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Chapter 1

Introduction

Background. At the center of logic, computation theory, and game theory is
an interest in information and in the ways information can be processed correctly,
mechanically, and rationally. The three disciplines use their own frameworks and
terminology, but as information is their primary topic of investigation, structures
and concepts from one discipline are open to analysis by means of tools from
the other disciplines. Some of these analyses were successful to the point of
giving rise to areas of research of their own. For example, research by Lorenzen
and Hintikka, Fagin (1974), and Berlekamp, Conway, and Guy (1982) shaped
the areas of game-theoretic semantics (games and logic), descriptive complexity
theory (logic and computation), and combinatorial game theory (computation
and games), respectively.

Game-theoretic semantics for logics aim to give meaning to the logics’ com-
ponents in terms of players, goals, interaction, and what you have. The game-
theoretic approach to meaning in logics is akin to the way natural language users
express the proposition No A is B by I’ll give you one million dollars if you
can find me an A such that B. Although natural language users do not actually
expect the hearer to start looking for an A that is B, research on game-theoretic
semantics takes these games seriously as battlefields of “real” players.

Descriptive complexity bridges logic and computation in a very neat way.
Conceptually, descriptive complexity departs from the insight that algorithms
can verify the truth of an expression from a logical system in a given situation;
and conversely, that the set of inputs that are accepted by an algorithm can be
described by logical means. In order to illustrate the latter direction, consider all
topographical maps (or equivalently, planar graphs) that have the property that
one can color its countries with three colors in such a way that adjacent countries
are colored differently. If this is the case, we say that the map is 3-colorable. It
is easy to come up with a (naive) algorithm that decides for an arbitrary map
whether it is 3-colorable. Descriptive complexity allows us to link this algorithm
to a logical formula that describes 3-colorable maps. Interestingly, descriptive

1



2 Chapter 1. Introduction

complexity also allows to transfer the complexity of the algorithm to the formula.

Combinatorial game theory studies algorithmic approaches to play and ana-
lyze games. Well-known research in this field is concerned with the development
of Chess computers. Also, combinatorial game theory studies the complexity of
games. What the complexity of a game is, is of course determined by the complex-
ity measures employed. A natural complexity measure for Sudoku, for instance,
is the number of rules required to solve a puzzle.

It has been proven fruitful to transfer insights and problems from the one
discipline to the other. For instance, let us suppose that we want to build an
algorithm that can play a certain game. One approach to this problem, enabled
by the interaction of the previous disciplines, is to isolate a logic in which all
relevant statements about the game can be formalized. For instance, if the game
has probabilistic features, one needs to incorporate probabilistic elements in the
logical system that suffice to describe the game’s features. Once an adequate log-
ical language has been developed, we can use the machinery from the descriptive
complexity toolkit, to obtain the desired algorithm.

Another example of the fields’ interaction is where we are interested in the
impact of a game’s property on the game’s complexity. Suppose one wishes to
investigate whether two-player games are more complex than one-player games,
such as Sudoku. One approach to this problem would be to fix several logics.
Crucially, one has to see to it that the logics give rise, in the game-theoretic
semantics sense, to one and two-player games. Then, we compare the complexity
of the logics that give rise to one-player games with the complexity of the logics
that give rise to two-player games. Here, the complexity of a logic can be measured
by means of the tools from descriptive complexity.

This dissertation is positioned right on the interface of logic, games, and com-
putation. Moreover, its results can be considered contributions to the disciplines
of game-theoretic semantics, descriptive complexity, and combinatorial game the-
ory. The theme of this dissertation is imperfect information in logic and games.

Imperfect information. Game theory concerns itself with the strategic inter-
action of rational agents in utility returning environments. In an early stage of
the development of game theory, marked by the publication of (von Neumann
and Morgenstern 1944), much attention was paid to situations where information
about past moves is only partially available (Kuhn 1953). Games that facilitate
strategic interaction in such contexts are called imperfect information games. In
this thesis, imperfect information games are the principal object of investigation.1

One of the reasons why games with imperfect information received so much at-
tention is that interactive settings with partial information are omnipresent. Here

1Games with partial information concerning the characteristics of the other agents, such as
preferences, actions, and beliefs, are known as incomplete information games. For a definitive
treatment of partial information games see (Harsanyi 1967–1968).
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also the realm of parlor games comes to mind as one of the many areas in which
imperfect information plays a key role. To appreciate the different possible ori-
gins of imperfect information in parlor games, I will set out a number of ways in
which imperfect information concerning previous moves can be brought about,
and mention some games in which they materialize—without aiming to be ex-
haustive.

• Through rules: One-shot games are games in which the players move in
parallel, so that they are uninformed about the other players’ actions when
deciding on their own. So it is the rules regulating the behavior of the
agents that cause them to be imperfectly informed. Prototypical games of
this kind are Rock, Paper, Scissors, first price auctions, and the famous
Prisoner’s Dilemma, in which the prisoners decide on their testimony in
their cell and privately inform the judge.

• Through attributes: In a wide range of games the fact that a move is made
is commonly known, but the actual specifications of the move are hidden.
Well-known examples of such games are Stratego, Kriegspiel, and Scotland
Yard. The former two games are imperfect information variants of Chess.
Scotland Yard is basically a cops and robbers game on a graph, during
which the cops aim to enclose the robber by moving pawns on the board
(a graph). The robber makes his moves covertly, jotting them down on
a special notepad which is an attribute of the game, only now and then
revealing his whereabouts to the cops.

• Through cognitive boundaries: These latter games would still be interest-
ing if played by supernatural players, that is, players who have an infinite
amount of time and paper to make their calculations. By contrast, the game
of Memory hinges on the fact that humans have imperfect memory. Another
amusing game of this kind is Ik ga op vakantie en neem mee (English: I go
on holiday and take along), during every round of which a player recites all
items that have been announced previously, and then adds another item. If
a player cannot recall the contents of the suitcase he is out and loses.

The interface of logic, games, and computation has been extensively explored.
Despite this and the fact that imperfect information arises in many natural con-
texts, structures with imperfect information have not received much attention
from the logic and computation community when compared to structures with
perfect information. Let me now give a succinct overview of research that studies
imperfect information structures in logic, computation, and games.

Independence-friendly logic is an exception within the field of logic, as its se-
mantic evaluation games can be regarded as imperfect information games, see
(Sandu 1993; Hintikka 1996; Hintikka and Sandu 1997). The logical analysis
of games with imperfect information commenced only recently, formalizing the
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interaction between agents, knowledge, action, and preferences in dynamic envi-
ronments. General frameworks (Fagin, Halpern, Moses, and Vardi 1995; Baltag,
Moss, and Solecki 1998) have been proposed, but for some applications they re-
main undefined or give unsatisfactory accounts. Logical case studies of games
with imperfect information have been performed, such as (van Ditmarsch 2000)
which gives an in-depth account of Cluedo.

Publications on the computational analysis of games with imperfect informa-
tion are rather scarce, cf. (van Emde Boas 2003), even on popular games such
as Poker, cf. (Billings et al. 2002). Interactive proof systems, introduced in
(Goldwasser et al. 1989), form an exception in computation theory. Some stud-
ies have been performed on the computational cost of imperfect information in
games, and they are basically a bad news show. In (Jones 1978) it is shown
that once one blindfolds one player, the complexity jumps from P all the way to
PSPACE. Deciding whether a game-tree allows for a winning strategy for one
player becomes intractable (NP-hard) the very moment this player comes across
imperfect information, see (Koller and Megiddo 1992). Furthermore, a Turing
machine that has so-called private states is capable of recognizing undecidable
languages in constant space, see (Reif 1984; Peterson, Azhar, and Reif 2001).

This thesis aims to study structures with imperfect information in the interface
of logic, games, and computation.

Questions and motivations. This dissertation evolves around two questions.

Textbook introductions to logic’s elementary concepts are usually presented
with the help of games. The concept of quantifier and quantifier dependence are
paradigmatic cases in point. In fact, from the many clear and intuitive reformu-
lations of logical notions one is tempted to conclude that many logical notions are
essentially game-theoretic. But despite the fact that game-theoretic characteriza-
tions are omnipresent in logic, we are still waiting for a unifying framework, i.e.,
a framework in which one can systematically study the consequences that chang-
ing a game’s property has on the logical notion at hand. No such framework
exists however. In this dissertation, modestly, I will not try to set up a general
framework. Instead, I will focus on logics whose game-theoretic semantics rely on
imperfect information games. Those games aim to be helpful items when setting
up such a general framework. Thus, we arrive at the first question:

Question 1: Which games with imperfect information can be defined by log-
ical means, and which reasonable sources can be seen to cause the imperfect
information?

The first part of this question is motivated by the sheer absence of logics that
rely on games with imperfect information. Although games are frequently used
to give an interactive and goal-oriented perspective to logical concepts, still the
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games employed in this manner are mostly games with perfect information. Insist-
ing on imperfect information games may thus shed a new light on the interactive
and goal-oriented content of logical concepts, and deepen our understanding of
their nature.

It is well-conceivable that certain logics define game-theoretic games whose
information flows are of a dubious kind, i.e., hard to realize. Therefore I will
keep a keen eye on possible explanations of the game’s imperfect information.
In actual fact, the three aforementioned sources of imperfect information will be
used to this effect.

Finally, I hold the view that it is not unlikely that a logical perspective on
games with imperfect information can provide insights that are not offered by
the current literature on game theory. Thus the focus on logic games may bear
relevance to game theory at large. For instance, game-theoretic analyses of en-
vironments with imperfect information primarily aim to describe the most prof-
itable strategic behavior, while treating the imperfect information as a given. In
my view, a logical analysis may give a more informationally involved account of
imperfect information environments than game-theoretic perspectives, explaining
the source of the imperfect information.

Intuitively, some games are harder than others. We find this intuition con-
firmed in our daily newspaper in which puzzles are printed with increasing diffi-
culty. Depending on the application and the research question, one has to select
one’s complexity measures and tools of analysis. Ultimately, interesting questions
may be addressed that compare theoretical and cognitive complexity measures of
a games. I.e., can computer-oriented complexity measures “predict” a game’s cog-
nitive complexity? This and similar grand questions motivate this dissertation’s
second main question.

Question 2: What are the computational costs of imperfect information in
logic and combinatorial game theory?

In order to address Question 2, I will study the computational costs of algo-
rithms that compute certain specific properties of games with imperfect informa-
tion, and compare them to the computational costs of algorithms that perform
the same task for the perfect information counterparts. I will mostly use the tools
and notions offered by complexity theory to measure the computational costs of
algorithms. Complexity theory (Garey and Johnson 1979; Papadimitriou 1994)
provides measures of complexity that are well-known to be both mathematically
adequate and relevant in everyday practice. In this manner, improving our under-
standing of the complexity of imperfect information games is not only of interest
to computer scientists, but also to game-theorists and logicians working on these
games.

The computational costs of imperfect information were explored in general
frameworks in the aforementioned (Jones 1978; Reif 1984; Koller and Megiddo
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1992; Peterson et al. 2001), but these publications leave Question 2 entirely
unanswered. Although they invariably report negative results—in a slogan: “im-
perfect information increases complexity”—, they cannot tell whether imperfect
information has a negative computational impact on specific games. For it may
well turn out that the computational results reported in the previous publications
are due to pathological cases.

Methodology. To let this dissertation carry relevance not only for those inter-
ested in games with imperfect information, but also for those interested in logic,
games, and computation in general, I selected my topics of investigation from
all three disciplines. In particular, the topics addressed in this dissertation are
taken from the philosophy of mathematics (Hintikka 1996), generalized quantifier
theory (Henkin 1961), the semantics of natural language (Barwise 1979), and the
realm of parlor games.

An advantage of working on topics from this range of areas is their high level
of interaction. Thus, the objects at stake can be analyzed by means of more
or less the same formal machinery. A case in point is the machinery developed
in descriptive complexity theory that offers a unifying perspective on logic and
computation. Another advantage is that the perfect information variants of the
topics considered have been studied rather intensively and so one can meaningfully
compare the computational impact of imperfect information.

Let me scan the fields in which the objects of investigation are situated:

• Sandu and Hintikka (Sandu 1993; Hintikka 1996; Hintikka and Sandu 1997)
show that Independence-friendly logic (abbreviated “IF logic”) can be asso-
ciated with semantic evaluation games with imperfect information. Readers
familiar with semantic evaluation games for first-order logic will acknowl-
edge that those have perfect information. From a game-theoretic perspec-
tive, IF logic can be seen to loosen this assumption by allowing for hiding
parts of past moves.

• From a logical viewpoint, the idea underlying IF logic generalizes ideas from
partially ordered quantification theory. Henkin (1961) introduced partially
ordered quantifiers more or less as a mathematical exercise. The ideas in
(Henkin 1961) gave birth to an extensive model-theoretic theory on the
topic with extensions in many directions. Gottlob et al. (1995, pg. 67)
describe partially ordered quantifiers as “important in both model theory
and theoretical linguistics.”

• In the theory of natural language semantics, Hintikka (1974) and Barwise
(1979) argued, amongst others, that some natural language sentences can-
not be accounted for by “traditional” logical means. They argue that the
formal apparatus of branching quantifiers should be included in the seman-
ticist’s toolbox to give certain sentences their correct logical form.
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• Although the existence of games with imperfect information is acknowl-
edged in one of the paradigmatic publications in combinatorial game theory
(Berlekamp et al. 1982, pg. 16-7), they have not been studied intensively.
This state of affairs is somewhat unjust, because imperfect information
makes many games tick, even some very popular ones. Combinatorial game
theory studies the algorithmic aspects of games, i.e., ways of mechanically
computing properties of games. The header combinatorial game theory
may be somewhat confusing, in that it seems to imply that the field is a
branch of game theory, whereas in actual fact it lies right on the interface
of computation and game theory.2

Structure. In Chapter 2, I collect preliminary definitions and seminal results
from logic, complexity theory, and game theory. Even a superficial glance at the
structure of this chapter shows the cohesion of the fields. The reader may use
this chapter as a reference throughout this dissertation.

In Chapter 3, I study two fragments of Independence-friendly logic which are
motivated from a game-theoretic and computational perspective, respectively.
IF logic’s semantics can be studied through imperfect information games and I
show that the imperfect information traditionally associated with IF logic can
be explained by attributes such as envelopes. In the interest of Question 1, I
import the received game-theoretic notion of perfect recall into the IF framework
and study the impact it has on the complexity of the system. The result of this
enterprise is that the restrictions perfect recall imposes on imperfect information
games defined by IF logic decrease the complexity, serving Question 2. Also, I
study which imperfect information games are described by independence-friendly
modal logics, hooking up with current research on this topic.

In Chapter 4, I take up the study of partially ordered connectives as defined
in (Blass and Gurevich 1986; Sandu and Väänänen 1992), that can be seen as
variants of Henkin’s (1961) partially ordered quantifiers. As I pointed out be-
fore, Henkin quantifiers are precursors of IF logic. I will show that, just like IF
logic, their semantics can be given in terms of semantic games with imperfect
information. However, unlike IF games, the imperfect information in games for
logics with partially ordered quantifiers and connectives can be explained by cog-
nitive bounds. I will further show that modifying the game-theoretic parameter
of absentmindedness in this framework gives rise to generalized quantifiers which
were studied independently. The lion’s share of this chapter is devoted to the
descriptive complexity of logics with partially ordered connectives in line with

2For those familiar with branching notation: A more perspicuous name for combinatorial
game theory would thus be

(
combinatorics
game theory

)

indicating that game theory does not have combinatorics in its scope, nor vice versa.



8 Chapter 1. Introduction

Question 2.
In Chapter 5, the principal object of investigation are branching quantifiers,

as one finds them in theoretical linguistics and quantification theory. In the in-
terest of Question 1, I give a game-theoretic interpretation of these quantifiers in
the framework of strategic game theory. Several researchers (Blass and Gurevich
1986; van Benthem 2004; Ajtai 2005) have suggested the interesting mathemat-
ical structure this framework has in reserve for logic theory, but to the best of
my knowledge the presented results are the first in this respect. The analysis
shows that the imperfect information in games for branching quantifiers can be
explained by an appeal to rules, just as the Prisoner’s dilemma. In view of Ques-
tion 2, I develop a theory of the computational complexity of natural language
quantifiers, in order to compare their complexity to that of branching quantifiers.
It turns out that branching quantifiers are intractable (NP-hard), whereas the
previously studied natural language quantifiers are computationally much more
well-behaved.

In Chapter 6, pursuing an answer to Question 2 will be the focus of attention
as I analyze the parlor game of Scotland Yard. This game is commonly known and
has amused game players for over two decades. The imperfect information in the
game is introduced by a special attribute—a move board. The important thing is
that Scotland Yard features a natural form of imperfect information that can be
formalized and generalized in a straightforward manner. The formalization suits
the aims of this dissertation perfectly to the point that it also allows for analyses
of Scotland Yard as a perfect information game. Quite surprisingly, it will be
shown that the imperfect information does not increase complexity.

Chapter 7 concludes the dissertation.
A bibliography, an index, a list of symbols, and a summary (in Dutch) are

found at the back of this volume.

Origin of the material. The thinking in parts of Chapter 3 has influenced
(Tulenheimo and Sevenster 2006). Chapter 4 is based on the joint paper (Seven-
ster and Tulenheimo 2006) and on (Sevenster 2006b). An extension of (Sevenster
and Tulenheimo 2006) will be submitted for publication to the Journal of Logic
and Computation. Chapter 6 is based on the research report (Sevenster 2006a).
The material from the other chapters has not been published.



Chapter 2

Prerequisites

This chapter introduces notation and basic terminology from the addressed dis-
ciplines. The order in which the material is presented is largely determined by
its mutual dependence—it is not to be taken as a ranking of importance.

2.1 Basic notation

Let X and Y be sets. If X contains no objects, it is the empty set ∅. ‖X‖ denotes
the cardinality of X and ℘(X) denotes the power set of X. The operations ∪,
∩, ⊆, and − on sets are defined as usual. The set X × Y denotes the cartesian
product of X and Y : {〈x, y〉 | x ∈ X, y ∈ Y }. If k is an integer, Xk denotes

X × . . .×X
︸ ︷︷ ︸

k

.

Y X denotes the space of functions of type X → Y .

Let f : X → Y be a function. Then, “considering f as a set” means to regard
it as the mathematical object {〈x, f(x)〉 | x ∈ X} to which any set-theoretic
operation applies. X = dom(f) is called f ’s domain, whereas Y = rng(f) is
called f ’s range.

Let the set of natural numbers be denoted by N, and the set of reals by R.
By postulation, 0 is in neither.

Let f and g be functions from N to N. Then, I say f is of the order of g, if
there are integers c and n0, such that for all n ≥ n0, f(n) ≤ c · g(n). If f is of the
order of g I may also write f(n) = O(g(n)).

Strings of similar objects a1, . . . , an are abbreviated by ~a, but this will be
highlighted every time confusions threatens.

9
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2.2 Game theory

In terminology and notation I stay close to (Osborne and Rubinstein 1994). Cru-
cial game-theoretic concept in the present dissertation is extensive game with
imperfect information. One may consider this an extension of the notion of ex-
tensive game with perfect information, due to von Neumann and Morgenstern
(1944).

Extensive games with perfect information. An extensive game with per-
fect information G is a tuple 〈N,H, P, 〈Ui〉i∈N〉, where

• N is the set of players. Referring to the number of players, G is called an
‖N‖-player game.

• H is the set of histories that satisfies the following two conditions:

· The empty sequence ε is a history in H, called the initial history.

· If hh′ = 〈a1, . . . , am, am+1, . . . , an〉 is a history in H, then the string
h = 〈a1, . . . , am〉 is a history in H—called an initial prefix of hh′.

In case h is an initial prefix of hh′ and h′ is non-empty, then h is called a
proper initial prefix of hh′. If ha = 〈a1, . . . , am, a〉 is a history in H and a is
a single component, then a is called an action that extends h. Further, ha
is called an immediate successor of h. A(h) denotes all actions that extend
h. Let Z be the subset of H whose histories cannot be extended. Z is called
the set of terminal histories.

If h = 〈a1, . . . , an〉, then ℓ(h) = n denotes the length of h. Throughout this
dissertation all histories are finite. Define ℓ(ε) = 0.

• P is the player function, that assigns to every non-terminal history h a
player P (h). Formally, P is a function of type (H−Z) → N . I say that a
history h belongs to P (h).

G is called finite, if H is finite. G is said to be of finite horizon if every
history in H has a finite length ℓ(h). All games in this dissertation have
finite horizon.

• Ui is player i’s utility function. In general, one may regard it as a function
from the set of terminal histories Z into the reals. However, in the majority
of this dissertation’s applications the range of the utility functions will be
restricted to {−1, 1}. Games with utility functions of the above kind are
called win-loss games. Intuitively, Ui(h) = 1 indicates that player i has won
in history h. I shall also write win and lose for 1 and −1, respectively. Call
G a zero-sum game if for every history h in G,

∑

i∈N Ui(h) = 0.
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Let G be an extensive game with perfect information as above, that is further-
more two-player and win-loss. Then, a function S is called a strategy for player
i ∈ N in G, if it maps every history h belonging to i, to an action in A(h). Let
S be a strategy for player i in G. Then, call a history h in accordance with S, if
for every proper initial prefix h′ = 〈a1, . . . , an〉 of h, such that P (h′) = i, it is the
case that 〈a1, . . . , an, S(h′)〉 is also an initial prefix of h. Further still, if for every
history h that is in accordance with S it is the case that Ui(h) = win, then S is
called a winning strategy for i in G. G is called determined , if any of its players
has a winning strategy in G.

The following seminal result is often referred to as the Gale-Stewart Theorem:

2.2.1. Theorem (Gale and Stewart (1953)). Let G be a two-player, zero-
sum, extensive game with perfect information, that is of finite horizon. Then, G
is determined.

In some respects, a strategy S is a baroque object, as it may assign an action
to histories that themselves are not in accordance with S. This observation leads
to the following definition. Let G be an extensive game with perfect information
and let S be a strategy in G for player i. For now, consider S as a set. Then, a
function T ⊆ S is called a plan of action for player i in G (based on S), if its range
is the set of histories fromH that are in accordance with S. For a discussion about
strategies and plans of action see (Osborne and Rubinstein 1994, pg. 103-4).

The notion of winning strategy is naturally transferred to plans of actions. In
fact, when it comes to winning, the two notions are interchangeable: Let T be a
plan of action for player i in G based on S. Then, T is a winning plan of action
in G iff S is a winning strategy in G.

Let G be a two-player, finite, extensive game with perfect information, that
is win-loss. The backward induction algorithm, due to Zermelo (1913), decides
whether player i has a winning plan of action. The algorithm takes G as input
and goes about as follows:

• Label all terminal histories h in G with Ui(h).

• Until the initial history ε has been labeled, consider every unlabeled, non-
terminal history h in G and do as follows:

· If P (h) = i and there is an immediate successor history h′ of h labeled
win, then label h with win.

· If P (h) 6= i and every immediate successor history h′ of h is labeled
lose, then label h with lose.

An easy inductive argument shows that the backwards induction algorithm labels
ε with win iff player i has a winning plan of action in G.
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Extensive games with imperfect information. Extensive games with im-
perfect information extend extensive games with perfect information in that they
are five-tuples 〈N,H, P, 〈Ii〉i∈N , 〈Ui〉i∈N〉, carrying information sets Ii for every
player i ∈ N . The other notions are similar to the ones defined for extensive
games with perfect information. An information set Ii = {I1, . . . , In} is a parti-
tion of the set of histories belonging to player i, that meets the action consistency
requirement : if h and h′ sit in I ∈ Ii, then A(h) = A(h′). Every partition in an
information set is called an information partition. If I ∈ Ii, player i is said to
own I and Ii, or they are said to belong to i. Intuitively, an extensive game with
imperfect information models the situation in which player i knows that some
history h ∈ I ∈ Ii has happened, but she is unable to tell h apart from the other
histories in I. The requirement that all histories in an information partition can
be extended by the same actions—the action consistency requirement—captures
the idea that otherwise the player owning the information partition could deduce
information about the actual history from the actions available. If I ∈ Ii, write
A(I) to denote A(h), for an arbitrary h ∈ I.

Let G = 〈N,H, P, 〈Ii〉i∈N , 〈Ui〉i∈N〉 be an extensive game with imperfect in-
formation. Then, a function S is called a strategy for player i in G, if it maps
every information partition I ∈ Ii belonging to i onto an action in A(I).

In the context of win-loss games, a strategy S for player i is called winning
in G if every terminal history h that is in accordance with S yields Ui(h) = win.
The notion of determinedness of G is inherited analogously. But a Gale-Stewart
Theorem cannot be proved for games with imperfect information. A case in point
is the game of Rock, paper, scissors in which neither player has a winning strategy.
This game is thus called undetermined .

G is said to have the von Neumann-Morgenstern property if for every infor-
mation partition in G it is the case that all of its histories have the same length.
Games that violate the von Neumann-Morgenstern property often involve absent-
minded agents.

2.3 Logic

Syntax. Let VAR = {x, y, z, . . .} be the countably infinite set of variables .
Let IND = {i, j, . . .} be the countably infinite set of indices . Let R-VARn =
{X,Y, . . .} be the countably infinite set of relation variables with arity n and let
R-VAR =

⋃

n R-VARn. To stress that an object from VAR is not a relation vari-
able, I may call it a first-order variable. Let F-VARn = {f, g, . . .} be the countably
infinite set of function variables with arity n and let F-VAR =

⋃

n F-VARn.

A vocabulary τ is a finite set of relation symbols P , R, . . ., that rigidly contains
the equality symbol =. In fact, if I want to specify a vocabulary by its contents,
I will omit =. Thus if the vocabulary τ does not contain relation symbols other
than the equality symbol, I write ∅ to refer to τ .
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It will be convenient to assume that with every vocabulary τ there is a set
of tokens associated with it, such that there is a bijection R that maps every
t ∈ Token(τ) onto the relation symbol Rt ∈ τ .

Relation symbols come with a natural number, their arity. If R is a unary
relation symbol, R is also called a predicate symbol. The relation symbol = is
binary.

The formulae of second-order logic in the vocabulary τ , denoted SO(τ), are
the strings generated by applying the following formation rules a finite number
of times:

(T1) All first-order variables are terms.

(T2) If f is an n-ary function variable and t1, . . . , tn are terms, then f(t1, . . . , tn)
is a term.

(F1) If R is an n-ary relation symbol in τ and t1, . . . , tn are terms, then the string
R(t1, . . . , tn) is a formula.

(S1) If X ∈ R-VARn and t1, . . . , tn are terms, then X(t1, . . . , tn) is a formula.

(F2) If Φ is a formula, then ¬Φ is a formula.

(F3) If Φ and Ψ are formulae, then Φ ∨ Ψ is a formula.

(F4) If Φ is a formula and x ∈ VAR, then ∃x Φ is a formula.

(S2) If Φ is a formula and X ∈ R-VAR, then ∃X Φ is a formula.

(S3) If Φ is a formula and g ∈ F-VAR, then ∃g Φ is a formula.

The formulae of first-order logic in the vocabulary τ , denoted FO(τ), are gener-
ated by applying the rules (T1) and (F1)-(F4) a finite number of times.

In Chapter 3 an extension of first-order logic, denoted FO
∨

(τ), is considered
whose strings are generated by applying a finite number of times the rules (T1),
(F1)-(F4) plus (F5) and (F6):

(F5) If t1, . . . , tn are terms and i ∈ IND, then Ri(t1, . . . , tn) is a formula.

(F6) If Φ is a formula, i ∈ IND, and I is a subset of Token(τ), then
∨

i∈I Φ is a
formula.

If Φ is a second-order formula in the vocabulary τ , then it is also called a
SO(τ)-formula. Φ is called a SO-formula, if it is a SO(τ)-formula for some
vocabulary τ . This convention pertains to all logics discussed in this dissertation.

All formulae produced by (F1), (S1), and (F5) are called atoms .
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Throughout this dissertation I will use the following shorthand notation:

Φ ∧ Ψ for ¬(¬Φ ∨ ¬Ψ)

Φ → Ψ for ¬Φ ∨ Ψ

∀x Φ for ¬∃x¬ Φ
∧

i∈I

Φ for ¬
∨

i∈I

¬ Φ.

The objects ∃x and ∀x are first-order quantifiers; ∃X and ∀X are second-order
quantifiers ;

∨

i∈I and
∧

i∈I are restricted quantifiers. If ∃ . . . (∀ . . .) is a quantifier,
it is an existential (universal) quantifier ;

∨

i∈I is a disjunctive quantifier and
∧

i∈I

is a conjunctive quantifier.
Throughout this dissertation I will write capital letters Φ, Ψ, . . . to denote

second-order formulae and lowercase letters φ, ψ, . . . to denote first-order for-
mulae. It should be borne in mind that the definitions for second-order logic
introduced shortly pertain to FO, since it is a syntactical fragment. I take it for
granted that the reader can transfer all terminology to FO

∨
.

Let Σ1
n(τ) denote the set of SO(τ)-formulae of the form

∃X1 . . .QmXm φ

whose string of second-order quantifiers ∃X1 . . .Qm consists of n consecutive
blocks, where in each block all quantifiers are of the same type and adjacent
blocks contain quantifiers of different type. The set Π1

n(τ) is defined analogously,
but here the first block is universal. The language Σ1

1 will be referred to as
existential, second-order logic.

The set Free(Φ) of free variables in a second-order formula Φ is defined by:

Free(Φ) = the set of all variables in Φ, for atomic Φ

Free(¬Φ) = Free(Φ)

Free(Φ ∨ Ψ) = Free(Φ) ∪ Free(Ψ)

Free(∃x Φ) = Free(Φ) − {x}

Free(∃X Φ) = Free(Φ) − {X}

Free(∃f Φ) = Free(Φ) − {f}.

In order to indicate that the variables x1, . . . , xn are free in Φ, I may write
Φ(x1, . . . , xn). If Free(Φ) = ∅, then Φ is called a sentence.

The set Sub(Φ) of subformulae of a second-order formula Φ is defined by:

Sub(Φ) = {Φ}, for atomic Φ

Sub(¬Φ) = {¬Φ} ∪ Sub(Φ)

Sub(Φ ∨ Ψ) = {Φ ∨ Ψ} ∪ Sub(Φ) ∪ Sub(Ψ)

Sub(∃x Φ) = {∃x Φ} ∪ Sub(Φ)

Sub(∃X Φ) = {∃X Φ} ∪ Sub(Φ)

Sub(∃f Φ) = {∃f Φ} ∪ Sub(Φ).



2.3. Logic 15

A second-order formula Φ is in negation normal form, if for every ¬Ψ ∈ Sub(Φ)
it is the case that Ψ is an atom.

Semantics. Let τ = {R1, . . . , Rk} be a vocabulary. Then, a τ -structure A is a
tuple

〈A,RA
1 , . . . , R

A
k 〉

where A is a non-empty set, called A’s universe, and RA
i ⊆ Aai , for each ai-ary

relation symbol Ri in τ . The set RA
i is called the interpretation of Ri on A. On

every structure A, the equality symbol = is interpreted as the identity relation
on A: {〈a, a〉 | a ∈ A}.

If the relation (truth value) between a formula Φ and a structure A is at stake,
then by stating that A is suitable I ensure that A interprets all of Φ’s relation
symbols.

Let A be a τ -structure. Consider maps of the following types:

VAR to A (2.1)

R-VARn to ℘(An) (2.2)

F-VARn to A(An) (2.3)

IND to Token(τ). (2.4)

A function α is a SO(τ) assignment in A if it is a many-sorted function of type
(2.1)-(2.3); it is a FO(τ) assignment in A if it is a function of type (2.1); and it is
a FO

∨
(τ) assignment in A if it is a many-sorted function of type (2.1) and (2.4).

The nature of an assignment will be clear from the context, for which reason I
mostly omit to mention what kind of assignment it actually is.

Let α be an assignment in A, let x ∈ VAR, and let a be an object in the
universe of A. Then, [α.x/a] denotes the assignment in A that agrees with α on
every variable, except for the variable x to which it assigns the object a. Changes
in α with respect to variables from R-VAR and F-VAR and indices from IND are
defined analogously.

If only the object a that is assigned by α to x is of interest, I may write [x/a]
rather than α. If the object a at stake is immaterial, I may even write [xA], to
indicate that in this assignment some object xA from A is assigned to x.

Let τ be a vocabulary, let A be a τ -structure, and let α be an assignment
in A. Define the satisfaction relation for second-order logic of vocabulary τ , as
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follows:

A |= (t1 = t2)[α] iff α(t1) = α(t2)

A |= R(t1, . . . , tn)[α] iff 〈α(t1), . . . , α(tn)〉 ∈ RA

A |= X(t1, . . . , tn)[α] iff 〈α(t1), . . . , α(tn)〉 ∈ α(X)

A |= ¬Φ[α] iff not A |= Φ

A |= (Φ ∨ Ψ)[α] iff A |= Φ[α] or A |= Ψ[α]

A |= (∃x Φ)[α] iff A |= Φ[α.x/a], for some a ∈ A, x ∈ VAR

A |= (∃X Φ)[α] iff A |= Φ[α.X/B], for some B ⊆ An, X ∈ R-VARn

A |= (∃f Φ)[α] iff A |= Φ[α.f/g], for some g ∈ AA
n

, f ∈ F-VARn,

where α(f(t1, . . . , tn)) is inductively defined as α(f)(α(t1), . . . , α(tn)).
Extend the satisfaction relation for second-order logic to apply to FO

∨
(τ),

in the following manner:

A |= Ri(t1, . . . , tn)[α] iff 〈α(t1), . . . , α(tn)〉 ∈ RA
α(i)

A |=
∨

i∈I

Φ[α] iff A |= Φ[α.i/t], for some t ∈ Token(τ).

2.3.1. Example. The formal treatment of restricted quantifiers is somewhat un-
usual, for which reason I give a small example. To this end, consider the vocab-
ulary τ = {Ra, Rb}, for which Token(τ) = {a, b}.

Consider the FO
∨

-formula

φ(x1) =
∧

i∈{a,b}

∃x2 Ri(x1, x2).

Suppose that for some τ -structure A and assignment α it is the case that

A |= φ(x1)[α]. (2.5)

Spelling out the truth definition yields that (2.5) iff for every t ∈ {a, b}

A |= ∃x2 Ri(x1, x2)[α.i/t],

which is equivalent to it being the case that for every t ∈ {a, b} there exists an
c ∈ A, such that 〈α(x1), c〉 ∈ RA

t . More colloquially, A |= φ(x1)[α] says that α(x1)
has an Ra successor and an Rb successor: A |= (∃x2 Ra(x1, x2))∧(∃x2 Rb(x1, x2)).
2

If A |= Φ[α], I say that Φ is true on A under α. If A 6|= Φ[α], I say that
Φ is false on A under α. When it comes to the truth or falsity of a sentence
on a structure under an assignment, the assignment is immaterial and shall be
omitted.
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Let L and L′ be logical languages for which the satisfaction relation |= is
properly defined with respect to models and assignments, as well as the notion
of formula. Let Φ be an L-sentence and let Ψ be an L′-sentence.

Then, Φ and Ψ are equivalent , if for every suitable structure A and assignment
α in A, it is the case that

A |= Φ[α] iff A |= Ψ[α].

It is well-known that every first-order formula has an equivalent formula in nega-
tion normal form.

I write L ≤ L′ to indicate that for every L-formula Φ, there is an L′-formula
Ψ in the same vocabulary such that Φ and Ψ are equivalent. If L ≤ L′, I say that
L is translatable into L′. Further, L = L′ is shorthand for L ≤ L′ and L ≥ L′;
and L < L′ abbreviates L ≤ L′ but not L = L′.

Game-theoretic semantics for FO. While evaluating the truth of a first-
order formula φ on A under α one often finds oneself imagining playing a game
against an opponent with opposite ends. In this game the turn taking is regulated
by the logical constants in φ and the winning conditions are set by A. The
common practice of regarding verification as game playing has been given a formal
underpinning using tools from game theory, yielding so-called semantic evaluation
games .

Let φ be a first-order τ -formula in negation normal form, let A be a τ -
structure, and let α be an assignment in A. Then, the semantic evaluation game
of φ on A under α is a game between two players, Abelard and Eloise, starting
from the position 〈φ[α],A〉 governed by the following rules:

• In 〈(φ0∨φ1)[α],A〉 Eloise chooses i ∈ {0, 1}; the game proceeds as 〈φi[α],A〉.

• In 〈(φ0 ∧ φ1)[α],A〉 Abelard chooses i ∈ {0, 1}; the game proceeds as
〈φi[α],A〉.

• In 〈∃x φ[α],A〉 Eloise chooses a ∈ A; the game proceeds as 〈φ[α.x/a],A〉.

• In 〈∀x φ[α],A〉 Abelard chooses a ∈ A; the game proceeds as 〈φ[α.x/a],A〉.

• 〈R(x1, . . . , xn)[α],A〉 marks the end of the game. Eloise wins if the tuple
〈α(x1), . . . , α(xn)〉 sits in RA; otherwise, Abelard wins.

• 〈¬R(x1, . . . , xn)[α],A〉 is similar to the previous rule, with the winning con-
ditions swapped.

These game rules give rise to the game-theoretic object of extensive game of per-
fect information Sem-gameFO(φ[α],A). I omit a detailed specification but it is
readily obtained from the extensive game for Independence-friendly logic, defined
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in Definition 3.2.7 of Section 3.2. In the game-theoretic framework one can set up
a full-blown semantics for first-order logic, by putting φ true under game-theoretic
semantics on A under α iff Eloise has a winning strategy in Sem-gameFO(φ[α],A).
An easy inductive argument shows that game-theoretic semantics is just a refor-
mulation of the satisfaction relation |= laid out above.

Henceforth, when I speak of the semantic games of a first-order formula φ,
I refer to the class of all extensive games for φ. Likewise, the semantic games
for first-order logic refers to the union of the semantic games of all first-order
formulae. This convention pertains to all logics discussed in this dissertation.

2.4 Computational complexity

The definitions are mostly adopted from (Papadimitriou 1994), that has been a
source of inspiration throughout my studies.

Turing machines and complexity classes. The basic device of computation
in this dissertation will be the Turing machine, introduced in (Turing 1936).
Most of the particulars of Turing machines are not of direct interest to the current
thesis, for which reason I omit them; but do see (van Emde Boas 1990).

Let Σ be an alphabet, that is, a finite set of letters. Let L ⊆ Σ∗ be a set of
finite strings in Σ. Call L a language or a (decision) problem. A string x ∈ Σ∗ is
called an instance of L. Say that a deterministic Turing machine M decides L, if
for every instance x of L, the computation path of M on x halts on the accepting
state if x ∈ L; and halts in the rejecting state if x /∈ L. Let TIME(f(n)) be
the class of languages L for which there exists a deterministic Turing machine
that decides L in at most f(n) time steps, that is, for every instance x of L, the
computation path of M on x is shorter than f(n), where n = ‖x‖ is the length
of x. The object TIME(f(n)) is called a complexity class . A non-deterministic
Turing machine M decides L, if for every instance x of L there is a branch in the
computation tree of M on x that ends in the accepting state if x ∈ L; and there
is no such branch, if x /∈ L. Let NTIME(f(n)) be the class of languages L for
which there exists a non-deterministic Turing machine M that decides L in f(n),
that is, for every instance x of L all branches in the computation tree of M on x
are shorter than f(n), where n = ‖x‖.

Space bounded complexity classes and their respective non-deterministic coun-
terparts are defined analogously.
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The complexity class most prominent in this thesis are listed below:

L =
⋃

c∈N

SPACE(c log n)

NL =
⋃

c∈N

NSPACE(c log n)

P =
⋃

c∈N

TIME(nc)

NP =
⋃

c∈N

NTIME(nc)

PSPACE =
⋃

c∈N

SPACE(nc)

NPSPACE =
⋃

c∈N

NSPACE(nc)

EXPTIME =
⋃

c∈N

TIME(cn)

NEXPTIME =
⋃

c∈N

NTIME(cn).

If L ∈ NP, one typically says that L is decidable (solvable, computable) in non-
deterministic polynomial time and likewise for the other complexity classes.

For any pair of complexity classes presented above, it is fairly straightforward
to show that the lower one includes the upper one. However, only little is known
about the strictness of these inclusions. For one thing, it is known by a brute
force argument that L is strictly included in PSPACE, but the inclusions in
between those complexity classes are unknown to be strict. Whether P is strictly
included in NP is the one million dollar P = NP question. The importance
of this question is hard to overestimate, since the problems in NP are usually
taken to be intractable or not efficiently solvable problems, cf. (Garey and Johnson
1979). By contrast, most problems in P are conceived of as tractable or efficiently
solvable.

It is known that every language decidable in polynomial space on a non-
deterministic Turing machine, is also decided by a polynomial space, deterministic
Turing machine.

2.4.1. Theorem (Savitch (1970)). PSPACE = NPSPACE.

Let L ⊆ Σ∗ be a language. Then, L = Σ∗ − L denotes the complement of L.
Let C be a complexity class, then coC denotes the class {L | L ∈ C}, which is
called C’s complement. It is readily observed that every deterministic complexity
class is equivalent to its complement. As regards non-deterministic classes, the
following result is known.



20 Chapter 2. Prerequisites

2.4.2. Theorem (Szelepcsényi (1987) and Immerman (1988)).
NL = coNL.

It is unknown whether NP = coNP.

Reductions and complete problems. The idea of one problem being harder
than another is formalized by the notion of reduction. The kind of reduction I use
is also known as many-one or Karp reduction. Let L and L′ be two problems and
let C be a complexity. Then, L is C-reducible to L′, if there is a C-computable
function R from strings to strings, such that for all instances x of L the following
holds: x ∈ L iff R(x) ∈ L′. R is called a C-computable reduction from L to
L′. Throughout this dissertation, I will only use P-computable reductions, for
which reason I will omit to mention C. One may insist on weaker reductions.
For instance, Papadimitriou (1994, Definition 8.1) uses L-computable reductions.
For the purposes of this thesis the weaker notions of reductions are not of great
interest for which reason I did not try to strengthen my results in this respect.

Let C be a complexity class and let L be a language. Then, L is called complete
for C, if L ∈ C and every language L′ ∈ C is reducible to L. If L is complete for
C (or C-complete), L can be thought of as a prototypical language of C in that
it is amongst the hardest languages in C. Fascinatingly, many languages bearing
real-life interest turn to be complete for one complexity class or another.

The first problem shown complete for NP, was the satisfiability problem of
propositional logic. Formally, the problem Sat contains all propositional formulae
that are satisfiable, that is, for which there exists a truth assignment over its
proposition letters that renders the formula true. A variant of Sat will be used
in Chapter 6.

2.4.3. Theorem (Cook (1971)). Sat is NP-complete.

2.5 Descriptive complexity

Finite model theory. Let τ be a vocabulary as before. A property Π over a
class K of τ -structures is a function assigning a truth value Π(A) ∈ {true, false}
to every structure A from K. Equivalently, I may consider a property Π over K
as the class of all structures A from K, such that Π(A) = true. If Π is a property
over K, then its complement Π is the property over K, such that Π and Π disagree
on every structure from K.

In finite model theory, the class F(τ) of finite τ -structures and its subclasses
play a key role.

Let τ be a vocabulary with one binary relation symbol (other than the equality
symbol), call it R. Then, every τ -structure is called a directed graph or digraph.
If the τ -structure A = 〈A,RA〉 has it that RA is symmetric, A is called a graph.
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A recurring graph-property is n-Colorability, where n-Colorability(G)
= true iff there is a function f : G → {1, . . . , n}, such that if two vertices v, v′

in G are joined by an edge, then f(v) 6= f(v′). Such a function f is called an
n-coloring.

If a vocabulary τ contains the binary relation symbol <, every τ -structure
interprets < as a linear order on A, by postulation. That is, <A satisfies the
following conditions for every a, b, c ∈ A:

• not a <A a;

• a <A b or b <A a or a = b; and

• if a <A b and b <A c, then a <A c.

The symbol < will be called the linear order symbol and any τ -structure is called
a linear ordered structure.

Let L be a logical language over the vocabulary τ for which the satisfaction
relation |= is defined, as well as the notion of sentence. Let K be a class of τ -
structures. Then, a τ -sentence Φ in L(τ) expresses a property Π over K, if for
every A from K it is the case that

A |= Φ iff Π(A) = true.

If there is a sentence in L(τ) that expresses the property Π over K, then Π is
said to be expressible in L(τ) over K. If Π is expressible in L(τ) over F(τ) and
it is clear from the context that I am working on finite structures, I will omit the
phrase “over F(τ)”.

Let K be a class of τ -structures. Let L(τ) and L′(τ) be logical languages
for which the satisfaction relation |= is properly defined, as well as the notion of
sentence. I say that L(τ) has less expressive power (not strictly) on K than L′(τ),
if for every property Π over K, it is the case that if Π is expressible in L(τ), then
Π is expressible in L′(τ); symbolically L ≤K L′. The shorthand notation =K and
<K is defined in terms of ≤K in the standard way. Again, if K is the class of all
finite τ -structures, I will omit to mention it.

Logics capturing complexity classes. Let τ be a vocabulary and let Π be a
property over K. Then, Π can be treated as a decision problem. In fact, it can be
analyzed using the tools from complexity theory, after postulating an encoding
of Π’s structures. A natural way of encoding a structure A is by listing A and
by storing the interpretation of symbols in τ by listing the truth values on all
tuples of the objects from A. See (Immerman 1999, Definition 2.1) for a detailed
account. To the ends of this dissertation it suffices to observe that for every
vocabulary τ the canonical encoding of a τ -structure A is O(‖A‖c), for some
constant c depending on τ .
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Then, Π can be regarded as a language or a decision problem in the computa-
tional sense of the word, introduced in Section 2.4. Let C be a complexity class
and let L(τ) be a logical language for which the satisfaction relation |= is defined,
as well as the notion of sentence. Let K be a class of finite τ -structures. Say that
L(τ) captures at least C on K, if each C-decidable property over K is expressible
by L(τ).

Every L(τ)-sentence Φ and class of finite structures K constitute the property

{A ∈ K | A |= Φ}. (2.6)

Let C be a complexity class. Then, the expression complexity of Φ on K is in
C if (2.6) is decidable in C. If (2.6) happens to be complete for C, then I say that
the expression complexity of Φ on K is C-complete. The expression complexity
of L(τ) on K is in C, if the expression complexity of every sentence in L(τ) on K
is in C. The expression complexity of L(τ) on K is C-complete, if the expression
complexity of every L(τ)-sentence on K is in C and there is a sentence in L(τ)
that has a C-complete expression complexity on K.

If L(τ) captures at least C on K and if the expression complexity of L(τ) on
K is in C, then I say that L(τ) captures C on K.

If any of the previous definitions holds with respect to the class of all finite
τ -structures F(τ), for arbitrary τ , I omit to mention both F(τ) and τ .

The following result started up the field of descriptive complexity and is com-
monly known as Fagin’s Theorem.

2.5.1. Theorem (Fagin (1974)). On finite graphs, Σ1
1 captures NP.

2.5.2. Example. For future reference and concreteness, let me go through a
small example. Let G be the class of all finite graphs. Consider the Σ1

1-formula

Ξ = ∃X1∃X2∃X3∀x1∀x2 (Φ ∧ Φ′),

where

Φ =




∨

i∈{1,2,3}

Xi(x1)



 ∧




∧

i∈{1,2,3}

∧

j∈{1,2,3}−{i}

¬(Xi(x1) ∧Xj(x1))





Φ′ =




∧

i∈{1,2,3}

(Xi(x1) ∧Xi(x2) → ¬R(x1, x2))



 .

Now, consider the decision problem

{G ∈ G | G |= Ξ}, (2.7)

and observe that (2.7) is true on all graphs G for which there is a 3-coloring.
This means that the decision problem constituted by Ξ on G coincides with
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3-Colorability. Thus, Ξ expresses 3-Colorability on G. Since the decision
problem n-Colorability is complete for NP, for every n ≥ 3, so is the expres-
sion complexity of Ξ on finite graphs. Clearly, ¬Ξ expresses 3-Colorability,
and therefore has a coNP-complete expression complexity on finite graphs. 2

Having observed Fagin’s Theorem, it is readily observed that Π1
1 captures

coNP on graphs. In fact, the vast majority of complexity classes has been char-
acterized in terms of logics, be it adaptations of first-order or second-order logic.
These characterizations attract interest because if two logics are shown to capture
the complexity class C and D on the same class of structures K, an argument
showing that their expressive power is not equal on K, implies that C 6=K D.
Fascinatingly however, as yet it is not known what language L captures P on
graphs (that are not linearly ordered), such a language would be a steppingstone
to prove that L 6= Σ1

1, and consequently that P 6= NP.

Let me close this section on a warning note. In the literature on computation
and logic several measures of complexity are studied. Expression complexity is
one of them. Another notion is the model checking complexity of a logic L. In
this framework, a fixed finite structure A is seen to give rise to the set

{Φ | A |= Φ}, (2.8)

where Φ ranges over the L-sentences. The model checking complexity of L is then
said to be in the complexity class C, if for all suitable structures the (encoding
of the) set (2.8) is C-computable.

The reader is urged to bear in mind that the expression complexity and model
checking complexity are worlds apart. In the expression complexity framework,
the size of the input is the length of the encoding of structures, whereas in the
model checking framework it is the length of the encoding of the sentences. The
computational differences between the two notions can be dramatic. For instance,
Σ1

1’s expression complexity is NP-complete (Fagin’s Theorem), but its model
checking complexity is NEXPTIME.

In (Vardi 1982) the distinction between expression complexity and model
checking complexity is clearly described, in terms of expression and data com-
plexity. In (Gottlob, Leone, and Veith 1995) a systematic theory is pursued
on the relation between a logic’s expression complexity and its model checking
complexity.





Chapter 3

Fragments of IF logic

From its conception Independence-friendly logic has been associated with seman-
tic information games with imperfect information. In this chapter I will flesh
out this connection, firstly by defining a natural set of game rules that can ac-
count for the imperfect information. To this end I make use of envelopes and
teams of Eloises. I continue by studying the expressive power of the fragment
of IF logic that defines games with perfect recall. Inspired by current research
on independence-friendliness and modal logics, I isolate my own IF modal lan-
guage and compare its computational behavior with full IF logic and modal logic.
Further research along this way may result in IF modal languages that exercise
“pleasant” computational behavior.

3.1 Introduction

Ever since (Henkin 1961) there is a tradition in logic to associate certain logical
languages with imperfect information. The logical languages at hand aim to
break away from the strong restrictions of quantifier dependence that the syntax
of first-order (or modal) logic imposes. For example, in the first-order formula

∀x1∃y1∀x2∃y2 R(x1, y1, x2, y2) (3.1)

the quantifier ∃y2 appears syntactically to the left of the quantifiers ∀x1 and ∀x2.
Hence, ∃y2 falls within the scope of ∀x1 and ∀x2. On closer inspection, it emerges
that in first-order logic there is no way to rearrange the quantifiers in such a way
that ∃yi falls only within the scope of ∀xi, for i ∈ {1, 2}. Henkin defined a special
construct that allows for such dependence schemes :

(
∀x1 ∃y1

∀x2 ∃y2

)

R(x1, y1, x2, y2).

The above constructs are usually called partially ordered quantifiers, and their
study is taken up in Chapter 4 of this dissertation.

25
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On a more abstract level, Hintikka and Sandu distinguish scopes of two kinds.
The first is the priority scope, which is a syntactically determined relation between
quantifiers. The second is the notion of binding scope which is a relation between
quantifiers and variables. In first-order logic the two notions are inseparable. For
instance, if Qx φ is a first-order formula of which Q′y ψ is a sub-formula, then the
variable y is within the scope of the quantifier Qx no matter what. Hintikka and
Sandu (1997, pg. 366) argue that this requirement “is seen to be unmotivated
by any deeper theoretical reasons and hence dispensable.” To repair “Frege’s
fallacy”, they introduce the / device in first-order logic that may allow y to be
outside the binding scope of Qx. If the / is indeed employed in this way, y is
said to be independent of Qx. The language that incorporates these syntactic
indications was coined Independence-friendly logic, or IF logic for short.1 For
instance, to indicate that in ∀x1∃y1∀x2∃y2 φ the variable y2 be independent of
∀x1 is thus achieved in the following IF-formula:

∀x1∃y1∀x2(∃y2/{x1}) R(x1, y1, x2, y2). (3.2)

In (Sandu 1993; Hintikka 1996; Hintikka and Sandu 1997) various natural
language applications are supplied for IF logic. These applications typically in-
clude the so-called ǫ-δ definition of continuity and Hintikka sentences , addressed
in Chapter 5 of this dissertation. Hintikka (2002b) also speculates on applications
in quantum mechanics.

Since its conception IF logic has been provided with semantics in terms of
semantic games with imperfect information. The partiality of information—i.e.,
imperfect information—present in these games can be seen to reflect the partial
ordering of the quantifiers. Hintikka and Sandu’s move from first-order logic to
IF logic can thus also be appreciated as a generalization of first-order logic so as
to incorporate imperfect information. The question what the influx of imperfect
information in semantic games for IF logic is exactly cannot be answered easily,
but was mentioned as a topic of interesting future research in (van Benthem
lecture notes) and (Hodges 2006). Part of this research will be taken up in the
present chapter.

A lively branch of research in the logic community is the pursuit of fragments
of particular logics that enjoy “more pleasant” properties than the original lan-
guage. Many of these properties, such as the issues of satisfiability and expression
complexity, are computationally motivated. In this chapter I will take an interest
in fragments of IF logic. The first fragment is motivated by the game-theoretic
interest in games with perfect recall, as I will consider the fragment of IF logic
whose formulae define games with perfect recall. Note that games with perfect
recall still have imperfect information, only the information flow is constrained

1Independence-friendly logic is sometimes also referred to as Information-friendly logic, Hy-
perclassical logic (Hintikka 2002a), and IF first-order logic (Hintikka 1996). See (Feferman
2006) for a critical treatment of the first-order aspects of IF logic.
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to meet certain criteria that will be explained below. The second fragment is
inspired by ongoing research on modal logics. Modal logics are an excellent ex-
ample of the quest for computationally well-behaved fragments of first-order logic.
The hope is that certain independence-friendly modal languages have “attractive”
computational properties. Here, I will remind the reader that modal logics were
first studied in analytic philosophy, but eventually inspired Andréka, van Ben-
them, and Németi (1998) to define the so-called Guarded Fragment . The Guarded
Fragment is an expressively strong, though decidable, fragment of first-order logic.

In Section 3.2, I give an overview of the literature on IF logic in order to make
this chapter reasonably self-contained.

In Section 3.3, I revisit the issue of articulating a set of natural game rules
that gives rise to the extensive games with imperfect information with respect
to which IF formulae are evaluated. I will show that, combining hints from the
available literature, the imperfect information in the semantic games for IF logic
can be explained by thinking of teams of players that put moves in envelopes.

In Section 3.4, I study the fragment of IF logic whose semantic games—
possibly with imperfect information—have perfect recall. It turns out that perfect
recall has a strong limiting effect on the resulting logic’s expressive power, that
is, the perfect recall fragment of IF logic coincides with first-order logic.

In Section 3.5, I dwell on the issue of what may be an independence-friendly
modal logic. In the literature several proposals have been put forward, but pair-
wise all of them are different systems (syntactically, semantically, or both). I
will isolate a modal fragment of IF logic, which constitutes the main result of
this section. This language will be seen to give rise to game-theoretically proper
games, unlike earlier proposed systems. I prove that the IF modal language has
a Π0

1-hard satisfiability problem, i.e., it is undecidable.

Section 3.6 closes the chapter with concluding remarks.

3.2 Prerequisites

In this section, I give an overview of IF logic. More elaborate overviews are
(Hintikka 1996; Hintikka and Sandu 1997; Dechesne 2005).

Syntax. I give an exposition of the syntax of IF logic shortly, but let me first
dwell on what independence-friendliness boils down to on a more abstract level.

3.2.1. Definition. Let τ be a vocabulary. Then, FO
∨′(τ) is the fragment of

FO
∨

(τ) all of whose formulae φ are in negation normal form and have it that all
its variables and indices are quantified at most once. Let FO′(τ) be defined from
FO(τ) in a similar way.
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Let all conventions for FO
∨

(τ) be inherited by FO
∨′(τ).

It is straightforward to show that FO
∨′ = FO

∨
, so restricting oneself to

FO
∨′ does not imply a decrease in expressive power.
Let φ be a FO

∨′-formula. Let Cφ denote the set of uniquely identified boolean
connectives, quantifiers, and restricted quantifiers in φ. Call all objects in Cφ
operators. As for the unique identification of the operators, recall that in φ every
variable is quantified at most once. So every quantifier or restricted quantifier
in φ is uniquely determined by its variable or index. To distinguish connectives,
assume they appear indexed in Cφ.

Let φ be a first-order formula and let Qx ψ be a subformula of φ, for Q ∈ {∃,∀}.
Then, every operator in Cψ is in the priority scope of Qx. For every Q′y in Cψ I
say that Qx is superordinate to Q′y, and conversely, that Q′y is subordinate to Qx.
The same terminology applies to restricted quantifiers and boolean connectives.

For any pair C,C′ ∈ Cφ, let me write C >φ C′ if C is superordinate to C′ in φ.
For the ease of exposition let me define the binding scope relation of a FO

∨′-
formula φ also in terms of Cφ. Strictly speaking this is a sloppy usage of notation,
since the binding scope is a relation between quantifiers and variables, and not
between quantifiers and quantifiers. Let ≻φ denote the binding scope relation in
φ. It is defined such that for any (restricted quantifier) C and arbitrary operator
C′ from Cφ, it is the case that C ≻φ C′ if C′ occurs in the binding scope of C in φ.
It was pointed out by Hintikka and Sandu, that for every FO

∨′-formula φ, >φ

and ≻φ are inextricable. That is, for every (restricted) quantifier C and arbitrary
operator C′ from Cφ, C >φ C′ iff C ≻φ C′. Independence-friendly logic loosens
this requirement.

The syntax of Independence-friendly logic is obtained from FO
∨′. Several de-

finitions of the language of IF logic can be found in the literature, see (Hintikka
1996; Hodges 1997; Caicedo and Krynicki 1999; Janssen and Dechesne pear).
The definition used in this dissertation differs from the languages in (Sandu 1993;
Hintikka 1996; Hintikka and Sandu 1997) in that it allows for slashing over exis-
tentially quantified variables. On the other hand, I will ignore the possibility of
slashing universally quantified variables and connectives.

3.2.2. Definition. Let τ be a vocabulary. For the ease of exposition assume
that every (restricted) quantifier Q appearing in a FO

∨′(τ) is enclosed by brack-
ets: (Q). Then, IF

∨
(τ) is the smallest superset of FO

∨′(τ) closed under the
following condition:

(IF) If Φ is an IF
∨

(τ)-formula and (∃x) occurs in Φ in the priority scope of
quantifiers and restricted quantifiers among which

Q1y1, . . . ,Qmym,©1 j1∈J1
, . . .©n jn∈Jn

,

then the formula resulting from replacing (∃x) by (∃x/{~y,~j}) is also an
IF(τ)-formula, where Qi ∈ {∃,∀} and ©h ∈ {

∨
,
∧
}.
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The set {~y,~j} is called a slash-set . Let IF(τ) be the smallest superset of FO′(τ)
closed under (IF).

I will write ∃x rather than (∃x/∅), and similarly for restricted quantifiers.
Observe that IF

∨
-formulae may contain existential quantifiers slashed over in-

dices, but no slashed restricted quantifiers. Extensions in this respect are readily
obtained, but will not be used in this chapter.

The condition (IF) can be seen to constitute an IF procedure that generates
the formulae of IF logic. Henceforth, I will refer to this procedure as the IF
procedure constituted by (IF). Observe that the IF procedure constituted by (IF)
preserves vocabulary, that is, it does not introduce new relation symbols or func-
tion symbols that were not already present in τ . Furthermore, observe that for
every IF

∨
-formula Φ it is the case that if it contains a negation, the negation

occurs immediately in front of a relation symbol, and that every variable and
index in Φ is quantified at most once.

Let the set of IF-formulae that are generated from a FO
∨′-formula φ by

means of the IF procedure constituted by (IF) be denoted by IF(φ), that is,
IF(φ) denotes the closure of {φ} under (IF).

3.2.3. Example. (Continuation of Example 2.3.1) Revisit the formula φ(x1) =
∧

i∈{a,b} ∃x2 R(x1, x2). Apart from φ(x1) itself, the set IF(φ(x1)) also contains

the formula
∧

i∈{a,b}(∃x2/{i}) R(x1, x2). 2

3.2.4. Example. Let ψ(x1) be the following FO′-formula:

∀x2(¬R(x1, x2) ∨ ∀x3(¬R(x2, x3) ∨ ∃x4(R(x3, x4)))).

Then, IF(ψ(x1)) contains four formulae—for every subset X of {x2, x3} the fol-
lowing formula is in it:

∀x2(¬R(x1, x2) ∨ ∀x3(R(x2, x3) ∨ (∃x4/X)(R(x3, x4)))).

2

For an IF
∨

(τ)-formula Φ, let Free(Φ) denote the set of free variables in Φ,
inductively defined as follows:

Free(R(x1, . . . , xn)) = {x1, . . . , xn}, for R ∈ τ

Free(Ri(x1, . . . , xn)) = {i, x1, . . . , xn}, for i ∈ IND

Free(¬Φ) = Free(Φ)

Free(Φ ◦ Ψ) = Free(Φ) ∪ Free(Ψ), for ◦ ∈ {∨,∧}

Free((∃x/ . . .) Φ) = Free(Φ) − {x}

Free(∀x Φ) = Free(Φ) − {x}

Free(©i∈I Φ) = Free(Φ) − {i}, for © ∈
{∨

,
∧}

.
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If a variable x occurs in a formula Φ and x /∈ Free(Φ), then x is said to be bound
in Φ. Likewise for indices. If Free(Φ) = ∅, then Φ is called a sentence. Observe
that if a variable x appears in the slash-set Y of the quantifier (∃y/Y ) in an
IF-formula Φ, then there is a quantifier Qz superordinate to (∃y/Y ) in Φ such
that x = z.

For an IF
∨

(τ)-formula Φ, let Sub(Φ) be the set of subformulae in Φ, where

Sub(R(x1, . . . , xn)) = {R(x1, . . . , xn)}, for R ∈ τ

Sub(Ri(x1, . . . , xn)) = {Ri(, x1, . . . , xn)}, for i ∈ IND

Sub(¬Φ) = {¬Φ} ∪ Sub(Φ)

Sub(Φ ◦ Ψ) = {Φ ∨ Ψ} ∪ Sub(Φ) ∪ Sub(Ψ), for ◦ ∈ {∨,∧}

Sub((∃x/X) Φ) = {(∃x/X) Φ} ∪ Sub(Φ)

Sub(∀x Φ) = {∀x Φ} ∪ Sub(Φ)

Sub(©i∈I Φ) = {©i∈I Φ} ∪ Sub(Φ), for © ∈
{∨

,
∧}

.

Note that subformulae in an IF
∨

-formula Φ are not necessarily IF
∨

-formulae
themselves. For instance, (∃y/{x}) Ψ is a subformula in ∀x(∃y/{x}) Ψ but it
cannot be generated by the IF procedure constituted by (IF).

For an IF
∨

(τ)-formula Φ, the set of operators CΦ contains a unique token of
every operator in Φ. So in case (∃x/X) appears in Φ, then (∃x/X) ∈ CΦ; and
similarly for

∨

i∈I . Since every variable and index is quantified at most once in
IF
∨

-formulae, variables can be used to identify quantifiers uniquely, just as in
FO
∨′.
The notion of super- and subordinateness can be inherited from first-order

logic without further ado, causing the priority scope relation >Φ to be well-defined
over the operators in IF

∨
-formulae Φ.

The / affects the binding scope relation as follows: For every quantifier Qx
and operator Q′ from CΦ, write Qx ≻Φ Q′ if Qx >Φ Q′, and if Q′ stands for
(∃y/Z), then x /∈ Z; for every restricted quantifier ©i∈I and operator Q′ from
CΦ, write ©i∈I ≻Φ Q′ if ©i∈I >Φ Q′, and if Q′ stands for (∃y/Z), then i /∈ Z.
For instance, in case of (3.1) and (3.2), observe that

>(3.1) = >(3.2)

≻(3.1) − {〈∀x1,∃y2〉} = ≻(3.2) .

The relation ≻Φ is also called Φ’s independence scheme.

Skolem semantics. It is a seminal result in the theory of first-order logic, see
(Enderton 1972), that the first-order formula

∀x1∃y1∀x2∃y2 R(x1, y1, x2, y2)
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is true on a suitable structure A if, and only if, the following statement with
function variables f1 and f2 holds:

A |= ∃f1∃f2∀x1∀x2 R(x1, f1(x1), x2, f2(x1, y1, x2)).

Here, the functions f1 and f2 are called Skolem functions and reflect that y1

depends only on x1, whereas y2 depends on x1, y1, x2. In Henkin quantifiers and
IF logic, quantifier independence will be formalized by restricting the arguments
of the Skolem function.

I paraphrase a procedure dubbed inside-out Skolemization by Dechesne (2005,
pg. 43-4), for reasons that will become clear in due course. The result of this
inside-out Skolemization is a second-order formula that correctly reflects the in-
dependence scheme at hand.2

Let Φ be an IF(τ)-formula and let (∃x1/X1), . . . , (∃xm/Xm) be its existential
quantifiers. The Skolemization of Φ is the second-order-formula

Sk(Φ) = ∃f1 . . . ∃fm Sk ′(Φ),

where the formula Sk ′(Φ) is the result of applying the procedure below to Φ: Put
Ψ0 = Φ. If Ψi contains no existential quantifiers, put Sk ′(Φ) = Ψi; otherwise,
increase i by 1 and apply the following rule:

• If (∃xj/{z1, . . . , zk}) Ξ occurs as a subformula in Ψi−1 under the priority
scope of the (restricted) quantifiers Q1z1, . . . ,Qkzk,Qk+1zk+1, . . . ,Qlzl and Ξ
does not contain existential quantifiers, then replace (∃xj/{z1, . . . , zk}) Ξ in
Ψi−1 by Ξ[xj 7→ fj(zk+1, . . . , zl))], where fj is an (l−k)-ary function variable
and Ξ[xj 7→ fj(zk+1, . . . , zl))] is the result of replacing every occurrence of
xj in Ξ by fj(zk+1, . . . , zl). Denote the result of this action by Ψi.

Let τ be a vocabulary, let A be a τ -structure, and let α be an assignment in
A. Then, an IF

∨
(τ)-formula Φ is true under Skolem semantics on A under α iff

A |= Sk(Φ)[α]. In this manner, two IF
∨

(τ)-formulae Φ and Ψ are equivalent, if
for every τ -structure A and assignment α in A, it is the case that

A |= Sk(Φ)[α] iff A |= Sk(Ψ)[α].

Now the truth conditions of Φ are defined but the falsity conditions of Φ
remain undefined, i.e., the cases where Φ is false under Skolem semantics on A

under α. I will spend some words on this issue but not until I have introduced
the second semantical interpretation.

2The Skolemization procedure put forward in Sandu (1993) does not work, because the
language IF

∨
allows for slashing over existential quantifiers.
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3.2.5. Example. (Continuation of Examples 2.3.1 and 3.2.3) The Skolemization
of Φ(x1) =

∧

i∈{a,b}(∃x2/{i}) R(x1, x2) is

∃f
∧

i∈{a,b}

R(x1, f),

where f is a nullary function symbol, that is, f does not take any arguments.
Thus Φ(x1) is true on A under α iff there exists one object c that is both RA

a

and RA
b -accessible from α(x1). In comparison with the meaning of the unslashed

formula φ(x1) from Example 2.3.1 note that the operators “for both” and “exists”
are effectively swapped. The swapping of slashed operators will be instrumental
in the remainder of this chapter when proving multiple results about IF logic. 2

3.2.6. Example. Consider the IF-formula with free variable w:

Ω = ∀x∃y(∃z/{x}) (x = z ∧ w 6= y)

inspired by (Caicedo and Krynicki 1999, Example 1.4). Firstly observe that Ω’s
dependence scheme is not transitive: Although ∀x ≻Ω ∃y and ∃y ≻Ω (∃z/{x}),
it is the case that z is independent of ∀x:

∀x 6≻Ω (∃z/{x}).

The Skolemization of Ω is the formula ∃f∃g Sk ′(Ω), where

Ψ0 = ∀x∃y(∃z/{x}) (x = z ∧ w 6= y)

Ψ1 = ∀x∃y (x = f(y) ∧ w 6= y)

Sk ′(Ω) = ∀x (x = f(g(x)) ∧ w 6= g(x)).

Note that the Skolemization procedure works from Ω’s inner quantifier to its outer
quantifier. Hence the qualification “inside-out”.

To see the Skolem semantics at work, observe that Ω is true under Skolem
semantics on a structure A under α iff

A |= ∃f∃g∀x (x = f(g(x)) ∧ w 6= g(x))[α].

The formula Ω expresses Dedekind infinity of the universe A. The set A is
Dedekind infinite, if for some α(w) ∈ A, there exists a bijection from A to
A−{α(w)}. Suppose that A is Dedekind infinite, in virtue of the bijection
F : A→ A−{α(w)}. Let F−1 denote the inverse of F . Then, observe that

A |= ∀x (x = f(g(x)) ∧ w 6= g(x))[α.f/F−1, g/F ]

since for every x, F−1(F (x)) = x and F (x) 6= α(w). Conversely, suppose that for
some functions F , G, and α(w) it is the case that

A |= ∀x (x = f(g(x)) ∧ w 6= g(x))[α.f/F, g/G].
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Then, F must be the inverse of the bijection G. Since for every x it is the case
that G(x) unequals α(w), G is a bijection of the required type.

It is worthwhile to observe that in the term f(g(x)) the function f still depends
on x, albeit indirectly. This reflects the fact that in Ω, the variable z only depends
on ∃y, which itself only depends on ∀x. Thus, using the game theorist’s parlance,
the quantifier ∃y is said to signal the value of x to z. The phenomenon of
signaling in IF logic was first reported in (Hodges 1997) and studied in (Janssen
and Dechesne to appear). 2

Game-theoretic semantics. IF logic has been given a game-theoretic seman-
tics using extensive games with imperfect information. The game rules for the
semantic games for the IF-formula Φ on the structure A under the assignment α
are the same as the game rules for Sem-gameFO(Φ♠[α],A), where Φ♠ is the result
of replacing every occurrence of (∃x/X) in Φ by ∃x. Thus, Φ♠ is a first-order
formula, and the game rules of the semantic game for Φ on A under α are the
same as the ones of a perfect information game.

About the game rules for IF semantic games that give rise to these extensive
games, Hintikka says:

“How are the semantical game rules for IF first-order logic languages
related to those of ordinary first-order languages? The relation is an
interesting one—and a simple relationship at that. It is one of identity.
The rules for making moves in a semantical game in IF first-order logic
are precisely the same as those used in ordinary first-order logic [. . . ]”
(Hintikka 1996, pg. 57-8)

But how can this be?
How can IF semantic games generalize semantic games for first-order logic,

if their game rules coincide? The answer is: the way Hintikka puts them to
use. To make this point clearly, let me return to the game-theoretic semantics
for first-order logic. In a sense, the sole purpose of these games is to allow for a
winning strategy for Eloise, or not. For instance, it is very much indifferent to the
game-theoretic framework what winning strategy is used exactly and with what
histories it is in accordance with. In this manner semantic games for first-order
logic merely serve to substantiate the phrase “winning strategy”.

Following Hintikka and Sandu’s lead the same holds for IF semantic games:
truth of an IF-formula Φ under game-theoretic semantics on A under α is also
defined as Eloise having a winning strategy in Sem-gameFO(Φ♠[α],A), but under
the proviso that this winning strategy be uniform with respect to the indepen-
dence scheme of Φ. That is, roughly speaking, if in Φ the variable x is independent
of Qy, then a winning strategy in the semantic game for Φ may not take the ob-
ject assigned to y as an argument when deciding on x. Crucially, Hintikka and
Sandu define the difference between first-order and IF semantic games on the
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level of strategies, that is, by putting the constraint of uniformity on the class of
strategies that are at Eloise’s disposal.

The link with imperfect information games can be established as follows: Let
G = Sem-gameFO(Φ♠[α],A) be a semantic game induced by the IF-formula Φ,
which is a game of perfect information. Then, there exists a transformation T
that preserves the property of Eloise having a winning strategy, such that for
every strategy S in G, S is uniform with respect to Φ’s independence scheme
iff S is a strategy in the imperfect information game T (G). Recall that in the
context of extensive games with imperfect information, a strategy is a function
assigning actions to information partitions rather than histories. In relation to the
transformation T—to be specified—this means that every strategy in the semantic
game for Φ has it that a move for x is prescribed only on the basis of those moves
associated with the (restricted) quantifiers Q1, . . . ,Qn, such that Qi ≻Φ Qx, for
all 1 ≤ i ≤ n. Thus the game-theoretic face of uniformity constraints induced by
independence schemes is imperfect information.

The transformation T comes rather naturally, yet in the literature no account
is give how to understand the imperfect information on a game-theoretic level.
That is, what game rules, attributes, or cognitive bounds one has to presuppose
to explain the origins of the imperfect information in T (G). This topic will be
investigated in Section 3.3.

Before proceeding, let me spell out the details of the extensive game with
imperfect information as one finds them in the literature, thus formalizing the
result of the transformation T . The definitions are neatly described in (Dechesne
2005, Section 4.4) and I mostly follow those.

3.2.7. Definition. Let τ be a vocabulary, let A be a τ -structure whose uni-
verse A does not contain the objects 0 and 1, and let α be an assignment in
A. Let Φ be an IF(τ)-formula. For convenience, let Qx range over quanti-
fiers, ©i∈I over restricted quantifiers, and ◦ over boolean connectives. Then,
Sem-gameIF(Φ[α],A) denotes 〈N,H, P, 〈Ii〉i∈N , 〈Ui〉i∈N〉 the semantic evaluation
game in extensive form of Φ on A under α, such that:

• N = {Eloise,Abelard} are the players.

• H =
⋃

ΨHΨ is the set of histories in the game, where Ψ ranges over the
subformulae in Φ. HΨ is inductively defined as follows:

· If Ψ = Φ, then HΨ = {ε} where ε is the initial history.

· If Ψ = Ψ0 ◦ Ψ1, then HΨi
= {hi | h ∈ HΨ}, for i ∈ {0, 1}.

· If Ψ = Qx Ψ′, then HΨ′ = {ha | h ∈ HΨ and a ∈ A}.

· If Ψ = ©i∈I Ψ′, then HΨ′ = {hj | h ∈ HΨ and j ∈ I}.
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Histories give rise to assignments and subformulae. If h ∈ H, then the
assignment induced by h, denoted αh, is inductively defined as follows:

αε = ∅

αhi = αh, if h ∈ HΨ◦Ψ′ , for some Ψ,Ψ′

αhj = αh, if h ∈ H©i∈I Ψ, for some Ψ

αha = αh ∪ {〈x, a〉}, if h ∈ HQx Ψ, for some Ψ.

If h ∈ H, then the subformula induced by h, denoted Φh, is inductively
defined as follows:

Ψε = Ψ

(Ψ ◦ Ψ′)h0 = Ψh

(Ψ ◦ Ψ′)h1 = Ψ′
h

(©i∈I Ψ)hj = Ψh

(Qx Ψ)ha = Ψh.

Note that αh interprets all free variables in Φh.

The set of actions that can be taken at history h is obviously read off from
the subformula induced by h:

A(h) =







{0, 1} if Φh = Ψ ◦ Ψ′, for some Ψ,Ψ′

I if Φh = ©i∈I Ψ, for some Ψ
A if Φh = Qx Ψ, for some Ψ.

• P : H−Z → N is the player function, naturally defined such that

P (h) =

{
Abelard if h ∈ HΨ and Ψ’s main operator is ∀, ∧, or

∧

Eloise if h ∈ HΨ and Ψ’s main operator is ∃, ∨, or
∨

.

• IEloise =
⋃

h{Ih} is the information set of Eloise, where h ranges over all his-
tories such that P (h) = Eloise. In order to define the information partition
Ih, let Ψ be the subformula of Φ such that h ∈ HΨ. Since P (h) = Eloise, Ψ’s
main operator is either (∃x/X), ∨, or

∨
. In the former case, put Y = X;

otherwise, put Y = ∅. Define Ih as the following set:

{h′ ∈ HΨ | for every x ∈ (dom(αh) − Y ), αh(x) = αh′(x)}. (3.3)

Recall that αh is an assignment interpreting first-order variables and in-
dices. The information set of Abelard contains only singleton information
partitions: IAbelard =

⋃

h∈P−1(Abelard){{h}}.
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• UEloise : Z → {win, lose} is the utility function, such that

UEloise(h) =

{
win if A |= Φh[αh]
lose if A 6|= Φh[αh],

where Φh and αh are the formula and assignments induced by h, respectively.

Before proceeding observe that for every IF-formula Φ, structure A, and as-
signment α, the game Sem-gameIF(Φ[α],A) satisfies both the von Neumann-
Morgenstern property (indistinguishable histories have equal length) and the ac-
tion consistency requirement (if h, h′ ∈ I ∈ I∃, then A(h) = A(h′)). As such they
are well-behaved extensive games with imperfect information.

Recall the notion of winning strategy in imperfect information, win-loss games
G, from Section 2.2. A function S is a strategy for player i in G, if it assigns
an action to every information partition belonging to i; it is winning if it results
in a win, against every strategy of i’s opponent. Thus, define: Φ is true un-
der game-theoretic semantics on A under α iff Eloise has a winning strategy in
Sem-gameIF(Φ[α],A).

Better safe than sorry: We have two semantics for IF logic now. It is not
hard to prove that truth under Skolem semantics and truth under game-theoretic
semantics coincides. I refer the reader to (Dechesne 2005) for a more thor-
ough exposition of this equivalence. Henceforth, I will write “A |= Φ[α]” to
denote that A |= Sk(Φ)[α], or equivalently, that Eloise has a winning strategy in
Sem-gameIF

Coal(Φ[α],A).
The issue of falsity for IF logic is naturally discussed in terms of games. Truth

of an IF-formula Φ on A under α is defined as the existence of a winning strategy
for Eloise in Sem-gameIF(Φ[α],A). Falsity of Φ on A under α is thus defined as
the existence of a winning strategy for Abelard. Here the consequence of relying
on imperfect information games manifests itself: Φ may be neither true nor false
on A under α as games with imperfect information are not determined in general.
In actual fact, undetermined IF semantic games are readily construed. Consider
the sentence Φ = ∀x(∃y/{x}) BEAT (x, y) and the structure A = 〈A,BEATA〉,
where

A = {rock , paper , scissors}

BEATA = {〈rock , scissors〉, 〈scissors , paper〉, 〈paper , rock〉}.

Clearly neither Eloise nor Abelard has a winning strategy in Rock, Paper, Scissors.
On the whole, falsity conditions for IF logic have received only little attention

in the literature, but see (Dechesne 2005) for an exception.

The following theorem about IF’s expressive power is well-known.

3.2.8. Theorem (Sandu (1993)). IF = Σ1
1.
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A number of meta-logical properties follow from this result, including non-re-
cursive axiomatizability. On finite structures, infer from Fagin’s Theorem that
IF captures NP. Finite model theory for IF logic was addressed in but a small
number of publications, although it was considered a promising field of research,
cf. (Caicedo and Krynicki 1999, pg. 18). Exceptions are (Sandu 1997) and, some-
what more loosely related, Chapter 5 of the present dissertation.

Other approaches to independence in logic. The Skolem semantics for IF
logic is inherently non-compositional. That is, it does not determine the truth of
an IF-formula on the basis of its subformulae and its logical constants, cf. (Janssen
1997). In fact, Hintikka and Sandu proclaim on numerous occasions, including
(Hintikka 1996; Hintikka and Sandu 1997), that a compositional semantics for IF
logic cannot exist.

In reaction, Hodges (1997) put forward a compositional semantics for IF-
sentences. The innovative idea that underlies Hodges system is the evaluation
of subformulae of IF-sentences with respect to sets of assignments, rather than
single assignments as one has in Tarski semantics for first-order logic. In this
manner, the interpretation of a subformula Φ of an IF-sentence on a structure
A, denoted ΦA, is a set of sets of assignments. In case X ∈ ΦA, write A |=X Φ
and say that X is a trump of Φ on A. The elements in X are assignments to
the free variables in Φ, coined deals by Hodges. The notion of trump, is defined
inductively by means of the following set of clauses (for an IF-language without
slashed connectives and universal quantifiers):

• A set X of deals is a trump for R(~x) on A iff it is not empty and for every
α ∈ X, A |= R(~x)[α].

• A set X of deals is a trump for Ψ ∨ Ψ′ on A iff X is not empty and there
are U and V such that X ⊆ U ∪ V , and U is a trump for Ψ on A and V is
trump for Ψ′ on A.

• A set X of deals is a trump for Ψ ∧ Ψ′ on A iff X is not empty and X is a
trump for Ψ on A and X is trump for Ψ′ on A.

• A set X of deals is a trump for (∃x/W ) Ψ on A iff it is not empty and
there is a trump Y for Ψ on A such that for each ≃W -set Z ⊆ X there is
an object a ∈ A for which {α.x/a | α ∈ Z} ⊆ Y .

• A set X of deals is a trump for ∀x Ψ on A iff the set {α.x/a | α ∈ X, a ∈ A}
is a trump for Ψ on A.

Here, Z ⊆ X is a ≃W set, if it is non-empty and its assignments agree on all
variables other than the ones in W .

A sentence Φ is true under trump semantics on A if, and only if, {∅} is a trump
for Φ on A, where ∅ is the empty assignment. Hodges (1997) proves that trump
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semantics coincides with the Hintikka-Sandu interpretation of IF-sentences (i.e.,
under Skolem or game-theoretic semantics). Cameron and Hodges (2001) show
by means of a combinatorial argument that there cannot exist a compositional
semantics for IF logic in terms of single assignments. For the repercussions on
the issue of compositionality and IF logic, see (Sandu and Hintikka 2001) and
(Hodges 2001).

Compositional interpretations for independence-friendly languages are also
provided in (Caicedo and Krynicki 1999; Väänänen 2002).

The interpretation of IF-formulae as sets of sets of assignments is taken one
step further in current research by Väänänen (unpublished) under the header of
Team logic. In his approach new predicates are introduced in the object language
in order to make assertions about sets of assignments. In this manner, Väänänen
subtly makes a distinction between the dependence type of a formula and its truth
conditions. The dependence type of a formula is, inter alia, determined by the
new predicates =(x1, . . . , xn) that intuitively states that the variable xn depends
only on the variables x1, . . . , xn−1. So the IF-sentence

∀x1∃y1∀x2(∃y2/{x1, y1}) R(x1, y1, x2, y2)

is cast using the =(. . .) predicate as

∀x1∀x2∃y1∃y2 (=(x1, y1) ∧ =(x2, y2) ∧R(x1, x2, y1, y2)).

As in trump semantics, formulae from Väänänen’s logic are evaluated on a struc-
ture A with respect to a set of assignments X, called a team. Write A |=X

=(x1, . . . , xn) iff the team X has the dependence type of =(x1, . . . , xn), that is,
for every α, β ∈ X,

if α(x1) = β(x1), . . . , α(xn−1) = β(xn−1), then α(xn) = β(xn).

More detailed flows of information were studied in the Partial Information
logic developed in (Parikh and Väänänen 2005) whose formulae give rise to im-
perfect information games in which Eloise may be partially informed about the
previous actions. In Partial Information logic, the formula ∀x(∃y // f(x)) R(x, y)
typically gives rise to a semantic game in which Eloise is not aware of x, but
she is cognizant of f(x). So in case the function f returns 1 if x is even and 0
otherwise, Eloise does not know x but she knows its parity. Partial Information
logic explores the connection between social software and logic.

Janssen (2002) disagrees with the claim that IF logic formalizes a reason-
able notion of independence in logic. According to his intuitions, the sentence
∃x(∃y/{x}) (x = y) is bound to be untrue on any structure with more than one
element, since y has to be chosen equal to x yet independent of it. The sentence
turns out true on any structure A though, in virtue of the strategy play a, play a,
where a is any object in A. Janssen disagrees with Hintikka on the applications
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for IF logic in natural language and quantum mechanics. Instead, Janssen (2002)
develops a rival semantics for IF logic, coined Subgame semantics , that meets his
intuitions and is compositional.

3.3 A proper rule book for IF games

In this section, I give a set of rules that give rise to games whose extensive game
trees are described by IF-formulae, given that they are properly executed. This
result shows that semantic games for IF logic rely on game-theoretic structures
that can be accounted for by means of goal-oriented interaction, involving imper-
fect information. Essentially the approach taken in this section considers teams
of Eloises. This approach is in line with suggestions from the literature: “One in-
terpretation offered in the folklore is that all slashes make sense when we assume
that [Eloise] and [Abelard] are really teams [. . . ] but no precise formulation of
this form has been specified so far by Hintikka or his critics” (van Benthem 2006,
pg. 494).

Stating that the game-theoretic semantics for IF logic uses games with im-
perfect information is justified by the purely technical transformation T , as I
observed in the previous section. As I put it, every semantic extensive game
G can be transformed into an extensive game with imperfect information T (G)
preserving the property of Eloise having a winning strategy. However this does
not specify how this transformation can be accounted for on the level of inter-
acting agents. The game rules for IF semantic games simpliciter describe games
of perfect information, and obviously, the transformation manoeuvre does not
retrospectively change the game rules for IF semantic games in such a way that
they give rise to games of imperfect information.

Indeed, no natural set of game rules has been articulated that gives rise to a
semantic game of imperfect information Sem-gameIF(Φ[α],A) in such a way that
Φ’s independence scheme is reflected in the game’s information sets. This very
observation is due to van Benthem:

“How can one play IF games?” (van Benthem lecture notes, pg. 173)

and

“IF syntax is just a ‘specification’ for patterns of knowledge and ig-
norance. It does not say whether one can design actual games that
meet these specifications. [. . . ] Some ignorance is ‘public’, and part
of the legitimate design of a game. Examples are putting moves in
envelopes, or the dealing of hands to players. Such games can be
played by ideal players without limitations on their capacities for rea-
soning and observation. Another, quite different source of ignorance
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are players’ limitations: they may not pay attention, have bounded
memory, cheat, and so on.” (van Benthem lecture notes, pg. 174)

Note that here, in the terminology used in Chapter 1 of this dissertation, van
Benthem points at two different sources of imperfect information: through rules
and through cognitive boundaries. Furthermore, note that van Benthem aims
to introduce imperfect information on the level of agents, whereas Hintikka and
Sandu introduced imperfect information on the level of strategies.

A complicating factor when putting together a set of game rules is the fact
that IF-formulae typically give rise to games that violate the principle of perfect
recall , cf. (van Benthem 2006, pg. 497). I defer a more elaborate treatment of
perfect recall to Section 3.4. For now, let us say that player i enjoys perfect
recall in an extensive game with imperfect information, if i recalls all her own
previous moves (action recall), and she does not forget any item of information
along the way (knowledge memory). Games that do not have perfect recall are
hard to imagine in a game-theoretic framework, the reason being that it is hard
to conceive of an otherwise perfectly rational agent who forgets information at
some stage in the game and relearns it at a later stage.

Analogous to the card game of Bridge, Hintikka (1996, pg. 49) proposes to
define game rules for IF semantic games in terms of a coalition of Eloises battling
Abelard. The idea, stemming from (Barwise 1979) reappearing in (Pietarinen
2001), has it that every single existential variable x in an IF-formula is controlled
by one player: Eloisex.—Again, I content myself with a discussion of IF, ignoring
restricted quantifiers. Including them in the analysis is straightforward.—The
set of existential variables in Φ thus gives rise to a team of players, who share
the same utility function. This move overcomes the troublesome property of
IF semantic games violating perfect recall, for if Eloisex is to move, this is the
first and the last time during the game that she has to move. So action recall
cannot possibly be violated, since every Eloise moves at most once; and knowledge
memory cannot be either, since game theory assigns knowledge to an agent only
at stages in the game where the agent is to move. The idea of restoring perfect
recall by installing teams of players has been discussed in game theory, see (von
Neumann and Morgenstern 1944; Binmore 1996).

I introduce one Eloise, who controls the disjunctions: Eloise∨. This is moti-
vated by the assumption that disjunctions are not slashed in IF. Consequently,
therefore, Eloise∨ is perfectly informed throughout the game and is not subject to
the “perfect recall problem”. If one would introduce slashed disjunctions in one’s
IF syntax, one should split Eloise∨ in as many sisters as there are disjunctions in
the formula at hand in very much the same way as I just assigned an Eloise to
every variable.

Using hints from (van Benthem lecture notes) and (van Benthem 2006; Hin-
tikka 1996), I introduce imperfect information by letting the players put their
chosen object in envelopes—any semantic game for Φ requires as many envelopes
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as there are bound variables in Φ. In particular, let ǫ carry the contents of the
envelopes and let ǫ(x) denote the object assigned to variable x during the game.
The function ǫ is effectively an assignment and I will regard it as such. Initially,
all envelopes are empty: ǫ = ∅.

Let Φ be an IF-formula, let A be a suitable structure, and let α be an as-
signment in A. Furthermore, let B be the set of Φ’s bound variables. Then,
the coalitional semantic game for Φ on A under α starts out from the position
〈Φ[α],A,∅〉. The game rules determine the next move in the game on the basis
of the game’s current position, as follows:

• In 〈(Φ0 ∨Φ1)[α],A, ǫ〉 player Eloise∨ is shown the contents of the envelopes
for the variables in dom(ǫ), that is, all variables bound so far. Then, she
chooses i ∈ {0, 1} and the game proceeds as 〈Φi[α],A, ǫ〉.

• In 〈(Φ0 ∧ Φ1)[α],A, ǫ〉 Abelard chooses i ∈ {0, 1}; the game proceeds as
〈Φi[α],A, ǫ〉.

• In 〈(∃x/X) Φ[α],A, ǫ〉 player Eloisex is shown the contents of the envelopes
for the variables in dom(ǫ) − X. Then, she chooses a ∈ A, writes a on a
piece of paper and puts it in the designated envelope. The game proceeds
as 〈Φ[α],A, ǫ.x/a〉.

• In 〈∀x Φ[α],A, ǫ〉 Abelard observes the content of all envelopes. Next, he
chooses a ∈ A, writes a on a piece of paper and puts it in the designated
envelope. The game proceeds as 〈Φ[α],A, ǫ.x/a〉.

• 〈R(x1, . . . , xn)[α],A, ǫ〉 marks the end of the game. Eloise wins if the tuple
〈ι(x1), . . . , ι(xn)〉 is contained in RA; otherwise, Abelard wins. The function
ι is the assignment with domain dom(α) ∪ dom(ǫ) such that

ι(x) =

{
α(x) if x /∈ B
ǫ(x) if x ∈ B.

• 〈¬R(x1, . . . , xn)[α],A, ǫ〉 is similar to the previous rule, with the winning
conditions swapped.

The extensive coalitional game for an IF-formula Φ on A under α can be
obtained from Sem-gameIF(Φ[α],A), in a rather straightforward way. The main
obstacle is that in coalitional IF games, the set of players N now equals {∀}∪E,
where

E = {Eloise∨} ∪ E
′

E ′ = {Eloisex | x ∈ B}.
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The player function needs to be revised in this respect, as follows:

P (h) =







Abelard if h ∈ HΨ∧Ψ′ or h ∈ H∀y Ψ, for some Ψ, Ψ′ and y
Eloise∨ if h ∈ HΨ∨Ψ′ , for some Ψ and Ψ′

Eloisex if h ∈ H(∃x/X) Ψ, for some Ψ, X and x.

The information set IEloise from Sem-gameIF(Φ[α],A) is partitioned into the in-
formation sets for all Eloises, using the player function, as follows:

IEloisex
= IEloise ∩ {h ∈ H | P (h) = Eloisex}.

Finally the utility function needs to be defined for every player in E. These steps
lead to the extensive game with imperfect information Sem-gameIF

Coal(Φ[α],A).
In order to use these games, one says that the coalition E has a winning strat-
egy in Sem-gameIF

Coal(Φ[α],A), if for every player i ∈ E there exists a strat-
egy Si such that the compound object 〈Si〉i∈E constitutes a winning strategy in
Sem-gameIF(Φ[α],A). I state without proof that Eloise has a winning strategy
in the game Sem-gameIF(Φ[α],A) iff the coalition E has a winning strategy in
Sem-gameIF

Coal(Φ[α],A). This equivalence establishes the adequacy of the previ-
ously defined rule book for IF semantic games.

Interestingly, trump semantics for IF logic (Hodges 1997) is compositional
but at the “cost” of using sets of assignments instead of single assignments as
employed for first-order logic. In (Cameron and Hodges 2001) it is shown that
in fact no compositional semantics can be given for IF logic based on single
assignments. My rule book shows that resolving the property of perfect recall
also goes at the cost of teams of Eloises. This observation becomes all the more
striking in view of the next section’s main result, which holds that IF-formulae
whose semantic games can be played by one Eloise with perfect recall have first-
order expressive power.

3.4 Perfect recall and IF logic

In the previous section, one of the troubles in designing a rule book for IF games
was explaining semantic games without perfect recall. In this section, I will go
about orthogonally, by isolating the fragment of IF logic all of whose formulae
give rise to games with one Eloise who enjoys perfect recall. I show in Theorem
3.4.3 that IFPR = FO.

The notion of perfect recall was introduced by Kuhn (1950, 1953). Games
lacking perfect recall have not been very popular in game theory to say the least,
cf. (Osborne and Rubinstein 1994, pg. 203-4). It is remarked by Piccione and
Rubinstein (1997, pg. 4) that “traditional game theory has excluded games with
imperfect recall from its scope.” So what is known about imperfect information
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games in game theory actually concerns games with a restricted kind of imperfect
information. In the literature perfect recall is often split in two complementary
notions: action recall and knowledge memory. See (van Benthem 2001; Bonanno
2004) for axiomatizations of perfect recall and an overview of the literature.

Informally, a game G with imperfect information has action recall, if all of its
players recall all moves they made themselves at any stage of the game they were
to move. G has knowledge memory, if every move that is known at some point
by some player i is known by i from then on.

3.4.1. Definition. Let G be an extensive game with imperfect information.
Define the action experiences of player i in history h, denoted ARi(h), as the
sequence consisting of the actions the player undertook in h:

ARi(ε) = 〈〉

ARi(ha) =

{
ARi(h) if P (h) 6= i
〈ARi(h), a〉 if P (h) = i,

where 〈〉 is the empty tuple.
Define the knowledge experiences of player i in history h, denoted KM i(h), as

the sequence consisting of the information sets the player encountered in h:

KM i(ε) = 〈〉

KM i(ha) =

{
KM i(h) if P (h) 6= i
〈KM i(h), I〉 if P (h) = i,

where I is the information partition in Ii containing h.
G is said to have action recall (knowledge memory), if for every information

partition I in G, if h, h′ ∈ I ∈ Ii then ARi(h) = ARi(h
′) (KM i(h) = KM i(h

′)).
G is said to have the perfect recall property, if G has action recall and knowledge
memory.

It was observed that IF semantic games violate perfect recall. Dechesne (2005,
pg. 74) points out that the extensive game with imperfect information that would
truthfully serve as a means to decide truth of

∃x(∃y/{x}) (x = y)

on a structure with two or more objects in its universe violates action recall.
Likewise, van Benthem (2006) observes that an extensive game for

∀x∃y(∃z/{x}) (x = z)

violates knowledge memory.
In this section I will study the fragment of IF logic whose semantic games

enjoy perfect recall. Say that an IF-formula Φ has perfect recall (action recall,
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knowledge memory), if for every structure A and assignment α the extensive
game with imperfect information Sem-gameIF(Φ[α],A) has perfect recall (action
recall, knowledge memory). This definition of an IF formula having perfect recall
is semantic driven in that it depends solely on its semantic games. Note that I
shall restrict my exposition to IF rather than IF

∨
, for no reasons other than

simplicity. The same results can be obtained for IF
∨

.

3.4.2. Definition. Let τ be a vocabulary. Let IFPR(τ) be the fragment of
IF(τ) all of whose formulae have perfect recall.

In the remainder of this section, I will concern myself with the expressive
power of IFPR and prove the following result.

3.4.3. Theorem. FO = IFPR.

Theorem 3.4.3 shows, then, that the constraint of perfect recall is so restrictive
that nothing of IF’s second-order expressive powers remains. Conversely, it shows
that every IF-formula that has no first-order equivalent violates perfect recall.3

One direction of the proof of Theorem 3.4.3 is easy: Every first-order formula
φ is an IFPR-formula (reading ∃x as (∃x/∅)) whose semantic games have perfect
information, hence perfect recall. The converse direction is more involved and
hinges on an inductive rewriting argument. To get an intuitive understanding
of this argument let Φ be an IFPR-formula and let G be one of Φ’s semantic
games. Then suppose that at some stage in G a move for Eloise is triggered
by (∃y/Y ), and that at every earlier stage of the game where it was Eloise’s
turn she was perfectly informed about all earlier moves. The set Y indicates the
imperfect information Eloise experiences, but note that every move she is inc-
ognizant of must have been made after her previous move—if any. This follows
from the assumption that Eloise knew at every earlier stage of G what action
has been performed and the assumption that G satisfy knowledge memory. So
all variables in Y are universally quantified in Φ. Using two translation schemes
(given in Propositions 3.4.7 and 3.4.8), I show that one can swap the universal
quantifiers appearing in the priority scope of (∃y/Y ) without affecting the truth
conditions, in such a way that ∀x1 . . . ∀xn(∃y/Y ) is a string in the newly obtained
formula Φ#, where Y = {x1, . . . , xn}. The final argument, backed by yet another
translation scheme (given in Proposition 3.4.9), holds that in Φ# one can safely
replace ∀x1 . . . ∀xn(∃y/Y ) by ∃y∀x1 . . . ∀xn. Thus one empties all slash-sets and
obtains a first-order formula.

Before I get to the proof of Theorem 3.4.3, I explore in Propositions 3.4.4 and
3.4.5 what can be inferred about the syntax of an IF-formula with action recall

3In a computational study on games with imperfect information (Koller and Megiddo 1992)
it was shown that perfect recall games are computationally less complex than imperfect infor-
mation games, unless P = NP.
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and/or knowledge memory. Then, the necessary translation schemes for IF logic
are supplied in Propositions 3.4.7, 3.4.8, and 3.4.9.

It is straightforward to establish that the particulars of A and α are highly
insignificant to Sem-gameIF(Φ[α],A)’s enjoying perfect recall: For every structure
B and assignment β in B,

Sem-game(Φ[α],A) has perfect recall iff Sem-game(Φ[β],B) has, (3.4)

provided A and B contain two or more objects. The reason for this proviso
being that if a structure contains only one object, any semantic game it partakes
in is a game with perfect information. Throughout this section I assume that
all structures under consideration have two or more objects in their universe.
Then, Sem-gameIF(Φ[α],A)’s having perfect recall is fully determined by the
characteristics of the formula Φ.

3.4.4. Proposition. Let Φ be an IF-formula. Then, the following are equiva-
lent.

(1) For every pair of existential quantifiers (∃xi/Xi) and (∃xj/Xj) in Φ, where
(∃xi/Xi) is superordinate to (∃xj/Xj), it is the case that xi /∈ Xj.

(2) Φ has action recall.

Proof. (1) implies (2). This direction follows rather easily from Definition
3.2.7 of semantic games for IF-formulae and the assumption that (1). It needs
notice, though, that disjunctions are not constrained by the assumption that
(1). However, crucially, disjunctions are not slashed in IF-formulae. Therefore,
a move triggered by a disjunction implies that Eloise knows at that stage of the
game all previous moves, including her own.

(2) implies (1). Suppose Φ has action recall. Let A be a suitable structure,
with ‖A‖ ≥ 2, and let α be an assignment in A. Since Φ has action recall,
so has the game Sem-gameIF(Φ[α],A). For the sake of the argument, suppose
that (∃xj/Xj) Ξ is a subformula in (∃xi/Xi) Ψ, and that the latter formula is
a subformula in Φ. Hence, (∃xi/Xi) is superordinate to (∃xj/Xj). Let a, a′ be
two distinct objects in the universe of A and let h be a history in H(∃xi/Xi) Ψ. By
definition, h can be extended with a and a′. Therefore, ha, ha′ ∈ HΨ. Iteratively
extend g = ha until g ∈ H(∃xj/Xj) Ξ while putting g to

g0 if g ∈ HΨ0∨Ψ1
and (∃xj/Xj) Ξ is a subformula of Ψ0

g1 if g ∈ HΨ0∨Ψ1
and (∃xj/Xj) Ξ is a subformula of Ψ1

ga if g ∈ H(∃y/Y ) Ψ′ ,

where g is used as a program variable. This process of extending ha is determinis-
tic since every variable is quantified at most once. So if (∃x/X) Ψ is a subformula
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of Φ, then it is the only occurrence of this particular subformula of Φ. Hence,
this procedure terminates and returns a history from H(∃xj/Xj) Ξ. Let g′ be the
result of extending ha′ with elements from {0, 1, a} as above.

Consider the partial assignments αg and αg′ . Since ha and ha′ are prefixes of
g and g′ respectively, it is the case that αg and αg′ are extensions of αh and that
αg(xi) = a and αg′(xi) = a′. Furthermore, for every variable y in rng(αg) − {xi}
on which αh is undefined, it is the case that αg(y) = αg′(y) = a.

For contradiction, suppose that (1) does not hold, i.e., that xi ∈ Xj. Then, for
every variable y ∈ (rng(αg)−Xj), αg(y) = αg′(y), since αg and αg′ only disagree
on xi and xi ∈ Xj. Hence by (3.3) in Definition 3.2.7 on page 34, g and g′ sit in
the same information partition I belonging to Eloise. Yet, the action experiences
of Eloise in g and g′ are not equal, formally AREloise(g) 6= AREloise(g

′), as the
former contains a and the latter a′. This contradicts the initial assumption of
Sem-gameIF(Φ[α],A) having action recall. So xi /∈ Xj after all. 2

If an IF-formula has knowledge memory, in any of its semantic games when
Eloise is to select an object for variable xi and she knows the objects assigned
to the variables z1, . . . , zm, then at any later stage of the game where she has
to move, she still knows the objects assigned to z1, . . . , zm. Proposition 3.4.5
formalizes this intuition but uses a rather complicated formulation to facilitate
a more perspicuous proof. Before we get to the proposition, let me rephrase its
condition (1) in line with the previous intuitive account of knowledge memory.
Let (∃xi/Xi) and (∃xj/Xj) be quantifiers in an IF-formula Φ with knowledge
memory such that (∃xi/Xi) is superordinate to (∃xj/Xj) in Φ. Then, if Qz
appears superordinate to (∃xi/Xi) in Φ and z /∈ Xi, then z /∈ Xj.

3.4.5. Proposition. Let Φ be an IF-formula. Then, (1) and (2) are equivalent:

(1) For every Qxi and (∃xj/Xj), where Qxi stands for ∀xi or (∃xi/Xi) the
former implies the latter:

(a) Qxi is superordinate to (∃xj/Xj) in Φ and Xj does not contain xi.

(b) There is a (∃xk/Xk) such that in Φ, (∃xk/Xk) is subordinate to Qxi,
superordinate or equal to (∃xj/Xj), xi /∈ Xk, and for every (∃xl/Xl)
subordinate to Qxi and superordinate to (∃xk/Xk), xi ∈ Xl.

(2) Φ has knowledge memory.

Proof. (1) implies (2). Follows easily, see also the comments in the proof of
Proposition 3.4.4.

(2) implies (1). Suppose Φ has knowledge memory. Let A be a suitable struc-
ture, whose universe contains two or more elements and let α be an assignment in
A. Then, Sem-gameIF(Φ[α],A) is a game with knowledge memory. Suppose (a)
holds for Φ, and for the sake of contradiction suppose (b) does not hold for Φ. For
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convenience, assume the variables in Φ are numbered in such a way that i < j and
for every i ≤ m,m′ ≤ j, Qxm is superordinate to Qxm′ in Φ iff m < m′. On this
convention, it follows from the fact that not-(b) that for every i < k ≤ j such that
Qkxk = (∃xk/Xk) and xi ∈ Xk, there is an i < l < k such that Qlxl = (∃xl/Xl)
and xi /∈ Xl. Since k may also be j it follows from xi /∈ Xj, that there is an
i < k ≤ j such that Qkxk = (∃xk/Xk) and xi /∈ Xk. Fix any such k and let
i < l < k be such that Qlxl = (∃xl/Xl) and xi ∈ Xl.

Let the quantifiers (∃xl/Xl) and (∃xk/Xk) be the main operators of the subfor-
mulae (∃xl/Xl) Ξl and (∃xk/Xk) Ξk in Φ, respectively. Since l < k, (∃xk/Xk) Ξk
is a subformula in (∃xl/Xl) Ξl.

Let a, a′ be two distinct objects in A’s universe. Let h be a history in HQxi Ψ.
Then, ha and ha′ are distinct histories in HΨ extending h. Iteratively extend
gl = ha until gl ∈ H(∃xl/Xl) Ξl

while putting gl to

gl0 if gl ∈ HΨ0∨Ψ1
and (∃xl/Xl) Ξl is a subformula of Ψ0

gl1 if gl ∈ HΨ0∨Ψ1
and (∃xl/Xl) Ξl is a subformula of Ψ1

gla if gl ∈ H(∃y/Y ) Ψ′ ,

where, again, gl is used as a program variable. Let g′l be the result of extending
ha′ with elements from {0, 1, a} as above. By the same argument used in the
proof of Proposition 3.4.4, derive that αgl

and αg′
l
agree on every variable except

xi. Since xi /∈ Xl it is the case that gl and g′l sit in different information partitions
for Eloise. Call these information partitions I and I ′, respectively.

Iteratively extend gk = gl until gk ∈ H(∃xk/Xk) Ξk
while putting gk equal to

gk0 if gk ∈ HΨ0∨Ψ1
and (∃xk/Xk) Ξk is a subformula of Ψ0

gk1 if gk ∈ HΨ0∨Ψ1
and (∃xk/Xk) Ξk is a subformula of Ψ1

gka if gk ∈ H(∃y/Y ) Ψ′ .

Let g′k be the result of extending g′l in the same way. Still, αgk
and αg′

k
agree

on every variable but xi. Since xi ∈ Xk, it is the case that gk and g′k are indis-
tinguishable for Eloise, see (3.3) in Definition 3.2.7 on page 34. That is, they
sit in the same information partition belonging to Eloise. Yet, the knowledge
experiences of Eloise in gk and g′k are not equal, since KM Eloise(gk) contains I
and KM Eloise(g

′
k) contains I ′. This contradicts the initial assumption of Φ having

knowledge memory. 2

3.4.6. Proposition. Let Φ be an IF-formula with knowledge memory. Then,
for every Qxi and (∃xj/Xj), where Qxi stands for ∀xi or (∃xi/Xi), (a) implies
(b):

(a) There is a ∨ in Φ, such that Qxi is superordinate to ∨ and ∨ is superordinate
to (∃xj/Xj).
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(b) Xj does not contain xi.

Proof. Similar to the proof of Proposition 3.4.5, using the fact that IF does
not contain slashed disjunctions. This has the effect that at every move triggered
by a disjunction Eloise knows all past moves. 2

In order to prove this section’s main theorem, I lay down some easy equiva-
lence schemes. More advanced schemes can be found in (Caicedo, Dechesne, and
Janssen in preparation).

3.4.7. Proposition. Let Φ be an IF-formula containing ∀x (Ψ ∧ Ψ′) as a sub-
formula. Let x′ be a variable not occurring in Φ and let Ψ′[x 7→ x′] denote the
result of replacing every occurrence of x in Ψ′ by x′. Let Φ′ denote the result of
replacing ∀x (Ψ∧Ψ′) in Φ by (∀xΨ ∧ ∀x′Ψ′[x 7→ x′]). Then, the following hold:

(1) Φ′ is an IF-formula.

(2) Φ and Φ′ are equivalent.

(3) Φ has perfect recall iff Φ′ has.

Proof.

(1) Trivial. (Note that the more naive (∀xΨ ∧ ∀xΨ′) is not an IF-formula on
account of the fact that x is quantified twice. In Φ′ this obstacle is avoided
in a straightforward manner.)

(2) Consider the Skolemization of Φ of which ∀x (Ξ∧Ξ′) is a subformula. Sk(Φ)
is a formula from well-understood, second-order logic. So, in Sk(Φ) pushing
the universal quantifier ∀x inside the brackets goes without affecting the
truth conditions. Furthermore, renaming of variables is unproblematic, and
in particular ∀x Ξ′ is equivalent to ∀x′ Ξ′[x 7→ x′]. Observe that Sk(Φ′) is
syntactically equivalent to Sk(Φ) after pushing ∀x inside and renaming x
to x′ in Ξ′.

(3) Follows from Propositions 3.4.4 and 3.4.5.

This concludes the proof. 2

3.4.8. Proposition. Let Φ be an IF-formula containing ∀x∀y Ψ as a subfor-
mula. Let Φ′ denote the result of replacing ∀x∀y Ψ in Φ by ∀y∀x Ψ. Then, the
following hold

(1) Φ′ is an IF-formula.

(2) Φ and Φ′ are equivalent.
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(3) Φ has perfect recall iff Φ′ has.

The argumentation of the soundness of the latter schemes is very much in line
with the argumentation from first-order logic. The next proposition has genuine
IF influx.

3.4.9. Proposition. Let Φ be an IF-formula containing ∀x(∃y/Y ) Ψ as a sub-
formula, where x ∈ Y . Let Φ′ denote the result of replacing ∀x(∃y/Y ) Ψ in Φ by
(∃y/Y−{x})∀x Ψ. Then, the following hold:

(1) Φ′ is an IF-formula.

(2) Φ and Φ′ are equivalent.

(3) Φ has perfect recall iff Φ′ has.

Proof.

(1) Trivial.

(2) This is most easily observed by considering the Skolemizations of Φ and Φ′.
The inside-out Skolemization is defined non-deterministically, so one cannot
say right away that Sk(Φ) and Sk(Φ′) are syntactic copies of each other.
Instead, once one has Sk(Φ), it is easy to apply the inside-out Skolemization
procedure to Φ′ in such a way that it returns a syntactic copy of Sk(Φ).
Hence, the claim follows.

(3) Follows from Propositions 3.4.4 and 3.4.5.

This concludes the proof. 2

As noted by van Benthem (lecture notes, pg. 166) the latter equivalence
scheme resembles the Thompson transformation interchange of moves known
from game theory, see (Thompson 1952). A true application of game theory
indeed! The relation between Thompson transformations and IF logic was taken
up in (Dechesne 2006). As an aside, observe that despite the fact the truth con-
ditions are preserved under the transformation assessed in Proposition 3.4.9, the
falsity conditions are subject to change. Those are not of interest to the current
end.

Armed with the formal apparatus, we now prove the main result of this sec-
tion, Theorem 3.4.3.

Proof of Theorem 3.4.3. From left to right. Let φ be a FO-formula. Then,
φ has an equivalent first-order formula φ′ in which every variable is quantified
at most once. In φ′ replace every ∃x by (∃x/∅), and refer to the result by Φ.
The object Φ is an if logic-formula in the vocabulary of φ′, and φ′ and Φ are
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equivalent.4 Since all Φ’s slash-sets are empty, all of Φ’s semantic games are
games of perfect information. That is, every information partition of Eloise is
a singleton. It follows trivially that Φ has both action recall and knowledge
memory, and therefore perfect recall. Hence, φ is equivalent to the IFPR-formula
Φ.

From right to left. Let A be a search algorithm that works on the syntactic tree
of IF-formulae and returns the first quantifier of the form (∃y/Y ) it encounters,
where Y non-empty. A proceeds depth-first and top down preferring the left
subformula over the right one, in case a connective is encountered. Let A(Φ)
denote the output of A when applied to the syntactic tree of the IF-formula Φ. If
Φ does not have a subformula of the form (∃y/Y ) Ψ, where Y non-empty, A(Φ)
stands for false.

Fix an IFPR-formula Φ. In case A(Φ) = false, Φ is in fact equivalent to a
first-order formula and the result follows directly.

In case A(Φ) = (∃y/Y ), the way A proceeds guarantees that the path leading
from the root 〈〉 of the syntactic tree to (∃y/Y ) looks schematically as follows:

〈〉 >Φ . . . >Φ ⋆ >Φ C1 >Φ . . . >Φ Cn >Φ (∃y/Y ), (3.5)

where ⋆ stands for 〈〉, ∨, or (∃z/∅); and Ci stands for ∀xf(i) or ∧. So be-
fore Eloise’s move was triggered by (∃y/Y ), Abelard moved for the operators
C1, . . . ,Cn. The symbol ⋆ indicates the beginning of the game or a previous move
by Eloise. Here, f is a bookkeeping device mapping the integers 1, . . . , n onto Φ’s
variables xf(1), . . . , xf(n).

A’s way of traversing the tree guarantees that ⋆ cannot equal (∃z/Z) where Z
non-empty, for otherwise A would have terminated on (∃z/Z) instead of (∃y/Y ).

Let J = {j1, . . . , jm} be the set of integers j in the interval from 1 to n, so
that Cj stands for ∀xf(j). I lay down the following claim.

Claim. Y is a subset of {f(j) | j ∈ J}.

Proof of claim. In order to prove this claim, we make a case distinction:

• ⋆ = 〈〉: In fact, (∃y/Y ) is in the scope of exactly ∀xf(j1), . . . ,∀xf(jm), since
in Φ no more quantifiers are superordinate to (∃y/Y ). Hence, the claim
follows.

• ⋆ = ∨: Follows from Proposition 3.4.6.

• ⋆ = (∃z/∅): Suppose for the sake of contradiction that there is a u ∈ Y such
that Qu is superordinate to (∃z/∅) in Φ. Then, clause (a) from Proposition
3.4.5 holds with respect to u and Y . Clause (b) fails, however, since u /∈ ∅.
Contradiction. 2

4Variables have to be renamed, because it was observed in (Janssen 2002) that φ′ does not
have to be equivalent to Φ, once a variable in φ′ is quantified more than once.
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The latter claim holds that Eloise can only be ignorant of the moves triggered
by the universal quantifiers among C1, . . . ,Cn. Any move that was made before
⋆—if any—is known to Eloise when she is to move for (∃y/Y ), as well as the
choices made for the conjunctions among C1, . . . ,Cn.

Suppose J itself is not equal to an interval {min(J), . . . , n} in {1, . . . , n}. That
is, the universal quantifiers ∀xf(min(J)), . . . ,∀xf(n) do not form a block that itself
is superordinate to (∃y/Y ). Then, there is a greatest integer j in J for which
Cj+1 stands for ∧. Consider the subformula ∀xf(j) (Ψ Cj+1 Ψ′). By Proposition
3.4.7, it may be replaced in Φ by

(∀xf(j)Ψ Cj+1 ∀x′f(j)Ψ
′[xf(j) 7→ x′f(j)])

without affecting Φ’s truth condition, while preserving perfect recall. Let Φ′

denote the result of this replacement. Clearly, it is the case that A(Φ′) = (∃y/Y ).
That is, by this move no new independences were introduced in the subformulae
in Φ that were checked by A before it found (∃y/Y ). In the path in the syntactic
tree of Φ′ leading from the root to (∃y/Y ), the logical operators Cj and Cj+1

appear swapped as compared to the path (3.5).
In this manner, swap all universal quantifiers and conjunctions, until the path

from the root to (∃y/Y ) looks like

〈〉 >Φ . . . >Φ ⋆ >Φ ∧ >Φ . . . >Φ ∧ >Φ ∀xf(j1) >Φ . . . >Φ ∀xf(jm) >Φ (∃y/Y ).

(Modulo the fact that xf(j) may be renamed, and actually be called x′f(j) now. But

this detail should not be too disturbing.) As I pointed out before, the swapping
of universal quantifiers and conjunctions can be done preserving truth conditions
and perfect recall. Put the result of doing so Φ∗, and observe again that A(Φ∗) =
(∃y/Y ).

By the claim proved earlier, Y ⊆ J . Consider a pair j, j′ ∈ {1, . . . , n}, such
that xf(j) ∈ Y , xf(j′) /∈ Y , and ∀xf(j)∀xf(j′) Ψ is a subformula in Φ∗—if any. By
Proposition 3.4.8, one may replace ∀xf(j)∀xf(j′) Ψ in Φ∗ by

∀xf(j′)∀xf(j) Ψ,

preserving the truth conditions and perfect recall. Furthermore, A applied to
the formula in which ∀xf(j)∀xf(j′) are swapped, still returns (∃y/Y ). Continue
swapping universal quantifiers following the routine, until for every pair j, j′ ∈
{1, . . . , n} if xf(j) ∈ Y and xf(j′) /∈ Y then ∀xf(j′) is superordinate to ∀xf(j) in
the resulting formula denoted Φ#. The path in the syntactic tree of Φ# from ⋆
to (∃y/Y ) looks as follows:

⋆ >Φ ∧ >Φ . . . >Φ ∧ >Φ ∀u1 >Φ . . . >Φ ∀uk >Φ ∀v1 >Φ . . . >Φ ∀vl >Φ (∃y/Y ),

where Y = {v1, . . . , vl} and J − Y = {u1, . . . , uk}.
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Consider the subformula ∀vl(∃y/Y ) Ψ of Φ#. By definition, vl ∈ Y . Hence,
by Proposition 3.4.9 ∀vl(∃y/Y ) Ψ may be replaced by

(∃y/Y−{vl})∀vl Ψ

in Φ#, preserving truth conditions and perfect recall. Continue moving up
(∃y/ . . .) in the syntactic tree until (∃y/ . . .) is superordinate to ∀xv1 , . . . ,∀xvl

.
Or equivalently, until . . . stands for the empty set. Let Φ+ be the result of this
procedure. Observe that Φ# and Φ+ are equivalent and that Φ+ enjoys perfect
recall, due to Proposition 3.4.9. Finally, observe that the number of subformulae
in Φ+ of the form (∃w/W ) Ψ, where W non-empty, has decreased by one, as
compared to the number of such subformulae in Φ#.

Thus apply the above routine to every subformula in Φ+ of the form (∃w/W ) Ψ,
where W non-empty. In the resulting formula only empty sets appear and its
truth conditions are therefore first-order. This completes the proof. 2

In relation to the theory of Independence-friendly logic, Theorem 3.4.3 shows
that the difference in expressive power between FO and IF (or FO

∨
and IF

∨
)

is due to exactly those IF-formulae that violate perfect recall. That is, every
IF-formula that has no first-order equivalent violates perfect recall.

From a game-theoretic perspective Theorem 3.4.3 holds that for every IFPR-
formula Φ there is a FO-formula φ such that for every suitable structure A and
assignment α in A, it is the case that Eloise has a winning strategy in the game
Sem-gameIF(Φ[α],A) iff she has one in Sem-gameIF(φ[α],A). This is interesting
because it shows that certain classes of games with imperfect information—the
ones of Φ for instance—are equivalent (from Eloise’s perspective) to certain classes
of perfect information games. On the other hand the games are very much differ-
ent from Abelard’s perspective, since semantic games for first-order formulae are
determined, whereas this need not be the case for games with perfect recall. Here
the consequence is observed of only focusing on truth conditions and neglecting
the falsity conditions of IF logic.

As I observed at the end of Section 3.3, it is known from (Cameron and
Hodges 2001) that no compositional semantics can be provided for IF logic based
on single assignments. Likewise my rule book introduces a team of Eloises to
circumvent the troublesome phenomenon of imperfect recall in semantic games
for IF logic. Interestingly, the perfect recall fragment of IF logic has it that its
formulae give rise to imperfect information games, even though they have first-
order equivalents. The question arises whether IFPR can be given a compositional
semantics in terms of single assignments such as Tarski semantics for first-order
logic.

In this section I studied the perfect recall fragment of IF logic, but other
game-theoretic notions can be transferred just as well. In this genre, I mention
the notion of positional determinacy that plats a key role in decidability results
for modal languages.
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3.5 Modal logic and IF logic

Modal logic (Blackburn et al. 2001) originated from analytic philosophy and
currently enjoys attention from disciplines including proof theory (Boolos 1993;
Joosten 2004), computer science, theoretical linguistics, and game theory, see (van
Benthem lecture notes) and (van Benthem 2001; Pauly 2001; Kooi 2003; de Bruin
2004). Basic modal logic has a computation profile that is “more attractive” than
first-order logic’s: its satisfiability problem is decidable, and its model checking
problem is tractable (P-computable). Extending basic modal logic’s expressive
power whilst preserving these nice computational properties is a lively branch of
research; see (ten Cate 2005) for an in-depth study.

Be this as it may, independence or imperfect information never played an
important role in this research. In this section, I will explore the imperfect in-
formation dimension of modal logic. I define a new IF modal language, that is
basically a fragment of Hintikka and Sandu’s IF logic, and I prove this logic un-
decidable.

In seminal publications (Sandu 1993; Hintikka 1996; Hintikka and Sandu 1997)
on IF logic, the applications of slashing in a first-order modal context are men-
tioned. The issue of informational independence in epistemic first-order logic
related to the de dicto-de re distinction in linguistics was taken up in (Hintikka
1993; Pietarinen 1998).

The topic of independence-friendliness in modal propositional logics was stud-
ied in a series of publications (Bradfield 2000; Bradfield and Fröschle 2002; Tu-
lenheimo 2003; Tulenheimo 2004; Hyttinen and Tulenheimo 2005), that are of
a highly explorative nature. That is to say, no two of these publications share
the same syntax and/or semantic interpretation (except for (Tulenheimo 2003)
and (Tulenheimo 2004), but the latter is based on the former). This raises the
question what is the independence-friendly modal logic—if any.

In Section 3.5.1, I give a recap of the approach taken in (Tulenheimo 2003;
Tulenheimo 2004; Hyttinen and Tulenheimo 2005) toward IF modal logic, and
discuss the fact that the involved semantic games violate the action consistency
requirement.

In Section 3.5.2, I isolate the modal fragment of IF
∨

, by resorting to the
first-order correspondence language of ML

∨
. Furthermore, being a fragment of

IF
∨

, their semantic fragments do not violate the action consistency requirement.
In Section 3.5.3, I show that the modal fragment of IF

∨
is undecidable.

3.5.1 Uniformity interpretation for modal logic

In (Tulenheimo 2004) three interpretations for independence-friendly modal lan-
guages are studied: the uniformity, backwards-looking, and algebraic interpreta-
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tion. Most attention has been with IF modal logic under the uniformity inter-
pretation, cf. (Tulenheimo 2003; Hyttinen and Tulenheimo 2005). Tulenheimo
(2004, pg. 15) contemplates on this interpretation as follows: “The uniformity
interpretation aims at bringing a very straightforward modal-logical analogue of
the IF first-order logic of Hintikka and Sandu: it makes use of semantical games,
and implements the notion of independence by imposing appropriate conditions
of uniformity on winning strategies.”

Throughout this review I shall assume some familiarity with modal logic’s
syntax and semantics. A thorough treatment is supplied in Section 3.5.2 below.

The semantic game for a basic modal logic φ on a Kripke-model M at w
can be seen as a pebble-moving game. The game starts from position 〈φ,M, w〉
indicating that the pebble is at w. If the game reaches position 〈〈Ra〉ψ,M, u〉,
Eloise is to move the pebble from u along the accessibility relation Ra to world
v. If she cannot push the pebble to a successor state, Eloise gets stuck and loses
the game; otherwise, the game advances to position 〈ψ,M, v〉. The game rule
for the [Ra] operator is similar, but now Abelard moves. Connectives trigger a
choice among the main subformulae by either player as usual. If the game reaches
position 〈(¬)p,M, u〉 it stops and Eloise wins if the world u where the pebble is
at makes p true (false); otherwise, Abelard wins.

To exhibit the apparatus from (Tulenheimo 2004), let me introduce a toy
language that serves this overview’s ends—this language has not been assessed in
the literature. Consider the language of well-organized IF modal logic consisting
of all strings

M1 . . .Mnψ, (3.6)

where ψ is a basic modal formula and Mi is an operator of the form 2i or (3i/Ii),
where Ii ⊆ {1, . . . , i−1}. If φ is a well-organized IF modal formula, let φ♠ denote
the result of replacing every (3i/Ii) in φ by 3 and every 2i by 2. Clearly, φ♠

is a formula from basic modal logic. The turn taking in the semantic evaluation
game for a well-organized IF modal logic formula φ on M at w is similar to
the turn taking in the one for φ♠ on M at w. Furthermore, Abelard and the
Eloises still pick up vertices where to move the pebble, but they put their move
in envelopes rather than moving the pebble directly—I will stick to the coalitional
interpretation laid out in Section 3.3. In consequence, at some stage of the game
an Eloise may be uninformed about the pebble’s current position! For the sake
of concreteness consider the formula

φ = 2132(33/{1, 2})⊤ (3.7)

in whose semantic game Abelard kicks off and Eloise2 and Eloise3 move during
the second and third round, respectively. (The symbol ⊤ denotes the proposition
that is true at every world.) Eloise2 is shown the move previously made by
Abelard; Eloise3 is not shown the contents of any of the envelopes. Truth of a
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Figure 3.1: The models M and N.

well-organized IF modal formula φ on a pointed model 〈M, w〉 is defined as the
Eloises having a uniform winning strategy in the related semantic game.

Consider the models M = 〈M,R〉 and N = 〈N,S〉 displayed in Figure 3.1.a
and 3.1.b respectively, where

M = {w1, . . . , w7}

R = {〈w1, w2〉, 〈w1, w3〉, 〈w2, w4〉, 〈w3, w5〉, 〈w4, w6〉, 〈w5, w7〉}

N = {v1, . . . , v8}

S = {〈v1, v2〉, 〈v1, v3〉, 〈v2, v4〉, 〈v3, v5〉, 〈v4, v6〉, 〈v5, v7〉, 〈v4, v8〉, 〈v5, v8〉}

and focus on M and w1. On the first round, triggered by 21, Abelard puts
wi in the appropriate envelope, where i ∈ {2, 3}. In order not to lose right way,
Eloise2 puts wi+2 in the appropriate envelope. On the third round Eloise3 remains
uninformed about the position of the pebble: w4 or w5? Whatever world she picks
she is not certain to move the pebble there along the accessibility relation from
its current location. For instance, suppose the pebble is at w4 she may try and
unsuccessfully move the pebble to w7.

By contrast, turn to the pointed model 〈N, v1〉, where Eloise3’s ignorance
passes unnoticed; she simply moves the pebble to v8 which is possible from both
v4 and v5.

After properly introducing the semantical apparatus, one concludes on the
basis of such game-theoretic considerations that M, w1 6|= φ, whereas N, v1 |= φ.
Note that the pointed models 〈M, w1〉 and 〈N, v1〉 cannot be distinguished by any
formula from basic modal logic.5 Hence, any IF modal language that contains
basic modal logic and accepts φ as a formula, has greater expressive power than
basic modal logic, given that its formulae are evaluated as above.

5The pointed models 〈M, w1〉 and 〈N, v1〉 are bisimilar, in virtue of the following bisimilarity
relation: {〈wi, vi〉 | 1 ≤ i ≤ 7} ∪ {〈w6, v8〉, 〈w7, v8〉}. For a rigorous treatment of the notion of
bisimulation and its impact on the theory of modal logic, consult (van Benthem 1976; Blackburn,
de Rijke, and Venema 2001).
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The framework laid down in (Tulenheimo 2004) may be considered a proof of
principle: if one extends basic modal logic with a formula like 2132(33/{1, 2})⊤
the resulting logic’s expressive power increases, under an interpretation of infor-
mational independence that is inspired by the one from IF logic.

From a game-theoretic point of view, the semantic games for well-organized
IF modal logic are ill-defined objects. Namely, they do not meet the action con-
sistency requirement. That is, there are semantic games for well-organized IF
modal logic, for which there exists one information partition I that contains two
histories h, h′ such that A(h) 6= A(h′). A case in point is the game consituted
by the the pointed model 〈M, w1〉 from Figure 3.1 and the formula φ. During
the third round of this semantic game, Eloise3 controls one information partition:
{h, h′}, where h = 〈w1, w2, w4〉 and h′ = 〈w1, w3, w5〉. Although h and h′ sit in
the same information partition, it is the case that A(h) = {w6} 6= {w7} = A(h′).
Notably, the authors are well-aware of this point, cf. (Tulenheimo 2004, Section
2.3.1).

It was observed (Hodges 2001, pg. 546) in the context of restricted quantifiers,
that things that are obviously equivalent in first-order logic split apart when one
inserts the slash device. In (Tulenheimo 2004) the slash device is introduced in
such a way that the resulting logic called EIFML has amongst its formulae the
string

∧

i∈{a,b}

(〈Ri〉1/{i})⊤. (3.8)

The semantic game of (3.8) has two rounds, during the first of which Abelard
picks up a modality i ∈ {a, b} and puts it in an envelope. On the second round
Eloise1 has to pick a successor to the current world along the accessibility relation
Ri, but i is unbeknownst to her. So Eloise1 wins the game on M at w, if there
exists a world v, that is both Ra and Rb-accessible from w; or equivalently—in
Propositional Dynamic Logic notation—:

M, w |= 〈Ra ∩Rb〉⊤.

In (Tulenheimo 2004, Lemma 3.3.8) it is shown that EIFML is not translatable
into first-order logic, if three or more modality types are involved.

In (Hyttinen and Tulenheimo 2005) yet another IF modal logic is considered.
In principle this language can be regarded the result of applying an IF procedure
to the syntax of basic modal logic. This IF procedure would now apply to nu-
merals that identify the modal operators rather than variables, as is the case in
IF logic. In order to establish decidability for this language, the authors impose
three conditions on the formulae at stake and denote the result by IFMLPR.
These three conditions are syntactical, and are associated with perfect recall.
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3.5.2 The modal fragment of IF logic

All in all, various IF modal languages have been proposed each with its own
set of particulars: restricted quantifiers versus infix connectives; quantification
over modalities; arbitrary independence schemes versus perfect recall ones. In
this section, I will introduce yet another IF modal logic. More in particular,
this IF modal logic will be defined as a fragment of IF logic. This approach
is inspired by current research on modal logic. Because, although notationally
basic modal logic is an extension of propositional logic, nowadays it is usually
conceived of as a fragment of first-order logic. Milestone results that brought
about this change include the standard translation and van Benthem’s Theorem
(van Benthem 1976), that characterizes modal logic as the bisimulation invariant
fragment of first-order logic.

Before I come to defining the modal fragment of IF
∨

, I give the syntax and
semantics of basic modal logic, extended with restricted quantifiers.

3.5.1. Definition. Let π = {p1, p2, . . .} be a set of proposition letters and let
µ = {R1, R2, . . .} be a set of modalities. Associate with µ the set of tokens
Token(µ), such that for every t ∈ Token(µ), Rt identifies a unique modality in µ.
Let IND be the set of indices as before. Then, the formulae of the basic modal
logic with restricted quantifiers, denoted by ML

∨
(π, µ), are exactly those strings

that are generated by the following grammar:

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | 〈S〉φ | [S]φ | 〈Ri〉φ | [Ri]φ |
∨

i∈I

φ |
∧

i∈I

φ,

where p ranges over π, S over µ, i over IND, and I over the finite subsets of
Token(µ).

Note that all ML(π, µ)-formulae are in negation normal form, in that negation
symbols only occur in front of proposition letters. As usual, I will sometimes omit
to mention the sets π and µ, and simply write ML

∨
. By saying that φ is an

ML
∨

-formula, I mean that there are π and µ such that φ is an ML
∨

(π, µ)-
formula.

Indices are the only items that are being quantified over in basic modal logic
with restricted quantifiers. Like variables in first-order logic, indices in ML

∨
may

appear bound or free. If an ML
∨

-formula contains no free indices, it is called an
ML

∨
-sentence. Henceforth all discussion will be restricted to ML

∨
-sentences,

even if I refer to them as formulae.

3.5.2. Definition. Let π = {p1, p2, . . .} be a set of proposition letters and let
µ = {R1, R2, . . .} be a set of modalities. Then, let M = 〈M, 〈SM〉S∈µ, V 〉 be a
π, µ-model , if

SM ⊆ M ×M

V (p) ⊆ M,



58 Chapter 3. Fragments of IF logic

where S ranges over µ and p over π. For w ∈M , 〈M, w〉 is a pointed π, µ-model .
I will sometimes omit the brackets enclosing pointed models. A function of type
IND → Token(µ) is an assignment in M.

The satisfaction relation of ML
∨

(π, µ) is defined for ML
∨

(π, µ)-formulae
with respect to pointed π, µ-models 〈M, w〉 and assignments α in M:

M, w |= p[α] iff w ∈ V (p), for p ∈ π

M, w |= (¬p)[α] iff w /∈ V (p), for p ∈ π

M, w |= (φ ∨ ψ)[α] iff M, w |= φ[α] or M, w |= φ[α]

M, w |= (φ ∧ ψ)[α] iff M, w |= φ[α] and M, w |= ψ[α]

M, w |= (〈S〉φ)[α] iff for some v ∈M with 〈w, v〉 ∈ SM, M, v |= φ[α]

M, w |= ([S]φ)[α] iff for all v ∈M with 〈w, v〉 ∈ SM, M, v |= φ[α]

M, w |= (〈Ri〉φ)[α] iff for some v ∈M with 〈w, v〉 ∈ RM
α(i), M, v |= φ[α]

M, w |= ([Ri]φ)[α] iff for all v ∈M with 〈w, v〉 ∈ RM
α(i), M, v |= φ[α]

M, w |=
∨

i∈I

φ[α] iff for some j ∈ I, M, w |= φ[α.i/j]

M, w |=
∧

i∈I

φ[α] iff for all j ∈ I, M, w |= φ[α.i/j].

If M, w |= φ[α], I say that φ is true on M at w under α. If φ is in fact a
sentence, the phrase “under α” can be dropped harmlessly.

Observe that in ML
∨

the choosing of a modality and moving along this
modality are separated. For instance, in a semantic game for

∨

i∈{Ra,Rb}
[Ri]p,

Eloise first chooses either Ra or Rb, after which Abelard points out a successor
along the chosen accessibility relation.

Showing that for every ML
∨

-formula there is an equivalent ML
∨

-formula
without restricted quantifiers is an easy exercise, to which end one first has to
define the proper notion of equivalence for ML

∨
. Furthermore, it is well-known

that basic modal logic is translatable into first-order logic. The witness of this
result is commonly referred to as the standard translation. Before I get to the
standard translation, a word on vocabularies. Let π = {p1, . . . , pm} be a finite
set of proposition letters and let µ = {R1, . . . , Rn} be a finite set of modalities.
Then, τ(π, µ) is defined as the vocabulary constituted by π and µ, and is defined
as

(
⋃

p∈π

{Pp}

)

∪ µ,

where the symbols Pp are unary relation symbols and the symbols inherited from
µ are binary.

Then, the standard translation ST maps ML
∨

(π, µ) to FO
∨

(τ(π, µ)), as
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follows:

ST xt
(p) = Pp(xt), for p ∈ π

ST xt
(¬p) = ¬Pp(xt), for p ∈ π

ST xt
(φ ∨ ψ) = ST xt

(φ) ∨ ST xt
(ψ)

ST xt
(φ ∧ ψ) = ST xt

(φ) ∧ ST xt
(ψ)

ST xt
(〈Ra〉φ) = ∃xt+1 (Ra(xt, xt+1) ∧ ST xt+1

(φ)), for Ra ∈ µ

ST xt
([Ra]φ) = ∀xt+1 (Ra(xt, xt+1) → ST xt+1

(φ)), for Ra ∈ µ

ST xt
(〈Ri〉φ) = ∃xt+1 (Ri(xt, xt+1) ∧ ST xt+1

(φ)), for i ∈ IND

ST xt
([Ri]φ) = ∀xt+1 (Ri(xt, xt+1) → ST xt+1

(φ)), for i ∈ IND

ST xt

(
∨

i∈I

φ

)

=
∨

i∈I

ST xt
(φ)

ST xt

(
∧

i∈I

φ

)

=
∧

i∈I

ST xt
(φ).

3.5.3. Example. (Continuation of Example 3.2.4) Consider the formula ξ =
[R][R]〈R〉⊤, whose standard translation ST x1

(ξ) is

∀x2(R(x1, x2) → ∀x3(R(x2, x3) → ∃x4(R(x3, x4)))).

This formula was already focus of attention in Example 3.2.4, be it that I did not
use the shorthand notation “→”. 2

Let M be a π, µ-model. Then,

AM = 〈M, 〈V (p)〉p∈π, 〈R
M〉R∈µ〉

is the τ(π, µ)-structure that is said to be constituted by M. Adequacy of the
standard translation is thus cast as follows: For every ML

∨
(π, µ)-sentence φ

and every pointed π, µ-model 〈M, w〉, it is the case that

M, w |= φ iff AM |= ST x1
(φ)[x1/w].

Put ST ′(ML
∨

(π, µ)) =
⋃

φ ST x1
(φ), where φ ranges over all ML

∨
(π, µ)-

sentences, and call this fragment of FO
∨

(τ(µ, π)) the first-order correspondence
language of ML

∨
(µ, π). I will obtain the modal fragment of IF logic by applying

the IF procedure from Section 3.2 to the first-order correspondence language of
ML

∨
. In order to do so, it is to be observed that we are considering a fragment

of FO
∨′ rather than FO

∨
. That is, the first-order correspondence language of

ML
∨

has it that in all of its formulae

(1) every variable is quantified at most once; and
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(2) negations appear only in front of atoms.

The language ST ′(ML
∨

(π, µ)) does not meet condition (1), in view of, for in-
stance, the following formula:

ST x1
(〈R〉p ∧ 〈R〉q) = (∃x2 (R(x1, x2) ∧ Pp(x2))) ∧ (∃x2 (R(x1, x2) ∧ Pq(x2))).

However, an elementary renaming argument shows that every ST ′(ML
∨

(π, µ))-
formula Φ can be rewritten so as to meet (1), without changing its truth condi-
tions. Let ST (ML

∨
(π, µ)) be the language that contains all ST ′(ML

∨
(π, µ))-

formulae whose variables are thus renamed.
To see that every ST (ML

∨
(π, µ))-formula satisfies condition (2), recall that

every ML
∨

(π, µ)-formula is in negation normal form. Consequently, if ¬φ is
a subformula of any ML

∨
(π, µ)-formula, then for some p ∈ π, φ = p. Since

ST xt
(¬p) = ¬Pp(xt), every negation in a ML

∨
(π, µ)-formula finds itself trans-

lated in front of an atom. Covertly, the rules ST xt
([Ra]φ) and ST xt

([Ri]φ) in-
troduce negations, since Φ → Ψ is shorthand for ¬Φ ∨ Ψ. Those rules cause
no problematic negations though, since every ¬Φ thus introduced is of the form
¬Ra(. . .) or ¬Ri(. . .).

Hence, ST (ML
∨

(π, µ)) is a fragment of FO
∨′(τ(π, µ)). As such the language

is perfectly open to application of the IF procedure constituted by (IF). This
insight underlies the following definition.

3.5.4. Definition. Let ST (ML
∨

(π, µ)) be the fragment of FO
∨′(τ(π, µ)) as

above. Then, define IF
∨ML(τ(π, µ)) as the closure of ST (ML

∨
(π, µ)) under the

IF procedure constituted by (IF), from Definition 3.2.2 on page 28.

Being a fragment of IF
∨

, the logic IF
∨ML may fully rely on the formal ap-

paratus set out for the former logic. In particular, if Φ is an IF
∨ML-formula then

its Skolemization Sk(Φ) is readily defined. Observe that in every IF
∨ML-formula

Φ the variable x1 is free. From the definition of the Skolemization procedure it
follows that also x1 is the free variable in Sk(Φ). Therefore, if A is a suitable
structure and a is an object from A, then one directly has that A |= Sk(Φ)[x1/a]
iff the Eloises have a winning strategy in Sem-gameIF

Coal(Φ[x1/a],A).

By setting up an IF modal logic along these lines, the property of the seman-
tic games from (Tulenheimo 2003; Tulenheimo 2004; Hyttinen and Tulenheimo
2005) games violating the action consistency requirement for imperfect informa-
tion games is resolved. Recall namely that semantic games for IF logic do meet
this requirement.

3.5.5. Example. (Continuation of Examples 2.3.1, 3.2.3, and 3.2.5) Consider
the ML

∨
(∅, {Ra, Rb})-formula ψ =

∧

i∈{a,b}〈Ri〉⊤.6 The standard translation

6Strictly speaking the symbol “⊤” is not included in the language ML
∨

. Throughout the
examples it can be safely replaced by “(p ∨ ¬p)”.
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ST x1
(ψ) is

∧

i∈{a,b}

∃x2 R(x1, x2),

which is the FO
∨′-formula from which Example 2.3.1 departs. Conclude from

Example 3.2.5 that also
∧

i∈{a,b}(∃x2/{i}) R(x1, x2) is an IF
∨ML-formula. 2

The logics in (Tulenheimo 2003; Tulenheimo 2004; Hyttinen and Tulenheimo
2005) were defined in a modal-style notation and came with a Kripke-style se-
mantics. By contrast, I obtained the logic IF

∨ML by isolating a fragment of
IF
∨

, relying on first-order structures. This discrepancy does not imply that the
latter languages are strictly incomparable to the ones introduced in the above
publications. For instance, revisit the well-organized IF modal logic consisting of
all strings

M1 . . .Mnψ, (3.9)

where ψ is a basic modal formula and Mi is an operator of the form 2i or (3i/Ii),
where Ii ⊆ {1, . . . , i− 1}. For now, extend the standard translation ST in such a
way that it maps a well-organized IF modal formula φ as in (3.9) to the following
IF
∨ML-formula:

Q1x2 (R(x1, x2) ◦1 . . . Qnxn+1 (R(xn) ◦n ST xn
(ψ)) . . .),

where

Qixi+1 =

{
∀xi+1 if Mi is 2

(∃xi+1/{xj | j ∈ Ii}) if Mi is (3i/Ii)

and

◦i =

{
→ if Mi is 2

∧ if Mi is (3i/ . . .).

In line with (Tulenheimo 2004, Lemma 3.2.2) one proves that for every well-
organized IF modal formula φ and suitable pointed model 〈M, w〉, it is the case
that

M, w |= φ iff AM |= ST x1
(φ)[x1/w].

Along the same lines, one proves that the language from (Tulenheimo 2003)
is translatable into IF

∨ML, and that IF
∨ML is translatable into the language

EIFML from (Tulenheimo 2004). I will comment on the perfect recall language
IFMLPR from (Hyttinen and Tulenheimo 2005) and its relation to IF

∨ML but
not until Section 3.6.

Let me close this section with some results that chart IF
∨ML’s expressive

power.
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3.5.6. Proposition. The following hold:

(1) ST (ML
∨

) < IF
∨ML.

(2) IF
∨ML 6< FO

∨
.

Proof. Ad (1): By construction, every ST (ML
∨

)-formula is an IF
∨ML-

formula. This settles the inclusion. As for strictness, observe that IF
∨ML con-

tains the formula

∀x2 (R(x1, x2) → ∀x3(R(x2, x3) → (∃x4/{x2, x3})(R(x3, x4)))), (3.10)

in virtue of Examples 3.2.4 and 3.5.3. Observe that the extended standard trans-
lation maps 2122(33/{1, 2})⊤ on (3.10), and recall that the formula φ was earlier
seen to discriminate bisimular pointed models, amongst which the ones in Fig-
ure 3.1. The result follows since no formula in ML

∨
can tell bisimular pointed

models apart, see (Blackburn et al. 2001).
Ad (2): The proof uses a straightforward model comparison game argument,

see also Section 4.8.1. For further details I refer the reader to (Tulenheimo and
Sevenster forthcoming). 2

3.5.3 IF
∨

ML is undecidable

In this section I prove satisfiability undecidable for IF
∨ML, by showing that there

exists a formula in this language that can “tile the plane”.

The following easy translation scheme will be used.

3.5.7. Proposition. Let Φ ∈ IF
∨ML contain (Ψ∨ (∃x/X)Ψ′) as a subformula,

where Ψ is a possibly negated atom and does not contain the variable x. Let Φ′

denote the result of replacing (Ψ∨ (∃x/X)Ψ′) in Φ by (∃x/X)(Ψ∨Ψ′). Then, Φ
and Φ′ are equivalent.

Recall the problem of Tiling. Let a finite set T of tiles be given; a tile t
being a 1× 1 square, fixed in orientation, each side of which has a color right(t),
left(t), up(t), and down(t). The tiling problem is defined such that T ∈ Tiling
iff one can cover every node in the N×N grid with tiles from T in such a way that
adjacent—horizontally and vertically—tiles have the same color on the common
edge. A composition of tiles that covers the N × N grid is called a tiling.

Tiling is Π0
1-complete, cf. (Harel 1985; van Emde Boas 1996). (Note that

the non-boldfaced Π0
1 and Σ1

1 do not indicate logical languages but complexity
measures in the arithmetical and analytical hierarchy, respectively.) In Theorem
3.5.8 it is shown that Tiling reduces to the satisfiability problem of IF

∨ML,
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which renders it Π0
1-hard, hence undecidable. Since IF

∨ML is a fragment of
IF
∨

, the upper bound of IF
∨ML’s complexity is Σ1

1. The precise classification
of the complexity of IF

∨ML’s satisfiability problem is left as an open problem.

3.5.8. Theorem. Let T be a finite set of tiles. Let π contain the letters p and q
plus the proposition letter pt for every tile t ∈ T , and let µ = {Ra, Rb, R⇑, R⇒,=}.

Let τ = τ(π, µ). Then, there exists an IF
∨ML(τ)-formula ΦT , such that ΦT

is satisfiable iff T can tile the N × N grid. Hence, the satisfiability problem of
IF
∨ML(τ) is undecidable.

The proof of the theorem is rather lengthy for which reason I will first state its
underlying idea. The formula ΦT is an implementation of the spy point technique
that is used to prove undecidability for hybrid modal languages, see (Blackburn
and Seligman 1995). In order to prove undecidability for a logic by means of the
spy point technique one typically shows that the logic at hand can enforce the
following properties on a structure A with respect to the object w:

(1) If there is a path of RA
⇑ ∪RA

⇒-transitions from w to v, then 〈w, v〉 ∈ RA
a .

(2) The relation RA
⇑ ∪RA

⇒ constitutes a grid structure containing w.

(3) The predicates 〈PA
t 〉t∈T describe a proper tiling of the objects in the grid.

Having observed that the logic under consideration can express (1)-(3), it
suffices to observe that there is a way of enforcing that any two neighboring
objects in the grid (hence Ra-accessible from w) carry appropriate tiles.

I will pursue this line of attack also in the proof of Theorem 3.5.8, by showing
that conditions (1)-(3) are expressible in IF

∨ML.
That condition (3) can be expressed in IF

∨ML is no big surprise, since it
can be expressed in basic modal logic. As for condition (2) the hard part is to
express the existence of a common successor. This cannot be done in basic modal
logic, but it can be done in IF

∨ML. For the sake of illustration, consider the
IF
∨ML-formula

∀x2 (R(x1, x2) → (∃x3/{x2}) (R(x2, x3)))

which is equivalent to

∀x2 (¬R(x1, x2) ∨ (∃x3/{x2}) (R(x2, x3))).

Because of Propositions 3.4.9 and 3.5.7 the latter formula is equivalent to

∃x3∀x2 (R(x1, x2) → R(x2, x3)),

expressing that all R-successors of x1 have a common R-successor x3. This ex-
ample does not provide direct evidence of the claim that IF

∨ML can express
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condition (2), but it may strike the reader more plausible now. Showing that
IF
∨ML can express condition (3) is less perspicuous, and may thus be regarded

the main achievement of the proof. It is established using the relation Rb, which
intuitively is such that from every object v that is Ra-accessible from the spy
point w, one can return to w via one Rb-transition.

Before I get to the proof of Theorem 3.5.8, let me first go through the meaning
of a series of IF

∨ML(τ)-formulae, whose conjunction constitutes ΦT .
To enhance readability of the formulae appearing in the upcoming claims, I

start out from the formulae in modal-style notation. Generally speaking, they
are somewhat shorter and may please the reader who is familiar with modal
languages. Note that this language is used merely as shorthand notation. The
“non-shorthand” IF

∨ML-formula it conveys, is invariably given in the first line of
the proof of every claim (possibly modulo some truth preserving simplifications).
I shall write 〈a〉 and [a] instead of 〈Ra〉 and [Ra], respectively; and while working
with first-order syntax I shall write “x = y” rather than “R=(x, y)”. Further-
more, the predicates Pp, Pq, and Ppt

, for t ∈ T shall be written as P , Q, and Pt,

respectively. Every IF
∨ML-formula’s free variable shall be x1. Throughout the

claims, the object assigned to x1 will be the object w.

Claim. A |= (3.11)[x1/w] iff 〈w,w〉 ∈ RA
a and 〈w,w〉 ∈ RA

b ;
∧

i∈{a,b,=}

(〈i〉/{i})⊤. (3.11)

Proof. Consider the following equivalences:

(3.11) iff
∧

i∈{a,b,=}

(∃x/{i}) (Ri(w, x))

(⋆) iff ∃x
∧

i∈{a,b,=}

(Ri(w, x))

iff ∃x (Ra(w, x) ∧Rb(w, x) ∧ w = x)

iff Ra(w,w) ∧Rb(w,w).

Ad (⋆): Just as with ∀x(∃y/{x}) one may replace
∧

i∈I(∃y/{i}) by ∃y
∧

i∈I in

an IF
∨ML-formula without affecting its truth conditions. See also Proposition

3.4.9. 2

I will not mention the soundness of swapping quantifiers in subsequent claims.

Claim. A |= (3.12)[x1/w] iff if for some v, 〈w, v〉 ∈ RA
b , then w = v;

∧

i∈{b,=}

[i]1(〈=〉/{i, 1})⊤ (3.12)
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Proof. Consider the following equivalences:

(3.12) iff
∧

i∈{b,=}

∀x (Ri(w, x) → (∃y/{i, x})(x = y))

(⋆) iff
∧

i∈{b,=}

∀x(∃y/{i, x}) (Ri(w, x) → (x = y))

iff
∧

i∈{b,=}

(∃y/{i})∀x (Ri(w, x) → (x = y))

iff ∃y
∧

i∈{b,=}

∀x (Ri(w, x) → x = y)

iff ∃y (∀x(Rb(w, x) → x = y) ∧ ∀x(w = x→ x = y))

(◦) iff ∃y (∀x(Rb(w, x) → x = y) ∧ (w = y))

iff ∀x (Rb(w, x) → x = w).

Ad (⋆): In virtue of Proposition 3.5.7.
Ad (◦): In first-order logic ∀x(w = x→ x = y) is equivalent to (w = y). 2

Claim. A |= (3.13)[x1/w] iff for every v reachable from w through one Ra-
transition followed by one R△-transition it is the case that 〈v, v〉 ∈ RA

a , and
there is no other u such that 〈v, u〉 ∈ RA

a , for △ ∈ {⇑,⇒};

[a][△]




∧

i∈{a,=}

(〈i〉/{i})⊤ ∧
∧

i∈{a,=}

[i]1(〈=〉/{i, 1})⊤



 . (3.13)

Proof. I prove for △ equal to ⇑. Consider the following equivalences:

(3.13) iff ∀x (Ra(w, x) → ∀y (R⇑(x, y) → Ψ)), where

Ψ = ∃u(Ra(y, u) ∧ y = u) ∧
∧

i∈{a,=}

∀z(Ri(y, z) → (∃u/{i, z}) (u = z))

iff Ra(y, y) ∧ ∃u
∧

i∈{a,=}

∀z(Ri(y, z) → (u = z))

iff Ra(y, y) ∧ ∃u (∀z(Ra(y, z) → z = u) ∧ ∀z(y = z → z = u))

iff Ra(y, y) ∧ ∃u (∀z(Ra(y, z) → z = u) ∧ y = u)

iff Ra(y, y) ∧ ∀z (Ra(y, z) → z = y).

2

The following claims are readily observed, without using any non-standard
notation.
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Claim. A |= (3.14)[x1/w] iff for every v such that 〈w, v〉 ∈ RA
a there exists at least

one u with 〈v, u〉 ∈ RA
⇑ , where u disagrees with v on p but agrees with v on q;

[a]((p ∧ q) → 〈⇑〉(¬p ∧ q) ∧ (¬p ∧ q) → 〈⇑〉(p ∧ q) ∧ (3.14)

(p ∧ ¬q) → 〈⇑〉(¬p ∧ ¬q) ∧ (¬p ∧ ¬q) → 〈⇑〉(p ∧ ¬q)).

Claim. A |= (3.15)[x1/w] iff for every v such that 〈w, v〉 ∈ RA
a there exists at least

one u with 〈v, u〉 ∈ RA
⇒, where u disagrees with v on q but agrees with v on p;

[a]((p ∧ q) → 〈⇒〉(p ∧ ¬q) ∧ (¬p ∧ q) → 〈⇒〉(¬p ∧ ¬q) ∧ (3.15)

(p ∧ ¬q) → 〈⇒〉(p ∧ q) ∧ (¬p ∧ ¬q) → 〈⇒〉(¬p ∧ q)).

Claim. A |= (3.16)[x1/w] iff for every v such that 〈w, v〉 ∈ RA
a there exists at

most one u with 〈v, u〉 ∈ RA
△, for △ ∈ {⇑,⇒};

[a][△]1(〈=〉/{1})⊤. (3.16)

Proof. Similar to the proof of (3.12). 2

The following claim establishes that if v is Ra-accessible from w, then w is
Rb-accessible from v.

Claim. Let A |= (3.11) ∧ (3.12)[x1/w]. Then, A |= (3.17)[x1/w] iff for every v
and u, such that 〈w, v〉 ∈ RA

a and 〈v, u〉 ∈ RA
△, 〈v, w〉 ∈ RA

b and 〈u,w〉 ∈ RA
b , for

△ ∈ {⇑,⇒};

[a]1
∧

i∈{=,△}

[i]2(〈b〉/{1, i, 2})⊤ (3.17)

Proof. I prove for △ equal to ⇑. Consider the following equivalences:

(3.17) iff ∃z∀x



Ra(w, x) →
∧

i∈{⇑,=}

∀y (Ri(x, y) → Rb(y, z))





iff ∃z∀x (Ra(w, x) → (∀y(R⇑(x, y) → Rb(y, z)) ∧ ∀y(x=y → Rb(y, z))))

iff ∃z∀x (Ra(w, x) → (∀y(R⇑(x, y) → Rb(y, z)) ∧Rb(x, z)))

(⋆) iff ∃z∀x ((w = x ∨Ra(w, x)) → (∀y(R⇑(x, y) → Rb(y, z)) ∧Rb(x, z)))

(◦) iff ∃z∀x (w = x→ (∀y(R⇑(x, y) → Rb(y, z)) ∧Rb(x, z)) ∧

Ra(w, x) → (∀y(R⇑(x, y) → Rb(y, z)) ∧Rb(x, z)))

iff ∃z∀x (∀y(R⇑(w, y) → Rb(y, z)) ∧Rb(w, z) ∧

Ra(w, x) → (∀y(R⇑(x, y) → Rb(y, z)) ∧Rb(x, z)))

(†) iff ∀y(R⇑(w, y) → Rb(y, w)) ∧Rb(w,w) ∧

∀x(Ra(w, x) → (∀y(R⇑(x, y) → Rb(y, w)) ∧Rb(x,w)))

(‡) iff ∀x(Ra(w, x) → (∀y(R⇑(x, y) → Rb(y, w)) ∧Rb(x,w))).
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Ad (⋆): Derive from A |= (3.11)[x1/w] that 〈w,w〉 ∈ RA
a .

Ad (◦): In first-order logic (φ ∨ ψ) → χ is equivalent to (φ→ χ) ∧ (ψ → χ).
Ad (†): Derive from A |= (3.12)[x1/w] that if 〈w, v〉 ∈ RA

b , then w = v. So z
must be assigned w for the conjunct Rb(w, z) to be true on A.

Ad (‡): Derive from A |= (3.11)[x1/w] that 〈w,w〉 ∈ RA
a and that 〈w,w〉 ∈ RA

b .
Hence, the conjunct Rb(w,w) can be dropped. Furthermore, if v is reachable from
w via an R⇑-edge, then one can also get to v by first traversing the reflexive Ra-
edge at w and thereafter moving to v along the R⇑-edge. So the left conjunct is
entailed by the right conjunct and can therefore be omitted. 2

The reader may appreciate a more loose description of what is expressed by the
fact that A |= (3.11)∧ (3.12)∧ [a]1

∧

i∈{⇑,=}[i]2(〈b〉/{1, i, 2})⊤[x1/w]. To this end,

consider three objects w, v, and u such that 〈w, v〉 ∈ RA
a and 〈v, u〉 ∈ RA

i , where
i is either ⇑ or = depending on Abelard’s choice for

∧

i∈{⇑,=}. As indicated by

(〈b〉/{1, i, 2}) Eloise has to move ignorant of all of Abelard’s moves. In particular
she does not know v nor i, for which reason she also does not know whether
v = u. Since A |= (3.11)[x1/w], the spy point w is Ra-accessible from itself. So
after Abelard’s move for [a]1 Eloise conceives it possible that the object v equals
w. Because she does not know whether i is =, Eloise holds it possible that u
equals w. Thus Eloise is able to find a common Rb-successor of w, v, and u. By
A |= (3.12)[x1/w] it follows that the only common Rb-successor is w itself since
there is no other object Rb-accessible from w. See also the diagram below:

u

b

~~
w a //a,b 88 v

i

OO

b

aa

In the following claim it is established that there exists one object u such that
every object v that can be reached from w through one Ra-transition followed by
one R△-transition is Rb accessible from v. If (3.17) holds on A under x1/w, then
u is in fact the spy point w.

Claim. A |= (3.18)[x1/w] iff there exists a t, such that for every r, r′, s, s′, if
〈r, r′〉 ∈ RA

a , 〈r′, s〉 ∈ RA
△, and 〈s, s′〉 ∈ RA

b , then t = s′;

[a]1[△]2[b]3(〈=〉/{1, 2, 3})⊤. (3.18)

Proof. I prove for △ equal to ⇑. Consider the following equivalence:

(3.18) iff ∃u∀x (Ra(w, x) → (∀y (R⇑(x, y) → (∀z (Rb(y, z) → (z = u)))))).
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2

The following claim shows that IF
∨ML can enforce that Ra be a universal

accessibility relation from w, cf. condition (1) above. Put differently, IF
∨ML can

enforce that if there is a path of R⇑ and R⇒-transitions from w to v, then v is
Ra-accessible from w.

Claim. Let A |= (3.13) ∧ (3.14) ∧ (3.16) ∧ (3.17) ∧ (3.18)[x1/w]. Then, A |=
(3.19)[x1/w] iff for every v and u, if 〈w, v〉 ∈ RA

a and 〈v, u〉 ∈ RA
△ then 〈w, u〉 ∈ RA

a ,
for △ ∈ {⇑,⇒};

[a][△]
∧

i∈{b,=}

[i]1(〈a〉/{i, 1})⊤. (3.19)

Proof. I prove for △ equal to ⇑. Consider the following equivalences:

(3.19) iff ∀x (Ra(w, x) → ∀y (R⇑(x, y) → Ψ)), where

Ψ = ∃u (∀z(Rb(y, z) → Ra(z, u)) ∧ ∀z(y = z → Ra(z, u))))

iff ∃u (∀z(Rb(y, z) → Ra(z, u)) ∧Ra(y, u))

(⋆) iff ∃u (∀z(Rb(y, z) → Ra(z, u)) ∧Ra(y, u) ∧ u = y)

(◦) iff ∀z(Rb(y, z) → Ra(z, y))

(†) iff Ra(w, y)).

Ad (⋆): Derive from A |= (3.14) ∧ (3.16)[x1/w] that if 〈v, v′〉 ∈ RA
⇑ , then v

and v′ disagree on p. Obviously then, v and v′ are distinct objects. So for every
v, v′, and v′′, if 〈w, v〉 ∈ RA

a , 〈v, v′〉 ∈ RA
⇑ , and 〈v′, v′′〉 ∈ RA

a , then w 6= v′′. By
A |= (3.13)[x1/w] it follows that v′ = v′′. So the variables y and u must be
assigned the same object for the formula to be true on A.

Ad (◦): Derive from A |= (3.13)[x1/w] that 〈v, v〉 ∈ RA
a , for every object v.

So the conjunct Ra(y, y) is dispensable.
Ad (†): Derive from A |= (3.17) ∧ (3.18)[x1/w] that for every v, v′, if 〈v, v′〉 ∈

RA
b then v′ = w. 2

For an informal formulation of the argument, let A be a structure from the
premise of the claim on which [a][△]

∧

i∈{b,=}[i]1(〈a〉/{i, 1})⊤ is true under x1/w.
Suppose Abelard makes two moves: first he moves along an Ra-edge from w to v;
second he moves along an R△-edge from v to u. Third, he chooses the modality
Rb or R=. The gist is that for every i ∈ {b,=} there is exactly one Ri-successor
of u. By the previous claims, namely, w is the only Rb-accessible object from u;
and by definition only u itself is =-accessible from u. Eloise does not know the
modality Ri along which Abelard moved previously, but for the aforementioned
reasons she knows that she has to point out a common Ra-successor of w and u.
Her array of choices appears to be restricted to u, because by A |= (3.13)[x1/w]
it follows that u has only one Ra-successor, namely u itself. Therefore, there u
must be an Ra-successor of the spy point w. See also the following diagram:
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w a //

a

""
bb

b

v
△

// u =,aee

It remains to be shown that IF
∨ML can enforce a grid structure, cf. condition

(3) above. It was already observed that all Ra-accessible worlds from w have one
R⇑-successor s and one R⇒-successor s′, that are different from each other. It
suffices thus to show that for every such pair s and s′ there exists one object t
that is R⇒-accessible from s and R⇑-accessible from s′.

Claim. Let A |= (3.14)∧(3.15)∧(3.16)[x1/w]. Then, A |= (3.20)∧(3.21)[x1/w] iff
for every v, s, s′, t, t′, such that 〈w, v〉 ∈ RA

a , 〈v, s〉, 〈s′, t′〉 ∈ RA
⇑ , and 〈v, s′〉, 〈s, t〉 ∈

RA
⇒, it is the case that t = t′;

[a]



p→




∧

i∈{⇑,⇒}

[i]2
∨

j∈{⇑,⇒}

(〈j〉/{i, 2, j})¬p







 (3.20)

[a]



¬p→




∧

i∈{⇑,⇒}

[i]2
∨

j∈{⇑,⇒}

(〈j〉/{i, 2, j})p







 . (3.21)

Proof. Consider the following equivalences:

(3.20) iff ∀x (Ra(w, x) → (P (x) → ∃z (Ψ))), where

Ψ = ∀y ((R⇑(x, y) → ((R⇑(y, z) ∧ ¬P (z)) ∨ (R⇒(y, z) ∧ ¬P (z))))) ∧

∀y ((R⇒(x, y) → ((R⇑(y, z) ∧ ¬P (z)) ∨ (R⇒(y, z) ∧ ¬P (z)))))

(⋆) iff ∀y ((R⇑(x, y) → ((R⇑(y, z) ∧ ¬P (z)) ∨ (R⇒(y, z) ∧ ¬P (z)))) ∧

(R⇒(x, y) → ((R⇑(y, z) ∧ ¬P (z)) ∨ (R⇒(y, z) ∧ ¬P (z)))))

(◦) iff ∀y ((R⇑(x, y) → (R⇑(y, z) ∧ ¬P (z)) ∨

R⇑(x, y) → (R⇒(y, z) ∧ ¬P (z)))

∧

(R⇒(x, y) → (R⇑(y, z) ∧ ¬P (z)) ∨

R⇒(x, y) → (R⇒(y, z) ∧ ¬P (z))))

(†) iff ∀y ((R⇑(x, y) → R⇒(y, z) ∧ ¬P (z)) ∧

(R⇒(x, y) → R⇑(y, z) ∧ ¬P (z)))

(‡) iff ∀y ((R⇑(x, y) → R⇒(y, z)) ∧ (R⇒(x, y) → R⇑(y, z))).

Ad (⋆): In first-order logic (∀xφ ∧ ∀xψ) is equivalent to ∀x (φ ∧ ψ).
Ad (◦): In first-order logic φ→ (ψ ∨ χ) is equivalent to (φ→ ψ) ∨ (φ→ χ).



70 Chapter 3. Fragments of IF logic

Ad (†): Derive from A |= (3.14)∧(3.15)∧(3.16)[x1/w] that for every v, v′, and
v′′, such that R△(v, v′) and R△(v′, v′′), v and v′′ agree on p, for △ ∈ {⇑,⇒}. As
the antecedent holds true if the object assigned to x makes p true, the disjuncts

R⇑(x, y) → (R⇑(y, z) ∧ ¬P (z)) and R⇒(x, y) → (R⇒(y, z) ∧ ¬P (z))

are never true and can be omitted without affecting the formula’s truth conditions.

Ad (‡): Derive from A |= (3.14) ∧ (3.15)[x1/w] that for every v, v′, and v′′,
such that R⇑(v, v

′) and R⇒(v′, v′′), v and v′′ disagree on p. So if p is true on v,
¬p is true on v′′ and the conjuncts ¬P (z) are dispensable. 2

To grasp the underlying idea, consider a structure A that meets the premises
of the claim and an object v that makes Pp true and is Ra-accessible from w.
Furthermore, consider two Eloises: Eloisej and Eloise〈j〉, the former controlling
the disjunctive quantifier, the latter controlling the modal operator. As for the
actual game playing, it is the case that Abelard moves either along the R⇑-edge
to the object s or along the R⇒-edge to the object s′. (Recall that every object
Ra-accessible from w has exactly one R⇑-successor and exactly one R⇒-successor,
due to A |= (3.14) ∧ (3.15) ∧ (3.16)[x1/w].) Since A |= (3.14) ∧ (3.15)[x1/w], s is
not a P -object, whereas s′ is. For Eloise〈j〉 to be able to move to a non-P -object,
she must be able to move along the R⇒-edge if Abelard chose i = ⇑, and along
the R⇑-edge if Abelard chose i = ⇒. However, all Eloise〈j〉 knows is actually the
object v—she does not know whether Abelard advanced to s or s′. So for the
Eloises to win there must be an object, call it t, such that t is R⇒-accessible from
s and R⇑-accessible from s′. Eloisej takes care the appropriate modality is chosen,
by setting j = ⇒ if Abelard moved to s, and j = ⇑ if Abelard moved to s′. The
case in which v is not a P -object is similar, using the fact that A |= (3.16)[x1/w].
See also the diagram below:

s ⇒ // t

is equal to

t′

w a
// v ⇒

//

⇑

OO

s′

⇑

OO

The proof of Theorem 3.5.8 follows readily in view of the aforementioned ra-
tionale and the claims.

Proof of Theorem 3.5.8. Put

ΦT = (3.11) ∧ . . . ∧ (3.20) ∧ [a]θT ,
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where θT is the conjunction of

∨

t∈T



pt ∧
∧

t′∈T−{t}

¬pt′





and

∧

t∈T







pt → [⇒]
∨

t′∈T (t,⇒)

¬pt′



 ∧



pt → [⇑]
∨

t′∈T (t,⇑)

¬pt′







 .

In the latter formulae, the set T (t,⇑) contains all tiles t′ from T such that up(t) =
down(t′), and similarly for T (t,⇒). The formula θT is copied from (Blackburn,
de Rijke, and Venema 2001, Theorem 6.31), and ensures that every object carries
exactly one tile and that two adjacent objects are appropriately tiled with respect
to their common edge.

It remains to be proved that there exists a τ -structure A and an object w such
that A |= ΦT [x1/w] iff T ∈ Tiling. I.e., ΦT is satisfiable iff T can tile N × N.

From left to right. Suppose there exists a τ -structure A and an object w such
that A |= ΦT [x1/w]. Consider the set of objects B ⊆ A, such that

B = {c ∈ A | 〈w, c〉 is in the transitive, reflexive closure of RA
⇑ ∪RA

⇒}.

Consider the structure B = 〈B, 〈SB〉S∈τ 〉, where SB = SA∩Ba and a is the arity
of S. B can be regarded a substructure of A. In B the relations Ra, R⇑, and R⇒

from τ are interpreted such that:

(1) For every c ∈ B, 〈w, c〉 ∈ RB
a , due to (3.13), (3.14), (3.16), (3.17), (3.18),

and (3.19).

(2a) For every c ∈ B, there are exactly two distinct d and d′ such that 〈c, d〉 ∈ RB
⇒

and 〈c, d′〉 ∈ RB
⇑ , due to (3.14), (3.15), and (3.16). It follows that RB

⇒ and

RB
⇑ are functional on B.

(2b) For every c, d, d′, e, e′ ∈ B, such that 〈c, d〉, 〈d′, e′〉 ∈ RB
⇒ and 〈c, d′〉, 〈d, e〉 ∈

RB
⇑ , it is the case that e = e′, due to (3.14), (3.15, (3.16), (3.20), and (3.21).

That is, RB
⇒ and RB

⇑ commute on B.

From (2a) and (2b) it follows that B is a grid. From (1) and the fact that
A |= [a]θT [x1/w], it follows that θT holds on every object in B. Hence, B witnesses
the fact that T ∈ Tiling.
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From right to left. Suppose T can tile N×N. Let f : N×N → T be a tiling of
the plane. Let the τ -structure C be defined on the basis of f as follows:

C = (N × N)

RC
a = (〈0, 0〉 × C) ∪RC

=

RC
b = (C × 〈0, 0〉)

RC
⇑ = {〈〈n, n′〉, 〈n+1, n′〉〉 | 〈n, n′〉 ∈ C}

RC
⇒ = {〈〈n, n′〉, 〈n, n′+1〉〉 | 〈n, n′〉 ∈ C}

PC = {〈n, 2n′〉 | 〈n, n′〉 ∈ C}

QC = {〈2n, n′〉 | 〈n, n′〉 ∈ C}

PC
t = {〈n, n′〉 ∈ C | f(n, n′) = t}.

Clearly, C |= ΦT [x1/〈0, 0〉], and the result follows. 2

Thus observe that ST (ML
∨

) loses decidability once it is subject to the IF
procedure. As I mentioned before, Theorem 3.5.8 establishes the lower bound of
IF
∨ML’s complexity. Its upper bound is trivially Σ1

1, since it is a fragment of
IF
∨

. The exact complexity of IF
∨ML is left as an open problem.

Undecidability for IF
∨ML gives rise to yet another question: What restric-

tions should be imposed in order to regain decidability? Natural restrictions
suggest themselves from the proofs of the previous claims. For instance, all but
three of the conjuncts (3.11) ∧ . . . ∧ (3.20) use the equality symbol. By this ob-
servation it seems that the equality symbol is essential for the proof, and the
question remains if IF

∨ML would be decidable in its absence. In a similar vein,
note that for every conjunct in ΦT that has a conjunctively quantified index i
it is the case that i appears in the slash-set of the conjunct’s modal operator
belonging to Eloise: ([. . .]/{. . . , i, . . .}).

3.6 Concluding remarks

In this chapter, a natural set of game rules was introduced, that span the class
of IF semantic games. This rule book requires as many Eloises as there are
existential variables in the formula at stake. Introducing multiple Eloises is a
way to overcome the “perfect recall problem”. A more direct way to overcome
this problem is by ignoring all IF-formulae whose semantic games violate perfect
recall. In this manner, I defined the perfect recall fragment of IF logic. Theorem
3.4.3 shows that the perfect recall fragment of IF logic coincides with first-order
logic, when it comes to expressive power. In the spirit of ongoing research on
modal logic, I defined a new independence-friendly modal logic, IF

∨ML, naturally
as a fragment of IF

∨
as follows:

• obtain the first-order correspondence language of ML
∨

: ST ′(ML
∨

);
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• produce the language ST (ML
∨

) by seeing to it that every variable in every
ST ′(ML

∨
)-formula is quantified at most once without affecting the for-

mula’s truth condition; and

• apply the IF procedure constituted by (IF) to ST (ML
∨

) and get IF
∨ML.

I showed that this logic’s semantic games meet the action consistency requirement.
IF
∨ML was proved undecidable by means of a reduction from Tiling.
Basic modal logic’s satisfiability problem is decidable, yet Theorem 3.5.8 shows

that IF
∨ML is Π0

1-hard. Theorem 3.5.8 does not settle the case for IF
∨ML up

to completeness. Further research on this topic is desirable, which may take
into account also the influence of the equality symbol and slashing over indices.
This enterprise can be seen as an investigation of the trade-off between modal
languages on the one side and imperfect information languages on the other side.

Other interesting questions concerning IF
∨ML are readily conceived and in-

clude the issues of frame definability and bisimulation.
In (Hyttinen and Tulenheimo 2005) it was shown that the “perfect recall”

language IFMLPR is decidable. The authors baptized this language “perfect
recall”, on account of the association of the language’s syntax with perfect recall
games. I do not wish to argue that this predicate is ill-chosen, only I point out
that it is chosen on syntactic grounds. By contrast, recall that in this dissertation
the language IFPR was defined on semantic grounds, namely on the basis of
the semantic games of the formulae. It is interesting to investigate whether the
reported result for the language IFMLPR can be repeated for the semantically
defined perfect recall fragment of IF

∨ML.
In (Cameron and Hodges 2001) it was shown that there cannot exist a com-

positional semantics for IF logic in terms of single assignments, such as Tarski
semantics for first-order logic. Theorem 3.4.3 shows that there exist fragments
of IF logic whose semantic games have imperfect information whose expressive
power does not exceed first-order logic’s. This raises the question whether for
those fragments it is possible to construct a compositional semantics in terms of
single assignments.

This chapter drew upon the connection between independence-friendliness in
logic and games with imperfect information in game theory. It was discovered that
one can apply notions from game theory to IF logic and study their impact, from
a model-theoretic and computational perspective. The insights thus obtained are
mixed: imposing perfect recall on full IF logic decreases the expressive power to
the level of first-order logic, yet the basic modal logic that was extended so as to
incorporate imperfect information becomes undecidable.

The results in this chapter show that IF logic harbors interesting fragments
with surprising properties. Those fragments may have common motivations from
computational logic; but also fresh ones from game theory.





Chapter 4

Partially ordered connectives

Henkin quantifiers (Henkin 1961) can be regarded as blocks of independence-
friendly quantifiers, with highly regular independence schemes. Traditionally
Henkin quantifiers have been remotely associated with imperfect information,
but no publications investigate this viewpoint. In this chapter I will do so, and
observe that the regularity of the Henkin quantifiers’ independence schemes opens
up different ways of explaining the origin of imperfect information. Two of them
are in fact cognitively involved: limited memory and absentmindedness. Fur-
thermore, I will show that restricting the number of actions leads to so-called
partially ordered connectives introduced in (Sandu and Väänänen 1992). A sub-
stantial part of this chapter is devoted to mapping out the finite model theory of
logics with partially ordered connectives.

4.1 Introduction

Fagin’s Theorem (Fagin 1974), cited as Theorem 2.5.1 in this dissertation, reveals
the intimate connection between finite model theory and complexity theory. As
a methodological consequence it appears that questions and results regarding
a complexity class may be relevant to logic and vice versa. For instance, the
complexity theorist’s headaches caused by the NP = coNP-problem can now
be shared by the logician working on the Σ1

1 = Π1
1-problem. Solving the NP =

coNP-problem is worth a headache: if NP 6= coNP, then P 6= NP. Indeed,
logicians working within finite model theory address this problem. By and large
they proceed by mapping out fragments of various logics. A case in point is Fagin’s
(1975) study of the monadic fragments of Σ1

1 and Π1
1, showing that they do not

coincide. (The monadic (k-ary) fragment of Σ1
1 contains only those formulae in

which relation variables are unary (have arity ≤ k). For a formal definition, see
Definition 4.3.3.) Ajtai, Fagin, and Stockmeyer (2000, pg. 661) reflect on this
approach in the following way:

75
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“Instead of considering Σ1
1 (= NP) and its complement Π1

1 (= coNP)
in their full generality, we could consider the monadic restriction of
these classes, i.e., the restriction obtained by allowing second-order
quantification only over sets (as opposed to quantification over, say,
binary relations). [. . . ] The hope is that the restriction to the monadic
classes will yield more tractable questions and will serve as a training
ground for attacking the problems in their full generality.”

To the finding that monadic Σ1
1 6= monadic Π1

1 one might respond: One down,
infinitely many to go. For Fagin’s result does not apply to the respective binary
fragments, let alone the k-ary fragments, for any k ≥ 2. But this response would
be overly pessimistic. Because in the first place we observe that monadic Σ1

1 can
describe problems that are amongst the ones most typical for NP: NP-complete
problems, such as 3-Colorability and Sat. Secondly, there is the empirical
observation that the vast majority of NP-computable problems encountered in
everyday practice can be characterized by a formula in binary Σ1

1. Bearing this
observation in mind, one down, one to go might be a more appropriate reaction.

The results in (Fagin 1975) aroused a lot of interest in monadic languages
(Turán 1984; Ajtai and Fagin 1990; Ajtai, Fagin, and Stockmeyer 2000), but
disappointingly, it is unknown whether binary, existential, second-order logic can
be separated from 3-ary, existential, second-order logic, cf. (Durand et al. 1998),
or from binary, universal, second-order logic.

Parts of this chapter are within the tradition of mapping out the finite model
theory of fragments of Σ1

1. In this chapter I will concern myself with languages
with Henkin quantifiers and partially ordered connectives. The theory of partially
ordered quantification was started by Henkin (1961). Henkin entertained himself
with an innovative way of quantification, found in special prefixes generally known
as Henkin quantifiers . A Henkin quantifier with dimensions k and n is depicted
by






∀x11 . . . ∀x1k ∃y1
...

. . .
...

...
∀xn1 . . . ∀xnk ∃yn




 . (4.1)

In the interest of brevity, I will normally write Hn
k~x~y or even Hn

k to denote the
Henkin quantifier (4.1).

This two-dimensional way of representation aims to convey that the variable yi
depends on ∀~xi = ∀xi1 . . . ∀xik and on ∀~xi only. In this way, the Henkin quantifier,
with dimensions k and n, is defined by the following string of quantifiers from
Independence-friendly logic:

∀x11 . . . ∀x1k(∃y1/Y1) . . . ∀xn1 . . . ∀xnk(∃yn/Yn), (4.2)

where Yh = {xij | 1 ≤ i < h, 1 ≤ j ≤ k}.
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Let the logic H(τ) be the result of applying Henkin quantifiers of arbitrary
(but finite) dimensions to first-order formulae over the vocabulary τ :

Φ ::= ψ | Hn
k ψ,

where k, n are integers and ψ ranges over FO(τ). The semantics for H(τ) is
typically given in terms of Skolem functions, which are very much similar to IF
logic. Let A be a τ -structure and let α be an assignment in A.

Then, define

A |= Hn
k~x1 . . . ~xny1 . . . yn ψ(~x1, . . . , ~xn, y1, . . . , yn)[α]

iff there exist k-ary functions f1, . . . , fn on A such that

A |= ∀~x1 . . . ∀~xn ψ(~x1, . . . , ~xn, f1(~x1), . . . , fn(~xn))[α].

The finding that the logic H coincides with full Σ1
1, cf. (Enderton 1970; Walkoe

1970) is a milestone result in the theory of partially ordered quantification. In
fact, the proof of Theorem 3.2.8 on page 36 about the expressive power of IF logic
is derived from the latter result and the insight that (4.1) and (4.2) define each
other.

Blass and Gurevich (1986) drew upon the connection between H, Σ1
1, and

NP on finite structures. Their publication departs from the view that Fagin’s
Theorem can be cast in terms of partially ordered quantifiers: H captures NP.
Bearing this in mind, the study of fragments of H can be justified by the same
arguments that justify the interest in arity bounded fragments of Σ1

1.
In this chapter I will study languages with partially ordered connectives that

feature restricted quantifiers
∨

i∈{0,1} instead of existential quantifiers. The logic
D is the result of prefixing first-order logic with partially ordered connectives,
analogous to H. As it contains restricted quantifier prefixes, the hope is justified
that D gives rise to new fragments of H = NP, over finite structures.

This chapter contributes several results to finite model theory, the first one
being a characterization of D as a fragment of Σ1

1. Furthermore it is shown that
(a) D can express a property expressible in k+1-ary, existential, second-order
logic that cannot be expressed in k-ary, existential, second-order logic, and that
(b) D is not closed under complementation, as it can express 2-Colorability
but not its complement. Since the characterization of D is rather natural it may
provide handles for future research on Σ1

1.

In Section 4.2, I introduce the game-theoretic framework for Henkin quanti-
fiers and partially ordered connectives, which provides a viewpoint to appreciate
Henkin quantifiers and the like. It is interesting to compare the game-theoretic
semantics of Henkin quantifiers with those of IF logic. I showed in Section 3.3
that the imperfect information in IF semantic games can be accounted for by
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teams of players and the attribute of envelopes. Interestingly, I show that the
imperfect information in Henkin quantifiers and related quantifiers can be seen
to be brought about by cognitive restrictions on agents, such as a limited number
of memory cells, and absent-mindedness.

In Section 4.3, I collect the definitions of the logics with partially ordered
connectives and the relevant fragments of second-order logic. Roughly speaking,
I will look at two languages: the one being first-order logic prefixed with one
partially ordered connective, denoted by D, the other being the full closure of
this language, written L (D), that allows for nested partially ordered connectives,
interspersed with negations and first-order quantifiers.

In Section 4.4, I review a selection of the literature on partially ordered con-
nectives, either because it will be used, or because it outlines the field of research.

In Section 4.5, I give a translation from D into of Σ1
1.

In Section 4.6 this translation result is strengthened by giving the characteri-
zation of D in terms of a natural fragment of Σ1

1 denoted by Σ1
1♥.

in Section 4.7, I show that D can express a property expressible in k+1-
ary, existential, second-order logic that cannot be expressed in k-ary, existential,
second-order logic, using the characterization result, see (a) above. Furthermore,
I show that on linear ordered structures D captures NP.

In Section 4.8, I introduce a model comparison game for D, à la Ehrenfeucht
and Fräıssé.

In Section 4.9, I give an application of this game, leading to a non-express-
ibility result for D which implies that D is not closed under complementation,
see (b). It also follows that on arbitrary finite structures D < NP.

In Section 4.10, I treat the descriptive complexity of queries from L (D) and
L (H). I show that the upper bound of the expression complexity for L (H) is
PNP

q
, and that L (H) and L (D) capture PNP

q
on linear ordered structures.

Section 4.11 concludes the chapter.

4.2 GTS for partially ordered prefixes

Henkin quantifiers can be seen as blocks of IF quantifiers with highly regular in-
dependence schemes. I show that the imperfect information in semantic games of
H can be understood in terms of non-absentminded agents with a limited num-
ber of memory cells. In the same vein, I show that function quantifiers from
(Krynicki and Väänänen 1989) are played by similar but absentminded agents.
In this manner, we observe that Henkin quantifiers and function quantifiers are
played by cognitively bounded agents. Recall that the imperfect information in
IF games was explained in Section 3.3 in terms of multiple players and envelopes.
I show that partially ordered connectives can be understood as limiting the array
of actions available to the players.
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For the sake of simplicity I shall restrict myself in this section to H-formulae
Hn
k~x~y φ in which φ is a possibly negated atom. Furthermore, I assume that all

variables in φ are bound by the Henkin quantifier Hn
k~x~y. On this assumption, the

game rules for the semantic game of Hn
k~x~y φ are simply the ones for the semantic

game of the first-order
∀~x1∃y1 . . . ∀~xn∃yn φ,

which is a game of perfect information as before. The imperfect information is
introduced by assuming that the semantic game of Hn

k~x~y φ is being played by an
agent Aknot-a who has exactly k memory cells and manages his cells in a first in first
out fashion. This assumption implies that when Aknot-a is deciding on an object
for yi, A

k
not-a “knows” only the objects picked up over the k previous rounds, that

is, the objects assigned to ~xi = xi1, . . . , xik. Furthermore, I postulate that Aknot-a

is not absentminded . That is, if Aknot-a cannot distinguish two histories h and h′,
then ℓ(h) = ℓ(h′). This postulate implies that when choosing an object to assign
to yi the agent Aknot-a “knows” that the object selected will be assigned to yi.

In this manner, every H-formula Φ and suitable structure A give rise to an
extensive game with imperfect information, call it Sem-gameH(Φ,A). In this
extensive game, two histories h and h′ are indistinguishable, if the last k elements
in h and h′ coincide and the length of h is equal to the length of h′.

I refrain myself from a rigorous definition of these games, as they are highly
similar to the ones defined for IF logic in Definition 3.2.7 on page 34.

4.2.1. Proposition. For every H-formula Φ as in (4.1) and suitable structure
A, the agent Aknot-a has a winning strategy in Sem-gameH(Φ,A) iff A |= Φ.

It is noteworthy that the “origin” of the imperfect information in IF semantic
games is explained in Section 3.3 by means of special game rules and information
hiding items, such as envelopes. By contrast, the imperfect information in the
semantic games for Henkin quantifiers is explained by reference to the restricted
cognitive capabilities of the agents. Limited memory is a case in point, but one
may also study the consequences of dropping non-absentmindedness.

It was observed by Krynicki and Mostowski (1995, pg. 223) that many H-
formulae appearing in the literature express the existence of one single func-
tion on the universe at hand. As such many H-formulae sit in a certain frag-
ment of H, that was studied by Krynicki and Väänänen (1989). This partic-
ular fragment is defined by the function quantifier Fnk , that binds the variables
x11, . . . , xnk, y1, . . . , yn, just like the Henkin quantifier with dimensions k and n. (I
will adhere to the same notational conventions that apply to Henkin quantifiers.)
The logic F is defined as the language containing all strings of the form

Fnk ~x1 . . . ~xny1 . . . yn φ(~x1, . . . , ~xn, y1, . . . , yn), (4.3)

where ~xi = xi1, . . . , xik as before and φ is a possibly negated atom. As for the
semantics, any formula (4.3) is true on a suitable structure A iff there exists one
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k-ary function f on A such that

A |= ∀~x1 . . . ∀~xn φ(~x1, . . . , ~xn, f(~x1), . . . , f(~xn)).

From a game-theoretic point of view, we will see that the move from Henkin quan-
tifiers to function quantifiers resembles imposing absentmindedness on the agent
Aknot-a playing according to the rules of the semantic game of ∀~x1∃y1 . . . ∀~xn∃yn φ
on A. Just as with H, if Φ is a F-formula let Sem-gameF(Φ,A) be the extensive
game with imperfect information that models a k-memory cell, first in first out,
absentminded agent Aka in the latter game. In this extensive game, crucially,
two histories h and h′ are indistinguishable, if the last k elements in h and h′

coincide. However, h and h′ need not be of equal length, due to the agent’s
absentmindedness.

4.2.2. Proposition. For every F-formula Φ as in (4.3) and suitable structure
A, the agent Aka has a winning strategy in Sem-gameF(Φ,A) iff A |= Φ.

In the same vein let us restrict the agent’s powers to an even greater extent.
Consider a poor sort of agent: absentminded and in possession of only one memory
cell, that is, it recalls only the last move.1 On top of this provide the agent with
a fixed and finite array of actions. By contrast, recall that the number of actions
in any semantic game on structure A available to the agent is unbound, since it
equals the cardinality of A’s universe.

Would this agent be the refuse of the semantic game players society, frowned
upon by the perfect memory and non-absentminded upper class? I think not.
Imagine a figure skating dancing jury member—surely a highly respected citizen
of the society. Her array of actions is fixed: holding up a sign with a mark in
the range from 1 to 10. A professional member of the jury takes into account the
performance of the skaters and nothing but the performance. So in particular,
it should not matter to the objective judgment of the current performance what
where the previous performances like, and neither should the ordering of the
skaters be a factor in the evaluation. Henceforth, a jury member refers to a
one-memory cell, absentminded player having a fixed and finite array of actions.

Moving from game theory to logic, the question is what logical language would
give rise to extensive semantic games that are playable by jury members. Consider
the jury member prefix with actions I as in

JnI x1 . . . xni1 . . . in γ(i1, . . . , in)(x1, . . . , xn) (4.4)

in which JnI prefixes the function γ(i1, . . . , in)(x1, . . . , xn) that maps every string of
actions from I{i1,...,in} to an atomic first-order formula over the variables x1, . . . , xn.
Define

A |= JnI x1 . . . xni1 . . . in γ(i1, . . . , in)(x1, . . . , xn)

1Some authors would call this agent memory-free, as it obtains all its information from
observing the last action taken in the game.
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iff there exists one function f of type A→ I such that

A |= ∀x1 . . . ∀xn γ(f(x1), . . . , f(xn))(x1, . . . , xn).

For one thing, jury members do an elegant job coloring graphs. Consider namely
the following formula:

Ψ3 = J2
{1,2,3} x1x2i1i2 γ(i1, i2)(x1, x2), (4.5)

where

γ(i, j)(x1, x2) =

{
⊤ if i 6= j
¬R(x1, x2) if i = j.

Then, Ψ3 is true on a graph G iff there exists a function f : G → {1, 2, 3} such
that

G |= ∀x1∀x2 (f(x1) = f(x2) → ¬R(x1, x2)),

that is, if G is 3-colorable. Let J be the language all of whose formulae are as in
(4.4). Let the game rules of a semantic evaluation game for a formula Φ ∈ J be
defined as the game rules of the semantic game of the first-order formula

Φ♠ = ∀x1

∨

i1∈I

. . . ∀xn
∨

in∈I

γ(i1, . . . , in)(x1, . . . , xn),

and let Sem-gameJ(Φ,A) be the extensive game with imperfect information that
models the semantic game starting from 〈Φ♠,A〉 being played by a jury member
with actions I. Jury members have a properly defined logical language of their
own:

4.2.3. Proposition. For every J-formula Φ as in (4.4) and suitable structure
A, a jury member with actions I has a winning strategy in the semantic game
Sem-gameJ(Φ,A) iff A |= Φ.

Interestingly, the jury member logic J is akin to the logic studied in (Blass and
Gurevich 1986; Sandu and Väänänen 1992). These papers study so-called par-
tially ordered connectives whose semantic games are played by non-absentminded
jury members. The study of partially ordered connectives on finite structures is
taken up in subsequent sections in this chapter.

Let me conclude this paragraph with two remarks:

• In semantic evaluation games for first-order logic, Eloise is an agent with an
indefinite amount of memory. The winning conditions for a semantic game
for a first-order formula φ are expressible in first-order logic, namely by φ
itself. Turning to semantic evaluation games for H, the agent at hand has
only a fixed number of memory cells. Amusingly, capturing the winning
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conditions for this agent in a semantic game requires a logic with expressive
power stronger than first-order logic, namely Σ1

1. The same phenomenon
has a computational manifestation: the expression complexity of J is NP-
complete, as the logic can express 3-Colorability, witnessed by Ψ3. On
the other hand, it is well-known that the expression complexity of fixed
first-order is in deterministic logspace, cf. (Immerman 1999).

Although expressive power and expression complexity seem to show that
imperfect information makes life harder, other measures of complexity may
of course give different outcomes. In (van Benthem 2001) it is shown that to
axiomatize the class of perfect information games one needs more axioms.

• Absentmindedness is a mind boggling concept in game theory. By contrast,
as was observed by Krynicki and Mostowski (1995), many H-formulae ap-
pearing in the literature happen to be implementations of F-formulae. In-
terestingly, the formula Ψ3 in (4.5) expresses 3-Colorability in an elegant
way. So what is dubious a notion in game theory, may be bon ton in logic
and give rise to neat syntactic characterizations. This makes one wonder
whether the semantic games thus introduced may be of any assistance in
the clarification of the concept of absentmindedness in game theory.

4.3 Logics with partially ordered connectives

In this section, I introduce the syntax and semantics for two languages with par-
tially ordered connectives, that will be the primary objects of investigation. The
definitions are taken from (Sandu and Väänänen 1992) without substantial mod-
ifications.

4.3.1. Definition. Let IND be the countable set of indices, let k be an integer,
and let τ be a vocabulary. Define an implicit matrix τ -formula as a function of
type {0, 1}k → FO(τ). Let the language L (D)(τ) be defined by the following
grammar:

Γ ::= γ | ¬Γ | Γ ∨ Γ | ∃x Γ |






∀x11 . . . ∀x1k

∨
i1

...
. . .

...
...

∀x1k . . . ∀xnk
∨
in




 Γ,

where γ ranges over the implicit matrix τ -formulae. For the sake of readability, I
may abbreviate the matrix of quantifiers by Dn

k~x~i or even by Dn
k , if no confusion

threatens. Dn
k is called a partially ordered connective, and k, n are called its

dimensions .
Special attention will be with the fragment of L (D)(τ) containing only im-

plicit matrix τ -formulae that are prefixed by a single partially ordered connective.
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Let Dn
k(τ) be the fragment of L (D)(τ) all of whose formulae are of the form Dn

k γ.
Finally, put

Dk(τ) =
⋃

n

Dn
k(τ)

D(τ) =
⋃

k

Dk(τ).

Let the complementary language of D(τ) be defined as the language that is
obtained by negating every formula in D(τ), written ¬D(τ).

The notion of free and bound variable and index is defined with respect to
L (D)(τ) as usual. A sentence of L (D)(τ) is a L (D)(τ)-formula without free
variables and indices.

4.3.2. Definition. Let τ be a vocabulary, let A be a τ -structure, and let α be
an assignment in A that is extended with respect to indices. That is, α maps
every index from IND to {0, 1}, a set of objects disjoint from A. Then, define the
satisfaction relation as follows:

A |= Dn
k~x1 . . . ~xni1 . . . in Γ(i1, . . . , in)(~x1, . . . , ~xn)[α]

iff there exist k-ary functions f1, . . . , fn of type Ak → {0, 1} such that

A |= ∀~x1 . . . ∀~xn Γ(f1(~x1), . . . , fn(~xn))(~x1, . . . , ~xn)[α],

where ~xj = xj1 . . . xjk.

In Sections 4.5 and 4.6, I relate the logics Dk(τ) to fragments of Σ1
1. One of the

main results in this regard is a characterization of Dk(τ) in terms of existential,
second-order logic. The relevant fragments are defined below.

4.3.3. Definition. Let Σ1
n,k(τ) be the fragment of Σ1

n(τ) whose relation vari-

ables have arity k. Particular interest will be with the fragments Σ1
1,k(τ), that are

called k-ary, existential, second-order logic. If k equals one we arrive at monadic,
existential, second-order logic: Σ1

1,1(τ) = MΣ1
1(τ).

The following proposition confirms the intuition that partially ordered con-
nectives are restricted Henkin quantifiers. A similar result was provided also in
(Sandu and Väänänen 1992) and (Hella and Sandu 1995).

4.3.4. Proposition. D ≤ H and L (D) ≤ L (H).

Proof. It suffices to see that





∀x11 . . . ∀x1k

∨
i1

...
. . .

...
...

∀x1k . . . ∀xnk
∨
in




 Γ(~i)(~x)
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is equivalent to






∀x11 . . . ∀x1k ∃y1
...

. . .
...

...
∀x1k . . . ∀xnk ∃yn




 (φ→ Φ1) ∧ (¬φ→ Φ2),

where

φ = ∀z0∀z1 (z0 = z1)

Φ1 =




∨

i1...in∈{0,1}n

Γ(~i)(~x)





Φ2 = ∃z0∃z1



z0 6= z1 ∧
∨

i1...in∈{0,1}n

(

y1 = zi1 ∧ . . . ∧ yn = zin ∧ Γ(~i)(~x)
)



 ,

The antecedent φ discriminates between structures with exactly one object and
the rest. In case there are two or more objects in the structure, all variables
y1, . . . , yn must be assigned objects from z0 and z1 to mimic indices being as-
signed objects from {0, 1}. Note that this translation is slightly different from
the one given in (Sandu and Väänänen 1992, pg. 363), reappearing in (Hella and
Sandu 1995, pg. 80). The translations given in the latter publications omit the
antecedent φ, which renders them flawed. 2

4.4 Related research

In this section I review four studies that are of direct relevance and/or help to
put to the content of this chapter into perspective. More has been published on
partially ordered connectives though, and I invite the reader to consult (Krynicki
and Mostowski 1995, pp. 227-8) for references.

4.4.1 D and complete problems

One of the reasons why MΣ1
1 drew attention is due to the fact that it expresses

various natural NP-complete problems, including 3-Colorability and Sat.
Interestingly, also D1 was shown to express NP-complete problems in the paper
Henkin quantifiers and complete problems by Blass and Gurevich (1986)—be it
that they adopt a somewhat different vocabulary.

4.4.1. Theorem (Blass and Gurevich (1986)). The expression complexity
of D1 is NP-complete.
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The latter result was shown by reference to a formula of the form D3
1 γ, that

defines the class of boolean circuits built from binary NAND-gates that have
output true for some inputs. Theorem 4.4.1 shows that already D1 carries the
computational interest of NP, just like MΣ1

1.
Blass and Gurevich show that restricting the height of the partially ordered

connectives in D has considerable computational impact.

4.4.2. Theorem (Blass and Gurevich (1986)). The expression complexity
of the logic

⋃

k D2
k is NL-complete.2

Among the applications given for partially ordered connectives, Blass and
Gurevich show that if φ is a first-order τ -formula, then the reflexive, transitive
closure of φ, denoted TC (φ), is definable in L (D)(τ). In particular, on digraphs
L (D)({R}) can define the reflexive, transitive closure of R. The formula that
does so will return in Examples 4.6.2 and 4.6.9.

4.4.2 Partially ordered connectives coined

Partially ordered connectives were defined under this header in the paper Partially
ordered connectives by Sandu and Väänänen (1992). In this publication the
model-theoretic properties of several partially ordered connectives are studied,
including the quantifiers

(
∀x

∨
i ∈ I

∀y
∨
j ∈ J

)

and

(
∀x ∃z
∀y

∨
i ∈ I

)

,

which are called D1,1(I, J) and D(1),1(I), respectively. (In case the semantics of
these quantifiers is unclear, see Section 4.4.3 for a definition.) Note that Sandu
and Väänänen present partially ordered connectives as a generalization of Henkin
quantifiers, by allowing for partially ordered first-order quantifiers and connec-
tives. By contrast, observe that in the definition of L (D) partially ordered con-
nectives do not contain existential quantifiers. The sets I, J define the universes
over which i, j range.3 One way to appreciate the authors’ paper is to realize
that already the slightest relaxation of the linear ordering increases the expres-
sive power of the logic at hand. For instance, the authors give an implicit matrix
formula γ, such that ∃uD1,1 γ characterizes the standard model of arithmetic up
to isomorphism.

The authors provide an Ehrenfeucht-Fräıssé game for logics with partially
ordered connectives in order to prove non-expressibility results. The connec-
tion with second-order logics may become clearer by comparing the respective

2The result was stated in terms of coNL, as it was unknown at the time that NL = coNL,
see also Theorem 2.4.2 in Chapter 2.

3In this chapter, these sets are fixed to {0, 1}. We work with logics in which the height of
the quantifiers is unbounded. It follows from this fact that the restriction to {0, 1} does not
affect the expressive power of the logics at hand.
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Ehrenfeucht-Fräıssé games. I modify Sandu and Väänänen’s games in Section 4.8
so as to apply them to the logic D.

4.4.3 Normal form theorem for Henkin quantifiers

It was shown in Hierarchies of finite partially ordered connectives and quantifiers
by Krynicki (1993) that every partially ordered quantifier can be expressed by a
partially ordered quantifier with only two rows. For future usage let me state this
theorem more precisely. To this end, let Vk ~x~yzi denote a quantifier prefix of the
form: (

∀x1 . . . ∀xk ∃z
∀y1 . . . ∀yk

∨
i ∈ {0, 1}

)

,

Let τ be a vocabulary. Then, let V(τ) be the language generated by the following
grammar:

Γ ::= γ | Vk γ,

where γ ranges over the implicit matrix τ -formulae and k over the integers. Let
A be a τ -structure and let α be an assignment in A. Then, the semantics of Vk
is defined such that

A |= Vk~x~yzi γ(i)(~x, ~y, z)[α] iff A |= ∀~x∀~y γ(f(~y))(~x, ~y, g(~x))[α],

for some f : Ak → {0, 1} and g : Ak → A.

4.4.3. Theorem (Krynicki (1993)). V = H.

Thus Krynicki gives a very strong normal form result for partially ordered
quantifiers. The implications of this result for Σ1

1 are explored in the concluding
section of this chapter, Section 4.11.

4.4.4 Finite model theory for IF logic

In The logic of informational independence and finite models Sandu (1997) de-
parts from the insight that IF logic and Σ1

1 have equal expressive power. There-
fore, every NP-decidable property can be expressed by an IF-sentence. Sandu
expresses several NP-complete properties in IF logic, such as satisfiability for a
Boolean circuit, 3-Colorability, and the Hamiltonian path problem.

Interestingly, some of the characterizations are obtained by reference to a the-
orem, that states that certain monadic, second-order sentences have an equivalent
IF-sentence, in which only disjunctions (and no existential quantifiers) are inde-
pendent from universal quantifiers. Roughly speaking, the result holds for those
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MΣ1
1-sentences that state that there exists a partition of the universe into sets

P1, . . . , Pn, such that

∀x1 . . . ∀xk
∧

B

(∧

B → φB

)

,

where B ranges over all subsets in {Pi(xj) | 1 ≤ i ≤ n, 1 ≤ j ≤ k} and the φBs
are first-order formulae.

The methodology adopted by Sandu (1997) resembles the one adopted in the
current chapter, as I will isolate the expressively strongest fragment of second-
order logic that can be translated into Dk. The results put forward in this chapter
can thus be seen as a strengthening of the one from (Sandu 1997).

4.5 Translating Dk into Σ1
1,k

In this section I give a translation from Dk into Σ1
1,k, that hinges on the insight

that a function f : A→ {0, 1} can be mimicked by the set X = {a ∈ A | f(a) =
1}.

4.5.1. Definition. Let ~x be a string of k variables from VAR and let X ∈
R-VAR be a k-ary relation variable. Then, 〈X,~x〉 is a proto-literal and the for-
mulaeX(~x),¬X(~x) are the literals based on 〈X,~x〉. Likewise, if L is a set of proto-
literals, then the set of literals based on L is defined as {X(~x),¬X(~x) | 〈X,~x〉 ∈
L}. If Φ is a second-order formula, then L(Φ) is the set of proto-literals of Φ,
where

L(Φ) = {〈X, x1, . . . , xk〉 | X(x1, . . . , xk) appears in Φ}.

Finally, for D = Dn
k~x1 . . . ~xni1 . . . in let L(D) be defined as {〈Xj, ~xj〉 | 1 ≤ j ≤ n}.

4.5.2. Definition. Let L = {〈Y1, ~y1〉, . . . , 〈Ym, ~ym〉} be a set of proto-literals,
and let γ : {0, 1}m → FO be an implicit matrix formula. Then, the L-explication
of γ is defined as

TL(γ) =
∧

i1...im∈{0,1}m

(±i1Y1(~y1) ∧ . . . ∧ ±imYm(~ym) → γ(i1, . . . , im)(~y1, . . . , ~ym)),

where ±0 = ¬ and ±1 = ¬¬.
The standard translation T maps every Dk(τ)-formula Γ = Dn

k γ to the
Σ1

1,k(τ)-formula T (Γ), such that

T (Γ) = ∃X1 . . . ∃Xn∀~x1 . . . ∀~xn TL(Dn
k
)(γ).

Observe that if ~x are the free variables of the D-formula Γ, then ~x are exactly
the free variables in T (Γ).
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4.5.3. Proposition. Every Dk-formula Γ is equivalent to T (Γ).

Proof. Let Γ = Dn
k γ be a Dk-formula and let T (Γ) be its standard translation

as defined above. To prove that they are equivalent, consider a suitable structure
A, and an assignment α in A.

Suppose A |= Γ. Then, there exist functions f1, . . . , fn of type Ak → {0, 1}
such that

A |= ∀~x1 . . . ∀~xn γ(f1(~x1), . . . , fn(~xn))[α]. (4.6)

It remains to be shown that A |= T (Γ), that is, that

A |= ∃X1 . . . ∃Xn∀~x1 . . . ∀~xn TL(Dn
k
)(γ)[α].

To this end, choose the interpretations XA
1 , . . . , X

A
n of the k-ary relation variables

in such a way that

〈a1, . . . , ak〉 ∈ XA
i iff fi(a1, . . . , ak) = 1, (4.7)

for every k-tuple 〈a1, . . . , ak〉 of objects from A. Let ~xA
1 , . . . , ~x

A
n be an arbitrary

assignment of the variables in A. It suffices to show that it is the case that

A |= TL(Dn
k
)(γ)[α.X

A
1 , . . . , X

A
n , ~x

A
1 , . . . , ~x

A
n ]. (4.8)

The formula TL(Dn
k
)(γ) is a conjunction of implications, whose antecedents exhaust

the set
⋃

i1...in∈{0,1}n{±i1X1(~x1)∧ . . .∧±inXn(~xn)}. Thus every assignment makes

true exactly one of TL(Dn
k
)(γ)’s antecedents. This antecedent’s consequent is γ∗ =

γ(t1, . . . , tn), where

tj =

{
1 if ~xA

j ∈ XA
j

0 if ~xA
j /∈ XA

j .

Hence, in order to show that (4.8) it suffices to show that γ∗ is true on A under
the present assignment.

The interpretations XA
j were based on fj. Therefore derive from the fact that

the latter functions are witnesses of (4.6) that

A |= γ∗[α.~xA
1 , . . . , ~x

A
n ].

as required.

The converse direction is similar. 2
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4.6 A characterization of Dk

In this section, I give a characterization of Dk as a fragment of Σ1
1,k. This charac-

terization result will facilitate several expressibility results for D in this chapter.

4.6.1. Definition. Let τ be a vocabulary. Let Φ be a second-order τ -formula.
Call Φ sober if in Φ no second-order quantifier appears and for every X ∈
R-VARn, X(x1, . . . , xn) occurring in Φ implies that the variables x1, . . . , xn are
free in Φ. Let Σ1

1,k♥(τ) contain exactly those Σ1
1,k(τ)-formulae without free rela-

tion variables, that are of the form ∃X1 . . . ∃Xm∀x1 . . . ∀xn Φ, where Φ is a sober
formula. Put Σ1

1♥(τ) =
⋃

k Σ1
1,k♥(τ).

4.6.2. Example. Consider the following Σ1
1({R})-formulae:

∃X∀x∀x′ (R(x, x′) → ¬(X(x) ↔ X(x′))) (4.9)

∃X∀x∀x′ (X(u) ∧ ¬X(v) ∧ (X(x) ∧R(x, x′) → X(x′)) (4.10)

∃S∃X∀x∀x′∀x′′ (“S is a linear order” ∧ Φ1 ∧ Φ2), (4.11)

where

Φ1 = ((∀y S(x, y)) → X(x)) ∧ ((∀y S(y, x)) → ¬X(x))

Φ2 = (S(x, x′) ∧ ∀y (S(y, x) ∨ x=y ∨ y=x′ ∨ S(x′, y))) → ¬(X(x) ↔ X(x′)).

Observe that (4.9) and (4.10) are Σ1
1♥({R})-formulae. Note that (4.9) charac-

terizes the 2-colorable {R}-structures and that (4.10) is true on an {R}-structure
A under the assignment α in A iff there is no R-path in A leading from α(u) to
α(v), cf. (Immerman 1999, pg. 129).

Although all first-order variables in (4.11) are bound by a universal quantifier,
it is not a formula in Σ1

1♥. This is not due to the formula that expresses that S
is a linear order, since S can be forced to be anti-reflexive, transitive, and total
using only the quantifiers ∀x,∀x′,∀x′′ that follow ∃S∃X. The formulae Φ1 and
Φ2 ruin membership of Σ1

1♥ as they contain the atoms S(x, y) and S(y, x), that
hold the variable y which is not bound by any of the quantifiers ∀x,∀x′,∀x′′. The
quantifier ∀y can be extracted from ((∀y S(x, y)) → X(x)). But the result of this
action is ∃y (¬S(x, y)) ∧X(x)), in which y existentially quantified.

Observe that (4.11) characterizes the finite structures A with even universe
A. It does so by imposing a linear order S on the universe and stating that there
exists a subset X of A that contains the S-minimal element, that does not contain
the S-maximal element, such that for any two S-neighboring objects precisely one
of them sits in X. 2

The characterization result, Theorem 4.6.7, says that Dk = Σ1
1,k♥. The

structure of the proof of Theorem 4.6.7 is as follows: The standard translation
T accounts for the inclusion of Dk in Σ1

1,k♥. Conversely, Lemma 4.6.5 shows
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that a fragment of Σ1
1,k♥ can be translated to Dk. In the proof of Theorem 4.6.7

we then see that this particular fragment of Σ1
1,k♥ is equally expressive as full

Σ1
1,k♥.

Let SL be the set of literals based on the set of proto-literals L, cf. Definition
4.5.1. Call S ⊆ SL a maximally consistent subset of SL, if S does not contain
both a literal and its negation, but adding any literal based on L to S would cause
it to contain both a literal and its negation. Put differently, S is a maximally
consistent subset of SL, if for every 〈X,~x〉 ∈ L, either X(~x) or ¬X(~x) is in S.

4.6.3. Lemma. Let τ be a vocabulary. Let Φ be a sober second-order τ -formula
and let L(Φ) be the set of proto-literals of Φ. Then, Φ is equivalent to a formula
of the form

∧

S

(∧

S → φS

)

,

where S ranges over the maximally consistent subsets of SL(Φ) and the φSs are
FO(τ)-formulae. Call the latter formula the explicit matrix formula of Φ and let
it be denoted by M(Φ).

Proof. Let Φ be as in the premise of the lemma and let L(Φ) be the set
of literals based on L(Φ). Per maximally consistent subset S of SL(Φ), obtain
the formula φS from Φ by replacing every occurrence of X(~x) in Φ by ⊤, if
X(~x) ∈ S and by ⊥ if X(~x) /∈ S. Now, consider Φ’s explicit matrix formula
M(Φ) =

∧

S(
∧
S → φS), and observe that it is of the desired form. It remains

to be shown that (i) every φS is a FO(τ)-formula and that (ii) M(Φ) and Φ are
equivalent.

Ad (i): If Φ is a sober τ -formula and moreover contains no relation variables,
then it is a first-order formula in the vocabulary τ . The formula φS is obtained
from Φ by replacing all relation variables by the symbols ⊤ and ⊥. Hence φS is
a FO(τ)-formula.

Ad (ii): It suffices to show that for an arbitrary τ -structure A and assignment
α in A, it is the case that A |= Φ[α] iff A |= M(Φ)[α]. Note that if X(~x) occurs
in Φ, where X is a relation variable, then all variables X,~x are free in Φ, and the
variables ~x are free in M(Φ).

Observe that there exists exactly one maximally consistent subset S of SL(Φ)

such that A |=
∧
S[α], namely the one that contains X(~x) if A |= X(~x)[α], and

¬X(~x) if A 6|= X(~x)[α]. Since all other maximally consistent subsets S ′ from L(Φ)
have it that A 6|=

∧
S ′[α], to show that M(Φ) and Φ are equivalent, it suffices

to show that A |= Φ[α] iff A |= φS[α]. The latter equivalence can be proved by
means of an inductive argument on the structure of Φ.

Base step. Suppose Φ = R(x1, . . . , xn). Then, L(Φ) = ∅ and φS is simply Φ
itself.

Suppose Φ = X(x1, . . . , xn). Observe the following string of equivalences:

A |= X(~x)[α] iff X(~x) ∈ L(Φ) iff φS = ⊤ iff A |= φS[α].



4.6. A characterization of Dk 91

Induction step. Trivial. 2

4.6.4. Example. Let us go through an example involving 2-Colorability to
get intuitions straight. Consider the formula ∃Y ∃Y ′∀x∀x′ Ξ, that expresses
2-Colorability over graphs—be it in a somewhat contrived manner—, where
Ξ is specified as follows:

(x = x′ → (Y (x) ↔ Y ′(x′))) ∧ (R(x, x′) → ¬(Y (x) ↔ Y ′(x′))).

The first conjunct expresses that Y and Y ′ are given the same extension. Since
Ξ does not contain quantifiers it is sober. Consider the set of proto-literals
L(Ξ) = {〈Y, x〉, 〈Y ′, x′〉}. There are four different maximally consistent subsets of
SL(Ξ): {Y (x), Y ′(x′)}, {¬Y (x), Y ′(x′)}, {Y (x),¬Y ′(x′)}, and {¬Y (x),¬Y ′(x′)}.
Per maximally consistent subset S of SL(Ξ), I write ξS (modulo truth-preserving
rewriting):

ξ{Y (x),Y ′(x′)} = ¬R(x, x′)

ξ{¬Y (x),Y ′(x′)} = (x 6= x′)

ξ{Y (x),¬Y ′(x′)} = (x 6= x′)

ξ{¬Y (x),¬Y ′(x′)} = ¬R(x, x′).

2

The following lemma shows that every Σ1
1♥-formula that meets two conditions

(A) and (B)—to be formulated—is equivalent to a D-formula. Theorem 4.6.7
then shows that every Σ1

1♥-formula has an equivalent Σ1
1♥-formula that satisfies

conditions (A) and (B).

4.6.5. Lemma. Let τ be a vocabulary. Let Φ be a sober τ -formula containing the
relation variables X1, . . . , Xn, such that

(A) X1, . . . , Xn are k-ary; and

(B) if Xi(x1, . . . , xk) and Xj(x
′
1, . . . , x

′
k) appear in Φ, then i 6= j or xh = x′h, for

every 1 ≤ h ≤ k.

Then, (1) and (2) hold:

(1) There exists an implicit matrix τ -formula γ such that TL(Φ)(γ) and Φ are
equivalent.

(2) There exists a Dk(τ)-formula that is equivalent to ∃X1 . . . ∃Xn∀~x1 . . . ∀~xn Φ.
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Proof. Let Φ meet the premise of the lemma and let L(Φ) be the set of
proto-literals {〈X1, ~x1〉, . . . , 〈Xn, ~xn〉}.

Ad (1): Since Φ is sober, derive from Lemma 4.6.3 that it can be rewritten into
the explicit matrix formula M(Φ) =

∧

S(
∧
S → φS), where the formulae φS are

first-order. Now we need to obtain an implicit matrix formula γ, so that TL(Φ)(γ)
and M(Φ) are equivalent. This can be done by putting γ(i1, . . . , in) = φSi1...in

,
where

Si1...in = {±i1X1(~x1), . . . ,±inXn(~xn)},

for ±1 = ¬¬ and ±0 = ¬. Following definition 4.5.2, TL(Φ)(γ) equals

∧

i1...in∈{0,1}n

(±i1X1(~x1) ∧ . . . ∧ ±inXn(~xn) → γ(i1, . . . , in)) . (4.12)

Since every string i1 . . . in ∈ {0, 1}n corresponds thus with a maximally consistent
set of proto-literals, and vice versa, (4.12) is a syntactic copy of the explicit matrix
formula M(Φ). From Lemma 4.6.3 it follows that TL(Φ)(γ) is equivalent to Φ.

Ad (2): Consider the Σ1
1,k(τ)-formula Ψ = ∃X1 . . . ∃Xn∀~x1 . . . ∀~xn Φ. By

clause (1) there exists a matrix formula γ, such that TL(Φ)(γ) and Φ are equivalent.

Consider the formula Γ = Dn
k~x1 . . . ~xn~i γ and its standard translation T (Γ):

∃X1 . . . ∃Xn∀~x1 . . . ~xn TL(Φ)(γ)

From (A) and (B) it follows that L(Dn
k~x1 . . . ~xn~i) = L(Φ). Hence, T (Γ) is a syn-

tactic copy of Ψ, and T (Γ) is equivalent to Γ in virtue of Proposition 4.5.3. 2

4.6.6. Example. (Continuation of Example 4.6.4) Consider the explicit matrix
formula of Ξ from Example 4.6.4:

M(Ξ) =







Y (x) ∧ Y ′(x′) → ¬R(x, x′)
Y (x) ∧ ¬Y ′(x′) → (x 6= x′)

¬Y (x) ∧ Y ′(x′) → (x 6= x′)
¬Y (x) ∧ ¬Y ′(x′) → ¬R(x, x′)






.

Construct the matrix formula γ as described in Lemma 4.6.5 by setting

γ(1, 1) = γ(0, 0) = ¬R(x, x′)

γ(1, 0) = γ(0, 1) = (x 6= x′).

The formula T{〈Y,x〉,〈Y ′,x′〉}(γ) is a syntactic copy of M(Ξ). Furthermore, observe
that the formulae ∃Y ∃Y ′∀x∀x′ T{〈Y,x〉,〈Y ′,x′〉}(γ) and D2

1 γ are equivalent, as the
standard translation applied to the latter formula yields the former. Hence, D2

1 γ
expresses 2-Colorability on graphs. 2



4.6. A characterization of Dk 93

Theorem 4.6.7 shows that every Σ1
1,k♥-formula has an equivalent Σ1

1,k♥-
formula meeting (B), and ties the previous results together.

4.6.7. Theorem. For every integer k, Dk = Σ1
1,k♥. Hence, D = Σ1

1♥.

Proof. From left to right. This direction follows immediately from the stan-
dard translation as it maps every formula in Dk(τ) to a formula in Σ1

1,k♥(τ).
The standard translation was proved correct in Proposition 4.5.3.

From right to left. Consider a Σ1
1,k♥-formula Φ = ∃X1 . . . ∃Xm∀x1 . . . ∀xn Φ′.

By definition of Σ1
1,k♥, Φ′ is sober and X1, . . . , Xm are k-ary.

Let us make the following assumptions about Φ, that go without loss of gen-
erality:

(i) Every relation variable X1, . . . , Xm actually appears in Φ′, that is, none of
the second-order quantifiers ∃X1, . . . ,∃Xm is vacuous in Φ.

(ii) If Xi(y1, . . . , yk) appears in Φ′, then for every variable it is the case that
yj ∈ {x1, . . . , xn}. To see that this goes without loss of generality observe
that if the variable y is the argument of Xi but is not in {x1, . . . , xn}, then
Φ′ is equivalent to ∀z (y = z → Φ′[y 7→ z]), where Φ′[y 7→ z] is the formula
that results from replacing every occurrence of y in Φ by z. The variable
y does not appear in Φ′[y 7→ z] anymore, so in particular it cannot be the
argument of Xi. For an example see Example 4.6.9.

It suffices to show that there exists a Σ1
1,k♥-formula Ψ, such that:

(1) Ψ = ∃Y1 . . . ∃Yl∀~y1 . . . ∀~yl Ψ′.

(2) If Yi(yi1, . . . , yik) and Yj(yj1, . . . , yjk) appear in Φ, then i 6= j or yih = yjh,
for every 1 ≤ h ≤ k.

(3) Ψ is equivalent to Φ.

For if such a Ψ exists, then Ψ′ is sober and the set of proto-literals of Ψ, L(Ψ) =
{〈Yi, ~yi〉 | 1 ≤ i ≤ l}, meets the premises of Lemma 4.6.5, due to condition
(2). Thus Lemma 4.6.5.2 applies and yields that there exists a Dk(τ)-formula in
equivalent to Ψ. In turn, Ψ is equivalent to Φ in virtue of (3).

I prove that such a Ψ exists by an inductive argument on the relation vari-
able rank of Φ, denoted rvr(Φ), that is defined as the cardinality of L(Φ). Let
R-VARΦ be the set of relation variables in Φ. By the assumption that Φ satisfies
(i) it is the case that rvr(Φ) ≥ R-VARΦ. In fact, if Ψ is a Σ1

1,k♥-formula such

that rvr(Ψ) − ‖R-VARΨ‖ = 0, then Ψ satisfies condition (2).

Thus, it suffices to provide a truth preserving procedure that decreases the
relation variable rank of every Σ1

1,k♥-formula by one, while preserving proper-

ties (i) and (ii). That is, it is sufficient to prove that for every Σ1
1,k♥-formula
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Φ such that (i), (ii), and rvr(Φ) − ‖R-VARΦ‖ > 0, there exists a Σ1
1,k♥(τ)-

formula Θ equivalent to Φ, where Θ meets (i), (ii), and rvr(Θ) − ‖R-VARΘ‖ =
rvr(Φ) − ‖R-VARΦ‖ − 1.

For the sake of the argument, suppose that rvr(Φ)− ‖R-VARΦ‖ > 0. Firstly,
derive from the definition of Σ1

1♥ and condition (ii) that R-VARΦ = {X1, . . . , Xm}.
Hence, there exists at least one relation variable Xi ∈ R-VARΦ such that Xi(~z)
and Xi(~z

′) appear in Φ, where ~z, ~z′ are two strings of k variables such that

• ~z = z1, . . . , zk and ~z′ = z′1, . . . , z
′
k;

• z1, . . . , zk, z
′
1, . . . , z

′
k ∈ {x1, . . . , xn} (in virtue of (iii)); and

• for some 1 ≤ i ≤ k, zi and z′i are different variables.

Assume there are exactly two such appearances of Xi(~z) and Xi(~z
′) in Φ. The

proof is easily extended to arbitrary numbersXi(~z1), Xi(~z2), . . ., but in the interest
of readability I content myself with this restriction.

We get rid of Xi(~zi) and Xi(~z
′
i) by replacing the string Xi(z1, . . . , zk) by the

string Yi(yi1, . . . , yik) and Xi(z
′
1, . . . , z

′
k) by Y ′

i (y
′
i1, . . . , y

′
ik), where all the variables

Yi, Y
′
i , yi1, . . . , yik, y

′
i1, . . . , y

′
ik are fresh: they do not yet occur in Φ. Let ~yi =

yi1, . . . , yik and let ~y′i = y′i1, . . . , y
′
ik.

This idea underlies the syntactic operation on Φ, yielding Θ:

• Replace ∃Xi by ∃Yi∃Y
′
i .

• Add ∀yi1 . . . ∀yik∀y
′
i1 . . . ∀y

′
ik to the left of ∀x1 . . . ∀xn.

• Replace Φ′ by M → (Φ′ ∧ N), where

M =
∧

1≤j≤k

(yij = zj ∧ y
′
ij = z′j)

N = (yi1 = y′i1 ∧ . . . ∧ yik = y′ik) → (Yi(~yi) ↔ Y ′
i (~y

′
i)).

• Replace Xi(z1, . . . , zk) by Yi(~yi) and Xi(z
′
1, . . . , z

′
k) by Y ′

i (~y
′
i).

To prove that the formulae Φ and Θ are equivalent, let A be a suitable struc-
ture, and let α be an assignment in A.

Suppose A |= Φ[α]. Let XA
1 , . . . , X

A
m be such that

A |= ∀x1 . . . ∀xn Φ′[α.XA
1 , . . . , X

A
m].

I shall prove that A |= Θ[α], by showing that

A |= ∀x1 . . . ∀xn∀~yi∀~y
′
i M → (Φ′ ∧ N)[α.XA

1 , . . . , X
A
m, Y

A
i , (Y

′
i )

A],
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where Y A
i , (Y

′
i )

A = XA
i . Arbitrarily assign the objects xA

1 , . . . , x
A
n , yA

i1, . . . , y
A
ik,

(y′i1)
A, . . . , (y′ik)

A ∈ A to the respective universally quantified variables and sup-
pose that they make M true. Since Y A

i , (Y
′
i )

A were chosen equal to XA
i , N is true.

Finally, in order to see that Φ′ is true set up an inductive argument that builds
on the fact that

A |= Φ′[α.XA
1 , . . . , X

A
m, x

A
1 , . . . , x

A
n ].

As a matter of fact, the only non-trivial case lies with Φ being of the form
Xi(z1, . . . , zk) in which case one has that

A |= Xi(z1, . . . , zk)[α.X
A
1 , . . . , X

A
m, x

A
1 , . . . , x

A
n ].

Since Y A
i = XA

i and zA
j = yA

ij, for every 1 ≤ j ≤ k, derive that

A |= Yi(yi1, . . . , yik)[α.X
A
1 , . . . , X

A
m, Y

A
i , (Y

′
i )

A, xA
1 , . . . , x

A
n , y

A
i1, . . . , y

A
ik].

The same argument applies to Y ′
i and the converse direction is similar.

Derive that for the objects ~xA = xA
1 , . . . , x

A
n , ~yA

i = yA
i1, . . . , y

A
ik, and (~y′i)

A =
(y′i1)

A, . . . , (y′ik)
A, it is the case that

A |= M → (Φ′ ∧ N)[α.XA
1 , . . . , X

A
m, Y

A
i , (Yi)

A), ~xA, ~yA
i , (~y

′
i)

A].

Since the objects ~xA, ~yA
i , (~y

′
i)

A were assigned arbitrarily, obtain that

A |= ∀~x∀~yi∀~y
′
i (M → (Φ′ ∧ N))[α.XA

1 , . . . , X
A
m, Y

A
i , (Yi)

A)].

Introduction of existential quantifiers yields

A |= ∃X1 . . . ∃Xi−1∃Yi∃Y
′
i ∃Xi+1 . . . ∃Xm∀~x∀~yi∀~y

′
i M → (Φ′ ∧ N)[α].

Hence, A |= Θ[α] as required.

As to the converse direction, suppose that A |= Θ[α]. Let the interpretations
XA

1 , . . . , X
A
m, Y

A
i , (Y

′
i )

A be witnesses of this fact. First, I show that Y A
i = (Y ′

i )
A.

For the sake of contradiction, assume that on A the formula Θ holds but Y A
i 6=

(Y ′
i )

A. Then, without loss of generality, there exist k objects ~yA
i = yA

i1, . . . , y
A
ik

from A such that ~yA
i ∈ Y A

i and ~yA
i /∈ (Y ′

i )
A. Hence, it is the case that

A |= ∃~yi∃~y
′
i (yi1 = y′i1 ∧ . . . ∧ yik = y′ik ∧ Yi(~yi) ∧ ¬Y ′

i (~y
′
i))

and consequently that A 6|= M. But this contradicts Θ holding on A, since if
x1, . . . , xn are assigned objects so that M is made true (and such an assignment
trivially exists), then the conjunction of Φ′ and N is false. Therefore Y A

i = (Y ′
i )

A.
Set XA

i = Y A
i . To show that

A |= ∀x1 . . . ∀xn Φ′[α.XA
1 , . . . , X

A
m]
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pick arbitrary objects xA
1 , . . . , x

A
n from A. By the same kind of argument laid

down for the converse direction one shows that A |= Φ′[α.XA
1 , . . . , X

A
m, x

A
1 , . . . , x

A
n ].

Hence, A |= Φ[α].

The proof comes to an end, after concluding that rvr(Θ) − ‖R-VARΘ‖ =
rvr(Φ)−‖R-VARΦ‖− 1. To see that this is the case, we observe that R-VARΘ =
{X1, . . . , Xi−1, Yi, Y

′
i , Xi+1, . . . , Xm}, whence ‖R-VARΘ‖ = ‖R-VARΦ‖ + 1. Sec-

ondly, we observe that

L(Φ) − L(Θ) = {〈Xi, ~z〉, 〈Xi, ~z
′〉} and L(Θ) − L(Φ) = {〈Yi, ~y〉, 〈Y

′
i , ~y

′〉}.

Therefore, rvr(Φ) = rvr(Θ) and rvr(Θ)−‖R-VARΘ‖ = rvr(Φ)−‖R-VARΦ‖− 1.
2

4.6.8. Example. (Continuation of Examples 4.6.2 and 4.6.4) Consider formula
(4.9) from Example 4.6.2, copied below:

Φ = ∃X∀x∀x′ (R(x, x′) → ¬(X(x) ↔ X(x′))).

Firstly observe that L(Φ) = {〈X, x〉, 〈X, x′〉} and that R-VARΦ = {X}. Hence,
rvr(Φ) = ‖L(Φ)‖ > ‖R-VARΦ‖. Going through the syntactic operations of the
proof one time yields Θ = ∃Y ∃Y ′∀y∀y′∀x∀x′ (M → (Θ′ ∧ N)), where

Θ′ = (R(x, x′) → ¬(Y (y) ↔ Y ′(y′)))

M = (x = y ∧ x′ = y′)

N = (y = y′ → (Y (y) ↔ Y ′(y′))).

Observe that L(Θ) = {〈Y, x〉, 〈Y ′, x′〉} and that R-VAR(Θ) = {Y, Y ′}, so the
syntactic operation comes to an end outputting Θ. But in this case, there is a
formula equivalent to Θ′ that has only two first-order variables instead of Θ′’s
four:

(x = x′ → (Y (x) ↔ Y ′(x′))) ∧ (R(x, x′) → ¬(Y (x) ↔ Y ′(x′))).

This sentence, expressing 2-Colorability was the starting point of Example
4.6.4. For a Σ1

1♥-formula expressing 3-Colorability see Example 2.5.2. 2

4.6.9. Example. (Continuation of Example 4.6.2) Consider the formula (4.10)
from Example 4.6.2, that expresses that there is no R-path in the {R}-structure
A under α from α(u) to α(v):

∃X∀x∀x′ (X(u) ∧ ¬X(v) ∧ (X(x) ∧R(x, x′) → X(x′)).
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Firstly, observe that the variables u and v are free. As remarked in clause (ii) in
the proof of Theorem 4.6.7, this does not cause any significant problems, as the
latter formula is equivalent to

∃X∀x∀x′∀y∀y′ ((u = y∧v = y′) → (X(y)∧¬X(y′)∧(X(x)∧R(x, x′) → X(x′)))).

Now, every variable occurring as the argument of the only relation variable X is
bound by one of the quantifiers ∀x∀x′∀y∀y′. To enhance readability, let me stick
to the following equivalent variant of the previous formula:

Φ = ∃X∀x∀x′((u = x→ X(x))∧(v = x→ ¬X(x))∧(X(x)∧R(x, x′) → X(x′))).

Observe that L(Φ) = {〈X, x〉, 〈X, x′〉} and that R-VARΦ = {X}. Hence, it is
the case that ‖L(Φ)‖ > ‖R-VARΦ‖. Following the syntactic operation on Φ as
described in the proof, obtain Θ = ∃Y ∃Y ′∀y∀y′∀x∀x′ (M → (Θ′ ∧ N)), where

Θ′ = (u = y → Y (y)) ∧ (v = y → ¬Y (y)) ∧ (Y (y) ∧R(x, x′) → Y ′(y′))

M = (x = y ∧ x′ = y′)

N = (y = y′ → (Y (y) ↔ Y ′(y′)).

Notice that L(Θ) = {〈Y, y〉, 〈Y ′, y′〉} and that R-VARΘ = {Y, Y ′}. Lemma 4.6.5,
holds that the implicit matrix formula M(∀x∀x′ Θ′) is equivalent to ∀x∀x′ Θ′ and
that D2

1yy
′ M(∀x∀x′ Θ′) is equivalent to Θ and Φ. 2

The characterization of D in second-order terms speeds up the finding of inter-
esting properties it enjoys, for second-order logic happens to be more intensively
studied than partially ordered connectives. Concrete—and relevant—examples of
this mode of research can be found in the next section.

4.7 Applications of Theorem 4.6.7

In this section, I obtain two results using the characterization of D. In Section
4.7.1, it is shown that Dk < Dk+1. In Section 4.7.2, I show that on linear ordered
structures D = Σ1

1.

4.7.1 Strict hierarchy result

Using a result of Ajtai’s (1983), I show that Dk < Dk+1, making use of Theorem
4.6.7. Put differently, D(τ) contains a strict, arity induced hierarchy, even over
finite structures.

4.7.1. Theorem. Let k ≥ 2 be an integer and let σ be a vocabulary with at
least one k-ary relation symbol P and the linear order symbol >. Then, over
σ-structures, Dk−1(σ) < Dk(σ).
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Proof. From (Ajtai 1983) the following can be derived: Let Πk be the property
over σ-structures A such that

Πk(A) = true iff ‖PA‖ is even.

Then, Πk is not expressible in Σ1
1,k−1(σ), but it is expressible in Σ1

1,k(σ).4

To separate Dk from Dk−1, I show that Πk is expressible by a formula in
Dk(σ). This is sufficient an argument for the current end, since

Dk−1 = Σ1
1,k−1♥ ≤ Σ1

1,k−1

and Σ1
1,k−1 cannot express Πk.

I show that Dk(σ) can express Πk by giving a Σ1
1,k♥(σ)-formula Υk that

expresses Πk. Intuitively, Υk lifts the binary linear order symbol > to a linear
order relation ψk over k-tuples of objects. With respect to this lifted linear order
Υk expresses that there exists a subset Q of k-tuples of objects from the domain
such that:

(1) Q is a subset of PA.

(2) The ψA
k -minimal k-tuple that is in PA is also in Q and the ψA

k -maximal
k-tuple that is in PA is not in Q.

(3) If two k-tuples are in PA and there is no k-tuple in between them (in the
ordering constituted by ψA

k ) that is in PA, then exactly one of the k-tuples
is in Q.

Here, ψk is a formula with free variables x1, . . . , xk, y1, . . . , yk; ψ
A
k denotes the set

{〈a1, . . . , ak, b1, . . . , bk〉 ∈ A2k | A |= ψk[x1/a1, . . . , xn/an, y1/b1, . . . , yn/bn]}.

Essentially, the idea underlying (1)-(3) resembles the one underlying the Σ1
1♥-

formula (4.11) from Example 4.6.2 expressing evenness of the universe.
All in all, put

Υk = ∃Q∀~x∀~y (Φ1 ∧ Φ2 ∧ Φ3),

where Φi is the formula that was informally described in clause (i) above and ~x
and ~y are strings of k variables. In the light of these descriptions, the following
specifications are more or less self-explanatory:

Φ1 = Q(~x) → P (~x)

Φ2 = (MIN P (~x) → Q(~x)) ∧ (MAX P (~x) → ¬Q(~x))

Φ3 = NEXTP (~x, ~y) → ¬(Q(~x) ↔ Q(~y)),

4The result essentially uses hypergraphs, that is, structures interpreting relation symbols of
unbounded arity. As a consequence, the result does not imply that Σ

1

1,2(τ) is strictly weaker

than Σ
1

1,3(τ), where τ a vocabulary that contains only unary and binary predicates, cf. (Durand,
Lautemann, and Schwentick 1998).
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where

MIN P (~x) = ∀~z (P (~z) → (ψk(~x, ~z) ∨ ~z = ~x))

MAX P (~x) = ∀~z (P (~z) → (ψk(~z, ~x) ∨ ~z = ~x))

NEXTP (~x, ~y) = P (~x) ∧ P (~y) ∧ ψk(~x, ~y) ∧

∀~z (P (~z) → (ψk(~z, ~x) ∨ ~z = ~x ∨ ψk(~y, ~z) ∨ ~y = ~z))

and the k-dimensional lift of the linear order > is inductively defined as

ψ1(x, y) = x < y

ψi(x1, . . . , xi, y1, . . . , yi) = xi < yi ∨ (xi = yi ∧ ψi−1(x1, . . . , xi−1, y1, . . . , yi−1)).

In the previous formulae, if ~x and ~y are strings of k variables, then “~x = ~z”
abbreviates the conjunction x1 = y1 ∧ . . . ∧ xk = yk.

Observe that Υk is a formula in Σ1
1,k♥(σ), hence the result follows. 2

4.7.2 On linear ordered structures D = Σ1
1

In this section, I show that on linear ordered structures D = Σ1
1. It will be shown

in Section 4.8 that on arbitrary structures D < Σ1
1.

4.7.2. Theorem. On linear ordered structures, D = Σ1
1.

Proof. In virtue of the result from (Krynicki 1993), cited in this thesis in
Section 4.4.3, it suffices to show that for every V-sentence Φ of the form

(
∀x1 . . . ∀xk ∃z
∀y1 . . . ∀yk

∨
i ∈ {0, 1}

)

γ(i)(~x, ~y, z)

there is an equivalent D-sentence Γ. Observe that Φ is equivalent to

∃f∃X∀~x∀~y (X(~y) → γ(1)(~x, ~y, f(~x)) ∧ ¬X(~y) → γ(0)(~x, ~y, f(~x))),

where X is a k-ary relation variable and f is a k-ary function variable. In the
remainder of the proof I show that one can mimic the function variable f by
means of a 2(k+1)-ary relation variable Z. More precisely, I will provide a Σ1

1♥-
sentence Ψ with second-order quantifiers ∃Z∃X that is equivalent to Φ. The
sentence Ψ will be using the k-dimensional lift ψk of the linear order symbol >,
from the proof of Theorem 4.7.1. The 2k-ary predicate SUC is defined using ψk;
its interpretation on A contains all 2k-tuples 〈~a,~b〉 such that ~b is the immediate
ψA
k -successor of ~a on A.

Intuitively, in Ψ the relation variable Z will be defined such that on an arbi-
trary linear ordered structure A, it is the case that
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(1) ZA is a linear order of (k + 1)-tuples of the universe of A; and

(2) for all ~a,~b ∈ Ak, if 〈~a,~b〉 ∈ ψA
k , then for all a′, b′ ∈ A, 〈~a, a′,~b, b′〉 ∈ ZA.

Thus, with every k-tuple ~a we associate an ~a-interval in Ak+1, to the effect that for
two k-tuples ~a and~b, if 〈~a,~b〉 ∈ ψA

k then every object in the ~a-interval ZA-precedes

every tuple in the ~b-interval.
Let ~a ∈ Ak and let a′ ∈ A. Then, if for all a′′ ∈ A it is the case that

〈~a, a′,~a, a′′〉 ∈ ZA, then a′ is called the ZA-minimal object of ~a. In the same
vein, call a′ the ZA-maximal object of ~a, if for all a′′ ∈ A it is the case that
〈~a, a′′,~a, a′〉 ∈ ZA.

Although ZA is a relation, it will be used to the effect of a k-ary function fZ by
letting fZ(~a) be the ZA-minimal object of ~a. But—for reasons that will become
clear in due course—if ~a is the ψA

k -minimal tuple, then fZ(~a) is the ZA-maximal
object of ~a.

For instance, consider the following ordering Z of {1, 2, 3}2, observing the 1,
2, and 3-interval:

〈1, 2〉 Z 〈1, 3〉 Z 〈1, 1〉
︸ ︷︷ ︸

1-interval

Z 〈2, 2〉 Z 〈2, 1〉 Z 〈2, 3〉
︸ ︷︷ ︸

2-interval

Z 〈3, 1〉 Z 〈3, 3〉 Z 〈3, 1〉
︸ ︷︷ ︸

3-interval

.

Then, Z gives rise to the function fZ , such that

fZ(1) = 1

fZ(2) = 2

fZ(3) = 1.

In the implementation of Z the ZA-minimal object of ~a will be recognized as
the object a′ such that there exists a tuple ~b and an object b′ where 〈~b,~a〉 ∈ SUC A

and 〈~b, b′,~a, a′〉 ∈ ZA. If ~a is the ψA
k -minimal tuple then it cannot be recognized

in this manner, since there is no ~b such that 〈~b,~a〉 ∈ SUC A. It is for this reason
that if ~a is the ψA

k -minimal tuple then fZ(~a) is the ZA-maximal object of ~a. The

ZA-maximal object of ~a is recognized as the object a′ such that there exists a ~b
and a b′ such that 〈~a,~b〉 ∈ SUC A and 〈~a, a′,~b, b′〉 ∈ ZA.

Let Ψ be the following sentence:

∃Z∃X∀~x∀~y∀~z∀u∀u′∀u′′ “Z is a linear order of (k+1)-tuples” ∧

ψk(~x, ~y) → Z(~x, u, ~y, u′) ∧

(X(~y) → δ(1)) ∧ (¬X(~y) → δ(0)),

where “Z is a linear order of (k+1)-tuples” abbreviates the conjunction of

¬Z(~x, u, ~x, u)

Z(~x, u, ~y, u′) ∨ (~x = ~y ∧ u = u′) ∨ Z(~y, u′, ~x, u)

Z(~x, u, ~y, u′) ∧ Z(~y, u′, ~z, u′′) → Z(~x, u, ~z, u′′)
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and δ(i), for i ∈ {0, 1}, abbreviates the conjunction of

¬MIN (~y) ∧ SUC (~z, ~y) ∧ Z(~z, u′′, ~y, u′) → γ(i)(~x, ~y, u′)

MIN (~y) ∧ SUC (~y, ~z) ∧ Z(~y, u′, ~z, u′′) → γ(i)(~x, ~y, u′).

In the δ-formulae, MIN is the predicate that holds only of the ψk-minimal tuple.

In view of the discussion of the underlying intuition, Ψ is reasonably self-
explanatory. I leave it to the reader to check that Ψ is indeed equivalent to
Φ.

To prove that there is a D-sentence that is equivalent to Φ, it suffices to show
that Ψ is a Σ1

1♥-formula, in virtue of Theorem 4.6.7. To this end observe that
one can define ψk, SUC , and MIN using only the binary relation symbol >. So
in particular it follows that these predicates can be defined without the help of
relation variables. Finally, observe that every argument of the relation variable
Z and X is quantified by the universal quantifiers ∀~x∀~y∀~z∀u∀u′∀u′′. 2

Equivalently, the theorem holds that on linear ordered structures D captures
NP.

4.8 Ehrenfeucht-Fräıssé game for D

I recall the standard model comparison games, or Ehrenfeucht-Fräıssé games, for
first-order logic and monadic, second-order, existential logic in Sections 4.8.1 and
4.8.2. These games will not be used themselves and serve mainly to appreciate
the difference between Σ1

1 and D, from a game-theoretic perspective. The reader
familiar with the model comparison games for first-order logic and second-order
logic may safely skip these parts. This section’s contribution to the chapter is a
model comparison game for D. Model comparison games are usually employed
to prove that some property is not expressible in a certain logic. I shall use the
game for D to this end in Section 4.9.

The quantifier rank of a D-formula is defined as the maximum number of
nested quantifiers in its implicit τ -formulae γ as follows:

qr(R(~x)) = 0, for R ∈ τ

qr(¬φ) = qr(φ)

qr(φ ∨ ψ) = max{qr(φ), qr(ψ)}

qr(∃x φ) = qr(φ) + 1

qr(γ) = max{qr(γ(~i)) | ~i ∈ {0, 1}k}, for γ of type {0, 1}k → FO

qr(Dn
k φ) = qr(φ).
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For any two τ -structures A,B and r-tuples of objects ~xA ∈ Ar, ~xB ∈ Br, I
write

〈A, ~xA〉 ≡FO
m 〈B, ~xB〉

to indicate that for every first-order τ -formula φ whose free variables are amongst
~x, if qr(φ) ≤ m then A |= φ[~xA] iff B |= φ[~xB]. Likewise, for any language
L(τ) ∈ {L (Dn

k(τ),D(τ)}, I write

A ≡L
m B

to indicate that every L(τ)-sentence Γ, such that qr(Γ) ≤ m, is true on A iff it is
true on B.

A partial function p from A to B is a partial isomorphism between A and B,
if it meets the following conditions:

• p is injective; and

• for every k-ary relation symbol R ∈ τ and all a1, . . . , ak ∈ dom(p) it is the
case that 〈a1, . . . , ak〉 ∈ RA iff 〈p(a1), . . . , p(ak)〉 ∈ RB.

Note that vocabularies do not contain constants, for which reason no condi-
tion for them is included. Sometimes it will be handy to treat p as the set
⋃

a∈dom(p){〈a, p(a)〉}.

4.8.1 Comparison game for FO

Let τ be a vocabulary and let m be an integer. Let A,B be τ -structures and
let ~xA = 〈xA

1 , . . . , x
A
r 〉 ∈ Ar, and ~xB = 〈xB

1 , . . . , x
B
r 〉 ∈ Br. Then, the m-round

Ehrenfeucht-Fräıssé game on A and B, denoted by

EFFO
m (〈A, ~xA〉, 〈B, ~xB〉),

is an m-round game proceeding as follows: There are two players, Spoiler (male)
and Duplicator (female). On the ith round, where 1 ≤ i ≤ m, Spoiler first
chooses a structure A (or B) and an element called ci (or di) from the universe
of the chosen structure. Duplicator replies by choosing an element di (or ci)
from the universe of the other structure B (or A). Duplicator wins the play
〈c1, d1〉, . . . , 〈cm, dm〉, if the relation

{〈xA
i , x

B
i 〉 | 1 ≤ i ≤ r} ∪ {〈cj, dj〉 | 1 ≤ j ≤ m}

is a partial isomorphism between A and B; otherwise, Spoiler wins the play. If
against any sequence of moves by Spoiler, Duplicator is able to make her moves
so as to win the resulting play, say that Duplicator has a winning strategy in
EFFO

m (〈A, ~xA〉, 〈B, ~xB〉). The notion of winning strategy for Spoiler is defined
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analogously. By the Gale-Stewart Theorem, cited as Theorem 2.2.1 in this dis-
sertation, Ehrenfeucht-Fraissé games are determined, that is, precisely one of the
players has a winning strategy. The effectiveness of these games is established in
the following seminal result.

4.8.1. Theorem (Fräıssé (1954) and Ehrenfeucht (1961)). The follow-
ing are equivalent for every integer m:

• Duplicator has a winning strategy in EFFO
m (〈A, ~xA〉, 〈B, ~xB〉).

• 〈A, ~xA〉 ≡FO
m 〈B, ~xB〉.

4.8.2 Comparison game for MΣ1
1

In the Ehrenfeucht-Fraissé game for first-order logic, Spoiler is free to choose the
structure from which he picks his object. This freedom reflects the fact that first-
order logic is closed under complementation. That is, if a property Π is expressible
in first-order logic (say by φ) then also its complement can be expressed in first-
order logic (namely by ¬φ).

Yet sometimes one wishes to show that a language is not closed under com-
plementation. The grand question as to whether NP equals coNP is a case in
point: NP = coNP iff Σ1

1 is closed under complementation. Although the latter
question is still open, the problem has been solved for the monadic fragment of
Σ1

1: MΣ1
1 is not closed under complementation. This was proved by Fagin (1974),

who showed that Connected is not expressible in MΣ1
1, whereas its comple-

ment Connected is expressible in MΣ1
1. Connected is the graph property

such that Connected(G) = true iff for every pair of vertices v, v′ in the graph
G, there is a path from v to v′. Fagin’s proof uses model comparison games.

Let τ be a vocabulary, let A,B be τ -structures, and letm,n be integers. Then,
the m-round, n-color MΣ1

1-Ehrenfeucht-Fräıssé game on A and B, denoted as

EFMΣ1
1

n,m (A,B)

has two phases and proceeds as follows. First there is the coloring phase. The
game commences by Spoiler choosing n monadic relations XA

1 , . . . , X
A
n on A,

whereupon Duplicator chooses n monadic relations XB
1 , . . . , X

B
n on B. Crucially,

Spoiler picks up sets from the universe A; he does not have the liberty to pick the
structure of his liking. Monadic relations are just predicates or colorings of the
universe, hence the name. Next, the first-order phase starts, during which the
players play the m-round Ehrenfeucht-Fräıssé on the expanded structures, that
is, they play

EFFO
m (〈A, XA

1 , . . . , X
A
n 〉, 〈B, XB

1 , . . . , X
B
n 〉).

The winner of this game is the winner of EFMΣ1
1

n,m (A,B). The effectiveness of these

games is established as follows: Let Φ = ∃X1 . . . ∃Xn Ψ be an MΣ1
1(τ)-sentence
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where Ψ contains no second-order quantifiers and qr(Ψ) ≤ m. Then, for any two
τ -structures A and B the following are equivalent:

• Duplicator has a winning strategy in EFMΣ1
1

n,m (A,B).

• A |= Φ implies B |= Φ.

Note the asymmetry in the definition of the model comparison game—Spoiler
is forced to start picking from A—and the one-directional implication in the
second statement.

Model comparison games for Σ1
1,k can be defined analogous to the one de-

scribed for MΣ1
1, by letting the players pick up sets from Ak and Bk rather than

A and B. At present, these games have not lead to separation results for Σ1
1,k

and Π1
1,k, for any k ≥ 2.

4.8.3 Comparison games for D

In essence, the model comparison game for D explicated below is a modification
of the comparison game introduced in (Sandu and Väänänen 1992).

Like the model comparison game for Σ1
1, the game for D has two phases: a

watercoloring phase and a first-order phase.
Let τ be a vocabulary, let A and B be τ -structures and let m be an inte-

ger. Then, the m-round, watercolor Dn
k-Ehrenfeucht-Fräıssé game on A and B,

denoted as

EF
Dn

k
m (A,B)

is an m+1-round game proceeding as follows: During the watercoloring phase,
Spoiler picks for every 1 ≤ i ≤ n a subset Xi from Ak. Duplicator picks a
subset Bi of Bk, for every 1 ≤ i ≤ n. Next, Spoiler chooses a tuple ~xB

i ∈ Bk,
for every 1 ≤ i ≤ n, and Duplicator replies by choosing a tuple ~xA

i ∈ Ak. If
for every 1 ≤ i ≤ n the selected tuples satisfy ~xA

i ∈ Ai iff ~xB
i ∈ Bi, then

the game proceeds to the first-order phase as EFFO
m (〈A, ~xA〉, 〈B, ~xB〉); otherwise,

Duplicator loses right away. The winner of the first-order game is the winner of

EF
Dn

k
m (A,B).
Important to note that in the first-order Ehrenfeucht-Fräıssé game that is

started up after the watercolor phase, the actual colorings are immaterial. The
watercolors fade away quickly, so to say.

4.8.2. Proposition. Let τ be a vocabulary, let A and B be τ -structures, and let
k,m, n be integers. Let Γ = Dn

k γ be any Dn
k(τ)-sentence with qr(γ) ≤ m. Then,

(1) and (2) hold:

(1) Statement (a) implies (b):
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(a) Duplicator has a winning strategy in EF
Dn

k
m (A,B).

(b) A |= Γ implies B |= Γ.

(2) If (a) holds for arbitrary k, n, then (b) holds for every D-sentence Γ, with
qr(Γ) ≤ m.

Proof. Ad (1): I shall prove the case in which k = 1, as this will enhance
readability of the argument and it facilitates a gentler comparison with the game
for MΣ1

1 from Section 4.8.2. This limitation does not affect the general result,
though.

So let Γ = Dn
1 γ be a Dn

1 (τ)-sentence with qr(γ) ≤ m. Assume A is a τ -
structure such that A |= Γ and such that Duplicator has a winning strategy in
EFDn

1
m (A,B). That is, Duplicator has a strategy that guarantees a win no matter

Spoiler’s behavior during the game.
The fact that B |= Γ will be derived by considering the case in which Spoiler

kicks off by picking the sets XA
1 , . . . , X

A
n on Ak = A in such a way that they are

witnesses of the fact that A |= Γ. By “XA
1 , . . . , X

A
n being witnesses of A |= Γ,” I

mean that they witness that A |= T (Γ), that is,

A |= ∀x1 . . . ∀xn TL(Dn
1
)(γ)[X

A
1 , . . . , X

A
n ],

where TL(Dn
1
)(γ) denotes the L(Dn

1 )-explication of γ, see Definition 4.5.2 on page
87.

Let Duplicator respond by picking the sets XB
1 , . . . , X

B
n on B that are pre-

scribed by her winning strategy. Thereupon, suppose Spoiler picks arbitrary
objects xB

1 , . . . , x
B
n from B and let Duplicator choose the objects xA

1 , . . . , x
A
n from

A that are prescribed by her winning strategy. By making his choice, Spoiler
implicitly selects one of the first-order τ -formulae in the matrix formula γ. In
particular, Spoiler selects γ∗ = γ(t(xB

1 , X
B
1 ), . . . , t(xB

n , X
B
n )), where

t(a,A) =

{
1 if a ∈ A
0 if a /∈ A.

Since Duplicator selected the objects xA
1 , . . . , x

A
n using her winning strategy, it

must be the case that xA
i ∈ XA

i iff xB
i ∈ XB

i , for every 1 ≤ i ≤ n. Hence,
γ(t(xB

1 , X
B
1 ), . . . , t(xB

n , X
B
n )) = γ∗ = γ(t(xA

1 , X
A
1 ), . . . , t(xA

n , X
A
n )).

By the assumption that A |= Γ and that XA
1 , . . . , X

A
n are witnesses thereof it

follows that A |= γ∗[~xA].
Because Duplicator has a winning strategy and she made all her previous

moves in accordance with one winning strategy, she can keep playing this win-
ning strategy in the first-order phase of the game—EFFO

m (〈A, ~xA〉, 〈B, ~xB〉)—and
win it. A direct application of the effectiveness of Ehrenfeucht-Fräıssé games,
Theorem 4.8.1 in this chapter, yields that 〈A, ~xA〉 ≡FO

m 〈B, ~xB〉. By assumption,
qr(γ) ≤ m, so in particular, qr(γ∗) ≤ m. It follows directly that B |= γ∗[~xB].
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Since ~xB was chosen arbitrarily, so was γ∗. Thus we get that

B |= ∀x1 . . . ∀xn
∧

~i∈{0,1}n

((±i1X1(x1) ∧ . . . ∧ ±inXn(xn)) → γ(~i))[XB
1 , . . . , X

B
n ].

The latter is the case iff

B |= ∀x1 . . . ∀xn TL(Dn
1
)(γ)[X

B
1 , . . . , X

B
n ].

Introduction of existential quantifiers yields

B |= ∃X1 . . . ∃Xn∀x1 . . . ∀xn TL(Dn
1
)(γ).

The latter formula is simply the standard translation T (Γ) of Γ, see Definition
4.5.2. Hence, by adequacy of T proved in Proposition 4.5.3 it is the case that
B |= Γ.

Ad (2): Suppose that Duplicator has a winning strategy in EF
Dn

k
m (A,B), for

every k, n, and that A |= Γ, for an arbitrary D(τ)-sentence Γ. By definition,
D(τ) =

⋃

k,nDn
k(τ), so there are k, n, such that Γ is in fact a Dn

k(τ)-sentence.
Furthermore, there is an m such that qr(Γ) = m. From the assumption and the
previous implication it follows that B |= Γ, as required. 2

To appreciate the difference between model comparison games for Σ1
1 and D,

recall that MΣ1
1-Ehrenfeucht-Fräıssé games have two phases. During the second-

order phase only relations over the universe are selected. Thereafter, the first-
order phase begins on the extended models. By contrast, in the watercolor phase
in D-Ehrenfeucht-Fräıssé games first relations are selected and then objects. If
the chosen objects satisfy the imposed constraint, then the first-order phase is
started up but only the objects that were chosen in the watercolor phase persist.
The relations are immaterial during the first-order phase.

4.9 Non-expressibility result for D

Model comparison games are typically used to prove that some property Π is not
expressible in a certain language. In this manner, I will show that D is not closed
under complementation and that D < Σ1

1.

Using the model comparison games for D developed in Subsection 4.8.3, I
show that D is not closed under complementation. That is, there exists a class of
finite graphs that is characterizable in D but the complement of this class is not.
This result may be interesting because it concerns a fragment of Σ1

1 that is not
bounded by the arity of the relation variables and has a non-empty intersection
with k-ary, existential, second-order logic, for arbitrary k, see Theorem 4.8.3.
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Let τ be a vocabulary. For any two τ -structures A and B with non-intersecting
universes, let A ∪ B denote the τ -structure with universe A ∪ B and RA∪B =
RA ∪RB, for every R ∈ τ .

4.9.1. Theorem. 2-Colorability is not expressible in D.

Proof. For the sake of contradiction, suppose 2-Colorability were express-
ible in D. Then, there would be a particular D-sentence that characterizes
2-Colorability, call it Γ. Γ would have a partially ordered connective with
dimensions k, n prefixing a implicit matrix τ -formula of quantifier rank m. Now
consider two graphs A and B such that (i) A is not 2-colorable and B is 2-

colorable and (ii) Duplicator has a winning strategy in EF
Dn

k
m (A,B). Since Γ

characterizes 2-Colorability, I derive from (i) that A |= Γ and B 6|= Γ. But
from (ii) and A |= Γ it follows by Proposition 4.8.2, that B |= Γ. Contradiction.
Hence, no D-sentence expresses 2-Colorability.

It remains to be shown that for arbitrary k,m, n, there exist graphs A and B

meeting (i) and (ii). To this end, fix integers k,m, n and consider the graphs C

and D, where

C = {c1, . . . , cN}

RC = {〈ci, ci+1〉, 〈ci+1, ci〉 | 1 ≤ i ≤ N − 1} ∪ {〈cN , c1〉, 〈c1, cN〉}

D = {d1, . . . , dN+1}

RD = {〈di, di+1〉, 〈di+1, di〉 | 1 ≤ i ≤ N} ∪ {〈dN+1, d1〉, 〈d1, dN+1〉}

and N = 2m+(k·n). So C and D are cycles of even and odd length, respectively. A
cycle is 2-colorable iff it is of even length; whence D is not 2-colorable whereas C

is. Obviously, the structure C ∪ D is not 2-colorable either.

I show that Duplicator has a winning strategy in EF
Dn

k
m (C ∪ D,C). Suppose

Spoiler selects the set Xi ⊆ (C∪D)k, for every 1 ≤ i ≤ n. Let Duplicator respond
with Xi restricted to the universe of C, that is, Yi = Xi∩C

k, for every 1 ≤ i ≤ n.
Suppose Spoiler selects the tuple ~xC

i ∈ Ck, for every 1 ≤ i ≤ n. Let Duplicator
respond by simply copying these tuples on (C ∪D)k, that is, choosing ~xC∪D

i = ~xC
i .

The game advances to the first-order phase, since ~xC∪D
i ∈ Xi iff ~xC

i ∈ Yi. A
standard argument suffices to see that Duplicator has a winning strategy in

EFFO
m (〈C ∪ D, ~xC∪D

1 , . . . , ~xC∪D
n 〉, 〈C, ~xC

1 , . . . , ~x
C
n〉),

compare (Ebbinghaus and Flum 1999, pg. 23). 2

4.9.2. Corollary. In Example 4.6.6 on page 92 I concluded that the graph
property 2-Colorability is expressible in D. Theorem 4.9.1 shows that the
complement of this class is not expressible in D. Therefore, on finite graphs,
D 6= ¬D, that is, D is not closed under complementation.
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4.9.3. Corollary. Since C ∪ D, from the proof of Theorem 4.9.1, is not con-
nected but C is, Connected is not expressible in D. However, Connected is
expressible in MΣ1

1, cf. (Fagin 1975). So D < Σ1
1.

Actually, it should not come as a big surprise, that on finite graphs D < Σ1
1.

For suppose the converse were true, that is, suppose that D = Σ1
1. Then, by

definition it would be the case that ¬D = Π1
1. Corollary 4.9.2, however, holds

that D 6= ¬D and would thus imply that Σ1
1 6= Π1

1, or equivalently, that NP 6=
coNP.

4.10 Descriptive complexity of L (D) and L (H)

In this section I will take up the descriptive complexity of the logics L (D) and
L (H). This will give us an algorithmic view on Henkin quantifiers. Further-
more it teaches us the way partially ordered quantifiers manifest themselves in
the theory of computing. A more general variant of Theorem 4.10.4 from this
section appeared in an excellent paper by Gottlob (1997), pointed out to me by
Mostowski. By the time I investigated these issues I was unaware of this pub-
lication, and obtained a proof different from Gottlob’s. That is, the references
I use do not build on any of Gottlob’s results nor on his main references. An
independent proof that is.

In Section 4.10.1, I will study the descriptive complexity of L (D) and L (H)
and show that they capture the complexity class PNP

q
on linear ordered structures.

These results are put into perspective in Section 4.10.2.

4.10.1 L (D) and L (H) capture PNP

q

For future reference I show that L (H) has a Prenex normal form. If I want to
distinguish two different Henkin quantifiers without referring to their dimensions,
I may index them with numerals like H(i).

4.10.1. Proposition. Let τ be a vocabulary. Then, every L (H)(τ)-formula Φ
is equivalent to an L (H)(τ)-formula of the following form:

±1H(1)~x1 . . .±n H(n)~xn φ,

where H(i) is a Henkin prefix of arbitrary dimensions, ±i ∈ {¬,¬¬}, and φ is a
FO(τ)-formula.

Proof. A standard inductive proof suffices, the only non-trivial case being the
conjunction. But also this case is easily dealt with: H(1)~x φ1(~x) ∧ H(2)~y φ2(~y) is
equivalent to H(1)~xH(2)~z (φ1(~x) ∧ φ2(~z)), where ~z is a string of variables none of
which appear in ~x. 2
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The main observation of this section concerns the descriptive complexity of
L (H) and L (D), that is associated with the complexity class PNP

q
.5 PNP

q
denotes

the class of properties decidable in deterministic polynomial time with the help
of an NP-oracle that can be asked a polynomial number of queries in parallel
only once. The action of querying the oracle takes one time step.

4.10.2. Theorem. The expression complexity of L (D) and L (H) is in PNP
q

.

Proof. It suffices to show that for an arbitrary L (H)-sentence Φ, deciding
whether Φ is true on a finite, suitable structure A can be done in PNP

q
. First

I describe an algorithm that computes whether Φ is true on A. Thereafter, I
observe that this algorithm can be implemented on a Turing machine that works
in PNP

q
. This will also settle the argument for L (D), in virtue of Proposition

4.3.4.

As for the algorithm, due to Proposition 4.10.1 one may assume without loss
of generality that Φ has the form:

±1H(1)~x1 . . .±n H(n)~xn ψ(~x),

where ψ is a first-order formula over the variables ~x = ~x1, . . . , ~xn.

If S is a set and V = {~v} is a set of variables, let SV denote the set of
assignments from V to S. I may write S~v instead of SV .

Let the algorithm start off by writing down all variable assignments in A~x,
and label every assignment α ∈ A~x with true if A |= ψ(~x)[α], and false otherwise.
Note that ψ’s truth conditions on A are completely spelled out thereafter.

Put i = n and Ξi+1 = ψ. For every i from n to 1, proceed as follows for
±iH(i)~xi in Φ:

• Write down all assignments in A~x1,...,~xi−1 .

• For every assignment α ∈ A~x1,...,~xi−1 ask the oracle if A |= H(i)~xi Ξi+1[α].

• Label α with true if the answer of the oracle was positive and ±i = ¬¬ or
the answer was negative and ±i = ¬; otherwise label it false.

• Erase all labeled assignments from A~x1,...,~xi and let the current list of as-
signments fully specify the truth conditions of Ξi(~x1, . . . , ~xi−1); that is, let
Ξi be the formula that holds of an assignment α on A if and only if α is
labeled true.

5Gottlob’s (1997) version of the theorem is cast in terms of LNP, that is, the class of problems
decidable in logarithmic space with an NP-oracle. Recall that L

NP = P
NP

q
, due to (Wagner

1990).
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Finally, upon arriving at n = 0, if the empty assignment is labeled true the
algorithm accepts the input; otherwise, it rejects it. By means of an elementary
inductive argument this algorithm can be shown correct.

Apart from consulting the oracle, this algorithm runs in polynomial determin-
istic time: enumerating all assignments over n iterations takes at most n · ‖A~x‖
steps, which is clearly polynomial in the size of the input, ‖A‖. Since H captures
NP it is sufficient (and necessary) to employ an NP-oracle. This renders the
algorithm in PNP, since the number of queries are bounded by the polynomially
many different assignments. Yet, this result can be improved, since per iteration
the oracle can harmlessly be consulted in parallel. So the algorithm needs a con-
stant number of n parallel queries to the NP-oracle. In (Buss and Hay 1991) it
was shown that a constant number of rounds of polynomially many queries to an
NP-oracle is equivalent to one round of parallel queries. Therefore, the algorithm
sits in PNP

q
. 2

Let H+(τ) be the first-order closure of H(τ). That is, the closure of H(τ)
under boolean operations and existential quantification (but not under applica-
tion of Henkin quantifiers). More formally, H+(τ) is generated by the following
grammar:

Φ ::= Ψ | ¬Φ | Φ ∨ Φ | ∃x Φ,

where Ψ ranges over the H(τ)-formulae. Let D+(τ) be defined similarly. The
first-order closure of (fragments of) Σ1

1 was taken up in (Ajtai, Fagin, and Stock-
meyer 2000). In the latter publication, the authors observe that the first-order
closure of Σ1

1 captures PNP
q

, on linear ordered structures. Since H = Σ1
1, the

following result follows.

4.10.3. Proposition. On linear ordered structures, D+ and H+ capture PNP
q

.

Proof. The case of H+ follows from the observation from (Ajtai, Fagin, and
Stockmeyer 2000). In Theorem 4.7.2, it was proved that on linear ordered struc-
tures, D = Σ1

1. Hence, on linear ordered structures, D = H. An inductive
arguments settles that D+ = H+, on linear ordered structures. 2

In the proof of the following theorem, we will use the fact the logic H+ is a
fragment of L (H).

4.10.4. Theorem. On linear ordered structures, L (D) and L (H) capture PNP
q

.

Proof. By Theorem 4.10.2, L (H)’s expression complexity is in PNP
q

on the
class of all finite structure. It remains to be proved therefore that L (H) captures
at least PNP

q
, on linear ordered structures. To this end, let Π be an arbitrary

PNP
q

-decidable property on the linear ordered structures. In virtue of Proposition
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4.10.3, obtain that there is a sentence Φ from H+ that expresses Π over the linear
ordered structures. As I concluded at the outset of this theorem, Φ is a sentence
in L (H) as well. Whence, Π is expressible in L (H) as well.

Idem for L (D). 2

4.10.2 Aftermath

I wish to warn the reader who is about to jump into conclusions about parallel
computation and partially ordered quantification. Admittedly, the complexity
class PNP

q
is based on parallel Turing machines and it is captured by L (H), on

linear ordered structures. However, this does not mean that model checking a
single formula H~x φ ∈ H can be done by parallel means, as this requires “simply”
an NP-machine. The parallel way of computing comes in effect only when one
computes the semantic value of several H-formulae at the same moment in time.
For instance, if Hn

k~x φ(y) is an H-formula with one free variable y, then model
checking all of

A |= Hn
k~x φ(y)[y/a1] . . . A |= Hn

k~x φ(y)[y/am]

for objects a1, . . . , am ∈ A, can be done by one round of m parallel queries to an
NP-oracle. It is this principle that underlies the fact that L (H)’s expression com-
plexity is in PNP

q
. On the other hand, it is noteworthy that a polynomial number

of parallel queries suffice is due to the fact that L (H)-formulae only contain
first-order variables. This, namely, causes it sufficient to spell out all variable as-
signments, simply being tuples of objects, and to compute the formula’s semantic
value with respect to this list. By contrast, if one wishes to verify a second-
order formula like ∃X∀Y ∃Z φ on a structure, spelling out variable assignments
amounts to checking triples of subsets of tuples of objects. Interesting to note
here that full second-order logic captures the Polynomial Hierarchy, whereas the
full logic L (H) gets stuck at PNP

q
. In this sense Theorem 4.10.2 provides the

computational upper-bound of partially ordered, yet first-order, quantification.

One way to appreciate the fact that the logics H+ and L (H) coincide on
linear ordered structures is by means of the Henkin depth of L (H)-formulae:

hd(Φ) = 0, for first-order Φ

hd(¬Φ) = hd(Φ)

hd(Φ ∨ Ψ) = max{hd(Φ), hd(Ψ)}

hd(∃x Φ) = hd(Φ)

hd(H~x Φ) = hd(Φ) + 1,

reading H0
nx1 . . . xn as ∃x1 . . . ∃xn.
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Clearly every H+-sentence has Henkin depth at most one. Therefore, by
Theorem 4.10.4 it is the case that for every L (H)-sentence Φ there exists an
H+-sentence Ψ, such that hd(Ψ) ≤ 1 and that on the class of linear ordered
structures Φ and Ψ define the same property. Put differently, on linear ordered
structures granting Henkin quantifiers to nest does not yield greater expressive
power. Gottlob (1997) proves an even stronger normal form for L (H) on linear
ordered structures. In Gottlob’s terminology, an L (H)-sentence Φ is in Stewart
normal form, if it is of the form

∃~x
(
H(1)~y φ1(~x, ~y) ∧ ¬H(2)~z φ2(~x, ~z)

)
,

where φ1 and φ2 are first-order. This normal form is inspired by (Stewart 1993a;
Stewart 1993b), hence the name. Clearly the Henkin depth of every formula in
Stewart normal form is at most one. Gottlob proves that on the class of linear
ordered structures for every L (H)-sentence Φ there exists an L (H)-sentence Ψ
in Stewart normal form, that expresses the same property.

This result cries out for an effective translation procedure from L (H) into
H+ of course, but unfortunately I cannot provide it. The translation hinges on
finding a way of reducing the number of Henkin prefixes in a quantifier block. It
gives some insight in the problem to show that

(
∀u1 ∃v1

∀u2 ∃v2

)(
∀x1 ∃y1

∀x2 ∃y2

)

φ

is equivalent to






∀u1 ∃v1

∀u2 ∃v2

∀u1 ∀u2 ∀x1 ∃y1

∀u1 ∀u2 ∀x2 ∃y2






φ,

see also (Blass and Gurevich 1986). But the real challenge is to find a way
to handle negations appearing in between Henkin prefixes, making use of the
finiteness of the structure and its linear order.

Dawar, Gottlob, and Hella (1998) raise the question whether L (H) captures
PNP

q
over unordered structures. Surprisingly, it turns out that L (H) does not

capture PNP
q

in the absence of a linear order, unless the Exponential Boolean
Hierarchy collapses, amongst other hierarchies. In complexity theory the collapse
of this hierarchy is considered to be highly unlikely.

Furthermore, a study by Hyttinen and Sandu (2000) implies that essentially
one has to make use of the finiteness of the structures. Consider the logical
languages

H1 = H

H+
m = first-order closure of Hm

Hm+1 ::= Φ | Hn
k~x Φ,



4.11. Concluding remarks 113

where Φ ranges over the H+
m-formulae and k, n are integers. Clearly the Henkin

depth of any Hm-sentence is k, and
⋃

mHm = L (H). The authors prove that
on the standard model of arithmetic the language Hm+1 has strictly stronger ex-
pressive power than H+

m, for every m ≥ 1.

4.11 Concluding remarks

In this chapter I showed that Henkin quantifiers can be seen to describe games
whose imperfect information is brought about by limiting the number of memory
cells of the involved agents. The idea of restricting the agents proved fruitful:
function quantifiers and partially ordered connectives could be explained by ab-
sentmindedness and finite action arrays, respectively. The logic D was shown to
be a natural, though weaker, fragment of Σ1

1, cf. Theorem 4.6.7 and Corollary
4.9.3. Theorem 4.7.1 shows that D contains a strict arity induced hierarchy, and
Corollary 4.9.2 concludes that it is not closed under complementation. I observed
that although on linear ordered structures, D = Σ1

1, on arbitrary structures it is
the case that D < Σ1

1.

I gave another proof of Gottlob’s result holding that L (H) captures PNP
q

on
linear ordered structures, and derived the same theorem for L (D).

In Theorem 4.6.7 it was shown that D comprises a fragment of Σ1
1 whose

sentences do not allow for a single existential variable to appear as the argument
of a predicate variable. Hereby we arrive at a more refined way of dividing
Σ1

1 in syntactic fragments, than the division in prefix classes. For instance, the
prefix class Σ1

1∀
∗ is the fragment of Σ1

1 all of whose formulae have the form
∃X1 . . . ∃Xm∀x1 . . . ∀xn φ, where φ quantifier-free. Σ1

1♥ extends the prefix class
Σ1

1∀
∗ by replacing the constraint “quantifier-free” by “sober”. It is interesting to

compare the meta-theoretical properties of Σ1
1♥ and Σ1

1∀
∗, and other logics that

stand in the same relationship (i.e., quantifier-free vs. sober). This research may
put the program outlined in (Eiter, Gottlob, and Gurevich 2000; Gottlob 2004)
in a broader context.

The discussion about the imperfect information games definable by partially
ordered quantifiers gave some nice characterizations but was rather unsystematic.
I meandered from limited cell agents to absentmindedness, without sketching the
underlying framework. The reason being that no framework has been developed in
which the interaction of game theory and (partially ordered) quantification theory
can be studied. Setting up such a framework may thus lead to new quantifiers
that in turn may lead to fully game-theoretic characterizations of the conundrums
from complexity theory such as the NP = coNP-problem.

Finally I mention a game-theoretic gap that needs to be filled in the interest
of logic and descriptive complexity. We used a computational result from (Buss
and Hay 1991) saying that every constant series of parallel queries can be reduced
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to one session of parallel queries. The logical face of this theorem is the flatness
result, holding that on linear ordered structures a L (H)-sentence of arbitrary
Henkin depth has an equivalent L (H)-sentence of Henkin depth at most one.
The question arises what would be the game-theoretic face of the aforementioned
flatness result, in particular in the realm of model comparison games. Model com-
parison games are typically used to prove that some property is not expressible
in a logic. As such they are tools par excellence to separate NP from coNP,
for instance. A fertile approach to prove non-expressibility results is by simpli-
fying model comparison games, in order to develop a library of intuitive tools
for separating logics, cf. (Ajtai and Fagin 1990; Arora and Fagin 1997). Along
these lines the flatness result concerning Henkin quantifiers may give rise to less
complicated, but powerful, games to separate logics.



Chapter 5

Branching quantifiers

In this chapter I will focus on so-called branching quantifiers as they are studied
in theoretical linguistics (Barwise 1979). Technically, branching quantifiers are
akin to partially ordered quantifiers. I treat branching quantifiers in a chapter
of their own, firstly because I use strategic games to give them a game-theoretic
semantics, rather than extensive games. In particular, I show that branching
quantifiers define a class of strategic games, such as Rock, Paper, Scissors and the
Prisoner’s Dilemma. To do so I develop a framework in which logical expressions
are evaluated in terms of Nash equilibria and may have any truth value in the
interval between 0 and 1. This approach has not been taken before, although
it was hinted at by various researchers (Blass and Gurevich 1986; van Benthem
2004; Ajtai 2005).

Secondly, the computational questions that I raise aim to bear relevance to
the study of natural language semantics. I compare the complexity of branching
quantifiers with non-branching quantifiers from the literature on natural language
semantics, using an observation by van Benthem (1986) to show that they are
“very tractable”. Surprisingly it turns out that branching quantifiers—including
the ones whose semantics are generally unquestioned—have an NP-complete
complexity, which in all likelihood means that they are intractable. I show that
other quantifiers in natural language also have high complexity, suggesting that
branching quantifiers are not in an isolated position in this respect.

5.1 Introduction

One of the best-known applications of partially ordered quantifiers is found in
linguistics. It all began with Hintikka (1974), who claimed that the sentences
(a)-(c) below have a logical form that cannot be described in first-order logic.

(a) Some relatives of each villager and some relatives of each townsman hate
each other.

115
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(b) Some book by every author is referred to in some essay by every critic.

(c) Every writer likes a book of his almost as much as every critic dislikes some
book he has reviewed.

Sentences like (a)-(c) are called Hintikka sentences . Hintikka claims that the
logical form of (a) is

(
∀x1 ∃y1

∀x2 ∃y2

)

(V (x1) ∧ T (x2) → (R(x1, y1) ∧R(x2, y2) ∧H(y1, y2))), (5.1)

containing a true partially ordered quantifier which is not first-order definable.
In linguistics, partially ordered quantifiers are usually known as branching quan-
tifiers. Henceforth I will refer to the doctrine holding that sentence (a) has a
logical interpretation as in (5.1) as Hintikka’s Thesis . Readers unfamiliar with
Hintikka’s claims may have a hard time grasping the meaning ascribed to (a)-(c);
and he or she would not be the first one to disagree with Hintikka on the intended
meaning of these sentences. Barwise (1979) summed up the arguments for and
against branching as a construct in natural language. Barwise takes a sympa-
thetic view of the idea of introducing partially ordered quantifiers to the linguist’s
toolbox. Barwise argues that the notation of partially ordered quantifiers should
be used more broadly in formalizing the meaning of natural language, even if the
logical form of the sentence can be given without partially ordered quantifiers.
For instance, Barwise proposes to express the sentence

(d) Some relatives of each townsman and every villager hate each other.

by (
∀x ∃y

∀z

)

(T (x) ∧ V (z)) → (R(x, y) ∧H(y, z))).

Although the latter is logically equivalent to

∀x∃y∀z (T (x) ∧ V (z)) → (R(x, y) ∧H(y, z)))

it does not account for the wide scope of every in (d). In this manner, Barwise
argues that branching quantifiers may give a more binding scope-sensitive repre-
sentation. Remember that this is one of the motivations of Independence-friendly
logic (Sandu 1993; Hintikka 1996; Hintikka and Sandu 1997), see also Chapter
3 of this dissertation. Branching quantifiers have been used in the analysis of
natural language, not only to formalize Hintikka sentences, cf. (Boolos 1981; Gil
1982; van Benthem 1983).

As regards the Hintikka sentences (a)-(c), Barwise (1979) rejects Hintikka’s
Thesis on empirical grounds. In Barwise’s empirical tests, subjects were asked
to judge the truth value of a certain Hintikka sentence in a given model. It
turned out that the subjects’ behavior was more in line with the proposition that
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Hintikka sentences have a certain first-order reading than with the proposition
that they have a branching reading.

Yet, Barwise (1979) supplied other sentences claiming that their logical form
essentially relies on the partially ordered quantification. Barwise’s examples are
as follows:

(e) Most philosophers and most linguists agree with each other about branching
quantification.

(f) Most of the boys and most of the girls dated each other.

I call sentences (e) and (f) branching most sentences. According to Barwise (1979)
the contention of (f) is that the majority of the boys and the majority of the girls
have all dated each other pairwise.

The linguistic debate that was aroused by Hintikka’s claims seems to have
settled on the conviction that sentences like (a)-(c) have a “plain” first-order
logical form, but that (e) and (f) are examples of essential branching.

In this chapter I take up the game-theoretic and computational analysis of
branching quantifiers, with a keen eye on linguistic applications.

A recurring complaint concerning Hintikka’s game-theoretic semantics is that
it only accounts for nested quantifiers ∀ and ∃. Therefore, a game-theoretic analy-
sis of branching most sentences would counter this complaint in both respects: it
deals with branching instead of nesting, and with the quantifier most.

Somewhat surprisingly, complexity issues of natural language quantifiers have
received only little attention in the literature although it was recognized that
computational complexity “[carries] the promise of a new field of computational
semantics, which, in addition to questions of logical and mathematical interest,
has applications to language learning and to mental processing of natural lan-
guage” (Westerst̊ahl 1989, pg. 115, Westerst̊ahl’s italics).

By “complexity of a quantifier” I refer to its expression complexity, in a sense
that shall be formalized below.1 In my view, it is natural to study this prob-
lem, as it matches the everyday problem of checking whether a sentence is true
in a given situation. As such this study may be of interest to disciplines related
to generalized quantifiers such as cognitive psychology, cf. (McMillan et al. 2005).

In Section 5.2, I set the stage by introducing the basics of generalized quantifier
theory and branching quantifiers. I define a quantifier’s expression complexity.

In Section 5.3, I give a game-theoretic account of branching quantifiers in
terms of strategic games. Thereby, I give an argument against the view that
game-theoretic semantics is only capable of accounting for the nesting of quan-
tifiers ∀ and ∃. Thus branching quantifiers define games in which the imperfect

1The problem of deciding whether a set of generalized quantifier expressions is satisfiable,
was studied in a publication by Pratt-Hartmann (2004).
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information is introduced by parallel playing. Several researchers have hinted at
the congenial mathematical structure that strategic game theory has in reserve
for logic theory, but this topic has not been taken up until now. I conclude
this section with some directions for further research that are opened up by the
strategic framework.

Little research has been done on the interface of computability and general-
ized quantifiers. In Section 5.4, I recall van Benthem’s work on finite automata
and Mostowski and Wojtyniak’s work on a computational analysis of Hintikka
sentences.

In Section 5.5, I take up the complexity of natural language determiners and
the quantifiers that one can construct from them by means of “traditional ma-
chinery”, such as boolean operations and iterations (nesting) of quantifiers. Their
complexity will be seen to be “very tractable” (L-computable).

In Section 5.6, I prove that in branching most sentences have NP-complete
expression complexity, according to Barwise’s reading. Given that P 6= NP,
this means that the branching tool increases complexity even beyond what is
tractable.

In Section 5.7, I consider three supposedly natural language quantifiers, in-
cluding Every . . . a different and A few . . . all, and map out their expression
complexity. I do so to point out that branching most’s NP-complete complexity
is not the only quantifier which has such a high complexity.

In Section 5.8, I conclude the chapter, with a small empirical experiment of
my own concerning the actual usage of the branching of most sentences in natural
language.

5.2 Prerequisites

In this section, I introduce the syntax and semantics of generalized quantifiers
and define their expression complexity. Also I provide the Barwise reading of the
branching most quantifier.

Syntax. Let Q be a generalized quantifier symbol. Every quantifier symbols has
a type, that is a tuple of integers. Let Q be a generalized quantifier symbol of
type 〈k1, . . . , kn〉. Then:

(GQ) If R1, . . . , Rn are relation symbols of arity k1, . . . , kn and ~x1, . . . , ~xn are
strings of variables of length k1, . . . , kn, then

Q~x1, . . . , ~xn (R1(~x1), . . . , Rk(~xn))

is a Q-expression.

The symbol ⊤ counts as a relation symbol of arbitrary arity.
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Semantics. With every generalized quantifier symbol Q of type 〈k1, . . . , kn〉 is
associated a function QS which assigns to each set S a subset of ℘(Sk1) × . . . ×
℘(Skn).

Let Q~x1, . . . , ~xn (R1(~x1), . . . , Rn(~xn)) be a Q-expression. Let S be a structure
interpreting R1, . . . , Rn. Then,

S |= Q~x1, . . . , ~xn (R1(~x1), . . . , Rn(~xn)) iff 〈RS
1 , . . . , R

S
n 〉 ∈ QS,

where ⊤S = Sn, for every appropriate integer n.
The generalized quantifiers All and Some are familiar from first-order logic.

Yet, in natural language one typically does not find the type 〈1〉 quantifiers ∀ and
∃, but rather their relativized brothers of type 〈1, 1〉. The functions associated
with some generalized quantifiers symbols can be found below:

∀S = {S}

∃S = {X ∈ ℘(S) | X 6= ∅}

RS = {X ∈ ℘(S) | ‖X‖ > ‖S −X‖}

AllS = {〈X,Y 〉 ∈ ℘(S)2 | X ⊆ Y }

SomeS = {〈X,Y 〉 ∈ ℘(S)2 | X ∩ Y 6= ∅}

MostS = {〈X,Y 〉 ∈ ℘(S)2 | ‖X ∩ Y ‖ > ‖X − Y ‖}

A fewS = {〈X,Y 〉 ∈ ℘(S)2 | ‖X ∩ Y ‖ < ‖X − Y ‖}.

The quantifier R is also known as the Rescher quantifier.

Complexity. Let Ω = Q~x1, . . . , ~xn (R1(~x1), . . . , Rn(~xn)) be a Q-expression. Let
F be the class of all finite {R1, . . . , Rn}-structures. Then, Ω gives rise to the set

{S ∈ F | S |= Ω}. (5.2)

Let C be a complexity class. Let structures be encoded as in Chapter 4 in line
with (Immerman 1999). I say that the expression complexity of Ω is in C, if (5.2)
is C-computable. The expression complexity of Ω said to be C-complete if (5.2)
is C-complete. A quantifier Q is called C-computable, if all Q-expressions are
C-computable, and C-complete if at least one Q-expression is C-complete.

Branching quantifiers. In first-order logic, one may meaningfully combine
quantifiers by nesting them. For instance, ∀x A(x) and ∃y B(y) are sentences
with a properly defined semantics and so is ∀x∃y R(x, y). Nesting of first-order
quantifiers can thus be seen as an operator that maps two type 〈1〉 quantifiers
on one type 〈2〉 quantifier. In the literature on natural language quantificatiers
several operators are known, and they are addressed in Section 5.5 of this chapter.
I will not repeat the computational terminology for compound quantifiers, but it
should be clear.



120 Chapter 5. Branching quantifiers

Before leaving this section let me introduce the branching operator. To this
end, a type 〈1, 1〉 quantifier Q is called monotone increasing (MON↑), if for
every set A ⊆ S, if B ⊆ C ⊆ S and 〈A,B〉 ∈ QS then 〈A,C〉 ∈ QS. The
notion of a monotone decreasing quantifier is defined analogously, for B ⊇ C.
Let Q,Q′ be two MON↑ quantifiers of type 〈1, 1〉. Define the branching of the
quantifier symbols Q and Q′ as the type 〈1, 1, 2〉 quantifier symbol Br(Q,Q′). On
the assumption that RS ⊆ AS×BS, define its semantics as follows on structures
S that interpret A,B,R:

〈AS, BS, RS〉 ∈ Br(Q,Q′)S

iff

(∃X ⊆ AS)(∃Y ⊆ BS) (〈X,AS〉 ∈ QS and 〈Y,BS〉 ∈ Q′
S and X × Y ⊆ RS).

In this manner, (f) has as its logical form

Br(Most,Most)xyzz′ (BOY (x),GIRL(y),DATE (z, z′)).

Branching quantifiers can also be defined for monotone decreasing quantifiers, and
for pairs of quantifiers such as Exactly n that are neither monotone increasing nor
monotone decreasing, see (van Benthem 1983). Mathematical generalizations of
Br that cover these cases are explored in (Westerst̊ahl 1987).

5.3 Strategic games and branching quantifiers

In Section 5.3.1, I develop a game-theoretic semantics for branching type 〈1〉
quantifiers, in terms of strategic games. This treatment is general in that it
provides a game-theoretic interpretation for all branched quantifiers Q and Q′,
including but not restricted to ∀ and ∃. The underlying idea can be generalized
to apply to quantifiers of higher types. Since the strategic approach is new in
logic, I contemplate on further research in Section 5.3.2. The game-theoretic
semantics for branching quantifiers, laid out in Section 5.3.1, gives an approach
for solving a problem that faces the programme of game-theoretic semantics.
Because, although game-theoretic semantics works out intuitively for first-order
logic, it is unclear how to extend it for quantifiers other than ∀ and ∃, and
operations other than iteration.

5.3.1 GTS for branching quantifiers

Let me first adapt the previous definitions so that they apply to type 〈1〉 quanti-
fiers Q. Q is called universal , if for some set S, QS = ℘(S). Q is called monotone
increasing, if for every set S, if A ⊆ B and A ∈ QS then B ∈ QS. Note that
∃,∀,R are all MON↑ quantifiers, but neither of them is universal.
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Let Q,Q′ be two MON↑ quantifiers of type 〈1〉. The branching of Q and Q′ is
the type 〈2〉 quantifier Br(Q,Q′), such that for every structure S interpreting R,
RS ∈ Br(Q,Q′)S iff

(∃X ⊆ S)(∃Y ⊆ S) (X ∈ QS and Y ∈ Q′
S and X × Y ⊆ RS).

Branching quantifiers admit of a highly regular independence scheme. For in-
stance, the expression Br(R,R)xy R(x, y) would have Rx(Ry/{x}) R(x, y) as
its information-friendly rendering; and Br(∀,∃)xy R(x, y) would read as the IF-
formula ∀x(∃y/{x}) R(x, y). We see that the two simple quantifiers in a branching
quantifier are independent of each other. In this section the independence scheme
constituted by branching quantifier will be given a game-theoretic semantics in
terms of parallel playing agents. In this manner, the expression Br(∀,∃)xy R(x, y)
indicates that Abelard and Eloise must pick their objects in parallel. If the chosen
pair of objects is R-related, Eloise wins and otherwise Abelard wins. This one-
shot, parallel way of playing is closely connected with strategic games that are
one-shot games in which the players pick up their strategies in parallel, and the
payoff is returned immediately afterward on the basis of the selected strategies.
Surprisingly little has been said on the strategic viewpoint on semantic games. It
was touched on in (Blass and Gurevich 1986) and (van Benthem 2004, pg. 193-4),
but has not been taken up, cf. (Ajtai 2005).

In strategic game theory things get especially interesting when resorting to
mixed strategies, that are probability distributions over pure strategies. In (Blass
and Gurevich 1986, pg. 15-6) the authors hint at using mixed strategies, dwelling
on the truth value of

S |= Br(∀,∃)xy (x = y). (5.3)

They observe that the expression in 5.3 is neither true nor false in case ‖S‖ has
two or more objects. They suggest to let the formula in (5.3) have truth value
1/n where n is the cardinality of S. To account for their intuitions, Blass and
Gurevich suggest to use mixed strategies in a game-theoretic framework. I will
formalize matters and return to the truth value of (5.3) to show that the proposed
formalization indeed meets the stated intuitions.2

Let S be a finite structure interpreting R and let Q,Q′ be two MON↑ type 〈1〉
quantifiers. Put Θ = Br(Q,Q′)xy R(x, y). Let the pre-strategic evaluation game
of Θ on S be the tuple 〈N, 〈Ai〉i∈N , 〈U

′
i〉i∈N〉, where

• N = {Q,Q′} are the players;

• Ai = S is the set of pure strategies for player i ∈ N ; and

2Importantly, my formalization is substantially different from the one proposed in (Blass
and Gurevich 1986). In the latter publication, the authors sketch an approach that uses von
Neumann’s minimax Theorem. As far as I can see, this account can only handle branching
quantifiers Br(Q,Q′), for Q,Q′ ∈ {∀,∃}. My aim is to develop a framework that can deal also
with branching most expressions.
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• U ′
i : AQ × AQ′ → {0, 1} is the utility function for player i ∈ N such that

U ′
i(a, a

′) =

{
1 if 〈a, a′〉 ∈ RS

0 if 〈a, a′〉 /∈ RS.

Note that U ′
Q is defined independent from Q. For this reason I will henceforth

simply write U ′, suppressing the subscript that indicate the player to whom the
utility function belongs.

Let ∆(S) denote the class of probability distributions over a finite set S. A
probability distribution over a finite set S is a function δ of type S → [0, 1], such
that

(∑

a∈S δ(a)
)

= 1. Observe that ∆(∅) is ill-defined. If δ ∈ ∆(S) and a ∈ S,
let δ(a) ∈ R be the probability assigned to a by δ. Let the support of δ ∈ ∆(S),
symbolically Supp(δ), be the set of objects in S to which δ assigns a non-zero
probability. Call a probability distribution δ ∈ ∆(S) uniform, if it assigns to
every object in its support equal probability.

Let the strategic evaluation game of Θ on S, denoted Str -game(Θ,S), be the
tuple 〈N, 〈∆(S)i〉i∈N , 〈Ui〉i∈N〉, where

• N = {Q,Q′} is as in the pre-strategic evaluation game of Θ on S;

• ∆(S)C is the flat set of mixed strategies for player C ∈ N , defined

{δ ∈ ∆(S) | Supp(δ) ∈ CS and δ is uniform};

• Ui : ∆(S)Q × ∆(S)Q′ → {0, 1} is the utility function for player i ∈ N such
that

Ui(δ, δ
′) =

∑

〈a,a′〉∈S2

δ(a) · δ(a′) · U ′(a, a′).

Again, the utility functions are defined without reference to the player i, for which
reason I omit the subscript. So it is not the goals of the game that discriminate
the players. Instead it is the strategies that are available to the players.

It needs notice that ∆(S)C does not contain all mixed strategies of S—it only
contains those that are uniform and whose support is appropriate with respect
to C. To avoid confusion, I coined the set ∆(S)C “flat”.

Intuitively, one may envisage the protocol of a strategic game as follows: both
players i ∈ N pick a strategy δi from their set of flat mixed strategies ∆(S)i. This
ends the active part of the game after which they receive the payoff U(δQ, δQ′). See
(Osborne and Rubinstein 1994) for other conceptualizations of strategic games.

Like semantic games, I am not so much interested in particular runs of the
game, but rather in statements we make about them.

5.3.1. Definition. LetG = 〈{1, 2}, 〈Ai〉i∈N , 〈Ui〉i∈N〉 be a strategic game. Then,
call the pair 〈a1, a2〉 ∈ A1 ×A2 a Nash equilibrium in G, if for every a′1 ∈ A1 and
a′2 ∈ A2,

U1(a
′
1, a2) ≤ U1(a1, a2) and U2(a1, a

′
2) ≤ U2(a1, a2).
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Let 〈a1, a2〉 be a Nash equilibrium in G. Call 〈a1, a2〉 a Pareto optimal Nash
equilibrium in G, if there is no Nash equilibrium 〈a′1, a

′
2〉 in G such that for all

players i, Ui(a1, a2) ≤ Ui(a
′
1, a

′
2) and for some player j, Uj(a1, a2) < Uj(a

′
1, a

′
2).

In every strategic game G, if the players have the same utility function, then
there is at least one Pareto optimal Nash equilibrium. In particular it follows
that in strategic evaluation games for branching quantifier expressions there is at
least one Pareto optimal Nash equilibrium guaranteed. This insight justifies the
following definition.

5.3.2. Definition. Let Q,Q′ be two MON↑ type 〈1〉 quantifiers, let Θ be the
expression Br(Q,Q′)xy R(x, y), and let S be a finite structure interpreting R.
Then, let U(δ, δ′) be the truth value of Θ on S, where 〈δ, δ′〉 is a Pareto optimal
Nash equilibrium in Str -game(Θ,S).

Armed with this formal machinery, return to Blass and Gurevich’s formula
Ω = Br(∀,∃)xy (x = y). In the following result, that may also be appreciated as
an example, I prove that the strategic machinery accounts for their intuition.

5.3.3. Proposition. Let S be a finite structure. Then, the truth value of Ω on
S is 1/‖S‖.

Proof. Consider the flat set of mixed strategies of ∀ and ∃. ∆(S)∀ = {δ∀},
where δ∀ is the uniform probability distribution whose support is S. Hence, for
every a ∈ S, δ∀(a) = 1/‖S‖. More interestingly, ∆(S)∃ contains all uniform
probability distributions δ such that ‖Supp(δ)‖ 6= ∅. Fix any δ∃ ∈ ∆(S)∃ and
consider

U(δ∀, δ∃) =
∑

〈a,a′〉∈S2

δ∀(a) · δ∃(a
′) · U ′(a, a′)

=
∑

a∈S

∑

a′∈S

δ∀(a) · δ∃(a
′) · U ′(a, a′).

Since U ′(a, a′) = 1 iff a = a′, it is the case that U(δ∀, δ∃) is in fact equal to

∑

a∈S

δ∀(a) · δ∃(a) =
∑

a∈S

(1/‖S‖) · δ∃(a)

= 1/‖S‖.

The support of δ∃ turns out to be immaterial to these calculations: For every prob-
ability distribution δ from ∆(S)∃, it is the case that U(δ∀, δ) = 1/‖S‖. Therefore,
〈δ∀, δ∃〉 is a Pareto optimal Nash equilibrium in Str -game(Ω,S), and consequently
the truth value of Ω on S is 1/‖S‖. 2
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Proposition 5.3.3 shows that the theoretic possibility of truth values not being
equal to 0 or 1, does materialize in strategic games. In fact, the proposition
shows that for every integer n, there is a semantic game whose truth value is 1/n.
Proposition 5.3.3 does not relate truth values to the standard truth definition
of branching expression. That is, it is observed that the truth value of Ω on
a structure with n objects is 1/n, yet from this mere fact one cannot deduce
whether Ω is true under the customary notion of |= on the structure at hand.
The connection between truth values and truth is established in Theorem 5.3.4.

5.3.4. Theorem. Let Q,Q′ be two non-universal MON↑ type 〈1〉 quantifiers.
Let R be a binary relation symbol and let S be a finite structure interpreting
R. Then, S |= Br(Q,Q′)xy R(x, y) iff the value of the strategic evaluation game
Str-game(Br(Q,Q′)xy R(x, y),S) is 1.

Proof. Suppose S |= Br(Q,Q′)xy R(x, y), then by definition

(∃X ⊆ S)(∃Y ⊆ S) (X ∈ QS and Y ∈ Q′
S and X × Y ⊆ RS).

Since Q and Q′ are MON↑ but not universal, derive that X and Y are non-empty.
For suppose otherwise and X were ∅. Then by monotonicity every subset of S
would sit in QS. Hence, QS would be equal to ℘(S) contradicting the assumption
of Q’s not being universal.

Consider the uniform probability distributions δX and δY that have support
X and Y , respectively. Since X and Y are non-empty, these distributions are
properly defined. Furthermore, observe that δX ∈ ∆(S)Q and that δY ∈ ∆(S)Q′ ,
since the support of δZ is Z, for Z ∈ {X,Y }. As regards the payoff in case Q and
Q′ play δX and δY , consider the equivalences

U(δX , δY ) =
∑

〈a,a′〉∈S2

δX(a) · δY (a′) · U ′(a, a′)

=
∑

a∈S

∑

a′∈S

δX(a) · δY (a′) · U ′(a, a′)

=
∑

a∈Supp(δX)

∑

a′∈Supp(δY )

δX(a) · δY (a′) · U ′(a, a′)

=
∑

a∈X

∑

a′∈Y

δX(a) · δY (a′) = 1,

since X × Y ⊆ RS. The maximal value is clearly 1, whence 〈δX , δY 〉 is a Pareto
optimal Nash equilibrium. Therefore the value of the strategic game is 1 and the
claim follows.

The converse direction runs along similar lines. 2

Theorem 5.3.4 reports the adequacy of strategic evaluation games for model-
ing the notion of truth for two arbitrary, type 〈1〉 quantifiers. It is fairly easy to
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see that a stronger result can be established in at least two respects. No definition
hinges essentially on the fact that there are only two players, and every definition
can be extended to facilitate the game Str -game(Br(Q1, . . . ,Qn)~x R(~x),S), for
arbitrary n. Furthermore, extensions toward type 〈1, 1〉 quantifiers are readily
envisioned by letting the mixed strategies be probability distributions over pairs
of objects. A more substantial obstacle is the restriction to monotone increasing
quantifiers. Barwise (1979) observed that the following natural language expres-
sion makes perfect sense, containing two monotone decreasing quantifiers:

(g) Few boys and at most three girls have all dated each other.

My game-theoretic analysis runs into problems at this point, for consider the type
〈1〉 quantifier Few that is the non-relativized cousin of the type 〈1, 1〉 quantifier
A few. For convenience, put FewS = ℘(S) − RS. Clearly, Few is monotone
decreasing and for every non-empty set S, FewS contains ∅. For this reason,
∆(S)Few cannot be defined analogous to the flat set of mixed strategies ∆(S)C

for MON↑ quantifier C, since there is no probability distribution whose support
is the empty set.

As it happens, branching monotone decreasing quantifiers are the odd one
out from a model-theoretic point of view. Westerst̊ahl (1995, Proposition 1.9.3)
shows, namely, that the truth conditions of Br(Q,Q′) boil down to the truth con-
ditions of the cumulation of Q and Q′, given that Q,Q′ are monotone decreasing
quantifiers of type 〈1, 1〉. (The cumulation of two quantifiers is defined in Section
5.5 of this chapter.) It would be interesting to see if the failure of the above in-
troduced game-theoretic apparatus can be connected with branching coinciding
with cumulation.

5.3.2 Contemplations on the strategic framework

Theorem 5.3.4 shows that strategic game theory can define a game-theoretic se-
mantics for branching quantifiers. The question arises if one can set up also
game-theoretic interpretations of operations other than branching in the strate-
gic framework. For instance, can the operations of cumulation and iteration, that
will be addressed in Section 5.5, also be understood from a strategic viewpoint? I
will not address these questions here and leave them as challenges to the strategic
framework.

It be noted that single 〈1, 1〉 quantifiers can be tackled using the very strategic
framework I laid down. Strategic evaluation games for Qxy R(x, y) would thus
be single player strategic games, i.e., perfect information optimization problems.

The other way around—departing from game theory—one wonders whether
other solution concepts give rise to interesting concepts of truth. Truth for branch-
ing quantifiers was characterized in Theorem 5.3.4 using the solution concept of
Nash equilibrium, but game theory provides a garden-variety of solution concepts,
each of which may give rise to interesting notions of truth. By example, what
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notions of truth are defined by the concept of dominant strategy and iterated
removal of dominated strategies?

The very fact that branching quantifiers may not only have truth value 0
(false) and 1 (true), but any value in the interval [0, 1] suggests another series
of questions. In this respect, namely, Theorem 5.3.4 only scratched the sur-
face of the structure that strategic viewpoint has to offer, as it characterizes
truth in terms of having truth value exactly 1. By this token, more exciting no-
tions of truth come to mind. Consider for instance the satisfaction relation |=ε,
where ε is a real in [0, 1], such that S |=ε Br(Q,Q′)xy R(x, y) iff the value of
Str -game(Br(Q,Q′)xy R(x, y),S) ≥ ε.

In this manner, Theorem 5.3.4 contributes that the original definition of |=
for branching expressions coincides with |=1. Clearly for any integer n ≥ 2 it is
the case that |= and |=1/n differ. Observe for instance that:

S |=1/n Br(∀,∃)xy (x = y) and S 6|=1 Br(∀,∃)xy (x = y), (5.4)

for every structure S with ‖S‖ ≥ n. Interesting and non-trivial questions pop up
right away. Suppose one switches from |=1 to |=1−ε, for a very small ε. Intuitively,
this means that one “relaxes” the notion of truth one entertains: for a branching
quantifier expression to be true under |=1−ε it suffices there exists a Pareto optimal
Nash equilibrium whose value is 1 − ε, instead of the customary 1. Now, what
are the model-theoretic differences between |=1−ε and |=1?

The latter question is model-theoretically motivated, but also probabilistic
approaches to logic come to mind, such as 0-1 laws for first-order logic and ex-
tensions thereof.

In my opinion the strategic framework sheds a fresh light on the concept of
dependence in logic. Let me take in mind branching quantifier expressions or,
more ambitiously, formulae from IF logic. Under game-theoretic semantics for IF
logic, the IF-sentence Φ is true on a structure S iff Eloise has a winning strategy
in the associated game. The latter condition, now, is equivalent to Eloise having
a strategy returning utility 1 independent of the strategy played by Abelard. In
this manner, we see that the notion of winning strategy that underlies game-
theoretic semantics for IF logic is a notion that ipse facto ignores the possible
dependence between the players’ strategies. By contrast, the satisfaction relation
|=ε is defined in terms of Nash equilibria, a notion that hinges on dependence
between strategies. This observation justifies the conclusion that studying |=ε

also in the context of IF logic, may broaden our understanding of dependence not
only on the level of quantifier-variable pairs, but also on the level of strategies.

The broad variety of these questions shows that the strategic viewpoint pro-
vides a promising view on various topics in logic. This said, I will now turn to the
computational aspects of natural language quantifiers, and branching quantifier
expression.
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5.4 Related research

In the remainder of this chapter I will be concerned with the computational
aspects of natural language quantifiers in general and branching quantifiers in
particular. There has been little interaction between the study of natural language
quantifiers and the theory of complexity. In the subsequent two paragraphs I
recall relevant research that relates computational devices with natural language
quantifiers.

5.4.1 Van Benthem’s semantic automata

The approach taken by van Benthem (1986) is described by the author as follows:

“An attractive, but never very central idea in modern semantics has
been to regard linguistic expressions as denoting certain ‘procedures’
performed within models for the language. [. . .] Viewed procedurally,
the quantifier has to decide which truth value to give when presented
with an enumeration of the individuals in [the universe of the struc-
ture] marked for their (non-)membership of A and B.” (van Benthem
1986, pg. 151)

Van Benthem proceeds to establish the correspondence between semantic au-
tomata, recognizing the truth of a generalized quantifier expression on a structure,
and the language in which the quantifier is definable. A type 〈1, 1〉 quantifier Q

is said to be definable in a logical language L, if there exists an L-formula φ in
the vocabulary {A,B}, such that for every {A,B}-structure S it is the case that
〈AS, BS〉 ∈ QS iff S |= φ.

Van Benthem’s automata are given bit strings in which 0 represents an A∧¬B
object and 1 an A∧B object. Under the assumption that the quantifiers at stake
satisfy a set of natural constraints (CONS, EXT, and ISOM),3 the quantity and
quality of not-A objects are irrelevant to the truth of Qxy (A(x), B(y)). See
Figure 5.1.a and 5.1.b for the self-explanatory semantic automata that compute
the quantifiers All and An even number of.

Van Benthem (1986) proves the following two theorems for type 〈1, 1〉 quan-
tifiers, that are CONS, EXT, and ISOM.

3A type 〈1, 1〉 quantifier Q is

CONS if 〈A,B〉 ∈ QS and A ∩ B = A ∩ C implies 〈A,C〉 ∈ QS ;

EXT if 〈A,B〉 ∈ QS and S ⊆ S′ implies 〈A,B〉 ∈ QS′ ;

ISOM if S and T are isomorphic implies 〈AS, BS〉 ∈ QS iff 〈AT, BT〉 ∈ QT .

See (Westerst̊ahl 1989) for intuitions behind these conditions.
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Figure 5.1: In both automata state s is the starting state and the only accepting
state. Automaton (a) computes All and (b) computes An even number of. Note
that the latter automaton has a loop, whereas the former is acyclic.

5.4.1. Theorem (van Benthem (1986)). The first-order definable quantifiers
are precisely those which can be recognized by permutation-invariant acyclic finite
state machines.

Let first-order additive logic, denoted FO(+), be first-order logic extended
with ternary + relation and two constants a and b. Any formula from FO(+) will
be interpreted as a standard arithmetical statement, where a is interpreted as the
number of zeroes and b as the number of ones. For instance, An even number of

would require the formula ∃x (b = x+ x), cf. (van Benthem 1986, pg. 162).

5.4.2. Theorem (van Benthem (1986)). The first-order additively definable
quantifiers are precisely those which can be recognized by push-down automata.

Theorems 5.4.1 and 5.4.2 can be read as results from descriptive complexity
as they reveal the correspondence between a class of computational devices and
linguistic means.4 Van Benthem argues that Theorem 5.4.2 is particularly valu-
able, since “on the whole, one finds natural language quantifiers, even the higher
order ones, within the context-free realm. Thus, they are essentially ‘additive’
[. . .] There is some foundational significance to this observation, as additive arith-
metic is still an axiomatizable (indeed, decidable) fragment of mathematics” (van
Benthem 1986, pg. 154).

It is not addressed in the analysis of van Benthem’s whether results like The-
orem 5.4.1 and 5.4.2 can be obtained for quantifiers with types other than 〈1, 1〉.
I.e., what would a semantic automaton look like that computes for every A, there
is a B that. . . ? For a start, what alphabet should encode the input?—surely
one cannot rely on a binary alphabet. These issues are not touched on in (van
Benthem 1986), and it is not at all straightforward to see what the answer would
be.

4Also, the characterization results have inspired cognitive psychologists to test the hypothesis
holding that first-order definable quantifiers are processed differently than quantifiers definable
in first-order additive logic, see (McMillan et al. 2005).
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5.4.2 Expression complexity of Hintikka sentences

Recall the Hintikka sentence, cited earlier as (a), that is commonly known as the
townsman sentence:

(h) Some relative of each villager and some relative of each townsman hate each
other,

whose logical reading contains a non-first-order definable, partially ordered quan-
tifiers, given Hintikka’s Thesis is true. In (Mostowski and Wojtyniak 2004) and a
reading slightly different from Hintikka’s proposal (5.1) is given, in that it gives a
different treatment of relativization of the variables. Under the reading proposed
in (Mostowski and Wojtyniak 2004) the logical reading of (h) is

∃S1∃S2 (∀x1 ∈ V )(∃y1 ∈ S1) R(x, y) ∧

(∀x2 ∈ V )(∃y2 ∈ S1) R(x, y) ∧ (5.5)

(∀y1 ∈ S1)(∀y2 ∈ S2) H(y1, y2),

where (∀x ∈ X) φ abbreviates ∀x (X(x) → φ(x)) and (∃x ∈ X) φ abbreviates
∃x (X(x) ∧ φ(x)). In (Mostowski and Wojtyniak 2004) it is shown that the
expression complexity of the generalized quantifier whose truth conditions are
reflected in (5.5) is NP-complete. This result entails that verifying a Hintikka
sentence on an arbitrary model is intractable, provided Hintikka’s Thesis is true.

5.5 Complexity of natural language quantifiers

Van Benthem observed that on the whole, quantifiers found in natural language
are definable in first-order additive logic. This observation bears consequences on
the expression complexity of the type 〈1, 1〉 quantifiers in natural language. It was
proved, namely, that first-order logic extended with the Rescher quantifier and
the arithmetical operations of addition and multiplication captures the complexity
class TC0 on an appropriate class of structures, see (Immerman 1999). The class
TC0 was introduced in (Barrington et al. 1988) and has circuits as model of
computation. Research on the complexity class TC0 was “motivated by analogies
with neural computing” (Barrington et al. 1988, pg. 48). I refrain myself from
giving a formal exposure of this interesting complexity class, but let us take notice
of the fact that TC0 is contained in L, and that it is unknown whether it is strictly
contained in NP.

Therefore, van Benthem’s observation that natural language type 〈1, 1〉 quan-
tifiers are typically definable in first-order additive logic, entails that a fortiori
their expression complexity is in L.

5.5.1. Proposition. Let Q be a type 〈1, 1〉 quantifier that is definable in first-
order additive logic. Then, Q’s expression complexity is in L.
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Proposition 5.5.1 only addresses type 〈1, 1〉 quantifiers (determiners). As I
pointed out in Section 5.4.1, it is not straightforward to generalize van Benthem’s
framework so as to cover quantifiers of higher types. By contrast, the compu-
tational devices from complexity theory—including boolean circuits and Turing
machines—are well-suited to deal with quantifiers of arbitrary types. Thus a more
general theory of computational semantics may be defined naturally in terms of
boolean circuits or Turing machines. As a by-product of these investigations,
one is likely to obtain other measures of complexity for quantifiers than the ones
stemming from van Benthem’s automata framework.

In particular in this section I will focus on quantifiers one can obtain from
combining two type 〈1, 1〉 natural language quantifiers Q and Q′ through opera-
tions such as branching, although this operation will be the focus of discussion in
Section 5.6. Note that the operations to come are usually defined for an arbitrary
number of quantifiers, rather than two. For generalizations in this respect I refer
the reader to (Westerst̊ahl 1995). Note that the computational claims are not
affected by this restriction.

Boolean operations. Two kinds of quantifier negation have been put forward:
the inner negation, Q¬, and the outer negation, ¬Q. The former resembles
sentence negation, whereas the latter corresponds to verb phrase negation, as
present in, respectively:

(i) It is not the case that some philosopher walks.

(j) Some philosopher does not walk.

Let the semantics of both negations thus be specified:

(Q¬)S = {〈X,Y 〉 ∈ ℘(S)2 | 〈X,S − Y 〉 ∈ QS} (5.6)

(¬Q)S = ℘(S)2 − QS. (5.7)

There is the possibility of taking the conjunction or disjunction of quantifiers as
in

(k) Less than two or more than five philosophers run.

The respective semantics are naturally defined as follows:

(Q ∨ Q′)S = QS ∪ Q′
S

(Q ∧ Q′)S = QS ∩ Q′
S.

Iteration. The nesting of first-order quantifiers is an instance of iteration, but
may be applied to any generalized quantifier:

(l) Some soccer player read most books on oriental philosophy.
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The iteration operator takes two type 〈1, 1〉 generalized quantifiers to one quan-
tifier of type 〈1, 1, 2〉 and its semantics are specified in such a way that for every
structure S,

〈AS, BS, RS〉 ∈ It(Q,Q′)S iff 〈AS, {a ∈ S | 〈BS, RS
a 〉 ∈ Q′

S }〉 ∈ QS,

where RS
a abbreviates {b ∈ S | 〈a, b〉 ∈ RS}.

Cumulation. A natural reading of many sentences involve cumulated quanti-
fiers, first studied in (Scha 1981). The sentence, cited from (Westerst̊ahl 1995,
pg. 377),

(m) Sixty professors taught seventy courses at the summer school.

implies that 4200 courses would have been taught when one analyzes it by means
of an iteration of the quantifiers Sixty and Seventy. Instead, a reading in which
seventy courses in toto were taught is more plausible. This idea underlies the
semantics of the cumulation operator, that is defined for every structure S such
that 〈AS, BS, RS〉 ∈ Cum(Q,Q′)S iff

〈AS, BS, RS〉 ∈ It(Q, Some)S and 〈BS, AS, RS〉 ∈ It(Q′, Some)S.

Resumption. Resumed quantifiers allow one to quantify over pairs of objects,
rather than objects solely, and can be used to analyze sentences like

(n) Most lovers will eventually hate each other.

Res2(Q) is a quantifier of type 〈2, 2〉. Its truth conditions are as follows, for every
structure S:

〈RS
1 , R

S
2 〉 ∈ Res2(Q)S iff 〈RS

1 , R
S
2 〉 ∈ QS2 .

I claim without proof that these operation do not make the computational
complexity increase.

5.5.2. Proposition. Let Q and Q′ be type 〈1, 1〉 quantifiers that are definable
in first-order additive logic. Then, the expression complexity of

¬Q, Q¬, Q ∨ Q′, Q ∧ Q′, It(Q,Q′), Cum(Q,Q′), Res2(Q,Q′)

is in L.

In fact, a stronger claim can be made—I conjecture that TC0 is also closed
under taking the above operations on quantifiers, but I skip a rigorous argumen-
tation to this effect.5 In any case, the expression complexity of natural language

5The argument proceeds by showing that if two families of circuits compute Q and Q′,
respectively, then there is a way to combine those with appropriate means and to obtain a
family of circuits that computes It(Q,Q′), Cum(Q,Q′), etc.
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quantifiers and the quantifiers one construes from them with the previous opera-
tors are “very tractable”.

Proposition 5.5.2 reports that, from the current computational viewpoint, the
class L is closed under the addressed operations. But, naturally, there are more
viewpoints on this matter serving different agenda’s. The logician’s approach, for
instance, would typically aim at understanding the operators’ impact on expres-
sive power. Using expressive power as a measure of complexity, it may well turn
out that the previous operators do increase complexity. This very subject was
addressed in (Hella, Väänänen, and Westerst̊ahl 1997) for, amongst others, the
operators of branching and resumption.

5.6 Branching quantifiers and NP

In this section I show that the expression complexity of branching quantifiers
Br(Q,Q′) can be NP-complete, even for L-computable Q and Q. Before I come
to the proof of Theorem 5.6.2, let me show that NP is closed under branching.

5.6.1. Proposition. Let Q1,Q2 be two MON↑ type 〈1, 1〉 generalized quanti-
fiers whose expression complexity is in NP. Then, the expression complexity of
Br(Q1,Q2) is in NP.

Proof. Consider Θ = Br(Q1,Q2)xy (A(x), B(y), R(x, y)), for quantifier sym-
bols Q1,Q2 that are in accordance with the premise of the proposition. The truth
definition of Θ on an arbitrary finite structure S reads as follows:

(∃X ⊆ AS)(∃Y ⊆ BS) (〈AS, X〉 ∈ (Q1)S and 〈BS, Y 〉 ∈ (Q2)S and X×Y ⊆ RS)
(5.8)

Since Qi’s expression complexity is in NP, for i ∈ {1, 2}, it follows from Fagin’s
Theorem that there exists a Σ1

1-formula Ψi, such that on an arbitrary structure
S that interprets A,B,R, the following holds

〈AS, BS, RS〉 ∈ (Qi)S iff S |= Ψi.

Therefore, (5.8) is equivalent to

(∃X ⊆ AS)(∃Y ⊆ BS) (S |= Ψ1 and S |= Ψ2 and X × Y ⊆ RS) (5.9)

It is straightforward to see that the expression in (5.9) can be characterized by a
Σ1

1-sentence in the vocabulary {A,B,R}. Hence, the expression complexity of Θ
is in NP. 2

Proposition 5.6.1 is not particularly strong. It shows that NP is the computa-
tional upper-bound for branching two quantifiers that have NP expression com-
plexity themselves. The following theorem shows that the expression complexity
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for the branching most quantifier is NP-complete, even though the expression
complexity of Most is in L (in fact, in TC0).

6

5.6.2. Theorem. Br(Most,Most) has NP-complete expression complexity.

Proof. Membership of NP follows from Proposition 5.6.1, since Most’s expres-
sion complexity is in NP. In the remainder of this proof I reduce an NP-complete
problem to the verification of a Br(Most,Most)-expression. To this end, I define
a graph problem called Half semi-clique, that questions whether in a digraph
G = 〈G,RG〉, there exist two sets of vertices G1, G2 ⊆ G such that

2‖G1‖, 2‖G2‖ > ‖G‖ and G1 ×G2 ⊆ RG.

It is obvious that the following sentence expresses whether a graph G is in
Half semi-clique:

G |= Br(Most,Most)xy (⊤(x),⊤(y), R(x, y)), (5.10)

where ⊤ is the “unary tautology”. To establish NP-completeness for the prob-
lem Half semi-clique I reduce from the problem BCBG, which stands for
Balanced complete bipartite graph and can be found in (Garey and John-
son 1979, pg. 196). BCBG is the problem that has an integer k and a bipartite
digraph G = 〈G,RG〉 as instance. A digraph 〈G,RG〉 is bipartite, if there exists
a partition V1, V2 of its vertices G, such that RG ⊆ V1 × V2. The pair G and k is
in BCBG iff there exist sets Wi ⊆ Vi (i ∈ {1, 2}) both of size exactly k such that
W1 ×W2 ⊆ RG.

I show that a bipartite digraph G and an integer k sit in BCBG iff the
digraph H is in Half semi-clique. H is constructed from G and k as follows:
Let m = ‖G‖ and let d = m− 2k + 1. Then, H = 〈H,RH〉 is as follows:

H = G ∪ U , where

U = {u1, . . . , ud}, containing only new objects

RH = RG ∪ (V1 × U) ∪ (U × U) ∪ (U × V2).

Now suppose that a certain pair of G and k is in BCBG. Let V1, V2 be witnesses
of the fact that G is bipartite; that is, RG ⊆ V1 × V2. Then, in G live two sets of
vertices Wi ⊆ Vi (i ∈ {1, 2}) both of size k, such that W1 ×W2 ⊆ RG. Consider
the sets Xi = Wi ∪ U . By construction of RH it holds that X1 × X2 ⊆ RH. As
to the size of Xi observe that it contains exactly ‖Wi‖ + ‖U‖ elements, that is,
k + d = m− k + 1. ‖H‖ equals m+ d = 2m− 2k + 1. Hence, 2‖Xi‖ > ‖H‖.

Conversely, suppose H has two sets of verticesW1 andW2, such thatW1×W2 ⊆
RH and

2‖Wi‖ > ‖H‖ = m+ d = 2m− 2k + 1.

6The fact that the expression complexity of the branching most quantifier was unknown was
brought to my attention by Jakub Szymanik, whom I gratefully acknowledge.
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Therefore, ‖Wi‖ ≥ m − k. Since G does not contain the nodes from U , con-
sider the sets Vi = Wi ∩ (H−U), for i ∈ {1, 2}. Since U contains d elements, Vi
minimally contains (m − k) − d = k objects. Now harmlessly remove arbitrary
elements from V1 and V2 until both are of size exactly k. By construction of RH

and the fact that W1 ×W2 ⊆ RH, conclude that V1 × V2 ⊆ RG. 2

Theorem 5.6.2 shows that verifying a branching most expression on an arbi-
trary structure is intractable. In Section 5.7.3 I show that under a certain restric-
tion the expression complexity of the branching most quantifier is P-computable.

I conclude with two notes.

• The proof of Theorem 5.6.2 actually reveils a stronger result. The type 〈2〉
quantifier Br(R,R), namely, has NP-complete expression complexity as well.
For one derives from the ⊤s that (5.10) holds iff G |= Br(R,R)xy R(x, y).
Hence, the claim follows.

• There is nothing special to branching Most—any branching of proportional
determiners as in

Br(More than p percent,More than q percent)

has NP-complete expression complexity, where 0 < p, q < 1 are rationals.
The proof is analogous to the one of Theorem 5.6.2, yet one may find it
convenient to reduce from the generalization of BCBG, that enjoys two
parameters k1 and k2 that constrain the size of W1 and W2, respectively.
This variant is clearly NP-complete as it has k1 = k2 as a special case,
which was complete for NP.

5.7 More complexity of quantifiers

Among operations like iteration, cumulation, and resumption, branching is the
odd one out, when it comes to expression complexity. These observations may
give rise to the question whether the semantics ascribed to branching should not
be reconsidered, as its computational behavior takes such an isolated position.
I avoid any such discussion here, but I give three more quantifiers that have
reasonably high model checking complexity, relative to L.

5.7.1 Every. . . a different. . .

Consider the type 〈1, 1, 2〉 quantifier that allows expressions of the form

Every . . . a different . . .xyzz′ (A(x), B(y), R(z, z′)), (5.11)

and is true on an {A,B,R}-structure S iff there exists a bijection f from AS

to BS, such that for every a ∈ AS, 〈a, f(a)〉 ∈ RS. This interpretation follows
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a proposal by van Benthem (1983). In my experience people tend not to give
this as the preferred reading. But as I did not find much consensus on this topic
anyway, why not treat this as one amongst equal.

It is easy to see that Every . . . a different . . . is NP-computable. As a lower
bound, I show that the problem of Bipartite matching reduces to the verifi-
cation of Every . . . a different . . .. It is well-known that Bipartite matching is
in P, although to the best of today’s knowledge no completeness proof is known
with respect to this class. This state of affairs may be taken to imply that it
probably does not sit in L ⊆ NL. Bipartite matching is the graph property
holding all bipartite graphs 〈G1, G2, R

G〉, such that RG ⊆ G1 × G2. A bipartite
graph G belongs to Bipartite matching iff there is a bijection f from G1 to
G2 such that for every a ∈ G1, 〈a, f(a)〉 ∈ RG.

5.7.1. Proposition. The expression complexity of Every . . . a different . . . is at
least as hard as Bipartite matching.

Proof. Reducing Bipartite matching to the verification of the quantifier
Every . . . a different . . . on an bipartite graph comes almost for free: For every
bipartite graph G = 〈G1, G2, R

G〉, it is the case that

〈G1, G2, R
G〉 ∈ Every . . . a different . . .G1∪G2

iff G ∈ Bipartite matching.

This concludes the proof. 2

5.7.2 A few. . . all. . .

Consider the following sentence:

(o) Less than twenty percent of the world population consumes more than
ninety percent of the natural resources.

Turning to discrete—and more cheerful—environments, every professional Dutch
soccer team can win at most three national prices over one season: de Johan
Cruijff-schaal, de Beker, and kampioenschap van de Eredivisie. In this context,
consider the following sentence:

(p) Two (or less) teams won all prices.

Under the iterated reading this sentence means that either one team won all three
prices, or two teams both won all three prices. In the latter case, there would be
two kampioenen van de Eredivisie, which cannot be of course. So iteration does
not give the intended meaning to (p). Under the cumulative reading (p) is truth
equivalent to:

(q) Two (or less) teams won some price, and every price was won by a team.
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Since every price is always won by exactly one team, this renders (q) truth equiva-
lent to saying that two (or less) teams won some price. But this expressed weaker
a proposition than (p), so also the cumulative reading fails to give an intuitive
account.

In fact, I have not found any operator in the literature that yields a sound
reading when taking A few and All as arguments, although there is some similarity
with Keenan’s (1992, pg. 209) comparative dependent determiners. For the cur-
rent purposes it suffices to introduce a 〈1, 1, 2〉 quantifier A few . . .All . . ., rather
than an operator that would map the quantifiers A few and All on a quantifier with
the same semantics. Thus, I define as follows: Let S be an {A,B,R}-structure,
then 〈AS, BS, RS〉 ∈ A few . . .All . . .S iff

(∃U ⊆ S) (〈U,AS〉 ∈ A fewS and (∀x ∈ BS)(∃y ∈ U) RS(x, y)).

Observe that A few . . .All . . .xyzz′ (TEAM (x),PRICE (y),WIN (z, z′)) gives the
intended meaning to (p), modulo the semantic difference between A few and
Two or less.

On syntactic grounds, the truth condition of A few . . .All . . . is Σ1
1. In fact, the

quantifier enjoys the strong computational behavior of existential, second-order
logic, as it has NP-complete expression complexity. This I prove by reducing the
problem Half cover to the verification of A few . . .All . . . on arbitrary finite
structures. Half cover is the following problem: Let X be a set and let Y ⊆
℘(X) be a collection of subsets of X. The pair constituted X and Y sits in
Half cover iff there exists a subset Y ′ of Y , such that 2‖Y ′‖ < ‖Y‖ and
⋃

Y ′ = X; or using the natural language quantifier at stake, iff a few sets from
Y contain all elements in X.

Half cover can be proved NP-complete by reducing Minimum cover
to it, see (Garey and Johnson 1979, pg. 222). Minimum cover is similar to
Half cover, except for the fact that it requires ‖Y ′‖ ≤ k, for some fixed para-
meter k. The reduction is straightforward for which reason I omit it.

5.7.2. Proposition. Expression complexity of A few . . .All . . . is NP-complete.

Proof. To reduce Half cover to the verification of an A few . . .All . . . ex-
pression on an arbitrary finite structure, consider an instance constituted by X
and Y as above. Let the tuple Z = 〈Z,ELTZ, SETZ, IN Z〉 be a structure that
encodes X and Y , in such a way that

Z = X ∪ Y

ELTZ = X

SETZ = Y

IN Z = {〈x, y〉 ∈ X × Y | x ∈ y}.
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The predicate SETZ contains all sets in Z and ELTZ all elements in X. I claim
that

〈X,Y〉 ∈ Half cover iff 〈SETZ,ELTZ, IN Z〉 ∈ A few . . .All . . .Z .

Spelling out the truth condition of the quantifier on Z yields

(∃U ⊆ Z) (〈U, SETZ〉 ∈ A fewZ and (∀x ∈ ELTZ)(∃y ∈ U) IN Z(x, y)),

which is simply a reformulation of Half cover in pseudo-formal notation. 2

5.7.3 Disjoint halves

In Section 5.6, I showed that the quantifier expression

Br(Most,Most)xyzz′ (A(x), B(y), R(z, z′))

is NP-complete. I will show that if A and B are known to be complementary,
then the expression complexity is P-solvable. The resulting quantifier can still
be considered a branching quantifier, but I prefer to treat it in its own right, as
it may have linguistic relevance.

Consider for instance the sentence

(r) One half of the professors hate the other half.

According our intuitions the intended reading of this sentence relies on the type
〈1, 2〉 quantifier Disjoint halves, that is defined such that for every {A,R}-structure
S, 〈AS, RS〉 ∈ Disjoint halvesS iff there exists a partition of AS into X,Y , such
that ‖X‖ = ‖Y ‖ and X × Y ⊆ RS.

5.7.3. Proposition. The expression complexity of Disjoint halves is in P.

Proof. Consider an {A,R}-structure S. Whether 〈AS, RS〉 ∈ Disjoint halvesS
is computed through the following steps:

• Remove all non-AS objects from S and compute RS restricted to AS: R|A =
RS ∩ (AS)2.

• It is easy to see that if two objects are not in the R|A-relation then they have
to be in the same witness set. E.g., if one professor does not hate another,
then they should be put in the same partition. Formally, for any two a, a′

if 〈a, a′〉 /∈ R|A(a, a′) or 〈a′, a〉 /∈ R|A, then they should be in the same
witness set. Here I make use of the requirement that X and Y partition
AS. Furthermore, if it is clear that the two couples a, a′ and a′, a′′ have to
be in the same witness set, then so must a and a′′. Therefore, compute the
symmetric and transitive closure of the inverse of R|A, denoted R

∗
.
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• R
∗

constitutes an equivalence relation on A. Compute the equivalence sets:
A = {A1, . . . , Am}, such that for every Ai ∈ A it is the case that a, a′ ∈ Ai
iff 〈a, a′〉 ∈ R

∗
.

• All sets in A contain objects that must sit in the same witness set. But if two
objects are in different equivalence sets, they can safely be put in different
witness sets. The issue now is to partition A in such a way that their
respective unions contain an equal number of objects. This can be done by
standard techniques from dynamic programming, see (Papadimitriou 1994,
pg. 203).

Start out by constructing an n×m table, in which each cell initially is set
to 0. If cell 〈i, j〉 has a 1, this intuitively denotes that there is a subset of
{A1, . . . , Aj}, whose union has cardinality i. The table is filled by iteratively
considering a set Ak ∈ A and performing the routine step per cell:

– Write 1 on cell 〈‖Ak‖, 1〉.

– If cell 〈i, j〉 has a 1, then write 1 on cell 〈i+ ‖Ak‖, j + 1〉.

The very moment there exists a j such that cell 〈n/2, j〉 contains a 1 accept
the input; otherwise reject it.

All of the above steps can be performed in polynomial time. 2

The exact complexity of Disjoint halves is left as an open problem in this
chapter.

5.8 Concluding remarks

In this chapter I studied branching quantifiers as defined in the literature on
natural language semantics. In relation to branching quantifiers, two issues were
addressed: game-theoretic semantics and computational analysis.

I developed a strategic framework in which branching quantifiers can be an-
alyzed. In Theorem 5.3.4, I showed that this framework serves this end, to the
point that one can define truth of a branching quantifier Br(Q,Q′) for any pair of
non-universal, MON↑ quantifiers Q and Q′. This shows that branching quantifiers
can be seen to define strategic games, that involve a kind of imperfect informa-
tion that is introduced by playing in parallel. Furthermore, I contemplated on
directions for future research concerning the interface of strategic game theory
and logic. I argued that the solution concept of Nash equilibrium may shed a
fresh light on dependence in logic.

I used an observation of van Benthem’s to claim that all natural language, type
〈1, 1〉 quantifiers (determiners) are L-computable, hence “very tractable”. By
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contrast, Theorem 5.6.2 showed that branching most sentences are NP-complete,
hence intractable (unless P = NP). The branching most quantifier is not the
only natural language quantifier with a high complexity, as was shown in Section
5.7. The following table summarizes the computational results from this section,
where Q,Q′ stand for FO(+)-definable quantifiers:

Q is L-computable

¬Q,Q¬ are L-computable

It(Q,Q′),Cum(Q,Q′),Res2(Q,Q′) are L-computable

Br(Q,Q′) is NP-complete

Every . . . a different . . . is Bipartite matching-hard

A few . . .All . . . is NP-complete

Disjoint halves is P-computable.

Let me close this chapter with some words about the impact of computational
results for linguistic theorizing. In my view, the computational results put forward
in this chapter can be used to back up a density argument. I observed that on
the whole natural language determiners are L-computable, which is rather low.
Furthermore, I observed that operations on L-computable quantifiers such as
iteration and cumulation do not increase the complexity. In case it turns out
that really the quantifiers in this chapter are the only ones with high complexity
(provided their meaning is credible), one may be tempted to reconsider their
status as natural language quantifiers on these very computational grounds. For
such a density argument to have any impact, more results have to be established
on the complexity of natural language quantifiers.

Discussing the applicability of complexity theory in linguistics, it needs notice
that notions like hardness and completeness focus on the worst case behavior of
quantifiers. What is the “average case” complexity of branching most expres-
sions is not in any sense determined by Theorem 5.6.2. By this token, anyone
who wishes to use NP-completeness results in a linguistic debate, is forced to
argue why the worst case analysis is actually of relevance to the debate.7 Since
completeness results are mostly due to farfetched instances, this may be an hairy
affair.

In my analysis of branching most expressions, I departed from Barwise’s read-
ing. Barwise defended this reading by an argument, that was justified by subjects’
intuitions on the semantics of branching most expressions. Yet, exploring sub-
jects’ intuitions on quantifiers and discovering how people actually use them are
two different matters. In fact, the observation that natural language users’ intu-
itions about natural language and actual usage thereof may differ substantially

7This argument criticizes also the train of reasoning set out in (Mostowski and Wojtyniak
2004), in which the provided NP-completeness result is taken to be the decisive assessment of
the complexity of Hintikka sentences.
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marks the movement in linguistics to analyze corpora of natural language expres-
sions instead of intuitions. This movement also carries computational interest,
for it may well turn out that branching most expression, say, are used only under
certain special conditions that influence their expression complexity.

As for the actual usage of branching most expressions, let me close this chapter
with a small experiment of my own. The aim of the experiment is to find out
whether branching most expressions are actually used in English. To this end I
turned to the British National Corpus (BNC). Its content is from written and
spoken language, and contains more than 100 million words, covering a broad
variety of fields. The BNC can be accessed using on line available interfaces. I
used the Variation in English phrases and words interface, developed at Brigham
Young University, available from http://view.byu.edu/. Using this interface, the
BNC can be searched for exact words, phrases, wild cards and combinations
thereof. For instance, the expression “most [n*]” returns all occurrences of “most
. . .” in the corpus, where . . . stands for a noun. In this manner the expression
“most [n*] and most [n*]” returns the phrases in the corpus that partake in
branching most sentences. None were returned.8

8I queried the database on March 27th, 2006. The actual settings of the query were as
follows:

Word/phrase most [n*] and most [n*]
Sort by frequency
Register 1 and 2 –ignore–
Min. freq. (both) 0
Limit (both)



Chapter 6

Scotland Yard

In this chapter I concern myself with the parlor game of Scotland Yard. Scotland
Yard is a multi-player game, in which all but one player team up. The single
player has the advantage of hiding his or her moves during most of the rounds. I
will give a thorough analysis of Scotland Yard, showing that it can be conceived of
as a perfect information game, by means of a power set argument. Surprisingly, it
turns out that the naturally defined perfect information variant of Scotland Yard,
in which the single player always has to show his whereabouts always, is equally
hard as the imperfect information game. This shows that imperfect information
is not bound to increase complexity, and that a more subtle analysis is needed of
both general classes of games and specific parlor games.

6.1 Introduction

Background. The discipline of combinatorial game theory (CGT) deals almost
exclusively with zero-sum games with perfect information. Although the existence
of games with imperfect information is acknowledged in one of CGT’s seminal
publications (Berlekamp, Conway, and Guy 1982, pg. 16-7), only a marginal
amount of literature appeared on games with imperfect information. The num-
ber of publications on games with perfect information is abundant and offers a
robust picture of the computational behavior of games: One-person games or
puzzles are usually solvable in NP and many of them turn out to be complete
for this class.1 Famous examples include the games of Minesweeper (Kaye 2000)
and Clickomania (Biedl et al. 2002). Alternation increases complexity consid-
erably: many two-player games have PSPACE-hard complexity, such as Go
(Lichtenstein and Sipser 1980) and the semantic evaluation game of quantified
boolean formulae (Stockmeyer and Meyer 1973; Schäfer 1978). Some even have
EXPTIME-complete complexity. Typical examples in this respect are the games

1To solve a game is to determine for an instance of the game whether a designated player
has a winning strategy.
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of Chess (Fraenkel and Lichtenstein 1981) and Checkers (Fraenkel et al. 1978).
By and large, games with EXPTIME-complete complexity have a loopy nature,
that is, the same configuration may occur over and over again. In real-life, loopy
games may not be that much fun to play, as they allow for annoyingly long runs
in which neither player makes any progress. Loopy runs are banned from Chess
by postulating that, roughly speaking, no configuration of the game may occur
more than three times.

Amusingly, putting an upper-bound on the duration of the game not only
avoids loopy—and boring—sequences of play, but also has considerable compu-
tational impact. Papadimitriou (1994, pg. 460-2) argues that every game that
meets the following requirements is solvable in PSPACE:

• the length of any legal sequence of moves is bounded by a polynomial in
the size of the input; and

• given a “board position” of the game there is a polynomial-space algorithm
which constructs all possible subsequent actions and board positions; or,
if there aren’t any, decides whether the board position is a win for either
player.

Note that Papadimitriou does not even mention the fact that this result concerns
games of perfect information. The result stands due to the fact that the backwards
induction algorithm can be run on the game’s game tree in PSPACE, given that
it meets the above requirements.

As for games of imperfect information, some studies have been performed and
their reports are basically a bad news show. Briefly, one can say that imperfect
information increases the computational complexity of games. Convincing results
are reported in (Koller and Megiddo 1992), where the authors show that it is
possible to decide whether either player has a winning strategy in a finite, two-
player game of perfect information using a polynomial time in the size of the game
tree. On a positive note, they show that there is a P-algorithm that solves the
same problem for games of imperfect information with perfect recall.2 However,
if one of the players suffers from imperfect recall the problem of deciding whether
this player has a winning strategy is NP-hard in the size of the game tree.

In (Reif 1984; Peterson, Azhar, and Reif 2001) the authors regard computation
trees as game trees. This view on computation trees is adopted from (Chandra,
Kozen, and Stockmeyer 1981), in which so-called alternating Turing machines are
considered which have existential and universal states. The aspect of alternation
is reflected in the computation tree by regarding it as a game tree of a two-
player game. The nodes corresponding to existential (universal) states belong to
the existential (universal) player. From this viewpoint, non-deterministic Turing

2In Chapter 3, we saw that the perfect recall fragment of IF logic is considerably less complex,
using expressive power as a measure of complexity.



6.1. Introduction 143

machines have no universal states and thus give rise to one-player game trees.
In (Reif 1984; Peterson, Azhar, and Reif 2001) this idea is extended to games of
imperfect information. The authors define private alternating Turing machines,
which give rise to computation trees that may be regarded as two-player game
trees in which the existential player suffers from imperfect information, among
other devices. It is shown that the space complexity of f(n) of these machines
is characterized in terms of the complexity of alternating Turing machines with
space bound exponential in f(n). Moreover, it is shown that private alternating
Turing machines with three players—with two of the players teaming up—can
recognize undecidable problems in constant space.

Dramatic as these results may be, being general studies they cannot tell us
what the computational impact of the imperfect information found in actual
games is. That is, games developed to be played rather than to be analyzed.3

It may well turn out that the imperfect information in these games has little
computational impact and that the games themselves match the robust intuitions
we have about the computational nature of perfect information games. As I
pointed out before, there is but a small number of results concerning games with
imperfect information, let alone computational studies of parlor games. For this
reason, I will consider the game of Scotland Yard which gamers have enjoyed
since 1983.4 Readers familiar with Scotland Yard will acknowledge that it is
the imperfect information that makes the game an enjoyable waste of time and
enthusiastic accounts of players’ experiences with Scotland Yard are readily found
on the Internet, for instance (Binz-Blanke 2006).

Game rules. I will now give a succinct description of the rules of Scotland Yard.
Note however that this description serves merely to stress the kinship between
the formalization used in this chapter and the actual game. A complete set of
game rules of the formalization is supplied in the next section and should suffice
to understand the formal details.

Scotland Yard is played on a game board which contains approximately 200
numbered intersections of colored lines denoting available means of transporta-
tion: yellow for taxis, green for buses, and pink for the Underground. A game
is played by two to six people, one of them being Mr. X, the others teaming up
and thusly forming Scotland Yard. They have a shared goal: capturing Mr. X.
Initially, every player gets assigned a pawn and an intersection on the game board
on which his or her pawn is positioned. Before the game starts every player gets
a fixed number of tickets for every means of transportation. Mr. X and the cops

3Fraenkel (2002, pg. 476) makes the distinction between “PlayGames” and “MathGames”.
The former being the games that “are challenging to the point that people will purchase them
and play them”, whereas the latter games “are challenging to a mathematician [. . . ] to play
with or ponder about.”

4Scotland Yard is produced by Ravensburger/Milton Bradley and was prestigiously declared
Spiel des Jahres in 1983.
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Figure 6.1: The box of Scotland Yard and its items, amongst which the game
board, Mr. X’s move board, and the players’ pawns. This picture is reproduced
with permission of Ravensburger.

move alternatingly, Mr. X going first.

During every stage of the game, each player—be it Mr. X or his adversaries—
takes an intersection in mind connected to his or her current intersection, subject
to him or her owning at least one ticket of the appropriate kind. For instance, if
a player would want to use the metro from Buckingham Palace, she would have
to hand in her metro ticket. If either player is out of tickets for a certain means
of transportation, he cannot travel along the related lines. Every player’s set of
tickets is known to all players at every stage of the game.

If a cop has made up her mind to move to an intersection, this is indicated
by her moving the pawn under her control to the intersection involved. However,
when Mr. X has made up his mind he secretly writes the number of the intersection
at stake at the designated entry of the move board and covers it with the ticket
he has used. The cops know what means of transportation Mr. X has been using,
but do not know his position. After round 3, 8, 13, 18, and 24, however, Mr. X
is forced to show his whereabouts by putting his pawn on his current hideout.

The game lasts for 24 rounds during which Mr. X and the cops make their
moves. If at any stage of the game any of the cops is at the same intersection as
Mr. X the cops win.5 If Mr. X remains uncaught until after the last round, he

5Note that this is the description of the actual Scotland Yard game. My formalization—to
be provided—has slightly different winning conditions.
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wins the game. Cops who have a suspicious nature may want to check whether
Mr. X’s secret moves were consistent with the lines on the game board when the
game is over. To this end, they would match the numbers on the move board
with the returned tickets. If it turns out that Mr. X has cheated at any point, he
loses no matter what the outcome of the game.

In view of these game descriptions, the generalization of the Scotland Yard
game in Definition 6.1.1 may strike the reader as a natural abstraction. The reader
will observe that the number of means of transportation is reduced to one and
that the game board is modeled by a directed graph. However, all results in this
chapter can be taken to hold for instances where several means of transportation
and undirected graphs are involved.

6.1.1. Definition. Let G = 〈V,E〉 be a finite, connected, directed graph with
an out-degree of one or higher. That is, for every v ∈ V , there is a u ∈ V , such
that E(v, v′). Let u, v1, . . . , vn ∈ V . Let f : {1, . . . , k} → {show , hide} be the in-
formation function, for some integer 2 < k < |V |. Then, let 〈G, 〈u, v1, . . . , vn〉, f〉
be a (Scotland Yard) instance. Most of the time it will be convenient to abbre-
viate a string of vertices v1, . . . , vn by ~v. Conversely, ~v(i) shall denote the ith
element in ~v. By {~v} I refer to the set of all vertices in ~v.

For U ⊆ V write E(U) to denote the set {u′ ∈ V | E(u, u′), for some u ∈ U}.
If ~v,~v′ ∈ V n, then write E(~v,~v′) to denote that for every 1 ≤ i ≤ n, E(~v(i), ~v′(i)).

The information function f controls the imperfect information throughout the
game. If round i has property f(i) = hide, Mr. X hides himself. As will be seen
the information function gives an intuitive meaning to “adding” and “removing”
imperfect information from a Scotland Yard game. For instance, if one restricts
oneself to information functions with range {show}, Mr. X shows his whereabouts
after every move and one is effectively considering a game of perfect information.
Under the latter restriction, one has arrived at so-called graph games, also called
Pursuit or Cops and robbers. For an exposition of the literature on graph games,
consult (Goldstein and Reingold 1995).

Aims and structure. The aims of this chapter are twofold. Firstly, to pinpoint
the computational complexity of a real game of imperfect information. Secondly,
I go through a reasonable amount of effort to spell out the relation between
the game of Scotland Yard and a game of perfect information that is highly
similar to the former. More precisely, I show that the games’ game trees are
isomorphic, and that a winning strategy in the one game constitutes a winning
strategy in the other and vice versa. These similarity results may convince the
reader that in some cases the wall between perfect and imperfect information
is not as impenetrable as one might induce from the scarce literature on the
complexity of imperfect information games.
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As I pointed out before, the definition of Scotland Yard instance abstracts
away from features of the game of Scotland Yard that are inessential to this
chapter’s aims. In fact, all that a Scotland Yard instance holds is a graph, a
set of vertices on which the pawns are initially positioned, the duration of the
game, and a means to control the imperfect information. In my view, the level of
abstraction employed in Definition 6.1.1 justifies one’s conceiving Scotland Yard
instances as graph games. For this reason, I think that my analyses are not solely
relevant to the specific game of Scotland Yard, but to the theory of graph games
in general. Nevertheless, I will continue to refer to the games under consideration
using the colloquial Scotland Yard terminology.

In Section 6.2, I will define the extensive game form of the Scotland Yard
game to which a Scotland Yard instance gives rise.

In Section 6.3, I define a perfect information variant of Scotland Yard. In
this perfect information game, Mr. X picks up sets of vertices, but he does so in
public.

In Section 6.4, I show that the games that have been introduced admit for
a bijection between the imperfect information game’s information partitions and
the histories in the perfect information Scotland Yard game. Furthermore, I show
that both games, under the bijection analysis, are equivalent, i.e., the cops have
a winning strategy in the imperfect information game iff they have one in the
perfect information game.

In Section 6.5, the computational results are presented. In accordance with
many polynomially bounded two-player games, Scotland Yard is complete for
PSPACE, despite its imperfect information. That is, the computational com-
plexity of Scotland Yard does not change when one only considers information
functions with range {show}.

In fact, if one would add more imperfect information to the extent that the
information flow function has range {hide}, the resulting decision problem is
easier: NP-complete. This is shown in Section 6.6.

Section 6.7 concludes the chapter.

6.2 Scotland Yard formalized

In this section, I define the extensive games with imperfect information that are
constituted by Scotland Yard instances. I abstract away from some of the actual
game’s properties, for which reason one may regard the formal Scotland Yard
games as abstract graph games.

Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance as in Definition 6.1.1.
Before I define the extensive game form of the Scotland Yard game to which sy
gives rise, let me formulate the game rules of the game under consideration in
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terms of sy .
The digraph G is the board on which the actual playing finds place. In the

initial situation of the game n+ 1 pawns, named ∀,∃1, . . . ,∃n, are positioned on
the respective vertices u∗, ~v∗(1), . . . , ~v∗(n) on the digraph. The game is played
by the two players ∃ and ∀ over k rounds, and with every round 1 ≤ i ≤ k in
the game the property f(i) ∈ {show , hide} is associated. Note that I converted
the n-player game of Scotland Yard, where 2 ≤ n ≤ 6 into a two-player game
in which one player controls all pawns ∃1, . . . ,∃n. Furthermore, for reasons of
succinctness I use the symbol ∀ to refer to Mr. X (male) and ∃ to refer to the
player controlling Scotland Yard (female). Somewhat sloppily, sometimes I will
not make a strict distinction between a player and (one of) his or her pawns.

First fix i = 1, u = u∗, and ~v = ~v∗; now, round i of Scotland Yard goes as
follows:

1. If for some 1 ≤ j ≤ n, the pawns ∀ and ∃j share the same vertex, i.e.,
u = ~v(j), ∀ is said to be captured (by ∃j). If ∀ is captured the game stops
and ∃ wins. If ∀ is not captured and i > k the game also stops but ∃ loses.

2. ∀ chooses a vertex u′, such that E(u, u′). If f(i) = show , ∀ physically puts
his pawn on u′. If f(i) = hide, he secretly writes u′ on his move board
making sure that it cannot be seen by his opponent. Set u = u′.

3. Player ∃ chooses a vector ~v′ ∈ V n, such that E(~v,~v′), and for every 1 ≤ j ≤
n, moves pawn ∃j to ~v′(j). Set ~v = ~v′.

4. Set i = i+ 1.

Note that these game rules do not consider the possibility of either player
getting stuck, as in not being able to move a pawn under his or her control
along an edge. This goes without loss of generality, as the digraphs at stake are
supposed to have out-degree ≥ 1.

Furthermore, it should be borne in mind, that for ∀ it is not a guaranteed loss
to move to a vertex occupied by one of ∃’s pawns. The game only terminates
after ∃ has moved and one of her pawns captures ∀, unlike the game rules for the
board game of Scotland Yard.

Observe that ∃ loses only after k rounds of the game have been played. If it
so happens that the game terminates after the jth round, for j < k, then ∃ has
won.

Scotland Yard is modeled as an extensive game with imperfect information in
Definition 6.2.1. The upcoming definition and Definition 6.3.1 are notationally
akin to the definitions in Section 2.2 and (Osborne and Rubinstein 1994).

6.2.1. Definition. Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance. Then,
let the extensive Scotland Yard game constituted by sy be defined as the tuple
SY (sy) = 〈N,H, P,∼, U〉, where
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• N = {∃,∀} is the set of players.

• H is the set of histories, that is, the smallest set containing 〈u∗〉, 〈u∗, ~v∗〉
and is closed under actions taken by ∀ and ∃:

· If h〈u,~v〉 ∈ H, ℓ(h〈u,~v〉) < k, u /∈ {~v}, and E(u, u′), then h〈u,~v〉〈u′〉 ∈
H.

· If h〈u,~v〉〈u′〉 ∈ H and E(~v,~v′), then h〈u,~v〉〈u′, ~v′〉 ∈ H.

For h ∈ H, let ℓ(h) denote the number of rounds in h, that is the number of
tuples not equal 〈u∗, ~v∗〉. Define ℓ(〈u∗, ~v∗〉) = 0. Somewhat unlike custom
usage in game theory, the length ℓ(h) of history h does not coincide with
the number of plies in the game. This notation is chosen to reflect the game
rule saying that a history only terminates after ∃ has moved.

Let ≻ be the immediate successor relation on H. That is, the smallest
relation closed under the following conditions:

· If h, h〈u〉 ∈ H, then h ≻ h〈u〉.

· If h〈u〉, h〈u,~v〉 ∈ H, then h〈u〉 ≻ h〈u,~v〉.

A history that has no immediate successor is called a terminal history. Let
Z ⊆ H be the set of terminal histories in H.

• P : H−Z → {∃,∀} is the player function that decides who is to move in a
non-terminal history. Due to the notational convention, the value of P is
easily determined from the history’s form, in the sense that P (h〈u〉) = ∃
and P (h〈u,~v〉) = ∀, no matter h, u, and ~v.

• ∼ is the indistinguishability relation that formalizes the imperfect informa-
tion in the game. It is defined such that for any pair of histories h, h′ ∈ H
of equal length, where

h = 〈u∗, ~v∗〉〈u1, ~v1〉 . . . 〈ui〉 and h′ = 〈u∗, ~v∗〉〈u
′
1, ~v

′
1〉 . . . 〈u

′
i〉 (6.1)

it is the case that h ∼ h′, if

(a) ~vj = ~v′j, for every 1 ≤ j ≤ i− 1; and

(b) uj = u′j, for every 1 ≤ j ≤ i such that f(j) = show .

The previous condition, considering histories as in (6.1), defines ∼ only as a
relation between histories h belonging to ∃. This reflects the fact that it is
∃ who experiences the imperfect information. Somewhat unusual, I extend
∃’s indistinguishability relation ∼ to histories in which ∀ has to move. The
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reader is urged to take this extension as a technicality.6 I put as follows:
for any pair of histories h, h′ ∈ H, where

h = 〈u∗, ~v∗〉〈u1, ~v1〉 . . . 〈ui, ~vi〉 and h′ = 〈u∗, ~v∗〉〈u
′
1, ~v

′
1〉 . . . 〈u

′
i, ~v

′
i〉 (6.2)

it is the case that h ∼ h′, if

(a) ~vj = ~v′j, for every 1 ≤ j ≤ i; and

(b) uj = u′j, for every 1 ≤ j ≤ i such that f(j) = show .

• U : Z → {win, lose} is the function that decides whether a terminal history
h〈u,~v〉 is won or lost for ∃. Formally,

U(h〈u,~v〉) =

{
win if u ∈ {~v}
lose if u /∈ {~v}.

Usually, we have one utility function per player, but as the game is win-loss
and zero-sum, it suffices to consider only one function.

Since ∼ is reflexive, symmetric, and transitive it defines an equivalence relation
on H. I write H ⊆ ℘(H) for the set of equivalence classes, or information cells , in
whichH is partitioned by ∼. That is, H = {C1, . . . , Cm}, where C1∪. . .∪Cm = H
and for every 1 ≤ i ≤ m, if h ∈ Ci and h ∼ h′, then h′ ∈ Ci. A standard inductive
argument suffices to see that for every Ci ∈ H and pair of histories h, h′ ∈ Ci, the
length of h and h′ coincides and P (h) = P (h′).

I lift the relation ≻ to H, using the same symbol: For any pair C,C ′ ∈ H, I
write C ≻ C ′ if there exists histories h ∈ C and h′ ∈ C ′ such that h ≻ h′. It is
easy to see that if h, h′ are histories in a cell C ∈ H, then P (h) = P (h′). Thus,
the player function is meaningfully lifted as follows: if C ∈ H and h is a history in
C, then P (C) = P (h). Call a cell C ∈ H terminal if all its histories are terminal.

Since I study an extension of ∼, the set H partitions all histories in H. As I
pointed out in the definition of ∼, if histories h and h′ stand in the ∼ relation and
belong to ∀, this should not be taken to reflect any conceptual consideration about
∃’s experiences, as it is merely a technicality. Yet, if h and h′ belong to ∃, to write
h ∼ h′ reflects genuine indistinguishability for player ∃ between the two histories
h and h′. In this manner, observe that a subset of H is a familiar game-theoretic
object from game-theory. Consider the set H∃ = {C ∈ H | P (C) = ∃}, that
partitions the set of histories that belong to ∃. I claim that H∃ is an information
set in the sense of Section 2.2 and (Osborne and Rubinstein 1994), that is, it meets
the action consistency requirement. To prove this claim it suffices to show that
for every information cell C ∈ H∃ no two histories h, h′ ∈ C can be distinguished

6Note that van Benthem (2001) argued that it is nothing but natural to define the indistin-
guishability relation of one player also over the over player’s histories. By doing so van Benthem
axiomatizes perfect recall games in a dynamic-epistemic framework.
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on the basis of the actions that ∃ can take at h and h′. Formally, for every C ∈ H∃

and for every pair of histories h, h′ ∈ C it is the case that A(h) = A(h′).

To this end, let

A(h〈u,~v〉〈u′〉) = {~v′ ∈ V n | h〈u,~v〉〈u′〉 ≻ h〈u,~v〉〈u′, ~v′〉} = {~v′ ∈ V n | E(~v,~v′)}

define the actions available to ∃ after h〈u,~v〉〈u′〉. Let h and h′ be histories as
in (6.1) sitting in the same cell C ∈ H. Then, by (a) ~vi−1 = ~v′i−1 and therefore
A(h) = A(h′). Hence, H∃ is an information set. (Note that information cells in
H∃ are usually called information partitions.)

For future reference, I lay down the following proposition.

6.2.2. Proposition. Let SY (sy) = 〈N,H, P,∼, U〉 be the Scotland Yard game
constituted by sy. Then, the following statements hold:

(1) If h1〈u1〉 ∼ h2〈u2〉 and f(ℓ(h1〈u1〉)) = hide, then h1 ∼ h2.

(2) If h1〈u1〉 ∼ h2〈u2〉 and f(ℓ(h1〈u1〉)) = show, then h1 ∼ h2 and u1 = u2.

(3) If h1〈u1, ~v1〉 ∼ h2〈u2, ~v2〉, then h1〈u1〉 ∼ h2〈u2〉 and ~v1 = ~v2.

(4) If h1 6∼ h2 and h1〈u1〉, h2〈u2〉 ∈ H, then h1〈u1〉 6∼ h2〈u2〉.

Proof. Readily observed from the definition of ∼ in Definition 6.2.1. 2

6.2.3. Example. As an illustration of modeling a Scotland Yard instance7 as an
extensive game with imperfect information, consider the digraph G× = 〈V ×, E×〉,
where

V × = {u∗, v∗, a, b, A,B, 1, 2, 3}

E× = {〈u∗, a〉, 〈u∗, b〉, 〈a, 1〉, 〈b, 2〉, 〈b, 3〉, 〈v∗, A〉, 〈v∗, B〉, 〈A, 1〉, 〈B, 2〉, 〈B, 3〉}.

For a depiction of G×, see Figure 6.2. Let f× be an information function such that
f×(1) = hide and f×(2) = show . Conclude the construction of the Scotland Yard
instance sy×, by putting u∗ and v∗ as the initial vertices of ∀ and ∃, respectively.
In SY (sy×), the set of histories H contains exactly the following histories:

7The digraph under consideration does not have out-degree ≥ 1. The game terminates after
two rounds, so adding reflexive edges on the vertices 1, 2, and 3 goes without affecting the
winning conditions of the game.
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∀

A

B

∃

1

2

3

a

b

u∗ v∗

Figure 6.2: The digraph G×, allowing for a two-round Scotland Yard game.

〈u∗, v∗〉
〈u∗, v∗〉〈a〉 〈u∗, v∗〉〈a,B〉〈1〉 〈u∗, v∗〉〈a,B〉〈1, 3〉
〈u∗, v∗〉〈b〉 〈u∗, v∗〉〈b, A〉〈2〉 〈u∗, v∗〉〈b, A〉〈2, 1〉
〈u∗, v∗〉〈a,A〉 〈u∗, v∗〉〈b, A〉〈3〉 〈u∗, v∗〉〈b, A〉〈3, 1〉
〈u∗, v∗〉〈a,B〉 〈u∗, v∗〉〈b, B〉〈2〉 〈u∗, v∗〉〈b, B〉〈2, 2〉 !
〈u∗, v∗〉〈b, A〉 〈u∗, v∗〉〈b, B〉〈3〉 〈u∗, v∗〉〈b, B〉〈2, 3〉
〈u∗, v∗〉〈b, B〉 〈u∗, v∗〉〈a,A〉〈1, 1〉 ! 〈u∗, v∗〉〈b, B〉〈3, 2〉
〈u∗, v∗〉〈a,A〉〈1〉 〈u∗, v∗〉〈a,B〉〈1, 2〉 〈u∗, v∗〉〈b, B〉〈3, 3〉 !

The terminal histories marked with an exclamation mark are winning histories
for ∃. Because f×(1) = hide, the game at hand is a genuine game of imperfect
information. This fact is reflected in the set of information cells H, containing
the following three non-singletons:

{〈u∗, v∗〉〈a〉, 〈u∗, v∗〉〈b〉},

{〈u∗, v∗〉〈a,A〉, 〈u∗, v∗〉〈b, A〉},

{〈u∗, v∗〉〈a,B〉, 〈u∗, v∗〉〈b, B〉}.

(Note that under the customary definition of ∼, one would not have the latter two
information cells, as they belong to ∀.) Game theorists often find it convenient
to present extensive games as trees, as in Figure 6.3. 2

6.3 A perfect information Scotland Yard game

I observed that Scotland Yard is a game with imperfect information and in Defi-
nition 6.2.1 I modeled it as an extensive game with imperfect information. This
model one may find Scotland Yard’s canonical means of analysis, for admittedly,
it gives a natural account of the imperfect information that makes Scotland Yard
such a fun game to play. Canonical or not, this does not imply, of course, that
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BABA

a b
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1 1 3

2

2 32

1

Figure 6.3: A graphical representation of the Scotland Yard game played on the
game board constituted by the digraph G× from Figure 6.2. A path from the
root to any of its nodes represents a history in the game. For instance, the path
u∗, b, A, 2 corresponds with the history 〈u∗, v∗〉〈b, A〉〈2〉. The information cells are
indicated by the shaded areas. The cells marked with an exclamation mark are
won by ∃.

A B

u∗

2 3 2 3 2 3

{1} {2} {3}

1

{1} {3}{2}

11

{a,b}

Figure 6.4: A graphical representation of the Scotland Yard-PI game played on
the game board constituted by the digraph G× from Figure 6.2. A path from the
root to any of its nodes represents a history in the game. For instance, the path
u∗, {a, b}, A, {2} corresponds with the history 〈{u∗}, v∗〉〈{a, b}, A〉〈{2}〉. The cells
marked with an exclaimation mark are won by ∃.
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Scotland Yard can only be analyzed as an imperfect information game. In the
remainder of this section I will show how a Scotland Yard instance may also give
rise to a game of perfect information. The underlying idea has it that during
rounds in which ∀ moves and hides his whereabouts, he now picks up a set of
vertices that contains all vertices where he can possibly be, from the viewpoint
of ∃. In case ∀ has to show himself, he selects one vertex from the current set of
vertices and announces this vertex as his new location.

More abstractly, ∀’s powers are lifted from the level of picking up vertices to
the level of picking up sets of vertices. ∃’s power remain unaltered, as compared
to the game with imperfect information that was explicated above.

Modeling imperfect information by means of a power set construction—as we
are about to do—is by no means new. For instance, the reader may find this
idea occurring in the computational analyzes of games with imperfect informa-
tion (Reif 1984; Peterson, Azhar, and Reif 2001). In logic, the idea of evaluating
a Independence-friendly logic-sentence with respect to a set of assignments un-
derlies Hodges’ trump semantics (Hodges 1997). In automata theory, the move
to power sets is made when converting a non-deterministic finite automaton into
a deterministic one, see (Hopcroft and Ullman 1979).

As regards every single one of these disciplines, however, observe that the ob-
ject that was analyzed through power sets is substantially more complex/power-
ful/bigger than the original object. For instance, in (Peterson, Azhar, and Reif
2001) it was shown that three-player games with imperfect information can be
undecidable. In the realm of IF logic it was proven (Cameron and Hodges 2001)
that no compositional semantics can be given based on single assignments only.
It is well-known that in the worst case converting a non-deterministic finite au-
tomaton makes the number of states increase exponentially.

In view of these results it is striking that one can define a Scotland Yard
game with perfect information using a power set argument, without experiencing
a combinatorial explosion, cf. Theorem 6.5.3. What is meant by “highly similar”
is made precise in Section 6.4. First let me postulate the game rules for the Scot-
land Yard game with perfect information and define its extensive game form in
Definition 6.3.1.

Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance as in Definition 6.1.1.
The initial position of the Scotland Yard-PI game constituted by sy is similar to
the initial position of the Scotland Yard game that is constituted by sy . That is,
a ∀ pawn is positioned on u∗ and for every 1 ≤ j ≤ n, the ∃j pawn is positioned
on ~v(j). In Scotland Yard-PI, ∀ does not have one pawn at his disposal but as
many as there are vertices in G.

Fix i = 1, U = {u∗}, and ~v = ~v∗; round i of Scotland Yard-PI goes as follows:

1-PI. If U −{~v} = ∅, then the game stops and ∃ wins. If U −{~v} 6= ∅ and i > k
the game also stops but ∃ loses.
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2-PI. Let U ′ = E(U − {~v}). If f(i) = hide, then set U = U ′ and ∀ positions
a ∀ pawn on every vertex v in U . If f(i) = show , then ∀ picks a vertex
u′ ∈ U ′, removes all his pawns from the board, and puts one pawn on u′.
Set U = {u′}.

3-PI. Player ∃ chooses a vector ~v′ ∈ V n, such that E(~v,~v′), and for every 1 ≤ j ≤
n, moves pawn ∃j to ~v′(j). Set ~v = ~v′.

4-PI. Set i = i+ 1.

Clearly, for arbitrary sy , the Scotland Yard-PI game constituted by sy is a
game of perfect information. Thus extensive game theory provides natural means
of analysis.

6.3.1. Definition. Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance. Then,
let the extensive Scotland Yard-PI game constituted by sy be defined as the tuple
SY -PI(sy) = 〈NPI, HPI, PPI, UPI〉, where

• NPI = {∃,∀} is the set of players.

• HPI is the set of histories, that is, the smallest set containing the strings
〈{u∗}〉, 〈{u∗}, ~v∗〉, that is closed under taking actions for ∃ and ∀:

· If h〈U,~v〉 ∈ HPI, ℓ(h〈U,~v〉) < k, f(ℓ(h〈U,~v〉) + 1) = hide, and U −
{~v} 6= ∅, then h〈U,~v〉〈E(U − {~v})〉 ∈ HPI.

· If h〈U,~v〉 ∈ HPI, ℓ(h〈U,~v〉) < k, and f(ℓ(h〈U,~v〉) + 1) = show , then
{h〈U,~v〉〈{u′}〉 | u′ ∈ E(U − {~v})} ⊆ HPI.

· If h〈U,~v〉〈U ′〉 ∈ HPI and E(~v,~v′), then h〈U,~v〉〈U ′, ~v′〉 ∈ HPI.

Let ≻PI be the immediate successor relation on HPI. That is, the smallest
relation closed under the following conditions:

· If h, h〈U〉 ∈ HPI, then h ≻PI h〈U〉.

· If h〈U〉, h〈U,~v〉 ∈ HPI, then h〈U〉 ≻PI h〈U,~v〉.

A history that has no immediate successor is called a terminal history. Let
ZPI ⊆ HPI be the set of terminal histories in HPI.

• PPI : HPI−ZPI → {∃,∀} is the player function that decides who is to move
in a non-terminal history. Due to the notational convention, the value of
P is determined by the history’s form, in the sense that P (h〈U〉) = ∃ and
P (h〈U,~v〉) = ∀, no matter h, U , and ~v.
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• UPI : ZPI → {win, lose} is the function that decides whether a terminal
history h〈U,~v〉 is won or lost for ∃. Formally,

U(h〈U,~v〉) =

{
win if U − {~v} = ∅

lose if U − {~v} 6= ∅.

These definitions may be appreciated best by checking SY -PI(sy×), where
sy× = 〈G×, 〈u∗, ~v∗〉, f

×〉 and G× is the digraph depicted in Figure 6.2. I skip writ-
ing down all histories in this particular game, leaving the reader with a graphical
representation of its game tree in Figure 6.4.

6.4 An effective equivalence

In this section, the similarity between Scotland Yard and its perfect information
variant is established. Making use of this similarity, I prove in Theorem 6.4.12
that for any instance sy , ∃ has a winning strategy in SY (sy) iff she has one in
SY -PI(sy). In order to prove this result, I go about as follows: Firstly, it will
be shown in Lemma 6.4.6 that the structures 〈H,≻〉 and 〈HPI,≻PI〉 are isomor-
phic, in virtue of the bijection β. Secondly, I will formally introduce the notion
of a winning strategy and the backwards induction algorithms for SY (sy) and
SY -PI(sy). This algorithm typically labels every history with win or lose, start-
ing from the terminal histories. Crucially, I show that the backwards induction
algorithms correctly compute whether ∃ has a winning strategy in the respective
games. Finally, I will show that for every history h in SY (sy), the label assigned
to C ∋ h by the backwards induction algorithm for Scotland Yard equals the label
assigned to β−1(h) by the backwards induction algorithm for Scotland Yard-PI.
The claim then follows, as the initial histories 〈u∗, ~v∗〉 and 〈{u∗}, ~v∗〉 carry the
same label.

6.4.1 Scotland Yard and Scotland Yard-PI are isomorphic

Main result of this subsection resides in Lemma 6.4.6, saying that the structures
〈H,≻〉 and 〈HPI,≻PI〉 are isomorphic. The witness of this isomorphism is the
bijection β, shortly defined in Definition 6.4.1. As some of the intermediate
results that bring us to the bijection lemma are not very illuminating, I defer
them to Appendix A.

The function β is a map from histories in the perfect information game
SY -PI(sy) to information cells in the game SY (sy). An information cell is a
set of histories that cannot be distinguished by ∃. The perfect information Scot-
land Yard game was defined in such a way that ∃’s imperfect information in
SY (sy) is propagated to perfect information about sets in SY -PI(sy). It will be
observed through the map β that there is a bijection between information cells—
sets of histories—in the imperfect information game, and histories in the perfect
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information game that hold sets of vertices owned by ∀. Thus, β is a map from
the information cells in SY (sy) to histories in SY -PI(sy).

6.4.1. Definition. Let SY (sy) and SY -PI(sy) be games constituted by sy . De-
fine the function β : HPI → ℘(H) inductively as follows:

β(〈{u∗}〉) = {〈u∗〉}

β(〈{u∗}, ~v∗〉) = {〈u∗, ~v∗〉}

β(h〈U〉) = {g〈u〉 ∈ H | g ∈ β(h), u ∈ U}

β(h〈U,~v〉) = {g〈u,~v〉 ∈ H | g〈u〉 ∈ β(h〈U〉)}.

The function β is (partially) depicted in Figure 6.5 mapping the histories from
SY -PI(sy×) to sets of histories from SY (sy×).

Proposition 6.4.2 states that if in a history h ∈ HPI a pawn (owned by either
player) is positioned on a vertex, then also in β(h) there exists a history in which
this vertex is occupied by a pawn.

6.4.2. Proposition. For every history h′ ∈ HPI, the following hold:

(1) If h′ = h〈U〉 and f(ℓ(h〈U〉)) = hide, then it is the case that U = {u | g〈u〉 ∈
H, for some g ∈ β(h)}.

(2) If P (h′) = ∀ and f(ℓ(h′) + 1) = show, then it is the case that {u | h′ ≻
h′〈{u}〉, for some h′〈{u}〉 ∈ HPI} = {u | g〈u〉 ∈ H, for some g ∈ β(h′)}.

(3) If h′ = h〈U〉 ∈ HPI and u ∈ U , then there exists a history g ∈ β(h) such
that g〈u〉 ∈ H.

(4) If h′ = h〈U,~v〉 ∈ HPI, then it is the case that β(h〈U,~v〉) = {g〈u,~v〉 | g〈u〉 ∈
β(h〈U〉)}.

Proposition 6.4.3 is the converse of the previous proposition, as it links up
histories in H with histories in HPI.

6.4.3. Proposition. For every g′ ∈ H, the following hold:

(1) If g′ = g〈u〉 ∈ H, then there exists a h〈U〉 ∈ HPI such that g ∈ β(h) and
u ∈ U .

(2) If g′ = g〈u,~v〉 ∈ H, then there exists a h〈U,~v′〉 ∈ HPI such that g〈u〉 ∈
β(h〈U〉) and ~v = ~v′.

For β to be bijection between HPI and H, it ought to be the case that β has
range H rather than ℘(H). I lay down the following result.
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Figure 6.5: A partial depiction of the bijection β from histories in SY -PI(sy×)
to sets of histories from SY (sy×). β is displayed using several kinds of arrows to
enhance readability. Note that this visualization does not reflect any conceptual
difference. Sets of histories in the range of β (found in the right-hand structure)
turn out to be information cells, cf. Lemma 6.4.5.
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6.4.4. Lemma. β is a function of type HPI → H.

The latter lemma is strengthened in the following lemma.

6.4.5. Lemma. β is a bijection between HPI and H.

The isomorphism result follows from tying together the previous statements.

6.4.6. Lemma. The structures 〈HPI,≻PI〉 and 〈H,≻〉 are isomorphic.

Proof. Lemma 6.4.5 showed that β is a bijection between HPI and H. It
remains to be shown that β preserves structure, that is, for every pair of histories
h, h′ ∈ HPI, it is the case that h ≻PI h

′ iff β(h) ≻ β(h′). Recall that for C ′ ∈ H
to be the immediate successor of C ∈ H, there must exist two histories g, g′ from
C,C ′, respectively, such that g ≻ g′. The claim is proved by a straightforward
inductive argument on the length of the histories in HPI. I shall omit spelling out
the details of the proof, only mentioning the Propositions on which it relies:

From left to right. Follows from Proposition 6.4.2.3 and Proposition 6.4.2.4.
From right to left. Follows from Propositions 6.4.3.1 and 6.4.3.2. 2

Scotland Yard and its perfect information variant are highly similar in the
sense that the game trees to which the games give rise are isomorphic.

6.4.2 Backwards induction algorithms

The structures 〈HPI,≻PI〉 and 〈H,≻〉 are not only isomorphic, they also preserve
the property of being winnable for the cops. Traditionally it is backwards induc-
tion algorithms that compute whether the cops win, but such algorithms are only
defined on games with perfect information. As a consequence, the backwards in-
duction algorithm from Section 2.2 readily applies to the game tree of any perfect
information SY -PI(sy). For future reference, let B -IndPI(h) ∈ {win, lose} denote
the label of h attached to it by the backwards induction algorithm applied to the
game tree of SY -PI(sy), and let B -IndPI(sy) be the label of the initial history of
sy .

Matters are not so straightforward in case of SY (sy). But as I shall show, a
backwards induction algorithm can be developed in this case as well. To this end,
I rephrase the notion of a winning strategy for games with imperfect information
from Section 2.2, and introduce a backwards induction algorithm that will be seen
to compute whether a structure allows for a winning strategy, for the Scotland
Yard game.

6.4.7. Definition. Let SY (sy) = 〈N,H, P,∼, U〉 be a Scotland Yard game con-
stituted by sy . Then, call the structure 〈S,≻′〉 a plan of action for ∃ in SY (sy),
if the following hold:
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• {〈u∗, ~v∗〉} ∈ S and S ⊆ H.

• ≻′ = ≻ ∩ (S × S).

• For every C ∈ S such that P (C) = ∃, there exists exactly one C ′ ∈ S such
that C ≻′ C ′.

• For every C ∈ S such that P (C) = ∀ and every C ′ ∈ H such that C ≻ C ′,
it is the case that C ′ ∈ S.

Call 〈S,≻′〉 a winning plan of action for ∃ in SY (sy), if 〈S,≻′〉 is a plan of action
and every terminal cell C ∈ S only contains histories h such that U(h) = win.

Before we get to the backwards induction algorithm for Scotland Yard, let me
first make sure that the unusual way of defining ∃’s indistinguishability relation
does not affect ∃’s having a winning strategy. That is, ∃ has a winning strategy in
the customary model of the Scotland Yard game of sy iff she has one in SY (sy) =
〈N,H, P,∼, U〉.

First let me rephrase Scotland Yard games modeled in the customary way
in the current chapter’s notation. A strategy in 〈N,H, P, 〈Ii〉i∈N , U〉 is defined,
cf. (Osborne and Rubinstein 1994), as a function S mapping every information
partition I ∈ I∃ to an action A(h), for some h ∈ C.8 Let S be a strategy in
〈N,H, P, 〈Ii〉i∈N , U〉 and let h = 〈u∗, ~v∗〉〈u1, ~v1〉 . . . 〈ui, ~vi〉 ∈ H be a history, then
call h in accordance with S, if for every 1 ≤ j ≤ i, S(Ij) = ~vj, where Ij is the
information partition in I∃ containing 〈u∗, ~v∗〉〈u1, ~v1〉 . . . 〈uj〉. A strategy S in
〈N,H, P, 〈Ii〉i∈N , U〉 is called winning for ∃ if every terminal history h in H that
is in accordance with S is won for ∃: U(h) = win.

6.4.8. Proposition. Let sy be a Scotland Yard instance and let G(sy) be the
extensive game with imperfect information modeling the Scotland Yard game con-
stituted by sy in the customary way 〈N,H, P, 〈Ii〉i∈N , U〉. Then, ∃ has a winning
plan of action in SY (sy) iff she has a winning strategy in G(sy).

Proof. We transform every winning strategy S in 〈N,H, P, 〈Ii〉i∈N , U〉 into a
winning plan of action 〈S,≻′〉 in SY (sy), and vice versa.

From left to right. Suppose S is a winning strategy in the extensive game
G(sy) = 〈N,H, P, 〈Ii〉i∈N , U〉. Let HS be all histories in H that are in accordance
with S. Let HS be the partitioning of HS, such that for any two histories h, h′ ∈
HS, if h ∼ h′, then there is a cell D ∈ HS containing both h and h′. I claim that
T = 〈HS,≻ ∩ (HS ×HS)〉 is a winning plan of action in SY (sy). To this end, it
needs proof that (i) HS ⊆ H, and that (ii) T is a winning plan of action.

To prove (i), it suffices to show that HS is a set of information cells. To this
end, it suffices to show that HS is closed under ∼: if h ∈ HS and h ∼ h′ for some

8Recall that for every pair of histories h and h′ belonging to ∃, if h and h′ sit in the same
information partition I, then A(h) = A(h′).
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h′ ∈ H, then h′ ∈ HS. I do so by means of an inductive argument. The base case
is trivial. Suppose that h ∈ HS and that h′ is a history such that h ∼ h′, where

h = h0〈u0, ~v0〉〈u1, ~v1〉 and h′ = h′0〈u
′
0, ~v

′
0〉〈u

′
1, ~v

′
1〉.

The other case is trivial and therefore omitted. It needs to be shown that h′

is in accordance with S as well, that is, h′ ∈ HS. Since h is in accordance
with S, S(I) = ~v1, where I ∈ I∃ is the information partition holding h. Derive
from Proposition 6.2.2.3 that ~v1 = ~v′1 and that h0〈u0, ~v0〉〈u1〉 ∼ h′0〈u

′
0, ~v

′
0〉〈u

′
1〉.

Since h is in accordance with S, so is h0〈u0, ~v0〉〈u1〉. Applying the inductive
hypothesis yields that h′0〈u

′
0, ~v

′
0〉〈u

′
1〉 is in accordance with S. Hence, S(I) = ~v1 =

~v′1, implying that h′ is in accordance with S. Therefore, h′ ∈ HS.
As for (ii), it needs to be shown that T is closed under taking actions and

preserves winning. This follows easily from S’s being a winning strategy.
From right to left. Suppose 〈S,≻′〉 is a winning plan of action in SY (sy).

Then, for every C ∈ S belonging to ∃ there is one C ′ such that C ≻′ C ′. Es-
sentially similar to Proposition 6.4.2.4 one proves that all histories in C ′ extend
the histories in C by the same vector of vertices ~vC : C ′ = {h〈u,~vC〉 | h〈u〉 ∈ C},
for some ~vC ∈ V n. Put S(C) = ~vC and for every information partition C not
present in S, put S(C) = ~v for an arbitrary vector of vertices ~v that properly
extends every history in C. It is readily observes that S is a winning strategy in
〈N,H, P, 〈Ii〉i∈N , U〉. 2

6.4.9. Definition. Let SY (sy) = 〈N,H, P,∼, U〉 be a Scotland Yard game con-
stituted by sy . The algorithm B -Ind effectively labels every cell C ∈ H with
B -Ind(C) ∈ {win, lose} and proceeds as follows:

• Every h ∈ Z is painted color(h) ∈ {white, limegreen} in such a way that
color(h) = white iff U(h) = win.

• Every terminal information cell C ∈ H is given the label B -Ind(C) = win
iff color(h) = white, for every h ∈ C.

• Until every cell has been labelled, apply the following routine to every cell
C ∈ H that has no label, but all of whose successors have:

· If P (C) = ∃ and there exists a successor C ′ of C that has been labelled
B -Ind(C ′) = win, then C gets the label B -Ind(C) = win; otherwise,
C gets the label B -Ind(C) = lose.

· If P (C) = ∀ and there exists a successor h′ of C that has been labelled
B -Ind(C ′) = lose, then C gets the label B -Ind(C) = lose; otherwise,
C gets the label B -Ind(C) = win.
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Let C∗ = {tupleu∗, ~v∗} be an information cell, then write B -Ind(sy) to denote
B -Ind(C∗).

6.4.10. Proposition. Let SY (sy) be a Scotland Yard game constituted by sy.
Then, ∃ has a winning strategy in SY (sy) iff B-Ind(sy) = win.

Proof. Straightforward. 2

There is one interesting detail that gets lost in the proof of Proposition 6.4.10,
namely the fact that the colorings of the histories with white and limegreen are
only used during the first step of the algorithm in order to label the terminal
information cells with win and lose. However, also non-terminal information
cells may contain terminal histories. As the reader can easily verify, the terminal
histories in non-terminal information cells are ignored in the previous backward
induction algorithm. To see that this goes without affecting the soundness of the
algorithm, recall that every history that terminates in round j, for j < k, is won by
∃. Therefore, every terminal history that sits in a non-terminal information cell, is
won by ∃. The backwards induction algorithm performs a worst-case analysis on
the game tree of SY (sy), from ∃’s viewpoint. For this reason terminal histories in
non-terminal information are dispensable when it comes to doing the backwards
induction analysis.

For an example of the two backwards induction algorithms at work, see Figure
6.6. The upcoming lemma states that β is a bijection respecting the labels of the
respective histories.

6.4.11. Lemma. For every h ∈ HPI, B-IndPI(h) = B-Ind(β(h)).

Proof. I prove by induction on the histories h ∈ HPI. The most interesting
case is the base step, concerning the terminal information cells.

Suppose h〈U,~v〉 ∈ ZPI. Suppose B -IndPI(h〈U,~v〉) = win. By definition of
B -IndPI applied to terminal histories it follows that (U−{~v}) = ∅. Put differently
every u ∈ U is an element of {~v}. Now consider an arbitrary history g〈u′, ~v′〉
from β(h〈U,~v〉). By definition of β, it follows that u′ ∈ U and that ~v′ = ~v. But
then, u′ ∈ {~v′} and consequently U(g〈u′, ~v′〉) = win. Therefore the backwards
induction for Scotland Yard paints g〈u′, ~v′〉 with the color white. Since g〈u′, ~v′〉
was chosen arbitrarily, conclude that every history in β(h〈U,~v〉) is painted white,
whence B -Ind(β(h〈U,~v〉)) = win.

Conversely, suppose B -IndPI(h〈U,~v〉) = lose. By definition of B -IndPI applied
to terminal histories it follows that (U −{~v}) contains at least one object, call it
u. By Proposition 6.4.2.3 derive that there exists a history g〈u〉 ∈ β(h〈U〉). From
Proposition 6.4.2.4 it follows that g〈u,~v〉 is a successor of g〈u〉, since h〈U,~v〉 is a
successor of h〈U〉. Furthermore, g〈u,~v〉 is an element of β(h〈U,~v〉). Since u does
not sit in {~v} the history g〈u,~v〉 is painted limegreen, by the backwards induction
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Figure 6.6: The histories in SY (sy×) and SY -PI(sy×) labelled by the backwards
induction algorithm B -Ind and B -IndPI depicted in (a) and (b), respectively.
The information cells marked with an exclamation mark are labelled win by the
respective backwards induction algorithm.
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algorithm of Scotland Yard. Since one of its elements is painted limegreen, it is
the case that B -Ind(β(h〈U,~v〉)) = lose.

Suppose h〈U〉 is non-terminal. Suppose B -IndPI(h〈U〉) = win. Therefore,
h〈U〉 has a successor h〈U,~v〉, such that B -IndPI(h〈U,~v〉) = win. Applying the in-
ductive hypothesis to h〈U,~v〉 yields that B -Ind(β(h〈U,~v〉)) = win. Lemma 6.4.6
established that β is a order preserving bijection. Hence, β(h〈U〉) ≻ β(h〈U,~v〉)
and therefore B -Ind(β(h〈U〉)) = win. The converse case runs along the same
line.

Suppose h〈U,~v〉 is non-terminal. Analogous to the previous case. 2

Tying together these results brings us to the desired conclusion:

6.4.12. Theorem. Let sy be a Scotland Yard instance. Then, ∃ has a winning
strategy in SY (sy) iff she has a winning strategy in SY -PI(sy).

Proof. Follows immediately from Propositions 6.4.10 and Lemma 6.4.11, since
∃ has a winning strategy in SY (sy) iff B -Ind(sy) = win iff B -IndPI(sy) = win iff
∃ has a winning strategy in SY -PI(sy). 2

6.5 Scotland Yard is PSPACE-complete

In this section, I define Scotland Yard as a decision problem and prove that it
is PSPACE-complete, both the perfect and the imperfect information game.
Hence, the imperfect information in Scotland Yard does not increase the game’s
complexity, under the current analysis.

Let Scotland Yard be the set of all Scotland Yard instances sy such that ∃
has a winning strategy in SY (sy). As a special case let the set of Scotland Yard
instances Scotland Yard♣ equal

{〈G, 〈u∗, ~v∗〉, f〉 ∈ Scotland Yard | f has range {♣}},

where ♣ ∈ {show , hide}.
Scotland Yard and Scotland Yardshow both have PSPACE-complete

complexity, as I show in this section. From this one may conclude that the
imperfect information in Scotland Yard does not have a computational impact.
Surprisingly, if ∃ cannot see the whereabouts of ∀ at any stage of the game, the
decidability problem ends up being NP-complete. That is, Scotland Yardhide

is complete for NP. The latter claim is substantiated in Section 6.6.

6.5.1. Lemma. Scotland Yard ∈ PSPACE.
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Proof. Required is a PSPACE algorithm that for arbitrary Scotland Yard
instances sy decides whether ∃ has a winning strategy in SY (sy). By Theorem
6.4.12, it is sufficient to provide a PSPACE algorithm that decides the same
problem with respect to SY -PI(sy). This equivalence comes in useful, because
SY -PI(sy) is a game of perfect information and can for this reason be dealt with
by means of the traditional machinery. In fact, the very same machinery supplied
by Papadimitriou cited in Section 6.1 will do. Recall that Papadimitriou, namely,
observed that deciding the value of a game with perfect information can be done
in PSPACE if the following requirements are met:

• the length of any legal sequence of moves is bounded by a polynomial in
the size of the input; and

• given a “board position” of the game there is a polynomial-space algorithm
which constructs all possible subsequent actions and board positions; or,
if there aren’t any, decides whether the board position is a win for either
player.

It is easy to see that SY -PI(sy) meets those conditions. As to the first one,
namely, the length of the description of any history is polynomially bounded
by the number of rounds k of the game. By assumption k ≤ ‖V ‖ ≤ ‖sy‖,
whence the description of every history is polynomial in the size of the in-
put. As regards the second condition, if h〈U,~v〉 is a non-terminal history, then
its successors are either (depending on f) only h〈U,~v〉〈{w1, . . . , wm}〉 or all of
h〈U,~v〉〈{w1}〉, . . . , h〈U,~v〉〈{wm}〉, where E(U −{~v}) = {w1, . . . , wm}. Those can
clearly be constructed in PSPACE.

In the worst case, for an arbitrary history h〈U,~v〉〈U ′〉 owned by ∃ there are
‖V ‖n many vectors ~v′ such that E(~v,~v′), where n is the number of ∃’s pawns on
the game board. This number is exponential in the size of the input. Neverthe-
less, every vector ~v′ in V n = {v1, . . . , v‖V ‖}

n can be constructed in polynomial
space, simply by writing down the vector 〈v1, . . . , v1〉 ∈ V n that comes first in
the lexicographical ordering and successively constructing the remaining vectors
that follow it up in the same ordering. 2

Hardness is shown by reduction from QBF. To introduce the problem prop-
erly, let me introduce some folklore terminology from propositional logic. A literal
is a propositional variable or a negated propositional variable. A clause is a dis-
junction of literals. A boolean formula is in conjunctive normal form (CNF), if
it is a conjunction of clauses. A boolean formula is said to be in 3-CNF, if it is
in CNF and all of its clauses contain exactly three literals. The decision problem
QBF has quantified boolean formulae ∀x1∃y1 . . . ∀xn∃yn φ as instances, in which
φ is a boolean formula in 3-CNF. QBF questions whether for every truth value
for x1, there is a truth value for y1, . . ., such that the boolean formula φ(~x, ~y)
is satisfied by the resulting truth assignment. Put formally, QBF is the set of
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quantified boolean formulae ψ such that

ψ ∈ QBF iff {true, false} |= ψ.

6.5.2. Lemma. Scotland Yardshow is PSPACE-hard.

Proof. Given a QBF instance ψ = ∀x1∃y1 . . . ∀xn∃yn φ, where φ = C1 ∧ . . .∧
Cm is a boolean formula in 3-CNF, it suffices to construct in P a Scotland Yard
instance syψ, such that ψ ∈ QBF if and only if syψ ∈ Scotland Yardshow .
To this end, let me construct the initial position of the game constituted by syψ.
The formal specification of syψ follows directly from these building blocks.

Set i = 0. For i ≤ n+ 1, do as follows:

• If i = 0, lay down the opening-gadget, that is schematically depicted in
Figure 6.7.a. Moreover, distribute the pawns from

{∃x1
, . . . ,∃xn

,∃y1 , . . . ,∃yn
∃d,∀}

over the vertices of the opening-gadget as indicated in its depiction.

• If 1 ≤ i ≤ n, first put the xi-gadget at the bottom of the already constructed
game board. Next, put the yi-gadget below the justly introduced xi-gadget.
Figures 6.7.b and 6.7.c give a schematic account of the xi-gadget and yi-
gadget, respectively. (Note that as a result of these actions, every vertex
in the board game is connected to at least one other vertex, except for the
ones on the top row of the opening-gadget and the ones on the bottom row
of the yi-gadget.)

• If i = n + 1, put the clause-gadget (see Figure 6.7.d) at the bottom of
the already constructed board game. This gadget requires a little tinkering
before construction terminates, in order to encode the boolean formula φ by
adding edges to the clause-gadgets (not present in the depiction), as follows:

· For every variable z ∈ {~x, ~y} and clause C in φ: If z occurs as a literal
in C, then join the vertices named “+z” and “C” by an edge. If ¬z
occurs as a literal in C, then join the vertices named “−z” and “C”
by an edge.

• Set i = i+ 1.

Note that the board game can be considered to consists of layers, that are indi-
cated by the horizontal, dotted lines. These layers are numbered −2,−1, . . . , 4n+
5, enabling us to refer to these layers when describing strategies. Note that the
division in layers is not complete: in between the 4(i−1)+3rd and 4(i−1)+4th
layer of the xi-gadget are two floating vertices.
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1

0

−1

−2

∃x1
∃xi

∃xn

∃yn
∃yi

∃y2∃y1 ∀

∃d

(a) Opening-gadget

4(i− 1) + 1

4(i− 1) + 2

4(i− 1) + 3

4(i− 1) + 4
︸ ︷︷ ︸

i−1

︸ ︷︷ ︸

i−1

+xi −xi

(b) xi-gadget

4(i− 1) + 4

4(i− 1) + 5
︸ ︷︷ ︸

n

︸ ︷︷ ︸

i

+yi−yi

(c) yi-gadget

C2

4n+ 4

4n+ 5

+y1−y1+y2−y2 +yi−yi +yn−yn +x1 −x1+xi −xi+xn −xn

CmC1

(d) Clause-gadget

Figure 6.7: The gadgets that make up the initial position of the board game
constituted by SY (syψ). The dotted lines are merely “decoration” of the game
board, to enhance readability. The horizontal, dotted lines are referred to as
“layers”.

The formal specifications of the graph and the initial positions of sy are
easily derived from the previous descriptions. Therefore, syψ is fully specified
after putting f : {1, . . . , 4n + 5} → {show}. Hence, syψ is an instance of
Scotland Yardshow .

It remains to be shown that ψ ∈ QBF iff syψ ∈ Scotland Yardshow .

From left to right. Suppose {true, false} |= ψ, then there is a way of subse-
quently picking truth values for the existentially quantified variables that renders
ψ’s boolean part φ true, no matter what truth values are assigned to the univer-
sally quantified variables. ∃’s winning strategy in SY (syψ) (being witness of the
fact that syψ ∈ Scotland Yardshow) shall be read off from the aforementioned
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way of picking. I do so by interpreting moves in SY (syψ) as assigning truth values
to variables and vice versa: Actions performed by ∀ from layer 4(i − 1) + 1 to
layer 4(i− 1) + 2 will be interpreted as assigning a truth value to the universally
quantified variable xi. In particular, a move by ∀ to the vertex named “+xi”
(“−xi”) will be interpreted as assigning to xi the value true (false). Conversely,
if ∃’s way of picking prescribes assigning true (false) to yi this will be reflected in
SY (syψ) by moving ∃yi

to the vertex named “+yi” (“−yi”) on layer 4(i− 1) + 5.
Roughly speaking, ∃ goes about as follows: when she is to chose between

moving ∃yi
to the vertex named “+yi” or “−yi” she understands ∀’s previous

moves as a truth assignment and observes which truth value is prescribed by the
way of picking. Next, she interprets this truth value as a move in SY (syψ) as
described above and moves ∃yi

to the according vertex. This intuition underlies
the full specification of ∃’s strategy, described below:

For 0 ≤ i ≤ n+ 1 let ∃’s strategy be as follows:

• Above all: If any pawn can capture ∀, do so!

• For every pawn that stands on a vertex on layer j that is connected to
exactly one vertex on layer j + 1, move it to this vertex. If the pawn at
stake is actually ∃xi

standing on a vertex on layer 4(i − 1) + 3, it cannot
move to the vertex on layer 4(i − 1) + 4, because there is a vertex v in
between. In this case, move ∃xi

to v and on the next round of the game
move it downwards to layer 4(i− 1) + 4.

• If ∃xi
stands on a vertex on layer 4(i − 1) + 2, then move it to the vertex

on layer 4(i− 1) + 3 that is connected to the vertex where ∀ is positioned.

• If ∃yi
stands on a vertex on layer 4(i − 1) + 4, and the way of picking

prescribes assigning true (false) to yi, then move it to the vertex on layer
4(i− 1) + 5 that is named “+yi” (“−yi”).

• If ∃d stands on a vertex on layer j that has two successors on layer j + 1,
then move it along the left-hand (right-hand) edge, if j is even (odd).

• If ∃z (for z ∈ {~x, ~y}) stands on a vertex on layer 4n+4 and this vertex is not
connected to a vertex on which ∀ is positioned, move it along an arbitrary
edge (possibly upwards).

As to ∀’s behavior I claim without rigorous proof that after 4n+ 4 rounds of
the game (that is, without being captured at an earlier stage of the game) he has
traversed a path leading through exactly one of the vertices named “+xi” and
“−xi”, for every xi ∈ {~x}, ending up in a vertex named “C”, for some clause C
in φ. To see that this must be the case: moving ∀ upwards at any stage of the
game results in an immediate capture by ∃d. (In fact, ∃d’s sole purpose in life is
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capturing ∀, if he moves upward.) If ∀ is moved to one of the reflexive vertices
on layer 4(i− 1) + 3 he is captured by ∃xi

who moves along the reflexive edge.
Upon arriving at layer 4n + 4, pawn ∃z (for z ∈ {~x, ~y}) stands on a vertex

named “+z” or “−z”, reflecting that z was assigned true or false, respectively.
By assumption on the successfulness of the way of picking, that guided ∃ through
SY (syψ), it is the case that the truth assignment that is associated with the po-
sitions of the pawns ∃x1

, . . . ,∃xn
,∃y1 , . . . ,∃yn

makes φ true. That is, under that
truth assignment, for every clause C in φ there is a literal L that is made true.
Now, if L = z, then ∃z stands on the vertex named “+z” and this vertex and the
vertex named “C” are joined by an edge; and if L = ¬z, then ∃z stands on the
vertex named “−z” and this vertex and the vertex named “C” are joined by an
edge. So no matter to which vertex named “C” pawn ∀ moves during his 4n+5th
move, for at least one z ∈ {~x, ~y} it is the case that ∃z can move to this vertex
named “C” and capture him there.

From right to left. Suppose {true, false} 6|= ψ, then there is a way of picking
truth values for the universally quantified variables that renders the boolean part
false, no matter what truth values are subsequently assigned to the existentially
quantified variables. I leave out the argumentation that this way of picking con-
stitutes a winning strategy for ∀ in SY (syψ), as it is similar to the argumentation
in the converse direction. But note one crucial property of ∀’s winning strategy:
it moves pawn ∀ downwards, during every round in the game. Therefore, the only
round in which it can be captured is the last one: on a vertex on layer 4n+ 5.

Close attention is required, though, to ∃’s behavior. That is, it is to be
observed that ∃ cannot change her sad destiny (losing) by deviating from the
behavior specified in the rules below. The gist of this behavior is that it results in
pawn ∃xi

remembering ∀’s moves on layer 4(i−1)+1 and that after 4n+4 rounds
the pawns ∃x1

, . . . ,∃xn
,∃y1 , . . . ,∃yn

all stand on a vertex on layer 4n + 4. The
point is that just as above, the positions of these pawns on vertices on layer 4n+4
reflect a truth assignment. This time however, the truth assignment falsifies the
boolean part φ.

The rules are as follows:

(1) If ∃xi
stands on a vertex on layer 4(i − 1) + 2, then move it to the vertex

on layer 4(i− 1) + 3 that is connected to the vertex where ∀ is positioned.

(2) If ∃d stands on a vertex on layer j that is connected to two vertices below,
then move it along the left-hand (right-hand) edge, if j is even (odd); or
along the right-hand (left-hand) edge, if j is even (odd).

(3) For every pawn that stands on a vertex on layer j that is connected to
exactly one vertex on layer j + 1, move it to this vertex. (With the same
exception as before with regard to ∃xi

standing on a vertex on layer 4(i −
1) + 3.)
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4(i− 1) + 1

4(i− 1) + 2

4(i− 1) + 3

4(i− 1) + 4

+xi −xi

∀

∃d

∃xi

u v

(a)

+xi −xi

∃xi
∀

∃d

4(i− 1) + 1

4(i− 1) + 2

4(i− 1) + 3

4(i− 1) + 4

(b)

Figure 6.8: Positions on the game board that may occur if ∃ does not play
according to rule (1) and (2), depicted in (a) and (b), respectively.
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I argue that not behaving in correspondence with (1)-(3) will also result in a loss
for ∃:

(1) Suppose ∃xi
stands on the vertex on layer 4(i− 1) + 2, with two options: u

and v. Let u be the vertex on layer 4(i − 1) + 3 that is connected to the
vertex where ∀ is positioned (see Figure 6.8.a). For the sake of the argument
let us suppose that ∃xi

is moved to v, violating rule (1). In that case, ∀ may
safely move to u. If ∀ continues the game by moving its pawn downwards
it wins automatically, since after the final round (round 4n + 5) its pawn
stands on a vertex on layer 4n+4, due to the extra vertex sitting in between
layers 4(i− 1)+3 and 4(i− 1)+4, without there being any opportunity for
∃ to capture him. As such, the pawn ∃xi

is forced to remember what vertex
∀ visited on layer 4(i− 1) + 2: the one named “+xi” or “−xi”.

(2) Suppose ∃d stands on a vertex on layer 4(i − 1) + 1 and from there moves
along the right-hand edge twice (see Figure 6.8.b). ∀ can exploit this move
by moving as he would move normally, except for round 4n + 5, during
which he moves upwards. This behavior results in a guaranteed win for ∀,
since none of ∃’s pawns is pursuing ∀ closely enough to capture it, after
moving upwards.

(3) Suppose any pawn controlled by ∃ moves upwards instead of downwards.
This can never result in a win for ∃, because ∀ (behaving as he does) can
only be captured in the last round of the game, on a vertex on layer 4n+5.
In particular, any pawn ∃z, for z ∈ {~x, ~y}, the shortest path to a vertex on
layer 4n + 5 is of length 4n + 5. Now, if ∃z is moved upwards, it cannot
(during the last round of the game) capture ∀.

This concludes the proof. 2

The previous two lemmata are sufficient arguments to settle completeness.

6.5.3. Theorem. Scotland Yard and Scotland Yardshow are PSPACE-
complete.

Proof. Lemma 6.5.1 holds that Scotland Yard is solvable in PSPACE.
To check whether an instance sy has a function f with range {show} is trivial,
therefore, also Scotland Yardshow is solvable in PSPACE.

PSPACE-hardness was proven for Scotland Yardshow in Lemma 6.5.2.
Since the latter problem is a specialization of Scotland Yard, it follows imme-
diately that Scotland Yard is PSPACE-hard as well.

Hence, both problems are complete for PSPACE. 2
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6.6 Ignorance is (computational) bliss

Intuitively, adding imperfect information makes a game harder. However, if one
restricts oneself to Scotland Yard instances in which ∀’s whereabouts are only
known at the beginning of the game, then deciding whether ∃ has a winning
strategy is NP-complete, cf. Theorem 6.6.3. After the proof of this theorem, I
argue that from a quantitative point of view it is indeed harder for ∃ to win an
arbitrary Scotland Yard game, thus backing up our pre-computational intuitions.

6.6.1. Lemma. Scotland Yardhide ∈ NP.

Proof. I make use of the equivalence between the Scotland Yard game and its
perfect information counterpart Scotland Yard-PI. It suffices to give an NP algo-
rithm that decides whether ∃ has a winning strategy in an arbitrary SY -PI(sy),
where sy ’s information function has range {hide}. That is, for every integer i
on which f is properly defined, we have that f(i) = hide. Let me now repeat
the game rule from page 154 that regulates ∀’s behavior in the game of Scotland
Yard-PI:

2-PI. Let U ′ = E(U − {~v}). If f(i) = hide, then set U = U ′ and ∀ positions
a ∀ pawn on every vertex v iff v ∈ U . If f(i) = show , then ∀ picks
a vertex u′ ∈ U ′, removes all his pawns from the board, and puts one
pawn on u′. Set U = {u′}.

Since for no 1 ≤ i ≤ k, f(i) equals show , I can harmlessly replace it by the
following rule:

2-PI′. Set U ′ = E(U − {~v}) and ∀ positions a ∀ pawn on every vertex v iff
v ∈ U .

Doing so yields a game in which ∀ plays no active role anymore, in the sense that
the set U at any round of the game is completely determined by ∃’s past moves.
Put differently, any game constituted by an instance of Scotland Yardhide is
essentially a one-player game! Having obtained this insight, it is easy to see that
the following algorithm decides in non-deterministic polynomial time whether ∃
has a winning strategy in the k-round SY -PI(sy):

• Non-deterministically guess a k number of n-dimensional vectors of vertices
~v1, . . . , ~vk ∈ V n.

• Set U = {u∗}, ~v = ~v∗, and i = 1; then for i ≤ k proceed as follows:

· If E(~v,~vi), then set ~v = ~vi; else, reject.

· If (U − {~v}) = ∅, then accept; else, set U = (U − {~v}).

· Set i = i+ 1.
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• If after k rounds there are still ∀ pawns present on the game board, reject.

This algorithm is correct: ∃ has a winning strategy in SY -PI(sy) iff it accepts
sy . Hence, Scotland Yardhide is in NP. 2

To prove hardness, I reduce from 3-Sat, that takes boolean formulae φ as
instance that are in 3-CNF. The boolean formula φ is in 3-Sat iff it is satisfi-
able, that is, there exists a truth assignment of its variables that makes φ true.
Henceforth, I make the assumption that no clause in a 3-Sat instance contains
two copies of one propositional variable. This goes without loss of generality.

6.6.2. Lemma. Scotland Yardhide is NP-hard.

Proof. To reduce from 3-Sat, let φ = C1 ∧ . . . ∧ Cm be an instance of 3-Sat
over the variables x1, . . . , xn. On the basis of φ I will construe a Scotland Yard
instance syφ such that φ is satisfiable iff ∃ has a winning strategy in SY -PI(syφ).
In fact, syφ will be read off from the initial game board that is put together as
follows.

Set i = 0; for i ≤ n proceed as follows:

• If i = 0, lay down the clause-gadget from Figure 6.9.a. The sub-graphs Hj

are fully connected graphs with four elements, whose vertices are connected
with the vertices wj, for 1 ≤ j ≤ m.

• If 1 ≤ i ≤ n, put the xi-gadget to the right of the already constructed game
board, see Figure 6.9.b. It will be convenient to refer to the vertex qi by
means of −i

m+1 and +i
m+1.

For every 0 ≤ j ≤ m, do as follows:

· If xi occurs as a literal in Cj, add the edges 〈+i
j, wj〉 and 〈wj,+

i
j+1〉.

· If ¬xi occurs as a literal in Cj, add the edges 〈−i
j, wj〉 and 〈wj,−

i
j+1〉.

· Add the edges 〈vj,−
i
j+1〉 and 〈vj,+

i
j+1〉.

Note that C0 refers to no clause, and that −i
m+1 = +i

m+1 = qi.

• Set i = i+ 1.

The Scotland Yard instance syφ is derived from the board game: the digraph
is completely spelled out and the initial positions are as indicated in the gadgets.
Note that the every vertex in the constructed digraph has at least one outgoing
edge. In fact the reflexive edges in si and ti serve merely to accomplish this
fact. Therefore, syφ is fully specified after putting f : {1, . . . , 2m+ 2} → {hide}.
Hence, syφ is an instance of Scotland Yardhide .
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(b) xi-gadget

Figure 6.9: The gadgets that make up the initial position of SY -PI(syφ). The
sub-graph Hj is a fully connected graph with 4 elements, all of whose vertices are
connected with the vertex wj.
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It remains to be shown that φ ∈ 3-Sat iff syφ ∈ Scotland Yardhide .

By Theorem 6.4.12, it is sufficient to show that φ ∈ 3-Sat iff ∃ has a winning
strategy in SY -PI(syφ).

From left to right. Suppose φ is satisfiable, then there exists a truth assignment
t : {~x} → {true, false} such that for every clause Cj in φ, there exists at least
one literal that is true under t. Let us describe a strategy for ∃ that is based on
t and argue that it is in fact a winning strategy for her in SY -PI(syφ):

• If ∃i stands on the vertex on layer 0 and t(xi) = true (false), then move it
to +i

1 (−i
1) on layer 1.

• If ∃i stands on −i
j (+i

j), and −i
j (+i

j) happens to be connected to wj, then
move it to wj. If ∃i stands on −i

j (+i
j) and −i

j (+i
j) is not connected to wj,

then move it to dij (eij).

• If ∃i stands on wj, move it to ±i
j+1, for ± ∈ {+,−}. Note that this move is

deterministic, since there is an edge from wj to +i
j+1, say, only if xi occurs

as a literal in Cj. By assumption of φ being an instance of 3-Sat, it cannot
be the case that also ¬xi occurs as a literal in Cj. Hence, there is no edge
from wj to −i

j+1.

• If ∃i stands on dij (eij) then move it to −i
j+1 (+i

j+1). If ∃i stands on dim or
eim then move it to qi.

• If ∃i stands on qi, then move it to si if t(xi) = true and to ti if t(xi) = false.

Observe that if ∃ plays according to the above strategy, every pawn ∃i will even-
tually traverse either all vertices −i

1, . . . ,−
i
m or all vertices +i

1, . . . ,+
i
m, given that

t(xi) = false or t(xi) = true, respectively.
To show that this strategy is indeed winning against any of ∀’s strategies,

consider the sets of vertices U i
j that ∀ occupies on the clause-gadget and the xi-

gadget, after round 0 ≤ j ≤ 2m + 2 of the game in which ∃ moved as described
above. Initially, ∀ has one pawn on v0; thus, U i

0 = {v0}. Let us suppose without
loss of generality that t(xi) = true. Then, U i

1 = {u1,−
i
1} as the ∀ pawn put on

+i
1 is captured by ∃i. I leave it to the reader to check that for 1 ≤ j ≤ m− 1, it

is the case that

U i
2j = {vj, c

i
j, d

i
j}

U i
2j+1 = {uj+1, a

i
j+1,−

i
j+1}.

The crucial insight being that the ∀ pawn put on wj can be captured iff there
exists at least one literal in Cj that is made true by t. Since t was assumed to
be a satisfying assignment, there must be at least one ∃ pawn that captures the
universal pawn on wj. It is prescribed by the above strategy that ∃i is moved to
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any wj-vertex, if possible. Furthermore, it is required to return to the xi-gadget
on the next round of the game, capturing the ∀ pawn that was positioned on
+i
j+1, from vj.

After round 2m−1, ∀ cannot continue walking on the safe path v0, u1, . . . , vm;
indeed, he has one pawn on vm and two pawns per xi-gadget: U i

2m = {cim, d
i
m}.

The pawn put on qi from vm is captured by ∃i coming from eim, so we get that
U i

2m+1 = {pi}. Following the strategy above, ∃ moves ∃i from qi to si, whence
U i

2m+2 = ∅. Since i was chosen arbitrarily, it is the case that ∀ has no pawns
left on any xi-gadget and therefore has lost after exactly 2m+2 rounds of playing.

From right to left. Suppose φ is not satisfiable, then for every truth assignment
t to the variables in φ, there exists a clause Cj in φ, that is made false. In the
converse direction of this proof, I concluded that every ∃i traverses one of the
paths −i

1, . . . ,−
i
m, q

i and +i
1, . . . ,+

i
m, q

i, depending on t(xi). This behavior I call
in accordance with the truth value t(xi) assigned to xi; if this behavior is displayed
with respect to every 1 ≤ i ≤ n, then I say that it is in accordance with the truth
assignment t.

For now, assume that ∃ plays in accordance with some truth assignment t.
Since φ is not satisfiable, it is not satisfied by t either. Therefore, there is a
clause Cj that is not satisfied by t. This is reflected during the playing of the
game by the fact that after round 2j there is a ∀ pawn positioned on wj that
cannot be captured by any ∃i. This state of affairs will result in a win for ∀, as
he positions pawns on every vertex in Hj during round 2j + 1. By construction,
Hj is a connected graph on which he can keep on putting pawns indefinitely.

Remains to be shown that ∃ cannot avoid losing by deviating from playing
in accordance with some truth assignment. I make the following claims: (A) If
after round 1 ≤ 2j − 1 ≤ 2m+ 1 there is an i such that no ∃ pawn is positioned
on −i

j or +i
j, then ∃ loses. (B) If after round 2 ≤ 2j ≤ 2m there is an ∃ pawn

positioned on cij or f ij , then ∃ loses. I prove by induction. While proving these
claims, I take the easily derived fact for granted that during round 2j − 1 of the
game ∀ has a pawn on uj and that during round 2j of the game ∀ has a pawn on
vj.

Base step. (A) Suppose after round 2m + 1 no ∃ pawn is on qi (recall that
−i
m+1 = +i

m+1 = qi). Then, there is a ∀ pawn on qi, since by construction of the
game board, vm is connected to qi. During the next round, ∀ has pawns on both
si and ti, none of which is captured by ∃, as she has no pawns on the xi-gadget.

(B) Suppose after round 2m there is an ∃ pawn positioned on cim, say. We
make a case distinction regarding the state of affairs after round 2m+1: (i) there
is an ∃ pawn on qi. Obviously, this pawn cannot be the one on cim after round
2m, since there is no edge from cim to qi. Therefore there are two of ∃’s pawns on
the xi-gadget. As there are exactly n pawns at ∃’s disposal, during round 2m+1
there is an xh-gadget avoid of ∃ pawns. In particular, there is no ∃ pawn on qh.
Applying clause (A), yields that ∃ cannot win from this position. (ii) There is no
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∃ pawn on qi. Then, there is a ∀ pawn on qi after round 2m+1, coming from vm.
Therefore, after round 2m + 2 there is a ∀ pawn on ti; since ∃ can only capture
∀’s pawn at si.

Induction step. (A) Suppose after round 1 ≤ 2j−1 < 2m−1 there is an i such
that no ∃ pawn is positioned on −i

j or +i
j. Since ∀ has a pawn on vj−1 after round

2j−2, he has pawns on both −i
j and +i

j after round 2j−1. If after the next round
∀ occupies the vertices cij, d

i
j, e

i
j or dij, e

i
j, f

i
j this implies that one of ∃’s pawns is

on cij or f ij , respectively. But then she loses in virtue of the inductive hypothesis
of (B). So, suppose that after round 2j ∀ occupies all the vertices cij, d

i
j, e

i
j, f

i
j .

Then, for the xi-gadget to be cleansed of ∀ pawns it is prescribed that on some
later round of the game there are at least two ∃ pawns on this gadget. But then
on this round the inductive hypothesis of (A) applies, yielding that ∃ loses.

(B) Suppose after round 2 ≤ 2j < 2m − 2 there is an ∃ pawn positioned on
cij, say. Then, after round 2j + 2 the same pawn is positioned on cij+1. Applying
the inductive hypothesis of (B) teaches that ∃ loses.

I leave it to the reader to check that if ∃ plays in such a way that if during
any of the rounds of the game the premises of (A) and (B) do not apply, then she
plays in accordance with some truth assignment. However, also playing according
to any truth assignment is bound to be a losing way of playing, as I argued earlier.
This concludes the proof. 2

Tying together the latter two theorems yields NP-completeness for the spe-
cialization of Scotland Yard in which ∀ does not give any information.

6.6.3. Theorem. Scotland Yardhide is NP-complete.

Proof. Immediate from Lemmata 6.6.1 and 6.6.2. 2

From a computational point of view it is easier to solve the decision problem
Scotland Yard, when ∀ does not reveal himself during the game. Yet, in a
quantitative sense it becomes harder for ∃ to play this game, in that there are
games in which ∃ has no winning strategy if ∀ does not reveal himself at all, but
she would have had a winning strategy if ∀ was to reveal himself at least once.
To make this claim precise fix two functions g and h, where

g : {1, . . . , k} → {hide} and h : {1, . . . , k} → {hide, show}

such that h(j) = show , for some j. I leave it to the reader to check that ∃ has a
winning strategy in SY (F, 〈u∗, ~v∗〉, h) but none in SY (G, 〈u∗, ~v∗〉, g). In the latter
games, F is the graph depicted in Figure 6.10.
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∀∃
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Figure 6.10: The forked graph F . ∃ has a winning strategy iff she knows ∀’s
position during round j.

6.7 Concluding remarks

By means of a power set construction I observed that imperfect information of
vertices can be propagated to perfect information of sets of vertices, without af-
fecting the property of the cops having a winning strategy, cf. Theorem 6.4.12.
Lemma 6.5.1 shows that the decision problem Scotland Yardshow is PSPACE-
hard; Theorem 6.5.3 shows that that it is PSPACE-complete. This finding is in
line with the literature on combinatorial game theory, since the former decision
problem concerns two-player graph games with perfect information. More sur-
prisingly, it was shown in Lemma 6.5.1 that the power set analysis does not come
at a computational cost: also Scotland Yard is solvable in PSPACE.

The question why, on an abstract level, the imperfect information in Scotland
Yard does not increase the computational complexity is not addressed in this
chapter. Thus, a direction for future research is to explore what are Scotland
Yard’s properties that cause it to behave like most two-player games with perfect
information.

I made the point that under the current analysis, Scotland Yard games enjoy
the same level of abstraction as graph games. Still the games under consideration
form a coherent lot. To name some of their shared properties: the duration is
bound by the graph’s size; the imperfect information satisfies perfect recall; the
information function cannot account for very subtle patterns of ignorance; and,
the graphs were only supposed to have out-degree ≥ 1. Thus a more general
theory is desired that charts the computational landscape of imperfect informa-
tion graph games. In particular the question is worthwhile under what conditions
the complexity of graph games does not increase when imperfect information is
inserted.

On the whole, the contents of this chapter show that games with imperfect
information can be subject to computational analysis just as games with perfect
information.





Chapter 7

Conclusions

Background. The contents of this dissertation can be understood as a case-
based exploration of the logic-games-computation triangle, with a focus on im-
perfect information structures. Since every topic gives rise to different questions
which are of interest to its original discipline, the emphasis in the various sections
switches between logic, games, and computation.

In Chapters 3, 4, and 5, I adopted a game-theoretic view on various logical
systems, including IF logic, logics with partially ordered quantifier prefixes, and
branching quantifiers. In Chapter 3, I studied the expressive power of a game-
theoretically motivated fragment of IF logic. This study took place on the nexus
of logic and games.

Parts of Chapter 3, 4, and 5 relate to the interface of logic and computation.
The modal fragment of IF logic is put forward in the hope that the modal spirit
has an ameliorating effect on IF logic’s high complexity; the finite model theory
for logics with partially ordered connectives aims to find interesting fragments of
NP; and the complexity analysis of generalized quantifier expressions is supposed
to give the initial impetus to a theory of computational semantics.

The interface of games and computation was addressed directly in the analysis
of Scotland Yard in Chapter 6, which can be perceived as the study of a class
of abstract graph games with imperfect information. The computational results
concerning the logical systems under investigation pertain to the games they were
seen to define indirectly, and yet the connection is by no means farfetched.

The questions revisited. Let me now address the two questions that were
pursued systematically throughout this dissertation.

Question 1: Which games with imperfect information can be defined by log-
ical means, and which reasonable sources can be seen to cause the imperfect
information?
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I have sought to find answers to this question along two lines, in Chapters 3,
4, and 5. Firstly, I discovered and reinforced game theory for logical languages.
Game-theoretic semantics for IF logic and partially ordered connectives were seen
to define extensive games whose imperfect information reflect the partial ordering
of the quantifiers. Strategic games were defined in the context of branching
quantifiers, and promising directions for future research on their impact for IF
logic were outlined.

Secondly, I assessed the question as to what causes the imperfect information
in those semantic games. Or, put differently, what kind of information flows
can be seen to underly the logical concepts at hand. In Chapter 1, I gave three
sources of imperfect information in real-life game situations: attributes, cognitive
bounds, and rules. Each one of these was at work in the logical systems studied.

The natural games and the intuitive sources that explain their imperfect infor-
mation give birth to the hope that more results along these lines can be obtained.
Discovering more and more similar results may result in a critical mass of insights,
that may lead to revealing deeper and more systematic structures underlying logic
and games.

Question 2: What are the computational costs of the imperfect information
in logic and combinatorial game theory?

To answer this question various measures of complexity were employed.
I used the measures from descriptive complexity to study languages with par-

tially ordered connectives and generalized quantifier expressions. Thus my results
determine the expression complexity of much larger categories of game defining
languages than were previously known. I observed that, according to descriptive
complexity, the logic D floats between first-order logic and NP, although from a
computational viewpoint D is equally hard as NP, namely NP-complete. In the
theory of branching quantifiers I observed that the expression complexity of most
natural language determiners as well as composed quantifiers is contained in L.
By contrast, branching quantifiers can be NP-complete, which is a considerable
jump in expression complexity.

The notion of satisfiability complexity was used to study the complexity of
the newly defined IF modal language. The IF modal language, extended with
restricted quantifiers and the equality symbol, was proved undecidable.

These measures of complexity echo different computational tasks in game
theory. For instance, the expression complexity corresponds to the complexity
of deciding what outcome is predicted by a certain solution concept. I focused
on winning strategies, but a wide variety of different solution concepts is offered
in the literature on game theory. In a similar vein the satisfiability complexity
corresponds to the complexity of mechanism design, that evolves around the
question whether there is a pattern of interaction which leads rational agents to
end up in a desired state.
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Whether imperfect information increases complexity is not answered unequiv-
ocally by my results. I am tempted to say that the increase of complexity de-
pends on the richness of the space of information flows. For instance, although
the set of actions was restricted in semantic games for D as compared to the
semantic games for H, the flows of information were essentially left untouched.
But then, from a descriptive complexity point of view the logics D and H are
very similar. It seems that the same phenomenon occurs in the context of the
independence-friendly modal logic. The language IF

∨ML restricts the syntax of
IF, but does not in principle affect the variety of independence schemes found in
full IF. Although modal languages are usually computationally well-behaved, the
(extended) modal fragment of IF logic is undecidable. In the context of IF logic,
the restriction to perfect recall games, which does affect the flows of imperfect
information, was seen to have dramatic consequences on the expressive power of
the logic.

An interesting case of imperfect information not increasing complexity is found
in Scotland Yard. With or without imperfect information, the game is equally
complex as many other two-player, perfect information games. Indeed, my analy-
sis showed that Scotland Yard can be modeled as a perfect information game.
Further research has to point out in what way the space of information flows in
Scotland Yardgames is delimited, causing the imperfect information not to have
any impact on the game’s complexity.

Conclusion. This dissertation contributes to the literature that studies the
interplay between logic, games, and computation. Especially, it improved our
understanding of the role structures with imperfect information play in logic
and combinatorial game theory, and what their computational behavior looks
like. One of the points of departure of this writing was the observation that
the complexity of imperfect information has been studied, but only within very
general frameworks. The publications at stake provide some understanding of the
impact of imperfect information on complexity, but does not necessarily paint in
full detail the picture for imperfect information games that are encountered in
practice.

This dissertation investigated particular classes of games within the frame-
works of the disciplines in which they are generally studied. For this reason
the reported results do reveal what kinds of imperfect information are actually
“out there”, and what their complexity is. As such the present dissertation puts
forward handles to pursue a systematic theory of the complexity of imperfect
information games, which aims to provide a more fine-grained analysis of the
complexity of real games with imperfect information.

In my research I benefited from the fact that logic, games, and computation
are highly intertwined. Because this allowed me to apply notions from computa-
tion to, let’s say, logic. But what is more, at various points in this dissertation the
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three disciplines appeared to be of a very similar nature. Now, Fagin’s Theorem
formalizes this sentiment for logic and computation, and enables one to equate
computational tasks and logical concepts. In this spirit, an important conse-
quence of this study is provide methods with which one can quantify, qualify, and
define the following statement:

computational task = logical concept = strategic interaction.



Appendix A

The boring bits of Chapter 6

6.4.2. Proposition. For every history h′ ∈ HPI, the following hold:

(1) If h′ = h〈U〉 and f(ℓ(h〈U〉)) = hide, then it is the case that U = {u | g〈u〉 ∈
H, for some g ∈ β(h)}.

(2) If P (h′) = ∀ and f(ℓ(h′) + 1) = show, then it is the case that {u | h′ ≻
h′〈{u}〉, for some h′〈{u}〉 ∈ HPI} = {u | g〈u〉 ∈ H, for some g ∈ β(h′)}.

(3) If h′ = h〈U〉 ∈ HPI and u ∈ U , then there exists a history g ∈ β(h) such
that g〈u〉 ∈ H.

(4) If h′ = h〈U,~v〉 ∈ HPI, then it is the case that β(h〈U,~v〉) = {g〈u,~v〉 | g〈u〉 ∈
β(h〈U〉)}.

Proof. The proof hinges on one big inductive argument on the length of the
histories. I warn the reader that the proof of the one item may use the inductive
hypothesis of the other item.

The base case in which ℓ(h) = 0 is trivial and omitted.

(1) Fix h〈U,~v〉〈U ′〉 ∈ HPI such that f(ℓ(h〈U,~v〉〈U ′〉)) = hide.

From left to right. Suppose u′ ∈ U ′, then it suffices to show that there
exists a history g〈u,~v〉〈u′〉 ∈ H, such that g〈u,~v〉 ∈ β(h〈U,~v〉). To this
end, first observe that U − {~v} 6= ∅ and that for some u ∈ (U − {~v}) it
is the case that E(u, u′). Apply the inductive hypothesis of item 3 of this
proposition to h〈U〉, yielding that there exists a history g〈u〉 ∈ β(h〈U〉),
since u ∈ U . By the inductive hypothesis of item 4 of this proposition we
get that g〈u,~v〉 ∈ β(h〈U,~v〉). Since u ∈ (U − {~v}), it certainly does not sit
in {~v}. Hence, g〈u,~v〉〈u′〉 is a history in H, as E(u, u′) and U − {~v} 6= ∅.

From right to left. Suppose g〈u,~v〉〈u′〉 ∈ H, where g〈u,~v〉 ∈ β(h〈U,~v〉),
then it suffices to show that u′ ∈ U ′. By definition of β it is the case that
g〈u〉 ∈ β(h〈U〉) and that u ∈ U . Since g〈u,~v〉〈u′〉 is a history, g〈u,~v〉 cannot
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be a terminal history, whence u /∈ {~v} and E(u, u′). Consequently, u′ ∈ U ′,
as required.

(2) Fix h〈U,~v〉 ∈ HPI such that P (h) = ∀ and f(ℓ(h〈U,~v〉) + 1) = show .

From left to right. Suppose h〈U,~v〉 ≻ h〈U,~v〉〈{u′}〉, then it suffices to show
that there exists a history g〈u,~v〉〈u′〉 ∈ H, such that g〈u,~v〉 ∈ β(h〈U,~v〉).
To this end, firstly observe that for some u ∈ (U − {~v}) it must be the
case that E(u, u′). Applying the inductive hypothesis of item 3 of this
proposition to h〈U〉, yields that there exists a history g〈u〉 ∈ β(h〈U〉), since
u ∈ U . By the inductive hypothesis of item 4 of this proposition derive that
g〈u,~v〉 ∈ β(h〈U,~v〉). Since u ∈ (U − {~v}), it certainly does not sit in {~v}.
Hence, g〈u,~v〉〈u′〉 is a history in H, as E(u, u′).

From right to left. Suppose g〈u,~v〉〈u′〉 ∈ H, where g〈u,~v〉 ∈ β(h〈U,~v〉). It
suffices to show that h〈U,~v〉 ≻ h〈U,~v〉〈{u′}〉. By definition of β it is the
case that g〈u〉 ∈ β(h〈U〉) and that u ∈ U . Since g〈u,~v〉〈u′〉 is a history,
g〈u,~v〉 cannot be a terminal history, whence u /∈ {~v} and E(u, u′). Hence,
h〈U,~v〉〈{u′}〉 is a history in HPI.

(3) Follows immediately from items 1 and 2 of this proposition.

(4) From left to right. Follows from the definition.

From right to left. Fix h〈U,~v〉〈U ′, ~v′〉 ∈ HPI. It suffices to show that
if g〈u,~v〉〈u′〉 ∈ β(h〈U,~v〉〈U ′〉), then g〈u,~v〉〈u′, ~v′〉 is a history. By the
inductive hypothesis of this proposition, β(h〈U,~v〉) = {g〈u,~v〉 | g〈u〉 ∈
β(h〈U〉)}. It is readily observed from the definition of β that for every
history g〈u, ~w〉〈u′〉 ∈ β(h〈U,~v〉〈U ′〉) it is the case that ~v = ~w. By defi-
nition of H, it follows that every history g〈u, ~w〉〈u′〉 ∈ β(h〈U,~v〉〈U ′〉) has
g〈u, ~w〉〈u′, ~v′〉 as a successor history, since E(~v,~v′). Hence, the claim follows.

This concludes the proof. 2

Proposition 6.4.3 is the converse of Proposition 6.4.2, as it links up histories
in H with histories in HPI.

6.4.3. Proposition. For every g′ ∈ H, the following hold:

(1) If g′ = g〈u〉 ∈ H, then there exists a h〈U〉 ∈ HPI such that g ∈ β(h) and
u ∈ U .

(2) If g′ = g〈u,~v〉 ∈ H, then there exists a h〈U,~v′〉 ∈ HPI such that g〈u〉 ∈
β(h〈U〉) and ~v = ~v′.

Proof. Again, the proof is one big inductive argument on the length of the
histories.

The base case in which ℓ(h) = 0 is trivial and omitted.
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(1) Fix g〈u,~v〉〈u′〉 ∈ H. Clearly, g〈u,~v〉 is no terminal history and therefore u /∈
{~v} and E(u, u′). By the inductive hypothesis of item 2 of this proposition,
it follows that there exists a h〈U〉 ∈ HPI, such that g〈u〉 ∈ β(h〈U〉). By
definition of β, derive that u ∈ U . Consequently, U − {~v} contains at least
one object, namely u. This implies that h〈U,~v〉 is not a terminal history.
Since E(u, u′), there must exist a history h〈U,~v〉〈U ′〉 such that u′ ∈ U ′.

(2) Fix g〈u,~v〉〈u′, ~v′〉 ∈ H. Clearly, g〈u,~v〉 is no terminal history, whence
u /∈ {~v} and furthermore E(~v,~v′). By the inductive hypothesis of item 1 of
this proposition, it follows that g〈u,~v〉 ∈ β(h〈U,~v〉), for some h〈U,~v〉 ∈ HPI

such that u ∈ U . Since u /∈ {~v}, U − {~v} is not empty. Consequently,
the history h〈U,~v〉〈E(U − {~v})〉 exists and by definition of β, g〈u,~v〉〈u′〉 ∈
β(h〈U,~v〉〈E(U−{~v})〉). SinceE(~v,~v′), it follows that h〈U,~v〉〈E(U−{~v}), ~v′〉
is a history in HPI as well.

This concludes the proof. 2

6.4.4. Lemma. β is a function of type HPI → H.

Proof. I prove by induction on the structure of histories h′ ∈ HPI. I omit the
base step.

Suppose h′ = h〈U〉. By definition β(h〈U〉) = {g〈u〉 ∈ H | g ∈ β(h) and u ∈
U}. It is easily derived from Proposition 6.4.2.3 that β(h〈U〉) is non-empty. By
the inductive hypothesis, derive that β(h) = {g1, . . . , gm} ∈ H, whence g1 ∼
. . . ∼ gm. I show that for every g〈u〉, g′〈u′〉 ∈ β(h〈U〉), g〈u〉 ∼ g′〈u′〉. To this end
I make a case distinction:

Suppose f(ℓ(h〈U〉)) = hide. This case follows directly from the definition of
∼, since g ≻ g〈u〉 and g′ ≻ g′〈u′〉.

Suppose f(ℓ(h〈U〉)) = show. Since ∀ has to reveal his position, U = {v}
is a singleton. But then, if g〈u〉, g′〈u′〉 are both histories in β(h〈{v}〉), then
u = u′ = v. Consequently, it follows from the definition of ∼ that g〈u〉 ∼ g′〈u′〉.

Remains to be shown that there exists no superset of β(h〈U〉) that is closed
under ∼ as well. For the sake of contradiction, let g+〈u+〉 be such that g+〈u+〉 ∼
g〈u〉, for every g〈u〉 ∈ β(h〈U〉), but g+〈u+〉 /∈ β(h〈U〉). From the latter I derive
that either (A) g+ /∈ β(h) or (B) u+ /∈ U . For the sake of contradiction assume
(A), that is, g+ /∈ β(h). Therefore, g+ 6∼ g, for any g ∈ β(h). From Proposition
6.2.2.4 it follows immediately that g+〈u+〉 6∼ g1〈u1〉, since g1〈u1〉 ∈ β(h〈U〉). This
contradicts the assumption and therefore g+ ∈ β(h). To derive that (B) cannot
hold as well, observe that it follows from Proposition 6.2.2.2 that u+ = u1, since
g+〈u+〉 ∼ g1〈u1〉 and f(ℓ(g〈u〉)) = f(ℓ(h〈U〉)) = show . Since g1〈u1〉 ∈ β(h〈U〉),
u+ = u1 ∈ U . Hence, (B) is not true.

Therefore, β(h〈U〉 is a greatest subset of H closed under ∼ and as such sits
in H.
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Suppose h′ = h〈U,~v〉. From the inductive hypothesis it follows that β(h〈U〉) ∈
H. Put β(h〈U〉) = {g1〈u1〉, . . . , gm〈um〉}. It is easily derived from Proposition
6.4.2.3 that β(h〈U〉) is non-empty (m > 0) and that any two histories from
β(h〈U〉) are ∼-related. It follows from Proposition 6.4.2.4 that β(h〈U,~v〉) =
{g1〈u1, ~v〉, . . . , gm〈um, ~v〉}. Furthermore, it follows directly from the definition of
∼, that any two histories from β(h〈U,~v〉) are ∼-related.

Remains to be shown that there exists no superset of β(h〈U,~v〉) that is also
closed under ∼. For the sake of contradiction, let us suppose there exists a history
g+〈u+, ~v+〉, such that g+〈u+, ~v+〉 ∼ g〈u,~v〉, for every g〈u,~v〉 ∈ β(h〈U,~v〉), but
g+〈u+, ~v+〉 /∈ β(h〈U,~v〉). From the latter and the definition of β we derive that
either (A) ~v+ 6= ~v or (B) g+〈u+〉 /∈ β(h〈U〉). But actually both (A) and (B)
lead to a contradiction: For both (A) and (B) contradict the assumption that
g+〈u+, ~v+〉 ∼ g〈u,~v〉, for every g〈u,~v〉 ∈ β(h〈U,~v〉), in virtue of Propositions
6.2.2.3 and 6.2.2.4, respectively.

Therefore, β(h〈U,~v〉) is a greatest subset of H closed under ∼ and as such
sits in H. 2

6.4.5. Lemma. β is a bijection between HPI and H.

Proof. It suffices to show that β is surjective and injective.
Surjection. It suffices to prove that for every C ′ ∈ H, there exists a history

h ∈ HPI, such that C ′ = β(h). I do so by induction on the structure of the
histories in C ′ ∈ H.

Suppose C ′ = {g1〈u1, ~v1〉, . . . , gm〈um, ~vm〉}. Since C ′ ∈ H, it is closed under
∼, that is, g1〈u1, ~v1〉 ∼ . . . ∼ gm〈um, ~vm〉. I derive from Proposition 6.2.2.3 that
~v1 = . . . = ~vm = ~v and also that g1〈u1〉 ∼ . . . ∼ gm〈um〉. Therefore, there
must be one cell C ∈ H that contains g1〈u1〉 ∼ . . . ∼ gm〈um〉. By the inductive
hypothesis, derive that there exists a history h〈U〉 ∈ HPI, such that β(h〈U〉) = C.
By Proposition 6.4.3.2 it is the case that h〈U,~v〉 ∈ HPI and by Proposition 6.4.2.4
it is the case that β(h〈U,~v〉) = {g〈u,~v〉 | g〈u〉 ∈ β(h〈U〉) and u ∈ U} = C ′.

Suppose C ′ = {g1〈u1〉, . . . , gm〈um〉} and f(ℓ(g1〈u1〉)) = show. Since C ′ ∈ H,
it is closed under ∼, that is, g1〈u1〉 ∼ . . . ∼ gm〈um〉. I derive from Proposition
6.2.2.2 that u1 = . . . = um = u and also that g1 ∼ . . . ∼ gm. Therefore, there
must be one cell C ∈ H that contains g1, . . . , gm. By the inductive hypothesis,
derive that there exists a history h ∈ HPI, such that β(h) = C.

By Proposition 6.4.3.1 we derive that there is a set U containing u such that
h〈U〉 is a successor of h, since g1〈u〉 is a successor of g1 and g1 ∈ β(h). Since
f(ℓ(g1〈u1〉)) = show , U must in fact be a singleton, whence U = {u}. By
definition of β it is the case that β(h〈{u}〉) = {g1〈u〉, . . . , gm〈u〉}, which is simply
C ′.

Suppose C ′ = {g1〈u1〉, . . . , gm〈um〉} and f(ℓ(g1〈u1〉)) = hide. Since C ′ ∈ H,
it is closed under ∼, that is, g1〈u1〉 ∼ . . . ∼ gm〈um〉. I derive from Proposition
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6.2.2.1 that g1 ∼ . . . ∼ gm. Therefore, there must be one cell C ∈ H that contains
g1, . . . , gm. By the inductive hypothesis, derive that there exists a history h ∈ HPI,
such that β(h) = C.

From Proposition 6.4.2.1 derive that h〈U〉 is a successor of h, where U =
{u | g〈u〉 ∈ H, for some g ∈ β(h)}. Since g1 ∈ C = β(h), it follows that
u1 ∈ U . By definition of β it is immediate that g1〈u1〉 ∈ β(h〈U〉). In con-
sequence, all of g1〈u1〉, . . . , gm〈um〉 sit in β(h〈U〉), since they are all ∼-related.
Hence, C ′ = β(h〈U〉).

Injection. It needs proof that for any pair of histories h, h′ ∈ HPI, if h 6= h′

then β(h) 6= β(h′). I do so by induction on the structure of the histories in H.
Suppose h〈U〉 6= h′〈U ′〉. I distinguish two cases. (i) h 6= h′. h and h′ give

rise to β(h) and β(h′) which are present in H, by Lemma 6.4.4. By the inductive
hypothesis β(h) 6= β(h′). Since β(h), β(h′) ∈ H, I conclude that β(h)∩β(h′) = ∅.
From Proposition 6.4.2.3 it follows that for every u ∈ U there exists a g ∈ β(h)
such that g〈u〉 ∈ β(h〈U〉) and that for every u′ ∈ U ′ there exists a g′ ∈ β(h′) such
that g′〈u′〉 ∈ β(h′〈U ′〉). Since the intersection of β(h) and β(h′) is empty, it is
the case that g 6= g′. Hence, g〈u〉 6= g′〈u′〉 and therefore β(h〈u〉) 6= β(h′〈u′〉). (ii)
h = h′ and U 6= U ′. Obviously (without loss of generality), there exists a u ∈ U
that does not sit in U ′. From Proposition 6.4.2.3 it follows that there exists a
g ∈ β(h) such that g〈u〉 ∈ β(h〈U〉). By definition of β and the fact that u /∈ U ′,
g〈u〉 is not an element of β(h′〈U ′〉) and therefore β(h〈U〉) 6= β(h′〈U ′〉).

Suppose h〈U,~v〉 6= h′〈U ′, ~v′〉. I distinguish two cases. (i) h〈U〉 6= h′〈U〉.
By the inductive hypothesis, it follows that β(h〈U〉) 6= β(h′〈U ′〉). Proposition
6.4.2.4 has it that β(h〈U,~v〉) = {g〈u,~v〉 | g〈u〉 ∈ β(h〈U〉)} and β(h〈U ′, ~v′〉) =
{g′〈u′, ~v′〉 | g′〈u′〉 ∈ β(h′〈U ′〉)}. Hence, β(h〈U,~v〉) 6= β(h′〈U ′, ~v′〉). (ii) h〈U〉 =
h′〈U〉 and ~v 6= ~v′. This case follows trivially from Proposition 6.4.2.4. 2





Bibliography

Ajtai, M. (1983). Σ1
1-formulae on finite structures. Annals of Pure and Applied

Logic 24, 1–48.

Ajtai, M. (March 17th 2005). Personal communication.

Ajtai, M. and R. Fagin (1990). Reachability is harder for directed than for
undirected graphs. Journal of Symbolic Logic 55 (1), 113–150.

Ajtai, M., R. Fagin, and L. Stockmeyer (2000). The closure of monadic NP.
Journal of Computer and System Sciences 60 (3), 660–716.

Andréka, H., J. F. A. K. van Benthem, and I. Németi (1998). Modal languages
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Schäfer, T. J. (1978). Complexity of some two-person perfect-information
games. Journal of Computer and System Sciences 16, 185–225.

Sevenster, M. (2006a). The complexity of Scotland Yard. Technical Report
PP-2006-18, ILLC.

Sevenster, M. (2006b). Henkin quantifiers: logic, games, and computation.
Bulletin of the EATCS 89 (July), 136–155.

Sevenster, M. and T. Tulenheimo (2006). Partially ordered connectives and
Σ1

1 on finite models. In A. Beckmann, U. Berger, B. Löwe, and J. V.
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Samenvatting

Speltheorie bestudeert situaties, waarin verscheidene spelers voorkomen, die elk
een eigen agenda (utility function) hebben. De speltheorie heeft een grote reik-
wijdte wat betreft toepassingen. Zo wordt speltheorie niet alleen gebruikt om
radiofrequenties te verwerven, maar ook voor het analyseren van voortplantings-
gedrag van natuurlijke organismen. Zodoende wordt het woord “speler” bijzonder
veelomvattend gebruikt binnen de speltheorie: commerciële bedrijven zijn spelers,
evenals de Nederlandse overheid en bloemetjes en bijtjes. Evenzo heeft ook het
woord “spel” een ruimere betekenis dan het doorgaans toegekend wordt in het
Nederlands.

In veel spelen zijn spelers onvolledig gëınformeerd over de feitelijke stand van
zaken. Een duidelijk voorbeeld hiervan vormt het bordspel Scotland Yard, waarin
de politie een boef moet inrekenen, die zijn locatie slechts op gezette tijden prijs-
geeft. Speltheoretische spelen met onvolledige informatie (imperfect information)
staan centraal in dit proefschrift. In het bijzonder probeer ik in dit proefschrift
een gevoel te ontwikkelen voor de manier, waarop onvolledige informatie de spelen
moeilijker maakt. Iedereen, die bekend is met Scotland Yard, zal bijvoorbeeld
beamen, dat het gemakkelijker wordt voor de politie om de boef te vangen, als
de laatste zich vaker moet laten zien.

De “moeilijkheid van een spel” wordt in dit proefschrift voornamelijk gemeten
met behulp van de maten, die ontwikkeld zijn in een tak van de theoretische
informatica: complexiteitstheorie. In deze discipline wordt de moeilijkheid, of
complexiteit, van een probleem (voornamelijk) gemeten aan de hand van de hoe-
veelheid rekentijd of harde schijfruimte, die een computer nodig heeft om het
probleem op te lossen. De moeilijkheid van een spel is dan gedefinieerd als de
moeilijkheid van het probleem om te berekenen of een bepaalde speler een manier
van spelen heeft die winst garandeert (winnende strategie). Er zijn enkele zeer
algemene studies gedaan naar dit onderwerp en hun conclusie luidt, dat spelen
met onvolledige informatie moeilijker zijn dan spelen met volledige informatie. Uit
deze studies kan echter niet worden afgeleid welke specifieke spelen binnen een
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bepaalde groep van spelen de complexiteit van die groep als geheel opdrijven. Het
is mogelijk, dat er spelen met onvolledige informatie zijn die weliswaar bijzonder
complex zijn, maar voor geen enkel vakgebied van belang zijn.

In mijn proefschrift bestudeer ik vier groepen spelen met onvolledige infor-
matie: één per hoofdstuk. Elke groep spelen richt zich op een andere toepassing;
drie van de vier zijn echter duidelijk georiënteerd op de logica. Dientengevolge
speelt logica een belangrijke rol binnen dit proefschrift. Dit betekent dat dit
proefschrift zich op het snijvlak van speltheorie, informatica en logica bevindt,
met onvolledige informatie als rode draad. De resultaten, die in dit proefschrift
behaald zijn, zijn echter niet alleen bijdragen aan de kennis van spelen met on-
volledige informatie. Per hoofdstuk hangt de onderzoeksrichting ook af van de
voor de onderhavige toepassing relevante vraagstukken.

Ook logica ligt binnen het bereik van speltheorie. Eén rol, die speltheorie
vervult binnen de logica, is het leveren van zogenoemde speltheoretische karak-
teriseringen van haar concepten. Dergelijke karakteriseringen herdefiniëren con-
cepten uit de logica gebruikmakend van speltheoretische noties, zoals spelers,
agenda’s en informatie. Om één of andere reden, die niet goed begrepen wordt,
plegen speltheoretische karakteriseringen een intüıtiever beeld op te leveren van
het onderhavige logische concept. Deze karakteriseringen stellen de logicus dan
ook in staat om dieper tot het wezen van de logische concepten door te dringen, en
meer over hun eigenschappen te weten te komen. In Hoofdstuk 3, 4 en 5 worden
speltheoretische karakteriseringen bekeken, die spelen met onvolledige informatie
opleveren.

Hoofdstuk 1 is het inleidende hoofdstuk van dit proefschrift. De lezer treft
hier een korte beschrijving van de theoretische achtergrond aan en motiverende
vragen.

Hoofdstuk 2 is een zeer beknopte uiteenzetting van de definities van de termen,
die in dit proefschrift gebezigd worden.

In Hoofdstuk 3 wordt Independence-friendly logic (IF-logica) bestudeerd. IF-
logica breidt eerste-orde logica uit door middel van geslashte kwantoren: (∃x/Y ),
die een begrip van kwantoronafhankelijkheid formaliseren. De speltheoretische
karakterisering van IF-logica modelleert deze onafhankelijkheid door middel van
onvolledige informatie. Het is bekend dat de complexiteit van IF-logica hoger
is dan die van eerste-orde logica. In Hoofdstuk 3 bestudeer ik twee fragmenten
van IF-logica met als doel de oorzaken van deze hogere complexiteit te begrijpen.
Deze twee fragmenten zijn respectievelijk gemotiveerd vanuit de speltheorie en de
theoretische informatica (computationele logica).

Hoofdstuk 4 geeft een speltheoretische karakterisering van zogenoemde par-
tially ordered connectives. Partially ordered connectives zijn een variatie op de
bekende Henkin kwantoren, ook wel bekend als partially ordered quantifiers. De
resultaten in Hoofdstuk 4 suggereren, dat variaties op een logisch concept gekarak-
teriseerd kunnen worden als variaties op de speltheoretische karakterisering van
dit logische concept. Dit bevestigt het gevoel dat logica en speltheorie nauw
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verbonden zijn. In de rest van Hoofdstuk 4 staat de analyse van logica’s met
partially ordered connectives centraal, voornamelijk vanuit het oogpunt van de
descriptive complexity. Laatstgenoemde discipline biedt een perspectief op com-
plexiteitstheorie vanuit de logica en hanteert als zodanig een fijner begrip van
complexiteit.

Hoofdstuk 5 richt zich op de partieel geordende kwantoren zoals die gebruikt
worden in de formele semantiek. Een motiverende zin uit het Engels voor het
gebruik van partieel geordende kwantoren luidt Most boys and most girls dated
each other. Ik benader partieel geordende kwantoren vanuit de speltheorie en de
complexiteitstheorie. In het eerste deel wordt een nieuw speltheoretisch raamwerk
opgebouwd, waarin partieel geordende kwantoren bestudeerd kunnen worden.
Gebruikmakend van de complexiteitstheoretische noties “meet” ik de complexiteit
van kwantoren, die voorkomen in natuurlijke taal. Het blijkt, dat de partieel
geordende kwantor, die gebruikt wordt in de formalisatie van bovenstaande zin
(branching most) een relatief hoge complexiteit heeft (NP-volledig).

In Hoofdstuk 6 wordt het bordspel Scotland Yard onder de loep genomen, dat
wil zeggen, een wiskundige abstractie van Scotland Yard. Deze abstractie stelt
mij in staat om ook voor de volledige informatievariant van Scotland Yard de
moeilijkheid te bepalen. Zoals ik in het begin van deze samenvatting stelde is
Scotland Yard met volledige informatie gemakkelijker te spelen voor de politie.
Daarom is het des te opvallender, dat volgens de complexiteitstheorie Scotland
Yard met volledige informatie even moeilijk is als Scotland Yard met onvolledige
informatie.

Hoofdstuk 7 besluit het proefschrift met enkele conclusies.
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