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It is the striving for truth that drives us always to advance from the
sense to the reference. (Frege, 1892, p. 63)
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Introduction

Everyone who has ever tried to understand, explain, and describe natural lan-
guage knows how complicated it is. This dissertation is concerned with some
aspects of complexity in natural language. In particular, we try to shed some
light on the interplay between complexity and expressibility.

Complexity is a very broad, although quite intuitive, notion. There are at least
two levels of language complexity � syntactic level and semantic level. The latter
is what we will consider in the thesis. Moreover, we will focus on complexity of
meaning (semantics) of natural language quanti�ers. Especially, we are
interested in complexity of �nding the truth-values of natural language quanti�ed
sentences in �nite situations. The general question we aim to answer is why the
meanings of some sentences are more di�cult than the meanings of others. For
instance, why we will probably all agree that it is easier to evaluate sentence (1)
than sentence (2) and why sentence (3) seems hard while sentence (4) sounds
odd.

(1) Every book on the shelf is yellow.

(2) Most of the books on the shelf are yellow.

(3) Less than half of the members of parliament refer to each other.

(4) Some book by every author is referred to in some essay by every critic.

To discuss such di�erences in a precise manner, in the dissertation we use tools
of computability theory to measure complexity. By doing it we commit ourselves
to the idea that part of a �meaning� can be identi�ed with an algorithm that
checks the truth-value of an expression. Having this in mind we formalize linguis-
tic descriptions in logic. Then we use descriptive computational complexity
to study properties of formalisms we have de�ned. Among other things we try to
draw a systematic line between easy (tractable) and di�cult (intractable) quanti-
�ers with respect to model-checking complexity. Moreover, as we are interested in
the empirical value of complexity claims we provide some linguistic case stud-
ies as well as psycholinguistic empirical experiments. We apply complexity
analysis in the domain of reciprocal expressions to account for some pragmase-
mantic phenomena, study various combinations of quanti�ers in natural language,
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2 Introduction

and empirically investigate the comprehension of simple quanti�er sentences. Our
results show that computational complexity can be very useful in investigating
natural language semantics.

As far as our research topics and methods are concerned this work is highly
interdisciplinary. The study can be placed within logic, natural language se-
mantics, philosophy of mind and language, theoretical computer science, and
cognitive science. It is an example of applying computational complexity theory
to linguistics and cognitive science. Therefore, the intended audience consists
mostly of linguists, philosophers and cognitive scientists interested in formal ap-
proaches to complexity in natural language. However, we hope that also logicians
and computer scientists can �nd this study a source of inspiration, not only for
possible applications, but also for developments in their research �elds. The dis-
sertation is intended to be self-contained, but some general background in logic
and natural language semantics is assumed. Below we brie�y overview every
chapter.

Chapter 1, �Algorithmic Semantics�, is a proper introduction to the thesis,
where we place our study on the map of research themes. We discuss our method-
ological assumptions there; in particular, we outline the idea of treating referen-
tial meaning as an algorithm. We also argue that computational complexity
can be taken as a reasonable measure for the di�culty of natural language ex-
pressions. Moreover, we propose some hypotheses summing up our perspective
on the role of computational complexity in linguistics and cognitive science.

Chapter 2, �Mathematical Prerequisites�, shows the background of the tech-
nical work of the thesis. We introduce here our main logical tools: the notions
of generalized quanti�er theory, computability theory, and descriptive complexity
theory. The chapter may be skipped by readers with background knowledge on
generalized quanti�ers and computability. For the rest of the readers it can serve
as a basic reference to the mathematics used elsewhere in the dissertation.

Chapter 3, �Complexity of Polyadic Quanti�ers�, is devoted to a logical study
of the computational complexity of polyadic generalized quanti�ers. We
focus here on constructions that are interesting from the semantic point of view.
We prove that quanti�er iteration, cumulation and resumption do not carry us
outside polynomial time computability. Other polyadic quanti�ers often used in
linguistics, like branching and Ramsey quanti�ers, lead to NP-complete natural
language sentences. This chapter prepares the ground for the more linguistic
discussion in the next parts of the thesis, particularly in Chapters 4 and 6.

Chapter 4, �Complexity of Quanti�ed Reciprocals�, is concerned with the lin-
guistic case study. We investigate the computational complexity of di�erent inter-
pretations of reciprocal expressions, like �each other�, in English. Especially,
we show that Ramsey quanti�ers express the semantics of reciprocal sentences
with a quanti�er in the antecedent. As a result we �nd a computational di-
chotomy between di�erent interpretations of reciprocals: some of them stay in
PTIME when others are NP-complete. This dichotomy is consistent with well-



Introduction 3

known semantic distinctions among di�erent interpretations of �each other�. We
discuss the impact of this dichotomy on the so-called Strong Meaning Hypothesis
proposed as a pragmatic explanation for shifts occurring among di�erent recip-
rocal readings.

Chapter 5 �Complexity of Collective Quanti�cation� discusses yet another
form of quanti�cation in natural language. We investigate logic of collective
quanti�ers and propose to analyze them in terms of second-order generalized
quanti�ers. In particular, our research shows that the widely accepted type-
shifting approach to modelling collectivity in natural language is probably not
expressive enough to cover all instances. Additionally, it is also extremely complex
and, as such, implausible. As a result we suggest to study algebraic (many-
sorted) formalisms. Another interpretation of our results is that computational
complexity restricts expressibility of everyday language and as a result collective
readings of some quanti�ers, e.g., proportional determiners, is not realized in that
fragment of natural language.

Chapter 6, �Hintikka's Thesis Revisited�, is the �rst empirical fragment of
our work. We study Hintikka's well-known claim concerning the necessity of a
branching interpretation for some natural language sentences, e.g., �Some rel-
atives of each villager and some relatives of each townsman hate each other� or
�Most boys and most girls from my class dated each other�. We argue against Hin-
tikka's Thesis and propose our own reading of these sentences, which we call the
conjunctional reading. Next, we show how to investigate such a problem empir-
ically using insights from linguistics, logic and computability. The results of our
tests con�rm that the conjunctional reading is a widely accepted interpretation
for these sentences.

Chapter 7, �Processing Simple Quanti�ers�, is about a computational seman-
tics for simple (monadic) quanti�ers in natural language. In this case we can
model the meaning of quanti�ers using �nite and push-down automata. Our
aim is to show the empirical relevance of computational descriptions. We start
by presenting the neurological research studying an automata-theoretic model
of simple quanti�er comprehension. Next we criticize the methodology of
this research and propose a better set of hypotheses. We use these to conduct
our own empirical study comparing the reaction times needed for recognizing the
truth-value of sentences with simple quanti�ers. The results strongly con�rm
the complexity predictions of the computational model for simple quanti�ers in
natural language. Hence, this chapter directly links computational predictions to
linguistic processing.

Chapter 8, �Conclusions and Perspectives�, closes the dissertation with a short
summary of results achieved from the perspective of the grand issues recognized
in the �rst chapter. This is followed by a discussion of related open questions
and directions for further research. This �nal discussion focuses on general loose
ends, as particular research questions directly implied by our technical work are
discussed at the end of the corresponding chapters.





Chapter 1

Algorithmic Semantics

1.1 Meaning and Comprehension

Meaning and Information

Natural language is arguably the most important mean we have for exchanging
information. It in�uences our everyday interactions with the external world and
those with other people. It allows information to be conveyed between speakers
and hearers about the world, their beliefs, intentions and so on. To make the
communication possible many cognitive processes have to be engaged. First of
all, a natural language expression carrying information has to be produced by a
speaker. This generation process requires the ability of producing grammatical
sequences meaning whatever a speaker intends to share with a hearer. Secondly, a
hearer has to decode the information contained in an expression, i.e., a hearer has
to understand the meaning of an expression (see e.g. Kamp and Stokhof, 2008,
for elaboration on information and language).

Di�erent Aspects of Meaning

The comprehension process can work in many di�erent ways depending on the
many ways in which natural language can be used. For example, consider the
following sentences.

(1) Mt. Everest is the highest mountain in the world.

(2) K2 might be the most di�cult mountain to climb.

If we consider the declarative use of language � a speaker stating facts, like
in sentence (1), or raising possibilities as in (2) � then understanding may be
described as the ability to imagine the world satisfying the sentence and adjust
one's beliefs accordingly.

5
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However, there are many more possibilities. Let us consider the following
sentences.

(3) Is K2 higher than Mt. Everest?

(4) Climb K2 in winter!

To understand question (3) one has to realize what are the possible answers.
On the other hand, to comprehend directive (4) we have to recognize the speaker's
intentions, i.e., realize what he wants us to do.

Moreover, there are many indirect uses of language such that their comprehen-
sion depends very much on cooperation among speakers. For example consider
the following:

(5) K2 has either been climbed in winter or not.

(6) I met Alice and Bob in the Everest base camp. She climbed it in one day
and he failed.

(7) I am here right now.

When I am stating sentence (5) I do not only claim directly this obvious
alternative. Rather I want to say that I actually do not know whether anyone
has in fact done it. In some other situations meaning is crucially connected to a
context. For instance, in understanding discourse and dealing with anaphora one
has to recognize the references of pronouns to the entities mentioned previously
in a conversation. Simply consider example (6). In other cases, a hearer has
to know the context to recognize the denotation of indexical expressions, like in
sentence (7).

Obviously it is impossible to exhaust all the functions of language in a short
list like the one above, and this was not our aim. We only wanted to illustrate
some varieties of linguistic meaning; next we will try to identify some common
features of understanding.

Basic Elements of Comprehension

What are the building-blocks of natural language comprehension? We believe
that there are at least two basic processes:

• Confronting meaning with the actual world.

• Confronting meaning with knowledge and beliefs.
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The �rst process relates new information conveyed by the meaning of a natural
language expression to the actual state of a�airs. In the case of declarative
sentences it allows us to decide whether the new information is true, or what the
world should look like to make it true. In the case of questions we have to check
the possible answers against the real world in order to be able to give a true
answer. We even need to relate to the world to realize that some sentences bring
indirect information. For example, to draw the intended implicatures from (5) I
�rst have to realize that the truth-value of the statement is independent from the
facts.

The second process, confronting meaning with knowledge, crucially determines
our belief changes triggered by the new information carried by an utterance.
When we hear a declarative sentence we check whether it is consistent with our
knowledge. Sometimes we even make one step more, namely we check whether
the implications of a sentence agree with our knowledge. Moreover, we search
through our knowledge to answer a question. Also processing discourse can be
seen in this perspective. For example, when we deal with a sequence of two
sentences, like (6), we may add the �rst sentence to our knowledge and then
simply look for referents for the pronouns among the most recently added beliefs.

1.2 Geography of Perspectives

1.2.1 Traditional Semantics and Pragmatics

Formal semantics describes functions which assign some set-theoretic object in
the universe of discourse (possible worlds, models, possible interpretations of
language) to every well-formed expression. We say that the object is an extension
(denotation) of this expression. Such an approach � motivated by the work of
Alfred Tarski (1944) and successfully applied to natural language by his student
Richard Montague (1970) � is often called set-theoretic (or model-theoretic)
semantics. In other words, formal semantics establishes a potential link between
a well-formed natural language expression and an abstraction of the real world in
the form of a model.

Some non-linguistic aspects of the reference relation, like the in�uence of the
context or of knowledge, have been generating a lot of interest. These problem-
atic cases were traditionally falling under the scope of pragmatics, however the
distinction between semantics and pragmatics has never been clear. They were
early investigated in the philosophy of language. Let us mention only the anal-
ysis given by John Langshaw Austin (1975) for performative utterances, like the
following:

(8) I name this mountain K2.

Additionally, recall Paul Grice's (1991) cooperative principle and conversa-
tional maxims explaining indirect communication, e.g., sentence (5).
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In the model-theoretic semantics there were, from the beginning, serious at-
tempts to incorporate context-dependence on the agenda, e.g., by studying in-
dexicals expressions (see e.g. Bar-Hillel, 1954; Montague, 1970; Kamp, 1971).
One of the �rst systematic accounts of context dependence within this tradition
were provided by David Kaplan and Robert Stalnaker. Kaplan (1979) pointed
out that circumstances intervene into the process of determining an utterance's
truth-value twice rather than only once as possible-worlds semantics appeared
to suggest. He has argued that the utterance must be �rst confronted with its
context to yield an intension, which only then can be confronted with a possible
world to yield the truth-value of the utterance with respect to the actual world.
Thus, to understand an utterance such as (7) we must �rst exploit the context
to unfold the indexicals �I�, �here�, and �now�, to reach a proposition. Then this
proposition can be evaluated in the possible worlds semantics.

Stalnaker has been one of the most in�uential theorists exploring the philo-
sophical aspects of possible worlds semantics. According to his view of possible
worlds, they stand for ways this world could have been, and are the maximal
properties that this world could have had. Moreover, he has used the apparatus
of possible worlds semantics to explore counterfactuals, conditionals, and pre-
supposition. For example, central to his account of intentionality is the view of
propositions as sets of possible worlds (see e.g. Stalnaker, 2003). Finally, his view
of assertion as narrowing the conversational common ground to exclude situations
in which the asserted content is false was a major impetus for the recent devel-
opment of belief revision � a very rich theory which accounts for belief changes
triggered by new information.

1.2.2 The Dynamic Turn in Semantics

The traditional model-theoretic approach has problems with combining the two
basics aspects of meaning: relation to the external world and correspondence
to knowledge. Simply put, model-theoretic semantics focuses only on the static
relation between expressions and their denotations. This problem was recognized
very early. For example, recall Carnap's notion of a �meaning postulate�, trying
to extend the inferential power of traditional semantic analysis by adding bits
of lexical awareness (see Carnap, 2007). However, in the extensional tradition
the problem has always been treated very partially and statically. Not much was
done about changes in knowledge caused by new linguistic information before the
so-called Dynamic Turn in the seventies. Around that time the real change in
perspective can be observed. Since then a lot of work has been put into grasping
dynamic aspects of knowledge change triggered by linguistic information (see e.g.
Peregrin, 2003, for an overview). Below we brie�y recall three important research
axes.
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Discourse Representation

Pioneering work in the dynamic framework was Discourse Representation Theory,
introduced by Hans Kamp. This is a theoretical framework for dealing with
issues in the semantics and pragmatics of anaphora, tense and presuppositions.
Its distinctive features are that it is a mentalist and representationalist theory
of interpretation, not only of individual sentences but of discourse as well. In
these respects it made a clear break with classical formal semantics, but in other
respects it continues the tradition, e.g., in its use of model-theoretic tools (see
Kamp and Reyle, 1993).

Belief Revision

In the logic of belief revision, a belief state is represented by a set of sentences.
The major operations of change are those consisting in the introduction or removal
of a belief-representing sentence. In both cases, changes a�ecting other sentences
may be needed, for instance in order to retain consistency. Rationality postulates
for such operations have been proposed, and representation theorems have been
obtained that characterize speci�c types of operations in terms of these postulates.
There are many technical methods of representing these processes. The logical
perspective is mostly formed around Dynamic Epistemic Logic and the algebraic
perspective exploits mostly the AGM framework (see e.g. Gärdenfors, 2003; van
Ditmarsch et al., 2007). Belief revision perspective can be treated as an in-
depth study of the second fundamental of comprehension: �knowledge-checking�.
However, its relationship with natural language semantics is still waiting for a
development.

Games and Pragmatics

The work of Stalnaker and Kaplan put pragmatic considerations into the agenda
of dynamic semantics. In parallel, David Lewis also worked on these ideas, for
example formulating the analysis of counterfactual conditionals in terms of the
theory of possible worlds. However, arguably his most important input into
linguistics has given rise to game-theoretic considerations in that area. Lewis
(2002) claimed that social conventions are solutions to game-theoretic �coordina-
tion problems�, but, what is more important from our perspective, he has pointed
out that the use of a language in a population relies on conventions of truthfulness
and trust among the members of the population. He has recast in this framework
notions such as truth and analyticity, claiming that they are better understood as
relations between sentences and a language, rather than as properties of sentences.
This has led directly to the development of highly formal models of communi-
cation explaining Grice's principles in terms of signaling games or evolutionary
equilibria (see e.g. Benz et al., 2005). Recently language is seen as an interaction
between speaker and hearer, as kind of a game in which by mutual interpretation
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players come to an interpretation. This approach underlines Optimality Theory
(see e.g. Kager, 1999) and it spans across semantics and pragmatics.

1.2.3 Meaning as Algorithm

Traditionally, in logic �nite models were considered as a pathological case while
in�nite universes were in the center of attention. In parallel with the Dynamic
Turn, researchers have started to be interested in �nite interpretations. With this
change in the perspective some new philosophical dimensions have arisen. Par-
ticularly, in natural language semantics the idea of treating meanings in terms
of truth-conditions has naturally started to evolve towards algorithmic explana-
tions. Below we brie�y present this evolution and in Chapter 1.6 we take a closer
look at �nite interpretations in natural language semantics. This approach is
particularly important for our thesis.

Sinn und Bedeutung

This is a tradition, going back to Gottlob Frege (1892) (see also Church, 1973,
1974; Dummett, 1978), of thinking about the meaning of a sentence as the mode
of presenting its truth-value. In modern terms we can try to explicate the Fregean
Art des Gegebenseins of a referent (the way the referent is given) by saying that
the meaning of an expression is a procedure for �nding its extension in a model.
Accordingly, a sentence meaning is a procedure for �nding the truth-value.1 Quot-
ing Frege:

It is the striving for truth that drives us always to advance from the
sense to the reference. (Frege, 1892, p. 63)

Similar ideas can be found around the same time also in the writings of other
philosophers.

Let us quote Ludwig Wittgenstein:

To understand a proposition means to know what is the case if it is
true.2 (Wittgenstein, 1922, 4.024)

Also Kazimierz Ajdukiewicz has claimed:

1This way of interpreting Frege's �Sinn� is not a standard view in the philosophy of language.
Although, it could help to solve some notorious puzzles of the Fregean theory of meaning, e.g.,
those related to the meaning of indirect speech and discussed in the recent paper of Saul Kripke
(2008).

2An even more procedural account is proposed in �Philosophical Investigations� where
Wittgenstein asks the reader to think of language and its uses as a multiplicity of language-
games. The parts of language have meaning only within these games. (Wittgenstein, 1953,
�23).
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For two di�erent persons an expression brings the same meaning,
whenever it gives them the same method of deciding whether this
expression can be applied to a given object or not.3

(Ajdukiewicz, 1931)

In model theory such procedures are often called model-checking algorithms.
This approach has been adopted by many theoreticians, to di�erent degrees of
explicitness, and we can trace it back to Fregean ideas. For obvious reasons, Frege
himself could not speak about procedures or algorithms directly.

The First Explicit Formulation

Historically � as far as we are aware � the Fregean idea was for the �rst time
explicitly formulated in procedural terms by the Czech logician, philosopher and
mathematician Pavel Tichý (1969). In the paper, which can be best summarized
by its title �Intension in terms of Turing machines�, he identi�ed the meaning
of an expression with a Turing machine computing its denotation. The main
technical objective of the paper is to account for the distinction between analytic
and logical truths by treating concepts as procedures.4 However, the author also
recognized the broader application of the algorithmic idea. He noticed that:

[. . . ] the fundamental relationship between sentence and procedure is
obviously of a semantic nature; namely, the purpose of sentences is to
record the outcome of various procedures. Thus e.g. the sentence �The
liquid X is an acid� serves to record that the outcome of a de�nite
chemical testing procedure applied to X is positive. The present paper
is an attempt to make this simple and straightforward idea the basis
for an exact semantic theory. (Tichý, 1969, p. 7)

Moreover, he directly argues for identifying meaning with an algorithm, a
dynamic procedure of searching for the denotation instead of a static model-
theoretic entity:

For what does it mean to understand, i.e. to know the sense of an
expression? It does not mean actually to know its denotation but to
know how the denotation can be found, how to pinpoint the denota-
tion of the expression among all the objects of the same type. E.g. to
know the sense of �taller� does not mean actually to know who is

3�Dwaj ludzie rozumiej¡ pewne wyra»enie w tym samym znaczeniu, gdy rozumienie to
uzbraja ich obu w t¦ sam¡ metod¦ rozstrzygania, czy wyra»enie to zastosowa¢ do jakiego±
przedmiotu, czy te» nie.�

4The idea was for the �rst time presented at the Third International Congress for Logic,
Methodology and Philosophy of Science in Amsterdam (1967) under the title �Analyticity in
terms of Turing Machines�.
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taller than who, but rather to know what to do whenever you want to
decide whether a given individual is taller than another one. In other
words, it does not mean to know which of the binary relations on the
universe is the one conceived by the sense of �taller�, but to know a
method or procedure by means of which the relation can be identi�ed.
Thus it seems natural to conceive of concepts as procedures.

(Tichý, 1969, p. 9)

Later Tichý developed a system of intensional logic with an extensive philo-
sophical justi�cation of the Fregean idea (see Tichý, 1988).

Other Appearances of the Same Idea

Let us trace the idea of a meaning as an algorithm a little bit more as it has been
gradually formulated in more recent terminology. All approaches that we brie�y
outline below try to account for the very same idea. However, none of them refers
to the work of Tichý.

Patrick Suppes (1982) has investigated an algebraic semantics for natural
language and �nally came to the conclusion that the meaning of a sentence is
a procedure or a collection of procedures. His motivation seems to be mainly
psychological; let us quote the author:

The basic and fundamental psychological point is that, with rare ex-
ceptions, in applying a predicate to an object or judging that a relation
holds between two or more objects, we do not consider properties or
relations as sets. We do not even consider them as somehow sim-
ply intensional properties, but we have procedures that compute their
values for the object in question. Thus, if someone tells me that an
object in the distance is a cow, I have a perceptual and conceptual
procedure for making computations on the input data that reach my
peripheral sensory system [. . . ] Fregean and other accounts scarcely
touch this psychological aspect of actually determining application of
a speci�c algorithmic procedure. (Suppes, 1982, p. 29)

He also has made a point that meaning can be treated not only in terms of
single procedures but as collections of those:

I have defended the thesis that the meaning of a sentence is a proce-
dure or a collection of procedures and that this meaning in its most
concrete representation is wholly private and idiosyncratic to each in-
dividual. (Suppes, 1982, p. 33)

Another approach � similar to Tichý's way of thinking in its direct use of au-
tomata � was formulated by Johan van Benthem (1986) to describe the meanings
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of quanti�ers in natural language. Van Benthem's semantic automata recognize
the truth-value of a generalized quanti�er expression on a structure. We will
study this approach in more detail in Chapter 7, where we even show that it
is psychologically plausible. In particular, it correctly predicts some aspects of
the processing of natural language quanti�ers, both on a cognitive and a neu-
rological level. Here let us only note that the intuition behind introducing the
automata-theoretic perspective were not only technical:

An attractive, but never very central idea in modern semantics has
been to regard linguistic expressions as denoting certain �procedures�
performed within models for the language.

(van Benthem, 1986, p. 151)

The algorithmic theory of meaning found its strongest linguistic formulation
in the works of Yiannis Moschovakis (1990). He has analyzed the Fregean notions
of sense and denotation as algorithm and value, and then developed a rigorous
logical calculus of meaning and synonymy (Moschovakis, 2006). He also succeeded
in popularizing this idea. Reinhard Muskens (2005) has provided a similar theory
built on a considerably lighter formalization. All these works are mainly of a
linguistic character and try to present the Fregean distinction between meaning
and denotation in a strict mathematical framework, throwing some light on the
classical problems studied in the philosophy of language.

This line of research is also followed by Michiel van Lambalgen and Fritz
Hamm (2004). They have proposed to study the meaning-as-algorithm idea in
the paradigm of logic programming. The idea was taken further in the book �The
Proper Treatment of Events� (Lambalgen and Hamm, 2005). There the combi-
nation of the event calculus (as developed in Arti�cial Intelligence) with type free
theory and logic programming techniques is used to formulate an axiomatized
semantic theory for a broad range of linguistic applications. The authors argue
that the proposed architecture, which sees the heart of the semantics of tense
and aspect in the notion of planning, has cognitive plausibility. The argument
proceeds via an examination of the role of time in cognitive processes.

Theories Similar in Spirit

Other advances in natural language semantics might also be viewed as incorpo-
rating some procedural ideas. First of all, Montague (1970) committed himself
to the idea of intensional semantics, where the meaning of an expression can be
identi�ed with a function choosing its denotation in every possible world. This
function can be interpreted as corresponding to some model-checking procedure.
Even if Montague's approach cannot be directly labeled �procedural�, to some
extent he has motivated most of the works exploring algorithmic ideas, notably
that of Moschovakis and his followers. Moreover, the procedural spirit can be
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found in the works creating the dynamic turn in linguistics, as all of them were
strongly in�uenced by Montague. E.g., they adopted possible world semantics,
compositionality and other tools developed by Montague.

Two other examples of procedural theories are dynamic semantics and game-
theoretic semantics. Dynamic semantics (see Groenendijk and Stokhof, 1991; van
den Berg, 1996) formalizes meaning in terms of transformations between states.
The idea is very simple; quoting Paul Dekker's (2008) guide to dynamic semantics:

People use language, they have cognitive states, and what language
does is change these states. 'Natural languages are programming lan-
guages for mind', it has been said. (Dekker, 2008, p. 1)

Game-theoretic semantics (see Lorentzen, 1955; Hintikka and Sandu, 1997)
sees the meaning of a sentence as a winning strategy in a game leading to its
veri�cation. The game-theoretic semantics have initiated many advances in logic
and linguistics. The game-theoretic metaphor was extended even further by Mer-
lijn Sevenster (2006) who has proposed a strategic framework for evaluating some
fragments of language. However, it is not completely clear how these relate to
more traditional model-checking approaches.

Considering language in a strategic paradigm as a goal-directed process rather
than a recursive, rule-governed system (see Hintikka, 1997) may help to under-
stand aspects of meaning di�erent than model-checking, like inferential properties,
confronting new information with knowledge and so on. For example, so-called
model construction games which build models for a set of formulas (see van Ben-
them, 2003; Hodges, 1997) can help to understand how language users integrate
new information into a consistent information state. And, at least from a logical
point of view, model-building games are related to Lorenzen dialogical games for
proofs.

Synonymy

One of the most famous philosophical problems with meaning is concerned with
the synonymy of linguistic expressions. It is widely claimed that we do not un-
derstand the meaning of �meaning� as long as we cannot de�ne synonymy (see
Quine, 1964). According to the algorithmic proposal the problem is equivalent
to the question about the identity relation between algorithms. In other words,
having a set A of of algorithms we search for an equivalence relation ≈ on A such
that for every f, g ∈ A :

f ≈ g ⇐⇒ f and g realize the same algorithm.

We will see some consequences of this reformulation of the synonymy problem
when discussing computability issues later in this chapter.
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1.3 Our Procedural Perspective on Meaning

1.3.1 Questions

In this thesis we are mainly concerned with the �rst-mentioned logical element
of natural language comprehension. Namely, we study how meaning relates to
the external world. However, as the model-theoretic perspective cannot be torn
apart from knowledge representation we also sometimes (possibly between the
lines) refer to the problem of the relation between meaning and knowledge, e.g.,
we will speak later about referential and inferential meaning. To understand the
processes lying behind these aspects of comprehension we need to consider, among
others, the following questions:

• What is the meaning of a given expression?

• How do people recognize the denotations of linguistic expressions?

• Why do some sentences seem to be more di�cult to understand than others?

There are many connections between these questions and this is why in trying
to answer one of them we have to take a position about the rest.

1.3.2 Methodology

Above we have discussed a certain computational approach to these problems
which we adopt throughout the whole thesis. Therefore, we align with the dy-
namic way of thinking by treating comprehension not from the static extensional
perspective but as a dynamic procedure.

The algorithmic model-checking approach to meaning seems reasonable for a
big fragment of natural language in many di�erent contexts. In the dissertation
we follow this philosophical line and identify the meaning of an expression with
an algorithm that recognizes its extension in a given �nite model. We sometimes
refer to the meaning understood in such a way as referential meaning to stress
that this is just one of the possible aspects of meaning � as discussed earlier in
this chapter. Even though we see this line of thinking as another manifestation
of the dynamic turn we have to restrict ourselves to studying a basic element
of comprehension, model-checking, and not pursue its more context-dependent
aspects.

In other words, we say that the referential meaning of a sentence ϕ is given
by a method of establishing the truth-value of ϕ in possible situations. Such
procedures can be described by investigating how language users look for the
truth-value of a sentence in various situations.5

5See Chapter 6 for an example of research which tries to describe referential meaning for
some class of natural language sentences.
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In the thesis we do not study the algorithmic theory of meaning in itself.
However, our technical work is motivated mostly by these ideas. Particularly,
we are in debt to the formulations of procedural semantics which appear in the
research of Tichý (1969) and van Benthem (1986) as we will also work mainly
with machines recognizing quanti�ers. Moreover, we follow Suppes (1982) and
claim that for one semantic construction6 there are many essentially di�erent
algorithms. Their usefulness depends on the situation. To understand this idea
better let us consider the following sentence:

(9) The majority of people at the party were women.

The referential meaning of sentence (9) can be expressed by a simple counting
procedure. However, in the case when there are over �ve hundred people at
the party the counting procedure is not very e�cient. But it may happen that
guests perform some traditional dance in pairs. Then we could apply a di�erent
algorithm, for instance simply check if some woman remains without a man. In
this case the second method would be much more e�cient than the �rst one.
Actually, in Chapter 7 we present empirical research indicating that the same
linguistic construction can be understood by people using di�erent procedures
which are triggered by various contexts.

1.3.1. Example. Let us give one more related example capturing some of the
intuitions. Imagine two people: John, who is a mathematician, and Tom, who is
a geologist. They both speak English, using such expressions as: �being higher
than� and �prime number�. Both of them understand these expressions. However,
only John knows the simple ancient algorithm, the Sieve of Eratosthenes, for
�nding all prime numbers up to a speci�ed integer. On the other hand, only Tom
understands the principles of using engineering instruments for measuring levels.
Therefore, there are expressions such that their truth-value in certain situations
can be decided only by John or only by Tom. For example, they can both easily
decide whether the following sentences are true:

(10) 17 is a prime number.

(11) John is taller than Tom.

However, if we pick a big number or two objects whose lengths cannot be
compared directly or via simple measurements, then it is very likely that only
one of them can decide the truth-value of the sentence. For instance, John but
not Tom can decide the truth-value of the following sentence:

6We talk about �constructions� and not �expressions� to avoid misunderstandings as the same
expression can be used for several di�erent semantic constructions. For example, the expression
�and� can serve as a propositional connective or as an operation between noun phrases.
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(12) 123456789 is a prime number.

Analogously, only Tom knows how to decide the truth-value of the following
statement:

(13) Gasherbrum I is 50 meters higher than Gasherbrum II.

The point of this example is to stress that when dealing with a natural lan-
guage sentence we very often want to know whether it is true or false and we
may need to use di�erent meanings of it in various situations to �nd out. This
linguistic ability is based on the fact that we are continuously using various tech-
niques for recognizing the extensions of natural language constructions. These
techniques can be identi�ed with meanings. Moreover, learning natural language
constructions consists essentially of collecting procedures for �nding denotations
(see Gierasimczuk, 2007). This way of thinking is in line with the algorithmic
view of meaning.7

Summing up, what follows is the main methodological assumption of the the-
sis:

Main Assumption The referential meaning of an expression χ is a collection of
algorithms computing the extension of χ in a given �nite model.

However, having model-checking algorithms for all sentences is not the only
possible way to understand language. As we discussed, the other basic component
of language comprehension is the ability to relate it to knowledge. For example,
we can also recognize some inferential relations between sentences establishing
so-called inferential meaning. For instance, knowing that a sentence ψ is true
and ϕ follows from ψ we know that ϕ is true. Already Jean Piaget (2001) has
noticed that this is a mechanism used very often to evaluate sentences. We also
study such situations in the thesis. One of the interesting problems � which we
leave open � is how inferential meaning relates to belief revision.

1.3.3 Psychological Motivations

Our main aim in applying a dynamic, procedural framework is motivated by our
interest in psycholinguistics. We share this motivation with Suppes (1982) and
Lambalgen and Hamm (2005). We believe that a good linguistic theory should
give direct input for empirical studies on language processing. Unfortunately,
most of the dynamic frameworks do not make a single step in this direction.

7Notice that this way of thinking can also contribute to the philosophical idea of the division
of linguistic labor (see Putnam, 1985). Simply, experts know more relevant meaning-algorithms
and hence understand the meaning of an expression belonging to the domain of their expertise
in a more sophisticated way.
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We study the computational properties of natural language to shed some
light on the cognitive processes behind language comprehension. However, as at
this stage of research we are far from formulating a satisfactory, detailed model
of comprehension, we rather focus on abstract computational properties which
do not depend on any speci�c implementation. Therefore, we are not studying
concrete procedures formalizing meaning but properties common to all possible
procedures.

In the rest of this chapter we give an intuitive description of computations
(mathematical details are presented in Section 2.3). Then we discuss the links
between computability theory and cognitive science as we treat comprehension as
a cognitive task. Our aim is to put computational semantics in a broader context
of cognitive science.

1.4 Algorithms and Computations

1.4.1 What is an �Algorithm�?

We have decided to view some semantic issues from the computational perspec-
tive. In this section we will then try to shed some light on what these procedures
or algorithms we are talking about really are. Actually, the issue is highly non-
trivial. Even though the intuitions behind the notion of �algorithm� are probably
more precise than those standing behind �meaning� they are still far from being
completely clear. On the other hand, this is not a serious obstacle because we
are interested rather in the inherent properties of computational problems than
in any concrete algorithmic implementations.

Euclid's method for �nding the greatest common divisor for any two positive
integers (developed around 4 BC) is commonly believed to be the �rst non-trivial
algorithm. As far as etymology is concerned the word �algorithm� is connected
to the name of the Persian astronomer and mathematician Al-Khwarizmi. He
wrote a treatise in Arabic in 825 AD �On Calculation with Hindu Numerals�.
It was translated into Latin in the 12th century as �Algoritmi de numero Indo-
rum�, which title was likely intended to mean �Algoritmi on the numbers of the
Indians�, where �Algoritmi� was the translator's rendition of the author's name.
However, some people misunderstood the title, and treated Algoritmi as a Latin
plural. This led to the word �algorithm� coming to mean �calculation method�.
Coincidentally, in his treatise he introduced the decimal positional number sys-
tem to the Western world and many simple algorithms for dealing with addition,
substraction, multiplication and division of decimal numbers. We all learn these
algorithms in the beginning of our education.

There is no generally accepted formal de�nition of �algorithm� yet. An infor-
mal de�nition could be �an algorithm is a mechanical procedure that calculates
something�. It is an interesting problem in the philosophical foundations of com-
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puter science to come up with a reasonable and widely acceptable formal de�ni-
tion. Actually, there is some research going in this direction and the proposed
methods for dealing with this problem are very similar to those used for solving
foundational issues of mathematics in the beginnings of the 20th century. For ex-
ample, people have suggested formalizing algorithms in set theory, rejecting their
existence (there are no algorithms just programs) or axiomatizing their theories
(see e.g. Moschovakis, 2001, for a discussion).

1.4.2 Turing Computability

Following tradition, we have decided to view computability in terms of Turing
machines (see Section 2.3.2). This decision may be justi�ed by the following
widely believed philosophical claim:

Church-Turing Thesis A problem has an algorithmic solution if and only if it
can be computed by a Turing machine.

The Church-Turing Thesis (Turing, 1936; Church, 1936) states that everything
that ever might be mechanically calculated can be computed by a Turing machine.

Let us brie�y try to justify the Church-Turing Thesis here.8 Obviously, if a
problem is computable by some Turing machine then we can easily calculate it by
following the steps of this machine. But why should we believe that there are no
computable problems beyond Turing machine computability? First of all, we do
not know of any counterexample. Every function which we know how to compute
can be computed by a Turing machine. Moreover, all the known methods of
constructing computable functions from computable functions lead from Turing
computable functions to other Turing computable functions. Additionally, the
class of all Turing computable functions is very natural in the following sense. All
attempts so far to explicate computability (many of them entirely independent)
have turned out to de�ne exactly the same class of problems. For instance,
de�nitions via abstract machines (Random Access Machines, quantum computers,
cellular automata and genetic algorithms), formal systems (the lambda calculus,
Post rewriting systems) and particular classes of function (recursive functions)
are all equivalent to the de�nition of Turing machine computability.

Moreover, the Church-Turing Thesis is interesting because it allows us to
conclude that a problem is not decidable from the proof that it is not Turing
computable. Take the class of all functions from natural numbers to natural
numbers. There are uncountably many such functions, but there are only count-
ably many Turing machines (this follows easily from the de�nition, see Section
2.3.2). Hence, some natural number functions must not be computable. The

8In a recent paper Mostowski (2008) gives a proof of the thesis based on the assumption
that a �nite but potentially in�nite world is a good mathematical model of our reality.
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most famous non-computable problems are the Halting Problem (decide whether
Turing machineM will halt on input x), the decision problem for �rst-order logic
(i.e., the question whether a given formula ϕ is a theorem), and the Tenth Hilbert
Problem (the algorithmic solvability in integers of Diophantine equations).

Identity of meanings-as-algorithms

Let us relate the above arguments directly to the semantic considerations. We
have noticed, discussing procedural approaches to meaning, that the synonymy
problem can be stated in terms of an identity criterion for algorithms.

The minimal demand on the identity relation is to identify notational variants
of the same algorithm. The widest reasonable de�nition will identify algorithms
computing the same partial functions, i.e., terminating on the same inputs and
giving the same output on identical input.

Let us observe that this criterion of identity is not computable as otherwise
we could easily compute the Halting Problem. In this case, we can not �nd an
algorithm deciding whether two expressions have the same meaning or not.9 It is
possible only in some simple cases, for instance, when meanings can be identi�ed
with �nite automata as in the case of Van Benthem's approach studied in Chapter
7. This fact nicely matches the status of the long-standing and unsolved synonymy
problem in the philosophy of language.10

Moreover, notice that two in the above sense identical algorithms do not have
to be equally good in every sense. For instance, if we take a sentence containing n
words it is possible that one algorithm will need n2 steps to compute its referential
meaning, when the other needs 22n

steps. Thus, the identity de�nition should
probably be enriched by a condition saying that in order for two algorithms to
be identical they not only have to compute the same partial function but also
must be comparable with respect to their e�ciency. But how can we say that
two di�erent algorithms are similarly e�ective?

Computational Complexity

Inherent Complexity With the development of programming practice it has
been observed that there are computable problems for which we do not know
any e�ective algorithms. Some problems need too much of our computational
resources, like time or memory, to get an answer. Computational complexity the-
ory, described brie�y in Section 2.3, investigates the amount of resources required
for the execution of algorithms and the inherent di�culty of computational prob-
lems. This means that the theory does not deal directly with concrete algorithmic

9Notice that this can cause some serious real life problems, e.g., for copyright legislation in
the domain of software.

10However, see Moschovakis (1990) for a sophisticated algorithmic theory of meaning with a
computable synonymy problem.
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procedures, but instead studies the abstract computational properties of queries.
These properties determine in a precise mathematical sense some properties of
all possible algorithms which can be used to solve problems. As a result, the the-
ory explains why for some computable questions we cannot come up with useful
algorithms.

Tractability and Intractability An important aspect of computational com-
plexity theory is to categorize computational problems via complexity classes.
In particular, we want to identify e�ciently solvable problems and draw a line
between tractability and intractability. From our perspective the most important
distinction is that between problems which can be computed in polynomial time
with respect to the size of the problem, i.e., relatively quickly, and those which
are believed to have only exponential time algorithmic solutions. The class of
problems of the �rst type is called PTIME (P for short). Problems belonging to
the second are referred to as NP-hard problems (see Section 2.3.3 for mathemat-
ical details). Intuitively, a problem is NP-hard if there is no �clever� algorithm
for solving it. The only way to deal with it is by using brute-force methods:
searching throughout all possible combinations of elements over a universe. In
other words, NP-hard problems lead to combinatorial explosion.

Notice that all complexity claims reaching out to empirical reality make sense
only under the assumption that the complexity classes de�ned in the theory are
essentially di�erent. These inequalities are sometimes extremely di�cult to prove.
We will discuss these, mainly technical, issues in Section 2.3.3, where we give
formal de�nitions. Now, let us only mention the most famous complexity problem.
As we said above PTIME is the class of problems which can be computed by
deterministic Turing machines in polynomial time. Moreover, speaking precisely,
NP-hard problems are problems being at least as di�cult as problems belonging
to the NPTIME (NP) class. This is the class of problems which can be computed
by nondeterministic Turing machines in polynomial time. NP-complete problems
are NP-hard problems belonging to NPTIME, hence they are intuitively the most
di�cult problems among the NPTIME problems. In particular, it is known that
P=NP if any NPTIME-complete problem is PTIME computable. Unfortunately,
we do not know whether P=NP. It is the famous question worth at least the prize
of $1,000,000 o�ered by the Clay Institute of Mathematics for solving one of the
seven greatest open mathematical problems of our time. However, the experience
and practice of computational complexity theory allows us to safely assume that
these two classes are di�erent. This is what almost all computer scientists believe
and we also take it for granted.

Complexity Assumption P 6= NP .
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sat-problem Before we move to more general considerations let us give some
examples. Many natural problems are computable in polynomial time, for in-
stance calculating the greatest common divisor of two numbers or looking some-
thing up in a dictionary. However, we will focus here on a very important NP-
complete problem, the satis�ability problem for propositional formulae.

The problem is to decide whether a given propositional formula is not a con-
tradiction. Let ϕ be a propositional formula with p1, . . . , pn distinct variables.
Let us use the well-known algorithm based on truth-tables to decide whether ϕ
has a satisfying valuation. How big is the truth-table for ϕ? The formula has
n distinct variables occurring in it and therefore the truth-table has 2n rows. If
n = 10 there are 1,024 rows, for n = 20 there are already 1,048,576 rows and
so on. In the worst case, to decide whether ϕ is satis�able we have to check all
rows. Hence, in such a case, the time needed to �nd a solution is exponential with
respect to the number of di�erent propositional letter of the formula. A seminal
result of computational complexity theory states that this is not a property of the
truth-table method but of the inherent complexity of the satis�ability problem.
We have the following:

1.4.1. Theorem (Cook 1971). sat is NP-complete.

What is Tractable? To answer this question the following thesis was formu-
lated, for the �rst time by Jack Edmonds (1965):

Edmonds' Thesis The class of practically computable problems is identical to
PTIME class, that is the class of problems which can be computed by a determin-
istic Turing machine in a number of steps bounded by a polynomial function of
the length of a query.

The thesis is accepted by most computer scientists. For example, Garey and
Johnson (1979) claim:

Most exponential time algorithms are merely variations on exhaus-
tive search, whereas polynomial time algorithms generally are made
possible only through the gain of some deeper insight into the na-
ture of the problem. There is wide agreement that a problem has not
been �well-solved� until a polynomial time algorithm is known for it.
Hence, we shall refer to a problem as intractable, if it is so hard that
no polynomial time algorithm can possibly solve it.

(Garey and Johnson, 1979, p. 8)

This also justi�es the following de�nition of identity between algorithms (syn-
onymy), where we do not distinguish between algorithms which di�er in com-
plexity up to some polynomial. According to it, we say that algorithms f and g
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are identical if and only if they compute the same partial functions and moreover
their working time on the same inputs di�er at most by a polynomial function of
that input. Notice that with such a de�nition we get the whole hierarchy of al-
gorithms for a given expression generated by possible model-checking algorithms.
This will be important for our considerations in Section 1.8.

Invariance As we said before, computational complexity theory is interested
in the inherent complexity of problems independent of particular algorithmic
solutions and their implementations. The most common model of computation
used in the theory is the Turing machine. However, to justify computational
complexity distinctions, e.g., between tractable and intractable problems, one
has to give some argument that those distinctions are in fact independent of the
particular implementation. The situation here is very similar to assuming the
Church-Turing Thesis and the analogous arguments suggest another commonly
believed assumption, the so-called Invariance Thesis (see e.g. Garey and Johnson,
1979):

Invariance Thesis Given a �reasonable encoding� of the input and two �reason-
able machines�, the complexity of computation of these machines on that input
will di�er by at most a polynomial amount.

By �reasonable machine� any type of deterministic Turing machine or any other
realistic computing machine (including neural networks, often suggested as a
plausible model of brain computational architecture) are meant. Notice, however,
that non-deterministic Turing machines (as well as quantum computers) are not
realistic in this sense (see the argument for Theorem 2.3.13).

Assuming the Invariance Thesis we get that a task is di�cult if it corresponds
to a function of a high computational complexity, independent of the computa-
tional devices we are working with, at least as long as they are reasonable.

Are PTIME Algorithms Always Tractable? The common belief in Ed-
monds' Thesis stems from the practice of programmers. NP-hard problems often
lead to algorithms which are not practically implementable even for inputs of not
very large size. Assuming the Church-Turing Thesis, P 6= NP , and the Invari-
ance Thesis one comes to the conclusion that this has to be due to some internal
properties of these problems and not to the restrictions of the current computing
technology. However, even with these assumptions there are still some doubts.
They lead to a better understanding of the nature of computational complexity
claims and that is why we brie�y discuss some of them below.

First of all, in some cases the polynomial algorithm is essentially better just for
very large data. For example, not so long ago the best deterministic procedure
checking whether a given number n is prime was bounded by n

1
5

log log n. This
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algorithm was practically used even though it is not polynomial.11 The reason

is very simple: n
1
5

log log n > n2 for only n > eee10

, where e ≈ 2.718281 (Blass and
Gurevich, 2003). In other words, the polynomial algorithm is essentially better
only for very big input.

Secondly, a polynomial algorithm might be also practically intractable.
n98466506514687 is a polynomial but even for small n an algorithm of that work-

ing time would not be practical. However, many theorists believe that if we come
up with polynomial algorithms of a high degree then it is only a matter of time
before they will be simpli�ed. In practice, programmers implement mainly algo-
rithms with time complexity not grater than n3. On the other hand, exponential
procedures are sometimes used if they are supposed to work on small input data.
Related additional di�culty comes from the fact that the computational com-
plexity measures do not take constants into considerations (see De�nition 2.3.14)
as when n increases their in�uence on the complexity decreases. Then, an algo-
rithm working in time n3 + 2630 is still taken as a reasonable polynomial bound
of degree 3.

Finally, let us consider an even more drastic example (see Gurevich, 1995).
Let g be an uncomputable function and de�ne f as follows:

f(x) =

{
1 if length of x < 29999999999999999999999999999999

g(x) otherwise.

Is f computable? For all inputs of reasonable size f is computable and has
value 1. It is uncomputable only for extremely big inputs. Therefore, can we
intuitively claim that f is computable?

We will discuss again the pros and coins of setting the tractability border
along PTIME computability limits in the following chapter. However, now we
turn to the cognitive perspective which is more relevant for understanding the
background of our technical work.

1.5 Computability and Cognition

Accepting Edmonds' Thesis we have to agree that problems beyond PTIME are
computationally intractable. Our practical experience suggests that this is a rea-
sonable assumption even though we raised some theoretic doubts in the previous
section. The question appears how this belief in�uences cognitive science and,
particularly, psycholinguistics. Below we brie�y review this issue.

11In 2002, Indian scientists at IIT Kanpur discovered a new deterministic algorithm known as
the AKS algorithm. The amount of time that this algorithm takes to check whether a number
n is prime depends on a polynomial function of the logarithm of n (Agrawal et al., 2004).
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1.5.1 Computational Explanation of Cognitive Tasks

Cognitive Tasks What is a cognitive task? Taking a very abstract perspective
we can say that a cognitive task is an information-processing or computational
task. Namely, the aim of a cognitive task is to transform the initial given state
of the world into some desired �nal state. Therefore, cognitive tasks can be
identi�ed with functions from possible initial states of the world into possible
�nal states of the world. Notice that this understanding of cognitive tasks is
very closely related to psychological practice (see e.g. Sternberg, 2008). First
of all, experimental psychology is naturally task oriented, because subjects are
typically studied in the context of speci�c experimental tasks. Furthermore, the
dominant approach in cognitive psychology is to view human cognition as a form
of information processing (see e.g. van Rooij, 2004).

Marr's Levels One of the primary objectives of behavioral psychology is to ex-
plain human cognitive tasks understood in the very abstract way outlined above.
David Marr (1983) was the �rst to propose a commonly accepted general frame-
work for analyzing levels of explanation in cognitive sciences. In order to focus
on the understanding of speci�c problems, he identi�ed three levels (ordered ac-
cording to decreasing abstraction):

• computational level (problems that a cognitive ability has to overcome);

• algorithmic level (the algorithms that may be used to achieve a solution);

• implementation level (how this is actually done in neural activity).

Marr argues that the best way to achieve progress in cognitive science is by
studying descriptions at the computational level in psychological theories. He
claims:

An algorithm is likely to be understood more readily by understand-
ing the nature of the problem being solved than by examining the
mechanism (and the hardware) in which it is embodied.

(Marr, 1983, p. 27)

Marr's ideas in the context of computational complexity were nicely summa-
rized by Frixione (2001):

The aim of a computational theory is to single out a function that
models the cognitive phenomenon to be studied. Within the frame-
work of a computational approach, such a function must be e�ectively
computable. However, at the level of the computational theory, no
assumption is made about the nature of the algorithms and their im-
plementation. (Frixione, 2001, p. 381)
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1.5.2 Computational Bounds on Cognition

Computable Cognition

How can we apply all the above considerations to cognitive science? First of all,
we want to talk about some very general properties of cognitive tasks which can be
studied from the perspective of Marr's computational levels. As we have noticed
before, one of the abstract computational properties of functions, independent
from any particular implementation, is their complexity. Viewing cognitive tasks
as functions we can therefore pose questions about their computational com-
plexity. Notice that as we do not know the details of our cognitive hardware
or the precise algorithms implemented in the brain, the inherent perspective of
computational complexity theory is very well-suited for the purposes of cognitive
science.

The most common computational claim about cognition is a so-called psycho-
logical version of the Church-Turing thesis.

Psychological Version of the Church-Turing Thesis The human mind can
only deal with computable problems.

In other words, cognitive tasks consist of computable functions.
This claim is commonly believed. However, despite its wide acceptance, the

psychological version of the Church-Turing Thesis has its critics. The �rst opposi-
tion comes from researchers who believe that cognitive systems can do more than
Turing machines. In fact, we agree that there are some uncomputable problems
in the research scope of cognitive science as well. For example, the general frame-
work of learning (identi�ability in the limit) is not computable (see Gold, 1967).
Presumably, there are more cognitive tasks lying beyond Turing computability
(see Kugel, 1986, for an extensive discussion). Researchers from that camp often
argue for the possibility of hyper-computations, i.e., the realizability of super-
Turing machines, like Zeno-machines (Accelerated Turing machines) that allow a
countably in�nite number of algorithmic steps to be performed in �nite time (see
e.g. Syropoulos, 2008).

Some of them even misuse Gödel's theorems to claim that the human mind
cannot have an algorithmic nature. J.R. Lucas (1961) has claimed:

Goedel's theorem seems to me to prove that Mechanism is false, that
is, that minds cannot be explained as machines. So also has it seemed
to many other people: almost every mathematical logician I have put
the matter to has confessed to similar thoughts, but has felt reluctant
to commit himself de�nitely until he could see the whole argument set
out, with all objections fully stated and properly met. This I attempt
to do. (Lucas, 1961, p. 112)
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Then he gives the following argument. A computer behaves according to a
program, hence we can view it as a formal system. Applying Gödel's theorem to
this system we get a true sentence which is unprovable in the system. Thus, the
machine does not know that the sentence is true while we can see that it is true.
Hence, we cannot be a machine.

Lucas' argument was revived by Roger Penrose (1996) who additionally sup-
ported it by claiming that the human mind can solve uncomputable problems
thanks to a speci�c quantum feature of the brain's neural system. Let us only
mention that Lucas' argument has been strongly criticized by logicians and
philosophers (see e.g. Benacerraf, 1967; Pudlak, 1999).

Another stream of opposition is related to practical computability. It is be-
lieved that cognitive systems, being physical systems, perform their tasks under
computational resource constraints. Therefore, the functions computed by cogni-
tive systems need to be computable in realistic time and with the use of a realistic
amount of memory. We agree with this objection, and will consider it in more
detail in the next section.

Tractable Cognition

What is tractable cognition? We do not know what kind of a device the human
cognitive system is. Hence, it would be particularly useful to de�ne tractable
cognition in terms of computational complexity constraints on cognitive functions,
taking into account the Invariance Thesis.

As far as we are aware the version of Edmonds' Thesis for cognitive science
was for the �rst time formulated explicitly in print12 by Frixione (2001) (see e.g.
van Rooij, 2008, for a discussion):

P-cognition Thesis Human cognitive (linguistic) capacities are constrained by
polynomial time computability.

In other words, the P-cognition Thesis states that a cognitive task is (hard)
easy if it corresponds to a(n) (in)tractable problem. In our psycholinguistic set-
ting this means that the intractable natural language constructions are those
for which the model-checking computational complexity goes beyond polynomial
time computability.

Let us give an argument in favor of the P-cognition Thesis. We know that a
brain contains roughly 1015 synapses operating at about 10 impulses per second,
giving more or less 1016 synapse operations per second (see e.g. Kandel et al.,
2000). Obviously, not every cognitive capacity can claim all of the processing
power of the entire brain as there are many parallel cognitive tasks going on

12Independently, exactly the same idea was formulated in the talk of Marcin Mostowski at
Alfred Tarski Centenary Conference in Warsaw on 1 June 2001 and appeared in print 3 years
later (see Mostowski and Wojtyniak, 2004).
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every moment. Now, assume that we are dealing with two cognitive problems: the
polynomial problem Φ and the exponential problem Ψ. For illustrative purposes
assume that for Φ the brain needs to make n2 steps if the instance of the problem
is of size n, while the problem Ψ requires 2n steps. Table 1.1 shows how much
time a brain would need to compute these problems for di�erent sizes of input (if
it can work with the speed of 10, 000 steps per second on each of them).

n Time for Φ Time for Ψ

10 0.01 sec 0.10 sec
20 0.04 sec 1.75 min
30 0.09 sec 1.2 days
50 0.2 sec 8.4 centuries
00 1 sec 9× 1017 years

Table 1.1: The table compares the running time of a brain working with power
10,000 steps per second to solve two cognitive tasks Φ and Ψ. Φ is computable
in n2 and Ψ requires 2n steps.

It is clearly visible from the table that there is an essential di�erence between
polynomial and exponential problems. Even for not very big inputs exponential
problems can lie beyond brain power. The P-cognition Thesis emphasizes this
di�erence in the context of cognitive science. In the dissertation we accept the
P-cognition Thesis.

Psychological Practice

Complexity claims are used in cognitive science, among other functions, to evalu-
ate the feasibility of computational theories of cognition. For example, Levesque
(1988) has recognized the computational complexity of general logic problems
(like sat) and has concluded that we need to adjust logic in order to obtain psy-
chologically realistic models of human reasoning. Similarly, Tsotsos (1990) has
noticed that visual search in its general (bottom-up) form is NP-complete. As
a result he has suggested adjusting the visual model by assuming that top-down
information helps to constrain the visual search space. Moreover, in the study
of categorization and subset choice computational complexity serves as a good
evaluation of psychological models (see e.g. van Rooij et al., 2005). Addition-
ally, complexity restrictions on cognitive tasks have been noted in philosophy
of language and of mind. For instance, Cherniak (1981), Chalmers (1994) and
Hofstadter (2007) have argued that a philosophical theory of mind should take
computational restrictions seriously. Iris van Rooij (2004) in her dissertation gives
many examples of the in�uence computational restrictions have on cognitive sci-
ence.
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1.5.3 Common Doubts

Our experience shows that many researchers are skeptic about applicability of
computational complexity in cognitive science. Below we answer some common
doubts.

Limit Behavior

Computational complexity is de�ned in terms of limit behavior (see Section 2.3.3).
In other words, a typical question of computational complexity theory is of the
form:

As the size of the input increases, how do the running time and mem-
ory requirements of the algorithm change?

Therefore, computational complexity theory, among other things, investigates
the scalability of computational problems and algorithms, i.e., it measures the rate
of increase in computational resources required as a problem grows. The implicit
assumption here is that the size of the problem is unbounded. For example,
models can be of any �nite size, formulae can contain any number of distinct
variables and so on.

It is often claimed that as complexity theory deals only with relative computa-
tional di�culty of problems it has not much to o�er for cognitive considerations.
Simply put, the inputs we are dealing with in our everyday life are not of arbitrary
size. In typical situations they are even relatively small. In fact, critics claim,
computational complexity does not say how di�cult it is to solve a given problem
for a �xed size of the input.

In general, even though computational complexity is formally de�ned in terms
of limit behavior it can still be reasonably interpreted as saying something about
problem di�culty on a �xed model. Namely, if the computational complexity
of the problem is high, then it means that there are no �clever� algorithms for
solving it, e.g., we have to do a complete search throughout the whole universe.
Therefore, it is very likely that on a given �xed model we also have to use a brute-
force method and this will be again di�cult (even for not so big n). For example,
checking sat for a formula containing 5 variables is already quite challenging.

Moreover, even if in typical cognitive situations we are dealing with reasonably
small inputs we have no bounds on their size. Potentially, the inputs can grow
without limit. Therefore, computational complexity makes perfect sense as a
di�culty measure.

Additionally, in experimental practice subjects usually do not realize the size of
the universe in which they are supposed to solve some given problem. Therefore,
it seems that they develop strategies (algorithms) for all possible universes (sizes).

However, if the size of a problem is too big subjects often start to approximate
their solution, using heuristic methods instead of �precise� algorithms. But even
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then we can still measure the rate of increase of the di�culty (e.g. by changes in
reaction time) on the interval where subjects realize their algorithmic procedures.
For example, it is known that reaction time increases linearly when subjects are
asked to count objects between 3 and 15. Up to 3 or 4 objects the answer is imme-
diate, so-called subitizing. For tasks containing more than 15 elements subjects
start to approximate: reaction time is constant and the number of incorrect an-
swers increases dramatically (see e.g. Sternberg, 2008). Analogously, we can ask
how reaction time increases when subjects are solving PTIME problems compared
to a situation when they are dealing with an NP-hard task.

There are also other experimental possibilities to observe computational com-
plexity restrictions. For example, one can manipulate the universe to get a drop
in the complexity and see what happens. In Chapter 7 we study the push-down
recognizable quanti�er �most� over an appropriately ordered universe, where it
could be recognized by �nite automata, and we show a decrease in reaction time
to the level �tting �nite-automata problems. Similar methods can be used in case
of NP-hard problems by giving various certi�cates simplifying tasks and observing
changes in subjects' behavior.

Finally, theoretically speaking, it may be more bene�cial to assume that tasks
are �nite but that we do not know upper bounds than to try to develop a com-
plexity measure up to �xed size of a problem. Such a general approach works
very well for syntax, where the assumption that language sentences can be of any
length has led to to the development of generative grammar and mathematical
linguistics (see Section 1.7.1 for a short discussion).

Summing up, various computational complexity measures seem to be a very
attractive tool for task-oriented cognitive science. At that point they are the
best established proposition for measuring the di�culty of problems in precise
mathematical terms. Moreover, this perspective seems promising as it was suc-
cessfully applied in a few domains of psychological study which we mentioned
above. However, there is still not enough work in this direction to draw any
strong conclusions.

Last but not least, the biggest quest in applying computational complexity to
cognitive science might be in discovering the right complexity measures. For sure,
such measures we are using now just give a rough approximation of upper-bound
di�culty.

Why Worst-case Complexity?

In our opinion the most serious criticism about the status of the P-cognition
Thesis is that attacking worst-case computational complexity as a measure of
di�culty for cognitive processes. The point here is whether we really need to
consider the worst-case performance of cognitive algorithms on arbitrary inputs.
It might be the case that inputs generated by �nature� have some special proper-
ties which make problems tractable on those inputs even though in principle they
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might be NP-hard. It is also possible that our cognitive (linguistic) perception is
simplifying things, pre-computing possible inputs. For example, it might be the
case that intractability of some problems comes from a parameter which is usu-
ally very small no matter how big is the whole input. This way of thinking leads
to the consideration of so-called parametrized complexity theory (see Downey
and Fellows, 1998; Flum and Grohe, 2006) as a measure for the complexity of
cognitive processes. Iris van Rooij (2008) dwells on this subject proposing the
Fixed-parameter Tractability Thesis as a re�nement of the P-cognition Thesis.
Another natural way is to turn toward so-called average-case complexity theory
(see e.g. Impagliazzo, 1995; Bogdanov and Trevisan, 2006). It studies the com-
putational complexity of problems on randomly generated inputs. The theory is
motivated by the fact that many NP-hard problems are in fact easily computable
on �most� of the inputs. One potential problem with applications of this mea-
sure to cognitive science is that we are unable to come up with a probability
distribution on the space of all possible inputs generated by the �nature�.

In principle, we agree that worst-case computational complexity might not be
the measure best tailored for describing the hardness of cognitive tasks. However
we also think that an asymptotic analysis of cognitive capacities is the neces-
sary �rst step in the quest for understanding their complexity. In the book we
have tried to initiate this �rst step in the domain of natural language semantics
and hope that it will be the beginning of a journey �nally leading to a better
understanding of natural language processing.

1.5.4 Explaining the Comprehension Task

Let us summarize what we have said so far by answering to the following question:

How does computational cognition relate to our psycholinguistic per-
spective?

We want to explain one of the basic components of comprehension. Using
the algorithmic theory of meaning we can think about that component in terms
of model-checking procedures. Model-checking takes a situation and a natural
language expression as an input and then transforms them to the output, i.e., a
denotation of the expression in the world. In the paradigmatic case of sentences
we get the truth-value. Therefore, model-checking might be treated as an example
of a cognitive task.

Now, from the most abstract, computational level of the explanation, we are
interested in a mathematical speci�cation of the properties of model-checking. In
particular, we will study the computational complexity with respect to logical de-
�nability of a given expression. That is why we are interested in the combination
of complexity and de�nability. The theory which pursues the relation between
them is called descriptive complexity theory (see Section 2.4). Using it we will
investigate the logical properties of natural language quanti�ers postulated by
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some linguistic formalisms to track down the distinction between quanti�ers with
tractable (PTIME) and intractable (NP-hard) referential meaning (the model-
checking problem).

Another aspect which should be taken into account is the algorithmic level of
explanation. Even though it is not the perspective we have explicitly taken in
the thesis, algorithmic considerations are a part of our study. We give explicit
algorithms which can be used to solve model-checking problems for example as
parts of our proofs in Chapter 3. We consider concrete procedures for simple
quanti�ers in Chapter 7 and investigate what kind of model-checking subjects
are realizing for some special sorts of sentences in Chapter 6. However, it might
be the case that humans are actually using completely di�erent algorithms. In
other words, we only claim that complexity restricts agents. Nevertheless, we do
not think that humans are always using the simplest possible procedures.

As far as the implementation level is concerned we do not study neurological
activity when natural language is processed. However, our work was to some
extent motivated by the neurological research discussed in Chapter 7. Therefore,
even though we formally restrict ourselves to classical cognitive science we see a
possible direct connection with neurocognitive reality.

Below we discuss more speci�c impacts of computational complexity on the
domain of our interest.

1.6 Finite Interpretations

The above discussion leads us to another restriction of our approach which is
partially motivated by the computational nature of our considerations.

Most of the authors considering the semantics of natural language are inter-
ested only in �nite universes. This is also common in papers devoted to natural
language quanti�ers; let us cite Dag Westerståhl (1984):

In general these cardinals can be in�nite. However, we now lay down
the following constraint:

(FIN) Only �nite universes are considered.

This is a drastic restriction, no doubt. It is partly motivated by
the fact that a great deal of the interest of the present theory of
determiners comes from applications to natural language, where this
restriction is reasonable. (Westerståhl, 1984, p. 154)

In typical communication situations we indeed refer to �nite sets of objects.
For example, the intended interpretations of the following sentences are �nite
sets:
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(14) Exactly �ve of my children went to the cinema.

(15) Everyone from my family has read Alice's Adventures in Wonderland.

In many cases the restriction to �nite interpretations essentially simpli�es our
theoretic considerations.

First of all, there is a conceptual problem with computational complexity the-
ory for an in�nite universe. Even though from the mathematical point of view
we can work with in�nite computations, the classical study of resource bounds
in such a setting does not make a lot of sense as we need in�nite time and in�-
nite memory resources. On the other hand, maybe we need only �nitely many
states or loops. Hence, after all it is a matter of proposing reasonable de�ni-
tions and �nding interesting applications of in�nite computations in cognitive
modeling. For example, they can be useful as a framework for some cognitive
processes which at least in theory are supposed to continue working inde�nitely,
like equilibrioception.

From the semantic perspective there is, however, an additional problem with
in�nite universes. Namely, de�ning an intuitive semantics for natural language
in an arbitrary universe is a very di�cult task. As an example of potential
trouble-makers we can give quanti�ers, like �more� or �most�. We usually reduce
the problem of their meaning to a question about the relations between sets of
elements (see Section 2.2). In �nite universes there is an easy and commonly
accepted solution, which is to compare the cardinal numbers of these sets. But
extending this solution to the in�nite case seems to be very counterintuitive. Let
us have a look at the following sentence.

(16) There are more non-primes than primes among integers.

The sentence is false if we interpret �more� in terms of cardinal numbers of
sets. However, intuitively we agree that the sentence is meaningful and even true.

One possible solution to this problem is to treat such quanti�ers as measure
quanti�ers. In in�nite universes we can compare quantities by a proper measure
functions, which are non-logical and context dependent concepts (see Krynicki
and Mostowski, 1999, for more details).

Another approach to the problem can be formulated in terms of the so-called
weak semantics for second-order de�nable quanti�ers. The main idea of the weak
semantics for second-order logic is to consider structures of the form (M,K),
where M is a model and K is a class of relations over the universe closed under
de�nability with parameters in a given language. The class K is used to inter-
pret second-order quanti�cation. Phrases like: �for every relation R�, �there is
a relation R� are interpreted in (M,K) as �for every relation R belonging to K�
and �there is a relation R belonging to K�. This way of interpreting second-order
quanti�cation essentially modi�es the standard semantics for second-order logic
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and gives an intuitive semantics for second-order de�nable quanti�ers in arbitrary
universes from the natural language point of view (see e.g. Mostowski, 1995).

In this dissertation we work with �nite universes as we are mainly interested
in the algorithmic aspects of the semantics. However, we �nd a development
toward covering arbitrary universes by adopting the methods outlined above and
a proper complexity measure a fascinating challenge for later work.

1.7 Complexity in Linguistics

The topic of language complexity has surfaced in many di�erent contexts and can
be measured in many di�erent ways. We are talking only about the computa-
tional and descriptive complexity of language, but there are many other aspects
of complexity, like lexical, information-theoretic (Kolmogorov complexity), struc-
tural or functional. These are usually studied in less logical manner (see e.g.
Miestamo et al., 2008) and we do not compare these approaches directly.

1.7.1 Syntax

Noam Chomsky has opened the door to a view of language from the computa-
tional perspective (see e.g. Chomsky, 2002, 1969). In the early 1950s he captured
language's recursive nature, or ability to make �in�nite use of �nite means�, in
Wilhelm von Humboldt's famous words, inventing formal language theory. Chom-
sky's complexity hierarchy of �nite-state, context-free, and context-sensitive lan-
guages associated with their automata counterparts (see Section 2.3.1) changed
linguistics and opened it to many interactions with computer science and cogni-
tive science.

Chomsky's insight was really of the nature of computational complexity the-
ory. First of all, even though the sentences we encounter are all of bounded length
� certainly less than 100 words long � Chomsky has assumed that they might
be arbitrarily long. Notice that this is an assumption of exactly the same sort as
discussed in Section 1.5.3 on the limit behavior of computational claims, i.e., con-
sidering inputs of arbitrary size. This assumption directly lead to the discovery
of the computational model of language generation and the complexity hierarchy.

Next, using his complexity hierarchy Chomsky asked in which complexity
class natural language lies. He has early demonstrated the inadequacy of �nite-
state description of natural languages and has claimed that natural languages are
context-free (see Chomsky, 2002). This was a pathbreaking way of thinking. First
of all, it has shown how one can mathematically measure some complexity aspects
of natural language. Then, it has given a methodological constraint on linguistic
theories of syntax; they have to be able to account at least for the context-free
languages. Actually, it has also started a long standing debate whether natural
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language is context-free or not (see e.g. Pullum and Gazdar, 1982; Shieber, 1985;
Culy, 1985; Manaster-Ramer, 1987).

Chomsky himself noticed very quickly that studying whether a grammar can
generate all strings from a given language, so-called weak generative capacity, can
serve only as a kind of �stress test� that doesn't tell us much unless a grammar
fails the test. He has claimed:

The study of generative capacity is of rather marginal linguistic inter-
est. It is important only in those cases where some proposed theory
fails even in weak generative capacity � that is, where there is some
natural language even the sentences of which cannot be enumerated by
any grammar permitted by this theory. [. . . ] It is important to note,
however that the fundamental defect of many systems is not their limi-
tation in weak generative capacity but rather their many inadequacies
in strong generative capacity.13 [. . . ] Presumably, discussion of weak
generative capacity marks only a very early and primitive stage of the
study of generative grammar. (Chomsky, 2002, :60f)

In subsequent years this belief has led to deeper study of generative for-
malisms. In particular, using computational complexity one could answer the
question whether some proposed generative formalism is plausible in the sense of
being �easy enough to process�. To be more precise, computational complexity of
parsing and recognition has become a major topic along with the development of
computational linguistics. The early results achieved are summarized in a book
by Barton et al. (1987). A more recent survey is due to Pratt-Hartmann (2008).
In general, the results show that even for relatively simple grammatical frame-
works some problems might be intractable. For example, regular and context-free
languages have tractable parsing and recognition problems. However, Lambek
grammars, Tree-Adjoining Grammars, Head-Driven Phrase Structure Grammar,
and context-sensitive grammars give raise to intractable problems.

1.7.2 Between Syntax and Semantics

Model-theoretic Syntax

One can specify the complexity of grammars not only in terms of generative
mechanisms but also via a set of general constraints to which sentences generated
by these grammars have to conform. On this view, a string (or a tree) is gram-
matical if it satis�es these constraints. How can we de�ne complexity from this
perspective? The idea is to identify the complexity of a grammar with the logical
complexity of the formulae which express the constraints. In other words, we ask

13Chomsky uses the term �strong generative capacity� referring to the set of structures that
can be generated by a grammar.
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here about descriptive complexity of grammars in a similar way to how we will be
asking about descriptive complexity of model-checking problems in the following
chapters.

We measure the complexity of the sentences that de�ne constraints by saying
how strong a logic we need to formulate them. Particularly, we refer to fragments
of second-order logic (see e.g. Rogers, 1983) or various extensions of modal logic
(see e.g. Kracht, 2003). For illustration, the two best known results of this ap-
proach are as follows. In his seminal paper Büchi (1960) showed that a language
is de�nable by the so-called monadic fragment of second-order logic if and only
if it is regular. McNaughton and Papert (1971) have proven that a set of strings
is �rst-order de�nable if and only if it is star-free. These two results have their
counterpart in modal logic: the temporal logic of strings captures star-free lan-
guages and propositional dynamic logic captures regular languages (see e.g. Moss
and Tiede, 2006).

Notice that it is often possible to draw conclusions about computational com-
plexity from such descriptive results. It is enough to know the complexity of the
corresponding logics. For instance, we know that monadic second order logic on
trees is decidable although intractable and therefore many linguistic questions
about parse trees which are formulated in this logic might be �di�cult� to an-
swer. Our approach to studying the complexity of semantics goes along the same
descriptive line.

Discourse Complexity

Some of the earliest research trying to combine computational complexity with
semantics can be found in Sven Ristad's book �The Language Complexity Game�
(1993). The author carefully analyzes the comprehension of anaphoric dependen-
cies in discourse. He considers a few approaches to describing the meaning of
anaphora and proves their complexity. Finally, he concludes that the problem is
inherently NP-complete and that all good formalisms accounting for it should be
exactly as strong.

Pratt-Hartmann (2004) has shown that di�erent fragments of natural lan-
guage capture various complexity classes. More precisely, he has studied the
computational complexity of satis�ability problems for various fragments of nat-
ural language. He has proven that the satis�ability problem of the syllogistic frag-
ment is in PTIME as opposed to the fragment containing relative clauses which is
NP-complete. He has also described fragments of language such that their compu-
tational complexity is even harder (with non-copula verbs or restricted anaphora)
and �nally he provides the reader with an undecidable fragment containing un-
restricted anaphora.

It is also worth to mention very recent paper of Pagin (2009). The author
tries to explain compositionality principle in terms of computational complexity,
cognitive di�culty as experienced by language users during communication, and
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language learnability. He argues that compositionality simpli�es complexity of
language communication.

Unfortunately � as far as we are aware � not much is known about the com-
putational complexity of dynamic formalisms. This is suprising because complex-
ity questions match the dynamic spirit perfectly and moreover can give deeper
insights into the plausibility of proposed formalisms. Some complexity results are
known for belief revision � mostly showing that the logic lying behind revision
mechanisms is highly intractable (see e.g. van Benthem and Pacuit, 2006) � and
for game-theoretic semantics (see e.g. Sevenster, 2006). But there are some very
interesting questions untouched, for example: What is the complexity of a belief
revision (game) when an intractable sentence is the input? Does model-checking
complexity relate to the complexity of belief revision or the corresponding game
in any way? But �rst of all, there has not been much done about the complexity
of this model from the agent's perspective. For example, how di�cult is belief
revision for a single agent?

The worst news is that complexity seems to be a totally open problem for
formal pragmatics, even though the question of how di�cult it is to solve coor-
dination problems in linguistic games seems to be very basic. Probably, some
results might be achieved via translation from complexity considerations in algo-
rithmic game theory (see e.g. Nisan et al., 2007). We believe that computational
complexity issues should be incorporated in these models to better understand
their plausibility.

In this book we study the computational complexity of model-checking for a
quanti�er fragment of natural language. We often evoke the descriptive perspec-
tive to achieve our aims. In other words, we try to understand some aspects of
meaning from the computational perspective. Below we say a few words on the
underlying assumptions in this enterprise, summing up the previous considera-
tions on semantics, cognitive science and complexity.

1.8 Classifying Meaning by Intractability

We have argued that meaning is an algorithm. This allows us to apply com-
putability considerations to linguistics. Moreover, according to what we said
above linguistic capacities, like all cognitive processes, are bounded by computa-
tional restrictions. In particular, comprehension of natural language constructions
is linked to their computational complexity. We provide some more arguments in
favor of this connection throughout the dissertation. We give an example for this
dependence in Section 4.5 where we discuss the interpretation of NP-complete
reciprocal sentences and suggest that their meaning might be in most cases only
comprehended by recognizing inferential properties. Then in Chapter 5 we have
a look at collective quanti�cation in natural language, where among others we
can observe how computational complexity restricts expressibility of everyday
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language. In Chapters 6 and 7 we present empirical evidence supporting the
statement that computational complexity in�uences the comprehension of natu-
ral language. In the �rst of these chapters we show that people tend to choose
computationally simpler interpretations of so-called Hintikka-like sentences. In
the following chapter we give empirical evidence directly linking the reaction
time needed to recognize the meaning of sentences with simple quanti�ers to the
complexity of automata computing this meaning. Below we try to capture our
experience with studying the complexity of natural language into the form of a
methodological statement about the descriptive power of the linguistic formalism
which we needed.

1.8.1 Ristad's Theses

The book of Ristad (1993) contains not only a technical contribution to the
semantic theory of anaphora but also some methodological claims on the role of
computational complexity in linguistics.

First of all, Ristad claims that natural language contains constructions which
semantics is essentially NP-complete:

The second major result of this monograph is the thesis that language
computations are NP-complete. This complexity thesis is a substan-
tive, falsi�able claim about human language that is directly supported
by the quiescent state of the language complexity game.

(Ristad, 1993, p. 14)

Secondly, Ristad suggests that a good linguistic theory cannot be too strong:

The central consequence of this complexity thesis for human language
is that empirically adequate models (and theories) of language will
give rise to NP-completeness, under an appropriate idealization to
unbounded inputs. If a language model is more complex than NP, say
PSPACE-hard, then our complexity thesis predicts that the system
is unnaturally powerful, perhaps because it overgeneralizes from the
empirical evidence or misanalyses some linguistic phenomena.

(Ristad, 1993, p. 15)

In other words, Ristad claims that every semantic model has to be at least
NP-hard to be able to capture complex linguistic phenomena. On the other
hand, in his opinion every computationally stronger formalism is overgeneralizing
linguistic capacities. This second methodological claim can be treated as a kind
of semantic Ockham's razor. Summing up, Ristad proposes NP-completeness as
a kind of methodological test for plausibility of linguistic theories.
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1.8.2 Descriptive Bounds on Everyday Language

We do not completely agree with Ristad but we share his intuitions. However, we
prefer to restrict claims of that sort to some fragment of language as the whole
of natural language contains expressions whose complexity go beyond practical
computability. Nevertheless, we can see a natural intuition supporting the use
of the concept of natural language excluding �technical� expressions. However,
in this narrow sense we prefer to use the term everyday language. In a sense we
understand �everyday language� here as a pre-theoretic part of natural language.

In this dissertation we study the complexity of natural language quanti�ers
via their de�nability properties. In other words, we use descriptive complexity
theory, i.e., we draw complexity conclusions on the basis of logical descriptions
of semantics. From this perspective, our experience allows us to state the follow-
ing claim which resembles Ristad's thesis and was proposed by Mostowski and
Szymanik (2005):

Σ1
1-thesis Our everyday language is semantically bounded by the properties ex-

pressible in the existential fragment of second-order logic.

In other words, we claim that everyday language can be described in the exis-
tential fragment of second-order logic (see De�nition 2.1.1). If some property is
not de�nable by any Σ1

1-formula, then it falls outside the scope of everyday lan-
guage. For example, quanti�ers �there exists�, �all�, �exactly two�, �at least four�,
�every other� and �most� belongs to everyday language. The counterexample is
the notion �there exist at most countably many� which is not de�nable by any
Σ1

1-formula. Moreover, we know from Fagin's theorem (2.4.4) that Σ1
1-properties

correspond to NPTIME. Hence, our thesis basically restricts the methodological
claim of Ristad to the realm of everyday language.

Let us give one argument in favor of accepting this methodological statement.
The other one, more domain speci�c, will be formulated in Section 6.3.4. The
intuition is that the core sentences of everyday language are sentences which
can be more or less e�ectively veri�able. We argued that in the case of small
�nite interpretations this means that their truth-value can be practically com-
puted, directly or indirectly. Direct practical computability means that there is
an algorithm which for a given �nite interpretation computes the truth-value in
a reasonable time. From the P-cognition Thesis it follows that the referential
meaning of an expression which can be directly computed is in PTIME. However,
as we mentioned in Section 1.3 we frequently understand sentences indirectly,
evoking their inferential dependencies with other sentences. Let us consider the
following three sentences:

(17) There were more boys than girls at the party.

(18) At the party every girl was paired with a boy.
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(19) Peter came alone to the party.

We know that sentence (17) can be inferred from sentences (18) and (19). Then we
can establish the truth-value of sentence (17) indirectly, knowing that sentences
(18) and (19) are true.

The question arises: What do we mean by a tractable inferential meaning?
First notice that in the case of NPTIME problems the non-deterministic be-

havior of an algorithm can be described as follows:

Firstly, choose a certi�cate of a size polynomially depending on the
size of input. Then apply a PTIME algorithm for �nding the answer.
The nondeterministic algorithm answers YES exactly when there is a
certi�cate for which we get a positive answer.

(Garey and Johnson, 1979, p. 28)

Let us observe that in a sense such certi�cates are proofs. When we have
a proof of a statement then we can easily check whether the sentence is true.
Therefore NPTIME problems (Σ1

1-properties) are practically justi�able. Let us
consider an example.

Suppose that we know that the following are true statements:

(20) Most villagers are communists.

(21) Most townsmen are capitalists.

(22) All communists and all capitalists hate each other.

From these sentences we can easily infer the NP-complete branching interpreta-
tion of the following sentence (for a discussion on the computational complexity
of sentences like this see Section 3.2 and Chapter 6):

(23) Most villagers and most townsmen hate each other.

Sentences (20), (21), and (22) have to be given or guessed. They are in a sense
certi�cates or proofs of the truth of sentence (23).

In this sense sentences with NPTIME meaning � or by Fagin's theorem (see
Theorem 2.4.4) Σ1

1-expressible sentences � are indirectly veri�able. Moreover,
NPTIME seems to capture exactly indirect veri�ability. This observation gives
an argument for our claim � everyday sentences have practically computable
inferential meaning.

We assume the Σ1
1-thesis � as a methodological principle � throughout the

dissertation. We are using it to argue in favor of or against some linguistic
formalizations. For instance, in Chapter 5 we study a common way of modeling
collective quanti�cation in natural language, the so-called type-shifting approach.
By using the formalism of second-order generalized quanti�ers, we observe that
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a uniform treatment of collectivity via type-shifting has excessive computational
complexity. Therefore, we claim that either such a model cannot be plausible, and
propose turning to computationally better behaved many-sorted models or that
some instances of collective quanti�cation do not appear in everyday language.
On the other hand, the positive use of the Σ1

1-thesis can be found in Chapter
4, where we analyze the computational complexity of di�erent interpretations of
English reciprocal sentences with quanti�ers in the antecedents. We work with a
model which is expressible in the existential fragment of second-order logic and
show that it predicts some reciprocal sentences to be NP-complete. Our thesis
allows us to believe that the model is plausible. Moreover, in Chapter 6 we
consider Barwise's test of negation normality and observe that it makes sense
only when assuming that everyday sentences are expressible in the existential
fragment of second order-logic (see Remark 6.3.2).

Moreover, the Σ1
1-thesis partially bridges the two basic comprehension mecha-

nisms formulated in Section 1.1. It explains in some cases the subtle dependence
between the complexity of a sentence, its model-checking di�culty, and its rela-
tion to knowledge. It also relaxes our assumption about tractability. As a matter
of fact, we found NP-complete semantic constructions in natural language. We
claimed that such expressions are intractable for human agents but now we add
one proviso: their direct model-checking can be intractable but we can still evoke
some indirect mechanism making the task perfectly tractable. This puts our po-
sition very close to Ristad's perspective. Additionally, it provides one idea how to
connect our investigations with dynamic formalisms describing other aspects of
meaning. Such an integration is needed to account for the big picture of natural
language meaning and comprehension.

1.9 Summary

In this chapter we have discussed some motivations and philosophical assumptions
lying in the background of the research presented in the next chapters. These
assumptions do not have a direct in�uence on our technical results. However,
we believe that they give an additional argument for studying the computational
complexity of natural language expressions.

Below we summarize our assumptions:

• We mostly study a basic element of comprehension: model-checking, to
which we sometimes refer as �referential meaning�.

• We identify (referential) meanings (algorithms) with Turing machines (com-
putable functions).

• We assume that problems are tractable if they are computable in polynomial
time. Otherwise, they are intractable.
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• We assume that human cognitive (linguistic) capacities are constrained by
polynomial time computability. Therefore, if a meaning corresponds to
intractable functions we believe it is too hard for direct comprehension.

• We claim that the semantics of everyday language can be adequately de-
scribed in the existential fragment of second order-logic (Σ1

1-thesis).

• We restrict ourselves to �nite universes.

We hope that our technical insights will give additional arguments in favor of
our assumptions.



Chapter 2

Mathematical Prerequisites

This chapter describes the notation and basic terminology from generalized quan-
ti�er theory and computation theory. We focus only on concepts which will be
explored in the following parts of the thesis. We assume some familiarity with
the basics of �rst-order and second-order logic (see e.g. Ebbinghaus et al., 1996).

2.1 Basic Notation

Let A, B be sets. We will write ∅ for the empty set, card(A) to denote the
cardinality of the set A and P(B) for the power set of B. The operations ∪, ∩,
−, and the relation ⊆ on sets are de�ned as usual. The set A×B = {(a, b) | a ∈
A and b ∈ B} denotes the Cartesian product of A and B, where (a, b) is the
ordered pair. If R is a relation then by R−1 we denote its inverse. The set of
natural numbers is denoted by ω. If k ∈ ω then Ak denotes

A× . . .× A︸ ︷︷ ︸
k

.

We will write Q for the set of rational numbers. If q ∈ Q we write dqe for the
ceiling function of q, i.e. the smallest integer greater than q.

Let ϕ and ψ be formulae. We write ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ =⇒ ψ, ϕ ⇐⇒ ψ,
∃xϕ(x), and ∀xϕ(x) with the usual meaning. We will denote �rst-order logic
(elementary logic) by FO and second-order logic by SO.

Now, let us recall the de�nition of the hierarchy of second-order formulae.

2.1.1. Definition. The class Σ1
0 is identical to the class Π1

0 and both contain
(all and only) the �rst-order formulae. The class Σ1

n+1 is the set of formulae
of the following form: ∃P1 . . . ∃Pkψ, where ψ ∈ Π1

n. The class Π1
n+1 consists of

formulae of the form: ∀P1 . . . ∀Pkψ, where ψ ∈ Σ1
n. We additionally assume that

all formulae equivalent to some Σ1
n (or Π1

n) formula are also in Σ1
n (respectively

Π1
n).

�

43
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In the thesis a vocabulary is a �nite set consisting of relation symbols (pred-
icates) with assigned arities. Let τ = {R1, . . . , Rk} be a vocabulary, where for
each i, ni is the arity of Ri. Then a τ -model will be a structure of the following
form: M = (M,R1, . . . , Rk), where M is the universe of model M and Ri ⊆ M
is an ni-ary relation over M , for 1 ≤ i ≤ k. If ϕ is a τ -sentence (a sentence over
the vocabulary τ) then the class of τ -models of ϕ is denoted by Mod(ϕ). We will
sometimes write RM

i for relations to di�erentiate them from the corresponding
predicates Ri.

2.2 Generalized Quanti�er Theory

Generalized quanti�ers are one of the basic tools of today's linguistics and their
mathematical properties have been extensively studied since the �fties (see Peters
and Westerståhl, 2006, for a recent overview). In its simplest form generalized
quanti�er theory assigns meanings to statements by de�ning the semantics of the
quanti�ers occurring in them. For instance, the quanti�ers �every�, �some�, �at
least 7�, �an even number of�, and �most� build the following sentences.

(1) Every poet has low self-esteem.

(2) Some dean danced nude on the table.

(3) At least 7 grad students prepared presentations.

(4) An even number of the students saw a ghost.

(5) Most of the students think they are smart.

(6) Less than half of the students received good marks.

What is the semantics assigned to these quanti�ers? Formally they are treated
as relations between subsets of the universe. For instance, in sentence (1) �every�
is a binary relation between the set of poets and the set of people having low
self-esteem. Following the natural linguistic intuition we will say that sentence
(1) is true if and only if the set of poets is included in the set of people having
low self-esteem. Hence, the quanti�er �every� corresponds in this sense to the
inclusion relation.

Let us now have a look at sentence (4). It is true if and only if the intersection
of the set of all students with the set of people who saw a ghost is of even cardi-
nality. That is, this quanti�er says something about the parity of the intersection
of two sets.

Finally, let us consider example (5). Let us assume that the quanti�er �most�
simply means �more than half�.1 Hence, sentence (5) is true if and only if the

1We would say that the stronger, but vague, meaning that seems more natural is a result of
pragmatics.
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cardinality of the set of students who think they are smart is greater than the
cardinality of the set of students who do not think they are smart. That is,
the quanti�er �most� expresses that these two kinds of student exist in a speci�c
proportion.

2.2.1 Two Equivalent Concepts of Generalized Quanti�ers

Frege was one of the major �gures in forming the modern concept of quanti�ca-
tion. In his Begri�sschrift (1879) he made a distinction between bound and free
variables and treated quanti�ers as well-de�ned, denoting entities. He thought
of quanti�ers as third-order objects � relations between subsets of a given �xed
universe. This way of thinking about quanti�ers is still current, particularly in
linguistics. However, historically speaking the notion of a generalized quanti�er
was formulated for the �rst time in a di�erent, although equivalent, way: gen-
eralized quanti�ers were de�ned as classes of models closed under isomorphisms.
Firstly, in a seminal paper of Andrzej Mostowski (1957) the notions of existential
and universal quanti�cation were extended to the concept of a monadic general-
ized quanti�er binding one variable in one formula, and later this was generalized
to arbitrary types by Per Lindström (1966). Below we give the formal de�nition.

2.2.1. Definition. Let t = (n1, . . . , nk) be a k-tuple of positive integers.
A Lindström quanti�er of type t is a class Q of models of a vocabulary
τt = {R1, . . . , Rk}, such that Ri is ni-ary for 1 ≤ i ≤ k, and Q is closed un-
der isomorphisms, i.e. if M and M′ are isomorphic, then

(M ∈ Q ⇐⇒ M′ ∈ Q).

�

2.2.2. Definition. If in the above de�nition for all i: ni ≤ 1, then we say that
a quanti�er is monadic, otherwise we call it polyadic.

�

2.2.3. Example. Let us explain this de�nition further by giving a few examples.
Sentence (1) is of the form Every A is B, where A stands for poets and B for
people having low self-esteem. As we explained above the sentence is true if and
only if A ⊆ B. Therefore, according to the de�nition, the quanti�er �every� is of
type (1, 1) and corresponds to the class of models (M,A,B) in which A ⊆ B.
For the same reasons the quanti�er �an even number of� corresponds to the class
of models in which the cardinality of A ∩ B is an even number. Finally, let us
consider the quanti�er �most� of type (1, 1). As we mentioned before the sentence
Most As are B is true if and only if card(A ∩ B) > card(A − B) and therefore
the quanti�er corresponds to the class of models where this inequality holds.

Therefore, formally speaking:
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∀ = {(M,A) | A = M}.
∃ = {(M,A) | A ⊆M and A 6= ∅}.

Every = {(M,A,B) | A,B ⊆M and A ⊆ B}.
Even = {(M,A,B) | A,B ⊆M and card(A ∩B) is even}.
Most = {(M,A,B) | A,B ⊆M and card(A ∩B) > card(A−B)}.

The �rst two examples are the standard �rst-order universal and existential
quanti�ers, both of type (1). They are classes of models with one unary predicate
such that the extension of the predicate is equal to the whole universe in case of
the universal quanti�er and is nonempty in case of the existential quanti�er.

Why do we assume that these classes are closed under isomorphisms? Simply
put, this guarantees that the quanti�ers are topic neutral. The quanti�er �most�
means exactly the same when applied to people as when applied to natural num-
bers.

Let us now give the de�nition of a generalized quanti�er. This de�nition
is commonly used in linguistics as opposed to the previous one which �nds its
applications rather in logic.

2.2.4. Definition. A generalized quanti�er Q of type t = (n1, . . . , nk) is a func-
tor assigning to every set M a k-ary relation QM between relations on M such
that if (R1, . . . , Rk) ∈ QM then Ri is an ni-ary relation on M , for i = 1, . . . , k.
Additionally, Q is preserved by bijections, i. e., if f : M −→ M ′ is a bijection
then (R1, . . . , Rk) ∈ QM if and only if (fR1, . . . , fRk) ∈ QM ′ , for every rela-
tion R1, . . . , Rk on M , where fR = {(f(x1), . . . , f(xi)) | (x1, . . . , xi) ∈ R}, for
R ⊆M i.

�

In other words, a generalized quanti�er Q is a functional relation associating
with each model M a relation between relations on its universe, M . Hence, if we
�x a model M, then we can treat a generalized quanti�er as a relation between
relations over the universe, and this is the familiar notion from natural language
semantics.

Notice that we have the following equivalence between a Lindström quanti�er
and a generalized quanti�er:

(M,R1, . . . , Rk) ∈ Q ⇐⇒ QM(R1, . . . , Rk),where Ri ⊆Mni .

For instance, in a given model M the statement MostM(A,B) says that
card(AM ∩BM) > card(AM −BM), where AM , BM ⊆M .

2.2.5. Corollary. The de�nitions of a Lindström quanti�er (2.2.1) and a gen-
eralized quanti�er (2.2.4) are equivalent.
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Studying the properties of quanti�ers in most cases we invoke De�nition 2.2.1
but for descriptive purposes over some �xed universe we mostly make use of
De�nition 2.2.4, treating quanti�ers as third-order concepts (relations between
relations).

2.2.2 Branching Quanti�ers

As a matter of chronology, the idea of generalizing Frege's quanti�ers arose much
earlier than the work of Lindström (1966). The idea was to analyze possible
dependencies between quanti�ers � dependencies which are not allowed in the
standard linear (Fregean) interpretation of logic. Branching quanti�cation (also
called partially ordered quanti�cation, or Henkin quanti�cation) was proposed by
Leon Henkin (1961) (for a survey see Krynicki and Mostowski (1995)). Branch-
ing quanti�cation signi�cantly extends the expressibility of �rst-order logic; for
example the so-called Ehrenfeucht sentence, which uses branching quanti�cation,
expresses in�nity:

∃t
(
∀x∃x′
∀y∃y′

) [
(x = y ⇐⇒ x′ = y′) ∧ x′ 6= t

]
.

Informally speaking, the idea of such a construction is that for di�erent rows
the values of the quanti�ed variables are chosen independently. The semantics
of branching quanti�ers can be formulated mathematically in terms of Skolem
functions. For instance, the Ehrenfeucht sentence after Skolemization has the
following form:

∃t∃f∃g
[
∀x∀y(x = y ⇐⇒ f(x) = g(y)) ∧ f(x) 6= t

]
.

Via simple transformations this sentence is equivalent to the following:

∃f∀x∀y
[
(x 6= y =⇒ f(x) 6= f(y)) ∧ (∃t∀x(f(x) 6= t))

]
,

and therefore, it expresses Dedekind's in�nity: there exists an injective function
from the universe to itself which is not surjective.

The idea of the independent (branching) interpretation of quanti�ers has given
rise to many advances in logic. Let us mention here only the logical study of
(in)dependence by investigating Independence Friendly Logic (see Hintikka, 1996)
and Dependence Logic (see Väänänen, 2007). It is also worth noting that Game-
Theoretic Semantics (see Hintikka and Sandu, 1997) was originally designed as an
alternative semantics for branching quanti�cation (Independence Friendly Logic).
Now it is considered as a useful tool for studying di�erent variants of indepen-
dence, like imperfect information games (see Sevenster, 2006). We present com-
putational complexity results for branching quanti�ers in Section 3.2 and discuss
their linguistic applications in Chapter 6.
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2.2.3 Logic Enriched by Generalized Quanti�ers

Generalized quanti�ers enable us to enrich the expressive power of a logic in a
very controlled and minimal way. Below we de�ne the extension of an arbitrary
logic L by a generalized quanti�er Q.

2.2.6. Definition. We de�ne the extension, L(Q), of logic L by a quanti�er Q
of type t = (n1, . . . , nk) in the following way:

• The formula formation rules of L-language are extended by the rule:

if for 1 ≤ i ≤ k, ϕi(xi) is a formula and xi is an ni-tuple of pairwise distinct
variables, then Q x1, . . . , xk [ϕ1(x1), . . . , ϕk(xk)] is a formula.

�

2.2.7. Convention. Let us observe that this de�nition can be modi�ed ac-
cording to common notational habits as follows. Q is treated as binding
n = max(n1, . . . , nk) variables in k formulae. For example, the quanti�er Every
of type (1, 1) which expresses the property ∀x[P1(x) =⇒ P2(x)] can be written
according to the �rst convention as:

Every xy [P1(x), P2(y)]

and according to the modi�ed one as:

Every x [P1(x), P2(x)].

2.2.8. Definition. The satisfaction relation of L is extended by the rule:

M |= Q x1, . . . , xk [ϕ1(x1), . . . , ϕk(xk)] i� (M,ϕM
1 , . . . , ϕ

M
k ) ∈ Q,

where ϕM
i = {a ∈Mni | M |= ϕi(a)}.

�

In this dissertation we will mainly be concerned with extensions of �rst-order
logic, FO, by di�erent generalized quanti�ers Q. Following De�nition 2.2.6 such
an extension will be denoted by FO(Q).

2.2.4 De�nability of Generalized Quanti�ers

Some generalized quanti�ers, like ∃≤3, ∃=3, and ∃≥3, are easily expressible in
elementary logic. This is also true for many natural language determiners. For
example, we can express the type (1, 1) quanti�er Some by the type (1) �rst-order
existential quanti�er in the following way:

Some x [A(x), B(x)] ⇐⇒ ∃x[A(x) ∧B(x)].
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However, it is well-known that many generalized quanti�ers are not de�nable in
�rst-order logic. Standard application of the compactness theorem shows that
the quanti�ers �there exist (in)�nitely many� are not FO-de�nable. Moreover,
using Ehrenfeucht-Fraïssé games it is routine to prove the following:

2.2.9. Proposition. The quanti�ers Most and Even are not �rst-order de�n-
able.2

Dealing with quanti�ers not de�nable in �rst-order logic we will consider
their de�nitions in higher-order logics, for instance in fragments of second-order
logic. To give one example here, in a model M = (M,AM , BM) the sentence
Most x [A(x), B(x)] is true if and only if the following condition holds:

∃f : (AM −BM) −→ (AM ∩BM) such that f is injective but not surjective.

In general, de�nability theory investigates the expressibility of quanti�ers in
various logics. Informally, de�nability of a quanti�er Q in a logic L means that
there is a uniform way to express every formula of the form Q xϕ in L. The
following is a precise de�nition.

2.2.10. Definition. Let Q be a generalized quanti�er of type t and L a logic.
We say that the quanti�er Q is de�nable in L if there is a sentence ϕ ∈ L of
vocabulary τt such that for any τt-structure M:

M |= ϕ i� M ∈ Q .

�

2.2.11. Definition. Let L and L′ be logics. The logic L′ is at least as strong as
the logic L (L ≤ L′) if for every sentence ϕ ∈ L over any vocabulary there exists
a sentence ψ ∈ L′ over the same vocabulary such that:

|= ϕ ⇐⇒ ψ.

The logics L and L′ are equivalent (L ≡ L′) i� L ≤ L′ and L′ ≤ L.
�

Below we assume that a logic L has the so-calledsubstitution property , i.e., that
the logic L is closed under substituting predicates by formulas. The following fact
is well-known for Lindström quanti�ers.

2For more unde�nability results together with mathematical details and an introduction into
Ehrenfeucht-Fraïssé techniques we suggest consulting the literature (e.g. Chapter 4 in Peters
and Westerståhl, 2006).
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2.2.12. Proposition. Let Q be a generalized quanti�er and L a logic. The
quanti�er Q is de�nable in L i�

L(Q) ≡ L.
Proof The direction L ≤ L(Q) is obvious since every formula of L is also a

formula of L(Q) (see De�nition 2.2.6). To show that L(Q) ≤ L we use induc-
tively the fact that if ϕ is the formula which de�nes Q and ψ1(x1), . . . , ψk(xk) are
formulae of L, then

|= Q x1, . . . , xk [ψ1(x1), . . . , ψk(xk)] ⇐⇒ ϕ(R1/ψ1, . . . , Rk/ψk),

where the formula on the right is obtained by substituting every occurrence of
Ri(xi) in ϕ by ψi(xi). �

2.2.5 Linguistic Properties of Generalized Quanti�ers

It was realized by Montague (1970) that the notion of a generalized quanti�er
� as a relation between sets � can be used to model the denotations of noun
phrases in natural language. Barwise and Cooper (1981) introduced the apparatus
of generalized quanti�ers as a standard semantic toolbox and started the rigorous
study of their properties from the linguistic perspective. Below we de�ne some
properties of quanti�ers important in linguistics which we use in our further
research (see Peters and Westerståhl, 2006, for a general overview).

Boolean Combinations of Quanti�ers

To account for complex noun phrases, like those occurring in sentences (7)�(10),
we de�ne disjunction, conjunction, outer negation (complement) and inner nega-
tion (post-complement) of generalized quanti�ers.

(7) At least 5 or at most 10 departments can win EU grants. (disjunction)

(8) Between 100 and 200 students started in the marathon. (conjunction)

(9) Not all students passed. (outer negation)

(10) All students did not pass. (inner negation)

2.2.13. Definition. Let Q, Q′ be generalized quanti�ers, both of type
(n1, . . . , nk). We de�ne:

(Q∧Q′)M [R1, . . . , Rk] ⇐⇒ QM [R1, . . . , Rk] and Q′
M [R1, . . . , Rk] (conjunction)

(Q∨Q′)M [R1, . . . , Rk] ⇐⇒ QM [R1, . . . , Rk] or Q′
M [R1, . . . , Rk] (disjunction).

(¬Q)M [R1, . . . , Rk] ⇐⇒ not QM [R1, . . . , Rk] (complement)

(Q¬)M [R1, . . . , Rk] ⇐⇒ QM [R1, . . . , Rk−1,M −Rk] (post-complement)

�
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Relativization of Quanti�ers

Every statement involving a quanti�er Q is about some universe M . Sometimes
it is useful to de�ne a new quanti�er saying that Q restricted to some subset of
M behaves exactly as it behaves on the whole universe M . Below we give the
formal de�nition.

2.2.14. Definition. Let Q be of type (n1, . . . , nk); then the relativization of Q,
Qrel, has the type (1, n1, . . . , nk) and is de�ned for A ⊆ M,Ri ⊆ Mni , 1 ≤ i ≤ k
as follows:

Qrel
M [A,R1, . . . , Rk] ⇐⇒ QA[R1 ∩ An1 , . . . , Rk ∩ Ank ].

�

In particular, for Q of type (1) we have:

Qrel
M [A,B] ⇐⇒ QA[A ∩B].

2.2.15. Example. This already shows that many natural language determiners
of type (1, 1) are just relativizations of some familiar logical quanti�ers, e.g.:

Some = ∃rel;

Every = ∀rel.

Domain Independence

Domain independence is a property characteristic of natural language quanti�ers.
It says that the behavior of a quanti�er does not change when you extend the
universe. The formal de�nition follows.

2.2.16. Definition. A quanti�er of type (n1, . . . , nk) satis�es domain indepen-
dence (EXT) i� the following holds:

If Ri ⊆Mni , 1 ≤ i ≤ k,M ⊆M ′, then QM [R1, . . . , Rk] ⇐⇒ QM ′ [R1, . . . Rk].

�

Conservativity

The property which in a sense extends EXT is conservativity:

2.2.17. Definition. A type (1, 1) quanti�er Q is conservative (CONS) i� for
all M and all A,B ⊆M :

QM [A,B] ⇐⇒ QM [A,A ∩B].

�
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CE-quanti�ers

Quanti�ers closed under isomorphisms and satisfying CONS and EXT are known
in the literature as CE-quanti�ers. It has been hypothesized that all natural
language determiners correspond to CE-quanti�ers (see e.g. Barwise and Cooper,
1981). From this perspective expressions like �John�, ∀, and �only� are excluded
from the realm of natural language determiners by not being CE-quanti�ers. The
proper name �John� does not satisfy isomorphism closure, ∀ is not EXT and
�only� violates conservativity.

Notice that CE-quanti�ers of type (1, 1) over �nite universes may be identi�ed
with pairs of natural numbers.

2.2.18. Definition. Let Q be a CE-quanti�er of type (1, 1). We de�ne a binary
relation also denoted by Q:

Q(k,m) ⇐⇒ there is M, and A,B ⊆M such that

card(A−B) = k, card(A ∩B) = m, and QM [A,B].

�

2.2.19. Theorem. If Q is a CE-quanti�er of type (1, 1), then for all M and all
A,B ⊆M we have:

QM [A,B] ⇐⇒ Q(card(A−B), card(A ∩B)).

Proof It is enough to show that whenever Q is CE, A,B ⊆ M , A′, B′ ⊆ M ′

are such that: card(A − B) = card(A′ − B′) and card(A ∩ B) = card(A′ ∩ B′),
QM [A,B] ⇐⇒ QM ′ [A′, B′].

�

Monotonicity

One of the most striking intuitions about quanti�ers is that they say that some
sets are �large enough�. Therefore, we would expect that quanti�ers are closed
on some operations changing universe. The simplest among such operations is
taking subsets and supersets. Monotonicity properties state whether a quanti�er
is closed under these operations.

2.2.20. Definition. A quanti�er QM of type (n1, . . . , nk) is monotone increas-
ing in the i'th argument (upward monotone) i� the following holds:

If QM [R1, . . . , Rk] and Ri ⊆ R′
i ⊆Mni , then

QM [R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rk], where 1 ≤ i ≤ k.

�
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2.2.21. Definition. A quanti�er QM of type (n1, . . . , nk) is monotone decreas-
ing in the i'th argument (downward monotone) i� the following holds:

If QM [R1, . . . , Rk] and R
′
i ⊆ Ri ⊆Mni , then

QM [R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rk], where 1 ≤ i ≤ k.

�

In particular, for a quanti�er Q of type (1, 1) we can de�ne the following basic
types of monotonicity:

↑MON QM [A,B] and A ⊆ A′ ⊆M then QM [A′, B].

↓MON QM [A,B] and A′ ⊆ A ⊆M then QM [A′, B].

MON↑ QM [A,B] and B ⊆ B′ ⊆M then QM [A,B′].

MON↓ QM [A,B] and B′ ⊆ B ⊆M then QM [A,B′].

We also consider combinations of these basic types, for example we will write
↑MON↓ for a quanti�er that is monotone increasing in its left argument and
decreasing in its right argument.

Upward monotonicity in the left argument is sometimes called persistence. It
is an important property for the study of noun phrases in natural language (see
e.g. Peters and Westerståhl, 2006).

2.2.22. Definition. We say that a quanti�er is monotone if it is monotone
decreasing or increasing in any of its arguments. Otherwise, we call it non-
monotone. �

Obviously, monotonicity interacts in a subtle way with outer and inner nega-
tions.

2.2.23. Proposition. Let Q be any type (1, 1) quanti�er. Q is MON↑

(1) i� ¬Q is MON↓.

(2) i� Q¬ is MON↓.

Q is ↑MON

(1) i� ¬Q is ↓MON.

(2) i� Q¬ is ↑MON.

Similarly (with reversed arrows) for the downward monotone case.
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Proof Obviously, outer negation reverses monotonicity, in any argument. In-
ner negation reverses monotonicity only in the second argument, since there we
are looking at complements, but not in the �rst argument.

�

2.2.24. Example. Consider the Aristotelian square of opposition. It consists of
the following four quanti�ers: Some, ¬ Some = No, Some¬ = Not all, ¬ Some¬ =
All . Some is ↑MON↑. Therefore, No is ↓MON↓, Not all is ↑MON↓, and All is
↓MON↑.

Moreover, Most is an example of a quanti�er which is not persistent but is
upward monotone in its right argument (i.e., ∼MON↑). Even is non-monotone
(∼MON∼).

It is not surprising that monotonicity is one of the key properties of quanti-
�ers, both in logic and linguistics. In model theory it contributes to de�nability
(see e.g. Väänänen and Westerståhl, 2002), in linguistics it is used � among
other applications � to explain the phenomenon of negative polarity items (see
e.g. Ladusaw, 1979). Moreover, there are good reasons to believe that it is a
crucial feature for processing natural language quanti�ers, as has already been
suggested by Barwise and Cooper (1981) and empirically supported by Geurts
(2003) as well as our research presented in Chapter 7. There are also strong links
between monotonicity and the learnability of quanti�ers (see e.g. Tiede, 1999;
Gierasimczuk, 2009).

2.3 Computability

Throughout the thesis we use the general notions of computability theory (see
e.g. Hopcroft et al., 2000; Cooper, 2003). In particular, we refer to the basic
methods and notions of complexity theory (see e.g. Papadimitriou, 1993; Kozen,
2006). Below we review some of them brie�y to keep the thesis self-contained.

2.3.1 Languages and Automata

Formal language theory � which we brie�y survey below � is an important part
of logic, computer science and linguistics (see e.g. Hopcroft et al., 2000, for a
complete treatment). Historically speaking, formal language theory forms the
foundation of modern (mathematical) linguistics and its connection with psy-
cholinguistics (see e.g. Partee et al., 1990).

Languages

By an alphabet we mean any non-empty �nite set of symbols. For example,
A = {a, b} and B = {0, 1} are two di�erent binary alphabets.
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A word (string) is a �nite sequence of symbols from a given alphabet, e.g.,
�1110001110� is a word over the alphabet B.

The empty word is a sequence without symbols. It is needed mainly for tech-
nical reasons and written ε.

The length of a word is the number of symbols occurring in it. We write lh()
for length, e.g., lh(111) = 3 and lh(ε) = 0.

If Γ is an alphabet, then by Γk we mean the set of all words of length k over
Γ. For instance, A3 = {000, 001, 010, 011, 100, 101, 110, 111}. For every alphabet
Γ we have Γ0 = {ε}.

For any letter a and a natural number n by an we denote a string of length n
consisting only from the letter a.

The set of all words over alphabet Γ is denoted by Γ∗, e.g., {0, 1}∗ =
{ε, 0, 1, 00, 01, 10, 11, 000, . . .}. In other words, Γ∗ =

⋃
n∈ω Γn. Almost always

Γ∗ is in�nite, except for two cases: for Γ = ∅ and Γ = {ε}.
By xy we mean the concatenation of the word x with the word y, i.e., the new

word xy is built from x followed by y. If x = a1 . . . ai and y = b1 . . . bn, then xy
is of length i+ n and xy = a1 . . . aib1 . . . bn. For instance, if x = 101 and y = 00,
then xy = 10100. For any string α the following holds: εα = αε = α. Hence, ε is
the neutral element for concatenation.

Any set of words, a subset of Γ∗, will be called a language. If Γ is an alphabet
and L ⊆ Γ∗, then we say that L is a language over Γ. For instance, the set
L ⊆ A∗ such that L = {α | the number of occurrences of b in α is even} is a
language over the alphabet A.

Finite Automata

A �nite state automaton is a model of computation consisting of a �nite number
of states and transitions between those states. We give a formal de�nition below.

2.3.1. Definition. A non-deterministic �nite automaton (FA) is a tuple
(A,Q, qs, F, δ), where:

• A is an input alphabet;

• Q is a �nite set of states;

• qs ∈ Q is an initial state;

• F ⊆ Q is a set of accepting states;

• δ : Q× A −→ P(Q) is a transition function.

�
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If H = (A,Q, qs, δ, F ) is a FA such that for every a ∈ A and q ∈ Q we have
card(δ(q, a)) ≤ 1, then H is a deterministic automaton. In that case we can
describe a transition function as a partial function: δ : Q× A −→ Q.

Finite automata are often presented as graphs, where vertices (circles) sym-
bolize internal states, the initial state is marked by an arrow, an accepting state is
double circled, and arrows between nodes describe a transition function on letters
given by the labels of these arrows. We will give a few examples in what follows.

2.3.2. Definition. Let us �rst de�ne the generalized transition function δ̄ which
describes the behavior of an automata reading a string w from the initial state q:

δ̄ : Q× A∗ −→ P(Q), where:

δ̄(q, ε) = {q}

and for each w ∈ A∗and a ∈ A, δ̄(q, wa) =
⋃

q′∈δ̄(q,w)

δ(q′, a).

�

2.3.3. Definition. The language accepted (recognized) by some FA H is the set
of all words over the alphabet A which are accepted by H, that is:

L(H) = {w ∈ A∗ : δ̄(qs, w) ∩ F 6= ∅}.

�

2.3.4. Definition. We say that a language L ⊆ A∗ is regular if and only if there
exists some FA H such that L = L(H).

�

The following equivalence is a well known fact.

2.3.5. Theorem. Deterministic and non-deterministic �nite automata recognize
the same class of languages, i.e. regular languages.

Proof First of all notice that every deterministic FA is a non-deterministic FA.
Then we have to only show that every non-deterministic FA can be simulated by
some deterministic FA. The proof goes through the so-called subset construction.
It involves constructing all subsets of the set of states of the non-deterministic FA
and using them as states of a new, deterministic FA. The new transition function
is de�ned naturally (see Hopcroft et al., 2000, for details). Notice that in the
worst case the new deterministic automaton can have 2n states, where n is the
number of states of the corresponding non-deterministic automaton.

�
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2.3.6. Example. Let us give a few simple examples of regular languages together
with the corresponding accepting automata.

Let A = {a, b} and consider the language L1 = A∗. L1 = L(H1), where
H1 = (Q1, q1, F1, δ1) such that: Q1 = {q1}, F1 = {q1}, δ1(q1, a) = q1 and
δ1(q1, b) = q1. The automaton is shown in Figure 2.1.

q1

a, b

Figure 2.1: Finite automaton recognizing language L1 = A∗.

Now let L2 = ∅; then L2 = L(H2), where H2 = (Q2, q2, F2, δ2) such that:
Q2 = {q2}, F2 = ∅, δ2(q2, a) = q2 and δ2(q2, b) = q2. The automaton is depicted
in Figure 2.2

q2

a, b

Figure 2.2: Finite automaton recognizing language L2 = ∅.

Finally, let L3 = {ε}. L3 = L(H3), where H3 = (Q3, q0, F3, δ3) such that:
Q3 = {q0, q1}, F3 = {q0}, δ3(q0, i) = q1 and δ3(q1, i) = q1, for i = a, b.

The �nite automaton accepting this language is presented in Figure 2.3.

q0 q1

a

b
a, b

Figure 2.3: Finite automaton recognizing language L3 = {ε}.

Beyond Finite Automata

It is well-known that not every formal language is regular, i.e., recognized by a
�nite automata. For example, the language Lab = {anbn : n ≥ 1} cannot be
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recognized by any �nite automaton. Why is that? Strings from that language
can be arbitrary long and to recognize them a machine needs to count whether
the number of letters �a� is equal to the number of letters �b�. A string from Lab

can start with any number of letters �a� so the corresponding machine needs to be
able to memorize an arbitrarily large natural number. To do this a machine has
to be equipped with an unbounded internal memory. However, a �nite automaton
with k states can remember only numbers smaller than k. This claim is precisely
formulated in the following lemma which implies that the language Lab is not
regular.

2.3.7. Theorem (Pumping Lemma for Regular Languages). For any
in�nite regular language L ⊆ A∗ there exists a natural number n such that for
every word α ∈ L, if lh(α) ≥ n, then there are x, y, z ∈ A∗ such that:

(1) α = xyz;

(2) y 6= ε;

(3) lh(xz) ≤ n;

(4) For every k ≥ 0 the string xykz is in L.

Push-down Automata

To account for languages which are not regular we need to extend the concept of
a �nite automaton. A push-down automaton (PDA) is a �nite automaton that
can make use of a stack (internal memory). The de�nition follows.

2.3.8. Definition. A non-deterministic push-down automaton (PDA) is a tuple
(A,Γ,#, Q, qs, F, δ), where:

• A is an input alphabet;

• Γ is a stack alphabet;

• # 6∈ Γ is a stack initial symbol, empty stack consists only from it;

• Q is a �nite set of states;

• qs ∈ Q is an initial state;

• F ⊆ Q is a set of accepting states;

• δ : Q × (A ∪ {ε}) × Γ −→ P(Q × Γ∗) is a transition function. We de-

note a single transition by: (q, a, n)
H−→ (p, γ), if (p, γ) ∈ δ(q, a, n), where

q, p ∈ Q, a ∈ A, n ∈ Γ, γ ∈ Γ∗.

�
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If H = (A,Γ,#, Q, qs, qa, δ) is a PDA and for every a ∈ A, q ∈ Q and
γ ∈ Γ card(δ(q, a, γ)) ≤ 1 and δ(q, ε, γ) = ∅, then H is a deterministic push-down
automaton (DPDA).

The language recognized by a PDA H is the set of strings accepted by H.
A string w is accepted by H if and only if starting in the initial state q0 with
the empty stack and reading the string w, the automaton H terminates in an
accepting state p ∈ F .

2.3.9. Definition. We say that a language L ⊆ A∗ is context-free if and only
if there is a PDA H such that L = L(H).

�

Observe that (non-deterministic) PDAs accept a larger class of languages than
DPDAs. For instance, the language consisting of palindromes is context-free but
cannot be recognized by any DPDA as a machine needs to �guess� which is the
middle letter of every string.

2.3.10. Example. Obviously, the class of all context-free languages is larger
than the class of all regular languages. For instance, the language Lab = {anbn :
n ≥ 1}, which we argued to be non-regular, is context-free. To show this we will
construct a PDA H such that Lab = L(H). H recognizes Lab reading every string
from left to right and pushes every occurrences of the letter �a� to the top of the
stack. After �nding the �rst occurrence of the letter �b� the automaton H pops
an �a� o� the stack when reading each �b�. H accepts a string if after processing
all of it the stack is empty.

Formally, let H = (A,Γ,#, Q, qs, F, δ), where A = {a, b} = Γ,
Q = {qs, q1, q2, qa}, F = {qa} and the transition function is speci�ed in the fol-
lowing way:

• (qs, a,#)
H−→ (qs,#a);

• (qs, a, a)
H−→ (qs, aa);

• (qs, b, a)
H−→ (q1, ε);

• (qs, b,#)
H−→ (q2, ε);

• (q1, ε,#)
H−→ (qa, ε);

• (q1, b, a)
H−→ (q1, ε);

• (q1, b, b)
H−→ (q2, ε);

• (q1, a, b)
H−→ (q2, ε);
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• (q1, b,#)
H−→ (q2, ε);

• (q1, a,#)
H−→ (q2, ε).

Context-free languages also have restricted description power. For example,
the language Labc = {akbkck : k ≥ 1} is not context-free. This fact follows from
the extended version of the pumping lemma.

2.3.11. Theorem (Pumping Lemma for Context-free Languages).
For every context-free language L ⊆ A∗ there is a natural number k such that for
each w ∈ L, if lh(w) ≥ k, then there are β1, β2, γ1, γ2, η such that:

• γ1 6= ε or γ2 6= ε;

• w = β1γ1ηγ2β2;

• for every m ∈ ω: β1γ
m
1 ηγ

m
2 β2 ∈ L.

Extending push-down automata with more memory (e.g., one additional
stack) we reach the realm of Turing machines.

2.3.2 Turing Machines

The basic device of computation in this thesis is a multi-tape Turing (1936)
machine. Most of the particulars of Turing machines are not of direct interest to
us. Nevertheless, we recall the basic idea. Amulti-tape Turing machine consists of
a read-only input tape, a read and write working tape, and a write-only output tape.
Every tape is divided into cells scanned by the read-write head of the machine.
Each cell contains a symbol from some �nite alphabet. The tapes are assumed
to be arbitrarily extendable to the right. At any time the machine is in one of
a �nite number of states. The actions of a Turing machine are determined by a
�nite programme which determines, according to the current con�guration (i.e.,
the state of the machine and the symbols in the cells being scanned) which action
should be executed next. A computation of a Turing machine consists thus of a
series of successive con�gurations. A Turing machine is deterministic if its state
transitions are uniquely de�ned, otherwise it is non-deterministic. Therefore, a
deterministic Turing machine has a single computation path (for any particular
input) and a non-deterministic Turing machine has a computation tree. A Turing
machine accepts an input if its computation on that inputs halts after �nite time
in an accepting state. It rejects an input if it halts in a rejecting state.

2.3.12. Definition. Let Γ be some �nite alphabet and L ⊆ Γ∗ a language. We
say that a deterministic Turing machine, M , decides L if for every x ∈ Γ∗ M halts
in the accepting state on x whenever x ∈ L and in the rejecting state, otherwise.
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A non-deterministic Turing machine, M , recognizes L if for every x ∈ L there
is a computation of M which halts in the accepting state and there is no such
computation for any x 6∈ L.

�

It is important to notice that non-deterministic Turing machines recognize the
same class of languages as deterministic ones. This means that for every problem
which can be recognized by a non-deterministic Turing machine there exists a
deterministic Turing machine deciding it.

2.3.13. Theorem. If there is a non-deterministic Turing machine N recognizing
a language L, then there exists a deterministic Turing machine M for language
L.

Proof The basic idea for simulating N is as follows. Machine M considers all
computation paths of N and simulates N on each of them. If N would halt on
a given computation path in an accepting state then M also accepts. Otherwise,
M moves to consider the next computation path of N . M rejects the input if
machine N would not halt in an accepting state at any computation path.

�

However, the length of an accepting computation of the deterministic Turing
machine is, in general, exponential in the length of the shortest accepting com-
putation of the non-deterministic Turing machines as a deterministic machine
has to simulate all possible computation paths of a non-deterministic machine.3

The question whether this simulation can be done without exponential growth in
computation time leads us to computational complexity theory.

2.3.3 Complexity Classes

Let us start our complexity considerations with the notation used for comparing
the growth rates of functions.

2.3.14. Definition. Let f, g : ω −→ ω be any functions. We say that f = O(g)
if there exists a constant c > 0 such that f(n) ≤ cg(n) for almost all (i.e., all but
�nitely many) n. �

Let f : ω −→ ω be a natural number function. TIME(f) is the class of
languages (problems) which can be recognized by a deterministic Turing machine
in time bounded by f with respect to the length of the input. In other words,

3In general, the simulation outlined above leads to a deterministic Turing machine working
in time O(cf(n)), where f(n) is the time used by a non-deterministic Turing machine solving
the problem and c > 1 is a constant depending on that machine (see e.g. Papadimitriou, 1993,
page 49 for details).
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L ∈ TIME(f) if there exists a deterministic Turing machine such that for every
x ∈ L, the computation path ofM on x is shorter than f(n), where n is the length
of x. TIME(f) is called a deterministic computational complexity class. A non-
deterministic complexity class, NTIME(f), is the class of languages L for which
there exists a non-deterministic Turing machine M such that for every x ∈ L all
branches in the computation tree of M on x are bounded by f(n) and moreover
M decides L. One way of thinking about a non-deterministic Turing machine
bounded by f is that it �rst guesses the right answer and then deterministically
in a time bounded by f checks if the guess is correct.

SPACE(f) is the class of languages which can be recognized by a deterministic
machine using at most f(n) cells of the working-tape. NSPACE(f) is de�ned
analogously.

Below we de�ne the most important and well-known complexity classes, i.e.,
the sets of languages of related complexity. In other words, we can say that a com-
plexity class is the set of problems that can be solved by a Turing machine using
O(f(n)) of time or space resource, where n is the size of the input. To estimate
these resources mathematically natural functions have been chosen, like logarith-
mic, polynomial and exponential functions. It is well known that polynomial
functions grow faster than any logarithmic functions and exponential functions
dominate polynomial functions. Therefore, it is commonly believed that problems
belonging to logarithmic classes need essentially less resources to be solved than
problems from the polynomial classes and likewise that polynomial problems are
easier than exponential problems.

2.3.15. Definition.

• LOGSPACE =
⋃

k∈ω SPACE(k log n)

• NLOGSPACE =
⋃

k∈ω NSPACE(k log n)

• PTIME =
⋃

k∈ω TIME(nk)

• NP =
⋃

k∈ω NTIME(nk)

• PSPACE =
⋃

k∈ω SPACE(nk)

• NPSPACE =
⋃

k∈ω NSPACE(nk)

• EXPTIME =
⋃

k∈ω TIME(kn)

• NEXPTIME =
⋃

k∈ω NTIME(kn)

�
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If L ∈ NP, then we say that L is decidable (computable, solvable) in non-
deterministic polynomial time and likewise for other complexity classes.

It is obvious that for any pair of the complexity classes presented above, the
lower one includes the upper one. However, when it comes to the strictness of
these inclusions not much is known. One instance that has been proven is for
LOGSPACE and PSPACE (see e.g. Papadimitriou, 1993, for so-called Hierarchy
Theorems).

The complexity class of all regular languages, i.e., languages recognized by
�nite automata, is sometimes referred to as REG and equals SPACE(O(1)), the
decision problems that can be solved in constant space (the space used is inde-
pendent of the input size). The complexity class of all languages recognized by
push-down automata (i.e. context-free languages) is contained in LOGSPACE.

The question whether PTIME is strictly contained in NP is the famous Millen-
nium Problem � one of the most fundamental problems in theoretical computer
science, and in mathematics in general. The importance of this problem reaches
well outside the theoretical sciences as the problems in NP are usually taken
to be intractable or not e�ciently computable as opposed to the problems in P
which are conceived of as e�ciently solvable. In the thesis we take this distinction
for granted and investigate semantic constructions in natural language from that
perspective (see Chapter 1 for a discussion of this claim).

Moreover, it was shown by Walter Savitch (1970) that if a nondeterministic
Turing machine can solve a problem using f(n) space, an ordinary deterministic
Turing machine can solve the same problem in the square of the space. Although it
seems that nondeterminism may produce exponential gains in time, this theorem
shows that it has a markedly more limited e�ect on space requirements.

2.3.16. Theorem (Savitch (1970)). For any function f(n) ≥ log(n):

NSPACE(f(n)) ⊆ SPACE(f(n)2).

2.3.17. Corollary. PSPACE = NPSPACE

2.3.18. Definition. For any computation class C we will denote by co-C the
class of complements of languages in C. �

Every deterministic complexity class coincides with its complement. It is
enough to change accepting states into rejecting states to get a machine computing
the complement L from a deterministic machine deciding L itself. However, it is
unknown whether NP = co-NP. This is very important questions, as P = NP
would imply that NP = co-NP.

2.3.4 Oracle Machines

An oracle machine can be described as a Turing machine with a black box, called
an oracle, which is able to decide certain decision problems in a single step. More
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precisely, an oracle machine has a separate write-only oracle tape for writing down
queries for the oracle. In a single step, the oracle computes the query, erases its
input, and writes its output to the tape.

2.3.19. Definition. If B and C are complexity classes, then B relativized to C,
BC , is the class of languages recognized by oracle machines which obey the bounds
de�ning B and use an oracle for problems belonging to C. �

2.3.5 The Polynomial Hierarchy

The Polynomial Hierarchy, PH, is a very well-known hierarchy of classes above
NP. It is usually de�ned inductively using oracle machines and relativization (see
e.g. Papadimitriou, 1993) as below.

2.3.20. Definition.

(1) ΣP
1 = NP;

(2) ΣP
n+1 = NPΣP

n ;

(3) ΠP
n = co-ΣP

n ;

(4) PH =
⋃

i≥1 ΣP
i .

�

It is known that PH ⊆ PSPACE (see e.g. Papadimitriou, 1993).

2.3.6 The Counting Hierarchy

The polynomial hierarchy de�ned above is an oracle hierarchy with NP as the
building block. If we replace NP by probabilistic polynomial time, PP, in the
de�nition of PH, then we arrive at a class called the counting hierarchy, CH. The
class PP consists of languages L for which there is a polynomial time bounded
nondeterministic Turing machine M such that, for all inputs x, x ∈ L i� more
than half of the computations of M on input x end up accepting. In other words,
a language L belongs to the class PP i� it is accepted with a probability more
than one-half by some nondeterministic Turing machine in polynomial time.

The counting hierarchy can be de�ned now as follows, in terms of oracle Turing
machines:

2.3.21. Definition.

(1) C0P = PTIME;

(2) Ck+1P = PPCkP ;
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(3) CH =
⋃

k∈NCkP .
�

It is known that the polynomial hierarchy, PH, is contained in the second
level C2P of the counting hierarchy CH (see Toda, 1991). The question whether
CH ⊆ PH is still open. However, it is widely believed that this is not the case.
Under this assumption we will deliver in Chapter 5 an argument for restrictions
on the type-shifting strategy in modeling the meanings of collective determiners
in natural language.

2.3.7 Reductions and Complete Problems

The intuition that some problems are more di�cult than others is formalized in
complexity theory by the notion of a reduction. We will use only polynomial time
many-one (Karp (1972)) reductions.

2.3.22. Definition. We say that a function f : A −→ A is a polynomial time
computable function i� there exits a deterministic Turing machine computing
f(w) for every w ∈ A in polynomial time. �

2.3.23. Definition. A problem L ⊆ Γ∗ is polynomial reducible to a problem
L′ ⊆ Γ∗ if there is a polynomial time computable function f : Γ∗ −→ Γ∗ from
strings to strings, such that

w ∈ L ⇐⇒ f(w) ∈ L′.

We will call such function f a polynomial time reduction of L to L′. �

2.3.24. Definition. A language L is complete for a complexity class C if L ∈ C
and every language in C is reducible to L. �

Intuitively, if L is complete for a complexity class C then it is among the hard-
est problems in this class. The theory of complete problems was initiated with
a seminal result of Cook (1971), who proved that the satis�ability problem for
propositional formulae, sat , is complete for NP. Many other now famous prob-
lems were then proven NP-complete by Karp (1972) � including some versions of
satis�ability, like 3sat (the restriction of sat to formulae in conjunctional normal
form such that every clause contains 3 literals), as well as some graph problems,
e.g. clique, which we de�ne below. The book of Garey and Johnson (1979)
contains a list of NP-complete languages.

2.3.25. Example. Let us give an example of a polynomial reduction. We will
prove that the problem clique is NP-complete by reducing 3sat to it. We
will de�ne other versions of the clique problem and use them to prove some
complexity results for quanti�ers in Chapter 3.
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2.3.26. Definition. Let G = (V,E) be a graph and take a set Cl ⊆ V . We say
that Cl is a clique if there is (i, j) ∈ E for every i, j ∈ Cl. �

2.3.27. Definition. The problem clique can be formulated now as follows.
Given a graph G = (V,E) and a natural number k, determine whether there is a
clique in G of cardinality at least k. �

2.3.28. Theorem. clique is NP-complete.

Proof First we have to show that clique belongs to NP. Once we have located
k or more vertices which form a clique, it is trivial to verify that they do, this is
why the clique problem is in NP.

To show NP-hardness we will reduce 3sat to clique. Assume that our input
is a set of clauses in the form of 3sat:
Z = {(`11 ∨ `12 ∨ `13), . . . , (`m1 ∨ `m2 ∨ `m3 )}, where `ji is a literal. We construct (G, k)
such that:

• k = m;

• G = (V,E), where:

� V = {vij | i = 1, . . . ,m; j = 1, 2, 3};

� E = {(vij, v`k) | i 6= `; `ji 6= ¬`k`}.

To complete the proof it su�ces to observe that in graph G there is a clique of
cardinality k if and only if the set Z is satis�able (see e.g. Papadimitriou, 1993). �

2.4 Descriptive Complexity Theory

Classical descriptive complexity deals with the relationship between logical de�n-
ability and computational complexity. The main idea is to treat classes of �nite
models over a �xed vocabulary as computational problems. In such a setting
rather than the computational complexity of a given class of models we are deal-
ing with its descriptive complexity, i.e., the question how di�cult it is to describe
the class using some logic. This section very brie�y explains the fundamentals of
descriptive complexity as a sub�eld of �nite model theory. More details may be
found in the books of Immerman (1998), Ebbinghaus and Flum (2005), Libkin
(2004), and Grädel et al. (2007).
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2.4.1 Encoding Finite Models

M is a �nite model when its universe, M , is �nite. A widely studied class of
�nite models are graphs, i.e., structures of the form G = (V,E), where the �nite
universe V is called the set of vertices (nodes) of the graph and a binary relation
E ⊆ V 2 is the set of edges of the graph.

Notice that in a linguistic context it makes sense to restrict ourselves to �nite
models as in a typical communication situation we refer to relatively small �nite
sets of objects. We have discussed this assumption further in Section 1.6.

Let K be a class of �nite models over some �xed vocabulary τ . We want to
treat K as a problem (language) over the vocabulary τ . To do this we need to code
τ -models as �nite strings. We can assume that the universe of a model M ∈ K
consists of natural numbers: M = {1, . . . , n}. A natural way of encoding a model
M (up to isomorphism) is by listing its universe,M , and storing the interpretation
of the symbols in τ by writing down their truth-values on all tuples of objects
from M .

2.4.1. Definition. Let τ = {R1, . . . , Rk} be a relational vocabulary and M a
τ -model of the following form: M = (M,R1, . . . , Rk), where M = {1, . . . , n} is
the universe of model M and Ri ⊆M is an ni-ary relation over M , for 1 ≤ i ≤ k.
We de�ne a binary encoding for τ -models. The code for M is a word over {0, 1,#}
of length O((card(M))c), where c is the maximal arity of the predicates in τ (or
c = 1 if there are no predicates).

The code has the followning form:

ñ#R̃1# . . .#R̃n, where:

• ñ is the part coding the universe of the model and consists of n 1s.

• R̃i � the code for the ni-ary relation Ri � is an nni-bit string whose j-th
bit is 1 i� the j-th tuple in Mni (ordered lexicographically) is in Ri.

• # is a separating symbol.4

�

2.4.2. Example. Let us give an example of a binary code corresponding to a
model. Consider vocabulary σ = {P,R}, where P is a unary predicate and
R a binary relation. Take the σ-model M = (M,PM , RM), where the universe
M = {1, 2, 3}, the unary relation PM ⊆M is equal to {2} and the binary relation
RM ⊆M2 consists of the pairs (2, 2) and (3, 2). Notice, that we can think about
such models as graphs in which some nodes are �colored� by P .

Let us construct the code step by step:

4See also De�nition 2.1 of (Immerman, 1998) for a binary coding without separating symbol.
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• ñ consists of three 1s as there are three elements in M .

• P̃M is the string of length three with 1s in places corresponding to the
elements from M belonging to PM . Hence P̃M = 010 as PM = {2}.

• R̃M is obtained by writing down all 32 = 9 binary strings of elements from
M in lexicographical order and substituting 1 in places corresponding to
the pairs belonging to RM and 0 in all other places. As a result R̃M =
000010010.

Adding all together the code for M is 111#010#000010010.

2.4.2 Logics Capturing Complexity Classes

Now we can formulate the central de�nition of descriptive complexity theory.

2.4.3. Definition. Let L be a logic and C a complexity class. We say that L
captures C, if for any vocabulary τ and any class of τ -models the following holds:

K is in C if and only if K is de�nable by an L-sentence.

�

The following are two classical results of descriptive complexity theory:

2.4.4. Theorem (Fagin (1974)). Σ1
1 captures NP.

2.4.5. Theorem (Stockmeyer (1976)). For any m, Σ1
m captures ΣP

m.

Fagin's theorem establishes a correspondence between existential second order
logic and NP. Stockmeyer's extends it for the hierarchy of second�order formulae
and the polynomial hierarchy. There are many other logical characterizations of
complexity classes known (see e.g. Immerman, 1998), for instance that �rst-order
logic is contained in LOGSPACE (see Immerman, 1998, Theorem 3.1). One of the
famous results is the characterization of PTIME over ordered graph structures in
terms of �xed-point logic, due to Immerman (1982) and Vardi (1982). Namely,
in the presence of a linear ordering of the universe it is possible to use tuples
of nodes to build a model of a Turing machine inside the graph and imitate the
polynomial time property by a suitable �xed point sentence (e.g. see Immerman,
1998). One of the most important open problems is the question what logic L
captures PTIME on graphs if we do not have an ordering of the vertices. Knowing
L one could try to show that L 6= Σ1

1, from which it would follow P 6= NP.
Kontinen and Niemistö (2006) showed that the extension of �rst-order logic

by second-order majority quanti�ers of all arities (see Section 5.3 for a de�nition)
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describes exactly problems in the counting hierarchy. We will investigate the
linguistic consequences of that claim in Chapter 5.

Let us now de�ne one of the crucial concepts of descriptive complexity which
we use throughout the thesis.

2.4.6. Definition. If every L-de�nable class K is in C then we say that model
checking (data complexity) for L is in C. �

2.4.7. Remark. In the computational literature many other complexity mea-
sures besides model-checking are considered, most notably the so-called expres-
sion complexity and combined complexity introduced by Vardi (1982). The main
di�erence between them and model-checking is as follows. In the latter our input
is a model and we measure complexity with respect to the size of its universe. For
expression complexity a formula from some set is �xed as an input and we measure
its complexity � given as a function of the length of the expression � in di�erent
models. Expression complexity is sometimes referred to as a measure for succinct-
ness of a language. There is a great di�erence between those two measures, for
example Σ1

1 expression complexity is NEXPTIME, but its model-checking is NP-
complete (see e.g. Gottlob et al., 1999, for a systematic comparison). The third
possibility is given by combined complexity: both a formula and a structure are
given as an input and the complexity is de�ned with respect to their combined
size. In this thesis we investigate model-checking complexity for quanti�ers.

2.5 Quanti�ers in Finite Models

Below we review some recent work in the �eld of generalized quanti�ers on �nite
models. For more detailed discussion of this subject we refer to the survey of
Makowsky and Pnueli (1995) and the paper of Väänänen (1997a).

Recall De�nition 2.2.1, which says that generalized quanti�ers are simply
classes of models. Finite models can be encoded as �nite strings over some vocab-
ulary (recall De�nition 2.4.1). Therefore, generalized quanti�ers can be treated
as classes of such �nite strings, i.e., languages. Now we can easily �t the notions
into the descriptive complexity paradigm.

2.5.1. Definition. By the complexity of a quanti�er Q we mean the computa-
tional complexity of the corresponding class of �nite models. �

2.5.2. Example. Consider a quanti�er of type (1, 2): a class of �nite colored
graphs of the form M = (M,AM , RM). Let us take a model of this form, M,
and a quanti�er Q. Our computational problem is to decide whether M ∈ Q; or
equivalently, to solve the query whether M |= Q[A,R].
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This can simply be viewed as the model-checking problem for quanti-
�ers. These notions can easily be generalized to quanti�ers of arbitrary types
(n1, . . . , nk) by considering classes of models of the form M = (M,R1, . . . , Rk),
where Ri ⊆Mni , for i = 1, . . . , k.

Generalized quanti�ers in �nite models were considered from the point of view
of computational complexity for the �rst time by Blass and Gurevich (1986). They
investigated various forms of branching (Henkin) quanti�ers (see Section 2.2.2)
de�ning NP or NLOGSPACE complete graph problems. They introduced the
following terminology.

2.5.3. Definition. We say that quanti�er Q is NP-hard if the corresponding
class of �nite models is NP-hard. Q is mighty (NP-complete) if the corresponding
class belongs to NP and is NP-hard. �

In the previous chapter we mentioned that one of the fundamental problems
of descriptive complexity theory is to �nd a logic which expresses exactly the
polynomial time queries on unordered structures. Studying the computational
complexity of quanti�ers can contribute to this question. For instance, Hella
et al. (1996) have proven that there is a representation of PTIME queries in
terms of �xed-point logic enriched by the quanti�er Even, which holds on a ran-
domly chosen �nite structure with a probability approaching one as the size of
the structure increases. However, Hella (1996) has shown that on unordered �-
nite models, PTIME is not the extension of �xed-point logic by �nitely many
generalized quanti�ers.

Recently there has been some interest in studying the computational com-
plexity of generalized quanti�ers in natural language. For example, Mostowski
and Wojtyniak (2004) have observed that some natural language sentences, like
(4), when assuming their branching interpretation, are mighty.

(4) Some relative of each villager and some relative of each townsman hate each
other.

Sevenster (2006) has extended this results and proved that proportional branching
quanti�ers, like those possibly occurring in sentence (5), are also NP-complete.

(5) Most villagers and most townsmen hate each other.

We will overview these results in Chapter 3.
In the thesis we pursue the subject of the computational complexity of natural

language quanti�er constructions further. We prove some new results and study
the role of descriptive computational complexity in natural language semantics.



Chapter 3

Complexity of Polyadic Quanti�ers

In this chapter we focus on the computational complexity of some polyadic quan-
ti�ers. In what follows we o�er rather mathematical considerations, which will
be applied to linguistics in the following parts of the dissertation. Particularly,
Chapter 4 on quanti�ed reciprocal sentences and Chapter 6 on combinations of
quanti�ers in natural language make use of the facts discussed below.

Firstly, we will study iteration, cumulation and resumption � lifts turning
monadic quanti�ers into polyadic ones. These lifts are widely used in linguistics
to model the meanings of complex noun phrases. We observe that they do not
increase computational complexity when applied to simple determiners. More
precisely, PTIME quanti�ers are closed under application of these lifts. Most of
the natural language determiners correspond to monadic quanti�ers computable
in polynomial time. Thus this observation suggests that typically polyadic quan-
ti�ers in natural language are tractable.

Next, we move to a short discussion of the branching operation. This polyadic
lift can produce intractable semantic constructions from simple determiners.
In particular, when applied to proportional determiners it gives NP-complete
polyadic quanti�ers.

There has been a lot of discussion between linguists and philosophers whether
certain natural language sentences combining a few quanti�ers can in fact be
interpreted as branching sentences. We will come back to this issue in detail in
Chapter 6, which is devoted to Hintikka's Thesis. Now it is enough to say that
this claim is controversial and such sentences are at least ambiguous between a
branching reading and other interpretations.

Therefore, in the last section of this chapter � motivated by the search for
non-controversial NP-complete semantic constructions in natural language � we
investigate the so-called Ramsey quanti�ers. We outline some links between them
and branching quanti�ers. Then we prove that some Ramsey quanti�ers, e.g. the
proportional, de�ne NP-complete classes of �nite models. Moreover, we observe
that so-called bounded Ramsey quanti�ers are PTIME computable.

71
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After this we make the claim that Ramsey quanti�ers have a natural applica-
tion in linguistics. They are the interpretations of natural language expressions
such as �each other� and �one another�. We discuss the details of this approach
in the following chapter, which is devoted to reciprocal expressions in English.

Some of the results presented in this chapter were published in the Proceed-
ings of the Amsterdam Colloquium (see Szymanik, 2007b) and Lecture Notes in
Computer Science (Szymanik, 2008).

3.1 Standard Polyadic Lifts

Monadic generalized quanti�ers provide the most straightforward way to give
the semantics for noun phrases in natural language. For example, consider the
following sentence:

(1) Some logicians smoke.

It consists of a noun phrase �Some logicians� followed by the intransitive verb
�smoke�. The noun phrase is built from the determiner �Some� and the noun
�logicians�. In a given model the noun and the verb denote subsets of the universe.
Hence, the determiner stands for a quanti�er denoting a binary relation between
the subsets. In other words, with varying universes, the determiner �some� is a
type (1, 1) generalized quanti�er.

Most research in generalized quanti�er theory has been directed towards
monadic quanti�cation in natural language. The recent monograph on the sub-
ject by Peters and Westerståhl (2006) bears witness to this tendency, leaving more
than 90% of its volume to discussion of monadic quanti�ers. Some researchers,
e.g., Landman (2000), claim even that polyadic generalized quanti�ers do not
occur in natural language, at all. However, it is indisputable that sentences can
combine several noun phrases with verbs denoting not only sets but also binary or
ternary relations. In such cases the meanings can be given by polyadic quanti�ers.

This perspective on quanti�ers is captured by the de�nition of generalized
quanti�ers, De�nition 2.2.4 from the Mathematical Prerequisites chapter. Recall
that we say that a generalized quanti�er Q of type t = (n1, . . . , nk) is a functor
assigning to every set M a k-ary relation QM between relations on M such that if
(R1, . . . , Rk) ∈ QM then Ri is an ni-ary relation on M , for i = 1, . . . , k. Addition-
ally, Q is preserved by bijections. If for all i the relation Ri is unary, i.e. it denotes
a subset of the universe, then we say that the quanti�er is monadic. Otherwise,
it is polyadic.

One way to deal with polyadic quanti�cation in natural language is to de�ne
it in terms of monadic quanti�ers using Boolean combinations (see Section 2.2.5)
and so-called polyadic lifts. Below we introduce some well-known lifts: iteration,
cumulation, resumption and branching (see e.g. van Benthem, 1989). We observe
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that the �rst three do not increase the computational complexity of quanti�ers,
as opposed to branching which does.

3.1.1 Iteration

The Fregean nesting of �rst-order quanti�ers, e.g., ∀∃, can be applied to any
generalized quanti�er by means of iteration.

3.1.1. Example. Iteration may be used to express the meaning of the following
sentence in terms of its constituents.

(2) Most logicians criticized some papers.

The sentence is true (under one interpretation) i� there is a set containing most
logicians such that every logician from that set criticized at least one paper, or
equivalently:

It(Most, Some)[Logicians, Papers, Criticized].

However, similar sentences sometimes correspond to lifts other than iteration.
We will introduce another possibility in Section 3.1.2. But �rst we de�ne iteration
precisely.

3.1.2. Definition. Let Q and Q′ be generalized quanti�ers of type (1, 1). Let
A,B be subsets of the universe and R a binary relation over the universe. Sup-
pressing the universe, we will de�ne the iteration operator as follows:

It(Q,Q′)[A,B,R] ⇐⇒ Q[A, {a | Q′(B,R(a))}],

where R(a) = {b | R(a, b)}. �

Therefore, the iteration operator produces polyadic quanti�ers of type (1, 1,
2) from two monadic quanti�ers of type (1, 1). The de�nition can be extended
to cover iteration of monadic quanti�ers with an arbitrary number of arguments
(see e.g. Peters and Westerståhl, 2006, page 347).

Notice that the iteration operator is not symmetric, i.e., it is not the
case that for any two quanti�ers Q and Q′ we have It(Q,Q′)[A,B,R] ⇐⇒
It(Q′,Q)[B,A,R−1]. (For example, consider the unary quanti�ers Q = ∀ and
Q′ = ∃.) The interesting open problem is to �nd a complete characterization of
those quanti�ers which are order independent or, in other words, for which the
equivalence is true. Partial solutions to this problem are discussed in (Peters and
Westerståhl, 2006, pages 348�350).

The observation that quanti�ers are order dependent will play a crucial role
when we discuss possible readings of determiner combinations and scope domi-
nance between them in Chapter 6.
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3.1.2 Cumulation

Consider the following sentence:

(3) Eighty professors taught sixty courses at ESSLLI'08.

The analysis of this sentence by iteration of the quanti�ers �eighty� and �sixty�
implies that there were 80× 60 = 4800 courses at ESSLLI. Therefore, obviously
this is not the meaning we would like to account for. This sentence presumably
means neither that each professor taught 60 courses (It(80, 60)) nor that each
course was taught by 80 professors (It(60, 80)). In fact, this sentence is an example
of so-called cumulative quanti�cation, saying that each of the professors taught
at least one course and each of the courses was taught by at least one professor.
Cumulation is easily de�nable in terms of iteration and the existential quanti�er
as follows.

3.1.3. Definition. Let Q and Q′ be generalized quanti�ers of type (1, 1). A,B
are subsets of the universe and R is a binary relation over the universe. Suppress-
ing the universe we will de�ne the cumulation operator as follows:

Cum(Q,Q′)[A,B,R] ⇐⇒ It(Q, Some)[A,B,R] ∧ It(Q′, Some)[B,A,R−1].

�

3.1.3 Resumption

The next lift we are about to introduce � resumption (vectorization) � has
found many applications in theoretical computer science (see e.g. Makowsky and
Pnueli, 1995; Ebbinghaus and Flum, 2005). The idea here is to lift a monadic
quanti�er in such a way as to allow quanti�cation over tuples. This is linguistically
motivated when ordinary natural language quanti�ers are applied to pairs of
objects rather than individuals. For example, this is useful in certain cases of
adverbial quanti�cation (see e.g. Peters and Westerståhl, 2006, Chapter 10.2).

Below we give a formal de�nition of the resumption operator.

3.1.4. Definition. Let Q be any monadic quanti�er with n arguments, U a
universe, and R1, . . . , Rn ⊆ Uk for k ≥ 1. We de�ne the resumption operator as
follows:

Resk(Q)U [R1, . . . , Rn] ⇐⇒ (Q)Uk [R1, . . . , Rn].

�

That is, Resk(Q) is just Q applied to a universe, Uk, containing k-tuples. In
particular, Res1(Q) = Q. Clearly, one can use Res2(Most) to express the meaning
of sentence (4).

(4) Most twins never separate.
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3.1.4 PTIME GQs are Closed under It, Cum, and Res

When studying the computational complexity of quanti�ers a natural problem
arises in the context of these lifts. Do they increase complexity? Is it the case
that together with the growth of the universe the complexity of deciding whether
quanti�er sentences holds increases dramatically? For example, is it possible that
two tractable determiners can be turned into an intractable quanti�er?

Sevenster (2006) claims that if quanti�ers are de�nable in the Presburger
arithmetic of addition, then the computational complexity of their Boolean com-
binations, iteration, cumulation, and resumption stay in LOGSPACE.1 We do not
know whether all natural language determiners are de�nable in the arithmetic of
addition.

Therefore, we do not want to restrict ourselves to this class of quanti�ers.
Hence, we show that PTIME computable quanti�ers are closed under Boolean
combinations and the three lifts de�ned above. As in the dissertation we are
interested in the strategies people may use to comprehend quanti�ers we show a
direct construction of the relevant procedures. In other words, we show how to
construct a polynomial model-checker for our polyadic quanti�ers from PTIME
Turing machines computing monadic determiners.

3.1.5. Proposition. Let Q and Q′ be monadic quanti�ers computable in poly-
nomial time with respect to the size of a universe. Then the quanti�ers: (1)
¬Q; (2) Q¬; (3) Q∧Q′; (4) It(Q,Q′); (5) Cum(Q,Q′); (6) Res(Q) are PTIME
computable.

Proof Let us assume that there are Turing machines M and M ′ computing
quanti�ers Q and Q′, respectively. Moreover M and M ′ work in polynomial time
with respect to any �nite universe U .

(1) A Turing machine computing ¬Q is like M . The only di�erence is that we
change accepting states into rejecting states and vice versa. In other words,
we accept ¬Q whenever M rejects Q and reject whenever M accepts. The
working time of a so-de�ned new Turing machine is exactly the same as
the working time of machine M . Hence, the outer negation of PTIME
quanti�ers can be recognized in polynomial time.

(2) Recall that on a given universe U we have the following equivalence:
(Q¬)U [R1, . . . , Rk] ⇐⇒ QU [R1, . . . , Rk−1, U − Rk]. Therefore, for the in-
ner negation of a quanti�er it su�ces to compute U −Rk and then use the
polynomial Turing machine M on the input QU [R1, . . . , Rk−1, U −Rk].

(3) To compute Q∧Q′ we have to �rst compute Q using M and then Q′ using
M ′. If both machines halt in an accepting state then we accept. Otherwise,

1Moreover, he conjectures that the circuit complexity class ThC0 (see e.g. Chapter 5.4
Immerman, 1998, for de�nition) is also closed under taking these operations on quanti�ers.
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we reject. This procedure is polynomial, because the sum of the polynomial
bounds on working time of M and M ′ is also polynomial.

(4) Recall that It(Q,Q′)[A,B,R] ⇐⇒ Q[A,A′], where A′ = {a|Q′(B,R(a))},
for R(a) = {b|R(a, b)}. Notice that for every a from the universe, R(a) is a
monadic predicate. Having this in mind we construct in polynomial time
A′. To do this we execute the following procedure for every element from
the universe. We initialize A′ = ∅. Then we repeat for each a from the
universe the following: Firstly we compute R(a). Then using the polynomial
machine M ′ we compute Q′[B,R(a)]. If the machine accepts, then we add a
to A′. Having constructed A′ in polynomial time we just use the polynomial
machine M to compute Q[A,A′].

(5) Notice that cumulation is de�ned in terms of iteration and existential quan-
ti�er (see De�nition 3.1.3). Therefore, this point follows from the previous
one.

(6) To compute Resk(Q) over the model M = {{1, . . . , n}, R1, . . . , Rn}
for a �xed k, we just use the machine M with the following input
ñk#R̃1# . . .#R̃n instead of ñ#R̃1# . . .#R̃n. Recall De�nition 2.4.1.

�

Let us give an informal argument that the above proposition holds for all gen-
eralized quanti�ers not only for monadic ones. Notice that the Boolean operations
as well as iteration and cumulation are de�nable in �rst-order logic. Recall that
the model-checking problem for �rst-order sentences is in LOGSPACE ⊆ PTIME
(see Section 2.4). Let A be a set of generalized quanti�ers of any type from a given
complexity class C. Then the complexity of model-checking for sentences from
FO(A) is in LOGSPACEC (deterministic logarithmic space with an oracle from
C, see Section 2.3.4). One simply uses a LOGSPACE Turing machine to decide
the �rst-order sentences, evoking the oracle when a quanti�er from A appears.
Therefore, the complexity of Boolean combinations, iteration and cumulation of
PTIME generalized quanti�ers has to be in LOGSPACEPTIME = PTIME.

The case of the resumption operation is slightly more complicated. Resump-
tion is not de�nable in �rst-order logic for all generalized quanti�ers (see Hella
et al., 1997; Luosto, 1999). However, notice that our arguments given in point (6)
of the proof do not make use of any assumption about the arity of Ri. Therefore,
the same proof works for resumption of polyadic quanti�ers. The above consid-
erations allow us to formulate the following theorem which is the generalization
of the previous proposition.

3.1.6. Theorem. Let Q and Q′ be generalized quanti�ers computable in poly-
nomial time with respect to the size of a universe. Then the quanti�ers: (1)
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¬Q; (2) Q¬; (3) Q∧Q′; (4) It(Q,Q′); (5) Cum(Q,Q′); (6) Res(Q) are PTIME
computable.

We have argued that PTIME quanti�ers are closed under Boolean operations
as well as under the polyadic lifts occurring frequently in natural language. In
other words, these operations do not increase the complexity of quanti�er seman-
tics. As we can safely assume that most of the simple determiners in natural
language are PTIME computable then the semantics of the polyadic quanti�ers
studied above is tractable. This seems to be good news for the theory of nat-
ural language processing. Unfortunately, not all natural language lifts behave
so nicely from a computational perspective. In the next section we show that
branching can produce NP-complete quanti�er constructions from simple deter-
miners. Speaking in the terminology of Blass and Gurevich (1986), introduced in
De�nition 2.5.3, some branching quanti�ers are mighty.

3.2 Branching Quanti�ers

Branching quanti�ers are a very well-known example of polyadic generalized quan-
ti�ers. We introduced them in Section 2.2.2 and below we study their computa-
tional complexity.

3.2.1 Henkin's Quanti�ers are Mighty

The famous linguistic application of branching quanti�ers is for the study of
sentences like:

(7) Some relative of each villager and some relative of each townsman hate each
other.

(8) Some book by every author is referred to in some essay by every critic.

(9) Every writer likes a book of his almost as much as every critic dislikes some
book he has reviewed.

According to Jaakko Hintikka (1973), to express the meaning of such sentences
we need branching quanti�ers. In particular the interpretation of sentence (7) is
expressed as follows:

(10)

(
∀x∃y
∀z∃w

)
[(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))],

where unary predicates V and T denote the set of villagers and the set of towns-
men, respectively. The binary predicate symbol R(x, y) denotes the relation �x
and y are relatives� and H(x, y) the relation �x and y hate each other�.
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The polyadic generalized quanti�er Z of type (2, 2), called Hintikka's form,
can be used to express the pre�x �some relative of each . . . and some relative of
each . . . �. A formula Zxy [ϕ(x, y), ψ(x, y)] can be interpreted in a second-order
language as:

∃A∃B[∀x∃y(A(y) ∧ ϕ(x, y)) ∧ ∀x∃y(B(y) ∧ ϕ(x, y))

∧ ∀x∀y(A(x) ∧B(y) =⇒ ψ(x, y))].

We will discuss Hintikka's claim and the role of branching quanti�ers in Chap-
ter 6. Now we only state that the problem of recognizing the truth-value of for-
mula (10) in a �nite model is NP-complete (Mostowski and Wojtyniak, 2004). In
other words:

3.2.1. Theorem. The quanti�er Z is mighty.

Therefore, branching � as opposed to iteration, cumulation, and resumption
� substantially e�ects computational complexity.

3.2.2 Proportional Branching Quanti�ers are Mighty

Not only the universal and existential quanti�ers can be branched. The procedure
of branching works in a very similar way for other quanti�ers. Below we de�ne the
branching operation for arbitrary monotone increasing generalized quanti�ers.

3.2.2. Definition. Let Q and Q′ be both MON↑ quanti�ers of type (1, 1). De-
�ne the branching of quanti�er symbols Q and Q′ as the type (1, 1, 2) quanti�er
symbol Br(Q,Q′). A structure M = (M,A,B,R) ∈ Br(Q,Q′) if the following
holds:

∃X ⊆ A ∃Y ⊆ B[(X,A) ∈ Q∧ (Y,B) ∈ Q′ ∧ X × Y ⊆ R].

�

The branching operation can also be de�ned for monotone decreasing quanti-
�ers as well as for pairs of non-monotone quanti�ers (see e.g. Sher, 1990).

The branching lift can be used to account for some interpretations of propor-
tional sentences like the following:

(11) Most villagers and most townsmen hate each other.

(12) One third of all villagers and half of all townsmen hate each other.

We will discuss these examples in Section 6 of the thesis. Now we will only
consider their computational complexity.

It has been shown by Merlijn Sevenster (2006) that the problem of recognizing
the truth-value of formula (11) in �nite models is NP-complete. Actually, it can
also be proven that all proportional branching sentences, like (12), de�ne an NP-
complete class of �nite models. In other words the following holds.
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3.2.3. Theorem. Let Q and Q′ be proportional quanti�ers, then the quanti�er
Br(Q,Q′) is mighty.

By proportional branching sentences (e.g. (12)), we mean the branching inter-
pretations of sentences containing proportional quanti�ers, i.e., quanti�ers saying
that some fraction of a universe has a given property (see also De�nition 4.3.3),
for example �most�, �less than half�, and �many� (although only under some in-
terpretations). Therefore, the above result gives another example of a polyadic
quanti�er construction in natural language which has an intractable reading.

3.2.3 Branching Counting Quanti�ers are Mighty

Below we will brie�y discuss the complexity of branching readings of sentences,
which plays an important role in our empirical studies described in Chapter 6.
Consider sentences like:

(13) More than 5 villagers and more than 3 townsmen hate each other.

Their branching readings have the following form:

(14)

(
More than k x : V (x)
More than m y : T (y)

)
H(x, y),

where k,m are any integers. Notice that for �xed k and m the above sentence is
equivalent to the following �rst-order formula and hence PTIME computable.

∃x1 . . . ∃xk+1∃y1 . . . ∃xm+1

[ ∧
1≤i<j≤k+1

xi 6= xj ∧
∧

1≤i<j≤m+1

yi 6= yj

∧
∧

1≤i≤k+1

V (xi) ∧
∧

1≤j≤m+1

T (yj) ∧
∧

1≤i≤k+1
1≤j≤m+1

H(xi, yj)
]
.

However, the general schema, for unbounded k andm, de�nes an NP-complete
problem. Let us formulate the idea precisely. We start by de�ning the counting
quanti�er C≥A of type (1) which says that the number of elements satisfying a
given formula in a model M is greater than the cardinality of a set A ⊆M . Alter-
natively we could introduce a two-sorted variant of �nite structures, augmented
by an in�nite number sort. Then we can de�ne counting quanti�ers in such a
way that the numeric constants in a quanti�er refer to the number domain (see
e.g. Otto, 1997; Grädel and Gurevich, 1998).

3.2.4. Definition. Let M = (M,A, . . .). We de�ne the counting quanti�er of
type (1) as follows:

M |= C≥Ax ϕ(x) ⇐⇒ card(ϕM,x) ≥ card(A).

�
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Now, we consider the computational complexity of the branching counting
quanti�er: Br(C≥A,C≥B).

We identify models of the form M = (M,A,B, V, T,H) with colored undi-
rected graphs. M ∈ Br(C≥A,C≥B) if and only if there exists two sets of vertices
V ′ ⊆ V and T ′ ⊆ T such that card(V ′) ≥ card(A), card(T ′) ≥ card(B) and
V ′ × T ′ ⊆ H. Then we show that a generalized version of the balanced com-
plete bipartite graph problem (BCBG) is equivalent to our problem. We
need the following notions.

3.2.5. Definition. A graph G = (V,E) is bipartite if there exists a partition
V1, V2 of its vertices (i.e., V1 ∪V2 = V and V1 ∩V2 = ∅) such that E ⊆ V1×V2. �

3.2.6. Definition. BCBG is the following problem. Given a bipartite graph
G = (V,E) and integer k we must determine whether there exist sets W1,W2

both of size at least k such that W1 ×W2 ⊆ E. �

BCBG is an NP-complete problem, as was noticed by Garey and Johnson
(1979, p. 196, problem GT24). We need a slightly di�erent version of BCBG with
two parameters k1 and k2 constraining the size of sets W1 and W2, respectively.
Also this variant is clearly NP-complete as it has k1 = k2 = k as a special case.
Now we can state the following.

3.2.7. Proposition. The quanti�er Br(C≥A,C≥B) is mighty.

Proof Let us take a colored bipartite graph model G = (V,A,B,E), such
that V = V1 ∪ V2 and E ⊆ V1 × V2. Notice that G ∈ Br(C≥A,C≥B) if and only if
graph G and integers card(A) and card(B) are in BCBG. �

This constitutes another class of branching mighty quanti�ers.

3.2.4 Linguistic Remark and Branching of Dissertation

There is one linguistic proviso concerning all these examples. Namely, they are
ambiguous. Moreover, such sentences can hardly be found in a linguistic corpus
(see Sevenster, 2006, footnote 8 p. 140). In Chapter 6 we continue that topic and
we show that their readings vary between easy (PTIME) and di�cult (branching)
interpretations. Additionally, we argue that the non-branching reading is the
dominant one.

On the other hand, this proviso motivates us to look for mighty natural lan-
guage quanti�ers which not only occur frequently in everyday English but are
also one of the sources of its complexity. Chapter 4 of the dissertation is devoted
to presenting the so-called reciprocal expressions, which are a common element
of everyday English. They can be interpreted by so-called Ramsey quanti�ers
and as a result they give rise to examples of uncontroversial NP-complete natu-
ral language constructions. The rest of this chapter is devoted to studying the
computational complexity of Ramsey quanti�ers.
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3.3 Ramsey Quanti�ers

3.3.1 Ramsey Theory and Quanti�ers

Essentially all of the proofs of NP-completeness for branching quanti�ers are
based on a kind of Ramsey property which is expressible by means of branching
(see the following Section 3.3.2 for an example). Some Ramsey properties have
been considered in the literature as generalized quanti�ers since the seventies (see
e.g. Hella et al., 1997; Luosto, 1999; Magidor and Malitz, 1977; Paris and Harring-
ton, 1977; Schmerl and Simpson, 1982). Comparisons of Henkin quanti�ers with
Ramsey quanti�ers can be found in (Mostowski, 1991; Krynicki and Mostowski,
1995).

Informally speaking Ramsey (1929) Theorems state the following:2

The In�nite Ramsey Theorem � general schema For each coloring of
the set Uk � for a large in�nite set U � there is a large set A ⊆ U such that Ak

are of the same colour.

The Finite Ramsey Theorem � general schemaWhen coloring a su�-
ciently large complete �nite graph, one will �nd a large homogeneous subset, i.e.,
a complete subgraph with all edges of the same colour, of arbitrary large �nite
cardinality.

For suitable explications of what �large set� means we obtain various Ramsey
properties. In the case U = ω the countable Ramsey Theorem takes �large set�
as meaning an �in�nite set�. When dealing with models for Peano Arithmetic
it is sometimes interpreted as �co-�nal set� (see e.g. Macintyre, 1980) or �set
of cardinality greater than the minimal element of this set� (see e.g. Paris and
Harrington, 1977). Other known explications for �large set� are �set of cardinality
at least κ� (see e.g. Magidor and Malitz, 1977), and �set of cardinality at least
f(n)�, where f is a function from natural numbers to natural numbers on a
universe with n elements (see e.g. Hella et al., 1997). We will adopt this last
interpretation in our work.

A related concept is that of the Ramsey number, R(r, s), i.e., the size of the
smallest complete graph for which when the edges are colored, e.g., red or blue,
there exists either a complete subgraph on r vertices which is entirely blue, or a
complete subgraph on s vertices which is entirely red. Here R(r, s) signi�es an
integer that depends on both r and s. The existence of such number is guaranteed
by the Finite Ramsey Theorem.

The high complexity of Ramsey type questions was observed very early. The
following quotation from Paul Erdös has become a part of mathematical folklore:

2More details may be found in the monograph on Ramsey Theory by Graham et al. (1990).
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Imagine an alien force, vastly more powerful than us landing on Earth
and demanding the value of R(5, 5) or they will destroy our planet.
In that case, we should marshal all our computers and all our math-
ematicians and attempt to �nd the value. But suppose, instead, that
they asked for R(6, 6), we should attempt to destroy the aliens.3

(see e.g. Spencer, 1987)

The question of how hard it is to compute R(r, s) is not very interesting for
complexity theory, since R(r, s) might be exponentially large compared to r and s.
However, consider a similar problem, called arrowing. Let F → (G,H) mean
that for every way of coloring the edges of F red and blue, F will contain either
a red G or a blue H. The arrowing problem is to decide whether F → (G,H),
for given �nite graphs F , G, and H. Arrowing was proven to be complete for
the second level of the polynomial hierarchy by Marcus Schaefer (2001).

In the next section we study the computational complexity of quanti�ers ex-
pressing some Ramsey properties on �nite models. In the following chapter of the
dissertation we argue that such quanti�ers are one of the sources of complexity
in natural language.

We identify models of the form M = (M,R), where R ⊆ M2, with graphs. If
R is symmetric then we are obviously dealing with undirected graphs. Otherwise,
our models become directed graphs. In what follows we will restrict ourselves to
undirected graphs.

Let us start with the general de�nition of Ramsey quanti�ers.

3.3.1. Definition. A Ramsey quanti�er R is a generalized quanti�er of type (2),
binding two variables, such that M |= Rxy ϕ(x, y) exactly when there is A ⊆ M
(large relative to the size of M) such that for each a, b ∈ A, M |= ϕ(a, b). �

We study the computational complexity of various Ramsey quanti�ers deter-
mined by suitable explications of the phrase �large relative to the universe�.

3.3.2 The Branching Reading of Hintikka's Sentence

We start by giving some connections between Ramsey quanti�ers and branch-
ing quanti�ers. One of the possible explications of the phrase �large relative to
the universe� can be extracted from the meaning of the branching interpretation
of Hintikka's sentence, (7) (see Mostowski and Wojtyniak, 2004). Let us con-
sider models of the form M = (M,E, . . .), where E is an equivalence relation.
Being a �large set� in this case means having nonempty intersection with each
E-equivalence class (compare with the quanti�er Z from Section 3.2). We de�ne
the corresponding Ramsey quanti�er, Re.

3Currently the number R(19, 19) is known (Luo et al., 2002). It is equal to
178,859,075,135,299.
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3.3.2. Definition. M |= Rexy ϕ(x, y) means that there is a set A ⊆ M such
that ∀a ∈M ∃b ∈ A E(a, b) and for each a, b ∈ A, M |= ϕ(a, b). �

It is argued by Mostowski and Wojtyniak (2004) that the computational com-
plexity of the branching reading of Hintikka's sentence can be reduced to that of
the quanti�er Re and then the following is proven:

3.3.3. Theorem. The quanti�er Re is mighty.

This gives one example of a mighty Ramsey quanti�er which arises when
studying natural language semantics. Below we give more such Ramsey quanti-
�ers.

3.3.3 Clique Quanti�ers

Let us start with simple Ramsey quanti�ers expressing the clique problem.

3.3.4. Definition. De�ne for every k ∈ ω the Ramsey quanti�er Rk in the
following way. M |= Rkxy ϕ(x, y) i� there is A ⊆ M such that card(A) ≥ k and
for all a, b ∈ A, M |= ϕ(a, b). �

Notice that for a �xed k the sentence Rkxy ϕ(x, y) is equivalent to the following
�rst-order formula:

∃x1 . . . ∃xk

[ ∧
1≤i<j≤k

xi 6= xj ∧
∧

1≤i≤k
1≤j≤k

ϕ(xi, xj)
]
.

Therefore, we can decide whether some model M belongs to the class cor-
responding to a Ramsey quanti�er Rk in LOGSPACE. In other words, model
checking for Rk is like solving the clique problem for M and k. A brute force
algorithm to �nd a clique in a graph is to examine each subgraph with at least k
vertices and check if it forms a clique. This means that for every �xed k the com-
putational complexity of Rk is in PTIME. However, in general � for unbounded
k � this is a well-known NP-complete problem (see Garey and Johnson, 1979,
problem GT19) (see also Theorem 2.3.28 for the proof). Below we de�ne the
Ramsey counting quanti�er corresponding to the general clique problem.

3.3.5. Definition. Let us consider models of the form M = (M,A, . . .). We
de�ne the Ramsey counting quanti�er, RA, as follows: M |= RAxy ϕ(x, y) i� there
is X ⊆M such that card(X) ≥ card(A) and for all a, b ∈ X, M |= ϕ(a, b).4 �

The Ramsey quanti�er RA expresses the general clique problem and as a
result it inherits its complexity.

4Compare this de�nition with De�nition 3.2.4.
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3.3.6. Proposition. The Ramsey quanti�er RA is mighty.

Proof Let as take any model M = (M,A, . . .). We have to decide whether
M |= RAxy ϕ(x, y). This is equivalent to the clique problem for M and card(A).
Therefore, the Ramsey quanti�er RA de�nes an NP-complete class of �nite
models. �

Below we extend this observation to cover cases where the size of a clique is
supposed to be relative to the size of the universe.

3.3.4 Proportional Ramsey Quanti�ers

Let us start with a precise de�nition of �large relative to the universe�.

3.3.7. Definition. For any rational number q between 0 and 1 we say that the
set A ⊆ U is q-large relative to U if and only if

card(A)

card(U)
≥ q.

�

In this sense q determines the proportional Ramsey quanti�er Rq.

3.3.8. Definition. M |= Rqxy ϕ(x, y) i� there is a q-large (relative to M)
A ⊆M such that for all a, b ∈ A, M |= ϕ(a, b). �

We will prove that for every rational number 0 < q < 1 the corresponding
Ramsey quanti�er Rq de�nes an NP-complete class of �nite models.5

3.3.9. Theorem. For every rational number q, such that 0 < q < 1, the corre-
sponding Ramsey quanti�er Rq is mighty.

To prove this theorem we will de�ne the corresponding clique problem and
show its NP-completeness.

3.3.10. Definition. Let q be a rational number, such that 0 < q < 1, and
G = (V,E) an undirected graph. We de�ne the problem clique≥q as a decision
problem whether in graph G at least a fraction q of the vertices form a complete
subgraph. �

5The following result was obtained in co-operation with Marcin Mostowski (see Mostowski
and Szymanik, 2007).
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Now we can state the following lemma.

3.3.11. Lemma. For any rational number q between 0 and 1 the problem
clique≥q is NP-complete.

Proof The problem clique≥q is obviously in NP as it might be easily veri�ed
in polynomial time by a nondeterministic Turing machine. The machine simply
guesses a set A ⊆ V and then it can easily check in polynomial time whether A
satis�es card(A)

card(V )
≥ q and that the graph restricted to A is complete. Therefore, it

su�ces to prove hardness.
To prove this we will polynomially reduce the problem clique to the problem

clique≥q. Recall that the standard clique problem is to decide for a graph G
and an integer k > 0, if G contains a complete subgraph of size at least k (see
Example 2.3.25).

Let G = (V,E) and k ∈ ω be an instance of clique. Assume that
card(V ) = n. Now we construct from G in polynomial time a graph G′ = (V ′, E ′)
belonging to clique≥q.

Let m = d qn−k
1−q

e, where dpe is the ceiling function of p. Then we take G′

consisting of G and a complete graph of m vertices, Km. Every vertex from the
copy of G is connected to all nodes in Km and there are no other extra edges.
Hence, card(V ′) = n + m and card(Cl′) = card(Cl) + m, where Cl and Cl′ are
the largest clique in G and G′, respectively. We claim that the graph G has a
clique of size k i� graph G′ has a q-large clique.

For proving our claim we need the following:

k +m = dq(n+m)e
Proof:

(≥) : m =

⌈
qn− k

1− q

⌉
. Hence, m ≥

⌈
qn− k

1− q

⌉
.

Now, m ≥ qn− k

1− q
,then (1− q)m ≥ qn− k.

Therefore, k +m ≥ dq(n+m)e.

(≤) : Notice that m(1− q) = (1− q)

⌈
qn− k

1− q

⌉
≤ (1− q)

(
qn− k

1− q
+ 1

)
.

(1− q)

(
qn− k

1− q
+ 1

)
= qn− k + 1− q < qn− k + 1.

So m(1− q) < qn− k + 1 and m(1− q) + k − 1 < qn.

Hence, k +m− 1 < q(n+m) ≤ dq(n+m)e and k +m− 1 < dq(n+m)e.
Therefore, k +m ≤ dq(n+m)e.
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Therefore, the following are equivalent:

(1) In G there is a clique of size at least k;

(2) card(Cl) ≥ k;

(3) card(Cl′) ≥ k +m;

(4) card(Cl′) ≥ dq(n+m)e;

(5) card(Cl′) ≥ q(n+m);

(6) card(Cl′)
card(V ′)

≥ q(n+m)
n+m

(7) The clique Cl′ is q-large in G′.

Hence, we have shown that the problem clique≥q is NP-complete. �

Theorem 3.3.9 follows directly from the lemma. It su�ces to notice that for
any rational number q between 0 and 1: M |= Rqxy ϕ(x, y) i� there is a q-large
A ⊆ M such that for all a, b ∈ A, M |= ϕ(a, b). Therefore, given a model M
the model checking procedure for the query M |= Rqxy ϕ(x, y) is equivalent to
deciding whether there is a q-large A ⊆M complete with respect to the relation
being de�ned by the formula ϕ. From our lemma this problem is NP-complete
for ϕ being of the form R(x, y).

3.3.5 Tractable Ramsey Quanti�ers

We have shown some examples of NP-complete Ramsey quanti�ers. In this section
we will describe a class of Ramsey quanti�ers computable in polynomial time.

Let us start with considering an arbitrary function f : ω −→ ω.

3.3.12. Definition. We say that a set A ⊆ U is f -large relatively to U i�

card(A) ≥ f(card(U)).

�

Then we de�ne Ramsey quanti�ers corresponding to the notion of �f -large�.

3.3.13. Definition. We de�ne Rf as follows M |= Rfxy ϕ(x, y) i� there is an
f -large set A ⊆M such that for each a, b ∈ A, M |= ϕ(a, b). �

Notice that the above de�nition is very general and covers all previously de-
�ned Ramsey quanti�ers. For example, we can reformulate Theorem 3.3.9 in the
following way:
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3.3.14. Corollary. Let f(n) = drne, for some rational number r such that
0 < r < 1. Then the quanti�er Rf is mighty.

Let us put some further restrictions on the class of functions we are interested
in. First of all, as we will consider f -large subsets of the universe we can assume
that for all n ∈ ω, f(n) ≤ n+1. In that setting the quanti�er Rf says about a set
A that it has at least f(n) elements, where n is the cardinality of the universe.
We allow the function to be equal to n + 1 just for technical reasons as in this
case the corresponding quanti�er has to be always false.

Our crucial notion goes back to a paper of Väänänen (1997b).

3.3.15. Definition. We say that a function f is bounded if

∃m∀n[f(n) < m ∨ n−m < f(n)].

Otherwise, f is unbounded. �

Typical bounded functions are: f(n) = 1 and f(n) = n. The �rst one is
bounded from above by 2 as for every n we have f(n) = 1 < 2. The second one
is bounded below by 1, for every n, n − 1 < n. Unbounded functions are for
example: dn

2
e, d

√
ne, dlog ne. We illustrate the situation in Figure 3.1.

n

f(n)

f(n) = d
√
ne

f(n) = n

f(n) = 1

Figure 3.1: The functions f(n) = 1 and f(n) = n are bounded. The function
d
√
ne is unbounded.

In what follows we will show that Ramsey quanti�ers corresponding to the
bounded polynomial time computable functions are in PTIME.

3.3.16. Theorem. If f is PTIME computable and bounded, then the Ramsey
quanti�er Rf is PTIME computable.
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Proof Assume that f is PTIME computable and bounded. Then there
exists a number m such that for every n the following disjunction holds
[f(n) < m or n−m < f(n)].

Let us �x a graph model G = (V,E), where card(V ) = n.
In the �rst case assume that f(n) < m. First observe that if there exists a

clique of size greater than f(n) then there has to be also a clique of size exactly
f(n). Thus to decide whether G ∈ Rf it is enough to check if there is a clique
of size f(n) in G. We know that f(n) < m. Hence we only need to examine all
subgraphs up to m vertices. For each of them we can check in polynomial time
whether it forms a clique. Hence, it is enough to observe that the number of all
subgraphs of size between 1 up to m is bounded by a polynomial. In fact this is
the case as the number of k-combinations from a set is smaller than the number
of permutations with repetitions of length k from that set. Therefore, we have:(

n

1

)
+

(
n

2

)
+ . . .+

(
n

m

)
≤ n1 + n2 + . . .+ nm ≤ m(nm).

Let us consider the second case; assume that n−m < f(n). This time we have
to only check large subgraphs; to be precise, we need to examine all subgraphs
containing from n down to n−m vertices. Again, the number of such subgraphs
is bounded by a polynomial for �xed m. We use the following well known equality(

n
n−k

)
=

(
n
k

)
to show that we have to inspect only a polynomial number of subsets:

(
n

n

)
+

(
n

n− 1

)
+ . . .+

(
n

n−m

)
=

(
n

n

)
+

(
n

1

)
+ . . .+

(
n

m

)
≤ 1 + n1 + n2 + . . .+ nm ≤ m(nm).

Therefore, in every case when f is bounded and computable in a polynomial
time we simply run the two algorithms given above. This model-checking
procedure for Rf simply tests the clique property on all subgraphs up to m
elements and from n to n−m elements, where m is �xed and independent of the
size of a universe. Therefore, it is bounded by a polynomial. �

The property of boundedness plays also a crucial role in the de�nability of
polyadic lifts. Hella et al. (1997) showed that the Ramsey�cation of Q is de�nable
in FO(Q) if and only if Q is bounded. They also obtained similar results for
branching and resumption (see Hella et al., 1997, for details).

Moreover, in a similar way, de�ning �joint boundness� for pairs of quanti�ers
Qf and Qg (see Hella et al., 1997, page 321), one can notice that Br(Qf ,Qg)
is de�nable in FO(Qf ,Qg) (see Hella et al., 1997, Theorem 3.12) and therefore
PTIME computable for polynomial functions f and g.

Actually, the above theorems follow from a more general observation. Let
us consider a property Q (corresponding to boundness) such that Q(X) i� there
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existsm such thatX di�ers from the universe or empty set on at mostm elements.
Now observe that second-order quanti�cation restricted to Q is de�nable in �rst-
order logic with m+ 1 parameters. We simply have the following equivalence:

∃XQ(X) ⇐⇒ ∀t1 . . . ∀tm∀tm+1

[( ∧
1≤i<j≤m+1

X(ti) =⇒
∨

1≤i<j≤m+1

ti = tj
)
∨

( ∧
1≤i<j≤m+1

¬X(ti) =⇒
∨

1≤i<j≤m+1

ti = tj
)]
.

This formula says that X has a property Q if and only if X consists of at
most m elements or X di�ers from the universe on at most m elements. Notice,
that this argument works also for in�nite sets.

3.4 Summary

In this chapter we have investigated the computational complexity of polyadic
quanti�ers, preparing the ground for the linguistic discussion in the following
parts of the thesis. We have shown that some polyadic constructions do not
increase computational complexity, while others � such as branching quanti�ers
and Ramsey quanti�ers � might be NP-complete. In particular we have observed
the following:

• PTIME quanti�ers are closed under Boolean operations, iteration, cumula-
tion, and resumption.

• When branching PTIME quanti�ers we may arrive at NP-complete polyadic
quanti�ers, e.g. branching proportional quanti�ers are mighty.

• Ramsey counting quanti�ers are mighty.

• Proportional Ramsey quanti�ers are mighty.

• Bounded Ramsey quanti�ers (and branching quanti�ers) are PTIME com-
putable.

In the next chapter we apply Ramsey quanti�ers to the study of reciprocal
expressions in English. Namely, we de�ne so-called reciprocal lifts which turn
monadic quanti�ers into Ramsey quanti�ers.

As far as future work is concerned the following seem to be the most intriguing
questions.

We have shown that proportional Ramsey quanti�ers de�ne NP-complete
classes of �nite models. On the other hand, we also observed that bounded Ram-
sey quanti�ers are in PTIME. It is an open problem where the precise border lies
between tractable and mighty Ramsey quanti�ers.
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3.4.1. Question. Can we prove under some complexity assumptions that the
PTIME Ramsey quanti�ers are exactly the bounded Ramsey quanti�ers?

3.4.2. Question. Is it the case that for every function f from some class we
have a duality theorem, i.e., Rf is either PTIME computable or NP-complete?

The proper class of functions can be most likely obtained by a combination
of unboundness together with some conditions on growth-rate.

Last, but not least, there is the question of possible applications.

3.4.3. Question. Do di�erences in computational complexity of polyadic quan-
ti�ers play any role in natural language interpretation?

In the next Chapter we will argue that they do.



Chapter 4

Complexity of Quanti�ed Reciprocals

The reciprocal expressions each other and one another are common elements of
everyday English. Therefore, it is not surprising that they have been extensively
studied in the formal semantics of natural language. There are two main ap-
proaches to reciprocals in the literature. The long trend of analyzing reciprocals
as anaphoric noun phrases with the addition of plural semantics culminates in
a paper of Beck (2000). A di�erent tendency � recently represented by Sabato
and Winter (2005) � is to analyze reciprocals as polyadic quanti�ers.

In this chapter we study the computational complexity of quanti�ed reciprocal
sentences. We ally ourselves to the second tradition and treat reciprocal sentences
as examples of a natural language semantic construction that can be analyzed in
terms of so-called polyadic lifts of simple generalized quanti�ers (see Chapter 3
of the thesis).

First, we propose new polyadic lifts expressing various possible meanings of
reciprocal sentences with quanti�ed antecedents, i.e., sentences where �each other�
refers in a co-reference to the quanti�ed noun phrase (see Dalrymple et al., 1998,
Chapter 7). In other words, we will consider quanti�ed reciprocal sentences, like
�Five professors discuss with each other�, where reciprocal phrase �each other�
refers to quanti�ed noun phrase, in this case ��ve professors�. All these lifts are
de�nable in the existential fragment of second-order logic. Therefore, according to
the Σ1

1-thesis formulated in Section 1.8 the model we investigate seems plausible.
Then we study the computational complexity of reciprocal lifts with respect

to the quanti�ers in the antecedents. Using results from the previous chapter (on
the computational complexity of Ramsey quanti�ers) we observe a computational
dichotomy between di�erent interpretations of reciprocity. Namely, we treat re-
ciprocal expressions as polyadic lifts turning monadic quanti�ers into Ramsey-like
quanti�ers. Di�erences in computational complexity beetween various interpre-
tations of reciprocal expressions give an additional argument for the robustness of
the semantic distinctions established between reciprocal meanings (see Dalrymple
et al., 1998).

91
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In particular, we give a su�cient condition for a generalized quanti�er to make
its strong reciprocal interpretation PTIME computable. Moreover, we present
NP-complete natural language quanti�er constructions which occur frequently in
everyday English. For instance, strong interpretations of reciprocal sentences with
counting and proportional quanti�ers in the antecedents are intractable. As far
as we are aware, all other known NP-complete quanti�er constructions are based
on ambiguous and arti�cial branching operations (see Section 3.2 and Chapter 6
for more discussion).

Finally, we investigate the cognitive status of the so-called Strong Meaning
Hypothesis proposed by Dalrymple et al. (1998). We argue that if one assumes
some kind of algorithmic theory of meaning as we do in Chapter 1, then the
shifts between di�erent interpretations of reciprocal sentences, predicted by the
Strong Meaning Hypothesis, have to be extended by accommodating the possible
in�uence of di�erences in computational complexity between various readings of
reciprocity.

The considerations of this chapter are based on papers from the Amsterdam
Colloquium 2007 (see Szymanik, 2007b), Lecture Notes in Computer Science (Szy-
manik, 2008), and results proven in Chapter 3 of the thesis.

4.1 Reciprocal Expressions

We start by recalling examples of reciprocal sentences, versions of which can be
found in ordinary (spoken and written) English (see footnote 1 in Dalrymple
et al., 1998). Let us �rst consider sentences (1)�(3).

(1) At least 4 members of parliament refer to each other indirectly.

(2) Most Boston pitchers sat alongside each other.

(3) Some Pirates were staring at each other in surprise.

The possible interpretations of reciprocity exhibit a wide range of variation.
For example, sentence (1) implies that there is a subset of parliament members
of cardinality at least 4 such that each parliament member in that subset refers
to each of the other parliament members in that subset. However, the reciprocals
in sentences (2) and (3) have di�erent meanings. Sentence (2) states that each
pitcher from a set containing most of the pitchers is directly or indirectly in the
relation of sitting alongside with each of the other pitchers from that set. Sentence
(3) says that there was a group of pirates such that every pirate belonging to the
group stared at some other pirate from the group. Typical models satisfying (1)�
(3) are illustrated in Figure 4.1. Following Dalrymple et al. (1998) we will call
the illustrated reciprocal meanings strong, intermediate, and weak, respectively.

In general, according to Dalrymple et al. (1998) there are 2 parameters charac-
terizing variations of reciprocity. The �rst one relates to how the scope relation,
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Figure 4.1: On the left is a typical model satisfying sentence (1) under the so-
called strong reciprocal interpretation. Each element is related to each of the
other elements. In the middle is an example of a model satisfying sentence (2)
in a context with at most 9 pitchers. This is the intermediate reciprocal inter-
pretation. Each element in the witness set of the quanti�er Most is related to
each other element in that set by a chain of relations. On the right, a model
satisfying sentence (3), assuming the so-called weak reciprocal interpretation. For
each element there exists a di�erent related element.

R, should cover the domain, A, (in our case restricted by a quanti�er in the
antecedent). We have 3 possibilities:

FUL Each pair of elements from A participates in R directly.

LIN Each pair of elements from A participates in R directly or indirectly.

TOT Each element in A participates directly with at least one element in R.

The second parameter determines whether the relation R between individuals
in A is the extension of the reciprocal's scope (R), or is obtained from the exten-
sion by ignoring the direction in which the scope relation holds (R∨ = R ∪R−1).

By combining these two parameters Dalrymple et al. (1998) gets six possible
meanings for reciprocals. We have already encountered three of them: strong
reciprocity, FUL(R); intermediate reciprocity, LIN(R); and weak reciprocity,
TOT(R). There are three new logical possibilities: strong alternative reciprocity,
FUL(R∨); intermediate alternative reciprocity, LIN(R∨); and weak alternative
reciprocity, TOT(R∨). Among these, two interpretations are linguistically at-
tested: intermediate alternative reciprocity is exhibited by sentence (4) and weak
alternative reciprocity occurs in sentence (5) (see Figure 4.2 for typical models).

(4) Most stones are arranged on top of each other.

(5) All planks were stacked on top of each other.

If we do not put any restrictions on the scope of the relation R, then stronger
reciprocal interpretations imply weaker ones � as it is depicted in the left part of
Figure 4.3. However, assuming certain properties of the relation some of the possi-
ble de�nitions become equivalent. For example, if the relation in question is sym-
metric, then obviously alternative versions reduce to their �normal� counterparts
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Figure 4.2: On the left is a typical model satisfying sentence (4) under the so-
called intermediate alternative reciprocal interpretation. Ignoring the direction
of arrows, every element in the witness set of the quanti�er Most is connected
directly or indirectly. On the right is an example of a model satisfying sentence (5)
under the so-called weak alternative reciprocal reading. Each element participates
with some other element in the relation as the �rst or as the second argument,
but not necessarily in both roles.

and we have only three di�erent reciprocal interpretations: FUL(R) = FUL(R∨),
LIN(R) = LIN(R∨), and TOT (R) = TOT (R∨). If the relation R is transitive,
then FUL(R) = LIN(R) and the classi�cation of di�erent reciprocal meanings
collapses to the one depicted in Figure 4.3 on the right.

FUL(R)

LIN(R) FUL(R∨)

TOT(R) LIN(R∨)

TOT(R∨)

FUL(R)=LIN(R)

TOT(R) FUL(R∨)

TOT(R∨)

LIN(R)

Figure 4.3: On the left, inferential dependencies between the six interpretations of
reciprocity. On the right, the situation when the reciprocal relation is transitive.
In these diagrams implications are represented by arrows.

4.1.1 Strong Meaning Hypothesis

In an attempt to explain variations in the literal meaning of the reciprocal expres-
sions Dalrymple et al. (1998) proposed the Strong Meaning Hypothesis (SMH).
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According to this principle, the reading associated with the reciprocal in a given
sentence is the strongest available reading which is consistent with the proper-
ties of reciprocal relation and with relevant information supplied by the context.
Sabato and Winter (2005) proposed a considerably simpler system in which re-
ciprocal meanings are derived directly from semantic restrictions using the SMH.

4.1.1. Example. Let us give one of the examples described by Dalrymple et al.
(1998) of using SMH to derive proper interpretation of reciprocal statements.
Consider the following sentence:

(6) The children followed each other.

This sentence can be interpreted in many ways depending on what is permitted
by the context. First, consider:

(7) The children followed each other into the church.

The relation �following into the church� is asymmetric and intransitive disallowing
strong (alternative) reciprocal interpretation. Moreover, the intermediate inter-
pretation is impossible since children who go into the church �rst cannot even
indirectly be said to follow children who go into the church later. Additionally,
if the group of children is �nite then the weak reading is excluded as it is not
possible for each child to be a follower; simply put, someone must be the �rst to
go into the church. This analyzes leaves 2 possibilities: the alternative interme-
diate reading and the weak alternative interpretation. The �rst suggested that
children entered in one group while the later allows more than one group. As the
alternative intermediate reading implies the alternative weak reading then SMH
predicts that the sentence has the �rst meaning, assuming that the context does
not supply additional information that the children enter the church in multiple
groups. However, when you consider the similar sentence:

(8) The children followed each other around the Maypole.

Then unlike in the context described above, the path traversed by the children is
circular. Hence, the intermediate reading appears as one of the possible interpre-
tations. This is logically strongest possibility and according to SMH it properly
describes the meaning of that sentence.

Our results show that the various meanings assigned to reciprocals with quan-
ti�ed antecedents di�er drastically in their computational complexity. This fact
can be treated as a suggestion to improve the SMH by taking into an account
complexity constraints. We elaborate on this in the last section of this chapter,
before we draw some conclusions.
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4.2 Reciprocals as Polyadic Quanti�ers

Monadic generalized quanti�ers provide the most straightforward way to de�ne
the semantics of noun phrases in natural language (see Peters and Westerståhl,
2006, for a recent overview; also consult Section 2.2.). Sentences with reciprocal
expressions transform such monadic quanti�ers into polyadic ones. We will ana-
lyze reciprocal expressions in that spirit by de�ning appropriate lifts on monadic
quanti�ers. These lifts are de�nable in existential second-order logic.

For the sake of simplicity we will restrict ourselves to reciprocal sentences with
right monotone increasing quanti�ers in their antecedents. Recall from Section
2.2.5 that a quanti�er Q of type (1, 1) is monotone increasing in its right argument
whenever: if QM [A,B] and B ⊆ B′ ⊆M , then QM [A,B′]. The lifts de�ned below
can be extended to cover also sentences with decreasing and non-monotone quan-
ti�ers, for example by following the strategy of bounded composition suggested
by Dalrymple et al. (1998) or the determiner �tting operator proposed by Ben-Avi
and Winter (2003). The situation is here analogous to problems with collective
lifts for non-increasing quanti�ers, discussed in Section 5.2.3 of this dissertation.

4.2.1 Strong Reciprocal Lift

In order to de�ne the meaning of strong reciprocity we make use of the well-
known operation on quanti�ers called Ramsey�cation (see e.g. Hella et al., 1997,
and Section 3.3 of this thesis).

4.2.1. Definition. Let Q be a right monotone increasing quanti�er of type
(1, 1). We de�ne:

RamS(Q)[A,R] ⇐⇒ ∃X ⊆ A[Q(A,X) ∧ ∀x, y ∈ X(x 6= y =⇒ R(x, y))].

�

We will call the result of such lifting a Ramsey quanti�er.1 It says that there
exists a subset X of the domain A, restricted by a quanti�er Q, such that every
two elements from X are directly related via the reciprocal relation R.

In the same way we can also easily account for alternative strong reciprocity:

4.2.2. Definition.

RamS
∨(Q)[A,R] ⇐⇒

∃X ⊆ A[Q(A,X) ∧ ∀x, y ∈ X(x 6= y =⇒ (R(x, y) ∨R(y, x)))].

�

This expresses an analogous condition to the one before, but this time it is enough
for the elements of X to be related either by R or by R−1.

1Notice that in the previous chapter we de�ned Ramsey quanti�ers to be of type (2) (see
De�nition 3.3.1). Hence, to be precise the result of the Ramsey�cation gives the relativized (see
Section 2.2.5) Ramsey quanti�er.
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4.2.2 Intermediate Reciprocal Lift

In a similar way we de�ne more lifts to express intermediate reciprocity and its
alternative version.

4.2.3. Definition.

RamI(Q)[A,R] ⇐⇒ ∃X ⊆ A[Q(A,X) ∧ ∀x, y ∈ X
(x 6= y =⇒ ∃ sequence z1, . . . , z` ∈ X such that

(z1 = x ∧R(z1, z2) ∧ . . . ∧R(z`−1, z`) ∧ z` = y)].

�

This condition guarantees that there exists a subset X of domain A which is
connected with respect to R, i.e. any two elements from X are in the relation
directly or indirectly.

4.2.4. Definition.

RamI
∨(Q)[A,R] ⇐⇒ ∃X ⊆ A[Q(A,X) ∧ ∀x, y ∈ X

(x 6= y =⇒ ∃ sequence z1, . . . , z` ∈ X such that

(z1 = x ∧ (R(z1, z2) ∨R(z2, z1)) ∧ . . .
∧ (R(z`−1, z`) ∨R(z`, z`−1)) ∧ z` = y)].

�

In other words, RamI
∨ says that any two elements from X are in the relation

R∨ directly or indirectly. The property of graph connectedness is not elemen-
tary expressible; we need a universal monadic second-order formula. Hence from
the de�nability point of view RamI (RamI

∨) seems more complicated than RamS

(RamS
∨). However, as we will see, this is not the case from the computational

complexity point of view.

4.2.3 Weak Reciprocal Lift

For weak reciprocity we take the following lifts.

4.2.5. Definition.

RamW(Q)[A,R] ⇐⇒ ∃X ⊆ A[Q(A,X) ∧ ∀x ∈ X ∃y ∈ X(x 6= y ∧ R(x, y))].

�
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4.2.6. Definition.

RamW
∨(Q)[A,R] ⇐⇒ ∃X ⊆ A[Q(A,X) ∧ ∀x ∈ X∃y ∈ X

(x 6= y ∧ (R(x, y) ∨R(y, x))].

�

The weak lifts say that there exists a subset X of the domain A such that for
every element from this subset there exists another element in the subset related
by R (or R∨ in the case of the alternative lift).

4.2.4 The Reciprocal Lifts in Action

All reciprocal lifts produce polyadic quanti�ers of type (1, 2). We will call the val-
ues of these lifts (alternative) strong, (alternative) intermediate and (alternative)
weak reciprocity, respectively.

4.2.7. Remark. Before we continue with an example, notice that all these lifts
can be de�ned analogously for unary quanti�ers, just as for type (1, 1). Simply
replace condition Q(A,X) by Q(X) in the de�nitions.

4.2.8. Example. The linguistic application of reciprocal lifts is straightforward.
For example, using them we can account for the meanings of the reciprocal sen-
tences (1)�(5) discussed in Section 4.1. Below we recall these sentences one by
one. Each sentence is associated with a meaning representation expressed in
terms of reciprocal lifts and quanti�ers corresponding to the simple determiners
occurring in these sentences.

(1) At least 4 parliament members refer to each other indirectly.

(9) RamS(At least 4)[MP, Refer-indirectly].

(2) Most Boston pitchers sat alongside each other.

(10) RamI(Most)[Pitcher, Sit-next-to].

(3) Some pirates were staring at each other in surprise.

(11) RamW(Some)[Pirate, Staring-at].

(4) Most stones are arranged on top of each other.

(12) RamI
∨(Most)[Stones, Arranged-on-top-of].

(5) All planks were stacked on top of each other.

(13) RamW
∨(All)[Planks, Stack-on-top-of].
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It is easy to see that our formulae express the appropriate reciprocal mean-
ings of these sentences, i.e. (alternative) strong, (alternative) intermediate and
(alternative) weak reciprocity, respectively. They are true in the corresponding
models depicted in Figures 4.1 and 4.2.

4.3 Complexity of Strong Reciprocity

In this section we investigate the computational complexity of quanti�ed strong
reciprocal sentences. In other words, we are interested in how di�cult it is to
evaluate the truth-value of such sentences in �nite models. Studying this problem
we make direct use of facts proven in Section 3.3 and we refer to the methods
of descriptive complexity theory introduced in Section 2.4 of the Mathematical
Prerequisites chapter.

Recall that we identify models of the form M = (M,A,R), where A ⊆ U and
R ⊆ U2, with colored graphs and that we consider only monotone increasing quan-
ti�ers. Hence, in graph-theoretical terms we can say that M |= RamS(Q)[A,R]
if and only if there is a subgraph in A complete with respect to R, of a size
bounded below by the quanti�er Q. R is the extension of a reciprocal relation.
If R is symmetric then we are dealing with undirected graphs. In such cases
RamS and RamS

∨ are equivalent. Otherwise, if the reciprocal relation R is not
symmetric, our models become directed graphs.

In what follows we will restrict ourselves to undirected graphs. We show that
certain strong reciprocal quanti�ed sentences interpreted in such graphs are NP-
complete. Notice that undirected graphs are a special case of directed graphs;
then our NP-complete sentences are also intractable over directed graphs.

4.3.1 Counting Quanti�ers in the Antecedent

To decide whether in some model M sentence RamS(At least k)[A,R] is true we
have to solve the clique problem for M and k. Recall from Section 3.3.3 that a
brute force algorithm to �nd a clique in a graph is to examine each subgraph with
at least k vertices and check if it forms a clique. This means that for every �xed
k the computational complexity of RamS(At least k) is in PTIME. For instance,
RamS(At least 5) is computable in polynomial time. In general, notice that the
strong reciprocal sentence RamS(∃≥k)[A,R] is equivalent to the following �rst-
order formula:

∃x1 . . . ∃xk

[ ∧
1≤i<j≤k

xi 6= xj ∧
∧

1≤i≤k

A(xi) ∧
∧

1≤i≤k
1≤j≤k

R(xi, xj)
]
.

However, when we consider natural language semantics from a procedural
point of view it is natural to assume that people have one quanti�er concept
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At least k, for every natural number k, rather than the in�nite set of concepts
At least 1, At least 2, . . . . It seems reasonable to suppose that we learn one mental
algorithm to understand each of the counting quanti�ers At least k, At most k, and
Exactly k, no matter which natural number k actually is. Mathematically, we can
account for this idea by introducing counting quanti�ers. Recall from De�nition
3.2.4 that the counting quanti�er C≥A says that the number of elements satisfying
some property is greater than or equal to the cardinality of the set A. In other
words, the idea here is that determiners like At least k express a relation between
the number of elements satisfying a certain property and the cardinality of some
prototypical set A. For instance, the determiner At least k corresponds to the
quanti�er C≥A such that card(A) = k. Therefore, the determiners At least 1,
At least 2, At least 3, . . . are interpreted by one counting quanti�er C≥A � the
set A just has to be chosen di�erently in every case.

The quanti�er RamS(C
≥A) expresses the general schema for a reciprocal sen-

tence with a counting quanti�er in the antecedent. Such a general pattern de�nes
an NP-complete problem.

4.3.1. Proposition. The quanti�er RamS(C
≥A) is mighty.

Proof This fact is equivalent to proposition 3.3.6 from the previous chapter,
where we observed that the so-called Ramsey counting quanti�er, RA, is mighty. �

4.3.2. Corollary. The quanti�er RamS
∨(C≥A) is mighty.

These results indicate that even though in a given situation checking the truth-
value of a sentence with a �xed number, such as (1), is tractable, the general
schema characterizing strong reciprocal sentences with counting quanti�ers is
NP-complete.

4.3.2 Proportional Quanti�ers in the Antecedent

We can give another example of a family of strong reciprocal sentences which are
intractable. Let us consider the following sentences:

(14) Most members of parliament refer to each other.

(15) At least one third of the members of parliament refer to each other.

(16) At least q × 100% of the members of parliament refer to each other.

We will call these sentences strong reciprocal sentences with proportional quan-
ti�ers. Their general form is given by the sentence schema (16), where q can be
interpreted as any rational number between 0 and 1. These sentences say that
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with respect to the reciprocal relation, R, there is a complete subset Cl ⊆ A,
where A is the set of all parliament members, such that card(Cl) ≥ q × card(A).

Recall that for any rational number 0 < q < 1 we say that a set A ⊆ U is
q-large relative to U if and only if card(A)

card(U)
≥ q (see De�nition 3.3.7). In this sense

q determines a proportional quanti�er Qq of type (1, 1) as follows.

4.3.3. Definition.

M |= Qq[A,B] i�
card(A ∩B)

card(A)
≥ q.

�

4.3.4. Example. Let us give two examples of proportional quanti�ers.

M |= Most[A,B] i�
card(A ∩B)

card(A)
>

1

2
.

M |= At least one third [A,B] i�
card(A ∩B)

card(A)
≥ 1

3
.

The strong reciprocal lift of a proportional quanti�er, RamS(Qq), is of type
(1, 2) and obviously might be used to express the meaning of sentences like
(14)�(16). We will call quanti�ers of the form RamS(Qq) proportional Ramsey
quanti�ers. Notice that a quanti�er RamS(Qq) is simply a relativization (see
3.3.9 for a de�nition) of the mighty proportional Ramsey quanti�er Rq de�ned in
Chapter 3.3.4. Therefore, it inherits the computational complexity of Rq.

4.3.5. Proposition. If q is a rational number and 0 < q < 1, then the quanti�er
RamS(Qq) is mighty.

Proof Notice that RamS(Qq) = Rrel
q and see the proof of Theorem 3.3.9 in the

previous chapter. �

4.3.6. Corollary. If q is a rational number and 0 < q < 1, then the quanti�er
RamS

∨(Qq) is mighty.

Therefore, strong reciprocal sentences with proportional quanti�ers in the
antecedent, like (14) or (15), are intractable (NP-complete).
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4.3.3 Tractable Strong Reciprocity

Our examples show that the strong interpretation of some reciprocal sentences is
intractable. In this section we will describe a class of unary monadic quanti�ers
for which the strong reciprocal interpretation is tractable (PTIME computable).

Following Väänänen (1997b) we will identify monotone simple unary quan-
ti�ers with number-theoretic functions, f : ω → ω, such that for all n ∈ ω,
f(n) ≤ n + 1. In that setting the quanti�er Qf (corresponding to f) says of
a set A that it has at least f(n) elements, where n is the cardinality of the
universe.

4.3.7. Definition. Given f : ω → ω, we de�ne:

(Qf )M [A] ⇐⇒ card(A) ≥ f(card(M)).

�

4.3.8. Example.

• ∃ = (Qf )M , where f(card(M)) ≥ 1.

• ∀ = (Qg)M , where g(card(M)) = card(M).

• Most = (Qh)M , where h(card(M)) > card(M)
2

.

Notice that having a monotone increasing quanti�er we can easily �nd the
function corresponding to it.

4.3.9. Definition. Let Q be a monotone increasing quanti�er of type (1). De-
�ne:

f(n) =


least k such that:
∃U∃A ⊆ U [card(U) = n ∧ card(A) = k ∧ QU(A)] if such a k exists
n+ 1 otherwise.

�

4.3.10. Proposition. If Q is a monotone increasing quanti�er of type (1) and
function f is de�ned according to De�nition 4.3.9 then

Q = Qf .

Proof The equality follows directly from the de�nitions. �

In the previous Chapter we have shown that for every PTIME computable
and bounded (see De�nition 3.3.15) function, f , the Ramsey quanti�er Rf is
also PTIME computable (see Theorem 3.3.16). The strong reciprocal lift � as
we mentioned � produces Ramsey quanti�ers from simple determiners. Hence,
RamS(Qf ) corresponds to Rf . Therefore, we can claim that polynomial com-
putable bounded quanti�ers are closed under the strong reciprocal lift.
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4.3.11. Proposition. If a monotone increasing quanti�er Qf is PTIME com-
putable and bounded, then the reciprocal quanti�er RamS(Qf ) is PTIME com-
putable.

Proof See the proof of Theorem 3.3.16 from the previous chapter. �

4.3.12. Remark. Notice that it does not matter whether we consider undirected
or directed graphs, as in both cases checking whether a given subgraph is complete
can be done in polynomial time. Therefore, the result holds for RamS

∨(Qf ) as
well.

4.3.13. Corollary. If a monotone increasing quanti�er Qf is PTIME com-
putable and bounded, then the quanti�er RamS

∨(Qf ) is PTIME computable.

4.3.14. Remark. Moreover, notice, that the relativization, Qrel
f , of Qf is the

right monotone type (1, 1) quanti�er:

(Qrel
f )M [A,B] ⇐⇒ card(A ∩B) ≥ f(card(A)).

Thus, the restriction to unary quanti�ers is not essential and the result may be
easily translated for type (1, 1) determiners.

What are the possible conclusions from Proposition 4.3.11? We have shown
that not all strong reciprocal sentences are intractable. As long as a quanti�er
in the antecedent is bounded the procedure of checking the logical value of the
sentence is practically computable. For example, the quanti�ers Some and All are
relativizations of the PTIME computable bounded quanti�ers ∃ and ∀. Therefore,
the following strong reciprocal sentences are tractable:

(17) Some members of parliament refer to each other indirectly.

(18) All members of parliament refer to each other indirectly.

4.4 Intermediate and Weak Lifts

Below we show that intermediate and weak reciprocal sentences � as opposed to
strong reciprocal sentences � are tractable, if the determiners occurring in their
antecedents are practically computable.

Analogous to the case of strong reciprocity, we can also express the meanings
of intermediate and weak reciprocal lifts in graph-theoretical terms. We say that
M |= RamI(Q)[A,R] if and only if there is a connected subgraph in A of a size
bounded from below by the quanti�er Q. M |= RamW(Q)[A,R] if and only if
there is a subgraph in A of the proper size without isolated vertices. All three
are with respect to the reciprocal relation R, either symmetric or asymmetric.

We prove that the class of PTIME quanti�ers is closed under the (alternative)
intermediate lift and the (alternative) weak lift.
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4.4.1. Proposition. If a monotone increasing quanti�er Q is PTIME com-
putable, then the quanti�er RamI(Q) is PTIME computable.

Proof Let G = (V,A,E) be a directed colored graph-model. To check
whether G ∈ RamI(Q) compute all connected components of the subgraph
determined by A. For example, you can use a breadth-�rst search algorithm
that begins at some node and explores all the connected neighboring vertices.
Then for each of those nearest nodes, it explores their unexplored connected
neighbor vertices, and so on, until it �nds the full connected subgraph. Next, it
chooses a node which does not belong to this subgraph and starts searching for
the connected subgraph containing it. Since in the worst case this breadth-�rst
search has to go through all paths to all possible vertices, the time complexity of
the breadth-�rst search on the whole G is O(card(V ) + card(E)). Moreover, the
number of the components in A is bounded by card(A). Having all connected
components it is enough to check whether there is a component C of the proper
size, i.e., does Q[A,C] hold for some connected component C? This can be
checked in polynomial time as Q is a PTIME computable quanti�er. Hence,
RamI(Q) is in PTIME. �

4.4.2. Corollary. If a monotone increasing quanti�er Q is PTIME com-
putable, then the quanti�er RamI

∨(Q) is PTIME computable.

The next proposition follows immediately.

4.4.3. Proposition. If a monotone increasing quanti�er Q is PTIME com-
putable, then the quanti�er RamW(Q) is PTIME computable.

Proof To check whether a given graph-model G = (V,A,E) is in RamW(Q),
compute all connected components C1, . . . , Ct of the A-subgraph. Take
X = C1 ∪ . . . ∪ Ct and check whether Q[A,X]. From the assumption this can be
done in polynomial time. Therefore, RamW(Q) is in PTIME. �

4.4.4. Corollary. If a monotone increasing quanti�er Q is PTIME com-
putable, then the quanti�er RamW

∨(Q) is PTIME computable.

These results show that the intermediate and weak reciprocal lifts do not
increase the computational complexity of quanti�er sentences in such a drastic
way as may happen in the case of strong reciprocal lifts. In other words, in many
contexts the intermediate and weak interpretations are relatively easy, as opposed
to the strong reciprocal reading. For instance, the sentences (2), (3), (4), and
(5) we discussed in the introduction are tractable. Hence from a computational
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complexity perspective the intermediate and reciprocal lifts behave similar to
iteration, cumulation and resumption (discussed in Chapter 3).

In the next section we discuss the potential in�uence of computational com-
plexity on the shifts in meaning of reciprocal sentences predicted by the Strong
Meaning Hypothesis.

4.5 A Complexity Perspective on the SMH

Dalrymple et al. (1998) proposed a pragmatic principle, the Strong Meaning Hy-
pothesis, to predict the proper reading of sentences containing reciprocal expres-
sions. According to the SMH the reciprocal expression is interpreted as having
the logically strongest truth conditions that are consistent with the given context.
Therefore, if it is only consistent with the speci�ed facts, a statement containing
each other will be interpreted as a strong reciprocal sentence. Otherwise, the in-
terpretation will shift toward the logically weaker intermediate or weak readings,
depending on context (see Section 4.1.1).

The SMH is quite an e�ective pragmatic principle (see Dalrymple et al., 1998).
We will discuss the shifts the SMH predicts from a computational complexity
point of view, referring to the results provided in the previous sections.

Let us �rst think about the meaning of a sentence in the intensional way,
identifying the meaning of an expression with an algorithm recognizing its deno-
tation in a �nite model.2 Such algorithms can be described by investigating how
language users evaluate the truth-value of sentences in various situations. On the
cognitive level this means that subjects have to be equipped with mental devices
to deal with the meanings of expressions. Moreover, it is cognitively plausible to
assume that we have a single mental device to deal with most instances of the
same semantic construction. For example, we believe that there is one mental al-
gorithm to deal with the counting quanti�er, At least k, in most possible contexts,
no matter what natural number k is. Thus, in the case of logical expressions like
quanti�ers, the analogy between meanings and algorithms seems uncontroversial.

However, notice that some sentences, being intractable, are too complex to
identify their truth-value directly by investigating a model. The experience of
programming suggests that we can claim a sentence to be di�cult when it can-
not be computed in polynomial time. Despite the fact that some sentences are
sometimes3 too hard for comprehension, we can �nd their inferential relations

2We have argued for this approach in Chapter 1. Now we only recall that it goes back to
Frege (1892) and exists in the linguistic literature at di�erent levels of transparency (see e.g.
Moschovakis, 2006).

3The fact that the general problem is hard does not show that all instances normally encoun-
tered are hard. It is the matter for empirical study to provide us with data about the in�uence
of computational complexity on our everyday linguistic experience. However, we believe that
it is reasonable to expect that this happens at least in some situations. We refer the reader to
Section 1.5.3 for a more substantial discussion.
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with relatively easier sentences. See Section 1.8 for more discussion on indirect
veri�cation.

According to the SMH any reciprocal sentence, if it is only possible, should
be interpreted as a strong reciprocal sentence. We have shown that the strong
interpretation of sentences with quanti�ed antecedents is sometimes intractable
but the intermediate and weak reading are always easy to comprehend. In other
words, it is reasonable to suspect that in some linguistic situations the strong
reciprocal interpretation is cognitively much more di�cult than the intermediate
or the weak interpretation. This prediction makes sense under the assumption
that P 6= NP and that the human mind is bounded by computational restrictions.
We omit a discussion here but see Chapter 1. We only recall that computational
restrictions for cognitive abilities are widely treated in the literature (see e.g.
Cherniak, 1981; Chalmers, 1994; Mostowski and Wojtyniak, 2004; Levesque, 1988;
Mostowski and Szymanik, 2005). Frixione (2001) explicitly formulates the so-
called P-cognition Thesis:

P-cognition Thesis Human cognitive (linguistic) capacities are constrained by
polynomial time computability.

What happens if a subject is supposed to deal with a sentence too hard for
direct comprehension? One possibility � suggested in Section 1.8 � is that the
subject will try to establish the truth-value of a sentence indirectly, by shifting
to an accessible inferential meaning. That will be, depending on the context,
the intermediate or the weak interpretation, both being entailed by the strong
interpretation.

Summing up, our descriptive complexity perspective on reciprocity shows that
it might not always be possible to interpret a reciprocal sentence in the strong
way, as the SMH suggests. If the sentence in question would be intractable under
the strong reciprocal interpretation then people will turn to tractable readings,
like intermediate and weak reciprocity. Our observations give a cognitively rea-
sonable argument for some shifts to occur, even though they are not predicted by
the SMH. For example, the SMH assumes that the following sentence should be
interpreted as a strong reciprocal statement.

(19) Most members of parliament refer to each other indirectly.

However, we know that this sentence is intractable. Therefore, if the set of parlia-
ment members is large enough then the statement is intractable under the strong
interpretation. This gives a perfect reason to switch to weaker interpretations.
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4.6 Summary

By investigating reciprocal expressions in a computational paradigm we found
di�erences in computational complexity between various interpretations of recip-
rocal sentences with quanti�ed antecedents. In particular, we have shown that:

• There exist non-branching natural language constructions whose semantics
is intractable. For instance, strong reciprocal sentences with proportional
quanti�ers in the antecedent, e.g. sentence (14), are NP-complete.

• For PTIME computable quanti�ers the intermediate and weak reciprocal
interpretations (see e.g. sentences (2) and (3)) are PTIME computable.

• If we additionally assume that a quanti�er is bounded, like Some and All,
then also the strong reciprocal interpretation stays in PTIME, e.g. sentences
(17) and (18).

Therefore, we argue that:

• The semantic distinctions of Dalrymple et al. (1998) seem solid from a
computational complexity perspective.

• The Strong Meaning Hypothesis should be improved to account for shifts
in meaning triggered by the computational complexity of sentences.

Many questions arise which are to be answered in future work. Here we will
mention only a few of them:

4.6.1. Question. Among the reciprocal sentences we found NP-complete con-
structions. For example, we have shown that the strong reciprocal interpretations
of proportional quanti�ers are NP-complete. On the other hand, we also proved
that the strong reciprocal interpretations of bounded quanti�ers are PTIME com-
putable. It is an open problem where the precise border is between those natural
language quanti�ers for which Ramsey�cation is in PTIME and those for which
it is NP-complete. Is it the case that for every quanti�er, Q, RamS(Q) is either
PTIME computable or NP-complete? We stated this question already in the
previous chapter.

4.6.2. Question. There is a vast literature on the de�nability of polyadic lifts of
generalized quanti�ers (e.g. Väänänen, 1997b; Hella et al., 1997). We introduced
some new linguistically relevant lifts, the weak and intermediate reciprocal lifts.
The next step is to study their de�nability. For example, we would like to know
how the de�nability questions for RamS(Qf ), RamI(Qf ), and RamW(Qf ) depend
on the properties of f . Another interesting point is to link our operators with
other polyadic lifts, like branching.
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4.6.3. Question. We could empirically compare the di�erences in shifts from
the strong interpretation of reciprocal sentences with bounded and proportional
quanti�ers in antecedents. Our approach predicts that subjects will shift to easier
interpretations more frequently in the case of sentences with proportional quan-
ti�ers. Can we prove it empirically?



Chapter 5

Complexity of Collective Quanti�cation

Most of the e�orts in generalized quanti�er theory focus on distributive readings
of natural language determiners. In contrast � as properties of plural objects
are becoming more and more important in many areas (e.g. in game-theoretical
investigations, where groups of agents act in concert) � this chapter is devoted
to collective readings of quanti�ers. We focus mainly on de�nability issues, but
we also discuss some connections with computational complexity.

For many years the common strategy in formalizing collective quanti�cation
has been to de�ne the meanings of collective determiners, quantifying over col-
lections, using certain type-shifting operations. These type-shifting operations,
i.e., lifts, de�ne the collective interpretations of determiners systematically from
the standard meanings of quanti�ers. We discuss the existential modi�er, neutral
modi�er, and determiner �tting operators as examples of collective lifts consid-
ered in the literature. Then we show that all these lifts turn out to be de�nable
in second-order logic.

Next, we turn to a discussion of so-called second order generalized quanti�ers
� an extension of Lindström quanti�ers to second-order structures. We show
possible applications of these quanti�ers in capturing the semantics of collective
determiners in natural language. We also observe that using second-order gener-
alized quanti�ers is an alternative to the type-shifting approach.

Then we study the collective reading of the proportional quanti�er �most�.
We de�ne a second-order generalized quanti�er corresponding to this reading and
show that it is probably not de�nable in second-order logic. If it were de�nable
then the polynomial hierarchy in computational complexity theory would collapse;
this is very unlikely and commonly believed to be false, although no proof is
known.

Therefore, probably there is no second-order de�nable lift expressing the col-
lective meaning of the quanti�er �most�. This is clearly a restriction of the type-
shifting approach. One possible alternative would be to use second-order gener-
alized quanti�ers in the study of collective semantics. However, we notice that

109
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the computational complexity of such approach is excessive and hence it is not a
plausible model (according to the Σ1

1-thesis formulated in Section 1.8) of collec-
tive quanti�cation in natural language. Hence, we suggest to turn in the direction
of another well-known way of studying collective quanti�cation, the many-sorted
(algebraic) tradition. This tradition seems to overcome the weak points of the
higher-order approach.

Another interpretation of our results might be that computational complexity
restricts the expressive power of everyday language (see discussion in Section
1.8). Namely, even though natural language can in principle realize collective
proportional quanti�ers its everyday fragment does not contain such constructions
due to their high complexity.

The main observations of this chapter are the result of joint work with Juha
Kontinen (see Kontinen and Szymanik, 2008).

5.1 Collective Quanti�ers

5.1.1 Collective Readings in Natural Language

Already Bertrand Russell (1903) noticed that natural language contains quanti�-
cation not only over objects, but also over collections of objects. The notion of a
collective reading is a semantic one � as opposed to the grammatical notion of
plurality � and it applies to the meanings of certain occurrences of plural noun
phrases. The phenomenon is illustrated by the following sentences, discussed in
letters between Frege and Russel in 1902 (see Frege, 1980):

(1) Bunsen and Kircho� laid the foundations of spectral theory.

(2) The Romans conquered Gaul.

Sentence (1) does not say that Bunsen laid the foundations of spectral theory
and that Kircho� did also, even though they both contributed. It rather says
that they did it together, that spectral theory was a result of a group (team)
activity by Kircho� and Bunsen. Similarly, sentence (2) claims that the Romans
conquered Gaul together. For a contrast in meaning compare sentence (1) to (3)
and sentence (2) to (4).

(3) Armstrong and Aldrin walked on the moon.

(4) Six hundred tourists visited the Colosseum.

Sentence (3) says that Armstrong walked on the moon and Aldrin walked on
the moon. Similarly, sentence (4) is still true if six hundred tourists visited the
Colosseum separately.

Notice that not all plural noun phrases are read collectively. Let us consider
the following sentences:
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(5) Some boys like to sing.

(6) All boys like to sing.

(7) ∃≥2x[Boy(x) ∧ Sing(x)].

(8) ∀x[Boy(x) =⇒ Sing(x)].

The interpretations of sentences (5)�(6) can be expressed using standard �rst-
order distributive quanti�ers, by formulae (7) and (8) respectively.

Therefore, linguistic theory should determine what triggers collective readings.
In fact this is to a large degree determined by a context. Noun phrases which can
be read collectively may also be read distributively. Compare sentence (1) with
proposition (9):

(1) Bunsen and Kircho� laid the foundations of spectral theory.

(9) Cocke, Younger and Kasami discovered (independently) the algorithm
which determines whether a string can be generated by a given context-
free grammar.

However, there are so-called collective properties which entail some sort of
collective reading; for example the phrases emphasized in the following sentences
usually trigger a collective reading:

(10) All the Knights but King Arthur met in secret.

(11) Most climbers are friends.

(12) John and Mary love each other.

(13) The samurai were twelve in number.

(14) Many girls gathered.

(15) Soldiers surrounded the Alamo.

(16) Tikitu and Samson lifted the table.

5.1.2 Modelling Collectivity

The Algebraic Approach

When we have decided that a noun phrase has a collective reading the question
arises how we should model collective quanti�cation in formal semantics. Many
authors have proposed di�erent mathematical accounts of collectivity in language
(see Lønning, 1997, for an overview and references). According to many, a good
semantic theory for collectives should obey the following intuitive principles:
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Atomicity Each collection is constituted by all the individuals it contains.

Completeness Collections may be combined into new collections.

Atoms Individuals are collections consisting of only a single member.

Among structures satisfying these requirements are many-sorted (algebraic)
models, e.g. complete atomic join semilattices (see Link, 1983). The idea � often
attributed to Frege and Le±niewski (see e.g. Lønning, 1997, pages 1028�1029) �
is roughly to replace the domain of discourse, which consists of entities, with a
structure containing also collections of entities. The intuition lying behind this
way of thinking is as follows.

Consider the following question and two possible answers to it:

(17) Who played the game?

(18) John did.

(19) The girls did.

Both answers, (18) and (19), are possible. It suggests that a plural noun
phrase like �the girls� should denote an object of the same type as �John�, and
a verb phrase like �played the game� should have one denotation which includes
both individuals and collections. The algebraic approach to collectives satis�es
this intuition. One of the advantage of this algebraic perspective is that it uni�es
the view on collective predication and predication involving mass nouns (see e.g.
Lønning, 1997, Chapter 4.6).

Algebraic models come with formal languages, like many sorted �rst-order
logic, i.e. a �rst-order language for plurals. The �rst sort corresponds to entities
and the second one to collections. Such logics usually contain a pluralization
operator turning individuals into collections (see e.g. Lønning, 1997, for more
details). A similar approach is also adopted in Discourse Representation The-
ory to account not only for the meaning of collective quanti�cation but also for
anaphoric links (see Kamp and Reyle, 1993, Chapter 4).

The Higher-order Approach

From the extensional perspective all that can be modeled within algebraic models
can be done in type theory as well (see e.g. van der Does, 1992). This tradition,
starting with the works of Bartsch (1973) and Bennett (1974), uses extensional
type-theory with two basic types: e (entities) and t (truth values), and compound
types: αβ (functions mapping type α objects onto type β objects). Together
with the idea of type-shifting, introduced independently by van Benthem (1983)
(see also van Benthem, 1995) and Partee and Rooth (1983), this gives a way to
model collectivity in natural language. The strategy � introduced by Scha (1981)
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and later advocated and developed by van der Does (1992, 1993) and Winter
(2001) � is to lift �rst-order generalized quanti�ers to a second-order setting.
In type-theoretical terms the trick is to shift determiners of type ((et)((et)t))
(corresponding to relations between sets), related to the distributive readings
of quanti�ers, into determiners of type ((et)(((et)t)t)) (relations between sets
and collections of sets) which can be used to formalize the collective readings of
quanti�ers.

In the next section we describe the type-shifting approach to collectivity in a
more systematic and detailed way. Then we introduce second-order generalized
quanti�ers, and show that the type theoretic approach can be rede�ned in terms
of second-order generalized quanti�ers. The idea of type-shifting turns out to be
very closely related to the notion of de�nability which is central in generalized
quanti�er theory.

5.2 Lifting First-order Determiners

5.2.1 Existential Modi�er

Let us consider the following sentences involving collective quanti�cation:

(20) At least �ve people lifted the table.

(21) Some students played poker together.

(22) All combinations of cards are losing in some situations.

The distributive reading of sentence (20) claims that the total number of
students who lifted the table on their own is at least �ve. This statement can be
formalized in elementary logic by formula (23):

(23) ∃≥5x[People(x) ∧ Lift-the-table(x)].

The collective interpretation of sentence (20) claims that there was a collection
of at least �ve students who jointly lifted the table. This can be formalized by
shifting formula (23) to the second-order formula (24), where the predicate �Lift�
has been shifted from individuals to sets:

(24) ∃X[Card(X) = 5 ∧X ⊆ People ∧ Lift-the-table(X)].

In a similar way, by lifting the corresponding �rst-order determiners, we can
express the collective readings of sentences (21)�(22) as follows:

(25) ∃X[X ⊆ Students ∧ Play-poker(X)].

(26) ∀X[X ⊆ Cards =⇒ Lose-in-some-situation(X)].
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All the above examples can be described in terms of a uniform procedure of
turning a determiner of type ((et)((et)t)) into a determiner of type ((et)(((et)t)t))
by means of a type-shifting operator introduced by van der Does (1992) and called
the existential modi�er, (·)EM .

5.2.1. Definition. Let us �x a universe of discourse U and take any X ⊆ U
and Y ⊆ P(U). De�ne the existential lift, QEM , of a type (1, 1) quanti�er Q in
the following way:

QEM [X, Y ] is true ⇐⇒ ∃Z ⊆ X[Q(X,Z) ∧ Z ∈ Y ].

�

One can observe that the collective readings of sentences (20)�(22) discussed
above agree with the interpretation predicted by the existential modi�er.

We can now ask about the monotonicity of collective quanti�cation de�ned
via the existential lift. First of all, notice that the existential lift works properly
only for right monotone increasing quanti�ers. For instance, the sentence:

(27) No students met yesterday at the co�ee shop.

with the ↓MON↓ quanti�er No gets a strange interpretation under the existential
modi�er.

The existential modi�er predicts that this sentence is true if and only if the
empty set of students met yesterday at the co�ee shop, which is clearly not
what sentence (27) claims. This is because NoEM is ↑MON↑ but the collective
interpretation of No should remain ↓MON↓, as sentence (27) entails both (28)
and (29):

(28) No left-wing students met yesterday at the co�ee shop.

(29) No students met yesterday at the �Che Guevara� co�ee shop.

This is the so-called van Benthem problem for plural quanti�cation (see van
Benthem, 1986, pages 52�53): any general existential lift, like (·)EM , will be prob-
lematic as it turns any ((et)((et)t)) determiner into a ((et)(((et)t)t)) determiner
that is upward monotone in the right argument. Obviously, this is problematic
with non-upward monotone determiners.

5.2.2. Example. Consider the following sentence with a non-monotone quanti-
�er and the reading obtained by applying the existential lift:

(30) Exactly 5 students drank a whole keg of beer together.

(31) (∃=5)EM [Student,Drink-a-whole-keg-of-beer].
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Formula (31) is true if and only if the following holds:

∃A ⊆ Student[card(A) = 5 ∧Drink-a-whole-keg-of-beer(A)].

This would yield truth as the logical value of sentence (30) even if there were
actually six students drinking a keg of beer together. Therefore, it fails to take
into account the total number of students who drank a keg of beer.

5.2.2 The Neutral Modi�er

Aiming to solve problems with the collective reading of downward monotone
quanti�ers, like in sentence (27), van der Does (1992) proposed the so-called
neutral modi�er, (·)N .

5.2.3. Definition. Let U be a universe, X ⊆ U , Y ⊆ P(U), and Q a type (1, 1)
quanti�er. We de�ne the neutral modi�er:

QN [X, Y ] is true ⇐⇒ Q
[
X,

⋃
(Y ∩ P(X))

]
.

�

The neutral modi�er can easily account for sentences with downward mono-
tone quanti�ers, like proposition (27). But what about non-monotone quanti�ers,
for example sentence (30)? Now we can express its meaning in the following way:

(32) (∃=5)N [Student,Drink-a-whole-keg-of-beer].

This analysis requires that the total number of students in sets of students that
drank a keg of beer together is �ve. Formula (32) is true whenever:

card
({
x|∃A ⊆ Student[x ∈ A ∧Drink-a-whole-keg-of-beer(A)]

})
= 5.

However, it does not require that there was one set of �ve students who drank a
whole keg of beer together: in a situation where there were two groups of students,
containing three and two members, sentence (30) would be true according to
formula (32). Again, this is not something we would expect, because the collective
reading triggered by �together� suggests that we are talking about one group of
students.

In general, the following is true about monotonicity preservation under the
neutral lift (see Ben-Avi and Winter, 2003, Fact 7):

5.2.4. Fact. Let Q be a distributive determiner. If Q belongs to one of the
classes ↑MON↑, ↓MON↓, MON↑, MON↓, then the collective determiner QN be-
longs to the same class. Moreover, if Q is conservative and ∼MON (MON∼),
then QN is also ∼MON (MON∼).
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5.2.3 The Determiner Fitting Operator

To overcome problems with non-monotone quanti�ers Winter (2001) combined
the existential and the neutral modi�ers into one type-shifting operator called
dfit, abbreviating determiner �tting. The (·)dfit operator turns a determiner of
type ((et)((et)t)) into a determiner of type (((et)t)(((et)t)t)).

5.2.5. Definition. For all X, Y ⊆ P(U) and a type (1, 1) quanti�er Q we de�ne
the determiner �tting operator:

Qdfit[X, Y ] is true

⇐⇒
Q

[⋃
X,

⋃
(X ∩ Y )

]
∧

[
X ∩ Y = ∅ ∨ ∃W ∈ (X ∩ Y ) Q

(⋃
X,W

)]
.

�

Using d�t we get the following interpretation of sentence (30):

(33) (∃=5)dfit[Student,Drink-a-whole-keg-of-beer].

Formula (33) assigns a satisfactory meaning to sentence (30). It says that
exactly �ve students participated in sets of students drinking a whole keg of beer
together and moreover that there was a set of 5 students who drank a keg of beer
together. It is true if and only if:

card
({
x ∈ A|A ⊆ Student ∧Drink-a-whole-keg-of-beer(A)

})
= 5

∧ ∃W ⊆ Student[Drink-a-whole-keg-of-beer(W ) ∧ card(W ) = 5].

Moreover, notice that the determiner �tting operator will assign the proper
meaning also to downward and upward monotone sentences, like:

(27) No students met yesterday at the co�ee shop.

(34) Less than 5 students ate pizza together.

(35) More than 5 students ate pizza together.

For sentence (27) the determiner �tting operator does not predict that the
empty set of students met at the co�ee shop as the existential modi�er does. It
simply does not demand existence of a witness set in cases when the intersection of
arguments is empty. For the downward monotone sentence (34) the �rst conjunct
of the determiner �tting lift counts the number of students in the appropriate
collections and guarantees that they contain not more than �ve students. In the
case of the upward monotone sentence (35) the second conjunct of d�t claims
existence of the witness set. Table 5.1 adapted from (Ben-Avi and Winter, 2004)
sums up the monotonicity behavior of determiner �tting.
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Monotonicity of Q Monotonicity of Qdfit Example

↑MON↑ ↑MON↑ Some
↓MON↓ ↓MON↓ Less than �ve
↓MON↑ ∼MON↑ All
↑MON↓ ∼MON↓ Not all
∼MON∼ ∼MON∼ Exactly �ve
∼MON↓ ∼MON↓ Not all and less than �ve
∼MON↑ ∼MON↑ Most
↓MON∼ ∼MON∼ All or less than �ve
↑MON∼ ∼MON∼ Some but not all

Table 5.1: Monotonicity under the determiner �tting operator.

5.2.4 A Note on Collective Invariance Properties

We have brie�y discussed the monotonicity properties of every lift (for more
details see Ben-Avi and Winter, 2003, 2004). What about other invariance prop-
erties (see Section 2.2.5) in the collective setting?

Let us for example consider conservativity. Recall from Section 2.2.5 that a
distributive determiner of type (1, 1) is conservative if and only if the following
holds for all M and all A,B ⊆M :

QM [A,B] ⇐⇒ QM [A,A ∩B].

In that sense every collective quanti�er QEM trivially does not satisfy conserva-
tivity, as for every X, Y the intersection X ∩ P(Y ) = ∅. Therefore, for every Z
Z 6∈ X ∩ P(Y ).

In the case of the neutral lift and determiner �tting we can conclude the same
because of a similar di�culty.

5.2.6. Fact. For every Q the collective quanti�ers QEM , QN , and Qdfit are not
conservative.

The failure of this classical invariance is for technical reasons but still we
feel that in the intuitive sense the collective quanti�ers de�ned by these lifts
satisfy conservativity. To account for this intuition let us simply reformulate the
conservativity property in the collective setting (see also Chapter 5 in van der
Does, 1992).

5.2.7. Definition. We say that a collective determiner Q of type ((et)(((et)t)t))
satis�es collective conservativity i� the following holds for allM and all A,B ⊆M :

QM [A,B] ⇐⇒ QM [A,P(A) ∩B].

�
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Do lifted quanti�ers satisfy collective conservativity? The following fact gives
a positive answer to this question.

5.2.8. Fact. For every Q the collective quanti�ers QEM , QN , and Qdfit satisfy
collective conservativity.

Notice that collective conservativity is satis�ed by our lifts no matter whether
the distributed quanti�er itself satis�es it. Therefore, it is fair to say that con-
servativity is incorporated into these lifts. We personally doubt that this is a
desirable property of collective modelling.

Below we introduce an alternative method of grasping collectivity by means of
extending Lindström quanti�ers to second-order structures. Among other things
our approach does not arbitrarily decide the invariance properties of collective
determiners.

5.3 Second-order Generalized Quanti�ers

Second-order generalized quanti�ers (SOGQs) were �rst de�ned and applied in
the context of descriptive complexity theory by Burtschick and Vollmer (1998).
The general notion of a second-order generalized quanti�er was later formulated
by Andersson (2002). The following de�nition of second-order generalized quan-
ti�ers is a straightforward generalization from the �rst-order case (see De�ni-
tion 2.2.1). However, note that the types of second-order generalized quan-
ti�ers are more complicated than the types of �rst-order generalized quanti-
�ers, since predicate variables can have di�erent arities. Let t = (s1, . . . , sw),
where si = (`i1, . . . , `

i
ri
), be a tuple of tuples of positive integers. A second

order structure of type t is a structure of the form (M,P1, . . . , Pw), where
Pi ⊆ P(M `i

1)× · · · × P(M `i
ri ). Below, we write f [A] for the image of A under

the function f .

5.3.1. Definition. A second-order generalized quanti�er Q of type t is
a class of structures of type t such that Q is closed under isomor-
phisms: If (M,P1, . . . , Pw) ∈ Q and f : M → N is a bijection such
that Si = {(f [A1], . . . , f [Ari

]) | (A1, . . . , Ari
) ∈ Pi}, for 1 ≤ i ≤ w, then

(N,S1, . . . , Sw) ∈ Q. �

5.3.2. Convention. In what follows, second-order quanti�ers are denoted Q,
whereas �rst-order quanti�ers are denoted Q.

5.3.3. Example. The following examples show that second-order generalized
quanti�ers are a natural extension of the �rst-order case. While Lindström quan-
ti�ers are classes of �rst-order structures (a universe and its subsets), second-order
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generalized quanti�ers are classes of second-order structures consisting not only
of a universe and its subsets, but also of collections of these subsets.

∃2 = {(M,P ) | P ⊆ P(M) and P 6= ∅}.
Even = {(M,P ) | P ⊆ P(M) and card(P ) is even}.
Even′ = {(M,P ) | P ⊆ P(M) and ∀X ∈ P (card(X) is even)}.
Most = {(M,P, S) | P, S ⊆ P(M) and card(P ∩ S) > card(P − S)}.

The �rst quanti�er is the unary second-order existential quanti�er. The type
of ∃2 is ((1)), i.e., it applies to one formula binding one unary second-order vari-
able. The type of the quanti�er Even is also ((1)) and it expresses that a formula
holds for an even number of subsets of the universe. On the other hand, the
quanti�er Even′ expresses that all the subsets satisfying a formula have an even
number of elements. The type of the quanti�er Most is ((1), (1)) and it is the
second-order analogue of the quanti�er Most.

Examples of linguistic applications of second-order generalized quanti�ers are
given in the next section. However, already now we can notice that one can
think about second-order generalized quanti�ers as relations between collections
of subsets of some �xed universe. Therefore, also from the descriptive perspec-
tive taken in linguistics the notion of second-order generalized quanti�ers is a
straightforward generalization of Lindström quanti�ers.

5.3.4. Convention. Throughout the text we will write Most, Even, Some for
Lindström quanti�ers and Most, Even, Some for the corresponding second-
order generalized quanti�ers.

5.3.1 De�nability for SOGQs

5.3.5. Definition. As in the �rst-order case, we de�ne the extension, FO(Q),
of FO by a second-order generalized quanti�er Q of type t = (s1, . . . , sw), where
si = (`i1, . . . , `

i
ri
), in the following way:

• Second order variables are introduced to the FO language.

• The formula formation rules of FO-language are extended by the rule:

if for 1 ≤ i ≤ w, ϕi(X i) is a formula and X i = (X1,i, . . . , Xri,i) is a tu-
ple of pairwise distinct predicate variables, such that arity(Xj,i) = `ij, for
1 ≤ j ≤ ri, then

QX1, . . . , Xw

[
ϕ1(X1), . . . , ϕw(Xw)

]
is a formula.
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• The satisfaction relation of FO is extended by the rule:

M |= QX1, . . . , Xw

[
ϕ1, . . . , ϕw

]
i� (M,ϕM

1 , . . . , ϕ
M
w ) ∈ Q,

where ϕM
i =

{
R ∈ P(M `i

1)× · · · × P(M `i
ri ) | M |= ϕi(R)

}
.

�

The notion of de�nability for second-order generalized quanti�ers can be for-
mulated as in the case of Lindström quanti�ers (see De�nition 2.2.10; see also
Kontinen (2004) for technical details). However, things are not completely analo-
gous to the �rst-order case. With second-order generalized quanti�ers the equiv-
alence of two logics L(Q) ≡ L does not imply that the quanti�er Q is de�nable
in the logic L (see the next paragraph for an example). The converse implication
is still valid.

5.3.6. Proposition (Kontinen (2004)). Let Q be a second-order generalized
quanti�er and L a logic. If the quanti�er Q is de�nable in L then

L(Q) ≡ L.

Proof The idea and the proof is analogous to the �rst-order case (see proof of
the Proposition 2.2.12). Here we substitute second-order predicates by formulae
having free second-order variables. �

Kontinen (2002) has shown that the extension L∗ of �rst-order logic by all
Lindström quanti�ers cannot de�ne the monadic second-order existential quan-
ti�er, ∃2. In other words, the logic L∗, in which all properties of �rst-order
structures can be de�ned, cannot express in a uniform way that a collection of
subsets of the universe is non-empty. This result also explains why we cannot
add the second implication to the previous proposition. Namely, even though
L∗ ≡ L∗(∃2) the quanti�er ∃2 is not de�nable in L∗.

Moreover, this observation can be used to argue for the fact that �rst-order
generalized quanti�ers alone are not adequate for formalizing all natural language
quanti�cation. For example, as the quanti�er ∃2 is not de�nable in L∗, the logic
L∗ cannot express the collective reading of sentences like:

(36) Some students gathered to play poker.

Therefore, we need to extend logic beyond L∗ to capture the semantics of collective
quanti�ers in natural language.

Last but not least, let us notice that natural invariance properties for SOGQs
have not been investigated. Studying invariance properties in the context of clas-
sical generalized quanti�er theory led to many de�nability results of mathematical
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and linguistic value. In the case of SOGQs these questions are still waiting for
systematic research.

In the next section we will show how to model collectivity by adding second-
order generalized quanti�ers to elementary logic.

5.4 De�ning Collective Determiners by SOGQs

In this section we show that collective determiners can be easily identi�ed with
certain second-order generalized quanti�ers. Thereby, we explain the notion of
second-order generalized quanti�ers a little bit more � this time with linguistic
examples. We also observe that the second-order generalized quanti�ers corre-
sponding to lifted �rst-order determiners are de�nable in second-order logic.

Recall that the determiner �tting operator turns a �rst-order quanti�er of
type (1, 1) directly into a second-order quanti�er of type ((1), (1)). Nevertheless,
at �rst sight, there seems to be a problem with identifying collective determiners
with second-order generalized quanti�ers, as the existential and neutral modi-
�ers produce collective noun phrases of a mixed type ((et)(((et)t)t)), while our
De�nition 5.3.1 talks only about quanti�ers of uniform types. However, this is
not a problem since it is straightforward to extend the de�nition to allow also
quanti�ers with mixed types. Below we de�ne examples of second-order general-
ized quanti�ers of mixed types which formalize collective determiners in natural
language.

5.4.1. Definition. Denote by SomeEM the following quanti�er of type (1, (1)){
(M,P,G) | P ⊆M ; G ⊆ P(M) : ∃Y ⊆ P (Y 6= ∅ and P ∈ G)

}
.

�

Obviously, we can now express the collective meaning of sentence (21), re-
peated here as sentence (37), by formula (38).

(37) Some students played poker together.

(38) SomeEM x,X[Student(x),Played-poker(X)].

Analogously, we can de�ne the corresponding second-order quanti�er appear-
ing in sentence (20), here as (39).

(39) At least �ve people lifted the table.

5.4.2. Definition. We take fiveEM to be the second order-quanti�er of type
(1, (1)) denoting the class:{

(M,P,G) | P ⊆M ; G ⊆ P(M) : ∃Y ⊆ P (card(Y ) = 5 and P ∈ G)
}
.

�
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Now we can formalize the collective meaning of (39) by:

(40) fiveEMx,X[Student(x),Lifted-the-table(X)].

These simple examples show that it is straightforward to associate a mixed
second-order generalized quanti�er with every lifted determiner. Also, it is easy
to see that for any �rst-order quanti�er Q the lifted second-order quanti�ers
QEM , Qdfit and QN can be uniformly expressed in second-order logic assuming
the quanti�er Q is also available. In fact, all the lifts discussed in Section 5.2,
and, as far as we know, all those proposed in the literature, are de�nable in
second-order logic. This observation can be stated as follows.

5.4.3. Theorem. Let Q be a Lindström quanti�er de�nable in second-order
logic. Then the second-order quanti�ers QEM , Qdfit and QN are de�nable in
second-order logic, too.

Proof Let us consider the case of QEM . Let ψ(x) and φ(Y ) be formulae. We
want to express QEM x, Y [ψ(x), φ(Y )] in second-order logic. By the assumption,
the quanti�er Q can be de�ned by some sentence θ ∈ SO[{P1, P2}]. We can now
use the following formula:

∃Z[∀x(Z(x) =⇒ ψ(x)) ∧ (θ(P1/ψ(x), P2/Z) ∧ φ(Y/Z)].

The other lifts can be de�ned analogously. �

For example, SomeEM ,MostN ,Alldfit are all de�nable in second-order logic.
Let us notice that the above theorem can be easily generalized to cover not

only the three lifts we've discussed but all possible collective operators de�nable
in second-order logic. Namely, using the same idea for the proof we can show the
following:

5.4.4. Theorem. Let us assume that the lift (·)∗ and a Lindström quanti�er
Q are both de�nable in second-order logic. Then the second-order generalized
quanti�er Q∗ is also de�nable in second-order logic.

These theorems show that in the case of natural language determiners �
which are obviously de�nable in second-order logic � the type-shifting strategy
cannot take us outside second-order logic. In the next section we show that it is
very unlikely that all collective determiners in natural language can be de�ned
in second-order logic. Our argument is based on the close connection between
second-order generalized quanti�ers and certain complexity classes in computa-
tional complexity theory.
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5.5 Collective Majority

5.5.1 An Unde�nability Result for SOGQ �MOST�

Consider the following sentences:

(41) In the pre�op most poker hands have no chance against an Ace and a Two.

(42) Most of the PhD students played Hold'em together.

These sentences can be read collectively. For example, sentence (42) can be for-
malized using the second-order generalized quanti�er Most (de�ned in Example
5.3.3) by the following formula:

(43) MostX, Y [PhD-Students(X),Played-Hold'em(Y )].

Above we assume that the predicates PhD-Students and Play-Hold'em are
interpreted as collections of sets of atomic entities of the universe. Obviously, this
is just one possible way of interpreting sentence (42). In general, we are aware
that when it comes to proportional determiners, like �most�, it seems di�cult to
�nd contexts where they are de�nitely read collectively (see e.g. Lønning, 1997,
p. 1016). On the other hand, we can not totally exclude the possibility that
sentences (41)�(42) can be used in a setting where only a collective reading is
possible. Anyway, it seems that Most is needed in the formalization, assuming
that PhD-Students and Play-Hold'em are interpreted as collective predicates.

For the sake of argument, let us assume that our interpretation of sentence
(42) is correct. We claim that the lifts discussed above do not give the intended
meaning when applied to the �rst-order quanti�er Most. Using them we could
only obtain a reading saying something like �there was a group of students, con-
taining most of the students, such that students from that group played Hold'em
together�. But what we are trying to account for is the meaning where both ar-
guments are read collectively and which can be expressed as follows �most groups
of students played Hold'em together�.

We shall next show that it is unlikely that any lift which can be de�ned in
second-order logic can do the job. More precisely, we show (Theorem 5.5.1 below)
that if the quanti�er Most can be lifted from the �rst-order Most using a lift
which is de�nable in second-order logic then something unexpected happens in
computational complexity. This result indicates that the type-shifting strategy
used to de�ne collective determiners in the literature is probably not general
enough to cover all collective quanti�cation in natural language.

Let us start by discussing the complexity theoretic side of our argument.
Recall that second-order logic corresponds in complexity theory to the polynomial
hierarchy, PH, (see Theorem 2.4.5 in the Prerequisites chapter, and Section 2.3.5).
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The polynomial hierarchy is an oracle hierarchy with NP as the building block.
If we replace NP by probabilistic polynomial time (PP) in the de�nition of PH,
then we arrive at a class called the counting hierarchy, CH, (see Section 2.3.6).

Now, we can turn to the theorem which is fundamental for our argumentation.

5.5.1. Theorem. If the quanti�er Most is de�nable in second-order logic, then
CH = PH and CH collapses to its second level.

Proof The proof is based on the observation in Kontinen and Niemistö (2006)
that already the extension of �rst-order logic by the unary second-order majority
quanti�er, MostI , of type ((1)), can de�ne complete problems for each level
of the counting hierarchy. The unary second-order majority quanti�er is easily
de�nable in terms of the quanti�er Most:

MostI [X]ψ ⇐⇒ MostX,X[X = X,ψ].

Hence, the logic FO(Most) can de�ne complete problems for each level of
the counting hierarchy. On the other hand, if the quanti�er Most were
de�nable in second-order logic, then by Proposition 5.3.6 we would have that
FO(Most) ≤ SO and therefore SO would contain complete problems for each
level of the counting hierarchy. This would imply that CH = PH and furthermore
that CH ⊆ PH ⊆ C2P (see Toda, 1991). �

5.5.2. Corollary. The type-shifting strategy is probably not general enough to
cover all collective quanti�cation in natural language.

The following conjecture is a natural consequence of the theorem.

5.5.3. Conjecture. The quanti�erMost is not de�nable in second-order logic.

5.5.2 Consequences of Unde�nability

Does SO Capture Natural Language?

Therefore, it is very likely that second-order logic is not expressive enough to
capture natural language semantics. Recall that apart from second-order logic,
collective quanti�cation in natural language is also not expressible in L∗ � �rst-
order logic enriched by all Lindström quanti�ers (see Kontinen, 2002, and Section
5.3.1). Then we have to look for alternative tools. As we have shown, the nat-
ural extension of �rst-order generalized quanti�ers beyond elementary structures
leads to the notion of second-order generalized quanti�ers. We have outlined how
one can account for collectivity using second-order generalized quanti�ers. The
question arises what kind of insight into language can be obtained by introduc-
ing second-order generalized quanti�ers into semantics. For example, are there
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any new interesting generalizations or simpli�cations available in the theory? We
can already notice that the van Benthem problem would disappear simply be-
cause we would not try to describe semantics of collective quanti�ers in terms of
some uniform operation but we would rather de�ne separate second-order gener-
alized quanti�ers corresponding to their �rst-order counterparts. Moreover, with
SOGQs we do not restrict ourselves to interpretations with already �xed invari-
ance properties (see Section 5.2.4). We can enjoy the same freedom we have in
distributive generalized quanti�er theory.

Are Many-sorted Models More Plausible?

Theorem 5.5.1 also shows that the computational complexity of some collective
sentences can be enormous when analyzed via second-order logic. In other words,
such an approach to collective quanti�cation violates the methodological Σ1

1-thesis
from Section 1.8. However, notice that all these claims are valid only if we
restrict a semantic theory to universes containing nothing more than entities. But
when we are dealing with collective sentences in our everyday communication we
rather tend to interpret them in the universe which contains groups of people
and combinations of cards as well as people and cards themselves. Theorem
5.5.1 explains this in terms of complexity � it would be too complicated to
understand language, thinking about the world as containing only individual
objects. From this point of view many-sorted approaches to natural language
semantics seem to be closer to linguistic reality and our observation can be treated
as an argument in favor of them. In the light of Theorem 5.5.1 we are inclined to
believe that this approach is much more plausible than higher-order approaches.
It would be interesting to design psychological experiments throwing light on the
mental representation of collective quanti�cation. We conjecture that the results
of such experiments will show that subjects use some kind of many-sorted logical
representation to comprehend collective interpretations of sentences. Experiments
can also help to identify gaps in the semantic theory of collectives and motivate
and direct the research e�ort to �ll them in.

Does SOGQ �MOST� Belong to Everyday Language?

Last but not least, let us give an alternative interpretation of our result. As
we mentioned, the collective meaning of proportional quanti�ers like �most� in
natural language is marginal at best. It is not completely clear that one can �nd
situations where sentences like (42) have to be read collectively in the suggested
way. It might be the case that everyday language does not realize proportional
collective quanti�cation, at all, among other reasons due to its extremely high
computational complexity. Therefore, we can also argue that from a linguistic
point of view there is no need to extend the higher-order approach to proportional
quanti�ers. Honestly, this is what we would expect, e.g. formulating Σ1

1-thesis
in Section 1.8, but at that point we can not exclude that possibility. However,
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if there are no such sentences in everyday English then we would say that we
have just encountered an example where computational complexity restricts the
expressibility of everyday language.

5.6 Summary

In this chapter we have studied the higher-order approach for collective determin-
ers in natural language. In particular, we have considered type-shifting operators:
the existential modi�er, the neutral modi�er and the determiner �tting operator.
The research part of this chapter can be summed up in the following way:

• We observed that all these collective lifts are de�nable in second-order logic.

• Then we introduced second-order generalized quanti�ers and proposed them
as a tool for modeling collective quanti�cation in natural language.

• Using second-order generalized quanti�ers we considered the collective read-
ing of majority quanti�ers and proved that it is likely not de�nable in
second-order logic due to its computational complexity. Hence, the type-
shifting approach to collectivity in natural language does not obey the Σ1

1-
thesis formulated in Section 1.8.

• Therefore, the collective reading of quanti�er �most� probably cannot be
expressed using the type-shifting strategy applied to �rst-order quanti�ers.

• In other words, the type-shifting strategy is not general enough to cover all
instances of collective quanti�cation in natural language.

• We see a viable alternative in many-sorted (algebraic) approaches which
seem to be much easier from the computational complexity point of view
and as a result much more psychologically plausible as a model of processing
for collective determiners.

• Another possibility is that the collective reading of proportional quanti�ers
is not realized in everyday language and therefore there is no need for seman-
tic theory to account for it. In that case we would say that computational
complexity restricts everyday language expressibility.

Moreover, some natural research problems have appeared in this chapter. Let
us mention a few of them:

5.6.1. Question. Does everyday language contain collective interpretations of
proportional quanti�ers?
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5.6.2. Question. What is the exact computational complexity of many-sorted
approaches to collectivity in natural language?

5.6.3. Question. What are the natural invariance properties for collective quan-
ti�cation? We noted in Section 5.2.4 that the standard de�nitions do not have to
work properly in the collective context. After formulating empirically convincing
invariance properties for collective quanti�ers one may want to revise existing
theories.

5.6.4. Question. Moreover, the behavior of SOGQs under di�erent invariance
properties has not been studied enough. It might be that under some structural
properties de�nability questions among SOGQs might be easier to solve. Obvi-
ously, studying de�nability questions for SOGQs is a natural enterprise from the
perspective of collective semantics for natural language.

5.6.5. Question. Finally, is there a purely semantic proof that the quanti�er
Most is not de�nable in second-order logic?





Chapter 6

Hintikka's Thesis Revisited

This chapter is devoted to an investigation of potentially branched combinations
of quanti�ers in natural language. However, as opposed to the previous chap-
ters we do not stay in the safe domain of theoretical discussion but confront our
claims with empirical reality. In this way we are aiming to establish the refer-
ential meaning of some controversial sentences. As we have shown in Section
3.2, branching interpretations of some natural language sentences are intractable.
Therefore, our quest in this chapter is to check whether in everyday language the
intractable meaning of branching sentences is in fact realized.

We start by discussing the thesis formulated by Hintikka (1973) that cer-
tain natural language sentences require non-linear quanti�cation to express their
meaning. We also sum up arguments in favor and against this thesis which have
appeared in the literature.

Then, we propose a novel alternative reading for Hintikka-like sentences, the
so-called conjunctional reading. This reading is expressible by linear formulae and
tractable. We compare the conjunctional reading to other possible interpretations
and argue that it is the best representation for the meaning of Hintikka-like
sentences.

Next, we describe the empirical support for the conjunctional reading. The
basic assumption here is that a criterion for adequacy of a meaning representation
is compatibility with sentence truth-conditions. This can be established by ob-
serving the linguistic behavior of language users. We report on our experiments
showing that people tend to interpret sentences similar to Hintikka's sentence in
a way consistent with the conjunctional interpretation.

This chapter is based on joint work with Nina Gierasimczuk (see Gierasimczuk
and Szymanik, 2006, 2007, 2008).

129
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6.1 Hintikka's Thesis

Jaakko Hintikka (1973) claims that the following sentences essentially require
non-linear quanti�cation for expressing their meaning.

(1) Some relative of each villager and some relative of each townsman hate each
other.

(2) Some book by every author is referred to in some essay by every critic.

(3) Every writer likes a book of his almost as much as every critic dislikes some
book he has reviewed.

Throughout the chapter we will refer to sentence (1) as Hintikka's sentence.
According to Hintikka its interpretation is expressed using Henkin's quanti�er
(see Section 3.2 for an exposition on branching quanti�ers) as follows:

(4)

(
∀x∃y
∀z∃w

) [
(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))

]
,

where unary predicates V and T denote the set of villagers and the set of towns-
men, respectively. The binary predicate symbol R(x, y) denotes the symmetric
relation �x and y are relatives� and H(x, y) the relation �x and y hate each
other�. Informally speaking, the idea of such constructions is that for di�erent
rows the values of the quanti�ed variables are chosen independently. According
to Henkin's semantics for branching quanti�ers, formula (4) is equivalent to the
following existential second-order sentence:

∃f∃g∀x∀z
[
(V (x) ∧ T (z)) =⇒ (R(x, f(x)) ∧R(z, g(z)) ∧H(f(x), g(z))

]
.

Functions f and g (so-called Skolem functions) choose relatives for every villager
and every townsman, respectively. As you can see, the value of f (g) is determined
only by the choice of a certain villager (townsman). In other words, to satisfy the
formula relatives have to be chosen independently.1 This second-order formula is
equivalent to the following sentence with quanti�cation over sets:

∃A∃B∀x∀z
[
(V (x) ∧ T (z)) =⇒ (∃y ∈ A R(x, y) ∧ ∃w ∈ B R(z, w)

∧ ∀y ∈ A∀w ∈ B H(y, w))
]
.

The existential second-order sentence is not equivalent to any �rst-order sen-
tence (see the Barwise-Kunen Theorem in (Barwise, 1979)). Not only universal
and existential quanti�ers can be branched; the procedure of branching works in

1The idea of branching is more visible in the case of simpler quanti�er pre�xes, like in
sentence (5) discussed in Section 6.3.2.
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a very similar way for other quanti�ers (see De�nition 3.2.2). Some examples �
motivated by linguistics � are discussed in the next section of this chapter.

The reading of Hintikka's sentence given by formula (4) is called the strong
reading. However, it can also be assigned weak readings, i.e., linear representa-
tions which are expressible in elementary logic. Let us consider the following
candidates:

(5) ∀x∃y∀z∃w
[
(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))

]
∧ ∀z∃w∀x∃y

[
(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))

]
.

(6) ∀x∃y∀z∃w
[
(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))

]
.

(7) ∀x∀z∃y∃w
[
(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))

]
.

In all these formulae the choice of the second relative depends on the one that
has been previously selected. To see the di�erence between the above readings
and the branching reading consider a second-order formula equivalent to sentence
(6):

∃f∃g∀x∀z
[
(V (x) ∧ T (z)) =⇒ (R(x, f(x)) ∧R(z, g(x, z)) ∧H(f(x), g(x, z)))

]
.

It is enough to compare the choice functions in this formula with those in the
existential second-order formula corresponding to sentence (4) to see the di�er-
ence in the structure of dependencies required in both readings. Of course, the
dependencies in sentences (5) and (7) are analogous to (6). As a result all the
weak readings are implied by the strong reading, (4) (where both relatives have
to be chosen independently), which is of course the reason for the names. For-
mulae (5)-(7) are also ordered according to the entailment relation which holds
between them. Obviously, formula (5) implies formula (6), which implies formula
(7). Therefore, formula (5) is the strongest among the weak readings.

By Hintikka's Thesis we mean the following statement:

Hintikka's Thesis Sentences like Hintikka's sentence have no adequate linear
reading. In particular, Hintikka's sentence should be assigned the strong reading
and not any of the weak readings.

6.1.1. Remark. Let us stress one point here. Of course, every branching quan-
ti�er can be expressed by some single generalized quanti�er, so in the sense of
de�nability Hintikka's thesis cannot be right. However, the syntax of branch-
ing quanti�cation has a particular simplicity and elegance that gets lost when
translated into the language of generalized quanti�ers. The procedure of branch-
ing does not employ new quanti�ers. Instead it enriches the accessible syntactic
means of arranging existing quanti�ers, at the same time increasing their expres-
sive power. Therefore, the general question is as follows: are there sentences with



132 Chapter 6. Hintikka's Thesis Revisited

simple determiners such that non-linear combinations of quanti�ers corresponding
to the determiners are essential to account for the meanings of those sentences?
The a�rmative answer to this question � suggested by Hintikka � claims the
existence of sentences with quanti�ed noun phrases which are interpreted scope
independently. We show that for sentences similar to those proposed by Hintikka
the claim is not true.

Because of its many philosophical and linguistic consequences Hintikka's claim
has sparked lively controversy (see e.g. Jackendo�, 1972; Gabbay and Moravcsik,
1974; Guenthner and Hoepelman, 1976; Hintikka, 1976; Stenius, 1976; Barwise,
1979; Bellert, 1989; May, 1989; Sher, 1990; Mostowski, 1994; Liu, 1996; Beghelli
et al., 1997; Janssen, 2002; Mostowski and Wojtyniak, 2004; Szymanik, 2005;
Schlenker, 2006; Janssen and Dechesne, 2006; Gierasimczuk and Szymanik, 2006,
2007, 2008). Related discussion on the ambiguity of sentences with multiple quan-
ti�ers has been vivid in the more philosophically oriented tradition (see Kempson
and Cormack, 1981a; Tennant, 1981; Kempson and Cormack, 1981b; Bach, 1982;
Kempson and Cormack, 1982; May, 1985; Jaszczolt, 2002). In the present study
some of the arguments presented in the discussion are analyzed and critically
discussed. In particular, we propose to allow interpreting Hintikka's sentence by
the �rst-order formula (5):

∀x∃y∀z∃w
[
(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))

]
∧ ∀z∃w∀x∃y

[
(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))

]
.

In the rest of this chapter we will refer to this reading as the conjunctional
reading of Hintikka's sentence.

Our proposal seems to be very intuitive � as we show in the next section
� and it is also consistent with human linguistic behavior. The latter fact is
supported by empirical data, which we will present in Section 6.4.

Last but not least, it is worth noticing that our proposition is reminis-
cent of the linguistic representation of reciprocals. For example, according
to the seminal paper on �each other� by Heim et al. (1991), Hintikka's sen-
tence has the following structure: EACH[[QP and QP] ][V the other]; that
is, �each� simply quanti�es over the two conjuncts, which turns the sentence
into [QP1 V the other and QP2 V the other], where �the other� picks up the
other quanti�ers anaphorically. This already resembles our conjunctional repre-
sentation. See Chapter 4 for more discussion of reciprocity.

Our conclusion is that Hintikka-like sentences allow linear reading. This of
course clearly contradicts Hintikka's thesis.

6.2 Other Hintikka-like Sentences

Before we move on to the central problem let us consider more sentences with
combinations of at least two determiners such that their branching interpreta-
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tion is not equivalent to any linear reading. They all fall into the scope of our
discussion, and we will call them �Hintikka-like sentences�.

Interesting examples of Hintikka-like sentences were given by Jon Barwise
(1979).

(8) Most villagers and most townsmen hate each other.

(9) One third of the villagers and half of the townsmen hate each other.

These sentences seem to be more frequent in our communication and more natural
than Hintikka's examples, even though their adequate meaning representation is
no less controversial.

Many more examples have been given to justify the existence of non-linear
semantic structures in natural language; see e.g. sentences (10)�(12).

(10) I told many of the men three of the stories. (Jackendo�, 1972)

(11) A majority of the students read two of those books. (Liu, 1996)

(12) We have been �ghting for many years for human rights in China. I recount
the story of our failures and successes, and say: �Whenever a representative
from each country fought for the release of at least one dissident from each
prison, our campaign was a success.� (Schlenker, 2006)

6.3 Theoretical Discussion

6.3.1 A Remark on Possible Readings

Let us start with the following remark.
It was observed by Mostowski (1994) that from Hintikka's sentence we can

infer that:

(13) Each villager has a relative.

This sentence has obviously the following reading: ∀x[V (x) =⇒ ∃yR(x, y)]. It
can be false in a model with an empty town, if there is a villager without a
relative. However, the strong reading of Hintikka's sentence (see formula (4))
� having the form of an implication with a universally quanti�ed antecedent �
is true in every model with an empty town. Hence, this reading of (13) is not
logically implied by the proposed readings of Hintikka's sentence.

Therefore, the branching meaning of Hintikka's sentence should be corrected
to the following formula with restricted quanti�ers:

(14)
(∀x : V (x))(∃y : R(x, y))
(∀z : T (z))(∃w : R(z, w))

H(y, w),
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which is equivalent to:

∃A∃B
[
∀x(V (x) =⇒ ∃y ∈ A R(x, y)) ∧ ∀z(T (z) =⇒ ∃w ∈ B R(z, w))

∧ ∀y ∈ A∀w ∈ B H(y, w)
]
.

Observe that similar reasoning can be used to argue for restricting the quan-
ti�ers in formulae expressing the di�erent possible meanings of all our sentences.
However, applying these corrections uniformly would not change the main point
of our discussion. We still would have to choose between the same number of
possible readings, the only di�erence being the restricted quanti�ers. Therefore,
for simplicity we will forego these corrections. From now on we will assume that
all predicates in our formulae have non-empty denotation.

6.3.2 Hintikka-like Sentences are Symmetric

It has been observed that we have the strong linguistic intuition that the two
following versions of Hintikka's sentence are equivalent (Hintikka, 1973):

(1) Some relative of each villager and some relative of each townsman hate each
other.

(15) Some relative of each townsman and some relative of each villager hate each
other.

However, if we assume that formula (6), repeated here:

∀x∃y∀z∃w[(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))].

is an adequate reading of sentence (1), then we have to analogously assume that
an adequate reading of sentence (15) is represented by the formula:

(16) ∀z∃w∀x∃y[(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))].

However, (6) and (16) are not logically equivalent, therefore it would be wrong
to treat them as correct interpretations of sentences (1) or (15). Therefore, we
have to reject readings (6) and (16) from the set of possible alternatives.

Notice that a similar argument works when we consider other Hintikka-like
sentences. For instance, it is enough to observe that the following sentences are
also equivalent:

(8) Most villagers and most townsmen hate each other.

(17) Most townsmen and most villagers hate each other.

However, the possible linear reading of (8):
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(18) Most x [V (x),Most y (T (y), H(x, y))]

is not equivalent to an analogous reading of (17). Hence, the linear reading (18)
cannot be the proper interpretation.

In general, we are dealing here with the fact that the iteration operator (recall
De�nition 3.1.2) is not symmetric (see Section 3.1.1).

One of the empirical tests we conducted was aimed at checking whether people
really perceive such pairs of sentences as equivalent. The results that we describe
strongly suggest that this is the case. Therefore, the argument from symmetry is
also cognitively convincing (see Section 6.4.4 for a description of the experiment
and Section 6.4.4 for our empirical results).

In spite of this observation we cannot conclude the validity of Hintikka's Thesis
so easily. First we have to consider the remaining weak candidates, formulae (5)
and (7):

(5) ∀x∃y∀z∃w
[
(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))

]
∧ ∀z∃w∀x∃y

[
(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))

]
,

(7) ∀x∀z∃y∃w
[
(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))

]
.

Hintikka does not consider them at all, and other authors focus only on formula
(7) (see e.g. Barwise, 1979; Mostowski and Wojtyniak, 2004)..

Also for di�erent Hintikka-like sentences we still have to di�erentiate between
some possibilities. As an alternative for formula (18) we can consider not only
the branching reading (19) (equivalent to (20)) :

(19)

(
Most x : V (x)
Most y : T (y)

)
H(x, y).

(20) ∃A∃B
[
Most x (V (x), A(x))∧Most y (T (y), B(y))∧∀x ∈ A ∀y ∈ B H(x, y))

]
.

but also the conjunctional meaning:

(21) Most x
[
V (x),Most y(T (y), H(x, y))

]
∧Most y

[
T (y),Most x(V (x), H(y, x))

]
.

Notice that for proportional sentences, e.g., (8), there is no interpretation corre-
sponding to the weakest reading of Hintikka's sentence, formula (7), as propor-
tional sentences contain only two simple determiners, and not four as the original
Hintikka's sentence. This very fact already indicates that the conjunctional form
� as a uniform representation of all Hintikka-like sentences � should be preferred
over the weakest reading. Moreover, we report on another argument against the
weakest reading (7) in the next section.

To sum up, the symmetricity argument rules out readings with asymmet-
ric scope dependencies. At this point the adequacy of the weakest reading is
also controversial since it is not uniform - it cannot be extended to proportional
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sentences. Our space of possibilities contains now: the branching and the con-
junctional reading. In the next section we give additional possible reasons to
reject the weakest reading of Hintikka's sentence. However, we do not take this
argument as deciding. We tend to reject the weakest reading as a non-uniform
interpretation.

6.3.3 Inferential Arguments

Let us move now to Mostowski's (1994) argument against the weakest reading of
Hintikka-like sentences.

Let us consider the following reasoning:

Some relative of each villager and some relative of each townsman hate each other.
Mark is a villager.
Some relative of Mark and some relative of each townsman hate each other.

In other words, if we assume that Mark is a villager, then we have to agree
that Hintikka's sentence implies that some relative of Mark and some relative of
each townsman hate each other.

If we interpret Hintikka's sentence as having the weakest meaning (7):

∀x∀z∃y∃w[(V (x) ∧ T (z)) =⇒ (R(x, y) ∧R(z, w) ∧H(y, w))],

then we have to agree that the following sentence is true in Figure 6.1.

(22) Some relative of Mark and some relative of each townsman hate each other.

Mark

Figure 6.1: Relatives of Mark are on the left, on the right are two town families.

Mostowski (1994) observed that this is a dubious consequence of assigning
the weakest interpretation to Hintikka's sentence. He claims that sentence (22)
intuitively has the following reading:

(23) ∃x[R(Mark, x) ∧ ∀y(T (y) =⇒ ∃z(R(y, z) ∧H(x, z)))].
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The above formula (23) is false in the model illustrated in Figure 6.1. Therefore,
it cannot be implied by the weakest reading of Hintikka's sentence which is true
in the model. However, it is implied by the strong reading which is also false in
the model. Hence, Mostowski concludes that Hintikka's sentence cannot have the
weakest reading (7).

If we share Mostowski's intuition, then we can conclude from this argument
that the weakest reading, (7), should be eliminated from the set of possible alter-
natives. Otherwise, we can refer to the non-uniformity problem. Then we are left
with two propositions: the branching and the conjunctional interpretation. Both
of them have the desired inference properties.

6.3.4 Negation Normality

Jon Barwise (1979) in his paper on Hintikka's Thesis refers to the notion of
negation normality in a defense of the statement that the proper interpretation
of Hintikka's sentence is an elementary formula. He observes that the negations
of some simple quanti�er sentences, i.e., sentences without sentential connectives
other than �not� before a verb, can easily be formulated as simple quanti�er
sentences. In some other cases this is impossible. Namely, the only way to negate
some simple sentences is by pre�xing them with the phrase �it is not the case
that� or an equivalent expression of a theoretical character.

Sentences of the �rst kind are called negation normal. For example, sentence:

(24) Everyone owns a car.

can be negated normally as follows:

(25) Someone doesn't own a car.

Therefore, this sentence is negation normal. As an example of statement which
is not negation normal consider the following (see Barwise, 1979):

(26) The richer the country, the more powerful its ruler.

It seems that the most e�cient way to negate it is as follows:

(27) It is not the case that the richer the country, the more powerful its ruler.

Barwise proposed to treat negation normality as a test for �rst-order de�nabil-
ity with respect to sentences with combinations of elementary quanti�ers. This
proposal is based on the following theorem.

6.3.1. Theorem. If ϕ is a sentence de�nable in Σ1
1, the existential fragment of

second-order logic, and its negation is logically equivalent to a Σ1
1-sentence, then

ϕ is logically equivalent to some �rst-order sentence.
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Barwise claims that the results of the negation normality test suggest that
people tend to �nd Hintikka's sentence to be negation normal, and hence de�nable
in elementary logic. According to him people tend to agree that the negation of
Hintikka's sentence can be formulated as follows:

(28) There is a villager and a townsmen that have no relatives that hate each
other.

6.3.2. Remark. Notice that the test works only on the assumption that simple
everyday sentences are semantically bounded by existential second-order proper-
ties; that is, exactly when we accept the Σ1

1-Thesis formulated in Section 1.8.

Barwise's claim excludes the branching reading of Hintikka's sentence but is
consistent with the conjunctional interpretation. Therefore, in the case of Hin-
tikka's sentence we are left with only one possible reading: the conjunctional
reading � at least as far as we are convinced by by the non-uniformity argu-
ment Mostowski's and Barwise's arguments. However, in the case of proportional
sentences we still have to choose between the branching and the conjunctional
interpretation.

6.3.5 Complexity Arguments

Mostowski and Wojtyniak (2004) claim that native speakers' inclination toward
a �rst-order reading of Hintikka's sentence can be explained by means of compu-
tational complexity theory. The authors prove that the problem of recognizing
the truth-value of the branching reading of Hintikka's sentence in �nite models is
an NPTIME-complete problem. It can also be shown that proportional branch-
ing sentences de�ne an NP-complete class of �nite models (see Sevenster, 2006).
See Section 3.2 for a discussion of the computational complexity of branching
quanti�ers.

Assuming that the class of practically computable problems is identical with
the PTIME class (i.e., the tractable version of the Church-Turing Thesis; see Ed-
monds, 1965) they claim that the human mind is not equipped with mechanisms
for recognizing NP-complete problems.2 In other words, in many situations an
algorithm for checking the truth-value of the strong reading of Hintikka's sentence
is intractable. According to Mostowski and Wojtyniak (2004) native speakers can
only choose between meanings which are practically computable.

6.3.3. Remark. Notice that the argument is similar to the discussion from
Chapter 4 where we were considering di�erent interpretations of reciprocal sen-
tences. According to the Strong Meaning Hypothesis the reading associated with

2This statement can be given independent psychological support (see e.g. Frixione, 2001).
We discus an in�uence of computational complexity on cognitive abilities in Chapter 1.
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the reciprocal in a given sentence is the strongest available reading which is con-
sistent with the context (see Section 4.1.1). However, we have shown that in
some cases the strong interpretation of reciprocal sentences is intractable and
suggested in Section 4.5 that in such situations interpretation will shift to a
weaker (tractable) inferential meaning.

The conjunctional reading is PTIME computable and therefore � even tak-
ing into account computational restrictions � can reasonably be proposed as a
meaning representation.

6.3.6 Theoretical Conclusions

We discussed possible obstacles against various interpretations of Hintikka-like
sentences. Our conjunctional version for Hintikka-like sentences seems to be very
acceptable according to all mentioned properties. It is the only reading satisfying
all the following properties:

• symmetry;

• uniformity for all Hintikka-like sentences;

• passing Mostowski's inferential test;

• being negation normal for Hintikka's sentence;

• having truth-value practically computable in �nite models.

In the case of Hintikka's sentence the conjunctional reading is arguably the
only possibility. In general, for proportional sentences it competes only with the
intractable branching reading. The next section is devoted to empirical arguments
that the conjunctional reading is consistent with the interpretations people most
often assign to Hintikka-like sentences.

6.4 Empirical Evidence

Many authors � taking part in the dispute on the proper logical interpretation
of Hintikka-like sentences � have argued not only from their own linguistic in-
tuitions but also from the universal agreement of native speakers. For instance,
Barwise claims that:

In our experience, there is almost universal agreement rejecting Hin-
tikka's claim for a branching reading. (Barwise, 1979, p. 51)

However, none of the authors have given real empirical data to support their
claims. We confronted this abstract discussion with linguistic reality through
experiments.
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6.4.1 Experimental Hypotheses

Our hypotheses are as follows:

1. Hypothesis. People treat Hintikka-like sentences as symmetric sentences.

This was theoretically justi�ed in the paper of Hintikka (1973) and discussed in
Section 6.3.2. To be more precise we predict that subjects will treat sentences
like (29) and (30) as equivalent.

(29) More than 3 villagers and more than 5 townsmen hate each other.

(30) More than 5 townsmen and more than 3 villagers hate each other.

2. Hypothesis. In an experimental context people assign to Hintikka-like sen-
tences meanings which are best represented by the conjunctional formulae.

We predict that subjects will tend to interpret Hintikka-like sentences in the
conjunctional way, i.e. they will accept the sentence when confronted with a
model that satis�es its conjunctional interpretation. Arguments for that were
given throughout the previous section and were summed up in Section 6.3.6.

In addition we conduct a cross-linguistic comparison. We predict that the
comprehension of Hintikka-like sentences is similar in English and Polish � in
both languages native speakers allow the conjunctional reading.

6.4.2 Subjects

Subjects were native speakers of English and native speakers of Polish who vol-
unteered to take part in the experiment. They were undergraduate students in
computer science at Stanford University and in philosophy at Warsaw University.
They all had elementary training in logic so they could understand the instruc-
tions and knew the simple logical quanti�ers. The last version of the experiment,
the one we are reporting on here, was conducted on thirty-two computer science
students and ninety philosophy students. However, in the process of devising
the experiment we tested fragments of it on many more subjects, getting par-
tial results on which we reported for example at the Logic Colloquium 2006 (see
Gierasimczuk and Szymanik, 2006, 2007).

The choice of students with some background in logic was made so that our
subjects could be trusted to understand instructions which assume some famil-
iarity with concepts of validity and truth. In that manner, we could formulate
the task using such phrases as �one sentence implies the other�, �inference pattern
is valid�, and �sentence is a true description of the picture�.
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6.4.3 Materials

It was suggested by Barwise and Cooper (1981) and empirically veri�ed by Geurts
and van der Silk (2005) that the monotonicity of quanti�ers in�uences how di�-
cult they are to comprehend. Moreover, our results from Chapter 7 also suggest
this dependency (see Section 7.4). In particular, sentences containing downward
monotone quanti�ers are more di�cult to reason with than sentences containing
only upward monotone quanti�ers.3 Therefore, in the experiment � as we are
interested rather in combinations of quanti�ers than in simple determiners � we
used only monotone increasing quanti�ers of the form �More than n� and their
combinations in simple grammatical sentences. We used determiners, that are rel-
atively easy to process, because we wanted our subjects to focus on combinations
of quanti�ers and not on individual ones.

In our tasks the quanti�ers referred to the shape of geometrical objects (circles
and squares). The sentences were Hintikka-like sentences (for the whole test in
English see Appendix A and in Polish Appendix B). All sentences were checked
for grammaticality by native speakers.

6.4.4 Experiments

The study was conducted in two languages and consists of two parts. It was a
�pen and paper� study. There were no time limits and it took 20 minutes on
average for all students to �nish the test. Below we present descriptions of each
part of the English version of the test. The Polish test was analogous (compare
Appendices A and B).

Experiment I: Are Hintikka-like Sentences Symmetric?

The �rst part of the test was designed to check whether subjects treat Hintikka-
like sentences as symmetric (see Section 6.3.2 for a discussion).

Let us recall the notion of symmetry for our sentences. Let Q1,Q2

be quanti�ers and ψ a quanti�er-free formula. We will say that sentence
ϕ := Q1x Q2y ψ(x, y) is symmetric if and only if it is equivalent to
ϕ′ := Q2y Q1x ψ(x, y). In other words, switching the whole quanti�er phrase
(determiner + noun) does not change its meaning.

We checked whether subjects treat sentences with switched quanti�er pre�xes
as equivalent. We presented subjects with sentence pairs ϕ, ϕ′ and asked whether
the �rst sentence implies the second sentence. There were 20 tasks. Ten of them
were valid inference patterns based on the symmetry. The rest were �llers. Six
were invalid patterns similar to the symmetric case. In three we changed the

3A quanti�er QM is upward monotone (increasing) i� the following holds: if QM (A) and
moreover A ⊆ B ⊆ M then QM (B). The downward monotone (decreasing) quanti�ers are
de�ned analogously as being closed on taking subsets. See Section 2.2.5.
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nouns following the quanti�ers, i.e. we had ϕ := Q1x Q2y ψ(x, y) and ϕ′ :=
Q1y Q2x ψ(x, y). In the second three we switched the determiners and not the
whole quanti�er phrases, i.e. ϕ := Q1x Q2y ψ(x, y) and ϕ′ := Q2x Q1y ψ(x, y).
Four of the tasks were simple valid and invalid inferences with the quanti�ers
�more than�, �all�, and �some�.

We constructed our sentences using nonexistent nouns to eliminate any prag-
matic in�uence on subjects' answers. For example, in the English version of the
test we quanti�ed over non-existing nouns proposed by Soja et al. (1991): mells,
stads, blickets, frobs, wozzles, �eems, coodles, do�s, tannins, �tches, and tul-
vers. In Polish we came up with the following nouns: strzew, memniak, balbasz,
protoro»ec, melarek, kr¦towiec, stular, wachlacz, �sut, bubrak, wypsztyk. Our
subjects were informed during testing that they are not supposed to know the
meaning of the common nouns occurring in the sentences. Therefore, subjects
were aware that they have to judge an inference according to its logical form and
not by semantic content or pragmatic knowledge.

Figure 6.2 gives examples of each type of task in English.

More than 12 �eems and more than 13 coodles hate each other.
More than 13 coodles and more than 12 �eems hate each other.

VALID NOT VALID

More than 20 wozzles and more than 35 �tches hate each other.
More than 20 �tches and more than 35 wozzles hate each other.

VALID NOT VALID

More than 105 wozzles and more than 68 coodles hate each other.
More than 68 wozzles and more than 105 coodles hate each other.

VALID NOT VALID

Some tulvers are mells.
Some mells are tulvers.

VALID NOT VALID

Figure 6.2: 4 tasks from the �rst experiment: symmetry pattern, two invalid
patterns and a simple inference.

We excluded the possibility of interpreting the sentences as being about the
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relations between objects of the same kind (e.g. �68 coodles hate each other�)
by explicitly telling the subjects that in this setting the relation can occur only
between objects from two di�erent groups.

Results We got 90% correct answers in the group consisting of philosophy
undergraduates at Warsaw University and 93% correct answers among Stanford
University computer science students, where by �correct� we mean here �correct
according to our prediction about symmetricity�. In simple inferences we got 83%
(χ2=153.4, df=1, p < 0.001) and 97% (χ2=110.63, df=1, p < 0.001), respectively.
In valid symmetricity tasks the result was: 94% (χ2=709.33, df=1, p < 0.001) and
98% (χ2=286.90, df=1, p < 0.001), and in invalid symmetricity inferences: 86%
(χ2=286.02, df=1, p < 0.001) and 93% (χ2=138.38, df=1, p < 0.001) (see Figure
6.3). This is a statistically signi�cant result for both groups. Therefore, our �rst
hypothesis � that people treat Hintikka-like sentences as symmetric sentences
� was con�rmed.
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simple valid invalid

English
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Figure 6.3: Percentage of correct answers in the �rst test.

Moreover, additional analysis reveals that with respect to the simple inferences
45 philosophy (50%) and 28 computer science (88%) students answered correctly
all questions. Focusing on the proper symmetricity tasks, 71 subjects among the
philosophers (79%, χ2 = 30.04, p<0.001, df=1) and 29 computer scientists (91%,
χ2 = 21.13, p<0.001, df=1) recognized correctly all valid and invalid reasoning
with a combination of two quanti�ers (see Table 6.1 for summary of the results).

Discussion Let us shortly justify our statistical analysis of the results. We were
only interested in the frequency of correct answers among all answers to the tasks
based on the valid symmetric inference pattern (simple inferences and inferences
based on the logically invalid schema were treated as �llers) and that is why we
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Groups Polish American
philosophers computer scientists

number of subjects 90 32
simple inferences correct 83% 97%

symmetricity inferences correct 94% 98%
invalid inferences correct 86% 93%

all simple inferences correct 45 (50%) 28 (88%)
all symmetricity items correct 71 (79%) 29 (91%)

Table 6.1: Percentage of correct answers in the �rst test.

used χ2 to analyze our data and not a statistical model, like MANOVA, in which
the observed variance is partitioned into components due to di�erent independent
(explanatory) variables (e.g. 2 groups of subjects, 4 types of tasks). We did not
analyze the data with MANOVA because the assumptions were violated (see
e.g. Ferguson and Takane, 1990). According to our hypothesis we had expected
that the number of answers �valid� will dominate. In other words, the normality
assumption of MANOVA was not satis�ed, i.e., the distribution of the answers
is not normal but skewed (-4.728) towards validity. That is another reason to
use non-parametric test like χ2. Additionally, the conditions (within-subject) for
each kind of tasks were di�erent (the number of problems varied between 10, 4, 3,
3) and the groups were not equal (90 philosophers, 32 computer scientists) what
also indicates the use of non-parametric statistical model.

However, we did compare between-subjects the performance of two unequal
groups (philosophers vs computer scientists) with respect to the three tests and
found no statistically signi�cant di�erences. To be more precise, there was no dif-
ference neither in the task based on valid symmetric inference schema (χ2=6.583,
df=6, p=0.361), in the simple inferences (χ2=8.214, df=4, p=0.084), nor in in-
valid inference patterns (χ2=3.888, df=4, p=0.421).

Experiment II: Branching vs. Conjunctional Interpretation

The second questionnaire was the main part of the experiment, designed to dis-
cover whether people agree with the conjunctional reading of Hintikka-like sen-
tences. Subjects were presented with nine non-equivalent Hintikka-like sentences.
Every sentence was paired with a model. All but two sentences were accom-
panied by a picture satisfying the conjunctional reading but not the branching
reading. The remaining two control tasks consisted of pictures in which the as-
sociated sentences were false, regardless of which of the possible interpretations
was chosen.

Every illustration was black and white and showed irregularly distributed
squares and circles. Some objects of di�erent shapes were connected with each
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other by lines. The number of objects in the pictures varied between 9 and 13
and the number of lines was between 3 and 15. Moreover, the number of objects
in pictures where the sentences were false was similar to the number of objects
in the rest of the test items. Almost all subjects solved these tasks according to
our predictions (90% correct answers).

The sentences were of the following form, where 1 ≤ n,m ≤ 3:

(31) More than n squares and more than m circles are connected by lines.

(32) Wi¦cej ni» n kwadraty i wi¦cej ni» m koªa s¡ poª¡czone liniami.

Notice that the Hintikka-like sentences discussed in Chapter 6.1 as well as the
items in the symmetricity test contain the phrase �each other�. However, we
decided not to use this phrase in the sentences tested in the main part of the
experiments. This was because our previous experiments (Gierasimczuk and
Szymanik, 2006, 2007) indicated that the occurrence of reciprocal expressions
in these sentences made people interpret them as statements about the existence
of lines between �gures of the same geometrical shape. This surely is not the
interpretation we wanted to test.

In the �rst the the usage of the phrase �each other� was meant for making
�hating� relation symmetric. In the case of this experiment the relation �being
connected by a line� is already symmetric in itself. Moreover, interviews with
native speakers suggest that in the context of the relation �being connected by
lines� omitting �each other� leads to more natural sentences. Additionally, in the
Polish version of the sentences there is no possible phrase corresponding to �each
other�. This is a grammatical di�erence between Polish and English Hintikka-like
sentences. Even though we assert the possibility of the in�uence that reciprocals
can have on the interpretation of the Hintikka-like sentences (see e.g. Dalrymple
et al., 1998) this discussion falls outside the scope of the chapter.

Figures 6.4 and 6.5 show two examples of our tasks. In the �rst picture the
conjunctional reading is true and the branching reading is false. In the second
picture the associated sentence is false, regardless of interpretation. The subjects
were asked to decide if the sentence is a true description of the picture.

6.4.1. Remark. Let us give here a short explanation why we did not show pic-
tures with a branching interpretation. The theoretical arguments given in Section
6.1 justify the following opposition: either Hintikka-like sentences are interpreted
in the conjunctional or in the branching way. We want empirical evidence for
acceptability of the conjunctional reading. In principle we have to compare this
with the branching meaning. Notice however, that the branching reading implies
the conjunctional reading so it is impossible to achieve consistent results rejecting
branching readings and con�rming conjunctional reading � at least as long as
subjects recognize the inference relations between branching and conjunctional
readings, and in our experience most of them do (see Gierasimczuk and Szymanik,
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More than 1 square and more than 2 circles are connected by lines.

TRUE FALSE

Figure 6.4: Conjunctional task from the second part of the experiment.

2006, 2007). Therefore, we want to prove that people accept the conjunctional
reading and not that they reject the branching one. In other words, we are look-
ing for the weakest (theoretically justi�ed) meaning people are ready to accept.
To do this it is su�cient to have tasks with pictures for which the conjunctional
reading is true, but the branching reading is false. As long as subjects accept
them we know that they agree with the conjunctional reading and there is no
need to confront them with the branching pictures. Of course this does not mean
that people in principle reject the branching reading (but see the computational
complexity argument from Section 6.3.5).

Results We got the following results.4 94% (χ2=444.19, df=1, p < 0.001) of the
answers of the philosophy students and 96% (χ2=187.61, df=1, p < 0.001) of the
answers of the computer science students were conjunctional, i.e., �true� when the
picture represented a model for a conjunctional reading of the sentence. When
it comes to 2 sentences that were false in the pictures no matter how subjects
interpreted them we got the following results 92% (χ2=136.94, df=1, p < 0.001)
and 96% (χ2=50.77, df=1, p < 0.001) (see Figure 6.6). All these di�erences are
statistically signi�cant. Therefore, our second hypothesis � that in an empirical

4We used non-parametric statistical test χ2 because of the analogous reasons like those
explained when discussing the �rst experiment.
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More than 3 circles and more than 2 squares are connected by lines.

TRUE FALSE

Figure 6.5: An example of a false task from the second part of the experiment.

context people can assign to Hintikka-like sentences meanings which are best
represented by the conjunctional formulae � was con�rmed.

Additonally, analysis of the individual subjects' preferences revealed what
follows. 85 (94%, χ2 = 71.11, p<0.001, df=1) philosophers and 31 (97%, χ2 =
28.12, p<0.001, df=1) computer scientists agreed on the conjunctional reading
in more than half of the cases. Moreover, 67 (74%, χ2 = 21.51, p<0.001, df=1)
philosophers and 28 (88%, χ2 = 18, p<0.001, df=1) computer scientists chose
conjunctional readings in all tasks (see Table 6.2 for presentation of all data).

Groups Polish American
philosophers computer scientists

number of subjects 90 32
conjunctional answers 94% 95%

recognized falsity 92% 96%
most conjunctional answers 85 (94%) 31 (97%)
only conjunctional answers 67 (74%) 28 (88%)

Table 6.2: Results of the second test.
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Figure 6.6: Percentage results of the second test.

Moreover, we did not observe any di�erences between our two subject groups
neither in judging obviously false situations (χ2=0.188, df=1, p=0.664) nor in the
conjunctional preferences (χ2=3.900, df=7, p=0.791). Therefore, we conclude
that with respect to interpretation of quanti�er combinations in Hintikka-like
sentences there is no di�erence between English and Polish.

6.5 Summary

Conclusions

We argue that Hintikka-like sentences have readings expressible by linear formulae
that satisfy all conditions which caused the introduction of branching interpreta-
tion, despite what Hintikka (1973) and many of his followers have claimed. The
reasons for treating such natural language sentences as having Fregean (linear)
readings are twofold.

In Section 6.1 we discussed theoretical arguments. We can sum up them as
follows.

• For Hintikka's sentence we should focus on four possibilities: a branching
reading (4), and three weak readings: (5), (6), (7).

• Hintikka's argument from symmetricity given in Section 6.3.2, together with
the results of our �rst experiment, allows us to reject asymmetric formulae.
A similar argument leads to rejecting the linear readings of other Hintikka-
like sentences.

• What about the weakest reading? It does not exist for some Hintikka-like
sentences so it cannot be viewed as a universal reading for all of them.
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Moreover, the inferential argument from Section 6.3.3 suggests that the
weakest meaning is also not an appropriate reading of Hintikka's sentence.

• Therefore, there are only two alternatives � we have to choose between the
conjunctional (5) and the branching readings (4).

In section 6.4 we discussed our empirical results. They indicate that people
interpret Hintikka-like sentences in accordance with the conjunctional reading, at
least in an experimental context. Moreover, we observed no statistically signi�-
cant di�erences in preferences of native English and native Polish subjects.

Additionally, our experimental arguments can be supported by the following
observations.

• The argument by Barwise from negation normality, discussed in Section
6.3.4, agrees with our empirical results.

• Branching readings � being NP-complete � can be too di�cult for lan-
guage users. Conjunctional readings being PTIME computable are much
easier in this sense.

Hence, even though we in principle agree that Hintikka-like sentences are
ambiguous between all proposed readings, our experiments and theoretical con-
siderations convince us that in some situations the proper reading of Hintikka-like
sentences can be given by conjunctional formulae. This clearly contradicts Hin-
tikka's thesis.

Perspectives

We have tested one of the best known among non-Fregean combinations of quan-
ti�ers, the so-called Hintikka-like sentences. As a result we came up with ar-
guments that those sentences can be interpreted in natural language by Fregean
combinations of quanti�ers. However, there is still some research to be done here.

6.5.1. Question. One can �nd and describe linguistic situations in which
Hintikka-like sentences demand a branching analysis. For example, the work
of Schlenker (2006) goes in this direction (recall example 12).

6.5.2. Question. Moreover, it is interesting to ask which determiners allow a
branching interpretation at all (see e.g. Beghelli et al., 1997).

6.5.3. Question. Finally, we did not discuss the interplay of our proposition
with a collective reading of noun phrases (see e.g. Lønning, 1997, and Chapter 5)
and di�erent interpretations of reciprocal expressions (see Dalrymple et al., 1998,
and Chapter 4).
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As to the empirical work, we �nd a continuation toward covering other quanti-
�er combinations exciting and challenging. Some ideas we discussed in the context
of Hintikka-like sentences, such as inferential meaning, negation normality, and
computational complexity perspective, seem universal and potentially useful for
studying other quanti�er combinations. For instance, they can be used to inves-
tigate the empirical reality of the in�uence of computational complexity on the
Strong Meaning Hypothesis in the domain of reciprocal expressions discussed in
Chapter 4.



Chapter 7

Comprehension of Simple Quanti�ers

In this chapter we step back from complex quanti�ers to consider a simpler case.
We are interested here in quanti�ers binding two unary variable (monadic quan-
ti�ers of type (1, 1)). As we will see their meanings can be explained in terms of
�nite-state and push-down automata. Therefore, from the computational com-
plexity perspective we are very low in the hierarchy of computational problems
(see Section 2.3.3).

Restricting ourselves to tractable natural language constructions we will be
able to directly argue for the relevance of computational complexity theory for
cognitive science. Actually, we will empirically show that more complex quanti-
�ers are more di�cult to comprehend. What do we mean by that?

In this chapter we compare the time needed for understanding di�erent types
of quanti�er. Our results are consistent with an automata-theoretic model of
processing monadic quanti�ers in natural language which has been posited by
several linguists and logicians. We show that the distinction between quanti�ers
recognized by �nite automata and push-down automata is psychologically rele-
vant. Moreover, our results point out the in�uence of computational resources
on the complexity of cognitive tasks as discussed in Chapter 1. Additionally,
our research clari�es the recent neuropsychological research on quanti�er com-
prehension. In particular, we directly consider the computational properties of
quanti�ers and not their logical de�nability. We also throw more light on the
involvement of working memory by comparing comprehension of quanti�ers over
discourse universes with randomly placed objects and those where objects are
ordered in some speci�c way, simplifying the computational task with respect to
memory resources.

This chapter is based on the paper (Szymanik, 2007a) and joint work with
Marcin Zajenkowski (see Szymanik and Zajenkowski, 2008).

151
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7.1 Motivations

One of the primary objectives of cognitive sciences is to explain human informa-
tion processing. As we have mentioned in Chapter 1 we are mainly concerned
with the computational level (see Marr, 1983) of this task. Cognitive science has
put a lot of e�ort into investigating the computational level of linguistic compe-
tence (see e.g. Isac and Reiss, 2008; Sun, 2008). Today computational restrictions
are taken very seriously when discussing cognitive capacities (see Chapter 1 for
more discussion). Unfortunately, there are not many empirical studies directly
linking the complexity predictions of computational models with psychological
reality. The present research aims at increasing our empirical evidence in favor
of this connection.

We are concerned here with the very basic linguistic ability of understanding
sentences, and consistently identify meaning with a computing procedure (see
Chapter 1). In particular, we are dealing here with the capacity of recognizing
the truth-value of sentences with simple quanti�ers (like �some�, �an even number
of�, �more than 7�, �less than half�) in �nite situations illustrated in pictures.
We show that a simple computational model describing the processing of such
sentences � presented in Section 7.1.2 � is psychologically plausible with respect
to reaction time predictions.

Our research was motivated � among other things � by a recent neuropsy-
chological investigation into the same problem and, accordingly, by some problems
with the interpretation of its results. We discuss these matters in the next sec-
tion before we provide readers with some mathematical details of the automata-
theoretic model of quanti�er processing we are working with. Sections 7.2 and
7.3 present our empirical studies of some predictions that can be drawn from that
model. We end with a summary and an outline of future work. The basic notions
of mathematical linguistics and automata theory we are using can be found in
Section 2.3.1 of the Prerequisites chapter.

7.1.1 Previous Investigations in the Area

Quanti�ers have been widely treated from the perspective of cognitive psychol-
ogy (see e.g. Sanford et al., 1994). However, the research presented by McMil-
lan et al. (2005) was the �rst attempt to investigate the neural basis of natural
language quanti�ers (see also Mcmillan et al. (2006) for evidence on quanti�er
comprehension in patients with focal neurodegenerative disease, and Clark and
Grossman (2007); Troiani et al. (2009) for a more general discussion). This pa-
per was devoted to a study of brain activity during comprehension of sentences
with quanti�ers. Using neuroimaging methods (BOLD fMRI) the authors exam-
ined the pattern of neuroanatomical recruitment while subjects were judging the
truth-value of statements containing natural language quanti�ers. According to
the authors their results verify a particular computational model of natural lan-
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guage quanti�er comprehension posited by several linguists and logicians (see e.g.
van Benthem, 1986). We have challenged this statement by invoking the compu-
tational di�erence between �rst-order quanti�ers and divisibility quanti�ers (see
Szymanik, 2007a). The starting point of the recent research is this very criticism.
Let us have a closer look at it.

McMillan et al. (2005) were considering the following two standard types of
quanti�ers: �rst-order and higher-order quanti�ers. First-order quanti�ers are
those de�nable in �rst-order predicate calculus, which is the logic containing only
quanti�ers ∃ and ∀ binding individual variables. In the research, the following
�rst-order quanti�ers were used: �all�, �some�, and �at least 3�. Higher-order
quanti�ers are those not de�nable in �rst-order logic, for example �most�, �every
other�. The subjects taking part in the experiment were presented with the
following higher-order quanti�ers: �less than half of�, �an even number of�, �an
odd number of�.

The expressive power of higher-order quanti�ers is much greater than the
expressibility of �rst-order quanti�ers. This di�erence in expressive power cor-
responds to a di�erence in the computational resources required to check the
truth-value of a sentence with those quanti�ers.

In particular, to recognize �rst-order quanti�ers we only need computability
models which do not use any form of internal memory (data storage). Intuitively,
to check whether sentence (1) is true we do not have to involve short-term memory
(working memory capacity) (see e.g. Baddeley, 2007, for a psychological model).

(1) All sentences in this chapter are correct.

It su�ces to read the sentences from this chapter one by one. If we �nd an
incorrect one, then we know that the statement is false. Otherwise, if we read the
entire chapter without �nding any incorrect sentence, then statement (1) is true
(see Figure 7.2 for an illustration of a relevant automaton). We can proceed in a
similar way for other �rst-order quanti�ers. Formally, it has been proved by van
Benthem (1986) that all �rst-order quanti�ers can be computed by such simple
devices as �nite automata (see Theorem 7.1.8 in Section 7.1.2, which contains the
mathematical details of the correspondence between quanti�ers and automata).

However, for recognizing some higher-order quanti�ers, like �less than half� or
�most�, we need computability models making use of internal memory. Intuitively,
to check whether sentence (2) is true we must identify the number of correct
sentences and hold it in working memory to compare with the number of incorrect
sentences.

(2) Most of the sentences in this chapter are correct.

Mathematically speaking, such an algorithm can be realized by a push-down
automaton (see Theorem 7.1.10 in the next section).
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From this perspective, McMillan et al. (2005) have hypothesized that all quan-
ti�ers recruit the right inferior parietal cortex, which is associated with numeros-
ity. Taking the distinction between the complexity of �rst-order and higher-order
quanti�ers for granted, they also predicted that only higher-order quanti�ers re-
cruit the prefrontal cortex, which is associated with executive resources, like work-
ing memory. In other words, they believe that computational complexity di�er-
ences between �rst-order and higher-order quanti�ers are also re�ected in brain
activity during processing quanti�er sentences (McMillan et al., 2005, p. 1730).
This hypothesis was con�rmed.

In our view the authors' interpretation of their results is not convincing. Their
experimental design may not provide the best means of di�erentiating between
the neural bases of the various kinds of quanti�ers. The main point of criticism
is that the distinction between �rst-order and higher-order quanti�ers does not
coincide with the computational resources required to compute the meaning of
quanti�ers. There is a proper subclass of higher-order quanti�ers, namely divis-
ibility quanti�ers, which corresponds � with respect to memory resources � to
the same computational model as �rst-order quanti�ers.

McMillan et al. (2005) suggest that their study honours a distinction in com-
plexity between classes of �rst-order and higher-order quanti�ers. They also claim
that:

higher-order quanti�ers can only be simulated by a more complex
computing device � a push-down automaton � which is equipped
with a simple working memory device.

(McMillan et al., 2005, p. 1730)

Unfortunately, this is not true. In fact, most of the quanti�ers identi�ed in
the research as higher-order quanti�ers can be recognized by �nite automata. As
we will see in the next section both �an even number� and �an odd number� are
quanti�ers recognized by two-state �nite automata with a transition from the
�rst state to the second and vice versa.

7.1.2 Monadic Quanti�ers and Automata

In what follows we give a short description of the relevant mathematical results.
We assume familiarity with the basic terminology of automata theory which we
surveyed in Section 2.3.1.

Monadic Generalized Quanti�ers

In this chapter we are concerned with generalized quanti�er theory restricted to
its simplest form. We want to assign a meaning for sentences like the following:

(3) All poets have low self-esteem.
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(4) Some dean danced nude on the table.

(5) At least 7 grad students prepared presentations.

(6) An even number of the students saw a ghost.

(7) Most of the students think they are smart.

(8) Less than half of the students received good marks.

We have explained in detail the semantics assigned to these quanti�ers in
Section 2.2, where we also formally de�ned the notion of a generalized quanti�er.
Below we give a formal de�nition of monadic generalized quanti�ers of type (1, 1).
These are the quanti�ers we are working with in this chapter.

7.1.1. Definition. A monadic generalized quanti�er of type (1, 1) is a class Q
of models of the form M = (M,A,B), where A and B are subsets of the universe
M . Additionally, Q is closed under isomorphisms. �

Representation of Finite Models

Having a quanti�ed sentence and a model we would like to know how to compute
the truth-value of this sentence in that model. The �rst step is to represent �nite
situations (models) as strings over some �nite alphabet. In other words, we need
to encode our �nite models in a linear form. Here is the idea for doing it.

We restrict ourselves to �nite models of the form M = (M,A,B). For instance,
let us consider the model from Figure 7.1. We list all elements of the model in
some order, e.g., c1, . . . , c5. Then we replace every element in that sequence with
one of the symbols from alphabet Γ = {aĀB̄, aAB̄, aĀB, aAB}, according to the
constituents to which it belongs. This means that we put the string of letters
aĀB̄ in place of element c1 as it belongs to the complement of the set A (denoted
as Ā) and to the complement of the set B. We write aAB̄ for element c2 because
it belongs to the set A and to the complement of the set B, and so on. As a
result, in our example, we get the word αM = aĀB̄aAB̄aABaĀBaĀB. The word αM

corresponds to the model in which: c1 ∈ ĀB̄, c2 ∈ AB̄c3 ∈ AB, c4 ∈ ĀB, c5 ∈ ĀB.
Hence, it uniquely (up to isomorphism) describes the model from Figure 7.1.

7.1.2. Definition. The class Q corresponding to a quanti�er is represented by
the set of words (language) LQ describing all elements (models) of the class. �

We can extend this idea of coding to generalized quanti�ers of any type (see
e.g. Mostowski, 1998). For a monadic quanti�er binding n variables we will in
general need an alphabet consisting of 2n letters, one letter for every constituent.
However, if we restrict ourselves to so-called CE-quanti�ers of type (1, 1), i.e., sat-
isfying isomorphism closure, extension (domain independence) and conservativity
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Figure 7.1: This model is uniquely described by αM = aĀB̄aAB̄aABaĀBaĀB.

(see Section 2.2.5) � which arguably cover all determiners in natural language
� then we would need only two letters, one for the elements belonging to the
�rst argument but not the second one and the other for the elements in the in-
tersection of the arguments. This observation follows from Theorem 2.2.19. It
suggests that this coding is a quite psychologically plausible representation in
case of CE-quanti�ers.

Quanti�er Automata

Having these de�nitions we would like to know what kind of automata correspond
to particular quanti�ers.

Aristotelian Quanti�ers The Aristotelian quanti�ers �all�, �some�, �no�, and
�not all�, are �rst-order de�nable. They need �nite automata with a �xed number
of states. Let us consider an example.

7.1.3. Example. All As are B is true if and only if A ⊆ B. In other words, the
sentence is true as long as there is no element belonging to A but not B. Having
representation αM of a �nite model M over alphabet Γ we can easily recognize
whether M satis�es sentence All As are B. The following �nite automaton from
Figure 7.2 does the job. The automaton gets αM as its input. It inspects the

q0 q1

Γ− {aAB̄}

aAB̄

Γ

Figure 7.2: Finite automaton recognizing LAll
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word letter by letter starting in the accepting state. As long as it does not �nd
letter aAB̄ it stays in the accepting state, because this means that there was no
element belonging to A but not to B. If it �nds such an element (letter), then it
already �knows� that the sentence is false and moves to the rejecting state, where
it stays no matter what happens next.

In other words, the quanti�er �All� corresponds to the following regular lan-
guage:

LAll = {α ∈ Γ∗ : #aAB̄(α) = 0},

where #c(α) is the number of occurrences of the letter c in the word α.

Cardinal Quanti�ers Cardinal quanti�ers, e.g., �at least 3�, �at most 7�, and
�between 8 and 11�, like the Aristotelian quanti�ers are also �rst-order de�n-
able. However, the number of states of a �nite automaton recognizing a cardinal
quanti�er increases in proportion to the number that needs to be represented.

7.1.4. Example. Consider for example the following automaton for
At least three As are B:

q0 q1 q2 q3

Γ− {aAB} Γ− {aAB} Γ− {aAB} Γ

aAB aAB aAB

Figure 7.3: Finite automaton recognizing LAt least three

This automaton needs four states and it corresponds to the language:

LAt least three = {α ∈ Γ∗ : #aAB(α) ≥ 3}.

Furthermore, to recognize �at least 8� we would need nine states and so on.

Parity Quanti�ers

7.1.5. Example. What about the quanti�er �an even number of�? It corre-
sponds to the following regular language:

LEven = {α ∈ Γ∗ : #aAB(α) is even }.

The �nite automaton from Figure 7.4 checks whether the number of occurrences
of the letter aAB in the string coding a given model is of even parity. It needs to
remember whether it is in the �even state� (q0) or the �odd state� (q1) and loops
between these states.
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q0 q1

Γ− {aAB}

aAB

aAB

Γ− {aAB}

Figure 7.4: Finite automaton recognizing LEven

Proportional Quanti�ers

7.1.6. Example. Finally, let us have a look at the quanti�er �most�. The sen-
tence Most As are B is true if and only if card(A∩B) > card(A−B). Therefore,
the quanti�er corresponds to the following context-free language:

LMost = {α ∈ Γ∗ : #aAB(α) > #aAB̄(α)}.

There is no �nite automaton recognizing all such languages. As models might be
of arbitrary �nite cardinality so also the length of the coding strings is unbounded.
In such a case it is impossible to compute �most� having only a �xed �nite number
of states as we are not able to predict how many states are needed (see Section
2.3.1 for mathematical justi�cation). To give a computational device for this
problem, some kind of internal memory, which allows the automaton to compare
any number of occurrences of the symbols aAB and aAB̄, is needed. A Push-down
automata is a computational model that can achieve this by implementing the
idea of a stack (the particular push-down automaton needed for recognizing LMost

is similar to the automaton for the language L described in Section 2.3.1).

Characterization The examples considered above already give us the �avor of
what is going on. Below we give a general answer to the question about computing
devices recognizing particular quanti�ers. We start by saying what it means that
a class of monadic quanti�ers is recognized by a class of devices.

7.1.7. Definition. Let D be a class of recognizing devices, Ω a class of monadic
quanti�ers. We say that D accepts Ω if and only if for every monadic quanti�er
Q:

Q ∈ Ω ⇐⇒ there is a device A ∈ D such that A accepts LQ.

�

Now we are ready to state the relevant results. Quanti�ers de�nable in �rst-
order logic, FO, can be recognized by acyclic �nite automata, which are a proper
subclass of the class of all �nite automata (van Benthem, 1986).
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7.1.8. Theorem. A quanti�er Q is �rst-order de�nable i� LQ is accepted by an
acyclic �nite automaton.

A less well-known result due to Mostowski (1998) says that exactly the quanti-
�ers de�nable in divisibility logic, FO(Dn) (i.e. �rst-order logic enriched by all
quanti�ers �divisible by n�, for n ≥ 2), are recognized by �nite automata (FAs).

7.1.9. Theorem. A monadic quanti�er Q is de�nable in divisibility logic i� LQ

is accepted by a �nite automaton.

For instance, the quanti�er D2 can be used to express the natural language quan-
ti�er �an even number of�. An example of a quanti�er falling outside the scope of
divisibility logic is �most�. Hence, it cannot be recognized by a �nite automaton.

A partial characterization of the quanti�ers recognized by push-down au-
tomata is also known. For example, quanti�ers of type (1) expressible in the
arithmetic of addition (additive quanti�ers, semi-linear quanti�ers), so-called
Presburger Arithmetic (PrA), are recognized by push-down automata (PDA) (van
Benthem, 1986).

7.1.10. Theorem. A quanti�er Q of type (1) is de�nable in PrA i� LQ is ac-
cepted by a push-down automaton.

More results on push-down automata and quanti�ers can be found in a survey
by Mostowski (1998), where the class of quanti�ers recognized by deterministic
push-down automata is characterized. This class seems particularly interesting
from a cognitive point of view.

Obviously, the semantics of many natural language quanti�er expressions can-
not be modeled by such a simple device as a PDA. Just think about sentence (9)
whose meaning cannot be computed by any push-down automaton (it corresponds
to the language Labc from Section 2.3.1).1 This fact follows from the Pumping
Lemma for context-free languages (see Theorem 2.3.11).

(9) An equal number of logicians, philosophers, and linguists climbed K2.

There are of course much more complex expressions in natural language, like
those discussed in the previous sections of the thesis.

To sum up, �rst-order and higher-order quanti�ers do not always di�er with
respect to memory requirements. For example, �an even number of� is a higher-
order quanti�er that can still be recognized by a �nite automaton. Therefore,
di�erences in processing cannot be explained based solely on de�nability proper-
ties, as those are not �ne-grained enough. A more careful perspective � taking
into account all the results we've mentioned, which are summed up in Table 7.1
� will have to be applied to investigate quanti�er comprehension. In what fol-
lows we present research exploring the subject empirically with respect to the
computational model described in this section.

1At least without assuming any additional invariance properties for the quanti�er in question.
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De�nability Examples Recognized by

FO �all cars�, �some students�, �at least 3 balls� acyclic FA
FO(Dn) �an even number of balls� FA
PrA �most lawyers�, �less than half of the students� PDA

Table 7.1: Quanti�ers, de�nability, and complexity of automata.

7.1.3 The Present Experiment

Our experiment consists of two separate studies. The �rst study, described in
Section 7.2, compares the reaction times needed for the comprehension of dif-
ferent types of quanti�ers. In particular, it improves upon the hypothesis of
McMillan et al. (2005) by taking directly into account the predictions of compu-
tational model and not only de�nability considerations. Additionally, we compare
two classes of quanti�ers inside the �rst-order group: Aristotelian and cardinal
quanti�ers.

The second study described in Section 7.3 dwells more on the engagement
of working memory in quanti�er comprehension by using ordered and random
distributions of the objects in pictures presented to participants.

General Idea of the First Study: Comparing Quanti�ers

First, we compared reaction time with respect to the following classes of quanti-
�ers: those recognized by an acyclic FA (�rst-order), those recognized by an FA
(parity), and those recognized by a PDA. McMillan et al. (2005) did not report
any data on di�erences between �rst-order and parity quanti�ers.

We predict that reaction time will increase along with the computational
power needed to recognize quanti�ers. Hence, parity quanti�ers (even, odd) will
take more time than �rst order-quanti�ers (all, some) but not as long as propor-
tional quanti�ers (less than half, more than half) (see De�nition 4.3.3).

Moreover, we have additionally compared the Aristotelian quanti�ers with
cardinal quanti�ers of higher rank, for instance �less than 8�. In the study of
McMillan et al. (2005) only one cardinal quanti�er of relatively small rank was
taken into consideration, namely �at least 3�. We predict that the complexity
of the mental processing of cardinal quanti�ers depends on the number of states
in the relevant automaton. Therefore, cardinal quanti�ers of high rank should
be more di�cult than Aristotelian quanti�ers. Additionally, we suggest that the
number of states in an automaton (size of memory needed) in�uences comprehen-
sion more directly than the use of loops. Hence, we hypothesize that the reaction
time for the comprehension of cardinal quanti�ers of higher rank is between that
for parity and proportional quanti�ers.
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General Idea of the Second Study: Quanti�ers and Ordering

There are many possible ways of verifying the role of working memory capacity
in natural language quanti�er processing. One way we have taken into account
is as follows.

In the �rst study, sentences with pictures were presented to subjects, who
had to decide whether the sentence was true. The array elements were randomly
generated. However, the ordering of elements can be treated as an additional
independent variable in investigating the role of working memory. For example,
consider the following sentence:

(10) Most As are B.

Although checking the truth-value of sentence (10) over an arbitrary universe
needs a use of working memory, if the elements of a universe are ordered in pairs
(a, b) such that a ∈ A, b ∈ B, then we can easily check it without using working
memory. It su�ces to go through the universe and check whether there exists an
element a not paired with any b. This can be done by a �nite automaton.

We have compared reaction times while subjects are judging the truth-value
of statements containing proportional quanti�ers, like sentence (10), over ordered
and arbitrary universes. We predict that when dealing with an ordered universe
working memory is not activated as opposed to when the elements are placed
in an arbitrary way. As a result reaction time over ordered universes should be
much shorter.

7.2 The First Study: Comparing Quanti�ers

7.2.1 Participants

Forty native Polish-speaking adults took part in this study. They were volunteers
from the University of Warsaw undergraduate population. 19 of them were male
and 21 were female. The mean age was 21.42 years (SD = 3.22) with a range of
18�30 years. Each subject was tested individually and was given a small �nancial
reward for participation in the study.

7.2.2 Materials and Procedure

The task consisted of eighty grammatically simple propositions in Polish contain-
ing a quanti�er that probed a color feature of cars on display. For example:

(11) Some cars are red.

(12) Less than half of the cars are blue.
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Eighty color pictures presenting a car park with cars were constructed to accom-
pany the propositions. The colors of the cars were red, blue, green, yellow, purple
and black. Each picture contained �fteen objects in two colors (see Figure 7.5).

Figure 7.5: An example of a stimulus used in the �rst study.

Eight di�erent quanti�ers divided into four groups were used in the study.
The �rst group of quanti�ers were �rst-order Aristotelian quanti�ers (all, some);
the second were parity quanti�ers (odd, even); the third were �rst-order cardinal
quanti�ers of relatively high rank (less than 8, more than 7); and the fourth were
proportional quanti�ers (less than half, more than half) (see Table 7.2). Each
quanti�er was presented in 10 trials. Hence, there were in total 80 tasks in the
study. The sentence matched the picture in half of the trials. Propositions with
�less than 8�, �more than 7�, �less than half�, �more than half� were accompanied
with a quantity of target items near the criterion for validating or falsifying the
proposition. Therefore, these tasks required a precise judgment (e.g. seven target
objects and �fteen in total) for �less than half�). Debrie�ng following the exper-
iment revealed that none of the participants had been aware that each picture
consisted of �fteen objects.

The experiment was divided into two parts: a short practice session followed
immediately by the experimental session. Each quanti�er problem was given
one 15.5 s event. In the event the proposition and a stimulus array containing
15 randomly distributed cars were presented for 15000 ms followed by a blank
screen for 500 ms. Subjects were asked to decide if the proposition was true of
the presented picture. They responded by pressing the key �P� if true and the
key �F� if false. The letters refer to the �rst letters of the Polish words for �true�
and �false�.

The experiment was performed on a PC computer running E-Prime ver-
sion 1.1.
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7.2.3 Results

Analysis of Accuracy

As we expected the tasks were quite simple for our subjects and they made only
a few mistakes. The percentage of correct answers for each group of quanti�ers
is presented in Table 7.2.

Quanti�er group Examples Percent

Aristotelian FO all, some 99
Parity odd, even 91

Cardinal FO less than 8, more than 7 92
Proportional less than half, more than half 85

Table 7.2: The percentage of correct answers for each group of quanti�ers.

Comparison of Reaction Times

To examine the di�erences in means we used a repeated measures analysis of vari-
ance with type of quanti�er (4 levels) as the within-subject factor. The assump-
tion of normality was veri�ed by the Shapiro-Wilk test. Because the Mauchly's
test showed violation of sphericity, Greenhouse-Geiser adjustment was applied.
Moreover, polynomial contrast analysis was performed for the within-subject fac-
tor. SPSS 14 was used for the analysis.

Table 7.3 presents mean (M) and standard deviation (SD) of the reaction time
in milliseconds for each type of quanti�er.

Group Quanti�ers M SD

Aristotelian FO all, some 2257.50 471.95
Parity even, odd 5751.66 1240.41

Cardinal FO less than 8, more than 7 6035.55 1071.89
Proportional less than half, more than half 7273.46 1410.48

Table 7.3: Mean (M) and standard deviation (SD) of the reaction time in mil-
liseconds for each type of quanti�er.

We found out that the increase in reaction time was determined by the quanti�er
type (F (2.4, 94.3) = 341.24, p < 0.001, η2=0.90). Pairwise comparisons among
means indicated that all four types of quanti�ers di�ered signi�cantly from one
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another (p < 0.05). Polynomial contrast analysis showed the best �t for a lin-
ear trend (F (1, 39) = 580.77, p < 0.001). The mean reaction time increased as
follows: Aristotelian quanti�ers, parity quanti�ers, cardinal quanti�ers, propor-
tional quanti�ers (see Figure 7.6).

Figure 7.6: Average reaction times in each type of quanti�ers in the �rst study.

7.3 The Second Study: Quanti�ers and Ordering

7.3.1 Participants

Thirty native Polish-speaking adults took part in the second study. They were
undergraduate students from two Warsaw universities. 12 were male and 18 were
female. The mean age was 23.4 years (SD = 2.51) with a range of 20�28 years.
Each subject was tested individually.

7.3.2 Materials and Procedure

In the task, we used sixteen grammatically simple propositions in Polish contain-
ing proportional quanti�ers that probed a color feature of cars on a display (e.g.
�More than half of the cars are blue�). Color pictures presenting a car park with
eleven cars were constructed to accompany the propositions. As in the �rst study,
the colors used for the cars were: red, blue, green, yellow, purple and black. Each
picture contained objects in two colors.
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Two di�erent proportional quanti�ers (less than half, more than half) were
presented to each subject in 8 trials. Each type of sentence matched the picture
in half of the trials. Moreover, each quanti�er was accompanied by four pictures
presenting cars ordered in two rows with respect to their colors (see Figure 7.7)
and four pictures presenting two rows of randomly distributed cars. The rest of
the procedure was the same as in the �rst study.

Figure 7.7: An example of a stimulus used in the second study. A case when cars
are ordered.

7.3.3 Results

Analysis of Accuracy

The behavioral data showed higher accuracy of subjects' judgments for ordered
universes (90% correct) than for unordered universes (79% correct) (see Ta-
ble 7.4).

Comparison of Reaction Times

Since there were only two types of situations (random and ordered) in the study,
a paired-samples t-test was used to analyze di�erences in the reaction times.
Proportional quanti�ers over randomized universes (M=6185.93; SD=1759.09)
were processed signi�cantly longer than these over ordered models (M=4239.00;
SD=1578.26) (t(29) = 5.87 p < 0.001; d = 1.16).

Table 7.4 summarizes the results of this study.
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Situation Accuracy M SD

Randomized 79% 6185.93 1759.09
Ordered 90% 4239.000 1578.27

Table 7.4: Accuracy, mean (M) and standard deviation (SD) of the reaction
time in milliseconds for proportional quanti�ers over randomized and ordered
universes.

7.4 Summary

Conclusions

We have been studying the comprehension of natural language quanti�ers from
the perspective of simple, automata-theoretic computational models. Our investi-
gation is a continuation of previous studies. In particular, it enriches and explains
some data obtained by McMillan et al. (2005) with respect to reaction times. Our
results support the following conclusions:

• The automata-theoretic model described in Section 7.1.2 correctly predicts
that quanti�ers computable by �nite automata are easier to understand
than quanti�ers recognized by push-down automata. It improves the results
of McMillan et al. (2005), which compared only �rst-order quanti�ers with
higher-order quanti�ers, putting in one group quanti�ers recognized by �nite
automata and those recognized by push-down automata.

• We have observed a signi�cant di�erence in reaction time between Aris-
totelian and divisible quanti�ers, even though they are both recognized by
�nite automata. This di�erence may be accounted for by observing that
the class of Aristotelian quanti�ers is recognized by acyclic �nite automata,
whereas in the case of divisible quanti�ers we need loops. Therefore, loops
are another example of a computational resource having an in�uence on the
complexity of cognitive tasks.

• We have shown that processing �rst-order cardinal quanti�ers of high rank
takes more time than comprehension of parity quanti�ers. This suggests
that the number of states in the relevant automaton plays an important role
when judging the di�culty of a natural language construction. Arguably,
the number of states required in�uences hardness more than the necessity
of using cycles in the computation.

• Decreased reaction time in the case of proportional quanti�ers over ordered
universes supports the �ndings of McMillan et al. (2005), who attributed
the hardness of these quanti�ers to the necessity of using working memory.
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• Last but not least, our research provides direct evidence for the claim that
human linguistic abilities are constrained by computational resources (in-
ternal memory, number of states, loops).

Perspectives

There are many questions we leave for further research. Below we list a few of
them.

7.4.1. Question. Our experimental setting can be used for neuropsychological
studies extending the one by McMillan et al. (2005). On the basis of our research
and the �ndings of McMillan et al. (2005) we predict that comprehension of par-
ity quanti�ers � but not �rst-order quanti�ers � depends on executive resources
that are mediated by the dorsolateral prefrontal cortex. This would correspond
to the di�erence between acyclic �nite automata and �nite automata. Moreover,
we expect that only quanti�ers recognized by PDAs but not FAs activate working
memory (inferior frontal cortex). Additionally, the inferior frontal cortex should
not be activated when judging the truth-value of sentences with proportional
quanti�ers over ordered universes. Are these predictions correct? Further stud-
ies answering this question would contribute to extending our understanding of
simple quanti�er comprehension on Marr's implementation level.

7.4.2. Question. What about the algorithmic level of explanation? It would be
good to describe the procedures actually used by our subjects to deal with com-
prehension. In principle it is possible to try to extract real algorithms by letting
subjects manipulate the elements, tracking their behavior and then drawing some
conclusions about their strategies. This is one of the possible future directions to
enrich our experiments.

7.4.3. Question. Before starting any neuropsychological experiments it would
be useful to measure memory involvement for di�erent types of quanti�ers using
some more classical methods known from cognitive psychology, like a dual-task
paradigm combining a memory span measure with a concurrent processing task.
Will these methods con�rm working memory engagement according to the pre-
dictions?

7.4.4. Question. We �nd it interesting to explore the di�erences in compre-
hension of Aristotelian and cardinal quanti�ers in more detail, both from the
empirical and theoretical points of view. This would provide us with an oppor-
tunity to better understand the connection between the number of states as a
part of computational models and the real cognitive capacities described by these
models. How does the number of states in the minimal automaton in�uence the
di�culty of the quanti�er?
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7.4.5. Question. It has been observed by Geurts (2003) that monotonicity
plays a crucial role in reasoning with quanti�ers (see also Geurts and van der Silk,
2005). Upward monotone quanti�ers are easier than downward monotone ones
with respect to reasoning. It is a matter of empirical testing to check whether the
same holds for comprehension. Our study was not designed to explore this pos-
sibility. However, we compaired pairs of quanti�ers with respect to monotonicity
in the right argument and observed the following. In the case of the Aristotelian
quanti�ers �all� and �some� monotonicity in�uences reaction time for comprehen-
sion in a way close to being signi�cant. Parity quanti�ers are non-monotone, but
we have observed that �odd� is more di�cult. For cardinal �rst-order quanti�ers
we have a signi�cant result: the decreasing quanti�er �less than 8� is more di�cult
than its increasing counterpart. Unfortunately, we did not observe any statistical
dependencies between proportional quanti�ers of di�erent monotonicity. What is
the role of monotonicity in quanti�er comprehension?

7.4.6. Question. Finally, the automata-theoretic model can be extended for
other notions than simple quanti�ers. For example � as was already suggested
by van Benthem (1987) � by considering richer data structures it can account
for conditionals, comparatives, compound expressions in natural language, and
non-elementary combinations of quanti�ers (like branching); also it can form a
link with learnability theory (see e.g. Gierasimczuk, 2007) and others. Are such
possible extensions of any value for cognitive science?
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Conclusions and Perspectives

8.1 General Summary

In the thesis we have pursued the topic of the computational complexity of natural
language quanti�er constructions. Our perspective combined logical research with
linguistic insights and an empirical, cognitive foundation.

In Chapter 1 we discussed computational semantics as a part of the Dynamic
Turn in the philosophy of language. In particular, we gave a short history and ar-
gued for identifying a basic element of meaning � confronting it with the actual
world � with algorithms. Assuming the procedural theory of meaning allows
us to view natural language comprehension in a broader perspective of cognitive
science. Moreover, it suggests that we should look for theoretical constraints
in computational complexity theory. Aiming for that general perspective we re-
called the three levels of explanation in cognitive psychology proposed by Marr:
computational, algorithmic, and neurological. Next, we noticed that studying the
computational complexity of natural language constructions can contribute to the
computational level of explanation. Among other possibilities, as computational
complexity theory deals with abstract, inherent, and hardware-independent prop-
erties of information processing tasks it can be used for explaining the cognitive
di�culty of human performance. Following the literature, we proposed treating
problems computable in polynomial time as easy (tractable) and problems not
computable in polynomial time (NP-hard) as di�cult (intractable). Our techni-
cal work, in the following chapters, was mostly devoted to drawing tractability
distinctions between the meanings of various natural language quanti�er con-
structions, and evaluating the plausibility of the proposal.

Additionally, assuming the distinction between tractable and intractable and
following Ristad (1993), we have argued in Section 1.8 that a good semantic
theory of the everyday fragment of natural language should be expressible in
the existential fragment of second-order logic. Simply put, its descriptive power
should be high enough to account for the �exibility of everyday language, but,
on the other hand, a theory can not be too strong or it will overgeneralize the

169
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linguistic data and need to postulate implausible linguistic mechanisms.
Let us brie�y review how our technical results throw light on these grand

issues identi�ed in Chapter 1.
In Chapters 3 and 5 we studied the logical and computational structures of

existing linguistic theories and obtained some new complexity results. In Chap-
ter 3 we studied polyadic quanti�ers in natural language. We showed that the
most common operations creating polyadic quanti�ers in everyday language �
Boolean operations, iteration, cumulation, and resumption � do not lead outside
the tractable class of semantic constructions. On the other hand, more sophis-
ticated polyadic lifts playing an important role in linguistics � branching and
Ramsey�cation � can produce expressions with intractable referential meanings.
In Chapters 4, 5, and 6 we investigated fragments of natural language seman-
tics, drawing some linguistic conclusions from complexity observations. First of
all, our results show that computational complexity might be a factor constrain-
ing the expressive power of everyday language. For example, it might be the case
that collective quanti�cation in natural language cannot really express all possible
facts about collections. The interpretation process has to be restricted by some
other linguistic factors to keep its complexity reasonable. On the other hand, we
have shown that linguistic theories have to take computational complexity into
account as long as they want to serve as an input for plausible cognitive theories.

Additionally, in Chapter 4 we studied some linguistic cases where model-
checking is intractable and the inferential aspect of comprehension comes into
the game. This was the case with the di�erent readings of reciprocal expres-
sions which are connected by inferential properties. Our results suggest that the
two basic aspects of meaning, model-theoretic and inferential, as identi�ed in
Chapter 1, are strongly linked and that their interaction might be triggered by
computational complexity e�ects. This shows how computational complexity can
in�uence pragmatics.

Finally, in Chapter 7 we described an empirical study supporting the compu-
tational complexity perspective on meaning. These observations directly linked
complexity to di�culty for natural language. They also show the strength of
the procedural approach to semantics with respect to formulating interesting hy-
potheses of psychological relevance. This clear link between algorithmic semantics
and cognitive science makes a dynamic approach to meaning extremely attractive
and proves its relevance.

In general, our research has explored the advantages of identifying meaning
with an algorithm. We have shown the fruitfulness of this approach for linguistics
and cognitive science.

There are of course many related issues waiting for an explanation. We have
discussed some open questions following directly from our work at the end of each
chapter. Below we review some more general questions and directions for future
research. This may help in forming a better picture of the research endeavor this
dissertation is a part of.
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8.2 Outline

8.2.1 Di�erent Complexity Measures

Recall that in Chapter 3 we showed that proportional Ramsey quanti�ers de-
�ne NP-complete classes of �nite models. On the other hand, we have also ob-
served that bounded Ramsey quanti�ers are in PTIME. It is an open problem
where the precise border lies between tractable and mighty Ramsey quanti�ers.
As we already noted in Section 3.4 the above open problem directs us towards
parametrized complexity theory. In general the following question arises:

8.2.1. Question. What is the parametrized complexity of iteration, cumulation,
resumption, branching, and Ramsey�cation (the operations studied in Chapter
3)?

Using parametrized complexity can help us to �nd the boundary between
tractable and mighty Ramsey quanti�ers. Moreover, it can answer some doubts
about worst-case complexity as a measure of linguistic di�culty (see Section
1.5.3). We can already notice that also from the parametrized complexity per-
spective the clique problem is believed to be intractable. Therefore, our general
claims about the intractability of strong reciprocity would probably be preserved
under this measure.

Broadly speaking we would like to study the complexity of natural language
semantics from various perspectives. Therefore, we ask:

8.2.2. Question. What is the complexity of quanti�ers under di�erent mea-
sures, like parametrized, circuit, and average-case complexity?

Sevenster (2006) has already noted that it would be interesting to characterize
the circuit complexity of quanti�ers. The other interesting measure would be
average-case complexity. It could help to answer questions like the following:
How di�cult is it to compute quanti�ers on average (random) graphs? Here
the situation might be di�erent than for worst-case complexity. For instance,
the clique problem (the strong interpretation of reciprocal expressions) can be
solved on average in sub-exponential time on random graphs. Therefore, from
this perspective Ramsey quanti�ers can become �almost� tractable in most cases.

8.2.2 Quanti�ers and Games

We have motivated our interest in the computational complexity of quanti�ers
by the insight it gives into the possibilities for processing natural language deter-
miners. However, besides studying various measures of complexity we can also
investigate the properties of evaluation games for quanti�ers. In the case of ex-
istential and universal quanti�ers and their combinations such games have been
extensively studied (see e.g. Hintikka and Sandu, 1997). However, the issue has
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never been satisfactory worked out for a wider class of generalized quanti�ers,
including polyadic constructions (see e.g. Clark, 2007).

8.2.3. Remark. Our suggestion for future work is to identify simple quanti�ers
with games and then investigate combinations of these games coinciding with
polyadic lifts on simple quanti�ers.

There is already some work in that direction. For instance, Peter Aczel (1975) for-
mulated a game-theoretical interpretation for in�nite strings of monotone quan-
ti�ers, more than 30 years ago. Recently, similar ideas were proposed by van
Benthem (2002, 2003). He considered a so-called game logic which encodes the al-
gebra of game operations. In particular, he has shown that the algebra of sequen-
tial operations, like choice, dual and composition, coincides with the evaluation
games for �rst-order logic (see van Benthem, 2003). Recently, van Benthem et al.
(2007) have extended this idea and proposed a complete logic, which they call
Concurrent Dynamic Game Logic, to formalize simultaneous games. This logic
� with the product operator representing parallel games � has applications in
studying the branching operation. An immediate open question stemming from
that research is as follows:

8.2.4. Question. Does concurrent dynamic logic coincide with evaluation
games for �rst-order logic extended by all Henkin quanti�ers (see van Benthem
et al., 2007)?

Studying the game algebra corresponding to polyadic combination of quanti�ers
can help to understand the structure of natural operations creating complex
games for compound quanti�er expression out of simple ones. This fresh per-
spective might be valuable for solving some of the notoriously di�cult problems
of compositionality.

Moreover, games might be useful for formulating an intuitive semantics for
second-order de�nable quanti�ers in arbitrary weak models (see Section 1.6).
In a �nite universe second-order de�nable quanti�ers correspond to alternating
computing (see Theorem 2.4.5) which is similar to game-theoretical semantics.
Maybe this idea can be naturally extended to the case of in�nite weak models.

Additionally, one can think about using generalized quanti�ers to de�ne solu-
tion concepts in games. For example, we can express the existence of an extreme
Nash equilibrium in a game using a �rst-order formula.

8.2.5. Question. What about branching quanti�ers? Can they account for the
existence of mixed equilibria in non-determined games? Maybe studying other
generalized quanti�ers in that context can lead to conceptually new game solu-
tions. If we enrich �rst-order logic with generalized quanti�ers we can count, or
talk about proportions. Does this give rise to any interesting game concepts?
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8.2.3 Cognitive Di�culty and Complexity

We need to investigate the interplay between cognitive di�culty and computa-
tional complexity in more detail. Do the di�erences in computational complexity
really play an important role in natural language processing as our data from
Chapter 7 suggests? Can we show empirically the in�uence of computational
complexity on the di�culty of other cognitive tasks? For example:

8.2.6. Question. Can we design experiments con�rming our speculations from
Section 4.5, i.e., that shifts in reciprocal meaning are sometimes triggered by the
computational complexity of sentences?

8.2.7. Question. Is there an empirical way to prove the implausibility of the
higher-order approach to collective quanti�cation studied in Chapter 5?

Moreover, it is very important to extend the complexity explanation beyond the
�rst level of Marr's hierarchy (described in Section 1.5.1). We should not only
study the abstract computational properties of natural language constructions
but also try to grasp the procedures really used by humans to deal with the com-
prehension of natural language. It would in principle be possible to extract real
strategies by letting subjects manipulate the elements, tracking their behavior
and then drawing some conclusions about their strategies. This is one of the
possible directions for enriching our experiments from Chapter 7. Obviously, the
most ambitious question is to describe comprehension at the neural implementa-
tion level using a brain scanning technique. Hopefully, at some point there will
be enough cognitive data to start broad fMRI studies of the problem.

8.2.4 Future of GQT and Beyond

Finally, we would like to share one general impression on the state of the art
in generalized quanti�er theory. Recently, Peters and Westerståhl (2006) have
published an excellent monograph in the �eld. The book focuses on de�nability
questions and their relevance for linguistics. It gives the impression that the
research �eld is almost complete and there are not so many interesting open
questions. In fact, one can observe decreasing interest in generalized quanti�er
theory since the eighties. On the other hand, the above-mentioned handbook
contains no chapter that deals with computational complexity issues, collective
quanti�cation or cognitive science. It was already noticed in the review by van
Benthem (2007) that �classical� generalized quanti�er theory as presented in the
book considers logic and language, but misses out on computation, which should
be the third pillar.

We hope that our dissertation may be seen as laying the groundwork for
strengthening generalized quanti�er theory with the computational pillar, which
might help to revive the �eld. We have tried to convey a general message that
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there is still a lot to do in the �eld of generalized quanti�ers. We have mainly
focused on complexity questions and their interplay with cognitive science but
there are many more possibilities. For instance, the problem of investigating the
invariance properties of collective quanti�ers (second-order generalized quanti-
�ers), as we have mentioned in Chapter 5, is not only very classical in spirit but
also potentially would have a large impact on linguistics and theoretical com-
puter science. Other examples of interesting research directions which can be
taken in the context of generalized quanti�ers include game-theoretical analysis,
learnability theory for quanti�ers and its connections with invariance properties
like monotonicity.

Last but not least, it is necessary to extend the computational complexity
analysis to di�erent natural language constructions as well as quanti�ers; for
instance, exploiting the automata approach involving richer data structures, as
was already proposed in the eighties (see e.g. van Benthem, 1987). Moreover, we
have argued in the �rst chapter that it would be natural to treat dynamic theories
of language, like belief-revision, theories of context-dependence, signalling games,
and discourse representation theories, with a computational complexity analysis.
Presumably we need a new model of computation which is better conceptual �t to
the task of describing communication in language. One obvious candidate would
be a model based on games, which have already been embraced by computer
scientists as a rich model of computations.

Summing up, a fresh computational approach is needed to evaluate the cog-
nitive plausibility of dynamic theories. And, if necessary, this can lead to more
natural reformulations. Moreover, complexity analysis can be a �rst step towards
connecting linguistic theories of communication with cognitive science. After all,
the ability to use language is one of many human cognitive processes and as such
should not be analyzed in isolation.
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English Version of the Test from Chapter 6

FIRST TEST

Instruction: Over the next pages you will �nd 20 tasks. Each task represents
some inference. Your aim is to decide whether this inference is valid.

In other words, each task consists of 2 sentences with a horizontal line between
them. You must decide whether a sentence above the line implies a sentence below
the line.

If you think that inference pattern is valid (second sentence is implied by the
�rst one) encircle: �VALID�, otherwise encircle: �NOT VALID�.

Example 1:

At least 5 mells are stads.
At least 3 mells are stads.

VALID NOT VALID

Example 2:

At most 5 blickets are frobs.
At most 3 blickets are frobs.

VALID NOT VALID
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More than 6 �eems are tulvers.
More than 5 �eems are tulvers.

VALID NOT VALID

More than 12 �eems and more than 13 coodles hate each other.
More than 13 coodles and more than 12 �eems hate each other.

VALID NOT VALID

More than 16 stads and more than 9 blickets hate each other.
More than 9 blickets and more than 16 stads hate each other.

VALID NOT VALID

More than 16 mells and more than 25 blickets hate each other.
More than 25 blickets and more than 16 mells hate each other.

VALID NOT VALID

More than 10 mells are �eems.
More than 11 mells are �eems.

VALID NOT VALID
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More than 9 frobs and more than 8 coodles hate each other.
More than 8 coodles and more than 9 frobs hate each other.

VALID NOT VALID

More than 20 wozzles and more than 35 �tches hate each other.
More than 20 �tches and more than 35 wozzles hate each other.

VALID NOT VALID

All wozzles are �eems.
All �eems are wozzles.

VALID NOT VALID

More than 100 wozzles and more than 150 stads hate each other.
More than 150 stads and more than 100 wozzles hate each other.

VALID NOT VALID

More than 105 wozzles and more than 68 coodles hate each other.
More than 68 wozzles and more than 105 coodles hate each other.

VALID NOT VALID
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More than 6 do�s and more than 5 �tches hate each other.
More than 5 �tches and more than 6 do�s hate each other.

VALID NOT VALID

More than 47 stads and more than 55 tannins hate each other.
More than 47 tannins and more than 55 stads hate each other.

VALID NOT VALID

More than 58 frobs and more than 49 tannins hate each other.
More than 49 frobs and more than 58 tannins hate each other.

VALID NOT VALID

More than 7 coodles and more than 6 do�s hate each other.
More than 6 do�s and more than 7 coodles hate each other.

VALID NOT VALID

Some tulvers are mells.
Some mells are tulvers.

VALID NOT VALID
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More than 99 coodles and more than 68 tulvers hate each other.
More than 68 tulvers and more than 99 coodles hate each other.

VALID NOT VALID

More than 7 tannins and more than 8 �tches hate each other.
More than 8 �tches and more than 7 tannins hate each other.

VALID NOT VALID

More than 19 frobs and more than 11 �eems hate each other.
More than 11 �eems and more than 19 frobs hate each other.

VALID NOT VALID

More than 159 stads and more than 25 �tches hate each other.
More than 159 �tches and more than 25 stads hate each other.

VALID NOT VALID

More than 8 frobs and more than 27 do�s hate each other.
More than 27 frobs and more than 8 do�s hate each other.

VALID NOT VALID
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SECOND TEST

Instruction: Over the next few pages you will �nd 9 tasks to solve. Each
task consists of a picture. Above every picture there is exactly one sentence.
Encircle TRUE if and only if the sentence is a true description of the picture.
Otherwise, encircle FALSE.
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More than 1 square and more than 2 circles are connected by lines.

TRUE FALSE
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More than 3 circles and more than 2 squares are connected by lines.

TRUE FALSE
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More than 1 square and more than 1 circle are connected by lines.

TRUE FALSE
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More than 3 circles and more than 1 square are connected by lines.

TRUE FALSE
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More than 3 circles and more than 3 squares are connected by lines.

TRUE FALSE
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More than 2 circles and more than 3 squares are connected by lines.

TRUE FALSE
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More than 1 circle and more than 3 squares are connected by lines.

TRUE FALSE
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More than 2 squares and more than 1 circle are connected by lines.

TRUE FALSE
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More than 2 circles and more than 2 squares are connected by lines.

TRUE FALSE
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Polish Version of the Test from Chapter 6

PIERWSZY TEST

Instrukcja: Na nast¦pnych stronach znajduje si¦ 20 zada«. W ka»dym za-
daniu przedstawione jest pewne wnioskowanie. Twoim celem jest stwierdzi¢, czy
jest to wnioskowanie poprawne. Innymi sªowy, ka»de zadanie skªada si¦ z 2 zda«
oddzielonych od siebie poziom¡ lini¡. Musisz zdecydowa¢ czy zdanie znajduj¡ce
si¦ pod lini¡ wynika ze zdania znajduj¡cego si¦ nad lini¡.

Je±li uwa»asz, »e wnioskowanie jest poprawne (drugie zdanie wynika z pierw-
szego) zakre±l: �POPRAWNE�, w przeciwnym przypadku zakre±l: �NIE PO-
PRAWNE�.

Przykªad 1:

Co najmniej 5 strzew jest kr¦towcami.
Co najmniej 3 strzewa s¡ kr¦towcami.

POPRAWNE NIE POPRAWNE

Przykªad 2:

Co najwy»ej 5 memniaków jest stularami.
Co najwy»ej 3 balbasze s¡ stularami.

POPRAWNE NIE POPRAWNE
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Wi¦cej ni» 6 protoro»ców jest wypsztykami.
Wi¦cej ni» 5 protoro»ców jest wypsztykami.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 12 protoro»ców i wi¦cej ni» 13 melarków nienawidzi si¦ wzajemnie.
Wi¦cej ni» 13 melarków i wi¦cej ni» 12 protoro»ców nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 16 kr¦towców i wi¦cej ni» 9 memniaków nienawidzi si¦ wzajemnie.
Wi¦cej ni» 9 memniaków i wi¦cej ni» 16 kr¦towców nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 16 strzew i wi¦cej ni» 25 memniaków nienawidzi si¦ wzajemnie.
Wi¦cej ni» 25 memniaków i wi¦cej ni» 16 strzew nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 10 strzew jest protoro»cami.
Wi¦cej ni» 11 strzew jest protoro»cami.

POPRAWNE NIE POPRAWNE
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Wi¦cej ni» 9 stularów i wi¦cej ni» 8 melarków nienawidzi si¦ wzajemnie.
Wi¦cej ni» 8 melarków i wi¦cej ni» 9 stularów nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 20 wachlaczy i wi¦cej ni» 35 �sutów nienawidzi si¦ wzajemnie.
Wi¦cej ni» 20 �sutów i wi¦cej ni» 35 wachlaczy nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wszystkie wachlacze s¡ protoro»cami.
Wszystkie protoro»ce s¡ wachlaczami.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 100 wachlaczy i wi¦cej ni» 150 kr¦towców nienawidzi si¦ wzajemnie.
Wi¦cej ni» 150 kr¦towców i wi¦cej ni» 100 wachlaczy nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 105 wachlaczy i wi¦cej ni» 68 melarków nienawidzi si¦ wzajemnie.
Wi¦cej ni» 68 wachlaczy i wi¦cej ni» 105 melarków nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE
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Wi¦cej ni» 6 balbaszy i wi¦cej ni» 5 �sutów nienawidzi si¦ wzajemnie.
Wi¦cej ni» 5 �sutów i wi¦cej ni» 6 balbaszy nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 47 kr¦towców i wi¦cej ni» 55 burbaków nienawidzi si¦ wzajemnie.
Wi¦cej ni» 47 burbaków i wi¦cej ni» 55 kr¦towców nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 58 stularów i wi¦cej ni» 49 bubraków nienawidzi si¦ wzajemnie.
Wi¦cej ni» 49 stularów i wi¦cej ni» 58 bubraków nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 7 melarków i wi¦cej ni» 6 balbaszy nienawidzi si¦ wzajemnie.
Wi¦cej ni» 6 balbaszy i wi¦cej ni» 7 melarków nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Pewne wypsztyki s¡ strzewami.
Pewne strzewa s¡ wypsztykami.

POPRAWNE NIE POPRAWNE
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Wi¦cej ni» 99 melarków i wi¦cej ni» 68 wypsztyków nienawidzi si¦ wzajemnie.
Wi¦cej ni» 68 wypsztyków i wi¦cej ni» 99 melarków nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 7 burbaków i wi¦cej ni» 8 �sutów nienawidzi si¦ wzajemnie.
Wi¦cej ni» 8 �sutów i wi¦cej ni» 7 burbaków nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 19 stularów i wi¦cej ni» 11 protoro»ców nienawidzi si¦ wzajemnie.
Wi¦cej ni» 11 protoro»ców i wi¦cej ni» 19 stularów nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 159 kr¦towców i wi¦cej ni» 25 �sutów nienawidzi si¦ wzajemnie.
Wi¦cej ni» 159 �sutów i wi¦cej ni» 25 kr¦towców nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE

Wi¦cej ni» 8 stularów i wi¦cej ni» 27 balbaszy nienawidzi si¦ wzajemnie.
Wi¦cej ni» 27 stularów i wi¦cej ni» 8 balbaszy nienawidzi si¦ wzajemnie.

POPRAWNE NIE POPRAWNE
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DRUGI TEST

Instrukcja: Na nast¦pnych stronach znajdziesz 9 zada«. Na ka»de zadanie
skªada si¦ obrazek. Nad ka»dym obrazkiem jest jedno zdanie. Zakre±l PRAWDA
gdy zdanie prawdziwe opisuje obrazek. W przeciwnym przypadku zakre±l FA�SZ.



197

Wi¦cej ni» 1 kwadrat i wi¦cej ni» 2 koªa s¡ poª¡czone liniami.

PRAWDA FA�SZ
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Wi¦cej ni» 3 koªa i wi¦cej ni» 2 kwadraty s¡ poª¡czone liniami.

PRAWDA FA�SZ
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Wi¦cej ni» 1 kwadrat i wi¦cej ni» 1 koªo s¡ poª¡czone liniami.

PRAWDA FA�SZ
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Wi¦cej ni» 3 koªa i wi¦cej ni» 1 kwadrat s¡ poª¡czone liniami.

PRAWDA FA�SZ
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Wi¦cej ni» 3 koªa i wi¦cej ni» 3 kwadraty s¡ poª¡czone liniami.

PRAWDA FA�SZ
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Wi¦cej ni» 2 koªa i wi¦cej ni» 3 kwadraty s¡ poª¡czone liniami.

PRAWDA FA�SZ
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Wi¦cej ni» 1 koªo i wi¦cej ni» 3 kwadraty s¡ poª¡czone liniami.

PRAWDA FA�SZ
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Wi¦cej ni» 2 kwadraty i wiecej ni» 1 koªo s¡ poª¡czone liniami.

PRAWDA FA�SZ



205

Wi¦cej ni» 2 koªa i wi¦cej ni» 2 kwadraty s¡ poª¡czone liniami.

PRAWDA FA�SZ
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Samenvatting

In deze dissertatie bestuderen we de complexiteit van gegeneraliseerde kwantoren
in de natuurlijke taal. We doen dit vanuit een interdisciplinair perspectief: we
combineren �loso�sche inzichten met theoretische informatica, experimentele cog-
nitiewetenschap en met theorieën uit de linguïstiek.

In het hoofdstuk 1 beargumenteren we dat een deel van de betekenis van een
zin - de zogenaamde referentiële betekenis (model-checking) - beschreven moet
worden met algoritmen. We bespreken ook de inbreng van complexiteitstheo-
rie voor de analyse van cognitieve taken. We beargumenteren dat alleen die
problemen die berekend kunnen worden in polynomiale tijd, cognitief bruikbaar
cognitively tractable zijn. Ook verdedigen we dat semantische theorieën van de
alledaagse natuurlijke taal geformuleerd kunnen worden in het existentiële frag-
ment van de tweede-orde logica.

Hoofdstuk 2 bevat een overzicht van de basisnoties van de theorie van gegen-
eraliseerde kwantoren, berekenbaarheids-theorie, en van de beschrijvende com-
plexiteitstheorie.

We beargumenteren in het hoofdstuk 3 dat PTIME kwantoren gesloten zijn
onder iteratie (iteration), cumulatie (cumulation) en resumptie (resumption).
Vervolgens bespreken we de NP-volledigheid van vertakkende kwantoren (branch-
ing quanti�ers). We laten zien dat sommige Ramsey-kwantoren NP-volledige
klassen van eindige modellen de�niëren, terwijl andere alleen PTIME klassen
de�nieren. We geven ook een voorwaarde voor een Ramsey kwantor om bereken-
baar te zijn in polynomiale tijd. We beëindigen het hoofdstuk met een vraag
betre�ende het verschil in de complexiteit van verschillende Ramsey kwantoren.

Het hoofdstuk 4 bevat een onderzoek naar de rekenkundige complexiteit van
polyadic lifts die verschillende lezingen uitdrukken van wederkerige zinnen (re-
ciprocal sentences) met gekwanti�ceerde antecedenten. We laten een dichotomie
zien tussen deze twee lezingen. De sterke wederkerige lezing kan namelijk NP-
complete constructies creëren, terwijl de zwakke, bemiddeld wederkerige lezingen
dit niet kunnen. We beargumenteren dat dit verschil verdisconteerd moet worden
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in de bekende 'Strong Meaning Hypothesis' (Sterke Betekenis Hypothese).
De de�nieerbaarheid en de complexiteit van de type-schifting approach van

collectieve kwanti�catie in de natuurlijke taal staat centraal in het hoofdstuk 5.
We laten zien dat onder redelijke aannamen over de complexiteit, de kwanti�-
catie niet algemeen genoeg is om de semantiek van alle collectieve kwantoren in
de natuurlijke taal te omvatten. De type-shifting approach kan de tweede-orde
logica niet overschrijden, terwijl sommige collectieve kwantoren kunnen niet in
de tweede-orde logica worden uitgedrukt.

Vervolgens verdedigen we dat algebraïsche many-sorted formalismen die be-
trekking hebben op collectiviteit (collectivity) geschikter zijn dan de type-shifting
benadering om collectieve kwanti�catie in de natuurlijke taal te de�nieren. Het
kan zo zijn dat sommige collectieve kwantoren niet in de natuurlijke taal aan-
wezig zijn, omdat ze een te grote complexiteit hebben. Ten slotte introduceren
we zogenaamde tweede-orde gegeneraliseerde kwantoren in het onderzoek naar de
collectieve semantiek.

Het hoofdstuk 6 handelt over de stelling van Hintikka, welke zegt dat zin-
nen zoals �de meeste jongens en de meeste meisjes haten elkaar� niet uitgedrukt
kunnen worden door lineaire eerste orde formules, en dat vertakte kwanti�catie
(branching quanti�cation) noodzakelijk is. We bespreken verschillende lezingen
van zulke zinnen en beargumenteren dat ze de lezing hebben die wel uitgedrukt
kan worden door lineaire formules, in tegenstelling tot wat Hintikka beweert. We
presenteren empirisch bewijs ter ondersteuning van deze theoretische overwegin-
gen.

In het hoofdstuk 7 bespreken we de semantiek van monadische kwantoren
in de natuurlijke taal. Deze kan worden uitgedrukt in zogenaamde '�nite-state'
en 'push-down' automata. We presenteren en bekritiseren vervolgens het neu-
rologisch onderzoek dat zich baseert op dit model. Bouwend op deze discussie
voltrekken we een experiment, dat empirisch bewijs levert dat de voorspellingen
van het rekenkundige model bevestigt. We laten zien dat de verschillen in de
tijd die een mens nodig heeft om zinnen met monadische kwantoren te begrijpen,
consistent is met de verschillen in complexiteit die door het model voorspeld
worden.

In het laatste hoofdstuk, 8, bespreken we een paar algemene, open vragen en
mogelijke richtingen van verder onderzoek; met name het gebruik van verschil-
lende maten van complexiteit, het betrekken van de speltheorie, et cetera.

Samenvattend; we onderzoeken, vanuit verschillende perspectieven, de gevol-
gen van het analyseren van betekenis als een algoritme, en het toepassen van
complexiteitanalyse van semantische vraagstukken. We hopen dat dit onderzoek
de vruchtbaarheid van een abstracte en complexiteitstheoretische benadering van
de linguïstiek en cognitiewetenschap laat zien.



Abstract

In the dissertation we study the complexity of generalized quanti�ers in natural
language. Our perspective is interdisciplinary: we combine philosophical insights
with theoretical computer science, experimental cognitive science and linguistic
theories.

In Chapter 1 we argue for identifying a part of meaning, the so-called ref-
erential meaning (model-checking), with algorithms. Moreover, we discuss the
in�uence of computational complexity theory on cognitive tasks. We give some
arguments to treat as cognitively tractable only those problems which can be
computed in polynomial time. Additionally, we suggest that plausible semantic
theories of the everyday fragment of natural language can be formulated in the
existential fragment of second-order logic.

In Chapter 2 we give an overview of the basic notions of generalized quanti�er
theory, computability theory, and descriptive complexity theory.

In Chapter 3 we prove that PTIME quanti�ers are closed under iteration,
cumulation and resumption. Next, we discuss the NP-completeness of branching
quanti�ers. Finally, we show that some Ramsey quanti�ers de�ne NP-complete
classes of �nite models while others stay in PTIME. We also give a su�cient
condition for a Ramsey quanti�er to be computable in polynomial time. We end
this chapter with a question about the complexity dichotomy between Ramsey
quanti�ers.

In Chapter 4 we investigate the computational complexity of polyadic lifts
expressing various readings of reciprocal sentences with quanti�ed antecedents.
We show a dichotomy between these readings: the strong reciprocal reading can
create NP-complete constructions, while the weak and the intermediate reciprocal
readings do not. Additionally, we argue that this di�erence should be acknowl-
edged in the Strong Meaning Hypothesis.

In Chapter 5 we study the de�nability and complexity of the type-shifting
approach to collective quanti�cation in natural language. We show that under
reasonable complexity assumptions it is not general enough to cover the semantics
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of all collective quanti�ers in natural language. The type-shifting approach cannot
lead outside second-order logic and arguably some collective quanti�ers are not
expressible in second-order logic. As a result, we argue that algebraic (many-
sorted) formalisms dealing with collectivity are more plausible than the type-
shifting approach . Moreover, we suggest that some collective quanti�ers might
not be realized in everyday language due to their high computational complexity.
Additionally, we introduce the so-called second-order generalized quanti�ers to
the study of collective semantics.

In Chapter 6 we study the statement known as Hintikka's thesis: that the
semantics of sentences like �Most boys and most girls hate each other� is not
expressible by linear formulae and one needs to use branching quanti�cation. We
discuss possible readings of such sentences and come to the conclusion that they
are expressible by linear formulae, as opposed to what Hintikka states. Next, we
propose empirical evidence con�rming our theoretical predictions that these sen-
tences are sometimes interpreted by people as having the conjunctional reading.

In Chapter 7 we discuss a computational semantics for monadic quanti�ers
in natural language. We recall that it can be expressed in terms of �nite-state
and push-down automata. Then we present and criticize the neurological re-
search building on this model. The discussion leads to a new experimental set-up
which provides empirical evidence con�rming the complexity predictions of the
computational model. We show that the di�erences in reaction time needed for
comprehension of sentences with monadic quanti�ers are consistent with the com-
plexity di�erences predicted by the model.

In Chapter 8 we discuss some general open questions and possible directions
for future research, e.g., using di�erent measures of complexity, involving game-
theory and so on.

In general, our research explores, from di�erent perspectives, the advantages
of identifying meaning with algorithms and applying computational complexity
analysis to semantic issues. It shows the fruitfulness of such an abstract compu-
tational approach for linguistics and cognitive science.
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