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Abstract. We introduce three relations between models of Peano Arith-
metic (PA), each of which is characterized as an arithmetical accessibility
relation. A relation R is said to be an arithmetical accessibility relation if
for any modelM of PA,M � Prπ(ϕ) iffM′ � ϕ for allM′ withM RM′,
where Prπ(x) is an intensionally correct provability predicate of PA. The
existence of arithmetical accessibility relations yields a new perspective
on the arithmetical completeness of GL. We show that any finite Kripke
model for GL is bisimilar to some “arithmetical” Kripke model whose
domain consists of models of PA and whose accessibility relation is an
arithmetical accessibility relation. This yields a new interpretation of the
modal operators in the context of PA: an arithmetical assertion ϕ is con-
sistent (possible, ♦ϕ) if it holds in some arithmetically accessible model,
and provable (necessary, �ϕ) if it holds in all arithmetically accessible
models.
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1 Introduction

The modal logic GL is K plus Löb’s axiom �(�A → A) → �A. The intended
meaning of �A in the context of GL is: there exists a proof of A in1 Peano Arith-
metic (PA). To be more precise, �A is interpreted as the arithmetical sentence
Prπ(pA∗q), where Prπ(x) is an intensionally correct provability predicate of PA,
A∗ is an arithmetical sentence, and pA∗q is the term (of the language of PA)
naming the code of A (under some assumed gödelnumbering).

As it turns out, GL captures exactly what is provable in PA, in propositional
terms, about Prπ(x). A modal formula A is said to be a provability principle (of
PA) if every possible translation2 of A into an arithmetical sentence is provable
in PA. The system GL is arithmetically sound: if `GL A, then A is a provability
principle. The converse – the arithmetical completeness of GL – was proven
by Robert Solovay [9]. If 0GL A for some modal formula A, then by modal
completeness of GL there is a finite Kripke countermodel to A. Solovay shows

1 Here, PA can be replaced by any recursively enumerable Σ1-sound theory containing
Elementary Arithmetic (EA).

2 This notion of translation is made precise in Section 2.2 below.
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that M can be simulated in PA. The simulation provides a translation ∗ such
that A∗ is not a theorem of PA.

In this article, we show that for any finite Kripke model M for GL, there is
some “arithmetical” Kripke model Mbig that is bisimilar to M . The domain of
Mbig consists of models of PA, and the accessibility relation R is one of the arith-
metical accessibility relations introduced in Section 3. The choice of R guarantees
that the truth values of modal formulas are independent (modulo a translation
into sentences of arithmetic) of whether an elementM in the domain of Mbig is
viewed as a node in the Kripke model Mbig (with the modal forcing relation ),
or as a model of PA (with the first–order satisfiability relation �).

In order to appreciate the existence of arithmetical accessibility relations,
we shall make a detour to set theory. In [4], Hamkins presents a (set–theoretic)
forcing interpretation of modal logic. In this context, ♦ϕ is interpreted as: “ϕ
holds in some forcing extension”, and �ϕ as: “ϕ holds in all forcing extensions”
(where ϕ is a statement in the language of set theory). Hamkins and Löwe [5]
prove that if ZFC is consistent, then the principles of forcing provable in ZFC
are exactly those derivable in the modal system S4.2.

Although Hamkins and Löwe say that they want to do for forceability what
Solovay did for provability, there is an important difference between the two
situations. Forcing is a relation between models of set theory – a ground model
has some access to the truths of its forcing extension –, and hence it is natural
to view it as an accessibility relation in a Kripke model. The interpretation
of the modal operators � and ♦ in set theory is thereby in tune with their
usual modal logical meanings: ♦ϕ means that ϕ holds in some successor (i.e.
forcing extension), and �ϕ that ϕ holds in all successors (forcing extensions).
As a result, one can imagine the collection of all models of set theory, related by
forcing, as an enormous Kripke model (where the valuation is given by first–order
satisfiability).

Provability, on the other hand, is not a relation between models of PA. Note
also that whereas the usual interpretation of �ϕ in modal logic involves universal
quantification (over all accessible worlds), the interpretation of �ϕ in PA is an
existential sentence: there exists a proof of ϕ. Similarly, in the context of PA,
the interpretation of ♦ϕ switches from existential to universal: ϕ is consistent,
i.e. all proofs are not proofs of ¬ϕ. It is therefore natural to ask whether there is
a relation R between models of PA that is the analogue of forcing in the context
of ZFC. As in the set theoretic case, we would like to view the collection of all
models PA, related by this relation R, as an enormous Kripke model, and we
would furthermore want this new interpretation of the modalities to be in tune
with the old one. The desideratum for R is then: M � Prπ(pϕq) ⇔ for all M′
withM RM′ it holds thatM′ � ϕ. A relation R satisfying the above property
is said to be an arithmetical accessibility relation.

The existence of arithmetical accessibility relations yields a new interpreta-
tion of the modal operators in the context of PA. The traditional meaning of �ϕ
– “there exists a proof of ϕ” – is equivalent to an interpretation of �ϕ as: “ϕ
holds in all arithmetically accessible models”. Similarly, the traditional meaning
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of ♦ϕ – “ϕ is consistent” – is equivalent to an interpretation of ♦ϕ as:“ϕ holds
in some arithmetically accessible model”.

The next section contains the preliminaries. Our examples of arithmetical
accessibility relations are introduced in Section 3, and Section 4 establishes that
any finite Kripke model for GL is bisimilar to some “arithmetical” Kripke model
whose nodes are models of PA. The arithmetical completeness of GL is an easy
consequence3 of this. Finally, in Section 5 we will see that the structural prop-
erties of the big arithmetical Kripke frame depend on the exact choice of the
arithmetical accessibility relation.

2 Preliminaries

This section sketches the basic notions and results needed for our main result.
Section 2.1 contains the arithmetical preliminaries, Section 2.2 deals with modal
logic, in particular the system GL, and Section 2.3 introduces the notion of an
internal model.

2.1 Arithmetic

We work in a first–order language with ¬,→ and ∀ as primitive connectives;
the connectives ∧, ∨, ↔ and ∃ are assumed to be defined from the primitive
connectives in the usual way. We assume a Hilbert–style axiomatization of first–
order logic, with modus ponens as the only rule of inference.

Our official signature Σ of arithmetic is relational; it includes:

– a binary relation symbol E (equality4)
– a unary relation symbol Z (being equal to zero)
– a binary relation symbol S (Sxy being interpreted as: x+ 1 = y)
– a ternary relation symbol A (Axyz being interpreted as: x+ y = z)
– a ternary relation symbol M (Mxyz being interpreted as: x× y = z)

We also use Σ to refer to the language of arithmetic, i.e. the first–order language
based on the signature of arithmetic. We shall use lower case Greek letters for
the sentences and formulas of Σ.

The theory of Peano Arithmetic (PA) is a first–order theory in the language
of arithmetic. It contains axioms stating that E is a congruence relation (since
equality is treated as a non–logical symbol), the basic facts about the relations Z,
S, A and M (for example that Zx implies ¬Syx for all y), as well as a functionality
axiom – with respect to E – for each of the above relations (for Z, this amounts

3 Our proof of Solovay’s Theorem is not “new” – the construction of the bisimulation
makes crucial use of the most important ingredients of the original proof. Solovay’s
Theorem will thus remain among the important theorems in mathematical logic
which have “essentially” only one proof (see [3]).

4 Note that we treat equality as a non–logical symbol. This makes it straightforward
to allow equality to be translated by something else than equality when defining the
notion of a relative translation (Definition 6).
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to the uniqueness of the element in its extension). Finally, the axioms of PA
include induction for all formulas in the language Σ of arithmetic.

All first–order models considered in this article are models of PA, or expan-
sions of models of PA. From now on, the word “model” will refer to such a model.
The domains of the arithmetical Kripke frames constructed in Section 4 consist
of models whose signature contains only predicates included in the signature of
arithmetic. We shall therefore sometimes also refer to such models as “worlds”.
IfM is a model, we use the symbol ΣM to refer to the signature ofM. A model
M is said to be inductive if it satisfies the induction axioms in the language ΣM.
If ΣM = ΣM′ , we write M ≡ M′ to mean that M and M′ are elementarily
equivalent, i.e. that for every sentence ϕ of ΣM, M � ϕ ⇔ M′ � ϕ. We write
M∼=M′ ifM andM′ are isomorphic. If ϕ is a formula whose free variables are
among x0, . . . xn, and m0, . . .mk is a sequence of elements ofM, with n ≤ k, we
write M � ϕ[m1, . . . ,mk] to mean that M satisfies ϕ when xj is interpreted as
a name for mj .

In practice, we shall often speak of the formulas of Σ as containing terms built
up from the constant symbol 0, a unary function symbol S, and binary function
symbols + and ×. Such formulas can be transformed into proper formulas of Σ
by the term–unwinding algorithm5. We define for each natural number n a term
n of our unofficial language by letting 0 = 0, and n+ 1 = Sn. We shall often
also write n instead of n, and x = y instead of Exy.

We assume as given some standard gödelnumbering of the syntactical objects
of Σ. If ϕ is a formula, we write pϕq for the code of ϕ, and similarly for terms.
We shall often identify a formula with its code, thus writing for example ϕ(ψ)
instead of ϕ(pψq).

We also assume as given formulas of Σ that express relations between syn-
tactical objects (of Σ and its expansions) and operations on them. We will use
self–explanatory notation for such formulas; for example, the formula form ex-
presses the property of being (the code of) a formula, and the formula var the
property of being (the code of) a variable. We write ∀ϕ ∈ formα(ϕ) instead of
∀x (form(x)→ α(x)), and similarly for other syntactical objects such as variables
or sentences.

We shall assume that all formulas representing relations between and op-
erations on syntactical objects do so in an intensionally correct way. By this,

5 For example, the formula x+ Sy = S(x+ y) becomes

∃z, u, w (Syz ∧ Axzw ∧ Axyu ∧ Suw)

or, equivalently (by the functionality axioms),

∀z, u, w (Syz ∧ Axzw ∧ Axyu→ Suw) .

The process of unravelling only adds a block of existential (universal) quantifiers
in front of a formula. Given that the complexity of a formula is measured e.g. by
depth of quantifier alternations, it will therefore not increase as a result of applying
the term–unwinding algorithm (as long as the original formula contains at least one
quantifier).
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we mean that the definitions of these relations and operations in PA mimic the
corresponding “informal” recursive definitions, and that the relevant recursion
equations are provable in PA. For example, we assume that there is a formula
sbst1 of Σ such that

`PA ∀t ∈ term (sbst1(t,Zv0) = Zt) , (1)

and similarly for other atomic formulas. Furthermore,

`PA ∀t ∈ term,∀ϕ,ψ ∈ form (sbst1(t, ϕ ∧ ψ) = conj(sbst1(t, ϕ), sbst1(t, ψ)) , (2)

where conj(ϕ,ψ) is an intensionally correct representation of the function com-
puting the gödelnumber of the conjunction of the formulas coded by its inputs.
Equations like (2) are also assumed to be provable for the other connectives and
for the quantifiers.

Given that the formula sbst1 is intensionally correct in the above sense, it is
also extensionally correct, i.e. it has the right extension in the standard model,
or in other words it behaves as intended with respect to the codes of standard
sentences and terms. This means that for any formula ϕ and for any term t,

`PA sbst1(ptq, pϕq) = Sbst1(ptq, pϕq) , (3)

where Sbst1 is the primitive recursive function with:

Sbst1(m,n) =

{
p[t/v0]ϕq if n = pϕq, m = ptq, and t is free for v0 in ϕ

0 otherwise

In general, if a formula expresses a property in an intensionally correct way,
then it also expresses this property in an extensionally correct way6. On the
other hand, there exist formulas which are extensionally correct with respect to
a property but fail to express this property in an intensionally correct way (for
an example, see p.68 of [2]).

Throughout this article, λ denotes a formula that expresses the property of
being an axiom of first–order logic, and π denotes a formula that expresses the
property of being an axiom of PA. Both λ and π can be taken to be ∆1. Given
λ and π, the proof predicate Prfπ of PA is constructed in the usual way, and is
thus an intensionally correct representation of the relation

{(n, p) | p codes a PA–proof of the formula with gödelnumber n} . (4)

6 The concept of extensional correctness is found in the literature under various names,
for example binumerability [2], [7] or representability [1]. A formula ϕ of the signature
Σ is said to binumerate a relation R (on the natural numbers) in PA if for all n, Rn
implies `PA ϕ(n), and not Rn implies `PA ¬ϕ(n). A weaker notion of extensional
correctness is expressed by the notion of numerability, or weak representability, where
a formula ϕ is said to numerate a relation R in PA in case Rn holds if and only if
`PA ϕ(n).



6 Paula Henk

The provability predicate Prπ is obtained by letting: Prπ(x) := ∃y Prfπ(x, y). We
shall often omit the subscript, writing simply Pr for Prπ. We write Con(ϕ) for
the sentence ¬Pr(¬ϕ), and Con for Con(>).

Under the assumption that PA is Σ1–sound, the formula Pr(x) expresses the
property of being a theorem of PA in an extensionally correct way, i.e. for any
formula ϕ of the language Σ it holds that7

`PA ϕ ⇔ `PA Pr(ϕ) . (5)

By intensional correctness of the proof predicate, we have furthermore

`PA ∀ϕ,ψ ∈ form (Pr(impl(ϕ,ψ))→ (Pr(ϕ)→ Pr(ψ))) , (6)

where impl is an intensionally correct representation of the function computing
the gödelnumber of ϕ→ ψ, given as input the gödelnumbers of ϕ and ψ. Finally
it can be shown that

`PA ∀ϕ ∈ form (Pr(ϕ)→ Pr(Pr(ϕ))) , (7)

The externally quantified versions8 of items (6) and (7) together with the
left to right direction of (5) are often referred to as the Hilbert–Bernays–Löb
derivability conditions.

The following theorem (Theorem 4.6.v in [2]) states that inside PA, properties
of theorems of PA can be proven by induction on the complexity of PA–proofs.

Theorem 1. Let α be a formula of Σ. Then

`PA ∀ϕ ∈ form [(π(ϕ)→ α(ϕ)) ∧ (λ(ϕ)→ α(ϕ))]

∧ ∀ϕ,ψ ∈ form [α(ϕ) ∧ α(impl(ϕ,ψ))→ α(ψ)]

→ ∀ϕ ∈ form (Pr(ϕ)→ α(ϕ)).

Remark 1. The proof uses the induction axiom for the formula α. When working
in an expansion M of a model of PA, Theorem 1 can be applied with a formula
α of the signature ΣM given that induction holds in M for α.

2.2 Modal Logic

We denote by L� the language of propositional modal logic. We use upper case
Latin letters for the formulas of L�.

Definition 1 (Kripke model). A Kripke frame is a tuple 〈W,R〉, where W 6=
∅ and R ⊆ W × W . A Kripke model is a triple M = 〈F,〉, where F is a
Kripke frame, and � is a forcing relation on W satisfying the usual clauses for
the connectives, and for all w ∈W ,

w  �ϕ :⇔ y  ϕ for all y with wRy . (8)

7 The assumption of Σ1–soundness is needed for the direction from right to left.
8 I.e. versions where the universal quantifiers range only over standard sentences.
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If F = 〈W,R〉 is a frame, we write F  A in case for all models 〈F,〉 and for
all w ∈W , w  A.

When do two nodes in two Kripke models satisfy the same modal formulas?
A sufficent structural condition is given by the notion of bisimulation.

Definition 2 (Bismulation). Let M = 〈W,R, V 〉 and M ′ = 〈W ′, R′, V ′〉 be
two Kripke models. A binary relation Z ⊆W ×W ′ is a bisimulation between M
and M ′ if the following conditions are satisfied:

– (at) If wZw′, then w and w′ satisfy the same propositional letters
– (back) If wZw′ and wRv, then there exists v′ in M ′ with w′R′v′ and vZv′

– (forth) If wZw′ and w′R′v′, then there exists v in M with wRv and vZv′

When Z is a bisimulation between M and M ′, and wZw′, we say that w and
w′ are bisimilar. The following theorem states that modal satisfiability is indeed
invariant under bisimulations.

Theorem 2. Let M and M ′ be Kripke models, and let w,w′ be nodes of M and
M ′ respectively. If w is bisimilar to w′, then for every modal formula A, we have
that M,w  A iff M ′, w′  A.

We now introduce the modal system GL, named after Gödel and Löb, and
also known as provability logic.

Definition 3 (GL). The axioms of GL are all tautologies of propositional logic,
and

1. �(A→ B)→ (�A→ �B)
2. �(�A→ A)→ �A.

The rules of GL are modus ponens, and necessitation: `GL A ⇒ `GL �A.

In other words, GL is K plus Löb’s axiom �(�A → A) → �A. GL is known to
be sound and complete with respect to transitive irreflexive finite trees.

Theorem 3 (Modal Completeness of GL). Let K be the class of frames that
are transitive irreflexive finite trees. Then `GL A ⇔ ∀F [F ∈ K ⇒ F  A].

The notion of an arithmetical realization below will be used to translate
formulas of L� to sentences of the language of arithmetic.

Definition 4 (Arithmetical realization). A realization ∗ is a function from
the propositional letters of L� to sentences of Σ. The domain of ∗ is extended
to all L�–formulas by requiring:

1. (⊥)∗ = ⊥
2. (A→ B)∗ = A∗ → B∗

3. (�A)∗ := Pr(pA∗q)

Definition 5 (Provability logic). A modal formula A is a provability princi-
ple of PA if for all realizations ∗, `PA A∗. The provability logic of PA, (PrL(PA)),
is the set of all provability principles of PA, or a logic that generates it.
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The following theorem states that GL is arithmetically sound and complete, i.e.
it is the provability logic of PA.

Theorem 4. PrL(PA) = GL.

Proof sketch. For the direction GL ⊆ PrL(PA) (arithmetical soundness), one
has to check that the axioms of GL are provable in PA under all realizations.
This follows from the Hilbert–Bernays–Löb derivability conditions introduced in
Section 2.1 (to see that Löb’s Theorem is provable under all realizations, one
also uses the Gödel–Carnap Fixed Point Lemma).

The proof of PrL(PA) ⊆ GL (arithmetical completeness) is due to Robert
Solovay [9]. Given a modal formula A with 0GL A, we need a realization ∗ with
0PA A

∗. The idea of Solovay’s proof is to simulate in PA a Kripke model M =
〈{1, . . . , n}, R, V 〉 for GL, with M, 1 1 A (note that M exists by Theorem 3). This
is done by constructing sentences σ0, . . . , σn of the language Σ of arithmetic such
that, intuitively, σi corresponds to the node i of M (the sentence σ0 is used as an
auxilliary). We will refer to the sentences σ0 . . . , σn as the Solovay sentences. The
arithmetical realization ∗ is defined as: p∗ :=

∨
i:M,ip σi. M is then simulated

in PA in the sense that for all A ∈ L�,

M, i  A ⇒ `PA σi → A∗ (9)

M, i  ¬A ⇒ `PA σi → ¬A∗ (10)

The proof of (9) and (10) uses the following properties of the Solovay sen-
tences:

1. `PA σi → ¬σj if i 6= j
2. `PA σi → Con(σj) if iRj, or if i = 0 and j = 1
3. `PA σi → Pr(

∨
j:iRj σj) for i ≥ 1

Furthermore, we have that for all 0 ≤ i ≤ n, the sentence σi is independent from
PA. We shall use the above properties in Section 4 to prove that any finite GL–
model is bisimilar to some arithmetical Kripke model, obtaining the arithmetical
completeness of GL as a corollary.

2.3 Internal Models

This section introduces the notion of an internal model. Let M and M′ be
models of PA. Roughly speaking, M′ is an internal model of M (or: internal to
M) if the domain ofM′ is definable inM, and the interpretations of the atomic
formulas of ΣM′ are given by formulas of ΣM.

Definition 6 (Relative translation). Let Θ be a signature. A relative transla-
tion from Σ to Θ is a tuple 〈δ, τ〉, where δ is a Θ–formula with one free variable,
and τ a mapping from relation symbols R of Σ to formulas Rτ of Θ. We require
the number of free variables in Rτ to be equal to the arity of R. The domain of
τ is extended to all formulas of Σ by letting:
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1. (Rx0 . . . xn)τ = Rτx0 . . . xn for an n+ 1–ary relation symbol R
2. (ϕ→ ψ)τ = ϕτ → ψτ

3. ⊥τ = ⊥
4. (∀xϕ)τ = ∀x (δ(x)→ ϕτ )

If j is a relative translation, we refer to the components of j by δj and τj .
Note that although Σ in the above definition can taken to be any signature, we
shall only consider cases where the language of the internal model is indeed the
language of arithmetic.

Definition 7 (Internal model). Let M be a model, and let j = 〈δ, τ〉 be a
relative translation from Σ to ΣM. We say that j defines an internal model of
M if M � ϕτj for every axiom ϕ of PA.

If a relative translation j defines an internal model of M, we denote by Mj

the following model:

– dom(Mj) := {a ∈ dom(M) | M � δj(a)} / ∼ ,
where a ∼ b :⇔M � (Eab)τj

– If a,b ∈ dom(Mj), let Mj � Sab :⇔M � (Sab)τj for some a ∈ a, b ∈ b,
and similarly for other atomic formulas

Note that if j defines an internal model ofM then – by our choice of axioms
of PA – we have that inM, Eτ is a congruence relation, and the relations defined
by the formulas Zτ , Sτ , Aτ , and Mτ are functional relative to Eτ .

We say that M′ is an internal model of M, and write M BM′, if some
relative translation j to ΣM defines an internal model ofM, andM′ is (modulo
isomorphism) this internal model, i.e. M′ ∼=Mj . In this context, we shall often
refer to M as the external model. The following theorem is a well–known basic
fact about the internal model relation.

Theorem 5. Let M be a model, and suppose that a relative translation j from
Σ to ΣM defines an internal model of M. Then for any formula ϕ(x0, . . . , xn)
of the language Σ of arithmetic,

Mj � ϕ[a0, . . . ,an]⇔M � ϕτj [a0, . . . , an] for a0 ∈ a0, . . . , an ∈ an . (11)

In particular, Mj � ϕ⇔M � ϕτj for any sentence ϕ of Σ.

Proof. By induction on the complexity of ϕ(x0, . . . , xn).

Note that if j defines an internal model of M (as in Definition 7,) then it
follows by Theorem 5 that Mj � ϕ for every axiom ϕ of PA. Hence M BM′
implies that M′ is a model of PA.

3 t–internal and t–associated models

We introduce three arithmetical accessibility relations between models of PA,
all of which are based on the t–internal model relation. Roughly speaking, an
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internal modelM′ ofM is a t–internal model ofM ifM has a truth–predicate
for sentences of ΣM′ , and furthermore the axioms of PA (including the nonstan-
dard ones) are in the extension of the truth predicate. We shall generalize this
relation by allowing the truth predicate to be definable in M with parameters,
or definable in some inductive expansion ofM. As before, we shall only consider
cases where the language of the internal model is the language Σ of arithmetic.

3.1 Definitions

Before defining the t–internal model relation, it is useful to mention a techni-
cality. Suppose that j defines an internal model of M. As suggested above, we
want to express thatM has a truth predicate tr for the internal modelMj . This
means in particular that for any sentence ϕ of the language Σ (remember that
the signature of Mj is assumed to be Σ), M � ϕτj ↔ tr(ϕ). We want to arrive
at this statement by an induction on the complexity of ϕ. In order to express
that tr behaves as expected with respect to the atomic formulas, we would like
to say (in M), for example, that whenever m ∈ Mj , then (Zm)τ if and only if
the code of Zm is in the extension of tr. However, a truth predicate should apply
to gödelnumbers of sentences. Hence when inside the truth predicate, we want
to associate to m (the code of some) constant naming it.

A simple way to achieve this is to stipulate that m is the code of its own name,
and in general that elements ofMj are codes of their own names. Intuitively, this
means that insideM we will be working with the language Σ ∪{cm | m ∈Mj},
where for all m ∈ Mj , pcmq = m. We assume our gödelnumbering to be done
in such a way that this does not lead to ambiguities9, for example the domain
ofMj (as given by δj) should be disjoint from the set of codes of terms of Σ (in
M).10

The formulas representing properties of the syntactical objects of the lan-
guage Σ ∪ {cm | m ∈ Mj} in M are distinguished by using the subscript
δj (since the domain of Mj is given by the domain formula δj), and simi-
larly we refer to the language Σ ∪ {cm | m ∈ Mj} as Σδj . Thus for example
the formula sentδj expresses the property of being a sentence of the language
Σδj = Σ ∪ {cm | m ∈Mj}.

LetM be a model, and let j = 〈δ, τ〉 be a relative translation to ΣM. Fix in
M (the code of) a (possibly nonstandard) formula ϕ of the languageΣδ. We write
fv(ϕ) for the set of free variables of ϕ (according toM). Let tr(x) be a (standard)

9 To see how ambiguities could arise in principle, suppose (in M) that 17 is in the
extension of δj (i.e. 17 is in the domain of the internal model), but also that 17 is
the code of the constant 0. Suppose also that we use sequences to code syntactical
objects; for example the code of the sentence Zc (where c is a constant) is the number
〈pZq, pcq〉 (where 〈m,n〉 is the code of the pair (m,n)). Then, given the number
〈Z, 17〉, it is not clear whether it should be parsed as coding the sentence Z0 (of the
language Σ), or instead the sentence Zc17 (of the language Σ ∪ {cm | m ∈Mj}).

10 Note that this requirement excludes the possibility thatM andMj share the same
domain. However since we think of models modulo isomorphism, we can still allow
the internal model relation to be e.g. reflexive.
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formula with one free variable. If fv(ϕ) = {v0}, we write tr(ϕ(x)) as shorthand
for tr (sbst1(x, ϕ(v0))), thus e.g. tr(Zx) stands for tr(sbst1(x, pZv0q)). If x is in
the extension of δ, it is the code of the constant cx, and hence sbst1(x, pZv0q) is
the code of the Σδ–sentence Zcx. More generally, if ϕ is a formula with n free
variables (where n is standard), we write tr(ϕ(x0, . . . , xn−1)) as shorthand for

tr(sbstn(x0, . . . , xn−1, pϕ(v0, . . . , vn−1)q)) , (12)

where sbstn is an intensionally correct representation of the function correspond-
ing to the simultaneous substitution of n terms in a formula.

Definition 8 (t–internal model). LetM be a model, and j = 〈δ, τ〉 a relative
translation from Σ to ΣM. We say that j defines a t–internal model of M if
there is a formula tr of the signature ΣM with one free variable, such that the
following sentences are satisfied in M:

1. ∀x, y (δ(x)∧δ(y)→ ((Sxy)τ ↔ tr(Sxy))), similarly for other atomic formulas
2. ∀ϕ ∈ sentδ,∀ψ ∈ sentδ (tr(ϕ→ ψ)↔ (tr(ϕ)→ tr(ψ)))
3. ∀ϕ ∈ sentδ (tr(¬ϕ)↔ ¬tr(ϕ))
4. ∀ϕ ∈ formδ,∀u ∈ var (fv(ϕ) ⊆ {u} → (tr (∀uϕ)↔ ∀x (δ(x)→ tr(ϕ(x)))))
5. ∀ϕ ∈ sent (π(ϕ)→ tr(ϕ))

We refer to the formula tr as the truth predicate (for the internal model), and
write trj for the truth predicate that comes with a relative translation j as in
Definition 8. The next theorem states that the formula trj is indeed a well–
behaved truth predicate – modulo the translation τj – for the language Σ.

Theorem 6. Suppose that j defines a t–internal model of M, and let ϕ be a
formula of Σ whose free variables are among x0, . . . , xn. Then the following
sentence11 is satisfied in M:

δj(x0) ∧ . . . ∧ δj(xn)→ (ϕτj (x0, . . . , xn)↔ trj(ϕ(x0, . . . , xn))) . (13)

In particular, M � ϕτj ↔ trj(ϕ) for any sentence ϕ of Σ.

Proof. For readability, we shall drop the subscript j from δ, τ , and tr. The
proof is by (external) induction on the complexity of ϕ. The base cases hold
by Definition 8. The inductive cases for → and ¬ follow easily by using that tr
and τ commute with the propositional connectives. We treat the universal case,
assuming n = 0 for simplicity. Let ϕ(x) be the formula ∀y ψ(x, y). Argue in M:

δ(x) ∧ δ(y)→ (ψ(x, y)τ ↔ tr(ψ(x, y)))

→ δ(x)→ (∀y (δ(y)→ ψ(x, y)τ )↔ ∀y (δ(y)→ tr(ψ(x, y))))

↔ δ(x)→ ((∀y ψ(x, y))τ ↔ tr(∀y ψ(x, y))) ,

where the first line is the induction assumption, the second follows by logic, and
the third line follows by the properties of τ and tr.

11 The free variables are assumed to be bound by universal quantifiers.
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Suppose that j defines a t–internal model of M. By Theorem 6 and item 5 of
Definition 8, we have thatM � ϕτj for every axiom ϕ of PA. Hence, in particular
j defines an internal model of M. We say that M′ is a t–internal model of M,
and write MBtM′, if some relative translation j defines a t–internal model of
M, and M′ ∼=Mj (where Mj is as in Definition 7).

Allowing the truth predicate to contain parameters from the external model
yields the notion of a t–internal model with parameters.

Definition 9 (t–internal model with parameters). Let M be a model, and
suppose that j = 〈δ, τ〉 is a relative translation to ΣM. We say that j defines a
t–internal model of M with parameters if there is a formula tr of the signature
ΣM with two free variables, and some12 m ∈ dom(M) such that items 1–5 of
Definition 8 are satisfied in M, if the remaining free variable in tr is interpreted
as a name13 for m.

It is clear that an analogue of Theorem 6 holds for the case where j defines
a t–internal model of M with parameters. Hence if j defines a t–internal model
of M with parameters, it also defines an internal model of M (note that if ϕ
is an axiom of PA, then ϕ and also ϕτj are sentences, whence M � ϕτj [m] iff
M � ϕτj ). We say that M′ is a t–internal model of M with parameters, and
writeMBtparM′, if some relative translation j defines a t–internal model ofM
with parameters, and M′ ∼=Mj .

Finally, allowing the truth predicate to be non–definable in the language of
the external model yields the notion of a t–associated model.

Definition 10 (t–associated model). Let M be a model, and j = 〈δ, τ〉 a
relative translation from Σ to ΣM. We say that j defines a t–associated model
of M if there is some inductive expansion M+ of M, and some formula tr of
ΣM+ with one free variable such that items 1–5 of Definition 8 hold in M+.

Note that if j defines a t–associated model of M and M+ is the inductive
expansion of M as in Definition 10, then j defines a t–internal model of M+.
Hence by Theorem 6,M+ � ϕτj ↔ trj(ϕ) for any sentence ϕ of Σ. Furthermore
since for all ϕ, ϕτj is a sentence of ΣM, we have that M+ � ϕτj iff M � ϕτj .
Hence by item 5 of Definition 8, we have that M � ϕτj for every axiom ϕ of
PA, and thus in particular j defines an internal model ofM. We say thatM′ is
a t–associated model of M, and write M It M′, if some relative translation j
defines a t–associated model of M, and M′ ∼=Mj .

Remark 2. If M′ is a t–associated model of M, then the interpretations of the
atomic formulas of ΣM′ are given by formulas of ΣM, and some inductive expan-
sionM+ ofM has a truth predicate forM′. For the purposes of this article (in
particular for proving Theorem 9 below), we could also have chosen a more gen-
eral definition, where the interpretations of the atomic formulas of ΣM′ are only

12 Due to the availability of coding, allowing one parameter is as strong as allowing an
arbitrary finite number of parameters.

13 For example for item 5 we require that M � ∀ϕ ∈ sent (π(ϕ)→ tr(ϕ, y))[m].
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required to be given by formulas of M+. Equivalently, we could postulate that
the interpretations of the atomic formulas are only defined by the truth predicate
in the first place. For example, Zτ would then be the formula tr(sbst1(x, pZv0q)).

Remark 3. It is easy to see thatMBtM′ impliesMBtparM′, andMBtparM′
implies M ItM′. As we will see in Section 5, the reverse implications fail.

3.2 Arithmetical Accessibility Relations

In this section, we shall use the term “worlds” to refer to models of PA whose
signature contains only predicates of the signature Σ of arithmetic. A relation R
between worlds is said to be an arithmetical accessibility relation if for any world
M, M � Prπ(ϕ) iff M′ � ϕ for all M′ with M RM′. We shall use theorems 7
and 8 below to show that each of the relations Bt, Btpar and It between worlds
is an arithmetical accessibility relation in this sense.

Theorem 7. Suppose that j defines a t–associated model of M, and let M+ be
an inductive expansion of M with the truth predicate trj (as in Definition 10).
Then

M+ � ∀ϕ ∈ form (Prπ(ϕ)→ ∀a ∈ asδj trj(ϕ[a])) . (14)

where a is an assignment from the variables of Σ to elements in the extension
of δj, and ϕ[a] denotes the sentence14 of the language Σδj obtained by simulta-
neously substituting the constant ca(vi) for vi.

Proof sketch. For readability, we shall drop the subscript j from δ and tr. Since
induction holds in M+ by assumption, we can use Theorem 1 to prove the
statement, taking as α(ϕ) the formula ∀a ∈ asδj trj(ϕ[a]). Thus it suffices to
show that the following sentences are satisfied in M+:

1. ∀ϕ,ψ ∈ form(∀a ∈ asδ tr((ϕ→ ψ)[a]) ∧ ∀a ∈ asδ tr(ϕ[a])→ ∀a ∈ asδ tr(ψ[a]))
2. ∀ϕ ∈ form(π(ϕ)→ ∀a ∈ asδ tr(ϕ[a]))
3. ∀ϕ ∈ form(λ(ϕ)→ ∀a ∈ asδ tr(ϕ[a]))

Modulo some facts15 concerning the assignments in asδ that we assume to hold in
M+, items 1 and 2 are consequences of items 2 and 5 of Definition 8 respectively.
For item 3, we have to show (inM+) that whenever a formula ϕ is an axiom of
first–order logic, then ϕ is true under every assignment in asδ. This follows from
the fact that tr commutes with the propositional connectives and the quantifiers
(together with the above mentioned facts concerning the assignments in asδ).

Note that if j defines a t–associated model of M and M+ is the inductive
expansion of M with the truth predicate trj , then by Theorem 7 we have in
particular

M+ � ∀ϕ ∈ sent (Prπ(ϕ)→ trj(ϕ)) . (15)

14 Remember that elements of the internal model are assumed to function simultane-
ously as codes of their own names.

15 For example, it should hold in M+ that if ϕ is a sentence of the language Σδ, then
tr(ϕ) if and only if ∀a ∈ asδ tr(ϕ[a]).
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We shall use (15) to establish that for any world and for any sentence ϕ
of Σ, M � Prπ(ϕ) implies M′ � ϕ for all M′ with M It M′. In order to
establish that the other direction holds, we shall make use of the well–known
fact that if M � Con(ϕ), then M has an internal model where ϕ is true. The
proof is by formalizing the Completeness Theorem for first–order logic16 in PA.
By examining the proof, one can see that the internal model constructed in this
process is actually a t–internal model. The (definable) formula representing the
Henkin set in M can be seen as a truth predicate, and furthermore it defines a
model of PA + ϕ in M as required in Definition 8. Thus we have the following:

Theorem 8 (Arithmetized Completeness). LetM � PA, andM � Con(ϕ).
Then there exists some M′ with MBtM′ and M′ � ϕ.

We are now in a position to prove that each of the relations Bt, Btpar and It

is an arithmetical accessibility relation.

Theorem 9. Let M be a model of signature Σ, and R∈ {Bt,Btpar,It}. For
any sentence ϕ of Σ,

M � Pr(ϕ)⇔ for all M′ with M RM′, M′ � ϕ . (16)

Proof. Fix a sentence ϕ of Σ. Suppose that M � Pr(ϕ), and let M′ be such
that M R M′. By Remark 3 it suffices to show the claim for the case that
M It M′. So suppose that M It M′, let j be a relative translation that
defines a t–associated model ofM withMj ∼=M′, and letM+ be the inductive
expansion of M with the truth predicate. By Theorem 7, M+ � trj(ϕ). By
Theorem 6 this implies M+ � ϕτj , and thus also M � ϕτj . By Theorem 5 it
follows that Mj � ϕ, and thus also M′ � ϕ (since M′ ∼= Mj). For the other
direction, assume that M � ¬Pr(ϕ). By Theorem 8, there is some M′ with
M Bt M′ and M′ � ¬ϕ. By Remark 3, we also have that M Btpar M′ and
M ItM′.

4 A New Perspective on Solovay’s Theorem

Arithmetical accessibility relations can be used to construct big arithmetical
Kripke frames whose nodes are models of PA with signature Σ. We shall show
that any GL–model is bisimilar to a Kripke model based on such a Kripke frame,
obtaining the arithmetical completeness of GL as a corollary.

Definition 11 (Arithmetical Kripke frame). An arithmetical Kripke frame
is a structure Fbig = 〈Wbig, Rbig〉, where Wbig is the collection of worlds modulo
isomorphism, and Rbig∈ {Bt,Btpar,It}.

Remark 4. An alternative but completely legitimate option is to work with arith-
metical Kripke frames whose nodes are complete theories (in the language of PA)

16 This was first noted in [10], and more carefully articulated in [2].



Kripke Models Built from Models of Arithmetic 15

extending PA. The definitions in the previous section can be adjusted so as to
define a relation between complete theories, and also the arguments leading to
Theorem 9 would work analogously as in the case of models. We have chosen
the model–theoretic approach since this yields a more natural definition of our
triplet of arithmetical accessibility relations, in particular of the relation Itpar

where the truth predicate is allowed to contain parameters from the external
model. Another option would be to take as Wbig the collection of all models
of PA modulo elementary equivalence. In fact, the two alternative options are
equivalent in the sense that the resulting arithmetical Kripke frames are isomor-
phic — to every complete theory corresponds a class of elementary equivalent
models and vice versa.

Although Fbig is a Kripke frame, it is far from obvious that it is a GL–frame.
In fact, we will see in Section 5 below that Rbig fails to be conversely well-founded
in all of the three cases (taking Fbig with It, the arithmetical Kripke frame even
contains a reflexive point).

Given an arithmetical realization ∗, the forcing relation ∗ on Fbig is defined
as follows:

M ∗ p :⇔M � p∗ , (17)

i.e. the propositional letter p ∈ L� is forced at node M if and only if the
arithmetical sentence p∗ is satisfied in M (seen as a first–order model of PA).
Let M∗big denote the resulting Kripke model. As an immediate consequence of
Theorem 9, we have for every sentence A ∈ L� and for every M∈Wbig,

M∗big,M ∗ A⇔M � A∗ . (18)

This means that the forcing of modal formulas is independent, modulo the re-
alization ∗, of whether M is seen as a node in the Kripke model M∗big, or as a
first–order model of PA.

Let M = 〈{1, . . . , n}, R,〉 be a Kripke model for GL, and let ∗ be the Solovay
realization corresponding to M , i.e. p∗ :=

∨
i:M,ip σi, where σ0, . . . , σn are the

Solovay sentences. Remember from Section 2.2 that the Solovay sentences are
constructed in such a way that the following hold:

1. `PA σi → ¬σj if i 6= j
2. `PA σi → Con(σj) if iRj, or if i = 0 and j = 1
3. `PA σi → Pr(

∨
j:iRj σj) for i ≥ 1

4. 0PA σi and 0PA ¬σi for all i.

The following theorem states that M∗big is bisimilar to M .

Theorem 10. Fix a GL-model M = 〈{1, . . . , n}, R,〉. Let σ0, · · · , σn be the
corresponding Solovay sentences, and p∗ :=

∨
i:M,ip σi, for any propositional

letter p of L�. The relation Z : W ×Wbig defined as: (i,M) ∈ Z :⇔M � σi for
i ≥ 1 is a bisimulation between M and M∗big. Furthermore, for every node i of
M there is some node M of M∗big such that (i,M) ∈ Z .
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Proof. Since for all i, σi is independent from PA, we have for all σi some model
M with M � σi, and thus for all i there is some M such that (i,M) ∈ Z. Note
also that any model where σ0 is true is not in the range of Z. We will now verify
that Z is a bisimulation.

To see that if (i,M) ∈ Z then i andM satisfy the same propositional letters
suppose first that M, i  p. Then by definition of ∗, we have σi as a disjunct
of p∗. By definition of Z, we have that M � σi, hence M � p∗, and thus by
definition of ∗ it is the case that Mbig,M ∗ p. If on the other hand M, i 1 p,
then p∗ = σj1∨, · · · , σjm , where i 6= jk for all k. By property 1 of the Solovay
sentences, we find that `PA σi → ¬σjk for all k, whence `PA σi → ¬p∗ and thus
M � ¬p∗. By definition of ∗, we have that Mbig,M 1∗ p.

To verify the back -condition of the bisimulation, suppose that (i,M) ∈ Z and
iRj. By the assumption that (i,M) ∈ Z, we have thatM � σi. By property 2 of
the Solovay sentences and the assumption that iRj, we have `PA σi → Con(σj),
and thus M � Con(σj). By Theorem 9 there is some M′ with M Rbig M′ and
M′ � σj . By definition of Z, this means that (j,M′) ∈ Z.

Finally, to verify the forth–condition suppose that (i,M) ∈ Z and letM′ be
such that M Rbig M′. Since (i,M) ∈ Z , we have that M � σi. By property
3 of the Solovay sentences, `PA σi → Pr(

∨
j:iRj σj), and so M � Pr(

∨
j:iRj σj).

By Theorem 9, this implies M′ �
∨
j:iRj σj , i.e. there is some j with iRj and

M′ � σj , i.e. with (j,M′) ∈ Z as required.

Corollary 1 (Arithmetical completeness of GL). PrL(PA) ⊆ GL

Proof. If GL 0 A for some A ∈ L�, then by modal completeness of GL there is a
GL–model M with M = 〈{1, . . . , n}, R,〉, and M, 1 1 A. Let ∗ be the Solovay
realization corresponding to M , and let Z be the bisimulation from Theorem 10.
Let M ∈ Wbig be such that (1,M) ∈ Z, i.e. M � S1. Since Z is a bisimulation,
we have M∗big,M 1∗ A by Theorem 2. By (18), this implies M 2 A∗. Since M
is a model of PA, this means that 0PA A

∗ as required.

5 Properties of Arithmetical Kripke Frames

This section contains observations concerning the structure of the big arith-
metical Kripke frames. First, it is not difficult to see that the relations Bt and
Btpar are transitive. Since the definition of a t–associated model postulates a
truth predicate in some inductive expansion, the transitivity of It is at least not
obvious.

However, different from GL–frames, the big Kripke frames are not conversely
well–founded. This follows from the fact that there exists a sequence of con-
sistent theories {Tn}n∈ω such that Tn ` Con(Tn+1) for all n. The existence of
this sequence follows from results in [8]; see also [11] . By using the formalized
completeness proof, we get a sequence of models {Mi}i∈ω with Mi � Ti and
MiBtMi+1 for all i. By Remark 3, this is an infinite ascending chain in all our
arithmetical Kripke models.
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We will now show that the properties of the arithmetical Kripke frame of Def-
inition 11 depend on the choice of Rbig. At the same time, we establish that the
relations Bt, Btpar and It are increasingly stronger (see Remark 3). Remember
that we use the symbol “≡” to denote elementary equivalence between worlds.

Fact 11. If MBtM′, then M 6≡M′.

To see why Fact 11 holds, suppose that j defines a t–internal model of M.
By the Gödel–Carnap Fixed Point Lemma, let γ be a sentence of the language
Σ such that

M � γ ↔ ¬tr(γ) . (19)

By Theorem 6, we also have M � γτj ↔ tr(γ). Using Theorem 5,

Mj � γ ⇔M � γτj ⇔M � tr(γ)⇔M 2 γ , (20)

whence clearly M 6≡Mj , and thus also M 6≡M′ whenever MBtM′.
In contrast, there are elementary equivalent models M and M′ such that

M′ is a t–internal model of M with parameters.

Fact 12. There are worlds M and M′ with M≡M′ and MBtparM′.

To establish Fact 12, letN be the standard model, and let Σc be the signature
Σ ∪ {c}, where c is a constant. One can use a standard compactness argument
to show that the theory

T := ThΣ(N ) ∪ {ϕ ∈ c | N � ϕ}+ Con{ϕ | ϕ ∈ c} (21)

in the language Σc has a model M+ (remember that Con denotes the sentence
¬Pr(⊥), where Pr is an intensionally correct provability predicate of PA). Since
M � Con{ϕ | ϕ ∈ c}, we can use the formalized Henkin construction to find a
t–internal model M′ of M+ with M′ � ϕ for all ϕ ∈ c. Let M be the reduct of
M+ to Σ, and note that M BtparM′ (since the construction of M′ inside M
uses cM as a parameter). Since c contains the codes of all true sentences and
sinceM is a model of ThΣ(N ), we have thatM≡M′. Note that therefore also
M 6BtM′ by Fact 11.

Remark 5. As pointed out in Remark 4, we could have chosen as Wbig, the
domain of the arithmetical Kripke model, the collection of models of PA modulo
elementary equivalence. In that case, 〈Wbig,Btpar〉 would thus contain a reflexive
point, whereas 〈Wbig,Bt〉 would not.

Finally, we give a separating example for Btpar and It.

Fact 13. Let N be the standard model. Then N It N .

Note first that the standard model is not a reflexive point of Btpar. This is because
all elements of N are definable, and thus N BtparM implies N BtM for allM.
In particular N Btpar N would imply N Bt N , which is impossible by Fact 11.
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On the other hand, the fact that the standard model N has a full inductive
satisfaction class17 can be used to show that there is an expansion of N (note
that any expansion of N is necessarily inductive) that has a truth predicate
for the sentences of N . To make the existence of a full satisfaction class fit our
definition of a t–associated model, we need to find a translation j = 〈δ, τ〉 such
that δ is disjoint from the codes of syntactical objects of Σ, and choose τ in such
a way that N j is isomorphic to N . Our convention of having the domain of N j

differ from that of N makes working out the details a bit tedious, but it is easy
to convince oneself that this can be done.

6 Conclusion

We have established three examples of arithmetical accessibility relations be-
tween models of PA. We have shown how, as a result, one can see the collection
of models of PA, related by one of these relations, as a big Kripke model where the
forcing of modal formulas coincides with the local satisfiability of first–order sen-
tences (modulo an arithmetical realization). We showed how this insight can be
used to gain a new, model–theoretic perspective on Solovay’s proof of arithmeti-
cal completeness of the modal logic GL. Finally, we have seen that the properties
of the big arithmetical Kripke model are dependent on the choice of the acces-
sibility relation as well as the domain of the Kripke model. Looking at models
modulo isomorphism, the t–associated model relation (It) is the only one of
the three relations giving rise to a Kripke model where the standard model is
a reflexive point. If the domain of the Kripke model consists of models modulo
elementary equivalence, however, then also the relation of t–internal model with
parameters (Btpar) has the standard model as a reflexive point.

We conclude with some pen questions.

Question 1. The arguments of this article go through if we replace PA with a
Σ1–sound theory containing IΣ2. However, Solovay’s Theorem holds for all Σ1–
sound theories containing EA. Can we make our arguments work for theories
weaker than IΣ2? (Σ2–induction is used in the standard proof of the Arithme-
tized Completeness Theorem).

Question 2. What is the relation between the big arithmetical frames and the
canonical model for GL?

Question 3. What is the modal logic of the arithmetical Kripke model if the
accessibility relation is replaced by some other relation between models of PA?
Some possibilities are: the internal model relation where we demand a truth
predicate for the internal model (but do not require that the axioms of PA are

17 A modelM with signature Σ has a full inductive satisfaction class if there is a subset
S ⊆M such that S contains (possibly nonstandard) sentences of the language Σ ∪
{c | c ∈M}, the usual Tarski’s truth conditions are satisfied for S, and furthermore
there is an inductive expansion ofM to a model of the lanaguge Σ∪{c | c ∈M}∪{S}
(for a precise definition, see e.g. [6]).
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in the extension of the truth predicate), the internal model relation, and the
end-extension relation. A difference from the t–internal model relation is that
these relations need not be definable by an arithmetical formula.
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