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and very helpful insights from Andrew Barron.

Outside of work, I have been loved and supported by my wonderful girlfriend
Nele Beyens. Without her and our son Pepijn, I might still have written a thesis,
but I certainly would not have been as happy doing it! Also many thanks to my
parents Anca and Piet and my brother Maarten, who probably do not have much
of a clue what I have been doing all this time, but who have been appropriately
impressed by it all.

Finally I wish to thank my friends Magiel Bruntink, Mark Thompson, Joeri
van Ruth and Nienke Valkhoff, Wouter Vanderstede and Lieselot Decalf, Jan de
Vos, Daniel Wagenaar and his family, and Thijs Weststeijn and Marieke van den
Doel.

xii



Chapter 1

The MDL Principle for Model Selection

Suppose we consider a number of different hypotheses for some phenomenon.
We have gathered some data that we want to use somehow to evaluate these
hypotheses and decide which is the “best” one. In case that one of the hypotheses
exactly describes the true mechanism that underlies the phenomenon, then that
is the one we hope to find. While this may already be a hard problem, available
hypotheses are often merely approximations in practice. In that case the goal
is to select a hypothesis that is useful, in the sense that it provides insight in
previous observations, and matches new observations well. Of course, we can
immediately reject hypotheses that are inconsistent with new experimental data,
but hypotheses often allow for some margin of error; as such they are never
truly inconsistent but they can vary in the degree of success with which they
predict new observations. A quantitative criterion is required to decide between
competing hypotheses. The Minimum Description Length (MDL) principle is
such a criterion [67, 71]. It is based on the intuition that, on the basis of a useful
theory, it should be possible to compress the observations, i.e. to describe the
data in full using fewer symbols than we would need using a literal description.
According to the MDL principle, the more we can compress a given set of data,
the more we have learned about it. The MDL approach to inference requires that
all hypotheses are formally specified in the form of codes. A code is a function
that maps possible outcomes to binary sequences; thus the length of the encoded
representation of the data can be expressed in bits. We can encode the data
by first specifying the hypothesis to be used, and then specifying the data with
the help of that hypothesis. Suppose that L(H) is a function that specifies how
many bits we need to identify a hypothesis H in a countable set of considered
hypotheses H. Furthermore let LH(D) denote how many bits we need to specify
the data D using the code associated with hypothesis H. The MDL principle now
tells us to select that hypothesis H for which the total description length of the
data, i.e. the length of the description of the hypothesis L(H), plus the length of
the description of data using that hypothesis LH(D), is shortest. The minimum

1



2 Chapter 1. The MDL Principle for Model Selection

total description length as a function of the data is denoted Lmdl:

Hmdl := arg min
H∈H

(

L(H) + LH(D)
)

, (1.1)

Lmdl(D) := min
H∈H

(

L(H) + LH(D)
)

. (1.2)

(In case that there are several H that minimise (1.1), we take any one among those
with smallest L(H).) Intuitively, the term L(H) represents the complexity of the
hypothesis while LH(D) represents how well the hypothesis is able to describe
the data, often referred to as the goodness of fit. By minimising the sum of these
two components, MDL implements a tradeoff between complexity and goodness
of fit. Also note that the selected hypothesis only depends on the lengths of the
used code words, and not on the binary sequences that make up the code words
themselves. This will make things a lot easier later on.

By its preference for short descriptions, MDL implements a heuristic that is
widely used in science as well as in learning in general. This is the principle
of parsimony, also often referred to as Occam’s razor. A parsimonious learning
strategy is sometimes adopted on the basis of a belief that the true state of nature
is more likely to be simple than to be complex. We prefer to argue in the opposite
direction: only if the truth is simple, or at least has a simple approximation, we
stand a chance of learning its mechanics based on a limited data set [39]. In
general, we try to avoid assumptions about the truth as much as possible, and
focus on effective strategies for learning instead. That said, a number of issues
still need to be addressed if we want to arrive at a practical theory for learning:

1. What code should be used to identify the hypotheses?

2. What codes for the data are suitable as formal representations of the hy-
potheses?

3. After answering the previous two questions, to what extent can the MDL
criterion actually be shown to identify a “useful” hypothesis, and what do
we actually mean by “useful”?

These questions, which lie at the heart of MDL research, are illustrated in the
following example.

Example 1 (Language Learning). Ray Solomonoff, one of the founding fathers
of the concept of Kolmogorov complexity (to be discussed in Section 1.1.3), in-
troduced the problem of language inference based on only positive examples as
an example application of his new theory [84]; it also serves as a good example
for MDL inference.

Suppose we want to automatically infer a language based on a list of valid ex-
ample sentences D. We assume that the vocabulary Σ, which contains all words
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that occur in D, is background knowledge: we already know the words of the lan-
guage, but we want to learn from valid sentences how the words may be ordered.
For the set of our hypotheses H we take all context-free grammars (introduced
as “phrase structure grammars” by Chomsky in [19]) that use only words from Σ
and and additional set N of nonterminal symbols. N contains a special symbol
called the starting symbol. A grammar is a set of production rules, each of which
maps a nonterminal symbol to a (possibly empty) sequence consisting of both
other nonterminals and words from Σ. A sentence is grammatical if it can be
produced from the starting symbol by iteratively applying a production rule to
one of the matching nonterminal symbols.

We need to define the relevant code length functions: L(H) for the specifi-
cation of the grammar H ∈ H, and LH(D) for the specification of the example
sentences with the help of that grammar. In this example we use very simple
code length functions; later in this introduction, after describing in more detail
what properties good codes should have, we return to language inference with a
more in-depth discussion.

We use uniform codes in the definitions of L(H) and LH(D). A uniform code
on a finite set A assigns binary code words of equal length to all elements of
the set. Since there are 2l binary sequences of length l, a uniform code on A
must have code words of length at least

⌈
log |A|

⌉
. (Throughout this thesis, ⌈·⌉

denotes rounding up to the nearest integer, and log denotes binary logarithm.
Such notation is listed on page 201.) To establish a baseline, we first use uniform
codes to calculate how many bits we need to encode the data literally, without
the help of any grammar. Namely, we can specify every word in D with a uniform
code on Σ ∪ ⋄, where ⋄ is a special symbol used to mark the end of a sentence.
This way we need |D|

⌈
log(|Σ|+ 1)

⌉
bits to encode the data. We are looking for

grammars H which allow us to compress the data beyond this baseline value.

We first specify L(H) as follows. For each production rule of H, we use
⌈
log(|N ∪ {⋄}|)

⌉
bits to uniformly encode the initial nonterminal symbol, and

⌈
log(|N ∪ {⋄} ∪ Σ|)

⌉
bits for each of the other symbols. The ⋄ symbol signals the

end of each rule; two consecutive ⋄s signal the end of the entire grammar. If the
grammar H has r rules, and the summed length of the replacement sequences is
s, then we can calculate that the number of bits we need to encode the entire
grammar is at most

(s + r)
⌈
log(|N |+ |Σ|+ 1)

⌉
+ (r + 1)

⌈
log(|N |+ 1)

⌉
. (1.3)

If a context-free grammar H is correct, i.e. all sentences in D are grammatical
according to H, then its corresponding code LH can help to compress the data,
because it does not need to reserve code words for any sentences that are un-
grammatical according to H. In this example we simply encode all words in D
in sequence, each time using a uniform code on the set of words that could occur
next according to the grammar. Again, the set of possible words is augmented
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with a ⋄ symbol to mark the end of each sentence and to mark the end of the
data.

Now we consider two very simple correct grammars, both of which only need
one nonterminal symbol S. The “promiscuous” grammar (terminology due to
Solomonoff [84]) has rules S → S S and S → σ for each word σ ∈ Σ. This gram-
mar generates any sequence of words as a valid sentence. It is very short: we
have r = 1 + |Σ| and s = 2 + |Σ| so the number of bits L(H1) required to encode
the grammar essentially depends only on the size of the dictionary and not on
the amount of available data D. On the other hand, according to H1 all words
in the dictionary are allowed in all positions, so LH1(D) requires as much as
⌈
log(|Σ|+ 1)

⌉
bits for every word in D, which is equal to the baseline. Thus this

grammar does not enable us to compress the data.
Second, we consider the “ad-hoc” grammar H2. This grammar consists of a

production rule S → d for each sentence d ∈ D. Thus according to H2, a sentence
is only grammatical if it matches one of the examples in D exactly. Since this
severely restricts the number of possible words that can appear at any given
position in a sentence given the previous words, this grammar allows for very
efficient representation of the data: LH2(D) is small. However, in this case L(H2)
is at least as large as the baseline, since in this case the data D appear literally
in H2!

Both grammars are clearly useless: the first does not describe any structure
in the data at all and is said to underfit the data. In the second grammar random
features of the data (in this case, the selection of valid sentences that happen to
be in D) are treated as structural information; this grammar is said to overfit
the data. Consequently, for both grammars H ∈ {H1, H2}, we can say that
we do not compress the data at all, since in both cases the total code length
L(H) + LH(D) exceeds the baseline. In contrast, by selecting a grammar Hmdl

that allows for the greatest total compression as per (1.1), we avoid either extreme,
thus implementing a natural tradeoff between underfitting and overfitting. Note
that finding this grammar Hmdl may be a quite difficult search problem, but
the algorithmic aspects of finding the best hypothesis in an enormous hypothesis
space is mostly outside the scope of this thesis: only in Chapter 6 we address this
search problem explicitly.

The Road Ahead

In the remainder of this chapter we describe the basics of MDL inference, with
special attention to model selection. Model selection is an instance of MDL in-
ference where the hypotheses are sets of probability distributions. For example,
suppose that Alice claims that the number of hairs on people’s heads is Poisson
distributed, while Bob claims that it is in fact geometrically distributed. After
gathering data (which would involve counting lots of hair on many heads in this
case), we may use MDL model selection to determine whose model is a better
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description of the truth.
In the course of the following introduction we will come across a number

of puzzling issues in the details of MDL model selection that warrant further
investigation; these topics, which are summarised in Section 1.4, constitute the
subjects of the later chapters of this thesis.

1.1 Encoding Hypotheses

We return to the three questions of the previous section. The intuition behind
the MDL principle was that “useful” hypotheses should help compress the data.
For now, we will consider hypotheses that are “useful to compress the data” to
be “useful” in general. We postpone further discussion of the the third question:
what this means exactly, to Section 1.3. What remains is the task to find out
which hypotheses are useful, by using them to compress the data.

Given many hypotheses, we could just test them one at a time on the available
data until we find one that happens to allow for substantial compression. However,
if we were to adopt such a methodology in practice, results would vary from
reasonable to extremely bad. The reason is that among so many hypotheses,
there needs only be one that, by sheer force of luck, allows for compression of
the data. This is the phenomenon of overfitting again, which we mentioned in
Example 1. To avoid such pitfalls, we required that a single code Lmdl is proposed
on the basis of all available hypotheses. The code has two parts: the first part,
with length function L(H), identifies a hypothesis to be used to encode the data,
while the second part, with length function LH(D), describes the data using the
code associated with that hypothesis.

The next section is concerned with the definition of LH(D), but for the time
being we will assume that we have already represented our hypotheses in the
form of codes, and we will discuss some of the properties a good choice for L(H)
should have. Technically, throughout this thesis we use only length functions that
correspond to prefix codes; we will explain what this means in Section 1.2.1.

Consider the case where the best candidate hypothesis, i.e. the hypothesis
Ĥ = arg minH∈H LH(D), achieves substantial compression. It would be a pity

if we did not discover the usefulness of Ĥ because we chose a code word with
unnecessarily long length L(Ĥ). The regret we incur on the data quantifies how
bad this “detection overhead” can be, by comparing the total code length Lmdl(D)
to the code length achieved by the best hypothesis LĤ(D). A general definition,

which also applies if Ĥ is undefined, is the following: the regret of a code L on
data D with respect to a set of alternative codes M is

R(L,M, D) := L(D)− inf
L′∈M

L′(D). (1.4)

The reasoning is now that, since we do not want to make a priori assumptions as
to the process that generates the data, the code for the hypotheses L(H) must be
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chosen such that the regret R(Lmdl, {LH : H ∈ H}, D) is small, whatever data we
observe. This ensures that whenever H contains a useful hypothesis that allows
for significant compression of the data, we are able to detect this because Lmdl

compresses the data as well.

Example 2. Suppose that H is finite. Let L be a uniform code that maps every
hypothesis to a binary sequence of length l =

⌈
log2 |H|

⌉
. The regret incurred

by this uniform code is always exactly l, whatever data we observe. This is the
best possible guarantee: all other length functions L′ on H incur a strictly larger
regret for at least one possible outcome (unless H contains useless hypotheses H
which have L(H) + LH(D) > Lmdl(D) for all possible D.) In other words, the
uniform code minimises the worst-case regret maxDRL,M, D among all code
length functions L. (We discuss the exact conditions we impose on code length
functions in Section 1.2.1.)

Thus, if we consider a finite number of hypotheses we can use MDL with a
uniform code L(H). Since in this case the L(H) term is the same for all hypothe-
ses, it cancels and we find Hmdl = Ĥ in this case. What we have gained from
this possibly anticlimactic analysis is the following sanity check : since we equated
learning with compression, we should not trust Ĥ to exhibit good performance
on future data unless we were able to compress the data using Lmdl.

1.1.1 Luckiness

There are many codes L on H that guarantee small regret, so the next task is
to decide which we should pick. As it turns out, given any particular code L,
it is possible to select a special subset of hypotheses H′ ⊂ H and modify the
code such that the code lengths for these hypotheses are especially small, at the
small cost of increasing the code lengths for the other hypotheses by a negligible
amount. This can be desirable, because if a hypothesis in H′ turns out to be
useful, then we are lucky, and we can achieve superior compression. On the other
hand, if all hypotheses in the special subset are poor, then we have not lost much.
Thus, while a suitable code must always have small regret, there is quite a lot of
freedom to favour such small subsets of special hypotheses.

Examples of this so-called luckiness principle are found throughout the MDL
literature, although they usually remain implicit, possibly because it makes MDL
inference appear subjective. Only recently has the luckiness principle been iden-
tified as an important part of code design. The concept of luckiness is introduced
to the MDL literature in [39]; [6] uses a similar concept but not under the same
name. We take the stance that the luckiness principle introduces only a mild
form of subjectivity, because it cannot substantially harm inference performance.
Paradoxically, it can only really be harmful not to apply the luckiness principle,
because that could cause us to miss out on some good opportunities for learning!

Example 3. To illustrate the luckiness principle, we return to the grammar
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learning of Example 1. To keep things simple we will not modify the code for the
data LH(D) defined there; we will only reconsider L(H) that intuitively seemed
a reasonable code for the specification of grammars. Note that L(H) is in fact a
luckiness code: it assigns significantly shorter code lengths to shorter grammars.
What would happen if we tried to avoid this “subjective” property by optimising
the worst-case regret without considering luckiness?

To keep things simple, we reduce the hypothesis space to finite size by consid-
ering only context-free grammars with at most |N | = 20 nonterminals, |Σ| = 500
terminals, r = 100 rules and replacement sequences summing to a total length
of s = 2, 000. Using (1.3) we can calculate the luckiness code length for such a
grammar as at most

⌈
2100 log(521) + 101 log(21)

⌉
= 19397 bits.

Now we will investigate what happens if we use a uniform code on all possible
grammars H′ of up to that size instead. One may or may not want to verify that

|H′| =
100∑

r=1

|N |r
2000∑

s=0

(|N |+ |Σ|)s

(
s + r − 1

s

)

.

Calculation on the computer reveals that
⌈
log(|H′|)

⌉
= 19048 bits. Thus, we

compress the data 331 bits better than the code that we used before. While this
shows that there is room for improvement of the luckiness code, the difference is
actually not very large compared to the total code length. On the other hand, with
the uniform code we always need 19048 bits to encode the grammar, even when
the grammar is very short! Suppose that the best grammar uses only r = 10 and
s = 100, then the luckiness code requires only

⌈
110 log(521) + 11 log(21)

⌉
= 1042

bits to describe that grammar and therefore outcompresses the uniform code by
18006 bits: in that case we learn a lot more with the luckiness code.

Now that we have computed the minimal worst-case regret we have a target
for improvement of the luckiness code. A simple way to combine the advantages
of both codes is to define a third code that uses one additional bit to specify
whether to use the luckiness code or the uniform code on the data.

Note that we do not mean to imply that the hypotheses which get special
luckiness treatment are necessarily more likely to be true than any other hypoth-
esis. Rather, luckiness codes can be interpreted as saying that this or that special
subset might be important, in which case we should like to know about it!

1.1.2 Infinitely Many Hypotheses

When H is countably infinite, there can be no upper bound on the lengths of the
code words used to identify the hypotheses. Since any hypothesis might turn out
to be the best one in the end, the worst-case regret is typically infinite in this case.
In order to retain MDL as a useful inference procedure, we are forced to embrace
the luckiness principle. A good way to do this is to order the hypotheses such that
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H1 is luckier than H2, H2 is luckier than H3, and so on. We then need to consider
only codes L for which the code lengths increase monotonically with the index
of the hypothesis. This immediately gives a lower bound on the code lengths
L(Hn) for n = 1, . . ., because the nonincreasing code that has the shortest code
word for hypothesis n is uniform on the set {H1, . . . , Hn} (and unable to express
hypotheses with higher indices). Thus L(Hn) ≥ log |{H1, . . . , Hn}| = log n. It is
possible to define codes L with L(Hn) = log n + O(log log n), i.e. not much larger
than this ideal. Rissanen describes one such code, called the “universal code for
the integers”, in [68] (where the restriction to monotonically increasing code word
lengths is not interpreted as an application of the luckiness principle as we do
here); in Example 4 we describe some codes for the natural numbers that are
convenient in practical applications.

1.1.3 Ideal MDL

In MDL hypothesis selection as described above, it is perfectly well conceivable
that the data generating process has a very simple structure, which nevertheless
remains undetected because it is not represented by any of the considered hy-
potheses. For example, we may use hypothesis selection to determine the best
Markov chain order for data which reads“110010010000111111. . . ”, never suspect-
ing that this is really just the beginning of the binary expansion of the number
π. In “ideal MDL” such blind spots are avoided, by interpreting any code length
function LH that can be implemented in the form of a computer program as the
formal representation of a hypothesis H. Fix a universal prefix Turing machine
U , which can be interpreted as a language in which computer programs are ex-
pressed. The result of running program T on U with input D is denoted U(T,D).
The Kolmogorov complexity of a hypothesis H, denoted K(H), is the length of
the shortest program TH that implements LH , i.e. U(TH , D) = LH(D) for all bi-
nary sequences D. Now, the hypothesis H can be encoded by literally listing the
program TH , so that the code length of the hypotheses becomes the Kolmogorov
complexity. For a thorough introduction to Kolmogorov complexity, see [60].

In the literature the term “ideal MDL” is used for a number of approaches to
model selection based on Kolmogorov complexity; for more information on the
version described here, refer to [8, 1]. To summarise, our version of ideal MDL
tells us to pick

min
H∈H

K(H) + LH(D), (1.5)

which is (1.1), except that now H is the set of all hypotheses represented by
computable length functions, and L(H) = K(H). (Note that LH(D) ≈ K(D|H)
iff D is P (·|H)-random.)

In order for this code to be in agreement with MDL philosophy as described
above, we have to check whether or not it has small regret. It is also natural to
wonder whether or not it somehow applies the luckiness principle. The following
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property of Kolmogorov complexity is relevant for the answer to both questions.
Let H be a countable set of hypotheses with computable corresponding length
functions. Then for all computable length functions L on H, we have

∃c > 0 : ∀H ∈ H : K(H) ≤ L(H) + c. (1.6)

Roughly speaking, this means that ideal MDL is ideal in two respects: first, the
set of considered hypotheses is expanded to include all computable hypotheses,
so that any computable concept is learned given enough data. Second, it matches
all other length functions up to a constant, including all length functions with
small regret as well as length functions with any clever application of the luckiness
principle.

On the other hand, performance guarantees such as (1.6) are not very specific,
as the constant overhead may be so large that it completely dwarfs the length of
the data. To avoid this, we would need to specify a particular universal Turing
machine U , and give specific upper bounds on the values that c can take for
important choices of H and L. While there is some work on such a concrete
definition of Kolmogorov complexity for individual objects [91], there are as yet
no concrete performance guarantees for ideal MDL or other forms of algorithmic
inference.

The more fundamental reason why ideal MDL is not practical, is that Kol-
mogorov complexity is uncomputable. Thus it should be appreciated as a theo-
retical ideal that can serve as an inspiration for the development of methods that
can be applied in practice.

1.2 Using Models to Encode the Data

On page 2 we asked how the codes that formally represent the hypotheses should
be constructed. Often many different interpretations are possible and it is a
matter of judgement how exactly a hypothesis should be made precise. There is
one important special case however, where the hypothesis is formulated in the
form of a set of probability distributions. Statisticians call such a set a model.
Possible models include the set of all normal distributions with any mean and
variance, or the set of all third order Markov chains, and so on. The problem of
model selection is central to this thesis, but before we can discuss how the codes
to represent models are chosen, we have to discuss the close relationship between
coding and probability theory.

1.2.1 Codes and Probability Distributions

We have introduced the MDL principle in terms of coding; here we will make pre-
cise what we actually mean by a code and what properties we require our codes to
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have. We also make the connection to statistics by describing the correspondence
between code length functions and probability distributions.

A code C : X → {0, 1}∗ is an injective mapping from a countable source
alphabet X to finite binary sequences called code words. We consider only prefix
codes, that is, codes with the property that no code word is the prefix of another
code word. This restriction ensures that the code is uniquely decodable, i.e. any
concatenation of code words can be decoded into only one concatenation of source
symbols. Furthermore, a prefix code has the practical advantage that no look-
ahead is required for decoding, that is, given any concatenation S of code words,
the code word boundaries in any prefix of S are determined by that prefix and do
not depend on the remainder of S. Prefix codes are as efficient as other uniquely
decodable codes; that is, for any uniquely decodable code with length function LC

there is a prefix code C ′ with LC′(x) ≤ LC(x) for all x ∈ X , see [25, Chapter 5].
Since we never consider non-prefix codes, from now on, whenever we say “code”,
this should be taken to mean “prefix code”.

Associated with a code C is a length function L : X → N, which maps each
source symbol x ∈ X to the length of its code word C(x).

Of course we want to use efficient codes, but there is a limit to how short code
words can be made. For example, there is only one binary sequence of length
zero, two binary sequences of length one, four of length three, and so on. The
precise limit is expressed by the Kraft inequality:

Lemma 1.2.1 (Kraft inequality). Let X be a countable source alphabet. A func-
tion L : X → N is the length function of a prefix code on X if and only if:

∑

x∈X

2−L(x) ≤ 1.

Proof. See for instance [25, page 82].

If the inequality is strict, then the code is called defective, otherwise it is called
complete. (The term “defective” is usually reserved for probability distributions,
but we apply it to code length functions as well.)

Let C be any prefix code on X with length function L, and define

∀x ∈ X : P (x) := 2−L(x). (1.7)

Since P (x) is always positive and sums to at most one, it can be interpreted as
a probability mass function that defines a distribution corresponding to C. This
mass function and distribution are called complete or defective if and only if C is.

Vice versa, given a distribution P , according to the Kraft inequality there
must be a prefix code L satisfying

∀x ∈ X : L(x) :=
⌈
− log P (x)

⌉
. (1.8)
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To further clarify the relationship between P and its corresponding L, define the
entropy of distribution P on a countable outcome space X by

H(P ) :=
∑

x∈X

−P (x) log P (x). (1.9)

(This H should not be confused with the H used for hypotheses.) According to
Shannon’s noiseless coding theorem [79], the mean number of bits used to encode
outcomes from P using the most efficient code is at least equal to the entropy,
i.e. for all length functions L′ of prefix codes, we have EP [L′(X)] ≥ H(P ). The
expected code length using the L from (1.8) stays within one bit of entropy. This
bit is a consequence of the requirement that code lengths have to be integers.

Note that apart from rounding, (1.7) and (1.8) describe a one-to-one corre-
spondence between probability distributions and code length functions that are
most efficient for those distributions.

Technically, probability distributions are usually more convenient to work with
than code length functions, because their usage does not involve rounding. But
conceptually, code length functions are often more intuitive objects than prob-
ability distributions. A practical reason for this is that the probability of the
observations typically decreases exponentially as the number of observations in-
creases, and such small numbers are hard to handle psychologically, or even to plot
in a graph. Code lengths typically grow linearly with the number of observations,
and have an analogy in the real world, namely the effort required to remember
all the obtained information, or the money spent on storage equipment.

A second disadvantage of probability theory is the philosophical controversy
regarding the interpretation of probability [76, 12]: for example, the frequentist
school of thought holds that probability only carries any meaning in the context
of a repeatable experiment. The frequency of a particular observation converges
as more observations are gathered; this limiting value is then called the proba-
bility. According to the Bayesian school on the other hand, a probability can
also express a degree of belief in a certain proposition, even outside the context
of a repeatable experiment. In both cases, specifying the probability of an event
usually means making a statement about (ones beliefs about) the true state of
nature. This is problematic, because people of necessity often work with very
crude probabilistic models, which everybody agrees have no real truth to them.
In such cases, probabilities are used to represent beliefs/knowledge which one a
priori knows to be false! Using code lengths allows us to avoid this philosophical
can of worms, because code lengths do not carry any such associations. Rather,
codes are usually judged on the basis of their performance in practice: a good
code achieves a short code length on data that we observe in practice, whether it is
based on valid assumptions about the truth or not. We embrace this “engineering
criterion” because we feel that inference procedures should be motivated solely
on the basis of guarantees that we can give with respect to their performance in
practice.
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In order to get the best of both worlds: the technical elegance of probability
theory combined with the conceptual clarity of coding theory, we generalise the
concept of coding such that code lengths are no longer necessarily integers. While
the length functions associated with such “ideal codes” are really just alternative
representations of probability mass functions, and probability theory is used un-
der the hood, we will nonetheless call negative logarithms of probabilities “code
lengths” to aid our intuition and avoid confusion. Since this difference between an
ideal code length and the length using a real code is at most one bit, this general-
isation should not require too large a stretch of the imagination. In applications
where it is important to actually encode the data, rather than just compute its
code length, there is a practical technique called arithmetic coding [REF] which
can usually be applied to achieve the ideal code length to within a few bits; this
is outside the scope of this thesis because for MDL inference we only have to
compute code lengths, and not actual codes.

Example 4. In Section 1.1.2 we remarked that a good code for the natural
numbers always achieves code length close to log n. Consider the distribution
W (n) = f(n) − f(n + 1). If f : N → R is a decreasing function with f(1) = 1
and 1/f → 0, then W is an easy to use probability mass function that can be
used as a prior distribution on the natural numbers. For f(n) = 1/n we get
code lengths − log W (n) = log(n(n + 1)) ≈ 2 log n, which, depending on the
application, may be small enough. Even more efficient for high n are f(n) = n−α

for some 0 < α < 1 or f(n) = 1/ log(n + 1).

1.2.2 Sequential Observations

In practice, model selection is often used in a sequential setting, where rather
than observing one outcome from some space X , we keep making more and more
observations x1, x2, . . .. Here we discuss how probability theory can be applied
to such a scenario. There are in fact three different ways to do it; while the first
is perhaps easiest to understand, the other two will eventually be used as well
so we will outline all of them here. This section can be skipped by readers who
find themselves unconfused by the technicalities of sequential probability. We
consider only countable outcome spaces for simplicity; the required definitions for
uncountable outcome spaces are given later as they are needed.

A first approach is to define a sequence of distributions P 1, P 2, . . . Each P n

is then a distribution on the n-fold product space X n which is used in reasoning
about outcome sequences of length n. Such a sequence of distributions defines a
random process if it is consistent, which means that for all n ∈ N, all sequences
xn ∈ X n, the mass function satisfies P n(xn) =

∑

x∈X P n+1(xn, x). With some
abuse of notation, we often use the same symbol for the mass function and the
distribution; we will sometimes explicitly mention which we mean and sometimes
consider it clear from context.
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A mathematically more elegant solution is to define a distribution on infinite
sequence of outcomes X∞, called a probability measure. A sequence of outcomes
xn ∈ X n can then be interpreted as an event, namely the set of all infinite se-
quences of which xn is a prefix; the marginal distributions on prefixes of length
0, 1, . . . are automatically consistent. With proper definitions, a probability mea-
sure on X∞ uniquely defines a random process and vice versa. Throughout this
thesis, wherever we talk about “distributions” on sequences without further qual-
ification we actually mean random processes, or equivalently, suitably defined
probability measures.

A random process or probability measure defines a predictive distribution
P (Xn+1|xn) = P (xn; Xn+1)/P (xn) on the next outcome given a sequence of pre-
vious observations. A third solution, introduced by Dawid [26, 29, 28] is to turn
this around and start by specifying the predictive distribution, which in turn de-
fines a random process. Dawid defines a prequential forecasting system (PFS)
as an algorithm which, when input any initial sequence of outcomes xn, issues a
probability distribution on the next outcome. The total “prequential” probability
of a sequence is then given by the chain rule:

P (xn) = P (x1) · P (x2)

P (x1)
· · · P (xn)

P (xn−1)

= P (x1) · P (x2|x1) · · ·P (xn|xn−1). (1.10)

This framework is simple to understand and actually somewhat more powerful
than that of probability measures. Namely, if a random process assigns prob-
ability zero to a sequence of observations xn, then the predictive distribution
P (Xn+1|xn) = P (xn; Xn+1)/P (xn) = 0/0 is undefined. This is not the case for a
PFS which starts by defining the predictive distributions. This property of FPSs
becomes important in Chapters 4 and 5, because there we consider predictions
made by experts, who may well assign probability zero to an event that turns out
to occur!

1.2.3 Model Selection and Universal Coding

Now that we have identified the link between codes and probability distributions
it is time to address the question which codes we should choose to represent
hypotheses. In case that the hypothesis is given in terms of a probability dis-
tribution or code from the outset, no more work needs to be done and we can
proceed straight to doing MDL model selection as described at the start of this
chapter. Here we consider instead the case where the hypothesis is given in the
form of a model M = {Pθ : θ ∈ Θ}, which is a set of random processes or proba-
bility measures parameterised by a vector θ from some set Θ of allowed parameter
vectors, called the parameter space. For example, a model could be the set of all
fourth order Markov chains, or the set of all normal distributions. Now it is no
longer immediately clear which single code should represent the hypothesis.
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To motivate the code LM that represents such a model, we apply the same
reasoning as we used in Section 1.1. Namely, the code should guarantee a small
regret, but is allowed to favour some small subsets of the model on the basis of the
luckiness principle. To make this idea more precise, we first introduce a function
θ̂ : X ∗ → Θ called the maximum likelihood estimator, which is defined by:

θ̂(xn) := arg max
θ∈Θ

Pθ(x
n). (1.11)

(The following can be extended to the case where arg max is undefined, but we
omit the details here.) Obviously, the maximum likelihood element of the model
also minimises the code length. We prefer to abbreviate θ̂ = θ̂(xn), if the sequence
of outcomes xn is clear from context.

Definition 1.2.2. Let M := {Lθ : θ ∈ Θ} be a (countable or uncountably
infinite) model with parameter space Θ. Let f : Θ × N → [0,∞) be some
function. A code L is called f -universal for a model M if, for all n ∈ N, all
xn ∈ X n, we have

R(L,M, xn) ≤ f(θ̂, n).

This is quite different from the standard definition of universality [25], because
it is formulated in terms of individual sequences rather than expectation. Also it
is a very general formulation, with a function f that needs further specification.
Generality is needed because, as it turns out, different degrees of universality are
possible in different circumstances. This definition allows us to express easily
what we expect a code to live up to in all these cases.

For finite M, a uniform code similar to the one described in Example 2
achieves f -universality for f(θ̂, n) = log |M|. Of course we incur a small overhead
on top of this if we decide to use luckiness codes.

For countably infinite M, the regret cannot be bounded by a single con-
stant, but we can avoid dependence on the sample size. Namely, if we intro-
duce a distribution W on the parameter set, we can achieve f -universality for
f(θ̂, n) = − log W (θ̂) by using a Bayesian or two-part code (these are explained
in subsequent sections).

Finally for uncountably infinite M it is often impossible to obtain a regret
bound that does not depend on n. For parametric models however it is often
possible to achieve f -universality for f(θ̂, n) = k

2
log n

2π
+ g(θ̂), where k is the

number of parameters of the model and g : Θ → [0,∞) is some continuous
function of the maximum likelihood parameter. Examples include the Poisson
model, which can be parameterised by the mean of the distribution so k = 1, and
the normal model, which can be parameterised by mean and variance so k = 2.
Thus, for parametric uncountable models a logarithmic dependence on the sample
size is the norm.

We have now seen that in MDL model selection, universal codes are used on
two levels: on one level, each model is represented by a universal code. Then
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another universal code (a two-part code, see below) is used to combine them into
a single code for the data.

We describe the four most common ways to construct universal codes; and
we illustrate each code by applying it to the model of Bernoulli distributions
M = {Pθ : θ ∈ [0, 1]}. This is the“biased coin”model, which contains the possible
distributions on heads and tails when a coin is flipped. The distributions are
parameterised by the bias of the coin: the probability that the coin lands heads.
Thus, θ = 1

2
represents the distribution for an unbiased coin. The distributions in

the model are extended to n outcomes by taking the n-fold product distribution:
Pθ(x

n) = Pθ(x1) · · ·Pθ(xn).

Two-Part Codes

In Section 1.1 we defined a code Lmdl that we now understand to be universal
for the model {LH : H ∈ H}. This kind of universal code is called a two-part
code, because it consists first of a specification of an element of the model, and
second of a specification of the data using that element. Two-part codes may be
defective: this occurs if multiple code words represent the same source symbol. In
that case one must ensure that the encoding function is well-defined by specifying
exactly which representation is associated with each source word D. Since we are
only concerned with code lengths however, it suffices to adopt the convention that
we always use one of the shortest representations.

Example 5. We define a two-part code for the Bernoulli model. In the first
part of the code we specify a parameter value, which requires some discretisation
since the parameter space is uncountable. However, as the maximum likelihood
parameter for the Bernoulli model is just the observed frequency of heads, at a
sample size of n we know that the ML parameter is in the set {0/n, 1/n, . . . , n/n}.
We discretise by restricting the parameter space to this set. A uniform code
uses L(θ) = log(n + 1) bits to identify an element of this set. For the data we
can use the code corresponding to θ. The total code length is minimised by ML
distribution, so that we know that the regret is always exactly log(n+1); by using
slightly cleverer discretisation we can bring this regret down even more such that
it grows as 1

2
log n, which, as we said, is usually achievable for uncountable single

parameter models.

The Bayesian Universal Distribution

LetM = {Pθ : θ ∈ Θ} be a countable model; it is convenient to use mass functions
rather than codes as elements of the model here. Now define a distribution with
mass function W on the parameter space Θ. This distribution is called the prior
distribution in the literature as it is often interpreted as a representation of a priori
beliefs as to which of the hypotheses inM represents the“true state of the world”.
More in line with the philosophy outlined above would be the interpretation that
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W is a code which should be chosen for practical reasons to optimise inference
performance. At any rate, the next step is to define a joint distribution P on
X n × Θ by P (xn, θ) = Pθ(x

n)W (θ). In this joint space, each outcome comprises
a particular state of the world and an observed outcome.

In the field of Bayesian statistics, inference is always based on this joint dis-
tribution. We may, for example, calculate P (xn), where xn = {(xn, θ) : θ ∈ Θ}
denotes the event in the joint space that a particular sequence of outcomes xn

is observed. Second, we can calculate how we should update our beliefs about
the state of the world after observing outcome xn. Let θ = {(xn, θ) : xn ∈ X n}
denote the event in the joint space that θ is true. Then we have:

P (θ|xn) =
P (xn ∩ θ)

P (xn)
=

P (xn|θ)P (θ)

P (xn)
. (1.12)

This result is called Bayes’ rule; its importance to inference stems from the idea
that it can be used to update beliefs about the world W on the basis of new
observations xn. The conditional distribution on the hypotheses is called the
posterior distribution; with considerable abuse of notation it is often denoted
W (θ | xn).

Note that the marginal distribution satisfies:

− log P (xn) = − log
∑

θ∈Θ

Pθ(x
n)w(θ) ≤ − log Pθ̂(x

n)− log W (θ̂),

where θ̂ is the maximum likelihood estimator, the element of M that minimises
the code length for the data. Thus we find that if we use a Bayesian universal
code, we obtain a code length less than or equal to the code length we would have
obtained with the two-part code with L(θ) = − log W (θ). Since we already found
that two-part codes are universal, we can now conclude that Bayesian codes are at
least as universal. On the flip side, the sum involved in calculating the Bayesian
marginal distribution can be hard to evaluate in practice.

Example 5 (continued). Our definitions readily generalise to uncountable models
with Θ ⊆ R

k, with the prior distribution given by a density w on Θ. Rather than
giving explicit definitions we revisit our running example.

We construct a Bayesian universal code for the Bernoulli model. For simplicity
we use a uniform prior density, w(θ) = 1. Let h and t = n−h denote the number
of heads and tails in xn, respectively. Now we can calculate the Bayes marginal
likelihood of the data:

Pbayes(x
n) =

∫ 1

0

Pθ(x
n) · 1 dθ =

∫ 1

0

θh(1− θ)t dθ =
h! t!

(n + 1)!
.

Using Stirling’s approximation of the factorial function, we find that the corre-
sponding code length − log Pbayes(x

n) equals − log Pθ̂(x
n) + 1

2
log n + O(1). Thus

we find roughly the same regret as for a well-designed two-part code.
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Prequential Universal Distributions

An algorithm that, given a sequence of previous observations xn, issues a proba-
bility distribution on the next outcome P (Xn+1|xn), is called a prequential fore-
casting system (PFS) [26, 29, 28]. A PFS defines a random process by the
chain rule (1.10). Vice versa, for any random process P on X∞, we can cal-
culate the conditional distribution on the next outcome P (Xn+1 | Xn = xn) =
P (xn; Xn+1)/P (xn), provided that P (xn) is positive. This so-called predictive dis-
tribution of a random process defines a PFS. We give two important prequential
universal distributions here.

First, we may take a Bayesian approach and define a joint probability measure
on X∞×Θ based on some prior distribution W . As before, this induces a marginal
probability measure on X∞ which in turn defines a PFS. In this way, the Bayesian
universal distribution can be reinterpreted as a prequential forecasting system.

Second, since the Bayesian predictive distribution can be hard to compute it
may be useful in practice to define a forecasting system that uses a simpler algo-
rithm. Perhaps the simplest option is to predict an outcome Xn+1 using the max-
imum likelihood estimator for the previous outcomes θ̂(xn) = arg maxθ Pθ(x

n).
We will use this approach in our running example.

Example 5 (continued). The ML estimator for the Bernoulli model parame-
terised by the probability of observing heads, equals the frequency of heads in the
sample: θ̂ = h/n, where h denotes the number of heads in xn as before. We define
a PFS through P (Xn+1|xn) := Pθ̂. This PFS is ill-defined for the first outcome.
Another impractical feature is that it assigns probability 0 to the event that the
second outcome is different from the first. To address these problems, we slightly
tweak the estimator: rather than θ̂ we use θ̃ = (h + 1)/(n + 2).

Perhaps surprisingly, in this case the resulting PFS is equivalent to the Bayesian
universal distribution approach we defined in the previous section: Pθ̃ turns out to
be the Bayesian predictive distribution for the Bernoulli model if a uniform prior
density w(θ) = 1 is used. In general, the distribution indexed by such a “tweaked”
ML estimator may be quite different from the Bayesian predictive distribution.

Although the prequential ML code has been used successfully in practical in-
ference problems, the model selection experiments in Chapter 2 show that usage
of PFSs based on estimators such as the “tweaked” ML estimator from the ex-
ample, leads to significantly worse results than those obtained for the other three
universal codes. This is the subject of Chapter 3, where we show that in fact
the prequential ML code does achieve the same asymptotic regret as the other
universal codes, provided that the distribution that generates the data is an ele-
ment of the model. Under misspecification the prequential ML code has different
behaviour that had not been observed before.
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Normalised Maximum Likelihood

The last universal code we discuss is the one preferred in the MDL literature,
because if we fix some sample size n in advance, it provably minimises the worst-
case regret. It turns out that the code minimising the worst-case regret must
achieve equal regret for all possible outcomes xn. In other words, the total code
length must always be some constant longer than the code length achieved on the
basis of the maximum likelihood estimator. This is precisely what the Normalised
Maximum Likelihood (NML) distribution achieves:

Pnml(x
n) :=

Pθ̂(xn)(x
n)

∑

yn∈Xn Pθ̂(yn)(y
n)

. (1.13)

For all sequences xn, the regret on the basis of this distribution is exactly equal to
the logarithm of the denominator, called the parametric complexity of the model:

inf
L

sup
xn
R(L,M, xn) = log

∑

yn∈Xn

Pθ̂(yn)(y
n) (1.14)

Under some regularity conditions on the model it can be shown [72, 39] that there
is a particular continuous function g such that the parametric complexity is less
than k

2
log n

2π
+ g(θ̂), as we required in Section 1.2.3. We return to our Bernoulli

example.

Example 5 (continued). The parametric complexity (1.14) has exponentially
many terms, but for the Bernoulli model the expression can be significantly sim-
plified. Namely, we can group together all terms which have the same maximum
likelihood estimator. Thus the minimal worst-case regret can be rewritten as
follows:

log
∑

yn∈Xn

Pθ̂(yn)(y
n) = log

n∑

h=0

(
n

h

)(
h

n

)h(
n− h

n

)n−h

. (1.15)

This term has only linearly many terms and can usually be evaluated in prac-
tice. Approximation by Stirling’s formula confirms that the asymptotic regret is
1
2

log n + O(1), the same as for the other universal distributions.

The NML distribution has a number of significant practical problems. First,
it is often undefined, because for many models the numerator in (1.13) is infinite,
even for such simple models as the model of all Poisson or geometric distributions.
Second, |X n| may well be extremely large, in which case it may be impossible to
actually calculate the regret. In a sequential setting, the number of terms grows
exponentially with the sample size so calculating the NML probability is hopeless
except in special cases such as the Bernoulli model above, where mathematical
trickery can be applied to get exact results (for the multinomial model, see [50].)
Chapter 2 addresses the question of what can be done when NML is undefined
or too difficult to compute.
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1.3 Applications of MDL

While we have equated “learning” with “compressing the data” so far, in reality
we often have a more specific goal in mind when we apply machine learning
algorithms. This touches on the third question we asked on page 2: what do we
mean by a “useful” hypothesis? In this section we will argue that MDL inference,
which is designed to achieving compression of the data, is also suitable to some
extent in settings with a different objective, so that, at least to some extent, MDL
provides a reliable one-size-fits-all solution.

1.3.1 Truth Finding

We have described models as formal representations of hypotheses; truth finding
is the process of determining which of the hypotheses is “true”, in the sense that
the corresponding model contains the data generating process. The goal is then
to use the available data to identify this true model on the basis of as little data
as possible.

Since the universal code for the true model achieves a code length not much
larger than the code length of the best code in the model (it was designed to
achieve small regret), and the best code in the model achieves code length at
most as large as the data generating distribution, it seems reasonable to assume
that, as more data are being gathered, a true model will eventually be selected by
MDL. This intuition is confirmed in the form of the following consistency result,
which is one of the pillars of MDL model selection. The result applies to Bayesian
model selection as well.

Theorem 1.3.1 (Model Selection Consistency). Let H = {M1,M2, . . .} be a
countably infinite set of parametric models. For all n ∈ Z

+, let Mn be 1-to-1
parameterised by Θn ⊆ R

k for some k ∈ N and define a prior density wn on
Θn. Let W (i) define a prior distribution on the model indices. We require for
all integers j > i > 0 that with wj-probability 1, a distribution drawn from Θj is
mutually singular with all distributions in Θi. Define the MDL model selection
criterion based on Bayesian universal codes to represent the models:

δ(xn) = arg min
i

(

− log W (i)− log

∫

θ∈Θi

Pθ(x
n)wi(θ) dθ

)

.

Then for all δ∗ ∈ Z
+, for all θ∗ ∈ Θδ∗, except for a subset of Θδ∗ of Lebesgue

measure 0, it holds for X1, X2, . . . ∼ Pθ∗ that

∃n0 : ∀n ≥ n0 : Pθ∗(δ(Xn) = δ∗) = 1.

Proof. Proofs of various versions of this theorem can be found in [5, 28, 4, 39]
and others.
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The theorem uses Bayesian codes, but as conjectured in [39] and partially in
Chapter 5, it can probably be extended to other universal codes such as NML.
Essentially it expresses that if we are in the ideal situation where one of the
models contains the true distribution, we are guaranteed that this model will
be selected once we have accumulated sufficient data. This property of model
selection criteria is called consistency. Unfortunately, this theorem says nothing
about the more realistic scenario where the models are merely approximations
of the true data generating process. If the true data generating process P ∗ is
not an element of any of the models, it is not known under what circumstances
the model selection criterion δ selects the model that contains the distribution
Pθ̃ minimising the Kullback-Leibler divergence D(P ∗‖Pθ̃). On the other hand,
some model selection criteria that are often used in practice (such as maximum
likelihood model selection, or AIC [2]) are known not to be consistent, even in the
restricted sense of Theorem 1.3.1. Therefore consistency of MDL and Bayesian
model selection is reassuring.

1.3.2 Prediction

The second application of model selection is prediction. Here the models are used
to construct a prediction strategy, which is essentially the same as a prequential
forecasting system: an algorithm that issues a probability distribution on the
next outcome given the previous outcomes. There are several ways to define a
prediction strategy based on a set of models; we mostly consider what is perhaps
the most straightforward method, namely to apply a model selection criterion
such as MDL to the available data, and then predict according to some estimator
that issues a distribution on the next outcome based on the selected model and
the sequence of previous outcomes.1

The performance of a prediction strategy based on a set of models is usually
analysed in terms of the rate of convergence, which expresses how quickly the
distribution issued by the prediction strategy starts to behave like the data gen-
erating process P ∗. From the information inequality (D(P ∗‖Q) ≥ 0 with equality
for Q = P ∗) we know that P ∗ itself is optimal for prediction. The expected dis-
crepancy between the number of bits needed by the prediction strategy to encode
the next outcome and the number of bits needed by the true distribution P ∗ is
called the risk ; a prediction strategy has a good rate of convergence if the risk
goes down quickly as a function of the sample size. A number of results that
give explicit guarantees about the risk convergence rate for prediction strategies
based on the MDL model selection criterion are given in [39]. Interestingly, the

1This strategy does not take into account the predictions of any of the other models, while
at the same time we can never be sure that the selected model is actually the best one. It
is better to take a weighted average of the predictions of the models in question; the most
common practice is to weight the models by their Bayesian posterior probability, a procedure
called Bayesian model averaging ; see Chapter 5.
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risk may converge to zero even if P ∗ is not an element of any of the models under
consideration. This is useful in practical applications: for example, if the models
correspond to histogram densities with increasing numbers of bins, then the risk
converges to zero if P ∗ is described by any bounded and continuous density; see
Chapter 5 for more details.

Roughly speaking, two groups of model selection criteria can be distinguished
in the literature. Model selection criteria of the first group have often been de-
veloped for applications of prediction; criteria such as Akaike’s Information Cri-
terion (AIC) and Leave One Out Cross-Validation (LOO), exhibit a very good
risk convergence rate, but they can be inconsistent, i.e. they keep selecting the
wrong model regardless of the available amount of data. The second group con-
tains criteria such as the Bayesian Information Criterion (BIC), as well as regular
Bayesian/MDL model selection, which can be proven consistent but which are
often found to yield a somewhat worse rate of convergence. It is a long standing
question whether these two approaches can be reconciled [103].

An assumption that is implicitly made when MDL or Bayesian model selection
are used for prediction, is that there is one model that exhibits the best predictive
performance from the start, and our only task is to identify that model. However,
in Chapter 5 we argue that this approach is in fact often too simplistic: in reality,
which model can provide the best predictive performance may well depend on the
sample size. In the histogram density estimation example from above, we typically
do not expect any particular model to contain the true distribution; instead we
expect to use higher and higher order models as we gain enough data to estimate
the model parameters with sufficient accuracy to make good predictions.

In Chapter 5 we attempt to combine the strong points of the two differ-
ent approaches to model selection by dropping the assumption that one model
has best performance at all sample sizes. This results in a modification of
MDL and Bayesian model selection/averaging, called the switch-distribution, that
achieves better predictive performance, without sacrificing consistency. Note that
the switch-distribution can be used to improve MDL model selection as well
as Bayesian model selection, although the idea may not agree very well with
a Bayesian mindset, as we will discuss.

The switch-distribution ties in with existing universal prediction literature on
tracking the best expert, where the assumption that one predictor is best at all
sample sizes has already been lifted [94, 46, 95]. In the past, that research has
not been connected with model selection though. In Chapter 6 we describe how
the switch-code lengths can be computed efficiently, and introduce a formalism
that helps to define other practical methods of combining predictors. These ideas
help understand the connection between many seemingly very different prediction
schemes that are described in the literature.
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1.3.3 Separating Structure from Noise

Algorithmic Rate-Distortion Theory is a generalisation of ideal MDL. Recall
from 1.1.3 that in ideal MDL, Kolmogorov complexity is used as the code length
function for the hypothesis L(H) = K(H); model selection is then with respect
to the set H of all computable hypotheses. This approach is generalised by in-
troducing a parameter α, called the rate, that is used to impose a maximum on
the complexity of the hypothesis K(H). The selected hypothesis H, and the code
length it achieves on the data LH(D), now become functions of α. The latter
function is called the structure function:2

hD(α) = min
H∈H,K(H)≤α

LH(D) (1.16)

We write H(α) for the hypothesis that achieves the minimum at rate α. We

use dotted symbols
.

=,
.
< and

.

≤ for (in)equality up to an independent additive
constant; the dot may be pronounced “roughly”.

A hypothesis H is called a sufficient statistic if K(H) + LH(D)
.

= K(D). In-
tuitively, such hypotheses capture all simple structural properties of the data.
Namely, if there are any easily describable properties of D that are not captured
by H, then we would have K(D|H)

.
< LH(D). But in that case K(D)

.

≤K(H) +
K(D|H)

.
< K(H) + LH(D) which is impossible for sufficient statistics H.

If the rate is high enough, certainly for α = K(D), the hypothesis H(α)
is a sufficient statistic. The most thorough separation of structure and noise
is obtained at the lowest rate at which H(α) is a sufficient statistic. At even
lower rates, some structural properties of D can no longer be represented; the
structure function can then be used as an indicator of how much structure has
been discarded.

Algorithmic rate-distortion theory generalises even further by introducing a
distortion function, which allows expression of the kind of properties of the orig-
inal object we consider important. It is an analogue of Shannon’s classical rate-
distortion theory [79, 37]. The novelty of algorithmic rate-distortion theory com-
pared to classical rate-distortion theory is that it allows analysis of individual
objects rather than expected properties of objects drawn from a source distribu-
tion. This is useful because it is often impossible to define a source distribution
that is acceptable as a reasonable model of the process of interest. For example,
from what source distribution was Tolstoy’s War and Piece drawn?

In Chapter 6 we introduce this new theory of algorithmic rate-distortion in
more detail, and then proceed to put it to the test. To obtain a practical method,
we approximate Kolmogorov complexity by the compressed size under a general
purpose data compression algorithm. We then compute the rate-distortion char-
acteristics of four objects from very different domains and apply the results to

2In Kolmogorov’s original formulation, the codes LH for H ∈ H were uniform on finite sets
of possible outcomes.
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denoising and lossy compression. The chapter is written from the point of view of
algorithmic rate-distortion theory, but includes a discussion of how the approach
relates to MDL as we describe it in this introduction.

1.4 Organisation of this Thesis

In this introduction we have outlined MDL model selection. An important in-
gredient of MDL model selection is universal coding (Section 1.2.3). We have
described several approaches; the universal code preferred in the MDL literature
is the code that corresponds to the Normalised Maximum Likelihood (NML) dis-
tribution (1.13), which achieves minimal regret in the worst case. However it
turns out that the NML distribution is often undefined. In those cases, the way
to proceed is not agreed upon. In Chapter 2, we evaluate various alternatives
experimentally by applying MDL to select between the Poisson and geometric
models. The results provide insight into the strengths and weaknesses of these
various methods.

One important result of the experiments described in Chapter 2 is that the
prequential forecasting system, one of the universal models introduced in Sec-
tion 1.2.3), defined to issues predictions on the basis of the maximum likelihood
distribution, achieves a regret very different from that achieved by other models.
This leads to inferior model selection performance. This was unexpected, be-
cause in the literature, e.g. [71], the prequential ML universal model is described
as a practical approximation of other universal codes, certainly suitable for model
selection. In Chapter 3 we analyse the regret of the prequential ML universal dis-
tribution under misspecification, that is, the data are drawn from a distribution
outside the model. The behaviour under misspecification is important to model
selection, since there the data generating distribution is often in only one of the
considered models (if that many). Together, chapters 2 and 3 form the first leg
of this thesis.

The second leg involves the relationship between model selection and predic-
tion (see Section 1.3). It is based on the observation that the model that allows
for the best predictions may vary with the sample size. For example, simple mod-
els with only few parameters tend to predict reasonably well at small sample sizes
while for large models often a lot of data is required before the parameters can be
estimated accurately enough to result in good predictions. While this may seem
obvious, we show that the codes that are typically used in Bayesian and MDL
model selection do not take this effect into account and thus the achieved code
lengths are longer than they need to be. In Chapter 4 we describe a number of
alternative ways to combine the predictions of multiple codes. It is also shown
how the resulting code lengths can still be computed efficiently. The discussion
expands on results in the source coding and universal prediction. One of the
described codes, called the switch-code, is specifically designed to improve model
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selection results. In Chapter 5 we show how model selection based on the switch-
code, while remaining consistent, achieves the best possible rate of convergence.
This resolves a perceived distinction between consistent model selection criteria
on the one hand, and criteria that are suitable for prediction, which achieve a fast
rate of convergence, on the other hand.

In Chapter 6, the third leg of this thesis, we put the new algorithmic rate-
distortion theory to the test. Algorithmic rate-distortion theory is introduced
in Section 1.3.3, more thoroughly in Chapter 6 itself, and even more thoroughly
in [92]. It is a generalisation of ideal MDL (Section 1.1.3) and a variation on
classical rate-distortion theory [79]; it allows for analysis of the rate-distortion
properties of individual objects rather than of objects drawn from some source dis-
tribution. Algorithmic rate-distortion theory uses Kolmogorov complexity which
is uncomputable. To obtain a practical method, we approximate Kolmogorov
complexity by the compressed size under a general purpose data compression al-
gorithm. We then compute the rate-distortion characteristics of four objects from
very different domains and apply the results to denoising and lossy compression.



Chapter 2

Dealing with Infinite Parametric
Complexity

Model selection is the task of choosing one out of a set of hypotheses for some
phenomenon, based on the available data, where each hypothesis is represented
by a model, or set of probability distributions. As explained in the introductory
chapter, MDL model selection proceeds by associating a so-called universal dis-
tribution with each model. The number of bits needed to encode the data D using
the universal code associated with model M is denoted LM(D). We then pick
the model that minimises this expression and thus achieves the best compression
of the data.

Section 1.2.3 lists the most important such universal codes, all of which result
in slightly different code lengths and thus to different model selection criteria.
While any choice of universal code will lead to an asymptotically “consistent”
model selection method (eventually the right model will be selected), to get good
results for small sample sizes it is crucial that we select an efficient code.

The MDL literature emphasises that the used universal code should be efficient
whatever data are observed : whenever the model contains a code or distribution
that fits the data well in the sense that it achieves a small code length, the
universal code length should not be much larger. More precisely put, the universal
code should achieve small regret in the worst case over all possible observations,
where the regret is the difference between the universal code length and the
shortest code length achieved by an element of the model M. The normalised
maximum likelihood (NML) code (Section 1.2.3) minimises this worst-case regret.
Moreover, the NML regret is a function of only the sample size n, and does
not depend on the data. As such it can be viewed as an objective measure of
model complexity: the parametric complexity of a model is the regret achieved
by the NML code, as a function of the sample size n. For this reason NML is the
preferred universal code in modern MDL.

However, it turns out that the parametric complexity is infinite for many
models, so that NML-based model selection is not effective. Other universal codes
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that do achieve finite code lengths can usually still be defined for such models,
but those codes have a worst-case regret that depends not only on the sample size
n, but also on the parameter of the best fitting distribution in the model θ̂; such
codes are luckiness codes in the sense of Section 1.1.1. Model selection criteria
based on such luckiness codes thus acquire an element of subjectivity.

Several remedies have been proposed for this situation: variations on NML-
based model selection that can obviously not be worst case optimal, but that do
achieve finite code length without explicitly introducing regret that depends on
the element of the model that best fits the data. In this chapter we evaluate such
alternative procedures empirically for model selection between the simple Poisson
and geometric models. We chose these two models since they are just about the
simplest and easiest-to-analyse models for which the NML code is undefined. We
find that some alternative solutions, such as the use of BIC (or, equivalently, in
our context, maximum likelihood testing) lead to relatively poor results. Our
most surprising finding is the fact that the prequential maximum likelihood code
– which was found to perform quite well in some contexts [61, 52] – exhibits poor
behaviour in our experiments. We briefly discuss the reasons for this behaviour
in Section 2.5; a full analysis is the subject of Chapter 3.

Since the codes used in these approaches no longer minimise the worst-case
regret they are harder to justify theoretically. In fact, as explained in more detail
in Section 2.3.6, the only method that may have an MDL-type justification closely
related to that of the original NML code is the Bayesian code with the improper
Jeffreys’ prior. Perhaps not coincidentally, this also seems the most dependable
selection criterion among the ones we tried.

In Section 2.1 we describe the code that achieves worst-case minimal regret.
This code does not exist for the Poisson and geometric distributions. We analyse
these models in more detail in Section 2.2.

In Section 2.3 we describe four different approaches to MDL model selection
under such circumstances. We test these criteria by measuring error probability,
bias and calibration, as explained in Section 2.4. The results are evaluated in
Section 2.5. Our conclusions are summarised in Section 2.6.

2.1 Universal codes and Parametric Complexity

We first briefly review some material from the introductory chapter that is es-
pecially important to this chapter. The regret of a code L with respect to a
parametric model M = {Pθ : θ ∈ Θ} with parameter space Θ on a sequence of
outcomes xn = x1, . . . , xn ∈ X n is

R(L,M, xn) := L(xn)− inf
θ∈Θ
− log Pθ(x

n),

which was first defined in (1.4), page 5. A function θ̂ : X n → Θ that maps
outcomes xn to a parameter value that achieves this infimum is called a maximum



2.1. Universal codes and Parametric Complexity 27

likelihood estimator. We sometimes abbreviate θ̂ = θ̂(xn).
A code L is f -universal with respect to modelM if R(L,M, xn) ≤ f(θ̂, n) for

all n and all xn (Definition 1.2.2, page 14). The MDL philosophy [72, 38] has it
that the best universal code minimises the regret in the worst case of all possi-
ble data sequences. This “minimax optimal” solution is called the “Normalised
Maximum Likelihood” (NML) code, which was first described by Shtarkov, who
also observed its minimax optimality properties. The NML-probability of a data
sequence for a parametric model is defined as in (1.13), page 18:

Pnml(x
n) :=

P (xn|θ̂(xn))
∑

yn P (yn|θ̂(yn))
,

with corresponding code length

Lnml(x
n) := − log P (xn|θ̂(xn)) + log

∑

yn

P (yn|θ̂(yn)).

This code length is called the stochastic complexity of the data. The first term
in the equation is the code length of the data using the maximum likelihood
estimator; the second term is the − log of the normalisation factor of Pnml, called
the parametric complexity of the model M at sample size n.

It is usually impossible to compute the parametric complexity analytically,
but there exists a good approximation Lanml, due to Rissanen, Takeuchi and
Barron [72, 88, 89, 87]:

Lanml(x
n) := L(xn|θ̂) +

k

2
log

n

2π
+ log

∫

Θ

√

det I(θ) dθ. (2.1)

Here, n, k and I(θ) denote the number of outcomes, the number of parameters
and the Fisher information matrix respectively. If M is an exponential family
model such as the Poisson and Geometric models considered in this chapter, and is
parameterised by Θ ⊆ R

k for some k ∈ Z
+, and if both the parametric complexity

and the integral in (2.1) are finite, then we have the following. For any Θ′ with
nonempty interior, and whose closure is a bounded subset of the interior of Θ, we
have

lim
n→∞

sup
xn:θ̂(xn)∈Θ′

|Lnml(x
n)− Lanml(x

n)| = 0.

Thus, the approximation uniformly converges to the exact code length for all
sequences of outcomes whose maximum likelihood estimator does not converge to
the boundaries of the parameter space. For more information, see [39]. Since the
last term in (2.1) does not depend on the sample size, it has often been disregarded
and many people came to associate MDL only with the first two terms. But the
third term can be quite large or even infinite, and it can substantially influence
the inference results for small sample sizes. Interestingly, (2.1) also describes
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the asymptotic behaviour of the Bayesian universal code where Jeffreys’ prior is
used: here MDL and an objective Bayesian method coincide even though their
motivation is quite different.

As stated in the introduction, the problem is that for many models the para-
metric complexity is infinite. Many strategies have been proposed to deal with
this, but most are somewhat ad-hoc. When Rissanen defines stochastic complex-
ity as Lnml(x

n) in [72], he writes that he does so “thereby concluding a decade
long search”, but as Lanterman observes in [53], “in the light of these problems
we may have to postpone concluding the search just a while longer”.

2.2 The Poisson and Geometric Models

We investigate MDL model selection between the Poisson and Geometric models.
Figure 2.1 may help form an intuition about the probability mass functions of
the two distributions. One reason for our choice of models is that they are both
single parameter models, so that the dominant k

2
log n

2π
term of (2.1) cancels. This

means that at least for large sample sizes, simply picking the model that best fits
the data should always work. We nevertheless observe that for small sample sizes,
data generated by the geometric distribution are misclassified as Poisson much
more frequently than the other way around (see Section 2.5). So in an informal
sense, even though the number of parameters is the same, the Poisson distribution
is more prone to “overfitting”.

To counteract the bias in favour of Poisson that is introduced if we just select
the best fitting model, we would like to compute the third term of (2.1), which
now characterises the parametric complexity. But as it turns out, both models
have an infinite parametric complexity! The integral in the third term of the
approximation also diverges. So in this case it is not immediately clear how the
bias should be removed. This is the second reason why we chose to study the
Poisson and Geometric models. In Section 2.3 we describe a number of methods
that have been proposed in the literature as ways to deal with infinite parametric
complexity; in Section 2.5 they are evaluated empirically.

Reassuringly, all methods we investigate tend to compensate for this overfit-
ting phenomenon by “punishing” the Poisson model. However, to what extent the
bias is compensated depends on the used method, so that different methods give
different results.

We parameterise both the Poisson and the Geometric family of distributions
by the mean µ ∈ (0,∞), to allow for easy comparison. This is possible because
for both models, the empirical mean (average) of the observed data is a sufficient
statistic. For Poisson, parameterisation by the mean is standard. For geometric,
the reparameterisation can be arrived at by noting that in the standard parame-
terisation, P (x|θ) = (1−θ)xθ, the mean is given by µ = (1−θ)/θ. As a notational
reminder the parameter is called µ henceforth. Conveniently, the ML estimator
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Figure 2.1 The mean 5 Poisson and geometric distributions.
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µ̂ for both distributions is the average of the data.
We will add a subscript p or g to indicate that code lengths are computed

with respect to the Poisson model or the Geometric model, respectively. Fur-
thermore, to simplify the equations in the remainder of this chapter somewhat
we will express code lengths in nats (− ln probabilities) rather than bits (− log2

probabilities).

LP

(
xn|µ

)
= − ln

n∏

i=1

e−µµxi

xi!
=

n∑

i=1

ln(xi!) + nµ− ln µ

n∑

i=1

xi, (2.2)

LG

(
xn|µ

)
= − ln

n∏

i=1

µxi

(µ+1)xi+1
= n ln(µ+1)− ln

(
µ

µ+1

) n∑

i=1

xi. (2.3)

2.3 Four Ways to deal with Infinite Parametric

Complexity

In this section we discuss four general ways to deal with the infinite parametric
complexity of the Poisson and Geometric models when the goal is to do model
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selection. Each of these four methods leads to one, or sometimes more, concrete
model selection criteria which we evaluate in Section 2.5.

2.3.1 BIC/ML

One way to deal with the diverging integral in the approximation is to just ignore
it. The model selection criterion that results corresponds to only a very rough
approximation of any real universal code, but it has been used and studied ex-
tensively. It was first derived by Jeffreys as an approximation to the Bayesian
marginal likelihood [47], but it became well-known only when it was proposed by
Rissanen [67] and Schwarz [78]. While Schwarz gave the same type of derivation
as Jeffreys, Rissanen arrived at it in a quite different manner, as an approximation
to a two-part code length. We note that Rissanen already abandoned the idea
in the mid 1980’s in favour of more sophisticated code length approximations.
Because of its connection to the Bayesian marginal likelihood, it is best known as
the BIC (Bayesian Information Criterion):

LBIC(xn) = L(xn|µ̂) +
k

2
ln n.

Comparing BIC to the approximated NML code length we find that in addition to
the diverging term, a k

2
ln 1

2π
term has also been dropped. This curious difference

can be safely ignored in our setup, where k is equal to one for both models so
the whole term cancels anyway. According to BIC, we must select the Geometric
model if

0 < LP,BIC (xn)− LG,BIC (xn) = LP

(
xn|µ̂

)
− LG

(
xn|µ̂

)
.

We are left with a generalised likelihood ratio test (GLRT). In such a test, the
ratio of the probabilities under the two models, PP

(
xn|µ̂

)
/PG

(
xn|µ̂

)
is compared

against a fixed constant η; the BIC criterion thus reduces to a GLRT with η = 0,
which is also known as maximum likelihood (ML) testing. As we remarked before,
experience shows that this approach often leads to overfitting and a bias in favour
of the “more complex” Poisson model. (On a side note, this equivalence of BIC
and ML occurs when all models under consideration have the same numbers of
parameters; if this is not the case, then BIC may or may not overfit and it usually
gives better results than ML.)

2.3.2 Restricted ANML

One often used method of rescuing the NML approach to MDL model selection
is to restrict the range of values that the parameters can take to ensure that the
third term of (2.1) stays finite. Our approach is to impose a maximum on the
allowed mean by setting Θ = (0, µ∗).
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To compute the approximated parametric complexity of the restricted models
we need to establish the Fisher information first. We use I(θ) = −Eθ[

d2

dθ2 L
(
x|θ
)
]

to obtain

IP (µ) = −Eµ

[

− x

µ2

]

=
1

µ
, and (2.4)

IG (µ) = −Eµ

[

− x

µ2
+

x + 1

(µ + 1)2

]

=
1

µ(µ + 1)
. (2.5)

Now we can compute the last term in the parametric complexity approximation
(2.1):

ln

∫ µ∗

0

√

IP (µ) dµ = ln

∫ µ∗

0

µ− 1
2 dµ = ln

(
2
√

µ∗
)

; (2.6)

ln

∫ µ∗

0

√

IG (µ) dµ = ln

∫ µ∗

0

1
√

µ(µ + 1)
dµ = ln

{

2 ln
(√

µ∗ +
√

µ∗ + 1
)}

.(2.7)

Thus, the parametric complexities of the restricted models are both monotonically
increasing functions of µ∗. Let the function δ(µ∗) := ln(2

√
µ∗) − ln(2 ln(

√
µ∗ +√

µ∗ + 1)) measure the difference between the parametric complexities. We obtain
a model selection criterion that selects the Geometric model if

0 < LP,ANML(µ∗) (xn)− LG,ANML(µ∗) (xn) = LP

(
xn|µ̂

)
− LG

(
xn|µ̂

)
+ δ(µ∗).

This is equivalent to a GLRT with threshold δ(µ∗). We have experimented with
restricted models where the parameter range was restricted to (0, µ∗) for µ∗ ∈
{10, 100, 1000}.

It is not hard to show that the parametric complexity of the restricted Poisson
model grows faster with µ∗ than the parametric complexity of the Geometric
model: δ(µ∗) is monotonically increasing in µ∗, and grows unboundedly in µ∗.
This indicates that the Poisson model has more descriptive power, even though
the models have the same number of parameters and both have infinite parametric
complexity.

An obvious conceptual problem with restricted ANML is that the imposed re-
striction is quite arbitrary and requires a priori knowledge about the scale of the
observations. But the parameter range can be interpreted as a hyper-parameter,
which can be incorporated into the code using several techniques; two such tech-
niques are discussed next.

2.3.3 Two-part ANML

Perhaps the easiest way to get rid of the µ∗ parameter that determines the pa-
rameter range, and thereby the restricted ANML code length, is to use a two-part
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code. The first part contains a specification of µ∗, which is followed by an encod-
ing of the rest of the data with an approximate code length given by restricted
ANML for that µ∗. To do this we need to choose some discretisation, such that
whatever µ̂ is, it does not cost many bits to specify an interval that contains it. For
a sequence with ML parameter µ̂, we choose to encode the integer b = ⌈log2 µ̂⌉. A
decoder, upon reception of such a number b, now knows that the ML parameter
value must lie in the range (2b−1, 2b] (for otherwise another value of b would have
been transmitted). By taking the logarithm we ensure that the number of bits
used in coding the parameter range grows at a negligible rate compared to the
code length of the data itself, but we admit that the code for the parameter range
allows much more sophistication. We do not really have reason to assume that
the best discretisation should be the same for the Poisson and Geometric models
for example.

The two-part code is slightly redundant, since code words are assigned to data
sequences of which the ML estimator lies outside the range that was encoded in
the first part – such data sequences cannot occur, since for such a sequence we
would have encoded a different range. Furthermore, the two-part code is no
longer minimax optimal, so it is no longer clear why it should be better than
other universal codes which are not minimax optimal. However, as argued in
[38], whenever the minimax optimal code is not defined, we should aim for a code
L which is “close” to minimax optimal in the sense that, for any compact subset
M′ of the parameter space, the additional regret of L on top of the NML code
for M′ should be small, e.g. O(log log n). The two-part ANML code is one of
many universal codes satisfying this “almost minimax optimality”. While it may
not be better than another almost minimax optimal universal code, it certainly
is better than universal codes which do not have the almost minimax optimality
property.

2.3.4 Renormalised Maximum Likelihood

Related to the two-part restricted ANML, but more elegant, is Rissanen’s renor-
malised maximum likelihood (RNML) code, [73, 38]. This is perhaps the most
widely known approach to deal with infinite parametric complexity. The idea here
is that the NML distribution is well-defined if the parameter range is restricted
to, say, the range (0, µ∗). Letting PNML,µ∗ be the NML distribution relative to this
restricted model, we can now define a new parametric model, with µ∗ as the pa-
rameter and the corresponding restricted NML distributions PNML,µ∗ as elements.
For this new model we can again compute the NML distribution! To do this, we
need to compute the ML value for µ∗, which in this case can be seen to be as
small as possible such that µ̂ still falls within the range, in other words, µ∗ = µ̂.

If this still leads to infinite parametric complexity, we define a hyper-hyper-
parameter. We repeat the procedure until the resulting complexity is finite. Un-
fortunately, in our case, after the first renormalisation, both parametric complex-
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ities are still infinite; we have not performed a second renormalisation. Therefore,
the RNML code is not included in our experiments.

2.3.5 Prequential Maximum Likelihood

The prequential maximum likelihood code, which we will abbreviate PML-code, is
an attractive universal code because it is usually a lot easier to implement than
either NML or a Bayesian code. Moreover, its implementation hardly requires
any arbitrary decisions. Here the outcomes are coded sequentially using the
probability distribution indexed by the ML estimator for the previous outcomes
[26, 69]; for a general introduction see [96] or [38].

LPIPC (xn) =
n∑

i=1

L
(

xi|µ̂(xi−1)
)

,

where L
(
xi|µ̂(xi−1)

)
= − ln P

(
xi|µ̂(xi−1)

)
is the number of nats needed to encode

outcome xi using the code based on the ML estimator on xi−1. We further discuss
the motivation for this code in Section 2.5.1.

For both the Poisson model and the Geometric model, the maximum likelihood
estimator is not well-defined until after a nonzero outcome has been observed
(since 0 is not inside the allowed parameter range). This means that we need to
use another code for the first few outcomes. It is not really clear how we can use
the model assumption (Poisson or geometric) here, so we pick a simple code for
the nonnegative integers that does not depend on the model. This will result in
the same code length for both models; therefore it does not influence which model
is selected. Since there are usually only very few initial zero outcomes, we may
reasonably hope that the results are not too distorted by our way of handling this
start-up problem. We note that this start-up problem is an inherent feature of the
PML approach [26, 71], and our way of handling it is in line with the suggestions
in [26].

2.3.6 Objective Bayesian Approach

In the Bayesian framework we select a prior w(θ) on the unknown parameter and
compute the marginal likelihood

PBAYES (xn) =

∫

Θ

P
(
xn|θ

)
w(θ) dθ, (2.8)

with universal code length LBAYES (xn) = − ln PBAYES (xn). Like NML, this can
be approximated with an asymptotic formula. Under conditions similar to those
for the NML approximation (2.1), we have [3]:

LABAYES (xn) := L
(

xn|θ̂
)

+
k

2
ln

n

2π
+ ln

√

det I(θ)

w(θ)
, (2.9)
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where the asymptotic behaviour is the same as for the approximation of the NML
code length, roughly LABAYES (xn) − LBAYES (xn) → 0 as n → ∞ (see below Eq.
(2.1) for details). Objective Bayesian reasoning suggests we use Jeffreys’ prior for
several reasons; one reason is that it is uniform over all “distinguishable” elements
of the model [3], which implies that the obtained results are independent of the
parameterisation of the model [47]. It is defined as follows:

w(θ) =

√

det I(θ)
∫

Θ

√

det I(θ) dθ
. (2.10)

Unfortunately, the normalisation factor in Jeffreys’ prior diverges for both the
Poisson model and the Geometric model. But if one is willing to accept a so-
called improper prior, which is not normalised, then it is possible to compute a
perfectly proper Bayesian posterior, after observing the first outcome, and use
that as a prior to compute the marginal likelihood of the rest of the data. Refer
to [14] for more information on objective Bayesian theory. The resulting universal
codes with lengths LBAYES

(
x2, . . . , xn | x1

)
are, in fact, conditional on the first

outcome. Recent work by [58] suggests that, at least asymptotically and for one-
parameter models, the universal code achieving the minimal expected redundancy
conditioned on the first outcome is given by the Bayesian universal code with the
improper Jeffreys’ prior. Li and Barron only prove this for scale and location
models, but their result does suggest that the same would still hold for general
exponential families such as Poisson and geometric. It is possible to define MDL
inference in terms of either the expected redundancy or of the worst-case regret.
In fact, the resulting procedures are very similar, see [4]. Thus, we have a tentative
justification for using Jeffreys’ prior also from an MDL point of view, on top of
its justification in terms of objective Bayes.

It can be argued that using the first outcome for conditioning rather than
some other outcome is arbitrary while it does influence the results. On the other
hand, the posterior after having observed all data will be the same whatever
outcome is elected to be the special one that we refrain from encoding. It also
seems preferable to let results depend on arbitrary properties of the data than
to let it depend on arbitrary decisions of the scientist, such as the choice for a
maximum value for µ∗ in the case of the restricted ANML criterion. As advocated
for instance in [13], arbitrariness can be reduced by conditioning on every outcome
in turn and then using the mean or median code length one so obtains. We have
not gone to such lengths in this study.

We compute Jeffreys’ posterior after observing one outcome, and use it to
find the Bayesian marginal likelihoods. We write xj

i to denote xi, . . . , xj and
µ̂(xj

i ) to indicate which outcomes determine the ML estimator, finally we abbre-
viate sn = x1 + . . . + xn. The goal is to compute PBAYES

(
xn

2 | x1

)
for the Poisson

and Geometric models. As before, the difference between the corresponding code
lengths defines a model selection criterion. We also compute PABAYES

(
xn

2 | x1

)
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for both models, the approximated version of the same quantity, based on ap-
proximation formula (2.9). Equations for the Poisson and Geometric models are
presented below.

Bayesian code for the Poisson model We compute Jeffreys’ improper prior
and the posterior after observing one outcome:

wP (µ) ∝
√

IP (µ) = µ− 1
2 ; (2.11)

wP

(
µ | x1

)
=

PP

(
x1|µ

)
wP (µ)

∫∞

0
PP

(
x1|θ

)
wP (θ) dθ

=
e−µµx1−

1
2

Γ(x1 + 1
2
)
. (2.12)

From this we can derive the marginal likelihood of the rest of the data. The
details of the computation are omitted for brevity.

PP,BAYES

(
xn

2 | x1

)
=

∫ ∞

0

PP

(
xn

2 |µ
)
wP

(
µ | x1

)
dµ =

Γ(sn + 1
2
)

Γ(x1 + 1
2
)
/



ns+ 1
2

n∏

i=2

xi!



 .

(2.13)
For the approximation (2.9) we obtain:

LP,ABAYES

(
xn

2 | x1

)
= LP

(
xn

2 |µ̂(xn
2

)
)+ 1

2
ln

n

2π
+ µ̂(xn

2 )−x1 ln µ̂(xn
2 )+ln Γ(x1 + 1

2
).

(2.14)

Bayesian code for the Geometric model We perform the same computa-
tions for the Geometric model. This time we get:

wG (µ) ∝ µ− 1
2 (µ + 1)−

1
2 ; (2.15)

wG

(
µ | x1

)
= (x1 + 1

2
)µx1−

1
2 (µ + 1)−x1−

3
2 ; (2.16)

PG,BAYES (xn) = (x1 + 1
2
)
Γ(s + 1

2
)Γ(n)

Γ(n + s + 1
2
)
. (2.17)

For the approximation we obtain:

LG,ABAYES

(
xn

2 | x1

)
= LG

(
xn

2 |µ̂(xn
2

)
) + 1

2
ln

n

2π

+ x1 ln

(

1 +
1

µ̂(xn
2 )

)

+ 1
2

ln(µ̂(xn
2 ))− ln(x1 + 1

2
). (2.18)

2.4 Experiments

The previous section describes four methods to compute or approximate the
length of a number of different universal codes, which can be used in an MDL
model selection framework. The MDL principle tells us to select the model using
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which we can achieve the shortest code length for the data. This coincides with
the Bayesian maximum a-posteriori (MAP) model with a uniform prior on the
models. In this way each method for computing or approximating universal code
lengths defines a model selection criterion, which we want to compare empirically.

Known µ criterion In addition to the criteria that are based on universal
codes, as developed in Section 2.3, we define one additional, “ideal” criterion to
serve as a reference by which the others can be evaluated. The known µ criterion
cheats a little bit: it computes the code length for the data with knowledge of the
mean of the generating distribution. If the mean is µ, then the known µ criterion
selects the Poisson model if LP

(
xn|µ

)
< LG

(
xn|µ

)
. Since this criterion uses

extra knowledge about the data, it should be expected to perform better than
the other criteria. The theoretical analysis of the known µ criterion is helped
by the circumstance that (1) one of the two hypotheses equals the generating
distribution and (2) the sample consists of outcomes which are i.i.d. according to
this distribution. In [25], Sanov’s Theorem is used to show that in such a situation,
the probability that the criterion prefers the wrong model (“error probability”)
decreases exponentially in the sample size. If the Bayesian MAP model selection
criterion is used then the following happens: if the data are generated using
Poisson[µ] then the error probability decreases exponentially in the sample size,
with some error exponent; if the data are generated with Geom[µ] then the overall
error probability is exponentially decreasing with the same exponent [25, Theorem
12.9.1 on page 312 and text thereafter]. Thus, we expect that the line for the
“known µ” criterion is straight on a logarithmic scale, with a slope that is equal
whether the generating distribution is Poisson or geometric. This proves to be
the case, as can be seen from Figure 2.2.

Tests We perform three types of test on the selection criteria, which are de-
scribed in detail in the following subsections:

1. Error probability measurements.

2. Bias measurements.

3. Calibration testing.

2.4.1 Error Probability

The error probability for a criterion is the probability that it will select a model
that does not contain the distribution from which the data were sampled. In
our experiments, samples are always drawn from a Poisson[µ] distribution with
probability p, or from a Geom[µ] distribution with probability 1−p. We measure
the error probability through repeated sampling; strictly speaking we thus obtain
error frequencies which approximate the error probability.
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Figures 2.2, 2.4, 2.5 and 2.6 plot the sample size against the error frequency,
using different means µ and different priors p on the generating distribution. We
use a log-scale, which allows for easier comparison of the different criteria; as
we pointed out earlier, for the known µ criterion we should expect to obtain a
straight line.

In Figures 2.4, 2.5 and 2.6 the log of the error frequency of the known µ
criterion is subtracted from the logs of the error frequencies of the other criteria.
This brings out the differences in performance in even more detail. The known
µ criterion, which has no bias, is perfectly calibrated (as we will observe later)
and which also has a low error probability under all circumstances (although
biased criteria can sometimes do better if the bias happens to work in the right
direction), is thus treated as a baseline of sorts.

2.4.2 Bias

We define the level of evidence in favour of the Poisson model as:

∆ (xn) := LG

(
xn|µ

)
− LP

(
xn|µ

)
, (2.19)

which is the difference in code lengths according to the known µ criterion. The
other criteria define estimators for this quantity: the estimator for a criterion C
is defined as:

∆C(xn) := LG,C (xn)− LP,C (xn) (2.20)

(Some people are more familiar with Bayes factors, of which this is the logarithm.)
In our context the bias of a particular criterion is the expected difference between
the level of evidence according to that criterion and the true level of evidence,

E
[
∆C(Xn)−∆ (Xn)

]
. (2.21)

The value of this expectation depends on the generating distribution, which is
assumed to be some mixture of the Poisson and geometric distributions of the
same mean.

We measure the bias through sampling. We measure the bias with generating
distributions Poisson[8] and Geom[8]; as before we vary the sample size. The
results are in Figure 2.3.

2.4.3 Calibration

The classical interpretation of probability is frequentist: an event has probability
p if in a repeated experiment the frequency of the event converges to p. This
interpretation is no longer really possible in a Bayesian framework, since prior
assumptions often cannot be tested in a repeated experiment. For this reason,
calibration testing is avoided by some Bayesians who may put forward that it
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is a meaningless procedure from a Bayesian perspective. On the other hand, we
take the position that even with a Bayesian hat on, one would like one’s inference
procedure to be calibrated – in the idealised case in which identical experiments
are performed repeatedly, probabilities should converge to frequencies. If they
do not behave as we would expect even in this idealised situation, then how
can we trust inferences based on such probabilities in the real world with all its
imperfections?

In the introduction we have indicated the correspondence between code lengths
and probability. If the universal code lengths for the different criteria correspond
to probabilities that make sense in a frequentist way, then the Bayesian a posteri-
ori probabilities of the two models should too. To test this, we generate samples
with a fixed mean and a fixed sample size; half of the samples are drawn from
a Poisson distribution and half from a geometric distribution. We then compute
the a posteriori probability that it is generated by the Poisson model, for each
of the selection criteria. The samples are distributed over 40 bins by discretising
their a posteriori probability. For each bin we count the number of sequences that
actually were generated by Poisson. If the a posteriori Bayesian probability that
the model is Poisson makes any sense in a frequentist way, then the result should
be a more or less straight diagonal.

The results are in Figure 2.7. We used mean 8 and sample size 8 because on
the one hand we want a large enough sample size that the posterior has converged
to something reasonable, but on the other hand if we choose the sample size even
larger it becomes exceedingly unlikely that a sequence is generated of which the
probability that it is Poisson is estimated near 0.5, so we would need to generate an
infeasibly large number of samples to get accurate results. Note that the “known
µ” criterion is perfectly calibrated, because its implicit prior distribution on the
mean of the generating distribution puts all probability on the actual mean, so the
prior perfectly reflects the truth in this case. Under such circumstances Bayesian
and frequentist probability become the same, and we get a perfect answer.

We feel that calibration testing is too often ignored, while it can safeguard
against inferences or predictions that bear little relationship to the real world.
Moreover, in the objective Bayesian branch of Bayesian statistics, one does em-
phasise procedures with good frequentist behaviour [11]. At least in restricted
contexts [23, 22], Jeffreys’ prior has the property that the Kullback-Leibler diver-
gence between the true distribution and the posterior converges to zero quickly,
no matter what the true distribution is. Consequently, after observing only a
limited number of outcomes, it should already be possible to interpret the pos-
terior as an almost “classical” distribution in the sense that it can be verified by
frequentist experiments [23].
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2.5 Discussion of Results

Roughly, the results of our tests can be summarised as follows:

• In this toy problem, as one might expect, all criteria perform extremely well
even while the sample size is small. But there are also small but distinct
differences that illustrate relative strengths and weaknesses of the different
methods. When extrapolated to a more complicated model selection prob-
lem, our results should help to decide which criteria are appropriate for the
job.

• As was to be be expected, the known µ criterion performs excellently on all
tests.

• The PML and BIC/ML criteria exhibit the worst performance.

• The basic restricted ANML criterion yields results that range from good to
very bad, depending on the chosen parameter range. Since the range must
be chosen without any additional knowledge of the properties of the data,
this criterion is rather arbitrary.

• The results for the two-part restricted ANML and Objective Bayesian cri-
teria are reasonable in all tests we performed; these criteria thus display
robustness.

In the following subsections we evaluate the results for each model selection cri-
terion in turn.

2.5.1 Poor Performance of the PML Criterion

One feature of Figure 2.2 that immediately attracts attention is the unusual slope
of the error rate line of the PML criterion, which clearly favours the geometric
distribution. This is even clearer in Figure 2.3, where the PML criterion can
be observed to become more and more favourable to the Geometric model as
the sample size increases, regardless of whether the data were sampled from a
Poisson or geometric distribution. This is also corroborated by the results on
the calibration test, where the PML criterion most severely underestimates the
probability that the data were sampled from a Poisson distribution: of those
sequences that were classified as geometric with 80% confidence, in fact about
60% turned out to be sampled from a Poisson distribution.

While this behaviour may seem appropriate if the data really are more likely to
come from a geometric distribution, there is actually a strong argument that even
under those circumstances it is not the most desirable behaviour, for the following
reason. Suppose that we put a fixed prior p on the generating distribution, with
nonzero probability for both distributions Poisson[µ] and Geom[µ]. The marginal



40 Chapter 2. Dealing with Infinite Parametric Complexity

Figure 2.2 The log10 of the error frequency.
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Figure 2.3 The classification bias in favour of the Poisson model in bits.
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Figure 2.4 The difference in the log10 of the frequency of error between each
criterion and the known µ criterion. The mean is 4. In these graphs, data are
sampled from one of the two models with unequal probabilities.
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Figure 2.5 The difference in the log10 of the frequency of error between each
criterion and the known µ criterion. The mean is 4.
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Figure 2.6 The difference in the log10 of the frequency of error between each
criterion and the known µ criterion. The mean is 8 in the top graph and 16 in
the bottom graph.
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error probability is a linear combination of the probabilities of error for the two
generating distributions; as such it is dominated by the probability of error with
the worst exponent. So if minimising the error probability is our goal, then we
must conclude that the behaviour of the PML criterion is suboptimal. (As an
aside, minimising the error probability with respect to a fixed prior is not the
goal of classical hypothesis testing, since in that setting the two hypotheses do
not play a symmetrical role.) To illustrate, the bottom graph in Figure 2.4 shows
that, even if there is a 90% chance that the data are geometric, then the PML
criterion still has a worse (marginal) probability of error than “known µ” as soon
as the sample size reaches 25. Figure 2.5 shows what happens if the prior on the
generating distribution is uniform – using the PML criterion immediately yields
the largest error probability of all the criteria under consideration. This effect
only becomes stronger if the mean is higher.

This strangely poor behaviour of the PML criterion initially came as a com-
plete surprise to us. Theoretical literature certainly had not suggested it. Rather
the contrary: in [71] we find that “it is only because of a certain inherent singular-
ity in the process [of PML coding], as well as the somewhat restrictive requirement
that the data must be ordered, that we do not consider the resulting predictive
code length to provide another competing definition for the stochastic complexity,
but rather regard it as an approximation”. There are also a number of results
to the effect that the regret for the PML code grows as k

2
ln n, the same as the

regret for the NML code, for a variety of models. Examples are [70, 35, 97]. Fi-
nally, publications such as [61, 52] show excellent behaviour of the PML criterion
for model selection in regression and classification based on Bayesian networks,
respectively. So, we were extremely puzzled by these results at first.

To gain intuition as to why the PML code should behave so strangely, note
that the variance of a geometric distribution is much larger than the variance of
the Poisson distribution with the same mean. This suggests that the penalty for
using an estimate, µ̂(xn−1) rather than the optimal µ to encode each outcome
xn is higher for the Poisson model. The accumulated difference accounts for the
difference in regret.

This intuition is made precise in the next chapter, where we prove that for
single parameter exponential families, the regret for the PML code grows with
1
2

ln(n)varP ∗(X)/varPθ∗
(X), where P ∗ is the generating distribution, while Pθ∗

is the element of the model that minimises D(P ∗‖Pθ∗). The PML model has
the same regret (to O(1)) as the NML model if and only if the variance of the
generating distribution is the same as the variance of the best element of the
model. The existing literature studies the case where P ∗ = Pθ∗ , so that the
variances cancel.

Nevertheless, for some model selection problems, the PML criterion may be
the best choice. For example, the Bayesian integral (2.8) cannot be evaluated an-
alytically for many model families. It is then often approximated by, for example,
Markov Chain Monte Carlo methods, and it is not at all clear whether the re-
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sulting procedure will show better or worse performance than the PML criterion.
Theoretical arguments [4] show that there are quite strong limits to how badly
the PML criterion can behave in model selection. For example, whenever a finite
or countably infinite set of parametric models (each containing an uncountable
number of distributions) are being compared, and data are i.i.d. according to an
element of one of the models, then the error probability of the PML criterion must
go to 0. If the number of models is finite and they are non-nested, it must even
go to 0 as exp(−cn) for some constant c > 0. The same holds for other criteria
including BIC, but not necessarily for ML. The PML criterion may have slightly
lower c than other model selection procedures, but the ML criterion is guaranteed
to fail (always select the most complex model) in cases such as regression with
polynomials of varying degree, where the number of models being compared is
nested and countably infinite. Thus, whereas in our setting the PML criterion
performs somewhat worse (in the sense that more data are needed before the same
quality of results is achieved) than the ML criterion, it is guaranteed to display
reasonable behaviour over a wide variety of settings, in many of which the ML
criterion fails utterly.

All in all, our results indicate that the PML criterion should be used with
caution, and may exhibit worse performance than other selection criteria under
misspecification.

2.5.2 ML/BIC

Beside known µ and PML, all criteria seem to share more or less the same error
exponent. Nevertheless, they still show differences in bias. While we have to be
careful to avoid over-interpreting our results, we find that the ML/BIC criterion
consistently displays the largest bias in favour of the Poisson model. Figure 2.3
shows how the Poisson model is always at least 100.7 ≈ 5 times more likely
according to ML/BIC than according to known µ, regardless whether data were
sampled from a geometric or a Poisson distribution. Figure 2.7 contains further
evidence of bias in favour of the Poisson model: together with the PML criterion,
the ML/BIC criterion exhibited the worst calibration performance: when the
probability that the data is Poisson distributed is assessed by the ML criterion
to be around 0.5, the real frequency of the data being Poisson distributed is only
about 0.2.

This illustrates how the Poisson model appears to have a greater descriptive
power, even though the two models have the same number of parameters, an
observation which we hinted at in Section 2.2. Intuitively, the Poisson model
allows more information about the data to be stored in the parameter estimate.
All the other selection criteria compensate for this effect, by giving a higher
probability to the Geometric model.
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2.5.3 Basic Restricted ANML

We have seen that the ML/BIC criterion shows the largest bias for the Poisson
model. Figure 2.3 shows that the second largest bias is achieved by ANML
µ∗ = 10. Apparently the correction term that is applied by ANML criterion is
not sufficient if we choose µ∗ = 10. However, we can obtain any correction term we
like since we observed in Section 2.3.2 that ANML is equivalent to a GLRT with
a selection threshold that is an unbounded, monotonically increasing function
of µ∗. Essentially, by choosing an appropriate µ∗ we can get any correction in
favour of the Geometric model, even one that would lead to a very large bias in
the direction of the Geometric model. We conclude that it does not really make
sense to use a fixed restricted parameter domain to repair the NML model when
it does not exist, unless prior knowledge is available.

2.5.4 Objective Bayes and Two-part Restricted ANML

We will not try to interpret the differences in error probability for the (approxi-
mated) Bayesian and ANML 2-part criteria. Since we are using different selection
criteria we should expect at least some differences in the results. These differences
are exaggerated by our setup with its low mean and small sample size.

The Bayesian criterion, as well as its approximation appear to be somewhat
better calibrated than the two-part ANML but the evidence is too thin to draw
any strong conclusions.

Figures 2.4–2.6 show that the error probability for these criteria tends to
decrease at a slightly lower rate than for known µ (except when the prior on
the generating distribution is heavily in favour of Poisson). While we do not
understand this phenomenon well enough so as to prove it mathematically, it is
of course consistent with the general rule that with more prior uncertainty, more
data are needed to make the right decision. It may be that all the information
contained within a sample can be used to improve the resolution of the known µ
criterion, while for the other criteria some of that information has to be sacrificed
in order to estimate the parameter value.

2.6 Summary and Conclusion

We have experimented with a number of model selection criteria which are based
on the MDL philosophy and involve computing the code length of the data with
the help of the model. There are several ways to define such codes, but the
preferred method, the Normalised Maximum Likelihood (NML) code, cannot be
applied since it does not exist for the Poisson and Geometric models that we
consider.

We have experimented with the following alternative ways of working around
this problem: (1) using BIC which is a simplification of approximated NML
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Figure 2.7 Calibration: probability that the model assigned to the data being
Poisson against the frequency with which it actually was Poisson.
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(ANML), (2) ANML with a restricted parameter range, this range being either
fixed or encoded separately, (3) a Bayesian model using Jeffreys’ prior, which is
improper for the case at hand but which can be made proper by conditioning on
the first outcome of the sample, (4) its approximation and (5) a PML code which
always codes the new outcome using the distribution indexed by the maximum
likelihood estimator for the preceding outcomes.

Only the NML code incurs the same regret for all possible data sequences
xn; the regret incurred by the alternatives we studied necessarily depends on
the data. Arguably this dependence is quite weak for the objective Bayesian
approach (see [39] for more details); how the regret depends on the data is at
present rather unclear for the other approaches. As such they cannot really be
viewed as “objective” alternatives to the NML code. However, new developments
in the field make this distinction between “objective” and “subjective” codes seem
a bit misleading. It is probably better to think in terms of “luckiness” (also see
Section 1.1.1): while the NML code allows equally good compression (and thus
learning speed) for all data sequences, other methods are able to learn faster
from some data sequences than from others. This does not mean that conclusions
drawn from inference with such luckiness codes are necessarily subjective.
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We have performed error probability tests, bias tests and calibration tests to
study the properties of the model selection criteria listed above and made the
following observations.

Both BIC and ANML with a fixed restricted parameter range define a GLRT
test and can be interpreted as methods to choose an appropriate threshold. BIC
chooses a neutral threshold, so the criterion is biased in favour of the model which
is most susceptible to overfitting. We found that even though both models under
consideration have only one parameter, a GLRT with neutral threshold tends to be
biased in favour of Poisson. ANML implies a threshold that counteracts this bias,
but for every such threshold value there exists a corresponding parameter range,
so it does not provide any more specific guidance in selecting that threshold. If the
parameter range is separately encoded, this problem is avoided and the resulting
criterion behaves competitively.

The Bayesian criterion displays reasonable performance both on the error rate
experiments and the calibration test. The Bayesian universal codes for the models
are not redundant and admit an MDL interpretation as minimising worst-case
code length in an expected sense (Section 2.3.6).

The most surprising result is the behaviour of the PML criterion. It has a
bias in favour of the Geometric model that depends strongly on the sample size.
As a consequence, compared to the other model selection criteria its error rate
decreases more slowly in the sample size if the data are sampled from each of
the models with positive probability. This observation has led to a theoretical
analysis of the code length of the PML code in the next chapter. It turns out that
the regret of the PML code does not necessarily grow with k

2
ln n like the NML

and Bayesian codes do, if the sample is not distributed according to any element
of the model.





Chapter 3

Behaviour of Prequential Codes under
Misspecification

Universal coding lies at the basis Rissanen’s theory of MDL (minimum description
length) learning [4, 39] and Dawid’s theory of prequential model assessment [26].
It also underlies on-line prediction algorithms for data compression and gambling
purposes. In the introductory chapter (Section 1.2.3), we defined universality of
a code in terms of its worst-case regret. Roughly, a code is universal with respect
to a modelM if it achieves small worst-case regret: it allows one to encode data
using not many more bits than the optimal code in M. We also described the
four main universal codes: the Shtarkov or NML code, the Bayesian mixture
code, the 2-part MDL code and the prequential maximum likelihood code (PML),
also known as the “ML plug-in code” or the “predictive MDL code” [4, 38]. This
code was introduced independently by Rissanen [69] and by Dawid [26], who
proposed it as a forecasting strategy rather than as a code. In this chapter we
study the behaviour of the PML code if the considered modelM does not contain
the data-generating distribution P ∗. We require that the model is a 1-parameter
exponential family, but our results can possibly be extended to models with more
parameters.

Instead of the worst-case regret, we analyse the redundancy, a closely re-
lated concept. We find that the redundancy of PML can be quite different from
that of the other main universal codes. For all these codes, the redundancy is
1
2
c ln n+O(1) for some c, but while c = 1 for Bayes, NML and 2-part codes (under

regularity conditions on P ∗ and M), we show here that for PML, any c > 0 is
possible, depending on P ∗ and M.

There are a plethora of results concerning the redundancy and/or the regret
for PML, for a large variety of models including multivariate exponential families,
ARMA processes, regression models and so on. Examples are [70, 44, 97, 57].
In all these papers it is shown that either the regret or the redundancy grows
as k

2
ln n + o(ln n), either in expectation or almost surely. Thus, these results

already indicate that c = 1 for those models. The reason that these results do

51
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not contradict ours, is that they invariably concern the case where the generating
P ∗ is in M, so that automatically varM∗(X) = varP ∗(X).

As discussed in Section 3.4, the result has interesting consequences for pa-
rameter estimation and practical data compression, but the most important and
surprising consequence is for MDL learning and model selection, where our re-
sult implies that PML may behave suboptimally even if one of the models under
consideration is correct!

In Section 3.1 we informally state and explain our result. Section 3.2 contains
the formal statement of our main result (Theorem 3.2.3), as well as a proof. In
Section 3.3 we show that our results remain valid to some extent if“redundancy”is
replaced by “expected regret” (Theorem 3.3.1). We discuss further issues, includ-
ing relevance of the result, in Section 3.4. Section 3.5 states and proves various
lemmas needed in the proofs of Theorems 3.2.3 and 3.3.1.

3.1 Main Result, Informally

Suppose M = {Pθ : θ ∈ Θ} is a k-dimensional parametric family of distribu-
tions, and Z1, Z2, . . . are i.i.d. according to some distribution P ∗ ∈ M. A code
is universal for M if it is almost as efficient at coding outcomes from P ∗ as the
best element ofM. (As in previous chapters, we sometimes use codes and distri-
butions interchangeably.) In the introductory chapter we measured the overhead
incurred on the first n outcomes zn = z1, . . . , zn in terms of the worst-case regret

max
zn
R(L,M, zn) = max

zn

(

L(zn)− inf
L′∈M

L′(zn)

)

,

but in this chapter we consider the redundancy instead. We define the redundancy
of a distribution Q with respect to a model M as

R(P ∗, Q,M, n) := E
Zn∼P ∗

[− ln Q(Zn)]− inf
θ∈Θ

E
Zn∼P ∗

[− ln Pθ(Z
n)], (3.1)

where we use nats rather than bits as units of information to simplify equations.
We omit the first three arguments of the redundancy if they are clear from con-
text. These and other notational conventions are detailed in Section 3.2. The
redundancy is a close lower bound on the expected regret, see Section 3.3. We do
not know the exact relationship to worst-case regret.

The four major types of universal codes, Bayes, NML, 2-part and PML, all
achieve redundancies that are (in an appropriate sense) close to optimal. Specifi-
cally, under regularity conditions onM and its parameterisation, these four types
of universal codes all satisfy

R(P ∗, Q,M, n) =
k

2
ln n + O(1), (3.2)
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where the O(1) may depend on P ∗, M and the universal code Q that is used.
This is the famous “k over 2 log n formula”, refinements of which lie at the basis
of most practical approximations to MDL learning, see [38].

Often, the source distribution P ∗ is assumed to be an element of the model. If
such is the case, then by the information inequality [25] the second term of (3.1)
is minimised for Pθ = P ∗, so that

R(P ∗, Q,M, n) = EP ∗ [− ln Q(Zn)]− EP ∗ [− ln P ∗(Zn)]. (3.3)

Thus, (3.3) can be interpreted as the expected number of additional nats one
needs to encode n outcomes if one uses the code corresponding to Q instead of
the optimal (Shannon-Fano) code with lengths − ln P ∗(Zn). For a good universal
code this quantity is small for all or most P ∗ ∈M.

In this chapter we consider the case where the data are i.i.d. according to an
arbitrary P ∗ not necessarily in the model M. It is now appropriate to rename
the redundancy to relative redundancy, since we measure the number of nats we
lose compared to the best element in the model, rather than compared to the
generating distribution P ∗. The definition (3.1) remains unchanged. It can no
longer be rewritten as (3.3) however: Assuming it exists and is unique, let Pθ∗ be
the element of M that minimises KL divergence to P ∗:

θ∗ := arg min
θ∈Θ

D(P ∗‖Pθ) = arg min
θ∈Θ

EP ∗ [− ln Pθ(Z)],

where the equality follows from the definition of the KL divergence [25]. Then
the relative redundancy satisfies

R(P ∗, Q,M, n) = EP ∗ [− ln Q(Zn)]− EP ∗ [− ln Pθ∗(Zn)]. (3.4)

It turns out that for the NML, 2-part MDL and Bayes codes, the relative redun-
dancy (3.4) with P ∗ 6∈ M, still satisfies (3.2), under some conditions on M and
P ∗ (Section 3.3). In this chapter we show that (3.2) does not hold for PML. The
PML code with length function L works by sequentially predicting Zi+1 using a
(slightly modified) ML or Bayesian MAP estimator θ̂i = θ̂(zi) based on the past
data, that is, the first i outcomes zi. The total code length L(zn) on a sequence
zn is given by the sum of the individual “predictive” code lengths (log losses):
L(zn) =

∑n−1
i=0 [− ln Pθ̂i

(zi+1)]. In our main theorem, we show that if and M is a
regular one-parameter exponential family (k = 1), then

R(P ∗, Q,M, n) = 1
2

varP ∗X

varPθ∗
X

ln n + O(1), (3.5)

where X is the sufficient statistic of the family. Example 6 below illustrates the
phenomenon. Note that if P ∗ ∈M, then Pθ∗ = P ∗ and (3.5) becomes the familiar
expression. The result holds as long asM and P ∗ satisfy a mild condition that is
stated and discussed in the next section. Section 3.4 discusses the consequences of
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this result for compression, estimation and model selection, as well as its relation
to the large body of earlier results on PML coding.

Example 6. LetM be the family of Poisson distributions, parameterised by their
mean µ. Since neither the NML universal code nor Jeffreys’ prior are defined for
this model it is attractive to use the PML code as a universal code for this model.
The ML estimator µ̂i is the empirical mean of z1, . . . , zi.

Suppose Z, Z1, Z2, . . . are i.i.d. according to a degenerate P with P (Z =
4) = 1. Since the sample average is a sufficient statistic for the Poisson family, µ̂i

will be equal to 4 for all i ≥ 1. On the other hand, µ∗, the parameter (mean) of
the distribution in M closest to P in KL-divergence, will be equal to 4 as well.
Thus the relative redundancy (3.4) of the PML code is given by

R(P ∗, Q,M, n) = − ln Pµ̂0(4) + ln P4(4) +
n−1∑

i=1

[− ln P4(4) + ln P4(4)] = O(1),

assuming an appropriate definition of µ̂0. In the case of the Poisson family, we
have Z = X in (3.5). Thus, since varP ∗Z = 0, this example agrees with (3.5).

Now suppose data are i.i.d. according to some Pτ , with Pτ (Z = z) ∝ (z +1)−3

for all z smaller than τ , and Pτ (Z = z) = 0 for z ≥ τ . It is easy to check that,
for τ → ∞, the entropy of Pτ converges to a finite constant, but the variance of
Pτ tends to infinity. Thus, by choosing τ large enough, the redundancy obtained
by the Poisson PML code can be made to grow as c log n for arbitrarily large c.

Example 7. The Hardy-Weinberg model deals with genotypes of which the alleles
are assumed independently Bernoulli distributed according to some parameter p.
There are four combinations of alleles, usually denoted “aa”, “AA”, “aA”, “Aa”;
but since “aA” and “Aa” result in the same genotype, the Hardy-Weinberg model
is defined as a probability distribution on three outcomes. We model this by
letting X be a random variable on the underlying space, that maps “aA” and
“Aa” to the same value: X(aa) = 0, X(aA) = X(Aa) = 1

2
and X(AA) = 1. Then

P (X = 0) = (1 − p)2, P (X = 1
2
) = 2p(1 − p) and P (X = 1) = p2. The Hardy-

Weinberg model is an exponential family with sufficient statistic X. To see this,
note that for any parameter p ∈ [0, 1], we have EX = µ = P (A) = p, so we can
parameterise the model by the mean of X. The variance of the distribution with
parameter µ is 1

2
µ(1 − µ). Now suppose that we code data in a situation where

the Hardy-Weinberg model is wrong and the genotypes are in fact distributed
according to P (X = 1

2
) = P (X = 1) = 1

2
and P (X = 0) = 0, such that mean and

variance of X are 3
4

and 2
32

respectively. The closest distribution in the model has
the same mean (since the mean is a sufficient statistic), and variance 3

32
. Thus

PML will achieve a redundancy of 1
3

ln n rather than 1
2

ln n (up to O(1)).
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3.2 Main Result, Formally

In this section, we define our quantities of interest and we state and prove our main
result. Throughout this text we use nats rather than bits as units of information.
Outcomes are capitalised if they are to be interpreted as random variables instead
of instantiated values. Let P ∗ be a distribution on some set Z, which can be either
finite or countably infinite, or a subset of k-dimensional Euclidean space for some
k ≥ 1. A sequence of outcomes z1, . . . , zn is abbreviated to zn. Let X : Z → R

k

be a random vector. We write EP ∗ [X] as a shorthand for EX∼P ∗ [X]. When we
consider a sequence of n outcomes independently distributed ∼ P ∗, we even use
EP ∗ as a shorthand for the expectation of (X1, . . . , Xn) under the n-fold product
distribution of P ∗. Finally, P ∗(X) denotes the probability mass function of P ∗

in case X is discrete-valued, and the density of P ∗ in case X takes values in a
continuum. When we write “density function of X”, then, if X is discrete-valued,
this should be read as “probability mass function of X”. Note however that in
our main result, Theorem 3.2.3 below, we do not assume that the data-generating
distribution P ∗ admits a density.

We define the particular random vector Z(z) := z. Let X : Z → R be a
random variable on Z, and let X = {x ∈ R : ∃z ∈ Z : X(z) = x} be the
range of X. Exponential family models are families of distributions on Z defined
relative to a random variable X (called “sufficient statistic”) as defined above,
and a function h : Z → (0,∞). Let Z(η) :=

∫

z∈Z
e−ηX(z)h(z)dz (the integral to

be replaced by a sum for countable Z), and Θη := {η ∈ R : Z(η) <∞}.

Definition 3.2.1 (Exponential family). The single parameter exponential fam-
ily [48] with sufficient statistic X and carrier h is the family of distributions
with densities Pη(z) := 1

Z(η)
e−ηX(z)h(z), where η ∈ Θη. Θη is called the natural

parameter space. The family is called regular if Θη is an open interval of R.

In the remainder of this text we only consider single parameter, regular expo-
nential families with a 1-to-1 parameterisation; this qualification will henceforth
be omitted. Examples include the Poisson, geometric and multinomial families,
and the model of all Gaussian distributions with a fixed variance or mean. In the
first four cases, we can take X to be the identity, so that X = Z and X = Z. In
the case of the normal family with fixed mean, σ2 becomes the sufficient statistic
and we have Z = R, X = [0,∞) and X = Z2.

The statistic X(z) is sufficient for η [48]. This suggests reparameterising
the distribution by the expected value of X, which is called the mean value
parameterisation. The function µ(η) = EPη [X] maps parameters in the natural
parameterisation to the mean value parameterisation. It is a diffeomorphism
(it is one-to-one, onto, infinitely often differentiable and has an infinitely often
differentiable inverse) [48]. Therefore the mean value parameter space Θµ is also
an open interval of R. We note that for some models (such as Bernoulli and
Poisson), the parameter space is usually given in terms of the a non-open set
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of mean-values (e.g., [0, 1] in the Bernoulli case). To make the model a regular
exponential family, we have to restrict the set of parameters to its own interior.
Henceforth, whenever we refer to a standard statistical model such as Bernoulli
or Poisson, we assume that the parameter set has been restricted in this sense.

We are now ready to define the PML distribution. This is a distribution on
infinite sequences z1, z2, . . . ∈ Z∞, recursively defined in terms of the distributions
of Zn+1 conditioned on Zn = zn, for all n = 1, 2, . . ., all zn = (z1, . . . , zn) ∈ Zn.
In the definition, we use the notation xi := X(zi).

Definition 3.2.2 (PML distribution). Let Θµ be the mean value parameter do-
main of an exponential family M = {Pµ | µ ∈ Θµ}. Given M and constants
x0 ∈ Θµ and n0 > 0, we define the PML distribution U by setting, for all n, all
zn+1 ∈ Zn+1:

U(zn+1 | zn) = Pµ̂(zn)(zn+1),

where U(zn+1 | zn) is the density/mass function of zn+1 conditional on Zn = zn,

µ̂(zn) :=
x0 · n0 +

∑n
i=1 xi

n + n0

,

and Pµ̂(zn)(·) is the density of the distribution in M with mean µ̂(zn).

We henceforth abbreviate µ̂(zn) to µ̂n. We usually refer to the PML distribu-
tion in terms of the corresponding code length function

LU(zn) =
n−1∑

i=0

LU(zi+1 | zi) =
n−1∑

i=0

− ln Pµ̂i
(zi+1).

To understand this definition, note that for exponential families, for any sequence
of data, the ordinary maximum likelihood parameter is given by the average
n−1

∑
xi of the observed values of X [48]. Here we define our PML distribution

in terms of a slightly modified maximum likelihood estimator that introduces a
“fake initial outcome”x0 with multiplicity n0 in order to avoid infinite code lengths
for the first few outcomes (a well-known problem called by Rissanen the “inherent
singularity” of predictive coding [71, 36]) and to ensure that the probability of the
first outcome is well-defined for the PML distribution. In practice we can take
n0 = 1 but our result holds for any n0 > 0. The justification of our modification
to the ML estimator is discussed further in Section 3.4.

Theorem 3.2.3 (Main result). Let X,X1, X2, . . . be i.i.d. ∼ P ∗, with EP ∗ [X] =
µ∗. Let M be a single parameter exponential family with sufficient statistic X
and µ∗ an element of the mean value parameter space. Let U denote the PML
distribution with respect to M. If M and P ∗ satisfy Condition 3.2.4 below, then

R(P ∗, U,M, n) = 1
2

varP ∗X

varPµ∗ (X)

ln n + O(1). (3.6)
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Comparing this to (3.5), note that Pµ∗ is the element ofM achieving smallest
expected code length, i.e. it achieves infµ∈Θµ D(P ∗‖Pµ) [48].

Condition 3.2.4. We require that the following holds both for T := X and
T := −X:

• If T is unbounded from above then there is a k ∈ {4, 6, . . .} such that the

first k moments of T exist under P ∗ and that d4

dµ4 D(Pµ∗‖Pµ) = O
(
µk−6

)
.

• If T is bounded from above by a constant g then d4

dµ4 D(Pµ∗‖Pµ) is polynomial

in 1/(g − µ).

Roughly, this condition expresses a trade-off between the data generating dis-
tribution P ∗ and the model. If the model is well-behaved, in the sense that the
fourth order derivative of the KL divergence does not grow too fast with the pa-
rameter, then we do not require many moments of P ∗ to exist. Vice versa if the
model is not well-behaved, then the theorem only holds for very specific P ∗, of
which many moments exist.

The condition holds for most single-parameter exponential families that are
relevant in practice. To illustrate, in Figure 3.2 we give the fourth derivative
of the divergence for a number of common exponential families explicitly. All
parameters beside the mean are treated as fixed values. Note that to interpret
the mean 0 normal distributions as a 1-parameter exponential family the density
we had to set X(z) = z2, so that its mean E[X] is actually the variance E[Z2]
of the normal distribution. As can be seen from the figure, for these exponential
families, our condition applies whenever at least the first four moments of P ∗

exist: a quite weak condition on the data generating distribution.

Proof of Theorem 3.2.3. For exponential families, we have

EP ∗ [− ln Pµ(Z)]− EP ∗ [− ln Pµ′(Z)]

= η(µ)EP ∗ [X(Z)] + ln Z(η(µ)) + EP ∗ [− ln h(Z)]

− η(µ′)EP ∗ [X(Z)]− ln Z(η(µ′))− EP ∗ [− ln h(Z)]

= EP ∗ [− ln Pµ(X)]− EP ∗ [− ln Pµ′(X)],

so that R(P ∗, U,M, n) = EP ∗ [LU(Xn)]− infµ EP ∗ [− ln Pµ(Xn)]. This means that
relative redundancy, which is the sole quantity of interest in the proof, depends
only on the sufficient statistic X, not on any other aspect of the outcome that
may influence Z. Thus, in the proof of Theorem 3.2.3 as well as all the Lemmas
and Propositions it makes use of, we will never mention Z again. Whenever
we refer to a “distribution” we mean a distribution of random variable X, and
we also think of the data generating distribution P ∗ in terms of the distribution
it induces on X rather than Z. Whenever we say “the mean” without further
qualification, we refer to the mean of the random variable X. Whenever we
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Figure 3.1 d4

dµ4 D(Pµ∗‖Pµ) for a number of exponential families.
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+

24µ∗

µ5

Normal (fixed mean = 0)
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µ4
+
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1√
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xa+1
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a− 1

a
µ∗ 6a

µ4

refer to the Kullback-Leibler (KL) divergence between P and Q, we refer to the
KL divergence between the distributions they induce for X. The reader who is
confused by this may simply restrict attention to exponential family models for
which Z = X, and consider X and Z identical.

The proof refers to a number of theorems and lemmas which will be developed
in Section 3.5. In the statement of all these results, we assume, as in the statement
of Theorem 3.2.3, that X,X1, X2, . . . are i.i.d. ∼ P ∗ and that µ∗ = EP ∗ [X]. If X
takes its values in a countable set, then all integrals in the proof should be read
as the corresponding sums.

The redundancy can be rewritten further as the sum of the expected risk for
each outcome (Lemma 3.5.6). We obtain

R(P ∗, U,M, n) =
n−1∑

i=0

E
µ̂i∼P ∗

[
D(Pµ∗‖Pµ̂i

)
]
. (3.7)

Here, the estimator µ̂i is a random variable that takes on values according to P ∗,
while the optimal parameter value µ∗ is fixed (and determined by P ∗). We will
write D(µ∗‖µ̂i) as shorthand notation for Pµ∗ and Pµ̂i

.
We now first rewrite the divergence. We abbreviate δi := µ̂i−µ∗ and D(k)(µ) :=

dk

dµk D(Pµ∗‖Pµ). That is, D(k)(µ) is the k-th derivative of the function f(µ) :=

D(Pµ∗‖Pµ). Taylor-expansion of the divergence around µ∗ yields

D(Pµ∗‖Pµ̂i
) = 0 + δiD

(1)(µ∗) +
δi

2

2
D(2)(µ∗) +

δi
3

6
D(3)(µ∗) +

δi
4

24
D(4)(µ̈i).
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The last term is the remainder term of the Taylor expansion, in which µ̈i ∈ [µ∗, µ̂i].
The second term D(1)(µ∗) is zero, since D(µ∗‖µ) reaches its minimum at µ = µ∗.
For the third term we observe that

D(2)(µ) =
d2

dµ2
E[ln Pµ∗(X)− ln Pµ(X)] = − d2

dµ2
E[ln Pµ(X)],

which is equal to the Fisher information. Fisher information is defined as I(θ) :=

E
[

( d
dθ

ln f(X | θ))2
]

, but as is well known [48], for exponential families this is

equal to − d2

dθ2 E
[
ln f(X | θ)

]
, which matches D(2)(·) exactly. Furthermore, for

the mean value parameterisation I(µ) = 1/varPµ(X). We obtain

D(Pµ∗‖Pµ̂i
) =

1

2
δi

2/varPµ∗ (X) +
1

6
δi

3D(3)(µ∗) +
1

24
δi

4D(4)(µ̈i). (3.8)

We plug this expression back into (3.7), giving

R(P ∗, U,M, n) =
1

2varPµ∗ (X)

n−1∑

i=0

EP ∗

[

δi
2
]

+ R(n), (3.9)

where the remainder term R(n) is given by

R(n) =
n−1∑

i=0

EP ∗

[
1

6
δi

3D(3)(µ∗) +
1

24
δi

4D(4)(µ̈i)

]

, (3.10)

and where µ and δi are random variables; note that although µ is not indexed it
does depend on the index i. In Lemma 3.5.8 we show that R(n) = O(1), giving:

R(P ∗, U,M, n) = O(1) +
1

2varPµ∗ (X)

n−1∑

i=0

EP ∗

[
(µ̂i − µ∗)2

]
. (3.11)

Note that µ̂i is almost the ML estimator. This suggests that each term in the
sum of (3.11) should be almost equal to the variance of the ML estimator, which
is varX/i. Because of the slight modification that we made to the estimator, we
get a correction term of O(i−2) as established in Theorem 3.5.2:

n−1∑

i=0

EP ∗

[
(µ̂i − µ∗)2

]
=

n−1∑

i=0

O
(
(i + 1)−2

)
+ varP ∗(X)

n−1∑

i=0

(i + 1)−1

= O(1) + varP ∗(X) ln n (3.12)

The combination of (3.11) and (3.12) completes the proof.
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3.3 Redundancy vs. Regret

The “goodness” of a universal code relative to a model M can be measured in
several ways: rather than using redundancy (as we did here), one can also choose
to measure code length differences in terms of regret, where one has a further
choice between expected regret and worst-case regret [4]. Here we only discuss the
implications of our result for the expected regret measure.

LetM = {Pθ | θ ∈ Θ} be a family of distributions parameterised by Θ. Given
a sequence zn = z1, . . . , zn and a universal code U for M with lengths LU , the
regret of U on sequence zn is defined as

LU(zn)− inf
θ∈Θ

[− ln Pθ(z
n)]. (3.13)

Note that if the (unmodified) ML estimator θ̂(zn) exists, then this is equal to
LU(zn) + ln Pθ̂(zn)(z

n). Thus, one compares the code length achieved on zn by U
to the best possible that could have been achieved on that particular zn, using
any of the codes/distributions in M. Assuming Z1, Z2, . . . are i.i.d. according to
some (arbitrary) P , one may now consider the expected regret

EZn∼P ∗ [R(P ∗, U,M, n)] = EP ∗ [LU(Zn)− inf
θ∈Θ

[− ln Pθ(Z
n)]].

To quantify the difference with redundancy, consider the function

d(n) := inf
θ∈Θ

EP [− ln Pθ(Z
n)]− EP [ inf

θ∈Θ
[− ln Pθ(Z

n)]],

and note that for any universal code, R − E[R] = d(n). In case P ∗ ∈ M, then
under regularity conditions on M and its parameterisation, it can be shown [23]
that

lim
n→∞

d(n) =
k

2
, (3.14)

where k is the dimension of M. In our case, where P ∗ is not necessarily in M,
we have the following :

Theorem 3.3.1. Let X be finite. Let P ∗, Pµ and µ∗ be as in Theorem 3.2.3.
Then

lim
n→∞

d(n) =
1

2

varP ∗X

varPµ∗X
. (3.15)

Once we are dealing with 1-parameter families, in the special case that P ∗ ∈
M, this result reduces to (3.14). We suspect that, under a condition similar to
Condition 3.2.4, the same result still holds for general, not necessarily finite or
countable or bounded X , but we do not know the details. In any case, our result
is sufficient to show that in some cases (namely, if X is finite), we have

R(P ∗, U,M, n) =
1

2

varP ∗X

varPµ∗X
ln n + O(1),
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so that, up to O(1)-terms, the redundancy and the regret of the prequential ML
code behave in the same way.

Incidentally, we can use Theorem 3.3.1 to substantiate the claim in Section 3.1,
which stated that the Bayes (equipped with a strictly positive differentiable prior),
NML and 2-part codes still achieve relative redundancy of 1

2
ln n if P ∗ 6= M, at

least if X is finite. Let us informally explain why this is the case. It is easy
to show that Bayes, NML and (suitably defined) 2-part codes achieve regret
1
2

ln n+O(1) for all sequences z1, z2, . . . such that θ̂(zn) is bounded away from the
boundary of the parameter space Θµ, for all large n [4, 38]. It then follows using,
for example, the Chernoff bound that these codes must also achieve expected
regret 1

2
ln n + O(1) for all distributions P ∗ on X that satisfy EP ∗ [X] = µ∗ ∈ Θµ.

Theorem 3.3.1 then shows that they also achieve relative redundancy 1
2

ln n+O(1)
for all distributions P ∗ on X that satisfy EP ∗ [X] = µ∗ ∈ Θµ. We omit further
details.

3.4 Discussion

3.4.1 A Justification of Our Modification of the ML Esti-
mator

A prequential code cannot be defined in terms of the ordinary ML estimator
(n0 = 0 in Definition 3.2.2) for two reasons. First, the ML estimator is undefined
until the first outcome has been observed. Second, it may achieve infinite code
lengths on the observed data. A simple example is the Bernoulli model. If we first
observe z1 = 0 and then z2 = 1, the code length of z2 according to the ordinary
ML estimator of z2 given z1 would be − ln Pµ̂(z1)(z2) = − ln 0 = ∞. There are
several ways to resolve this problem. We choose to add an “fake initial outcome”.
Another possibility that has been suggested (e.g., [26]) is to use the ordinary ML
estimator, but to postpone using it until after m outcomes have been observed,
where m is the smallest number such that − ln Pµ̂(zm)(Zm+1) is guaranteed to be
finite, no matter what value Zm+1 is realized. The first m outcomes may then be
encoded by repeatedly using some code L0 on outcomes of Z, so that for i ≤ m,
the code length of zi does not depend on the outcomes zi−1. In the Bernoulli
example, one could for example use the code corresponding to P (Zi = 1) = 1/2,
until and including the first i such that zi includes both a 0 and a 1. It then takes
i bits to encode the first zi outcomes, no matter what they are. After that, one
uses the prequential code with the standard ML estimator. It is easy to see (by
slight modification of the proof) that our theorem still holds for this variation of
prequential coding. Thus, our particular choice for resolving the startup problem
is not crucial to obtaining our result. The advantage of our solution is that, as we
now show, it allows us to interpret our modified ML estimator as a Bayesian MAP
and Bayesian mean estimator as well, thereby showing that the same behaviour
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can be expected for such estimators.

3.4.2 Prequential Models with Other Estimators

An attractive property of our generalisation of the ML estimator is that it actu-
ally also generalises two other commonly used estimators, namely the Bayesian
maximum a-posteriori and Bayesian mean estimators.

The Bayesian maximum a-posteriori estimator can always be interpreted as
an ML estimator based on the sample and some additional “fake data”, provided
that a conjugate prior is used ([12]; see also the notion of ESS (Equivalent Sample
Size) Priors discussed in, for example, [51]). Therefore, the prequential ML model
as defined above can also be interpreted as a prequential MAP model for that
class of priors, and the whole analysis carries over to that setting.

For the Bayesian mean estimator, the relationship is slightly less direct. How-
ever, it follows from the work of Hartigan [42, Chapter 7] on the so-called “max-
imum likelihood prior”, that by slightly modifying conjugate priors, we can con-
struct priors such that the Bayesian mean also becomes of the form of our modified
ML estimator.

Our whole analysis thus carries over to prequential codes based on these esti-
mators. In fact, we believe that our result holds quite generally:

Conjecture 3.4.1. LetM be a regular exponential family with sufficient statistic
X and let P be the set of distributions on Z such that EP ∗ [X4] exists. There exists
no “in-model” estimator such that the corresponding prequential code achieves
redundancy 1

2
ln n + O(1) for all P ∗ ∈ P.

Here, by an in-model estimator we mean an algorithm that takes as input
any sample of arbitrary length and outputs a Pµ ∈ M. Let us contrast this
with “out-model estimators”: fix some prior on the parameter set Θµ and let
P (µ | z1, . . . , zn−1) be the Bayesian posterior with respect to this prior and
data z1, . . . , zn−1. One can think of the Bayesian predictive distribution P (zn |
z1, . . . , zn−1) :=

∫

µ∈Θµ
Pµ(zn)P (µ | z1, . . . , zn−1)dµ as an estimate of the distri-

bution of Z, based on data z1, . . . , zn−1. But unlike estimators as defined in the
conjecture above, the resulting Bayesian predictive estimator will in general not
be a member ofM, but rather of its convex closure: we call it an out-model estima-
tor. The redundancy of the Bayesian universal model is equal to the accumulated
Kullback-Leibler (KL) risk of the Bayesian predictive estimator [36]. Thus, the
accumulated KL risk of the Bayesian predictive estimator is 1

2
ln n + O(1) even

under misspecification. Thus, if our conjecture above holds true, then in-model
estimators behave in a fundamentally different way from out-model estimators in
terms of their asymptotic risk.

Example 8. The well-known Laplace and Krichevsky-Trofimov estimators for
the Bernoulli model [38] define PML distributions according to Definition 3.2.2:
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they correspond to x0 = 1/2, n0 = 2, and x0 = 1/2, n0 = 1 respectively. Yet,
they also correspond to Bayesian predictive distributions with uniform prior or
Jeffreys’ prior respectively. This implies that the code length achieved by the
Bayesian universal model with Jeffreys’ prior and the PML distribution with
x0 = 1/2, n0 = 1 must coincide. We claimed before that the expected regret for a
Bayesian universal model is 1

2
log n + O(1) if data are i.i.d. ∼ P ∗, for essentially

all distributions P ∗. This may seem to contradict our result which says that the
expected regret of the PML distribution can be 0.5c log n + O(1) with c 6= 1 if
P ∗ 6∈ M. But there really is no contradiction: since the Bernoulli model happens
to contain all distributions P ∗ on {0, 1}, we cannot have P ∗ 6∈ M so Theorem 1
indeed says that c = 1 no matter what P ∗ we choose. But with more complicated
models such as the Poisson or Hardy-Weinberg model, it is quite possible that
P ∗ 6∈ M. Then the Bayesian predictive distribution will not coincide with any
PML distribution and we can have c 6= 1.

3.4.3 Practical Significance for Model Selection

As mentioned in the introduction, there are many results showing that in various
contexts, if P ∗ ∈M, then the prequential ML code achieves optimal redundancy.
These results strongly suggest that it is a very good alternative for (or at least
approximation to) the NML or Bayesian codes in MDL model selection. Indeed,
quoting Rissanen [71]:

“If the encoder does not look ahead but instead computes the best
parameter values from the past string, only, using an algorithm which
the decoder knows, then no preamble is needed. The result is a pre-
dictive coding process, one which is quite different from the sum or
integral formula in the stochastic complexity.1 And it is only because
of a certain inherent singularity in the process, as well as the some-
what restrictive requirement that the data must be ordered, that we
do not consider the resulting predictive code length to provide another
competing definition for the stochastic complexity, but rather regard
it as an approximation.”

Our result however shows that the prequential ML code may behave quite differ-
ently from the NML and Bayes codes, thereby strengthening the conclusion that
it should not be taken as a definition of stochastic complexity. Although there is
only a significant difference if data are distributed according to some P ∗ 6∈ M,
the difference is nevertheless very relevant in an MDL model selection context
with disjoint models, even if one of the models under consideration does contain
the “true”P ∗. To see this, suppose we are comparing two modelsM1 andM2 for

1The stochastic complexity is the code length of the data z1, . . . , zn that can be achieved
using the NML code.
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the same data, and in fact, P ∗ ∈M1 ∪M2. For concreteness, assumeM1 is the
Poisson family andM2 is the geometric family. We want to decide which of these
two models best explains the data. According to the MDL Principle, we should
associate with each model a universal code (preferably the NML code). We should
then pick the model such that the corresponding universal code length of the data
is minimised. Now suppose we use the prequential ML code lengths rather than
the NML code lengths. Without loss of generality suppose that P ∗ ∈ M1. Then
P ∗ 6∈ M2. This means that the code length relative to M1 behaves essentially
like the NML code length, but the code length relative toM2 behaves differently
– at least as long as the variances do not match (which for example, is forcibly
the case if M1 is Poisson and M2 is geometric). This introduces a bias in the
model selection scheme. In the previous chapter we found experimentally that the
error rate for model selection based on the prequential ML code decreases more
slowly than when other universal codes are used. Even though in some cases the
redundancy grows more slowly than 1

2
ln n, so that the prequential ML code is

more efficient than the NML code, we explained that model selection based on
the prequential ML codes must nevertheless always behave worse than Bayesian
and NML-based model selection. The practical relevance of this phenomenon
stems from the fact that the prequential ML code lengths are often a lot easier
to compute than the Bayes or NML codes. They are often used in applications
[61, 52], so that is important to determine when this can be done safely.

3.4.4 Theoretical Significance

The result is also of theoretical-statistical interest: our theorem can be re-inter-
preted as establishing bounds on the asymptotic Kullback-Leibler risk of density
estimation using ML and Bayes estimators under misspecification (P ∗ 6∈ M). Our
result implies that, under misspecification, the KL risk of estimators such as ML,
which are required to lie in the model M, behaves in a fundamentally different
way from the KL risk of estimators such as the Bayes predictive distribution,
which are not restricted to lie in M. Namely, we can think of every universal
model U defined as a random process on infinite sequences as an estimator in the
following way: define, for all n,

P̆n := Pr
U

(Zn+1 = · | Z1 = z1, . . . , Zn = zn),

a function of the sample z1, . . . , zn. P̆n can be thought of as the “estimate of the
true data generating distribution upon observing z1, . . . , zn”. In case U is the
prequential ML model, P̆n = Pµ̂n is simply our modified ML estimator. However,

universal models other than PML, P̆n does not always lie inM. An example is the
Bayesian universal code defined relative to some prior w. This code has lengths
L′(zn) := − ln

∫
Pµ(zn)w(µ) dµ [38]. The corresponding estimator is the Bayesian

posterior predictive distribution PBayes(zi+1 | zi) :=
∫

Pµ(zi+1)w(µ | zi) dµ [38].
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The Bayesian predictive distribution is a mixture of elements of M. We will
call standard estimators like the ML estimator, which are required to lie in M,
in-model estimators. Estimators like the Bayesian predictive distribution will be
called out-model.

Let now P̆n be any estimator, in-model or out-model. Let P̆zn be the distribu-
tion estimated for a particular realized sample zn. We can measure the closeness
of P̆zn to Pµ∗ , the distribution inM closest to P ∗ in KL-divergence, by considering
the extended KL divergence

D∗(Pµ∗‖P̆zn) = EZ∼P ∗ [− ln P̆zn(Z)− [− ln Pµ∗(Z)]].

We can now consider the expected KL divergence between Pµ∗ and P̆n after ob-
serving a sample of length n:

EZ1,...,Zn∼P ∗ [D∗(Pµ∗‖P̆n)]. (3.16)

In analogy to the definition of “ordinary” KL risk [4], we call (3.16) the extended
KL risk. We recognise the redundancy of the PML distribution as the accu-
mulated expected KL risk of our modified ML estimator (see Proposition 3.5.7
and Lemma 3.5.6). In exactly the same way as for PML, the redundancy of the
Bayesian code can be re-interpreted as the accumulated KL risk of the Bayesian
predictive distribution. With this interpretation, our Theorem 3.2.3 expresses
that under misspecification, the cumulative KL risk of the ML estimator differs
from the cumulative KL risk of the Bayes estimator by a term of Θ(ln n). If our
conjecture that no in-model estimator can achieve redundancy 1

2
ln n+O(1) for all

µ∗ and all P ∗ with finite variance is true (Section 3.4.2), then it follows that the
KL risk for in-model estimators behaves in a fundamentally different way from
the KL risk for out-model estimators, and that out-model estimators are needed
to achieve the optimal constant c = 1 in the redundancy 1

2
c ln n + O(1).

3.5 Building Blocks of the Proof

The proof of Theorem 3.2.3 is based on Lemma 3.5.6 and Lemma 3.5.8. These
Lemmas are stated and proved in Sections 3.5.2 and 3.5.3, respectively. The proofs
of Theorem 3.2.3 and Theorem 3.3.1, as well as the proof of both Lemmas, are
based on a number of generally useful results about probabilities and expectations
of deviations between the average and the mean of a random variable. We first
list list these deviation-related results.

3.5.1 Results about Deviations between Average and Mean

Lemma 3.5.1. Let X,X1, X2, . . . be i.i.d. with mean 0. Then E
[(∑n

i=1 Xi

)2
]

=

nvar(X).
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Proof. The lemma is clearly true for n = 0. Suppose it is true for some n.
Abbreviate Sn :=

∑n
i=1 Xi. We have E [Sn] =

∑
EX = 0. Now we find

E
[
S2

n+1

]
= E

[

(Sn + X)2
]

= E
[
S2

n

]
+ 2E [Sn] EX + E[X2] = (n + 1)var(X).

The proof follows by induction.

Theorem 3.5.2. Let X,X1, . . . be i.i.d. random variables, define µ̂n := (n0 ·
x0 +

∑n
i=1 Xi)/(n + n0) and µ∗ = E[X]. If varX < ∞, then E

[
(µ̂n − µ∗)2

]
=

O
(
(n + 1)−2

)
+ var(X)/(n + 1).

Proof. We define Yi := Xi − µ∗; this can be seen as a new sequence of i.i.d.
random variables with mean 0 and varY = varX. We also set y0 := x0−µ∗. Now
we have:

E
[
(µ̂n − µ∗)2

]
= E








n0 · y0 +
n∑

i=1

Yi





2



 (n + n0)

−2

= E

[

(n0 · y0)
2 + 2n0 · y0

n∑

i=1

Yi +





n∑

i=1

Yi





2 ]

(n + n0)
−2

= O
(
(n + 1)−2

)
+ E










n∑

i=1

Yi





2



 (n + n0)

−2

(∗)
= O

(
(n + 1)−2

)
+ nvar(Y )(n + n0)

−2

= O
(
(n + 1)−2

)
+ var(X)/(n + 1),

where (∗) follows by Lemma 3.5.1.

The following theorem is of some independent interest.

Theorem 3.5.3. Suppose X,X1, X2, . . . are i.i.d. with mean 0. If the first k ∈ N

moments of X exist, then we have Then E
[(∑n

i=1 Xi

)k
]

= O
(

n⌊ k
2⌋
)

.

Remark It follows as a special case of Theorem 2 of [98] that E
[
|∑n

i=1 Xi|k
]

=

O(n
k
2 ) which almost proves this lemma and which would in fact be sufficient for

our purposes. We use this lemma instead which has an elementary proof.

Proof. We have:

E










n∑

i=1

Xi





k



 = E





n∑

i1=1

· · ·
n∑

ik=1

Xi1 · · ·Xik



 =
n∑

i1=1

· · ·
n∑

ik=1

E
[
Xi1 · · ·Xik

]
.
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We define the frequency sequence of a term to be the sequence of exponents of
the different random variables in the term, in decreasing order. For a frequency
sequence f1, . . . , fm, we have

∑m
i=1 fi = k. Furthermore, using independence of

the different random variables, we can rewrite E[Xi1 · · ·Xik ] =
∏m

i=1 E[Xfi ] so
the value of each term is determined by its frequency sequence. By computing
the number of terms that share a particular frequency sequence, we obtain:

E










n∑

i=1

Xi





k



 =

∑

f1+...+fm=k

(
n

m

)(
k

f1, . . . , fm

) m∏

i=1

E[Xfi ].

To determine the asymptotic behaviour, first observe that the frequency sequence
f1, . . . , fm of which the contribution grows fastest in n is the longest sequence,
since for that sequence the value of

(
n
m

)
is maximised as n→∞. However, since

the mean is zero, we can discard all sequences with an element 1, because the
for those sequences we have

∏m
i=1 E[Xfi ] = 0 so they contribute nothing to the

expectation. Under this constraint, we obtain the longest sequence for even k by
setting fi = 2 for all 1 ≤ i ≤ m; for odd k by setting f1 = 3 and fi = 2 for

all 2 ≤ i ≤ m; in both cases we have m =
⌊

k
2

⌋

. The number of terms grows

as
(

n
m

)
≤ nm/m! = O(nm); for m =

⌊
k
2

⌋

we obtain the upper bound O(n⌊ k
2⌋).

The number of frequency sequences is finite and does not depend on n; since the

contribution of each one is O
(

n⌊ k
2⌋
)

, so must be the sum.

Theorem 3.5.4. Let X,X1, . . . be i.i.d. random variables, define µ̂n := (n0 ·
x0 +

∑n
i=1 Xi)/(n + n0) and µ∗ = E[X]. If the first k moments of X exist, then

E[(µ̂n − µ∗)k] = O(n−⌈ k
2⌉).

Proof. The proof is similar to the proof for Theorem 3.5.2. We define Yi :=
Xi− µ∗; this can be seen as a new sequence of i.i.d. random variables with mean
0, and y0 := x0 − µ∗. Now we have:

E
[

(µ̂n − µ∗)k
]

= E








n0 · y0 +
n∑

i=1

Yi





k



 (n + n0)

−k

= O
(

n−k
) k∑

p=0

(
k

p

)

(n0 · y0)
pE










n∑

i=1

Yi





k−p





= O
(

n−k
) k∑

p=0

(
k

p

)

(n0 · y0)
p ·O

(

n⌊ k−p
2 ⌋
)

.

In the last step we used Theorem 3.5.3 to bound the expectation. We sum k + 1

terms of which the term for p = 0 grows fastest in n, so the expression is O(n−⌈ k
2⌉)

as required.
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Theorem 3.5.4 concerns the expectation of the deviation of µ̂n. We also need
a bound on the probability of large deviations. To do that we have the following
separate theorem:

Theorem 3.5.5. Let X,X1, . . . be i.i.d. random variables, define µ̂n := (n0 ·x0 +
∑n

i=1 Xi)/(n + n0) and µ∗ = E[X]. Let k ∈ {0, 2, 4, . . .}. If the first k moments

exists then P (|µ̂n − µ∗| ≥ δ) = O
(

n− k
2 δ−k

)

.

Proof.

P ∗(|µ̂n − µ∗| ≥ δ) = P ∗
(

(µ̂n − µ∗)k ≥ δk
)

≤ E
[

(µ̂n − µ∗)k
]

δ−k (by Markov’s inequality)

= O
(

n− k
2 δ−k

)

(by Theorem 3.5.4)

3.5.2 Lemma 3.5.6: Redundancy for Exponential Families

Lemma 3.5.6. Let U be a PML distribution model and M be an exponential
family as in Theorem 3.2.3. We have

R(P ∗, U,M, n) =
n−1∑

i=0

E
µ̂i∼P ∗

[
D(Pµ∗ ‖ Pµ̂i

)
]
.

(Here, the notation µ̂i ∼ P ∗ means that we take the expectation with respect to
P ∗ over data sequences of length i, of which µ̂i is a function.)

Proof. We have:

arg min
µ

EP ∗

[
− ln Pµ(Xn)

]
= arg min

µ
EP ∗

[

ln
Pµ∗(Xn)

Pµ(Xn)

]

= arg min
µ

D(Pµ∗ ‖ Pµ).

In the last step we used Proposition 3.5.7 below. The divergence is minimised
when µ = µ∗ [48], so we find that:

R(P ∗, U,M, n) = EP ∗ [− ln U(Xn)]− EP ∗ [− ln Pµ∗(Xn)] = EP ∗

[

ln
Pµ∗(Xn)

U(Xn)

]

= EP ∗





n−1∑

i=0

ln
Pµ∗(Xi)

Pµ̂i
(Xi)



 =
n−1∑

i=0

EP ∗

[

ln
Pµ∗(Xi)

Pµ̂i
(Xi)

]

=
n−1∑

i=0

E
µ̂i∼P

[
D(Pµ∗ ‖ Pµ̂i

)
]
.

(3.17)

Here, the last step again follows from Proposition 3.5.7.
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Proposition 3.5.7. Let X ∼ P ∗ with mean µ∗, and let Pµ index an exponential
family with sufficient statistic X, so that Pµ∗ exists. We have:

EP ∗

[

− ln
Pµ∗(X)

Pθ(X)

]

= D(Pµ∗ ‖ Pθ)

Proof. Let η(·) denote the function mapping parameters in the mean value pa-
rameterisation to the natural parameterisation. (It is the inverse of the function
µ(·) which was introduced in the discussion of exponential families.) By working
out both sides of the equation we find that they both reduce to:

η(µ∗)µ∗ + ln Z(η(µ∗))− η(θ)µ∗ − ln Z(η(θ)).

3.5.3 Lemma 3.5.8: Convergence of the sum of the re-
mainder terms

Lemma 3.5.8. Let R(n) be defined as in (3.10). Then

R(n) = O(1).

Proof. We omit irrelevant constants. We abbreviate dk

dµk D(Pµ∗‖Pµ) = D(k)(µ) as
in the proof of Theorem 3.2.3. First we consider the third order term. We write

Eδi∼P ∗ to indicate that we take the expectation over data which is distributed
according to P ∗, of which δi is a function. We use Theorem 3.5.4 to bound the
expectation of δi

3; under the condition that the first three moments exist, which
is assumed to be the case, we obtain:

n−1∑

i=0

E
δi∼P ∗

[

δi
3D(3)(µ∗)

]

= D(3)(µ∗)
n−1∑

i=0

E[δ3
i ] = D(3)(µ∗)

n−1∑

i=0

O((i + 1)−2) = O(1).

(The constants implicit in the big-ohs are the same across terms.)
The fourth order term is more involved, because D(4)(µ) is not necessarily

constant across terms. To compute it we first distinguish a number of regions in
the value space of δi: let ∆− = (−∞, 0) and let ∆0 = [0, a) for some constant
value a > 0. If the individual outcomes X are bounded on the right hand side
by a value g then we require that a < g and we define ∆1 = [a, g); otherwise we
define ∆j = [a + j − 1, a + j) for j ≥ 1. Now we must establish convergence of:

n−1∑

i=0

E
δi∼P ∗

[

δi
4D(4)(µ̈i)

]

=
n−1∑

i=0

∑

j

P ∗(δi ∈ ∆j) E
δi∼P ∗

[

δi
4D(4)(µ̈i) | δi ∈ ∆j

]

If we can establish that the sum converges for all regions ∆j for j ≥ 0, then we
can use a symmetrical argument to establish convergence for ∆− as well, so it
suffices if we restrict attention to j ≥ 0. First we show convergence for ∆0. In
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this case, the basic idea is that since the remainder D(4)(µ̈i) is well-defined over
the interval µ∗ ≤ µ < µ∗ + a, we can bound it by its extremum on that interval,

namely m := supµ∈[µ∗,µ∗+a)

∣
∣
∣D(4)(µ̈i)

∣
∣
∣. Now we get:

∣
∣
∣
∣
∣
∣

n−1∑

i=0

P ∗(δi ∈ ∆0)E
[

δi
4D(4)(µ̈i) | δi ∈ ∆0

]

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

n−1∑

i=0

1 · E
[

δi
4
∣
∣
∣D(4)(µ̈i)

∣
∣
∣

]
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

m
∑

i

E
[

δi
4
]

∣
∣
∣
∣
∣
∣

. (3.18)

Using Theorem 3.5.4 we find that E[δi
4] is O((i + 1)−2) of which the sum con-

verges. Theorem 3.5.4 requires that the first four moments of P ∗ exist, but this is
guaranteed to be the case: either the outcomes are bounded from both sides, in
which case all moments necessarily exist, or the existence of the required moments
is part of the condition on the main theorem.

Now we have to distinguish between the unbounded and bounded cases. First
we assume that the X are unbounded from above. In this case, we must show
convergence of:

n−1∑

i=0

∞∑

j=1

P ∗(δi ∈ ∆j)E
[

δi
4D(4)(µ̈i) | δi ∈ ∆j

]

.

To show convergence, we bound the absolute value of this expression from above.
The δi in the expectation is at most a + j. Furthermore D(4)(µ̈i) = O(µk−6) by
assumption on the main theorem, where µ ∈ [a + j − 1, a + j). Depending on
k, both boundaries could maximise this function, but it is easy to check that in
both cases the resulting function is O(jk−6). So we get:

∣
∣
∣ . . .

∣
∣
∣ ≤

n−1∑

i=0

∞∑

j=1

P ∗(|δi| ≥ a + j − 1)(a + j)4O(jk−6).

Since we know from the condition on the main theorem that the first k ≥ 4
moments exist, we can apply Theorem 3.5.5 to find that P (|δi| ≥ a + j − 1) =

O(i−⌈ k
2⌉(a + j − 1)−k) = O(i−

k
2 )O(j−k) (since k has to be even); plugging this

into the equation and simplifying we obtain
∑

i O(i−
k
2 )
∑

j O(j−2). For k ≥ 4 this
expression converges.

Now we consider the case where the outcomes are bounded from above by g.
This case is more complicated, since now we have made no extra assumptions as to
existence of the moments of P ∗. Of course, if the outcomes are bounded from both
sides, then all moments necessarily exist, but if the outcomes are unbounded from
below this may not be true. We use a trick to remedy this: we map all outcomes
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into a new domain in such a way that all moments of the transformed variables
are guaranteed to exist. Any constant x− defines a mapping g(x) := max{x−, x}.
Furthermore we define the random variables Yi := g(Xi), the initial outcome
y0 := g(x0) and the mapped analogues of µ∗ and µ̂i, respectively: µ† is defined as
the mean of Y under P and µ̃i := (y0 · n0 +

∑i
j=1 Yj)/(i + n0). Since µ̃i ≥ µ̂i, we

can bound:

∣
∣
∣
∣
∣
∣

∑

i

P (δi ∈ ∆1)E
[

δi
4D(4)(µ̈i) | δi ∈ ∆1

]

∣
∣
∣
∣
∣
∣

≤
∑

i

P (µ̂i − µ∗ ≥ a) sup
δi∈∆1

∣
∣
∣δi

4D(4)(µ̈i)
∣
∣
∣

≤
∑

i

P (|µ̃i − µ†| ≥ a + µ∗ − µ†)g4 sup
δi∈∆1

∣
∣
∣D(4)(µ̈i)

∣
∣
∣ .

By choosing x− small enough, we can bring µ† and µ∗ arbitrarily close together;
in particular we can choose x− such that a + µ∗ − µ† > 0 so that application of
Theorem 3.5.5 is safe. It reveals that the summed probability is O(i−

k
2 ). Now we

bound D(4)(µ̈i) which is O((g − µ)−m) for some m ∈ N by the condition on the
main theorem. Here we use that µ̈i ≤ µ̂i; the latter is maximised if all outcomes
equal the bound g, in which case the estimator equals g − n0(g − x0)/(i + n0) =

g − O(i−1). Putting all of this together, we get sup
∣
∣
∣D(4)(µ̈i)

∣
∣
∣ = O((g − µ)−m) =

O(im); if we plug this into the equation we obtain:

. . . ≤
∑

i

O(i−
k
2 )g4O(im) = g4

∑

i

O(im− k
2 )

This converges if we choose k ≥ m/2. As the construction of the mapping g(·)
ensures that all moments exist, the first m/2 moments certainly must exist. This
completes the proof.

3.6 Proof of Theorem 3.3.1

We use the same conventions as in the proof of Theorem 3.2.3. Specifically, we
concentrate on the random variables X1, X2, . . . rather than Z1, Z2, . . ., which
is justified by Equation (3.7). Let f(xn) = − ln Pµ∗(xn) − [infµ∈Θµ − ln Pµ(xn)].
Within this section, µ̂(xn) is defined as the ordinary ML estimator. Note that,
if xn is such that its ML estimate is defined, then f(xn) = − ln Pµ∗(xn) +
ln Pµ̂(xn)(x

n).

Note d(n) = EP ∗ [f(Xn)]. Let h(x) be the carrier of the exponential family
under consideration (see Definition 3.2.1). Without loss of generality, we assume
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h(x) > 0 for all x in the finite set X . Let a2
n = n−1/2. We can write

d(n) = EP ∗ [f(Xn)] = πn EP ∗ [f(Xn) | (µ∗ − µ̂n)2 ≥ a2
n]

+ (1− πn) EP ∗ [f(Xn) | (µ∗ − µ̂n)2 < a2
n], (3.19)

where πn = P ∗((µ∗ − µ̂n)2 ≥ a2
n). We determine d(n) by bounding the two

terms on the right of (3.19). We start with the first term. Since X is bounded,
all moments of X exists under P ∗, so we can bound πn using Theorem 3.5.5
with k = 8 and δ = an = n−1/4. (Note that the theorem in turn makes use of
Theorem 3.5.4 which remains valid when we use n0 = 0.) This gives

πn = O(n−2). (3.20)

Note that for all xn ∈ X n, we have

0 ≤ f(xn) ≤ sup
xn∈Xn

f(xn) ≤ sup
xn∈Xn

− ln Pµ∗(xn) ≤ nC, (3.21)

where C is some constant. Here the first inequality follows because µ̂ maximises
ln Pµ̂(xn)(x

n) over µ; the second is immediate; the third follows because we are
dealing with discrete data, so that Pµ̂ is a probability mass function, and Pµ̂(xn)
must be ≤ 1. The final inequality follows because µ∗ is in the interior of the pa-
rameter space, so that the natural parameter η(µ∗) is in the interior of the natural
parameter space. Because X is bounded and we assumed h(x) > 0 for all x ∈ X ,
it follows by the definition of exponential families that supx∈X − ln Pµ∗(x) <∞.

Together (3.20) and (3.21) show that the expression on the first line of (3.19)
converges to 0, so that (3.19) reduces to

d(n) = (1− πn)EP ∗ [f(Xn) | (µ∗ − µ̂n)2 < a2
n] + O(n−1). (3.22)

To evaluate the term inside the expectation further we first Taylor approximate
f(xn) around µ̂n = µ̂(xn), for given xn with (µ∗ − µ̂n)2 < a2

n = 1/
√

n. We get

f(xn) = −(µ∗ − µ̂n)
d

dµ
ln Pµ̂n(xn) + n

1

2
(µ∗ − µ̂n)2I(µn), (3.23)

where I is the Fisher information (as defined in the proof of the main theorem)
and µn lies in between µ∗ and µ̂, and depends on the data xn. Since the first
derivative of µ at the ML estimate µ̂ is 0, the first-order term is 0. Therefore
f(xn) = 1

2
n(µ∗ − µ̂n)2I(µn), so that

1

2
ng(n) inf

µ∈[µ∗−an,µ∗+an]
I(µ) ≤ EP ∗ [f(Xn) | (µ∗ − µ̂n)2 < a2

n] ≤ 1

2
ng(n) sup

µ∈[µ∗−an,µ∗+an]

I(µ),

where we abbreviated g(n) := EP ∗ [(µ∗ − µ̂n)2 | (µ∗ − µ̂n)2 < a2
n]. Since I(µ)

is smooth and positive, we can Taylor-approximate it as I(µ∗) + O(n− 1
4 ), so we

obtain the bound:

EP ∗ [f(Xn) | (µ∗ − µ̂n)2 < a2
n] = ng(n)

(
1

2
I(µ∗) + O(n− 1

4 )

)

. (3.24)
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To evaluate g(n), note that we have

EP ∗ [(µ∗ − µ̂n)2] = πnEP ∗ [(µ∗ − µ̂n)2 | (µ∗ − µ̂n)2 ≥ a2
n] + (1− πn)g(n). (3.25)

Using Theorem 3.5.2 with n0 = 0 we rewrite the expectation on the left hand side
as varP ∗X/n. Subsequently reordering terms we obtain:

g(n) =
(varP ∗X)/n− πnEP ∗ [(µ∗ − µ̂n)2 | (µ∗ − µ̂n)2 ≥ a2

n]

1− πn

. (3.26)

Plugging this into bound (3.24), and multiplying both sides by 1− πn, we get:

(1− πn)EP ∗ [f(Xn) | (µ∗ − µ̂n)2 < a2
n] =

(
varP ∗X − nπnEP ∗ [(µ∗ − µ̂n)2 | (µ∗ − µ̂n)2 ≥ a2

n]
)
(

1

2
I(µ∗) + O(n− 1

4 )

)

.

Since X is bounded, the expectation on the right must lie between 0 and some
constant C. Using πn = O(n−2) and the fact that I(µ∗) = 1/varPµ∗X, we get

(1− πn)EP ∗ [f(Xn) | (µ∗ − µ̂n)2 < a2
n] =

1

2

varP ∗X

varPµ∗X
+ O(n− 1

4 ).

The result follows if we combine this with (3.22).

3.7 Conclusion and Future Work

In this paper we established two theorems about the relative redundancy, defined
in Section 3.1:

1. A particular type of universal code, the prequential ML code or ML plug-in
code, exhibits behaviour that we found unexpected. While other important
universal codes such as the NML/Shtarkov and Bayesian codes, achieve a
regret of 1

2
ln n, where n is the sample size, the prequential ML code achieves

a relative redundancy of 1
2

varP∗X
varPµ∗ X

ln n. (Sections 3.1 and 3.2.)

2. At least for finite sample spaces, the relative redundancy is very close to
the expected regret, the difference going to 1

2
varP∗X
varPµ∗ X

as the sample size in-

creases (Section 3.3, Theorem 3.3.1). In future work, we hope to extend this
theorem to general 1-parameter exponential families with arbitrary sample
spaces.

There is a substantial amount of literature in which the regret for the prequen-
tial ML code is proven to grow with 1

2
ln n. While this may seem to contradict

our results, in fact it does not: In those articles, settings are considered where
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P ∗ ∈ M, and under such circumstances our own findings predict precisely that
behaviour.

The first result is robust with respect to slight variations in the definition of
the prequential ML code: in our framework the so-called “start-up problem” (the
unavailability of an ML estimate for the first few outcomes) is resolved by intro-
ducing fake initial outcomes. Our framework thus also covers prequential codes
that use other point estimators such as the Bayesian MAP and mean estimators
defined relative to a large class of reasonable priors. In Section 3.4.2 we conjecture
that no matter what in-model estimator is used, the prequential model cannot
yield a relative redundancy of 1

2
ln n independently of the variance of the data

generating distribution.



Chapter 4

Interlude: Prediction with Expert
Advice

We cannot predict exactly how complicated processes such as the weather, the
stock market, social interactions and so on, will develop into the future. Nev-
ertheless, people do make weather forecasts and buy shares all the time. Such
predictions can be based on formal models, or on human expertise or intuition.
An investment company may even want to choose between portfolios on the basis
of a combination of these kinds of predictors. In such scenarios, predictors typi-
cally cannot be considered “true”. Thus, we may well end up in a position where
we have a whole collection of prediction strategies, or experts, each of whom has
some insight into some aspects of the process of interest. We address the question
how a given set of experts can be combined into a single predictive strategy that
is as good as, or if possible even better than, the best individual expert.

The setup is as follows. Let Ξ be a finite set of experts. Each expert ξ ∈ Ξ
issues a distribution Pξ(xn+1|xn) on the next outcome xn+1 given the previous
observations xn := x1, . . . , xn. Here, each outcome xi is an element of some
countable space X , and random variables are written in bold face. The probability
that an expert assigns to a sequence of outcomes is given by the chain rule:
Pξ(x

n) = Pξ(x1) · Pξ(x2|x1) · . . . · Pξ(xn|xn−1).
A standard Bayesian approach to combine the expert predictions is to de-

fine a prior w on the experts Ξ which induces a joint distribution with mass
function P (xn, ξ) = w(ξ)Pξ(x

n). Inference is then based on this joint distribu-
tion. We can compute, for example: (a) the marginal probability of the data
P (xn) =

∑

ξ∈Ξ w(ξ)Pξ(x
n), (b) the predictive distribution on the next outcome

P (xn+1|xn) = P (xn,xn+1)/P (xn), which defines a prediction strategy that com-
bines those of the individual experts, or (c) the posterior distribution on the ex-
perts P (ξ|xn) = Pξ(xn)w(ξ)/P (xn), which tells us how the experts’ predictions

should be weighted. This simple probabilistic approach has the advantage that
it is computationally easy: predicting n outcomes using |Ξ| experts requires only
O(n · |Ξ|) time. Additionally, this Bayesian strategy guarantees that the overall
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probability of the data is only a factor w(ξ̂) smaller than the probability of the
data according to the best available expert ξ̂. On the flip side, with this strategy
we never do any better than ξ̂ either: we have Pξ̂(x

n) ≥ P (xn) ≥ Pξ̂(x
n)w(ξ̂),

which means that potentially valuable insights from the other experts are not
used to our advantage!

More sophisticated combinations of prediction strategies can be found in the
literature under various headings, including (Bayesian) statistics, source coding
and universal prediction. In the latter the experts’ predictions are not necessar-
ily probabilistic, and scored using an arbitrary loss function. Here we consider
only logarithmic loss, although our results can undoubtedly be generalised to the
framework described in, e.g. [95].

The three main contributions of this paper are the following. First, we intro-
duce prior distributions on sequences of experts, which allows unified description
of many existing models. Second, we show how HMMs can be used as an intuitive
graphical language to describe such priors and obtain computationally efficient
prediction strategies. Third, we use this new approach to describe and analyse
several important existing models, as well as one recent and one completely new
model for expert tracking.

Overview

In Section 4.1 we develop a new, more general framework for combining expert
predictions, where we consider the possibility that the optimal weights used to mix
the expert predictions may vary over time, i.e. as the sample size increases. We
stick to Bayesian methodology, but we define the prior distribution as a probabil-
ity measure on sequences of experts rather than on experts. The prior probability
of a sequence ξ1, ξ2, . . . is the probability that we rely on expert ξ1’s prediction
of the first outcome and expert ξ2’s prediction of the second outcome, etc. This
allows for the expression of more sophisticated models for the combination of
expert predictions. For example, the nature of the data generating process may
evolve over time; consequently different experts may be better during different
periods of time. It is also possible that not the data generating process, but
the experts themselves change as more and more outcomes are being observed:
they may learn from past mistakes, possibly at different rates, or they may have
occasional bad days, etc. In both situations we may hope to benefit from more
sophisticated modelling.

Of course, not all models for combining expert predictions are computation-
ally feasible. Section 4.2 describes a methodology for the specification of models
that allow efficient evaluation. We achieve this by using hidden Markov models
(HMMs) on two levels. On the first level, we use an HMM as a formal speci-
fication of a distribution on sequences of experts as defined in Section 4.1. We
introduce a graphical language to conveniently represent its structure. These
graphs help to understand and compare existing models and to design new ones.
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We then modify this first HMM to construct a second HMM that specifies the
distribution on sequences of outcomes. Subsequently, we can use the standard
dynamic programming algorithms for HMMs (forward, backward and Viterbi) on
both levels to efficiently calculate most relevant quantities, most importantly the
marginal probability of the observed outcomes P (xn) and posterior weights on
the next expert given the previous observations P (ξn+1|xn).

It turns out that many existing models for prediction with expert advice can
be specified as HMMs. We provide an overview in Section 4.3 by giving the
graphical representations of the HMMs corresponding to the following models.
First, universal elementwise mixtures (sometimes called mixture models) that
learn the optimal mixture parameter from data. Second, Herbster and Warmuth’s
fixed share algorithm for tracking the best expert [45, 46]. Third, universal share,
which was introduced by Volf and Willems as the “switching method” [94] and
later independently proposed by Bousquet [15]. Here the goal is to learn the
optimal fixed-share parameter from data. The last considered model safeguards
against overconfident experts, a case first considered by Vovk in [95]. We render
each model as a prior on sequences of experts by giving its HMM. The size of
the HMM immediately determines the required running time for the forward
algorithm. The generalisation relationships between these models as well as their
running times are displayed in Figure 4.1. In each case this running time coincides
with that of the best known algorithm. We also give a loss bound for each model,
relating the loss of the model to the loss of the best competitor among a set of
alternatives in the worst case. Such loss bounds can help select between different
models for specific prediction tasks.

Besides the models found in the literature, Figure 4.1 also includes two new
generalisations of fixed share: the switch distribution and the run-length model.
These models are the subject of Section 4.4. In Chapter 5 the switch distribution
is used to improve Bayes/Minimum Description Length prediction to achieve
the optimal rate of convergence in nonparametric settings. Here we give the
concrete HMM that allows for its linear time computation, and we prove that it
matches its parametric definition. The run-length model is based on a distribution
on the number of successive outcomes that are typically well-predicted by the
same expert. Run-length codes are typically applied directly to the data, but in
our novel application they define the prior on expert sequences instead. Again,
we provide the graphical representation of their defining HMMs as well as loss
bounds.

Then in Section 4.5 we discuss a number of extensions of the above approach,
such as approximation methods to speed up calculations for large HMMs.
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Figure 4.1 Expert sequence priors: generalisation relationships and run time
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4.1 Expert Sequence Priors

In this section we explain how expert tracking can be described in probability
theory using expert sequence priors (ES-priors). These ES-priors are distributions
on the space of infinite sequences of experts that are used to express regularities in
the development of the relative quality of the experts’ predictions. As illustrations
we render Bayesian mixtures and elementwise mixtures as ES-priors. In the next
section we show how ES-priors can be implemented efficiently by hidden Markov
models.

Notation For n ∈ N, we abbreviate {1, 2, . . . , n} by [n], with the understanding
that [0] = ∅. We also define [∞] = Z

+. For any natural number n, we let
the variable qn range over the n-fold Cartesian product Qn, and we write qn =
〈q1, . . . , qn〉. We also let q∞ range over Q∞ — the set of infinite sequences over
Q — and write q∞ = 〈q1, . . .〉. We read the statement qλ ∈ Q≤∞ to first bind
λ ≤ ∞ and subsequently qλ ∈ Qλ. If qλ is a sequence, and κ ≤ λ, then we denote
by qκ the prefix of qλ of length κ.

Forecasting Systems Let X be a countable outcome space. We use the nota-
tion X ∗ for the set of all finite sequences over X and let △(X ) denote the set of
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all probability mass functions on X . A (prequential) X -forecasting system (PFS)
is a function P : X ∗ → △(X ) that maps sequences of previous observations to
a predictive distribution on the next outcome. Prequential forecasting systems
were introduced by Dawid in [27].

Distributions We also require probability measures on spaces of infinite se-
quences. In such a space, a basic event is the set of all continuations of a given
prefix. We identify such events with their prefix. Thus a distribution on X∞

is defined by a function P : X ∗ → [0, 1] that satisfies P (ǫ) = 1, where ǫ is the
empty sequence, and for all n ≥ 0, all xn ∈ X n we have

∑

x∈X P (x1, . . . , xn, x) =
P (xn). We identify P with the distribution it defines. We write P (xn|xm) for
P (xn)/P (xm) if 0 ≤ m ≤ n.

Note that forecasting systems continue to make predictions even after they
have assigned probability 0 to a previous outcome, while distributions’ predictions
become undefined. Nonetheless we use the same notation: we write P (xn+1|xn)
for the probability that a forecasting system P assigns to the n + 1st outcome
given the first n outcomes, as if P were a distribution.

ES-Priors The slogan of this chapter is, we do not understand the data. Instead
of modelling the data, we work with experts. We assume that there is a fixed set
of experts Ξ, and that each expert ξ ∈ Ξ predicts using a forecasting system Pξ.

We are interested in switching between different forecasting systems at differ-
ent sample sizes. For a sequence of experts with prefix ξn, the combined forecast,
where expert ξi predicts the ith outcome, is denoted

Pξn(xn) :=
n∏

i=1

Pξi
(xi|xi−1).

Adopting Bayesian methodology, we impose a prior π on infinite sequences of
experts; this prior is called an expert sequence prior (ES-prior). Inference is then
based on the distribution on the joint space (X × Ξ)∞, called the ES-joint, which
is defined as follows:

P
(

〈ξ1, x1〉 , . . . , 〈ξn, xn〉
)

:= π(ξn)Pξn(xn). (4.1)

We adopt shorthand notation for events: when we write P (S), where S is a
subsequence of ξn and/or of xn, this means the probability under P of the set of
sequences of pairs which match S exactly. For example, the marginal probability
of a sequence of outcomes is:

P (xn) =
∑

ξn∈Ξn

P (ξn, xn) =
∑

ξn

P
(

〈ξ1, x1〉 , . . . , 〈ξn, xn〉
)

. (4.2)
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Compare this to the usual Bayesian statistics, where a model
{
Pθ | θ ∈ Θ

}
is

also endowed with a prior distribution w on Θ. Then, after observing outcomes
xn, inference is based on the posterior P (θ|xn) on the parameter, which is never
actually observed. Our approach is exactly the same, but we always consider
Θ = Ξ∞. Thus as usual our predictions are based on the posterior P (ξ∞|xn).
However, since the predictive distribution of xn+1 only depends on ξn+1 (and xn)
we always marginalise as follows:

P (ξn+1|xn) =
P (ξn+1, x

n)

P (xn)
=

∑

ξn P (ξn, xn) · π(ξn+1|ξn)
∑

ξn P (ξn, xn)
. (4.3)

At each moment in time we predict the data using the posterior, which is a mixture
over our experts’ predictions. Ideally, the ES-prior π should be chosen such that
the posterior coincides with the optimal mixture weights of the experts at each
sample size. The traditional interpretation of our ES-prior as a representation
of belief about an unknown “true” expert sequence is tenuous, as normally the
experts do not generate the data, they only predict it. Moreover, by mixing over
different expert sequences, it is often possible to predict significantly better than
by using any single sequence of experts, a feature that is crucial to the performance
of many of the models that will be described below and in Section 4.3. In the
remainder of this chapter we motivate ES-priors by giving performance guarantees
in the form of bounds on running time and loss.

4.1.1 Examples

We now show how two ubiquitous models can be rendered as ES-priors.

Example 9 (Bayesian Mixtures). Let Ξ be a set of experts, and let Pξ be a
PFS for each ξ ∈ Ξ. Suppose that we do not know which expert will make
the best predictions. Following the usual Bayesian methodology, we combine
their predictions by conceiving a prior w on Ξ, which (depending on the adhered
philosophy) may or may not be interpreted as an expression of one’s beliefs in
this respect. Then the standard Bayesian mixture Pbayes is given by

Pbayes(x
n) =

∑

ξ∈Ξ

Pξ(x
n)w(ξ), where Pξ(x

n) =
n∏

i=1

Pξ(xi|xi). (4.4)

The Bayesian mixture is not an ES-joint, but it can easily be transformed into one
by using the ES-prior that assigns probability w(ξ) to the identically-ξ sequence
for each ξ ∈ Ξ:

πbayes(ξ
n) =

{

w(k) if ξi = k for all i = 1, . . . , n,

0 o.w.

We will use the adjective “Bayesian” generously throughout this paper, but when
we write the standard Bayesian ES-prior this always refers to πbayes. ♦
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Example 10 (Elementwise Mixtures). The elementwise mixture1 is formed from
some mixture weights α ∈ △(Ξ) by

Pmix,α(xn) :=
n∏

i=1

Pα(xi|xi−1), where Pα(xi|xi−1) =
∑

ξ∈Ξ

Pξ(xi|xi−1)α(ξ).

In the preceding definition, it may seem that elementwise mixtures do not fit in
the framework of ES-priors. But we can rewrite this definition in the required
form as follows:

Pmix,α(xn) =
n∏

i=1

∑

ξ∈Ξ

Pξ(xi|xi−1)α(ξ) =
∑

ξn∈Ξn

n∏

i=1

Pξi
(xi|xi−1)α(ξi)

=
∑

ξn

Pξn(xn)πmix,α(ξn),

(4.5a)

which is the ES-joint based on the prior

πmix,α(ξn) :=
n∏

i=1

α(ξi). (4.5b)

Thus, the ES-prior for elementwise mixtures is just the multinomial distribution
with mixture weights α. ♦

We mentioned above that ES-priors cannot be interpreted as expressions of belief
about individual expert sequences; this is a prime example where the ES-prior is
crafted such that its posterior πmix,α(ξn+1|ξn) exactly coincides with the desired
mixture of experts.

4.2 Expert Tracking using HMMs

We explained in the previous section how expert tracking can be implemented
using expert sequence priors. In this section we specify ES-priors using hidden
Markov models (HMMs). The advantage of using HMMs is that the complexity of
the resulting expert tracking procedure can be read off directly from the structure
of the HMM. We first give a short overview of the particular kind of HMMs
that we use throughout this chapter. We then show how HMMs can be used to
specify ES-priors. As illustrations we render the ES-priors that we obtained for
Bayesian mixtures and elementwise mixtures in the previous sections as HMMs.
We conclude by giving the forward algorithm for our particular kind of HMMs.
In Section 4.3 we provide an overview of ES-priors and their defining HMMs that
are found in the literature.

1These mixtures are sometimes just called mixtures, or predictive mixtures. We use the
term elementwise mixtures both for descriptive clarity and to avoid confusion with Bayesian
mixtures.
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4.2.1 Hidden Markov Models Overview

Hidden Markov models (HMMs) are a well-known tool for specifying probability
distributions on sequences with temporal structure. Furthermore, these distri-
butions are very appealing algorithmically: many important probabilities can be
computed efficiently for HMMs. These properties make HMMs ideal models of
expert sequences: ES-priors. For an introduction to HMMs, see [66]. We require
a slightly more general notion that incorporates silent states and forecasting sys-
tems as explained below.

We define our HMMs on a generic set of outcomesO to avoid confusion in later
sections, where we use HMMs in two different contexts. First in Section 4.2.2, we
use HMMs to define ES-priors, and instantiate O with the set of experts Ξ. Then
in Section 4.2.4 we modify the HMM that defines the ES-prior to incorporate
the experts’ predictions, whereupon O is instantiated with the set of observable
outcomes X .

Definition 4.2.1. Let O be a finite set of outcomes. We call a quintuple

A =
〈

Q,Qp, P◦, P,
〈
Pq

〉

q∈Qp

〉

a hidden Markov model on O if Q is a countable set, Qp ⊆ Q, P◦ ∈ △(Q),
P : Q→△(Q) and Pq is an O-forecasting system for each q ∈ Qp.

Terminology and Notation We call the elements of Q states. We call the
states in Qp productive and the other states silent. We call P◦ the initial distri-
bution, let I denote its support (i.e. I :=

{
q ∈ Q | P◦(q) > 0

}
) and call I the set

of initial states. We call P the stochastic transition function. We let Sq denote
the support of P(q), and call each q′ ∈ Sq a direct successor of q. We abbreviate
P(q)(q′) to P(q → q′). A finite or infinite sequence of states qλ ∈ Q≤∞ is called
a branch through A. A branch qλ is called a run if either λ = 0 (so qλ = ǫ),
or q1 ∈ I and qi+1 ∈ Sqi

for all 1 ≤ i < λ. A finite run qn 6= ǫ is called a run
to qn. For each branch qλ, we denote by qλ

p its subsequence of productive states.
We denote the elements of qλ

p by qp

1, qp

2 etc. We call an HMM continuous if q∞p is
infinite for each infinite run q∞.

Restriction In this chapter we only work with continuous HMMs. This restric-
tion is necessary for the following to be well-defined.

Definition 4.2.2. An HMM A defines the following distribution on sequences of
states. πA(ǫ) := 1, and for λ ≥ 1

πA(qλ) := P◦(q1)
λ−1∏

i=1

P(qi → qi+1).
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Then via the PFSs, A induces the joint distribution PA on runs and sequences of
outcomes. Let on ∈ On be a sequence of outcomes and let qλ 6= ǫ be a run with
at least n productive states, then

PA(on, qλ) := πA(qλ)
n∏

i=1

Pqp
i
(oi|oi−1).

The value of PA at arguments on, qλ that do not fulfil the condition above is
determined by the additivity axiom of probability.

Generative Perspective The corresponding generative viewpoint is the fol-
lowing. Begin by sampling an initial state q1 from the initial distribution P◦. Then
iteratively sample a direct successor qi+1 from P(qi). Whenever a productive state
qi is sampled, say the nth, also sample an outcome on from the forecasting system
Pqi

given all previously sampled outcomes on−1.

The Importance of Silent States Silent states can always be eliminated. Let
q′ be a silent state and let Rq′ :=

{
q | q′ ∈ Sq

}
be the set of states that have q′

as their direct successor. Now by connecting each state q ∈ Rq′ to each state
q′′ ∈ Sq′ with transition probability P(q → q′) P(q′ → q′′) and removing q′ we
preserve the induced distribution on Q∞. Now if

∣
∣Rq′

∣
∣ = 1 or

∣
∣Sq′
∣
∣ = 1 then

q′ deserves this treatment. Otherwise, the number of successors has increased,
since

∣
∣Rq′

∣
∣ ·
∣
∣Sq′
∣
∣ ≥

∣
∣Rq′

∣
∣ +
∣
∣Sq′
∣
∣, and the increase is quadratic in the worst case.

Thus, silent states are important to keep our HMMs small: they can be viewed
as shared common subexpressions. It is important to keep HMMs small, since
the size of an HMM is directly related to the running time of standard algorithms
that operate on it. These algorithms are described in the next section.

Algorithms

There are three classical tasks associated with hidden Markov models [66]. To
give the complexity of algorithms for these tasks we need to specify the input size.
Here we consider the case where Q is finite. The infinite case will be covered in
Section 4.2.5. Let m := |Q| be the number of states and e :=

∑

q∈Q

∣
∣Sq

∣
∣ be the

number of transitions with nonzero probability. The three tasks are:

1. Computing the marginal probability P (on) of the data on. This task is per-
formed by the forward algorithm. This is a dynamic programming algorithm
with time complexity O(ne) and space requirement O(m).

2. MAP estimation: computing a sequence of states qλ with maximal posterior
weight P (qλ|on). Note that λ ≥ n. This task is solved using the Viterbi
algorithm, again a dynamic programming algorithm with time complexity
O(λe) and space complexity O(λm).
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3. Parameter estimation. Instead of a single probabilistic transition function P,
one often considers a collection of transition functions

〈
Pθ | θ ∈ Θ

〉
indexed

by a set of parameters Θ. In this case one often wants to find the parameter θ
for which the HMM using transition function Pθ achieves highest likelihood
P (on|θ) of the data on.

This task is solved using the Baum-Welch algorithm. This is an iterative
improvement algorithm (in fact an instance of Expectation Maximisation
(EM)) built atop the forward algorithm (and a related dynamic program-
ming algorithm called the backward algorithm).

Since we apply HMMs to sequential prediction, we are mainly concerned with
Task 1 and occasionally with Task 2. Task 3 is outside the scope of this study.

We note that the forward and backward algorithms actually compute more
information than just the marginal probability P (on). They compute P (qp

i , o
i)

(forward) and P (on|qp

i , o
i) (backward) for each i = 1, . . . , n. The forward algo-

rithm can be computed incrementally, and can thus be used for on-line prediction.
Forward-backward can be used together to compute P (qp

i |on) for i = 1, . . . , n, a
useful tool in data analysis.

Finally, we note that these algorithms are defined e.g. in [66] for HMMs with-
out silent states and with simple distributions on outcomes instead of forecasting
systems. All these algorithms can be adapted straightforwardly to our general
case. We formulate the forward algorithm for general HMMs in Section 4.2.5 as
an example.

4.2.2 HMMs as ES-Priors

In applications HMMs are often used to model data. This is a good idea when-
ever there are local temporal correlations between outcomes. A graphical model
depicting this approach is displayed in Figure 4.2(a).

Here we take a different approach; we use HMMs as ES-priors, that is, to spec-
ify temporal correlations between the performance of our experts. Thus instead
of concrete observations our HMMs will produce sequences of experts, that are
never actually observed. Figure 4.2(b). illustrates this approach.

Using HMMs as priors allows us to use the standard algorithms of Section 4.2.1
to answer questions about the prior. For example, we can use the forward algo-
rithm to compute the prior probability of the sequence of one hundred experts
that issues the first expert at all odd time-points and the second expert at all
even moments.

Of course, we are often interested in questions about the data rather than
about the prior. In Section 4.2.4 we show how joints based on HMM priors
(Figure 4.2(c)) can be transformed into ordinary HMMs (Figure 4.2(a)) with at
most a |Ξ|-fold increase in size, allowing us to use the standard algorithms of
Section 4.2.1 not only for the experts, but for the data as well, with the same
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Figure 4.2 HMMs. qp

i , ξi and xi are the ith productive state, expert and obser-
vation.

qp

1 qp

2 qp

2

x1 x2|x1 x3|x2···

(a) Standard use of HMM

qp

1 qp

2 qp

2

ξ1 ξ2 ξ3 ···

(b) HMM ES-prior

qp

1 qp

2 qp

2

ξ1 ξ2 ξ3 ···

x1 x2|x1 x3|x2···

(c) Application to data

increase in complexity. This is the best we can generally hope for, as we now
need to integrate over all possible expert sequences instead of considering only a
single one. Here we first consider properties of HMMs that represent ES-priors.

Restriction HMM priors “generate”, or define the distribution on, sequences
of experts. But contrary to the data, which are observed, no concrete sequence
of experts is realised. This means that we cannot condition the distribution on
experts in a productive state qp

n on the sequence of previously produced experts
ξn−1. In other words, we can only use an HMM on Ξ as an ES-prior if the
forecasting systems in its states are simply distributions, so that all dependencies
between consecutive experts are carried by the state. This is necessary to avoid
having to sum over all (exponentially many) possible expert sequences.

Deterministic Under the restriction above, but in the presence of silent states,
we can make any HMM deterministic in the sense that each forecasting system
assigns probability one to a single outcome. We just replace each productive state
q ∈ Qp by the following gadget:

q becomes

a

b

c

d

e

In the left diagram, the state q has distribution Pq on outcomes O = {a, . . . ,e}.
In the right diagram, the leftmost silent state has transition probability Pq(o) to
a state that deterministically outputs outcome o. We often make the functional
relationship explicit and call 〈Q,Qp, P◦, P, Λ〉 a deterministic HMM on O if Λ :
Qp → O. Here we slightly abuse notation; the last component of a (general)
HMM assigns a PFS to each productive state, while the last component of a
deterministic HMM assigns an outcome to each productive states.
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Figure 4.3 Combination of four experts using a standard Bayesian mixture.

a
〈a,1〉

a
〈a,2〉

a a

b
〈b,1〉

b
〈b,2〉

b b

c
〈c,1〉

c
〈c,2〉

c c

d
〈d,1〉

d
〈d,2〉

d d

Sequential prediction using a general HMM or its deterministic counterpart
costs the same amount of work: the |O|-fold increase in the number of states is
compensated by the |O|-fold reduction in the number of outcomes that need to
be considered per state.

Diagrams Deterministic HMMs can be graphically represented by pictures. In
general, we draw a node Nq for each state q. We draw a small black dot, e.g.
, for a silent state, and an ellipse labelled Λ(q), e.g. d , for a productive state.

We draw an arrow from Nq to Nq′ if q′ is a direct successor of q. We often reify
the initial distribution P◦ by including a virtual node, drawn as an open circle,
e.g. , with an outgoing arrow to Nq for each initial state q ∈ I. The transition
probability P (q → q′) is not displayed in the graph.

4.2.3 Examples

We are now ready to give the deterministic HMMs that correspond to the ES-
priors of our earlier examples from Section 4.1.1: Bayesian mixtures and elemen-
twise mixtures with fixed parameters.

Example 11 (HMM for Bayesian Mixtures). The Bayesian mixture ES-prior
πbayes as introduced in Example 9 represents the hypothesis that a single expert
predicts best for all sample sizes. A simple deterministic HMM that generates
the prior πbayes is given by Abayes = 〈Q,Qp, P, P◦, Ξ, Λ〉, where

Q = Qp = Ξ× Z
+ P

(
〈ξ, n〉 → 〈ξ, n + 1〉

)
= 1 (4.6a)

Λ(ξ, n) = ξ P◦ (ξ, 1) = w(ξ) (4.6b)

The diagram of (4.6) is displayed in Figure 4.3. From the picture of the HMM
it is clear that it computes the Bayesian mixture. Hence, using (4.4), the loss of
the HMM with prior w is bounded for all xn by

− log PAbayes
(xn) + log Pξ(x

n) ≤ − log w(ξ) for all experts ξ. (4.7)
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Figure 4.4 Combination of four experts using a fixed elementwise mixture

a
〈a,1〉

a
〈a,2〉

a a

b
〈b,1〉

b
〈b,2〉

b b〈p,0〉 〈p,1〉 〈p,2〉 〈p,3〉

c
〈c,1〉

c
〈c,2〉

c c

d

〈d,1〉

d

〈d,2〉

d d

In particular this bound holds for ξ̂ = arg maxξ Pξ(x
n), so we predict as well as

the single best expert with constant overhead. Also PAbayes
(xn) can obviously be

computed in O(n |Ξ|) using its definition (4.4). We show in Section 4.2.5 that
computing it using the HMM prior above gives the same running time O(n |Ξ|),
a perfect match. ♦

Example 12 (HMM for Elementwise Mixtures). We now present the determinis-
tic HMM Amix,α that implements the ES-prior πmix,α of Example 10. Its diagram
is displayed in Figure 4.4. The HMM has a single silent state per outcome, and
its transition probabilities are the mixture weights α. Formally, Amix,α is given
using Q = Qs ∪Qp by

Qs = {p} × N Qp = Ξ× Z
+ P◦(p, 0) = 1 Λ(ξ, n) = ξ (4.8a)

P

(

〈p, n〉 → 〈ξ, n + 1〉
〈ξ, n〉 → 〈p, n〉

)

=

(

α(ξ)

1

)

(4.8b)

The vector-style definition of P is shorthand for one P per line. We show in
Section 4.2.5 that this HMM allows us to compute PAmix,α

(xn) in time O(n |Ξ|). ♦

4.2.4 The HMM for Data

We obtain our model for the data (Figure 4.2(c)) by composing an HMM prior on
Ξ∞ with a PFS Pξ for each expert ξ ∈ Ξ. We now show that the resulting marginal
distribution on data can be implemented by a single HMM on X (Figure 4.2(a))
with the same number of states as the HMM prior. Let Pξ be an X -forecasting
system for each ξ ∈ Ξ, and let the ES-prior πA be given by the deterministic
HMM A = 〈Q,Qp, P◦, P, Λ〉 on Ξ. Then the marginal distribution of the data (see
(4.1)) is given by

PA(xn) =
∑

ξn

πA(ξn)
n∏

i=1

Pξi
(xi|xi−1).

The HMM X :=
〈

Q,Qp, P◦, P,
〈
PΛ(q)

〉

q∈Qp

〉

on X induces the same marginal dis-

tribution (see Definition 4.2.2). That is, PX(xn) = PA(xn). Moreover, X contains
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only the forecasting systems that also exist in A and it retains the structure of
A. In particular this means that the HMM algorithms of Section 4.2.1 have the
same running time on the prior A as on the marginal X.

4.2.5 The Forward Algorithm and Sequential Prediction

We claimed in Section 4.2.1 that the standard HMM algorithms could easily be
extended to our HMMs with silent states and forecasting systems. In this section
we give the main example: the forward algorithm. We will also show how it can be
applied to sequential prediction. Recall that the forward algorithm computes the
marginal probability P (xn) for fixed xn. On the other hand, sequential prediction
means predicting the next observation xn+1 for given data xn, i.e. computing its
distribution. For this it suffices to predict the next expert ξn+1; we then simply
predict xn+1 by averaging the expert’s predictions accordingly: P (xn+1|xn) =
E[Pξn+1

(xn+1|xn)].

We first describe the preprocessing step called unfolding and introduce nota-
tion for nodes. We then give the forward algorithm, prove its correctness and
analyse its running time and space requirement. The forward algorithm can be
used for prediction with expert advice. We conclude by outlining the difficulty of
adapting the Viterbi algorithm for MAP estimation to the expert setting.

Unfolding Every HMM can be transformed into an equivalent HMM in which
each productive state is involved in the production of a unique outcome. The
single node in Figure 4.6(a) is involved in the production of x1,x2, . . . In its un-
folding Figure 4.6(b) the ith node is only involved in producing xi. Figures 4.6(c)
and 4.6(d) show HMMs that unfold to the Bayesian mixture shown in Figure 4.3
and the elementwise mixture shown in Figure 4.4. In full generality, fix an HMM
A. The unfolding of A is the HMM

A
u :=

〈

Qu, Qu

p, Pu

◦ , Pu,
〈

P u

q

〉

q∈Qu

〉

,

where the states and productive states are given by:

Qu :=
{

〈qλ, n〉 | qλ is a run through A

}

, where n =
∣
∣
∣qλ

p

∣
∣
∣ (4.9a)

Qu

p
:= Qu ∩ (Qp × N) (4.9b)

and the initial probability, transition function and forecasting systems are:

Pu

◦

(
〈q, 0〉

)
:= P◦(q) (4.9c)

Pu

(

〈q, n〉 →
〈
q′, n + 1

〉

〈q, n〉 →
〈
q′, n

〉

)

:=

(

P(q → q′)

P(q → q′)

)

(4.9d)

P u

〈q,n〉 := Pq (4.9e)
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Figure 4.5 Unfolding example

a

(a) Prior to unfolding

a a a

(b) After unfolding

a

b

c

d
(c) Bayesian mixture

a

b

c

d
(d) Elementwise mixture

First observe that unfolding preserves the marginal: PA(on) = PAu(on). Second,
unfolding is an idempotent operation: (Au)u is isomorphic to A

u. Third, unfolding
renders the set of states infinite, but for each n it preserves the number of states
reachable in exactly n steps.

Order The states in an unfolded HMM have earlier-later structure. Fix q, q′ ∈
Qu. We write q < q′ iff there is a run to q′ through q. We call < the natural
order on Qu. Obviously < is a partial order, furthermore it is the transitive
closure of the reverse direct successor relation. It is well-founded, allowing us
to perform induction on states, an essential ingredient in the forward algorithm
(Algorithm 4.1) and its correctness proof (Theorem 4.2.3).

Interval Notation We introduce interval notation to address subsets of states
of unfolded HMMs, as illustrated by Figure 4.6. Our notation associates each
productive state with the sample size at which it produces its outcome, while the
silent states fall in between. We use intervals with borders in N. The interval
contains the border i ∈ N iff the addressed set of states includes the states where
the ith observation is produced.

Qu

[n,m) := Qu ∩ (Q× [n,m)) Qu

[n,m] := Qu

[n,m) ∪Qu

{m} (4.10a)

Qu

{n} := Qu ∩ (Qp × {n}) Qu

(n,m) := Qu

[n,m) \Qu

{n} (4.10b)

Qu

(n,m] := Qu

[n,m] \Qu

{n} (4.10c)

Fix n > 0, then Qu

{n} is a non-empty <-anti-chain (i.e. its states are pairwise <-

incomparable). Furthermore Qu

(n,n+1) is empty iff Qu

{n+1} =
⋃

q∈Qu
{n}

Sq, in other

words, if there are no silent states between sample sizes n and n + 1.

The Forward Algorithm Fix an unfolded deterministic HMM prior A =
〈Q,Qp, P◦, P, Λ〉 on Ξ, and an X -PFS Pξ for each expert ξ ∈ Ξ. The input
consists of a sequence x∞ that arrives sequentially. Then the forward algorithm
for sequential prediction on models with silent states can be rendered as follows.



90 Chapter 4. Interlude: Prediction with Expert Advice

Figure 4.6 Interval notation

a a

b b

(e) Q{1}

a a

b b

(f) Q(1,2]

a a

b b

(g) Q(0,2)

Analysis Consider a state q ∈ Q, say q ∈ Q[n,n+1). Initially, q /∈ dom(w). Then
at some point w(q)← P◦(q). This happens either in the second line because q ∈ I
or in Forward Propagation because q ∈ Su for some u (in this case P◦(q) = 0).
Then w(q) accumulates weight as its direct predecessors are processed in For-
ward Propagation. At some point all its predecessors have been processed. If
q is productive we call its weight at this point (that is, just before Loss Update)
Alg(A, xn−1, q). Finally, Forward Propagation removes q from the domain of
w, never to be considered again. We call the weight of q (silent or productive)
just before removal Alg(A, xn, q).

Note that we associate two weights with each productive state q ∈ Q{n}: the
weight Alg(A, xn−1, q) is calculated before outcome n is observed, while on the
other hand Alg(A, xn, q) denotes the weight after the loss update incorporates
outcome n.

Theorem 4.2.3. Fix an HMM prior A, n ∈ N and q ∈ Q[n,n+1], then

Alg(A, xn, q) = PA(xn, q).

Note that the theorem applies twice to productive states.

Proof. By <-induction on states. Let q ∈ Q(n,n+1], and suppose that the theorem
holds for all q′ < q. Let Bq =

{
q′ | P(q′ → q) > 0

}
be the set of direct predecessors

of q. Observe that Bq ⊆ Q[n,n+1). The weight that is accumulated by Forward
Propagation(n) onto q is:

Alg(A, xn, q) = P◦(q) +
∑

q′∈Bq

P(q′ → q) Alg(A, xn, q′)

= P◦(q) +
∑

q′∈Bq

P(q′ → q)PA(xn, q′) = PA(xn, q).

The second equality follows from the induction hypothesis. Additionally if q ∈
Q{n} is productive, say Λ(q) = ξ, then after Loss Update(n) its weight is:

Alg(A, xn, q) = Pξ(xn|xn−1) Alg(A, xn−1, q)

= Pξ(xn|xn−1)PA(xn−1, q) = PA(xn, q).

The second inequality holds by induction on n, and the third by Definition 4.2.2.
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Complexity We are now able to sharpen the complexity results as listed in
Section 4.2.1, and extend them to infinite HMMs. Fix A, n ∈ N. The for-
ward algorithm processes each state in Q[0,n) once, and at that point this state’s
weight is distributed over its successors. Thus, the running time is proportional
to
∑

q∈Q[0,n)

∣
∣Sq

∣
∣. The forward algorithm keeps

∣
∣dom(w)

∣
∣ many weights. But at

each sample size n, dom(w) ⊆ Q[n,n+1]. Therefore the space needed is at most
proportional to maxm<n

∣
∣Q[m,m+1]

∣
∣. For both Bayes (Example 11) and element-

wise mixtures (Example 12) one may read from the figures that
∑

q∈Q[n,n+1)

∣
∣Sq

∣
∣

and
∣
∣Q[n,n+1)

∣
∣ are O(|Ξ|), so we indeed get the claimed running time O(n |Ξ|) and

space requirement O(|Ξ|).

MAP Estimation The forward algorithm described above computes the prob-
ability of the data, that is

P (xn) =
∑

qλ:qλ∈Q{n}

P (xn, qλ).

Instead of the entire sum, we are sometimes interested in the sequence of states
qλ that contributes most to it:

arg maxqλ P (xn, qλ) = arg maxqλ P (xn|qλ)π(qλ).

The Viterbi algorithm [66] is used to compute the most likely sequence of states
for HMMs. It can be easily adapted to handle silent states. However, we may
also write

P (xn) =
∑

ξn

P (xn, ξn),

and wonder about the sequence of experts ξn that contributes most. This problem
is harder because in general, a single sequence of experts can be generated by many
different sequences of states. This is unrelated to the presence of the silent states,
but due to different states producing the same expert simultaneously (i.e. in the
same Q{n}). So we cannot use the Viterbi algorithm as it is. The Viterbi algorithm
can be extended to compute the MAP expert sequence for general HMMs, but the
resulting running time explodes. Still, the MAP ξn can be sometimes be obtained
efficiently by exploiting the structure of the HMM at hand. The first example
is the unambiguous HMMs. A deterministic HMM is ambiguous if it has two
runs that agree on the sequence of experts produced, but not on the sequence of
productive states. The straightforward extension of the Viterbi algorithm works
for unambiguous HMMs. The second important example is the (ambiguous)
switch HMM that we introduce in Section 4.4.1. We show how to compute its
MAP expert sequence in Section 4.4.1.
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4.3 Zoology

Perhaps the simplest way to predict using a number of experts is to pick one of
them and mirror her predictions exactly. Beyond this “fixed expert model”, we
have considered two methods of combining experts so far, namely taking Bayesian
mixtures, and taking elementwise mixtures as described in Section 4.2.3. Fig-
ure 4.1 shows these and a number of other, more sophisticated methods that fit
in our framework. The arrows indicate which methods are generalised by which
other methods. They have been partitioned in groups that can be computed in
the same amount of time using HMMs.

We have presented two examples so far, the Bayesian mixture and the ele-
mentwise mixture with fixed coefficients (Examples 11 and 12). The latter model
is parameterised. Choosing a fixed value for the parameter beforehand is often
difficult. The first model we discuss learns the optimal parameter value on-line,
at the cost of only a small additional loss. We then proceed to discuss a number
of important existing expert models.

4.3.1 Universal Elementwise Mixtures

A distribution is “universal” for a family of distributions if it incurs small ad-
ditional loss compared to the best member of the family. A standard Bayesian
mixture constitutes the simplest example. It is universal for the fixed expert
model, where the unknown parameter is the used expert. In (4.7) we showed that
the additional loss is at most log |Ξ| for the uniform prior.

In Example 12 we described elementwise mixtures with fixed coefficients as
ES-priors. Prior knowledge about the mixture coefficients is often unavailable.
We now expand this model to learn the optimal mixture coefficients from the
data. To this end we place a prior distribution w on the space of mixture weights
△(Ξ). Using (4.5) we obtain the following marginal distribution:

Pumix(xn) =

∫

△(Ξ)

Pmix,α(xn)w(α) dα =

∫

△(Ξ)

∑

ξn

Pξn(xn)πmix,α(ξn)w(α) dα

=
∑

ξn

Pξn(xn)πumix(ξn), where πumix(ξn) =

∫

△(Ξ)

πmix,α(ξn)w(α) dα. (4.11)

Thus Pumix is the ES-joint with ES-prior πumix. This applies more generally:
parameters α can be integrated out of an ES-prior regardless of which experts are
used, since the expert predictions Pξn(xn) do not depend on α.

We will proceed to calculate a loss bound for the universal elementwise mixture
model, showing that it really is universal. After that we will describe how it can
be implemented as a HMM.
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A Loss Bound

In this section we relate the loss of a universal elementwise mixture with the loss
obtained by the maximum likelihood elementwise mixture. While mixture models
occur regularly in the statistical literature, we are not aware of any appearance
in universal prediction. Therefore, to the best of our knowledge, the following
simple loss bound is new. Our goal is to obtain a bound in terms of properties
of the prior. A difficulty here is that there are many expert sequences exhibiting
mixture frequencies close to the maximum likelihood mixture weights, so that
each individual expert sequence contributes relatively little to the total probability
(4.11). The following theorem is a general tool to deal with such situations.

Theorem 4.3.1. Let π, ρ be ES-priors s.t. ρ is zero whenever π is. Then for all
xn, reading 0/0 = 0,

− log
Pπ(xn)

Pρ(xn)
≤ EPρ

[

− log
π(ξn)

ρ(ξn)

∣
∣
∣
∣
xn

]

≤ − log max
ξn

π(ξn)

ρ(ξn)
.

Proof. For non-negative a1, . . . am and b1, . . . bm:




m∑

i=1

ai



 log

∑m
i=1 ai

∑m
i=1 bi

≤
m∑

i=1

ai log
ai

bi

≤





m∑

i=1

ai



max
i

log
ai

bi

. (4.12)

The first inequality is the log sum inequality [25, Theorem 2.7.1]. The second
inequality is a simple overestimation. We now apply (4.12) substituting m 7→ |Ξn|,
aξn 7→ Pρ(xn, ξn) and bξn 7→ Pπ(xn, ξn) and divide by

∑m
i=1 ai to complete the

proof.

Using this theorem, we obtain a loss bound for universal elementwise mixtures
that can be computed prior to observation and without reference to the experts’
PFSs.

Corollary 4.3.2. Let Pumix be the universal elementwise mixture model defined
using the (1

2
, . . . , 1

2
)-Dirichlet prior (that is, Jeffreys’ prior) as the prior w(α) in

(4.11). Let α̂(xn) maximise the likelihood Pmix,α(xn) w.r.t. α. Then for all xn the
additional loss incurred by the universal elementwise mixture is bounded thus

− log Pumix(xn) + log Pmix,α̂(xn)(x
n) ≤ |Ξ| − 1

2
log

n

π
+ c

for a fixed constant c.

Proof. By Theorem 4.3.1

− log Pumix(xn) + log Pmix,α̂(xn)(x
n) ≤

max
ξn

(
− log πumix(ξn) + log πmix,α̂(xn)(ξ

n)
)
. (4.13)
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We now bound the right hand side. Let α̂(ξn) maximise πmix,α(ξn) w.r.t. α. Then
for all xn and ξn

πmix,α̂(xn)(ξ
n) ≤ πmix,α̂(ξn)(ξ

n). (4.14)

For the
(

1
2
, . . . , 1

2

)
-Dirichlet prior, for all ξn

− log πumix(ξn) + log πmix,α̂(ξn)(ξ
n) ≤ |Ξ| − 1

2
log

n

π
+ c

for some fixed constant c (see e.g. [100]) Combination with (4.14) and (4.13)
completes the proof.

Since the overhead incurred as a penalty for not knowing the optimal parameter
α̂ in advance is only logarithmic, we find that Pumix is strongly universal for the
fixed elementwise mixtures.

HMM

While universal elementwise mixtures can be described using the ES-prior πumix

defined in (4.11), unfortunately any HMM that computes it needs a state for
each possible count vector, and is therefore huge if the number of experts is large.
The HMM Aumix for an arbitrary number of experts using the

(
1
2
, . . . , 1

2

)
-Dirichlet

prior is given using Q = Qs ∪Qp by

Qs = N
Ξ Qp = N

Ξ × Ξ P◦(0) = 1 Λ(~n, ξ) = ξ (4.15)

P

(

〈~n〉 → 〈~n, ξ〉
〈~n, ξ〉 →

〈
~n + 1ξ

〉

)

=





1/2+nξ

|Ξ|/2+
P

ξ nξ

1



 (4.16)

We write N
Ξ for the set of assignments of counts to experts; 0 for the all zero

assignment, and 1ξ marks one count for expert ξ. We show the diagram of Aumix

for the practical limit of two experts in Figure 4.7. In this case, the forward
algorithm has running time O(n2). Each productive state in Figure 4.7 corre-
sponds to a vector of two counts (n1, n2) that sum to the sample size n, with the
interpretation that of the n experts, the first was used n1 times while the second
was used n2 times. These counts are a sufficient statistic for the multinomial
model: per (4.5b) and (4.11) the probability of the next expert only depends on
the counts, and these probabilities are exactly the successor probabilities of the
silent states (4.16).

Other priors on α are possible. In particular, when all mass is placed on a
single value of α, we retrieve the elementwise mixture with fixed coefficients.

4.3.2 Fixed Share

The first publication that considers a scenario where the best predicting expert
may change with the sample size is Herbster and Warmuth’s paper on tracking
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Figure 4.7 Combination of two experts using a universal elementwise mixture

a
〈0,3〉

a b
〈0,2〉

a b a
〈0,1〉 〈d,2〉

a b a b
〈0,0〉 〈d,1〉

b a b a
〈d,0〉 〈c,1〉

b a b
〈c,0〉

b a
〈b,0〉

b

the best expert [45, 46]. They partition the data of size n into m segments, where
each segment is associated with an expert, and give algorithms to predict almost
as well as the best partition where the best expert is selected per segment. They
give two algorithms called fixed share and dynamic share. The second algorithm
does not fit in our framework; furthermore its motivation applies only to loss
functions other than log-loss. We focus on fixed share, which is in fact identical
to our algorithm applied to the HMM depicted in Figure 4.8, where all arcs into
the silent states have fixed probability α ∈ [0, 1] and all arcs from the silent states
have some fixed distribution w on Ξ.2 The same algorithm is also described as
an instance of the Aggregating Algorithm in [95]. Fixed share reduces to fixed
elementwise mixtures by setting α = 1 and to Bayesian mixtures by setting α = 0.
Formally:

Q = Ξ× Z
+ ∪ {p} × N P◦(p, 0) = 1

Qp = Ξ× Z
+ Λ(ξ, n) = ξ

(4.17a)

P






〈p, n〉 → 〈ξ, n + 1〉
〈ξ, n〉 → 〈p, n〉
〈ξ, n〉 → 〈ξ, n + 1〉




 =






w(ξ)

α

1− α




 (4.17b)

Each productive state represents that a particular expert is used at a certain

2This is actually a slight generalisation: the original algorithm uses a uniform w(ξ) = 1/ |Ξ|.
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Figure 4.8 Combination of four experts using the fixed share algorithm

a a a a

b b b b
〈p,0〉 〈p,1〉 〈p,2〉 〈p,3〉

c c c c

d d d d

sample size. Once a transition to a silent state is made, all history is forgotten
and a new expert is chosen according to w.3

Let L̂ denote the loss achieved by the best partition, with switching rate
α∗ := m/(n − 1). Let Lfs,α denote the loss of fixed share with uniform w and
parameter α. Herbster and Warmuth prove4

Lfs,α − L̂ ≤ (n− 1)H(α∗, α) + (m− 1) log(|Ξ| − 1) + log |Ξ| ,

which we for brevity loosen slightly to

Lfs,α − L̂ ≤ nH(α∗, α) + m log |Ξ| . (4.18)

Here H(α∗, α) = −α∗ log α−(1−α∗) log(1−α) is the cross entropy. The best loss
guarantee is obtained for α = α∗, in which case the cross entropy reduces to the
binary entropy H(α). A drawback of the method is that the optimal value of α
has to be known in advance in order to minimise the loss. In Sections Section 4.3.3
and Section 4.4 we describe a number of generalisations of fixed share that avoid
this problem.

4.3.3 Universal Share

Volf and Willems describe universal share (they call it the switching method) [94],
which is very similar to a probabilistic version of Herbster and Warmuth’s fixed
share algorithm, except that they put a prior on the unknown parameter, with the
result that their algorithm adaptively learns the optimal value during prediction.

In [15], Bousquet shows that the overhead for not knowing the optimal pa-
rameter value is equal to the overhead of a Bernoulli universal distribution.
Let Lfs,α = − log Pfs,α(xn) denote the loss achieved by the fixed share algo-
rithm with parameter α on data xn, and let Lus = − log Pus(x

n) denote the

3Contrary to the original fixed share, we allow switching to the same expert. In the HMM
framework this is necessary to achieve running-time O(n |Ξ|). Under uniform w, non-reflexive

switching with fixed rate α can be simulated by reflexive switching with fixed rate β = α|Ξ|
|Ξ|−1

(provided β ≤ 1). For non-uniform w, the rate becomes expert-dependent.
4This bound can be obtained for the fixed share HMM using the previous footnote.
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loss of universal share, where Pus(x
n) =

∫
Pfs,α(xn)w(α) dα with Jeffreys’ prior

w(α) = α−1/2(1− α)−1/2/π on [0, 1]. Then

Lus −min
α

Lfs,α ≤ 1 + 1
2

log n. (4.19)

Thus Pus is universal for the model
{
Pfs,α | α ∈ [0, 1]

}
that consists of all ES-joints

where the ES-priors are distributions with a fixed switching rate.
Universal share requires quadratic running time O(n2 |Ξ|), restricting its use

to moderately small data sets.
In [63], Monteleoni and Jaakkola place a discrete prior on the parameter that

divides its mass over
√

n well-chosen points, in a setting where the ultimate sample
size n is known beforehand. This way they still manage to achieve (4.19) up to
a constant, while reducing the running time to O(n

√
n |Ξ|). In [16], Bousquet

and Warmuth describe yet another generalisation of expert tracking; they derive
good loss bounds in the situation where the best experts for each section in the
partition are drawn from a small pool.

The HMM for universal share with the
(

1
2
, 1

2

)
-Dirichlet prior on the switching

rate α is displayed in Figure 4.9. It is formally specified (using Q = Qs ∪Qp) by:

Qs = {p, q} ×
{
〈m,n〉 ∈ N

2 | m ≤ n
}

Qp = Ξ ×
{
〈m,n〉 ∈ N

2 | m < n
} (4.20a)

Λ(ξ,m, n) = ξ P◦(p, 0, 0) = 1 (4.20b)

P









〈p,m, n〉 → 〈ξ,m, n + 1〉
〈q,m, n〉 → 〈p,m + 1, n〉
〈ξ,m, n〉 → 〈q,m, n〉
〈ξ,m, n〉 → 〈ξ,m, n + 1〉









=









w(ξ)

1

(m + 1
2
)
/

n

(n−m− 1
2
)
/

n









(4.20c)

Each productive state 〈ξ, n,m〉 represents the fact that at sample size n expert
ξ is used, while there have been m switches in the past. Note that the last two
lines of (4.20c) are subtly different from the corresponding topmost line of (4.16).
In a sample of size n there are n possible positions to use a given expert, while
there are only n− 1 possible switch positions.

The presence of the switch count in the state is the new ingredient compared
to fixed share. It allows us to adapt the switching probability to the data, but it
also renders the number of states quadratic. We discuss reducing the number of
states without sacrificing much performance in Section 4.5.1.

4.3.4 Overconfident Experts

In [95], Vovk considers overconfident experts. In this scenario, there is a sin-
gle unknown best expert, except that this expert sometimes makes wild (over-
categorical) predictions. We assume that the rate at which this happens is a
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Figure 4.9 Combination of four experts using universal share
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Figure 4.10 Combination of four overconfident experts

a a a a
〈a,0〉 〈a,1〉

u u u u

b
〈n,3,1〉

b b b
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u
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〈c,0〉 〈c,1〉

u u u u

d d d d
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u u u u

known constant α. The overconfident expert model is an attempt to mitigate
the wild predictions using an additional “safe” expert u ∈ Ξ, who always issues
the uniform distribution on X (which we assume to be finite for simplicity here).
Using Q = Qs ∪Qp, it is formally specified by:

Qs = Ξ× N Λ(n, ξ, n) = ξ P◦(ξ, 0) = w(ξ)

Qp = {n, w} × Ξ× Z
+ Λ(w, ξ, n) = u

(4.21a)

P









〈ξ, n〉 → 〈n, ξ, n + 1〉
〈ξ, n〉 → 〈w, ξ, n + 1〉
〈n, ξ, n〉 → 〈ξ, n〉
〈w, ξ, n〉 → 〈ξ, n〉









=









1− α

α

1

1









(4.21b)

Each productive state corresponds to the idea that a certain expert is best, and
additionally whether the current outcome is normal or wild.

Fix data xn. Let ξ̂n be the expert sequence that maximises the likelihood
Pξn(xn) among all expert sequences ξn that switch between a single expert and u.
To derive our loss bound, we underestimate the marginal probability Poce,α(xn)

for the HMM defined above, by dropping all terms except the one for ξ̂n.

Poce,α(xn) =
∑

ξn∈Ξn

πoce,α(ξn)Pξn(xn) ≥ πoce,α(ξ̂n)Pξ̂n(xn). (4.22)

(This first step is also used in the bounds for the two new models in Section 4.4.)
Let α∗ denote the frequency of occurrence of u in ξ̂n, let ξbest be the other expert
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that occurs in ξn, and let L̂ = − log Pξ̂n(xn). We can now bound our worst-case
additional loss:

− log Poce,α̂(xn)− L̂ ≤ − log πoce,α(ξ̂n) = − log w(ξbest) + nH(α∗, α).

Again H denotes the cross entropy. From a coding perspective, after first spec-
ifying the best expert ξbest and a binary sequence representing ξ̂n, we can then
use ξ̂n to encode the actual observations with optimal efficiency.

The optimal misprediction rate α is usually not known in advance, so we can
again learn it from data by placing a prior on it and integrating over this prior.
This comes at the cost of an additional loss of 1

2
log n + c bits for some constant c

(which is ≤ 1 for two experts), and as will be shown in the next subsection, can
be implemented using a quadratic time algorithm.

Recursive Combination

In Figure 4.10 one may recognise two simpler HMMs: it is in fact just a Bayesian
combination of a set of fixed elementwise mixtures with some parameter α, one
for each expert. Thus two models for combining expert predictions, the Bayesian
model and fixed elementwise mixtures, have been recursively combined into a
single new model. This view is illustrated in Figure 4.11.

More generally, any method to combine the predictions of multiple experts
into a single new prediction strategy, can itself be considered an expert. We can
apply our method recursively to this new “meta-expert”; the running time of the
recursive combination is only the sum of the running times of all the component
predictors. For example, if all used individual expert models can be evaluated
in quadratic time, then the full recursive combination also has quadratic running
time, even though it may be impossible to specify using an HMM of quadratic size.

Although a recursive combination to implement overconfident experts may
save some work, the same running time may be achieved by implementing the
HMM depicted in Figure 4.10 directly. However, we can also obtain efficient
generalisations of the overconfident expert model, by replacing any combinator by
a more sophisticated one. For example, rather than a fixed elementwise mixture,
we could use a universal elementwise mixture for each expert, so that the error
frequency is learned from data. Or, if we suspect that an expert may not only
make incidental slip-ups, but actually become completely untrustworthy for longer
stretches of time, we may even use a fixed or universal share model.

One may also consider that the fundamental idea behind the overconfident
expert model is to combine each expert with a uniform predictor using a mispre-
diction model. In the example in Figure 4.11, this idea is used to “smooth” the
expert predictions, which are then used at the top level in a Bayesian combina-
tion. However, the model that is used at the top level is completely orthogonal to
the model used to smooth expert predictions; we can safeguard against overconfi-
dent experts not only in Bayesian combinations but also in other models such as
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Figure 4.11 Implementing overconfident experts with recursive combinations.

Bayes

Fix. mix. Fix. mix. Fix. mix. Fix. mix.

a b
u

c d

the switch distribution or the run-length model, which are described in the next
section.

4.4 New Models to Switch between Experts

So far we have considered two models for switching between experts: fixed share
and its generalisation, universal share. While fixed share is an extremely efficient
algorithm, it requires that the frequency of switching between experts is estimated
a priori, which can be hard in practice. Moreover, we may have prior knowledge
about how the switching probability will change over time, but unless we know
the ultimate sample size in advance, we may be forced to accept a linear overhead
compared to the best parameter value. Universal share overcomes this problem
by marginalising over the unknown parameter, but has quadratic running time.

The first model considered in this section, called the switch distribution, avoids
both problems. It is parameterless and has essentially the same running time
as fixed share. It also achieves a loss bound competitive to that of universal
share. Moreover, for a bounded number of switches the bound has even better
asymptotics.

The second model is called the run-length model because it uses a run-length
code (c.f. [62]) as an ES-prior. This may be useful because, while both fixed and
universal share model the distance between switches with a geometric distribution,
the real distribution on these distances may be different. This is the case if, for
example, the switches are highly clustered. This additional expressive power
comes at the cost of quadratic running time, but we discuss a special case where
this may be reduced to linear. We compare advantages and drawbacks of the
run-length model compared to the switch distribution.

4.4.1 Switch Distribution

The switch distribution is a new model for combining expert predictions. Like
fixed share, it is intended for settings where the best predicting expert is expected
to change as a function of the sample size, but it has two major innovations.
First, we let the probability of switching to a different expert decrease with the
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sample size. This allows us to derive a loss bound close to that of the fixed
share algorithm, without the need to tune any parameters.5 Second, the switch
distribution has a special provision to ensure that in the case where the number
of switches remains bounded, the incurred loss overhead is O(1).

The switch distribution is the subject of the next chapter, which addresses
a long standing open problem in statistical model selection known as the “AIC
vs BIC dilemma”. Some criteria for model selection, such as AIC, are efficient
when applied to sequential prediction of future outcomes, while other criteria,
such as BIC, are “consistent”: with probability one, the model that contains
the data generating distribution is selected given enough data. Using the switch
distribution, these two goals (truth finding vs prediction) can be reconciled. Refer
to the paper for more information.

Here we disregard such applications and treat the switch distribution like
the other models for combining expert predictions. We describe an HMM that
corresponds to the switch distribution; this illuminates the relationship between
the switch distribution and the fixed share algorithm which it in fact generalises.

The equivalence between the original definition of the switch distribution and
the HMM is not trivial, so we give a formal proof. The size of the HMM is such
that calculation of P (xn) requires only O(n |Ξ|) steps.

We provide a loss bound for the switch distribution in Section 4.4.1. Then in
Section 4.4.1 we show how the sequence of experts that has maximum a posteriori
probability can be computed. This problem is difficult for general HMMs, but the
structure of the HMM for the switch distribution allows for an efficient algorithm
in this case.

Switch HMM

Let σ∞ and τ∞ be sequences of distributions on {0, 1} which we call the switch
probabilities and the stabilisation probabilities. The switch HMM Asw, displayed

5The idea of decreasing the switch probability as 1/(n + 1), which has not previously been
published, was independently conceived by Mark Herbster and the authors.
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in Figure 4.12, is defined below using Q = Qs ∪Qp:

Qs = {p, p
s
, p

u
} × N P◦(p, 0) = 1 Λ(s, ξ, n) = ξ

Qp = {s, u} × Ξ× Z
+ Λ(u, ξ, n) = ξ

(4.23a)

P
















〈p, n〉 → 〈p
u
, n〉

〈p, n〉 → 〈p
s
, n〉

〈p
u
, n〉 → 〈u, ξ, n + 1〉

〈p
s
, n〉 → 〈s, ξ, n + 1〉

〈s, ξ, n〉 → 〈s, ξ, n + 1〉
〈u, ξ, n〉 → 〈u, ξ, n + 1〉
〈u, ξ, n〉 → 〈p, n〉
















=
















τn(0)

τn(1)

w(ξ)

w(ξ)

1

σn(0)

σn(1)
















(4.23b)

This HMM contains two “expert bands”. Consider a productive state 〈u, ξ, n〉 in
the bottom band, which we call the unstable band, from a generative viewpoint.
Two things can happen. With probability σn(0) the process continues horizon-
tally to 〈u, ξ, n + 1〉 and the story repeats. We say that no switch occurs. With
probability σn(1) the process continues to the silent state 〈p, n〉 directly to the
right. We say that a switch occurs. Then a new choice has to be made. With
probability τn(0) the process continues rightward to 〈p

u
, n〉 and then branches out

to some productive state 〈u, ξ′, n + 1〉 (possibly ξ = ξ′), and the story repeats.
With probability τn(1) the process continues to 〈p

s
, n〉 in the top band, called

the stable band. Also here it branches out to some productive state 〈s, ξ′, n + 1〉.
But from this point onward there are no choices anymore; expert ξ′ is produced
forever. We say that the process has stabilised.

By choosing τn(1) = 0 and σn(1) = θ for all n we essentially remove the stable
band and arrive at fixed share with parameter θ. The presence of the stable band
enables us to improve the loss bound of fixed share in the particular case that the
number of switches is bounded; in that case, the stable band allows us to remove
the dependency of the loss bound on n altogether. We will use the particular
choice τn(0) = θ for all n, and σn(1) = πt(Z = n|Z ≥ n) for some fixed value θ
and an arbitrary distribution πt on N. This allows us to relate the switch HMM
to the parametric representation that we present next.

Switch Distribution

In Chapter 5, we give a parametric definition of the switch distribution, and
provide an algorithm that computes it efficiently, i.e. in time O(n |Ξ|), where n is
the sample size and |Ξ| is the number of considered experts. Here we show that
this algorithm can really be interpreted as the forward algorithm applied to the
switch HMM of Section 4.4.1.

Definition 4.4.1. We first define the countable set of switch parameters

Θsw :=
{
〈tm, km〉 | m ≥ 1, k ∈ Ξm, t ∈ N

m and 0 = t1 < t2 < t3 . . .
}

.
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Figure 4.12 Combination of four experts using the switch distribution
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The switch prior is the discrete distribution on switch parameters given by

πsw(tm, km) := πm(m)πk(k1)
m∏

i=2

πt(ti|ti > ti−1)πk(ki),

where πm is geometric with rate θ, πt and πk are arbitrary distributions on N and
Ξ. We define the mapping ξ : Θsw → Ξ∞ that interprets switch parameters as
sequences of experts by

ξ(tm, km) := k
[t2−t1]
1 a k

[t3−t2]
2 a . . . a k

[tm−tm−1]
m−1 a k[∞]

m ,

where k[λ] is the sequence consisting of λ repetitions of k. This mapping is not
1-1: infinitely many switch parameters map to the same infinite sequence, since
ki and ki+1 may coincide. The switch distribution Psw is the ES-joint based on
the ES-prior that is obtained by composing πsw with ξ.

Equivalence

In this section we show that the HMM prior πA and the switch prior πsw define the
same ES-prior. During this section, it is convenient to regard πA as a distribution
on sequences of states, allowing us to differentiate between distinct sequences of
states that map to the same sequence of experts. The function Λ : Q∞ → Ξ∞, that
we call trace, explicitly performs this mapping; Λ(q∞)(i) := Λ(qp

i ). We cannot
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Figure 4.13 Commutativity diagram

Q∞, πA

Λ

Θsw, πsw

ξ

f

#

Ξ∞, π

relate πsw to πA directly as they are carried by different sets (switch parameters
vs state sequences), but need to consider the distribution that both induce on
sequences of experts via ξ and Λ. Formally:

Definition 4.4.2. If f : Θ → Γ is a random variable and P is a distribution on
Θ, then we write f(P ) to denote the distribution on Γ that is induced by f .

Below we will show that Λ(πA) = ξ(πsw), i.e. that πsw and πA induce the same
distribution on the expert sequences Ξ∞ via the trace Λ and the expert-sequence
mapping ξ. Our argument will have the structure outlined in Figure 4.13. Instead
of proving the claim directly, we create a random variable f : Θsw → Q∞ mapping
switch parameters into runs. Via f , we can view Θsw as a reparameterisation
of Q∞. We then show that the diagram commutes, that is, πA = f(πsw) and
Λ ◦f = ξ. This shows that Λ(πA) = Λ(f(πsw)) = ξ(πsw) as required.

Proposition 4.4.3. Let A be the HMM as defined in Section 4.4.1, and πsw, ξ
and Λ as above. If w = πk then

ξ(πsw) = Λ(πA).

Proof. Recall (4.23) that

Q = {s, u} × Ξ× Z
+ ∪ {p, p

s
, p

u
} × N.

We define the random variable f : Θsw → Q∞ by

f(tm, km) := 〈p, 0〉 a u1 a u2 a . . . a um−1 a s, where

ui :=
〈
〈p

u
, ti〉 , 〈u, ki, ti + 1〉 , 〈u, ki, ti + 2〉 , . . . , 〈u, ki, ti+1〉 , 〈p, ti+1〉

〉

s :=
〈
〈p

s
, tm〉 , 〈s, km, tm + 1〉 , 〈s, km, tm + 2〉 , . . .

〉
.

We now show that Λ ◦f = ξ and f(πsw) = πA, from which the theorem follows
directly. Fix p = 〈tm, km〉 ∈ Θsw. Since the trace of a concatenation equals the
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concatenation of the traces,

Λ ◦f(p) = Λ(u1) a Λ(u2) a . . . a Λ(um−1) a Λ(s)

= k
[t2−t1]
1 a k

[t3−t2]
2 a . . . a k

[tm−tm−1]
2 a k[∞]

m = ξ(p).

which establishes the first part. Second, we need to show that πA and f(πsw) assign
the same probability to all events. Since πsw has countable support, so has f(πsw).
By construction f is injective, so the preimage of f(p) equals {p}, and hence
f(πsw)(

{
f(p)

}
) = πsw(p). Therefore it suffices to show that πA(

{
f(p)

}
) = πsw(p)

for all p ∈ Θsw. Let q∞ = f(p), and define ui and s for this p as above. Then

πA(q∞) = πA(〈p, 0〉)





m−1∏

i=1

πA(ui|ui−1)



πA(s|um−1)

Note that

πA(s|um−1) = (1− θ)πk(ki)

πA(ui|ui−1) = θπk(ki)





ti+1−1
∏

j=ti+1

πt(Z > j|Z ≥ j)



 πt(Z = ti+1|Z ≥ ti+1).

The product above telescopes, so that

πA(ui|ui−1) = θπk(ki)πt(Z = ti+1|Z ≥ ti+1).

We obtain

πA(q∞) = 1 · θm−1





m−1∏

i=1

πk(ki)πt(ti+1|ti+1 > ti)



 (1− θ)πk(km)

= θm−1(1− θ)πk(k1)
m∏

i=2

πk(ki)πt(ti|ti > ti−1)

= πsw(p),

under the assumption that πm is geometric with parameter θ.

A Loss Bound

We derive a loss bound of the same type as the bound for the fixed share algorithm
(see Section 4.3.2).

Theorem 4.4.4. Fix data xn. Let θ̂ = 〈tm, km〉 maximise the likelihood Pξ(θ̂)(x
n)

among all switch parameters of length m. Let πm(n) = 2−n, πt(n) = 1/(n(n + 1))
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and πk be uniform. Then the loss overhead − log Psw(xn) + log Pξ(θ̂)(x
n) of the

switch distribution is bounded by

m + m log |Ξ|+ log

(
tm + 1

m

)

+ log(m!).

Proof. We have

− log Psw(xn) + log Pξ(θ̂)(x
n)

≤ − log πsw(θ̂)

= − log



πm(m)πk(k1)
m∏

i=2

πt(ti|ti > ti−1)πk(ki)





= − log πm(m) +
m∑

i=1

− log πk(ki) +
m∑

i=2

− log πt(ti|ti > ti − 1). (4.24)

The considered prior πt(n) = 1/(n(n + 1)) satisfies

πt(ti|ti > ti−1) =
πt(ti)

∑∞
i=ti−1+1 πt(i)

=
1/(ti(ti + 1))

∑∞
i=ti−1+1

1
i
− 1

i+1

=
ti−1 + 1

ti(ti + 1)
.

If we substitute this in the last term of (4.24), the sum telescopes and we are left
with

− log(t1 + 1)
︸ ︷︷ ︸

= 0

+ log(tm + 1) +
m∑

i=2

log ti. (4.25)

If we fix tm, this expression is maximised if t2, . . . , tm−1 take on the values tm −
m + 2, . . . , tm − 1, so that (4.25) becomes

tm+1∑

i=tm−m+2

log i = log

(
(tm + 1)!

(tm −m + 1)!

)

= log

(
tm + 1

m

)

+ log(m!).

The theorem follows if we also instantiate πm and πk in (4.24).

Note that this loss bound is a function of the index of the last switch tm rather
than of the sample size n; this means that in the important scenario where the
number of switches remains bounded in n, the loss compared to the best partition
is O(1).

The bound can be tightened slightly by using the fact that we allow for switch-
ing to the same expert, as also remarked in Footnote 3 on page 96. If we take
this into account, the m log |Ξ| term can be reduced to m log(|Ξ| − 1). If we
take this into account, the bound compares quite favourably with the loss bound
for the fixed share algorithm (see Section 4.3.2). We now investigate how much
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worse the above guarantees are compared to those of fixed share. The overhead
of fixed share (4.18) is bounded from above by nH(α) + m log(|Ξ| − 1). We first
underestimate this worst-case loss by substituting the optimal value α = m/n,
and rewrite

nH(α) ≥ nH(m/n) ≥ log

(
n

m

)

.

Second we overestimate the loss of the switch distribution by substituting the
worst case tm = n − 1. We then find the maximal difference between the two
bounds to be

(

m + m log(|Ξ| − 1) + log

(
n

m

)

+ log(m!)

)

−
(

log

(
n

m

)

+ m log(|Ξ| − 1)

)

= m + log(m!) ≤ m + m log m. (4.26)

Thus using the switch distribution instead of fixed share lowers the guarantee
by at most m + m log m bits, which is significant only if the number of switches
is relatively large. On the flip side, using the switch distribution does not require
any prior knowledge about any parameters. This is a big advantage in a setting
where we desire to maintain the bound sequentially. This is impossible with the
fixed share algorithm in case the optimal value of α varies with n.

MAP Estimation

The particular nature of the switch distribution allows us to perform MAP esti-
mation efficiently. The MAP sequence of experts is:

arg maxξn P (xn, ξn).

We observed in Section 4.2.5 that Viterbi can be used on unambiguous HMMs.
However, the switch HMM is ambiguous, since a single sequence of experts is
produced by multiple sequences of states. Still, it turns out that for the switch
HMM we can jointly consider all these sequences of states efficiently. Consider for
example the expert sequence abaabbbb. The sequences of states that produce
this expert sequence are exactly the runs through the pruned HMM shown in
Figure 4.14. Runs through this HMM can be decomposed in two parts, as indi-
cated in the bottom of the figure. In the right part a single expert is repeated,
in our case expert d. The left part is contained in the unstable (lower) band. To
compute the MAP sequence we proceed as follows. We iterate over the possible
places of the transition from left to right, and then optimise the left and right
segments independently.

In the remainder we first compute the probability of the MAP expert sequence
instead of the sequence itself. We then show how to compute the MAP sequence
from the fallout of the probability computation.
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Figure 4.14 MAP estimation for the switch distribution. The sequences of states
that can be obtained by following the arrows are exactly those that produce expert
sequence abaabbbb.

a a a a a a a a

b b b b b b b b

a a a a a a a a

b b b b b b b b

Left Right

To optimise both parts, we define two functions L and R.

Li := max
ξi

P (xi, ξi, 〈p, i〉) (4.27)

Ri(ξ) := P (xn, ξi = . . . = ξn = ξ|xi−1, 〈p, i− 1〉) (4.28)

Thus Li is the probability of the MAP expert sequence of length i. The require-
ment 〈p, i〉 forces all sequences of states that realise it to remain in the unstable
band. Ri(ξ) is the probability of the tail xi, . . . , xn when expert ξ is used for all
outcomes, starting in state 〈p, i− 1〉. Combining L and R, we have

max
ξn

P (xn, ξn) = max
i∈[n],ξ

Li−1Ri(ξ).

Recurrence Li and Ri can efficiently be computed using the following recur-
rence relations. First we define auxiliary quantities

L′
i(ξ) := max

ξi
P (xi, ξi, 〈u, ξ, i〉) (4.29)

R′
i(ξ) := P (xn, ξi = . . . = ξn = ξ|xi−1, 〈u, ξ, i〉) (4.30)

Observe that the requirement 〈u, ξ, i〉 forces ξi = ξ. First, L′
i(ξ) is the MAP

probability for length i under the constraint that the last expert used is ξ. Second,
R′

i(ξ) is the MAP probability of the tail xi, . . . , xn under the constraint that the
same expert is used all the time. Using these quantities, we have (using the γ(·)

transition probabilities shown in (4.34))

Li = max
ξ

L′
i(ξ)γ1 Ri(ξ) = γ2R

′
i(ξ) + γ3Pξ(x

n|xi−1). (4.31)
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For L′
i(ξ) and R′

i(ξ) we have the following recurrences:

Li+1(ξ) = Pξ(xi+1|xi) max
{
L′

i(ξ)(γ4 + γ1γ5), Liγ5

}
(4.32)

R′
i(ξ) = Pξ(xi|xi−1)

(
γ1Ri+1(ξ) + γ4R

′
i+1(ξ)

)
. (4.33)

The recurrence for L has border case L0 = 1. The recurrence for R has border
case Rn = 1.

γ1 = P
(
〈u, ξ, i〉 → 〈p, i〉

)

γ2 = P
(
〈p, i− 1〉 → 〈p

u
, i− 1〉 → 〈u, ξ, i〉

)

γ3 = P
(
〈p, i− 1〉 → 〈p

s
, i− 1〉 → 〈s, ξ, i〉

)

γ4 = P
(
〈u, ξ, i〉 → 〈u, ξ, i + 1〉

)

γ5 = P
(
〈p, i〉 → 〈p

u
, i〉 → 〈u, ξ, i + 1〉

)

(4.34)

Complexity A single recurrence step of Li costs O(|Ξ|) due to the maximi-
sation. All other recurrence steps take O(1). Hence both Li and L′

i(ξ) can be
computed recursively for all i = 1, . . . , n and ξ ∈ Ξ in time O(n |Ξ|), while each
of Ri, R

′
i(ξ) and Pξ(x

n|xi−1) can be computed recursively for all i = n, . . . , 1 and
ξ ∈ Ξ in time O(n |Ξ|) as well. Thus the MAP probability can be computed in
time O(n |Ξ|). Storing all intermediate values costs O(n |Ξ|) space as well.

The MAP Expert Sequence As usual in Dynamic Programming, we can
retrieve the final solution — the MAP expert sequence — from these intermediate
values. We redo the computation, and each time that a maximum is computed
we record the expert that achieves it. The experts thus computed form the MAP
sequence.

4.4.2 Run-length Model

Run-length codes have been used extensively in the context of data compression,
see e.g. [62]. Rather than applying run length codes directly to the observations,
we reinterpret the corresponding probability distributions as ES-priors, because
they may constitute good models for the distances between consecutive switches.

The run length model is especially useful if the switches are clustered, in the
sense that some blocks in the expert sequence contain relatively few switches,
while other blocks contain many. The fixed share algorithm remains oblivious to
such properties, as its predictions of the expert sequence are based on a Bernoulli
model: the probability of switching remains the same, regardless of the index
of the previous switch. Essentially the same limitation also applies to the uni-
versal share algorithm, whose switching probability normally converges as the
sample size increases. The switch distribution is efficient when the switches are
clustered toward the beginning of the sample: its switching probability decreases
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in the sample size. However, this may be unrealistic and may introduce a new
unnecessary loss overhead.

The run-length model is based on the assumption that the intervals between
successive switches are independently distributed according to some distribution
πt. After the universal share model and the switch distribution, this is a third gen-
eralisation of the fixed share algorithm, which is recovered by taking a geometric
distribution for πt. As may be deduced from the defining HMM, which is given
below, we require quadratic running time O(n2 |Ξ|) to evaluate the run-length
model in general.

Run-length HMM

Let S :=
{
〈m,n〉 ∈ N

2 | m < n
}

, and let πt be a distribution on Z
+. The specifi-

cation of the run-length HMM is given using Q = Qs ∪Qp by:

Qs = {q} × S ∪ {p} × N Λ(ξ,m, n) = ξ

Qp = Ξ× S P◦(p, 0) = 1
(4.35a)

P









〈p, n〉 → 〈ξ, n, n + 1〉
〈ξ,m, n〉 → 〈ξ,m, n + 1〉
〈ξ,m, n〉 → 〈q,m, n〉
〈q,m, n〉 → 〈p, n〉









=









w(ξ)

πt(Z > n|Z ≥ n)

πt(Z = n|Z ≥ n)

1









(4.35b)

A Loss Bound

Fix an expert sequence ξn with m blocks. For i = 1, . . . ,m, let δi and ki denote
the length and expert of block i. From the definition of the HMM above, we
obtain that πrl(ξ

n) equals

m∑

i=1

− log w(ki) +
m−1∑

i=1

− log πt(Z = δi)− log πt(Z ≥ δm).

Theorem 4.4.5. Fix data xn. Let ξn maximise the likelihood Pξn(xn) among all
expert sequences with m blocks. Let w be the uniform distribution on experts, and
let πt be log-convex. Then the loss overhead is bounded thus

− log Prl(x
n) + log Pξn(xn) ≤ m

(

log |Ξ| − log πt

(
n
m

))

.
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Figure 4.15 HMM for the run-length model

a a

b b
〈p,2〉

〈q,2,3〉
c c

d d

a a a

b b b
〈p,1〉

〈q,1,2〉 〈q,1,3〉
c

〈c,1,2〉

c c

d d d

a a a a

b b b b
〈p,0〉

〈q,0,1〉 〈q,0,2〉 〈q,0,3〉
c

〈c,0,1〉

c
〈c,0,2〉

c c

d d d d
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Proof. Let δi denote the length of block i. We overestimate

− log Prl(x
n) + log Pξn(xn) ≤ − log πrl(ξ

n)

= m log |Ξ|+
m−1∑

i=1

− log πt(Z = δi)− log πt(Z ≥ δm)

≤ m log |Ξ|+
m∑

i=1

− log πt(δi). (4.36)

Since − log πt is concave, by Jensen’s inequality we have

m∑

i=1

− log πt(δi)

m
≤ − log πt





m∑

i=1

δi

m



 = − log πt

(
n

m

)

.

In other words, the block lengths δi are all equal in the worst case. Plugging this
into (4.36) we obtain the theorem.

Finite Support

We have seen that the run-length model reduces to fixed share if the prior on
switch distances πt is geometric, so that it can be evaluated in linear time in that
case. We also obtain a linear time algorithm when πt has finite support, because
then only a constant number of states can receive positive weight at any sample
size. For this reason it can be advantageous to choose a πt with finite support,
even if one expects that arbitrarily long distances between consecutive switches
may occur. Expert sequences with such longer distances between switches can
still be represented with a truncated πt using a sequence of switches from and to
the same expert. This way, long runs of the same expert receive exponentially
small, but positive, probability.

4.4.3 Comparison

We have discussed two models for switching: the recent switch distribution and
the new run-length model. It is natural to wonder which model to apply. One
possibility is to compare asymptotic loss bounds. To compare the bounds given
by Theorems 4.4.4 and 4.4.5, we substitute tm + 1 = n in the bound for the
switch distribution, and use a prior πt for the run-length model that satisfies
− log πt(n) ≤ log n + 2 log log(n + 1) + 3 (for instance an Elias code [32]). The
next step is to determine which bound is better depending on how fast m grows
as a function of n. It only makes sense to consider m non-decreasing in n.

Theorem 4.4.6. The loss bound of the switch distribution (with tn = n) is
asymptotically lower than that of the run-length model (with πt as above) if
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m = o
(

(log n)2 ), and asymptotically higher if m = Ω
(

(log n)2 ).6

Proof sketch. After eliminating terms common to both loss bounds, it remains to
compare

m + m log m to 2m log log

(
n

m
+ 1

)

+ 3.

If m is bounded, the left hand side is clearly lower for sufficiently large n. Oth-
erwise we may divide by m, exponentiate, simplify, and compare

m to (log n− log m)2 ,

from which the theorem follows directly.

For finite samples, the switch distribution can be used in case the switches
are expected to occur early on average, or if the running time is paramount.
Otherwise the run-length model is preferable.

4.5 Extensions

The approach described in Sections 4.1 and 4.2 allows efficient evaluation of expert
models that can be defined using small HMMs. It is natural to look for additional
efficient models for combining experts that cannot be expressed as small HMMs
in this way.

In this section we describe a number of such extensions to the model as de-
scribed above. In Section 4.5.1 we outline different methods for approximate, but
faster, evaluation of large HMMs. The idea behind Section 4.3.4 is to treat a com-
bination of experts as a single expert, and subject it to“meta”expert combination.
Then in Section 4.5.2 we outline a possible generalisation of the considered class
of HMMs, allowing the ES-prior to depend on observed data. Finally we propose
an alternative to MAP expert sequence estimation that is efficiently computable
for general HMMs.

4.5.1 Fast Approximations

For some applications, suitable ES-priors do not admit a description in the form
of a small HMM. Under such circumstances we might require an exponential
amount of time to compute quantities such as the predictive distribution on the
next expert (4.3). For example, although the size of the HMM required to describe
the elementwise mixtures of Section 4.3.1 grows only polynomially in n, this is still
not feasible in practice. Consider that the transition probabilities at sample size
n must depend on the number of times that each expert has occurred previously.

6Let f, g : N → N. We say f = o(g) if limn→∞ f(n)/g(n) = 0. We say f = Ω(g) if
∃c > 0∃n0∀n ≥ n0 : f(n) ≥ cg(n).
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The number of states required to represent this information must therefore be
at least

(
n+k−1

k−1

)
, where k is the number of experts. For five experts and n =

100, we already require more than four million states! In the special case of
mixtures, various methods exist to efficiently find good parameter values, such as
expectation maximisation, see e.g. [59] and Li and Barron’s approach [55]. Here
we describe a few general methods to speed up expert sequence calculations.

Discretisation

The simplest way to reduce the running time of Algorithm 4.1 is to reduce the
number of states of the input HMM, either by simply omitting states or by iden-
tifying states with similar futures. This is especially useful for HMMs where the
number of states grows in n, e.g. the HMMs where the parameter of a Bernoulli
source is learned: the HMM for universal elementwise mixtures of Figure 4.7 and
the HMM for universal share of Figure 4.9. At each sample size n, these HMMs
contain states for count vectors (0, n), (1, n − 1), . . . , (n, 0). In [63] Monteleoni
and Jaakkola manage to reduce the number of states to

√
n when the sample size

n is known in advance. We conjecture that it is possible to achieve the same loss
bound by joining ranges of well-chosen states into roughly

√
n super-states, and

adapting the transition probabilities accordingly.

Trimming

Another straightforward way to reduce the running time of Algorithm 4.1 is by
run-time modification of the HMM. We call this trimming. The idea is to drop low
probability transitions from one sample size to the next. For example, consider
the HMM for elementwise mixtures of two experts, Figure 4.7. The number of
transitions grows linearly in n, but depending on the details of the application, the
probability mass may concentrate on a subset that represents mixture coefficients
close to the optimal value. A speedup can then be achieved by always retaining
only the smallest set of transitions that are reached with probability p, for some
value of p which is reasonably close to one. The lost probability mass can be
recovered by renormalisation.

The ML Conditioning Trick

A more drastic approach to reducing the running time can be applied whenever
the ES-prior assigns positive probability to all expert sequences. Consider the
desired marginal probability (4.2) which is equal to:

P (xn) =
∑

ξn∈Ξn

π(ξn)P (xn | ξn). (4.37)

In this expression, the sequence of experts ξn can be interpreted as a parameter.
While we would ideally compute the Bayes marginal distribution, which means
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integrating out the parameter under the ES-prior, it may be easier to compute a
point estimator for ξn instead. Such an estimator ξ(xn) can then be used to find
a lower bound on the marginal probability:

π(ξ(xn))P (xn | ξ(xn)) ≤ P (xn). (4.38)

The first estimator that suggests itself is the Bayesian maximum a-posteriori:

ξmap(xn) := arg maxξn∈Ξn π(ξn)P (xn | ξn).

In Section 4.2.5 we explain that this estimator is generally hard to compute for
ambiguous HMMs, and for unambiguous HMMs it is as hard as evaluating the
marginal (4.37). One estimator that is much easier to compute is the maximum
likelihood (ML) estimator, which disregards the ES-prior π altogether:

ξml(x
n) := arg maxξn∈Ξn P (xn | ξn).

The ML estimator may correspond to a much smaller term in (4.37) than the
MAP estimator, but it has the advantage that it is extremely easy to compute.
In fact, letting ξ̂n := ξml(x

n), each expert ξ̂i is a function of only the corresponding
outcome xi. Thus, calculation of the ML estimator is cheap. Furthermore, if the
goal is not to find a lower bound, but to predict the outcomes xn with as much
confidence as possible, we can make an even better use of the estimator if we use
it sequentially. Provided that P (xn) > 0, we can approximate:

P (xn) =
n∏

i=1

P (xi|xi−1) =
n∏

i=1

∑

ξi∈Ξ

P (ξi|xi−1)Pξi
(xi|xi−1)

≈
n∏

i=1

∑

ξi∈Ξ

π(ξi|ξ̂ i−1)Pξi
(xi|xi−1) =: P̃ (xn).

(4.39)

This approximation improves the running time if the conditional distribution
π(ξn|ξn−1) can be computed more efficiently than P (ξn|xn−1), as is often the
case.

Example 13. As can be seen in Figure 4.1, the running time of the universal
elementwise mixture model (cf. Section 4.3.1) is O(n|Ξ|), which is prohibitive in
practice, even for small Ξ. We apply the above approximation. For simplicity
we impose the uniform prior density w(α) = 1 on the mixture coefficients. We
use the generalisation of Laplace’s Rule of Succession to multiple experts, which
states:

πue(ξn+1|ξn) =

∫

△(Ξ)

α(ξn+1)w(α|ξn) dα =

∣
∣
∣

{
j ≤ n | ξj = ξn+1

}
∣
∣
∣+ 1

n + |Ξ| . (4.40)
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Substitution in (4.39) yields the following predictive distribution:

P̃ (xn+1|xn) =
∑

ξn+1∈Ξ

π(ξn+1 | ξ̂ n)Pξn+1(xn+1 | xn)

=
∑

ξn+1

|{j ≤ n | ξ̂j(x
n) = ξn+1}|+ 1

n + |Ξ| Pξn+1(xn+1|xn).

(4.41)

By keeping track of the number of occurrences of each expert in the ML sequence,
this expression can easily be evaluated in time proportional to the number of
experts, so that P̃ (xn) can be computed in the ideal time O(n |Ξ|) (which is a
lower bound because one has to consider all experts at all sample sizes). ♦

The difference between P (xn) and P̃ (xn) is difficult to analyse in general,
but the approximation does have two encouraging properties. First, the lower
bound (4.38) on the marginal probability, instantiated for the ML estimator, also
provides a lower bound on P̃ . We have

P̃ (xn) ≥
n∏

i=1

π(ξ̂i | ξ̂ i−1)Pξ̂i
(xi | xi−1) = π(ξ̂n)P (xn | ξ̂ n).

To see why the approximation gives higher probability than the bound, consider
that the bound corresponds to a defective distribution, unlike P̃ .

Second, the following information processing argument shows that even in
circumstances where the approximation of the posterior P̃ (ξi | xi−1) is poor, the
approximation of the predictive distribution P̃ (xi | xi−1) might be acceptable.

Lemma 4.5.1. Let π, ρ be ES-priors. Then for all n ∈ N,

D
(
Pρ(xn)‖Pπ(xn)

)
≤ D

(
ρ(ξn)‖π(ξn)

)
.

Proof. The claim follows from taking an expectation of Theorem 4.3.1 under Pρ:

EPρ

[

− log
Pπ(xn)

Pρ(xn)

]

≤ EPρ EPρ

[

− log
π(ξn)

ρ(ξn)

∣
∣
∣
∣
xn

]

= EPρ

[

− log
π(ξn)

ρ(ξn)

]

.

We apply this lemma to the predictive distribution on the single next outcome
after observing a sequence xn. Setting π to Pπ(ξn+1|ξ(xn)) and ρ to Pπ(ξn+1|xn),
we find that the divergence between the predictive distribution on the next out-
come and its approximation, is at most equal to the divergence between the
posterior distribution on the next expert and its approximation. In other words,
approximation errors in the posterior tend to cancel each other out during pre-
diction.
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Figure 4.16 Conditioning ES-prior on past observations for free

qp

1 qp

2 qp

2

ξ1 ξ2|x1 ξ3|x2 ···

x1 x2|x1 x3|x2 ···

4.5.2 Data-Dependent Priors

To motivate ES-priors we used the slogan we do not understand the data. When
we discussed using HMMs as ES-priors we imposed the restriction that for each
state the associated Ξ-PFS was independent of the previously produced experts.
Indeed, conditioning on the expert history increases the running time dramati-
cally as all possible histories must be considered. However, conditioning on the
past observations can be done at no additional cost, as the data are observed. The
resulting HMM is shown in Figure 4.16. We consider this technical possibility a
curiosity, as it clearly violates our slogan. Of course it is equally feasible to condi-
tion on some function of the data. An interesting case is obtained by conditioning
on the vector of losses (cumulative or incremental) incurred by the experts. This
way we maintain ignorance about the data, while extending expressive power: the
resulting ES-joints are generally not decomposable into an ES-prior and expert
PFSs. An example is the Variable Share algorithm introduced in [46].

4.5.3 An Alternative to MAP Data Analysis

Sometimes we have data xn that we want to analyse. One way to do this is by
computing the MAP sequence of experts. Unfortunately, we do not know how to
compute the MAP sequence for general HMMs. We propose the following alter-
native way to gain in sight into the data. The forward and backward algorithm
compute P (xi, qp

i ) and P (xn|qp

i , x
i). Recall that qp

i is the productive state that is
used at time i. From these we can compute the a-posteriori probability P (qp

i |xn)
of each productive state qp

i . That is, the posterior probability taking the entire
future into account. This is a standard way to analyse data in the HMM litera-
ture. [66] To arrive at a conclusion about experts, we simply project the posterior
on states down to obtain the posterior probability P (ξi|xn) of each expert ξ ∈ Ξ
at each time i = 1, . . . , n. This gives us a sequence of mixture weights over the
experts that we can, for example, plot as a Ξ × n grid of gray shades. On the
one hand this gives us mixtures, a richer representation than just single experts.
On the other hand we lose temporal correlations, as we treat each time instance
separately.
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4.6 Conclusion

In prediction with expert advice, the goal is to formulate prediction strategies
that perform as well as the best possible expert (combination). Expert predic-
tions can be combined by taking a weighted mixture at every sample size. The
best combination generally evolves over time. In this chapter we introduced ex-
pert sequence priors (ES-priors), which are probability distributions over infinite
sequences of experts, to model the trajectory followed by the best expert com-
bination. Prediction with expert advice then amounts to marginalising the joint
distribution constructed from the chosen ES-prior and the experts’ predictions.

We employed hidden Markov models (HMMs) to specify ES-priors. HMMs’
explicit notion of current state and state-to-state evolution naturally fit the tem-
poral correlations we seek to model. For reasons of efficiency we use HMMs with
silent states. The standard algorithms for HMMs (Forward, Backward, Viterbi
and Baum-Welch) can be used to answer questions about the ES-prior as well as
the induced distribution on data. The running time of the forward algorithm can
be read off directly from the graphical representation of the HMM.

Our approach allows unification of many existing expert models, including
mixture models and fixed share. We gave their defining HMMs and recovered
the best known running times. We also introduced two new parameterless gen-
eralisations of fixed share. The first, called the switch distribution, was recently
introduced to improve model selection performance. We rendered its parametric
definition as a small HMM, which shows how it can be evaluated in linear time.
The second, called the run-length model, uses a run-length code in a novel way,
namely as an ES-prior. This model has quadratic running time. We compared
the loss bounds of the two models asymptotically, and showed that the run-length
model is preferred if the number of switches grows like (log n)2 or faster, while
the switch distribution is preferred if it grows slower. We provided graphical
representations and loss bounds for all considered models.

Finally we described a number of extensions of the ES-prior/HMM approach,
including approximating methods for large HMMs, as well as recursive combina-
tions of expert models.
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Algorithm 4.1 Forward(A). Fix an unfolded deterministic HMM prior A =
〈Q,Qp, P◦, P, Λ〉 on Ξ, and an X -PFS Pξ for each expert ξ ∈ Ξ. The input
consists of a sequence xω that arrives sequentially.

Declare the weight map (partial function) w ··· Q→ [0, 1].
w(v)← P◦(v) for all v s.t. P◦(v) > 0.
⊲ dom(w) = I
for n = 1, 2, . . . do

Forward Propagation(n)
Predict next expert: P (ξn = ξ|xn−1) =

∑

v∈Q{n}:Λ(v)=ξ w(v)
∑

v∈Q{n}
w(v)

.
Loss Update(n)
Report probability of data: P (xn) =

∑

v∈Q{n}
w(v).

end for

Procedure Forward Propagation(n):
while dom(w) 6= Q{n} do

⊲ dom(w) ⊆ Q[n−1,n]

Pick a <-minimal state u in dom(w) \Q{n}.
⊲ u ∈ Q[n−1,n)

for v ∈ Su do
⊲ v ∈ Q(n−1,n]

w(v)← 0 if v /∈ dom(w).
w(v)← w(v) + w(u) P(u→ v).

end for
Remove u from the domain of w.

end for

Procedure Loss Update(n):
for v ∈ Q{n} do

⊲ v ∈ Qp

w(v)←w(v)PΛ(v)(xn|xn−1).
end for



Chapter 5

Slow Convergence: the Catch-up

Phenomenon

We consider inference based on a countable set of models (sets of probability
distributions), focusing on two tasks: model selection and model averaging. In
model selection tasks, the goal is to select the model that best explains the given
data. In model averaging, the goal is to find the weighted combination of models
that leads to the best prediction of future data from the same source.

An attractive property of some criteria for model selection is that they are
consistent under weak conditions, i.e. if the true distribution P ∗ is in one of
the models, then the P ∗-probability that this model is selected goes to one as
the sample size increases. BIC [78], Bayes factor model selection [49], Minimum
Description Length (MDL) model selection [4] and prequential model validation
[27] are examples of widely used model selection criteria that are usually consis-
tent. However, other model selection criteria such as AIC [2] and leave-one-out
cross-validation (LOO) [86], while often inconsistent, do typically yield better
predictions. This is especially the case in nonparametric settings of the following
type: P ∗ can be arbitrarily well-approximated by a sequence of distributions in
the (parametric) models under consideration, but is not itself contained in any
of these. In many such cases, the predictive distribution converges to the true
distribution at the optimal rate for AIC and LOO [80, 56], whereas in general
BIC, the Bayes factor method and prequential validation only achieve the opti-
mal rate to within an O(log n) factor [74, 34, 101, 39]. In this paper we reconcile
these seemingly conflicting approaches [103] by improving the rate of convergence
achieved in Bayesian model selection without losing its consistency properties.
First we provide an example to show why Bayes sometimes converges too slowly.

Given priors on models M1, M2, . . . and parameters therein, Bayesian in-
ference associates each model Mk with the marginal distribution pk, given in
(5.1), obtained by averaging over the parameters according to the prior. In
Bayes factor model selection the preferred model is the one with maximum a
posteriori probability. By Bayes’ rule this is arg maxk pk(xn)w(k), where w(k)

121
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denotes the prior probability ofMk. We can further average over model indices,
a process called Bayesian Model Averaging (BMA). The resulting distribution
pbma(x

n) =
∑

k pk(xn)w(k) can be used for prediction. In a sequential setting,
the probability of a data sequence xn := x1, . . . , xn under a distribution p typically
decreases exponentially fast in n. It is therefore common to consider − log p(xn),
which we call the code length of xn achieved by p. We take all logarithms to
base 2, allowing us to measure code length in bits. The name code length refers
to the correspondence between code length functions and probability distribu-
tions based on the Kraft inequality, but one may also think of the code length
as the accumulated log loss that is incurred if we sequentially predict the xi by
conditioning on the past, i.e. using p(·|xi−1) [4, 39, 27, 69]. For BMA, we have
− log pbma(x

n) =
∑n

i=1− log pbma(xi|xi−1). Here the ith term represents the loss
incurred when predicting xi given xi−1 using pbma(·|xi−1), which turns out to be
equal to the posterior average: pbma(xi|xi−1) =

∑

k pk(xi|xi−1)w(k|xi−1).

Prediction using pbma has the advantage that the code length it achieves on xn

is close to the code length of pk̂, where k̂ is the best of the marginals p1, p2, . . ., i.e.

k̂ achieves mink− log pk(xn). More precisely, given a prior w on model indices, the
difference between − log pbma(x

n) = − log(
∑

k pk(xn)w(k)) and − log pk̂(xn) must

be in the range [0,− log w(k̂)], whatever data xn are observed. Thus, using BMA
for prediction is sensible if we are satisfied with doing essentially as well as the
best model under consideration. However, it is often possible to combine p1, p2, . . .
into a distribution that achieves smaller code length than pk̂! This is possible if

the index k̂ of the best distribution changes with the sample size in a predictable
way. This is common in model selection, for example with nested models, say
M1 ⊂M2. In this case p1 typically predicts better at small sample sizes (roughly,
because M2 has more parameters that need to be learned than M1), while p2

predicts better eventually. Figure 5.1 illustrates this phenomenon. It shows the
accumulated code length difference − log p2(x

n)− (− log p1(x
n)) on “The Picture

of Dorian Gray”by Oscar Wilde, where p1 and p2 are the Bayesian marginal distri-
butions for the first-order and second-order Markov chains, respectively, and each
character in the book is an outcome. Note that the example modelsM1 andM2

are very crude; for this particular application much better models are available.
However, in more complicated, more realistic model selection scenarios, the mod-
els may still be wrong, but it may not be known how to improve them. ThusM1

and M2 serve as a simple illustration only (see the discussion in Section 5.7.1).
We used uniform priors on the model parameters, but for other common priors
similar behaviour can be expected. Clearly p1 is better for about the first 100 000
outcomes, gaining a head start of approximately 40 000 bits. Ideally we should
predict the initial 100 000 outcomes using p1 and the rest using p2. However, pbma

only starts to behave like p2 when it catches up with p1 at a sample size of about
310 000, when the code length of p2 drops below that of p1. Thus, in the shaded
area pbma behaves like p1 while p2 is making better predictions of those outcomes:
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Figure 5.1 The Catch-up Phenomenon
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since at n = 100 000, p2 is 40 000 bits behind, and at n = 310 000, it has caught
up, in between it must have outperformed p1 by 40 000 bits! The general pattern
that first one model is better and then another occurs widely, both on real-world
data and in theoretical settings. We argue that failure to take this effect into
account leads to the suboptimal rate of convergence achieved by Bayes factor
model selection and related methods. We have developed an alternative method
to combine distributions p1 and p2 into a single distribution psw, which we call
the switch-distribution, defined in Section 5.1. Figure 5.1 shows that psw behaves
like p1 initially, but in contrast to pbma it starts to mimic p2 almost immediately
after p2 starts making better predictions; it essentially does this no matter what
sequence xn is actually observed. psw differs from pbma in that it is based on a
prior distribution on sequences of models rather than simply a prior distribution
on models. This allows us to avoid the implicit assumption that there is one
model which is best at all sample sizes. After conditioning on past observations,
the posterior we obtain gives a better indication of which model performs best at
the current sample size, thereby achieving a faster rate of convergence. Indeed,
the switch-distribution is very closely related to earlier algorithms for tracking the
best expert developed in the universal prediction literature; see also Section 5.6
[46, 95, 94, 63]; however, the applications we have in mind and the theorems we
prove are completely different.

The remainder of the paper is organised as follows. In Section 5.1 we intro-
duce our basic concepts and notation, and we then define the switch-distribution.
While in the example above, we switched just between two models, the general
definition allows switching between elements of any finite or countably infinite
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set of models. In Section 5.2 and 5.3 we show that model selection based on the
switch-distribution is consistent (Theorem 5.2.1). Then in Section 5.3 we show
that the switch-distribution achieves a rate of convergence that is never signifi-
cantly worse than that of Bayesian model averaging, and we develop a number
of tools that can be used to bound the rate of convergence “in sum” compared to
other model selection criteria. Using these results we show that, in particular, the
switch-distribution achieves the worst-case optimal rate of convergence when it
is applied to histogram density estimation. In Section 5.4 we provide additional
discussion, where we compare our “in sum” convergence rates to the standard
definition of convergence rates, and where we motivate our conjecture that the
switch-distribution in fact achieves the worst-case optimal rate of convergence in
a very wide class of problems including regression using mean squared error. In
Section 5.5 we give a practical algorithm that computes the switch-distribution.
Theorem 5.5.1 shows that the run-time for k predictors is Θ(n · k) time. In Sec-
tions 5.6 and Section 5.7 we put our work in a broader context and explain how
our results fit into the existing literature. Specifically, Section 5.7.1 describes a
strange implication of the catch-up phenomenon for Bayes factor model selection.
The proofs of all theorems are in Section 5.9.

5.1 The Switch-Distribution for Model Selec-

tion and Prediction

5.1.1 Preliminaries

Suppose X∞ = (X1, X2, . . .) is a sequence of random variables that take values
in sample space X ⊆ R

d for some d ∈ Z
+ = {1, 2, . . .}. For n ∈ N = {0, 1, 2, . . .},

let xn = (x1, . . ., xn) denote the first n outcomes of X∞, such that xn takes
values in the product space X n = X1 × · · · × Xn. (We let x0 denote the empty
sequence.) Let X ∗ =

⋃∞
n=0X n. For m > n, we write Xm

n+1 for (Xn+1, . . ., Xm),
where m =∞ is allowed. We sometimes omit the subscript when n = 0 and write
Xm rather than Xm

0 .
Any distribution P (X∞) may be defined in terms of a sequential prediction

strategy p that predicts the next outcome at any time n ∈ N. To be precise:
Given the previous outcomes xn at time n, this prediction strategy should issue
a conditional density p(Xn+1|xn) with corresponding distribution P (Xn+1|xn) for
the next outcome Xn+1. Such sequential prediction strategies are sometimes
called prequential forecasting systems [27]. An instance is given in Example 14
below. We assume that the density p(Xn+1|xn) is taken relative to either the usual
Lebesgue measure (if X is continuous) or the counting measure (if X is countable).
In the latter case p(Xn+1|xn) is a probability mass function. It is natural to define
the joint density p(xm|xn) = p(xn+1|xn) · · · p(xm|xm−1) and let P (X∞

n+1|xn) be the
unique distribution on X∞ such that, for all m > n, p(Xm

n+1|xn) is the density of
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its marginal distribution for Xm
n+1. To ensure that P (X∞

n+1|xn) is well-defined even
if X is continuous, we will only allow prediction strategies satisfying the natural
requirement that for any k ∈ Z

+ and any fixed measurable event Ak+1 ⊆ Xk+1 the
probability P (Ak+1|xk) is a measurable function of xk. This requirement holds
automatically if X is countable.

5.1.2 Model Selection and Prediction

In model selection the goal is to choose an explanation for observed data xn from a
potentially infinite list of candidate modelsM1,M2, . . . We consider parametric
models, which we define as sets {pθ : θ ∈ Θ} of prediction strategies pθ that are
indexed by elements of Θ ⊆ R

d, for some smallest possible d ∈ N, the number of
degrees of freedom. A model is more commonly viewed as a set of distributions,
but since distributions can be viewed as prediction strategies as explained above,
we may think of a model as a set of prediction strategies as well. Examples of
model selection are regression based on a set of basis functions such as polynomials
(d is the number of coefficients of the polynomial), the variable selection problem
in regression [80, 56, 101] (d is the number of variables), and histogram density
estimation [74] (d is the number of bins minus 1). A model selection criterion is
a function δ : X ∗ → Z

+ that, given any data sequence xn ∈ X ∗, selects the model
Mk with index k = δ(xn).

With each model Mk we associate a single prediction strategy p̄k. The bar
emphasises that p̄k is a meta-strategy based on the prediction strategies in Mk.
In many approaches to model selection, for example AIC and LOO, p̄k is de-
fined using some estimator θ̂k, which maps a sequence xn of previous obser-
vations to an estimated parameter value that represents a “best guess” of the
true/best distribution in the model. Prediction is then based on this estima-
tor: p̄k(Xn+1 | xn) = pθ̂k(xn)(Xn+1 | xn), which also defines a joint density

p̄k(xn) = p̄k(x1) · · · p̄k(xn|xn−1). The Bayesian approach to model selection or
model averaging goes the other way around. It starts out with a prior w on Θk,
and then defines the Bayesian marginal density

p̄k(xn) =

∫

θ∈Θk

pθ(x
n)w(θ) dθ. (5.1)

When p̄k(xn) is non-zero this joint density induces a unique conditional density
p̄k(Xn+1 | xn) = p̄k(Xn+1, x

n)/p̄k(xn), which is equal to the mixture of pθ ∈ Mk

according to the posterior, w(θ|xn) = pθ(x
n)w(θ)/

∫
pθ(x

n)w(θ) dθ, based on xn.
Thus the Bayesian approach also defines a prediction strategy p̄k(Xn+1|xn), whose
corresponding distribution may be thought of as an estimator. From now on we
sometimes call the distributions induced by p̄1, p̄2, . . .“estimators”, even if they are
Bayesian. We may usually think of the estimators p̄k as universal codes relative
to Mk [39]. This unified view is known as the prequential approach to statistics
or predictive MDL [27, 69].
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Example 14. Suppose X = {0, 1}. Then a prediction strategy p̄ may be based
on the Bernoulli model M = {pθ | θ ∈ [0, 1]} that regards X1, X2, . . . as a
sequence of independent, identically distributed Bernoulli random variables with
Pθ(Xn+1 = 1) = θ. We may predict Xn+1 using the maximum likelihood (ML)
estimator based on the past, i.e. using θ̂(xn) = n−1

∑n
i=1 xi. The prediction for

x1 is then undefined. If we use a smoothed ML estimator such as the Laplace
estimator, θ̂′(xn) = (n + 2)−1(

∑n
i=1 xi + 1), then all predictions are well-defined.

It is well-known that the predictor p̄′ defined by p̄′(Xn+1 | xn) = pθ̂′(xn)(Xn+1)
equals the Bayesian predictive distribution based on a uniform prior. Thus in this
case a Bayesian predictor and an estimation-based predictor coincide!

In general, for a k-dimensional parametric modelMk, we can define p̄k(Xn+1 |
xn) = pθ̂′k(xn)(Xn+1) for some smoothed ML estimator θ̂′k. The joint distribution

with density p̄k(xn) will then resemble, but in general not be precisely equal to,
the Bayes marginal distribution with density p̄k(xn) under some prior onMk [39].

5.1.3 The Switch-Distribution

Suppose p1, p2, . . . is a list of prediction strategies for X∞. (Although here the list
is infinitely long, the developments below can with little modification be adjusted
to the case where the list is finite.) We first define a family Q = {qs : s ∈ S}
of combinator prediction strategies that switch between the original prediction
strategies. Here the parameter space S is defined as

S = {(t1, k1), . . . , (tm, km) ∈ (N× Z
+)m | m ∈ Z

+, 0 = t1 < . . . < tm}. (5.2)

The parameter s ∈ S specifies the identities of m constituent prediction strategies
and the sample sizes, called switch-points, at which to switch between them. For
s = ((t′1, k

′
1), . . . , (t′m′ , k′

m′)), we define ti(s) = t′i, ki(s) = k′
i and m(s) = m′. We

omit the argument when the parameter s is clear from context, e.g. we write t3
for t3(s). For each s ∈ S the corresponding qs ∈ Q is defined as:

qs(Xn+1|xn) =







pk1(Xn+1|xn) if n < t2,

pk2(Xn+1|xn) if t2 ≤ n < t3,
...

...

pkm−1(Xn+1|xn) if tm−1 ≤ n < tm,

pkm(Xn+1|xn) if tm ≤ n.

(5.3)

Switching to the same predictor multiple times is allowed. The extra switch-point
t1 is included to simplify notation; we always take t1 = 0, so that k1 represents
the strategy that is used in the beginning, before any actual switch takes place.
Using (5.3), we may now define the switch-distribution as a Bayesian mixture of
the elements of Q according to a prior π on S:
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Definition 5.1.1 (Switch-Distribution). Let π be a probability mass function on
S. Then the switch-distribution Psw with prior π is the distribution for X∞ such
that, for any n ∈ Z

+, the density of its marginal distribution for Xn is given by

psw(xn) =
∑

s∈S

qs(x
n) · π(s). (5.4)

Although the switch-distribution provides a general way to combine predic-
tion strategies (see Section 5.6), in this paper it will only be applied to combine
prediction strategies p̄1, p̄2, . . . that correspond to parametric models. In this
case we may define a corresponding model selection criterion δsw. To this end,
let Kn+1 : S → Z

+ be a random variable that denotes the strategy/model that
is used to predict Xn+1 given past observations xn. Formally, Kn+1(s) = ki(s)
iff ti(s) ≤ n and i = m(s) ∨ n < ti+1(s). Now note that by Bayes’ theorem, the
prior π, together with the data xn, induces a posterior π(s | xn) ∝ qs(x

n)π(s) on
switching strategies s. This posterior on switching strategies further induces a
posterior on the model Kn+1 that is used to predict Xn+1. Algorithm 5.1, given
in Section 5.5, efficiently computes the posterior distribution on Kn+1 given xn:

π(Kn+1 = k | xn) =

∑

{s:Kn+1(s)=k} π
(
s
)
qs(x

n)

psw(xn)
, (5.5)

which is defined whenever psw(xn) is non-zero. We turn this into a model selection
criterion

δsw(xn) = arg max
k

π(Kn+1 = k|xn)

that selects the model with maximum posterior probability.

5.2 Consistency

If one of the models, say with index k∗, is actually true, then it is natural to
ask whether δsw is consistent, in the sense that it asymptotically selects k∗ with
probability 1. Theorem 5.2.1 states that, if the prediction strategies p̄k associ-
ated with the models are Bayesian predictive distributions, then δsw is consistent
under certain conditions which are only slightly stronger than those required for
standard Bayes factor model selection consistency. Theorem 5.2.2 extends the
result to the situation where the p̄k are not necessarily Bayesian.

Bayes factor model selection is consistent if for all k, k′ 6= k, P̄k(X∞) and
P̄k′(X∞) are mutually singular, that is, if there exists a measurable set A ⊆ X∞

such that P̄k(A) = 1 and P̄k′(A) = 0 [4]. For example, this can usually be shown
to hold if (a) the models are nested and (b) for each k, Θk is a subset of Θk+1

of wk+1-measure 0. In most interesting applications in which (a) holds, (b) also
holds [39]. For consistency of δsw, we need to strengthen the mutual singularity-
condition to a “conditional” mutual singularity-condition: we require that, for all
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k′ 6= k and all xn ∈ X ∗, the distributions P̄k(X∞
n+1 | xn) and P̄k′(X∞

n+1 | xn) are
mutually singular. For example, if X1, X2, . . . are independent and identically
distributed (i.i.d.) according to each Pθ in all models, but also if X is countable
and p̄k(xn+1 | xn) > 0 for all k, all xn+1 ∈ X n+1, then this conditional mutual
singularity is automatically implied by ordinary mutual singularity of P̄k(X∞)
and P̄k′(X∞).

Let Es = {s′ ∈ S | m(s′) > m(s), (ti(s
′), ki(s

′)) = (ti(s), ki(s)) for i =
1, . . . ,m(s)} denote the set of all possible extensions of s to more switch-points.
Let p̄1, p̄2, . . . be Bayesian prediction strategies with respective parameter spaces
Θ1, Θ2, . . . and priors w1, w2, . . ., and let π be the prior of the corresponding
switch-distribution.

Theorem 5.2.1 (Consistency of the Switch-Distribution). Suppose π is positive
everywhere on {s ∈ S | m(s) = 1} and such that for some positive constant
c, for every s ∈ S, c · π(s) ≥ π(Es). Suppose further that P̄k(X∞

n+1 | xn) and
P̄k′(X∞

n+1 | xn) are mutually singular for all k, k′ ∈ Z
+, k 6= k′, xn ∈ X ∗. Then,

for all k∗ ∈ Z
+, for all θ∗ ∈ Θk∗ except for a subset of Θk∗ of wk∗-measure 0, the

posterior distribution on Kn+1 satisfies

π(Kn+1 = k∗ | Xn)
n→∞−→ 1 with Pθ∗-probability 1. (5.6)

The requirement that c · π(s) ≥ π(Es) is automatically satisfied if π is of the
form:

π(s) = πm(m)πk(k1)
m∏

i=2

πt(ti|ti > ti−1)πk(ki), (5.7)

where πm, πk and πt are priors on Z
+ with full support, and πm is geometric:

πm(m) = θm−1(1− θ) for some 0 ≤ θ < 1. In this case c = θ/(1− θ).
We now extend the theorem to the case where the universal distributions

p̄1, p̄2, . . . are not necessarily Bayesian, i.e. they are not necessarily of the form
(5.1). It turns out that the “meta-Bayesian” universal distribution Psw is still
consistent, as long as the following condition holds. The condition essentially
expresses that, for each k, p̄k must not be too different from a Bayesian predictive
distribution based on (5.1). This can be verified if all modelsMk are exponential
families (as in, for example, linear regression problems), and the p̄k represent ML
or smoothed ML estimators (see Theorem 2.1 and 2.2 of [57]). We suspect that
it holds as well for more general parametric models and universal codes, but we
do not know of any proof.

Condition There exist Bayesian prediction strategies p̄B
1 , p̄B

2 , . . . of form (5.1),
with continuous and strictly positive priors w1, w2, . . . such that

1. The conditions of Theorem 5.2.1 hold for p̄B
1 , p̄B

2 , . . . and the chosen switch-
distribution prior π.
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2. For all k ∈ N, for each compact subset Θ′ of the interior of Θk, there exists
a K such that for all θ ∈ Θ′, with θ-probability 1, for all n

− log p̄k(Xn) + log p̄B
k (Xn) ≤ K.

3. For all k, k′ ∈ N with k 6= k′, p̄B
k and p̄k′ are mutually singular.

Theorem 5.2.2 (Consistency of the Switch-Distribution, Part 2). Let p̄1, p̄2, . . .
be prediction strategies and let π be the prior of the corresponding switch distri-
bution. Suppose that the condition above holds relative to p̄1, p̄2, . . . and π. Then,
for all k∗ ∈ N, for all θ∗ ∈ Θk∗ except for a subset of Θk∗ of Lebesgue-measure 0,
the posterior distribution on Kn+1 satisfies

π(Kn+1 = k∗ | Xn)
n→∞−→ 1 with Pθ∗-probability 1. (5.8)

5.3 Optimal Risk Convergence Rates

In this section we investigate how well the switch-distribution is able to predict
future data in terms of its accumulated KL-risk, which will be formally defined
shortly. We first compare predictive performance of the switch-distribution to
that achieved by Bayesian model averaging in Section 5.3.1, showing that, reas-
suringly, the summed risk achieved by Psw is never more than a small constant
higher than that achieved by Pbma. Then in Section 5.3.2 we describe the general
setup and establish a lemma that is used as a general tool in the analysis. Sec-
tion 5.3.3 treats the case where the data are sampled from a density p∗ which is
an element of one of the considered models Mk∗ for some k∗ ∈ Z

+. In this case
we already know from the previous section that the switch-distribution is typi-
cally consistent; here we show that it will also avoid the catch-up phenomenon
as described in the introduction. Then in Section 5.3.4, we look at the situation
where p∗ is not in any of the considered models. For this harder, nonparametric
case we compare the loss of the switch distribution to that of any other model
selection criterion, showing that under some conditions that depend on this ref-
erence criterion, the two losses are of the same order of magnitude. Finally in
Section 5.3.5 we apply our results to the problem of histogram density estima-
tion, showing that for the class of densities that are (uniformly) bounded away
from zero and infinity, and have bounded first derivatives, the switch-distribution
(based on histogram models with Bayesian estimators that have uniform priors)
predicts essentially as well as any other procedure whatsoever.

The setup is as follows. Suppose X1, X2, . . . are distributed according to a
distribution P ∗ with density p∗ ∈ M∗, where M∗ is an arbitrary set of densities
on X∞. Specifically, X1, X2, . . . do not have to be i.i.d. We abbreviate “P ∗

described by density p∗ ∈M∗” to “P ∗ ∈M∗”.
For prediction we use a sequence of parametric models M1,M2, . . . with as-

sociated estimators P̄1, P̄2, . . . as before. We writeM = ∪∞
i=1Mi. In Section 5.3.3
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we assume that P ∗ ∈ M, while in Section 5.3.4 we assume that this is not the
case, i.e. P ∗ ∈M∗ \M.

Given Xn−1 = xn−1, we will measure how well any estimator P̄ predicts Xn

in terms of the Kullback-Leibler (KL) divergence D(P ∗(Xn = · | xn−1)‖P̄ (Xn =
· | xn−1)) [6]. Suppose that P and Q are distributions for some random variable
Y , with densities p and q respectively. Then the KL divergence from P to Q is

D(P‖Q) = EP

[

log
p(Y )

q(Y )

]

. (5.9)

KL divergence is never negative, and reaches zero if and only if P equals Q.
Taking an expectation over Xn−1 leads to the following (standard) definition of
the risk of estimator P̄ at sample size n relative to KL divergence:

Rn(P ∗, P̄ ) = E
Xn−1∼P ∗

[

D
(
P ∗(Xn = · | Xn−1)‖P̄ (Xn = · | Xn−1)

)]

. (5.10)

The following identity connects accumulated statistical KL-risk to the information-
theoretic redundancy (see e.g. [6] or [39, Chapter 15]) : for all n we have

n∑

i=1

Ri(P
∗, P̄ ) =

n∑

i=1

E

[

log
p∗(Xi | X i−1)

p̄(Xi | X i−1)

]

= E

[

log
p∗(Xn)

p̄(Xn)

]

= D
(

P ∗(n)‖P̄ (n)
)

,

(5.11)
where the superscript (n) denotes taking the marginal of the distribution on the
first n outcomes.

5.3.1 The Switch-distribution vs Bayesian Model Averag-
ing

Here we show that the summed risk achieved by switch-distribution is never much
higher than that of Bayesian model averaging, which is itself never much higher
than that of any of the estimators P̄k under consideration.

Lemma 5.3.1. Let Psw be the switch-distribution for P̄1, P̄2, . . . with prior π of
the form (5.7). Let Pbma be the Bayesian model averaging distribution for the
same estimators, defined with respect to the same prior on the estimators πk.
Then, for all n ∈ Z

+, all xn ∈ X n, and all k ∈ Z
+,

psw(xn) ≥ πm(1)pbma(x
n) ≥ πm(1)πk(k)p̄k(xn).
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Consequently, for all P ∗ ∈M∗ we have

n∑

i=1

Ri(P
∗, Psw)

≤
n∑

i=1

Ri(P
∗, Pbma)− log πm(1)

≤
n∑

i=1

Ri(P
∗, P̄k) − log πm(1)− log πk(k).

Proof. For the first part we underestimate sums:

psw(xn) =
∑

m∈Z+

∑

s∈S:m(s)=m

qs(x
n)π(s) ≥ πm(1) ·

∑

k′∈Z+

πk(k
′)p̄k′(xn)

= πm(1) · pbma(x
n),

pbma(x
n) =

∑

k′∈Z+

p̄k′(xn)πk(k
′) ≥ πk(k)p̄k(xn).

We apply (5.11) to obtain the difference in summed risk:

n∑

i=1

Ri(P
∗, Psw) = E

[

log
p∗(Xn)

psw(Xn)

]

≤ E

[

log
p∗(Xn)

πm(1)pbma(Xn)

]

=
n∑

i=1

Ri(P
∗, Pbma)− log πm(1),

n∑

i=1

Ri(P
∗, Pbma) = E

[

log
p∗(Xn)

pbma(Xn)

]

≤ E

[

log
p∗(Xn)

πk(k)p̄k(Xn)

]

=
n∑

i=1

Ri(P
∗, P̄k)− log πk(k).

As mentioned in the introduction, one advantage of model averaging using
pbma is that it always predicts almost as well as the estimator p̄k for any k,
including the p̄k that yields the best predictions overall. Lemma 5.3.1 shows
that this property is shared by psw, which multiplicatively dominates pbma. In
the following sections, we will investigate under which circumstances the switch-
distribution may achieve a lower summed risk than Bayesian model averaging.

5.3.2 Improved Convergence Rate: Preliminaries

Throughout our analysis of the achieved rate of convergence we will require that
the prior of the switch-distribution, π, can be factored as in (5.7), and is chosen
to satisfy

− log πm(m) = O(m), − log πk(k) = O(log k), − log πt(t) = O(log t). (5.12)
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Thus πm, the prior on the total number of distinct predictors, is allowed to decrease
either exponentially (as required for Theorem 5.2.1) or polynomially, but πt and
πk cannot decrease faster than polynomially. For example, we could set πt(t) =
1/(t(t + 1)) and πk(k) = 1/(k(k + 1)), or we could take the universal prior on the
integers [68].

As competitors to the switch-distribution we introduce a slight generalisation
of model selection criteria:

Definition 5.3.2 (Oracle). An oracle is a function σ : M∗ × X ∗ → Z
+ that is

given not only the observed data xn ∈ X ∗, but also the generating distribution
P ∗ ∈ M∗, which it may use to choose a model index σ(P ∗, xn) ∈ Z

+ for all
n ∈ Z

+.

Given an oracle σ, for any P ∗ and n, xn−1, we abbreviate σi = σ(P ∗, xi−1)
for 1 ≤ i ≤ n. We define Pσ as the distribution on X∞ with marginal densities
pσ(xn) =

∏n
i=1 pσi

(xi|xi−1) for all n, xn. Furthermore, we may split the sequence
σ1, . . . , σn into segments where the same model is chosen. Now let mn(σ) be the
maximum number of such distinct segments over all P ∗ and all xn−1 ∈ X n−1.
That is, let

mn(σ) = max
P ∗

max
xn−1∈Xn−1

|{1 ≤ i ≤ n− 1 : σi 6= σi+1}|+ 1. (5.13)

(The maximum always exists, because for any P ∗ and xn−1 the number of seg-
ments is at most n.)

The following lemma expresses that any oracle σ that does not select overly
complex models, can be approximated by the switch-distribution with a maximum
overhead that depends on mn(σ), its maximum number of segments. We will
typically be interested in oracles σ such that this maximum is small in comparison
to the sample size, n. The lemma is a tool in establishing the convergence rate of
Psw, both in the parametric and the nonparametric contexts considered below.

Lemma 5.3.3. Let Psw be the switch-distribution, defined with respect to a se-
quence of estimators P̄1, P̄2, . . . as introduced above, with any prior π that satisfies
the conditions in (5.12) and let P ∗ ∈ M∗. Suppose τ is a positive real number
and σ is an oracle such that

σ(P ∗, xi−1) ≤ iτ (5.14)

for all i ∈ Z
+, all xi−1 ∈ X i−1. Then

n∑

i=1

Ri(P
∗, Psw) =

n∑

i=1

Ri(P
∗, Pσ) + mn(σ) ·O(log n), (5.15)

where the multiplicative constant in the big-O notation depends only on τ and the
constants implicit in (5.12).
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Proof. Using (5.11) we can rewrite (5.15) into the equivalent claim

E

[

log
pσ(Xn)

psw(Xn)

]

= mn(σ) ·O(log n), (5.16)

which we proceed to prove. For all n, xn ∈ X n, there exists a s ∈ S with
m(s) ≤ mn(σ) that represents the same sequence of models as σ, so that qs(x

i |
xi−1) = pσi

(xi | xi−1) for 1 ≤ i ≤ n. Consequently, we can bound

psw(xn) =
∑

s′∈S

qs′(x
n) · π(s′) ≥ qs(x

n)π(s) = pσ(xn)π(s). (5.17)

By assumption (5.14) we have that σ, and therefore s, never selects a modelMk

with index k larger than iτ to predict the ith outcome. Together with (5.12) this
implies that

− log π(s)

= − log πm(m(s))− log πk(k1(s)) +

m(s)
∑

j=2

(
− log πt(tj(s) | tj−1(s))− log πk(kj(s))

)

= O(m(s)) +

m(s)
∑

j=1

O(log tj(s)) + O(log kj(s))

= O(m(s)) +

m(s)
∑

j=1

O(log tj(s)) + O
(

log
(
(tj(s) + 1)τ

))

= mn(σ) ·O(log n),

(5.18)

where the multiplicative constant in the big-O in the final expression depends
only on τ and the multiplicative constants in (5.12). Together (5.17) and (5.18)
imply (5.16), which was to be shown.

In the following subsections, we compare the accumulated risk of Psw to that
of Pσ for various oracles σ; in all these cases our results are independent of the
data generating distribution P ∗ ∈ M∗. For that reason it will be convenient to
define the worst-case summed risk of the switch-distribution and of oracle σ:

Gsw(n) := sup
P ∗∈M∗

n∑

i=1

Ri(P
∗, Psw), and (5.19)

Gσ(n) := sup
P ∗∈M∗

n∑

i=1

Ri(P
∗, Pσ). (5.20)

We will also compare the accumulated risk of Psw to the minimax risk in sum,
defined as

Gmm-fix(n) := inf
P̄

sup
P ∗∈M∗

n∑

i=1

Ri(P
∗, P̄ ). (5.21)
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Here the infimum is over all prequential forecasting systems P̄ for which, for each
n, xn−1 ∈ X n−1, P̄ (Xn = · | Xn−1 = xn−1) admits a density. Equivalently,
the infimum is over all sequences of n estimators P̄ (X1), P̄ (X2 | X1), . . . , P̄ (Xn |
Xn−1). Note that there is no requirement that P̄ maps xn to a distribution inM∗

or M; we are looking at the worst case over all possible estimators, irrespective
of the model M used to approximate M∗. Thus, we may call P̄ an “out-model
estimator” [39]. The notation Gmm-fix will be clarified in Section 5.4, where we
compare convergence in sum with more standard notions of convergence.

5.3.3 The Parametric Case

Here we assume that P ∗ ∈ Mk∗ for some k∗ ∈ Z
+, but we also consider that

if M1,M2, . . . are of increasing complexity, then the catch-up phenomenon may
occur, meaning that at small sample sizes, some estimator P̄k with k < k∗ may
achieve lower risk than P̄k∗ . The following lemma shows that the predictive per-
formance of the switch-distribution is never much higher than the predictive per-
formance of the best oracle that iterates through the models in order of increasing
complexity.

Lemma 5.3.4. Let Psw be the switch distribution, defined with respect to a se-
quence of estimators P̄1, P̄2, . . . as above, with prior π satisfying (5.12). Let
k∗ ∈ Z

+, and let σ be any oracle such that for all P ∗, all x∞, we have that
σ(P ∗, xn) is monotonically nondecreasing in n; furthermore for sufficiently large
n, we have σ(P ∗, xn) = k∗. Then

Gsw(n)−Gσ(n) ≤ sup
P ∗∈M∗





n∑

i=1

Ri(P
∗, Psw)−

n∑

i=1

Ri(P
∗, Pσ)



 = k∗ ·O(log n).

In particular, if for some c′ > 0, for all sufficiently large n, Gσ(n) ≥ c log n (i.e.
Gσ = Ω(log n)), then there is a c such that

lim sup
n→∞

Gsw(n)

Gσ(n)
≤ c.

The additional risk compared to Pσ is of order log n. In the parametric case,
we often have Gmm-fix(n) proportional to log n (Section 5.4.1). If that is the case,
and if, as seems reasonable, there is an oracle σ that satisfies the given restrictions
and that achieves summed risk proportional to Gmm-fix(n), then also the switch-
distribution achieves a proportional summed risk.

Proof. The first inequality is a consequence of the general rule that for two func-
tions f and g, we have supx f(x) − supx g(x) ≤ supx(f(x) − g(x)). We proceed
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to show the asymptotics of the second term, which has the supremum on the
outside. Let s = (0, k∗). We have, uniformly for all n, xn ∈ X n,

− log psw(xn) = − log
∑

s′∈S

qs′(x
n)π(s′) ≤ − log qs(x

n) + π(s). (5.22)

Since σ satisfies (5.14) for suitably chosen τ , and the properties of σ ensure
mn(σ) ≤ k∗, we can apply Lemma 5.3.3. The first part of the lemma is then
obtained by taking the supremum over P ∗. To establish the second part, we can
choose a c such that

lim sup
n→∞

Gsw(n)

Gσ(n)
≤ lim sup

n→∞

Gσ(n) + k∗ ·O(log n)

Gσ(n)
≤ 1 + lim sup

n→∞

k∗ ·O(log n)

c′ log n
= c.

(5.23)

5.3.4 The Nonparametric Case

In this section we develop an analogue of Lemma 5.3.4 for the nonparametric
case, where there is no k such that P ∗ ∈ Mk. It is then applied to the problem
of histogram density estimation.

Lemma 5.3.5. Let Psw be the switch-distribution, defined with respect to a se-
quence of estimators P̄1, P̄2, . . . as above, with any prior π that satisfies the con-
ditions in (5.12). Let f : Z

+ → [0,∞) and let M∗ be a set of distributions on
X∞. Suppose there exist an oracle σ and positive constants τ and c such that

(i) σ(P ∗, xi−1) ≤ iτ for all i ∈ Z
+, all xi−1 ∈ X i−1,

(ii) mn(σ) log n = o(f(n)), and

(iii) lim sup
n→∞

Gσ(n)

f(n)
≤ c.

Then

lim sup
n→∞

Gsw(n)

f(n)
≤ c. (5.24)

Proof. By (i) we can apply Lemma 5.3.3 to σ. Using conditions (ii) and (iii), a
derivation similar to (5.23) completes the proof:

lim sup
n→∞

Gsw(n)

f(n)
≤

lim sup
n→∞

Gσ(n) + mn(σ)O(log n)

f(n)
≤ c + lim sup

n→∞

mn(σ)O(log n)

f(n)
= c.



136 Chapter 5. Slow Convergence: the Catch-up Phenomenon

Lemma 5.3.5 can be used to show minimax rates of convergence relative to
specific nonparametric model classesM∗. The general idea is to apply the lemma
with f(n) equal to the minimax risk in sum Gmm-fix(n) (see (5.21)). It will be
seen that in many standard nonparametric settings, one can exhibit an oracle σ
that only switches sporadically (Condition (ii) of the lemma) and that achieves
Gmm-fix(n) (Condition (iii)). The lemma then implies that Psw achieves the mini-
max risk as well. As a proof of concept, we now show this in detail for histogram
density estimation. In Section 5.4.2, we discuss possibilities for extending the
reasoning to more general settings.

5.3.5 Example: Histogram Density Estimation

Rissanen, Speed and Yu [74] consider density estimation based on histogram mod-
els with equal-width bins relative to a restricted set M∗ of “true” distributions,
identified in this section by their densities on the unit interval X = [0, 1]. The
restriction on M∗ is that there should exist constants 0 < c0 < 1 < c1 such that
for every density p ∈ M∗, for all x ∈ X , c0 ≤ p(x) ≤ c1 and |p′(x)| ≤ c, where p′

denotes the first derivative of p; unlike in the paper we require a uniform bound c
on the derivative which may not depend on p ∈ M∗. The densities are extended
to sequences by independence: p(xn) ≡ pn(xn) =

∏n
i=1 p(xi) for xn ∈ X n.

The histogram modelMk is the set of densities on X = [0, 1] that are constant
within the k bins [0, a1], (a1, a2], . . ., (ak−1, 1], where ai = i/k, i.e. Mk contains
all densities with pθ such that, for all x, x′ ∈ [0, 1], if x and x′ lie in the same bin,
then pθ(x) = pθ(x

′). The k − 1-dimensional vector θ = (θ1, . . . , θk−1) denotes the
probability masses of the first k − 1 bins. The last bin then gets the remaining
mass, 1−∑k−1

j=1 θk. Note that the number of free parameters is one less than the
number of bins.

Here we model densities fromM∗ by sequences of densities based on histogram
models of an increasing number of bins as more data become available. Rissanen,
Speed and Yu define prediction strategies p̄k on X∞ relative to each histogram
model Mk. For model Mk, the conditional predictions are given by

p̄k(xn+1 | xn) :=
nxn+1(x

n) + 1

n + k
· k, (5.25)

where nxn+1(x
n) denotes the number of outcomes in xn that fall into the same bin

as xn+1. These p̄k correspond to Bayesian estimators relative to a uniform prior
on the set of parameters, {θ}.

Yu [107] shows that, relative to the M∗ defined above, the minimax-risk in
sum satisfies

lim sup
n→∞

Gmm-fix(n)

n1/3
= C,

where C is a constant that depends on the constants c, c0, c1 used in the definition
ofM∗. In [74] it is shown that the simple strategy that uses the histogram model
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with
⌈

n1/3
⌉

bins to predict the nth outcome achieves this minimax risk in sum

up to a constant multiplicative factor:

Theorem 5.3.6 (Theorem 1 from [74]). For all p∗ ∈M∗

lim sup
n→∞

∑n
i=1 Ri(P

∗, P̄⌈n1/3⌉)
n1/3

≤ Ap∗ , (5.26)

where Ap∗ is a constant that depends only on cp∗, the bound on the first derivative
of p∗.

We will now show that the switch-distribution also achieves the minimax risk
in sum up to the same constant factor. The idea is to view P̄⌈n1/3⌉ as an oracle.

Even though it makes no use of P ∗ in its selection, P̄⌈n1/3⌉ clearly satisfies Defi-
nition 5.3.2, the definition of an oracle. We would like to apply Lemma 5.3.5 to
oracle P̄⌈n1/3⌉, but we cannot do so, since the oracle switches prediction strategies

polynomially often in n. To prove that Psw achieves a rate of n1/3, we first need to
consider a cruder version of P̄⌈n1/3⌉ that still achieves the minimax rate, but only
switches logarithmically often. This is the key to the proof of Theorem 5.3.7.

Theorem 5.3.7. Let psw denote the switch-distribution with prior π that satisfies
the conditions in (5.12), relative to histogram prediction strategies p̄1, p̄2, . . . For
all p∗ ∈M∗ this switch-distribution satisfies

lim sup
n→∞

∑n
i=1 Ri(P

∗, Psw)

n1/3
≤ Ap∗ , (5.27)

where Ap∗ is the same constant as in (5.26).

We first note that in [74], Theorem 5.3.6 is proved from the following more
general theorem, which gives an upper bound on the risk of any prediction strategy

that uses a histogram model with approximately
⌈

n1/3
⌉

bins to predict outcome
n:

Theorem 5.3.8. For any α ≥ 1, any k ∈ [
⌈

(n/α)1/3
⌉

,
⌈

n1/3
⌉

], and any p∗ ∈M∗,

Rn(P ∗, P̄k) ≤ α2/3Cp∗n
−2/3, (5.28)

where Cp∗ depends only on the upper bound c on the first derivative of p∗.

In [74] the theorem is only proven for α = 1, but the proof remains valid
unchanged for any α > 1. From this, Theorem 5.3.6 follows by summing (5.28),
and approximating

∑n
i=1 i−2/3 by an integral. We will now apply it to prove

Theorem 5.3.7 as well.
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Proof of Theorem 5.3.7. Choose any p∗ ∈ M∗, and let α > 1 be arbitrary. Let
tj =

⌈
αj−1

⌉
− 1 for j ∈ Z

+ be a sequence of switch-points, and define an oracle

σα(P ∗, xn−1) :=
⌈
(tj + 1)1/3

⌉
for any xn−1 ∈ X n−1, where j is chosen such that

n ∈ [tj + 1, tj+1]. By applying Lemma 5.3.5 to σα with f(n) = n1/3, τ = 1 and
c = α2/3Ap∗ , we immediately obtain

lim sup
n→∞

∑n
i=1 Ri(P

∗, Psw)

n1/3
≤ α2/3Ap∗ (5.29)

for any α > 1. Theorem 5.3.7 then follows, because the left-hand side of this
expression does not depend on α. We still need to show that conditions (i)–(iii)
of Lemma 5.3.5 are satisfied.

Note that σα uses approximately
⌈

n1/3
⌉

bins to predict the nth outcome,

but has relatively few switch-points: it satisfies mn(σα) ≤ ⌈logα n⌉ + 2. Thus,
conditions (i) and (ii) are comfortably satisfied. To verify (iii), note that the

selected number of bins is close to
⌈

n1/3
⌉

in the sense of Theorem 5.3.8: For

n ∈ [tj + 1, tj+1] we have

⌈

(tj + 1)1/3
⌉

=

⌈(
n

n/(tj + 1)

)1/3⌉

∈
[⌈

(n/α)1/3
⌉

,
⌈

n1/3
⌉]

(5.30)

using n ≤ tj+1 and (tj+1)/(tj + 1) ≤ α. We can now apply Theorem 5.3.8 to
obtain

lim sup
n→∞

∑n
i=1 Ri(P

∗, σα)

n1/3
≤ lim sup

n→∞

∑n
i=1 α2/3Cp∗i

−2/3

n1/3
≤ α2/3Ap∗ , (5.31)

showing that (iii) is satisfied and Lemma 5.3.5 can be applied to prove the theo-
rem.

Theorem 5.3.7 shows that the switch distribution obtains the optimal conver-
gence rate in sum relative toM∗. In [74] it is also shown that standard two-part
MDL does not achieve this rate; it is slower by an O(log n) factor. The anal-
ysis leading to this result also strongly suggests that Bayesian model averaging
based on a discrete prior on the Bayesian marginal distributions p̄1, p̄2, . . . given
by (5.25) is also a factor O(log n) slower compared to the minimax rate [39]. By
Theorem 5.3.6, δ(xn) := ⌈n1/3⌉ defines a very simple model selection criterion
which does achieve the optimal rate in sum relative to M∗, but, in contrast to
the switch distribution, it is inconsistent. Moreover, if we are lucky enough to
be in a scenario where p∗ actually allows a faster than minimax optimal in-sum
convergence by letting the number of bins grow as nγ for some γ 6= 1

3
, the switch-

distribution would be able to take advantage of this whereas δ cannot.
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5.4 Further Discussion of Convergence in the

Nonparametric Case

In Section 5.4.1 we analyse the relation between our convergence rates in sum
and standard convergence rates. In Section 5.4.2, we explore possible future
applications of Lemma 5.3.5 to establish minimax convergence rates for model
classes M1,M2, . . . beyond histograms.

5.4.1 Convergence Rates in Sum

Let g : N → R
+ and h : N → R

+ be two functions that converge to 0 with
increasing n. We say that g converges to 0 at rate h if lim supn→∞

g(n)
h(n)
≤ 1. We say

that g converges to 0 in sum at rate h if lim supn→∞

Pn
i=1 g(i)

Pn
i=1 h(i)

≤ 1. This notion of

convergence has been considered by, among others, Rissanen, Speed and Yu [74],
Barron [6], Poland and Hutter [65], and was investigated in detail by Grünwald
[39]. Note that, if g converges to 0 at rate h, and limn→∞

∑n
i=1 h(n) =∞, then g

also converges in sum at rate h. Conversely, suppose that g converges in sum at
rate h. Does this also imply that g converges to 0 at rate h in the ordinary sense?
The answer is “almost”: as shown in [39], g(n) may be strictly greater than h(n)
for some n, but the gap between any two n and n′ > n at which g is larger than
h must become infinitely large with increasing n.

We will now informally compare the “convergence in sum” results of the previ-
ous section with more standard results about individual risk convergence. We will
write h(n) ≍ g(n) if for some 0 < c1 < c2, for all large n, c1g(n) < h(n) < c2g(n).
The minimax convergence rate relative to a set of distributions M∗ is defined as

hmm(n) = inf
P̄

sup
P ∗∈M

Rn(P ∗, P̄ ), (5.32)

where P̄ is any estimator that allows a density, it is not required to lie in M∗ or
M. If a sequence of estimators achieves (5.32) to within a constant factor, we say
that it converges at the “minimax optimal rate.” Such a sequence of estimators
will also achieve the minimax rate in sum, defined as

Gmm-var(n) =
n∑

i=1

hmm(i) = inf
P̄

n∑

i=1

sup
P ∗∈M∗

Ri(P
∗, P̄ ), (5.33)

where P̄ now ranges over all prequential forecasting systems (i.e. sequences of
estimators). In many nonparametric density estimation and regression problems,
the minimax risk hmm(n) is of order n−γ for some 1/2 < γ < 1 (see, for example,
[105, 106, 9]), i.e. hmm(n) ≍ n−γ , where γ depends on the smoothness assumptions
on the densities in M∗. We call the situation with M∗ such that hmm(n) ≍ n−γ
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the “standard nonparametric case.” In this standard case, we have

Gmm-var(n) ≍
n∑

i=1

i−γ ≍
∫ n

1

x−γ dx ≍ n1−γ . (5.34)

Similarly, in standard parametric problems, the minimax risk hmm(n) ≍ 1/n. In
that case, analogously to (5.34), we see that the minimax risk in sum Gmm-var is
of order log n.

Note, however, that our result for histograms (and, more generally, for any
rate-of-convergence result that may be based on Lemmata 5.3.3, 5.3.4 and 5.3.5),
is based on a scenario where P ∗, while allowed to depend on n, is kept fixed over
the terms in the sum from 1 to n. Indeed, in Theorem 5.3.7 we showed that Psw

achieves the minimax rate in sum Gmm-fix(n) as defined in (5.21). Comparing
to (5.33), we see that the supremum is moved outside of the sum. Fortunately,
Gmm-fix and Gmm-var are usually of the same order: in the parametric case, e.g.
M∗ =

⋃

k≤k∗Mk, both Gmm-fix and Gmm-var are of order log n. For Gmm-var, we
have already seen this. For Gmm-fix, this is a standard information-theoretic result,
see for example [23]. In the standard nonparametric case, when the standard
minimax rate is of order n−γ and therefore Gmm-var ≍ n1−γ , it also holds that
Gmm-fix(n) ≍ n1−γ [106, page 1582]. To see this, let Pmm-fix be any prequential
forecasting system that achieves Gmm-fix as defined in (5.21) (if such a Pmm-fix does
not exist, take any P that, for each n, achieves the infimum to within εn for some
sequence ε1, ε2, . . . tending to 0). Now define the prequential forecasting system

PCésaro(xn | xn−1) :=
1

n

n∑

i=1

Pmm-fix(xn | xi−1).

Thus, PCésaro is obtained as a time (“Césaro”-) average of Pmm-fix. It now follows by
applying Jensen’s inequality as in Proposition 15.2 of [39] (or the corresponding
results in [102] or [106]) that

sup
P ∗

Rn(P ∗, PCésaro) ≤ sup
P ∗

1

n

n∑

i=1

Ri(P
∗, Pmm-fix) = n−1O(n1−γ) = O(n−γ), (5.35)

so that
∑n

j=1 supP ∗ Rj(P
∗, PCésaro) = O(

∑n
j=1 j−γ) = O(n1−γ), and it follows that

Gmm-var(n) = O(n1−γ) = O(Gmm-fix(n)). (5.36)

Since, trivially, Gmm-fix(n) ≤ Gmm-var(n), it follows that Gmm-var(n) ≍ n1−γ . The
underlying idea of basing predictive distributions on Césaro-averages is not new;
see for example [43, Section 9] and [102]. It is described in detail in [39].

Summarising, both in standard parametric and nonparametric cases, Gmm-fix

and Gmm-var are of comparable size. Therefore, Lemma 5.3.4 and 5.3.5 do suggest
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that, both in standard parametric and nonparametric cases, Psw achieves the
minimax convergence rate Gmm-fix (and Theorem 5.3.7 shows that it actually
does so in a specific nonparametric case). One caveat is in order though: the
fact that Gmm-fix and Gmm-var are of comparable size does not imply that Psw also
achieves the varying-P ∗-minimax rate Gmm-var. We cannot prove the analogue
of Lemma 5.3.4 and Lemma 5.3.5 with the supremum over P ∗ inside the sum in
Gsw and Gσ. Therefore, we cannot prove even for histogram density estimation,
that Psw achieves Gmm-var. Nevertheless, we do suspect that in the standard
nonparametric case, Gmm-fix(n) ≍ Gmm-var(n) ≍ n1−γ , whenever Psw achieves
the fixed-P ∗ minimax rate Gmm-fix, it also achieves the varying-P ∗ minimax rate
Gmm-var. The reason for this conjecture is that, if we can assume that the data are
i.i.d. under all P ∗ ∈M∗, then whenever Psw achieves Gmm-fix, a small modification
of Psw will achieve Gmm-var. Indeed, define the Césaro-switch distribution as

PCésaro-sw(xn | xn−1) :=
1

n

n∑

i=1

Psw(xn | xi−1).

Applying (5.35) to PCésaro-sw rather than PCésaro, we see that PCésaro-sw achieves
the varying-P ∗-minimax rate whenever Psw achieves the fixed-P ∗-minimax rate.
Since, intuitively, PCésaro-sw learns “slower” than Psw, we suspect that Psw itself
then achieves the varying-P ∗-minimax rate as well. However, in the parametric
case, hmm(n) ≍ 1/n whereas Gmm-fix(n)/n ≍ (log n)/n. Then the reasoning of
(5.35) does not apply any more, and PCésaro-sw may not achieve the minimax rate
for varying P ∗. We suspect that this is not a coincidence — a recent result by
Yang [103] suggests that, in the parametric case, no model selection/averaging
criterion can achieve both consistency and minimax optimal varying-P ∗ rates
Gmm-var (Section 5.6.1).

5.4.2 Beyond Histograms

The key to proving Theorem 5.3.7, the minimax convergence result for histogram
density estimation, is the existence of an oracle σα which achieves the minimax
convergence rate, but which, at the same time, switches only a logarithmic num-
ber of times. The theorem followed by applying Lemma 5.3.5 with this oracle.
It appears that the same technique can be applied in many other standard non-
parametric settings (with hmm(n) ≍ n−γ) as well. Important examples include
linear regression based on full approximation sets of functions such as polynomi-
als [106, 101] or splines, with random i.i.d. design and i.i.d. normally distributed
noise with known variance σ2. The development in Section 6.2 of [101] indicates
that an analogue of Theorem 5.3.7 can be proven for such cases. Here the models
Mk are families of conditional distributions Pθ for Y ∈ R given X ∈ [0, 1]d for
some d > 0, where θ = (θ1, . . . , θk) and Pθ expresses that Yi =

∑k
j=1 θjφj(Xi)+U ,

with φj being the j-th basis function in the approximation set, and U , the noise,
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is a zero-mean Gaussian random variable. The forecasting systems p̄1, p̄2, . . . are
now based on maximum likelihood estimators rather than Bayes predictive dis-
tributions.

Another candidate is density estimation based on sequences of exponential
families as introduced by Barron and Sheu [9], when the estimators p̄1, p̄2, . . .
are based on Bayesian MAP estimators defined with respect to k-dimensional
exponential families, and M∗ is taken to be the set of densities p such that log p
is contained in some Sobolev space with smoothness parameter r [7]. Preliminary
investigations suggest that Psw achieves the minimax convergence rates in both
the linear regression and the density estimation setting, but, at the time of writing,
we have not yet proven any formal statements.

5.5 Efficient Computation

For priors π as in (5.7), the posterior probability on predictors p1, p2, . . . can be
efficiently computed sequentially, provided that πt(Z = n | Z ≥ n) and πk can
be calculated quickly and that πm(m) = θm(1− θ) is geometric with parameter θ,
as is also required for Theorem 5.2.1 and permitted in the theorems and lemma’s
of Section 5.3 that require (5.12). The algorithm resembles Fixed-Share [46],
but whereas Fixed-Share implicitly imposes a geometric distribution for πt,
we allow general priors by varying the shared weight with n, and through the
addition of the πm component of the prior, we ensure that the additional loss
compared to the best prediction strategy does not grow with the sample size, a
crucial property for consistency.

To ensure finite running time, rather than Psw the algorithm uses a potentially
defective distribution P that assigns smaller or equal probability to all events. It
is obtained by restricting Psw to using only a finite nonempty set Kn of prediction
strategies at sample size n. Then, analogously to (5.4), for any n the density of
the marginal distribution of P on Xn is given by p(xn) =

∑

s∈S′ qs(x
n)·π(s), where

S
′ := {s ∈ S | ∀n ∈ Z

+ : Kn(s) ∈ Kn} denotes the parameter space restricted to
those prediction strategies that are considered at each sample size. We use the
indicator function, 1A(x) = 1 if x ∈ A and 0 otherwise. Here is the algorithm:

This algorithm can be used to obtain fast convergence in the sense of Section 5.3,
and, as long as π does not vary with n, consistency in the sense of Theorem 5.2.1.
Note that the running time Θ(

∑N
n=1 |Kn|) is typically of the same order as that

of fast model selection criteria like AIC and BIC: for example if the number of
considered prediction strategies is fixed at K then the running time is Θ(K ·N).
In the interest of clarity and simplicity we only prove the theorem below, which
assumes P = Psw, but the reader may verify that the algorithm remains valid for
defective P .

Theorem 5.5.1. If P = Psw, then Algorithm 5.1 correctly reports P (Kn+1, x
n).
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Algorithm 5.1 Switch(xN)

1 for k ∈ K1 do initialise wa
k ← θ · πk(k); wb

k ← (1− θ) · πk(k) end for
2 for n=1, . . . , N do
3 Report P (Kn, x

n−1) = wa
Kn+1

+ wb
Kn+1

(a K-sized array)

4 for k ∈ Kn do wa
k ← wa

k · pk(xn|xn−1); wb
k ← wb

k · pk(xn|xn−1) end for
5 pool ← πt(Z = n | Z ≥ n) ·∑k∈Kn

wa
k

6 for k ∈ Kn+1 do
7 wa

k ← wa
k · 1Kn(k) · πt(Z 6= n | Z ≥ n) + pool · πk(k) · θ

8 wb
k ← wb

k · 1Kn(k) + pool · πk(k) · (1− θ)
9 end for

10 end for
11 Report P (KN+1, x

N) = wa
KN+1

+ wb
KN+1

The proof is given in Section 5.9.4.

5.6 Relevance and Earlier Work

5.6.1 AIC-BIC; Yang’s Result

Over the last 25 years or so, the question whether to base model selection on AIC
or BIC type methods has received a lot of attention in the theoretical and applied
statistics literature, as well as in fields such as psychology and biology where
model selection plays an important role (googling “AIC and BIC” gives 355000
hits) [85, 41, 40, 10, 33, 30, 81]. It has even been suggested that, since these
two types of methods have been designed with different goals in mind (optimal
prediction vs. “truth hunting”), one should not expect procedures that combine
the best of both types of approaches to exist [81]. Our Theorem 5.2.1 and our
results in Section 5.3 show that, at least in some cases, one can get the best of both
worlds after all, and model averaging based on Psw achieves the minimax optimal
convergence rate. In typical parametric settings (P ∗ ∈M), model selection based
on Psw is consistent, and Lemma 5.3.4 suggests that model averaging based on
Psw is within a constant factor of the minimax optimal rate in parametric settings.
Superficially, our results may seem to contradict the central conclusion of Yang
[103]. Yang shows that there are scenarios in linear regression where no model
selection or model combination criterion can be both consistent and achieve the
minimax rate of convergence.

Yang’s result is proved for a variation of linear regression in which the esti-
mation error is measured on the previously observed design points. This setup
cannot be directly embedded in our framework. Also, Yang’s notion of model
combination is somewhat different from the model averaging that is used to com-
pute Psw. Thus, formally, there is no contradiction between Yang’s results and
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ours. Still, the setups are so similar that one can easily imagine a variation of
Yang’s result to hold in our setting as well. Thus, it is useful to analyse how these
“almost” contradictory results may coexist. We suspect (but have no proof) that
the underlying reason is the definition of our minimax convergence rate in sum
(5.21) in which P ∗ is allowed to depend on n, but then the risk with respect to
that same P ∗ is summed over all i = 1, . . . , n. Yang’s result holds in a parametric
scenario, where there are two nested parametric models, and data are sampled
from a distribution in one of them. Then both Gmm-fix and Gmm-var are of the
same order log n, but it may of course be possible that there does exist a min-
imax optimal procedure that is also consistent, relative to the Gmm-fix-game, in
which P ∗ is kept fixed once n has been determined, while there does not exist a
minimax optimal procedure that is also consistent, relative to the Gmm-var-game,
in which P ∗ is allowed to vary. Indeed, while in Section 5.4.1 we have established
that PCésaro-sw, a slight variation of Psw, achieves the minimax optimal conver-
gence rates Gmm-var and hmm for some nonparametric M∗, which suggests that
Psw achieves these rates as well, we do not have such a result for parametricM∗.
Yang’s results indicate that such an analogue may not exist.

Several other authors have provided procedures which have been designed to
behave like AIC whenever AIC is better, and like BIC whenever BIC is better;
and which empirically seem to do so; these include model meta-selection [30, 21],
and Hansen and Yu’s gMDL version of MDL regression [41]; also the “mongrel”
procedure of [99] has been designed to improve on Bayesian model averaging for
small samples. Compared to these other methods, ours seems to be the first that
provably is both consistent and minimax optimal in terms of risk, for some classes
M∗. The only other procedure that we know of for which somewhat related results
have been shown, is a version of cross-validation proposed by Yang [104] to select
between AIC and BIC in regression problems. Yang shows that a particular form
of cross-validation will asymptotically select AIC in case the use of AIC leads
to better predictions, and BIC in the case that BIC leads to better predictions.
In contrast to Yang, we use a single paradigm rather than a mix of several ones
(such as AIC, BIC and cross-validation) – essentially our paradigm is just that of
universal individual-sequence prediction, or equivalently, the individual-sequence
version of predictive MDL, or equivalently, Dawid’s prequential analysis applied
to the log scoring rule. Indeed, our work has been heavily inspired by prequential
ideas; in Dawid [29] it is already suggested that model selection should be based on
the transient behaviours in terms of sequential prediction of the estimators within
the models: one should select the model which is optimal at the given sample
size, and this will change over time. Although Dawid uses standard Bayesian
mixtures of parametric models as his running examples, he implicitly suggests
that other ways (the details of which are left unspecified) of combining predictive
distributions relative to parametric models may be preferable, especially in the
nonparametric case where the true distribution is outside any of the parametric
models under consideration.
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5.6.2 Prediction with Expert Advice

Since the switch-distribution has been designed to perform well in a setting where
the optimal predictor p̄k changes over time, our work is also closely related to
the algorithms for tracking the best expert in the universal prediction literature
[46, 95, 94, 63]. However, those algorithms are usually intended for data that are
sequentially generated by a mechanism whose behaviour changes over time. In
sharp contrast, our switch distribution is especially suitable for situations where
data are sampled from a fixed (though perhaps non-i.i.d.) source after all; the
fact that one model temporarily leads to better predictions than another is caused
by the fact that each “expert” p̄k has itself already been designed as a universal
predictor/estimator relative to some large set of distributionsMk. The elements
of Mk may be viewed as “base” predictors/experts, and the p̄k may be thought
of as meta-experts/predictors. Because of this two-stage structure, which meta-
predictor p̄k is best changes over time, even though the optimal base-predictor
arg minp∈M Rn(p∗, p) does not change over time.

If one of the considered prediction strategies p̄k makes the best predictions
eventually, our goal is to achieve consistent model selection: the total number of
switches should also remain bounded. To this end we have defined the switch dis-
tribution such that positive prior probability is associated with switching finitely
often and thereafter using p̄k for all further outcomes. We need this property to
prove that our method is consistent. Other dynamic expert tracking algorithms,
such as the FixedShare algorithm [46], have been designed with different goals
in mind, and as such they do not have this property. Not surprisingly then, our
results do not resemble any of the existing results in the “tracking”-literature.

5.7 The Catch-Up Phenomenon, Bayes and Cross-

Validation

5.7.1 The Catch-Up Phenomenon is Unbelievable! (ac-
cording to pbma)

On page 122 we introduced the marginal Bayesian distribution pbma(x
n) :=

∑

k w(k)p̄k(xn).
If the distributions p̄k are themselves Bayesian marginal distributions as in (5.1),
then pbma may be interpreted as (the density corresponding to) a distribution on
the data that reflects some prior beliefs about the domain that is being modelled,
as represented by the priors w(k) and wk(θ). If w(k) and wk(θ) truly reflected
some decision-maker’s a priori beliefs, then it is clear that the decision-maker
would like to make sequential predictions of Xn+1 given Xn = xn based on pbma

rather than on psw. Indeed, as we now show, the catch-up phenomenon as de-
picted in Figure 5.1 is exceedingly unlikely to take place under pbma, and a priori
a subjective Bayesian should be prepared to bet a lot of money that it does not
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occur. To see this, consider the no-hypercompression inequality [39], versions of
which are also known as “Barron’s inequality” [5] and “competitive optimality of
the Shannon-Fano code” [25]. It states that for any two distributions P and Q for
X∞, the P -probability that Q outperforms P by k bits or more when sequentially
predicting X1, X2, . . . is exponentially small in k: for each n,

P (− log q(Xn) ≤ − log p(Xn)− k) ≤ 2−k.

Plugging in pbma for p, and psw for q, we see that what happened in Figure 5.1 (psw

outperforming pbma by about 40000 bits) is an event with probability no more
than 2−40000 according to pbma. Yet, in many practical situations, the catch-up
phenomenon does occur and psw gains significantly compared to pbma. This can
only be possible because either the models are wrong (clearly, The Picture of
Dorian Gray has not been drawn randomly from a finite-order Markov chain), or
because the priors are “wrong” in the sense that they somehow don’t match the
situation one is trying to model. For this reason, some subjective Bayesians, when
we confronted them with the catch-up phenomenon, have argued that it is just
a case of “garbage in, garbage out” (GIGO): when the phenomenon occurs, then,
rather than using the switch-distribution, one should reconsider the model(s) and
prior(s) one wants to use, and, once one has found a superior modelM′ and prior
w′, one should use pbma relative to M′ and w′. Of course we agree that if one
can come up with better models, one should of course use them. Nevertheless, we
strongly disagree with the GIGO point of view: We are convinced that in practice,
“correct” priors may be impossible to obtain; similarly, people are forced to work
with “wrong” models all the time. In such cases, rather than embarking on a
potentially never-ending quest for better models, the hurried practitioner may
often prefer to use the imperfect – yet still useful – models that he has available,
in the best possible manner. And then it makes sense to use psw rather than the
Bayesian pbma: the best one can hope for in general is to regard the distributions in
one’s models as prediction strategies, and try to predict as well as the best strategy
contained in any of the models, and psw is better at this than pbma. Indeed, the
catch-up phenomenon raises some interesting questions for Bayes factor model
selection: no matter what the prior is, by the no-hypercompression inequality
above with p = pbma and q = psw, when comparing two models M1 and M2,
before seeing any data, a Bayesian always believes that the switch-distribution
will not substantially outperform pbma, which implies that a Bayesian cannot
believe that, with non-negligible probability, a complex model p̄2 can at first
predict substantially worse than a simple model p̄1 and then, for large samples,
can predict substantially better. Yet in practice, this happens all the time!

5.7.2 Nonparametric Bayes

A more interesting subjective Bayesian argument against the switch distribution
would be that, in the nonparametric setting, the data are sampled from some



5.7. The Catch-Up Phenomenon, Bayes and Cross-Validation 147

P ∗ ∈M∗ \M, and is not contained in any of the parametric modelsM1,M2, . . .
Yet, under the standard hierarchical prior used in pbma (first a discrete prior on
the model index, then a density on the model parameters), we have that with
prior-probability 1, P ∗ is “parametric”, i.e. P ∗ ∈ Mk for some k. Thus, our
prior distribution is not really suitable for the situation that we are trying to
model in the nonparametric setting, and we should use a nonparametric prior
instead. While we completely agree with this reasoning, we would immediately
like to add that the question then becomes: what nonparametric prior should one
use? Nonparametric Bayes has become very popular in recent years, and it often
works surprisingly well. Still, its practical and theoretical performance strongly
depends on the type of priors that are used, and it is often far from clear what prior
to use in what situation. In some situations, some nonparametric priors achieve
optimal rates of convergence, but others can even make Bayes inconsistent [31, 39].
The advantage of the switch-distribution is that it does not require any difficult
modelling decisions, but nevertheless under reasonable conditions it achieves the
optimal rate of convergence in nonparametric settings, and, in the special case
where one of the models on the list in fact approximates the true source extremely
well, this model will in fact be identified (Theorem 5.2.1). In fact, one may think
of psw as specifying a very special kind of nonparametric prior, and under this
interpretation, our results are in complete agreement with the nonparametric
Bayesian view.

5.7.3 Leave-One-Out Cross-Validation

From the other side of the spectrum, it has sometimes been argued that consis-
tency is irrelevant, since in practical situations, the true distribution is never in
any of the models under consideration. Thus, it is argued, one should use AIC-
type methods such as leave-one-out cross-validation, because of their predictive
optimality. We strongly disagree with this argument, for several reasons: first,
in practical model selection problems, one is often interested in questions such as
“does Y depend on feature Xk or not?” For example,Mk−1 is a set of conditional
distributions in which Y is independent of Xk, and Mk is a superset thereof in
which Y can be dependent on Xk. There are certainly real-life situations where
some variable Xj is truly completely irrelevant for predicting Y , and it may be
the primary goal of the scientist to find out whether or not this is the case. In
such cases, we would hope our model selection criterion to select, for large n,
Mk−1 rather thanMk, and the problem with the AIC-type methods is that, be-
cause of their inconsistency, they sometimes do not do this. In other words, we
think that consistency does matter, and we regard it as a clear advantage of the
switch-distribution that it is consistent.

A second advantage over leave-one-out cross-validation is that the switch-
distribution, like Bayesian methods, satisfies Dawid’s weak prequential principle
[29, 39]: the switch-distribution assesses the quality of a predictor p̄k only in
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terms of the quality of predictions that were actually made. To apply LOO on a
sample x1, . . . , xn, one needs to know the prediction for xi given x1, . . . , xi−1, but
also xi+1, . . . , xn. In practice, these may be hard to compute, unknown or even
unknowable. An example of the first are non-i.i.d. settings such as time series
models. An example of the second is the case where the p̄k represent, for example,
weather forecasters, or other predictors which have been designed to predict the
future given the past. Actual weather forecasters use computer programs to
predict the probability that it will rain the next day, given a plethora of data
about air pressure, humidity, temperature etc. and the pattern of rain in the past
days. It may simply be impossible to apply those programs in a way that they
predict the probability of rain today, given data about tomorrow.

5.8 Conclusion and Future Work

We have identified the catch-up phenomenon as the underlying reason for the slow
convergence of Bayesian model selection and averaging. Based on this, we have
defined the switch-distribution Psw, a modification of the Bayesian marginal dis-
tribution which is consistent, but also under some conditions achieves a minimax
optimal convergence rate, a significant step forward in resolving the the AIC/BIC
dilemma. Different strands of future work suggest themselves:

1. Lemma 5.3.5 provides a tool to prove minimax optimal in-sum convergence
of the switch-distribution for particular nonparametric model classes M∗.
However, because of time constraints we have currently only applied this to
histogram density estimation. We hope to eventually show that the switch-
distribution actually achieves the minimax optimal convergence rate for a
wide class of nonparametric problems.

2. Since psw can be computed in practice, the approach can readily be tested
with real and simulated data in both density estimation and regression prob-
lems. Initial results on simulated data, on which we will report elsewhere,
give empirical evidence that psw behaves remarkably well in practice. Model
selection based on psw, like for pbma, typically identifies the true distribu-
tion at moderate sample sizes. Prediction and estimation based on Psw is of
comparable quality to leave-one-out cross-validation (LOO) and generally,
in no experiment did we find that it behaved substantially worse than either
LOO or AIC.

3. It is an interesting open question whether analogues of Lemma 5.3.5 and
Theorem 5.3.7 exist for model selection rather than averaging. In other
words, in settings such as histogram density estimation where model aver-
aging based on the switch distribution achieves the minimax convergence
rate, does model selection based on the switch distribution achieve it as
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well? For example, in Figure 5.1, sequentially predicting by the p̄Kn+1 that
has maximum a posteriori probability (MAP) under the switch-distribution
given data xn, is only a few bits worse than predicting by model averaging
based on the switch-distribution, and still outperforms standard Bayesian
model averaging by about 40 000 bits. In the experiments mentioned above,
we invariably found that predicting by the MAP p̄Kn+1 empirically converges
at the same rate as using model averaging, i.e. predicting by Psw. How-
ever, we have no proof that this really must always be the case. Analogous
results in the MDL literature suggest that a theorem bounding the risk of
switch-based model selection, if it can be proven at all, would bound the
squared Hellinger rather than the KL risk ([39], Chapter 15).

4. The way we defined Psw, it does not seem suitable for situations in which
the number of considered models or model combinations is exponential in
the sample size. Because of condition (i) in Lemma 5.3.5, our theoretical
results do not cover this case either. Yet this case is highly important in
practice, for example, in the subset selection problem [101]. It seems clear
that the catch-up phenomenon can and will also occur in model selection
problems of that type. Can our methods be adapted to this situation, while
still keeping the computational complexity manageable? And what is the
relation with the popular and computationally efficient L1-approaches to
model selection? [90]

5.9 Proofs

5.9.1 Proof of Theorem 5.2.1

Let Un = {s ∈ S | Kn+1(s) 6= k∗} denote the set of “bad” parameters s that select
an incorrect model. It is sufficient to show that

lim
n

∑

s∈Un
π
(
s
)
qs(X

n)
∑

s∈S
π
(
s
)
qs(Xn)

= 0 with P̄k∗-probability 1. (5.37)

To see this, suppose the theorem is false. Then there exists a Φ ⊆ Θk∗ with
wk∗(Φ) :=

∫

Φ
wk∗(θ)dθ > 0 such that (5.6) does not hold for any θ∗ ∈ Φ. But

then by definition of P̄k∗ we have a contradiction with (5.37).
Now let A = {s ∈ S : km(s) 6= k∗} denote the set of parameters that are bad

for sufficiently large n. We observe that for each s′ ∈ Un there exists at least one
element s ∈ A that uses the same sequence of switch-points and predictors on the
first n + 1 outcomes (this implies that Ki(s) = Ki(s

′) for i = 1, . . . , n + 1) and
has no switch-points beyond n (i.e. tm(s) ≤ n). Consequently, either s′ = s or
s′ ∈ Es. Therefore
∑

s′∈Un

π(s′)qs′(x
n) ≤

∑

s∈A

(
π(s) + π(Es)

)
qs(x

n) ≤ (1 + c)
∑

s∈A

π(s)qs(x
n). (5.38)
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Defining the mixture r(xn) =
∑

s∈A π(s)qs(x
n), we will show that

lim
n

r(Xn)

π(s = (0, k∗)) · p̄k∗(Xn)
= 0 with P̄k∗-probability 1. (5.39)

Using (5.38) and the fact that
∑

s∈S
π(s)qs(x

n) ≥ π(s = (0, k∗)) · p̄k∗(xn), this
implies (5.37).

For all s ∈ A and xtm(s) ∈ X tm(s), by definition Qs(X
∞
tm+1|xtm) is equal to

P̄km(X∞
tm+1|xtm), which is mutually singular with P̄k∗(X∞

tm+1|xtm) by assumption.
If X is a separable metric space, which holds because X ⊆ R

d for some d ∈ Z
+, it

can be shown that this conditional mutual singularity implies mutual singularity
of Qs(X

∞) and P̄k∗(X∞). To see this for countable X , let Bxtm be any event
such that Qs(Bxtm |xtm) = 1 and P̄k∗(Bxtm |xtm) = 0. Then, for B = {y∞ ∈ X∞ |
y∞

tm+1 ∈ Bytm}, we have that Qs(B) = 1 and P̄k∗(B) = 0. In the uncountable
case, however, B may not be measurable. In that case, the proof follows by
Corollary 5.9.2 proved in Section 5.9.3. Any countable mixture of distributions
that are mutually singular with Pk∗ , in particular R, is mutually singular with
Pk∗ . This implies (5.39) by Lemma 3.1 of [5], which says that for any two mutually
singular distributions R and P , the density ratio r(Xn)/p(Xn) goes to zero as
n→∞ with P -probability 1.

5.9.2 Proof of Theorem 5.2.2

The proof is almost identical to the proof of Theorem 5.2.1. Let Un = {s ∈
S | Kn+1(s) 6= k∗} denote the set of “bad” parameters s that select an incorrect
model. It is sufficient to show that

lim
n

∑

s∈Un
π
(
s
)
qs(X

n)
∑

s∈S
π
(
s
)
qs(Xn)

= 0 with P̄B
k∗-probability 1. (5.40)

Note that the qs in (5.40) are defined relative to the non-Bayesian estimators
p̄1, p̄2, . . ., whereas the P̄B

k∗ on the right of the equation is the probability accord-
ing to a Bayesian marginal distribution P̄B

k∗ , which has been chosen so that the
theorem’s condition holds. To see that (5.40) is sufficient to prove the theorem,
suppose the theorem is false. Then, because the prior wk∗ is mutually absolutely
continuous with Lebesgue measure, there exists a Φ ⊆ Θk∗ with nonzero prior
measure under wk∗ , such that (5.8) does not hold for any θ∗ ∈ Φ. But then by
definition of P̄B

k∗ we have a contradiction with (5.40).
Using exactly the same reasoning as in the proof of Theorem 5.2.1, it follows

that, analogously to (5.39), we have

lim
n

r(Xn)

π(s = (0, k∗)) · p̄B
k∗(Xn)

= 0 with P̄B
k∗-probability 1. (5.41)

This is just (5.39) with r now referring to a mixture of switch distributions defined
relative to the non-Bayesian estimators p̄1, p̄2, . . ., and the p̄B

k∗ in the denominator



5.9. Proofs 151

and on the right referring to the Bayesian marginal distribution P̄B
k∗ . Using (5.38)

and the fact that
∑

s∈S
π(s)qs(x

n) ≥ π(s = (0, k∗)) · p̄k∗(xn), and the fact that,
by assumption, for some K, for all large n, p̄k∗(Xn) ≥ p̄B

k∗(Xn)2−K with P̄B
k∗-

probability 1, (5.41) implies (5.40).

5.9.3 Mutual Singularity as Used in the Proof of Theo-
rem 5.2.1

Let Y 2 = (Y1, Y2) be random variables that take values in separable metric spaces
Ω1 and Ω2, respectively. We will assume all spaces to be equipped with Borel σ-
algebras generated by the open sets. Let p be a prediction strategy for Y 2 with
corresponding distributions P (Y1) and, for any y1 ∈ Ω1, P (Y2|y1). To ensure that
P (Y 2) is well-defined, we impose the requirement that for any fixed measurable
event A2 ⊆ Ω2 the probability P (A2|y1) is a measurable function of y1.

Lemma 5.9.1. Suppose p and q are prediction strategies for Y 2 = (Y1, Y2), which
take values in separable metric spaces Ω1 and Ω2, respectively. Then if P (Y2|y1)
and Q(Y2|y1) are mutually singular for all y1 ∈ Ω1, then P (Y 2) and Q(Y 2) are
mutually singular.

The proof, due to Peter Harremoës, is given below the following corollary,
which is what we are really interested in. Let X∞ = X1, X2, . . . be random
variables that take values in the separable metric space X . Then what we need
in the proof of Theorem 5.2.1 is the following corollary of Lemma 5.9.1:

Corollary 5.9.2. Suppose p and q are prediction strategies for the sequence of
random variables X∞ = X1, X2, . . . that take values in respective separable met-
ric spaces X1, X2, . . . Let m be any positive integer. Then if P (X∞

m+1|xm) and
Q(X∞

m+1|xm) are mutually singular for all xm ∈ Xm, then P (X∞) and Q(X∞)
are mutually singular.

Proof. The product spaces X1 × · · · × Xm and Xm+1 × Xm+2 × · · · are separable
metric spaces [64, pp. 5,6]. Now apply Lemma 5.9.1 with Ω1 = X1 × · · · × Xm

and Ω2 = Xm+1 ×Xm+2 × · · · .

Proof of Lemma 5.9.1. For each ω1 ∈ Ω1, by mutual singularity of P (Y2|ω1) and
Q(Y2|ω1) there exists a measurable set Cω1 ⊆ Ω2 such that P (Cω1|ω1) = 1 and
Q(Cω1|ω1) = 0. As Ω2 is a metric space, it follows from [64, Theorems 1.1 and
1.2 in Chapter II] that for any ǫ > 0 there exists an open set U ǫ

ω1
⊇ Cω1 such that

P (U ǫ
ω1
|ω1) = 1 and Q(U ǫ

ω1
|ω1) < ǫ. (5.42)

As Ω2 is a separable metric space, there also exists a countable sequence
{Bi}i≥1 of open sets such that every open subset of Ω2 (U ǫ

ω1
in particular) can be

expressed as the union of sets from {Bi} [64, Theorem 1.8 in Chapter I].
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Let {B′
i}i≥1 denote a subsequence of {Bi} such that U ǫ

ω1
=
⋃

i B
′
i. Sup-

pose {B′
i} is a finite sequence. Then let V ǫ

ω1
= U ǫ

ω1
. Suppose it is not. Then

1 = P (U ǫ
ω1
|ω1) = P (

⋃∞
i=1 B′

i|ω1) = limn→∞ P (
⋃n

i=1 B′
i|ω1), because

⋃n
i=1 B′

i as a
function of n is an increasing sequence of sets. Consequently, there exists an N
such that P (

⋃N
i=1 B′

i|ω1) > 1−ǫ and we let V ǫ
ω1

=
⋃N

i=1 B′
i. Thus in any case there

exists a set V ǫ
ω1
⊆ U ǫ

ω1
that is a union of a finite number of elements in {Bi} such

that
P (V ǫ

ω1
|ω1) > 1− ǫ and Q(V ǫ

ω1
|ω1) < ǫ. (5.43)

Let {D}i≥1 denote an enumeration of all possible unions of a finite number of
elements in {Bi} and define the disjoint sequence of sets {Aǫ

i}i≥1 by

Aǫ
i = {ω1 ∈ Ω1 : P (Di|ω1) > 1− ǫ,Q(Di|ω1) < ǫ} \

i−1⋃

j=1

Aǫ
j (5.44)

for i = 1, 2, . . . Note that, by the reasoning above, for each ω1 ∈ Ω1 there exists an
i such that ω1 ∈ Aǫ

i , which implies that {Aǫ
i} forms a partition of Ω1. Now, as all

elements of {Aǫ
i} and {Di} are measurable, so is the set F ǫ =

⋃∞
i=1 Aǫ

i×Di ⊆ Ω1×
Ω2, for which we have that P (F ǫ) =

∑∞
i=1 P (Aǫ

i×Di) > (1−ǫ)
∑∞

i=1 P (Ai) = 1−ǫ
and likewise Q(F ǫ) < ǫ.

Finally, let G =
⋂∞

n=1

⋃∞
k=n F 2−k

. Then P (G) = limn→∞ P (
⋃∞

k=n F 2−k
) ≥

limn→∞ 1 − 2−n = 1 and Q(G) = limn→∞ Q(
⋃

k=n F 2−k
) ≤ limn→∞

∑∞
k=n 2−k =

limn→∞ 2−n+1 = 0, which proves the lemma.

5.9.4 Proof of Theorem 5.5.1

Before we prove Theorem 5.5.1, we first need to establish some additional proper-
ties of the prior π as defined in (5.7). Define, for all n ∈ N and s = ((t1, k1), . . . ,
(tm, km)) ∈ S:

Sn(s) := 1{t1,...,tm}(n− 1); (5.45)

Mn(s) := 1{tm,tm+1,...}(n− 1); (5.46)

Kn(s) := ki for the unique i such that ti < n and i = m ∨ ti+1 ≥ n. (5.47)

These functions denote, respectively, whether or not a switch occurs just before
outcome n, whether or not the last switch occurs somewhere before outcome n and
which prediction strategy is used for outcome n. The prior π determines the distri-
butions of these random variables. We also define En(s) := (Sn(s),Mn(s), Kn(s))
as a convenient abbreviation. Every parameter value s ∈ S induces an infinite
sequence of values E1, E2, . . . The advantage of these new variables is that they
allow us to reformulate the prior as a strategy for prediction of the value of the
next random variable En+1 (which in turn determines the distribution on Xn+1

given xn), given all previous random variables En. Therefore, we first calculate
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the conditional probability π(En+1|En) before proceeding to prove the theorem.
As it turns out, our prior has the nice property that this conditional probability
has a very simple functional form: depending on En, it is either zero, or a function
of only En+1 itself. This will greatly facilitate the analysis.

Lemma 5.9.3. Let π(s) = θm−1(1−θ)πk(k1)
∏m

i=2 πt(ti|ti > ti−1)πk(k) as in (5.7).
For π(s) > 0 we have

π(E1) := πk(K1)

{

θ if M1 = 0

1− θ if M1 = 1
(5.48)

π(En+1|En) :=







πt(Z > n|Z ≥ n) if Sn+1 = 0 and Mn+1 = 0

1 if Sn+1 = 0 and Mn+1 = 1

πt(Z = n|Z ≥ n)πk(Kn+1)θ if Sn+1 = 1 and Mn+1 = 0

πt(Z = n|Z ≥ n)πk(Kn+1)(1− θ) if Sn+1 = 1 and Mn+1 = 1.

(5.49)

Proof. To check (5.48), note that we must have either E1 = (1, 1, k), which
corresponds to s = (0, k) which has probability πk(k)(1 − θ) as required, or
E1 = (1, 0, k). The latter corresponds to the event that m > 1 and k1 = k,
which has probability πk(k)θ.

We proceed to calculate the conditional distribution π(En+1|En). We distin-
guish the case that Mn(s) = 1 (the last switch defined by s occurs before sample
size n), and Mn(s) = 0 (there will be more switches). First suppose Mn(s) = 0,
and let an = max{i | ti < n} =

∑n
i=1 Si. Then

π(En) =
∞∑

m=an+1

∞∑

tan+1=n

∑

tan+2, . . . , tm
kan+1, . . . , km

πm(m)
m∏

i=1

πt(ti|ti > ti−1)πk(ki)

=
∞∑

m=an+1

πm(m)





an∏

i=1

πt(ti|ti > ti−1)πk(ki)





∞∑

tan+1=n

πt(tan+1|tan+1 > tan)

·
∑

tan+2,...,tm





m∏

i=an+2

πt(ti|ti > ti−1)




∑

kan+1,...,km

m∏

i=an+1

πk(ki)

= πm(Z > an)





an∏

i=1

πt(ti|ti > ti−1)πk(ki)



 πt(tan+1 ≥ n) · 1 · 1.

(5.50)
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If Mn(s) = 1, then there is only one s that matches En, which has probability

π(En) = πm(Z = an)
an∏

i=1

πt(ti|ti > ti−1)πk(ki). (5.51)

From (5.50) and (5.51) we can compute the conditional probability π(En+1|En).
We distinguish further on the basis of the possible values of Sn+1 and Mn+1, which
together determine Mn (namely, if Mn+1 = 0 then Mn = 0 and if Mn+1 = 1 then
Mn = 1−Sn+1). Also note that Sn+1 = 0 implies an+1 = an and Sn+1 = 1 implies
an+1 = an + 1 and tan+1 = n. Conveniently, most factors cancel out, and we
obtain

π(En+1|En)

=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

πt(tan+1 + 1 ≥ n + 1)/πt(tan ≥ n) if Sn+1 = 0, Mn+1 = 0

1 if Sn+1 = 0, Mn+1 = 1
πm(Z>an+1)

πm(Z>an)
πt(tan+1|tan+1 >tan)πk(kan+1)

πt(tan+2≥n+1)
πt(tan+1≥n)

if Sn+1 = 1, Mn+1 = 0
πm(Z=an+1)

πm(Z>an)
πt(tan+1|tan+1>tan)

πt(tan+1≥n)
πk(kan+1) if Sn+1 = 1, Mn+1 = 1,

which reduces to (5.49).

Proof of Theorem 5.5.1. We will use a number of independence properties of P
in this proof. First, we have that the distribution on En+1 is independent of Xn

conditional on En, because, using Bayes’ rule,

P (En+1|En, Xn) =
P (Xn|En+1)P (En+1|En)

P (Xn|En)

=
P (Xn|En)P (En+1|En)

P (Xn|En)
= π(En+1|En),

(5.52)

provided that P (En+1, Xn) > 0. In turn, whether or not En+1 can occur depends
only on Mn and Kn. For all n ≥ 1, define the function N(Mn, Kn) as the set of
values of the En+1 that have positive probability conditional on Mn and Kn, i.e.

N(Mn, Kn) := {(s,m, k) | either s = 1 ∧Mn = 0 or s = 0 ∧m = Mn ∧ k = Kn}.
(5.53)

Thus, the conditional distribution on En+1 given all previous values En and all
observations Xn is a function of only En+1 itself, n, Mn and Kn. It remains the
same whether or not any of the other variables are included in the conditional. If
Sn+1 = 1 then it is not even a function of Kn. This interesting property is used
three times in the following. Namely,

1. Since (0, 0, k) ∈ N(0, k), we have πt(Z > n|Z ≥ n) = P (En+1 =
(0, 0, k) |xn,Mn = 0, Kn = k).
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2. Since (1, 0, k) ∈ N(0, k′) for all k′, we have πt(Z = n|Z ≥ n)πk(k)θ =
P (En+1 = (1, 0, k) |xn,Mn = 0).

3. If k ∈ K1, then πk(k)θ = P (x0,M1 = 0, K1 = k).

We first show that the invariants wa
k = P (xn−1,Mn = 0, Kn = k) and wb

k =
P (xn−1,Mn = 1, Kn = k) hold at the start of each iteration (before line 3). The
invariants ensure that wa

k +wb
k = P (xn−1, Kn = k) so that the correct probabilities

are reported.
Line 1 initialises wa

k to θπk(k) for k ∈ K1. By item 3 this equals P (x0,M1 =
0, K1 = k) as required. We omit calculations for wb

k, which run along the same
lines as for wa

k. Thus the loop invariant holds at the start of the first iteration.
We proceed to go through the algorithm step by step to show that the invariant

holds in subsequent iterations as well. In the loss update in line 4 we update the
weights for k ∈ Kn to

wa
k = P (xn−1,Mn = 0, Kn = k) · pk(xn|xn−1)

=
∑

s:Mn=0,Kn=k

π(s)





n−1∏

i=1

pKi
(xi|xi−1)



 pKn(xn|xn−1) = P (xn,Mn = 0, Kn = k).

Similarly wb
k = P (xn,Mn = 1, Kn = k). Then in line 5, we compute pool =

πt(Z = n|Z ≥ n)
∑

k∈Kn
P (xn,Mn = 0, Kn = k) = πt(Z = n|Z ≥ n)P (xn,Mn =

0).
Finally, after the loop that starts at line 6 and ends at line 9, we obtain for

all k ∈ Kn+1:

wa
k = P (xn, Mn =0, Kn =k)πt(Z >n|Z≥n) + πt(Z =n|Z≥n)P (xn, Mn =0)πk(k)θ

= P (xn, Mn = 0, Kn = k)P (Sn+1 = 0, Mn+1 = 0|xn, Mn = 0, Kn = k)

+ P (xn, Mn = 0)P (Sn+1 = 1, Mn+1 = 0, Kn+1 = k|xn, Mn = 0)

= P (xn, Mn = 0, Kn = k, Sn+1 = 0, Mn+1 = 0)

+ P (xn, Mn = 0, Sn+1 = 1, Mn+1 = 0, Kn+1 = k)

= P (xn, Sn+1 =0, Mn+1 =0, Kn+1 =k) + P (xn, Sn+1 =1, Mn+1 =0, Kn+1 =k)

= P (xn, Mn+1 = 0, Kn+1 = k).

Here we used items 1 and 2 in the second equality. Again, a similar derivation
shows that wb

k = P (xn, Kn+1 = k,Mn+1 = 1). These weights satisfy the invariant
at the beginning of the next iteration; after the last iteration the final posterior
is also correctly reported based on these weights.





Chapter 6

Individual Sequence Rate Distortion

Rate-distortion theory analyses communication over a channel under a constraint
on the number of transmitted bits, the“rate”. It currently serves as the theoretical
underpinning for many important applications such as lossy compression and
denoising, or more generally, applications that require a separation of structure
and noise in the input data.

Classical rate-distortion theory evolved from Shannon’s theory of commu-
nication [79]. It studies the trade-off between the rate and the achievable fidelity
of the transmitted representation under some distortion function, where the anal-
ysis is carried out in expectation under some source distribution. Therefore the
theory can only be meaningfully applied if we have some reasonable idea as to the
distribution on objects that we want to compress lossily. While lossy compression
is ubiquitous, propositions with regard to the underlying distribution tend to be
ad-hoc, and necessarily so, because (1) it is a questionable assumption that the
objects that we submit to lossy compression are all drawn from the same proba-
bility distribution, or indeed that they are drawn from a distribution at all, and
(2) even if a true source distribution is known to exist, in most applications the
sample space is so large that it is extremely hard to determine what it is like:
objects that occur in practice very often exhibit more structure than predicted
by the used source model.

For large outcome spaces then, it becomes important to consider structural
properties of individual objects. For example, if the rate is low, then we may still
be able to transmit objects that have a very regular structure without introduc-
ing any distortion, but this becomes impossible for objects with high information
density. This point of view underlies some recent research in the lossy compres-
sion community [77]. At about the same time, a rate-distortion theory which
allows analysis of individual objects has been developed within the framework of
Kolmogorov complexity [60]. It defines a rate-distortion function not with respect
to a source distribution, but with respect to an individual source word. Every
source word thus obtains its own associated rate-distortion function.

157
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We will first give a brief introduction to algorithmic rate-distortion theory in
Section 6.1. We also describe a novel generalisation of the theory to settings with
side information, and we describe two distinct applications of the theory, namely
lossy compression and denoising.

Algorithmic rate-distortion theory is based on Kolmogorov complexity, which
is not computable. We nevertheless cross the bridge between theory and practice
in Section 6.2, by approximating Kolmogorov complexity by the compressed size
of the object by a general purpose data compression algorithm. Even so, approxi-
mating the rate-distortion function is a difficult search problem. We motivate and
outline the genetic algorithm we used to approximate the rate-distortion function.

In Section 6.3 we describe four experiments in lossy compression and denoising.
The results are presented and discussed in Section 6.4. Then, in Section 6.5 we
take a step back and discuss to what extent our practical approach yields a faithful
approximation of the theoretical algorithmic rate-distortion function, continued
by a discussion of how such a practical approach fits within the framework of
MDL model selection (Section 6.6). We end with a conclusion in Section 6.7.

6.1 Algorithmic Rate-Distortion

Suppose we want to communicate objects x from a set of source words X using
at most r bits per object. We call r the rate. We locate a good representation of
x within a finite set Y , which may be different from X in general (but we usually
have X = Y in this text). The lack of fidelity of a representation y is quantified
by a distortion function d : X × Y → R.

Figure 6.1 Rate-distortion profile and distortion-rate function
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The Kolmogorov complexity of y, denoted K(y), is the length of the shortest
program that constructs y. More precisely, it is the length of the shortest input
to a fixed universal binary prefix machine that will output y and then halt; also
see the textbook [60]. We can transmit any representation y that has K(y) ≤ r,
the receiver can then run the program to obtain y and is thus able to reconstruct
x up to distortion d(x, y). Define the rate-distortion profile Px of the source
word x as the set of pairs 〈r, a〉 such that there is a representation y ∈ Y with
d(x, y) ≤ a and K(y) ≤ r. The possible combinations of r and a can also be
characterised by the rate-distortion function of the source word x, which is defined
as rx(a) = min{r : 〈r, a〉 ∈ Px}, or by the distortion-rate function of the source
word x, which is defined as dx(r) = min{a : 〈r, a〉 ∈ Px}. These two functions
are somewhat like inverses of each other; although strictly speaking they are not
since they are monotonic but not strictly monotonic. A representation y is said to
witness the rate-distortion function of x if rx(d(x, y)) = K(y). These definitions
are illustrated in Figure 6.1.

Algorithmic rate-distortion theory is developed and treated in much more
detail in [92]. It is a generalisation of Kolmogorov’s structure function theory,
see [93]. We generalise the algorithmic rate-distortion framework, so that it can
accommodate side information. Suppose that we want to transmit a source word
x ∈ X and we have chosen a representation y ∈ Y as before. The encoder and
decoder often share a lot of information: both might know that grass is green
and the sky is blue, they might share a common language, and so on. They
would not need to transmit such information. If encoder and decoder share some
information z, then the programs they transmit to compute the representation y
may use this side information z. Such programs can be much shorter, and are
never much longer, than their counterparts that do not use side information. This
can be formalised by switching to the conditional Kolmogorov complexity K(y|z),
which is the length of the shortest Turing machine program that constructs y on
input z. We redefine K(y) = K(y|ǫ), where ǫ is the empty sequence, so that
K(y|z) ≤ K(y) + O(1): the length of the shortest program for y can never
significantly increase when side information is provided, but it might certainly
decrease when y and z share a lot of information [60]. We change the definitions
as follows: The rate-distortion profile of the source word x with side information z
is the set of pairs 〈r, a〉 such that there is a representation y ∈ Y with d(x, y) ≤ a
and K(y|z) ≤ r. The definitions of the rate-distortion function and the distortion-
rate function are similarly changed. Henceforth we will omit mention of the side
information z unless it is relevant to the discussion.

While this generalisation seems very natural the authors are not aware of
earlier proposals along these lines. In Section 6.4 we will demonstrate one use for
this generalised rate-distortion theory: removal of spelling errors in written text,
an example where denoising is not practical without use of side information.
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6.1.1 Distortion Spheres, the Minimal Sufficient Statistic

A representation y that witnesses the rate-distortion function is the best possible
rendering of the source object x at the given rate because it minimises the distor-
tion, but if the rate is lower than K(x), then some information is necessarily lost.
Since one of our goals is to find the best possible separation between structure
and noise in the data, it is important to determine to what extent the discarded
information is noise.

Given a representation y and the distortion a = d(x, y), we can find the
source object x somewhere on the list of all x′ ∈ X that satisfy d(x′, y) = a. The
information conveyed about x by y and a is precisely, that x can be found on
this list. We call such a list a distortion sphere. A distortion sphere of radius a,
centred around y is defined as follows:

Sy(a) := {x′ ∈ X : d(x′, y) = a}. (6.1)

If x is a completely random element of this list, then the discarded information
is pure “white” noise. Moreover, all random elements in the list share all “simply
described” (in the sense of having low Kolmogorov complexity) properties that
x satisfies. Hence, with respect to the “simply described” properties, every such
random element is as good as x, see [92] for more details. In such cases a literal
specification of the index of any object x′ in the list (in particular the original
object x) is the most efficient code for that x′, given only that it is in Sy(a). A
fixed-length, literal code requires log |Sy(a)| bits. (Here and in the following, all
logarithms are taken to base 2 unless otherwise indicated.) On the other hand, if
the discarded information is structured, then the Kolmogorov complexity of the
index of x in Sy(a) will be significantly lower than the logarithm of the size of the
sphere. The difference between these two code lengths can be used as an indicator
of the amount of structural information that is discarded by the representation
y. Vereshchagin and Vitányi [92] call this quantity the randomness deficiency
of the source object x in the set Sy(a), and they show that if y witnesses the
rate-distortion function of x, then it minimises the randomness deficiency at
rate K(y); thus the rate-distortion function identifies those representations that
account for as much structure as possible at the given rate.

To assess how much structure is being discarded at a given rate, consider a code
for the source object x in which we first transmit the shortest possible program
that constructs both a representation y and the distortion d(x, y), followed by a
literal, fixed-length index of x in the distortion sphere Sy(a). Such a code has
length function

K(y, d(x, y)) + Ly(x), where Ly(x) := log |Sy(d(x, y))|. (6.2)

If the rate is very low then the representation y models only very basic structure
and the randomness deficiency in the distortion sphere around y is high. Borrow-
ing terminology from statistics, we may say that y is a representation that “un-
derfits” the data. In such cases we should find that K(y, d(x, y)) +Ly(x) > K(x),
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because the fixed-length code for the index of x within the distortion sphere is
suboptimal in this case. But suppose that y is complex enough that it satisfies
K(y, d(x, y)) + Ly(x) ≈ K(x). In [92], such representations are called (algo-
rithmic) sufficient statistics for the data x. A sufficient statistic has close to
zero randomness deficiency, which means that it represents all structure that can
be detected in the data. However, sufficient statistics might contain not only
structure, but noise as well. Such a representation would be overly complex, an
example of overfitting. A minimal sufficient statistic balances between under-
fitting and overfitting. It is defined as the lowest complexity sufficient statistic,
in other words the lowest complexity representation y that minimises the total
code length. As such it can also be regarded as the “model” that should be se-
lected on the basis of the Minimum Description Length (MDL) principle [4]. For
a further discussion of this relationship see Section 6.6. To be able to relate the
distortion-rate function to this code length we define the code length function
λx(r) = K(y, d(x, y)) + Ly(x) where y is the representation that minimises the
distortion at rate r.1

6.1.2 Applications: Denoising and Lossy Compression

Representations that witness the rate-distortion function provide optimal sepa-
ration between structure that can be expressed at the given rate and residual
information that is perceived as noise. Therefore, these representations can be
interpreted as denoised versions of the original. In denoising, the goal is of course
to discard as much noise as possible, without losing any structure. Therefore the
minimal sufficient statistic, which was described in the previous section, is the
best candidate for applications of denoising.

While the minimal sufficient statistic is a denoised representation of the orig-
inal signal, it is not necessarily given in a directly usable form. For instance, Y
could consist of subsets of X , but a set of source-words is not always accept-
able as a denoising result. So in general one may need to apply some function
f : Y → X to the sufficient statistic to construct a usable object. But if X = Y
and the distortion function is a metric, as in our case, then the representations
are already in an acceptable format, so here we use the identity function for the
transformation f .

In applications of lossy compression, one may be willing to accept a rate
which is lower than the minimal sufficient statistic complexity, thereby losing
some structural information. However, for a minimal sufficient statistic y, theory
does tell us that it is not worthwhile to set the rate to a higher value than the
complexity of y. The original object x is a random element of Sy(d(x, y)), and
it cannot be distinguished from any other random z ∈ Sy(d(x, y)) using only

1This is superficially similar to the MDL function defined in [93], but it is not exactly
the same since it involves optimisation of the distortion at a given rate rather than direct
optimisation of the code length.
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“simply described” properties. So we have no “simply described” test to discredit
the hypothesis that x (or any such z) is the original object, given y and d(x, y).
If we increase the rate and find a model y′ with d(x, y′) < d(x, y), then commonly
the cardinality of Sy′ is smaller than that of Sy, such that some elements of Sy

are not included in Sy′ . These excluded elements, however, were perfectly good
candidates of being the original object. That is, at rate higher than that of
the minimal sufficient statistic, the resulting representation y′ models irrelevant
features that are specific to x, that is, noise and no structure, that exclude viable
candidates for the original object: the representation starts to “overfit”.

In lossy compression, as in denoising, the representations themselves may be
unsuitable for presentation to the user. For example, when decompressing a
lossily compressed image, in most applications a set of images would not be an
acceptable result. So again a transformation from representations to objects of a
usable form has to be specified. There are two obvious ways of doing this:

1. If a representation y witnesses the rate-distortion function for a source word
x ∈ X , then this means that x cannot be distinguished from any other object
x′ ∈ Sy(d(x, y)) at rate K(y). Therefore we should not use a deterministic
transformation, but rather report the uniform distribution on Sy(d(x, y)) as
the lossily compressed version of x. This method has the advantage that it
is applicable whether or not X = Y .

2. On the other hand, if X = Y and the distortion function is a metric, then
it makes sense to use the identity transformation again, although here the
motivation is different. Suppose we select some x′ ∈ Sy(d(x, y)) instead of
y. Then the best upper bound we can give on the distortion is d(x, x′) ≤
d(x, y) + d(y, x′) = 2d(x, y) (by the triangle inequality and symmetry).
On the other hand if we select y, then the distortion is exactly d(x, y),
which is only half of the upper bound we obtained for x′. Therefore it is
more suitable if one adopts a worst-case approach. This method has as an
additional advantage that the decoder does not need to know the distortion
d(x, y) which often cannot be computed from y without knowledge of x.

To illustrate the difference one may expect from these approaches, consider the
situation where the rate is lower than the rate that would be required to specify
a sufficient statistic. Then intuitively, all the noise in the source word x as well
as some of the structure are lost by compressing it to a representation y. The
second method immediately reports y, which contains a lot less noise than the
source object x; thus x and y are qualitatively different, which may be undesirable.
On the other hand, the compression result will be qualitatively different from x
anyway, because the rate simply is too low to retain all structure. If one would
apply the first approach, then a result x′ would likely contain more noise than the
original, because it contains less structure at the same level of distortion (meaning
that K(x′) > K(x) while d(x′, y) = d(x, y)).
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If the rate is high enough to transmit a sufficient statistic, then the first ap-
proach seems preferable. We have nevertheless chosen to always report y directly
in our analysis, which has the advantage that this way, all reported results are of
the same type.

6.2 Computing Individual Object Rate-Distortion

The rate-distortion function for an object x with side information z and a distor-
tion function d is found by simultaneously minimising two objective functions

g1(y) = K(y|z),

g2(y) = d(x, y), (6.3)

g(y) =
〈
g1(y), g2(y)

〉
.

We call the tuple g(y) the trade-off of y. We impose a partial order on represen-
tations:

y 4 y′ if and only if g1(y) ≤ g1(y
′) and g2(y) ≤ g2(y

′). (6.4)

Our goal is to find the set of representations that are minimal under 4.

Such an optimisation problem cannot be implemented because of the uncom-
putability of K(·). To make the idea practical, we need to approximate the
conditional Kolmogorov complexity. As observed in [20], it follows directly from
symmetry of information for Kolmogorov complexity (see [60, p.233]) that:

K(y|z) = K(zy)−K(z) + O(log n), (6.5)

where n is the length of zy. Ignoring the logarithmic term, this quantity can
be approximated by replacing K(·) by K̃(·), the length of the compressed rep-
resentation under a general purpose compression algorithm. The approximate
conditional complexity then becomes

K̃(y|z) := K̃(zy)− K̃(z)

≈ K(zy)−K(z) = K(y|z) + O(log n). (6.6)

This may be a poor approximation: it is an upper bound that may be quite high
even for objects that have conditional Kolmogorov complexity close to zero. Our
results show evidence that some of the theoretical properties of the distortion-
rate function nevertheless carry over to the practical setting; we also explain how
some observations that are not predicted by theory are in fact related to the
(unavoidable) inefficiencies of the used compressor.
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6.2.1 Compressor (rate function)

We could have used any general-purpose compressor in (6.6), but we chose to
implement our own for three reasons:

• It should be both fast and efficient. We can gain some advantage over other
available compressors because there is no need to actually construct a code.
It suffices to compute code lengths, which is much easier. As a secondary
advantage, the code lengths we compute are not necessarily multiples of
eight bits: we allow rational idealised code lengths, which may improve
precision.

• It should not have any arbitrary restrictions or optimisations. Most general
purpose compressors have limited window sizes or optimisations to improve
compression of common file types; such features could make the results
harder to interpret.

In our experiments we used a block sorting compression algorithm with a move-
to-front scheme as described in [17]. In the encoding stage M2 we employ a
simple statistical model and omit the actual encoding as it suffices to accumulate
code lengths. The source code of our implementation (in C) is available from
the authors upon request. The resulting algorithm is very similar to a number
of common general purpose compressors, such the freely available bzip2 and zzip
(see [82]), but it is simpler and faster for small inputs.

Of course, domain specific compressors might yield better compression for
some object types (such as sound wave files), and therefore a better approxi-
mation of the Kolmogorov complexity. However, the compressor that we imple-
mented is quite efficient for objects of many of the types that occur in practice;
in particular it compressed the objects of our experiments (text and small im-
ages) quite well. We have tried to improve compression performance by applying
standard image preprocessing algorithms to the images, but this turned out not
to improve compression at all. Figure 6.1 lists the compressed size of an image of
a mouse under various different compression and filtering regimes. Compared to
other compressors, ours is quite efficient; this is probably because other compres-
sors are optimised for larger files and because we avoid all overhead inherent in
the encoding process. Most compressors have optimisations for text files which
might explain why our compressor compares less favourably on the Oscar Wilde
fragment.

6.2.2 Code Length Function

In Section 6.1.1 we introduced the code length function λx(r). Its definition makes
use of (6.2), for which we have not yet provided a computable alternative. We
use the following approximation:

K(y, d(x, y)) ≈ K̃(y) + LD(d(x, y)|y), (6.7)
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Table 6.1 Compressed sizes of three objects that we experiment upon. See Fig-
ure 6.4(h) for the mouse, Figure 6.6 for the cross with added noise and Figure 6.10
for the corrupted Oscar Wilde fragment (the middle version). In the latter we
give the compressed size conditional on a training text, like in the experiments.
“A” is our own algorithm, described in Section 6.2.1. For a description of the
filters see [75].

Compression mouse cross Wilde description

A 7995.11 3178.63 3234.45 Our compressor, described in §6.2.1
zzip 8128.00 3344.00 3184.00 An efficient block sorting compressor
PPMd 8232.00 2896.00 2744.00 High end statistical compressor
RLE → A 8341.68 3409.22 – A with run length encoding filter
bzip2 9296.00 3912.00 3488.00 Widespread block sorting compressor
gzip 9944.00 4008.00 3016.00 LZ77 compressor
sub → A 10796.29 4024.26 – A with Sub filter
paeth → A 13289.34 5672.70 – A with Paeth filter
None 20480.00 4096.00 5864.00 Literal description

where LD is yet another code which is necessary to specify the radius of the
distortion sphere around y in which x can be found. It is possible that this
distortion is uniquely determined by y, for example if Y is the set of all finite
subsets of X and list decoding distortion is used, as described in [93]. If d(x, y)
is a function of y then LD(d(x, y)|y) = 0. In other cases, the representations
do not hold sufficient information to determine the distortion. This is typically
the case when X = Y as in the examples in this text. In that case we actually
need to encode d(x, y) separately. It turns out that the number of bits that are
required to specify the distortion are negligible in proportion to the total three
part code length. In the remainder of the chapter we use for LD a universal code
on the integers similar to the one described in [60]; it has code length LD(d) =
log(d + 1) + O(log log d).

We also need to calculate the size of the distortion sphere, which we therefore
calculate for each of the distortion functions that we describe below.

6.2.3 Distortion Functions

We use three common distortion functions. All distortion functions used in this
text are metrics, so they can only be used when X = Y .

Hamming distortion Hamming distortion is perhaps the simplest possible
distortion function. It can be defined when X = Y = Σn, sequences of n symbols
from a finite alphabet Σ. Let x and y be two objects of equal length n. The
Hamming distortion d(x, y) is equal to the number of symbols in x that do not
match those in the corresponding positions in y.
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A Hamming-distortion sphere Sy(a) contains all objects of length n that can be
constructed by replacing a symbols in y with different symbols from the alphabet
Σ. Thus the size of the sphere is

(
n
a

)
(|Σ| − 1)a.

Euclidean distortion As before, let x = x1 . . . xn and y = y1 . . . yn be two
objects of equal length, but the symbols now have a numerical interpretation.
Euclidean distortion is d(x, y) =

√∑n
i=1(xi − yi)2: the distance between x and y

when they are interpreted as vectors in an n-dimensional Euclidean space. Note
that this definition of Euclidean distortion differs from the one in [92].

Our variety of Euclidean distortion requires that X = Y = Z
n, the set of n-

dimensional vectors of integers. The size of a Euclidean distortion sphere around
some y ∈ Y of length n is hard to compute analytically. We use an upper bound
that is reasonably tight and can be computed efficiently. One may want to skip
this calculation on first reading.

First we define d(v) := d(v,0) =
√∑n

i=1 v2
i and S(n, a) as the set {v : |v| =

n, d(v) = a}. We have x ∈ Sy(a) ⇔ x − y ∈ S(n, a), so it suffices to bound the
size of S(n, a). We define:

p(δ|n, a) := ce−δ2n/2a2

where c = 1/
∑

δ∈Z

e−δ2n/2a2

P (v) :=
n∏

i=1

p(vi|n, d(v));

p(·|n, d(v)) can be interpreted as a probability mass function on the individual
entries of v (which in our application always lie between -255 and 255, so in
practice we used a reduced range in the definition of the normalising constant
c). Therefore P (v) defines a valid probability mass function on outcomes v in
S(n, a). Thus,

1 >
∑

v∈S(n,a)

P (v) =
∑

v∈S(n,a)

cne−(
P

δ2
i )n/2a2

=
∑

v∈S(n,a)

cne−n/2 = cne−n/2|S(n, a)|.

This yields a bound on the size of S(n, a), which is reasonably tight unless the
distortion a is very low. In that case, we can improve the bound by observing
that v must have at least z = n− d(v)2 zero entries. Let v′ be a vector of length
n − z that is obtained by removing z zero entries from v. Every v in S(n, a)
can be constructed by inserting z zeroes into v′, so we have |Sy(a)| = |S(n, a)| ≤
(

n
z

)
|S(n − z, a)|. The size of S(n − z, a) can be bounded by using the method

described before recursively.

Edit distortion The edit distortion of two strings x and y, of possibly differ-
ent lengths, is the minimum number of symbols that have to be deleted from,
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inserted into, or changed in x in order to obtain y (or vice versa) [54]. It is also
known as Levenshtein distortion. It is a well-known measure that is often used in
applications that require approximate string matching.

Edit distortion can be defined for spaces X = Y = Σ∗ for a finite alphabet Σ.
We develop an upper bound on the size of the edit distortion sphere, again the
calculation may be skipped on first reading.

We can identify any object in Sy(a) by a program p that operates on y, and
which is defined by a list of instructions to copy, replace or delete the next symbol
from y, or to insert a new symbol. We interpret a deletion as a replacement with
an empty symbol; so the replacement operations henceforth include deletions. Let
d(p) denote the number of insertions and replacements in p, in other words d(p) is
the length of the program minus the number of copies. Clearly for all x ∈ Sy(a),
there must be a p such that p(y) = x and d(p) = d(x, y) = a. Therefore the size of
Sy(a) can be upper bounded by counting the number of programs with d(p) = a.
Let n be the length of y. Any program that contains i insertions and that processes
y completely, must be of length n + i. The i insertions, a − i replacements and
n−a+ i copies can be distributed over the program in

(
n+i

i,a−i,n+a−i

)
different ways.

For each insertion and replacement, the number of possibilities is equal to the
alphabet size. Therefore,

|Sy(a)| ≤ |{p : d(p) = a}| ≤ |Σ|a
a∑

i=max{0,a−n}

(
n + i

i, n− a + i, a− i

)

.

The sphere can be extremely large, so to facilitate calculation of the log of the
sphere size, as is required in our application, it is convenient to relax the bound
some more and replace every term in the sum by the largest one. Calculation
reveals that the largest term has

i =

⌊
1

4

(

2(a− n) + 1 +
√

4(n2 + n + a2 + a) + 1
)⌋

.

6.2.4 Searching for the Rate-Distortion Function

The search problem that we propose to address has two properties that make it
very hard. Firstly, the search space is enormous: at rate r there are 2r candidate
representations to consider, and for the kinds of objects that are typically sub-
jected to lossy compression useful representations are often millions or billions
of bits long. Secondly, we want to avoid making too many assumptions about
the two objective functions, so that we can later freely change the compression
algorithm and the distortion function. Under such circumstances the two most
obvious search methods are not practical:

• An exhaustive search is infeasible for search spaces of such large size, unless
more specific properties of the objective functions are used in the design
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of the algorithm. To investigate how far we could take such an approach,
we have implemented an exhaustive algorithm under the requirement that,
given a prefix of a representation y, we can compute reasonable lower bounds
on the values of both objective functions g1 and g2. This allows for relatively
efficient enumeration of all representations of which the objective functions
do not exceed specific maxima: it is never necessary to consider objects
which have a prefix for which the lower bounds exceed the constraints,
which allows for significant pruning. In this fashion we were able to find the
rate-distortion function under Hamming distortion for objects of which the
compressed size is about 25 bits or less within a few hours on a desk-top
computer.

• A greedy search starts with a poor solution and iteratively makes modifi-
cations that constitute strict improvements. We found that this procedure
tends to terminate quickly in some local optimum that is very bad globally.

Since the structure of the search landscape is at present poorly understood and
we do not want to make any unjustifiable assumptions, we use a genetic search
algorithm which performs well enough that interesting results can be obtained.

6.2.5 Genetic Algorithm

The used algorithm is an almost completely generic procedure to simultaneously
optimise two separate objective functions for objects that are represented as byte
sequences. To emphasise this we will consider the abstract objective function g
wherever possible, rather than the more concrete rate and distortion functions.

A finite subset of Y is called a pool. The search algorithm initialises a pool
P0 with the representation y that has d(x, y) = 0, which means y = x in our
setup, and possibly some “blank” representation that has minimal compressed
code length but high distortion. The pool is then subjected to a process of
selection through survival of the fittest. The weakness wP(y) of an object y ∈ P
is the number of elements of the pool that are smaller according to 4. The
(transitive) reduction trd(P) of a pool P is the subset of all elements with zero
weakness. The elements of the reduction of a pool P are called models.

The pool is iteratively updated by replacing elements with high weakness (the
fitness function is specified below) by new ones, which are created through either
mutation (random modifications of elements) or crossover (“genetic” recombina-
tion of pairs of other candidates). We write Pi to denote the pool after i iterations.
When the algorithm terminates after n iterations it outputs the reduction of Pn.

In the next sections we describe our choices for the important components of
the algorithm: the mechanics of crossover and mutation, the fitness function and
the selection function which specifies the probability that a candidate is removed
from the pool. In the interest of reproducibility we faithfully describe all our
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important design choices, even though some of them are somewhat arbitrary. A
casual reader may want to skip such details and move on to Section 6.3.

Crossover

Crossover (also called recombination) is effected by the following algorithm. Given
two objects x and y we first split them both in three parts: x = x1x2x3 and
y = y1y2y3, such that the length of x1 is chosen uniformly at random between 0
and the length of x and the length of x2 is chosen from a geometric distribution
with mean 5; the lengths of the yi are proportional to the lengths of the xi. We
then construct a new object by concatenating x1y2x3.

Mutation

The introduction of a mutation operation is necessary to ensure that the search
space is connected, since the closure of the gene pool under crossover alone might
not cover the entire search space. While we could have used any generic mu-
tation function that meets this requirement, for reasons of efficiency we have
decided to design a different mutation function for every objective function that
we implemented. This is helpful because some distortion functions (here, the edit
distortion) can compare objects of different sizes while others cannot: mutation
is the means by which introduction of objects of different size to the pool can be
brought about when desirable, or avoided when undesirable.

The mutation algorithm we use can make two kinds of change. With proba-
bility 1/4 we make a small random modification using an algorithm that depends
on the distortion function. Below is a table of the distortion functions and a short
description of the associated mutation algorithms:

Distortion Mutation algorithm

Hamming Sets a random byte to a uniformly random value
Euclidean Adds an N [0;σ = 10] value to a random byte
Edit A random byte is changed, inserted or deleted

With probability 3/4 we use the following mutation algorithm instead. It
splits the object x into three parts x = x1x2x3 where the length of x1 is chosen
uniformly at random between 0 and the length of x and the length of x2 is chosen
from a geometric distribution with mean 5. The mutation is effected by training
a (simplified version of) a third order PPM model [24] on x1 and then replacing
x2 with an equally long sequence that is sampled from the model. The advantage
of this scheme is that every replacement for x2 gets positive probability, but
replacements which have low code length and distortion tend to be much more
likely than under a uniform distribution.
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Fitness Function

In theory, the set of representations that witness the rate-distortion function does
not change under monotonic transformation of either objective function g1 or
g2. We have tried to maintain this property throughout the search algorithm
including the fitness function, by never using either objective function directly
but only the ordering relation 4. Under such a regime, a very natural definition
of fitness is minus the weakness of the objects with respect to pool P .

It has been an interesting mini-puzzle to come up with an efficient algorithm
to compute the weakness of all objects in the pool efficiently. Our solution is the
following very simple algorithm, which has an O(n log n) average case running
time. It first sorts all elements of the pool by their value under g1 and then inserts
them in order into a binary search tree in which the elements are ordered by their
value under g2. As an object is inserted into the tree, we can efficiently count
how many elements with lower values for g2 the tree already contained. These
elements are precisely the objects that have both lower values on g1 (otherwise
they would not appear in the tree yet) and on g2; as such their number is the
desired weakness.

Selection Function

Figure 6.2 Drop probability
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A pool P induces a tradeoff profile p(P) := {g(y) : y′ 4 y for some y′ in P}.
It is not hard to see that we have p(P) = p(trd(P)) and p(P) ⊆ p(P ∪ P ′) for
all P ′ ⊆ Y . Therefore monotonic improvement of the pool under modification is
ensured as long as candidates with weakness 0 are never dropped.

We drop other candidates with positive probability as follows. Let y1, . . . , yn

be the elements of P with nonzero weakness, ordered such that for 1 ≤ i < j ≤ n
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we have wP(yi) < wP(yj) or g1(yi) < g1(yj) if yi and yj have the same weakness.
We drop candidate yi from the pool with probability 1/(1 + ( n

i−1/2
− 1)α), which

is a modified sigmoid function where α ∈ (1,∞) specifies the sharpness of the
transition from probability zero to one. This function is plotted for different
values of α in Figure 6.2. We used α = 4 in our experiments.

6.3 Experiments

We have subjected four objects to our program. The following considerations
have influenced our choice of objects:

• Objects should not be too complex, allowing our program to find a good
approximation of the distortion-rate curve. We found that the running
time of the program seems to depend mostly on the complexity of the input
object; a compressed size of 20,000 bits seemed to be about the maximum
our program could handle within a reasonable amount of time, requiring a
running time of the order of weeks on a desk-top computer.

• To check that our method really is general, objects should be quite dif-
ferent from each other: they should come from different object domains,
for which different distortion functions are appropriate, and they should
contain structure at different levels of complexity.

• Objects should contain primary structure and regularities that are distin-
guishable and compressible by a block sorting compressor such as the one
we use. Otherwise, we may no longer hope that the compressor implements
a reasonable approximation of the Kolmogorov complexity. For instance,
we would not expect our program to do well on a sequence of digits from
the binary expansion of the number π.

With this in mind, we have selected the objects listed in Figure 6.3.

In each experiment, as time progressed the program found less and less improve-
ments per iteration, but the pool never stabilized completely. Therefore we in-
terrupted each experiment when (a) after at least one night of computation, the
pool did not improve a lot, and (b) for all intuitively good models y ∈ Y that we
could conceive of a priori, the algorithm had found an y′ in the pool with y′ 4 y
according to (6.4). For example, in each denoising experiment, this test included
the original, noiseless object. In the experiment on the mouse without added
noise, we also included the images that can be obtained by reducing the number
of grey levels in the original with an image manipulation program. Finally for
the greyscale images we included a number of objects that can be obtained by
subjecting the original object to JPEG2000 compression at various quality levels.
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Figure 6.3 The four objects that are subjected to rate-distortion analysis.

A picture of a mouse
of 64 × 40 pixels.
The picture is anal-
ysed with respect to
Euclidean distortion.

A noisy monochrome image
of 64 × 64 pixels that de-
picts a cross. 377 pixels
have been inverted. Ham-
ming distortion is used.

The same picture of
a mouse, but now
zero mean Gaussian
noise with σ = 8 has
been added to each
pixel. Euclidean dis-
tortion is used; the
distortion to the orig-
inal mouse is 391.1.

Beauty, real beauty,
ends2wheresan in-
tellectual expressoon
begins. IntellHct
isg in itself a mMde
ofSexggeration, an\
destroys theLharmony
of n face. [. . . ]

(See Figure 6.10)

A corrupted quotation from
Chapter 1 of The Picture
of Dorian Gray, by Oscar
Wilde. The 733 byte long
fragment was created by
performing 68 random in-
sertions, deletions and re-
placements of characters in
the original text. Edit dis-
tortion is used. The rest of
chapters one and two of the
novel are given to the pro-
gram as side information.

The first experiment illustrates how algorithmic rate-distortion theory may
be applied to lossy compression problems, and it illustrates how for a given rate,
some features of the image are preserved while others can no longer be retained.
We compare the performance of our method to the performance of JPEG and
JPEG2000 at various quality levels. Standard JPEG images were encoded using
the ImageMagick version 6.2.2; profile information was stripped. JPEG2000 im-
ages were encoded to jpc format with three quality levels using NetPBM version
10.33.0; all other options are default. For more information about these software
packages refer to [83].

The other three experiments are concerned with denoising. Any model that
is output by the program can be interpreted as a denoised version of the input
object. We measure the denoising success of a model y as d(x′, y), where x′ is the
original version of the input object x, before noise was added. We also compare
the denoising results to those of other denoising algorithms:

1. BayesShrink denoising [18]. BayesShrink is a popular wavelet-based denois-
ing method that is considered to work well for images.

2. Blurring (convolution with a Gaussian kernel). Blurring works like a low-
pass filter, eliminating high frequency information such as noise. Unfortu-
nately other high frequency features of the image, such as sharp contours,
are also discarded.

3. Naive denoising. We applied a naive denoising algorithm to the noisy cross,
in which each pixel was inverted if five or more out of the eight neighbouring
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pixels were of different colour.

4. Denoising based on JPEG2000. Here we subjected the noisy input image
to JPEG2000 compression at different quality levels. We then selected the
result for which the distortion to the original image was lowest.

6.3.1 Names of Objects

To facilitate description and discussion of the experiments we will adopt the fol-
lowing naming convention. Objects related to the experiments with the mouse,
the noisy cross, the noisy mouse and the Wilde fragment, are denoted by the
symbols M, C, N and W respectively. A number of important objects in each
experiment are identified by a subscript as follows. For O ∈ {M, C, N, W}, the
input object, for which the rate-distortion function is approximated by the pro-
gram, is called Oin. In the denoising experiments, the input object is always
constructed by adding noise to an original object. The original objects and the
noise are called Oorig and Onoise respectively. If Hamming distortion is used,
addition is carried out modulo 2, so that the input object is in effect a pixelwise
exclusive OR of the original and the noise. In particular, Cin equals Corig XOR
Cnoise. The program outputs the reduction of the gene pool, which is the set
of considered models. Two important models are also given special names: the
model within the gene pool that minimises the distortion to Oorig constitutes
the best denoising of the input object and is therefore called Obest, and the min-
imal sufficient statistic as described in Section 6.1.1 is called Omss. Finally, in
the denoising experiments we also give names to the results of the alternative de-
noising algorithms. Namely, Cnaive is the result of the naive denoising algorithm
applied to the noisy cross, Nblur is the convolution of N with a Gaussian kernel
with σ = 0.458, Nbs is the denoising result of the BayesShrink algorithm, and
Njpeg2000 is the image produced by subjecting N to JPEG2000 compression at
the quality level for which the distortion to Norig is minimised.

6.4 Results and Discussion

After running for some time on each input object, our program outputs the
reduction of a pool P , which is interpreted as a set of models. For each ex-
periment, we report a number of different properties of these sets. Since we
are interested in the rate-distortion properties of the input object x = Oin,
we plot the approximation of the distortion-rate function of each input object:
dx(r) = min{d(x, y) : y ∈ Y , K(y) ≤ r} ≈ min{d(x, y) : y ∈ trd(P), K̃(y) ≤ r}.
Such approximations of the distortion-rate function are provided for all four exper-
iments. For the greyscale images we also plot the distortion-rate approximation
that is achieved by JPEG2000 (and in Figure 6.5 also ordinary JPEG) at different
quality levels. Here, the rate is the code length achieved by JPEG(2000), and the
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distortion is the Euclidean distortion to Oin. We also plot the code length func-
tion as described in Section 6.1.1. Minimal sufficient statistics can be identified
by locating the minimum of this graph.

6.4.1 Lossy Compression

Experiment 1: Mouse (Euclidean distortion)

Our first experiment involved the lossy compression of M, a greyscale image of
a mouse. A number of elements of the gene pool are shown in Figure 6.4. The
pictures show how at low rates, the models capture the most important global
structure of the image; at higher rates more subtle properties of the image can be
represented. Image (a) shows a rough rendering of the distribution of bright and
dark areas in Min. These shapes are rectangular, which is probably an artifact
of the compression algorithm we used: it is better able to compress images with
rectangular structure than with oval structure. There is no real reason why an
oval should be in any way more complex than a rectangle, but most general
purpose data compression software is similarly biased. In (b), the rate is high
enough that the oval shape of the mouse can be accommodated, and two areas
of different overall brightness are identified. After the number of grey shades has
been increased a little further in (c), the first hint of the mouse’s eyes becomes
visible. The eyes are improved and the mouse is given paws in (d). At higher
rates, the image becomes more and more refined, but the improvements are subtle
and seem of a less qualitative nature.

The code length function (Figure 6.5) shows that the only sufficient statistic in
the set of models is Min itself, indicating that the image hardly contains any noise.
It also shows the rates that correspond to the models that are shown in Figure 6.4.
By comparing these figures it can be clearly seen that the image quality only
deteriorates significantly if more than half of the information in Min is discarded.
Note that this is not a statement about the compression ratio, where the lossily
compressed size is related to the size of the uncompressed object rather than its
complexity. For example, Min has an uncompressed size of 64 ·40 ·8 = 20480 bits,
and the representation in Figure 6.4(g) has a compressed size of 3190.6 bits. This
representation therefore constitutes compression by a factor of 20480/3190.6 =
6.42, which is substantial for an image of such small size. At the same time the
amount of information is reduced by a factor of 7995.0/3190.6 = 2.51.
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Figure 6.4 Lossy image compression results for the mouse (h). The numbers be-
low each image denote its compressed size K̃(·), total code length K̃(·)+L(·)(Min)
and Euclidean distortion d(·, Min), respectively.

(a) 163.0 /19920.9 / 2210.0 (b) 437.8 / 17013.6 / 1080

(c) 976.6 / 15779.7 / 668.9 (d) 1242.9 / 15297.9 / 546.4

(e) 1676.6 / 14641.9 / 406.9 (f) 2324.5 / 14150.1 / 298.9

(g) 3190.6 / 13601.4 / 203.9 (h) 7995.1 / 7996.1 / 0
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Figure 6.5 Approximate distortion-rate and code length functions for the mouse.
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6.4.2 Denoising

For each denoising experiment, we report a number of important objects, a graph
that shows the approximate distortion-rate function and a graph that shows the
approximate code length function. In the distortion-rate graph we plot not only
the distortion to Oin but also the distortion to Oorig, to visualise the denoising
success at each rate.

In interpreting these results, it is important to realise that only the reported
minimal sufficient statistic and the results of the BayesShrink and naive denoising
methods can be obtained without knowledge of the original object – the other
objects Obest, Ojpeg2000 and Oblur require selecting between a number of al-
ternatives in order to optimise the distortion to Oorig, which can only be done
in a controlled experiment. Their performance may be better than what can be
achieved in practical situations where Oorig is not known.

Experiment 2: Noisy Cross (Hamming distortion)

In the first denoising experiment we approximated the distortion-rate function
of a monochrome cross Corig of very low complexity, to which artificial noise
was added to obtain Cin (the rightmost image in Figure 6.6); the distortion to
the noiseless cross is displayed in the same graph. The best denoising Cbest

(leftmost image) has a distortion of only 3 to the original Corig, which shows
that the distortion-rate function indeed separates structure and noise extremely
well in this example. The bottom graph shows the code length function for the
noisy cross; the minimum on this graph is the minimal sufficient statistic Cmss.
In this low complexity example, we have Cmss = Cbest, so the best denoising is
not only very good in this simple example, but it can also be identified.

We did not subject Cin to BayesShrink or blurring because those methods are
not suitable for monochrome images. Therefore we used the extremely simple,
“naive” denoising method that is described in Section 6.3 on this specific image
instead. The middle image shows the result Cnaive; while it does remove most of
the noise, 40 errors remain, a lot more than the number of errors incurred by the
minimal sufficient statistic. All errors except one are close to the contours of the
cross. This illustrates how the naive algorithm is limited by its property that it
takes only the local neighbourhood of each pixel into account, it cannot represent
larger structures such as straight lines.
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Figure 6.6 Denoising a noisy cross. Highlighted objects, from left to right:
Cbest, Cnaive and Cin. Exact values are in the bottom table.
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Cbest=Cmss Cnaive Cin

K̃(·) 260.4 669.2 3178.6

K̃(·) + L(·)(Cin) 2081.9 2533.3 3179.6
d(·, Cin) 376 389 0

d(·, Corig) 3 40 377
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Experiment 3: Noisy mouse (Euclidean distortion)

The noisy mouse poses a significantly harder denoising problem, where the total
complexity of the input Nin is more than five times that of the noisy cross. Fig-
ure 6.7 shows the denoising results for various denoising methods, and Figure 6.8
shows the rate-distortion curve and, as for the noisy cross, the distortion to the
original object Norig.

Figure 6.7(a) shows the input object Nin; it was constructed by adding noise
(centre image) to the original noiseless image Norig (top-right). We display three
different denoising results. Image (h) shows Nbest, the best denoised object from
the gene pool. Visually it appears to resemble Norig quite well, but there might
be structure in Norig that was lost in the denoising process. Because human
perception is perhaps the most sensitive detector of structure in image data,
we show the difference between Nbest and Norig in (i). We would expect any
significant structure in the original image that is lost in the denoising process,
as well as structure that is not present in the original image, but is somehow
introduced as an artifact of the denoising procedure, to become visible in this
residual. In the case of Nbest we cannot make out any particular features.

The minimal sufficient statistic, image (d), also appears to be a reasonably
successful denoising, albeit clearly of lower complexity than the best one. In
the residual, darker and lighter patches are definitely discernible. Apparently Nin

does contain some structure beyond what is captured by Nmss, but this cannot be
exploited by the compression algorithm. We think that the fact that the minimal
sufficient statistic is of lower complexity than the best possible denoising result
should therefore again be attributed to inefficiencies of the compressor.

For comparison, we have also denoised Nin using the alternative denoising
method BayesShrink and the methods based on blurring and JPEG2000 as de-
scribed in Section 6.3. We found that BayesShrink does not work well for images
of such small size: the distortion between Nbs and Nin is only 72.9, which means
that the input image is hardly affected at all. Also, Nbs has a distortion of 383.8
to Norig, which is hardly less than the distortion of 392.1 achieved by Nin itself.

Blurring-based denoising yields much better results: Nblur (j) is the result
after optimisation of the size of the Gaussian kernel. Its distortion to Norig lies
in-between the distortions achieved by Nmss and Nbest, but it is different from
those objects in two important respects. Firstly, Nblur remains much closer to
Nin, at a distortion of 260.4 instead of more than 470, and secondly, Nblur is
much less compressible by K̃. (To obtain the reported size of 14117 bits we had to
switch on the averaging filter, as described in Section 6.2.1.) These observations
are at present not well understood. Image (k) shows that the contours of the
mouse are somewhat distorted in Nblur; this can be explained by the fact that
contours contain high frequency information which is discarded by the blurring
operation as we remarked in Section 6.3.

The last denoising method we compared our results to is the one based on the
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JPEG2000 algorithm. Its performance is clearly inferior to our method visually
as well as in terms of rate and distortion. The result seems to have undergone
a smoothing process similar to blurring which introduces similar artifacts in the
background noise, as is clearly visible in the residual image. As before, the com-
parison may be somewhat unfair because JPEG2000 was not designed for the
purpose of denoising, might optimise a different distortion measure and is much
faster.
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Figure 6.7 Denoising results for the noisy mouse (a). The numbers below each
image denote its compressed size K̃(·), total code length K̃(·) + L(·)(Nin), distor-
tion to Nin and distortion to Norig, respectively.

(a) Nin
16699.7 / 16700.7 / 0 / 392.1

(b) Norig(=Min)
7995.1 / 26247.8 / 392.1 / 0

(c) Nnoise=Nin-Norig

(d) Nmss
1969.8 / 15504.9 / 474.7 / 337.0

(e) Nmss − Norig

(f) Njpeg2000
3104 / 16395.4 / 444.4 / 379.8

(g) Njpeg2000 − Norig

(h) Nbest
3354.5 / 15952.8 / 368.4 / 272.2

(i) Nbest − Norig

(j) Nblur (σ = 0.458)
14117.0 / 25732.4 / 260.4 / 291.2

(k) Nblur − Norig
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Figure 6.8 Approximate distortion-rate and code length functions for the noisy
mouse.
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Experiment 4: Oscar Wilde fragment (edit distortion)

The fourth experiment, in which we analyse Win, a corrupted quotation from
Oscar Wilde, shows that our method is a general approach to denoising that
does not require many domain specific assumptions. Worig, Win and Wmss

are depicted in Figure 6.10, the distortion-rate approximation, the distortion to
Worig and the three part code length function are shown in Figure 6.11. We have
trained the compression algorithm by supplying it with the rest of Chapters 1 and
2 of the same novel as side information, to make it more efficient at compressing
fragments of English text. We make the following observations regarding the
minimal sufficient statistic:

• In this experiment, Wmss = Wbest so the minimal sufficient statistic sepa-
rates structure from noise extremely well here.

• The distortion is reduced from 68 errors to only 46 errors. 26 errors are cor-
rected (N), 4 are introduced (H), 20 are unchanged (•) and 22 are changed
incorrectly (⋆).

• The errors that are newly introduced (H) and the incorrect changes (⋆)
typically simplify the fragment a lot, so that the compressed size may be
expected to drop significantly. Not surprisingly therefore, many of the sym-
bols marked H or ⋆ are deletions, or modifications that create a word which
is different from the original, but still correct English. The following table
lists examples of the last category:

Line Worig Win Wmss
3 or Nor of

4 the Ghe he

4 any anL an

4 learned JeaFned yearned

5 course corze core

5 then ehen when

8 he fhe the

Since it would be hard for any general-purpose mechanical method (that
does not incorporate a sophisticated English language model) to determine
that these changes are incorrect, we should not be surprised to find a number
of errors of this kind.

Side Information

Figure 6.9 shows that the compression performance is significantly improved if
we provide side information to the compression algorithm, and the improvement
is typically larger if (1) the amount of side information is larger, or (2) if the
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compressed object is more similar to the side information. Thus, by giving side
information, correct English prose is recognised as “structure” sooner and a better
separation between structure and noise is to be expected. The table also shows
that if the compressed object is in some way different from the side information,
then adding more side information will at some point become counter-productive,
presumably because the compression algorithm will then use the side information
to build up false expectations about the object to be compressed, which can be
costly.

While denoising performance would probably improve if the amount of side
information was increased further, it was infeasible to do so in this implementa-
tion. Recall from Section 6.2 that he conditional Kolmogorov complexity K(y|z)
is approximated by K̃(y|z) = K̃(zy)− K̃(z). The time required to compute this
is dominated by the length of z if the amount of side information is much larger
than the size of the object to be compressed. This can be remedied by using a
compression algorithm that processes its input sequentially, because the state of
such an algorithm can be cached after processing the side information z; comput-
ing K̃(zy) would then be a simple matter of recalling the state that was reached
after processing z and then processing y starting from that state. Many com-
pression algorithms, among which Lempel-Ziv compressors and most statistical
compressors, have this property; our approach could thus be made to work with
large quantities of side information by switching to a sequential compressor but
we have not done this.

Figure 6.9 Compressed size of models for different amounts of side information.
Worig is never included in the side information. We do not let Wmss vary with
side information but keep it fixed at the object reported in Figure 6.10(c).

Side information z K̃(Worig|z) K̃(Wmss|z) K̃(Win|z)
None 3344.1 3333.7 3834.8
Chapters 1,2 (57 kB) 1745.7 1901.9 3234.5
Whole novel (421 kB) 1513.6 1876.5 3365.9
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Figure 6.10 A fragment of The Picture of Dorian Gray, by Oscar Wilde.
Beauty, real beauty, ends where an intellectual expression begins. Intellect

is in itself a mode of exaggeration, and destroys the harmony of any face.
The moment one sits down to think, one becomes all nose, or all forehead, or
something horrid. Look at the successful men in any of the learned professions.
How perfectly hideous they are! Except, of course, in the Church. But then in the
Church they don’t think. A bishop keeps on saying at the age of eighty what he
was told to say when he was a boy of eighteen, and as a natural consequence
he always looks absolutely delightful. Your mysterious young friend, whose
name you have never told me, but whose picture really fascinates me, never
thinks. I feel quite sure of that.

(a) Worig, the original text

Beauty, real beauty, ends2wheresan intellectual expressoon begins. IntellHct
isg in itself a mMde ofSexggeration, an\ destroys theLharmony of n face. :The
m1ment one sits down to ahink@ one becomes jll noeˆ Nor all forehbead, or
something hNrrid. Look a Ghe successf\l men in anL of te JeaFned professions.
How per}ectly tideous 4they re6 Except, of corze, in7 the Ch4rch. BuP ehen in the
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thinCs. I feel quite surS of that9

(b) Win, the corrupted version of the fragment. At 68 randomly selected positions
characters have been inserted, deleted or modified. New and replacement characters
are drawn uniformly from ASCII symbols 32–126.
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(c) Wbest = Wmss; it has edit distortion 46 to the original fragment. Marks
indicate the error type: N=correction; H=new error; •=old error; ⋆=changed but
still wrong. Deletions are represented as ⊡.
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Figure 6.11 Results for a fragment of The Picture of Dorian Gray by Oscar
Wilde (also see Figure 6.10).
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6.5 Quality of the Approximation

It is easy to see from its definition that the distortion-rate function must be
a non-increasing function of the rate. The implementation guarantees that our
approximation is non-increasing as well. In [92] it is assumed that for every x ∈ X
there exists a representation y ∈ Y such that d(x, y) = 0; in the context of this
chapter this is certainly true because we have X = Y and a distortion function
which is a metric. The gene pool is initialised with Oin, which always has zero
weakness and must therefore remain in the pool. Therefore at a rate that is high
enough to specify x, the distortion-rate function reaches zero.

The shape of the code length function for an object x is more complicated. Let
y be the representation for which d(x, y) = 0. In theory, the code length can never
become less than the complexity of y, and the minimal sufficient statistic witnesses
the code length function at the lowest rate at which the code length is equal to
the complexity of y. Practically, we found in all denoising experiments that the
total code length using the minimal sufficient statistic, K̃(Omss) + LOmss(Oin),

is lower than the code length K̃(Oin) that is obtained by compressing the input
object directly. This can be observed in Figures 6.6, 6.8 and 6.11. The effect is
most pronounced in Figure 6.6, where the separation between structure and noise
is most pronounced.

Our hypothesis is that this departure from the theoretical shape of the code
length function must be explained by inefficiency of the compression algorithm
in dealing with noise. This is evidenced by the fact that it needs 2735.7 bits to
encode Cnoise, while only log2

(
4096
377

)
≈ 1810 bits would suffice if the noise were

specified with a uniform code on the set of indices of all binary sequences with
exactly 377 ones out of 64 · 64 (see Section 6.2.3). Similarly, K̃(Nnoise) = 14093,
whereas a literal encoding requires at most 12829 bits (using the bound from
Section 6.2.3).

Another strange effect occurs in Figure 6.8, where the code length function
displays a strange “bump”: as the rate is increased beyond the level required to
specify the minimal sufficient statistic, the code length goes up as before, but
here at very high rates the code length starts dropping again.

It is theoretically possible that the code length function should exhibit such
behaviour to a limited extent. It can be seen in [92] that a temporary increase
in the code length function can occur up to a number of bits that depends on
the so-called covering coefficient. Loosely speaking this is the density of small
distortion balls that is required in order to completely cover a larger distortion
ball. The covering coefficient in turn depends on the used distortion function and
the number of dimensions. It is quite hard to analyse in the case of Euclidean
distortion, so we cannot at present say if theory admits such a large increase
in the code length function. However, we believe that the explanation is more
mundane in this case. Since the noisy mouse is the most complex object of the
four we experimented on, we fear that this bump may simply indicate that we
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interrupted our search procedure too soon. Quite possibly, after a few years of
processing on more expensive hardware, the code length function would have run
straight in between Nmss and Nin.

Figure 6.5 shows that our approximation of the distortion-rate function is
somewhat better than the approximation provided by either JPEG or JPEG2000,
although the difference is not extremely large for higher rates. The probable rea-
son is twofold: on the one hand, we do not know for which distortion function
JPEG(2000) is optimised, but it is probably not Euclidean distortion. Therefore
our comparison is somewhat unfair, since our method might well perform worse
on JPEG(2000)’s own distortion measure. On the other hand, JPEG(2000) is
very time-efficient, it took only a matter of seconds to compute models at var-
ious different quality levels, while it took our own algorithm days or weeks to
compute its distortion-rate approximation. Two conclusions can be drawn from
our result. Namely, if the performance of existing image compression software
had been better than the performance of our own method in our experiments,
this would have been evidence to suggest that our algorithm does not compute
a good approximation to the rate-distortion function. The fact that this is not
the case is thus reassuring. Vice versa, if we assume that we have computed a
good approximation to the algorithmic rate-distortion function, then our results
give a measure of how close JPEG(2000) comes to the theoretical optimum; our
program can thus be used to provide a basis for the evaluation of the performance
of lossy compressors.

6.6 An MDL Perspective

So far we have described algorithmic rate-distortion theory in terms of the uncom-
putable notion of Kolmogorov complexity, and we developed a practical version
of the method using a data compression algorithm. In the context of this the-
sis, it is natural to ask how the practical method we described above fits within
established MDL theory. After all, Minimum Description Length was originally
developed to obtain a practical version of universal learning based on Kolmogorov
complexity, which can even be interpreted as a special case (“ideal MDL”, Sec-
tion 1.1.3). For example, a major theme in the MDL literature is the motivation
of the used codes; some codes are considered acceptable, others are not. To what
category belongs the data compression algorithm we used?

First we compare the code length function used in MDL to that we used for
algorithmic rate-distortion in this chapter. In the considered practical version of
algorithmic rate distortion, by (6.2) and (6.7), the total code length of the source
object x ∈ X using a representation y ∈ Y equals

K̃(y) + LD(d(x, y)|y) + log |Sy(d(x, y))|. (6.8)

In this three part code, the first term counts the number of bits required to
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specify the representation, or hypothesis, for the data and the last term counts
the number of bits required to specify the noise. Whether the distortion level
of the source object given a representation should be interpreted as part of the
hypothesis or as noise is debatable; in this chapter we found it convenient to
treat the distortion level as part of the hypothesis, as in (6.2). But to match
algorithmic rate-distortion to MDL it is better to think of the distortion level as
part of the noise and identify Y with the available hypotheses.

In our description of MDL in the introductory chapter, the total code length
of the data x ∈ X with the help of a hypothesis y ∈ Y is

L(y) + Ly(x). (6.9)

Algorithmic rate-distortion theory can be understood as a generalisation of MDL
as described in the introduction by making (6.8) and (6.9) match. Suppose that
we start with an instance of MDL model selection, specified by the code length
functions L(y) and Ly(x), and let Py(x) = 2−Ly(x) be the mass function corre-
sponding to Ly(x). We will show that the model selected by MDL is equal to
a sufficient statistic in the rate-distortion problem that is obtained by setting
K̃(y) = L(y), d(x, y) = Ly(x) and LD(d|y) = Py(Ly(X) = d). We have

Py(x) = Py(X = x, Ly(X) = Ly(x))

= Py(X = x|Ly(X) = Ly(x))Py(Ly(X) = Ly(x))

=
Py(Ly(X) = Ly(x))

|{x′ : Ly(x′) = Ly(x)}| =
2−LD(d(x,y)|y)

|Sy(d(x, y))| ,

so that the code length function that is minimised by sufficient statistics in this
rate-distortion problem is exactly the same code length function that is minimised
in the original MDL problem. Note that to make this work we only really need
the condition that the distortion function has the property that for all y ∈ Y
and all x ∈ X , x′ ∈ X we have d(x, y) = d(x′, y) iff Ly(x) = Ly(x′). We chose
d(x, y) = Ly(x) because it is a simple function with that property, and because it
allows an interpretation of the distortion as the incurred logarithmic loss.

This correspondence actually works both ways: starting with a rate-distortion
problem specified by some K̃, code LD and distortion function d, we can also
construct an MDL problem that identifies a sufficient statistic by defining L(y) =
K̃(y) and Ly(x) = LD(d(x, y)|y) + log |Sy(d(x, y))|.

Note that in the introductory chapter we were somewhat unspecific as to
which hypothesis should be selected if more than one of them minimises the code
length; the issue becomes much clearer in a rate-distortion analysis because it
allows us to easily express a preference for the minimal sufficient statistic as the
best hypothesis for the data. If a thorough analysis of the data is required, it
also seems sensible to look at the whole rate-distortion function rather than just
at the minimal sufficient statistic, since it provides additional information about
the structure that is present in the data at each level of complexity.
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When we introduced MDL, we stressed that a suitable code L for the spec-
ification of hypotheses must have two properties: (a) it has small regret in the
worst case over all considered input objects, and (b) it may be a luckiness code
that does especially well on some inputs (see Section 1.1). In the experiments in
this chapter we used L = K̃, where K̃ is a general purpose data compression al-
gorithm. We need to check that it achieves small regret in the worst case. We will
do this for the experiment on the noisy mouse Nin. In that experiment we only
considered finitely many hypotheses, so as in Example 2, the best possible worst-
case regret is achieved by the uniform code. This code requires 64 · 40 · 8 = 20480
bits for all representations in Y . The encoding produced by the data compression
algorithm should never be much longer. We did not prove any bounds for our
compressor, but we did try to compress ten files of 64 · 40 random bytes each,
to see whether or not the compressed representation would be much larger; the
worst result was a compressed size of 20812 bytes. This blowup of 332 bits does
seem larger than necessary, but similar or worse overheads are incurred by other
compression software such as Lempel-Ziv based compressors and PPM compres-
sors, unless as a built-in feature it checks whether or not it actually manages to
compress the input object, reverting to a literal encoding when this fails. All in
all, the worst-case performance of the compressor appears to lie within reasonable
bounds, although admittedly we did not check this very thoroughly.

The fact that we subject the source object to a rate-distortion analysis in the
first place suggests that we believe that reasonable hypotheses can be formulated
at different levels of complexity, which means that we should certainly use a
luckiness code to differentiate between simple and more complex representations.
This is what data compression software is designed to do really well, and what
allows for an interesting analysis in the case of our example. Another way to
construct a suitable luckiness code L, which is more in the spirit of the standard
MDL approach, is the following. We start out with a countable set of models of
different complexity M1, M2, . . . , and take its union Y = ∪nMn as the set of
representations. We can then encode y by first specifying its model index i using
some worst-case efficient code, and then specifying y within model i using a second
worst-case efficient code. The details of such an approach to rate-distortion have
not yet been investigated.

6.7 Conclusion

Algorithmic rate-distortion provides a good framework for analysis of large and
structured objects. It is based on Kolmogorov complexity, which is not com-
putable. We nevertheless attempted to put this theory into practice by approxi-
mating the Kolmogorov complexity of an object by its compressed size. We also
generalised the theory in order to enable it to cope with side information, which is
interpreted as being available to both the sender and the receiver in a transmission
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over a rate restricted channel. We also describe how algorithmic rate-distortion
theory may be applied to lossy compression and denoising problems.

Finding the approximate rate-distortion function of an individual object is a
difficult search problem. We describe a genetic algorithm that is very slow, but
has the important advantage that it requires only few assumptions about the
problem at hand. Judging from our experimental results, our algorithm provides
a good approximation, as long as its input object is of reasonably low complexity
and is compressible by the used data compressor. The shape of the approximate
rate-distortion function, and especially that of the associated three part code
length function, is reasonably similar to the shape that we would expect on the
basis of theory, but there is a striking difference as well: at rates higher than the
complexity of the minimal sufficient statistic, the three part code length tends
to increase with the rate, where theory suggests it should remain constant. We
expect that this effect can be attributed to inefficiencies in the compressor.

We find that the algorithm performs quite well in lossy compression, with
apparently somewhat better image quality than that achieved by JPEG2000,
although the comparison may not be altogether fair. When applied to denoising,
the minimal sufficient statistic tends to be a slight underestimate of the complexity
of the best possible denoising (an example of underfitting). This is presumably
again due to inefficiencies in the used compression algorithm.

Beside an approximation of algorithmic rate-distortion theory, the computable
version of the theory can also be interpreted as a generalisation of MDL model
selection. We concluded this chapter with a discussion of this relationship.
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[52] P. Kontkanen, P. Myllymäki, and H. Tirri. Comparing prequential model
selection criteria in supervised learning of mixture models. In T. Jaakkola
and T. Richardson, editors, Proceedings of the Eighth International
Conference on Articial Intelligence and Statistics, pages 233–238. Morgan
Kaufman, 2001.

[53] A.D. Lanterman. Hypothesis testing for Poisson versus geometric
distributions using stochastic complexity. In Peter D. Grünwald, In Jae
Myung, and Mark A. Pitt, editors, Advances in Minimum Description
Length: Theory and Applications. MIT Press, 2005.

[54] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[55] J.Q. Li and A.R. Barron. Mixture density estimation. In NIPS, pages
279–285, 1999.

[56] K.C. Li. Asymptotic optimality of cp , cl, cross-validation and generalized
cross-validation: Discrete index set. Annals of Statistics, 15:958–975, 1987.

[57] L. Li and B. Yu. Iterated logarithmic expansions of the pathwise code
lengths for exponential families. IEEE Transactions on Information
Theory, 46(7):2683–2689, 2000.

[58] F. Liang and A. Barron. Exact minimax predictive density estimation and
MDL. In Peter D. Grünwald, In Jae Myung, and Mark A. Pitt, editors,
Advances in Minimum Description Length: Theory and Applications. MIT
Press, 2005.

[59] G. McLachlan and D. Peel. Finite Mixture Models. Wiley Series in
Probability and Statistics, 2000.
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Notation

Numbers
⌊x⌋ The value of x, rounded down to the nearest integer
⌈x⌉ The value of x, rounded up to the nearest integer
log x The binary logarithm of x
ln x The natural logarithm of x
1A(x) The indicator function, which equals 1 if x ∈ A and 0 otherwise

Sets
B Binary numbers 0 and 1
N Natural numbers 0, 1, 2, . . .

(Note: in Chapter 6, the
blackboard symbols are used
for something else)Z Integers . . . ,−2,−1, 0, 1, 2, . . .

Z
+ Positive integers 1, 2, . . .
|X | The size of a finite set X
[n] Abbreviation for {1, 2, . . . , n}, with [0] = ∅ and [∞] = Z

+

Sequences. Let n ∈ N and let X be a countable set.
X n The set of all length n sequences of elements from X
X ∗ The set of all finite sequences of elements from X : X ∗ := ∪n∈NX n

X∞ The set of all infinite sequences of elements from X
xn EITHER exponentiation, OR the sequence x1, x2, . . . , xn for n ∈ N

x0 / ǫ The empty sequence

Asymptotics. Let a, c, x0, x ∈ R.
f → a limx→∞ f(x) = a
f = O(g) ∃x0, c > 0 : ∀x ≥ x0 : |f(x)| ≤ c|g(x)|
f = Ω(g) ∃x0, c > 0 : ∀x ≥ x0 : |f(x)| ≥ c|g(x)| (Not the complement of o!)
f = Θ(g) f = O(g) and f = Ω(g)
f ≍ g The same as f = Θ(g)
f = o(g) f(x)/g(x)→ 0
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Abstract

Model selection is a strange and wonderful topic in learning theory and statistics.
At first glance the question seems very clear-cut: how should we decide which set
of probability distributions matches the observations at hand best. This question
comes up time and again in many different contexts, ranging from testing sci-
entific hypotheses in general (which among these psychological models describes
best how people behave?) to more concrete applications (what order polynomial
should we use to fit the data in this regression problem? What lossy repre-
sentation of this image best captures the structural properties of the original?).
Thus, model selection is ubiquitous, and the one-size-fits-all criteria based on the
Minimum Description Length (MDL) principle and the closely related Bayesian
statistics are appreciated by many.

Upon closer inspection, many applications of model selection are not as similar
as they may first appear. They can be distinguished by technical properties (are
the models nested? Parametric? Countable?), but also by a priori assumptions (is
the process generating the data believed to be an element of any of the considered
models?), as well as the motivation for performing model selection in the first
place (do we want to identify which model contains the data generating process,
or do we want to identify which model we may expect to predict future data
best?). The best choice of methodology in any situation often depends on such
particulars, and is further determined by practical considerations such as whether
or not the relevant quantities can be evaluated analytically, and whether efficient
algorithms exist for their calculation. MDL/Bayesian model selection has been
shown to perform quite well in many different contexts and applications; in this
thesis we treat some of the puzzling problems and limitations that have also
become apparent over time. We also extend the idea by linking it to other topics
in machine learning and statistical inference.

To apply MDL, universal codes or distributions have to be associated with
each of the considered models. The preferred code is the Normalised Maximum
Likelihood (NML) or Shtarkov code. However, this code yields infinite code word
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lengths for many models. This first issue with MDL model selection is investigated
in Chapter 2, in which we perform computer experiments to test the performance
of some of the available alternatives. One result is that the model selection crite-
rion based on the so-called prequential plug-in code displays inferior performance.
This observation seems important because the prequential plug-in code is often
thought of as a convenient alternative to other universal codes such as the NML
code, as it is much easier to calculate. It was thought to result in code lengths
similar to those obtained for other universal codes (such as NML, 2-part codes
or Bayesian mixtures), but we discovered that this is only the case if the data
generating process is in the model. We show in Chapter 3 that the redundancy
of the prequential plug-in code is fundamentally different from the standard set
by other universal codes if the data generating process is not an element of the
model, so that caution should be exercised when it is applied to model selection.

The third problem treated in this thesis is that MDL/Bayesian model selection
normally does not take into account that, even in the ideal case where one of the
considered models is “true” (contains the data generating process), and even if
the data generating process is stationary ergodic, then still the index of the model
whose associated universal code issues the best predictions of future data often
changes with the sample size. Roughly put, at small sample sizes simple models
often issue better predictions of future data than the more complex “true” model,
i.e. the smallest model that contains the data generating distribution. When from
a certain sample size onward the true model predicts best, the simpler model has
already built up a lot of evidence in its favour, and a lot of additional data have
to be gathered before the true model “catches up” and is finally identified by
Bayesian/MDL model selection. This phenomenon is described in Chapter 5, in
which we also introduce a novel model selection procedure that selects the true
model almost as soon as enough data have been gathered for it to be able to issue
the best predictions. The criterion is consistent: under mild conditions, the true
model is selected with probability one for sufficiently large sample sizes. We also
show that a prediction strategy based on this model selection criterion achieves an
optimal rate of convergence: its cumulative KL-risk is as low as that of any other
model selection criterion. The method is based on the switch distribution, which
can be evaluated using an efficient expert tracking algorithm. More properties of
this switch distribution are treated in Chapter 4, which also contains a survey of
this and other expert tracking algorithms and shows how such algorithms can be
formulated in terms of Hidden Markov Models.

Finally, in Chapter 6 we evaluate the new theory of algorithmic rate-distortion
experimentally. This theory was recently proposed by Vitányi and Vereshchagin
as an alternative to classical rate-distortion theory. It allows analysis of the
structural properties of individual objects and does not require the specification
of a probability distribution on source objects. Instead it is defined in terms of
Kolmogorov complexity, which is uncomputable. To be able to test this theory
in practice we have approximated the Kolmogorov complexity by the compressed
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size of a general purpose data compression algorithm. This practical framework
is in fact a generalisation of MDL model selection.

The perspectives offered in this thesis on many aspects of MDL/Bayesian
model selection, contribute to a better understanding of the relationships between
model selection and such diverse topics as universal learning, prediction with
expert advice, rate distortion theory and Kolmogorov complexity.





Samenvatting

Modelselectie is een ongrijpbaar onderwerp in de leertheorie en statistiek. Op het
eerste gezicht lijkt het probleem duidelijk: hoe moeten we beslissen welke verza-
meling van kansverdelingen het best overeen komt met de beschikbare observaties.
Deze vraag duikt telkens weer op in allerlei verschillende contexten, waaronder het
toetsen van hypothesen in het algemeen (welke van deze psychologische modellen
beschrijft het best hoe mensen zich gedragen?) tot meer concrete toepassingen
(een polynoom van welke graad moeten we kiezen om de trend in deze gegevens te
beschrijven? Welke “lossy” representatie van dit plaatje beschrijft de structurele
eigenschappen van het origineel het best?). Kortom, modelselectie is een sleutel-
probleem in vele verschillende toepassingen. De one-size-fits-all-oplossingen die
gebaseerd zijn op het Minimum Description Length (MDL) principe en de nauw
verwante Bayesiaanse statistiek worden daarom veel gebruikt.

Bij nadere beschouwing blijkt dat de vele toepassingen van modelselectie op
essentiële punten verschillen. Ze kunnen worden onderscheiden op basis van tech-
nische eigenschappen (zijn de modellen in elkaar bevat? Parametrisch? Telbaar?),
maar ook op basis van a priori aannames (nemen we aan dat het proces dat de
gegevens genereert een element is van een van onze modellen of niet?), alsmede de
oorspronkelijke motivatie voor het doen van modelselectie (willen we het model
identificeren dat het proces bevat dat de gegevens genereert, of willen we een
model selecteren waarvan we mogen hopen dat het toekomstige uitkomsten goed
zal voorspellen?). De meest wenselijke methodologie hangt in de praktijk vaak af
van dergelijke kwesties, nog los van praktische afwegingen zoals of de relevante
grootheden al dan niet efficiënt kunnen worden uitgerekend.

Op allerlei manieren is aangetoond dat het gebruik van MDL/Bayesiaanse
modelselectie leidt tot goede prestaties in vele contexten; in dit proefschrift wordt
een aantal van de raadselachtige problemen en beperkingen van de methodologie
onderzocht, die niettemin in de loop van de tijd aan het licht zijn gekomen.
Ook wordt het toepassingsdomein van MDL/Bayesiaanse modelselectie uitgebreid
door het te koppelen aan andere onderwerpen in de machine learning en statistiek.

Om MDL toe te kunnen passen moeten zogenaamde universele codes of uni-
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versele kansverdelingen worden toegewezen aan alle modellen die worden over-
wogen. De code die daarbij volgens sommige literatuur de voorkeur heeft is de
Normalised Maximum Likelihood (NML) of Shtarkov code. Het blijkt echter
dat deze code voor vele modellen leidt tot oneindige codelengtes, waardoor de
prestaties van de verschillende modellen niet meer met elkaar vergeleken kunnen
worden. Dit eerste probleem met MDL modelselectie wordt onderzocht in hoofd-
stuk 2, waarin we computerexperimenten uitvoeren om de prestaties te meten van
enkele van de beschikbare alternatieven voor de NML code. Een van de meest
interessante resultaten is dat de zogenaamde prequentiële plug-in code leidt tot
inferieure modelselectieprestaties. De prequentiële plug-in code wordt vaak gezien
als een handig alternatief voor andere codes zoals de NML code, omdat het vaak
veel makkelijker is uit te rekenen. Het werd vrij algemeen aangenomen dat de
resulterende codelengtes vergelijkbaar waren met die van andere universele codes
zoals NML of 2-part codes, maar uit onze experimenten blijkt dus dat dit niet
onder alle omstandigheden het geval is. In hoofdstuk 3 wordt aangetoond dat de
redundantie van de prequentiële plug-in code fundamenteel verschilt van die van
andere universele codes in het geval dat het proces dat de gegevens produceert
geen element is van het model. Dit betekent dat prequentiële plug-in codes met
beleid moeten worden toegepast in modelselectie.

Het derde probleem dat wordt behandeld in dit proefschrift is dat MDL en
Bayesiaanse modelselectie normaal gesproken geen rekening houden met het vol-
gende: zelfs in het ideale geval waarin een van de beschikbare modellen “waar”
is (het proces dat de gegevens produceert bevat), en zelfs als het gegevens pro-
ducerende proces stationair en ergodisch is, dan nog hangt het af van de hoeveel-
heid beschikbare gegevens welk van de beschikbare modellen de beste voorspellin-
gen van toekomstige uitkomsten levert. Ruwweg kan worden gesteld dat, als
de hoeveelheid beschikbare gegevens klein is, dat dan eenvoudige modellen vaak
betere voorspellingen leveren dan het complexere “ware” model (i.e., het klein-
ste model dat het gegevens producerende proces bevat). Als vervolgens op een
gegeven moment de hoeveelheid beschikbare gegevens zo groot is geworden dat
het ware model het beste begint te voorspellen, dan heeft het eenvoudigere model
al zo lang zoveel beter gepresteerd dat het soms zeer lang kan duren voordat het
door de MDL/Bayesiaanse modelselectieprocedure wordt verworpen. Hoofdstuk
5 beschrijft dit verschijnsel, alsmede een nieuwe modelselectieprocedure die het
ware model prefereert vrijwel zodra er voldoende gegevens beschikbaar zijn dat
dat model de beste voorspellingen begint te leveren. Deze nieuwe procedure is
consistent, wat betekent dat (onder milde condities) het ware model wordt ge-
selecteerd met kans 1 mits er voldoende gegevens beschikbaar zijn. We tonen
ook aan dat voorspellen op basis van deze modelselectieprocedure leidt tot op-
timaal snelle convergentie: de cumulatieve KL-risk is bewijsbaar zo laag als die
van willekeurig welke andere modelselectieprocedure. De methode is gebaseerd
op de switch-verdeling, die kan worden uitgerekend met behulp van een efficiënt
algoritme voor expert tracking. Meer eigenschappen van deze switch-verdeling
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worden behandeld in hoofdstuk 4, waarin we een overzicht geven van deze en an-
dere algoritmes voor expert tracking, en waarin we laten zien hoe zulke algoritmes
handig kunnen worden geformuleerd in termen van Hidden Markov Models.

In hoofdstuk 6 tenslotte evalueren we de nieuwe theorie van algoritmische
rate-distortion experimenteel. Deze theorie werd recentelijk voorgesteld door
Vitányi en Vereshchagin als een alternatief voor klassieke rate-distortiontheorie.
Ze maakt analyse mogelijk van de structurele eigenschappen van individuele ob-
jecten, en vereist niet dat er een objectbron wordt gespecificeerd in de vorm
van een kansverdeling. In plaats daarvan wordt algoritmische rate-distortion
gedefinieerd in termen van Kolmogorovcomplexiteit, die niet berekenbaar is. Om
deze theorie toch in de praktijk te kunnen toetsen benaderen we de Kolmogorov-
complexiteit met de gecomprimeerde grootte van een algemeen toepasbaar data-
compressiealgoritme. De zo verkregen praktische aanpak is in feite een generali-
satie van MDL modelselectie.

De perspectieven die in dit proefschrift worden geboden op vele aspecten van
MDL/Bayesiaanse modelselectie dragen bij tot een dieper begrip van de ver-
banden tussen modelselectie en diverse onderwerpen als universal learning, voor-
spellen met advies van experts, rate-distortiontheorie en Kolmogorovcomplexiteit.
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