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Abstract

In my thesis, I show that Order Logic interpreted over preorders provides a unifying

framework for individuals and groups to analyze believe and preference change. Order

Logic is a modal logic with three modalities complete for the class of transitive and

reflexive frames whose fragments and extensions yield various formalisms to analyze

the dynamics of beliefs and preferences. The analysis proceeds in two steps: 1) I

give static logics for belief and preference and 2) I introduce dynamic modalities to

analyze actions over models. I investigate four kinds of doxastic and preference logics:

Relational Doxastic Logic, Binary Preference Logic, Ceteris Paribus Logic and Group

Order Logic. The actions I consider are of two kinds. In a first time, I integrate

three well-known dynamic actions. The first one is public announcement, the second

lexicographic upgrade and the last preference upgrade, exemplifying state elimination,

state reordering and link cutting respectively. In a second time, I introduce new kinds

of actions: agenda expansion and agent promotion. All actions are incorporated into

static logics via compositional analysis, appealing to reduction axioms. This uniform

completeness strategy consists in giving axioms that transform formulas with action

modalities to equivalent formulas in the static language, reducing completeness of the

dynamic logic to that of the static one.
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Chapter 1

Introduction

1.1 Case example

I used to believe that my good friend Robert had never been to Europe. I have known

him for a long time and he had told me on various occasions that he had never set foot

in Europe. One day, while walking in Paris, I saw a silhouette that looked strangely

familiar. Since I did not know anybody in Paris, my first reaction was to infer that

this person was just a member of my species looking like other members I had seen

before. Getting closer to the person, however, I started thinking that his hair and

jacket looked strangely like Robert’s. My belief that Robert had never been to Europe

was getting more seriously challenged. Yet, I was not ready to change it, since Robert

had never told me about plans to go to Europe; he is quite sedentary. Knowing him

well, I had serious doubts that he could have planned to go without telling me. I thus

formed the belief that there was a man in Paris who looked surprisingly like my dear

friend.

But when I heard the stranger saying: “Patrick, mon ami”, I suddenly realized

that Robert was in Paris. I then had a conflict in my beliefs. On the one hand, I

believed that Robert had never been to Europe. On the other hand, I believed that

Robert was in Paris. Furthermore, since I believe that Paris is in Europe and that

if Robert is in Paris, then he is in Europe, I formed the belief that Robert was in

Europe, following my belief in the rule of Modus Ponens. I then had a contradiction in

my beliefs, namely that Robert was and was not in Europe. This contradiction called

for a revision and several alternatives were available to me. I could have stopped

believing that Paris was in Europe, but that would have shaken the very core of my

beliefs about the world in which I live. Had I stopped believing in Modus Ponens, my

1



2 CHAPTER 1. INTRODUCTION

revision would have affected my entire knowledge. No, all I had to do was to drop my

belief that Robert had never been to Europe - as well as some accompanying beliefs.

Once he had told me the story of his presence in Paris, I have formed new beliefs

about Robert and added them to my stock of existing beliefs. I have also retracted

other beliefs that did not cohere with the new information, for example that Robert

had never crossed the Atlantic Ocean or seen the Eiffel tower.

Living in a dynamic world with incomplete information about it, changing beliefs

facing new information is something we do on a daily basis. Being rational animals,

however, our belief changes are not arbitrary; I did not start believing in vampires

because I saw Robert in Paris and I will believe that 2 + 2 = 4 until I die. This

non-arbitrariness in belief change is a sign of rationality in action; changeability is a

common feature of rationality. But change does not only occur with beliefs. It is also

typical, perhaps even more importantly, with preferences. Let us pursue the story to

illustrate this.

Once I had given a greeting hug to Robert, I invited him for a drink. Robert said

that he would prefer wine over beer and beer over coffee. Paris is not a good place

to have beer, so I decided to take Robert for wine. But how did I know that Robert

would actually prefer wine over coffee? He did not explicitly tell me so. I made the

inference because I expected his preferences to be transitive, for I know Robert to

be a rational man; if he prefers wine over beer and beer over coffee, then he must

prefer wine over coffee. Off we were to get wine. Of course, as we were having wine,

I ordered some cheese. In the platter, there was Camembert and goat cheese. Robert

was only eating the latter, claiming to prefer it over Camembert. I told him that

Camembert is not the same in Paris as he was used to and convinced him to try it.

He did and indeed liked it better than the goat cheese. This triggered an update

in his preferences. Various reactions might have been expected from him. It might

have been that the experience of tasting the Camembert was so strong as to reverse

his preference altogether, or it might have been that Robert took it as an exception:

“yes I do prefer goat cheese over Camembert, in general, but I must confess that this

Camembert is much better.”

This again illustrates rational attitudes facing new information, this time about

preferences. Just as with beliefs, it is reasonable to expect principles underlying

preference change and Logic to be an appropriate tool to formalize them. There is still

another aspect of preference and belief change that is important, namely group belief

and preference change. Rationality is not something that applies only to individuals.
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Consider the following continuation of my encounter with Robert in Paris.

After our wine and cheese snack, Robert and I decided to share a desert. Among

the choices offered to us, we both preferred chocolate and strawberry deserts, in that

order, but Robert told me that he was allergic to nuts. This automatically ruled out

the chocolate cake, as the waiter informed us. In that case, by my commitment to

participate in a group decision about the desert, I had to comply and accept that

my first choice would not be satisfied. The rational choice for the group consisting of

Robert and I was to order the strawberry desert.

Analysis

The story of my encounter with Robert in Paris reflects the kind of reasoning inves-

tigated in my thesis: belief and preference change, for individuals and groups. When

I have updated my belief that Robert had never been to Europe, I have performed

what is called belief revision. When I have inferred that Robert prefers wine over

coffee, I have applied a principle of Preference Logic: transitivity. If the experience

of tasting Camembert had led Robert to change his preferences so that Camembert

became better than Goat Cheese for him, then he would have upgraded his preference

for Camembert. If, instead, he had taken the experience as an exception to a rule,

then he would have included it under a ceteris paribus clause - everything else being

equal. Finally, when Robert and I have decided to opt for the strawberry desert

instead of the chocolate cake, we have aggregated our preferences so as to maximize

satisfaction - and minimize death toll.

This simple story exemplifies cases of casual belief and preference change that we

take for granted, but for which entire forests have been transformed into research

papers and books. For instance, my reluctance to conclude that Robert was in Paris,

appealing to appearance patterns in the human kind, reflected an important problem

in belief revision: to find an economical and effective revision policy. I was not

expecting to meet Robert in Paris and I tried to make minimal changes to explain

the strange encounter. But when the incoming information was too strong, I was

forced to revise them, and I did it in a way that fundamental beliefs, such as the

geography of the world or logical inferences, were untouched. Minimal change is

usually linked to a hierarchy among beliefs, often called entrenchment of beliefs, and

a great deal of research has been conducted to provide conditions of entrenchment

that guide minimal revision (see for instance [22]).
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The story is also an illustration of notions to be conceptualized and formalized,

not a list of problems to be solved with mathematical tools; this is intentional. Con-

trast it with old problems such as the barber who only shaves those who do not shave

themselves, or recent problems such as Sleeping Beauty, both appealing to Mathe-

matics for solutions. I do not intend to use Logic along these lines. There are similar

problems that pertain to belief and preference, think of various paradoxes coming out

of solution concepts in game theory, for example backward induction, but my inves-

tigation is not oriented towards them. I am drawing more into the logical analysis

than mere problem solving.

My standpoint is thus primarily analytical, geared towards conceptualization. I do

not claim, however, that all there is to belief and preference is definable and derivable

from Logic; that would be foolish. I think, rather, that beliefs and preferences are

better understood in a dynamic environment and that taking a stance on dynamics of

beliefs and preferences shows something that is left out in more traditional cumulative

and static stories. We change our mind all the time, but we do it rationally and Logic

is a good tool to investigate this. I am thus conceptually committed to the claim that

rationality is not only a static state of mind prescribing beliefs and preferences to

be held over others, but also a disposition to behave in certain ways facing incoming

information and changing environment. My logical standpoint, focusing on dynamics,

is thus innovative from a philosophical point of view and enriches existing analytical

treatments.

Of course, another important outcome of my approach is to provide advances in

Logic itself. Indeed, the systems developed in this thesis come with a plethora of

formal and mathematical results. This other aspect of my research is prominent in

the various chapters, which contains both conceptual analysis of concepts relevant

in Philosophy and technical results important in Mathematics. Logic is thus a nice

intermediate setting between the two disciplines.

Hence, my thesis is another step in the quest for understanding concepts and

their usage in daily life, a step taken with the help of Logic, more specifically Modal

Logic. This choice deserves a discussion which occupies most of the Introduction.

I am of the opinion that Logic is an important tool in Philosophy that has become

underestimated and even neglected in the last decades. I hope to dispel curses against

it by defending its usage and the outcomes expected from it. Doors have been shut

between Philosophy and Logic which should be re-opened before they become sealed

for good.
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1.2 Modeling and Modal Logic

To formalize dynamics, a great deal of work needs to be done to find appropriate

static notions; this is is made clear in the various results obtained throughout the

thesis. For the static models of belief and preference, I follow a tradition initiated

by von Wright in [75] and championed, to name landmarks, in the seminal work of

Hintikka in Epistemic Logic [31] and Prior in Temporal Logic [51]. This tradition is

to use Modal Logic as a tool for the conceptual analysis of notions like permission

(von Wright), knowledge and belief (Hintikka) and time (Prior). Likewise, I take

a standard Modal Logic, but with an interpretation as Order Logic, which I use to

formalize various notions of belief and preference.

This choice needs justification, since the Modal Logic I use is expressively quite

limited. Firstly, I only use Propositional Modal Logic and thus do not resort to the

expressive power of first-order quantifiers. Due to its expressive limitations, Modal

Logic can only make general distinctions; it cannot give a fine-grained analysis of its

concepts. Secondly, Modal Logic is inherently qualitative in that it can talk about

being more or less plausible, or more preferred - as we will see repeatedly - but cannot

express quantitative notions, for example of having a belief of degree 0.95 in x. Modal

Logic is thus only a fragment of First-Order Logic, which is itself expressively limited

compared to probabilistic models that rely on the full power of Mathematics. Why

then should one restrains her inquiries in a system which is thus limited, when stronger

ones are available?

My answer is that this relative poverty of Modal Logic is precisely what makes

it advantageous. Firstly, it forces one to make concepts explicit and be clear-minded

about what is claimed. If one is not clear about the notions to be formalized, the

logic obtained will yield unwanted principles. Vice versa, the principles assumed by

the logic provide clear grounds for philosophical discussions. This has been the case,

for instance, with the positive introspection epistemic axiom Kϕ→ KKϕ: if I know

ϕ, then I know that I know it. This axiom has initiated a big debate about the

notion of knowledge. Secondly, Modal Logic is also closer to realistic applications of

its concepts in computer science. It is for one decidable, unlike First-Order Logic, but

shares with it nice formal properties such as compactness, and is of course complete.

There is a balance between conceptual expressive power and practical application,

and Modal Logic finds a nice equilibrium between the two. In the same line of

thoughts, my thesis can be seen as lying in between conceptual work in philosophy
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and foundational work in computer science and artificial intelligence. I hope that

this situation will actually help building bridges between them. Finally, constraints

given by the expressive power of Modal Logic force creativity, both in finding general

principles that would still hold in more expressive systems, but also in being able

to draw conclusions that may seem hidden in the generality of the approach. If one

can formalize notions of belief and preference in Modal Logic, then one shows a firm

understanding of the concepts.

Furthermore, the worries about Modal Logic could be turned around against pro-

ponents of richer languages, namely that one should not use a system stronger than

what is to be explained. There is no reason to have a formalization of belief change

depending ultimately on the continuum hypothesis! Modal Logic is not sufficient to

encompass all there is to say about belief and preference, granted, but then Mathe-

matics with no restrains would be saying too much. Going bottom-up, starting with

poor languages and enriching them as we go along is just as valuable as a top-down

approach, giving oneself unlimited expressive powers to begin with and then looking

for weaker systems with better control. My hope is that the two approaches will

meet in the middle, but for that we need workers from both ends of the tunnel, and

I choose the Modal Logic one.

Following this discussion, I need to be honest about the terminology used in

this thesis. When I talk about beliefs and preferences, I mean some primitive and

encompassing notions, the kind that can be formalized and put (theoretically) inside

a machine. These notions are thus only a part of the full notions of belief and

preferences that humans and other animals possess. For instance, although I talk

about plausibility order and hierarchies of beliefs, I do not differentiate between basic

beliefs, such as that the sky is blue, or more abstract ones, such as a belief in God;

anything that can be expressed in a proposition is subject to be a belief in this thesis,

likewise with preferences. Beliefs are thus not ordered according to kinds, origins or

formations, but solely with respect to plausibility. It is about this hierarchy in terms

of plausibility that Modal Logic can reason efficiently. The problem of formalizing

this kind of simplified notion is already difficult and is a good starting point. If we

can get that straight, then we may undertake more complex analysis that might lead

to a richer understanding of belief and preference change.

My contribution to the conceptual analysis of the concepts of belief and preference

is more important with respect to their dynamic aspect. In this regard, formal tools

are more decisive, as they can clearly display rules that govern belief and preference
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change. In a modal logic setting, the dynamics can be firmly grasped and the relative

poverty of statics yields a perspicuous analysis of dynamics.

Lakatos and positive heuristic of a programme

In developing logics for beliefs and preferences, one is prone to stay confined to in-

trospective analysis, isolated in her arm-chair investigation. By moving to dynamics,

however, one opens horizons to other disciplines, such as Computer Science, embed-

ding her research in a growing inter-disciplinary scientific paradigm. The dynamic

logical approach situates modeling in a scientific endeavor, bringing out links to other

disciplines that may have been unforeseen otherwise. I make a little digression here

and argue that the kind of modeling I use does exactly that by echoing Lakatos’ ac-

count of the development of physics in Philosophy of Science, in particular what he

calls the positive heuristic of a research programme in [35]:

“The positive heuristic sets out a programme which lists a chain of ever

more complicated models simulating reality: the scientist’s attention is

riveted on building his models following instructions which are laid down

in the positive part of his programme. He ignores the actual counterex-

amples, the available ‘data’.” (Op. cit., p.50)

To support this claim, Lakatos takes the example of Newton and the development of

his programme for a planetary system. Newton’s first studies were with a two-body

system consisting of a fixed point-like sun and a moving point-like planet. Once he

could manage this simple system, he moved to a two-body system revolving around

a common center of gravity. This change, claims Lakatos, was not motivated by

available data, since no anomaly was yet present in the model itself. Eventually,

Newton created a system in which the sun and the planets were not point-like objects

anymore, motivated by the fact that there cannot be infinite density. An so on and

so forth until he could publish the Principia. The point is that Newton started with

a simple unrealistic model and transformed his results into a research programme

which gradually handled complicated planetary systems. Each step were motivated

by obvious shortcomings of previous models which he had endorsed to get his system

going.

“Most, if not all, Newtonian ‘puzzles’, leading to a series of new vari-

ants superseding each other, were foreseeable at the time of Newton’s first
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naive model and no doubt Newton and his colleagues did foresee them:

Newton must have been fully aware of the blatant falsity of his first vari-

ants. Nothing shows the existence of a positive heuristic of a research

programme clearer that this fact: this is why one speaks of ‘models’ in

research programmes.” (Op. cit. p.51)

To this claim, one could add that the development of Dynamic Logic and in a broader

scope of artificial intelligence is just as good an example of the existence a positive

heuristic of a research programme, one which we are witnessing in progress and to

which I am contributing in the present thesis.1 The notions of belief and preference

outlined in my thesis are defeasible empirically, but the principles they sustain might

be at the core of more complex philosophical investigations which would be defeated

themselves if they ignored them.

1.3 Preorders, statics and dynamics

A general result coming out of my thesis - although not contained in a single the-

orem - is that a great deal of belief and preference change can be understood by

analyzing comparative structures, interpreted as plausibility for belief or betterness

for preference. To accomplish this, two things needs to analyzed: 1) statics and 2)

dynamics.

The class of static comparative structure over which I base all the research in

this thesis is the class of preorders. Preorders are reflexive and transitive relations

that provide qualitative hierarchy between states. They can be seen as graphs whose

nodes are sets of equivalent states with respect to the order, as in Figure 1.1. In the

figure, states to the right are higher (or better or more plausible) in the order, for

instance states u and v are higher (or better or more plausible) than state t. Two

states are put in the same cluster if they are of equal rank with respect to the order,

for example states u and v. Finally, two states are incomparable if neither is higher

than the other, for instance states u and s.

In this thesis, the class of preorders provides a uniform setting to investigate

notions of belief and preference, depending on which interpretation is given to the

order. In the case of belief, I use preorders to say that ϕ is believed if it is true in the

1I do not wish to claim that I am in a similar situation as Newton, one of the greatest minds of
all time... oh I will: it’s just like Newton!



1.3. PREORDERS, STATICS AND DYNAMICS 9

ϕ,¬ψ

s

u

v

ψ

t

Figure 1.1: Graphical representation of a preorder, where states are equivalent with
respect to the order if they are in the same cluster, and states to the right are ranked
higher than those to the right.

most plausible worlds according to a plausibility relation. For example, ϕ is believed

in the structure represented in Figure 1.1, if the figure is interpreted as providing a

plausibility order, since ϕ is true in all states that are most plausible - to the right. In

the case of preference, various notions of preference can be defined over preorders, one

of them stating that ϕ is preferred to ψ if every ϕ-state is better than every ψ-state

in a preorder interpreted as a betterness relation. This is the case in Figure 1.1.

Figure 1.1 represents, in a simplistic way, one of the main point of my thesis,

namely that from a logical point of view, beliefs and preferences can be understood

as comparative reasoning and a logic for preorders provides the core of this kind of

reasoning.

For the dynamics part, my investigation falls under the growing paradigm of Dy-

namic Logic (cf. [72]). Dynamic Logic is the study of model change, either over

states or accessibility relations. Three kinds of actions can be performed over static

models: 1) adding or eliminating states, 2) reordering states, or 3) adding or elimi-

nating accessibility links. A simple case of world elimination is illustrated in Figure

1.2. Formally, a dynamic structure is superposed over a static one: one starts with

a static model and performs an action over it to end-up in a different static model.

This might best be understood via completeness results, as is apparent in the various

chapters. Completeness results for dynamification of static logics use the technique
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AA ¬A

⇒

Figure 1.2: Illustration of the dynamic action of removing ¬A-states from a static
structure.

of compositional analysis via reduction axioms, which consists in giving principles

that analyze the effect of actions from the point of view of the original model in

which they are performed. In other words, actions are encoded in static models and

compositional analysis shows how to decode them.

Dynamic Logic can be seen as giving a constructive notion of dynamics, in the

sense that it formalizes explicitly how models are transformed, as opposed to a postu-

lational approach - especially when talking about belief change - which can be seen as

providing desiderata of specific actions without describing how they work on models.

Both approaches are valuable, but my thesis shows how the constructive one is better

suited for the unifying treatment of belief and preference change in Order Logic.

Chapter 2 is devoted to a logic defined over the class of preorders, called Order

Logic, and introduces three exemplars of dynamic actions which recur throughout the

thesis. The rest of the chapters build on Order Logic, by isolating belief (Chapter

3) and preference (Chapter 4) fragments, or by considering extensions, the Ceteris

Paribus Logic (Chapter 5) and Aggregation Logic (Chapter 6).2 Order Logic is thus

a good balance between its preference and belief fragments and its ceteris paribus

and aggregation extensions. In the next section, I give a more detailed overview of

the thesis.

1.4 Overview of the thesis

The main thrust of my thesis is a logical study of preorders and various interpretations

that yield formalisms for belief and preference change. Every chapter is constructed

in the same way. Each chapter first presents static models and give their complete

axiomatization. Completeness results occupy an important place in my thesis. One

reason is that they are intrinsically important: with them, one can see the logical

2The content of Chapters 2 to 5 is taken from two published papers, [23] for Chapter 3 and [68]
for the three others. Chapter 6 presents unpublished material so far.
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inferences, or patterns of reasoning, that various semantics sustain. They also secure

semantics, for they show that one has control over it. Another reason for spending

efforts on completeness results is their applicability in the second division of each

chapter: dynamics. Indeed, once the static part is settled, each chapter proceeds to

the dynamification of the static models. This is made via the introduction of known

actions, such as public announcement (Chapters 3 and 4), or of new actions, guided by

special features of the static models (Chapters 5 and 6). Again, completeness results

for the dynamification play an important role. Here, however, I use the technique of

compositional analysis (cf. [33, 70, 72]). Compositional analysis reduces completeness

of a dynamic system to the completeness of the static one via reduction axioms, hence

the importance of completeness results for the static parts.

Chapter 2 sets the stage for the next chapters and is devoted to an uninterpreted

logic defined over the class of preorders. This logic, called Order Logic, is a simple

multi-modal logic with one diamond 3≤ defined over a weak relation � and a second

diamond 3< defined over the strict subrelation ≺ of �. In addition, I introduce in

the basic language the existential modality Eϕ, which is true at a state if ϕ is true

somewhere in the model. The existential modality is of tremendous help in the next

chapters, as it can distinguish minimal states, and so express doxastic statements, or

talk about global features of models, thus expressing preferences of the kind “every

ϕ-state is better than every ψ-state”.

Order Logic is in itself a standard modal logic that can be found, perhaps crypti-

cally, in most introductory books. A similar language was studied by Boutilier in [8],

although Boutilier takes as primitive inverse modalities and defines the existential

modality with it; this is formally equivalent. The language I use originated more

recently in [71] and [73], and was applied in [41, 55]. In all of these, the logic is

referred to as Preference Logic, but I decided to call it Order Logic, reserving the ter-

minology of preference for the binary preference logic studied in Chapter 4. I prefer

this nomenclature for the general logic, and the more specific terms ‘Doxastic’ and

‘Preference Logic’ presented in the other chapters. The completeness result for Order

Logic is taken from [68] and is based on the technique of bulldozing introduced by

Segerberg in [58].

For the dynamic parts of this chapter, I introduce three well-known actions: 1)

public announcement ([72]), 2) lexicographic upgrade ([67]) and 3) preference upgrade

([69]). I choose these three actions because they exemplify important kinds of actions:

1) world-elimination, 2) reordering and 3) link-cutting. Furthermore, the second
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and third action have been introduced with the intent of dynamifying beliefs and

preferences respectively. It is thus natural to see how they apply in my setting. The

last section of Chapter 2 shows how the technique of compositional analysis is applied

throughout the thesis, thus facilitating its recurrences in future chapters.

Chapter 3 shows that the framework of the previous chapter is adequate for what

it is meant to do with respect to Dynamic Logic and beliefs: formalizing belief change.

This chapter is embedded in a tradition initiated in the seminal belief revision paper

[1] (see also [22]) and formalized in Modal Logic by Segerberg in various papers (see

[40] for the most recent presentation). Segerberg’s logic, called Dynamic Doxastic

Logic (DDL), is modeled using what he called onions, which are like Lewis’ systems

of spheres (cf. Lewis73), but centered around a set of world instead of a single

world. To see how this approach to belief revision can be treated inside Order Logic,

I investigate a generalization of DDL over non-connected systems of spheres. One

contribution on the static part is the generalization of Segerberg’s models to include

non-linear systems of spheres, thus allowing to deal with relational belief revision.

This in itself provides a nice extra to the linear, or functional, analysis of belief

change. To introduce dynamics, I first show how Relational Doxastic Logic can be

seen as a fragment of Order Logic. To achieve this, however, one obvious obstacles

has to be overcome, namely that Segerberg uses neighborhood models, whereas Order

Logic is set in a standard Kripkean framework. One important theorem here is that an

important fragment of Relational Doxastic Logic is equivalent to a conditional logic,

investigated independently by Veltman ([74]) and Burgess ([10]), called the Minimal

Conditional Logic. I finally show how van Benthem’s lexicographic action can be

introduced in Relational Doxastic Logic by the standard method of compositional

analysis alluded to above.

In Chapter 4, I investigate a different fragment of Order Logic, the fragment of

binary preferences. Binary preferences are statements of the form ϕPψ, comparing

two sentences and saying that one is preferred to the other. This was von Wright’s

approach in his seminal [76], a work to which I appeal on various occasions, especially

as being the investigator of the notion of ceteris paribus preferences, the main topic

of Chapter 5. Here, the existential modality of Order Logic is used to capture the

global feature of binary preference statements. For instance, one may say that ϕ is

preferred to ψ if every ϕ-state is better than every ψ-state, or if one ϕ-state is better

than every ψ-state, and so on. Many binary preference statements can be defined in

this fashion and I present eight definitions, written in the form ϕ ≤∀∀ ψ or ϕ ≤∀∃ ψ,
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to take two examples. Again, these fragments have been studied in [71, 73, 41, 55]

and [68]. Once I have shown how each of these binary preference definitions lead

to fragments of Order Logic, I focus on a specific fragment, the ≤∀∀ fragment, and

axiomatize it, following [68]. Similar results for the ≤∀∃ fragment can be found in

[26]. Finally, I introduce dynamics, this time focusing on preference upgrade; this is

straightforward, and follows results of [69].

Chapter 5 is the best instantiation of the interplay between Logic and Philosophy

described in the beginning of this introduction. I consider therein the notion of ceteris

paribus - translated as all other things being equal - and give a thorough logical

analysis. ‘Ceteris paribus’ belongs to the folklore of many disciplines, ranging from

Economics (cf., [49]) to Philosophy of Science (cf., [12]), but is never precisely defined

nor used in consistent ways. The formalization I provide originated in the work of

von Wright [76] and was further analyzed in [19]. So-called ceteris paribus clauses are

typically used to account for defeaters of laws ([20]), so that laws can still be stated

even though they may fail on occasions ruled out by the ceteris paribus clauses. I

differentiate between two main general meaning ascribed to these clauses, which I call

the equality and normality reading of ceteris paribus and I then focus my attention

on the former one. The equality reading of ceteris paribus is naturally analyzed in a

logical setting, and the reasoning it sustains is displayed explicitly. This is of great

conceptual value, but the logic also raises interesting mathematical questions, since

ceteris paribus variants of logics are situated in between basic and Infinitary Modal

Logic, a situation which was monopolized by Propositional Dynamic Logic and the

µ-calculus so far. Again, this raises interesting formal questions between the two

approaches.

For the dynamics, I show how one can introduce public announcement and pref-

erence upgrade; this is easy. The more interesting part is in the new kind of actions

suggested by Ceteris Paribus Logic, interpreted in terms of research agenda and the

addition of formulas to the agenda. The subject of a research agenda, however, seems

to be better situated in a multi-agent setting and this calls for a logic of aggregation,

provided in the next and final chapter.

Finally, Chapter 6 presents another extension of the language of Order Logic, this

time with so-called nominals, to get a system of aggregation. I call the The result-

ing logic Group Order Logic. The results of this chapter are based on those of [2].

The interest of this latter paper is in providing a mechanism for the aggregation of

preference relation, called lexicographic reordering, which satisfies nice aggregation
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properties, such as independence of irrelevant alternatives, without being dictatorial.

[2] thus presents a possibility result, to be contrasted with the famous Arrow’s impos-

sibility result ([6]) in social choice theory or more recent ones in the field of judgment

aggregation (see for example [18]). My contribution in this Chapter is to modalize the

algebraic approach of [2] and to show that the logic consists in the simple extension

of Order Logic with nominals. I also investigate group binary preferences and show

how to introduce the action of public announcement and preference upgrade in the

logic; again, this is straightforward. Finally, I introduce yet another kind of action,

this time over so-called priority graphs providing hierarchies among agents. The new

action is that of promotion of an agent inside a (sub)group.

Beliefs and preferences hang together in various areas. They both play, for in-

stance, an important role in game theory, but their interaction is so complicated and

rich that there is still a lot to be understood from a logical point of view. The unifying

system presented in this thesis might shed some lights on their interplay.



Chapter 2

Setting the stage: Order Logic

For every logic presented in the thesis, I work in two stages. I first present the

static logic and then introduce dynamics as transformations on models, either over

the states or the relations. In most cases, dynamification is performed by introducing

well-known actions, but I also discuss new kinds of actions in Chapters 5 and 6,

building on ceteris paribus and group preference logics. In this preparatory chapter,

I give the basic framework whose fragments and extensions are the subject of the

remaining chapters.

The static logic advocated in this chapter is a basic modal logic with three dia-

monds, one defined over the accessibility relation �, the other over its strict subre-

lation ≺ and the last one, the existential modality. The class of models targeted is

isolated by the accessibility relation �, which is restrained to preorders, i.e., reflexive

and transitive models. Various notions of preferences and beliefs are defined over

this class, but to start with, I take a more general standpoint and talk about Order

Logic. Order Logic has been at the core of different systems under various guises. The

version I use is based on the work of a few authors in selected papers, in particular

Boutilier [8] and van Benthem, van Otterloo and Roy [71].1

My choice for preorders over connected orders is guided by the following consid-

erations. With connected orders, three comparisons obtain: 1) x is better than y,

2) y is better than x and 3) indifference between x and y. With preorders, a fourth

kind of comparison can be made, namely 4) x and y are incomparable. The differ-

ence between incomparability and indifference is an important one, both for beliefs

and preferences, and this is my reason to start my investigations with preorders. This

1The results presented in this chapter have been obtained in collaboration with van Benthem and
Roy, soon to be published in [68].

15
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choice becomes important in Chapter 3, since most research in belief revision has been

conducted over connected orders. One reason might be that the conditional aspect of

belief revision makes a treatment over preorders almost intractable. An advantage of

the constructive dynamic approach used in Chapter 3 is to dissolve these problems,

by formalizing belief revision inside a standard Kripkean framework.

The background for the basic dynamic logic tools presented in section 2.2 can be

found in several places. In this chapter, I focus on three basic actions: 1) public

announcement [72], 2) lexicographic upgrade [67] and 3) preference upgrade [69].

These three actions provide a nice sample of typical actions over models, respectively

1) state elimination, 2) relation change and 3) link cutting. More actions could

be analyzed in a similar fashion, but I prefer a standpoint closer to the intended

interpretation of the basic language.

2.1 Order Logic

Let prop be a set of propositional letters. The starting language, denoted LO, is

inductively defined by the following rules:

LO := p | ϕ ∨ ψ | ¬ϕ | 3
≤ϕ | 3

<ϕ | Eϕ

The class of formulas of LO is denoted ‘form’. The intended reading of 3≤ϕ is

“ϕ is true in a state that is considered to be at least as good as the current state”,

whereas that of 3<ϕ is “ϕ is true in a state that is considered to be strictly better

than the current state”. Eϕ is interpreted as “there is a state where ϕ is true”.2

I write 2≤ϕ to abbreviate ¬3≤¬ϕ, and use 2<ϕ and Uϕ for the duals of 3<ϕ

and Eϕ respectively.

Order models

Definition 2.1.1 [Models] An order model M is a triple M = 〈W,�, V 〉 where W

is a set of states, � is a reflexive and transitive relation (a preorder) and V is a

standard propositional valuation. The strict subrelation ≺ is defined in terms of �:

u ≺ v := u � v& not v � u. Finally, a pointed order model is a pair M, u where

2I could let the language have multi-agents by indexing the modalities with members of a set of
agents. I omit this in the present chapter for ease of notation and readability. When the need for
multi-agent arises, I will make it explicit.
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u ∈W . �

Interpretation

Definition 2.1.2 [Truth definition] Formulas of LO are interpreted in pointed order

models.

M, u |= p iff u ∈ V (p)

M, u |= ¬ϕ iff M, u 6|= ϕ

M, u |= ϕ ∨ ψ iff M, u |= ϕ or M, u |= ψ

M, u |= 3≤ϕ iff ∃v s.t. u � v& M, v |= ϕ

M, u |= 3<ϕ iff ∃v s.t. u ≺ v& M, v |= ϕ

M, u |= Eϕ iff ∃v s.t. M, v |= ϕ

�

Definition 2.1.3 A formula ϕ is said to be satisfiable in a model M if there is a

state u such that M, u |= ϕ and valid if it is true at every state in every model. �

Expressive power

From time to time, I appeal to the notions of modal equivalence and bisimulation to

investigate the expressive power of the various logics presented in the thesis. These

notions are by now well-understood (see for instance [7]) and I content myself with

listing the definitions and proposition required latter on.

Definition 2.1.4 [Modal equivalence] Two pointed models M, u and M′, v are modally

equivalent, noted M, u ! M′, v, iff they satisfy exactly the same formulas of LO, i.e.

∀ϕ ∈ form,M, u |= ϕ iff M′, v |= ϕ. �

Definition 2.1.5 [Bisimulation] Two order pointed models M, u and M′, v are bisim-

ilar (written M, u↔ M′, v) if there is a relation R ⊆ M × M′ such that:

1. If sRt then for all p ∈ prop, s ∈ V (p) iff t ∈ V ′(p),

2. (Forth) if sRt and s � s′ (s ≺ s′) then there is a t′ ∈ W ′ such that t �′ t′

(t ≺′ t′ respectively) and s′Rt′,

3. (Back) if sRt and t �′ t′ (t ≺′ t′) then there is a s′ ∈ W such that s � s′ (s ≺ s′

respectively) and s′Rt′,
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4. For all s ∈W , there is a t ∈W ′ such that sRt, and

5. For all t ∈W ′, there is a s ∈W such that sRt.

�

Definition 2.1.5 defines a notion of what is often called a total bisimulation, due

to clauses 4 and 5, which are included to take care of the existential modality in

Proposition 2.1.6.

Proposition 2.1.6 For every u ∈ M and ϕ ∈ M′, if M, u ↔ M′, v, then M, u !

M′, v.

Proposition 2.1.6 can be used, for instance, to show that the modality 3<ϕ is not

definable in terms of 3≤ϕ - even though the strict relation ≺ is defined in terms of

�. I prove this in the following Fact.

Fact 2.1.7 The modality 3< is not definable with 3≤.

Proof. A simple bisimulation argument establishes this latter claim. Let there

be two models M1 = {u} with �1= {(u, u)}, V1(p) = {u} and M2 = {s, t} with

�2= {(s, t), (t, t)}, V2(p) = {s, t}. Then, p is strictly better at s, since there is a

state t such that s �1 t& t 6� s and M, t |= p, but p is not strictly better at u. But

modal formulas of LO are invariant under bisimulation, thus u and s satisfy the same

formulas. Therefore, LO cannot define the strict subrelation ≺ of �. qed

Axiomatization

Let us call ΛLO the logic of order models. This logic has two well-known fragments,

namely S4 for 3≤ and S5 for E. For 3<, the logic contains K. In addition, there

are interaction axioms relating the three modalities. ΛLO is thus axiomatized by:
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3
≤(ϕ→ ψ) → (3≤ϕ→ 3

≤ψ) (2.1)

3
<(ϕ→ ψ) → (3<ϕ→ 3

<ψ) (2.2)

E(ϕ→ ψ) → (Eϕ→ Eψ) (2.3)

ϕ→ 3
≤ϕ (2.4)

ϕ→ Eϕ (2.5)

3
≤
3

≤ϕ→ 3
≤ϕ (2.6)

EEϕ→ Eϕ (2.7)

ϕ→ UEϕ (2.8)

3
≤ϕ→ Eϕ (2.9)

⊢ 3
<ϕ→ 3

≤ϕ (2.10)

⊢ 3
≤
3

<ϕ→ 3
<ϕ (2.11)

⊢ 3
<
3

≤ϕ→ 3
<ϕ (2.12)

ϕ ∧ 3
≤ψ → (3<ψ ∨ 3

≤(ψ ∧ 3
≤ϕ)) (2.13)

ΛLO
has the usual rules of Modus Ponens (if ϕ and ϕ → ψ are provable, then ψ is

provable) and Necessitation (if ψ is provable, then 2ψ is provable, where 2 stands

for any of the box-modalities). I did not include a transitivity axiom for 3<, as it is

derivable:

Fact 2.1.8 Transitivity of 3< is derivable, i.e., ⊢ 3<3<ϕ→ 3<ϕ.

Proof. Assume that ⊢ 3<3<ϕ, then Axiom 2.10 implies that ⊢ 3≤3<ϕ. By Axiom

2.11, ⊢ 3<ϕ. qed

Fact 2.1.8 reflects that, in order models, transitivity of ≺ is derived from transitivity

of �. Similarly, Axioms 2.9 and 2.10 together imply that ⊢ 3<ϕ→ Eϕ.

Completeness of LO

It is not trivial to show completeness with respect to the class of models where ≺

is irreflexive, for this property is not expressible in ordinary modal logic, as I have

already shown. Known techniques to cope with this difficulty include the introduction

of the “Gabbay Irreflexivity Rule” [21], “bulldozing” the canonical model [58] or
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extending the language with hybrid modalities. I resort to the bulldozing technique

below.

Order models present a further challenge, namely that ≺ in our modal is a specific

strict subrelation of �, as I have stressed numerous times now. If ≺ is the intended

strict subrelation of �, then I say that ≺ is adequate with respect to �. The following

definition makes this precise.

Definition 2.1.9 A relation ≺ is called adequate with respect to � if the following

are equivalent:

1. w ≺ v

2. (a) w � v and

(b) v 6� w.

If only the direction from (2) to (1) holds, then the relation ≺ is said to be quasi-

adequate with respect to �. �

It should be clear that Axiom 2.10 takes care of the implication from (1) to (2.a), and

I show below how to adapt the bulldozing technique to ensure that (2.b) also holds.

Quasi-≺-adequacy is taken care of by Axiom 2.13, as the following correspondence

argument shows.

Fact 2.1.10 1. If a model M is based on a quasi-≺-adequate frame, then M, u |=

ϕ ∧ 3≤ψ → (3<ψ ∨ 3≤(ψ ∧ 3≤ϕ)) for every state u.

2. For every frame F, if F |= ϕ ∧ 3≤ψ → (3<ψ ∨ 3≤(ψ ∧ 3≤ϕ)) , then F is

quasi-≺-adequate.

Proof of Fact 2.1.10

1. Take any model based on a quasi-≺-adequate frame, and a state u ∈ W such

that M, u |= ϕ ∧ 3≤ψ. This means that there is a v such that u � v and

M, v |= ψ. Now, either v � u or not. In the first case, M, v |= ψ ∧ 3≤ϕ,

and thus M, u |= 3≤(ψ ∧ 3≤ϕ). In the second case, because M is based on a

quasi-≺-adequate frame, u ≺ v. Therefore, M, u |= 3<ψ.

2. Suppose that u ≤ v and v 6≤ u. Take a model M with a valuation V on F such

that V (p) = {u} and V (q) = {v}. Thus, M, u |= p ∧ 3≤q. By Axiom 2.13,

M, u |= 3<q ∨ 3≤(q ∧ 3≤p). Thus, for some w, either u < w&w = v (i.e.,

u < v) - and we are done - or u ≤ v ≤ u.
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Figure 2.1: The canonical model Mc and its bulldozed counterpart B, where the
≺-clusters are replaced with infinite strict orderings, indicated with the dotted line
in the picture. The bulldozing technique I use describes just how to get appropriate
strict orderings.

◭

Theorem 2.1.11 The logic ΛLO is sound and complete with respect to the class of

order models.

Proof.

Over order models, it is a routine argument to show soundness for K, S4 and S5,

as well as for the inclusion Axioms 2.11 and 2.12. Soundness of Axiom 2.13 was shown

in Fact 2.1.10 and I have shown in Fact 2.1.8 that transitivity of 3< is derivable.

For completeness, I show that every ΛLO-consistent set Φ of formula has a model.

I appeal to the standard definition of the canonical model Mc = 〈W,�, V 〉 for ΛLO (cf.

[7]). I also use the fact that I can extend Φ to a maximally consistent set (MCS) Γ

that contains every formula Eϕ or its negation. I call the set {ϕ : Eϕ ∈ Γ or Uϕ ∈ Γ}

the E-theory of Γ, and I call the restriction of Mc to the set of MCS ∆ that have

the same E-theory as Γ its E-submodel. In the E-submodel, E is a genuine global

modality and, by Axiom 2.10, this submodel contains the submodel generated by Γ.

From now on, when referring to Mc, I mean one of its E-submodels. I also use u, v

to refer to MCS in W .

It is a standard result of modal logic that every consistent set Φ is satisfiable

in Mc, but this model is not an order model in the intended sense. To see this, I

introduce some terminology. Given an order model M, a subset C of W is called a

�-cluster iff u � v for all u, v ∈ C; ≺-clusters are defined in the same way. Clearly,

if a model contains ≺-clusters, it is not ≺-adequate, thus not an order model. The

difficulty in showing completeness for the class of order models is to guarantee the

absence of ≺-clusters in Mc. This is exactly what the “bulldozing” technique achieves
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(cf. [7, p.221-222]). The crux of this transformation is to substitute infinite strict

orderings for ≺-clusters, as shown in Figure 2.1. The following lemma is required in

the main proof.

Lemma 2.1.12 For any �-cluster C in Mc, if any two states u, v ∈ C are such that

u ≺ v then for all s, t ∈ C, s ≺ t.

Proof. Assume that, within a �-cluster C, there are two states u, v ∈ C such that

u ≺ v. I show that for any s, t in C, s ≺ t. This amounts to showing that 3<ϕ ∈ s

for any ϕ ∈ t. Consider an arbitrary ϕ ∈ t. Since C is a �-cluster, 3≤ϕ ∈ v, and

u ≺ v implies that 3<3≤ϕ ∈ u, from which it follows that 3<ϕ ∈ u by Axiom 2.13.

But since C is a �-cluster, 3≤3<ϕ ∈ s, and Axiom 2.11 implies that 3<ϕ ∈ s, as

required. qed

Bulldozing is now applied to those clusters containing ≺-links. This is done by the

following steps:

1. Index the �-clusters that contain ≺ links with an index set I.

2. Choose an arbitrary strict ordering ≺i on each Ci. Observe that, by Lemma

2.1.12, any ≺i so chosen is a subrelation of ≺ on Ci.

3. For each cluster Ci, define Cβ
i as Ci × Z.

4. Build the bulldozed model Bull(Mc) = 〈B,�′,≺′, V 〉 as follows.

• Call W− the set of MCS that are not ≺-clusters (W−
⋃

i∈I Ci), and let

B = W− ∪
⋃

i∈I C
β
i . I use x, y, z... to range over elements of B. Note that

if x 6∈W−, then x is a pair (u, n) for u ∈W and n ∈ Z.

• Define the map β : B → W by β(x) = x if x ∈ W− and β(x) = u

otherwise, i.e., if x is a pair (u, n) for some u and n.

• Now, the key step of the construction: defining, in a truth-preserving way,

an adequate version of ≺. There are four cases to consider:

Case 1: x or y is in W−. In this case the original relation ≺ was adequate

(cf. Definition 2.1.9), and is thus directly copied into Bull(Mc): x ≺′ y

iff β(x) ≺ β(y).

Case 2: β(x) ∈ Ci, β(y) ∈ Cj and i 6= j. Here, β(x) and β(y) are in

different clusters and the original ≺ link between them is adequate.

Put again x ≺′ y iff β(x) ≺ β(y).
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Case 3: β(x), β(y) ∈ Ci for some i. In this case, x = (u,m) and y = (v, n)

for some m,n. There are two sub-cases to be considered:

Case 3.1: If m 6= n, use the natural strict ordering on Z: (u,m) ≺′

(v, n) iff m < n.

Case 3.2: Otherwise, if m = n, use the adequate (i.e. strict) sub-

relation ≺i chosen above: (u,m) ≺′ (v,m) iff u ≺i v.

• To define the relation �′, there are again two cases to be considered, in

order to make ≺′ adequate:

Case 1: If x ∈ W− or y ∈ W−, take the original relation �: x �′ y iff

β(x) � β(y)

Case 2: Otherwise (x and y are not in W−), take the reflexive closure of

≺′: x �′ y iff x ≺′ y or x = y.

• The valuation on Bull(Mc) is based on the valuation on Mc: x ∈ V ′(p) iff

β(x) ∈ V (p).

Bull(Mc) is, as indented, an adequate model:

Observation 2.1.13 Bull(Mc) is ≺′-adequate.

Proof of Observation In Mc, given that Axiom 2.12 is a Sahlqvist formula, if

u � v and v 6� u, then u ≺ v. This property is transferred to Bull(Mc) if u and v

are in different �-clusters, or if they are not in the same cluster and then u ≺′ v by

definition. If u and v are in the same ≺-cluster, then ≺′ is constructed so as to be

adequate by taking �′ to be the reflexive closure of ≺′. This implication would not

hold in Mc only in ≺-clusters. ◭

All that remains to be shown is that Bull(Mc) and the canonical model satisfy

the same formulas. This is done by showing that Bis = {(x, u), (u, x) : u = β(x)} is

a total bisimulation.

Claim 1 Bis is a total bisimulation.

Proof of Claim 1 Observe first that β is a surjective map, which establishes

totality. The definition of V ′ yields the condition on proposition letters automatically.

It remains to show that the back and forth condition hold for �′ and ≺′.
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(�′) Forth condition: assume that x �′ y. Given that Bis is total, all I have to show

is that there is a u ∈W such that β(x) � u = β(y). If either x or y ∈W−, the

result follows directly from case 1 of the definition of �′. Otherwise, if x = y,

then axiom T imply that β(x) = β(y). Finally, if x 6= y, then case 2 of the

definition of �′ implies that x ≺′ y. But then cases 2, 3.1 and 3.2 of ≺′ imply

that β(x) ≺ β(y), and so β(x) � β(y), since ≺ is included in � by Axiom 2.10.

Back condition: assume that β(x) � u. I have to find a y ∈ B such that

β(y) = u and x �′ y. The only tricky case is when β(x) and u are in the

same ≺-cluster. This means that x = (v,m) for some m. Take any y such that

y = (u, n) and m < n. By the definition of ≺′, x ≺′ y and so x �′ y by case 2

of the definition of �′.

(≺′) The argument for ≺ follows the same steps as for �. I indicate the key obser-

vations. It should be clear that for all x, y ∈ B, if x ≺′ y then β(x) ≺ β(y). I

show that if β(x) ≺ u then there is a y ∈ B such that x ≺′ y and β(y) = u.

1. If u is in W−, then β−1(u) is unique and x ≺′ β−1(u).

2. If u ∈ Ci for some i, β−(u) is the set {(u, n) : n ∈ Z}. If β(x) ∈ W− or

β(x) ∈ Cj with i 6= j, let y = (u, n) for an arbitrary element of this set.

3. Finally, if β(x) and u are in the same cluster. Then x = (v,m) for some

m ∈ Z. Take any n such that m < n, then the pair y = (u, n) has the

required properties.

◭

This concludes our proof of the completeness theorem for LO. qed

2.2 Dynamics

In the remainder of this chapter, I introduce the three main actions of 1) public

announcement, 2) lexicographic upgrade and 3) preference upgrade. I then discuss

a general technique for completeness results, known as compositional analysis via

reduction axioms, which I use numerous times in the thesis. Compositional analysis

is a way of getting completeness for extended dynamic languages by reducing the

analysis of the action modalities to the static language, thus reducing completeness

of the dynamic language to that of the static one.
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AA ¬A

⇒
!A

Figure 2.2: The effect of publicly announcing A

Public announcement

A public announcement of some information A is simply the truthful announcement

of A. If A is true at a state u and is announced, then all ¬A-state are deleted from the

model along with accessibility relations from A to ¬A-states. Public announcements

are represented by modalities of the form 〈!A〉ϕ for every A and the modalities are

interpreted by:

M, u |= 〈!A〉ϕ iff M, u |= A& M|A, u |= ϕ (2.14)

where M|A is the submodel whose domain is given by the set of states that satisfy

A (W |A) with a corresponding restriction of the accessibility relation to W |A. The

effect of announcing A is depicted in Figure 2.2. The left model is divided into two

zones, the A and the ¬A-zones. The right model is the result of publicly announcing

A, thus eliminating all ¬A-states as well as the relations to or from ¬A-states.

Lexicographic upgrade

Lexicographic upgrade, denoted ‘⇑ A’, was first analyzed in the dynamic logic ap-

proach to belief revision by van Benthem in [67]. His goal was to provide a framework

for belief revision in a dynamic setting, rather than a conditional one as, for instance,

in DDL (cf. [40]). His approach is advantageous over traditional alternatives found

in the literature in various ways. Firstly, it is all worked-out in a modal logic setting,

rather than with conditionals. This is technically advantageous because the language

is much simpler and comes with many technical results that apply to it directly. Sec-

ondly, it is not restricted to revisions with factual information, as is the case in DDL.

Finally, it can deal with iteration in a straightforward way, something that has been

a major problem in belief revision.

Lexicographic upgrade, unlike public announcement, acts on links between states
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A ¬AA ¬A

⇑ A
=⇒

Figure 2.3: Illustration of lexicographic upgrade

rather than on states themselves. It can be seen as an adjustment on the relation

so as to make incoming information of most importance. Van Benthem ([67], p.141)

describes it in the following way:

“⇑ P is an instruction for replacing the current ordering relation ≤ be-

tween worlds by the following: all P -worlds become better than all ¬P -

worlds, and withing those two zones, the old ordering remains.”

In the notation of propositional dynamic logic (PDL, cf., [50])3, the updated

relation �⇑A is defined by:

�⇑A= (?A ; � ; ?A) ∪ (?¬A ; � ; ?¬A) ∪ (?¬A ; ⊤ ; ?A) (2.15)

A graphical representation of lexicographic upgrade is provided in Figure 2.3. The

model on the left is again divided into two zones and links are seen to go across the

zones in two directions. After A has been upgraded, the links within each zones are

preserved, links from A to ¬A are reversed and a link is added from every ¬A-state

to every A-state.

The language of Order Logic with lexicographic upgrade is LO augmented with a

lexicographic upgrade modality 〈⇑ A〉ϕ, whose semantics is given by:

M, u |= 〈⇑ A〉ϕ iff M⇑A, u |= ϕ (2.16)

where M⇑ = 〈W,�⇑A, V 〉.

Preference upgrade

In [69], van Benthem and Liu showed that a preference upgrade can be seen as a

relation change. The relation change they describe is that of a public suggestion

3For a good introduction to PDL, see [7].
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A ¬AA ¬A

=⇒
#A

Figure 2.4: Illustration of preference upgrade

to make A better than ¬A, i.e., the change in the model is such that every links

from ¬A-state to A-state is deleted while keeping the relation unchanged in the two

respective zones. Preference upgrade is denoted by #A and its action on models can

defined by the following:

Definition 2.2.1 Given a model M = 〈W,�, V 〉, the upgraded model by A is given

by M#A = 〈W,�#A, V 〉, where

�#A=� −{(u, v) : M, u |= A& M, v |= ¬A} (2.17)

�

In the notation of PDL, the updated relation �#A is defined by:

�#A=� −(?¬A ; � ; ?A) (2.18)

Preference upgrade is depicted in Figure 2.4. As above, to get an Order Logic

with preference upgrade, one augments LO with a modality 〈#A〉ϕ with semantics

given by:

M, u |= 〈#A〉ϕ iff M#A, u |= ϕ (2.19)

Axiomatization and completeness

A great tool that came about with the rise of dynamic logic is the so-called composi-

tional analysis via reduction axioms. Reduction axioms analyze the effect of actions

in the base language, thus reducing the completeness of the extended logic to that

of the basic one. Reduction axioms have a twofold advantage: 1) they provide an

explicit analysis of actions on models and 2) they provide completeness for free. For

instance, a typical principle analyzing epistemic effect of public announcement is the
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following reduction axiom:

〈!A〉3ϕ ↔ A ∧ 3〈!A〉ϕ (2.20)

Axiom 2.20 can be read as stating that a ϕ-state is accessible after the public an-

nouncement of A if and only if A is true in the current world, thus can be announced,

and there is an accessible state which becomes a ϕ-state after the announcement of

A. Formally, the validity of Axiom 2.20 can be seen by the following argument:

M, u |= 〈!A〉3ϕ iff M, u |= A& M|A, u |= 3ϕ (2.14)

iff M, u |= A& ∃v : u � |Av& M|A, v |= ϕ (Truth-Definition)

iff M, u |= A& ∃v : u � v& M, v |= 〈!A〉ϕ (2.14!)

iff M, u |= A& M, u |= 3〈!A〉ϕ (Truth-Definition)

iff M, u |= A ∧ 3〈!A〉ϕ (Truth-Definition)

Notice the important step from line 2 to line 3. In the first direction, since

u � |Av, also M|A, v |= A. Furthermore, u � |Av ⇒ u � v, by definition. In the

other direction, M, v |= 〈!A〉ϕ ⇒ M, v |= A. Hence u � v,M, u |= A and M, v |= A

implies that u � |Av.

One striking feature of axiom 2.20 is that, on the left-hand side, the action modal-

ity 〈!A〉 is outside the scope of 3, whereas on the right-hand side, it is inside it. Since

there are reduction axioms for every component of the basis language, one can push

the action modalities all the way to propositional letters, where they do not act any

further and can be fully eliminated.

Theorem 2.2.2 The Order Logic with public announcement, lexicographic and pref-

erence upgrade is axiomatized by 1) ΛLO and 2) the following reduction axioms for

each of the action modalities:

〈!A〉p ↔ A ∧ p (2.21)

〈!A〉¬ϕ ↔ A ∧ ¬〈!A〉ϕ (2.22)

〈!A〉(ϕ ∨ ψ) ↔ 〈!A〉ϕ ∨ 〈!A〉ψ (2.23)

〈!A〉3≤ϕ ↔ A ∧ 3
≤〈!A〉ϕ (2.24)

〈!A〉3<ϕ ↔ A ∧ 3
<〈!A〉ϕ (2.25)

〈!A〉Eϕ ↔ A ∧ E〈!A〉ϕ (2.26)
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〈⇑ A〉p ↔ p (2.27)

〈⇑ A〉¬ϕ ↔ ¬〈⇑ A〉ϕ (2.28)

〈⇑ A〉(ϕ ∨ ψ) ↔ 〈⇑ A〉ϕ ∨ 〈⇑ A〉ψ (2.29)

〈⇑ A〉3≤ϕ ↔ A ∧ 3
≤(A ∧ 〈⇑ A〉ϕ)

∨ ¬A ∧ 3
≤(¬A ∧ 〈⇑ A〉ϕ)

∨ ¬A ∧E(A ∧ 〈⇑ A〉ϕ) (2.30)

〈⇑ A〉3<ϕ ↔ A ∧ 3
<(A ∧ 〈⇑ A〉ϕ)

∨ ¬A ∧ 3
<(¬A ∧ 〈⇑ A〉ϕ)

∨ ¬A ∧E(A ∧ 〈⇑ A〉ϕ) (2.31)

〈⇑ A〉Eϕ ↔ E〈⇑ A〉ϕ (2.32)

〈#A〉p ↔ p (2.33)

〈#A〉¬ϕ ↔ ¬〈#A〉ϕ (2.34)

〈#A〉(ϕ ∨ ψ) ↔ 〈#A〉ϕ ∨ 〈#A〉ψ (2.35)

〈#A〉3≤ϕ ↔ A ∧ 3
≤(A ∧ 〈#A〉ϕ)

∨ ¬A ∧ 3
≤〈#A〉ϕ (2.36)

〈#A〉3<ϕ ↔ A ∧ 3
<(A ∧ 〈#A〉ϕ)

∨ ¬A ∧ 3
<〈#A〉ϕ (2.37)

〈#A〉Eϕ ↔ E〈#A〉ϕ (2.38)

Proof. Notice first that no special work has to be done for the completeness part,

since the axioms reduce the analysis of an arbitrary formula of the extended language

to that of LO and the corresponding complete logic ΛLO . To see this, consider an

arbitrary formula ϕ. Working inside-out, consider (one of) the innermost occurrence

of an action modality. By applying successively the relevant axioms listed above until

only propositional letters are in the scope of that modality, its occurrence can be

eliminated using the relevant axiom among 2.21, 2.33 or 2.27. This procedure can be

iterated until ϕ is transformed into and equivalent formula ϕ′ containing no action

modalities. The completeness of the extended logic is therefore reduced to that of
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ΛLO .

Thus, unlike in most cases of completeness proofs, the interesting part for dynamic

logic is the soundness of the axioms! The soundness of axiom 2.24 has already been

proved in the discussion preceding the statement of the theorem. I show that Axioms

2.36 and 2.30 are also sound. First Axiom 2.36:

M, u |= 〈#A〉3≤ϕ iff M#A, u |= 3≤ϕ

iff ∃v : u �#A v& M#A, v |= ϕ

iff ∃v : u �#A v& M, v |= 〈#A〉ϕ (∗)

Now, either M, u |= A or M, u |= ¬A. In the first case, since u �#A v, it must

be that u � v and M, v |= A. Thus, (∗) iff ∃v : u � v& M, v |= A ∧ 〈#A〉ϕ iff

M, u |= A ∧ 3≤(A ∧ 〈#A〉ϕ). In the second case, u �#A v iff u � v, thus (∗) iff

∃v : u � v& M, v |= 〈#A〉ϕ iff M, u |= ¬A ∧ 3≤〈#A〉ϕ.

Second, Axiom 2.30:

M, u |= 〈⇑ A〉3≤ϕ iff M⇑A, u |= 3≤ϕ

iff ∃v : u �⇑A v& M⇑A, v |= ϕ

iff ∃v : u �⇑A v& M, v |= 〈⇑ A〉ϕ (∗∗)

Now, many cases need to be considered: 1) M, u |= A, 2) M, u |= ¬A, 3) M, v |= A

and 4) M, v |= ¬A. Given that u �⇑A v, the first case implies that M, v 6|= ¬A. Thus,

(∗∗) iff ∃u : u � v& M, v |= A∧〈⇑ A〉ϕ iff M, u |= A∧3≤(A∧〈⇑ A〉ϕ). Now, assume

that M, u |= ¬A. If M, v |= ¬A, then (∗∗) iff ∃v : u � v& M, v |= ¬A ∧ 〈⇑ A〉ϕ

iff M, u |= ¬A ∧ 3≤(¬A ∧ 〈⇑ A〉ϕ). The remaining case is when M, u |= ¬A and

M, v |= A. In this case, regardless of whether u � v or not, it must be that u �⇑A v

and (∗∗) iff ∃v : M, v |= A∧ 〈⇑ A〉ϕ iff M, u |= ¬A∧E(A∧ 〈⇑ A〉ϕ). This completes

the proof. qed

Summary

This concludes the exposition of Order Logic. In this chapter, the main contribu-

tion is the completeness Theorem 2.1.11, whose proof applies Segerberg’s bulldozing

technique. The technique has been used on various occasions, but not in the present

setting of Order Logic interpreted over preorders. In the remainder of the thesis, I

show how Order Logic fulfills its telos in providing a general setting to formalize belief

and preference change for individuals and groups. In the next two chapters, I look at
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two important fragments of LO: the relational belief and universal binary fragments.

As was argued in the introduction, these two logics can easily be embedded into Pref-

erence Logic via definitions making essential use of the existential modality. In the

remaining chapters, I look at extensions, one to incorporate ceteris paribus clauses

and the other to aggregation of orders into group ones.
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Chapter 3

Relational Belief Revision

When I have revised my belief that Robert had never been to Europe, I had to

incorporate a belief that Robert had to use some means of transportation to cross

the ocean. Given our times, it was more likely that Robert had taken a plane to

Europe rather than a ship, so I have revised my beliefs by incorporating the belief

that Robert had taken a plane to Europe, but I had no clue what company he had

been flying with. Was it an American or a European airline? Northwest Airlines, Air

France, Lufthansa...? I did not know and it was over my capacities to use such a fine

grained plausibility order and return a unique revised belief set. It may have seem

natural for me to endorse a relational revision attitude instead, and get a multitude of

new belief sets, each having the new belief that Robert had taken a plane to Europe,

but in each one with a different airline. Which one of these new belief sets is accurate

would have to be decided by extra-logical means: asking Robert.

The initial motivation for a formalization of relational beliefs was to get a gener-

alization of the functional approach to belief revision known as AGM (cf. [1]). AGM

is functional in the sense that an AGM revision operator, given a belief set Γ and

a sentence ϕ, returns the unique revised belief set Γ′ minimal with respect to some

ordering. The problem was first studied by Rabinowicz and Lindström in [39] and by

Cantwell in [11].

I consider that the best logical analysis of the AGM paradigm so far is found in

Segerberg’s work on Dynamic Doxastic Logic (DDL, cf. [40, 59, 60, 61] ). I thus take

DDL has the paradigm of belief revision and the starting point of my investigation in

this chapter. My goal is to show that a generalization of DDL to a relational doxastic

system is best treated as a fragment of Order Logic. To achieve this, however, some

preparatory work has to be done on the static models, since DDL is framed in a

33
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conditional logic setting and its semantics uses different kinds of models, closer to

neighborhood semantics. Hence, a great deal of work in this chapter is to bring

this kind of semantics closer to that of Order Logic. I first generalize DDL to a

relational doxastic logic, called Broccoli Logic (BL). I then show how Broccoli Logic

can be dynamified by introducing the dynamic action of lexicographic upgrade. Let

me elaborate.

Broccoli Logic is based on two basic modalities, [ϕ]ψ and [ϕ〉ψ. The first modality

is a standard conditional modality whose semantics is very close to that of Minimal

Conditional Logic (MCL, cf. [10]). In fact, and this is one important result in this

chapter (Theorem 3.3.14), the [ϕ]ψ fragment of Broccoli Logic is the same as MCL,

but in a different guise. The second modality, however, presents some difficulty and I

have not succeeded in identifying the exact fragment of Order Logic that corresponds

to full BL. This is a question pertaining to conditional logic that I leave open,

although I present preliminary steps for a solution in the appendix. Nevertheless,

Broccoli Logic is a fragment of Order Logic, as I show in Theorem 3.3.3. On the

basis of this standpoint, I show how Broccoli Logic can be dynamified by incorporating

lexicographic upgrade.

Introducing dynamics into BL in this fashion is where I am parting from DDL

and this deserves a justification. Since the inaugural work [1], most of the research

in belief revision has been conducted in what I call the postulational paradigm - as

opposed to the constructive paradigm discussed below. In this approach to belief

revision, one provides a set of principles that any revision policy should satisfy. For

instance, given a belief set T (a theory) and a formula ϕ, the revision of T by ϕ is

written as T ∗ ϕ and a typical postulate of belief revision is that ϕ ∈ T ∗ ϕ, stating

that ϕ is part the belief set T ∗ ϕ obtained by revising T with ϕ. A postulational

approach provides a set of postulates in that spirit and a typical theorem about

revision is along the following lines: an operator ∗ is a belief revision operator iff it

satisfies every postulate. A set of revision postulates can thus be understood as a set

of desiderata that a revision operator - any one (cf. [54]) - should satisfy, but they do

not identify a single operator nor do they describe what actions on a model a revision

operator performs. DDL follows this tradition by providing a direct translation of

the AGM postulates in the object language, using two translation keys (cf. [40]): 1)

from ϕ ∈ T in AGM to Bϕ in DDL and 2) from ψ ∈ T ∗ ϕ in AGM to [∗ϕ]Bψ in
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DDL. With this translation manual, for instance, the AGM postulate:

T ∗ ϕ ⊆ Cn(T ∪ {ϕ})

becomes the DDL axiom:

[∗ϕ]Bψ → B(ϕ→ ψ)

Under the constructive paradigm, as we have seen in chapter 2, the emphasis is

on the actions. Here, one chooses her favorite revision policy, explicitly describes its

effects on static models, and then shows how to analyze it via compositional analysis.

This paradigm is the one adopted in this thesis and I show in the present Chapter

that relational belief revision can be understood in this fashion. Hence, I bring BL

under the scope of Order Logic in two steps: 1) I show that its static part is a

sublogic of Order Logic and 2) I show that its dynamification can be treated inside

the constructive paradigm.

Before we proceed, let me say a final word about the result presented in Appendix

A. As I have stated above, I have not succeeded in providing a complete system

for BL with its two modalities [ϕ]ψ and [ϕ〉ψ - one source of difficulty is given in

Section 3.2. I have, however, succeeded in proving a completeness result for the

Minimal Relational Logic. I call this logic minimal in the same way that K is a

called a minimal modal logic with respect to S4 and S5. I have thus succeeded in

axiomatizing the minimal logic containing the modalities [ϕ]ψ and [ϕ〉ψ. This is an

interesting result in itself, but more relevant to the field of neighborhood logic, which

is tangential to the main thrust of this thesis.

3.1 Doxastic Logic

In this section, I make an excursion in the general doxastic logic defined over preorders.

In the next section, I move to a conditional approach, dynamic doxastic logic. In

subsequent sections, I show that the two approaches are fundamentally similar, via

the representation Theorem 3.3.14.

It is typical in logic to define beliefs in terms of a plausibility order and say that

ϕ is believed, written ‘Bϕ’, if it is true in every most plausible state in the order.

In Order Logic, one can represent this by interpreting � as a plausibility order and

say that u is most plausible if there is no v such that u ≺ v. A semantics for belief

operators is thus usually given as:



36 CHAPTER 3. RELATIONAL BELIEF REVISION

ψ φ

Figure 3.1: Single figure representing both the absolute belief in ϕ and the conditional
belief [ϕ]ψ. Most plausible states, those to the right, are all ϕ and ψ-states.

Definition 3.1.1

M, u |= Bϕ iff M, v |= ϕ for all most plausible states v. (3.1)

�

Definition 3.1.1 provides a notion of absolute belief and is represented in Figure 3.1.

The notion of ‘absolute belief’ is definable in LO, as the following fact establishes.

Fact 3.1.2 Bϕ is definable in LO. That is:

M, u |= Bϕ iff M, u |= U(2<⊥ → ϕ) (3.2)

Proof. In the first direction, Assume that M, u |= Bϕ, then M, v |= ϕ for every

most plausible v-state. Let w be arbitrary such that 2<⊥, then there is no w′ such

that w ≺ w′, i.e., w is a most plausible state. Thus M, w |= 2<⊥ → ϕ. Therefore,

M, u |= U(2<⊥ → ϕ). In the other direction, Assume that M, u 6|= Bϕ, then there

is a most plausible v-state such that M, v |= ¬ϕ. But since v is most plausible,

M, v |= 2<⊥, thus M, v |= 2<⊥ ∧ ¬ϕ, i.e., M, v |= ¬(2<⊥ → ϕ). Therefore,

M, u 6|= U(2<⊥ → ϕ). qed

More generally though, beliefs are often formalized as conditional statements: ψ
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is true in the most plausible ϕ-states. This is sometimes written in Lewis’s notation

as ‘ϕ 2→ ψ’ or as ‘B(ψ|ϕ)’, but in this thesis, I use Chellas’ notation ([14]) and write

‘[ϕ]ψ’ instead. The semantics for the more general conditional belief, again depicted

in Figure 3.1, is given by:

Definition 3.1.3

M, u |= [ϕ]ψ iff M, v |= ψ for all most plausible ϕ− states v. (3.3)

�

As was the case with absolute beliefs, conditional beliefs can be defined in LO:

Fact 3.1.4 [ϕ]ψ is definable in LO. That is:

M, u |= [ϕ]ψ iff M, u |= U(ϕ ∧ ¬3
<ϕ→ ψ) (3.4)

Proof. The proof is similar to the proof of Fact 3.1.2. In the first direction, assuming

that ψ is true in every most plausible ϕ-state, it is clear that ψ is true whenever

ϕ ∧ ¬3<ϕ is. In the other direction, if M, u 6|= [ϕ]ψ, then there is a most plausible

ϕ-state v such that M, v |= ¬ψ. Thus, M, v |= ϕ ∧ ¬3<ϕ ∧ ¬ψ, which implies that

M, u 6|= U(ϕ ∧ ¬3<ϕ→ ψ), as required. qed

In the next section, I consider the conditional approach to doxastic logic for belief

revision.

Belief revision and DDL

Belief revision is the study of theory change in which a set of formulas is ascribed to an

agent as a belief set revisable in the face of new information (cf., [22, 53]). A dominant

view in belief revision is the so-called AGM paradigm, which describes a functional

notion of revision (cf. [1]). A natural semantics in terms of sphere systems (cf. [37])

was given by Grove in [24] and a logical axiomatization was extensively studied by

Segerberg (cf. [40]). The resulting logic is called “dynamic doxastic logic” (DDL). In

this section, I present the outline of the static core of DDL. The fragment of DDL

that I consider here is a simple propositional language augmented with a conditional

modality [ϕ]ψ.
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ϕψ

Figure 3.2: Illustration of the semantics for the conditional belief [ϕ]ψ.

DDL models are based on what Segerberg calls onions. An onion is simply a

linearly ordered sphere system that satisfy the limit condition:

Definition 3.1.5 [Onions] Let W be a nonempty set. An onion O ⊆ P(W ) is

a linearly ordered set of subsets of W satisfying the following condition (the limit

condition): for all X ⊆ U :

⋃

O ∩X 6= ∅ ⇒ ∃Z ∈ O s.t. ∀Y ∈ O(Y ∩X 6= ∅ iff Z ⊆ Y )

�

The limit condition states that every set intersecting an onion intersects a smallest

element. Let W be a set of sets, and let W •X = {Y ∈ W : Y ∩X 6= ∅}. Segerberg

uses the more succinct notation ‘Zµ(W •X)’ to express that Z is minimal in W , in

the sense that there is no Y in W properly contained in Z. In the case of onions,

due to linearity, it is natural to write Zµ(O • X). The limit condition can then be

written as:
⋃

O ∩X 6= ∅ ⇒ ∃Zµ(O •X).

The semantics for conditionals [ϕ]ψ, depicted in Figure 3.2, is given by:

Definition 3.1.6

M, u � [ϕ]ψ iff ∀Zµ(O • |ϕ|)(Z ∩ |ϕ| ⊆ |ψ|) (3.5)

�

An alternative presentation of conditional logic, available since the beginnings

of research in this field, is with selection functions ([62]). In my setting, selection
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functions are illuminating for the axiomatization of the static core of DDL, and for

discussion about the generalization sought for later.

Definition 3.1.7 [Selection functions] A function f : P(W ) → P(W ) is a selection

function if it satisfies the following conditions, where X, Y ⊆W :

f(X) ⊆ X (INC)

X ⊆ Y ⇒ (f(X) 6= ∅ ⇒ f(Y ) 6= ∅) (MON)

X ⊆ Y ⇒ (X ∩ f(Y ) 6= ∅ ⇒ f(X) = X ∩ f(Y )) (ARR)

�

The third condition is called the Arrow condition. The Arrow condition is a source

of difficulty in generalizing this setting to the non-linear case.

Let W be a finite set and let F be a selection function on W . Let

S0 = F (W )

Sn+1 = Sn ∪ F (W − Sn)

Since W is finite, there is a smallest m such that Sm+1 = Sm. I leave to the reader to

verify that the set OF = {Sn : n < m} is an onion and that OF and F agree.1 Hence,

models for onions may be given in terms of selection functions.

Definition 3.1.8 [Onion selection models] Let W be a set, F a selection function

on W and V a valuation on a given set of propositional variables, then the triple

M = (W,F, V ) is an onion selection model. �

The truth-definition for the modality [ϕ]ψ in onion selection models is given by:

M, u � [ϕ]ψ iff F (|ϕ|) ⊆ |ψ|. (3.6)

The axiomatization of the static core of DDL, or onion logic, builds on the three

conditions for selection functions given in Definition 3.1.7.

1OF and F agree iff

1. OF ∩X 6= ∅ ⇒ FX = X ∩ Sk for some k.

2. OF ∩X = ∅ ⇒ FX = ∅.
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Theorem 3.1.9 The complete logic for onions consists of the following set of axioms:

〈ϕ〉ψ ≡ ¬[ϕ]¬ψ (3.7)

[ϕ](ψ → θ) → ([ϕ]ψ → [ϕ]θ) (3.8)

[ϕ]ϕ (3.9)

〈ϕ〉ψ → 〈ψ〉⊤ (3.10)

〈ϕ〉ψ → ([ϕ ∧ ψ]θ ≡ [ϕ](ψ → θ)) (3.11)

Axioms 3.9, 3.10 and 3.11 are obvious analogues of conditions (INC), (MON) and

(ARR) of definition 3.1.7. The total resulting system is Lewis’ famous conditional

logic V C without an assumption of centrality, provided that we add an assumption

of centrality (cf. [37, 44]).

Relational doxastic logic

To get a proper modal logic for relational beliefs, I introduce a further generalization

of the conditional presented in Definition 3.1.3. Instead of defining a conditional belief

[ϕ]ψ in terms of the (unique) set of minimal ϕ-states, I define it in terms of multiple

sets of minimal ϕ-states whose members are mutually incomparable. I use two kinds

of conditional beliefs, respectively written as ‘[ϕ]ψ’ and ‘[ϕ〉ψ’. I call the resulting

logic ‘relational conditional belief’ logic. Its language is defined by the following rules:

LB := p | ϕ ∧ ψ | ¬ϕ | [ϕ]ψ | [ϕ〉ψ

The intended reading of the modalities is: “ψ is true at every state in every set of

minimal ϕ-states” and “ψ is true in at least one state in each sets of minimal ϕ-

states”, respectively. In terms of revision by ϕ, one can think of the modalities as

standing for “ψ is believed in every revision by ϕ” and “ψ is consistent with every

revision by ϕ”, respectively.

Models for this logic are based on a generalization of onions, called broccoli flowers

in [23]. In a relational setting, the limit condition can be generalized in various ways

and I consider two options below.

Definition 3.1.10 [Broccoli flowers] Let W be a nonempty set. A broccoli flower

B ⊆ P(W ) is a set of subsets satisfying some generalized limit condition - to be

specified below. �
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There are (at least) two ways to specify the generalized limit condition of Definition

3.1.10. I present two obvious candidates. Let B|X = {Y ∩ X : Y ∈ B}. For all

X ⊆W , if
⋃

B ∩X 6= ∅, either:

∃S ⊆ B, ∀Y ∈ B(Y ∩X 6= ∅ ⇒ ∃Z ∈ S(Zµ(B •X) ∧ Z ⊆ Y )) (3.12)

∃S ⊆ B, ∀Y ∈ B(Y ∩X 6= ∅ ⇒ ∃Z ∈ S((Z ∩X)µ((B|X) •X) ∧ Z ⊆ Y )). (3.13)

Intuitively, a generalized limit condition states that every set intersecting a broccoli

flower intersects every members of a set S of smallest elements of the flower. In the

first case, the members of S are minimal sets of the broccoli flower that have a non-

empty intersection with X. In the second case, the members of S have a minimal

intersection with X. In the remainder of this chapter, I work with 3.12.

Definition 3.1.11 [Broccoli models] M = (W, {Bu}u∈W , V ) is a broccoli model if W

is a set of worlds, {Bu}u∈W is a family of broccoli flowers for each world u ∈ W

satisfying 3.12, and V is a valuation assigning sets of worlds to propositions. �

In what follows, I suppress the index u.

Definition 3.1.12 [Broccoli semantics] I say that ϕ is true at world u in a broccoli

model M, written M, u � ϕ iff (taking standard truth definitions for the propositional

and the Boolean cases):

M, u � [ϕ]ψ iff ∀Zµ(B • |ϕ|)(Z ∩ |ϕ| ⊆ |ψ|) (3.14)

M, u � [ϕ〉ψ iff ∀Zµ(B • |ϕ|)(Z ∩ |ϕ| ∩ |ψ| 6= ∅) (3.15)

Here, as usual, |ϕ| = {u : M, u � ϕ}, the associated proposition to ϕ.

�

Figure 3.3 illustrates the semantics of both operators. In the left figure, all minimal

ϕ-sets are contained in |ψ|, and |ψ| intersects each minimal ϕ-set in the right figure.
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ψ

ϕψ

ϕ

Figure 3.3: Broccoli semantics of the operators [ϕ]ψ and [ϕ〉ψ.

3.2 Generalized selection functions

As we have seen above, the semantics for Onions can be given in two different ways,

in a sphere system representation or with selection function. In this section, I outline

difficulties in providing a semantics for BL with a generalized notion of selection

functions. I show what properties generalized selection function should satisfy in

broccoli models, and I point to a difficulty of the generalization, namely to find an

appropriate Arrow condition for broccoli models.

Consider the issue of generalizing the format of selection functions for onions to a

non-linear setting. (INC) and (MON) are easily generalized in BL to the following

conditions, for all X, Y ⊆ U :

Y ∈ F (X) ⇒ Y ⊆ X (INC∗)

Y ⊆ X and ∃Z ∈ F (Y ) s.t. Z 6= ∅ ⇒ ∃Z ∈ F (X) s.t. Z 6= ∅) (MON∗)

with the identical corresponding axioms 3.9 and 3.10. On the one hand, if ¬〈ϕ]⊤ ∈ u

for some world u ∈ U (i.e. if there is no revision by ϕ) then [ϕ]ϕ ∈ u by Axiom A.7.

But if there is no revision by ϕ, then F (X) is empty, and (INC∗) holds vacuously.

On the other hand, if there is a revision by ϕ, then 3.9 and (INC∗) express the same

thing, namely that members of F (|ϕ|) are contained in |ϕ|. Similar considerations

will convince the reader that 3.10 and (MON∗) go together.

A difficulty arises when attempting to generalize condition (ARR) in a similar

fashion, as the condition seems to require linearity.2 One way to see this is by looking

at the failure of axiom 3.11 in broccoli models. Only one half of 3.11 can be kept

in BL, viz. 〈ϕ〉ψ → ([ϕ ∧ ψ]θ → [ϕ](ψ → θ)). The other half makes a crucial

appeal to linearity, as may be seen from the counter-model of figure 3.4. It is an open

question to find an appropriate generalization of (ARR) that yields a generalized

2The exact relationship between the Arrow condition and linearity is still an open question.
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θ

ψ

ϕ

Figure 3.4: Counter-model to 〈ϕ〉ψ → ([ϕ](ψ → θ) → [ϕ ∧ ψ]θ)

selection function forBL. This promises to be a difficult task. But instead of pursuing

this enterprise further, I show in the remainder of this chapter that Broccoli Logic

can be treated inside Order Logic, thus facilitating the quest for a dynamic system

appropriate for relational doxastic logic.

3.3 Broccoli logic and Order Logic

In this section, I show that static BL is a fragment of Order Logic. Firstly, assuming

models to be finite3, I show that the broccoli operators [ϕ]ψ and [ϕ〉ψ can be translated

in LO. Secondly, I show that the [ϕ]ψ fragment of BL, which I call BL− is identical to

Minimal Conditional Logic (MCL). This latter result show exactly which fragment

of Order Logic BL− is.

In the remainder of this chapter, I go back and forth between Order Models and

Broccoli Models. For this, I appeal to the following definitions. Once again, assuming

models to be finite.

Definition 3.3.1 Let B be a broccoli model. An induced order model MB is given

by MB = 〈W,≤,�〉, where ≤ is such that 1) ∀x ∈ W,x � x and 2) ∀x, y ∈ W and

X, Y ∈ B, X ⊂ Y, x ∈ X and y ∈ Y −X implies that y � x. �

An induced an order model from a broccoli model is pictured in Figure 3.5.

Definition 3.3.2 Let M be an order model. Let C(x) = {y ∈ W : x � y}, then

BROC(M) = {C(x) : x ∈W} is the Induced Broccoli Model. �

Figure 3.6 shows how to get a broccoli model from an order model.

3I make this assumption to avoid complications with the limit condition. Furthermore, one may
argue that the intuitions for BL are better understood in the finite case. For a good discussion of
finite models vs infinite models with the limit assumption, see [38]. Notice also that this issue does
not arise in Order Logic, giving yet another motivation to work with it.
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u

v t

Figure 3.5: Induced order model (dotted lines) from a finite broccoli model (arrows).

v t

u

Figure 3.6: Induced broccoli model (dotted lines) from a finite order model (arrows).

Since models are finite, a generalized limit condition for BROC(M) obtains for

free. Therefore, the semantics for the broccoli operator makes sense in this context:

BROC(M), u � [ϕ]ψ iff ∀Zµ(BROC(u) • |ϕ|)(Z ∩ |ϕ| ⊆ |ψ|) (3.16)

BROC(M), u � [ϕ〉ψ iff ∀Zµ(BROC(u) • |ϕ|)(Z ∩ |ϕ| ∩ |ψ| 6= ∅) (3.17)

Looking at Figures 3.5 and 3.6 make it clear that the classes of finite broccoli

and order models are the same. Thus, it makes sense to compare different languages

over them. In the next theorem, I show that the modalities [ϕ]ψ and [ϕ〉ψ can be

expressed in LO.

Theorem 3.3.3 Let B be a Broccoli model, then

B, u |= [ϕ]ψ ⇔ MB, u |= U(ϕ→ 3
≤((ϕ ∧ 2

<¬ϕ) ∧ 2
�(ϕ→ ψ))) (3.18)

B, u |= [ϕ〉ψ ⇔ MB, u |= U(ϕ→ 3
≤(ϕ ∧ ψ ∧ 2

<¬ϕ)) (3.19)

Proof. First, equation 3.18. In the first direction, assume that M, u |= [ϕ]ψ, then

∀Zµ(B • |ϕ|)(Z ∩ |ϕ| ⊆ |ψ|). Let v be a state such that M, v |= ϕ. Then, v ∈ Y

for some Y ∈ B. There are two cases to consider: 1) Y is minimal in B 2) y

is not minimal in B. In the first case, MB, v |= ϕ ∧ 2<¬ϕ, and Z ∩ |ϕ| ⊆ |ψ|
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implies that MB, v |= 2�(ϕ → ψ). In the second case, by the generalized limit

condition, ∃Z ∈ S(Zµ(B • |ϕ|) ∧ Z ⊂ Y )). By the induced relation � (Definition

3.3.1), ∀w ∈ Z∩|ϕ|, v � w. Take any state w in Z∩|ϕ|, then MB, w |= ϕ∧2<¬ϕ and

∀w′ � w � w′ ∈ Z ∩ |ϕ|,M, w′ |= ϕ ∧ ψ. Therefore, M, u |= U(ϕ → 3�(ϕ ∧2�(ϕ→

ψ))).

In the second direction, assume that MB, u |= U(ϕ→ 3�(ϕ∧2�(ϕ→ ψ))), then

∀v : MB, v |= ϕ ⇒ ∃v � w : MB, w |= ϕ ∧ 2<¬ϕ& MB, w |= 2�(ϕ → ψ). Consider

such a w and let Z ∈ B be such that {v : v � w � v & MB, v |= ϕ} ∩ Z 6= ∅. By

the generalized limit condition, there is a Z ′ ⊆ Z minimal in B such that {v : v �

w � v & MB, v |= ϕ} ∩ Z ′ 6= ∅. Then Z ′ ∩ |ϕ| ⊆ |ψ|, since MB, w |= 2�(ϕ → ψ).

Therefore, by the broccoli truth-definition, B, u |= [ϕ]ψ, as needed.

A similar argument establishes the second equation, as can be seen by realizing

that the right-hand-side of 3.19 states that for every ϕ-state, there is a minimal

ϕ-state that is also a ψ-state. The detail of this proof are left to the reader. qed

Theorem 3.3.3 shows that BL can be treated inside Order Logic. There are many

further mathematical question that could be treated here, especially with respect to

the limit condition over infinite models, but I do not treat them here. Instead, I show

that more can be achieved with respect to the [ϕ]ψ fragment of BL, by showing that

it is identical to MCL.

Minimal Conditional Logic

Minimal conditional logic (MCL) was studied by Stalnaker, Pollock, Burgess and

Veltman to capture the idea that a conditional ϕ ⇒ ψ is true if an only if the

conjunction ϕ ∧ ¬ψ is less possible than the conjunction ϕ ∧ ψ, and no more. Their

modeling comes with a reflexive and transitive �-order for each world x and no

spheres need occur. In a sphere system, two worlds lying on the same sphere agree on

which worlds are farther away and which are closer. This assumption is dropped in

MCL: if two worlds x and y are equally far away in the underlying order from world

u and if some world z is farther away than y, then no conclusions may be drawn

as to whether z is farther from u than x - or vice versa. Instead of changing the

onion picture by allowing non-linearly ordered sphere system as in BL, MCL ignores

spheres altogether. In this section, I show that the logic of [ϕ]ψ under the minimal

conditional or the broccoli interpretation is the same, i.e., that the [ϕ]ψ fragment of

LB is the same as minimal conditional logic.
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Minimal Conditional Logic

Definition 3.3.4 A Minimal conditional logic model is a triple 〈U, {≤x}x∈V }, V 〉,

where U and V are as above, and ≤x is a preorder for each x ∈ U . �

The relation y ≤x z may be read as “according to world x, world y is no farther

away than world z”. Let Wu = {y : ∃z, y �u z} be the zone of entertainability

for world u ∈ U . Intuitively, worlds outside the zone of entertainability for u are

worlds so far away that their distance from any given world is not evaluable. The

minimal conditional logic language contains a set of propositional variables, together

with negation ¬, disjunction ∨ and a counterfactual modality [ϕ] for every formula

ϕ.

Definition 3.3.5 [MCL semantics] A formula [ϕ]ψ is true at world u in a model M,

written M, u � [ϕ]ψ, iff:

∀y,M, y |= ϕ⇒ (∃z �u y : M, z |= ϕ& ∀w ≤u z, (M, w |= ϕ⇒ M, w |= ψ)) (3.20)

�

From inspection of the truth-condition, the following fact is immediate, giving a

first hint at the main result, Theorem 3.3.14, of this section:

Fact 3.3.6 The modality [ϕ]ψ of MCL is definable in LO by:

[ϕ]ψ ⇔ U(ϕ→ 3
≤(ϕ ∧ 2

≤(ϕ→ ψ))) (3.21)

Notice that the semantic definition of [ϕ]ψ does not contain a minimality condition.

If models are finite, however, then there is a minimal set of worlds z ∈ U such that

z ∈ (V (ϕ) ∩ V (ψ)). In this case, Definition 3.3.5 becomes:

Definition 3.3.7 [MCL semantics] A formula [ϕ]ψ is true at world u in the model

M, written M, u � [ϕ]ψ, iff:

∀y,M, u |= ϕ⇒ (∃X : ∀z ∈ X, z ≤u y& M, z |= ϕ ∧ ψ& ∀w <u z(M, w 6|= ϕ))(3.22)

�

Figure 3.7 depicts a simple model satisfying [ϕ]ψ. There are two minimal ϕ-worlds,

z and z′, and ψ is true at both worlds. Hence, ψ is true at every minimal ϕ-world.
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ϕ, ψ
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Figure 3.7: Simple model such that [ϕ]ψ is true at world u. The dotted arrows stand
for sequences of ≤-related worlds.

Axiomatization

Theorem 3.3.8 (Burgess [10]) The following set of axioms, with the same set of

rules as for minimal relational logic presented in section A.1, is complete for MCL:

[ϕ]ϕ (3.23)

[ϕ]ψ ∧ [ϕ]θ → [ϕ](ψ ∧ θ) (3.24)

[ϕ](ψ ∧ θ) → [ϕ]ψ (3.25)

[ϕ]ψ ∧ [ϕ]θ → [ϕ ∧ ψ]θ (3.26)

[ϕ]ψ ∧ [θ]ψ → [ϕ ∨ θ]ψ (3.27)

Here are some examples of derivable theses.

Example 3.3.9 MCL ⊢ [ϕψ ∧ [ϕ ∧ ψ]θ → [ϕ]θ

Proof. Assume 1) ⊢ [ϕ]ψ and 2) ⊢ [ϕ∧ψ]θ. By Axiom 3.23 ⊢ [ϕ∧¬ψ](ϕ∧¬ψ) and

by Axiom 3.25, ⊢ [ϕ∧¬ψ]¬ψ. Hence, by monotonicity in the consequent (3.25 again),

⊢ [ϕ ∧ ¬ψ](¬ψ ∨ θ). Now, from assumption 2) and Axiom 3.25, ⊢ [ϕ ∧ ψ](¬ψ ∨ θ).

Combining the latter two results, ⊢ [ϕ](¬ψ ∨ θ). But since ⊢ [ϕ]ψ by assumption (1),

⊢ [ϕ]θ, as desired. qed

Example 3.3.10 MCL ⊢ 〈ϕ〉ψ → 〈ψ〉T

Proof. I prove the contrapositive. Assume that ⊢ [ψ]⊥. Then both ⊢ [ψ]¬ψ and

⊢ [ψ]ϕ. Hence, by Axiom 3.26, ⊢ [ψ ∧ ϕ]¬ψ. But ⊢ [¬ψ ∧ ϕ](¬ψ ∧ ϕ) is an instance

of Axiom 3.23 and by Axiom 3.25, ⊢ [¬ψ ∧ ϕ]¬ψ. Therefore, ⊢ [ϕ]¬ψ. qed

Example 3.3.11 MCL ⊢ [ϕ ∧ ψ]θ → [ϕ](ψ → θ).
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Proof. Assume ⊢ [ϕ∧ψ]θ. By monotonicity, ⊢ [ϕ∧ψ](¬ψ∨θ). But ⊢ [ϕ∧¬ψ](¬ψ∨θ).

Therefore, ⊢ [ϕ](¬ψ ∨ θ), i.e., ⊢ [ϕ](ψ → θ). qed

As can be seen from Axiom 3.23 and examples 3.3.10 and 3.3.11, 3.9, 3.10 and one

direction of 3.11 of section 3.2 are derivable in MCL. Thus, MCL has the properties

sought for in BL, and I show that it has all the properties of BL. The general reason

behind these considerations becomes clear in the next subsection.

BL− = MCL

A finite MCL model M = 〈U,≤, V 〉 can be transformed into a broccoli model by

constructing a broccoli flower at each world of M. This is made precise in the following

definition, a generalization of Definition 3.3.2.

Definition 3.3.12 Let M be an minimal conditional model. Let Cx(y) = {z ∈ W :

y �x z}, then BROC(x) = {C(y) : y ∈ Wx} is the Induced Broccoli flower at x.

Finally, an induced Broccoli Model BROC(M) is given by:

BROC(M) = {BROC(x) : x ∈W} (3.28)

�

The main result of this section now follows from Lemma 3.3.13.

Lemma 3.3.13 M, x � [ϕ]ψ iff BROC(M), x � [ϕ]ψ.

Proof. In the one direction, assume that M, x � [ϕ]ψ. To simplify notation, I write

Cw instead of Cx(w). Let Cwµ(BROC(x) • |ϕ|), and let v ∈ Cw ∩ |ϕ|. By the truth

definition for [ϕ]ψ, ∃z ≤x v such that M, z � ϕ and ∀y ≤x z,M, y |= ϕ⇒ M, y |= ψ.

Now, if v 6≤x z, then z < v, which implies that Cz ⊂ Cv ⊆ Cw (the latter inclusion

uses the transitivity of ≤x), contradicting the minimality of Cw. Thus, v ∈ |ψ|, which

implies that Cw∩|ϕ| ⊆ |ψ|. Therefore, since v was chosen arbitrarily, BROC(M), x �

[ϕ]ψ.

In the other direction, assume that BROC(M), x � [ϕ]ψ and suppose that M, y �

ϕ for some y ∈ U . Then Cy ∩ |ϕ| 6= ∅. Hence, ∃Cw ⊆ Cy such that Cwµ(BROC(x) •

|ϕ|), since M is finite, and Cw ∩ |ϕ| ⊆ |ψ|. But since Cw ⊆ Cy, w ≤x y. Assume that

w is not a minimal world satisfying ϕ ∧ ψ with respect to ≤x, then ∃w′ <x w such

that M, w′ � ϕ∧ψ. This implies that C ′
w ⊂ Cw and C ′

w ∩ |ϕ| ∩ |ψ| 6= ∅, contradicting
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the minimality of Cw. Therefore, w is a minimal world satisfying ϕ ∧ ψ and since

w ≤x y, we get that M, x � [ϕ]ψ. qed

Now for the main theorem:

Theorem 3.3.14 BL− = MCL.

Proof. To show that MCL is BL, I show 1) that all axioms of Section 3.3 are valid

in BL, whose semantics were given in section 3.1 and 2) that if a principle is not

derivable in MCL, then there is a broccoli countermodel.

Showing that the MCL axioms are valid in the BL-models of Section 3.1 is

straightforward. I show that Axiom 3.26 is valid and leave the others to the reader.

Let M be an arbitrary broccoli model and let u ∈ U be arbitrary. If ¬〈ϕ]⊤ 6∈ u,

i.e., if there is no revision by ϕ, then the thesis is vacuously true. Hence, assume

that there is a revision by ϕ. Assume furthermore that M, u � [ϕ]ψ ∧ [ϕ]θ. Since

M, u � [ϕ]ψ, |ϕ| ∩ |ψ| 6= ∅. Let Zµ(B • |ϕ ∧ ψ|) be a minimal set of B intersecting

|ϕ ∧ ψ|. Then for every z ∈ Z, x ∈ |ϕ| ∩ |ψ| implies that z ∈ |ϕ| ⊆ |θ|. Hence,

M, u � [ϕ ∧ ψ]θ.

To show that if a principle is not provable in MCL, then there is a broccoli

countermodel to ϕ, I use the completeness result of Burgess. If MCL 6⊢ ϕ for some

ϕ, then there is a finite model M = (U,≤, V ) and a world u ∈ U such that M, u 6�

ϕ. 4 By Lemma 3.3.13, BROC(M), u 6� ϕ. Therefore, BROC(M) is a broccoli

countermodel to ϕ. This completes the proof of Theorem 3.3.14. qed

Corollary 3.3.15 BL is decidable.

As was noticed above, Theorem 3.3.14 shows that the logic of [ϕ]ψ under the

minimal conditional or the broccoli interpretation is the same, and so are their ax-

iomatizations. Thus, Theorem 3.3.14 yields a completeness theorem for the [ϕ]ψ

fragment of broccoli logic. The axiomatization of the full language LB over broccoli

models, or over MCL models, is still an open question. Nevertheless, Theorem 3.3.3

shows that the full logic is still a fragment of Order Logic and I rely on this fact to

introduce dynamics in the next section.

4Burgess proves that MCL has the finite model property.
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3.4 Dynamics

In this section, I show how to incorporate lexicographic upgrade in the full static

broccoli language LB.5 To make this work properly, LB has to be expanded with the

existential modality Eϕ, and of course with a lexicographic upgrade modality 〈⇑ A〉ϕ.

The resulting language, called LB+ , is defined by:

LB+ := p | ϕ ∧ ψ | ¬ϕ | [ϕ]ψ | [ϕ〉ψ | Eϕ | 〈⇑ A〉ϕ

Theorem 3.4.1 The complete logic of relational doxastic logic is axiomatized by 1)

some complete static relational doxastic logic6 and 2) the following reduction axioms:

〈⇑ A〉[ϕ]ψ ↔ E(A ∧ 〈⇑ A〉ϕ) ∧ [A ∧ 〈⇑ A〉ϕ]〈⇑ A〉ψ

∨ ¬E(A ∧ 〈⇑ A〉ϕ) ∧ [〈⇑ A〉ϕ]〈⇑ A〉ψ (3.29)

〈⇑ A〉[ϕ〉ψ ↔ E(A ∧ 〈⇑ A〉ϕ) ∧ [A ∧ 〈⇑ A〉ϕ〉〈⇑ A〉ψ

∨ ¬E(A ∧ 〈⇑ A〉ϕ) ∧ [〈⇑ A〉ϕ〉〈⇑ A〉ψ (3.30)

Proof. It is enough to show the soundness of 3.29 and 3.30.

For the first direction of 3.29, assume that M, u |= 〈⇑ A〉[ϕ]ψ, then M⇑A, u |= [ϕ]ψ.

By the truth-definition 3.1.12, ∀Zµ(B⇑A • |ϕ|)(Z∩|ϕ| ⊆ |ψ|). Now, either ∃w′ ∈ M⇑A

such that M⇑A, w
′ |= A ∧ ϕ or not. In the first case, when M, u |= E(A ∧ 〈⇑ A〉ϕ),

because of the lexicographic upgrade, it must be that every Zµ(B⇑A • |ϕ|) is such that

(Z ∩ |ϕ| ⊆ |A ∧ ψ|), so ∀Zµ(B • |A ∧ 〈⇑ A〉ϕ|)(Z ∩ |A ∧ 〈⇑ A〉ϕ| ⊆ |A ∧ 〈⇑ A〉ψ|).

Therefore, M, u |= [A∧ 〈⇑ A〉ϕ]〈⇑ A〉ψ. In the second case, when M, u |= ¬E(A∧ 〈⇑

A〉ϕ), the minimal z-states satisfying ϕ in M⇑A are the same as in M, and they satisfy

ψ after the upgrade, so M, u |= [〈⇑ A〉ϕ]〈⇑ A〉ψ, as needed.

In the other direction, consider first the case where M, u |= E(A∧ 〈⇑ A〉ϕ). This

says that there exists a state v that becomes a ϕ-state after the upgrade by A. Now,

M, u |= [A ∧ 〈⇑ A〉ϕ]〈⇑ A〉ψ implies that ∀Zµ(B • |A ∧ 〈⇑ A〉ϕ|)(Z ∩ |A ∧ 〈⇑ A〉ϕ| ⊆

|〈⇑ A〉ψ|). Hence, ∀Zµ(B⇑A•|A∧ϕ|)(Z∩|A∧ϕ| ⊆ |ψ|). Now, because of the upgrade

of A-states in B, the sets Z minimal in B⇑A • |A ∧ ϕ| are the same as those minimal

5Notice that [67] takes a more general standpoint on dynamics for belief revision, of which
lexicographic upgrade is but one instance. I choose to work with the lexicographic upgrade as it is
simple in character and makes a clear case for the constructive approach.

6This is still an open question, although a complete axiomatization for the [ϕ]ψ fragment has
been obtained in Theorem 3.3.14.
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in B⇑A • |ϕ|. Thus, ∀Zµ(B⇑A • |ϕ|)(Z ∩ |ϕ| ⊆ |ψ|), which implies that M⇑A, u |= [ϕ]ψ.

Therefore, M, u |= 〈⇑ A〉[ϕ]ψ. Finally, assume that M, u |= ¬E(A ∧ 〈⇑ A〉ϕ).

This says that after upgrading A, there is no state v such that M, v |= A ∧ ϕ.

Hence, the sets Z minimal in B⇑A • |ϕ| are the same as those in B • |〈⇑ A〉ϕ|. Now,

M, u |= [〈⇑ A〉ϕ]〈⇑ A〉ψ implies that ∀Zµ(B • |〈⇑ A〉ϕ|)(Z ∩ |〈⇑ A〉ϕ| ⊆ |〈⇑ A〉ψ|).

Hence, ∀Zµ(B⇑A • |ϕ|)(Z ∩ |ϕ| ⊆ |ψ|), which implies that M⇑A, u |= [ϕ]ψ. Therefore,

M, u |= 〈⇑ A〉[ϕ]ψ, and this completes the proof.

Now, for the first direction of 3.30, assume that M, u |= 〈⇑ A〉[ϕ〉ψ, then M⇑A, u |=

[ϕ〉ψ. By the truth-definition 3.1.12, ∀Zµ(B⇑A • |ϕ|)(Z ∩ |ϕ| ∩ |ψ| 6= ∅). Now, either

∃w′ ∈ M⇑A such that M⇑A, w
′ |= A∧ϕ or not. In the first case, when M, u |= E(A∧〈⇑

A〉ϕ), because of the lexicographic upgrade, it must be that every Zµ(B⇑A • |ϕ|) is

such that (Z ∩ |ϕ| ∩ |A∧ψ| 6= ∅), so ∀Zµ(B • |A∧〈⇑ A〉ϕ|)(Z ∩ |A∧〈⇑ A〉ϕ| ∩ |A∧〈⇑

A〉ψ| 6= ∅). Therefore, M, u |= [A ∧ 〈⇑ A〉ϕ〉〈⇑ A〉ψ. In the second case, when

M, u |= ¬E(A ∧ 〈⇑ A〉ϕ), the minimal z-states satisfying ϕ in M⇑A are the same as

in M, and for every set of minimal states among them, at least one of them satisfy ψ

after the upgrade, so M, u |= [〈⇑ A〉ϕ〉〈⇑ A〉ψ, as needed.

In the other direction, consider first the case where M, u |= E(A ∧ 〈⇑ A〉ϕ).

This says that there exists a state v that becomes a ϕ-state after the upgrade by A.

Now, M, u |= [A ∧ 〈⇑ A〉ϕ〉〈⇑ A〉ψ implies that ∀Zµ(B • |A ∧ 〈⇑ A〉ϕ|)(Z ∩ |A ∧ 〈⇑

A〉ϕ| ∩ |〈⇑ A〉ψ| 6= ∅). Hence, ∀Zµ(B⇑A • |A ∧ ϕ|)(Z ∩ |A ∧ ϕ| ∩ |ψ| 6= ∅). Now,

because of the upgrade of A-states in B, the sets Z minimal in B⇑A • |A ∧ ϕ| are the

same as those minimal in B⇑A • |ϕ|. Thus, ∀Zµ(B⇑A • |ϕ|)(Z ∩ |ϕ| ∩ |ψ| 6= ∅), which

implies that M⇑A, u |= [ϕ〉ψ. Therefore, M, u |= 〈⇑ A〉[ϕ〉ψ. Finally, assume that

M, u |= ¬E(A ∧ 〈⇑ A〉ϕ). This says that after upgrading A, there is no state v such

that M, v |= A ∧ ϕ. Hence, the sets Z minimal in B⇑A • |ϕ| are the same as those in

B • |〈⇑ A〉ϕ|. Now, M, u |= [〈⇑ A〉ϕ]〈⇑ A〉ψ implies that ∀Zµ(B • |〈⇑ A〉ϕ|)(Z ∩ |〈⇑

A〉ϕ| ∩ |〈⇑ A〉ψ| 6= ∅). Hence, ∀Zµ(B⇑A • |ϕ|)(Z ∩ |ϕ| ∩ |ψ| 6= ∅), which implies that

M⇑A, u |= [ϕ〉ψ. Therefore, M, u |= 〈⇑ A〉[ϕ〉ψ, and this completes the proof. qed

Alternative approach via translation in LO

There is yet another way of getting compositional analysis for lexicographic upgrade

by translating everything into Order Logic and performing reduction there. I show in

the next Chapter that this method is better suited for binary preference statements,

since once the reduction is performed inside Order Logic, one can translate back in
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the binary preference fragment, thus obtaining reduction axioms for free. In the case

of relational doxastic logic, I have not succeeded in translating back in the Broccoli

language, but the investigation is illuminating enough to be worthwhile.

To simplify the proof of the next theorem, the following lemmas, proved in Ap-

pendix A, are needed.

Lemma 3.4.2 Let ∗ stand for either ≤ or <, then:

〈⇑ A〉2∗ϕ ⇔ A→ 2
∗(A→ 〈⇑ A〉ϕ)

∧ ¬A → 2
∗(¬A→ 〈⇑ A〉ϕ)

∧ ¬A → U(A→ 〈⇑ A〉ϕ) (3.31)

Lemma 3.4.3

A ∧ 〈⇑ A〉(ϕ ∧ 2
∗(ϕ→ ψ)) ⇔ A ∧ 〈⇑ A〉ϕ ∧ 2

∗(A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ) (3.32)

Lemma 3.4.4

¬A ∧ 〈⇑ A〉(ϕ ∧ 2
∗(ϕ→ ψ)) ⇔ ¬A ∧ 〈⇑ A〉ϕ

∧ 2
∗(¬A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ)

∧ U(A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ) (3.33)

Theorem 3.4.5 Given the following abbreviations:

β = A ∧ 〈⇑ A〉ϕ ∧ 2≤(A ∧ 〈⇑ A〉 → 〈⇑ A〉ψ)

γ = ¬A ∧ 〈⇑ A〉ϕ ∧ 2≤(¬A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ) ∧ U(A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ)

β ′ = A ∧ 〈⇑ A〉ϕ ∧ 〈⇑ A〉ψ ∧ 2<(A→ 〈⇑ A〉¬ϕ)

γ′ = ¬A ∧ 〈⇑ A〉ϕ ∧ 〈⇑ A〉ψ ∧ 2<(¬A→ 〈⇑ A〉¬ϕ) ∧ U(A → 〈⇑ A〉¬ϕ)

the reduction axioms for 〈⇑ A〉[ϕ]ψ and 〈⇑ A〉[ϕ〉ψ are given by:

〈⇑ A〉[ϕ]ψ ⇔ [A ∧ 〈⇑ A〉ϕ]〈⇑ A〉ψ ∧ U((〈⇑ A〉ϕ ∧ ¬A) → (3≤γ ∨ Eβ)) (3.34)

〈⇑ A〉[ϕ〉ψ ⇔ U [〈⇑ A〉ϕ→ (A ∧ 3
≤β ′) ∨ (¬A ∧ 3

≤γ′) ∨ (¬A ∧ Eβ ′)] (3.35)

Let us first look at the proof and then discuss what the principles state.
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Proof. I use the following abbreviations:

α = ϕ ∧ 2≤(ϕ→ ψ)

δ = ϕ ∧ ψ ∧ 2<¬ϕ

〈⇑ A〉[ϕ]ψ ⇔ 〈⇑ A〉U(ϕ→ 3≤α) (Fact 3.3.3)

⇔ U〈⇑ A〉(ϕ→ 3≤α) (Thm 2.2.2)

⇔ U(〈⇑ A〉ϕ→ 〈⇑ A〉3≤α) (Thm 2.2.2)

⇔ U [〈⇑ A〉ϕ→ A ∧ 3≤(A ∧ 〈⇑ A〉α)

∨ ¬A ∧ 3≤(¬A ∧ 〈⇑ A〉α)

∨ ¬A ∧E(A ∧ 〈⇑ A〉α)] (Thm 2.2.2)

⇔ U [〈⇑ A〉ϕ→ (A ∧ 3≤β) ∨ (¬A ∧ 3≤γ) ∨ (¬A ∧ Eβ)]

(3.4.3 and 3.4.4)

⇔ U [(〈⇑ A〉ϕ ∧ A→ 3≤β) ∧ (〈⇑ A〉ϕ ∧ ¬A) → (3≤γ ∨ Eβ)] (Logic)

⇔ U(〈⇑ A〉ϕ ∧ A→ 3≤β) ∧ U((〈⇑ A〉ϕ ∧ ¬A) → (3≤γ ∨Eβ)) (Modal Logic)

⇔ [A ∧ 〈⇑ A〉ϕ]〈⇑ A〉ψ ∧ U((〈⇑ A〉ϕ ∧ ¬A) → (3≤γ ∨Eβ)) (Fact 3.3.3)

〈⇑ A〉[ϕ〉ψ ⇔ 〈⇑ A〉U(ϕ→ 3≤δ) (Fact 3.3.3)

⇔ U〈⇑ A〉(ϕ→ 3≤δ) (Thm 2.2.2)

⇔ U(〈⇑ A〉ϕ→ 〈⇑ A〉3≤δ) (Thm 2.2.2)

⇔ U [〈⇑ A〉ϕ→ A ∧ 3≤(A ∧ 〈⇑ A〉δ)

∨ ¬A ∧ 3≤(¬A ∧ 〈⇑ A〉δ)

∨ ¬A ∧ E(A ∧ 〈⇑ A〉δ)] (Thm 2.2.2)

⇔ U [〈⇑ A〉ϕ→ (A ∧ 3≤β ′) ∨ (¬A ∧ 3≤γ′) ∨ (¬A ∧ Eβ ′)]

(3.4.3 and 3.4.4)

qed

The technique of the proof is quite clear. The first step is to translate a formula

of the form 〈⇑ A〉[ϕ]ψ into LO and then using facts about Order Logic to find the

reduction principles for the original formula. Ideally, as is the case for binary prefer-

ence statement in the next chapter, one can translate back into the smaller language,

thus obtaining reduction principles for free, by mechanical manipulations.

Let us consider what Axiom 3.34 state. The right-hand-side, as was the case

previously, distinguishes various cases, depending on whether there is a state v such

that M⇑A, v |= A ∧ ϕ. If this is the case, then we recover [A ∧ 〈⇑ A〉ϕ]〈⇑ A〉ψ, as in
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Theorem 3.4.1. Otherwise, the second conjunct explains what happens if the formula

is evaluated in a ¬A-state. Either there are accessible states in the model before

upgrade where 〈⇑ A〉ϕ holds, which can be either A or ¬A states, analyzed by γ. If

not, the appeal to the existential modality becomes crucial. Here, it must be that the

most plausible ϕ-states after upgrade were in the A-region, but that that region was

not accessible in M, hence the appeal to Eβ.

Summary

Order Logic has passed its first test of providing a nice setting to investigate relational

doxastic logic and its dynamics. Problems left open in the direct investigation starting

with minimal relational logic are easily solved by seeing it as a fragment of Order

Logic. Dynamics can be applied directly to LB, provided that a complete system for

the full broccoli logic can be obtained - an open question. By using translation inside

LO, however, we get reduction axioms for free, by mechanical manipulations using

Theorem 2.2.2. The axioms are complex, admittedly, but this is to be expected, given

the complexity inherent in Broccoli Logic. Seeing relational doxastic logic as Broccoli

Logic with two operators [ϕ]ψ and [ϕ〉ψ is a first contribution of this chapter. A second

important result is the representation Theorem 3.3.14 giving rigid boundaries to the

fragment BL− or Order Logic. Finally, the Minimal Relational Logic presented in

Appendix A is a new system, which hopefully proves to be fruitful in future research

in relational belief revision. In the next chapter, I investigate another important

fragment of Order Logic: the binary preference fragment.



Chapter 4

Binary Preference Logic

When Robert said that he preferred wine over beer, he meant something more general

than the mere comparison of two objects (or states, as in Order Logic). His statement

was about wine and beer in general. In a similar fashion, preferring blue over red

is a general standpoint, not a specific comparison. Nevertheless, there are cases of

preferences between particulars, for instance of a book over another one, or of this

person over that one. When Robert, after having tasted the cheeses presented to

him, acknowledged that he preferred the Camembert over the goat cheese, he was

then comparing the two token cheeses in the platter. Preferences thus operate at

two levels: 1) over simple objects and 2) over sets of objects. The first level is the

one covered by Order Logic, whereas the second one is the subject of the present

chapter, in which I show how to lift preferences over objects to preferences over sets

of objects.

Corresponding to this stratification of preferences over objects and sets of objects,

there are two approaches investigating the relation between the two levels. The first

one is top-down, from general preferences to specific comparisons, the second one

bottom-up, from basic preferences over objects to general preferences. The difference

may be illustrated as follows. I may say, in the top-down approach, that I prefer this

car over that one because the former is blue and the latter red, and I prefer blue over

red. Going bottom-up, I would say instead that I prefer blue over red because I prefer

every blue object to every red object, including this blue car over that red one. The

top-down approach is investigated in a logical setting by Liu and de Jongh in [42].

Their strategy is to take as primitive a constraint sequence and derive preferences

over objects from it. For instance, if I want to buy a house and my constraints are

such that I preferred living in a peaceful neighborhood at an affordable price and

55
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within reasonable distance from my work (in this order), then I would choose my

house accordingly. The preference of the house settled as my final choice is for the

one that maximizes satisfaction of my constraints.

Both approaches are advantageous in their own right and I see them as being

complementary rather than in opposition. I do not, however, pursue this issue further

here. I refer to Liu’s Ph.D. thesis [41] for a more thorough discussion of the top-

down vs bottom-up approaches to preferences. In this chapter, I opt for the bottom-

up approach, taking basic preferences over states (Order Logic) and deriving global

preferences over sets of objects, or propositions.

An important work in the field of preference logic, to which I pay special attention

in the present chapter and the next one, is the seminal work of von Wright [76]. This

work itself takes roots in Halldén [25] on the logic of betterness. There is indeed a very

close kinship between the two books, but I take von Wright as being more fundamental

to my investigations.1 Von Wright gives us enough material for the purpose of this

thesis, and historical considerations of his work is the subject of Section 4.1.

A side remark, before we proceed, is that Order Logic, as presented in Chapter

2, has been called ‘Preference Logic’ in other presentations (notably [68, 8, 71]). The

reasons for that should become clear in the present chapter: due to the existential

modality, order logic can express numerous preferential statement. But to read a for-

mula of the form 3≤ϕ as a preference of ϕ is indeed abusive; preferential statements

are typically comparative: I prefer x over y. To say that I prefer x without comparing

x to anything else would, but for exceptional cases, be meaningless as a preferential

statement. For this reason, I choose to take Order Logic as a general logic of com-

parison in Chapter 2, which can be instantiated as plausibility, in the case of beliefs

in Chapter 3, or as betterness, in the case of preferences in the present Chapter.

The chapter is divided as follows. I first provide historical consideration on pref-

erence logic seen from a logical point of view, focusing on von Wright’s seminal work

[76] in Section 4.1. In Section 4.2, I show how the Order Logic of Chapter 2 can be

used to express a plethora of binary preferential statements between propositions. In

Section 4.3, I focus on one of these fragments, the ∀∀ fragment. Finally, in Section

4.4, I introduce dynamics in the latter fragment with the preference upgrade action

already discussed in Chapter 2. One important feature that has been left out in the

1One reason for choosing von Wright is his insistence on the notion of ceteris paribus preferences,
the main subject of Chapter 5, which turned out to yield very interesting logical results. Von
Wright’s insight on ceteris paribus yet again proved to be fruitful and leading to interesting logical
systems. More about this later.
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discussion so far is the notion of ceteris paribus preferences; I reserve this for Chapter

5.

4.1 Von Wright’s preference logic: Historical con-

siderations

Adequately understanding von Wright’s conception of ceteris paribus preferences is

a difficult task, given the lack of semantic considerations in his work. Leaving this

scholarly task aside, I appeal to what appears to be his fundamental intuitions and

use them as landmarks to situate my proposal.

Von Wright uses a propositional language whose propositional variables range

over states of affairs, augmented with a binary preference relation P such that “pPq”

expresses that the states of affairs p are preferred to the states of affairs q. There is

a restriction in the inductive definition of the language, namely that in ‘ϕPψ’, ‘ϕ’

and ‘ψ’ can only be ‘factual’ propositional formulas, i.e., formulas without preference

operators. Von Wright’s formalism, as is commonly the case in the early development

of modal logic, is almost purely syntactical. Essentially, given a preference statement,

one manipulates it syntactically until it is in what von Wright calls normal form. If the

resulting sentence is consistent, then so is the original sentence. This whole procedure

of sentence manipulation can be seen as giving the meaning of von Wright’s notion of

preference. Indeed, his whole discussion can be summarized in the following syntactic

principles:

1. ϕPψ → ¬(ψPϕ)

2. ϕPψ ∧ ψPξ → ϕPξ

3. ϕPψ ≡ (ϕ ∧ ¬ψ)P (¬ϕ ∧ ψ)

4. (a) ϕP (ψ ∨ ξ) ≡ ϕPψ ∧ ϕPξ

(b) (ϕ ∨ ψ)Pξ ≡ ϕPξ ∧ ψPξ

5. ϕPψ ≡ [(ϕ ∧ r)P (ψ ∧ r)] ∧ [(ϕ ∧ ¬r)P (ψ ∧ ¬r)], where r is any propositional

variable not occurring in either ϕ or ψ.

The first two principles express asymmetry and transitivity of preference respectively,

and are typical assumptions about preferential relations. The asymmetry of the
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relation is obvious with a notion of strict preference; if one strictly prefers p to q,

then it is not the case that one also strictly prefers q to p.

Transitivity has a strong intuitive appeal, although it has often been questioned

(see, for a good discussion, [27]). I leave the discussion of paradoxes involving tran-

sitive preferences aside. From a logical point of view, transitivity of preferences is

natural. Even though it may fail at psychologically, assuming the logical core of

preferences to be transitive is reasonable.

The third principle is known as conjunctive expansion: given two states of affairs

p and q, to say that p is preferred to q is to say that a state of affairs with p ∧ ¬q

is preferred to a state of affairs with ¬p ∧ q. Conjunctive expansion predates von

Wright, and was introduced in the field of deontic logic by Halldén in [25].2

The fourth principle analyzes disjunctions in terms of conjunctions in preference

expressions. For instance, if I prefer flying to taking either a bus or a train, then I

prefer flying to taking a bus, and I prefer flying to taking a train. This requirement

seems natural, and I show below (cf. Section 5.3) that it follows from Order Logic.

The final principle, which is the leitmotiv of the next chapter, is what makes pref-

erences unconditional, in von Wright’s terminology. It says that a change in the world

might influence the preference order between two states of affairs, but if all conditions

stay constant in the world, then so does the preference order. ‘Ceteris paribus’ is the

terminology commonly used to express this feature. Here is a formal expression, given

by von Wright. Let ϕ be a formula. Denote by PL(ϕ) the set of propositional let-

ters that occur in ϕ, and which von Wright calls the universe of discourse. Suppose

r 6∈ PL(ϕPψ), then replace every formula ϕPψ by the conjunction

(ϕ ∧ r)P (ψ ∧ r) ∧ (ϕ ∧ ¬r)P (ψ ∧ ¬r).

Von Wright calls this principle amplification. Amplification is applied for every r in

the complement of PL(ϕPψ) with respect to the set of propositional letters. Ampli-

fication guarantees that every r in the universe of discourse of a formula that is not

directly relevant to the evaluation of a preference subformula is kept constant. This

2A similar principle is also found in the literature on verisimilitude [65]. For a philosophical
criticism, see [32]. For an interesting (but short) discussion of Halldén’s principle, see [13], in which
Castañeda, after showing a counterexample to the principle, still provides the following in its defense:

“When St. Paul said “better to marry than to burn” he meant “it is better to marry
and not burn than not to marry and burn”.”



4.2. BINARY PREFERENCES 59

would not be the case, for example, if we could have a resulting sentence of the form

r∧¬bPu∧b, which expresses something of the form “I prefer having my umbrella and

my boots over having my raincoat but no boots.” The loss of my boots in this ex-

ample would reverse my preference for my raincoat over my umbrella. Amplification

guarantees that only the universe of discourse of a preference statement is relevant in

the evaluation of the comparison.

It would be hard to get a better understanding of von Wright’s notion of ceteris

paribus by further consideration of the postulates and I end this discussion here. The

main purpose of the next chapter is to provide a precise semantics for ceteris paribus.

I have the advantage of more than thirty years of development in modal logic and

tools are now available that make a semantic treatment of ceteris paribus feasible. For

now, I focus on my own framework for preference logic, implementing one key idea

alluded to above: global (or general) preferences. Von Wright’s notion of preference

is further investigated in Section 5.3.

4.2 Binary preferences

In the introduction to the present chapter, I have claimed that a general preference of

say, blue over red, may be derived from the preference of every blue objects over every

red objects. But it might be required instead that every blue objects be preferred to

some red objects, or that some blue ones be preferred to some red ones, and so on.

In this section, I investigate various binary notion of preferences. As was the case

with relational belief logic in Chapter 3, logics for binary preferences may be seen

as fragments of Order Logic. The various fragments that can be isolated, however,

depend on an assumption of totality of �. I first present eight binary preference

relations with their intended meaning. I then show that four of them can be defined

in LO with no special assumptions, but that the four others cannot be so defined

without assuming � to be total.
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Definition 4.2.1 [Binary preference statements]

M, u |= ϕ ≤∃∃ ψ iff ∃s, ∃t : M, s |= ϕ& M, t |= ψ& s � t (4.1)

M, u |= ϕ ≤∀∃ ψ iff ∀s, ∃t : M, s |= ϕ⇒ M, t |= ψ& s � t (4.2)

M, u |= ϕ <∃∃ ψ iff ∃s, ∃t : M, s |= ϕ& M, t |= ψ& s ≺ t (4.3)

M, u |= ϕ <∀∃ ψ iff ∀s, ∃t : M, s |= ϕ⇒ M, t |= ψ& s ≺ t (4.4)

M, u |= ϕ <∀∀ ψ iff ∀s, ∀t : M, s |= ϕ& M, t |= ψ ⇒ s ≺ t (4.5)

M, u |= ϕ >∃∀ ψ iff ∃s, ∀t : M, s |= ϕ& M, t |= ψ ⇒ t ≺ s (4.6)

M, u |= ϕ ≤∀∀ ψ iff ∀s, ∀t : M, s |= ϕ& M, t |= ψ ⇒ s � t (4.7)

M, u |= ϕ ≥∃∀ ψ iff ∃s, ∀t : M, s |= ϕ& M, t |= ψ ⇒ t � s (4.8)

�

The formulas ϕ ≤∃∃ ψ and ϕ <∃∃ ψ may be read as “there is a ψ-state that is

at least as good as a ϕ-state”, and “there is a ψ-state that is strictly better than a

ϕ-state” respectively. The other comparative statements, ϕ ≤∀∃ ψ and ϕ <∀∃ ψ, can

be read as “for every ϕ-state, there is a ψ-state that is at least as good” and as “for

every ϕ-state, there is a strictly better ψ-state” respectively. The other connectives

receive similar intuitive readings.

Fact 4.2.2 The first four preference operators of Definition 4.2.1 can be defined in

LO.

ϕ ≤∃∃ ψ := E(ϕ ∧ 3
≤ψ) (4.9)

ϕ ≤∀∃ ψ := U(ϕ → 3
≤ψ) (4.10)

ϕ <∃∃ ψ := E(ϕ ∧ 3
<ψ) (4.11)

ϕ <∀∃ ψ := U(ϕ → 3
<ψ) (4.12)
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Proof. The first and third definitions are obvious, and the second and last are proved

in a similar fashion. I thus show 4.10:

M, u |= ϕ ≤∀∃ ψ iff ∀s, ∃t : M, s |= ϕ⇒ M, t |= ψ& s � t

iff ∀s : M, s |= ϕ⇒ ∃t : s � t& M, t |= ψ

iff ∀s : M, s |= ϕ⇒ M, s |= 3≤ψ

iff ∀s : M, s |= ϕ→ 3≤ψ

iff M, u |= U(ϕ→ 3≤ψ)

qed

If totality is assumed, the four other operators of Definition 4.2.1 can also be

defined in LO. I give the translations before showing that the assumption of totality

is crucial.

Fact 4.2.3 The remaining four preference operators of Definition 4.2.1 can be defined

in LO, assuming totality.

ϕ <∀∀ ψ := U(ψ → 2
≤¬ϕ) (4.13)

ϕ >∃∀ ψ := E(ϕ ∧ 2
≤¬ψ) (4.14)

ϕ ≤∀∀ ψ := U(ψ → 2
<¬ϕ) (4.15)

ϕ ≥∃∀ ψ := E(ϕ ∧ 2
<¬ψ) (4.16)

Proof. I give the proof for the first two cases, the two others being similar.

M, u |= ϕ <∀∀ ψ iff ∀s, t : M, s |= ϕ& M, t |= ψ ⇒ s ≺ t

iff ∀s, t : M, s |= ϕ& M, t |= ψ ⇒ t 6� s Totality!

iff ∀s, t : M, t |= ψ ⇒ (t � s⇒ M, s |= ¬ϕ) Logic

iff ∀t : M, t |= ψ ⇒ M, t |= 2≤¬ϕ

iff M, u |= U(ψ → 2≤¬ϕ)

M, u |= ϕ >∃∀ ψ iff ∃s, ∀t : M, s |= ϕ& M, t |= ψ ⇒ t ≺ s

iff ∃s, ∀t : M, s |= ϕ& t 6≺ s⇒ M, t |= ¬ψ

iff ∃s, ∀t : M, s |= ϕ& s � t⇒ M, t |= ¬ψ Totality!

iff ∃s : M, s |= ϕ& M, s |= 2≤¬ψ Logic

iff M, u |= E(ϕ ∧ 2≤¬ψ)
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w1

v1 v3 v4v2
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M
′

ψ

ψ ψ

M ϕ

ϕ ϕ

Figure 4.1: ϕ <∀∀ ψ is not definable on totally ordered models.

qed

Notice that the four last connectives are the duals of the others, assuming totality.

For example, Equation 4.13 can be obtained from the dual of 4.1 by:

ϕ <∀∀ ψ ⇔ ¬(ψ ≤∃∃ ϕ) ⇔ ¬E(ψ ∧ 3≤ϕ) ⇔ U(ψ → 2≤¬ϕ)

Fact 4.2.4 The connectives ϕ <∀∀ ψ, ϕ >∃∀ ψ, ϕ ≤∀∀ ψ and ϕ ≥∃∀ ψ are not

definable in their intended meaning in terms of LO on non-totally ordered models.

Proof of Fact Consider the models in Figure 4.1. The � relations are given by

the black arrows, while the bisimulation is indicated by the dashed lines. The same

model may be used to analyze all four cases, but I only prove the ϕ <∀∀ ψ case. First,

since w1 is the only ϕ-state in M, and the only world that it can see is a ψ-state,

M, w1 |= ϕ <∀∀ ψ. But M′, v1 6|= ϕ ≤∀∀ ψ, since v4 is a ψ-state that is not preferred

to v1. Since the states w1 and v1 are bisimilar, they are modally equivalent with

respect to LO, hence no formula in LO defines ϕ <∀∀ ψ, since w1 and v1 disagree on

its truth-value.

◭

4.3 The ∀∀ fragment

The binary preference formulas constitute only a small part of LO. To show how

to handle such notions of preference directly, I focus in this section on a fragment,

denoted LO
<

∀∀, based on the binary preference modalities ϕ ≤∀∀ ψ and ϕ <∀∀ ψ. I

investigate its expressive power and axiomatize it completely with respect to totally

ordered preference models. I make this assumption about totality of models following



4.3. THE ∀∀ FRAGMENT 63

Fact 4.2.4 because I want ≤∃∃ and <∃∃ to be the duals of ≤∀∀ and <∀∀ respectively.

Hence, the fragment LO
<

∀∀ that I investigate is generated by the following rule:

LO
<

∀∀ := p | ϕ ∧ ψ | ¬ϕ | ϕ ≤∀∀ ϕ | ϕ <∀∀ ψ

Interpretation

The truth definition for the propositional letters and Booleans is standard. The

interpretation of ϕ ≤∀∀ ψ, ϕ <∀∀ ψ and their duals ϕ ≤∃∃ ψ and ϕ <∃∃ ψ is given in

Definition 4.2.1.

Expressivity of LO
<∀∀

As I have stressed many times already, the modalities of LO
<

∀∀ act globally. A formula

ϕ ≤∀∀ ψ is true in a model if certain conditions are met everywhere in the model. It

should be expected that the global modality E to definable in this fragment. Indeed:

Fact 4.3.1 The existential modality Eϕ of LO is expressible in LO
<

∀∀ by ϕ ≤∃∃ ϕ.

Proof. I show that M, u |= ϕ ≤∃∃ ϕ iff there exists a v ∈ W such that M, v |= ϕ.

But M, u |= ϕ ≤∃∃ ϕ iff there exists s, t ∈ W such that M, s |= ϕ, M, t |= ϕ and

s � t from the truth-definition. Hence, there exists v ∈ W such that M, v |= ϕ. The

other direction follows from the reflexivity of �, since v � v and M, v |= ϕ imply

that M, u |= ϕ ≤∃∃ ϕ. qed

As a consequence of Lemma 4.3.1, The universal modality Uϕ is also expressible

in LO
<

∀∀ by ¬ϕ <∀∀ ¬ϕ.

To further investigate the expressivity of LO
<

∀∀, a notion slightly weaker than

bisimulation, called double-simulation, is sufficient (cf. [73]).

Definition 4.3.2 (Double-simulation) A relation ⇋ is a double-simulation be-

tween two preference models M, w and M′, v, noted M, w ⇋ M′, v, iff

1. For all p ∈ prop, s ⇋ t⇒ s ∈ V (p) iff t ∈ V ′(p).

2. For all s, t ∈ W with s � t (s ≺ t) : ∃s′, t′ ∈ W ′ : s ⇋ s′, t ⇋ t′ & s′ �′ t′ (s′ ≺

t′).

3. For all s′, t′ ∈ W ′ with s′ �′ t′ (s′ ≺ t′) : ∃s, t ∈ W : s′ ⇋ s, t′ ⇋ t& s � t (s ≺

t).
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Figure 4.2: Double-similar, but not bisimilar models.

The following proposition shows that bisimulation and double-simulation indeed

differ.

Proposition 4.3.3 For any preference models M and M′, if M, w ↔ M′, v then

M, w ⇋ M′, v, but there are some preference models for which M, w ⇋ M′, v and

M, w 6↔ M′, v.

Proof. If M, w ↔ M′, v, then the relation which establishes a bisimulation between

M, w and M′, v also establishes a double-simulation. This establishes the first claim.

For the second claim, consider the model in Figure 4.2 (reflexive arrows omitted).

The pointed models M, v1 and M′, w2 are double-similar, but not modally equivalent,

since M, v1 |= 3(p ∧ 3q) but M′, w2 6|= 3(p ∧ 3q). Hence, the two models are not

bisimilar. qed

A usual argument by induction on formulas using the duals of ≤∀∀ and <∀∀ es-

tablishes the following proposition, which I state without proving it:

Proposition 4.3.4 Let M, w and M′, w′ be two pointed preference models. Then

M, w ⇋ M′, v implies that M, w ! M′, v.

Proposition 4.3.4 can be applied to show that LO
<

∀∀ is less expressive than LO. I

show a number of expressive limitations of LO
<

∀∀ .

Fact 4.3.5 The following connectives and frame properties are not definable in LO
<

∀∀:

1. The modal diamonds 3≤ and 3<,

2. ≤∀∃, as defined in LO,

3. Reflexivity and transitivity of �,
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Figure 4.3: Double-similar models

4. Quasi-adequacy, as introduced in Section 2.1.

Proof of Fact 4.3.5

1. Consider the pair of models in Figure 4.2. The pointed models M, w3 and

M′, v2 are double-similar but not modally equivalent, since M, w3 6|= ∗p and

M, v2 |= ∗p, where ∗ stands for either 3≤ or 3<.

2. Consider the double-similar pointed models M, v1 and M′, w2 in Figure 4.2.

M,w2 |= p ≤∀∃ q but M ′, v1 6|= p ≤∀∃ q.

3. Figure 4.3 displays two pairs of double-similar models. In the left figure,

M, v1 ! M′, w1, from Proposition 4.3.4, but reflexivity is not preserved and

thus not definable in LO
<

∀∀ . The right-hand figure shows that transitivity is

not definable either.

4. Consider the pair of double-similar models M, w3 and M′, v1 from Figure 4.4.

The dashed arrows indicate that w3 � w4, but neither w4 � w3 nor w3 ≺ w4.

Nevertheless, M, w3 ! M′, v1, from 4.3.4, and therefore quasi-adequacy is not

definable in LO
<

∀∀.

◭

Axiomatization

To simplify notation, I use the abbreviation Eϕ for ϕ ≤∃∃ ϕ and Uϕ for ¬ϕ <∀∀ ¬ϕ

in the next definition. In the axioms listed below, ∗ stands for either ≤∀∀ or <∀∀.
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Figure 4.4: No quasi-adequacy

Definition 4.3.6 The complete logic ΛLO
−

is the following set of formulas, along with

all propositional tautologies, and closed under the inference rules of necessitation for

U and substitution of logical equivalents.

ϕ ≤∃∃ ψ ↔ ¬(ψ <∀∀ ϕ) (4.17)

ϕ <∃∃ ψ ↔ ¬(ψ ≤∀∀ ϕ) (4.18)

ϕ ∗ ψ ∧ U(ξ → ψ) → (ϕ ∗ ξ) (4.19)

ϕ ∗ ψ ∧ U(ξ → ϕ) → ξ ∗ ψ (4.20)

ϕ ≤∀∀ ψ ∧ Eϕ ∧ Eψ → ϕ ≤∃∃ ψ (4.21)

ϕ <∀∀ ψ ∧ Eϕ ∧Eψ → ϕ <∃∃ ψ (4.22)

ϕ ∗ ξ ∧ ξ ∗ ψ ∧ Eξ → ϕ ∗ ψ (4.23)

Uϕ→ ϕ (4.24)

U¬ϕ ∨ U¬ψ → ϕ ∗ ψ (4.25)

ϕ ∗ ψ → U(ϕ ∗ ψ) (4.26)

ϕ <∀∀ ψ → ϕ ≤∀∀ ψ (4.27)

�

Completeness

Theorem 4.3.7 The logic ΛLO
−

is sound and complete with respect to the class of

totally ordered preference models.
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Soundness does not present special difficulties and I focus on completeness. As

above, I show that every ΛLO
−

-consistent set Φ of formulas has a model. I use

the definition of the canonical model MLO
−

= 〈WLO
−

,�LO
−

, V LO
−

〉 for language of

arbitrary similarity types as given in [7], Definition 4.24, where the relation is defined

by:

u �LO v iff for all formulas ϕ and ψ, ϕ ∈ u and ψ ∈ v implies that ϕ ≤∃∃ ψ ∈ u.

The strict sub-relation of �LO is then defined by w ≺LO v iff w �LO v and not

v �LO sw. For the remainder of the proof, I omit the superscript LO
−. With this

definition in hand, I can readily use the Existence Lemma 4.26 and the Truth Lemma

4.2.4 of [7]. I state them without proofs.

Lemma 4.3.8 Existence Lemma. If ϕ ≤∃∃ ψ ∈ w, then there are u, v ∈W such that

ϕ ∈ u, ψ ∈ v and u � v.

Lemma 4.3.9 Truth-Lemma. For any formula ϕ, M, w |= ϕ iff ϕ ∈ w.

From these two lemmas, it follows that ΛLO
−

is complete with respect to the

class of all models. What remains to be shown is that it is complete with respect to

the class of totally ordered preference models. This result follows from the following

lemma:

Lemma 4.3.10 The relation � defined above is (1) reflexive, (2) total and (3) tran-

sitive

Proof.

1. I show that for all u, v, v � v, i.e., that ∀ϕ, ψ(ϕ ∈ u&ψ ∈ v ⇒ ϕ ≤∃∃ ψ ∈ u).

But ϕ ∈ u&ψ ∈ v implies that E(ϕ ∧ ψ) := (ϕ ∧ ψ ≤∃∃ ϕ ∧ ψ) ∈ u, which

implies that ϕ ≤∃∃ ψ ∈ u by the monotonicity Axioms 4.19 and 4.20.

2. I show that for all u, v, u � v or v � u. Assume that ¬u � v. I show that

v � u, i.e., ∀ϕ, ψ(ϕ ∈ v&ψ ∈ u ⇒ ϕ ≤∃∃ ψ ∈ v). Let ϕ ∈ v and ψ ∈ u be

arbitrary. I show that ϕ ≤∃∃ ψ ∈ v.

From the assumption that ¬u � v and the definition of the relation �, it follows

that ∃ξ, σ : ξ ∈ u and σ ∈ v and ξ ≤∃∃ σ 6∈ u. Hence (1) ξ∧ψ ∈ u, (2) σ∧ϕ ∈ v

and (3) σ <∀∀ ξ ∈ u, using the duality Axiom 4.17. (3) together with axioms
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4.19 and 4.20 imply that σ ∧ ϕ <∀∀ ξ ∧ ψ ∈ u. Let α := ξ ∧ ψ and β := σ ∧ ϕ.

From the duality axiom, (4) ¬(α ≤∃∃ β) ∈ u.

Now suppose that ϕ ≤∃∃ ψ 6∈ v, then ψ <∀∀ ϕ ∈ u, using the duality axiom and

Axiom 4.26 successively, which implies that α <∀∀ β ∈ u from axioms 4.19 and

4.20. But (1) and (2) imply that Eα ∈ u and Eβ ∈ u and thus α <∃∃ β ∈ u

from axiom 4.22. Finally, axiom 4.27 gives that α ≤∃∃ β ∈ u, contradicting (4).

Therefore, ϕ ≤∃∃ ψ ∈ u and hence v � u, as required.

3. I need to show that u � v& v � s ⇒ u � s. Using Logic and totality of �

as proved above, it is enough to show that (v 6≺ u& s 6≺ v) ⇒ s 6≺ u. Hence,

I need to show that there is a ϕ ∈ s and ψ ∈ u such that ϕ ≤∃∃ ψ 6∈ s, i.e.,

ψ <∀∀ ϕ ∈ s. But v 6� u and totality imply that there is a ϕ′ ∈ v and ψ′ ∈ u

such that ψ′ <∀∀ ϕ
′ ∈ v and s 6� v implies that there is ϕ′′ ∈ s and ψ′′ ∈ v

such that ψ′′ <∀∀ ϕ′′ ∈ s. By the monotonicity Axioms 4.19 and 4.20 and

Axiom 4.26, it follows that ψ′ <∀∀ (ϕ′ ∧ ψ′′) ∈ s and (ϕ′ ∧ ψ′′) <∀∀ ϕ
′′ ∈ s.

Furthermore, ϕ′∧ψ′′ ∈ v implies that E(ϕ′ ∧ψ′′) ∈ s. Therefore, ψ′ <∀∀ ϕ
′′ ∈ s

by the transitivity Axiom 4.22, which was required to show.

qed

4.4 Dynamics

To introduce dynamics in LO
<

∀∀, I apply the technique seen in the previous chapter

of translating everything in LO and performing the reduction there, using Theorem

2.2.2. Here, however, the technique is more successful, as one can translate the result

back into LO
<

∀∀.

The axioms listed in the next theorem are stated in terms of the existential binary

preference statement ≤∃∃ in order to allow direct appeal to Theorem 2.2.2.

Theorem 4.4.1 The complete logic of universal binary preference logic with prefer-

ence upgrade is given by 1) the axiomatization given in Definition 4.3.6 and 2) the
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following list of reduction axioms:

〈#A〉p ↔ p (4.28)

〈#A〉¬ϕ ↔ ¬〈#A〉ϕ (4.29)

〈#A〉(ϕ ∨ ψ) ↔ 〈#A〉ϕ ∨ 〈#A〉ψ (4.30)

〈#A〉(ϕ ≤∃∃ ψ) ↔ (A ∧ 〈#A〉ϕ) ≤∃∃ (A ∧ 〈#A〉ψ)

∨ (¬A ∧ 〈#A〉ϕ) ≤∃∃ 〈#A〉ψ (4.31)

〈#A〉(ϕ <∃∃ ψ) ↔ (A ∧ 〈#A〉ϕ) <∃∃ (A ∧ 〈#A〉ψ)

∨ (¬A ∧ 〈#A〉ϕ) <∃∃ 〈#A〉ψ (4.32)

〈#A〉Eϕ ↔ E〈#A〉ϕ (4.33)

Proof. As we saw in Chapter 2, all that I need to show is that the axioms are

sound. The only distinguishing cases are Axioms 4.31 and 4.32. I show soundness

of the former, appealing to Fact 4.2.2 and Theorem 2.2.2. The strategy consists in

translating 〈#A〉ϕ ≤∃∃ ψ into LO and performing compositional analysis there, before

translating back to the binary preference language.

〈#A〉(ϕ ≤∃∃ ψ) ↔ 〈#A〉E(ϕ ∧ 3≤ψ) Fact 4.2.2

↔ E〈#A〉(ψ ∧ 3≤ψ) Theorem 2.2.2

↔ E(〈#A〉ψ ∧ 〈#A〉3≤ψ) Theorem 2.2.2

↔ E(〈#A〉ψ ∧ (A ∧ 3≤(A ∧ 〈#A〉ψ)

∨¬A ∧ 3≤〈#A〉ψ)) Theorem 2.2.2

↔ E(A ∧ 〈#A〉ϕ ∧ 3≤(A ∧ 〈#A〉ψ)

∨(¬A ∧ 〈#A〉ϕ ∧ 3≤〈#A〉ψ)) Logic

↔ E(A ∧ 〈#A〉ϕ ∧ 3≤(A ∧ 〈#A〉ψ))

∨E(¬A ∧ 〈#A〉ϕ ∧ 3≤〈#A〉ψ)) Modal Logic

↔ (A ∧ 〈#A〉ϕ) ≤∃∃ (A ∧ 〈#A〉ψ)

∨(¬A ∧ 〈#A〉ϕ) ≤∃∃ 〈#A〉ψ Fact 4.2.2

qed

Once again, Order Logic shows to be a good setting to investigate preferences. It

is indeed well suited to analyze dynamics of binary preferences, as the last theorem

demonstrates.
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Summary

In this chapter, I have investigated the binary preference fragment of Order Logic.

I have first looked back at the rise of Preference Logic in the seminal work of von

Wright. I have then suggested eight binary preference definitions that lead to various

fragments of Order Logic. I have also shown how to axiomatize a specific fragment,

the ∀∀ one, and provided a completeness result. Introducing the dynamic action of

preference upgrade was straightforward and has shown how Order Logic can be used

to get reduction axioms for its fragments, by translating everything in it, performing

the reduction there, and then translating back. The main contributions presented in

this chapter are twofold. The first one is the completeness result for the ∀∀ fragment

contained in Theorem 4.3.7. The second one, completed in the next Chapter with

ceteris paribus logic, is a thorough investigation of von Wright’s preference logic, both

semantically and axiomatically.



Chapter 5

Ceteris Paribus Logic

Even though Robert has acknowledged to prefer the Camembert over the goat cheese

served to us, he might not have changed his mind about his former preference. After

all, Paris’s cheese is quite different from what he could find back home. It would still

have been rational for him to withhold his preference for goat cheese over Camembert

and take his experience in Paris as an exception; preferences can be defeated.

Typically, preferences allowing for defeaters are expressed with ceteris paribus

clauses, most commonly translated as “all other things being equal”. In this chapter,

I present a modal logic for defeasible preferences based on a strict reading of “all

other things being equal” given by mathematical equivalence classes. I call it Ceteris

Paribus Logic and denote it ‘CPL’. CPL is a new kind of modal logic interesting

both for its conceptual and mathematical implications. Conceptually, it analyzes per-

spicuously defeasible preferences and more generally the meaning of ‘ceteris paribus’.

Mathematically, it yields extensions of Modal Logic with an infinitary side compara-

ble to that of Propositional Dynamic Logic, yet independent from it. Furthermore,

its dynamification provides a new kind of action over models, which I express in terms

of ‘research agenda’. The techniques I develop in this chapter could be applied to

any basic modal logic, but I work out the initial presentation over the Order Logic of

Chapter 2.1

The chapter is divided as follows. In Section 5.1, I present two senses typically

given to ceteris paribus, which I call the normality and the equality reading. In Sec-

tion 5.2, I formalize the latter reading, first by giving its semantics, then axiomatizing

1The results contained in the chapter have been obtained in collaboration with Johan van Ben-
them and Olivier Roy in [68]. In this paper, we have taken the liberal nomenclature of ‘Preference
Logic’ instead of the ‘Order Logic’ used here.

71
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it along with a completeness result for the finite fragment. In Section 5.3, I come

back to von Wright’s preference logic and the set of postulates discussed in Section

4.1. In Section 5.4, I abstract away from Preference and Order Logics and investigate

mathematical questions pertaining to ceteris paribus logic. Dynamification of ceteris

paribus logic is investigated in Section 5.5, where I show how public announcement

and preference upgrade can be introduce, but also discuss two new actions over mod-

els, called agenda expansion and contraction. In Appendix B, I discuss an application

of the equality reading of ceteris paribus to Game Theory, by showing that the Nash

Equilibrium solution concept can be represented inside ceteris paribus logic.

5.1 Different senses of ceteris paribus

In the present section, I distinguish two senses ‘ceteris paribus’: 1) “all other things

being normal” and 2) “all other things being equal”, which I call the normality and

equality readings of ceteris paribus respectively. I first discuss the normality reading

and discuss to what extent it is already analyzable in Order Logic. I then consider

the equality reading and compare it to the first one.

Ceteris paribus as normality

Ceteris paribus as “all other things being normal” is taken to mean that, under normal

conditions, something ought to be the case. This is the sense that plays a role, for

instance, in the philosophical debate between Schiffer and Fodor over psychological

laws, in which Fodor argued that ceteris paribus laws are necessary to provide special

sciences with scientific explanation [20, 57]. A typical example given to illustrate this

reading is the preference of red over white wine, unless when eating fish. Having fish

with wine is taken as an atypical situation that defeats the original preference; it is a

defeater of the general rule taken into account by the ceteris paribus clause.

To some extent, the basic preference language is sufficient to express the “all other

things being normal” reading. Consider the preference alluded above of red over white

wine. I assume that when saying “I prefer red over white wine, unless I’m having

fish”, one expresses that under normal conditions (having meat, cheese, pasta, salad,

etc.), one prefers red wine to white wine. To simplify the exposition, I assume that

the normal conditions for comparing red and white wine are all those where fish is

not served. This is illustrated in Figure 5.1, where f stands for ‘fish’, m for ‘meat’,
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mw fr fw mr

Figure 5.1: Model of a preference for red wine over white wine under normal condi-
tions. w stands for white wine, r for red, f for fish and m for meat.

r for ‘red wine’ and w for ‘white wine’. Building on Definition 4.2.1, to express that

red wine is preferred to white wine in normal conditions, I write:

(¬f ∧ w) ≤∀∀ (¬f ∧ r).

More generally, if the normal conditions are given by a set of formulas2, then I

can express that ψ is preferred to ϕ in normal conditions.

Fact 5.1.1 Given a set of normal conditions C = {ϕ1, ..., ϕn}, ϕPψ in normal con-

ditions translates as:

ϕ ∧
∧

C ≤∀∀ ψ ∧
∧

C

Thus, I can express preferences ceteris paribus as “all other things being normal”

in the base language, given a full description of a particular situation. But the logic

itself does not provide the set of normal conditions, nor does it guide the choice of

conditions - this is relegated to the modeler. Indeed, the weak reading of ceteris

paribus only says that certain patterns of preferences hold in a restricted set of con-

trolled conditions, a set that varies quite arbitrarily. In other words, given a set of

normal conditions C in the language, then I can specify the preferences conjoined

with C, leaving the not− C case open.

But often (the usual situation) one cannot define the relevant normal conditions

and then needs to incorporates the normal conditions in the formalism with some

extra plausibility structure for each world. That is, it might be that a preference

is defined with respect to a set of normal conditions without this set being fully

describable, because, for instance, not all normal conditions are known. One may

still want to apply logical reasoning in such cases and one way to do it is by taking an

abstract view on normality and introducing a normality order between worlds [36].

This is a typical strategy in non-monotonic logic. The most plausible worlds in that

structure provide the normal conditions for the evaluation of the preference relation.

2A set of normal conditions is called a completer in [20]
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The normality sense of ceteris paribus thus links up with a well-established tradition

in non-monotonic logic, which I do not pursue further here.

Ceteris paribus as equality

The equality reading of ceteris paribus is less frequent in the literature. In the field of

preference logic, as I already noted multiple times, von Wright is the main proponent

of this reading. Rather than providing a set of normal conditions, the equality reading

identifies facts to be kept constant in preferential relations. This receives a natural

mathematical interpretation in terms of equivalence classes, as is formally explained

in [19], namely to divide a space of possibilities into equivalence classes and ignore

comparison links that go across them.

The idea behind the equality reading is that reasoning may be conducted with

a certain body of knowledge kept constant. The example given in Section 4.1 when

talking about amplification is the example given by Von Wright himself. It expressed

a preference of a raincoat over an umbrella when the consideration of having boots is

kept constant. That is, if I have my boots, then I prefer my raincoat over my umbrella

and similarly if I do not have my boots, I still prefer my raincoat over my umbrella.

But I do prefer an umbrella and boots over a raincoat and no boots. In this case, I say

that the preference of my raincoat over my umbrella is ceteris paribus with respect

to having my boots. This is illustrated in figure 5.2. In short, the equality reading

specifies, for some definable partition of the domain, that the same preferences must

hold in every zone. In the remainder of this chapter, I formalize this equality reading

of ceteris paribus.

5.2 Equality-based ceteris paribus Order Logic

In this section, I generalize the Order Language LO by relativizing the modalities

with respect to sets of formulas representing the conditions to be kept “equal”. I call

the resulting language LCP .

General setting

Definition 5.2.1 [Language] Let prop be a set of propositions, and let Γ be a set

of formulas of the base language (to be specified below). The language LCP is defined
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s t

s
′

t
′

u r

u r

Figure 5.2: A simple illustration of a ceteris paribus preference of a raincoat (r) over
an umbrella (u). Arrows point to preferred states. The model is divided into two
equivalence classes, in each of which every r-state is preferred to every u-state. Only
the dotted arrow indicates a preference for u over r, but the arrow goes across the
equivalence classes, which I count as a violation of “all other things being equal”.

by the inductive rules:

LCP := p | ¬ϕ | ϕ ∨ ψ | 〈Γ〉≤ϕ | 〈Γ〉<ϕ | 〈Γ〉ϕ

The set Γ is restricted to formulas of the base language, i.e., members of prop,

Boolean combinations of them, or modalities of the form 〈∅〉ϕ, 〈∅〉≤ϕ or 〈∅〉<ϕ. �

To simplify the exposition in the rest of the paper, I introduce a new piece of

notation. Given a set of formulas Γ, if w and v are two states such that for all ϕ ∈ Γ,

M, w |= ϕ iff M, v |= ϕ, then I say that w and v are equivalent with respect to Γ, and

I write w ≡Γ v.

Definition 5.2.2 [Ceteris paribus models] A ceteris paribus preference model is a

quadruple M = 〈W,�,�Γ, V 〉, where:

• 〈W,�, V 〉 is a standard order model as in Definition 2.1.1 and

• �Γ is a binary relation such that w �Γ v iff a) w � v, and b) w ≡Γ v.

�

The strict subrelation ⊳Γ is defined by a) w ≺ v and b) w ≡Γ v. As above, a

pointed preference model is a pair M, w where w ∈W . The notation w ≡Γ v makes it

explicit that the ceteris paribus preferential relation is the intersection of two relations:

the basic preference relation and the equivalence relation with respect to the truth-

valuation of the formulas in Γ.



76 CHAPTER 5. CETERIS PARIBUS LOGIC

Definition 5.2.3 [Truth definition] Formulas of LCP are interpreted in pointed ce-

teris paribus preference models. The truth conditions for the proposition letters and

the Booleans are standard. Here are the three crucial clauses:

M, w |= 〈Γ〉≤ϕ iff ∃v such that w �Γ v& M, v |= ϕ

M, w |= 〈Γ〉<ϕ iff ∃v such that w ⊳Γ v& M, v |= ϕ

M, w |= 〈Γ〉ϕ iff ∃v such that w ≡Γ v& M, v |= ϕ

�

LCP vs LO

The following facts show that the ceteris paribus variant of Order Logic is a proper

extension of it, since it can recover its modalities, but not, in general, the other way

around.

Fact 5.2.4 The modalities 3≤ϕ,3<ϕ and the existential modality Eϕ of LO are

expressible in LCP .

Proof. The following equivalences hold:

1. M, w |=LO
3≤ϕ iff M, w |=LCP

〈∅〉≤ϕ

2. M, w |=LO
3<ϕ iff M, w |=LCP

〈∅〉<ϕ

3. M, w |=LO
Eϕ iff M, w |=LCP

〈∅〉ϕ.

I show how to prove the first claim, and leave the two other cases to the reader.

In the one direction, assume that M, w |= 3≤ϕ. This implies that ∃v(w �

v& M, v |= ϕ). But, w ≡∅ v is vacuously true. Hence, ∃v(w �∅ v& M, v |= ϕ).

Therefore, by the semantic definition, M, w |= 〈∅〉≤ϕ.

In the other direction, assume that M, w |= 〈∅〉≤ϕ. Then ∃v(w �∅ v&M, v |= ϕ)

by the semantic definition. This implies that ∃v(w � v&w ≡∅ v& M, v |= ϕ), by

Definition 5.2.2. Hence, ∃v(w � v& M, v |= ϕ). Therefore, M, w |= 3≤ϕ. qed

In the other direction, I show that LCP reduces to LO for finite sets of “equality

conditions”.

Fact 5.2.5 If Γ is a finite set of formulas, then the modalities 〈Γ〉≤ϕ, 〈Γ〉<ϕ and 〈Γ〉ϕ

are expressible in the order language LO.
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Proof. Let Γ = {ϕ1, ...ϕn}. Consider the set ∆ of all possible conjunctions of

formulas and negated formulas taken from Γ, i.e., the set of all formulas α of the form

α :=
∧

ϕi∈Γ ±ϕi(1 ≤ i ≤ n), where +ϕi = ϕi and −ϕi = ¬ϕi. Then,

1. M, w |=LCP
〈Γ〉≤ϕ iff M, w |=LO

∨

α∈∆(α ∧ 3≤(α ∧ ϕ))

2. M, w |=LCP
〈Γ〉<ϕ iff M, w |=LO

∨

α∈∆(α ∧ 3<(α ∧ ϕ))

3. M, w |=LCP
〈Γ〉ϕ iff M, w |=LO

∨

α∈∆(α ∧ E(α ∧ ϕ))

I prove the first case.

In the first direction, assume that M, w |= 〈Γ〉≤ϕ, then ∃v(w �Γ v& M, v |= ϕ).

But one and only one α ∈ ∆ is satisfied in w (since ∆ is an exhaustive list of the

possible valuations of formulas in ∆, and since the α’s are mutually inconsistent),

which implies that M, w |= ±ϕi, 1 ≤ i ≤ n, where ±ϕi = ϕi if M, w |= ϕi and

±ϕi = ¬ϕi if M, w 6|= ϕi. But w �Γ v implies that w ≡Γ v, hence M, v |= ±ϕi, 1 ≤

i ≤ n. Thus, M, v |= α, and M, v |= α ∧ ϕ. Since w �Γ v, also w � v, which

implies that M, w |= 3≤(α∧ϕ) by the semantic definition. But M, w |= α, therefore,

M, w |= α ∧ 3≤(α ∧ ϕ) and finally M, w |=
∨

α∈∆(α ∧ 3≤(α ∧ ϕ)).

In the other direction, assume that M, w |=
∨

α∈∆(α ∧ 3≤(α ∧ ϕ)). For the same

reason as above, it must that there is an α ∈ ∆ such that M, w |= α ∧ 3≤(α ∧ ϕ).

Hence, there exists a v ∈ W such that w � v,M, v |= α and M, v |= ϕ. Thus, there

exists a v such that M, v |= ±ϕi (1 ≤ i ≤ n), where ±ϕi = ϕi if M, w |= ϕi and

±ϕi = ¬ϕi if M, w 6|= ϕi. Hence, w ≡Γ v. By Definition 5.2.2, w�Γ v and M, v |= ϕ.

Therefore, by the semantic definition, M, w |= 〈Γ〉≤ϕ. qed

Of course, if Γ is infinite, this simple translation no longer works. I discuss the infinite

case in Section 5.4. But even in the finite case, LCP gives control over the reasoning

involving ‘equal conditions’ - hence it is worthwhile to determine its logic explicitly.

Axiomatization

The expressivity of CPL varies with assumption imposed on the structures of the

sets Γ in 〈Γ〉ϕ. In this section, I prove completeness when Γ is assumed to be finite.

The infinite case is still unsettled and I leave it as an open question. Notice that the

completeness of the finite fragment has already been obtained via translation in basic

Order Logic provided in Fact 5.2.5, in a way analogous to compositional analysis.

Nevertheless, a direct completeness proof for this logic is instructive, as it reveals the
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reasoning that ceteris paribus modalities sustains. Furthermore, the axiomatization

suggests a dynamic reading of the CP -modalities, investigated in Section 5.5.

I call ΛLCP the logic of ceteris paribus preference models. As above, ΛLCP has

several well-known fragments: S4 for 〈Γ〉≤ϕ, K for 〈Γ〉<ϕ (transitivity being derivable

from the inclusion axioms given below), and S5 for 〈Γ〉ϕ. To these are added the

following interaction axioms:

• Inclusion axioms:

〈Γ〉<ϕ→ 〈Γ〉≤ϕ (5.1)

〈Γ〉≤ϕ→ 〈Γ〉ϕ (5.2)

• Mixed axioms for 〈Γ〉≤ and 〈Γ〉<:

〈Γ〉≤〈Γ〉<ϕ→ 〈Γ〉<ϕ (5.3)

〈Γ〉<〈Γ〉≤ϕ→ 〈Γ〉<ϕ (5.4)

(ψ ∧ 〈Γ〉≤ϕ) → (〈Γ〉<ϕ ∨ 〈Γ〉≤(ϕ ∧ 〈Γ〉≤ψ)) (5.5)

• Ceteris paribus reflexivity, when ϕ ∈ Γ:

〈Γ〉ϕ→ ϕ (5.6)

〈Γ〉¬ϕ→ ¬ϕ (5.7)

• Mixed axioms for Γ:

– Γ ⊆ Γ′:

〈Γ′〉ϕ→ 〈Γ〉ϕ (5.8)

〈Γ′〉≤ϕ→ 〈Γ〉≤ϕ (5.9)

〈Γ′〉<ϕ→ 〈Γ〉<ϕ (5.10)
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• I also have some axioms reminiscent of cautious monotonicity for our 3 modal-

ities:

±ϕ ∧ 〈Γ〉(α ∧ ±ϕ) → 〈Γ ∪ {ϕ}〉α (5.11)

±ϕ ∧ 〈Γ〉≤(α ∧ ±ϕ) → 〈Γ ∪ {ϕ}〉≤α (5.12)

±ϕ ∧ 〈Γ〉<(α ∧ ±ϕ) → 〈Γ ∪ {ϕ}〉<α (5.13)

I show the soundness of Axioms 5.6 and 5.11.

Proof. For Axiom 5.6, assume that M, w |= 〈Γ〉ϕ and that ϕ ∈ Γ. Then there exists

a state v such that w ≡Γ v and M, v |= ϕ. Hence, M, w |= ϕ, since ϕ ∈ Γ.

I give the argument for ±ϕ = ϕ for axiom 5.11. Assume that (1) M, w |= ϕ and

(2) M, w |= 〈Γ〉(α ∧ ϕ). From (2), ∃v(w ≡Γ v & M, v |= α ∧ ϕ), which implies that

M, v |= ϕ. But from (1), M, w |= ϕ. Hence, w ≡Γ∪{ϕ} v. Therefore, by the truth

definition, M, w |= 〈Γ ∪ {ϕ}〉α. qed

By way of illustration, I derive another principle of the logic.

Example 5.2.6 ⊢ [Γ]≤ϕ ∧ 〈Γ〉≤α → 〈Γ ∪ {ϕ}〉≤α.

Proof of example 5.2.6.

i. ⊢ [Γ]≤ϕ ∧ 〈Γ〉≤α→ 〈Γ〉≤(α ∧ ϕ) modal logic

ii. ⊢ [Γ]≤ϕ→ ϕ Axiom T

iii. ⊢ [Γ]≤ϕ ∧ 〈Γ〉≤α→ 〈Γ ∪ {ϕ}〉≤α i) − ii), Axiom 5.12

qed

Completeness

Theorem 5.2.7 (Completeness) The logic ΛLCP is sound and complete with re-

spect to the class of ceteris paribus frames.

I already proved the soundness of two axioms above and the others do not present

special difficulties. For completeness, I use the following canonical model.

Definition 5.2.8 The canonical model MΛLCP = 〈WΛLCP ,�ΛLCP

Γ ,≡ΛLCP

Γ , V ΛLCP 〉,

with



80 CHAPTER 5. CETERIS PARIBUS LOGIC

Mc ↔
−−−→ Bull(Mc)





y





y

MΛLCP
↔

−−−→ Bull(MΛLCP )

Figure 5.3: Commuting diagram showing that applying bulldozing to � in Mc or to
� in MΛLCP amounts to the same operation.

• WΛLCP the set of all maximal consistent sets of ΛLCP ,

• w ≡ΛLCP

Γ v iff for all ψ ∈ Γ, ψ ∈ w iff ψ ∈ v,

• w �ΛLCP

Γ v iff a) for all ϕ ∈ v, 〈Γ〉≤ϕ ∈ w.

�

I define �ΛLCP as �ΛLCP

∅ . I omit the superscript ΛLCP for the rest of the complete-

ness proof. I further assume that the bulldozing technique of Theorem 2.1.11 has

been carried through on the relation �∅. This is expressed in the following lemma:

Lemma 5.2.9 The diagram of Figure 5.3 commutes, i.e., taking the bulldoze M c and

then its ceteris paribus variant is the same as bulldozing the ceteris paribus variant

of Mc.

Proof. The result follows from the realization that the horizontal lines in Diagram

5.3 are bisimulations. For a detailed proof, consult [68]. qed

What remains to be shown is an Existence Lemma for the new modalities and

that the relation �Γ is the intended comparison relation, i.e., the intersection of the

relations � and ≡Γ.

Lemma 5.2.10 (Existence Lemma) For any state w ∈ W , if 〈Γ〉≤ϕ ∈ w, then

there exists a state v ∈W such that w �Γ v and ϕ ∈ v.

Proof. Suppose that 〈Γ〉≤ϕ ∈ w. For every ψi ∈ Γ, let ±ψi = ψi if ψ ∈ w, and

±ψi = ¬ψi if ψi 6∈ w. Let v− = {ϕ} ∪ {ξ : [Γ]≤ξ ∈ w} ∪ {±ψ : ψ ∈ Γ}. I claim

that v− is consistent. Indeed, on the assumption that it is not, a standard argument

shows that ⊢ [Γ]≤ξ1 ∧ ... ∧ [Γ]≤ξm ∧ [Γ]≤ ± ψ1 ∧ ... ∧ [Γ]≤ ± ψn → [Γ]≤¬ϕ, for some

m,n. Now, [Γ]≤ξi ∈ w, 1 ≤ i ≤ m by definition of v−. Furthermore, ±ψi ∈ w implies

that [Γ] ± ψi ∈ w, using Axiom 5.6 and 5.7, which in turns implies that [Γ]≤ψi ∈ w



5.3. COMING BACK TO VON WRIGHT; CETERIS PARIBUS COUNTERPARTS OF BINARY PREFERENCE

by Axiom 5.2. Hence, [Γ]≤ξ1 ∧ ... ∧ [Γ]≤ξm ∧ [Γ]≤ ± ψ1 ∧ ... ∧ [Γ]≤ ± ψn ∈ w, and

thus [Γ]≤¬ϕ ∈ w by Modus Ponens. But this contradicts the initial assumption

that 〈Γ〉≤ϕ ∈ w. Hence, v− is consistent. By Lindenbaum’s Lemma, there exists a

maximal consistent extension v of v−, and v is such that [Γ]≤ψ ∈ w, implies that

ψ ∈ v for all ψ. Thus w � v from the definition of the �-relation in the canonical

model. Furthermore, w ≡Γ v by the construction of v. Therefore, w �Γ v and ϕ ∈ v.

qed

Corollary 5.2.11 (to the proof of Lemma 5.2.10) For any state w ∈W , if 〈Γ〉ϕ ∈

w, then there exists a state v ∈W such that w ≡Γ v and ϕ ∈ v.

Proof. Consider v− = {ϕ} ∪ {±ψ : ψ ∈ Γ}, and proceed as above. qed

Lemma 5.2.12 �Γ =� ∩ ≡Γ.

Proof.

The first direction follows from the definition of �Γ in the canonical model.

In the other direction, assume that w � v and that w ≡Γ v. In the first case,

let ϕ ∈ v and consider ψ ∈ Γ such that, without loss of generality, ψ ∈ v. Then

ϕ∧ψ ∈ v, which implies that 〈∅〉≤(ϕ∧ψ) ∈ w, since w � v. But w ≡Γ v implies that

ψ ∈ w. Hence, ψ ∧ 〈∅〉≤(ϕ ∧ ψ), which implies that 〈{ψ}〉≤ϕ ∈ w, using Axiom 5.12.

Since Γ is finite, the same procedure can be repeated for every ψ ∈ Γ. Therefore,

〈Γ〉≤ϕ ∈ w, as required.

qed

This completes the proof-theoretical analysis of CPL. I leave the question of

axiomatizing infinitary CPL open. The remainder of this chapter explores various

applications of CPL.

5.3 Coming back to von Wright; Ceteris paribus

counterparts of binary preference statements

In this section, I show how to define ceteris paribus counterparts of the binary pref-

erence statements as given in Definition 4.2.1. By the ceteris paribus counterparts, I

mean preference statements that compare states with respect to relevant information

and all other information is kept ‘equal’. This type of comparison is more restrictive
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than the preferences I have been considering so far. The definition I give is consonant

with von Wright’s and a good way of testing this is by analyzing von Wright’s postu-

lates from Section 4.1. The only binary relation that I consider here is <∀∀, since this

is the one I attribute to von Wright, and also to avoid replicating the same pattern

too many times. I first introduce more notation, give the definition of preferences

ceteris paribus and then investigate resulting properties by comparing them with von

Wright’s notion.

Let PL(ϕ) = {p ∈ prop : p occurs in ϕ}, let Γ be a set, and let cp(Γ) = prop −
⋃

{PL(ϕ) : ϕ ∈ Γ}. Then 〈cp(Γ)〉≤ϕ expresses that there exists a ϕ-state at least

as good as the current state in which the propositional information outside of Γ is

equal. Assuming models to be total (cf., Fact 4.2.3), an equality-based notion of

ceteris paribus preference close to von Wright’s is defined as:

ϕPψ := [∅](ψ → [cp({ψ, ϕ})]≤¬ϕ) (5.14)

This definition captures the essence of von Wright’s definition. First, it is a strict

preference of the <∀∀-type. Second, the modality [∅] provides the global reach of pref-

erences. The evaluation of a preference statement at a state depends on every state

in the model. Finally, the ceteris paribus clause is with respect to the propositional

information not mentioned in either ϕ or ψ.

To test my definition against von Wright’s, I show which postulates from Section

4.1 are preserved under my translation. For those which are not, I provide a justifica-

tion for their rejection. For the sake of simplicity, I assume the ceteris paribus clause

to be with respect to the same set Γ.

First principle: Asymmetry of strict preferences

The first postulate holds in CPL if neither ϕ nor ψ equals ⊥, and if the model

contains at least one ϕ-state and one ψ-state. This is because [∅](ψ → [Γ]≤¬ϕ) is

vacuously true in both of the two first cases, and models with a single state that has

only ϕ or ψ provides a counterexample in the latter cases. Hence, this postulates only

hold for genuine strict preferences. However, these failures of the first principle are

not alarming. It is not clear what a preference amounts to when a contradiction is in-

volved. Likewise, if something does not possibly exists, then a preference comparison

involving it is meaningless. Furthermore, these are simple consequences of universal

preferences in the lines of “all ϕ-states are preferred to all ψ-states”; such preferences
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may hold vacuously. But I am not bound to the universal preference relations, and I

could have chosen another formulation that behave differently with this principle.

Second principle: Transitivity of preferences

Transitivity is not valid either under my translation. A model in which there is one

state w with ξ and ϕ true at w provides a counterexample. Since, M, w |= ¬ψ,

M, w |= ψ → [Γ]≤¬ϕ (ϕPψ) and M, w |= [Γ]≤¬ψ implies that M, w |= ξ → [Γ]≤¬ψ

(ψPξ). But M, w |= ϕ implies that M, w 6|= [Γ]≤¬ϕ, which in turns implies that

M, w 6|= ξ → [Γ]≤¬ϕ (not ϕPξ). It might seem strange that transitivity is not

preserved here, but it should be expected. Indeed, it is not the case in general

that relations between states should be preserved when lifted to sets of states. For

preferences, this was noted in [19], Theorem 3. Nevertheless, this counterexample

may be seen as a degenerate case of preference evaluation. It still holds that in any

model with worlds w, v and t such that , M, v |= ψ, w � v and v � t, then also w � t.

This is reflected for instance in ΛLO
−

by Axiom 6, where the transitivity between ϕ

and ψ is guaranteed by the existence of a ξ-state.

Von Wright’s principles of asymmetry and transitivity are not preserved in general

under my translation; they fail in degenerate cases. Indeed, the underlying strict

preferential relation is asymmetric and transitive and those properties are transferred

to preferences among formulas in most cases. My formalism reveals that the validity

of those principles depends on the satisfiability of the formulas occurring in the scope

of preference modalities.

Third principle: Conjunctive expansion

Under translation 5.14, the third postulate (conjunctive expansion) becomes:

[∅](ψ → [Γ]≤¬ϕ) ≡ [∅]((¬ϕ ∧ ψ) → [Γ]≤(¬ϕ ∨ ψ)). (5.15)

The principle holds only from left to right. Indeed, assume that M, w |= ¬ϕ ∧ ψ for

some w arbitrary, suppose there is a v such that w�Γ v. But M, w |= ψ implies that

M, w |= [Γ]≤¬ϕ, and thus M, v |= ¬ϕ ∨ ψ. As v was chosen arbitrarily, M, w |=

[Γ]≤(¬ϕ ∨ ψ), which implies that M, w |= (¬ϕ ∧ ψ) → [Γ]≤(¬ϕ ∨ ψ). As w was

chosen arbitrarily, we get that [∅]((¬ϕ ∧ ψ) → [Γ]≤(¬ϕ ∨ ψ) is valid. The other

direction is not valid in general. A model with a single state w with M, w |= ϕ ∧ ψ
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provides a counterexample. Here, (¬ϕ∧ψ) → [Γ]≤(¬ϕ∨ψ) is vacuously true, whereas

ψ → [Γ]≤¬ϕ does not hold. Once again, my modeling helps to understand exactly

where conjunctive expansion can be falsified.

Fourth principle: Distribution

The fourth principle is entirely preserved under translation 5.14. The resulting thesis

is:

[∅](ψ ∨ ξ → [Γ]≤¬ϕ) ≡ [∅](ψ → [Γ]≤¬ϕ) ∧ [∅](ξ → [Γ]≤¬ϕ) (5.16)

I show the soundness of the left to right direction. If M, w |= ψ, then M, w |= ψ ∨ ξ,

which implies that M, w |= [Γ]≤¬ϕ by assumption. Similarly if M, w |= ξ, then

M, w |= [Γ]≤¬ξ. Here, I am in complete agreement with von Wright, and the principle

comes out as a theorem of my logic.

Fifth principle: Ceteris paribus

The ceteris paribus clause of von Wright’s notion of preference is probably the major

test for my definition. Fortunately, it comes out as a theorem of CPL, supporting

my equality reading of von Wright’s ceteris paribus preferences.

In the next equation, I assume that r does not occur in either ϕ or ψ and thus

that r ∈ Γ. The principle is then translated as:

[∅](ψ → [Γ]≤¬ϕ) ≡ [∅]((ψ∧r) → [Γ]≤(¬ϕ∨¬r))∧[∅]((ψ∧¬r) → [Γ]≤(¬ϕ∨r)) (5.17)

The first direction does not present special difficulties, nor does it use the ceteris

paribus clause in a crucial way. I prove the right to left direction. Let w be arbitrary

and assume that M, w |= ψ. I distinguish two cases: 1) M, w |= r, and 2) M, w 6|= r.

Under the first assumption, we get that M, w |= ψ ∧ r, and thus that M, w |=

[Γ]≤(¬ϕ∨¬r). Let v be arbitrary such that w�Γ v, then M, v |= ¬ϕ∨¬r. But since

r ∈ Γ and w ≡Γ v, it follows that M, v |= r and hence that M, v |= ¬ϕ. A similar

argument shows that if M, w 6|= r, then M, v |= ¬ϕ, using the second conjunct. In

either case, we get that M, w |= [Γ]≤¬ϕ, which completes the proof.
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Final remarks on preferences

Comparing my formalism against von Wright’s is instructive in many ways. It shows

that his postulates would only be complete for specific classes of models, something

which was lacking altogether in [76]. Moreover, it produces a workable calculus for

explicit reasoning about ceteris paribus preferences. I conclude here the discussion of

von Wright’s preference logic, both in the base case and its ceteris paribus variation.

5.4 Mathematical perspective

To formalize ceteris paribus I based my analysis on the basic Order Logic, but I

could have taken any modal language and relativize modalities with respect to sets

of sentences. It is a natural question to inquire what mathematical properties this

adaptation has in general. In this section, I adopt this general outlook on the ceteris

paribus variant of modal logic and show that its full infinitary version lies in between

basic and infinitary modal logics. This adds technical interest to the formalism, in

addition to its conceptual motivations.

Given a modal logic whose diamonds are defined over a family of relations {R},

ceteris paribus diamonds can always be defined over the intersection of the members

of {R} with ≡Γ. Hence, given a modal language L, and a normal modal logic Λ in L,

I investigate the language LΓ whose modalities are the modalities of L relativized to

sets of sentences. The logic defined over LΓ is denoted ΛΓ. Without loss of generality,

I assume that L contains only one diamond 3, and some logic Λ defined over this

language. Accordingly, in the remainder of this section, I consider a ceteris paribus

logic ΛΓ containing only one diamond 〈Γ〉. As in the case of the basic preference

language, the semantics for this diamond is given by the intersection of the relation

R of the logic Λ with the modal equivalence w ≡Γ v, which I write RΓ. Furthermore,

I no longer restrict the sets of formulas in the ceteris paribus diamonds to the base

language. I only require them to be sets. The next proposition shows that I am

justified in viewing ΛΓ as a modal logic.

Proposition 5.4.1 If Λ is bisimulation-invariant, then so is the corresponding ce-

teris paribus logic ΛΓ.

Proof. I proceed by induction on the complexity of formulas, where every member of

Γ in ϕ = 〈Γ〉ψ is of lower complexity than ϕ by the definition of well-formed formulas.
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Let M and M′ be two models such that M, u↔ M′, v and assume that M, u |= 〈Γ〉ϕ.

Then, there is a u′ such that both uRu′ and u ≡Γ u′ and M, u′ |= ϕ. But since

M, u ↔ M′v, there is a corresponding v′ such that vR′v′ and M, u′ ↔ M′, v′. By

the inductive hypothesis, M′, v′ |= ϕ. I claim that v ≡Γ v
′. To prove the claim, let

γ ∈ Γ be such that M, v |= γ. By the inductive hypothesis, and since γ is of lower

complexity than ϕ, M′, u |= γ. Since u ≡Γ u
′, we also have that M, u′ |= γ. But by

the inductive hypothesis again, since M, u′ ↔ M′, v′, we also get that M′, v′ |= γ.

Similarly, for every γ ∈ Γ such that M, v |= ¬γ, M′, v′ |= ¬γ. Therefore, v ≡Γ v′,

which implies by truth-definition that M′, v |= 〈Γ〉ϕ, as required. qed

Expressivity of ΛΓ

I now investigate the additional expressive power imbued to a modal logic by taking

its ceteris paribus variation. By way of illustration, I show that the resulting logic

can express that a point in a model sees a finite chain of successor of any length. One

consequence of this fact for the ceteris paribus Order Logic is that it does not have

the finite model property. I take these results in turn.

Proposition 5.4.2 Let Γ = {〈∅〉n⊤ : n ∈ N} and let ϕ = 〈Γ〉⊤. Then M, s |= ϕ

iff there is a state t ∈ W such that sRt and t has finite chains of (not necessarily

distinct) successors of any length.

Proof. If there is a state t ∈ W such that sRΓt and t has finite chains of successors of

any length, then M, t |= 〈∅〉n⊤ for every n ∈ N. But s ≡Γ t implies that M, s |= 〈∅〉n⊤

for every n ∈ N. Therefore, M, s |= ϕ by the truth-definition.

In the other direction, assume that M, s |= 〈Γ〉⊤. By the truth definition, there

is a state t such that sRΓt and M, t |= ⊤. I show by induction that t has a chain

of n successors of any length, i.e., that M, t |= 〈∅〉n⊤ for every n ∈ N. The base

case is trivial, since 〈∅〉n⊤ reduces to ⊤ and both s and t satisfy ⊤. Assume that

t has a chain of n successors (not necessarily distinct), then M, t |= 〈∅〉n⊤. Since

sRΓt, M, s |= 〈∅〉〈∅〉n⊤ = 〈∅〉n+1⊤. Since 〈∅〉n+1⊤ ∈ Γ and s ≡Γ t, I get that

M, t |= 〈∅〉n+1⊤. This completes the proof. qed

Corollary 5.4.3 Ceteris paribus (strict) modal logic lacks the finite model property.

Proof. Let Γ′ = {〈∅〉<n⊤ : n ∈ N}, let ϕ = 〈Γ′〉<⊤ and assume that M, s |= ϕ. From

Proposition 5.4.2, there exists a t such that s ⊳ t and t sees a finite chain of successors



5.4. MATHEMATICAL PERSPECTIVE 87

of any length. But since every modality in Γ′ is strict, t must see a finite chain of n

different successors for every n ∈ N. Therefore, t must be at the root of a tree with

infinitely many states. qed

I have not been able to prove this result for a modal logic without a strict inter-

pretation of accessibility - and must leave this as an open question.

CPL vs ML∞,ω

We saw in Fact 5.2.4 that the LCP modalities are expressible in LO if Γ is a finite

set. I now show that the unrestricted ceteris paribus modality 〈Γ〉ϕ of the present

section is expressible in ML∞,ω, the modal logic which allows infinite conjunctions

and disjunctions, but only finite nesting of modalities. The definition I provide is

actually the same as in Lemma 5.2.4, but this time using infinite conjunctions and

disjunctions.

Proposition 5.4.4 The modalities 〈Γ〉ϕ are expressible in L∞,ω.

Proof. Let Γ = {ϕi : i ∈ I} be an arbitrary set of formulas. Let ∆ contain all

possible (infinite) conjunctions of formulas and negated formulas taken from Γ, i.e.,

all formulas α of the form α :=
∧

i∈I ±ϕi(1 ≤ i ≤ n), where +ϕi = ϕi and −ϕi = ¬ϕi.

Then,

M, w |=LCP
〈Γ〉ϕ iff M, w |=L∞,ω

∨

α∈∆(α ∧ 3≤(α ∧ ϕ))

The argument now proceeds in the same way as in the proof of Lemma 5.2.4. qed

Combining the results of the last sections, ceteris paribus logic is a modal logic

that lies in between basic and infinitary modal logics. Its syntax and expressivity are

infinitary in character, by the construction of diamonds with infinite sets Γ. Still,

it does not use a full-blown syntax as in ML∞,ω with its infinite conjunctions and

disjunctions.

CPL vs PDL

Another system between the basic modal logic and ML∞,ω is the well-known propo-

sitional dynamic logic (PDL). PDL has a finite syntax with only implicit infinitary

expressive power via the Kleene-star operator. To better situate ceteris paribus modal
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logic (CPL) in the landscape of modal logics, I compare it with PDL and show that

they are expressively independent.

Consider a simple version of PDL with one primitive program ϕ and with di-

amonds 〈π〉ϕ and 〈π∗〉ϕ. The intended reading of those diamonds is “there is an

execution of the program π that leads to a state where ϕ is true” and “after finitely

many execution of the program π, there is a state where ϕ is true.” Notice that since

I only work with one program, the choice and composition diamonds 〈π ∪ π〉ψ and

〈π; π〉ϕ reduce to 〈π〉ψ and 〈π〉〈π〉ψ respectively. Accordingly, I only treat the 〈π〉ϕ

and 〈π∗〉ϕ cases in the proofs below.

Proposition 5.4.5 The ceteris paribus modality 〈Γ〉ϕ is not definable in PDL.

Proof. Let x and y be two states such that xRy. Let T = {ti : ti is a finite tree } be

the set of all finite trees. For every ti ∈ T with root wi, let xRwi, and similarly for

y. Then x and y can access the root of every finite tree in one step. I further assume

that the propositional valuation is empty. This is illustrated in Figure 5.4. I show 1)

that states x and y are equivalent in PDL, but that 2) there is a formula ϕ ∈ LCP

such that x |= ϕ but y 6|= ϕ.

The first claim is proved by induction on the inductive definition of well-formed-

formulas of LPDL. I show that for every ϕ ∈ LPDL, x |= ϕ iff y |= ϕ. That y |= ϕ ⇒

x |= ϕ is obvious, since x and y see the same submodel, i.e., every root of a finite tree

model. I show that x |= ϕ⇒ y |= ϕ.

The basis and the Boolean cases are obvious. The interesting cases are ϕ = 〈π〉ψ

and ϕ = 〈π∗〉ψ. In either case, the only problematic situation is if M, x |= 〈π〉ψ

or M, w |= 〈π∗〉ψ and M, y |= ψ. It is sufficient to show that if M, y |= ψ then

M, y |= 〈π〉ψ. Thus, suppose that M, y |= ψ. I use the pruning lemma of [34] for the

µ-calculus, which states that if M, w |= ϕ, then there is a tree-like model M′ whose

branching is bounded by the size |ϕ| of ϕ and such that ϕ is satisfiable at the root of

this tree. Furthermore, I can assume that the depth of M′ is bounded by the modal

depth of ψ and thus that M′ is a finite tree. But since every finite tree is in T , M′ = ti

for some ti ∈ T . This means that there is a successor z of y that is the root of the

tree ti and such that M, z |= ψ. therefore, by the truth-definition, M, y |= 〈π〉ψ.

To prove the second claim, let Γ = {〈∅〉i[∅]⊥ : i ≥ 1, i ∈ N}, and let ϕ = 〈Γ〉⊤.

I show that x |= ϕ, but that y 6|= ϕ. Since x and y are the roots of every finite

tree, each sees a finite branch of any length greater or equal to 1. Hence, for every

n ∈ N, x |= 〈∅〉i[∅]⊥, and y |= 〈∅〉i[∅]⊥. Hence, for every ξ ∈ Γ, x |= ξ iff y |= ξ.
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Figure 5.4: T and T ′ are the collection of all finite trees seen by x and y in one step.

Therefore, x |= 〈Γ〉⊤. Now, no successors of y is such that it sees a finite branch

of any length, as this would only be the case if it was the root of an infinite tree,

contrary to our assumption. Hence, there is no state accessible from y which agrees

on the truth-valuation of every member of Γ. Therefore, y 6|= 〈Γ〉⊤. This completes

the proof. qed

To get the previous results, I have used a lemma about the µ-calculus that bounds

the branching of trees for the satisfiability of formulas. This does not hold with the

ceteris paribus logic, and one should expect that the above argument also establishes

that the µ-calculus cannot express the ceteris paribus modality either (Yde Venema,

p.c.).

The following Proposition was first proved game-theoretically by Shivaram Lingam-

neni, but I present a different proof.

Proposition 5.4.6 The PDL modality 〈π∗〉ϕ is not definable in CPL.

Proof. It is enough to show that for every n, there are two models such that no

formulas of depth n can distinguish between them, whereas PDL can. Fix n and

consider the models depicted in Figures 5.5. Clearly, in PDL, 〈π∗〉¬p is true at uo

but false at v0. Now, for every i ≤ n, it is also clear that [∅]n−ip is true at ui -

notice that it is never the case that [∅]⊥, because of the reflexive loops, so that we

get a genuine match between states in the two models. Thus, using Axioms 5.8-5.10,

[Γ]n−ip for every Γ. Hence, there is no CPL formula of depth i ≤ n that can see un+1

from ui. Therefore, no formula of depth n can distinguish uo and vo. Since n was

chosen arbitrarily, this holds for every n.

qed
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•
un+1

¬p

•

• •
uo u1

... •
un

vo

Figure 5.5: The models of Proposition 5.4.6, with every propositional letter true at
every world, except p false at un+1.

5.5 Dynamics

Introducing the dynamic actions of public announcement and preference upgrade in

the CPL version of Order Logic is straightforward, as I show in the present section.

In the next section, I show that CPL can do more, by looking at new kinds of actions

suggested by CPL modalities.

Public announcement and preference upgrade

To find a reduction principle for public announcement with ceteris paribus modalities,

one needs to pay special attention to ≡Γ in the original model M and in its submodel

M|A after announcement of A. Given a set of sentences Γ, let Γ!A := {〈!A〉γ : γ ∈ Γ}.

The reduction axiom for public announcement is given in the following fact:

Fact 5.5.1 The reduction axiom for CPL with public announcement is:

〈!A〉〈Γ〉ϕ ↔ A ∧ 〈Γ!A〉〈!A〉ϕ (5.18)

Proof of Fact The result follows from the observation that u ≡Γ!A
v in M iff u ≡Γ v

in M|A. Indeed, let γ ∈ Γ and consider two states u and v such that M|A, u |= γ and

M|A, v |= γ. Then u and v both satisfy γ after the announcement of A and they thus

agree on 〈!A〉γ in M. ◭

CPL can thus function at once in presence of information action updates. Similarly,

preference upgrade can be introduce in ceteris paribus logic, this time taking Γ#A :=

{〈#A〉γ : γ ∈ Γ}:
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Fact 5.5.2

〈#A〉〈Γ〉ϕ ↔ A ∧ 〈Γ#A〉(A ∧ 〈#A〉ϕ)

∨ ¬A ∧ 〈Γ#A〉〈#A〉ϕ (5.19)

Proof. Once again, the result follows from the observation that u ≡Γ#A
v in M iff

u ≡Γ v in M#A. qed

Introducing public announcement and preference upgrade in CPL is thus fairly

simple. But CPL can do more. Indeed, Axioms 5.11-5.13 in Section 5.2 suggest

that it can reason with addition of formulas to the set Γ, bringing out the dynamic

intuitions behind CPL. Indeed, one can see a formula occurring in the set Γ as

splitting a model in two, one zone where it is true and the other where it is false. The

next section elaborates on this intuition.

5.6 Agenda expansion: a new kind of dynamics

Consider the following CPL validity:

〈Γ ∪ A〉ϕ ↔ A ∧ 〈Γ〉(A ∧ ϕ)

∨ ¬A ∧ 〈Γ〉(¬A ∧ ϕ)
(5.20)

The right to left direction is an axiom of CPL. For the other direction, assume

that M, u |= 〈Γ ∪ A〉ϕ and M, u |= A. Then there exists a v such that u �Γ∪A v

and M, v |= ϕ. But A ∈ Γ ∪ A and u �Γ∪A v implies that M, v |= A and u �Γ v

respectively. Hence, M, u |= A ∧ 〈Γ ∪ A〉ϕ. The same argument applies in case

M, u |= ¬A, which completes the proof.

The interest of (5.20) lies in having the form of a reduction axiom analyzing the

addition of a sentence A to a set Γ in terms of Γ itself. On the basis of this standpoint,

one may argue that CPL deals, implicitly, with dynamics of sets of distinguished

formulas, called a research agenda. I use the term ‘agenda’ in a liberal way and only

to refer to a set of distinguished formulas in a dynamic setting. I do not use ‘agenda’

in the sense of a schedule, where things have to be done in a specific order, say by

importance. My use of the term is closer to instances such as a committee having

to make a decision depending on agreed or prescribed items. For instance, a hiring

committee might have to evaluate candidates with respect to given skills expected
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¬AA ¬AA

uu =⇒ v

+A

Figure 5.6: Simple representation of an agenda expansion. The double-line in the
right model divides the model into an A-zone and a ¬A-zone. After the expansion,
state v is no longer accessible from state u and no links are affected in either the A
or the ¬A-zone.

from them, say being good in teaching as well as in research, and the candidates who

fulfills best both criteria would be hired, irrespective of other properties they may

have, such as sex or age. I discuss in what ways a ceteris paribus agenda distinguishes

sentences after I have presented the formalism.

Equation 5.20 suggests introducing a primitive action of “agenda change” as well

as a modality 〈+A〉ϕ corresponding to agenda expansion. I achieve this by modifying

ceteris paribus modalities 〈Γ〉ϕ to ceteris paribus actions 〈+A〉ϕ of adding a formula

A to the agenda. This action can be analyzed compositionally with reduction axioms,

just as the other dynamic modalities studied above.

The agenda expansion language, denoted LCPA+ , is inductively defined by the

following rules:

LCPA+ := p | ϕ ∨ ψ | ¬ϕ | 3ϕ | 〈+A〉ϕ.

Models

Models have an additional component A consisting of a set of sentences.

Definition 5.6.1 [Models] An agenda model M is a tuple M = 〈W,A,�, V 〉 where

〈W,�, V 〉 is a standard modal model and A is a set of formula, called the agenda. �

I use the notation ‘M + A’ to denote the expansion of an agenda model M given by

M + A = 〈W,A ∪ {A},�, V 〉 and I write A ∪ A instead of A∪ {A}.
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Interpretation

Definition 5.6.2 [Truth definition] Let �A=� ∩ ≡A. The truth conditions for the

propositions and the Booleans are standard.

M, u |= 3ϕ iff ∃v such that u �A v and M, v |= ϕ

M, u |= 〈+A〉ϕ iff M + A, u |= ϕ

Satisfaction and validity over classes of models are defined as usual. �

Notice that the relation � is always in the background, but only a subsets of its

links is available for 3, depending on the agenda. Adding a formula to the agenda

has the effect of reducing the number of available links from �A, as with preference

upgrade, but unlike public announcement, it does not eliminate worlds. In Agenda

Logic, I have removed the explicit information about the ceteris paribus set Γ in

the earlier operators 〈Γ〉 and relegated it to an implicit agenda given by the model,

making the modality 3 essentially context-dependent. The effect of agenda expansion

is illustrated in figure 5.6.

Fact 5.6.3 From (5.20), a reduction axiom for the modality 〈+A〉ϕ in the base lan-

guage is already available, providing a completeness proof for agenda expansion logic,

denoted ‘ΛL
CPA+ . In this logic, 5.20 becomes:

〈+A〉3ϕ ↔ A ∧ 3(A ∧ 〈+A〉ϕ)

∨ ¬A ∧ 3(¬A ∧ 〈+A〉ϕ) (5.21)

Proof of Fact A simple observation establishes the fact, namely that the action

of adding A to the agenda eliminates links between A and ¬A-states, splitting the

model into two disjoint components. Hence, if A is true and it is possible to go to an

A-state such that ϕ is true after removing links to ¬A-states, then ϕ is possible after

removing links to ¬A-states; and similarly for ¬A. ◭

Putting this analysis together with that of the preceding section, arbitrary dy-

namic formulas of public announcement, preference upgrade and agenda expansion

can be reduced to equivalent ones in the basic language of CPL. Therefore,

Theorem 5.6.4 The complete ceteris paribus logic of public announcement, pref-

erence upgrade and agenda expansion is axiomatized by (a) the complete system for
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CPL, (b) the reduction principle (5.18) given in Fact 5.5.1, (c) the reduction principle

(5.19) given in Fact 5.5.2, and (d) the reduction principle (5.20).

Some interesting questions regarding the combined logic of public announcement

and agenda expansion are not fully answered by the previous completeness result.

For instance, there is the interesting general issues, which might be displayed with

formulas, whether we have valid schematic laws for the following complexes:

〈!A〉〈+B〉ϕ: agenda addition after an announcement

〈+A〉〈#B〉ϕ: preference upgrade after an agenda change

Furthermore, unlike for the case of public announcement, 〈+A〉〈+B〉ϕ is not equiv-

alent to a formula with only one action of the form 〈+ ∗ (A,B)〉ϕ, where ∗(A,B)

is some formulas in terms of A and B. In other words, even though two successive

public announcements are always equivalent to a single announcement, successive ex-

pansions are not in general equivalent to a single expansion. A modality that would

be equivalent to 〈+A〉〈+B〉ϕ would be a 4-event action that divides the model in four

equivalence classes.

As was the case with the other dynamic actions investigated in this thesis, agenda

expansion can be expressed in the language of PDL.

Fact 5.6.5

�A+A=�A −((?A ; �A ; ?¬A) ∪ (?¬A, ; �A ; ?A)) (5.22)

Fact 5.6.5 shows that expansion can be defined in PDL in a way similar to pref-

erence upgrade, as can be seen from the definition of the latter in 2.18. Indeed, the

following fact shows that expansion is a special case of upgrade.

Fact 5.6.6 Agenda expansion is a special case of preference upgrade.

Proof.

�A+A = �A −((?A ; �A ; ?¬A) ∪ (?¬A, ; �A ; ?A))

= �#A ∩ �#¬A (5.23)

qed

Corollary 5.6.7 The modality 〈+A〉ϕ is expressible in terms of 〈#A〉ϕ.
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Proof. Follows from Fact 5.6.6:

〈+A〉ϕ⇔ A ∧ 〈#A〉ϕ ∨ ¬A ∧ 〈#¬A〉ϕ

qed

ΛLCPA
+

thus analyzes the action of adding a formula A to a set of distinguished

sentences A in a ceteris paribus setting. An obvious follow-up to this result is to

investigate the retraction of a formula from the agenda. The remainder of this chapter

explores this.

5.7 A challenge: agenda contraction

Analogously to LCPA
+, the agenda contraction language LCPA

− is given by:

LCPA− := p | ϕ ∨ ψ | ¬ϕ | 3ϕ | 〈−A〉ϕ.

An obvious way to define agenda contraction is to take the converse operation of

expansion on M: set-theoretical subtraction. Models are thus as in Definition 5.6.1

with M−A defined by 〈W,A−{A},�, V 〉. Satisfaction of 〈−A〉ϕ is then defined by:

M, u |= 〈−A〉ϕ iff M −A, u |= ϕ (5.24)

It is clear that any action of contraction of M by A would be pictured as some re-

versal of Figure 5.6, going from a universe split into independent A and ¬A zones, to a

universe where links are reintroduced between them. A first challenge is to axiomatize

this version of contraction, but it is not clear how one should proceed. Unfortunately,

the technique of compositional analysis does not seem to be applicable, even in the

presence of the existential modality. To see this, consider how compositional analysis

is applied throughout the thesis. Reduction axioms always have the same form: the

left-hand side of the axiom states that a certain formula holds after a model change

and the right-hand side analyzes the conditions of the original model for this action

to yield the said formula. In other words, the right-hand-side of a reduction axiom

states when the action can be performed and predicts which formulas hold after the

action has taken place. Hence the term ‘reduction’: the axiom reduces the analysis of

a dynamic action to conditions of a static model. In the case of contraction, however,
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even though the relation � is always in the background of M, only a subset of its

links are available in the model before contraction. Some information in the original

model is thus lacking for analyzing the effect of contraction. I leave the question of

axiomatizing agenda contraction open.3

A second problem, conceptually motivated, is what I call the problem of successful

contraction. By a successful contraction, I mean that the re-introduction of links

actually obtains. Consider the following simple example.

Example 5.7.1 Let there be a model with two worlds u and v such that both A and

B are true at u and false at v and where u � v. Let A = {A,B}, then A−A = {B}

is not enough to introduce a link between u and v, as B is not equal in both worlds.

In this case, B also need to be retracted from the agenda for a link to be introduced

between the A and the ¬A zones. In this model, a successful contraction by A would

have to be accompanied by the removal of B from A, so that A− A = ∅.

This problem is conceptually similar to the problem of successful contraction in

belief revision, where the mere subtraction of A from a belief set is not sufficient

to guarantee its retraction, for instance if B and B → A are in the belief set. But

what counts as a successful contraction? How many and which links should be rein-

troduced? The introduction of one link between the two zones would be a minimal

contraction and the introduction of a link from each A-state to every ¬A-state would

be a maximal one. Intermediate strategies would be to introduce (at least) one link

from each A-state to a ¬A state - and vice-versa. But again, this can obtain in many

ways.

To overcome this problem, care as to be taken that the contraction be successful

and this may require that additional sentences from the agenda be retracted along

with A. I use the notation ‘A∗’ to stand for the successful contraction of A by A.

Building on the previous example, I can make three further observations about

successful contraction: 1) contraction is sensitive to states, 2) a contraction followed

by an expansion does not always return the original agenda and 3) contraction by A

may yield new links in each of the A and the ¬A zone.

Observation 5.7.2 Successful contraction A∗ is state-dependent.

3Notice that the converse action to preference upgrade would be just as problematic. This
suggests that, in general, compositional analysis fails to deal with link (re)-introduction. This is a
limitation worth further investigation, but not pursued here.
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Proof of Observation Let A = {A,B} and consider a model with three worlds

{u1, u2, v1} with the relation � being the universal relation and where V (A) = {u1, u2}

and V (B) = {u2}. Notice that �A= ∅, since no two worlds satisfy the same formulas

from A. Now, for contraction by A to be successful, links have to be re-introduced

between the A and the ¬A zones. To introduce a link between u1 and v1, retracting A

from A is enough, since B is false in both worlds. Thus, A∗
u1

= {B}. At u2, however,

the sole retraction of A is not sufficient, as B is not preserved between u2 and v1. In

this case, A∗
u2

= ∅. ◭

Observation 5.7.3 (A−A) + A ⊆ A

Proof of Observation Consider the same model as in Observation 5.7.2. Then

(Au2
− A) + A = ∅ + A = {A} ⊂ A. ◭

Observation 5.7.4 Contraction by A may yield additional accessible states in each

of the A and the ¬A-zones.

Proof of Observation Take again the model from example 5.7.2. Remember

that �A= ∅, even thought � is the universal relation. Hence, it is not the case that

u2 �A u1. But after contraction by A considered at u2, since A∗
u2

= ∅, it is the case

that u2 �∅ u1. Therefore, not only links have been added between u2 and v1, but also

inside the A-zone. ◭

Figure 5.7 represents a simple case of successful agenda contraction that summa-

rizes the above considerations.

Summary

I have now completed the applications of Order Logic to belief and preference change

for individuals, as well as the formalization of the equality reading of ceteris paribus

logic. The latter was the main contribution of the present chapter. To achieve this,

I have relativized the modalities of Order Logic with respect to sets of sentences

Γ standing for the other things to be kept equal. I have provided a completeness

results for the finite fragment of CPL, namely when the sets Γ are taken to be

finite. This has shown explicitly the specific reasoning principles of the equality

reading of ceteris paribus. This new kind of modal logic, called CPL, has raised

interesting mathematical questions, particularly with respect to basic and infinitary
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¬AA ¬AA

uu =⇒
−A

v

Figure 5.7: Simple representation of a successful agenda contraction. The double-
line in the left model divides the model into an A-zone and a ¬A-zone. After the
contraction, state u can access a state v in the ¬A-zone as well as additional states
in the A-zone.

modal logics as well as logics lying in between them. After having introduced the

actions of public announcement and preference upgrade, I have investigated new

kinds of actions suggested by the form of CPL axioms dealing with the addition of

formulas to Γ. The interpretation I have given to these new action was in terms of a

research agenda.

Now, the notion of a research agenda seems to pertain to groups rather than

individuals. Recall the example of a committee having to make decisions following

specific items on the agenda. This suggests that agenda expansion would be an action

more appropriate to a group logic. For this, however, a static Order Logic for groups

is needed an the next and final chapter takes exactly this as a starting point.



Chapter 6

Group Order Logic

When Robert and I have decided to share a dessert, we have implicitly agreed to

aggregate our preferences so as to find the best dessert for us. This meant that we

had to choose a dessert that would satisfy both of us and we agreed that chocolate

and strawberry desserts were the two best ones - in this order. I would have preferred

a cheesecake to either one, but Robert hates it, in which case it would have been

unfair to him if, as a group, we had one. On the other hand, his allergy to nuts has

ruled out the chocolate cake, just as a meat dish is ruled-out when a vegetarian is

part of a couple who agrees to order only one dish to be shared; this is just matters of

fairness. In a way, one can see such cases as being a mixture of democratic aggregation

of preferences with compensating options in case of disagreement. The democratic

part in Robert and I’s case was in opting for either chocolate or strawberry desserts,

whereas the compensating part was choosing the latter because of Robert’s allergy.

In this chapter, I formalize aggregation of individual preferences using lexico-

graphic reordering, following [2]. In this setting, groups of agents are taken to be

ordered and aggregation proceeds in a compensating way: if every member of the

group opt for option x, then x is the group preference, otherwise the group endorses

the preferences of the most influential agents. To achieve this, it is enough to ex-

pand LO with so-called nominals [3]. I call the resulting logic Group Order Logic and

denote it ‘GOL’.

The chapter is divided as follows. In Section 6.1, I collect the results from [2] over

which I base the rest of the chapter. In Section 6.2, I define GOL and provide its

complete axiomatization. In Section 6.3, I investigate various applications of GOL.

I show how the complete relational algebra of [2] can be derived and how to lift

comparisons over states to preferences over sets of states. Finally, in Section 6.4, I

99
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introduce dynamics in the logic. This comes in two stages: 1) public announcement

and preference upgrade, and 2) and agent promotion. Agent promotion is the action

of changing the hierarchy of the group by putting one agent on top. My approach is

thus advantageous in three ways: 1) it provides a simple modal logic for preference

aggregation, 2) it lifts group preferences from objects to sets of objects and 3) it yields

a straightforward dynamification of group preferences with a new kind of action over

the hierarchy of the group.

6.1 Lexicographic reordering

In this section, I collect the results from [2] needed for GOL. The fundamental

tools used in this paper are priority graphs and priority operators. A priority graph

imposes a hierarchy among basic relations and a priority operator maps these relations

to a single relation lexicographically, following the hierarchy provided by the graph.

Although the results hold for the aggregation of arbitrary orders, I confine myself

to the special case of preorders. No generality is lost by this choice. I thus take a

priority graph as a hierarchy imposed on a group of agents and a priority operator as

the aggregation of their preferences.1

Let W be a set containing at least two elements, standing for the set of objects to

be compared and over which agents give their preference orders �i. For the remainder

of this chapter, I identify agents with the order they give on W , but I keep the

notation i, j, ... to refer to agents instead of �i,�j, ..., for the sake of readability. For

two objects u, v ∈ W , I say that agent i prefers v over u if u �i v; this is the order

given by i between u and v.

To aggregate preferences, a partial strict order < is imposed over the agents,

which can occur multiple times in the order. To help building the intuition, one can

think of this order as providing credibility or reliability criteria. Suppose you have a

committee of scientists (geologists, physicists, chemists etc.) investigating the effect of

human societies on global climate change. It is natural to expect the scientists to have

more weights on the interpretation of the results in their respective fields. Physicists

would be given more weight in answering questions pertaining to physics, geologists

to geological questions, and so on. One can think of the multiple occurrences of

1To keep notation consistent in the thesis, I write i < j to express that j is strictly better than
i, the opposite notation of that used in [2]. I also draw pictures for priority graphs by putting best
agents on top of the graph where [2] puts them at the bottom. The reader is asked to keep that in
mind if reading this chapter and [2] in parallel.
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x y

y

Figure 6.1: Graphical representation of the priority graph g defined in example 6.1.2.
In the figure, a variable occurring above another variable is prioritized.

agents in the order as representing exactly this: expertise. The hierarchy of agents is

represented in a priority graph.

Definition 6.1.1 [Priority graph] Let X be a set of variables. A priority graph is

a tuple P = 〈N,<, V 〉 where N is a set, < is a strict partial order on N and V is

function from N to X. �

Something has to be said about the use of variables in priority graphs. First, as

I have noted above, agents are identified with the order they give on W . Two agents

giving the same order can thus be identified in priority graphs, thus eliminating useless

replication of the same information in graphs. Second, priority graphs allow variable

to occur several times, so that assigning agents to variables allows a representation

of expertise in graphs; in one occurrence an agent is the expert and in another, it

is dominated. Finally, the repetition of variables in priority graphs increases the

expressivity, although I do not prove this; the reader can consult [2] for a proof.

Example 6.1.2 Let N = {i, j, k}, V (i) = V (j) = y, V (k) = x and let j < i, k < i.

The priority graph g = 〈N,<, V 〉 is represented graphically in figure 6.1. In the

figure, as well as in the remainder of this chapter, a variable x occurs above a variable

y if y < x. Notice that this priority graph is equivalent to a simpler one using only

two nodes, x and y, with x below y.

Next, I define the notion of a priority operator. A priority operator aggregates in-

dividual preferences lexicographically according to the priority graph. A lexicographic

order ≤ between two elements a and b is an order such that:

(a, b) ≤ (a′, b′) iff a < a′ or (a = a′ and b ≤ b′)
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This definition generalizes to n-tuples in the following way:

(a1, a2, ...an) ≤ (b1, b2, ..., bn) iff ∃m > 0, ∀i < m(ai = bi and am <m bm)

A familiar example of a lexicographic ordering is the alphabetic order used in a dictio-

nary, where the priority is given to letters on the left. For instance, the word ‘animal’

comes before the word ‘apple’, since there is a position (the second position) such

that the letters occurring in the first position are identical and the letters occurring

in the second position are such that n ≤ p.

In the case of priority graphs with single occurrences of variables, a priority oper-

ator o orders the relations of the graph lexicographically when:

a � b iff ∀x ∈ V (a �x b or ∃y ∈ V (x < y& a ≺y b))

Since priority graphs allow variables to occur multiple times, a further generalization

of the lexicographic rule is needed:

Definition 6.1.3 [Priority operator] A priority graph g denotes a priority operator

o if:

ao((�x)x∈Xb⇔ ∀i ∈ N(a �V (i) b ∨ ∃j ∈ N(i < j ∧ a ≺V (j) b)) (6.1)

�

Example 6.1.4 Consider the priority graph given in Example 6.1.2. Let a, b ∈ M ,

then according to Definition 6.1.3:

ao(�x,�y)b iff (a �V (i) b ∧ a �V (j) b ∧ a �V (k) b) ∨ a ≺V (k) b

iff (a �x b ∧ a �y b) ∨ a ≺y b

Therefore, the group consisting of {i, j, k} considers b better than a if they reach a

consensus or if both i and j strictly prefer b to a.

The next two theorems, for whose proof the reader should consult [2], are crucial

in modalizing Group Order Logic. Theorem 6.1.6 states that every priority operator

is equivalent to one build from two fundamental operators given in Definition 6.1.5

and Theorem 6.1.7 provides a complete relational algebra in terms of these operators.

Definition 6.1.5 The two operators x ‖ y and x/y are called the but and on the
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x/y

•

•x

y

•

x

•

y

x ‖ y

Figure 6.2: The priority graph of the but and on the other hand operators.

other hand operators respectively and are defined by:

x ‖ y = x ∩ y

x/y = (x ∩ y) ∪ x<

�

The two operators are depicted in Figure 6.2. Here are the two crucial theorems:

Theorem 6.1.6 Any finitary priority operator is denoted by a term build from /, ‖

and the variables occurring in the priority graph for the operator.

Theorem 6.1.7 An equation is true in all preferential algebras iff it is derivable from

the following axioms:

x ‖ x = x (6.2)

x ‖ (y ‖ z) = (x ‖ y) ‖ z (6.3)

x ‖ y = y ‖ x (6.4)

(x/x) = x (6.5)

(x/y)/z = x/(y/z) (6.6)

x/(y ‖ z) = (x/y) ‖ (x/z) (6.7)

(x/y) ‖ y = x ‖ y (6.8)
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6.2 Modal logic for order aggregation

As I mentioned above, the language for Group Order Logic is obtained by expanding

LO with so-called nominals. In contrast to propositional variables, which are typically

evaluated at sets of states, nominal are evaluated at single states. In this respect,

states in models can be interpreted as simple objects and nominals as names for these

objects. I introduce nominals in the logic to lift individual orders to group orders,

using lexicographic reordering. with the existential modality, I then lift group orders

among objects to group preferences over sets of objects, just as I did in Section 4.2 in

the individual case. There are thus two orthogonal lifts in the present chapters, one

from individual to group orders over objects and the other from group orders over

objects to group preferences over sets of objects - or propositions.

Language and semantics

Definition 6.2.1 (Language) Let prop be a set of propositional variables with p ∈

prop and nom a set of nominals with s ∈ nom. I use the letters i, j, k for single

agents, but in the spirit of Andréka et all, these variables range over whole preference

relations - agents are identified with their orders. The language LGP is defined by the

following recursive rules:

ϕ := s | p | ¬ϕ | ϕ ∨ ψ | 〈X〉≤ϕ | 〈X〉<ϕ | Eϕ

X := i | X/Y | X ‖ Y

The intended reading of the modalities is as follows. 〈i〉≤ϕ stands for ‘agent i thinks

that an accessible state where ϕ holds is at least as good as the current state’ and 〈i〉<ϕ

stands for ‘according to agent i, there is an accessible state that is strictly better where

ϕ holds’. Complex modalities with capital variables X, Y, Z and their combinations

with the operators / and ‖ stand for group orders. Giving an intuitive and succinct

reading of modalities for groups of more than two agents is not straightforward,

although the intention is quite clear. I illustrate the meaning of these modalities with

a simple group of two agents i and j. In the case where there is a hierarchy, say of

a master i and a student j, the modality 〈i/j〉ϕ is read as ‘the group consisting of a

master i and a student j considers an accessible state where ϕ holds to be at least

as good as the current state.’ If the two agents i and j have the same weight in the

decision making, the case where i ‖ j, the modality 〈i ‖ j〉≤ϕ is read as ‘the group
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consisting of two agents of incomparable rank considers an accessible state where ϕ

holds to be at least as good as the current state’. The strict modalities receive the

obvious analogous readings.

Definition 6.2.2 (Models) Models are tuples M = 〈W,G, {�X}X∈G, V 〉, where W

is a set of states, G is a set of graphs, {�X}X∈G is a family of relations induced by

priority graphs and V : prop ∪ nom → P(W ) is valuation that assigns a singleton

set for members of nom.

Definition 6.2.3 (Semantics)

M, u |= p iff u ∈ V (p)

M, u |= s iff {u} = V (s)

M, u |= ¬ϕ iff M, u 6|= ϕ

M, u |= ϕ ∨ ψ iff M, u |= ϕ or M, u |= ψ

M, u |= 〈X〉≤ϕ iff ∃v ∈W s.t. u �X v& M, v |= ϕ

M, u |= 〈X〉<ϕ iff ∃v ∈W s.t. u ≺X v& M, v |= ϕ

M, u |= Eϕ iff ∃v s.t. M, v |= ϕ

In case X = {i}, �i is the betterness relation for a single agent. Complex relations

�X are recursively reduced to individual preference relations using �X/Y = (�X ∩ �Y

)∪ ≺Y and �X‖Y =�X ∩ �Y . The strict subrelations ≺X are defined in the standard

way, i.e., u ≺X v iff u �X v&¬(v �X u).

Remark 6.2.4 The hybrid binder @iϕ is definable with the existential modality and

nominals by E(i∧ϕ). Therefore, Group Order Logic is a superset of the hybrid logic

H(@) (cf. [3]).

Axiomatization

Theorem 6.2.5 Let MOD = {〈X〉≤ϕ, 〈X〉<ϕ,Eϕ, [X]≤ϕ, [X]<ϕ, Uϕ}. The follow-

ing set of axioms is complete for Group Order Logic. I call the logic ΛGP .

1. Classical tautologies.

2. Normality axioms, with 3,2 ∈ MOD:
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2ϕ↔ ¬3¬ϕ (6.9)

2(ϕ→ ψ) → (2ϕ→ 2ψ) (6.10)

(6.11)

3. Axioms for the existential modality:

ϕ→ Eϕ (6.12)

EEϕ→ Eϕ (6.13)

ϕ→ UEϕ (6.14)

Ei (6.15)

E(i ∧ ϕ) → U(i → ϕ) (6.16)

4. Axioms defining properties of � and ≺:

s→ 〈X〉≤s Reflexivity of ≤X (6.17)

〈X〉≤〈X〉≤s→ 〈X〉≤s Transitivity of ≤X (6.18)

s→ ¬〈X〉<s Irreflexivity of <X (6.19)

s→ ¬〈X〉<〈X〉<s Assymetry of <X (6.20)

〈X〉<s→ 〈X〉≤s Inclusion (6.21)

〈X〉≤〈X〉<s→ 〈X〉<s Mix 1 (6.22)

〈X〉<〈X〉≤s→ 〈X〉<s Mix 2 (6.23)

s ∧ 〈X〉≤t→ (〈X〉<t ∨ 〈X〉≤(t ∧ 〈X〉≤s) Mix 3 (6.24)

5. Mixed axioms:

〈X〉≤ϕ→ Eϕ (6.25)

〈X〉<ϕ→ Eϕ (6.26)
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6. Group axioms:

〈X ‖ Y 〉≤s↔ 〈X〉≤s ∧ 〈Y 〉≤s (6.27)

〈X/Y 〉≤s↔ (〈X〉≤s ∧ 〈Y 〉≤s) ∨ 〈X〉<s (6.28)

〈X ‖ Y 〉<s↔ (〈X〉<s ∧ 〈Y 〉≤s) ∨ (〈X〉≤s ∧ 〈Y 〉<s) (6.29)

〈X/Y 〉<s↔ (〈X〉≤s ∧ 〈Y 〉<s) ∨ 〈X〉<s (6.30)

In addition, ΛGP has the rules of Modus Ponens, Necessitation and the hybrid logic

rules name and paste.

Remark 6.2.6 1. Transitivity of 〈X〉<ϕ is derivable, as it was in Order Logic.

2. Axioms 6.27 and 6.28 analyze the (weak) modalities 〈X ‖ Y 〉≤ and 〈X/Y 〉≤ in

terms of 〈X〉≤, 〈X〉< and 〈Y 〉<. Similarly, the strict modalities 〈X||Y 〉< and

〈X/Y 〉< can be analyzed in terms of more basic modalities by axioms 6.29 and

6.30.

Before proving completeness, some preliminary results are needed. Recall from

Definition 2.1.9 that a model is called ≺-adequate if the following are equivalent:

1. w ≺ v

2. (a) w � v and

(b) v 6� w.

In GOL, since there are multiple individual and group betterness orders, a general-

ization of this definition is needed.

Definition 6.2.7 A model is �X-adequate if the following are equivalent, for every

priority graph X:

1. w ≺X v

2. (a) w �X v and

(b) v 6�X w.

�

In Order Logic, the axiomatization guarantees quasi-adequacy, namely the direction

from (2) to (1). Here, resorting to nominals, better can be achieved, namely:
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Fact 6.2.8 1. If a model M is based on an ≺X-adequate frame, then M |= s ∧

〈X〉≤t→ (〈X〉<t ∨ 〈X〉≤(t ∧ 〈X〉≤s)) and M |= s→ ¬〈X〉<s.

2. For every frame F, if M |= s ∧ 〈X〉≤t→ (〈X〉<t ∨ 〈X〉≤(t ∧ 〈X〉≤s), M |= s→

¬〈X〉<s and M |= 〈X〉<〈X〉≤s→ 〈X〉<s, then F is ≺X-adequate.

Proof of Fact 6.2.8 It is easy to see that M |= 〈X〉<〈X〉≤s → 〈X〉<s. The proof

of Fact 2.1.10 can be transposed here to show the result for quasi-adequacy. All that

remains to be shown is that M |= s→ ¬〈X〉<s and that u ≺X v ⇒ v 6�X u.

1. Let M be based on an adequate frame, and let u ∈ W such that M, u |= s.

Suppose that M, u |= 〈X〉<s, then there is a v ∈ W such that u ≺X v and

M, v |= s. But u ≺X v implies that u 6= v, hence that V (s) = {u, v}. This

is contradiction, since s is a nominal and must be assigned a singleton set.

Therefore, M, u |= ¬〈X〉<s.

2. Assume that u ≺X v. Take a model M with V (s) = u. Suppose that v �X u,

then M, v |= 〈X〉≤s. Since u ≺X v, we get that M, u |= 〈X〉<〈X〉≤s. Now,

M, u |= 〈X〉<〈X〉≤s→ 〈X〉<s, thus M, u |= 〈X〉<s. Hence, M, u |= s ∧ 〈X〉<s,

a contradiction with M, u |= s→ ¬〈X〉<s. Therefore, v 6≤X u, as required.

◭

Proof of Theorem 6.2.5. I only show soundness of Axioms 6.29 and 6.30. I give a

semantic argument here and refer the reader to the appendix for an algebraic deriva-

tion.

To show the soundness of Axioms 6.29, it is enough to show that:

≺X‖Y = (≺X ∩ �Y ) ∪ (�X ∩ ≺Y )

In the first direction, assume that u ≺X‖Y v. By definition, u �X‖Y v and ¬v �X‖Y u.

Thus, u �X v and u �Y v. It is now enough to show that u ≺X v or u ≺Y v. Suppose

not, then v �X u and v �Y u, which implies that v �X‖Y u, a contradiction.

In the other direction, assume that (u ≺X v& u �Y v) or (u �X v& u ≺Y v).

In either case, u �X‖Y v. Now, if ¬u ≺X‖Y v, then it must be that v �X‖Y u, i.e.,

v �X u and v �Y u. Hence, ¬u ≺X v and ¬u ≺Y v, a contradiction.

For Axiom 6.30, I show the following:

u ≺X/Y v = (u �X v& u ≺Y v) or u ≺X v (6.31)
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In the first direction, assume that u ≺X/Y v. Then u �X/Y v and ¬v �X/Y u,

which implies, by definition, that (u �X v& u �Y v) or u ≺X v. In the latter case, the

result follows, so I show that (u �X v& u �Y v) &¬v �X/Y u implies the right-hand

side of 6.31. Since u �X v, it is enough to show that u ≺X v or u ≺Y . Suppose not,

then v �X u and v �Y u, since u �X v and u �Y v. Thus, v �X/Y u, a contradiction.

In the other direction, assume that the right-hand side of 6.31 holds. Since u ≺Y v

implies that uR �Y v, we have that uR �X/Y v. Suppose that ¬u ≺X/Y v, then we

must have that vR �X/Y u, i.e., (v �X u& v �Y u) or v ≺X u. The first disjunct

implies that ¬u ≺X v and ¬u ≺Y v, whereas the second implies that ¬u �X v, and

we obtain a contradiction in either case.

For completeness, I use the following well-known result of hybrid logic, stated as

Corollary 5.4.1 in [63]:

Let Σ be any set of pure H(E)-formulas2, the K+
H(E) is strongly complete

for the class of frames defined by Σ.

From this result, every consistent set Φ is satisfiable in the canonical model (named

and pasted). Furthermore, thanks to Fact 6.2.8, this model is adequate. Thus,

unlike in the case of basic preference logic, there is no need for a transformation of

the model to eliminate �-clusters; nominals and Axiom 6.19 relieve us of this task.

Finally, thanks to Axioms 6.27-6.30, the completeness for group modalities is reduced

to that of individual modalities. qed

6.3 Applications

Group Order Logic vs equational algebra

In Chapter 3, I have shown that Broccoli Logic can be seen as a fragment of Order

Logic. Two results have supported this claim: 1) Fact 3.3.3, showing that the modal-

ities [ϕ]ψ and [ϕ〉ψ can be defined in LO, and 2) Theorem 3.3.14, identifying the [ϕ]ψ

fragment with minimal conditional logic. Here, I do something analogical by show-

ing that the equational algebra of Theorem 6.1.6 can be derived inside ΛGP . This

is yet another instance displaying the unifying power of my approach. This result is

contained in the following theorem:

2A formula is pure is it has no propositional variables.
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Theorem 6.3.1 The complete relational algebra of Section is derivable in group order

logic.

Proof. I first translate the equations given in Theorem 6.1.7:

〈X ‖ X〉≤s↔ 〈X〉≤s (6.32)

〈X ‖ (Y ‖ Z)〉≤s↔ 〈(X ‖ Y ) ‖ Z〉≤s (6.33)

〈X ‖ Y 〉≤s↔ 〈Y ‖ X〉≤s (6.34)

〈(X/X)〉≤s↔ 〈X〉≤s (6.35)

〈(X/Y )/Z)〉≤s↔ 〈X/(Y/Z)〉≤s (6.36)

〈X/(Y ‖ Z〉≤s↔ 〈(X/Y ) ‖ (X/Z)〉≤s (6.37)

〈(X/Y ) ‖ Y 〉≤s↔ 〈X ‖ Y 〉≤s (6.38)

Equations (6.32)-(6.34) are easily derivable using Axiom (6.27). I show how to derive

the remaining formulas, keeping Equation 6.36 for the last, at it is the most difficult:

1. Equation (6.35):

〈(X/X)〉≤s ↔ (〈X〉≤s ∧ 〈X〉≤s) ∨ 〈X〉<s (Axiom 6.28)

↔ 〈X〉≤s (Logic and Axiom 6.21)

2. Equation (6.37):

〈X/(Y ‖ Z)〉≤s ↔ (〈X〉≤s ∧ 〈Y ‖ Z〉≤s) ∨ 〈X〉<s (Axiom 6.28)

↔ (〈X〉≤s ∧ 〈Y 〉≤s ∧ 〈Z〉≤s) ∨ 〈X〉<s (Axiom 6.27)

↔ ((〈X〉≤s ∧ 〈Y 〉≤x) ∨ 〈X〉<s)

∧((〈X〉≤s ∧ 〈Z〉≤s) ∨ 〈X〉<s) (Logic)

↔ 〈(X/Y ) ‖ (X/Z)〉≤s (Axiom 6.27, 6.28)

3. Equation (6.38). The right to left direction follows from Axiom 6.27 and Logic.

I prove the left to right direction:

〈(X/Y ) ‖ Y 〉≤s → ((〈X〉≤s ∧ 〈Y 〉≤s) ∨ 〈X〉<s) ∧ 〈Y 〉≤s (Axiom 6.27, 6.28)

→ (〈X〉≤s ∧ 〈Y 〉≤s) ∨ (〈X〉<s ∧ 〈Y 〉≤s) (Logic)

→ 〈X〉≤s ∧ 〈Y 〉≤s (Logic and Axiom 6.21)

→ 〈X ‖ Y 〉≤s (Axiom 6.27)
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4. Equation (6.36). I first prove a preliminary lemma that is crucial in the main

proof:

Lemma 6.3.2 ⊢ (〈X〉≤s ∧ 〈Y 〉≤s) ∨ 〈X〉<s↔ 〈X〉≤s ∧ (〈Y 〉≤s ∨ 〈X〉<s):

Proof.

(〈X〉≤s ∧ 〈Y 〉≤s) ∨ 〈X〉<s ↔ (〈X〉≤s ∨ 〈X〉<s) ∧ (〈Y 〉≤s ∨ 〈X〉<s) (Logic)

↔ 〈X〉≤s ∧ (〈Y 〉≤s ∨ 〈X〉<s) (Axiom 6.21)

qed

I use the following abbreviations:

α := 〈X〉≤s ∧ 〈Y 〉≤s ∧ 〈Z〉≤s

β := (〈X〉≤s ∧ 〈Y 〉<s) ∨ 〈X〉<s

Now for the main proof:

〈(X/Y )/Z)〉≤s ↔ (〈X/Y 〉≤s ∧ 〈Z〉≤s) ∨ 〈X/Y 〉<s (Axiom 6.28)

↔ [((〈X〉≤s ∧ 〈Y 〉≤s) ∨ 〈X〉<s) ∧ 〈Z〉≤s] ∨ β (Axioms6.28, 6.30)

↔ [〈X〉≤s ∧ ((〈Y 〉≤s ∨ 〈X〉<s) ∧ 〈Z〉≤s)] ∨ β (Lemma6.3.2)

↔ α ∨ (〈X〉≤s ∧ 〈X〉<s ∧ 〈Z〉≤s) ∨ β (Logic)

↔ α ∨ β (Logic!)

↔ [((〈Y 〉≤s ∧ 〈Z〉≤s) ∨ 〈Y 〉<s) ∧ 〈X〉≤s] ∨ 〈X〉<s (Logic)

↔ (〈X〉≤s ∧ 〈Y/Z〉≤s) ∨ 〈X〉<s (Axiom 6.28)

↔ 〈X/(Y/Z)〉≤s (Axiom 6.28)

qed

Corollary 6.3.3 The equational algebra of Theorem 6.1.7 is decidable.

Proof. Notice that in the proof of Theorem 6.3.1, I only appealed to Axioms 6.21

and the Group Axioms 6.27-6.30. Furthermore, I did not use the existential modal-

ity. Hence, the equational algebra of Theorem 6.3.1 is derivable in the fragment of

group order logic that only uses normal modalities and nominals, which is a decidable

system. qed
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Remark 6.3.4 The decidability of 6.3.1 is not surprising, as it is translatable into

the two-variable fragment of first-order logic (p.c. Hajnal Andréka). Theorem 6.3.1

establishes that GOL subsumes the algebraic treatment in a natural way, just as

regular algebra gets subsumed in a straightforward manner by PDL. It is still an

open question whether the full Group Order Logic is decidable. Indeed, since the

basic order relations are transitive, we are no longer in the two-variable fragment

of first-order logic. Furthermore, the presence of transitivity may make a system

undecidable, as in the case of the guarded fragment with transitivity (p.c. Balder

Ten Cate). One might then wonder why I have introduced the existential modality

in the system. The reason is that it can lift orders over objects to preferences over

sets of object with it, as I show in the next section.

Binary group preferences

In chapter 4, I reduced binary preference statements among formulas to sentences

using unary modalities and the existential modality. Exactly the same can be done

for binary group preferences between formulas. In the next definitions, let X ∈ {i, Y ‖

Z, Y/Z}.

Definition 6.3.5 [Binary group preference statements]

ϕ ≤X
∃∃ ψ := E(ϕ ∧ 〈X〉≤ψ) (6.39)

ϕ ≤X
∀∃ ψ := U(ϕ→ 〈X〉≤ψ) (6.40)

ϕ <X
∃∃ ψ := E(ϕ ∧ 〈X〉<ψ) (6.41)

ϕ <X
∀∃ ψ := U(ϕ→ 〈X〉<ψ) (6.42)

ϕ <X
∀∀ ψ := U(ψ → [X]≤¬ϕ) (6.43)

ϕ >X
∃∀ ψ := E(ϕ ∧ [X]≤¬ψ) (6.44)

ϕ ≤X
∀∀ ψ := U(ψ → [X]<¬ϕ) (6.45)

ϕ ≥X
∃∀ ψ := E(ϕ ∧ [X]<¬ψ) (6.46)

Following Fact 4.2.3, models have to be total for the last four definitions to hold. �

Hence, as I have claimed above, GOL performs two kinds of lifts: 1) from indi-

vidual orders to group orders and 2) from basic order relations between objects to

binary preferences between sets of objects, or proposition.
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6.4 Dynamics

Simple operations of public announcement and preference upgrade can be incorpo-

rated into Group Order Logic, given the completeness result of the previous section.

As was the case in CPL, GOL suggest yet a new kind of action over priority graphs.

Public announcement and preference upgrade

Public announcement and preference upgrade are easily integrated in GOL, as can

be seen in the two following theorems.

Theorem 6.4.1 The complete logic of group order logic with public announcement

is axiomatized by: 1) the logic ΛGP together with 2) the reduction axioms of public

announcement, notably:

〈!A〉〈X〉≤ϕ↔ A ∧ 〈X〉≤〈!A〉ϕ (6.47)

〈!A〉〈X〉<ϕ↔ A ∧ 〈X〉<〈!A〉ϕ (6.48)

In group preference logic, the definition of individual preference upgrade can be

generalized to that of group preference upgrade, which I denote ‘�#A
X ’. The general-

ized definition is given by:

Definition 6.4.2

�#A
X =�X −(?¬A ; �X ; ?A) (6.49)

�

I say that group X has upgraded its preferences so as to make A always preferred to

¬A and I expand the language with the modality 〈#A,X〉ϕ.

Theorem 6.4.3 The complete logic of group preference, public announcement and

preference upgrade is given by: 1) the logic ΛGP together with 2) the reduction ax-

ioms of public announcement logic and 3) the reduction axioms of preference upgrade,

notably:

〈#A,X〉〈Y 〉≤ϕ↔ (¬A ∧ 〈Y 〉≤〈#A,X〉ϕ) ∨ (〈Y 〉≤(ϕ ∧ 〈#A,X〉ϕ) (6.50)

〈#A,X〉〈Y 〉<ϕ↔ (¬A ∧ 〈Y 〉<〈#A,X〉ϕ) ∨ (〈Y 〉<(ϕ ∧ 〈#A,X〉ϕ) (6.51)
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Figure 6.3: Illustration of the promotion of an agent i inside a group X.

Theorem 6.4.3 shows that GOL can be dynamified in the same as Order Logic.

This is a welcome result, showing yet another time the uniform application of similar

techniques in and extension of the Order Logic setting.

In the remainder of this chapter, I show that GOL, like CPL, motivates new

topics in dynamic logic.

Agent promotion

Given that I base aggregation of preferences on a given hierarchy between agents,

it seems natural to inquire what happens when the ranks of agents change in the

hierarchy. Several reordering of group hierarchy are conceivable, but I focus my

attention on an obvious first choice: putting an agent on top of the group. In the

present section, I thus study a different and new kind of dynamics for group of agents,

this time where the hierarchy inside the group is changed by upgrading an agent to

become the master of the group. I call this action agent promotion, namely when an

agent in a (sub)group is promoted to a higher rank.

I introduce some preliminary notations. The promotion of an an gent i in group

X, simply written ‘i/X’, is given by the graph X ′ whose hierarchy is the same as in

X with j < i added for every j ∈ X. If X does not contain i, then X ′ = X.3 An

illustration of a promotion is provided in Figure 6.3.

The action of promoting i ∈ X in a model M = 〈W,G, {�X}X∈G, V 〉, denoted

M ↑ i is given by the model M′ = 〈W,G′, {�X}X∈G′, V 〉, where each graph Y ∈ G

3The notation just introduced is somewhat abusive, as I should write ‘V (i)/X ’, but I keep the
original one for the sake of readability. I also illustrate graphs with nodes labeled with individual
constants instead of variables.
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Figure 6.4: Illustration of the promotion of an agent i inside a subgroup X of Y .

that has non-empty intersection with X is replaced with the graph Y ′ ∈ G′ where i

has been promoted in X ∩ Y , as described above.

To talk about agent promotion in subgroups, I expand the language with a modal-

ity 〈↑ i, X〉ϕ, which should be read as “after promoting agent i in (sub)group X, ϕ

is the case.” The semantics of this new modality is given by:

M, u |= 〈↑ i, X〉ϕ iff M ↑ i, u |= ϕ (6.52)

For the axiomatization of agent promotion, I use reduction axioms viewed as

syntactic relativizations. As van Benthem and Liu note in [69], “the reduction axioms

for public announcement merely express the inductive facts about the modal assertion

〈!ϕ〉ψ referring to the left-hand side, relating these on the right to relativization

instructions creating (ψ)ϕ” (p.171). On the basis of this standpoint, a reduction

axiom may be seen as a syntactic relativization expressed in the principle:

〈:= def(R)〉〈R〉ϕ↔ 〈def(R)〉〈R := def(R)〉ϕ (6.53)

In the case of agent promotion, I denote def(R) by ‘↑ i, X : Y ’, standing for

the substitution of the priority graph i/(X ∩ Y ) for every occurrence of X ∩ Y in

Y . Notice that ↑ i, X : Y is defined over the intersection of X and Y . There are

thus 4 cases that may arise: 1) X ⊆ Y , 2) Y ⊂ X, 3) X ∩ Y 6= ∅ and X ∩ Y = ∅.

The first case is depicted in Figure 6.4. The second case, Y ⊂ X implies that

↑ i, X : Y =↑ i, Y : Y =↑ i, Y is the same as in Figure 6.3. The third case is depicted

in Figure 6.5. The fourth case is obvious: if X ∩ Y = ∅, promoting i in X has no

effect on Y . The next definition provides a recursive construction of ↑ i, X : Y 4:

4Thanks Alexandru Baltag for suggesting Definition 6.4.4.



116 CHAPTER 6. GROUP ORDER LOGIC
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Figure 6.5: Illustration of the promotion of an agent i inside X when X ∩ Y but
neither X ⊆ Y nor Y ⊆ X.

Definition 6.4.4

↑ i, X : j =







i/j if j ∈ X

j if j 6∈ X
(6.54)

↑ i, X : (Y ‖ Z) = (↑ i, X : Y ) ‖ (↑ i, X : Z) (6.55)

↑ i, X : (Y/Z) = (↑ i, X : Y )/(↑ i, X : Z) (6.56)

�

The following theorem provides a compositional analysis of this modality in the

base group preference language.

Theorem 6.4.5 The logic of group preference with public announcement, preference

upgrade and agent promotion is given by 1) ΛGP , 2) the reduction axioms of public

announcement, 3) the reduction axioms of preference upgrade provided in Theorem

6.4.3 and 4) the following reduction principles:

〈↑ i, X〉s ↔ s (6.57)

〈↑ i, X〉p ↔ p (6.58)

〈↑ i, X〉¬ϕ ↔ ¬〈↑ i, X〉ϕ (6.59)

〈↑ i, X〉(ϕ ∨ ψ) ↔ 〈↑ i, X〉ϕ ∨ 〈↑ i, X〉ϕ (6.60)

〈↑ i, X〉Eϕ ↔ E〈↑ i, X〉ϕ (6.61)

〈↑ i, X〉〈Y 〉≤ϕ ↔ 〈↑ i, X : Y 〉≤〈↑ i, X〉ϕ (6.62)

〈↑ i, X〉〈Y 〉<ϕ ↔ 〈↑ i, X : Y 〉<〈↑ i, X〉ϕ (6.63)
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Proof. The soundness is immediate since the definition of promotion in models and

Definition 6.4.4 are in a perfect match. qed

Summary

In this final chapter, I have shown how to extend Order Logic to Group Order Logic.

For this, all that was required was to incorporate nominals into LO. This addition

to the language allowed two kinds of lifts: 1) from individual orders to group orders,

using lexicographic upgrade and 2) from orders between states to preferences between

propositions. I have also provided a complete axiomatization and shown how standard

dynamic actions can be included in the logic via compositional analysis. Finally, I

have investigated a new kind of action, this time acting on the group hierarchy, which I

have called promotion. The innovations in this chapter were to modalize the algebraic

setting of [2], thus getting a modal logic for aggregating individual orders into group

orders. This modalization of the algebra has also allowed to introduce dynamics in

the system as well as suggesting new kinds of dynamics, that of promotion. This

puts an end to my thesis and supports once again its main point, namely that the

setting of Order Logic defined over preorders is a useful and unifying setting which

deals with belief and preference change, both at the individual and the group level.

In the conclusion, I come back to this latter point by looking back at what as been

achieved in the thesis and I discuss questions that have been left open, hoping that

the reader be challenged in trying to solve them.
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Chapter 7

Conclusion

In my thesis, I have shown that Order Logic (LO) interpreted over preorders provides

a unifying framework for individuals and groups to analyze believe and preference

change. I have achieved this by producing dynamic doxastic and preference logics seen

either as fragments or extensions of LO. The actions I have considered were of two

kinds. In a first time, I have integrated three well-known dynamic actions. The first

one is public announcement, the second lexicographic upgrade and the last preference

upgrade, exemplifying state elimination, state reordering and link cutting respectively.

In a second time, I have introduced new kinds of actions: agenda expansion and agent

promotion. All actions have been incorporated into static logics via compositional

analysis, appealing to reduction axioms. This uniform completeness strategy consists

in giving axioms that transform formulas with action modalities to equivalent formulas

in the static language, reducing completeness of the dynamic logic to that of the static

one. In this conclusion, I summarize the main results of each chapter and propose a

list of open questions.

7.1 Summary

In Chapter 2, I have presented the system of Order Logic based on a language with

three modalities: 3≤ϕ,3<ϕ and Eϕ. The existential modality Eϕ has been used

throughout the thesis to isolate minimal states, in the case of belief revision, and

to provide global comparative statement, in the case of preferences. Even though

the strict modality 3<ϕ cannot be defined in terms of 3≤, I have shown via the

completeness Theorem 2.1.11 that the logic is complete with respect to the classes

of frames where the relation ≺ is adequate (Definition 2.1.9). For this last result, I

119
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have used the technique of bulldozing, first introduced by Segerberg in [58]. In the

second part of Chapter 2, I have introduced the dynamic actions of public announce-

ment, lexicographic upgrade and preference upgrade and shown how the method of

compositional analysis can be applied to obtain completeness.

In Chapter 3, I have shown how Order Logic can treat relational belief revision. I

have started my investigation with Segerberg’s Dynamic Doxastic Logic (DDL) and

have generalized it to a relational system which I have called Broccoli Logic (BL). The

generalization consisted in defining two conditionals, [ϕ]ψ and [ϕ〉ψ, over the class of

non-linear systems of sphere. To show how this could be brought under the scope

of Order Logic, I have shown that BL can be seen as one of its sublogics (Theorem

3.3.3). The main result of this chapter was to show that the [ϕ]ψ fragment of Order

Logic is the same as Minimal Conditional Logic. Finally, I have shown how the action

of lexicographic upgrade can be incorporated in BL. This has been accomplished in

two ways: 1) by direct analysis in the broccoli language and 2) by translation inside

LO.

Chapter 4 presented another important fragment of Order Logic, the binary pref-

erence fragment. This approach to Preference Logic originated in the work of von

Wright ([76]), which I have analyzed carefully - partially in this chapter, but more

importantly in Chapter 5 for ceteris paribus preferences. I have provided eight binary

preference fragments of Order Logic in Definition 4.2.1 and I have focused my atten-

tion on the ∀∀ fragment. The main result of this chapter was provided in Theorem

4.3.7, showing that the logic ΛLO
−

is complete with respect to the class of totally or-

dered preference models. Finally, I have introduced the action of preference upgrade

in the latter fragment by translating everything in LO, performing the reduction

there, and finally translating back.

In the two remaining chapters, I have taken a different route, this time showing

that Order Logic is a good system to be extended to get ceteris paribus preferences

and group aggregation logics. Chapter 5 was focused on defeasible preferences state-

ments, endowed with ceteris paribus clauses. As I have argued, there are (at least)

two senses that may be given to ceteris paribus. The first one is “all other things being

normal” (normality reading) and the second “all other things being equal” (equality

reading). The normality reading is usually used to account for laws that hold in spe-

cific circumstances, for instance preferring red wine over white wine with every dish

but fish. The equality reading is rather used to keep certain information constant

when evaluating statements, for instance preferring raincoats over umbrellas ceteris
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paribus with respect to having boots. The second sense is the one I have incorpo-

rated in Order Logic, following [19] and using the mathematical notion of equivalence

classes. My innovation was to modalize this notion by relativizing the modalities of

Order Logic with sets of sentences Γ standing for the other things to be kept equal. I

have provided a complete axiomatization for the variant where sets Γ are restrained

to finite sets. This was accomplished by adding a list of axioms on top of ΛLO . I have

then compared this logic to the original Preference Logic of von Wright and showed

how my system could analyze his principles, showing where they hold or fail, and

why. For the dynamic part, the introduction of public announcement and preference

upgrade were straightforward. But new kinds of actions were considered, those of

adding or subtracting formulas from a research agenda.

Finally, Chapter 6 considered the extension of Order Logic to Group Order Logic

and order aggregation. The aggregation policy adopted was that of lexicographic

reordering developed in [2]. One reason for choosing this policy was that it satisfies

nice aggregation properties without being dictatorial. To modalize this system, I

have introduce nominals in LO to lift individual preferences to group preferences.

In the axiomatization, this lift was analyzed in a way analogical to compositional

analysis, by reducing group statements to mixtures of individual statements. This

modal logic for aggregation of orders is the main contribution of this chapter. As

in the previous chapters, the introduction of public announcement and preference

upgrade were straightforward and a new kind of action was studied, this time over

the hierarchy imposed over the agents of the group: agent promotion.

It is now clear that Order Logic has fulfilled its telos and has proved to be a unify-

ing setting to investigate preference and belief change. In the rest of this conclusion,

I list open questions that could not be answered in my thesis.

7.2 Open questions

I first discuss general open questions pertaining to the methodology assumed in my

thesis and then take on more specific questions relating to each chapter.

Methodology

In my thesis, I have adopted a specific methodology: the formalization of belief and

preference change inside Modal Logic. This has lead to a perspicuous analysis of
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the dynamic aspect of beliefs and preferences, but some questions pertaining to this

methodology have not been fully addressed.

One worry that may be raised with respect to completeness results via compo-

sitional analysis is that dynamification does not add expressive power to static log-

ics. Indeed, reduction axioms show how arbitrary formulas of dynamic languages

are equivalent to formulas of static languages. Nevertheless, it is advantageous to

consider dynamic extensions as I do throughout my thesis, both conceptually and

technically. Conceptually, the analysis of dynamics is made clear in the extended

language. Even though dynamic formulas are equivalent to static ones, they isolate

directly the information pertaining to actions and it is not clear how one would get

the same information without resorting to the extended language. Technically, as

has been shown in [43] with respect to public announcement, dynamic languages ex-

ponentially increase the succinctness of formulas without affecting the complexity.

Hence, dynamification of logics extract the information from static languages to rea-

son about actions in a succinct way without blowing up complexity. This results holds

for public announcement, but has not been proved for the other actions considered

in my thesis. It is reasonable to expect a similar result to hold for lexicographic and

preference upgrade - and thus agenda expansion, cf., Fact 5.6.6 - but a proof is still

awaiting. I leave this as an open question.

Another question that has not been fully addressed is to what extent the promised

contribution to the conceptual analysis of belief and preference is enhanced from the

formalism investigated. My claim is that the conceptual analysis gained from my

formalisms comes from the emphasis on the dynamic aspect of preferences and beliefs.

By giving clear and distinct actions pertaining to beliefs and preferences, I have shown

an important aspect of these concepts that have gone mostly unnoticed in standard,

more static, philosophical analyses. My conclusion is that rationality does not only

apply to the formation of beliefs and preferences, but also to their management in

a changing environment. I have not, however, developed a detailed philosophical

account of belief and preference building on these results. This could easily form

the subject of a separate thesis and I hope that my contribution will provide a good

starting point for this enterprise.

A related question pertains to the multiplicity of logics used in my thesis. I have

developed a plethora of systems for beliefs and preferences, but I have not taken a

stance on which system is the right one. This is a methodological choice, for I think

that having various systems is a good thing. For instance, depending on applications,
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it might be that a ∀∀ definition of preference is more desirable than a ∀∃, if one

wants to allow for preferences of non-existent or fictional objects: I prefer vampires

to zombies. In other circumstances, for example in trying to choose the preferred

object among a set of objects, it could be that another binary definitions would more

appropriate. One version of optimization theory with respect to preferences has been

carried out in a ceteris paribus setting under the equality reading of Chapter 5 (cf.,

[9]). Multiplicity is thus valuable in practice as it provides various options depending

on applications. From a philosophical standpoint, however, it might be desirable to

have a more comprehensive understanding of beliefs and preferences, one that takes

into account the various facets formalized in my thesis, but in a more homogeneous

framework. I am of the opinion that part of analyzing the concept of preference

amounts to realizing its various possible instantiations as described in my thesis, but

I have not given a fuller philosophical account that does this. I leave this important

question open for future research.

Meta-theoretical results regarding Order Logic and its fragment would also be

desirable. It is known that Modal Logic is the bisimulation-invariant fragment of

FOL and that it shares with it completeness and compactness, but is decidable, unlike

FOL. Analogous questions can be asked for Order Logic and the various fragments

investigated in my thesis. Does the ∀∀ fragment yield meta-theoretical gain over Order

Logic, say with respect to complexity? I have shown that it is indeed a fragment and a

conceptual motivation is that it isolates preference reasoning restricted to this specific

binary definition, but meta-theoretical results mirroring this conceptual gain should

be investigated.

A feature of preferences that has been made prominent in Chapter 4 is the global

aspect of binary preference statements. This can be witnessed by the heavy use of the

existential modality throughout the thesis. It might then be argued that a language

with first-order quantifiers would be more appropriate to define global preferences.

My choice for the Modal Logic approach was guided partly by applications and partly

because it yields a formalism well suited for the explicit analysis of actions. But this

could all be done in FOL and it would be interesting to develop first-order versions of

the various preferences defined in my thesis and see how the two formalisms compare.

This could be informative in various ways, perhaps in showing that further distinctions

can be captured inside FOL, or alternatively in unifying preference logics into a

single system. In either case, the concept of preference would be further analyzed

an better understood. The same point could be made with other formalisms, for
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instance a probabilistic setting could make further distinctions than either Modal

Logic or FOL. A choice has to be made about the formalism appropriate to analyze

concepts. Comparing various approaches would thus be illuminating in establishing

which systems are better suited for specific feature of concepts to be formalized.

There is thus a quest for the best formalism to study preferences and beliefs. This is

something outside the scope of my thesis and I hope that future research will show

where exactly my frameworks lie in the plethora of available formal tools.

Relational belief revision

An obvious problem following the work done in Chapter 3 is to find the complete

conditional logic axiomatizing full BL. In Appendix A, I provide the first steps by

axiomatizing Minimal Relational Logic, a logic giving the basic interaction principles

between the modalities [ϕ]ψ and [ϕ〉ψ. From Theorem A.1.3, it seems reasonable to

conjecture that adding Axioms A.3 and A.5-A.7 might be sufficient, but I have not

succeeded in proving this.

Another question that was left open in Section 3.2 was to find an appropriate

selection function for Broccoli Logic. A conjecture made by Horacio Arló-Costa with

respect to BL− in private communication is to use Chellas’s definition of a choice

function f as a function from worlds and propositions to sets of propositions (cf. [15],

p. 270). The semantics for the modality [ϕ]ψ is then given by:

|=M
w [ϕ]ψ iff |ψ|M ∈ f(w, |ϕ|M). (7.1)

Notice first that 7.1 does not hold without an extra assumption of monotonic-

ity on the choice function. Consider a model with 3 worlds w1, w2, w3 such that

f(w1, |ϕ|
M) = {{w2}}, and assume that V (ψ) = {w2, w3}. Then ψ is true in ev-

ery minimal ϕ-world returned by the choice function, but |ψ|M 6∈ f(w, |ϕ|M). This

simple example shows that Chellas’ definition of choice functions requires an extra

assumption of monotonicity in order to make sure that definition 7.1 indeed provides

a semantics for a conditional operator. One solution is to close the image of the choice

function under supersets, and another solution is to change definition 7.1 to:

|=M
w [ϕ]ψ iff ∃Z ∈ f(w, |ϕ|M) such that Z ⊆ |ψ|M. (7.2)

In the case of MCL, Arló-Costa’s proposal is to impose the following conditions on
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the selection function:

1. X ∈ f(w,X)

2. X ∈ f(w, Y ) ∧ Y ∈ f(w,Z) ⇒ X ∈ f(w, Y ∪ Z)

3. X ∈ f(w, Y ) ∧ Y ∈ f(w,X) ⇒ Z ∈ f(w,X) iff Z ∈ f(w, Y ).

4. Y ∩ Y ′ ∈ f(w,X) iff Y ∈ f(w,X) ∧ Y ′ ∈ f(w,X)

A quick check shows that this is indeed a choice function for MCL models. Con-

dition 1 corresponds to Axiom 3.23, condition 2 to Axiom 3.27, condition 4 to Axiom

3.24, and finally condition 3 is derivable using Axioms 3.25 and 3.26. The fourth

condition provides an appropriate monotonicity condition.

It is still an open question what happens with the Arrow condition in broccoli

logic. Arló-Costa’s choice function is an appropriate selection function for MCL,

and thus for BL−, but the arrow condition has been lost in the process, along with

linearity. It is still an open question to find an appropriate generalized limit condition

for full BL.1

Binary preference logic

Chapter 4 is self-contained, but the literature on Preference Logic is very wide and

it would be worthwhile to see exactly where my system fits. Research in Preference

Logic, as I mentioned earlier, finds its roots in the work of von Wright [76], strongly

influenced in Halldén’s earlier manuscript [25]. An influential author in the field of

preference logic is Hansson (see in particular [27], although his approach is somewhat

tangential to mine, as he works at the level or preference relations not in an explicit

object language for preferences. Of course, preferences have been studied and used

widely in a perpetually growing body of research in economics and social choice theory.

For a good survey of early literature in these fields, see [77].

My thesis shows a close link between beliefs and preferences when formalized over

preorders, and this is not a coincidence. There is a long tradition of investigating

beliefs as derived from preferences going back to de Finetti [17] and followed by

Ramsey [52] and Savage [56]. More recent research along these lines can be found

in [45]. But preferences can also be seen as being derived from beliefs, or at least

influenced by them. A richer notion of preference, which takes into account both the

betterness order of my Order Logic as well as a plausibility order to derive preferences,

1For further discussion of generalized selection functions, see Arló-Costa [4].
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can be found in [36]. Finally, a good discussion of the relation between preferences

and beliefs, as well as further references to the abundant literature, can be found in

[41].

Another source of research on preferences can be found in game theory. Notion

such as backward induction and the Nash Equilibrium have been formalized in a

preference setting in [28] and [16]. Appendix B presents an analysis of the Nash

Equilibrium solution concept in CPL. There are lots of conceptual and formal ques-

tions to be raised here. There is also a growing body of research in the interplay

between preferences, beliefs and intentions in game theory (cf., [55]).

CPL

One pressing question is to find an axiomatization for CPL with no restriction on

the set Γ. Theorem 5.2.7 provides a complete system for the finite fragment, but

the argument used to prove this result fails for the infinite case. Indeed, if Γ can

contain infinitely many sentences from the base language, the very last argument of

the completeness proof does not go through, as the same procedure would have to

be repeated infinitely many times, contra the finiteness of derivations. My conjecture

is that infinitary CPL can be axiomatized by introducing infinite conjunctions and

disjunctions and rephrase Axioms 5.11-5.13 in terms of colors of Γ, denoted ColorΓ,

an (infinite) conjunction of formulas and negated formulas in Γ. For instance, Axiom

5.11 would now be read as:

11′. ColorΓ′ ∧ 〈Γ〉(ColorΓ′ ∧ α) → 〈Γ ∪ Γ′〉α

I have not succeeded in proving this conjecture and leave it for future research.

A conceptual question left open was the exact relationship between the normality

and the equality readings of ceteris paribus. Two lessons can be drawn from the red-

white wine and the raincoat-umbrella examples of Section 5.1. One is that the equality

reading is stronger2 than the normality reading. Indeed, if I prefer my raincoat over

my umbrella ceteris paribus with respect to my boots, then I have the same preference

if having my boots is taken to be among the normal conditions. As I mentioned above,

given a set of normal conditions, the normality reading focuses on a set of normal

states and leaves the other cases open. In the equality reading, one considers every

2Stronger in the sense that there are ceteris paribus cases in the normality reading which are not
ceteris paribus under equality.
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possible combinations of the members of Γ, which induces a partition of the space

into equivalence classes, and considers the relation between states inside each class.

The equivalence class where every member of C is satisfied is one among them. The

second lesson is that the preference of red wine over white wine, ceteris paribus in the

normality reading, is not ceteris paribus in the equality reading. Indeed, looking at

figure 5.2, if having meat is kept constant, then fw is preferred to fr, although meat

is not served in either case. Similarly, we get contradicting preferences if fish is to

be kept constant. The equality reading is thus stronger than the normality reading.

The exact relationship between the two readings is still not fully settled.

Finally, another interesting subject for further research is with the notion of

Agenda used in Section 5.6. I have been using the terminology of ‘agenda’ to in-

troduce ceteris paribus actions in a liberal way, taking it only to stand for a set of

distinguished sentences. The effect of adding information to the agenda on a model

is to split it into independent zones; this is formally clear. But what interpretation

can this action be given more specifically?

First, agenda actions can be considered from two standpoints, which I call local

and global respectively. The interpretation of the action is local if the effect is con-

sidered from a single state, and global when the effect on the whole model is studied.

Let us take the two standpoints in turn.

From a local point of view, adding A to the agenda has the effect of situating

the actual state in one of the A or the ¬A-zone. This action is studied in a different

setting in [30], where PDL test actions are investigated. The usual PDL test action

?ϕ returns ϕ if the actual state is a ϕ-state and returns nothing otherwise. A more

complex test action, called the test whether action and denoted ??ϕ, returns ϕ is

the actual state is a ϕ-state and ¬ϕ if it is a ¬ϕ-state. The axiomatization given in

[30] for this action is contained in a single axiom (Proposition 4, Axiom 4), which is

trans-literally the reduction Axiom 5.21. Hence, from a local point of view, to put A

on the agenda is to test in which of the A or the ¬A zone the actual state is.

From a global point of view, agenda expansion can express the (epistemic) ability

to ignore alternatives that differ with respect to independent, irrelevant or unknown

features. This is especially relevant in presence of a global modality, where investi-

gations can be made to be independent from item put on the agenda. It could, for

instance, be argued that scientific knowledge should be kept independent from the

existence of God exactly in this respect. If we were in a world where God did not

exist, then the predictions of science should not be undermined by counterexamples
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involving the existence of God - God would break the laws of science, but that would

not make them false. Vice versa, if we were in a world where God existed, then the

predictions of science would be kept independent from divine intervention, so that

counterexamples where God does not exist would not apply - a law involving divine

intervention is not a scientific law. Whether or not God exists, science should be the

same; this seems to be the scientific attitude of our times. But in former times, the

existence of God would often be used in arguing about scientific theories, a famous

instance being the correspondence between Leibniz and Clarke about Newtonian me-

chanics. When Leibniz offered counterexamples to the Newtonian notion of absolute

space, he relied heavily on his interpretation of God, as if Newton lived in a non-God

world (i.e., a non-Leibnizian-God world) and counterexamples from the God-worlds

refuted his theory. It is arguable that science is now developing independently from

similar considerations and that what it is becoming is kept independent from God.

In other words, God has been put on the ceteris paribus agenda and laws of science

are now independent from its existence. I do not mean to claim that God has been

degraded, but rather that we have adopted an epistemic attitude of keeping our sci-

entific inquiries independent from our beliefs in God and that ceteris paribus actions

describe in what ways this has occurred. One could similarly argue that the debate

on duality in philosophy of Mind should be kept independent from the existence of

the Soul. In both cases, one builds her knowledge on reasoning involving a restrained

set of alternatives and CPL actions provide a logical framework that supports this

attitude and gives it clear logical boundaries.

There is a thus a notion of independence lurking in the equality reading and it

would also be interesting to compare it with existing logic of dependence [64].

One more note about agenda contraction. The quasi-historical interpretation of

expansion gives us some more ground to understand why contraction seems to be so

difficult. Consider again the case of God being put on the ceteris paribus agenda.

Should we come, as a community, to bring back God in scientific inquiries, how

would we do so? Would we go back to the times of Leibniz and Newton, or would we

impose different constraints in appealing to its existence when arguing about scientific

theories? I do not see how to appeal to general principles to answer this question

and this seems to echo the various difficulties in formalizing contraction encountered

above. It may be that logic fails to formalize agenda contraction precisely because this

is not something that happens logically, or rationally! It may be that mathematics is

not the right arena to ask the question and perhaps has logic reached one of its limits.
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But the question is still an important one: what is ceteris paribus agenda contraction?

What does it mean to stop taking a piece of information to be independent in a

rational debate, or in the growth of Science?

Group Order Logic

Finally, Group Order Logic also raises a lot of problems. One important conceptual

question pertains to the choice of lexicographic re-ordering as an aggregation policy.

My main motivation for choosing it is the possibility result proved in [2], namely

that priority operators are the only operators satisfying nice aggregation conditions:

1) independence of irrelevant alternatives, 2) preference based, 3) unanimous with

abstention, 4) transitivity preserving and 5) non-dictatorial. All these properties are

justifiable for an aggregation procedure and they are interesting to compare with the

conditions of Arrow’s impossibility result. The fifth property, which is derivable from

the 4 others, is where the divergence becomes striking; lexicographic operators are

non-dictatorial. Of course, this is not a contradiction with Arrow’s result, since his

conditions are more general, but it provides a nice touchstone to investigate possibility

results in the fields of preference and judgment aggregation, as well as to compare

them with well-known and abundant impossibility results.

From [2]’s results, however, lexicographic reordering is the only operator satisfying

the conditions listed above. This then opens questions as to the reliability of the

lexicographic reordering and the quest for possibility results. Is giving more weight

to certain agents in a society justifiable from a democratic point of view? What kind

of voting procedures and responses to the opinions of the majority would obtain? Are

we better to stay in a society where the aggregation of preferences is known to be

non-uniform (because of Arrow’s theorem)? But also, can we find other sets of nice

conditions that are represented by operators which still yield possibility results?

Here, one should also compare this with the growing body of research in Judgment

Aggregation, where various impossibility results of the Arrow type have been obtained

(cf. [18, 48]).

It would be interesting to see how Group Order Logic and its belief and preference

fragments could be applied in game theory. I have described actions such as preference

upgrade, but no specific actions that could be taken by agents in games. It seems

that Group Order Logic would be an appropriate logic to investigate further the

connections between logic and game theory. For a starter, one should compare how
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the aggregation system presented in Chapter 6 relates to existing logics for game

theory such as coalition logic ([46, 47]).

On a more technical side, the use of priority graphs and the axiomatization pro-

vided in Theorem 6.2.5 suggests a more general approach to the subject, namely to

get a logic of graph manipulations. Firsts steps towards this are given in Appendix C,

where I show in Facts C.0.22 and C.0.23 that the ‘but’ and ‘on the other hand’ prior-

ity operators can be seen as the operations on graphs of disjoint union and sequential

composition. But many more actions on graphs could be defined, and it would be

interesting to see how much can be treated in a similar fashion.

Final words

A lot of ground has been covered in this thesis, but as is now clear from the above

discussion, a lot more needs to be done. I hope that the reader will be motivated in

trying to answer some of the open questions.



Appendix A

Minimal Relational Logic

A.1 Minimal relational logic

In this section, I investigate the Minimal Relational Logic (MRL) behind Broccoli

Logic. MRL is said to be minimal in the same way that K is the minimal normal

logic for S4 or S5. I use neighborhood semantics, which seems to me to be the most

convenient way to attack this problem. I also show how this minimal logic can be

restrained to transitive classes of frames, by the addition of axioms similar to the S4

axiom 33ϕ→ 3ϕ.

Minimal relational models are defined as follows:

Definition A.1.1 [MRL models] A minimal relational model is a triple (W,R, V ),

where W is a set of states, V is a propositional valuation and R stands for a family

of relations:

R = {Rϕ : ϕ is a formula, Rϕ ⊆W ×P(W )}

with the following (transitivity) restriction:

uR|ϕ|X & ∀x ∈ X, xR|ϕ|Yx ⇒ uR|ϕ|

⋃

x∈X

Yx (A.1)

�

In the special case where X is a singleton, condition A.1 reduces to the a usual

transitivity condition:

uR|ϕ|{x}& xR|ϕ|{y} ⇒ uR|ϕ|{y}

131
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Figure A.1: Minimal relational model

Definition A.1.2 [MRL semantics] Let M be a model and let u ∈ W . The truth-

definition for atomic propositions, negations and disjunction is standard. The seman-

tics for the conditionals [ϕ]ψ and [ϕ〉ψ is given by :

M, u � [ϕ]ψ iff ∀X(uRϕX ⇒ ∀v ∈ X,M, v � ψ)

M, u � [ϕ〉ψ iff ∀X(uRϕX ⇒ ∃v ∈ X,M, v � ψ)

�

The semantics of the modalities [ϕ] and [ϕ〉 contains two levels of quantification and

should be read in two stages: 1) the left bracket picks out a set of ϕ-subsets of the

universe and 2) the right bracket evaluates where ψ is true in these subsets. Notice

that the semantics given by minimal relational models is a neighborhood semantics.

Indeed, the relation R is a relation between worlds and subsets of the universe. The

modality [ϕ] is the usual neighborhood universal modality, but indexed with associ-

ated propositions |ϕ|. It comes with its dual modality 〈ϕ〉 with the obvious semantics.

The interesting addition of our language is the modality [ϕ〉, which expresses that

every set Rϕ-related to u satisfies ψ in at least one point. In neighborhood terminol-

ogy, this modality expresses that every ϕ-neighborhood contains at least one ψ-point.

This latter modality also comes with its natural dual 〈ϕ], which expresses that there

is a minimal ϕ-set that is contained in |ψ|.1

Figure A.1 presents a simple minimal relational model, in which the world u is

Rϕ-related (illustrated with arrows) to the sets of worlds X and Y in such a way

that ψ is consistent with X and Y . Hence, according to the minimal semantics of

Definition A.1.2, [ϕ〉ψ is true at u.

One way to see the link between BL and MRL is by adding restrictions on the

relation R|ϕ| in order to get the sets X and Y of figure A.1 as sets returned under

revision by ϕ. This is illustrated in figure A.2, where [ϕ〉ψ is true at u, since ψ is con-

sistent with every revision by ϕ. It is in this perspective that I call the relational logic

1The modality 〈ϕ]ψ was first studied in [5]
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Figure A.2: Minimal relational model

of the present section minimal. In a full-blown broccoli logic, additional restrictions

on the relation R would play the role of selecting minimal revised sets. Once these

sets would be selected, the MRL would provide the logic to evaluate what holds in

these sets.

Axiomatization

Theorem A.1.3 The following set of axioms and rules, added to classical tautologies,

are complete with respect to minimal relational models. I call the resulting logic ΛMRL

Axioms:

〈ϕ〉ψ ≡ ¬[ϕ]¬ψ (A.2)

〈ϕ]ψ ≡ ¬[ϕ〉¬ψ (A.3)

[ϕ](ψ → θ) → ([ϕ]ψ → [ϕ]θ) (A.4)

〈ϕ]ψ → 〈ϕ](ψ ∨ θ) (A.5)

[ϕ]ψ ∧ 〈ϕ]θ → 〈ϕ](ψ ∧ θ) (A.6)

¬〈ϕ]⊤ → [ϕ]ψ (A.7)

〈ϕ〉〈ϕ〉ψ → 〈ϕ〉ψ (A.8)

〈ϕ]〈ϕ]ψ → 〈ϕ]ψ (A.9)

Rules:

1. Modus Ponens.

2. Necessitation for [ϕ] and [ϕ〉.
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3. If ϕ and ϕ′ are formulas differing only in ϕ having an occurrence of θ in one

place where ϕ′ has an occurrence of θ′, and if θ ≡ θ′ is a theorem, then ϕ ≡ ϕ′

is also a theorem.

Rule 3, substitution of equivalents, is applied indiscriminately inside or outside the

modal operators. I count the presence of ‘ϕ’ inside [ϕ] and [ϕ〉 as occurrences of ϕ.

For example, if ψ ≡ θ, then both [ϕ]ψ ≡ [ϕ]θ and [ψ]α ≡ [θ]α are instances of rule 3.

Axioms A.2 and A.3 provide the dual modalities of [ϕ] and [ϕ〉 respectively. Ax-

iom A.4 is a typical K axiom for the modality [ϕ] and yields Modus Ponens under the

scope of [ϕ].2 Axioms A.5 is a monotonicity axiom for the modality 〈ϕ]. Intuitively,

if ψ is consistent with some revision by ϕ, then anything weaker than ψ is also con-

sistent with some revision by ϕ. Axiom A.6 provides a minimal interaction between

the modalities: If ψ is believed after every revision by ϕ and there is a revision by ϕ

such that θ is believed, then there is a revision by ψ such that both ψ and θ are be-

lieved. Axiom A.7 says that if there is no revision by ϕ, then every [ϕ]-formula holds

vacuously. This is akin to saying that every necessary formula holds at en end-point

in an irreflexive Kripke model. Finally, Axioms A.8 and A.9 are typical transitivity

axioms.

Now, Suppose that 〈ϕ]⊤ ∈ u for some u ∈ W .3 Then, for every ψ ∈ u such that

[ϕ〉ψ ∈ u, axiom A.6 gives that 〈ϕ](ψ ∧⊤) ∈ u. By monotonicity of 〈ϕ] (axiom A.5),

〈ϕ]ψ ∈ u. Hence, if there is a revision by ϕ and if ψ is consistent with every revision

by ϕ, then there is a least one revision by ϕ that witnesses the consistency of ψ. This

is desirable for a relational belief revision logic.

Completeness

Soundness is a matter of routine. I show the soundness of Axiom A.6 and A.9 and

leave the others to the reader. Assume that M, u � [ϕ]ψ∧〈ϕ]θ. Then M, u � 〈ϕ]θ, i.e.,

∃X((u,X) ∈ R|ϕ| ∧ ∀v ∈ X,M, v � θ). But M, u � [ϕ]ψ implies that ∀v ∈ X,M, v �

ψ. Hence, ∀v ∈ X,M, v � ψ∧θ. Therefore, ∃X((u,X) ∈ R|ϕ|∧∀v ∈ X,M, v � ψ∧θ,

i.e., M, u � 〈ϕ](ψ ∧ θ).

2There is no corresponding K axiom for the [ϕ〉. Consider a model M such that the set X ⊆W
is the only subset of W that is ϕ-related to the world u ∈ W , i.e, R|ϕ| = {(u,X)}. Suppose that
both |ψ| ∩X 6= ∅ and |¬ψ| ∩X 6= ∅, but that |θ| ∩X = ∅. Then u � [ϕ〉(ψ → θ) (since |¬ψ| ∩X 6= ∅)
and u � [ϕ〉ψ, but u 6� [ϕ〉θ. Hence, [ϕ〉(ψ → θ) → ([ϕ〉ψ → [ϕ〉θ) is not valid.

3I read 〈ϕ]⊤ as “there is a revision by ϕ”.
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Assume that M, u |= 〈ϕ]〈ϕ]ψ, the there is an X with uR|ϕ|X and for every

x ∈ X,M, x |= 〈ϕ]ψ. Hence, for every x ∈ X, there is a Yx with xR|ϕ|Yx such that

for every y ∈ Yx,M, y |= ψ. By the transitivity of R|ϕ|, uR|ϕ|

⋃

x∈X Yx and M, y |= ψ

for every y ∈
⋃

x∈X Yx. Thus, M, u |= 〈ϕ]ψ.

For the completeness part, let WL consist of all maximal L-consistent sets of

formulas. For each formula ϕ, I define an accessibility relation RL
|ϕ| between worlds

and subsets of worlds of WL. For all worlds u ∈WL, if 〈ϕ]⊤ 6∈ u, then I put RL
|ϕ| = ∅.

Otherwise, for every subset X ⊆ WL and formulas ϕ and ψ, I say that the ordered

pair (u,X) ∈ RL
|ϕ| iff X satisfies the following two conditions:

1. for all x ∈ X, if [ϕ]ψ ∈ u, then ψ ∈ x; and

2. for every [ϕ〉ψ ∈ u,X contains at least one world v with ψ ∈ v.

Definition A.1.4 [Canonical MRL model] Let p ∈ prop be a proposition. Let

V L(p) = |p| and let RL = {RL
|ϕ| : ϕ is a formula}, then the model ML = (WL, RL, V L)

is the canonical minimal relational model. �

The completeness of the proof system in section A.1 follows from a standard truth-

lemma:

Lemma A.1.5 For all u ∈WL and for all formulas θ, θ ∈ u iff M, u � θ.

I give the proof of the truth-lemma once I have stated and proved the following crucial

lemmas.

Lemma A.1.6 If 〈ϕ]α ∈ u, then there exists a subset X ⊆ WL such that RL
|ϕ|uX,

and for every world x ∈ X, α ∈ x.

Proof. Let [ϕ〉θ ∈ u, and let

v− = {β : [ϕ]β ∈ u} ∪ {θ} ∪ {α}.

Suppose that v− is not consistent, then there exists δ1, ..., δn ∈ v− such that ⊢ (
∧

δi ∧

α) → ¬θ. For every 1 ≤ i ≤ n,
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δi ∈ v− ⇒ [ϕ]δi ∈ u (Definition of v−)

⇒
∧

[ϕ]δi ∈ u (Truth definition)

⇒ [ϕ]
∧

δi ∈ u (Axiom A.4)

⇒ ([ϕ]
∧

δi ∧ 〈ϕ]α) ∈ u (since 〈ϕ]α ∈ u)

⇒ 〈ϕ](
∧

δi ∧ α) ∈ u (axiom A.6)

⇒ 〈ϕ]¬θ ∈ u (by the monotonicity axiom A.5)

⇒ ¬[ϕ〉θ ∈ u (axiom A.3)

and this is a contradiction, since [ϕ〉θ ∈ u by assumption. Therefore, v− is consistent.

Let v be a maximal extension of v−.

For every θi such that [ϕ〉θi ∈ u, let wi be obtained from the above construction,

and let

X = {wi : [ϕ〉θi ∈ u, θi ∈ wi}.

Then X satisfies conditions 1) and 2) and for every x ∈ X, α ∈ x. qed

Corollary A.1.7 (Corollary to the proof of lemma A.1.6) If [ϕ〉ψ ∈ u, then

the set w = {ψ} ∪ {θ : [ϕ]θ ∈ u} is consistent.

Lemma A.1.8 If 〈ϕ〉ψ ∈ u, then there exists a subset X ⊆ WL such that RL
|ϕ|uX,

and there exists a world x ∈ X such that ψ ∈ x.

Proof. Assume 〈ϕ〉ψ ∈ u. Then there is a maximal consistent set v such that ψ ∈ v.

The proof that v exists is standard (see [7], Lemma 4.20).

By corollary A.1.7, for every formula αi, if [ϕ〉αi ∈ u, then the set w−
i = {αi}∪{θ :

[ϕ]θ} is consistent. By Lindenbaum’s lemma, there exists a maximal consistent set

wi extending w−
i such that αi ∈ wi. Let W = {wi : [ϕ〉αi ∈ u}

Finally, let X = {v}∪W . It is not difficult to check that RL
|ϕ|uX, and ψ ∈ v. qed

Proof.[Lemma A.1.5] Thanks to axioms A.5 and A.7, if 〈ϕ]⊤ 6∈ u, then [ϕ〉ψ ∈ u

and [ϕ]ψ ∈ u for all ψ. Since RL
|ϕ| = ∅ when 〈ϕ]⊤ 6∈ u, the lemma is trivially

satisfied. Thus, I assume for the remainder of the proof that 〈ϕ]⊤ ∈ u. The proof

now proceeds by induction on the complexity of θ. The interesting cases are when

θ = [ϕ]ψ or θ = [ϕ〉ψ. The first direction (θ ∈ u ⇒ M, u � θ) follows from the

conditions imposed on RL
|ϕ|. I prove that M, u � θ ⇒ θ ∈ u.
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Suppose [ϕ]ψ 6∈ u. Since u is a maximal consistent set of formulas, ¬[ϕ]ψ ∈ u.

By axiom A.2, this implies that 〈ϕ〉¬ψ ∈ u. By lemma A.1.8, there exists a subset

X ⊆ WL such that RL
|ϕ|uX and a world x ∈ X such that M, x � ¬ψ. Hence, by the

truth-definition M, u � 〈ϕ〉¬ψ, i.e., M, u � ¬[ϕ]ψ. Therefore, M, u 6� [ϕ]ψ.

Finally, suppose that [ϕ〉ψ 6∈ u, then ¬[ϕ〉ψ ∈ u. Hence, 〈ϕ]¬ψ ∈ u (axiom A.3).

By lemma A.1.6, there exists a subset X ⊆WL such that RL
|ϕ|uX and for every world

x ∈ X, ¬ψ ∈ x. By the inductive hypothesis, for every x ∈ X, M, x � ¬ψ. Therefore,

by the truth-definition, M, u 6� [ϕ〉ψ. qed

Theorem A.1.9 The logic ΛMRL is complete with respect to the class of transitive

frames, where transitivity is defined as in Definition A.1.1.

Proof. Assume that uR|ϕ|X and ∀x ∈ X, xR|ϕ|Yx and suppose that ∃yx ∈ Yx such

that ψ ∈ yx. Then 〈ϕ〉ψ ∈ x, which implies that 〈ϕ〉〈ϕ〉ψ ∈ u. By the transitivity

Axiom A.8, 〈ϕ〉ψ ∈ u. Now, assume that ψ ∈ y for every y ∈
⋃

x∈X Yx. Thus,

ψ ∈ y for every y ∈ Yx, which implies that 〈ϕ]ψ ∈ x for every x ∈ X. Hence,

〈ϕ]〈ϕ]ψ ∈ u. By the second transitivity Axiom A.9, 〈ϕ]ψ ∈ u. Therefore, since both

conditions of the definition of the accessibility relation in the canonical model are

met, uR|ϕ|

⋃

x∈X Yx, as desired. qed

Proof of Lemmas needed in Section 3.4

Lemma A.1.10 Let ∗ stand for either ≤ or <, then:

〈⇑ A〉2∗ϕ ⇔ A→ 2
∗(A→ 〈⇑ A〉ϕ)

∧ ¬A→ 2
∗(¬A → 〈⇑ A〉ϕ)

∧ ¬A→ U(A→ 〈⇑ A〉ϕ) (A.10)

Proof. Follows with some obvious manipulations after taking the negation on both

sides of Axiom 2.30. qed

Lemma A.1.11

A ∧ 〈⇑ A〉(ϕ ∧ 2
∗(ϕ→ ψ)) ⇔ A ∧ 〈⇑ A〉ϕ ∧ 2

∗(A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ) (A.11)
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Proof.

A ∧ 〈⇑ A〉(ϕ ∧ 2∗(ϕ→ ψ)) ⇔ A ∧ 〈⇑ A〉ϕ ∧ 〈⇑ A〉2∗(ϕ→ ψ) (Theorem 2.2.2)

⇔ A ∧ 〈⇑ A〉ϕ ∧ 2∗(A→ 〈⇑ A〉(ϕ→ ψ)) (Lemma A.1.10)

⇔ A ∧ 〈⇑ A〉ϕ ∧ 2∗(A→ (〈⇑ A〉ϕ→ 〈⇑ A〉ψ)) (Theorem 2.2.2)

⇔ A ∧ 〈⇑ A〉ϕ ∧ 2∗(A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ) (Logic)

qed

Lemma A.1.12

¬A ∧ 〈⇑ A〉(ϕ ∧ 2
∗(ϕ→ ψ)) ⇔ ¬A ∧ 〈⇑ A〉ϕ

∧ 2
∗(¬A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ)

∧ U(A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ) (A.12)

Proof.

¬A ∧ 〈⇑ A〉(ϕ ∧ 2∗(ϕ→ ψ)) ⇔ ¬A ∧ 〈⇑ A〉ϕ ∧ 〈⇑ A〉2∗(ϕ→ ψ) (Theorem 2.2.2)

⇔ ¬A ∧ 〈⇑ A〉ϕ

∧ 2∗(¬A→ 〈⇑ A〉(ϕ→ ψ))

∧ U(A→ 〈⇑ A〉(ϕ→ ψ)) (Lemma A.1.10)

⇔ ¬A ∧ 〈⇑ A〉ϕ

∧ 2∗(¬A→ (〈⇑ A〉ϕ→ 〈⇑ A〉ψ))

∧ U(A→ (〈⇑ A〉ϕ→ 〈⇑ A〉ψ)) (Theorem 2.2.2)

⇔ ¬A ∧ 〈⇑ A〉ϕ

∧ 2∗(¬A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ)

∧ U(A ∧ 〈⇑ A〉ϕ→ 〈⇑ A〉ψ) (Logic)

qed



Appendix B

CPL and Nash Equilibrium

The equality reading of ceteris paribus can be seen to arise naturally in game the-

ory, where concepts such as “best response” and “Nash equilibrium” implicitly use

an “all other things being equal” clause. The ability of defining Nash equilibrium,

furthermore, is a benchmark for modern logics of games and this problem has been

solved in several ways [16, 29, 71]. This appendix offers a new solution emphasizing

the ceteris paribus aspect of Nash equilibrium.

A Nash equilibrium is a state in which no player has incentives to unilaterally

change her strategy: for every i, no alternatives are strictly better for i in which every

player but i keeps the same strategies. This can be expressed in CPL by bringing out

the ceteris paribus aspect in the Nash equilibrium solution concept. I achieve this for

finite games in strategic form and show the details for a simple 2-player game with

players a and b.

Consider a language with the propositional letters a1, ..., am and b1, ..., bn ranging

over a and b’s strategies respectively and consider a m × n-game matrix such as in

Figure B. Identify each cell, or strategy profile, with a possible state (ai, bj) and

take, for each player, an arbitrary total preference relation among these states. I use

subscripts on the modalities for agents. For example, the notation 〈∅〉≤a ϕ expresses

that there is a better state according to a’s preferences where ϕ holds. My goal is to

express that state u is a Nash equilibrium.

In line with [29], I first express the notion of best response. I say that strategy ai

is a best response for a at state u if u = (ai, bj) is at least as good as any other state,

keeping bj equal. I express this by:

M, u |= ¬〈{bj}〉
<
a ⊤

139
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a1 am
ai

(a1, b1)b1

u
bj

bn (am, bn)

Figure B.1: Simple representation of a Nash equilibrium. The arrows indicate that
(x, bj) ≤i (ai, bj)∀x ∈ 〈a1, ..., am〉 and (ai, y) ≤ (ai, bj)∀y ∈ 〈b1, ..., bn〉.

which says that no world where b plays bj is strictly better than u for a. Assuming

totality, this is equivalent to “u is at least as good as any alternative where b plays

bj”. For the Nash equilibrium, I say that every player uses its best response at u. In

the two-player case, this amounts to:

M, u |= ¬〈{ai}〉
<
b ⊤ ∧ ¬〈{bj}〉

<
a ⊤

This definition is local, since the formula defining the equilibrium depends on the

current state u. A more generic global definition of best response for agent i might

involve a ceteris paribus modality referring to the intersection
⋂

i6=j ∼j of the epistemic

accessibility relations for the other agents and strict preference for i. [66] gives a

solution relating this to distributed knowledge of the other players.

For the general case, let Γ be the set of all strategies of all players in the set N ,

and Γ−a the set off all strategies minus a’s.

Fact B.0.13 A state u is a Nash equilibrium iff:

M, u |=
∧

a∈N

¬〈Γ−a〉
<
a ⊤.

This definition of the Nash equilibrium isolates its ceteris paribus part and shows

how it may be applied in game theory. Of course, to get a more substantial definition

where actions and beliefs are also involved, one would need to extend the language,
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build models for it and seek its logic. But we see here a glimpse of how the CPL

approach might help in this research.
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Appendix C

Some Algebra

I provide an algebraic derivation of the group Axioms 6.27-6.30. The result I want to

show is the following:

Proposition C.0.14 The group Axioms 6.27-6.30 are sound.

I first introduce preliminary definitions and facts.

Definition C.0.15 Let R be a relation, then the inverse of R, denoted R−1, is

defined by:

R−1 = {(b, a) : (a, b) ∈ R}

�

Fact C.0.16 The inverse operator −1 distributes over ∩ and ∪.

Proof. I show that (R ∩ S)−1 = R−1 ∩ S−1 and (R ∪ S)−1 = R−1 ∪ S−1.

1.
(R ∩ S)−1 = {(b, a) : (a, b) ∈ R ∩ S}

= {(b, a) : (a, b) ∈ R}& {(b, a) : (a, b) ∈ S}

= R−1 ∩ S−1

2.
(R ∪ S)−1 = {(b, a) : (a, b) ∈ R ∪ S}

= {(b, a) : (a, b) ∈ R} or {(b, a) : (a, b) ∈ S}

= R−1 ∪ S−1

qed
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Definition C.0.17 Let R be a relation, then the complement or R, denoted ¬R, is

defined by:

¬R = {(a, b) : (a, b) 6∈ R}

�

Fact C.0.18 R ∩ ¬(R−1) = R<

Proof. Definition. qed

Fact C.0.19 R< ∩ ¬(R−1) = R<

Proof. I show that R< ⊆ ¬(R−1. Let (a, b) ∈ R<, then (a, b) ∈ R& (a, b) 6∈ R−1.

Hence, (a, b) ∈ ¬R−1. qed

Fact C.0.20 R ∩ ¬((R<)−1) = R

Proof. I show that R ⊆ ¬((R<)−1). Let (a, b) ∈ R and suppose that (a, b) ∈ (R<)−1.

Then (b, a) ∈ R<, i.e., (b, a) ∈ R& (b, a) ∈ ¬(R−1). Thus, (b, a) 6∈ R−1, i.e., (a, b) 6∈

R, contradiction. Therefore, (a, b) ∈ ¬(R<)−1. qed

Proof of Proposition C.0.14. The soundness of Axioms 6.27 and 6.28 is immedi-

ate, as they correspond to the but and on the other hand priority operators. I provide

an algebraic derivation of Axioms 6.29 and 6.30. I show this by analyzing the decom-

position of (X ‖ Y )< and (X/Y )< algebraically. In the next two derivations, I only

use simple algebraic operations (De Morgan laws) as well as the facts just established.

The algebraic analysis of (X ‖ Y )<, rendered in Axiom 6.29, is given by:

(X ‖ Y )< = (X ‖ Y )≤ ∩ ¬(((X ‖ Y )≤)−1)

= (X ∩ Y ) ∩ ¬((X ∩ Y )−1)

= (X ∩ Y ) ∩ ¬(X−1 ∩ Y −1)

= (X ∩ Y ) ∩ (¬X−1 ∪ ¬Y −1)

= (X ∩ Y ∩ ¬X−1) ∪ (X ∩ Y ∩ ¬Y −1)

= (X< ∧ Y ) ∨ (X ∧ Y <)

and the algebraic analysis of (X/Y )<, rendered in Axiom 6.30, is given by:
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(X/Y )< = (X/Y )≤ ∩ ¬(((X/Y )≤)−1)

= ((X ∩ Y ) ∪ Y <) ∩ ¬(((X ∩ Y ) ∪ Y <)−1)

= ((X ∩ Y ) ∪ Y <) ∩ ¬((X−1 ∩ Y −1) ∪ (Y <)−1)

= ((X ∩ Y ) ∪ Y <) ∩ ((¬X−1 ∪ ¬Y −1) ∩ ¬(Y <)−1)

= [((X ∩ Y ) ∩ ¬(Y <)−1) ∪ (Y < ∩ ¬(Y <)−1))] ∩ (¬X−1 ∪ ¬Y −1)

= [((X ∩ Y ) ∪ Y <] ∩ (¬X−1 ∪ ¬Y −1)

= [((X ∩ Y ) ∪ Y <) ∩ ¬X−1] ∪ [((X ∩ Y ) ∪ Y <) ∩ ¬Y −1]

= [((X ∩ Y ) ∪ Y <) ∩ ¬X−1] ∪ [(X ∩ Y <) ∪ Y <]

= (X< ∩ Y ) ∪ (Y < ∩ ¬X−1) ∪ Y <

= (X< ∩ Y ) ∪ Y <

qed

Another perspective: graph calculus

The way I have used the priority operators / and ‖ in modalizing preference aggre-

gation suggests a more general standpoint on the subject. From a strictly formal

point of view, the modalities can be read as graph manipulations and this suggests

investigating modal logics for graph calculus. Here, I content myself with restating

the aggregation language in terms of graph calculus and leave for future research a

full system for graph manipulations.1

Inspecting the structure of Axiom 6.27, it is easy to restate the operator ‖ as an

operation on graphs, namely disjoint union ⊎.

Definition C.0.21 Let G1 = 〈N1, <1, V1〉 and G2 = 〈N2, <2, V2〉 be two priority

graphs. The disjoint union ofG1 andG2, denotedG1⊎G2, is a a triple 〈NG1⊎G2
, <G1⊎G2

, VG1⊎G2
〉, where NG1⊎G2

= N1 ∪N2, <G1⊎G2
=<1 ∪ <2 and VG1⊎G2

(i) = V1(i) ∪ V2(i).

�

Fact C.0.22 Let G1, G2 be priority graphs, o1, o2 priority operators denoting G1 and

G2 respectively and o1+2 denoting G1 ⊎G2, then:

ao1+2((�x)x∈N)b iff ao1((�x)x∈N)b ∩ ao2((�x)x∈N)b (C.1)

1Similar considerations on graph calculus can be found in [41].
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Proof. The equivalence follows directly from Definition 6.1. In the one direction,

since G1 and G2 are disjoint, it is not the case that there is a j ∈ N with j < k for

any k ∈ G1, G2. Thus, it must be that ao1((�x)x∈N)b ∩ ao2((�x)x∈N)b. In the other

direction, since ao1((�x)x∈N)b ∩ ao2((�x)x∈N)b, we immediately get that ao1+2((�x

)x∈N)b. qed

Fact C.0.22 is reflected in the following principle, which is just a restatement

of Axiom 6.27, with modalities explicitly indexed with graphs and disjoint union of

graphs instead of graph variables as in group preference logic:

〈G1 ⊎G2〉
≤s↔ 〈G1〉

≤s ∧ 〈G2〉
≤s (C.2)

More generally, given n graphs G1, ..., Gn, the effect of taking their disjoint union

is expressed in the principle:

〈G1 ⊎ ... ⊎Gn〉
≤s↔ 〈G1〉

≤s ∧ ... ∧ 〈Gn〉
≤s (C.3)

Similarly, the priority graph operator / can be translated as an explicit operation

on graph, which I call sequential composition, denoted G;G′. Sequential composition

on graphs takes a set of graph with a given order, where graphs occurring on the left

are given priority, and returns their lexicographic aggregation. Thus, given two graphs

G1 and G2 such that G1;G2, sequential composition returns the order a �G1;G2
b if

a ≺G1
b or finds a compensation with the common relations a �G1

b and a �G2
b, in

case it is not the case that a ≺G1
b.

Fact C.0.23 Let G1, G2 be priority graphs, o1, o2 priority operators denoting G1 and

G2 respectively and o1;2 denoting G1;G2, then:

ao1;2((�x)x∈N)b iff (ao1((�x)x∈N)b ∩ ao2((�x)x∈N)b)

or (ao1((≺x)x∈N)b (C.4)

As above, Fact C.0.23 can be represented in the following principle, a restatement

of Axiom 6.29:

〈G1;G2〉
≤s ↔ (〈G1〉

≤s ∧ 〈G2〉
≤s) ∨ 〈G1〉

<s (C.5)
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For a general statement over n graphs, sequential decomposition can be obtained

recursively, starting with the leftmost graph to obtain:

〈G1; ...;G2〉
≤s ↔ (〈G1〉

≤s ∧ 〈G2; ...;Gn〉
≤s) ∨ 〈G1〉

<s (C.6)

and after successive decomposition of ‘;’, to obtain:

〈G1; ...;G2〉
≤s ↔ (〈G1〉

≤s ∧ ...〈Gn〉
≤s) ∨ (〈G1〉

≤s ∧ ... ∧ 〈Gn−1〉
<s)

∨... ∨ (〈G1〉
≤s ∧ 〈G2〉

<s) ∨ 〈G1〉
<s (C.7)
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[36] Jérôme Lang, Leon van der Torre, and Emil Weyder. Hidden uncertainty in the

logical representation of desires. In Proceedings of Eighteenth International Joint

Conference on Artificial Intelligence (IJCAI’03), pages 685–690, 2003.

[37] David Lewis. Counterfactuals. Harvard University Press, 1973.

[38] David Lewis. Ordering semantics and premise semantics for counterfactuals.

Journal of philosophical logic, 10(2):217–234, May 1981.

[39] Sten Lindström and Wlodek Rabinowicz. Epistemic entrenchment with incompa-

rabilities and relational belief revision. In A. Fuhrmann and M. Morreau, editors,

The Logic of Theory Change: Proc. of the Workshop, pages 93–126. Springer,

Berlin, Heidelberg, 1991.

[40] Sten Lindström and Krister Segerberg. Modal logic and philosophy. In Patrick

Blackburn, Johan van Benthem, and Frank Wolter, editors, Handbook of Modal

Logic, volume 3, pages 1149–1214. Elsevier, 2007.

[41] Fenrong Liu. Changing for the better: Preference dynamics and agent diversity.

PhD thesis, Institute for logic, language and computation (ILLC), 2008.

[42] Fenrong Liu and Dick De Jongh. Optimality, belief and preference. Technical

report, ILLC, Prepublication series, PP-2006-38, 2006.

[43] Carsten Lutz. Complexity and succinctness of public announcement logic. In

Proceedings of the Fifth International Conference on Autonomous Agents and

Multiagent Systems (AAMAS06), 2006.

[44] Donald Nute. Conditional logic. In Dov Gabbay and Franz Guenthner, edi-

tors, Handbook of Philosophical Logic, volume II, chapter II.8, pages 387–439. D.

Reidel Publishing Company, 1984.



BIBLIOGRAPHY 153

[45] Eric Pacuit and Olivier Roy. Preference based belief dynamics. Proceedings of

7th conference on logic and the foundations of game and decision theory (LOFT),

2006.

[46] Marc Pauly. Logic for social software. PhD thesis, ILLC, University of Amster-

dam, Dissertation Series 2001-10, 2001.

[47] Marc Pauly. A modal logic for coalitional power in games. Journal of logic and

computation, 12(1):149–166, 2002.

[48] Marc Pauly and Martin van Hees. Logical constraints on judgment aggregation.

Journal of Philosophical Logic, 35:569–585, 2006.

[49] Joseph Persky. Retrospectives: ceteris paribus. The journal of economic per-

spectives, 4(2):187–193, 1990.

[50] V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 20th

IEEE symposium on computer science, pages 109–121, 1976.

[51] Arthur N. Prior. Time and modality. Oxford University Press, 1957.

[52] Frank Plumpton Ramsey. Truth and probability. In R.B. Braithwaite, editor,

Foundations of mathematics and other logical essays, International library of psy-

chology, philosophy, and scientific method, pages 25–52. New York : Harcourt,

Brace and Company, 1931.

[53] Hans Rott. Change, choice and inference: A Study of Belief Revision and Non-

monotonic Reasoning. Clarendon Press, 2001.

[54] Hans Rott. Shifting priorities: simple representations for 27 iterated theory

change operators. In H. Lagerlund, S. Lindstr om, and R. Sliwinski, editors,

Modality matters: twenty-five essays in honour of Krister Segerberg, volume 53,

pages 359–384. Uppsala philosophical studies, 2006.

[55] Olivier Roy. Thinking before Acting: Intentions, Logic, Rational Choice. PhD

thesis, Institute for logic, language and computation (ILLC), 2008.

[56] Leonard J. Savage. Foundations of statistics. New York, Dover Publications,

2nd revised edition, 1972.

[57] Stephen Schiffer. Ceteris paribus laws. Mind, 100(1):1–17, January 1991.



154 BIBLIOGRAPHY

[58] Krister Segerberg. An essay in classical modal logic. Filosofiska Studier 13, 1971.

[59] Krister Segerberg. Belief revision from the point of view of doxastic logic. Bulletin

of the IGPL 3, (4):535–553, 1995.

[60] Krister Segerberg. Two traditions in the logic of belief: bringing them together.

In Hans Jürgen Ohlbach and Uwe Reyle, editors, Logic, language and reasoning:

essays in honour of Dov Gabbay, pages 135–147. Dordrecht: Kluwer, 1999.

[61] Krister Segerberg. The basic dynamic doxastic logic of AGM . In Mary-Anne

Williams and Hans Rott, editors, Frontiers in belief revision, pages 57–84. Dor-

drecht: Kluwer, 2001.

[62] Robert Stalnaker. A theory of conditionals. In N. Rescher, editor, Studies in log-

ical theory, American philosophical quarterly, pages 98–112. Oxford: Blackwell,

1968. Monograph 2.

[63] Balder ten Cate. Model Theory for Extended Modal Languages. PhD thesis,

University of Amsterdam, ILLC Dissertation Series DS-2005-01, 2005.

[64] Jouko Väänänen. Dependence logic: a new approach to independence friendly

logic. London mathematical society student texts. Cambridge university press,

May 2007.

[65] Johan van Benthem. Verisimilitude and conditionals. In What is closer-to-the-

truth?, pages 103–128. T. Kuipers, Rodopi, Amsterdam, 1987.

[66] Johan van Benthem. Rational dynamics and epistemic logic in games. Technical

report, ILLC, Prepublication series, PP-2003-06, February 2006.

[67] Johan van Benthem. Dynamic logic for belief change. In Andreas Herzig and

Hans van Ditmarsch, editors, Belief revision and dynamic logic, Journal of ap-

plied non-classical logic. Hermès-Lavoisier, 2007.

[68] Johan van Benthem, Patrick Girard, and Olivier Roy. Everything else being

equal: a modal logic approach to ceteris paribus preferences. Journal of philo-

sophical logic, 2008. To appear.

[69] Johan van Benthem and Fenrong Liu. The dynamics of preference upgrade.

Journal of Applied Non-Classical Logics, 2007.



BIBLIOGRAPHY 155

[70] Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of communication

and change. Information and computation, 204(11):1620–1662, 2006.

[71] Johan van Benthem, Sieuwert van Otterloo, and Olivier Roy. Preference logic,

conditionals, and solution concepts in games. In Festschrift for Krister Segerberg.

University of Uppsala, 2005.

[72] Hans van Ditmarsch, Barteld Kooi, and Wiebe van der Hoek. Dynamic Epistemic

Logic. Synthese Library, 2007.

[73] Sieuwert van Otterloo. A Strategic Analysis of Multi-Agent Protocols. PhD

thesis, University of Liverpool, 2005.

[74] Frank Veltman. Logic for conditionals. PhD thesis, Department of Philosophy,

University of Amsterdam, 1985.

[75] George Henrik von Wright. Deontic logic. Mind, 60(237):1–15, January 1951.

[76] George Henrik von Wright. The logic of preference. Edinburgh University Press,

1963.

[77] Y.Murakami. Logic and social choice. Monographs in modern logic. Dover pub-

lications, 1968.



Titles in the ILLC Dissertation Series:

ILLC DS-2001-01: Maria Aloni

Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch

Rationality in Discovery - a study of Logic, Cognition, Computation and Neu-

ropharmacology

ILLC DS-2001-03: Erik de Haas

Logics For OO Information Systems: a Semantic Study of Object Orientation

from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff

Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland

Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf

Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki

Logics and Provability

ILLC DS-2001-08: Allard Tamminga

Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles

Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly

Logic for Social Software

ILLC DS-2002-01: Nikos Massios

Decision-Theoretic Robotic Surveillance

ILLC DS-2002-02: Marco Aiello

Spatial Reasoning: Theory and Practice

ILLC DS-2002-03: Yuri Engelhardt

The Language of Graphics



ILLC DS-2002-04: Willem Klaas van Dam

On Quantum Computation Theory

ILLC DS-2002-05: Rosella Gennari

Mapping Inferences: Constraint Propagation and Diamond Satisfaction

ILLC DS-2002-06: Ivar Vermeulen

A Logical Approach to Competition in Industries

ILLC DS-2003-01: Barteld Kooi

Knowledge, chance, and change

ILLC DS-2003-02: Elisabeth Catherine Brouwer

Imagining Metaphors: Cognitive Representation in Interpretation and Under-

standing

ILLC DS-2003-03: Juan Heguiabehere

Building Logic Toolboxes

ILLC DS-2003-04: Christof Monz

From Document Retrieval to Question Answering

ILLC DS-2004-01: Hein Philipp Röhrig
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