
Epistemic Dynamics

and

Protocol Information

Tomohiro Hoshi





Epistemic Dynamics

and

Protocol Information



ILLC Dissertation Series DS-200X-NN

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904
1098 XH Amsterdam

phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/



Epistemic Dynamics

and

Protocol Information

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Stanford University

op gezag van de Rector Magnificus
prof. Johan van Benthem

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
Stanford University Mei 2001, te 10.00 uur

door

Tomohiro Hoshi

geboren te Tokyo, Japan.



Promotor: Prof. J. van Benthem
Co-promotor: Prof. S. Feferman, Prof. K. Lawlor, Dr. A. Baltag

Copyright c© 2009 by T. Hoshi

ISBN: 90–XXXX–XXX–X



to my parents, Kazuko and Kazumi Hoshi

v





Contents

Acknowledgments xi

I Formal Framework 1

Introduction 3

1 Merging Frameworks 15
1.1 Epistemic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Dynamic Epistemic Logic . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Public Announcement Logic . . . . . . . . . . . . . . . . . 18
1.2.2 Event Models and Product Update . . . . . . . . . . . . . 20
1.2.3 Protocol Information in DEL? . . . . . . . . . . . . . . . . 24

1.3 Epistemic Temporal Logic . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Branching-Time Tree Structure . . . . . . . . . . . . . . . 25
1.3.2 Epistemic Dynamics in ETL? . . . . . . . . . . . . . . . . 27

1.4 Merging DEL and ETL . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.1 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.2 DEL-Generated ETL Models . . . . . . . . . . . . . . . . 29

1.5 Comparing DEL and ETL . . . . . . . . . . . . . . . . . . . . . . 34
1.5.1 Reinterpreting DEL-Operators as ETL-Operators . . . . . 35
1.5.2 Representation Theorem . . . . . . . . . . . . . . . . . . . 35

1.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . 40

2 Logics 43
2.1 Temporal Public Announcement Logic . . . . . . . . . . . . . . . 44
2.2 Semantic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 PAL and TPAL . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Simple Observations . . . . . . . . . . . . . . . . . . . . . 47

vii



2.2.3 Model Normalization . . . . . . . . . . . . . . . . . . . . . 49
2.3 Complete Axiomatization . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Axiomatic System . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Completeness Proof . . . . . . . . . . . . . . . . . . . . . . 53
2.3.3 Decidability via Finite Completeness Proof . . . . . . . . . 57
2.3.4 Common Knowledge . . . . . . . . . . . . . . . . . . . . . 59

2.4 Other Results in TPAL . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.1 Uniform Protocols . . . . . . . . . . . . . . . . . . . . . . 63
2.4.2 Embedding PAL into TPAL . . . . . . . . . . . . . . . . . 64

2.5 Temporal Dynamic Epistemic Logic . . . . . . . . . . . . . . . . . 66
2.5.1 Axiomatization of TDEL . . . . . . . . . . . . . . . . . . . 66
2.5.2 Completeness Proof . . . . . . . . . . . . . . . . . . . . . . 68
2.5.3 TDEL Restricted to Subclasses of Protocols . . . . . . . . . 70
2.5.4 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.5.5 Other Epistemic Operators? . . . . . . . . . . . . . . . . . 71

2.6 Generalization of Other Results in TDEL . . . . . . . . . . . . . . 71
2.6.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6.2 Uniform Protocols . . . . . . . . . . . . . . . . . . . . . . 72
2.6.3 Embedding DEL into TDEL . . . . . . . . . . . . . . . . . 74

2.7 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . 74

3 Extensions 77
3.1 Quantifying over Public Announcements . . . . . . . . . . . . . . 78

3.1.1 Temporal Arbitrary Public Announcement Logic . . . . . . 78
3.1.2 Semantic Results . . . . . . . . . . . . . . . . . . . . . . . 80
3.1.3 Axiomatization . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.1.5 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Describing the Past . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.1 TPAL with Labelled Past Operators . . . . . . . . . . . . 90
3.2.2 Semantic Results . . . . . . . . . . . . . . . . . . . . . . . 91
3.2.3 Axiomatization . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2.4 Soundness Proof . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.5 Completeness Proof . . . . . . . . . . . . . . . . . . . . . . 96

3.3 Announcements about Announcements . . . . . . . . . . . . . . . 97
3.3.1 Higher-Order Public Announcements . . . . . . . . . . . . 97
3.3.2 Generalization of PAL-Generated ETL Models . . . . . . . 98
3.3.3 Representation Theorem . . . . . . . . . . . . . . . . . . . 101
3.3.4 Axiomatization . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4 Discussion: Extensions in TDEL . . . . . . . . . . . . . . . . . . . 103
3.4.1 Extending TDEL with Generalized Event Operators . . . . 103
3.4.2 Extending TDEL with Labelled Past Operators . . . . . . 106
3.4.3 Events with Future Preconditions . . . . . . . . . . . . . . 108

viii



3.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . 110
3.6 Appendix 1: Soundness of TAPAL . . . . . . . . . . . . . . . . . . 110

3.6.1 Grafting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.6.2 Soundness of R(�) . . . . . . . . . . . . . . . . . . . . . . 112
3.6.3 The Soundness of R(�∗) . . . . . . . . . . . . . . . . . . . 113

3.7 Appendix 2: Completeness of TPAL over F(PAL+) . . . . . . . . 116

II Applications 119

4 Knowability Paradox 121
4.1 The Paradoxes of Knowability and Previous Solutions . . . . . . . 123

4.1.1 Paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.1.2 Logical Revision . . . . . . . . . . . . . . . . . . . . . . . . 125
4.1.3 Semantic Reformulation . . . . . . . . . . . . . . . . . . . 125
4.1.4 Syntactic Restriction . . . . . . . . . . . . . . . . . . . . . 126
4.1.5 Dynamic Epistemic Logic . . . . . . . . . . . . . . . . . . 126

4.2 Verificationism without the Knowability Thesis . . . . . . . . . . 127
4.2.1 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.2.2 Hand’s Verificationist Account . . . . . . . . . . . . . . . . 130

4.3 TAPAL: Verificationist Interpretation . . . . . . . . . . . . . . . . 130
4.3.1 Interpreting TAPAL . . . . . . . . . . . . . . . . . . . . . . 131
4.3.2 Intended Semantics . . . . . . . . . . . . . . . . . . . . . . 132
4.3.3 Deductive System . . . . . . . . . . . . . . . . . . . . . . . 133

4.4 Logical Analysis of the Knowability Thesis . . . . . . . . . . . . . 134
4.4.1 New Knowability Thesis . . . . . . . . . . . . . . . . . . . 134
4.4.2 Fitch’s Paradox and the Idealism Problem . . . . . . . . . 135
4.4.3 Comparison with Alternatives . . . . . . . . . . . . . . . . 136

4.5 Objections and Discussions . . . . . . . . . . . . . . . . . . . . . . 138
4.5.1 The axiom R3: perfect recall and no miracle . . . . . . . . 138
4.5.2 In Some Sense Knowable . . . . . . . . . . . . . . . . . . . 139
4.5.3 Logical Omniscience on Knowledge . . . . . . . . . . . . . 140
4.5.4 Why Do We Have to Buy the Semantics? . . . . . . . . . . 140

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5 Logical Omniscience and Deductive Inference 143
5.1 Stalnaker on the Problem of Logical Omniscience . . . . . . . . . 145
5.2 Explicit Knowledge and Deductive Inference . . . . . . . . . . . . 148
5.3 Formalizing Explicit Knowledge . . . . . . . . . . . . . . . . . . . 150

5.3.1 Reinterpretation of TPAL . . . . . . . . . . . . . . . . . . 150
5.3.2 Dynamic Characterization of Explicit Knowledge . . . . . 152
5.3.3 Epistemic Information and Protocol Information . . . . . . 154
5.3.4 Avoiding the Problem of Logical Omniscience . . . . . . . 155

ix



5.4 Formalizing Deductive Inference . . . . . . . . . . . . . . . . . . . 157
5.5 Logical Omniscience vs. Epistemic Closure . . . . . . . . . . . . . 158

5.5.1 Formalizing the Epistemic Closure Principle . . . . . . . . 160
5.5.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.6 Concluding Discussion . . . . . . . . . . . . . . . . . . . . . . . . 164
5.6.1 Comparison with Other Systems . . . . . . . . . . . . . . . 164
5.6.2 Extension to Multi-agent with TDEL . . . . . . . . . . . . 166

Conclusion 167

Bibliography 169

Index 175

List of Symbols 179

Samenvatting 181

x



Acknowledgments

I do not know how to start other than by expressing my tremendous gratitude
to my supervisor Johan van Benthem. I would not be able to exaggerate his
generous and patient support throughout my dissertation writing process. I have
always been overwhelmed with his extensive comments and inspiring suggestions,
without which this dissertation would not have grown to the present state. He
has also provided me numerous opportunities for joint publications, conference
organizations, etc., through which I learned a lot about what an academic life
would be like. He made possible my visits to the Netherlands and Germany,
which were by far my most exciting and intellectually stimulating periods that
I have ever experienced. I now deeply appreciate words of acknowledgement in
dissertations of his wonderful students, including “I was very lucky to have him
as my advisor”.

I am also very thankful to the other members of my dissertation committee.
Krista Lawlor patiently guided me through the philosophical investigations in my
dissertation. I feel that the last half of my dissertation in particular could not
have even existed without her comments and advice. Alexandru Baltag gave me
lots of helpful comments. I also learned a lot from his publications on relevant
topics. Solomon Feferman kindly agreed to be on my committee and provided
insightful suggestions. I would also like to thank him for his wonderful classes at
Stanford, from which I learned so much.

My dissertation builds on several joint research projects. I greatly appreci-
ate all my coauthors. My research experience began in a project with Philippe
Balbiani, Alexandru Baltag, Hans van Ditmarsch, Andreas Herzig, and Tiago de
Lima. I particularly appreciated Hans’s thoughtful encouragement throughout
that project. I also thank Eric Pacuit, Jelle Gerbrandy, and Audrey Yap for
other joint projects, from which a large part of my dissertation derived. On this
point, I thank Grigori Mints, too. My project with him taught me a lot about
how to write technical papers, and he also gave me lots of helpful advice.

My Ph.D. career would not have been as wonderful as it was without peo-

xi



ple I met at Stanford. First, I thank all the people in my cohort: Jesse Alama,
Alexei Angelides, Dan Giberman, Alistair Isaac, Peyton McElroy, Quayshawn
Spencer, and Johanna Wolff. Interactions with them throughout the Ph.D. pro-
gram shaped my philosophical thoughts and, moreover, their warm friendship
supported me a lot. In particular, I cannot even try to articulate how much I ap-
preciate Alistair. He gave me constant help for both academic and non-academic
things. Without mentioning his name, I could not tell any story about my Ph.D.
career.

I also thank other people I met at Stanford: Darren Bradley, Rahul Chaudhri,
Matthew Darmalingum, Patrick Girard, Tal Glezer, Daniel Halliday, Wes Holli-
day, Thomas Icard, Jeremy Meyers, Cole Leahy, Teru Miyake, Tobey Scharding,
Darko Sarenac, and Assaf Sharon. Concerning the current dissertation, I partic-
ularly thank Wes for his patient proofreading. My gratitude also goes to people
I met through Johan at Amsterdam: Cédric Dégremont, Daisuke Ikegami, Fer-
nrong Liu, Olivier Roy, Fernando Velazquez-Quesada, and Jonathan Zvesper. I
had lots of inspiring discussions and comments, which contributed a lot to my
dissertation.

Finally, I would like to thank my family for their support. My wife, Hanae
Hoshi, has always given me warm cheers. My brother, Tomoyasu Hoshi, and my
parents, Kazuko and Kazumi Hoshi, supported me in every possible way through
the Ph.D. program. I sincerely dedicate this dissertation to them.

xii



Part I

Formal Framework

1





Introduction

Knowledge and belief play a crucial role in human endeavor. These states rep-
resent the world in certain ways and, as such, constitute an important basis for
our decisions and actions. For this reason, these concepts have been of great
importance in philosophical investigations and in many of the social sciences.

As various formal methods have been developed in the literature, the mathe-
matical representation of knowledge and belief has become a topic of increasing
interest. An individual knows or believes certain things based on the information
she has. What type of mathematical models can we use for precise representa-
tions of her information, knowledge or beliefs? When an individual’s environment
involves other individuals, she may know what others know, and such knowledge
depends on the knowledge that others have. How can we represent the relations
between her knowledge and the knowledge of others? Finally, an individual may
obtain new information during the course of her activities by observing facts in
nature, interacting with other individuals, making inferences from what she pre-
viously knows, and so on. How can we capture these informational changes in
her knowledge? Investigations of these questions have been addressed under the
umbrella term, ‘intelligent interaction’, and they have been studied in various
fields, including philosophy, computer science, artificial intelligence, and theoret-
ical economics.

There are two important aspects in describing intelligent interaction. One is
how agents’ epistemic states change over relevant informational events. Differ-
ent informational events change agents’ information differently and the way that
informational events change agents’ information can be quite subtle. Therefore,
it is crucial to get a good grasp on informational events and their informational
effects. I call this aspect epistemic dynamics. The other is what informational
events can take place in the course of agents’ interaction. Both the information
that agents have and the way that the information changes depend not only on
what informational event happens but also on what kind of process agents’ inter-
action involves. Informational events that can happen reflect what the process is
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and, as such, are important to be captured. I call the kind of information protocol
information.

This dissertation will investigate intelligent interaction from the perspectives
of epistemic dynamics and protocol information. First, following the logical trend
in the literature, we will develop a formal framework that represents the two per-
spectives. Second, we will show that the two perspectives can provide new insights
on philosophical investigation in epistemology, through fine-grained analysis in
the formal framework.

Reasoning about Knowledge

To illustrate the kind of phenomena that are described by systems of intelligent
interaction, let us start with the following example.

You and I return from lunch to our office and see a deck of cards on
our desk with a card put face-down right next to the deck. Since it
was not there before we left for lunch, we become curious about what
the card is...

Now do you know what the card is? Of course, you do not, since the card was
already put face-down when we came back. For the same reason, I do not know
what the card is. Moreover, having lunch outside and coming back together with
you, I know that you do not know what the card is. Similarly, you do not know
that I know what the card is. We can give more complex descriptions about our
states of knowledge: You know that I know that you do not know what the card
is, I know that you do not know that I know what the card is, etc.

This illustrates that highly complex knowledge attributions can be made even
in the simplest scenarios, let alone in more complex situations that the real world
often presents. Therefore, we may seek a precise method to analyze reasoning
about knowledge, which represents states of agents’ information in a way that
makes possible the systematic examination of statements about agents’ knowl-
edge.

Epistemic Dynamics

However this is not the end of the story. Intelligent interaction is a dynamic
process in which agents’ information changes over various sorts of informational
events. For instance, consider what could happen in our example above. Seeing
the card on the desk, we may simply turn the card over. In that case, both you
and I will come to know what the card is. Or I may try to trick you and peep at
the card without showing it to you. In that case, I will come to know what the
card is, while you will not. In general, various kinds of informational events can



5

happen in the course of intelligent interaction and agents’ informational states
may change consequently.

In addition, the way that informational events change agents’ information can
be quite subtle. For illustration, consider another scenario in our example. Seeing
the card on the desk, I try to trick you: I hide my curiosity and peep at the card
without making you realize that I do. In this case, I come to know what the card
is, but you do not. Thus at the level of our knowledge about what the card is, we
have the same result as the previous peeping scenario in the previous paragraph.
What distinguishes the current scenario from the previous one is whether you
will know that I know what the card is. In the current scenario, you will not
know that I know what the card is (since I secretly peeped); on the other hand,
in the previous scenario, you will know I know what the card is (since you saw
me peeping).

There are two kinds of subtleties that the examples illustrate. First, in both
scenarios, I obtained the same information, that is, the information about what
the card is. However, we have different consequences in the two scenarios. This
shows that the ways in which I obtained the information can make difference,
even when the same information is obtained. Second, the difference of the two
scenarios can be exhibited only at a higher-level of our knowledge. Indeed, our
knowledge about the card is the same in both scenarios: I know the card in one
scenario; but you do not in the other. It is only with respect to our knowledge
about what we know that we can differentiate the situations for the two scenarios
(You know I know in one scenario but you do not know I know in the other).

Still another kind of subtlety can be highlighted by the following scenario.
Suppose that what I tell you is always true and you are aware of it. After I
peeped at the card on the desk, I could just tell you what the card was. Let us
say the card is the ace of Diamonds. If I tell you this, then you will come to
know that the card is the ace of Diamonds. Generalizing from this, one might
expect that whatever I tell you, you will come to know it, since I tell you only
true things. However, this expectation turns out to be betrayed. Suppose that,
after you come into my office, I tell you, “You do not know, but the card on the
desk is the ace of Diamonds”. What I just said is true. However, you will not
come to know it, simply because the statement becomes false once you come to
know what the card is. This example demonstrates one fact about subtlety in
intelligent interaction: even when you obtain true information, you may not come
to know it.

As these considerations suggest, in order to describe intelligent interaction
in a precise manner, we need to get a good grasp of the mechanism by which
informational events change agents’ informational states. We call the mechanism
epistemic dynamics. To represent epistemic dynamics in intelligent interaction,
we seek a method to represent informational events and the ways in which they
change agents’ information.
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Protocol Information

Another important element in describing intelligent interaction is the information
about what informational events can take place in the course of interaction. For
instance, in our example, if I put the card into the deck after I peep at it, you can
no longer obtain the information about what the card was by turning the card
over. You will have to obtain the information in other ways, for instance, by asking
me about it. In general, various kinds of communicational and observational
constraints are present in many situations of intelligent interaction. We call this
kind of information in intelligent interaction protocol information.

Protocol information becomes particularly important when we ask whether
agents can reach informational states of interest. In our example, can you know
what the card is when you come into my office? Or can you know it without
making me realize you do? Answers to these questions depend on how we fill
in further details in our example. Suppose, as in the last paragraph, that I put
the card into the deck after peeping at it. Mischievous as I am, I leave the office
without telling you what the card is. If we both have cell phones, you may ask me
what the card was over the phone. In that case, you can know what the card was,
but when you do, I will also come to know you do. Or we may introduce other
communicational and observational constraints into our story so as to make the
answers to the questions as we like. Thus when we consider reachability questions
of certain informational states, we need to specify protocol information in given
situations of intelligent interaction.

The importance of protocol information in the light of reachability questions
can be glimpsed in many famous puzzles. Here are two examples:

The Muddy Children Puzzle (See e.g. [21])

Several children are playing outside. After playing they come inside
and their father says, “At least one of you has mud on your forehead.”
Each child can see the other children’s forehead but not his/her own.
Their father repeats the following question, “Do you know whether or
not you have mud on your forehead?” The children are very intelligent
and honest, so they answer father’s question at the same time. Can the
children come to know, over rounds of the father’s question, whether
they have mud on their foreheads? If they can, how many question
rounds are needed?

The Russian cards Problem (See e.g. [75].)

There are seven known cards. The first two players draw three cards
each, and the third player gets the remaining card. Can the first and
second players publicly inform each other about their cards without
the third player learning their cards?
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What makes these questions interesting are the constraints given in the commu-
nication scenarios. For instance, if children were allowed to say, “You are dirty”
or if the first and second players could secretly communicate, the answers to the
reachability questions would be trivial (clearly positive).

More generally, protocol information reflects the process that a given situation
of intelligent interaction involves, and agents’ informational states depend on
protocol information as such in various ways. For one thing, the information of
an information-carryng state reflects the process that the state belongs to. A
configuration of chess pieces on a chess board has the information that it does
in virtue of the rule of the chess game. Also an informational event can have
different impacts on agents’ informational states, depending on the process that
agents’ interaction belongs to. The observation of a car driving on the right
side of a road can lead you to very different kinds of thoughts depending on the
countries you are in.

These points do not exhaust the ways that agents’ information and interaction
depend on protocol information. Protocol information is an important element
in describing intelligent interaction, together with the other aspect of intelligent
interaction, epistemic dynamics. In order to fully describe intelligent interaction,
we need not only a method to represent informational events and their effect on
agent’s information, but also a method to represent what informational event can
take place in the course of intelligent interaction.

Major Frameworks in Epistemic Logic

The first objective of this dissertation is to develop a framework that provides
both kinds of methods to represent epistemic dynamics and protocol information
together in one system. This objective is motivated by the fact that systems
developed in the literature on intelligent interaction are oriented toward only one
of the two aspects, but not toward both. Let us illustrate the point by looking
at two major frameworks in the literature, Dynamic Epistemic Logic (DEL, e.g.
[6, 26, 77]) and Epistemic Temporal Logic (ETL, e.g. [53]).

Both DEL and ETL appeal to the framework of Epistemic Logic (EL). EL is
an application of modal logic and represents the informational states of agents
by a set of epistemically possible states interconnected by some relations. Each
relation corresponds to an agent, representing the agent’s indistinguishability
between possible states. Roughly, when two states are connected, an agent cannot
distinguish the states. In this setting, knowledge is usually interpreted as truth in
all indistinguishable states (and other epistemic modalities, including beliefs, are
interpreted in certain ways by appealing to the model). This is the interpretation
of Kripke models in EL, and we call Kripke models epistemic models in the context
of EL. Epistemic models have been widely applied in analyzing reasoning about
knowledge, since Hintikka [37].
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2

1

p ¬p 2p ¬p

1 sees p

Figure 1: This figure visualizes how DEL represents temporal evolution of infor-
mational states. On the left, we have a simple epistemic model consisting of two
indistinguishable points. It represents the situation in which two agents, 1 and 2,
cannot tell whether p or ¬p. Suppose p is true and thus we are at the black world.
The model on the right is obtained through product update based on the event
model corresponding to “1 sees p”. Consequently the dashed line corresponding
to the agent 1 is eliminated. By seeing p, the agent 1 can now distinguish the
current situation from the possible situation where p is not true.

DEL: Event Models and Product Update

Although DEL and ETL share this basic representation, the systems represent
temporal evolution of agents’ informational states in different ways. First, DEL
captures the temporal aspect of intelligent interaction by event models and prod-
uct update. Event models are a certain kind of Kripke-model that represents
informational events. Product update provides an algorithm by which to com-
pute a new epistemic model from a given epistemic model and an event model.
The new epistemic model obtained by the product update algorithm represents
the new informational state of agents after the informational event captured by
the event model occurs. In abstract terms, DEL describes temporal evolution of
agents’ informational states by model transformations induced from event models
via product update.

Therefore, DEL is well-suited for describing epistemic dynamics. Event mod-
els capture informational events and product update determines their informa-
tional effects by computing new epistemic models from them. Successive appli-
cations of event models to a given epistemic model represent how agents’ infor-
mational states evolve in the course of intelligent interaction.

However, DEL does not provide a way of representing protocol information.
In DEL, any event model can be applied to any epistemic model. In this sense,
DEL assumes what we may call universal protocol, that is, any informational
event can happen at any moment. To model protocol information, we must bring
in some additional structures, which are external to the basic framework of DEL.
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...... ...
1

...e3
f3f2
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e2e1
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e0 f0

Figure 2: This figure visualizes how ETL models represent temporal evolution
of an agent’s informational states. Nodes represent moments of histories. Ar-
rows represent temporal transitions from a given node to the next. The arrows
are labeled by the names of the corresponding events. Dashed lines represents
indistinguishable relations.

ETL: Branching-Time Tree Structure

ETL provides an alternative representation. It represents temporal evolutions
of agents’ epistemic states by branching-time tree structures. Models of ETL
consist of sequences of events, which are called histories . Each history represents
the temporal development of a given state and each node of a history represents
a temporal moment in the development of the corresponding state. Nodes of tree
structures are interconnected by indistinguishability relations to describe agents’
informational states.

In this way, ETL represents temporal evolutions of agents’ informational states
quite differently from the way DEL does. On the one hand, DEL represents
moments of agents’ informational states by distinct epistemic models. A new
epistemic model is computed via product update every time an event model is
applied. On the other hand, ETL represents the whole temporal evolution in a
single time-branching model.

The time-branching structure makes ETL well-suited for describing protocol
information. Intuitively, branches coming out of a given node represent what
sequence of events can take place after the moment represented by the node.
(In Figure2, events, e1 and e2, can happen at the node after e0, etc.) In this
manner, ETL can straightforwardly capture relevant communicational constraints
in various situations.
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However, ETL does not provide a systematic method to represent informa-
tional events and their informational effects. In ETL models, events are con-
sidered to be unanalyzable elements. In order to represent an intended effect
of an informational event, say, e, we must impose an appropriate structure for
time-branching trees and agents’ indistinguishability relations with respect to the
event e. Yet ETL does not provide us with a procedure by which to figure out
what the ‘appropriate structure’ is. For this reason, we need to come up with
desired structures by considerations external to the framework of ETL. This is
unlike DEL, since it gives a way to systematically represent informational events
and produce new models that represent informational states after the events. In
this sense, ETL is not suitable for analyzing epistemic dynamics, especially when
compared to DEL.

Similar points can be made about other systems, such as Interpreted System
(IS, [21]) and STIT ([9, 15, 13]). In abstraction, models in those systems can
be thought of as consisting of points with temporal orders, which are also inter-
connected by indistinguishability relations for agents. Even though the models
are constructed based on different primitives (local states for agents in IS and
histories in STIT), we have to come up with appropriate constraints on those
primitives by ourselves in order to represent informational events of our inter-
est and their effects. Thus IS and STIT are well-suited for describing protocol
information but less so for analyzing epistemic dynamics.

Merging the Frameworks

Given the situation in the literature on systems describing intelligent interac-
tion, we seek for a formal framework that captures both epistemic dynamics and
protocol information. To develpe such a framework, we will make use of repre-
sentational devices provided by the two major frameworks, DEL and ETL. In
particular, we will take the ideas of event models and product update from DEL,
and the time-branching structure from ETL. We will merge these mechanisms in
one system and construct models that suitably represent the two crucial aspects
in intelligent interaction.

The key idea of our framework is that successive applications of product up-
date to epistemic models generate time-branching structures. Given an epistemic
model, we assign to each state a set of sequences of event models, which we call
a protocol . The protocol assigned to a given state is interpreted as the set of
sequences of events that can take place at the state. Then, by applying the prod-
uct update mechanism successively to the epistemic model based on the assigned
protocols, we generate ETL tree structures. The generated tree structures rep-
resent all possible temporal evolutions of agents’ initial informational states that
accord with protocol information.

There are three perspectives from which we can view the models in our frame-



11

work. First, our models are ETL models armed with a powerful representational
device for describing epistemic dynamics. Trees in ETL structures of our models
consist of event models. In DEL, they are mathematical structures that are inter-
preteda as informational events and give rise to new epistemic models via product
update to represent their intended informational effects. In our method sketched
above, ETL tree structures are generated based on event models as such and this
guarantees that the generated tree structures properly represent intended tempo-
ral evolutions of agents’ informational states. This is exactly how event models
are built into our ETL tree structures. By this feature and ETL structures, our
framework allow us to represent epistemic dynamics and protocol information
at the same time. On this perspective, our framework can be thought of as a
powerful tool to analyze the situations of intelligent interaction.

Second, our models generalize models in DEL. As mentioned above, DEL
assumes universal protocol in the sense that any event can happen at any moment.
By introducing protocols, our framework has the capability of constraining what
event can happen in the course of intelligent interaction. This feature allows us
to lift the assumption of universal protocol and to generalize the framework of
DEL. Based on the perspective, we may now consider reinterpreting systems of
DEL over the class of generalized models. This opens up investigation on new
logical systems of DEL over the models in our framework.

Third, the idea of generating ETL tree structures by the mechanisms of DEL
suggests the possibility of bridging the two distinct frameworks. In several places,
the question of how to best compare DEL and ETL has been investigated. (e.g.
[26, 71, 72, 76]) In producing ETL models from models in ETL, our framework
‘connects’ models in DEL and models in ETL. This consideration leads us to
investigate the relationship between DEL and ETL within our framework.

Philosophical Investigation

This dissertation will pursue the three directions that the above perspectives
suggest: (1) powerful representation, (2) logics, and (3) comparisons between
DEL and ETL. The projects given by (2) and (3) are, by nature, of a formal
character. Our approach to (1) will be based on the following considerations.

As mentioned at the beginning, various approaches have been developed to
investigate the concepts of knowledge and belief. However it has been noted (e.g.
[36]) that philosophical and formal investigations have grown rather indepen-
dently in the recent literature. The variety in approaches can be an advantage,
since different approaches can reveal different aspects of the concepts of interest.
On the other hand, it can be an obstacle, when the different approaches are left
without interaction.

This motivates the approach we will take for applications of our framework.
We will see philosophical issues where epistemic concepts involve the aspects of
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epistemic dynamics and protocol information. By disentangling those aspects,
we will try to provide new insights on relevant philosophical problems. Through
philosophical investigations in our framework, we hope not only that those exam-
ples illustrate that our framework provides a powerful tool for conceptual analysis,
but also that our attempts will contribute to the interaction between philosophy
and formal approaches in epistemology.

Connections to Other Topics

Beyond philosophical applications, our framework can contribute to other formal
investigations. First, our approach is squarely within the logical tradition in epis-
temic logic and, as such, it can provide further modeling tools for investigations in
computer science and theoretical economics, in which the framework of epistemic
logic has been applied. Artificial intelligence ([50]) and game theory ([74]) are
prime examples of the kind of disciplines, to which our approach is applicable.
Furthermore some investigation based on the framework of epistemic logic have
been made in such fields as cryptography ([75]), learning theory, etc.

Second, our framework can also provide a new approach in the study of epis-
temic logic itself. Various formal systems have been developed based on epistemic
logic, and some of the general methodologies adopted in this dissertation can be
applied to those systems. For instance, [69] demonstrates that our model con-
struction based on protocols can be applied in Dynamic Doxastic Logic. In addi-
tion, our models build in syntactic structures by protocols and this feature may
be exploited to bridge Dynamic Epistemic Logic and other systems of epistemic
logics equipped with similar syntactic elements. Examples include Justification
Logic ([1, 3, 2, 24]), Logic of Awareness ([21, 22]), etc.

Outline of the Dissertation

The structure of the dissertation is as follows. Part I develops our formal frame-
work. In Chapter 1, we will start by reviewing DEL and ETL to introduce the
formal machinery required for our framework, such as event models, product up-
date, and branching-time structures. Having introduced the formal systems, we
will then provide the basic definitions of our framework. We represent protocol in-
formation by a set of sequences of event models and call such a set DEL-protocols.
Given an epistemic model, we assign a DEL-protocol to each state in the model
and generate ETL models that represent the temporal evolution of the original
epistemic models. We call the ETL models DEL-generated ETL models. Based
on the class of DEL-generated ETL models, we will reinterpret systems of DEL.
This will set up a perspective that allows systematic comparisons between DEL
and ETL. The main result in our study of the relationship between DEL and ETL
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will be the representation theorem, which states that the class of DEL-generated
ETL models can be characterized as a special class of ETL models with some
suitable properties.

In Chapter 2, we will study logics on the semantic framework developed in
Chapter 1. The main goal of this chapter is to axiomatize the class of DEL-
generated ETL models. We will develop our method of axiomatization by start-
ing with the subclass of DEL-generated ETL models that consist only of public
announcements (event models that induce model relativizations). We will call the
system corresponding to the class of models, TPAL, (an acronym for “Temporal
Public Announcement Logic”). Then we will generalize the method to the full
class of DEL-generated ETL models. We will call the system TDEL (the name
is an acronym for “Temporal Dynamic Epistemic Logic”).

In Chapter 3, we will extend the systems developed in the previous chapter for
wider applications. One kind of extension is given by introducing new operators
to TPAL and TDEL. The operators we will consider include ♦ (“Some event can
happen after which...”), ♦∗ (“Some sequence of events can happen after which...”),
and Pε (“ε has happened before which...”). These operators are useful to analyze
various epistemic concepts. Another extension is given by generalizing the model
construction introduced in Chapter 1. The notion of protocols introduced in
Chapter 1 has a technical restriction on the kind of event models that constitute
protocols. We will consider a way to lift the restriction and allow the full class of
event models to be in protocols.

Part II of the dissertation develops philosophical applications of the formal
framework developed in Part I. In Chapter 4, we will give a logical analysis on
Fitch’s paradox and its variant, the idealism problem. We undertake two tasks.
The first task is to provide a philosophical framework for verificationism that
does not imply the formulation of the knowability thesis, every truth is knowable,
from which Fitch’s paradox and the idealism problem are derived. The second
task is to formalize the proposed framework by suitably interpreting a logical
system in dynamic epistemic logic. Not only will this make explicit our theoretical
commitments, but also it will allow us (i) to present a new formulation of the
verificationist knowability thesis as a provable statement and (ii) to give a fine-
grained logical analysis of alternative formulations of verificationist commitments
to knowability.

In Chapter 5, we will deal with the epistemic closure principle, knowledge is
closed under logical implication. In epistemic logic, this principle, formulated as
if ϕ is known and ϕ logically implies ψ, then ψ is known, is problematic, since it
applies only to logically omniscient agents. This is called the problem of logical
omniscience. Stalnaker argues that it seems infeasible to characterize the notion
of knowledge in a way that avoids the problem in the framework of epistemic
logic. The first objective of Chapter 5 is to challenge this claim and give a
formalization of the desired notion of knowledge in our framework. In addition,
the formalization of the notion of knowledge makes it possible to consider the
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representation of agents’ making deductive inferences. Thus, the second objective
of Chapter 5 is to model situations in which agents make deductive inferences.
We will use the formal representation to describe another perspective on the
epistemic closure principle discussed in epistemology, knowledge can be extended
by deductive inference. This will allow us to compare the two different perspectives
on epistemic closure, one in epistemic logic and the other in epistemology, in our
formal framework.

Sources of the Chapters

A large part of the materials in Chapter 1 comes from my joint paper, “Merging
Frameworks for Interaction” ([70]), with Johan van Benthem, Jelle Gerbrandy,
and Eric Pacuit. The completeness results in Chapter 2 comes from the paper and
another paper, “Dynamic Epistemic Logic with Temporal-Branching Trees” ([43])
with Audrey Yap. Chapter 3 extends my paper [42] and a simplified version of
the system presented in [43]. Chapter 4 is based on my paper, “The Knowability
Paradox and Dynamics of Knowledge” ([39]), which builds on my joint work
“‘Knowable’ as ‘Known after an announcement”’ ([5]) with P. Balbiani, A. Baltag,
H. van Ditmarsch, A. Herzig, T. de Lima. Chapter 5 is based on my paper
“Logical Omniscience and Deductive Inference” [40]).



Chapter 1

Merging Frameworks

As discussed in the Introduction, there are two important aspects in describing
intelligent interaction. One is the mechanism by which agents’ informational
states change over informational events. Since informational events of the simplest
kind could affect agents’ knowledge in a very delicate manner, it is crucial to get
a good grasp on informational events and their epistemic effects. We call this
aspect epistemic dynamics . The other aspect of intelligent interaction is what
informational events can take place in the course of agents’ interaction. Various
kinds of communication constraints are present in many situations of agents’
intelligent interaction, and the information about such constraints is crucial to
deal with reachability questions . We call this aspect protocol information.

Although various kinds of multi-agent intelligent systems have been developed
so far, each system seems suitable for only one of the two aspects but less so for
the other. For instance, Dynamic Epistemic Logic (DEL) describe epistemic dy-
namics well by event models and product update; however, DEL does not provide
a machinery to describe protocol information. On the other hand, Epistemic
Temporal Logic (ETL) describes protocol information well by its time-branching
tree structures; however, ETL does not provide a machinery to systematically
represent informational events and their informational effects.

The main purpose of this chapter is to develop a formal framework that de-
scribes both epistemic dynamics and protocol information together. We achieve
this goal by merging DEL and ETL. Our key idea in merging these systems is that
repeatedly applying product update with sequences of event models generates an
ETL model. In this chapter, we will show how this idea can be made precise.

Furthermore, by generating ETL models from DEL-models, our framework
can provide a formal ground on which DEL and ETL can be compared in a precise
manner. The main result of this chapter is the representation theorem, which
characterizes the largest class of ETL models corresponding to DEL protocols in
terms of the notions of Perfect Recall, No Miracles, and Bisimulation Invariance.

We will proceed as follows. We start by introducing DEL and ETL and

15
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discussing how they represent intelligent interaction (Section 1.1- 1.3). Then
we go on to merge the two systems and obtain the framework that we propose
(Section 1.5). Having developed the framework, we will compare DEL and ETL
(Section1.5) and prove the representation theorem.

1.1 Epistemic Logic

We start by introducing DEL and ETL to develop our framework. Both systems
build on Epistemic Logic (EL) to represent informational states of agents. EL is
an application of Modal Logic, which has been developed since the seminal work
by Hintikka ([37]). Fix a finite set of agents A and a countable set of propositional
letter At.

1.1.1. Definition. (Epistemic Models) An epistemic model is a triple (W,∼
, V ), where (i) W is a nonempty set, (ii) ∼ is a function from A to ℘(W ×W )
and (iii) V is a valuation function on At, i.e V : At→ ℘(W ).

W is interpreted as a set of epistemically possible situations. We call the elements
in W in various ways, including worlds, states, points , etc. The relation ∼ assigns
a binary relation on W for an agent in A. By convention, we will write ∼i for
∼ (i) and w ∼i v for (w, v) ∈∼ (i). The intended interpretation of w ∼i v is “at
w, i considers v possible.” The valuation function V assigns to p ∈ At a subset
of W . V (p) represents the set of worlds where p is true. Therefore, V represents
truth of propositional letters at worlds in W .

When ∼ assigns an equivalence relation on W to an agent i, an equivalence
class induced by ∼i represents a set of worlds that an agent i cannot distinguish.
For this reason, we often call ∼i an indistinguishability relation for an agent i.
Although we do not assume ∼ assigns equivalence relations, we will often read
w ∼i v as “w and v are indistinguishable for i”. Most of our examples below give
models in which ∼ assigns equivalence relations.

Finally, given an epistemic modelM, we denote its domain, indistinguishabil-
ity relation and valuation function also by Dom(M), ∼M, and VM respectively.

1.1.2. Example. (Office-Card Example: Epistemic Models) Figure 1.1
visualizes an example of epistemic models. The model consists of two worlds,
w and v, represented by the two circles. The indistinguishability relations for
the agent, 1 and 2, are equivalence relations visualized by dashed lines labelled
with 1 and 2 respectively. The letters below the two circles represent the truth
of propositional letters, p and q: p is true only at w; q is true at both w and v.

The model can be thought of as capturing the office-card example discussed
in Introduction. You and I come in to our office and find a card face-down on the
desk. Suppose that the card is the ace of Diamonds. Let p be “The card on the
desk is the ace of Diamonds.” and let q be “We are in the office.” Given these
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Figure 1.1: Epistemic Model

assumptions, the world w in the model represents the situation, since p and q are
true there. However, you and I, 1 and 2 in the model, cannot tell whether p or
¬p.

Epistemic models represent informational states of agents by a set of worlds
with a valuation for each propositional letter and indistinguishable relations as-
signed for agents. EL describes informational states represented by epistemic
models by the following language.

1.1.3. Definition. (Language of EL) The language of EL extends that of
propositional logic (PL) with the epistemic operator [i]. Formulas of EL is induc-
tively defined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ

where p ∈ At and i ∈ A. The dual 〈i〉 of [i] and the other boolean operators are
defined in the standard way. We denote the set of formulas in EL by Lel. We call
formulas in Lel epistemic formulas.

1.1.4. Definition. (Truth in EL) LetM = (W,∼, V ) be an epistemic model.
The truth of a formula ϕ ∈ Lel at w inM, denoted byM, w |= ϕ, is inductively
defined as follows:

M, w |= p iff w ∈ V (p) (with p ∈ At)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= [i]ϕ iff ∀v ∈ W : w ∼i v and M, v |= ϕ

Thus [i]ϕ is true at w iff ϕ is true at all worlds that i considers possible at
w. We give different interpretations to the modal operator [i] depending on our
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applications. Among such interpretations are “i knows ϕ,” “To the best of i’s
information, ϕ.” etc.1 Given that the former interpretation is standard, we will
often call the modality the knowledge modality or knowledge operator. The dual
operator 〈i〉ϕ can be also read in various ways, such as “i considers ϕ possible”.

1.1.5. Example. (Office-Card Example: Truth in EL) Consider the model
in Figure 1.1 again. At w, [1]q and [2]q are true, since q is true at both w and
v. Therefore you know q and I know q. However, [1]p and [2]p are false since p
is false at v, which we cannot distinguish from w. Therefore you do not know p
and I do not know p. Similarly we can consider more complex formulas in the
model and confirm that they provide right results. Readers are invited to verify
the truth of [1]¬[2]p, [2]¬[1]p, [1][2]¬[1]p, etc. at w (“You know I do not know
p”, “I know you do not know p”, “You know I know you do not know p”, etc.)

1.2 Dynamic Epistemic Logic

Epistemic models, as defined in the previous section, are to describe static states
of agents’ information. Dynamic Epistemic Logic (DEL) introduces certain model
transformations to EL and represents the dynamics of agents’ informational states
over informational events. To introduce the framework of DEL, we start with
Public Announcement Logic (PAL, e.g. [55, 64]), since this simplest system of
DEL clearly exhibits the basic ideas of DEL.

1.2.1 Public Announcement Logic

PAL describes the dynamics of agents’ informational states when true information
is publicly announced. PAL represents public announcements as model relativiza-
tion. Given an epistemic model M and a formula ϕ, the public announcement
of ϕ, denoted by !ϕ, is the operation that eliminates the worlds in M where ϕ
is false. This is illustrated in Figure 1.2. p is true at w and false at v. Through
the public announcement !p, the white world is eliminated and a new epistemic
model, represented on the right, is obtained.

PAL extends EL with operators of the form [!ϕ]. The language of PAL is thus
defined as follows.

1.2.1. Definition. (Language of PAL) Formulas of PAL are inductively de-
fined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [!ϕ]ϕ

1The former reading is standard in epistemic logic. The latter reading is suggested by e.g.
[68]
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Figure 1.2: Public Announcement

where p ∈ At and i ∈ A. The duals, 〈i〉 and 〈!ϕ〉, of [i] and [!ϕ], and the other
boolean operators are defined in the standard way. We denote the set of formulas
in PAL by Lpal.

1.2.2. Definition. (Truth in PAL) The truth of formulas in PAL is defined
by adding the inductive clause for the operator [!ϕ] to the truth definition of EL
(Definition 1.1.4). Given an epistemic model M = (W,∼, V ),

M, w |= [!ϕ]ψ iff M, w |= ϕ implies M×!ϕ,w |= ψ

where M×!ϕ = (W ′,∼′, V ′) is defined by:

W ′ = {v ∈ W | M, v |= ϕ}
∼′ (i) = ∼ (i) ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′.

The intended readings of [!ϕ]ψ and 〈!ϕ〉ψ are respectively “After the truth of
ϕ is publicly announced, ψ.” and “The truth of ϕ can be publicly announced
after which ψ.” However, readers should not be misled by the term “public
announcement” here. !ϕ is defined simply by model relativization to the worlds
where ϕ is true and, depending on our purposes, we may capture other kinds
of informational events by !ϕ, insofar as their informational effects can be so
construed. Other possible readings of [!ϕ] are: e.g. “after (publicly) observing ϕ,
. . . ”, “after (publicly) verifying the truth of ϕ”, etc.

1.2.3. Example. On this note, we can think of Figure 1.2 as a model of one of
the scenarios in our office-card example. Suppose that the card on the desk is the
ace of Diamonds. Our informational state when we come in to the office can then
be represented by the epistemic model M on the left by interpreting p as “The
card on the desk is the ace of Diamonds.” Turning the card on the desk over, we
will publicly observe that the card is the ace of Diamonds. This informational
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event changes our informational state into the state represented in the epistemic
model M×!ϕ on the right. Thus, at w we have [!p][1]p and [!p][2]p true (both 1
and 2 come to know that p).

Also note that, in the model in question, a formula ϕ := p ∧ ¬[1]p (p but 1
does not know p) is true at w inM, but false at w inM×!ϕ. Therefore, [!ϕ][i]ϕ
is false (at w in M)! (False propositions can never be known.) As mentioned in
the Introduction, some truth may not be known after it is publicly announced.
We will study this phenomena closely in Chapter 4.

1.2.2 Event Models and Product Update

Although public announcements represent a variety of informational events, there
are still different kinds of informational events that cannot be properly captured
by public announcements. For instance, observation may not be completely pub-
lic. In our example, I may peep into the card on the desk while you do not. I may
even try to do it secretly without making you realize I do. Dynamic Epistemic
Logic (DEL) generalizes the framework of PAL by introducing the machinery of
event models and product update.

1.2.4. Definition. (Event Model) An event model E is a tuple (E,→, pre),
where (i) E is a finite nonempty set, (ii)→ is a function from A to ℘(E×E) and
(iii) pre is a function from E to Lel.

The domain E of an event model can be considered as the set of events. Given
two events, e and f , the intended interpretation of (e, f) ∈→ (i) is as “when e
happens, an agent i considers it possible that f has happened.” As discussed in
the case of the indistinguishability relation of epistemic models, ∼ (Section 1.1),
when → (i) is an equivalence class on E, an equivalence class induced by → (i)
represents a set of events that i cannot distinguish: When an event in an equiv-
alence class happens, i thinks that any of the events in the class has happened.
Thus we will call → the indistinguishability relation for i over events. The func-
tion pre determines preconditions of events. Given pre(e) = ϕ, an event e can
happen at a world iff ϕ is true at the world. (More on preconditions below. See
Section 1.2.3) Note that a precondition that pre maps to each event must be
an epistemic formula ( a formula in Lel). This assumption can be lifted. See
Chapter 3.

When (e, f) ∈→ (i), we write e →i f by convention. Also given an event
model E , we denote its domain, indistinguishability relation, and precondition
function by Dom(E), →E , and preE respectively.

1.2.5. Example. (Office-Card Example: Event Models) Let us come back
to the office-card example. Figure 1.3 visualizes the two event models, E1 and E2,
which represent the two scenarios in which I peep at the card on the desk in front
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Figure 1.3: Event Models

of you or secretly. Suppose that the card on the desk is the ace of Diamonds.
Denote the proposition expressing this fact by p and let 1 and 2 be me and you
respectively. First consider E1. It has two events, e and f , with preconditions p
and ¬p respectively. 1 can distinguish e and f (→1 partitions the model into {e}
and {f}), while 2 cannot (→2 partitions the model into the whole domain {e, f}).
We can think of the event e in the event model as the event of 1’s peeping at the
card in front of 2. Suppose e happens. 1 thinks that e happened but not f , since
he can distinguish e and f . Since e can happen only if p, 1 comes to know that
p. On the other hand, 2 cannot distinguish e and f . Thus she does not come to
know that p after e. However, in the sense that these two event, e and f , are the
only events that 2 considers possible, 2 come to know that 1 now know whether
p or ¬p.

Next consider E2. It adds a third event, g, to the model on the left. Having >
(a tautologous truth) as its precondition, g can be thought of as any trivial event
that can happen no matter how the world is. Thus when e happens, 2 cannot tell
whether 1 has peeped at the card (by which 1 would obtain the information that
p or ¬p) or whether anything that informs 1 of what the card is has happened.
Thus, unlike the model on the left, 2 does not come to know that 1 now knows
whether p or ¬p. The event e in the model on the right can be interpreted as the
event of 1’s peeping into the card without making 2 realizing that 1 does.

In DEL, these event models induce model transformations via product update
to represent the informational effects of corresponding informational events.

1.2.6. Definition. (Product Update) The product update M⊗E of an epis-
temic modelM = (W,∼, V ) and an event model E = (E,→, pre) is the epistemic
model (W ′,∼′, V ′) with
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1. W ′ = {(w, e) | w ∈ W, e ∈ E and M, w |= pre(e)},

2. (w, e) ∼′i (v, f) iff w ∼i v in M and e −→i f in E , and

3. (w, e) ∈ V ′(p) = w ∈ V (p) for all p ∈ At. /

Figure 1.4 represents the epistemic models obtained by transforming the model
M in Figure 1.1 via product update based on the event models, E1 and E2, in
Figure 1.3. Readers are invited to verify the results.

DEL captures temporal evolution of agents’ informational states by model
transformations induced from event models via product update. However, as seen
in the above examples, events have their meanings relative to event models that
they belong to. For this reason, DEL deals with pairs of event models and events
in them. A pointed event model ε is a pair (E , e), where E is an event model and
e is an event in Dom(E).

1.2.7. Definition. (Language of DEL) Formulas of DEL are inductively de-
fined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [E , e]ϕ

where p ∈ At, i ∈ A, and (E , e) is a pointed event model. The duals, 〈i〉 and
〈E , e〉, of [i] and [E , e], and the other boolean operators are defined in the standard
way. We denote the set of formulas in DEL by Ldel.
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1.2.8. Definition. (Truth in DEL) The truth of formulas in DEL is defined
by adding the inductive clause for the operator [E , e] to the truth definition of EL
(Definition 1.1.4). Given an epistemic model M = (W,∼, V ),

M, w |= [E , e]ψ iff M, w |= preE(e) implies M⊗E , (w, e) |= ψ.

The intended readings of [E , e]ψ and 〈E , e〉ψ are respectively “After the event
(E , e) happens, ψ.” and “The event (E , e) can happen after which ψ.”

1.2.9. Example. (Office-Card Example: Truth in DEL) Let us consider
our office-card example in Figure 1.4. After peeping publicly, you come to know I
come to know whether p. This is expressed by the truth of [E1, e][2]([1]p ∨ ¬[1]p)
at w inM. The formula is true since [2]([1]p∨¬[1]p) is true at (w, e) inM×E1.
After peeping secretly, you do not come to know I know whether p. This is
expressed by the truth of [E2, e]¬[2]([1]p∨¬[1]p) at w inM. The formula is true
since ¬[2]([1]p ∨ ¬[1]p) is true at (w, e) in M×E2.

1.2.10. Remark. (Public Announcement) DEL generalizes PAL in the sense
that public announcements can be captured by a certain kind of event model. The
public announcement !ϕ of a formula ϕ (in Lel) can be thought of as the event
model Eϕ = (E,→, pre), where (i) E = {e}, (ii) for each i ∈ A, →i= {(e, e)}
(equivalence relation on e), and (iii) pre(e) = ϕ. The product update of an
epistemic model M = (W,∼, V ) with an event model Eϕ produces a ‘submodel’
ofM containing only the states where ϕ is true (inM). More precisely,M×Eϕ =
(W ′,∼′, V ′) is:

• W ′ = {(w, e) | M, w |= ϕ}

• (w, e) ∼′i (v, e) iff w ∼i v

• V ′(p) = {(w, e) | w ∈ V (p)}

Note that, by the above mentioned restriction on the precondition function, pre,
only public announcements of epistemic formulas can be directly modeled in this
way. (cf. Definition 2.1.2) This is not a substantial restriction in DEL, since
formulas in DEL reduce to equivalent formulas in EL via reduction axioms as we
will discuss later (Section 2.3 and 2.5.1). However, the situation is different in
our own framework. See also Remark 1.4.13.

1.2.11. Remark. (Identifying Event Models) Strictly speaking, there are as
many distinct event models as there are distinct elements, according to Defini-
tion 1.2.4. For instance, two event models, E and F , consisting of single reflexive
elements e and f (with e 6= f) with precondition ϕ, can be identified with ϕ.
However, we will identify event models, when they are isomorphic. Two event
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models E and F are isomorphic, if there is a one-to-one map from E onto F that
preserves indistinguishability relations and precondition functions. Given that
event models are finite (See below Remark 1.2.12), the class of all event models
is countable.

1.2.12. Remark. (Finite Domain) In Definition 1.2.4, the domains of event
models are defined to be finite. The main reason is that the standard reduction
axioms for the DEL modality [E , e] (cf. [6]) contain a conjunction over all elements
of E reachable from e. If this set is infinite, then the reduction axiom will not
be a formula of LDEL since it contains an infinite conjunction. We return to this
issue in Section 1.5.2.

1.2.3 Protocol Information in DEL?

As we have seen, DEL provides a good representational framework for epistemic
dynamics. It represents static informational states of agents by epistemic models
and informational events by event models. Product update transforms epistemic
models into new models that represent informational states after informational
events.

However, DEL does not provide a machinery that is suitable for representing
protocol information. There are two senses in which it does not. First, in DEL,
there is no restriction on which event models can be applied to given epistemic
models. Any event model can be applied to any epistemic model, and the epis-
temic model obtained by the process can be described by using corresponding
event operators. As we saw above, the informational state after I peep into the
card on the desk can be represented (in Figure 1.4) by an epistemic model. No
matter what communication constraints we think of for the situation after my
peeping, e.g. I put the card into the deck after peeping and leave the office, DEL
does not forbid us from applying the public announcement of !p (The card is
the ace of Diamonds), which will yield the truth of 〈!ϕ〉[2]p (p can be publicly
announced after which you know p).

Second, one may try to adjust the precondition functions of event models to
represent communication constraints. One component of event models is a pre-
condition function pre. The function is interpreted in such a way that an event
e can happen iff pre(e) = ϕ. Thus, in the above example, we may introduce a
new propositional letter, say d, to represent whatever communicational or ob-
servational constraints there will be after my peeping, and say that the public
announcement of p is in fact the public announcement of p ∧ d, since the public
announcement of p can happen only if p is true and the condition d is satisfied.
For instance, we may interpret d here as “the card is still on the desk in the office
in front of us”, and make d false to represent the situation after I put the card
back into the deck of cards and leave the office. 〈!(p ∧ d)〉[2]p then become false,
since p∧ d is false in that case. Thus, after I put the card into the deck and leave
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the office, you cannot know what the card is by turning the card over or asking
me what the card was.

Even though such an adjustment of precondition functions may yield sat-
isfactory representations for certain cases of intelligent interaction, the strategy
cannot be applied generally to represent protocol information. The main obstacle
is that the informational events that can happen may change over time. In many
interaction scenarios, the information about what can happen at a given moment
depends on the information about what has happened earlier. For instance, our
conversation may obey implicit rules such as “Do not repeat yourself”, “Say p
after q”, etc. Protocol information of this kind cannot be captured by the above
maneuver, since the preconditions of events are encoded by propositional letters,
whose truth values are constant in DEL at a given world. A given world can
evolve in various possible ways, depending on what event happens, and proposi-
tional letters cannot do the job of tracking how the world has evolved. For this
reason, DEL is not suitable for capturing the temporality in protocol information.

1.3 Epistemic Temporal Logic

Epistemic Temporal Logic (ETL) provides an alternative framework to represent
intelligent interaction. ETL represents temporal evolutions of agents’ epistemic
states by branching-time tree structures. Those structures describe how histories
of given states evolve.

1.3.1 Branching-Time Tree Structure

Fix a finite set of agents A and a countable set of propositional letter At. Let Σ
be a set of events. A history is a finite sequence of events from Σ. We write Σ∗

for the set of histories built from elements of Σ. For a history h, we write he for
the history h followed by the event e. Given h, h′ ∈ Σ∗, we write h � h′ if h is a
prefix of h′, i.e. there is some k such that hk = h′. H ⊆ Σ∗ is closed under finite
prefix if, for every h ∈ H and h′ � h, h′ ∈ H. We denote the empty sequence by
λ.

1.3.1. Definition. (ETL Models) Let Σ be a set of events. An ETL model is
a tuple (Σ, H,∼, V ) where (i) H does not contain λ and is a subset of Σ∗ closed
under finite prefix, (ii) ∼ is a function from A to ℘(H × H), and (iii) V is a
function from At to ℘(H).

H represents the temporal structure with h′ = he representing the temporal
point after the event e has happened at the point h. For each i ∈ A, the relation
∼ (i) (also denoted by ∼i) represents the indistinguishability relation on histories
for i. V is a valuation function on H (cf. Definition 1.1.1 and 1.2.4).
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Figure 1.5: ETL Models

Figure 1.5 represents two ETL models. Let us consider the models by using
our example. Let e0 and f0 be respectively the event of the ace of Diamonds
being placed on the desk and the event of a different card being placed face-down
on the desk. Let p be “the card on the desk is the ace of Diamonds.” and assume
that, in both models, p is true at each node following e0, while p is false at each
node following f0. Now when we come into the office, we do not know what the
card is. Thus, the nodes e0 and f0 are indistinguishable to me and you (agents
1 and 2 respectively) in both models. At the node e0, we can turn over the card
(the event represented by e1) or I can peep into the card in front of you (the event
represented by e2). If e1 happens, we both know the card is the ace of Diamonds
(we can distinguish the node e0e1, where p is true, from the nodes coming out
of f0). If e2 happens, I come to know p but you don’t, since you (2) cannot
distinguish e0e2 from f0f1, where p is false. So far, the two models in Figure 1.5
are the same. They differ in what can happen at e0e2. The left model can be
thought of as representing the situation where I stay in the office. I can tell you
what the card is (the event represented by e3) and you will come to know p. On
the other hand, the right model can be thought of as representing the situation
where I leave the office after putting the card into the deck. No event can happen
to change our informational states.

Different modal languages describe ETL models (see, for example, [21, 38]).
Here we give just the minimal language of ETL.

1.3.2. Definition. (Language of ETL) Let Σ be a set of events. Formulas
Letl are defined inductively as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [e]ϕ
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where i ∈ A, e ∈ Σ and p ∈ At. The dual, 〈i〉 and 〈e〉, and boolean connectives
(∨,→,↔) are defined in the standard way. We denote the set of formulas in ETL
by Letl.

It is often natural to extend the language Letl with group knowledge operators
(e.g., common or distributed knowledge) and more expressive temporal operators
(e.g., arbitrary future or past modalities). This may lead to high complexity of
the validity problem (cf. [29, 72]). We will study some of those operators in
Chapter 2 and 3.

1.3.3. Definition. (Truth in ETL) Let H = (Σ, H,∼, V ) be an ETL model.
The truth of a formula ϕ at a history h ∈ H, denoted H, h |= ϕ, is defined
inductively as follows:

H, h |= p iff h ∈ V (p) (with p ∈ At)
H, h |= ¬ϕ iff H, h 6|= ϕ
H, h |= ϕ ∧ ψ iff H, h |= ϕ and H, h |= ψ
H, h |= [i]ϕ iff ∀h′ ∈ H : h ∼i h′ implies H, h′ |= ϕ
H, h |= [e]ϕ iff he ∈ H implies H, he |= ϕ

The intended readings of [e]ϕ and 〈e〉ϕ are respectively “After the event e hap-
pens, ϕ.” and “The event e can happen, after which ϕ.”

1.3.4. Example. (Office-Card Example: Truth in ETL)In the models dis-
cussed in Figure 1.5, 〈e1〉[1]p is true at e0, since e0e2 is in the model and [1]p is
true at e0e2. Also, 〈e3〉> is true at e0e2 in the left model but false in the right.2

This is simply because e0e2e3 is in the left model but not in the right.

1.3.2 Epistemic Dynamics in ETL?

As the above examples illustrate, time-branching tree structures in ETL are suit-
able for representing protocol information. Each history represents temporal de-
velopment of a given state (or world) and each node of a history represents a
temporal moment in the development of the corresponding state. Branches com-
ing out of a given node represent what can happen at that moment and thereby
express protocol information.

However, ETL does not provide a systematic method to represent informa-
tional events and their informational effects. In ETL models, events are unana-
lyzable primitive elements. In order to represent an intended effect of an informa-
tional event, say, e, we must impose an appropriate structure for time-branching
trees and agents’ indistinguishability relations with respect to the event e. This

2The formula reads as “The event e3 can happen.” It literally reads as “The event e3 can
happen after which >”. However, >, being a tautologous truth, is true at any node.
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may be done for some simple cases as presented in Figure 1.5. However, there is
no guarantee that we will succeed in doing so for more complex situations. How
can we come up with the right structure, say for the one of our scenarios, where
I peep at the card secretly? In DEL, we could produce the epistemic model in
Figure 1.4 that represents the informational state after the informational event
by the mechanism of event models and product update. However, ETL does not
provide such a systematic procedure, and we need to come up with appropriate
structures by considerations external to the framework of ETL. For these reasons,
ETL is not suitable for analyzing epistemic dynamics.

1.4 Merging DEL and ETL

As we have seen, DEL is suitable for describing epistemic dynamics, while ETL
is suitable for describing protocol information. To obtain a formal framework
that describes both aspects of intelligent interaction together, we will merge DEL
and ETL. Our key idea is that by repeatedly updating an epistemic model with
event models, DEL in effect generates ETL models. First, to represent protocol
information, we assign to each world of a given epistemic model a set of sequences
of (pointed) event models. We call those assigned sets protocols. Sequences
in protocols represent the sequences of events that can take place at a given
world. By applying the product update mechanism successively to the epistemic
model based on the assigned protocols, we generate ETL tree structures. The
generated tree structures represent all possible temporal evolutions of agents’
initial informational states that accord with protocol information. Below we will
make these ideas precise.

1.4.1 Protocols

Let E be the class of all pointed event models,

E = {(E , e) | E an event model and e ∈ D(E)}.

We denote the set of finite sequences of pointed event models by E∗. (By consid-
erations given in Remark 1.2.11, both E and E∗ are countable. More on this in
Chapter 3).

1.4.1. Definition. (DEL-Protocol) A DEL-protocol is a set P ⊆ E∗ closed
under finite prefix. We denote by Ptcl(E) the class of all DEL-protocols, i.e.,
Ptcl(E) = {P | P ⊆ E∗ is closed under initial segments}.

1.4.2. Definition. (State-Dependent DEL-Protocol) Let M be an arbi-
trary epistemic model. A state-dependent DEL-protocol onM (sd -DEL-protocol)
is any function p : Dom(M)→ Ptcl(E).
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When there is no confusion, we will simply say protocols or sd -protocols for DEL-
protocols or sd -DEL-protocols.

Sd -protocols significantly generalize the usual ETL setting where the protocol is
assumed to be common knowledge among agents (cf. [21, 53]). An sd -protocol
can assign different protocols to different worlds in a given epistemic model. Con-
sequently, what event can happen at a given moment may not even be known by
agents. On the other hand, if an sd -protocol p assigns the same protocol, say P,
to each world of a given epistemic model, then the protocol P will be common
knowledge. This is a special kind of sd -protocol, which we will call them uniform
protocols.

1.4.3. Definition. (Uniform Protocol) An sd -DEL-protocol p on M is a
uniform protocol on M, if, for all w ∈ Dom(M), p(w) = P for some P. Clearly
a given DEL-protocol P induces a uniform protocol on any epistemic model. For
this reason, when there is no confusion, we drop the specification of epistemic
models and call DEL-protocols uniform protocols.

State-dependent and uniform protocols are two extreme cases with many inter-
esting intermediate cases, where agents have only partial knowledge of the type of
conversation, experimental protocol, or learning process they are in. One natural
example is the assumption that all agents individually know the protocol: for
each w, v ∈ D(M), if wRiv then p(w) = p(v). In this chapter, we will restrict
our attention to state-dependent protocols and uniform protocols.

1.4.2 DEL-Generated ETL Models

We now present the main construction of this chapter: generating an ETL model
from an initial epistemic model and a (state-dependent or uniform) DEL-protocol.
We need some notation. We need to introduce some notation. Let σ = (E1, e1)(E2, e2) . . . (En, en) ∈
E∗. We denote the length of σ by len(σ), i.e. len(σ) = n. When k ≤ len(σ), we
write σ(k) for the initial segment of σ of length k, and σk for the kth component of
σ. When k > len(σ) or k = 0, σk and σ(k) are the empty sequence λ. Also we write
σL and σR for E1 · · · En and e1 · · · en respectively. For example, (σL)(3) = E1E2E3

and (σR)3 = e3. Clearly, (·)L, (·)R on the one hand and (·)n, (·)(n) on the other
commute. Thus, we omit parentheses when there is no danger of ambiguity.

Construction with Uniform Protocols

We start by constructing an ETL model from a uniform DEL-protocol since
the definition is more transparent. However, we stress that the following two
definitions are special cases of the more general construction given below (cf.
Definition 1.4.8 and Definition 1.4.9).
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1.4.4. Definition. (σ-Generated Epistemic Model) Given an epistemic model
M = (W,∼, V ) and a finite sequence of pointed event models σ, we define the
σ-generated epistemic model,Mσ = (W σ,∼σ, V σ) asM⊗σL1 ⊗σL2 ⊗ . . .⊗σLlen(σ).

1.4.5. Definition. (ETL Model Generated from a Uniform DEL-Protocol)
Let M be a pointed epistemic model and P a DEL protocol. The ETL model
generated by M and P, Forest(M,P), is an ETL model (Dom(M)∪E, H,∼, V ),
where (H ′,∼′, V ′) is such that

• H ′ =
⋃
σ∈PW

σ,

• for each i ∈ A, ∼′i:=
⋃
σ∈P ∼σi , and

• for each p ∈ At, V ′(p) :=
⋃
σ∈P V

σ(p)

We will omit Dom(M) ∪ E and write Forest(M, p) = (H ′,∼′, V ′), where there is
no confusion. We also identify (w, σ1, . . . , σlen(σ)) in Mσ with a history wσ.

Forest(M,P) represents all possible evolutions of the system obtained by up-
dating M with sequences from P. It is straightforward to verify the following
proposition.

1.4.6. Proposition. For every epistemic model M and a uniform protocol P,
Forest(M,P) is an ETL model.

Proof. The proposition immediately follows from the fact that every DEL
protocol P is closed under prefixes by Definition 1.4.1. Indeed, when wσε (or
(w, σ1, . . . , σlen(σ), ε)) is in Forest(M,P), σ ∈ P. This means that wσ is in
Forest(M,P), since (w, σ1, . . . , σlen(σ)) is in Mσ. Therefore, H is closed under
finite prefix and Forest(M,P) is an ETL model by Definition 1.3.1 qed

1.4.7. Example. (ETL Models Generated from Uniform Protocols) Here
is a concrete illustration of the construction. Let M be an epistemic model that
have three worlds, w, v, u, where p is true only at w and v and q is true only at w.
An agent 1 cannot distinguish w and v and an agent 2 cannot distinguish v and
u. Let P be a uniform protocol consisting of sequences of public announcements
such that P = {!p!q, !¬p!¬q}. Forest(M,P) can be visualized as in Figure 1.6.
At the bottom, we have three nodes (circled for emphasis) corresponding to M.
These three nodes are updated by the sequences of public announcements in P.
Consider the sequence !p!q. After M is updated by !p, two nodes, w!p and v!p,
corresponding to M×!p are created. Then the model is further updated by !q,
which creates the node w!p!q corresponding to (M×!p)×!q. Similarly for the
sequence !¬q!¬p.
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Figure 1.6: ETL Models Generated from Uniform Protocols

Construction with State-Dependent Protocols

Now we present the method to generate ETL models from sd -DEL-protocols in
general. The basic intuition is the same here. We apply product update based
on the sequences of pointed event models that appear in protocols. The process
was simple for uniform protocols, since what can happen was the same. For
general sd -protocols, what can happen may differ between worlds. Thus, even
if an event (E , e) is in the protocol at a world w in an epistemic model M, it
may not be in the protocol at another world v. In this case, whether or not
the precondition of e is true at v, we cannot create the new node v(E , e). This
means that, dealing with general sd -protocols, we cannot simply apply sequences
of event models allowed in protocols. In applying product update with an event
model, we need to exclude the worlds where the event model is not allowed to
happen, as well as the world where the precondition is not satisfied. This is taken
care of in the following definitions that generalize Definition 1.4.4 and 1.4.5. We
will give definitions with comments for clarification, since definitions are much
more complicated than the case for uniform protocols.

1.4.8. Definition. (σL-Generated Model) Let M = 〈W,∼, V 〉 be an epis-
temic model and p, a state-dependant DEL-protocol on M. Given a sequence
σ ∈ E∗, the σL-generated model under p,

MσL,p = (W σL,p,∼σ
L,p
i , V σL,p),
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is defined by induction on the initial segment of σL:

• W σL
(0)
,p := W , for each i ∈ A, ∼

σL
(0)
,p

i :=∼i and V σL
(0)
,p := V .

(Thus we start with the initial epistemic model M.)

• wτ ∈ W σL
(n+1)

,p iff

1. w ∈ W ,

2. σL(n+1) = τL,

3. wτ(n) ∈ W σL
(n)
,p,

4. τ ∈ p(w), and

5. MσL
(n)
,p, wτ(n) |= preτLn (τRn+1).

(By Item 2, every element in W σLn+1,p is of the form wτ with τ of the length n+1.
Item 4 guarantees that only sequences of events models that are allowed by the
protocol will be in W σLn ,p. Item 5 guarantees that the precondition of the event

τn+1 is satisfied at the previous stage MσL
(n)
,p.)

• For each wτ, vτ ′ ∈ W σL
(n+1)

,p (0 < n < len(σL)), wτ ∼σ
L
(n+1) vτ ′ iff

1. wτ(n) ∼
σL
(n)
,p

i vτ ′(n), and

2. (τRn+1, (τ
′
n+1)R) ∈→ (i) in τLn+1.

(By Item 1, the two nodes in question must be indistinguishable at the previous

stage MσL
(n)
,p. By Item 2, they are indistinguishable in τLn+1 too. Item 2 also

guarantees that τL = (τ ′)L = σL(n+1))

• For each p ∈ At, V σL
(n+1)

,p(p) = {wσ ∈ W σL
(n+1)

,p | w ∈ V (p)}. /

(This clause guarantees that propositional valuation stays the same in the course
of interaction)

1.4.9. Definition. (DEL-Generated ETL Model) Let M = (W,∼, V ) be
an epistemic model and p a state-dependent DEL protocol onM. An ETL model
Forest(M, p) = (H,∼′, V ′) is defined as follows:

• H = {h | there is a w ∈ W , σ ∈
⋃
w∈W p(w) with h = wσ ∈ W σL,p}.

• For all h, h′ ∈ H with h = wσ and h′ = vσ′, h ∼i h′ iff wσ ∼σ
L,p
i vσ′.

• For each p ∈ At and h = wσ ∈ H, h ∈ V ′(p) iff h ∈ V σL,p(p). /



1.4. Merging DEL and ETL 33

The readers are invited to verify that Definition 1.4.4 and Definition 1.4.5 are
special cases of Definition 1.4.8 and Definition 1.4.9, respectively, when we restrict
attention to uniform protocols (the details are left to the reader).

1.4.10. Proposition. For every epistemic model M and an sd-DEL-protocol p
on M, Forest(M, p) is an ETL model.

Proof. Straightforward by the reasoning given in 1.4.6. qed

We illustrate this construction with another example.

1.4.11. Example. (DEL-Generated ETL Model) Let us illustrate the con-
struction by the following example. Take an epistemic model M given in Ex-
ample 1.4.7. (M consists of w, v, u, in which p is true only at w, v and q is
true only at w.) Let p be an sd -protocol on M such that p(w) = {!p![i]q},
p(v) = {!p![i]q, !¬q}, p(u) = {!p, !¬q!>}. The ETL model we construct from M
and p can be visualized as in Figure 1.7.

The basic procedure to produce this model is to (i) check what is permitted
according to p as a public announcement at each stage, (ii) create a new node if
what is permitted is in fact true at the stage and (iii) compute indistinguishability
relation for the created stage.

We start from the first stage M (indicated by the solid line enclosing the
three points). In all states in M, !p is assigned by p. Since p is true at w, v,
we create the nodes w!p and v!p, while we do not create the node “u!p” since
p is false at u. Also we connect w!p and v!p by the indistinguishability relation
(indicated by the horizontal dashed line), since they are indistinguishable in M
w ∼1 v (where ∼1 is assumed to be an equivalence relation) and !p →i!p (since
public announcements are single reflexive points). Note that the created nodes
constitute the model obtained by applying !p toM, i.e. the modelM×!p. In this
second stage (indicated by the circle enclosing the two nodes), ![i]q is permitted
and true at both nodes. Thus we produces the third stage consisting of w!p![i]p
and v!p![i]p. Similarly the nodes v!¬q and u!¬q are created since ¬q are permitted
and true at v, u, while w!¬q is not, since !¬q is neither permitted nor true at u.
Furthermore, the node u!¬q!> is created but the node “v!¬q!>” is not present,
since !> is only permitted at u!¬q though >, being a tautologous truth, is clearly
true.

1.4.12. Definition. (Class of DEL-Generated ETL Models) Given a class
of state-dependent (or uniform) DEL protocols X, let

F(X) = {Forest(M, p) | M an epistemic model and p ∈ X}.

Similarly, If X is a class of uniform protocols,

F(X) = {Forest(M,P) | M an epistemic model and P ∈ X}.

In particular, when X is the class of all sd -protocols, we denote F(X) by Fsd.
Similarly, when X is the class of all uniform protocols, we denote F(X) by Funi.
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Figure 1.7: DEL-Generated ETL Models

Also if X = {p} (respectively X = {P}) then we write F(p) (respectively F(P))
instead of F({p}) (respectively F({P})).

1.4.13. Remark. (Preconditions Given by Epistemic Formulas) As de-
fined in Definition 1.2.4, precondition functions of event models assign to each
event an epistemic formula (a formula in Lel). This restriction is not substantial
in DEL, since formulas in DEL reduce equivalently to formulas in EL by reduc-
tion axioms. (Section 2.3 and 2.5.1) On the other hand, in our framework, such
axioms are not available. We need to generalize the construction presented above
to lift the assumption. We will discuss this in Chapter 3.

1.5 Comparing DEL and ETL

In generating ETL models from DEL models, our framework can provide a for-
mal ground on which DEL and ETL can be compared in a precise manner. For
the rest of this chapter, we will give formal comparisons between DEL and ETL
based on the framework that has been introduced in the previous sections.
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1.5.1 Reinterpreting DEL-Operators as ETL-Operators

Our first observation is that, under a mild condition, we can think of the languages
Ldel and Letl as the same formal language. In other words, We can reinterpret
formulas in DEL as we interpret formulas in ETL. In particular, we can reinterpret
the event operator 〈E , e〉 in DEL as a labeled temporal modality in ETL as follows.
Given Forest(M, p) ∈ Fsd and h in Forest(M, p),

Forest(M, p), h |= 〈E , e〉ϕ iff Forest(M, p), h(E , e) |= ϕ.

(The truth definitions for the other operators are as given in Definition 1.3.3.)
The only thing that we have to make sure is that the set of events in ETL, Σ,
contains Dom(M) and E (the set of all pointed event models).

An easy induction shows that this model transformation preserves truth in
the following sense.

1.5.1. Proposition. Let E∗ be the DEL-protocol consisting of all finite se-
quences of pointed event models in DEL. Let M an epistemic model with w ∈
Dom(M) (and hence (w) is a history in Forest(M,E∗)): For any formula ϕ ∈
Ldel,

M, w |= ϕ iff Forest(M,E∗), (w) |= ϕ.

Proposition 1.5.1 explains a common intuition about linking DEL to ETL.

1.5.2 Representation Theorem

Next, we will deal with the question which ETL models can be generated by
DEL-protocols. We will show that DEL-generated ETL models have a number of
special properties. Our main result is the representation theorem (Theorem 1.5.8)
that characterizes the class of DEL-generated ETL models by certain properties.
The result is an improvement of an existing characterization result found in [64]
and provides a precise comparison between the DEL and ETL frameworks.

We start with the result from Van Benthem [64] which characterizes the ETL
models resulting from consecutive updates with one single event model. The
following properties come from the definition of product update (Definition 1.2.6).

1.5.2. Definition. (Synchronicity, Perfect Recall, Uniform No Mira-
cles) Let H = (Σ, H,∼, V ) be an ETL model. H satisfies:

• Synchronicity iff for all h, h′ ∈ H, if h ∼i h′ then len(h) = len(h′) (len(h)
is the number of events in h).

• Perfect Recall iff for all h, h′ ∈ H, e, e′ ∈ Σ with he, h′e′ ∈ H, if he ∼i h′e′,
then h ∼i h′
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• Uniform No Miracles iff for all h, h′ ∈ H, e, e′ ∈ Σ with he, h′e′ ∈ H, if
there are h′′, h′′′ ∈ H with h′′e, h′′′e′ ∈ H such that h′′e ∼i h′′′e′ and h ∼i h′,
then he ∼i h′e′. /

Additional properties vary depending on the class of DEL protocols considered.

1.5.3. Remark. (Alternative Definition of Perfect Recall) Van Benthem
gives an alternative definition of Perfect Recall in [64]:

if he ∼i h′ then there is an event f with h′ = h′′f and h ∼i h′′.

This property is equivalent over the class of ETL models to the above definition of
Perfect Recall and synchronicity. We use the above formulation of Perfect Recall
in order to stay closer to the computer science literature on verifying multi-agent
systems (cf. [21]) and the game theory literature (cf. [11]).

The next property reflects that preconditions of events are formulas of Lel.

1.5.4. Definition. (Epistemic Bisimulation Invariance) Let H = (Σ, H,∼
, V ) and H′ = (Σ, H,∼′, V ) be two ETL models. A relation Z ⊆ H × H ′ is an
epistemic bisimulation provided that, for all h ∈ H and h′ ∈ H ′, if hZh′, then

(prop) h and h′ satisfy the same propositional formulas,

(forth) for every g ∈ H, if h ∼i g then there exists g′ ∈ H ′ with h′ ∼i g′ and gZg′

(back) for every g′ ∈ H ′, if h′ ∼′i g′ then there exists g ∈ H with h ∼i g and
gZg′.

If Z is an epistemic bisimulation and hZh′ then we say h and h′ are epistemically
bisimilar. An ETL model H satisfies epistemic bisimulation invariance iff for all
epistemically bisimilar histories h, h′ ∈ H, if he ∈ H then h′e ∈ H.

Another property is needed since we are assuming that product update does
not change propositional valuations (see Definition 1.2.4 and 1.2.6. An ETL
model H satisfies propositional stability provided for all histories h in H, events e
with he in H and all propositional variables P , if P is true at h then P is true at
he. We remark that this property is not crucial for the results in this section and
can be dropped provided we allow product update to change the ground facts by
revising Definition 1.2.4 and 1.2.6 (cf. [73]).

Finally, we need the following definition:

1.5.5. Definition. (Isomorphism between ETL models) An isomorphic
map between two ETL models, H = (Σ, H,∼, V ) and H′ = (Σ′, H ′,∼′, V ′), is a
one-to-one function f from Σ onto Σ′ such that, for every σ1, . . . , σn, τ1, . . . , τm ∈
Σ, i ∈ A and p ∈ At,
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• if σ1 . . . σn ∼i τ1 . . . τm, then f(σ1) . . . f(σn) ∼′i f(τ1) . . . f(τm), and

• if σ1 . . . σn ∈ V (p), then f(σ1) . . . f(σn) ∈ V ′(p).

Let E be a fixed event model and PE be the protocol that consists of all finite
sequences of the repetition of E . That is, PE = ({(E , e) | e ∈ Dom(E)})∗, where
λ is the empty string.

1.5.6. Proposition. (van Benthem [64]) An ETL model H is isomorphic to
Forest(M,PE) for some epistemic model M and event model E iff H satisfies
propositional stability, synchronicity, perfect recall, uniform no miracles, as well
as epistemic bisimulation invariance.

We do not repeat the proof from [64] here since it is a specific case of our main
representation theorem (Theorem 1.5.8) given below. But there are many fur-
ther DEL-protocols of interest3. For example, let PAL be the class of all uniform
protocols consisting of public announcements (with epistemic formula as precon-
ditions). Recall that F(PAL) = {Forest(M,P) | M an epistemic model and P ∈
PAL}. The class F(PAL) is one of the classes that we will closely study in Chap-
ter 2. The class is characterized by the following representation theorem.

1.5.7. Proposition. (PAL-Generated Models) An ETL model (Σ, H,∼, V )
is isomorphic to some model in F(PAL) iff it satisfies the minimal properties of
Theorem 1.5.8, and:

• for all h, h′, he, h′e ∈ H, if h ∼i h′, then he ∼i h′e (all events are reflexive)

• for all h, h′ ∈ H, if he ∼i h′e′, then e = e′ (no different events are linked).

This result is also an easy variant of our representation theorem below.

Before proving the representation theorem, a few technical comments are in
order. The following proof will construct a DEL-protocol from an ETL model
satisfying certain properties. In particular, an event model will be constructed
at each level of a given ETL model. Therefore, at each level of the ETL model
we will need to specify a formula of Lel as a precondition for each primitive
event e (cf. Definition 1.2.6). Thus, we already see the role that bisimulation
invariance will play in the proof: without it, there is no hope of finding a formula
of Lel for a precondition of an event e. However, as is well-known, epistemic
bisimulation invariance alone is typically not enough to guarantee the existence
of such a formula. More specifically, there are examples of infinite sets that are

3Van Benthem & Liu [71] suggest that iterating one large disjoint union of event model
involving suitable preconditions can ‘mimic’ ETL style evolution for more complex protocols
with varying event models. We do not pursue this claim here.
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bisimulation closed but not definable by any formula of Lel (however, it will be
definable by a formula of epistemic logic with infinitary conjunctions — see [10]
for a discussion). Thus, if the set of histories at some level in which an event e
can be executed is infinite, there may not be a formula of Lel that defines this set
to be used as a precondition for e. Such a formula will exist under an appropriate
finiteness assumption: at each level there are only finitely many histories in
which e can be executed, i.e., for each n, the set {h | he ∈ H and len(h) = n} is
finite.

1.5.8. Theorem. (Main Representation Theorem) If an ETL model is iso-
morphic to some model in Funi then it satisfies propositional stability, synchronic-
ity, perfect recall, uniform no miracles, as well as epistemic bisimulation invari-
ance.

If an ETL model H satisfies the finiteness assumption, propositional stabil-
ity, synchronicity, perfect recall, uniform no miracles, and epistemic bisimulation
invariance, then H is isomorphic to some model in Funi.

Proof. Suppose that H = (Σ, H,∼, V ) is isomorphic to some model H′ =
(Σ′, H ′,∼′, V ) ∈ Funi. It suffices to show that H′ satisfies the specified condi-
tions. We show that H′ satisfies epistemic bisimulation invariance, and leave it
to the reader to check that H satisfies the remaining properties. Let M and P
be such that H′ = Forest(M,P). Suppose that h, h′ ∈ H ′, h and h′ are epis-
temically bisimilar, and he ∈ H ′ for some event e. We must show h′e ∈ H. By
construction (Definition 1.4.5), h = se1e2 · · · ene ∈ Dom(M× E1 × · · · En × E)
where (E1, e1)(E2, e2) · · · (En, en)(E , e) ∈ P, s ∈ D(M), for each i = 1, . . . , n,
ei ∈ Dom(Ei) and e ∈ Dom(E). In order to prove h′e ∈ H, it is enough
to show h′e ∈ Dom(M × E1 × · · · En × E). This follows from two facts: (1)
h′ ∈ D(M × E1 × · · · × En) and (2) h′ |= pre(e). (2) follows from the fact that h
and h′ are epistemically bisimilar and pre(e) is assumed to be a formula of Lel.
(1) follows from the assumption that h ∼∗ h′.

Suppose H = (Σ, H,∼, V ) is an ETL model satisfying the above properties.
We must show there is an epistemic modelMH and a DEL protocol PH such that
H = Forest(M,P). For the initial epistemic model, let M = (W ′,∼′, V ′) with
W ′ = {h ∈ H| len(h) = 1}, for h, h′ ∈ W , define h ∼′i h′ provided h ∼i h′, and
for each p ∈ At, V ′(p) = V (p) ∩W .

Call a history h ∈ H maximal if there is no h′ ∈ H such that h ≺ h′. Now
let ∼∗ be the reflexive transitive closure of the union of the ∼i relations. For
each maximal history h ∈ H, define the closure of h, denoted C(h), to be the the
smallest set that contains all finite prefixes of h, and if h′ ∈ C(h) and h′ ∼∗ h′′,
then also h′′ ∈ C(h). Note that by perfect recall, C(h) is closed under finite
prefixes and is completely connected with respect to the ∼∗ relation. It is easy
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to see that4 H =
⋃
{C(h) | h is a maximal history}.

We define, for each maximal history h ∈ H and j = 1, . . . , len(h), an event
model Ehj = (Shj ,→, pre) as follows:

1. Shj = {e ∈ Σ | there is a history h of length j in H with h = h′ · e}.

2. For each e, e′ ∈ Shj , define e →i e
′ provided there are histories h and h′ of

length j ending in e and e′ respectively, such that h ∼i h′.

3. For each e ∈ Shj , let pre(e) be the formula that characterizes the set {h |
he ∈ H and len(h) = j}. Such a formula does exist, due to epistemic
bisimulation invariance and the finiteness assumption.

Finally, let P = {(E)hj | h is a maximal history in H and j ≤ len(h)}. Clearly,
P is a DEL protocol and so is a uniform DEL-protocol. It is easy to see that
Forest(M,P) and H have the same set of histories. All that remains is to prove
that the epistemic relations are the same in H and Forest(M,P)

Claim For each h1, h2 ∈ H, h1 ∼i h2 in H iff h1 ∼i h2 in Forest(M,P).

Proof of Claim. The proof is by induction on the length of h and h′ (which
can be assumed to be the same by synchronicity). If len(h) = 1, the claim is
immediate by the definition of M .

For the induction step, let h1 = h · e and h2 = h′ · e′. Suppose h1 ∼i h2 in H.
Then by perfect recall, h ∼i h′ in H. So, by the induction hypothesis, h ∼i h′ in
Forest(M,P) as well. By the definition given above, e →i e

′ in the appropriate
event model Ehmj for a maximal history hm and j = len(h1). It follows by the
definition of product update that h1 ∼i h2 in Forest(M,P).

For the other direction, assume h1 ∼i h2 in Forest(M,P). Then, by definition
of product update, h ∼i h′ in Forest(M,P) and e −→i e

′ in the appropriate event
model. By the way the event model is defined, there must be some x and x′ with
x · e ∼i x′ · e′ in H, and therefore, by uniform no miracles, also h · e ∼i h′ · e′ in
H. qed (of Claim)

An immediate consequence is that H and Forest(M,P) are the same model. qed

This Theorem identifies the minimal properties that any DEL generated
model must satisfy, and thus it describes exactly what type of agent is presup-
posed in the DEL framework. The proof generalizes the one in van Benthem &
Liu [71], which is an immediate special case. The proof of the characterization
of PAL (Proposition 1.5.7) is also a simple variant. The details are left to the
reader.

4Note that C(h) only contains finite histories. According to Definition 1.3.1, H only contains
finite histories. This restriction is not crucial, however, and our result remains true without it.
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Note that the finiteness assumption can be dropped at the expense of al-
lowing preconditions to come from a more expressive language (specifically, in-
finitary epistemic logic). Alternatively, we can define the preconditions to be
sets of histories (instead of formulas of some logical language). A possible com-
promise is to work with state-dependent protocols instead of uniform protocols.
More precisely, in the above proof, we set the precondition of e ∈ Shj to be
>, and define a local DEL-protocol p so that, for all w ∈ W , p(w) = {(E)hj |
h is a maximal history in H and j ≥ len(h)}.5 Using this observation, we can ar-
gue in the same style as above to show the following representation theorems for
state-dependent DEL protocols.

1.5.9. Theorem. An ETL model is isomorphic to some model in Fsd iff it satis-
fies propositional stability, synchronicity, perfect recall, and uniform no miracles.

1.5.10. Theorem. An ETL model (Σ, H,∼, V ) is isomorphic to some model
in F(PALuni) iff it satisfies the minimal properties of Theorem 1.5.9, and the
additional properties of Proposition 1.5.7.

1.6 Conclusion and Discussion

In this chapter, we have developed a formal framework that can describe two
important aspects of intelligent interaction, epistemic dynamics and protocol in-
formation. We have achieved this by merging the two major systems in intelligent
interaction, DEL and ETL. DEL describes epistemic dynamics well by the mech-
anism of event models and product update, and ETL uses tree structures to
represent communicational or observational constraints that are present in var-
ious situations of intelligent interaction. These representational frameworks are
combined in our framework and allow precise descriptions of epistemic dynamics
and protocol information. In merging DEL and ETL, our framework also pro-
vides a precise comparison of the two systems. In particular we have proved that
representations in DEL can be captured by a special class of ETL models.

Our representation theorems suggest a more general correspondence theory6

relating natural properties of ETL frames to formulas in suitable modal languages.
For instance, what should the language of ETL should be to express natural prop-
erties of ETL models? For instance, consider some of the properties mentioned in
Theorem1.5.8. Synchronicity suggests the extension of Letl with an operator that
quantifies over the histories of the same length. (A similar operator is considered
in Chapter 2) Perfect recall suggests the addition of an operator that refers to
the previous nodes. (This operator is considered in Chapter 3) Theorem 1.5.8

5This construction suggests that the preconditions of events can be imitated by a trivial
precondition, >, and appropriate protocol constraints. For a further discussion about the
relation between preconditions and protocols, see Remark 2.2.15.

6[63] discusses related correspondence issues but without our connection to DEL protocols.
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demarcates some important properties of ETL models and this raises the issue of
how to design the corresponding formal language to express the properties.

Another natural question to ask is whether a similar result can be obtained
in systems that describe belief revision. While our framework merges the systems
that are designed to describe knowledge, can we investigate a similar project for
the systems that describe beliefs? Indeed, van Benthem & Dègremont [69] pursue
the question. Recently, Dynamic Doxastic Logic (e.g [7, 66]) has been developed
to represent agents’ belief state and informational change, on the one hand, and
temporal structures describing beliefs have been studied (e.g. [12]), on the other.
[69] investigates the exact connection between the two kinds of systems. In their
framework, doxastic temporal structures are generated by repeatedly updating
doxastic models, and a representation theorem is proved to characterize the class
of generated temporal structures.





Chapter 2

Logics

In the previous chapter, we have developed a method to generate time-branching
tree structures by repeated applications of product update in order to represent
temporal evolutions of agents’ informational states. In Section 1.5.1, we reinter-
preted the language of DEL over the class of these structures called DEL-generated
ETL models. The goal of this chapter is to pursue this perspective further and
study logics of DEL reinterpreted over classes of DEL-generated ETL models.

The main results in this chapter concern complete axiomatizations of classes of
DEL-generated ETL models. Each set X of DEL-protocols induces a class F(X)
of DEL-generated ETL models. This suggests the following natural questions:

• Which DEL protocols generate interesting ETL models?

• Can we axiomatize interesting classes of DEL-generated ETL models?

For some specific combinations of model classes and logical languages, the answers
are already already known. For example, recall E∗ is the set of all finite sequences
of DEL event models — i.e., the forest of all possible DEL event structures. Then
F(E∗) is the class consisting of all DEL-generated ETL models. Its logic (with
respect to the language LDEL) can be axiomatized using the well-known reduction
axioms: indeed this is the standard completeness theorem for DEL: cf. [6].

In this chapter, we will closely investigate the class of ETL models generated
from protocols consisting of public announcements. We will reinterpret Public
Announcement Logic over the class and study the resulted logic, which we will
call Temporal Public Announcement Logic (TPAL). As we saw in Chapter 1 (Sec-
tion 1.2.1), public announcements are the simplest kind of model transformations
in DEL. Nonetheless, a close study of models generated from them will reveal
essential features of our framework and help us develop techniques that can be
applied to other logics based on our framework. Indeed we will show that the
methods developed for the axiomatization of TPAL can be generalized to ob-
tain axiomatizations for logics over different subclasses of DEL-generated ETL

43
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models. We will call the resulted logical systems systems of Temporal Dynamic
Epistemic Logic (TDEL).

We will proceed as follows. We will start by presenting the system TPAL
(Section 2.1) and go on to study various semantic results, such as model nor-
malization (Section 2.2). Then we will give axiomatization of TPAL and prove
the completeness theorem (Section 2.3). We will also show that the satisfiability
problem of TPAL is decidable and discuss how we can incorporate (relativized)
common knowledge into the system. After this, we will provide the axiomatiza-
tion of TPAL restricted to uniform protocols and prove that PAL can be faithfully
embedded into TPAL (Section 2.4). Having these results in TPAL, we will ex-
tend our system to TDEL. We will first prove the completeness and decidability
results for TDEL and its fragments TDEL(X) (Section 2.5). Then we will show
how other results can be also generalized for TDEL (Section 2.6).

2.1 Temporal Public Announcement Logic

We will start by presenting the system of TPAL. First the definition of protocols
must be restricted to public announcements.

2.1.1. Definition. (PAL-Protocol) Let PAL be the set of public announce-
ments in E, i.e. {!ϕ | ϕ ∈ Lel}.1 A PAL-protocol is a set P ⊆ PAL∗ closed under
finite prefix. We denote the set of PAL-protocols by Ptcl(PAL). A state-dependent
PAL-protocol (sd -PAL-protocol) p on an epistemic model M is a function that
assigns a PAL-protocol to each world inM a PAL-protocol. We denote the class
of sd -PAL-protocols by PAL.

By the above notations, we can denote the classes of ETL models generated
from sd -PAL-protocols and uniform PAL-protocols by F(PAL) and F(Ptcl(PAL))
respectively. Below we will axiomatize both F(PAL) and F(Ptcl(PAL)).

2.1.2. Definition. (Language of TPAL) Formulas of TPAL is inductively
defined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [!ψ]ϕ

where p ∈ At, i ∈ A and ψ ∈ Lel.2 The duals, 〈i〉 and 〈!ϕ〉, of [i] and [!ϕ], and
the other boolean operators are defined in the standard way. We denote the set
of formulas in PAL by Ltpal.

1The restriction to Lel here is placed here, since we deal with a subclass of DEL-generated
ETL models and DEL-protocols are restricted to the event models with preconditions in Lel.
(See Definition 1.2.4 and Remark 1.4.13.) As we will see in Chapter 3, this restriction can be
lifted by generalizing the method of generating ETL models.

2This last restriction is due to the definition of PAL-protocols. See Footnote 1.
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By restricting our attention to public announcements, we can simplify many
of the definitions in Section 1.4.2.

2.1.3. Definition. (cf. Definition 1.4.8) LetM = (W,∼, V ) be an epistemic
model, and p an sd -PAL-protocol on M. We define

Mσ,p = (W σ,p,∼σ,p, V σ,p)

by induction on the length of σ:

• W σ0,p = W , for each i ∈ A, ∼σ0,p
i = ∼i and V σ0,p = V .

• wσm+1 ∈ W σm+1,p iff (1) w ∈ W, (2)Mσm,p, wσm |= ϕm+1, and also(3) σm+1 ∈
p(w).

• For each wσm+1, vσm+1 ∈ W σm+1,p, wσm+1 ∼σm+1,p
i vσm+1 iff w ∼i v.

• For each p ∈ At, V σm+1,p(p) = {wσm+1 ∈ W σm+1,p | w ∈ V (p)}. /

2.1.4. Definition. (cf. Definition 1.4.9) Let M = (W,∼, V ) be an epis-
temic model and p an sd -PAL-protocol on M. A PAL-generated ETL model
Forest(M, p) = (H,∼′, V ′) is defined as follows:

• H = {h | h ∈ W σ,p for some σ ∈
⋃
w∈W p(w)}.

• For all h, h′ ∈ H with h = wσ and h′ = vσ for some σ ∈
⋃
w∈W p(w),

h ∼i h′ iff h ∼σ,pi h′.

• For each p ∈ At, h ∈ V ′(p) iff h ∈ V σ,p(p), where h = wσ for some
σ ∈

⋃
w∈W p(w). /

Example 1.4.11 in Chapter 1 illustrates how ETL-generated models are generated
from PAL-protocols. The readers are invited to consult the example.

2.1.5. Definition. (Truth) Let H ∈ F(PAL) with H = Forest(M, p) = (H,∼
, V ). For a history h ∈ H, the truth of ϕ ∈ Ltpal is inductively defined as follows:

H, h |= p iff h ∈ V (P ) (with P ∈ At)
H, h |= ¬ϕ iff H, h 6|= ϕ
H, h |= ϕ ∧ ψ iff H, h |= ϕ and H, h |= ψ
H, h |= [i]ϕ iff ∀h′ ∈ H, h ∼i h′ implies H, h′ |= ϕ
H, h |= 〈!ψ〉ϕ iff h!ψ ∈ H and H, h!ψ |= ϕ

Based on this semantic framework, the main semantic notions are defined by
the standard way.

2.1.6. Definition. (Semantic Notions) Let ϕ ∈ Lel. ϕ is satisfiable in M, if
there is w in M such that M, w |= ϕ. ϕ is satisfiable if ϕ is satisfiable in some
M. ϕ is valid in M, written asM |= ϕ, ifM, w |= ϕ for all w inM. ϕ is valid,
written as |= ϕ, if ϕ is valid for all epistemic models.



46 Chapter 2. Logics

2.2 Semantic Results

Next we study semantic results of the system TPAL. We start out by seeing some
semantic features that relate PAL and TPAL. Then we will make some simple
observations in TPAL, which we will be used later in this chapter. These results
will lead us to prove a truth-preservation result under a certain kind of model
transformations, which we call normalization..

2.2.1 PAL and TPAL

We first make some observations that relate TPAL and PAL. The following propo-
sition is an immediate consequence of Proposition 1.5.1.

2.2.1. Proposition. LetM be an epistemic model. Let PAL be the set of public
announcements in E. Then, for any formula ϕ in Ltpal,

M, w |= ϕ in PAL iff Forest(M,PAL∗), w |= ϕ in TPAL.

This proposition also shows that the semantics framework of TPAL generalizes
that of PAL. If we permit all formulas to be publicly announced by taking the
uniform protocol PAL∗, then the truth of formulas in TPAL corresponds to that
in the framework of PAL. Because of the generalization, some basic validities in
PAL do not obtain in TPAL.

2.2.2. Proposition. (Public Announcement Operators)The following prop-
erties hold in PAL but not in TPAL.

(A) |= 〈!p〉〈!q〉ϕ↔ 〈!(p ∧ q)〉ϕ (with p, q ∈ At)

(B) |= 〈!ϕ〉 ↔ ϕ (with ϕ ∈ Lel)

Proof. For PAL, A and B follows straightforwardly from the semantic definition
of 〈!ϕ〉, as given Definition 1.2.2. The readers are invited to give counterexamples
against A and B in TPAL. Also see the following discussion. qed

The validity of A in PAL shows that sequences of public announcements are
identified with some single announcements in PAL. On the other hand, it is in-
valid in TAPAL, since a protocol may not allow the single announcement !(p∧ q)
even when it allows the sequence of announcements !p!q. The validity of B in
PAL reflects the general assumption in DEL that every event can happen if its
precondition is true. (See Section 1.2.2) TPAL removes this assumption and in-
validates the principle, while it assumes the truthfulness of announcements and
validates the left-to-right direction. Because the invalidity of the principle, the
standard reduction axioms in PAL do not hold. See below in Section 2.3.
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Next, we will observe some simple properties of models in TPAL. First, the
evaluation of epistemic formulas only depends on the ‘current stage’ of DEL-
generated ETL models.

2.2.3. Observation. Let H = Forest(M, p) ∈ F(PAL). For ϕ ∈ Lel, for histo-
ries h in Forest(M, p) with h = wσ where w ∈ Dom(M) and σ ∈ PAL∗,

H, hσ |= ϕ iff Mσ,p, wσ |= ϕ.

Proof. By a straightforward induction on ϕ. qed

2.2.2 Simple Observations

Next we see some simple results that we will use later in this chapter. First,
a formula ϕ ∈ Ltpal can describe, at most, what is true after a sequence of
announcements bounded in length by the depth of ϕ.

2.2.4. Definition. (Depth of a Formula) Suppose ϕ ∈ Ltpal. The depth of
ϕ, denoted d(ϕ), is defined as follows:

• d(p) = 0 with p ∈ At

• d(¬ϕ) = d(ϕ)

• d(ϕ ∧ ψ) = max(d(ϕ), d(ψ))

• d([i]ϕ) = d(ϕ)

• d(〈ψ〉ϕ) = 1 + d(ϕ)

This definition is lifted to a set X ⊆ Ltpal of formulas as follows: d(X) =
max{d(ϕ) | ϕ ∈ X}.

Given a protocol p on M and a sequence σ ∈ PAL∗ with σ ∈ p(w) for some
w ∈ Dom(M), we define a protocol pσ<k on Mσ,p so that pσ<k (wσ) = {τ | στ ∈
p(w) and len(τ) ≤ k} for all wσ ∈ Dom(Mσ,p). pσ<k represents which sequences of
public announcements of length k or less are allowed in p after σ. Also, we define
pσ<(wσ) = {τ |στ ∈ p(w)} when not stating the upper bound. A straightforward
induction gives the following result:

2.2.5. Observation. LetM be an epistemic model, p a state-dependent protocol
on M. For all w ∈ Dom(M) and σ ∈

⋃
w∈Dom(M) p(w),

Forest(M, p), wσ |= ϕ iff Forest(Mσ,p, pσ<d(ϕ)), wσ |= ϕ

and

Forest(M, p), wσ |= ϕ iff Forest(Mσ,p, pσ<), wσ |= ϕ.
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Next, the histories relevant to evaluate the truth of a given formula ϕ ∈ Ltpal
are only the ones that contain public announcements occurring in ϕ.

2.2.6. Definition. (Announcement Occurrence Set) The announcement
occurrence set AOC(ϕ) of a TAPAL-formula ϕ is defined inductively as follows:

• AOC(p) = ∅ with p ∈ At

• AOC(¬ϕ) = AOC(ϕ)

• AOC(ϕ ∧ ψ) = AOC(ϕ) ∪ AOC(ψ)

• AOC([i]ϕ) = AOC(ϕ)

• AOC(〈!ψ〉ϕ) = {!ψ} ∪ AOC(ϕ)

Given a sequence σ =!ϕ1 . . .!ϕn ∈ Σ∗pal, we define

AOC(σ) := AOC(ϕ1) ∪ · · · ∪ AOC(ϕn).

Furthermore, given an sd -PAL-protocol p on M = (W,∼, V ), we define

AOC(p) :=
⋃

{σ|∃w∈W :σ∈p(w)}

AOC(σ).

Given a state-dependent protocol p on a model M, for w ∈ Dom(M) define
(p(w))AOC(ϕ) as follows:

(p(w))AOC(ϕ) = {σ ∈ p(w) | for each !θ in σ, !θ ∈ AOC(ϕ)}.

This set represents announceable sequences of announcements at w that only
consist of public announcements occurring in ϕ. Now we can show the following
by a straightforward induction.

2.2.7. Observation. Suppose M is an epistemic model and p and q are two
protocols on M. Suppose (p(v))AOC(ϕ) = (q(v))AOC(ϕ) for all v ∈ Dom(M).
Then for all w ∈ Dom(M) and ϕ ∈ Ltpal,

Forest(M, p), w |= ϕ iff Forest(M, q), w |= ϕ.

Finally we state the variant of Proposition 2.2.1. Given a formula ϕ ∈ Ltpal
and an epistemic model M, define pϕ so that, for all w ∈ Dom(M), pϕ(w) =
{!θ1 · · · θk |!θi ∈ AOC(ϕ) (1 ≤ i ≤ k) for some k}. In the light of the above
lemma, pϕ represents the sequences of public announcements that are relevant to
the truth value of ϕ. We can show by an easy induction that the generated ETL
model from pϕ preserves the truth value of ϕ in PAL in the following sense.

2.2.8. Observation. Let ϕ ∈ Ltpal. Then

M, w |= ϕ in PAL iff Forest(M, pϕ), w |= ϕ in TPAL.
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2.2.3 Model Normalization

Next, we turn our attention to the following distinctive property of models in
TPAL. Given a set X of public announcements, models in TPAL can be trans-
formed so that they contain only the public announcements in X and public
announcements with tautologous preconditions (call such public announcements
tautologous public announcements), while the truth of the formulas expressed
with public announcements in X is preserved. We call this model transforma-
tion normalization. This transformation is a general property of model in our
framework and will be used in Chapter 3.

To formulate the transformation, we need some definitions. Let ϕ0, ϕ1, . . .
and >0,>1, . . . be a pair of (possibly infinite) sequences of formulas in Lel such
that (i) >i is tautologous and (ii) ϕi 6= ϕj and >i 6= >j for all i, j ≥ 0.

2.2.9. Definition. (Normalization of Sequences) Given a sequence σ ∈
PAL∗, we define σ[!>0/!ϕ0, !>1/!ϕ1, . . . ] to be the result of replacing all occur-
rences of !ϕi in σ with !>i for all i.

The idea of normalization is to replace public announcements with tautologous
public announcements, preserving tree structures.

2.2.10. Definition. (Normalization of Models) Let p be an sd -protocol on
M. Also let H = Forest(M, p) = (H,∼, V ). Define H[!>0/!ϕ0, !>1/!ϕ1, . . . ] =
(H ′,∼′, V ′) by:

• H ′ := {h[!>0/!ϕ0, !>1/!ϕ1, . . . ] | h ∈ H}

• (h[!>0/!ϕ0, !>1/!ϕ1, . . . ], g[!>0/!ϕ0, !>1/!ϕ1, . . . ]) ∈∼′ (i) iff (h, g) ∈∼ (i)

• V ′(p) := {h[!>0/!ϕ0, !>1/!ϕ1, . . . ] | h ∈ V (p)}

Now we need to confirm that, given thatH is in F(PAL),H[!>0/!ϕ0, !>1/!ϕ1, . . . ]
is also in F(PAL). Indeed, when h!ϕi is inH, h!>i must be inH[!>0/!ϕ0, !>1/!ϕ1, . . . ]
since the tautologous formula !>i is guaranteed to be true at h. Also if (h, g) ∈∼
(i), the corresponding nodes for h and g will be indistinguishable by the construc-
tion of models in TPAL. We state this fact more precisely as follows.

2.2.11. Definition. (Protocol above σ inH) LetH = Forest(M, p) ∈ F(PAL).
Let σ ∈ PAL∗. Then define pH,σ< on Mp,σ so that

pH,σ<(wσ) = {τ | wστ in H}

2.2.12. Observation. Let ϕ0, ϕ1, . . . be a sequence of formulas in Lel and >0,>1, . . . ,
a sequence of tautologous formulas in Lel. Suppose, for every i, j ≤ 0, if i 6= j,
then ϕi 6= ϕj and >i 6= >j. LetH = Forest(M, p). Put G = H[!>0/!ϕ0, !>1/!ϕ1, . . . ].

G = Forest(M, pG,λ<)

where λ is the empty sequence. /
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Figure 2.1: Model Normalization

2.2.13. Example. (Normalization) Let us illustrate the idea of normaliza-
tion. In Figure 2.1, the model on the left visualizes a DEL-generated ETL model
(the one discussed in Figure 1.7). Let us denote the model by H. The upper-
right model is the ETL model H[!>0/!p, !>1/![i]p] obtained by replacing !p and
![i]p with >0 and >0 respectively. The lower-right model is the ETL model
H[!>0/!p, !>1/![i]p, !>2/!¬q, !>3/!>] obtained by replacing ¬q and > with >2 and
>3 additionally.

Now we prove the truth-preservation result with respect to model normaliza-
tion. Given a formula ϕ ∈ Ltapal, even if we replace the announcements that do
not occur in ϕ with “new” tautologous formulas in a DEL-generated ETL model,
the truth of ϕ is preserved.

2.2.14. Proposition. (Normalization) Let H = Forest(M, p) ∈ F(PAL). Let
X be a finite subset of PAL. Furthermore, let !ϕ0, !ϕ1 . . . be an enumeration
of public announcements in PAL\X without repetition, and !>0, !>1, . . . be an
enumeration of tautologous public announcements in PAL\X without repetition.
Then, for every h and TPAL-formula ϕ such that AOC(ϕ) ⊆ X,

H, h |= ϕ ⇔ H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h[!>0/!ϕ0, !>1/!ϕ1, . . . ] |= ϕ

Proof. Let h = wσ with w in M and σ ∈ p(w). Denote by H′ = (H ′,∼′, V ′)
and h′ respectively the normalization of H = (H,∼, V ) and the element (in H′)
corresponding h. The proof is by a straightforward induction on ϕ. The base
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and boolean cases are clear. For the case where ϕ is of the form [i]ψ, note that
the normalization [!>0/!ϕ0, !>1/!ϕ1, . . . ] can be considered as an isomorphic map
from H to H ′ by Definition 2.2.10, given our assumption that all >i 6= >j and
ϕi 6= ϕj for all distinct i, j. Therefore we have {g | h′ ∼′i g′} = {g | h ∼i g}.
Given this consideration, the case of [i] is immediate by IH.

Assume that ϕ is of the form 〈!θ〉ψ. Assume LHS. Then we have Forest(M, p), h!θ |=
ψ. Since AOC(ψ) ⊆ AOC(〈!θ〉ψ) ⊆ X, we can by IH obtain

H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h!θ[!>0/!ϕ0, !>1/!ϕ1, . . . ] |= ψ.

Since θ ∈ AOC(〈!θ〉ψ), we have

H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h[!>0/!ϕ0, !>1/!ϕ1, . . . ]!θ |= ψ.

Therefore, we haveH[!>0/!ϕ0, !>1/!ϕ1, . . . ], h[!>0/!ϕ0, !>1/!ϕ1, . . . ] |= 〈!θ〉ψ. qed

2.2.15. Remark. (Preconditions and Protocol Information) As we will
see below (Section 2.6.1), the idea of normalization can be generalized to the
full class of DEL-generated ETL models and a similar result can be obtained for
Temporal Dynamic Epistemic Logic.

One thing that this theorem illustrates is that preconditions of events can be
imitated by trivial preconditions and appropriate adjustment of protocols. For
instance, the public announcement !p can only happen at the worlds where p is
true and, as a result, it eliminates from a model the worlds at which p is false.
However, we can make the trivial public announcement !> work in the same way
by adjusting protocols so that !> can happen at the worlds where p is true. Note
that the argument for Theorem 1.5.9 appealed to the same type of consideration.

2.2.16. Remark. (Normalization and Observation 2.2.7)Observation 2.2.7
should not be conceived as the generalization of Proposition 2.2.14. Observa-
tion 2.2.7 only refers to certain initial segments of PAL-protocols, whereas Propo-
sition 2.2.14 refers to all parts of PAL-protocols. Also in Observation 2.2.7, two
compared ETL models do not have to have the same tree structure, whereas an
ETL model and its normalization share the same structure by construction.

2.3 Complete Axiomatization

Before we move on to the axiomatization of TPAL, the following fact about the
system of PAL should be mentioned for contrast. In PAL, the following reduction
axioms are valid:

〈!θ〉p ↔ θ ∧ p (with p ∈ At)
〈!θ〉¬ϕ ↔ θ ∧ ¬〈!θ〉ϕ
〈!θ〉(ϕ ∧ ψ) ↔ 〈!θ〉ϕ ∧ 〈!θ〉ψ
〈!θ〉[i]ϕ ↔ θ ∧ [i](θ → 〈!θ〉ϕ).
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Using these equivalences, we can transform any PAL-formulas equivalently into
some EL-formulas ([6]). (We can push public announcement operators toward the
right until they precedes propositional letters, and then apply the first reduction
axiom.) Thus, with these axioms, the completeness of PAL is guaranteed by
the completeness of EL. In fact, the type of compositional analysis via reduction
axioms can be applied to the full DEL and provides a strong means to provide
the complete axiomatization.

The validity of the reduction axioms in PAL depends crucially on the equiv-
alence between the truth of a formula θ and the availability of !θ, more precisely,
θ ↔ 〈!θ〉>. (〈!θ〉> literally reads as “!θ can happen after which >”. Given > is
tautologous, we can read 〈θ〉> as “!θ can happen.”) For instance, in the first re-
duction axiom, 〈!θ〉p on the left, which reads as “!θ can happen after which p”, is
equated with θ∧p on the right, which only claims the truth of θ and p. However,
as we saw in Proposition 2.2.2, the equivalence does not hold in TPAL. Conse-
quently we cannot appeal to the compositional analysis via reduction axioms to
axiomatize the system of TPAL. We need to redo the work.

2.3.1 Axiomatic System

2.3.1. Definition. (Axiomatization of TPAL) The axiomatization TPAL
consists of the following axiom schemes and inference rules.
Axioms

PC Propositional validities

iK [i](ϕ→ ψ)→ ([i]ϕ→ [i]ψ)

!K [!θ](ϕ→ ψ)→ ([!θ]ϕ→ [!θ]ψ)

R1 〈!θ〉p↔ 〈!θ〉> ∧ p (with p ∈ At)

R2 〈!θ〉¬ϕ↔ 〈!θ〉> ∧ ¬〈!θ〉ϕ

R3 〈!θ〉(ϕ ∧ ψ)↔ 〈!θ〉ϕ ∧ 〈!θ〉ψ 3

R4 〈!θ〉[i]ϕ↔ 〈!θ〉> ∧ [i](〈!θ〉> → 〈!θ〉ϕ)

A1 〈!θ〉> → θ

Inference Rules

MP If ` ϕ and ` ϕ→ ψ, then ` ψ.

iN If ` ϕ, then ` [i]ϕ for any i ∈ A.

3R3 follows from !N and !K. However we included it to make the contrast with the PAL
reduction axioms explicit.
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!N If ` ϕ, then ` [!θ]ϕ for any !ψ ∈ PAL. /

First note that R1-4 are similar to the reduction axioms in PAL. However
they differ from reduction axioms in PAL in terms of occurrences of the formulas
of the form 〈!θ〉> instead of simply θ. Because of this, formulas in TPAL do not
reduce to formulas in EL. Second, A1 gives the only one way of the equivalence
between the truth of a formula and its availability as a public announcement. A1
reads as “only true formulas can be announced”. The converse is invalid.

2.3.2. Remark. (Without Uniform Substitution) Notice that TPAL does
not satisfy uniform substitution. For one thing, axiom R1 only applies to atomic
propositions p ∈ At. Furthermore, the preconditions of public announcements
are in Lel. Thus, for example, 〈!〈!θ1〉>〉p ↔ 〈!〈!θ2〉>〉> ∧ p is not an instance of
axiom R1. This restriction will be lifted in Chapter 3.

Before turning to the main result of this Section, we consider axiom R4 in
more detail. Consider the following three variations of R4:

1. 〈!θ〉[i]ϕ↔!θ ∧ [i]〈!θ〉ϕ

2. 〈!θ〉[i]ϕ↔ 〈!θ〉> ∧ [i](θ → 〈!θ〉ϕ)

3. 〈!θ〉[i]ϕ↔ 〈!θ〉> ∧ [i](〈!θ〉> → 〈!θ〉ϕ)

Each of these axioms represent a different assumption about the underlying proto-
col and how that affects the agents’ knowledge. The first is the usual PAL reduc-
tion axiom and assumes a specific protocol (which is common knowledge) where
all true formulas are always available for announcement. The second (weaker) ax-
iom is valid when there is a fixed protocol that is common knowledge (cf. Section
2.4.1). Finally, the third is an instance of R4 and is thus true for all protocols.

2.3.2 Completeness Proof

Now our goal is to prove the following theorem:

2.3.3. Theorem. TPAL is sound and strongly complete with respect to the class
of ETL models F(PAL).

The proof is a variant of the standard Henkin construction. We construct
the canonical ETL model from the set of maximal consistent sets in TPAL (mcs
below). The main idea is that each mcs defines sequences of ‘legal’ public an-
nouncements which we use to define a canonical state-dependent protocol. We
start by defining the set of legal histories and a function λn that assigns maximally
consistent sets to each node on a history.
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2.3.4. Definition. (Legal Histories) Let W0 be the set of all maximal con-
sistent sets in TPAL. We define λn and Hn (0 ≤ n ≤ d(Σ)) are defined as follows:

• Set H0 = W0, and for each w ∈ H0, λ0(w) = w.

• Let Hn+1 = {h!θ | h ∈ Hn and 〈!θ〉> ∈ λn(h)}. For each h = h′!θ ∈ Hn+1,
define λn+1(h) = {ϕ | 〈!θ〉ϕ ∈ λn(h′)}. /

We first confirm that each map λn is well-defined.

2.3.5. Lemma. For each n ≥ 0, for each σ ∈ Hn, λn(σ) is maximally consistent.

Proof. The proof is by induction on n. The case n = 0 is by definition. Suppose
that the statement holds for Hn and λn. Suppose σ ∈ Hn+1 with σ = σ′!θ. By
the induction hypothesis, λn(σ′) is an mcs. Furthermore, by the construction of
Hn+1, 〈!θ〉> ∈ λn(σ). Therefore, λn+1(σ) 6= ∅. Let ϕ ∈ Ltpal. Since λn(σ′) is an
mcs, either 〈!θ〉ϕ ∈ λn(σ′) or ¬〈!θ〉ϕ ∈ λn(σ′). If 〈!θ〉ϕ ∈ λn(σ′), ϕ ∈ λn+1(σ) by
construction. If ¬〈!θ〉ϕ ∈ λn(σ′), by axiom R2, we have 〈!θ〉¬ϕ ∈ λn(σ′). Thus,
by construction, ¬ϕ ∈ λn+1(σ). Thus, for all ϕ ∈ Ltpal, either ϕ ∈ λn+1(σ) or
¬ϕ ∈ λn+1(σ).

To show that λn+1 is consistent, assume toward contradiction that there are
formulas ϕ1, ..., ϕm ∈ λn+1(σ) such that `

∧m
i=1 ϕ → ⊥. Using standard modal

reasoning, ` 〈!θ〉> →
∨m
i=1〈!θ〉¬ϕi. Since 〈!θ〉> ∈ λn(σ′), we have

∨m
i=1〈!θ〉¬ϕ ∈

λn(σ′). And so, since λn(σ′) is a maximally consistent set, there is some j with
1 ≤ j ≤ m and 〈!θ〉¬ϕj ∈ λn(σ′). Using axioms R2, we have ¬〈!θ〉ϕj ∈ λn(σ′).
By construction of λn+1(σ) we have for each i = 1, . . . ,m, 〈!θ〉ϕi ∈ λn(σ′). This
contradicts the fact that λn(σ′) is consistent. qed

We now define a canonical ETL model Hcan. We start by defining Hcan
0 =

(H0,∼0, V 0). For this, we use the usual definitions:

• For w, v ∈ H0, let w ∼0
i v iff {ϕ | [i]ϕ ∈ w} ⊆ v.

• For each P ∈ At and w ∈ H0, P ∈ V 0(w) iff P ∈ w.

2.3.6. Definition. (Canonical Model) The canonical modelHcan = (Hcan,∼can
, V can) is defined as follows:

• Hcan =
⋃∞
i=0Hi.

• For each h, h′ ∈ Hcan with h = wσ and h′ = w′σ′, let h ∼cani h′ iff (1)
σ = σ′ and (2) w ∼0

i v.

• For every p ∈ At and h = wσ ∈ Hcan, wσ ∈ V can(p) iff w ∈ V 0(p). /

Given h ∈ Hcan with h = w!θ1 · · ·!θn, we write λ(h) for λn(h). We now show
that the canonical model Hcan works as intended:
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2.3.7. Lemma. (Truth Lemma) For every ϕ ∈ Ltpal, for each h ∈ Hcan,

ϕ ∈ λ(h) iff Hcan, h |= ϕ.

Proof. We show by induction on the structure of ϕ ∈ Ltpal that for each h ∈ Hcan,
ϕ ∈ λ(h) iffHcan, h |= ϕ. The base and the boolean cases are straightforward. For
the knowledge modality, let h ∈ Hcan with h = w!θ1 · · ·!θn and assume [i]ψ ∈ λ(h).
Suppose h′ ∈ Hcan with h ∼i h′. By construction of the canonical model, we know
that h′ = v!θ1 · · ·!θn for some v ∈ H0 with w ∼0

i v. By Definition 2.3.4, since
[i]ψ ∈ λ(w!θ1 · · ·!θn), we have 〈!θn〉[i]ψ ∈ λ(w!θ1 · · ·!θn−1). Using Axiom R4, we
have [i](〈!θn〉> → 〈!θn〉ψ) ∈ λ(w!θ1 · · ·!θn−1). Continuing this way, we have

[i](〈!θ1〉> → 〈!θ1〉(〈!θ2〉> → 〈!θ2〉(· · · 〈!θn−1〉(〈!θn〉> → 〈!θn〉ψ) · · · )) ∈ w.

By Definition 2.3.6, since h ∼cani h′, we have w ∼0
i v. Hence,

〈!θ1〉> → 〈!θ1〉(〈!θ2〉> → 〈!θ2〉(· · · 〈!θn−1〉(〈!θn〉> → 〈!θn〉ψ) · · · ) ∈ v.

Now note that

〈!θ1〉> ∈ λ(w), 〈!θ2〉> ∈ λ(w!θ1), . . . , 〈!θn〉> ∈ λ(w!θ1...!θn−1).

Thus, we have

〈!θ2〉> → 〈!θ2〉(· · · 〈!θn−1〉(〈!θn〉> → 〈!θn〉ψ) · · · ) ∈ λ(v!θ1)

〈!θ3〉> → 〈!θ3〉(· · · 〈!θn−1〉(〈!θn〉> → 〈!θn〉ψ) · · · ) ∈ λ(v!θ1!θ2)

...

〈!θn〉ψ ∈ λ(v!θ1 · · ·!θn−1)

Therefore, ψ ∈ λ(v!θ1 · · ·!θn) = λ(h′). By the induction hypothesis, Hcan, h′ |= ψ.
Therefore, Hcan, h |= [i]ψ, as desired.

For the other direction, let h ∈ Hcan and assume [i]ψ 6∈ λ(h). For simplicity,
we let h = w!θ with w ∈ W0 and θ ∈ Lel. The argument can easily be generalized
to deal with the general case along the lines of the argument above. Since λ(h)
is an mcs, we have ¬[i]ψ ∈ λ(h). Thus, by Definition 2.3.4, 〈!θ〉¬[i]ψ ∈ λ(w).
Using axiom R2, ¬〈!θ〉[i]ψ ∈ λ(w); and so, by Axiom R4, ¬〈!θ〉>∨¬[i](〈!θ〉> →
〈!θ〉ψ) ∈ λ(w). Since 〈!θ〉> ∈ λ(w) by construction, it follows that ¬[i](〈!θ〉> →
〈!θ〉ψ) ∈ λ(w). Now consider the set v0 = {θ | [i]γ ∈ λ(w)}∪{¬(〈!θ〉> → 〈!θ〉ψ)}.
We claim that this set is consistent. Suppose not. Then, there are formulas
γ1, . . . , γm such that `

∧m
j=1 γj → 〈!θ〉> → 〈!θ〉ψ and for j = 1, . . . ,m, [i]γj ∈

λ(w). By standard modal reasoning, `
∧m
j=1[i]γj → [i](〈!θ〉> → 〈!θ〉ψ). This

implies that [i](〈!θ〉> → 〈!θ〉ψ) ∈ λ(w). However, this contradicts the fact that
¬[i](〈!θ〉> → 〈!θ〉ψ) ∈ λ(w), since λ(w) is an mcs. Now using standard arguments
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(Lindenbaum’s lemma), there exists a maximally consistent set v with v0 ⊆ v.
By the construction of v, we must have w ∼0

i v and thus w!θ ∼cani v!θ. Also, since
¬(〈!θ〉> → 〈!θ〉ψ) ∈ v, we have 〈!θ〉> ∈ λ(v) and ¬〈!θ〉ψ ∈ λ(v). Therefore, by
axiom R2, 〈!θ〉¬ψ ∈ λ(v). Hence ¬ψ ∈ λ(v!θ) and therefore ψ 6∈ λ(v!θ). By the
induction hypothesis, Hcan, v!θ 6|= ψ. This implies Hcan, w!θ 6|= [i]ψ, as desired.

For the public announcement operator, assume that 〈!θ〉ψ ∈ λ(h). Since
〈!θ〉> ∈ λ(h) (for ¬〈!θ〉> ∈ λ(h) makes λ(h) inconsistent), ψ ∈ λ(h!θ). By
the induction hypothesis, we have Hcan, h!θ |= ψ, which implies Hcan, h |= 〈!θ〉ψ.
For the other direction, assume Hcan, h |= 〈!θ〉ψ. Then, Hcan, h!θ |= ψ. By the
induction hypothesis, we have ψ ∈ λ(h!θ) and thus 〈!θ〉ψ ∈ λ(h). qed

All that remains is to show that canonical model Hcan is in F(PAL).

2.3.8. Lemma. Hcan is in F(PAL). That is, there is an epistemic model M and
state-dependent protocol p ∈ PAL on M such that Hcan = Forest(M, p).

Proof. Let M = (W,∼, V ) and define pcan ∈ PAL on M so that pcan(w) = {σ |
wσ ∈ Hcan}. Suppose that Hpcan = Forest(M, pcan). We claim that Hcan and
Hpcan are the same model. For this, it suffices to show that for all w ∈ W and
σ ∈ PAL∗ we have wσ ∈ Hcan iff wσ ∈ W σ,pcan (cf. Definition 2.1.3). For this
implies Hcan = Hpcan , where Hpcan is the domain of Hpcan . Then, by inspecting
Definition 2.1.4 and Definition 2.3.6, we see that Hcan and Hpcan are the same
model.

We show by induction on the length of σ ∈ PAL∗ that for any w ∈ W ,
wσ ∈ Hcan iff wσ ∈ W σ,pcan . The base case (len(σ) = 0) is clear. Assume that
the claim holds for all σ with len(σ) = n.

Given any σ ∈ PAL∗ with len(σ) = n, we first show by subinduction (on
the structure of θ) that, for all θ ∈ Lel, Hcan, wσ |= θ iff Mσ,pcan , wσ |= θ.
The base and boolean cases are straightforward. Suppose that Hcan, wσ |= [i]γ.
We must show Mσ,pcan , wσ |= [i]γ. Let vσ ∈ W σ,pcan with wσ ∼σ,pcani vσ. By
the main induction hypothesis, we have both vσ ∈ Hcan and wσ ∈ W σ,pcan .
By Definition 2.1.3, since wσ ∼σ,pcani vσ, we have w ∼0

i v. Thus by Definition
2.3.6, wσ ∼cani vσ. Hence, Hcan, vσ |= γ. By the subinduction hypothesis,
Mσ,pcan , vσ |= γ. Therefore, Mσ,pcan , wσ |= [i]γ. The other direction is similar.

Coming back to the main induction, assume wσ!θ ∈ Hcan. This implies that
〈!θ〉> ∈ λ(wσ). By the Truth Lemma, we have Hcan, wσ |= 〈!θ〉>. This, together
with axiom A1, implies Hcan, wσ |= θ. From the above subinduction, it follows
that Mσ,pcan , wσ |= θ (recall that θ ∈ LEL by definition). Thus, by the construc-
tion of pcan, we have wσ!θ ∈ W σ!θ,pcan . This shows that if wσ!θ ∈ Hcan then
wσ!θ ∈ W σ!θ,pcan . The other direction is similar. This completes the proof. qed

The proof of the completeness theorem (Theorem 2.3.3) follows from Lemma 2.3.7
and Lemma 2.3.8 using a standard argument. The details are left to the reader.
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2.3.3 Decidability via Finite Completeness Proof

We can modify the above proof to obtain a finite completeness proof. As a result,
we can show that the satisfiability problem for TPAL is decidable. Our strategy
is to construct a finite model from maximally consistent sets with respect to a
suitable finite fragment of TPAL. In particular, we will associate what we call a
TPAL-closed set with a given formula ϕ. The idea of the TPAL-closed set is based
on the Fisher-Ladner closure in Propositional Dynamic Logic (PDL, [33, 32]) .
Once the finite canonical model is constructed, the proof follows the idea of the
full completeness proof from Section 2.3.2.

2.3.9. Definition. (TPAL-Closed Sets) Let X be a set of TPAL formulas.
X is TPAL-closed if X satisfies the following closure conditions:

1. Closed under subformulas: If ϕ ∈ X and ψ is a subformula of ϕ, then
ψ ∈ X.

2. Closed under single negations: If ϕ ∈ X and ϕ is of the form ¬ψ, then
ψ ∈ X; and if ϕ ∈ X and ϕ is not of the form ¬ψ, ¬ϕ ∈ X.

3. If 〈!θ〉ϕ ∈ X, then 〈!θ〉> ∈ X.

4. If 〈!θ〉[i]ϕ ∈ X, then [i](〈!θ〉> → 〈!θ〉ϕ) ∈ X.

5. If ϕ ∈ X, then 〈!θ1〉...〈!θk〉ϕ ∈ X (1 ≤ k ≤ d(X)− d(ϕ)) where 〈!θi〉> ∈ X
for every 1 ≤ i ≤ k. /

Given a set X ⊆ Ltpal, we denote by (X)TPAL the smallest expansion of X that
is TPAL-closed. Note that provided that X is a finite set of formulas, (X)TPAL is
also finite; also, d(X) = d((X)TPAL). We denote by (X)TPALk with 0 ≤ k ≤ d(X)
the set {ϕ ∈ (X)TPAL | d(ϕ) ≤ k}.

Here some remarks are in order about the closure conditions. The point of clo-
sure conditions is to make sure that formulas in closed sets can express ‘enough’
information about the truth of a formula of our interest in canonical models.
In the above definition, the first two closure condition guarantees that closed
sets contain enough source to say whether subformulas are true or false. By the
third condition, closed sets can say whether public announcement in the sets can
be made or not. By the fourth condition, closed sets contains enough source to
express agents’ future knowledge (cf Axiom R4). Finally the fifth condition guar-
antees that closed sets have enough future information to determine the truth of
formulas in them.

Let Σ be a set of formulas in TPAL. We call a set a ⊆ (Σ)TPALk an atom of
depth k over Σ (0 ≤ k ≤ d(Σ)), if a is TPAL-consistent and if a ⊂ b ⊆ (Σ)TPALk ,
then b is inconsistent. We denote the set of the atoms of depth k over Σ as
Atk(Σ). Now it is easy to check the following properties of atoms.
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2.3.10. Lemma. Let Σ be a set of TPAL formulas. For every a ∈ Atk(Σ), the
following properties hold:

1. For all ϕ ∈ (Σ)TPALk , ϕ ∈ a or ¬ϕ ∈ a, but not both.

2. For all ϕ ∧ ψ ∈ (Σ)TPALk , ϕ ∧ ψ ∈ a iff ϕ ∈ a and ψ ∈ a.

3. For all 〈!θ〉p ∈ (Σ)TPALk with p a proposition letter, 〈!θ〉ϕ ∈ a iff 〈!θ〉> ∈ a
and p ∈ a.

4. For all 〈!θ〉¬ϕ ∈ (Σ)TPALk , 〈!θ〉¬ϕ ∈ a iff 〈!θ〉> ∈ a and ¬〈!θ〉ϕ ∈ a.

5. For all 〈!θ〉(ϕ ∧ ψ) ∈ (Σ)TPALk , 〈!θ〉(ϕ ∧ ψ) ∈ a iff 〈!θ〉ϕ ∈ a and 〈!θ〉ψ ∈ a.

6. For all 〈!θ〉[i]ϕ ∈ (Σ)TPALk , 〈!θ〉[i]ϕ ∈ a iff 〈!θ〉> ∈ a and [i](〈!θ〉> →
〈!θ〉ϕ) ∈ a.

7. For all 〈!θ〉ϕ ∈ (Σ)TPALk , if 〈!θ〉ϕ ∈ a, then 〈!θ〉> ∈ a.

8. For all 〈!θ〉> ∈ (Σ)TPALk , if 〈!θ〉> ∈ a, the !θ ∈ a.

Proof. Immediate from the definition of an atom and Definition 2.3.9. qed

Given a finite set Σ of TPAL-formulas, we construct a finite canonical model
from the set (Σ)TPAL. The construction follows exactly the construction from
Section 2.3.2 (cf. Definition 2.3.4 and Definition 2.3.6). First, as in Definition
2.3.4 we construct maps λfinn and sets Hfin

n (0 ≤ n ≤ d(Σ)) as follows:

• Let Hfin
0 = Atd(Σ)(Σ) and for each a ∈ Hfin

0 , λfin0 (a) = a.

• Let Hfin
n+1 = {σ!θ | σ ∈ Hfin

n and 〈!θ〉> ∈ λfinn (σ)}. For every σ = σ′!θ ∈
Hfin
n+1, define λfinn+1(σ) = {ψ | 〈!θ〉ψ ∈ λfinn (σ′)}.

2.3.11. Proposition. For all n, λfinn (σ) ∈ Atd(Σ)−n(Σ).

Proof. The proof is by induction on n. The base case is clear. For the inductive
step, the argument is completely analogous to the proof of Lemma 2.3.5, given
Lemma 2.3.10 and Definition 2.3.9. qed

We now define a finite canonical model Hfin. This goes exactly like Defini-
tion 2.3.6 except for the domain, which is now Hf in =

⋃
0≤i≤d(Σ)H

fin
i . As in

Section 2.3.2, we write λfin(h) from λfinn (h) where n is the number of announce-
ments in h. We use ∼fini and V fin to denote the canonical relations and valuations
in Hfin, just as in Definition 2.3.6. All that remains to be proved are analogues
of Lemma 2.3.7 and Lemma 2.3.8.
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2.3.12. Lemma. (Finite Truth Lemma) Let ϕ ∈ (Σ)TPAL. For every history
h in Hfin such that len(h) ≤ d(Σ)− d(ϕ) + 1,

ϕ ∈ λfin(h) iff Hfin, h |= ϕ.

Proof. The proof is by induction on ϕ. Given Lemma 2.3.10 and the closure
conditions in Definition 2.3.9, the proof is similar to the proof of Lemma 2.3.7.
We only present the public announcement modality case. Readers are invited to
verify that the argument holds for the other cases as well. In particular, note
that the formulas used in the proof of Lemma 2.3.7 are in fact in the set λfin(h).

Let ϕ be 〈!θ〉ψ. First, assume that 〈!θ〉ψ ∈ λfin(h), where len(h) ≤ d(Σ) −
d(ϕ) + 1. Since 〈!θ〉ψ ∈ λfin(h) by Lemma 2.3.9, 〈!θ〉> ∈ λfin(h). Thus, h!θ ∈
Hfin and ψ ∈ λfin(h!θ). Here note that len(h!θ) = len(h) + 1 ≤ d(Σ) − (d(ϕ) −
1) + 1 = d(Σ) − d(ψ) + 1. Thus, by induction, we have Hfin, h!θ |= ψ, which
implies Hfin, h |= 〈!θ〉ψ. For the other direction, assume that Hfin, h |= 〈!θ〉ψ.
This implies Hfin, h!θ |= ψ with len(h!θ) ≤ d(Σ) − d(ψ) + 1. By induction,
ψ ∈ λfin(h!θ). By the construction of the canonical model, 〈!θ〉ψ ∈ λfin(h) as
desired. qed

2.3.13. Lemma. Hfin is an ETL model generated from an epistemic model and
a PAL-protocol.

Proof. The proof is similar to that of Lemma 2.3.8. qed

Putting everything together, it is not difficult to verify that:

2.3.14. Theorem. (Decidability of TPAL) The satisfiability problem for the
logic TPAL is decidable.

2.3.4 Common Knowledge

So far, we have only considered the knowledge modality [i] to describe agents’ in-
formational sates. However, other interesting informational states arise in multi-
agent contexts. One such state is common knowledge. The notion was first studied
by D. Lewis in [49] and formalized in [4]. Common knowledge has been one of
the key epistemic notion in the literature.

We now describe how to incorporate the common knowledge operator into
our axiomatic system. Our strategy has two components. First, as we did in
the above completeness proof, we will make use of compositional analysis via
reduction axioms in PAL. [73] provides the reduction axiom for relativized com-
mon knowledge in the context of PAL. We will modify the reduction axiom for
TPAL and add it to TPAL together with other standard axioms associated with
relativized common knowledge. Second, we will appeal to the finite completeness
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argument developed in the previous subsection. We will extend the closure condi-
tion in Definition 2.3.9 and show that it is enough to carry out the completeness
argument.

First let us define common knowledge operators. Given a binary relation X,
denote by X+ the transitive closure of X, i.e. the smallest set containing X such
that, if (w, v), (v, u) ∈ X+, then (w, u). Let G be a set of agents in A, i.e. G ⊆ A.
Given an ETL model H = (H,∼, V ), define ∼G:= (

⋃
i∈G ∼i)+. The operator CG,

where CGϕ reads as “ϕ is common knowledge among G”, is defined by:

H, h |= CGϕ iff for each h′ ∈ H, if h ∼G h′ then h′ |= ϕ

Van Benthem, van Eijk and Kooi ([73]) discuss the technical issues that arise
when axiomatizing Public Announcement Logic in languages with common knowl-
edge. They introduce a new “relativized common knowledge” operator CG(ψ|ϕ)
saying that every ψ-path (a path in which each step leads to a ψ-world) along
the relation ∼G ends in a state satisfying ϕ. More formally, let [[ϕ[] be the set of
histories satisfying ϕ. Given a DEL-generated ETL model H = (H,∼, V )

H, h |= CG(ψ|ϕ) iff ∀h′ ∈ H, (h, h′) ∈ (
⋃
i∈G ∼i ∩ (H× [[ψ]]))+ implies H, h′ |= ϕ

The usual common knowledge operator CGϕ can be defined as CG(>|ϕ).
We denote by TPALC the extension of TPAL with the relativized common

knowledge operator. We now provide the axiomatization TPALC of the extension.
For convenience, we denote

∧
i∈G[i]ϕ by EGϕ (“everybody in G knows ϕ”).

2.3.15. Definition. (Axiomatization of TPALC) The axiomatization TPALC

extends TPAL by the following axioms and the inference rule:
Axioms

CK CG(ϕ|ψ → χ)→ (CG(ϕ|ψ)→ CG(ϕ|χ))

C1 CG(ϕ|ψ)↔ EG(ϕ→ (ψ ∧ CG(ϕ|ψ)))

C2 (EG(ϕ→ ψ) ∧ CG(ϕ|ψ → EG(ϕ→ ψ)))→ CG(ϕ|ψ)

R5 〈!θ〉C(ψ|ϕ)↔ 〈!θ〉> ∧ C(〈!θ〉ψ|〈!θ〉ϕ)

Inference Rule

CN If ` ϕ, then ` CG(ψ|ϕ). /

[73] provides the completeness proof for the extension of EL with the rela-
tivized common knowledge operator by CK, C1-2 and CN. Then it reduces the
extension of PAL with the operator by the following reduction axiom:

〈!θ〉C(ψ|ϕ)↔ θ ∧ CG(〈!θ〉ψ|〈!θ〉ϕ).
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The difference between this axiom and our R5 is that θ is replaced by 〈!θ〉> in
R5. This is the maneuver that we appealed to when we axiomatized TPAL above
in Definition 2.3.1. Given this, it is not hard to see that the above axiom is valid
on the class F(PAL).

Now the idea of the completeness proof is based on the finite completeness
argument in Section 2.3.3. Thus, we will take a closure of a finite set X of our
interest and construct a finite canonical model from maximally consistent sets in
the closed set. With the addition of the relativized common knowledge operator,
we need to add the following closure condition to the definition of TPAL-closed
sets above (Definition 2.3.9):

• If CG(ψ|ϕ) ∈ X, then [i](ψ → (ϕ ∧ CG(ψ, ϕ))) ∈ X for all i ∈ G.

This condition is the same as the closure condition used in [73] to give the finite
completeness argument for EL with the common knowledge operator.

With a TPAL-closure of a finite set, the canonical model is constructed in
the way presented in Section 2.3.3. To see how the proof will go, it is helpful
to inspect our completeness proof in TPAL given above. Consider the argument
given in the proof of Lemma 2.3.7. To prove the knowledge modality case, our
strategy was to go down along the history to the bottom level by appealing to R4
and give the standard completeness argument inside the bottom epistemic model
Hcan

0 . In fact, the left-to-right direction of the argument can be characterized by
the following three steps:

1. Assume [i]ψ ∈ λ(w!θ1 . . .!θn).

2. By successive applications of R4, obtain

[i](〈!θ1〉> → 〈!θ1〉(. . . (〈!θn〉> → 〈!θn〉ψ) . . . ) ∈ λ(w).

3. By the standard epistemic canonical model reasoning in Hcan
0 , obtain

[i](〈!θ1〉> → 〈!θ1〉(. . . (〈!θn〉> → 〈!θn〉ψ) . . . ) ∈ λ(v).

4. Obtain ψ ∈ λ(v!θ1 . . .!θn) by construction and conclude by IH thatHcan, v!θ1 . . .!θn |=
ψ.

The reasoning from 2 to 3 only requires the argument given in the completeness
argument in the canonical model of epistemic logic. Here in particular, 3 is
obtained from 2 based on the fact that the indistinguishability relation between
w and v is established by the canonical model construction, w ∼cani v in Hcan

0 iff
{ϕ | [i]ϕ ∈ w} ⊆ v. From 1 to 2 and from 3 to 4, we need considerations special
to TPAL and appeal to R4 and the construction of the canonical model. This
point applies to the right-to-left direction of the proof. (the construction of v0 is
completely analogous to what is done in the canonical model of epistemic logic).
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Our proof of the completeness of TPALC below is based on this idea. Having
R5, we can ‘go down’ the tree to the bottom and do the standard completeness
argument at the bottom by using CK, C1-3 and CN. After doing so, we ‘come’
up the tree back and apply the inductive hypothesis. In the following proof, we
will not repeat the completeness argument at the bottom for relativized common
knowledge given in [73].

2.3.16. Lemma. Let ϕ ∈ (Σ)TPAL. For every history h in Hfin such that len(h) ≤
d(Σ)− d(ϕ) + 1,

ϕ ∈ λfin(h) iff Hfin, h |= ϕ.

Proof. The proof is induction on the complexity of ϕ. We only do the case for
relativized common knowledge. The other cases are done by the completeness
arguments in Lemma 2.3.7 and 2.3.12. Assume that CG(ψ|χ) ∈ λfin(w!θ1 . . .!θn)

with h = w!θ1 . . .!θn. Let us write !θ1 . . .!θn =!~θ. By repeated applications of R5,
we obtain

CG(〈!~θ〉ψ|〈!~θ〉χ) ∈ λ(w).

where 〈!θ1〉 . . . 〈!θn〉 is denoted by 〈!~θ〉. From this, by the standard argument
for the relativized common knowledge operator (see [73]), we can show that, for

any v in a path from w along nodes where 〈!~θ〉ψ is true, 〈!~θ〉χ ∈ λ(v) (and

CG(〈!~θ〉ψ, 〈!~θ〉χ) ∈ λ(v)). By construction, we have χ ∈ λ(v!~θ). By IH, Hcan, h |=
χ. On the other hand, by definition, Hcan, v |= 〈!~θ〉ψ iff Hcan, v!~θ |= ψ. Therefore,

we can say, for any v!~θ in a path from w!~θ along nodes where ψ is true, χ ∈ λ(v!~θ).
Therefore, by inductive hypothesis, we are done.

For the other direction, assume that Hcan, w!~θ |= CG(ψ|χ). This implies

Hcan, w |= CG(〈!~θ〉ψ|〈!~θ〉χ). By the standard argument given in [73], we can show

CG(〈!~θ〉ψ|〈!~θ〉χ)) ∈ λ(w). Now, since w~!θ in Hcan implies

〈θ1〉> ∈ λ(w), . . . , 〈θn〉> ∈ λ(w!θ1 . . . θn−1),

we can apply R5 successively and obtain CG(ψ|χ) ∈ λ(w~θ). qed

We can make sure that the canonical model is in the right class of models as
in Lemma 2.3.13. Therefore, we have the following result:

2.3.17. Theorem. TPALC is sound and (weakly) complete with respect to Fsd.
Moreover, the satisfiability problem of TPALC is decidable.

2.4 Other Results in TPAL

We will now prove other important results in TPAL. First, we will axiomatize
the class of ETL models generated from uniform PAL-protocols. Second, we will
show that PAL can be faithfully embedded into TPAL.



2.4. Other Results in TPAL 63

2.4.1 Uniform Protocols

First we will axiomatize the class F(Ptcl(PAL)) of ETL models generated from
uniform PAL-protocols. For this, we extend the language Ltpal with an existential
modality. Let Eϕ mean that “ϕ is true at some history with the same sequence of
announcements”. (cf. Chapter 1.6) We define this as follows. Let H be an ETL
model generated by an epistemic model M = (W,∼, V ) and a (state-dependent
or uniform) PAL-protocol. Let w ∈ W and σ a sequence of announcements with
wσ in H. Then we interpret the existential modality as follows:

H, wσ |= Eϕ iff ∃v ∈ W such that vσ is in H and H, vσ |= ϕ.

This operator functions as an existential modality at each ‘stage’ of successive
public announcements. The dual U of E is a universal modality in the same
sense. We consider the extension TPALE of TPAL.

First let us remark that the introduction of this operator keeps the system of
TPAL manageable. A complete axiomatization can be given in a similar way by
adding the following axioms to TPAL as in Definition 2.3.1:

E1 E(ϕ→ ψ)→ (Eϕ→ Eψ)

E2 ϕ→ Eϕ

E3 ϕ→ UEϕ

E4 EEϕ→ Eϕ

E5 Uϕ→ [i]ϕ

R5 〈!θ〉Eϕ↔ 〈!θ〉> ∧ E〈!θ〉ϕ.

R5 allows us to obtain the results corresponding to Lemma 2.3.7 and Lemma 2.3.8
with respect to uniform protocols. Axioms E1-5 are the standard axiomatization
of the existential modality. We denote the resulting axiomatization by TPALE

We now would like to axiomatize the class

F(Ptcl(PAL)) = {Forest(M,P) | M an epistemic model and P ∈ Ptcl(PAL)}

For this, we extend the axiomatization TPALE with the following axiom:

Uni 〈!θ〉> → U(θ → 〈!θ〉>).

This axiom characterizes uniform protocols in the following sense. Let us say a
state-dependent protocol p ∈ PAL on a given modelM generates a uniform ETL
model if Forest(M, p) = Forest(M,P) for some P ∈ Ptcl(PAL).

2.4.1. Proposition. The axiom Uni is valid on a frame Forest(M, p) iff p gen-
erates a uniform ETL model.
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Proof. (⇐) Assume that p generates a uniform ETL model H = Forest(M, p).
Then there is some uniform protocol P ∈ Ptcl(PAL) such that H = Forest(M,P).
Now suppose that w ∈ Dom(M) and σ ∈ PAL∗. Assume that H, wσ |= 〈!θ〉>.
Then, we have wσ!θ in H. This means that σ!θ ∈ p(w). Since p is uniform,
there is some P ∈ Ptcl(PAL) such that H = Forest(M,P). Therefore σ!θ ∈ P.
Now, let v be an arbitrary state in M. If H, vσ |= θ, then, since σ!θ ∈ P,
we have vσ!θ ∈ D(H). Hence H, vσ |= 〈!θ〉>. Since v was arbitrary, we have
H, wσ |= U(θ → 〈!θ〉>).

(⇒) Assume that Uni is valid on an ETL model Hp = Forest(M, p). Con-
struct a protocol P = {σ | wσ is in Hp for some w ∈ Dom(M)}. Clearly,
P is closed under prefixes, so is in fact a protocol. We need to show that
Hp = Forest(M,P). For this, it suffices to show that, for all σ, Mσ,p = Mσ,P,
equivalently (via definition) W σ,p = W σ,P. We prove this by induction on σ. First,
the left-to-right inclusion is clear by the construction of P. For the other direction,
the base case is clear. For if σ is the empty sequence, the inclusion clearly holds as
W σ,p = W σ,P = D(M). For the inductive step, assume that wσ!θ ∈ W σ!θ,P. Then
we have Mσ,P, wσ |= θ. By the induction hypothesis, we have Mσ,p, wσ |= θ.
Since θ ∈ Lel, it follows from Observation 2.2.3 that Hp, wσ |= θ. Note that by
the construction of P, there must be some v ∈ Dom(M) such that vσ!θ ∈ W σ,p.
This implies that Hp, vσ |= 〈!θ〉>. Here, since Uni is valid in Hp, we have
Hp,vσ |= U(θ → 〈!θ〉>). Thus, it follows that Hp, wσ |=!θ → 〈!θ〉>. From the
fact that Hp, wσ |= θ, we then have Hp, wσ |= 〈!θ〉>, which is equivalent to wσ!θ
in Hp, i.e., wσ!θ ∈ W σ!θ,p, as desired. qed

Let TPALUni be the extension of TPALE with the axiom Uni. The following is
an immediate consequence of a suitable truth lemma analogous to Lemma 2.3.7
and the above proposition:

2.4.2. Corollary. TPALUni is sound and strongly complete with respect to the
class F(Ptcl(PAL)).

Proof. The proof is similar to the one given in Section 2.3.2 (making use of the
above proposition to show that the canonical model is generated by a uniform
protocol). qed

2.4.2 Embedding PAL into TPAL

The introduction of the operator E allows us to obtain another interesting result.
The relation between the original public announcement logic PAL and our new
TPAL is not completely straightforward. Clearly all principles of TPAL are valid
in PAL. Indeed, the inclusion seems proper, as standard public announcement
logic is about special “full” protocols. But is it really stronger than TPAL?
Using the existential modality of the previous section, we can answer this question
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almost in the negative by providing an effective semantic translation from PAL
into TPALE

Given a formula ϕ, let Ptcl(ϕ) be the set of formulas of the form:

U(θ1 → 〈!θ1〉(θ2 → 〈!θ2〉(· · · 〈!θk−1〉(θk → 〈θk〉>) · · · )))

where !θi ∈ AOC(ϕ) (1 ≤ i ≤ k) and 1 ≤ k ≤ d(ϕ).
The formulas in Ptcl(ϕ) state that the public announcements that are relevant

to the truth value of ϕ are all announceable at any node of a given ETL model.

2.4.3. Theorem. For any formula ϕ ∈ Ltpal,

|= ϕ in PAL iff |=
∧

Ptcl(ϕ)→ ϕ in TPAL.

Proof. (⇐) Suppose |=
∧
Ptcl(ϕ)→ ϕ in TPAL. Then, for all epistemic models

M and all w ∈ Dom(M), we have Forest(M,PAL∗), w |=
∧
Ptcl(ϕ)→ ϕ, where

PAL∗ is the class of all finite sequences of public announcements. By Proposi-
tion 2.2.1, M, w |=

∧
Ptcl(ϕ) → ϕ in PAL. Now, by Proposition 2.2.2, Ptcl(ϕ)

is valid in PAL. Hence, M, w |= ϕ. Since M and w were arbitrary, we have |= ϕ
in PAL.

(⇒) Suppose |= ϕ in PAL. Let Forest(M, p) be an arbitrary PAL-generated
ETL model. Fix h in Forest(M, p) and assume Forest(M, p), h |=

∧
Ptcl(ϕ). Note

that h = wσ where w ∈ Dom(M) and σ a sequence of formulas in PAL∗. Now con-
sider the epistemic modelMσ,p. Since ϕ is valid in PAL, we haveMσ,p, wσ |= ϕ.
By Observation 2.2.8, Forest(Mσ,p, pϕ), wσ |= ϕ. We now show that Forest(M, p)
contains the model Forest(Mσ,p, pϕ).

Claim If h′ is in Forest(Mσ,p, pϕ), then h′ is in Forest(M, p).

Proof of Claim. We prove this claim by induction on the length of h′ (len(h) ≤
len(h′) ≤ len(h) + d(ϕ)). For the base case, assume that len(h) = len(h′). If h′

is in Dom(Forest(Mσ,p, pϕ)), then h′ ∈ Dom(Mσ,p). Thus, h′ in Forest(M, p).
For the inductive step, assume that h′ is in Forest(Mσ,p, pϕ). Then we have
h′ = vσ!θ1...!θn for !θi ∈ AOC(ϕ) (1 ≤ i ≤ n) and v ∈ Dom(M). Here, our
assumption that Forest(M, p), wσ |=

∧
Ptcl(ϕ) implies

Forest(M, p), wσ |= U(!θ1 → 〈!θ1〉(· · · (!θn → 〈!θn〉>) · · · ))

and so,
Forest(M, p), vσ |=!θ1 → 〈!θ1〉(· · · (!θn → 〈!θn〉>) · · · ).

Also, we have assumed that h′ is in Forest(Mσ,p, pϕ), whose construction implies
that Mσ,p, vσ |= θ1, . . ., Mσ!θ1...!θn−1,p, vσ!θ1...!θn−1 |= θn. Now by the induction
hypothesis, vσ, vσ!θ1, . . ., vσ!θ1...!θn−1 are all in Forest(M, p). This, together with
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Observation 2.2.3, implies that Forest(M, p), vσ |= θ1, . . ., Forest(M, p), vσ!θ1...!θn−1 |=
θn (since θ1, . . ., θn are all formulas in Lel as parts of protocols).

Thus, we have

Forest(M, p), vσ |= 〈!θ1〉(θ2 → 〈!θ2〉(· · · (θn → 〈!θn〉>) · · · )

Forest(M, p), vσ!θ1 |= 〈!θ2〉(θ3 → 〈!θ3〉(· · · (!θn → 〈!θn〉>) · · · )
...

Forest(M, p), vσ!θ1 · · ·!θn−1 |= θn → 〈!θn〉>.

Forest(M, p), vσ!θ1 · · ·!θn−1 |= 〈!θn〉>.

Therefore, h′ = vσ!θ1...!θn is in Forest(M, p). qed (of Claim)

Now, by the preceding claim, Forest(M, p) includes Forest(Mσ,p, pϕ). Since we
had Forest(Mσ,p, pϕ), wσ |= ϕ as above, it follows from Observations 2.2.5 and
2.2.7 that Forest(M, p) |= ϕ. (Note that ϕ is in Ltpal.) This completes the proof.
qed

We do not know if we can do this reduction without the existential modality.
Also, we have not solved the opposite question, whether TPAL can be faithfully
embedded into PAL, though we think the answer is negative.

2.5 Temporal Dynamic Epistemic Logic

Now we will extend the logic of TPAL to the full class of DEL-generated ETL
models Fsd. We will call the resulted logical system, Temporal Dynamic Epistemic
Logic (TDEL). Indeed many of the techniques in TPAL can be generalized and
similar results can be obtained for TDEL. For illustration, we will first look at
the axiomatization of TDEL in some details.

2.5.1 Axiomatization of TDEL

First we introduce the system of TDEL.

2.5.1. Definition. (Language of TDEL) Let E be the class of pointed event
models. Formulas of TDEL is inductively defined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | [ε]ϕ

where p ∈ At, i ∈ A and ε ∈ E. The duals, 〈i〉 and 〈!ϕ〉, of [i] and [ε], and the
other boolean operators are defined in the standard way. We denote the set of
formulas in TDEL by Ltdel.
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2.5.2. Definition. (Truth) Let H ∈ Fsd be a DEL-generated ETL model with

H = Forest(M, p) = (H,∼, V ).

The truth definition of the event model operator 〈ε〉 is defined by:

• H, h |= 〈ε〉ϕ iff hε ∈ H and H, hε |= ϕ.

The other operators are defined in the standard way as in Definition 2.1.5.

2.5.3. Definition. (Axiomatization) The axiomatization TDEL of TDEL ex-
tends the axiomatization of EL (PC, iK, iN, MP in Definition 2.3.1) with the
following axiom schemes and rule.4

Axioms

εK [ε](ϕ→ ψ)→ ([ε]ϕ→ [ε]ψ)

F1 〈ε〉p↔ 〈ε〉> ∧ p

F2 〈ε〉¬ϕ↔ 〈ε〉> ∧ ¬〈ε〉ϕ

F3 〈ε〉(ϕ ∧ ψ)↔ 〈ε〉ϕ ∧ 〈ε〉ψ

F4 〈ε〉[i]ϕ↔ 〈ε〉> ∧
∧
{e∈Dom(εL)|(εR,e)∈→

εL
(i)}[i](〈εL, e〉> → 〈εL, e〉ϕ)

E1 〈ε〉> → preεL(εR)

Inference Rule

εN If ` ϕ, then ` [ε]ϕ with ε ∈ E. /

Here what was said about reduction axioms in PAL and axioms in TPAL
(Section 2.3) applies to F1-4 here. As PAL, DEL reduces to EL via compositional
analysis based on reduction axioms. For instance, the reduction axiom for the
knowledge operator [i] is:

〈ε〉[i]ϕ↔ preεL(εR) ∧
∧

{e∈Dom(εL)|(εR,e)∈Rel(εL)(i)}

[i](〈εL, e〉> → 〈εL, e〉ϕ)

The difference from F4 is in the right-hand side of the biconditional: 〈ε〉> (“the
event ε can happen”) is replaced by preεL(εR) (the precondition of εR). The DEL-
reduction axioms are valid as they are, since DEL assumes that if the precondition
of a given event is satisfied, then the event can always happen. However TDEL lift
this assumption. In TDEL, even if the precondition of a given event is satisfied,
the event cannot always happen, unless it is ‘permitted’ by protocols. This is
why we have E1, but not its converse. Readers are invited to verify that these
are sound with respect to Fsd.

4Below F3 follows from εK and εN. Nonetheless we put the axiom here to make the contrast
explicit between TPAL and TDEL.
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2.5.2 Completeness Proof

The completeness proof can be given based on the methods used for the com-
pleteness of TPAL. To take care of the full class of event models, we have only
to generalize the construction of canonical model (Definition 2.5.6) and prove
an additional lemma (Proposition 2.5.7) to make sure that the argument for the
truth lemma goes through in TDEL.

2.5.4. Definition. (Legal Histories) Let W0 be the set of all TDEL-maximal
consistent sets. We define λn and Hn as follows:

• Define H0 = W0 and for each w ∈ H0, λ0(w) = w.

• Let Hn+1 = {hε | h ∈ Hn and 〈ε〉> ∈ λn(h)}. For each h = h′ε ∈ Hn+1,
define λn+1(h) = {ϕ | 〈ε〉ϕ ∈ λn(h′)}.

Given h ∈ Hn, we write λ(h) for λn(h).

2.5.5. Lemma. For each n ≥ 0, for each σ ∈ Hn, λn(σ) is a maximally consistent
set. /

Proof. The same argument can be applied as in Lemma 2.3.5. qed

Let Hcan
0 = (H0,∼0, V 0), where ∼0 and V 0 are defined by

• w ∼0
i v iff {ϕ | [i]ϕ ∈ w} ⊆ v.

• For each p ∈ At and w ∈ H0, p ∈ V (w) iff p ∈ w.

2.5.6. Definition. (Canonical Model) The canonical model Hcan is a triple
(Hcan,∼can, V can), where each item is defined as follows:

• Hcan :=
⋃∞
i=0 Hi.

• For each wσ,w′σ′ ∈ Hcan, wσ ∼cani w′σ′ iff wσ ∼σLi w′σ′, where ∼σL is
defined by induction in the following way:

– ∼
σL
(0)

i =∼0
i

– For each wτ, vτ ′ ∈ Hn+1 (0 < n < len(σL)), wτ ∼σ
L
(n+1) vτ ′ iff wτ(n) ∼

σL
(n)

i

vτ ′(n) and (τRn+1, (τ
′)Rn+1) ∈ Rel(τLn+1)(i).

• For every p ∈ At and h = wσ ∈ Hcan, wσ ∈ V can(p) iff w ∈ V 0(p).

The above definition simulates Definition 1.4.8 and 1.4.9. The construction guar-
antees that, at each stage along histories in the canonical model, ∼cani respects
updates made by corresponding event models. This makes the following proofs
simpler.



2.5. Temporal Dynamic Epistemic Logic 69

2.5.7. Proposition. Let wσ ∼cani vτ with w, v ∈ W 0, σ = σ1 . . . σn and τ =
τ1 . . . τn. If [i]ϕ ∈ λ(wσ), then

[i](〈τ1〉> → 〈τ1〉(〈τ2〉> → 〈τ2〉(. . . (〈τn〉> → 〈τn〉ϕ) . . . ) ∈ λ(w).

Proof. By induction on n. When n = 0, σ, τ are empty and thus the claim
clearly holds. For the inductive step, assume that [i]ϕ ∈ λ(wσ). Then, by the
construction of Hcan, 〈σn〉[i]ϕ ∈ λ(wσ(n−1)). By F4, for all events e in σLn =
(E,→, V ) such that σRn →i e:

[i](〈σLn , e〉> → 〈σLn , e〉ϕ) ∈ λ(wσ(n−1)).

Here, since wσ ∼cani vτ , we have σRn →i τ
R
n by the construction of Hcan. By

applying the IH, we are done. qed

This proposition makes sure that the argument given for the truth lemma in
TPAL (Lemma 2.3.7) can be carried out for TDEL. In TPAL, we did not need
to prove the lemma of this sort, since wσ ∼i vτ obtains just in case w ∼i v and
σ = τ . Therefore, when [i]ϕ ∈ λ(wσ), we have

[i](〈σ1〉> → (. . . (〈σlen(σ)〉> → 〈σlen(σ)ϕ) . . . ) ∈ λ(w)

and this implies by construction of ∼i that

(〈σ1〉> → (. . . (〈σlen(σ)〉> → 〈σlen(σ)ϕ) . . . ) ∈ λ(v).

From this, we could argue that ϕ ∈ λ(vσ) in the argument. However, in TDEL,
wσ ∼i vτ does not generally imply that σ = τ . Therefore, we needed the above
proposition to guarantee

(〈τ1〉> → (. . . (〈τlen(σ)〉> → 〈τlen(σ)ϕ) . . . ) ∈ λ(v).

given wσ ∼i vτ . This enables us to carry out the argument and obtain the truth
lemma stated as follows:

2.5.8. Lemma. (Truth Lemma) For every ϕ ∈ LTDEL and h ∈ Hcan,

ϕ ∈ λ(h) iff Hcan, h |= ϕ.

We can also prove that Hcan is in Fsd by the argument given in TPAL for an
analogous lemma (Lemma 2.3.8)

2.5.9. Lemma. The canonical modelHcan is in Fsd. That is, there is an epistemic
model M and local protocol p on M such that Hcan = Forest(M, p).

Therefore, we have:

2.5.10. Theorem. TDEL is sound and strongly complete with respect to Fsd.
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2.5.3 TDEL Restricted to Subclasses of Protocols

TDEL axiomatizes the class Fsd. However, note that the completeness proof above
does not depend on the fact that TDEL allows the whole class of pointed event
models. Indeed, even if we restrict our attention to subclasses of pointed event
models, the proof should work. However, here we have to be careful that we must
at least have all the “relevant” pointed event models: if (E , e) is in the class of our
interest, then (E , e′) is also in for all e′ in E . Otherwise the knowledge modality
case of Lemma 2.5.8 would fail, since all the “relevant” histories must be included
in the canonical model.

2.5.11. Definition. (e)-Closure Let X ⊆ E. Call X e-closed if, for all E , if
there is ε ∈ X such that εL = E , then, for every event e in E , (εL, e) is in X.

2.5.12. Definition. (TDEL(X)) Denote by Ltdel(X) the fragment of Ltdel that
only allows the event model operators 〈ε〉 such that ε ∈ X. Also, let TDEL(X)
be axiomatized as in Definition 2.5.3 except that the axiom schemas and the εN
rule can only be instantiated by the event models in X.

The following claim can follows from the above considerations.

2.5.13. Theorem. Let X be an e-closed subclass of E. Denote by X the class of
sd-protocols whose values are subsets of X∗. ( sd-protocols that only allows events
in X.) Then TDEL(X) is sound and complete with respect to F(X).

2.5.4 Decidability

Next, having the above completeness proof for TDEL(X), we can combine it
with the finite completeness argument for TPAL (Section 2.3.3) and show that
the satisfiability problem of TDEL(X) (with X e-closed) is decidable. The main
idea in Section 2.3.3 was to construct the finite canonical model from a finite
set of formulas that satisfies certain closure conditions. For the decidability of
TDEL(X), we need to revise the closure conditions so that we can carry out the
completeness argument of TDEL in the finite canonical model.

To state the closure conditions, first define the depth of a formula ϕ in TDEL
as in TPAL (Definition 2.2.4) so that d(ϕ) is the greatest length of the consecutive
occurrences of event operators in ϕ.

2.5.14. Definition. (TDEL-Closed Sets) Let Σ be a set of formulas. Σ is
TDEL-closed if (i) Σ is closed under subformulas and single negations (as in
Definition 2.3.9) and (ii) satisfies the following conditions:

1. If 〈E , e〉ϕ ∈ Σ, then 〈E , e′〉> ∈ Σ for all e′ in E .

2. If 〈E , e〉> ∈ Σ, then pre(E)(e) ∈ Σ.
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3. If 〈E , e〉[i]ϕ ∈ Σ, then [i](〈(E , e′〉> → 〈E , e′〉ϕ) ∈ Σ for all e′ in E such that
(e, e′) ∈→E (i).

4. If ϕ ∈ Σ, then 〈!ε1〉...〈!εk〉ϕ ∈ Σ (1 ≤ k ≤ d(Σ)− d(ϕ)) where 〈εi〉> ∈ Σ for
every 1 ≤ i ≤ k. /

Given a set Σ, denote by (Σ)TDEL the smallest set that contains Σ with the
above closure properties. Since event models are finite (Definition 1.2.4), (Σ)TDEL

is finite if Σ is finite.
Once this definition is given, the rest of the proof is similar to Section 2.3.3.

Given a consistent formula ϕ in TDEL(X), we take {ϕ}TDEL. Based on this
set, we define atoms and construct finite canonical models in a way similar to
Section 2.3.3. (Of course, the construction will use the canonical model con-
struction in TDEL as in Definition 2.5.6, but not the one in TPAL.) The above
closure conditions then guarantee that the rest of the argument can be carried
out. Therefore, we can obtain the decidability of TDEL(X).

2.5.15. Theorem. (Decidability of TDEL(X)) Let X be an e-closed set of
pointed event models. The satisfiability problem for the logic TDEL(X) is decid-
able.

2.5.5 Other Epistemic Operators?

The results in this section, together with the results in Section 2.3.4, suggest
the possibility of incorporating (relativized) common knowledge operator into
our system TDEL(X). If we have an axiom similar to R5, we will be able to
axiomatize the system with relativized common knowledge as we argued in Sec-
tion 2.3.4. Can we obtain such an axiom schema? Or generally can we obtain the
corresponding axiom schemas every time we introduce new epistemic operators?

This question is answered in the context of DEL by van Benthem et al in [73].
They introduce a general algorithm to compute reduction axioms for epistemic
operators expressible in their language, epistemic PDL. Therefore, we may ask the
same question in the context of TDEL. Can we come up with a general algorithm
to compute ‘reduction’-like axioms? Many of the constructions we have seen so
far in terms of TDEL suggests that it should be possible. However, we will leave
the question for future research.

2.6 Generalization of Other Results in TDEL

The completeness proof is not the only technique that we can generalize for the
full TDEL. The other results we saw in TPAL can be also extended. In this
section, we will sketch how we can extend other results: model normalization,
uniform protocols and embeddability.
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2.6.1 Normalization

First, model normalization can be generalized to TDEL, based on the same idea
as in TPAL. We replace preconditions of events by tautologous formulas without
distorting the structures of ETL-trees. We can prove a truth-preservation result
analogous to Proposition 2.2.14. Here we will not describe the full formal details,
but sketch how to proceed.

Let α0, α1, . . . and β0, β1, . . . be a pair of (possibly infinite) sequences of
pointed event models such that, for all k, l ≥ 0, (i) the preconditions of βRk is
a tautologous formula in Lel and (ii) αk 6= αl and βk 6= βl. Given a sequence
h ∈ E∗, define h[β0/α0, β1/α1, . . . ] to be the sequence obtained by replacing all
occurrences of αk in H with βk (for all k). Given an DEL-generated ETL model
H = (H,∼, V ), define H[β0/α0, β1/α1, . . . ] = (H ′,∼′, V ′) by:

H ′ := {h[β0/α0, β1/α1, . . . ] | h ∈ H}

∼′ (i) = {(h[β0/α0, β1/α1, . . . ], g[β0/α0, β1/α1, . . . ]) | (h, g) ∈∼ (i)}

V ′(p) = {h[β0/α0, β1/α1, . . . ] ∼′ g[β0/α0, β1/α1, . . . ] | h ∈ V (p)}.

Given a formula in Ltdel, define the event occurrence set EOC(ϕ) of ϕ to be
the set of pointed event models occurring in ϕ. (cf. Definition 2.2.6)

2.6.1. Proposition. (Normalization in TDEL) Let H = Forest(M, p) ∈
F(E). Let X be a finite subset of E. Furthermore, let α0, α1 . . . and β0, β1, . . .
be enumerations of elements in E\X without repetition such that, for all k, the
precondition of βRk is a tautologous formula in Lel. Then, for every h and TDEL-
formula ϕ such that EOC(ϕ) ⊆ X,

H, h |= ϕ ⇔ H[β0/α0, β1/α1, . . . ], h[β0/α0, β1/α1, . . . ] |= ϕ

2.6.2 Uniform Protocols

We can also generalize the axiomatization of uniform PAL-protocols TPALUni

(Section 2.4.1) to obtain the axiomatization of uniform TDEL-protocols. Fix an
e-closed set X below. We first need to generalize the definition of the existential
operator E. In the context of TPAL, the existential modality was defined as
follows:

Forest(M, p), wσ |= Eϕ iff ∃v ∈ W such that vσ is in H and H, vσ |= ϕ.

where w ∈ Dom(M) and σ is a sequence of public announcements (i.e. σ ∈ PAL∗.
The operator could be defined this way, since event models and events, so to
speak, do not have to be distinguished in TPAL. Event models that represent
public announcements contain single events and thus we do not have to specify



2.6. Generalization of Other Results in TDEL 73

which event in an public announcement event model we talk about. In the context
of TDEL, we need to be explicit about the distinction. The definition is thus given
as follows:

Forest(M, p), wσ |= Eϕ iff ∃v ∈ Dom(M)∃τ ∈ E∗ : σL = τL and H, vτ |= ϕ.

where w is in M and σ ∈ E∗. Defined this way, Eϕ reads as “ϕ is true at some
history with the same sequence of product updates”. We denote the dual of E by
U and read Uϕ as “ϕ is true at every history with the same sequence of product
updates”. Finally we denote the extension of TDEL(X) by TDELE(X).

The complete axiomatization of TDELE(X) can be obtained straightforwardly
as in Section 2.4.1. We need to add the standard axiom schemas for the existential
modality, E1-5, and the following axiom to TDEL(X):

F5 〈E , e〉Eϕ↔ 〈E , e〉> ∧ E
∨
e′∈{e′∈Dom(E)|(e,e′)∈→E(i)}〈E , e′〉ϕ

F5 is an analogue of R5 in TPALE. (cf. also F4 in TDEL) We denote the
resulting axiomatization by TDELE(X).

We now would like to axiomatize the class F(Ptcl(X)) of ETL models gen-
erated from uniform protocols in Ptcl(X). (Remember Ptcl(X) = ℘(X∗)). For
this, we extend the axiomatization TDELE(X) with the axiom that expresses the
uniformity of protocols, as we did in the context of TPAL. The uniformity of
protocols in the context of TDEL can be generalized by simply replacing public
announcements in Uni with pointed event models, as expected:

UniX 〈E , e〉> → U(preE(e)→ 〈E , e〉>), where (E , e) ∈ X.

Let X be the class of sd -protocols whose values are subsets of X∗. We say a
state-dependent protocol p ∈ X generates a uniform ETL model if Forest(M, p) =
Forest(M,P) for some P ∈ Ptcl(X). Then we can proceed as in the proof of
Proposition 2.4.1 and prove the following:

2.6.2. Proposition. Let p be in X. The axiom UniX is valid in Forest(M, p)
iff p generates a uniform ETL model.

Let TDELUni(X) be the extension of TDELE(X) with the axiom UniX . The
following is an immediate consequence of a suitable truth lemma analogous to
Lemma 2.3.7 and Proposition 2.6.2:

2.6.3. Corollary. Let X be an e-closed set of pointed event models. TDELUni(X)
is sound and strongly complete with respect to the class F(Ptcl(X)).
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2.6.3 Embedding DEL into TDEL

Finally, we can embed DEL into TDEL by generalizing the technique used in
Section 2.4.2. The technique was, given a formula ϕ, to construct a formula that
expresses that sequences of public announcements that are relevant to the truth
value of ϕ are all allowed by protocols. In the context of TPAL, the ‘relevant’
public announcements were the ones occurring in ϕ. In the general setting of
TDEL, the pointed event models relevant to the truth of a given formula ϕ are
not only the ones that occur in ϕ. The set of relevant pointed event models must
be e-closed, that is, if (E , e) is in X, then (E , e′) ∈ X for all e′ in E .

Given a set of pointed event models X, denote by Xe the smallest set Y such
that X ⊆ Y and Y is e-closed. Also denote by EOC(ϕ) the set of pointed event
models occurring in a formula ϕ. Given a formula ϕ, let Ptcl(ϕ) be the set of
formulas of the form:

U(preE1(e1)→ 〈E1, e1〉(preE2(e2)→ 〈E2, e2〉(· · · 〈Ek−1, ek−1〉(preEk(ek)→ 〈Ek, ek〉>) · · · )))

where (Ei, ei) ∈ (EOC(ϕ))e (1 ≤ i ≤ k) and 1 ≤ k ≤ d(ϕ). (The operator U is
as defined in Section 2.6.2.)

Having these machinery, we can proceed as in the proof of Theorem 2.4.3 and
prove the following embeddability result.

2.6.4. Theorem. For any formula ϕ ∈ Ltdel,

|= ϕ in DEL iff |=
∧

Ptcl(ϕ)→ ϕ in TDEL.

2.7 Conclusion and Discussion

We have studied logics on classes of ETL models generated from classes of proto-
cols. We started by investigating the logic TPAL over the class of PAL-generated
ETL models. We can characterize our main results in TPAL as follows. First,
we showed that model normalization preserves the truth of formulas in TPAL.
Second, we axiomatized the class of all PAL-generated ETL models and then
extended our system with relativized common knowledge. Third, by introducing
the existential modality, we axiomatized the class of ETL models generated based
on uniform protocols. Forth, we also used the existential modality to faithfully
embed PAL into TPAL.

After studying TPAL in detail, we applied the techniques in TPAL to logics
over other subclasses of DEL-generated ETL models and obtained similar results.
For instance, Theorem 2.5.13 provides axiomatizations for logics over various
subclasses of DEL-generated ETL models. Beyond public announcements, there
are other informational events of our interest, such as secret communication ([52]),
honest communication ([70]), etc. The theorem (and other results) present general
methods in investigating logics of specific kinds of protocols.
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Also there are other open questions that come out of our study in this chapter.
For instance, Theorem 2.5.15 shows that the satisfiability problem for TDEL(X)
is decidable. However, it does not give us the precise computational complexity of
the systems. In addition, the theorem only shows the decidability of systems with
state-dependent protocols. The decidability of systems with uniform protocols is
still an open question. Furthermore, although Theorem 2.6.4 embeds DEL into
our framework, it is unknown whether we can go the other way to embed TDEL
into DEL. Finally, we discussed the question whether we can obtain an algorithm
to compute ‘reduction’ axioms in TDEL(X), as [73] provides in the context of
DEL (Section 2.5.5). We will leave these questions for future investigation.





Chapter 3

Extensions

In this chapter, we will consider extensions of the systems developed in the pre-
vious chapter. There are two kinds of extensions that we consider. One kind of
extension concerns the language of TDEL. Our minimal language of TDEL have
the two modalities, the knowledge operator [i] and the labeled event operators
[ε]. There are some natural extensions that suggest themselves. For instance,
both DEL and ETL deal with various kinds of epistemic operators other than [i]
and among them is common knowledge, which we have considered in the previ-
ous chapter (Section 2.3.4). Likewise, explicit time-branching structures in our
models motivate temporal operators that have been considered in the system of
ETL. One such operator is an operator that involves quantification over future
events “Some event can happen after which. . . ”, “Some sequences of events can
happen after which. . . ”, etc. Operators of this kind have been also considered
in DEL in [5]. Another kind of operators describe what happened in the past,
“Previously,. . . ”, “before the event e happens. . . ”, etc. From the perspective of
DEL, such a kind of operators are interesting since DEL usually deals only with
future operators.1 Thus the first goal of this chapter is to consider the extensions
of our system with the two kinds of temporal operators.

The other kind of extension that we consider in this chapter is a generalization
of the model construction in our framework. Remember that the preconditions
in event models are restricted to epistemic formulas (formulas in Lel) and thus
they cannot contain event operators. The restriction does not seem substantial
in the context of DEL, since formulas in DEL reduces equivalently to epistemic
formulas by reduction axioms. On the other hand, full reduction axioms are not
available in TDEL, as we observed in the previous chapter, and our framework
does not provide a way to express preconditions by formulas containing event op-
erators. This restriction of our system can be a big obstacle in applications of our
framework. For instance, in TPAL, we cannot deal with public announcements

1We do not claim that past-operators have not been considered in the setting of DEL. Indeed,
past-operators have been considered in [86].
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expressing what will be true in the future, etc. Therefore, the second goal of this
chapter is to consider a way to lift the restriction and allow the full class of event
models to be in protocols.

We will tackle these problems in the simplest setting of our framework, i.e.
TPAL. We will proceed as follows. We will start out by extending TPAL with the
generalized future operator “Some public announcements can be made after which
. . . ”. (Section 3.1) Next, we will deal with the extension with the past operator
in TPAL. (Section 3.2) Then we will turn to the extension of models in TPAL to
lift the assumption on preconditions (Section 3.3). After seeing the extensions of
TPAL, we will discuss whether it is possible to give similar extensions in TDEL.
(Section 3.4).

3.1 Quantifying over Public Announcements

We will study the extension of TPAL with the generalized public announcement
operator “Some public announcement can be made after which. . . ”. The kind of
operator can be motivated on various grounds. First, the operator has been one
of the standard operators in ETL. Since our framework is based on ETL-time-
branching tree structures, it is natural to ask how the operator behaves in the
framework. Second, the operator has been recently considered in the literature
on DEL. Balbiani et al [5] considers the extension of PAL with the operator,
which they call Arbitrary Public Announcement Logic (APAL). It is interesting
to compare the system and the corresponding extension of our system. Third, the
generalized public announcement operators enable us to express various epistemic
concepts of our interest. For instance, with the operator, we can express ques-
tions, such as whether there are some public announcements after which epistemic
states of interest will be reached. That is, with the generalized public announce-
ment operator, we can formulate the reachability question, which motivated our
protocol-based semantic framework in the first place. Such a reachability question
has a great importance to the notion of knowability (whether a given proposition
is knowable), which we will discuss in Chapter 4.

3.1.1 Temporal Arbitrary Public Announcement Logic

To extend TPAL with the kind of operator in question, we need some preliminary
considerations. In the framework of PAL, Balbiani et al [5] consider the operator
♦, where the intended reading of ♦ϕ is “Some public announcement can be made
after which ϕ.” The semantics of the operator is given by:

M, w |= ♦ϕ iff ∃ψ ∈ Lpal :M, w |= 〈!ψ〉ϕ.

They call the extension of PAL with the operator Arbitrary Public Announcement
(APAL). The language of APAL is denoted by Lapal.
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Now, to consider such a generalized operator in TPAL, we start out by noting
the following fact. In PAL, sequences of announcements are identified with some
single announcements, in terms of the validity of the following schema:

〈!α〉〈!β〉ϕ↔ 〈!(〈!α〉β)〉ϕ.

However, in TPAL, this is not the case. TPAL invalidates the schema, since the
corresponding single announcements may not be available even if sequences of
announcements are available. (Proposition 2.2.2 in Chapter 2) Thus, we have to
distinguish single announcements and sequences of announcements in the seman-
tic framework of TPAL. This consideration motivates us to introduce two kinds
of generalized public announcement operators to distinguish quantifications over
single announcements and sequences of announcements.

Fix a set of agents A and a countable set of propositional letters At.

3.1.1. Definition. Language of TAPAL The language Ltapal of TAPAL extends
Ltpal with the operators ♦ and ♦∗. The formulas in Ltapal is inductively defined
by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | 〈!θ〉ϕ | ♦ϕ |♦∗ϕ

where p ∈ At, i ∈ A and θ ∈ Lel. The duals, � and �∗, of ♦ and ♦∗ are
defined in the standard way. The other operators are defined as mentioned in
Definition 2.1.2.

The intended interpretations of ♦ϕ and �ϕ are “Some public announcement
can be made after which ϕ is true” and “After every public announcement, ϕ
is true.” respectively. Also the intended interpretations of ♦∗ϕ and �∗ϕ are
“Some sequences of public announcement can be made after which ϕ is true.”
and “After every sequence of public announcement, ϕ is true.” respectively.
(Sequences here are possibly empty.) We call the extension Temporal Arbitrary
Public Announcement Logic (TAPAL).

3.1.2. Definition. Truth Let PAL and PAL be the class of public announce-
ments in E and the class of state-dependent PAL-protocols.2 Given H = (H,∼
, V ) ∈ F(PAL) and a history h ∈ H, the truth of a TAPAL-formula ϕ at h is
inductively defined as follows. We only give the definitions for ♦, and ♦∗. The
other definitions are as given in Definition 2.1.5:

H, h |= ♦ϕ iff ∃!ψ ∈ PAL : h!ψ ∈ H and H, h!ψ |= ϕ
H, h |= ♦∗ϕ iff ∃σ ∈ PAL∗ : hσ ∈ H and H, hσ |= ϕ

Consistency, satisfiability, validity etc. are defined in the standard way as in
Definition 2.1.6.

2Thus we only consider public announcements !ϕ with ϕ ∈ Lel, as is in TPAL.
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3.1.3. Remark. Language of TAPAL Some remarks are in order concerning the
language of TAPAL. First note that the restriction, θ ∈ Lel, in Definition 3.1.1
makes the truth definition of the generalized operators ♦ and ♦∗ well-defined (as
well as it reflects our notion of PAL-protocols and DEL-generated ETL models).
For suppose all TAPAL-formulas are allowed in sd -protocols. Assume further
that �ϕ ∈ p(w) for some w in a given model. By the truth definition in Defini-
tion 3.1.2, to determine the truth value of �ϕ, we need to know the truth value of
�ϕ. A similar restriction is made in APAL in [5]. Second, given the restriction,
we also needed to defined the public announcement operators to be formed only
from the formulas in Lel. By this, we do not allow formulas such as 〈!♦ψ〉ϕ, which
is allowed in APAL.

3.1.2 Semantic Results

Next we see some basic semantic features of TAPAL in comparison with those in
APAL. First, consider the following properties:

1. |= �ϕ→ ϕ 2. |= �ϕ→ ��ϕ
3. |= �♦ϕ→ ♦�ϕ 4. |= ♦�ϕ→ �♦ϕ

3.1.4. Proposition. Generalized Operators

(A) All of the properties 1-4 hold in APAL.

(B) None of the properties 1-4 holds in TAPAL.

(C) The properties 1-2 hold, but 3 and 4 don’t in TAPAL, when ♦ and � are
replaced with ♦∗ and �∗ respectively.

Proof. The proofs of the properties A1-4 in APAL are in [5]. We only do B3-4
and C3-4. The counterexamples are as follows:

B3 Let M, w |= p. Define p(w) = {!>, !>!>, !>!p, !>!p!>}. The model H =
Forest(M, p) can be represented by Figure 3.1. Here we have H, w!>!p |=
〈!>〉>, but H, w!>!> 6|= 〈!>〉>. Therefore, we have H, w |= �♦〈!>〉>, but
H, w |= �♦¬〈!>〉>, i.e. H, w 6|= ♦�〈!>〉>.

B4 In Figure 3.1,H, w!>!p |= �>, which yieldsH, w!> |= ♦�>, butH, w!>!> 6|=
♦>, which yields H, w!> 6|= �♦>.

C3 Let M, w |= p. Define p(w) = {!>, !>!p, !>!p!>, !>!p!>!p, ...}. Let H be
Forest(M, p). We claim that, for every h in H, there exists σ, σ′ ∈ p(w)
such that H, hσ |= 〈!>〉> and H, hσ′ 6|= 〈!>〉>. To see this, note that every
h ends with either > or p. If h ends with !>, then put σ =!p and σ′ = ∅;
if h ends with !p, then put σ = ∅ and σ′ =!>. This fact implies H, w |=
�♦〈!>〉> and H, w |= �♦¬〈!>〉>. Thus, this model is a counterexample
against 3.
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w!>!p!>

w!>!>

w!>!p

w!>w...

...

Figure 3.1: TAPAL-Model 1

H1

w : p, qn+1

H2

w : p, qn+1

w!qn+1

Figure 3.2: TAPAL-Model 2

C4 The models for B4 similarly works. qed

Now we will see the results concerning expressivity of the operators ♦ and ♦∗.
First the operators ‘implicitly’ denote (sequences of) announcements by quantifi-
cation, we do not have results similar to Proposition 2.2.7 in TPAL. This feature
of the operators adds expressive power to TPAL as in the following result. Let
AOC(ϕ) be the announcement occurrence set of ϕ, the set of public announce-
ments occurring in ϕ. (See Definition 2.2.6.)

3.1.5. Proposition. TAPAL is strictly more expressive than TPAL.

Proof. Consider the formula ♦p. Assume toward contradiction that this formula
is equivalent to some TPAL-formula ψ. Since TPAL-formulas are finite, there
are only a finite number of propositional letters, q1, q2, ..., qn, used in ψ. Let
qn+1 be a propositional letter that is distinct from all q1, q2, ..., qn, and M, an
epistemic model with only a state w at which p, qn+1 are both true. Then define
p1, p2 be p1(w) = ∅ and p2(w) = {!qn+1}. Now consider H1 = Forest(M, p1) and
H2 = Forest(M, p2).

Since (p1(w))AOC(ψ) = (p2(w))AOC(ψ), it follows from Proposition 2.2.7 that
ψ has the same value at H1, w and H2, w. However, clearly H1, w 6|= ♦p and
H2, w |= ♦p. This is a contradiction. qed

On the other hand, since ♦ and ♦∗ are future-looking in the sense that the
truth value of the formulas does not depend on the nodes below a point of evalu-
ation, we can obtain a result similar to Proposition 2.2.5 in TPAL. However, we
cannot place the explicit upper bound for every formula in TAPAL by the depth
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H2 :

H1 :

. . .w!>d(ψ)

w!>d(ψ)

. . .

. . .

w!>

w!>

w

w

Figure 3.3: TAPAL-Model 3

of the formula. This is because the operator ♦∗ quantifies over all finite sequences
of future public announcements.

3.1.6. Observation. LetM be an epistemic model, p a state-dependent protocol
on M. For all w ∈ Dom(M) and σ ∈

⋃
w∈Dom(M) p(w), if ♦∗ does not occur in

ϕ, then
Forest(M, p), wσ |= ϕ iff Forest(Mσ,p, pσ<d(ϕ)), wσ |= ϕ.

where d(ϕ) is the highest number of nested occurrences of operators of the form
〈!θ〉 or ♦. (cf Definition 2.2.4) If ♦∗ occur in ϕ, then

Forest(M, p), wσ |= ϕ iff Forest(Mσ,p, pσ<), wσ |= ϕ.

This feature of ♦∗ yields the following proposition.

3.1.7. Proposition. TAPAL is strictly more expressive than its fragment with-
out ♦∗.

Proof. Consider �∗〈!>〉>. Assume toward contradiction that this formula is
equivalent to some formula without occurrences of ♦∗. Let M be an epistemic
model with only a state w. Let us denote as !>k the sequence of k !>’s. Let
d(ψ) be the highest number of nested occurrences of the operators 〈!θ〉 and ♦ in
ψ. Define p1, p2 be such that p1(w) = {!>i|0 ≤ i ≤ d(ψ)} and p2(w) = {!>i|i ∈
N}. Now consider H1 = Forest(M, p1) and H2 = Forest(M, p2). The models
are visualized in Figure 3.3. Since H2 = Forest(M, (p2)λ<d(ψ)) with λ the empty
sequence, it follows from Proposition 3.1.6 that ψ has the same value atH1, w and
H2, w. On the other hand, H1, w>d(ψ) 6|= 〈!>〉>, which implies H1, w 6|= �∗〈!>〉>,
whereas clearly H2, w |= �∗〈!>〉>.

qed

Furthermore, the expressive power of ♦ and ♦∗ renders the systems non-
compact, as in the case of APAL (see [5]).

3.1.8. Proposition. TAPAL is not compact. /

Proof. Straightforward by considering the set Γ = {¬〈!θ〉p|θ ∈ Lel} ∪ {♦p} or
the set

⋃∞
i=0 Γi ∪ {♦∗p}, where Γi = {¬〈!θ0〉...〈!θi〉p|θj ∈ Lel (0 ≤ j ≤ i)}. qed
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3.1.3 Axiomatization

Next we axiomatize the logic of TAPAL. Let ♦n and �n be the sequences of
n ♦’s and �’s respectively. When n = 0, ♦n and �n denote ϕ. Also given
σ = σ0 . . . σn−1 ∈ PAL∗, denote the sequences 〈σ0〉 . . . 〈σn−1〉 and [σ0] . . . [σn−1] by
〈σ〉 and [σ] respectively. When n = 0, 〈σ〉ϕ and [σ]ϕ denote ϕ. Finally, we define
the complexity |ϕ| of a TAPAL-formula ϕ by:

• |p| = 0 with p propositional.

• |¬ϕ| = |♦ϕ| = |♦∗ϕ| = |ϕ|+ 1

• |ϕ ∧ ψ| = |〈!ϕ〉ψ| = |ϕ|+ |ψ|+ 1.

3.1.9. Definition. Axiomatization TAPAL The axiomatization TAPAL of TAPAL
extends the axiomatization TPAL by the following axiom schemas and inference
rules:

Axiom Schema

A2 〈!χ〉ϕ→ ♦ϕ for any !χ ∈ PAL

A3 ♦∗ϕ↔ ϕ ∨ ♦♦∗ϕ

Inference Rules

R(�) If ` ϕ → [σ][!>0]ψ, then ` ϕ → [σ]�ψ, where >0 is a tautologous
formula in Lel such that !>0 does not occur in ϕ or [σ]�ψ.

R(�∗) If ` ϕ → [σ]�kψ for every k such that 0 ≤ k ≤ |ϕ| + 1, then ` ϕ →
[!σ]�∗ψ.

Some remarks are in order about the axiomatization. First, A2 expresses the
fact that ♦ generalizes public announcement operators 〈!θ〉. Second, A3 plays
the role of Fixed Point Axiom as in PDL (See e.g. [10]), as can be seen by their
schematic similarity.

Third, as we will discuss below (Corollary 3.6.7. See also Appendix 3.6.2),
R(�) is in fact equivalent to the following sound rule, which is a modification of
the rule in the system APAL in [5]:

R′(�) If ` ϕ → [σ][!p]ψ where p is in At such that !p does not occur in ϕ or
[σ]�ψ, then ` ϕ→ [σ]�ψ.

This form of the rule clarifies what the rule R(�) is for. Observe the similarity
between R′(�) and the first-order rule:

FOQ If ` ϕ→ ψ with no occurrence of x in ϕ, then ` ϕ→ ∀xψ.
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In fact, as we will see below in the completeness proof of TAPAL, the use of
R(�) is very similar to the use of this first-order rule in the completeness proof
of first-order logic. Nonetheless, we chose R(�) instead of R′(�), since it ex-
tracts from the property of PAL-generated ETL models that they preserve truth
over model normalization (Proposition 2.2.14) and the soundness proof becomes
simpler when we appeal to the property.

Fourth, to see the role of R(�∗), consider the following rule:

R′(�∗) If ` ϕ→ [σ]�nψ for all n ≥ 0, then ` ϕ→ [σ]�∗ψ.

Given the semantic definition, it is straightforward to see that this infinitary rule
is sound. The idea of our rule R(�∗) is that we can extract a bound on n in the
infinitary rule from the complexity |ϕ| of the formula ϕ. (We will in fact use a
more complicated notion of complexity, but it is bounded by the standard notion
of complexity defined above. More on this in Appendix 3.6.3)

3.1.4 Soundness

The soundness of the axiom schemas and the necessitation rules are straightfor-
ward. Thus leaving the details of the proofs to the reader, we go on to sketch
the soundness proofs of R(�) and R(�∗). The complete details are left to Ap-
pendix 3.6.

The Soundness of R(�)

To prove the soundness of R(�), it suffices to show the following:

3.1.10. Theorem. (Soundness of R(�)) If ϕ∧〈σ〉♦ψ is satisfiable in F(PAL),
then ϕ ∧ 〈σ〉〈!>0〉ψ is satisfiable in F(PAL), where >0 is a tautologous formula
in Lel such that !>o does not occur in ϕ or 〈σ〉�ψ. /

The idea of the proof can be sketched as follows. Suppose that ϕ ∧ 〈σ〉♦ψ
is true at some h in H. Then, ϕ is true at h. Also there is some !θ such that
hσ!θ is in H and ψ is true at hσ!θ. This situation is visualized in the left figure
in Figure 3.4. We modify the model H by (i) taking the subtree starting from
hσ!θ (the node labeled with ψ in the figure), (ii) obtaining the subtree with a
new branch !>0 attached to its bottom, (iii) and grafting the new subtree to hσ
and the nodes connected to hσ by indistinguishability relations in which !θ can
happen. Let us denote the model obtained this way by H′. H′ is visualized in
the right figure in Figure3.4. We claim that the formula ϕ ∧ 〈σ〉♦ψ is true at
h in H′. First, since TAPAL-formulas are ‘future-looking’, ψ is true at hσ!>0

by Proposition 3.1.6, since the structure of the new subtree is the same as the
old subtree. Therefore, ♦ψ is true at hσ, which implies that 〈σ〉♦ψ is true at h.
Furthermore, the truth of ϕ is preserved over this transformation, since ϕ cannot
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Figure 3.4: Grafting Subtrees

distinguish the new and old subtrees by the assumption that !>0 does not occur
in ϕ. Therefore, ϕ ∧ 〈σ〉♦ψ is indeed satisfiable.

All this can be made precise and the above claim can be proved to obtain the
soundness of R(�). The readers are invited to verify the details in Appendix 3.6.2.

The above soundness argument can be made when we replace !>0 by !p0 when
p0 is a propositional letter such that !p0 does not occur in ϕ or [σ]�ψ. We just
have to adjust the valuation of p0 appropriately so that it accord with the truth
of θ in the above argument. Therefore, we can prove the soundness of R′(�)
mentioned above in a similar way. The following is an immediate consequence of
these facts.

3.1.11. Corollary. Let all ϕ, ψ ∈ Ltapal and σ ∈ PAL∗. Also let p0,>0 be a
propositional letter and a tautologous formula in Lel such that neither !p0 nor >0

occurs in ϕ or [σ]�ψ.. Then

` ϕ→ [σ][!p0]ψ ⇔ ` ϕ→ [σ][!>0]ψ ⇔ ` ϕ→ [σ]�ϕ

/

Proof. This follows immediate from the soundness of the rule R′(�) and Theo-
rem 3.6.6 via the semantic definition of �. qed

The benefit of using a tautologous formula !>0 is simply to do away with the
process of adjusting valuation functions.
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The Soundness of R(�∗)

As we mentioned above, the role of R(�∗) can be most clearly seen by the infini-
tary version of the rule:

R′(�∗) If ` ϕ→ [σ]�nψ for all n ≥ 0, then ` ϕ→ [σ]�∗ψ.

Given the semantic definition, it is straightforward to see that this infinitary rule
is sound. The question then becomes how we can extract a bound on n in the
infinitary rule from the complexity of the formula ϕ.

Let us start by observing the following fact. (The detailed proof of the fact is
in Appendix 3.6.3.)

3.1.12. Proposition. (Reduction of ♦∗ to ♦) For every ϕ ∈ Ltapal, if ♦∗ϕ is
satisfiable in F(PAL), then ♦nϕ is satisfiable in F(PAL) for n = 0 or n = 1.

This proposition can be shown based on the following idea. If H, h |= ♦∗ϕ,
then there is some σ ∈ PAL∗ such that H, h |= 〈σ〉ϕ. By a similar argument given
for Theorem 3.6.6, we take the subtree above h and form a new subtree with an
appropriate !>0 attached to the bottom node. Then we graft it to h and the
nodes related to h in which σ can happen. Since the structure of the new and
old subtrees are the same, ϕ should be satisfied at h!>0. Consequently ♦ϕ will
be satisfied at h. This way, we can replace the sequence σ with !>0, so to speak.

In the light of this observation, it might be expected that the following claim
holds:

Claim If ϕ ∧ 〈σ〉♦∗ψ is satisfiable in F(PAL), then ϕ ∧ 〈σ〉♦nψ is satisfiable in
F(PAL) for n = 0 or n = 1.

Unfortunately this claim does not hold, due to the semantics of the �-operator.
For simplicity, consider the case where σ is empty. Take �θ∧♦∗ψ. If this formula
is satisfiable, then there will be a sequence τ after which ψ is satisfied. Here even
if we appeal to the grafting method as in Proposition 3.6.8, we may not obtain
the satisfiability of the whole formula �θ ∧ ♦∗ψ. For the new node added to
the model as a result of grafting must be quantified by � in �θ and there is no
guarantee that the node satisfies θ.

What this example illustrates is that, in general, the formula ϕ in ϕ∧ 〈σ〉♦∗ψ
may ‘refer’ to the nodes between the current node h and hτ , where τ is a sequence
of announcements, whose existence is claimed by ♦∗ in the formula. When this
‘reference’ is made by �, we cannot safely graft as we did for Proposition 3.6.8.

However how ‘high up’ in the tree ϕ can ‘refer’ can be read off from the
complexity of ϕ. In particular, what is problematic is the occurrences of � in ϕ
and we need to know the highest number of nested occurrences of � in ϕ.3 Once

3This is measured in a suitable form of the formula. The basic idea is simply to get nega-
tion signs pushed in front of atomic formulas and then count the nested occurrences. See
Appendix 3.6.3.
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we know such a number for ϕ, we can safely graft above the height that ϕ can
refer to, as we did for Proposition 3.6.8. This way, we can put the bound on n in
the infinitary rule based on the complexity of ϕ in ϕ ∧ 〈σ〉♦∗ψ to obtain R(�).

All this can be made precise, but we will leave the complete details to Ap-
pendix 3.6.3. Here we state the theorem that we prove for the soundness of R(�∗).
Let ibi(ϕ) be the critical number about the occurrences of � in ϕ.

3.1.13. Theorem. If ϕ ∧ 〈σ〉♦∗ψ is satisfiable in F(PAL), then ϕ ∧ 〈σ〉♦kψ is
satisfiable in F(PAL) for some k such that 0 ≤ k ≤ ibi(ϕ)−̇len(σ) + 1, where
a−̇b = a− b if a− b > 0; a−̇b = 0 otherwise.

From this, we can immediately obtain the soundness of R(�∗).

3.1.14. Corollary. Soundness of R(�∗) R(�∗) is sound with respect to the
class F(PAL).

3.1.5 Completeness

Finally we prove the (weak) completeness of TAPAL. The basic idea of the proof
is the same as the one give for TPAL in Section 2.3.2. However, some extra care
must be taken for TAPAL, when we construct the canonical model. We need to
construct the canonical model from the set of the maximal consistent sets Σ with
the following properties.

3.1.15. Definition. Saturation wrt ♦ A set Σ of formula is saturated with re-
spect to ♦, if, for every sentence of the form 〈σ〉♦ϕ with σ ∈ PAL∗, 〈σ〉♦ϕ ∈ Σ
implies that there is some formula θ such that 〈σ〉〈!θ〉ϕ ∈ Σ.

3.1.16. Definition. Saturation wrt ♦∗ A set Σ of formulas is saturated with
respect to ♦∗, if, for every formula of the form 〈σ〉♦∗ϕ with σ ∈ PAL∗, 〈σ〉♦∗ϕ ∈ Σ
implies that there is some n such that 〈σ〉♦nϕ ∈ Σ.

The motivation for these properties is to make sure that there are formulas
that “witness” ♦ and ♦∗ in every formula in a given maximally consistent set.
Here the analogy mentioned in the above remark (Section 3.1.9) between R(�)
and the first-order rule comes back again. In the proof below, when we construct
a maximal consistent set from a consistent formula, we add witnessing formulas
for the formulas of the above form. The consistency of the resulting set with
witnessing formulas will be guaranteed by the rule R(�), and this is very similar
to the way that the first-order rule in question (or its equivalent) is used in the
completeness proof of first-order logic. Similarly, R(�∗) gives a witness for ♦∗ϕ
by finding an appropriate n for ♦nϕ to be added, consistently, to a set, when we
construct maximally consistent sets. These roles of the two rules are clear in the
proof of the following lemma.
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3.1.17. Lemma. (Lindenbaum Lemma) Every consistent TAPAL-formula ϕ
can be expanded to a maximal consistent set saturated with respect to ♦ and ♦∗.

Proof. Let α0, .α1... be an enumeration of the TAPAL-formulas such that α0 = ϕ.
We construct a sequence Σ0,Σ1, ... of sets as follows:

• Σ0 = ∅

• If Σn ∪ {αn} is inconsistent, then Σn+1 = Σn.

• If Σn ∪ {αn} is consistent and αn is neither of the form 〈σ〉♦ψ nor of the
form 〈σ〉♦∗ψ, then Σn+1 = Σn ∪ {αn}.

• If Σn ∪ {αn} is consistent and αn is of the form 〈σ〉♦ψ, then Σn+1 = Σn ∪
{〈σ〉♦ψ, 〈σ〉〈!>0〉ψ} for a tautologous formula >0 in Lel such that !>0 does
not occur in 〈σ〉♦ψ or any θ ∈ Σn. Such a tautologous formula exists since
Σn is finite and we have a countable number of tautologous formulas in Lel.

• If Σn∪{αn} is consistent and αn is of the form 〈σ〉♦∗ψ, then take k such that
Σn∪{〈σ〉♦∗ψ, 〈σ〉♦kψ} is consistent and put Σn+1 = Σn∪{〈σ〉♦∗ψ, 〈σ〉♦kψ}.

We show by induction that Σn is consistent for n ≥ 1. The base case is given
by the assumption that ϕ is consistent. Assume that Σn is consistent for an ar-
bitrary n. Clearly it suffices to show the following claims:

Claim 1: Σn+1 is consistent, if αn is of the form 〈σ〉♦ψ.

Claim 2: If Σn ∪ {αn} is consistent and αn is of the form 〈σ〉♦∗ψ, there is some
m such that Σn ∪ {αn, 〈σ〉♦mψ} is consistent.

Proof of Claim 1 Suppose Σn+1 is inconsistent. Then, there must be some for-
mulas ψ1, ψ2, ..., ψl ∈ Σm ∪ {〈σ〉♦ψ} such that

` (ψ1 ∧ ... ∧ ψl)→ ¬〈σ〉〈!>0〉ψ.

However, this implies

` (ψ1 ∧ ... ∧ ψl)→ [σ][!>0]¬ψ.

Since >0 is chosen so that >0 does not occur in [σ]�ψ or any θ ∈ Σn, we can
apply R(�) to obtain

` (ψ1 ∧ ... ∧ ψl)→ [σ]�¬ψ
This gives us Σm ` [σ]�¬ψ and Σm ` ¬〈σ〉♦ψ. However this contradicts the
assumption that Σn ∪ {αn} is consistent.
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Proof of Claim 2 : Suppose toward contradiction that there is no such m. Then,
for all m ≥ 0, we have:

`
∧

Σn → ¬〈σ〉♦mψ.

where
∧

Σn is a conjunction of the formulas in Σm−1. This implies that, for all
m,

`
∧

Σn ∪ {αn} → [σ]�m¬ψ

and by R(�∗)

`
∧

Σn ∪ {αn} → [σ]�∗¬ψ.

Therefore, we have Σn ∪ {αn} ` [σ]�∗¬ψ and thus Σn ∪ {αn} ` ¬〈σ〉♦∗ψ. This
contradicts our assumption that Σn ∪ {〈σ〉♦∗ψ} is consistent.

Now take Σ′ =
⋃∞
i=0 Σi. The maximality and saturation with respect to ♦

and ♦∗ is clear by the construction. The consistency is shown in the standard
way by the consistency of Σn for n ≥ 1. qed

Having this lemma, we can construct the canonical model from the set of
maximally consistent sets that are saturated with respect to ♦ and ♦∗ in the
same was as Section 2.3.2. The saturation properties of maximally consistent
sets are needed to prove the truth lemma for the canonical model. Before proving
the truth lemma, we need the following proposition.

3.1.18. Proposition. Let σ ∈ PAL∗ and len(σ) = n. Then,

1. ` 〈σ〉ϕ→ ♦nϕ.

2. ` ♦nϕ→ ♦∗ϕ.

Proof. Straightforward. The proof for the second appeals to the axiom A3. qed

Let Gcan be the canonical model constructed as in Section 2.3.2.

3.1.19. Lemma. (Truth Lemma) For every formula ϕ ∈ Ltapal,

ϕ ∈ λ(h) iff Gcan, h |= ϕ.

Proof.: The proof is by induction on ϕ. We only give the cases for ♦ and ♦∗.
The argument for the other cases are given in the proof of Lemma 2.3.7.

Assume that ϕ is of the form ♦ψ. First assume that ♦ψ ∈ λ(h). Given
the construction of the canonical model in Section 2.3.2, each λ(h) is maximally
consistent set and clearly saturated with respect to ♦ and ♦∗. Therefore, we have
〈!θ〉ψ ∈ λ(h) for some θ. By the construction of Gcan, we have ψ ∈ λ(h!θ). By IH,
we obtain Gcan, h!θ |= ψ. Therefore, we have Gcan, h |= ♦ψ by truth definition.
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For the other direction, assume that Gcan, h |= ♦ψ. By definition, there is
some θ such that h!θ ∈ Gcan and Gcan, h!θ |= ψ. By IH, we have ψ ∈ λ(h!θ),
which, by the construction of Gcan, implies 〈!θ〉ϕ ∈ λ(h). This implies by A2 that
♦ϕ ∈ λ(h).

Next, assume that ♦∗ψ ∈ λ(h). Since λ(h) is a maximally consistent set
saturated with respect to ♦∗, there is some k ≥ 0 such that ♦kψ ∈ λ(h) Now,
since λ(h) is also saturated with respect to ♦, we have 〈!θ1〉 . . . 〈!θk〉ψ ∈ λ(h).
Thus, by the construction of canonical model, we have ψ ∈ λ(h!θ1 . . .!θk), which
implies by IH that Gcan, h!θ1 . . .!θk |= ψ. This gives us Gcan, h |= ♦∗ψ.

Assume that Gcan, h |= ♦∗ψ. By definition, this is equivalent to saying that
there is some σ such that hσ ∈ Gcan and Gcan, hσ |= ψ. By IH, we have ψ ∈ λ(hσ),
which, by the construction of λ, implies 〈σ〉ψ ∈ λ(h). By Proposition 3.1.18, we
have that ♦∗ψ ∈ λ(h). qed

The rest of the argument is similar to Section 2.3.2. Therefore, we obtain:

3.1.20. Theorem. (Completeness) TAPAL is weakly complete with respect
to F(PAL).

3.2 Describing the Past

So far we have considered only ‘future-looking’ operators, 〈ε〉, ♦, and ♦∗. The
semantic definitions of these operators only depend on what is or will be true in
given models and, in this sense, our language did not provide a way to describe
what was the case in the past. This is because we have reinterpreted the language
of DEL with our models in the first place. DEL captures the temporal transition
of informational states by product update and, once models are updated, the
information about the previous models is (at least partially) lost. For this reason,
the language of DEL, admittedly, is limited to the descriptions about what will
happen after informational events happen, but not what was the case in the
past. However, in our framework, DEL-generated ETL models have the forest
structures that encode all successive stages of update by event models. With the
temporal structures, we can naturally think about the operator that states what
was the case prior to a given temporal point. Indeed, languages of ETL often
contain the operators that describe prior temporal points in time-branching tree
structures. These considerations motivate us to extend our DEL-based language
and consider past-operators in our framework. In this section, we will consider
the extension of TPAL with past-operators.

3.2.1 TPAL with Labelled Past Operators

Fix a set of agents A and a countable set of propositional letter At.
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3.2.1. Definition. Language of TPAL+P The language Lptpal of TPAL+P ex-
tends Ltpal with the operators P!θ. The formulas in Lptpal is inductively defined
by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | 〈!θ〉ϕ | P!θϕ

where p ∈ At, i ∈ A and θ ∈ Lel. The dual P̂!θ of the operator P!θ is defined in the
standard way. The other operators are defined as mentioned in Definition 2.1.2.

The intended reading of P!θϕ is “the public announcement !θ has been made,
before which ϕ”. The intended reading of the dual P̂!θϕ is as “Before the public
announcement !θ has been made, ϕ.” However, this reading should be not taken
as implying that !θ has in fact happened. If the announcement !θ did not hap-
pen, we define P̂!θ vacuously true. We call the resulting system Temporal Public
Announcement with the Labelled Past Operators and denote by TDEL+P.

3.2.2. Definition. Truth Given H = (H,∼, V ) ∈ F(PAL) and a history h ∈ H,
the truth of formulas in TPAL+P is inductively defined as follows. We only give
the definitions for P!θ. The other truth definitions are as given in Definition 2.1.5:

H, h |= P!θϕ iff ∃h′ such that h = h′!θ and H, h′ |= ϕ.

Consistency, satisfiability, validity etc. are defined in the standard way as in
Definition 2.1.6.

3.2.2 Semantic Results

Next, we make some simple semantic observations in TPAL+P and prove the nor-
malization theorem for TPAL, as we need it for the axiomatization of TPAL+P.
First the following proposition is straightforward to verify based on the truth
definition in TPAL+P.

3.2.3. Proposition. (Validities) The following validities obtain in TPAL+P.

1. |= 〈!θ〉P!θϕ↔ 〈!θ〉> ∧ ϕ.

2. |= ¬〈!θ′〉P!θ>, where θ′ 6= θ.

3. |= [!θ][i]P!θθ.

Item 3 is contrastive to the invalidity of the formula [!θ][i]θ (After the an-
nouncement of !θ, i knows θ). [!θ][i]θ is invalid in the presence of the formulas
that become false after being publicly announced. The prime example of such a
formula is p ∧ ¬[i]p. Although agents cannot know what has become false, they
can always know that it was true before it is announced. This is what Item 3
says.
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H : . . .w!>k. . .w!>w

Figure 3.5: Expressivity of TPAL+P

Next, let us observe that the past-operator adds expressive power to TPAL.
Denote by !>k the sequence of k !>’s. Given an epistemic modelM and a world
w in M, define p be such thatp(w) = {!>k|0 ≤ i ≤ d(ψ)}. Now consider H =
Forest(M, p), which is visualized in Figure 3.5. Since TPAL does not describe the
past, every formula true at a node in the model is true at another. (Indeed any
subtree of the model is isomorphic to the whole model.) However, in TPAL+P,
we can distinguish each point of the model, say w!>k, by the formula P k

!>>, where
P k

!θ denote k consecutive occurrences of P!θ.

3.2.4. Proposition. (Expressivity) TPAL+P is strictly more expressible than
TPAL.

Finally the normalization result similar to Proposition 2.2.14 can be obtained
for TPAL+P, which we will need for our axiomatization of TPAL+P. Recall
that, given a model H ∈ F(PAL) and a history h in H, H[!>0/!ϕ0, !>1/!ϕ1, . . . ]
and h[!>0/!ϕ0, !>1/!ϕ1, . . . ] were the model and history obtained by replacing all
occurrences of ϕi with >i in H. (See Definition 2.2.10) Also recall that, given
AOC let us extend the notion of announcement occurrence set (Definition 2.2.6)
to TPAL+P by the clause:

• AOC(P!θϕ) = {!θ} ∪ AOC(ϕ)

so that AOC(ϕ) in general yields the set of public announcements occurring in
ϕ.

3.2.5. Proposition. (Normalization) Let H = Forest(M, p) ∈ F(PAL). Let
X be a finite subset of PAL. Furthermore, let !ϕ0, !ϕ1 . . . be an enumeration
of public announcements in PAL\X without repetition, and !>0, !>1, . . . be an
enumeration of tautologous public announcements in PAL\X without repetition.
Then, for every h and a formula ϕ ∈ Lptpal such that AOC(ϕ) ⊆ X,

H, h |= ϕ ⇔ H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h[!>0/!ϕ0, !>1/!ϕ1, . . . ] |= ϕ

Proof. The proof is by induction on ϕ. The cases other than Pε are as in
Proposition 2.2.14. Thus, assume H, h |= P!θψ. Then there must be some h′ such
that h = h′!θ and H, h′ |= ψ. By the IH,

H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h
′[!>0/!ϕ0, !>1/!ϕ1, . . . ] |= ψ.

Since !θ ∈ X,

(h′θ)[!>0/!ϕ0, !>1/!ϕ1, . . . ] = h′[!>0/!ϕ0, !>1/!ϕ1, . . . ]ε.
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Thus,
H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h

′!θ[!>0/!ϕ0, !>1/!ϕ1, . . . ] |= P!θψ.

The other direction is similar. qed

3.2.3 Axiomatization

To present the axiomatization of TDEL+P, we need some definitions.

3.2.6. Definition. Past-Depth Given a formula ϕ, the past-depth pd(ϕ) of the
formula ϕ is defined as follows:

• pd(p) = 0 for p propositional.

• pd(¬ϕ) = d(ϕ)

• pd(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}

• pd([i]ϕ) = d(ϕ)

• pd(〈!θ〉ϕ) = d(ϕ)− 1

• pd(P!θϕ) = max(d(ϕ), 0) + 1

The intuition behind this definition is that if a formula has a past-depth n, we
would have to go n-steps into the past from the current point of the ETL-tree
in order to verify it. Thus, the final clause reflects the intended meaning. Had
the definition instead been pd(P!θϕ) = d(ϕ) + 1, this would not have worked,
P!θ1〈!θ2〉〈!θ3〉p. That definition would mistakenly have set the past-depth as -1
instead of 1.

3.2.7. Definition. Axiomatization of TPAL+P The axiomatization of TPAL+P
extends the axiomatization TPAL (Definition 2.3.1) with the following axiom
schemas and inference rule.
Axioms

P !K P̂!θ(ϕ→ ψ)→ (P̂!θϕ→ P̂!θψ)

P1 〈!θ〉P!θϕ↔ 〈!θ〉> ∧ ϕ

P2 〈!θ〉P!θ′ϕ→ ⊥ if !θ 6=!θ′

Inference Rules

P !N If ` ϕ, then ` P̂!θϕ for !θ ∈ PAL.

R(P ) If ` [!θ1] . . . [!θpd(ϕ)]ϕ for every !θ1, . . . , !θpd(ϕ) such that each !θi is in
AOC(ϕ) or in !T (ϕ), then ` ϕ, where !T (ϕ) is a set of pd(ϕ) tautologous
public announcements not in AOC(ϕ).
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w

w!θ1
!θ1

w!θ2
!θ2 !>0

!θ1!θ2

Figure 3.6: Lifting Histories by !>.

3.2.4 Soundness Proof

P1 and P2 correspond to Item 1 and 2 in Proposition 3.2.3. The rule R(P ) is
equivalent to the following statement.

3.2.8. Lemma. If ϕ is satisfiable in F(PAL), then 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ is satisfiable
in F(PAL) for some !θ1, . . . , !θpd(ϕ) ∈ AOC(ϕ)∪!T (ϕ), where !T (ϕ) is a set of
pd(ϕ) tautologous public announcements not in AOC(ϕ).

The basic idea of the proof will be as follows. Assuming H, h |= ϕ, we first
apply the normalization method based on Proposition 3.2.5. Then, if ϕ is satisfied
in the model at a sufficiently long history (i.e. strictly longer than d(ϕ)), then we
can satisfy 〈!θ1〉 . . . 〈!θd(ϕ)〉ϕ by tracing down the history, using the truth definition
of the future operator. By adjusting the normalization at the beginning, we can
make each !θi of the form specified in R(X).

However, if ϕ is satisfied at a history that is not long enough, then we con-
struct a new model from H by ‘lifting’ the root nodes of the trees in H with the
sequence of tautologous public announcements τ =!>1 . . .!>pd(ϕ). The new model
preserves the structures above the sequence τ , since applying tautologous pub-
lic announcements (uniformly at every world) keeps the structure of the original
model unchanged. In addition, the added sequence τ cannot be ‘referred’ by the
formula ϕ, since each !>i in τ is a public announcement that does not occur in
ϕ.

To illustrate this, consider the evaluation of the formula ϕ = P!θ1¬P!θ2>,
with past-depth 2. On the left model in Figure 3.6, ϕ is satisfied at world w!θ1,
where len(w!θ1) = 2. To obtain a length of 3 (as would be required for the
soundness claim) for the history at which ϕ is satisfied, we lift the model by a
public announcement !>0, which does not occur in ϕ. The model obtained by
this operation is visualized by the right figure in Figure 3.6.

To give the soundness proof based on the above idea, we need to recall some
definitions. Let p be a state-dependent protocol on M. Given σ ∈ PAL∗, we
define a local protocol pσ< on Mσ,p so that, for all vτ ∈ Dom(Mσ,p), pσ<(vτ) =
{ρ | vτρ ∈ p(w) where w ∈ Dom(M)}. Given an ETL model Forest(M, p)
and a sequence σ, the model Forest(Mσ,p, pσ<) can be seen as a submodel of
Forest(M, p) that describes what will happen in Forest(M, p) after the sequence
σ of events have happened. Now we prove Lemma 3.4.3.
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Proof. Let M = (W,∼, V ) be an epistemic model and p, a state-dependent
protocol on M. Put H = Forest(M, p). Assume H, h |= ϕ. Suppose len(h) ≥
pd(ϕ) + 1. Let Σ0 be the set of the last pd(ϕ) elements of the sequence h that
are not in AOC(ϕ). Then apply Proposition 3.2.5 so that the elements in Σ0

are replaced by elements in !T (ϕ). This can be done, since |Σ0| ≤ |!T (ϕ)| by
definition. Denoting by H′ and h′ respectively the obtained normalization of H
and the element in H′ corresponding to h, we have:

sH′, h′ |= ϕ.

Now, since len(h′) ≥ dp(ϕ) + 1 by our assumption, we obtain:

H′, h′len(h′)−dp(ϕ) |= 〈h′len(h′)−dp(ϕ)+1〉 . . . 〈h′len(h′)〉ϕ.

Since each of h′len(h′)−pd(ϕ)+1, . . . , h
′
len(h′) is either in AOC(ϕ) or !T (ϕ) by our con-

struction, we are done in this case.
Next, suppose len(h) < pd(ϕ) + 1. Put k = pd(ϕ) − len(h) + 1. Let !>0 be

an element in !T (ϕ). Also denote by !>k0 the sequence of k !>0’s. Construct a
state-dependent protocol p+ on M so that p+(w) is the set obtained by taking
the closure under finite prefix on {!>k0σ | σ ∈ p(w)}. Then, by the construction,
for all σ (possibly empty):

Forest(M!>k0 ,p+

, p+
!>k0<

), (w!>k0)σ |= ϕ iff Forest(M, p), wσ |= ϕ

where w is in M. We would like to show, for all σ,

Forest(M!>k0 ,p+

, p+
!>k0<

), (w!>k0)σ |= ϕ iff Forest(M, p+), w!>k0σ |= ϕ.

Once this is shown, we can argue as above in the case len(h′) ≥ pd(ϕ)+1. Indeed,
if h = wσ, then len(w!>k0σ) = d(ϕ) + 1.

To show this, we prove the following general claim: for all σ and formulas ψ
such that !>0 does not occur in ψ,

Forest(M!>k0 ,p+

, p+
!>k0<

), (w!>k0)σ |= ψ iff Forest(M, p+), w!>k0σ |= ψ.

The proof is by a straightforward induction on the complexity of ψ. We will
only do the past-modality case. Suppose that ψ is of the form P!θχ. Assume
that σ is empty. By our assumption, !θ 6=!>0. Therefore, the RHS and LHS of
the biconditional are simply false. Next, assume that σ is non-empty. Further
suppose the LHS of the biconditional. Then the last element of σ, σlen(σ), must
be !θ by the truth definition of the past-operator. Thus we have

Forest(M!>k0 ,p+

, p+
!>k0<

), w!>k0σ(len(σ)−1) |= χ.
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By IH, this is equivalent to

Forest(M, p+), w!>k0σ(len(σ)−1) |= χ.

Therefore, we have

Forest(M, p+), w!>k0σ(len(σ)) |= P!θχ.

This completes the proof. qed

3.2.5 Completeness Proof

The basic idea of the completeness proof for TPAL+P is the same as the com-
pleteness proof for TPAL. The canonical model is constructed from the set of
maximally consistent set as in Section 2.3.2. Then we prove the truth lemma
stated as follows:

3.2.9. Lemma. (Truth Lemma) Let Hcan be the canonical model. For every
formula ϕ in TPAL+P and h ∈ Hcan such that len(h) > pd(ϕ),

ϕ ∈ λ(h) iff Hcan, h |= ϕ

Proof. We will only consider the past modality case. The other cases are given
in the same way as the proof of Lemma 2.3.7.) Let h = h′!θ for some len(h) ≥
pd(ϕ) + 1, where !θ ∈ PAL. Let ϕ be of the form P!χψ.

Assume then that P!χψ ∈ λ(h). By the definition of canonical model, 〈!θ〉P!χψ ∈
λ(h′). If !θ 6=!χ, then by P2, ⊥ ∈ λ(h′), which contradicts the consistency of λ(h′).
Thus, assume !θ =!χ. Then, by P1, we have ψ ∈ λ(h′). By the IH, Hcan, h′ |= ψ
(note len(h′) ≥ pd(ψ) + 1). Since h′!θ ∈ Hcan and !θ =!χ, the truth definition
implies that Hcan, h |= P!χψ.

For the other direction, assume that Hcan, h |= P!χψ. By truth definition, we
have !θ =!χ, and also H, h′ |= ψ. By the IH, we have ψ ∈ λ(h′). And by the
construction of the canonical model, we have 〈!θ〉> ∈ λ(h′). Thus, by P1, we
have 〈!θ〉P!χψ ∈ λ(h′), which by construction implies that P!χψ ∈ λ(h). qed

We can also prove the lemma corresponding to Lemma 2.3.8 in order to guar-
antees that the canonical model is in the class F(PAL) of PAL-generated ETL
models. Now, we cannot conclude the completeness immediately from this, since
we are not sure yet that, given a formula of past-depth n, we have a maximal
consistent set that contains ϕ, which is assigned to a history long enough to apply
the truth lemma. That is where we need to appeal to the rule R(P ).

3.2.10. Theorem. TPAL+P(X) is complete with respect to F(PAL).
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Proof. Let ϕ be consistent. Then 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ is consistent for some se-
quence of !θ1, . . . , !θpd(ϕ) as specified in the rule R(P ). For suppose otherwise.
Then for every such !θ1, . . . , !θpd(ϕ), 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ is inconsistent and thus
` [!θ1] . . . [!θpd(ϕ)]¬ϕ. By R(P ), ` ¬ϕ. This contradicts the consistency of ϕ.
Thus 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ is consistent for some !θ1 . . .!θpd(ϕ). Take such a formula
〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ. Since the formula is consistent, by Lindenbaum’s Lemma, we
have a maximally consistent set containing it. Furthermore, note that pd(θ) = 0.
Thus, by the truth lemma, there is some history h of length 1 such that

Hcan, h |= 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ

This gives us the result that Hcan, h!θ1 . . .!θpd(ϕ) |= ϕ. qed

3.3 Announcements about Announcements

Next we will discuss the extension of PAL-generated ETL models. In general,
DEL-generated ETL models are constructed from epistemic models based on
DEL-protocols. DEL-protocols consist of sets of finite sequences of (pointed)
event models and event models as defined in Chapter 1 (Definition 1.2.4) have
preconditions expressed by epistemic formulas. This restriction does not seem
substantial in DEL, since every DEL-formulas are equivalent to epistemic for-
mulas via reduction axioms. However, such a reduction is not available in our
framework and thus the restriction in our context can be an obstacle when we
apply the framework to describe intelligent interaction. Indeed, why can we not
model public announcements, say, about future truths that obtain after public
announcements? Why can preconditions of events depend on future truths? In
this section, we will tackle this problem in the context of TPAL. To lift the as-
sumption, we need to generalize the construction of PAL-generated ETL models.

3.3.1 Higher-Order Public Announcements

Let us start by seeing difficulties in extending our model construction method
beyond epistemic formulas. Suppose we extend the notion of PAL-protocols so
that they can contain formulas with public announcements. For instance, let p
be an sd -PAL protocol on a given epistemic model M in this extended sense.
Assume that the protocol assigned by p at a given world w inM indeed contains
!(〈!p〉〈!q〉>). To determine whether we construct the node w!(〈!p〉〈!q〉>), that is,
whether !(〈!p〉〈!q〉>) is announceable, we need to know whether the formula is
true at w. However, to determine whether the formula is true at w, we need to
know in advance whether p is true at w and whether p allows !p at w. Moreover,
we need to know whether q is true at w!p and whether p allows !q after !p at w (if
the node w!p is generated). Unless these things are known in advance, we cannot
determine whether !(〈!p〉〈!q〉>) is announceable at w. As this example illustrates,
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once we lift the restriction and allow formulas with public announcements in
protocols, we cannot simply generate ETL-trees straight up from the bottom
epistemic model, as we did in the previous chapters.

The main difficulty here can be summarized by the following points. First,
if ϕ contains announcement operators, thus making !ϕ a “higher-order” public
announcement about the “lower-order” public announcements contained in !ϕ,
then we need to know in advance about the announceability of the lower-order
announcements in order to determine the announceability of !ϕ. To determine
whether !〈!p〉> is announceable, we need to know whether !p is announceable in
the first place. Second, !ϕ may ‘refer’ to the announceability of lower-order public
announcements in the future as well as the current announceability of lower-
order public announcements. In our example, to determine whether !〈!p〉〈!q〉> is
announceable currently, we need to know whether !p is currently announceable
and whether !q will be announceable after !p is announced. Therefore, we need
to know in advance the announceability of relevant sequences of announcements
in order to determine the announceability of !ϕ. This means that we need to
know the structure of the tree above the current node at least concerning the
lower-order announcements mentioned in ϕ, whereas we only needed to know
the structure of the ‘current stage’ in the model construction developed in the
previous chapters.

Therefore, we need to generalize the construction of PAL-generated ETL mod-
els to take into account higher order announcements. The key idea is to construct
ETL structures by induction on the orders of announcements occurring in the
announcement sequences. Having an epistemic model M and a protocol p, we
first construct ETL-trees from M by the above construction method, based on
the initial segments of the sequences given by p that consist only of epistemic
formulas. That is, we begin the construction by dealing with only the “first-
order” announcements. Then we add nodes to the resulted trees, based on the
second-order announcements that refer to the first-order announcements. This
second construction process can be carried out, since the truth values of the for-
mulas we need to know to make the second-order announcements, i.e. the ones
of first-order announcements, will have been determined at this point after the
first-order construction process. We then continue this way by constructing nodes
of second-order announcements after nodes for first-order announcements, until
all first- and second-order announcements are taken care of. Then we next goes
on to the third-order announcement process and continue similarly. And so forth.
Below we make this idea more precise.

3.3.2 Generalization of PAL-Generated ETL Models

To extend PAL-generated ETL models, we need to extend the notion of protocols.
We start by specifying our language. Fix a set of agents A and a countable set
of propositional letters At.
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3.3.1. Definition. Language of TPAL+ The language L+
tpal of TPAL+ is the

language of PAL and, thus, the formulas in L+
tpal is inductively defined by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | 〈!ϕ〉ϕ

where p ∈ At and i ∈ A. The other operators are defined as mentioned in
Definition 2.1.2.

Note that we finally drop the restriction. ϕ in !ϕ can be now any PAL-formula
and contain public announcements. Next we redefine the notion of protocols and
relevant notations accordingly.

3.3.2. Definition. PAL-Protocol Extended Let PAL+ be the set i.e. {!ϕ |
ϕ ∈ Ltpal}. A PAL-protocol is a set P ⊆ (PAL+)∗ closed under finite prefix.
We denote the set of PAL-protocols by Ptcl(PAL+). A state-dependent PAL-
protocol (sd -PAL-protocol) p on an epistemic modelM is a function that assigns
a PAL-protocol to each world in M a PAL-protocol. We denote the class of
sd -PAL-protocols in this extended sense by PAL+.

Next, we introduce the notion of orders.

3.3.3. Definition. Order of Formulas The order o(!ϕ) of a public announce-
ment !ϕ ∈ PAL+ is defined inductively as follows:

• o(!p) = 1 with p ∈ At

• o(!(ϕ ∧ ψ)) = max(o(!ϕ), o(!ψ))

• o(!¬ϕ) = o(!ϕ)

• o(![i]ϕ) = o(!ϕ)

• o(!(〈!ϕ〉ψ)) = max(o(!ϕ) + 1, o(!ψ)) /

For example, o(!〈!p〉>) = 2, o(!(〈!q〉〈!〈!p〉>〉>)) = 3 etc. The order of a given pub-
lic announcement indicates the greatest number of nested “!” operators. Given
a sequence σ = ϕ0 . . . ϕn−1 ∈ Σpal, we define the order o(σ) of σ by

o(σ) = (o(!ϕ0), . . . o(!ϕn−1)).

We denote the set of the orders of sequences by O.

3.3.4. Definition. Lexicographic Ordering on Orders We define the ordering
� on the set of orders O lexicographically as follows. For every pair of sequences
in PAL+, σ = σ0 . . . σn−1 and τ = τ0 . . . τm−1, o(σ)� o(τ) if

1. σ ≺ τ (σ is a proper initial segment of τ as defined above) or
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2. There is some i ∈ N such that

• for all j ∈ N, j < i→ o(σj) = o(τj)), and

• o(σi) < o(τi). /

Finally we need some notations.

3.3.5. Definition. Union of Models Let F = {Hk}k∈I be a family of ETL-
models Hk = (Hk,∼k, Vk). The union

⋃
k∈I Hk of ETL-models in F is a triple

(H,∼, V ):

• H =
⋃
k∈I Hk

• ∼ (i) =
⋃
k∈I ∼k (i)

• For all p ∈ At, V (p) =
⋃
k∈I Vk(p). /

Recall that, given a sequence σ, we denote by σ(k) (0 ≤ k ≤ m) the initial segment
of σ of length k and by σk (1 ≤ k ≤ m) the k-th element of σ.

3.3.6. Definition. σ-Generated Models Let M = (W,∼, V ) and p be an epis-
temic model and an sd -PAL protocol on M respectively. For every sequence
σ ∈ PAL∗ and every order x ∈ O, we define the σ-generated model Hσ,p =
(Hσ,p,∼σ,p, V σ,p) and the order-x-fragment model Hp

x = (Hp
x ,∼p

x, V
p
x ) by simulta-

neous induction as follows:

1. Hλ,p =M, Hp
λ =M

2. Hp
o(τ) =

⋃
{Hτ ′,p | o(τ ′)� o(τ)}

3. Hσ(n+1),p = Hp
o(σ(n+1))

∪ {wσ(n+1) | Hp
o(σ(n+1))

, wσ(n) |= σn+1 and σ(n+1) ∈
p(w)}

4. (wτ, vτ ′) ∈ ∼σ(n+1),p (i) iff (w, v) ∈ ∼ (i) and τ = τ ′

5. V σ(n+1),p(p) = {wτ ∈ Hσ(n+1),p | w ∈ V (p)} /

In Item 3 in the above definition guarantees, the precondition of the n+ 1-th
public announcement σn+1 can properly be evaluated, since the construction in
Item 2 guarantees that Hp

o(σ(n+1))
reflects the evaluations of all public announce-

ments of lower-order, which are necessary to evaluate the precondition of σn+1.
Also the precondition is evaluated in Hp

o(σ(n+1))
, which is an ETL model. Formulas

of L+
tpal or Lpal are interpreted as ETL-formulas as in TPAL. Note that the eval-

uation of preconditions in Definition 2.1.3 for the construction of PAL-generated
ETL models were evaluated in epistemic models.
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Figure 3.7: Generalizing PAL-Generated ETL Models

3.3.7. Definition. PAL-Generated ETL Models An ETL-model Forest(M, p)
generated from an epistemic model M = (W,∼, V ) based on a sd -protocol p is
defined by:

Forest(M, p) :=
⋃
w∈W

⋃
σ∈p(w)

Hσ,p

We call a PAL-generated ETL model an ETL model generated this way. We
denote by F(PAL+) the class of PAL-generated ETL models.

3.3.8. Example. Example Let M be an epistemic model consisting of two in-
distinguishable points (for an agent) w, v, in which p is true at both w and v and
q is true only at w. Define a protocol p so that p(w) = {!p!q, !〈!p〉〈!q〉>} and
p(v) = {!p!q, !〈!p〉〈!q〉>}.

The following figures illustrate the construction process. The model on the
left is obtained by calculating the first-order public announcement. The model
on the right is obtained by calculating the second-order public announcements.
The model on the right is the ETL model generated from M by p as specified.

3.3.3 Representation Theorem

The construction of PAL-generated ETL models given above in Definition3.3.6
and 3.3.7 is the generalization of the construction given in Chapter 2 (Defini-
tion 2.1.3 and 2.1.3) in the sense that it applies to a wider class of protocols
beyond the ones consisting only of epistemic formulas. Indeed, by inspecting the
definitions of both constructions, we can easily observe the following.

3.3.9. Observation. For every ETL model, if it is isomorphic to a model in
F(PAL), then it is isomorphic to a model in F(PAL+). I.e. F(PAL) ⊆ F(PAL+).

Now the question becomes whether the inclusion is a proper one. The answer
turns out to be negative. It is straightforward to observe the following.
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3.3.10. Observation. For every ETL model, if it is isomorphic to a model in
F(PAL+), then it satisfies propositional stability, synchronicity, perfect recall, and
uniform no miracles and the following properties:

• for all h, h′, he, h′e ∈ H, if h ∼i h′, then he ∼i h′e (all events are reflexive)

• for all h, h′ ∈ H, if he ∼i h′e′, then e = e′ (no different events are linked).

(For the definitions of the four properties, see also Section 1.5.2.) Recall that
the properties were the properties that characterizes the class of PAL-generated
ETL models, as we saw in Theorem 1.5.10. Thus by the two observations and
the representation theorem, we obtain:

3.3.11. Theorem. For every ETL model, it is isomorphic to a model in F(PAL+)
iff it satisfies the properties specified in Observation 3.3.10. Therefore, we have
F(PAL) = F(PAL+).

This means that our new construction does not produce more ETL models than
the old construction does. Nonetheless, extending the notion of protocols beyond
epistemic formulas has a conceptual advantage. When we apply our systems to
describe realistic situations of intelligent interaction, the possibilities of public
announcements about future truth must frequently be considered. Indeed, our
new construction method will be useful in philosophical applications of our sys-
tems, as we will see in Part II.

3.3.4 Axiomatization

We may also ask whether we can axiomatize the class of PAL-generated ETL
models by the new language L+

tpal. The answer to this question is positive. To
obtain the axiomatization, we only need to modify the axioms and inference
rules in the axiomatization TPAL so that they allow instances of formulas in
TPAL+. Then the completeness proof can be carried out in a way similar to the
completeness proof of TPAL, except for the lemma to make sure that the canonical
model is in the intended class of PAL-generated ETL models, i.e. F(PAL+).

In the completeness proof, the canonical model is constructed from the set
of maximally consistent sets. We read off the temporal structures based on the
information contained in each maximally consistent set. In particular, we con-
struct the set of histories Hn and the function λn that assigns suitable maximally
consistent sets to the constructed histories. by simultaneous induction by

• Hn+1 = {h!θ | h ∈ Hn and 〈!θ〉> ∈ λn(h)}

• For each h = h′!θ ∈ Hn+1, λn+1(h) = {ϕ | 〈!θ〉ϕ ∈ λn(h′)}.
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After proving the truth lemma based on this construction, we need to carry out
the argument to show that the model is in F(PAL). However, the argument in
TPAL (Lemma 2.3.8) crucially depends on the fact that the protocols only contain
epistemic formulas. Therefore, to give an argument for TPAL+, we need to do
away with the assumption and work with our new construction. Some extra care
must be taken for this, but the argument can be given and the extended version of
the axiomatization TPAL can be proved to be complete with respect to F(PAL+).
Denote the extended axiomatization by TPAL+.

3.3.12. Theorem. TPAL+ is sound and (strongly) complete with respect to F(PAL+).

We will leave the details of the proof to Appendix 3.7.

3.4 Discussion: Extensions in TDEL

We have considered various extensions of TPAL in the previous sections. Can
we give similar extensions to TDEL? First we will discuss this question in terms
of the two kinds of language extensions in TDEL: the extensions of TDEL with
the generalized DEL-operator “Some event can happen after which. . . ” and the
labelled past operator “The event ε has happened before which. . . ”. After the
language extensions in TDEL, we will consider how to generalize the construction
of DEL-generated ETL models.

3.4.1 Extending TDEL with Generalized Event Operators

We start with the generalized event operator “Some event can happen after
which. . . ”. By a similar consideration we gave about the generalized public an-
nouncement operators, two kinds of operators are motivated to distinguish single
events and sequences of events. Thus, let us introduce the following operators, ♦
and ♦∗. Fix an e-closed set of pointed event model X and consider TDEL(X).
Then, we define the two operators in TDEL(X) as follows:

H, h |= ♦ϕ iff ∃ε ∈ X : hε is in H and H, hε |= ϕ.

H, h |= ♦∗ϕ iff ∃σ ∈ X∗ : hσ is in H and H, hσ |= ϕ.

The intended reading of ♦ϕ and ♦∗ are respectively “some (single) event can
happen after which. . . ” and “some sequence of event can happen after which”.
The duals, � and �∗, are defined in the standard way and their intended readings
of �ϕ and �∗ϕ are respectively “After any event, ϕ” and “After any sequence of
events, ϕ”. We denote the extension of TDEL(X) with by TADEL(X). (The
name comes from the fact that TPAL extends to TAPAL.)
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Axiomatization

Can we apply the technique that we developed for TAPAL for TADEL(X)? One
natural thing to try is to extend the axiomatization of TDEL(X) with axioms
and inference rules similar to the ones introduced in TAPAL. The special part of
the completeness proof in TAPAL that is to show consistent sets can be expanded
to maximally consistent sets that are saturated with respect to ♦ and ♦∗. The
argument here is carried out in terms of the special rules R(�) and R(�∗).

R(�) If ` ϕ → [σ][!>0]ψ where >0 is a tautologous formula in Lel such that
!>0 does not occur in ϕ or [σ]�ψ, then ` ϕ→ [σ]�ψ.

R(�∗) If ` ϕ → [σ]�kψ for every k such that 0 ≤ k ≤ |ϕ| + 1, then ` ϕ →
[!σ]�∗ψ.

Once the argument is taken care of, the truth lemma can be proved by using the
additional axioms A2-3:

A2 〈!χ〉ϕ→ ♦ϕ for any χ ∈ Lpal

A3 ♦∗ϕ↔ ϕ ∨ ♦♦∗ϕ

The rest of the proof is the same as TPAL.
Now we can reasonably expect that, if similar axioms and inference rules are

available in TDEL(X), then we can give the completeness proof for TADEL(X)
based on the completeness argument for TDEL(X). First, the counterpart of A2
and A3 in TADEL(X) are

E2 〈ε〉ϕ→ ♦ϕ for any ε ∈ X and

E3 ♦∗ϕ↔ ϕ ∨ ♦♦∗ϕ.

Given the truth definition of ♦ and ♦∗, it is straightforward to see that E2 and
E3 are sound in TDEL(X).

Extending R(�)

Next, let us consider the counterpart of R(�). Suppose ϕ ∧ 〈σ〉♦ψ is satisfied
at some history h. Then there is some public announcement !θ such that ψ is
satisfied at hσ!θ. The key idea of the soundness of R(�) was that we can create a
new history starting with hσ!>0 for a tautologous public announcement !>0 that
does not occur in the other part of the formula and make ψ satisfied at hσ!>0

without changing the truth value of other formulas.
To apply this idea to TDEL(X), we need some definitions.

3.4.1. Definition. Event Type Two event models, E = (E,→, pre) and E ′ =
(E ′,→′, pre′), are of the same type, if (E,→) and (E ′,→′) are isomorphic. The
event type t(E) of an event model E is the class of all event models of the same
type as E . Given an event model E , denote the type of E by type(E).
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3.4.2. Definition. Representative An event model E = (E,→, pre) of an event
type t is a representative of t, if there is a tautologous formula ϕ in Lel such that
pre(e) = ϕ for all e ∈ E. Given an event type t and a tautologous formula ϕ, we
denote the representative of t with the tautologous precondition ϕ by r(t, ϕ).

Recall that we identify isomorphic event model (Remark 1.2.11), r(t, ϕ) is consid-
ered to be a unique event model. Given that there are countably many tautologous
epistemic formulas, there are countably many r(t, ϕ) for a given t.

In TDEL(X), there might be other types of event models than public an-
nouncements. Thus, to ‘witness’ the satisfiable formula ♦ψ, we need to choose a
right type of event models. Suppose that ϕ ∧ 〈σ〉♦ϕ is satisfied in TDEL(X) at
a history h in some model. Then there is a pointed event model ε = (E , e) ∈ X
such that ψ is true at hσε. To proceed as in the soundness proof of R(�), we
need to take a representative of t, and replace ε with (r(type(εL), χ), eR) for some
appropriate tautologous formula χ. Therefore, we can expect that, if ϕ ∧ 〈σ〉♦ψ
is satisfiable, then ϕ∧ 〈σ〉〈(r(t, χ), e)〉ψ is satisfiable where r(t, χ) does not occur
in ϕ ∧ 〈σ〉♦ψ.

Based on this idea, the counterpart of R(�) in TADEL(X) can be expected
to be as follows. Let χ be a tautologous epistemic formula that does not occur in
ϕ→ [σ]�ψ or the precondition of events occurring in it.

RX(�) If ` ϕ→ [σ][r(type(εL), χ), εR]ψ for every ε ∈ X, then ` ϕ→ [σ]�ψ.

Clearly, we need some restrictions on the set X of pointed event models in
TADEL(X). First, RX(�) is an infinitary rule if X consists of infinitely many
event models. X must consists of a finite number of event types to obtain finite
axiomatization for TADEL(X). Second, appropriate representative event mod-
elsA should be in X. Otherwise, we cannot take r(type(εL), χ) within TDEL(X).

One natural restriction derived from these considerations is that X is a union
of finitely many event types. To state the restriction more precisely, let t be an
event type. Then let Et be the set of pointed event models (E , e) where E ∈ t.
Then X should be of the form

⋃n
i=1 Eti for some natural number n.

Extending R(�∗)

Finally, what about R(�∗)? As in TAPAL, given the truth definition of ♦∗,
it is straightforward to see the following infinitary version of R(�) is sound in
TADEL(X):

R′(�∗) If ` ϕ→ [σ]�nψ for all n ≥ 0, then ` ϕ→ [σ]�∗ψ.

Now the question is whether we can put a finite bound on n to make the rule
finitary.

Recall the argument for the soundness of R(�∗) in TAPAL in Section 3.1.4.
The key idea was to ‘replace’ a sequence of public announcements with a single
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tautologous public announcement. If ♦ϕ is satisfied at a history h, then there is
a sequence σ that ϕ is satisfied at hσ. σ here can be replace with a tautologous
public announcement !>0 to satisfy h!>0.

This argument can be carried out in TAPAL, since public announcements are
a kind of event models that correspond to model relativizations. A sequence of
model relativizations amounts to a model relativization. Thus the model transfor-
mation that σ induces can be imitated by a single announcement !>0 by adjusting
PAL-protocols. However, in TADEL(X), we have different event types. To carry
out the soundness argument in TADEL(X), we need to guarantee that we can
always find an event model of a right event type to imitate the sequence of event
models.

One way to guarantee this is to restrict the set of pointed event models X
in TDEL(X) to be closed under compositions. That is, if two event models,
E1, E2, are in X then E1 × E2 must be in X. However this restriction does not
seem to square well with the restrictions that were suggested for R(�), as a
brief consideration suggests that the closure under composition can easily lead
to infinity of event types except for some special cases (the event type of public
announcement is closed under composition, etc.). Thus, we have a dilemma to
obtain the axiomatization of TADEL(X) by extending TAPAL: on the one hand,
we would like to have finitely many event types to make RX(�)) a finitary rule;
on the other, to make R′(�∗) finitary, we need to have a set of event types closed
under composition. It is an open question whether there are natural conditions
on X to carry out the completeness argument in TADEL(X) as in TAPAL. We
leave this question for future research.

3.4.2 Extending TDEL with Labelled Past Operators

Next we consider the labelled past operator. Fix an e-closed set of pointed event
model X and consider TDEL(X). Then, given a pointed event model ε ∈ X, we
can define the labelled-past operator Pε as follows:

H, h |= Pεϕ iff ∃ε ∈ X∃h′ : h = h′ε and H, h′ |= ϕ.

The intended reading of Pεϕ is respectively “The event ε has happened before
which. . . ”. The dual P̂ε is defined in the standard way and the intended reading
of P̂εϕ is “Before the event ε, ϕ.”4 We denote the extension of TDEL(X)+P.

Axiomatization

Can we extend TPAL+P to TDEL(X)+P? The special part of the completeness
proof in TPAL+P was to guarantee that, if ϕ is consistent, then there is some

4This reading should be not taken as implying that ε has in fact happened. If the event ε
did not happen, we define P̂ε vacuously true. See also Section 3.2.1.
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sequence !θ1, . . . , !θpd(ϕ) such that 〈!θ1〉 . . . 〈!θpd(ϕ)〉ϕ is consistent. The argument
was carried out by the following rule.

R(P ) If ` [!θ1] . . . [!θpd(ϕ)]ϕ for every !θ1, . . . , !θpd(ϕ) such that each !θi is in
AOC(ϕ) or in !T (ϕ), then ` ϕ, where !T (ϕ) is a set of pd(ϕ) tautologous
public announcements not in AOC(ϕ).

The rest of the argument is the same as in TPAL in the presence of the additional
axioms:

P1 〈ε〉Pεϕ↔ 〈ε〉> ∧ ϕ

P2 〈ε〉Pε′ϕ→ ⊥ if ε 6= ε′

The soundness of P1 and P2 in TDEL(X)+P is clear given the truth defi-
nition of Pε. Can we extend R(P )? The answer is positive. Let us first state
the version of R(P ) in TDEL(X)+P. We need some definitions. Let ϕ be a for-
mula in TDEL(X)+P. Define the past-depth pd(ϕ) of ϕ as the highest number
of nested occurrences of past-operators. Also let denote the set of pointed event
models that occur in ϕ by EOC(ϕ). Given a set X of pointed event models,
define type(X) := {type(εL) | ε ∈ X}. (the set of all event types in X.)

Let ϕ be a formula in TDEL(X)+P. Given an event type t, take a set of pd(ϕ)
distinct representatives of t that are not in EOC(ϕ), and let Tt(ϕ) be the set of all
pointed event models of the form (E , e) such that E is one of the representatives.
Then the following is the counterpart of R(P ) in TDEL(X):

RX(P ) If ` [ε1] . . . [εpd(ϕ)]ϕ for every ε1, . . . , εpd(ϕ) such that each εi is in EOC(ϕ)
or in TX(ϕ), then ` ϕ, where TX(ϕ) is the set

⋃
t∈type(X) Tt(ϕ).

This rule generalizes RX(P ) by taking representatives for every types in X.
We defined the set TX(ϕ), since we may have distinct event types in TDEL(X)+P
and we have to take enough (as many as d(ϕ)) representatives for each event
type. Thus, RX(P ) is an infinitary rule, if there are infinitely many types in X.
Also, we need to guarantee that representatives of event types are in X. These
considerations, as in the case of TADEL(X), suggest the restrictions on the set
X that X is a union of finite event types.

Now it suffices to show the following for the soundness of RX(P ).

3.4.3. Lemma. If ϕ is satisfiable, then 〈!ε1〉 . . . 〈!εpd(ϕ)〉ϕ is satisfiable for some
!ε1, . . . , !εpd(ϕ) such that each εi is in EOC(ϕ) or in TX(ϕ).

This can be proved by the argument for the soundness of R(P ). We had two
key ingredients in the argument. First, we needed to normalize the model that
satisfies ϕ. This part of the argument can be taken care of also in TDEL(X), since
the normalization theorem for TDEL can be obtained, as stated in Section 2.6.1
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(Theorem 2.6.1). Based on the normalization theorem, it is straightforward to
obtain the normalization theorem for TDEL(X)+P by the argument in the above
normalization theorem for TPAL+P (Proposition 3.2.5). Second, we needed to
‘lift’ histories to obtain histories that are long enough. This part of the argument
depends on tautologous public announcements. Thus to carry out the same ar-
gument in TDEL(X)+P, we require the set of public announcements PAL to be
included in the set of events X.

In sum, the soundness rule can be proved with the restriction that X is a
finite union of finite event types and X includes the set of pubic announcements.
Based on RX(P ), we can carry out the completeness argument and provide the
axiomatization for TDEL(X)+P. The details of the completeness argument in
TDEL(X)+P are provided in Hoshi and Yap [43].

3.4.3 Events with Future Preconditions

Next, we will discuss the extension of TDEL so that the event operators containing
event operators are allowed. There are two main difficulties in extending TDEL
based on the above methods: the problem of infinite regress and the problem of
order incompatibility.

The Problem of Infinite Regress

The first problem we deal with is the one pertinent to DEL itself. We call the
problem the problem of infinite regress. It arises when we allow arbitrary DEL-
formulas to be preconditions of events. For instance, let E be the event model
consisting of a single point e. Suppose the precondition of e is 〈E , e〉>. Then
problem is that we encounter “infinite regress”, when we try to determine, say,
whether the formula 〈E , e〉> is true at a given point. To determine the truth
value, we have to determine whether the precondition of e is true. However the
precondition is again 〈E , e〉>. This way, we can never determine the truth value
of the formula.

The problem is not limited to this specific example. Indeed, we can generate
infinite regress, which involve multiple event models or even infinitely many event
models. For instance, take two event models, E1 and E2, that contain events, e1

and e2, respectively. Suppose preE1(e1) = 〈e2〉> and preE2(e2) = 〈e1〉>. To
determine whether 〈e1〉> is true at a given point, we need to determine whether
the precondition of e1, i.e. 〈e2〉>, is true. However to determine whether 〈e2〉>
is true, we need to determine the precondition of e2, i.e. 〈e1〉> is true. And so
forth. This way, we can generate various examples of infinite regress and all those
cases must be avoided when we allow event operators in preconditions of events.

The main idea to avoid the problem is to delimit the legal classes of pointed
event models by some appropriate properties on the set of event models X in
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Figure 3.8: Extending TDEL 1

TDEL(X). One natural property suggests itself in view of the problem of infinite
regress. An event e is well-founded in a set of pointed models events X if

• the precondition of e is epistemic formula, or

• all events occurring in e are in X and well-founded.

A set of pointed event models X is well-founded if all events in X are well-founded
in X. It is straightforward to see that the problem of infinite regress does not
arise, if the set of event models X in TDEL(X) is well-founded.

The Problem of Order Incompatibility

The other problem is the problem of order incompatibility. This problem can be
illustrated by the following example. LetM be an epistemic model consisting of
two indistinguishable points (for an agent i) w, v, in which p is true at w but not at
v. By allowing the formulas containing event operators as preconditions, let E be
the event model consisting of indistinguishable points (for an agent i), e1 and e2,
whose preconditions are defined respectively by > and 〈!>〉〈!>〉>. Then, define
a sd -DEL-protocol p so that p(w) = {(E , e1)![i]A} and p(v) = {(E , e2), !>!>}
(where !ϕ denotes the public announcement of ϕ as usual).

If we faithfully adopt the method we adopted for TPAL+, we start construct-
ing an ETL-models from the events with epistemic preconditions. This model
obtained by the process is represented one the left side of Figure 3.4.3. Once this
construction process is done, the next construction process would be to consider
events of higher-order. In our current example, the precondition of e2 contains
public announcements inside and thus e2 is treated at this stage. The model
obtained by this process is represented on the right hand side of Figure 3.4.3.
(Since 〈!>〉〈!>〉>, which is the precondition of e2, is true at v in the model on the
left, we create node v(E , e2) as in the model on the right.) However, note that,
in this model, even though there is the node w(E , e1)![i]p, [i]p is not any more
true at w(E , e1), since it is now indistinguishable from v!>. Thus, this model will
violates the truthfulness axiom 〈E , e〉> → preE(e).

What this problem shows is that the part of DEL-generated ETL models
constructed by treating lower-order events can be incompatible with the part of
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DEL-generated ETL models constructed by treating higher-order events. In the
presence of this problem, the construction given in TPAL+ cannot straightfor-
wardly applied to the general case of TDEL. We will leave the question about
how to give a proper construction in TDEL for future research.

3.5 Conclusion and Discussion

We have considered two kinds of extensions of TPAL in this chapter. One kind was
to extend the language of TPAL with operators describing temporal structures of
our models. We considered the two kinds of temporal operators, generalized pub-
lic announcement operators and labelled past operators, and gave axiomatizations
for both extensions, TADEL(X) and TDEL(X)+P. Then we considered the ex-
tension of PAL-generated ETL models and generalized our construction method
to allow public announcements containing public announcement operators. We
have seen that, although the new construction method provides possible advan-
tage in applications of our framework, it produces the same class of ETL models
as the old construction method does. Finally, we discussed whether and how the
methods to extend TPAL can be applied to TDEL. We saw some problems to be
investigated for future research.

We conclude this chapter by listing further open questions:

Complexity Are TAPAL and TPAL+P decidable? If so, what are their com-
plexities? For instance, APAL, the extension of PAL with the generalized
public announcement operator is proved to be undecidable in [25]. What
about TAPAL in the view of the result?

Common Knowledge Can we incorporate the common knowledge operator to
TAPAL and TPAL+P? In the presence of the undecidability result in [51],
would TAPAL plus common knowledge be axiomatizable?

Combination Can we combine TAPAL and TPAL+P? We consider the gener-
alized public announcement operator and labelled past operator separately.
Can we have both operators together in one system?

Extensions to TDEL Can we extend TDEL in the ways that TPAL was ex-
tended in this chapter? (as discussed in Section 3.4)

3.6 Appendix 1: Soundness of TAPAL

We provide details for the soundness of the axiomatization TAPAL. In particular
we give the soundness proof of the rules R(�) and R(�∗).
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3.6.1 Grafting

First, we need to formalize the model transformation of grafting . Given a sequence
of public announcements σ, let AOC(σ) be the set of public announcement that
occur in σ, i.e.

AOC(σ) = AOC(σ1) ∪ · · · ∪ AOC(σlen(σ)).

Given a protocol p on M, let AOC(p) be the set of public announcements that
occur in p, i.e.

AOC(p) =
⋃

{σ|∃w∈Dom(M):σ∈p(w)}

AOC(σ).

3.6.1. Definition. Grafting The model H[στ 7→σ!>0] obtained by grafting H with
respect to στ 7→ σ!>0 is a triple (H [στ 7→σ!>0],∼[στ 7→σ!>0], V [στ 7→σ!>0]) defined by:

• H [στ 7→σ!>0] := H ∪ {wσ!>0υ | ∃υ ∈ PAL∗ : wστυ ∈ H and w in M}

• (h, h′) ∈∼[στ 7→σ!>0] (i) iff

– (h, h′) ∈∼ (i), or

– h = wσ!>0υ, h′ = vσ!>0υ
′ and (στυ, vστυ′) ∈∼ (i).

• h ∈ V [στ 7→σ!>0](p) iff

– h ∈ V (p)

– h = wσ!>0υ and wστυ ∈ V (p). /

The idea of grafting is as discussed in Section3.1.4. Given a sequence στ , we
“take branches” in the ETL-model above στ in H. Then we concatenate the
“new” tautologous formula !>0 at the bottom of the branches and “graft” the
branches to the corresponding nodes of the form wσ with w in the base epistemic
model.

3.6.2. Observation. Let G = H[στ 7→σ!>0]. Then

G = Forest(M, pG,λ<)

where λ is the empty sequence. (For the definition of pG,λ<, see Definition 2.2.11)
/

Proof. By the similar reasoning given to obtain Observation 2.2.12. qed

3.6.3. Proposition. (Preservation at Grafted Branches) For every ϕ ∈
Ltapal,

H, wστ |= ϕ ⇔ H[στ 7→σ!>0], wσ!>0 |= ϕ

/
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Proof. The proof is straightforward by Proposition 3.1.6 and the construction
of H[στ 7→σ!>0]. qed

The proposition gives a truth-preservation result concerning grafted models,
i.e. the truth of formulas are preserved at the bottom of newly grafted branches.
However, grafting does not preserve truth in general. We must be careful when
transforming models by grafting to preserve the truth of formulas of our interest.
We will see more on this below when we prove the soundness theorems.

3.6.2 Soundness of R(�)

The intuition behind the soundness proof is as described in Section 3.1.4. We
start by observing that the normalization result can be obtained in TAPAL.

3.6.4. Proposition. (Normalization) Let H = Forest(M, p) ∈ F(PAL). Let
X be a finite subset of Lel. Furthermore, let ϕ0, ϕ1 . . . be an enumeration of
the formulas in Lel\X without repetition, and >0,>1, . . . be an enumeration of
tautologous formulas in Lel\X without repetition. Then, for every h and TAPAL-
formula ϕ such that AOC(ϕ) ⊆ X,

H, h |= ϕ ⇔ H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h[!>0/!ϕ0, !>1/!ϕ1, . . . ] |= ϕ

/

Proof. Straightforward induction on ϕ. See also Proposition 2.2.14. qed

Next, the following fact stating that grafting with respect to στ 7→ σ!>0 where
len(τ) = 1 preserves the truth of TAPAL-formulas.

3.6.5. Lemma. Grafting with len(τ) = 1 Let p be an sd-protocol on M = (W,∼
, V ). Let H = Forest(M, p) and wτσ!ψ in H where w ∈ W . For every ϕ, if a
tautologous formula > ∈ PAL∗ is not in AOC(ϕ) ∪ AOC(p), then

H, wτ |= ϕ ⇔ H[τσ!ψ 7→τσ!>0], wτ |= ϕ.

Proof. Straightforward by induction on ϕ. qed

3.6.6. Theorem. (Soundness of R(�)) If ϕ∧ 〈σ〉♦ψ is satisfiable in F(PAL),
then ϕ ∧ 〈σ〉〈!>0〉ψ with !>0 6∈ AOC(ϕ) ∪ AOC(σ) ∪ AOC(ψ) is satisfiable in
F(PAL). /

Proof. Assume that ϕ ∧ 〈σ〉♦ψ is satisfiable. Thus, let Forest(M, p), h |= ϕ ∧
〈σ〉♦ψ. This implies Forest(M, p), h |= ϕ∧ 〈σ〉〈α〉ψ for some α ∈ PAL. Now take

X := AOC(ϕ ∧ 〈σ〉〈α〉ψ).
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Also let Taut be the set of tautologous formulas in Lel. Take Taut′ := Taut\X.
Then enumerate the elements in Taut′ and let >′0,>′1, . . . be the result of the
enumeration. Also take an enumeration of Lpal\X without repetition so that >′0
comes as the first element. We write the enumeration as >′0, ϕ′1, ϕ′2, . . . . Then
apply Proposition 3.6.4 by taking the following parameters:

• X := AOC(ϕ ∧ 〈α〉ψ)

• ϕ0 := >′0, ϕ1 := ϕ′1, . . . , ϕi := >′i, . . .

• >0 := >′1,>1 := >′2, . . . ,>i := >′i+1, . . . .

Then, by this application of Proposition 3.6.4 together with Observation 2.2.12,
we obtain

Forest(M, p′), h′ |= ϕ ∧ 〈σ〉〈α〉ψ

for some p′ such that !>′0 6∈ AOC(p′). Now, since this implies Forest(M, p′), h′σα |=
ψ, we can apply Lemma 3.6.5 (or Proposition 3.6.3) to obtain

Forest(M, p′)[τσα 7→τσ!>′0], h′σ!>′0 |= ψ

Similarly, by applying Lemma 3.6.5 to Forest(M, p′), h′ |= ϕ, we can obtain

Forest(M, p′)[τσα 7→τσ!>′0], h′ |= ϕ.

By Observation 3.6.2, the model Forest(M, p′)[τσα 7→τσ!>0] is in F(PAL) and, there-
fore, ϕ ∧ 〈σ〉〈!>0〉ψ is satisfiable in F(PAL). qed

3.6.7. Corollary. Let all ϕ, ψ ∈ Ltapal and σ ∈ PAL∗. Also let p,>0 be a
propositional letter and a tautologous formula in Lel such that !p, !>0 6∈ AOC(ϕ)∪
AOC(ψ) ∪ AOC(σ). Then

` ϕ→ [σ][!p]ψ ⇔ ` ϕ→ [σ][!>0]ψ ⇔ ` ϕ→ [σ]�ϕ

/

Proof. This follows immediate from the soundness of the rule R′(�) given in
[41] and Theorem 3.6.6 via the semantic definition of �. qed

3.6.3 The Soundness of R(�∗)

Next, we deal with R(�∗). We start by proving the observation discussed in
Section 3.1.4.

3.6.8. Proposition. (Reduction of ♦∗ to ♦) For every ϕ ∈ Ltapal, if ♦∗ϕ is
satisfiable in F(PAL), then ♦nϕ is satisfiable in F(PAL) for n = 0 or n = 1.
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Proof. If H, h |= ♦∗ϕ with h = wτ , then there is some σ ∈ Σ∗pal such that
H, h |= 〈σ〉ϕ. If σ is empty, we are done. Thus, assume that σ is not empty.
By the method used in the proof of Theorem 3.6.6, obtain a tautologous formula
>0, a model H′, and a history h′ in H′ such that >0 does not occur in H′ and
H′, h′ |= ♦∗ϕ. Then by a similar argument given in the proof of Theorem 3.6.6,
we obtain

(H′)[τσ 7→τ !>0], h′!>0 |= ϕ.

This implies the satisfiability of ♦ϕ. qed

3.6.9. Corollary. For every ϕ ∈ Ltapal,

` �ϕ ⇔ ` �∗ϕ.

/

Next we define the notion of initial box iteration to indicate the occurrence of
� that must be taken care of in the soundness proof of R(�).

3.6.10. Observation. Every TAPAL-formula is equivalent to some formula of
TAPAL built up by the following inductive definition:

ϕ ::= > | p | ¬p | ϕ ∧ ϕ | ϕ ∧ ϕ | 〈i〉ϕ | [i]ϕ | 〈!A〉ϕ | [!θ]ϕ | ♦ϕ | �ϕ |♦∗ϕ | �∗ϕ.

where p ∈ At, i ∈ A and θ ∈ Lpal.

Proof. Immediate by the definitions of the dual operators and the standard
boolean equivalences. qed

Thus, we can interchangeably use the inductive definition in Definition 3.1.1 and
the one given here.

3.6.11. Definition. Initial Box Iteration
The initial box iteration ibi(ϕ) of a TAPAL-formula ϕ is defined inductively

as follows:

• ibi(p) = ibi(¬p) = 0 for p propositional

• ibi(ϕ ∧ ψ) = ibi(ϕ ∨ ψ) = max(ibi(ϕ), ibi(ψ))

• ibi(〈i〉ϕ) = ibi([i]ϕ) = ibi(ϕ)

• ibi(〈!A〉ϕ) = ibi([!A]ϕ) = 0

• ibi(♦ϕ) = 0

• ibi(�) = ibi(ϕ) + 1



3.6. Appendix 1: Soundness of TAPAL 115

• ibi(♦∗ϕ) = ibi(�∗ϕ) = ibi(ϕ) /

Now we explain the basic idea of the soundness proof for R(�∗) below. Sup-
pose ϕ ∧ 〈σ〉♦∗ψ is true at wτ in H (w in the base epistemic model M). Then,
ψ is true at wτσυ for some υ. Now we graft the model H with respect to
τσυ0 7→ τσ!>0. This will preserve the truth of ϕ ∧ 〈σ〉♦∗ψ by Lemma 3.6.5.
After this, we again graft at τσ!>0 in the similar way, and repeat grafting that
way as many times as ibi(ϕ), i.e. the number of the �-operators that must be
taken care of. Once we graft ibi(ϕ) times, we finally apply the grafting method
for ♦∗-operator as we did in Proposition 3.6.8. This process of iterated grafting
preserves the truth of ϕ ∧ 〈σ〉♦∗ψ and thus we can put the desired bound k for
the satisfiability of the formula ϕ∧ 〈σ〉♦kψ given the satisfiability of the formula
ϕ ∧ 〈σ〉♦∗ψ. Below we make this idea more precise.

3.6.12. Lemma. (Grafting for �) Let p be an sd-PAL-protocol on M = (W,∼
, V ) and ϕ a TAPAL-formula. Let wσ ∈ p(w). Put H = Forest(H, p) and ibi(ϕ) =
m. Also let τ be a sequence of TAPAL-formula such that len(τ) ≥ m. Finally let
>0 6∈ AOC(ϕ) ∪ AOC(p). Then, for every υ ∈ Σ∗pal and w ∈ W , if wστυ is in
H,

H, wσ |= ϕ ⇒ Hστυ 7→στ !>0 , wσ |= ϕ.

Proof. The proof can be given by straightforward induction on ϕ in terms of the
equivalent formulation of the formulas in TAPAL as in Observation 3.6.10. qed

3.6.13. Theorem. If ϕ ∧ 〈σ〉♦∗ψ is satisfiable in F(PAL), then ϕ ∧ 〈σ〉♦kψ is
satisfiable in F(PAL+) for some k such that 0 ≤ k ≤ ibi(ϕ)−̇len(σ) + 1, where
a−̇b = a− b if a− b > 0; a−̇b = 0 otherwise.

Proof. Let H = Forest(M, p) and wτ in H with w inM. Assume that H, wτ |=
ϕ ∧ 〈σ〉♦∗ψ. By the semantics of ♦∗, there is some υ = υ0 . . . υn−1 such that

H, wτ |= ϕ ∧ 〈σ〉〈υ〉ψ. (3.1)

If ibi(ϕ)−̇len(σ) ≥ len(υ), we are done since we have H, wτ |= ϕ ∧ 〈σ〉♦kψ for
some k ≤ ibi(ϕ)−̇len(σ) + 1.

Thus suppose ibi(ϕ)−̇len(σ) < len(υ). Let a = len(σ) and b = ibi(ϕ). Then
take a sequence of distinct tautologous formulas in Lpal, >0, . . . ,>[(b−a)−1]+1. By
a similar argument given in the proof of Theorem 3.6.6, we can assume that
>0, . . . ,>[(b−a)−1]+1 6∈ AOC(p). Then, define

H′ = (. . . (H[wτσυ0 7→wτσ!>0]) . . . )[wτσ!>0...!>(b−a)−2υ(b−a)−1 7→wτσ!>0...!>(b−a)−2!>(b−a)−1]

By repeatedly applying Lemma 3.6.5, we have

H′, wτ |= ϕ (3.2)
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Also since (3.1) implies

H′, wτσυ0 . . . υ(b−a)−1 |= 〈υ(b−1) . . . υn−1〉ψ,

by repeatedly applying Lemma 3.6.3, we have

H′, wτσ!>0 . . .!>(b−a)−1 |= 〈υ(b−a) . . . υn−1〉ψ.

and thus H′, wτσ!>0 . . .!>(b−a)−1 |= ♦∗ψ. Here consider the model

H′′ := (H′)[wτ !>0...!>(b−a)−1υb−a...υn−1 7→wτ !>0...!>(b−a)−1!>b−a]

By the argument given in the proof of Proposition 3.6.8, this implies

H′′, wτ !>0 . . .!>(b−a)−1!>b−a |= ψ.

This gives us
H′′, wτ |= ♦b−a+1ψ.

In addition, (3.2) together with Lemma 3.6.12 implies

H′′, wτ |= ϕ.

Therefore, we have ϕ ∧ ♦b−a+1 is satisfied in H′′, which is clearly in F(PAL) by
construction (and Observation 2.2.12 and 3.6.2). qed

3.6.14. Corollary. (Soundness of R(�∗)) R(�∗) is sound with respect to the
class F(PAL).

Proof. Immediate from the above theorem and the fact that

ibi(ϕ)−̇len(σ) + 1 ≤ ibi(ϕ) + 1 ≤ |ϕ|+ 1.

qed

3.7 Appendix 2: Completeness of TPAL over

F(PAL+)

The axiomatization TPAL+ of TPAL+ consists of the axiom schemas and inference
rules in TPAL. In TPAL+, the schemas and rules can be instantiated by any
formula in TPAL+. We refer to the schemas and inference rules in TPAL+ by
their names in TPAL. The idea of the completeness proof is the same as in TPAL.
The canonical model is constructed and the truth lemma is proved in a similar
way. A special care must be taken in order to prove that the canonical model in
TPAL+ is in the class F(PAL+). For this, we first need to prove some properties
of PAL-generated models. Given two sequences σ and τ , we denote by στ the
sequence obtained by concatenating σ and τ in order.
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3.7.1. Proposition. Given an epistemic model M and p∈ PAL+ on M =
(W,∼, V ), define Hp

x for every x ∈ N∗ as defined in 3.3.6. Let y, z ∈ O, n ≥ 1.
Further, suppose yn� z. For every h ∈ Hp

yn and every ϕ ∈ L+
tpal with o(ϕ) ≤ n,

Hp
yn, h |= ϕ⇔ Hp

z , h |= ϕ.

Proof. First, observe that, by Definition 3.3.6, h ∈ Hp
yn implies that h ∈ Hp

z (by
the assumption that yn � z). Thus, on the assumption that h ∈ Hp

yn, we have
h ∈ Hp

yn ⇔ h ∈ Hp
z . Denote this fact by (i). We show the claim by induction on

ϕ. The base and boolean cases are clear. Suppose ϕ is of the form [i]ϕ. Assume
LHS. Let (h, h′) ∈∼p

yn (i). Then, by IH, Hp
z , h

′ |= ψ. Here, by the construction in
Definition 3.3.6 and the fact (i), it follows that (h, h′) ∈ ∼p

yn (i)⇔ (h, h′) ∈ ∼p
z (i).

Thus we have Hp
z , h |= [i]ψ. The other way is similar.

Next suppose ϕ is of the form 〈!θ〉ψ. First, LHS is equivalent to Hp
yn, h!θ |= ψ.

Furthermore, since o(!ϕ) ≤ n, we have o(!θ) ≤ n by the definition of o. By this
fact and the construction in Definition 3.3.6, h ∈ Hp

yn implies that h!θ ∈ Hp
yn ⇔

h!θ ∈ Hp
z (by the same reasoning as for the fact (i)). Thus, we can apply IH and

obtain Hp
yn, h!θ |= ψ ⇔ Hp

z , h!θ |= ψ. This gives us the equivalence between LHS
and RHS. qed

LetM0 = (W0,∼0, V0) be the base epistemic model, from which the canonical
ETL-model is constructed. Also, let G = (G,≈, U) be the canonical model.
Define p0 on G so that p0(w) = {σ|wσ ∈ G} for all w ∈ W0. Given M0 and p0,
generate Hσ,p0 and Hp0

x for a sequence σ of public announcements (σ ∈ (PAL+)∗

and x ∈ O, as defined in Definition 3.3.6. For simplicity, we write Hσ and Hx

respectively for Hσ,p0 and Hp0
x . Also let H = (H,∼, V ) = Forest(M0, p0).

3.7.2. Proposition. Let w ∈ W0 and σ ∈ (PAL+)∗. Assume vσ ∈ G ⇔ vσ ∈
Hσ for every v ∈ W0 (Denote by “Assumption 1”). Then, for every ϕ ∈ L+

tpal,

G, wσ |= ϕ⇔ Ho(σ)o(!ϕ), wσ |= ϕ.

Proof. We go by induction on ϕ. The base and boolean cases are straightforward.
Suppose that ϕ is of the form [i]ψ. Assume G, wσ |= [i]ψ. Let w′ be such
that (w,w′) ∈∼0 (i). Then we have (wσ,w′σ) ∈≈ (i) by construction, and
thus G, w′σ |= ψ. Thus, by IH, Ho(σ)o(!ϕ), w

′σ |= ψ. Put Ho(σ)o(!ψ) = H′ =
(H ′,∼′, V ′). Here, note, for every u ∈ W0, uσ ∈ Hσ ⇔ uσ ∈ H ′, by the
construction in Definition 3.3.6. Therefore, Assumption 1 implies that, for any
u, (wσ, uσ) ∈∼′ (i) ⇔ (wσ, uσ) ∈≈ (i). This gives us H′, wσ |= [i]ψ. Here
H′ = Ho(σ)o(!ψ) = Ho(σ)o(![i]ψ), since o(!ψ) = o(![i]ψ) by the definition of o. Thus,
we obtain the LHS-RHS direction. The other direction is similar.

Next, suppose ϕ is of the form 〈!θ〉ψ. First, we claim that Assumption 1 im-
plies vσ!θ ∈ G⇔ vσ!θ ∈ Hσ!θ for all v ∈ W0.
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Proof of the claim: vσ!θ ∈ G implies 〈!θ〉> ∈ λ(wσ), and by A1, θ ∈ λ(wσ). By
truth lemma, we have G, vσ |= θ. Thus, by IH, Ho(σ)o(!θ), vσ |= θ. Since we have
σ!θ ∈ p0(v) by the construction of p0, we have vσ!θ ∈ Hσ!θ. The other direction
is similar.

Now, assume the LHS of the biconditional. It implies that G, wσ!θ |= ψ. By
the claim, we can apply IH and obtain Ho(σ!θ)o(!ψ), wσ!θ |= ψ. Here, note that
o(σ!θ)o(!ψ) = o(σ)o(!θ)o(!ψ) � o(σ)o(!ϕ) since o(!θ), o(!ψ) < o(!〈!θ〉ψ). Thus,
applying Proposition 3.7.1, we obtain Ho(σ)o(!〈!θ〉ψ), wσ!θ |= ψ. Therefore, we have
Ho(σ)o(!〈!θ〉ψ), wσ |= 〈!θ〉ψ, as desired. The RHS-LHS direction is similar. qed

3.7.3. Lemma. (Canonicity) The canonical model G is in F(PAL).

Proof. It suffices to show the following claim:

Claim 1: For every w ∈ W0 and every σ ∈ (PAL+)∗, wσ ∈ G⇔ wσ ∈ Hσ.

For this implies G = H and then, by inspecting the constructions of PAL-
generated ETL-models and the canonical model, we see that G = H.

We go by complete induction on the order of σ. The base case (o(σ) = λ) is
clear by the construction of the canonical model and Definition 3.3.6. Assume
that the claim holds for every τ such that o(τ) � o(σ). Let σ = σ1 . . . σk.
Suppose that wσ1 . . . σk ∈ G. This implies G, wσ1 . . . σk−1 |= σk (by truth lemma)
and σ1 . . . σk ∈ p0(w). Also IH implies that, for every v ∈ W0, wσ1 . . . σk−1 ∈
G ⇔ wσ1 . . . σk−1 ∈ Hσ1...σk−1 . By the construction in Definition 3.3.6, this is
equivalent to:

For every v ∈ W0, wσ1 . . . σk−1 ∈ G⇔ wσ1 . . . σk−1 ∈ Ho(σ1...σk−1).

Thus, we can apply Proposition 3.7.2 and obtain Ho(σ1...σk−1)o(σk), wσ1 . . . σk−1 |=
σk. Given σ1 . . . σk ∈ p0(w), we have wσ1 . . . σk ∈ Hσ1...σk by Definition 3.3.6.
The other way is similar. qed
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Chapter 4

Knowability Paradox

In Part II, we have developed a formal framework that represents both epistemic
dynamics and protocol information. We will now give applications of the for-
mal system to some philosophical problems, in which relevant epistemic concepts
can be seen as involving aspects of epistemic dynamics and protocol information.
By formalizing the epistemic concepts in our system, we will try to throw new
light on the philosophical problems. In giving philosophical applications of our
framework, we hope not only that those examples illustrate that our framework
provides a powerful tool for conceptual analysis, but also that our attempts will
contribute to the interaction between philosophical investigation and formal ap-
proaches in epistemology. Our first application concerns the knowability paradox .

Fitch’s argument, If there is some unknown truth, then there is some unknow-
able truth ([23]), poses a problem for recent verificationist accounts of semantic
anti-realism. In claiming that the meaningfulness of statements consists in the
existence of their verification procedures, these accounts seem to be committed
to the knowability thesis, Every truth is knowable. For if a true statement has
a verification procedure, the procedure will provide a way through which the
truth of the statement can come to be known. However, this thesis implies, via
Fitch’s argument, the counterintuitive claim every truth is known. This problem
has come to be known as Fitch’s paradox . Although various kinds of accounts
have been produced to deal with Fitch’s paradox, each account has been at least
controversial in some relevant respects. The main purpose of this chapter is to
propose an alternative account that avoids the problematic features of the previ-
ous approaches.

We achieve this goal by undertaking two tasks. The first task will be to show
that a verificationist account does not have to be committed to the formulation of
the knowability thesis.1 We will do this by providing a philosophical framework

1An argument against such a commitment has been recently expressed in the verificationist
account by Hand in [30]. Our approach shares the basic insights with his account, but is still
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that does not imply the knowability thesis, while preserving the verificationist
thesis of anti-realist semantic accounts. Consequently, our approach will avoid
the charges against some of the previous accounts that they are not motivated
by verificationism.

Our verificationist framework will introduce two notions concerning verifica-
tion procedures: successful executability and self-retainingness . First, if there is
a verification procedure, an epistemic agent may execute the procedure by per-
forming relevant actions based on it. However, in certain cases, even if a given
statement is true, there are some critical constraints that preclude the successful
executions of its procedure by the epistemic agent. Thus the truth of a given
statement does not imply the successful executability of its verification proce-
dure and does not necessarily provide us with a way through which we can come
to know the truth of the statement. Second, even if the verification procedure
of a given true statement is successfully executable, this still does not guaran-
tee the knowability of the statement. We say a statement is self-retaining if its
verification procedure, whenever it is successfully executable, can be successfully
executed without changing the truth value of the statement. If a statement is not
self-retaining, it is not knowable since it may become false after the successful ex-
ecution of its verification procedure. Therefore, in our framework, the truth of a
given statement does not imply its knowability, because its verification procedure
may not be successfully executable or it may not be self-retaining.

Without implying the knowability thesis, the above philosophical account also
blocks another problem discussed as a variation of Fitch’s paradox. That is, every
truth is knowable implies the necessary falsity of statements such as “there are no
epistemic beings” If it is true then it could never be known due to the absence of
epistemic beings in the situation, but then verificationism requires the necessary
existence of an epistemic being to avoid inconsistency. This puzzle is known as
the idealism problem ([59, 31, 30]). By having the distinction between successful
executability and self-retainingness, our account can identify the different sources
of the problems for Fitch’s paradox and the idealism problem: Fitch’s paradox is
due to the existence of non-self-retaining statements; the idealism problem arises
since the verification procedure of the statement in question is not successfully
executable when the statement is true.

After the presentation of the philosophical account, our second task will be to
formalize the key notions in the framework developed in Part II. In particular, we
will use the system TAPAL developed in Chapter 3. First, we will interpret the
successful execution of a verification procedure of a statement ϕ as an epistemic
processes of eliminating the possibility that ϕ is false. This way we can formalize
successful executions as public announcements. Given this interpretation, the no-
tion of successful executability can be captured by appealing to protocols, since it

distinct from his approach in several respects. We will compare our approach with his account.
See Section 4.2.
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concerns whether the relevant epistemic process, successfully executing verifica-
tion procedures, can happen. Finally the notion of self-retainingness is a notion
that involves an aspect of epistemic dynamics, since it depends on the informa-
tional states after successfully executing verification procedures. The language of
TAPAL is suitable for expressing such a dynamics of agents’ informational states.

There are two things that we can achieve through the formalization of our
philosophical account. First the formalized account will enable us to avoid the
concern raised against some of the previous accounts against the knowability para-
doxes. That is, there is no guarantee that they are free of counterexamples. In our
formalized account, we will be able to state a new formulation of the knowability
thesis as a provable fact in TAPAL: a statement is knowable if it is successfully
executable and self-retaining. Second, we will show that the framework of TAPAL
provides a fine-grained logical analysis concerning alternative formulations of the
knowability thesis. We can show that some formulations apparently similar to
our new knowability thesis are in fact stronger and thus generate more theoretical
burdens on verificationist accounts when the formulations are endorsed.

We proceed as follows. We will start by reviewing Fitch’s paradox and the
idealism problem and give a quick summary of the previously proposed accounts
and their problems (Section 4.1). We will then provide our verificationist frame-
work by clarifying and motivating the notions of successful executability and
self-retainingness (Section 4.2). Next, we will move on to formalize the notions
by interpreting TAPAL and give a new formalization of the knowability thesis
(Section 4.3). Having the formalization, we will give a logical analysis on the
new knowability thesis (Section 4.4) and discuss possible objections against our
approach (Section 4.5).

4.1 The Paradoxes of Knowability and Previous

Solutions

In this section, we will first review Fitch’s paradox and its variation, the idealism
problem. Then we will give a short survey of the previous accounts on Fitch’s
paradox. In particular, we will see the approaches based on logical revisions ,
semantics reformulation, syntactic restriction and dynamic epistemic logic. Since
the purpose of the expositions is to motivate our project, we will only get to the
main ideas of the previous accounts. For a more comprehensive survey of the
literature, see [14].

4.1.1 Paradoxes

Fitch gives an argument to show that if there is some unknown truth, then there
is some unknowable truth ([23]). This argument can be formulated as follows.
Let ♦ϕ read as “it is possible that ϕ” and Kϕ as “ϕ is known (by somebody
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at some time)”. Suppose that ϕ is unknown. Then ϕ ∧ ¬Kϕ must be true.
However, suppose K(ϕ ∧ ¬Kϕ). From the two principles, K(ϕ ∧ ψ) ` Kϕ ∧Kψ
and Kϕ ` ϕ, it follows that Kϕ∧¬Kϕ, which is a contradiction. Thus we obtain
` ¬K(ϕ ∧ ¬Kϕ). Here, by the necessitation rule (if ` ϕ, then ` �ϕ, where � is
the dual of ♦, i.e. (¬♦¬), and thus reads as “it is necessary that...”), it follows
that ` �¬K(ϕ ∧ ¬Kϕ), which by duality (�¬ϕ↔ ¬♦ϕ) implies

` ¬♦K(ϕ ∧ ¬Kϕ). (4.1)

Thus, for all ϕ, if ϕ is an unknown truth, then the fact that ϕ is an unknown
truth is an unknowable truth.

This argument was brought into a wide philosophical discussion by Hart and
McGinn in [34], where they applied it to derive the counterintuitive claim that
every truth is known, from the verificationist knowability thesis every truth is
knowable. The argument is characterized in the following way. First, the knowa-
bility thesis can be schematically represented as

ϕ→ ♦Kϕ (4.2)

By instantiating this with ψ ∧ ¬Kψ, we obtain

(ψ ∧ ¬Kψ)→ ♦K(ψ ∧ ¬Kψ). (4.3)

On the other hand, Fitch’s argument yields the negation of the consequent, i.e.
(4.1) above. Therefore, we have ¬(ψ ∧¬Kψ). This implies ψ → Kψ (in classical
logic). This is counterintuitive since it reads as every truth is known. This
problem has received a wide attention and come to be known as Fitch’s paradox .
How can verificationism survive Fitch’s paradox?

Another problem that has been discussed as a variation of Fitch’s paradox is
the idealism problem ([59, 31, 30]). If the knowability thesis is a consequence of
the general principle, the meaningfulness of statements consists in the existence
of their verification procedures, it must concern not only the actual truth but
also the possible truth. For if the principle is a correct semantic principle, then
whatever statement turns out to be true in a given possible situation, its verifi-
cation procedure would give us a way in which we can come to know its truth.
Assuming that this is the case, consider the statement there is no epistemic being.
If this statement is true in some counterfactual circumstance, it would have to
be knowable by the knowability thesis. However, in such a circumstance, there
would be no epistemic being by assumption, so it is questionable how anything
could possibly be known. Thus, if the statement is possibly true, the statement
would be a counterexample against the knowability thesis. Thus to keep consis-
tency, verificationism must maintain the necessary falsity of the statement and,
as a consequence, the necessary existence of some epistemic beings. How can
verificationists avoid such a commitment to the necessary existence of epistemic
beings?
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4.1.2 Logical Revision

Logical revision approaches attempt to block some of the logical inferences used
in the argument of Fitch’s paradox by revising the base logic. Here are the list of
inferences in the above argument that have been considered for logical revisions:

• Epistemic Logic: Kϕ ` ϕ (factivity) and K(ϕ∧ψ) ` Kϕ∧Kψ (distribution)

• Intuitionistic Logic: the classical step from ¬(ψ ∧ ¬Kψ) to ψ → Kψ, (e.g.
[79, 82, 83])

• Paraconsistent Logic: Reductio to obtain ` ¬K(ϕ ∧ ¬Kϕ). ([8])

Each of these approaches has been criticized. First, for the epistemic logic
revision, it has been shown that the same effect as Fitch’s paradox can be de-
rived without these two rules (e.g. [59, 60, 84]). Second, for the intuitionistic
logic revision, it has been pointed out that intuitionistic logic derives some other
counterintuitive epistemic claims ([54]). Although the implausibility of some of
the consequences has been explained away on the intuitionistic interpretation
([82, 83] etc.), it is unclear whether those intuitionistic reinterpretations are not
ad hoc ([46]). Thus there is no reason to think that all the consequences of the
knowability thesis can be suitably explained. Third, for the paraconsistent logic
revision, it is highly controversial how the adoption of paraconsistent logic can be
fully motivated on verificationist grounds. We can admit that the solution blocks
Fitch’s paradox, but the solution is not be satisfactory if we seek a verificationist
account that avoids the paradox.

4.1.3 Semantic Reformulation

Another approach is to reformulate the knowability thesis based on some semantic
intuition. A prime example of such an account is given by Edgington [20]. She
reformulates the knowability principle by:

ENT ∀s(In(ϕ, s)→ ∃s′In(K(In(ϕ, s)), s′))

where this reads as “For all situation s, if ϕ is true at s, then there is some
situation s′ such that it is known in s′ that ϕ is true in s.” Let ϕ be p∧¬Kp in the
above schema. Then there seems to be nothing paradoxical about In(K(In(p ∧
¬Kp, s)), s′) for a pair of distinct situations, s distinct from s′. Thus the schema
avoids Fitch’s paradox.

However, it has been questioned whether a detailed semantic account along
this line can be developed in a philosophically satisfactory way. First, it is unclear
whether one can always specify, to an adequate degree, a situation s′ distinct from
the situation s ([81, 84]). Second, some questions have been raised about whether
the proposed reformulation works for more complicated scenarios ([80]).
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4.1.4 Syntactic Restriction

As we saw above, the knowability paradox (and its variation) arises from state-
ments of certain forms. In the light of this, some have proposed to syntactically
restrict the class of formulas to which the knowability thesis applies. Tennant
provides an account based on this approach ([59, 60, 62]). Call a statement p
cartesian if Kp 6` ⊥, i.e. Kp is not provably inconsistent. Then the following
restricted form of the knowability principle avoids Fitch’s paradox:

TKT ϕ→ ♦Kϕ where ϕ is cartesian.

For as we saw in Fitch’s argument, K(p ∧ ¬Kp) proves a contradiction and thus
the statement in question p ∧ ¬Kp is not cartesian. Dummett [19] also presents
another way of restricting the knowability principle syntactically.

Accounts of this kind have been objected to on the following respects. First,
the proposed syntactic restrictions seem ad hoc. To be taken as a verificationist
response to Fitch’s paradox, the restrictions must be motivated on some verifi-
cationist basis ([31, 30]). Second, although the accounts may as well avoid the
knowability paradox, they do not exclude the possibility of counterexamples. In-
deed, Williamson presents some problematic cases for TKT in [85]. Although Ten-
nant replies to Williamson’s putative counterexample in [61], the worry about pos-
sible counterexamples still remains unless the syntactic restrictions are grounded
in some principled way.

4.1.5 Dynamic Epistemic Logic

Fitch’s paradox has also been analyzed within the framework of dynamic epis-
temic logic. Van Benthem ([65]) explains how the type of formulas in Fitch’s
paradox fail to satisfy the knowability thesis in the dynamic setting where the
agents’ epistemic states change as they obtain new information. Appealing to
public announcement logic (PAL, [55, 27, 77]), i.e. the extension of epistemic
logic with the operator 〈ϕ〉, where 〈ϕ〉ψ reads as “The announcement that ϕ can
be made after which ψ is true”, he analyzes different versions of the knowabil-
ity principle. Also Balbiani et al ([5]) take the dynamic epistemic logic approach
further and formally study the question what kinds of formulas satisfy the knowa-
bility schema.

The approach that we will take below sits in this dynamic epistemic logic tra-
dition. We hope that the current paper contributes to the relevant literature on
the following points. First, the studies given in the tradition, for better or worse,
have not paid enough attention to the philosophical aspect of Fitch’s paradox:
i.e. the paradox has been raised as an objection against the verificationist ac-
count of semantic anti-realism. In fully considering this aspect, the current paper
adds another serious philosophical application of dynamic epistemic logic to the
relevant literature. Second, our framework as such will be able to deal with the
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idealism problem, which has not been analyzed in the tradition. The framework
of TAPAL allows us to capture the relevant aspects of the problem.

4.2 Verificationism without the Knowability The-

sis

As we have seen, the previous accounts have been considered as problematic or
at least controversial. Thus, in proposing an alternative, we have to take into
account the objections raised against those accounts. For this reason, we will
first emphasize the following features of the account that we will propose below.
Our account:

• preserves the relevant principles of the knowledge operator and the classical
propositional logic.

• does not appeal to a semantic framework that has not been fully developed.
For instance, we do not invoke references to the possible situations in which
the relevant knowledge is realized, etc.

• precludes the possibility of counterexamples. As we will see below, our
formulation of the knowability thesis is provable in the logical framework
that we will adopt.

• avoids the charges of being ad hoc or not motivated by verificationism. We
provide an account that maintains the verificationist semantic thesis and
explain the failure of the knowability thesis systematically.

Our main idea to achieve this goal is to show that verificationism can be held
without any commitment to the knowability thesis formulated by KT. Let us start
by seeing the argument that derives KT from the verificationist assumption:

1. Every meaningful statement has an verification procedure.

2. If a true statement has an verification procedure, then the statement is
knowable.

3. Therefore, every true statement is knowable.

Our task is to deny the second premise, while preserving the first premise, which
is the statement of the verificationist anti-realist semantics.
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4.2.1 Proposal

To do so, we introduce two notions concerning statements and their verification
procedures: successful executability and self-retainingness. We start out by char-
acterizing the notion of verification procedures . According to the verificationist
semantic anti-realism, every meaningful statement has a canonical method of ver-
ifying the statement. For instance, the statement “It is raining outside”, being
meaningful, has its canonical method of verification, e.g. direct observations, etc.
Such a method of verification is called a verification procedure.

We will make some assumptions about this notion in relation to the way the
world is. First, if we go outside and make a direct observation, that will tell us
whether it is raining or not. Generally, we may assume that, given a statement,
its verification procedure will present some noticeable signs to us in one way or
another concerning the result of performing it. In particular, we may assume that
they will present some signs to us about the result at least when the statement is
true, whereas it does not have to when it is not. Second, if it is raining outside, the
direct observation would tell us that it is raining; if not, it would not. Verification
procedures must be at least constrained this way in terms of the way the world
is. Based on this consideration, we assume that the signs that would be revealed
by a verification procedure must be determined by the way the world is when
the procedure is performed, independently of who performs it, whether it is in
fact performed by some epistemic agents, etc. To describe this assumed “sign-
determination” relationship between verification procedures and the world, we
say that the procedure yields the value success, if the corresponding statement
is true. In these terms, we can recapitulate our assumptions as follows: the
signs that verification procedures would present to us are solely determined by the
way the world is and verification procedures yield the value success whenever the
corresponding statements are true.

On the other hand, the notion of executability concerns the relationship be-
tween verification procedures and epistemic agents. Verification procedures must
be such that epistemic agents can take instructions from them in one way or
another and perform actions according to the instructions. If the verification
procedure of “It is raining outside” is to make a direct observation, I go out-
side and observe the situation outside. To describe such an activity made by
epistemic agents following the procedure, we say an agent executes a verification
procedure. When an agent executes a verification procedure and the procedure
yields the value success, we say the agent successfully executes the verification pro-
cedure. Furthermore, we say that a verification procedure is executable if some
agent can execute the procedure. Similarly, a verification procedure is successfully
executable if some agent can successfully execute it. Here, as one may object, we
have only loosely defined the notion of (successful) executability, since we keep
open the reading of the “can” in the definition. However, this is enough for our
purpose, since we only deal with the extreme case of unexecutability, i.e. the
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idealism problem, as we will see in a moment. We may leave further refinement
of this point up to particular verificationist accounts.

Having introduced these notions, we claim that, even if a statement is true
(thus its verification procedure yields the value success), the procedure might
not be successfully executable. Indeed, the peculiarity of the statement “there is
no epistemic being” in the idealism problem presents an extreme case in point.
Suppose, as we should in the idealism problem, that the statement “there is no
epistemic being” is meaningful. In the actual world, the verification procedure of
this statement is executable but not successfully executable, since the statement
is supposedly false. On the other hand, in all possible situations in which this
statement is true, the successful executability of any verification procedures is
logically impossible, since there is no epistemic being in the situation. Therefore,
in general, the truth of a statement does not imply the successful executability
of its verification procedure, let alone the knowability of its truth.

Next, note that the notions introduced so far describe verification procedures
(and the relevant items) independently of the dynamism of agents’ epistemic
states. When we bring this fact into the picture, another kind of knowability fail-
ure is elucidated. When epistemic agents execute verification procedures, they
may obtain new information by performing the relevant actions. In some cases,
the execution of a verification procedure changes the epistemic states of relevant
agents to the extent that it changes the truth value of the corresponding state-
ment. If some true statement becomes false by an execution of its procedure,
then the statement cannot possibly be known simply because it is false. The
prime example of such statements is a statement of the form “p∧¬Kp.” Assume
that this statement is true and its verification procedure is executable. When the
procedure is executed by some agent, the procedure must yield the value success
by our stipulations. However, after the successful execution of the procedure,
the truth of p must now be known (by the agent who successfully executed the
procedure), which makes the whole statement false! Thus statements of the form
“p ∧ ¬Kp”, if true, change their truth value after the successful execution of the
corresponding verification procedures. To capture such a property of statements,
we say a statement is self-retaining if, whenever its procedure is successfully ex-
ecutable, it is successfully executable without changing the truth value of the
statement. Therefore, even if a true statement is not self-retaining, it may not
be knowable even when its verification procedure is successfully executable.

Thus, we have highlighted the two reasons that the knowability of a true
statement fails. First, its verification procedure may not be successfully exe-
cutable. There may be some serious constraints that prevent the procedure from
its successfully execution. Second, even if successful executability is guaranteed,
the statement may still not be knowable, since the statement may not be self-
retaining. Hence, the assumption 2 fails in the above argument for the knowability
thesis. We claim that verificationism need not be committed to the knowability
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thesis.

4.2.2 Hand’s Verificationist Account

Before we move on to formalize our framework, we shall mention the verification-
ist account proposed by Hand in [30], which is similar to our present approach.
Hand argues, verificationism is never committed to the knowability thesis and
thus Fitch’s paradox as well as the idealism problem does not present a serious
challenge raise to verificationism per se. To establish this, he makes the dis-
tinction between verification procedures and the performance of them. The bare
existence of verification procedures does not guarantee that qualified epistemic
agents can perform them and come to know that the corresponding statements
are true. Fitch’s paradox and the idealism problem reveal that there are state-
ments such that the performability of their procedures is precluded by the truth
of the very statements. Such statements are not knowable because of the viola-
tion of performability, but this is not a problem for verificationism, since it does
not claim that every truth is knowable, but instead that every truth is epistemic
in the sense that every true statement has an verification procedure.

On the one hand, the similarity between Hand’s verificationist account and
ours confirms that our account is much in the spirit of verificationist approaches.
His distinction roughly corresponds to our distinction between verification pro-
cedures and successful executability plus self-retainingness. On the other hand,
our present account has several advantages. First, our account will present the
relevant notions in a precise manner and provide an explicit verificationist knowa-
bility thesis in a more concrete form than just saying every truth is epistemic.
This is the task we undertake in the next section. Second and more importantly,
our framework captures an essential distinction between the sources of the prob-
lems for the idealism problem and Fitch’s paradox. In our terms, the source of
the problem in the former is that the relevant statement is never successfully
executable. Thus the problem arises when we equivocate between the truth of a
statement and the successful executability of its verification procedure. Fitch’s
paradox results from the existence of statements that are not self-retaining. It
becomes a problem when we do not consider the dynamic property of agents epis-
temic states. Hand’s account based on performability does not provide a way to
pin down the distinct sources of these problems.

4.3 TAPAL: Verificationist Interpretation

Now to make our account more precise, we will attempt to formalize the philo-
sophical framework proposed above. For this purpose, we will use the system of
TAPAL developed in Chapter 3. Below we will give verificationistic interpretation
to the system and represent the key notions of our philosophical account.
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4.3.1 Interpreting TAPAL

TAPAL extends TPAL with the generalized operator ♦ and ♦∗. For our current
purpose below, we will only use the operator ♦. Also, for our purpose, we will
restrict our attention to the single agent case and denote the epistemic operator
by K. Let us start by giving verificationist interpretations of the operators in
TAPAL. We provide the list of intended readings of the operators.

1. Kϕ: “ϕ is known (by somebody at some time).”

2. 〈!θ〉ϕ: “The verification procedure of θ can be successfully executed, after
which ϕ is true.” We say “The successful execution !θ can be made after
which ϕ is true.” for short.

3. ♦ϕ: “The verification procedure of some statement can be successfully ex-
ecuted, after which ϕ is true.” We say “Some successful execution can be
made after which ϕ is true.” for short.

4. [!θ]ϕ: “After the successful execution of the verification procedure of θ, ϕ
is true.” We say “After the successful execution !θ, ϕ is true.” for short.

5. �ϕ “For every statement, after the successful execution of its verification,
ϕ is true.” We say “After every successful execution, ϕ is true.” for short.

Also we assume that propositional letters refer to atomic propositions about the
world, whose truth values are determined independently of the epistemic state
of agents. Given that our purpose is to analyze the relevant epistemic concepts,
such as knowledge, verification procedures, etc., we take this familiar assumption
to mark off the objects of our analysis from unanalyzable atomic propositions.

Given these readings, let us consider how to express the notions in our philo-
sophical framework. First, for every formula ϕ, the intended reading of ϕ is “ϕ
is true”. In our philosophical framework, this is equivalent to “The verification
procedure of ϕ yields the value success.” Also, “〈!θ〉>” reads as “The verification
procedure of θ can be successfully executed after which > is true.” Since > is al-
ways true, we can interpret the formula as saying “the verification procedure of θ
is successfully executable.” Furthermore, that a given formula ϕ is self-retaining
can be expressed by an implication “The successful executability of ϕ implies
that the successful execution of ϕ can be made after which ϕ is true.” The an-
tecedent is formalized as 〈!ϕ〉>, as we have seen, and the consequent, 〈!ϕ〉ϕ. ϕ is
self-retaining is put as “〈!ϕ〉> ` 〈!ϕ〉ϕ”. Finally, we interpret “ϕ is knowable” as
meaning something like “as we learn things, we could come to know ϕ”. When
we learn some true statements, we learn them by checking in one way or another
whether they are true or not. That is, in our terms, we learn them by successfully
executing their verification procedures. Thus, given that “♦Kϕ” reads as “Some
successful execution can be made after which ϕ is known”, we interpret “♦Kϕ”
as “ϕ is knowable.”
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4.3.2 Intended Semantics

Next we will interpret the intended semantics for TAPAL in verificationist terms.
Recall that the models of TAPAL are PAL-generated ETL models. (Defini-
tion 2.1.3 and 2.1.4) PAL-generated ETL models, constructed from epistemic
models based on PAL-protocols, represent possible temporal evolutions of agents’
informational states over sequences of public announcements permitted by PAL-
protocols. We give the following interpretation to the models of TAPAL for our
current application.

First epistemic models represent agents’ states of knowledge and encode what
agents know. Models of TAPAL thus describe dynamics of agents’ state of knowl-
edge over time. Second, we interpret the successful execution of the verification
procedure of a statement ϕ as an epistemic processes of eliminating the possibil-
ity that ϕ is false. This way we can formalize the successful execution of ϕ by
the public announcement !ϕ. Third, we capture the executability of verification
procedures by PAL-protocols. The notion of executability concerns protocol in-
formation about whether the relevant epistemic process, execution of verification
procedures, can happen. Thus we interpret PAL-protocols as the sequences of
executable (not necessarily successfully) verification procedures at a given state.
Consequently, if the verification procedure of ϕ is executable according to a given
protocol and ϕ is true, then ϕ is successfully executable. Each node in a given
PAL-generated ETL model represents a state after sequences of successful execu-
tions.

To get familiarized with these interpretations, let us review the construction
of PAL-generated ETL models with the verificationist readings. Consider the
model consisting of two states w and v that are indistinguishable for a given
agent. Suppose p, q, r are true at w, while p, r are true and q is false at v.
Given this model, we assign protocols to each state so that the protocol at w is
{!p!q, !r} and the one at v is {!p!q}. The PAL-generated ETL model obtained
from the epistemic model based on the protocol is visualized in Figure 4.1. The
construction of the model with our verificationist interpretation can be illustrated
as follows. First having p true and executable at w, we generate the node w!p,
which is the node to which the !p-arrow from w points. Similarly we construct
v!p above v. In addition, since w and v are indistinguishable and p is successfully
executable at both worlds, they must be indistinguishable too. Thus, we connect
w!p and v!p by the indistinguishability relation. These two states represent the
epistemic state after the successful execution !p. Next, !q is executable at w!p and
v!p, since w and v have the sequence !p!q. This time, !q is successfully executable
only at w!p. (Remember the truth value of propositional letters are persistent
over executions.) Thus, we only generate w!p!q but not v!p!q. As a result, w!p!q
singly constitutes the new epistemic state after the sequence !p!q of successful
executions. Finishing up the sequence !p!q, we finally work on the sequence !r.
We generate w!r since !r is successfully executable, but do not generate the node
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!q

!p!r !p

w v
p, q, r p,¬q, r
{!p!q, !r} {!p!q}

Figure 4.1: TAPAL with Verificationist Interpretations

v!r since !r is not successfully executable at v, though true.
As we saw in Chapter 3, PAL-generated ETL models are in general triples

of the form (H,∼, V ), where H is a set of trees of the above form, ∼ is the
indistinguishability relation on the nodes in H, and V is a propositional valuation
at each node of the trees in H. The semantics of the formulas in TAPAL is as
defined in Definition 3.1.2. Here we only give the definition for the operators, K,
〈ϕ〉 and ♦. Let H = (H,∼, V ) and h be a node in H:

• H, h |= Kϕ iff for all h′ in H, if h ∼ h′, then H, h′ |= ϕ.

• H, h |= 〈!θ〉ϕ iff h!θ ∈ H and H, h!θ |= ϕ.

• H, h |= ♦ϕ iff there is some ψ such that h!θ ∈ H and H, hθ |= ϕ.

Given the interpretation of our models, it is straightforward to see how the def-
inition for the successful execution operator 〈!θ〉 captures the intended meaning
of the operator: at the history h, 〈!θ〉ϕ is true when ψ is true at h!θ, i.e., after
the successful execution theta at h. Similarly for ♦.

4.3.3 Deductive System

Next we will now interpret the axiomatization TAPAL (Definition 3.1.9) and jus-
tify it based on our verificationist interpretation. We will focus on the relevant
part of the axiomatization. Consider the following axioms and rules in TAPAL:
Axioms

R1 〈!θ〉p↔ 〈!θ〉> ∧ p, where p is propositional.

R2 〈!θ〉¬ϕ↔ 〈!θ〉> ∧ ¬〈!θ〉ϕ

R3 〈!θ〉Kϕ↔ 〈!θ〉> ∧K(〈!θ〉> → 〈!θ〉ϕ)

A1 〈!θ〉> → θ



134 Chapter 4. Knowability Paradox

A2 〈!θ〉ϕ→ ♦ϕ

R1 reflects our assumption concerning propositional letters, i.e. they refer to
atomic propositions about the world whose truths are determined independent of
the epistemic state of agents. By this assumption, the truth of atomic propositions
is persistent over any execution of a verification procedure. Thus, the equivalence
states: if p is true, it is true after the successful execution of any verification
procedure, and vice versa. R2 simply follows from the usual meaning of negation,
given the reading of the relevant operators: The successful execution of θ can be
made after which ϕ is false iff the successful execution of θ can be made and it is
not that ϕ becomes true after the successful execution of θ. R3 presents the key
observation in dynamic epistemic logic: if an agent comes to know ψ after the
successful execution of ϕ, then (i) ϕ can be successfully executed and (ii) the agent
knows (before the successful execution) that if ϕ is successfully executed, then ψ
is true after the execution; and vice versa. Accepting this principle amounts to
assuming two well-known principles concerning the relationship between agents
and successful executions: perfect recall and no miracles. In Section 4.5.1, we
will argue that these two principles are safe to assume in our present context of
discussing the knowability paradoxes. A1 captures the idea that the successful
executability of a verification procedure implies that the verification procedure
yields the value success, i.e. the corresponding statement is true. Note that
the implication is only one way, since the truth of a statement does not imply its
successful executability in our verificationist framework. A2 captures the reading
of ♦: if ϕ is the case after the successful execution !θ, then ϕ is the case after
some successful execution.

4.4 Logical Analysis of the Knowability Thesis

Having interpreted TAPAL in verificationistic terms, we are now ready to give a
logical analysis about the verificationist knowability thesis. First we will give a
new formulation of the knowability thesis as a probable fact in the interpreted
system and see how it avoids Fitch’s paradox and the idealism problem. Then,
we will make a fine-grained comparison between the new knowability thesis and
its alternative formulations.

4.4.1 New Knowability Thesis

The following statement is provable in TAPAL: for every formula ϕ, if ϕ is self-
retaining and the verification procedure of ϕ is successfully executable, then ϕ is
knowable, which can be formally put as:

NKT If ` [!ϕ]ϕ, then ` 〈!ϕ〉> → ♦Kϕ.
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First, it must be noted that ` [!ϕ]ϕ is equivalent to 〈ϕ〉> ` 〈ϕ〉ϕ, and thus
states that ϕ is a self-retaining statement.2 With this equivalence, it can be now
straightforwardly seen that NKT formulates the thesis we stated. Now we prove
NKT:

Proof. Assume ` [!ϕ]ϕ. By the above proof, this is equivalent to ` 〈!ϕ〉> →
〈!ϕ〉ϕ. By epistemic logic, ` K(〈!ϕ〉> → 〈!ϕ〉ϕ). Now assume (toward the deriva-
tion of ♦Kϕ) that 〈!ϕ〉>. Then we have 〈!ϕ〉>∧K(〈!ϕ〉> → 〈!ϕ〉ϕ). By R3, We
have 〈!ϕ〉Kϕ. By A2, we have ♦Kϕ. Thus, ` 〈!ϕ〉> → ♦Kϕ. qed

This result underscores the discussion concerning the notions of successful ex-
ecution and self-retainingness in Section 4.2. There we explained the failure of
the knowability thesis Every truth is knowable by pointing out that the verifi-
cation procedure of a true statement may not be successfully executable or the
statement may not be self-retaining. The current result now shows that successful
executability and self-retainingness are sufficient for knowability.

Since this characterizes what our philosophical framework maintains concern-
ing knowability in contrast with the original knowability thesis, we adopt the
above formulation, NKT, as a new verificationist knowability thesis. Since it is a
provable fact in our deductive system, one can find no counterexample, insofar as
one accepts our verificationist framework, or more precisely, the theoretical com-
mitment concerning the relevant notions that is made by accepting the principles
in TAPAL.

4.4.2 Fitch’s Paradox and the Idealism Problem

NKT blocks Fitch’s paradox, simply because [!ϕ]ϕ is not derivable in TAPAL
where ϕ := p ∧ ¬Kp. Such a ϕ vacuously satisfies NKT by falsifying the an-
tecedent. In the presence of Theorem 3.1.20, this can be shown by giving a model
that satisfies its negation ¬[!ϕ]ϕ, equivalently 〈!ϕ〉¬ϕ. An example of such a
model is given as follows. Let M be a model consisting of two indistinguishable
states w, v where p is true at w but not at v. Assign {!ϕ} to both w and v. Then
the corresponding PAL-generated ETL model H := Forest(M, p) is visualized in
Figure 4.2. In the model, we have H, w!ϕ |= p, since M, w |= p. Thus, since
there is no indistinguishable node from w!ϕ except for itself, H, w!ϕ |= Kp. This
implies H, w!ϕ |= ¬(p ∧ ¬Kp). By the semantic definition of 〈!ϕ〉, we obtain
H, w 6|= 〈!ϕ〉¬ϕ.

2This can be shown by:

〈!ϕ〉> ` 〈!ϕ〉ϕ ⇔ ` 〈!ϕ〉> → 〈!ϕ〉ϕ
⇔ ` ¬(〈!ϕ〉> ∧ ¬〈!ϕ〉ϕ) (by propositional logic)
⇔ ` ¬〈!ϕ〉¬ϕ (by R2)
⇔ ` [!ϕ]ϕ (by duality)
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!ϕ

w v
p ¬p

Figure 4.2: Counterexample against ` [!ϕ]ϕ

Also, the idealism problem does not arise for NKT. To see this, let p be “there
is no epistemic being”. Given the meaning of p, we have at least:

p→ ¬♦>.

For this says that if there is no epistemic being, then there will be no successful
executions. Now assume that p is successfully executable, so 〈!p〉>. Then it
implies p by A1. By the above implication, we immediately obtain ¬♦>. On the
other hand, by instantiating A2, we obtain 〈!p〉> → ♦>. With our assumption,
it follows from this that ♦>. Therefore, our assumption leads to contradiction
〈!p〉> ` ⊥. Thus, p satisfies NKT vacuously by falsifying 〈!p〉>. Thus it does not
commit us to the knowability of p.

Moreover, it is worth noting that the formula ¬♦> is consistent in TAPAL.
Given an epistemic modelM, set a state w and assign the empty set to w. Then,
we see ¬♦> must be true at w (since the formula says that there is no successful
execution). This shows that our theoretical commitment in TAPAL does not
preclude the possibility of “there is no epistemic being” being true.

4.4.3 Comparison with Alternatives

We adopted NKT as the new knowability principle for verificationism. To eluci-
date what it says, we will compare it to other plausible knowability statements.
Particularly, we will consider two alternative principles, LKT and WKT. We first
list all three principles:

NKT For all ϕ, If ` [!ϕ]ϕ, then ` 〈!ϕ〉> → ♦Kϕ

LKT For all ϕ, ` 〈!ϕ〉ϕ→ ♦Kϕ.

WKT For all ϕ, if 〈!ϕ〉ϕ 6` ⊥, then ` 〈!ϕ〉> → ♦Kϕ.

These principles look very similar. With the intended interpretation of TAPAL,
we could express these principles in slightly different ways. First, NKT says “For
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every statement, if it is self-retaining, then it is knowable on the condition that its
verification procedure is in fact successfully executable.” Second, LKT says “For
every statement, if the successful execution of its verification procedure can be
made after which it does not change its truth value, then it is knowable.” Third,
WKT says “For every statement, if the assumption that it does not change its
truth value after the successful execution of its verification procedure does not
lead to contradiction, then the statement is knowable on the condition that it
is in fact successfully executable.” However, it seems very unclear how much
difference, if any, is being made explicit by these English translations.

Moreover, as we look into the properties of these principles, we find further
similarities. First, all the formulations are consistent with TAPAL in the sense
that, even if we stipulate one of the principles in TAPAL, the system will remain
consistent. The consistency of NKT is immediate by the fact that it can be
proved in TAPAL and the consistency of LKT and WKT is given by constructing
models that satisfy them. There are many non-trivial models that satisfy these
principles, but, for simplicity, we can simply take empty protocols assigned to
each state of a given epistemic model to satisfy these principle. For such a model
will vacuously satisfy the stipulated conditionals. Second, the three formulations
are also similar in the sense that they all avoid Fitch’s paradox and the idealism
problem. We have already seen how NKT avoids the problems above. To see how
LKT and WKT avoid Fitch’s paradox, note that, with ϕ := p ∧ ¬Kp, we can
prove that 〈ϕ〉ϕ ` ⊥. 3 This makes such a ϕ vacuously satisfy LKT and WKT.
For the idealism problem, set the propositional letter p as is done in the above
argument for NKT. Then we have 〈!p〉> ` ⊥. This again makes p satisfy LKT
and WKT vacuously.

Despite these similarities, LKT and WKT are different from NKT. Let an
epistemic model consist of w, v, u, which are indistinguishable to each other. Fur-
ther let p, q be true at w, ¬p, q, at v, and ¬p,¬q, at u. Assign to all w, v, u
the protocol {!ψ} with ψ := p ∨ ¬Kq. The resulting PAL-generated ETL model
H can be visualized in Figure 4.3. In the model, we have H, w |= 〈!ψ〉ψ but
H, v |= 〈!ψ〉¬ψ. This gives H, w |= 〈!ψ〉¬Kψ. Given that !ψ is the only permis-
sible execution, H, w |= 〈!ψ〉> ∧ ¬♦Kψ. This yields a counterexample to LKT.
Also, since H, w |= 〈!ψ〉ψ, we have 〈!ψ〉ψ 6` ⊥. Thus, this model violates WKT
too.

The above arguments show that LKT and WKT imply NKT but not vice
versa. For the arguments show that the classes of the models that satisfy LKT
and WKT are proper subclasses of the class of models that satisfy NKT, i.e. the
class of all PAL-generated ETL models. Therefore, we can say that LKT and
WKT require stronger theoretical commitments than NKT does. NKT, being

3By A1 and propositional reasoning, 〈!ϕ〉> ` p. This implies propositionally ` 〈!ϕ〉> →
〈!ϕ〉>∧p. By R1, ` 〈!ϕ〉> → 〈!ϕ〉p. Thus by epistemic logic, we have ` K(〈!ϕ〉> → 〈!ϕ〉p). On
the other hand, by standard modal reasoning, 〈!ϕ〉ϕ ` 〈!ϕ〉¬Kp. By R3 with some propositional
reasoning, we obtain 〈!ϕ〉ϕ ` ¬K(〈!ϕ〉> → 〈!ϕ〉p). Thus, 〈!ϕ〉ϕ ` ⊥.
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!ψ !ψ

w v
p, q ¬p, q ¬p,¬q

u

{!ψ}{!ψ} {!ψ}

Figure 4.3: Counterexample to LKT and WKT

a provable fact in TAPAL, does not constrain the models beyond the general
semantic constraints of the TAPAL framework. For instance, it is completely
neutral over the permissible structures of protocols, the structures of epistemic
models, etc. Unless we find some independent philosophical reasons that force
us to restrict ourselves to particular structures of the models, we should allow
as little theoretical commitment as possible concerning the knowability principle
by adopting NKT, and leave more logical possibilities for individual accounts of
verificationist semantic anti-realism. This is the reason that we have adopted
NKT as the verificationist knowability commitment in this paper.

4.5 Objections and Discussions

Having presented our account concerning Fitch’s paradox, we will now discuss
some of the possible objections against our account.

4.5.1 The axiom R3: perfect recall and no miracle

Objection. First, in the deductive system of TAPAL, how can the axiom R3,

〈!ϕ〉Kψ ↔ 〈!ϕ〉> ∧K(〈!ϕ〉> → 〈!ϕ〉ψ)

be justified in the proposed verificationist framework? Unless it is well-motivated,
verificationists will not accept the deductive system even if they accept the pro-
posed framework.

Reply. As mentioned in Section 4.3.3, accepting the axiom R3 requires us to
assume the well-known properties, perfect recall and no miracles. In our context,
these properties concern agents and successful executions. The main idea of
perfect recall is that agents do not forget about epistemic states in the past. The
main idea of no miracles is that each successful execution of a fixed statement
produces the same effects on the agents epistemic state, that is, one successful
execution of a statement does not miraculously produce the information that
other successful executions of the same statement do not produce.
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One of these two properties justifies each direction of the biconditional. Perfect
recall justifies the right-to-left direction. Given that an agent knows what is
claimed in the right side of the equivalence and that the agent does not forget
that piece of knowledge, we can easily see that the agent will know that ψ after the
successful execution of ϕ. No miracle justifies the left-to-right direction. Given
that the successful execution of ϕ always has the same epistemic effect, we cannot
explain the fact that the agent will know ψ after the successful execution of ϕ
unless we accept that the agent has the piece of knowledge claimed in the right
side of the equivalence.

As we can see, these properties idealize agents and successful executions. How-
ever we claim that these idealizations can be assumed for the purpose of our
discussions. The question concerning the knowability thesis, as it is discussed
in the literature, is the following: Is there any essential fact about our epistemic
capacity that, in principle, prevents us from knowing certain true statements? As
we investigate this question, facts about our forgetfulness or contingent epistemic
side effects of particular epistemic events may be, and have been, left out of the
debate. Therefore, we claim that these properties may be assumed and thus that
the axiom R3 can be accepted in our verificationist framework.

4.5.2 In Some Sense Knowable

Objection. Some formulas, say, ¬Kq, seem to be in some sense knowable, but they
do not count as knowable by our formulation, since they are not self-retaining.
However, this seems counterintuitive, since we can easily think of some model in
which ♦K¬Kq is true (See [5]).

Reply. Granted. Our formulation of the knowability thesis does not count, say,
¬Kq as knowable. However, this is no objection against our formulation. The
main reason is that, in such cases, until the meaning of propositions p and q in
the formula are fully specified, our account does not tell whether the formula is
knowable. In our semantic setting, the meaning of p and q will be “specified”, so
to speak, when the class of the relevant epistemic models is fixed. After this, we
can talk about the knowability of the formulas.

On the other hand, our formulation of the knowability thesis is only depen-
dent on the structural properties of the relevant notions. Therefore, it is no
surprise that our structural formulation of the knowability thesis does not imply
the knowability of the formula of the kind in question. Thus, NKT only states the
structural limitations concerning knowledge and may not decide the knowability
of some formula without a suitable specification of the meaning of propositions.
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4.5.3 Logical Omniscience on Knowledge

Objection. The system presented in Section 4.3 assumes that agents are logically
omniscient, since it is an extension of epistemic logic. However, isn’t this assump-
tion problematic?

Reply. Granted. TAPAL, as an extension of epistemic logic, assumes logical
omniscience. However, we do not take this as problematic for the reason men-
tioned in Section 4.5.1. That is, our question concerning the knowability thesis
is whether there is any essential fact about our epistemic capacity that, in prin-
ciple, prevents us from knowing certain true statements. In the light of this, it
does not seem problematic to assume that all logical consequences are knowable
by (some finite extensions of) epistemic capacity like ours, given that we have
an effective procedure for the deductive system.4 Thus, although epistemic logic
may not give the best representation for knowledge in all contexts, it can at least
represent enough for the purpose of analysing the knowability thesis.

4.5.4 Why Do We Have to Buy the Semantics?

Objection. Setting aside the above problems, the epistemic models do not rep-
resent the correct notion of knowledge anyway. Why must we accept all the
theoretical baggage that comes with these epistemic models?

Reply. Granted. We do not claim that these epistemic models correctly represent
every aspect of the notion of knowledge. Rather we claim that the semantic
device we invoke is a heuristic device to capture some relevant aspects of the
notions in question. If modelling in epistemic logic is not palatable, then we can
just forget about the intended semantics and accept the axiomatic system by
convincing ourselves of the validity given the intended readings of the operators
and our pre-theoretic intuitions about the relevant notions. We can still achieve
the goals of this paper in the same manner without depending on this particular
semantic story.

4.6 Conclusion

We have presented a verificationist framework that avoids Fitch’s paradox and
the idealism problem. Given a true statement, we distinguish its truth from
the successful executability of its verification procedure and its self-retainingness.
This distinction in our framework allows verificationism to hold that every state-
ment has its verification procedure without being committed to the knowability

4As we mentioned above, although we presented a system with an infinitary rule as an
axiomatization of TAPAL, this infinitary rule can be replaced with some finitary one. Therefore
our proof system is effective.
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thesis, every truth is knowable. We have also shown that, by appealing to the sys-
tem TAPAL, we can clarify the logical relationship between the relevant notions
and make explicit the presuppositions we use to draw distinctions between them.
Moreover, the formalization in TAPAL allows us to formulate the verificationist
commitment concerning knowability as a theorem in TAPAL: for every statement,
if it is successful, then it is knowable provided that it is successfully executable.
Also we can give a fine-grained comparison between alternative formulations of
the knowability thesis.

We conclude the paper with some general remarks about our framework from
the perspective of dynamic epistemic logic. The core of our framework hinges
on two crucial demarcations. First, we make the notion of verification procedure
independent of epistemic actions for actually executing them. This allows us to
draw the line between verification procedures yielding the value success and their
successful execution. As we diagnose, the idealism problem arises when successful
executions of verification procedures are not distinguished from verification proce-
dures yielding the value success. Second, we abstract away the possible dynamic
changes to agents’ epistemic states from the actions of executing verification pro-
cedures. This allows us to introduce the notion of self-retaining statements. As
we diagnose, Fitch’s paradox arises when these two concepts are not clearly sep-
arated.

Recent developments in dynamic epistemic logic have clarified this second
aspect. In dynamic epistemic logic, the static epistemic states of agents are rep-
resented by epistemic models, and, independently from them, relevant informa-
tional events are represented by event models. The dynamic character of agents’
epistemic states is represented by those model transformations on given epistemic
models that are induced by given event models. In the light of this, the main
contribution of our system is to introduce into dynamic epistemic logic a frame-
work that can represent the first distinction. In our framework, the executability
of verification procedures is represented by protocols and the information in the
protocols is determined independently from truth in a given epistemic model.
This additional structure gives us another dimension along which to describe
epistemic phenomena and thereby disentangle the puzzlement in the knowabil-
ity paradox. Therefore, protocol information highlights the important aspects of
dynamic epistemic events.





Chapter 5

Logical Omniscience and Deductive
Inference

The next philosophical application of our framework concerns what is called the
problem of logical omniscience. Epistemic logic validates the principle if [i]ϕ and
ϕ logically implies ψ, then [i]ψ. When the epistemic operator [i] is interpreted as
“i knows. . . ”, what the principle amounts to saying is that agents know whatever
is logically implied by what they know or simply knowledge is closed under logical
implication. However, this principle does not fit the notion of knowledge at least
in its ordinary sense. It is simply false to say that I, for instance, know every
theorem of Peano Arithmetic, even though I know the axiomatic system. It
seems that the principle can be satisfied only by highly idealized agents, logically
omniscient agents, but does not properly represent knowledge of realistic agents
like us with finite cognitive resources. This problem is known as the problem of
logical omniscience.

One popular view on the problem is based on the distinction between explicit
knowledge and implicit knowledge.1 Explicit knowledge is often characterized as
what an agent concurrently knows and implicit knowledge is whatever follows
from explicit knowledge. On the popular view, what epistemic logic describes
by the operator [i] is implicit knowledge and the principle is not problematic
when interpreted accordingly. What needs to be done in epistemic logic is then
to characterize the notion of explicit knowledge that is free from the problem
of logical omniscience. Based on this perspective, various alternative systems of
epistemic logic have been proposed in the literature.

On the other hand, Robert Stalnaker ([57, 58]) presents a rather negative
view on the prospect of giving a reasonable formalization to the notion of explicit
knowledge. He claims that what distinguishes what we concurrently know from
what we know implicitly is the notion of availability. Knowledge is available if we
have the capacity to make actions depend on it whenever we want to act that way.

1The distinction was first brought up by Levesque [48] on this topic.
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Therefore, to characterize the required notion of availability, we need to consider
the notion of knowledge in relation to actions and motivations. The problem of
logical omniscience consists in the fact that epistemic logic leaves these relevant
factors out of the picture. For this reason, insofar as epistemic logic approaches
the notion of knowledge as it does, it would not reasonably capture what we
concurrently know in contrast to what we implicitly know. Furthermore, the
three notions are so intimately connected and we might simply not be able to
disentangle them to the extent that we can properly formalize them.

In the current chapter, we will challenge this pessimistic view and give a
meaningful formalization of explicit knowledge. We will, as we should, grant
Stalnaker that actions and motivations have an important connection to the no-
tion of knowledge. Also we may further grant him that the formalization of
knowledge that takes the factors into account may be very difficult to give. How-
ever, we will claim that the characterization of explicit knowledge can be given in
an elucidating manner so that it does not depend on the notions of actions and
motivations. The characterization that we propose is: an agent explicitly knows
ϕ if and only if she would not obtain any new information by observing ϕ. With
this characterization, we will be able to formalize the notion of explicit knowledge
by suitably interpreting the system TPAL.

Furthermore, the formalization of explicit knowledge, which does not presup-
pose logical omniscience, makes it meaningful to think about the representation of
deductive inference in the framework of epistemic logic. For realistic agents with-
out logical omniscience, explicit knowledge is not closed under logical implication
and, for this reason, such agents can extend knowledge by making deductive infer-
ences. Thus, we will propose a characterization of logical inferences based on the
notion of explicit knowledge. The characterization that we will propose is that
logical inference is a process of observing what follows from explicit knowledge.
This characterization will imply that by deductively inferring ϕ, an agent obtains
the information that she was able to observe ϕ.

Bringing together the notions of explicit knowledge and deductive inference
in a single formal framework of epistemic logic, we will be able to provide a
ground on which to compare two different perspectives on the epistemic closure
principle. In epistemic logic, the principle, formulated as above, is considered as
a problem, since it presupposes logically omniscient agents, for whom the notion
of deductive inference would be meaningless. In epistemology, the principle has
often been discussed as a principle that guarantees that we can always extend
our knowledge by deduction. By having our formal characterizations, we can
view both of the perspectives together in one system. By using our framework,
we will be able to give a formal analysis about the difference between the two
perspectives.

Finally the purpose of the current chapter can be also motivated by the recent
literature in epistemic logic. As mentioned above, various types of systems have
been developed to block logical omniscience. (See e.g. a survey on the problem
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of logical omniscience in [56].) In addition, representations of deductive infer-
ence is a topic of increasing interests (e.g. [16, 17, 18, 68, 67, 44, 45, 78], etc.)
Our approach takes a perspective from dynamic epistemic logic on those existing
research directions.

We proceed as follows. We will start by reviewing Stalnaker’s view on the
problem of logical omniscience. (Section 5.1) We will then present our character-
ization of explicit knowledge in the way that avoids the problem that Stalnaker
raises. Having the characterization of explicit knowledge, we will also propose a
characterization of deductive inference. (Section 5.2) After this, we will formal-
ize those characterizations by giving suitable interpretation of TPAL. (Section 5.3
and 5.4) By using the formalization of explicit knowledge and deductive inference,
we will discuss perspectives in epistemic logic and in epistemology on epistemic
closure principle. (Section 5.5)

5.1 Stalnaker on the Problem of Logical Omni-

science

In epistemic logic, we have the following principle:

LO If [i]ϕ and ϕ logically implies ψ, then [i]ψ.

This is validated by the two basic principles of epistemic logic, the K-axiom and
the necessitation rule:

K [i]ϕ ∧ [i](ϕ→ ψ)→ [i]ψ)

Nec If ` ϕ, then ` [i]ϕ).

Suppose [i]ϕ. If ϕ logically implies ψ, i.e. ` ϕ→ ψ, then we obtain ` [i](ϕ→ ψ)
by necessitation. By K-axiom, we obtain [i]ψ. The principles are validated in
any standard interpretation of the modal operator [i] with respect to Kripke
models.2 Therefore, LO is validated in any version of epistemic logic based on
the standard interpretation of modal operators. For this reason, the previous
attempts to represent explicit knowledge without validating LO have been made
by revising the standard semantic framework of epistemic models and introducing
a new modality with non-standard interpretations.

However, Stalnaker [57, 58] presents a rather negative view about the project
of characterizing the notion of explicit knowledge in epistemic logic. For the rest
of this section, we will give a reconstruction of his argument.

2If ϕ and ϕ→ ψ are true at each world accessible from a given world w ([i]ϕ and [i](ϕ→ ψ)
are true at w), then ψ must be true at each world accessible from w ([i]ψ is true at w). Also
if ϕ is logically true (` ϕ), then it is true at every world. This implies that [i]ϕ is also true at
every world (` [i]ϕ).
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Reconstruction of Stalnaker’s Argument

According to Stalnaker, the reason that LO is problematic when applied to more
realistic agents like us is based on our intuition that, even when some information
is implicit in our knowledge, we may not have that information available in order
to make decisions about our actions. Suppose my friend presents me a card with
the number 1571 written on it. This number is in fact a prime number. Here,
it seems quite possible, in an ordinary sense of knowledge, that I do not know
whether the presented number is prime, even though my knowledge about prime
numbers—e.g. the concept of prime number, effective procedures to determine
whether a given number is prime, etc.—implies that 1571 is prime. Indeed, I may
not be able to reasonably make up my mind based on the implicit information in
order to answer ‘yes’, at the time that it is asked whether the number is prime.
I have to take some time and must see what my careful calculation will turn out
to be. In this sense, the information that the number is prime is implicit in my
knowledge but not available to me to make my actions depend on it. What this
suggests is that, in general, available knowledge must be characterized in relation
to actions that an agent can make. Stalnaker says:

[T]he problem is that we need to understand knowledge and belief
as capacities and dispositions—states in order to distinguish what we
actually know and believe, in the ordinary sense, from what we know
and believe only implicitly. We can do this only by bringing the uses
to which knowledge and belief are put into the concepts of knowledge
and belief themselves, but, on the face of it, it does not seem that
when we attribute knowledge or belief to someone we are making any
claims about what the agent plans to do with that information. ([57]
p.253)

Based on the consideration, Stalnaker gives the following rough characterization
of available knowledge: an agent know ϕ, if the agent have the capacity to make
her action depend on whether ϕ.

However, this is not the end of the story. Suppose that, in the above scenario,
my friend has the only two cards, one with 1571 (prime) and the other with 1591
(non-prime). Therefore, I can be presented only with either of the two number
cards, 1571 and 1591. Now assume that I have the capacity to make my action
depend on whether the presented number is 1571 and I have the capacity to
make my action depend on whether 1591. (I have a good vision on the card
that is presented and can recognize these numbers.) In that situation, we can
say, I would have the capacity to make my action depend on whether 1571 is
prime. (If the presented number is 1571, it is automatically a prime number; if
the presented number is 1591, it is automatically not a prime number) However,
this situation could happen, even when I do not know 1571 is prime. Therefore
the above characterization does not seem to fully capture the notion of available
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knowledge.
What this example illustrates is that, in general, an agents may happen to

have the capacity to make actions depend on certain information in the way that
the capacity does not represents her internal state as much as we want it to. In
view of this problem, Stalnaker claims that such situations can be marked out by
bringing agents’ motivational states into the picture. What he proposes as the
characterization of available knowledge can be cashed out as: an agent know ϕ,
if the agent have the capacity to make her action depend on whether ϕ and she is
disposed to make her action depend on whether ϕ whenever she wants her action
to depend on whether ϕ.3

With the above conception of knowledge, a part of Stalnaker’s view about
the problem of logical omniscience can be characterized as follows. Availability
of knowledge must be characterized in relation to action and motivation. As
far as epistemic logic leaves these elements out in representing knowledge, as its
standard framework does, it cannot reasonably capture availability of knowledge
or any notion of knowledge that supports our intuition that we have when resisting
the validity of the principle LO.

However, this seems to be only a part of Stalnaker’s view. His negative view
seems to go further. He seems to suggest that the relevant notions here, available
knowledge, action and motivation, are so intimately related to each other that
we cannot formally characterize what knowledge an agent has available based on
action and motivation of an agent. Here is what Stalnaker says:

But the problem is that we have no independent way to assign content
to the motivational states. If we are talking just about machines
and systems that we build and program to serve our needs, then it
will be easy to see how to interpret the content of the “wants” of
the processors, but we want our theory to apply also to organisms
and systems that we find, and want to understand as autonomous
agents. . . the information-bearing states of participants in the system
have the (implicit) content they do because of the structure of the
system—the constraints imposed by that structure on the relation
between the internal states of the participants and the global states
of the system of which it is a part. If our theory is to contribute to an
explanation of intentionality, then the decision rules and motivational
states should also get their content from the structure of the system,
and not be imposed from outside by the intentions and desires of
the users. Motivational states should derive their contents from the
dispositions of the participants to make its actions depend on the
information it has. But it will be the dispositions to use the available

3The material discussed in this paragraph is from pp. 265-266 in [58], where Stalnaker
discuss available knowledge that ϕ under condition ψ. We reconstructed the version without
the relativization in the text above to make explicit what we think is Stalnaker’s main argument.
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knowledge, not the implicit knowledge, that will determine the content
of decision rules and motivational states. (ibid. p.266)

Thus, when we would like to characterize available knowledge, we need to know
actions and motivation of an agent. However, to know actions and motivation,
we now in turn have to know what knowledge the agent has available. This
interdependence between the notions makes the project of characterizing available
knowledge look even intractable.

Then, what should we do? Should we abandon the project of formalizing
the notion of knowledge that does not satisfy LO for the reasons that Stalnaker
presents? Our answer to this question is negative. We will agree with Stalnaker
on the importance of action and motivation to the characterization of knowledge.
We will also grant him that the intimate interdependence between them makes
it difficult to characterize available knowledge based on action and motivation.
However, we claim that there is still a way of characterizing the desired notion of
knowledge before we commit ourselves to the notions of action and motivation.
This is the project that we will undertake for the rest of the chapter.

5.2 Explicit Knowledge and Deductive Inference

Our basic strategy is to characterize the notion of explicit knowledge by addressing
the dynamics of information when an agent makes observations. The information
we have about the world gets updated when we make observations. For instance,
I may not have information about whether it is raining outside right now, but I
will come to know it by going outside and observe the current weather outside.
Or I may know the procedure to determine whether a given number is prime but
may not tell whether 1571 is prime when the number is presented to me. After
careful calculation, I will come to know whether the number is prime. Thus,
observations, in the broad sense of the term, bring our informational states to
new informational states.

Depending on what informational states we are in, a given observation can
impact on our informational states in different ways. If I do not know whether it is
raining now, observing the current weather outside will update my informational
state by the new information. If I already know whether it is raining, then observ-
ing the current weather outside will not give me any new information. Similarly,
if I do not concurrently know whether 1571 is prime though the information that
the number is prime is implicit in my knowledge about arithmetic, my careful
calculation will give me new information. However, once I concurrently come to
know whether the number is prime, repeating calculation will not give me new
information.

Based on these considerations, we articulate the standard intuition of explicit
knowledge as follows: An agent i explicitly knows ϕ iff i would not obtain
new information after observing the information that ϕ. If we concurrently know
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a certain fact, then observing the fact will not give us new information. If we
do not concurrently know a certain fact, then observing the fact will give us
new information. As the above examples suggest, the notion of explicit knowl-
edge characterized this way accords with the intuition that we have against the
principle LO and avoid the problem of logical omniscience.

We may further illustrate the idea in relation to the notions of action and
motivation. If I concurrently know whether 1571 is prime, then I would not
obtain new information by observing that 1571 is prime. The idea that I have
the same information before and after observing that 1571 can be explained by
noting I would answer ‘yes’ to the question whether the number is prime before
and after the observation. On the other hand, if the information that 1571 is
prime is only implicit in my knowledge about arithmetic, I would not answer
‘yes’ to the question or at least would not be able to make my answer depend
on whether the number is prime, as I want it to. However, once I observe that
the number is prime, I would obtain new information. This can be explained by
noting that I would now be able to say ‘yes’ to the question and make the action
depend on whether the number is prime, as I want it to, even though I was not
be able to do so before I made the observation. We explain this difference in my
disposition to answer the question in terms of my informational after deducing
that 1751.

Note that the last paragraph appeals to the notions of actions and motivations
only for the purpose of illustrating our characterization of explicit knowledge. In-
deed, our characterization itself does not involve the notions. However, it would
be appropriate to articulate the nature of our project further here. As mentioned
above, we agree with Stalnaker that action and motivation are important to the
characterization of available knowledge and that they are indeed so intimately
related in the way that they do not seem to allow formalizations of available
knowledge. This is why we had to appeal to action and motivation in order to
explain our characterization. What we intend to do by the above characteriza-
tion, however, is to show that we can still reveal interesting aspects of explicit
knowledge without invoking the notions of action and motivation as our theoret-
ical primitives to be used in characterizations of knowledge. Thus, we are with
Stalnaker, if he thinks that the full-fledged theory of knowledge would have to
invoke the notion of action and motivation, but we are not, if he thinks that
there is nothing that can be said about the desired notion of knowledge without
considering action and motivation.

Once we characterize the notion of knowledge that does not suffer from the
problem of logical omniscience, we can now meaningfully consider the situations
where an agent makes deductive inferences. To describe the intuition that we
appeal to in characterizing deductive inferences, let us review our prime number
example. First, the fact that I can deduce the conclusion that 1571 is prime can be
explained by my explicit knowledge about the relevant part of arithmetic. In order
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to make deductive inferences, I have to appeal to my knowledge about arithmetic.
The parts of my knowledge about arithmetic that I use should be my explicit
knowledge, when I indeed make the deductive inferences. Otherwise, it is not
clear how we can explain the fact that I perform the calculations I do in the course
of maing the deductive inferences. Second, by deducing the conclusion, I observe
the conclusion of my deductive inference. My careful calculations reveal relevant
arithmetical facts about the number 1571 and will present me the information
that the number is prime. I observe, in the broad sense of the word, that 1571 is
prime through the process of making deductive inferences.

Based on these considerations, we propose the following characterization of
deductive inferences. When an agent makes a deductive inference,

1. the agent must explicitly know the premises of the inference and

2. by making a deductive inference, the agent observes the true information
that the conclusion is the case.

Thus, we characterize deductive inferences as a process of observing the conclu-
sions of the inferences based on explicit knowledge.

5.3 Formalizing Explicit Knowledge

We now formalize the notion of explicit knowledge basd on our characterization
above.

5.3.1 Reinterpretation of TPAL

TPAL extends propositional logic with the epistemic operator [i] and the public
announcement operator 〈!θ〉 (and its dual [!θ]). For our current purpose, we will
restrict our attention to the single agent case and denote the epistemic operator
by Ki.4 We start by giving interpretations of the operators in TPAL for our
application.

1. Kiϕ: “An agent implicitly knows ϕ.”.

2. 〈!θ〉ϕ: “An agent can observe θ after which ϕ is true.”

3. [!θ]ϕ: “After observing θ, ϕ is true.”.

Also we assume that propositional letters refer to atomic propositions about the
world, whose truth values are determined independently of the epistemic state of
agents. Given that our purpose is to analyze the relevant epistemic concepts, such

4We will discuss the multi-agent case in Section 5.6.2
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as information, explicit knowledge, observation, we take this familiar assumption
to mark off the objects of our analysis from unanalyzable atomic propositions.

Some remarks are in order concerning the intended reading of the operator
Ki. First, as the standard modal operator, the operator Ki validates the princi-
ple, if Kiϕ and ϕ logically implies ψ, then Kiψ. This accords the way in which
we conceive the notion of implicit knowledge. What we will do below is to define
another notion of knowledge that does not validate the principle. Second, we
interpret Kiϕ also as “an agent has the information that ϕ” or “an agent is infor-
mationally committed to ϕ”. We consider these readings and the above reading
equivalent for our current purpose.

The models of TPAL are ETL-tree structures that represent temporal evolu-
tions of initial epistemic models over informational updates by sequences of public
announcements based on protocols assigned to worlds in the epistemic models.
For the complete definitions of the models, we refer readers to Chapter 2. Here,
we only describe how we interpret the models in TPAL to reflect the intended
readings that we listed above.

First, epistemic models represent informational states of an agent by domains
of points, indistinguishability relations, and valuation functions. Points in the
domain of an epistemic model represent epistemic possibilities for an agent and
the valuation function characterizes each epistemic possibility by determining
truth values of atomic propositions. The indistinguishability relation represents
what epistemic possibilities an agent considers at a given world.

Public announcements !ϕ update the informational state of an agent by rel-
ativizing the epistemic possibilities in epistemic models to epistemic possibilities
in which ϕ is true. By this mechanism, we represent the informational event of
observations. When observing ϕ, an agent eliminates the possibility of non-ϕ. At
this level of abstraction, our use of the word, “observation”, should be taken in
a broad sense. Not only is it intended to capture physical observations such as
observing that it is raining, but also to capture other types of observations in a
broad sense, such as observing things by reflection, etc., as we suggested in our
previous discussions.

Protocols are sets of sequences of public announcements assigned to points in
a given epistemic model. In general, they represent the information about what
public announcements can happen in given points of the epistemic model. With
our interpretation of public announcements, the protocol at a point represents
what can possibly be observed. If !p is in the protocol at a point, then p can be
observed provided that p is true at the point. Similarly if !p is not in the protocol
at a point, then p cannot be observed even when p is true at the point.

Finally, based on our current interpretations, the models in TPAL represent
temporal evolutions of agents’ informational states over sequences of observations.
A model H in TPAL is a triple of the form (H,∼, V ). H is a set of histories,
sequences of the form w!ϕ1 . . .!ϕn, where w!ϕ1 . . .!ϕn represents the state at w
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after the sequence of observations !ϕ1 . . .!ϕn have been made. ∼ represents the
indistinguishability of those temporal states for an agent and V determines the
truth of atomic propositions at each state. Truth of formulas in TPAL are defined
with respect to a model H = (H,∼, V ) and a history h in H. Here we give the
truth definitions for the operators of our interest (For the complete list, readers
are referred to Chapter 2.):

Forest(M, p), h |= Kiϕ iff ∀h′ : h ∼ h′ ⇒ Forest(M, p), h′ |= ϕ.

Forest(M, p), h |= 〈!θ〉ϕ iff h!θ ∈ H and Forest(M, p), h!θ |= ϕ.

Having this interpretation of TPAL, we introduce the new operator for explicit
knowledge, K, in the framework of TPAL, and define it by the following definition:

5.3.1. Definition. Explicit Knowledge Let H ∈ F(PAL) and h, a history in H.
Then

Forest(M, p), h |= Kϕ iff ∀h′ : h ∼ h′ implies Forest(M, p), h′ |= 〈!ϕ〉>

We read Kϕ as “an agent explicitly knows ϕ”. Given that 〈!ϕ〉> reads as “ϕ
is observable”, our definition of explicit knowledge says that an agent explicit
knows that ϕ when the true information that ϕ is observable by the agent in all
indistinguishable worlds.

This formulation of Ke has two immediate consequences. First, as is clear
in the definition, the operator can be expressed by the language of TPAL. The
following equivalence is an immediate consequence of Definition 5.3.1 and the
truth definition of TPAL:

Keϕ↔ Ki〈!ϕ〉>.

Therefore, we can obtain the completeness and decidability of the extension
of TPAL with Ke by adding this equivalence to the axiomatization of TPAL
(Section 2.3), based on the completeness and decidability results we derived in
Chapter 2 (Section 2.3.3 and 2.3.2. Second, the formula Keϕ → Kiϕ (explicit
knowledge implies implicit knowledge) is valid in the semantics of TPAL, because
〈!ϕ〉> → ϕ (the observability of the true information that ϕ implies the truth of
ϕ). This coheres with the characterization of implicit knowledge as anything that
follows from explicit knowledge. Explicit knowledge trivially follows from itself.

5.3.2 Dynamic Characterization of Explicit Knowledge

How does the formalization above capture our intuitive characterization of explicit
knowledge in the previous section? To see how it does, let us consider the three
models in Figure 5.1. The three models are constructed from an epistemic model
that has two indistinguishable worlds w, v. In the model on the left, p and q
are true only at w and v respectively, and the protocols at both worlds allow !p.
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!p

p, q ¬p,¬q
{!p} {!p}

!p

p, q p,¬q
{!p} {}

!p !p

p, q p,¬q
{!p} {!p}

Figure 5.1: Dynamic characterization of explicit knowledge

Since w and v are indistinguishable, an agent does not know that p is true even
in an implicit sense. However, after observing p, the world v is “eliminated” in
the sense that v!p is absent. This is simply because p is false at v and thus v!p is
not created even though !p is in the protocol. In this sense, this model represents
the case where the agent obtain new information by observing p.

The situation is different in the model in the middle. Here p is true at both
w and v, but q is true only at w. Only the protocol at w allows !p. In this
model, at w, it is already the case that an agent implicitly knows that p is the
case. However, what is interesting about this model is that, even though the
agent implicitly knows that p is true, she obtains new information by observing
p. Indeed, at w, the agent does not implicitly know that q is true, but after
observing p, i.e. at w!p, she does implicitly know that q is the case. The reason
for this is that, in the model, !p is not allowed in the protocol at v even though p
is true. That is, at v, p is true but the fact that p is true is not observable. Thus,
we can recapitulate what this example illustrate by saying: given a formula ϕ,
even when an agent implicitly know that ϕ, she may still gain information since
she may be able to eliminate some possibilities based on the observability of the
information.

This situation should be contrasted with the model on the right. This model
has the same propositional valuation as the model in the middle: p is true at
both worlds; q is true only at w. However, in this model, the protocol allows !p at
both w and v. Thus, at w, an agent implicitly knows that p is true. Nonetheless,
even after observing p, the agent still cannot distinguish w and v (more precisely
w!p and v!p), since in this model p is observable also at v. In general, for every
ϕ, if ϕ is observable at all indistinguishable worlds, then an agent does not gain
new information in the sense that no world will be eliminated.

This point explains the intuition of our definition of explicit knowledge. If
an agent explicitly knows ϕ, then she does not obtain new information by ob-
serving ϕ (the right model in Figure 5.1). If an agent does not explicitly know
ϕ, then she obtain new information (the models on the right and the middle
in Figure 5.1). By this dynamic characterization, our model goes beyond mere
syntactic manipulations in formalizing the notion of explicit knowledge.
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5.3.3 Epistemic Information and Protocol Information

The above explanation appeals to a specific notion of information that an agent
has. We need to clarify what the notion is. To do so, we point to two kinds of
information that are represented in models of TPAL. One kind of information in
the models is represented by sets of points (or nodes), indistinguishability rela-
tions, and valuation functions. As we mentioned above, models in TPAL start
with epistemic models and describe temporal evolutions of the models over infor-
mational updates—observations in our interpretation. Each observation creates
a new set of points with the corresponding indistinguishability relation and val-
uation function. Thus, each level of tree structures in models of TPAL can be
considered as an epistemic model and it represents an aspect of the information
that an agent has. Pictorially, this is the aspect of the information of an agent
that is represented ‘horizontally’ at each level of tree structures in the models
discussed above. Let us call the kind of information epistemic information. The
other kind of information that an agent has is the information about what infor-
mation can be observed at worlds (or nodes). Protocols represent the information
about what can be observable and an agent has information about them in addi-
tion to the epistemic information that she has. This aspect of the information of
an agent is represented ‘vertically’ by the arrows coming out of each world in the
models discussed above. Let us call this kind of information protocol information.

Given the distinction, we can now articulate our characterization of explicit
knowledge. Our characterization was that an agent explicitly knows ϕ iff she
would not obtain new information by observing ϕ. When we explained the ‘gain’
of information above, the sense of information that we appealed to was the epis-
temic information that an agent has. An agent gains epistemic information when
the set of indistinguishable epistemic possibilities gets reduced. An agent does
not gain new epistemic information when the set of indistinguishable epistemic
possibilities stays the same. Therefore, we now need to restate the characteriza-
tion of explicit knowledge as follows based on the distinction: An agent i explicitly
knows ϕ iff i would not obtain new epistemic information after observing ϕ.

The following example also illustrates the importance of the distinction in our
framework. Consider the following two schemas:

(Pos) Kiψ ∧Keϕ→ [!ϕ]Kiψ

(Neg) ¬Kiψ ∧Keϕ→ [!ϕ]¬Kiψ

These two schemas together represent that, if an agent explicitly knows that ϕ, the
information that she has, epistemic or protocol, stays the same after observing
ϕ. These schemas are not valid in TPAL and counterexamples are given by
Figure 5.2. At w, the instantiation of Pos with ϕ := p and ψ := p is false.
(The antecedent is true since p is observable at w and v, but the consequent
is false, since Kp is not true at w!p by the non-observability of p at w!p or
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!q !q

!p !p

w v
p, q p, q

{!p!q} {!p!q}

Figure 5.2: Counterexample

v!p.) Similarly the instantiation of Neg with ϕ := p and ψ := q is false at
w. These counterexamples are possible, since the protocol information may still
change over the event of observing ϕ, even though her epistemic information is
preserved. Thus, in general, an agent may obtain new explicit knowledge by
obtaining new protocol information, or even lose his explicit knowledge by losing
protocol information, even when her epistemic information kept preserved.

To ensure the validity of the above schemas, we need to make sure that the
protocol information stays the same over events of making observations. The
following schemas express such a condition.

(MT) 〈!ϕ〉> → 〈!ψ〉〈!ϕ〉>

(AMT) 〈!ψ〉〈!ϕ〉> → 〈!ϕ〉>

Indeed, we can prove the following:

5.3.2. Proposition. Let H be a TPAL-model. If MT is valid in H, then Pos
is valid in H. Also if AMT is valid in H, then Neg is true at every h in H.

MT guarantees that, if it is true at every node in H, H is monotonic in terms
of observable information, that is, if ϕ is observable, then ϕ will be observable
again after any information is observed. AMT guarantees that, if it is true at
every node in H, H is anti-monotonic in terms of observable information, that is,
if ϕ is observable after any information is observed, then ϕ is observable before
the information is observed.

5.3.4 Avoiding the Problem of Logical Omniscience

We shall also note that our formal definition of explicit knowledge extracts from
the fact that the truth of TPAL-formulas containing public announcement oper-
ators depends on protocols, which are specified syntactically by TPAL-formulas
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(See Chapter 2. As mentioned above, even if a formula ϕ is true at a world,
〈!ϕ〉> (!ϕ is observable) will not be true unless !ϕ is stipulated to be observable
by the protocol assigned to the world. Also even if the true information that ϕ
is observable, its logical consequences may not be, since protocols in general do
not have to be logically closed (Even if ϕ is in a protocol and ϕ logically implies
ψ, ψ may not be in the protocol) or closed by any specified condition.

Technically, this is exactly the feature that allows our Ke-operator to resolve
the problem of logical omniscience. As mentioned above, the problem of logical
omniscience arises, because the standard modal operators validate the K-axiom
and necessitation rule. In our framework, the principles are validated with respect
to the implicit knowledge operator Ki.5 However, the principles are not valid with
respect to the explicit knowledge operator Ke. It is straightforward to show the
following.

5.3.3. Proposition. The necessitation rule with respect to Ke, if ` ϕ, then
` Keϕ is not sound in TPAL.

5.3.4. Proposition. The K-axiom with respect to Ke, Keϕ ∧ Ke(ϕ → ψ) →
Keψ, is not valid in TPAL.

The first proposition reflects the fact that, even if ϕ is true, the information
that ϕ may not be observable. The second proposition follows from the fact that
protocols are generally not closed under implication, as stated above. The readers
are invited to generate counterexamples to the principles.

However, demanding that explicit knowledge have no closure property what-
soever may not sound too plausible in some contexts. For instance, we may think
that, if an agent explicitly know a conjunction, then the agent also explicitly
know each conjunct. Fortunately TPAL is flexible enough to characterize the clo-
sure properties of explicit knowledge (more precisely, closure of protocols, hence
closure of explicit knowledge). The validity of the following schema is equivalent
respectively to the above closure properties:

〈!(ϕ ∧ ψ)〉> → 〈!ϕ〉> ∧ 〈!ψ〉>

What the schema ensures may be pictorially described by saying that, in a given
TPAL-model, if an arrow labeled by !(ϕ∧ψ) comes out of a node, then two arrows
labeled by !ϕ and !ψ respectively must come out of the node.

We can express more natural closure conditions, which may be properly as-
sumed depending on the situations we describe. The following list are the pair
of closure conditions and corresponding epistemic principles. The validity of a
schema in a pair is equivalent to the validity of the other.

RF 〈!ϕ〉> → 〈!Keϕ〉>.

5The schema Kiϕ ∧Ki(ϕ→ ψ)→ Kiψ is valid and the rule, if ` ϕ, then ` Kiϕ, is sound.
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• Keϕ→ KeKeϕ.

EI 〈!Kiϕ〉> → 〈!ϕ〉>.

• KeKiϕ→ Keϕ.

LI 〈!ϕ〉> ∧ 〈!(ϕ→ ψ)〉> → 〈!ψ〉>.

• Keϕ ∧Ke(ϕ→ ψ)→ Keψ

VF If ` ϕ, then ` 〈!ϕ〉>.

• if ` ϕ, then ` Keϕ

It is straightforward to show that the principles LI and VF are independent (in
the sense that there are models in which only either one of the two is valid). Also
they together imply EI. RF is independent from the three principles.

5.4 Formalizing Deductive Inference

Having defined explicit knowledge, let us now model situations where an agent
makes a deductive inference. First, to express such situations, we extend our
language with the operator 〈Γ ` ϕ〉, where Γ logically implies ϕ. The intended
reading of 〈Γ ` ϕ〉ψ is “an agent can deductively infer ϕ from Γ after which
ψ”. The dual of 〈Γ ` ϕ〉 is denoted by [Γ ` ϕ], and [Γ ` ϕ]ψ is read as “After
deductively inferring ϕ from Γ, ψ.” “After an agent makes a logical deductive
from Γ to ϕ, ψ.”

We will give the truth definition of this new operator based on the observation
we made in Section 5.2. That is, when an agent makes a logical inference from Γ
to ϕ,

1. the agent must explicitly know all the formulas in Γ, and

2. by making a deductive inference, the agent observes that the conclusion is
the case.

The corresponding truth definition is as follows. Let H be a TPAL-model
(H ∈ F(PAL)) and h a history in H:

H, h |= 〈Γ ` ϕ〉ψ iff (1) H, h |= Keχ for all χ ∈ Γ

(2) H, h!ϕ |= ψ.

Given that we consider deductive inferences made by realistic agents with limited
resources, we may assume that Γ is finite. By this assumption, we can define
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Figure 5.3: Making a deductive inference

the deductive inference operator in TPAL. (Ke is definable in TPAL, as we saw
above):

〈Γ ` ϕ〉ψ ↔
∧
χ∈Γ

Keχ ∧ 〈!ϕ〉ψ.

The semantics of the deductive inference operator can be visualized as in
Figure 5.3. In the figure, we have two indistinguishable nodes, black and gray,
and, at the nodes, the formulas χ1, χ2, . . . are observable. Therefore, we have
Keχi for each i. In addition, at the black node, ϕ is observable, and, after ϕ is
observed, ψ becomes true. In this model at the black node, we have 〈χ1, χ2 . . . |=
ϕ〉ψ true.

This illustrates that our deductive inference operator represents a process of
making a deductive inference as eliminating worlds where the conclusion is not
observable. In the example, χ1, . . . χn and ϕ are all true at both the black and gray
nodes. Nevertheless, an agent, observing that the conclusion ϕ is the case, gains
further epistemic information (but not protocol information.) by eliminating the
gray node where ϕ is not observable. This feature of our definition corresponds
to the following intuition: by deductive inference, an agent gains the information
that the conclusion was observable. The points in an epistemic model that will be
left uneliminated after an agent makes a deductive inference are the ones where
the conclusion is observable before an agent makes the inference.

5.5 Logical Omniscience vs. Epistemic Closure

What is called the epistemic closure principle is the principle that states that
knowledge is closed under logical implication. As we have discussed above, in
epistemic logic, a version of this principle, i.e. if ϕ is known and ϕ logically
implies ψ, then ψ is known, raises the problem of logical omniscience. We have
investigated how to model the notion of knowledge, which we call explicit knowl-
edge, that does not validate the version of the principle. The formalization of such
a notion of knowledge makes it meaningful to pursue representations of deductive



5.5. Logical Omniscience vs. Epistemic Closure 159

inference in epistemic logic and we have introduced a new operator 〈Γ ` ϕ〉 to
represent a situation that an agent makes a deductive inference from Γ to ϕ.

Now our representation of deductive inferences allows us to address another
perspective on the epistemic closure principle in the epistemology literature. In
epistemology, the epistemic closure principle has been discussed as a principle
expressing that we can extend our knowledge by logical inference. For instance,
Williamson [84] presents the following formulation of the principle, which he calls
intuitive closure:

. . . knowing p1, . . . , pn, competently deducing q, and thereby coming
to believe q is in general a way of coming to know q. (p.117)

He then says:

We should in any case be very reluctant to reject intuitive closure,
for it is intuitive. If we reject it, in what circumstances can we gain
knowledge by deduction? (Williamson, pp.118, [84])

Those who defend the principle attempt to save this intuition about deduction
as a good epistemic method, while those who attack the principle articulate why
and how the intuition is sometimes betrayed.

This perspective on the closure principle is very contrastive to the perspective
on the epistemic closure principle in epistemic logic. As we have discussed above,
the epistemic closure principle is considered as the principle that assumes logically
omniscient agents for whom deductive inferences are not meaningful. In [57],
Stalnaker, discussing the problem of logical omniscience, says:

Any context where an agent engages in reasoning is a context that
is distorted by the assumption of deductive omniscience, since rea-
soning (at least deductive reasoning) is an activity that deductively
omniscient agents have no use for. . . In fact any kind of information
processing or computation is unintelligible as an activity of a deduc-
tively omniscient agent. (pp.428-9)

Thus, to highlight the contrast, one could say: on the interpretation in the philo-
sophical literature on epistemology, the closure principle is something that would
guarantee the unshakable epistemic value of deduction; on the interpretation in
epistemic logic, it is something that would take away the epistemic value of de-
duction.

The reason that the situation has arisen may be characterized as follows.
First, the problem of logical omniscience consists in the particular feature of the
standard framework in epistemic logic. Therefore it is a task in epistemic logic,
but not in epistemology as a whole, to resolve the problem. In the general epis-
temological context, the formulation of the closure principle, if an agent knows
ϕ and ϕ logically imply ψ, then she knows ψ, must be simply abandoned for its
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Figure 5.4: Counterexample to EC

immediate implausibility as a description of knowledge held by realistic agents
like us. Second, while the nature of deductive inference have been investigated in
philosophical discussions on the closure principle, the standard framework of epis-
temic logic does not represent deductive inference. In that case, there is no way
to address the relevant aspect of the closure principle in the formal representation
of knowledge in epistemic logic.

5.5.1 Formalizing the Epistemic Closure Principle

Having the representation of deductive inferences, we can now address the per-
spective on the epistemic closure principle in epistemology. We formulate the
epistemic closure principle as discussed in the epistemology literature by:

EC ∧
χ∈Γ

Keχ→ [Γ ` ϕ]Keϕ

which reads “If an agent explicitly knows every formula χ in Γ, then, after making
the deductive inference Γ ` ϕ, she explicitly knows ϕ.”6

Despite the initial plausibility of the formulation, EC is not a valid formula in
TPAL. A counterexample is visualized in Figure 5.4. (The dashed line between w
and v represents the the indistinguishability relation between them as usual. The
dashed lines are omitted between pairs of nodes, w!χi and v!χi, for simplicity,
even though they are indistinguishable.) Let Γ := {χ1, . . . , χn}. At the node w
of the model,

∧n
i=1K

eχi is true at w, since, for all i, 〈χi〉> is true at w by the
presence of the !χi-arrow. However [Γ ` ϕ]Keϕ is false. For Keϕ is false at w!ϕ
given that 〈!ϕ〉> is false at w!ϕ (by the absence of a !ϕ-arrow coming out of w!ϕ).

The reason of the failure of EC can be explained by the change of the protocol
information over the events of making observation. (cf. Pos and Neg in Sec-
tion 5.3.2) The cause of the change in protocol information may vary depending
on situations. Here we give a possible interpretation of the model by one example

6Given the definition of the logical inference operator, the formulation is equivalent to [Γ `
ϕ]Keϕ.
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from the literature in epistemology, given by Lawlor in [47]. The example can be
described as follows:

Edward, being raised by a believer in homeopathy, believes in home-
opathic medicine. He has the strong conviction that he has seen ill-
ness cured by homeopathic treatments. Edward knows that the cold
medicine he takes has a concentration of 1 part per 100200. Recently
he learned chemistry just recently, so he knows that, if a substance is
diluted that much, it is unlikely that even one molecule of the sub-
stance remains. From this, he arrives through deduction at the belief
that the cold medicine will very likely not work. Given the strength
of his previous conviction in homeopathy, one could argue that he
does not know that the cold medicine will very likely not work, until
he goes through the process of questioning the efficacy of the home-
opathic medicine. However, by epistemic closure, Edward necessarily
has to know that the medicine will very likely not work.

In our model, let Γ be the set of propositions stating the relevant facts in chem-
istry, and ϕ, the proposition that the medicine will very likely not work. Initially,
Edward explicitly knows the propositions in Γ, but not ϕ. After making the in-
ference Γ ` ϕ, he still cannot possibly justify ϕ in the presence of the previous
conviction. Thus in the sense that he cannot eliminate the possibility of non-ϕ,
he cannot observe ϕ. Hence he does not (explicitly) know ϕ. There are other
counterexamples raised in the literature (e.g. [28]), which involves the conflict
between the belief arrived at by deduction and the previously held beliefs, as in
this Edward example.

To block counterexamples to EC, we can add the schema MT to the axiom-
atization of TPAL:

〈!ϕ〉> → 〈!ψ〉〈!ϕ〉>.

As stated in Section 5.3.2, this guarantees that, if a formula ϕ can be observed,
then it will be observable after any information is observing. In the context of the
Edward example, we may read this as saying “If some information is observable
by an agent, there is nothing that prevents her from observing it after observing
any information”. This will block our counterexample, since information will stay
observable once it becomes observable. Indeed it is straightforward to show the
following:

5.5.1. Proposition. The validity of MT implies the validity of EC.

5.5.2 Independence

Discussions in the previous sections points out that the problem of logical omni-
science in epistemic logic and debates about the epistemic closure principle in the
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philosophical literature deal with different aspects of the principle knowledge is
closed under logical implication. By using our formulations of the problems, we
can indeed show that principles that generate the problem of logical omniscience
and the epistemic closure principles are logically independent.

First let us review the following principles and the corresponding facts:

MT 〈!ϕ〉> → 〈!ψ〉〈!ϕ〉>.

• The validity of MT implies the validity of EC.

LI 〈!ϕ〉> ∧ 〈!(ϕ→ ψ)〉> → 〈!ψ〉>.

• LI is equivalent to Keϕ ∧Ke(ϕ→ ψ)→ Keψ

VF If ` ϕ, then ` 〈!ϕ〉>.

• VF is equivalent to the principle if ` ϕ, then ` Keϕ

Given the above facts, the following simple results shows the independence
between the principles that generate the problem of logical omniscience and the
principle EC.

5.5.2. Proposition (Consistency). MT, LI and VF are consistent. That
is, there is a model in which all the instances of the schemas are true at every
node.

5.5.3. Proposition (Independence). MT is independent from LI and from
VF, i.e. the former pair does not imply the latter and that the latter does not
imply the former.

These facts can be shown by the models in Figure 5.5. First consider the model
on the left. At w, ϕ and all of its logical consequences, τ1, τ2 . . . , are observable
(and nothing else). At w!ϕ, ψ and all of its logical consequences, τ ′1, τ

′
2, . . . are

observable (and nothing else). Also at every other nodes, all and only formulas
provable in TPAL are observable. Now, suppose ϕ and ψ are identical with some
provable formula. Then, at every node of the model, MT, LI and VF are all
true, since all provable formulas are observable at every node and every node has
the same observable formulas. Next, suppose ϕ and ψ are distinct propositional
letter, say p and q. In this case, LI and VF are still true at every node, but MT
are false at w.7 Next consider the model on the right. In the model, p is observable
at every node. This guarantees that MT is true at every node. However, no node
satisfies LI or VF, since no node is closed under logical consequence. Therefore,
MT does not imply logical omniscience and logical omniscience does not imply
MT. (This fact will be mentioned in Section 5.5.)

7p is observable at w but not at w!p. Thus at w, 〈!p〉> but not 〈!p〉〈!p〉>. This means that
MT is false at w.
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Figure 5.5: Independence of MT and AMT from LI and VF

By the two proposition, we can argue for the independence of the problem of
logical omniscience and the validity of EC. First, by Proposition 5.5.2, there is a
model in which MT, LI and VF are valid. In such a model, logical omniscience
is present in the model and EC is valid. (MT guarantees that EC, and LI
plus VF guarantees logical omniscience.) Second, by Proposition 5.5.3, there is a
model in which LI and VF are valid, while MT is false at some node. In such a
model, logical omniscience is present and EC is false. Third, by Proposition 5.5.3
again, there is a model in which MT is valid, while LI and VF are false at a
node. Finally, in general, MT, LI and VF are not valid in TPAL. Therefore,
we claim that the presence or absence of logical omniscience does not determine
the question about EC, and the truth or falsity of EC does not determine the
question about logical omniscience.

Here one may object that the formulation of EC does not fully capture the
epistemic closure principle discussed in epistemology. In particular, consider a
formulation of the epistemic closure principle in [84], mentioned in the introduc-
tion:

. . . knowing p1, . . . , pn, competently deducing q, and thereby coming
to believe q is in general a way of coming to know q.

At least, it is not clear how EC captures the part thereby coming to believe
q. Other formulations, e.g. in [28, 35, 47], include similar conditions. In fact,
the part in question is essential since it avoids counterexamples in which an agent
does not arrive at the belief of the conclusion given her previously held beliefs and
ones in which the belief of the conclusion is arrived at based on some unreliable
methods independent from the deduction from known premises.
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In fact, the objection rightly points out that EC does not completely capture
standard formulations of the epistemic closure principle in the relevant literature.
It is true that our framework does not capture the notion of belief in contrast
with knowledge, let alone the ways by which beliefs are arrived at.

However our main point in the current paper is to highlight that the litera-
ture on the problem of logical omniscience and debates on the epistemic closure
principle in epistemology take different perspectives on the principle knowledge
is closed under logical implication. We did this by providing a single framework
in dynamic epistemic logic that characterizes the notions of explicit knowledge
and deductive inference. We defined explicit knowledge by the observability at
all indistinguishable worlds, and showed that the principles that give rise to logi-
cal omniscience (the necessitation rule and the K-axiom) fail with respect to the
defined notion. Also we defined the epistemic closure principle as a distinct dy-
namic principle, if an agent explicitly knows the premises, then she will explicitly
know the conclusion after observing that the conclusion is the case. This way, we
could show that the two problems are independent in the sense that the validity
of one does not imply the other. These points would not be taken away by the
objection in question. Indeed, as is illustrated in the Edward example, our claims
do not depend on the fact that the notion in question thereby coming to believe
is left out of the formulation. The example would work out even when the notion
is considered.

5.6 Concluding Discussion

We have formalized the notions of explicit knowledge and deductive inference
in the framework of TPAL. We defined explicit knowledge by the information
observable at all indistinguishable worlds. The syntactic character of the notion
avoids the problem of logical omniscience and the dynamic character allows us
to formulate the principle that, when an agent explicitly knows ϕ, then she does
not obtain new information after observing that ϕ. We also defined the notion of
logical inference as a dynamic notion of observing, on suitable conditions, that the
conclusion is the case. This enabled us to express the epistemic closure principle
as a dynamic principle. We showed that this dynamic principle is independent
from the principles that generate the problem of logical omniscience. Now we
conclude the paper by discussing future research directions.

5.6.1 Comparison with Other Systems

Various systems have been developed in epistemic logic in order to represent the
notions of explicit knowledge and deductive inference. Quite a few systems among
those systems have some syntactic elements in their semantic models. In the sense
that protocols are also syntactic entities, our system has similarities with those
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frameworks. Comparison between our system and those will be useful.

On explicit knowledge, a list of similar systems includes van Benthem [68, 67],
Fagin and Halpern [22] and Velazquez-Quesada [78]. The basic idea of these
systems is to assign a set of formulas to each state in a given epistemic model.
These sets, let us call accessibility sets, represent the information to which an
agent have internal access. The general aspects of their models can be captured
by a quadrupleM = (W,∼, V, I), where (W,∼, V ) is an epistemic model and I is
a function assigning a set of formulas to each point in W . With this setting, the
notion of explicit knowledge, say Eϕ, is defined by something along the following
line:

M, w |= Eϕ iffϕ ∈ I(w) and ∀v : w ∼ v ⇒M, v |= ϕ.

Since our protocols are also sets of (sequences of) formulas assigned to each point
in a given epistemic model, these approaches are very similar to our system.

Nonetheless there are differences. First, in those models, although accessibility
sets distinguish what is explicitly known from what is implicitly known, they do
not contribute to further characterizations of explicit knowledge. In contrast,
in our model, assigned formulas receive dynamic interpretations. Each formula
corresponds to the operation of eliminating the worlds where the formula is false.
This character of our system allows us to add an intended aspect of explicit
knowledge to our formalization, that is, if an agent explicit knows ϕ, she does
not obtain further information by accessing ϕ.

Second, those systems, in particular those of van Benthem and Velazquez-
Quesada, consider explicit ways of updating accessibility sets. One kind of op-
erators they consider are the ones that add new formulas to initially assigned
accessibility sets. On the other hand, in the current paper, we did not consider
such operations. In our framework, there are two ways to model operations of
the kind. One way is to appeal to the temporal evolution of accessible informa-
tion along given protocols. What is accessible at a given point h and what is
accessible after a given information ϕ is accessed at h are both determined by an
assigned protocol. Addition of formulas Φ to accessible information at ϕ can be
represented in a given model by setting the accessible information at h!ϕ so that
it extends the accessible information at h by formulas in Φ. Another way is to
represent the operations by update operations to protocols. By the operations,
we add specified formulas to given protocols in suitable ways and this gives the
desired operations.

On logical inference, a list of similar systems include van Benthem [68, 67],
Duc [16, 17, 18], Jago [44, 45], and Velazquez-Quesada [78]. By appealing to
the models with certain forms of syntactic accessible sets, they represent logi-
cal inferences in two distinct ways. Duc and Jago represent logical inference as
transitions from a given point, say w, to another, say v. The accessibility set
at v expands that at w with the conclusion of corresponding logical inferences.
In contrast, van Benthem and Velazquez-Quesada represent logical inferences by
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updating accessibility sets by their conclusions. When an agent makes logical
inferences, formulas expressing the conclusions are added to accessibility sets.

The basic intuition of our system goes in the middle of these two approaches.
As the systems of Duc and Jago, logical inferences in our system correspond to
temporal transitions from a node to another. By accessing the information that
the conclusion is the case, we go along an arrow and move to another node where
there is another set of accessible information. As the systems of van Benthem
and Jago, these temporal transition in our system correspond to updates of ini-
tial epistemic states. By accessing the information, worlds in conflict with the
information are eliminated.

Beyond these abstract considerations, more precise comparison between these
systems and ours remains to be investigated. The presence of the mentioned
differences seems to be relatively minor and it seems to be a promising project to
try to imitate those systems in our TPAL framework and enrich our system by
importing different essences from those systems.

5.6.2 Extension to Multi-agent with TDEL

In developing our system, we restricted ourselves to the single agent case. Thus
it is natural to ask whether the system can be extended to the multi-agent case.
One way that suggests itself here is to simply expand initial epistemic models
with indistinguishability relations assigned to multiple agents. Such epistemic
models will be of the form (W,∼1, . . . ,∼n, V ) where each ∼i corresponds to the
indistinguishability relation for an agent i. However, this approach does not
give intended results automatically. The reason is that, in the above models,
we consider the operations of public announcements as the events of making
observations. If we keep this setting for the multi-agent case, every agent must
make the same observation when a single agent observes it. Public announcement
operations eliminate worlds in conflict with the information from the model and
thus such worlds are eliminated from indistinguishability relation of every agent.

Therefore we need to appeal to operations that allow agents to observe true
information independently from the other agents. Fortunately DEL provides a
way to represent such operations. In addition, ETL tree models can be generated,
in a way similar to TPAL ([70]), with respect to the class of such operations
and a logic over those models turn out to be manageable ([43]). Upon these
developments in DEL, a precise form multi-agent version of our system remains
to be seen.



Conclusion

In this dissertation, we have investigated two perspectives on intelligent interac-
tion, epistemic dynamics and protocol information. We developed the framework
that merges the two major systems in the literature, Dynamic Epistemic Logic
(DEL) and Epistemic Temporal Logic (ETL). The main idea of the framework is
to construct time-branching tree structures by successively updating an epistemic
model based on protocols assigned to its states. Product update and event models
generate correct representations of agents’ informational states at each moment
and time-branching tree structures represent possible temporal evolutions of the
states that are permitted by assigned protocols.

We have studied the framework from three perspectives. First, in generating
ETL models from models in DEL, the framework can provide a ‘bridge’ between
DEL and ETL. From this perspective, we have given a systematic comparison
between DEL and ETL in Chapter 1. Our main result is the representation
theorem that characterizes the class of DEL-generated ETL models as the class of
ETL models with propositional stability, synchronicity, perfect recall, and uniform
no miracle.

Second, our framework provides a reinterpretation of the language of DEL.
From this perspective, we have studied logics over classes of DEL-generated ETL
models in Chapter 2. In particular, we have provided the axiomatizations of
those logics. Furthermore, we have considered various extensions of the logics
in Chapter 3. We investigated extensions of logics with temporal operators and
extensions of our semantic framework.

Third, by representing epistemic dynamics and protocol information in one
system, our framework provided new perspectives on existing philosophical prob-
lems through investigations in Chapter 4 and 5. In the former chapter, we have
dealt with the knowability paradox and given a fine-grained logical analysis of the
knowability thesis. In the latter chapter, we have represented explicit knowledge
and deductive inference. We have illustrated how the perspective of our system
can contribute to philosophical investigations.

167
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Our investigations suggest further research topics from each of these per-
spectives. First, our model constructions may be extended to the systems that
describe beliefs. In this dissertation, we have mainly dealt with DEL, which is
designed to describe knowledge. However, in the literature, systems that describe
beliefs have been studied (e.g. [7, 66]). [69] takes this perspective and merge
Dynamic Doxastic Logic and Doxastic Temporal Logic. Also, in introducing syn-
tactic structures by protocols, our framework shares some similarities with other
related systems, such as Justification Logic (e.g. [1, 3, 2, 24]), Logic of Awareness
(e.g [21, 22]). The exact relation between our system and those systems remains
to be seen.

Second, our study of logics in TDEL has left several open questions. Two
major kinds of questions concern computational complexity and extensions of
TDEL. On computational complexity, we have investigated the systems, TPAL
and TDEL(X), and have shown that they are decidable. However, the exact
complexities of these systems are not known. Furthermore, for the extended
systems, including TAPAL and TDEL(X)+P, the decidability question is open.
On extensions of TDEL, we have seen that some extensions of TPAL could not be
extended in a straightforward way to TDEL(X). For instance, the axiomatization
of TDEL with generalized event operators is left open. Also, the method to
generalize TDEL in order to permit preconditions containing future operators
remains to be developed.

Third, possible philosophical investigations based on our framework are not
limited to the ones we have given in this dissertation. In epistemology, recent
discussions have highlighted important features of various epistemic concepts,
for which much remains to be done from a formal perspective. For instance,
contextual aspects of knowledge have been widely discussed in the literature.
The question of how to best represent such aspects in formal systems remains
to be investigated. It is interesting to see if protocols in our framework may
give a reasonable representation for contexts of knowledge attribution. Also our
framework can provide further modeling tools for the fields of studies beyond
philosophy. Artificial intelligence and game theory are prime examples of the
kind of disciplines. Other related topics include cryptography ([75]), learning
theory, etc.
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