
Finitary coalgebraic logics

Clemens Kupke

Finitary coalgebraic logics

ILLC Dissertation Series DS-2006-03

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24

1018 TV Amsterdam
phone: +31-20-525 6051

fax: +31-20-525 5206
e-mail: illc@science.uva.nl

homepage: http://www.illc.uva.nl/

Finitary coalgebraic logics

A P

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.mr. P.F. van der Heijden

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
op donderdag 23 maart 2006, te 12.00 uur

door

Clemens Achim Kupke

geboren te Amberg, Duitsland.

Promotor: Prof.dr. J.J.M.M. Rutten

Co-promotores: Dr. A. Kurz
Dr. Y. Venema

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The investigations were supported by the Netherlands Organization for Scientific
Research (NWO) in the context of project CoMoLo (nr. 612.069.002).

Copyright c© 2006 by Clemens Kupke

Printed and bound by PrintPartners Ipskamp, Enschede.

ISBN: 90–5776–148–3

Für Mama und Papa

Acknowledgments

This thesis would have never been finished without the help and support of many peo-
ple.

First of all let me thank my advisors Alexander Kurz, Jan Rutten and Yde Venema
who complemented one another in a perfect way. Due to the fact that my research
focused very much on the logical aspects of my project Yde became my main advisor.
I learned a lot from him - his outstanding qualities as a researcher and teacher are well-
known, in particular his ability to put himself in the position of the student. He knows
exactly when it is necessary to put some pressure on a student, but luckily also, when
the student needs encouragement and support. This was especially helpful for making
sure that I finished my thesis in a reasonable time. In this context I also want to express
my deep gratitude to Yde for the careful and critical reading of various drafts of my
thesis. This deserves special acknowledgment as he had to proof-read two PhD thesis’s
at the same time - a fact which in the last stage of writing often had the result that he
had to sacrifice large parts of his weekends.

Having said that Yde was my main advisor I immediately want to stress the fact
that Jan’s role was much more important than being just a formal promotor. In fact,
at the beginning of my project, Yde’s and Jan’s role were very similar. In regular
meetings I benefited from Jan’s deep understanding of the theory of coalgebras and
his profound knowledge of the literature. In addition to that Jan gave me support and
advice whenever I needed it. He closely followed my first steps into the scientific
world and never lost his interest in my research, despite the fact that I decided to work
on topics that were not directly related to his own research.

Alexander, my second copromotor, worked as a post-doc at the CWI when I started
my PhD. It is mainly thanks to him that I nowadays understand the basics of category
theory. His enthusiasm for learning and understanding things is exceptional. Each
of the many conversations and fruitful discussions we had were very motivating and
inspiring for me. The fact that Alexander moved from Amsterdam to Leicester was
definitely a big loss both for our group at the CWI and of course for me. Luckily
we managed to keep up our good relation through several visits and I hope we will
continue our cooperation.

I also want to thank my advisors and the members of my reading committee Johan
van Benthem, Peter van Emde Boas, Bart Jacobs and Larry Moss for their willingness
to be in my committee and for giving valuable comments which helped to improve the

iii

iv Acknowledgments

thesis. Furthermore I want to thank Merlijn Sevenster who helped me with translating
my English “Summary” into the required Dutch “Samenvatting”.

Special thanks go to my coauthors with whom I enjoyed working very much: Helle
Hvid Hansen, Alexander Kurz, Dirk Pattinson and Yde Venema. This thesis is based
on joint papers with Alexander, Dirk and Yde and I am indebted to them for sharing
their ideas with me and for helping me a lot with their profound knowledge.

I enjoyed being a member of two research groups: the ILLC and the SEN3 theme
at the CWI. Many thanks to my friends and colleagues in both groups for the pleasant
atmosphere both at work but also at various parties and social events. To start with let
me name my office mates: Kees Blom, who shares my admiration of Bach’s music,
Falk Bartels, who not only was helpful with his expertise on coalgebras but who also
contributed a lot to the social life at the CWI, Nikolay Diakov, who always provided
me with various types of Asian tea and Nick Bezhanishvili.

More words have to be said about Nick. He was not only a perfect office mate
during the last four years but he became my best friend here in Amsterdam. I learnt
a lot about the algebraic semantics of intuitionistic logic from our discussions, but
often our conversations had some more serious topics, e.g. the meaning of life or why
Belgium beer gives you a headache in the morning.

Special thanks goes also to Joost Joosten for organizing the “Rondje Nieuwmarkt”
and the lunch for logic, language and levitation, to David Gabelaia for cooking a
great Georgian dinner on my birthday, to Olivier Roy for taking the lead in organizing
the Kriterion drinks and many more social events, to Gaelle Fontaine for her famous
mousse au chocolat, to Helle Hansen for the new year party, to Fenrong Liu for the
Chinese new year party and to Jelle Zuidema for helping me with my moving.

Furthermore I am grateful to all other colleagues for creating a nice atmosphere,
in particular to: Farhad Arbab, Frank de Boer, Stefan Bold, Freek Burger, Balder
ten Cate, Dave Clarke, David d’Oliviera Costa, Ulle Endrichs, Kees Everaars, Juan
Guillen Scholten, Aline Honingh, Joost Jacob, Olivia Ladinig, Benedikt Löwe, Eric
Pacuit, Yoav Seginer, Brian Semmes, Merlijn Sevenster, John Sloan, Leigh Smith,
Reut Tsarfaty, Peter Zoeteweij. I also would like to express my gratitude to my friends
in Munich: Michael, Christoph, Robert, Thomas and Jerri (with an i at the end).

For interesting and inspiring discussions I want to thank Johan van Benthem, Alexan-
dru Baltag, Guram Bezhanishvili, Ian Hodkinson, Dick de Jongh and Larry Moss.
Many thanks also to the organizers and attendees of the ACG colloquium at the CWI
which serves as a platform for presenting ongoing work and which is a good exercise
for defending your ideas against a sometimes tough audience.

Finally I want to thank my family, in particular my parents for their love and support
and my brother Markus for stimulating my interest in mathematics. Last but not least I
thank Yuliya for distracting me as often as possible from my work and for making me
feeling at home in Amsterdam.

Amsterdam Clemens Kupke
February, 2006.

Contents

Acknowledgments iii

1 Introduction 1
1.1 Coalgebras . 1

1.1.1 Finite vs. infinite words . 1
1.1.2 Formal definition . 2

1.2 Specifying coalgebras using modal logic 5
1.2.1 Why using modal languages? 5
1.2.2 Coalgebraic modal logics . 5
1.2.3 Issues concerning finitary modal languages 7

1.3 Our contributions . 8
1.3.1 Stone coalgebras . 8
1.3.2 Algebraic semantics of coalgebraic modal logic 9
1.3.3 Coalgebraic logics and coalgebra automata 9

1.4 Origin of the presented material . 9

2 Coalgebraic Modal Logics 11
2.1 Inductively defined logics . 11

2.1.1 Kripke polynomial functors 11
2.1.2 The logic MSML . 13

2.2 Logics given by predicate liftings . 17
2.2.1 Syntax and semantics . 18
2.2.2 Derivability and the logic L(Λ, Ax) 22
2.2.3 The language of all liftings 24

2.3 Coalgebraic fixed-point logic . 26
2.3.1 Finitary coalgebraic logic 26
2.3.2 Adding fixed-points . 29

2.4 Conclusion . 31

v

vi Contents

3 Stone coalgebras 33
3.1 Stone duality . 35

3.1.1 Basic Stone duality . 35
3.1.2 Duality for modal algebras 37
3.1.3 Modal logic is expressive for descriptive general frames . . . 41

3.2 From Kripke to Vietoris . 42
3.3 Vietoris polynomial functors . 48

3.3.1 Definitions . 48
3.3.2 Linking algebraic and coalgebraic semantics 53

3.4 Duality between BAOT and Coalg(V) 56
3.5 Alternative view: Many-sorted algebras 63
3.6 Conclusions . 67

4 Algebraic semantics of coalgebraic modal logic 71
4.1 Definition of the algebraic semantics 73

4.1.1 Algebras for an algebraic theory 73
4.1.2 (Pre-)Boolean algebras . 75
4.1.3 Liftings and the functor L 80
4.1.4 Equivalence of Alg(T(Λ, Ax)) and Alg(L) 84

4.2 Functor sequences . 88
4.2.1 The initial sequence of L . 88
4.2.2 The final sequence of T . 93

4.3 Coalgebraic semantics as a natural transformation 95
4.3.1 Definition of δ . 96
4.3.2 A functor linking algebraic and coalgebraic semantics 97
4.3.3 Completeness . 99

4.4 A characterization of duality . 104
4.4.1 Existence of δ and injectivity 105
4.4.2 Surjectivity . 107

4.5 Conclusion . 110

5 Closure properties of coalgebra automata 113
5.1 Coalgebra automata . 114

5.1.1 Deterministic graph automata 114
5.1.2 The bisimulation game . 116
5.1.3 Coalgebra automata . 117

5.2 Closure properties . 120
5.2.1 Closure under union, intersection and projection 121
5.2.2 From alternating automata to nondeterministic ones 125
5.2.3 Non-emptiness of coalgebra automata 136
5.2.4 A remark about standardness 138

5.3 The connection with coalgebraic fixed-point logic 140
5.3.1 Finite model property . 141

Contents vii

5.3.2 A distributive law . 142
5.4 Concluding remarks . 145

A Category theory 147
A.1 Basic notions of category theory . 147
A.2 Set-functors . 148

A.2.1 Basic constructions . 148
A.2.2 Standard and weak pullback preserving functors 149

A.3 Coalgebras . 154

B Universal Algebra 157
B.1 Algebras . 157
B.2 Equational Logic . 159

C Parity games 163

Bibliography 171

Index 179

Chapter 1
Introduction

This thesis studies various finitary modal languages for reasoning about coalgebras.
Coalgebras can be seen as abstract state-based systems or non-well-founded structures.
We first briefly explain what coalgebras are and how they are related to modal logic.
After that we discuss the issues concerning coalgebraic modal logic that are addressed
in this thesis.

1.1 Coalgebras
In this section we give a very short introduction to coalgebra. For a detailed intro-
duction to universal coalgebra the reader is referred to [JR97, Rut00]. Readers whose
background lies in modal logic and its algebraic semantics are recommended to consult
[Ven06]. The lecture notes [Kur01b, Pat03b] also provide an introduction to coalgebra
with a focus on coalgebraic modal logic.

1.1.1 Finite vs. infinite words
Instead of starting with a formal definition of what a coalgebra is, we first want to
give the reader some intuition. Our starting point is the following simple inductive
definition of the set A∗ of finite words over some alphabet A.

A∗ 3 w F ε | a ∈ A | w · w.

Expressed in words this means that A∗ is the least set that contains the empty word ε
and the one-letter word a for every letter a ∈ A, and that is closed under composition
of words, i.e. if w1 and w2 are finite words then their concatenation w1 · w2 is also a
finite word.

This definition of the set of finite words should demonstrate the underlying pattern
of defining algebras: finite words are constructed from a collection of basic constants
using the algebraic operations. Associated with this perspective of operations as con-
structors comes a suitable notion of equivalence: Two finite words are equivalent if they

1

2 CHAPTER 1. INTRODUCTION

Algebra Coalgebra
operations observations
congruence behavioural equivalence
initial algebra final coalgebra
least fixed-point largest fixed-point

Table 1.1: Algebra vs. Coalgebra

have been constructed out of equivalent (shorter) words. The definition of a congru-
ence formalizes this notion of equivalence. Let us now move to a coalgebraic example:
the set of infinite words Aω over some alphabet A. We can define Aω coinductively as
the largest set X with the property that for every element w of X there is a letter a and
some w′ ∈ X such that w = a · w′, i.e. such that w consists of the letter a followed by
w′. As a consequence we can define so-called observations hd : Aω → A (“head”) and
tl : Aω → Aω (“tail”) that map an infinite word w = a · w′ to its first letter hd(w) = a
and to the remaining word tl(w) = w′. The set Aω together with these observations
〈hd, tl〉 : Aω → A × Aω is an example of a coalgebra.

Note that, unlike the definition of the algebra of finite words, this coalgebraic defi-
nition of Aω does not carry information about how to construct elements of Aω. Instead,
we can use the observations to obtain limited information about them. This leads to the
notion of behavioural equivalence or bisimilarity of two elements of a coalgebra: two
elements of a coalgebra are behaviourally equivalent, if we cannot distinguish them
using the observations. In our example this amounts to saying that two infinite words
w1,w2 are behaviourally equivalent if their first letters hd(w1) and hd(w2) are equal and
their tails tl(w1) and tl(w2) are again equivalent.

1.1.2 Formal definition
The formal definition of a coalgebra involves basic notions from category theory. For a
brief summary of the category theory that is needed in this thesis the reader is referred
to Appendix A.
1.1.1. D. Let C be a category and T : C → C be a functor. Then a T-
coalgebra is a pair (X, γ) where X ∈ C and γ : X → T X ∈ C.
Throughout this thesis we will only consider coalgebras for functors over so-called
concrete categories C, i.e. we can think of objects of C as sets, possibly together with
some additional structure. Given a T -coalgebra (X, γ) we refer to X as the set of states
and to γ as to the coalgebra map or successor function. The above example of the set
of infinite words can be easily seen as a coalgebra in this formal sense.
1.1.2. E. Let A be a set and T : Set → Set be the functor (A ×) which
maps a set X to the cartesian product A × X. Then the set Aω together with the map
〈hd, tl〉 : Aω → A × Aω is a T -coalgebra.

1.1. COALGEBRAS 3

From a modal logic perspective the prime examples for coalgebras are Kripke frames
or transition systems.

1.1.3. E. A Kripke frame is a pair (W,R) such that W is a set of states or worlds
and R ⊆ W × W is a binary relation. It is easy to see that Kripke frames correspond
to P-coalgebras, where P : Set → Set denotes the power set functor: A Kripke
frame (W,R) corresponds to the P-coalgebra (W,R[]), where R[] : W → PW denotes
the function that maps a state w ∈ W to the set R[w] ⊆ W of R-successors of w. A
P-coalgebra (X, γ) on the other hand corresponds to the Kripke frame (X,Rγ) where
Rγ ⊆ X × X is defined by putting (x, y) ∈ Rγ if y ∈ γ(x).

Many more examples of different types of objects with possibly infinite behaviour
which are captured by the definition of a T -coalgebra can be found in the literature,
see e.g. [Rut00].

It is legitimate to ask whether category-theoretic terminology is really needed for
the definition of a coalgebra. And, indeed, in the book [BM96] by Barwise and Moss
about non-well-founded and coalgebraic phenomena the authors do not use category
theory explicitly. In our work, however, the use of category theory is mandatory as one
of our claims in this thesis is that coalgebras for functors over base categories other
than the category of sets are interesting from a modal logic perspective. Moreover
the category-theoretic formulation of the definition of a coalgebra makes it easy to see
that coalgebras are indeed, as their name suggest, the categorical dual of algebras (cf.
Def. B.2.6 for the definition of an algebra for a functor).

Perhaps one of the strongest arguments for the categorical formulation of the defi-
nition of a coalgebra is that it enables us to define a very natural notion of a behaviour
preserving map between coalgebras. Let us first look again at the example of Kripke
frames.
1.1.4. E. Behaviour preserving maps between Kripke frames are the so-called
bounded morphisms. Given two Kripke frames (W1,R1) and (W2,R2) a function f :
W1 → W2 is called a bounded morphism from (W1,R1) to (W2,R2) if f satisfies the
following two conditions:

(i) for all w ∈ W1, (w, v) ∈ R1 implies (f (w), f (v)) ∈ R2, and

(ii) if (f (w), v′) ∈ R2 for some w ∈ W1 and v′ ∈ W2 then there exists some
v ∈ W1 such that (w, v) ∈ R1 and f (v) = v′.

These conditions can be concisely summarized in the following diagram:
PW1

P f
PW2

W1

R1[]

f W2

R2[]

where for a function f : W1 → W2, P f = f [] denotes the direct image function. It
can be easily checked that a function f : W1 → W2 makes the diagram commute iff f
is a bounded morphism between (W1,R1) and (W2,R2).

4 CHAPTER 1. INTRODUCTION

The notion of a T -coalgebra morphism generalizes bounded morphisms in a natural
way.

1.1.5. D. A T-coalgebra morphism f : (X, γ) → (Y, δ) between two T -coal-
gebras (X, γ) and (Y, δ) is a morphism f : X → Y ∈ C such that the following diagram
commutes

T X
T f

TY

X

γ

f Y
δ

The category Coalg(T) has as objects T -coalgebras and T -coalgebra morphisms as
arrows.

In particular, the category Coalg(P) consists of Kripke frames as objects and bounded
morphisms as arrows. Therefore P-coalgebra morphisms provide a good notion of a
structure preserving map between Kripke frames. Again many more examples can be
found in the literature (cf. e.g. [Rut00]).

When talking about infinite words we mentioned that the coalgebraic notion of
equivalence between states is behavioural equivalence or bisimilarity.

1.1.6. D. Let T : Set → Set be a functor and (X1, γ1), (X2, γ2) be T -coal-
gebras. We say that two states x1 ∈ X1 and x2 ∈ X2 are behaviourally equivalent or
bisimilar if there is a T -coalgebra (Y, δ) and T -coalgebra morphisms f1 : (X1, γ1) →
(Y, δ) and f2 : (X2, γ2) → (Y, δ) such that f1(x1) = f2(x2).

In other words, two states are bisimilar if they can be identified by coalgebra mor-
phisms. That is, our definition of bisimilarity is based on our view that bisimilarity
should be the same as behavioural equivalence.

1.1.7. R. Note that this definition is not completely standard. Usually, one sees
as the definition of bisimilarity that two states are bisimilar if they are linked by a T-
bisimulation (cf. A.3.5 for a definition). In many cases the two definitions coincide;
to be precise, this applies to all functors that preserve so-called weak pullbacks. All
so-called Kripke polynomial functors, which include the power set functor, have this
property.

Our perspective on the matter is that behavioural equivalence is the more funda-
mental notion. In the case that T preserves weak pullbacks, then the existence of a
T -bisimulation is a nice and concise way of capturing bisimilarity between two states.

Bisimulations also play a central role in modal logic, as modal logic can be seen as the
bisimulation invariant fragment of first-order logic ([Ben76]). Again the coalgebraic
notion generalizes the notion from modal logic: coalgebraic P-bisimulations (cf. Def-
inition A.3.5) are exactly the bisimulations from modal logic for the language without
propositional variables. For a proof of this fact we refer the reader to [Rut00, Example
2.1].

1.2. SPECIFYING COALGEBRAS USING MODAL LOGIC 5

We conclude this short introduction to coalgebra by mentioning the important con-
cept of a final coalgebra. A final coalgebra for a functor T , if it exists, can be thought
of as the T -coalgebra that contains for each element x of an arbitrary T -coalgebra ex-
actly one state that is bisimilar or behaviourally equivalent to x. In categorical terms
the final T -coalgebra is the final object in Coalg(T), i.e. for every T -coalgebra (X, γ)
there is a unique T -coalgebra morphism into the final coalgebra. The set Aω from Ex-
ample 1.1.2 together with the coalgebra map 〈hd, tl〉 is the final (A ×)-coalgebra. The
final P-coalgebra, on the other hand, does not exist, or better, it is not a set. It is the
set-theoretic universe of non-well-founded set theory (cf. [Acz88]). A final coalgebra
that is very familiar to modal logicians is the so-called canonical model for the basic
normal modal logic K without propositional variables. We will see in Chapter 3 that it
is the final coalgebra of the Vietoris functor V : Stone → Stone.

1.2 Specifying coalgebras using modal logic
1.2.1 Why using modal languages?
We saw that Kripke frames, which constitute the standard semantics of modal logic,
can be seen as coalgebras, and that other notions from modal logic, such as the notion
of a bounded morphism and of a bisimulation, have their natural place on the level
of coalgebras as well. But there are many other examples where modal languages
are used to reason about coalgebras: Coalgebras generalize infinite structures, such as
infinite words, infinite trees or transition systems. Various modal languages have been
successfully applied to reason about these structures, e.g. LTL for infinite words, CTL
and CTL∗ for infinite trees and the modal µ-calculus for transition systems.

But the close connection between coalgebras and modal logic is made manifest not
only in various examples. It was observed and made precise by Kurz in [Kur00] that the
duality between algebras and coalgebras can be extended to logics. His observation can
be summarized by the following slogan: Modal logic and coalgebras dualize equational
logic and algebras.

1.2.2 Coalgebraic modal logics
But which modal languages can be used for reasoning about coalgebras? This is in fact
an issue which is still under discussion.

Research on this question goes back to work by Moss ([Mos99]). Moss’ coalge-
braic logic is very general. It assigns a logical language to every weak pullback pre-
serving endofunctor on the category of sets. His syntax allows for infinite conjunctions
and contains a somewhat non-standard modal operator ∇. The idea of the ∇-operator
can be sketched as follows: Let Φ be the collection of formulas of the language asso-
ciated to some functor T : Set → Set. Formulas in Φ describe properties of states of
a given T -coalgebra (X, γ). Then elements of the set TΦ should describe properties of

6 CHAPTER 1. INTRODUCTION

successor states, i.e. of elements in T X. Therefore the language of coalgebraic logic
contains for each π ∈ TΦ a formula ∇π ∈ Φ. The definition of the semantics exploits
the fact, that every weak pullback preserving functor T : Set → Set can be extended
to an endofunctor T on the category Rel. With this relation lifting we can lift the satis-
fiability relation |= ⊆ X×Φ between states and formulas to a relation T (|=) ⊆ T X×TΦ.
The formula ∇π is then defined to be true at some state x ∈ X if γ(x) makes π true, i.e.
if (γ(x), π) ∈ T (|=).

Moss’s coalgebraic logic was followed by work by Kurz ([Kur01c]) and Rössiger
([Röß01, Röß00]). Kurz defines a finitary, multi-modal language for coalgebras for a
limited class of endofunctors on Set that are of the shape

X 7→

n∏

i=1
(Bi +Ci × X)Ai (Ai, Bi,Ci ∈ Set).

These functors include the one that is used to describe Mealy machines as coalgebras
and those functors which were employed in earlier work by Jacobs ([Jac96]) and Re-
ichel ([Rei95]) to model certain features, in particular encapsulation, of object-oriented
programming.

Rössiger’s idea in [Röß01, Röß00] was to consider an inductively defined class of
so-called polynomial functors and to inductively associate finitary multi-modal lan-
guages with them. A polynomial functor is a functor that can be constructed from the
identity functor and constant functors by forming products and sums of functors and
by allowing exponentiation of a functor with an arbitrary set. In particular all functors
that were considered by Kurz in [Kur01c] are polynomial. Jacobs extended the class
of polynomial functors to the class of so-called Kripke polynomial functors in [Jac01].
For the construction of these Kripke polynomial functors one can also use the power
set functor, which makes it possible to model non-deterministic systems.

A slightly different approach for defining a logic for polynomial functors is pro-
vided by the work of Goldblatt (see e.g. [Gol01]). Instead of working with modal
formulas he uses equations between terms that contain one variable. These variables
have states as possible values. Bisimilarity is characterized by Boolean combinations
of equations, i.e. two states satisfy the same equations iff they are bisimilar. Further
results of Goldblatt’s work are coalgebraic constructions of ultraproducts ([Gol03b])
and ultrafilter extensions ([Gol03a]).

Another line of research in the area of coalgebraic modal logic started with the work
of Pattinson in the papers ([Pat01, Pat03a, Pat04]). The central idea in his approach
is that the modalities for a coalgebraic modal logic should be interpreted as so-called
predicate liftings for an endofunctor T : Set → Set: natural transformations that map
predicates over a set X (of states) to predicates over the set T X. Furthermore, Pattinson
introduces a derivability relation for coalgebraic modal logic that is parametrized in a
set of axioms.

What should be the criteria for deciding which modal language is suitable for rea-
soning about a given type of coalgebras? In this thesis we focus on three properties of
a logic:

1.2. SPECIFYING COALGEBRAS USING MODAL LOGIC 7

• soundness of a set of axioms w.r.t. the coalgebraic semantics, i.e. the property
that every theorem of the logic is valid on all coalgebras of a certain type,

• completeness of a set of axioms w.r.t. the coalgebraic semantics, i.e. the property
that every formula that is valid on all coalgebras of a certain type can be derived
from the axioms, and

• expressiveness1, i.e. the property that two coalgebra states satisfy the same for-
mulas of the language iff they are bisimilar.

The inductively defined logics for Kripke polynomial functors have a sound and com-
plete axiomatisation (cf. [Röß01, Jac01]). Furthermore these logics are expressive if
the functor does not involve the power set functor. In [Pat03a] Pattinson states condi-
tions on a set of axioms for his coalgebraic modal logics to be sound and complete. He
also gives a sufficient condition for the predicate liftings to give rise to an expressive
language ([Pat04]). For a version of Pattinson’s language containing polyadic modal-
ities, Schröder recently improved on Pattinson’s earlier results ([Sch05]). We come
back to this issue in Section 2.2.3.

Moss’ coalgebraic logics are expressive for all functors T : Set → Set for which
they are defined, i.e. for standard and weak pullback preserving functors. There is,
however, neither a complete axiomatisation nor a conjecture of how a complete ax-
iomatisation of his logic could look like.

Before we finish this survey of different coalgebraic modal logics let us mention
that it is also possible to combine the different approaches. This was first pointed out
by Cı̂rstea in [Cı̂r04] by showing that one can compose expressive languages associ-
ated with coalgebras for certain functors to obtain expressive languages for coalgebras
for more complex functors, e.g. we can combine expressive logics for T1- and T2-
coalgebras into an expressive logic for T1 × T2-coalgebras. In a continuation of this
line of research, Cı̂rstea & Pattinson demonstrated in [CP04] that also proof systems
for coalgebraic modal logics can be combined in a similar fashion. This was applied
in loc.cit. to obtain axiomatisations of complex probabilistic systems which can be
modeled as coalgebras.

1.2.3 Issues concerning finitary modal languages
In this thesis we focus on modal languages for specifying coalgebras that have a finitary
syntax. This restriction brings up several issues:

Expressiveness Modal languages with finitary syntax are in general not expressive
with respect to the coalgebraic semantics given by Coalg(T) for a functor T :
Set → Set. This is in particular the case for ordinary modal logic (without

1This property is often also referred to as the Hennessy-Milner property. We use the term expres-
siveness, following existing work in the field of coalgebraic modal logic.

8 CHAPTER 1. INTRODUCTION

propositional variables) andP-coalgebras, i.e. Kripke semantics. A natural ques-
tion to ask is therefore, whether one can find a class of models for these logics
that allows for expressive finitary languages. In this thesis we propose to resolve
this issue by generalizing a well-known concept from modal logic, namely the
concept of a descriptive general frame ([Gol76]). This leads to our work on what
we call Stone coalgebras. (cf. 1.3.1 below).

Algebraic semantics Algebraic semantics is known to be useful for studying modal
logic with finitary syntax (cf. e.g. [BdV01, Chapter 5], [CZ97]). A first ex-
ploitation of that idea in the coalgebraic framework can be found in [Jac01] for
the inductively defined logics for Kripke polynomial functors. In this thesis we
define an algebraic semantics for Pattinson’s coalgebraic modal logic (cf. 1.3.2
below).

Fixed-point logics The examples of logics for specifying infinite structures in Sec-
tion 1.2.1 demonstrate that finitary languages usually need some fixed-point or
temporal operators in order to have the the ability to specify possibly infinite, on-
going behaviour, i.e. so-called liveness conditions. Venema ([Ven04]) addresses
this issue by defining a finitary version of Moss’ coalgebraic logic and by adding
fixed-point operators to it. Formulas of his coalgebraic fixed-point logic have
a natural automata-theoretic interpretation in terms of so-called coalgebra au-
tomata. In this thesis we discuss closure properties of coalgebra automata and
their non-emptiness problem (cf. 1.3.3 below).

1.3 Our contributions
1.3.1 Stone coalgebras
One of our results is that Stone coalgebras, i.e. coalgebras for functors on the category
of so-called Stone spaces, are a useful tool in studying coalgebraic modal logics. Our
starting point is the observation that descriptive general frames can be represented as
coalgebras for the Vietoris functor on the category of Stone spaces Stone. Although
we made this observation independently in [KKV04], with hindsight it may be read in
[Esa74], while we later found out that it had been made explicit in unpublished2 lec-
ture notes by Abramsky ([Abr88]). Hence coalgebras for endofunctors over Stone are
a natural generalization of this concept. We apply this idea to the inductively defined
logics for Kripke polynomial functors. For every Kripke polynomial functor we define
a corresponding Vietoris polynomial functor on the category of Stone spaces and show
that the final coalgebra for these Vietoris polynomial functors can be constructed us-
ing a generalized version of the canonical model construction from modal logic. As a
corollary of this construction we obtain the result that the languages associated with Vi-
etoris polynomial functors have the Hennessy-Milner property. Furthermore we prove

2Very recently, Abramsky’s notes have been published as [Abr05].

1.4. ORIGIN OF THE PRESENTED MATERIAL 9

that for every Vietoris polynomial functor T and the logic associated to it there ex-
ists an adjunction between the algebraic semantics of the logic, defined as a category
of many-sorted algebras as in [Jac01], and the category of T-coalgebras. Finally we
give a characterization of those many-sorted algebras for which this adjunction is an
equivalence of categories.

1.3.2 Algebraic semantics of coalgebraic modal logic
We show that the algebraic semantics of any coalgebraic modal logic that is given by
a set of predicate liftings and a set of axioms of modal depth 1 can be formulated
as a category of algebras for an endofunctor L on the category of Boolean algebras.
Furthermore we relate the algebraic and the coalgebraic semantics via a natural trans-
formation δ and show that certain properties of δ entail soundness, completeness and
expressiveness of the logic. We will see that the soundness, completeness and expres-
siveness criteria are equivalent to earlier criteria given by Pattinson in [Pat03a, Pat04].
Our results improve on his work because we uniformly treat coalgebras for functors
over Set and Stone and our approach can be easily generalized to other base cate-
gories. For the case of Stone coalgebras, we obtain a characterization of duality: the
logic is expressive and fulfills Pattinson’s soundness and completeness criteria iff the
functor describing its algebraic semantics is dual to T .

1.3.3 Coalgebraic logics and coalgebra automata
Building on the work by Venema in [Ven04] on coalgebra automata we prove that cer-
tain results, that are already known about (finite) parity automata on (possibly) infinite
words, trees and graphs, can be obtained at the more general level of finite automata
on rooted coalgebras. The main result here is that alternating automata can always be
transformed into equivalent non-deterministic ones and that non-emptiness of coalge-
bra automata is decidable for a large class of functors. These results relate to coal-
gebraic modal logics because of the fact that coalgebra automata and formulas of the
so-called coalgebraic fixed-point logics are in one-to-one correspondence, a fact that
can be summarized by the slogan: Coalgebra automata are formulas.

Because of this close connection, the above automata-theoretic results have logical
corollaries: all coalgebraic fixed-point logics have the finite model property, and we
can prove the soundness of a certain distributive law for the ∇-operator.

1.4 Origin of the presented material
This thesis consists in large parts of earlier published material. The relation between
chapters and published papers is summarized in the following table.

10 CHAPTER 1. INTRODUCTION

Chapter based on
3 [KKV04]
4 [KKP04]
5 [KV05]

The thesis is structured as follows: In Chapter 2 we give an overview of the coalgebraic
modal logics that are discussed later on in this thesis. In Chapter 3 we present our
work on Stone coalgebras (cf. 1.3.1 above). In Chapter 4 we introduce the algebraic
semantics for coalgebraic modal logic (cf. 1.3.2 above). In Chapter 5 we prove closure
properties of coalgebra automata and, in doing so, we obtain corollaries for coalgebraic
fixed-point logic (cf. 1.3.3 above).

Chapter 2
Coalgebraic Modal Logics

In this chapter we introduce the logics for specifying coalgebras for a given functor
T that we will study in this thesis. Three different approaches are discussed: first
the inductively defined logics for Kripke polynomial functors (cf. Section 2.1), then
coalgebraic modal logics given by predicate liftings (cf. Section 2.2) and finally finitary
coalgebraic fixed-point logic (cf. Section 2.3). The chapter does not contain new
results but provides the necessary background for this thesis.

2.1 Inductively defined logics
The main idea of this approach is that we can already capture many interesting ex-
amples of T -coalgebras by focusing on an inductively defined set of endofunctors on
Set. Using the syntactic structure of these functors we can inductively define suitable
logics. This idea was first exploited by Rößiger in [Röß01, Röß00]. The approach we
are going to describe is slightly different from Rößiger’s and is basically taken from
[Jac01]. We will now first introduce the set of Kripke polynomial functors and then
state the definition of sound and complete logics for any such functor.

2.1.1 Kripke polynomial functors
2.1.1. D. The set of Kripke polynomial functors (KPF) is inductively defined
as follows:

KPF F Id | A ∈ FinSet | T + T | T × T | T D,D ∈ Set | PT,

where Id : Set → Set denotes the identity functor, for a finite set A we write A for
the constant functor mapping every set to A, and the + and × denote disjoint union
and binary product respectively. Furthermore given an arbitrary set D we write T D for
the functor mapping a set X to the D-fold product (or exponent) (T X)D. The class of
polynomial functors (PF) consists of all functors T ∈ KPF that do not involve the
power set functor.

11

12 CHAPTER 2. COALGEBRAIC MODAL LOGICS

Coalgebras for Kripke polynomial functors can be seen as abstract possibly non-deter-
ministic transition systems, coalgebras for polynomial functors as abstract determinis-
tic transition systems. In order to substantiate this claim we provide some examples.
2.1.2. E. 1. Coalgebras for the functor IdD correspond to deterministic tran-

sition systems in which every state has for each input e ∈ E exactly one succes-
sor.

2. Coalgebras for the functor (O×Id)D correspond to similar transition systems with
the difference that when moving from one state to another the system produces
an output o ∈ O (Mealy automata).

3. Coalgebras for the power set functorP correspond to unlabeled graphs and there-
fore to non-deterministic transition systems.

In order to be able to define logics for Kripke polynomial functors we first have to
analyze the syntactical structure of these functors.
2.1.3. D. We inductively define paths between KPFs

p F ε | π1 · p | π2 · p | κ1 · p | κ2 · p | ev(d) · p | pow · p
and denote by PCons the set of path constructors PCons := {π1, π2, κ1, κ2, ev(d), pow}.
Furthermore we define when two KPFs T1 and T2 are related via a path p, which will
be denoted by p : T1 Ã T2.

ε : T Ã T
πi · p : T1 × T2 Ã T ′ if p : Ti Ã T ′ for i ∈ {1, 2}
κi · p : T1 + T2 Ã T ′ if p : Ti Ã T ′ for i ∈ {1, 2}

ev(d) · p : T D Ã T ′ if p : T Ã T ′ for d ∈ D
pow · p : PT Ã T ′ if p : T Ã T ′.

For a functor T ∈ KPF we define the category Ing(T) of ingredients of T as the
category with elements of Ing(T) := {T ′ | ∃p.p : T Ã T ′} ∪ {Id} as objects and paths
as morphisms between them.
2.1.4. E. Let T be the functor P(O × Id). Then the category Ing(T) can be
depicted as in the diagram below (the identity arrows ε : T Ã T have been omitted):

P(O × Id)
pow

pow·π1 pow·π2
O × Id

π1 π2

O Id
The logic which we associate with a given KPF T is a many-sorted modal logic,
Ing(T) is the set of sorts and the modalities correspond to the path constructors. The
semantics of a formula φ of type T ′ on a T -coalgebra (X, γ) will be given by a subset
of T ′X as we will see in the following subsection.

2.1. INDUCTIVELY DEFINED LOGICS 13

(Bool1)
⊥∈ FormS

φ1 ∈ FormS φ2 ∈ FormS (Bool2)
φ1 → φ2 ∈ FormS

φ ∈ FormS 2 p : S 1 Ã S 2 and p ∈ PCons (modal)
[p]φ ∈ FormS 1

φ ∈ FormT (next)
next φ ∈ FormId

Figure 2.1: Closure rules

2.1.2 The logic MSML
We now turn to the definition of the syntax and semantics of the many-sorted modal
logic (MSML) for coalgebras for Kripke polynomial functors.

2.1.5. D. Let T be a KPF. The set of raw T-formulas is defined as follows:

φF⊥| a ∈ A, A ∈ Ing(T) | φ→ φ | next φ | [p]φ, p ∈ PCons.

Furthermore we use the standard abbreviations ¬φ, φ1 ∧ φ2, φ1 ∨ φ2, and φ1 ↔ φ2 and
we let

φ1∨̇φ2 := (φ1 ∨ φ2) ∧ ¬(φ1 ∧ φ2).
Given a functor T ∈ KPF the set of sorted formulas Form is defined as a family
(FormS)S∈Ing(T) of sets of raw T -formulas such that the following closure rules are
satisfied.

• for every S ∈ Ing(T), FormS contains ⊥ and is closed under implication (cf.
rules (Bool1) and (Bool2) in Figure 2.1).

• for every S 1, S 2 ∈ Ing(T) and every path constructor p : S 1 Ã S 2 we can
construct formulas of type S 1 by prefixing the modality [p] to formulas of type
S 2 (cf. rule (modal) in Figure 2.1).

• formulas of sort T can be transformed into formulas of type Id using the next
modality (cf. rule (next) in Figure 2.1).

Formulas φ ∈ FormId of sort Id are called state formulas.

The idea for the inductive definition of the semantics of the logic can be sketched
as follows: Let T1,T2 ∈ Ing(T) such that p : T1 Ã T2 for some path constructor p and
let φ be a formula of the logic of type T2. Furthermore assume that the semantics of
φ is already defined. In order to define the semantics of the formula [p]φ (which is of

14 CHAPTER 2. COALGEBRAIC MODAL LOGICS

type T1) on a T -coalgebra (X, γ), we lift the semantics of φ, i.e. a subset of T2X, to a
subset of T1X.

To sum it up we need for every p : T1 Ã T2 a lifting that maps subsets of T2X
to corresponding subsets of T1X for all X ∈ Set. The next definition provides suitable
liftings.
2.1.6. D. Let T be a KPF and let X be a set. Then we define for any two
functors T1,T2 ∈ Ing(T) and path p : T1 Ã T2, a function ()p : P(T2X) → P(T1X)
by induction on the complexity of paths. For α ⊆ T2X we put

αε := α

απ1·p := π−1
1 [αp]

απ2·p := π−1
2 [αp]

ακ1·p := κ1[αp] ∪ κ2[S 2X] for T2 = S 1 + S 2
ακ2·p := κ1[S 1X] ∪ κ2[αp] for T2 = S 1 + S 2

αev(d)·p := π−1
d [αp]

αpow·p := {β ∈ PT1X | β ⊆ αp} for p : T1 Ã T2.

For the reader, who is familiar with modal logic, we also want to formulate the seman-
tics of the inductively defined logics in terms of relations which will correspond to the
modalities of the language.
2.1.7. D. Let T be a KPF, let (X, γ) be a T -coalgebra and suppose p : S 1 Ã

S 2 ∈ Ing(T). Then we define a relation Rp ⊆ S 1X×S 2X by induction on the complexity
of p. For x ∈ S 1X and y ∈ S 2X we let

xRεy :⇔ x = y
xRπi·py :⇔ ∃z . πi(x) = z and zRpy i ∈ {1, 2}
xRκi·py :⇔ ∃z . κi(z) = x and zRpy i ∈ {1, 2}

xRpow·py :⇔ ∃z . z ∈ x and zRpy
These relations Rp are used for an alternative formulation of the semantics of the logic
(cf. Remark 2.1.10). But first we use the lifting functions ()p from Definition 2.1.6 to
define the coalgebraic semantics of MSML.
2.1.8. D. Let (X, γ) be an T -coalgebra for some T ∈ KPF. For each S ∈

Ing(T) we define an interpretation function

[[]]S
(X,γ) : FormS → P(S X)

by induction on the structure of the formulas.

[[⊥]]S
(X,γ) := ∅

[[φ1 → φ2]]S
(X,γ) :=

(
S X \ [[φ1]]S

(X,γ)

)
∪ [[φ2]]S

(X,γ)

[[a]]A
(X,γ) := {a}

[[next φ]]Id
(X,γ) := γ−1

[
[[φ]]T

(X,γ)

]

[[[p]φ]]S 1
(X,γ) := ([[φ]]S 2

(X,γ))
p for any p ∈ PCons s.t. p : S 1 Ã S 2.

2.1. INDUCTIVELY DEFINED LOGICS 15

Furthermore for a formula φ ∈ FormS and an element x of S X we write

(X, γ), x |=S φ if x ∈ [[φ]]S
(X,γ),

(X, γ) |=S φ if [[φ]]S
(X,γ) = S X and

Coalg(T) |=S φ if for all (X, γ) ∈ Coalg(T) . (X, γ) |=S φ.

2.1.9. R. The semantics of an MSML-formula of sort S ∈ Ing(T) is defined as
a subset of S X. We want to use MSML-formulas to express properties of coalgebra
states x ∈ X and hence state formulas are the most important formulas of the lan-
guage. The other formulas are only needed to give a uniform inductive definition of
the semantics.

2.1.10. R. Let (X, γ) be a T -coalgebra, p : S 1 Ã S 2 a path in Ing(T) and φ be a
formula of sort S 2. Then we can rephrase the definition of [[[p]φ]]S 1 using the relations
Rp from Definition 2.1.7 as follows:

[[[p]φ]]S 1
(X,γ) = {x ∈ S 1X | ∀y ∈ S 2X . xRpy ⇒ y ∈ [[φ]]S 2

(X,γ)},

i.e. [p]φ is satisfied at some x ∈ S 1X if all Rp-successors of x satisfy φ. In other words
the semantics of MSMLF can be seen as a sorted variant of the Kripke semantics of
the ¤-operator of modal logic (cf. 3.1.8).

Having seen the definition of the semantics we next discuss the axioms and derivation
rules of the logic MSML. Certainly every Boolean tautology should be derivable and
the set of derivable formulas should be closed under modus ponens. Furthermore every
modality of the logic should be normal and therefore the K-axiom ¤(φ1 → φ2) →
(¤φ1 → ¤φ2) should be an axiom of the logic, and the necessitation rule

` φ (N)
` ¤φ

.

should be a valid derivation rule of MSML. As mentioned above coalgebras for
polynomial functors correspond to deterministic transition systems. Hence all modal-
ities that correspond to polynomial functors should satisfy the determinacy axiom
¬¤¬φ → ¤φ. Furthermore the modalities [κi] describing the coproduct should ful-
fill some axiom expressing that if the successor of a state lies in S 1X + S 2X then it lies
in exactly one of them. This is expressed by the axiom (DC) below. All in all Jacobs
in [Jac01] arrives at the following axioms and derivation rules.

2.1.11. D. Let T ∈ KPF. For every S ∈ Ing(T) we define a derivability
predicate `S⊆ FormS such that `S φ for each Boolean tautology φ ∈ FormS and `S is
closed under modus ponens

`S φ1 → φ2 `S φ1
`S φ2

.

16 CHAPTER 2. COALGEBRAIC MODAL LOGICS

for finite sets of constants A ∈ Ing(T):
`A

∨̇
a∈Aa (DC)

for the next-operator:
`Id next φ↔ ¬next ¬φ

`Id next (φ1 → φ2) → (next φ1 → next φ2)
(Det)
(K)

`T φ (N)
`Id next φ

for the [πi]-operator:
`S 1×S 2 [πi]φ↔ ¬[πi]¬φ

`S 1×S 2 [πi](φ1 → φ2) → ([πi]φ1 → [πi]φ2)
(Det)
(K)

`S i φ (N)
`S 1×S 2 [πi]φ

for the [ev(d)]-operator:
`S D [ev(d)]φ↔ ¬[ev(d)]¬φ

`S D [ev(d)](φ1 → φ2) → ([ev(d)]φ1 → [ev(d)]φ2)
(Det)
(K)

`S φ (N)
`S D [ev(d)]φ

for the [κi]-operator:
`S 1+S 2 (¬[κ1] ⊥)∨̇(¬[κ2] ⊥)

`S 1+S 2 (¬[κi] ⊥) → ([κi]φ↔ ¬[κi]¬φ)
`S 1+S 2 [κi](φ1 → φ2) → ([κi]φ1 → [κi]φ2)

(DC)
(Det)
(K)

`S i φ (N)
`S 1×S 2 [κi]φ

for the [pow]-operator:
`PS [pow](φ1 → φ2) → ([pow]φ1 → [pow]φ2) (K) `S φ (N)

`powS [pow]φ

Table 2.1: Rules and axioms of MSML

2.2. LOGICS GIVEN BY PREDICATE LIFTINGS 17

In addition, the derivability predicates contain the axioms and satisfy the rules that are
listed in Table 2.1. The pair

(
(FormS)S∈Ing(T), (`S)S∈Ing(T)

)

will be called the many-sorted modal logic of T and will be denoted by MSMLT .

Given the logic of a KPF T it is natural to ask the question whether the logic is sound
and complete with respect to the coalgebraic semantics.

2.1.12. D. Consider a KPF T and the corresponding logic MSMLT . We say
that MSMLT is sound w.r.t. the coalgebraic semantics if for all S ∈ Ing(T) and all
φ ∈ FormS we have

`S φ implies Coalg(T) |=S φ.

We say that MSMLT is complete w.r.t. the coalgebraic semantics if for all S ∈ Ing(T)
and all φ ∈ FormS

Coalg(T) |=S φ implies `S φ.

Soundness of MSMLT is not too hard to prove.

2.1.13. P ([J01, L 3.5]). For every KPF T the logic MSMLT is sound
with respect to the coalgebraic semantics.

Proof. The claim is proven by induction on the length of the derivation. 

Proving completeness is more difficult. A completeness proof for the class of poly-
nomial functors (not involving the power set functor) can be found in [Röß01]. In
[Jac01] Jacobs extends this proof to Kripke polynomial functors. We obtain a com-
pleteness proof of MSMLT for Kripke polynomial functors in Chapter 3 as a corollary
of the duality between the algebraic and coalgebraic semantics (cf. Corollary 3.4.12).

2.2 Logics given by predicate liftings
Next we are going to discuss a second family of logics, the coalgebraic modal logics
that are given by a set of predicate liftings and a set of axioms. In the definition of
sound and complete logics for Kripke polynomial functors, liftings of predicates played
a central role (cf. Def. 2.1.6). A more abstract definition of predicate liftings for an
arbitrary functor T : Set → Set was given in [Pat04] by Pattinson. He uses a multi-
modal (but not many-sorted) logic in which each modal operator corresponds to such
a lifting.

In this thesis we will be slightly more general and consider coalgebras for some
functor T : C → C. Here C will be either the category Set of sets and functions or

18 CHAPTER 2. COALGEBRAIC MODAL LOGICS

Stone (the category of Stone spaces, cf. 3.1.2). In both cases we have a contravariant
functor

P : Cop → BA

mapping an object X ∈ C to the Boolean algebra of predicates over X. In the case C =
Set, the functor P will be equal to the contravariant power set functor Q : Setop → BA.
In case C = Stone we have P = Clp : Stoneop → BA, where Clp is the functor
mapping a Stone space to the Boolean algebra of its clopen subsets (cf. Section 3.1.1).

2.2.1. R. We will only consider the above mentioned cases C = Set or C =

Stone. In abstract terms the categorical framework can be summarized as follows:

1. C is a concrete category, i.e. there exists a faithful forgetful functor U : C → Set.

2. C has a final object 1 ∈ C.

3. There exists a contravariant functor P : Cop → BA and an injective natural trans-
formation τ : P ⇒ QU where Q denotes the contravariant power set functor.

Cop P

U

BA

Setop
Q

τ

This condition ensures in particular that P behaves on morphisms like the con-
travariant power set functor, i.e. P f (U) = f −1[U] for any given f : X → Y ∈ C
and U ∈ PY .

4. There is an object 2 ∈ C such that there is a natural isomorphism χ() : VP ⇒

C(, 2).

Another generalization in comparison to Pattinson’s earlier work is that we do not
require predicate liftings to be monotone, i.e. the modalities in our logic need not be
monotone. Instead they only have to satisfy the congruence rule, i.e. if φ and ψ are
equivalent, then ¤φ and ¤ψ should be also equivalent.

2.2.1 Syntax and semantics
We first state the definition of a predicate lifting for a functor T : C → C and then
introduce the syntax and semantics of coalgebraic modal logic.

2.2.2. D. Let T : C → C be a functor. An n-ary predicate lifting for T is a
natural transformation

λ : VPn ⇒ VPT.

Here V : BA → Set is the forgetful functor.

2.2. LOGICS GIVEN BY PREDICATE LIFTINGS 19

2.2.3. R. The reader who is not familiar with the notion of a natural transforma-
tion between two functors T1 and T2 can think of a natural transformation as a family
of functions (τX : T1X → T2X)X∈C that is uniformly defined for all X ∈ C, i.e. the
definition of τX′ for some X′ ∈ C does not depend on special properties of X′ but only
on properties that all X ∈ C have in common. The formal definition can be found in
the appendix (cf. Def A.1.4).

The motivation for this definition will become clear after we introduce the language
of coalgebraic modal logic and its coalgebraic semantics: the fact that for every set
X the lifting from PX to PT X is a function, corresponds to the fact that all the modal
operators should satisfy the congruence rule

` φ↔ ψ (C)
` [λ]φ↔ [λ]ψ

and the naturality of the liftings entails invariance of coalgebraic modal logic under
bisimilarity (cf. Proposition 2.2.9). The occurrence of the forgetful functor V can be
explained by the fact that modal operators do in general not preserve (all the) Boolean
structure.

2.2.4. D. Let T : C → C be a functor and Λ a set of predicate liftings for T .
Then the language L(Λ) of coalgebraic modal logic is defined as follows

L(Λ) 3 φF⊥| φ→ φ | [λ](φ1, . . . , φn) for λ ∈ Λ n-ary.

Moreover we use the standard abbreviations ¬φ B φ →⊥, φ ∨ ψ B ¬φ → ψ and
φ ∧ ψ := ¬(¬φ ∨ ¬ψ).

2.2.5. D. Let T : C → C be a functor, Λ a set of predicate liftings for T , and
(X, γ) a T -coalgebra. Then the semantics [[φ]](X,γ) ∈ VPX of a formula φ ∈ L(Λ) is
defined as follows

[[⊥]](X,γ) := ∅

[[φ→ ψ]](X,γ) := ¬[[φ]](X,γ) ∪ [[ψ]](X,γ)

[[[λ](φ1, . . . , φn)]](X,γ) := (VPγ ◦ λX)([[φ1]](X,γ), . . . , [[φn]](X,γ)).

We write
(X, γ), x |= φ if x ∈ [[φ]](X,γ) for x ∈ X,
(X, γ) |= φ if (X, γ), x |= φ for all x ∈ X, and
Coalg(T) |= φ if (X, γ) |= φ for all (X, γ) ∈ Coalg(T).

The theory Th(X,γ)(x) of a point x is the collection of formulas which are satisfied by
that point, i.e.

Th(X,γ)(x) := {φ | x ∈ [[φ]](X,γ)}.

In case (X, γ) is clear from the context we drop it, i.e. we write [[]], x |= φ and Th(x).

20 CHAPTER 2. COALGEBRAIC MODAL LOGICS

2.2.6. R. The interpretation of boxed formulas of the form [λ]φ can be explained
as follows: inductively we have already defined [[φ]] ⊆ X and we lift this predicate to
λX([[φ]]) ⊆ T X. Then [λ]φ should be true in all points x ∈ X with γ(x) ∈ λX([[φ]]).

2.2.7. E. Let T be the functor P : Set → Set. We define two natural transfor-
mations λ¤, λ^ : VQ ⇒ VQT by putting for every set X

λ¤X : VQX → VQPX
U 7→ P(U)

and

λ^X : VQX → VQPX
U 7→ {V ⊆ X | V ∩ U , ∅}.

Then the coalgebraic semantics of boxed formulas [λ¤]φ and [λ^]ψ on a given P-
coalgebra (X, γ : X → PX) is calculated as follows:

[[[λ¤]φ]](X,γ) = γ−1
[
λ¤X([[φ]](X,γ))

]

= γ−1
[
P([[φ]](X,γ))

]

= {x ∈ X | γ(x) ⊆ [[φ]](X,γ)}

[[[λ^]φ]](X,γ) = γ−1
[
λ^X ([[φ]](X,γ))

]

= γ−1
[
{U ⊆ PX | U ∩ [[φ]](X,γ) , ∅}

]

= {x ∈ X | γ(x) ∩ [[φ]](X,γ) , ∅}

If we view the P-coalgebra (X, γ) as a Kripke frame (X,Rγ) with

x1Rγx2 :⇔ x2 ∈ γ(x1),

we see that the coalgebraic semantics of the language given by Λ = {λ¤, λ^} coincides
with the ordinary Kripke semantics.

The naturality of the predicate liftings ensures that the semantics of a formula is
preserved under T -coalgebra morphisms.

2.2.8. L. Let T : C → C be a functor, Λ be a set of predicate liftings for T and
let φ ∈ L(Λ) be a formula. Furthermore let (X, γ) and (Y, δ) be T-coalgebras and let
f : (X, γ) → (Y, δ) be a T-coalgebra morphism. Then

(X, γ), x |= φ iff (Y, δ), f (x) |= φ.

Proof. We prove the following claim by induction on the structure of φ

[[φ]](X,γ) = f −1[[[φ]](Y,δ)]. (2.1)

2.2. LOGICS GIVEN BY PREDICATE LIFTINGS 21

The Boolean cases are trivial. Suppose that φ = [λ](ψ1, . . . , ψn) for some n-ary λ ∈ Λ.
To prove (2.1) we use the following diagram

VPnY λY

VPn f

VPTY VPδ

VPT f

VPY
VP f

VPnX
λX

VPT X VPγ VPX
The left half of the diagram commutes because of the naturality of λ and the right half
commutes because of f being a T -coalgebra morphism. We are now ready to finish the
proof:

[[φ]](X,γ) = [[[λ](ψ1, . . . , ψn)]](X,γ)

= VPγ(λX([[φ1]](X,γ), . . . , [[φn]](X,γ)))
I.H.
= VPγ(λX(VPn f ([[φ1]](Y,δ), . . . , [[φn]](Y,δ))))

diagram
= VP f (VPδ(λY([[φ1]](Y,δ), . . . , [[φn]](Y,δ))))
= f −1[[[φ]](Y,δ)]

The claim of the proposition now follows easily from (2.1). 

An immediate consequence of the proposition is the invariance of the semantics of
coalgebraic logic under bisimilarity.

2.2.9. P. Let T be an endofunctor on C and Λ a set of predicate liftings for
T . Furthermore let (X, x) and (Y, y) be rooted T-coalgebras. Then (X, x) ↔T (Y, y)
implies Th(x) = Th(y).

Proof. Suppose (X, x) and (Y, y) are T -bisimilar (cf. Def A.3.3). Then there is a rooted
T -coalgebra (Z, z) and Coalg(T)-morphsims f1 : (X, x) → (Z, z) and f2 : (Y, y) →
(Z, z) such that f1(x) = f2(y) = z. By Lemma 2.2.8 we therefore get Th(x) = Th(z) =
Th(y). 

The converse of Proposition 2.2.9 is not always true. This leads to the definition of the
notion of expressiveness.

2.2.10. D. Let T : C → C be a functor and Λ a set of predicate liftings for
T . Then the corresponding language L(Λ) is called expressive if for all (X, γ), (Y, δ) ∈
Coalg(T) and x ∈ X, y ∈ Y

Th(x) = Th(y) =⇒ (X, x) ↔T (Y, y).

2.2.11. R. This property of a modal language is also called the Hennessy-Milner
property.

Before we turn to the definition of the derivability relation of coalgebraic modal logic
we take a look at an example.

22 CHAPTER 2. COALGEBRAIC MODAL LOGICS

2.2.12. E. Let T be the power set functor P and let λ¤, λ^ be defined as in Ex-
ample 2.2.7. It is well known that L({λ¤, λ^}) is not expressive, for a counterexample
to expressivity see [BdV01, Example 2.23]. Now consider the finite power set functor
T = Pω : Set → Set and the same predicate lifting as in Example 2.2.7 restricted to
finite sets, i.e.

λ
¤ω
X (U) B Pω(U)
λ
^ω

X (U) B {V ⊆ω X | V ∩ U , ∅}.

Then L({λ¤ω , λ^ω}) is expressive.

2.2.2 Derivability and the logic L(Λ, Ax)
As we will see there are rules and axioms which hold for any coalgebraic modal logic.
In addition, however, one needs axioms which depend on the functor under consider-
ation. As the language L(Λ) does not contain propositional variables, the axioms of
coalgebraic modal logic are formulated as axiom schemes which contain certain meta-
variables. Furthermore the axioms are rather restricted as they are only built up from
formulas of modal depth not bigger than 1. In particular this means that well-known
axioms from modal logic such as the transitivity axiom ¤φ→ ¤¤φ are not allowed.

This restriction is to be expected as we are considering logics for coalgebras for a
functor and not for a comonad. Intuitively we can only axiomatize properties of lifted
predicates that depend only on T and λ, i.e. properties of predicates which have been
lifted by some λ ∈ Λ once from X to T X. Properties of predicates which are lifted
twice (or more) will usually depend on properties of the coalgebra map of a given T -
coalgebra. This can be easily seen by spelling out the definition of the interpretation
of the formula [λ][λ]⊥ on a T -coalgebra (X, γ). Axioms of depth bigger than 1 will
therefore in general not be valid on all T -coalgebras for a certain functor T , but only on
those T -coalgebras whose coalgebra maps fulfill certain extra conditions. A solution
for this problem is to consider T -coalgebras for a comonad. In this thesis we will
restrict ourselves to the case of coalgebras for a functor.

2.2.13. D. Let T : C → C be a functor, Λ a set of predicate liftings for T and
X a set (of meta-variables). An axiom is a pair (φ, ψ) with

φ, ψ ∈ TΣBA({[λ](φ1, . . . , φn) | λ ∈ Λ and φi ∈ TΣBA(X)}),

where TΣBA() denotes the term algebra for the Boolean signature defined as in Defini-
tion B.1.3. We will write axioms (φ, ψ) also as equations φ = ψ.

2.2.14. R. The set TΣBA(X) can be also seen as the set of all Boolean formulas
over X. Note that we will not make an explicit distinction between Boolean formulas
and Boolean terms.

2.2. LOGICS GIVEN BY PREDICATE LIFTINGS 23

The substitution instances of these “meta”-axioms are the axioms of the derivability
relation of coalgebraic modal logic. We first formalize what we mean by “substitution
instance” and then state the definition of the derivability relation.

2.2.15. D. Let T : C → C be a functor, Λ a set of predicate liftings for T
and X a set. A substitution is a function σ : X → L(Λ). Given a term φ ∈ TΣBA(X)
its substitution instance σ(φ) ∈ L(Λ) is defined as the image of φ under the inductive
extension of σ to terms.

2.2.16. D. Let T : C → C be a functor, Λ a set of predicate liftings for T
and Ax a set of axioms. We say that φ is modally derivable from Ax (Ax ` φ), if φ is
contained in the least set Φ of formulas which

• contains σ(φ) ↔ σ(ψ) whenever σ is a substitution and (φ, ψ) ∈ Ax,

• is closed under propositional entailment,

• is for any n-ary λ ∈ Λ closed under the congruence rule

φ1 ↔ ψ1 . . . φn ↔ ψn (C)
[λ](φ1, . . . , φn) ↔ [λ](ψ1, . . . , ψn)

After having defined the language L(Λ) of coalgebraic modal logic that corresponds
to some set of predicate liftings and a notion of derivability, we can now give a formal
definition of the corresponding coalgebraic modal logic. We identify the logic L(Λ, Ax)
with the set of all formulas that are derivable from a given set of of axioms.

2.2.17. D. Given a functor T : C → C, a set Λ of predicate liftings for T and
a set Ax of axioms. Then L(Λ, Ax), the logic given by Λ and Ax, is defined as the set of
all formulas that are derivable from Ax, i.e.

L(Λ, Ax) B {φ ∈ L(Λ) | Ax ` φ}.

2.2.18. E. Consider again the power set functor and let λ¤, λ^ be defined as in
Example 2.2.7. Furthermore let Ax be the set consisting of the following two axioms:

[λ¤]> = >,

[λ¤](x1 ∧ x2) = [λ¤]x1 ∧ [λ¤]x2.

Then L({λ¤, λ^}, Ax) corresponds to the basic normal modal logic K without proposi-
tional variables.

In [Pat03a] sufficient conditions are provided for when the logic L(Λ, Ax) is sound
and complete. We are now only defining these properties and continue in Chapter 4
with a categorical analysis of coalgebraic completeness proofs.

24 CHAPTER 2. COALGEBRAIC MODAL LOGICS

2.2.19. D. Let T : C → C be a functor, Λ a set of predicate liftings for T and
Ax a set of axioms. Then L(Λ, Ax) is called

• sound if for all φ ∈ L(Λ)

Ax ` φ =⇒ Coalg(T) |= φ,

• complete if for all φ ∈ L(Λ)

Coalg(T) |= φ =⇒ Ax ` φ.

The reader who is familiar with modal logic might find the restriction to axioms of
modal depth 1 very strong. It should be stressed, however, that the focus of research
in coalgebraic modal logic differs, at least up to now, from the one in modal logic: in
modal logic one studies various logics over structures of the same type (i.e. over Kripke
frames) whereas coalgebraic research is concerned with finding the basic modal logic
for different types of structures. It has been proven in various places in the literature
that the notion of a coalgebraic modal logic, given by a set of predicate liftings and a
set of axioms in the sense of Def. 2.2.13, covers interesting examples of various types
of logics, other than ordinary modal logic, see e.g. [CP04] for logics for the specifica-
tion of different types probabilistic systems and [HK04] for a coalgebraic treatment of
monotone modal logic.

2.2.3 The language of all liftings
Coalgebraic modal logic provides an abstract framework for studying logics for T -
coalgebras whose languages are given by a set of predicate liftings. One problem
is, however, that there seems to be no canonical choice for the collection of predicate
liftings for a given functor T . The difficulty of finding the right collection of liftings can
be avoided by considering the set of all predicate liftings for T . The set of all liftings
for a given functor can be computed using the Yoneda Lemma (cf. Theorem A.1.6).
This was observed first by Schröder in [Sch05].

2.2.20. D. For each Y ∈ C there is an isomorphism

χY
() : VPY → C(Y, 2),

mapping a predicate X ∈ PY to its so-called characteristic function χY
X : Y → 2. Here

2 denotes the two element object in C, i.e. depending on C either the two element set
or the two element Stone space.

2.2.21. R. The isomorphism χY
() : VPY → C(Y, 2) maps a predicate X ∈ PY to

the function

χY
X : Y → 2

y 7→

{
1 if y ∈ X
0 otherwise.

2.2. LOGICS GIVEN BY PREDICATE LIFTINGS 25

In the case C = Set it is obvious that this defines an isomorphism χY
() : VQY →

Set(Y, 2). For C = Stone one has to observe that for every Y ∈ Stone a map f :
Y → 2 is continuous iff f −1(0) and f −1(1) are clopen subsets of Y. Therefore there is
a one-to-one correspondence between clopen subsets of Y and continuous morphisms
f ∈ Stone(Y, 2).

2.2.22. P. There is a 1-1 correspondence

{λ | λ : VPn ⇒ VPT } ¾ VPT (2n)

given by U ∈ PT (2n) 7→ λ where

λY : (P1, . . . , Pn) ∈ (PY)n 7→ {t ∈ TY | χ2n

U ◦ T 〈χY
P1
, . . . , χY

Pn〉(t) = 1}.

Proof. The crucial observation here is that the family {χY
()}Y∈C forms a natural isomor-

phism
χ·() : VP ⇒ C(, 2).

Therefore n-ary predicate liftings λ : VPn ⇒ VPT are in one-to-one correspondence
with natural transformations λ′ : C(, 2n) ⇒ C(T , 2). Instantiating the Yoneda Lemma
(cf. Theorem A.1.6 in the appendix) with X B 2n and S B C(T , 2) give us that there
is an isomorphism

ΘC(T ,2),2n : Cat(C(, 2n),C(T , 2)) → C(T2n, 2).

Hence natural transformations λ′ : C(, 2n) ⇒ C(T , 2) and elements of C(T2n, 2) are
in one-to-one correspondence. All in all this gives us together with the isomorphism
C(T2n, 2) ¾ PT2n a one-to-one correspondence between n-ary predicate liftings λ and
predicates over T2n. That this one-to-one correspondence is computed as stated in the
proposition is not difficult to check. One only has to spell out how the isomorphism
ΘC(T ,2),2n works, which is given by the Yoneda Lemma. 

In many cases the language corresponding to the set of all (finitary) predicate liftings
is expressive. This is the content of the following fact which was proven by Schröder
in [Sch05].

2.2.23. F. [Sch05, Corollary 38] Let T : Set → Set be an ω-accessible functor and
Λ the set of finitary predicate liftings for T . Then the language L(Λ) is expressive.

2.2.24. R. In fact the statement in loc.cit. is more general: instead for ω one can
prove a similar result for an arbitrary regular cardinal κ. The language will be, however,
not finitary anymore: one has to allow predicate liftings with infinite arity α (α < κ an
ordinal number) and infinite conjunctions of < κ formulas.

26 CHAPTER 2. COALGEBRAIC MODAL LOGICS

2.3 Coalgebraic fixed-point logic
Next we discuss a third approach for defining a modal language for reasoning about
coalgebras: coalgebraic fixed-point logic.

Coalgebraic modal logic has an obvious shortcoming 1: we can only define a well-
behaved such logic for a given functor T : Set → Set if we can find the right set of
predicate liftings. There is no canonical choice for the right coalgebraic modal logic
for T -coalgebras besides the logic given by all predicate liftings (cf. Section 2.2.3).

The so-called coalgebraic logic as proposed by Moss in [Mos99] is more canonical.
The language of coalgebraic logic contains, independently of the given functor, only
one operator ∇ and the semantics of this logical operator is defined for all functors in
a uniform way. The drawback of this approach is that it yields a language that is less
standard than the multi-modal language of logics given by predicate liftings. Moreover
coalgebraic modal logics can be defined for arbitrary functors on Set whereas in coal-
gebraic logic one requires the functor to be weak pullback preserving (cf. Def. A.2.4).

We will now state Venema’s definition of a finitary version of coalgebraic logic and
its extension by a smallest and greatest fixed-point operator as presented in [Ven04].

2.3.1 Finitary coalgebraic logic
Throughout this section we assume that T : Set → Set is a standard and weak pullback
preserving functor (definitions can be found in Appendix A). As remarked above the
requirement that the functor is weak pullback preserving seems to be a real restriction.
In Chapter 5 we will see that we could also define a coalgebraic logic for non-standard
functors.

2.3.1. D. Let X be a set. We say π ∈ T X has finite T-base over X if there is a
finite set Q ⊆ X such that π ∈ T Q and define

Tω(X) := {π ∈ T X | π has finite T -base over X}.

2.3.2. R. We chose the notation Tω(X) to indicate that we can define a functor

Tω : Set → Set
X 7→ TωX B Tω(X)
f 7→ T f ¹Tω(X).

It is not difficult to check that Tω is well-defined if T is standard. If T is the power set
functor then Tω is the finite power set functor.

1under the assumption that the functor T under consideration determines the appropriate logic for
reasoning about T -coalgebras

2.3. COALGEBRAIC FIXED-POINT LOGIC 27

2.3.3. D. The language of (finitary) coalgebraic logic LT is defined induc-
tively as follows:

LT
0 3 φ F ⊥| > | φ ∧ φ | φ ∨ φ

LT
i+1 3 φ F ψ ∈ LT

i | φ ∧ φ | φ ∨ φ | ∇π, π ∈ Tω(LT
i)

LT
B

⋃

i∈N
LT

i

The depth of a formula φ ∈ LT is defined as the smallest natural number iφ such that
φ ∈ LT

iφ .

2.3.4. R. From the definition it is clear that LT is a set (in contrast to Moss’
original language which consisted of a proper class of formulas).

The reader might wonder why negation is not included in the language LT . The
reason for this is that we want to maintain the one-to-one correspondence between
formulas of coalgebraic (fixed-point) logic and coalgebra automata which has been
established in [Ven04] and which we will use in Chapter 5.

It is an open question whether we can always construct for a given coalgebra au-
tomaton an automaton that accepts precisely the complement language.

A positive answer to this question would mean that adding negation to the language
would be redundant: given a formula φ and its corresponding coalgebra automaton Aφ

we could construct the automatonAφ that accepts the complement language ofAφ. This
automatonAφ, in turn, would correspond to some formula ψ. This (itself negation-free)
formula ψ would express the negation of φ. For example in the case that T is the power
set functor, it is known that negation is redundant.

A negative answer to the above question, on the other hand, would imply that we
would have to adjust the notion of a coalgebra automaton if we wanted to extend the
language and to keep the correspondence with coalgebra automata at the same time. It
is not obvious how these “extended” coalgebra automata should look like.

The difference with Moss’s original definition is that the syntax only contains finite
conjunctions and, in addition to that, finite disjunctions. Moreover formulas of the
form ∇π contain only elements π ∈ TLT which have a finite T -base. We will now
demonstrate that these conditions ensure that every formula φ has a finite construction
tree and therefore a finite set of subformulas.

2.3.5. D. Given X ∈ Set and π ∈ Tω(X) we define the base of π as follows

Base(π) B
⋂
{Q ⊆ω X | π ∈ T Q}.

2.3.6. L. For all X ∈ Set and π ∈ Tω(X) we have π ∈ T Base(π), hence Base(π)
is the smallest finite subset of X with this property.

28 CHAPTER 2. COALGEBRAIC MODAL LOGICS

Proof. It is easy to see that there is a finite family {Q1, . . . ,Qn} of finite subsets of X
such that π ∈ T Qi for all i ∈ {1, . . . , n} and

Base(π) =
n⋂

i=1
Qi.

Standard functors that are weak pullback preserving preserve finite intersections (cf.
Fact A.2.13), hence

T Base(π) =
n⋂

i=1
T Qi.

Because π ∈ T Qi for all i ∈ {1, . . . , n} we can conclude that π ∈ T Base(π). 

2.3.7. D. Let φ ∈ LT . Then the construction tree CTree(φ) of φ is defined as
follows

CTree(φ) B φ for φ ∈ {⊥,>}

CTree(φ1♣φ2) B

φ1♣φ2

CTree(φ1) CTree(φ2) for ♣ ∈ {∨,∧}

CTree(∇π) B

∇π

CTree(φ1) . . . CTree(φn) for Base(π) = {φ1, . . . , φn}

The collection Sub(φ) of subformulas of φ is defined as the set of formulas φ′ which
appear as labels in CTree(φ).

The following proposition justifies that we call LT a finitary language.

2.3.8. P. The construction tree of every φ ∈ LT is finite and therefore every
formula φ has only finitely many subformulas.

Proof. The proposition can be proven by an easy induction on the depth iφ of φ. For
the case φ = ∇π one has to observe that iψ < iφ for all ψ ∈ Base(π). 

The semantics of the ∇-operator is now defined as follows: instead of lifting predicates
over some set X to predicates over T X we lift the satisfiability relation between X and
LT to a relation between T X and TLT . Then

x |= ∇π :⇔ γ(x)T (|=)π. (2.2)

Here T : Rel → Rel denotes the (unique) lifting of T to the category Rel of sets and
relations (cf. Appendix A.2). We postpone the formal definition of the semantics and
first extend the language with fixed-point operators.

2.3. COALGEBRAIC FIXED-POINT LOGIC 29

2.3.9. R. Note that the definition of the semantics of a formula of the form ∇π

in (2.2) is not circular: by Lemma A.2.14 we have

γ(x)T (|=)π iff γ(x)T (|=¹T X×Base(π))π

and as the depth of formulas in Base(π) is strictly smaller than the depth of ∇π we can
inductively assume that |=¹T X×Base(π) has been already defined.

2.3.2 Adding fixed-points
In order to be able to extend the language of coalgebraic logic with fixed-point-operators
it is also necessary to add variables.

2.3.10. D. Let Φ be a set of variables. The language µLT (Φ) of coalgebraic
fixed-point logic with variables in Φ is defined inductively as follows:

µLT
0 (Φ) 3 φ F ⊥| > | p ∈ Φ | φ ∧ φ | φ ∨ φ | µp.φ, p ∈ Φ | νp.φ, p ∈ Φ

µLT
i+1(Φ) 3 φ F ψ ∈ µLT

i | φ ∧ φ | φ ∨ φ | µp.φ, p ∈ Φ | νp.φ, p ∈ Φ |

| ∇π, π ∈ Tω(µLT
i (Φ))

µLT (Φ) B

⋃

i∈N
µLT

i (Φ)

The notion of a construction tree of a formula from Definition 2.3.7 can be easily
extended to the case of fixed-point logic.

2.3.11. D. Let Φ be a set of variables and φ a formula in µLT (Φ). Then the
construction tree CTree(φ) of φ is defined as in Definition 2.3.7 using the following
additional clauses for variables and the fixed-point operators:

CTree(p) B p for p ∈ Φ

CTree(ηp.φ) B

ηp.φ

CTree(φ)
for η ∈ {µ, ν}

Again we define Sub(φ) to be the set of formulas which occur as labels in CTree(φ).

Regarding the syntax of coalgebraic fixed-point logic we have to introduce some ter-
minology.

2.3.12. D. Let Φ be a set of variables and φ ∈ µLT (Φ). An occurrence of a
variable p in φ is a leaf in CTree(φ) labeled with p. An occurrence of p in φ is called
bound if it has an ancestor in CTree(φ) labeled with a formula ηp.ψ for η ∈ {µ, ν}.
Otherwise the occurrence is called free.

30 CHAPTER 2. COALGEBRAIC MODAL LOGICS

We denote by BVar(φ) and FVar(φ) the set of bound variables of φ and the set of free
variable of φ respectively, i.e. the set of all variables p that have a bound occurrence
and the set of all variables that have a free occurrence in φ respectively.

Finally we denote by Var(p) the set of all variables occurring in φ, i.e. Var(φ) =
BVar(φ) ∪ FVar(φ).

2.3.13. D. Let Φ be a set of variables. A formula φ ∈ µLT (Φ) is called clean
if BVar(φ) ∩ FVar(φ) = ∅ and if for every p ∈ BVar(φ) there exists a unique formula
ηxx.ψx ∈ Sub(φ), ηx ∈ {µ, ν} such that p ∈ Sub(ηxx.ψx). Furthermore we call φ a closed
formula if FVar(φ) = ∅. .

The definition of the semantics of coalgebraic fixed-point logic uses so-called valua-
tions, i.e. functions assigning to each variable a subset of the model.

2.3.14. D. Let Φ be a set of variables. A Φ-valuation on X is a function V :
Φ→ P(X). A triple (X, γ,V) where (X, γ) ∈ Coalg(T) and V is a Φ-valuation is called
Φ-model on (X, γ).

Given a Φ-valuation on X, p ∈ Φ and U ⊆ X we write V[p 7→ U] for the Φ-
valuation on X defined as

V[x 7→ U](q) B
{

U if q = p
V(q) otherwise.

We are now prepared to state the definition of the semantics of coalgebraic fixed-point
logic.

2.3.15. D. Let Φ be a set of variables, V a Φ-valuation and X = (X, γ) be
a T -coalgebra. We inductively define a relation |=V⊆ X × µLT (Φ) with the intended
meaning that (x, φ) ∈ |=V if φ is satisfied at x ∈ X under valuation V . In this case we
also write (X, γ), x |=V φ. Furthermore we define [[φ]]X,V B {x ∈ X | (X, γ), x |=V φ}.
The inductive definition of |=V is as follows:

X, x 6|=V ⊥,

X, x |=V >,

X, x |=V p ∈ Φ if x ∈ V(p),
X, x |=V φ1 ∧ φ2 if X, x |=V φ1 and X, x |=V φ2,

X, x |=V φ1 ∨ φ2 if X, x |=V φ1 or X, x |=V φ2,

X, x |=V µp.φ if x ∈ ⋂
{U ⊆ X | [[φ]]X,V[p7→U] ⊆ U},

X, x |=V νp.φ if x ∈ ⋃
{U ⊆ X | U ⊆ [[φ]]X,V[p7→U]},

X, x |=V ∇π if (γ(x), π) ∈ T (|=V
¹Base(π)),

In case for some φ ∈ µLT (Φ) we have X, x |=V φ for all valuations V , we drop the
superscript V and write X, x |= φ.

2.3.16. R. If φ ∈ µLT (Φ) is a closed formula then X, x |=V φ for some valuation
V iff X, x |= φ, i.e. the semantics of a closed formula does not depend on the valuation.

2.4. CONCLUSION 31

The semantics for the µ- and the ν-operator is the well-known smallest and largest
fixed-point semantics. In order to see this one has first to observe that for an arbitrary
formula φ ∈ µLT (Φ) and an arbitrary T -coalgebra X = (X, γ), the operator

[[φ]]X,V[p7→] : PX → PX
U 7→ [[φ]]X,V[p7→U]

is monotone. Therefore we can apply the Knaster-Tarski fixed-point theorem to com-
pute the least and the largest fixed-point of [[φ]]X,V[p7→] as the least pre-fixed point and
the largest post-fixed point of [[φ]]X,V[p7→] respectively. For more details we refer the
reader to [AN01].

2.4 Conclusion
Common features

We presented the three main approaches for assigning a finitary modal language to a
given functor T : Set → Set. Properties that all of these approaches share, are:

• formulas specify properties of coalgebra states, i.e. the interpretation of a for-
mula φ on coalgebra (X, γ) corresponds to a subset of X,

• the interpretation of a formula is invariant under bisimulations, and

• finitary languages have restricted expressivity.

The last item of our list is certainly a drawback of all these languages. Unfortunately
restrictions here seem to be unavoidable: Goldblatt showed in [Gol05] that a functor
T admits a (possibly infinitary) expressive language which has a set of formulas iff the
final T -coalgebra exists. This suggests that a similar result could be proven, showing
that logics with finitary syntax can be expressive only if the final T -coalgebra exists
and is not “too big”.

References

The research on inductively defined coalgebraic modal logics was initiated by Kurz
([Kur01c]), who in fact did not consider inductively defined functors but polynomial
functors of a certain shape, and Rößiger ([Röß01]). Their work was inspired by earlier
work of Jacobs ([Jac96]) and Reichel ([Rei95]) on the question of how to use coalge-
bras for modeling certain features of object-oriented programming languages. Rößiger
also showed how to construct the final T -coalgebra for a given polynomial functor log-
ically, i.e. using some variant of the canonical model construction from modal logic.
Furthermore he proved completeness of these logics with respect to the coalgebraic
semantics. These results were extended to Kripke polynomial functors by Rößiger

32 CHAPTER 2. COALGEBRAIC MODAL LOGICS

in [Röß00], Jacobs in [Jac01] and by the work presented in the next chapter of this the-
sis, which is based on the paper [KKV04]. Another aspect of research on inductively
defined logics for polynomial coalgebras is the work by Goldblatt on model theory for
polynomial coalgebras. In the papers [Gol01, Gol03b] he obtains a Co-Birkhoff theo-
rem for these logics and generalizations of notions from model theory of modal logic
such as ultrapower and ultrafilter extension.

The abstract formulation of a predicate lifting for a functor goes back to Pattinson’s
work in [Pat03a, Pat04], where he also gives sufficient criteria for a coalgebraic modal
logic to be sound, complete and expressive. The polyadic version of it that we are
considering was first used by Schroeder in [Sch05]. Based on results from [KKP04]
we are going to define an algebraic semantics for these logics in Chapter 4.

Moss’ coalgebraic logic ([Mos99]) is probably the most general approach towards
coalgebraic modal logic. The somewhat unusual syntax of the modal language he
is considering has lead many people to the conclusion, that Moss’ approach is too
abstract for being useful in applications. The connection to automata theory, which was
established by Venema in [Ven04] brought new attention to Moss’ logic and showed
that formulas of this logic have a natural automata-theoretic interpretation. We will
return to this issue in Chapter 5.

It is also possible to combine the different approaches as was pointed out by Cı̂rstea
in [Cı̂r04]. She defines the notions of a language constructor and of a T -semantics of
a language constructor. All the logics that we described in this chapter correspond to
such language constructors and their T -coalgebraic semantics correspond to their T -
semantics. The main result of [Cı̂r04] is that we can combine language constructors
corresponding to expressive logics for coalgebras in order to obtain expressive log-
ics for coalgebras for more complex functors, e.g. we can combine expressive logics
for T1- and T2-coalgebras into an expressive logic for T1 + T2-coalgebras. Note that
Cı̂stea’s language constructors are certain endofunctors on a category of algebras, i.e.
in her approach the language of a coalgebraic modal logic corresponds to such an end-
ofunctor. This is closely related to what we are doing in Chapter 4 where the logic
corresponds to an endofunctor on the category of Boolean algebras.

Chapter 3
Stone coalgebras

In the previous chapter we presented three different approaches of defining a finitary
language for reasoning about T -coalgebras for a given functor T : Set → Set. When
further investigating these logics we are facing two problems which are well-known in
modal logic:

1. The so-called inadequacy of Kripke semantics (cf. Section 3.1.2 below), i.e. the
problem that there are consistent modal logics that are not valid on any Kripke
frame, and

2. the fact that modal logic is lacking the Hennessy-Milner property with respect
to the class of all Kripke frames, i.e. there are states in Kripke frames that sat-
isfy exactly the same modal formulas and that are nevertheless not related by a
bisimulation.

A source of these problems lies in the fact that we reason with finitary formulas about
possibly infinite structures and, indeed, one way of solving the second problem is to
consider a modal language with infinite conjunctions (cf. e.g. [Ger96] for modal logic
and [Mos99] for the coalgebraic case).

Another way to tackle these problems in modal logic is to move from Kripke se-
mantics to general frame semantics. A general frame can be seen as a Kripke frame
(W,R) together with a (modal) algebra of admissible subsets of W. The idea is to
restrict the valuation of the propositional variables and hence also the semantics of ar-
bitrary formulas to these admissible subsets. A formula will therefore be valid on a
general frame iff it is valid on the algebra of admissible subsets. Soundness and com-
pleteness of modal logic with respect to the algebraic semantics can be easily carried
over to the general frame semantics. This is reflected by the categorical duality be-
tween the category DGF of descriptive general frames and the category MA of modal
algebras. Furthermore the so-called canonical frame based on the set of maximal con-
sistent sets of formulas can be shown to be the final object in DGF. As an immediate
consequence one can prove that descriptive general frames form a Hennessy-Milner

33

34 CHAPTER 3. STONE COALGEBRAS

class, i.e. states that cannot be distinguished by any modal formula are related by some
bisimulation (see Section 3.1.3 below).

In this chapter we propose Stone coalgebras, i.e. coalgebras for an endofunctor on
the category Stone of Stone spaces, as a natural generalisation of descriptive general
frames to the level of coalgebras.

To start with, in Section 3.2 we discuss those Stone coalgebras which correspond
to the descriptive general frames of modal logic. They are the ones that are associ-
ated with the Vietoris functor V : Stone → Stone, a topological analogue of the
power set functor on Set. V is a functorial extension of a well-known topological
construction which associates with a topology its Vietoris topology [Eng89]. This con-
struction preserves a number of nice topological properties; in particular, it turns Stone
spaces into Stone spaces [Joh82]. We will show that the category Coalg(V) of coalge-
bras for the Vietoris functor is isomorphic to the category DGF of descriptive general
frames and therefore dually equivalent to the category MA. Hence V-coalgebras pro-
vide a mathematically adequate semantics for modal logic. Furthermore the duality
MA ' Coalg(V)op has as immediate corollaries the representation of modal algebras
as algebras for a functor H : BA → BA and the existence of the final V-coalgebra.

In Sections 3.3 and 3.4 we further substantiate our case for Stone spaces as a coal-
gebraic base category, by considering so-called Vietoris polynomial functors as the
Stone-based analogues of Kripke polynomial functors over Set (cf. Section 2.1.1).
Transferring the work of Jacobs [Jac01] that we summarized in Section 2.1 from the
setting of Set-coalgebras to Stone-coalgebras, we establish, for each such functor T, a
link between the category BAOT of T-sorted Boolean algebras with operators and the
category Coalg(T) of Stone coalgebras for T. In Section 3.3 we lay the foundations of
this work, introducing the notion of a Vietoris polynomial functor (VPF), the algebraic
and coalgebraic categories, and functors between these categories. Section 3.4 shows
that these functors form an adjunction between the categories BAOT and Coalg(T), for
any VPF T. Although this adjunction is not a dual equivalence in general, we will see
that each coalgebra can be represented by an algebra, more precisely, Coalg(T)op is
(isomorphic to) a full coreflective subcategory of BAOT. We identify the full subcat-
egory of BAOT on which the adjunction restricts to an equivalence and show that the
initial T-BAO is dual to the final T-coalgebra.

Finally in Section 3.5 we present an alternative representation of T-BAOs using
generators and relations (cf. e.g. [Vic89]). As a result we obtain a characterization of
those T-BAOs, which form the full subcategory of BAOT that is dual to Coalg(T), in
terms of free algebras.

The chapter is based on the earlier published paper [KKV04] which is joint work
with Alexander Kurz and Yde Venema. Furthermore the author thanks an anonymous
referee of [KKV04] whose comments lead to the material in Section 3.5.

3.1. STONE DUALITY 35

3.1 Stone duality
3.1.1 Basic Stone duality
One cornerstone on which this and the following chapter is built is the categorical
duality between Boolean algebras and Stone spaces, the so-called Stone duality. In
this section we are going to give a short summary of Stone duality and in doing so
we will fix our notation. For basic notions of general topology the reader is referred
to [Eng89].

3.1.1. N. For a topological space X we denote by O(X) the set of open subsets
of X, by Cl(X) the set of closed subsets of X and by Clp(X) the set of clopen subsets of
X, hence O(X) ∩ Cl(X) = Clp(X).

When working with Boolean algebras one would like to think of them in terms of
the more concrete power set algebras, i.e. Boolean algebras that are based on the set
of subsets of a certain set and in which the Boolean operations are interpreted as the
corresponding set-theoretic operations. It is a well-known fact, however, that for each
X ∈ Set the corresponding power set algebra (P(X),∪,∩,−, ∅, X) is a complete and
atomic Boolean algebra (see e.g. [Ven06]). Therefore not every Boolean algebra can
be represented as a power set algebra.

Already in the 1930s Stone found a way to represent every Boolean algebra as
a subalgebra of some power set algebra (cf. [Sto36],[Sto37]). His solution was to
consider the Boolean algebras of clopen subsets of certain topological spaces, which
are nowadays called Stone spaces.

3.1.2. D. A topological space X = (X, τ) is called a Stone space if it is com-
pact, Hausdorff and zero-dimensional, i.e., has a basis of clopen subsets. We denote by
Stone the category of Stone spaces with continuous maps as morphisms.

In fact Stone proved not only that for every Boolean algebra B can we construct a
Stone space X such that B ¾ Clp(X) but also that there is a correspondence between
Boolean homomorphisms and continuous functions on Stone spaces. In categorical
terms his results can be summarized by saying that the category Stone of Stone spaces
and the category BA of Boolean algebras are dually equivalent. This dual equivalence
is witnessed by two functors Sp : BA → Stoneop and Clp : Stoneop → BA, which are
defined as follows:

Sp : BA → Stoneop
Clp : Stoneop → BA

B 7→ SpB B (UfB, τB) X 7→ ClpX B Clp(X)
f : B1 → B2 7→ f −1 : SpB2 → SpB1 g : X1 → X2 7→ g−1 : ClpX2 → ClpX1.

Here f −1 and g−1 denote the inverse image functions, i.e.

f −1(u) B {b ∈ B1 | f (b) ∈ u} for u ∈ UfB2
g−1(b) B {x ∈ X1 | g(x) ∈ b} for b ∈ Clp(X2),

36 CHAPTER 3. STONE COALGEBRAS

BA

Sp

Stoneop
Clp

Figure 3.1: Stone duality

UfB is the collection of ultrafilters over B and τB is the topology generated by the
collection of sets {b̂ | b ∈ B}, where for b ∈ B we let b̂ B {u ∈ UfB | b ∈ u}.

Furthermore we define, for every B ∈ BA and every X ∈ Stone, morphisms

ιB : B → ClpSpB εX : X → SpClpX
b 7→ b̂ x 7→ {b ∈ ClpX | x ∈ b}.

We are now able to state Stone’s representation theorem.

3.1.3. T (S). The families of maps (εX)X∈Stone and (ιB)B∈BA give rise to nat-
ural isomorphisms ε : IdStone → Sp ◦ Clp and ι : IdBA → Clp ◦ Sp respectively.
Therefore the categories BA and Stone are dually equivalent.

3.1.4. R. Note that this implies that a given Boolean algebra B is isomorphic to
Clp(SpB) and hence to a subalgebra of the power set algebra based on P(UfB).

We finish this brief introduction to Stone duality by stating how finite products and
coproducts in Stone are computed1.

3.1.5. F. Let X1 = (X1, τ1) and X2 = (X2, τ2) be Stone spaces. Then

• the product X1 × X2 of X1 and X2 is the topological space that has the cartesian
product X1 × X2 as carrier set and whose topology has as base the set

{U1 × U2 ⊆ X1 × X2 | U1 ∈ τ1 and U2 ∈ τ2},

• the coproduct X1 +X2 of X1 and X2 is the topological space that has the disjoint
uion X1 + X2 as a carrier set and whose topology has as a base the set

{U ⊆ X1 + X2 | U ∩ X1 ∈ τ1 and U ∩ X2 ∈ τ2}.

For a proof of the fact that X1 × X2 and X1 + X2 are indeed the product and coproduct
of the two spaces X1 and X2 the reader is referred to [Eng89]. Much more information
about Stone duality can be found in [Joh82].

1In fact we only state what binary products and coproudcts in Stone are, but this can be of course
easily generalised to arbitrary finite products and coproducts respectively.

3.1. STONE DUALITY 37

3.1.2 Duality for modal algebras
Before we turn to the extension of Stone’s representation theorem from Boolean alge-
bras to modal algebras we briefly recall some basic facts about normal modal logic.
For a more detailed introduction to the subject the reader is referred to standard text-
books about modal logic such as [BdV01, CZ97, Kra99]. In the following we restrict
ourselves to the case of the basic modal language with one unary modal operator.

3.1.6. D. Let Φ be a set of propositional variables. The set FML(Φ) of modal
formulas with variables in Φ is defined inductively as follows:

FML(Φ) F⊥| p ∈ Φ | ¬φ | φ ∧ φ | ¤φ.

A logic is now identified with the set of theorems of that logic.

3.1.7. D. A normal modal logic is a set Λ of formulas such that

• Λ contains all tautologies,

• ¤(p → q) → (¤p → ¤q) ∈ Λ,

• Λ is closed under the rules modus ponens(MP) and necessitation (N):

φ→ ψ ∈ Λ φ ∈ Λ (MP)
ψ ∈ Λ

φ ∈ Λ (N)
¤φ ∈ Λ

• Λ is closed under uniform substitution, i.e. if φ ∈ Λ and σ : Φ → FML(Φ) is a
function (a “substitution”) then σ(φ) ∈ Λ, where σ(φ) denotes the formula that is
obtained from φ by replacing every occurrence of a propositional variable p ∈ Φ
by the formula σ(p).

The modal logic K is the smallest normal modal logic.

The most commonly used semantics for normal modal logic is Kripke semantics .

3.1.8. D. A Kripke frame is a pair F := (W,R), where W is a set and R ⊆ W×W
is a binary relation. Let Φ be a set of propositional variables. A Kripke model is a
triple M = (W,R,V) where (W,R) is a Kripke frame and V : Φ → P(W) is a so-called
valuation function. Given a Kripke model M = (W,R,V) the semantics [[φ]]M ⊆ W of
a formula φ ∈ FML(Φ) is inductively defined as follows:

[[⊥]]M := ∅

[[p]]M := V(p)
[[¬φ]]M := W \ [[φ]]M

[[φ1 ∧ φ2]]M := [[φ1]]M ∩ [[φ2]]M
[[¤φ]]M := [R]([[φ]]M)

38 CHAPTER 3. STONE COALGEBRAS

where

[R]() : P(W) → P(W)
V 7→ {x ∈ W | ∀y . xRy ⇒ y ∈ V}.

Note that [R]() preserves arbitrary intersections.
We say that a frame (W,R) validates a formula φ if for all valuation functions V

we have [[φ]](W,R,V) = W. We say that a frame F validates a logic Λ if it validates all
φ ∈ Λ. In this case F is called a frame of the logic Λ and we denote by Frm(Λ) the set
of frames of Λ.

Many modal logics Λ are sound and complete with respect to Frm(Λ), i.e.

φ ∈ Λ iff for all F ∈ Frm(Λ) . F validates φ.

There are, however, examples of modal logics that are incomplete with respect to
Frm(Λ). For examples of such logics the reader is referred to [Fin74, Tho74, BdV01].
The incompleteness originates from the fact that Kripke semantics is too weak to distin-
guish modal logics, e.g. Thomason’s logicΛT in [Tho74] is consistent but Frm(ΛT) = ∅
and therefore Kripke semantics does not distinguish it from the inconsistent logic.

Boolean algebras with additional operators provide an algebraic semantics for modal
logic. The algebras corresponding to the smallest normal modal logic K are the so-
called modal algebras.

3.1.9. D. A modal algebra is a pair B = (B, f) such that

B = (B,∨,∧,¬,⊥,>)

is a Boolean algebra and f : B → B preserves > and binary meets, i.e. f (>) = > and
f (b1 ∧ b2) = f (b1)∧ f (b2) for all b1, b2 ∈ B. The category of modal algebras as objects
and homomorphisms as arrows will be denoted by MA.

3.1.10. D. Let Φ be a set of variables, B = (B, f) a modal algebra and V :
Φ → B a valuation. Then the algebraic semantics [[φ]](B,V) ∈ B of a formula φ ∈

FML(Φ) is defined as follows

[[⊥]](B,V) := ⊥

[[p]](B,V) := V(p)
[[¬φ]](B,V) := ¬[[φ]](B,V)

[[φ1 ∧ φ2]](B,V) := [[φ1]](B,V) ∧ [[φ2]](B,V)

[[¤φ]](B,V) := f ([[φ]](B,V)).

We say B validates φ if [[φ]](B,V) = > for all V : Φ → B. Furthermore we say B

validates a logic Λ if B validates φ for all φ ∈ Λ. The family of all modal algebras that
validate a logic Λ is denoted by VΛ (“the variety of Λ-algebras”).

3.1. STONE DUALITY 39

In contrast to the Kripke semantics, the algebraic semantics has the advantage that it
is adequate: all normal modal logics are characterized by the corresponding variety of
algebras.

3.1.11. T (A). For every normal modal logic Λ we have

φ ∈ Λ iff for all B ∈ VΛ.B validates φ.

3.1.12. R. Provided a deducibility relation `Λ for Λ such that φ ∈ Λ iff `Λφ,
adequacy amounts to soundness and completeness of algebraic semantics.

Modal algebras, however, are fairly abstract in nature and many modal logicians pre-
fer the intuitive, geometric appeal of Kripke frames. General frames, unifying the
algebraic and the Kripke semantics in one structure, provide a nice compromise.

3.1.13. D. A general frame is a structure G = (W,R, A) such that (W,R) is
a Kripke frame and A is a collection of so-called admissible subsets of W that is
closed under the Boolean operations and under the operation [R]. A general frame
G = (W,R, A) is called

• differentiated if for all distinct w1,w2 ∈ W there is a ‘witness’ a ∈ A such that
w1 ∈ a and w2 < a,

• tight if whenever v is not an R-successor of w, then there is a ‘witness’ a ∈ A
such that v ∈ a and w ∈ [R](W \ a), and

• compact if ⋂ A0 , ∅ for every subset A0 of A which has the finite intersection
property, i.e. for every A0 ⊆ A such that for all finite sets B ⊆ A0 we have⋂ B , ∅.

A general frame is descriptive if it is differentiated, tight and compact.

The term ‘admissible’ subset is explained by the semantic restriction that allows only
those Kripke models on a general frame for which the extensions of the atomic formu-
las are admissible sets, i.e. a valuation V : Φ → P(W) on a general frame (W,R, A) is
only admissible if V(p) ∈ A for all p ∈ Φ. This leads to the following notion of validity
of a formula on a general frame.

3.1.14. D. A general frame (W,R, A) is said to validate a modal formula φ ∈
FML(Φ) if [[φ]](W,R,V) = W for all valuations V : Φ → A, i.e. for all valuations that are
“admissible”.

3.1.15. E. 1. Any Kripke frame (X,R) can be considered as a general frame
(X,R,P(X)).

40 CHAPTER 3. STONE COALGEBRAS

2. If B = (B,∨,∧,¬,⊥,>, f) is a modal algebra then (UfB,R f , B̂), where R f =

{(u, v) | ∀b . f (b) ∈ u ⇒ b ∈ v} and B̂ = {{u ∈ UfB | b ∈ u} | b ∈ B}, is a
descriptive general frame.

3. If G = (W,R, A) is a general frame then (A,∪,∩,−, ∅,W, [R]) is a modal algebra.

Descriptive general frames can be nicely characterized in topological terms.

3.1.16. F. Let G = (W,R, A) be a general frame and let τA be the topology on W
generated by A. Then the following are equivalent:

1. G is descriptive,

2. (W, τA) is a Stone space and R is point-closed, i.e. for all w ∈ W we have R[w] ∈
Cl(W, τA).

Proof. (W, τA) is a Stone space because a descriptive general frame is compact, differ-
entiated and the admissible sets are closed under the Boolean operations. The tight-
ness condition of descriptive general frames is equivalent to the fact that the relation is
point-closed. 

Fact 3.1.16 is the key for extending Stone duality to modal algebras. Let us first in-
troduce the categories GF of general frames and DGF of descriptive general frames
before we state the duality MA ' DGFop.

3.1.17. D. [Gol76, Def. 5.1] A general frame morphism θ : (W,R, A) →

(W ′,R′, A′) is a function from W to W ′ such that (i) θ : (W,R) → (W ′,R′) is a bounded
morphism and (ii) θ−1(a′) ∈ A for all a′ ∈ A′. General frame morphisms will be also
called continuous bounded morphisms. We let GF (DGF) denote the category with
general frames (descriptive general frames, respectively) as its objects, and the general
frame morphisms as the arrows.

In Example 3.1.15 we saw how to transform a modal algebra into a descriptive general
frame and vice versa. These constructions give rise to two functors

D : MA → DGFop M : DGFop → MA
(B, f) 7→ (UfB,R f , B̂) (W,R, A) 7→ (A, [R])
h 7→ h−1 θ 7→ θ−1,

where B̂ and R f are defined as in 3.1.15, (2).

3.1.18. T ([G76]). The categories MA and DGF are dually equivalent.

Proof. Let (W,R, A) be a descriptive general frame and W = (W, τA) its associated
Stone space. Then the Stone isomorphism ε : W → SpClpW ∈ Stone is also an
isomorphism in the category DGF between (W,R, A) to D(M(W,R, A)). Likewise, for a
modal algebra B = (B, F) the Stone isomorphism ι : B→ ClpSpB ∈ BA can be shown
to be an isomorphism in MA between B and M(DB). In this way ε and ι give rise to
natural isomorphisms ε̂ : IdDGF → D ◦ M and ι̂ : IdMA → M ◦ D. 

3.1. STONE DUALITY 41

A consequence of the duality MA ' DGFop is the adequacy of general frame semantics,
i.e. every normal modal logic can be characterized by its class of general frames. The
only thing which has to be observed is that for all modal algebras B we have that

B validates φ iff D(B) validates φ for all φ ∈ FML(Φ).

The adequacy follows then directly from the duality MA ' DGFop and from the
adequacy of algebraic semantics (cf. Theorem 3.1.11). Hence the general frame se-
mantics combines the nice properties of both the Kripke semantics and the algebraic
semantics.

3.1.3 Modal logic is expressive for descriptive general frames
Descriptive general frames also form a so-called Hennessy-Milner class as remarked in
the introduction of this chapter. In this subsection we want to make this statement more
precise. In the following we only consider modal formulas without proposition letters.
In this case both the algebraic and the Kripke frame semantics are independent of a
valuation, i.e. we can interpret a formula on a Kripke frame and on algebra respectively
without mentioning a valuation function. We want to prove the following proposition,
which is “folklore” among modal logicians.

3.1.19. P. Let (W1,R1, A1) and (W2,R2, A1) be arbitrary descriptive frames
and w1 ∈ W1,w2 ∈ W2 such that for all (variable-free) modal formulas φ we have

w1 |= φ iff w2 |= φ.

Then w1 and w2 are bisimilar, i.e. (W1,R1[],w1) ↔P (W2,R2[],w2).

3.1.20. R. We call two states w1 ∈ W1,w2 ∈ W2 of two Kripke frames (W1,R1)
and (W2,R2) bisimilar if the corresponding rooted P-coalgebras (W1,R1[],w1) and
(W2,R2[],w2) are P-bisimilar. This notion of bisimilarity coincides with the usual no-
tion of bisimilarity for modal logic without proposition letters (cf. [Mos99, Section 2]).

In order to prove this proposition, we need the following facts that relate the algebraic
and coalgebraic semantics of modal logic.

3.1.21. N. We denote byLMA the initial object in MA, the so called Lindenbaum-
Tarski algebra of modal logic. The algebra LMA is defined as the modal term algebra,
which has as its carrier set the set of modal formulas FML(∅), modulo the congruence
relation ≡:

φ ≡ ψ :⇔ φ↔ ψ ∈ K.
i.e. ≡ identifies logically equivalent formulas.

Intuitively the Lindenbaum-Tarski algebra consists of the set of (variable-free) modal
formulas quotiented by derivable equivalence.

42 CHAPTER 3. STONE COALGEBRAS

3.1.22. F. The following are true:

1. The graph of a bounded morphism is a bisimulation.

2. Bisimulations are closed under composition.

3. Let DLMA be the dual frame of the Lindenbaum-Tarski algebra. Then the states
x of DLMA are in one-to-one correspondence with the maximal consistent sets of
formulas ux and for all x ∈ DLMA we have

x |= φ iff φ ∈ ux.

For proofs of these facts we refer the reader to [BdV01]. We are now ready to give the
proof of Proposition 3.1.19.

Proof of Prop 3.1.19. Let (W1,R1, A1), (W2,R2, A2) ∈ DGF and w1 ∈ W1,w2 ∈ W2 as
described in the proposition. By the duality between MA and DGF we know that DLMA
is the final object in DGF, i.e. there are continuous bounded morphisms

fi : (Wi,Ri, Ai) → DLMA for i ∈ {1, 2}.

The states w1 and w2 satisfy the same formulas according to our assumption. Let u
be this maximal consistent set of formulas satisfied in both w1 and w2. According to
Fact 3.1.22 there is a (unique) state x in DLMA such that x satisfies the formulas in u.
Furthermore, as the graph of a bounded morphism is a bisimulation and the truth of
modal formulas is invariant under bisimulations, we get that fi(wi) = x for i ∈ 1, 2.
But then (w1,w2) ∈ Gr(f1) ◦ Gr(f2)∼ and Gr(f1) ◦ Gr(f2)∼ is a bisimulation according
to Fact 3.1.22. Hence w1 ↔ w2 as required. 

3.2 From Kripke to Vietoris
Since Kripke frames (and models) form prime examples of coalgebras (cf. Exam-
ple A.3.2), the question naturally arises whether (descriptive) general frames can be
seen as coalgebras as well. Our positive answer to this question is based on two crucial
observations from Fact 3.1.16. First, the admissible sets of a descriptive frame form a
basis for a Stone topology. Second, the successor set of any point is closed in this topol-
ogy. This suggests that if we are looking for a coalgebraic counterpart of a descriptive
general frame G = (W,R, A), it should be of the form R[] : (W, τA) → (Cl(W, τA), τ?)
where τ? is some suitable topology on Cl(W, τA), which turns Cl(W, τA) again into a
Stone space. A good candidate is the Vietoris topology: it is based on the closed sets
of τ and it yields a Stone space if we started from one. Moreover, as we will see,
choosing the Vietoris topology for τ?, continuity of the map R[] corresponds to the
admissible sets being closed under [R] (cf. Remark 3.2.7). Given a topological space
(X, τ), the natural question arises of what is the right notion of a hyperspace, i.e. a space

3.2. FROM KRIPKE TO VIETORIS 43

which has as points subsets of the original space and which should correspond to the
power set construction on Set. In [Vie22] Vietoris proposed to consider the following
topological space based on the closed subsets of the original space.

3.2.1. D. Let X = (X, τ) be a topological space. Define the operations

[3], 〈3〉 : P(X) → P(Cl(X)) by
[3]U := {F ∈ Cl(X) | F ⊆ U} ,
〈3〉U := {F ∈ Cl(X) | F ∩ U , ∅} .

Given a subset Q ⊆ P(X), define VQ := {[3]U | U ∈ Q} ∪ {〈3〉U | U ∈ Q}. The
Vietoris space V(X) associated with X is given by the topology υX on Cl(X) which is
generated by Vτ as subbasis.

In case the original topology is compact, there are other equivalent ways to generate the
Vietoris topology. This has nice consequences for the case that the original topology is
a Stone space.

3.2.2. L. Let X = (X, τ) be a compact topological space and let B be a basis
of τ that is closed under finite unions. Then the set VB forms a subbasis for υX. In
particular, if X is a Stone space, then the set VClp(X) forms a subbasis for υX.

The Vietoris construction preserves various useful topological properties; proofs of
this can be found in for instance [Mic51].

3.2.3. L. Let X = (X, τ) be a topological space.

1. If X is compact then (Cl(X), υX) is compact.

2. If X is compact and Hausdorff, then (Cl(X), υX) is compact and Hausdorff.

3. If X is a Stone space, then so is (Cl(X), υX).

The last item shows that the Vietoris construction can be used to map objects in
Stone to objects in Stone. This gives rise to the following functor.

3.2.4. D. The Vietoris functor V on the category of Stone spaces is defined as
follows:

V : Stone → Stone
X 7→ VX := (Cl(X), υX)

f : X→ Y 7→ f [] : VX→ VY

where f [] denotes the direct image function.

44 CHAPTER 3. STONE COALGEBRAS

3.2.5. R. The functor V is well-defined on morphisms, because for a continuous
function f : X→ Y ∈ Stone and a closed subset F ∈ Cl(X) we have that f [F] ∈ Cl(X)
(cf. [Eng89, Theorem 3.1.8]).

The Vietoris functor provides us with the coalgebraic representation of descriptive gen-
eral frames as the categories Coalg(V) and DGF turn out to be isomorphic. Using
Fact 3.1.16 it is straightforward to verify that the following definition is correct, that is,
it indeed defines two functors.

3.2.6. D. We define the functor C : DGF → Coalg(V) via

(W,R, A) 7→ (W, τA) R[]
−→ V(W, τA)

Here τA denotes the Stone topology generated by taking A as a basis. Conversely, there
is a functor D : Coalg(V) → DGF given by

(X, γ) 7→ (X,Rγ,Clp(X))

where Rγ is defined by Rγx1x2 iff x2 ∈ γ(x1). On morphisms both functors act as the
identity with respect to the underlying Set-functions.

3.2.7. R. For the well-definedness of D it is important that the continuity of γ :
X → VX implies that Clp(X) is closed under the operation [Rγ] : Clp(X) → Clp(X).
This can be seen as follows: Let U be an arbitrary clopen subset of X. We have to
show that [Rγ](U) ∈ Clp(X). Spelling out the definition of [Rγ] we calculate that

[Rγ](U) = {x | Rγ[x] ⊆ U}
= {x | Rγ[x] ∈ [3]U}
= {x | γ(x) ∈ [3]U}
= γ−1([3]U).

Because γ is continuous and [3]U is a clopen subset of VX we can conclude that
[Rγ](U) is a clopen subset of X.

3.2.8. T. The functors C and D form an isomorphism between the categories
DGF and Coalg(V).

Proof. The theorem can be easily proven by just spelling out the definitions. 

Hence descriptive general frames and V-coalgebras are essentially the same, but we
can extend this correspondence a bit further, namely to models on general frames.

3.2. FROM KRIPKE TO VIETORIS 45

MA

D

DGFop

M

C
op

Coalg(V)op

D
op

Figure 3.2: Duality for modal algebras

3.2.9. R. Recall that for a given set Φ of propositional variables a Kripke model
is a triple (W,R,V : Φ→ P(W)). This can be represented as a set coalgebra

W 〈v,R[]〉 (∏
p∈Φ 2

)
× PW ∈ Set,

where 2 = {0, 1} denotes the two element set and πp(v(w)) := 1 if w ∈ V(p). Analo-
gously we represent a Kripke model based on a descriptive general frame (W,R, A,V)
as a Stone coalgebra

(W, τA) 〈v,R[]〉 (∏
p∈Φ 2

)
× V(W, τA) ∈ Stone,

where 2 is equipped with the discrete topology and we exploited the correspondence
between Coalg(V) and DGF. The fact that v : (W, τA) → ∏

p∈Φ 2 should be an arrow
in Stone and therefore continuous is equivalent to the fact that V(p) ∈ A for all p ∈ Φ,
i.e. continuity of the valuation is equivalent to the admissibility of the valuation.

Let us note some corollaries of Theorem 3.2.8. Clearly Coalg(V) is dual to MA.

3.2.10. C. The categories MA and Coalg(V) are dually equivalent.

Proof. The claim follows immediately from the duality MA ' DGFop and the isomor-
phism DGF ¾ Coalg(V), cf. Figure 3.2. 

Using the trivial duality (Coalg(V))op = Alg(Vop) (cf. Def. A.1.2 and Def. A.1.3), it
follows that MA ' Alg(Vop). With Stoneop ' BA we obtain the following.

3.2.11. C. There is a functor H : BA → BA such that the category of modal
algebras MA is equivalent to the category Alg(H) of algebras for the functor H.

Proof. With the help of the contravariant functors Clp : Stoneop → BA, Sp : BA →

Stoneop, we let H = Clp ◦ Vop ◦ Sp. The claim now follows from the observation
that Alg(H) is dual to Coalg(V): An algebra HA α

−→ A corresponds to the coalge-
bra SpA

Spα
−→ SpHA ¾ VSpA and a coalgebra X

ξ
−→ VX corresponds to the algebra

HClpX ¾ ClpVX
Clpξ
−→ ClpX. 

An explicit description of H not involving the Vietoris functor is given by the following
proposition.

46 CHAPTER 3. STONE COALGEBRAS

3.2.12. P. Let H : BA → BA be the functor that assigns to a Boolean al-
gebra the free Boolean algebra over its underlying meet-semilattice. Then Alg(H) is
isomorphic to the category of modal algebras MA.

Proof. Let BA∧ be the category with Boolean algebras as objects and finite meet pre-
serving functions as morphisms, i.e. functions that preserve binary meets and the top-
element. Furthermore let MPF be the following category. An object of MPF is an
endofunction A m

→ A ∈ BA∧. A morphism f : (A m
→ A) −→ (A′

m′

→ A′) is a Boolean
algebra morphism f : A → A′ such that m′ ◦ f = f ◦ m. It is easy to see that MPF is
isomorphic to the category MA and therefore we can finish our proof by showing that
Alg(H) and MPF are isomorphic.

In order to prove that Alg(H) and MPF are isomorphic categories, we first show
that BA(HA, A) ¾ BA∧(A, A), or slightly more general and precise, BA(HA, B) ¾

BA∧(IA, IB) where I : BA ↪→ BA∧. (We denote, for a category C and objects A, B in C,
the set of morphisms between A and B by C(A, B), cf. A.1.1.) Indeed, consider the for-
getful functors U : BA → SF, V : BA∧ → SF to the category SF of meet-semilattices
with top element, and the left adjoint F of U. Using our assumption H = FU, we
calculate BA(HA, B) = BA(FUA, B) ¾ SF(UA,UB) ¾ SF(VIA,VIB) ¾ BA∧(IA, IB).
Hence there exists an isomorphism

φA,B : BA(HA, B) → BA∧(A, B)

that is natural in both A and B. The isomorphisms φA,A : BA(HA, A) → BA∧(A, A),
A ∈ BA, give us an isomorphism φ between the objects (A, α : HA → A) of Alg(H)
and the objects (A,m : A → A) of MPF. On morphisms, we define φ to be the identity.
To sum it up, we define a functor

Φ : Alg(H) → BA∧

(A, α) 7→ (A, φA,A(α))
f 7→ f .

Let us check that Φ is well-defined on morphisms. Suppose that f : (A, αA) → (B, αB)
is an Alg(H)-morphism, i.e. f ◦ αA = αB ◦ H f . This last equation can be written as

BA(H f , B)(αA) = BA(HA, f)(αB), (3.1)

where BA(, B) : BAop → Set and BA(HA,) : BA → Set are defined as usual
(cf. Def. A.1.5). We want to show that f : (A, φA,A(αA)) → (B, φB,B(αB)) is a MPF-
morphism, i.e. that φB,B(αB) ◦ f = f ◦ φA,A(αA), i.e. we have to show that

BA∧(f , B)(φB,B(αB)) = BA∧(A, f)(φA,A(αA)). (3.2)

where again BA∧(, B) and BA∧(A,) are defined as in Def. A.1.5. The following cal-
culation shows that equation (3.2) holds and therefore that Φ is well-defined on mor-
phisms.

BA∧(f , B)(φB,B(αB)) naturality of φ
= φA,B(BA(H f , B)(αA))

3.2. FROM KRIPKE TO VIETORIS 47

equ. (3.1)
= φA,B(BA(HA, f)(αB))

naturality of φ
= BA∧(A, f)(φA,A(αA))

For proving that Φ is indeed a category isomorphism one can easily define a functor
Φ−1 : MPF → Alg(H) and show that Φ−1 is the inverse of Φ. 

3.2.13. R. Spelling out the construction of a free Boolean algebra over its un-
derlying meet-semilattice, we see that, given a Boolean algebra A = (A,∨,∧,−,⊥,>),
HA is the free Boolean algebra generated by the set {¤a | a ∈ A} (the insertion of
generators being ¤ : A → HA, a 7→ ¤a) and satisfying the equations ¤> = >,
¤(a ∧ b) = ¤a ∧ ¤b. That is, the functor H describes how to obtain modal logic by
adding an operator to Boolean logic. As observed above this functor is the Stone dual
of the Vietoris functor. This observation was made earlier by Abramsky in [Abr88]
and is an instance of the general relationship between syntax and semantics as laid out
in his domain theory in logical form [Abr91].

We will use an abstract version of the construction of HA in Chapter 4 where we
are going to define the algebraic semantics for an arbitrary coalgebraic modal logic in
terms of a category of algebras for a functor L : BA → BA.

As another corollary to the duality we obtain that Coalg(V) has cofree coalgebras.

3.2.14. C. The forgetful functor Coalg(V) → Stone has a right adjoint.

Proof. We only sketch the proof. Consider the forgetful functors R : MA → BA,
U : MA → Set, V : BA → Set as depicted in the following diagram:

MA

U

R BA

V

Set
It is well-known that U and V are monadic functors (cf. e.g. [Mac71, Theorem VI.8.1])
and that the category MA has coequalizers (cf. e.g. [Man76, Lemma 3.1.31]). From this
we can deduce that R has a left adjoint using Theorem 3.1.29 of [Man76]. Hence, by
duality, Coalg(V) → Stone has a right adjoint. 

Finally, we show see how arbitrary general frames can be seen as coalgebras.

3.2.15. R. (General Frames as Coalgebras) Stone spaces provide a convenient
framework to study descriptive general frames since the admissible sets can be recov-
ered from the topology: each Stone space X = (X, τ) has a unique basis that is closed
under the Boolean operations. In order to be able to represent arbitrary general frames
as coalgebras, we have to make two adjustments.

First, we work directly with admissible sets instead of with topologies: the category
RBA (referential or represented Boolean algebras) has objects (X, A) where X is a set

48 CHAPTER 3. STONE COALGEBRAS

and A a set of subsets of X closed under Boolean operations. It has morphisms f :
(X, A) → (Y, B) where f is a function X → Y such that f −1(b) ∈ A for all b ∈ B.

And second, in the absence of tightness, the relation of the general frame will no
longer be point-closed. Hence, its coalgebraic version has the full power set as its
codomain. For X = (X, A) ∈ RBA let WX = (P(X), vX) where vX is the Boolean
algebra generated by {{F ∈ PX | F ⊆ a} | a ∈ A}. On morphisms let W f = P f .
This clearly defines an endofunctor on the category RBA, and the induced category
Coalg(W) is the coalgebraic version of general frames:

There is an isomorphism between GF and Coalg(W). (3.3)

The crucial observation in the proof of (3.3) is that, for X = (X, A) ∈ RBA and R a
relation on X, we have that A is closed under [R] iff R[] : X → PX is a RBA-morphism
X→W(X). This follows from the fact that [R](a) = (R[])−1({F ∈ PX | F ⊆ a}).

The idea of using referential algebras instead of topological spaces for a coalgebraic
representation of general frame semantics was further exploited in [KP04]. There the
authors define a generalized version of the Vietoris construction which is applicable to
referential algebras of arbitrary so-called selfextensional logics.

3.3 Vietoris polynomial functors
3.3.1 Definitions
In this section we introduce the notion of a Vietoris polynomial functor (VPF) as
a natural Stone-analogue of the Kripke polynomial functors from Section 2.1.1 on
Set. This section can therefore be seen as a first application of the observation that
coalgebras over Stone can be used as semantics for coalgebraic modal logics. Much
of the work in this section consists of transferring the work by Jacobs in [Jac01] to the
topological setting. After introducing the Vietoris polynomial functors, we define, for
each VPF T, the category BAOT of T-sorted Boolean algebras with operators and their
morphisms.

3.3.1. D. The collection of Vietoris polynomial functors , in brief: VPFs, over
Stone is inductively defined as follows:

TF I | A | T + T | T × T | TD | VT.

Here I is the identity functor on the category Stone; A denotes a finite Stone space
with the discrete topology (that is, the functor A is a constant functor); ‘+’ and ‘×’
denote disjoint union (binary coproduct) and binary product in Stone, respectively (cf.
Fact 3.1.5); and, for an arbitrary set D, TD denotes the functor sending a Stone space
X to T(X)D, the D-fold product of TX.

3.3. VIETORIS POLYNOMIAL FUNCTORS 49

Stone
UStone

T Stone
UStone

jT

Set
Ť

Set

Figure 3.3: The corresponding Kripke polynomial functor Ť

Intuitively we can assign to every Kripke polynomial functor T : Set → Set a corre-
sponding VPF T on Stone. The next definition makes this intuition precise.
3.3.2. D. For every KPF T we define the corresponding VPF T̂ by induction:

Îd := I Â := A

̂T1 + T2 := T̂1 + T̂2 ̂T1 × T2 := T̂1 × T̂2

T̂ D := T̂ D P̂T := VT̂ .

The inverse of this translation assigns to a VPF T his corresponding Kripke polynomial
functor denoted by Ť.
This correspondence between KPFs and VPFs is witnessed by a family of natural
embeddings.
3.3.3. D. Let T ∈ VPF, T = Ť and X = (X, τ) ∈ Stone. Then we define an
embedding jT

X
: UStoneTX→ TUStoneX by induction on the structure of T:

jI
X

B idUStoneX

jA
X

B idUStoneA

jTD

X
B (jT

X
)D

jT1+T2
X

B [jT1
X
, jT2
X

]
jT1×T2
X

B

〈
jT1
X
, jT2
X

〉

jVT
X

B (P jT
X

)
¹UStoneVTX

where [,] and 〈 , 〉 denote cotupling and pairing of functions respectively, and for
a function f : Y → Y ′ the function f D maps a function g : D → Y to the function
f ◦ g : D → Y ′.
With the help of jT it is now easy to transform T-coalgebras into Ť-coalgebras.
3.3.4. P. Let T ∈ VPF. Then the family of embeddings (jT

X
)X∈Stone gives rise

to a injective natural transformation

jT : UStone ◦ T⇒ Ť ◦ UStone (cf. Figure 3.3).

Furthermore the following definition gives rise to a functor

K : Coalg(T) → Coalg(Ť)
(X, γ) 7→ (UStoneX, jT

X
◦ UStoneγ)

f : X→ Y 7→ UStone f .

50 CHAPTER 3. STONE COALGEBRAS

Proof. The naturality of jT is easy to check. The fact that K is well-defined on mor-
phisms is then a direct consequence of the naturality of jT. 

In Definition 2.1.3 we defined paths and path constructors and used those paths to
define for every functor T ∈ KPF a category of ingredients. The category Ing(T) of
ingredients of a Vietoris functor T is defined analogously.

3.3.5. D. For every path p and all T1,T2 ∈ VPF we define

p : T1 Ã T2 if p : Ť1 Ã Ť2.

Furthermore we define Ing(T) to be the category with Ing(T) := {T′ | ∃p.p : T Ã
T
′} ∪ {I} as set of objects and paths as morphisms between them.

The logic MSMLT associated with a T ∈ VPF is the same as the logic associ-
ated with the corresponding KPF T . The coalgebraic semantics of MSML given in
Section 2.1.2 can be easily adjusted to the Stone-based setting.

3.3.6. D. Let T ∈ VPF, T := Ť ∈ KPF the corresponding Set-functor and let
(X, γ) ∈ Coalg(T). Then the logic MSMLT associated with T is identical to the logic
MSMLT : for every ingredient S ∈ Ing(T) we define the set of formulas FormS B
Form

Š
and a derivability predicate `S B `

Š
⊆ FormS. The logic MSMLT is then

given as the pair (
(FormS)S∈Ing(T), (`S)S∈Ing(T)

)
.

Furthermore we define for every S1,S2 ∈ Ing(T) and every path p : S1 Ã S2 a
predicate lifting

()p : Clp(S2X) → Clp(S1X).

These liftings are obtained by restricting the liftings ()p : P(Š2X) → P(Š1X) from
Definition 2.1.6 to clopen subsets and changing the clause for ()pow·p into

αpow·p
B [3]αp.

For every S ∈ Ing(T) the coalgebraic semantics [[]]S(X,γ) : FormS → Clp(SX) is then
defined exactly like in Definition 2.1.8 for the corresponding sort Š ∈ Ing(T).

We will now define the Boolean algebras with operators associated with a VPF
and then see how they provide an algebraic semantics for the logic MSML. The def-
inition of a so-called T-BAO may look slightly involved, but it is based on a simple
generalisation of the concept of a modal algebra. The generalisation is that instead of
dealing with a single Boolean algebra, we will be working with a family (Φ(S))S∈Ing(T)
of Boolean algebras. As before, we let BA∧ denote the category with Boolean algebras
as objects and finite-meet preserving functions as morphisms.

3.3. VIETORIS POLYNOMIAL FUNCTORS 51

3.3.7. D. (T-BAO) Let T be a VPF. A T-sorted Boolean algebra with oper-
ators, T-BAO, consists of a functor Φ : Ing(T)op −→ BA∧, together with an additional
map next : Φ(T) → Φ(I) which preserves all Boolean operations. This functor is
required to meet the conditions

1. Φ(A) = Clp(A),

2. the functions Φ(πi) and Φ(ev(d)) are Boolean homomorphisms, and

3. the functions Φ(κi) induced by the injection paths satisfy

(a) Φ(κ1)(⊥) = ¬Φ(κ2)(⊥) and
(b) ¬Φ(κi)(⊥) ≤ (Φ(κi)(¬α) ↔ ¬Φ(κi)(α)).

3.3.8. E. Let A = (A, g) be a modal algebra, cf. Definition 3.1.9. This alge-
bra can be represented by two different VI-BAOs. This functor has two ingredients
Ing(VI) = {I,VI} and one non-trivial path pow : VIÃ I.

1. Φ(I) := A, Φ(VI) := A, Φ(V) := g, and next = id.

2. Φ′(I) := A, Φ′(VI) := HA (cf. Proposition 3.2.12), Φ′(V) : Φ′(I) ↪→ Φ′(VI) the
(meet-preserving) inclusion of generators, and next′ the unique Boolean algebra
morphism satisfying next′ ◦ Φ′(V) = g.

We will see that (Φ′, next′) is theVI-BAO obtained by considering the algebra (Φ, next)
from 1. as a VI-coalgebra and translating it back to an algebra, that is, in the notation
we are about to introduce, (Φ′, next′) = AC(Φ, next).

Another important example of an T-BAO is the initial T-BAO or Lindenbaum T-BAO.

3.3.9. D. Let T ∈ VPF. Then we define the Lindenbaum T-BAO

LT : Ing(T)op → BA∧.

We put LT(S) := FormS/≡S for S ∈ Ing(T) and we define for each p ∈ PCons (cf.
Def. 2.1.3) s.t. p : S1 Ã S2 ∈ Ing(T) a function

LT(p) : LT(S2) → LT(S1)
φ 7→ [p]φ.

Here ≡S denotes the equivalence relation on FormS defined by

φ1 ≡S φ2 if `S φ1 ↔ φ2.

Morphisms of T-BAOs are families of Boolean homomorphisms satisfying certain ad-
ditional conditions.

52 CHAPTER 3. STONE COALGEBRAS

3.3.10. D. (BAOT) A morphism between T-BAOs (Φ′, next′) → (Φ, next) is a
natural transformation t : Φ′ → Φ such that for each ingredient S of T the component
tS : Φ′(S) → Φ(S) preserves the Boolean structure, tA = idClp(A) for all constants
A ∈ Ing(T), and tI and tT satisfy next ◦ tT = tI ◦ next′. This yields the category BAOT.

3.3.11. R. To see that this definition is a natural generalization of the notion
of a morphism between modal algebras let us look at the morphisms in the category
BAOVI. If we represent two modal algebras (A1, g1) and (A1, g2) as described in Ex-
ample 3.3.8 (1) as VI-BAOs (Φ1, next1), (Φ2, next2) it is easy to verify that a Boolean
morphism f : A1 → A2 is an MA-morphism iff the natural transformation t given by
tI = tVI = f is a BAOVI morphism.

The following proposition states that LT is the initial object in BAOT.

3.3.12. P. Let T ∈ VPF and LT the corresponding Lindenbaum algebra.
Then for every (Φ, next) ∈ BAOT there is a unique T-BAO morphism i(Φ,next) : LT →
(Φ, next).

Proof. By a standard argument. 

The algebraic semantics of MSML is defined in a similar fashion as the algebraic
semantics of normal modal logic in Definition 3.1.10.

3.3.13. D. Let T ∈ VPF and (Φ, next) ∈ BAOT. Then for each S ∈ Ing(T) we
define an interpretation function [[]]S(Φ,next) : FormS → Φ(S) by letting

[[⊥]]S(Φ,next) := ⊥,

[[φ1 → φ2]]S(Φ,next) := ¬[[φ1]]S(Φ,next) ∨ [[φ2]]S(Φ,next),

[[[p]φ]]S(Φ,next) := Φ(p)([[φ]]S′(Φ,next)) for p : SÃ S′ ∈ Ing(T) and p ∈ PCons,
[[next φ]]I(Φ,next) B next([[φ]]T(Φ,next)).

It is a matter of routine checking to see that [[]](Φ,next) factors through i(Φ,next) (cf.
Prop. 3.3.12) as follows:

FormS
[[]]S

kan

Φ(S)

LT(S)
i(Φ,next)
S

(3.4)

Here kan denotes the canonical morphism mapping a formula to its ≡S -equivalence
class in LT. Therefore the algebraic semantics of a formula φ of sort S is the image
of its ≡S -equivalence class under the initial map iΦ. Using this observation we can
deduce that T-BAOs provide an adequate semantics for MSMLT.

3.3. VIETORIS POLYNOMIAL FUNCTORS 53

3.3.14. P. Let T ∈ VPF and φ ∈ FormS for some S ∈ Ing(T). Then

`S φ iff ∀(Φ, next) ∈ BAOT.[[φ]](Φ,next) = >.

Proof. Let φ ∈ FormS for some S ∈ Ing(T). Suppose first that `S φ and consider an
arbitrary (Φ, next) ∈ BAOT. Then φ ≡S > and therefore kan(φ) = kan(>). By the
commutativity of Diagram 3.4 we get

[[φ]]S(Φ,next) = i(Φ,next)
S

(kan(φ))
= i(Φ,next)

S
(kan(>))

= [[>]]S(Φ,next) = >.

Suppose on the other hand that [[φ]]S(Φ,next) = > for all (Φ, next) ∈ BAOT. Then in
particular [[φ]]S

LT
= > = [[>]]S

LT
. Together with Diagram 3.4 this implies idLT(kan(φ)) =

idLT(kan(>)) and hence kan(φ) = kan(>), i.e. `S φ. 

3.3.2 Linking algebraic and coalgebraic semantics
The aim of this section is to establish a link between the categories BAOT and Coalg(T)
by functors A : Coalg(T)op → BAOT and C : BAOT → Coalg(T)op (cf. Prop. 3.3.22
below), i.e. between the coalgebraic and algebraic semantics of MSML.

It is not difficult to transform a T-coalgebra into a T-BAO; basically, we are dealing
with a sorted version of Stone duality, together with a path-indexed predicate lifting.

3.3.15. L  D. (A) For each Vietoris polynomial functor T, each T-
coalgebra (X, γ) gives rise to a T-BAO, namely, the ‘complex algebra’2 functorA(X, γ) :
Ing(T)op → BA∧ given by

S 7→ Clp(SX)
(p : S1 Ã S2) 7→

(()p : Clp(S2X) → Clp(S1X)) ,

accompanied by the map next : Clp(TX) → Clp(X) given by next := γ−1.

Proof. The claim can be proven by spelling out the definitions. 

This transformation preserves the MSML-semantics.

3.3.16. P. Let T ∈ VPF, (X, γ) ∈ Coalg(T) and φ ∈ MSMLT a formula of
sort S. Then

[[φ]]S(X,γ) = [[φ]]SA(X,γ).

Proof. By spelling out the definitions. 

2The name ’complex algebra’ stems from the tradition in modal logic, cf. [BdV01, Chapter 5]

54 CHAPTER 3. STONE COALGEBRAS

Conversely, with each T-BAO (Φ, next) we want to associate an T-coalgebraC(Φ, next).
Assume that T has the identity functor as an ingredient; given our results in the previ-
ous section, it seems fairly obvious that we should take the dual Stone space SpΦ(I)
as the carrier of this dual coalgebra. It remains to define a T-coalgebra structure on
this. Applying duality theory to the Boolean algebras obtained from Φ only seems to
provide information on the spaces SpΦ(S), whereas we need to work with S(SpΦ(I))
in order to define a T-coalgebra. Fortunately, in the next lemma and definition we
show that there exists a map r which produces the T-structure. The definition of r is as
in [Jac01]; what we have to show is that it works also in the topological setting.

3.3.17. L  D. Let T be a VPF and let (Φ, next) be a T-BAO. Then the
following definition by induction on the structure of ingredient functors of T

rΦ(I)(u) := u
rΦ(A)(u) := (εA)−1 (cf. Thm. 3.1.3)

rΦ(S1 × S2)(u) :=
〈
rΦ(S1)(Φ(π1)−1(u)), rΦ(S2)(Φ(π2)−1(u))

〉

rΦ(S1 + S2)(u) :=
{
κ1rΦ(S1)(Φ(κ1)−1(u)) if ¬Φ(κ1)(⊥) ∈ u
κ2rΦ(S2)(Φ(κ2)−1(u)) if ¬Φ(κ2)(⊥) ∈ u

rΦ(SD)(u) := λd ∈ D. rΦ(S)(Φ(ev(d))−1(u))
rΦ(VS)(u) :=

{
rΦ(S)(v) | v ∈ UfΦ(S) and Φ(pow)−1(u) ⊆ v

}

defines, for every S ∈ Ing(T) a continuous map

rΦ(S) : SpΦ(S) −→ SSpΦ(I).

Proof. Let S ∈ Ing(T). Both claims (i.e. the one on well-definedness and the one on
the continuity of rΦ(S)) are proven simultaneously by induction on S.

We only consider the case of the Vietoris functor: assume that S = VS′. In order
to show that rΦ(S) is well-defined, take an arbitrary u ∈ UfΦ(VS′) and consider the set
F :=

{
v | v ∈ UfΦ(S′) and Φ(pow)−1(u) ⊆ v

}
. F is closed in UfΦ(S′)), because for any

v′ ∈ UfΦ(S′)\F there is an a ∈ Φ(pow)−1(u) such that a < v′, whence F ⊆ â and v′ < â:
for every v′ < F we can find an open set containing v′ and disjoint from F. But from F
being closed and the inductive hypothesis on rΦ(S′) it follows that rΦ(S′)[F] is closed
as well, so by definition, rΦ(S)(u) = rΦ(S′)[F] belongs to Cl(S′(UfΦ(I))). This proves
that rΦ(S) is well-defined.

We now turn to the continuity of rΦ(S). It suffices to show that for an arbitrary
clopen set U ⊆ S′(UfΦ(I)), all sets of the form rΦ(VS′)−1([3]U) and rΦ(VS′)−1(〈3〉U)
are clopen. We only consider sets of the first kind:

rΦ(VS′)−1([3](U)) = {u ∈ UfΦ(VS′) | rΦ(VS′)(u) ∈ [3]U}
=

{
u | {rΦ(S′)(v) | Φ(pow)−1(u) ⊆ v} ⊆ U

}

=
{
u | {v | Φ(pow)−1(u) ⊆ v} ⊆ rΦ(S′)−1(U)

}

3.3. VIETORIS POLYNOMIAL FUNCTORS 55

According to the induction hypothesis, rΦ(S′)−1(U) is a clopen set, say with b ∈ Φ(S′)
such that rΦ(S′)−1(U) = b̂. This leads us to

rΦ(VS′)−1([3]U) =
{
u | {v | Φ(pow)−1(u) ⊆ v} ⊆ b̂

}

=
{
u | ∀v ∈ UfΦ(S′).

(
Φ(pow)−1(u) ⊆ v → b ∈ v

)}

(!)
= {u | Φ(pow)(b) ∈ u}

which shows that rΦ(VS′)−1([3]U) is clopen. It remains to show that the equality (!)
indeed holds.
⊇: trivial.
⊆: Let u′ ∈ UfΦ(VS′) and suppose Φ(pow)(b) < u′. We will show that under this
assumption there exists a v′ ∈ UfΦ(S′) such that Φ(pow)−1(u′) ⊆ v′ and b < v′. As an
intermediate step we prove that the set Φ(pow)−1(u′) ∪ {¬b} has the finite intersection
property. Suppose for a contradiction that there are a1, . . . , an ∈ Φ(pow)−1(u′) such that

∧

1≤i≤n
ai ∧ ¬b =⊥ .

Then we have ∧
1≤i≤n ai ≤ b and therefore we get by monotonicity of Φ(pow)

u′ 3 Φ(pow)

∧

1≤i≤n
ai

 ≤ Φ(pow)(b).

As u′ is an ultrafilter we can conclude that Φ(pow)(b) ∈ u′, which contradicts our
first assumption. This means that the set Φ(pow)−1(u′) ∪ {¬b} has the finite inter-
section property and is contained in an ultrafilter v′. Clearly b < v′ and hence u′ <{
u | ∀v ∈ UfΦ(S′).

(
Φ(pow)−1(u) ⊆ v → b ∈ v

)}
. 

The above lemma allows us to define a T-coalgebra for a given T-BAO.

3.3.18. D. Let T be a VPF and let (Φ, next) be a T-BAO. We define the coal-
gebra C(Φ, next) as the structure (

SpΦ(I), rΦ(T) ◦ Sp(next)):

C(Φ, next) := SpΦ(I) Sp(next)
SpΦ(T) rΦ(T)

T SpΦ(I)

Again we can relate the semantics of a formula on (Φ, next) to the semantics of a
formula on C(Φ, next).

3.3.19. P. Let T ∈ VPF, (Φ, next) ∈ BAOT and φ ∈ S for some S ∈ Ing(T).
Then

[[φ]](Φ,next) ∈ u ∈ UfΦ(S) iff rΦ(S)(u) ∈ [[φ]]C(Φ,next).

The maps A and C from BAOT to Coalg(T) and back can be extended to mor-
phisms. This will be done in the following two definitions.

56 CHAPTER 3. STONE COALGEBRAS

3.3.20. L  D. Let T ∈ VPF and f : (X, γ) → (X′, γ′) ∈ Coalg(T).
Then we define for every S ∈ Ing(T) a map A(f)(S) : A(X′, γ′)(S) → A(X, γ)(S) by
lettingA(f)(S) := Clp(S f). The familyA(f) := (A(f)(S))S∈Ing(T) is a BAOT-morphism
from A(X′, γ′) to A(X, γ).

Proof. Spell out definitions. 

3.3.21. L  D. Let T ∈ VPF and t : (Φ, next) → (Φ′, next′) ∈ BAOT.
Then the map C(t) := SptI : SpΦ′(I) → SpΦ(I) is a T-coalgebra morphism from
C(Φ′, next′) to C(Φ, next).

Proof. The proof is not difficult and similar to the proof of Proposition 5.3 in [Jac01].


3.3.22. P. If we extend A and C as described in Definitions 3.3.20 and
3.3.21 we obtain functors

A : Coalg(T)op → BAOT and C : BAOT → Coalg(T)op.

3.4 Duality between BAOT and Coalg(V)
In the previous section we encountered the functors A : Coalg(T)op → BAOT and
C : BAOT → Coalg(T)op. Here we will study these functors in more detail, and show
that in fact they provide an adjunction between the categories BAOT and Coalg(T).
We will define two families of morphisms, αΦ : AC(Φ, next) → (Φ, next) in BAOT ,
and ξ(X,γ) : (X, γ) → CA(X, γ) in Coalg(T)op, and prove that these are the counit and
unit witnessing the fact that A is left adjoint to C. Since the ξ’s will turn out to be
isomorphisms, this will then show that Coalg(T)op is (isomorphic to) a full coreflective
subcategory of BAOT.

In contrast to the classical case of the duality MA ' DGFop, we do not obtain a dual
equivalence between BAOT and Coalg(T). This is due to the fact, which the reader
might have noticed already, that the axiomatic definition of T-BAOs does not force a T-
BAO Φ to respect T-structure. We take a closer look at this, characterizing the largest
full subcategory of BAOT on which the adjunction restricts to an equivalence. By
showing that the initial algebra of BAOT is exact, that is, belongs to this subcategory,
we obtain the final T-coalgebra as its dual.

We start by proving that every T-coalgebra has an ‘ultrafilter representation’: it
is isomorphic to its double dual. Recall from Section 3.1.1 that for a Stone space Y,
εY : Y→ SpClpY denotes the homeomorphism fixed by εY(y) := {a ∈ Clp(Y) | y ∈ a}.

3.4.1. T. Let T be a Vietoris polynomial functor, and let (X, γ) be an T-coalgebra.
Then the map εX : X→ SpClpX is a Coalg(T)-isomorphism witnessing that

(X, γ) ¾ C(A(X, γ)).

3.4. DUALITY BETWEEN BAOT AND COALG(V) 57

Proof. We first show that for each sort S ∈ Ing(T) the following diagram commutes:

SpA(X, γ)(S) rA(X,γ)(S)
S(SpA(X, γ)(I))

SX

εSX
S(εX)

The proof is by induction on S. We will only treat the Vietoris functor, since all other
cases work exactly as in the proof of Lemma 5.6 in [Jac01]. In order to prove the
commutativity of the above diagram for S = VS′, take an arbitrary F ∈ VS′(X). Then,
unraveling the definitions of r, A and of (·)pow, we find

rA(X,γ)(S)(εSX(F)) = rA(X,γ)(S′)
[{

v | A(X, γ)(pow)−1(εSX(F)) ⊆ v
}]

= rA(X,γ)(S′)
[{v | {α ∈ Clp(S′X) | (α)pow ∈ εSX(F)} ⊆ v}]

= rA(X,γ)(S′)
[{v | {α ∈ Clp(S′X) | F ⊆ α} ⊆ v}]

(!)
= {S′(εX)(x) | x ∈ F}
= S(εX)(F).

It is left to prove (!). For (⊇), take an arbitrary x ∈ F, and define vx := εS′X(x). Then for
all a ∈ Clp(S′X) it holds that F ⊆ a implies x ∈ a, which is equivalent to a ∈ εX(x) = vx;
in other words,vx satisfies the condition {a | F ⊆ a} ⊆ vx. Also, by the inductive
hypothesis we have that S′(εX)(x) = rA(X,γ)(S′)(εS′X(x)). Taking these observations
together we see that S′(εX)(x) ∈ rA(X,γ)(S′)

[
{v | {a ∈ Clp(S′X) | F ⊆ a} ⊆ v}].

For (⊆), let v ∈ UfA(X, γ)(S′) be such that {a ∈ Clp(S′X) | F ⊆ a} ⊆ v. By
Stone duality we know that ⋂

a∈v a = {x} for exactly one x ∈ S′X. This x must be an
element of F, because ⋂

a∈v a ⊆
⋂
{a | F ⊆ a} = F and we get εS′X(x) = v. By the

induction hypothesis this is the same as saying rA(X,γ)(S′)(v) = S′(εX)(v), which proves
the inclusion.

Now we proceed to prove the theorem: we calculate

C(A(X, γ)) ◦ εX = (rA(X,γ)(T) ◦ SpClp(γ)) ◦ εX = rA(X,γ)(T) ◦ (SpClp(γ) ◦ εX)
= rA(X,γ)(T) ◦ (εTX ◦ γ) = (rA(X,γ)(T) ◦ εTX) ◦ γ,

where the third step is by naturality of ε. Now by commutativity of the above diagram
for T we find that C(A(X, γ)) ◦ εX = T(εX) ◦ γ, which is nothing but stating that εX is a
coalgebra homomorphism. But then since εX is an isomorphism between Stone spaces
we may conclude that it is also an isomorphism between the two given coalgebras. 

The functor C is not faithful in general; however, when it comes to morphisms having
a complex algebra A(X, γ) as their domain, we can prove the following.

3.4.2. P. Let (X, γ) be a T-coalgebra and (Φ, next) be a T-BAO. Further-
more let s, s′ : A(X, γ) → (Φ, next) be morphisms in BAOT. Then C(s) = C(s′)
implies s = s′.

58 CHAPTER 3. STONE COALGEBRAS

Proof. Let (X, γ), (Φ, next), s and s′ be as in the statement of the Proposition, and
assume that C(s) = C(s′). Then it is clear that we have sI = s′

I
. With the help of

Lemma 3.4.3 below we therefore get s = s′. 

The following lemma, which forms the heart of the proof of Proposition 3.4.2, is
stated separately because we need it again further on.

3.4.3. L. Let (X, γ) be a T-coalgebra and (Φ, next) a T-BAO. Furthermore let
s, s′ : A(X, γ) → Φ be natural transformations whose components preserve all the
Boolean structure, and such that sI = s′

I
and sA = s′

A
for all constants A ∈ Ing(T).

Then s = s′.

Proof. Assume that we have two natural transformations s, s′ : A(X, γ) → (Φ, next)
as required in the lemma. In order to prove that s = s′, it suffices to show that

sS = v′
S

for all S ∈ Ing(T). (3.5)

We will prove (3.5) by induction on S. In the base case (S = I or S = A for some
constant functor A), it follows immediately that sS = s′

S
.

For the inductive step of the proof, we confine ourselves to a rough sketch of the
proof idea. In each case, in order to show that sS(a) = sS′(a) for every clopen a of
SX, we try and find a clopen subbasis B such that sS(b) = s′

S
(b) for all subbasic b. For

instance, in the case that S = VS′, put

B := {b | b ∈ ()pow[Clp(S′X)]} ∪ {
−b | b ∈ ()pow[Clp(S′X)]} ,

and let b ∈ B. Then one can easily check that we have sS(b) = s′
S
(b) for all b ∈ B

and by the fact that B is a clopen subbasis of the Vietoris topology one can use a
straightforward argument to show that sS = s′

S
. 

We are now ready to show that the functors C : BAOT → Coalg(T)op and A :
Coalg(T)op → BAOT form a so-called dual representation. That is, C is right adjoint
to A and the unit of the adjunction is an isomorphism. We first define the unit ξ and
the counit α of the adjunction. Recall that we proved in Theorem 3.4.1 that ξ is an
isomorphism; for rΦ see Definition 3.3.17 and for ιΦ(S) Theorem 3.1.3.

3.4.4. D. (α, ξ) For a T-BAO (Φ, next) and a S ∈ Ing(T) we define

α(Φ,next) : AC(Φ, next) → (Φ, next)

via αΦ(S) := υΦ(S) ◦ Clp(rΦ(S)), where υΦ(S) denotes the inverse of the isomorphism
ιΦ(S) : Φ(S) → ClpSpΦ(S). For a T-coalgebra (X, γ), we define

ξ(X,γ) : (X, γ) → CA(X, γ) in Coalg(T)op

as the inverse ξ(X,γ) : CA(X, γ) → (X, γ) of the morphism ε(X,γ) : (X, γ) → CA(X, γ)
in Coalg(T).

3.4. DUALITY BETWEEN BAOT AND COALG(V) 59

Intuitively, the next theorem establishes a duality between Coalg(T) and BAOT in
which every coalgebra (X, γ) can be represented in a canonical way by the algebra
A(X, γ).

3.4.5. T. Let T be a VPF. Then A : Coalg(T)op → BAOT is a full embedding
and has C : BAOT → Coalg(T)op as a right adjoint with ξ and α as unit and counit.
That is, Coalg(T)op is (isomorphic to) a full coreflective subcategory of BAOT.

Before we turn to the proof of this theorem, we first show that α is indeed a mor-
phism of T-BAOs.

3.4.6. L. The family of maps α(Φ,next)() : AC(Φ, next) → (Φ, next) is a morphism
of T-BAOs.

Proof. We have to show that α(Φ,next)() is a natural transformation and that α(Φ,next)()
fulfills an additional naturality condition with respect to the next-operator.

Concerning the first claim we must prove that for all p : SÃ S′ in Ing(T) we have

Φ(p) ◦ α(Φ,next)(S′) = α(Φ,next)(S) ◦ ()p.

It suffices to show, by a case distinction, that this equation holds for paths of length at
most one. As all of these proofs boil down to a tedious but straightforward unraveling
of definitions, we confine ourselves to the case that p = pow and S = VGs′. Take an
arbitrary U ∈ Clp(S′SpΦ(I)) and let a ∈ Φ(S′) be such that Clp(rΦ(S))(U) = â. Then
α(Φ,next)(S)((U)pow) = (υΦ(S) ◦ Clp(rΦ(S)))((U)pow)

= (υΦ(S) ◦ rΦ(S)−1)({F ⊆ U | F ⊆ S′SpΦ(I) closed})
= υΦ(S) ({u ∈ UfΦ(S) | rΦ(S)(u) ⊆ U})
= υΦ(S)

({
u ∈ UfΦ(S) | {rΦ(S′)(v) | Φ(pow)−1(u) ⊆ v} ⊆ U

})

= υΦ(S)
({

u ∈ UfΦ(S) | {v | Φ(pow)−1(u) ⊆ v} ⊆ Clp(rΦ(S 1))(U)
})

= υΦ(S)
({

u ∈ UfΦ(S) | {v | Φ(pow)−1(u) ⊆ v} ⊆ â
})

= υΦ(S)
({

u ∈ UfΦ(S) | Φ(pow)−1(u) ⊆ v ⇒ a ∈ v
})

= υΦ(S) ({u ∈ UfΦ(S) | Φ(pow)(a) ∈ u})
= Φ(pow)(a)
= Φ(pow) (υΦ(S′) ◦ Clp(rΦ(S′))(U))

=
(
Φ(pow) ◦ α(Φ,next)(S′)

) (U)

and we get α(Φ,next)(S) ◦ ()pow = Φ(pow) ◦ α(Φ,next)(S′), as required.
Now we turn to the second claim. The ‘additional naturality condition with respect

to the next-operator’ is the following: next ◦ α(Φ,next)(T) = α(Φ,next)(I) ◦ Clp(rΦ(T) ◦
Spnext). This is easily shown to hold (the second identity being due the naturality of
υ).

α(Φ,next)(I) ◦ Clp(rΦ(T) ◦ Sp(next)) = υΦ(I) ◦ Clp(Sp(next)) ◦ Clp(rΦ(T))
= next ◦ υΦ(T) ◦ Clp(rΦ(T))
= next ◦ α(Φ,next)(T).



60 CHAPTER 3. STONE COALGEBRAS

Proof of Theorem 3.4.5. For the adjunction it suffices to show ([Mac71], p. 81) that
for all (X, γ) ∈ Stone and for all f : C(Φ, next) → (X, γ) there is a unique s :
A(X, γ) → (Φ, next) such that the following diagram in Coalg(T) commutes:

CA(X, γ) ξ(X,γ) (X, γ)

C(Φ, next)

C(s)
f

Indeed, defining s = α(Φ,next) ◦ A(f), we calculate

ξ(X,γ) ◦ C(α(Φ,next) ◦ A(f)) = ξ(X,γ) ◦ Sp
(
α(Φ,next)(I) ◦ A(f)(I))

= ξ(X,γ) ◦ Sp(υΦ(I) ◦ rΦ(I) ◦ Clp(f))
= ξ(X,γ) ◦ Sp(Clp(f)) ◦ Sp(υΦ(I))
= f ◦ ε−1

Sp(Φ(I)) ◦ Sp(υΦ(I))
= f

The last two steps use the fact that Sp and Clp are adjoint with (co)units υ and ε, see
Theorem 3.1.3 and Definition 3.4.4. Uniqueness of s is Proposition 3.4.2. To conclude
the proof, recall that a left-adjoint is full and faithful iff the unit is an isomorphism
([Mac71], p. 88). Hence A is full and faithful by Theorem 3.4.1. 

We now turn to a characterization of the largest subcategory of BAOT on which
the adjunction from Theorem 3.4.5 restricts to a dual equivalence. The reader might
have noticed already that our adjunction is not a dual equivalence since the definition
of T-BAOs does not force a T-BAO (Φ, next) to respect T-structure. For example, if
S1 × S2 is an ingredient of T then it may well be that Φ(S1 × S2) , Φ(S1) + Φ(S2).

3.4.7. D. Let S be a functor Stone → Stone. Then

S
∂ := Clp ◦ S ◦ Sp.

defines a corresponding functor S∂ on the category BA.

The following definition introduces exact T-BAOs, that is, those T-BAOs which do
respect T-structure.

3.4.8. D. (exact T-BAO) A T-BAO (Φ, next) is called exact if there is a Ing(S)-
indexed family of isomorphisms

τS : S∂(Φ(I)) → Φ(S)

with the following properties:

3.4. DUALITY BETWEEN BAOT AND COALG(V) 61

• τ : ()∂(Φ(I)) → Φ is a natural transformation. Here the functor ()∂(Φ(I)) is
defined as follows:

()∂(Φ(I)) : Ing(T)op → BA∧

S 7→ S
∂(Φ(I))

p : S1 Ã S2 7→ ()p : S2
∂(Φ(I)) → S1

∂(Φ(I))

where ()p denotes the predicate lifting from S2
∂(Φ(I)) = Clp(S2(SpΦ(I))) to

S1
∂(Φ(I)) = Clp(S1(SpΦ(I))).

• τI = υΦ(I), where again υΦ(I) denotes the inverse of the isomorphism ιΦ(I) : Φ(I) →
ClpSpΦ(I)

• τA = idClp(A) for every constant A ∈ Ing(T).

BAOe
T

is the full subcategory of BAOT consisting of the exact T-BAOs.

We will now see that exact T-BAOs are precisely those T-BAOs (Φ, next) for which
the component α(Φ,next) of the counit of the adjunction is an isomorphism.

3.4.9. T. Let T be a VPF. The category BAOe
T

is the largest subcategory of
BAOT on which the adjunction of Theorem 3.4.5 restricts to a dual equivalence to
Coalg(T).

Proof. Let B be the largest subcategory of BAOT on which the adjunction A a C re-
stricts to an equivalence. Then for any (Φ, next) ∈ B the map α(Φ,next) : AC(Φ, next) →
(Φ, next) consists of a family of isomorphisms going from ACΦ(S) = S∂(Φ)(I) to
Φ(S). Therefore we can define a family of isomorphisms τS : S∂(Φ)(I) → Φ(S) by let-
ting τ = α(Φ,next). It is straightforward to check that this family satisfies the conditions
in Definition 3.4.8. Hence (Φ, next) ∈ BAOe

T
.

Now let (Φ, next) ∈ BAOe
T
. We have to show that the counit α(Φ,next) is an isomor-

phism. As (Φ, next) ∈ BAOe
T

there is a family of isomorphisms

τS : (ACΦ)(S) → Φ(S).

which is natural in S and for which we have τI = υΦ(I) = α(Φ,next)(I) and τA = idClp(A) =

α(Φ,next)(A) for all constants A ∈ Ing(T). Using Lemma 3.4.3 one can therefore show
that τS = α(Φ,next)(S) for all S ∈ Ing(T). But this means in particular that α(Φ,next) is an
isomorphism. 

We now show that the final object in Coalg(T) is obtained as the dual of the initial
object in BAOT. This is a direct consequence of Theorem 3.4.5 and a special case of
the more general fact that the right adjoint C preserves colimits of diagrams that take
values in the A-image of Coalg(T)op.

62 CHAPTER 3. STONE COALGEBRAS

3.4.10. T. Let T be a VPF and LT be the initial object in BAOT . Then CLT is
final in Coalg(T).

Proof. We prove the theorem by showing that αLT is an isomorphism, i.e. LT ∈ BAOe
T
.

Finality of CLT follows then immediately from the duality between Coalg(T) and
BAOe

T
.

Since LT is initial there is a morphism i : LT → ACLT. Since idLT is the unique
morphism LT → LT it follows that αLT ◦ i = idLT . We want to show that i ◦ αLT :
ACLT → ACLT is in fact the identity on ACLT. Since A is full (cf. Theorem 3.4.5)
there is f : CLT → CLT in Coalg(T) such thatA(f) = i◦αLT . We obtain αLT ◦A(f) =
αLT ◦ i◦αLT = αLT = αLT ◦A(idCLT) and the universal property of the coreflection tells
us that f = idCLT , hence, idACLT = i ◦ αLT and αLT is iso. 

As a corollary we obtain completeness of MSMLT with respect to the coalgebraic
semantics.

3.4.11. C (C MSMLT). Let T ∈ VPF and suppose φ ∈ FormS
is a formula of MSMLT. Then

0S φ implies ∃(X, γ) ∈ Coalg(T) s.t. [[¬φ]]S(X,γ) , ∅.

Proof. Suppose 0S φ, then obviously [[φ]]LT , >. Since LT was shown to be exact in
the proof of the theorem we have LT ¾ ACLT and therefore [[φ]]ACLT , >. But then
by Proposition 3.3.16 we have [[φ]]CLT , >, i.e. ¬φ is satisfiable in CLT. 

But completeness with respect to the Stone coalgebra semantics is not exactly what
one is interested in. In general we want to specify properties of Set-based systems and
thus we are aiming at completeness with respect to Set-based coalgebras. Luckily this
is an easy consequence of Corollary 3.4.11.

3.4.12. C (C MSMLT). Let T ∈ KPF and suppose φ ∈ FormS
is a formula of MSMLT . Then

0S φ implies ∃(X, γ) ∈ Coalg(T) s.t. [[¬φ]]S
(X,γ) , ∅.

Proof. Let φ ∈ FormS for some S ∈ Ing(T) such that 0S φ. For all ingredients
S ∈ Ing(T) we write S for the corresponding VPF Ŝ . Because `S φ and `S=`S we
know that 0S φ. Therefore there exists a T-coalgebra (X, δ) such that [[¬φ]]S(X,δ) , ∅

by Corollary 3.3.16. This T-coalgebra can be transformed into a T -coalgebra (X, γ) B
K(X, δ) using the functor K : Coalg(T) → Coalg(T) from Proposition 3.3.4. Spelling
out the definition of K it is not difficult to see that [[¬φ]]S

K(X,δ) = [[¬φ]]S(X,δ) , ∅. Hence
[[¬φ]]S

(X γ) , ∅ and the proof is finished. 

3.4.13. R. This completeness result was already contained in [Jac01]. The canon-
ical model construction in loc.cit. , however, works only for polynomial functors, i.e.
for KPF’s not containing the power set functor.

3.5. ALTERNATIVE VIEW: MANY-SORTED ALGEBRAS 63

3.5 Alternative view: Many-sorted algebras
In this section we are going to present a slightly different view on our results in the
previous sections. The algebraic semantics of MSML in terms of T-BAOs was first
defined by Jacobs in [Jac01] and we sticked to his terminology, because one of the
motivations of our work was to improve on Jacobs’ results.

Instead of representing T-BAOs as functors Φ : Ing(T)op → BA∧, however, we
could have defined T-BAOs as many-sorted algebras. We will now present this alter-
native representation. As a result we obtain an algebraic explanation for the definition
of rΦ in 3.3.17 and a characterization of the exact T-BAOs from Definition 3.4.8: the
exact T-BAOs will turn out to be those T-BAOs (Φ, next) which are freely generated
from the elements in Φ(I).

3.5.1. D. For each T ∈ VPF we define the T-sorted algebraic theory (Σ, E) as
follows: the set of sorts is given by the ingredients Ing(T). The signature Σ contains

• for each sort S ∈ Ing(T) the Boolean operations, i.e. for all S we have ∨,∧ ∈

ΣSS,S, ¬ ∈ ΣS,S and >,⊥∈ Σ1,S,

• for each A ∈ Ing(T) and each a ∈ A a constant a ∈ Σ1,A,

• for SD ∈ Ing(T) and each d ∈ D an operation [d,−] ∈ ΣS,SD ,

• for S1 × S2 ∈ Ing(T) an operation − ⊗ − ∈ ΣS1S2,S1×S2 ,

• for S1 + S2 ∈ Ing(T) an operation − ⊕ − ∈ ΣS1S2,S1+S2 , and

• for each VS ∈ Ing(T) an operation ¤ ∈ ΣS,VS.

The set E consists of all Boolean equations for the Boolean operations of each sort, all
the equations that hold in Clp(A) for A ∈ Ing(T) and of the following equations, that
specify the behaviour of the other operators:

¬[d, x] = [d,¬x]∨
i[d, xi] = [d,∨i xi]

¬(x ⊕ y) = ¬x ⊕ ¬y∨
i(xi ⊕ yi) =

∨
i xi ⊕

∨
i yi

(∨i xi) ⊗ y =
∨

i(xi ⊗ y)
x ⊗ (∨i yi) =

∨
i(x ⊗ yi)

¬(x ⊗ y) = (¬x ⊗ >) ∨ (> ⊗ ¬y)
¤

∧
i xi =

∧
i ¤xi

where the occurring conjunctions ∧
i and the disjunctions ∨

i are required to be finite
or empty. In the latter case we have ∧

∅ = > and ∨
∅ =⊥. A (Σ, E)-algebra is called

an T-sorted algebra (T − MAlg). Furthermore we denote by MAlgT the category with
T-sorted algebras as objects and with homomorphisms as arrows.

64 CHAPTER 3. STONE COALGEBRAS

We will now see that T-BAOs can be seen as T-sorted algebras with an additional
next -operator. First we show how to transform a T-sorted algebra into a T-BAO.

3.5.2. L  D. Let T ∈ VPF, A ∈ MAlgT with T-sorted carrier set
(AS)S∈Ing(T) and next : AT → AI ∈ BA, where for S ∈ Ing(T) we denote by AS
the Boolean algebra based on AS . We define a functor ΦA : Ing(T)op → BA∧ by letting

• Φ(S) := AS for S ∈ Ing(T),

• Φ(ev(d))(b) := [d, b] for ev(d) : SD Ã S ∈ Ing(T),

• Φ(π1)(b) := b ⊗ > and Φ(π2)(b) := > ⊗ b for πi : S1 × S2 Ã Si ∈ Ing(T),

• Φ(κ1)(b) := b ⊕ > and Φ(κ2)(b) := > ⊕ b for κi : S1 + S2 Ã Si ∈ Ing(T), and

• Φ(pow)(b) := ¤b for pow : VSÃ S ∈ Ing(T).

Then the pair (ΦA,next) is an T-BAO. Furthermore if t : A1 → A2 ∈ MAlgT then
(t¹AS)S∈Ing(T) : ΦA1 → ΦA2 is a natural transformation.

Proof. ΦA is obviously well-defined on objects S ∈ Ing(T). The fact that the arrows
Φ(p) ∈ BA∧ for all p ∈ PCons satisfy the T-BAO axioms can be deduced using the
equations for ⊗,⊕, [d,] and ¤ from Definition 3.5.1.

Let t : A1 → A2 ∈ MAlgT. We have to show that s := (t¹AS)S∈Ing(T) is natural. It
suffices to show the naturality of s for path constructors p ∈ PCons. We only consider
the case pow : VS → S ∈ Ing(T), in which we have to prove that the diagram below
commutes:

ΦA1(VS)
sVS

ΦA2(VS)

ΦA1(S)

ΦA1 (pow)

sS ΦA2(S)

ΦA2 (pow)

But this follows from sVS(ΦA1(pow))(b) = t(¤b) by definition, t(¤b) = ¤t(b) by t ∈
MAlgT and ¤t(b) = ΦA2(pow)(sS(b)) by definition. 

3.5.3. L  D. Let T ∈ VPF and (Φ, next) ∈ BAOT. Then the following
defines a T-sorted algebra AΦ:

• the carrier set is (AS)S∈Ing(T) where for all S ∈ Ing(T) AS is the carrier set ofΦ(S),

• for each sort S the Boolean operations on AS are interpreted as in Φ(S), and

• the other operators are defined as follows:

[d, x] := Φ(ev(d))(x)
x1 ⊗ x2 := Φ(π1)(x1) ∧ Φ(π2)(x2)
x1 ⊕ x2 := Φ(κ1)(x1) ∧ Φ(κ2)(x2)
¤x := Φ(pow)(x).

3.5. ALTERNATIVE VIEW: MANY-SORTED ALGEBRAS 65

Moreover if t : (Φ1, next1) → (Φ2, next2) is an T-BAO morphism, then the map s :
AΦ1 → AΦ2 defined by s(b) := tS(b) for b ∈ AS is an MAlgT-morphism.

For every functor T : Stone → Stone there exists by Stone duality a corresponding
functor T∂ : BA → BA defined by T∂ := Clp◦T◦Sp (cf. Def. 3.4.7). For a T ∈ VPF we
can, however, give an explicit description of the dual functor on BA. The idea is that
for every operation on Stone spaces, such as the product and coproduct, there is a dual
operation on Boolean algebras. The next definition describes these dual operations on
Boolean algebras which are needed to define the dual of a VPF.

3.5.4. D. Let B,B1,B2 be Boolean algebras. Then we define

B
D := BA 〈

{[d, b] | d ∈ D, b ∈ B}|E[d,]
〉

B1 ⊗ B2 := BA 〈{b1 ⊗ b2 | bi ∈ Bi}|E⊗〉

B1 ⊕ B2 := BA 〈{b1 ⊕ b2 | bi ∈ Bi}|E⊕〉

V
†
B := BA 〈{¤b | b ∈ B}|E¤〉

where E[d,], E⊗, E⊕ and E¤ are the equations from Definition 3.5.1 for [d,], ⊗, ⊕
and ¤ respectively and BA 〈G | E〉 denotes the Boolean algebra presented by the set of
generators G and equations E (cf. appendix). These operations on BA can be easily
extended to operations on functors T : BA → BA, e.g. T1⊕T2 denotes the functor map-
ping B ∈ BA to T1B ⊕ T2B and a homomorphism f : B1 → B2 to the homomorphism
that maps a generator b1 ⊕ b2 ∈ T1B1 ⊕ T2B1 to f (b1) ⊕ f (b2) ∈ T1B2 ⊕ T2B2.

3.5.5. D. For an T ∈ VPF we define the dual functor T† by induction on the
structure of T as follows:

A
† := Clp(A) I

† := IdBA

(TD)† := (T†)D (T1 + T2)† := T1
† ⊕ T2

†

(T1 × T2)† := T1
† ⊗ T2

† (VT)† := V
† ◦ T†

3.5.6. R. The definition of (VI)† is similar to the definition of H in Proposi-
tion 3.2.12: the equation in E¤ precisely expresses that the set of generators is a semi-
lattice, VI† is the free Boolean algebra over this semi-lattice.

The next lemma states that the functor T† indeed describes the Stone dual of a given
functor T.

3.5.7. L. Let T ∈ VPF. Then T∂ ¾ T† where T∂ is defined as in Definition 3.4.7.

Proof. This follows from the duality. 

With the help of T† we can now describe the T-sorted algebras that are freely generated
by a given Boolean algebra.

66 CHAPTER 3. STONE COALGEBRAS

3.5.8. L. Let T ∈ VPF and B ∈ BA. Then the free T-sorted algebra generated by
B denoted by FT(B) is defined as follows:

• for all S ∈ Ing(T) we let AS := S∂(B), i.e. the carrier set AS of sort S is given by
the carrier set of S† and the Boolean operation on AS are interpreted as in S†,

• for SD,S1 × S2,S1 + S2,VS ∈ Ing(S) the operations [d,],⊗,⊕ and ¤ are inter-
preted as the insertion of generators, e.g. [d,] maps an element b ∈ S∂(B) to the
generator [d, b] ∈ (SD)∂(B).

Proof. Let A be a T-sorted algebra with sorted carrier set (AS)S∈Ing(T) and f : B → AI
a Boolean homomorphism. In order to show that FT(B) is free over B we have to
prove that there is a unique morphism qA : FT(B) → A such that (qA)¹B = f . First we
define for each S ∈ Ing(T) a function qS : AS → A′S by induction on the structure of
S ∈ Ing(T).

Case: S = A for some constant functor A. Then q
A

(a) B a ∈ for all a ∈ A.

Case: S = I. Then qI B f .

Case: S = S1 × S2. Then qS1×S2 is defined as the unique BA-homomorphism that ex-
tends the mapping (b1 ⊗ b2) 7→ qS1(b1) ⊗ qS2(b2). This unique extension exists,
because AS1×S2 = BA 〈

{b1 ⊗ b2 | bi ∈ ASi}|E⊗

〉 and A′
S1×S2

satisfies all the equa-
tions in E⊗.

The remaining cases of the definition of the qS’s are analogous to the last case. Finally
we define

qA : FT(B) → A

a 7→ qS(a) if a ∈ AS.

It is now not difficult to see that with this definition qA is the unique homomorphism
from FT(B) to A with the property required in the lemma. 

Consider now an arbitrary (Φ, next) ∈ BAOT and the corresponding T-sorted al-
gebra AΦ (cf. Definition 3.5.3). Then, according to Lemma 3.5.8, there is a unique
homomorphism qAΦ : FT(Φ(I)) → AΦ such that qAΦ¹Φ(I) = idΦ(I). Spelling out the def-
inition of FT(Φ(I)) it is easy to see that this homomorphism corresponds to a Ing(T)-
indexed family of BA-morphisms qS : S†(Φ(I)) → Φ(S). Using the isomorphism from
Lemma 3.5.7 we get a family of morphisms q̄S : S∂(Φ(I)) → Φ(S). Spelling out the
definition one can now easily check that q̄S = Clp(rΦ(S)), i.e. the rΦ(S)-map from
Definition 3.3.17 is the Stone dual of q̄S.

In other words the family (rΦ(S))S∈Ing(T) corresponds to the dual of the AΦ-component
of the counit of the adjunction

3.6. CONCLUSIONS 67

MAlgT
U

⊥ BA
FT()

Here U maps a T-sorted algebra A to its I-component AI ∈ BA or to some fixed (arbi-
trary) Boolean algebra in case I < Ing(T).

3.5.9. P. Let T ∈ VPF. Then (Φ, next) ∈ BAOT is exact iff AΦ ∈ T − MAlg
is freely generated by Φ(I).

Proof. If (Φ, next) is exact then by the definition of exactness there is a natural isomor-
phism τS : ()∂(Φ(I)) → Φ(). By Lemma 3.5.7 these isomorphisms give rise to a natu-
ral isomorphism τ̄S : ()†(Φ(I)) → Φ(), but this means that AΦ is isomorphic in MAlgT
to the T-sorted algebra which is freely generated by Φ(I), i.e. AΦ is freely generated
by Φ(I). The other direction can be proven in a similar way: as AΦ is freely generated
by Φ(I) we can show that there is a natural isomorphism τ̄S : ()†(Φ(I)) → Φ() that
corresponds to a suitable natural isomorphism τS : ()∂(Φ(I)) → Φ(). 

This result can be explained as follows: we know that the exact T-BAOs form a cat-
egory which is dually equivalent to Coalg(T). An element of Coalg(T) is determined
by its underlying Stone space X and its coalgebra map γ : X → TX. Dually this
means that an exact T-BAO should be determined by the Boolean algebra Φ(I) and the
next -operator. This is precisely the case for those (Φ, next) ∈ BAOT for which the
corresponding T-sorted algebra is freely generated by Φ(I).

3.6 Conclusions
What we have done so far can be viewed from various distinct perspectives. Here we
summarise some of these, indicating possible future research directions.

Stone Coalgebras and Modal Logic Research on the relation between coalgebras
and modal logic started with Moss ([Mos99]) although earlier work, e.g. by Rutten
([Rut95]) already showed that Kripke frames and models are instances of coalgebras.
Kurz ([Kur01a, Kur00]) showed that modal logic for coalgebras dualises equational
logic for algebras, the idea being that equations describe quotients of free algebras and
modal formulas describe subsets of final (or cofree) coalgebras. Another account of the
duality has been given in [KR02] where it was shown that modalities dualise algebraic
operations. But whereas, usually, any quotient of a free algebra can be defined by a
set of ordinary equations, one needs infinitary modal formulas to define all subsets of
a final coalgebra. As a consequence, while we have a satisfactory description of the
coalgebraic semantics of infinitary modal logics, we do not completely understand the
relationship between coalgebras and finitary modal logic. The results in this chapter
show that Stone coalgebras provide a natural and adequate semantics for finitary modal
logics, but there is ample room for clarification here.

68 CHAPTER 3. STONE COALGEBRAS

Another approach to a coalgebraic semantics for finitary modal logics was given
in [KP05]. There, the idea is to modify coalgebra morphisms in such a way that they
capture not bisimulation but only bisimulation up to rankω. Since finitary modal logics
capture precisely bisimulation up to rank ω, the resulting category Behω provides a
convenient framework to study the coalgebraic semantics of finitary modal logic. So
an important next step is to understand the relation between both approaches.

Stone Coalgebras as Systems We investigated coalgebras over Stone spaces as mod-
els for modal logic. But what is the significance of Stone-coalgebras from the point
of view of systems (that is, coalgebras over Set, cf. [Rut00])? What is the relation-
ship between Set-coalgebras and Stone-coalgebras? An interesting observation is here
that their notions of bisimilarity coincide. Recall that two elements of two coalgebras
are bisimilar iff they can be identified by some coalgebra morphisms. Since Stone
coalgebra morphisms have to be continuous, we expect that fewer states are identified
under Stone-behavioural equivalence than under Set-behavioural equivalence. But the
following holds.

Consider a Vietoris polynomial functor T : Stone → Stone and its corresponding
(Kripke polynomial) functor Ť : Set → Set. According to Proposition 3.3.4 there is a
functor K : Coalg(T) → Coalg(Ť). Now let (X1, γ1), (X2, γ2) be two T-coalgebras and
x1, x2 be two elements in X1, X2, respectively. Then ((X1, γ1), x1) and ((X2, γ2), x2) are
behaviourally equivalent iff (K(X1, γ1), x1) and (K(X2, γ2), x2) are behavioural equiv-
alent. — Proof: ‘only if’ is immediate. The converse follows from the fact that Ť-
bisimilarity implies that x1 and x2 satisfy the same formulas. Therefore x1 and x2 get
identified by the maps from (Xi, γi) into the final T-coalgebra.

Generalising Stone Coalgebras Coalgebras over Stone spaces can be generalised
in different ways. We have seen that replacing the topologies by represented Boolean
algebras leads to general frames. But it will also be of interest to consider other topo-
logical spaces as base categories.

From the point of view of modal logic, it is interesting to investigate the Vietoris
functors on other base categories. For example, [Pal04] shows that the Vietoris functor
can be defined on Priestley spaces, leading to an adequate semantics for positive modal
logic. Recent results by Kurz and Bonsangue in [BK05] generalize both the Vietoris
construction on Stone and on Priestley spaces to a setting in which one works with
the category of T0-spaces as base category and the category of so-called observation
frames as its algebraic dual equivalent. Also the work by Moss & Viglizzo in [MV04],
which has been carried further by Viglizzo in [Vig05], fits in this context. In loc.cit. the
authors consider polynomial functors over the category of measurable spaces in order
to model Harsanyi type spaces, a notion that has its origin in the foundations of game
theory.

Another generalization of our work is to move away from normal modal logics to
non-normal modal logics, i.e. logics in which the modal operators do not necessarily

3.6. CONCLUSIONS 69

preserve finite conjunctions. In [HK04] a functor UpV : Stone → Stone is defined
and it is proven that UpV-coalgebras correspond to the descriptive general neighbour-
hood frames for monotone modal logic.

From the point of view of the theory of coalgebras, the value of the move from
Set to Stone as a base category can be explained as follows. For a functor on Set the
notion of behavioural equivalence is, in general, characterised by the whole terminal
sequence running through all ordinals. But often, one is interested only in finitary
approximations. In the examples considered in this chapter, the move from a functor
on Set to its version on Stone has the consequence that the final coalgebra is the
limit of the finitary approximants of the terminal sequence (and, therefore, behavioural
equivalence is completely characterised by the finitary approximants of the terminal
sequence). We expect that this idea of topologising a functor T in order to tailor the
behaviour of T -coalgebras to meet a specific notion of observable behaviour will have
further applications to universal coalgebra.

Coalgebras and Duality Theory Whereas many, or most, common dualities are in-
duced by a schizophrenic object (see [Joh82, Section VI.4.1]), the duality of modal
algebras and descriptive general frames is not. To see why this is so, write D :
MA → DGF, M : DGF → MA for the contravariant functors witnessing the du-
ality and suppose, for contradiction that there is a schizophrenic object S . That is,
assume that MA(A, S) ¾ UD(A) where U denotes the forgetful functor DGF →

Set. Then Set(1,UG) ¾ UG ¾ UDMG ¾ MA(MG, S) ¾ DGF(DS ,DMG) ¾

DGF(DS ,G), showing that DS is a free object over one generator in DGF. But since
DGF-morphisms are also bisimulations it is not hard to see that such an object cannot
exist.

For suppose otherwise, i.e. suppose there is an S ∈ MA such that for all G ∈ DGF
we have Set(1,UG) ¾ DGF(DS ,G). It is obvious that that DS must contain at least
one state. Now let G1 ∈ DGF be the general frame consisting only of one irreflexive
point which we call x1, and G2 ∈ DGF be the general frame consisting of one reflexive
point x2. Then Set(1,UGi) has 1 element for i = 1, 2 and hence by our assumption,
there are continuous bounded morphisms

fi : DS → Gi for i = 1, 2.

The graphs Gr(f1),Gr(f2) of the bounded morphisms f1 and f2 are bisimulations and
bisimulations are closed under composition (cf. Fact 3.1.22). As a consequence R B

Gr(f1)◦Gr(f2)∼, where Gr(f2)∼ denotes the converse of Gr(f2), is again a bisimulation.
It is easy to check, however, that the pair (x1, x2) is an element of R. As x2 was assumed
to be reflexive and x1 has no successors both states cannot be related by a bisimulation.
Therefore we arrive at a contradiction and can conclude that the schizophrenic object
S does not exist.

On the other hand, the duality between MA and DGF is an instance of the duality
Alg(Fop) ¾ Coalg(F)op of algebras and coalgebras, with the Vietoris functor V as the

70 CHAPTER 3. STONE COALGEBRAS

functor F. It seems therefore of interest to explore which dualities are instances of the
algebra/coalgebra duality. As a first step in this direction, [Pal04] shows that the duality
between positive modal algebras and K+-spaces can be described in a similar way as in
Section 3.2 (although the technical details are substantially more complicated).

Chapter 4
Algebraic semantics of coalgebraic modal logic

In the last chapter we saw that the algebraic semantics of normal modal logic, which
is given by modal algebras, has a representation as a category of algebras for a functor
H : BA → BA (cf. Proposition 3.2.12 on page 46). In this chapter we are going to
show that this statement can be generalized to all coalgebraic modal logics that are
given by a set of predicate liftings and a set of axioms (cf. Def. 2.2.17).

Before going into a more detailed discussion of the content of this chapter let us
stress the fact that in our view the main contribution of this chapter lies not so much
in its technical results but in the observation that any coalgebraic modal logic L(Λ, Ax)
that is given by a set of predicate liftings Λ and a set of axioms Ax can be represented
by a functor L : BA → BA. If the functor L is dual to the functor T that specifies
the type of the coalgebras under consideration then the corresponding logic L(Λ, Ax)
is sound and complete with respect to its coalgebraic semantics and its language is
expressive.

The technical content of this chapter can be summarized as follows: We take as
given a functor T : C → C, with C either equal to Set or Stone, together with a set of
predicate liftingsΛ for T and a set of axioms Ax. Then we can easily define an algebraic
semantics for the logic L(Λ, Ax) by considering certain Boolean algebras with operators
for the associated algebraic theory T(Λ, Ax): the signature of T(Λ, Ax) consists of the
signature of Boolean algebras together with an additional n-ary operator for each n-
ary predicate lifting λ ∈ Λ and the equations in T(Λ, Ax) are the Boolean equations
together with the axioms in Ax. The logic L(Λ, Ax) will be sound and complete with
respect to the algebraic semantics provided by Alg(T(Λ, Ax)), i.e. by the category of
algebras for the theory T(Λ, Ax).

We then define a functor L : BA → BA such that Alg(L), the category of alge-
bras for L, is isomorphic to Alg(T(Λ, Ax)). Therefore Alg(L) gives us a also a sound
and complete algebraic semantics for L(Λ, Ax). The algebraic semantics provided by
L-algebras has the advantage, that its format is very close to that of the coalgebraic
semantics. Therefore it allows us to establish a close connection between algebraic
and coalgebraic semantics.

71

72 CHAPTER 4. ALGEBRAIC SEMANTICS

This connection is given by a natural transformation δ : LP ⇒ PT . Here P denotes,
in the case C = Set, the contravariant power set functor while in the case C = Stone,
P denotes the functor Clp, which maps a Stone space to the Boolean algebra of clopen
subsets. In order to be able to understand δ let us look at the following diagram.

LI

αI

L[[]](X,γ) LPX
δX

α∆(X,γ)PT X
Pγ

I
[[]](X,γ) PX

Suppose we are given a T -coalgebra (X, γ) and let (I, αI) be the initial L-algebra.
We can think of I as the set of formulas of our logic modulo derivable equivalence.
The natural transformation δ, if it exists, gives us a possibility to transform the T -
coalgebra (X, γ) into the L-algebra (PX,Pγ ◦ δX) as depicted on the right half of the
diagram. We will see that the coalgebraic semantics on a T -coalgebra (X, γ) is then
obtained as the unique Alg(L)-homomorphism from the initial L-algebra (I, αI) to the
L-algebra (PX,Pγ ◦ δX). This observation will be used to prove that the existence
of δ implies soundness of the logic w.r.t. the coalgebraic semantics: if formulas are
equivalent in the logic, i.e. if they belong to the same equivalence class of formulas
in I, then they will be interpreted by the same predicate over X. Furthermore we
will show that completeness w.r.t. the coalgebraic semantics is entailed by injectivity
of δ and, in the case C = Stone, expressiveness of the language is a consequence of
surjectivity of δ.

Sufficient conditions for soundness and completeness of a logic L(Λ, Ax) and for the
expressiveness of its language have been already given by Pattinson in [Pat03a, Pat04].
We will prove that our conditions formulated in terms of δ are equivalent to Pattinson’s.
This gives an explanation for his soundness, completeness and expressiveness results
and shows that they are in fact algebraic in nature. Note, however, that our result
generalizes Pattinson’s because we are dealing with both coalgebras over Set and over
Stone. Furthermore our setting will allow base categories that are different from these
two examples.

In the case that we are dealing with coalgebras over Stone spaces we prove the
main technical result of this chapter: a logic L(Λ, Ax) for a functor T : Stone →

Stone satisfies Pattinson’s soundness, completeness and expressiveness conditions iff
the corresponding functor L : BA → BA is dual to T (cf. Def. 4.3.19).

The structure of this chapter is as follows: In the first section we define the alge-
braic semantics, first as a category Alg(T(Λ, Ax)) of algebras with operators, then as a
category Alg(L) of algebras for a functor L : BA → BA. The definition of L contains
two parts: a syntactic part that operates on sets of terms and a part that operates on con-

4.1. DEFINITION OF THE ALGEBRAIC SEMANTICS 73

gruence relations. This “modular” definition of L becomes transparent by introducing
the category PBA of pre-Boolean algebras. A pre-Boolean algebra consists of a term
algebra for the Boolean signature and a congruence relation on it.

Having defined L : BA → BA, we recall the definition of the initial and the final
sequence of a functor in section 2. These functor sequences are the main tool for
proving that the injectivity of δ implies completeness of the logic.

In section 3 we show that we can define, under certain conditions, a natural trans-
formation δ : LP ⇒ PT that relates the algebraic and the coalgebraic semantics of the
logic. We then match properties of δ with properties of the logic:

existence of δ implies soundness of L(Λ, Ax)
injectivity of δ implies completeness of L(Λ, Ax)
surjectivity of δ implies expressiveness of L(Λ) (for C = Stone)

In section 4 we show that Pattinson’s criteria for these properties, that we mentioned
above, are in fact equivalent to our conditions that are formulated in terms of δ. In this
way we obtain the announced characterization of duality.

The chapter is based on the earlier published paper [KKP04] which is joint work
with Alexander Kurz and Dirk Pattinson.

4.1 Definition of the algebraic semantics
Throughout this section we assume that we are given a functor T : C → C, where
C = Set or C = Stone (cf. Section 2.2), together with a set of predicate liftings Λ for
T (cf. Def. 2.2.2) and a set of axioms Ax (cf. Def. 2.2.13). Furthermore we asssume
that the functor T has at least one global element, i.e. an arrow from 1 to T1. Finally
we denote by

U : Alg(ΣBA) → Set
the forgetful functor mapping a ΣBA-algebra to its underlying set. Our aim is to describe
the algebraic semantics for the coalgebraic modal logic L(Λ, Ax) (cf. Definition 2.2.17)
with the help of a functor L : BA → BA.

4.1.1 Algebras for an algebraic theory
There is an obvious way of defining an algebraic semantics of coalgebraic modal logic
for a functor T : extend the Boolean signature ΣBA by n-ary operation symbols λ for
each n-ary predicate lifting λ ∈ Λ to a signature ΣΛBA. Then the algebras for the alge-
braic theory (ΣΛBA, EBA) that validate the axioms in Ax will yield a semantics for which
L(Λ, Ax) is sound and complete.

4.1.1. D. The algebraic signature ΣΛBA is defined as follows

ΣΛBA := ΣBA ∪ {λ | λ ∈ Λ},

and the arity of a λ is defined to be o(λ) := n if λ is an n-ary predicate lifting.

74 CHAPTER 4. ALGEBRAIC SEMANTICS

The axioms in Ax can now be interpreted as equations for the extended signature.

4.1.2. D. By T(Λ, Ax) we denote the algebraic theory (ΣΛBA, EBA ∪ Ax).

In this way we get a direct connection between equational logic and coalgebraic modal
logic.

4.1.3. L. Let φ, ψ ∈ L(Λ) be formulas. Then

Ax ` φ↔ ψ iff EBA ∪ Ax `EL φ ≈ ψ.

Proof. Both directions of this lemma can be proven in a standard way using induction
on the length of derivations. 

The definition of the semantics of a given formula φ on an T(Λ, Ax)-algebra is an
immediate adaptation of the definition of the algebraic semantics of basic modal logic
(cf. Def. 3.1.10) to the multi-modal setting of coalgebraic modal logic.

4.1.4. D. Given an T(Λ, Ax)-algebra A, we define the semantics of a formula
inductively as follows

[[⊥]]A := ⊥A

[[φ→ ψ]]A := ¬[[φ]]A ∨A [[ψ]]A
[[[λ](φ1, . . . , φn)]]A := λA([[φ1]]A, . . . , [[φn]]A).

We say that φ is true in A if [[φ]]A = >. In this case we write A |= φ.

4.1.5. R. If no confusion is possible we will drop the superscripts and write ⊥,∨
and λ instead of ⊥A,∨A and λA.

Soundness and completeness of Ax with respect to T(Λ)-algebras are easily obtained.

4.1.6. T. For all φ ∈ L(Λ) we have

Ax ` φ iff A |= φ for all A ∈ Alg(T(Λ, Ax)).

Proof. From Birkhoff’s completeness theorem for equational logic (cf. Theorem B.2.5)
we get

EBA ∪ Ax `EL φ ≈ > iff A |= φ for all A ∈ Alg(T(Λ, Ax)),
which is by Lemma 4.1.3 equivalent to the claim. 

It is, however, not obvious, how we could relate this algebraic semantics to the
semantics in which we are interested, namely to the coalgebraic one. Therefore we are
going to bring the algebraic semantics of the logic into a more categorical format which
is closer to (the dual of) the format of the coalgebraic semantics. In the remainder of
this section we will see how to represent T(Λ, Ax)-algebras as algebras for a functor L
on the category BA of Boolean algebras.

4.1. DEFINITION OF THE ALGEBRAIC SEMANTICS 75

4.1.2 (Pre-)Boolean algebras
Central in our definition of algebraic semantics for coalgebraic modal logic stands the
notion of a pre-Boolean algebra. The basic idea is that the functor L : BA → BA
will be built out of two components: one component working on formulas and another
component working on congruences. We will introduce now the category PBA of pre-
Boolean algebras. Objects of PBA consist essentially of a set of formulas together with
a so-called Boolean congruence relation. Then we define a functor L : PBA → PBA
where the above mentioned components of L are made explicit.

Our motivation for defining the category PBA will become clearer when looking
at the definition of the functor L in the next subsection. It turns out to be easier and
conceptually cleaner to define first a functor L : PBA → PBA and then the functor L
using the equivalence between the categories BA and PBA. Furthermore pre-Boolean
algebras will be useful when we discuss the soundness and completeness of coalge-
braic modal logic, because there we often want to reason about formulas rather than
equivalence classes of formulas.

4.1.7. D. A pre-Boolean algebra is a pair (T(G),≡) where T(G) B TΣBA(G) is
the term algebra for the Boolean signature over some set G and ≡ ⊆ UT(G) × UT(G)
is a congruence relation such that T(G)/≡ (cf. Definition B.1.4) is a Boolean algebra.

So a pre-Boolean algebra abstractly describes a set of formulas for the Boolean signa-
ture together with a notion of logical equivalence that is closed under the axioms and
rules of propositional logic. Because we often will reason about equivalence classes of
formulas we introduce some notation.

4.1.8. N. Let A ∈ ΣBA, ≡ ⊆ UA×UA a congruence and a ∈ A. Then we denote
by [a]A/≡ the equivalence class of a in A/≡.

4.1.9. E. The ΣBA-algebra based onL(Λ) together with the relation a` B {(φ, ψ) |
Ax ` φ→ ψ and Ax ` ψ→ φ} is a pre-Boolean algebra.

Every Boolean algebra can be viewed as a pre-Boolean algebra. Before we for-
mally state this observation we first introduce some terminology.

4.1.10. D. For A ∈ BA we define

Ter(A) := TΣBA(UA)
Diag(A) := {(ψ1, ψ2) ∈ Ter(A) × Ter(A) | ψA1 = ψA2 },

where ψA is inductively defined as

⊥A := ⊥

aA := a for a ∈ A
(ψ1 → ψ2)A := ψA1 →

A ψA2 .

76 CHAPTER 4. ALGEBRAIC SEMANTICS

Furthermore for f : A1 → A2 ∈ BA we let Ter(f) : Ter(A1) → Ter(A2) be the unique
ΣBA-morphism that extends the mapping

UA1 3 a 7→ f (a) ∈ Ter(A2).

With this definition Ter is a functor from BA to the category of ΣBA-algebras.

4.1.11. R. Expressed in words Ter(A) is the set of Boolean terms generated by
the carrier set of A and Diag(A) is the diagram of A encoding the equality relation
on A. It is not difficult to see that A is presented by ΣBA

〈UTer(A) | Diag(A)〉 (cf.
Def. B.1.10).

4.1.12. P. Let A ∈ BA. Then the pair TerA B (Ter(A),Diag(A)) is a pre-
Boolean algebra.

Proof. By definition we have that for all φ, ψ ∈ Ter(A)

(φ, ψ) ∈ Diag(A) iff φA = ψA

and Ter(A)/Diag(A) ¾ A. Hence Ter(A)/Diag(A) is a Boolean algebra. 

When defining morphisms between pre-Boolean algebras we want to make sure that
for two Boolean algebras A1,A2 there is an isomorphism between BA(A1,A2) and the
set of morphisms from TerA1 to TerA2. By requiring that every PBA-morphism is
preserving we ensure that every morphism between TerA1 and TerA2 corresponds to a
BA-homomorphism from A1 to A2.

4.1.13. D. Let A1,A2 ∈ Alg(ΣBA) and let ≡1 ⊆ UA1 × UA1 and ≡2 ⊆ UA2 ×

UA2 be congruences. A preserving map between (A1,≡1) and (A2,≡2) is a ΣBA-
morphism f : A1 → A2 such that

a1 ≡1 a2 implies f (a1) ≡2 f (a2) for all a1, a2 ∈ A1.

The next lemma shows that preserving maps between two pre-Boolean algebras give
rise to Boolean homomorphisms between the corresponding Boolean algebras.

4.1.14. L. Suppose that f : (A1,≡1) → (A2,≡2) is a preserving map. Then the
function

Qu(f) : A1/≡1 → A2/≡

[a]A1/≡1 7→
[f (a)]

A2/≡2

is a Boolean homomorphism.

Proof. The fact that f is preserving ensures that Qu(f) is well-defined. The proof that
Qu(f) is a homomorphism is straightforward and uses that f is a ΣBA-homomorphism.



4.1. DEFINITION OF THE ALGEBRAIC SEMANTICS 77

In turn Boolean homomorphisms correspond to preserving maps between pre-Boolean
algebras.

4.1.15. L. Let f : A1 → A2 ∈ BA. Then

f (ψA1) = (Ter(f)(ψ))A2 (4.1)

and therefore Ter(f) : Ter(A1) → Ter(A2) is a preserving map from (Ter(A1),Diag(A1))
to (Ter(A2),Diag(A2)).

Proof. Equation 4.1 can be proven by induction on the structure of ψ. That Ter(f) is a
preserving map follows then immediately. 

In general however more than one such preserving map will correspond to the same
BA-morphism as the following example shows.

4.1.16. E. Let A B T(∅) be the Boolean term algebra over the empty set of
generators and let ≡ ⊆ UA × UA denote equivalence under propositional logic, i.e.
(A/≡) ¾ 2, where 2 is the two-element Boolean algebra. Furthermore we define the
following preserving map

f : (A,≡) → (A,≡)

A 3 a 7→

{
> if a ≡ >
a otherwise.

Then it is easy to check that f , id(A,≡) and Qu(f) = Qu(id(A,≡)) = id2, i.e. Qu identifies
the distinct preserving maps f and id(A,≡).

In order to obtain a one-to-one correspondence between BA- and PBA-morphisms
we define an equivalence relation on preserving maps.

4.1.17. D. Let (A1,≡1), (A2,≡2) be pre-Boolean algebras. Two preserving
maps f1, f2 : (A1,≡1) → (A2,≡2) are equivalent if

f1(a) ≡2 f2(a) for all a ∈ A1.

In this case we write f1 ∼ f2. The equivalence class of a preserving map f will be
denoted by f .

We are now ready to define the notion of a pre-Boolean algebra morphism.

4.1.18. D. Let (A1,≡1) and (A2,≡2) be pre-Boolean algebras. A morphism
between (A1,≡1) and (A2,≡2) is an equivalence class f of a preserving map

f : (A1,≡1) → (A2,≡2).

We denote by PBA the category of pre-Boolean algebras and morphisms between them.

78 CHAPTER 4. ALGEBRAIC SEMANTICS

4.1.19. R. The definition of a morphism as an equivalence class of functions is
unfortunately unavoidable in order to obtain an equivalence between the categories
PBA and BA. This equivalence is useful for proving facts in BA by proving the
corresponding result in PBA (cf. e.g. the proof that L is finitary in Section 4.2.1).
Another option would have been to use relations that satisfy certain extra conditions
as morphisms. We believe, however, that this alternative representation of the PBA-
morphisms would not simplify the presentation.

The following class of PBA-morphisms will be of special interest as they corre-
spond to injective BA-morphisms.

4.1.20. D. We call a preserving map f : (A1,≡1) → (A2,≡2) reflecting if for
all a1, a2 ∈ A1, f (a1) ≡2 f (a2) implies a1 ≡1 a2. A PBA-morphism f is called reflecting
if f and hence all g ∈ f are reflecting.

4.1.21. L. Let f : (A1,≡) → (A2,≡) be a preserving map. Then f is reflecting iff
Qu(f) : A1/≡1 → A1/≡2 is injective.

Proof. Suppose f : (A1,≡) → (A2,≡) is reflecting and let a1, a2 ∈ A1 such that

Qu(f)([a1]A1/≡1) = Qu(f)([a2]A1/≡1).

Unfolding the definition of Qu(f) we get f (a1) ≡2 f (a2) and therefore we can conclude
by the fact that f is reflecting that a1 ≡1 a2, i.e. [a1]A1/≡1 = [a2]A1/≡1 . The converse
direction can be proven in a similar way. 

Again this correspondence is mutual, i.e. every injective Boolean homomorphism
corresponds to a reflecting map between pre-Boolean algebras.

4.1.22. L. Let f : A1 → A2 ∈ BA be an injective homomorphism. Then Ter(f) :
Ter(A1) → Ter(A2) is a reflecting map from (Ter(A1),Diag(A1)) to (Ter(A2),Diag(A2)).

Proof. The claim can easily be proven using equation (4.1) from Lemma 4.1.15. 

We finish our introduction of PBA-morphisms with a characterization of the PBA-
isomorphisms.

4.1.23. L. Let f : (A1,≡1) → (A2,≡2) be a PBA-morphism. Then f is an iso iff

1. f is reflecting and

2. for all a2 ∈ A2 there is an a1 ∈ A2 such that f (a1) ≡2 a2.

4.1. DEFINITION OF THE ALGEBRAIC SEMANTICS 79

Proof. In case f fulfills the conditions 1 and 2 we first define a preserving map f −1 as
follows:

f −1 : (A2,≡2) → (A1,≡1)
a 7→ a′ for some a′ s.t. f (a′) ≡2 a.

The map f −1 is well-defined because of condition 2 and preserving because of condi-
tion 1. Moreover as a direct consequence of the definition of f −1 we have for all a ∈ A2

that f (f −1(a)) ≡2 a. Therefore we get f ◦ f −1 ∼ id(A2,≡2) and f ◦ f −1 = id. In the same
way we can see that f −1 ◦ f = id and hence f is an isomorphism.

For the other direction of the lemma suppose that f is an iso. Then there is a
PBA-morphisms g such that

g ◦ f = id(A1,≡1) and
f ◦ g = id(A2,≡2).

We now check that f fulfills properties 1 and 2 from our claim. In order to check that
f is reflecting suppose that f (a1) ≡2 f (a2) for some a1, a2 in A1. Then g(f (a1)) ≡1
g(f (a2)) because g is preserving. As g ◦ f = id we can conclude that a1 ≡1 a2. For
property 2 observe that we have f (g(a)) ≡2 a for all a ∈ A2. 

The categories PBA and BA can be related by two functors.

4.1.24. D. We define the following functors:

Ter : BA → PBA
A 7→ (Ter(A),Diag(A))
f 7→ {g | g ∼ Ter(f)}

Qu : PBA → BA
(A,≡) 7→ A/ ≡

f : (A1,≡1) → (A2,≡2) 7→ Qu(f) : A1/≡1 → A2/≡2

where f is some representant of f and Qu(f) denotes the function mapping an equiva-
lence class [a]A1/≡1 to [f (a)]

A2/≡2
.

4.1.25. R. Note that Qu(f) is well-defined because the representant f of f is a
preserving map. Moreover the definition does not depend on the chosen representant.

These functors witness the equivalence between the two categories BA and PBA.

4.1.26. P. The functor Qu : PBA → BA and the functor Ter : BA → PBA
form an equivalence between the categories BA and PBA.

80 CHAPTER 4. ALGEBRAIC SEMANTICS

Proof. For every A ∈ BA we define a BA-morphism

fA : A → QuTerA
a 7→ [a]Ter(A)/Diag(A)

and for every pre-Boolean algebra (T(G),≡) we define a PBA-morphism

h(T(G),≡) : (T(G),≡) → Ter (Qu(T(G),≡))

as the equivalence class of the preserving map

h(T(G),≡) : (T(G),≡) → Ter (Qu(T(G),≡))
T(G) 3 t 7→ [t]T(G)/≡ .

It is not difficult to check that the families (fA)A∈A and (h(T(G),≡))(T(G),≡)∈PBA are natural
isomorphisms IdBA ¾ Qu ◦ Ter and IdPBA ¾ Ter ◦ Qu respectively. Hence the functors
Qu and Ter form an equivalence. 

4.1.27. R. It is possible to restrict the equivalence BA ¾ PBA to an equivalence
between the category of Boolean algebras with injective homomorphisms and the cat-
egory of pre-Boolean algebras with reflecting PBA-morphisms (cf. Lemma 4.1.21 and
4.1.22).

4.1.3 Liftings and the functor L
The idea for defining the functor L : BA → BA is the following: for a Boolean algebra
Awe think of the elements of Ter(A) as syntactic representations of the predicates over
some set X. Then elements of LA should represent lifted predicates, i.e. predicates over
T X. To define LA we therefore need two liftings:

• a syntactic lifting, which lifts the set Ter(A) whose elements describe predicates
over X to a set Lift(Ter(A)) (of Boolean terms) that describe predicates over T X
and

• a congruence lifting, which lifts the congruence Diag(A) ⊆ Ter(A) × Ter(A)
to a congruence relation Lift(Diag(A)) ⊆ Lift(Ter(A)) × Lift(Ter(A)) taking into
account the equations Ax as they should give a description of the equations which
are satisfied by the lifted predicates over T X.

We will combine these liftings and show that they give rise to a functor L : PBA →

PBA. The functor L : BA → BA is then the composition of functors Qu ◦ L ◦ Ter.
In particular this means that the Boolean algebra LA will be defined as Lift(Ter(A))
modulo Lift(Diag(A)).

We are now giving the definitions of the necessary liftings. They are essentially
defined as similar lifting operations in [Pat03a]. First let us look at the syntactic lifting.

4.1. DEFINITION OF THE ALGEBRAIC SEMANTICS 81

4.1.28. D. Let Ψ be a set. Then we define the ΣBA-algebra Lift(Ψ) of lifted
formulas of rank 1 as follows

Lift(Ψ) B T({λ(ψ1, . . . ψn) | ψ1, . . . , ψn ∈ Ψ and λ ∈ Λ n-ary}).

Here and in the next definition the set Ψ can be thought of as a set of Boolean
formulas. The congruence lifting is defined for arbitrary relations, but we will only use
it to lift Boolean congruences.

4.1.29. D. Let Ψ be a set and R ⊆ Ψ × Ψ a relation. Then we view R as a set
of Ψ-equations and define a ΣBA-congruence

Lift(R) := {(t, s) ∈ Lift(Ψ) × Lift(Ψ) | EBA ∪ Ax ∪ R `
ΣΛBA
EL t ≈ s}.

4.1.30. R. Note that in the previous definition elements of Lift(Ψ) are considered
to be Ψ-terms for the signature ΣΛBA, i.e.

Lift(Ψ) ⊆ TΣΛBA
(Ψ).

This is important because, for example, we want to be able to deduce from (ψ1, ψ2) ∈ R
that (λ(ψ1), λ(ψ2)) ∈ Lift(R).

The next lemma shows that the two liftings together can be used to define a mapping
from pre-Boolean algebras to pre-Boolean algebras.

4.1.31. L. Let (A,≡) ∈ PBA and recall that U denotes the forgetful functor from
Alg(ΣBA) to Set. Then

L(A,≡) B (Lift(UA), Lift(≡))
is a pre-Boolean algebra.

Proof. Because Lift(≡) is a ΣBA-congruence it is clear that LA := Lift(UA)/Lift(≡) is a
well-defined ΣBA-algebra. We have to show that LA ∈ BA, i.e. that for all e1 ≈ e2 ∈ EBA
we have LA |= e1 ≈ e2. Let e1 ≈ e2 ∈ EBA and let

eLift(UA)
1 , eLift(UA)

2 : (Lift(UA))n → Lift(UA)

be the term functions (cf. Definition B.1.5) on the ΣBA-algebra Lift(UA).
Let a1, . . . , an be arbitrary elements of Lift(UA). Then eLift(UA)

i (a1, . . . an) ∈ Lift(UA),
i = 1, 2, and EBA `EL eLift(UA)

1 (a1, . . . an) ≈ eLift(UA)
2 (a1, . . . an). Therefore we have by def-

inition of Lift(≡) that (eLift(UA)
1 (a1, . . . an), eLift(UA)

2 (a1, . . . an)) ∈ Lift(≡) for all a1, . . . , an ∈

Lift(UA). Hence

eLA
1 ([a1]LA , . . . , [an]LA) =

[
eLift(UA)

1 (a1, . . . , an)
]

LA

=
[
eLift(UA)

2 (a1, . . . , an)
]

LA

= eLA
2 ([a1]LA , . . . , [an]LA).

for all a1, . . . , an ∈ Lift(UA). As a consequence we get eLA
1 = eLA

2 which in turn implies
LA |= e1 ≈ e2. 

82 CHAPTER 4. ALGEBRAIC SEMANTICS

With the help of the liftings we can also map PBA-morphisms to PBA-morphisms. In
order to be able to do this we first show how we can lift preserving maps between
pre-Boolean algebras to preserving maps.

4.1.32. D. Let (A1,≡1) and (A2,≡2) be pre-Boolean algebras and let f : (A1,≡1)
→ (A2,≡2) be a preserving map between them. Then we let L(f) : Lift(UA1) →
Lift(UA2) be the ΣBA-morphism that extends the mapping

λ(ψ1, . . . , ψn) 7→ λ(f (ψ1), . . . , f (ψn)) for λ ∈ Λ n-ary.

The following lemma shows that L(f) is a preserving map from L(A1,≡1) to L(A2,≡2)
and that L(f) is reflecting if f is.

4.1.33. L. Let (A1,≡1), (A2,≡2) be pre-Boolean algebras and f : A1 → A2 a
ΣBA-morphism. Then for all t1, t2 ∈ Lift(UA1)

1. if f is preserving then L(f) is preserving, i.e.

t1Lift(≡1)t2 implies L(f)(t1)Lift(≡2)L(f)(t2), (∗)

2. if f is reflecting then L(f) is reflecting, i.e.

L(f)(t1)Lift(≡2)L(f)(t2) implies t1Lift(≡1)t2.

3. if f is preserving and g : A1 → A2 is another preserving map such that f ∼ g,
then also L(f) ∼ L(g).

Proof. In order to prove 1, we have to show that (∗) holds for all t1, t2 ∈ Lift(UA1).
So let t1, t2 ∈ Lift(UA1) and suppose t1Lift(≡1)t2, i.e. EBA ∪ Ax ∪ ≡1 `EL t1 ≈ t2. We
prove by induction on the length of the derivation of EBA ∪ Ax ∪ ≡1 `EL t1 ≈ t2 that
EBA ∪ Ax ∪ ≡2 `EL L(f)(t1) ≈ L(f)(t2) and therefore L(f)(t1)Lift(≡2)L(f)(t2).

Case: t1 ≈ t2 ∈ EBA ∪ Ax∪≡1. Since ≡1 does not relate terms in Lift(UA1)× Lift(UA2)
we see that t1 ≈ t2 ∈ EBA ∪ Ax, and the claim is trivial. (Note that equations in
EBA ∪ Ax do not contain any parameters in UAi and therefore we get in this case
L(f)(ti) = ti.)

Case: t1 = t2. Then obvious.

Case: EBA ∪ Ax ∪ ≡1 `EL ψi ≈ φi for φ1, . . . , φn, ψ1, . . . , ψn ∈ UA1 and by the congru-
ence rule of equational logic we derive

EBA ∪ Ax ∪ ≡1 `EL λ(ψ1, . . . , ψn) ≈ λ(φ1, . . . , φn).

Then by Fact B.2.3 in the appendix we also have

EBA ∪ Ax ∪ (≡1)[f] `EL (ψi ≈ φi)[f] for all i ∈ {1, . . . , n}.

4.1. DEFINITION OF THE ALGEBRAIC SEMANTICS 83

Spelling out the definition of ()[f] (cf. B.2.3) we get (ψi ≈ φi)[f] = f (ψi) ≈
f (φi). Moreover (≡1)[f] ⊆ ≡2 because f is a preserving map. Therefore using
Fact B.2.2 we arrive at

EBA ∪ Ax ∪ ≡2 `EL f (ψi) ≈ f (φi) for all i ∈ {1, . . . , n},

and hence by the congruence rule of equational logic we get

EBA ∪ Ax ∪ ≡2 `EL λ(f (ψ1), . . . , f (ψn))
≈ λ(f (φ1), . . . , f (φn)).

The remaining cases of the induction are not difficult and can be treated using the
induction hypothesis. The second item of the lemma can be proven in a similar way.
To prove the last claim it suffices to show that

L(g)(t)Lift(≡2)L(f)(t) for all t ∈ Lift(UA1).

This can be done by an easy induction on the structure of t. 

The next definition summarizes the results of the previous two lemmas.

4.1.34. D. We define a functor

L : PBA → PBA
(A,≡) 7→ L(A,≡)

f 7→ L(f) := {g | g ∼ L(f)},

where L(A,≡) is defined as described in Lemma 4.1.31 and L(f) as described in Defi-
nition 4.1.32.

That L is well-defined on morphisms follows from items 1 and 3 of Lemma 4.1.33.
Using the functors Qu and Ter from Section 4.1.2 we obtain an endofunctor on BA.

4.1.35. D. The algebraic semantics functor L : BA → BA is defined as L B

Qu ◦ L ◦ Ter (cf. Figure 4.1).

4.1.36. R. In other words, in order to compute LA we first map A to its cor-
responding pre-Boolean algebra (Ter(A),Diag(A)), then lift both the syntax and the
semantics by applying the functor L and finally we quotient the set of lifted formulas
Lift(Ter(A)) by the lifted congruence Lift(Diag(A)) to obtain again a Boolean algebra.

It is now straightforward to define the algebraic semantics given by L-algebras (cf. Def.
A.1.3 on page 147).

84 CHAPTER 4. ALGEBRAIC SEMANTICS

BA L

Ter

BA

PBA L PBA

Qu

Figure 4.1: The functors L and L

4.1.37. D. For an L-algebra (A, α : LA → A) we define the (L-)algebraic
semantics [[φ]](A,α) of a formula φ inductively:

[[⊥]](A,α) B ⊥

[[φ→ ψ]](A,α) B ¬[[φ]](A,α) ∪ [[ψ]](A,α)

[[[λ](ψ1, . . . , ψn)]](A,α) B α(λ([[ψ1]](A,α), . . . , [[ψn]](A,α))).

Before we finish this section we have a detailed look at how the functor L acts on
BA-morphisms. This will be useful for later calculations that involve L.

4.1.38. L. Let f : A1 → A2 be a BA-morphism. Then L f is the unique BA-
morphism that extends the mapping

[
λ(ψ1, . . . , ψm)]LA1

7→
[
λ(Ter(f)(ψ1), . . . ,Ter(f)(ψn))]LA2

.

Proof. Just spell out the definition of L = Qu ◦ L ◦ Ter. 

4.1.39. P. Let f : A1 → A2 be a BA-morphism. Then

(i) L f is injective if f is injective and

(ii) L f is surjective if f is surjective.

Proof. The first half of the proposition follows from Lemma 4.1.33(2) and the fact that
the functors Ter and Qu map injective BA-morphisms to reflective PBA-morphisms and
reflective PBA-morphisms to injective BA-morphisms respectively (cf. Lemma 4.1.22
and Lemma 4.1.21). The second half is an easy consequence of Lemma 4.1.38. 

4.1.4 Equivalence of Alg(T(Λ, Ax)) and Alg(L)
We presented two alternative ways of defining an algebraic semantics for coalgebraic
modal logic: one using algebras for an algebraic theory T(Λ, Ax) and another one using
algebras for the functor L. This generalizes the earlier observation that modal algebras
can be represented as algebras for a functor H : BA → BA (cf. Remark 3.2.13).

To finish our definition of algebraic semantics of coalgebraic modal logic we now
show that both approaches are in fact equivalent: the category Alg(L) of algebras for
the functor L is isomorphic to the category Alg(T(Λ, Ax)) and the functors which form
this equivalence preserve the semantics.

4.1. DEFINITION OF THE ALGEBRAIC SEMANTICS 85

4.1.40. L  D. The following defines a functor:

E : Alg(L) → Alg(T(Λ, Ax))
(A, α) 7→ (A, {λ(A,α) | λ ∈ Λ})

f : (A1, α1) → (A2, α2) 7→ f : E(A1, α1) → E(A2, α2).

where for every n-ary λ ∈ Λ we define λ(A,α) : (UA)n → UA to be the function mapping
(a1, . . . , an) to α([λ(a1, . . . , an)]LA).

Proof. To prove that E is well defined on objects we have to show that E(A, α) |=
EBA ∪ Ax. This is clear for the Boolean equations in EBA. Suppose on the other hand
that e1 ≈ e2 is an equation from Ax with equation variables {x1, . . . , xn}. We can easily
show by induction on the structure of ei that for all a1, . . . , an ∈ A we have

eE(A,α)
i (a1, . . . , an) = α

([
eLift(Ter(A))

i (a1, . . . , an)
]

LA

)
for i ∈ {1, 2}. (4.2)

Then

eE(A,α)
1 (a1, . . . , an) (4.2)

= α(
[
eLift(Ter(A))

1 (a1, . . . , an)
]

LA
)

(∗)
= α(

[
eLift(Ter(A))

2 (a1, . . . , an)
]

LA
)

(4.2)
= eE(A,α)

2 (a1, . . . , an)

where (∗) holds because

Ax `EL eLift(Ter(A))
1 (a1, . . . , an) ≈ eLift(Ter(A))

2 (a1, . . . , an),

and therefore (eLift(Ter(A))
1 (a1, . . . , an), eLift(Ter(A))

2 (a1, . . . , an)) ∈ Lift(Diag(A)). Further-
more note that because all the axioms are of depth 1 the terms ei[x1/a1] . . . [xn/an]
can be evaluated in Lift(Ter(A)) and therefore eLift(Ter(A))

i (a1, . . . , an) is well-defined.
In order to show that E(f) is a homomorphism if f : (A1, α1) → (A2, α2) is an

L-algebra morphism it suffices to check that E f = f commutes with the λ’s. Consider
an n-ary predicate lifting λ ∈ Λ and arbitrary elements a1, . . . , an of A1. Then

f
(
λ(A1,α1)(a1, . . . , an)

) by Def.
= f

(
α1([λ(a1, . . . , an)]LA1)

)

f is L-mor.
= α2

(
L f ([λ(a1, . . . , an)]LA1)

)

Lem. 4.1.38
= α2

([
λ(Ter(f)(a1), . . . ,Ter(f)(an))]LA2

)

Ter(f)(ai) = f (ai)
= α2

([
λ(f (a1), . . . , f (an))]LA2

)

by Def.
= λ(A2,α2) (f (a1), . . . , f (an)) .



86 CHAPTER 4. ALGEBRAIC SEMANTICS

4.1.41. R. It should be stressed that the proof of the previous lemma is the point
where we make essential use of the fact that we have restricted our attention to ax-
ioms of modal depth 1. The definition of the functor L would work also without this
restriction, but L-algebras would no longer correspond to algebras in Alg(Λ, Ax) and
therefore soundness and completeness of the logic L(Λ, Ax) with respect to Alg(L)
would no longer be guaranteed.

In the other direction, we can also map T(Λ, Ax)-algebras to L-algebras.

4.1.42. L  D. The following defines a functor

A : Alg(T(Λ, Ax)) → Alg(L)
A = (A, {λA | λ ∈ Λ}) 7→ (A, αA)

f : A1 → A2 7→ f : (A1, αA1) → (A2, αA2),

where αA : LA→ A ∈ BA is defined as αA([t]LA) := tA.

Proof. We show first that for A = (A, {λA | λ ∈ Λ}) ∈ Alg(T(Λ, Ax)) the map αA :
LA→ A is well-defined. For this it suffices to show that for all t1, t2 ∈ Lift(Ter(A)) we
have

t1Lift(Diag(A))t2 implies tA1 = tA2 .
Suppose t1Lift(Diag(A))t2 for some t1, t2 ∈ Lift(Ter(A)), i.e.

EBA ∪ Ax ∪ Diag(A) `EL t1 ≈ t2.

We know that by definition A |= EBA ∪ Ax∪Diag(A), hence A |= t1 ≈ t2 by the sound-
ness of equational logic, i.e. tA1 = tA2 .
Now let us check whether A is well-defined on morphisms. Let f : A1 → A2 ∈

Alg(T(Λ, Ax)). We have to prove that f : (A1, αA1) → (A2, αA2) is an Alg(L)-morphism,
which means that we have to show for all t ∈ Lift(Ter(A)) that the following diagram
commutes:

LA1

αA1

L f LA2

αA2

A1 f A2

Because LA1 = Lift(Ter(A))/Lift(Diag(A)) it is enough to check the commutativity of
the diagram on the generators of Lift(Ter(A)). Let t = λ(ψ1, . . . , ψn) for some λ ∈ Λ
and ψi ∈ Ter(A). Then

αA2(L f ([λ(ψ1, . . . , ψn)]LA1
)) = αA2

([
λ (Ter(f)(ψ1), . . . ,Ter(f)(ψn))]LA2

)

= λA2(Ter(f)(ψ1)A2 , . . . ,Ter(f)(ψn)A2)

4.1. DEFINITION OF THE ALGEBRAIC SEMANTICS 87

(∗)
= λA2(f (ψA1

1), . . . , f (ψA1
n))

(∗)
= f (λA1(ψA1

1 , . . . , ψA1
n))

= f
(
αA1

([
λ(ψ1, . . . , ψn)]LA1

))

where the equalities marked by (∗) hold because f is an Alg(T(Λ, Ax))-morphism. 

4.1.43. T. The categories Alg(T(Λ, Ax)) and Alg(L) are isomorphic. Moreover
the functors E : Alg(L) → Alg(T(Λ, Ax)) and A : Alg(T(Λ, Ax)) → Alg(L) that witness
this fact preserve the semantics in the following sense: For all formulas φ ∈ L(Λ) we
have

[[φ]](A,α) = [[φ]]E(A,α) for all (A, α) ∈ Alg(L)
[[φ]]A = [[φ]]AA for all A ∈ Alg(T(Λ, Ax)).

As a consequence the logic L(Λ, Ax) is sound and complete with respect to the alge-
braic semantics provided by Alg(L).

Proof. Unfolding the definitions from the lemmas 4.1.40 and 4.1.42 it is easy to show
that A ◦ E = IdAlg(L) and E ◦ A = IdAlg(T(Λ,Ax)). The statement about the semantics can
be proven by an easy induction on the structure of φ. 

This isomorphism between categories allows us to give a concrete description of both
the initial L-algebra and the initial L-algebra.

4.1.44. D. Let a`B {(φ, ψ) ∈ L(Λ)2 | Ax ` φ ↔ ψ} and FΛ B L(Λ)/a` the
Lindenbaum algebra of T(Λ, Ax). We define an L-algebra (I, αI) by putting I := FΛ ∈
BA (we forget the Λ-part of the signature) and

αI : LI → I

[t]LI 7→ tFΛ .

4.1.45. P. The pair (I, αI) is isomorphic to the initial L-algebra. In partic-
ular this means that αI is an isomorphism.

Proof. Immediate consequence of the isomorphism Alg(T(Λ, Ax)) ¾ Alg(L) and the
fact that (I, αI) = AFΛ. 

The last proposition enables us to formulate the L-algebraic semantics of coalgebraic
modal logic in a more categorical way.

4.1.46. C. Let (A, α) ∈ Alg(L) and (I, αI) the initial L-algebra. Then the
interpretation function

[[]](A,α) : L(Λ) → A

that maps a formula to its L-algebraic semantics is given as the composition of the
initial map i(A,α) : (I, αI) → (A, α) with the map []I : L(Λ) → I as depicted in the

88 CHAPTER 4. ALGEBRAIC SEMANTICS

following diagram:
LI

αI

Li(A,α)
LA

α

L(Λ) []I

[[]](A,α)

I
i(A,α)

A

4.1.47. R. In other words, the algebraic semantics of a formula φ on an L-
algebra (A, α) is given as the image of its equivalence class [

φ
]
I in I under the initial

map. Note that this is another way of seeing that the logic is sound with respect to the
L-algebraic semantics: if Ax ` φ then [

φ
]
I = [>]I and therefore [[φ]](A,α) = >. Later we

will demonstrate that a similar argument works for proving soundness of the coalge-
braic semantics provided that we can connect the algebraic and coalgebraic semantics
via a natural transformation δ : LP ⇒ PT .

In order to be able to represent the initial L-algebra we show that L(Λ) is in fact an
absolutely free ΣBA-algebra.

4.1.48. L. Let G B {φ ∈ L(Λ) | φ < T(∅)}, i.e. G is the set of all formulas
containing some λ ∈ Λ. Then L(Λ) = T(G) .

Proof. Easy to check. 

4.1.49. P. The pair (L(Λ), a`) ∈ PBA together with the PBA-morphism a :
(Lift(L(Λ)), Lift(a`)) → (L(Λ), a`), which is defined as the equivalence class of the
map φ 7→ φL(Λ), is the initial L-algebra.

Proof. First note that (L(Λ), a`) is indeed a pre-Boolean algebra, because we showed
in Lemma 4.1.48 thatL(Λ) is in fact an absolutely free ΣBA-algebra. The claim follows
then from the isomorphism between BA and PBA and Proposition 4.1.45. 

4.2 Functor sequences
Before we use our algebraic semantics to study soundness and completeness conditions
for coalgebraic modal logic we recall in this section the definition of the initial and the
final sequence of a functor. Furthermore we show that the functors L and L are finitary,
i.e. their initial sequence converges after ω steps.

4.2.1 The initial sequence of L
Our first objective is to describe the initial L-algebra as the least fixed point of L. This
fixed point can be obtained using the initial sequence (cf. e.g. [AK79]). We show

4.2. FUNCTOR SEQUENCES 89

Lω

. . .

IPBA
iLIPBA

LIPBA
LiLIPBA

LLIPBA . . . Ln . . .

Figure 4.2: The initial ω-sequence of L : PBA → PBA

that L is a so-called finitary functor, i.e. the initial sequence converges after ω steps.
Therefore we only need to look at the first ω steps of the sequence.

Let T : C → C a functor, Λ a set of predicate liftings for T and Ax a set of axioms.
Furthermore let L and L the corresponding functors on PBA and BA respectively.

4.2.1. D. Let D be a category that has small colimits.1 The ω-initial sequence
of a functor S : D → D is given as a family of objects {S i}i∈ω given by

S 0 B ID

S n+1 B S (S n)

together with a family of D-morphisms { fi : S i → S i+1}i∈ω, where f0 B iS 1 : ID → S 1
is the initial map and fn+1 B S fn. Furthermore we define S ω as the colimit of the
sequence (cf. Figure 4.2). We say that the ω-initial sequence converges to (S S ω, α :
S S ω → S ω) if α is an isomorphism such that α ◦ S fi = fi+1 for all i ∈ ω.

The ω-initial sequence of the functor L : PBA → PBA is useful for stratifying the
language and the deducibility relation of coalgebraic modal logic. We first need the
definition of the depth of a formula.

4.2.2. D. The modal depth of a formula φ ∈ L(Λ) is defined inductively as
follows:

d(⊥) B 0
d(φ→ ψ) B max(d(φ), d(ψ))

d([λ](φ1, . . . , φn)) B max(d(φ1), . . . , d(φn)) + 1.

The set of formulas of modal depth ≤ n will be denoted by Ln(Λ).

The n-th element of the ω-initial sequence of L is based on those formulas which have
modal depth less or equal to n.

4.2.3. L. For all n ∈ ω we have

ULiftn(T(∅)) = Ln(Λ).
1We will consider the cases D = PBA and D = BA.

90 CHAPTER 4. ALGEBRAIC SEMANTICS

Proof. One only has to spell out the definition of Lift (cf. Def. 4.1.28) and to observe
that ULiftn(T(∅)) ⊆ ULiftn+1(T(∅)). An easy induction on n completes the proof. 

The ω-initial sequence of L also gives rise to a stratification of the deducibility relation
(cf. Definition 2.2.16).
4.2.4. D. For every n ∈ ω we define an equivalence relation ≡n ⊆ Ln(Λ) ×
Ln(Λ) by letting

≡0 B ≡BA

≡i+1 B Lift(≡i),

where ≡BA denotes derivable equivalence of Boolean formulas in classical proposi-
tional logic.
We are now going to prove that ≡n is equal to a` restricted to formulas of modal depth
less or equal to n. To avoid possible confusion the reader should note that our definition
of ≡n does not require that a derivation of φ ≡n ψ only contains formulas up to depth
n. This marks a difference with the similar definition in [Pat03a].

4.2.5. L. Let Ax be consistent, i.e. Ax 0⊥, and φ, ψ ∈ Ln(Λ). Then

Ax ` φ↔ ψ iff φ ≡n ψ.

In other words we have for φ, ψ ∈ Ln(Λ) that φ a` ψ iff φ ≡n ψ.

Proof. In order to prove that φ ≡n ψ implies Ax ` φ ↔ ψ we prove the following
slightly more general claim:

for all φ, ψ ∈ L(Λ) EBA ∪ Ax ∪ ≡n `EL φ ≈ ψ implies EBA ∪ Ax `EL φ ≈ ψ.

The proof works by induction on n and on the height of the derivation of

EBA ∪ Ax ∪ ≡n `EL φ ≈ ψ.

For n = 0 the claim is trivial. Suppose now n = i + 1, EBA ∪ Ax ∪ ≡i+1 `EL φ ≈ ψ and
let l be the size of the derivation. In case l = 0 and φ ≡i+1 ψ we get by the definition of
≡i+1 that EBA ∪ Ax∪ ≡i`EL φ ≈ ψ and therefore EBA ∪ Ax `EL φ ≈ ψ by the induction
hypothesis for i. In the other cases with l = 0 the claim is trivial. If l = l′ + 1 we look
at the last step of the derivation and use the induction hypothesis for l′ to complete the
proof.
For the other direction of the lemma it suffices to look at the case n = 0, as the other
cases are trivial. Suppose that there are two Boolean formulas φ, ψ such that EBA ∪

Ax `EL φ ↔ ψ and suppose φ .0 ψ, i.e. we cannot derive the equivalence between φ
and ψ in classical propositional logic. Then the logic

L B {φ | EBA ∪ Ax `EL φ ≈ > and φ ∈ T(∅)}

is a proper extension of classical propositional logic that is closed under substitution
and the rules of classical logic. Therefore L must be inconsistent, i.e. ⊥∈ L. But this is
a contradiction to our assumption that Ax 0⊥. 

4.2. FUNCTOR SEQUENCES 91

QuL0

q0

QuL1

q1

QuL2

q2

. . .

L0 L1 L2 . . .

Figure 4.3: Relating Ln and Ln

We are now ready to show that the carrier of the initial L-algebra (L(Λ), a`) is a colimit
of the ω-initial sequence of L and conclude that the initial sequence of L converges
after ω steps.

4.2.6. P. The ω-initial sequence of the functor L converges to the initial L-
algebra, i.e.

Lω ¾ (L(Λ), a`).

Proof. We show that (L(Λ), a`) is the colimit of the ω-initial sequence of L. For
every n ∈ ω we denote by gi : Li → (L(Λ), a`) the inclusion map of Li(Λ) into
L(Λ), i.e. gi(φ) = φ for all φ ∈ Li(Λ). By Lemma 4.2.5 we know that all the gi’s are
preserving and reflecting maps and therefore their equivalence classes gi with respect
to the ∼-relation from Definition 4.1.17 are reflecting PBA-morphisms. Furthermore
(L(Λ), a`) together with the morphisms gi forms a cocone over the ω-initial sequence
of L as depicted in the following diagram.

(L(Λ), a`)

. . .

IPBA

g0

L1

g1

L2

g2

. . . Ln

gn

. . .

A standard argument shows that (L(Λ), a`) together with the family {gi}i∈ω is indeed
the colimit of the ω-initial sequence. Spelling out the definition of the isomorphism
a : L(L(Λ), a`) → (L(Λ), a`) from Proposition 4.1.49 we see that gi+1 = a ◦ L(gi) for
all i ∈ ω. Therefore we can conclude that the initial sequence of L converges to the
initial L-algebra ((L(Λ), a`), a). 

This result can be directly transferred to the initial sequence of L by relating the
ω-initial sequence of L and the Qu-image of the ω-initial sequence of L as depicted
in Figure 4.3. The idea is as follows: From the equivalence between PBA and BA we
deduce that the Boolean algebra QuLn is equal toLn(Λ)/≡n which is in turn essentially
the same as Ln. The difference between the two is that for calculating QuLn+1 we take
the set of all formulas up to depth n, lift it and then quotient once by ≡n+1 whereas to
define Ln+1 we lift the Boolean algebra Ln (which correspond to the set of all formulas
up to depth n quotiented by ≡n) and then take again a quotient, i.e. we need n + 1
quotient operations to construct Ln+1 compared to 1 quotient operation for constructing
QuLn. The qn’s make this connection precise.

92 CHAPTER 4. ALGEBRAIC SEMANTICS

4.2.7. D. For each n ∈ ω we define a function qn : QuLn → Ln, i.e. from the
quotient of the n-th element of the ω-initial sequence of L to the n-th element of the
ω-initial sequence of L, by defining q0 : QuL0 → L0 to be the isomorphism between
QuL0 = T(∅)/≡BA and the two-element Boolean algebra L0 = 2 and by letting

qn+1 : QuLn+1 → Ln+1[
λ(ψ1, . . . , ψm)]QuLn+1

7→
[
λ
(
qn([ψ1

]
QuLn

), . . . , qn([ψm
]

QuLn
)
)]

Ln+1
.

Before we show that the qn’s are isomorphisms we first check whether our intuition
about QuLn is correct.

4.2.8. L. For all n ∈ ω we have QuLn = Ln(Λ)/≡n.

Proof. The claim follows from Ln = (Liftn(T(∅)), Liftn(≡BA)) and from the fact that
Liftn(T(∅)) = Ln(Λ) (cf. Lemma 4.2.3) and Liftn(≡BA) = ≡n (cf. Def. 4.2.4). 

4.2.9. L. For all n ∈ ω the function qn : QuLn → Ln is a BA-isomorphism.

Proof. An easy proof by induction on n. 

The lemma establishes a one-to-one correspondence between equivalence classes in Ln
and equivalence classes of formulas in QuLn. Later it will be convenient to directly talk
about the equivalence class in Ln which corresponds to a certain formula φ ∈ Ln(Λ).
To that aim we introduce the following notation.

4.2.10. D. For a formula φ ∈ Ln(Λ) we put

〈φ〉Ln B qn([φ]QuLn
).

The close connection between Ln and Ln ensures that the ω-initial sequence of L con-
verges.

4.2.11. C. The initial sequence of L converges afterω steps and we have Lω ¾

Qu(Lω) ¾ L(Λ)/a`.

Proof. From Proposition 4.2.6 we know that theω-initial sequence of L converges after
ω steps and that QuLω = L(Λ)/a`. According to Lemma 4.2.9 the ω-initial sequence
of L is connected via isomorphisms qn to the Qu-image of theω-initial sequence of L as
depicted in Figure 4.3. Because Qu is part of an equivalence of categories it preserves
colimits and hence it is easy to see that Lω is isomorphic to QuLω = L(Λ)/a` ¾ I,
where I is the carrier of the initial L-algebra. Hence LLω ¾ Lω, i.e. the initial sequence
converges. 

4.2. FUNCTOR SEQUENCES 93

4.2.2 The final sequence of T
Dually to the construction of initial and free algebras as colimits of the initial sequence
of the underlying endofunctor, the final or terminal sequence plays an important role
in the coalgebraic framework. Like for the initial sequence in the previous section,
it is sufficient to consider the finitary part, that is, the first ω elements of the final
sequence. For a demonstration of the usefulness of the final sequence we refer the
reader to Worrell [Wor05].

4.2.12. D. Let C be a category with final object 1 and T : C → C a functor.
Then the final sequence of T consists of a sequence of objects (T i)i∈ω given by

T0 B 1
Ti+1 B TTi.

and a sequence of morphisms (pi : Ti+1 → Ti)i∈ω defined as

p0 B !T1 : T1 → 1 (the unique morphism into the final object)
pi+1 B T pi.

To illustrate the importance of the final sequence for the theory of coalgebras we men-
tion the following theorem.

4.2.13. T ([W05]). Let κ be a regular cardinal and T : Set → Set be a κ-
accessible functor2. Then the final sequence of T converges after κ+ κ steps to the final
T-coalgebra.

In our logical context the object Tn encodes the types of behaviours which can be
described with a formula of depth n. This intuition is made formal by making use of
the well-known fact that every T -coalgebra (X, γ) can be seen as a cone over the final
sequence of T .

4.2.14. D. Let (X, γ) ∈ Coalg(T). Then we define the sequence of n-step
behaviour maps (γn : X → Tn)n∈ω by letting

γ0 B !X

γi+1 B Tγi ◦ γ.

4.2.15. L. For every coalgebra (X, γ) the carrier X together with the sequence of
n-step behaviour maps (γn : X → Tn)n∈ω defines a cone over the final sequence of T .

Proof. Easy to check. 

2A Set-functor T is κ-accessible iff for all sets X we have T X =
⋃
{TY | Y ⊆ X and |Y | < κ}.

94 CHAPTER 4. ALGEBRAIC SEMANTICS

This cone consisting of the n-step behaviour maps can be used to define an n-step se-
mantics of coalgebraic logic. This is done by induction on n using the following lifting
construction, which lifts the interpretation of formulas of depth n to an interpretation of
formulas of depth n + 1. The following definition is crucial in what follows. It defines
how we lift a function, that interprets elements of a set (of formulas) Φ as predicates
over some X ∈ C, one level higher, i.e. to a function that interprets lifted formulas in
Lift(Φ) as predicates over T X.

4.2.16. D. Let Φ be a set (of formulas) and d : Φ → PX be a function
(interpreting elements of Φ as predicates over X). Then we define a lifted function
Lift(d) : Lift(Φ) → PT X ∈ Alg(ΣBA) as the inductively extension of the map

λ(φ1, . . . , φn) 7→ λX(d(φ1), . . . , d(φn)).

Using this lifting of interpretation functions we define a sequence of ΣBA-morphisms
(di : Li(Λ) → PTi)i∈ω by letting

d0 B iP1 : T(∅) → P1 (the initial map)
di+1 B Lift(di),

and call dn(φ) the n-step semantics of φ.

The connection with the coalgebraic semantics from Definition 2.2.5 is as follows.

4.2.17. P. Let (X, γ) ∈ Coalg(T) and φ ∈ Ln(Λ). Then

[[φ]](X,γ) = P(γn)(dn(φ)),

i.e. (X, γ), x |= φ iff γn(x) ∈ dn(φ).

Proof. This follows from an easy proof by induction on n. 

Expressed in words the proposition means that the semantics [[φ]] ⊆ T X of a formula
φ with modal depth n is already determined by its n-step semantics, i.e. by the set
dn(φ) ⊆ Tn of n-behaviours that it specifies.

In [Pat03a] Pattinson gave sufficient conditions for proving soundness and com-
pleteness of a coalgebraic modal logic for a Set-endofunctor. His conditions are for-
mulated in terms of the lifting Lift(h) of functions h : (A,≡) → PX (cf. Def. 4.2.16).
We will now recall Pattinson’s result and later provide later an algebraic interpretation.
To state the result we have to introduce some terminology.

4.2.18. D. Suppose Ax is a set of axioms.

(i) Ax is order-preserving iff for all preserving maps h : (A,≡) → PX,
(A,≡) ∈ PBA and X ∈ C we have that Lift(h) : (Lift(A), Lift(≡)) → PT X is
a preserving map.

4.3. COALGEBRAIC SEMANTICS AS A NATURAL TRANSFORMATION 95

(ii) Ax is order-reflecting iff for all reflecting maps h : (A,≡) → PX,
(A,≡) ∈ PBA, and X ∈ C we have that Lift(h) is a reflecting map.

4.2.19. R. Note that these conditions are not exactly the same as in [Pat03a].
First Pattinson deals in loc.cit. only with the case C = Set. Second he formulates the
condition not only for preserving maps but for arbitrary functions h : A → PX that
preserve the order, i.e. functions h such that a ≡ a′ imply h(a) = h(a′).

Intuitively Pattinson’s condition says, that we can lift soundness and completeness of
the logic step-by-step: we can look at a preserving map h : (A,≡) → PX as a sound
interpretation function because elements a1, a2 of A (“formulas”) for which we have
a1 ≡ a2 (“a1 and a2 are logically equivalent”) are interpreted by the same predicate
over X. Analogously, reflecting maps correspond to an interpretation that is complete.
An order-preserving and -reflecting set of axioms makes it possible to lift this abstract
soundness and completeness one-step higher, i.e. to formulas whose modal depth is
increased by one. In [Pat03a] it was shown that these conditions are sufficient to prove
soundness and completeness of the logic with respect to the coalgebraic semantics.

4.2.20. T ([P03]). Let T : Set → Set be a functor, Λ a set of predicate
liftings and Ax be a set of axioms.

(i) If Ax is order-preserving, then L(Λ, Ax) is sound.

(ii) If Ax is order-preserving and -reflecting then L(Λ, Ax) is complete.

We will now move to the definition of the natural transformation δ : LP ⇒ PT that
connects the algebraic and the coalgebraic semantics of the logic. After that we will
relate Pattinson’s result to properties of δ (cf. Theorem 4.4.1).

4.3 Coalgebraic semantics as a natural transformation
We are now going to connect the coalgebraic semantics and the algebraic semantics of
coalgebraic modal logic by defining a natural transformation

δ : LP ⇒ PT.

We will demonstrate which properties of this natural transformation imply soundness
and completeness of the axioms and expressiveness of the language.

The functor sequences that we saw in the last section will be an important tool.
Based on ideas of Pattinson from [Pat03a] our proofs will be of the following form:
we have soundness and completeness for our base logic, i.e. for propositional logic.
If δ has the right properties we can lift soundness and completeness along the initial
sequence of L: if the logic restricted to formulas of depth at most n, i.e. the set Ln(Λ)
of formulas of depth at most n together with the congruence relation ≡n, is sound and

96 CHAPTER 4. ALGEBRAIC SEMANTICS

complete with respect to the n-step semantics from Definition 4.2.16, then the logic
restricted to formulas of depth n + 1 will be sound and complete with respect to the
n + 1-step semantics. In this way we obtain soundness and completeness for the logic
with respect to the coalgebraic semantics.

We will see in Section 4.4 that for the case C = Set our criteria for soundness and
completeness of L(Λ, Ax) and for expressiveness of the language are in fact equivalent
to Pattinson’s conditions. We improve on his earlier results in the following ways:

• The conditions formulated in terms of δ work both in the case C = Set and
C = Stone. Furthermore everything is formulated at a level of abstraction which
makes it possible to generalize the work to similar dualities.

• Pattinson’s earlier work seemed to be conceptually different from existing sound-
ness and completeness proofs in modal logic. Our results show that his work
matches with existing work on the algebraic semantics of modal logic.

4.3.1 Definition of δ
4.3.1. D. Let X ∈ C. Then we define a function

dX : (Lift(Ter(PX)), Lift(Diag(PX))) → PT X

as dX B Lift(()PX), where ()PX : Ter(PX) → PX is the function which maps a term
over PX (cf. Definition 4.1.10) to its interpretation in PX and Lift(()PX) is defined as in
Definition 4.2.16 on page 94. In case dX is a preserving map, then we denote by

δX : LPX → PT X

the BA-homomorphism δX B Qu(dX) that is defined as in Lemma 4.1.14, i.e. δX([a]LPX)
= dX(a).

4.3.2. R. The intuition behind the function dX is the following: the map ()PX :
(Ter(PX),Diag(PX)) → PX can be seen as the most basic interpretation function that
we can think of. Boolean terms that are built up from predicates over X are again
interpreted as predicates over X, where we interpret the Boolean operators by their set-
theoretic counterparts. Trivially this interpretation function is sound and complete in
the sense that terms are identified if and only if they are (“logically”) equivalent w.r.t.
Diag(PX). The function dX is the lifted version of this sound and complete semantics.

Under the proviso that dX is preserving, it factors through some Boolean homomor-
phism δX. If all components of δX exist we obtain a natural transformation.

4.3.3. L. Suppose that δX exists for all X ∈ C, i.e. dX is preserving for all X ∈ C.
Then the family (δX)X∈C gives rise to a natural transformation δ : LP ⇒ PT.

4.3. COALGEBRAIC SEMANTICS AS A NATURAL TRANSFORMATION 97

Proof. Suppose δX exists for all X ∈ C and let h : Y → X ∈ C. We have to show that
the following diagram commutes:

LPX δX

LPh

PT X
PTh

LPY δY PTY

It suffices to prove the commutativity of the diagram only for the generators of LPX:

PTh(δX([λ(ψ1, . . . , ψn)]LPX)) = PTh(dX(λ(ψ1, . . . , ψn)))
= PTh(λX(ψPX

1 , . . . , ψPX
n))

naturality of λ
= λY(Ph(ψPX

1), . . . ,Ph(ψPX
n))

Lemma 4.1.15
= λY

(
(Ter(Ph)(ψ1))PX, . . . , (Ter(Ph)(ψn))PX

)

Def. of dY
= dY (λ (Ter(Ph)(ψ1), . . . ,Ter(Ph)(ψn)))

Def. of δY
= δY

([
λ(Ter(Ph)(ψ1), . . . ,Ter(Ph)(ψn)]LPY

)
Lemma 4.1.38
= δY

(LPh([λ(ψ1, . . . , ψn)]LPX))



4.3.2 A functor linking algebraic and coalgebraic semantics
Different properties of δ : LP ⇒ PT correspond to different properties of the logic.
This can be explained as follows: We know that the logic is always sound and complete
with respect to its algebraic semantics Alg(L). The existence of δ on the other hand
implies the existence of a contravariant functor from Coalg(T) to Alg(L). This functor
preserves the semantics and therefore the existence of this functor implies soundness
of the logic. The proof of the fact that the injectivity of δ implies completeness is more
technical and uses the final sequence of the functor T . We postpone it until the next
section.

We will now present how we can use δ to define a functor ∆ : Coalg(T) → Alg(L)
and then derive soundness from its existence. A remark on expressivity in the case
C = Stone will round up this section.

4.3.4. D. Suppose δ : LP ⇒ PT exists. Then we define a functor

∆ : Coalg(T)op → Alg(L)
(X, γ) 7→ (PX,Pγ ◦ δX)

f : (X, γ) → (Y, ρ) 7→ P f .

This functor is obviously well-defined on objects. The naturality of δ ensures that ∆
is also well-defined on morphisms. In order to see that let f : (X, γ) → (Y, ξ) be a
T -coalgebra morphism and let us take a look at the following diagram:

98 CHAPTER 4. ALGEBRAIC SEMANTICS

LPY
LP f

δY

LPX
δX

PTY
PT f

Pξ

PT X
Pγ

PX P f PY
The lower half of the diagram commutes because f was assumed to be a T -coalgebra
morphism and the upper half commutes by the naturality of δ. Hence the whole dia-
gram commutes which means that P f is an L-morphism from ∆(Y, ξ) to ∆(X, γ).

The functor preserves the semantics in the following sense.

4.3.5. L. Let (X, γ) ∈ Coalg(T), then [[]](X,γ) = [[]]∆(X,γ), i.e. the coalgebraic
semantics of a formula in (X, γ) is equal to its algebraic semantics in ∆(X, γ).

Proof. Easy proof by induction on the structure of the formula. 

We can express the statement of the lemma also with the help of the diagram in Fig-
ure 4.4: the coalgebraic semantics on (X, γ) is equal to the initial map from the initial
L-algebra (I, αI) into ∆(X, γ). The proof that the existence of δ implies soundness of
the logic is short and similar to what we remarked earlier about soundness with respect
to the L-algebraic semantics in Remark 4.1.47.

4.3.6. P. If δ : LP ⇒ PT exists , then L(Λ, Ax) is sound, i.e. Coalg(T) |= φ
if Ax ` φ for all φ ∈ L(Λ).

Proof. If δ exists we can define the functor ∆ as in Definition 4.3.4. Suppose now
that Ax ` φ and let (X, γ) ∈ Coalg(T). Then clearly [

φ
]
I = [>]I, i.e. φ and > are

in the same equivalence class in I, and therefore by the diagram in Figure 4.4 we get
[[φ]](X,γ) = [[>]](X,γ) = X. 

Consider now the case C = Stone. Then the functor ∆ is in fact an equivalence of
categories, provided that δ is a bijection.

LI

αI

Li LPX
δX

α∆(X,γ)PT X
Pγ

L(Λ) []I

[[]](X,γ)

I
i PX

Figure 4.4: Coalgebraic semantics as an initial map

4.3. COALGEBRAIC SEMANTICS AS A NATURAL TRANSFORMATION 99

4.3.7. L. If δ : LClp ⇒ ClpT exists and is bijective then ∆ : Coalg(T)op →

Alg(L) is an equivalence.

Proof. The proof, which essentially uses Stone duality, is straightforward. One only
has to observe that the δ−1, the inverse of δ, enables us to define a contravariant functor
∆−1 : Alg(L)op → Coalg(T). 

This enables us to give a proof of the fact that surjectivity of δ implies expressivity of
the logic.

4.3.8. P. Suppose δ : LClp ⇒ ClpT is bijective. Then L(Λ) is expressive.

Proof. We only sketch the proof. As δ is bijective we know that the categories
Coalg(T) and Alg(L) are dually equivalent. In particular the dual of the initial L-
algebra will be the final coalgebra. It is easy to see that states of coalgebras, that
satisfy the same formulas of the logic, can be mapped to the same state in the final
coalgebra. Hence states that satisfy the same formulas can be identified by coalgebra
morphisms and are therefore bisimilar. 

4.3.3 Completeness
In the last section we saw that the existence of δ : LP ⇒ PT implies soundness of
L(Λ, Ax). Relating injectivity of δ to completeness of the logic L(Λ, Ax) requires a
bit more technical machinery. Throughout this section we assume that the natural
transformation δ : LP ⇒ PT exists.

Recall that in order to show that the logic is complete we have to prove that the
following holds true for an arbitrary formula φ ∈ L(Λ):

Coalg(T) |= φ implies Ax ` φ.

For many modal logics completeness with respect to a class of Kripke frames can
be proven using a canonical model construction. This proof can be roughly sketched
as follows: The set of states of the canonical model of a modal logic is equal to the set
of maximal consistent sets of formulas of the logic and a formula is true at a state iff
the formula is contained in the corresponding maximal consistent set. If a formula φ is
valid on any Kripke frame of the logic then it will be in particular true in all states of the
canonical model, provided that the canonical model is based on a frame of the logic.
From the fact that φ is true in all states of the canonical model one can deduce that φ
is contained in any maximal consistent set of the logic and therefore φ is a theorem of
the modal logic under consideration.

There are, however, cases in which a proof along these lines doesn’t work. One
reason for this is the fact that not all modal logics are strongly complete with respect to
Kripke semantics. Omitting the details we can think of strong completeness of a modal
logic as of completeness with the additional requirement that every maximal consistent

100 CHAPTER 4. ALGEBRAIC SEMANTICS

set of the logic is satisfiable in a Kripke model of that logic. Modal logics that allow
for a completeness proof using the canonical model construction are strongly complete:
every maximal consistent set of formulas is satisfiable in the canonical model.

The situation for coalgebraic modal logics is very similar: the canonical model
of a logic for a Vietoris polynomial functor corresponds to its final coalgebra, and
completeness of the logic follows from the fact that every formula that is satisfied on
all states of the final coalgebra is a theorem of MSMLT (cf. Corollary 3.4.11). Again
not all coalgebraic modal logics are strongly complete with respect to their coalgebraic
semantics.

4.3.9. E. The standard example for this situation is probably the modal logic K
on image-finite Kripke frames which is known to be sound and complete, but which is
not strongly complete. In our coalgebraic setting this logic can be represented as the
logic L(Λ, Ax) for the finite power set functor Pω : Set → Set that is given by the
predicate liftings Λ B {λ¤ω , λ^ω} from Example 2.2.12 and by the set of axioms of K
(cf. Example 2.2.18).

The argument for why L(Λ, Ax) is not strongly complete with respect to Pω-coalge-
bras can be sketched as follows: For each i ∈ ω let ϕi be the formula ^i> ∧ ¤i+1 ⊥,
where ¤ B [λ¤ω] and ^ B [λ^ω]. Then it is not difficult to see that

Coalg(Pω) |= ϕi → ¬ϕ j for i , j, i, j ∈ ω (4.3)

Furthermore one can show that the set of formulas Φ B {^ϕi | i ∈ ω} is consistent be-
cause it is satisfiable in someP-coalgebra (note that the logic forP- andPω-coalgebras
is in both cases equal to K). Because of equation (4.3), however, it is easy to see that
Φ is not satisfiable in a state that has only finitely many successors. Hence the set Φ
is not satisfiable in a state of a Pω-coalgebra. The consistent set of formulas Φ can be
extended to a maximal consistentΦ′ of formulas, which is of course also not satisfiable
on a Pω-coalgebra. This means that the logic is not strongly complete with respect to
the class of Pω-coalgebras.

Therefore we cannot use a canonical model argument for showing that the injectivity
of δ implies completeness with respect to the coalgebraic semantics without making
any additional assumptions. Instead we follow Pattinson’s ideas from [Pat03a].

His observation in loc.cit. was that we can use the final sequence of the functor T
to obtain for each n a coalgebra Cn that we call the canonical model for formulas up to
modal depth n. This coalgebra Cn has the property that for all formulas of depth n the
n-step semantics dn : Ln(Λ) → PTn coincides with the coalgebraic semantics, i.e.

[[φ]]Cn = dn(φ) for all φ ∈ Ln(Λ), (4.4)

where the n-step semantics dn is defined as the function that maps formulas of modal
depth smaller or equal to n to predicates over Tn, the n-th element of the final sequence
of T (cf. Definition 4.2.16 on page 94).

4.3. COALGEBRAIC SEMANTICS AS A NATURAL TRANSFORMATION 101

What is still missing to prove completeness of the logic using Equation 4.4 is the
following fact, which we call n-step completeness: for all formulas φ, ψ ∈ Ln(Λ) we
have

dn(φ) = dn(ψ) implies φ ≡n ψ. (4.5)

This equation will follow from the injectivity of the natural transformation δ.
Both equations together suffice to prove completeness of L(Λ, Ax) with respect to

the coalgebraic semantics: Let φ ∈ Ln(Λ) be a formula of modal depth n such that
Coalg(T) |= φ. Then in particular Cn |= φ, i.e. [[φ]]Cn = >. By Equation 4.4 this means
that dn(φ) = > and hence by Equation 4.5 we get φ ≡n >. As a consequence we get by
Lemma 4.2.5 that Ax |= φ.

We now proceed as follows: we first construct for every n the T -coalgebra Cn
and prove that Equation 4.4 is indeed true. Furthermore we prove that the injectivity
of δ implies n-step completeness (Equation 4.5). Finally we obtain the result that
completeness of the logic is entailed by injectivity of δ.

We start by defining for all n ∈ ω the T -coalgebra Cn.

4.3.10. D. A global element of a functor T : C → C is an arrow e : 1 → T1.
Let e(0) : 1 → T1 be such a global element of T and define

e(i + 1) B Te(i) : Ti → Ti+1,

where Ti denotes the set T i1, i.e. the ith element of the final sequence of T . Then for
all n ∈ ω we define Cn, the canonical model for formulas of modal depth up to n, to be
the T -coalgebra (Tn, e(n) : Tn → Tn+1) ∈ Coalg(T). Any such T -coalgebra gives rise
to a cone over the final sequence of T as described in Definition 4.2.14 on page 93. We
denote by (e(n)k : Tn → Tk)k∈ω the sequence of n-step behaviour maps into the final
sequence.

The key of proving that Equation 4.4 holds is the following technical lemma by Pattin-
son.

4.3.11. L ([P03]). For all n ∈ ω and all k ≤ n we have e(n)k = T k(!Tn−k). In
particular e(n)n = idTn .

4.3.12. R. Pattinson’s proof of this lemma is only formulated for C = Set but
works without changes also for the case C = Stone.

We are now ready to show that Equation 4.4 holds:

4.3.13. P. Let n ∈ ω and letCn = (Tn, e(n)) be defined as in Definition 4.3.10.
Then for all formulas φ ∈ Ln(Λ) we have [[φ]]Cn = dn(φ), where again dn : Ln(Λ) →
PTn is the n-step semantics of φ.

102 CHAPTER 4. ALGEBRAIC SEMANTICS

Proof. Let n ∈ ω and Cn = (Tn, e(n)). Furthermore recall from Lemma 4.2.17 on
page 94 that the semantics [[φ]]Cn of a formula φ ∈ Ln(Λ) is computed as follows:

[[φ]](Tn,e(n)) = P(e(n)n)(dn(φ)).

But e(n)n is equal to idTn according to Lemma 4.3.11 and hence also P(e(n)n) = idPTn .
Putting everything together we arrive at

[[φ]](Tn,e(n)) = P(e(n)n)(dn(φ))
= dn(φ).



We now turn to the proof of the fact that the injectivity of δ : LP ⇒ PT implies n-step
completeness, i.e. we show that equation (4.5) from page 101 holds if δ is injective.
Our first observation is that the existence of δ implies that the n-step semantics dn :
Ln(Λ) → PTn factors through a Boolean homomorphism δn : Ln → PTn. We first
define the δn’s and then prove that dn factors through δn.

4.3.14. D. For δ : LP ⇒ PT we define for each n ∈ ω a BA-morphism δn :
Ln → PTn by putting

δ0 B iP1 (the initial map from L0 = 2 to PT0 = P1)
δn+1 B δTn ◦ Lδn,

where we denoted the n-th element of the initial sequence of L and the n-th element of
the final sequence of T by Ln and Tn respectively.

The following observation is immediate from the fact that L preserves the injectiv-
ity and surjectivity of a morphism (cf. Proposition 4.1.39).

4.3.15. P. For all n ∈ ω the Boolean homomorphism δn is injective or sur-
jective if δ is injective or surjective respectively.

Proof. The claim can be proven with an easy induction on n. The map δ0 is always
an isomorphism. Inductively assume that δn is injective (surjective). Then Lδn is also
injective (surjective) by Prop. 4.1.39. But this implies injectivity (surjectivity) of δn+1 =

δTn ◦ Lδn under the condition that δ is injective (surjective). 

The n-step semantics dn factors through δn.

4.3.16. L. For all n ∈ ω and all φ ∈ Ln we have dn(φ) = δn(〈φ〉Ln), i.e.

Ln(Λ)
〈 〉Ln

dn

Ln δn
PTn

commutes for all n ∈ ω.

4.3. COALGEBRAIC SEMANTICS AS A NATURAL TRANSFORMATION 103

Proof. The lemma is proven by induction on n. For n = 0 the n-step semantics
d0 = iP1 : T(∅) → P1 is the initial ΣBA-morphism. The composition of maps δ0 ◦〈 〉L0 is
also a ΣBA-morphism from T(∅) to P1, and therefore, as T(∅) is the initial ΣBA-algebra,
we get d0 = δ0 ◦ 〈 〉L0 . Let now n = i + 1. Then Li+1(Λ) = Lift(Li(Λ)) and hence by
definition of Lift (cf. Def. 4.1.28) we get that Li+1 is freely generated by the set

G B {λ(ψ1, . . . ψn) | ψ1, . . . , ψn ∈ Li(Λ) and λ ∈ Λ n-ary}.

Therefore we have to check the commutativity of the diagram only on elements of G.
Let λ(ψ1, . . . , ψm) be an arbitrary element of G. Then

δi+1(〈λ(ψ1, . . . , ψm)〉Li+1) = δTi

(
Lδi(〈λ(ψ1, . . . , ψm)〉Li+1)

)

Def. 4.2.10
= δTi

(
Lδi(qi+1([λ(ψ1, . . . , ψm)]QuLi+1

))
)

Def. 4.2.7
= δTi

(
Lδi

([
λ
(
qi(

[
ψ1

]
QuLi

), . . . , qi(
[
ψm

]
QuLi

)
)]

Li+1

))

Def. 4.2.10
= δTi

(
Lδi

([
λ(〈ψ1〉Li , . . . , 〈ψm〉Li)

]
Li+1

))

Lemma 4.1.38
= δTi

([
λ(Ter(δi)(〈ψ1〉Li), . . . ,Ter(δi)(〈ψm〉Li))

]
LPTi

)

Def. of δ
= dTi

(
λ(Ter(δi)(〈ψ1〉Li), . . . ,Ter(δi)(〈ψm〉Li))

)

Def. 4.3.1
= λTi

((
Ter(δi)(〈ψ1〉Li)

)PTi
, . . . ,

(
Ter(δi)(〈ψm〉Li)

)PTi
)

Equ. 4.1, page 77
= λTi

(
δi(〈ψ1〉Li), . . . , δi(〈ψm〉Li)

)

I.H.
= λTi(di(ψ1), . . . , di(ψm))

Def. 4.2.16
= di+1(λ(ψ1, . . . , ψm))



We are ready to prove ω-step completeness of the logic:
4.3.17. P. If δ : LP ⇒ PT is injective then we have for all n ∈ ω and all
formulas φ, ψ ∈ Ln(Λ) that

dn(φ) = dn(ψ) implies φ ≡n ψ.

Proof. Let n be a natural number and φ, ψ ∈ Ln(Λ) formulas of modal depth ≤ n such
that dn(φ) = dn(ψ). By Lemma 4.3.16 we have δn(〈φ〉Ln) = dn(φ) and δn(〈ψ〉Ln) = dn(ψ).
Hence δn(〈φ〉Ln) = δn(〈ψ〉Ln). From the fact that δ is injective it follows that δn is
injective as well (cf. Prop. 4.3.15) and therefore we get 〈φ〉Ln = 〈ψ〉Ln . Unraveling the
definition of 〈 〉Ln (cf. Def. 4.2.10) this equation can be rewritten as

qn
([
φ
]

QuLn

)
= qn

([
ψ
]

QuLn

)
.

Because the map qn : QuLn → Ln is an isomorphism (cf. Lemma 4.2.9) we ob-
tain [

φ
]

QuLn
=

[
ψ
]

QuLn
. This, in turn, implies that φ ≡n ψ, because we know from

Lemma 4.2.8 that Ln = Ln(Λ)/≡n. 

104 CHAPTER 4. ALGEBRAIC SEMANTICS

We proved both equation (4.4) and equation (4.5) of the introduction of this subsec-
tion. As mentioned above these equations enable us to prove completeness of L(Λ, Ax)
with respect to the coalgebraic semantics.

4.3.18. P. If δ is injective, then L(Λ, Ax) is sound and complete, i.e. we have
Coalg(T) |= φ iff Ax ` φ for all φ ∈ L(Λ).

Proof. The direction from right to left is the soundness of the logic and it follows,
as demonstrated in Proposition 4.3.6, from the existence of δ. For the other direction
let φ be a formula such that Coalg(T) |= φ and let n be the modal depth of φ, i.e.
φ ∈ Ln(Λ). Then in particular Cn |= φ and therefore by Proposition 4.3.13 we get
dn(φ) = Tn = dn(>). From Prop. 4.3.17 we know that the logic is ω-step complete
because δ is injective. Therefore we can derive from dn(φ) = dn(ψ) that φ ≡n >. This
implies according to Lemma 4.2.5 that Ax ` φ and the proof is finished. 

We demonstrated that the injectivity of δ implies soundness and completeness of
the logic LΛ, Ax. In the case that we are working with the category of Stone spaces as
our base category we proved that surjectivity of δ implies the expressiveness.

Before we summarize these results for C = Stone in a theorem we introduce the
notion of when the functor L : BA → BA is dual to T .

4.3.19. D. We say that L is dual to T if the natural transformation δ : LP ⇒

PT from Lemma 4.3.3 is injective and surjective.

4.3.20. R. If L is dual to T , i.e. if δ : LP ⇒ PT is an isomorphism then we have
indeed that L is isomorphic to the functor T ∂ : BA → BA that dually corresponds to
T : Stone → Stone (cf. Def. 3.4.7 on page 60).

4.3.21. T. Consider T : Stone → Stone, a set of predicate liftings Λ for T and
a set of axioms Ax. Let L : BA → BA be the functor given by Ax (Definition 4.1.35). If
L is dual to T , then L(Λ, Ax) is sound, complete and expressive.

Proof. The claim on soundness and completeness is contained in Propositions 4.3.6
and 4.3.18 above. Expressivity follows from 4.3.8. 

4.4 A characterization of duality
In the previous section we have seen that the logic given by a set of predicate liftings
Λ and a set Ax of axioms is sound, complete and expressive if the induced functor L is
dual to T . In this section, we investigate conditions under which is the case. Our main
result is Theorem 4.4.13, where we give a characterisation of this duality in terms of Ax
and Λ. More specifically, we have that L is dual to T if the axioms are order-preserving
and -reflecting (cf. Definition 4.2.18) and, additionally, the predicate liftings Λ allow
to distinguish all elements of T X.

4.4. A CHARACTERIZATION OF DUALITY 105

We discuss both aspects, the condition on the axioms and the condition of the
predicate liftings, separately. First we will show that δ : LP ⇒ PT exists and is
injective iff the axioms are order-preserving and -reflecting. Then we will show for
the case C = Stone that δ is surjective iff the set of predicate liftings is “separating”.
Putting both results together yields the announced characterisation of duality.

4.4.1 Existence of δ and injectivity
We start by showing that the canonical natural transformation δ : LP ⇒ PT exists
and is injective iff the set of axioms Ax is order-preserving and -reflecting. In the
following we fix a set Λ of predicate liftings for T . The main result of this section can
be formulated as follows.

4.4.1. T. Given a set of axioms Ax for L(Λ), then Ax is order-preserving and
-reflecting iff the corresponding δ exists and is injective.

We need some preparations in order to be able to prove the theorem, which we split
into two parts. The first (and easy) part is the following lemma:

4.4.2. L. Given a set of axioms Ax for L(Λ), then

(i) If Ax is order-preserving, then δ exists.

(ii) If Ax is order-preserving and reflecting, then δ exists and is injective.

Proof.

(i) Recall from Def. 4.3.1 that for X ∈ C the function dX is defined as
Lift(()PX), i.e. the lifting of the term interpretation function

()PX : Ter(PX) → PX.

According to our assumption Lift(()PX) is preserving as ()PX is preserving
and therefore δX can be defined as described in 4.3.1. As this works for all
X ∈ C we get a natural transformation δ : LP ⇒ PT .

(ii) Suppose now that Ax is order-preserving and -reflecting. Then as in the
first case we can show that δX is a BA-morphism. As dX = Lift(()PX) is now
also order-reflecting we obtain, using Lemma 4.1.21, that δX is injective.



To prove the second half of the theorem we take a closer look at the definition of the
lifting Lift(f) of some f : (A,≡) → PX. First we need some notation.

106 CHAPTER 4. ALGEBRAIC SEMANTICS

4.4.3. N. Let A be in Alg(ΣBA), X an object in C and let h : A → PX be a ΣBA-
morphism. Then we denote by h∗ : A→ Ter(PX) the ΣBA-morphism mapping a ∈ A to
h(a) ∈ Ter(PX), i.e. we regard h(a) as a term over PX (cf. Definition 4.1.10).

The following observation is obvious.

4.4.4. L. Let (A,≡) be a pre-Boolean algebra, X ∈ C and let h : A → PX
be a ΣBA-morphism. Then h : (A,≡) → PX is a preserving map iff h∗ : (A,≡) →
(Ter(PX),Diag(PX)) is a preserving map and h is reflecting iff h∗ is reflecting.

4.4.5. L. Let (A,≡) be in PBA, X an object in C and let h : (A,≡) → PX be a pre-
serving map. Then Lift(h) = dX ◦ L(h∗), where L(h∗) is defined as in Definition 4.1.32.

Proof. Let λ(ψ1, . . . , ψm) ∈ Lift(A). We calculate that

Lift(h)(λ(ψ1, . . . , ψm)) = λX(h(ψ1), . . . , h(ψm))
= λX((h∗(ψ1))PX, . . . , (h∗(ψm))PX)
= dX (λ(h∗(ψ1), . . . , h∗(ψm)))
= dX (L(h∗)(λ(ψ1, . . . , ψm)))



The second half of Theorem 4.4.1 is now an immediate consequence.

4.4.6. L. Let h : A → PX be a ΣBA-morphism and let (A,≡) be a pre-Boolean
algebra. Then

1. If δ exists and h : (A,≡) → PX is a preserving map , then

Lift(h) : (Lift(A), Lift(≡)) → PT X

is preserving.

2. If in addition δ is injective and h is reflecting, then Lift(h) is also reflecting.

Proof. Suppose δ exists and h : (A,≡) → PX is a preserving map. Then according to
Lemma 4.4.5 we have Lift(h) = dX ◦L(h∗). Because δX exists the function dX must be a
preserving map. Furthermore h∗ is preserving and hence also L(h∗) (cf. Lemma 4.1.33).
Thus we can write Lift(h) as the composition of preserving maps and therefore Lift(h)
itself is a preserving map. The proof of the second half of the lemma is completely
analogous. 

The proof of the Theorem 4.4.1 is now complete: Lemma 4.4.2 proves one direction
and Lemma 4.4.6 the other direction.

4.4. A CHARACTERIZATION OF DUALITY 107

4.4.2 Surjectivity
We now consider a logic for an endofunctor T : Stone → Stone, i.e. C = Stone and
P = Clp. Here we will see that requiring that the set of predicate liftings Λ for T is
“separating” (a notion taken from [Pat04]) is equivalent to the fact that the canonical
map δ is surjective.

4.4.7. D. Let X ∈ Stone.

1. A collection of clopens C ⊆ Clp(X) is called separating if the map

sC : X → P(Clp(X))
x 7→ {U ∈ C | x ∈ U}

is injective.

2. A set of predicate liftings Λ for T is called separating if for all X ∈ Stone

ImΛ(X) := {
λX(U1, . . . ,Un) | λ ∈ Λ,U1, . . . ,Un ∈ Clp(X)}

is a separating set of clopens of TX.

Intuitively a separating set of predicate liftings makes it possible to characterise
points in TX(“successors”) by lifted predicates over X.

As it was shown in [Pat04] a coalgebraic modal language which has a separating
set of predicate liftings is expressive. We will now see that provided we have a sound
and complete logic for the functor T the fact that Λ is separating is equivalent to saying
that the functor L defining the algebraic semantics of our logic is the dual of T .

Our main theorem states that δ is surjective if and only if the set Λ of predicate
liftings is separating. Before we state (and prove) the theorem, we collect some facts
on separating sets, which are necessary for the proof of the theorem.

4.4.8. L. Let X = (X, τ) ∈ Stone and let A ⊆ Clp(X) be a subalgebra of Clp(X).
Then sA is injective iff A = Clp(X).

Proof. The implication from right to left is immediate. To prove the other direction
suppose that sA is injective. Then one can easily see that

⋂
{U ∈ A | x ∈ U} = {x} (4.6)

for all x ∈ X. To prove A = Clp(X) it suffices to show that A is a basis for the topology
on X. Suppose that W ⊆ X is open and let x ∈ W. We have to show that there is a
clopen set U ∈ A such that x ∈ U ⊆ W. Because of (4.6) we know that for all y ∈ −W
there is some Uy ∈ A such that x < Uy and y ∈ Uy. Hence −W ⊆

⋃
y∈−W Uy. Because

of compactness of the topology there are y1, . . . , yn ∈ −W such that −W ⊆
⋃n

i=1 Uyi .
Define V := −(⋃n

i=1 Uyi). Then V ∈ A and x ∈ V ⊆ W. Therefore A is a basis of the
topology on X. 

108 CHAPTER 4. ALGEBRAIC SEMANTICS

4.4.9. L. Let X = (X, τ) ∈ Stone and let C ⊆ Clp(X) be a clopen subbasis of the
topology of X. Then C is a separating set of clopens.

Proof. Let x, y ∈ X and x , y. Then there is a U ∈ Clp(X) such that x ∈ U and y ∈ −U.
As C is a subbasis of the topology there are V1, . . . ,Vn ∈ C such that

x ∈
n⋂

i=1
Vi ⊆ U.

But this means that there is at least one V j ∈ C such that x ∈ V j and y < V j, and
therefore sC(x) , sC(y). 

4.4.10. L. Let X = (X, τ) be a Stone space, C ⊆ Clp(X) a subset of Clp(X) and
define −C := {−U | U ∈ C}. Then

sC injective ⇔ sC∪−C injective

Proof. The direction from left to right is obvious. For the other direction, suppose
sC∪−C is injective and let x, y ∈ X, x , y. Then according to our assumption

sC∪−C(x) , sC∪−C(y).

Therefore we can assume that there is V ∈ C ∪ −C such that x ∈ V and y ∈ −V . We
distinguish the following cases:

Case V ∈ C. Then clearly sC(x) , sC(y).

Case V ∈ −C. Then −V ∈ C and hence −V ∈ sC(y) and −V < sC(x).

Since V ∈ C ∪ −C, this finishes the proof. 

Now we are ready to prove the main result of this section:

4.4.11. T. Let T : Stone → Stone be a functor, and suppose that L(Λ) is a
logic for T that has a order-preserving set of axioms Ax. Then Λ is a separating set of
predicate liftings iff the canonical δ : LClp ⇒ ClpT is surjective.

Proof. Given an order-preserving set of axioms we know that the map dX B Lift(()ClpX) :
Lift(Ter(ClpX)) → ClpTX factors through δX : LClpX → ClpTX ∈ BA, because we
proved in Theorem 4.4.1 that the fact that the set of axioms Ax is order-preserving
implies that δ exists, i.e. that dX factors through δX for all X ∈ Stone. It is therefore
obvious that we have the following equivalence:

δX is surjective for all X ∈ Stone iff Lift(()ClpX) is surjective for all X ∈ Stone.

We now show that the last property is equivalent to the fact that Λ is a separating set of
liftings.

4.4. A CHARACTERIZATION OF DUALITY 109

Suppose first that for an arbitrary X ∈ Stone the map Lift(()ClpX) is surjective. As the
domain of Lift(()ClpX) is closed under the boolean operations it can be easily seen that
the image of Lift(()ClpX) is equal to 〈ImΛ(X)〉ClpTX, the subalgebra of ClpTX generated
by ImΛ(X). Hence we get

ClpTX = Im(Lift(()ClpX)) = 〈ImΛ(X)〉ClpTX .

This implies that ImΛ(X)∪−ImΛ(X) is a clopen subbasis of the topology of TX, where
again −ImΛ(X) := {−U | U ∈ ImΛ(X)}. Using Lemma 4.4.9 and 4.4.10 we obtain that
the map sImΛ(X) is injective. As X was arbitrary we can conclude that Λ is separating.
Now suppose that Λ is a separating set of liftings and s let X ∈ Stone. Then sImλ(X) is
injective which also implies the injectivity of sLift(()ClpX). As the image of Lift(()ClpX) is
a subalgebra of ClpTX it follows by Lemma 4.4.8 that Im(Lift(()ClpX)) = ClpTX. 

We note the following immediate consequence, which is the main result of this
section:

4.4.12. C. Let T : Stone → Stone be a functor, and suppose that L(Λ) is a
logic for T that has a order-preserving set of axioms Ax. Then L(Λ) is expressive iff Λ
is separating.

Proof. Follows directly from the theorem and Proposition 4.3.8 

Summing up, we can now characterise duality between T and L in logical terms as
follows:

4.4.13. T. Let T : Stone → Stone, Λ a set of predicate liftings for T and let
Ax be a set of axioms. The following are equivalent:

(i) Ax is order-preserving and reflecting, and Λ is separating

(ii) L is dual to T .

Proof. From Theorem 4.4.1 we know that Ax is order-preserving and reflecting iff
δ : LP ⇒ PT exists and is injective. Theorem 4.4.11 tells us that, under the proviso that
Ax is order-preserving, the language L(Λ) is expressive iff δ : LP ⇒ PT is surjective.
Putting both statements together we arrive at the claim of the theorem. 

Combining the above result with Theorem 4.3.21, both of the two equivalent con-
ditions above provide us with a sound, complete and expressive logic for T -coalgebras.

110 CHAPTER 4. ALGEBRAIC SEMANTICS

4.5 Conclusion
General context

Our work stands in the broader context of employing Stone duality for providing a
state-based semantics for logical calculi that are represented by algebras. Here we un-
derstand Stone duality in a more abstract sense, like e.g. in [Joh82]. In this way not
only the already mentioned work by Jónsson and Tarski on Boolean algebras with oper-
ators ([JT51, JT52]) and the work by Goldblatt on descriptive general frames ([Gol76])
fit into this framework, but e.g. also the work by Abramsky on domain theory in logical
form ([Abr91]).

The general pattern of the above listed approaches is as follows: one starts with a
duality between a category A of algebras on the one hand, and a category of topological
spaces X on the other hand. This duality is then extended, in the first example, to the
duality between MA and DGF. In the work by Abramsky the duality is extended by
applying dual constructions to the category X = SFP of so-called SFP-domains and
to the dual category A of the corresponding locales. In our setting we have as a basic
duality the duality between A = BA and X = Stone. In this chapter we showed how
to lift this duality to a duality between functors T : Stone → Stone and L : BA →

BA, provided that we have an order-preserving and -reflecting set of axioms and a
separating set of predicate liftings for T .

Our results

The presented work explains and generalizes earlier results by Pattinson on coalgebraic
modal logic from [Pat03a] and [Pat04] (cf. introduction to Section 4.3). We defined an
algebraic semantics of coalgebraic modal logic in terms of a category of algebras for
a functor L : BA → BA. Furthermore we connected the algebraic and the coalgebraic
semantics via a natural transformation δ : LP ⇒ PL and showed that certain properties
of δ correspond to properties of the logic. In the case C = Stone we obtained what
we called a logical characterization of duality: L is dual to T iff L(Λ, Ax) is sound
and expressive and Λ is expressive. Our results are based on the duality between
Stone spaces and Boolean algebras, but our categorical formulation allows for further
straightforward generalizations to other dualities, for example to the duality between
the category of partially ordered sets and the category of spectral spaces.

Presenting functors

An interesting question concerning coalgebraic modal logics is, whether we can find
for any functor T : C → C a set of predicate liftings Λ and a set of axioms Ax such
that the languageL(Λ) is expressive and the logic L(Λ, Ax) is sound and complete with
respect to the coalgebraic semantics. For C = Stone the solution could be as follows:
Given a functor T : Stone → Stone we can always look at the dual functor T ∂ : BA →

BA of T . Given our results the question whether we can find an adequate logic for

4.5. CONCLUSION 111

reasoning about T -coalgebras can be reformulated into the question whether we can
represent the functor T ∂ : BA → BA with operations and equations, i.e. whether we
can find a set of predicate liftings Λ and a set of axioms Ax such that the corresponding
functor L : BA → BA is isomorphic to T ∂. This type of question is not new. A
similar result has been proven already for Set-functors: Up to questions of size, any
set-functor can be presented by operations and equations, see [Rei83, 1.5], [Ros81],
and [AT90, Section III.3.2,III.4.3].

Completeness via Jónsson-Tarski

As mentioned in the introduction, our completeness criterion in terms of δ corresponds
to the fact that we can lift the Stone representation embedding to the level of lifted
predicates. The completeness proof, however, uses an argument involving the final
sequence of the functor. From modal logic we know a much more direct completeness
argument which uses the so-called Jónsson-Tarski theorem: for every modal algebra
A = (A, f) we can define its canonical extension A∗ = (UStoneSpA, f ∗) such that the
Stone representation map jA : A → UStoneSpA is a homomorphism between modal
algebras. In [KKP05] we showed that this Jónsson-Tarski argument can be generalized
to our coalgebraic setting if we make an additional assumption on the functor.

Chapter 5
Closure properties of coalgebra automata

There is a close connection between automata theory and the theory of coalgebras
as has been pointed out in a number of papers, starting with [Rut98a]. It has to be
stressed, however, that there is a fundamental difference between this work and the
work on coalgebra automata which has been initiated by Venema in [Ven04]. Whereas
the former work is concerned with the question of how to model automata as coalgebras
the latter follows the slogan automata are formulas of some logic, namely formulas of
coalgebraic fixed-point logic (cf. Section 2.3) in our case.

Like formulas of coalgebraic logic, which are either satisfied or refuted at some
state in some given coalgebra, coalgebra automata accept or reject rooted coalgebras,
i.e. coalgebras together with some designated state. Because coalgebras can be seen
as abstract infinite objects coalgebra automata correspond to finite automata on infinite
objects.

Such automata have already found important applications in areas of computer sci-
ence where one investigates the ongoing behavior of nonterminating programs such as
operating systems. As an example we mention the automata-based verification method
of model checking [CGP00]. Work on automata on infinite objects also has a long
and strong theoretical tradition and its results link the field to neighboring areas such
as logic and game theory, see [GTW02] for an overview. We mention Rabin’s decid-
ability theorem [Rab69] for the monadic second order logic of trees as an outstanding
example for a theoretical work in this area; to mention a more recent example, Janin
& Walukiewicz [JW95] identified the modal µ-calculus as the bisimulation invariant
fragment of the monadic second order logic of labeled transition systems.

An interesting phenomenon in work about automata on infinite objects has been
that most key results hold for automata on infinite objects of different types alike, such
as automata on words, trees or graphs. This naturally raises the question, whether these
results can perhaps be formulated at the more general level of abstraction of coalge-
bra automata. In this chapter, which is in large parts based on the paper [KV05], we
are going to answer this question in the positive by proving certain closure proper-
ties of coalgebra automata. In this way we obtain uniform proofs of existing results

113

114 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

from automata on infinite words, trees and graphs. Furthermore we use the connection
with coalgebraic fixed-point logic to obtain several logical corollaries of our automata-
theoretic results.

This chapter is structured as follows: We will recall the definition of a T -(coalgebra)
automaton for a standard, weak pullback preserving functor T : Set → Set. Then we
prove certain closure properties of T -automata and our main result, namely that for
every alternating T -automaton we can find an equivalent non-deterministic one. Fur-
thermore we show that the non-emptiness problem of T -automata is decidable provided
that T maps finite sets to finite sets.

We then use the “automata are formulas” slogan to obtain corollaries of the above
listed results for coalgebraic fixed-point logics: we show that coalgebraic fixed-point
logics enjoy (a weak version of) the finite model property and, based on ideas from
the proof that coalgebra automata are closed under alternation, we prove the soundness
of a distributive law for the ∇-operator. In order to understand the relevance of this
last result one should note that there is so far neither an axiomatisation for Moss’s
coalgebraic logic nor a conjecture of what such an axiomatisation could look like. Our
distributive law can be added as a sound logical principle of coalgebraic logic to the
list in [Mos99, Sec.6] and might help to find an axiomatisation either of that logic or
of its finitary version.

The chapter is based on the earlier published paper [KV05] which is joint work
with Yde Venema.

5.1 Coalgebra automata
Before we recall the definition of a coalgebra automaton from [Ven04] we first want
to provide some intuition for how coalgebra automata naturally generalise automata
running on infinite words, trees and graphs. This will be done by taking a closer look
at the definition of an infinite graph automaton. All the automata in this chapter will be
so-called parity automata. The acceptance condition of these automata is formulated
in terms of parity games. The terminology that we are going to use, when talking about
parity games, is listed in Appendix C.

5.1.1 Deterministic graph automata
5.1.1. D. Let C be a finite set. A rooted graph is a tuple (S , σ, sI), where S
is a set, σ : S → P(S) is the successor function and sI ∈ S is the root. A C-labeled
rooted graph is a tuple (S , σ, γ, sI) such that (S , σ, sI) is a rooted graph and γ : S → C
is a (coloring) function assigning to each s ∈ S its color γ(s) ∈ C.

The following definition of a deterministic graph automaton and its acceptance
condition is essentially the same as the definition of a µ-automaton from [JW95], with
the difference that we are only considering deterministic graph automata in this section.

5.1. COALGEBRA AUTOMATA 115

5.1.2. D. A deterministic graph automaton is a tuple A = (A, aI ,C,∆,Ω)
where A is a finite set of states, aI ∈ A is the initial state, C is a finite set (the al-
phabet), ∆ : C × A → PA is the transition function and Ω : A → ω is a parity
function, i.e. a function from A to the set of natural numbers that has finite range (cf.
Definition C.0.9).

In order to be able to define when a graph automaton accepts a given graph we need
the notion of a run of the automaton.

5.1.3. D. Let A B (A, aI ,C,∆,Ω) be a deterministic graph automaton and
(S, sI) B (S , σ, γ, sI) a C-labeled graph with labeling function γ : S → C. A run of
A on (S, sI) is a rooted graph (Y ⊆ S × A, ρ : Y → P(Y), (sI , aI)) such that for all
(s, a) ∈ Y

• for all a′ ∈ ∆(γ(s), a) there is an s′ ∈ σ(s) such that (s′, a′) ∈ ρ(s, a)

• for all s′ ∈ σ(s) there is an a′ ∈ ∆(γ(s), a) such that (s′, a′) ∈ ρ(s, a).

A run is called accepting if for all (s, a) ∈ Y we have ∆(γ(s), a) , ∅ and for all infinite
sequences α = (s0, a0)(s1, a1)(s2, a2) . . . with (s0, a0) = (sI , aI) and (si+1, ai+1) ∈ ρ(si, ai)
we have

max{Ω(a) | (s, a) ∈ Inf(α)} is even.,
where Inf(α) is the set of states that occur infinitely often in α (cf. Def C.0.8). The
automaton A accepts (S, sI) if there is an accepting run.

5.1.4. R. The parity condition can be understood as follows: The acceptance
condition should specify which runs of the automaton are accepting, i.e. an acceptance
condition is a way of encoding subsets of all infinite runs of the automaton. The parity
condition is particularly well-behaved as we will see when we move to the definition
of an acceptance game: parity games are history-free determined.

The example of a deterministic graph automaton illustrates that an important part of
constructing an accepting run of an automaton consists of constructing a bisimulation.
This is the content of the next proposition.

5.1.5. P. Let C be equal to 1 (the “one-letter” alphabet),A = (A, aI ,C,∆,Ω)
a deterministic graph automaton and (S, sI) a rooted graph. Then for Y ⊆ S × A we
have

Y is a bisimulation between (S , σ, sI) and (A,∆, aI)
iff

there is ρ : Y → PY s.t. (Y, ρ, (sI , aI)) is a run of A on (S , σ, sI).

where bisimulation refers to the usual notion of bisimulation between directed graphs
or transition systems (cf. Example A.3.9).

116 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

Proof. Suppose first that there is a function ρ : Y → PY such that (Y, ρ, (sI , aI)) is a
run of A on (S, sI). Then spelling out the definition of a run we immediately get that Y
is a bisimulation between (S , σ, sI) and (A,∆, aI).

For the other direction let Y ⊆ S × A be a bisimulation between (S , σ, sI) and
(A,∆, aI). Then by definition (sI , aI) ∈ Y . Furthermore it is a well-known fact that
bisimulations between directed graphs are exactly the P-bisimulations between P-
coalgebras. Therefore there is a function ρ : Y → PY such that the following diagram
commutes

S
σ

Y πSπA

ρ

A
∆

PS PY PπSPπA
PA

It is easy to check that (Y, ρ, (sI , aI)) is a run of A on (S , σ, sI). 

5.1.6. R. We restrict our attention to the case that C = 1 in order to be able to
underline the central role that bisimulations play in the acceptance condition of a graph
automaton. If C contained more than one element, the connection between bisimula-
tions and runs of the automaton would become unnecessarily more complicated.

Therefore the acceptance game for a deterministic graph automaton can be formu-
lated using Baltag’s bisimulation game from [Bal00], which we will present next.

5.1.2 The bisimulation game
We state the definition of the bisimulation game in full generality, i.e. not only for
P-bisimulations but for T -bisimulations for an arbitrary functor T : Set → Set.

5.1.7. D. Let T : Set → Set and X B (X, γ),Y B (Y, δ) ∈ Coalg(T). Then
the arena of the T-bisimulation game G(X,Y) is given by the following table

Position: b Player Admissible moves: E[b] Ω(b)
(x, y) ∈ X × Y ∃ {Z ⊆ X × Y | (γ(x), δ(y)) ∈ TZ} 0
Z ∈ P(X × Y) ∀ Z 0

where the second column indicates whether a given position b belongs to player ∃ or
∀, i.e. whether b ∈ B∃ or b ∈ B∀ (cf. Def. C.0.9) and TZ is the relation lifting of Z (cf.
Def. A.2.5).

5.1.8. R. Note that the parity function for the bisimulation game is just the con-
stant function that assigns to every position the parity 0. This means that all infinite
games are won by ∃.

Intuitively ∃ wants to show that two points are related by a bisimulation and ∀ tries to
disprove ∃’s claim. This intuition is made explicit in the following proposition.

5.1. COALGEBRA AUTOMATA 117

5.1.9. P. [Bal00] Let T : Set → Set be a weak pullback preserving functor
and (X, xI) B (X, γ, xI), (Y, yI) B (Y, δ, yI) rooted T-coalgebras. Then

(X, xI) ↔T (Y, yI) iff ∃ has a winning strategy in G(X,Y) from (xI , yI).

Proof. We only sketch the proof. For the direction from left to right fix a T -bisimulation
Z such that (xI , yI) ∈ Z. Then it is not difficult to check that the strategy of ∃ to move
from any position (x, y) ∈ X × Y to Z is winning in G(X,Y) from position (xI , yI). The
other direction follows from the observation that the set Win∃(G(X,Y)) of winning
positions of ∃ is a T -bisimulation. 

The bisimulation game can be now used to reformulate the acceptance condition
for deterministic graph automata in terms of a parity game. The goal of player ∃
will be to show that there is an accepting run of the automaton on a given rooted
graph. In case we forget about the alphabet (we consider the trivial alphabet C = 1)
we saw in Proposition 5.1.5 that this means that ∃ has to make sure that there is a
bisimulation between the automaton and the rooted graph and this bisimulation fulfills
additional properties specified by the parity function of the automaton. This leads us
to the following reformulation of the acceptance condition of a graph automaton.

5.1.10. D. Let A = (A, aI ,C,∆,Ω) be a deterministic graph automaton and
(S, sI) B (S , σ, γ, sI) a rooted C-labeled graph with coloring function γ : S → C.
Then the acceptance game G(S,A) is defined as the parity graph game (cf. Definition
C.0.9) given by the following table

Position: b Player Admissible moves: E[b] Ω′(b)
(s, a) ∈ S × A ∃ {Y ⊆ S × A | (σ(s),∆(γ(s), a)) ∈ PY} Ω(a)
Y ∈ P(S × A) ∀ Y 0

where Ω′ : (S × A)∪P(S × A) → ω is the parity function of the acceptance game. We
say that A accepts (S, sI) if ∃ has a winning strategy in G(S,A) starting from position
(sI , aI).

It is not difficult to see that there is an accepting run of a given graph automaton
A on a rooted graph (S, sI) (cf. Def.5.1.3) iff A accepts (S, sI) according to Defini-
tion 5.1.10.

The definition of the acceptance game of a deterministic graph automaton can now
be generalised to automata working on T -coalgebras for an arbitrary standard weak
pullback preserving functor T : Set → Set.

5.1.3 Coalgebra automata
Compared to the deterministic graph automata that we discussed in the last section
T -coalgebra automata are a generalization in two directions: the first generalization is

118 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

that T -coalgebra automata are operating on rooted T -coalgebras for some weak pull-
back preserving functor T : Set → Set. The second generalization is a move from
deterministic to alternating automata.

In the previous section we restricted our attention to deterministic automata be-
cause we wanted to focus on the important rôle of the bisimulation game in the accep-
tance game of an automaton. In a play of the acceptance game of a deterministic graph
automaton ∃ has to ensure that for every position (s, a) the set of successors σ(s) of s
fulfill the conditions encoded in the set of successors ∆(a) of a. In a non-deterministic
graph automaton, ∆(a) consists of several successor sets Φ1,Φ2 . . . ∈ P(A) and ∃ has
to show that there is a Φ ∈ ∆(a) such that σ(s) fulfills the conditions encoded in Φ.
In an alternating graph automaton, ∆(a) consists of several sets of successor sets of a,
i.e. ∆(a) = {Ψ1,Ψn, . . .} where Ψi = {Φi

1,Φ
i
2, . . .} ∈ P(P(A)). It is now the task of ∃

to show that there is a Ψ ∈ ∆(a) such that for all Φ ∈ Ψ the set σ(s) fulfills the con-
ditions encoded in Φ. To sum it up: the move from deterministic to non-deterministic
automata adds an existential quantifier and the move to alternating automata adds a
universal quantifier to the acceptance condition.

Now we are prepared for the definition of a T -coalgebra automaton as it was intro-
duced by Venema in [Ven04].

5.1.11. D. Let T : Set → Set be a standard weak pullback preserving functor
(cf. Appendix A.2.2). An (alternating) T-automaton is a quadruple A = (A, aI ,∆,Ω)
with A some finite set (of states), aI ∈ A the root, ∆ : A → P(P(T A)) the transition
function and Ω : A → ω a parity map. A T -automaton is called non-deterministic if
all members of each ∆(a) are singleton sets. A T -automaton is called deterministic if
∆(a) has exactly one singleton set as its only element.

The acceptance condition for T -automata is formulated in terms of a parity game
(cf. Definition C.0.9)

5.1.12. D. Let T : Set → Set be a standard weak pullback preserving functor
and A = (A, aI ,∆,Ω) a T -automaton. Furthermore let (S, sI) = (S , σ, sI) be a rooted
T -coalgebra. Then the acceptance game G(S,A) is given by the following table

Position: b Player Admissible moves: E[b] Ω′(b)
(s, a) ∈ S × A ∃ {(s,Φ) ∈ S × PT A | Φ ∈ ∆(a)} Ω(a)
(s,Φ) ∈ S × PT A ∀ {(s, φ) ∈ S × T A | φ ∈ Φ} 0
(s, φ) ∈ S × T A ∃ {Z ∈ P(S × A) | (σ(s), φ) ∈ TZ} 0
Z ∈ PS × A ∀ Z 0

We say A accepts (S, sI) if ∃ has a winning strategy from position (sI , aI) in G(S,A).
Positions of the form (s, a) ∈ S ×A will be called basic positions of the game. A partial
play of the game of the form

(s, a) (s,Φ) (s, φ) Z

5.1. COALGEBRA AUTOMATA 119

with (s, a) ∈ S × A, (s,Φ) ∈ S ×PT A, (s, φ) ∈ S × T A and Z ∈ P(S × A) will be called
a round of the play.

A class of rooted T -coalgebras will be called T-language . A T -language L is rec-
ognized by some T -automaton A if a rooted T -coalgebra belongs to T iff it is accepted
by A. The T -language recognized by the T -automaton A will be denoted by L(A). A
T -language is called (non-deterministically) recognizable if it is recognized by some
(non-deterministic) T -automaton.

5.1.13. R. It is clear from the definition of Ω′ that only the basic positions of a
play, i.e., positions of the form (s, a) ∈ S × A, are relevant to determine the winner.
Accordingly, in the sequel we will frequently represent a play of the game by the
sequence of basic positions visited during the play.

The definition of the acceptance game of a T -automaton reflects that T -automata are
generalising deterministic graph automata in two ways. The first two moves of the
acceptance game are the part which reflects the generalization from deterministic to
alternating automata: in a position (s, a) the two players are using their power to de-
termine the “successor” of a. The second half of the game consists of the bisimulation
game formulated for arbitrary functors T : Set → Set (cf. Definition 5.1.7). The fact
that an essential part of the acceptance game of a T -automaton consists of the bisimu-
lation game is also reflected in the following fact which was proven in [Ven04] stating
that coalgebra automata work “modulo bisimulation”.

5.1.14. F. [Ven04, Prop. 4.7] Let T : Set → Set be a standard weak pullback
preserving functor and let (S1, s1

I), (S2, s2
I) be rooted T -coalgebras such that (S1, s1

I) ↔T
(S2, s2

I). Then A accepts (S1, s1
I) iff A accepts (S2, s2

I).

But at first sight T -automata seem not to be a proper generalization of graph au-
tomata, as they work only on T -coalgebras without allowing any coloring. This leads
to the definition of C-colored coalgebras and C-chromatic T -automata.

5.1.15. D. Let T : Set → Set, C ∈ Set and S = (S , σ) a T -coalgebra. Then a
C-coloring of S is a function γ : S → C. The C-colored T-coalgebra S⊕γ := (S , γ, σ)
can be identified with the C × T -coalgebra (S , 〈γ, σ〉).

5.1.16. D. Let C be a finite set. A C-chromatic T-automaton is a quintuple
A = (A, aI ,C,∆,Ω) such that ∆ : A × C → P(P(T A)) (and A, aI , and Ω as for T -
automata).

Given such an automaton and a C×T -coalgebra S = (S , γ, σ), the acceptance game
GC(A,S) is defined as the acceptance game for T -automata with the only difference that
∃ has to move from a position (s, a) to a position (s,Φ) such that Φ ∈ ∆(a, γ(s)). See
Table 5.1 for the details.

120 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

Position: b Player Admissible moves: E[b] Ω′(b)
(s, a) ∈ S × A ∃ {(s,Φ) ∈ S × PT A | Φ ∈ ∆(a, γ(s))} Ω(a)
(s,Φ) ∈ S × PT A ∀ {(s, φ) ∈ S × T A | φ ∈ Φ} 0
(s, φ) ∈ S × T A ∃ {Z ∈ P(S × A) | (σ(s), φ) ∈ TZ} 0
Z ∈ P(S × A) ∀ Z 0

Table 5.1: Acceptance game for a chromatic T -automaton

5.1.17. E. The well-known word, tree and graph automata are instantiations of
this notion. They correspond to C-chromatic T -automata for the following functors T :

Automata on Functor
infinite words Id
infinite binary trees Id × Id
infinite graphs P

It was shown in [Ven04, Prop. 4.12] that C-chromatic T -automata and C × T -
automata have the same recognizing power. We will need the following fact about
C-chromatic T -automata when proving that coalgebra automata are closed under pro-
jection (cf. Section 5.2.1 below).

5.1.18. F. To any C × T -automaton A we can find a C-chromatic T -automaton AC,
the chromatic T-companion ofA, such thatA andAC accept the same C×T -coalgebras.

To be able to prove statements about T -automata we will have to reason about
strategies of ∃ in the acceptance game. Parity games are known to enjoy a strong form
of determinacy: in any position of the game board either ∃ or ∀ has a history-free
winning strategy (cf. Theorem C.0.12). Therefore we can focus on ∃’s history-free
strategies.

5.1.19. D. Given a T -coalgebra S = (S , σ) and a T -automatonA = (A, aI ,∆,Ω)
a history-free strategy of ∃ in G(S,A) is a pair of functions

(Φ : S × A → PT A, Z : S × T A → P(S × A)).

A partial strategy of the kind Φ : S × A → PT A will often be represented as a map
Φ : S → (PT A)A; values of this map will be denoted asΦs, etc. Given a strategy (Φ,Z)
of ∃ in G(S,A) we let Win(Φ,Z) denote the set of positions of the game at which (Φ,Z)
is a history-free strategy of ∃.

5.2 Closure properties
We now come to the central part of this chapter - the discussion of closure properties
of T -automata. This section is based on the paper [KV05]. Its main technical result
can be formulated as follows.

5.2. CLOSURE PROPERTIES 121

5.2.1. T. Let T be some standard set functor that preserves weak pullbacks.
Then every T-automaton has a non-deterministic equivalent. Hence, a T-language is
recognizable iff it is non-deterministically recognizable.

When discussing closure properties we say that a class C of T -languages is closed
under some operation on T -languages if whenever we apply this operation to a fam-
ily of languages of C we obtain again a language in C. For example, one may easily
prove that the class of recognizable T -languages is closed under taking intersection
and union; with some more effort we will show that the class of non-deterministically
recognizable T -languages is closed under projection. Theorem 5.2.1 allows us to
strengthen the above list of closure properties as follows.

5.2.2. T. Let T be some standard set functor that preserves weak pullbacks.
Then the class of recognizable T-languages is closed under union, projections and
intersection.

Our proofs for these results are of course built on generalizations, to the coalgebraic
level, of (well) known ideas from the theory of specific automata. This applies in
particular to results on graph automata [JW95] and the abstract universal algebraic
approach of [AN01].

Throughout this section we let T : Set → Set be some standard and weak pullback
preserving functor.

5.2.1 Closure under union, intersection and projection
In this subsection we show that the class of non-deterministically recognizable lan-
guages is closed under taking union and projection, whereas the class of recognizable
languages is shown to be closed under union and intersection. Combined with Theo-
rem 5.2.1, this suffices to prove Theorem 5.2.2.

We first define the sum and product of two T -automata, and prove that they recog-
nize, respectively, the union and the intersection of the languages associated with the
original automata.

5.2.3. D. LetA1 = (A1, a1
I ,∆1,Ω1) andA2 = (A2, a2

I ,∆2,Ω2) be two T -automata.
We will define their sum A∪ and product A∩. Both of these automata will have the dis-
joint union

A12 := {∗}] A1] A2

as their collection of states. Also, the parity function Ω will be the same for both
automata:

Ω(a) :=
{

0 if a = ∗,
Ωi(a) if a ∈ Ai.

122 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

The only difference between the automata lies in the transition functions, which are
defined as follows:

∆∪(a) :=
{
∆1(a1

I) ∪ ∆2(a2
I) if a = ∗

∆i(a) if a ∈ Ai,

∆∩(a) :=
{
{Φ1 ∪ Φ2 | Φi ∈ ∆i(ai

I)} if a = ∗
∆i(a) if a ∈ Ai.

Finally, we put A∪ := (A12, aI ,∆∪,Ω) and A∩ := (A12, aI ,∆∩,Ω), where aI B ∗.

The following proposition presents the announced closure properties.

5.2.4. P. LetA1 andA2 be two T-automata. Then for any pointed T-coalgebra
(S, sI) we have:

1. A∪ accepts (S, sI) iff A1 or A2 accepts (S, sI),

2. A∩ accepts (S, sI) iff both A1 and A2 accept (S, sI).

3. A∪ is non-deterministic if A1 and A2 are so.

Proof. First suppose that the automaton A∪ accepts (S, sI). Hence by definition, ∃ has
a winning strategy (Φ,Z) in the acceptance game G := G(S,A∪) starting from position
(sI , ∗). Let i be such that Φ(sI , ∗) ∈ ∆(ai

I). It is then straightforward to verify that
(Φ,Z), restricted to ∃’s positions in G(S,Ai), is a winning strategy for ∃ from position
(sI , ai

I). From this it is immediate that Ai accepts (S, sI). The other statements of the
proof admit similarly straightforward proofs. 

We now turn to the proof of the fact that T -automata are closed under projection.
In the following all T -automata are assumed to be non-deterministic. To facilitate the
presentation we will think of the transition function ∆ as a map A → PT A and the first
component Φ of a strategy (Φ,Z) for ∃ in an acceptance game G(S,A) will be regarded
as a function of type A × S → T A (that is, we identify singleton sets with their unique
elements).

5.2.5. D. Let C be a finite set, A = (A, aI ,∆,Ω) be a (C × T)-coalgebra au-
tomaton and AC = (A, aI ,C,∆C,Ω) its C-chromatic T -companion, see Fact 5.1.18.
Then we define the C-projection πCA := (A, aI ,∆π,Ω) where ∆π(a) := ⋃

c∈C ∆C(c, a).

The C-projection of A accepts all the underlying rooted T -coalgebras of rooted C × T -
coalgebras that are accepted by A.

5.2.6. L. If a C-chromatic T-automatonA accepts the (C×T)-coalgebra (S, sI) :=
(S , γ, σ, sI) then πCA accepts (Sπ, sI) := (S , σ, sI).

5.2. CLOSURE PROPERTIES 123

Proof. The proof is easy. One has to realize that a winning strategy (Φ,Z) of ∃ in the
game for AC is still a winning strategy of ∃ in the πCA acceptance game. 

The converse of this lemma however fails in general. Let A be some C × T -automaton
and let (S , σ, sI) be a pointed T -coalgebra that is accepted by πCA. Then we know
that ∃ has a winning strategy (Φ,Z) in G(S, πCA) from position (sI , aI). We would
like to ensure that (Φ,Z) is also a winning strategy in G(S,AC) by defining a coloring
γ : S → C as follows: γ(s) := c if there is a match of G(S, πCA), starting from position
(sI , aI) and conform ∃’s strategy, in which a position (s, a) occurs and Φs,a ∈ ∆C(c, a).
In general, however, there may be distinct positions (s, a1) and (s, a2) that ∀ may force
the match to pass through, and it may not be possible to find a single c ∈ C such that
both Φs,a1 ∈ ∆(c, a1) and Φs,a2 ∈ ∆(c, a2). To avoid this problem we introduce now the
notion of strong acceptance.

5.2.7. D. Let A be a T -automaton and (S, sI) a rooted T -coalgebra. A his-
tory free strategy (Φ,Z) for ∃ in the game G = G(S,A) initialized at (sI , aI) is called
scattered if the relation

{(sI , aI)} ∪
⋃
{Zs,φ ⊆ S × A | (s, φ) ∈ Win(Φ,Z)}

is the graph of some possibly partial function. Furthermore we say that A strongly
accepts the rooted coalgebra (S, sI) if ∃ has a scattered winning strategy in the game
G(S,A) initialized at position (sI , aI).

Under the condition that A strongly accepts (S, sI) we can now prove the converse of
Lemma 5.2.6.

5.2.8. L. Let A be a C × T-automaton, and let (S, sI) be a rooted T-coalgebra
that is strongly accepted by πA. Then there is a C-coloring γ : S → C of S such that
A accepts (S , γ, σ, sI).

Proof. Let (Φ,Z) be a scattered winning strategy for ∃ inG(S, πA) that exists according
to our assumption that (S, sI) is strongly accepted by πA. According to the definition
of scatteredness we can assign to every s ∈ S a state as ∈ A such that ar = aI , and
if (s, a) ∈ Zs,φ for some winning position (s, φ) of ∃, then a = as. Then we define a
function γ : S → C as follows. If there is a c ∈ C such that Φs,as ∈ ∆C(c, a), then
we pick such a c and put γ(s) := c; if there is no such c, then we define γ(s) := d for
some arbitrary d ∈ C. It follows from these definitions that (Φ,Z) is a winning strategy
for ∃ in GC(S ⊕ γ,AC) from position (sI , aI). From this it is immediate that A accepts
(S , γ, σ, sI). 

At first sight the acceptance condition of a T -automaton seems to be strictly weaker
than strong acceptance. One can easily think of an example of a T -coalgebra that is
not strongly accepted by some T -automaton.

124 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

5.2.9. E. Let T = Id and A = (A, aI ,∆,Ω) where A B {aI , a}, ∆(aI) B

{{aI}, {a}}, ∆(a) B {{a}} andΩ(aI) B 1,Ω(a) B 0. Furthermore let (S, sI) B ({∗}, id{∗}, ∗).
Then A accepts (S, sI) but does not strongly accept (S, sI).

The next lemma, however, shows that if a rooted coalgebra is accepted by some
automaton, but not strongly so, then we can always find a bisimilar pointed coalgebra
that is strongly accepted.

5.2.10. L. Let A be a T-automaton, and let (S, sI) = (S , σ, sI) be a pointed T-
coalgebra that is accepted by A. Then there is a pointed T-coalgebra (S , σ, sI) such
that

1. (S, sI) ↔T (S , σ, sI) and

2. A strongly accepts (S , σ, sI).

Proof. The coalgebra S will be based on the set S := S × A, and as the root sI of S
we take the pair (sI , aI). For the definition of the coalgebra structure σ, we need some
auxiliary definitions.

First we define a coalgebra map σ̃ : S×A → T (S×A) such that (S , σ̃) is isomorphic
to the A-fold coproduct of S. Recall the well-known fact that the forgetful functor U :
Coalg(T) → Set creates colimits (cf. [Bar93, Prop. 1.1]) and therefore the underlying
set of a colimit and the canonical morphisms into the colimit can be computed as in
Set. This means in particular that we can define σ̃ : S × A → T (S × A) as follows:
for a ∈ A let κa : S → S × A be the map that maps s ∈ S to (s, a) ∈ S . The set
S × A together with the maps κa : S → S × A is isomorphic to the A-fold coproduct
of S in Set. Because U creates colimits this means that we can find a coalgebra map
σ̃ : S × A → T (S × A) such that (S , σ̃) ∈ Coalg(T) together with the maps κa : S → S
is isomorphic to the the A-fold coproduct ∐

a∈A S of S in Coalg(T). In particular this
means that the κa’s are Coalg(T)-morphisms from S to (S , σ̃). Let πS : S × A → S be
the map that maps a pair (s, a) ∈ S ×A to S . Then it is easy to show that the fact that the
κa’s are coalgebra morphisms implies that πS : (S , σ̃) → S is a coalgebra morphism as
well.

Second, given a relation R ⊆ S × A, define the relation R̂ ⊆ S × A by putting

R̂ := {((s, a), a) | (s, a) ∈ R}.

Then clearly we have that R = Gr(πS)∼ ◦ R̂, and hence,

TR = Gr(TπS)∼ ◦ TR̂. (5.1)

Now let now (Φ,Z) be a winning strategy of ∃ in G(S,A) from position (sI , aI)
that exists according to our assumption. For the definition of σ : S → TS , consider
an arbitrary element (s, a) ∈ S , and distinguish cases. We first look at the case in
which (Φ,Z) is a winning strategy of ∃ in the game G(S,A) from position (s, a), i.e.

5.2. CLOSURE PROPERTIES 125

(s, a) ∈ Win(Φ,Z). Using (5.1), it follows from (σ(s),Φs,a) ∈ TZ(s,Φs,a), that we may
define σ(s, a) to be some element in TS satisfying (σ(s), σ(s, a)) ∈ Gr(TπS)∼ and
(σ(s, a), φ) ∈ TẐ(s,Φs,a). If, on the other hand, (s, a) < Win(Φ,Z), then we simply put
σ(s, a) := σ̃(s, a).

It is completely straightforward to check that the map πS is in fact an T -coalgebraic
homomorphism from S onto S. From this, the first statement of the proposition follows
immediately.

For the second statement, define the strategy (Φ,Z) with Φ : S × A → A and
Z : S × T A → P(S × A) as follows:

Φ : ((s, a), b) 7→ Φs,b
Z : ((s, a), φ) 7→ Ẑs,φ.

Since all relations chosen by ∃ are of the form R̂, and all elements of such relations
are of the form ((s, a), b) with a = b, it is obvious that the set {((s, aI), aI)} ∪

⋃
{Ẑs,φ |

(s, φ) ∈ S × T A} is functional. In other words, the strategy is scattered.
Thus it is left to prove that (Φ,Z) guarantees ∃ to win any match of G(S,A) starting

from (sI , aI). To see why this is the case, consider an arbitrary position ((s, a), a) with
(s, a) ∈ Win(Φ,Z), and abbreviate φ := Φs,a. Then by definition, Φ((s, a), a) = φ

and Z((s, a), φ) = Ẑs,φ = {((t, b), b) | (t, b) ∈ Zs,φ}. From this observation it is easy to
derive that for any G(S,A) match (sI , aI)((s1, a1), a1)((s2, a2), a2) . . . that is conform the
strategy (Φ,Z), the corresponding G(S,A) match (sI , aI)(s1, a1)(s2, a2) . . . is conform
(Φ,Z). And since this strategy was supposed to be winning for ∃ from (sI , aI), it follows
that the G(S,A) match is, indeed, a win for ∃. This proves the second statement of the
proposition. 

5.2.11. P. Let A be some (C × T)-automaton. Then the following are equiv-
alent, for every rooted T-coalgebra (S, sI):

1. πCA accepts (S, sI),

2. A accepts a (C × T)-coalgebra (S ′, γ, σ′, s′) such that (S ′, σ′, s′) and (S, sI) are
bisimilar.

Proof. 1 ⇒ 2: Suppose πCA accepts (S, sI). Then by Lemma 5.2.10 there is a
pointed T -coalgebra (S ′, σ′, s′) that is bisimilar to (S, s) and that is strongly accepted
by πCA. But then by Lemma 5.2.8 there is a coloring γ : S ′ → C such that A accepts
(S ′, γ, σ′, s′).
2 ⇒ 1: This follows from Lemma 5.2.6 and that T -automata do not distinguish be-
tween bisimilar T -coalgebras (cf. Fact 5.1.14). 

5.2.2 From alternating automata to nondeterministic ones
In this section we prove the main technical result of this chapter, Theorem 5.2.1. That
is, we will construct, for an arbitrary, alternating T -automaton an equivalent non-

126 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

deterministic T -automaton. Throughout this section we will be working with a fixed
(but arbitrary) T -automaton A = (A, aI ,∆,Ω).

Before going into the technical details of the construction, let us first provide some
of the intuitions behind our approach. These intuitions ultimately go back to ideas
of Muller and Schupp, see for instance [MS95], but in particular, our proof gener-
alizes work by Janin and Walukiewicz [JW95], using the approach of Arnold and
Niwiński [AN01].

The main idea is to bring the players’ interaction pattern ∃∀∃∀ in one round of
the acceptance games for A, into the ‘strategic form’ ∃∀ (or more precisely: ∃∃∀).
Concretely, consider a basic position (s, a) ∈ S × A in the acceptance game G(S,A) for
some T -coalgebra S. From this position a play proceeds as follows:

• ∃ picks Φ ∈ ∆(a), moving to position (s,Φ);

• ∀ picks φ ∈ Φ, moving to position (s, φ);

• ∃ picks Zφ ⊆ S × A with (σ(s), φ) ∈ TZφ — this Zφ is the new position;

• ∀ picks (t, b) ∈ Zφ as the next basic position.

Now the crucial point is that ∃ may gather her family {Zφ ⊆ S × A | φ ∈ Φ} into one
single relation ZΦ ⊆ S ×PA, and that we may modify the game in such a way that this
is an appropriate answer for ∃. This approach would suggest to take (representations
of) subsets of A as the states of the new automaton Ad.

However, as is well-known from the literature, such a straightforward subset con-
struction may work for automata that operate on finite objects, in the case of automata
for (possibly) infinite objects this approach fails to make some subtle but crucial dis-
tinctions. The remedy, which brings us to the second fundamental idea underlying our
construction, is to use binary relations on A, rather than subsets of A, to bring the ac-
ceptance game into some kind of ‘layered-strategic’ form. Then, using the notion of a
trace through a sequence of such relations, we have an established tool at our disposal
for bringing the interaction pattern of the acceptance game into the required format.
Our contribution here is to show that all of this can be done in the abstract context of
coalgebras for an arbitrary standard, weak pullback preserving functor.

Now we are ready for the technical details of the construction.

5.2.12. D. Given a finite word ρ = R1R2 . . .Rn over the set Rel(A) of binary
relations over A, a trace through ρ is an A-word α = a0a1a2 . . . ak with k ≤ n such that
a0 = aI is the initial state aI of the automaton, and aiRi+1ai+1 for all i < k. Similar
definitions apply to (finite or infinite) traces on infinite Rel(A)-words.

A trace α is a trap for ∃ if ∆(ai) = ∅ for some state ai on α; a trace α is bad if it is
a trap for ∃ or, in case α is infinite, if max{Ω(ai) | i ∈ Inf(α)} is odd.

As we will see, traces may be associated with matches of the acceptance game for
A, bad traces with the ones that are lost by ∃. Let us look at this in a bit more detail. As

5.2. CLOSURE PROPERTIES 127

a consequence of the generality that we aim for, there are two different ways in which
∃ may loose a match. She may either get stuck at some finite stage of the match (either
at a basic position or at a position of the form (s, φ) ∈ S × T A), or survive for infinitely
many rounds but fail to establish the winning condition. Now the traces that are traps
for ∃ will correspond to matches in which she gets stuck in a basic position, whereas
the other kind of badness will turn out to be an encoding of ∃’s failing to win an infinite
match. For finite matches that ∃ looses because of getting stuck in a non-basic position,
we do not need a corresponding notion for traces.

The first proposition that we need is a variation on well-known results. It concerns
the existence of a deterministic word automaton that accepts those words over Rel(A)
which contain no bad traces. Since there are two kinds of bad traces, this automaton
needs to perform a double task: it needs to recognize traps for ∃, and it needs to take
proper care of the infinite words. It will be convenient to have the automaton perform
these two jobs more or less separately. That is, the automaton will have a special state
m∀ signaling that ∃ has been trapped. In order to formulate the proposition we need
some notation.

5.2.13. N. Given a deterministic automaton D = (D, dI ,Σ, δ,ΩD) operating on
possibly infinite words with alphabet Σ and transition function δ, we let δ̂ : D×Σ∗ → D
denote the iterated transition function, inductively defined by δ̂(d, ε) = d and δ̂(d, αa) =
δ(δ̂(d, α), a).

5.2.14. P. There is a deterministic word automaton

M0 = (M,mI ,Rel(A), µ0,Ω0),

operating on Rel(A)-words, and containing a special state m∀, such that:

1. µ0(m∀,R) = m∀ for all R ∈ Rel(A),

2. for any finite Rel(A)-word ρ: µ̂(ρ) = m∀ iff ρ contains a trap for ∃,

3. for any infinite Rel(A)-word ρ: M0 accepts ρ iff ρ contains no bad traces.

Proof. We constructM0 in several steps.

Step 1: We define a non-deterministic word automaton M′ = (M′,m′
I ,Rel(A), µ′,Ω′)

by letting M′
B A ∪ {∗}, m′

I B aI and

µ′(m,R) B

{
R[a] if a , ∗ and ∆(a) , ∅
∗ otherwise,

Ω′(m) B

{
Ω(m) + 1 if m ∈ A
0 if m = ∗.

It is not difficult to check thatM′ accepts an infinite Rel(A)-word α iff α contains
a bad trace.

128 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

Step 2: We use several standard constructions from automata theory: first we trans-
form M′ into an equivalent nondeterministic Büchi automaton (cf. [GTW02,
Chapter 1]) , and transform the resulting automaton into an equivalent deter-
ministic Muller automaton using the Safra construction (cf. [GTW02, Theorem
3.6]). The resulting deterministic Muller automaton can be easily transformed
into a deterministic Muller automaton accepting the complement of the language
of M′. Finally we transform this deterministic Muller automaton into an equiv-
alent deterministic parity automaton which we call M′. To sum it up we obtain
a deterministic parity automaton M′

= (M′
,m′

I ,Rel(A), µ′,Ω
′
) that accepts the

complement of the language accepted by M′, i.e. M′ accepts an infinite Rel(A)-
word α iff it does not contain a bad trace.

Step 3: This is the last step of the construction in which we bring the automaton M′

in the special shape which is required by our proposition. To this aim we define
M B M′

× PA ∪ {m∀}, mI B m′
I × {aI} and

µ0((m, A′),R) B

{
(µ′(m,R),⋃a∈A′ R[a]) if for all a′ ∈ A′.∆(a′) , ∅
m∀ otherwise

µ0(m∀) B m∀.

Ω((m, A′)) B Ω
′
(m)

Ω(m∀) B 1



In the remainder of this section we fix the automaton M0 = (M,mI , µ0,Ω0) and state
m∀ as given in Proposition 5.2.14. We turn now to the main construction of the proof.
Below we define a non-deterministic automatonM1 which operates on (PT A)A-colored
T -coalgebras, S ⊕ Φ, that is, T -coalgebras S = (S , σ) that are colored by the map
Φ : S → (PT A)A, i.e. by a (potential) strategy of ∃ in the game G(S,A) that is partial
in the sense of dealing with basic positions only. More precisely, for any position
(s, a) ∈ S ×A, we let the value Φs,a ∈ PT A encode the move (s, {Φs,a}) ∈ S ×PT A. Our
aim with the automaton M1 is that it will recognize precisely those pointed (PT A)A-
colored T -coalgebras (S , σ,Φ, sI) of whichΦ forms the basic part of a winning strategy
in the game G(S,A).Towards the end of this section we will see that this suffices to
prove Theorem 5.2.1.

For the definition ofM1 we need some preliminary definitions.

5.2.15. D. An object Ξ ∈ TPA is called an T-redistribution of a subset Φ ⊆

T A if (φ,Ξ) ∈ T (∈A) for all φ ∈ Φ.
An object Π ∈ TRel(A) is called an T-redistributive relational representation of an

element Φ ∈ (PT A)A, or shortly: an T-relation for Φ, if (Teva)(Π) is a redistribution
of Φ(a) for all a ∈ A. Here eva : Rel(A) → PA is the map given by eva : R 7→ R[a].
The collection of T -relations for Φ ∈ (PT A)A is denoted as RT (Φ).

5.2. CLOSURE PROPERTIES 129

The intuitions on these notions are as follows. Concerning redistributions, the point is
that for any T -coalgebra S = (S , sI), any point s ∈ S and any set Φ ∈ PT A, there is a
1-1 correspondence between:

• families {Zφ ⊆ S ×A | φ ∈ Φ} of relations such that (σ(s), φ) ∈ TZφ for all φ ∈ Φ,
and

• pairs (ZΦ,Ξ) consisting of a relation ZΦ ⊆ S × PA, and an T -redistribution Ξ ∈
TPA of Φ, such that (σ(s),Ξ) ∈ TZΦ.

In brief, redistributions enable us to gather the information of a family {Zφ ⊆ S × A |

φ ∈ Φ} of relation moves of ∃ into one single relation ZΦ ⊆ S × PA.
However, this regrouping of information on ∃’s strategy in terms of redistributions

has one shortcoming: it is based on subsets of A whereas we already pointed out that
such an encoding will not suffice to encode the full flow of information when trans-
forming alternating automata into non-deterministic ones. This is where the notion
of an T -relation for Φ comes in. The important observation is that any element Π
of the set TRel(A) has the right shape to represent a family {Φa ∈ PT A | a ∈ A}:
the point is that we may use, for every a ∈ A, the map Teva : TRel(A) → TPA to
provide an element (Teva)(Π) in the right set TPA of (potential) T -redistributions of
Φ. Thus, the definition of a Π ∈ TRel(A) being an T -redistributive relational repre-
sentation of Φ ∈ (PT A)A forms, at least potentially, an adequate formalization of the
requirement that Π and Φ ‘fit well together’. As we will see below, it also forms the
key to lead the flow of information in acceptance games for alternating automata into
a non-deterministic channel.

5.2.16. D. Let M1 be the non-deterministic (PT A)A-chromatic T -automaton
(M,mI , (PT A)A, µ,Ω0), where µ : M × (PT A)A → PPT M is the map defined by

µ(m,Φ) :=
{ {

{(Tµm)(Π)} | Π ∈ RT (Φ)
}

if m , m∀,

∅ if m = m∀.

Here µm : Rel(A) → M is given by µm(R) := µ0(m,R).

5.2.17. R. Let M1 be as above, and S = (S , σ,Φ) some (PT A)A-colored T -
coalgebra. Note that the acceptance game G(S,M1) is summarized in Table 5.2.

Given the definition of µ, it is not hard to see that, from a position (s,m) ∈ S × M,
with subsequent moves of ∃, say, (s, {K}) ∈ S ×PT M and Z ⊆ S ×M, we may associate
an element Π ∈ TRel(A) and a relation Y ⊆ S × Rel(A) such that Π is an T -relation for
Φs, (Tµm)(Π) = K and (σ(s),Π) ∈ TY .

To start with, it is obvious from the definitions that there is some Π ∈ RT (Φs), such
that (Tµm)(Π) = K. Now define the relation Y := {(t,R) ∈ S × Rel(A) | (t, µm(R)) ∈
Z}. Clearly, this relation is the composition of Z with the converse relation Gr(µm)∼
of the graph of the function µm. From this it follows that TY = TZ ◦ T (Gr(µm)∼).

130 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

Position: b Type Player Admissible moves: Ω(b)
(s,m) S × M ∃ {(s, {K}) ∈ S × PT M | K ∈ µ(m,Φ(s))} Ω0(m)
(s, {K}) S × PT M ∀ {(s,K)} 0
(s,K) S × T M ∃ {Z ∈ P(S × M) | (σ(s),K) ∈ TZ} 0
Z P(S × M) ∀ Z 0

Table 5.2: Acceptance game forM1

Also, rewriting (Tµm)(Π) = K, we obtain that (Π,K) ∈ Gr(Tµm) = TGr(µm), so that
(K,Π) ∈ (TGr(µm))∼ = T (Gr(µm)∼). Hence, from (σ(s),K) ∈ TZ it is immediate that
(σ(s),Π) ∈ TY .

5.2.18. P. For any pointed T-coalgebra (S, sI) and any (PT A)A-coloring Φ
of S , the following are equivalent:

1. Φ is part of a winning strategy for ∃ in G(S,A) form position (sI , aI);

2. M1 accepts (S ⊕ Φ, sI).

Proof. Recall that every infinite game may be represented as a tree, and that strategies
of either player, limiting the possible course of actions, can be represented as subtrees
of this game tree. Thus, both with a Φ-extending strategy of ∃ in G = G(S,A), and
with a strategy of ∃ in the acceptance game G′ = G(S ⊕ Φ,M1), we may associate
such subtrees of the game trees of G and G′, respectively. As it turns out, these two
trees turn out to be rather similar, and in fact, may be coded up into one and the same
structure. This observation forms the basis of our proof of the proposition.

More specifically, we will show the equivalence of both (1) and (2) to the statement
(3) below.

3. There is a labeled tree
X = (X, xI , ξ, u,Π,Q),

where xI ∈ X and ξ : X → PX denote, respectively, the root and the successor
function of the tree, and u : X → S , Π : X → TRel(A), and Q : X → Rel(A) are
labellings.
This tree is supposed to satisfy the conditions 3a–3d below. Here, and in the
sequel, we abbreviate Φux as Φx, and define Wx := {(uy,Qy) | y ∈ ξ(x)}. Branches
of the tree start at the root, and thus induce (finite or infinite) words over Rel(A).

(a) uxI = sI and QxI = {(aI , aI)},
(b) for all x ∈ X, Πx is an T -relation for Φx,
(c) for all x ∈ X, (σ(ux),Πx) ∈ TWx.

5.2. CLOSURE PROPERTIES 131

(d) X has no bad traces (that is, no branch of X induces a Rel(A)-word contain-
ing a bad trace).

As hinted at above, our intuition about X is that it represents a winning strategy
for ∃ both in G and in G′ (in the case of G, of course, a strategy completing the par-
tial strategy Φ). Counterstrategies of ∀ in G correspond to branches of X, while his
strategies in G appear as traces on X. We show now that both statements (1) and (2)
listed in the proposition are equivalent to the statement (3) concerning the existence of
a labeled tree X satisfying the properties 3a-3d.
(1) ⇒ (3)
Suppose that Φ, together with Z : S × T A → P(S × A), is a history free winning
strategy for ∃ in G. We make some preparations for the definition of X.

First, define the following sets Ys,a ⊆ S × A and Ys ⊆ S × Rel(A) by

Ys,a :=
⋃

φ∈Φs,a

Zs,φ,

Ys := {(t,R) ∈ S × Rel(A) | for all a ∈ A . R[a] = {b | (t, b) ∈ Ys,a}}.

The set Ys,a contains exactly those positions that ∃, playing her strategy (Φ,Z), may
expect as a possible next position after (s, a). The other set should be seen as a way to
represent the entire family {Ys,a | a ∈ A}. Recall that eva : Rel(A) → PA is given by
eva : R 7→ R[a]. It is then easy to see that

Ys,a = Ys ◦ Gr(eva)◦ 3A . (5.2)

But it will also be clear that the relation Ys is functional; let ζs : S → Rel(A) be the
map such that Ys = Gr(ζs). It follows that T (Ys) = Gr(Tζs), so if we define

Πs := (Tζs)(σ(s)),

then we have ensured that (σ(s),Πs) ∈ TYs.

The most important claim is that

Πs is an T -relation for Φs. (5.3)

To see why this holds, fix a ∈ A, and observe that it follows from (5.2), the definition
of ζs, and the fact that T (Gr(f)) = Gr(T f) for any function f , that

T (Ys,a) = Gr(Tζs) ◦ Gr(Teva) ◦ T (3A). (5.4)

Now take some φ ∈ Φs,a. By the assumption that Φ and Z form a winning strat-
egy for ∃, it follows that (σ(s), φ) ∈ T (Zs,φ), so by monotonicity of T we obtain that
(σ(s), φ) ∈ T (Ys,a). Hence from (5.4) and the definition of Πs we may infer that
(Πs, φ) ∈ Gr(Teva) ◦ T (3A). In other words, ((Teva)(Πs), φ) ∈ T (3A). Since φ was

132 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

an arbitrary element of Φs,a, this shows that (Teva)(Πs) is an T -redistribution of Φs,a.
Since this applies to all a ∈ A, we have finished the proof of (5.3).

Now we are ready for the definition of the labeled tree X. The nodes of X will be
taken from the set S × Rel(A) × ω, and the labellings u : X → S and Q : X → Rel(A)
are simply given as the first and second projection map. That is, u(s,R,i) := s and
Q(s,R,i) := R. The third projection function provides the height of the node. For the
definition of the labeling Πx ∈ TRel(A), we simply look at the node ux; that is, we put
Πx := Πux . Hence, it remains to define the tree structure of X, and this we will do by
the following induction on the height of the nodes. For the root of X we take the triple
(sI , {(aI , aI)}, 0), while the successor map ξ is given by

ξ(s,R, i) := Ys × {i + 1},

that is, ξ(s,R, i) consists of those triples (t, P, i+1) such that (t, P) belongs to the set Y s.
Now that we have completely defined the structure X, let us check that it satisfies

the conditions (3a-3d). To start with, the condition (3a) has been directly cooked into
the definition of X, while (3b) immediately follows from (5.3). For condition (3c), it
follows by a straightforward unraveling of the definitions that Wx = Yux for all x ∈ X.
Since the definition of Πs implies that (σ(s),Πs) ∈ TYs for all s ∈ S , this directly gives
(3c). Finally, for the last condition on X, we may infer from the identity of Wx and Yux ,
using the definitions of Ys and Ys,a, that any trace of X corresponds to a match of G in
which ∃ plays her strategy (Φ,Z). Condition (3d) is then an immediate consequence
of the fact that this strategy was supposed to be winning for ∃.
(3) ⇒ (1)
Suppose that X is as described in (3). We have to prove that Φ can be extended to
a winning strategy for ∃ in G. Basically, what we will do is show that ∃ can ‘keep
the match on X’, in the following sense. Her strategy will ensure, for any match in
which she plays this strategy, the existence of a branch x0x1 . . . (possibly finite) of X
such that for each partial play (s0, a0) . . . (sk, ak) of the match it holds that si = uxi and
ai+1 ∈ Qxi+1[ai] for all i < k. Since X contains no bad traces by (3d), this guarantees
that she wins all infinite matches of the game. Hence, it suffices to prove that at any
finite stage k of such a match, she either wins immediately, or else she can keep the
above condition for one more round.

Suppose then that ∃ have been able to keep this condition for k steps, arriving at
position (s, a) = (sk, ak), with s = ux. The first thing to note is that condition (3d)
implies that ∆(a) , ∅, since a0 . . . ak is a trace of X. But from ∆(a) , ∅ it follows that
∃ may legitimately move Φs,a ∈ ∆(a). If Φs,a = ∅ then ∃ wins immediately, so suppose
otherwise. Let ∀’s answer be φ ∈ Φs,a, then ∃ has to respond with a relation Z ⊆ S × A
such that (σ(s), φ) ∈ TZ. Our suggestion to ∃ is to pick the relation Z ⊆ S × A given
by

Z := Wx ◦ Gr(eva)◦ 3A .

If this is a legitimate move for ∃, then we are done. For, distinguish the following
cases. If Z = ∅ then ∀ gets stuck so ∃ wins immediately. But if Z , ∅ then with any

5.2. CLOSURE PROPERTIES 133

(t, b) ∈ Z that ∀ chooses as his next move we may associate, by definition of Z, a node
y ∈ ξ(x) such that t = uy and (a, b) ∈ Qy. In other words, she either wins immediately
or indeed manages to keep the match on X for one more round of the game.

Thus it is left to show that Z is a legal move for ∃ in G; that is, we must show that

(σ(s), φ) ∈ TZ. (5.5)

For this purpose, first observe that the definition of Z and the properties of T and T
imply that

TZ = TWx ◦ Gr(Teva) ◦ T (3A). (5.6)
Now it follows from property (3c) of X that (σ(s),Πx) belongs to TWx, and from
property (3b), that (Teva)(Πx) is a redistribution of Φs,a. In particular, it holds that
((Teva)(Πx), φ) ∈ T (3A), so that (Πx, φ) ∈ Gr(Teva) ◦ T (3A). From this and (5.6) we
may infer (5.5).
(2) ⇒ (3)
Assume that f is a winning strategy for ∃ in the game G′. We will define a labeled tree
X that intuitively corresponds to the game tree of G′, pruned according to this strategy
f .

Formally, elements of X will be taken from the set S ×M×Rel(A)×ω. This enables
a very straightforward definition of the labeling functions u, Q and Π of X. The state
ux in S, and the relation Qx ∈ Rel(A) that we associate with a node x, are simply given
by the first and third projection functions, respectively. That is, we put u(s,m,R,i) := s
and Q(s,m,R,i) := R.

We now turn to the definition of the tree structure of X. As the root of the tree
we take the element (sI ,mI , {(aI , aI)}, 0). For the definition of the successor map ξ,
consider an arbitrary point x = (s,m,R, i) ∈ X. Inductively assume that (s,m) is
a winning position for ∃ in the game G. Suppose that K ∈ T M and Z ⊆ S × M
are locally the basis of ∃’s strategy f , that is, suppose that f (s,m) = (s, {K}) and
f (s,K) = Z. Given our comments in Remark 5.2.17, we may assume the existence of
an object Πs,m ∈ TRel(A) and a relation Ys,m ⊆ S × Rel(A) such that Πs,m ∈ RT (Φs) and
(σ(s),Πs,m) ∈ TYs,m and

K = (Tµm)(Πs,m)
Z = {(t, µm(P)) | (t, P) ∈ Ys,m}.

Now inductively we define

ξ(s,m,R, i) := {(t, n, P, i + 1) | (t, P) ∈ Ys,m
and n = µm(P)},

Π(s,m,R,i) := Πs,m.

Clearly then, every element of ξ(s) encodes a response of ∀ to ∃’s first two f -moves
from position (s,m). This encoding is very direct: (t, n, P, i + 1) ∈ ξ(s,m,R, i) cor-
responds to the move (t, n). It is then immediate that such (t, n) are again winning

134 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

positions for ∃, so that the required inductive condition is kept. This finishes the defi-
nition of X.

It is a straightforward exercise to check that X, thus defined, satisfies the conditions
(3a-3c). It should also require only little reflection to see that with each branch x0x1 . . .

of X we may associate a match of G′ in which ∃ plays her winning strategy f . As we
will see now, this is the key for proving that X satisfies (3d).

For the technical details, suppose, for contradiction, that X contains a bad trace
α. We will only consider the case that α is finite, say, α = a1 . . . ak, and bad because
∆(ak) = ∅. (The other kind of bad traces, which only applies to infinite traces, is
treated in a very similar way.) Let x0 . . . xk be the branch of X that contains α. Writing
xi = (si,mi,Ri, i) for all i ≤ k, and unraveling the definitions, we find that this means
that ai+1 ∈ Ri+1[ai] for all i < k, and that m0m1 . . .mk is the run of M0 on the finite
Rel(A)-word R0R1 . . .Rk. Then it follows from Proposition 5.2.14 that mk = m∀.

But, given the remark following the definition of ξ, we may equip ∀ with a strategy
in G′ which, when played against ∃’s f , ensures that the match passes through the
basic positions (s0,m0), . . . , (sk,mk). By definition ofM1, it follows from mk = m∀ that
µ(mk,Φsk) = ∅. Hence, ∃ gets stuck at (sk,mk) and immediately looses the game. Thus
we arrive at the desired contradiction.

(3) ⇒ (2)
Let X be a labeled tree as specified in (3); we need to define a winning strategy for
∃ in G′. The basic idea underlying this strategy will be that that the resulting match
corresponds to a branch of X.

More precisely, we will show that ∃ can maintain the condition that with every
match (*) there exists a branch x0x1 . . . (possibly finite) on X such that uxi = si at every
stage i of the match, and mi+1 = µ0(mi,Qxi+1) (at least, in case the match reaches the
stage i + 1).

∃ wins any match (s0,m0)(s1,m1) . . . in which she can maintain this condition in-
finitely long. To see why this is so, note that the infinite sequence m0m1 . . . corresponds
to the run of the automatonM0 on the infinite word Qx1 Qx2 Now by condition (3d)
on X this word contains no bad trace, so by Proposition 5.2.14 it is accepted by M0.
But then the sequence m0m1 . . . meets the acceptance condition Ω0 of M0, which co-
incides with the acceptance condition ofM1. It is then immediate from the definitions
that the G′-match (s0,m0)(s1,m1) . . . is won by ∃.

Hence it suffices to show that at any finite stage of a match satisfying the above
condition, ∃ can either win the game in the current round, or else prolong the condition
(*) for one more round. In order to show that this is the case, suppose that the match
has reached position (sk,mk), and that play so far meets the above mentioned condition
(*), relative to the branch x0x1 . . . xk. In order to provide ∃ with a move to make at
position (sk,mk), let us consider her set µ(mk,Φsk) of alternatives.

Since X contains no bad traces, it follows from Proposition 5.2.14 that mi , m∀

for all i ≤ k. Thus µ(mk,Φsk) is given as the set of all singletons {(Tν)(Π)} such
that Π ∈ TRel(A) is an T -relation for Φsk , where ν : Rel(A) → M is the map given

5.2. CLOSURE PROPERTIES 135

by ν(R) := µ0(mk,R). In particular, µ(mk,Φsk) is not empty (which would mean an
immediate loss for ∃), since condition (3b), stating that Πxk ∈ RT (Φsk), guarantees that
it contains K := (Tν)(Πsk). Thus we may set (sk, {K}) as a legitimate move for ∃ at
position (sk,mk). After this, ∀ has no choice but to pick (sk,K). Then let ∃ continue by
moving Z = {(t, ν(R)) | (t,R) ∈ Wxk}, that is, Z = Wxk ◦ Gr(ν). To verify the legitimacy
of this move, note that (σ(sk),Πxk) ∈ TWxk by (3c), so from K = (Tν)(Πxk) it follows
that (σ(sk),K) ∈ TWxk ◦ Gr(Tν) = TZ, as required.

Finally, suppose that ∀ responds by choosing some pair (sk+1,mk+1) ∈ Z — the case
that Z = ∅ is an immediate win for ∃. By definition of Z, there must be some y ∈ ξ(xk)
such that (y,Qy) ∈ Wxk and mk+1 = µ0(mk,Qy) = ν(Qy). Hence by taking xk+1 := y as
the associated node of the new position (sk+1,mk+1) in the match, ∃ has maintained the
condition (*) one more round, as required. 

In the final step of the construction we have to transform M1 into a non-deterministic
T -automaton Ad that is equivalent to A. This last transformation is in fact easy —
relatively that is: we need an application of the closure under projection of non-
deterministically recognizable languages.

5.2.19. D. LetAd be the T -automaton (M,mI , µ
d,Ω0) where M, mI andΩ0 are

as in Definition 5.2.16, while

µd(m) :=
⋃

e∈(PT A)A

µ(m, e)

defines the transition map µd : M → PT M.

It is easy to check that Ad is indeed non-deterministic, so clearly, the following
proposition, which is a straightforward corollary of the Propositions 5.2.11 and 5.2.18,
suffices to prove Theorem 5.2.1.

5.2.20. P. The automata A and Ad accept exactly the same rooted T-co-
algebras.

Proof. Let (S , σ, s) be a pointed T -coalgebra. We will show that A accepts (S , σ, s)
if and only if Ad does. It is an immediate consequence of Proposition 5.2.11 that
(S , σ, s) is accepted by Ad if and only if there is a pointed T -coalgebra (S ′, σ′, s′)
which is bisimilar to (S , σ, s) and admits a (PT A)A-coloring Φ such that (S ′, σ′,Φ, s′)
is accepted byM1. Hence, invoking Proposition 5.2.18 we see that (S , σ, s) is accepted
by Ad if and only if it is bisimilar to a pointed T -coalgebra that is accepted by A. The
Proposition is then an immediate consequence of the fact that the class of coalgebras
recognized by an T -automaton is closed under bisimilarity (cf. Fact 5.1.14). 

A short remark concerning the complexity of our construction seems in order.

136 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

5.2.21. R. Although we do not go into the algorithmic details of our construc-
tion, we want to stress here that complexity theoretically, our results match known
results in automata theory. If we define the size of an automaton as its number of
states, the main observation is that the size of Ad is equal to the size of M0 and, in
particular, does not depend on the functor T . In fact, combining well known results
about word automata, one may show that basically, the size ofM0 is exponential in the
size of A.

5.2.3 Non-emptiness of coalgebra automata
An important problem concerning automata on infinite objects is the so-called non-
emptiness problem: Can we decide whether the language accepted by a given automa-
ton is empty or not? Given the results from [Ven04] the non-emptiness problem for
T -automata is equivalent to the question whether we can decide the satisfiability of a
given formula of the coalgebraic fixed-point logic from Section 2.3. This will be made
clear in Section 5.3 below.

Now we are going to give a partial solution for the non-emptiness problem of T -
automata: If a T -automaton accepts some rooted T -coalgebra then it also accepts a
finite one. For non-deterministic T -automata we can do better as the following theorem
which is the main result of this section demonstrates.

5.2.22. T. Let A = (A, aI ,∆,Ω) be a non-deterministic T-automaton. Then A
accepts some rooted T-coalgebra S = (S , σ, sI) iff A accepts a rooted T-coalgebra
S
′ = (S ′, σ, sI) with |S ′| ≤ |A|.

Proof. Let A be a T -automaton and (S, sI) a rooted T -coalgebra accepted by A. Then
w.l.o.g. ∃ has a scattered history-free winning strategy (Φ : S ×A → T A,Z : S ×T A →

P(S ×A)) from position (sI , aI) in the acceptance game G B G(S,A) of the automaton.
The idea of the proof of the theorem is as follows: The coalgebra S′ will be based on

A - the carrier set of the automaton. Our aim is to show that for any a in A we can find
some φa ∈ T A such that the T -coalgebra (A, φ : A → T A, aI) is accepted by A (again
we use the notation of writing φa instead of φ(a)). For the definition of φ we would
like to use ∃’s winning strategy Φ by letting φa B Φ(s,a) for some (s, a) ∈ Win(Φ,Z).
The obvious problem with this approach lies in the fact that Φ depends on both s
and a, i.e. there might be two different positions (s1, a), (s2, a) ∈ Win(Φ,Z) such that
Φ(s1,a) , Φ(s2,a) and in this case it is unclear which of these values of Φ we should
choose as the value for φa. This problem is overcome by making use once more of the
history-free determinacy of parity games.

For a ∈ A we define Aa to be the automaton (A, a,∆,Ω), in other words Aa is
the automaton that is obtained from A by changing the initial state from aI into a.
Furthermore recall that Win(Φ,Z) denote the set of positions of G for which (Φ,Z) is
a winning strategy for ∃ and define

WRel(Φ,Z) B {R ⊆ S × A | ∃(s, φ) ∈ Win(Φ,Z) . R = Zs,φ},

5.2. CLOSURE PROPERTIES 137

i.e. WRel(Φ,Z) is the set of potential “relational” moves of ∃ in a play of G according
to her winning strategy. The non-emptiness game G′ of A is given by the following
table:

Position: b Player Admissible moves: E[b] Ω′(b)
{a ∈ A | ∃(s, a) ∈ Win(Φ,Z)} ∃ ∆(a) Ω(a)
φ ∈ T A ∃ WRel(Φ,Z) 0
Z ∈ PWin(Φ,Z) ∀ {a ∈ A | ∃s . (s, a) ∈ Z} 0

It is not difficult to see that (Φ,Z) can be used to construct a winning strategy for ∃ in
G′ from position aI that is not history-free. To this aim we construct for each play of
G′ that starts in aI a shadow play of G starting in (sI , aI) that is conform with (Φ,Z).
During this construction we want to maintain the following condition (∗): if a position
a ∈ A is reached after n rounds of the play of G′ then there exists a s ∈ S such that
the position (s, a) ∈ S × A is reached after n rounds of the corresponding shadow play
of G. Then infinite plays of G′ are won by ∃ because the corresponding shadow plays
of G are conform ∃’s winning strategy. All finite plays of G′ are trivially won by ∃
because it is easy to see that ∃ cannot get stuck in such a play. As a result we get that
∃ wins all G′-plays for which the condition (∗) is maintained.

Let us see now how ∃ is able to maintain condition (∗) during a G′-play. Suppose
that we are at position a in a play of G′ that started in aI and that we are in the shadow
play of G in some position (s, a). Furthermore we assume that the (partial) play of G up
to now was conform ∃’s winning strategy. Then ∃’s strategy in G would be to move to
Φs,a ∈ T A and then to some relation Zs,Φs,a ⊆ Win(Φ,Z) (as (Φ,Z) is a winning strategy
we may assume that this relation only contains pairs (s′, a′) ∈ Win(Φ,Z)). We suggest
∃ to use this strategy also in G′, i.e. ∃ moves in G′ from a to Φs,a and then further to
Zs,Φs,a . Then ∀ answers in G′ by moving to some a′ ∈ A for which there is an s′ ∈ S
with (s′, a′) ∈ Zs,Φs,a . This move of ∀ can be easily reflected in the shadow game:
∀’s corresponding choice in G would be to move to (s′, a′). Hence ∃ can maintain
condition (∗) and as a consequence win an arbitrary play of G′ starting from aI . Note,
however, that the winning strategy of ∃, that we described, is not history-free, as she
has to remember in every position of a play what her position in the shadow play would
be.

But the history-free determinacy of parity games together with the fact that ∃ has a
winning strategy in G′ from position aI implies that she also has a history-free winning
strategy in G′ from position aI which can be encoded as a pair of functions

(φ : A → T A,Y : T A → WRel(Φ,Z)) .

We will show now thatA accepts the rooted T -coalgebra given as (A(φ), aI) B (A, φ, aI).
This will finish the proof of the theorem.

In order to prove that (A(φ), aI) is accepted by A we show that ∃ has a winning
strategy in Gφ B G(A(φ),A) from position (aI , aI). More precisely we show that the

138 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

pair of functions (Φ′,Z′) defined by

Φ′a′,a B φa for (a′, a) ∈ A × A
Z′

a,φ B Y∼
φ ◦ Yφ for (a, φ) ∈ A × T A

encodes a winning strategy for ∃ in Gφ from position (aI , aI). This is done by showing
that

1. all basic positions in a Gφ-play conform (Φ′,Z′) are of the form (a′, a′) for some
a′ ∈ A and

2. for every partial Gφ play (aI , aI)(a1, a1)(a2, a2) . . . (an, an) conform (Φ′,Z′) there
is a partial G′-play aI . . . an that is conform (φ,Y).

Suppose we are at position (a, a) in an arbitrary play of Gφ that started in position
(aI , aI). Then ∃ moves to Φ′

a,a = φa and further to Z′
a,φa

= Y∼
φ ◦ Yφ. In the corre-

sponding G′-play at position a she can move to φ and then further to Yφ. These moves
are conform her G′-winning strategy (φ,Y). Now it is ∀’s turn to pick some element
(a1, a2) ∈ Y∼

φ ◦ Yφ. As we assumed in the beginning of the proof that (Φ,Z) was a scat-
tered winning strategy and Yφ ∈ WRel(Φ,Z) it follows that a1 = a2. Obviously ∀ can
also move in the corresponding G′-game to a1. Therefore the above conditions 1 and 2
can be maintained round-by-round. As (φ,Y) is winning for ∃ in G′ from position aI ,
we can conclude that (Φ′,Z′) is winning for ∃ in game Gφ from position (aI , aI). 

Using our previous result about alternation we get the following.

5.2.23. C. Let T : Set → Set be a standard weak pullback preserving functor
and A a T-automaton. Then A accepts some rooted T-coalgebra (S, sI) iff A accepts
some rooted T-coalgebra with finite carrier set.

Proof. Given a T -automaton A we can transform it to an equivalent non-deterministic
T -automaton Ad (cf. Theorem 5.2.1) and then apply Theorem 5.2.22. 

5.2.24. R. For concrete examples this is a well-known result: for example for
automata working on infinite trees it means that every tree automaton that accepts
some tree accepts at least one regular tree.

5.2.4 A remark about standardness
For T -automata operating on finite (algebraic) structures it is known that the condi-
tion that the functor T : Set → Set preserves weak pullbacks is necessary to be
able to transform an alternating automaton into an equivalent non-deterministic one
(cf. [AT90, Thm. VII.2.12]). This suggests that our assumption on the functor T be-
ing weak pullback preserving is necessary to prove the above closure properties. Our
second assumption that the functor also should be standard, however, can safely be
dropped as the following theorem, which is a special case of a theorem by Trnková,
shows.

5.2. CLOSURE PROPERTIES 139

5.2.25. T. Let S : Set → Set be a weak pullback preserving functor. Then
there is a functor T : Set → Set such that

1. T is weak pullback preserving and standard and

2. there is a natural isomorphism τ : S ⇒ T.

Proof. A proof of this theorem can be found in [AT90, Theorem III.4.5]. As mentioned
in the appendix our notion of standardness differs slightly from the one in loc.cit. which
we call ∅-standardness (cf. Def. A.2.11). Because we are working with the additional
assumption that the functors are weak pullback preserving, however, we know that the
two notions of standardness coincide (cf. Lemma A.2.12) 

5.2.26. L  D. Let S : Set → Set and T : Set → Set be functors
such that there is a natural isomorphism τ : S ⇒ T between them. Then the functor

Gτ : Coalg(S) → Coalg(T)
(S , σ) 7→ (S , τX ◦ σ)

f 7→ f

is a category isomorphism.

Proof. Obviously Gτ is well-defined on objects. The well-definedness on morphism is
a consequence of the naturaliy of τ. It is easy to check that this functor is a category
isomorphism with the functor Gτ−1 : Coalg(T) → Coalg(S) as its inverse. 

Instead of defining S -automata for a weak pullback preserving but not necessarily
standard functor we can use the automata for the standardized version of the functor
for classifying S -coalgebras.

5.2.27. D. Let S : Set → Set a weak pullback preserving functor, T : Set →
Set a standardization of S , i.e. S is standard and there is a natural isomorphism τ : S ⇒

T between S and T . Furthermore let A be a T -automaton. Then we say A accepts a
rooted S -coalgebra (X, γ, xI) if A accepts Gτ(X, γ, xI) B (X, τX ◦ γ, xI).

5.2.28. E. An important example for a weak pullback preserving functor that is
not standard is the filter functor F : Set → Set which has been studied in [Gum01].

Recall that for an arbitrary set X a nonempty set F ⊆ P(X) is called a filter over X
if

1. F is closed under finite intersections, i.e. U ∈ F and V ∈ F imply U ∩ V ∈ F,
and

2. F is upwards closed, i.e. U ∈ F and U ⊆ V imply V ∈ F.

140 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

The filter functor is defined as follows

F : Set → Set
X 7→ {F ⊆ P(X) | F is a filter over X}

(f : X → Y) 7→ (F f : F X → F Y),

where for a filter F ⊆ P(X) we have

(F f)(X) B {V ∈ P(Y) | ∃U ∈ F . f [U] ⊆ V}.

The definition of a standardization F ′ of F needs some preparation. We say that a
filter F1 over some set X1 and a filter F2 over some set X2 are equivalent if

• for all U ∈ F1 there is a U ′ ∈ F2 such that U ⊆ U ′, and vice versa

• for all U ′ ∈ F2 there is a U ∈ F1 such that U ′ ⊆ U.

In this case we write F1 ∼ F2. Clearly ∼ is an equivalence relation on the class of all
filters and we denote the equivalence class of a filter F over some set X by

[F] B {F′ | F′ is a filter over some set Y and F ′ ∼ F}.

We are now ready to define the standard functor F ′:

F ′ : Set → Set
X 7→ {[F] | F ∈ F X}

(f : X → Y) 7→ (F ′ f : F ′X → F ′Y),

where (F ′ f)([F]) B [(F f)(F)] for [F] ∈ F ′X.

5.3 The connection with coalgebraic fixed-point logic
In the previous sections of this chapter we recalled the definition of coalgebra automata
and investigated several of their properties. But how does this material fit into the
framework of this thesis, i.e. where is the connection to finitary logics for coalgebra?
The answer to this question was already given in detail by Venema in [Ven04], where
the following two theorems are proven.

5.3.1. T. [Ven04, Theorem 2] Let T be a standard, weak pullback preserving
endofunctor on Set. Then every sentence φ ∈ µLT of coalgebraic fixed-point logic can
be transformed into a T-automaton Aφ such that for any rooted T-coalgebra (S, sI):

S, sI |= φ iff Aφ accepts (S, sI).

5.3. THE CONNECTION WITH COALGEBRAIC FIXED-POINT LOGIC 141

5.3.2. T. [Ven04, Theorem 3] Let T be a standard, weak pullback preserving
endofunctor on Set. Then any T-automatonA can be transformed into a µLT -sentence
φA such that for any rooted T-coalgebra (S, sI):

A accepts (S, sI) iff S, sI |= φA.

In other words sentences of coalgebraic fixed-point logic and T -automata are essen-
tially the same. This is a generalization of classical results from automata theory in
the same way as T -automata generalise automata on infinite words, trees and graphs.
The following table lists those classical correspondences between automata on certain
structures on the one hand and formulas of a suitable logic on the other hand.

Automata on (possibly) infinite formulas of
words S1S
k-ary trees SkS
graphs the modal µ-calculus

5.3.1 Finite model property
An important application of the correspondence between automata and formulas is the
reduction of the satisfiability problem of a logic to the non-emptiness problem of the
corresponding automata.

For coalgebra automata this is done using Theorem 5.3.1: a given formula φ ∈

µLT is satisfiable in some T -coalgebra iff the automaton Aφ accepts some rooted T -
coalgebra.

In the previous section we saw that every T -automaton that accepts some rooted
T -coalgebra, accepts at least one rooted T -coalgebra with finite carrier set. This gives
us immediately the following corollary - a weak finite model property of coalgebraic
fixed-point logic.

5.3.3. C. Let T : Set → Set be a standard, weak pullback preserving functor
and φ ∈ µLT a sentence. Then φ is satisfiable in some rooted T-coalgebra (S, sI) if φ
is satisfiable in some rooted T-coalgebra (S′, s′I) with a finite carrier set.

Proof. This is a consequence of Theorem 5.3.1 and Corollary 5.2.23. 

Decidability of coalgebraic fixed-point logic does, however, not follow from this finite
model property. However, under the requirement that the functor T maps finite sets to
finite sets we can easily obtain decidability.

5.3.4. C. Let T : Set → Set be a standard and weak pullback preserving
functor that maps finite sets to finite sets. Then the problem whether a given sentence
φ ∈ µLT is satisfiable in some rooted T-coalgebra (S, sI) is decidable.

142 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

Proof. Let φ ∈ µLT and Aφ the corresponding T -automaton from Theorem 5.3.1.
Then we first transform Aφ into an equivalent non-deterministic automaton Ad

φ =

(A, aI ,∆,Ω) as described in Section 5.2.2 above. A careful inspection of the proof
of Theorem 5.2.22 shows that Ad

φ accepts some rooted T -coalgebra (S, sI) only if it
accepts some rooted T -coalgebra (A, aI , φ) with the property that φ(a) ∈ ∆(a) for all
a ∈ A. It is not difficult to see that there are only finitely many such T -coalgebras,
because A and therefore also T A are finite sets. 

5.3.2 A distributive law
The finite model property of coalgebraic fixed-point logic was an immediate conse-
quence from our work on closure properties of T -automata. The material presented in
this subsection is motivated by the work on T -automata, but we do not explicitly make
use of the automata-theoretic framework.

Let us take a closer look at the precise connection between formulas in µLT and
T -automata: According to Theorem 5.3.2 we can assign to every automaton A =

(A, aI ,∆,Ω) an equivalent formula φA. For every a ∈ A let us denote by Aa the au-
tomaton that we can obtain from A by changing the initial state aI into a. Then we get
for each a ∈ A a corresponding formula φAa . In this way we can define a function

t : A → µLT

a 7→ φAa .

The following proposition is then not difficult to prove.

5.3.5. P. Let T : Set → Set be a standard, weak pullback preserving func-
tor, A = (A, aI ,∆,Ω) a T-automaton and (S, sI) a rooted T-coalgebra. Then A accepts
(S, sI) iff

S, sI |=
∨

Φ∈∆(aI)

∧

φ∈Φ

∇(Tt)(φ).

This means that an alternating automaton accepts a rooted T -coalgebra (S, sI) iff (S, sI)
satisfies a disjunction of conjunctions of ∇-formulas. In this perspective turning an al-
ternating T -automaton into an equivalent non-deterministic one is equivalent to replac-
ing a formula of the form ∨∧

∇φ by an equivalent formula which is only a disjunction
of ∇-formulas, i.e. into a formula of the form ∨

∇ψ.
We know from Section 5.2.2 that we can always turn an alternating automaton into

an equivalent nondeterministic one. This suggests that we can find to every formula of
the form ∨∧

∇φ an equivalent formula of type ∨
∇ψ. In the remainder of the section

we are going to prove that this is indeed the case. As a consequence we obtain a new
validity of coalgebraic (fixed-point) logic. Again redistributions play an important role
in the argument, but because we are working with finitary syntax we have to restrict
ourselves to finitary redistributions. In the following we fix some (arbitrary) standard
functor T : Set → Set, that preserves weak pullbacks.

5.3. THE CONNECTION WITH COALGEBRAIC FIXED-POINT LOGIC 143

5.3.6. D. Let X ∈ PT X be a subset of T X. Then the set Dω(X) of finitary
T-redistributions of X is defined as

Dω(X) B {Θ ∈ Tω(PX) | Θ is a T -redistribution of X}.

where Tω(PX) consists of the elements of TPX that have finite T -base (cf. Def. 2.3.1
on page 26).

It will be convenient to view the conjunction of formulas as a relation in the fol-
lowing way.

5.3.7. D. Let L ⊆ µLT be a set of formulas. Then we define a relation uL ⊆
PL × L by letting

(Φ, ϕ) ∈ uL if ϕ =
∧
Φ.

5.3.8. R. Obviously the relation uL and therefore also its lifting TuL will be the
graph of a possibly partial function. This allows in the following to identify the sets of
successors uL[Φ] and (TuL)[Ξ] with their only element.

In order to be able to state the main result of this section we need the following
technical lemma. Expressed in words, it says that conjunction is well behaved with
respect to the notion of finite T -base: consider a Ξ ∈ T (Pω(µLT)) with finite T -base.
Then its conjunction ξ B (TuL)[Ξ] also has finite T -base and therefore ∇ξ is a formula
in our finitary syntax.

5.3.9. L. Let Ξ ∈ Tω(Pω(µLT)). Then (TuLT)[Ξ] ∈ Tω(µLT).

Proof. Suppose Ξ ∈ Tω(P(µLT)) and let ξ B (TuµLT)[Ξ]. Furthermore define R to
be the restriction of uµLT to Base(Ξ). Then obviously (Ξ, ξ) ∈ TuµLT and because of
Lemma A.2.14 (Ξ, ξ) ∈ TR. Hence ξ ∈ F(rng(R)) by the definition of T , where

rng(R) B {ϕ ∈ µLT | ∃Φ ∈ Base(Ξ) . (Φ, ϕ) ∈ R}.

As rng(R) is obviously finite we finally get ξ ∈ Tω(µLT). 

We are now ready for stating the main theorem of this section.

5.3.10. T. Let X ⊆ω Tω(µLT), S = (S , σ) a T-coalgebra and s ∈ S . Then

S, s |=
∧

π∈X

∇π ⇔ there is Ξ ∈ Dω(X) s.t. S, s |= ∇
(
TuµLT

)
[Ξ].

144 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

Proof. ⇒: Suppose S, s |= ∧
π∈X ∇π. We define B B

⋃
π∈X Base(π) and let

Zπ B {(s′, ϕ) ∈ S × Base(π) | S, s′ |= ϕ} .

According to our assumption we have for all π ∈ X that (σ(s), π) ∈ TZπ. Now let

Z B {(s′,∪π∈XZπ[s′]) | s′ ∈ S } ⊆ S × PB.

Note that by definition Z ⊆ S × PB is obviously the graph of a function and that
therefore TZ is the graph of a function as well. Furthermore observe that Z ◦ 3B ⊇ Zπ
for all π ∈ X. Hence for all π ∈ X

(σ(s), π) ∈ TZπ ⊆ T (Z◦ 3B) = TZ ◦ T3B.

Combining this with the fact that TZ is functional we get the existence of a unique
Ξ ∈ TPB ⊆ TPµLT such that (σ(s),Ξ) ∈ TZ and (Ξ, π) ∈ T 3B for all π ∈ X. To show
that Ξ ∈ Dω(X), it suffices to check that Ξ ∈ Tω(PµLT) but this is immediate, because
Ξ ∈ TPB and B ⊆ µLT is a finite set.
Note that Ξ fulfills the requirements of Lemma 5.3.9 and therefore ∇(TuµLT)[Ξ] is
a well-defined formula. We want to prove that in fact S, s |= ∇(TuµLT)[Ξ], i.e. that
(σ(s), (TuµLT)[Ξ]) ∈ T |=. We know that

(σ(s),Ξ) ∈ TZ and (Ξ, (TuµLT)[Ξ]) ∈ TuµLT

so it suffices to show that Z ◦ uµLT⊆ |=. Consider an arbitrary pair (s, ψ) ∈ Z ◦ uLT and
suppose (s,Ψ) ∈ Z and ψ = ∧

Ψ. Then

S, s |=
∧
Ψ ⇔ ∀ψ ∈ Ψ. S, s |= ψ ⇐ Z◦ 3 ⊆ |=,

and as we know that the last statement is true we can conclude that S, s |= ∧
Ψ.

⇐: Suppose now that there is a Ξ ∈ Dω(X) such that S, s |= (TuµLT)[Ξ]. Then spelling
out the definitions we get

(σ(s), π) ∈ T (|= ◦ u∼
µLT ◦ 3) for all π ∈ X

and it is easy to check that
|= ◦ u∼

µLT ◦ 3 ⊆ |=,

hence (σ(s), π) ∈ T |= for all π ∈ X and therefore S, s ` ∧
π∈X ∇π. 

In case that T maps finite sets to finite sets we obtain a validity of coalgebraic logic.

5.3.11. C. Let T : Set → Set be a standard and weak pullback preserving
functor that maps finite sets to finite sets. Then for all T -coalgebras S and all X ⊆ω

Tω(µLT) we get
S |=

∧

π∈X

∇π↔
∨

Ξ∈Dω(X)
∇

(
TuµLT

)
[Ξ].

Proof. The claim follows immediately from the theorem and the fact that under the
additional assumption on the functor the set Dω(X) is finite. 

5.4. CONCLUDING REMARKS 145

5.4 Concluding remarks
Relevance of Theorem 5.2.1

The fact that every T -automaton can be transformed into an equivalent non-deterministic
one has many important consequences. This has been demonstrated first by Muller and
Schupp in [MS95] for word and tree automata. In particular they show how to use this
fact for proving Rabin’s complementation lemma for tree automata: complementing an
alternating tree automaton is trivial. Therefore the complementation of a nondetermin-
istic automaton A can be reduced to the transformation of the alternating automaton,
that accepts the complement of A, into an equivalent nondeterministic one. This idea
can, however, not easily carried over to arbitrary T -automata. The reason for this lies
in the asymmetry of the bisimulation part of the acceptance game of an T -automaton.
In the future we would like to investigate this question in more detail.

Another well known application of (an instance of) Theorem 5.2.1 is related to
the modal µ-calculus. Janin and Walukiewicz establish in [JW95] a one-to-one cor-
respondence between modal µ-formulas and µ-automata (graph automata) in general,
and between disjunctive modal µ-formulas and non-deterministic µ-automata in partic-
ular. In this context the transformation of an arbitrary µ-automaton into an equivalent
non-deterministic one corresponds to proving that every modal µ-formula is semanti-
cally equivalent to a disjunctive one. Disjunctive formulas play an important role in
Walukiewicz’s completeness proof of the modal µ-calculus in [Wal00]. A main step in
his proof is that the semantic equivalence of an arbitrary formula to a disjunctive one
is also a provable equivalence in Kozen’s axiomatisation of the modal µ-calculus.

An application of Theorem 5.2.1 on the level of coalgebra automata, which we
presented in this thesis, is the solution of the non-emptiness problem of T -automata
and, as consequence, the proof of the finite model property of coalgebraic fixed-point
logic. It will be interesting to compare our proofs to existing solutions to the non-
emptiness problem of word, tree and graph automata. In particular we would like
to compare our proof to existing proofs of the finite model property of the modal µ-
calculus (cf. e.g. [Koz88, SE89]).

Other questions concerning coalgebra automata

The work on T -automata can be extended in many directions: as mentioned above in
Section 5.2.4 our requirement that the functor T is standard can be dropped without
problem. An immediate question is of course whether we can also define T -automata
for functors that do not preserve weak pullbacks and that still have the closure proper-
ties.

In the main proofs of this chapter we heavily used the fact that parity games are
history-free determined. Can we still prove similar results when we consider different
acceptance conditions, such as the Büchi, Muller and Rabin condition? The main
problem is that winning strategies cannot be assumed to be history-free anymore (cf.

146 CHAPTER 5. CLOSURE PROPERTIES OF COALGEBRA AUTOMATA

[Zie98]).
Another variation on coalgebra automata would be to consider different base cate-

gories, i.e. to define T -automata for functors T : C → C for some arbitrary category C.
One obvious choice here would be to take C = Stone. Acceptance by a T -automaton
could then correspond to the fact, that the negation of a formula is not provable.

Finally we would like to point out that there seems to be a close connection to
the work on coalgebraic trace semantics which was initiated by Jacobs in [Jac04] and
carried further by Hasuo and Jacobs in [HJ05a, HJ05b].

Further consequences for coalgebraic (fixed-point) logic

We have shown that T -automata are closed under projection. It was observed by Ven-
ema that this has as an immediate corollary uniform interpolation of coalgebraic fixed-
point logic following similar work by D’Agostino and Hollenberg in [DH00].

Adding negation to the language of coalgebraic (fixed-point) logic is is also an
interesting issue which has been addressed already to some extent in [Mos99]. This
is of course closely related to the above mentioned problem of complementation of T -
automata: if we want to maintain the correspondence between formulas and automata
while adding negation, we have to make sure that the recognizable languages are closed
under complementation.

In case that the functor T : Set → Set maps finite sets to finite sets we showed
that a certain distributive law is valid, i.e. it can be added as a sound axiom to a
possible axiomatisation of coalgebraic (fixed-point) logic. The question of a complete
axiomatisation of this logic remains of course open. A possible starting point could be
to use Kozen’s axiomatisation of the modal µ-calculus to obtain an axiomatisation of
the T -logic for T = P.

Appendix A
Category theory

A.1 Basic notions of category theory
For basic notions of category theory such as categories and functors we refer the reader
to [Mac71]. The most important categories appearing in this thesis are listed in Ta-
ble A.1.

A.1.1. N. Let C be a category and A, B ∈ C. Then we write C(A, B) for the
collection of morphisms between A and B. If C = Set we write [A, B] for Set(A, B).

A.1.2. D. Let C be a category and T : C → C a functor. Then Cop denotes
the opposite category which has the same objects as C and where all the arrows are
reversed, i.e. C(A, B) = Cop(B, A) for all A, B ∈ C. Given an arrow f : A → B ∈ C
we write f op : B → A for the corresponding arrow in the opposite category. By
T op : Cop → Cop we denote the opposite of T , i.e. T op(A) = T A and T op f op = (T f)op.

A category that is important in this thesis is the category of algebras for a functor.

A.1.3. D. Let T : C → C be a functor on some category C. Then a T-algebra
is a pair (A, α) such that A is an object in C and α : T A → A is a C-morphism. A
T-algebra morphism between two T -algebras (A1, α1) and (A1, α2) is a C-morphism

Category Objects Morphisms
Set sets functions
Rel sets relations
BA Boolean algebras homomorphisms
Stone Stone spaces continuous functions
Cat categories natural transformations

Table A.1: Some important categories

147

148 APPENDIX A. CATEGORY THEORY

f : A1 → A2 such that α2 ◦ T f = f ◦ α1. By Alg(T) we denote the category of
T -algebras and T -algebra morphisms.

A.1.4. D. Let T, S : C → D be two functors. A natural transformation λ :
T ⇒ S is a family (λX : T X → S X)X∈C such that for all X,Y ∈ C and f : X → Y the
following diagram commutes

T X λX

T f

S X
S f

TY λY S Y

A.1.5. D. Let C be a category. Then we define the following functors:

C(,Y) : Cop → Set C(X,) : C → Set
X 7→ C(X,Y) Y 7→ C(X,Y)

(f : X → X′) 7→ C(f ,Y) (g : Y → Y ′) 7→ C(X, g)

where

C(f ,Y) : C(X′,Y) → C(X,Y) C(X, g) : C(X,Y) → C(X,Y ′)
h 7→ h ◦ f h 7→ g ◦ h.

A.1.6. T (Y ). Let S : Cop → Set be a functor and let X ∈ C. Then
there is a natural isomorphism

ΘS ,X : Cat(C(, X), S) ¾

−→ S X.

A.2 Set-functors
A.2.1 Basic constructions
A.2.1. D. Given two functors T1,T2 : Set → Set we define their product

T1 × T2 : Set → Set
X 7→ T X1 × T X2

f 7→ T f1 × T f2,

and their sum

T1 + T2 : Set → Set
X 7→ T X1 + T X2

f 7→ T f1 + T f2.

A.2. SET-FUNCTORS 149

P′

p′1

p′2h

P
p2

p1

Y
g

X f Z

Figure A.1: Weak pullback

Here for two sets X1, X2 we denote by X1 × X2 their cartesian product and by X1 + X2
their coproduct, i.e. their disjoint sum. Furthermore for two functions f1 : X1 × X2 and
f2 : Y1 → Y2 we define

f1 × f2 : X1 × Y1 → X2 × Y2

(x, y) 7→ (f1(x), f2(y)),

and

f1 + f2 : X1 + Y1 → X2 + Y2

x 7→

{
f1(x) if x ∈ X1
f2(x) if x ∈ Y1

.

A.2.2. D. Let T : Set → Set be a functor and D a set. Then we define a
functor

T D : Set → Set
X 7→ (T X)D := [D,T X]

(f : X → Y) 7→ [D,T f] : [D, X] → [D,Y]

If n is a natural number we write T n for the functor T {0,...,n−1}.

A.2.2 Standard and weak pullback preserving functors
A.2.3. D. Given a category C and two morphisms f : X → Z and g : Y → Z,
we call the triple (P, p1 : P → X, p2 : P → Y) a weak pullback of f and g if

(i) f ◦ p1 = f ◦ p2 and

(ii) for all triples (P′, p′1 : P′ → X, p′2 : P′ → Y) with f ◦ p′1 = f ◦ p′2 there
is a morphism h : P′ → P such that p1 ◦ h = p′1 and p2 ◦ h = p′2.

Figure A.1 illustrates the situation.

150 APPENDIX A. CATEGORY THEORY

TR 〈TπX ,TπY 〉 T X × TY

TR

Figure A.2: Relation Lifting

A.2.4. D. A functor T : C → C is called weak pullback preserving if (P, p1, p2)
being a weak pullback of f and g implies that (T P,T p1,T p2) is a weak pullback of T f
and Tg.

A central role in coalgebraic logic is played by the so-called relation lifting.

A.2.5. D. Let T : Set → Set be a functor, R ⊆ X × Y a binary relation and
πX : R → X, πY : R → Y the projection maps. Then we define the lifted relation
TR ⊆ T X × TY as the set

TR B {(x, y) | ∃z ∈ TR.TπX(z) = x & TπY(z) = y} .

A.2.6. R. Expressed in more categorical terms TR is obtained by factoring the
arrow 〈TπX,TπY〉 : TR → T X × TY as shown in Figure A.2.

In case the functor T under consideration preserves weak pullbacks this relation lifting
gives rise to a functor T : Rel → Rel, where Rel is the category of sets and relations.

A.2.7. F. [Trn77] Let T : Set → Set be a weak pullback preserving functor. Then
the following defines a functor T : Rel → Rel, the unique extension of T to Rel:

T : Rel → Rel
X 7→ T X

R ⊆ X × Y 7→ TR.

In particular this means that for a weak pullback preserving functor T we have T (R ◦
S) = TR ◦ TS , i.e. T preserves the composition of relations.

A.2.8. D. A functor T : Set → Set is called standard if for all sets X,Y such
that X ⊆ Y we have T X ⊆ TY and inclusion maps i : X ↪→ Y are mapped to inclusion
maps Ti : T X ↪→ TY .

Note that this definition of standardness, which has been used in various papers (cf. e.g.
[Mos99, Ven04]) differs slightly from the one which was used by Adámek and Trnková
e.g. in [AT90]. To state the latter definition we first have to introduce the following two
Set-functors and the notion of a distinguished point of a Set-functor.

A.2. SET-FUNCTORS 151

C1 : Set → Set C01 : Set → Set

X 7→ 1 X 7→

{
∅ if X = ∅
1 otherwise.

f 7→ id1 (f : X → Y) 7→

{
∅ if X = ∅
id1 otherwise.

A.2.9. D. Let T : Set → Set be a functor. Then a natural transformation
a : C01 ⇒ T is called a distinguished point of T .

A.2.10. R. A distinguished point of a functor T occurs “naturally” in T X for all
nonempty sets X: If a is a distinguished point then aX : 1 → T X can be identified with
some element aX ∈ T X. The naturality of a means that for all non-empty sets X and Y
and all functions f : X → Y we have (T f)(aX) = (T f)(aY).

Now we are ready to state the notion of standardness of a functor from [AT90]. In
order to avoid confusion we call it ∅-standardness.

A.2.11. D. A functor T : Set → Set is called ∅-standard if T is standard and
every distinguished point a : C01 ⇒ T of T can be extended to a natural transformation
a : C1 → T .

In this thesis we are only considering standard functors that are also weak pullback
preserving. For weak pullback preserving functors standardness and ∅-standardness
coincide as the next lemma shows.

A.2.12. L. Let T : Set → Set be standard and weak pullback preserving. Then
T is also ∅-standard.

Proof. Let T be a standard and weak pullback preserving functor and let a be a distin-
guished point of T , i.e. a : C01 ⇒ T . In order to prove our claim we have to extend a
to a natural transformation a : C1 ⇒ T . For all sets X , ∅ we put therefore aX B aX.

Consider now two sets X and Y which are disjoint and nonempty and let Z B X∪Y
their union. Then the following diagram is a pullback diagram in Set

∅

∅X

∅Y Y
iY

X iX
X ∪ Z

where the maps iX, iY are the inclusion maps. Because T is weak pullback preserving
the T -image of this diagram is a weak pullback diagram.

152 APPENDIX A. CATEGORY THEORY

1 aY

aX

a∅

T∅
T∅X

T∅Y TY
TiY

T X TiX
TZ

Because a is a natural transformation from C01 to T we get TiX ◦ aX = TiY ◦ aY and
therefore, by the fact that the square in the above diagram is a weak pullback, we get
the existence of a function a∅ : 1 → T∅ such that

T∅X ◦ a∅ = aX. (A.1)

In order to prove that with this definition a is indeed a natural transformation from
C1 to T it suffices to show that for an arbitrary nonempty set U the diagram below
commutes.

T∅

T∅U1

a∅

aU TU
Take an arbitrary function f : U → X. Then

T∅U ◦ a∅ = T f ◦ T∅X ◦ a∅ (∅U = f ◦ ∅X)
= T f ◦ aX (Equation A.1)
= aU (naturality of a)

Hence the diagram commutes and a is a natural transformation of type C1 ⇒ T as
required. 

In particular this yields an important property of standard and weak pullback preserv-
ing Set-functors.

A.2.13. F. Let T : Set → Set be a standard and weak pullback preserving functor.
Then T preserves finite intersections, i.e.

T (
n⋂

i=1
Ui) =

n⋂

i=1
TUi.

Proof. The functor T is standard and weak pullback preserving and therefore according
to Lemma A.2.12 also ∅-standard. For a proof of the fact that ∅-standard functors
preserve finite intersections we refer the reader to [AT90, Prop. III.4.6]. 

We will need the following properties of the lifting of standard Set-functors.

A.2. SET-FUNCTORS 153

A.2.14. L. Let T : Set → Set be a functor and R ⊆ X × Y a relation. Then

1. T (R∼) = (TR)∼, where ()∼ denotes the converse relation,

2. T is monotone, i.e. if S ⊆ X × Y is a relation such that R ⊆ S , then we have
TR ⊆ TS , and

3. if T is standard, T commutes with restrictions, i.e. if X ′ ⊆ X, Y ′ ⊆ Y and
R¹X′×Y′ , ∅ then

T (R¹X′×Y′) = TR¹T X′×TY′ .

Proof. Let j : R → R∼ be the obvious isomorphism between R and R∼ mapping (x, y) ∈
R to (y, x) ∈ R∼. Then (1) easily follows from the commutativity of the following chain
of equivalences:

(y, x) ∈ (TR)∼ ⇔ ∃z ∈ TR . TπR
Y(z) = y and TπR

X(z) = x
⇔ ∃z ∈ TR . TπR∼

Y (T j(z)) = y and TπR∼
X (T j(z)) = x

⇔ ∃z′ ∈ TR∼ . TπR∼
Y (z′) = y and TπR∼

X (z′) = x
⇔ (y, x) ∈ T (R∼) .

The second claim of the lemma is an immediate consequence of the commutativity of
the following diagram:

T X TS
TπS

X TπS
X TY

TR

⊆

TπR
X TπR

Y

To prove the third claim note that because R′
B R¹X′×Y′ , ∅ we can define functions

iX : X → X′, iY : Y → Y ′ and iR : R → R′ which are semi-inverse to the respective
inclusion maps and which make the following diagram commute:

X
iX

RπX πY

iR

Y
iY

X′ R′
πX′ πY′

Y ′

The claim now follows from the following sequence of equivalences:

(x, y) ∈ (TR)¹T X′×TY′ ⇔ ∃z ∈ TR . TπX(z) = x ∈ T X′ and TπY(z) = y ∈ TY ′

⇔ ∃z ∈ TR . TiX(TπX(z)) = x and TiY(TπY(z)) = y
(diagram)
⇔ ∃z ∈ TR . TπX′(TiR(z)) = x and TπY′(TiR(z)) = y
⇔ ∃z′ ∈ TR′ . TπX′(z′) = x and TπY′(z′) = y
⇔ (x, y) ∈ TR′.

Here the second equivalence follows from standardness of T . 

154 APPENDIX A. CATEGORY THEORY

A.3 Coalgebras
In this section we introduce some basic notions from universal coalgebra.

A.3.1. D. Let C be a category and T : C → C be a functor. Then a T-
coalgebra is a pair (X, γ) where X ∈ C and γ : X → T X ∈ C. Let (X, γ) and (Y, δ) be T -
coalgebras. A T-coalgebra morphism f : (X, γ) → (Y, δ) is a morphism f : X → Y ∈ C
such that the following diagram commutes:

T X
T f

TY

X

γ

f Y
δ

The category Coalg(T) has T -coalgebras as objects and T -coalgebra morphisms as
arrows.

Rather than talking about T -coalgebras we will often talk about rooted T-coalgebras.
A rooted T -coalgebra is a pair (X, xI) where X = (X, γ) is a T -coalgebra and xI ∈ X is
an element of X, the so-called “root” of X.

A.3.2. E. The category Coalg(P) corresponds to the category of Kripke frames
and bounded morphisms (see e.g. [Rut95]).

One way of looking at coalgebras is that a coalgebra consists of some set of states
X and the coalgebra map γ : X → T X allows us to observe certain properties of these
states. Coalgebra morphisms preserve and reflect observable properties of objects, i.e.
for a coalgebra morphism f : (X, γ) → (Y, δ) we want that x and f (x) are observably or
behaviourally equivalent. It turns out that this notion of behavioural equivalence gen-
eralizes existing notions of bisimilarity and therefore we refer to it as T-bisimilarity.

A.3.3. D. Let T : C → C be a functor, X = (X, γ),Y = (Y, δ) ∈ Coalg(T),
x ∈ X and y ∈ Y . Then we say (X, x) and (Y, y) are T-bisimilar if there is a (Z, ξ) ∈
Coalg(T) and T -coalgebra morphisms f : (X, γ) → (Z, ξ), g : (Y, δ) → (Z, ξ) such that
f (x) = g(y). In this case we write (X, x) ↔T (Y, y).

A.3.4. R. Note that our notion of bisimilarity is often referred to as behavioural
equivalence.

If T preserves weak pullbacks there is an alternative definition of bisimilarity in terms
of T -bisimulations due to Aczel and Mendler (cf. [AM89]). We only state the def-
inition for the case that our base category is Set. The generalization to an arbitrary
category is straightforward, but not needed in this thesis.

A.3.5. D. Let T : Set → Set be a functor, X = (X, γ),Y = (Y, δ) ∈ Coalg(T)
and Z ⊆ X×Y a binary relation. Then Z is called a T -bisimulation if there is a function
ρ : Z → TZ such that the following diagram commutes

A.3. COALGEBRAS 155

X
γ

Z πXπY

ρ

Y
δ

PX PZ PπXPπY
PY

i.e. such that the projection maps πX, πY are T -coalgebra morphisms.

Following the ideas of Hermida and Jacobs in [HJ98] the definition of a T -bisimulation
can be reformulated using relation lifting.

A.3.6. F. Let T : Set → Set be a functor, X = (X, γ),Y = (Y, δ) ∈ Coalg(T) and
Z ⊆ X × Y . Then Z is a T -bisimulation iff for all (x, y) ∈ Z we have (γ(x), δ(y)) ∈ TZ.

Proof. The claim, which is not difficult to prove, is an immediate corollary of [Rut98b,
Thm. 1.2]. 

If T preserves weak pullbacks, then T -bisimulations match with the notion of T -
bisimilarity in the following sense.

A.3.7. F. Let T : Set → Set be a functor that preserves weak pullbacks and let
(X, xI) B (X, γ, xI), (Y, yI) B (Y, δ, yI) be rooted T -coalgebras. Then (X, xI) and (Y, yI)
are T -bisimilar iff there is a T -bisimulation Z ⊆ X × Y between X and Y with (xI , yI) ∈
Z.

A.3.8. R. A similar claim could be proven in the case that T does not preserve
weak pullbacks if we worked with a more general definition of a T -bisimulation. We
work with the less general definition of a T -bisimulation because we need the charac-
terization in terms of relation lifting in the context of coalgebra automata.

A.3.9. E. Let T be the power set functorP. ThenP-bisimulations coincide with
the standard notion for bisimulation for transition systems, i.e. given two P-coalgebras
(X, γ) and (Y, δ), a relation Z ⊆ X × Y is a bisimulation between (X, γ) and (Y, δ) iff
(x, y) ∈ Z implies

(i) for all x′ ∈ γ(x) there is a y′ ∈ δ(y) with (x′, y′) ∈ Z and

(ii) for all y′ ∈ δ(y) there is an x′ ∈ δ(x) with (x′, y′) ∈ Z.

Appendix B
Universal Algebra

In this part of the appendix we list definitions and facts from universal algebra that are
essential for our presentation. For detailed references on the topic the reader is referred
to [BS81, Wec92]. We use [Vic89] as a guideline for our account of presentations of
algebras using generators and relations.

B.1 Algebras
B.1.1. D. A (finitary) algebraic signature is a set Σ of operation symbols to-
gether with a function o : Σ→ ω assigning to each operation σ ∈ Σ its arity o(σ) ∈ ω.
If o(σ) = n we call σ an n-ary operation.

B.1.2. D. The Boolean signature consists of the two constants (“0-ary opera-
tions”) ⊥ and >, a unary operation ¬ and the binary operations ∨ and ∧.

B.1.3. D. Let Σ be an algebraic signature. A Σ-algebra A consists of a set A
together with operations σA : Am → A for every m and every m-ary operation symbol
σ ∈ Σ. Given two Σ-algebras A1,A2 a function h : A1 → A2 is a homomorphism if
for all m-ary operations σ ∈ Σ we have

h(σA1(a1, . . . , am)) = σA2(h(a1), . . . , h(am)).

Given a set X we denote by TΣ(X) the term algebra generated by X, i.e.

TΣ(X) 3 t F x ∈ X | σ(t1, . . . , tn) for σ ∈ Σ n-ary,

and σTΣ(X)(t1, . . . , tn) := σ(t1, . . . , tn). Furthermore we write t(x1, . . . , xn) if the only
generators x ∈ X occurring in t are in {x1, . . . , xn} and for terms s1, . . . , sn the term
t(s1, . . . , sn) is the term which is obtained from t(x1, . . . , xn) by replacing any occur-
rence of some xi, i ∈ {1, . . . , n} by the corresponding term si.

157

158 APPENDIX B. UNIVERSAL ALGEBRA

B.1.4. D. Let Σ be an algebraic signature and A = (A, {σA}σ∈Σ) a Σ-algebra.
An equivalence relation R ⊆ A × A is called a Σ-congruence if for all n-ary operation
symbols σ ∈ Σ and for a1, . . . , an, a′1, . . . , a′n we have

aiRa′i for all i ∈ {1, . . . , n} implies σA(a1, . . . , an)RσA(a′1, . . . , a′n).

Given a congruence R on A, the Σ-algebra A/R is the algebra which has the set A/R
of R-equivalence classes as its carrier set and for each n-ary σ ∈ Σ an operation

σA/R : (A/R)n → A/R
([a1]A/R , . . . , [an]A/R) 7→

[
σA(a1, . . . , an)

]
A/R

.

We also want to consider algebras for a signature that satisfy additional equations.
We first give the formal definition of an equation and then introduced (Σ, E)-algebras,
i.e. those Σ-algebras that satisfy the equations in E. In the following we fix some
(sufficiently large) set X of equation variables.

B.1.5. D. Given a signature Σ and a set A we define the set of A-equation
terms (for Σ) EquTΣ(A) inductively as follows

EquTΣ(A) 3 e F x ∈ X | a ∈ A | σ(e1, . . . , en) for σ ∈ Σ n-ary.

A pair (e1, e2) of A-equation terms is called an A-equation and will be denoted by e1 ≈

e2. Given a Σ-algebraA, every equation term e with equation variables x1, . . . , xn gives
rise to a term function eA : An → A where eA(a1, . . . , an) is the term e[x1/a1] . . . [x2/a2],
in which all the xi’s have been substituted by the ai’s, evaluated in A. We say A satis-
fies an equation e1 ≈ e2 if eA1 = eA2 and denote this fact by A |= e1 ≈ e2.

B.1.6. D. An algebraic theory is a pair T = (Σ, E) such that Σ is an algebraic
signature and E ⊆ EquTΣ(∅) is a set of equations.

B.1.7. D. Let T = (Σ, E) be an algebraic theory. Then A is an T-algebra if A
is a Σ-algebra and we have A |= e1 ≈ e2 for all e1 ≈ e2 ∈ E. We denote by Alg(T)
the category of all T-algebras with homomorphisms as arrows between them, where a
function h : A1 → A2 is a homomorphism between T-algebras if h is a homomorphism
between the underlying Σ-algebras.

B.1.8. D. Let T be an algebraic theory. Then a presentation T 〈G | R〉 consists
of a set G of generators and a set of relations

R ⊆ {e1 ≈ e2 | e1, e2 ∈ EquTΣ(G)}.

B.1.9. D. Let T = (Σ, E) be an algebraic theory and T 〈G | R〉 a presentation.
A model for T 〈G | R〉 is a T-algebra B such that there is a function ingen : G → A and
the algebra AG is an (Σ ∪ G, E ∪ R)-algebra, where AG is obtained by extending the
algebra A with constants (0-ary operation symbols) g for every g ∈ G and interpreting
each g by gAG := ingen(g). In particular AG satisfies all the G-equations in R.

B.2. EQUATIONAL LOGIC 159

B.1.10. D. Let T be an algebraic theory. Then a T-algebra A is presented by
T 〈G | R〉 if A is a model of T 〈G | R〉 and if B is another model of T 〈G | R〉 then there
is a unique homomorphism h : A → B such that

h(ingen(g)) = ingen(g) for all g ∈ G.

We are going to use the following facts about presentations.

B.1.11. F. Let T be an algebraic theory. Then the following holds1:

1. If A and B are presented by T 〈G | R〉 then A ¾ B.

2. For every presentation T 〈G | R〉 there is an algebra A presented by T 〈G | R〉.

3. Every T-algebra A is presented by some presentation T 〈G | R〉.

B.2 Equational Logic
B.2.1. D. Let Σ be an algebraic signature. The consequence relation `ΣEL of
equational logic relates sets of equations for the signature Σ with equations for Σ and
is defined inductively by the following rules:

Axioms: (e1 ≈ e2 ∈ E)
E `ΣEL e1 ≈ e2

Reflexivity: E `ΣEL e ≈ e

Symmetry: E `ΣEL e1 ≈ e2

E `ΣEL e2 ≈ e1

Transitivity: E `ΣEL e1 ≈ e2 E `ΣEL e2 ≈ e3

E `ΣEL e1 ≈ e3

Congruence: E `ΣEL e1 ≈ f1 . . . E `ΣEL en ≈ fn (σ ∈ Σ)
E `ΣEL σ(e1, . . . en) ≈ σ(f1, . . . , fn)

Substitution: E `ΣEL e1 ≈ e2 (x ∈ X)
E `ΣEL e1[x := f] ≈ e2[x := f]

where e[x := f] denotes the term obtained by replacing all occurrences in e of the
variable x by the term f . A Σ-derivation of some equation e1 ≈ e2 from a set of
equations E is a finite tree such that

• the root is labeled by E `ΣEL e1 ≈ e2,
1Note that for 2. and 3. it is essential that we are working only with finitary signatures.

160 APPENDIX B. UNIVERSAL ALGEBRA

• if a node is labeled by E `ΣEL e′1 ≈ e′2 and its children are labeled by E `ΣEL f 1
1 ≈

f 1
2 , . . . , E `ΣEL f n

1 ≈ f n
2 then

E `ΣEL f 1
1 ≈ f 1

2 . . . E `ΣEL f n
1 ≈ f 1

2

E `ΣEL e′1 ≈ e′2

is an instance of one of the above rules,

• and any unlabeled node of the tree is a leaf.

We write `EL instead of `ΣEL if Σ is clear from the context. Furthermore for a Σ-
derivation D of E `ΣEL e1 ≈ e2 we define Occ(D) to be the set of all equation terms
occurring in D.

We need the following facts about equational logic.

B.2.2. F. Let Σ be an algebraic signature, E ⊂ E ′ two sets of equations for Σ and
suppose that E `ΣEL e1 ≈ e2. Then also E′ `ΣEL e1 ≈ e2.

B.2.3. F. Let G,G′ be sets, e1 ≈ e2 a G-equation term, E a set of G-equation terms
and f : G → G′ a function. Then

E `ΣEL e1 ≈ e2 implies E[f] `ΣEL (e1 ≈ e2)[f],

where (e1 ≈ e2)[f] is the G′-equation obtained from e1 ≈ e2 by replacing all occur-
rences of parameters g ∈ G by f (g) ∈ G′ and E[f] B {(e ≈ e′)[f] | e ≈ e′ ∈ E}.

B.2.4. F. Let Σ be an algebraic signature, let E be a set of G equations for Σ and
suppose that there is a derivation of E `ΣEL e1 ≈ e2 for some G-equation e1 ≈ e2. Then
there is a derivation D of E `ΣEL e1 ≈ e2 such that Occ(D) ⊆ EquTΣ(G).

B.2.5. T (B). Let (Σ, E) be an algebraic theory and e1, e2 ∈ EquTΣ(∅)
be equation terms. Then the following are equivalent:

1. For all algebras A ∈ Alg(Σ, E) we have A |= e1 ≈ e2, and

2. E `ΣEL e1 ≈ e2.

The definition of an algebra can be also formulated in category-theoretic terms. We
use at several places the notion of an algebra for a functor, which is the exact dual of
the definition of a coalgebra.

B.2.6. D. Let T : C → C be a functor. Then a T -algebra is a pair (A, α)
where A is an object in C and α : T A → A ∈ C is a C-arrow. A T -homomorphism
between two T -algebras (A1, α1) and (A2, α2) is a morphism f : A1 → A2 ∈ C such that
α2◦T f = f ◦α1. The category Alg(T) has T -algebras as objects and T -homomorphisms
as arrows.

B.2. EQUATIONAL LOGIC 161

B.2.7. R. Categories of algebras for a signature correspond to categories of al-
gebras for a functor. For the representation of algebras for an algebraic theory one
usually has to consider algebras for a monad, i.e. algebras for a functor that fulfill
certain extra conditions. For more details on the categorical treatment of algebras the
reader is referred to [Man76].

Appendix C
Parity games

Here we introduce the terminology we need concerning parity games. For a detailed
introduction to the subject we refer the reader to [GTW02].

When looking at graph games we will have to talk about infinite plays of the game.
Infinite plays will correspond to infinite sequences of positions. Therefore we first have
to fix our terminology regarding finite and infinite sequences.

C.0.8. D. Let B be a set. Then we define A∗ to be the collection of finite
sequence over A, Aω to be the collection of infinite sequences over A and A∞

B A∗∪Aω

to be the collection of all sequences over A. Sequences, i.e. elements of A∞, will be
denoted by small greek letters α, β For some α ∈ Aω we let

Inf(α) B {a ∈ A | a occurs infinitely often in α}.

C.0.9. D. A parity graph game is a tuple G = (B∃, B∀, E,Ω) where

• B∃, B∀ are disjoint sets of positions for the players ∃ (“Éloise”) and ∀ (“Abélard”)
respectively,

• E ⊆ (B∃ ∪ B∀) × (B∃ ∪ B∀) is the edge relation and

• Ω : B∃ ∪ B∀ → ω is a parity function , i.e. a function from B∃ ∪ B∀ to ω with
finite range.

The set B B B∃ ∪ B∀ is called the board of the game G, the triple (B∃, B∀, E) is called
the arena of G.

A play or match consists of an initial state bI ∈ B and a sequence of moves of the
players in that arena according to the following rules:

• In a position b ∈ B∃ player ∃ has to move to some position b′ ∈ E[b], where
E[b] B {b′ ∈ B∃ ∪ B∀ | (b, b′) ∈ E}.

• In a position b ∈ B∀ player ∀ has to move to some position b′ ∈ E[b].

163

164 APPENDIX C. PARITY GAMES

We will therefore identify a play of G from starting from position bI ∈ B with a (pos-
sibly infinite) sequence of positions b0b1b2 . . . such that b0 = bI and bi+1 ∈ E[bi].

A play β = b0b1b2 . . . from some position bI = b0 ∈ B is said to be complete if
either

• β = b0 . . . bn is finite and E[bn] = ∅, or

• β is infinite.

If β is a complete play of G then we say ∃ wins β if either

• β = b0 . . . bn and bn ∈ B∀ or

• β ∈ Bω and max{Ω(b) | b ∈ Inf(β)} is even.

Otherwise ∀ wins β.

An important property of parity graph games is their history-free determinacy, i.e. the
fact that starting from any position of the arena either of the players has a history-free
winning strategy. We will now formally define the notion of such a winning strategy
and then state the theorem.

C.0.10. D. Let G = (B∃, B∀, E,Ω) be a parity graph game, B = B∃ ∪ B∀ the
set of positions. A strategy for ∃ (∀) is a function f mapping partial plays b0 . . . bn with
bn ∈ B∃ (bn ∈ B∀) to some position b. We call f an admissible strategy for ∃ (for ∀)
from position b if for all partial plays β = b0 . . . bn with b0 = b and bn ∈ B∃ (bn ∈ B∀)
we have f (β) ∈ E[bn].

A strategy f for ∃ (∀) is called history-free if for all partial plays β and β′ that end
on the same position b ∈ B∃ (b ∈ B∀) we get f (β) = f (β′), i.e. if f only depends only
on the actual position of the play and not on its history.

Let f be a strategy for ∃ (∀). Then a play β is called conform with f if for all proper
prefixes b0 . . . bn of β ending on bn ∈ B∃ (bn ∈ B∀) we have that b0 . . . bn f (b0 . . . bn) is a
prefix of β.

A strategy f for ∃ (∀) is called winning strategy for ∃ (∀) inG starting from position
b ∈ B if f is an admissible strategy from position b and all complete plays β starting in
b that are conform with f are won by ∃ (∀).

A position b ∈ B is called winning position for ∃ (∀) if there is a winning strategy
for ∃ (∀) in G starting from position b.

C.0.11. N. Let G = (B∃, B∀, E,Ω) be a parity graph game. Then we define

Win∃(G) B {b ∈ B∃ ∪ B∀ | b is a winning position for ∃}
Win∀(G) B {b ∈ B∃ ∪ B∀ | b is a winning position for ∀}

Now we are ready to state the main result about parity games which is important for
the results in Chapter 5.

165

C.0.12. T. Let G = (B∃, B∀, E,Ω) be a parity graph game and B = B∃ ∪ B∀

the set of positions. Then G is history-free determined, i.e. B = Win∃(G) ∪ Win∀(G)
and a player that has a winning strategy from a position b in G has also a history-free
winning strategy.

Proof. The determinacy of parity graph games is a corollary of Borel determinacy
([Mar75]). For a transparent proof of the fact that parity games are history-free deter-
mined we refer the reader to [Zie98]. 

Samenvatting

Het doel van deze dissertatie is het verbeteren van ons begrip van de hechte band tussen
modale logica en co-algebra’s. Deze band wordt niet alleen duidelijk uit het feit dat
Kripke frames een speciaal type co-algebra’s zijn, maar ook in meer algemene zin uit
het feit dat de relatie tussen modale logica en co-algebra vanuit categorie-theoretisch
perspectief gezien kan worden als de duale versie van de vruchtbare en bekende relatie
tussen equationele logica en algebra.

In de literatuur zijn verschillende typen modale talen voorgesteld om over co-
algebra’s te redeneren. In deze dissertatie beschouwen wij de volgende drie typen:
om te beginnen de inductief gedefinieerde talen voor Kripke polynomiale functoren,
die werden ontwikkeld in successievelijke publicaties van Kurz, Rößiger en Jacobs;
Pattinsons co-algebraische modale talen die voortkomen uit “predicate liftings”; en
finitaire coalgebraı̈sche dekpuntstalen, die werden geintroduceerd door Venema als
een aanpassing van Moss’ infinitaire coalgebraı̈sche talen.

In deze dissertatie stellen wij ons op het standpunt dat voor een logische taal
waarmee zinvol over co-algebra’s geredeneerd kan worden, de syntax van eindige aard
zou moeten zijn. Vandaar dat alle talen die wij bespreken eindig zijn. Talen met een
eindige syntax missen echter in het algemeen de Hennessy-Milner eigenschap.

Om die reden is het een natuurlijke vraag of we een klasse van co-algebra’s kun-
nen vinden die logica’s met een eindige syntax toestaat, die desondanks de Hennessy-
Milner eigenschap hebben. We stellen voor om dit vraagstuk op te lossen door een
bekend concept uit de modale logica te generaliseren: descriptieve gegeneraliseerde
frames. Deze descriptieve gegeneraliseerde frames kunnen gerepresenteerd worden als
co-algebra’s voor de Vietoris functor op de categorie van Stone topologieën. Vandaar
dat Stone co-algebra’s, dat wil zeggen co-algebra’s voor functoren over de categorie
der Stone topologieën, een natuurlijke generalisering van dit concept zijn.

Een manier om de expressiviteit van een modale taal te vergroten vormt het ge-
bruik van de zogeheten dekpuntoperatoren. Venema’s coalgebraı̈sche dekpuntslog-
ica’s hebben een finitaire syntax en bieden de mogelijkheid over oneindig, voortdurend
gedrag te redeneren. Deze logica’s kunnen beschouwd worden als een generalisatie

167

168 Samenvatting

van de modale mu-calculus, en zij kunnen, net als de modale mu-calculus, op een
automaten-theoretische wijze geı̈nterpreteerd worden: er is een één-één corresponden-
tie tussen formules van coalgebraı̈sche dekpuntslogica en de zogenoemde co-algebra
automaten.

In deze dissertatie bewijzen we enkele afsluitingseigenschappen voor co-algebra
automaten en tonen aan dat het ‘non-emptiness probleem’ van een co-algebra au-
tomaat in veel gevallen beslisbaar is. Onze resultaten kunnen vanuit twee perspectieven
bekeken worden: In de eerste plaats generaliseren ze bekende resultaten aangaande
automaten op oneindige objecten, zoals automaten op oneindige woorden, bomen en
grafen. In de tweede plaats hebben onze resultaten logische gevolgen: we tonen aan
dat alle coalgebraı̈sche dekpuntslogica’s de eindige model eigenschap hebben. Hieruit
volgt in het bijzonder een bewijs voor de eindige model eigenschap van de modale mu-
calculus. Een ander gevolg is beslisbaarheid voor een grote klasse van coalgebraı̈sche
dekpuntlogica’s. Verder bewijzen we de correctheid van een bepaalde distributiewet
voor de ∇-operator.

Deze dissertatie is als volgt ingedeeld: na de Introductie in Hoofdstuk 1, geven we
een overzicht van de drie typen modale talen, die worden besproken in dit proefschrift.

Hoofdstuk 3 bevat een eerste toepassing van het idee om co-algebra’s over Stone
topologieën te beschouwen. We bekijken gedefinieerde logica’s voor Kripke polyno-
miale functoren: voor elke Kripke polynomiale functoren definieren we een corres-
ponderende functor op de categorie van Stone topologieën en verkrijgen we, in ons
vocabulaire, de klasse der Vietoris polynomiale functoren. Voor elke dergelijke func-
tor verkrijgen we de uiteindelijke co-algebra door middel van een aangepaste kanoniek
model constructie. In het bijzonder impliceert deze constructie dat de talen die geas-
socieerd worden met Vietoris polynomiale functoren de Hennessy-Milner eigenschap
hebben. Verder bewijzen we dat er voor elke Vietoris polynomiale functor T en de
daarmee geassocieerde logica een adjunctie bestaat tussen de algebraı̈sche semantiek
van de betreffende logica, gedefinieerd als een categorie van meersoortige algebra’s,
en de categorie van T -co-algebra’s. Ten slotte karakteriseren we de meersoortige alge-
bra’s waarvoor de adjunctie in feite een categorie-theoretische equivalentie vormt.

In Hoofdstuk 4 richten we ons op co-algebraische modale logica’s, die gegeven
zijn in termen van een verzameling “predicate liftings” en een verzameling axioma’s
met een modale diepte van 1. Gegeven een endofunctor T op de categorie der verza-
melingen of de categorie der Stone topologieën en een logica voor T ontwerpen we
een functor L op de categorie der Boolse algebra’s. De categorie der algebra’s voor
deze functor bepaalt de algebraische semantiek voor deze logica. Wij gebruiken deze
algebraische semantiek om een categorie-theoretische analyse te geven van de condi-
ties waaronder de logica correct en volledig is met betrekking tot de co-algebraische
semantiek. Dit doen we door de correctheid en volledigheid van de logica te relateren
aan eigenschappen van een natuurlijke transformatie die de functoren L en T verbindt.
In het geval dat T een functor is op Stone topologieën verkrijgen we het volgende re-
sultaat: De logica is correct en volledig en heeft de Hennessy-Milner eigenschap als L
duaal is aan T .

Samenvatting 169

In Hoofdstuk 5 bewijzen we afsluitingseigenschappen van co-algebraische auto-
maten en laten we zien hoe het “non-emptiness” probleem efficient opgelost kan wor-
den voor een grote klasse van co-algebraische automaten. Het belangrijkste resul-
taat van dit hoofdstuk is het bewijs dat voor elke co-algebra automaat een equivalente
non-deterministische automaat geconstrueerd kan worden. Het bewijs is uniform in
alle typen co-algebraische automaten en in het speciale geval van boomautomaten im-
pliceert het Rabins Complementerings-lemma.

Bibliography

[Abr88] S. Abramsky, A Cook’s tour of the finitary non-wellfounded sets, Invited Lec-
ture at BCTCS, 1988.

[Abr91] , Domain theory in logical form, Annals of Pure and Applied Logic
51 (1991), 1–77.

[Abr05] , A Cook’s tour of the finitary non-wellfounded sets, We Will
Show Them: Essays in honour of Dov Gabbay (S. Artemov, H. Barringer,
A. d’Avila Garcez, L.C. Lamb, and John Woods, eds.), College Publications,
vol. 1, 2005, pp. 1–18.

[Acz88] Peter Aczel, Non-well-founded sets, CSLI Lecture Notes, vol. 14, 1988.

[AK79] J. Adámek and V. Koubek, Least Fixed Point of a Functor, Journal of Com-
puter and System Sciences 19 (1979), 163–178.

[AM89] P. Aczel and N.P. Mendler, A Final Coalgebra Theorem, Category The-
ory and Computer Science (London, UK), LNCS, vol. 389, Springer, 1989,
pp. 357–365.

[AN01] A. Arnold and D. Niwiński, Rudiments of µ-calculus, Studies in Logic, vol.
146, North-Holland, 2001.

[AT90] J. Adámek and V. Trnková, Automata and algebras in a category, Kluwer
Publishing Company, 1990.

[Bal00] A. Baltag, A logic for coalgebraic simulation, Proceedings of the Workshop
on Coalgebraic Methods in Computer Science (CMCS) (H. Reichel, ed.),
Electronic Notes in Theoretical Computer Science, vol. 33, 2000.

[Bar93] M. Barr, Terminal coalgebras in well-founded set theory, Theoretical Com-
puter Science 114 (1993), no. 2, 299–315.

171

172 Bibliography

[BdV01] P. Blackburn, M. de Rijke, and Y. Venema, Modal logic, Cambridge Tracts in
Theoretical Computer Science, vol. 53, Cambridge University Press, 2001.

[Ben76] J. van Benthem, Modal Correspondence Theory, Ph.D. thesis, Mathematisch
Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam,
1976.

[BK05] M. Bonsangue and A. Kurz, Duality for Logics of Transition Systems, Pro-
ceedings of FoSSaCS ’05, 2005.

[BM96] J. Barwise and L. Moss, Vicious Circles, CSLI Lecture Notes, vol. 60, 1996.

[BS81] S. N. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Grad-
uate Texts in Mathematics, no. 78, Springer, 1981.

[CGP00] E. Clarke, O. Grumberg, and D. Peled (eds.), Model checking, The MIT
Press, 2000.

[Cı̂r04] C. Cı̂rstea, A compositional approach to defining logics for coalgebras, The-
oretical Computer Science 327 (2004), 45–69.

[CP04] Corina Cı̂rstea and Dirk Pattinson, Modular construction of modal logics.,
CONCUR, 2004, pp. 258–275.

[CZ97] A. Chagrov and M. Zakharyaschev, Modal logic, Clarendon Press, 1997.

[DH00] G. D’Agostino and M. Hollenberg, Logical Questions Concerning the µ-
Calculus: Interpolation, Lyndon and Łoś-Tarski., Journal of Symbolic Logic
65 (2000), no. 1, 310–332.

[Eng89] R. Engelking, General topology, Heldermann Verlag, 1989.

[Esa74] L.L. Esakia, Topological Kripke models, Soviet Mathematics Doklady 15
(1974), 147–151.

[Fin74] K. Fine, An incomplete logic containing S4, Theoria 40 (1974), 23–29.

[Ger96] J. Gerbrandy, Characterizations of bisimulation and bounded bisimulations,
Workshop Proceedings on Observational Equivalence and Logical Equiva-
lence, ESSLLI (M. de Rijke, ed.), Prague, 1996.

[Gol76] R. Goldblatt, Metamathematics of modal logic, part I, Reports on Mathemat-
ical Logic 6 (1976), 41–78.

[Gol01] , What is the coalgebraic analogue of Birkhoff’s variety theorem?,
Theoretical Computer Science 266 (2001), no. 1-2, 853–886.

Bibliography 173

[Gol03a] , Enlargemants of a polynomial coalgebra, Proceedings of the 7th
and 8th Asian Logic Conferences (R. Downey et al., ed.), World Scientific,
2003, pp. 152–192.

[Gol03b] , Observational ultraproducts of polynomial coalgebras, Annals of
Pure and Applied Logic 123 (2003), no. 1–3, 235–290.

[Gol05] , Final Coalgebras and the Hennessy-Milner Property, Annals of
Pure and Applied Logic (2005), In Press.

[GTW02] E. Grädel, W. Thomas, and T. Wilke (eds.), Automata, logic, and infinite
games, LNCS, vol. 2500, Springer, 2002.

[Gum01] H.P. Gumm, Functors for Coalgebras, Algebra Universalis 45 (2001), 135–
147.

[HJ98] C. Hermida and B. Jacobs, Structural induction and coinduction in a fibra-
tional setting, Information and Computation 145 (1998), no. 2, 107–152.

[HJ05a] I. Hasuo and B. Jacobs, Coalgebraic trace semantics for probabilistic sys-
tems, CALCO-jnr Workshop, 2005.

[HJ05b] , Context-free languages via coalgebraic trace semantics, CALCO
2005 (Springer, ed.), LNCS, vol. 3629, 2005, pp. 204–233.

[HK04] H. H. Hansen and C. Kupke, A coalgebraic perspective on monotone modal
logic, Proceedings of the Workshop on Coalgebraic Methods in Computer
Science (CMCS) (J. Adámek, ed.), Electronic Notes in Theoretical Computer
Science, vol. 106, 2004.

[Jac96] B. Jacobs, Objects and Classes, Co-Algebraically, Object Orientation with
Parallelism and Persistence, Kluwer Academic Publishers, 1996, pp. 83–103.

[Jac01] , Many-Sorted Coalgebraic Modal Logic: a Model-theoretic Study,
Theoretical Informatics and Applications 35 (2001), no. 1, 31–59.

[Jac04] , Trace Semantics for Coalgebras, Electr. Notes Theor. Comput. Sci.
106 (2004), 167–184.

[Joh82] P.T. Johnstone, Stone Spaces, Cambridge Uniersity Press, Cambridge, 1982.

[JR97] B. Jacobs and J. Rutten, A tutorial on (co)algebras and (co)induction,
EATCS Bulletin 62 (1997).

[JT51] B. Jónsson and A. Tarski, Boolean algebras with operators I, American Jour-
nal of Mathematics 73 (1951), 891–939.

174 Bibliography

[JT52] , Boolean algebras with operators II, American Journal of Mathe-
matics 74 (1952), 127–162.

[JW95] D. Janin and I. Walukiewicz, Automata for the modal µ-calculus and related
results, Proceedings 20th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS’95) (Berlin), LNCS, vol. 969, Springer,
1995, pp. 552–562.

[KKP04] C. Kupke, A. Kurz, and D. Pattinson, Algebraic semantics for coalgebraic
modal logic, Proceedings of the Workshop on Coalgebraic Methods in Com-
puter Science (CMCS) (J. Adámek, ed.), Electronic Notes in Theoretical
Computer Science, vol. 106, 2004.

[KKP05] , Ultrafilter extensions for coalgebras, Algebra and Coalgebra in
Computer Science, LNCS, vol. 3629, 2005.

[KKV04] C. Kupke, A. Kurz, and Y. Venema, Stone coalgebras, Theoretical Com-
puter Science 327 (2004), 109–134.

[Koz88] D. Kozen, A finite model theorem for the propositional µ-calculus, Studia
Logica 47 (1988), no. 3, 233–241.

[KP04] A. Kurz and A. Palmigiano, Coalgebras and Modal Expansions of Logics,
Proceedings of the Workshop on Coalgebraic Methods in Computer Science
(CMCS) (J. Adámek, ed.), Electronic Notes in Theoretical Computer Sci-
ence, vol. 106, 2004.

[KP05] A. Kurz and D. Pattinson, Coalgebraic Modal Logic of Finite Rank, Mathe-
matical Structures in Computer Science 15 (2005), no. 3, 453–473.

[KR02] Alexander Kurz and Jiřı́ Rosický, Modal predicates and coequations,
CMCS’02, ENTCS, vol. 65.1, Elsevier, 2002.

[Kra99] M. Kracht, Tools and techniques in modal logic, Elsevier, 1999.

[Kur00] A. Kurz, Logics for Coalgebras and Applications to Computer Science,
Ph.D. thesis, Ludwig-Maximilians-Universität, 2000.

[Kur01a] A. Kurz, A Co-Variety-Theorem for Modal Logic, Advances in Modal Logic
2, CSLI, 2001, Selected Papers from AiML 2, Uppsala, 1998.

[Kur01b] A. Kurz, Coalgebras and modal logic, Course
Notes for ESSLLI’2001, 2001, Available at
http://www.cs.le.ac.uk/people/akurz/works.html.

[Kur01c] , Specifying coalgebras with modal logic, Theoretical Computer Sci-
ence 260 (2001), 119–138.

Bibliography 175

[KV05] C. Kupke and Y. Venema, Closure properties of coalgebra automata, 20th
Annual IEEE Symposium on Logic in Computer Science (LICS 2005), IEEE
Press, 2005.

[Mac71] S. Mac Lane, Category theory for the working mathematician, Springer,
1971.

[Man76] E.G. Manes, Algebraic Theories, Graduate Texts in Mathematics, vol. 26,
Springer, 1976.

[Mar75] D.A. Martin, Borel Determinacy, The Annals of Mathematics 102 (1975),
no. 2, 363–371.

[Mic51] E. Michael, Topologies on spaces of subsets, Transactions of the American
Mathematical Society 71 (1951), 152–182.

[Mos99] L. S. Moss, Coalgebraic logic, Annals of Pure and Applied Logic 96 (1999),
277–317.

[MS95] D.E. Muller and P.E. Schupp, Simulating alternating tree automata by non-
deterministic automata: New results and new proofs of the theorems of
Rabin, McNaughton and Safra, Theoretical Computer Science 141 (1995),
no. 1–2, 69–107.

[MV04] L. S. Moss and I. D. Viglizzo, Harsanyi type spaces and final coalgebras
constructed from satisfied theories, Proceedings of the Workshop on Coal-
gebraic Methods in Computer Science (CMCS) (J. Adámek, ed.), Electronic
Notes in Theoretical Computer Science, vol. 106, 2004.

[Pal04] A. Palmigiano, A coalgebraic view on positive modal logic, Theoretical
Computer Science 327 (2004), 175–195.

[Pat01] D. Pattinson, Semantical principles in the modal logic of coalgebras, Pro-
ceedings 18th International Symposium on Theoretical Aspects of Computer
Science (STACS 2001) (Berlin), LNCS, vol. 2010, Springer, 2001.

[Pat03a] , Coalgebraic modal logic: Soundness, completeness and decidabil-
ity of local consequence, Theoretical Computer Science 309 (2003), 177–
193.

[Pat03b] , An introduction to the theory of coalgebras, North American Sum-
mer School in Logic, Language and Information (NASSLLI), 2003.

[Pat04] , Expressive logics for coalgebras via terminal sequence induction,
Notre Dame Journal of Formal Logic 45 (2004), no. 1, 19–33.

176 Bibliography

[Rab69] M.O. Rabin, Decidability of second-order theories and automata on infinite
trees, Transactions of the American Mathematical Society 141 (1969), 1–35.

[Rei83] J. Reiterman, Algebraic theories and varieties of functor algebras, Fund.
Math. 118 (1983), 59–68.

[Rei95] H. Reichel, An Approach to Object Semantics based on Terminal Co-
Algebras, Mathematical Structures in Computer Science 5 (1995), no. 2,
129–152.

[Ros81] J. Rosický, On algebraic categories, Universal Algebra (Proceedings Col-
loquium Esztergom 1977), Colloquium Mathematical Society J. Bolyai,
vol. 29, 1981, pp. 662–690.

[Röß00] M. Rößiger, Coalgebras and modal logic, CMCS’00, ENTCS, vol. 33, 2000.

[Röß01] , From modal logic to terminal coalgebras, Theoretical Computer
Science 260 (2001), 209–228.

[Rut95] J.J.M.M. Rutten, A calculus of transition systems (towards universal coalge-
bra), Modal Logic and Process Algebra, CSLI Lecture Notes, vol. 53, CSLI,
1995.

[Rut98a] , Automata and coinduction (an exercise in coalgebra), Proc. 9th In-
ternational Conference on Concurrency Theory (CONCUR’98) (D. Sangio-
rigi and R. de Simone, eds.), LNCS, vol. 1466, Springer, 1998, pp. 194–218.

[Rut98b] , Relators and Metric Bisimulation (Extended Abstract), Electronic
Notes in Theoretical Computer Science 11 (1998), 1–7.

[Rut00] , Universal coalgebra: A theory of systems, Theoretical Computer
Science 249 (2000), 3–80.

[Sch05] L. Schröder, Expressivity of Coalgebraic Modal Logic: The Limits and Be-
yond, Foundations of Software Science And Computation Structures (V. Sas-
sone, ed.), Lecture Notes in Computer Science, vol. 3441, 2005, pp. 440–
454.

[SE89] R.S. Street and E.A. Emerson, An automata theoretic procedure for the
propositional µ-calculus, Information and Computation 81 (1989), 249–264.

[Sto36] M. H. Stone, The Theory of Representation for Boolean Algebras, Transac-
tions of the American Mathematical Society 40 (1936), no. 1, 37–111.

[Sto37] , Applications of the Theory of Boolean Rings to General Topology,
Transactions of the American Mathematical Society 41 (1937), no. 3, 375–
481.

Bibliography 177

[Tho74] S. K. Thomason, An Incompleteness Theorem in Modal Logic, Theoria 40
(1974), 30–34.

[Trn77] V. Trnková, Relational automata in a category and theory of languages,
Proc. FCT 1977, Springer, 1977, LNCS 56, pp. 340–355.

[Ven04] Y. Venema, Automata and fixed point logics for coalgebras, Electronic Notes
in Theoretical Computer Science 106 (2004), 355–375.

[Ven06] , Algebras and coalgebras, Handbook of Modal Logic, 2006, To ap-
pear.

[Vic89] S. Vickers, Topology Via Logic, Cambridge University Press, 1989.

[Vie22] L. Vietoris, Bereiche zweiter Ordnung, Monatshefte für Mathematik und
Physik 32 (1922), 258–280.

[Vig05] I. D. Viglizzo, Final sequences and final coalgebras for measurable spaces,
Algebra and Coalgebra in Computer Science, LNCS, vol. 3629, 2005.

[Wal00] I. Walukiewicz, Completeness of Kozen’s Axiomatisation of the Proposi-
tional µ-Calculus, Information and Computation 157 (2000), 142–182.

[Wec92] W. Wechler, Universal algebra for computer scientists, EATCS Monographs
on Theoretical Computer Science, vol. 25, Springer, 1992.

[Wor05] J. Worrell, On the final sequence of a finitary set functor, Theoretical Com-
puter Science 338 (2005), no. 1–3, 184–199.

[Zie98] W. Zielonka, Infinite games on finitely coloured graphs with applications to
automata on infinite trees, Theoretical Computer Science 200 (1998), 135–
183.

Index

C(A, B), 147
T -language, 119
T -relation, 128
Lift

of functions, 94
Lift(R), 81
Lift(Ψ), 81
Σ-algebra, 157
T-algebra, 158
δn, 102
≡n, 90

acceptance game, 118
accepting run, 115
adequacy, 39
algebra

congruence, 158
for a functor, 147
pre-Boolean, 75
signature, 157

algebraic theory, 158
T(Λ, Ax), 74

base, 27
behavioural equivalence, 154
bisimilarity, 154
bisimulation, 154
bisimulation game, 116
Boolean signature, 157
bounded morphism, 3

continuous, 40

category
PBA, 77
opposite, 147

characteristic function, 24
chromatic companion, 120
clopen, 35
coalgebra, 154
coalgebra automaton, 118

chromatic, 119
coalgebraic modal logic

axiom, 22
predicate lifting, 18

completeness
MSML, 17
L(Λ, Ax), 24

congruence, 158
construction tree, 28, 29

derivability
coalgebraic modal logic, 23

distinuished point, 151
dual to, 104

equational logic, 159
completeness, 160
equation terms, 158

equivalence class, 75
expressive, 21

179

180 Index

finite T -base, 26
formula

clean, 30
closed, 30
modal depth, 89

formula depth, 27
formulas

modal logic, 37
functor

∆, 97
T , 150
L, 83
L, 83
∅-standard, 151
E, 85
A, 86
Ter, 79
Qu, 79
final sequence, 93
initial sequence, 89
standard, 150
weak pullback preserving, 150

game
arena, 163
board, 163
play, 163
strategy, 164

general frame, 39
compact, 39
descriptive, 39
differentiated, 39
tight, 39

global element, 101
graph automaton, 115

initial L-agebra, 87

Kripke
frame, 37
semantics, 37

Kripke polynomial functors, 11

language

MSML, 13
L(Λ), 19
LT , 27
µLT (Φ), 29

Lifting
congruence, 81
syntactical, 81

Lindenbaum
T-BAO, 51

Lindenbaum algebra
modal logic, 41

logic
L(Λ, Ax), 23

many-sorted modal logic, 17
map

preserving, 76
reflecting, 78

modal algebra, 38
morphism

PBA, 82
coalgebra, 154
general frame, 40

natural transformation, 148
δ, 96

normal modal logic, 37

order-preserving, 94
order-reflecting, 95

parity
function, 163
game, 163

path, 12
constructor, 12

presentation, 158
projection, 122

raw formulas, 13
redistribution, 128

finitary, 143
relation lifting, 150
rooted coalgebra, 154

Index 181

rooted graph, 114
round, 119
run, 115

scattered, 123
semantics

Alg(L), 84
MSML, 14
coalgebraic modal logic, 19

separating, 107
soundness

MSML, 17
L(Λ, Ax), 24

standardization, 139
state formula, 13
Stone space, 35
subformula, 28
substitution, 23

trace, 126
trap, 126

variable
bound, 29
free, 29
occurrence, 29

Vietoris
functor, 43
polynomial functors, 48
space, 43
topology, 43

weak pullback, 149

Yoneda Lemma, 148

Titles in the ILLC Dissertation Series:

ILLC DS-2001-01: Maria Aloni
Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch
Rationality in Discovery - a study of Logic, Cognition, Computation and Neu-
ropharmacology

ILLC DS-2001-03: Erik de Haas
Logics For OO Information Systems: a Semantic Study of Object Orientation from
a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff
Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland
Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf
Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki
Logics and Provability

ILLC DS-2001-08: Allard Tamminga
Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles
Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly
Logic for Social Software

ILLC DS-2002-01: Nikos Massios
Decision-Theoretic Robotic Surveillance

ILLC DS-2002-02: Marco Aiello
Spatial Reasoning: Theory and Practice

ILLC DS-2002-03: Yuri Engelhardt
The Language of Graphics

ILLC DS-2002-04: Willem Klaas van Dam
On Quantum Computation Theory

ILLC DS-2002-05: Rosella Gennari
Mapping Inferences: Constraint Propagation and Diamond Satisfaction

ILLC DS-2002-06: Ivar Vermeulen
A Logical Approach to Competition in Industries

ILLC DS-2003-01: Barteld Kooi
Knowledge, chance, and change

ILLC DS-2003-02: Elisabeth Catherine Brouwer
Imagining Metaphors: Cognitive Representation in Interpretation and Understand-
ing

ILLC DS-2003-03: Juan Heguiabehere
Building Logic Toolboxes

ILLC DS-2003-04: Christof Monz
From Document Retrieval to Question Answering

ILLC DS-2004-01: Hein Philipp Röhrig
Quantum Query Complexity and Distributed Computing

ILLC DS-2004-02: Sebastian Brand
Rule-based Constraint Propagation: Theory and Applications

ILLC DS-2004-03: Boudewijn de Bruin
Explaining Games. On the Logic of Game Theoretic Explanations

ILLC DS-2005-01: Balder David ten Cate
Model theory for extended modal languages

ILLC DS-2005-02: Willem-Jan van Hoeve
Operations Research Techniques in Constraint Programming

ILLC DS-2005-03: Rosja Mastop
What can you do? Imperative mood in Semantic Theory

ILLC DS-2005-04: Anna Pilatova
A User’s Guide to Proper names: Their Pragmatics and Semanics

ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili
Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke
Finitary coalgebraic logics

