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Chapter 1

Introduction

But certainly for the present age, which prefers the sigrhéothing signified, the
copy to the original, representation to reality, the apaeee to the essence... illusion
only is sacred, truth profane. Nay, sacredness is held tmbaneed in proportion
as truth decreases and illusion increases, so that thestidégree of illusion comes
to be the highest degree of sacredness. —Feuerbach, Piethessecond edition of
The Essence of Christianity

1.1 Overview of this thesis

This thesis concerns a remarkable new scientific developthahadvances the state of the art
in the field of data mining, or searching for previously unkmdout meaningful patterns in fully
or semi-automatic ways. A substantial amount of matheralatieory is presented as well as
very many (though not yet enough) experiments. The resatigedo test, verify, and demon-
strate the power of this new technology. The core ideas sfth@sis relate substantially to data
compression programs. For more than 30 years, data conpresdgtware has been developed
and significantly improved with better models for almostrgugpe of file. Until recently, the
main driving interests in such technology were to economizelisk storage or network data
transmission costs. A new way of looking at data compresaaodsmachine learning allows us
to use compression programs for a wide variety of problems.

In this thesis a few themes are important. The first is the Gigt@ compressors in new
ways. The second is a new tree visualization technique. Aathird is an information-theoretic
connection of a web search engine to the data mining syst&mnud.examine each of these in
turn.

1.1.1 Data Compression as Learning

The first theme concerns the statistical significance of cesged file sizes. Most computer
users realize that there are freely available programsctratcompress text files to about one
quarter their original size. The less well known aspect add@mpression is that combining
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Figure 1.1: The evolutionary tree built from complete marhammtDNA sequences of 24
species, using the NCD matrix of Figudel4on page/0where it was used to illustrate a point
of hierarchical clustering versus flat clustering. We hasgrawn the tree from our output to
agree better with the customary phylogeny tree format. Téeedgrees exceptionally well with
the NCD distance matrix3T) = 0.996.

Primates

two or more files together to create a larger single conglatearchive fileprior to compression
often yields better compression in aggregate. This has bsed to great advantage in widely
popular programs likear orpkzi p, combining archival and compression functionality. Omly i
recent years have scientists begun to appreciate the fotdmpression ratios signify a great
deal of important statistical information. All of the expeaents in this thesis make use of a
group of compressible objects. In each case, the individoalpressed sizes of each object are
calculated. Then, some or all possible pairs of objects anebined and compressed to yield
pairwise compressed sizes. It is the tiny variations in thiense compressed sizes that yields
the surprisingly powerful results of the following expe&ntis. The key concept to realize is that
if two files are very similar in their contents, then they witimpress much better when combined
together prior to compression, as compared to the sum ofzbeteach separately compressed
file. If two files have little or nothing in common, then cominig them together would not yield
any benefit over compressing each file separately.

Although the principle is intuitive to grasp, it has surprgsbreadth of applicability. By using
even the simplest string-matching type compression matiheih970’s it is possible to construct
evolutionary trees for animals fully automatically usirigdicontaining their mitochondrial gene
sequence. One example is shown in Figude We first construct a matrix of pairwise distances
between objects (files) that indicate how similar they afgesE distances are based on compar-
ing compressed file sizes as described above. We can applyptiles of widely different types,
such as music pieces or genetic codes as well as many otlugalggesl domains. In Figuré.12,
we see a tree constructed from the similarity distance mbésed on the mitochondrial DNA of
several species. The tree is constructed so that spectessmitilar’ DNA are “close by” in the
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tree. In this way we may lend support to certain evolutioribepries.

Although simple compressors work, it is also easy to use tbst @mdvanced modern com-
pressors with the theory presented in this thesis; thesdtsesan often be more accurate than
simpler compressors in a variety of particular circumstsmr domains. The main advantage of
this approach is its robustness in the face of strange oneorss data. Another key advantage is
the simplicity and ease of use. This comes from the geng@iithe method: it works in a va-
riety of different application domains and when using gahkpurpose compressors it becomes
a general-purpose inference engine. Throughout thisghbsre is a focus on coding theory
and data compression, both as a theoretical construct hasyalactical approximations thereof
through actual data compression programs in current useTa connection between a partic-
ular code and a probability distribution and this simpleotie¢ical foundation allows one to use
data compression programs of all types as statisticalenfar engines of remarkable robustness
and generality. In Chapter 3, we describe N@malized Compression Distanf&CD), which
formalizes the ideas we have just described. We report oethga of experiments in Chapter 6
showing applications in a variety of interesting problemslata mining using gene sequences,
music, text corpora, and other inputs.

1.1.2 Visualization

Custom open source software has been written to providenhaview visualization capabilities.
TheCompLearrsoftware system (Chapt&f) implements our theory and with it experiments of
two types may be carried out: classification or clusterings§ification refers to the application
of discrete labels to a set of objects based on a set of exarfipla a human expert. Clustering
refers to arrangement of objects into groups without praining or influence by a human expert.
In this thesis we deal primarily with hierarchical or nestagstering in which a group of objects
is arranged into a sort of binary tree. This clustering metisocalled thequartet methodnd
will be discussed in detail later.

In a nutshell, the quartet method is a way to determine a bagthimg tree given some data
that is to be understood in a hierarchical cluster. It issthihe quartet method because itis based
on the smallest unrooted binary tree, which happens to bepairs of two nodes for a total of
four nodes comprising the quartet. It adds up many such ety trees together to evaluate
a big tree and then adjusts the tree according to the redulke evaluation. After a time, a
best fitting tree is declared and the interpretation of theegrmental results is possible. The
compression-based algorithms output a matrix of pairwistadces between objects. Because
such a matrix is hard to interpret, we try to extract somesoé#sential features using the quartet
method. This results in a tree optimized so that similar adj&ith small distances are placed
nearby each other. The trees given in Figures 1.1, 1.2, ah@lliscussed below) have all been
constructed using the quartet method.

The quartet tree search is non-deterministic. There argoethimg theoretical reasons to
suppose that the general quartet tree search problemastaiie to solve exactly for every case.
But the method used here tries instead to approximate d@olinta reasonable amount of time,
sacrificing accuracy for speed. It also makes extensive uissndom numbers, and so there is
sometimes variation in the results that the tree searchugesd We describe the quartet tree
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Figure 1.2: Several people’s names, political partiesgpresy and other Chinese names.
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method in detail in Chapter 4. In Chapter 6 we show numeraestbased on applying the
guartet method and the NCD to a broad spectrum of input filesmde array of domains.

1.1.3 Learning From the Web

It is possible to use coding theory to connect the comprasspproach to the web with the
help of a search engine index database. By using a simpleufarbased on logarithms we
can find “compressed sizes” of search terms. This was usdtiChinese tree in Figure 1.2.
The tree of Nobel prize winning authors in Figure 1.3 was atsale this way. As in the last
example, a distance matrix is made, but this time with Gopgteiding page count statistics
that are converted to codelengths for use in the distancexeatculations. We can see English
and American writers clearly separated in the tree, as wathany other defensible placements.
Another example using prime numbers with Google is in Chaptpagel28

Throughout this thesis the reader will find ample experimel@monstrating the machine
learning technology. There are objective experimentsdasepure statistics using true data
compressors and subjective experiments using statistins\Web pages as well. There are ex-
amples taken from genetics, linguistics, literature,saditronomy, optical character recognition,
music, and many more diverse areas. Most of the experimantsefound in Chapters 4, 6, and
1.

1.1.4 Clustering and Classification

The examples given above all dealt with clustering. It i®afgeresting to consider how we
can use NCD to solve classification problems. Classificagdhe task of assigning labels to
unknown test objects given a set of labeled training objeota a human expert. The goal is to
try to learn the underlying patterns that the human expelisiglaying in the choice of labellings
shown in the training objects, and then to apply this undeding to the task of making predic-
tions for unknown objects that are in some sense consistiémtiie given examples. Usually
the problem is reduced to a combination of binary classibogbroblems, where all target la-
bels along a given dimension are either 0 or 1. In Chapter 5iseuss this problem in greater
detail, we give some information about a popular classiticatngine called the Support Vector
Machine (SVM), and we connect the SVM to the NCD to create sbbinary classifiers.

1.2 Gestalt Historical Context

Each of the three key ideas (compression as learning, dquestevisualization, and learning
from the web) have a common thread: all of them serve to iserélae generality and practical
robustness of the machine intelligence compared to mod#itraal alternatives. This goal is
not new and has already been widely recognized as fundamentéhis section a brief and

subjective overview of the recent history of artificial ilitgence is given to provide a broader
context for this thesis.
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In the beginning, there was the idea of artificial intelligenAs circuit miniaturization took
offin the 1970’s, people’s imaginations soared with idefeas mew sort of machine with virtually
unlimited potential: a (usually humanoid) metal automakatt the capacity to perform intelli-
gent work and yet ask not one question out of the ordinary. rA&faultra-servant, made able to
reason as well as man in most respects, yet somehow reasorisgrt of rarefied form whereby
the more unpredictable sides of human nature are factote®owe of the first big hurdles came
as people tried to define just what intelligence was, or hoevmoight codify knowledge in the
most general sense into digital form. As Levesque and Braohfiamously observed7§], rea-
soning and representation are hopelessly intertwinedjumtdvhat intelligence is depends very
much on just who is doing the talking.

Immediately upon settling on the question of intelligence @lmost automatically must
grapple with the concept of language. Consciousness aalligence is experienced only in-
ternally, yet the objects to which it applies are most oftgtemnal to the self. Thus there is
at once the question of communication and experience asdtiaight-away ends any hope of
perfect answers. Most theories on language are not theoriee formal sense 1{4]. A notable
early exception is Quine’s famous observation that langueanslation is necessarily a dicey
subject: for although you might collect very many piecesaflence suggesting that a word
means “X” or “Y”, you can never collect a piece of evidencetthiémately confirms that your
understanding of the word is “correct” in any absolute setrsa logical sense, we can never be
sure that the meaning of a word is as it was meant, for to explay word we must use other
words, and these words themselves have only other wordsstide them, in an interminable
web of ontological disarray. Kantian empiricism leads ugrtagmatically admit we have only
the basis of our own internal experience to ground our utaeding at the most basic level, and
the mysterious results of the reasoning mind, whatevemtigitt be.

It is without a doubt the case that humans throughout thedaael/elop verbal and usually
written language quite naturally. Recent theories by Snja& have provided some theoretical
support for empirical models of language evolution degpigeformal impossibility of absolute
certainty. Just the same it leaves us with a very difficultstjoa: how do we make bits think?

Some twenty years later, progress has been bursty. We hawagethto create some amaz-
ingly elegant search and optimization techniques inclgidiimplex optimization, tree search,
curve-fitting, and modern variants such as neural netwarksiport vector machines. We have
built computers that can beat any human in chess, but we taendind a computer smart
enough to walk to the grocery store to buy a loaf of bread. &seclearly a problem of overspe-
cialization in the types of successes we have so far enjayadificial intelligence. This thesis
explores my experience in charting this new landscape ofequtis via a combination of prag-
matic and principled techniques. It is only with the recerglesion in internet use and internet
writing that we can now begin to seriously tackle these moid so fundamental to the original
dream of artificial intelligence.

In recent years, we have begun to make headway in defining@guidinenting universal pre-
diction, arguably the most important part of artificial ifigence. Most notable is Solomonoff
prediction fL0Y, and the more practical analogs by Ryabko and Ast@8hlising data compres-
sion.

In classical statistical settings, we typically make sorhsevvations of a natural (or at the
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very least, measurable) phenomenon. Next, we use ourigrtud “guess” which mathematical
model might best apply. This process works well for thosesaghere the guesser has a good
model for the phenomenon under consideration. This all@wvsiff least two distinct modes of
freedom: both in the choice of models, and also in the chdiceiteria supporting “goodness”.

In the past the uneasy compromise has been to focus attefirgtip on those problems
which are most amenable to exact solution, to advance thed&dion of exact and fundamental
science. The next stage of growth was the advent of maclsisistad exact sciences, such as the
now-famous four-color proof that required input (by handf)1476 different graphs for com-
puter verification (by a complicated program) that all weskorable before deductive extension
to the most general case in the pla2g [After that came the beginning of modern machine
learning, based on earlier ideas of curve fitting and legs&es regression. Neural networks,
and later support vector machines, gave us convenieniheginameworks in the context of con-
tinuous functions. Given enough training examples, therhassured us, the neural network
would eventually find the right combination of weightingslanultiplicative factors that would
miraculously, and perhaps a bit circularly, reflect the utyiteg meaning that the examples were
meant to teach. Just like spectral analysis that came hefach of these areas yielded a whole
new broad class of solutions, but were essentially hit osnmgheir effectiveness in each do-
main for reasons that remain poorly understood. The focusyofesearch has been on the use
of data compression programs for generalized inferencturrs out that this modus operandi
is surprisingly general in its useful application and yget@dtentimes the most expedient results
as compared to other more predetermined methods. It is tften size fits all well enough”
and this yields unexpected fruits. From the outset, it mestitderstood that the approach here
is decidedly different than more classical ones, in that wadain most ways an exact state-
ment of the problem at hand, instead deferring this untiy vexar the end of the discussion, so
that we might better appreciate what can be understood afiquioblems with a minimum of
assumptions.

At this point a quote from Goldstein and Gigerenz&s][is appropriate:

What are heuristics? The Gestalt psychologists Karl Dunakd Wolfgang Koehler
preserved the original Greek definition of “serving to find ou discover” when
they used the term to describe strategies such as “lookomgndf and “inspecting
the problem” (e.g., Duncker, 1935/1945).

For Duncker, Koehler, and a handful of later thinkers, idahg Herbert Simon (e.g.,
1955), heuristics are strategies that guide informati@mcbeand modify problem
representations to facilitate solutions. From its intrctthn into English in the early
1800s up until about 1970, the term heuristics has been aseter to useful and in-
dispensable cognitive processes for solving problemstratot be handled by logic
and probability theory (e.g., Polya, 1954; Groner, Gro&eBischof, 1983). In the
past 30 years, however, the definition of heuristics hasgégdalmost to the point of
inversion. In research on reasoning, judgment, and decmiking, heuristics have
come to denote strategies that prevent one from finding odtsaoovering correct
answers to problems that are assumed to be in the domain lodiptiy theory. In
this view, heuristics are poor substitutes for computatibiat are too demanding for

8



ordinary minds to carry out. Heuristics have even becomecasted with inevitable
cognitive illusions and irrationality.

This author sides with Goldstein and Gigerenzer in the vieat sometimes “less is more”;
the very fact that things are unknown to the naive observesoaetimes work to his advantage.
The recognition heuristic is an important, reliable, andsmvative general strategy for inductive
inference. In a similar vein, the NCD based techniques shawhis thesis provide a general
framework for inductive inference that is robust againstidewariety of circumstances.

1.3 Contents of this Thesis

In this chapter a summary is provided for the remainder otlilesis as well as some historical
context. In Chapter 2, an introduction to the technical itletand terminology surrounding the
methods is given. In chapter 3 we introduce the Normalizegh@ession Distance (NCD), the
core mathematical formula that makes all of these expetisn@wssible, and we establish con-
nections between NCD and other well-known mathematicahédas. In Chapter 4 a tree search
system is explained based on groups of four objects at a theeso-calledjuartet methodIn
Chapter 5 we combine NCD with other machine learning teasgsuch as Support Vector
Machines. In Chapter 6, we provide a wealth of examples af t&chnology in action. All
experiments in this thesis were done using the CompLeartkiToan open-source general pur-
pose data mining toolkit available for download from thigp://complearn.org/ website. In
Chapter 7, we show how to connect the internet to NCD usingsibegle search engine, thus
providing the advanced sort of subjective analysis as shovagure 1.2. In Chapter 8 we use
these techniques and others to trace the evolution of tleategf Saint Henry. In Chapter 9 we
compare CompLearn against another older tree search sefsyatem called PHYLIP. Chap-
ter 10 gives a snapshot of the online documentation for theglearn system. After this, a
Dutch language summary is provided as well as a bibliograptuex, and list of papers by
R. Cilibrasi.






Chapter 2

Technical Introduction

The spectacle is the existing order’s uninterrupted dismabout itself, its lauda-
tory monologue. It is the self-portrait of power in the epadhts totalitarian man-
agement of the conditions of existence. The fetishisticelyuobjective appear-
ance of spectacular relations conceals the fact that tleenelations among men and
classes: a second nature with its fatal laws seems to dosro@tenvironment. But
the spectacle is not the necessary product of technicalaf@went seen as a natural
development. The society of the spectacle is on the corttnarform which chooses
its own technical content. -Guy Debof&ciety of the Spectacle

This chapter will give an informal introduction to relevdnaickground material, familiarizing
the reader with notation and basic concepts but omittingfgrdMe discuss strings, languages,
codes, Turing Machines and Kolmogorov complexity. Thisemnat will be extensively used in
the chapters to come. For a more thorough and detailed tegdtoh all the material including a
tremendous number of innovative proofs seég [ It is assumed that the reader has a basic famil-
iarity with algebra and probability theory as well as soméimentary knowledge of classical
information theory. We first introduce the notionsfimiite, infinite andstring of charactersWe
go on to discuss basic coding theory. Next we introduce tea af Turing Machines. Finally, in
the last part of the chapter, we introduce Kolmogorov Comxipte

2.1 Finite and Infinite

In the domain of mathematical objects discussed in thisgh#dsere are two broad categories:
finite and infinite.Finite objects are those whose extent is boundefihite objects are those that
are “larger” than any given precise bound. For example, ipedorm 100 flips of a fair coin in
sequence and retain the results in order, the full recordoeieasily written upon a single sheet
of A4 size paper, or even a business card. Thus, the sequefioge. But if we instead talk
about the list of all prime numbers greater than 5, then thheesece written literally is infinite
in extent. There are far too many to write on any given sizeagfgp no matter how big. It is
possible, however, to write @@mputer progranthat could, in principle, generate every prime
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number, no matter how large, eventually, given unlimit@detiand memory. It is important to
realize that some objects are infinite in their totality, bah be finite in a potential effective
sense by the fact that every finite but a priori unbounded @fattiem can be obtained from a
finite computer program. There will be more to say on thesearsalater in Sectio.5.

2.2 Strings and Languages

A bit, or binary digit, is just a single piece of information repeating a choice between one of
two alternatives, either O or 1.

A character is a symbol representing an atomic unit of wrikkaguage that cannot be mean-
ingfully subdivided into smaller parts. An alphabet is a@esymbols used in writing a given
language A language (in the formal sense) is a set of permisshimgs made from a given
alphabet. Astringis an ordered list (normally written sequentially) of O ormagymbols drawn
from a common alphabet. For a given alphabet, differentdaggs deem different strings per-
missible. In English, 26 letters are used, but also the spadesome punctuation should be
included for convenience, thus increasing the size of theaddet. In computer files, the under-
lying base is 256 because there are 256 different stategbfmsseach indivisible atomic unit
of storage space, thmy/te A byte is equivalent to 8 bits, so the 256-symbol alphabegrgral to
real computers. For theoretical purposes however, we cgpedse with the complexities of large
alphabets by realizing that we can encode large alphaktetsimall ones; indeed, this is how a
byte can be encoded as 8 bits. A bit is a symbol from a 2-syndvddjnary, alphabet. In this
thesis, there is not usually any need for an alphabet of nharetivo characters, so the notational
convention is to restrict attention to the binary alphabehe absence of countervailing remarks.
Usually we encode numbers as a sequence of characters i addk& format at the most basic
level, and the space required to encode a number in this faramabe calculated with the help
of the logarithm function. The logarithm function is alwaysed to determine a coding length
for a given number to be encoded, given a probability or ietegnge. Similarly, it is safe for
the reader to assume that all log’s are taken base 2 so thabyéterpret the results in bits.

We write Z to represent the alphabet used. We usually work with therpiakphabet, so
in that case = {0,1}. We writeZ* to represent the space of all possible strings including the
empty string. This notation may be a bit unfamiliar at firstt i very convenient and is related
to the well-known concept afegular expressions Regular expressions are a concise way of
representing formal languages as sets of strings over &aladp. The curly braces represent a
set(to be used as the alphabet in this case) and thembol refers to thelosureof the set; By
closurewe mean that the symbol may be repeated 0, 1, 2, 3, 5, or anyeruohltimes. By
definition, {0,1}* = Up>0{0,1}". Itis important to realize that successive symbols needeot
the same, but could be. Here we can see that the number obfedssiary strings is infinite, yet
any individual string in this class must itself be finite. Bostringx, we write x| to represent the
length, measured in symbols, of that string.
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2.3 The Many Facets of Strings

Earlier we said that a string is a sequence of symbols from@rabet. It is assumed that the
symbols inZ have a natural or at least conventional ordering. From tlesway inductively
create a rule that allows us to impose an ordering on allgdrihat are possible &&* in the con-
ventional way: use length first to bring the shorter strirgyealy as possible in the ordering, and
then use the leftmost different character in any two striogdetermine their relative ordering.
This is just a generalized restatement of the familiar abekiaal or lexicographic ordering. It
is included here because it allows us to associate a positeger ordering number with each
possible string. The empty string,is the first string in this list. The next is the string 0, ahd t
next 1. After that comes 00, then 01, then 10, then 11, thepd@Dso orad nauseaumNext to

each of these strings we might list their lengths as well as tirdering-number position in this
list as follows:

X IX|  ORD(X)
€ 0 1
0 1 2
1 1 3
00 2 4
01 2 5
10 2 6 ... and so on forever ...
11 2 7
000 3 8
001 3 9
010 3 10
011 3 11
100 3 12

Here there are a few things to notice. First is that the secotgmn, the length ok written
x|, is related to th@®RD(x) by the following relationship:

log(oRD(X)) < |X| <log(ORD(X)) + 1. (2.3.1)

Thus we can see that the varialslean be interpreted polymorphically: as either a literahgtr
of characters having a particular sequence and lengthteadss an integer in one of two ways:
either by referring to its length using the| symbol, or by referring to its ordinal number using
ORD(X). All of the mathematical functions used in this thesis ar@amorphic in their argument
types: each argument can be either a number (typically agén} or a string, but not both. Thus
without too much ambiguity we will sometimes leave out D symbol and just writex and
rely on the reader to pick out the types by their context armdjesPlease notice thatan either
stand for the stringk or the numbeloRD(x), but never for the length of, which we always
explicitly denote asx|.
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2.4 Prefix Codes

A binary stringy is aproper prefixof a binary stringx if we can writex = yzfor z# €. A set
{x,y,...} €{0,1}* is prefix-freeif no element is a proper prefix of any other. A prefix-free set
can be used to definepaefix code Formally, a prefix code is defined bydacoding function D
which is a function from a prefix free set to some arbitraryxseThe elements of the prefix free
set are called¢ode words The elements ok are calledsource words If the inverseD—! of D
exists, we call it theencoding functionAn example of a prefix code, that is used later, encodes
a source worck = XXz . . X, by the code word

x = 1"0x.

Herex = {0,1}*, D~%(x) = x = 1"0x. This prefix-free code is calleself-delimiting because
there is a fixed computer program associated with this coatecdn determine where the code
word x ends by reading it from left to right without backing up. Thiay a composite code
message can be parsed in its constituent code words in os&pascomputer program.

In other words, a prefix code is a code in which no codeword refixpof another codeword.
Prefix codes are very easy to decode because codeword bmsnala directly encoded along
with each datum that is encoded. To introduce these, let nsider how we may combine any
two strings together in a way that they could be later sepdraithout recourse to guessing. In
the case of arbitrary binary stringsy, we cannot be assured of this prefix conditiarmight
be 0 whiley was 00 and then there would be no way to tell the original austefx ory given,
say, justxy. Therefore let us concentrate on just thalone and think about how we might
augment the natural literal encoding to allow for prefix diggéguation. In real languages on
computers, we are blessed with whitespace and commas, bethiah are used liberally for the
purpose of separating one number from the next in normalubddpmats. In a binary alphabet
our options are somewhat more limited but still not too balde $implest solution would be to
add in commas and spaces to the alphabet, thus increasiatptiabet size to 4 and the coding
size to 2 bits, doubling the length of all encoded stringgs Tha needlessly heavy price to pay
for the privilege of prefix encoding, as we will soon see. Bugtfiet us reconsider another way to
do it in a bit more than double space: suppose we prefadéh a sequence dk| O’s, followed
by a 1, followed by the literal string. This then takes one bit more than twice the spacexfor
and is even worse than the original scheme with commas anespaded to the alphabet. This
is just the scheme discussed in the beginning of the secBahthis scheme has ample room
for improvement: suppose now we adjust it so that insteadutifudgting all those O’s at first in
unary, we instead just output a number of zeros equal to

[log(|x)1,

then a 1, then the binary numblet (which satisfiegx| < [logx] + 1, see Eq. 2.3.1), thenx
literally. Here,[-] indicates the ceiling operation that returns the smallgsgier not less than

1This desirable property holds for every prefix-free encgdifia finite set of source words, but not for every
prefix-free encoding of an infinite set of source words. Foingle finite computer program to be able to parse a
code message the encoding needs to have a certain unifqofigrty like thex code.
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its argument. This, then, would take a number of bits about
2[loglogx]| + [logx] + 1,

which exceedglogx]|, the number of bits needed to encadéterally, only by a logarithmic
amount. If this is still too many bits then the pattern candygeated, encoding the first set of 0's
one level higher using the system to get

2[logloglogx]| + [loglogx] + [logx] + 1.

Indeed, we can “dial up” as many logarithms as are necessargate a suitably slowly-growing
composition of however many log’s are deemed appropriatés i§ sufficiently efficient for all
purposes in this thesis and provides a general framewordoforerting arbitrary data into prefix-
free data. It further allows us to compose any number of gérior numbers for any purpose
without restraint, and allows us to make precise the difficahcept oK (x,y), as we shall see
in Section2.6.4

2.4.1 Prefix Codes and the Kraft Inequality

Let x be the set of natural numbers and consider the straightfdman-prefix binary represen-
tation with theith binary string in the length-increasing lexicographicader corresponding to
the number. There are two elements af with a description of length 1, four with a description
of length 2 and so on. However, there are less binary prefie eaurds of each length: K is

a prefix code word then np= xz with z # € is a prefix code word. Asymptotically there are
less prefix code words of lengththan the 2 source words of length. Clearly this observation
holds for arbitrary prefix codes. Quantification of this itian for countablex and arbitrary
prefix-codes leads to a precise constraint on the numberd#-amrds of given lengths. This
important relation is known as th&aft Inequalityand is due to L.G. KraftgQ].

2.4.1.LEMMA. Letly,ly,... be afinite or infinite sequence of natural numbers. There iefx
code with this sequence as lengths of its binary code wdrds if

22—“1 <1 (2.4.1)

2.4.2 Uniquely Decodable Codes

We want to code elements of some.sah a way that they can be uniquely reconstructed from the
encoding. Such codes are callatiquely decodableEvery prefix-code is a uniquely decodable
code. On the other hand, not every uniquely decodable cadéesthe prefix condition. Prefix-
codes are distinguished from other uniquely decodablescbgiehe property that the end of
a code word is always recognizable as such. This means thatlidg can be accomplished
without the delay of observing subsequent code words, whialiny prefix-codes are also called
instantaneous codes. There is good reason for our emphapiefix-codes. Namely, it turns
out that Lemma2.4.1 stays valid if we replace “prefix-code” by “uniquely decoti&abode.”
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This important fact means that every uniquely decodable cad be replaced by a prefix-code
without changing the set of code-word lengths. In this thekie only aspect of actual encodings
that interests us is their length, because this reflectsrilerlying probabilities in an associated
model. There is no loss of generality in restricting furtdexcussion to prefix codes because of
this property.

2.4.3 Probability Distributions and Complete Prefix Codes

A uniquely decodable code ompleteif the addition of any new code word to its code word
set results in a non-uniquely decodable code. It is easyetdhset a code is complete iff equal-
ity holds in the associated Kraft Inequality. Uetl,,... be the code words of some complete
uniquely decodable code. Let us defipe= 2. By definition of completeness, we have

Y xOx = 1. Thus, thegy can be thought of agrobability mass functionsorresponding to some
probability distributionQ for a random variablX. We sayQ is the distributiorcorrespondingo
I1,12,.... In this way, each complete uniquely decodable code is nthfpa unique probability
distribution. Of course, this is nothing more than a formairespondence: we may choose to
encode outcomes of using a code corresponding to a distributgpnwhereas the outcomes are
actually distributed according to sormpe# g. But, as we argue below, X is distributed accord-

ing to p, then the code to whicp corresponds is, in an average sense, the code that achieves
optimal compression oX. In particular, every probability mass functigns related to a prefix
code, theShannon-Fano codsuch that the expected number of bits per transmitted cadé w

is as low as is possible for any prefix code, assuming thatdorarsourceX generates the source
wordsx according toP(X = x) = p(x). The Shannon-Fano prefix code encodes a source word
x by a code word of length = [log1/p(X)], so that the expected transmitted code word length
equalsy , p(x)log1/p(x) = H(X), the entropy of the sourcé, up to one bit. This is optimal by
Shannon’s “noiseless coding” theoref®p]. This is further explained in Sectidh?7.

2.5 Turing Machines

This section mainly serves as a preparation for the nexiosedh which we introduce the funda-
mental concept oKolmogorov complexityRoughly speaking, the Kolmogorov complexity of a
string is the shortest computer program that computes timgst.e. that prints it, and then halts.
The definition depends on the specific computer programnaimguage that is used. To make the
definition more precise, we should base it on programs warfibe universal Turing machings
which are an abstract mathematical representation of a@emerpose computer equipped with
a general-purpose aomiversalcomputer programming language.

Universal Computer Programming Languages: Most popular computer programming lan-
guages such as C, Lisp, Java and Ruby,usmigersal Roughly speaking, this means that they
must be powerful enough to emulate any other computer pnogiag language: every universal
computer programming language can be used to write a configuileny other programming lan-
guage, including any other universal programming langubgkeed, this has been done already
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a thousand times over with the GNU (Gnu’s Not Unix) C compitarhaps the most successful
open-source computer program in the world. In this caskoatih there are many different as-
sembly languages in use on different CPU architecturesf étlem are able to run C programs.
So we can always package any C program along with the GNU C itemyghich itself is not
more than 100 megabytes in order to run a C program anywhere.

Turing Machines: The Turing machineas an abstract mathematical representation of the idea
of a computer. It generalizes and simplifies all the many iipggpes of deterministic comput-
ing machines into one regularized form. A Turing machinearebd by a set of rules which
describe its behavior. It receives as its input a string ofilsgis, wich may be thought OF as a
“program”, and it outputs the result of running that progravhich amounts to transforming the
input using the given set of rules. Just as there are univessaputer languages, there are also
universal Turing machines. We say a Turing Machine is usideif it can simulate any other
Turing Machine. When such a universal Turing machine rexeas input a paifx,y), wherex

is a formal specification of another Turing machiReit outputs the same result as one would
get if one would input the stringto the Turing machindy. Just as any universal programming
language can be used to emulate any other one, any univensafjimachine can be used to
emulate any other one. It may help intuition to imagine anyif@ar universal computer pro-
gramming language as a definition of a universal Turing megland the runtime and hardware
needed to execute it as a sort of real-world Turing machswedfitlt is necessary to remove re-
source constraints (on memory size and input/output iaterffor example) in order for these
concepts to be thoroughly equivalent theoretically.

Turing machines, formally: A Turing machine consists of two parts: a finite control and a
tape. The finite control is the memory (or current state) ef machine. It always contains
a single symbol from a finite s& of possible states. The tape initially contains the program
which the Turing machine must execute. The tape containdslgrirom the trinary alphabet
A={0,1,B}. Initially, the entire tape contains tig(blank) symbol except for the place where
the program is stored. The program is a finite sequence of Hiis finite control also is always
positioned above a particular symbol on the tape and may heéwa right one step. At first, the
tape head is positioned at the first nonblank symbol on the tAp part of the formal definition

of a Turing machine, we must indicate which symbol fr@ms to be the starting state of the
machine. At every time step the Turing machine does a singuteo$ calculation by consulting

a list of rulesthat define its behavior. The rules may be understood to badifun taking two
arguments (the current state and the symbol under the gheéad) and returning a Cartesian
pair: the action to execute this timestep and the next staeter. This is to say that the two input
arguments are a current state (symbol fi@hof the finite control and a letter from the alphabet
A. The two outputs are a new state (also taken f@)rand anaction symbol taken frons.
The set of possible actions = {0,1,B,L,R}. The 0, 1, and symbols refer to writing that
value below the tape head. TheandR symbols refer to moving left or right, respectively. This
function defines the behavior of the Turing machine at eagp, stllowing it to perform simple
actions and run a program on a tape just like a real computén buwery mathematically simple
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way. It turns out that we can choose a particular set of $tatesition rules such that the Turing
machine becomesniversalin the sense described above. This simulation is plausiéng
moment of reflection on how a Turing Machine is mechanicadifiried as a sequence of rules
governing state transitions etc. The endpoint in this liheeasoning is that a universal Turing
Machine can run a sort of Turing Machine simulation system #rereby compute identical
results as any other Turing Machine.

Notation: We typically use the Greek lett@ to represent a Turing machiffeas a partially
defined function. When the Turing machifes not clear from the context, we writet. The
function is supposed to take as input a program encoded agealinary string and outputs
the results of running that program. Sometimes it is coreudrtio define the function as taking
integers instead of strings; this is easy enough to do whenemember that each integer is iden-
tified with a given finite binary string given the natural leagraphic ordering of finite strings,
as in Sectior2.3 The function® need only be partially defined; for some input strings it is no
defined because some programs do not produce a finite strog@ast, such as infinite looping
programs. We say thap is defined only for those programs that halt and thereforeyme a
definite output. We introduce a special symbothat represents an abstract object outside the
space of finite binary strings and unequal to any of them. lkase programs that do not halt we
say®(x) = « as a shorthand way of indicating this infinite loogds thus a non-halting program
like the following:

X = while true ; do ; done

Here we can look a little deeper into tkgorogram above and see that although its runtime is
infinite, its definition is quite finite; it is less than 30 chaters. Since this program is written in
the ASCII codespace, we can multiply this figure by 8 to reasiza of 240 bits.

Prefix Turing Machines: In this thesis we look at Turing Machines whose set of halfirg
grams is prefix free: that is to say that the set of such progifanm a prefix code (Sectidh4),
because no halting program is a prefix of another haltingraragWe can realize this by slightly
changing the definition of a Turing machine, equipping ithadat one-way input or ‘data’ tape,
a separate working tape, and a one-way output tape. SuchiregTeachine is called a@refix
machine Just as there are universal “ordinary” Turing Machinesréhare also universal prefix
machines that have identical computational power.

2.6 Kolmogorov Complexity

Now is when things begin to become tricky. There is a very igpamctionK calledKolmogorov
Complexity Intuitively, the Kolmogorov complexity of a finite stringis the shortest computer
program that printg and then halts. More precisely,is usually defined as a unary function that
maps strings to integers and is implicitly baseddonditioned on a concrete reference Turing
machine represented by functidn The complete way of writing it iKo(X). In practice, we
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want to use a Turing Machine that is as general as possibgecdnvenient to require the prefix
property. Therefore we tak® to be a universal prefix Turing MachifeBecause all universal
Turing Machines can emulate one another reasonably eftfigiérdoes not matter much which
one we take. We will say more about this later. For our purpose can suppose a universal
prefix Turing machine is equivalent to any formal (implengehtreal) computer programming
language extended with a potentially unlimited memory. dleabat ® represents a particular
Turing machine with particular rules, and remem#bas a partial function that is defined for all
programs that terminate. ¥ is the transformation that maps a prograno its outputo, then
Ko (z) represents the length of the minimum program size (in bit)ver all valid programs
such thatd(x) = z

We can think ofK as representing the smallest quantity of information nexglito recreate
an object by any reliable procedure. For examplexlee the first 2000000 digits af. Then
K(x) is small, because there is a short program generatiag explained further below. On the
other hand, for a random sequence of didft&) will usually be large because the program will
probably have to hardcode a long list of abitrary values.

2.6.1 Conditional Kolmogorov Complexity

There is another form df which is a bit harder to understand but still important to discus-
sions callecconditional Kolmogorov Complexignd written

K(Zy).

The notation is confusing to some because the function takesrguments. Its definition re-
guires a slight enhancement of the earlier model of a Turiaghime. While a Turing machine
has a single infinite tape, Kolmogorov complexity is definathwespect to prefix Turing ma-
chines, which have an infinite working tape, an output takaarestricted input tape that sup-
ports only one operation called “read next symbol”. Thisunhfape is often referred to as a
data tapeand is very similar to an input data file or stream read fromdaad input in Unix.
Thus instead of imagining a program as a single string we mimggine a total runtime envi-
ronment consisting of two parts: an input program tape vatdfwrite memory, and a data tape
of extremely limited functionality, unable to seek backdarith the same limitations as POSIX
standard input: there is getchar but no fseek. In the comtetttis slightly more complicated
machine, we can defin€(z|y) as the size, in bits, of the smallest program that outpgfisen

a prefix-free encoding of, sayy, as an initial input on the data tape. The idea is thgtgives

a lot of information about thenK(zly) << K(z), but if zandy are completely unrelated, then
K(z|y) =~ K(z). For example, iz=y, theny provides a maximal amount of information about
z If we know thatz =y then a suitable program might be the following:

while true ; do
c = getchar()

2There exists a version of Kolmogorov complexity that is liase standard rather than prefix Turing machines,
but we shall not go into it here.
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if (c == ECF) ; then \index{halt}halt
el se putchar(c)
done

Here, already, we can see th&ix|x) < 1000 given the program above and a suitable universal
prefix Turing machine. Note that the number of bits used tmdadhe whole thing is less
than 1000. The more interesting case is when the two argenaatnot equal, but related.
Then the program must provide the missing information tghomore-complicated translation,
preprogrammed results, or some other device.

2.6.2 Kolmogorov Randomness and Compressibility

As itturns outK provides a convenient means for characterizing randomesegs. Contrary to
popular belief, random sequences are not simply sequentteaawdiscernible patterns. Rather,
there are a great many statistical regularities that carrdaeep and observed, but the difficulty
lies in simply expressing them. As mentioned earlier, we \eany easily express the idea of
randomness by first defining different degrees of randomeefslows: a stringis k—random
if and only if K(x) > |x| — k. This simple formula expresses the idea that random stangs
incompressible. The vast majority of strings are 1-randothis sense. This definition improves
greatly on earlier definitions of randomness because itigeava concrete way to show a given,
particular string is non-random by means of a simple conrgartagram.

At this point, an example is appropriate. Imagine the follaysequence of digits:

1,4,1,5,9,2,6,5,3, ...

and so on. Some readers may recognize the aforementionedrseqas the first digits of
the Greek lettertwith the first digit (3) omitted. If we extend these digitsvi@rd to a million
places and continue to follow the precise decimal approtionaf 1, we would have a sequence
that might appear random to most people. But it would be aenaftsome confusing debate
to try to settle a bet upon whether or not the sequence wedsertmdom, even with all million
of the digits written out in several pages. However, a clelserver, having noticed the digits
corresponded ta, could simply write a short computer program (perhaps gaitethe internet)
of no more than 10 kilobytes that could calculate the digits print them out. What a surprise
it would be then, to see such a short program reproduce sumigaahd seemingly meaningless
sequence perfectly. This reproduction using a much sh@ess than one percent of the literal
size) program is itself direct evidence that the sequene®israndom and in fact implies a
certain regularity to the data with a high degree of liketiloSimple counting arguments show
that there can be no more than a vanishingly small numbemgbiyncompressible programs; in
particular, the proportion of programs that are comprésdilp everk bits is no more than 2.
This can be understood by remembering that there are just#wbstrings (0 and 1), four 2-bit
strings, and 2 m-bit strings. So if we consider encodings of lengtifor source strings of length
nwith n > m, then at most2 different strings out of the total of"Source strings can be encoded
in mbits. Thus, the ratio of strings compressiblerby mbits is at most a2 " proportion of all
strings.
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2.6.3 Universality In K

We have remarked earlier how universal Turing machines nraylae one another using finite
simulation programs. In talking about the asymptotic béraef K, these finite simulation
programs do not matter more than an additive constant. Ronpbe, if we takex" to mean the
firstn digits of 1, thenK (x") = O(logn) no matter which universal Turing machine is in use. This
is because it will be possible to calculate any number oftsligi 1T using a fixed-size program
that reads as input the number of digits to output. The lenfjthis input cannot be encoded in
shorter than log bits by a counting argument as in the previous section.

This implies that all variations df are in some sense equivalent, because any two different
variants ofK given two different reference universal Turing machinel maver differ by more
than a fixed-size constant that depends only on the pantiduldng machines chosen and not
on the sequence. It is this universal character that windengling credence to the idea thét
can be used as absolutemeasure of the information contained in a given object. Thaiite
different from standard Shannon Information Theory basethe idea ofaverage information
required to communicate an object over a large number ds txizd given some sort generating
source[103. The great benefit of the Kolmogorov Complexity approackthast we need not
explicitly define the generating source nor run the manjystt@asee desired results; just one look
at the object is enough. Secti@rv provides an example that will serve to illustrate the point.

2.6.4 Sophisticated Forms of K

There is now one more form of thefunction that should be addressed, though it is perhaps the
most complicated of all. It is written as follows:

K(X,y).

This represents the size in bits of the minimum program thgtusx followed byy, provided
the output is given by first outputtingin a self-delimitting way (as explained earlier) and then
outputtingy. Formally, we defin&(x,y) asK((x,y)), where(,-) is defined as the pairing oper-
ation that takes two numbers and returns a pair:

2.7 Classical Probability Compared to K

Suppose we flip a fair coin. The type of sequence generatetiebgdries oN flips of a fair
coin is unpredictable in natutgy assumption normal probability theory. To define precisely
what this means presents a bewildering array of posséslitin the simplest, we might say the
sequence is generated by a Bernoulli process wikeakes on value 0 or 1 with probability

1
P(X - 0)fair - é - P(X - 1)fair-

The notationP(-) represents the chance that the event inside occurs. It regsgd as a ratio
between 0 and 1 with 0 meaning never, 1 meaning always, amg puenber inbetween repre-
senting the proportion of times the event will be true givéarge enough number of independent
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trials. In such a setting, we may use a single bit to represémdr possibility efficiently, and can
always storeéN coin flips in justN bits regardless of the outcomes.
What if, instead of a fair coin, we use a biased one? For igstah

1
P(X = O)biased: é’

and therefore since our simplified coins always turn up O or 1,

7
P(X = 1>biased: é

Then we may use the scheme above to reliably transrfiips in N bits. Alternatively, we may
decide to encode the 1's more efficiently by using the follaysimple rule. Assume that is
even. Divide theN flips into pairs, and encode the pairs so that a pair of 1'sstakst a single 1
bit to encode. If both are not 1, then instead output a O anal tike more bits to represent the
actual outcomes in order. Then continue with the next patmof One can quickly calculate
that “g—g of the time” the efficient 1-bit codeword will be output in $rscheme which will save
a great deal of space. Some of this savings will be lost in #se€ where the 3-bit codeword is
emitted,é—i of the time. The average number of bits needed per outcomsmitted is then the
codelengtrt:

49 15-3 94

128" 64 128

This can also be improved somewhat down to $fi@nnon entropy £X) [79] of the sourceX
with longer blocks or smarter encoding such as arithmetiles®?2] over an alphabeX:

HOO = 5 —P(X =) logP(X =),

C=

1.7 7

g) ~ g lo9(g)

By Shannon’s famous coding theorem, this is essentiallysthallest average code length that
can be obtained under the assumption that the coin is indepéy tossed according ®yiased
Here though, there is already a problem, as we now cannousagnditionally at least, that
this many bits will be needed for any actual sequence of hitk introduces some variation
in the actual space needed, though it is usually near thegeeMe know that such a coin is
highly unlikely to repeatedly emit O’s, yet we cannot aclyialile out this possibility. More to
the point, in abstract terms the probability, while expdredly decaying with the greatest haste,
still never quite reaches zero. It is useful to think cadgfabout this problem. All the laws
of classical probability theory cannot make claims abouadigular sequence but instead only
about ensembles of experiments and expected proportioyiagTo pin down uncertainty in this
crude way often serves only to make it appear elsewhereaiahsbe the Kolmogorov Complexity
approach, we turn things upside-down: we say that a strirmnidom if it is uncompressible. A
string isc—randomif K(x) > |x| —c. This then directly addresses the question of how random a
given string is by introducing different grades of randossand invoking the universal function

c:—%-log(
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K to automatically rule out the possibility of any short pragns predicting a random string
defined in this way. Returning to the fair coin example, theagy is 1 bit per outcome. But
we cannot say with certainty that a sequence coming from aumdin cannot be substantially
compressed. This is only true with high probability.

2.8 Uncomputability of Kolmogorov Complexity

Some have made the claim that Kolmogorov Complexity is dljec In theory, it is. But in
practice it is difficult to say; one major drawback Kfis that it is uncomputable. Trying to
compute it leads one to try immediately the shortest progrrst, and as shown above it does
not take many characters in a reasonable language to praduoénite loop. This problem is
impossible to protect against in general, and any mulgdbed approach is doomed to failure
for this reason as it bumps up against the Halting Probl&8). [

A more fruitful approach has been to apply Kolmogorov Comipyeby approximating it with
data compressors. We may consider the problem of efficienttpding a known biased random
source into a minimum number of bits in such a way that theimsgsequence, no matter what
it was, can once again be reconstructed, but so that als@ftaic sequences a shorter code is
output. This is the basic idea of a data compression progiéme. most commonly used data
compression programs of the last decade inclyrdp, bzip2 andPPM.

gzip is an old and reliable Lempel-Ziv type compressor wiRilobyte window [L22]. It
is the simplest and fastest of the three compressors.

bzip2 is a wonderful new compressor using the blocksortrdalgo [17]. It provides good
compression and an expanded window of 900 kilobytes allgfonlonger-range patterns to be
detected. It is also reasonably fast.

PPM stands for Prediction by Partial Matchi.[It is part of a new generation of powerful
compressors using a pleasing mix of statistical modelsgaa by trees, suffix trees or suffix
arrays. It usually achieves the best performance of anyc@apressor yet is also usually the
slowest and most memory intensive.

Although restricted to the research community, a new chg#e to PPM has arisen called
context mixing compression. It is often the best compressaheme for a variety of file types
but is very slow; further, it currently uses a neural netwiorkio the mixing of contexts. See the
pagseries of compressors on the internet for more informatiothes exciting development in
compression technology.

We use these data compressors to approximate from abovelm@gorov Complexity func-
tion K. It is worth mentioning that all of the real compressorslishbove operate on a bytewide
basis, and thus all will return a multiple of 8 bits in theisuéts. This is unfortunate for ana-
lyzing small strings, because the granularity is too cotwsalow for fine resolution of subtle
details. To overcome this problem, the CompLearn systene-pigce of software using which
almost all experiments in later chapters have been caruéd supports the idea of drtual
compressoforiginally suggested by Steven de Rooij): a virtual corspog is one that does not
actually output an encoded compressed form, but instegal\ysacumulates the number of bits
necessary to encode the results using a hypothetical aiibhjor entropy) encoder. This frees
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us from the bytewide restriction and indeed eliminates #edfor rounding to a whole number
of bits. Instead we may just return a real or floating-poimtigaThis becomes quite useful when
analyzing very similar strings of less than 100 bytes.

2.9 Summary

We have introduced the notion of universal computation dredkt function indicating Kol-
mogorov Complexity. We have introduced Turing Machines prefix codes as well as prefix
machines. We have discussed a definition of a random string Ks We use these concepts in
the next few chapters to explain in great detail our theoyetperimental results.
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Chapter 3
Normalized Compression Distance (NCD)

You may very appropriately want to ask me how we are going $olve the ever
acceleratingly dangerous impasse of world-opposed pialits and ideological dog-
mas. | answer, it will be resolved by the computer. Man has-ex@easing confi-
dence in the computer; witness his unconcerned landingsteengaport passengers
coming in for a landing in the combined invisibility of fog@night. While no politi-
cian or political system can ever afford to yield understdigd and enthusiastically
to their adversaries and opposers, all politicians can alhglield enthusiastically to
the computers safe flight-controlling capabilities in lgiirg all of humanity in for a
happy landing. —Buckminster Fuller @perating Manual for Spaceship Earth

In this chapter the Normalized Compression Distance (NCid)tae related Normalized In-
formation Distance (NID) are presented and investigate@DNs a similarity measure based
on a data compressor. NID is simply the instantiation of NGIhg the theoretical (and un-
computable) Kolmogorov compressor. Below we first revieevdifinition of a metric. In Sec-
tion 3.3 we explain precisely what is meant by universality in theecaf NID. We discuss
compressor axioms in Secti@2, and properties of NCD in Section 3.4. At the end of the chap-
ter, we connect NCD with a classical statistical quantityeceKullback-Leibler divergenceln
Section3.6.1we connect arithmetic compressors to entropy, and in Se8th2we relate them
to KL-divergence.

3.1 Similarity Metric

In mathematics, different distances arise in all sorts oftexts, and one usually requires these
to be a “metric”’. We give a precise formal meaning to the lodistance notion of “degree of
similarity” used in the pattern recognition literature.

Metric: Let Q be a nonempty set amgl ™ be the set of nonnegative real numbersmaAtric
onQ is afunctionD : Q x Q — % * satisfying the metric (in)equalities:

* D(x,y) =0iff x=Yy,
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« D(x,y) = D(y,x) (symmetry), and
* D(x,y) <D(x,2) +D(zy) (triangle inequality).

The valueD(x,y) is called thedistancebetweenx,y € Q. A familiar example of a metric is
the Euclidean metric, the everyday distamee b) between two objecta, b expressed in, say,
meters. Clearly, this distance satisfies the propeefias) = 0, e(a,b) = e(b,a), ande(a,b) <
e(a,c) +€(c,b) (for instancea= Amsterdamp = Brussels, and = Chicago.) We are interested
in “similarity metrics”. For example, if the objects are stical music pieces then the function
D(a,b) = 0 if a andb are by the same composer abda,b) = 1 otherwise, is a similarity
metric. This metric captures only one similarity aspecafifiee) of music pieces, presumably an
important one because it subsumes a conglomerate of moneedary features.

Density: In defining a class of admissible distances (not necessaelyic distances) we
want to exclude unrealistic ones likéx,y) = % for everypairx #y. We do this by restricting the
number of objects within a given distance of an object. A®jmwje do this by only considering
effective distances, as follows.

3.1.1.DEFINITION. LetQ =2*, with Z a finite nonempty alphabet aid the set of finite strings
over that alphabet. Since every finite alphabet can be reciodeinary, we choos& = {0, 1}.
In particular, “files” in computer memory are finite binaryisgs. A functionD: Q x Q — g *+
is anadmissible distanc# for every pair of objectsq,y € Q the distanceD(x,y) satisfies the
densitycondition (a version of the Kraft Inequalit@ @.1)):

zz—DW) <1, (3.1.1)
y

is computableand issymmetricD(X,y) = D(y, X).

If D is an admissible distance, then for evarthe set{D(x,y) : y € {0,1}*} is the length
set of a prefix code, since it satisfies4.1), the Kraft inequality. Conversely, if a distance is the
length set of a prefix code, then it satisfigsd( 1), see B1].

3.1.2.EXAMPLE. In representing the Hamming distant®etween two strings of equal length
n differing in positionsiy,...,iq, we can use a simple prefix-free encoding(ofd, i1, ...,iq)

in 2logn+ 4loglogn+ 2+ dlogn bits. We encoda andd prefix-free in logh+ 2loglogn + 1
bits each, see e.g79], and then the literal indexes of the actual flipped-bit poss. Adding
an O(1)-bit program to interpret these data, with the strings comee beingx andy, we have
definedH,(x,y) = 2logn+4loglogn—+dlogn+ O(1) as the length of a prefix code word (prefix
program) to compute& from y andvice versa Then, by the Kraft inequality (Chapter 2, Sec-
tion2.4.1), zyZ_Hn(XW < 1. Itis easy to verify thall, is a metric in the sense that it satisfies the
metric (in)equalities up t®(logn) additive precision.

Normalization: Large objects (in the sense of long strings) that differ byng part are
intuitively closer than tiny objects that differ by the samount. For example, two whole
mitochondrial genomes of 18,000 bases that differ by 9,08Wery different, while two whole
nuclear genomes of:310° bases that differ by only 9,000 bases are very similar. Taisolute
difference between two objects does not govern simildrityrelative difference seems to.
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3.1.3.DEFINITION. A compressois a lossless encoder mappifyinto {0,1}* such that the
resulting code is a prefix code. “Lossless” means that tleeaedecompressor that reconstructs
the source message from the code message. For conveniemagidn we identify “compres-
sor” with a “code word length functiorC : Q — a(, wheres( is the set of nonnegative integers.
That is, the compressed version of a fileas lengthC(x). We only consider compressors such
thatC(x) < |x| + O(log|x|). (The additive logarithmic term is due to our requiremerat tte
compressed file be a prefix code word.) We fix a compre&Ssand call the fixed compressor the
reference compressor

3.1.4.DEFINITION. LetD be an admissible distance. Then we may make the defiritidm) =
max{D(x,2) : C(z) < C(x)}, andD"(x,y) is D™(x,y) = maxD"(x),D"(y)}. Note that since
D(x.y) = D(y,X), alsoD*(x,y) = D*(y,x).

3.1.5.DEFINITION. LetD be an admissible distance. Thermalized admissible distancalso
called asimilarity distanced(x,y), based orD relative to a reference compres&yris defined

by

It follows from the definitions that a normalized admissitlistance is a functiod : Q x Q —
[0,1] that is symmetricd(x,y) = d(y, X).

3.1.6.LEMMA. For every xc Q, and constant & [0, 1], a normalized admissible distance sat-
isfies the density constraint

{y:d(xy) <e C(y) <C(x)}| < 2P ®0+1, (3.1.2)

PROOF Assume to the contrary thdtdoes not satisfy3.1.2. Then, there is ae € [0,1] and
anx € Q, such that8.1.2 is false. We first note that, sin€¥x,y) is an admissible distance that
satisfies 8.1.1), d(x,y) satisfies a “normalized” version of the Kraft inequality:

d(xy)D* (x <zz dixy)D*(xy) < 1. (3.1.3)
y:C(y)<C(x )
Starting from 8.1.3 we obtain the required contradiction:
1> 2—d(xy)D* (x)

y:C(y)<C(x)

> 2—eD+(x)
y:d(xy)<e C(y)<C(x)

> 2eD+(x)+12—eD+(x) S 1.
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If d(x,y) is the normalized version of an admissible distab¢e y) then 3.1.3 is equivalent
to (3.1.7). We call a normalized distance a “similarity” distancecégse it gives a relative simi-
larity according to the distance (with distance 0 when digjace maximally similar and distance
1 when they are maximally dissimilar) and, conversely, farg well-defined computable notion
of similarity we can express it as a metric distance accgrtbrour definition. In the literature a
distance that expresses lack of similarity (like ours) tewftcalled a “dissimilarity” distance or a
“disparity” distance.

3.1.7.REMARK. As far as this author knows, the idea of normalized metrisusprisingly, not
well-studied. An exception idP1], which investigates normalized metrics to account foatiee
distances rather than absolute ones, and it does so for hadatne reasons as in the present
work. An example there is the normalized Euclidean meéxiey|/(|x| +|y|), wherex,y € ® "

(® denotes the real numbers) andis the Euclidean metric—thie, norm. Another example is

a normalized symmetric-set-difference metric. But thesenalized metrics are not necessarily
effective in that the distance between two objects givedahgth of an effective description to
go from either object to the other one.

3.1.8.REMARK. Our definition of normalized admissible distance is moredtithan in 77],

and the density constraint3.(.2 and @.1.3 follow from the definition. In f7] we put a stricter
density condition in the definition of “admissible” normadid distance, which is, however, harder
to satisfy and maybe too strict to be realistic. The purpd$iei®stricter density condition was to
obtain a stronger “universality” property than the presdmtorem3.5.3 namely one witlon = 1
ande = O(1/max{C(x),C(y)}). Nonetheless, both definitions coincide if we set the length
of the compressed versi@i(x) of x to the ultimate compressed lendttix), the Kolmogorov
complexity ofx.

3.1.9.EXAMPLE. To obtain a normalized version of the Hamming distance airxe3.1.2 we
definehn(x,y) =Hn(X,y) /H7 (X,y). We can sel (x,y) = H (x) = (n+2)[logn| +4[loglogn]| +
O(1) since every contemplated compresSawill satisfy C(x) = C(X), wherex is x with all bits
flipped (soH; (x,y) > H(z2) for eitherz=x or z=Yy). By (3.1.2, for everyx, the num-
ber of y with C(y) < C(x) in the Hamming balh,(x,y) < e is less than €% ®+1 This up-
per bound is an obvious overestimate ér 1/logn. For lower values o€, the upper bound
is correct by the observation that the numberysfequalsy ", (&) < 2", whereH (e) =
eloge+ (1—e)log(1—e), Shannon’s entropy function. Thesti (x) > enlogn > enH(e) since
elogn > H(e).

3.2 Normal Compressor

We give axioms determining a large family of compressors liwaéh include most (if not all)
real-world compressors and ensure the desired propeftibe ICD to be defined later.

3.2.1.DEFINITION. A compressof is normal if it satisfies, up to an additiv®(logn) term,
with n the maximal binary length of an element@finvolved in the (in)equality concerned, the
following:
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1. IdempotencyC(xx) = C(x), andC(A) = 0, whereA is the empty string.
2. Monotonicity C(xy) > C(x).

3. SymmetryC(xy) = C(yXx).

4. Distributivity: C(xy) +C(z) < C(x2) +C(yz).

Idempotency: A reasonable compressor will see exact repetitions and ioleeypotency up to
the required precision. It will also compress the emptygttd the empty string.

Monotonicity: A real compressor must have the monotonicity property, atlep to the
required precision. The property is evident for streamedasompressors, and only slightly less
evident for block-coding compressors.

Symmetry: Stream-based compressors of the Lempel-Ziv family, like g@nd pkzip, and
the predictive PPM family, like PPMZ, are possibly not psety symmetric. This is related to
the stream-based property: the initial filenay have regularities to which the compressor adapts;
after crossing the border toit must unlearn those regularities and adapt to the ongs ©his
process may cause some imprecision in symmetry that vemasgyamptotically with the length
of x,y. A compressor must be poor indeed (and will certainly not §eduto any extent) if it
doesn’t satisfy symmetry up to the required precision. Afram stream-based, the other major
family of compressors is block-coding based, like bzip2eyrassentially analyze the full input
block by considering all rotations in obtaining the comgeskversion. It is to a great extent
symmetrical, and real experiments show no departure frommsstry.

Distributivity: The distributivity property is notimmediately intuitiveh Kolmogorov com-
plexity theory the stronger distributivity property

C(xy2 +C(z) <C(x2) +C(yz) (3.2.1)

holds (withK = C). However, to prove the desired properties of NCD belowy ahé weaker
distributivity property
C(xy) +C(2) < C(x2) +C(y2 (3.2.2)

above is required, also for the boundary case W&teK. In practice, real-world compressors
appear to satisfy this weaker distributivity property ugpte required precision.

3.2.2.DEFINITION. Define
C(y|x) = C(xy) — C(x). (3.2.3)

This numbeC(y|x) of bits of information iny, relative tox, can be viewed as the excess number
of bits in the compressed versionxf compared to the compressed versiorx,0and is called
the amount otonditional compressed information

In the definition of compressor the decompression algorithnot included (unlike the case of
Kolmorogov complexity, where the decompressing algorithgiven by definition), but it is easy
to construct one: Given the compressed versioxiafC(x) bits, we can run the compressor on
all candidate stringg—for example, in length-increasing lexicographical ordetil we find the
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compressed stringy = X. Since this string decompressestae have foundk = zy. Given the
compressed version @/ in C(xy) bits, we repeat this process using stringsintil we find the
stringxz of which the compressed version equals the compressedrnefsiy. Since the former
compressed version decompressesytove have found/ = z;. By the unique decompression
property we find thaC(y|x) is the extra number of bits we require to describapart from
describingx. It is intuitively acceptable that the conditional commed informationC(x|y)
satisfies the triangle inequality

C(xly) < C(x2) +C(2y). (3.2.4)
3.2.3.LEMMA. Both(3.2.7) and(3.2.4 imply (3.2.2.

PROOF ((3.2.7) implies (3.2.2:) By monotonicity.
((3.2.4 implies (3.2.2:) Rewrite the terms in3.2.4 according t0 8.2.3, cancelC(y) in the
left- and right-hand sides, use symmetry, and rearrange. O

3.2.4.LEMMA. A normal compressor satisfies additionadlybadditivity C(xy) < C(x) +C(y).

PROOF Consider the special case of distributivity witthe empty word so thatz=x, yz=,
andC(z) =0. 0

Subadditivity: The subadditivity property is clearly also required forveiable compres-
sor, since a compressor may use information acquired Xtorcompresy. Minor imprecision
may arise from the unlearning effect of crossing the bora#wbenx andy, mentioned in rela-
tion to symmetry, but again this must vanish asymptoticaity increasing length of,y.

3.3 Background in Kolmogorov complexity

Technically, theKolmogorov complexitgf x giveny is the length of the shortest binary program,
for the reference universal prefix Turing machine, that quutry outputsx; it is denoted as
K(x]y). For precise definitions, theory and applications, 38 [The Kolmogorov complexity of
xis the length of the shortest binary program with no input thaputsx; it is denoted a& (x) =
K(x|A) whereA denotes the empty input. Essentially, the Kolmogorov cexipt of a file is the
length of the ultimate compressed version of the file 9fthie information distance Ex,y) was
introduced, defined as the length of the shortest binaryramdor the reference universal prefix
Turing machine that, with inpuwt computesy, and with inputy computex. It was shown there
that, up to an additive logarithmic terrg(x,y) = max{K(x|y),K(y|x)}. It was shown also that
E(x,y) is a metric, up to negligible violations of the metric inetjigs. Moreover, it is universal
in the sense that for every admissible distaD¢e y) as in Definition3.1.1 E(x,y) < D(X,y) up

to an additive constant depending Drbut not onx andy. In [77], the normalized version of
E(x,y), called thenormalized information distances defined as

NID (x.y) = max{K (xly), K(y[x)} (3.3.1)

max{K(x),K(y)}
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It too is a metric, and it is universal in the sense that tmgle metric minorizes up to an neg-
ligible additive error term all normalized admissible distes in the class considered #v].
Thus, if two files (of whatever type) are similar (that is, s#9 according to the particular fea-
ture described by a particular normalized admissible degtgnot necessarily metric), then they
are also similar (that is, close) in the sense of the norredlimformation metric. This justifies
calling the latterthe similarity metric. We stress once more that different pairsbjects may
have different dominating features. Yet every such dontisamilarity is detected by the NID .
However, this metric is based on the notion of Kolmogorov ptaxity. Unfortunately, the Kol-
mogorov complexity is non-computable in the Turing senggpra@ximation of the denominator
of (3.3.1 by a given compress@ is straightforward: it is ma§C(x),C(y)}. The numerator is
more tricky. It can be rewritten as

max{K(x,y) — K(x),K(x,y) = K(y)}, (3.3.2)

within logarithmic additive precision, by the additive pexty of Kolmogorov complexity19].
The termK (x,y) represents the length of the shortest program for the(paiy. In compression
practice it is easier to deal with the concatenatigior yx. Again, within logarithmic precision
K(x,y) = K(xy) = K(yx). Following a suggestion by Steven de Rooij, one can appratém
(3.3.2 best by mifC(xy),C(yx)} —min{C(x),C(y)}. Here, and in the later experiments using
the CompLearn Toolkit, we simply us&xy) rather than mifC(xy),C(yx)}. This is justified
by the observation that block-coding based compressos/anmetric almost by definition, and
experiments with various stream-based compressors (BEPp|Z) show only small deviations
from symmetry.

The result of approximating the NID using a real compres3ds called the normalized
compression distance (NCD ), formally defined 815.1). The theory as developed for the
Kolmogorov-complexity based NID ir¥[/], may not hold for the (possibly poorly) approximat-
ing NCD . It is nonetheless the case that experiments shavittedNCD apparently has (some)
properties that make the NID so appealing. To fill this gapvieen theory and practice, we de-
velop the theory of NCD from first principles, based on theeatics of Sectio3.2 We show
that the NCD is a quasi-universal similarity metric relatto a normal reference compres€or
The theory developed irY[] is the boundary casé = K, where the “quasi-universality” below
has become full “universality”.

3.4 Compression Distance

We define a compression distance based on a normal compegssghow it is an admissible
distance. In applying the approach, we have to make do withpanoximation based on a far
less powerful real-world reference compregSoA compresso€ approximates the information
distanceE(x,y), based on Kolmogorov complexity, by the compression dcst&ga (X, y) defined
as

Ec(xy) = C(xy) —min{C(x),C(y)}. (3.4.1)
Here,C(xy) denotes the compressed size of the concatenatigiody, C(x) denotes the com-
pressed size of, andC(y) denotes the compressed sizeyof
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3.4.1.LEMMA. If Cis a normal compressor, thercE,y) + O(1) is an admissible distance.

PROOF Case 1: AssumeC(x) < C(y). ThenEc(x,y) = C(xy) —C(x). Then, givenx and a
prefix-program of lengttiec (X, y) consisting of the suffix of th€-compressed version af, and
the compressdC in O(1) bits, we can run the compresgoon all xZs, the candidate strings
in length-increasing lexicographical order. When we firmsa that the suffix of the compressed
version ofxzmatches the given suffix, ther=y by the unique decompression property.

Case 2:AssumeC(y) > C(x). By symmetryC(xy) = C(yx). Now follow the proof of Case
1. O

3.4.2.LeEMMA. If C is a normal compressor, thercE,y) satisfies the metric (in)equalities up
to logarithmic additive precision.

PROOFE Only the triangular inequality is non-obvious. B3.2.2 C(xy) +C(z) < C(x2) +C(y2)

up to logarithmic additive precision. There are six podsies, and we verify the correctness of

the triangular inequality in turn for each of them. Assu@i&) < C(y) < C(2): ThenC(xy) —
C(x) <C(x2) —C(x) +C(y2) —C(y). AssumeC(y) < C(x) < C(z): ThenC(xy) —C(y) <C(x2) —

y) +C(yz) —C(x). AssumeC(X) < C(z) < C(y): ThenC(xy) —C(x) < C(xz) —C(x) +C(yz) —

2).

) <

C(
C(z). AssumeC(y) < C(z) <C(x): ThenC(xy) —C(y) < C(x2) —C(z) +C(yz) — C(y). Assume
C(z) <C(x) <C(y): ThenC(xy) —C(x) < C(xz) —C(2) +C(yz) —C(z). AssumeC(z) <C(y) <
C(x): ThenC(xy) —C(y) <C(xz) —C(z) +C(yz —C(2). 0

3.4.3.LEMMA. IfC is a normal compressor, thergEx,y) = max{C(x),C(y)}.

PROOF Consider a paifx,y). The maXC(xz) —C(z) : C(z) < C(y)} is C(x) which is achieved
for z= A, the empty word, wittC(A) = 0. Similarly, the maxC(yz) —C(z) : C(z2) < C(x)} is
C(y). Hence the lemma. O

3.5 Normalized Compression Distance

The normalized version of the admissible distafe€x,y), the compresso€ based approx-
imation of the normalized information distanc&3.1), is called thenormalized compression
distanceor NCD: Clxy) — min{C(x).C(y)}
Xy) —mi X),C(y
NCPUY) = raxcro.c
This NCD is the main concept of this work. It is the real-wovktsion of the ideal notion of
normalized information distance NID i3.3.]).

(3.5.1)

3.5.1.REMARK. In practice, the NCD is a non-negative numbet 0 < 1+ € representing how
different the two files are. Smaller numbers represent miondas files. Thee in the upper
bound is due to imperfections in our compression techniquégor most standard compression
algorithms one is unlikely to see anabove 0.1 (in our experiments gzip and bzip2 achieved
NCD ’s above 1, but PPMZ always had NCD at most 1).
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There is a natural interpretation to NQBy): If, say,C(y) > C(x) then we can rewrite
Clxy) —C(¥)
C(y)

That is, the distance NC@,y) betweerx andy is the improvement due to compressingsing

X as previously compressed “data base,” and compregdiogn scratch, expressed as the ratio
between the bit-wise length of the two compressed versiRaktive to the reference compressor
we can define the information iabouty asC(y) — C(y|x). Then, using3.2.3,

C(y) —C(y|x)
Cly)

That is, the NCD betweer andy is 1 minus the ratio of the informatiox abouty and the
information iny.

NCD(x,y) =

NCD(x,y) =1—

3.5.2.THEOREM. If the compressor is normal, then tINCD is a normalized admissible dis-
tance satsifying the metric (in)equalities, that is, a $amiiy metric.

PROOF If the compressor is normal, then by Lemi@d&.1and Lemma3.4.3 the NCD is a
normalized admissible distance. It remains to show it Besishe three metric (in)equalities.

1. By idempotency we have NQR, x) = 0. By monotonicity we have NC[X,y) > 0 for
everyx,y, with inequality fory # x.

2. NCD(x,y) = NCD(y,x). The NCD is unchanged by interchangixgndy in (3.5.7).

3. The difficult property is the triangle inequality. Witholoss of generality we assume
C(x) <C(y) < C(2). Since the NCD is symmetrical, there are only three triaimggual-
ities that can be expressed by NCDy), NCD(x,z), NCD(y, z). We verify them in turn:

(a) NCD(x,y) < NCD(x,z) + NCD(zy): By distributivity, the compressor itself satis-
fiesC(xy) + C(z) < C(xz) +C(zy). SubtractingC(x) from both sides and rewriting,
C(xy) —C(x) <C(xz) —C(x) +C(zy) —C(2z). Dividing by C(y) on both sides we find

C(xy) —C(x) - C(x2) —C(x) +C(zy) —C(2)
Cly) ~ C(y) '
The left-hand side is< 1.

i. Assume the right-hand side is 1. SettingC(z) = C(y) + A, and adding) to
both the numerator and denominator of the right-hand siadsyni only increase
and draw closer to 1. Therefore,

C(xy) —C(x)
C(y)
C(xz) —C(x) +C(zy) —C(z) + A
- Cly)+4
C(zx —C(x) , C(zy) —C(y)
C(2) Cd
which was what we had to prove.
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il. Assume the right-hand side is 1. We proceed like in the previous case, and
addA to both numerator and denominator. Although now the riginiehside de-
creases, it must still be greater than 1, and therefore gi-hiand side remains
at least as large as the left-hand side.

(b) NCD(x,z) < NCD(x,y) + NCD(y,z): By distributivity we haveC(xz) + C(y) <

C(xy) +C(yz). SubtractingC(x) from both sides, rearranging, and dividing both
sides byC(z) we obtain

C(x2 —C(x) _ Cxy) —C(x) €y —C(y)
Cz — C(2 Cz

The right-hand side doesn't decrease when we subs@ytefor the denominator
C(2) of the first term, sinc€(y) < C(z). Therefore, the inequality stays valid under
this substitution, which was what we had to prove.

(c) NCD(y,z) < NCD(y,x) + NCD(x,z): By distributivity we haveC(yz) + C(x) <
C(yx) +C(x2). SubtractingC(y) from both sides, using symmetry, rearranging, and
dividing both sides b¥(z) we obtain

Cly2 —Cly) _ Clxv) —C(x)  Cy2 —Cly).

C(2) C(2) C(2

The right-hand side doesn’t decrease when we subs@tiytefor the denominator
C(2) of the first term, sinc€(y) < C(z). Therefore, the inequality stays valid under
this substitution, which was what we had to prove.

O

Quasi-Universality: We now digress to the theory developedid]| which formed the mo-
tivation for developing the NCD . If, instead of the resulisoime real compressor, we substitute
the Kolmogorov complexity for the lengths of the compresfles in the NCD formula, the
result is the NID as in3.3.J). Itis universal in the following sense: Every admissibistance
expressing similarity according to some feature, that carcdimputed from the objects con-
cerned, is comprised (in the sense of minorized) by the NIDteNhat every feature of the data
gives rise to a similarity, and, conversely, every similadan be thought of as expressing some
feature: being similar in that sense. Our actual practiaesing the NCD falls short of this ideal
theory in at least three respects:

() The claimed universality of the NID holds only for indetigly long sequencesy. Once
we consider stringg,y of definite lengthn, it is only universal with respect to “simple” com-
putable normalized admissible distances, where “simpleams that they are computable by
programs of length, say, logarithmic m This reflects the fact that, technically speaking, the
universality is achieved by summing the weighted contrdsubf all similarity distances in the
class considered with respect to the objects considerety. Shmilarity distances of which the
complexity is small (which means that the weight is largejhwespect to the size of the data
concerned, kick in.
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(i) The Kolmogorov complexity is not computable, and itmsgrinciple impossible to com-
pute how far off the NCD is from the NID . So we cannot in gendradw how well we are
doing using the NCD .

(iif) To approximate the NCD we use standard compressiognaras like gzip, PPMZ, and
bzip2. While better compression of a string will always apg@mate the Kolmogorov complexity
better, this may not be true for the NCD . Due to its arithmietrm, subtraction and division, itis
theoretically possible that while all items in the formuket getter compressed, the improvement
is not the same for all items, and the NCD value moves away fiteenNID value. In our
experiments we have not observed this behavior in a nogdalshion. Formally, we can state
the following:

3.5.3.THEOREM. Let d be a computable normalized admissible distance and & haemal
compressor. TheNCD(x,y) < ad(x,y) + €, where for Gx) > C(y), we havex = D (x) /C(X)
ande = (C(x|y) — K(x]y))/C(x), with C(x|y) according to(3.2.3.

PROOF Fix d,C,x,y in the statement of the theorem. Since the NCD is symmetnaalcan,
without loss of generality, l62(x) > C(y). By (3.2.3 and the symmetry proper€(xy) = C(yx)
we haveC(x|y) > C(y|x). Therefore, NCDx,y) = C(x|y)/C(x). Letd(x,y) be the normalized
version of the admissible distan€Xx,y); that is,d(x,y) = D(x,y)/D"(x,y). Letd(x,y) =e
By (3.1.2, there are< 260" ¥+1 many(x,v) pairs, such thad(x,v) < eandC(y) < C(x). Since
d is computable, we can compute and enumerate all these Fdiesinitially fixed pair(x,y)
is an element in the list and its index takeseD" (x) + 1 bits. Therefore, given, they can
be described by at mostD" (x) + O(1) bits—its index in the list and a®(1) term account-
ing for the lengths of the programs involved in reconstngii given its index in the list, and
algorithms to compute functiordandC. Since the Kolmogorov complexity gives the length
of the shortest effective description, we hatéy|x) < eD"(x) + O(1). Substitution, rewrit-
ing, and usingK (x]y) < E(x,y) < D(x,y) up to ignorable additive terms (Secti@3), yields
NCD(x,y) = C(x]y)/C(X) < ae+ ¢, which was what we had to prove.

O

3.5.4.REMARK. Clustering according to NCD will group sequences togettiarare similar ac-
cording to features that are not explicitly known to us. Asé of what the compressor actually
does, still may not tell us which features that make senss tan be expressed by conglomerates
of features analyzed by the compressor. This can be explmterack down unknown features
implicitly in classification: forming automatically clusts of data and see in which cluster (if
any) a new candidate is placed.

Another aspect that can be exploited is exploratory: Givex the NCD is small for a pair
X,y of specific sequences, what does this really say about tlse semwhich these two sequences
are similar? The above analysis suggests that close sityilll be due to a dominating feature
(that perhaps expresses a conglomerate of subfeatureskinigointo these deeper causes may
give feedback about the appropriateness of the realized MiStances and may help extract
more intrinsic information about the objects, than thewblis division into clusters, by looking
for the common features in the data clusters.
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3.6 Kullback-Leibler divergence and NCD

NCD is sometimes considered a mysterious and obscure neeakinformation distance. In
fact, as we explain in this section, in some cases it can hegtitaf as a generalization and ex-
tension of older and well-established methods. The Nomedlinformation Distance is a purely
theoretical concept and cannot be exactly computed for#nesimplest files due to the inherent
incomputability of Kolmogorov Complexity. The Normaliz€&sbmpression Distance, however,
replaces the uncomputable K with an approximation basedpamtecular data compressor. Dif-
ferent data compression algorithms lead to different i@seof NCD. Modern data compression
programs use highly evolved and complicated schemes t@vastochastic and adaptive mod-
elling of the data at many levels simultaneously. These laliimpossible to analyze from a
precise mathematical viewpoint, and thus many considerenmodata compression as much an
art as a science. If, however, we look instead at the compreg®pular in UNIX in the 1970'’s,
we can begin to understand how NCD achieves its results. Ashee in this section, it turns
out that with such simple compressors, the NCD calculatesothl KL-divergence to the mean
Below we first (Sectior8.6.1) connect such compressors to entropy, and then (Se8t@g
relate them to KL-divergence.

3.6.1 Static Encoders and Entropy

The UNIX System Vpack command uses a static (non-adaptive) Huffman coding schheme
compress files. The method works in two passes. First, the fil is considered as a sequence
of 8-bit bytes, and a histogram is constructed to represenfrequency of each byte. Next, an
optimal Huffman code is constructed according to this lgsam, and is represented in memory
as a Huffman tree. This Huffman tree is written out as a vétngth header in the compressed
file. Finally, the algorithm makes a second pass throughlinariid encodes it using the Huffman
code it has constructed. Notice that the coding scheme duehange throughout the duration
of the file. It is this failure to adapt that makes this compogsamenable to mathematical anal-
ysis. In the following example, we analyze a hypotheticatistarithmetic coder which yields
simpler codelength equations. The simpler Huffman paclo@ecwill perform similarly but
must round upwards the codelengths of each symbol to a whotder of bits and thus can lose
at most 1 bit per symbol as compared to the arithmetic codmarited below.

Consider therefore the particular case of a simple stattoaetic codelS. Let S(D) represent
the function mapping a fileD, to the number of bits needed to encddewith S. A static
arithmetic encoder really models its input file as an i.iiddépendently, identically distributed)
Bernoulli process. For distributions of this type, the céelegth that is achieved very closely
approximates the empirical Shannon entropy of the 82 48 multiplied by the file size\p.
Thus, if data are indeed distributed according to a Bernputicess, then this encoder almost
achieves the theoretically ideal Shannon limit. Let us aixplhis in more detail. LeD be a file
over an alphabeX. Letn(D,i) denote the number of occurrences of symhialfile D, and let
Np denote the total number of symbols in file Then

Np = _%n(D,i). (3.6.1)

36



The empirical distributioncorresponding to fil® is defined as the probability distribution that
assigns a probability to each symbol in the alphabet given by
. n(D,i
Po(i) = (N ). (3.6.2)
D
The empirical distributiorPy is just the histogram of relative frequencies of the symlodIx
occurring inD.
It turns out that, when provided the empirical distributi®y) the theoretical arithmetic coder
Srequires just this many bits:

Z(D) = NpH(Pp), (3.6.3)
with H representingshannon entropy
H(Po) = 5 ~Pb(i)logRo (). (3.6.4)
IS

For a real static arithmetic coding implementati@nthere is a need to transmit a small fixed
sized header as a preamble to the arithmetic coding. Thidehgaovides an encoding of the
histogramPy corresponding to the filB to be encoded. This quantity is termgdadr||. So:

S(D) = NpH (Pp) + [|hd]]. (3.6.5)

To be fully precise, in a real implementation, the number it§ beeded is always an integer,
so 3.6.9 really needs to be rounded up; but the effects of this ch@gegligible, so we will
ignore it.

3.6.1.REMARK. Let us give a little bit more explanation d3.6.3. From the Kraft inequality
(Section2.4.1), we know that for any distributioR on stringsD € 2" of lengthN, there exists
a compressoZ such that for alD € 3N, Z(D) = —logP(D), where again we ignore rounding
issues. Now let us modé& according to a Bernoulli process, where each elemeit isf dis-
tributed independently according to the empirical distridn Py. Under this distribution, setting
D=xX1...%Xn,

N
Z(D) = —logP(D)=—log[]Pbo(xj)
fires
= —|ogi|€1PD(i)“<D=i>:—N%@mgﬂ;(i) (3.6.6)
= —N.%PD(i)IOQPD(D:_NEPD[_IOQPD(X)] (3.6.7)
= NH(Pp). (3.6.8)

Such a compressat makes use of the empirical distributié®y, so the encoding oD with
lengthZ(D) can only be decoded by a decoder who already kn@yvsThus, to turnZ into a
compressof that can be used on all sequences (and not only those witrea,dixedPp), it
suffices to first encodBy using some previously agreed-upon code, which tdkels|| bits, and
then encod® usingZ(D) bits. By (3.6.8 this is equal t0§.6.5.
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3.6.2 NCD and KL-divergence

We now connect the NCD based on a static arithmetic encodértive KL-divergence 31].
Consider two file$= andG with empirical distribution$= andPg:

() =" 5 o) = "o

(3.6.9)

There is a fileB that is the concatenation &f followed by G and has empirical distribution

n(F,i)+n(G,i)
Pa(i) = Ne NG (3.6.10)

The size forSrun onB is just the size of the histografihdr|| and the entropy oPs times the
number of symbols:

S(B) = |[[hdrl|+ (Nr +Ng)H(Ps)
= ||hdr||+(NF+NG)_§2_PB<i)|OgPB(i)

n(F.D)+n(G.i), _n(F,i)+n(G.i)

= [Ihdr|[ = (Nr +No) %
S

i NF + Ng Nr + Ng
B . . n(F,i)+n(G,i)
= ||hdr| —i;(n(F,l)Jrn(G,l))log N Ne (3.6.11)
Recall that Kullback-Leibler divergenc8]] is defined upon two distributior3,Q as
KL(P|| Q)= P(i)log@ (3.6.12)
2,709y ©

so that
S(B) = ||hdr|| + NrH (Pr) + NGH (Ps) + NeKL(P: || Ps) +NGKL(Ps || Ps). (3.6.13)

At this point we determine a formula fdNCDs. Recall that the NCD is defined i8.6.1) as a
function to determine an information distance between tvpui files:

C(xy) —min{C(x),C(y) }
max{C(x),C(y)}

NCD:(x,y) =

Here,C(xy) denotes the compressed size of the concatenatigidy, C(x) denotes the com-
pressed size of, andC(y) denotes the compressed size/o€ is a function returning a length,
usually measured in bits, and realized by a particular datapcession program. Different al-
gorithms will yield different behaviors for this quotienEor our simple compress@ we get

NCDs(F, G) — S(Br)n QQQS(QS(}G)} (3.6.14)
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Assume without loss of generality thatF) < S(G), thenNCDs(F,G) =
[[hdr][ 4+ NeH (Pr) +NgH (Ps) + NeKL(P- || P) +NeKL(Ps || Pg) — ||hdr|| — NeH (Pr)
[hdr]| +NeH (Ps)
NH (Ps) + NeKL (P || Ps) + NGKL(Ps || Ps)

= . 3.6.15
|hdr|| + NgH (Pg) ( )
In the limit, asNg g — oo,
- _ NeKL(Pe || Ps) +NeKL(Ps || Ps)
NF7|II\I?—>00NCDS(F’ G) = 1+ NGH (Pg)
REKL(Pe || Pg) +KL(Pg || Pg
gy et H()PG> FellPe). (3.6.16)

Notice that 0< % < 1. It is apparent thalg represents an aggregate distribution formed by
combiningPr: ancfPG. WhenNg = Ng,

KL(Pe || Ps) + KL(Ps || Ps)

lim NCDs(F,G) =1+ , 3.6.17

N ,Ng—0 Ds(F.6) max{H (Pr),H(Ps)} ( )

or usingA(Pr, Ps) to represeninformation radiug52] or total KL-divergence to the med82],
then

im  NCDs(F,G) = 1+ — AP Pe) (3.6.18)

Ne ,Ng—0 max{H(Ps),H(Pg)}
We may interpretNCDs to behave as a ratio of information radius to maximum indiaiden-
tropy. The static arithmetic cod&severely violates theubadditivityassumption of aormal
compressofSection3.2) and causes a positive offset biasfef. In generaINCDs behaves lo-
cally quadratically when at least one of the two files invdl¥as high entropy. This fact can be
demonstrated by use of Taylor series to approximate theitbga inNCDs aboutPs (we omit
the details). When bothl (P-) andH(Pg) are small,NCDs can grow hyperbolically without
bound.

Let us now turn to a new compressor, T is a first-order static arithmetic coder. It maintains
a table of|Z| separate contexts, and corresponds to modelling data as-arfier Markov chain.
In fact, it can be shown that the correspondence betweb, KL, andH continues for any
finite-order Markov chain (we omit the details).

We have done an experiment to verify these relations. Inetkieriment, we create files of
exact empirical distributions. The alphabetis- {0,1}. The "fixed" fileF is set to & = 0.55
Bernoulli binary distribution, i.eF consists of 55% 1s. The other filzis allowed to vary from
0.30< 8 < 0.80. We have used Michael Schindler's Range encddegs a fast and simple
arithmetic coder. The results are in Figid. The graph’s horizontal axis represents empirical
bias in fileG. The||hdr|| addend is necessary to allow for the empirical discretesfimibbability
distribution for the input file to be encoded so that duringatepression the arithmetic decoder
statistics can accurately represent those of the origimab@ing. There is good agreement be-
tween theNCDg and the prediction based on information radius and maxirmtnopy. In these
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experiments, 200000 symbol files were usedH@ndG. The deviation between tH¢CDg and
the information radius (both shown in the graph, with neaklgrlapping curves) is on the order
of 0.001 bit, and this can be attributed to imperfections in caapion, header length, etc.

1.12

‘ NCD
1+(IRad/max(H)) -------

11+

1.08 - \

Distance

0.98

I I I I I I I I I
30 35 40 45 50 55 60 65 70 75 80
Percent bias of binary Bernoulli distribution

Figure 3.1: A comparison of predicted and observed valueS @Dr.

3.6.2.REMARK. It seems clear that many simple compressors yield simpkedtform formu-
las for specific variants of NCD. It is not clear whether sudioge correspondence between the
NCD and KL-divergence (or other simple analytic quantjtigtdll holds in realistic situations,
where a sophisticated compressor (such as gzip or ppm, pigpased on real-world data. The
Shannon entropy and KL-divergence agectedcodelengths, i.e. theoretical averages taken
with respect to some hypothesized distribution. The NCDasell onactual, individual se-
guence codelengths, obtained with some compress@y the Kraft inequality (Chapter 2},
must correspond to some distributiBrsuch that for all data sequend@of given length,

Z(D) = —logP(D).
In case of the static arithmetic encoder, it turned out thigteéxpression could be rewritten as
Z(D) = ||hdr[| —logPb (D) = [|hdr|| + NpEp,[—logPo (D)),

where the latter equality follows fron83(6.6 and @.6.7). These two crucial steps, which replace
a log-probability of an actually realized sequence by itseetation, allow us to connect NCD
with Shannon entropy, and then, KL-divergence. It can tgddi seen that a similar replacement
can still be done if a fixed-order arithmetic coder is usedrésponding, to, sayk-th order
Markov chains). However, the larg&r the larger the size of the header will be, and thus the
more data are needed before the size of the header beconleghbheg With real data, not
generated by any finite order chain, and modern compresstbish are not fixed-order), it is
therefore not clear whether an analogue36(18 still holds. This would be an interesting topic
for future research.
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3.7 Conclusion

In this chapter we have introduced the idea of a mathematis&ince function and discussed the
notion of a similarity metric. We defined NCD and the relatd® Nunction, and talked about
some properties of each. A strategy for calculating thesetions using real compressors was
outlined, and a mathematical connection was made betweeantiaytar case of NCD and the
familiar statistical quantity called KL-divergence.
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Chapter 4

A New Quartet Tree Heuristic For Hierarchical
Clustering

This chapter is about the quartet method for hierarchiagtering. We introduce the notion of
hierarchical clustering in Sectioh3, and then proceed to explain the quartet method in Sec-
tion 4.4. We address computational complexity issues in Sectidril. Our line of reasoning
leads naturally to a simple but effective non-determiniatgorithm to monotonically approx-
imate a best-fitting solution to a given input quartet cost. liWe describe the algorithm in
Section4.6.1, with performance analysis in Sectid6.2 In the remainder of the chapter we
present a series of experiments demonstrating the tregimgigystem.

4.1 Summary

We consider the problem of constructing an optimal-weiggd from the ’\BZ) weighted quartet
topologies om objects, where optimality means that the summed weighieoéthbedded quartet
topologies is optimal (so it can be the case that the optineal €mbeds all quartets as non-
optimal topologies). We present a heuristic for reconsitngcthe optimal-weight tree, and a
canonical manner to derive the quartet-topology weighisnfa given distance matrix. The
method repeatedly transforms a bifurcating tree, with bjects involved as leaves, achieving
a monotonic approximation to the exact single globally mjali tree. This contrasts to other
heuristic search methods from biological phylogeny, likéAML or quartet puzzling, which,
repeatedly, incrementally construct a solution from a cendrder of objects, and subsequently
add agreement values. We do not assume that there exis¢esaftircating supertree that embeds
each quartet in the optimal topology, or represents thauwkist matrix faithfully—not even under
the assumption that the weights or distances are corrupt@dnibeasuring process. Our aim is
to hierarchically cluster the input data as faithfully asgble, both phylogenetic data and data
of completely different types. In our experiments with matwata, like genomic data, texts
or music, the global optimum appears to be reached. Our meshcapable of handling over
100 objects, possibly up to 1000 objects, while no existingrtet heuristic can computationally
approximate the exact optimal solution of a quartet treeafenthan about 20-30 objects without
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running for years. The method is implemented and AVAILAB$egpaublic software.

4.2 Introduction

We present a method of hierarchical clustering based on al fiast randomized hill-climbing
heuristic of a new global optimization criterion. Given & theights of all quartet topologies, or
a matrix of the pairwise distances between the objects, waarobn output tree with the objects
as leaves, and we score how well the tree represents thenation in the distance matrix on
a scale of 0 to 1. As proof of principle, we experiment on thdeéa sets, where we know
what the final answer should be: (i) reconstruct a tree fromstanice matrix obtained from a
randomly generated tree; (ii) reconstruct a tree from fistaining artificial similarities; and
(i) reconstruct a tree from natural files of heterogenedata of vastly different types. We
give examples in whole-genome phylogeny using the wholechindrial DNA of the species
concerned, in SARS virus localization among other virrd amanalyzing the spreading of the
bird-flu H5N1 virus mutations. We compare the hierarchidastering of our method with a
more standard method of two-dimensional clustering (tansti@t our dendrogram method of
depicting the clusters is more informative). The new metivad developed as an auxiliary tool
for [25, 26, 22], since the available quartet tree methods were too slowitey were exact, and
too inaccurate or uncertain when they were statisticabimemtal. Our new quartet tree heuristic
runs orders of magnitudes faster than any other exact quaatemethod, and gives consistently
good results in practice.

Relation with Previous Work: The Minimum Quartet Tree Cost (MQTC) problem below
for which we give a new computational heuristic is relatedht® Quartet Puzzling problem,
[109. There, the quartet topologies are provided with a prdiighalue, and for each quartet
the topology with the highest probability is selected (r@mdy, if there are more than one) as the
maximume-likelihood optimal topology. The goal is to find duscating tree that embeds these
optimal quartet topologies. In the biological setting itassumed that the observed genomic
data are the result of an evolution in time, and hence can fresented as the leaves of an
evolutionary tree. Once we obtain a proper probabilisticl@onary model to quantify the
evolutionary relations between the data we can search éordle tree. In a quartet method one
determines the most likely quartet topology under the gassumptions, and then searches for a
tree that represents as many of such topologies as is pgsHitiie theory and data were perfect
then there was a tree that represented precisely all mesy ikiartet topologies. Unfortunately,
in real life the theory is not perfect, the data are corruptet the observation pollutes and
makes errors. Thus, one has to settle for embedding as maslylkealy quartet topologies
as possible, do error correction on the quartet topologed,so on. Fon objects, there are
(2n—5)!I! = (2n—5) x (2n—3) x --- x 3 unrooted bifurcating trees. Forlarge, exhaustive
search for the optimal tree is impossible, and turns out tdlBehard, and hence infeasible in
general. There are two main avenues that have been taken:

(i) Incrementally grow the tree in random order by stepwiddiion of objects in the current
optimal way, repeat this for different object orders, and agreement values on the branches,
like DNAML [ 39, or quartet puzzling109.
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(i) Approximate the global optimum monotonically or comeit, using geometric algorithm
or dynamic programmingd], and linear programminglfL9.

These methods, other methods, as well as methods relatée tI®T problem, cannot
handle more than 15-30 objecfslp, 81, 89, 12] directly, even while using farms of desktops.
To handle more objects one needs to construct a supertmeelieconstituent quartet trees for
subsets of the original data set35], as in [81, 89].

In 2003 in 5, 26, 22] we considered a new approach, liKelLH], and possibly predating it.
Our goal was to use a quartet method to obtain high-qualésenchical clustering of data from
arbitrary (possibly heterogeneous) domains, not nedgsparglogeny data. We thus do not as-
sume that there exists a true evolutionary tree, and oursamotito just embed as many optimal
guartet topologies as is possible. Instead,fabjects we consider aII(S) possible quartet
topologies, each with a given weight, and our goal is to finel tilee such that the summed
weights of the embedded quartet topologies is optimal. Weldg an heuristic that monotoni-
cally approximates this optimum, a figure of merit that qifee®t the quality of the best current
candidate tree. We show that the problem is NP-hard, but weeayiidence that the natural data
sets we consider have qualities of smoothness so that thetoroa heuristic obtains the global
optimum in a feasible number of steps.

Materials and Methods: Some of the experiments reported are taken fr@® p6, 22
where many more can be found. The data samples we used weaiaambfrom standard data
bases accessible on the world-wide web, generated by wessedr obtained from research
groups in the field of investigation. We supply the detailthvaach experiment. The cluster-
ing heuristic generates a tree with an optimality quantifice called standardized benefit score
or S(T) value in the sequel. Contrary to other phylogeny methodsdevaot have agreement
or confidence values on the branches: we generate the begtassible, globally balancing all
requirements. Generating trees from the same distancé&xmany times resulted in the same
tree in case of higl®(T) value, or a similar tree in case of moderately hfii) value, for all
distance matrices we used, even though the heuristic i9onaizéd. That is, there is only one
way to be right, but increasingly many ways to be increagimgbng which can all be realized
by different runs of the randomized algorithm. The qualitylee results depends on how well
the hierarchical tree represents the information in theimat hat quality is measured by the
S(T) value, and is given with each experiment. In certain natdash sets, such as H5N1 ge-
nomic sequences, consistently higfi') values are returned even for large sets of objects of 100
or more nodes. In other discordant natural data sets hoytnes®(T) value deteriorates more
and more with increasing number of elements being put indheegree. The reason is that with
increasing size of a discordant natural data set the projeof the information in the distance
matrix into a ternary tree gets necessarily increasingiodied because the underlying structure
in the data is incommensurate with any tree shape whatsdawéis way, larger structures may
induce additional “stress” in the mapping that is visibléager and lowelS(T) scores.

Figures: We use two styles to display the hierarchical clusters. &dase of genomics
of Eutherian orders, it is convenient to follow the dendewgs that are customary in that area
(suggesting temporal evolution) for easy comparison wigliterature. In the other experiments
(even the genomic SARS experiment) it is more informativdigplay an unrooted ternary tree
(or binary tree if we think about incoming and outgoing edgesh explicit internal nodes. This
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facilitates identification of clusters in terms of subtreested at internal nodes or contiguous
sets of subtrees rooted at branches of internal nodes.

4.3 Hierarchical Clustering

Given a set of objects as points in a space provided with ar{faogssarily metric) distance
measure, the associat@dtance matribhas as entries the pairwise distances between the objects.
Regardless of the original space and distance measurajways possible to configureobjects

in n-dimensional Euclidean space in such a way that the asedcth$tances are identical to
the original ones, resulting in an identical distance matithis distance matrix contains the
pairwise distance relations according to the chosen measwuaw form. But in this format that
information is not easily usable, since for- 3 our cognitive capabilities rapidly fail. Just as
the distance matrix is a reduced form of information repméag the original data set, we now
need to reduce the information even further in order to aeh#&ecognitively acceptable format
like data clusters. To extract a hierarchy of clusters frbm distance matrix, we determine a
dendrogram (ternary tree) that agrees with the distancexa&icording to a cost measure. This
allows us to extract more information from the data thanflastclustering (determining disjoint
clusters in dimensional representation).

Clusters are groups of objects that are similar accordingutometric. There are various
ways to cluster. Our aim is to analyze data sets for which tlmeber of clusters is not known a
priori, and the data are not labeled. As state®i®},[conceptually simple, hierarchical clustering
is among the best known unsupervised methods in this setitdjthe most natural way is to
represent the relations in the form of a dendrogram, whidustomarily a directed binary tree
or undirected ternary tree. With increasing number of da&tas, the projection of the distance
matrix information into the tree representation format rgaydistorted. Not all natural data sets
exhibit this phenomenon; but for some, the tree gets inorghsdistorted as more objects are
added. A similar situation sometimes arises in using aligmncost in genomic comparisons.
Experience shows that in both cases the hierarchical cingtenethods seem to work best for
small sets of data, up to 25 items, and to deteriorate for démmnenot all) larger sets, say 40
items or more. This deterioration is directly observabltheS(T) score and degrades solutions
in two common forms: tree instability when different or velhjferent solutions are returned on
successive runs or tree “overlinearization” when someskttaproduce caterpillar-like structures
only or predominantly. In case a large set of objects, saydhjécts, clusters with higg(T)
value this is evidence that the data are of themselvesitegand the quartet-topology weights,
or underlying distances, truly represent to similarityatignships between the data.

4.4 The Quartet Method

Given a selN of n objects, we consider every set of four elements from our satadements;
there are(}}) such sets. From each et v,w,x} we construct a tree of arity 3, which implies that
the tree consists of two subtrees of two leaves each. Letlsich a tree guartet topology The
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set of J}}) quartet topologies induced yis denoted byQ. We denote a partitiofu, v}, {w, x}

of {u,v,w,x} by uvjwx. There are three possibilities to partiti¢n, v,w,x} into two subsets of
two elements each: (@viwx, (i) uwjvx, and (iii) uxjvw. In terms of the tree topologies: a vertical
bar divides the two pairs of leaf nodes into two disjoint sebs$ (Figuret.1).

Figure 4.1: The three possible quartet topologies for thefdeaf labelsu,v,w,x

4.4.1.DEFINITION. Define abinary dendrogranas an element from the clagsof undirected
trees of arity 3 witm > 4 leaves, labeled with the elementshf

Such trees have leaves andh — 2 internal nodes. For any given tré&efrom this class, and any
set of four leaf labels, v,w,x € N, we sayT is consistentvith uvjwxif and only if the path from

uto v does not cross the path fromto x. It is easy to see that precisely one of the three possible
guartet topologies for any set of 4 labels is consistent fgivan tree from the above class, and
therefore a tree front contains preciseI)(Q) different quartet topologies. We may think of a
large tree having many smaller quartet topologies embewditbdh its structure. Commonly the
goal in the quartet method is to find (or approximate as cjosglpossible) the tree that embeds
the maximal number of consistent (possibly weighted) qiaopologies from a given sBtC Q

of quartet topologiesy3] (Figure 4.2). A weight function W P — % , with ® the set of real
numbers determines the weights. The unweighted case isWkevjwx) = 1 for all uvjwx € P.

4.4.2.DEFINITION. The (weightedMaximum Quartet Consistency (MQ®) defined as fol-
lows:

GIVEN: N, P, andWw.

QUESTION: FindTp = maxy ¥ {W(uviwx) : uvjwx € P anduviwx is consistent witH }.
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Figure 4.2: An example tree consistent with quartet topplogwx .

4.5 Minimum Quartet Tree Cost

The rationale for the MQC optimization problem is the asstiompthat there is exists a trélg

as desired in the clags under consideration, and our only problem is to find it. Tisistemption
reflects the genesis of the method in the phylogeny communityder the assumption that
biological species developed by evolution in time, &b a subset of the now existing species,
there is a phylogenf (tree in7') that represents that evolution. The set of quartet topetog
consistent with this tree, has one quartet topology pertguashich is the true one. The quartet
topologies inP are the ones which we assume to be among the true quartebggml and
weights are used to express our relative certainty abaua#sumption concerning the individual
guartet topologies iR.

However, the data may be corrupted so that this assumptioa isnger true. In the gen-
eral case of hierarchical clustering we do not even haveaigmowledge that certain quartet
topologies are objectively true and must be embedded. Ratkeeare in the position that we
can somehow assign a relative importance to the differeattgutopologies. Our task is then
to balance the importance of embedding different quarfeilogies against one another, leading
to a tree that represents the concerns as well as possiblstavWérom a cost-assignment to the
guartet topologies; the method by which we assign costsetﬁ(fb guartet topologies is for now
immaterial to our problem. Given a g&tof n objects, leQQ be the set of quartet topologies, and
letC: Q — & be acost functiorassigning a real valued cdSwx to each quarteiviwx € Q.

4.5.1.DEFINITION. Thecost G of a treeT with a setN of leaves (external nodes of degree 1)
is defined bYCr = ¥ (yvwxyen{Cuvwx : T IS consistent withuvjwx}—the sum of the costs of all
its consistent quartet topologies.
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4.5.2.DEFINITION. GivenN andC, theMinimum Quartet Tree Cost (MQT@ minr{Cr : T is
a tree with the se\ labeling its leavegs

We normalize the problem of finding the MQTC as follows: Cadesithe list of all possible
guartet topologies for all four-tuples of labels under ¢desation. For each group of three
possible quartet topologies for a given set of four lalelsw, x, calculate a best (minimal) cost

m(u, v, W, X) = mi n{Cuv\WX7 Cunivxs Cux\vw}

and a worst (maximal) codf (u, v, w, X) = max{ Cuyiwx; Cumjvx, Cuxww} - Summing all best quartet
topologies yields the best (minimal) cast= 3 ¢, ywxjcn M(U,V, W, X). Conversely, summing
all worst quartet topologies yields the worst (maximal)tdds= Y 1y cn M(U,V,W,X). For
some distance matrices, these minimal and maximal valuesatbe attained by actual trees;
however, the scor€r of every treeT will lie between these two values. In order to be able to
compare the scores of quartet trees for different numbeabjelcts in a uniform way, we now
rescale the score linearly such that the worst score mapsatadhe best score maps to 1:

4.5.3.DEFINITION. Thenormalized tree benefit scor¢™ is defined by
ST)=(M-Cr)/(M—m).

Our goal is to find a full tree with a maximum value $fT ), which is to say, the lowest
total cost. Now we can rephrase the MQTC problem in such a hatysblutions of instances of
different sizes can be uniformly compared in terms of reéatjuality:

4.5.4.DEFINITION. Definition of theMQTC problem

GIVEN: N andC.

QUESTION: Find a tre@p with S(Tp) = max{S(T) : T is a tree with the sd\l labeling its
leaves.

4.5.1 Computational Hardness

The hardness of Quartet Puzzling is informally mentionetthénliterature 119, 81, 89], but we
provide explicit proofs. To express the notion of compwtadil difficulty one uses the notion
of “nondeterministic polynomial time (NP)". If a problem cerningn objects is NP-hard this
means that the best known algorithm for this (and a wide dasgynificant problems) requires
computation time exponential in. That is, it is infeasible in practice. THdQC decision
problemis the following: Given a seN of n objects, letT be a tree of which th& leaves
are labeled by the objects, and @be the set of quartet topologies a@¢ be the set of quartet
topologies embedded ih. Given a set of quartet topologiBsC Q, and an integek, the problem
is to decide whether there is a binary tréesuch thatPQr > k. In [10§ it is shown that
the MQC decision problem is NP-hard. We have formulated tRehirdness of the so-called
incompleteMQC decision problem, the less genetamplete MQC decision probleraquiresP

to contain precisely one quartet topology per quartet olN,oénd is proven to be NP-hard as
wellin [12].

49



4.5.5.THEOREM. The MQTC decision problem is NP-hard.

PROOF By reduction from the MQC decision problem. For every MQCid®n problem one
can define a corresponding MQTC decision problem that hasatime solution: give the quartet
topologies inP cost 0 and the ones IQ — P cost 1. Consider the MQTC decision problem: is
there a tred with the seiN labeling its leaves such th@f < (}) —k? An alternative equivalent
formulation is: is there a tre€ with the setN labeling its leaves such that

M—(2)+k?

ST >~

Note that every tre& with the setN labeling its leaves has precisely one out of the three quarte
topologies of every of thé})) quartets embedded in it. Therefore, the @st= () — |PNQr|.

If the answer to the above question is affirmative, then thabmar of quartet topologies iR
that are embedded in the tree excekedsit is not then there is no tree such that the number of
guartet topologies i embedded in it exceeds This way the MQC decision problem can be
reduced to the MQTC decision problem, which shows also titerlto be NP-hard. O

Is it possible that the be§(T) value is always one, that is, there always exists a tree that
embeds all quartets at minimum cost quartet topologies%i@enthe case = [N| = 4. Since
there is only one quartet, we can Jgtequal to the minimum cost quartet topology, and have
S(To) = 1. A priori we cannot exclude the possibility that for evéhyandC there always is a
treeTo with S(Tp) = 1. In that case, the MQTC Problem reduces to finding TgatHowever,
the situation turns out to be more complex. Note first thastteof quartet topologies uniquely
determines a tree i@, [15].

4.5.6.LEMMA. Let T, T’ be different labeled trees im and let G-, Q- be the sets of embedded
guartet topologies, respectively. Then; @ Q.

A complete sedf quartet topologies oNl is a set containing precisely one quartet topology
per quartet. There ard® such combinations, but onlﬁi labeled undirected graphs amodes
(and therefore7 | < 2(2>). Hence, not every complete set of quartet topologies spards to
a tree in7 . This already suggests that we can weight the quartet tgmsan such a way that
the full combination of all quartet topologies at minimakt®does not correspond to a tree in
7, and henc&(Tp) < 1 for To € 7 realizing the MQTC optimum. For an explicit example of
this, we use that a complete set corresponding to a tree must satisfy certain transitivity
properties, 29, 2§]:

45.7.LEMMA. LetT be atree inthe considered class with leaves N, Q thd sefantet topolo-
gies and @ C Q. Then @ uniquely determines T if

(i) Qo contains precisely one quartet topology for every quaest

(i) Forall {a,b,c,d,e} CN, if ablbc,abjdec Q then alicec Q, as well as if alcd, bc|dec Q
then abdec Q.
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4.5.8.THEOREM. There are N (with n= |N| = 5) and a cost function C such that, for every
T € 7, §T) does not exceedl/5.

ProOF ConsiderN = {u,v,w,x,y} andC(uvjwx) = 1 —¢g(g > 0),C(uwixv) = C(uxvw) = O,
C(xyJuv) = C(wyluv) = C(uylwx) = C(vy|wx) = 0, andC(abjcd) = 1 for all remaining quartet
topologiesablcd € Q. We see thaM =5—¢, m= 0. The treelp = (Y, ((u,V), (W, X))) has cost
Cr, = 1—¢, since it embeds quartet topologi@s|xv, Xyjuy, wyjuv, uyjwx, vyjwx. We show that
To achieves the MQTC optimunCase 1:If a treeT # Top embedauvjwx, then it must by Item
(i) of Lemma4.5.7also embed a quartet topology containynipat has cost 1.

Case 2:If atreeT # To embedaiw|xvandxy|uyv, then it must by Item (ii) of the Lemm&.5.7
also embedw|xy, and hence have cdst > 1. Similarly, all other remaining cases of embedding
a combination of a quartet topology not containyngf O cost with a quartet topology containing
y of O cost inT, imply an embedded quartet topology of cost Tr'in O

Altogether, the MQTC optimization problem is infeasiblepractice, and natural data can
have an optima$(T) < 1. In fact, it follows from the above analysis that to detere®(T) in
general is NP-hard. InlP] a polynomial time approximation scheme for complete MQ@xs
hibited, a theoretical approximation scheme allowing geraximation of the optimal solution
up to arbitrary precision, with running time polynomial imetinverse of that precision. We say
“theoretical” since that algorithm would run in somethirkgln!®. For incomplete MQC it is
shown that even such a theoretical algorithm does not exiétss P=NP. Hence, computation
of the MQTC optimum, and even its approximation with giveagision, requires superpolyno-
mial time unless P=NP. Therefore, any practical approadabtain or approximate the MQTC
optimum requires heuristics.

4.6 New Heuristic

Our algorithm is essentially randomized hill-climbingingparallellized Genetic Programming,
where undirected trees evolve in a random walk driven by agpiteed fithess function. We are
given a selN of n objects and a weighting functiof'.

4.6.1.DEFINITION. We define asimple mutatioron a labeled undirected ternary tree as one of
three possible transformations:

1. Aleaf swap which consists of randomly choosing two leaf nodes and pugpthem.

2. A subtree swapwhich consists of randomly choosing two internal nodes swdpping
the subtrees rooted at those nodes.

3. A subtree transferwhereby a randomly chosen subtree (possibly a leaf) isdethand
reattached in another place, maintaining arity invariants

Each of these simple mutations keeps the number of leaf rmu®snternal nodes in the tree
invariant; only the structure and placements change.

4.6.2.DEFINITION. A k-mutationis a sequence & simple mutations. Thus, a simple mutation
is a 1-mutation.
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4.6.1 Algorithm

Step 1: First, a random tre@ € 7 with 2n— 2 nodes is created, consistingroeaf nodes (with
1 connecting edge) labeled with the names of the data item$y-a2 non-leaf oiinternalnodes
labeled with the lowercase letter “k” followed by a uniquéeger identifier. Each internal node
has exactly three connecting edges.

Step 2: For this treeT, we calculate the total cost of all embedded quartet topesogom-
puteS(T).

CommentaA tree is consistent with precisegfof all quartet topologies, one for every quartet.
A random tree is likely to be consistent with abc%Jd)f the best quartet topologies—nbut this is
necessarily imprecise because of dependencies.

Step 3: Thecurrently best known tregariableTg is settoT: To« T.

CommentThis Ty is used as the basis for further searching.

Step 4: Pick a numbek with probability p(k) = ¢/(k(logk)?) where Yc= S, 1/(k(logk)?).

Comment: This numberk is the number of simple mutations that we will perform in the
nextk-mutation. The probability distributiop(k) is easily generated by running a random fair
bit generator and sdtto the length of the first self-delimiting sequence generafehat is, if
X=X1...% € {0,1}¥ (|x| = k> 1), thenx= 1¥10x, X = [x|x, andx” = [¥|X. Thus, the length
IX"| = k+logk+2loglogk. The probability of generating’ corresponding to a givenof length
k by fair coin flips is 2'¥'| = 2-k-logk-2loglogk — ok /(k(|ogk)2). The probability of generating
X" corresponding tsome »of lengthk is 2¢ times as large, that is/1k(logk)?). In practice, we
used a “shifted” fat tail distribution A (k+ 2) (logk + 2)?)

Step 5: Compose &-mutation by, for each such simple mutation, choosing orte®three
types listed above with equal probability. For each of th&s®ple mutations, we uniformly at
random select leaves or internal nodes, as appropriate.

CommentNotice that trees which are close to the original tree (imteof number of simple
mutation steps in between) are examined often, while tiegtsare far away from the original
tree will eventually be examined, but not very frequently.

Step 6: In order to search for a better tree, we simply apply kkrautation constructed in
Step 50n Ty to obtainT’, and then calculat&(T’). If S(T') > S(Tp), then replace the current
candidate inlp by T (as the new best tree)y < T.

Step 7:If §(Tp) = 1 or atermination condition to be discussed below holds, then output the
tree inTp as the best tree and halt. Otherwise, g&tep 4

4.6.3.REMARK. We have chosep(k) to be a “fat-tail” distribution, with the fattest tail posde,

so that we may concentrate maximal probability also on trgelavalues ok. That way, the
likelihood of getting trapped in local minima is minimizelh contrast, if one would choose an
exponential scheme, likg(k) = ce X, then the larger values &fwould arise so scarcely that
practically speaking the distinction between being alisbjurapped in a local optimum, and
the very low escape probability, would be insignificant. €idering positive-valued probability
mass functions|: A’ — (0,1], with ¢ the natural numbers, as we do here, we note that such a
function (i) lim_. q(k) = 0, and (i)Y g_; q(k) = 1. Thus, every function of the natural numbers
that has strictly positive values and converges can be rimedato such a probability mass
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function. For smooth analytic functions that can be exmeéssseries of fractional powers and
logarithms, the borderline between converging and divergs as follows:y 1/k, S 1/(klogk),

s 1/(klogkloglogk) and so on diverge, whilg 1/k? 5 1/(k(logk)?),s 1/(klogk(loglogk)?)
and so on converge. Therefore, the maximal fat tail of a “dimdfanction f (x) with 3 f(x) < o
arises for functions at the edge of the convergence famhig distributionp(k) = ¢/ (k(logk)?)

is as close to the edge as is reasonable, and because theodssgixc— X’ is a prefix code
we havey 1/(k(logk)?) < 1 by the Kraft Inequality (see for exampléd]) and therefores > 1.
Let us see what this means for our algorithm using the chomsrbdtion p(k). ForN = 64,
say, we can change any treednto any other tree i with a 64-mutation. The probability
of such a complex mutation occurring is quite large with sadht tail: 1/(64-6%) = 1/2304,
that is, more than 40 times in 100,000 generations. If we etrogt of a local minimum with
already a 32-mutation, then this occurs with probabilitieast /800, so 125 times, and with a
16-mutation with probability at least/196, so 510 times.

4.6.2 Performance

The main problem with hill-climbing algorithms is that thegn get stuck in a local optimum.
However, by randomly selecting a sequence of simple mutstitonger sequences with de-
creasing probability, we essentially run a Metropolis Mo@tarlo algorithm 83|, reminiscent
of simulated annealingbp] at random temperatures. Since there is a nonzero protyataifi
every tree in7 being transformed into every other treezinthere is zero probability that we get
trapped forever in a local optimum that is not a global optimT hat is, trivially:

4.6.4.LEMMA. (i) The algorithm approximates the MQTC optimal solutionnoimnically in
each run.

(i) The algorithm without termination condition solvesetiMQTC optimization problem
eventually with probability 1 (but we do not in general knolen the optimum has been reached
in a particular run).

The main question therefore is the convergence speed ofghgtam on natural data, and
a termination criterion to terminate the algorithm when veeédnan acceptable approximation.
From the impossibility result inl[2] we know that there is no polynomial approximation scheme
for MQTC optimization, and whether our scheme is expectdgnmmial time seems to require
proving that the involved Metropolis chain is rapidly migifii16, a notoriously hard and gen-
erally unsolved problem. In practice, in our experimentrehis unanimous evidence that for
the natural data and the weighting function we have usediergance is always fast. We have
to determine the cost df}) quartets to determine ea&T) value. Hence the algorithm runs in
time at least that much. In experiments we found that for #mesdata set different runs con-
sistently showed the same behavior, for example Figudéor a 60-object computation. There
the S(T) value leveled off at about 70,000 examined trees, and tineination condition was
“no improvement in 5,000 trees.” Different random runs @& #tgorithm nearly always gave the
same behavior, returning a tree with the sei€) value, albeit a different tree in most cases
with hereS(T) ~ 0.865, a relatively low value. That is, since there are manysaayind a tree
of optimal S(T) value, and apparently the algorithm never got trapped invalddocal optimum.
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Figure 4.3: Progress of a 60-item data set experiment aner. ti

For problems with higls(T) value, as we see later, the algorithm consistently retuttnedame
tree. This situation is perhaps similar to the behavior ef$implex method in linear program-
ming, that can be shown to run in exponential time on a badbgseh problem instance, but in
practice on natural problems consistently runs in lingageti

Note that if a tree is ever found such tI&{{) = 1, then we can stop because we can be
certain that this tree is optimal, as no tree could have adowast. In fact, this perfect tree result
is achieved in our artificial tree reconstruction experit{&ection4.6.5 reliably in a few min-
utes. For real-world dat&(T) reaches a maximum somewhat less than 1, presumably reflectin
distortion of the information in the distance matrix datatbg best possible tree representation,
as noted above, or indicating getting stuck in a local optimar a search space too large to
find the global optimum. On many typical problems of up to 4{eots this tree-search gives a
tree withS(T) > 0.9 within half an hour. For large numbers of objects, tree isgpitself can
be slow: as this takes ordaf computation steps. Current single computers can score atre
this size in about a minute. Additionally, the space of triedarge, so the algorithm may slow
down substantially. For larger experiments, we used thed@ram called partree (part of the
CompLearn package]]) with MPI (Message Passing Interface, a common standagd o8
massively parallel computers) on a cluster of workstatiargarallel to find trees more rapidly.
We can consider the graph mapping the achieSgd) score as a function of the number of
trees examined. Progress occurs typically in a sigmoiddiifen towards a maximal value 1,
Figure4.3.
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4.6.3 Termination Condition

The termination conditionis of two types and which type is used determines the number of
objects we can handle.

Simple termination conditionVe simply run the algorithm until it seems no better trees are
being found in a reasonable amount of time. Here we typidalijinate if no improvement in
S(T) value is achieved within 100,000 examined trees. Thisraoites simple enough to enable
us to hierarchically cluster data sets up to 80 objects invehfgurs. This is way above the 15-30
objects in the previous exact (non-incremental) methoeks istroduction).

Agreement termination conditionin this more sophisticated method we select a number
2 <r <6 of runs, and we runinvocations of the algorithm in parallel. Each time%(i1 ) value
inruni=1,...,ris increased in this process it is compared with${ie) values in all the other
runs. If they are all equal, then the candidate trees of the ame compared. This can be done
by simply comparing the ordered lists of embedded quarteiltmies, in some standard order,
since the set of embedded quartet topologies uniquelyrdetes the quartet tree b . If the
r candidate trees are identical, then terminate with thistquikee as output, otherwise continue
the algorithm.

This termination condition takes (for the same number gbsteer run) about times as
long as the simple termination condition. But the termioitondition is much more rigorous,
provided we choose appropriate to the numberof objects being clustered. Since all the runs
are randomized independently at startup, it seems verleinlihat with natural data all of them
get stuck in the same local optimum with the same quartetitisgance, provided the numbier
of objects being clustered is not too small. IRee 5 and the number of invocations= 2, there
is a reasonable probability that the two different runs bgrade hit the same tree in the same
step. This phenomenon leads us to require more than twossigzeeuns with exact agreement
before we may reach a final answer for snmalln the case of & n < 5, we require 6 dovetailed
runs to agree precisely before termination. Fet 6 < 9,r =5. For 10< n< 15,r = 4. For
16<n<17,r = 3. For all othem > 18,r = 2. This yields a reasonable tradeoff between speed
and accuracy.

It is clear that there is only one tree wiiT ) = 1 (if that is possible for the data), and random
trees (the majority of all possible quartet trees) h&E) ~ 1/3 (above). This gives evidence
that the number of quartet trees with lai§@ ) values is much smaller than the number of trees
with smallS(T) values. It is furthermore evident that the precise relatiepends on the data set
involved, and hence cannot be expressed by a general fomithlaut further assumptions on the
data. However, we can safely state that small data setsy &f 4& objects, that in our experience
often lead tdS(T) values close to 1 have very few quartet trees realizing thienapS(T) value.

On the other hand, those large sets of 60 or more objects dnéio some inconsistency and
thus lead to a low fina(T) value also tend to exhibit more variation as one might expEuis
suggests that in the agreement termination method eachiliugetvstuck in a different quartet
tree of a similaiS(T) value, so termination with the same tree is not possible eExpents show
that with the rigorous agreement termination we can haretie af up to 40 objects, and with
the simple termination up to at least 80 objects on a singiepcder or 100-200 objects using a
cluster of computers in parallel.

55



4.6.4 Tree Building Statistics

We used the CompLearn package, (further described in Ghap)e[21], to analyze a “10-
mammals” example witlzlib compression yielding a 10 10 distance matrix, similar to the
examples in Sectiod.1Q0 The algorithm starts with four randomly initialized tredstries to
improve each one randomly and finishes when they match. Bwesy run produces an output
tree, a maximum score associated with this tree, and hasiegdrmome total number of trees,
T, before it finished. Figurd.4 shows a graph displaying a histogramTobver one thousand
runs of the distance matrix. Theaxis represents a number of trees examined in a single run
of the program, measured in thousands of trees and binne@id-W&ide histogram bars. The
maximum number is about 12000 trees examined. The graplestsyg Poisson distribution.
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Figure 4.4: Histogram of run-time number of trees examingfdie termination.

About 2/3rd of the trials take less than 4000 trees. In the thousaald &bove, 994 ended with
the optimalS(T) = 0.999514. The remaining six runs returned 5 cases of the sdtghést
score,S(T) =0.995198 and one case §fT) = 0.992222. It is important to realize that outcome
stability is dependent on input matrix particulars.

Another interesting distribution is the mutation stepsiRecall that the mutation length is
drawn from a shifted fat-tail distribution. But if we restriour attention to just the mutations
that improve theS(T) value, then we may examine these statistics to look for egdef a
modification to this distribution due to, for example, theggnce of very many isolated areas that
have only long-distance ways to escape. FiguBeshows the histogram of successful mutation
lengths (that is, number of simple mutations composing gisicomplex mutation) and rejected
lengths (both normalized) which shows that this is not tteecélere the-axis is the number of
mutation steps and theaxis is the normalized proportion of times that step sizaioed. This
gives good empirical evidence that in this case, at leastave a relatively easy search space,
without large gaps.
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4.6.5 Controlled Experiments

With natural data sets, say music data, one may have themregtion (or prejudice) that mu-
sic by Bach should be clustered together, music by Chopioldha®e clustered together, and so
should music by rock stars. However, the preprocessed nfilescof a piece by Bach and a
piece by Chopin, or the Beatles, may resemble one anothes than two different pieces by
Bach—»by accident or indeed by design and copying. Thusraladata sets may have ambigu-
ous, conflicting, or counterintuitive outcomes. In otherds) the experiments on natural data
sets have the drawback of not having an objective clear éctiranswer that can function as a
benchmark for assessing our experimental outcomes, bytrdnitive or traditional preconcep-
tions. We discuss three experiments that show that our @nogrdeed does what it is supposed
to do—at least in artificial situations where we know in acs@awhat the correct answer is.

4.7 Quartet Topology Costs Based On Distance Matrix

Given a distance matrix, with entries giving the pairwisgtances between the objects, we want
to form a hierarchical cluster by representing the objestieaves of a ternary tree representing
the distances in the matrix as faithfully as possible. Imgortant that we do not assume that
there is a true tree; rather, we want to model the data as wglbasible. The cost of a quartet
topology is defined as the sum of the distances between eaaf p&ighbors; that isCyywx =
d(u,v) +d(w,x). This seems most natural given a distance matrix. In the sestion, we
review in brief the most common inputs to the quartet treerigm as used in this thesis. This
information is more thoroughly covered in other chapters.
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4.7.1 Distance Measure Used

Recall that the problem of clustering data consists of twispdi) extracting a distance matrix
from the data, and (ii) constructing a tree from the distanagrix using our novel quartet based
heuristic. To check the new quartet tree method in action seeaunew compression based dis-
tance, called NCD. The theoretical foundation and notiamécedent for NCD was developed
by Li and Vitanyiet al.[75, 77] as a normalized version of the “information metric” 619 9].
Roughly speaking, two objects are deemed close if we carfisi@gmntly “compress” one given
the information in the other, the idea being that if two pseaee more similar, then we can more
succinctly describe one given the other. The mathematedisdased on Kolmogorov complex-
ity theory [79]. In [77] we defined a new class of (possibly non-metric) distanesng) values

in [0,1] and appropriate for measuring effective similarity rela between sequences, say one
type of similarity per distance, andce versa It was shown that an appropriately “normalized”
information metric minorizes every distance in the clagsdidcovers all effective similarities
in the sense that if two objects are close according to sofeetke similarity, then they are
also close according to the normalized information distarRut differently, the normalized in-
formation distance represents similarity according todbminating shared feature between the
two objects being compared. In comparisons of more than tjects, different pairs may have
different dominating features. The normalized informatitistance is a metric and takes values
in [0,1]; hence it may be calletthe” similarity metric. To apply this ideal precise mathematical
theory in real life, we have to replace the use of the uncoatgeatKolmogorov complexity by an
approximation using a standard real-world compressautieg in the NCD, see3?2]. This has
been used in the first completely automatic constructiomefahylogeny tree based on whole
mitochondrial genomes /5, 80, 77], a completely automatic construction of a language tree
for over 50 Euro-Asian languages], detects plagiarism in student programming assignments
[74], gives phylogeny of chain letter&()], and clusters musi@p, 25|, Analyzing network traffic
and worms using compressiobl[d, and many more topic2pP]. The method turns out to be
robust under change of the underlying compressor-typatistital (PPMZ), Lempel-Ziv based
dictionary (gzip), block based (bzip2), or special purpsencompress).

4.7.2 CompLearn Toolkit

Oblivious to the problem area concerned, simply using tlsadces according to the NCD

above, the method described in this thesis fully automitictassifies the objects concerned.
The method has been released in the public domain as opecessaftware: The CompLearn

Toolkit [21] is a suite of simple utilities that one can use to apply caspion techniques to the

process of discovering and learning patterns in compleliéigrent domains, and hierarchically

cluster them using the new quartet method described in lileisig. In fact, this method is so

general that it requires no background knowledge about articplar subject area. There are no
domain-specific parameters to set, and only a handful ofrgégettings.
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Figure 4.6: The randomly generated tree that our algorigtwomstructedS(T) = 1.

4.7.3 Testing The Quartet-Based Tree Construction

We first test whether the quartet-based tree constructiandtie is trustworthy: We generated
a ternary tred with 18 leaves, using the pseudo-random number generatod™of the Ruby
programming language, and derived a metric from it by dedjtive distance between two nodes
as follows: Given the length of the path framto b, in an integer number of edges,las, b), let

L(a,b)+1
dlaby = "EDEE

except whera = b, in which casel(a,b) = 0. It is easy to verify that this simple formula always
gives a number between 0 and 1, and is monotonic with pathtHer@iven only the 18 18
matrix of these normalized distances, our quartet methadtBxreconstructed the original tree
T represented in Figur.6, with S(T) = 1.
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Figure 4.7: Classification of artificial files with repeatedtilbbyte tags. Not all possibilities are
included; for example, filely” is missing.S(T) = 0.905.

4.8 Testing On Atrtificial Data

Given that the tree reconstruction method is accurate anaensistent data, we tried whether
the full procedure works in an acceptable manner when we kmbat the outcome should be
like. We used the “rand” pseudo-random number generatan free C programming language
standard library under Linux. We randomly generated 11 regpdl-kilobyte blocks of data
where each byte was equally probable and called tteeg®e Each tag was associated with a
different lowercase letter of the alphabet. Next, we geeera2 files of 80 kilobyte each, by
starting with a block of purely random bytes and applying,ame, three, or four different
tags on it. Applying a tag consists of ten repetitions of pigka random location in the 80-
kilobyte file, and overwriting that location with the globatonsistent tag that is indicated. So,
for instance, to create the file referred to in the diagram dy We start with 80 kilobytes of
random data, then pick ten places to copy over this random wih the arbitrary 1-kilobyte
sequence identified as tag Similarly, to create file “ab,” we start with 80 kilobytes Endom
data, then pick ten places to put copies of &aghen pick ten more places to put copies of tag
b (perhaps overwriting some of tlaetags). Because we never use more than four different tags,
and therefore never place more than 40 copies of tags, wexpactehat at least half of the data
in each file is random and uncorrelated with the rest of the.filde rest of the file is correlated
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Figure 4.8: Classification of different file types. Tree agrexceptionally well with NCD dis-
tance matrix:§(T) = 0.984.

with other files that also contain tags in common; the more tagcommon, the more related
the files are. The compressor used to compute the NCD matsxowig2. The resulting tree is
given in Figured.7; it can be seen that the clustering has occurred exactly asout expect.
TheS(T) score is 0.905.

We will provide more examples of natural data later in thissik.

4.9 Testing On Heterogeneous Natural Data

We test gross classification of files based on heterogeneta®timarkedly different file types:
(i) Four mitochondrial gene sequences, from a black beday bear, fox, and rat obtained from
the GenBank Database on the world-wide web; (ii) Four exsdrpm the novelThe Zeppelin’s
Passengeby E. Phillips Oppenheim, obtained from the Project Gutegb&lition on the World-
Wide web; (iii) Four MIDI files without further processingwo from Jimi Hendrix and two
movements from Debussy’s Suite Bergamasque, downloaded Various repositories on the
world-wide web; (iv) Two Linux x86 ELF executables (tbpandrm commands), copied directly
from the RedHat 9.0 Linux distribution; and (v) Two compildava class files, generated by
ourselves. The compressor used to compute the NCD matrixozig2. As expected, the
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program correctly classifies each of the different typesles fiogether with like near like. The
result is reported in Figurd.8 with S(T) equal to the very high confidence value 0.984. This
experiment shows the power and universality of the methodeatures of any specific domain
of application are used. We believe that there is no othehaugtnown that can cluster data that
is so heterogeneous this reliably. This is borne out by thesima experiments with the method
in [54].

4.10 Testing on Natural Data

Like most hierarchical clustering methods for natural dtta quartet tree method has been de-
veloped in the biological setting to determine phylogeeg$from genomic data. In that setting,
the data are (parts of) genomes of currently existing speaied the purpose is to reconstruct the
evolutionary tree that led to those species. Thus, the epece labels of the leaves, and the tree
is traditionally binary branching with each branching es@nting a split in lineages. The inter-
nal nodes and the root of the tree correspond with extinadiepépossibly a still existing species
in a leaf directly connected to the internal node). The cageughly similar for the language
tree reconstruction mentioned in the Introduction. The oddhe tree is commonly determined
by adding an object that is known to be less related to allratbgects than the original objects
are with respect to each other. Where the unrelated objestfloe tree is where we put the root.
In these settings, the direction from the root to the leagpsasents an evolution in time, and the
assumption is that there is a true tree we have to discovevekter, we can also use the method
for hierarchical clustering, resulting an unrooted teyrtege, and the assumption is not that there
is a true tree we must discover. To the contrary, there isusttee, but all we want is to model
the similarity relations between the objects as well as iptessgiven the distance matrix. The
interpretation is that objects in a given subtree are pagwioser (more similar) to each other
than any of those objects is with respect to any object injaidissubtree.

4.10.1 Analyzing the SARS and H5N1 Virus Genomes

As an application of our methods we clustered the SARS viftes &s sequenced genome was
made publicly available, in relation to potential similariv The 15 virus genomes were down-
loaded from The Universal Virus Database of the Internatid@ommittee on Taxonomy of
Viruses, available on the world-wide web. The SARS virus wewnloaded from Canada’s
Michael Smith Genome Sciences Centre which had the firstip@ARS Coronavirus draft
whole genome assembly available for download (SARS TORf gemome assembly 120403).
The NCD distance matrix was computed using the compresgui2 bzhe relations in Figuré.9
are very similar to the definitive tree based on medical-wlaiorgenomics analysis, appearing
later in the New England Journal of Medicin€3]. We depicted the figure in the ternary tree
style, rather than the genomics-dendrogram style, sinedditmer is more precise for visual
inspection of proximity relations.

More recently, we downloaded 100 different HSN1 sample ge®from the NCBI/NIH
database online. We simply concatenated all data togettestlgt, ignoring problems of data
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Figure 4.9: SARS virus among other virii. Legend: AvianAd&@@ELO.inp: Fowl aden-
ovirus 1; AvianIB1.inp: Avian infectious bronchitis virdstrain Beaudette US); AvianIiB2.inp:
Avian infectious bronchitis virus (strain Beaudette CK)pviheAdeno3.inp: Bovine aden-
ovirus 3; DuckAdenol.inp: Duck adenovirus 1; HumanAdenog0 Human adenovirus
type 40; HumanCoronal.inp: Human coronavirus 229E; Meb&bea.inp: Measles virus
Moraten; MeaslesSch.inp: Measles virus strain Schwarzrindtiepll.inp: Murine hepati-
tis virus strain ML-11; MurineHep2.inp: Murine hepatitisrws strain 2; PRD1.inp: Enter-
obacteria phage PRD1; RatSialCorona.inp: Rat sialodademitis coronavirus; SARS.inp:
SARS TOR2v120403; SIRV1.inp: Sulfolobus SIRV-1; SIRV.nSulfolobus virus SIRV-2.

S(T) = 0.988.



cleanup and duplication. We were warned in advance thatioecbding regions in the viral
genome were sometimes listed twice and also many sequergcesamplete or missing certain
proteins. In this case we sought to test the robustness dtigheend and at the same time
verify, contextualize, and expand on the many claims of iesémilarity and diversity in the
virology community. We used the CompLearn packagd], [with the ppmdcompressor for this
experiment and performed no alignment step whatsoever.sé&f arder 15 with 250 megabytes
memory maximum.

We have abbreviated Ck for Chicken and Dk for duck. Sampleshamed with species,
location, sequence number, followed by the year doublddaithe end. Naming is not 100%
consistent. We can see the following features in Figui€ that are possibly significant:

First, there is near-perfect temporal separation by bramchyear, going all the way back
to HongKong and GuangDong in 1997. Next, there is near-perfgional separation with
clear delineation of Japan and the crucial Qinghai, AstaakiMongolia, and Novosibirsk, as
well as near-perfect separation of Vietham and Thailana glacement CkViethamC5804 and
Vietnam306204 is interesting in that they are both nearl@hdibranches and suggest that they
may be for example the migratory bird links that have beeroltygsized or some other genetic
intermediate. There is also throughout the tree substagiaement with (and independent ver-
ification of) independent experts like Dr. Henry L. Nim&@®][ on every specific point regarding
genetic similarity. The technique provides here an easifiec&tion procedure without much
work.

4.10.2 Music

The amount of digitized music available on the internet hrasvg dramatically in recent years,
both in the public domain and on commercial sites. Napstdrt@rclones are prime examples.
Websites offering musical content in some form or other (MBI, ...) need a way to or-
ganize their wealth of material; they need to somehow diasiseir files according to musical
genres and subgenres, putting similar pieces together.plifpose of such organization is to
enable users to navigate to pieces of music they already lamalnike, but also to give them
advice and recommendations (“If you like this, you mighodige. ..”). Currently, such orga-
nization is mostly done manually by humans, but some reasgarch has been looking into
the possibilities of automating music classification. 26,[25] we cluster music using the Com-
pLearn Toolkit R1]. One example is a small set of classical piano sonatasjstomggsof the 4
movements from Debussy'’s “Suite Bergamasque,” 4 movenodiftsok 2 of Bach’s “Wohltem-
perierte Klavier,” and 4 preludes from Chopin’s “Opus 285 éne can see in Figurell, our
program does a pretty good job at clustering these pieces.S[Th score is also high: 0.968.
The 4 Debussy movements form one cluster, as do the 4 Bacbspi&be only imperfection in
the tree, judged by what one would intuitively expect, ig #8hopin’s Prélude no. 15 lies a bit
closer to Bach than to the other 3 Chopin pieces. This Prélodis, in fact, consistently forms
an odd-one-out in our other experiments as well. This is amgrte of pure data mining, since
there is some musical truth to this, as no. 15 is perceived & ththe most eccentric among the
24 Préludes of Chopin’s opus 28.
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Figure 4.10: One hundred H5N1 (bird flu) sample genomes, $0$80221.
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Figure 4.11: Output for the 12-piece set.
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Figure 4.12: The evolutionary tree built from complete maatiam mtDNA sequences of 24
species, using the NCD matrix of Figudel4on page/0where it was used to illustrate a point
of hierarchical clustering versus flat clustering. We hasgrawn the tree from our output to
agree better with the customary phylogeny tree format. Téeedgrees exceptionally well with
the NCD distance matrix3T) = 0.996.

Primates

4.10.3 Mammalian Evolution

As the complete genomes of various species become availtaiblas become possible to do
whole genome phylogeny (this overcomes the problem thagudiiferent targeted parts of the
genome, or proteins, may give different tre@4]]. Traditional phylogenetic methods on individ-
ual genes depended on multiple alignment of the relate@m®and on the model of evolution of
individual amino acids. Neither of these is practically lgable to the genome level. In absence
of such models, a method which can compute the shared infanmiaetween two sequences
is useful because biological sequences encode informatiahthe occurrence of evolutionary
events (such as insertions, deletions, point mutatioas;aegements, and inversions) separating
two sequences sharing a common ancestor will result in the ¢b their shared information.
Our method (in the form of the CompLearn Toolkit) is a fullyt@enated software tool based on
such a distance to compare two genomes. In evolutionargdpyahe timing and origin of the
major extant placental clades (groups of organisms that bawlved from a common ancestor)
continues to fuel debate and research.

The full experiment on mammalian evolution is discussedenti®n4.10.3 Here we just
want to point out issues relevant for hierarchical clusigriersus nonhierarchical clustering, and
to our quartet tree method. We demonstrate that a whole hatairial genome phylogeny of
the Eutherians (placental mammals) can be reconstructechatically from a set ofinaligned
complete mitochondrial genomes by use of our compressidhaode

The whole mitochondrial genomes of the total of 24 speciesseel were downloaded from
the GenBank Database on the world-wide web. Each is arou/idQ bases. The NCD dis-
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Figure 4.13: Multidimensional clustering of same NCD mafiigure4.14) as used for Fig-
ure6.7. Kruskall's stress-1 = 0.389.

tance matrix was computed using the compressor PPMZ. Thétingsphylogeny, with an al-
most maximalS(T) score of 0.996 supports anew the currently accepted grgundents,
(Primates, Ferungulates)) of the Eutherian orders, andiadally the Marsupionta hypothesis
((Prototheria, Metatheria), Eutheria), see FighE2 The NCD distance matrix is given in Fig-
ure4.14 so the reader can get a feeling on what distances the qtraeeis based. For more
explanation and details see Secthh0.3

4.11 Hierarchical versus Flat Clustering

This is a good place to contrast the informativeness of rabreal clustering with multidimen-
sional clustering using the same NCD matrix, exhibited muFe4.14 The entries give a good
example of typical NCD values; we truncated the number ofrdals from 15 to 3 significant
digits to save space. Note that the majority of distanceshesin the rangf0.9, 1]. This is due
to the regularities the compressor can perceive. The dagdements give the self-distance,
which, for PPMZ, is not actually 0, but is off from O only in thieird decimal. In Figuret.13
we clustered the 24 animals using the NCD matrix by multidiioeal scaling as points in 2-
dimensional Euclidean space. In this method, the NCD mafrB4 animals can be viewed as
a set of distances between pointswdimensional Euclidean space € 24), which we want to
project into a 2-dimensional Euclidean space, trying toodighe distances between the pairs
as little as possible. This is akin to the problem of projegtihe surface of the earth globe on
a two-dimensional map with minimal distance distortion.eThain feature is the choice of the
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measure of distortion to be minimized3€q]. Let the original set of distances lok, ..., dx and
the projected distances log, ..., d,. In Figure4.13we used the distortion measufeuskall’s

stress-1[62], which minimizes\/(zigk(di —d/)?)/5i<kd?. Kruskall's stress-1 equal 0 means
no distortion, and the worst value is at most 1 (unless yo laareally bad projection). In the
projection of the NCD matrix according to our quartet metioo@ minimizes the more subtle
distortionS(T) measure, where 1 means perfect representation of theveestatations between
every 4-tuple, and 0 means minimal representation. Thexefee should compare distortion
Kruskall stress-1 with + §T). Figure4.12has a very good + S(T) = 0.04 and Figuret.13
has a poor Kruskall stress3B9. Assuming that the comparison is significant for small va
ues (close to perfect projection), we find that the multidigienal scaling of this experiment’s
NCD matrix is formally inferior to that of the quartet treehi§ conclusion formally justifies the
impression conveyed by the figures on visual inspection.
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Chapter 5

Classification systems using NCD

This chapter explores the conceptabdissification In rough terms, classification refers to the
placement of unknowtest objectsnto one of several categories based on a training set of ob-
jects. It is different from the hierarchical clustering pkem that has been the primary focus
in this thesis up to this point, yet it is no less fundamen@bmbining NCD with a trainable
machine learning module yields wonderfully effective afieéo surprising results, showing that

in certain situations, we may in esserearn by examplavith the help of human experts. In
Section5.1 below, classification is first addressed from a general ets@. In Sectiorb.2,

it is shown how to combine NCD in combination with trainablassifiers based on so-called
anchors Section5.3 discusses two options for such trainable classifiers: heetavorks and
support vector machines.

5.1 Basic Classification

The classification problem setting as considered in thisishis given as follows. A human
expert has prepared training examples. Each training example consists dfdimensional
input vectorx and a target training labgl y must be chosen from a discrete keatf labels. A
human expert supplies this information; the accuracy otithi@ed system would of course be
limited by the accuracy of the labels in the training settr&ining sessiorcomputes a model
M from the input ortraining data(x;,y;) for 1 <i < n. The goal of a classification algorithm
is to make good predictions based on the input training dafeer M has been calculated by
someclassifier learning algorithmhenceforth calledrainable classifier systenit is used to
classify unknown test objectses; also of dimensior. It will output an element froni for
each such object. Note th&t can be thought of as fainctionthat maps test input vectors
to labels in the set. We refer to such a function asctassifier Learning good classifiers is
considered one of the most important problems in machimailegand pattern recognition in
current times. One of the most important early successedsd®asin the field of optical character
recognition, or OCR. This is the problem of taking a rasetibitmap image and converting it to
a sequence of ASCII characters according to some symbajyné&emn algorithm. Typical OCR
software can work on as little as ten classes for applicatsuch as numerical digit recognition,
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or many dozens of characters for scanning full text. Theyag@erate in a highly specific way,
for instance recognizing only one text font of a particulaesor they can be more generic, for
instance learning handwritten letters and digits. In tlitisasion, a typical setup would be to
first use some preprocessing to try to split the large imatgesmaller images each containing
just one symbol (or glyph). Then pad these boxes so that tteeglasquares of the same size
and the glyph is roughly centered. Next each pixel may be offanh order and converted to
a successive dimension = (Xg,...,Xq): pixeli corresponds to dimensioq. For each pixel,
a background color would be represented by 0 and a foregrooiod by 1. Thus eacR input
would be a binary vector with dimension equal to the numbegixels in the boxes surrounding
each symbol. The output from such a classification systemdameia single character from the
range of possible characters under consideration. In tmgegt, a learning algorithm would be
given as input a training sequendes,y1), - . ., (Xn,Yn) ), @nd then output a “learned” classifMr
This learned classifig¥l could then be used, for any new exampl@ixel vector representing a
character), to make a prediction of the corresponding gléthe actual character). The situation
just described corresponds to a typical setup, howeverdridtiowing experiments we take a
somewhat different approach using NCD.

5.1.1 Binary and Multiclass Classifiers

The simplest kind of classifier is called the binary classifi€his type of classifier can only
produce two labels as output for each test case. The laleelsaally writtert-1 and—1 or 0 and

1 depending on the problem. A common example of binary dlaatbn is the spam-filtering
problem. This problem is to determine if a given email messagan unwanted commercial
advertisement (spam) or not automatically before beingdpnoto the attention of an email user.
Another important kind of classifier is the multiclass class This type of classifier applies
more than two different types of labels. This is useful inesgdike handwritten digit recognition,
where there are at least ten different labels for handwritgits that must sometimes be output.

It is usually simpler mathematically to consider only thaedry classification case. This is
justified by the fact that there are two well known ways to ta#esm multiclass classifier using
several binary classifiers acting cooperatively togetfiése two traditional ways of doing this
are calledone-of-kstyle combination angairwisecombination. The one-of-k style is simple
to explain. A classifier is trained, one per class, for eachhefk classes in the multiclass
classification problem. Each classifier is trained to dgtish only members of its own class
and reject (return 0) members of any other class.

In contrast, pairwise combination trains a separate biclassifier to distinguish each unique
unordered pair of classes under consideration. Then agzetiheme is used to determine the
winning class by running through all classifiers for eachuingample. This results i®(k?)
classifiers fokk classes.

The one-of-k style combination yields the worst accuragidglly but is the simplest and
fastest. The pairwise combination is usually the most ateur
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5.1.2 Naive NCD Classification

The simplest (and undoubtedly popular) way to use NCD tcsdiass to choose, for each &f
classes, a singlerototype objecof the class that somehow captures the essence of the categor
So, for example, if the task were to distinguish English ameh€se, we might consider using
an English dictionary as the prototype object for the Eigtikass, and a Chinese dictionary
for the Chinese class. In each case, we simplify a class dovensingle example. Then the
classification is done by calculating the NCD of the test objeith each of thek prototype
objects, and selecting the class corresponding to the tolsjgrcthe minimum NCD value. This
approach seems intuitively obvious and is usually the firsthmd people new to NCD invent.
In some domains it works well, but in many more subtle clasaibn problems it suffers a
problem of uncorrectable bias. This relates to the facttttedifferent classes of most problems
(such as the character classes in OCR) do not usually baleitender any particular available
compressors. For example, the pixelated character clabe ofumeral “1” is sufficiently bland
as to have a high NCD when compared to most other scribblengs) other members of the
“1” class. This contrasts with the numeral “8” which has dammombination of shapes that tends
to compress well with most other outline images due to theewiiety of possible matches.
This type of bias leads to a large constant error margin thamat readily be improved within
this framework as there are no natural adjustments availdhlthe next section, we explore a
solution to this problem.

5.2 NCD With Trainable Classifiers

The simplest solution to the problem of how to use NCD for hagluracy classification is to
combine it with a trainable classifier system by using NCD &sature extraction technique. A
trainable classifier system tries to pick up functionaltietaships in the input and output quanti-
ties. While trainable classifier systems output functioith & discrete range (the set of classes),
some of the most successful ones, such as neural networkS\aMe- based algorithms, are
built on top of continuous learning algorithms. The contins learners are a broad and impor-
tant class of algorithms in machine learning. Given a trajrsequencéxs,y1), ..., (Xn,Yn),
they learn/output a continuous functidvh mappingd-dimensional input vectors to the one-
dimensional reals. Such learners can be transformed iataitey algorithms for binary clas-
sification, by classifying test vectaras 1 ifM(x) > 0, andx as—1 if M(x) < 0.

In order to apply this idea, one must set up a problem so tHatawn objects are somehow
converted to fixed-dimensional vectors using some sort ofeption using NCD. One of the
easiest techniques is to designate sohobjects asanchorsand to use them to convert all other
objects in the experiment intd-dimensional vectors. This can be achieved by using anchor
objecta; to calculate vector dimensianfor 1 <i < d. That is, for objecib we calculate the
corresponding = (X1, ...,Xd) usingx; = NCD(0, &).

For example, in handwritten digit recognition, our tragpidata may originally consist of
pairs ((01,y1)-..,(0n,Yn)), Whereo; represents an image (represented with one character per
pixel, and one character as a line terminator) of a handrittigit andy; € {0,...,9} is the

73



corresponding digit. One then takes 80 imaggs.., 05, so that each handwritten digit is
represented eight times. The training d&dg ...,0,) are then converted txy, ..., Xn), where
eachx; is the 80-dimensional vect¢NCD(0;,0)),...,NCD(0;,05p) ).

5.2.1 Choosing Anchors

The anchors may be chosen by a human expert or be chosen Hgridmma large pool of train-
ing objects. Intuitively, it may seem very important whidbjects are chosen as anchors. While
this is sometimes the case, more often it is not. Random asatsually work well. But most
practitioners agree that picking at least one anchor froch sgnificant category under consid-
eration is advisable to avoid falling into low-accuracyfpemance due to insufficient variation
in the anchor set. The anchor can be used with NCD. It can &ssséd with the Normalized
Google Distance (NGD), which we discuss in ChagteWe will give details using NGD terms
in Section7.6.4 and details using Optical Character Recognition with NG[S&ction6.8.

In choosing a learning system to use with the anchor feaexiacted above, it seems best
to choose as general a learning system as possible. Oneutentii important class of learning
algorithms are called the universal continuous functi@mrers. These include neural networks
and Support Vector Machines. The universal learning ptgperthis context means that they
can approximate any continuous function to an arbitraiightiegree of accuracy given enough
training data in the neighborhood of the point under consiiten. Using a learner with this
property ensures a certain degree of reliability and ogtiyngo the results that it generates as
compared to other more specialized learning algorithms.

5.3 Trainable Learners of Note

There are at least two good choices for trainable learneipooents for use with NCD. These
are called theneural networkand theSupport Vector MachineBoth of these techniques take as
input the set of labeled training data as well as some spesibinodel parameters that must be
set through some means. Usually the specialized paransteiet by a human expert or set
through an automatic procedure using cross-validatioadparameter scannin@]].

Both learner systems produce a single label out of thé.set a result given any inpuk
dimensional test vector. Each have many strengths and wes&s, and they each give unique
performance profiles. They should both be considered wheididg to do classification using
NCD, although all experiments in this thesis are based op@tipector machines.

5.3.1 Neural Networks

The older and considerably popular choice is artificial atmetworks #6]. As mentioned
previously, these have the advantage of being universssifiler systems: they have provable
learning capability for any continuous function. Additally, they have a host of decent training
algorithms as well as learning modes. Popular choices herBast Backpropagation and Self
Organizing Maps. SOM'’s have not been designed explicittyclassification, but can easily
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adapted to be used for classification tasks when used in o@tnd with compression metrics
like NCD.

There is one major difficulty in all types of neural networkestigated; they have some
rather tricky parameter settings. A neural network of anyhsstication must have a nonlinear
component (transfer function) of some sort, and commoncesoare transcendental sigmoid
functions like arctangent. There are several others in Asether hard issue with many types
of neural networks is to decide how many layers should be.used each layer a specific
number of neurons must be set in advance as well. Similéwdyetis usually a learning rate and
sometimes a momentum parameter that can radically affechétwork’s gross behavior and
overall success or failure. Altogether this implies attdasr hard choices before one can train
a neural network. There is no simple rule to guide how to chadlosse parameters because there
are all sorts of bad behavior possible from wrong choices Mlost common are overlearning
and underlearning. Informally, overlearning occurs where are too many neurons for the task
at hand. Underlearning is when there are too few. In the da@eeolearning, the neural network
will appear to have great accuracy in the training data yreible accuracy in the testing phase
and show almost no generalization capability. In the um@dening case, accuracy will simply
be capped at a number far worse than what may otherwise bevadhilt’s quite difficult to tell
what the best parameters are for a neural network and inoseahercial systems there is usually
a considerable amount of sophisticated semi-automatit©iimexy in place to assist the user in
setting these parameters. For example, genetic algoritnensometimes employed combined
with cross-validation to adjust parameters in a semi-aatanfiashion. This heavy emphasis on
parameter-setting in advance makes neural networks aulifiomponent to integrate into an
easy-to-use parameter-free learning system.

5.3.2 Support Vector Machines

More recently another type of continuous universal leahasrcome into great popularity. They
have the same sort of universal properties as artificialalewatworks but with substantially
less hasslel[l]. They are called support vector machines. They take adgemf dot products
in a high dimensional space to efficiently find solutions taavwex optimization problem that
winds up bending a decision surface around training pomtbe least stressful way. In order
to use an SVM, one needs to first choose a kernel function asdahresponds roughly to the
transfer function in neural networks. Although a linearriadris an option and polynomials are
sometimes used, they do not yield the same (typically degyanfinite-dimensional properties
that the exponential Radial Basis Function kernels do. &@laes described further below.

For all of our experiments we have found RBF kernels to be td®good as any other choice
and often substantially better. There are only two otheampa&ters for SVM’s. In our context,
these are calle@ andg. Cis the cost for wrong answers, or training points that faltleewrong
side of the decision boundary. Adjusting this can compengatnoisy or mislabeled training
data. Theg parameter represents kernel width and determines the fateponential decay
around each of the training points. The very wonderful propef both of these parameters is
that they can be determined through a simple two dimensgnchkearch.

This procedure was found to be much simpler to automate antddee robust than neural
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networks. Therefore, most of our experiments have focuse8\WM as the trainable learning
component. In the next section technical details are ptedegrgarding SVM’s.

5.3.1.REMARK. It is important to realize that we still have not exhausteel possibilities for
combining NCD with other machine learning algorithms; ¢hare in fact many interesting op-
tions. For example, Gaussian processes could also servgasianext phase learner but have
not yet been investigated. Similarly, the previously maméd quartet-tree search is another op-
tion at this same stage in the pipeline, as is multidimeraisnaling, nearest neighbor search
and most other classical machine learning algorithms. imlipht we may consider NCD as
a particularly convenient and sometimes highly intelligieature-extraction (or dimensionality
reduction) technique suitable for drop-in replacement mueber of larger automatic learning
systems.

5.3.2.REMARK. Many classification systems, including both of those nwer@d above, are able
to be used in a special mode callegjression modeln this mode, the output is not a member
of the set of label& but instead is a real (scalar) value, typically between Olaadbetween -1
and 1. This mode allows prediction of continuous variableshsas temperature or duration. It
is again a fundamental problem in machine learning and capesten and provides yet more
reason to use one of the two universal learners mentionedeatith NCD.

5.3.3 SVM Theory

This section provides a brief glimpse at relevant mathesahieory surrounding Support Vector
Machines. For more information please s&6]] Support Vector Machines represent a way to
learn a classification or regression problem by example ag@domparable to neural networks
in that they have the capacity to learn any function. Theyage-marginclassifiers 11]. They
take as input a list dk-dimensional vectors, and output a single scalar valuerderao learn,

an SVM solves a convex optimization problem that is closelgted to a simpler classification
engine termed the separating hyperplane. In this settiegan® given a set d&-dimensional
training vector; each labelegh which is 1 or—1 according to the classification. For a particular
problem, a discriminating hyperplameis one that creates a decision function that satisfies the
constraint for ali:

Yi(Xi -w+b)—1>0.

If no such separating hyperplane exists, then we term thmeiteaproblenlinearly inseparable
The constants used in this equation are more fully explaimé¢di6]. In rough terms, the equa-
tion represents a linear programming problem that triesni & simple (fewer support vectors
chosen) and accurate (less disagreements with trainiag oheidel using a convex optimization
technique.

Many real-world learning problems, such as the famous srattor function, are linearly
inseparable. This is problematic because a hyperplane mignseparate spaces into linearly
separable components. There are many strategies for geatimthis issue. Support vector ma-
chines use a nonlinear kernel function to address this.i®yereating a kernel functiork(x, y)
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that satisfies th&lercer condition we may substantially enhance the power of the separating
hyperplane. A kernel function defines an inner-product @nitiput space, and then this inner
product may be used to calculate many higher-power termsmbmations of samples in the
input space. This forms a higher-dimensional space, asditll-known that once this space is
made large enough, there will be a separating hyperplaneudisVM experiments, we use a
Radial Basis Function (RBF) kernel. This allows the SVM tarfeany function given enough
training data.

5.3.4 SVM Parameter Setting

There are two parameters that control the learning of the SVin first relates to the kernel
function. An RBF, or Radial Basis Function, kernel assurhes/alue 1 whenever the two input
vectors are equal. If they are unequal, it decays slowly tde/@ in a radially symmetric way:

K(x,xj) = e I—il*/29"

Here,g is a parameter that controls the rate of decay or width of éraeéd function. Because of
the exponential form, the effective dimension of an RBF kéimpotentially infinite and thus this
kernel can be used to approximate any continuous functi@mtarbitrary degree of accuracy.
This parameter must be set before the learning can beginaxit8VM. Another parameter
relates to how misclassified points are handled in the trgidata; Though it is always possible
to simply continue to make the kernel width smaller and theaexied space larger until the SVM
becomes essentially a lookup-table, this is often not tise¢ sieategy for learning. An alternative
is to define a cost parameter and allow this to adjust theaoter for misclassified points in the
training data. This allows the SVM to generalize well evethia presence of noisy data. This
cost parameter, often callegmust also be defined before training can begin.

We selectg and c using a grid searching technique. For each of these paresnétes
appropriate to search dozens of powers of two. Togethey,ctigates a grid with hundreds of
different parameter settings. We use five-fold cross-wdilioh to select which of these grid points
defines the optimal parameter setting. First the data isléivinto five random patrtitions: A, B,
C, D, E. Then, for each candidate parameter setting or giiiat,pee run five different training
runs. On the first run, we train on B, C, D, and E, and then wernhate an accuracy using part
A. Next, we train on A, C, D, E and test with B. We continue irstivay and then average all five
test scores to arrive at an estimate of how well the learnioggss performed. Once this process
is done for all training data, we may just choose one of theé gaints that attains a maximum
accuracy.

These parameter€ (and g) do not usually need to be exact; instead one can simply do a
stepwise search along a grid of points in log space; thuéitedo try just 64 points fo€ ranging
from 2731 to 222 doubling each time. A similar procedure works to chogsén each case one
may use five-fold cross-validation to estimate the accucddye given parameter setting and
then just choose the maximum at the end. Five-fold crosdatdin is a popular procedure that
tries to estimate how well a model (of any type) that is treio@ a set of training data will
perform on unknown testing data. The basic assumption iplgithat the training data and the
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testing data are similar. In order to estimate the testicg@cy using only the training algorithm
and the training data, first label the training set randonitia fiwe labels, numbered 1 through 5.
Next, train a model (SVM, neural network, or otherwise) oarfof the five parts, but leave part 1
out. Use this part 1 for testing the model made from the othgarts. Tally this score and repeat
the procedure, but this time withhold part 2 for testing. &apthis procedure five times, once
for each part, and then average the accuracy scores to araveestimate of the testing accuracy
to be expected for a given set of parameters. This entirfdideeross-validation procedure is
repeated for each point (particular parameter settingj)arparameter grid space in order to find
the optimal settings using just the training data.
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Chapter 6

Experiments with NCD

This chapter demonstrates the surprisingly general anastotature of the methods so far dis-
cussed through many real examples from diverse areas smehsas and evolution. The combi-
nation of NCD and the quartet method yield interesting ttssul

In Section6.1, we introduce the general concept of feature-based sityjland explain how
NCD can be used with it. In Sectidh2 we present experimental validation that our method
works. Starting in Sectiof.4, we introduce a plethora of experiments in a wide array ofi§iel
beginning with automatic music analysis. Next, we studyl@wanary genomics, literature and
language analysis, radio astronomy, and optical charaetegnition. At the end of this chap-
ter the reader will have encountered a highly serviceahteeguof experimental results using
objective data compressors based on files, without exterfamation input from the internet.

6.1 Similarity

We are presented with unknown data and the question is tondie the similarities among
them and group like with like together. Commonly, the dag@ra certain type: music files,
transaction records of ATM machines, credit card applicetj genomic data. In these data there
are hidden relations that we would like to get out in the ogear. example, from genomic data
one can extract letter- or block frequencies (the blocksoaer the four-letter alphabet); from
music files one can extract various specific numerical featuelated to pitch, rhythm, harmony
etc. One can extract such features using for instance Fdtaiesforms 114 or wavelet trans-
forms [44]. The feature vectors corresponding to the various filesree classified or clustered
using existing classification software, based on varioasdsrd statistical pattern recognition
classifiers 114, Bayesian classifiers3p], hidden Markov models19], ensembles of nearest
neighbor classifiersdd] or neural networks33, 101]. For example, in music one feature would
be to look for rhythm in the sense of beats per minute. One @kera histogram where each his-
togram bin corresponds to a particular tempo in beats-peut@mand the associated peak shows
how frequent and strong that particular periodicity wasrdte entire piece. Inl14 we see

a gradual change from a few high peaks to many low and spretdna@s going from hip-hip,
rock, jazz, to classical. One can use this similarity typeydo cluster pieces in these categories.
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However, such a method requires specific and detailed kiig®lef the problem area, since one
needs to know what features to look for.

Non-Feature Similarities: Our aim is to capture, in a single similarity metravery effective
metric effective versions of Hamming distance, Euclidean distaredit distances, alignment
distance, Lempel-Ziv distanc&(], and so on. This metric should be so general that it works in
every domain: music, text, literature, programs, genoreescutables, natural language deter-
mination, equally and simultaneously. It would be able toudtaneously detedll similarities
between pieces that other effective metrics can detect.

Compression-based Similarity:Such a “universal” metric was developed by Li and Vitanyi
et al. [75, 77] as a normalized version of the “information metric” af9 9], see Chapter 3.
Recall that two objects are deemed close if we can significdodmpress” one given the in-
formation in the other, the idea being that if two pieces amrarsimilar, then we can more
succinctly describe one given the other. Recall from Chaptdat an appropriately “normal-
ized” information distance minorizes every metric in thasd of effective similarity metrics. It
discovers all effective similarities in the sense that ibtabjects are close according to some
effective similarity, then they are also close accordinght® normalized information distance.
Put differently, the normalized information distance es@nts similarity according to the dom-
inating shared feature between the two objects being cadparhe normalized information
distance too is a metric and takes valuefiri]; hence it may be calletthe” similarity metric.

To apply this ideal precise mathematical theory in real Nfe have to replace the use of the
uncomputable Kolmogorov complexity by an approximatiomgsa standard real-world com-
pressor. Approaches predating this thesis include thedmstpletely automatic construction
of the phylogeny tree based on whole mitochondrial genof#&s 80, 77], a completely auto-
matic construction of a language tree for over 50 Euro-Akaguages(7], detects plagiarism
in student programming assignment&l][ gives phylogeny of chain letterd (], and clusters
music 26, 25]. Moreover, the method turns out to be robust under changbeotinderlying
compressor-types: statistical (PPMZ), Lempel-Ziv basetiahary (gzip), block based (bzip2),
or special purpose (Gencompress).

Related Work: In view of the simplicity and naturalness of our proposais iperhaps sur-
prising that compression based clustering and classtitagpproaches did not arise before. But
recently there have been several partially independepisais in that direction8] 3] for build-
ing language trees—while citin@9, 9]—is by essentially morad hocarguments about empiri-
cal Shannon entropy and Kullback-Leibler distance. Thagch is used to cluster music MIDI
files by Kohonen maps ir8g]. Another recent offshoot based on our work &d][ hierarchical
clustering based on mutual information. In a related, busaerably simpler feature based ap-
proach, one can compare the word frequencies in text filesstesa similarity. In120 the word
frequencies of words common to a pair of text files are usedages in two vectors, and the
similarity of the two files is based on the distance betweesdhvectors. The authors attribute
authorship to Shakespeare plays, the Federalist PapersheChinese classic “The Dream of
the Red Chamber.” The approach to similarity distancestareblock occurrence statistics is
standard in genomics, and in an experiment below it givesimf phylogeny trees compared to
our compression method (and wrong ones according to cubrelatgical wisdom). The possi-
bly new feature in the cited work is that it uses statisticemlfy the words that the files being
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compared have in common. A related, opposite, approachakas in 9], where literary texts
are clustered by author gender or fact versus fiction, esdlgndy first identifying distinguishing
features, like gender dependent word usage, and thenfglagsaccording to those features.

Apart from the experiments reported here, the clusteringdipression method reported
in this thesis has recently been used to analyze netwofficteafd cluster computer worms and
viruses [L1§. Finally, recent work $4] reports experiments with our method on all time se-
guence data used in all the major data-mining conferencéseitast decade. Comparing the
compression method with all major methods used in thoseecentes they established clear su-
periority of the compression method for clustering heteragus data, and for anomaly detection.

To substantiate our claim of universality, we apply the rodtto different areas, not using
any feature analysis at all. We first give an example in wiygleeme phylogeny using the
whole mitochondrial DNA of the species concerned. We comple hierarchical clustering
of our method with a more standard method of two-dimensichadtering (to show that our
dendrogram method of depicting the clusters is more inftir@a We give a whole-genome
phylogeny of fungi and compare this to results using aligninoé selected proteins (alignment
being often too costly to perform on the whole-mitochondgenome, but the disadvantage of
protein selection being that different selections usuault in different phylogenies—so which
is right?). We identify the virii that are closest to the seqced SARS virus; we give an example
of clustering of language families; Russian authors in thgirmal Russian, the same pieces in
English translation (clustering partially follows the risdators); clustering of music in MIDI
format; clustering of handwritten digits used for optichlcacter recognition; and clustering
of radio observations of a mysterious astronomical obgeaticroquasar of extremely complex
variability. In all these cases the method performs very inghe following sense: The method
yields the phylogeny of 24 species precisely according edolgical wisdom. The probability
that it randomly would hit this one outcome, or anything cewbly close, is very small. In
clustering 36 music pieces taken equally many from pop,, jelassic, so that 12-12-12 is the
grouping we understand is correct, we can identify convesteks so that only six errors are
made. (That is, if three items get dislodged then six itemsmgsplaced.) The probability that
this happens by chance is extremely small. The reason whiiinlkethe method does something
remarkable is concisely put by Laplac&]:

“If we seek a cause wherever we perceive symmetry, it is rat we regard the
symmetrical event as less possible than the others, bag #nms event ought to be
the effect of a regular cause or that of chance, the first ;fetlseippositions is more
probable than the second. On atable we see letters arramtfed ordetC 0 n s t
ant i nopl e andwejudge thatthisarrangementis notthe result of @hanc
not because it is less possible than others, for if this wartewot employed in any
language we would not suspect it came from any particulasesabut this word
being in use among us, it is incomparably more probable tiraesperson has thus
arranged the aforesaid letters than that this arrangemmenie to chance.”

Materials and Methods: The data samples we used were obtained from standard das bas
accessible on the world-wide web, generated by ourselveshtained from research groups in
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the field of investigation. We supply the details with eacpexkment. The method of process-
ing the data was the same in all experiments. First, we pcegsed the data samples to bring
them in appropriate format: the genomic material over the-fetter alphabe{A, T,G,C} is
recoded in a four-letter alphabet; the music MIDI files argpped of identifying information
such as composer and name of the music piece. Then, in all taselata samples were com-
pletely automatically processed by our CompLearn Tootkityer than as is usual in phylogeny,
by using an eclectic set of software tools per experimentlividls to the problem area con-
cerned, simply using the distances according to the NCDwpdlte method described in this
thesis fully automatically classifies the objects conceérriene CompLearn Toolkit is a suite of
simple utilities that one can use to apply compression tigclas to the process of discovering
and learning patterns in completely different domainsabt,fthis method is so general that it re-
guires no background knowledge about any particular suajea. There are no domain-specific
parameters to set, and only a handful of general settings.

The CompLearn Toolkit using NCD and not, say, alignment,agre with full genomes and
other large data files and thus comes up with a single distaratex. The clustering heuristic
generates a tree with a certain confidence, called staizéartenefit score &(T) value in the
sequel. Generating trees from the same distance matrix timaag resulted in the same tree or
almost the same tree, for all distance matrices we used,tboegh the heuristic is randomized.
The differences that arose are apparently due to earlyetdatination with differen§(T) val-
ues. Thisis a great difference with previous phylogeny imgthwhere because of computational
limitations one uses only parts of the genome, or certaiteprs that are viewed as significant
[55]. These are run through a tree reconstruction method likgghber joining P9], maximum
likelihood, maximum evolution, maximum parsimony as %%|[ or quartet hypercleanind.B|,
many times. The percentage-wise agreement on certainh@ararising are called “bootstrap
values.” Trees are depicted with the best bootstrap valoehe branches that are viewed as
supporting the theory tested. Different choices of prateasult in different best trees. One way
to avoid this ambiguity is to use the full genom®4]77], leading to whole-genome phylogeny.
With our method we do whole-genome phylogeny, and end upawtingle overall best tree, not
optimizing selected parts of it.

The quality of the results depends on (a) the NCD distanceixnaind (b) how well the
hierarchical tree represents the information in the matiike quality of (b) is measured by
the S(T) value, and is given with each experiment. In general, Sfi¢) value deteriorates for
large sets. We believe this to be partially an artifact of a-tesolution NCD matrix due to
limited compression power, and limited file size. The maamsn, however, is the fact that with
increasing size of a natural data set the projection of tf@nmation in the NCD matrix into a
binary tree can get increasingly distorted as explainedhapter 5, pagd5. Another aspect
limiting the quality of the NCD matrix is more subtle. Rectiht the method knows nothing
about any of the areas we apply it to. It determines the dombifemture as seen through the
NCD filter. The dominant feature of likeness between two fitesy not correspond to our a
priori conception but may have an unexpected cause. Thiége$wur experiments suggest that
this is not often the case: In the natural data sets where weefraconceptions of the outcome,
for example that works by the same authors should clustestiieg or music pieces by the
same composers, musical genres, or genomes, the outconfescdargely to our expectations.
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For example, in the music genre experiment the method waulldfamatically if genres were
evenly mixed, or mixed with little bias. However, to the a@my, the separation in clusters is
almost perfect. The few misplacements that are discermitdecither errors (the method was
not powerful enough to discern the dominant feature), odtirainant feature between a pair of
music pieces is not the genre but some other aspect. Thessaganews is that we can generally
confirm expectations with few misplacements, indeed, thatdata does not contain unknown
rogue features that dominate to cause spurious (in our pceoged idea) clustering. This gives
evidence that where the preconception is in doubt, like pltylogeny hypotheses, the clustering
can give true support of one hypothesis against another one.

Figures: We use two styles to display the hierarchical clusters. édfise of genomics of
Eutherian orders and fungi, language trees, it is convémngefollow the dendrograms that are
customary in that area (suggesting temporal evolutiongfmy comparison with the literature.
Although there is no temporal relation intended, the degidnm representation looked also ap-
propriate for the Russian writers, and translations of Runs@riters. In the other experiments
(even the genomic SARS experiment) it is more informativdisplay an unrooted ternary tree
(or binary tree if we think about incoming and outgoing edgeth explicit internal nodes. This
facilitates identification of clusters in terms of subtreested at internal nodes or contiguous
sets of subtrees rooted at branches of internal nodes.

Testing the similarity machine on natural data: We test gross classification of files based
on markedly different file types. Here, we chose several:filgd-our mitochondrial gene se-
guences, from a black bear, polar bear, fox, and rat obtdnoed the GenBank Database on
the world-wide web; (ii) Four excerpts from the novéhe Zeppelin's Passengby E. Phillips
Oppenheim, obtained from the Project Gutenberg EditionhenWorld Wide web; (iii) Four
MIDI files without further processing; two from Jimi Hendrand two movements from De-
bussy’s Suite Bergamasque, downloaded from various repies on the world-wide web; (iv)
Two Linux x86 ELF executables (tle andrm commands), copied directly from the RedHat 9.0
Linux distribution; and (v) Two compiled Java class filespgeated by ourselves. The compres-
sor used to compute the NCD matrix was bzip2. As expectedyrbgram correctly classifies
each of the different types of files together with like neke liThe resultis reported in Figuéel
with S(T) equal to the very high confidence value 0.984. This experirsieows the power and
universality of the method: no features of any specific donosfiapplication are used.

6.2 Experimental Validation

We developed the CompLearn Toolkit, and performed exparigia vastly different application
fields to test the quality and universality of the method. $hecess of the method as reported
below depends strongly on the judicious use of encoding ®fothjects compared. Here one
should use common sense on what a real world compressor carhdce are situations where
our approach fails if applied in a straightforward way. Frample: comparing text files by
the same authors in different encodings (say, Unicode anith&rsion) is bound to fail. For the
ideal similarity metric based on Kolmogorov complexity &fided in [/ 7] this does not matter at
all, but for practical compressors used in the experiméntdlibe fatal. Similarly, in the music
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experiments below we use symbolic MIDI music file format eatthan wave format music files.
The reason is that the strings resulting from straightfodvescretizing the wave form files may
be too sensitive to how we discretize.

6.3 Truly Feature-Free: The Case of Heterogenous Data

MusicBergA
MusicBergB
MusicHendrixB ELFExecutableB

MusicHendrixA . ELFExecutableA

GenesRatD
GenesPolarBearB JavaClassA

GenesBlackBearA JavaClassB

Figure 6.1: Classification of different file types. Tree agrexceptionally well with NCD dis-
tance matrix:S(T) = 0.984.

We show the method is truly feature-free, or, anyway, asufediree as we could possibly
want, by showing once more its success in clustering data firaly different domains. No other
method can apparently do so with so much success, sincéatioiethods rfely on some definite
features they analyze. In contrast, we just compress. Ogrsanathat the used compressor de-
termines the features analyzed, but this seems ill-tedgtgeneral-purpose compressors which
simply aim at analyzing general features as well as is plessil¥e test gross classification of
files based on markedly different file types, as on p@gyeecalling Figures.1displayed there.

1. Four mitochondrial gene sequences, from a black bear pehr, fox, and rat.

2. Four excerpts from the nové@lhe Zeppelin's Passengby E. Phillips Oppenheim
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3. Four MIDI files without further processing; two from JimeHdrix and two movements
from Debussy’s Suite bergamasque

4. Two Linux x86 ELF executables (tlop andrm commands)
5. Two compiled Java class files.

As expected, the program correctly classifies each of tierdiit types of files together with like
near like. The result is reported in Figusel with S(T) equal to 0.984. Recall th&is defined
as a linear normalized and inverted tree cost score as piyiexplained in Chapter 5, padé.
This means that this tree is very near an optimal best tree.

6.4 Music Categorization

The first result found relates to music analysis using gzipeqy2 with preprocessed MIDI files.
Surprisingly, the computer was able to reconstruct somemo@mmusical notions without any
training whatsoever using just compression and quartetsearch.

A human expert, comparing different pieces of music withahm to cluster likes together,
will generally look for certain specific similarities. Pieus attempts to automate this process
do the same. Generally speaking, they take a file containig@ of music and extract from
it various specific numerical features, related to pitclythim, harmony etc. One can extract
such features using for instance Fourier transforiid][or wavelet transforms44]. The feature
vectors corresponding to the various files are then cladoifielustered using existing classifica-
tion software, based on various standard statistical patéeognition classifierdfL4], Bayesian
classifiers 83], hidden Markov models19], ensembles of nearest-neighbor classifidd pr
neural networks33, 101]. For example, one feature would be to look for rhythm in thase
of beats per minute. One can make a histogram where eaclgfastdin corresponds to a par-
ticular tempo in beats-per-minute and the associated geaksshow frequent and strong that
particular periodicity was over the entire piece. 114] we see a gradual change from a few high
peaks to many low and spread-out ones going from hip-higk, jazz, to classical. One can use
this similarity type to try to cluster pieces in these categgd However, such a method requires
specific and detailed knowledge of the problem area, sineenerds to know what features to
look for.

Our aim is much more general. We do not look for similarity pesific features known to
be relevant for classifying music; instead we apply a gdmaeghematical theory of similarity.
The aim is to capture, in a single similarity metreyery effective metriceffective versions of
Hamming distance, Euclidean distance, edit distancespké#iv distance, and so on. Such a
metric would be able to simultaneously detalttsimilarities between pieces that other effective
metrics can detect. As we have seen in Chapter 3, such a fealVenetric indeed exists. Itis
the NID metric which is approximated by the NCD metric.

In this section we apply this compression-based methodetoltssification of pieces of mu-
sic. We perform various experiments on sets of mostly adasgieces given as MIDI (Musical
Instrument Digital Interface) files. This contrasts with shearlier research, where the music
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was digitized in some wave format or other (the only otheeaesh based on MIDI that we are
aware of is B3]). We compute the distances between all pairs of piecestlambuild a tree
containing those pieces in a way that is consistent witheltistances. First, we show that our
program can distinguish between various musical genrasgidal, jazz, rock) quite well. Sec-
ondly, we experiment with various sets of classical pieCBse results are quite good (in the
sense of conforming to our expectations) for small sets td,daut tend to get a bit worse for
large sets. Considering the fact that the method knows mgthbout music, or, indeed, about
any of the other areas we have applied it to elsewhere, omenmded of Dr Johnson’s remark
about a dog’s walking on his hind legs: “It is not done wellt pau are surprised to find it done
at all.”

6.4.1 Details of Our Implementation

Initially, we downloaded 118 separate MIDI (Musical Instrent Digital Interface, a versatile
digital music format available on the world-wide-web) filsslected from a range of classical
composers, as well as some popular music. Each of these filesum through a preproces-
sor to extract just MIDI Note-On and Note-Off events. Thegengés were then converted to a
player-piano style representation, with time quantize@.0%5 second intervals. All instrument
indicators, MIDI Control signals, and tempo variations &/gnored. For each track in the MIDI
file, we calculate two quantities: Aaverage volum@nd amodal note The average volume is
calculated by averaging the volume (MIDI Note velocity) dfreotes in the track. The modal
note is defined to be the note pitch that sounds most ofteratrtridick. If this is not unique, then
the lowest such note is chosen. The modal note is used as iada@iant reference point from
which to represent all notes. It is denoted by 0, higher natesdenoted by positive numbers,
and lower notes are denoted by negative numbers. A valuerddidates a half-step above the
modal note, and a value ef2 indicates a whole-step below the modal note. The tracksated
according to decreasing average volume, and then outputoession. For each track, we iter-
ate through each time sample in order, outputting a singieesi 8-bit value for each currently
sounding note. Two special values are reserved to reprédseend of a time step and the end
of a track. This file is then used as input to the compressagesior distance matrix calculation
and subsequent tree search.

Because we have already shown examples of the accuracy qfisinget tree reconstruction
on artificial and controlled data, we will proceed immedwat® natural data of considerably
more interest than that already shown in earlier chapters.

6.4.2 Genres: Rock vs. Jazz vs. Classical

Before testing whether our program can see the distinchietvgeen various classical composers,
we first show that it can distinguish between three broadesicaligenres: classical music, rock,
and jazz. This should be easier than making distinctionghiwi classical music. All musical
pieces we used are listed in the tables in the appendix. Eogehre-experiment we used 12
classical pieces (the small set from Tabl&, consisting of Bach, Chopin, and Debussy), 12 jazz
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pieces (Tablé.2), and 12 rock pieces (Tab&3). The tree that our program came up with is
given in Figure6.2 TheS(T) score is 0.858.

ParkYardbird MonkRoundM

BachWTK2P1 ChopPrel1s w
CGershsumm> O Colttazybid > | ~icsrsians>
@ . - MilesMilesto
ChopPrel24 ‘ -
- ‘ ColtrBlueTr
ChopPrel22
ChopPrell ‘ @
HendrixVoodoo . ‘
@ BachWTK2P2
D) . ColtrGiantStp
. ‘ - DireStMoney
MetalOne - .
- . - DebusBergl
BeatlMich - ClaptonCoca
- DebusBerg4
BeatlEleanor -
@ ClaptonLayla
PoliceBreath DebusBerg2
DebusBerg3

Figure 6.2: Output for the 36 pieces from 3 genres.

The discrimination between the 3 genres is good but not gierféne upper branch of the tree
contains 10 of the 12 jazz pieces, but also Chopin’s Préladé®and a Bach Prelude. The two
other jazz pieces, Miles Davis’ “So what” and John Coltrari€iant steps” are placed elsewhere
in the tree, perhaps according to some kinship that now esaapbut can be identified by closer
studying of the objects concerned. Of the rock pieces, 9laced close together in the rightmost
branch, while Hendrix’s “Voodoo chile”, Rush’ “Yyz”, and Ba Straits’ “Money for nothing”
are further away. In the case of the Hendrix piece this mayxp&amed by the fact that it does
not fit well in a specific genre. Most of the classical piecesiarthe lower left part of the tree.
Surprisingly, 2 of the 4 Bach pieces are placed elsewheris.nidt clear why this happens and
may be considered an error of our program, since we perde@v4 Bach pieces to be very close,
both structurally and melodically (as they all come from theno-thematic “Wohltemperierte
Klavier”). However, Bach’s is a seminal music and has begrezband cannibalized in all kinds
of recognizable or hidden manners; closer scrutiny comdaHdikenesses in its present company
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DebusBergl

DebusBerg3
DebusBerg4
DebusBerg2 ‘ ‘

‘ ChopPrell5
ChopPrell @
ChopPrel24

ChopPrel22

BachWTK2P2
BachWTK2P1

Figure 6.3: Output for the 12-piece set.

that are not now apparent to us. In effect our similarity argiims at the ideal of a perfect data
mining process, discovering unknown features in which gt@ dan be similar.

6.4.3 Classical Piano Music (Small Set)

In Table6.1we list all 60 classical piano pieces used, together witir tilgbreviations. Some
of these are complete compositions, others are individuglements from larger compositions.
They all are piano pieces, but experiments on 34 movemerdgrophonies gave very similar
results (Sectior6.4.6. Apart from running our program on the whole set of 60 piarexes,
we also tried it on two smaller sets: a small 12-piece seicatdd by ‘(s)’ in the table, and a
medium-size 32-piece set, indicated by ‘(s)’ or ‘{(m)’.

The small set encompasses the 4 movements from Debusstesifgugamasque, 4 move-
ments of book 2 of Bach’s Wohltemperierte Klavier, and 4 ypdel from Chopin’s opus 28. As
one can see in Figur@.3, our program does a pretty good job at clustering these piethe
S(T) score is also high: 0.958. The 4 Debussy movements form ars¢ee) as do the 4 Bach
pieces. The only imperfection in the tree, judged by whatwaoald intuitively expect, is that
Chopin’s Prélude no. 15 lies a bit closer to Bach than to therd® Chopin pieces. This Prélude
no 15, in fact, consistently forms an odd-one-out in our othgeriments as well. This is an
example of pure data mining, since there is some musicdl touthis, as no. 15 is perceived as
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by far the most eccentric among the 24 Préludes of Chopinis 8.

6.4.4 Classical Piano Music (Medium Set)

ChopPrell5 @

@ BachGoldAria
- - BachKdF1
HaydnAndaVari - -
- Bachlnvenl
HaydnSon38 - -
I BachGoldv1l

BachWTK2P2 - - -

ChopPrel22 ‘.

BachWTK2P1
ChopPrell - - BachKdF2
DebusChCorl - -
- HaydnSon40mL1
ChopPrel24
- HaydnSon40m2
SoueRereE = Haydnsona7>
DebusBerg3 DebusBergl
DebusBerg4

Figure 6.4: Output for the 32-piece set.

The medium set adds 20 pieces to the small set: 6 additionzth Beeces, 6 additional
Chopins, 1 more Debussy piece, and 7 pieces by Haydn. Theimgreal results are given
in Figure6.4. The S(T) score is slightly lower than in the small set experiment98.8Again,
there is a lot of structure and expected clustering. Mogt®@Bach pieces are together, as are the
four Debussy pieces from the Suite bergamasque. Thesetoutdsbe together because they
are movements from the same piece; The fifth Debussy itermigwbat apart since it comes
from another piece. Both the Haydn and the Chopin pieceslasteced in little sub-clusters
of two or three pieces, but those sub-clusters are scatteredghout the tree instead of being
close together in a larger cluster. These small clustersbhaan imperfection of the method, or,
alternatively point at musical similarities between thestéred pieces that transcend the similar-
ities induced by the same composer. Indeed, this may paenivily for further musicological
investigation.
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ChopPrel24 D) D) HaydnAndavari
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&
DebusBergZ
eeeeeeee o3 CEnenE>
HaydnSon4omz2

FlaydnSonomT Chopenz> CChopEws>

Figure 6.5: Output for the 60-piece set.

6.4.5 Classical Piano Music (Large Set)

Figure 6.5 gives the output of a run of our program on the full set of 6@&ese This adds 10
pieces by Beethoven, 8 by Buxtehude, and 10 by Mozart to thltummeset. The experimental
results are given in Figug 5. The results are still far from random, but leave more to (sirdd
than the smaller-scale experiments. Indeed e score has dropped further from that of the
medium-sized set to 0.844. This may be an artifact of theptag between the relatively small
size, and large number, of the files compared: (i) the digmestimated are less accurate; (ii) the
number of quartets with conflicting requirements increpaed (iii) the computation time rises
to such an extent that the correctness score of the dispthystgr graph within the set time limit
is lower than in the smaller samples. Nonetheless, Bach a3y are still reasonably well
clustered, but other pieces (notably the Beethoven and iGlaes) are scattered throughout
the tree. Maybe this means that individual music pieces bgdltomposers are more similar to
pieces of other composers than they are to each other? Teenpdat of the pieces is closer to
intuition on a small level (for example, most pairing of gilgis corresponds to musical similarity
in the sense of the same composer) than on the larger levslisi$imilar to the phenomenon of
little sub-clusters of Haydn or Chopin pieces that we savihérhedium-size experiment.
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BeetSym4m4 HaydnSym104mi

BeetSym3m2 -
BeetSym5m4
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BeetSym5m2 - - ‘ -
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Figure 6.6: Output for the set of 34 movements of symphonies.

6.4.6 Clustering Symphonies

Finally, we tested whether the method worked for more corapéid music, namely 34 sym-
phonic pieces. We took two Haydn symphonies (no. 95 in one dikel the four movements
of 104), three Mozart symphonies (39, 40, 41), three Beath@ymphonies (3, 4, 5), of Schu-
bert’s Unfinished symphony, and of Saint-Saens Symphongnd.he results are reported in
Figure6.6, with a quite reasonabl&T) score of 0.860.

6.4.7 Future Music Work and Conclusions

Our research raises many questions worth looking into éurth

» The program can be used as a data mining machine to discitkiertb unknown simi-
larities between music pieces of different composers oeadddifferent genres. In this
manner we can discover plagiarism or indeed honest inflsgnesveen music pieces and
composers. Indeed, it is thinkable that we can use the mathdscover seminality of
composers, or separate music eras and fads.

» Avery interesting application of our program would be tesea plausible composer for a
newly discovered piece of music of which the composer is notdn. In addition to such
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a piece, this experiment would require a number of pieces kwown composers that are
plausible candidates. We would just run our program on thefsal those pieces, and see
where the new piece is placed. If it lies squarely within astdu of pieces by composer
such-and-such, then that would be a plausible candidatpasen for the new piece.

» Each run of our program is different—even on the same seatd#-ebecause of our use
of randomness for choosing mutations in the quartet methtowould be interesting to
investigate more precisely how stable the outcomes aredifferent such runs.

At various points in our program, somewhat arbitrary cheiwere made. Some examples
are: the compression algorithms we use (all practical cesgion algorithms will fall
short of Kolmogorov complexity, but some less so than ofhdhe way we transform
the MIDI files (choice of length of time interval, choice ofteerepresentation); the cost
function in the quartet method. Other choices are possitdenaay or may not lead to
better clustering. Ideally, one would like to have well-founded theoreticagens to
decide such choices in an optimal way. Lacking those, &mal-error seems the only way
to deal with them.

» The experimental results got decidedly worse when the rmuwitpieces grew. Better com-
pression methods may improve this situation, but the effeptobably due to unknown
scaling problems with the quartet method or nonlinear sgadif possible similarities in a
larger group of objects (akin to the phenomenon describéueiso-called “birthday para-
dox”: in a group of about two dozen people there is a high cbhdhat at least two of the
people have the same birthday). Inspection of the undeylgistance matrices makes us
suspect the latter.

» Our program is not very good at dealing with very small dalesf(100 bytes or so),
because significant compression only kicks in for largesfile might deal with this by
comparing various sets of such pieces against each otstgashof individual ones.

6.4.8 Detalils of the Music Pieces Used

We compared the quartet-based approach to the tree resctimtrwith alternatives. One such alternative that
we tried is to compute the Minimum Spanning Tree (MST) from thatrix of distances. MST has the advantage
of being very efficiently computable, but resulted in trdest tvere much worse than the quartet method. It appears
that the quartet method is extremely sensitive in extrgdtiformation even from small differences in the entries of
the distance matrix, where other methods would be led ta.erro
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| Composer

Piece

| Acronym

J.S. Bach (10)

Beethoven (10)

Buxtehude (8)

Chopin (10)

Debussy (5)

Haydn (7)

Mozart (10)

Wohltemperierte Klavier Il: Preludes and fugues 1,BachWTK2{F,P}{1,2} (s)

Goldberg Variations: Aria, Variations 1,2
Kunst der Fuge: Variations 1,2

Invention 1

Sonata no. 8 (Pathetique), 1st movement
Sonata no. 14 (Mondschein), 3 movements
Sonata no. 21 (Waldstein), 2nd movement
Sonata no. 23 (Appassionata)

Sonata no. 26 (Les Adieux)

Sonata no. 29 (Hammerklavier)

Romance no. 1

Fur Elise

Prelude and fugues, BuxWV 139,143,144,163
Toccata and fugue, BuxWV 165

Fugue, BuxWV 174

Passacaglia, BuxWV 161

Canzonetta, BuxWV 168

Préludes op. 28: 1, 15, 22, 24

Etudes op. 10, nos. 1, 2, and 3

Nocturnes nos. 1 and 2

Sonata no. 2, 3rd movement

Suite bergamasque, 4 movements
Children’s corner suite (Gradus ad Parnassum)
Sonatas nos. 27, 28, 37, and 38

Sonata no. 40, movements 1,2

Andante and variations

Sonatas nos. 1,2,3,4,6,19

Rondo from Sonata no. 16

Fantasias K397, 475

Variations “Ah, vous dirais-je madam”

BachGold{Aria,V1,V2} (m)
BachKdF{1,2} (m)
Bachinvenl (m)
BeetSon8m1
BeetSon14m{1,2,3}
BeetSon21m?2

BeetSon23

BeetSon26

BeetSon29
BeetRomancel
BeetFurElise
BuxtPF{139,143,144,163}
BuxtTF165

BuxtFugl74
BuxtPassal61l
BuxtCanz168
ChopPrel{1,15,22,24} (s)
ChopEtu{1,2,3} (m)
ChopNoct{1,2} (m)
ChopSon2m3 (m)
DebusBerg{1,2,3,4}(s)
DebusChCorm1 (m)
HaydnSon{27,28,37,38} (m
HaydnSon40m{1,2} (m)
HaydnAndaVari (m)
MozSon{1,2,3,4,6,19}
MozSon16Rondo
MozFantK{397,475}
MozVarsDirais

Table 6.1: The 60 classical pieces used (‘m’ indicates piEse the medium set, ‘s’ in the small
and medium sets).

6.5 Genomics and Phylogeny

In recent years, as the complete genomes of various speiesie available, it has become pos-
sible to do whole genome phylogeny (this overcomes the prolithat using different targeted
parts of the genome, or proteins, may give different tr&dp [ Traditional phylogenetic meth-
ods on individual genes depended on multiple alignmenteféhated proteins and on the model
of evolution of individual amino acids. Neither of these ragically applicable to the genome
level. In absence of such models, a method which can competghiared information between
two sequences is useful because biological sequencesesmdodmnation, and the occurrence
of evolutionary events (such as insertions, deletiongytpoutations, rearrangements, and inver-
sions) separating two sequences sharing a common anceitesswit in the loss of their shared
information. Our method (in the form of the CompLearn Totlis a fully automated software
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John Coltrane Blue trane
Giant steps
Lazy bird
Impressions
Miles Davis Milestones
Seven steps to heaven
Solar

So what
George Gershwin Summertime
Dizzy Gillespie Night in Tunisia
Thelonious Monk| Round midnight
Charlie Parker Yardbird suite

Table 6.2: The 12 jazz pieces used.

The Beatles | Eleanor Rigby
Michelle

Eric Clapton | Cocaine

Layla

Dire Straits | Money for nothing
Led Zeppelin| Stairway to heaven

Metallica One
Jimi Hendrix | Hey Joe
Voodoo chile

The Police Every breath you take
Message in a bottle
Rush Yyz

Table 6.3: The 12 rock pieces used.

tool based on such a distance to compare two genomes.

6.5.1 Mammalian Evolution:

In evolutionary biology the timing and origin of the majortamt placental clades (groups of
organisms that have evolved from a common ancestor) catitafuel debate and research.
Here, we provide evidence by whole mitochondrial genoméqgw®ny for competing hypotheses
in two main questions: the grouping of the Eutherian ordensl, the Therian hypothesis versus
the Marsupionta hypothesis.

Eutherian Orders: It was demonstrated irY[/] that a whole mitochondrial genome phylogeny
of the Eutherians (placental mammals) can be reconstruateamatically from a set ofin-
alignedcomplete mitochondrial genomes by use of an early form ofcounpression method,
using standard software packages. As more genomic matasabecome available, the debate
in biology has intensified concerning which two of the thresmygroups of placental mammals
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Figure 6.7: The evolutionary tree built from complete marhammtDNA sequences of 24
species, using the NCD matrix of Figudel4on page/0where it was used to illustrate a point
of hierarchical clustering versus flat clustering. We hasgrawn the tree from our output to
agree better with the customary phylogeny tree format. Téeedgrees exceptionally well with
the NCD distance matrix3T) = 0.996.

Primates

are more closely related: Primates, Ferungulates, andri@adén [18], the maximum likeli-
hood method of phylogeny tree reconstruction gave evidércthe (Ferungulates, (Primates,
Rodents)) grouping for half of the proteins in the mitochaaldyenomes investigated, and (Ro-
dents, (Ferungulates, Primates)) for the other halveseofrthgenomes. In that experiment they
aligned 12 concatenated mitochondrial proteins, takem 20 species: the humble r&gttus
norvegicu$, house mouseMus musculus grey seal [alichoerus grypul harbor sealPhoca
vitulina), cat (elis catu$, white rhino Ceratotherium simuimnhorse Equus caballuf finback
whale Balaenoptera physaljisblue whale Balaenoptera musculijiscow Bos tauru$, gibbon
(Hylobates la}, gorilla (Gorilla gorilla), human Homo sapiens chimpanzeeRan troglodytek
pygmy chimpanzeeRan paniscul orangutan Pongo pygmaelsSumatran orangutafP¢ngo
pygmaeus abel)ij using opossuniidelphis virginiang, wallaroo (Macropus robustys and the
platypus Qrnithorhynchus anatingsas outgroup. In§0, 77] we used the whole mitochondrial
genome of the same 20 species, computing the NCD distancasc(osely related distance in
[80]), using the GenCompress compressor, followed by treensgnaction using the neighbor
joining program in the MOLPHY packag®9] to confirm the commonly believed morphology-
supported hypothesis (Rodents, (Primates, Ferungulatespeating the experiment using the
hypercleaning method B of phylogeny tree reconstruction gave the same resulte Hee re-
peated this experiment several times using the CompLeatkiTasing our new quartet method
for reconstructing trees, and computing the NCD with vagioompressors (gzip, bzip2, PPMZ),
again always with the same result. These experiments amepoited since they are subsumed
by the larger experiment of Figue?.
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Marsupionta and Theria: The extant monophyletic divisions of the class Mammaliathee
Prototheria (monotremes: mammals that procreate using)eljptatheria (marsupials: mam-
mals that procreate using pouches), and Eutheria (pldaaatamals: mammals that procreate
using placentas). The sister relationships between theagg is viewed as the most funda-
mental question in mammalian evolutidsb]. Phylogenetic comparison by either anatomy or
mitochondrial genome has resulted in two conflicting hype#s: the gene-isolation-supported
Marsupionta hypothesig(Prototheria, Metatheria), Eutheria) versus the molming supported
Theria hypothesigPrototheria, (Metatheria, Eutheria)), the third poksilapparently not being
held seriously by anyone. There has been a lot of supporitfa@rdnypothesis; recent support for
the Theria hypothesis was given B9 by analyzing a large nuclear gene (M6P/IG2R), viewed
as important across the species concerned, and even meng sepport for the Marsupionta hy-
pothesis was given irbfl] by phylogenetic analysis of another sequence from theeanadene
(18S rRNA) and by the whole mitochondrial genome.

Experimental Evidence: To test the Eutherian orders simultaneously with the Maoip
versus Theria hypothesis, we added four animals to the ab@ray: Australian echidnaléchy-
glossus aculeatysbrown bear rsus arcto$, polar bearUrsus maritimuy, using the common
carp Cyprinus carpid as the outgroup. Interestingly, while there are many gsecf Euthe-
ria and Metatheria, there are only three species of nowdifrototheria known: platypus, and
two types of echidna (or spiny anteater). So our sample oPtiséotheria is large. The addi-
tion of the new species might be risky in that the addition @ivrrelations is known to distort
the previous phylogeny in traditional computational gerasnpractice. With our method, using
the full genome and obtaining a single tree with a very highfidenceS(T) value, that risk is
not as great as in traditional methods obtaining ambigumestwith bootstrap (statistic sup-
port) values on the edges. The mitochondrial genomes obtiaédf 24 species we used were
downloaded from the GenBank Database on the world-wide ®abh is around 17,000 bases.
The NCD distance matrix was computed using the compres9dZPPhe resulting phylogeny,
with an almost maxima§(T) score of 0.996 supports anew the currently accepted grgupin
(Rodents, (Primates, Ferungulates)) of the Eutherianrsyr@ad additionally the Marsupionta
hypothesis ((Prototheria, Metatheria), Eutheria), see€i6.7 (reproducing Figurd.12for the
readers convenience). Overall, our whole-mitochondri@DNanalysis supports the following
hypothesis:

Mammalia

7 ™~

((primates ferungulateg(rodents(Metatherig Prototheria))),

-

Eutheria

which indicates that the rodents, and the branch leadingaedtetatheria and Prototheria, split
off early from the branch that led to the primates and ferleigs. Inspection of the distance ma-
trix Figure4.140n pager0 (exhibited earler in the context of hierarchical versusdlastering)

shows that the primates are very close together, as aredeatsy the Metatheria, and the Pro-
totheria. These are tightly-knit groups with relativelpst NCD’s. The ferungulates are a much
looser group with generally distant NCD’s. The intergrougtahces show that the Prototheria
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Figure 6.8: Dendrogram of mitochondrial genomes of fungngidNCD. This represents the
distance matrix precisely wit§(T) = 0.999.
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Figure 6.9: Dendrogram of mitochondrial genomes of fungngidlock frequencies. This rep-
resents the distance matrix precisely Wi ) = 0.999.

are furthest away from the other groups, followed by the Mhetaa and the rodents. Also the
fine-structure of the tree is consistent with biologicaldas.

6.5.2 SARS Virus:

In another experiment we clustered the SARS virus aftereiggienced genome was made pub-
licly available, in relation to potential similar virii. 15 virus genomes were downloaded from
The Universal Virus Database of the International Commitia Taxonomy of Viruses, avail-
able on the world-wide web. The SARS virus was downloadeohf@@anada’s Michael Smith
Genome Sciences Centre which had the first public SARS Cuirmisadraft whole genome
assembly available for download (SARS TOR2 draft genomemablyy 120403). The NCD
distance matrix was computed using the compressor bzip@ rdlations in Figurd.9 are very
similar to the definitive tree based on medical-macrobinegeics analysis, appearing later in the
New England Journal of Medicine63]. We depicted the figure in the ternary tree style, rather
than the genomics-dendrogram style, since the former i® rpcise for visual inspection of
proximity relations.

6.5.3 Analysis of Mitochondrial Genomes of Fungi:

As a pilot for applications of the CompLearn Toolkit in fungeénomics research, the group
of T. Boekhout, E. Kuramae, V. Robert, of the Fungal Biods#gr Center, Royal Netherlands
Academy of Sciences, supplied us with the mitochondriabgees ofCandida glabrata, Pichia
canadensis, Saccharomyces cerevisiae, S. castelliindzai, Yarrowia lipolytica(all yeasts),
and two filamentous ascomycetdgpocrea jecorinandVerticillium lecanii The NCD distance
matrix was computed using the compressor PPMZ. The regutae is depicted in Figuré.8.
The interpretation of the fungi researchers is “the treartyeclustered the ascomycetous yeasts
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Figure 6.10: Clustering of Native-American, Native-Afit, and Native-European languages.
S(T) =0.928.

versus the two filamentous Ascomycetes, thus supportingutrent hypothesis on their classi-
fication (for example, sed§]). Interestingly, in a recent treatment of the Saccharataaeae,
S. servazii, S. castellii and C. glabrata were all proposellelong to genera different from
Saccharomyces, and this is supported by the topology ofeeras well §4].”

To compare the veracity of the NCD clustering with a moreudesabased clustering, we also
calculated the pairwise distances as follows: Each fileiweded to a 4096-dimensional vector
by considering the frequency of all (overlapping) 6-bytatiguous blocks. The 12-distance
(Euclidean distance) is calculated between each pair sflfijetaking the square root of the sum
of the squares of the component-wise differences. Thesandiss are arranged into a distance
matrix and linearly scaled to fit the ran{@ 1.0]. Finally, we ran the clustering routine on this
distance matrix. The results are in Figle®. As seen by comparing with the NCD-based
Figure 6.8 there are apparent misplacements when using the Euclidestanck in this way.
Thus, in this simple experiment, the NCD performed betteat ts, agreed more precisely with
accepted biological knowledge.

6.6 Language Trees

Our method improves the results @&,[using a linguistic corpus of “The Universal Declaration
of Human Rights (UDoHR)"27] in 52 languages. PrevioushgJ[used an asymmetric measure
based on relative entropy, and the full matrix of the pasendistances between all 52 languages,
to build a language classification tree. This experiment igpsated (resulting in a somewhat
better tree) using the compression method7iA using standard biological software packages
to construct the phylogeny. We have redone this experinagt,done new experiments, using
the CompLearn Toolkit. Here, we report on an experiment passe radically different lan-
guage families. We downloaded the language versions of b@HR text in English, Spanish,
Dutch, German (Native-European), Pemba, Dendi, Ndbemngo, Somali, Rundi, Ditammari,
Dagaare (Native African), Chikasaw, Perhupecha, Mazahapoteco (Native-American), and
didn’t preprocess them except for removing initial ideyitfy information. We used an Lempel-
Ziv-type compressogzip to compress text sequences of sizes not exceeding the lehgtk
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Figure 6.11: Clustering of Russian writers. Legend: |.§géuev, 1818-1883 [Father and Sons,
Rudin, On the Eve, A House of Gentlefolk]; F. Dostoyevsky 1-8P381 [Crime and Punishment,
The Gambler, The Idiot; Poor Folk]; L.N. Tolstoy 1828—-192hha Karenina, The Cossacks,
Youth, War and Piece]; N.V. Gogol 1809-1852 [Dead Soulsag&ulba, The Mysterious Por-
trait, How the Two Ivans Quarrelled]; M. Bulgakov 1891-1946e Master and Margarita, The
Fatefull Eggs, The Heart of a Dogk(T) = 0.949.

sliding windowgzip uses (32 kilobytes), and compute the NCD for each pair ofdagg se-
guences. Subsequently we clustered the result. We showtbeme of one of the experiments
in Figure6.10 Note that three groups are correctly clustered, and thert #ve subclusters of
the European languages are correct (English is groupedidtRomance languages because it
contains up to 40% admixture of words from Latin origin).

6.7 Literature

The texts used in this experiment were down-loaded from tivédawide web in original Cyrillic-
lettered Russian and in Latin-lettered English by L. Avamag¢Moldavian MSc student at the
University of Amsterdam). The compressor used to compueNl8D matrix was bzip2. We
clustered Russian literature in the original (Cyrillic)8pgol, Dostojevski, Tolstoy, Bulgakov, Tsjechov,
with three or four different texts per author. Our purpose wesee whether the clustering is sen-
sitive enough, and the authors distinctive enough, to t@sualustering by author. In Figuré.11

we see a perfect clustering. Considering the English tagiosis of the same texts, in FiguBel2

we see errors in the clustering. Inspection shows that tietarling is now partially based on the
translator. It appears that the translator superimposesHharacteristics on the texts, partially
suppressing the characteristics of the original autharsthier experiments we separated authors
by gender and by period.
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Figure 6.12: Clustering of Russian writers translated iglish. The translator is given in brack-
ets after the titles of the texts. Legend: I.S. Turgenev8t8883 [Father and Sons (R. Hare),
Rudin (Garnett, C. Black), On the Eve (Garnett, C. Black), dulse of Gentlefolk (Garnett, C.
Black)]; F. Dostoyevsky 1821-1881 [Crime and Punishmerr(@tt, C. Black), The Gambler
(C.J. Hogarth), The Idiot (E. Martin); Poor Folk (C.J. Hod@]; L.N. Tolstoy 1828-1910 [Anna
Karenina (Garnett, C. Black), The Cossacks (L. and M. Aydméouth (C.J. Hogarth), War and
Piece (L. and M. Aylmer)]; N.V. Gogol 1809-1852 [Dead SoWs) Hogarth), Taras Bulbas(
G. Tolstoy, 1860, B.C. Baskerville), The Mysterious PattraHow the Two Ivans Quarrelledy
|.F. Hapgood]; M. Bulgakov 1891-1940 [The Master and Matg4R. Pevear, L. Volokhonsky),
The Fatefull Eggs (K. Gook-Horujy), The Heart of a Dog (M. Gig)]. S(T) = 0.953.
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Figure 6.13: Images of handwritten digits used for OCR.
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Figure 6.14: Clustering of the OCR imag&$T) = 0.901.

6.8 Optical Character Recognition

Perhaps surprisingly, it turns out that scanning a picturaster row-major order retains enough
regularity in both dimensions for the compressor to graspsimple task along these lines is
to cluster handwritten characters. The handwritten charsadn Figure6.13were downloaded
from the NIST Special Data Base 19 (optical character reitiogrdatabase) on the world-wide
web. Each file in the data directory contains 1 digit imagthegia four, five, or six. Each pixel is
a single character; '# for a black pixel, .’ for white. Newes are added at the end of each line.
Each character is 128x128 pixels. The NCD matrix was contpuseng the compressor PPMZ.
Figure6.14shows each character that is used. There are 10 of each4ligib;” “6,” making a
total of 30 items in this experiment. All but one of the 4’s ard in the subtree rooted at, all

but one of the 5’s are put in the subtree rootedtand all 6’s are put in the subtree rooted at
n3. The remaining 4 and 5 are in the bram&@8, n13 joiningn6 andn3. So 28 items out of 30
are clustered correctly, that is, 93%.

Classification In the experiment above we used only 3 digits. Using the el decimal
digits results in a lower clustering accuracy. However, e ase the NCD as a oblivious feature
extraction technique to convert generic objects into fiditeensional vectors. This is done using
theanchor methodvhich we introduced in Chapter 5, Sectibr2. We have used this technique
to train a support vector machine (SVM) based OCR systemassifly handwritten digits by
extracting 80 distinct, ordered NCD features from each immage. The images are black and
white square rasterized images. The anchors are choserandder all at the beginning of the
experiment randomly from the training object pool, ensgithrat eight examples of each class are
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chosen. Once chosen, the anchors are kept in order (so éhfatsthcoordinate always refers to
the same anchor and so on) and used to translate all oth@ngraiata files into 80-dimensional

vectors. In this initial stage of ongoing research, by ouivatis method of compression-based
clustering to supply a kernel for an SVM classifier, we ackéea handwritten single decimal
digit recognition accuracy of 85%. The current state-@&-#nt for this problem, after half a

century of interactive feature-driven classification egsh, in the upper ninety % leve37, 113.

All experiments are bench marked on the standard NIST Seata Base 19 (optical character
recognition database).

6.9 Astronomy

As a proof of principle we clustered data from unknown olgeftr example objects that are far
away. In p] observations of the microquasar GRS 1915+105 made witlRtssi X-ray Tim-
ing Explorer were analyzed. The interest in this microquasams from the fact that it was the
first Galactic object to show a certain behavior (superl@ahn@xpansion in radio observations).
Photonometric observation data from X-ray telescopes wwtided into short time segments
(usually in the order of one minute), and these segments Ihese classified into a bewilder-
ing array of fifteen different modes after considerable reff@riefly, spectrum hardness ratios
(roughly, “color”) and photon count sequences were usedatssidy a given interval into cate-
gories of variability modes. From this analysis, the exegntomplex variability of this source
was reduced to transitions between three basic stateshwhterpreted in astronomical terms,
gives rise to an explanation of this peculiar source in sieshthlack-hole theory. The data we
used in this experiment made available to us by M. Klein Woit-&uthor of the above paper)
and T. Maccarone, both researchers at the Astronomic#itestAnton Pannekoek”, University
of Amsterdam. The observations are essentially time semesour aim was experimenting with
our method as a pilot to more extensive joint research. Herddsk was to see whether the
clustering would agree with the classification above. ThéN@atrix was computed using the
compressor PPMZ. The results are in Figargés We clustered 12 objects, consisting of three
intervals from four different categories denoteddag @, 6 in Table 1 of B]. In Figure6.15we
denote the categories by the corresponding Roman letté&ssB),and T, respectively. The result-
ing tree groups these different modes together in a way shadnsistent with the classification
by experts for these observations. The oblivious comprassustering corresponds precisely
with the laborious feature-driven classification &j.[

6.10 Conclusion

To interpret what the NCD is doing, and to explain its rembl&@accuracy and robustness across
application fields and compressors, the intuition is thatNIED minorizes all similarity metrics
based on features that are captured by the reference caupmeglved. Such features must be
relatively simplein the sense that they are expressed by an aspect that theessmpanalyzes
(for example frequencies, matches, repeats). Certainsogaied features may well be express-
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Figure 6.15: 16 observation intervals of GRS 1915+105 froor tlasses. The initial capital
letter indicates the class corresponding to Greek lower [&ters in §]. The remaining letters
and digits identify the particular observation intervatémms of finer features and identity. The
T-cluster is top left, thé>-cluster is bottom left, th&-cluster is to the right, and thB-cluster
in the middle. This tree almost exactly represents the uyidgrNCD distance matrixS(T) =
0.994.

ible as combinations of such simple features, and are threréiemselves simple features in this
sense. The extensive experimenting above shows that ev&uesfeatures are captured.

A potential application of our non-feature (or rather, mamknown-feature) approach is
exploratory. Presented with data for which the featuresaarget unknown, certain dominant
features governing similarity are automatically discedeby the NCD. Examining the data un-
derlying the clusters may yield this hitherto unknown doamtifeature.

Our experiments indicate that the NCD has application in mew areas of support vector
machine (SVM) based learning. Firstly, we find that the ile@MNCD (1-NCD) is useful as a
kernel for generic objects in SVM learning. Secondly, we ga@ the normal NCD as a feature-
extraction technique to convert generic objects into fiditeensional vectors, see the last para-
graph of Sectior6.8. In effect our similarity engine aims at the ideal of a perfeéata mining
process, discovering unknown features in which the datebeasimilar. This is the subject of
current joint research in genomics of fungi, clinical malkee genetics, and radio-astronomy.

The results in this section owe thanks to Loredana Afana§eaduate School of Logic,
University of Amsterdam; Teun Boekhout, Eiko Kuramae, \@ntRobert, Fungal Biodiversity
Center, Royal Netherlands Academy of Sciences; Marc Klealt WWhomas Maccarone, As-
tronomical Institute “Anton Pannekoek”, University of Atasdam; Evgeny Verbitskiy, Philips
Research; Steven de Rooij, Ronald de Wolf, CWI; the refeagesthe editors, for suggestions,
comments, help with experiments, and data; Jorma RissareBaris Ryabko for useful dis-
cussions, Tzu-Kuo Huang for pointing out some typos and Kficgtions, and Teemu Roos and
Henri Tirry for implementing a visualization of the clustey process.
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Chapter 7
Automatic Meaning Discovery Using Google

The NCD investigations of the previous chapters focusedsomgudata compressors to compress
data in files. This chapter deals with an entirely differest f analysis that is not performed
on files but rather osearch termsor the Google web search engine. By using well-known con-
nections between code-lengths and probabilities, we appel\NCD theory to Google’s search
engine index, providing insight into the subjective radaghips enjoyed among a group of words
or phrases. The Google Simple Object Access Protocol istosazhnect it with the CompLearn
system. Remarkably, the system does not use the contenebgiages directly, but instead only
uses the estimated results count indicator from the Goaglech engine to make a probabilis-
tic model of the web. This model is based on sampling eacltcsdarm in a group as well
as all pairs in order to find structure in their co-occurrenBefore explaining the method in
detail the reader is invited to have a look at the experimeriigure7.1 involving the names
of politicians. The tree shows the subjective relationstamong several European Commis-
sion members. After giving a general introduction to thehodt we introduce some relevant
background material in Sectiohl.2 We explain the formula that connects NCD to Google in
Section7.3. We provide a sketch of one possible theoretical breakdawacerning the surpris-
ing robustness of the results and consequent Google-batadak metric. We prove a certain
sort of universality property for this metric. In Secti@m, we present a variety of experiments
demonstrating the sorts of results that may be obtained. &eodstrate positive correlations,
evidencing an underlying semantic structure, in both nicaksymbol notations and number-
name words in a variety of natural languages and contextst, Me demonstrate the ability to
distinguish between colors and numbers, and to distindreéslieen 17th century Dutch painters;
the ability to understand electrical terms, religious terand emergency incidents; we conduct a
massive experiment in understanding WordNet categoniekfinally we demonstrate the ability
to do a simple automatic English-Spanish vocabulary adens

7.1 Introduction

Objects can be given literally, like the literal four-letggenome of a mouse, or the literal text of
War and Peacéy Tolstoy. For simplicity we take it that all meaning of thigject is represented
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by the literal object itself. Objects can also be given by aalike “the four-letter genome of a
mouse,” or “the text oiVar and Peacéy Tolstoy.” There are also objects that cannot be given
literally, but only by name, and that acquire their meanirayf their contexts in background
common knowledge in humankind, like “home” or “red.” To mat@mputers more intelligent
one would like to represent meaning in computer digestinmf Long-term and labor-intensive
efforts like theCyc project [71] and theWordNetproject [37] try to establish semantic relations
between common objects, or, more precisaBmesfor those objects. The idea is to create a
semantic web of such vast proportions that rudimentanfligéemce, and knowledge about the
real world, spontaneously emerge. This comes at the greab€adesigning structures capable
of manipulating knowledge, and entering high quality catgén these structures by knowledge-
able human experts. While the efforts are long-running angel scale, the overall information
entered is minute compared to what is available on the woit-web.

The rise of the world-wide-web has enticed millions of ugertype in trillions of characters
to create billions of web pages of on average low quality eotst. The sheer mass of the informa-
tion available about almost every conceivable topic makidsely that extremes will cancel and
the majority or average is meaningful in a low-quality apgneate sense. We devise a general
method to tap the amorphous low-grade knowledge availaiol&dée on the world-wide-web,
typed in by local users aiming at personal gratification ekdie objectives, and yet globally
achieving what is effectively the largest semantic eledtralatabase in the world. Moreover,
this database is available for all by using any search ertgatecan return aggregate page-count
estimates for a large range of search queries, like Google.

Previously, we and others developed a compression-bastthdh® establish a universal
similarity metric among objects given as finite binary 9819, 75, 76, 26, 25, 22], which was
widely reported 85, 88, 35]; some of these experiments are shown in chapters 5 and h Suc
objects can be genomes, music pieces in MIDI format, computgirams in Ruby or C, pictures
in simple bitmap formats, or time sequences such as hedhmhgata. This method is feature-
free in the sense that it does not analyze the files lookingddicular features; rather it analyzes
all features simultaneously and determines the similagtyveen every pair of objects according
to the most dominant shared feature. The crucial point isttteamethod analyzes the objects
themselves. This precludes comparison of abstract notorgher objects that do not lend
themselves to direct analysis, like emotions, colors, &est Plato, Mike Bonanno and Albert
Einstein. While the previous method that compares the tbjpemselves is particularly suited
to obtain knowledge about the similarity of objects themssg] irrespective of common beliefs
about such similarities, here we develop a method that uslystiee name of an object and
obtains knowledge about the similarity of objects by tapmmailable information generated by
multitudes of web users. Here we are reminded of the wordsléf Rumsfeld 96]

“A trained ape can know an awful lot
Of what is going on in this world,
Just by punching on his mouse

For a relatively modest cost!”

This is useful to extract knowledge from a given corpus ofvidealge, in this case the Google
database, but not to obtain true facts that are not commowlkdge in that database. For
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example, common viewpoints on the creation myths in differeligions may be extracted by
the Googling method, but contentious questions of fact eomog the phylogeny of species can
be better approached by using the genomes of these speties, than by opinion.

7.1.1 Googling for Knowledge

Intuitively, the approach is as follows. The Google seambime indexes around ten billion
pages on the web today. Each such page can be viewed as ars#oferms. While the theory
we propose is rather intricate, the resulting method is Erepough. We give an example: At
the time of doing the experiment, a Google search for “hqresfurned 46,700,000 hits. The
number of hits for the search term “rider” was 12,200,000ar8a&ng for the pages where both
“horse” and “rider” occur gave 2,630,000 hits, and Googlgexed 8,058,044,651 web pages.
Using these numbers in the main formufa3.3 we derive below, witiN = 8,058 044,651, this
yields a Normalized Google Distance between the terms &i@nsd “rider” as follows:

NGD(horserider) ~ 0.443

In the next part of this thesis we argue that the NGD is a norseedantic distance between the
terms in question, usually (but not always, see below) iwben O (identical) and 1 (unrelated),
in the cognitive space invoked by the usage of the terms omvttel-wide-web as filtered by
Google. Because of the vastness and diversity of the welmthisbe taken as related to the
current use of the terms in society. We did the same calonathen Google indexed only one-
half of the number of pages: 4,285,199,774. It is instracthat the probabilities of the used
search terms didn’'t change significantly over this doubbiigpages, with number of hits for
“horse” equal 23,700,000, for “rider” equal 6,270,000, &rd‘horse, rider” equal to 1,180,000.
The NGD(horserider) we computed in that situation was 0.460. This is in line with our
contention that the relative frequencies of web pages cuntpsearch terms gives objective
information about the semantic relations between the bdaares. If this is the case, then the
Google probabilities of search terms and the computed NGdhaaild stabilize (become scale
invariant) with a growing Google database.

7.1.2 Related Work and Background NGD

It has been brought to our attention, that there is a gredbfleark in both cognitive psychology
[68], linguistics, and computer science, about using worddpés) frequencies in text corpora
to develop measures for word similarity or word associatfartially surveyed inJ12 117],
going back to at leasp]. These approaches are based on arguments and theoriasetifian-
damentally different from the approach we develop, whidbased on coding and compression,
based on the theory of Kolmogorov complexi®g]. This allows to express and prove properties
of absolute relations between objects that cannot even fressed by other approaches. The
NGD is the result of a new type of theory and as far as we knowti®quivalent to any earlier
measure. Nevertheless, in practice the resulting measayestil sometimes lead to similar re-
sults as existing methods. The current thesis is a next staplecade of cumulative research in
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this area, of which the main thread 89 9, 80, 76, 26, 25, 22] with [ 75, 10] using the related
approach ofT7§.

7.1.3 Outline

Previously, we have outlined the classical informatiorotieéic notions that have underpinned
our approach, as well as the more novel ideas of Kolmogoroydexity, information distance,
and compression-based similarity metric (Secfichd. Here, we give a technical description
of the Google distribution, the Normalized Google Distgrarel the universality of these notions
(Section7.3), preceded by Subsectidn2.1pressing home the difference between literal object
based similarity (as in compression based similarity), ematext based similarity between ob-
jects that are not given literally but only in the form of nakat acquire their meaning through
contexts in databases of background information (as in (@dmgsed similarity). In Section.4
we present a plethora of clustering and various classificakperiments to validate the univer-
sality, robustness, and accuracy of our proposal. A massparenental work, which for space
reasons can not be reported here, is avail&28 [n section5.3.3we explained some basics of
the SVM approach we use in the classification experimentsrevtine Google similarity is used
to extract feature vectors used by the kernel.

7.2 Extraction of Semantic Relations with Google

Every text corpus or particular user combined with a freqyextractor defines its own relative
frequencies of words and phrases. In the world-wide-webGoahle setting there are millions
of users and text corpora, each with its own distributiorthmsequel, we show (and prove) that
the Google distribution is universal for all the individwedb users distributions.

The number of web pages currently indexed by Google is apping 13°. Every common
search term occurs in millions of web pages. This number igast, and the number of web
authors generating web pages is so enormous (and can beeassuive a truly representative
very large sample from humankind), that the probabilitie&oogle search terms, conceived as
the frequencies of page counts returned by Google dividetthdyumber of pages indexed by
Google, may approximate the actual relative frequencig¢hade search terms as actually used
in society. Based on this premise, the theory we developigctiapter states that the relations
represented by the Normalized Google Distark8.3 approximately capture the assumed true
semantic relations governing the search terms. The NGDutar{.3.3 only uses the probabil-
ities of search terms extracted from the text corpus in guestWe use the world wide web and
Google, but the same method may be used with other text alierthe King James version of
the Bible or the Oxford English Dictionary and frequency icbextractors, or the world-wide-
web again and Yahoo as frequency count extractor. In thessa@ne obtains a text corpus and
frequency extractor biased semantics of the search terongbf@in the true relative frequencies
of words and phrases in society is a major problem in appireglistic research. This requires
analyzing representative random samples of sufficiens sitiee question of how to sample ran-
domly and representatively is a continuous source of de@atecontention that the web is such
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a large and diverse text corpus, and Google such an ablemirthat the relative page counts
approximate the true societal word- and phrases usag¢s stabe supported by current real
linguistics researchl0Q.

Similarly, the NGD minorizes and incorporates all the difet semantics of all the different
users and text corpora on the web. It extracts as it were tharstics as used in the society (of all
these web users) and not just the bias of any individual usdocument. This is only possible
using the web, since its sheer mass of users and documehtsii¥igrent intentions averages
out to give the true semantic meaning as used in society. i§h@gperimentally evidenced by
the fact that when Google doubled its size the sample seosavitrider, horse stayed the same.
Determining the NGD between two Google search terms doesivat/e analysis of particular
features or specific background knowledge of the problema. drestead, it analyzes all features
automatically through Google searches of the most genaciiground knowledge data base: the
world-wide-web. (In Statistics “parameter-free estirmatimeans that the number of parameters
analyzed is infinite or not a priori restricted. In our saitifieature-freeness” means that we
analyze all features.)

7.2.1 Genesis of the Approach

We start from the observation that a compressor defines awod#® length for every source
word, namely, the number of bits in the compressed versidhaifsource word. Viewing this
code as a Shannon-Fano code, SecBahit defines in its turn a probability mass function on
the source words. Conversely, every probability mass fonatf the source words defines a
Shannon-Fano code of the source words. Since this codeimallyt compact in the sense of
having expected code-word length equal to the entropy oiritial probability mass function,
we take the viewpoint that a probability mass function is mpgessor.

7.2.1.EXAMPLE. For example, the NID (Normalized Information Distance,a@ter 3, Sec-
tion 3.3) uses the probability mass functiom(x) = 2~ whereK is the Kolmogorov com-
plexity function, Chapter 2. This function is not compugbbut it has the weaker property
of being lower semi-computable: by approximatiigx) from above by better and better com-
pressors, we approximate(x) from below. The distributiom(x) has the remarkable property
that it dominates every lower semi-computable probabitiyss functiorP(x) (and hence all
computable ones) by assigning more probability to everyefininary stringx thanP(x), up to

a multiplicative constantp > 0 depending orP but not onx (m(x) > cpP(x)). We say that
m(x) is universalfor the enumeration of all lower semi-computable probgbitiass functions,
[79], a terminology that is closely related to the “universélibf a universal Turing machine
in the enumeration of all Turing machines. It is this propehat allows us to show7pp] that
NID is themost informativelistance (actually a metric) among a large family of (pdgsilon-
metric) “admissible normalized information distancestitBie cannot apply these same formal
claims to the real-world NCD , except in a sense that is reiad on how well the compressor
approximates the ultimate Kolmogorov complexi®2] 26, 25 and as shown in Sectidh3.

In essence, the choice of compressor brings a particulaf ssisumptions to bear upon an
incoming data stream, and if these assumptions turn out sxwtarate for the data in question,
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then compression is achieved. This is the same as sayinghthadrobability mass function
defined by the compressor concentrates high probabilitfheset data. If a pair of files share
information in a way that matches the assumptions of a pdaticompressor, then we obtain a
low NCD . Every compressor analyzes the string to be compdasg quantifying an associated
family of features. A compressor such ggi p detects a class of features, for example match-
ing substrings that are separated by no more than 32 kilsb@tertain higher-order similarities
are detected in the final Huffman coding phase. This explagve gzi p is able to correctly
cluster files generated by Bernoulli processes. A bettepeessor likebzi p2 detects substring
matches across a wider window of 900 kilobytes, and detecexpanded set of higher-order
features. Such compressors implicitly assume that theldetano global, structured, meaning.
The compressor only looks for statistical biases, repeisi and other biases in symmetrically
defined local contexts, and cannot achieve compressionfexrgery low-complexity meaning-
ful strings like the digits oft They assume the data source is at some level a simple station
ergodic random information source which is by definition megless. The problem with this is
clearly sketched by the great probabilist A.N. Kolmogorsy, [58]: “The probabilistic approach
is natural in the theory of information transmission ovencounication channels carrying ‘bulk’
information consisting of a large number of unrelated orkixceelated messages obeying def-
inite probabilistic laws.... [it] can be convincingly applied to the information contadh for
example, in a stream of congratulatory telegrams. But wéstmeaning is there, for example,
in [applying this approach to] ‘War and Peace@r, on the other hand, must we assume that the
individual scenes in this book form a random sequence witithsastic relations’ that damp out
quite rapidly over a distance of several pages?” The corapregpply no external knowledge to
the compression, and so will not take advantage of the fattthlways followsQin the English
language, and instead must learn this fact anew for eachategdie (or pair) despite the simple
ubiquity of this rule. Thus the generality of common data poessors is also a liability, because
the features which are extracted are by construction mgkess and devoid of relevance.

Yet, files exist in the real world, and the files that actuakisein stored format by and large
carry a tremendous amount of structural, global, meanintyey didn’t then we would throw
them away as useless. They do exhibit heavy biases in tertie aheaningless features, for
instance in the way the lettefsandE occur more frequently in English th&mor Q but even this
fails to capture the heart of the reason of the file’s existencthe first place: because of its rele-
vance to the rest of the world. Buzi p does not know this reason; it is as if everywheya p
looks it only finds a loaded die or biased coin, resolute imiigctive and foolish consistency.
In order to address this coding deficiency we choose an opgasiategy: instead of trying to
apply no external knowledge at all during compression, ywéamapply as much as we can from
as many sources as possible simultaneously, and in so ditergp to capture not thigeral
part but instead theontextualized importanoef each string within a greater and all-inclusive
whole.

Thus, instead of starting with a standard data compressagram, we start from a probabil-
ity mass function that reflects knowledge, and constructtreesponding Shannon-Fano code
to convert probabilities to code word lengths, and applyNi@D formula. At this moment one
database stands out as the pinnacle of computer accessibétknowledge and the mostinclu-
sive summary of statistical information: the Google seawcine. There can be no doubt that
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Google has already enabled science to accelerate trem&apdma revolutionized the research
process. It has dominated the attention of internet usesgefrs, and has recently attracted sub-
stantial attention of many Wall Street investors, evenapsig their ideas of company financing.
We have devised a way to interface the Google search engimertdCD software to create a
new type of pseudo-compressor based NCD , and call this reteratie the Normalized Google
Distance, or NGD . We have replaced the obstinate objegtfitlassical compressors with an
anthropomorphic subjectivity derived from the efforts aflimns of people worldwide. Exper-
iments suggest that this new distance shares some stremgihseaknesses in common with
the humans that have helped create it: it is highly adaptaidenearly unrestricted in terms of
domain, but at the same time is imprecise and fickle in itsiehdt is limited in that it doesn’t
analyze the literal objects like the NCD does, but insteasb usmmes for those objects in the
form of ASCII search terms or tuples of terms as inputs toaettthe meaning of those objects
from the total of information on the world-wide-web.

7.2.2.EXAMPLE. An example may help clarify the distinction between these bpposing
paradigms. Consider the following sequence of letters:

UQB

Assume that the next letter will be a vowel. What vowel woutiiyguess is most likely,
in the absence of any more specific information? One commsumnggation is that the samples
are i.i.d. (identical, independently distributed), andegi this assumption a good guesdlJis
since it has already been shown once, chances are good ihateighted heavily in the true
generating distribution. In assuming i.i.d.-ness, we ioify assume that there is some true
underlying random information source. This assumptiorfisrowrong in practice, even in an
approximate sense. Changing the problem slightly, usirgliEimwords as tokens instead of just
letters, suppose we are given the sequence

the quick brown

Now we are told that the next word has three letters and doeenmtbthe sentence. We may
imagine various three letter words that fit the bill. On anlgsia as before, we ought to expect
t he to continue the sentence. The computer lists 535 Englisdsvof exactly three letters. We
may use thegzi p data compressor to compute the NCD for each possible coimpléte this:
NCD (t he qui ck brown,cow), NCD (t he qui ck brown,t he), and so on, for all of the 3-letter
words. We may then sort the words in ascending order of NCDtlisdyields the following
words in front, all with NCD of 0.61: own, row, she, the . There are other three letter
words, likehot , that have NCD of 0.65, and many with larger distance. Witthseery small
input strings, there are granularity effects associatéd thie compressor rounding to full bytes,
which makes compression resolve only to the level of 8 bibeat. So as we might expegzi p
is using a sort of inference substantially similar to the fuait might lead the reader to guess
as a possible completion in the first example above.

Consider now what would happen if we were to use Google idsi€gzi p as the data com-
pressor. Here we may change the input domain slightly; eefee operated on general strings,
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binary or otherwise. With Google, we will restrict oursesve ASCII words that can be used
as search terms in the Google Search engine. With each geatdty Google returns a count of
matched pages. This can be thought to define a function mgygparch terms (or combinations
thereof) to page counts. This, in turn, can be thought to dediprobability distribution, and
we may use a Shannon Fano code to associate a code lengthaalitipage count. We divide
the total number of pages returned on a query by the maximatrcén be returned, when con-
verting a page count to a probability; at the time of thesesdrpents, the maximum was about
5,000,000,000. Computing the NGD of the phrase qui ck brown, with each three-letter
word that may continue the phrase (ignoring the constraiat that word immediately follows
the wordbr own), we arrive at these first five most likely (candidate, NGDa)rp (using the
Google values at the time of writing):

fox: 0.532154812757325
vex: 0.561640307093518
jot: 0.579817813761161
hex: 0.589457285818459
pea: 0.604444512168738

As many typing students no doubt remember, a popular pheoaleatn the alphabet iShe
quick brown fox jumps over the lazy dol.is valuable because it uses every letter of the English
alphabet.

Thus, we see a contrast between two styles of induction: Thietyipe is the NCD based
on aliteral interpretation of the data: the data is the object itselfe $acond type is the NGD
based on interpreting the data asaanefor an abstract object which acquires its meaning from
masses ofontextexpressing a large body of common-sense knowledge. It magidehat the
first case ignores the meaning of the message, whereas theldecuses on it.

7.3 Theory of Googling for Similarity

Every text corpus or particular user combined with a freqyextractor defines its own relative
frequencies of words and phrases usage. In the world-weleand Google setting there are mil-
lions of users and text corpora, each with its own distrimutMVe will next show that the Google
distribution is universal for all the individual web useiistdbutions. The number of web pages
currently indexed by Google is approachingd@Every common search term occurs in millions
of web pages. This number is so vast, and the number of webrmsugkenerating web pages is so
enormous (and can be assumed to be a truly representativiavge sample from humankind),
that the probabilities of Google search terms, conceiveth@d$requencies of page counts re-
turned by Google divided by the number of pages indexed bygeo@pproximate the actual
relative frequencies of those search terms as actuallyinsaatiety. Based on this premise, the
theory we develop in this paper states that the relationgsepted by the Normalized Google
Distance 7.3.3 approximately capture the assumed true semantic retatjoverning the search
terms. The NGD formulan.3.3 only uses the probabilities of search terms extracted titoan
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text corpus in question. We use the world-wide-web and Gxdgit the same method may be
used with other text corpora like the King James version eBtble or the Oxford English Dic-
tionary and frequency count extractors, or the world-widsls again and Yahoo as frequency
count extractor. In these cases one obtains a text corpuseaqeency extractor biased seman-
tics of the search terms. To obtain the true relative freqigsnof words and phrases in society
is a major problem in applied linguistic research. This rezpianalyzing representative random
samples of sufficient sizes. The question of how to sampléaay and representatively is a
continuous source of debate. Our contention that the walrts @ large and diverse text corpus,
and Google such an able extractor, that the relative pagets@pproximate the true societal
word- and phrases usage, starts to be supported by curedgfihgpuistics researchlpQ.

7.3.1 The Google Distribution:

Let the set of singleto@oogle search termse denoted by . In the sequel we use both singleton
search terms and doubleton search teffsy} : X,y € s}. Let the set of web pages indexed
(possible of being returned) by Google e The cardinality of2 is denoted by = |Q|, and at
the time of this writing 810° < M < 9. 10° (and presumably greater by the time of reading this).
Assume that a priori all web pages are equi-probable, withptiobability of being returned by
Google being IM. A subset ofQ is called anevent Everysearch term »xusable by Google
defines asingleton Google event C Q of web pages that contain an occurrencex@ind are
returned by Google if we do a search forLetL : Q — [0, 1] be the uniform mass probability
function. The probability of an eventis L(x) = |x|/M. Similarly, thedoubleton Google event
Xy C Q s the set of web pages returned by Google if we do a searctafrgpcontaining both
search ternx and search termp. The probability of this event ik(x(y) = [xNy|/M. We can
also define the other Boolean combinationg:= Q\x andxJy = =(—x()—y), each such event
having a probability equal to its cardinality divided bl If eis an event obtained from the basic
eventsx,y, ..., corresponding to basic search temg . . ., by finitely many applications of the
Boolean operations, then the probabilitiye) = |e| /M.

7.3.2 Google Semantics:

Google events capture in a particular sense all backgronod/ledge about the search terms
concerned available (to Google) on the web.

The Google evernt, consisting of the set of all web pages containing one or more
occurrences of the search tegnthus embodies, in every possible sense, all direct
context in whichx occurs on the web. This constitutes the Google semantidgeof t
term.

7.3.1.REMARK. ltis of course possible that parts of this direct conteltuaterial link to other
web pages in whick does not occur and thereby supply additional context. Irapproach this
indirect context is ignored. Nonetheless, indirect conteay be important and future refine-
ments of the method may take it into account.
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7.3.3 The Google Code:

The eventx consists of all possible direct knowledge on the web regardi Therefore, it is
natural to consider code words for those events as codiadpgtukground knowledge. However,
we cannot use the probability of the events directly to deilee a prefix code, or, rather the
underlying information content implied by the probabilitfhe reason is that the events over-
lap and hence the summed probability exceeds 1. By the Kraiuality B1] this prevents a
corresponding set of code-word lengths. The solution isoionalize: We use the probability
of the Google events to define a probability mass functiorr tive set{{x,y} : x,y € s} of
Google search terms, both singleton and doubleton termsreTére|s| singleton terms, and

(';') doubletons consisting of a pair of non-identical terms. eefi

N= 5 [yl
{xy;Cs

counting each singleton set and each doubleton set (by til@fininordered) once in the sum-
mation. Note that this means that for every pairy} C s, with X # y, the web pagez € x(y
are counted three times: oncexn= X(\X, once iny = y(y, and once irx(y. Since every
web page that is indexed by Google contains at least one recmér of a search term, we have
N > M. On the other hand, web pages contain on average not moretbartain constara
search terms. Thereford, < aM. Define

g(¥) = g(x.x), g(x.y) =L(x[y)M/N = |x["y|/N. (7.3.1)

Then, y1cs (%, y) = 1. Thisg-distribution changes over time, and between different-sam
plings from the distribution. But let us imagine thgholds in the sense of an instantaneous
snapshot. The real situation will be an approximation of.tiven the Google machinery, these
are absolute probabilities which allow us to define the aasedt prefix code-word lengths (in-
formation contents) for both the singletons and the doobket TheGoogle code Gs defined
by

G(X) = G(x,x), G(x,y) =log1/g(xy). (7.3.2)

7.3.4 The Google Similarity Distance:

In contrast to stringg where the complexitZ(x) represents the length of the compressed version
of x using compressdz, for a search term (just the name for an object rather than the object
itself), the Google code of lengtB(x) represents the shortest expected prefix-code word length
of the associated Google eventThe expectation is taken over the Google distribugom this
sense we can use the Google distribution as a compressdref@dogle semantics associated
with the search terms. The associated NCD , now calleddnemalized Google distanc®GD

) is then defined by?.3.3, and can be rewritten as the right-hand expression:

G(x,y) —min(G(x), G(y))
max(G(x), G(y))
max{log f (x),log f(y)} —log f(x,y)
logN — min{log f (x),log f (y) }

NGD(x,y) (7.3.3)

Y
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where f (x) denotes the number of pages contaimngnd f (x,y) denotes the number of pages
containing bothx andy, as reported by Google. This NGD is an approximation to thB Wi
(3.3.] using the prefix code-word lengths (Google code) genetateke Google distribution as
defining a compressor approximating the length of the Kolonog code, using the background
knowledge on the web as viewed by Google as conditional imédion. In practice, use the
page counts returned by Google for the frequencies, and wetbachooséN. From the right-
hand side term in74.3.3 it is apparent that by increasiig we decrease the NGD , everything
gets closer together, and by decreadihgie increase the NGD , everything gets further apart.
Our experiments suggest that every reasondll®r( a value greater than arfy(x)) value can
be used as normalizing factdl, and our results seem in general insensitive to this chdite.
our software, this paramet&F can be adjusted as appropriate, and we ofterMiger N. The
following are the main properties of the NGD (as long as weoslkegarametdd > M):

1. Therangeof the NGD is in between 0 and (sometimes slightly negative if the Google
counts are untrustworthy) and stdtex,y) > max{ f (x), f(y)}:

(@) If x=y orif x#y but frequencyf (x) = f(y) = f(x,y) > 0, then NGOXx,y) = 0.
That is, the semantics afandy in the Google sense is the same.

(b) If frequency f(x) = 0, then for every search tersnwe havef(x,y) = 0, and the
NGD(x,y) = o /oo, which we take to be 1 by definition.

2. The NGD is always nonnegative and NG&OX) = O for everyx. For every paiix,y we
have NGOXx,y) = NGD(y, x): itis symmetric. However, the NGD i®t a metric it does
not satisfy NGOXx,y) > O for everyx #y. As before, letx denote the set of web pages
containing one or more occurrencesxofFor example, choose# y with x =y. Then,
f(x) = f(y) = f(x,y) and NGDOx,y) = 0. Nor does the NGD satisfy the triangle inequality
NGD(x,y) < NGD(x,z) + NGD(zy) for all x,y, z. For example, choose= x| Jy, Xy =
0, x=xNzYy=yNz and|x| = ly| = v'N. Then,f(x) = f(y) = f(x,2) = f(y,2) = VN,
f(z) = 2v/N, andf(x,y) = 0. This yields NGOx,y) = © and NGDO(x,z) = NGD(z,y) =
2/logN, which violates the triangle inequality for al.

3. The NGD isscale-invariantin the following sense: Assume that when the numyef
pages indexed by Google (accounting for the multiplicityddferent search terms per
page) grows, the number of pages containing a given searohgiees to a fixed fraction
of N, and so does the number of pages containing a given comunafisearch terms.
This means that iN doubles, then so do théfrequencies. For the NGD to give us
an objective semantic relation between search terms, dsneebecome stable when the
number grows unboundedly.

7.3.5 Universality of Google Distribution:

A central notion in the application of compression to leagis the notion of “universal distribu-
tion,” see [79]. Consider an effective enumeratian= p1, po, ... of probability mass functions
with domains. The list# can be finite or countably infinite.
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7.3.2.DEFINITION. A probability mass functiorp, occurring in® is universalfor ¢, if for
every p; in # there is a constart; > 0 and };,,¢ > 1, such that for everx € s we have
pu(X) > ¢i - pi(X). Herec; may depend on the indexag, but not on the functional mappings of
the elements of lisk nor onx.

If py is universal fore, then it immediately follows that for every; in 2, the prefix code-
word length for source word, see B1], associated wittp,, minorizes the prefix code-word
length associated with;, by satisfying log ¥ pu(X) < log1/pi(x) +log1/c;, for everyx € s.

In the following we consider partitions of the set of web pggeEach subset in the partition
together with a probability mass function of search ternws.éxample, we may consider the list
4 =1,2,...,aof web authors producing pages the web, and consider the set of web pages
produced by each web author, or some other partition. “Wetoalis just a metaphor we use
for convenience. Let web authorof the list 2 produce the set of web pag€s and denote
M; = |Qj|. We identify a web autharwith the set of web page®; he produces. Since we have
no knowledge of the set of web authors, we consider everyildegsartition ofQ into one or
more equivalence classeé3,= Q1 J---UQa, QiNQj=0(1<i# j <a<|Q|), as defining a
realizable set of web authors=1,...,a.

Consider a partition of2 into Q1, ..., Qa. A search ternx usable by Google defines an event
Xij C Q; of web pages produced by web authdhat contain search tersa Similarly, x;y; is
the set of web pages produced ibthat is returned by Google searching for pages containing
both search term and search term. Let

N, = z |xiﬂyi|.

{xy}Cs

Note that there is an; > 1 such thatVl < N; < a;M;. For every search terme s define a
probability mass functiom;, the individual web author's Google distributigron the sample

space{{x,y} : x,y € S} by
Gi(%) = Gi(%,x), gi(xy)=[xi(|yil/N. (7.3.4)

Then!Z{X,Y}QS gi<X,y) =1

7.3.3.THEOREM. Let Q1,...,Q4 be any partition ofQ into subsets (web authors), and let
01,---,0a be the corresponding individual Google distributions. fitike Google distribution
g is universal for the enumeration@, .. ., ga.

PROOF We can express the overall Google distribution in term$efibdividual web author’s
distributions: N
i .
g(X,y) - z ng (X7y)'
€A

Consequentlyg(x,y) > (Ni/N)gi(x,y). Since alsa(x,y) > g(x,y), we have shown thaj(x,y)

is universal for the familyg, g1, . . . ,ga Of individual web author’s google distributions, accoglin
to Definition7.3.2 O
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7.3.4.REMARK. Let us show that, for example, the uniform distributiofx) = 1/s (s= |S|)
over the search termse § is not universal, fos > 2. By the requiremerf ¢ > 1, the sum taken
over the numbea of web authors in the list, there is an such that; > 1/a. Taking the uniform
distribution on says search terms assigns probabilitysto each of them. By the definition of
universality of a probability mass function for the list ofdividual Google probability mass
functionsg;, we can choose the functigpfreely (as long as > 2, and there is another function
g; to exchange probabilities of search terms with). So choosesearch termand sep;(x) =

1, andgi(y) = O for all search termg # x. Then, we obtaig(x) = 1/s > ¢gi(x) > 1/a. This
yields the required contradiction fer> a > 2.

7.3.6 Universality of Normalized Google Distance:

Every individual web author produces both an individual Gledlistributiong;, and anindivid-
ual prefix code-word length Gssociated witly; (see B1] for this code) for the search terms.

7.3.5.DEFINITION. The associateehdividual normalized Google distan®GD; of web author
i is defined according t&/(3.3, with G; substituted folG.

These Google distances NGDan be viewed as the individual semantic distances acaprdin
to the bias of web authdr These individual semantics are subsumed in the generagl&oo
semantics in the following sense: The normalized Googleadce isuniversalfor the family

of individual normalized Google distances, in the senseitha as about as small as the least
individual normalized Google distance, with high probil Hence the Google semantics as
evoked by all of the web society in a certain sense capturedidses or knowledge of the
individual web authors. In Theoreih3.8we show that, for everk > 1, the inequality

NGD(x,y) < BNGD;(x,y) +Y, (7.3.5)
with
6= max{G;(x), Gi(y) } <1 log(2k)
max{G(x),G(y)} = max{G(x),G(y)}

~ min{G;(x),Gi(y)} —min{G(x),G(y) } +logN/N;
- max(G(x),G(y)}
log(2kN/N;)

~ max{G(x),G(y)}’
is satisfied withgj-probability going to 1 with growingx.

7.3.6.REMARK. To interpret 7.3.5, we observe that in case(x) andG(y) are large with re-
spect to log, thenp ~ 1. If moreover lod\N/N; is large with respect to Idg then approximately

vy < (logN/N;)/ max{G(x),G(y) }. Let us estimatg for this case under reasonable assumptions.
Without loss of generality assun@&x) > G(y). If f(x) = |x|, the number of pages returned on
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queryx, thenG(x) = log(N/f(x)). Thus, approximately < (logN/N;)/(logN/f(x)). The uni-

form expectation oN; is N/|2 |, andN divided by that expectation &; equals|4 |, the number

of web authors producing web pages. The uniform expectafidrix) is N/|s|, andN divided

by that expectation of (x) equald.s|, the number of Google search terms we use. Thus, approx-
imately,y < (log|4|)/(log|s|), and the more the number of search terms exceeds the number of
web authors, the monggoes to 0 in expectation.

7.3.7.REMARK. Tounderstand/.3.5, we may consider the codelengths involved as the Google
database changes over time. It is reasonable to expectdtiethie total number of pages as well
as the total number of search terms in the Google databalseontinue to grow for some time.
In this period, the sum total probability mass will be carvgxdinto increasingly smaller pieces
for more and more search terms. The maximum singleton anbletom codelengths within the
Google database will grow. But the universality propertyhef Google distribution implies that
the Google distribution’s code length for almost all part& search terms will only exceed the
best codelength among any of the individual web authors é&6&95. The size of this gap will
grow more slowly than the codelength for any particular leéerm over time. Thus, the coding
space that is suboptimal in the Google distribution’s cadan ever-smaller piece (in terms of
proportion) of the total coding space.

7.3.8.THEOREM. For every web author € 4, the g-probability concentrated on the pairs of
search terms for whicti.3.5 holds is at least1 — 1/k)2.

PROOF The prefix code-word lengti; associated witly; satisfyG(x) < Gj(x) +logN/N; and
G(x,y) < Gi(x,y) +1ogN/N;. SubstitutingG(x,y) by Gi(x,y) +logN/N; in the middle term of
(7.3.3, we obtain

Gi(x,y) —min{G(x), G(y)} +IogN/N
max{G(x), G(y) } '

Markov's Inequalitysays the following: Lefp be any probability mass function; létbe any
nonnegative function witlp-expected valu& = 5; p(i) f (i) < . ForE > 0 we haves;{p(i) :
f(i)/E >k} < 1/k.

Fix web author € 2. We consider the conditional probability mass functighig) = g(x|x €
S) andgi(x) = gi(x|x € ) over singleton search terms in(no doubletons): The;-expected
value ofg'(x)/gi(x) is

NGD(x,y) < (7.3.6)

SawIg <1

sinced’ is a probability mass function summing4ol. Then, by Markov’s Inequality

56006 00/600 > < (73.)

Since the probability of an event of a doubleton set of setenis is not greater than that of
an event based on either of the constituent search termshamiobability of a singleton event
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conditioned on it being a singleton event is at least as lasgke unconditional probability of that
event, 2i(x) > ¢/(x) > g(x) and Zi(%) > g/(%) > 6i(%). If g(x) > 2kgi(x), theng/(x)/g/(x) > k
and the search ternxsatisfy the condition of4.3.7). Moreover, the probabilities satisfy(x) <
g/(x). Together, it follows from7.3.7) that ¥ ,{gi(x) : 9(x)/(20i(x)) > k} < % and therefore

3 (0091900 < 2kg(9) > 1~ %

For thex's with g(x) < 2kg (x) we haveG;(x) < G(X) + log(2k). SubstituteG;(x) — log(2k)
for G(x) (there isg;-probability > 1 —1/k thatG;(x) — log(2k) < G(x)) andG;i(y) —log(2k) <
G(y) in (7.3.6, both in the min-term in the numerator, and in the max-tawrthe denominator.
Noting that the tway;-probabilities(1 — 1/k) are independent, the totgtprobability that both
substitutions are justified is at leddt— 1/k)2. O

Therefore, the Google normalized distance minorizes evamnalized compression distance
based on a particular user’'s generated probabilities aEsaarms, with high probability up to
an error term that in typical cases is ignorable.

7.4 Introduction to Experiments

7.4.1 Google Frequencies and Meaning

In our first experiment, we seek to verify that Google pagent®uapture something more than
meaningless noise. For simplicity, we do not use NGD hereinstead look at just the Google
probabilities of small integers in several formats. Thet fiosmat we use is just the standard
numeric representation using digits, for example “43”. et format we use is the number
spelled out in English, as in “forty three”. Then we use thenber spelled in Spanish, as in
“cuarenta y tres”. Finally, we use the number as digits agaibhnow paired with the fixed and
arbitrary search terngreen. In each of these examples, we compute the probability atkea
termx as f(x)/M. Here, f(X) represents the count of webpages containing searchxekive
plotted lod f(x)/M) againsix in Figure7.2for x runs from 1 to 120. Notice that numbers such
as even multiples of ten and five stand out in every representan the sense that they have
much higher frequency of occurrence. We can treat only ldegers this way: integers of the
order 133 mostly do not occur since there are not web pages enough tesegt a noticeable
fraction of them (but Avogadro’s numberd®2x 10?3 occurs with high frequency both in letters
and digits).

Visual inspection of the plot gives clear evidence thate¢hsra positive correlation between
every pair of formats. We can therefore assume that thag tesome underlying structure that is
independent of the language chosen, and indeed the saroeistrappears even in the restricted
case of just those webpages that contain the search gezen.
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Figure 7.2: Numbers versus log probability (pagecount / M ivariety of languages and for-
mats.

7.4.2 Some Implementation Details

Before explaining our primary NGD results, a few impleméotadetails should be clarified.
When entering searches in Google, a rich syntax is availab&eby searches may be precisely
constrained, sed()]. We use two important features. If you enter the tenrary generation
in Google, it counts precisely the number of pages that aorftath the wordeveryand the
word generation but not necessarily consecutively likeery generati on. If you instead en-
ter "every generation", then this tells Google that both words must appear conisetyt
Another feature that is important is thanodifier. Google ignores common words and charac-
ters such as “where” and “how”, as well as certain singletdignd single letters. Prepending a
+ before a searchterm indicates that every result must iedluel following term, even if it is a
term otherwise ignored by Google. Experiments show¢liaty generation and+"every"
+"generation" give slightly different results, say 17,800,000 agains®0®@,000. Some other
experiments show, that whatever the Google manual saydpthehorse rider is slightly
sensitive to adding spaces, whitehorse" +"rider" is not. Therefore, we only use the latter
form. Our translation from a tuple of search terms into a Gesgarch query proceeds in three
steps: First we put double-quotes around every search tetheituple. Next, we prepend+a
before every term. Finally, we join together each of the Itastistrings with a single space. For
example, when using the search terms “horse” and “riders, ¢onverted to the Google search
query+"horse" +"rider".

Another detail concerns avoiding taking the logarithm oA@lhough our theory conveniently
allows foreo in this case, our implementation makes a simplifying compse. When returning
f(x) for a given search, we have two cases. If the number of pagesheel is non-zero, we

121



return twice this amount. If the pages is equal to 0, we do ettrn O, but instead return 1.
Thus, even though a page does not exist in the Google indegreud it half the probability of
the smallest pages that do exist in Google. This greatly Igiegour implementation and seems
not to result in much distortion in the cases we have invastid,

7.4.3 Three Applications of the Google Method

In this chapter we give three applications of the Google wethunsupervised learning in the
form of hierarchical clustering, supervised learning gssapport vector machines, and match-
ing using correlation. For the hierarchical clustering Inoek we refer to Sectiod.1 and the
correlation method is well known. For the supervised leagnseveral techniques are available.
For the SVM method used in this thesis, we refer to the exte#&position 16|, and give a
brief summary in Appendi%.3.3

7.5 Hierarchical Clustering

For these examples, we used our software tool available lfittpr/complearn.sourceforge.net/,
the same tool that has been used in other chapters to cans&ges representing hierarchical
clusters of objects in an unsupervised way. However, nowsedghe normalized Google distance
(NGD ) instead of the normalized compression distance (NCRerapitulating, the method
works by first calculating a distance matrix using NGD amohlgairs of terms in the input
list. Then it calculates a best-matching unrooted ternasy tising a novel quartet-method style
heuristic based on randomized hill-climbing using a neweBobjective function optimizing
the summed costs of all quartet topologies embedded in datedirees.

7.5.1 Colors and Numbers

In the first example, the objects to be clustered are seamtis onsisting of the names of colors,
numbers, and some tricky words. The program automaticadjsirozed the colors towards one
side of the tree and the numbers towards the other, Fig@rdt arranges the terms which have
as only meaning a color or a number, and nothing else, on ttieet reach of the color side and
the number side, respectively. It puts the more generald®tack and white, and zero, one, and
two, towards the center, thus indicating their more ambigtioterpretation. Also, things which
were not exactly colors or numbers are also put towards theedike the word “small”. We
may consider this an example of automatic ontology creation

7.5.2 Dutch 17th Century Painters

In the example of Figuré.4, the names of fifteen paintings by Steen, Rembrandt, and Ba w
entered. The names of the associated painters were noti@ttin the input, however they were
added to the tree display afterword to demonstrate the agparccording to painters. This type
of problem has attracted a great deal of attent®r.[ A more classical solution is offered in
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Figure 7.3: Colors and numbers arranged into a tree using NGD
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[ Steen Prince’s Day ] [ Steen Leiden Baker Arend Oostwaert ]

Steen Keyzerswaert ]

[ Steen The Merry Family

Rembrandt The Prophetess Anna ]

[ Steen Woman at her Toilet

[ Rembrandt The Stone Bridge

[ Steen Two Men Playing Backgammon

[ Rembrandt Portrait of Maria Trip

Bol Venus and Adonis ]

[ Rembrandt Hendrickje slapend ]
Rembrandt Portrait of Johannes Wtenbogaert

Figure 7.4: Fifteen paintings tree by three different paisitarranged into a tree hierarchical
clustering. In the experiment, only painting title namesevesed; the painter prefix shown in
the diagram above was added afterwords as annotation &i asgiterpretation. The painters
and paintings used followRembrandt van Rijn : Hendrickje slapend; Portrait of Maria Trip;
Portrait of Johannes Wtenbogaert ; The Stone Bridge ; TheoRetess Anna, Jan Steen :
Leiden Baker Arend Oostwaert ; Keyzerswaert ; Two Men Ptagackgammon ; Woman at her
Toilet ; Prince’s Day ; The Merry Family, Ferdinand Bol : Maria Rey ; Consul Titus Manlius
Torquatus ; Swartenhont ; Venus and Adonis

[1], where a domain-specific database is used for similar eflas.present automatic oblivious
method obtains results that compare favorably with theddéature-driven method.

7.5.3 Chinese Names

In the example of Figur@.5, several Chinese names were entered. The tree shows thatgapa
according to concepts like regions, political parties, pdepetc. See Figuré&.6 for English
translations of these characters. This figure also showatarteof the CompLearn system that
has not been encountered before: the CompLearn system aanddited lines with numbers
inbetween each adjacent node along the perimeter of thelthese numbers represent the NCD
distance between adjacent nodes in the final (ordered togediioof the CompLearn system. The
tree is presented in such a way that the sum of these valule gntire ring is minimized. This
generally results in trees that makes the most sense uga@i uisual inspection, converting an
unordered binary tree to an ordered one. This feature allomasquick visual inspection around
the edges to determine the major groupings and divisions)igrooarse structured problems. It
grew out of an idea originally suggested by Lloyd Rutledg€atl [97].
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HE China

i A\ RILFI[E People's Republic of China

HHE R [H Republic of China

8% shrike (bird) [outgroup]

S8 Taiwan (with simplified character "tai")
SEE %R Taiwan Solidarity Union [Taiwanese political party]
SJE¥ES Taiwan independence

&%5 (abbreviation of the above)

&% (abbreviation of Taiwan Solidarity Union)

2 F538 Annette Lu

B[R & Kuomintang

KR James Soong

ZE L1 Ao

RFESE Democratic Progressive Party

RiEE (abbreviation of the above)

WE$5/ili Yu Shyi—kun

F4F Wang Jin—pyng

45— unification [Chinese unification]

%kE Green Party

218 Taiwan (with traditional character "tai')
fBfEH B Su Tseng—chang

HIRE People First Party [political party in Taiwan]
SR Frank Hsieh

,%ﬁﬂ Ma Ying—jeou

Hi4% a presidential advisor and 2008 presidential hopeful

Figure 7.6: English Translation of Chinese Names
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Training Data

Positive Training (22 cases)
avalanche bomb threat broken leg burglary car collision

death threat fire flood gas leak heart attack
hurricane landslide murder overdose pneumonia
rape roof collapse sinking ship stroke tornado
train wreck trapped miners

Negative Training (25 cases)

arthritis broken dishwasher broken toe catin tree contahpourt
dandruff delayed train dizziness drunkenness enumeration
flat tire frog headache leaky faucet littering
missing dog paper cut practical joke rain roof leak
sore throat sunset truancy vagrancy vulgarity
Anchors (6 dimensions)

crime happy help safe urgent

wash

Testing Results

Positive tests Negative tests
Positive assault, coma, menopause, prank call,
Predictions electrocution, heat stroke, pregnancy, trifn

homicide, looting,

meningitis, robbery,

suicide
Negative sprained ankle acne, annoying sister,
Predictions campfire, desk,

mayday, meal
Accuracy 15720 = 75.00%

Figure 7.7: Google-SVM learning of “emergencies.”

7.6 SVM Learning

We augment the Google method by adding a trainable compahé¢iné learning system. This
allows us to consider classification rather than clustepraplems. Here we use the Support
Vector Machine (SVM) as a trainable component. For a brigbofuction to SVM’s see Sec-
tion 5.3.3 We use LIBSVM software for all of our SVM experiments.

The setting is a binary classification problem on examplpsesented by search terms. We
require a human expert to provide a list of at leastréining words consisting of at least 20
positive examples and 20 negative examples, to illustteecontemplated concept class. The
expert also provides, say, sanchor words @,...,as, of which half are in some way related
to the concept under consideration. Then, we use the anoiisvio convert each of the 40
training wordswy, . .., Wag to 6-dimensionatraining vectorsvy, ...,v4o. The entryv;; of vj =
(Vj.1,---,Vj6) is defined asj j = NGD(wj,a) (1 < j <40, 1<i <6). The training vectors are
then used to train an SVM to learn the concept, and then testsyoay be classified using the
same anchors and trained SVM model. We present all positemples ax-data (input data),
paired withy = 1. We present all negative examplesadata, paired witly = —1.

7.6.1 Emergencies

In the next example, Figurg7, we trained using a list of emergencies as positive examales
a list of “almost emergencies” as negative examples. Thedigself-explanatory. The accuracy
on the test set is 75%.
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Training Data

Positive Training (21 cases) .
11 13 v 1 2 Testing Results
23 29 3 31 37

41 43 47 5 53
59 61 67 7 71
73

Positive tests Negative tests
Positive 101, 103, 110
Predictions 107, 109,
79, 83,
89,91,
97
Negative 36, 38,
Predictions 40, 42,
44, 45,
46, 48,
49

Negative Training (22 cases)

10 12 14 15 16
18 20 21 22 24
25 26 27 28 30
32 33 34 4 6
8 9

Anchors (5 dimensions) Accu racy 18/19 = 94.74%

composite number orange prime record

Figure 7.8: Google-SVM learning of primes.

7.6.2 Learning Prime Numbers

In Figure 7.8 the method learns to distinguish prime numbers from nom@mumbers by ex-
ample:

The prime numbers example illustrates several commonresatf our method that distin-
guish it from the strictly deductive techniques. It is commior our classifications to be good
but imperfect, and this is due to the unpredictability andamrolled nature of the Google dis-
tribution.

7.6.3 WordNet Semantics: Specific Examples

To create the next example, we used WordNet. WordNet is arg&@r@ncordance of English.
It also attempts to focus on the meaning of words instead @fwtbrd itself. The category
we want to learn, the concept, is termed “electrical”’, armqtesents anything that may pertain
to electronics, Figurd.9. The negative examples are constituted by simply evergtkise.
Negative samples were chosen randomly and uniformly fronicodary of English words.
This category represents a typical expansion of a node ilMbrelNet hierarchy. The accuracy
on the test set is 100%: It turns out that “electrical termg”@nambiguous and easy to learn and
classify by our method.

In the next example, Figure.1Q the concept to be learned is “religious”. Here the positive
examples are terms that are commonly considered as pagadoireligious items or notions, the
negative examples are everything else. The accuracy orshedt is 88.89%. Religion turns
out to be less unequivocal and unambiguous than “elegftifmt our method.

Notice that what we may consider to be errors, can be exmaimepoint at, a secondary
meaning or intention of these words. For instance, some roaygider the word “shepherd” to
be full of religious connotation. And there has been morae tirae religion that claims to involve
“earth” as a component. Such examples suggest to use th@dnethexploratory semantics:
establishing less common, idiosyncratic, or jargon megaoirwords.
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Training Data

Positive Training
Cottrell precipitator
attenuator ballast

brush capacitance
control board control panel
electric circuit electrical circuit
electrical fuse electrical relay

(58 cases)

filter flasher

instrument panel jack

precipitator reactor

security security measures

solar panel spark arrester
transmitting aerial transponder
Negative Training (55 cases)
Andes Burnett

Gibbs Hickman
Quakeress Southernwood
affecting aggrieving
capitals concluding
deeper definitions
exclamation faking
introduces kappa
monster parenthesis
repudiate retry

sob swifter
Anchors (6 dimensions)
bumbled distributor
swimmers

Van de Graaff generator

Wimshursthiae aerial

Testing Results

battery bimetallic strip
capacitor circuit
distributer electric battery
electrical condenser electrical device
electrograph electrisgenerator
fuse inductance
light ballast load
rectifier relay
security system solar array
spark plug sparking plug
zapper
Diana DuPonts
Icarus Lorraine
Waltham Washington
attractiveness bearer
constantly conviction
dimension discounting
helplessness humidly
maims marine
pinches predication
royalty shopkeepers
teared thrashes
premeditation resistor
Positive tests Negative tests

antenna
board
condenser
lectric cell
electrical distributor
electrostatic machine
inductor
plug
resistance
ar battery
sup@res

Friesland
Madeira
adventures
boll
damming
distinctness
hurling
moderately
prospect
soap
tuples

suppressor

Positive cell, male plug,
Predictions panel, transducer,
transformer
Negative Boswellizes, appointer,
Predictions enforceable, greatness,

Accuracy

planet

10/10 = 100.00%

Figure 7.9: Google-SVM learning of “electrical” terms.
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Training Data

Positive Training
Allah

Jerry Falwell
Saint Jude
crucifix

religion

Negative Training

(22 cases)

Catholic Christian Dalai Lama God

Jesus John the Baptist Mother Theresa Muhaimma
The Pope Zeus bible church

devout holy prayer rabbi

sacred

(23 cases)

Bill Clinton
Michael Moore
helmet

mouse

Einstein
atheist
internet
science

Ben Franklin
John Kennedy
evolution

Abraham Lincoln
Jimmy Carter
encyclopedia
minus

Georgeaghington
dictionary
materialistic

money secular

seven telephone walking
Anchors (6 dimensions)
evil follower history rational scripture

spirit

Testing Results

Positive
Predictions

Positive tests

altar, blessing,
communion, heaven,

sacrament, testament,

vatican

Negative tests
earth, shepherd

Negative angel Aristotle, Bertrand Russell,
Predictions Greenspan, John,

Newton, Nietzsche,

Plato, Socrates,

air, bicycle,

car, fire,

five, man,

monitor, water,

whistle
Accuracy 24127 83.89%

Figure 7.10: Google-SVM learning of “religious” terms.

7.6.4 WordNet Semantics: Statistics

The previous examples show only a few hand-crafted speasd¢s To investigate the more
general statistics, a method was devised to estimate hovthedNGD -Google-SVM approach
agrees with WordNet in a large number of automatically setbsemantic categories. Each
automatically generated category followed the followiegence.

First we must review the structure of WordNet; the followiagaraphrased from the official
WordNet documentation available online. WordNet is calledemantic concordance of the
English language. It seeks to classify words into many categ and interrelate the meanings
of those words. WordNet contains synsets. A synset is a syn@et; a set of words that are
interchangeable in some context, because they share a adgragreed upon meaning with
little or no variation. Each word in English may have manyeaté#nt senses in which it may be
interpreted; each of these distinct senses points to areiffesynset. Every word in WordNet
has a pointer to at least one synset. Each synset, in turr,poing to at least one word. Thus,
we have a many-to-many mapping between English words ansetyat the lowest level of
WordNet. It is useful to think of synsets as nodes in a grapith& next level we have lexical
and semantic pointers. Lexical pointers are not investjat this thesis; only the following
semantic pointer types are used in our comparison: A sempuaititer is simply a directed edge
in the graph whose nodes are synsets. The pointer has onesaradl\@sourceand the other end
we call adestination The following relations are used:

1. hyponym: X is a hyponym of Y if X is a (kind of) .
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2. part meronym: X is a part meronym of Y if X is a part of Y.
3. member meronym X is a member meronym of Y if X is a member of Y.

4. attribute : A noun synset for which adjectives express values. The meeight is an
attribute, for which the adjectivéigiht andheavyexpress values.

5. similar to : A synset is similar to another one if the two synsets haveninga that are
substantially similar to each other.

Using these semantic pointers we may extract simple cassgfmr testing. First, a random
semantic pointer (or edge) of one of the types above is chogemnthe WordNet database. Next,
the source synset node of this pointer is used as a sort of Fowlly, we traverse outward in a
breadth-first order starting at this node and following cediges that have an identical semantic
pointer type; that is, if the original semantic pointer wdsypaonym, then we would only follow
hyponym pointers in constructing the category. Thus, if veeerto pick a hyponym link initially
that says diger is acat, we may then continue to follow further hyponym relatiomshin order
to continue to get more specific types of cats. See the Worlbleepaged7] documentation
for specific definitions of these technical terms. For exa®pf each of these categories consult
the experiments listed in the Appendix a8].

Once a category is determined, it is expanded in a breadtiwing until at least 38 synsets
are within the category. 38 was chosen to allow a reasonabtaat of training data to be
presented with several anchor dimensions, yet also awidio many. HereBernie’s Rulé
is helpful: it states that the number of dimensions in theiirgata must not exceed one tenth
the number of training samples. If the category cannot bamded this far, then a new one is
chosen. Once a suitable category is found, and a set of at38asembers has been formed, a
training set is created using 25 of these cases, randomgechdext, three are chosen randomly
as anchors. And finally the remaining ten are saved as pesést cases. To fill in the negative
training cases, random words are chosen from the WordNabdsé. Next, three random words
are chosen as unrelated anchors. Finally, 10 random woedshasen as negative test cases.

For each case, the SVM is trained on the training samplesectad to 6-dimensional vec-
tors using NGD . The SVM is trained on a total of 50 samples. Kérael-width and error-cost
parameters are automatically determined using five-fadswalidation. Finally testing is per-
formed using 20 examples in a balanced ensemble to yieldlaaficaracy.

There are several caveats with this analysis. It is nedgssaugh, because the problem
domain is difficult to define. There is no protection agairetain randomly chosen negative
words being accidentally members of the category in quesgdher explicitly in the greater
depth transitive closure of the category, or perhaps intjglioc common usage but not indicated
in WordNet. In several cases, such as “radio wave” and “DGha“big science” experiment,
there appears to be an arguable case to support the corspléesification in cases where this
phenomenon occurs. Another detail to notice is that Worddlawailable through some web
pages, and so undoubtedly contributes something to Goaglecounts. Further experiments

Allegedly named after Bernie Widrow in the context of neuradwork training.
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Figure 7.11: Histogram of accuracies over 100 trials of Watdexperiment.

comparing the results when filtering out WordNet images @wikb suggest that this problem
does not usually affect the results obtained, except wherobthe anchor terms happens to be
very rare and thus receives a non-negligible contributiovards its page count from WordNet
views. In general, our previous NCD based methods, @2Ané¢xhibit large-granularity artifacts
at the low end of the scale; for small strings we see coars@gumthe distribution of NCD
for different inputs which makes differentiation difficulVith the Google-based NGD we see
similar problems when page counts are less than a hundred.

We ran 100 experiments. The actual data are availabl2Zt A histogram of agreement
accuracies is shown in Figui®1l On average, our method turns out to agree well with the
WordNet semantic concordance made by human experts. The ohélae accuracies of agree-
ments is 0.8725. The variance450.01367, which gives a standard deviation=ef0.1169.
Thus, it is rare to find agreement less than 75%. These resuifgm that we are able to per-
form a rudimentary form ofieneralizationwithin a conceptual domaiprogrammatically using
Google. For hand-crafted examples it performed comparahtyso this suggests that there may
be latent semantic knowledge. Is there a way to use it?

7.7 Matching the Meaning

Yet another potential application of the NGD method is irunaltlanguage translation. (In the
experiment below we do not use SVM'’s to obtain our resultdatérmine correlations instead.)
Suppose we are given a system that tries to infer a transtatioabulary among English and
Spanish. Assume that the system has already determinethénatare five words that appear
in two different matched sentences, but the permutationcging the English and Spanish
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Given starting vocabulary
English  Spanish
tooth diente
joy alegria
tree arbol
electricity electricidad
table tabla
money dinero
sound sonido
music musica
Unknown-permutation vocabulary
plant bailar
car hablar
dance amigo
speak coche
friend planta

Figure 7.12: English-Spanish Translation Problem.

words is, as yet, undetermined. This setting can arise insreations, because English and
Spanish have different rules for word-ordering. Thus, atdltset we assume a pre-existing
vocabulary of eight English words with their matched Sparranslation. Can we infer the
correct permutation mapping the unknown words using theegigting vocabulary as a basis?
We start by forming an NGD matrix using additional Englishrde®of which the translation is
known, Figure7.12 We label the columns by the translation-known English wptde rows by
the translation-unknown words. The entries of the matrextae NGD ’s of the English words
labeling the columns and rows. This constitutes the Endletis matrix. Next, consider the
known Spanish words corresponding to the known English stoFebrm a new matrix with the
known Spanish words labeling the columns in the same ordéedshown English words. Label
the rows of the new matrix by choosing one of the many posgibienutations of the unknown
Spanish words. For each permutation, form the NGD matrisfeiSpanish words, and compute
the pairwise correlation of this sequence of values to e&tiiteovalues in the given English word
basis matrix. Choose the permutation with the highest pesibrrelation. If there is no positive
correlation report a failure to extend the vocabulary. lis #xample, the computer inferred the
correct permutation for the testing words, see Figule

7.8 Conclusion

A comparison can be made with tlycproject [71]. Cyc, a project of the commercial venture
Cycorp, tries to create artificial common sense. Cyc’s kedgé base consists of hundreds
of microtheories and hundreds of thousands of terms, asasetiver a million hand-crafted

assertions written in a formal language called Cy80]] CycL is an enhanced variety of first
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English  Spanish
plant planta
car coche
dance bailar
speak hablar
friend amigo

Predicted (optimal) permutation

Figure 7.13: Translation Using NGD.

order predicate logic. This knowledge base was created theecourse of decades by paid
human experts. It is therefore of extremely high quality.o§le, on the other hand, is almost
completely unstructured, and offers only a primitive queapability that is not nearly flexible
enough to represent formal deduction. But what it lacks pressiveness Google makes up for
in size; Google has already indexed more than eight billegs and shows no signs of slowing
down.

Epistemology: In the case of context-free statistical compression suajzag , we are trying
to approximate the Kolmogorov complexity of a string. Anathvay of describing the calcu-
lation is to view it as determining a probability mass fuontiviewing the compressed string
as Shannon-Fano code, Sectiid), approximating theiniversal distributionthat is, the nega-
tive exponential of the Kolmogorov complexityg]. The universal probability of a given string
can equivalently be defined as the probability that the eefeg universal Turing machine out-
puts the string if its input program is generated by fair dtips. In a similar manner, we can
associate a particular Shannon-Fano code@begle codewith the Google probability mass
function. Coding every search term by its Google code, wendefi‘Google compressor.” Then,
in the spirit of SectiorY.3, we can view the Google probability mass function as a usaletis-
tribution for the individual Google probability mass furmts generated by the individual web
authors, substituting “web authors” for “Turing machines”

Concerning the SVM method: The Google-SVM method does not use an individual word in
isolation, but instead uses an ordered list of its NGD refeghips with fixed anchors. This then
removes the possibility of attaching to the isolated (cetateee) interpretation of a literal term.
That is to say, the inputs to our SVM are not directly searcims$e but instead an image of the
search term through the lens of the Google distribution,refative to other fixed terms which
serve as a grounding for the term. In most schools of onto&dhought, and indeed in the
WordNet database, there is imagined a two-level struchaedharacterizes language: a many-
to-many relationship between word-forms or utteranceslagid many possible meanings. Each
link in this association will be represented in the Googkribhution with strength proportional
to how common that usage is found on the web. The NGD then &egphnd separates the
many contributions towards the aggregate page count s@mekii revealing some components
of the latent semantic web. In almost every informal thedrgagnition we have the idea of
connectedness of different concepts in a network, and shpgecisely the structure that our
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experiments attempt to explore.

Universality: The Google distribution is a comparable notion, in the cxinté the world-
wide-web background information, to the universal disttibn: The universal distribution mul-
tiplicatively dominates all other distributions in thatigsigns a higher weight to some elements
when appropriately scaled. This suggests that it covenrytieg without bound. Google surely
represents the largest publicly-available single cordusggregate statistical and indexing in-
formation so far created. Only now has it been cheap enougbltect this vast quantity of
data, and it seems that even rudimentary analysis of thistiison yields a variety of intriguing
possibilities. One of the simplest avenues for further esgilon must be to increase training
sample size, because it is well-known that SVM accuracyem®es with training sample size.
It is likely that this approach can never achieve 100% aagulie in principle deductive logic
can, because the Google distribution mirrors humankingis ionperfect and varied nature. But
it is also clear that in practical terms the NGD can offer asyamay to provide results that are
good enough for many applications, and which would be famach work if not impossible to
program in a foolproof deductive way.

The Road Ahead: We have demonstrated that NGD can be used to extract mearangriety

of ways from the statistics inherent to the Google datab&sefar, all of our techniques look
only at the page count portion of the Google result sets anigae surprising results. How much
more amazing might it be when the actual contents of seastlitseare analyzed? Consider the
possibility of using WordNet familiarity counts to filterttened search results to select only the
least familiar words, and then using these in turn as fuitiguts to NGD to create automatic
discourse or concept diagrams with arbitrary extensiompednaps this combination can be used
to expand existing ontologies that are only seeded by humbetus list some of the future
directions and potential application areas:

1. There seems to also be an opportunity to apply these tpadmto generic language acqui-
sition, word sense disambiguation, knowledge representatontent-filtration and collab-
orative filtering, chat bots, and discourse generation.

2. There are potential applications of this technique toigetalligent user-interface design;
for predictive completion on small devices, speech redagnior handwriting recognition.

3. Auserinterface possibility is the idea of concept-cf@segramming for non-programmers,
or software to form a conceptual predicate by way of examptleout forcing the user to
learn a formal programming language. This might be usedefample, in a network
content filtration system that is installed by non-programparents to protect their young
children from some parts of the internet. Or perhaps an ITaganis able to adjust the
rule determining if a particular email message is a wellvneirus and should be filtered
without writing explicit rules but just showing some exaesl
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4. How many people are able to write down a list of prime nuralasrshown in an earlier test
case, Figur&.8 compared to how many people are able to write a program ialgre-
gramming language that can calculate prime numbers? Cbaolegpering by example is
significantly simpler than any formal programming languagd often yields remarkably
accurate results without any effort at hand-tuning pararset

5. The colors versus numbers tree example, Figudeis rife with possibilities. A major
challenge of the Semantic Web and XML as it stands is in i@t@gy diverse ontologies
created by independent entiti®/]. XML makes the promise of allowing seamless inte-
gration of web services via customized structured tagss promise is for the most part
unrealized at this point on the web, however, because theratiyet sufficient agreement
on what sets of XML tags to use in order to present informatidren two different parties
each build databases of recipes, but one organizes theeseaqeording to their country
of origin and another according to their sweetness or saffavgr, these two databases
cannot “understand” one another insofar as they may exeheewjpes. XML allows us
to format our data in a structured way, but fails to providedowvay for different struc-
ture conventions to interoperate. There have been manypti$eto solve this and none
have been satisfactory. Usually solutions involve mapfinegseparate schemas into some
sort of global schema and then creating a global standdializaroblem that requires sig-
nificant coordinated effort to solve. Another approach isreate a meta-language like
DAML that allows for automatic translation among certaimysimilar types of ontolo-
gies, however this requires a great deal of effort and fogght on the part of the schema
designers in advance and is brittle in the face of changiriglogies. By using NGD we
may create a democratic and natural ontology for almost apjication in an unsuper-
vised way. Furthermore, if instead we want finer control dkierontological organization,
then a human expert may define a custom ontology and then NGDbmased to pro-
vide a normal, global, and automatic reference frame witbtiich this ontology may be
understood without additional costly human effort. So,dgample, NGD may be used
in the recipe example above, Figufel2 7.13 to automatically “understand” the differ-
ence between a Chinese or Mediterranean recipe, and caddéused to automatically
translate between the two conflicting ontologies.

6. Another future direction is to apply multiple concurrdmbary classifiers for the same
classification problem but using different anchors. Theas#e classifications would have
to be combined using a voting scheme, boosting scheme, er ptbtocol in an effort to
boost accuracy.

This section owes thanks to Teemu Roos, Hannes Wettig, Meliymaki, and Henry Tirri
at COSCO and The Helsinki Institute for Information Teclugyl for interesting discussions. We
also thank Chih-Jen Lin and his excellent group for provgdand supporting vigorously, free of
charge to all, the very easy to use LIBSVM package. We thaaCtignitive Science Laboratory
at Princeton University for providing the wonderful andefid/ordNet database. And we wish to
thank the staff of Google, Inc. for their delightful suppoftthis research by providing an API
as well as generous access to their websearch system.
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Chapter 8

Stemmatology

Stemmatology studies relations among different variahéstext that has been gradually altered
as a result of imperfectly copying the text over and over mgdihis chapter presents a new
method for using this assumption to reconstruct a lineaggedxplicating the derivational rela-
tionships among the many variations, just as we might reéocactsan evolutionary tree from a set
of gene sequences. We propose a hew computer assisted nmatlsbelmmatic analysis based
on compression of the variants. We will provide an overviéthe chapter at the end of the next
section. The method is related to phylogenetic reconstnuctiteria such as maximum parsi-
mony and maximum likelihood. We apply our method to the tradiof the legend of St. Henry
of Finland, and report encouraging preliminary resultse ®htained family tree of the variants,
the stemma, corresponds to a large extent with resultsraatavith more traditional methods.
Some of the identified groups of manuscripts are previousigaognized ones. Moreover, due
to the impossibility of manually exploring all plausiblge&inatives among the vast number of
possible trees, this work is the first attempt at a completmsta for the legend of St. Henry.
The used methods are being released as open-source sofiwdr@e entirely distinct from the
CompLearn system. They are presented here only for rougpaoson.

8.1 Introduction

St. Henry, according to the medieval tradition Bishop of Eglp (Sweden) and the first Bishop
of Finland, is the key figure of the Finnish Middle Ages. Herasdo have been one of the leaders
of a Swedish expedition to Finland probably around 1155erttis expedition Henry stayed in
Finland with sad consequences: he was murdered alreadyeextHe soon became the patron
saint of Turku cathedral and of the bishopric covering th@Mlof Finland. He remained the
only ‘local’ one of the most important saints until the refa@tion. Henry is still considered to
be the Finnish national saint. The knowledge of writing wWasost totally concentrated into the
hands of the Church and the clergymen during the early and Migdle Ages. On the other
hand, the official and proper veneration of a saint neededaitably a written text containing
the highlights of the saint’s life and an account of his meado be recited during the services
in the church. The oldest text concerning St. Henry is hiemegwritten in Latin. It contains
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Figure 8.1: An excerpt of a 15th century manuscript ‘H’ frohe tcollections of the Helsinki
University Library, showing the beginning of the legend daf Benry on the right:“Incipit
legenda de sancto Henrico pontifice et martyre; lectio priRagnante illustrissimo rege sancto
Erico, in Suecia, uenerabilis pontifex beatus HenricusAdglia oriundus, ..."[47].

both his life and a collection of his miracles and seems teen ready by the end of the 13th
century at the very latest. The text is the oldest literarykwmreserved in Finland and can thus
be seen as the starting point of the Finnish literary cultWhereas the influence of St. Henry on
the Christianization of Finland has been one of the focupiigts of the Finnish and Swedish
medievalists for hundreds of years, only the most recergares has really concentrated on
his legend as a whole. According to the latest results, thim legend of St. Henry is known
in 52 different medieval versions preserved in manuscapts incunabula written in the early
14th—early 16th centuries (Fig.1).1

The reasons for such a substantial amount of versionsidifférom each other are several.
On one hand, the texts were copied by hand until the late Itrearly 16th centuries, which
resulted in a multitude of unintended scribal errors by thgyests. In addition, the significance of

For identification of the sources as well as a modern editidhelegend seeAf7].
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the cult of St. Henry varied considerably from one part oflthén Christendom to the other. In
the medieval bishopric of Turku covering the whole of medldinland St. Henry was venerated
as the most important local saint, whose adoration requhiedeciting of the whole legend
during the celebrations of the saint’s day. In Sweden, fetaince, St. Henry was not so important
a saint, which led to different kinds of abridgments fittetbithe needs of local bishoprics and
parishes. As a consequence, the preserved versions ofjgraare all unique.

With the aid of traditional historically oriented auxiliasciences like codicology and pa-
leography it is possible to find out — at least roughly — whemd avhen every version was
written. Thus, the versions form a pattern representingribdieval and later dissemination of
the text. Even if the existent manuscripts containing thieint versions represent but a tiny
part of the much larger number of manuscripts and versiorisawiduring the Middle Ages, they
still provide us with an insight into a variety of aspects a&dreval culture. The versions help to
reconstruct the actual writing process and the culturalthiat carried the text from one place to
another. When one combines the stemma — i.e. the family tred atext with a geographical
map and adds the time dimension, one gets important infawmtktat no single historical source
can ever provide a historian with. The potential of this kaicén approach is emphasized when
researching hagiographical texts — i.e. saints’ lives,ifigtance — since they were the most
eagerly read and most vastly disseminated literary gentigedfliddle Ages.

Taking into consideration the possibilities of stemmagglat is not surprising that the histo-
rians and philologists have tried to establish a reliablg teareconstruct the stemma of the text
and its versions for centuries. The main difficulty has béemgreat multitude of textual variants
that have to be taken into consideration at the same time xAmple from the legend material
of St. Henry shall elucidate the problems: there are over &Auscripts and incunabula to be
taken into consideration; in the relatively short text thare nearly one thousand places where
the versions differ from each other. Since the multitudeasfants rises easily to tens of thou-
sands, it has been impossible for researchers using tiaditmethods of paper and pen to form
the stemma and thus get reliable answers to the questiaisddb the writing and disseminat-
ing of the text. There have been some previous attemptsye ud problems of stemmatology
with the aid of computer science. In addition, the powerfuinputer programs developed for
the needs of the computer aided cladistics in the field ofugiaiary biology have been used. In
many cases this has proven to be a fruitful approach, extgritie possibilities of stemmatics
to the analysis of more complex textual traditions that arside the reach of manual analysis.
Moreover, formalizing the often informal and subjectivethwals used in manual analysis makes
the methods and results obtained with them more transparehbrings them under objective
scrutiny. Still, many issues in computer assisted stenmaaualysis remain unsolved, underlin-
ing the importance of advances towards general and relbtbods for shaping the stemma of
a text.

Overview of this Chapter: The chapter is organized as follows: In Sect®@@Awe present
a criterion for stemmatic analysis that is based on commess the manuscripts. We then
outline an algorithm, in Sectio®.3, that builds stemmata by comparing a large number of tree-
shaped stemmata and choosing the one that minimizes teaamit The method is demonstrated
on a simple example in Sectidh4, where we also present our main experiment using some
50 variants of the legend of St. Henry, and discuss some afeisteictions of the method and
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potential ways to overcome them. Conclusions are presemt8dction8.5. We also compare
our method to a related method in the CompLearn package iergp A.

8.2 A Minimum-Information Criterion

One of the most applied methods in biological phylogeny icated maximum parsimony.
A maximally parsimonious tree minimizes the total numbediffierences between connected
nodes — i.e., species, individuals, or manuscripts thatlmeetly related — possibly weighted
by their importance. Stemmatology analysis is based ombkrireadings that result from un-
intentional errors in copying or intentional omissionssartions, or other modifications. In his
seminal work on computer assisted stemmatology, O’Hardagarsimony method of the PAUP
software 10 in Robinson’s Textual Criticism challeng83]. For further applications of maxi-
mum parsimony and related method, s48 p9, 107, 117 and references therein.

The compression-basedinimum informatiorcriterion shares many properties of the very
popular maximum parsimony method. Both can also be seerstares of theninimum de-
scription length(MDL) principle of Rissanen91] — although this is slightly anachronistic: the
maximum parsimony method predates the more general MDlciptan— which in turn is a
formal version of Occam’s razor. The underlying idea in theimum information criterion is to
minimize the amount of information, @ode-lengthrequired to reproduce all the manuscripts
by the process of copying and modifying the text under studyorder to describe a new ver-
sion of an existing manuscript, one needs an amount of irdbam that depends on both the
amount and the type of modifications made. For instance,etidelof a word or a change of
word order requires less information to describe comparedttoducing a completely new ex-
pression. In order to be concrete, we need a precise, nuaheaitd computable measure for
the amount of information. The commonly accepted definittbrthe amount information in
individual objects is Kolmogorov complexitgy, 79|, defined as the length of the shortest com-
puter program to describe the given object, as explainedchapér 3. However, Kolmogorov
complexity is defined only up to a constant that depends otatiguage used to encode pro-
grams, and what is more, fundamentally uncomputable. Inspiét of a number of earlier
authors f, 10, 20, 22, 45, 82, 115 we approximate Kolmogorov complexity by using a com-
pression program, also as we did in previous chapters. @ilyreve usegzi p based on the
LZ77 [122 algorithm, and plan to experiment with other compressorsubsequent work. In
particular, given two stringss andy, the amount of information iy conditional onx, denoted
by C(y| X) is given by the length of the compressed version of the cenedéd string, y minus
the length of the compressed versiorxaflone. A simple example illustrating these concepts
is given below in SectioB.4.

In addition to the MDL interpretation, our method can be sasr(an approximation of)
maximum likelihood, another commonly used criterion in lgiggny. The maximum likelihood
criterion requires that we have a probabilistic model faietion, assigning specific probabilities
for each kind of change. The joint likelihood of the wholegras then evaluated as a product

2We insert a newline in the end of each string and betwesmdy.
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of likelihoods of the individual changes. The tree achigvihe highest joint likelihood given
the observed data is then preferred. In the case of mantsesupgh a model is clearly more
difficult to construct that in biology, where the probald# of mutation can be estimated from
experimental data. Nevertheless, a model for manuscrgitigon is presented inj0g. Code-
length is isomorphic to (behaves in the same way as) likelihasums of code-lengths have a
direct correspondence with products of likelihoods. Ifpnebability induced by the information
cost, 2C0X is approximately proportional to the likelihood of cremfia copyy based on the
original x, then minimizing the total information cost approximatesximizing the likelihood.

Let G = (V,E) be an undirected graph wheveis a set of nodes corresponding to the text
variants,E CV xV is a set of edges. We require that the graph is a connecteatdifog tree,
i.e., that (i) each node has either one or three neighbods(jiiuthe tree is acyclic. Such a graph
G can be made directed by picking any one of the nodes as a rdatigatting each edge away
from the root. Given a directed gra the total information cost of the tree is given by

C(G) = %C(VI Pav))
= ;C(Pa(v),v) —C(Pav)), (8.2.1)

where Pév) denotes the parent node wlinlessv is the root in which case Pg) is the empty
string. Assuming that order has no significant effect on ttmaexity of a concatenated string,
i.e., we haveC(x,y) ~ C(y,X), as seems to be the case in our data, it can easily verifiefbthat
acyclic bifurcating trees, the above can rewritten as

C(G) ~ z C(v,w) —2 ; C(v), (8.2.2)

(vw)eE

where the first summation has a term for each edge in the gaagithe second summation goes
over the set of interior nodeg. The formula is a function of the undirected struct@enly:
the choice of the root is irrelevant. The factor two in thédaterm comes from usingifurcating
trees.

For practical reasons we make three modifications to thisran. First, as we explain in
the next section, due to algorithmic reasons we need toesgiige texts in smaller segments, not
longer than roughly 10—-20 words (we used 11). Secondly, waddhat the cost assigned by
gzi p to reproducing an identical copy of a string is too high in se@se that it is sometimes
‘cheaper’ to omit a large part of the text for a number of gatiens and to re-invent it later in an
identical form. Therefore we define the cost of making antidahcopy to be zero. Thirdly, itis
known that the variation between an ampersand ('&’) and thedhset, and the letters andu was
mostly dependent on the style of the copyist and changedtimi#hand region, and thus, bears
little information relevant to stemmatic analysis. Thisyiin knowledge was taken into account
by replacing, in both of the above cases, all occurrenceleofdrmer by the lattér Thus, we

SHoweet al.[49] use as an example the workisk andchurchin 15th century English whose variation mainly
reflects local dialect.
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use the following modified cost function
. n
C'(G) = C'(vi | Pa(v)), (8.2.3)
v;/ i;

wheren is the number of segments into which each text is spli#e@dnd Pav) are theith
segment of variant and its parent, respectively, all strings are modified atiogrto the above
rules (ampersand tet, andv to u), andC’(x | y) equals thegzi p cost if x andy differ, and
zero otherwise. This modified cost also allows a form sintdgB.2.2 and hence, is practically
independent of the choice of the root.

8.3 An Algorithm for Constructing Stemmata

Since it is known that many of the text variants have beendasing the centuries between
the time of the writing of the first versions and present tirhes not realistic to build a tree of
only the about 50 variants that we have as our data. This @mold even more prominent in
biology where we can only make observations about organibatsstill exist (excluding fossil
evidence). The common way of handling this problem is toudelin the tree a number of
‘hidden’ nodes, i.e., nodes representing individuals vehdsaracteristics are unobserved. We
construct bifurcating trees that hadeobserved nodes as leafs, add- 2 hidden nodes as the
interior nodes.

Evaluating the criterion8.2.3 now involves the problem of dealing with the hidden nodes.
Without knowing the values of P@), it is not possible to computé’ (v | Pa(v)). We solve this
problem by searching simultaneously for the best tree stre6 and for the optimal contents of
the hidden nodes with respect to criteri@2.3. As mentioned above, we patch up the contents
of the interior nodes from segments of length 10-20 word®appg in some of the available
variants. In principle we would like to do this on a per-wdrasis, which would not be a notable
restriction since it is indeed reasonable to expect thatansruction only consists of words
appearing in the available variants — any other kind of badravould require rather striking
innovation. However, since we evaluate tjre p cost in terms of the segments, it is likely give
better values when the segments are longer than one wordn@gcone of the most common
modifications is change in word order. Using 10-20 word segewe assign less cost to change
in word order than to genuine change of words, unless thegehhappens to cross a segment
border.

Perhaps surprisingly, given a tree structure, finding thinmad contents is feasible. The
method for efficiently optimizing the contents of the hidderdes is an instance of dynamic
programming and called ‘the Sankoff algorithm{] or ‘the Felsenstein’s algorithm1p4. As
Siepel and Haussleflp4] note, it is in fact an instance of a ‘message-passing’ omielation’
algorithm in graphical models (see al€2]). The basic idea is to maintain for each node a table
of minimal costs for the whole subtree starting at the nodesrgthat the contents of the node
take any given value. For instance, let us fix a segment, andtddyx’, ... x™ the different
versions of the segment that appear in some of the observeshtga The minimal cost for the
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subtree starting at nodegiven that the segment in question of nad®ntains the string! is
given by (see40Q))

cost(j) = mkin C/(XK | xj)+costa(k)] +m|in [C’(x' |xj)+cost3(l)],

wherea andb are the two children of node For leaf nodes the cost is defined as being infinite
if ] does not match the known content of the node, and zejamatches or if the content of
the node is unknown. Evaluating cdg) can be done for each segment independently, starting
from the leaf nodes and working towards the root. Finallg thinconditional) complexity of
the root is added so that the minimal cost of the segment &rdad by choosing at the root the
stringx! that minimizes the sum ces$y(j) +C'(x)). The total cost of the tree is then obtained
by summing over the minimal costs for each segment. Aftar #gtually filling the contents can
be done by propagating back down from the root towards tHe.l#as important to remember
that while the algorithm for optimizing the contents of thdden nodes requires that a root is
selected, the resulting cost and the optimal contents ohitdden nodes only depend on the
undirected structure (see E§.2.2).

There still remains the problem of finding the tree structw@ch together with correspond-
ing optimal contents of the hidden nodes minimizes criter@®.2.3. The obvious solution,
trying all possible tree structures and choosing the best fails because fdx leafs nodes, the
number of possible bifurcating trees is as large as @@ [

1x3x5x...x(2N-5).

For N = 52 this number is about 23 x 10’8, which is close to the estimated number of atoms
in the universe. Instead, we have to resort to heuristiccheadrying to find as good a tree as
possible in the time available.

We use a simulated annealing algorithm which starts withraitrary tree and iteratively
tries to improve it by small random modification, such as exafing the places of two subtrées
Every modification that reduces the value of the criterioadsepted. In order to escape local
optima in the search space, modifications that increaseetiie are accepted with probability

exp (Céﬂd ?I' Cr/1ew) ,

whereC[, is the cost of the current tre€,,, is the cost of the modified tree, afids a ‘temper-
ature’ parameter that is slowly decreased to zero. In ounmgberiment, reported in the next
section, we ran 1,200,000 iterations of annealing, whictioued to be sufficient in our setting.

8.4 Results and Discussion

We first illustrate the behavior of the method by an artifieehmple in Fig8.2 Assume that
we have observed five pieces of text, shown at the tips of destbranches. Because the text

4The algorithm also takes advantage of the fact that chafigeexchanging subtrees only require partial updat-
ing of the dynamic programming table used to evaluate treindtion cost.
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sanctus henricus ex Anglia

henridqus ex Anglia

beatus henricus ex Anglia  beatus

beatus
beatus henriciisin Anglia

et 0T

beatus Henricus in) anglia

beatus Henricus ex anglia

Figure 8.2: An example tree obtained with the compresseset method. Changes are circled
and labeled with numbers 1-5. Costs of changes are listdteibdx. Best reconstructions at
interior nodes are written at the branching points.

is so short, the length of the segment was fixed to one word. dttee trees — not the only
one — minimizing the information cost with total cost of 44itgr{bytes) is drawn in the figure.
Even though, as explained above, the obtained tree is wbekitelet us assume for simplicity
that the original version is the topmost orfsanctus henricus ex Anglig? The sum of the
(unconditional) complexities of the four words in this styiis equal to & 9+ 3+ 7 = 27, which
happens to coincide with the length of the string, includipgces and a finishing newline. The
changes, labeled by number 1-5 in the figure, yield3+ 3+ 3+ 3 = 17 units of cost. Thus the
total cost of the tree equals 2717 = 44 units.

As our main experiment, we analyzed a set of 49 variants detend of St. Henry. We had
prepared four out of the nine sections (sections 1,4,5, anmd&®suitable format. Three variants
were excluded since they had only ten words or less in theapeelpsections. The remaining
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variants contained 33—-379 words each. Tab%on pagel50lists the estimated time or writing
and place of origin, as well as the number of words in the usetians for each manuscript.
The best (wrt. the information cost) tree found is shown m Bi3. By comparing the tree with
earlier results47], it can be seen that many groups of variants have been siotteplaced
next to each other. For instance, groups of Finnish varggmpearing in the tree that are believed
to be related are Ho—I-K—T and R—S. Among the printed vesdiloa pairs BA-BS and BLu-BL
are correctly identified and also grouped close the eachotB¢her pairs of variants appearing
in the tree that are believed to be directly related are LitH@t(are also correctly associated
with BA-BS and BL-BLu), JG-B, Dr—M, NR2-JB, LT-E, AJ-D, and-BVIN-Y. In addition,
the subtree including the nine nodes between (and incly@bgand Dr is rather well supported
by traditional methods. All in all, the tree correspondsyweell with relationships discovered
with more traditional methods. This is quite remarkablartgknto account that in the current
experiments we have only used four out of the nine sectiotisediegend.

In order to quantify confidence in the obtained trees we useédmof our method, block-wise
bootstrap $6] and a consensus tree program in the phylogeny inferendeagad®HYLIP #1],
Section9. One hundred bootstrap samples were generated by samplithgréplacementh
segments out of tha segments that make each manuscript. The compression-betbdd
described in this work was run on each bootstrap sample —tdbisabout a week of computa-
tion — and the resulting 100 trees were analyzed withcthsense program in PHYLIP using
default settings (modified majority rule). The resultingnsensus tree is shown in Figi4.

It should be noted that the central node with nine neighboes ahot corresponds to a single
manuscript with nine descendants, but rather, that théoakhips between the nine subtrees is
unidentified. Because the interpretation of the consemsasd less direct than the interpretation
of the tree in Fig8.3 as the family tree of the variants, it is perhaps best to usetmsensus
tree to quantify the confidence in different parts of the ire€ig. 8.3, For instance, it can be
seen that the pairs BL-BLu, AJ-D, Li-Q, NR2-JB, O-P, L-G, BGand R-S are well sup-
ported. More interestingly, The group Ho—I-K—T—A is orgeed in a different order in Fi8.3
and the consensus tree. This group also illustrates oneegbrtbblems in the consensus tree
method. Namely the confidence in contiguous groups thatatteei middle of the tree tends to
be artificially low since the group does not make up a subinethjs case only 3100 (Fig.8.4).

The following potential problems and sources of bias in #milting stemmata are roughly
in decreasing order of severity:

1. Thegzip algorithm does not even attempt to fully reflect the procdssnperfectly copying
manuscripts. It remains to be studied how sensiblegiig information cost, or costs based on
other compression algorithms, are in stemmatic analysis.

2. Trees are not flexible enough to represent all realiseo@cos. More than one original manuscript
may have been used when creating a new one — a phenomenom tesntamination(or hori-
zontal transfer in genomics). Poistelow may provide a solution but for non-tree structures the
dynamic programming approach does not work and serious e@tipnal problems may arise.

5The printed versions are especially suspect to contaroimatnce it is likely that more than one manuscript
was used when composing a printed version.
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Figure 8.3: Best tree found. Most probable place of origicoading to B7], see Ta-
ble 8.5 indicated by color — Finland (blue): K,Ho,|, T,A,R,S,HFY; Vadstena (red):
AJ,D,E,LT,MN,Y,JB,NR2,Li,F,G; Central Europe (yellow)G,B; other (green). Some groups
supported by earlier work are circled in red.

3. Patching up interior node contents from 10—-20 word seggig@ restriction. This restriction could
be removed for cost functions that are defined as a sum ofiéthdil’words’ contributions. Such
cost functions may face problems in dealing with change afiveoder.

4. The number of copies made from a single manuscript canhse ttan zero and two. The imme-
diate solution would be to use multifurcating trees in camakion with our method, but this faces
the problem that the number of internal nodes strongly tffdee minimume-information criterion.
The modification hinted to at poitmay provide a solution to this problem.

5. Rather than looking for the tree structure that togethtr tive optimal contents of the interior nodes
minimizes the cost, it would be more principled from a prdlistic point of view to ‘marginalize’
the interior nodes (seet?]). In this case we should also account for possible formsr@a/@r
segments) not occurring in any of the observed variants.
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6. The search space is huge and the algorithm only finds a ¢d@tehum whose quality cannot be
guaranteed. Bootstrapping helps to identify which parttheftree are uncertain due to problems
in search (as well as due to lack of evidence).

7. Bootstrapping is known to underestimate the confidendbearresulting consensus tree. This is
clearly less serious thasverestimation.

In future work we plan to investigate ways to overcome sonthede limitations, to carry out
more experiments with more data in order to validate the ote#imd to compare the results with
those obtained with, for instance, the existing methodsamg@Learn 21], PHYLIP [41], and
PAUP [110. We are also planning to release the software as a part @dngpLearn package.
Among the possibilities we have not yet explored is the retrostion of a likely original text.
In fact, in addition to the stemma, the method finds an optimdle., optimal with respect to
the criterion — history of the manuscript including a textsien at each branching point of the
stemma. Assuming a point of origin, or a root, in the otheewisdirected stemma tree, thus
directly suggests a reconstruction of the most originasioer.

8.5 Conclusions

We proposed a new compression-based criterion, and aniassbalgorithm for computer as-

sisted stemmatic analysis. The method was applied to ttgitma of the legend of St. Henry of

Finland, of which some fifty manuscripts are known. Even fatsa moderate number, manual
stemma reconstruction is prohibitive due to the vast nunob@otential explanations, and the
obtained stemma is the first attempt at a complete stemma dégiend of St. Henry. The rela-

tionships discovered by the method are largely supportatdme traditional analysis in earlier

work, even though we have thus far only used a part of the tgeour experiments. Moreover,

our results have pointed out groups of manuscripts not edfiic earlier manual analysis. Con-
sequently, they have contributed to research on the lege®t blenry carried out by historians

and helped in forming a new basis for future studies. Tryongetonstruct the earliest version of
the text and the direction of the relationships between tuea in the stemma is an exciting line
of research where a combination of stemmatological, pglaghical, codicological and content
based analysis has great potential.

Appendix A: Comparison with the CompLearn package

The CompLearn packag@]] (Section4.7.2 performs similar analysis as our method in a more
general context where the strings need not consist of wgrdkdrd aligned text. Recall that it
is based on the Normalized Compression Distance (NCD) dk&iren 8.5.1), for convenience

restated (CxIy).Cly | )
max{C(x|y),C(y| x
NCD(x,y) = )
Y = e Ch0.C)
that was developed and analyzed ? 10, 20, 22, 79] (Chapter 3). Both our minimum infor-
mation criterion and NCD are based on (approximations ofjrié@orov complexity. The core
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method in CompLearn uses a quartet tree heuristic in ordeuitd a bifurcating tree with the
observed strings as leaf24] (Chapter 5).

In contrast to our method, where the cost function involhesdontents of both the observed
strings in the leaves and the unobserved interior nodespCearn only uses the pairwise NCD
distances between the observed strings 4] fhe latter kind of methods are called distance
matrix methods).

The relation between NCD and the criterion presented invtbik may be made more clear
by considering the sum-distanCéy | x) +C(x | y). Bennettet al.[9] show that the sum-distance
is sandwiched between the numerator of NCD and two timesaime gjuantity, ignoring loga-
rithmic terms:

max{C(x|y),C(y[x)} <C(y|x) +C(x|y) < 2maxC(x|y),C(y|x)}. (8.5.1)
Assuming tha€(x,y) ~ C(y, x) for all x,y, the sum-distance yields the cost

Cw|v)+C(v|w)=2 Z C(v,w) -3y C(v)— ;C(W),

(vw)eE (vw)eE VEV| eVL

where the summations are over the set of edfydle set of interior nodeg, and the set of leaf
nodesv,, respectively. Since the set of leaf nodes is constant ipliyéogenetic reconstruction
problem, the last term can be ignored. Comparing the firstémnms with 8.2.2 shows that the
only difference is in the ratio of the factors of the first tvasrhs (2 : 3 above; 1: 2 ir8(2.2).
Thus, the difference between the the sum-distance and tbemation cost depends only on
the variation ofC(v): if all strings are of roughly the same complexity, the diéfece is small.
On the other hand, the difference between the sum-distamteN&D results, up to a factor
of two (inequality 8.5.1)), from the normalization by mgxc(x),C(y)} in NCD . Thus, if all
strings are equally complex, the sum-distance and NCD ddliffet ‘too much’, which in turn
implies,summa summarurthat the information cost and NCD agree, at least roughbyvéver,
in our case, many of the variants are partially destroyed, @msequently the complexity of
the existing texts varies. The difference between the guttde heuristic and the Sankoff-style
algorithm (Sectior8.3) is more difficult to analyze, but clearly, both are desigf@dthe same
purpose.

Figure 8.5 shows the tree obtained by CompLearn using a blocksort appadion to Kol-
mogorov complexity (see the documentation of CompLearmfore information). The tree
agrees at least roughly in many places with the tree in&g).for instance, the expected pairs
Ho-T, JB-NR2, D-AJ, JG-B, MN-Y, BA-BS, and LT-E are next talonost next to each other
in both trees. We plan to investigate whether the remainifigrdnces between the two trees
are due to the cost functions, the search methods, or otherés of the methods. At any rate,
such agreements corroborate the validity of both methodgpaovide yet stronger support for
the results.
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It should be realized that the structure of the output tre¢ke two cases are different. This
is due to differences in constraints and assumptions asawelkplicit algorithmic differences as
already noted. Thus, not too many conclusions should berdfiam this rough comparison.
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Table 8.1. Estimated time of writing and place of origindatiative place in parentheses) frof7],
and total number of words in Sections 1,4,5, and 6.

Code Time Place # of Words
A Isthalfof 14thc. ......... Finland (/Sweden) .............. 364
Ab  14thc. .......... .. Finland ....................... 7
Al 1416-1442 ............... Vadstena .............cccen... 185
B ca. 1460 .................. Cologne .........c.oiiiiunn... 336
BA 1513 ........ ...l Vasteréas ...........couueennn 185
Bc 15the. ..ot Sweden ... 250
BL 1493 ... Linkoping ... 246
BLu 1517 ....... ...l Lund ... 185
BS 1498 ..................... Skara ... e 185
BSt 1495 ......... ... ... Strangnas .................... 189
BU 1496 ..................... Uppsala . e — 329
C 1l4thto 15thc. ............ Sweden ...................... 375
Cd 15thc. ........... ..., Sweden (/Finland) ............ 102
CP  1462-1500 ............... Vadstena .............covnn.. 59
D 1446-1460 ............... Vadstena ..................... 181
De 15thc. .......ooiiiiat. Vaxjo (/Sweden) ...... ..., 95
Dr  endofl4thc. ............. Linkoping (/VanO) T 371
E 1442-1464 ............... Vadstena . e 237
Ef end of lathe./ ............ Sweden (/Flnland) e 82
%mnlng of 15th c.
F 1st half of 15thc. ......... Vadstena (/Linkoping) . . ..., ... 339
Fg 14thc. ..ot Finland (Sweden) ............. 44
G 14761514 ............... Vadstena . e 251
Gh  14thc. ................... Sweden (/Flnland) 97
H endof14thc./ ........... Finland .... 74
beginning of 15th c.
Ho after1485 ................ Hollola ....................... 371
I end of 15thc./ ........... lkaalinen ........... ... .c...... 267
beginning of 16th c.
JB  1428-1447 ............... Vadstena ............comuue.n. 166
JG ca.1480 .................. Brussels ...........ccoeuei ... 341
K endof 15thc./ ........... Kangasala .................... 372
beginning of 16th c.
L 15the. ..o Sweden ... 132
Li 2nd half of 15thc. ........ Vadstena ... 193
LT  1448-1458 ............... Vadstena ..................... 266
Lu 1st half of 14thc. ......... Sweden .... e 149
M Ist half of 15thc. ......... Bishopric of Lmkopmg e 228
MN 1495 ... ........ ... ..., Vadstena . e 372
N 15the. .o Finland ............. ..o .. 373
NR  1476-1514 ............... Vadstena .............cccc.... 0
NR2 after1489 ................ Vadstena ..................... 158
(@] middle 14thc. ............ Osmo (/Uppsala) .............. 182
P ca.1380 .................. Strangnas (/Va stena) ........ 379
Q 2nd half of 15thc., ........ Bishopric of Linkdping . 176
before 1493 (/Vadstena)
R 15the, oo Finland . 267
S Ist half of 15thc. ......... Finland . 370
St beginning of 15thc. ....... Blshoprlc of Strangnas (/Swe 211
T ca.1485 .................. leand 373
U 15the. ..ot ppsala . 154
\Y, 1485 ..o B|s %Pnc of Ulppsala 301
Vae l4thc. ................... Sweden (/Finlan 247
Vg endofldthc./ ........... Sweden (/leand) 33
beginning of 15th c.
X middle or late 15thc. ...... Bishopric of Uppsala . 188
Y ca. 1500 ................. Vadstena (/L|nkop|ng) 372
Z 15thc. ................... Sweden (/Finland) . 10
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of 100 where the edge separates the two sets of variantse bargbers suggest high confidence
in the identified subgroup. Some groups supported by eavbek are circled in red.
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Chapter 9
Comparison of CompLearn with PHYLIP

In tree reconstruction systems like PHYLIP, trees are canstd in a greedy fashion using a ran-
domly permuted ordering. Many different permutations amagled and tree-splits are classified
according to how consistently they come up with a score fraim D00 indicating a percentage
agreement. This results in a so-called “consensus tree’ileviliis method is far quicker than
ours for large trees, it is probably in certain situationsrenerror prone. It does not directly
address the whole tree as one structured object but instigademething about the most likely
paths where trees are iteratively increased one step aeafinother difficulty of this approach
is that sometimes bootstrap values are just too low, legs Safor all splits, in which case
PHYLIP’s answer is considered too suspicious to use. Inexhrique this is rarely the case be-
cause we start with a random tree and make a monotonic segjoénondeterministic steps to
improve it. Our algorithm will always produce somethingtbethan random in practice and typ-
ically produces something reasonably good for natural. detather problem with PHYLIP and
the like is that there are many parameters and adjustmexttsithst be made in order to properly
calculate distances in the matrix creation phase; furtherg are many choices of parameters in
the tree-building phase so it takes more effort to use.

The most difficult part is a multiple-alignment phase thaidglly involves a biology expert.
For comparison, The kitsch program in PHYLIP was run withiadN1 distance matrix to build
the tree. The kitsch program is generally considered the aaurate in the PHYLIP suite.
Using a random seed value of 1 and generating 100 differadbra orderings for 100 different
trees of 100 nodes yields the consensus tree of FigdréA casual observation and comparison
with Figure4.10indicates that this tree is largely similar but not identicathe CompLearn
output. This is attributed to the fact that tBET) score is quite high suggesting that the input
data distance matrix has very good projection to a binagy/wighout substantial distortion and
thus serves as a relatively “easy” case of the difficult pgobldomain. CompLearn shows a
more clear advantage in the next experiment involving 10Bélprize winning writers. Here,
NGD is used to generate the distance matrix in a quantitatayesimilar to the newly popular
approaches such as Moretti&/]:

Theories are nets, and we should learn to evaluate themdaertipirical data they
allow us to process and understand: for how they concreteypnge the way we
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Figure 9.1: Using thé&itsch program in PHYLIP for comparison of H5N1 tree.



work, rather than as ends in themselves. Theories are metghare are so many
interesting creatures that await to be caught, if only we-tiyoretti

Here, the maximal score is not as high as the H5N1 tree. Thell#iMyackage does not cope
as well with the ambiguities and seems to produce a much guiak obviously lower quality
tree as shown below. The clustering of American and Britisitens is more scattered. This run
used 100 jumbles (random permutations) to form the consef$us strategy of simple random
permutation based sampling serves to increase the etfgmiwer of PHYLIP considerably, but
does not work very well to get high-accuracy plots of higbeinsistency data which often occur
in practice.
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Figure 9.2: 102 Nobel prize winning writers using CompLeanad NGD; S(T)=0.905630 (part

1).
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Figure 9.3: 102 Nobel prize winning writers using CompLeana NGD; S(T)=0.905630 (part
2).
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Figure 9.4: 102 Nobel prize winning writers using CompLeana NGD; S(T)=0.905630 (part
3).
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Chapter 10

CompLearn Documentation

This chapter presents an overview of the CompLearn systg\ides a functional description
from a high level followed by a detailed manual for basic atistion and use. The material in
this chapter will be useful for those wanting to run their aswperiments using the CompLearn
data mining system.

We start with a current snapshot of some important docurtientbor the CompLearn soft-
ware system is presented. It is the core software behindstlailbexperiments mentioned in
this thesis and represents a first general purpose openesdata compression based learning
system. The following documentation is literally copiedrfr the online website and the reader
is referred tcht t p: // conpl ear n. or g/ for more infol

What is CompLearn?

CompLearn is a suite of simple-to-use utilities that you aae to apply compression tech-
niques to the process of discovering and learning patterns.

The compression-based approach used is powerful becaasentine patterns in completely
different domains. It can classify musical styles of piesEmusic and identify unknown com-
posers. It can identify the language of bodies of text. It dmeover the relationships between
species of life and even the origin of new unknown virusef 1iscSARS. Other uncharted areas
are up to you to explore.

In fact, this method is so general that it requires no baakgidnowledge about any partic-
ular classification. There are no domain-specific pararaéteset and only a handful of general
settings. Just feed and run.

Installation Installation

CompLearn was packaged usiAgtoconf. Installation steps:

$ ./configure
$ nmake
$ make install

11t should be mentioned that in recent time the CompLearresystas had an improvement made which is not
explained in the previously published literature. It camsethe dotted lines around the edge nodes on trees with
numerical scores in the middle, see Chaftesection7.5.3
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To view installation options:
$ ./configure --help
conpl earn(5)

NAME

conplearn - file format for the conplearn configuration file
SYNOPSI S

$HOVE/ . conpl earn/ config.ym - controls options for ConplLearn

DESCRI PTI ON

The ConpLearn toolkit is a suite of utilities to analyze arbitrary data. The
commands ncd(1), maketree(1l), all use the config.ym configuration file. First,
the user hone directory ($HOMVE) is searched for a directory called .conplearn
Wthin this directory, ConpLearn reads a file called config.ym, a text file
structured in the YAML format. |If ConpLearn can not |ocate this file, default
val ues are used. The path to a configuration file may al so be specified by the
-c option. A configuration file specified in this manner overrides all other
opti ons.

For nore information on the ConpLearn project, please see
http://ww. conpl earn. org

The format of this file is as foll ows:
<Vari abl eNane>; <val ue>

Blank lines are allowed. Commrents are designated with a # sign. Variables cone
in one of four types: boolean, integer, or string.

The fol l owi ng Vari abl eNames are valid.

conpressor: string (ncd (1))
The builtin conpressor to be used. Valid values are: bzip, zlib, and google.

Googl eKey: string (ncd (1), google conpressor)
Key necessary to performsearch queries against Google database. Can be
obtai ned directory from Google at http://ww. googl e. conl apis/.

bl ocksize: int (ncd (1), bzip conpressor)
An integer from1l to 9. 9 gives the best conpression but takes the nost
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menory. Default 9.

wor kfactor: int (ncd (1), bzip conpressor)

An integer fromO to 250 and controls how the conpression phase behaves
when presented with the worst case, highly repetitive, input date. ConpLearn’s
default value of 30 gives reasonabl e behavior over a w de range of
ci rcunstances.

bzverbosity: int (ncd (1), bzip conpressor)
An integer fromO and 4. 0 is silent and greater nunbers give increasingly
verbose nonitoring/ debugging output. Default O.

zliblevel: int (ncd (1), zlib conpressor)
An integer froml1lto 9. 1 is the fastest and produces the |east
conpression. 9 is the slowest and produces the nost conpression. Default 9.

I SRoot ed: bool (maketree (1))
VWhether or not to create a rooted binary tree. Default O.

i sOrdered: bool (maketree (1))
Whet her or not to order the nodes. Default O.

sel f Agreenent Ter mi nati on: bool (naketree (1))
Whet her or not to insist k nunber of trees must reach an agreed score
before the programexits. Default 1.

maxFai | Count: int (maketree (1))

An integer specifying how nmany failed batches of trees must occur in
succession before the programexits. Only used when sel f Agreenent Ternmination is
of f. Default 100000.

EXAMPLE

#

# comments are witten like this

#

CGoogl eKey: A OGsJTQFHSpuf ko/ r RS/ KLA7NAT8UNf
conpr essor: bzip

bl ocksi ze: 5

wor kf act or: 100

i SRoot ed: 1

sel f Agreenent Termi nation: 0

163



maxFai | Count : 50000
# etc

FI LES
$HOVE/ . conpl ear n/ confi g. ym

configuration file, overrides systemdefault
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Usage: ncd [OPTION] ... [FILE| STRING| DIR] [FILE| STRING| DIR]

ENUMERATI ON MODES:
-f, --file-node=FI LE
-1, --literal - mode=STRI NG
-p, --plainlist-nmode=FILE

file; default node

string litera

list of file names by |inebreaks

-t, --termist-nmode=FILE list of string literals separated by |inebreaks
-d, --directory-nmode=DIR directory of files

-W, --w ndowed- node=FI LE, firstpos, stepsize, w dt h, | ast pos

file be separated into w ndows

NCD OPTI ONS
-C, --conpressor=STRI NG use builtin conpressor
-L, --list list of available builtin conpressors
-g, --google use Googl e conpression (NGD)
-D, --del cache clear the Google cache

-0, --outfile=distmatnane
-r, --real conp=pat hname

set the default distance matrix output nane
use real conpressor, passing in pathname of

conpr essor
OPTI ONS

-c, --config-file=FILE in YAML format

-S, --size conpressed size 1 FILE, STRING or DIR

=X, --exp print out 2"val instead of val

-B, --binary enabl e binary output node

-P, --svd-project output a singular value deconposition matrix

-S, --suppress suppress ASCI | out put

-b, --both enabl e both binary and text output node

-H, --htm output in HTM format

-P, --svd-project activate SVD projection node

-r, --suppressdetails do not print details to dot file

-V, --version

-V, --verbose

-h, --help
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Usage: maketree [OPTI ON|

MAKETREE OPTI ONS

Oo3e

m -

-outfile=treename
-root ed

-ordered
-text-input

OPTI ONS:

S< <SS TUITY® TWXWO

-config-file=FILE
-Si ze

- exp

-bi nary

-svd- proj ect

- suppress

-bot h

-ht m

-svd- proj ect
-suppressdetails
-version

-ver bose

-hel p

FI LE

set the default tree output name

create rooted tree

create ordered tree

format of distance matrix is text

di sabl e self agreement termination and enabl e
max fail count

in YAM format

conpressed size 1 FILE, STRING or DIR

print out 2"val instead of val

enabl e binary output node

output a singular value deconposition matrix
suppress ASCI | out put

enabl e both binary and text output node
output in HTM format

activate SVD projection node

do not print details to dot file
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CompLearn FAQ
1. What is ConplLearn?

ConpLearn is a software systembuilt to support conpression-based |earning in a
wi de variety of applications. It provides this support in the formof a library
witten in highly portable ANSI C that runs in nmost nmodern conputer
environments with mniml confusion. It also supplies a small suite of sinple,
conposabl e command-line utilities as sinple applications that use this library.
Together with other conmonly used machi ne-1earning tools such as LIBSVM and

G aphViz, ConpLearn forns an attractive offering in machine-|earning frameworks
and toolkits. It is designed to be extensible in a variety of ways including
modul ar dynamic-1inking plugins (like those used in the Apache webserver) and a
| anguage-neutral SOAP interface to supply instant access to core functionality
in every mjor |anguage.

2. Wy did the version nunbers skip so far between 0.6.4 and 0.8.12?

In early 2005 a major rewite occurred. This was due to poor organization of
the original conplearn package, |eading to conpilation and installation
difficulties in far too many situations. This issue was addressed by using a
conplete rewite fromthe ground up of all functionality; earlier versions used
a conbination of C and Ruby to deliver tree searching. The new version delivers
all core functionality, such as NCD and tree searching, in a pure Clibrary. On
top of this library is layered a variety of other interfaces such as SOAP and a
new i n-process direct-extension ConpLearn Ruby binding |ayer. But all
dependenci es have been reworked and are now nodul ari zed so that Ruby and al nost
every other software package is now optional and a variety of different
configurations will conpile cleanly.

Anot her maj or enhancement in the new conplearn is the addition of a Google
conpressor to calculate NGD. This has opened up whol e new areas of Quantitative
Subj ective Analysis (QSA) to conplement our existing nore classically pure
statistical methods in earlier gzip-style NCD research. By querying the Google
webserver through a SOAP | ayer we may convert page counts of search terns to
virtual file lengths that can be used to determ ne semantic relationships
between terms. Please see the paper Automatic Meaning Discovery Using Google
for nore information

3. | can’t get the Google conpressor to work. Wen |

type ncd -L, it’s not even listed as one of the builtin compressors. Wat am |
doi ng wong?
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You may not have the csoap library installed, which is necessary for the Google
conpressor to work. You can check this when you run your ./configure conmand
during the ConpLearn installation phase. A "NO' in the ConpLearn dependency
tabl e for csoap indicates you need to install the csoap |ibrary.

You can downl oad csoap at the follow ng |ink

http://sourceforge. net/project/showfiles. php?group_i d=74977

Once csoap is installed, you will need to run the ./configure comand again
(for ConpLearn), perhaps with a "--with-csoap"” option depending on the |ocation
of the csoap installation. For nore options, you can type

.lconfigure --help

Pl ease see our Dependencies section for nore information on ConpLearn |ibrary
dependenci es.

4. The Wndows denp isn't working for me? Wy not?

If you have cygwin installed on your computer, it's very likely you need to
update it. The ConpLearn Wndows demp uses version 1.5.17 of the cygw n dl|
any previous versions are not conpatible with the deno. To update your cygw n,
go to http://cygwin.comand hit the Install or Update now |ink.

You may al so need to download and install DirectX

5. gsl and ConpLearn seemed to install perfectly, but ncd can’t |oad the gsl
l'ibrary.

Users may get the follow ng message if this happens:

ncd: error while loading shared libraries: |ibgslcblas.so.0: cannot
open shared object file: No such file or directory

If this is the case, your LD LI BRARY PATH environnent variable may need to be
set. For exanple, you can try the follow ng before running the ncd command

export LD LIBRARY_PATH=/usr/local/lib
6. How can this demo work with only 1000 queries a day?

There are two reasons this deno is able to do as much as it does. One is that
Googl e has generously (and free of charge to ne) upgraded nmy Google APl account
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key daily search limt. You mght email themto ask yourself if you have an
interesting Google APl based search application of your own. The other reason
the deno works is because there is a cache of recent page result counts. You
can see this cache by looking in the $HOVE . conpl earn directory. Sonetimnmes

| arger experiments must be run over the course of two days.

7. How come the counts returned from (any particular) Google APl are different
that the nunbers | see when | enter searches by hand?

| have two possible explanations for this behavior. One is that it would be
prohibitively expensive to count the exact total of all pages indexed for nost
conmon search terns. Instead they use an estimation heuristic called
"prefixing" whereby they just use a short sanple of webpages as a
representative set for the web and scale up as appropriate. | presune this and
al so that when you do a search (either by hand or fromthe APlI) you can get
connected to any one of a nunber of different search servers, each with a
slightly different database. In a rapidly changing | arge global network it is
unlikely that there will be an exact match for the counts on any particul ar
common term because each server nust maintain its own distinct "aging snapshot"
of the internet.

8. Wen | conpile csoap, | don't seemto be getting shared

libraries. O even though csoap is installed, conplearn doesn't seemto be

detecting the shared library.

Try conpiling csoap fromsource with the follow ng options:
--with-1ibxm-prefix=/usr --enable-shared --with-pic

Then try reconfiguring and reconpiling conplearn.

Thanks to Tsu Do Nimh for this tip.

9. Is it inportant to adjust or choose a conpressor? How should | do it?

Yes, it is very inportant to choose a good conpressor for your application. The

"bl ocksort" conpressor is the current default. It is a virtual conpressor using

a sinple blocksorting algorithm It will give results sonething |ike frequency

anal ysis, spectral analysis, and substring matching conmbined. It works very

well for small strings (or files) of 100 bytes or less. If you have nore than

about 100 bytes then it is probably better to use one of the other three
favorite conpressors other than the default:
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ncd -C zlib

will get you "zlib" style conmpression which is like gzip and is linmtedto
files of up to 15K in size.

ncd -C bzip

will get you "bzip2" style conpression which is like zlib but allows for files
up to about 450K in size. The best accuracy is available using the "real
conpressor” shell option. For this to work you need to use a script |ike this:

#!'/ bi n/ bash

cd /tnp

cat >infile

[ufs/cilibrar/bin/ppmd e infile > dev/null </dev/null 2>/ dev/nul
cat infile.pnd

rminfile infile.pm

If you install that script in $HOVE/ bin/catppmd and don't forget to chnmod it
execut abl e (using chrmod a+rx $HOVE/ bi n/ cat ppnd for instance) then you can use
it wwth the follow ng option to ncd:

ncd -r $HOVE/ bi n/ cat ppnd

10. Running ./configure gives me the followi ng error: cannot find input file:
src/ conpl earn/acl config.h.in. Were can | find this file?

You will need to generate this header input file by running the autoheader
command. aut oheader is packaged with autoconf.

aut oheader

11. | get the configure error: Can't |ocate object method "path" via package
"Request" at /usr/share/autoconf/Automite/ CAche.pmline 69, line 111. make[1]:
*** [configure] Error 1. Is there an easy way to fix this?

In the top directory of the ConpLearn distribution, run the follow ng comands:
rm-rf automite.cache

or

make mai ntai ner-cl ean
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Chapter 11

Nederlands Samenvatting

Statistische Inferentie met Datacompressie
door Rudi Cilibrasi

Dit proefschrift gaat over de theorie en praktijk van datapeessie-programma’s die ge-
bruikt worden om een bepaalde vorm van machinaal leren liseean. Het gaat hierbij in eerste
instantie om het groeperen (clusteren) van objecten dieeoped of andere manier op elkaar
lijken. In eerste instantie gaat het om objecten die lgjiteih een computerbestand kunnen
worden gerepresenteerd, zoals bijvoorbeeld literairstézk DNA sequenties, muziekstukken en
afbeeldingen. Een van de belangrijkste conclusies vanrbetszhrift is dat het ook mogelijk is
om te werken met objecten die staan voor abstracte begrippals “liefde” en “geluk.”

De eenvoudigste en meest populaire toepassing die al inigelbas voordat Cilibrasi aan
zijn onderzoek begon, was taalboomconstructie. In eengveaperiment werd de Universele
Verklaring van de Rechten van de Mens gebruikt om verrasaecurate etymologische bomen
te construeren. Dit gebeurde via een computerprogrammegzenige menselijke tussenkomst.
Toch stemden deze bomen overeen met de beste inschattiagelaatkundige experts. Het
computerprogramma was gebaseerd op twee onderdelenrste een elementair, en algemeen
toepasbaar datacompressieprogramma, en ten tweede teskkélk eenvoudig boomzoeksys-
teem.

In zijn werk met voornamelijk Prof. Paul Vitanyi heeft Citdsi getracht op beide onderdelen
vooruitgang te boeken en nieuwe toepassingen te ontwikkdédit werk begon met het schri-
jven van een eenvoudig conversieprogramma voor zogenaguatwla’-bestanden dat werd
toegepast op MIDI-bestanden. Hiermee was Cilibrasi int staamuziek automatisch naar genre
of componist te classificeren; het bleek dat algemeen ddbraompressieprogramma’s zoals
gzip of bzip2 tot op zekere hoogte in staat waren jazz, rocklassiek van elkaar te onder-
scheiden. Ook was het in veel gevallen mogelijk om compenigt identificeren, soms zelfs
met huiveringwekkende precisie. Dit experiment was zo eswal, dat besloten werd tot het
ontwikkelen van een breder toepasbare computerapplicGtibrasi ontwierp een “open bron”-
programma genaamd CompLearn (beschikbaar via www.commptgg). Dit maakte het mo-
gelijk systematisch onderzoek te doen naar de vraag naaurioerseel desenormaliseerde
Compressie Afstan@f NCD, “Normalized Compression Distance”) nu eigenlijasv De NCD
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is een afstandsmaat tussen bestanden die aangeeft in treoevee bestanden op elkaar lijken.
Verschillende datacompressoren leiden tot verschilleedsies van deze afstandsmaat.

In het eerste belangrijke artikel, Clustering by Compm@sgiGroeperen met Compressie),
ontwikkelden Vitanyi en Cilibrasi een methode om aannames @atacompressoren te formalis-
eren, en beschreven zij enkele formele eigenschappen vl de theoretische “Kolmogorov
Complexiteit compressor” als van praktische, daadwgkkelepasbare compressoren. Vervol-
gens pasten zij het CompLearn systeem toe op genetischgsanaharbij zij gebruik maken
van complete genoomsequenties. Dit gebeurde wederom rzendge biologische aannames
of menselijke tussenkomst, hetgeen leidde tot de verotedéng dat de methode enigszins
objectiever was dan eerdere, vergelijkbare pogingen. evepaste Cilibrasi CompLearn en
NCD toe op een probleem in de radioastronomie, een domeinvaradij bijna niets afwist.
Gelukkig kwamen de resultaten overeen met die van in deabiwerkende astromische ex-
perts. Toepassing van het programma op vertaalde Russisariatuur toonde dat het boeken
groepeerde aan de hand van een combinatie van vertaleigametgiauteur. Misschien het meest
verrassende resultaat werd bereikt bij het experimenthijadibeeldingen herkend moesten wor-
den: het bleek mogelijk om het standaard compressieprogeagrip te gebruiken voor het
identificeren van afbeeldingen van handgeschreven cijfieesen NIST gegevensbank. Cilibrasi
werkte deze toepassing verder uit door het combineren vaQI2 met zogenaamde Support
Vector Machines. Dit zijn zelflerende systemen (algorithdie elke continue functie kunnen
leren. De matrix van NCD afstanden tussen een groep “trg&itbestanden en een aantal van te
voren gekozen “anker’-bestanden werd hier gebruikt alatinpor de support vector machine.
Het resultaat is een algemeen classificatie- en regresgiggnma dat de kracht van discrete
patroonvergelijking in datacompressoren combineert redtexibiliteit van universeel lerende
automaten van continue functies zoals Support Vector M&shof neurale netwerken.

De volgende grote vernieuwing kwam toen Cilibrasi zichisssdrde dat we dezelfde wiskun-
dige formalismen die ten grondslag liggen aan datacomigres& kunnen toepassen op andere
objecten dan bestanden (of reeksen van bits). Het domeirbipaaorbeeld ook uit zoekter-
men of tupels van zoektermen kunnen bestaan. Men kan danoe&machine zoals Google
gebruiken om het aantal pagina’s op het world wide web te Ibap&aarin deze (tupels van)
zoektermen voorkomen. Het resultaat is dan de zogenaanederigaliseerde Google afstand”
(NGD), die voor twee willekeurige termen (bijvoorbeeld wden) aangeeft hoeveel ze, volgens
het world wide web, op elkaar lijken. De NGD werd geimpleneent als onderdeel van de
CompLearn software met het zogenaamde Simple Object Adtetecol (SOAP) met de C
en Ruby programmeertalen. Het grote verschil met NCD is dahh mogelijk is om afstand
te bepalen op basis van damenvan objecten in plaats van hun, statistisch genomen, 4etter
lijke inhoud. Dit bracht een scala aan nieuwe mogelijkhedsveeg. Cilibrasi vergeleek au-
tomatisch gegenereerde monsters van ontologische predlicet die van WordNet, een project
van de universiteit van Princeton. WordNet is een semdrgisoncordantie van de Engelse
taal die is gebouwd door menselijke experts. Er was onge88¥#r overeenstemming tussen
de eenvoudige, volledige automatisch lerende automaatadNgt. Dit maakt automatische
ontologie-uitbreiding een veelbelovende onderzoeksrigh Hiermee zou als het waggatis
structuur aangebracht kunnen worden in het web; dit in tsgdimg tot een meer traditionele
aanpak met RDF tripletten, het Sematische Web en XML uigliisg. Al deze methoden
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vereisen zeer tijdrovende menselijke arbeid, terwijl deunie, op de NGD gebaseerde tech-
nieken, moeiteloos soortgelijke kennis vergaren uit hetegrongebruikte reservoir van reeds
bestaande webpagina’s. Een ander interessant experirasrgéem automatisch Engels-Spaans
vertaalsysteem dat werkte zonder menselijke hulp. CBilwas in staat om de Spaanse vertalin-
gen van vijf Engelse woorden door elkaar te husselen en dputemte laten uitvogelen welke
Engelse en Spaanse woorden overeenstemden. Slechts dooradatie tussen de Engelse NGD
matrix en alle Spaanse permutaties te berekenen, luktesheistie volgorde te vinden.

In het meest recente artikel over Cilibrasi’s onderzoelpalaéden Cilibrasi en Vitanyi de
wiskundige details van het exacte type niet-determirutiswartetboomzoeksysteem dat hij
uiteindelijk bouwde. Dit bleek een interessant projectipe wvanuit het oogpunt van de algo-
ritmiek: het is een NP-hard probleem om de beste boom te &epalgens het gebruikte eval-
uatiecriterium, maar desalniettemin bleek het mogelijnaele interessante en bruikbare voor-
beelden het antwoord te benaderen met een verrassendeanarelheid en precisie. Daarbij
maakte Cilibrasi gebruik van een cluster-berekenend systiat gebouwd was volgens de zoge-
naamde Message Passing Interface (MPI) standaard. Eelpeedddat Cilibrasi op dit moment
zeer interesseert is een boom van 100 verschillende menstarhet vogelgriepvirus. Terwijl
mutaties en recombinaties nieuwe virale variaties vornsdmet systeem in staat gebleken snelle
en nuttige antwoorden te geven.

Cilibrasi moedigt geinteresseerden aan de artikelen tgkbakdie gepubliceerd zijn op zijn
onderzoeks-homepage, of de online demo te proberen op dpl&am website. Er kan ook een
3D demo gedownload worden met sleur-en-pleur-datamimigdows en linux versies van alle
programmatuur zijn tevens beschikbaar. Mede door eenndirlg te maken met ongeveer 15
andere programmatuursystemen, heeft Cilibrasi een st@ledsechap geproduceerd dat waarde-
vol kan zijn voor onderzoekers over de hele wereld.
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