1977.

[118] E. Spaan. Complexity of Modal Logics. PhD thesis, ILLC, University of
Amsterdam, 1993.

[119] A Tarski. Der Aussagenkalkül und die Topologie. Fund. Math., 31:103–134,
1938.

[120] S. K. Thomason. An incompleteness theorem in modal logic. Theoria,
40:30–34, 1974.

[121] E. Tomaszewski. On Sufficiently Rich Sets of Formulas. PhD thesis, Insti-
tute of Philosophy, Jagiellonian University, Kraków, 2003.

[122] A. Troelstra. On intermediate propositional logics. Indagationes Mathe-
maticae, 27:141–152, 1965.

[123] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, an In-
troduction. North-Holland, Amsterdam, 1988. two volumes.

[124] Y. Venema. Many-Dimensional Modal Logic. PhD thesis, ILLC, University
of Amsterdam, 1992.

[125] Y. Venema. Cylindric modal logic. Journal of Symbolic Logic, 60:591–663,
1995.

[126] Y. Venema. Algebras and coalgebras. In P. Blackburn, J. van Benthem,
and F. Wolter, editors, Handbook of Modal Logic. Elsevier, 2006. To appear.

[127] A. Visser, D. de Jongh, J. van Benthem, and G. Renardel de Lavalette.
NNIL a study in intuitionistic logic. In A. Ponse, M. de Rijke, and Y. Ven-
ema, editors, Modal logics and Process Algebra: a bisimulation perspective,
pages 289–326, 1995.

[128] M. Wajsberg. Ein erweiterter Klassenkalkül. Monatshefte für Mathematik
und Physik, 40:113–126, 1933.

[129] F. Wolter. The finite model property of tense logics. Journal of Symbolic
Logic, 60:757–774, 1995.



218 Bibliography

[130] F. Wolter. The structure of lattices of subframe logics. Annals of Pure and
Applied Logic, 86:545–551, 1997.

[131] F. Wolter and M. Zakharyaschev. Modal decision problems. In P. Black-
burn, J. van Benthem, and F. Wolter, editors, Handbook of Modal Logic.
Elsevier, 2006. To appear.

[132] M. Zakharyaschev. Syntax and semantics of modal logics containing S4.
Algebra and Logic, 27:408–428, 1988.

[133] M. Zakharyaschev. Syntax and semantics of intermediate logics. Algebra
and Logic, 28:262–282, 1989.

[134] M. Zakharyaschev. Canonical formulas for K4. Part I : Basic results. Journal
of Symbolic Logic, 57:1377–1402, 1992.

[135] M. Zakharyaschev. Canonical formulas for K4. Part II : Cofinal subframe
logics. Journal of Symbolic Logic, 61:421–449, 1996.



Index

Dn
i , 156

E-saturated set, 40
E0, 134
Ei-clusters, 134
Ei-depth

of Df2-algebra, 155
L-frame, 65
L1 ⊗ L2, 131
L1 × L2, 132
LU, 178
LV, 25
Log(F), 15
Log(K), 15
Lower(F), 44
M5, 20
MV (φ), 101
N5, 20
R(U), 26
R(w), 26
R−1(U), 26
R−1(w), 26
Up(F), 26
Upper(F), 44
Df2, 140
Df2-algebra, 140
Df2-filter, 140
E, 67
4∗, 90
2∗, 90
Λ(L), 19

Λ(CML2), 167, 173
Λ(PCML2), 172
Λ(V), 25
α-reduction, 41
α(F), 67
β-reduction, 41
β(F), 61⊕

, 87
M, 190
Mn, 190
χ(F), 58, 59
χ(F), 170
χd(F), 171
BA, 25
B, 140
CP(X), 129
F × F ′, 132
HA, 24
H(n), 50
HL(n), 51
KG, 93
ML, 124
ML2, 131
MLd2, 135
MLn, 130
RN , 83
δ(F), 170
δd(F), 171
FG(L), 65
A∗, 29

219



220 Index

F∗, 29
Fw, 15
Ki, 93, 114
L, 80
L0, 80
Lfk

, 82
Lgk

, 82
Mw, 15
N, 80
Nfk

, 82
Ngk

, 82
γ(F), 64
≤∗, 192
CSQ, 145
H(n), 49
RECT, 145
SQ, 145
U(n), 48
U(n), 47
SI(V), 156
S(V), 156
ML, 188
µ(F), 64
⊕, 85⊕

, 86
⊕, 85
φKG, 93
pki , 195
v, 191
v1, 191
v2, 191
Form(L), 11
Form(ML), 124
Form(MLd2), 135
Form(MLn), 130
Formn, 52
Prop, 11
Propn, 40
⊕̂, 100
b(L), 195
c(φ), 101
col(w), 40
d, 143

d(U), 101
d(F), 44
d(w), 44
dI(L), 120
dI(F), 120
fk(p), 81
g(L), 163
g(F), 163
g(w), 163
gk(p), 81
max(X ), 36
max(F), 36
min(X ), 36
min(F), 36
p-morphism

of descriptive frames, 29
of descriptive models, 29
of Esakia spaces, 35
of Kripke frames, 15
of Kripke models, 15

rank(V ), 101
CML2, 135
CML2-frame, 135
Fr(L), 15
Fk

S5
2 , 190

FL, 66
M(L,E), 68
PCML2, 137
RCA2, 146
RDf2, 146
S5 × S5, 133
VL, 25
chr, 131
coml, 131
comr, 131
n × m, 135
n × n, 135
(∗)-condition, 137
(H), 137
(V), 137
2, 89
4, 89
CA2, 143



Index 221

CA2-algebra, 143
CPC, 12
CSq, 137
DF, 36
Df1-algebra, 141
ES, 36
IPC, 12
K4, 125
KG, 93
K, 124
Kn, 130
LC, 18
RN.KC, 117
RN, 83
Rect, 135
S4, 125
S5, 126
Sq, 135
U, 174
com, 132

admissible set, 28
algebra

finitely generated, 40
free, 49
simple, 140
subdirectly irreducible, 32

BAO, 126
barrier, 191
basic modal logic K, 124
better-quasi-ordering, 191
bicluster, 152
bisimulation equivalence

of Df2-spaces, 142
of intuitionistic descriptive frames,

31
of modal descriptive frames, 129
of modal spaces, 130

Boolean algebra, 23
Boolean algebra with an operator, 126
bounded morphism, 15
bqo, 191

chain, 17
Church-Rosser axiom, 131
closed set, 33
cofinal subframe

formula, 64
logic, 70
of a descriptive frame, 61
of a Kripke frame, 61

color, 40
Coloring Theorem, 40
complexity

of a formula, 101
of a logic, 187

cylindric
p-morphism, 169
algebra, 144
bisimulation equivalence, 169
partition, 144
quasi-square, 144
space, 144
square, 137
square algebra, 145

definable set, 55
depth

of a frame, 44
of a point, 44

diagonal E0-cluster, 137
diagonal point, 137
disjoint union

of descriptive frames, 29
of descriptive models, 29
of Esakia spaces, 35
of Kripke frames, 16
of Kripke models, 16

disjunction property, 51

Esakia space, 34
extension, 13

n-conservative, 83

filter, 26
prime, 26

finite intersection property, 28



222 Index

finite model property, 17
finite tree, 17
fmp, 17
formula

canonical, 78
de Jongh, 57
frame-based, 67
Jankov, 56, 58
Jankov-de Jongh, 59
Jankov-Fine, 170
NNIL, 64

frame
α-generated, 40
n-Henkin, 49
n-universal, 48
cyclic, 95
finitely generated, 40
regular, 152

frame order, 67
fusion of modal logics, 131

general frame, 28
generated

subframe, 15
submodel, 15

generated subframe
of a descriptive frame, 29

generated submodel
of a descriptive model, 30

generated subspace, 35
generators of an algebra, 40
girth

diagonal, 181
non-diagonal, 181
of F , 163
of L, 163
of w, 163

gluing sum, 100

Halmos monadic algebra, 141
Henkin

axiom, 137
inequality, 146

Heyting
algebra, 21
algebra with a valuation, 29
homomorphism, 23
implication, 21
subalgebra, 24
valuation, 25

Higman’s Lemma, 193
homomorphism, 23

initial segment
of X, 191
of a frame, 120

internal depth
of a frame, 120
of a logic, 120

intuitionistic
descriptive

valuation, 29
general frame, 28

compact, 28
descriptive, 28
refined, 28

Kripke frame, 14
Kripke model, 14
propositional calculus, 11
valuation, 14

lattice, 20
bounded, 20
complete, 20
distributive, 20
non-distributive, 20
of extensions, 19
of varieties, 26

left commutativity axiom, 131
logic

n-normal modal, 131
n-scheme, 83
consistent, 13
decidable, 19
finitely axiomatizable, 19
finitely axiomatized, 19



Index 223

inconsistent, 13
intermediate, 12
locally tabular, 18, 155
pre-locally tabular, 117
pre-tabular, 161, 178
superintuitionistic, 12
tabular, 18, 161, 178
Kripke complete, 15

map
good, 192

modal
filter, 127
general frame, 127

compact, 128
descriptive, 128
differentiated, 128
refined, 128
tight, 128

Kripke frame, 124
Kripke model, 125
space, 129

model
n-Henkin, 50
n-universal, 47

monotone map, 15

non-diagonal E0-cluster, 137
non-diagonal point, 137
normal modal logic, 124

open set, 33

point
maximal, 36
minimal, 36

point-generated
subframe, 15
submodel, 15

pre-finite model property, 111
Priestley separation axiom, 34
product cylindric modal logic, 137
product frame, 132
product of

algebras, 24
Heyting algebras, 24

propositional language, 11

quasi-square, 135
quotient frame, 30

rank of V , 101
rectangle, 135
rectangular algebra, 145
reduction, 15
relation

clopen, 34
point-closed, 34

representable algebra, 145
Rieger-Nishimura

ladder, 48, 80
lattice, 80
polynomials, 81

right commutativity axiom, 131
rooted

S52-frame, 133
descriptive frame, 33
Kripke frame, 17
many-dimensional Kripke-frame,

131
rule

of Modus Ponens (MP), 12
of Necessitation (N), 124
of Necessitation (N)i, 131
of substitution (Subst), 12

square, 135
square algebra, 145
Stone space, 34
subalgebra, 24
subframe

formula, 61
logic, 70
of a descriptive frame, 60
of a Kripke frame, 60
of an Esakia space, 60

sum
linear, 85, 87
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vertical, 85, 86

topo-subframe condition, 60
topological space, 33

0-dimensional, 34
compact, 34
Hausdorff, 34
Stone, 34

two-dimensional cylindric modal logic,
135

two-dimensional diagonal-free cylin-
dric algebra, 140

ultrafilter, 127
uniform quasi-square, 174
upset, 26

valuation, 25
variety, 24

finitely approximable, 37
finitely axiomatizable, 37
finitely generated, 37
locally finite, 37, 155, 174
pre-locally finite, 117, 174
uniformly locally finite, 156

Venema
axiom, 137
inequality, 146

well-quasi-ordering, 193
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