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etrich, Paul Egré, Conrad Heilmann, Nicolas Maudet for interesting exchanges
by email, in Paris, London, Lille or Amsterdam; Guillaume Aucher, Philippe
Balbiani, Elise Bonzon, Olivier Gasquet, Emiliano Lorini, François Schwarzen-
truber, Nicolas Troquard, and especially Andreas Herzig and Jérôme Lang, for
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Joachim d’Auge se tut et fit la mine de réfléchir.

Le chapelain devina que le duc envisageait de passer
à la rébellion ouverte. Le héraut devina la même
chose. Le duc devina que les deux autres avaient
deviné. Le chapelain devina que le duc avait deviné
qu’il avait deviné, mais ne devinait point si le héraut
avait lui aussi deviné que le duc avait deviné qu’il
avait deviné. Le héraut, de son coté, ne devinait
point si le chapelain avait deviné que le duc avait
deviné qu’il avait deviné, mais il devinait que le duc
avait deviné qu’il avait deviné.

Les Fleurs bleues

Raymond Queneau

Joachim of Auge held his peace and composed his
features to look as if he were thinking.

The chaplain guessed that the Duke was considering
proceeding to open rebellion. The herald guessed
the same thing. The Duke guessed that the other
two had guessed. The chaplain guessed that the
Duke had guessed that he had guessed, but didn’t
guess whether the herald had also guessed that the
Duke had guessed that he’d guessed. The herald,
for his part, couldn’t guess whether the chaplain had
guessed that the Duke had guessed that he’d guessed,
but he did guess that the Duke had guessed that he’d
guessed.

The Blue Flowers

Raymond Queneau

(trans. Barbara Wright)
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Chapter 1

Introduction

Beethoven changed his mind drastically about the dedication of his third sym-
phony after learning from Ries that Napoleon had declared himself emperor.
Where is the logic in that? Well, this is what this dissertation is about — the
logic of belief change in interactive systems. What are agents thinking when they
interact? And why do they behave in social contexts the way they do? Intelligent
interaction is puzzling. Analyzing it requires models that abstract away from the
complexity of actual, real-life situations. Economists, computer scientists, and
philosophers have long studied important features of rational interaction, and
identified crucial concepts to carry out an analysis, usually focusing on a specific
dimension of the phenomenon. Decision theory analyses how agents make deci-
sions in situation of uncertainty, given their preferences and their beliefs about
the world. Game theory analyses strategic decision making, i.e. how agents make
decisions in an interactive environment in which “two or more individuals make
decisions that will influence each other’s welfare” (Myerson [124]). And closer to
philosophy and computer science, belief revision theory analyses how an agent can
adjust her beliefs to take into account new information that might be inconsistent
with them.

1.1 Logic, belief change and rational agency

This dissertation intends to complement these approaches. We will not deal
with the global phenomenon of intelligent agency. Neither will we explore all
its dimensions. Rather we will focus on the process of belief change under new
information, a fundamental part of the reasoning processes at work as intelligent
agents interact. A theory of belief change analyses how what agents regard as
true about their physical and social environment evolves over time as they re-
ceive new unexpected information. In fact belief revision has received attention
from a wide range of research fields: multi-agent systems, epistemic game theory
and interactive epistemology, (formal) epistemology, philosophy of science and

1



2 Chapter 1. Introduction

learning theory. Each field focuses on particular scenarios and introduces models
that fits their analyses. This dissertation concentrates on logical approaches to
belief dynamics. Our aim is two-fold: to develop a logical framework giving a
unified logical perspective on the phenomenon and to use this framework to build
connections with non-logical approaches concerned with belief change.

Developing logics — often modal logics — to reason about belief change and
the reasoning processes it underlies, is a continuation of the epistemic logic pro-
gram. Just like epistemic logic brings knowledge and belief into the object-
language, one can make the notion of doxastic change a first-class citizen in a
formal language, giving it a semantics and axiomatizing its principles. In fact,
two different families of modal logics of belief change exist: doxastic tempo-
ral logics and dynamic doxastic logics. They offer different but complementary
perspectives. Doxastic temporal logics give a global view of all the possible evo-
lutions of an agent’s belief, while dynamic doxastic logics describe local updates
that transform a doxastic model into a new one, modeling informational signals
as generic ‘event models’. To bring a unified logical perspective on belief change,
this dissertation will work precisely at their interface.

Our first step is to systematically compare the two logics both at a structural
and at a syntactic level. Chapter 2 gives representation theorems linking the
dynamic and the temporal approaches, shedding light on the assumptions about
agents behind dynamic doxastic logics, while Chapter 3 has a complete logic for
a system that merges temporal and dynamic logics of beliefs. From this logical
viewpoint we can then build connections with other research fields.

Our three connections go toward interactive epistemology, learning theory and
strategic reasoning in games. Interactive epistemology, which constitutes a foun-
dational layer for (epistemic) game theory, deals with interactive or higher-order
reasoning: how agents reason about what other agents believe, and reason about
what other agents believe about what other agents believe, etc. . . Agreement
results and their dynamic companions are among the core results in interactive
epistemology. They study the conditions under which agents can ‘agree to dis-
agree’ and whether — if they disagree — communication will solve the disagree-
ment. Chapter 4 gives a logical look at these issues, proving static and dynamic
agreement results for qualitative structures, and providing syntactic counterparts
in formal proofs. Next, formal learning theory offers a mathematical perspective
on the epistemological basis of inductive reasoning. Important questions include
conditions under which an agent can reliably converge to some correct conjecture
about its environment. To make a connection, Chapter 5 gives a logical perspec-
tive on the important special case where the possible languages are sets of natural
numbers. It shows that checking if a class of languages can be learned inductively
is really checking if some formula of an appropriate modal language holds in a
certain doxastic-temporal model. Chapter 6 then deepens the analysis of agency
over time, introducing logical languages for reasoning about knowledge and be-
lief change in extensive games of imperfect information, and about simple types
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of strategic reasoning. Finally Chapter 7 broadens the framework developed in
this way in two natural directions: agents’ preferences, and coalitional power for
groups of agents. This links our analysis to two further fields: cooperative game
theory, and social choice theory.

Throughout the dissertation we are concerned with different possible lan-
guages that can describe important qualitative structures. Indeed, even if we
do fix a class of structures, such logical design questions arise. These choices of
languages are made based on external feasibility constraints (decidability, compu-
tational complexity, conciseness of the language), but also on the notions and type
of reasoning one would like to capture. To check whether some modal languages
satisfy all these criteria, questions of definability, expressive power and complete-
ness are at stake, and we will be concerned with them throughout, especially
when linking up with other frameworks. Along the way, another recurrent theme
is computational complexity, feasibility, and the cases where infeasibility strikes.
These questions occur from Chapter 3 onwards. Chapters 3 to 6 study languages
for reasoning about belief change, our central topic. But we also perform such
analyses for logics for coalitional power and preferences in Chapter 7.

In the next section we discuss briefly what intelligent interaction is about
in general, to give the broader context for this dissertation. We discuss the
conceptual assumptions behind our logical modeling, and briefly contrast the
latter with other approaches: (informal in natural language), and quantitative
(probabilistic).

1.2 Perspectives on intelligent interaction

Intelligent agents can be taken to include both human and artificial agents. As
agents they are not pure passive observers of their environment, they can act on
it and change it. By ‘intelligent’ we simply mean that they form representations
of their environment (they entertain beliefs about it), and that they will revise
these representations as they receive and process new information or as they
reason about their environment (make assumptions, inferences).

We often have in mind interactive systems in which agents’ actions affect a
common environment and/or the beliefs other agents have about it. Moreover,
we sometimes focus on strategic interaction, that considers rational agents that
have preferences about the state of the environment and act according to them,
pursuing objectives of their own; and on coalitional (or cooperative) interaction,
in which certain actions can only be performed by a group of agents rather than
an individual agent.

Here are some concrete intuitions and illustrations for some of the foundational
notions we will encounter.

One foundational notion is that of a state of the environment. It might be
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taken to include both facts that are external to the agents (the weather, the
time, the coordinates of some monument, the distribution of hole cards in texas
hold’em. . . ) and internal (their preferences, their capacities. . . ). In the simplest
case agents simply entertain beliefs about the state of the environment. For one
agent the beliefs of the other agents are also part of the environment and she
might entertain beliefs about them. Still, we will sometimes use the term ‘first-
order belief’ to refer to beliefs about the environment itself (rather than beliefs
about other agents’ beliefs) and use the notion of higher-order belief to refer to
beliefs about other agents’ beliefs.

For sufficiently well controlled systems, one can distinguish between informa-
tion (or knowledge) and beliefs. In an online poker game, the amount of chips in
front of the different players or the cards in the deck can be said to be ‘solid’ (or
‘hard’) information: agents might be said to know exactly how much money each
agent has left in her stack. Similarly in a diagnostic process the body temperature
or the heart rate of a patient may be considered solid information. On the other
hand, an agent might entertain beliefs about the cards that her opponent is hold-
ing — maybe because she finds it unlikely that her opponent would play certain
hands the way he did so far, or because of past observations about the way this
player bets etc. But unless she has actually seen her opponent’s hole cards, these
are simply beliefs rather than solid information. Similarly a particular diagnosis
might be the most natural way of explaining some given symptoms, but at least
as long as other (maybe less likely) diagnoses would also explain the symptoms,
they cannot be ruled out definitely. In this sense a diagnosis is often a belief,
rather than solid information. Our models of agents’ beliefs take this distinction
into account.

But modeling static beliefs (and knowledge) is only enough to describe the
state of mind of an agent at a precise point in time. To account for agents that
might change their mind as they learn new information and reason about the
interactive system, and the corresponding long-term evolution of their beliefs,
informational dynamics themselves need to be analyzed. These include noisy
observation, communication, public announcement, inductive inference, strategic
reasoning etc. We mentioned that for each phenomenon specific formal frame-
works were considered — we will get into their details later — and that this
dissertation was trying to contribute to the development of a unifying logic-based
framework in which all such scenarios can be analyzed.

Even so, the choice of a logic-based approach might raise two questions: why
not an informal approach couched in natural language? Or why not go the way of
science, and take a probabilistic approach? These are important questions, but
in this introduction we can only offer very brief answers:

Logic and the role of conceptual analysis. In the philosophical literature,
models of rational interaction are frequently specified informally and the corre-
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sponding analysis is also commonly carried out in natural language. Examples
are Lewis [117] about assigning knowledge to agents, and Rawls [137] about the
decision-making of agents in the “original position”, i.e. in situations of incom-
plete information. They are sometimes presented in a mixture of natural and
formal language with Levi [116], on the truth-value of subjunctive conditionals,
as an example.

By choosing to rather give formal definitions of our models and develop a
logical analysis, we do not escape the need for conceptual analysis. To start with,
abstracting from concrete situations, to fix more abstract models, is in itself a
conceptual step whose correctness or legitimacy can only be checked or argued
for by informal means, even if one were to use mathematical or experimental
results to back up one’s analysis. Moreover by carrying out a logical analysis of
a phenomenon such as belief change and of the reasoning processes in which it
plays an important role, we pursue their conceptual analysis.

As for the benefits of this extra effort, we think that if agreement is reached on
some logical model as an abstract representation of a particular class of phenom-
ena, some conceptual questions can be given a logical formulation, and informal
argumentation can be replaced by mathematical proofs in well-controlled systems.
Thus one can give unambiguous definitions and prove rigorous conclusions.

Logic and quantitative approaches. To put it roughly (Appendix A has
more details) quantitative approaches work with real numbers: beliefs are en-
coded as probability spaces (and possibly information partitions) and preferences
by utility functions, while qualitative approaches can work with as little as rela-
tions. In our logics, beliefs are usually encoded by indistinguishability relations
(equivalently, information partitions) and/or plausibility orderings, while prefer-
ences are encoded by total pre-orders. Probabilistic approaches use much richer
models than qualitative ones, assuming that agents are able to elicit probability
functions, e.g. by ranking whole (probabilistic) lotteries. This allows for more
fined-grained decision-making, but it may put unrealistic demands on agents. In
our qualitative approach agents should simply able to say which of two situations
(states of the environment) they think is more likely, and we will even allow the
case where states of our models remain incomparable. An important question
for us is then, how much of the insight about intelligent agency that quantita-
tive, probabilistic approaches gave us remain in a qualitative, logical setting. A
concrete encounter between logical and quantitative approaches will take place
in chapter 4 on agreement theorems, where we re-analyze the classic results of
Aumann [13] in dynamic logics of belief.

We hope chiefly that this section gave the reader some intuition about our use
of basic concepts such as ‘knowledge’ and ‘belief’ and about the general context
(intelligent interaction) in which this dissertation works. We will now present the
logical systems for knowledge and belief that constitute the foundations of the
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framework, to be developed in Chapters 2 and 3, for reasoning about their evo-
lution as informational processes unfold. We will meet the epistemic-plausibility
models that play a crucial role throughout the dissertation, and a typical doxastic
language to reason about them, giving on the way some background about their
two historical roots.

1.3 Logics of knowledge and belief

The aim of this section is to familiarize the reader with epistemic-plausibility
models (Baltag and Smets [16]). They constitute a cornerstone of our whole
analysis of belief change, since the meaning we assign to the notion of belief
will be given with respect to these models. We try to give a precise picture
of epistemic and doxastic logics that can be interpreted on them: languages
and their semantics, and axiomatic proof-systems. (Models and languages to
reason about notions of evolution or dynamics of belief will be given in Section
1.6). This modal logic approach based on epistemic plausibility models has its
roots in two independent traditions. It inherits the semantic idea of plausibility
orderings to represent the conditional beliefs of an agent from classical AGM
[3]-type approaches to belief revision and more precisely from Grove’s system of
spheres (Subsection 1.3.1). It inherits the idea of and the methods for internalizing
the notions of knowledge and belief into the object language from the epistemic
logic program of Hintikka and its multi-agent continuations (Subsection 1.3.2).
After giving some details on both traditions, we finally present the epistemic
plausibility models and conditional doxastic logics recently developed by building
on the preceding ideas (Subsection 1.3.3).

1.3.1 AGM and plausibility orderings

The classical formal theories of belief change starting with Alchourrón et al.
[3] represent the beliefs of a particular agent as a set of propositional formulas
(belief set). Subsequent literature has considered the possibility of distinguishing
between basic and derived beliefs by introducing belief base revision [96]. A belief
base is a finite set of formulas such that its deductive closure is a belief set. But
earlier approaches assumed the belief set to be closed under some well-behaved
operation of logical consequence (such as the classical consequence relation).

In the context of belief sets an operation of revision maps pairs composed of
a closed set of propositional formulas (the initial beliefs of the agent) and of a
propositional formula (the incoming information) to a new closed set of propo-
sitional formulas (the new beliefs after revision). AGM [3] introduced a set of
postulates that should characterize a reasonable operation of revision. The pos-
tulates require among other things that the new information should be accepted
by the agent (success), that the new belief set should be consistent provided the
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incoming information is consistent (consistency) and that old beliefs should be
changed in a minimal way. For a complete list of the AGM postulates, the reader
is referred to [79] or [3].

Different representation theorems have been proposed in the literature. One
of them has been of particular importance for subsequent developments in modal
logics of belief change. Grove [90], building on Lewis [118] has a representation
result for the AGM postulates in terms of systems of spheres. For the sake of
clarity and to avoid any later ambiguity between two slightly different ways of
modeling similar notions, in this section, we refrain from introducing any explicit
formalism and present results informally. Let a state of the world be (or come
with) a complete specification of the state of environment, i.e. about all non-
doxastic facts. A sphere is a set of states of the world. Given a propositional
formula A, let ||A|| be the set of states at which A holds. A system of spheres
centered on a set of states X is a collection of spheres such that:

1. every two sets are comparable with respect to inclusion;

2. X is a minimal element of this collection with respect to inclusion;

3. the collection contains the set of all possible states of the world, and

4. for every sentence A of the propositional language, there is a smallest sphere
SA intersecting ||A||.

Grove [90] proved the following result:

Theorem 1.1 (Grove [90]). The following are equivalent

1. ⋆ is a revision operation satisfying the AGM postulates.

2. For each belief set K, there is a sphere system centered on the set of states
satisfying K, such that for all propositional formulas A, ϕ ∈ K ⋆ A iff ϕ
holds in all states in the intersection of SA ∩ ||A||.

As a conclusion, it is interesting to note that the preceding representation
is equivalent to having a total pre-order on states of the world such that every
(propositionally definable) non-empty subset has minimal elements. This way of
encoding beliefs and conditional beliefs is indeed at the root of models of belief
and knowledge introduced in the context of modal logics, that we will take as the
basis of our analysis and which make crucial use of such plausibility pre-orders.

1.3.2 Epistemic models and epistemic logics

Twenty years before the seminal paper of Alchourrón, Gärdenfors and Makinson
[3] on theory change, Hintikka [102] carried out an important philosophical project
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and by doing so introduced formal models that are one of the roots of the tradition
this dissertation is in line with. His idea was to import epistemic and doxastic
notions into the object language. The aim was thus to develop a logic of such
epistemic attitudes giving a formal foundation to “criteria of consistency for [. . . ]
sets of [epistemic] statements” or, equivalently, formal foundations to a notion of
consequence between epistemic statements.

Epistemic models, as introduced by Hintikka [102], compactly represent the
information the agents have about the world (what they know, or ‘first-order
information’), and about the information possessed by the other agents (what
they know about other agents’ information, or ‘higher-order information’). In
what follows, N = {1, . . . , n} is a fixed finite set of agents.

Definition 1.2 (Epistemic Models). An epistemic model M based on a set of
agents N is of the form (W, (∼i)i∈N , V ), where W 6= ∅, for each i ∈ N , ∼i is a
binary equivalence relation on W , and V : prop → ℘(W ).

We write |M| = W to refer to the domain of model M. We refer to a pair
(M, w) with w ∈ |M| as a pointed model. An epistemic plausibility frame F is
an epistemic plausibility model with the valuation V omitted.

Intuitively ∼i encodes i’s uncertainty: if s ∼i t, then if the actual world were
s then i would consider it possible that the world is actually t. Finally we note
that we often write Ki[w] := {v ∈ W | w ∼i v} to denote i’s information cell at
w. The basic epistemic language is defined as follows:

Definition 1.3 (Epistemic Language). The epistemic language LEL is defined as
follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ,

where i ranges over N , and p over a countable set of proposition letters prop.

The propositional fragment of this language is standard, and we write ⊥ for
p ∧ ¬p and ⊤ for ¬⊥. A formula Kiϕ should be read as “i knows that ϕ”. We
write 〈i〉ϕ or K̂iϕ for ¬Ki¬ϕ. LEL is interpreted on epistemic models as follows.

Definition 1.4 (Truth definition).

M, w 
 p iff w ∈ V (p)
M, w 
 ¬ϕ iff M, w 6
 ϕ
M, w 
 ϕ ∧ ψ iff M, w 
 ϕ and M, w 
 ψ
M, w 
 Kiϕ iff for all v such that w ∼i v we have M, v 
 ϕ

The important definition is that of knowledge Ki: a formula is known to i if
the formula is true in all states that i considers possible. [72, ch.2] is a detailed
introduction.

Axiomatization. The set of formulas of LEL valid over the class of all epistemic
models can be axiomatized as follows:
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PL ⊢ ϕ, for all classical propositional tautologies ϕ
Nec If ⊢ ϕ, then ⊢ Kiϕ
(KKi) ⊢ Ki(ϕ → ψ) → (Kiϕ → Kiψ)
(TKi) ⊢ Kiϕ → ϕ
(4Ki) ⊢ Kiϕ → KiKiϕ
(5Ki) ⊢ 〈i〉ϕ → Ki〈i〉ϕ
MP If ⊢ ϕ → ψ and ⊢ ϕ then ⊢ ψ

Table 1.1: Axiom system EL.

(4Ki) and (5Ki) are referred to as positive and negative introspection re-
spectively. On relational structures they characterize transitive and Euclidean
uncertainty relations.

The following is a basic result in modal logic. Blackburn et al. [39], ch.4 has
historical and formal details.

Theorem 1.5 (see e.g. Blackburn et al. [39]). EL is strongly complete with respect
to the class of epistemic models.

Richer languages include modalities for group epistemic notions such as com-
mon knowledge. Here is an example of such a language considered in [72]:

Definition 1.6 (Multi-Agent Epistemic Language). The multi-agent epistemic
language LMEL is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | EGϕ | DG | CGϕ,

where i ranges over N , p over a countable set of proposition letters prop and
∅ 6= G ⊆ N .

A formula EGϕ is read as “each agent in group G knows that ϕ”, DGϕ as
“it is distributed knowledge among group G that ϕ”, and CGϕ as “it is com-
mon knowledge among group G that ϕ”. To interpret this language we use the
following notion:

Definition 1.7. For each G ⊆ I, let ∼∗
G be the reflexive-transitive closure of

⋃

i∈G ∼i. Let [w]∗G = {w′ ∈W | w ∼∗
G w

′}.

These formulas are interpreted in epistemic models as follows:

Definition 1.8 (Truth definition).

M, w 
 EGϕ iff ∀v ∀i ∈ G (if w ∼i v then M, v 
 ϕ)
M, w 
 DGϕ iff ∀v (if (w, v) ∈

⋂

i∈G ∼i then M, v 
 ϕ)
M, w 
 CGϕ iff ∀v (if w ∼∗

G v then M, v 
 ϕ)
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Axiomatization. The set of formulas of LMEL valid over the class of all epistemic
models can be axiomatized as follows:

EG ⊢ EGϕ↔
∧

i∈GKiϕ
D{i} ⊢ D{i}ϕ → Kiϕ
Ki/DG ⊢ (

∨

i∈GKiϕ) → DGϕ
NecDG If ⊢ ϕ, then ⊢ DGϕ
(KDG) ⊢ DG(ϕ → ψ) → (DGϕ → DGψ)
(TDG) ⊢ DGϕ → ϕ
(4DG) ⊢ DGϕ → DGDGϕ
(5DG) ⊢ ¬DGϕ → DG¬DGϕ
CGFP ⊢ CGϕ → EG(ϕ ∧ CGϕ)
CGIR If ⊢ ϕ → EG(ϕ ∧ ψ) then ⊢ ϕ → CGψ

Table 1.2: Axiom system MEL.

The following result has several sources. For distributed knowledge see [71,
104]. For common knowledge see Kozen and Parikh [110]’s completeness proof
for PDL. Fagin et al. [72], ch.3 has details for both common knowledge and
distributed knowledge.

Theorem 1.9 (see e.g. Fagin et al. [72]). MEL is weakly complete with respect
to the class of epistemic models.

1.3.3 Epistemic plausibility models and doxastic logics

Drawing on both the modal, relational approach to knowledge described previ-
ously and the semantic models developed in the context of AGM [3] style belief
revision theory (such as Grove [90] spheres), Baltag and Smets [16], van Benthem
[29], Board [40] and van Ditmarsch [66] have developed new relational models on
which both beliefs and conditional beliefs could be interpreted. In this disserta-
tion we will be specifically interested in epistemic plausibility models as introduced
by Baltag and Smets [16].

In such models agents’ knowledge (information) will still be encoded by a
collection of uncertainty relations ∼i. But they will also carry a collection of
pre-orders ≤i between worlds standing for plausibility relations that encode the
current prior (conditional) beliefs of the agents.

Definition 1.10 (Epistemic Plausiblity Model [16]). An epistemic plausibility
model M = 〈W, (≤i)i∈N , (∼i)i∈N , V 〉 has W 6= ∅, for each i ∈ N , ≤i is a pre-order
on W and ∼i is a binary equivalence relation on W , and V : prop → ℘(W ).

The relation w ≤i w
′ means that w is considered at least as plausible as w′ by

agent i. Intuitively, the plausibility pre-orders encode the prior beliefs of agents.
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We will often consider plausibility relations to be total, but when we think of
beliefs in terms of multi-criteria decisions, a pre-order allowing for incomparable
situations may be all we get [70]. We will thus sometimes state our results for
both total and arbitrary pre-orders. We write a ≃ b (‘indifference’) if a ≤ b and
b ≤ a, and a < b if a ≤ b and b 6≤ a.

Beliefs for i at w are interpreted as truth in the minimal states of i’s informa-
tion partition at w, in other words a belief operator for i will then be necessity
with respect to the most plausible states (i.e. the ≤i-minimal elements) of i’s
information partition. To guarantee that such minimal elements always exist, we
will assume that the epistemic plausibility models satisify local well-foundedness
or a stronger constraint well-foundedness.

Definition 1.11 (Local well-foundedness). A plausibility pre-order satisfies:

• Local well-foundedness. If for all w ∈W , all i ∈ N , and for all X such
that ∅ ⊂ X ⊆ Ki[w], X has ≤i-minimal elements.

• Well-foundedness. If for all X such that ∅ ⊂ X ⊆ W and all i ∈ N , X
has ≤i-minimal elements.

M satisfies (Local) Well-foundedness if every plausibility pre-order has the cor-
responding property.

We introduce a few useful shortcuts before we turn to the languages and their
truth conditions.

Definition 1.12 ((A priori/a posteriori) Most plausible elements).

• For all X ⊆W , let βi(X) = min≤i
(X) = {w : w is ≤i-minimal in X}.

• For all w ∈W , let Bi[w] = βi(Ki[w]).

We write w �B
i v iff v ∈ Bi[w], and w →X

i v iff v ∈ βi(Ki[w] ∩X).

Intuitively βi(X) are the a priori most plausible elements of a set, ignoring the
information partitions. Bi[w] gives the states i considers most plausible, con-
ditional on the information he possesses at w, i.e. conditional on Ki[w]. The
relation w →X

i v maps w to all states i considers most plausible, conditional on
the information he possesses at w and on a given subset X.

Epistemic plausibility models are now ready to support a natural doxastic-
epistemic language:

Definition 1.13 (Basic doxastic-epistemic language). The language LDOX is de-
fined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Bϕ
i ϕ,

where i ranges over N , and p over a countable set of proposition letters prop.
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The formula Bϕ
i ψ, should be read “conditionally on ϕ, i believes that ψ.”

These formulas are interpreted in epistemic plausibility models as follows:

Definition 1.14 (Truth definition). We write ||ϕ||M for {w ∈ |M| : M, w 


ϕ}. We omit M when it is clear from the context.

M, w 
 p iff w ∈ V (p)
M, w 
 ¬ϕ iff M, w 6
 ϕ
M, w 
 ϕ ∧ ψ iff M, w 
 ϕ and M, w 
 ψ
M, w 
 Kiϕ iff for all v such that w ∼i v we have M, v 
 ϕ

M, w 
 Bψ
i ϕ iff for all v such that w →

||ψ||M

i v we have M, v 
 ϕ

Simple belief conditional only on i’s information at a state w can be defined
using the conditional belief operator: Biϕ = B⊤

i ϕ, since:

M, w 
 B⊤
i ϕ iff ∀v (if w �B

i v then M, v 
 ϕ).

For details about the axiomatization of the doxastic logic LDOX and similar ones,
the reader is referred to [40, 17].

Let us now give some intuition about the use of this language using Example
1.15 which represents a simple doxastic-epistemic situtation that we will put to
work in the next chapter. Here is how to read Figure 1.1.

Reading the figures. In Figure 1.1 (and the one involved in the continuation of

this example in Chapter 2), the actual state is the shaded one. Epistemic equivalence

classes are represented by rectangles or ellipses. We use < to display the strict plausi-

bility ordering within such classes. Our example assumes that all agents have the same

plausibility ordering. The agent i believes ϕ at w is interpreted as ϕ holds in the i-most

plausible states within i-information partition Ki[w]. An agent’s beliefs at the actual

state are thus displayed by an arrow from the actual state to the ones she considers

most plausible, often just one. Thus, an arrow from x to y labelled by the agent Denis

means that y is the ≤e-minimal state within Ke[x]. Finally, we omit reflexive arrows

throughout.

Example 1.15. Knowing about the Wii party. Céline and Enzo would like
to invite Denis to their Wii party. The party has been decided but none of them
has informed Denis yet. Denis considers it a priori more plausible that no Wii
party is taking place unless informed otherwise. This initial situation is common
knowledge between Céline and Enzo. In the following figures, plain rectangles (or
ellipses) will represent Denis’ epistemic partition, dashed ones Enzo’s and dotted
ones Céline’s; w and w are state names.

We can check e.g. that M, w 
 ¬(Kdp ∨Kd¬p) (Denis does not know whether
a Wii party is planned), M, w 
 BeKc¬(Kdp ∨ Kd¬p) (Enzo believes that Céline
knows that Denis does not know whether a Wii party is planned), M, w 
 p ∧
Bd¬p (Denis wrongly believes that no Wii party is planned) and M, w 
 Bp

dKep
(Denis believes that if there is a Wii party then Enzo knows it).
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Denis

w:¬p < w:p

Figure 1.1: No Wii Party unless stated otherwise. Initial model.

We use the notion of doxastic plausibility models to refer to epistemic-free
epistemic plausibility models. Formally:

Definition 1.16 (Doxastic Plausibility Model). A doxastic plausibility model M
= 〈W, (�i)i∈N , V 〉 has W 6= ∅, while, for each i ∈ N , �i is a pre-order on W ,
and V : prop → ℘(W ).

These models are useful to reason on the model-theoretic level when we would
like to focus on the plausibility orderings and their dynamics. Let us remark
that, in the literature [40, 29], epistemic-free models are considered in which the
plausibility ordering is taken to depend on the states. Without any additional
assumptions this approach is very general and allows for very diverse types of
agents, e.g. non-introspective agents.

A last approach considered in the literature consists in unifying the epistemic
relation and the plausibility relation in a single local plausibility ordering �. The
intuition is that the states which are epistemically possible at state w are the
ones that are �-comparable with w, while i believes ϕ at w is interpreted as ϕ
holding in the �-minimal elements of {v | v � w or w � v}. We refer to these
models as ‘unified’ or ‘local’ plausibility models.

Definition 1.17 (Unified (Local) plausibility models [40, 16]). A unified or local
plausibility model M = 〈W, (�i)i∈N , V 〉 has W 6= ∅, while, for each i ∈ N , �i is
a pre-order on W such that for each state w, � is connected and well-founded on
each of its comparability classes {v | v � w or w � v}, and V : prop → ℘(W ).

For details about languages interpreted on such structures see [17, 40].

Now that we have presented epistemic plausibility models and indicated how
the notions of (conditional) belief and knowledge are interpreted on them, we
would like to introduce frameworks that bring these notions into the context of
interactive systems of agents and study their evolution over time.

1.4 Global vs local models of rational agency

Some framework are concerned with the phenomenon of intelligent and rational
interaction as a whole, taking into account the different dimensions of rational
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behavior and reasoning involved in it. Game theory has such a global perspec-
tive, studying classes of predictable outcomes for classes of interactive situations.
Other frameworks isolate certain sub-phenomena, certain aspects of intelligent
agency and analyze them separately. Modal logics have been developed with
the aim of determining the valid inference patterns on given classes of models
representing a particular phenomenon of interest. Among them dynamic and
temporal logics seem currently the two major logical paradigms concerned with
some aspects of intelligent interaction.

Since these logical models are strongly connected with the models used by
game theory, in its analysis of strategic interaction between “intelligent rational
decision-makers” (Myerson [124]), we think it is interesting to go immediately
with some detail into what game theory is about before moving on to our pri-
mary interest: modal logics for reasoning about belief change. Introducing game
theory will give an idea of the use of global mathematical models of strategic inter-
action, taking into account agents’ capacities, preferences, information and belief
to analyze and understand how intelligent agents reason and make decisions in
interactive contexts (Section 1.5). We can then see how the two important logical
paradigms, the dynamic and the temporal approaches, deal with specific phenom-
ena (Section 1.6), with a special interest for those focusing on information and
belief dynamics.

1.5 Game theory

“Game theory analyses situations in which two or more individuals make deci-
sions that will influence one another’s welfare” [124]. It develops mathematical
models that aim at explaining strategic multi-agent decision-making. A game is
an abstract model of an interactive decision process. Game theory is interested
in classes of reasonable outcomes for classes of games, or solution concepts. There
are however different interpretations of the basic concepts of game theory, in par-
ticular of that of a solution concept. We think it is worth distinguishing between
these different interpretations before proceeding further.

1.5.1 On the interpretation of games

There are at least three ways to interpret a game. They essentially differ on
their interpretation of the concepts of strategies, solution concepts and — when
they appeal to them — of beliefs. These interpretations can be called epistemic,
evolutive and evolutionary. Let us immediately indicate that we won’t be con-
cerned with the third interpretation. Indeed it does not think of games as played
by intelligent decision-makers but by populations of automata, that may or may
not be evolutionary stable. In such an analysis, belief and belief change have
obviously no place.
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The epistemic interpretation of games.

In the epistemic perspective, games are one-shot events. Players will play against
each other for the first time and they have no reason to expect the interactive
situation to occur again. They may still have beliefs about the other players’
strategies (first-order beliefs) and about other players’ beliefs (higher-order be-
liefs). But these beliefs are not frequentist and do not result from previous play.
Therefore equilibrium concepts, in the sense of long-term stability of profiles of
beliefs and strategies (see evolutive interpretation), are not of primary interest.
More generally for a solution concept to be interesting under the epistemic in-
terpretation, it should be possible to give epistemic (and doxastic) satisfiable
conditions under which players will play according to the solution concept. Such
epistemic (or doxastic) conditions are called epistemic foundations. We will give
an example of such a foundation in Section 1.5.2 when we have introduced the
mathematical models.

The evolutive interpretation of games.

In the evolutive interpretation, players will play against each other more than
once, learn from their mistakes, and adjust their behavior, i.e. their strategies.
They can have beliefs about the other players’ strategies formed by observation
of previous play. At some point players might reach a state in which their ex-
pectations match the actual behavior of the other players and in which given
the behavior of the other players they don’t have any incentive to change their
own strategy. They reached an equilibrium. Under the evolutive interpretation
equilibrium concepts are of primary interest, Nash equilibrium being the most
famous. Moreover some equilibria might be less fragile than others, e.g. with re-
spect to out-of-equilibrium experimentation. Therefore different refinements are
considered in the (evolutive) literature.

1.5.2 Games as models.

A game specifies the different choices that the players have, and their preferences
over the outcomes of those (collective) choices. We will distinguish between games
along three lines: strategic and extensive-form (or simply extensive) games, games
with perfect information and games with imperfect information, and finally games
with complete and with incomplete information.

A strategic game is a game in which all players make a single choice and make
it simultaneously, while an extensive-form game is a game in which players make
one or more decisions and make them sequentially. For the later kind of games
players may or may not be perfectly informed about the sequence of actions that
has been taken so far by the other players. Games in which every player is always
certain of the previous history of actions when she is to move are said to be
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extensive games with perfect information (while the others are said to be with
imperfect information).

Finally players may or may not be completely informed about all parameters
of the game, they might e.g. be uncertain about another player’s preferences.
In games of incomplete information outcomes are determined by the profile of
actions taken by the agents and by the state of the world.

Let us only consider extensive games with incomplete information (strategic
games of incomplete information won’t play a role in this dissertation). In the
probabilistic context Harsanyi [98] has shown that — under some assumptions —
such a game could be equivalently analyzed as an extensive game with imperfect
but complete information in which an additional agent Chance or Nature (without
strategic interest) will draw according to some probability distribution the state of
the world (e.g. the preferences of a player). About the actual draw, agents might
receive more or less accurate information. Therefore we can focus on extensive
games of imperfect information.

We first introduce strategic games of complete information and then turn to
extensive games of imperfect information.

Definition 1.18 (Strategic game, see e.g. [127]). A strategic game G based on
a set of agents N is of the form ((Ai)i∈N , (�i)i∈N). For each i ∈ N , Ai 6= ∅ is
the set of actions available to i, �i is a total pre-order on ×j∈NAj (i’s preference
relation). Given a strategy profile s ∈ ×i∈NAi, let s−i = ×j∈N\{i}Aj.

Let us mention two well-known solution concepts: pure Nash equilibrium and
iterated strict dominance. A Nash equilibrium in pure strategies is a strategy
profile that finds itself in a stable state in the sense that given the strategy chosen
by the other players in a pure Nash equilibrium no player would have been better
off by choosing another pure strategy. Another way to give the intuition is to
say that if a player expects all others to conform to a Nash equilibrium then
playing herself according to this Nash equilibrium is (one of) her best choice(s)
or response(s). Formally:

Definition 1.19 (Nash equilibrium in pure strategies, see e.g. [127]). A Nash
equilibrium in pure strategies of a strategic game ((Ai)i∈N , (�i)i∈N) is a strategy
profile s∗ ∈ ×i∈NAi such that for every i ∈ N and strategy ai ∈ Ai we have:
(a∗−i, a

∗
i ) �i (a∗−i, ai).

On the other hand, iterated strict dominance (or iterated elimination of strictly
dominated actions) is an iterative procedure by which actions that can never be
best responses, i.e. cannot be optimal for any profile whatsoever of strategies for
the other agents, are iteratively eliminated.

Definition 1.20 (Strictly dominated actions). An action ai is strictly dominated
by an action bi in a game ((Ai)i∈N , (�i)i∈N ) if for all profile strategies s−i available
for the other agents, (s−i, bi) ≻i (s−i, ai), and ai is strictly dominated if it is
dominated by some action.
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We give an informal definition of (surviving) iterated strict dominance and
refer to e.g. [127, ch.4] for a formal definition.

Definition 1.21 (Surviving iterated strict dominance). Given a game, iterated
strict dominance eliminates all actions that are strictly dominated, generating a
reduced game, and restarts from this reduced game, until it reaches a fixed point.
A profile of strategy survives iterated strict dominance if it belongs to the strategy
space in the fixed point.

To illustrate the epistemic approach, we give an example of an epistemic
foundation of a solution concept that we state informally:

Theorem 1.22 (Tan and Werlang [150]). An action ai can rationally be chosen
under common belief of rationality iff ai survives iterated strict dominance.

The first direction of the theorem says that if in some state of a doxastic model
of the game it is common belief between the players that they will take an action
that is a best response to their beliefs, then at this state they are choosing an
action that survives iterated strict dominance.

We now turn to extensive-form games with imperfect information. As for
other relations, we will write <[t] to be the image of t under the relation <, i.e.
<[t] = {s ∈ T | t < s}.

Definition 1.23 (Extensive-form game with imperfect information, see e.g. [124]).
An extensive-form game is of the form

(T,<, Z,N, ρ, (≡i)i∈N , Act, A, (ui)i∈N ), where

• (T,<) is a finite rooted tree,

• Z = {t ∈ T | <[t] = ∅} is the set of terminal nodes,

• ρ : T \ Z → N ∪ {c} indicates which player, possibly Chance, is to move.

• ≡i is an equivalence relation on ρ−1(i) encoding i’s information. We write
Ki[t] := {s : t ≡i s }, for i’s information cell at t.

• Act is a set of actions and for each (t, s) such that t < s, A(t, s) is the
particular action that would lead from t to s. (Formally A : {(t, s) | t <
s} → Act is such that for every t ∈ T the restriction of A to {t} × <[t] is
an injection).

• Given some non-terminal node t, let A[t] := {A(t, s) | t < s}. A should be
such that A[t] = A[s] whenever t ≡i s, for some i.

• Finally ui : Z → IR is player i’s utility function.
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We will focus on extensive games with imperfect information “in which at
every point every player remembers what he knew in the past” [127]. We call
this notion game-theoretical perfect recall to differentiate it from a related and
less demanding notion of perfect recall that we will meet later in the context of
epistemic temporal logics. Let us first define the notion of record.

Definition 1.24 (Record of player i’s experience; [127]). The record of player
i’s experience at t, Xi(t) for t ∈ T , is the sequence of information cells that the
player i has encountered until t and the action she has taken at them.

We now define the game-theoretical notion of perfect recall.

Definition 1.25 (Game-theoretical perfect recall; [127]). And extensive-form
game with imperfect information has the game-theoretical perfect recall property
if for each agent i, Ki[t] = Ki[t

′] implies Xi(t) = Xi(t
′).

As for strategic games different equilibrium notions and solution algorithms
have been considered to take into account the sequential structure of a game. We
will meet some of them in our discussion of strategic reasoning in Chapter 6.

This was a very compact and partial introduction to game theory. For a
detailed presentation the reader is referred to one of the following textbooks:
[127, 124, 126, 78].

Let us conclude this introductory section on the basics of game theory by
mentioning that logical approaches to solution concepts and their epistemic foun-
dations have been developed in recent years, notably by [7, 31, 40, 43, 21]. The
logical systems considered in these papers combined ideas of the more local ap-
proaches offered by different temporal and dynamic logics — local in the sense
that each of these logics isolates a particular phenomenon of interest. Such tem-
poral and dynamic logics are the subject of our next section.

1.6 Dynamic and temporal logics for belief change

Dynamic and temporal logic offer two important and complementary perspectives
on particular phenomena of interest in the context of an analysis of intelligent
interaction:

• Temporal logics give a more global view on particular scenarios describing
all possible evolution of some multi-agent system. Some of these temporal
logics deal specifically with the evolution of agents’ knowledge and beliefs.

• Dynamic logics consider epistemic events as generic entities and study the
logics of such events. As an example the concept of a public announcement
corresponds to a particular class of event models that can be applied to
and transform any given multi-agent situation and the beliefs that agents
entertain; and it is possible to give its logic.
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There are naturally relations between the two approaches and making them
explicit is something we will pay special attention to.

1.6.1 Dynamic logics

Dynamic logics of model change study different types of informational events
and how they transform the informational and doxastic dimensions of multi-
agent (social) situations. Two of such logical systems have played a foundational
role: public announcement logic (PAL) and dynamic epistemic logic (DEL) (the
latter being a generalization of the former). Both of these systems take epistemic
models as their basis and investigate logically how such models evolve under new
information taking the form of epistemic events.

PAL

The logic of public announcements or PAL [134, 83, 15] is concerned with how
agents’ information (what they know) and high-order information (what they
know about each other’s information) evolves as (epistemic) facts are publicly
announced. The language of PAL — LPAL — extends that of EL and includes
modalities of the form 〈!ϕ〉, meaning ‘after ϕ is (publically and truthfully) an-
nounced, . . . ’. Given an epistemic model M, let M|ϕ be its relativization to
||ϕ||M = {w ∈ |M| | M, w 
 ϕ}. The truth condition for public announcements
is then:

Definition 1.26 (Truth condition for public announcements).

M, w 
 〈!ϕ〉ψ iff M, w 
 ϕ and M|ϕ,w 
 ψ

Axiomatization. The set of formulas of LPAL valid over the class of all epistemic
models can be axiomatized by extending EL with the following axioms:

(!p) ⊢ 〈!ϕ〉p↔ (ϕ ∧ p)
(!¬) ⊢ 〈!ϕ〉¬ψ ↔ (ϕ ∧ ¬〈!ϕ〉ψ)
(!∧ ) ⊢ 〈!ϕ〉(ψ ∧ χ) ↔ (〈!ϕ〉ψ ∧ 〈!ϕ〉χ)

(!K̂i) ⊢ 〈!ϕ〉K̂iψ ↔ (ϕ ∧ K̂i〈!ϕ〉ψ)

Table 1.3: Axiom system PAL.

Theorem 1.27 (Soudness of PAL, [134, 83, 15]). PAL is sound with respect to
the class of epistemic models.

The soundness of PAL guarantees that a complete compositional analysis
can be carried out into the epistemic language. Every formula of the public
announcement language is thus equivalent to a formula of the epistemic language,
whose validities are already decided by the axiom system EL.
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Corollary 1.28 (see e.g. Blackburn et al. [39]). PAL + EL is strongly complete
with respect to the class of epistemic models.

Dynamic epistemic logics and product update

DEL is a generalisation of public announcement logic (PAL) [134]. The seminal
paper is Baltag et al. [20]. Building on that work, ‘dynamic epistemic logic’ (DEL)
includes operators 〈α〉, meaning ‘after the event α occurs . . . ’. The crucial idea
is that, in the same way epistemic models encode static multi-agent situations,
epistemic event models can encode (epistemic) events which transform the current
informational multi-agent situation, i.e. transform the epistemic models.

Definition 1.29 (Event Models). An event model is a triple: ǫ = 〈E, (∼ǫ
i)i∈N ,

pre〉, where E 6= ∅ is a set of events, for each agent i ∈ N , ∼ǫ
i is a binary

relation on E, pre : E → LEL, is a precondition function and LEL is an epistemic
language. A pointed event model is an event model with one distinguished element
from |E|.

While event models encode different epistemic events, the new epistemic model
encoding the new situation is computed according to a simple general mechanism:
product update.

Definition 1.30 (Product Update). The product update of an epistemic model
M = 〈W, (∼i)i∈N , V 〉 with an event model ǫ = 〈E, (∼ǫ

i)i∈N , pre〉 is the model
M⊗ ǫ whose states are the pairs (w, e) such that w satisfies the precondition of
the event e and whose epistemic relations are defined as:

(w, e) ∼′
i (w′, e′) iff e ∼ǫ

i e
′, w ∼i w

′

and whose valuation is defined by

(w, e) ∈ V ′(p) iff w ∈ V (p), for all p ∈ prop.

An epistemic model describes what agents currently know, while product up-
date creates the new epistemic situation after some informational event has taken
place. Illustrations of the strength of this simple mechanism can be found in [15].

In adding these dynamic operators to static epistemic logic, DEL merges ideas
from philosophy and computer science. [20] and [83] were seminal in the devel-
opment of DEL. Operators matching epistemic events are interpreted as follows.

Definition 1.31 (Truth condition for epistemic actions modalities).

M, w 
 〈ǫ, e〉ψ iff M, w 
 preǫ(e) and M⊗ ǫ, (w, e) 
 ψ

The axiomatization in Table 1.4 is really a scheme that should be instantiated
in the relevant ways. To each event model correspond a modality and a specific
Action-Knowledge (〈ǫ, e〉Ki) axiom.



1.6. Dynamic and temporal logics for belief change 21

PL ⊢ ϕ, for all classical propositional tautologies ϕ
Nec If ⊢ ϕ, then ⊢ Kiϕ
(〈ǫ, e〉p) ⊢ 〈ǫ, e〉p↔ (preǫ(e) ∧ p)
(〈ǫ, e〉¬) ⊢ 〈ǫ, e〉¬ψ ↔ (preǫ(e) ∧ ¬〈ǫ, e〉ψ)
(〈ǫ, e〉 ∧ ) ⊢ 〈ǫ, e〉(ψ ∧ χ) ↔ (〈ǫ, e〉ψ ∧ 〈ǫ, e〉χ)

(〈ǫ, e〉K̂i) ⊢ 〈ǫ, e〉K̂iψ ↔ (preǫ(e) ∧ K̂i

∨

f :e∼ǫ
if
〈ǫ, f〉ψ)

Table 1.4: Axiom system DEL.

Theorem 1.32 (Soudness of DEL, [20]). DEL is sound with respect to the class
of epistemic models.

For the same reason as for PAL, completeness follows.

Corollary 1.33 (Baltag et al. [20]). DEL+EL is strongly complete with respect
to the class of epistemic models.

Dynamic epistemic logics deal with strong signals, changing our information,
removing uncertainties in a radical way, but other types of signals might affect our
beliefs in much weaker ways. I might believe the news on the radio, but I might
not take it for certainty as I would with some observation I made directly. The
DEL approach can be extended to cases of belief change building on epistemic
plausibility models. Such dynamic logics for belief change have been developed
recently (van Benthem [29], Baltag and Smets [16]) considering the type of events
that trigger changes not only in the uncertainty relation but also in the plausibility
ordering. We decided to leave the introduction of dynamic doxastic logic (DDL),
and the important mechanism of Priority Update, to the next chapter in Section
2.3. Similarly we will leave the introduction of doxastic temporal logics to that
chapter. Indeed Chapter 2 will carry out a systematic comparison of these two
logic-based approaches to belief change and we thought it was natural to present
these two approaches together in detail in that chapter.

1.6.2 Temporal logics

As for temporal logics of agency, they can be divided in two categories, depending
on which aspect of multi-agent systems the logics focus on: what agents can
achieve or what agents know.

Temporal logics of agency

On the one hand are temporal logics that study models which capture what agents
or groups of agents can achieve. Such logics build on temporal logics developed in
the computer science and philosophy community (Stirling [149] and Hodkinson
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and Reynolds [103] give surveys) and/or neighborhood semantics [58]. Among the
most prominent of these logics of individual and coalitional agency are Coalition
Logic [131], Alternating-time temporal logic [4], STIT [24] and Game Logic [132].
Models are usually temporal trees or forests together with some functions or
relations encoding the power of the agents, or some variant of labelled-transition
systems based on neighborhood semantics that can be unfolded into temporal
trees or forests. We refer to [105] for a detailed overview of these different systems.

We will be especially concerned with the extension of such logics with prefer-
ences (such as e.g. [112, 1]) in Chapter 7.

Epistemic temporal logics

On the other hand are epistemic temporal logics that focus on the evolution of
agents’ knowledge and the effect of different protocols on this evolution. These
logics are most frequently interpreted either on Epistemic Temporal Forests [130]
or on Interpreted Systems [72]. While the second approach considers agents’
internal states as structural primitives, the first approach takes uncertainty rela-
tions to be the primitives. In this dissertation we work with Epistemic Temporal
Forests, but the two approaches are deeply related. Pacuit [128] shows that the
logics developed on both types of structures form a coherent family. To be more
specific Pacuit [128] shows that for natural epistemic temporal languages a for-
mula is satisfiable in a pointed Epistemic Temporal Model iff it is satisfiable in
an Interpreted System. In this dissertation we prefer to work with Epistemic
Temporal Forests.

We now turn to epistemic temporal models, introduced by Parikh and Ra-
manujam [130] as a Grand Stage of unfolding informational events. In what
follows, Σ∗ is the set of finite sequences on any set Σ, which naturally forms a
branching ‘tree’.

Definition 1.34 (Epistemic Temporal Models). An epistemic temporal model
(‘ETL model’) H is a tuple 〈Σ, H, (∼i)i∈N , V 〉 with Σ a finite set of events, and
H ⊆ Σ∗ closed under non-empty prefixes. For each i ∈ N , ∼i is a binary relation
on H, and there is a valuation V : prop → ℘(H).

Here the set of histories H functions as a protocol defining all admissible
trajectories of an informational multi-agent process. We refer to the information
of agent i at h by Ki[h] = {h′ ∈ H | h ∼i h

′}.
For some applications we will consider epistemic temporal models allowing

ω-sequences. Formally ω-epistemic temporal models are a generalization of epis-
temic temporal models in which the set of histories H is a subset of Σ∗ ∪Σω. We
will also consider particular cases of epistemic temporal models equipped with a
set of initial states W and with H ⊆W ◦ (Σ∗) where ◦ stands for concatenation.
We refer to such models as W -epistemic temporal models. ω-W -epistemic tem-
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poral models have then: H ⊆W ◦ (Σ∗ ∪Σω). Finally in the case of W -epistemic
temporal models we use the following notation:

Definition 1.35 (Bundle of sequences associated with a state w). Let P : s 7→
({s} ◦ (Σ∗ ∪ Σω)) ∩H for s ∈ W . Intuitively, P(s) is the protocol or bundle of
sequences of events associated with s. We refer to the 〈W,Σ, H〉-part of an ETL
model as the protocol this model is based on.

These approaches have been extended to the analysis of belief change over
time. Such doxastic temporal logics as introduced by Friedman and Halpern [77]
and Bonanno [47] represent time globally as a bundle of possible histories where
the beliefs of agents evolve as informational processes unfold. As for the dynamic
case, we leave the introduction of doxastic temporal logics to Chapter 2 in order
to keep the presentation of the dynamic and the temporal approaches to belief
change together before proceeding to their systematic comparison.

Finally we mentioned that our analyses will not only be carried out at the level
of structural primitives but also at the syntactic level. The next section discusses
modal languages that are richer than the basic modal language and systematic
criteria both to check whether certain types of reasoning can be carried out in
certain languages and to compare languages in terms of their expressive power.

1.7 Richer languages for agency: comparing and

evaluating their expressive power

Throughout the dissertation we will often compare alternative languages to rea-
son about particular structures, with a special focus on definability issues, i.e. on
whether a language is strong enough to distinguish between certain pointed mod-
els or to characterize certain classes of frames. Answering definability questions
will help us to determine which languages are suitable to capture certain types
of reasoning or whether we can hope to give a syntactic counterpart to semantic
results in a given language.

As it will turn out basic languages such as the basic epistemic languages
LEL or the basic doxastic language LDOX will be generally too weak for the
type of reasoning we will encounter. For many applications it will be useful
to draw on the resources of hybrid languages and boolean modal logics which
represent intermediate languages between basic modal languages and a full first-
order language. We will briefly introduce these two types of extended modal
languages in the next subsection.

As for deciding questions relating to the expressivity of modal logics, such
as definability questions, we can base ourselves on known invariance results that
characterize the expressive power of known classes of logics. The reader can
find some background on these invariance results and important operations and
relations on models that we refer to throughout the dissertation in Appendix B.
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We present two natural ways of extending basic modal languages that have
been considered in the literature. The first idea is to add syntactic counterparts
to primitive semantic notions, notably using nominals to refer to states in the
language. Hybrid languages follow this line. The second idea is to have modalities
not only for the primitive relations, but for their union, their intersection and
other constructs.

Hybrid languages

Any modal language can be extended by adding a new kind of propositional let-
ter: nominals (i, j, k . . .) that will serve as names for states. They can be used
in this way by having the valuation function map a nominal to a singleton of the
domain (V : nom → ℘(W ) with for all i ∈ nom, |V (i)| = 1). On top of that,
we can add satisfaction operators @i,@j . . ., with “ϕ holds at the state named
by i” as the intended meaning of @iϕ. Given a language LXY Z(τ) we refer to
HXY Z(@, τ) as its hybrid extension. Furthermore we can extend this language
with state variables x, y, z, . . . and a binder ↓x., ↓y., . . . which binds state vari-
ables to the current state. They are used in this way by interpreting formulas at
a pointed model together with an assignment function g : svar → W , mapping
state variables to states (elements of the domain). “Bind (interpret) x to (be)
the current state, now ϕ holds in the current state” is the intended meaning of
↓x.ϕ and finally we have satisfaction operators for state variables @x,@y,@z, . . .
Given a language LXY Z(τ) we refer to HXY Z(@, ↓, τ) (resp. HXY Z(↓, τ)) as its hy-
brid extension with binders, state variables and with (resp. without) satisfaction
operators.

Let us give a concrete example.

Definition 1.36 (Hybrid Epistemic Language with binders and satisfaction op-
erators). The epistemic language HEL(@, ↓, τ) is defined as follows:

ϕ ::= p | i | x | @iϕ | @xϕ | ↓x.ϕ | ¬ϕ | ϕ ∧ ϕ | Kjϕ,

where j ranges over N , p over a countable set of proposition letters prop, i over
a countable set of nominals nom, and x over a countable set of state variables
svar.

HEL(@, ↓, τ) is interpreted on epistemic models together with an assignment
g : svar → W as follows.
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Definition 1.37 (Truth definition).

M, w, g 
 p iff w ∈ V (p)
M, w, g 
 i iff w ∈ V (i)
M, w, g 
 x iff g(x) = w
M, w, g 
 ↓x.ϕ iff M, w, g[g(x) := w] 
 ϕ
M, w, g 
 @iϕ iff M, v, g 
 ϕ where v ∈ V (i)
M, w, g 
 @xϕ iff M, g(x), g 
 ϕ
M, w, g 
 ¬ϕ iff M, w 6
 ϕ
M, w, g 
 ϕ ∧ ψ iff M, w 
 ϕ and M, w 
 ψ
M, w, g 
 Kiϕ iff for all v such that w ∼i v we have M, v, g 
 ϕ

Boolean modal languages and PDL

A propositional letter is interpreted as a subset of the domain. And boolean
connectives allow us to construct new formulas and to refer to a richer collection
of subsets of the domain. A program is the syntactic counterpart to a relation in
the model. For example we could think as Ki as scanning the program i which
is interpreted as ∼i. In the same way that new formulas can be constructed
from propositional letters, boolean modal languages allow us to construct new
programs from the basic programs according to some operations such as ∪, ∩
and complement. For some applications, it is enough to consider a few additional
programs instead of taking the collection of allowed programs to be a complete
algebra.

Let us take an example.
We can build a program which is interpreted as the intersection ≥i ∩ ∼i.

The necessity operator scanning this program is a new modality with its own
properties. In fact the corresponding necessity operator is a weakly defeasible
(S4)-knowledge operator of ‘safe belief’ [16] whose semantics is as follows:

M, w 
 2iϕ iff ∀v with v ≤i w and w ∼i v we have M, v 
 ϕ

Given an arbitrary model we can go further and allow for the set of programs
to be an algebra containing a set of atomic programs; a boolean algebra in the
case of the boolean modal logic considered in Gargov and Passy [80], a Kleene
algebra for PDL (see e.g. [69, 39]). But other combinations are naturally possible.
By extension one often refers to logics defined in these ways as boolean modal
logics or as propositional dynamic logics (often when containing iteration). As
an example if we take the set of programs to be closed under intersection, union
and iteration, our language will be defined as follows.
Syntax. Our language has a recursively defined set of programs:

α ::= a | α ∪ α | α ∩ α | α∗

where a ranges over a set of atomic programs A.
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To each program correspond a modality 〈α〉 in the language:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ

where p ranges over proposition letters prop.

Semantics. This language will be interpreted on models of the form 〈W, (Ra)a∈A, V 〉
as follows, starting with the interpretation of programs:

Ra = Ra

Rα∪β = Rα ∪ Rβ

Rα∩β = Rα ∩ Rβ

Rα∗ = (Rα)
∗

Now for the interpretation of (the new clause of) our language:

M, w 
 〈α〉ϕ iff for some v with wRαv we have M, v 
 ϕ

As an example, if we take our basic set of programs to correspond to the uncer-
tainty relations for the agents, then common knowledge and distributed knowl-
edge become definable as follows: CGϕ↔ [(

⋃

i∈G ∼i)
∗]ϕ and DGϕ↔ [

⋂

i∈G ∼i]ϕ.

As mentioned, extended modal languages will be worth considering to adjust
the expressive power to our needs of definability, as driven by the applications we
have in mind, i.e. the type of reasoning we would like to capture within the object-
language. We will be interested in languages that are able to distinguish between
certain situations as represented by relational models with a distinguished state
(pointed models), but also in languages that are able to define relevant classes of
frames. In both cases an important tool-box can help us to prove whether the
definability task is feasible, before trying and defining crucial concepts explicitly.
These tools are introduced in Appendix B.

1.8 Recapitulation and coda

We have now stated the general aims of this dissertation, put it in perspective
among other fields, and provided some crucial existing background.

To summarize, this dissertation is concerned with intelligent agency, and in
this context, it focuses on the information flow and belief dynamics that under-
lie it. Our aim is to give a unified logical perspective on belief change and the
reasoning processes at work in intelligent interaction. Moreover, we want to use
the resulting framework to link up with interactive reasoning (interactive epis-
temology), inductive reasoning (formal learning theory) and strategic reasoning
(game theory). Having a logical approach allows us to extract patterns of rea-
soning common to all these different approaches. To do so we identify the right
languages to define crucial notions and carry out the relevant reasoning.
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Having a common perspective also allows us to compare assumptions across
fields, and import ideas from one to another. To illustrate this, we will start
by building an interface between dynamic logics of belief change and doxastic
temporal logics at both the structural and the syntactic level, and from there
reach out towards non-logical, sometimes even quantitative, approaches.
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Summary and sources of the chapters

Chapter 2 is based on van Benthem and Dégremont [32].

This chapter builds bridges between the two prominent families of modal logics
of belief change: dynamic doxastic logics computing stepwise updates, and tempo-
ral doxastic logics describing global system evolutions, both based on plausibility
pre-orders. Following earlier results linking dynamic-epistemic and epistemic-
temporal logics, we prove representation theorems showing under which condi-
tions a doxastic temporal model can be represented as the stepwise evolution of a
doxastic model under successive ‘priority updates’. This then allows for merging,
where, in particular, the notion of a ‘temporal protocol’ defining an informational
process can be introduced into the more local dynamic perspective.

Chapter 3 is new, and it forms a natural syntactic counterpart to our first chap-
ter. It studies formal languages for reasoning about multi-agent belief change,
starting with static languages and their relative expressive power. It then moves
to dynamic doxastic languages and their compositional analysis. Next we consider
doxastic temporal languages, and definability issues of the important notions in
the structural characterization of ‘priority updaters’ in the previous chapter. Fi-
nally, it gives a complete logic of protocol-based belief revision that exemplifies a
merge of dynamic and temporal logics.

Chapter 4 is based on Dégremont and Roy [64].

In this chapter we bring Aumann’s Agreement Theorem to dynamic-epistemic
logic. We show that common belief of posteriors is sufficient for agreements
in ‘epistemic-plausibility models’, under common and well-founded priors, from
which the usual form of agreement results, using common knowledge, follows.
We do not restrict to the finite case, and show that in countable structures such
results hold if and only if the underlying ‘plausibility ordering’ is well-founded.
We look at these results from a syntactic point of view, showing that neither well-
foundedness nor common priors are expressible in a commonly used language, but
that the static agreement result is finitely derivable in an extended modal logic.
We finally consider ‘dynamic’ agreement results, show they have a counterpart in
epistemic-plausibility models, and provide a new form of agreements via ‘public
announcements.’ A comparison of the two types of dynamic agreements reveals
that they can indeed be different.

Chapter 5 is based on Dégremont and Gierasimczuk [61].

This chapter studies the phenomenon of inductive reasoning from the interface
between temporal and dynamic doxastic logics. It builds connections with formal
learning theory, which formalizes the phenomenon of language acquisition — and
can also be interpreted as a theory of empirical inquiry. The theory focuses on
various properties of the process of conjecture-change over time. Treating ‘con-
jectures’ as beliefs, we link the process of conjecture-change to doxastic update.
Using this approach, we reconstruct and analyze the temporal aspect of learning
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in the context of temporal and dynamic logics of belief change. In particular, we
translate learning scenarios into dynamic doxastic epistemic logic, and express
finite identifiability as a problem of epistemic temporal logic model checking.
Furthermore, we prove representation results of learnability conditions in terms
of classes of doxastic epistemic temporal frames.

Chapter 6 builds on ideas from Dégremont and Zvesper [65].
This chapter focuses on strategic reasoning in extensive games of imperfect

information. We distinguish and consider two families of logics that can be put
to work to model strategic reasoning. These include temporal logics that are
interpreted on structures that are almost the game itself, or a natural extension
with additional relations. We also study dynamic logics that work with epistemic
and doxastic models of games, and show how to model strategic reasoning as
a model-changing operation. In both cases, we indicate with examples how the
logics can be put to use to reason concretely, about key notions concerning players
in strategic scenarios.

Chapter 7 is based on Dégremont and Kurzen [62].
This chapter is concerned with two other crucial dimensions of intelligent in-

teraction: preferences, and coalitional group power. It studies expressivity and
complexity of normal modal logics for reasoning about cooperation and prefer-
ences. We identify local and global notions for reasoning about cooperation of
agents that have preferences. Many of these correspond to game- and social
choice-theoretical concepts. We specify the expressive power required to express
these by determining whether they are invariant under relevant operations on
different classes of models and frames. We consider a large class of known ex-
tended modal languages, and show how the chosen notions can be expressed in
well-chosen fragments. To determine how demanding reasoning about coopera-
tion is in terms of computational complexity, we use known complexity results
for extended modal logics, and obtain for each local notion an upper bound on
the complexity of modal logics expressing it.

Chapter 8 summarizes the results of the dissertation, and states some larger
and smaller open problems that arise when logic is used as a unifying medium in
the way we have advocated here.



Chapter 2

Multi-agent
belief change: Bridges between dynamic
doxastic and doxastic temporal logics1

Our first task is to describe how agents revise their beliefs over time. As mentioned
the phenomenon has been studied from many perspectives already, and our aim
is not to increase the number of existing approches, but rather to unify them. We
try to generate coherence by working with the methodology of dynamic epistemic
(and dynamic doxastic) logic, but relating it systematically to other approaches,
so that the apparent diversity in the field gets reduced, and connecting with
yet further fields becomes easier (in later chapters). Since this is the broader
framework for the whole dissertation, we devote quite some time to this theme,
in fact, two chapters, one more semantic and one more syntactic.

2.1 Introduction

In this chapter we carry out a systematic comparison of two logic-based ap-
proaches at the structural level. One is dynamic logics for belief change that have
been developed recently (van Benthem [29], Baltag and Smets [16]) using plausi-
bility relations between worlds to represent agents’ beliefs and conditional beliefs.
An act of revision is then a single step of change in such a relation, triggered by
some new incoming, hard or soft, information. Of course, such single steps can
be iterated, leading to longer sequences. The other approach that we consider are
doxastic temporal logics (cf. Halpern and Friedman [77], Bonanno [47]), repre-
senting time as a Grand Stage of possible histories where informational processes
unfold.

In the process of comparing these frameworks, we do not operate in a void.
Similar questions have been solved for knowledge in van Benthem and Pacuit [34],

1This chapter is based on van Benthem and Dégremont [32].
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and van Benthem, Gerbrandy, Hoshi and Pacuit [36], in the form of representa-
tion theorems showing how sequences of models produced by ‘product update’
in dynamic-epistemic logic form a special subclass of epistemic temporal models
in the sense of Fagin, Halpern, Moses and Vardi [72] and Parikh and Ramanu-
jam [130]. In particular, these are the temporal models for agents endowed with
Perfect Recall and ‘No Miracles’, learning by new observations only, possibly
constrained by epistemic protocols. Our aim is to do the same for the dynamic
doxastic logic of plausibility change by ‘priority update’, relating this to models
of doxastic temporal logic. We will identify the crucial agent features behind
dynamic doxastic belief revision, and position them inside the broader temporal
setting. This is not just a simple generalization of the epistemic case, but the
benefits are similar: comparability of frameworks, and interesting new research
questions once they are merged. In this chapter, we concentrate on the represen-
tation aspect. Further development of the merged theory of dynamic agents in a
doxastic temporal language and logic is found in the next chapter.

We start in the next section with basic terminology and background on ear-
lier results for the epistemic setting. In Section 2.3.1 we motivate the choice of
doxastic plausibility models as our representation of static multi-agent doxastic
situations. We then present the dynamic step by step approach to belief change
(Section 2.3), in particular, defining priority update. Next, the global tempo-
ral approach to beliefs over time is presented in Section 2.4. In Section 2.5 we
show how step by step priority updates of a doxastic model, perhaps constrained
by a protocol, generate a doxastic temporal model. The key temporal doxastic
properties that characterize priority updaters are then identified and motivated
in Section 2.6. In section 2.7 we prove our main result linking the temporal and
dynamic frameworks, for the special case of total pre-orders, and then in general
in Section 2.8. We discuss some variations and extensions in Section 2.9.

2.2 Background results

Epistemic temporal trees and dynamic logics with product update are comple-
mentary ways of looking at multi-agent information flow. Representation the-
orems linking both approaches were proposed for the first time in [28]. A nice
presentation of these early results can be found in [119, ch5]. We briefly state a
recent version from [36], referring the reader to that paper for a proof, as well as
generalizations and variations.

We have defined epistemic models, event models and product update in Sec-
tion 1.6.1 and epistemic temporal models, introduced by [130] as a Grand Stage
of unfolding informational events, in Section 1.6.2.

While such ETL models are very general, many special constraints are possi-
ble. Some are the usual assumptions in epistemic logic, like having accessibility
be an equivalence relation for S5-agents. But more important here are properties
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connecting epistemic accessibility with flow of time, defining general properties of
an informational process and the agents participating in it. Such agents can have
more idealized or more bounded powers of observation, memory, and other cog-
nitive features. In particular, the following epistemic temporal properties drive
the main representation theorem in [36]:

Definition 2.1 (Basic Agent Properties).

• Perfect Recall H satisfies perfect recall iff ∀he, h′f ∈ H if Ki[he] = Ki[h
′f ],

then Ki[h] = Ki[h
′]. It states that agents do not forget past information as

events take place.

• Synchronicity H satisfies synchronicity iff ∀h, h′ ∈ H if Ki[h] = Ki[h
′],

then len[h] = len[h′], where len(x) is the length of sequence x. Synchronicity
is satisfied if the agents have access to some external discrete clock and can
thus keep track of the time.

• Uniform No Miracles H satisfies uniform no miracles iff ∀h, h′ ∈ H ∀e1,
e2 ∈ E with he1, h

′e2 ∈ H, if there are h′′, h′′′ ∈ H with h′′e1, h
′′′e2 ∈ H

such that h′′e1 ∼i h
′′′e2 and h ∼i h

′, then he1 ∼i h
′e2. Uniform no miracles

characterizes agents that do not take into account the whole history but
that proceed in a step by step way and only get new information by acts of
observation.

• Propositional stability H satisfies propositional stability iff for all h, he ∈
H and p ∈ prop we have p ∈ V (he) iff p ∈ V (h).

Dynamic-epistemic logic has borrowed one crucial idea from epistemic tem-
poral logic. An epistemic protocol P maps states in an epistemic model to sets
of finite sequences of pointed event models closed under taking prefixes. In gen-
eral, this allows branching choices in a tree-like structure. This again defines
the admissible runs of some informational process: not every observation may
be available, or appropriate. More formally, let E be the class of all pointed
event models, having one ‘actual event’ marked. Then the set of protocols is
Prot(E) = {P ⊆ E∗ | P is closed under finite prefixes }. Next comes the more
general notion used in the recent literature:

Definition 2.2 (Local Protocols). Given an epistemic model M, a local protocol
for M is a function P : |M| → Prot(E). In the particular case where P is a
constant function (mapping each world to the same set of sequences), we call the
protocol uniform. Finally when the local protocol maps worlds to just a unique
linear sequence of event models, we say that it is a line protocol.

To avoid technicalities, in this chapter we state results with uniform line pro-
tocols. But our results generalize: see [36] for the epistemic case. Indeed, under
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suitable renaming of events, making different event models disjoint, line protocols
even have the same expressive power as general branching protocols.

Now, given an epistemic model M as our initial situation, plus a uniform
protocol P , we can define the resulting temporal evolution as an epistemic-
temporal model Forest(M,P ) =

⋃

~ǫ∈P M ⊗ ~ǫ, the ‘epistemic forest generated
by’ M through sequential application of the pointed event models in P using
product update ⊗.

Finally, we can state what iterated dynamic-epistemic update means in the
broader setting of epistemic-temporal logic:

Theorem 2.3 (van Benthem et al. [36]). Let H be an arbitrary epistemic-temporal
ETL model. The following two assertions are equivalent:

• H is isomorphic to the temporal evolution Forest(M,P ) of some epistemic
model M and uniform line protocol P ,

• H satisfies Propositional Stability, Synchronicity, Bisimulation Invariance,
Perfect Recall, and Uniform No Miracles.

Thus, epistemic temporal conditions describing idealized epistemic agents
characterize just those forests that arise from performing iterated product up-
date governed by some protocol. [36] and [119, ch5] have details.

As stated in the introduction, our chapter extends this analysis to the richer
setting of belief revision, where plausibility orders of agents evolve as they observe
possibly surprising events. But to do so, we first need appropriate belief models,
plus an appealing systematic revision mechanism.

Important remark about languages. Before moving on, it is important to
stress one feature of the preceding representation theorem and results in its family.
The precondition language for event models should exactly match the notion
of bisimulation. This means that the language should be invariant under such
bisimulations, and also, that it should be strong enough to characterize a pointed
model up to such bisimulations. Two technical observations follow:

1. To get the right definability, we should either restrict attention to finitely
branching ETL models (as in [36]), or alternatively, let the precondition
function of product models take values in an infinitary epistemic logic.

2. These theorems can be parametrized, in the epistemic case, and even more
so, the doxastic setting. We stay at a semantic level in this chapter, and
state our results up to language choice. The next chapter discusses syntac-
tic issues extensively, including other desiderata on the language, such as
its expressive power for specifying the relevant properties of informational
processes and the agents involved in them.
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2.3 Dynamic logics of stepwise belief change (DDL)

Just like epistemic models, doxastic plausibility models change when appropri-
ate triggering events are observed. It has become clear recently that a general
mechanism for doing so works like the earlier product update ([16]).

2.3.1 Plausibility models: static doxastic situations

In this chapter we will focus on doxastic plausibility models, i.e. on pure (epistemic-
free) plausibility models rather than epistemic plausibility models. The reason is
that the general mechanism we are considering (Priority Update) to update these
static situations takes care independently of the epistemic relations and of the
plausibility ordering. Our analysis will also work for more complex structures.
In fact it is very easy to extend our analysis to epistemic plausibility models by
combining our results with the results for the epistemic case mentioned in the
previous section. For the reasons mentioned in Section 1.3.3 we will state our
results for both total and arbitrary pre-orders.

Remark: Alternatives. We have seen that some authors use models with
just primitive plausibility relations. One can then define epistemic accessibility
for a single agent as the union of that relation with its converse, accessing also
less plausible worlds. We return to this perspective briefly in Section 2.9.3.

We must now consider how such models evolve as agents observe events.

2.3.2 Describing doxastic events

Let us now introduce the structures that describe complex doxastic events, cru-
cially including the ways in which they appear to agents:

Definition 2.4 (Plausibility Event Model; [16]). A plausibility event model
(‘event model’, for short) ǫ is a tuple 〈E, (�i)i∈N , pre〉 with E 6= ∅, each �i

is a pre-order on E, and pre : E → L, where L is the basic doxastic language.

As in the epistemic case, our analysis will work for various precondition lan-
guages for doxastic events. One specific choice is found at the end of Section 2.7.
Combining perspectives, an ‘epistemic plausibility event model’ is a plausibility
event model together with a collection of equivalence relations (∼i)i∈N on E.

In the following update rule, a new event itself comes with instructions as to
how prior beliefs may be overridden. The principle is similar to that of ‘Jeffrey
[108] conditionalization’ for probabilities: we follow the preferences of the plausi-
bility event model, but if it leaves things open, we stick with prior preferences:

Definition 2.5 (Priority Update; [16]). Priority update of a plausibility model
M = 〈W, (�i)i∈N , V 〉 and an event model ǫ = 〈E, (�i)i∈N , pre〉 produces the
plausibility model M⊗ ǫ = 〈W ′, (�′

i)i∈N , V
′〉 defined as follows:
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• W ′ = {(w, e) ∈W ×E | M, w 
 pre(e)}

• (w, e) �′
i (w′, e′) iff either e ≺i e

′, or e ≃i e
′ and w �i w

′

• (w, e) ∈ V ′(p) iff w ∈ V (p), for every p ∈ prop

In the doxastic epistemic setting, priority update by an epistemic plausibility
event model combines the preceding mechanism with product update, i.e. it has
one more clause:

• (w, e) ∼′
i (w′, e′) iff w ∼i w

′ and e ∼i e
′

More motivation for this rule can be found in [16], and at the end of this section.
First here is a concrete example.

As mentioned, doxastic plausibility models are naturally combined with in-
formation partitions to describe scenarios involving both knowledge and beliefs.
In this case priority update is applied to the plausibility ordering while prod-
uct update is applied to the information partition. We will discuss this issue in
connection with the temporal models in Section 2.9. Let us for now present a
concrete scenario that involves both knowledge and beliefs.

Reading the figures. In the following figures, the actual state (respectively event

taking place) is the shaded one. Epistemic equivalence classes are represented by rect-

angles or ellipses. We use < to display the strict plausibility ordering within such

classes. Our example assumes that all agents have the same plausibility ordering. An

agent i believes ϕ at w is interpreted as ϕ holds in the i-most plausible states within

i-information partition Ki[w]. An agent’s beliefs at the actual state are thus displayed

by an arrow from the actual state to the ones she considers most plausible, often just

one. Thus, an arrow from x to y labelled by the agent Enzo means that y is the ≤e-

minimal state within Ke[x]. A similar convention applies to the event-model. Finally,

we omit reflexive arrows throughout.

Example 2.6. Failed invitation. Céline and Enzo would like to invite Denis to
their Wii party. The party has been decided but none of them has informed Denis
yet. Denis considers it a priori more plausible that no Wii party is taking place
unless informed otherwise. This initial situation is common knowledge between
Céline and Enzo. In the following figures, plain rectangles (or ellipses) will rep-
resent Denis’ epistemic partition, dashed ones Enzo’s and dotted ones Céline’s;
w and w are state names.

Denis

w:¬p < w:p

Figure 2.1: No Wii Party unless stated otherwise. Initial model.
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The key event model. The telephone rings and Céline picks up the phone.
Enzo hears part of the conversation and concludes that Céline is inviting Denis.
In fact Céline is not on the phone with Denis. Céline thinks it was clear from the
conversation that she was not talking to Denis. e, f and g are event names.

Enzo

< >f :⊤e:⊤ g:p

Céline

Figure 2.2: Event model of a misleading phone call.

We are now able to compute the new doxastic epistemic situation. The misun-
derstanding is now complete. In fact one can check that Enzo wrongly believes that
it is now common knowledge between Céline and Denis that there is a Wii party
while Céline wrongly believes that it is common belief between her and Enzo that
Denis still does not know about the Wii party and even that Denis still believes
that there is no Wii party.

Denis
Enzo

Céline

wgwfwewfwe

Figure 2.3: Product model of a misunderstanding.

Remark. Priority Update. In AGM style belief revision theory [3], new informa-
tion is simply a new formula ‘to be believed’ by the agent. This allows for many
different ‘revision policies’, from radical to conservative — a line also followed in
a DDL setting by van Benthem [29]. It is important to appreciate that priority
update is not just one such policy among many, but a general mechanism that
can mimic many different policies depending on the richer structure of its triggers,
viz. the plausibility event models [17]. If the event model has ‘strong views’, the
update is radical, otherwise, it stays conservative. Interestingly, this mechanism
shifts the variety in belief revision away from fixed agent types, to case-by-case
decisions: I can be radical with one input, and conservative with another.
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We feel that a logic should describe a ‘universal’ mechanism, instead of a
jungle of styles. This is why we have chosen priority update, leading to one
representation that covers all special cases.

2.4 Doxastic temporal models: the global view

We now turn to the temporal perspective on multi-agent belief revision, as an
informational process over time with global long-term features. The following
models are a natural doxastic enrichment of the temporal ETL models of [130].
They are also close to the temporal doxastic models of [47, 77]. First the doxastic
temporal models:

Definition 2.7 (Doxastic Temporal Models). A doxastic temporal model (‘DoTL
or DTL model’ for short) H is of the form 〈Σ, H, (≤i)i∈N , V 〉, where Σ is a finite
set of events, H ⊆ Σ∗ is closed under non-empty prefixes, for each i ∈ N , ≤i is
a pre-order on H, and V : prop → ℘(H).

Doxastic Epistemic Temporal models (DETL models) are Doxastic Temporal
models extended by a collection of epistemic equivalence relations (∼i)i∈N on H .

Given some history h ∈ H and event e ∈ Σ, we let he stand for the concate-
nation of h with e. Given that plausibility links are not themselves events, the
model H may again be viewed as a ‘forest’, a disjoint union of event trees. We
sometimes refer to DoTL models as doxastic temporal forests. Figure 2.4 gives
a concrete illustration of a practical setting with this abstract format. It display
the evolution of a doctor’s knowledge (dashed rectangles) and belief (diagnosis)
— about what is wrong with her patient — as she performs medical tests and
observes their positive or negative results (labelled edges). An arrow towards a
state labelled Environ means that at this stage of the diagnostic process, the doc-
tor think the patient’s symptoms have an environmental cause. We omit reflexive
and symmetric arrows.

Our models also gain concreteness by considering doxastic temporal languages
interpreted on them. While these are the subject of the next chapter, we display
a few truth conditions:

H, h 
 〈e〉ϕ iff ∃h′ ∈ H with h′ = he and H, h′ 
 ϕ
H, h 
 2iϕ iff ∀h ′ with h′ ≤i h and h ∼i h

′ we have H, h′ 
 ϕ
H, h 
 Kiϕ iff ∀h ′ with h ∼i h

′ we have H, h′ 
 ϕ
H, h 
 Biϕ iff ∀h ′ with h′ ∈ min≤i

Ki[h] we have H, h′ 
 ϕ
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A+

Drugs

Lupus Lupus

Environ. Environ.R−

R−

A−

Environ.

Drugs

R+

Environ.

Lupus

Environ.

Lupus

G−

G+

A+

Figure 2.4: A medical investigation over time.

2.5 From DDL models

to doxastic temporal models

Now we come to the main question of this chapter. Like AGM-style belief revision
theory, Dynamic Doxastic Logic analyses one-step update scenarios. But, unlike
AGM theory, it has no problem with iterating these updates to form longer
sequences. Indeed let us put Example 2.6 together: Figure 2.5 looks like a doxastic
epistemic forest model already. We will make this precise now, but as in the
epistemic case, we need one more ingredient.

In many informational processes, such as learning, or belief revision in games,
the information that agents receive may be highly constrained. Thus, there is
crucial information in the set of admissible histories of the process, its ‘protocol’.
This notion can be defined formally just as before in Definition 2.2. Let E be
the class of all pointed plausibility event models. The set of protocols Prot(E) =
{P ⊆ E∗ | P is closed under finite prefixes}. What we need is again a slightly
more flexible version:

Definition 2.8 (Doxastic Protocols). Given a doxastic plausibility model M,
a local protocol for M is a function P : |M| → Prot(E). If P is a constant
function, the protocol is called uniform. When P maps states to a linear nested
sequence of event models, we call it a line protocol.

We pointed out that the figure describing Example 2.6 really looks like a
doxastic (epistemic) forest already. Actually we could continue the story, and the
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Figure 2.5: The Wii-party misunderstanding in temporal perspective.

further updates would generate a larger forest. More generally, priority update of
a plausibility model according to a protocol generates a doxastic temporal forest.

In line with Section 2.2, we state our main theorems in terms of uniform line
protocols. Iterated priority update of a doxastic plausibility model according to a
uniform line protocol P generates a doxastic temporal forest model. We construct
the forest by induction, starting with the doxastic plausibility model, and then
checking which events can be executed according to the preconditions and to the
protocol. Finally the new plausibility order is updated at each stage according
to priority update. Since priority update describes purely doxastic, non-ontic
change, the valuation stays the same as in the initial model. (For ways of adding
real factual change, see [35].) For simplicity, we write P (w) = ~ǫ where ~ǫ is a finite
sequence of event models.

Definition 2.9 (DoTL model generated by a sequence of updates). Each initial
plausibility model M = 〈W, (�i)i∈N , V 〉 and each sequence of plausibility event
models ~ǫ = (ǫj)j∈ω where ǫj = 〈Ej, (�

j
i )i∈N , prej〉 yields a generated DoTL plau-

sibility model 〈Σ, H, (≤i)i∈N ,V〉 as follows:

• Let Σ :=
⋃m

i=1Ei, with m = len(~ǫ).

• Let H1 := W , and for each 1 < n ≤ m, let Hn+1 := {(we1 . . . en) |
(we1 . . . en−1) ∈ Hn and M⊗ ǫ1 ⊗ . . .⊗ ǫn−1, (we1 . . . en−1) 
 pren(en)}.
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Finally let H =
⋃

1≤k≤mHk.

• If h, h′ ∈ H1, then h ≤i h
′ iff h �M

i h′.

• For 1 < k ≤ m, he ≤i h
′e′ iff

1. he, h′e′ ∈ Hk, and

2. either e ≺k
i e

′, or e ≃k
i e

′ and h ≤i h
′.

• Finally, for all p ∈ prop, set wh ∈ V(p) iff w ∈ V (p).

Our task is to identify just when a doxastic temporal model is isomorphic to
the ‘forest’ thus generated by a sequence of priority updates. In particular, this
will uncover the key doxastic properties of agents assumed in this belief revision
mechanism.

2.6 Crucial frame properties for priority update

We first get a few more general properties of our information process out of the
way. The first of these merely says that in that process, the facts of the world do
not change, only agents’ beliefs about it:

Definition 2.10. Let H = 〈Σ, H, (≤i)i∈N , V 〉 be a DoTL model. H satisfies
propositional stability if, whenever h is a finite prefix of h′, h and h′ satisfy the
same proposition letters.

Note that this can be generalized to include real world change. Next comes a
basic property of the events that we allow as revision triggers:

2.6.1 Bisimulation invariance

The aim of this notion is to guarantee the existence of preconditions behind events
in some modal language. Depending on the language parameter we choose, one
has to choose the corresponding bisimulation notion. As mentioned in Section
2.2 we will state our results up to language choice, therefore we give an abstract
definition of bisimulation below. We will however give a concrete example of
language instantiation when stating a corollary of our result for doxastic epistemic
models (Corollary 2.16 in Section 2.7). Let τ be a finite collection of binary
relations 〈R1, . . . , Rn〉 on H ×H .

Definition 2.11 (τ -Bisimulation). Let H and H′ be two DoTL-models based on
the same alphabet Σ. A relation Z ⊆ H×H ′ is a τ -Bisimulation if, for all h ∈ H,
h′ ∈ H ′ and all Ri ∈ τ

(prop) h and h′ satisfy the same proposition letters, whenever hZh′;



42 Chapter 2. Bridges between dynamic doxastic and doxastic temporal logics

(back) If hZh′ and hRij, then there is a j′ ∈ H ′ with jZj′ and h′R′
ij

′;

(forth) If hZh′ and h′R′
ij

′, then there is a j ∈ H with jZj′ and hRij.

If Z is a τ -bisimulation and hZh′, we say h and h′ are τ -bisimilar.

Definition 2.12 (τ -Bisimulation Invariance). A DoTL model H satisfies τ -
bisimulation invariance if, for all τ -bisimilar histories h, h′ ∈ H, and all events
e, h′e ∈ H iff he ∈ H.

Note that these definitions apply also to DETL models. Here is an example.
(∼i ∩ ≤i)i∈N -Bisimulation Invariance will leave all formulas of the basic doxastic
language with safe belief invariant, and hence our earlier preconditions for events.
If we want these preconditions to be richer, then we need more clauses in the
bisimulation — and the same is true if we want the bisimulation to preserve
explicit temporal formulas involving events.

2.6.2 Agent-oriented properties

Now we come to the relevant agent properties. These depend on single agents i
only, and hence we will drop agent labels and prefixes “for each i ∈ N” for the
sake of clarity. Also, in what follows, when we write ha for events a, we assume
that ha ∈ H .

Definition 2.13. Let H = 〈Σ, H, (≤i)i∈N , V 〉 be a DoTL model. H satisfies:

• Synchronicity Whenever h ≤ h′, we have len(h) = len(h′).

This says intuitively that agents have a correct belief about the exact stage the
process is in. The following two properties trace the belief revising behavior of
priority-updating agents more precisely:

• Preference Propagation if ja ≤ j′b, then h ≤ h′ implies ha ≤ h′b.

• Preference Revelation If jb ≤ j′a, then ha ≤ h′b implies h ≤ h′.

What do the latter properties say? In the earlier epistemic representation the-
orems, the corresponding properties of Perfect Recall and No Miracles described
observational agents with ideal memory, the two basic features behind the prod-
uct update rule. Likewise, our new properties express the two basic features
‘hard-wired into’ the priority update rule, its ‘radicalism’ and its ‘conservatism’.
Preference Propagation says that, if the last-observed events ever allowed a plau-
sibility preference, then they always do — or stated contrapositively, if they ever
‘over-rule’ an existing plausibility, then they always do. This reflects the first rad-
ical clause in the definition of priority update. Next, Preference Revelation says
that when an agent has no strict plausibility preference induced by two observed
events, then she will go with her prior plausibility. This reflects the second, con-
servative clause in priority update. As we have said before, this is a qualitative
description of a ‘Jeffrey-style’ updating agent in a probabilistic setting.
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2.7 The main representation theorem

Now we prove our main result relating DDL and DTL models, both with total
pre-orders.

Theorem 2.14. Let H be any doxastic-temporal model with a total plausibility
pre-order. Then the following two assertions are equivalent:

1. There exists a total plausibility model M and a sequence of total plausibility
event models ~ǫ such that H is isomorphic to the forest generated by the
priority update of M by the sequence ~ǫ.

2. H satisfies Propositional Stability, Synchronicity, Bisimulation Invariance,
Preference Propagation, and Preference Revelation.

Proof. Necessity (1 =⇒ 2). We show that the given conditions are satisfied by
any DoTL model generated through successive priority updates along some given
protocol sequence. Here, Propositional Stability and Synchronicity are straight-
forward from the definition of generated forests.

Preference Propagation. Assume that ja ≤ j′b (1). It follows from either
clause in the definition of priority update that a ≤ b (2). Now assume that h ≤ h′

(3). It follows from (2), (3) and again by priority update that ha ≤ h′b.

Preference Revelation. Assume that jb ≤ j′a (1). It follows from the def-
inition of priority update that b ≤ a (2). Now assume ha ≤ h′b (3). By the
definition of priority update, (3) can happen in two ways. Case 1: a < b (4). It
follows from (4) by the definition of < that b 6≤ a (5). But (5) contradicts (2).
We are therefore in Case 2: a ≃ b (6), and so h ≤ h′ (7).

Note that we did not make use of totality in this direction of the proof.

Sufficiency (2 =⇒ 1). Given a DoTLmodel H satisfying the stated conditions,
we show how to construct a matching doxastic plausibility model and a sequence
of event models.

Construction. Here is the initial plausibility model M0 = 〈W, (�i)i∈N , V̂ 〉:

• W := {h ∈ H | len(h) = 1}.

• Set h �i h
′ iff h ≤i h

′.

• For every p ∈ prop, V̂ (p) = V (p) ∩W .

Now we construct the j-th event model ǫj = 〈Ej , (�
j
i )i∈N , prej〉:

• Ej := {e ∈ Σ | there is a history he ∈ H with len(h) = j}.
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• Set a �j
i b iff there are ha, h′b ∈ H such that len(h) = len(h) = j and

ha ≤i h
′b.

• For each e ∈ Ej, let prej(e) be the formula that characterizes the set
{h | he ∈ H and len(h) = j}. By general modal logic, our condition of
Bisimulation Invariance guarantees that there is such a formula. Again as
mentioned at the end of Section 2.2 this sentence may be an infinitary one
in general (if we don’t assume the doxastic temporal models to be finitely
branching). We give a concrete instantiation when we discuss the epistemic
doxastic corollary of our result.

Now we show that the construction is correct in the following sense:

Claim 2.15 (Correctness). Let ≤ be the plausibility relation in the given dox-
astic temporal model. Let 4F

DDL be the plausibility relation in the forest model
induced by priority update over the just constructed plausibility model F and the
constructed sequence of event models. We have:

h ≤ h′ iff h 4F
DDL h

′.

Proof of the claim. The proof is by induction on the length of histories. The base
case is obvious from the construction of our initial model M0. Now comes the
induction step:

From DoTL to Forest(DDL). Assume that h1a ≤ h2b (1). It follows that in
the constructed event model a ≤ b (2).

Case 1: a < b. By priority update we have h1a 4F
DDL h2b, whatever relation-

ship held between h1 and h2 in F .

Case 2: b ≤ a (3). This means that there are h3b, h4a such that h3b ≤ h4a.
But then by Preference Revelation and (1) we have h1 ≤ h2 in the original doxastic
temporal model M. It follows by the inductive hypothesis that h1 4F

DDL h2.
But then, since a and b are indifferent by (2) and (3), priority update gives us
h1a 4F

DDL h2b.

From Forest(DDL) to DoTL. Now let h1a 4F
DDL h2b. Again we follow the

two clauses in the definition of priority update:
Case 1: a < b. By definition, this implies that b 6≤ a. But then by the above

construction, for all histories h3, h4 ∈ H we have h3b 6≤ h4a. In particular we
have h2b 6≤ h1a. But then by totality (this is the only place where we use this
property), h1a ≤ h2b.

Case 2: a ≃ b (4) and h1 4F
DDL h2. For a start, by the inductive hypothesis,

h1 ≤ h2 (5). By (4) and our construction, there are h3a, h4b with h3a ≤ h4b
(6). But then by Preference Propagation, (5) and (6) imply that we have h1a ≤
h2b. qed
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Remark. Corollary for the Doxastic Epistemic case. We get a representation
result for the doxastic epistemic case as an immediate corollary from Theorem
2.14 and Theorem 2.3. Moreover we give a concrete instantiation of this corollary
by choosing the language of Safe Belief. In the result below we refer to priority
update as the result of applying product update to the epistemic relations and
priority update to the plausibility orderings.

Corollary 2.16. Let H be any doxastic epistemic temporal model with a total
plausibility pre-order. Then the following two assertions are equivalent:

1. There exists a total epistemic plausibility model M and a sequence of total
epistemic plausibility event models ~ǫ taking preconditions in the modal lan-
guage of Safe Belief such that H is isomorphic to the forest generated by
the Priority Update of M by the sequence ~ǫ.

2. H satisfies Propositional Stability, Synchronicity, Perfect Recall, Uniform
No Miracles, (∼i ∩ ≤i)i∈N -Bisimulation Invariance, Preference Propaga-
tion, and Preference Revelation.

Remark. It is naturally possible to product update plausibility event models by
epistemic event models according to the following definition.

Definition 2.17 (Conservative product update). The (conservative) product
update of epistemic plausibility model M = 〈W, (∼i)i∈A,≤i, V 〉 with an event
model ǫ = 〈E, (∼ǫ

i)i∈A, pre〉 is the model M ⊗ ǫ whose domain is {(w, e) | w ∈
W, e ∈ E & M, w 
 pre(e)}. The epistemic relation in the resulting model
is (w, e) ∼′

i (w′, e′) iff w ∼i w
′ and e ∼ǫ

i e
′, the plausibility ordering is (w, e) ≤′

i

(w′, e′) iff w ≤i w
′, and the valuation is as follows: (w, e) ∈ V (p) iff w ∈ V (p).

But this would boil down to considering only epistemic signals rather than
also including softer, genuinely doxastic types of incoming information. Indeed
it is easy to see that such an update can always be simulated by priority update
by extending the epistemic event model to a plausibility event model with a
universal plausibility ordering on events, i.e. by defining ≤ǫ

i= |ǫ| × |ǫ|. On the
other hand the definition itself is really nothing more than product update. We
will still sometimes refer to it as conservative product update to distinguish it
from priority update. But let us return to the main issue.

The representation theorem we proved in this section (Theorem 2.14) shows
how to find, inside the much broader class of all doxastic temporal models, those
whose plausibility pattern was produced by a systematic priority update process.

2.8 Extension to arbitrary pre-orders

The preceding result generalizes to the general case of pre-orders, allowing in-
comparability. Here we need a new notion that was hidden so far:
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Definition 2.18 (Accommodating Events). Two events a, b ∈ Σ are pairwise
accommodating if, for all ga, g′b: (g ≤ g′ ↔ ga ≤ g′b), i.e. a, b preserve and
anti-preserve plausibility.

We can now define our new condition on doxastic-temporal models:

• Accommodation Events a and b are accommodating in the sense of Def.
2.18 if both ja ≤ j′b and ha 6≤ h′b for some j, j′, h, h′.

Accommodation is a uniformity property saying that, if two events allow both
plausibility orders for histories, then they are always ‘neutral’ for determining
plausibility order. This property only comes into its own with pre-orders allowing
incomparable situations:

Fact 2.19. If ≤ is a total pre-order and H satisfies Preference Propagation and
Preference Revelation, then H satisfies Accommodation.

Proof. Assume that ja ≤ j′b (i) and ha 6≤ h′b. By totality, the latter implies
hb ≤ h′a (ii). Now let g ≤ g′. By Preference Propagation and (i), ga ≤ g′b.
Conversely, assume that ga ≤ g′b. By Preference Revelation, (i) and (ii), we have
g′ ≤ g. qed

We can also prove a partial converse without assuming totality:

Fact 2.20. If H satisfies Accommodation, it satisfies Preference Propagation.

Proof. Let ja ≤ j′b (1) and h ≤ h′ (2). Assume that ha 6≤ h′b. Then by
Accommodation, for every ga, g′b, g ≤ g′ ↔ ga ≤ g′b. So, in particular, h ≤ h′ ↔
ha ≤ h′b. But since h ≤ h′, we get ha ≤ h′b: a contradiction. qed

Finally, an easy counter-example shows that, even with ≤ total:

Fact 2.21. Accommodation does not imply Preference Revelation.

Proof. Take the simplest model where the following holds: h′b ≃ ha ≃ j′a ≃ jb
and h′ < h ≃ j′ ≃ j. qed

With arbitrary pre-orders we need to impose Accommodation:

Theorem 2.22. Let H be any doxastic-temporal model with a plausibility pre-
order. Then the following two assertions are equivalent:

1. There exists a plausibility model M, and a sequence of plausibility event
models ~ǫ such that H is isomorphic to the forest generated by the Priority
Update of M by the sequence ~ǫ.

2. H satisfies Bisimulation Invariance, Propositional Stability, Synchronicity,
Preference Revelation, and Accommodation.

By Fact 2.20, Accommodation also gives us Preference Propagation.

Proof. Necessity of the conditions. (1 =⇒ 2) Checking the conditions in
Section 7 did not use totality. So we focus on the new condition:
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Accommodation. Assume that ja ≤ j′b (1). It follows by the definition of
priority update that a ≤ b (2). Now let ha 6≤ h′b (3). This implies by priority
update that a 6< b (4). By definition, (2) with (4) imply that a ≃ b (5). Now
assume that g ≤ g′ (6). It follows from (5), (6) and priority update that ga ≤ g′b.
The other direction is similar.

Sufficiency of the conditions. (2 =⇒ 1) Given a DoTL model, we again
construct a DDL plausibility model plus a sequence of event models:

Construction. The plausibility model M0 = 〈W, (�i)i∈N , V̂ 〉 is as follows:

• W := {h ∈ H | len(h) = 1},

• Set h �i h
′ whenever h ≤i h

′,

• For every p ∈ prop, V̂ (p) = V (p) ∩W .

We construct the j-th event model ǫj = 〈Ej, (�
j
i )i∈N , prej〉 as follows:

• Ej := {e ∈ Σ | there is a history of the form he ∈H with len(h) = j}.

• For each i ∈ N , define a �j
i b iff either (a) there are ha, h′b ∈ H such

that len(h) = len(h) = j and ha ≤i h
′b, or (b) [a new case] a and b are

accommodating, and we put a ≃ b (i.e., both a ≤ b and b ≤ a).

• For each e ∈Ej , let prej(e) be the basic doxastic formula characterizing the
set {h | he ∈ H and len(h) = j}. Bisimulation Invariance guarantees that
there is such a formula (maybe infinitary).

Again we show that the construction is correct in the following sense:

Claim 2.23 (Correctness). Let ≤ be the plausibility relation in the doxastic tem-
poral model M. Let 4F

DDL be the plausibility relation in the forest F induced
by successive priority updates of the plausibility model by the sequence of event
models we just constructed. We have:

h ≤ h′ iff h 4F
DDL h

′.

Proof of the claim. We proceed by induction on the length of histories. The base
case is clear from our construction of the initial model M0. Now for the induction
step, with the same simplified notation as earlier:

From DoTL to Forest(DDL). We distinguish two cases.

Case 1: ha ≤ h′b, h ≤ h′. By the inductive hypothesis, h ≤ h′ implies h 4F
DDL

h′ (1). Since ha ≤ h′b, it follows by the construction that a ≤ b (2). Then, by
(1), (2) and priority update, we get ha 4F

DDL h
′b.
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Case 2: ha ≤ h′b, h 6≤ h′. Clearly, then, a and b are not accommodating and
thus the special clause has not been used to build the event model, though we do
have a ≤ b (1). By the contrapositive of Preference Revelation, we also conclude
that for all ja, j′b ∈ H , we have j′b 6≤ ja (2). Therefore, our construction gives
b 6≤ a (3), and we conclude that a < b (4). But then by priority update, we get
ha 4F

DDL h
′b.

From Forest(DDL) to DoTL. We again distinguish two cases.

Case 1: ha 4F
DDL h

′b, h 4F
DDL h

′. By the definition of priority update, ha 4F
DDL

h′b implies that a ≤ b (1). There are two possibilities.

Case 1.1: The special clause of the construction has been used, and a, b are
accommodating (2). By the inductive hypothesis, h 4F

DDL h
′ implies h ≤ h′ (3).

But (2) and (3) imply that ha ≤ h′b.

Case 1.2: Clause (1) holds because for some ja, j′b ∈ H in the DoTL model,
ja ≤ j′b (4). By the inductive hypothesis, h 4F

DDL h
′ implies h ≤ h′ (5). Now it

follows from (4), (5) and Preference Propagation that ha ≤ h′b.

Case 2: ha 4F
DDL h

′b, h 64F
DDL h

′. Here is where we put our new accommoda-
tion clause to work. Let us label our assertions: h 64F

DDL h
′ (1) and ha 4F

DDL h
′b

(2). It follows from (1) and (2) by the definition of priority update that a < b
(3), and hence by definition, b 6≤ a (4). Clearly, a and b are not accommodating
(5): for otherwise, we would have had a ≃ b, and hence b ≤ a, contradicting (4).

Therefore, (3) implies that there are ja, j′b ∈ H with ja ≤ j′b (6). Now assume
for a contradiction that (in the DoTL model) ha 6≤ h′b (7). It follows from (6)
and (7) by Accommodation that a and b are accommodating, contradicting (5).
Thus we must have ha ≤ h′b. qed

Given a doxastic temporal model describing the evolution of the beliefs of a
group of agents, we have determined whether it could have been generated by
successive ‘local’ priority updates of an initial plausibility model.

2.9 Additional extensions and variations of the

theorem

Several further scenarios can be treated in the same manner. In particular, it is
easy to combine the epistemic analysis in Section 2.2 with ours to include agents
having both knowledge and belief. Here are three more directions:
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2.9.1 From uniform to local protocols

So far we have considered uniform line protocols. We have already suggested
that line protocols are powerful enough to mimic branching protocols through
renaming of events, and then taking a disjoint union of all branching alterna-
tives. But uniformity is a real restriction, and it can be lifted. Local protocols
allow the set of executable sequences of pointed event models forming our current
informational process to vary from state to state. Indeed, agents need not even
know which protocol is running. As was done in [36] for the epistemic case, we
can still get our representation theorems to cover this case, by merely dropping
the condition of Bisimulation Invariance. While this seems a simple move, local
protocols drastically change the complete dynamic-doxastic logic of the system.

2.9.2 Languages and bisimulations

As we have noted in Section 2.4, our doxastic-temporal models support various
languages and logics. These will be pursued in the next chapter, but we do
make a few points here. In our setting a doxastic-temporal language has two
main purposes: (a) stating ‘local’ preconditions for events, (b) specifying ‘global’
properties of the temporal evolution of the current process. As is well-known [39]
a choice of language here corresponds to a choice of a semantic invariance relation,
usually some weaker or stronger variant of bisimulation. For instance, we have
seen that if the precondition language contains a safe belief operator scanning
the intersection of (the converse of) a plausibility ≤i relation and an epistemic
indistinguishability relation ∼, then the back and forth clauses should not only
apply to ≥i and ∼i separately, but also to ≥i ∩ ∼i. (Indeed ∩ is not safe for
bisimulation.) But this can be varied, and one can also have stronger notions of
bisimulation, respecting more structure, that work for more expressive doxastic
languages. And things get even more complicated if we allow temporal operators
in our languages (cf. [36]). We do not want to commit to any specific choice
here, since the choice of a language seems orthogonal to our main concerns in this
chapter. We will discuss formal languages in the next chapter, taking definability
of our major structural constraints as a guide.

2.9.3 Alternative model classes

We mentioned in Section 1.3.3 that one can also work with a primitive plausibility
relation that merges epistemic indistinguishability and doxastic plausibility. A
corresponding (priority) update rule is considered in [16], and we indicate briefly
the notions involved in the corresponding representation result (Appendix C):

Definition 2.24 (Local Priority Update). The Priority Update of a unified plau-
sibility model M = 〈W, (�i)i∈N , V 〉 and a �-event model ǫ = 〈E, (�i)i∈N , pre〉 is
the unified plausibility model M⊗ ǫ = 〈W ′, (�′

i)i∈N , V
′〉 constructed as follows:
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• W ′ = {(w, e) ∈W ×E | M, w 
 pre(e)},

• (w, a) �′
i (w

′, b) iff either 1. a�i b, b 6�a and w�w′ ∨ w′ �w or 2. a�i b,
b� a and w � w′,

• (w, e) ∈ V ′(p) iff w ∈ V (p) for every p ∈ prop.

We refer to this operation as Local Priority Update.
Here are our basic temporal doxastic agent properties in this setting:

• �-Perfect Recall If ha� h′b we have h� h′ ∨ h′ � h.

• �-Preference Propagation If h� h′ and ja� j′b then also ha� h′b.

• �-Preference Revelation If ha� h′b ∧ jb� j′a, also h� h′.

• �-Accommodation If (ja � j′b, h′ � h and ha 6�h′b), for all ga, g′b ∈ H
(g � g′ ↔ ga� g′b), and for all g′a, gb ∈ H (g � g′ ↔ gb� g′a).

In Appendix C we show how these conditions drive a general representation
theorem similar to the one in Section 2.7 and 2.8.

2.10 Conclusion

Agents that update their knowledge and revise their beliefs leave an epistemic and
doxastic ‘trace’ over time of epistemic and doxastic relations. We have determined
the special constraints that capture agents operating with the ‘local updates’ of
dynamic doxastic logic.

DDL

DTL

Figure 2.6: DDL inside DTL

Major sources. The first point of departure of this chapter is found in the recent
work on dynamic logics of belief change by van Benthem [29], Board [40] and
chiefly the sequence of papers by Baltag and Smets, in particular [16], who extend
the dynamic epistemic methodology developed by Baltag et al. [20], Gerbrandy
[83], Baltag and Moss [15] to belief change. The second source is constituted by
the works on epistemic temporal logics by Parikh and Ramanujam [130], Fagin
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et al. [72] and on doxastic temporal logics in a sequence of papers by Bonanno, in
particular [47]. Finally the third source (but the most decisive) is van Benthem
et al. [36], which carries out a systematic comparison between dynamic epistemic
and epistemic temporal logic using the concept of protocol.

Our main results. Our contribution in this chapter was to extend the analysis
of van Benthem et al. [36] to the case of belief change. This took the form of
representation theorems that state just when a general doxastic temporal model
is equivalent to the forest model generated by successive priority updates of an
initial doxastic model by a protocol sequence of event models.

The next step. Thus we have determined the area where the idealized belief
changers of dynamic doxastic logic live. Now that we have the contours of the
semantics of belief revising agents over time, our next task is to bring out some of
its essential features in a logical language, making them transparent to inspection,
manipulation, and modification. That will be the task of our next chapter. We
will discuss different dynamic doxastic and doxastic temporal languages, their
expressive power, and the next chapter will make the preceding identification
even stronger through an axiomatization of a temporal logic of belief revision.





Chapter 3

Merging modal logics of belief change:
languages and logics

The previous chapter compared on the model-theoretic level the dynamic ap-
proach to belief change to the temporal one. It gave the structural foundations
for reasoning about stepwise belief-revising agents over time. In this chapter we
determine logical languages with the right expressive power to describe key fea-
tures of belief revision agents, but also to enable reasoning about them. Our
techniques are three major ones from modal logic: invariance, correspondence
and completeness. We start by considering static doxastic languages and then
move to the related dynamic doxastic and temporal doxastic languages. Finally
we introduce, and prove completeness for, a temporal logic of belief revision.

3.1 Epistemic doxastic languages

We start with the epistemic doxastic languages which are ‘static’ languages. As
such they are not saying anything about belief change but they give the foun-
dations for both the temporal and the dynamic approach as they introduce the
languages to reason about the doxastic and epistemic dimension of a given social
situation. After recalling the clauses for knowledge and conditional belief, we
consider other settings, including a language that matches closely the structural
primitives of the now familiar epistemic plausibility models, on which all these
languages will be interpreted.

We have introduced the basic epistemic doxastic language LDOX in Section
1.3.3, that has modalities for both conditional beliefs and knowledge. Let us
recall the important clauses:

M, w 
 Kiϕ iff for all v such that w ∼i v we have M, v 
 ϕ

M, w 
 Bψ
i ϕ iff for all v such that w →

||ψ||M

i v we have M, v 
 ϕ

53
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Other syntactic options are available, such as a language that matches closely the
structural primitives of epistemic plausibility models, with the following syntax:

Definition 3.1. The language LDOX(〈≥i〉, Ki) is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | 〈≥i〉ϕ,

where i ranges over N and p over a countable set of proposition letters prop.

〈≥i〉ϕ reads ‘there is a (a priori) more plausible state in which ϕ holds’. From
the point of view of modal logic, 〈≥i〉ϕ is a very natural operator, scanning the
converse of the plausibility ordering. Interpreted on epistemic plausibility models,
its truth condition is the obvious one:

M, w 
 〈≥i〉ϕ iff for some v with v ≤i w we have M, v 
 ϕ.

On the conceptual side, a sentence of the form ‘agent i believes that ϕ’ seems more
intuitive than one of the form ‘there is a state that i finds more plausible where
ϕ holds’. But if the second language can simulate belief modalities, despite using
these less intuitive modalities, it is still able to express the central notion of belief
while remaining close to our structural primitives. So how do these languages
relate in terms of expressive power? Maybe surprisingly, they are incomparable.
Let us make the notion of comparability in expressive power precise.

Definition 3.2 (At least as expressive as). A language L1 is at least as expressive
as a language L2, written L2 ≤ L1 with respect to a class of pointed models A
iff for every formula ϕ ∈ L2 there is a formula τ(ϕ) ∈ L1 such that for every
M, w ∈ A we have M, w 
 ϕ iff M, w 
 τ(ϕ).

Let LDOX(〈≥i〉) be the Ki-free fragment of LDOX(〈≥i〉, Ki). We first show that
〈≥i〉 cannot be simulated in the basic doxastic language LDOX.

Fact 3.3. LDOX(〈≥i〉) 6≤ LDOX.

Proof. Consider the upper and lower models in Figure 3.1. The basic doxastic
language LDOX cannot distinguish M, w from M′, w′ while LDOX(〈≥i〉) can.

That LDOX(〈≥i〉) can is obvious: M, w 
 〈≥i〉¬p but M′, w′ 6
 〈≥i〉¬p. That
LDOX cannot distinguish between M, w and M′, w′ can proved by induction.
Propositional letters is by construction and the induction step for booleans is
straightforward. For knowledge simply consider that the two states in the upper
models are in two disjoint information cell. Now assume that we have completed
the induction for formulas of degree n. Now consider the formula Bχψ with χ and
ψ of degree n. Case 1: w ∈ ||χ|| but then by IH so is w′. But then M, w 
 Bχψ
iff w ∈ ||ψ||M. Similarly M′, w′ 
 Bχψ iff w′ ∈ ||ψ||M

′
. But by IH we have

w ∈ ||ψ||M iff w′ ∈ ||ψ||M
′
. Case 2: w 6∈ ||χ|| but then w′ 6∈ ||χ|| and Bχψ is

trivially true in both models. qed
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w′ : p

w : p v : ¬pM

M′

>

Figure 3.1: LDOX is not as expressive as LDOX(〈≥i〉).

We now show that the basic epistemic doxastic language LDOX cannot be
simulated in LDOX(〈≥i〉, Ki).

Fact 3.4. LDOX 6≤ LDOX(〈≥i〉, Ki)

Proof. Consider the upper and the lower model in Figure 3.2.

<w : p v : ¬p s : p t : ¬p

w′ : p v′ : ¬p

≃

≃

M

M′

<

Figure 3.2: LDOX(〈≥i〉, Ki) is not as expressive as LDOX

We first show that M, t and M′, v′ are ≥,∼-bisimilar. The witness bisim-
ulation we are using is Z = {(w,w′), (v, v′), (s, w′), (t, v′)}. Atomic harmony is
immediate. That on the one hand M, w and M′, w′, and on the other hand M, v
and M′, v′ are ≥,∼-bisimilar is easy to check. It remains to prove the back and
forth conditions (s, w′) and (t, v′).

By exploration of the first model we have s ∼ t but we also have w′ ∼ v′

and (t, v′) ∈ Z. We also have s ∼ s but we have w′ ∼ w′ and (s, w′) ∈ Z so
the forth condition for ∼ is satisfied. For the back condition we can proceed in a
symmetric way. Now for ≥. We have s ≥ v but we also have w′ ≥ v′ and vZv′.
We have s ≥ s but we also have w′ ≥ w′ and sZw′. For the other direction we
have w′ ≥ w′ but then we have s ≥ s and sZw′, and we have w′ ≥ v′ but then
we have s ≥ v and vZ ′v′. Finally we have t ≥ s but we also have v′ ≥ w′ and
sZw′. We have t ≥ t but we also have v′ ≥ v′ and tZv′. For the other direction
we have v′ ≥ v′ but then we have t ≥ t and tZv′, and we have v′ ≥ w′ but then
we have t ≥ s and sZ ′w′.

Finally, that LDOX can distinguish between M, t and M′, v′ is easy to see.
Indeed M, t 
 Bp, while M′, v′ 
 ¬Bp qed



56 Chapter 3. Merging modal logics of belief change: languages and logics

What about further languages and further modalities? An intermediate notion
of knowledge has been considered by Stalnaker [148] and by researchers in AI, and
has been argued for doxastically as safe belief by [16] as describing those beliefs
we do not give up under true new information, giving it a strong connection with
ideas developed by Board [40] and, a few decades before, by formal epistemologists
in the aftermath of the Gettier [84] problem (Baltag and Smets [17, 2.3] have
pointers). Note that safe belief is only safe for true information. In contrast to
knowledge, safe belief can be defeated by false information and in contrast to
both knowledge and belief, safe belief is not negatively introspective (but it is
still positively introspective). Formally, the safe belief modality 2i is just the
universal dual of the existential modality 〈i ∩ ≥i〉. Their truth conditions are:

M, w 
 〈i ∩≥i〉ϕ iff for some v with v ≤i w & w ∼i v we have M, v 
 ϕ
M, w 
 2iϕ iff for all v such that v ≤i w & w ∼i v we have M, v 
 ϕ

Interestingly together with knowledge, the safe belief modality supplies us with
the right expressive power to simulate the basic doxastic language. To see that,
let LDOX(Ki, 〈i ∩ ≥i〉) be the modal language with knowledge and safe belief:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | 2iϕ

with 〈i ∩ ≥i〉ϕ↔ ¬2i¬ϕ. We can now prove that safe belief and knowledge can
simulate (conditional) belief:

Fact 3.5. LDOX ≤ LDOX(Ki, 〈i ∩≥i〉)

Proof. The only non-trivial clause of the translation is the one for conditional
belief. We can adapt the translation used in [86, 3.3.6] to our doxastic epistemic
setting in a very straightforward way:

τ(Bχ
i ψ) := Ki(τ(χ) → 〈i ∩ ≥i〉(τ(χ) ∧ 2i(τ(χ) → τ(ψ)))

We now prove that M, w 
 ϕ iff M, w 
 τ(ϕ). As mentioned the only non-trivial
clause is the one for conditional belief. Assume that ϕ is of the form Bχ

i ψ.
From left to right, assume that M, w 
 Bχ

i ψ. First case: there is no χ-state
within Ki[w]. But then τ(Bχ

i ψ) = Ki(τ(χ) → 〈i∩≥i〉(τ(χ) ∧ 2i(τ(χ) → τ(ψ)))
is trivially true. Second case: we have at least one χ-state within Ki[w]. But
then, by truth conditions of Bχ

i ψ, all the minimal χ-states within Ki[w] are ψ-
states (1). Now in any χ-state within Ki[w] you can ∼i ∩ ≥i-move to one of
these minimal states and in such states, we can show that 2i(τ(χ) → τ(ψ))
will hold. For assume there is a state t which is a minimal χ-state within Ki[w]
and 2i(τ(χ) → τ(ψ)) does not hold. Then we must have a state s with s ≤i t,
s ∈ Ki[w], M, s 
 χ and M, s 6
 ψ (2). But then s is a minimal χ-state within
Ki[w] (3). But (2) and (3) contradicts (1).

From right to left. We prove the contrapositive. Assume that M, w 6
 Bχ
i ψ.

Then we have a ≤i-minimal v state within Ki[w] ∩ ||χ||M such that M, v 6
 ψ



3.1. Epistemic doxastic languages 57

(4). Now assume for a contradiction that M, w 
 Ki(τ(χ) → 〈i ∩ ≥i〉(τ(χ) ∧
2i(τ(χ) → τ(ψ))). Since v ∈ Ki[w] and v ∈ ||χ|| we have M, v 
 〈i∩≥i〉(τ(χ) ∧
2i(τ(χ) → τ(ψ))). But then we have some state t with v ∼i t (5), v ≥i t (6),
M, t 
 χ (7) and M, t 
 2i(τ(χ) → τ(ψ)) (8). But since v is ≤i-minimal within
Ki[w] ∩ ||χ||M, (5), (6) and (7) implies that t ≥i v (9). But then by (5) and (9),
(8) implies that M, v 
 τ(ψ). But by IH this contradicts (4). qed

On the conceptual side, the preceding fact shows that knowledge, (conditional)
belief and safe belief constitutes a natural family of modalities. Moreover consid-
ering that the operator 〈≥i〉, scanning the plausibility ordering, was not needed
to simulate conditional belief and that it could not be expressed in the doxastic
epistemic language (Fact 3.3) indicates that it really belongs to another family of
doxastic modalities. The next chapter sheds light on the conceptual relevance of
this fact, when discussing definability of concepts such as ‘common prior’ and the
role they play in interactive epistemology, in particular for qualitative agreement
theorems. For now let us point out that the natural notion of belief matching
〈≥i〉 is that of prior belief �i. This modality is interpreted by looking at the
a priori most plausible elements of the domain, rather than the a priori most
plausible element of the information set of the agent. A notion of conditional
prior belief can also be defined. Moreover the natural companion modality to
these two operators is thus the existential modality E rather than the knowledge
modality. Their semantics follows:

M, w 
 �iϕ iff for all v such that v ∈ βi(|M|) we have M, v 
 ϕ

M, w 
 �ψ
i ϕ iff for all v such that v ∈ βi(||ψ||

M) we have M, v 
 ϕ
M, w 
 Eϕ iff for some v with v ∈ |M| we have M, v 
 ϕ

In the preceding family, 2≥i, the dual of 〈≥i〉, can really be reinterpreted as safe
prior belief, completing the preceding family of doxastic modalities. We will meet
it again when discussing definability issues and in the next chapter on interactive
epistemology.

Still in the context of interactive epistemology, multi-agent notions of belief
and knowledge, such as common belief and common knowledge, will play a crucial
role. We leave their introduction to the next chapter as we would like to contrast
the notions at work in our logical study of agreement results with respect to
epistemic plausibility models with the ones used in the probabilistic approach.

We conclude with two so-called window operators: J≥iK and J∼iK. The in-
tended meaning of J≥iKϕ is that all ϕ-states are at least as plausible for i as the
current one, while J∼iKϕ says that all ϕ-states are considered as epistemically
possible given i’s current information. Intuitively while ‘i knows ϕ’ really means
that being a ϕ-situation is necessary for a state to be considered by i as epistemi-
cally possible, J∼iKϕ says that being a ϕ-state is a sufficient condition. Operators
in this line of thinking have been applied in formal interactive epistemology to
the study of the Brandenburger-Keisler [51] paradox. On the technical side, these
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operators are central in boolean modal logics and can help to prove completeness
for a language with intersection in a very elegant way. Their semantics is:

M, w 
 J≥iKϕ iff for all v such that M, v 
 ϕ we have v ≤i w
M, w 
 J∼iKϕ iff for all v such that M, v 
 ϕ we have w ∼i v
M, w 
 J≥i ∩ ∼iKϕ iff for all v such that M, v 
 ϕ we have w ≥i v & w ∼i v

Remark on completeness for doxastic languages. We conclude this sec-
tion about static doxastic languages with a comment about their axiomatization.
Many of the possible sublanguages are just particular cases of canonical multi-
modal logics and completeness can be obtained through canonical models ([39,
ch.4] has details). Such completeness proofs can be extended to prove complete-
ness for such canonical modal logics extended with the existential modality E (see
Thm 7.3 in [39, pp.417-418] for a proof). For completeness proofs with a language
in which (conditional) belief is a primitive notion, the reader can consult [40, 17].

Extending the language with modalities such as 〈≥i ∩ ∼i〉 bring us into the
realm of boolean modal logics. It is possible to axiomatize a language containing
〈≥i ∩ ∼i〉 and the window-type modalities (e.g. J≥i ∩ ∼iK). The crucial axiom is:
J≥i ∩ ∼iKϕ↔ (J≥iKϕ ∧ J∼iKϕ). See Gargov and Passy [80] for details. Another
way to go is to consider a hybrid version of our language allowing nominals, i.e.
formulas true in exactly one state of the model. In this case intersection can
be modally defined on the level of frames. Extending an axiomatization for the
basic hybrid language (see [39, 7.3] for details) with 〈≥j ∩ ∼j〉i↔ (〈≥j〉i ∧ 〈∼j〉i)
(where i ranges over a countable set of nominals nom) gives us a complete logic.
The idea was first proposed by Gargov et al. [81]. Finally one can consider an
even richer hybrid version of LDOX(≥i, Ki) allowing state variables and binders,
in which 〈≥i ∩ ∼i〉 become definable at the level of models (see Fact 7.8 for
details).

3.2 Dynamic doxastic languages

We have seen a relatively wide range of static doxastic languages. Now given a
static doxastic language, it is possible to build up a dynamic doxastic language
that matches dynamic belief update. The natural approach is simply to extend
the underlying static language with a modality corresponding to each event model
of interest, i.e. to every generic soft signal one would like to reason about. For
many languages this approach goes very smoothly, so let us start by showing how
far we can go in this direction before mentioning some difficulties.

Since this natural approach will work similarly for many doxastic languages,
we give the details only for one of them, namely the dynamic language based
on LDOX(〈≤i〉, 〈≥i ∩ ∼i〉, Ki, E). The intrinsic interest of this language is that
it matches the structural primitives of epistemic plausibility models, while —
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as we have seen in the previous section — being able to express the notion of
conditional belief. After giving the semantics of this language, we turn to the
issue of completeness via compositional analysis, giving recursion axioms for the
previous modalities.

3.2.1 Interpreting dynamic modalities

We define the dynamic doxastic-epistemic language LDDEL(〈≤i〉ϕ, 〈≥i ∩ ∼i〉, Ki, E)
as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈i〉ϕ | 〈≤i〉ϕ | 〈≥i ∩ ∼i〉 | Eϕ | 〈ǫ, e〉ϕ

where i ranges over N , p over a countable set of proposition letters prop, and
(ǫ, e) ranges over a suitable set of symbols for event models. 〈ǫ, e〉ϕ means that
the event (ǫ, e) can be executed and after it occurs ϕ holds. 〈≤i〉ϕ means that
there is a state at most as plausible as the current one where ϕ holds. 〈i〉ϕ
means that there is an epistemically possible state where ϕ holds. Knowledge
Kiϕ↔ ¬〈i〉¬ϕ and the universal modality Aϕ↔ ¬E¬ϕ are defined as usual.

All our dynamic doxastic logics will be interpreted on epistemic plausibility
models, together with epistemic plausibility event models and the dynamic opera-
tion of priority update that takes an epistemic plausibility model and an epistemic
plausibility event model as inputs and returns a new epistemic plausibility model.
In what follows we often refer to epistemic plausibility event models as event mod-
els.

Semantics. Here is how we interpret the LDDEL(〈≤i〉, 〈≥i ∩ ∼i〉, 〈i〉, E) language.
A pointed event model is an event model plus some distinguished element of its
domain. To economize on notation we use event symbols in the semantic clause.
Also, we write pre(e) for preǫ(e) when things are clear from context. The new
clause is of course for dynamic operators 〈ǫ, e〉.

M, w 
 〈ǫ, e〉ϕ iff M, w 
 pre(e) and M× ǫ, (w, e) 
 ϕ

Comment about the preconditions of event models.

The reader might have noticed the presence of the precondition in the clause
for the dynamic modality 〈ǫ, e〉. In general one usually takes the precondition
language to match the underlying static doxastic language (to our dynamic lan-
guage). One reason is simply that it saves on the necessity to specify semantics
independently for the precondition language. But the most important reason is
to be able to carry out a compositional analysis of the dynamic doxastic language
(when this is possible) in order to get axiomatic completeness.
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3.2.2 Completeness via recursion axioms

Indeed the methodology of dynamic epistemic and doxastic logics revolves around
recursion axioms. As we have seen for public announcement logic and dynamic
epistemic logic in Section 1.6.1, when added on top of some complete static base
logic, these axioms fully describe the dynamic component. We recall the well-
known Action-Knowledge recursion axiom of [20]:

[ǫ, e]Kiϕ↔ (pre(e) →
∧

{Ki[ǫ, f ]ϕ : e ∼i f}) (3.1)

Let us recall from Section 1.6.1 that together with a complete Hilbert system
for the underlying epistemic language and recursion axioms for the booleans, the
Action-Knowledge recursion axiom is complete for the dynamic epistemic logic of
K with respect to epistemic product update on epistemic models. To guarantee
that the preceding recursion axiom is finite — and thus that we can define a
suitable complexity measure on dynamic formulas by induction on which we can
prove soundness of our recursion axioms — the underlying event model has to be
finite. See [67, ch.7] for details.

In the same way axiomatizing LDDEL(〈≤i〉, 〈i ∩ ≥i〉, Ki, E), or another dy-
namic doxastic language, can be done by extending complete Hilbert systems for
the underlying static language together with recursion axioms for the different
modalities (and for booleans and propositional letters). We are able to carry out
a complete compositional analysis of the dynamic logic based on some doxastic
language L within L if we can translate every sentence of the dynamic language
using modalities in L and events modalities [ǫ, e] to a sentence of L. (We would
say that L is closed for priority update.) Therefore if we can carry such an analysis
and we have a complete axiom system for L, adding the dynamic recursion axioms
needed to carry this analysis will give us a complete logic for the corresponding
dynamic doxastic logic. It remains to check that the recursion axioms are sound.
The axioms for booleans and propositional letters are rather uninteresting and
unsurprising. Morever since priority update of an epistemic plausibility model by
some event model applies product update to compute the new epistemic relation,
the reduction axiom for knowledge is just the familiar Action-Knowledge. So let
us go directly to the interesting part: recursion axioms for doxastic modalities.
We start with the modality 〈≤i〉 scanning the plausibility ordering itself.

Proposition 3.6. The following law is sound for plausibility change:

〈ǫ, e〉〈≤i〉ϕ↔ (pre(e) ∧ (〈≤i〉
∨

{〈f〉ϕ : e ≃i f} ∨ E
∨

{〈g〉ϕ : e <i g})) (3.2)

Proof. From left to right. Assume that M, w 
 〈ǫ, e〉〈≤i〉ϕ, then we have M×
ǫ, we 
 〈≤i〉ϕ. This means that we have some vf such that we ≤i vf (1) and
M×ǫ, vf 
 ϕ (2). It follows from (2) that M, v 
 〈ǫ, f〉ϕ (3). Moreover it follows
from (1) and the definition of priority update that we are in one of two cases.
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Case 1: e <ǫ f and v ∈ |M|. But then there is some state v in |M| and
some event f such that e <ǫ f and M × ǫ, vf 
 ϕ, which gives us M, w 


E
∨

{〈f〉ϕ : e <i f}. Case 2: e ≃ǫ
i f (4) and w ≤i v (5). But then by (3),

(4) and (5) we have M, w 
 〈≤i〉
∨

{〈f〉ϕ : e ≃ǫ
i f}. The other direction is

similar. qed

We now turn to a recursion axiom for the dual of the safe belief modality
which together with knowledge can simulate conditional belief modalities.

Proposition 3.7. The following law is sound for epistemic plausibility change:

〈ǫ, e〉〈≥i ∩ i〉ϕ↔ (pre(e)∧
(〈i ∩≥i〉

∨

{〈f〉ϕ : e ∼i f & e ≃i f}∨
〈i〉

∨

{〈g〉ϕ : e ∼i f & e <i g}))

Proof. From left to right. Assume that M, w 
 〈ǫ, e〉〈≥i ∩ i〉ϕ, then we have
M× ǫ, we 
 〈≥i∩ i〉ϕ. This means that we have some vf such that we ≥i vf (1)
and we ∼i vf (2) and M× ǫ, vf 
 ϕ (3). It follows from (3) that M, v 
 〈ǫ, f〉ϕ
(4). By (1) and the definition of priority update we have e ∼i f (5) and w ∼i v
(6). Moreover it follows from (2) and the definition of priority update that we
are in one of two cases. Case 1: e >ǫ f . But then by (6) there exists some
state v with w ∼i v and some event f such that e <ǫ f and M × ǫ, vf 
 ϕ,
which, together with (5), gives us M, w 
 〈i〉

∨

{〈f〉ϕ : e ∼i f & e <i f}.
Case 2: e ≃ǫ

i f (7) and w ≥i v (8). But then by (4), (5), (6), (7), (8) we have
M, w 
 〈≥i∩i〉

∨

{〈f〉ϕ : e ≃ǫ
i f & e ∼i f}. The other direction is similar. qed

The recursion axiom for belief follows from the recursion axiom for knowledge,
the recursion axiom for safe belief and the translation given in the proof of Fact
3.5. Now the crucial feature of the previous dynamic ‘recursion step’ is that the
order between action and belief is reversed. This works because, conceptually, the
current beliefs already pre-encode the beliefs after some specified event. Again we
see that, while epistemic recursion axioms reflected agent properties of Perfect
Recall and No Miracles [34], doxastic recursion axioms encode ‘event-oriented’
revision policies, and the same point applies to the principles we will find later in
a doxastic temporal setting.

Finally our use of the existential modality reflects our stipulation that strict
preference among events can make any two worlds comparable. The recursion
axiom for the 〈ǫ, e〉E alternation is given by the following

Proposition 3.8. The following axiom is sound for epistemic plausibility change:

〈ǫ, e〉Eϕ↔ (pre(e) ∧ (E
∨

{〈f〉ϕ : f ∈ Dom(ǫ)})) (3.3)

Proof. From left to right. Assume that M, w 
 〈ǫ, e〉Eϕ, then we have M ×
ǫ, we 
 Eϕ. This means that we have some vf ∈ Dom(M×ǫ) (1) and M×ǫ, vf 




62 Chapter 3. Merging modal logics of belief change: languages and logics

ϕ (2). It follows from (2) that M, v 
 〈ǫ, f〉ϕ (3). Moreover it follows from (1)
and the definition of priority update that v ∈ Dom(M) and f ∈ Dom(ǫ). But
then there exists some state v in |M| and some event f ∈ Dom(ǫ) such that
M× ǫ, vf 
 ϕ, which gives us M, w 
 E

∨

{〈f〉ϕ : f ∈ Dom(ǫ)}) qed

Everything appears to go smoothly but as we mentioned this need not be the
case. In the epistemic context, it has been shown that adding public announce-
ment modalities to the epistemic language with common knowledge strictly ex-
tends the expressive power of the static language. The same is a fortiori true for
dynamic epistemic extensions in general. (See Baltag et al. [20] for a proof.) We
say that the language LEL(CG) is not closed under product update. It follows
that completeness for dynamic epistemic extensions of the epistemic language
with common knowledge can no longer be obtained via compositional analysis
and must be proven by other means. A completeness proof, based on the filtra-
tion argument used by Kozen and Parikh [110]’s in their completeness proof for
PDL, is given in [20]. But it was proven that some richer languages are again
closed under product update: van Benthem et al. [35] prove this for epistemic PDL
and van Benthem and Ikegami [33] for the epistemic µ-calculus (two languages
in which common knowledge is expressible). Similar limits of the compositional
analysis methodology can occur in the doxastic case and similar solutions are
available.

We mentioned local (or unified) plausibility models together with the local
priority update rule of Baltag and Smets [17] while discussing representation
theorems in terms of doxastic temporal properties. We referred to [17, 40] for
corresponding static languages and their axiomatization. The reader who wonders
about the recursion axioms (corresponding to local priority update) will find the
answer in [17].

This concludes what we wanted to say about dynamic doxastic languages,
but the story of logical languages to analyze belief change is not yet complete.
Recursion axioms gave the syntactic view of dynamic logics of belief change. Let
us now move to the complementary point of view offered by temporal logics.

3.3 Doxastic epistemic temporal languages

The previous section identified the syntactic principles governing the dynamic
component of dynamic logics of belief change. But the previous chapter identified
the classes of doxastic temporal models generated by stepwise belief revision, so
it is now time to discuss how doxastic temporal languages can characterize such
frames: another syntactic way of identifying the principles of local, stepwise belief
change.

To do so we will consider languages interpreted on doxastic-epistemic tem-
poral models, which are simply our old doxastic temporal models extended with
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epistemic accessibility relations ∼i. Such languages come in at least two sorts:
branching-time languages, that are evaluated at both a maximal history and
some node on that history (i.e. subsequence of that history); and simple (or lin-
ear) temporal languages, that are evaluated at a node (finite sequence) in the
model. Intuitively the first type of language allows for quantification over pos-
sible continuations (histories), while the second type allows only quantification
over successors.

3.3.1 Simple doxastic epistemic temporal languages

We start by introducing the doxastic epistemic temporal language LDET that is
the safe belief-free counterpart of the dynamic doxastic language LDDEL(〈≤i〉, 〈i∩
≥i〉, 〈i〉, E) considered in the previous section, extended with one-step backward
modalities allowing formulas of the form 〈e−1〉ϕ, with intuitive meaning ‘e has just
been executed, and before that ϕ was true’. The syntax of LDET is recursively
defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈e〉ϕ | 〈e−1〉ϕ | 〈≤i〉ϕ | 〈i〉ϕ | Eϕ,

where i ranges over N , e over Σ, and p over proposition letters prop.
The particular choice of syntax is driven by definability issues. Indeed this

language gives the right expressive power to define our earlier doxastic-temporal
properties characterizing stepwise belief-revising agents. Other doxastic epistemic
temporal languages are very natural. For example a very natural language allows
for temporal operators Fϕ and Pϕ with intuitive meaning: ‘at some point in
the future ϕ’ and at ‘some point in the past ϕ’. This being said, let us fix the
semantics of LDET , which we will interpret over nodes h in our trees (cf. [34]):

Definition 3.9 (Truth definition). Let Ki[h] = {h′ | h ∼i h
′}

H, h 
 p iff h ∈ V (p)
H, h 
 ¬ϕ iff H, h 6
 ϕ
H, h 
 ϕ ∨ ψ iff H, h 
 ϕ or H, h 
 ψ
H, h 
 〈e〉ϕ iff for some h′ with h′ = he we have H, h′ 
 ϕ
H, h 
 〈e−1〉ϕ iff for some h′ with h′e = h we have H, h′ 
 ϕ
H, h 
 〈≤i〉ϕ iff for some h′ with h ≤i h

′ we have H, h′ 
 ϕ
H, h 
 〈i〉ϕ iff for some h′ with h′ ∈ Ki[h] we have H, h′ 
 ϕ
H, h 
 Eϕ iff for some h′ ∈ H we have H, h′ 
 ϕ

This constituted a typical example of simple (or linear) doxastic epistemic
temporal languages. This family of languages forms a natural place in which
to reason and axiomatize classes of frames characterizing stepwise belief revising
agents. But for some applications such as reasoning about inductive reasoning,
i.e. how agents might learn or not learn from inductively given streams of data,
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one might need a more expressive family of languages. Let us give an example.
Let h→∗ h′ iff there is some finite sequence of events e∗ ∈ Σ∗ such that h′ = he∗.
Using the future operator Fϕ with semantics:

H, h 
 Fϕ iff for some h′ with h→∗ h′ we have H, h′ 
 ϕ

and its dual Gϕ, one can for example say that an agent will always know ϕ (GKϕ)
or that after some sequence of events she will know ϕ (FKϕ) but one cannot say
that for every sequence of events, there is point at which she will know ϕ. Notions
involving such an alternation of quantifiers ∀F are precisely what branching-time
languages can allow us to express.

3.3.2 Branching-time doxastic temporal languages

As we have seen, some applications call for more complex alternations of quan-
tifiers than the ones simple (or linear) temporal languages allow. We will make
use of the expressive power of branching-time doxastic temporal languages as we
will bring our logical viewpoint to the study of inductive reasoning in Chapter
5. The particular choice of primitives we are making here is motivated by this
application. Let us call this language LBDET. Its syntax is defined inductively as
follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kjϕ | Bjϕ | Aϕ | ©−1ϕ | Fϕ | Pϕ | ∀ϕ

where p ranges over a countable set of proposition letters prop, j over N . Kjϕ
(Bjϕ) reads j knows (believes) that ϕ. F and P stand for future and past. ∀ϕ
means: ‘in all continuations ϕ’. Also: Hϕ := ¬P¬ϕ and Gϕ := ¬F¬ϕ. Finally
©−1ϕ means: ‘in the previous state ϕ’.

To be consistent with our main applications of this sort of language in this
dissertation we take LBDET to be interpreted over an ω-W doxastic epistemic
temporal model H, an initial state w, an infinite history wǫ and a finite prefix
wh of wǫ [122, 130].

Definition 3.10. We give the semantics of LBDET. We skip the obvious clauses.
We take e ⊑ e′ to mean that e is an initial segment of e′ and let Bi[wh] =
min≤i

Ki[wh] be the set of histories that i considers the most plausible at wh.

H, wǫ, wh 
 p iff wh ∈ V (p)
H, wǫ, wh 
 Kiϕ iff ∀vh′ ∀wǫ if vh′ ∈ Ki[wh]&vh

′ ⊑ vǫ′ then H, vǫ′, vh′ 
 ϕ
H, wǫ, wh 
 Biϕ iff ∀vh′ ∀wǫ if vh′ ∈ Bi[wh]&vh

′ ⊑ vǫ′ then H, vǫ′, vh′ 
 ϕ
H, wǫ, wh 
 Aϕ iff ∀vh′ ∀wǫ if vh′ ∈ H & vh′ ⊑ vǫ′ then H, vǫ′, vh′ 
 ϕ
H, wǫ, wh 
 ©−1ϕ iff ∃a ∈ Σ ∃h′ ⊑ ǫ with h′.a = h and H, wǫ, wh′ 
 ϕ
H, wǫ, wh 
 Fϕ iff ∃e ∈ Σ∗ ∃h′ ⊑ ǫ with h′ = he and H, wǫ, wh′ 
 ϕ
H, wǫ, wh 
 Pϕ iff ∃e ∈ Σ∗ ∃h′ ⊑ ǫ with h′e = h and H, wǫ, wh′ 
 ϕ
H, wǫ, wh 
 ∀ϕ iff ∀h ′ ∈ P(w) s.t. h ⊑ h we have H, wh′, wh 
 ϕ
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Chapter 5 will put branching-time epistemic temporal languages to work in
the analysis of inductive learning scenarios; we leave them until then. In the rest
of the chapter will we work with simple (i.e. non-branching) doxastic temporal
languages.

In the next section we show that simple (non-branching) doxastic epistemic
temporal languages give us the right syntax to analyze our earlier structural
conditions.

3.3.3 Defining the frame conditions for priority update

Indeed in this section we show that these non-branching doxastic temporal lan-
guages give us the right syntax to analyze the structural conditions that emerged
earlier in Chapter 2 as the specific properties that characterize agents revising
their beliefs with the ‘local, stepwise priority updates’ of dynamic doxastic logic.
We will state semantic correspondence results (cf. [39]) for our crucial proper-
ties, using somewhat technical axioms in the formal language that simplify the
argument. Afterwards, we present some reformulations whose meaning for belief-
revising agents is more intuitive.

The key correspondence result

We start with the correspondence result driven by these slightly technical axioms.

Theorem 3.11 (Definability). Preference Propagation, Preference Revelation
and Accommodation are all definable in the doxastic-epistemic temporal language
LDET .

• H satisfies Preference Propagation iff the following axiom is valid:

E〈a〉〈≤i〉〈b
−1〉⊤ → ((〈≤i〉〈b〉p ∧ 〈a〉q) → 〈a〉(q ∧ 〈≤i〉p) (PP)

• H satisfies Preference Revelation iff the following axiom is valid:

E〈b〉〈≤i〉〈a
−1〉⊤ → (〈a〉〈≤i〉(p ∧ 〈b−1〉⊤) → 〈≤i〉〈b〉p) (PR)

• H satisfies Accommodation iff the following axiom is valid:

E〈a〉〈≤i〉〈b
−1〉⊤

∧ E [〈a〉 (p1 ∧ E (p2 ∧ 〈b−1〉⊤) ) ∧ [a] (p1 → [≤i]¬p2)]

→ ( (〈≤i〉〈b〉q → [a]〈≤i〉q)

∧ (〈a〉〈≤i〉(r ∧ 〈b−1〉⊤) → 〈≤i〉〈b〉r) (AC)

Before we prove this correspondence result, let us give some intuitions about
the meaning of the previous axioms.
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Two intuitive explanations

Here are two ways to grasp the intuitive meaning of our technical axioms.

Reformulation with safe prior belief. We have encountered the safe belief
modality and its counterpart in the family of ‘prior belief’, the safe prior belief
modality 2≥ (prior beliefs we do not give up under true new information), which
is just the universal dual of the existential modality 〈≥〉 scanning the converse of
≤. Here is how we can then rephrase our earlier axiom:

• H satisfies Preference Propagation iff the following axiom is valid on H:

E〈a〉〈≥i〉〈b
−1〉⊤ → (〈a〉2≥ip → 2

≥i [b]p) (PP’)

A similar reformulation works for Preference Revelation. Principles in this format
reverse action modalities and safe belief much like the earlier Knowledge-Action
interchange laws. Its intuitive meaning should be understood in terms of acquired
safe (prior) beliefs as informative events happen. (PP’) states that if at some state
after some event a has happened i considers it, a priori, at least as likely that the
event b just took place, then if it is possible that after a takes place, i (a priori)
safely believes that p, then i already (a priori) safely believes that after b takes
place p will hold.

Analogies with recursion axioms One can also understand our formal ax-
ioms in their original format with existential modalities by analogy with the
dynamic-doxastic recursion axiom for priority update. Here are some cases jux-
taposed:

〈ǫ, e〉〈≤i〉p↔ (pre(e) ∧ (〈≤i〉
∨

{〈f〉p : e ≃i f} ∨ E
∨

{〈g〉p : e <i g})) (3.7)

E〈a〉〈≤i〉〈b
−1〉⊤ → (〈≤i〉〈b〉p → [a]〈≤i〉p) (PP)

E〈b〉〈≤i〉〈a
−1〉⊤ → (〈a〉〈≤i〉(p ∧ 〈b−1〉⊤) → 〈≤i〉〈b〉p) (PR)

The family resemblance is obvious, and indeed, (PP) and (PR) may be viewed as
the two halves of the dynamic-doxastic reduction axiom, transposed to the more
general setting of arbitrary doxastic-temporal models.

Let us now get to the proof of the preceding correspondence result.

Proof. We start by proving the case of Preference Propagation. We drop agent
labels for convenience.
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(PP) characterizes Preference Propagation

We first show that (PP) is valid on all models H based on preference-propagating
frames. Assume that H, h 
 E〈a〉〈≤i〉〈b

−1〉⊤ (1). Then there are ja, j′b ∈ H with
ja ≤ j′b (2). Now let H, h 
 (〈≤〉〈b〉p ∧ 〈a〉q) (3). Then there is h′ ∈ H with
h ≤ h′ (4) and H, h′ 
 〈b〉p (5), while also H, ha 
 q (6). We must show that
H, h � 〈a〉(q ∧ 〈≤i〉p) (7). But, from (2),(4),(6) and Preference Propagation, we
get ha ≤ h′b, and we apply the truth definition.

Next, assume that axiom (PP) is valid on a doxastic temporal frame, that
is, true under any interpretation of its proposition letters. So, let ja ≤ j′b (1),
and also h ≤ h′ (2). Moreover, let ha, h′b ∈ H (3). First note that (1) auto-
matically verifies the antecedent of (PP) in any node of the tree. Next, we make
the antecedent of the second implication in (PP) true at h by interpreting the
proposition letter p as just the singleton set of nodes h′b, and q as just ha (4).
Since (PP) is valid, its consequent will also hold under this particular valuation
V . Explicitly we have H, V, h 
 〈a〉(q ∧ 〈≤i〉p). But spelling out what p, q mean
there, we get just the desired conclusion that ha ≤ h′b.

(PR) characterizes Preference Revelation

We start by proving that (PR) is valid on the class of preference-revealing frames.
First assume that H is based on a preference propagating frame (1). Now assume
that H, h 
 E〈b〉〈≤i〉〈a

−1〉⊤ (2). It follows that there are jb, j′a ∈ H such that
jb ≤ j′a (3). Now assume that H, h 
 〈a〉〈≤i〉(p ∧ 〈b−1〉⊤) (4). It follows that
ha ∈ H (5) and that H, ha 
 〈≤i〉(p ∧ 〈b−1〉⊤) (6). By (6) it follows that there is
a history g ∈ H such that ha ≤ g (7) and H, g 
 (p ∧ 〈b−1〉⊤) (8). In particular
H, g 
 〈b−1〉⊤ (10). From (10) and semantics of 〈b−1〉 it follows that g = kb (11)
for some k ∈ H . From (11) and (8) we have also H, kb 
 p (12). From (12)
it follows that H, k 
 〈b〉p (13). We now have to prove that H, h 
 〈≤i〉〈b〉p
(14). By (7) and (11) we have ha ≤ kb (15). But by (1),(3),(5),(15) we have
by Preference Revelation h ≤ k (16). But (14) follows from (16) and (13) by
semantics of 〈≤〉.

Now we assume that H is not based on a preference-revealing frame (1). We
have to find a state and to construct a valuation at which (PR) is not satisfied.
It follows from (1) that there are jb, j′a ∈ H such that jb ≤ j′a (2) and that
there are ha, h′b ∈ H such that ha ≤ h′b (3) but h 6≤ h′ (4). Let us settle
V (p) = {h′b} (5). By semantics of 〈b〉 we have H, V, h′b 
 〈b−1〉⊤ (6). It follows
from (5) and (6) that H, V, h′b 
 p ∧ 〈b−1〉⊤ (7). It follows from (3),(7) and
the satisfaction condition for 〈≤〉 that H, V, ha 
 〈≤〉(p ∧ 〈b−1〉⊤) (8). From
(8) and the semantics of 〈a〉 we have H, V, h 
 〈a〉〈≤〉(p ∧ 〈b−1〉⊤) (9). It is
now sufficient to prove that H, V, h 6
 〈≤i〉〈b〉p (10). But by (5) and semantics
of 〈b〉 it follows that ||〈b〉p|| = {h′} (11). But (10) follows from (4),(11) and the
satisfaction clause of 〈≤〉.
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(AC) characterizes Accommodation

Soundness. We start by proving that (AC) is valid on the class of frames satis-
fying accomodation. First assume that H is based on an Accommodation-frame
(1). Now assume that H, g 
 E〈a〉〈≤i〉〈b

−1〉⊤ (2). It follows that there are
ja, j′b ∈ H such that ja ≤ j′b (3). Now assume that H, g 
 E [〈a〉 (p1 ∧ E (p2 ∧
〈b−1〉⊤) ) ∧ [a] (p1 → [≤i]¬p2)] (4). It follows from (4) that there is h ∈ H
such that H, h 
 〈a〉 (p1 ∧ E (p2 ∧ 〈b−1〉⊤) ) (5) and H, h 
 [a] (p1 → [≤i]¬p2)
(6). From (5) it follows that H, ha 
 p1 (7) and that H, ha 
 E (p2 ∧ 〈b−1〉⊤)
(8). From (8) it follows that there is some k ∈ H such that H, k 
 p2 (9) and
H, k 
 〈b−1〉⊤) (10). From (10) and semantics of 〈b−1〉 we have k = h′b (11)
for some h′. From (6) it follows that H, ha 
 (p1 → [≤i]¬p2) (12). But (7)
and (12) we have H, ha 
 [≤i]¬p2 (13). From (13),(11) and semantics of [≤i]
it follows that ha 6≤ h′b (14). It follows from (1),(3) and (14) by definition of
Accommodation that a and b are accommodating (15).

We first have to prove that H, g 
 〈≤i〉〈b〉q → [a]〈≤i〉q (16a). First assume
that H, g 
 〈≤i〉〈b〉q; it follows that there is a g′ such that g ≤ g′ (17a) and
H, g′ 
 〈b〉q (18a). It follows from (18a) by semantics of 〈b〉 that g′b ∈ H (19a)
and H, g′b 
 q (20a). We have to prove that H, g 
 [a]〈≤i〉q (21a). Case 1:
ga 6∈ H (22a). But if (22a) then (21a) trivially holds. Case 2: ga ∈ H (23a). But
it follows from (15),(19a),(23a) and (17a) that ga ≤ g′b (24a). But (21a) follows
from (23a), (24a),(20a) and semantics of [a].

For the other conjunct in the consequent assume we have to prove that H, g 


〈a〉〈≤i〉(r ∧ 〈b−1〉⊤) → 〈≤i〉〈b〉r (16b). First assume that H, g 
 〈a〉〈≤i〉(r ∧
〈b−1〉⊤) (17b). It follows from (17b) that ga ∈ H (18b) and H, ga 
 〈≤i〉(r ∧
〈b−1〉⊤) (19b). It follows that for some k ∈ H such that ga ≤ k (20b) we have
H, k 
 r (21b) and H, k 
 〈b−1〉⊤ (22b). From (22b) it follows that k = g′b (23b)
for some g′ ∈ H (24b). Note that (23b) and (20b) implies that ga ≤ g′b (25b).
Note also that (23b) and (21b) implies that H, g′b 
 r (26b). But it follows from
(15) and (25b) that g ≤ g′ (27b). Note that (26b) implies by semantics of 〈b〉
that H, g′ 
 〈b〉r (28b). But it follows from (28b) and (26b) that H, g 
 〈≤〉〈b〉r.
This concludes the proof for this direction.

Sufficiency. Now we assume that H is not based on an Accommodation-
frame (1). We have to find a state and to construct a valuation at which (AC)
is not satisfied. It follows from (1) that there are ja, j′b ∈ H such that ja ≤ j′b
(2) and that there are ha, h′b ∈ H (3) such that ha 6≤ h′b (4) and that a and b
are not accommodating (5). Let us settle V (p1) = {ha} (6) and V (p2) = {h′b}
(7). We left to the reader to check that H, V, j 
 〈a〉〈≤〉〈b−1〉⊤ (8) and that
H, V, h′b 
 (p2 ∧ 〈b−1〉⊤) (9). By semantics of [a], (6), (7), (3) and semantics of
[≤] it follows that H, V, h 
 [a] (p1 → [≤i]¬p2) (10). From (10), (9) and (6) it is
easy to check that H, V, h 
 〈a〉 (p1 ∧ E (p2 ∧ 〈b−1〉⊤) ) ∧ [a] (p1 → [≤i]¬p2)
(11). From (8),(11) and the semantics of E it follows that H, V, g 
 E〈a〉〈≤i

〉〈b−1〉⊤ ∧ E [〈a〉 (p1 ∧ E (p2 ∧ 〈b−1〉⊤) ) ∧ [a] (p1 → [≤i]¬p2)] (13). There
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are two cases in which (5) might hold:

Case 1: ga, g′b ∈ H (14a), g ≤ g′ (15a) but ga 6≤ g′b (16a). Let us settle
V (q) = {g′b} (17a). It follows that H, V, g′ 
 〈b〉q (18a). It also follows from
(17a), (16a) and semantics of 〈≤〉 that H, V, ga 6
 〈≤i〉q (19a). By semantics
of [a] it follows that H, V, g 6
 [a]〈≤i〉q (20a). But by (15a) and (18a) we have
H, V, g 
 〈≤〉〈b〉q (21a). But (21a) and (19a) implies that H, V, g 6
 〈≤i〉〈b〉q →
[a]〈≤i〉q (22a). Together with (13), (22a) implies that H, V, g 6
 (AC). This
concludes the proof for this case.

Case 2: ga ≤ g′b (14b) but g 6≤ g′ (15b). Let us settle V (r) = {g′b} (16b).
It is easy to check that H, V, g′b 
 r ∧ 〈b−1〉⊤ (17b). It follows from (17b) by
semantics of 〈≤〉, (14b) and semantics of 〈a〉 that H, V, g 
 〈a〉〈≤i〉(r ∧ 〈b−1〉⊤)
(18b). It is now sufficient to prove that H, V, g 6
 〈≤i〉〈b〉r (19b). First note that
by (16b) and semantics of 〈b〉 we have ||〈b〉r|| = {g′} (20b). But (19b) follows
from (15b),(20b) and semantics of 〈≤〉. qed

Sahlqvist correspondence

The preceding correspondence proofs can really be seen as Sahlqvist substitution
arguments. In particular the first two axioms are of a simple form with existential
positive antecedents and positive consequents.

Fact 3.12. The axioms for preference propagation, preference revelation and ac-
comodation can be put in Sahlqvist form.

Proof. Let us explain this idea (for details see [39, ch.3]). It is well-known that
not every modal formula defines a first-order definable class of frames. In fact
in the general case, on the level of frames, they really correspond to a fragment
of monadic second-order logic. But some of them do correspond to first-order
definable classes of frames (4 characterizes transitive frames). Sahlqvist [141]
identifies a large class of syntactically defined modal formulas for which a first-
order correspondent can be automatically computed.

In fact (PP) and (PR) are a particularly simple form of Sahlqvist formula
(called very simple Sahlqvist formulas in [39, ch.3]): they are of the form ϕ → ψ
where ϕ is built up from propositional letters, ⊥, ⊤, conjunction and existential
modalities, and ψ is positive (i.e. is built up with conjunction, disjunction, ex-
istential and universal modalities, one can allow negation but all propositional
letters should occur in the scope of an even number of negations). The reader
can check that indeed (PP) and (PR) fall under this scope and hence the corre-
spondences that we found can be justified by a substitution algorithm.

The case of the remaining axiom takes a bit more work. Here is how we can
rewrite (AC) into a Sahlqvist form. We split the axiom in two parts and take their
conjunction. Indeed the conjunction of two Sahlqvist formulas is still Sahlqvist
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(see [39, ch.3]). First let us isolate the antecedent that will be common to both
conjuncts.

E〈a〉〈≤i〉〈b
−1〉⊤ ∧ E〈b〉p ∧ 〈a〉q2 (AC-ant)

For the reason mentioned before (AC-ant) is a Sahlqvist antecedent. Now for the
first conjunct we define the antecedent as follows:

(AC-ant) ∧ 〈≤i〉(r1 ∧ 〈b〉r2) (AC-ant-1)

Again a good candidate to be a Sahlqvist antecedent. The consequent will be the
following disjunction of two formulas:

〈a〉(q2 ∧ 〈≤i〉r2) ∨ A[a]〈≤i〉p (AC-consq-1)

This is a positive formula (the main difference with (AC) is that we move a
negative formula into the consequent). So (AC-ant-1) → (AC-consq-1) is a
Sahlqvist formula. We proceed similarly for the second conjunct, simply switching
the role of 〈≤i〉(r1 ∧ 〈b〉r2) and 〈a〉(q2 ∧ 〈≤i〉r2).

(AC-ant) ∧ 〈a〉(q2 ∧ 〈≤i〉r2) (AC-ant-2)

This is still a Sahlqvist antecedent. The consequent is the following disjunction:

〈≤i〉(r1 ∧ 〈b〉r2) ∨ A[a]〈≤i〉p (AC-consq-2)

which is a positive formula. So (AC-ant-2) → (AC-consq-2) is a Sahlqvist
formula, and hence so is the conjunction: ((AC-ant-1) → (AC-consq-1)) ∧
((AC-ant-2) → (AC-consq-2)). qed

3.3.4 A first bit of axiomatics

Section 3.4 will give a completeness result for a particular language, but let us
already note that our correspondence analysis is close to explicit formal reasoning
about belief-revising doxastic agents. We will give just one illustration, which
provides a syntactic counterpart to our earlier Fact 2.19, now suitably stated in
our formal language LDET . We use the following bridging axiom to simplify the
presentation of the syntactic derivation.

E [〈a〉 (ψ ∧ E (ϕ ∧ 〈b−1〉⊤) ) ∧ [a] (ψ → [≤i]¬ϕ)]

→ (〈a〉〈≤i〉(χ ∧ 〈b−1〉⊤) → 〈≤i〉〈b〉χ)
(F )

First, here is an auxiliary observation:

Fact 3.13. On total doxastic temporal models the following axiom is valid:

〈a〉(ψ ∧ E (ϕ ∧ 〈b−1〉⊤)) →

( 〈a〉(ψ ∧ 〈≤i〉ϕ) ∨ E〈b〉(ϕ ∧ 〈≤i〉(ψ ∧ 〈a−1〉⊤)) (Tot)
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Now we can state a derivational counterpart to what we had before:

Fact 3.14.

⊢ ((PP) ∧ (F )) → (AC)

⊢ ((PR) ∧ (Tot)) → (F )

Proof. The first theorem is a fact of propositional logic. We focus on the second
theorem. First assume that 〈a〉 (ψ ∧ E (ϕ ∧ 〈b−1〉⊤) ) ∧ [a] (ψ → [≤i]¬ϕ) (1).
It follows from (1) and (Tot), standard modal reasoning and disjunctive syllogism
that E〈b〉〈≤i〉〈a

−1〉⊤ (2). We have thus ⊢ (1) → (2). Let us call the preceding
fact (3). Now assume the antecedent of (F ), i.e. E [〈a〉 (ψ ∧ E (ϕ ∧ 〈b−1〉⊤) ) ∧
[a] (ψ → [≤i]¬ϕ)] (4). It follows from (3), (4) and the fact that 4 holds for E

that E〈b〉〈≤i〉〈a
−1〉⊤ (5). Note that (5) is the antecedent of (PR). It follows from

(5) and (PR) that 〈a〉〈≤i〉(χ ∧ 〈b−1〉⊤) → 〈≤i〉〈b〉χ. qed

We also get an immediate counterpart to Fact 2.19:

Corollary 3.15.

⊢ ((PP) ∧ (PR) ∧ (Tot)) → (AC) (3.4)

But there is more to completeness of temporal languages for stepwise belief
revision and we devote almost the rest of the chapter to it. But before we get there
let us finish by showing that LDET was really adequate for our correspondence
task and pointing to a few more interesting issues about correspondence theory
in the general context of modal logics of belief change.

3.3.5 Variations and extensions of the language

The above doxastic-temporal language is not the only reasonable one. We will
mention extensions of this language but we start by a natural question: did we
need all the expressive power of LDET?

Weaker languages

Indeed weaker forward-looking fragments also make sense, dropping converse and
the existential modality. But they do not suffice for our correspondence:

Proposition 3.16 (Undefinability).

Preference Propagation, Preference Revelation and Accommodation are not
definable in the forward-looking fragment of LDET .
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Proof. The reason is the same in all cases: we show that these properties are not
preserved under taking bounded p-morphic images. Figure 3.3 gives an indication
how this works concretely for Preference Propagation. We instantiate the condi-
tion for the events a and b. The left-hand model satisfies Preference Propagation
by making its antecedent false. Note moreover that neither of the models satisfies
the consequent of Preference Propagation. Indeed in both cases the preference
for the black node over the white node is not propagated by execution of (re-
spectively) a and b. It remains to see that the right-hand model does satisfy the
antecedent of Preference Propagation (which follows from the right half of this
model) and that the right-hand model is a p-morphic or bounded morphic image
of the left-hand model.

Since the ‘trick’ is that the antecedent falsity is not preserved under taking
bounded morphic images and that all three notions share a common antecedent,
it is easy to see that a similar argument works for the other two notions. qed

p≥ ≤

a a b
ba b

≤

≥q p

a b

≤

q

Figure 3.3: Propagation is not preserved under p-morphic images
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Richer languages

There is also room for richer languages. For instance, if we want to define the
frame property of synchronicity, we must introduce an equilevel relation in our
models, with a corresponding modality for it. While expressing synchronicity
then becomes easy, this move is dangerous in principle. van Benthem and Pacuit
[34] point at the generally high complexity of tree logics when enriched with this
expressive power. Likewise, finer epistemic and doxastic process descriptions re-
quire temporal modalities such as “Since” and “Until”, beyond the basic operators
that we used for matching dynamic doxastic logic directly.

Finally these doxastic temporal languages can also be extended along the
doxastic dimension with e.g. operators for beliefs that we have encountered in
the section on static doxastic languages.

3.3.6 Further correspondence issues: doxastic and dynamic
formulas

In general richer languages uncover new interesting issues for modal correspon-
dence itself. As an example let us consider a formula from the basic doxastic
language LDOX.

Biϕ → ϕ (3.5)

It has a natural model-theoretic correspondent.

Fact 3.17. On the class of locally well-founded pointed epistemic plausibility
frames, Biϕ → ϕ characterizes pointed frames in which the pointed (actual)
state is in min≤i

(Ki[w]).

Proof. For the left to right direction. We prove the contrapositive. Consider a
pointed epistemic plausibility frame F , w such that w 6∈ min≤i

(Ki[w]) (1). Then
fix the valuation V (p) = |F| \ {w} (2).

By local well-foundedness min≤i
(Ki[w]) is non-empty. Moreover by (1) and

(2) we have min≤i
(Ki[w]) ⊆ |F| \ {w} = V (p). But then F , V, w 
 Bip. But by

(2) F , V, w 6
 p. qed

A natural question arises: in the same way that Sahlqvist formulas consti-
tute a syntactically characterized class of formulas of the basic modal language
for which first-order correspondents can be automatically derived, can we define
a class of formulas of the basic doxastic language for which first-order corre-
spondents can be automatically derived? A similar question has been raised
by van Benthem [29, 30] for dynamic epistemic and dynamic doxastic formulas
in discussing correspondence results for dynamic languages and extended modal
languages in general, respectively.

These questions also apply to other algorithmic approaches to modal corre-
spondence such as structure seeking dialogues as developed by Rahman and Keiff
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[136], Keiff [109]. Can structure seeking dialogues for doxastic languages and dy-
namic languages be defined? How do they relate to dialogical validity games for
these logics?

These open questions end our discussion of correspondence theory for modal
logics of belief change. We have discussed expressive power, definability and
correspondence, but we only made a brief comment on syntactic derivations. The
next section balances this by proving axiomatic completeness for a temporal logic
of belief revision.

3.4 Axiomatization of protocol-based dynamic

logics of belief revision

As the reader might expect the temporal logic of belief revision we will prove
axiomatic completeness for, results from the merging of the dynamic doxastic
(DDL) and the doxastic temporal (DTL) approaches. Before we lift the curtain
on this logic, let us step back briefly to give the background in which it appears.
To do so first reconsider public announcement logic (PAL).

PAL is an interesting special case of DEL, in the sense that a public announce-
ment of an epistemic formula ϕ corresponds to product updating an epistemic
model by an epistemic event model based on a singleton with a reflexive acces-
sibility relation and ϕ as its precondition. The effect is clear from the definition
of product update: a public annoucement of ϕ removes all non-ϕ states from
the domain and preserves the old epistemic relations as far as the new domain
allows. We will refer to this extreme way of updating a model on the base of
some information as ‘hard’ update.

We have encountered PAL, DEL (based on product update) and DDL (based
on priority update) and the reader might feel that the picture is not complete.
The missing element is to be found in the seminal paper van Benthem [29] which
explores dynamic logics of belief revision which are a ‘soft’ counterpart to public
announcement. As for public announcement the real input is a formula of some
doxastic language, but the effect is very different. One of the operations consid-
ered is Lexicographic Upgrade (⇑). Lexicographically upgrading a model by a
formula ϕ does not remove states, it changes the plausibility ordering. Precisely
it moves all ϕ states below the non-ϕ states (thus making the ϕ-states more plau-
sible than the non-ϕ-states) and preserves the ordering within these categories.
This is an interesting and foundational special case of DDL, just like PAL is an
interesting and foundational special case of DEL.

But what about the connection with temporal logics? How does restricting the
possible sequences of public announcements by a protocol affect the logic of public
announcement or the logic of lexicographic upgrade? Indeed as we mentioned
in the previous chapter for many applications we would like to focus on the
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case in which only some possible streams of information are allowed or possible:
communication protocols in interactive epistemology, enumeration protocols in
formal learning theory and games as interaction protocols in game theory. The
answer in the case of public announcement has been given by Hoshi [106] and
[36], which develop the logic TPAL, and prove axiomatic completeness for it, using
the following axiomatization:

Axiomatization. The set of formulas of LTPAL valid on the class of all epistemic
temporal models generated from state-dependent public announcement protocols
can be axiomatized as follows:

PC Propostional validities
(P !K) ⊢ [!ϕ](ψ → χ) → ([!ϕ]ψ → [!ϕ]χ)
(P !p) ⊢ 〈!ϕ〉p↔ (〈ϕ〉⊤ ∧ p)
(P !¬) ⊢ 〈!ϕ〉¬ψ ↔ (〈ϕ〉⊤ ∧ ¬〈!ϕ〉ψ)
(P !∧ ) ⊢ 〈!ϕ〉(ψ ∧ χ) ↔ (〈!ϕ〉ψ) ∧ 〈!ϕ〉χ)
(P !Ki) ⊢ 〈!ϕ〉Kiψ ↔ (〈ϕ〉⊤ ∧ Ki(〈!ϕ〉⊤ → 〈!ϕ〉ψ))

Table 3.1: Axiom system TPAL.

Theorem 3.18 (Completeness of TPAL, Hoshi [106], Benthem et al. [36]).
TPAL is sound and strongly complete with respect to the class of epistemic tem-
poral models generated from a state-dependent public announcement protocol.

The completeness proof of the preceding result draws on a canonical model
construction, indeed no compositional analysis can be carried out when protocols
are introduced.

In this section we give the answer in the case of the logic of belief revision,
considering what is the effect of protocol-based restrictions on the logic of lex-
icographic upgrade. To do so we start by introducing protocols that restrict
the executable sequences of lexicographic upgrades. Then we choose an under-
lying doxastic language. Finally we give an axiomatization of protocol-based
lexicographic upgrade and prove it complete with respect to the class of doxastic
temporal models generated by lexicographically upgrading some doxastic model
according to some (belief revision) protocol.

3.4.1 Dynamic logic of protocol-based belief revision

We start with the notion of a state-dependent dynamic belief revision protocol.

Definition 3.19 (State-dependent dynamic belief revision protocol). Given a
doxastic language L we let Ptcl(L) = {P |P ⊆ L∗ and P is closed under ini-
tial segments}. Given a doxastic model M = 〈W, (�i)i∈N , V 〉, a state-dependent
dynamic belief revision protocol is a mapping p : W → Ptcl(L).
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Now how exactly does lexicographic upgrade according to a state-dependent
dynamic belief revision protocol generate a temporal forest? A piece of notation:
let h(n) stand for the n-th element of h and let h|n stand for the initial segment
of h of length n. We will be interested in a particular kind of forests. Namely:

Definition 3.20 (DoTL model generated by lexicogaphically upgrading a dox-
astic model according to a state-dependent dynamic belief revision protocol).
Each initial plausibility model M = 〈W, (�i)i∈N , V 〉 and each dynamic belief re-
vision protocol p : W → Ptcl(L) yields a generated DoTL plausibility model
H = 〈Σ, H, (≤i)i∈N ,V〉 as follows:

• Let Σ := L.

• Let H1 := W and for any n ≥ 1 let Hn+1 := {(wϕ1 . . . ϕn)|(wϕ1 . . . ϕn−1) ∈
Hn such that ϕ1 . . . ϕn ∈ p(w)}.

Finally let H =
⋃

1≤kHk.

• If h, h′ ∈ H1, then h ≤i h
′ iff h �M

i h′.

• If h, h′ ∈ H1, then h ≡ h′.

• For k > 1 and for h = wϕ1 . . . ϕk−1, h
′ = w′ϕ1 . . . ϕk−1, h ≤i h

′ iff one of
the following holds:

1. H, (wϕ1 . . . ϕk−2) 
 ϕk−1 while H, (w′ϕ1 . . . ϕk−2) 6
 ϕk−1

2. H, (wϕ1 . . . ϕk−2) 
 ϕk−1 iff
H, (w′ϕ1 . . . ϕk−2) 
 ϕk−1, and (wϕ1 . . . ϕk−2) ≤i (w′ϕ1 . . . ϕk−2).

• For each k ≥ 1, for each h, h′ ∈ Hk, let h ≡ h′ iff h|(k − 1) ≡ h′|(k − 1)
and h(k) = h′(k).

• Let wh ∈ V(p) iff w ∈ V (p).

Now that we have defined the class of doxastic temporal forests generated
by lexicographically upgrading some doxastic model according to some state-
dependent dynamic belief revision protocol, we can move on to axiomatizing it.

But first of all let us fix the dynamic doxastic language we will prove complete-
ness for. As we have seen lexicographic upgrade only affects the plausibility order-
ing, so let us first look at a purely doxastic dynamic language (LDBR(A, [≤i],2

≥i))
matching our structural primitives. 2≥i is our former safe prior belief operator.
[≤i] is the modality scanning the plausiblity ordering and A the universal oper-
ator. But the interesting new sentences are of the form 〈⇑ ψ〉ϕ, meaning ‘the
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protocol allows agents to publicly receive the soft information that ψ, and af-
ter they receive this information ϕ holds’. (LDBR(A, [≤i],2

≥i)) is defined by the
following inductive syntax

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈≤i〉ϕ | 〈≥i〉ϕ | A≡ϕ | 〈⇑ ψ〉ϕ,

where i ranges over N , ψ over (LDOX(E, [≤i],2
≥i)) (the underlying static doxastic

language) and p over a countable set of proposition letters prop. We make use
of the usual shortcuts.

This language (LDBR(A, [≤i],2
≥i), henceforth LDBR) will be interpreted over

nodes wh in our trees, where w is a sequence of length 1 and h is possibly the
empty sequence, as follows:

H, wh 
 p iff wh ∈ V (p)
H, wh 
 ¬ϕ iff H, wh 6
 ϕ
H, wh 
 ϕ ∨ ψ iff H, wh 
 ϕ or H, wh 
 ψ
H, wh 
 〈≤i〉ϕ iff for some h′ with wh ≤i h

′ we have H, h′ 
 ϕ
H, wh 
 〈≥i〉ϕ iff for some h′ with h′ ≤i wh we have H, h′ 
 ϕ
H, wh 
 A≡ϕ iff for all h′ such that h′ ≡ wh we have H, h′ 
 ϕ
H, wh 
 〈⇑ ϕ〉ψ iff for some h′ ∈ H with h′ = whϕ we have H, h′ 
 ψ

Remember from 3.1 that prior conditional belief will be definable in this lan-
guage as follows:

�ψ
i ϕ ↔ A(ψ → 〈≥i〉(ψ ∧ 2

≥i(ψ → ϕ)))

Thus it really comes for free in the previous language, leaving us able to focus on
the axiomatization of the lighter language (LDBR).

3.4.2 Proving axiomatic completeness.

The axiomatization DOX of the static part is well-understood (see Table 3.2 for
its details). Together with DOX, the axiom system 〈⇑〉DOX for the ‘dynamic-
temporal’ component – we are now really at the interface of both approaches —
given in Table 3.3 is a complete axiomatization of the validities of LDBR over
the class of doxastic temporal forests generated by the lexicographic upgrade of a
doxastic plausibility model according to a state-dependent dynamic belief revision
protocol. Let us now move on to the completeness proof.

Completeness

Let us fix a basic definition before explaining the strategy of the proof.

Definition 3.21 (〈⇑〉DOX-MCS). A set of formulas Γ is a 〈⇑〉DOX-maximally
consistent set (henceforth a 〈⇑〉DOX-MCS) if Γ is 〈⇑〉DOX-consistent, and any
set of formulas properly containing Γ is 〈⇑〉DOX-inconsistent.
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(K[≤i]) ⊢ (ϕ → ψ) → ([≤i]ϕ → [≤i]ψ)
(T[≤i]) ⊢ [≤i]ϕ → ϕ
(4[≤i]) ⊢ [≤i]ϕ → [≤i][≤i]ϕ
(KKi) ⊢ (ϕ → ψ) → (Kiϕ → Kiψ)
(TKi) ⊢ Kiϕ → ϕ
(5Ki) ⊢ 〈i〉ϕ → Ki〈i〉ϕ
(KA≡) ⊢ (ϕ → ψ) → (A≡ϕ → A≡ψ)
(TA≡) ⊢ A≡ϕ → ϕ
(5A≡) ⊢ E≡ϕ → A≡E≡ϕ
(≤ − ≥) ⊢ (〈≤i〉2

≥iϕ → ϕ) ∧ (〈≥i〉[≤i]ϕ → ϕ)
(≤⊆≡) ⊢ A≡ϕ → [≤i]ϕ
(∼⊆≡) ⊢ A≡ϕ → Kiϕ

Table 3.2: Axiomatization of the static part — DOX.

(K〈⇑〉) ⊢ (ϕ → ψ) → (〈⇑ χ〉ϕ → 〈⇑ χ〉ψ)
(〈⇑〉prop) ⊢ 〈⇑ ϕ〉p ↔ 〈⇑ ϕ〉⊤ ∧ p, for all p ∈ prop.
(〈⇑〉¬) ⊢ 〈⇑ ϕ〉¬ψ ↔ 〈⇑ ϕ〉⊤ ∧ ¬〈⇑ ϕ〉ψ
(〈⇑〉 ∧ ) ⊢ 〈⇑ ϕ〉(ψ ∧ χ) ↔ 〈⇑ ϕ〉ψ ∧ 〈⇑ ϕ〉χ
(〈⇑〉[≤i]) ⊢ 〈⇑ ϕ〉[≤i]ψ ↔ 〈⇑ ϕ〉⊤∧

[(ϕ → A≡(¬ϕ → ¬〈⇑ ϕ〉¬ψ))
∧ (ϕ → [≤i]¬〈⇑ ϕ〉¬ψ)
∧ [≤i](¬ϕ → ¬〈⇑ ϕ〉¬ψ)]

(〈⇑〉Ki) ⊢ 〈⇑ ϕ〉Kiψ ↔ 〈⇑ ϕ〉⊤ ∧ Ki(〈⇑ ϕ〉⊤ → 〈⇑ ϕ〉ψ)
(〈⇑〉[A≡]) ⊢ 〈⇑ ϕ〉A≡ψ ↔ 〈⇑ ϕ〉⊤ ∧ A≡(〈⇑ ϕ〉⊤ → 〈⇑ ϕ〉ψ)

Table 3.3: Axiomatization of the dynamic part.

The strategy of the proof is as follows. We start by defining a 〈⇑〉DOX-
canonical initial epistemic plausibility model and then show how it can be un-
folded into a canonical doxastic epistemic forest. We use a labelling function λ
that associates with each history (finite sequence) in the canonical forest a set
of formulas. Lemma 3.24 proves that it associates a 〈⇑〉DOX-MCS with each
history. We then prove a truth lemma (Lemma 3.25) with the main induction on
the complexity of the formulas and a sub-induction on the length of the history
considered. Finally we prove that any subforest of the canonical forest gener-
ated by an initial state is isomorphic to the forest generated by lexicographically
upgrading some epistemic plausibility model according to some state-dependent
belief revision protocol. Completeness follows.

Definition 3.22 (Canonical initial epistemic plausibility model).
We define the 〈⇑〉DOX canonical initial epistemic plausibility model MΣ

0 =
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〈W 0, (≤0
i )i∈N , (≥

0
i )i∈N , (∼

0
i )i∈N ,≡

0, V 0〉 as follows:

• W 0 is the set of 〈⇑〉DOX-MCSs

• For each w, v ∈W 0, define w ≤0
i v iff {ϕ | [≤i]ϕ ∈ w} ⊆ v

• For each w, v ∈W 0, define w ≥0
i v iff {ϕ | 2≥iϕ ∈ w} ⊆ v

• For each w, v ∈W 0, define w ∼0
i v iff {ϕ | Kiϕ ∈ w} ⊆ v

• For each w, v ∈W 0, define w ≡0 v iff {ϕ | A≡ϕ ∈ w} ⊆ v

• Finally define V 0(p) = {w ∈ H0 | p ∈ w}.

We can now define a canonical doxastic forest by unfolding the canonical
initial model. In the construction a labeling function λ associates with each
history (finite sequence) a set of formulas.

Definition 3.23 (Canonical doxastic epistemic forest).
〈⇑〉DOX canonical forest HΣ = 〈HΣ, λ,≤Σ

i ,≥
Σ
i ,∼

Σ
i , V

Σ〉 is defined as follows:

• H0 = W 0

• For each h ∈ H0 let λ(h) = h

• Hn+1 = {hϕ | h ∈ Hn and 〈⇑ ϕ〉⊤ ∈ λ(h)}

• For each k > 0 and hϕ ∈ Hk let λ(hϕ) = {ψ | 〈⇑ ϕ〉ψ ∈ λ(h)}

• HΣ =
⋃

k≥0

Hk

• For each h, h′ ∈ H0, define h ≤Σ
i h

′ iff {ϕ | [≤i]ϕ ∈ λ(h)} ⊆ λ(h′)

• For each h, h′ ∈ H0, define h ≥Σ
i h

′ iff {ϕ | 2≥iϕ ∈ λ(h)} ⊆ λ(h′)

• For each h, h′ ∈ H0, define h ∼Σ
i h

′ iff {ϕ | Kiϕ ∈ λ(h)} ⊆ λ(h′)

• For each h, h′ ∈ H0, define h ≡Σ h′ iff {ϕ | A≡ϕ ∈ λ(h)} ⊆ λ(h′)

• For each k > 0 and hϕ, h′ψ ∈ Hk, define hϕ ≤Σ h′ψ iff h = h′, ϕ = ψ and
one of the following holds:

1. ϕ ∈ λ(h) while ϕ 6∈ λ(h′)

2. ϕ ∈ λ(h) iff ϕ ∈ λ(h′), and h ≤i h
′.

• For each k > 0 and hϕ, h′ψ ∈ Hk, define hϕ ≥Σ h′ψ iff h′ψ ≤Σ hϕ
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• For each k > 0 and for each hϕ, h′ψ ∈ Hk, define hϕ ≡Σ h′ψ iff h ≡Σ h′

and ϕ = ψ.

• For each p ∈ prop, define V σ(p) = {h ∈ HΣ | p ∈ λ(h(1))}.

We will now prove that the labelling function λ associates a 〈⇑〉DOX-MCS
with each history (finite sequence).

Lemma 3.24. For each k ≥ 0, for each h ∈ Hk, λ(h) is a 〈⇑〉DOX-MCS.

Proof. The proof is by induction on k. The base case holds by definition. Assume
that the claim holds for k = n. Now assume that hϕ ∈ Hn+1. By IH λ(h) is a
MCSs. Moreover by construction we have 〈⇑ ϕ〉⊤ ∈ λ(h) (1). Let ϕ ∈ LDBR.
Since λ(h) is a MCSs we have either 〈⇑ ϕ〉ψ ∈ λ(h) or ¬〈⇑ ϕ〉ψ ∈ λ(h). If
〈⇑ ϕ〉ψ ∈ λ(h), then by construction ψ ∈ λ(hϕ). If instead ¬〈⇑ ϕ〉ψ ∈ λ(h)
then by (1) and (〈⇑〉¬) we have 〈⇑ ϕ〉¬ψ ∈ λ(h). It follows by construction
that ¬ψ ∈ λ(hϕ). Therefore for each ϕ ∈ LDBR we have either ψ ∈ λ(hϕ) or
¬ψ ∈ λ(hϕ).

Now we have to prove that λ(hϕ) is consistent. Assume for a contradiction
that it is not. Then by definition we have a finite set of formulas {ϕ1, . . . , ϕm} ⊆
λ(hϕ) such that ⊢ (

∧m

i=1 ϕi) → ⊥ (2). It follows from (2) by standard modal
reasoning that ⊢ 〈⇑ ϕ〉⊤ → 〈⇑ ϕ〉(

∨m
i=1 ¬ϕi). It follows by (K〈⇑〉) again that ⊢

〈⇑ ϕ〉⊤ → (
∨m

i=1〈⇑ ϕ〉¬ϕi) (3). By (1) and (3) it follows that (
∨m

i=1〈⇑ ϕ〉¬ϕi) ∈
λ(h) (4). But since by IH λ(h) is a MCSs, there is some j such that 1 ≤ j ≤ m and
〈⇑ ϕ〉¬ϕj ∈ λ(h) (5). From (5) and (〈⇑〉¬) we have ¬〈⇑ ϕ〉ϕj ∈ λ(h) (6). From
(2) it follows by contruction that 〈⇑ ϕ〉ϕi ∈ λh for each i such that 1 ≤ i ≤ m (7).
But (6) and (7) together contradicts the fact that λ(h) is consistent. It follows
by reduction that λ(hϕ) is consistent. qed

We are now ready to prove a Truth Lemma.

Lemma 3.25 (Truth Lemma).

For every ϕ ∈ LDBR, for each h ∈ HΣ we have:

ϕ ∈ λ(h) iff HΣ, h 
 ϕ

Proof. The proof is by induction on the complexity of ϕ. Base case (for atomic
formulas) and boolean cases are easy.

[A≡-modality.] From left to right. Assume that A≡ψ ∈ λ(h) (0). There are
two cases. Either h ∈ H0 (1) or h ∈ (HΣ −H0) (2).

Let us consider the first case. Assume that h, h′ ∈ H0 and that h ≡Σ h′ (3).
It follows from (3) by construction that {ϕ | A≡ϕ ∈ λ(h)} ⊆ λ(h′) (4). From (4)
and (0) we know in particular that ψ ∈ λ(h′) (5). By (5) and the IH of the main
induction on formulas it follows that HΣ, h′ 
 ψ (6). Since h′ was arbitrary, it
follows therefore from (6) and the truth definition of A≡ that HΣ, h 
 A≡ψ (7).
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Let us now consider the second case: h ∈ (HΣ − H0) (2). Without loss of
generality let us assume that h is of the form wϕ1 . . . ϕn+1 (8). From (8) and (0) it
follows by construction that 〈⇑ ϕn+1〉A≡ψ ∈ λ(wϕ1 . . . ϕn) (9). Since by Lemma
3.24 λ(wϕ1 . . . ϕn) is a 〈⇑〉DOX-MCS, it follows from (9) and (〈⇑〉[A≡]) that 〈⇑
ϕn+1〉⊤ ∈ λ(wϕ1 . . . ϕn) (10) and A≡(〈⇑ ϕn+1〉⊤ → 〈⇑ ϕn+1〉ψ) ∈ λ(wϕ1 . . . ϕn)
(11). Iterating the same argument we find that:

A≡(〈⇑ ϕ1〉⊤ → (〈⇑ ϕ2〉⊤ → . . .

(〈⇑ ϕn〉⊤ → (〈⇑ ϕn+1〉⊤ →

〈⇑ ϕn+1〉ψ)) . . .)) ∈ λ(w)

(12)

and that for each i, 1 ≤ k ≤ n

〈⇑ ϕk+1〉⊤ ∈ λ(wϕ1 . . . ϕk) (13)

and that

〈⇑ ϕ1〉⊤ ∈ λ(w) (14)

Now assume that h ≡Σ h′ (15). It follows from (15) by construction and
some easy induction that h′ is of the form vϕ1 . . . ϕn+1 (16). Similarly it follows
from (15) by construction and some induction that w ≡Σ v (17). It follows by
construction from (17) and (12) that (〈⇑ ϕ1〉⊤ → (〈⇑ ϕ2〉⊤ → . . . (〈⇑ ϕn〉⊤ →
(〈⇑ ϕn+1〉⊤ → 〈⇑ ϕn+1〉ψ)) . . .)) ∈ λ(v) (18). But it is then easy to check that
from (18), (13) and (14) we have ψ ∈ h′ (19). It follows from (19) by the main
IH that H, h′ 
 ψ. But since h′ was arbitrary, we have: HΣ, h 
 A≡ψ.

[A≡-modality.] From right to left. Assume that A≡ψ 6∈ λ(h) (0). There are
two cases. Either h ∈ H0 (1) or h ∈ (HΣ −H0) (2).

Let us consider the first case. Assume that A≡ψ 6∈ λ(h) (0). We have to prove
that HΣ, h 6
 A≡ψ. To prove (0) it is sufficient to find a MCSs λ(h′) such that
ψ 6∈ λ(h′), but {ϕ | A≡ϕ ∈ λ(h)} ⊆ λ(h′). By the Lindenbaum Lemma, it is
sufficient to show that v0 = {¬ψ} ∪ {ϕ | A≡ϕ ∈ λ(h)} is consistent. Assume for
a contradiction that it is not. Then we have a finite set of formulas ϕ1 . . . ϕm ∈
{ϕ | A≡ϕ ∈ λ(h)} such that (

∧m
i=1 ϕi) → ψ (3). But then it follows by standard

modal reasoning that (
∧m

i=1 A≡ϕi) → A≡ψ (4). But since λ(h) is a MCS, it follows
from (4) that A≡ψ ∈ λ(h) which contradicts (0).

Let us now consider the other case. Assume WLOG that h = wϕ1 . . . ϕn+1.
Now assume that A≡ψ 6∈ λ(h) (0). It follows from (0) by maximality of λ(h) and
construction that 〈⇑ ϕn+1〉¬A≡ψ ∈ λ(wϕ1 . . . ϕn) (1). It follows from (1) by (〈⇑
〉¬) that 〈⇑ ϕn+1〉⊤ ∈ λ(wϕ1 . . . ϕn) (2) and ¬〈⇑ ϕn+1〉A≡ψ ∈ λ(wϕ1 . . . ϕn) (3).
From (2) and (3), an easy argument gives us by (〈⇑〉[A≡]) that ¬A≡(〈⇑ ϕn+1〉⊤ →
〈⇑ ϕn+1〉ψ) ∈ λ(wϕ1 . . . ϕn) (4). Repeating this argument we find that ¬A≡(〈⇑
ϕ1〉⊤ → 〈⇑ ϕ1〉(〈⇑ ϕ2〉⊤ → (. . . 〈⇑ ϕn〉(〈⇑ ϕn+1〉⊤ → 〈⇑ ϕn+1〉ψ) . . .))) ∈ λ(w)
(5).
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We will now prove that there is a v such that wϕ1 . . . ϕn+1 ≡ vϕ1 . . . ϕn+1 and
ψ 6∈ λ(vϕ1 . . . ϕn+1) (7). First take the following set v0 = {χ | A≡χ ∈ λ(w)} ∪
{¬〈⇑ ϕ1〉⊤ → 〈⇑ ϕ1〉(〈⇑ ϕ2〉⊤ → (. . . 〈⇑ ϕn〉(〈⇑ ϕn+1〉⊤ → 〈⇑ ϕn+1〉ψ) . . .))}.
Assume for a contradiction that v0 is inconsistent (8). It follows from (8) that
there is a finite set of formulas {χ1, . . . χm} ⊆ {χ | A≡χ ∈ λ(w)} such that
⊢ (

∧m

i=1 χi) → (〈⇑ ϕ1〉⊤ → 〈⇑ ϕ1〉(〈⇑ ϕ2〉⊤ → (. . . 〈⇑ ϕn〉(〈⇑ ϕn+1〉⊤ →
〈⇑ ϕn+1〉ψ) . . .))) (9). But from (9) and standard modal reasoning we find that
⊢ (

∧m

i=1 A≡χi) → A≡(〈⇑ ϕ1〉⊤ → 〈⇑ ϕ1〉(〈⇑ ϕ2〉⊤ → (. . . 〈⇑ ϕn〉(〈⇑ ϕn+1〉⊤ →
〈⇑ ϕn+1〉ψ) . . .))) (10). But since λ(h) is a MCS, it follows from (10) that A≡(〈⇑
ϕ1〉⊤ → 〈⇑ ϕ1〉(〈⇑ ϕ2〉⊤ → (. . . 〈⇑ ϕn〉(〈⇑ ϕn+1〉⊤ → 〈⇑ ϕn+1〉ψ) . . .))) ∈ λ(h)
which contradicts (5). Thus by reduction v0 is consistent. By the Lindenbaum
Lemma we can extend v0 to a maximally consistent v. But by construction
v ∈ HΣ (11). Since {χ | A ≡ χ ∈ λ(w)} ⊆ v0 ⊆ v it follows by construction that
w ≡ v. But then an easy induction shows that for every 1 ≤ j ≤ n + 1 we have:

wϕ1 . . . ϕj ≡ vϕ1 . . . ϕj (A≡)

Since by construction ¬〈⇑ ϕ1〉⊤ → 〈⇑ ϕ1〉(〈⇑ ϕ2〉⊤ → (. . . 〈⇑ ϕn〉(〈⇑ ϕn+1〉⊤ →
〈⇑ ϕn+1〉ψ) . . .)) ∈ λ(v) it follows that 〈⇑ ϕ1〉⊤ ∈ λ(v) (12) and ¬〈⇑ ϕ1〉(〈⇑
ϕ2〉⊤ → (. . . 〈⇑ ϕn〉(〈⇑ ϕn+1〉⊤ → 〈⇑ ϕn+1〉ψ) . . .)) (13). But it follows from
(12), (13) and (〈⇑〉¬), that 〈⇑ ϕ1〉¬(〈⇑ ϕ2〉⊤ → (. . . 〈⇑ ϕn〉(〈⇑ ϕn+1〉⊤ →
〈⇑ ϕn+1〉ψ) . . .)) ∈ λ(v) (14). But then by construction ¬(〈⇑ ϕ2〉⊤ → (. . . 〈⇑
ϕn〉(〈⇑ ϕn+1〉⊤ → 〈⇑ ϕn+1〉ψ) . . .)) ∈ λ(vϕ1) (15). Repeating this argument we
find that ¬ψ ∈ λ(vϕ1 . . . ϕn+1) (16). By Lemma 3.24 λ(vϕ1 . . . ϕn+1) is consis-
tent, (16) therefore implies that ψ 6∈ λ(vϕ1 . . . ϕn+1) (17). But (A≡), (11) and
(17) is all we need to prove (7). We can now apply the main IH on formulas to
get H≡, vϕ1 . . . ϕn+1 6
 ψ (18). By (18) and the truth conditions of A≡ it follows
that HΣ, h 
 A≡ψ. This concludes the proof for this direction of the A≡-subcase.

The case for Ki is similar.

[[≤]-modality.] From left to right. Assume that [≤i]ψ ∈ λ(h) (0). There are
two cases. Either h ∈ H0 (1) or h ∈ (HΣ −H0) (2).

Let us consider the first case. Assume that h, h′ ∈ H0 and that h ≤Σ h′ (3).
It follows from (3) by construction that {ϕ | [≤]ϕ ∈ λ(h)} ⊆ λ(h′) (4). From (4)
and (0) we know in particular that ψ ∈ λ(h′) (5). By (5) and the IH of the main
induction on formulas it follows that HΣ, h′ 
 ψ (6). Since h′ was arbitrary, it
follows therefore from (6) and the truth definition of [≤] that HΣ, h 
 [≤]ψ (7).

Let us now consider the second case: h ∈ (HΣ − H0) (2). For simplicity
we assume that h is of the form wϕ (8). The proof can be generalized along
the lines of the A≡-case. From (8) and (0) it follows by construction that 〈⇑
ϕ〉[≤]ψ ∈ λ(wϕ) (9). Since by Lemma 3.24 λ(w) is a 〈⇑〉DOX-MCS, it follows
from (9) and Axiom (〈⇑〉[≤i]) that 〈⇑ ϕn+1〉⊤ ∈ λ(w) (10) and [(ϕ → A≡(¬ϕ →
¬〈⇑ ϕ〉¬ψ)) ∧ (ϕ → [≤i]¬〈⇑ ϕ〉¬ψ) ∧ [≤i](¬ϕ → ¬〈⇑ ϕ〉¬ψ)] ∈ λ(w) (11).
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Now assume that h ≤Σ h′ (15). It follows from (15) by construction that h′ is
of the form vϕ (16). By (15) we know that we are in one of the following cases:

1. ϕ ∈ λ(w) while ϕ 6∈ λ(v)

2. ϕ ∈ λ(w), ϕ ∈ λ(v), and w ≤i v

3. ϕ 6∈ λ(w), ϕ 6∈ λ(v), and w ≤i v.

Case 1: ϕ ∈ λ(w) (17.1) while ϕ 6∈ λ(v) (17.2). By (11) we have: (ϕ →
A≡(¬ϕ → ¬〈⇑ ϕ〉¬ψ)) ∈ w (17.3). It follows from (17.1), (17.3) and Lemma 3.24
that (A≡(¬ϕ → ¬〈⇑ ϕ〉¬ψ)) ∈ w (17.4). From (17.4) we have by construction
(¬ϕ → ¬〈⇑ ϕ〉¬ψ) ∈ v (17.5). But it is easy to check that ¬ϕ ∈ v (17.6). Thus
by (17.5), (17.6) and Lemma 3.24 we have ¬〈⇑ ϕ〉¬ψ ∈ v (17.7). Again it is easy
to check that 〈⇑ ϕ〉⊤ ∈ v (17.8). But (17.7), (17.8), (〈⇑〉¬) and Lemma 3.24 gives
us 〈⇑ ϕ〉ψ ∈ v (17.9). By construction (17.9) gives us ψ ∈ vϕ (17.10). (17.10)
gives us by IH h′ 
 ψ (17.11). But since h′ was arbitrary, we have: HΣ, h 
 [≤]ψ
(17.12).

Case 2: ϕ ∈ λ(w) (18.1), ϕ ∈ λ(v) (18.2) and w ≤ v (18.3). By (11) we have:
(ϕ → [≤i]¬〈⇑ ϕ〉¬ψ) ∈ w (17.3). An easy argument gives us [≤i]¬〈⇑ ϕ〉¬ψ ∈ w
(17.4). Thus by construction ¬〈⇑ ϕ〉¬ψ ∈ v (17.5). By construction we have also
〈⇑ ϕ〉⊤ ∈ v which together with (17.5) and (〈⇑〉¬) gives us 〈⇑ ϕ〉ψ ∈ v (17.6).
(17.6) implies by construction that ψ ∈ v. The usual argument concludes the
proof.

Case 3: ϕ 6∈ λ(w) (19.1), ϕ 6∈ λ(v) (19.2) and w ≤ v (19.3). By (11) we have:
[≤i](¬ϕ → ¬〈⇑ ϕ〉¬ψ) ∈ w (19.4). An easy argument gives us [≤i]¬〈⇑ ϕ〉¬ψ ∈ w
(17.4). Thus by construction ¬〈⇑ ϕ〉¬ψ ∈ v (17.5). By construction we have also
〈⇑ ϕ〉⊤ ∈ v which together with (17.5) and (〈⇑〉¬) gives us 〈⇑ ϕ〉ψ ∈ v (17.6).
(17.6) implies by construction that ψ ∈ v. The usual argument concludes the
proof for this case and this direction.

[[≤i]-modality.] From right to left. Assume that [≤i]ψ 6∈ λ(h) (0). There are
two cases. Either h ∈ H0 (1) or h ∈ (HΣ −H0) (2).

The first case is along the lines of the proof in the previous section.
Let us now consider the other case. For the sake of simplicity we assume

that h = wϕ. The proof can be generalized along the lines of the A≡-case. Now
assume that [≤i]ψ 6∈ λ(h) (0). It follows from (0) by maximality of λ(h) and
construction that 〈⇑ ϕ〉¬[≤i]ψ ∈ λ(w) (1). It follows from (1) by (〈⇑〉¬) that
〈⇑ ϕ〉⊤ ∈ λ(w) (2) and ¬〈⇑ ϕ〉[≤i]ψ ∈ λ(w) (3).

Given that (2) and (3), an easy argument give us by (〈⇑〉[≤i]) that ¬[(ϕ →
A≡(¬ϕ → ¬〈⇑ ϕ〉¬ψ)) ∧ (ϕ → [≤i]¬〈⇑ ϕ〉¬ψ) ∧ [≤i](¬ϕ → ¬〈⇑ ϕ〉¬ψ)] 6∈ w
and thus that ¬(ϕ → A≡(¬ϕ → ¬〈⇑ ϕ〉¬ψ)) ∨ ¬(ϕ → [≤i]¬〈⇑ ϕ〉¬ψ) ∨ ¬[≤i

](¬ϕ → ¬〈⇑ ϕ〉¬ψ)] (4). The preceding disjunction naturally displays three
cases.
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Case 1: ¬(ϕ → A≡(¬ϕ → ¬〈⇑ ϕ〉¬ψ)) ∈ w (4.1). Since by Lemma 3.24
ϕ ∈ w (4.2) and ¬A≡(¬ϕ → ¬〈⇑ ϕ〉¬ψ) ∈ w (4.3). We will now prove that
there is a v such that w ≡ v, ϕ 6∈ v and ψ 6∈ λ(vϕ). First take the following set
v0 = {χ | A ≡ χ ∈ λ(w)} ∪ {¬ϕ ∧ 〈⇑ ϕ〉¬ψ} (4.5). Assume for a contradiction
that v0 is inconsistent (4.6). It follows from (4.6) that there is a finite set of
formulas {χ1, . . . χm} ⊆ {χ | A ≡ χ ∈ λ(w)} such that ⊢ (

∧m

i=1 χi) → (¬ϕ →
¬〈⇑ ϕ〉¬ψ) (4.7). But from (4.7) and standard modal reasoning we find that
⊢ (

∧m

i=1 A≡χi) → A≡(¬ϕ → ¬〈⇑ ϕ〉¬ψ) (4.8). But from (4.8), (4.2) and Lemma
3.24 we have A≡(¬ϕ → ¬〈⇑ ϕ〉¬ψ) (4.9). But (4.9) contradicts (4.3), thus
by reduction v0 is consistent. By the Lindenbaum Lemma it can be extended
to a maximal consistent set v+. But by construction v+ ∈ HΣ (4.10). Since
{χ | A≡χ ∈ λ(w)} ⊆ v0 ⊆ v+ it follows by construction that w ≡ v+ (4.11). By
construction of v0 we have also ¬ϕ ∈ v0 ⊆ v+ (4.12). But it follows from (4.2),
(4.12) and (4.11) by construction that wϕ ≤ vϕ (4.13). But since by (4.5) and a
simple argument 〈⇑ ϕ〉¬ψ ∈ v too, we have ψ 6∈ vϕ (4.14). But (4.13) and (4.14)
gives us wϕ 6
 [≤i]ψ. This concludes our proof for this subcase.

Case 2: ¬(ϕ → [≤i]¬〈⇑ ϕ〉¬ψ) ∈ w (5.1). It follows from (5.1) by Lemma
3.24 that ϕ ∈ w (5.2) and that ¬[≤]¬〈⇑ ϕ〉¬ψ ∈ w (5.3). By (〈⇑〉¬) it follows
that ¬[≤](〈⇑ ϕ〉⊤ → 〈⇑ ϕ〉ψ) ∈ w. The right to left argument of the A≡-case
applies replacing ≡ by ≤, i.e. we construct v+ such that by construction w ≤ v
(5.4) and 〈⇑ ϕ〉¬ψ ∈ v+ (5.5). We find by (5.5) and construction that ψ 6∈ vϕ
(5.6). But since by construction (5.4) and (5.2) give us wϕ ≤ vϕ (5.7). The rest
of the argument is as usual.

Case 3: ¬[≤i](¬ϕ → ¬〈⇑ ϕ〉¬ψ) ∈ w (6.1). An easy argument show that
by (6.1) we have ¬[≤i](¬ϕ → (〈⇑ ϕ〉⊤ → 〈⇑ ϕ〉ψ)) ∈ w (6.2). We construct v0

such that ¬ϕ ∈ v0 (6.3), 〈⇑ ϕ〉⊤ ∈ v0 (6.4) but 〈⇑ ϕ〉ψ 6∈ v0 (6.5) that can be
extended to a MCS v+ (6.6) such that w ≤ v+ (6.7). By (6.6), (6.7) and (6.3) we
have by construction wϕ ≤ vϕ (6.8). But from (6.3) and (6.8) an easy argument
gives the desired result by the main IH. This concludes the proof for this subcase,
this direction and the case.

The case of 2≥ is similar. qed

We have shown that for every consistent set of formulas, there was an initial
state in our canonical forest such that all formulas in the set were satisfied there.
We finally need to show that our canonical forest can be generated by an initial
plausibility model and a dynamic belief revision protocol.

Lemma 3.26. Any subforest of the canonical forest generated by an initial state
in the initial canonical epistemic plausibility model is isomorphic to a forest gen-
erated by an initial plausibility model and a dynamic belief revision protocol.

Proof. We start by proving that the initial part of the canonical forest is isomor-
phic to an epistemic plausibility model M (1). This proof follows by a classical
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Sahlqvist correspondence argument [39, ch. 4] and preservation of the relevant
properties under taking generated subframes. The guarantee that ≡ is the uni-
versal relation follows from taking a point-generated submodel (see [39, 7.1] for
details). It remains to prove that there is a state-dependent dynamic belief revi-
sion protocol p : W → Ptcl(L) such that the forest generated by the initial part
of the canonical forest according to the protocol p is isomorphic to the canoni-
cal forest. Pick p such that p(w) = {σ | wσ ∈ HΣ}. We claim that a history
wσ ∈ HΣ iff hσ ∈ H(M, p) = Dom(H(M, p)). (The rest of the Lemma — i.e.
the clauses for the plausibility relation and for the valuation function — follows
by construction as the reader can check by inspecting the clauses in Definition
3.20 and Definition 3.23.) The proof is by induction on the length of wσ. The
base case is immediate from (1). Now assume that the equivalence holds for his-
tories of length n. Assume that wσϕ is of length n+1 (2) and wσϕ ∈ HΣ (3). It
follows by construction of the canonical model that wσ ∈ HΣ (4). But then by IH
and (4) we have wσ ∈ H(M, p) (5). It follows by construction of p and (3) that
σϕ ∈ p (6). But then by Definition 3.20, (5) and (6) we have wσϕ ∈ H(M, p)
(7). The other direction is similar. qed

Theorem 3.27 (Completeness). 〈⇑〉DOX is sound and strongly complete with
respect to the class of DoTL models generated by lexicographically upgrading some
doxastic model according to some state-dependent dynamic belief revision protocol.

Proof. The proof follows from the Truth Lemma and the preceding Lemma by a
standard argument [39]. qed

3.4.3 More languages

How can we extend the preceding completeness proof to axiomatize dynamic
logics based on other static languages? As we can see from the previous proof
this takes two separate task. First we should be able to construct a satisfactory
initial canonical model and then extend it to a canonical forest. We have discussed
strategies for builiding canonical models for a range of doxastic static languages
at the end of Section 3.1. Let us now give dynamic-temporal axioms for other
interesting modalities. First of all for safe belief 2iϕ:

〈⇑ ϕ〉2iψ ↔ 〈⇑ ϕ〉⊤∧

(¬ϕ → 〈i〉(ϕ → (〈⇑ ϕ〉⊤ → 〈⇑ ϕ〉ψ))

∧ (¬ϕ → 2i(〈⇑ ϕ〉⊤ ∧ 〈⇑ ϕ〉ψ))

∧ (ϕ → 2i(ϕ → (〈⇑ ϕ〉⊤ → 〈⇑ ϕ〉ψ))

(3.6)
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and now for its dual 〈∼i ∩ ≥i〉:

〈⇑ ϕ〉〈∼i ∩ ≥i〉ψ ↔ 〈⇑ ϕ〉⊤ ∧ [

¬ϕ ∧ 〈i〉(ϕ ∧ 〈⇑ ϕ〉ψ)

∨ (¬ϕ ∧ 〈∼i ∩ ≥i〉(¬ϕ ∧ 〈⇑ ϕ〉ψ))

∨ (ϕ ∧ 〈∼i ∩ ≥i〉(ϕ ∧ 〈⇑ ϕ〉ψ))]

(3.7)

Recalling the translation given in the proof of Fact 3.5, the dynamic axiom for
conditional belief Bψ

i ϕ operators follows from the two previous ones. We conclude
by giving an explicit axiom for the special case of (non-conditional) belief.

〈⇑ ϕ〉Biψ ↔ 〈⇑ ϕ〉⊤∧

[(〈i〉(ϕ ∧ 〈⇑ ϕ〉⊤) ∧ Ki(〈∼i ∩ ≥i〉((ϕ ∧ 〈⇑ ϕ〉⊤)∧

2i((ϕ ∧ 〈⇑ ϕ〉⊤) → 〈⇑ ϕ〉ψ))))

∨ (Ki(ϕ → ¬〈⇑ ϕ〉⊤) ∧ Ki(〈∼i ∩ ≥i〉((〈⇑ ϕ〉⊤)∧

2i(〈⇑ ϕ〉⊤ → 〈⇑ ϕ〉ψ))))]

(3.8)

The preceding completeness proof together with these additional dynamic-temporal
axioms gave, we hope, interesting insights into the effect of protocols on logics of
belief revision.

3.5 Conclusion

The previous chapter determined the special constraints that capture agents op-
erating with the ‘local updates’ of dynamic doxastic logic by giving structural
representation theorems.

Major sources. The first point of departure of this chapter is found in the
recent work on TPAL and its axiomatic completeness made by Hoshi and his
collaboratiors in [106, 36]. The second point of departure is van Benthem [29]
which develops dynamic logics of belief revision and particularly the logic of
lexicographic upgrade, and also the sequence of papers by Baltag and Smets,
notably [16], who pursue the idea of compositional analysis initiated in Baltag
et al. [20] for the doxastic case. The third source is the work done by Girard and
his collaborators in [86], and also by Board [40], on conditional doxastic logic, its
expressive power and its axiomatic completeness.

Our main results. This chapter took the comparison between temporal logical
and dynamic logical approaches to belief change from the structural to the syn-
tactic level. We discussed different static doxastic languages and their relative
expressive power and gave a compositional analysis for the dynamic logics of belief
change built on the top of them. Finally we have developed a systematic ‘protocol
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logic’ of axiomatic completeness for constrained revision processes, analogous to
the purely epistemic theory of observation and conversation protocols initiated in
van Benthem et al. [36] and Hoshi [106].

The next step. The next chapters show applications of these models and lan-
guages to particular types of reasoning at work in intelligent interaction that the
idea of belief change underlies, such as interactive reasoning, inductive reasoning
and strategic reasoning. Let us give more details on the rest of the program. In
the next chapter (Chapter 4) we discuss agreement results (in the line of Aumann
[13]) and their dynamic counterpart in the context of these qualitative structures,
bringing a logical perspective on a foundational layer of interactive epistemology.
Chapter 5 analyses inductive reasoning and develops connections with formal
learning theory. Chapter 6 is an analysis of knowledge, belief and their dynamics
in games in the line of [40, 31, 65, 21]. Finally Chapter 7 pursues the issues
of logical design discussed here for beliefs and their dynamics by analyzing the
expressive power required by game-theoretical and social-theoretical concepts in-
volving the complementary notions of coalitional powers and of preferences. But
let us start with interactive reasoning.





Chapter 4

Agreement Theorems in
Dynamic-Epistemic Logic1

The previous chapters developed a logical framework to reason about agents’ be-
liefs and their dynamics at the interface of two families of temporal and dynamic
doxastic logics. From this new logical point of view we build our first connection
toward a non-logical research field concerned with belief dynamics. This first con-
nection is with interactive epistemology: the study of interactive or higher-order
reasoning, one of the foundational layers of the epistemic program in game the-
ory. An important and seminal question for interactive epistemology was whether
agents whose differences in beliefs arise only from differences in the information
they have received and not from prior beliefs can ‘agree to disagree’. Taking
‘agree’ to mean common knowledge and ‘disagree’ to have different (posterior)
beliefs about some event, Aumann [13] showed that this is impossible: common
knowledge of disagreement implies differences in prior beliefs. This chapter con-
tributes a logical perspective to the question.

4.1 Introduction

In this chapter we study Aumann’s Agreement Theorem [13] and some of its
subsequent extensions [82] and generalizations [57, 14] from the perspective of
dynamic-epistemic logic [19, 67]. We show that common belief of posteriors
is sufficient for agreement in ‘epistemic-plausibility models’, under common and
well-founded priors, from which the usual form of agreement results follows, using
common knowledge. Recent work [6, 7] has focused on epistemic foundations of
solution concepts for games with possibly infinite strategy sets. In this line we do
not restrict ourselves to the finite case, which also represents an improvement on
known qualitative agreement theorems [14], and show that in countable structures

1This chapter is based on Dégremont and Roy [64].
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such results hold if and only if the underlying ‘plausibility ordering’ is well-
founded. We then look at these results from a syntactic point of view, showing
that neither well-foundedness nor common priors are expressible in the language
proposed in [17], even if it is extended with a common belief operator, but we also
show a finitary syntactic derivation of the static agreement result in an extended
modal language. We finally consider ‘dynamic’ agreement results. We show that
‘agreements via dialogues’ [57, 14] have a counterpart in epistemic-plausibility
models, and that one also gets agreements via ‘public announcements’, a type of
belief update that has so far not been considered in the agreement literature —
see [49] and [121] for surveys. Comparison of the two types of dynamic agreements
reveals that in some situations they are indeed different.

These technical results answer an ‘internal’ question in dynamic-epistemic
logic, namely whether agreement results hold in this framework, but they also
offer new insights into the contribution of agreement theorems to interactive epis-
temology. That common belief of posteriors is sufficient for agreement, under
common and well-founded priors, strengthens one of the key lessons of agreement
theorems, viz. that first-order information is closely dependent on higher-order
information in situations of interaction [49]. Our inexpressibility results, on the
other hand, support a qualm already voiced in the literature concerning the diffi-
culty for agents to reason about static agreements [142]. The two dynamic results
not only make a sharp distinction between two forms of belief changes; they also
allow one to capture more adequately the idea that agreements are reached via
public dialogues. Bringing agreement theorems to dynamic-epistemic logic is thus
important both technically and conceptually, and it helps to bridge the existing
literature on agreements with the logical approaches to knowledge, beliefs and
the dynamics of information.

4.2 Definitions

In this section we introduce the models in which we study the various agreement
results, and the logical language used in [17] to describe them. We assume the
definitions given in Chapter 1 and especially in Section 1.3.3. We go again through
some of them in order to draw connections with the probabilistic case on the way.
For background on probabilistic interactive epistemology the reader can check
Appendix A or for more details [127, ch.5]. We mentioned [49] and [121] for
surveys of agreement theorems.

4.2.1 Epistemic plausibility models

We will be using (the at this point customary) epistemic plausibility models as a
qualitative representation of the agents’ beliefs as well as first- and higher-order
information in a given interactive situation. Moreover we will assume that agents’
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plausibility pre-orders are total.
The total plausibility pre-order ≤i induces i’s priors, and can be viewed as a
qualitative counterpart to a prior probability distribution on W . If w ≤i w

′ we
say that i considers w at least as plausible as w′. Given a set X ⊆W , we say that
w ∈ X is ≤i-minimal in X if w ≤i w

′ for all w′ ∈ X. The relation ∼i induces i’s
information partition of W . Ki[w] should be regarded as i’s (private) information
at w. We write |M| = W for the domain of M and use interchangeably I or N
for the set of agents.

We remind the reader of the definition of two assumptions that are crucial in
the following.

Definition 4.1 (Local well-foundedness). A plausibility pre-order satisfies:

• Local well-foundedness: If for all w ∈ W and i ∈ I, for all X ⊆ Ki[w],
if X is non-empty, then X has ≤i-minimal elements.

• Well-foundedness: If for all X ⊆ W and i ∈ I, if X is non-empty, then
X has ≤i-minimal elements.

An epistemic plausibility model M satisfies (Local) Well-foundedness if every
plausibility pre-order has the corresponding property.

Observe that βi is well-defined if the plausibility pre-order is well-founded,
while local well-foundedness is sufficient for Bi to be well-defined. To draw an
analogy with the probabilistic case, this means that local well-foundedness ensures
that the conditional beliefs of an agent i are well-defined for all ‘events’ that have a
non-empty intersection with the agent’s information partition. Well-foundedness,
on the other hand, requires i’s conditional beliefs to be well-defined for any non-
empty subset of W . We now turn to the definition of the common prior (or same
prior) assumption.

Definition 4.2 (Common Prior). There is common prior beliefs among group G
in an epistemic plausibility model M when ≤i = ≤j for all i, j ∈ G.

The reflexive-transitive closure of the union of the epistemic accessibility re-
lations ∼i for all agents i in a group G is the model-theoretic counterpart of the
notion of ‘common knowledge’ in G [72, 67]. We define ‘common belief’ analo-
gously.

Definition 4.3 (Common knowledge). For each G ⊆ I, let ∼∗
G be the reflexive-

transitive closure of
⋃

i∈G ∼i. Let [w]∗G = {w′ ∈W | w ∼∗
G w

′}.

Definition 4.4 (Common belief). For each G ⊆ I, let �∗
G be the reflexive-

transitive closure of
⋃

i∈G �B
i .
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4.2.2 Doxastic-epistemic logic

The logical language used in [17] to describe epistemic-plausibility models is a
propositional modal language with three families of modal operators, which we
extend here with ‘common belief’ operators. Note that it is an extension of the
basic epistemic doxastic language LDOX introduced in Section 1.3.3.

Definition 4.5 (Multi-Agent Epistemic Doxastic Language). The multi-agent
epistemic doxastic language LEDL is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Bϕ
i ϕ | CGϕ | CBGϕ,

where i ranges over I, p over a countable set of proposition letters prop and
∅ 6= G ⊆ I.

A formula CGϕ is read as “it is common knowledge among group G that ϕ”,
CBGϕ as “it is common belief among group G that ϕ.” These formulas are
interpreted in epistemic plausibility models as follows:

Definition 4.6 (Truth definition).

M, w 
 CGϕ iff for all v such that w ∼∗
G v we have M, v 
 ϕ

M, w 
 CBGϕ iff for all v such that w �∗
G v we have M, v 
 ϕ

Before moving to our main agreement result, let us make a few simple obser-
vations about agreements in epistemic plausibility models.

4.2.3 Information, priors, posteriors and agreement

Accordingly this subsection looks at three simple situations that illustrate three
simple facts about agreement in epistemic plausibility models. To begin with,
agents can have the same priors (plausibility ordering) but different posteriors
(beliefs), when the information they possess is different.

Enzo

w : p v : ¬p<

Figure 4.1: Same prior. Different posteriors.

In the model described in Figure 4.1, at v Enzo believes p, while Céline does
not believe p (she even knows that ¬p), but they have the same prior. We will
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Denis

w : p

<c

>d

v : ¬p

Céline

Figure 4.2: Common knowledge of disagreement. Different Priors.

now see that two agents can have different posteriors (disagreement) and that
this fact can be common knowledge, when the agents have different priors.

In the model of Figure 4.2, at both w and v it is common knowledge between
Céline and Denis that Denis believes p while Céline believes ¬p. We finally show
that two agents with the same prior might have mutual knowledge of disagree-
ment.

v : ¬p

Denis

Enzo

< < t : pw : p

Figure 4.3: Mutual knowledge of disagreement. Same Prior.

Figure 4.3 represents a model in which, at t, Enzo knows that Denis and
he disagree about p and so does Denis. How about higher levels of knowledge
or belief? To start with, note that in this particular case it is no longer true for
higher levels of knowledge or belief: indeed at t, Denis believes that Enzo believes
that they both agree that p is the case. For a more general answer, keep reading.

4.3 Static agreement and well-foundedness

We first show that well-foundedness is sufficient for agreement on the posteriors
under common priors and common beliefs of the posteriors. More precisely, we
show that if an epistemic plausibility model is well-founded, then common belief
that agent i believes that ϕ while j does not believe that ϕ implies that i and j
have different priors, which is the contrapositive form of the agreement theorem.
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Theorem 4.7 (Agreement theorem — Common Belief). If a well-founded epis-
temic plausibility model M satisfies M, w 
 CB{i,j}(Bip ∧ ¬Bjp) for some
w ∈W , then i and j have different priors in M.

Proof. We show that there is no pointed epistemic plausibility model M, w which
satisfies well-foundedness and common prior such that M, w 
 CB{i,j}(Bip ∧
¬Bjp). To do that we assume M, w 
 CB{i,j}(Bip ∧ ¬Bjp) and M satisfies
common prior and show by induction that M must not be well-founded, by
constructing an infinite descending chain w1 > w2 > . . ., such that w1�

∗
{1,2}wn for

every n ∈ ω. Note that by common prior we have that ≤1=≤2=≤. Now assume
that M, w 
 CB{1,2}(B1p ∧ ¬B2p) (1) and suppose, towards a contradiction,
that ≤ is well-founded.

Base case. We start by constructing a descending chain of length 2. By (1)
we have in particular M, w 
 B1(B1p ∧ ¬B2p). By assumption, it follows from
the truth definition of B1 (and ≤1=≤-well-foundedness) that there is some state,
call it w0, such that w0 ∈ min≤K1[w], i.e. w�B

i w0 (2) and M, w0 
 B1p ∧ ¬B2p
(3). In particular M, w0 
 ¬B2p (4). By the same argument as before it follows
that there must thus be a state, call it w1, such that w1 ∈ min≤K2[w0], i.e.
w0 �B

2 w1 (5) and M, w1 
 ¬p (6).

But by (1), (2) and (5) it follows that M, w1 
 B1p (7), i.e. {v ∈ W |v ∈
min≤ K1[w1]} ⊆ V (p) (8). But then there is a state, call it w2 such that w2 ∈
min≤ K1[w1] (9) and M, w2 
 p (10). But then from (6), (8) and (9) it follows
that w1 > w2.

Induction step. Assume that we have been able to construct a chain of
length n, i.e. we have w1 > w2 > . . . > wn such that w1 �∗

{1,2} wn (11) for every

n′ ≤ n. Assume that there is no state v such that wn > v (12). Clearly wn
must be minimal within both K1[wn] (13) and K2[wn] (14). It is easy to see
that by the truth condition of common belief we have by (2), (5), (11) and (1)
that M, wn 
 B1p (15). But then by (13) we have wn 
 p (16). Similarly we
have M, wn 
 ¬B2p (17). It then follows WLOG that there must be a state vn
such that (vn ≤ wn & vn ≥ wn) (18) such that wn 
 ¬p (19). It follows that
vn 6∈ K1[wn] (20). Moreover by common belief we have that vn 
 B1p (21). But
it follows that vn 6∈ min≤ K1[vn] (22). Since this set is non-empty it follows that
there is some state wn+1 ∈ min≤K1[vn] (23). But then we have by (22) and (23)
that vn > wn+1 (24). But (24) and (18) implies that wn > wn+1 (25). This
concludes the induction step and the proof. qed

This immediately implies the ‘common knowledge’ agreement result below,
because CGϕ→ CBGϕ is a valid implication in epistemic plausibility models.

Corollary 4.8 (Agreement theorem — Common Knowledge). If an epistemic
plausibility model M satisfies well-foundedness and M, w 
 C{i,j}(Bip ∧ ¬Bjp)
for one w ∈W , then i and j have different priors in M.
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Remark. As a side observation, note that it is possible to prove the corollary di-
rectly by application of Bacharach’s [14] result on qualitative ‘decision functions’,
modulo generalization to the countable case. But let us move back to the main
line.

Well-foundeness is not only sufficient for common priors to exclude the possi-
bility of disagreements when the posteriors are common beliefs, it is also necessary,
as Proposition 4.9 shows. The model behind this result is drawn in figure 4.4.

W

0 1-1-2... 2
p  p

...

Figure 4.4: The epistemic plausibility model constructed in the proof of Propo-
sition 4.9. The solid and dotted rectangles represent 1’s and 2’s information
partitions on W , respectively. The arrows represent their common plausibility
ordering.

Proposition 4.9. There exists a pointed epistemic plausibility model M, w which
satisfies local well-foundedness and common prior such that M, w 
 C{1,2}(B1p ∧
¬B2p).

Proof. Let the model M be defined as follows, with I = {1, 2}.

• M = 〈ZZ, (≤i)i∈I , (∼i)i∈I , V 〉 such that:

– ZZ is the set of integers.

– For both agents i ∈ I, x ≤i y iff x ≥ y.

– For all x, y ∈ ZZ: x ∼1 y is the smallest equivalence relation such that
x ∼1 y whenever y = x + 1 and x is odd; x ∼2 y is the smallest
equivalence relation such that x ∼2 y whenever y = x + 1 and x is
even.

– V (p) = {x : x is odd } and V (q) = ∅ for all q 6= p in prop.

It is easily checked that at every x ∈ ZZ we have M, x 
 (¬B1p ∧B2p), and so that
M, x 
 C{1,2}(¬B1p ∧ B2p), and moreover that M satisfies local well-foundedness
and common prior. qed

To sum up, well-foundedness is thus sufficient for agreement results to hold,
and furthermore cannot be weakened to local well-foundedness. This condition
on the plausibility ordering is thus the safeguard against common knowledge of
disagreement, once we drop the assumption that the state space is finite.
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4.4 Expressive power and syntactic proofs

LEDL is a natural choice of language for talking about epistemic-plausibility mod-
els, but we show here that it cannot express Theorem 4.7 nor Corollary 4.8,
because it cannot express two of their key assumptions, common prior and well-
foundedness.

Fact 4.10. The class of epistemic plausibility frames that satisfies common prior
is not definable in LEDL.

W
0 1

W’
0 1

Figure 4.5: The two epistemic plausibility model constructed in the proof of
Fact 4.10. 1’s and 2’s information partitions on W are represented as in figure 4.4.
The arrow in W represents their common plausibility ordering, while in W ′ the
solid arrow and dotted arrows represent 1’s and 2’s orderings, respectively.

Proof. Take W = {x, y} and ∼1=∼2= {(x, x), (y, y)}. We consider two epistemic
plausibility frames F and F ′. F = 〈W,∼1,∼2,≤1,≤2〉 and F ′ = 〈W,∼1,∼2,≤

′
1

,≤′
2〉 where ≤1=≤2= {(x, x), (x, y), (y, y)} while ≤′

1= {(x, x), (x, y), (y, y)} and
≤′

2= {(x, x), (y, x), (y, y)}. Clearly F satisfies common prior while F ′ does not.
Now assume for a contradiction that there is a formula ψ ∈ LEDL that defines the
class of epistemic plausibility frames with common prior. Then we have F 
 ψ
(1) while F ′ 6
 ψ (2). It follows from (2) that there is some valuation V and some
state s ∈ W = {x, y}, such that F ′, V, s 6
 ψ (3). But it follows from (1) that
F , V, s 
 ψ (4).

We now prove by induction on the complexity of ϕ that for all ϕ ∈ LEDL and
for all s ∈ W we have F , V, s 
 ϕ iff F ′, V, s 
 ϕ which together with (3) and
(4) gives us a contradiction. The base case for propositional letters is immediate.
The cases for common knowledge and knowledge follow from the fact that the
pointed models F , V, s and F ′, V, s are isomorphic with respect to ∼i. The case
for common belief is trivial due to the fact that the information partitions are
(isomorphic) singletons. Moreover the structures are fully isomorphic for agent
1. So it remains to consider the case of conditional belief for 2.

Take the state x (the proof is similar for y). Now assume that F , V, x 
 Bϕ
2 χ

(5). We need to show that F ′, V, x 
 Bϕ
2 χ. By IH we have ||ϕ||M = ||ϕ||M

′

(6), with M = F , V and M′ = F ′, V . Now (5) iff ∀v (if v ∈ β2(K2[x] ∩
||ϕ||M) then M, v 
 χ) (7). Observe that by (6) we know that β2(K2[x] ∩
||ϕ||M) = β ′

2(K2[x] ∩ ||ϕ||M
′
) (8), since K2[x] = {x} in M and M′. Now if

(K2[x] ∩ ||ϕ||M) = ∅ we are done, and otherwise we use (7), (8), truth condition
of Bϕ

2 χ and IH for χ. This concludes the induction step and the proof. qed
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This result, which rests on the two small models drawn in figure 4.5, confirms
the idea that to reason about (common) priors the agents must make “inter-
[information]-state comparisons” [142], which they cannot do because their rea-
sonings in LEDL are local, i.e. they are bounded by the ‘hard information’ [29]
they have. This limitation also makes well-foundeness inexpressible, and with it
the two static agreement results.

Fact 4.11. There is no formula ϕ of LEDL which is true in a pointed epistemic
plausibility model M, w iff Theorem 4.7 or Corollary 4.8 holds in M, w.

Proof. See Appendix D. qed

The previous facts teach us that the the syntactical counterparts of the model-
theoretic agreement results thus reside in more expressive languages.

In what follows we present a finite syntactic derivation of Corollary 4.8 in the
hybrid language H(@, ↓,≥j ,∼j) with a common knowledge modality CG, and give
additional facts about this logic of agreement. (In fact we use a language with
more primitives, but, as we will prove, these are entirely definable in the restricted
language.) The language we use authorizes the following basic programs.

α ::= 1 | 2 | 1 ∪ 2 | (1 ∪ 2)∗ | ≥j | >j

where j ranges over {1, 2}. We additionally authorize intersection of the basic
programs only (not of arbitrary programs).

β ::= α | α ∩ α

Finally we recursively define our language as follows:

ϕ ::= p | i | x | ¬ϕ | ϕ ∧ ϕ | 〈β〉ϕ | @iϕ | @xϕ | ↓x.ϕ

where i ranges over a countable set of nominals nom, x over a countable set of
state variables svar and p over a countable set of proposition letters prop. All
these sets are assumed to be disjoint. Let us call this language H(↓,@)[1, 2, (1 ∪
2),≥j, >j, CG, Res(∩)]. We immediately stress that our usage of intersection,
union and of the strict modality does not increase the expressive power beyond
H(↓,@)[1, 2,≥j, CG], i.e. the fragment that does not allow intersection, union,
or the strict modality. We give below reduction axioms that sustain this claim.
But before that let us finish defining our language by giving its semantics.

The programs {1, 2,≥j, >j} are interpreted in the obvious way. For exam-
ple R1 stands for ∼1. The language H(↓,@)[1, 2, (1 ∪ 2),≥j , >j, CG, Res(∩)] is
interpreted on epistemic plausibility models together with an assignment func-
tion g : svar → W that maps state variables to states. The valuation function
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maps elements of nom to singleton sets of states. The following clauses cover the
interpretation of the binder, of state variables and of the @ operator.

M, g, w 
 x iff g(x) = w
M, g, w 
 i iff w ∈ V (i)
M, g, w 
 @xϕ iff M, g, g(x) 
 ϕ
M, g, w 
 @iϕ iff M, g, v 
 ϕ where V (i) = {v}
M, g, w 
 ↓x.ϕ iff M, g[g(x) := w], w 
 ϕ

For the basic modalities {1, 2,≥j, >j} we have the classical scheme:

M, g, w 
 〈α〉ϕ iff for some v with wRαv we have M, g, v 
 ϕ

For the fragment of PDL we are using the clauses are:

M, g, w 
 〈1 ∪ 2〉ϕ iff ∃v with (w ∼1 v or w ∼2 v) such that M, g, v 
 ϕ
M, g, w 
 〈(1 ∪ 2)∗〉ϕ iff ∃v with w ∼∗

{1∪2} v such that M, g, v 
 ϕ

The second operator is nothing but a notational variation of common knowledge,
in the sense that C{1,2}ϕ ↔ ¬〈(1 ∪ 2)∗〉¬ϕ which is useful to shorten our for-
mulas when intersection is involved. The first one is the diamond version of the
‘everybody knows’ modality. Finally we give the clause for intersection.

M, g, w 
 〈α ∩ β〉ϕ iff ∃v with (wRαv and wRβv) such that M, g, v 
 ϕ

We now show that the hybrid language H(@, ↓,≥j ,∼j) with a common knowledge
modality CG is actually as expressive as the previous language.

Proposition 4.12. The following reduction axioms are sound on the class of
epistemic plausibility models.

1. 〈>〉ϕ↔ ↓x.〈≥〉(ϕ ∧ [≥]¬x) where x does not occur in ϕ.

2. 〈α ∩ β〉ϕ↔ ↓x.〈α〉(↓y.(ϕ ∧ @x〈β〉y)) where x, y does not occur in ϕ.

3. For α ∈ {1, 2, (1 ∪ 2), (1 ∪ 2)∗,≥1,≥2} and β ∈ {1, 2, (1 ∪ 2), (1 ∪ 2)∗}:
〈α ∩ β〉ϕ↔ ↓x.〈α〉(ϕ ∧ 〈β〉x)) where x does not occur in ϕ.

4. For α ∈ {1, 2, (1 ∪ 2), (1 ∪ 2)∗}:
〈>j ∩α〉ϕ↔ ↓x.〈≥〉(ϕ ∧ [≥]¬x ∧ 〈α〉x)) where x does not occur in ϕ.

Proof. The proofs are standard correspondence arguments. (2) is valid for ar-
bitrary programs on relational structures. (3) and (4) use the symmetry of the
epistemic relation. qed

Let us note that the latter reduction axioms, which draw on the symmetry of
the epistemic relations, are more efficient in terms of hybrid operator alternation
and the number of fresh variables we need. Therefore we will rather work with
them in the syntactic proof.
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Corollary 4.13. On the class of epistemic plausibility models H(↓,@)[1, 2,≥j

, CG] is at least as expressive as H(↓,@)[1, 2, (1 ∪ 2) ≥j , >j, CG, Res(∩)].

In addition to the reduction axioms given and the axiomatization of the pure
hybrid logic H(↓,@) (see [55]) we will make us of additional axioms in this proof.
Their soundness is proved below.

Proposition 4.14. The following axioms are valid on the class of well-founded
epistemic-plausibility models.

5. [>]([>]p → p) → [>]p

6. ↓x.((〈≥〉(¬〈≥〉x ∧ p)) → ((〈≥〉((¬〈≥〉x ∧ p) ∧ ¬↓z.〈≥〉(¬〈≥〉z ∧ p)))))

7. For α ∈ {1, 2, (1 ∪ 2), (1 ∪ 2)∗}: ↓x.[α]〈α〉x

8. 〈α ∩ β〉ϕ → (〈α〉ϕ ∧ 〈β〉ϕ)

9. 〈α∗〉ϕ↔ (ϕ ∨ 〈α〉〈α∗〉ϕ)

Proof. (5) is sound on the class of <-well-founded frames (Löb axiom, see [39]).
For (6) note that by Ax.(1), (6) is equivalent to 〈>〉p → 〈>〉(p ∧ ¬〈>〉p) which
is equivalent on the level of frames to (5). (7) is sound on the class of frames for
which Rα is symmetric. (8) is obvious. (9) is the standard fixed point axiom of
PDL. For all these facts see [39]. qed

We have now a language with sufficient expressive power to prove the syntactic
counterpart to our agreement results for the case of common knowledge. In other
words to show that agreement results can be recovered syntactically as theorems of
a sound Hilbert axiom system for a multi-agent doxastic epistemic logic. Formally
we prove the following:

Theorem 4.15. ¬C{1,2}(B1p ∧ ¬B2p) is a theorem of the logic of H(↓,@)[≥j ]
extended by Löb’s axiom (items 5 and 6 in Proposition 4.14), the multi-agent
S5-epistemic logic including CG, S4 for ≥j and the Axiom of Common Prior:
〈≥i〉ϕ↔ 〈≥j〉ϕ.

Proof. For convenience we additionally use axioms 7 and 8 from Proposition 4.14
as useful shortcuts. (Löb(>)) is either Axiom 5 or 6 in Proposition 4.14. For
the axiomatization of H(↓,@)[≥j ] see [55]. For the multi-agent S5-epistemic logic
including CG see Section 1.3.2 or [72].

In the following proof after the axiom of common prior has been applied, we
drop the label, since the plausibility relation is thus the same for both agents.
Our goal is to derive a contradiction from the assumption that disagreement is
common knowledge.
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(0) [(1 ∪ 2)∗]〈≥ ∩2〉(([> ∩2]⊥) ∧ ¬p) by Hypothesis.
(1) [(1 ∪ 2)∗][≥ ∩1](([> ∩1]⊥) → p) by Hypothesis.
(2) [(1 ∪ 2)∗][2][≥ ∩1](([> ∩1]⊥) → p) From (0) by PDL.
(3) [(1 ∪ 2)∗][≥ ∩2][≥ ∩1](([> ∩1]⊥) → p) From (2) by ∩ .
(4) [(1 ∪ 2)∗][≥ ∩2][≥ ∩1](¬p → ⊤) From (3) by PL.
(4′) [(1 ∪ 2)∗][≥ ∩2](¬p → 〈> ∩1〉⊤) From (3) by Ref for (≥ ∩1).
(5) [(1 ∪ 2)∗]〈≥ ∩2〉(([> ∩2]⊥) ∧ ¬p ∧ (¬p → 〈> ∩1〉⊤)) From (1) and (4’) by ML.
(6) [(1 ∪ 2)∗]〈≥ ∩2〉(([> ∩2]⊥) ∧ ¬p ∧ 〈> ∩1〉⊤) From (5) by PL and ML.

Let us now start a new derivation at the end of which we put (6) to use.

(7) ↓x.((〈≥〉(¬〈≥〉x ∧ p)) → ((〈≥〉((¬〈≥〉x ∧ p) ∧ ¬↓z.〈≥〉(¬〈≥〉z ∧ p)))))
Axiom. Löb for >

(8) ↓x.((〈≥〉(¬〈≥〉x ∧ 〈(1 ∪ 2)∗〉x)) →
((〈≥〉((¬〈≥〉x ∧ 〈(1 ∪ 2)∗〉x) ∧ ¬↓z.〈≥〉(¬〈≥〉z ∧ 〈(1 ∪ 2)∗〉x)))))

From (7) by Uni Sub of p by 〈(1 ∪ 2)∗〉x.

The previous step is conceptually important. (7) says that for every subset P
of the domain, there is some minimal element with respect to the plausibility
ordering. And (8) fixes P to be the ‘common knowledge partition’ we are in. It
is safe since all p’s are in the scope of the same binder for x (and x is the only
free state variable in 〈(1 ∪ 2)∗〉x).

(9) [(1 ∪ 2)∗][≥ ∩2]↓x.
(

(〈≥〉(¬〈≥〉x ∧ 〈(1 ∪ 2)∗〉x)) →
((〈≥〉((¬〈≥〉x ∧ 〈(1 ∪ 2)∗〉x) ∧ ¬↓z.〈≥〉(¬〈≥〉z ∧ 〈(1 ∪ 2)∗〉x))))

)

From (8) by Necessitation

We start a new branch here in order to derive (12) and from it (13) using (6).
(9) will be used to derive (15).

(10) 〈> ∩1〉p ↔ ↓x.〈≥〉((¬〈≥〉x ∧ 〈1〉x) ∧ p) Reduction Axiom > ∩1
(11) 〈> ∩1〉⊤ ↔ ↓x.〈≥〉(¬〈≥〉x ∧ 〈1〉x) From (10) by Uni Sub of p by ⊤ and PL.

(12) [(1 ∪ 2)∗][≥ ∩2](〈> ∩1〉⊤ ↔ ↓x.〈≥〉(¬〈≥〉x ∧ 〈1〉x)) From (11) by Necessitation
(13) [(1 ∪ 2)∗]〈≥ ∩2〉((([> ∩2]⊥) ∧ ¬p ∧ 〈> ∩1〉⊤) ∧ ↓x.〈≥〉(¬〈≥〉x ∧ 〈1〉x))

From (6) and (12) by ML.

We need a last step before we can prove (15).

(14) 〈1〉x → 〈(1 ∪ 2)∗〉x PDL
(15) [(1 ∪ 2)∗]〈≥ ∩2〉 ((([> ∩2]⊥) ∧ ¬p ∧ 〈> ∩1〉⊤) ∧ ↓x.[ (〈≥〉(¬〈≥〉x ∧ 〈1〉x))∧

(〈≥〉 (¬〈≥〉x ∧ 〈(1 ∪ 2)∗〉x) ∧ ¬↓z.〈≥〉(¬〈≥〉z ∧ 〈(1 ∪ 2)∗〉x) ) ] )
From (13), (14) and (9) by ML and PL.

(16) [(1 ∪ 2)∗]〈≥ ∩2〉 ((([> ∩2]⊥) ∧ ¬p ∧ 〈> ∩1〉⊤)∧
↓x.[ (〈≥〉(¬〈≥〉x ∧ 〈1〉x)) ∧ (〈≥〉 (¬〈≥〉x ∧ 〈(1 ∪ 2)∗〉x)∧
↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z) ) ] ) From (15) by ML and PL.

(17) [(1 ∪ 2)∗]〈≥ ∩2〉 (↓x.[(〈≥〉 (〈(1 ∪ 2)∗〉x)∧
↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z) ) ] ) From (16) by ML and PL.
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We start a new branch in order to derive (20).

(18) ↓x.(〈≥〉(〈(1 ∪ 2)∗〉x ∧ p) → 〈≥ ∩(1 ∪ 2)∗〉p) Axiom. By symmetry of (1 ∪ 2)∗ and ∩
(19) ↓x.(〈≥〉(〈(1 ∪ 2)∗〉x∧

(↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z))) → From (18) by Uni Sub of p

〈≥ ∩(1 ∪ 2)∗〉↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z)) by ↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z).
(20) [(1 ∪ 2)∗]〈≥ ∩2〉 (

↓x.〈≥ ∩(1 ∪ 2)∗〉(↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z) ) From (17) and (19) by ML and PL.

We leave (20) for now, start a new branch and use it to derive 26.

(21) [(1 ∪ 2)∗][(1 ∪ 2)∗][≥ ∩1](([> ∩1]⊥) → p) From (1) by PDL.
(22) [(1 ∪ 2)∗][2][(1 ∪ 2)∗][2][≥ ∩1](([> ∩1]⊥) → p) From (21) by PDL.
(23) [(1 ∪ 2)∗][2∩ ≥][(1 ∪ 2)∗∩ ≥][2∩ ≥][≥ ∩1](([> ∩1]⊥) → p) From (20) by ∩
(24) [(1 ∪ 2)∗][2∩ ≥][(1 ∪ 2)∗∩ ≥][2∩ ≥][≥ ∩1](¬p → (〈> ∩1〉⊤)) From (23) by PL and ML.

By a similar derivation we can derive (25) from (0).

(25) [(1 ∪ 2)∗][2∩ ≥][(1 ∪ 2)∗∩ ≥]〈≥ ∩2〉(([> ∩2]⊥) ∧ ¬p) From (0) by a similar derivation.
(26) [(1 ∪ 2)∗]〈≥ ∩2〉 (

↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z) )∧

〈≥ ∩2〉(([> ∩2]⊥) ∧ ¬p)] From (20) and (25) by ML and PL.

With (26) proved, we are now ready to head towards a contradiction. We start a
new branch with a sequence of axioms.

(27) ↓x.[(1 ∪ 2)∗]〈(1 ∪ 2)∗〉x Axiom for symmetry.
(28) ↓x.[(1 ∪ 2)∗][2]〈(1 ∪ 2)∗〉x PDL.
(29) ↓x.[(1 ∪ 2)∗][2∩ ≥]〈(1 ∪ 2)∗〉x By ∩
(30) [(1 ∪ 2)∗]〈≥ ∩2〉 (

↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.[≥ ∩2](〈(1 ∪ 2)∗〉x → 〈≥〉z) ) From (26) by ML and ∩

(31) [(1 ∪ 2)∗]〈≥ ∩2〉 (
↓x.〈≥ ∩(1 ∪ 2)∗〉[

(↓z.〈≥ ∩2〉([
(([> ∩2]⊥) ∧ ¬p)∧ From (26), (29) and (30) by ML and PL.

(〈(1 ∪ 2)∗〉x ∧ 〈≥〉z) ]
(32) [(1 ∪ 2)∗]〈≥ ∩2〉 (

↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.〈≥ ∩2〉([

(〈(1 ∪ 2)∗〉x ∧ 〈≥〉z ∧ 〈> ∩1〉⊤)∧
([> ∩2]⊥) ∧ ¬p)] From (26), (29) and (30) by ML and PL.

The final part of the derivation will use (26) and (32).
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(33) [(1 ∪ 2)∗]〈≥ ∩2〉 (
↓x.〈≥ ∩(1 ∪ 2)∗〉[

(↓z.〈≥ ∩2〉[
(〈> ∩1〉⊤)) From (32) by ML and PL.

(34) [(1 ∪ 2)∗]〈≥ ∩2〉 (
↓x.〈≥ ∩(1 ∪ 2)∗〉[

(↓z.〈≥ ∩2〉[
(〈≥ ∩1〉(¬〈≥〉z))) From (33) by ML and PL.

(35) [(1 ∪ 2)∗]〈≥ ∩2〉 (
↓x.〈≥ ∩(1 ∪ 2)∗〉[

(↓z.[≥](¬〈≥〉z → ¬〈(1 ∪ 2)∗〉x) )] From (26) by ML and PL.
(36) [(1 ∪ 2)∗]〈≥ ∩2〉 (

↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.〈≥ ∩2〉[

(〈≥ ∩1〉(¬〈(1 ∪ 2)∗〉x))) From (34) and (35) by ML and PL.
(37) [(1 ∪ 2)∗]〈2〉 (

↓x.〈(1 ∪ 2)∗〉[
(↓z.〈2〉[

(〈1〉(¬〈(1 ∪ 2)∗〉x))) From (36) by ∩ .
(38) [(1 ∪ 2)∗]〈2〉 (

↓x.〈(1 ∪ 2)∗〉(¬〈(1 ∪ 2)∗〉x))) From (37) by PDL. (A contradiction)

qed

On the positive side we have seen that the hybrid language H(@, ↓, CG,≥j ,∼j)
is able to axiomatize (converse) well-foundedness of the plausibility relation. On
the negative side, the satisfiability problem for this language on the class of con-
versely well-founded frames is Σ1

1-hard [55], ruling out any finite axiomatization
of its validities. The derivation we show, however, is finite and uses only sound
axioms. At the time of writing we still do not know whether the agreement
results of Section 4.3 could be derived in a language whose validities over well-
founded epistemic plausibility models are recursively enumerable. The fact that
the syntactic derivation reported here pertains to such an expressive language
nevertheless indicates that reasoning explicitly about agreement results requires
onerous expressive resources.

4.5 Agreement via dialogues

In this section we turn to ‘agreement-via-dialogues’ [82, 14], which analyze how
agents can reach agreement in the process of exchanging information about their
beliefs by updating the latter accordingly.

4.5.1 Agreement via conditioning

We first consider agreements by repeated belief conditioning. It is known that
if agents repeatedly exchange information about each others’ posterior beliefs
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about a certain event, and update these posteriors accordingly, the posteriors
will eventually converge [82, 14]. We show here that this result also holds for the
‘qualitative’ form of belief conditionalization in epistemic plausibility models.

We call a conditioning dialogue about ϕ [82], at a state w of an epistemic
plausibility model M, a sequence of belief conditioning, for each agent, on all
other agents’ beliefs about ϕ. This sequence can be intuitively described as
follows. It starts with the agents’ simple belief about ϕ, i.e. for all i: Biϕ if
M, w 
 Biϕ and ¬Biϕ otherwise. Agent i’s belief about ϕ at the next stage is
defined by taking his belief about ϕ, conditional upon learning the others’ beliefs
about ϕ at that stage. Syntactically, this gives, IB1,i = Biϕ if M, w 
 Biϕ and

IB1,i = ¬Biϕ otherwise and, for two agents i, j, IBn+1,i = B
IBn,jϕ

i ϕ if M, w 


B
IBn,jϕ

i ϕ and ¬B
IBn,jϕ

i ϕ otherwise. This syntactic rendering is only intended to
fix intuitions, though, since in countable models the limit of this sequence exceeds
the finitary character of LEDL. We thus focus on model-theoretic conditioning.

Conditioning on a given event A ⊆W boils down to refining an agent’s infor-
mation partition by removing ‘epistemic links’ connecting A and non-A states.

Definition 4.16 (Conditioning by a subset). Given an epistemic plausibility
model M, the collection of epistemic equivalence relation of the agents is an
element of ℘(W × W )I . Given a group G ⊆ I, the function fG : ℘(W ) →
(℘(W ×W )I → ℘(W ×W )I) is a conditioning function for G whenever:

(w, v) ∈ fG(A)(i)({∼i}i∈I) iff

{

(w, v) ∈ ∼i and (w ∈ A iff v ∈ A) if i ∈ G

(w, v) ∈ ∼i otherwise

Given a model M = 〈W, (≤i)i∈I , (∼i)i∈I , V 〉 we write fG(A)(M) for the model
〈W, (≤i)i∈I , fG(A)((∼i)i∈I), V 〉.

It is easy to see that the relations ∼i in fG(A)(M) are equivalence relations.
Here we are interested in cases where the agents condition their beliefs upon
learning in which belief state the others are.

Definition 4.17 (Belief states). Let M be an epistemic plausibility model and
A ⊆W ; we write

BM
j (A) for {w : βj(K

M
j [w]) ⊆ A} and

¬BM
j (A) for W \BM

j (A)

We define IBM,w
j (A) as follows:

IBM,w
j (A) =

{

BM
j (A) if w ∈ BM

j (A)

¬BM
j (A) otherwise
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Observation 4.18. For any plausibility epistemic model M indexed by a finite
set of agents I, 〈℘(W × W )I ,⊆〉 is a chain complete poset. Moreover for all
A ⊆W , w ∈W and G ⊆ I, fG(A) is deflationary.

Proof. Taking ℘(W ×W )I as a product, it is easy to see that 〈℘(W ×W )I ,⊆〉 is
a poset. The intersection of a decreasing sequence is the greatest lower bound of
this sequence. Finally it is easy to see by inspecting Definition 4.16 that fG(A)
is deflationary. Indeed for every i and A we have fG(A)(∼i) ⊆ ∼i and thus by
definition of a product fG(A)(×i∈I(∼i)) ⊆ ×i∈I(∼i). qed

Taking fI(
⋂

j∈I IBM,w
j (||ϕ||M)) as a mapping on models, it is easy to see from

the preceding observation that conditioning by agents’ beliefs about some event
is deflationary with respect to the relation of epistemic-submodel. It follows then
by the Bourbaki-Witt fixed point theorem [50] that conditioning by agents’ beliefs
has a fixed point.

Theorem 4.19 (Bourbaki-Witt [50]). Let X be a chain complete poset. If f :
X → X is inflationary (deflationary), then f has a fixed point.

Given an initial pointed model M, w and some event A ⊆W , we can construct
its fixed point under conditioning by agents’ beliefs as the limit of a sequence of
models, which are the model-theoretic counterpart of the dialogues described
above.

Definition 4.20. A conditioning dialogue about ϕ at the pointed plausibility epis-
temic model M, w, with M = 〈W, (≤i)i∈I , (∼i)i∈I , V 〉 is the sequence of pointed
epistemic plausibility models (Mn, w) with

(M0, w) = M, w

(Mβ+1, w) = fI(
⋂

j∈I

IB
Mβ ,w

j (||ϕ||M))(Mβ), w

(Mλ, w) =
⋂

β<λ

(Mβ, w) for limit ordinals λ

This extends to the countable case the standard representation of a dialogue
about ϕ in the literature on dynamic agreements [82, 14]. By observation 4.18 we
know that dialogues cannot last forever, i.e. that each such sequence has a limit.

Corollary 4.21. For any pointed epistemic plausibility model M, w and ϕ ∈
LEDL there is an αf such that, for all i ∈ I, w ∈ W and α > αf , Kα,i[w] =
Kαf ,i[w].

Once the agents have reached this fixed point αf—possibly after transfinitely
many steps—they have eliminated all higher-order uncertainties concerning the
posteriors about ϕ of the others, viz. these posteriors are then common knowledge:
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Theorem 4.22 (Common knowledge of beliefs about ϕ). At the fixed point αf

of a conditioning dialogue about ϕ we have that for all w ∈ W and i ∈ I, if

w ∈ B
M

αf ,w

i (||ϕ||M) then w′ ∈ B
M

αf ,w

i (||ϕ||M) for all w′ ∈ [w]∗
αf ,I

, and similarly

if w 6∈ B
M

αf ,w

i (||ϕ||M).

To save on notation we write Bαf

i (A) for B
Mα,f

i (A).

Proof. Let αf be the fixed point existing by Corollary 4.21. Given an arbitrary
state w in the domain of Mαf we prove that for any w′ ∈ [w]∗

αf ,I
and for any

i ∈ I we have w ∈ Bαf

i (||ϕ||) iff w′ ∈ Bαf

i (||ϕ||). The proof is by induction on
length of the smallest chain C = 〈w1 ∼αf ,x · · · ∼αf ,y wn〉 where x, y ∈ I, w1 = w
and wn = w′.

Base case. For |C| = 1 is immediate by definition.
Induction step. We have two cases.
Case 1. w ∈ Bαf ,i(||ϕ||). Assume that we have a chain C = 〈w1 ∼αf ,x

· · · ∼αf ,y wn+1〉 where x, y ∈ I, w1 = w and wn+1 = w′ of length n + 1. By
IH we have wn ∈ Bαf ,i(||ϕ||) (1). We have now two subcases. Subcase 1a:
wn ∼αf ,i w

′ but then by epistemic introspection of beliefs and (1) we have w′ ∈
Bαf ,i(||ϕ||). Subcase 1b: wn ∼αf ,j w

′ in C, for some j 6= i in I. Now assume
for a contradiction that w′ 6∈ Bαf ,i(||ϕ||). It follows then by definition of the

conditioning function fI(
⋂

j∈I IBM,w
j (||ϕ||M)) that fI(

⋂

j∈I IBM,w
j (||ϕ||M))(∼αf ,j

)  ∼αf ,j. This contradicts the choice of αf .
Case 2. The argument for the case of w 6∈ Bαf ,i(||ϕ||) is entirely similar,

except that we use negative introspection of beliefs (if w 6∈ Bi(X) then Ki[w] ⊆
¬Bi(X)). qed

With this in hand we can directly apply the static agreement result for com-
mon knowledge (Corollary 4.8, Section 4.3) to find that the agents do indeed
reach agreements at the fixed point of a dialogue about ϕ.

Corollary 4.23 (Agreement via conditioning dialogue). Take any dialogue about
ϕ with common and well-founded priors, and αf as in Corollary 4.21. Then for all

w in W , either [w]∗
αf ,I

⊆
⋂

i∈I B
M

αf ,w

i (||ϕ||M) or [w]∗
αf ,I

⊆
⋂

i∈I ¬B
M

αf ,w

i (||ϕ||M).

This result brings qualitative dynamic agreement results [57, 14] to epistemic
plausibility models, and shows that agents can indeed reach agreement via iter-
ated conditioning, even when the finite model assumption is dropped.

4.5.2 Agreement via public announcements

In this section we show that iterated ‘public announcements’ lead to agreements,
thus introducing a distinct form of information update to the agreement literature.
We remind the reader that public announcements are ‘epistemic actions’ [67] by
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which truthful, hard information is made public to the members of a group by
a trusted source, in such a way that no member is in doubt about whether the
others received the same piece of information as she did.

One extends a given logical language with public announcements by operators
of the form [ϕ!]ψ, meaning “after the announcement of ϕ, ψ holds” [134, 83]. A
dialogue about ϕ via public announcements among the members of a group G
thus starts, as before, with i’s simple beliefs about ϕ, for all i ∈ I. The agents’
beliefs about ϕ at the next stage are then defined as those they would have
after a public announcement of all agents’ beliefs about ϕ at the first stage.
Syntactically, this gives: IB1,i as in Section 4.5.1, and IBn+1,i, as [

⋂

j∈I IBn,jϕ!]Biϕ
if M, w 
 [

⋂

j∈I IBn,jϕ!]Biϕ and as [
⋂

j∈I IBn,jϕ!]¬Biϕ otherwise. For the same
reason as in the previous section, we now move our analysis to the level of models.

Intuitively, the A-generated submodel (Definition B.4) of a given epistemic
plausibility model M is the model that results after the public announcement of
some formula ϕ, with ||ϕ||M = A in M.

Definition 4.24 (Relativization by agents beliefs). Let IBi(M, w, ϕ) be defined
as follows:

IBi(M, w, ϕ) =

{

||Biϕ||
M if M, w 
 Biϕ

||¬Biϕ||
M otherwise

Then given an epistemic-plausibility model M = 〈W, (≤i)i∈I , (∼i)i∈I , V 〉, the
relativization !Bϕ

w by agents’ beliefs about ϕ at w (where w ∈ |M|), takes M to
!Bϕ

w(M). Here !Bϕ
w(M) is the

⋂

i∈I IBi(M, w, ϕ)-generated submodel !Bϕ
w(M) =

〈W !Bϕ
w ,≤!Bϕ

w

i ,∼!Bϕ
w

i , V !Bϕ
w〉 of M such that:

• W !Bϕ
w =

⋂

i∈I IBi(M, w, ϕ)

and for each i ∈ I

• ≤!Bϕ
w

i = ≤i ∩ (W !Bϕ
w ×W !Bϕ

w)

• ∼!Bϕ
w

i = ∼i ∩ (W !Bϕ
w ×W !Bϕ

w)

• For each v ∈W !Bϕ
w , v ∈ V !Bϕ

(p) iff v ∈ V (p)

Note that by the construction above the actual state w is never eliminated.

Observation 4.25. For any plausibility epistemic model M indexed by a finite
set of agents I, 〈Sub(M),⊑〉 is a chain complete poset. Moreover, for all ϕ ∈
LEDL, w ∈W , !Bϕ is deflationary.

Proof. It is easy to see that 〈Sub(M),⊑〉 is a poset. Moreover taking the sub-
model of M generated by the intersection of the domain of each element in a
decreasing sequence is the greatest lower bound of this sequence. Finally it is
easy to see by inspection of Definition 4.24 that !Bϕ is deflationary. qed
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It follows then by the Bourbaki-Witt [50] Theorem (see previous subsection)
that the process of public announcement of beliefs has a fixed point. Given an
initial pointed model M, w and some formula ϕ ∈ LEDL, we can construct this
fixed point by taking the limit of a sequence of models, which we call a public
dialogue.

Definition 4.26. A public dialogue about ϕ starting in M, w is a sequence of
epistemic-doxastic pointed models {(Mn, w)} such that:

• M0 = M is a given epistemic-plausibility model.

• Mβ+1 =!Bϕ
w(Mβ)

• (Mλ) is the submodel of M generated by
⋂

β<λ |Mβ| for limit ordinals λ

It is known that such a dialogue need not stop after the first round of an-
nouncements, in e.g. the ‘muddy children’ case [37], but by observation 4.25 we
know that it will stop at some point.

Corollary 4.27 (Fixed point). Given an epistemic-plausibility model M0, w and
a public dialogue about ϕ, there is an αϕ such that (Mα, w) = (Mαϕ , w) for all
α ≥ αϕ.

Moreover at Mαϕ, w, which we call the fixed point of the public dialogue about
ϕ, the posteriors of the agents about this formula are common knowledge, which
means that they will reach an agreement on ϕ if they have common and well-
founded priors.

Theorem 4.28 (Common knowledge at the fixed point). At the fixed point of a
public dialogue Mαϕ , w about ϕ, for all w ∈W and i ∈ I, if w ∈ ||Biϕ||

Mαϕ then
w′ ∈ ||Biϕ||

Mαϕ for all w′ ∈ [w]∗αϕ,I , and similarly if w 6∈ ||Biϕ||
Mαϕ .

Proof. The proof follows the same line as for Theorem 4.22. qed

Corollary 4.29 (Agreements via Public Announcements). For any public dia-
logue about ϕ, if there are common and well-founded priors then at the fixed point
Mαϕ , w either all agents believe that ϕ or they all do not believe that ϕ.

This new form of dynamic agreements result is conceptually important because
it fits better than iterated conditioning the intuitive idea of a public dialogue, or
so we shall argue in the next section, by highlighting the differences between the
two processes of information exchange.
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4.5.3 Comparing agreement via conditioning and public
announcements

In this section we highlight by way of two examples that public announcements,
in comparison with belief conditioning, are indeed public. We illustrate this first
by comparing how conditioning and public announcements respectively change
higher-order information, even in the case of ‘non-epistemic’ facts. We then point
out that this difference can indeed lead to different agreements, precisely in cases
where the dialogues are about epistemic facts.

W

2 2
1 1

w1 w2 w3
p p

Figure 4.6: An epistemic plausibility model where one round of conditioning on p
does not remove higher-order uncertainty about p, while a public announcement
of p does.

Example 4.30. Consider the model in Figure 4.6. The arrows represent 1 and
2’s common plausibility ordering, with w ≤ w′ and w′ ≤ w for all w,w′ ∈W . The
solid and dotted rectangles represent 1 and 2’s information partitions, respectively.
Take a proposition letter p and assume that V (p) = {w1, w2}. Observe that the
agents already agree on p at w1, but that agent 2 is uncertain about 1’s beliefs
about p: writing 32ψ for ¬B2¬ψ, we have w1 |= 32B1p ∧ 32¬B1p. A single
public announcement of p at w1 suffices to remove this higher-order uncertainty:
w1 |= [p!]C{1,2}p. Agent 2’s uncertainty about 1’s beliefs about p, however, remains

after a single conditioning on p. Taking 3
ψ
2ϕ

′ for ¬Bψ
2 ¬ψ

′, we have w1 |= 3
p
2B1p∧

3
p
2¬B1p.

This example illustrates the public character of announcements in comparison
with the private character of conditioning. In the first case all agents know that all
others have received the same piece of truthful information. This is not necessarily
the case for conditioning, even if all agents condition simultaneously on the same
piece of information.

Given any pointed epistemic plausibility model M, w and formula ϕ, the
reader can check that both the dialogue about ϕ via public announcements and
the dialogue about ϕ via belief conditioning at M, w lead to the same agreement
whenever ϕ is a Boolean combination of propositional letters. This is mainly
due to the fact that neither operation changes the ‘basic facts’, i.e. the proposi-
tional valuation in a given model. They do, however, treat ‘informational’ facts
differently, as the following example shows.
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W

2
1 1

w1 w2

Figure 4.7: An epistemic plausibility model where conditioning leads to a different
agreement than public announcements.

Example 4.31. Consider the epistemic plausibility model in Figure 4.7. The
arrows and rectangles are as in example 4.30. Take a proposition letter p and
assume that V (p) = {w1}. Let ϕ := p∧¬B2p, i.e. “p but 2 doesn’t believes that p”.
Observe that ϕ holds at w1, that 1 believes it but that 2 does not. The conditioning
dialogue and the dialogue via public announcements, both about ϕ, reach their fixed
point n∗ after one round in this model, where [w1]n∗,1 = [w1]n∗,2 = {w1}. The
formula ϕ leads to an ‘unsuccessful update’ by public announcement [67], and at
the fixed point of the dialogue neither 1 nor 2 believe that ϕ. In conditioning
dialogue, however, both agents do believe that ϕ at the fixed point.

This example hinges on the fact that public announcement and belief condi-
tioning have a different influence on higher-order information. In conditioning
the truth value of the formula under consideration remains fixed. If the formula
contains epistemic (Ki or CG) or doxastic (Bi, CBG) operators, this means that
the conditioning dialogue bears on the knowledge and beliefs of the agents an-
terior to the information exchange [17]. In dialogues via public announcements
the truth value of the formula ϕ is dynamically adapted to the incoming new
information, reflecting the fact that knowing that others receive the same piece
of information might lead an agent to revise his higher-order information, too.

This highlights the public character of announcements in comparison with
belief conditioning, and thus that the former fit well with the intuition of public
dialogue that drives the dynamic agreement results.

4.6 Definability of fixed points

We have seen that the static agreement result (Corollary 4.8) had a syntac-
tic counterpart in some (undecidable, non-recursively enumerable) hybrid logic.
What about the dynamic agreement results? Let us focus on the dynamic agree-
ment results through public announcements. Here some remarks made in van
Benthem [31] can guide us.

[31]’s ‘rational dynamics’ model steps of reasoning of agents in epistemic mod-
els for games. Here we do not focus so much on this issue (which we get back
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to in Chapter 6), but rather on the technical issue raised about the definability
of fixed points. Given some epistemic plausibility model M and some doxastic
formula ϕ one can repeatedly announce ϕ until a fixed point is reached. We call
this fixed point the ϕ-announcement limit of M. But a public announcement
need not be monotonic. Indeed it is possible that M is a submodel of M′ but
that M|ϕ is not a submodel of M′|ϕ. But existential formulas are an interesting
case. Indeed van Benthem [31] shows that:

Theorem 4.32 (van Benthem [31]). The public announcement of ϕ is monotonic
for existential doxastic epistemic formulas. As a corollary the ϕ-announcement
limit is definable in the doxastic epistemic µ-calculus.

What about announcement of beliefs? The bad news is that the announcement
of the beliefs of the agents about some proposition need not be monotonic.

Fact 4.33. Belief announcement is not monotonic.

Proof. To see this the reader can look at Figure 4.8. Let the unfilled states be p-
states. Assume we are in M′, in the leftmost information partition: announcing
the agent’s belief will remove the rightmost state in the second model but be
harmless in the first one. Clearly the resulting models are incomparable — none
of them is a submodel of the other. If we are in the rightmost state things are
even clearer: the resulting model after belief announcement in the bottom model
is in fact a submodel of the one generated from the top one. qed

M′

<

<<

M

Figure 4.8: Belief announcement is not monotonic.

An immediate consequence of this fact (see Dawar et al. [59], van Benthem
[31]) is that belief announcement won’t be definable in the doxastic epistemic
µ-calculus.

A syntactic confirmation of this bad news but also an interesting feature of
the announcement scenario is that announcing ‘disagreement’ is really announcing
the conjunction of a positive and a negative formula: ‘one agent believes that ϕ,
another does not believe that ϕ’, thus if one conjunct is a positive formula the
other one is bound to be a negative formula.

What about definability in more complex logics such as inflationary fixed point
modal logics? In general inflationary fixed point modal logics will do for any fixed
formula.
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Theorem 4.34 (van Benthem [31]). The limit submodel of iterated announcement
of any doxastic epistemic formula is definable in the inflationary µ-calculus.

First note that disagreement about ϕ is really a disjunction of two formulas:
(B1ϕ ∧ ¬B2ϕ) ∨ (¬B1ϕ ∧ B2ϕ). So we can define a map on models corresponding
to announcement of ‘disagreement about ϕ’. In which case the preceding result
applies. So the limit of the announcement of disagreement about ϕ is definable
in the inflationary µ-calculus.

But note that this is not exactly the type of announcement we were using in
our earlier results. Indeed we required not only announcement of ‘disagreement
about ϕ’ but of whether the agents believe or not that ϕ, i.e. of the particular
disjunct that holds. It is unknown to us whether the weaker announcement of
‘disagreement’ guarantees common knowledge (or common belief) of posteriors in
the inflationary fixed point under announcement of ‘disagreement’, hence whether
agents will agree in the fixed point.

We could still have definability if the disagreement map was stable in the
sense that if agents keep disagreeing they keep the same position, they don’t
switch their opinions. But even with a common prior this situation can happen!

Fact 4.35. There exists a pointed model M, w satisfying common prior with
M, w 
 B1p ∧ ¬B2p such that M|(B1p ∧ ¬B2p), w 
 ¬B1p ∧ B2p

Proof. Figure 4.9 presents such a situation.

1

< <

≃
≃

Figure 4.9: Agents can switch opinions. (Initial situation).

In the model in which 1 (plain information partition) and 2 (dashed informa-
tion partition) have a common prior, red (darker) states are p-states and in the
actual state (the double-circled, rightmost state), 1 believes that p while 2 does
not. But let us announce their beliefs publicly. . .
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≃

<

Figure 4.10: Agents can switch opinions. (Resulting situation).

. . . in the resulting model, the situation is now reversed: 2 now believes p while
1 does not believe p anymore. So it remains open whether the earlier results can
be formulated within inflationary fixed points. qed

So we are really dealing with a conditional announcement of the form

(?ϕ1; !ϕ1) ∪ (?ϕ2; !ϕ2)

It is unknown to us whether such conditional announcements can be defined in
the inflationary µ-calculus. The same question can be raised for the more general
case in which the announced formula is not necessarily the same as the one used
as a precondition.

Public announcements of beliefs really represent a type of disagreement-solving
scenario in which agents take belief announcements as hard information. In the
preceding chapters we have extensively discussed soft dynamics such as lexico-
graphic upgrade: what if agents instead of eliminating incompatible states, simply
re-arrange their plausibility ordering, will we still get agreement in the limit? This
is an open question. First, note that common knowledge of posteriors about ϕ is
less demanding than common knowledge about the underlying proposition. The
simple example in Figure 4.1 shows that in some cases common knowledge of pos-
teriors might be reached via softer types of treatment of the other agent’s belief
(they will reach common knowledge of agreement in a single step, but obviously
Enzo will never get to know that ¬p). But it still sounds more reasonable to
hope for common belief of posteriors, which we learnt is sufficient to guarantee
agreement.

About the issue of long term behavior of beliefs and group beliefs under soft
announcements the reader can consult the recent work of Baltag and Smets [18].
How these results can be applied to the study of dynamic agreement results based
on soft updates is an interesting open question.

On the syntactic side the issues we raised about definability of limits of be-
lief announcements can be raised again for lexicographic upgrade. But now the
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definability of limits of lexicographic upgrades will be more delicate. Indeed lex-
icographic upgrade defines a new (binary) relation, while public announcement
simply takes a submodel. We can no longer expect definability in the inflationary
µ-calculus, but rather in the fixed point extension of first-order logic: LFP(FO).
The exact fragment of LFP(FO) in which dynamic agreement arguments based on
lexicographic upgrade (and soft updates in general) can be expressed, is unknown
to us. Determining it would be a source of great insight. Let us stress that similar
technical issues are encountered in Zvesper [152, ch.3].

To conclude let us put the disagreement scenarios in a larger picture. Like
the Muddy Children (but unlike the announcements of rationality of van Ben-
them [31]) the announcements in scenarios of disagreement-solving via public
announcement are self-refuting in the limit (provided that the agents have a com-
mon prior). But unlike the ones in the Muddy Children they are not monotonic.
But there are more scenarios describing how agents can communicate in order to
try to solve their disagreement. In general it would be interesting to study the
effect of various types of protocol restricting how agents are allowed to communi-
cate what they believe. In general connections might exist with other formal or
informal models of dialogical conflict resolution.

On a more technical side, it remains open whether one can finitely axiomatize
a logic which can derive the static agreement results. Since the mere definability
of fixed points is also open, so is the possibility of a finitary syntactic derivation
of the dynamic agreement results. The expressibility of alternative agreement
results, as e.g. the one provided in [142] is also open.

4.7 Conclusion

We have studied agreement theorems from the point of view of dynamic-epistemic
logic. We have shown that both static and dynamic agreement results hold in
epistemic plausibility models, answering an open question in the logic literature.
Furthermore we have discussed syntactic counterparts for these results.

Major sources. The starting point of this chapter is naturally the work done on
agreement theorems in the interactive epistemology literature: in particular Au-
mann [13]’s agreement theorem, Geanakoplos and Polemarchakis [82]’s dynamic
results proving convergence via dialogues and the qualitative agreement results
of Cave [57], Bacharach [14]. Another source is the sequence of papers by Baltag
and Smets [16, 17] developing epistemic plausibility models and matching lan-
guages. The Σ1

1-hardness of satisfiability for the hybrid logic considered in the
syntactic derivation of the agreement result over transitive well-founded frames
is a result from ten Cate [55]. Our discussion on definability of fixed points in
modal languages is inspired by the one developed in van Benthem [31].

Our main results. In this chapter we considered the agreement results of in-
teractive epistemology from a logical viewpoint. We proved static and dynamic
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agreement results for epistemic plausibility models, reinforcing qualitative agree-
ment results by proving that common belief in posteriors is sufficient to ensure
agreement, under common and well-founded priors, and by proving so for both
finite and countable structures. We pointed out the need for rather expressive
logical languages to reason explicitly about static agreement results and gave a
syntactic derivation of one of our static agreement results. Finally, we focused on
the distinction between conditioning and public announcements to provide two
dynamic agreement results.

The next step. This concludes our introduction of agreement theorems into
the dynamic-epistemic logic area, bridging interactive epistemology and dynamic
logics of belief and information. After interactive reasoning, our next step on the
agenda is to consider inductive reasoning, and bring our logical perspective to the
conditions under which an agent can reliably converge to some conjecture about
its environment.



Chapter 5

Learning from the perspective of modal
logics of belief change1

We have encountered doxastic epistemic temporal logics and dynamic doxastic
logics and clarified their connection. Moreover we have seen how they can be
used to analyze agreement issues in qualitative structures. In this chapter we
are interested in how these logics can help us analyze inductive reasoning. More
precisely this chapter investigates the connection between formal learning theory
and modal logics of belief change and builds bridges between the two frameworks,
bringing a logical point of view to inductive reasoning.

5.1 Introduction

Formal learning theory [107] brings a formal perspective to epistemological issues
raised by the study of inductive reasoning. It models agents as functions that
identify a correct hypothesis from a range of possibilities on the basis of induc-
tively given streams of data. These functions can be viewed as agents that change
their beliefs about which hypothesis is correct as they receive new information,
according to some protocol. It is therefore natural to explore if some modal log-
ics of belief change can give the syntactic means of analyzing inductive learning,
giving interesting insights into its semantics and the pattern of reasoning at work
in its analysis. To do so, we examine the temporal doxastic structure underlying
formal learning theory, and look at how important concepts can be defined in
modal logics of belief change.

The conceptual and philosophical background of this connection comes from
a sequence of papers by Gierasimczuk, notably [85]. In what follows we focus on
the language learning paradigm, which analyses the conditions under which an
agent converges to a (correct grammar for a) language given a space of possible
languages (resp. grammars) and does so, on any possible enumeration of that

1This chapter is based on Dégremont and Gierasimczuk [61].
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language, treating languages as sets of positive integers. We refer to [85] for
philosophical discussion and now move on to outline the formal details of the
bridging.

In formal learning theory (FLT), learning is viewed as a process in which an
agent (Learner) considers some range of languages. One of the languages is the
actual one, and Learner’s aim is to get to know which one it is. Elements of the
language are given to Learner one by one. The infinite sequence of data that
governs this enumeration includes all and only elements of the language. Several
success conditions for Learner can be defined. For instance, we can assume that
each time Learner gets a piece of information, she can make a conjecture. We can
define the learning process to be successful if Learner’s conjectures stabilize on the
proper language. This learnability condition is called identification in the limit
[87]. A more restrictive notion requires that Learner gives an answer only once,
at some finite stage of the procedure. This kind of learnability is known as finite
identification [123]. In Section 5.2 one can find a formal account of identification
in FLT.

Intuitively, our approach to inductive learning in the context of modal logics
of belief change (presented in Section 5.3) is as follows. We take the initial
class of languages to be states in an epistemic plausibility model, which mirrors
Learner’s initial uncertainty and preferences over the range of languages. Each
state (language) is assigned a protocol that indicates which sequences of events it
allows (which streams of data enumerate that language). The incoming piece of
information is taken to be an event that modifies the initial model. The structure
resulting from updating the model with a sequence of events generates a doxastic
epistemic temporal forest. We formulate the translation in Section 5.4.1.

We build on this construction in two ways. Firstly, we give a modal char-
acterization of forests generated from a learning situation that satisfies a given
learning condition (Section 5.4.2). Abstracting from this construction, we con-
sider learnability conditions as properties that doxastic epistemic temporal models
may or may not satisfy and show how FLT characterization theorems have nat-
ural counterparts in representation theorems about temporal protocols (Section
5.4.3). Finally in Section 5.5 we make a few observations on how to extend this
approach to model situations in which learner might have imperfect observational
power and might thus be affected by the presence of other learners. Section 5.6
concludes and presents directions for further work.

5.2 Formal learning theory

Let us start with some background on formal learning theory. Since FLT studies
the conditions under which an agent can reliably converge to some language given
a space of possible languages on any possible enumeration of that language, there
are three things we need to make explicit: what classes of languages we are
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interested in, what we mean by an enumeration (or a positive presentation) of a
language, and most importantly what it means for an agent to ‘reliably converge’
or ‘identify’ a language on a given class. In fact we will not consider one but
three notions of identification. But let us start with the classes of languages.

We treat languages as recursively enumerable sets S ⊆ N. We will also be
concerned with classes of such languages Ω = {S1, S2, . . .}. The indices will serve
as names of the sets, or in other words, hypotheses.

Before discussing notions of identification let us fix the idea of a positive
presentation of a language (i.e. of a set).

Definition 5.1. By a positive presentation (text) of S, ε, we mean an infinite
sequence of elements from S such that it enumerates all and only the elements
from S allowing repetitions.

We are almost ready to introduce the notions of identification. We only need
to fix some basic notation about sequences.

Definition 5.2 (Notation). We will use the following notation:

• U =
⋃

Ω is the universal set of Ω;

• εn is the n-th element of ε; ε|n is the sequence (ε0, ε1, . . . , εn−1);

• set(ε) is the set of elements that occur in ε;

• L is a learning function — a partial map from finite data sequences to
indexes of sets, L : U∗ ⇀ N.

We can now give formal definitions of what it means for an agent to ‘reliably
converge to’ or ‘identify’ a language on a given class (and to identify a class of
languages). The first notion, finite identifiability, is the most demanding one,
since it requires the learner to give a correct answer after a finite number of steps
of enumeration of positive data.

Definition 5.3 (Finite identification; Gold [87], Mukouchi [123]). A learning
function L:

1. finitely identifies Si ∈ Ω on ε iff, when inductively given ε, at some point L
outputs i, and stops;

2. finitely identifies Si ∈ Ω iff it finitely identifies Si on every ε for Si;

3. finitely identifies Ω iff it finitely identifies every Si ∈ Ω.

4. Ω is finitely identifiable iff some learning function L finitely identifies Ω.

Let us illustrate these definitions with two examples from [85].
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Example 5.4. Ω1 := {Si = {0, i}|i ∈ N}. Ω1 is finitely identifiable by L : U∗ →
N:

L(ε|n) =

{

is undefined if set(ε|n) = {0},
max(set(ε|n)) otherwise.

In other words, L outputs the correct hypothesis as soon as it receives a number
different than 0, and the procedure ends.

Example 5.5. To see how restrictive the notion of finite identifiability is, take
a finite class of finite languages Ω2 = {S1, S2, S3}, where Si = {1, . . . , i}. Ω2 is
not finitely identifiable. To see that, assume that S2 is the actual language. A
learning function can never conclude that S2 is the actual language. For all it
knows, 3 might appear in the future, so it has to leave the S3-possibility open.

The condition of finite identifiability might thus be seen as too demanding.
Now if we allow Learner to answer each time she gets a new piece of data, we
can define success as convergence to the right answer. This leads to the notion
of identification in the limit.

Definition 5.6 (Identification in the limit [87]). A learning function L:

1. identifies Si in the limit on ε iff for co-finitely many m, L(ε|m) = i;

2. identifies Si in the limit iff it identifies Si in the limit on every ε for Si;

3. identifies Ω in the limit iff it identifies in the limit every Si ∈ Ω.

4. Ω is identifiable in the limit iff some learning function identifies Ω in the
limit.

The following sequence of examples shows the notion of identification in the limit
at work in the analysis of concrete learning situations.

Example 5.7. First let us consider an example of a finite class of finite sets. Re-
call the class Ω2 from Example 5.5. Ω2 is identifiable in the limit by the following
function L : U∗ → N: L(ε|n) = m, such that m = max(set(ε|n)).

Example 5.8. The learning function from Example 5.7 identifies in the limit
the following infinite class of finite sets: Ω3 = {Si|i ∈ N − {0}}, where Sn =
{1, . . . , n}.

Example 5.9. Identifiability in the limit of the class Ω3 is lost if we enrich it
by the set of all natural numbers. Let Ω4 = {Si|i ∈ N}, where S0 = N and for
n ≥ 1, Sn = {1, . . . , n}. Ω4 is not identifiable in the limit. To see this, assume
that there is a function L that identifies Ω4. Then, there is a k and n, such that
for all m ≥ n, L(ε|m) = k. Now, if k ∈ {1, 2, 3, . . .}, then L cannot identify the
set N. On the other hand, if k = 0 then L cannot identify Smax(set(ε|n)). So, we
get a contradiction, L cannot identify Ω4.
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Another epistemically plausible way to learn is by the elimination of hypothe-
ses that are implausible, e.g. hypotheses that are inconsistent with the incoming
data. This paradigm is formalized in the framework of learning by erasing.

Definition 5.10 (Function stabilization). In learning by erasing we say that a
function stabilizes to number k on environment ε iff for co-finitely many n ∈ N:
k = min{N− {L(ε|1), . . . , L(ε|n)}}.

Definition 5.11 (Learning by erasing [115]). A learning function L:

1. learns Si ∈ Ω by erasing on ε iff L stabilizes to i on ε;

2. learns Si ∈ Ω by erasing iff it learns by erasing Si from every ε for Si;

3. learns Ω by erasing iff it learns by erasing every Si ∈ Ω.

4. Ω is learnable by erasing iff some learning function learns Ω by erasing.

It is easy to observe that in this setting learnability heavily depends on the
chosen enumeration of languages, since the positive conjecture of the learning
function is interpreted as the minimal one that has not been eliminated yet.

Now that the important notions behind the approaches of formal learning the-
ory to inductive reasoning have been clarified, let us move to our logical approach.

5.3 Modal logics of belief change

Our logical approach to inductive learning will really be living at the interface
of temporal and dynamic logics of belief change we have encountered in the first
chapters, so we only need a few new ideas and concepts before we can start
presenting its details.

5.3.1 Temporal models and languages for belief change

The reader will recall that doxastic epistemic temporal logics offer a global view
of the evolution of a multi-agent system as events take place, focusing on the
information that agents possess and what they believe. We gave a few variations
on epistemic temporal models in Section 1.6.2. These variations apply to their
doxastic epistemic cousins in the obvious way. This being said, in this chapter, we
will be interested in logics interpreted on ω-W-doxastic epistemic temporal forests
(cf. Section 1.6.2). Concerning these models we will refer to two assumptions about
doxastic and epistemic agents that we have not considered so far.

Definition 5.12. Let H = 〈W,Σ, H, (∼j)j∈A, V 〉 be an epistemic temporal model.
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Perfect Observation H satisfies perfect observation iff ∀he, h′f ∈ H if Ki[he]
= Kj [h

′f ], then e = f . Perfect observation is satisfied if agents always
know exactly what is happening.

Preference Stability H satisfies preference stability iff ∀he, h′f ∈ H we have
he ≤i h

′f iff h ≤i h
′. It states that agents do not change their mind about

the a priori plausibility of two histories as events take place. Naturally,
it does not mean that the posterior beliefs of the agents might not evolve.
Indeed, beliefs are defined as the most plausible states of an information
partition and the latter might change.

On the language side, the ideas behind the formalisms we will be using are
already familiar to the reader.

A hybrid doxastic epistemic temporal language

We will be using the language HBDET(↓), i.e. the hybrid version of LBDET (that
we introduced in 3.3.2) with binders (cf. Section 1.7). This language will be
interpreted over an ω-W doxastic epistemic temporal model H, an initial state
w, an infinite history wǫ and a finite prefix wh of wǫ together with an assignment
function g : svar → H , mapping state variables to nodes, i.e. state variables will
be true in exactly one node (regardless of the infinite path under consideration).
Explicitly we use the following additional clauses:

H, wǫ, wh, g 
 x iff g(x) = wh
H, wǫ, wh, g 
 ↓x.ϕ iff H, wǫ, wh, g[x := wh] 
 ϕ

And nothing more that the reader has not yet been exposed to on the temporal
side.

5.3.2 The dynamic approach

As for the dynamic doxastic and dynamic epistemic logics perspective that consid-
ers belief change as stepwise operations on models, we will model, as previously,
static doxastic epistemic situations as epistemic plausibility models. As for mod-
eling the doxastic and epistemic update as events take place, we use epistemic
event models (without plausibility orderings). Indeed this restricted perspective
is all we need to capture the setting of finite identifiability. Other notions for
identifiability might call for the richer setting of (epistemic) plausibility event
models, but in this chapter we restrict ourselves to finite identifiability.

The effect of updating an epistemic plausibility model M by an event model
E is computed according to (conservative) product update (Definition 2.17), which
is intuitively a special case of Priority Update, in which the dynamics are purely
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epistemic. Recall that an epistemic plausibility model describes what agents cur-
rently believe and know, while product update creates the new doxastic epistemic
situation after some informational event has taken place.

Recall that a protocol P maps states in an epistemic plausibility model to
sets of finite sequences of pointed event models closed under taking prefixes.
This defines the admissible runs of some informational process. We let E be
the class of all pointed epistemic (plausibility) event models. Let Prot(E) =
{P ⊆ (E∗ ∪ Eω) | P is closed under non-empty finite prefixes} be the co-domain
of protocols, it is the class of all sets of sequences (infinite and finite) of pointed
epistemic (plausibility) event models closed under taking finite prefixes.

Definition 5.13. Let us take an epistemic plausibility model M, and let |M| be
the domain of M. A local protocol for M is a function P : |M| → Prot(E).

To refer to a doxastic epistemic model corresponding to the doxastic situation
of the agent after she has received some information (e.g. after some positive
enumeration of a language has started), we use the concept of a P, ǫ|n-generated
epistemic model.

Definition 5.14. A P, ǫ|n-generated epistemic model MP,ǫ|n is defined induc-
tively in the following way: MP,ǫ|0 = M; MP,ǫ|n+1 = 〈|MP,ǫ|n+1|,∼P,ǫ|n+1, VP,ǫ|n+1〉,
where:

1. |MP,ǫ|n+1| := {sǫ|n+ 1 | sǫ|n ∈ MP,ǫ|n and ǫ|n + 1 ∈ P (s)};

2. ∼P,ǫ|n+1 := ∼P,ǫ|n ∩ (|MP,ǫ|n+1| × |MP,ǫ|n+1|);

3. For every p ∈ prop, VP,ǫ|n+1(p) := VP,ǫ|n(p) ∩ |MP,ǫ|n+1|.

The connection between the two approaches has been discussed in depth in
the two first chapters, so we simply state a definition we have not formally en-
countered so far (though the idea may now be fairly natural for the reader).

5.3.3 Connecting the temporal and the dynamic approach

In Section 2.5 we gave the formal definitions of the doxastic forest generated via
a sequence of priority updates. In the particular case where we consider only
epistemic update of epistemic plausibility models, the DETL forest generated can
be obtained as follows:

Definition 5.15 (DETL forest generated by a state-dependent DEL-protocol).
Each initial epistemic plausibility model M = 〈W, (∼M

i )i∈A, (≤
M
i )i∈A, V

M〉 and
each local protocol P yields a generated DETL forest For(M, P ) of the form:
H = 〈WH,Σ, H, (∼i)i∈A, (≤i)i∈A, V 〉, as follows:

1. WH = |M|, Σ =
⋃

w∈W

⋃

n∈N
P (w)(n),
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2. H is defined inductively as follows: H1 = WH;

• Hn+1 := {(we1 . . . en+1) |(we1 . . . en) ∈ Hn;
M⊗ǫ1⊗ . . .⊗ǫn, (w, e1, . . . , en) 
 pren(en+1) and e1 . . . en+1 ∈ P (w)};

• H =
⋃

1≤k<ωHk.

3. If h, h′ ∈WH, then h ∼i h
′ iff h ∼M

i h′;

4. For 1 < k ≤ m, he ∼i h
′e′ iff he, h′e′ ∈ Hk, h ∼i h

′, e and e′ are events
from the same event model and e ∼i e

′ in their event model;

5. For 1 < k ≤ m, he ≤i h
′e′ iff he, h′e′ ∈ Hk and h ≤i h

′;

6. Finally, wh ∈ V (p) iff w ∈ VM(p).

It is easy to obtain a representation result for this type of generated forest as
a corollary of Benthem et al. [36]’s Theorem 2.3 introduced in Section 2.2. To do
so, it is sufficient to require that the corresponding doxastic epistemic temporal
frames satisfy Preference Stability.

Corollary 5.16. Let H be an arbitrary epistemic-temporal DETL model. The
following two assertions are equivalent:

• H is isomorphic to the DETL forest generated by the sequential product up-
date of some epistemic plausibility model according to some state-dependent
DEL-protocol P

• H satisfies Propositional Stability, Synchronicity, Bisimulation Invariance,
Perfect Recall, Uniform No Miracles and Preference Stability.

This concludes this refresher and the exposition of the few ideas we didn’t
yet encounter at this stage. Let us now move to our logical analysis of inductive
learning.

5.4 Analyzing learnability in a DETL framework

This section gives the first results bridging learning theory and dynamic epistemic
temporal logics. We prove that the problem of checking whether a class of sets is
finitely identifiable can be reduced to the model-checking problem of HBDET(↓)
on doxastic epistemic temporal forests. To start with, we show how learning
situations can be encoded by an epistemic plausibility model and a local protocol.
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5.4.1 Protocols that correspond to set learning

As we have seen learning scenarios involve a single learner so we take, A = {L}
and write ∼ instead of ∼L. Given a class of languages Ω = {S1, . . . , Si . . .} we
define out initial epistemic model as follows:

Definition 5.17 (Initial epistemic model). Our initial epistemic model MΩ is a
triple: 〈WΩ,∼Ω, VΩ〉, where WΩ = Ω, ∼Ω = WΩ×WΩ. The valuation is irrelevant.

In words, we identify states of the model with sets, we also assume that our
agent does not have any particular initial information.

Definition 5.18 (Single event model). For each e ∈ U , we have a corresponding
event model E = 〈{e},∼E , preE〉 where ∼E= {(e, e)} and preE(e) = ⊤.

In words we assume that the agent knows exactly what event is happening
(what element is being enumerated), i.e. she is a perfect observer. We now get to
the interesting part of the construction.

Given a set Si, we can transform it into a set of events, we write E(Si) =
{(E , e) | e ∈ Si}. We trivialize the role of preconditions; the admissible sequences
of events are defined by means of protocols.

We now define local protocols. Intuitively, given a state Si ∈WΩ, our protocol
PΩ should authorize at Si any ω-sequence that enumerates Si and nothing more.

Definition 5.19 (Local protocol). For every Si ∈ WΩ, PΩ(Si) is the smallest
subset of (E(U))∗ ∪ (E(U))ω that contains {f : ω → E(Si) | f is surjective}, and
that is closed under non-empty finite prefixes.

We have now identified the natural image of a learning situation within the
structures living at the interface of temporal models and dynamic models of belief
change. We now get to the logical analysis of finite identifiability.

5.4.2 DETL characterization of finite identifiability

We start by defining a DETL version of the notion of belief stabilization (resp.
knowledge stabilization) to a certain hypothesis.

Definition 5.20. An agent j’s belief (resp. knowledge) about the initial state
stabilizes to w on the history vǫ iff there is a finite prefix e∗ < ǫ such that for
any finite sequence e′ such that e∗ ⊑ e′ < ǫ and for all histories sh such that
sh ∈ Bj [ve

′] we have s = w (resp. for Kj[ve
′]).

We can now show that checking whether an agent can reliably converge on
some language within a class of languages after a finite number of steps of enu-
meration of positive data from this language (and so for all languages of that
class), can be reduced to model-checking a formula of HBDET(↓) in the forest
generated from the preceding epistemic model by product updating it according
to the preceding protocol.
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Proposition 5.21. The following are equivalent:

1. Ω is finitely identifiable.

2. In the generated forest For(MΩ, PΩ), for all Si ∈ WΩ and ǫ ∈ PΩ(Si) the
learner’s knowledge about the initial state stabilizes to Si on Siǫ.

3. For(MΩ, PΩ) 
 A(¬©−1⊤ → ↓x.∀F KH(¬©−1⊤ → x)).

Proof. (1 ⇒ 2) We prove the contrapositive. Assume that there is a state Si ∈ WΩ

and ω-sequence ǫ ∈ PΩ(Si) such that the agent’s knowledge does not stabilize to
Si on ǫ. There are two cases.

1. The learner stabilizes to another state, but then by construction of PΩ(Si)
and the definition of a generated DEL-forest for every finite prefix h < ǫ,
Sih ∈ K[Sih]. Contradiction. So we are in the other case.

2. After each finite prefix h < ǫ, there is at least one state different from
Si that remains epistemically possible. Since a DEL-generated ETL forest
satisfies perfect recall (Theorem 2.3), it follows that there is some state
Si 6= Sj that remains epistemically possible after each finite prefix h < ǫ.
But by construction of PΩ(Si) this is only possible if Si ⊂ Sj . Every finite
subset of Si is a subset of Sj , and therefore Si ∈ Ω does not have a finite
definite tell-tale set. Therefore, from Theorem 7 in [123], Ω is not finitely
identifiable.

(2 ⇒ 3) We prove the contrapositive. Assume that For(MΩ, PΩ) 6
 A(¬©−1⊤
→ ↓x.∀FKH(¬©−1⊤ → x) ). This means that some history satisfies ¬©−1⊤,
i.e., there is some initial state in w ∈ WΩ, such that for some ǫ ∈ PΩ(w) and
for every finite prefix h < ǫ we have For(MΩ, PΩ)w,wǫ, wh, g[g(x) := w] 6

KH(¬©−1⊤ → x)). By the truth conditions of K and H(¬©−1⊤ → x)),
there is some history vh′ ∈ K[wh] with v 6= w. But this means that Learner’s
knowledge does not stabilize to w on wǫ in For(MΩ, PΩ). Contradiction.

(3 ⇒ 1) By the semantics of A(¬©−1⊤ → we know that in every initial state
Si ∈ WΩ: Si 
 ↓x.∀FKH(¬©−1⊤ → x) (1). Now assume for a contradiction
that there is some Si that is not finitely identifiable in Ω. It follows that there
is some enumeration ǫ∗ of the set such that after any finite prefix of ǫ∗, there is
another set Sj that the agent has not excluded (2).

But by (1) we can label Si by x and for any sequence of events ǫ, there will
be a finite prefix ǫ|m at which Siǫ|m, ǫ, g[x := Si] 
 KH(¬©−1⊤ → x) (3). By
construction of PΩ we have a finite prefix ǫ∗|n such that Siǫ

∗|n, ǫ∗, g[x := Si] 


KH(¬©−1⊤ → x) (4). But then the agent knows that the initial state was
g(x) = Si and thus has excluded any other initial state, contradicting (2). qed

The (1-3) equivalence shows that we can characterize finite identifiability by
the (local or) global satisfaction of a formula from the hybrid doxastic epistemic
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temporal language HBDET(↓). This is the part that shows that the problem of
checking whether a class of sets is finitely identifiable can be reduced to the
model-checking problem of HBDET(↓) on doxastic epistemic temporal forests. (1-
2) equivalence indicates that we can abstract away from forests that are actually
generated from learning situations and reason directly about DETL models. This
is what we do in the next section.

5.4.3 Characterizing protocols that guarantee learnability

Indeed, recall the condition from Proposition 5.21:

In the generated forest For(MΩ, PΩ), Si ∈ WΩ and ǫ ∈ PΩ(Si) the
learner’s knowledge about the initial state stabilizes to Si on Siǫ.

We can abstract away from this condition to define a structural property that
can be (or fail to be) satisfied by a given DETL frame. We start by generalizing
finite identifiability.

Definition 5.22. A DETL frame F (H) = 〈W,Σ, H,≤L,∼L〉 satisfies finite iden-
tification (FIN) iff for all s ∈ W and sǫ ∈ P (s) Learner’s knowledge about the
initial state stabilizes to s on sǫ.

We now define what it means for a DETL frame to satisfy the ‘learning by
erasing property’.

Definition 5.23. A DETL frame F (H) = 〈W,Σ, H,≤L,∼L〉 satisfies learning
by erasing (ERASE) iff for all s ∈ W and h = sǫ ∈ P (s) Learner’s belief about
the initial state stabilizes to s on sǫ.

We can now prove representation theorems that characterize classes of DETL
frames in which learnability is guaranteed in terms of properties of the protocol
the DETL model is based on. We start by giving two results about finite iden-
tification and then say a few words about a DETL counterpart of an important
result of formal learning theory: Angluin’s Theorem.

Proposition 5.24. A synchronous, perfect recall, perfect observation DETL model
〈W,Σ, H,∼,≤, V 〉 satisfies finite identifiability whenever for each w ∈W and his-
tory wh ∈ H ∩Σω, there is some natural number n ∈ ω such that for every v 6= w
such that v ∈W and for every vh′ ∈ H ∩ Σω we have (h|n) 6= (h′|n).

Proof. Take an arbitrary w. By assumption there is some n ∈ ω such that for
every v 6= w such that v ∈W and for every vh′ ∈ H ∩Σω we have (h|n) 6= (h′|n).
We prove that w(h|n) 6∼ v(h′|n) by induction. Indeed assume that they are in
the same information partition. Then by perfect observation the last events were
the same. But by perfect recall we also have that the nodes right before were
also in the same information partition so we can iterate this argument and apply
perfect observation all the way down, proving that (h|n) 6= (h′|n). qed
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The next result corresponds to the finite identifiability characterization [123].

Proposition 5.25. A permutation closed, synchronous, perfect recall, perfect
observation DETL model 〈W,Σ, H,∼,≤, V 〉 based on a finite state space satisfies
finite identifiability whenever for all w ∈W there is an event a ∈ E(w) such that
for all v ∈ W if v 6= w, then a 6∈ E(v).

Sketch. Take an arbitrary w ∈ W . By hypothesis there is an event a ∈ E such
that for each v 6= w we have a /∈ E(v). By permutation closure a is included in
every ǫ ∈ P (w). But, by the definition of P we know that in every ǫ ∈ P (w)
the event a occurs at some finite stage. Take an arbitrary ǫ ∈ P (w). For some
n ∈ ω, we have ǫn = a. Now assume for a contradiction that at stage n + 1
some state v 6= w is still considered possible. But then it means that a ∈ E(v).
Contradiction. qed

We now turn to a DETL counterpart to a crucial result in learning theory:
Angluin’s theorem, that characterizes classes of sets that are identifiable in the
limit.

Theorem 5.26 (Angluin [5]). A class of sets Ω is identifiable in the limit iff for
all S ∈ Ω there is a finite DS ⊆ S such that for all S ′ ∈ Ω, if S 6= S ′ and DS ∈ S ′,
then S ′ 6⊆ S.

The next result is proved in Dégremont and Gierasimczuk [61] using once
more the concept of a DEL-generated forest. Before we state the result, referring
to [61] for the proof, let us introduce the following definitions:

Set-driven A local protocol P for M is set-driven iff ∀w∃Sw ⊆ N such that
∀ε ∈ P (w) set(ε) = Sw.

A-condition for protocols A local protocol P satisfies the A-condition iff
∀w∃e ∈ P (w) ∩ Σ∗∀w 6= v(e ∈ P (v) =⇒ P (v) 6⊂ P (w)).

Finite identifiability of incomparable sets A local protocol P satisfies the
condition of finite identifiability of incomparable sets iff states whose image
under P are ⊆-incomparable constitute finitely identifiable classes.

Let us assume that a local protocol P satisfies finite identifiability of the
incomparable. Dégremont and Gierasimczuk [61] show the following equivalence.

Theorem 5.27 (Dégremont and Gierasimczuk [61]). A state space W together
with a set-driven local protocol P satisfies the A-condition iff there is a preference
ordering ≤ on W and an epistemic plausibility frame M = (W,∼,≤), where
∼= W ×W such that
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(#) for all w ∈W and for all ε ∈ P (w) there is some n ∈ ω such that for every
m > n, w ∈ |Mε|m| and w is the ≤-minimum of |Mε|m| in the generated
doxastic model Mε|m.

This concludes our considerations on representations of DETL learnability
properties in terms of properties of protocols. Before we conclude we would like
to make a few observations about the possibility and interest of extending single-
agent learning to multi-agent learning.

5.5 About multi-agent (interactive) learning

Clearly, learning is usually a multi-agent process. What changes if more agents
are learning at the same time and are allowed to communicate? We start with an
intuitive conjecture. Take a learning situation in which all agents have the same
initial information and they are all perfect observers, i.e. there is no uncertainty
for them as to which event is actually taking place. Now consider an arbitrary
agent i: i will learn in the same way whether or not she can communicate with
the other agents. So multi-agent learning is more interesting if one considers
cases in which agents have imperfect observational power, i.e. if they might be
uncertain about what Nature is “saying”. So moving to the multi-agent case
will be interesting if we drop the assumption that agents know exactly to what
corresponds the signal they are observing. This would be equivalent to treating
enumeration not as directly communicating positive information but as sending
signals whose interpretation is not immediately transparent to the agents.

If we restrict the nature of this communication there are still cases in which
learners are not affected by the presence of other learners. Indeed if agents have
the same observational powers, whether or not we allow the learners to (truth-
fully) announce their current conjecture before each new item is enumerated, they
will converge to the same hypothesis. Here is a modeling of this idea of ‘conjec-
ture announcement’, that is slightly more abstract than in the previous chapter
by seeing it as a particular event !B having a special clause in the product update
rule.

Definition 5.28 (Product Updating by !B). The product update of an epistemic
model M = 〈W, (∼i)i∈N , V 〉 by !B is the model M⊗!B with domain W × {!B}
and whose epistemic relations are defined as:

(w, !B) ∼′
i (w′, !B) iff ∀j ∈ N Bj [w] = Bj [w

′], w ∼i w
′

and whose valuation is defined by

(w, !B) ∈ V (p) iff w ∈ V (p)
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Given a protocol P we refer to P !B as the result of interlacing belief announce-
ment with each step of the inductive enumeration. We can now formally prove
what we were claiming, namely that, with the same initial information and the
same observational powers, considering the multi-agent dimension is irrelevant.

Theorem 5.29. Let M be some epistemic plausibility model in which the agents
have the same background information and let P be a protocol for M in which
agents have the same observational powers. For each agent j ∈ N , states w in
|M| and environment ǫ ∈ P (w), j’s belief stabilizes to v ∈ |M| on wǫ in the forest
generated by M and P (without announcement of conjectures) iff it stabilizes to
v ∈ |M| on w(ǫ)!B in the forest generated by M and P !B (with announcement of
conjectures).

Proof. We prove this result in Appendix E. qed

Implicit assumptions about agents are naturally at work in the previous the-
orem due to the fact that we assume that the learning situation and learners’
types were encoded within a DEL-type framework. Therefore by Theorem 2.3,
we know that Theorem 5.29 tells us that if we are assuming our agents to satisfy
Perfect Recall and Uniform No Miracles, then identical observational powers and
initial information makes communication of conjectures redundant.

This absence of importance that learners assign to other beliefs is intuitively
easy to understand: since they share the same information at every step of the
process, differences of beliefs are only due to differences in prior and what agents
announce is already expected by the agents. The preceding theorem is quite
tight in the sense that Uniform No Miracles is the only assumption that can be
weakened. The usual Muddy Children scenario (see e.g. [37, 67]) is an example
where communication of beliefs does make a difference, when agents either don’t
have the same initial information or don’t have the same observational capacities.
For Perfect Recall the idea is that if an agent has only bounded memory, she
might benefit from communicating with agents who have unbounded memory
(and might remind her of what she forgets).

But from the previous chapter we have learned that agents might actually
reach agreements. Indeed from Corollary 4.29 we can conclude that if agents
have the same prior plausibility ordering and this prior plausibility ordering is
well-founded, then they will eventually reach agreement — provided events (cor-
responding to the enumeration) map epistemic models to epistemic models. In
particular if the uncertainty of agents about each other’s observational capacities
can be modeled by an epistemic event model, thus assuming that agents do not
change the relative plausibility ordering of possible hypotheses, then we get the
following:

Proposition 5.30. Let M be some epistemic plausibility model in which the
agents have the same well-founded prior and a protocol P for M in which agents
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have observational powers encoded by epistemic event models. If agents are al-
lowed to keep publicly communicating their conjectures between each step until
they possibly reach agreement, then they will eventually (possibly after transfinitely
many steps between each new element enumerated) stabilize all to the same con-
jecture if they converge at all.

Proof. The idea of the proof is simple. Since product-updating an epistemic
plausibility model by an epistemic event model keeps the relative ordering of con-
jectures unchanged, it also remains well-founded and remains the same between
agents. Now by Corollary 4.29 we know that agents having the same well-founded
prior announcing their beliefs will eventually reach agreement. It follows that af-
ter each new enumerated element (after each new signal sent) they will eventually
re-reach agreement. So if one of them converges, they will all converge. qed

So assuming that agents are conservative with respect to the initial ordering of
the possible hypotheses, and they have the same well-founded prior ordering, then
communication of conjectures guarantees that agreement will be maintained and
thus that if agents converge at all, they will all converge to the same conjecture.

From where we stand future work includes extending our approach to other
types of identification, e.g., identification of functions (which generalizes the pre-
ceding setting in which sets are identified) or learning from both positive and
negative information (rather than only positive information in the previous set-
ting). Another line is to study the effects of different restrictions on protocols on
identifiability. And similarly for various constraints on learning functions (e.g.
consistency, conservatism or set-drivenness), comparing them to those of epis-
temic and doxastic agents in the DETL framework. Finally our modal charac-
terization of finite identifiability carries with it a modal concept of ‘stable belief’
that can be extracted and studied for itself. In fact each notion of identifiability
carries implicitly a notion of stable belief whose logic it would be interesting to
axiomatize.

5.6 Conclusions and perspectives

We brought a logical perspective to inductive reasoning, studying identifiability
in scenarios of set learning, at the interface of temporal and dynamic logics of
belief change. We did so from both a more syntactic and a purely structural
point of view. Finally we made a few observations about multi-agent (interactive)
learning.

Major sources. The starting point of this chapter is the existing work on the
connection between learning theory and dynamic epistemic logic by Gierasimczuk,
notably [85]. For the set learning setting the source is Gold [87] and for the
concepts of identifiability we discuss they are Gold [87], Mukouchi [123], Lange
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et al. [115]. Sources of the logical framework are the ones mentioned in the
first two chapters, in particular van Benthem et al. [36], and these first chapters
themselves.

Our main results. This chapter has shown that the problem of finite identifia-
bility of a class of sets can be reduced to the model checking problem of a hybrid
branching-time epistemic temporal logic over DETL frames. First we have seen
that the setting of a learning scenario could be represented in a DEL setting with
protocols, and then we identified a formula that corresponds to finite identifia-
bility. Abstracting on the notion of stabilization of belief (or knowledge) at work
in this first result, we have defined an abstract concept of learnability for DETL
frames and have given two representation theorems for such abstract conditions
in terms of properties of the underlying protocol of the DETL frame. Finally
we made a few observations about the extension of learning to multi-agent inter-
active scenarios in a more general setting where learners are not assumed to be
perfect observers.

The next step. This concludes our logical study of inductive reasoning from
the perspective given by the interface between temporal and dynamic doxastic
logics, developing the connection of the latter with formal learning theory. After
interactive reasoning and inductive reasoning, we would like to make a few points
on how strategic reasoning in the context of extensive games can be analyzed
from the perspective of modal logics of belief change.



Chapter 6

Strategic reasoning1

We applied the logical framework for belief change developed in Chapter 2 and
3 to the analysis of interactive reasoning (Chapter 4) and of inductive learning
(Chapter 5). In this chapter we bring temporal doxastic and dynamic doxastic
logics to the study of strategic reasoning in the context of extensive form games of
imperfect and perfect information. We focus mainly on a more temporal approach
before more briefly discussing a more dynamic approach. But in both cases the
formal systems live at the edge of these two perspectives, taking features from
both of them.

6.1 Introduction

In this chapter we raise the question of the logical modeling of agents’ knowledge
and belief in extensive games of imperfect information. The interactive dimension
of these beliefs is of crucial importance in the context of strategic interaction, but
we have already discussed important features of interactive reasoning. Instead
we focus on another important aspect of these beliefs: they are not only past-
oriented beliefs but future-oriented beliefs or expectations, namely expectations
about what other agents are likely to do at later information sets. Moreover we
are interested in how agents modify their beliefs and their representation of the
game as they reason about it, or as the game unfolds and players take actions.

Structure of this chapter. We start by drawing a line between notions that
belong to the temporal and informational structure of the game and the ones that
belong to particular ways of playing it such as beliefs and strategies. We then
distinguish between an approach based on the temporal structure of the game
and an approach that uses epistemic plausibility models of games and captures
the evolution of the game by means of dynamic operations. We also give two
working examples (Section 6.2). We look at how concretely to represent as an

1This chapter builds on ideas from Dégremont and Zvesper [65].
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ETL model the informational process of an extensive game with imperfect infor-
mation and perfect recall (Section 6.3.1) and define a matching logic of programs
with epistemic features to reason about the game structure (Section 6.3.2). We
continue by exploring how solution algorithms for extensive games of imperfect
information can be accounted for as model-changing operations representing the
strategic reasoning carried out by the agents, and we extract the matching notion
of rationality implicitly at work in these algorithms (Section 6.4). We then turn
to doxastic languages. We first give a partial DETL perspective on an abstract
notion of equilibrium using past-oriented beliefs (Section 6.5) and then turn to
modeling expectations or future-oriented beliefs in imperfect information con-
texts, discussing assumptions and properties one could require them to fulfill and
their matching syntax (Section 6.6). We then move on and put the first stone for
an application of our earlier protocol-based dynamic approach to a classical case:
the analysis of the role of belief change in the epistemic foundations of backward
induction (Section 6.7). We conclude in Section 6.8.

A terminological remark: we use ‘agents’ and ‘players’ to mean the same thing.

6.2 Game structure and actual play

In the usual game-theoretical perspective two dimensions are important to dis-
tinguish: the description of the game and how it can be played.

The game structure encodes the protocol of the interactive situation: what
players can do (the action structure of the game), what are the preferences of the
players about the possible outcomes about the game (the payoff structure of the
game) and what the players would know about the sequence of actions taken so
far by the other players when making their decision. The game structure is a full
specification of an abstract representation of an interactive, strategic decision-
making problem.

But as such the game structure does not yet explain a class of observed be-
haviors, i.e. how real agents actually play these games, if one is concerned with
a descriptive approach [54]. Nor does it determine the reasonable ways of ac-
tually playing these games, i.e. how idealized agents would play them, if one is
concerned with an analytical approach [127, 124]. (We could have said “how
idealized agents should play them”, since how an idealized agent would behave
is sometimes not clear and might be disputed.) Before explaining or determining
as reasonable (or unreasonable) particular ways of playing a game (henceforth
plays), let us say that a play includes a specification of the beliefs and strategies
of the players. In this chapter a strategy for an agent i will be a function assigning
to each of her information cells one of her available actions (intuitively the action
she would take, were she to actually reach that information cell). This being said,
considering the two interpretations of game theory mentioned in Section 1.5.1,
beliefs might have one of two different status. Under the evolutive interpretation
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they are taken to be arising from experience of past play and the main issue is
to determine which profiles of strategies and beliefs are in a stable state (equi-
librium analysis). Under the epistemic interpretation one is usually interested in
assumptions about the players’ beliefs (such as assuming that the players believe
in each other’s rationality) and the properties the actual play or the actual profile
of strategies will satisfy given that agents’ beliefs satisfy these properties. Still
from a logical point of view they can be tackled in similar ways.

In general one will be interested in modeling three things from a logical per-
spective: the game structure, the beliefs and strategies of the agents, and how
these beliefs and strategies might evolve as they receive new information from the
environment (such as observing an action from another agent) or reason about
the interactive situation. Analyzing strategic reasoning from a logical perspective,
we encounter a wide range of notions and ideas that constitute building blocks
of a study of strategic reasoning processes — i.e. how we reason about what the
other agents might have done so far, about what they will do next and what they
would themselves believe about the other agents’ beliefs and strategies. All these
notions call for specific logical developments, each of which brings a challenge of
its own.

On the model-theoretic side, a few options are available and have been con-
sidered in the logical literature concerned with strategic reasoning. They can be
divided in two main lines:

• Having the game structure itself or some richer temporal structure as the
basis for our models (Section 6.3);

• Working with epistemic plausibility models and taking information, includ-
ing moves (actual decisions), to be interpreted as model-changing operation
(Section 6.8).

But we immediately stress that the division between the two approaches is not
clear-cut. In the analysis of strategic reasoning they each benefit from importing
features from the other. In each case we will be interested to see ‘how much’
strategic reasoning can be logically analyzed in these frameworks and what lan-
guages are required to do so.

It will be useful in this respect to have two concrete examples of games. They
can both be represented as extensive games of imperfect information, but they are
more precisely described as a BoS game (Example 6.1) and as a signaling game
(Example 6.2). Note that in our examples numerical payoffs are just a convenient
way to encode the preference orderings of the agents.

Example 6.1 (Bartók or Strauss). This example is a qualitative version of the
extensive form BoS game. 1 and 2 have only enough money to buy one more
opera ticket this season. But they have different preferences. 1 would prefer to
see Bartók’s Bluebeard’s Castle and 2 would rather see Strauss’ Salomé. However
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they prefer to attend together the opera they like less rather than going alone. 2
was on his way to buy his ticket from the box office when his mobile ran out of
batteries. Seats are being reserved very quickly, so the protocol is that 1 should
buy her ticket online. She will get to choose first (Bartók or Strauss) and when 2
gets to the box office, he will also choose (Bartók or Strauss), knowing that 1 has
reached a decision but not knowing which one.

0, 0

B

B B

S

S S

2, 1 1, 20, 0

Figure 6.1: Bartók or Strauss in extensive form.

Example 6.2 (Education as Signaling). This example is a qualitative version
of Spence [145]’s modeling of education (in its relation to the labor market, and
more precisely to being hired and hiring) as a signaling game. (More precisely it
is a qualitative version of the setting used in Brandts and Holt [52].)

An individual W (worker) has a type L or H (representing her skills, in-
telligence or taste for hard work) that might be either Low or High. Only she
knows it. She will get to choose whether to invest (I) in or skip (S) college
education. Observing the decision W has made (I or S) but not her type, an em-
ployer E will decide whether to assign W to a challenging (C) or dull (D) job.
Type L agents would prefer to skip college, but would still prefer going to col-
lege and getting a C job rather than skipping it and getting the D job. In short:
(C, S) >L (C, I) >L (D,S) >L (D, I). An agent of type H is firstly concerned
about getting a C job, but given a type of job, she prefers to have received col-
lege eductation: (C, I) >L (C, S) >L (D, I) >L (D,S). The employer’s unique
concern is to match L-type workers with D(ull)-jobs and H-type workers with
C(hallenging)-jobs. (See Figure 6.2.)

Let us now see how to represent such games as models on which we will be
able to interpret the doxastic temporal and dynamic doxastic logics we have met
earlier as well as new interesting members of this family.
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Figure 6.2: Modeling education as a signaling game.

6.3 Using the game structure as a model

It is tempting to have the game structure itself as the base of our doxastic epis-
temic temporal models. Indeed extensive games of perfect information are really
process models [26, 46]. And extensive games of imperfect information are really
process models with an uncertainty relation (van der Hoek and Pauly [105]): the
process and informational structure of the extensive form game (with imperfect
information) gives the temporal and epistemic part of our DETL models. By
adding plausibility relations one can furthermore encode to some extent the be-
liefs of the agents. But both knowledge and beliefs will be past-oriented, beliefs
and knowledge about what has happened so far.

We start by showing concretely how to encode a finite extensive form game
into an epistemic temporal model. The details of the encoding are different from
but related to the representation used in van der Hoek and Pauly [105]. We then
consider different notions of belief that are relevant for players’ strategic reasoning
in extensive games with imperfect information, illustrating how they correspond
to different belief operators in some modal logical languages.

6.3.1 Extensive games of imperfect information as epis-
temic temporal models

At a first glance, it might seem straightforward to transform an extensive game
of imperfect information into an ETL model. But, in the general case, i.e. for an
arbitrary extensive game of imperfect information, it is not possible to complete
its information structure in a way that preserves certain natural consistency and
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memory conditions (for such conditions read further, and for such impossibility
results using similar assumptions see Quesada [135] and also Battigalli and Bo-
nanno [23], Bonanno [45]). As a consequence there is sometimes no satisfactory
way to construct an ETL model from a game. Therefore we restrict our attention
to finite von Neumann games.

Definition 6.3 (von Neumann games, Battigalli and Bonanno [23]). An extensive
game with imperfect information is a von Neumann game if, whenever two nodes
belong to the same information set, these two nodes have the same number of
predecessors.

To encode the structure of an extensive game with imperfect information (cf.
Definition 1.23) into an epistemic temporal model we proceed as follows.

Definition 6.4 (ETL model generated from an extensive game form with imper-
fect information and perfect recall).

Defining the set of events. We define our set of events Σ to be Act×N , i.e.
pairs of the form (a, i), whose intuitive sense is that player i takes action a.

Defining the set of histories. Since by definition of extensive-form games the
edges going from a given node to its successors are labelled with unique actions,
every sequence of actions can be mapped to at most one node in the extensive form
games. We can recursively define the set H of histories together with a mapping
from H to T as follows.

We let H0 := {ǫ}, where ǫ is the empty sequence and define f(ǫ) := t0 where
t0 is the root of the extensive-form game. Now assume that h ∈ Hn, ha 6∈ Hn and
that f(h) = t, ρ(t) = i, t < s and A(t, s) = a; we define Hn+1 := Hn ∪ {ha} and
define f(ha) = s. We then define our set of histories to be H :=

⋃

n∈ωHn.

Defining the uncertainty relation. We can now define the uncertainty re-
lation h ∼0

i h
′ iff f(h) ≡i f(h′). Note that we cannot stop there since ∼0 is not

yet an equivalence relation on H. To make it so, one way to go is to take the
smallest equivalence relation containing ∼0

i still satisfying Perfect Recall (Defini-
tion 2.1), knowledge of one’s turn and of one’s available actions (Definition 6.5)
and memory of one own choices (Definition 6.6). This corresponds to Battigalli
and Bonanno [23]’s notion of maximal information. (Let us remark that for ar-
bitrary extensive games of imperfect information, there might no such equivalence
relation, hence the restriction to von Neumann games.)

Definition 6.5 (Knowledge of one’s turn and of one’s available actions). In the
ETL�z

model of a game, i has knowledge of her turn and available actions iff for
every h, h′ with h ∼i h

′, if ∃h′′ with h′ = h′′(a, i) then ∃h′′′ with h = h′′′(a, i).

Definition 6.6 (Memory of one’s own choices). In the ETL�z

model of a game,
i has memory of her own moves iff, if (h(a, i) ∼i h

′) then ∃h′′ with h′ = h′′(a, i).
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Now to analyze strategic reasoning it will be necessary to reason about what the
agents’ preferences are. The natural extension of ETL models is as follows:

Definition 6.7 (ETL model with terminal preferences). An ETL model with
terminal preferences (ETL�z

) is an ETL model together with a total (preference)
pre-order �z

i on maximal histories.

Given a particular game, the ETL�z

model generated from a game is defined
in the obvious way, by taking the preference relation to be a copy of the total
pre-order given in the game.

Finally one might like to consider an extended preference relation on non-
terminal nodes. We will explain in detail the motivation to do so. But in short,
it allows to work with a local concept of rationality, local in the sense that it
can be defined by a modal formula whose interpretation requires to scan only a
bounded part of the game tree. Also such lifting of preferences from leaves in
the direction of the root is, more or less explicitly, at work in solution algorithms
such as backward induction. We get back to this issue in Section 6.4.

As an illustration, the ETL�z

model generated from the game of example
6.1 (Figure 6.1) is displayed in Figure 6.3, letting the preference relations to be
encoded by a payoff function for easier readability. We leave out the uncertainty
relation between end nodes since it is irrelevant for strategic reasoning.

Now that we have our models let us turn to the matching languages and see
‘how much’ strategic reasoning then can be expressed.

(S, 2)

2, 1 1, 20, 0 0, 0

(B, 1) (S, 1)

(B, 2) (S, 2) (B, 2)

Figure 6.3: Bartók or Strauss in extensive form as ETL�z

model.

6.3.2 Reasoning about games with a logic of programs

We introduce a first language LGDL that can be used to check whether a given
model encodes properly the situations one had in mind or to define classes of
frames corresponding to properties one would expect ETL�z

models of games to
have. This language does not include anything about beliefs. It is maybe best
described as a boolean epistemic language since it does not contain iteration, but
we stick with the process model analogy. Its syntax follows.
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Definition 6.8 (A PDL style language to reason about games). Our language
has a recursively defined set of programs:

α ::= (a, i) | a | i |→| �i | ≻i | ∼i | α ∪ α | α;α | α ∩ α | α−1

To each program corresponds a modality 〈α〉 in the language LGDL:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | Kiϕ | CGϕ

where i ranges over N , G over ℘(N) \ {∅}, and p over proposition letters prop.

The semantics of LGDL is interpreted over nodes h in ETL�z generated from
extensive form games of imperfect information. We start by giving the interpre-
tation of programs:

Definition 6.9 (Interpretation of programs).

R∼i
= ∼i

R�i
= �i

R≻i
= {(h, h′) | (h, h′) ∈�i and (h′, h) 6∈�i}

R(a,i) = {(h, h′) ∈ H ×H | h′ = h(a, i)}
Ra = {(h, h′) ∈ H ×H | h′ = h(a, i) for some i }
Ri = {(h, h′) ∈ H ×H | h′ = h(a, i) for some a }
R→ = {(h, h′) ∈ H ×H | (h, h′) ∈ Ra for some a }
Rα∪β = Rα ∪ Rβ

Rα;β = {(h, h′) ∈ H ×H |∃h ′′ with (h, h′′) ∈ Rα and (h′′, h′) ∈ Rβ

Rα∩β = Rα ∩ Rβ

Rα−1 = {(h, h′) ∈ H ×H | (h′, h) ∈ Rα }

Now that we have given the interpretation of the programs, the interpretation
of our language is given by the two following clauses:

Definition 6.10 (Truth definition). Let Ki[h] = {h′ | h ∼i h
′}.

H, h 
 〈α〉ϕ iff for some h′ with hRαh
′ we have H, h′ 
 ϕ

H, h 
 Kiϕ iff for every h′ with h′ ∈ Ki[h] we have H, h′ 
 ϕ

On the level of pointed models, one can use this language to check the
correctness of the modeling of a given scenario. As an illustration, our first
scenario required, at the beginning of the game, common knowledge between
1 and 2 that whatever opera 1 buys a ticket for, when 2 will take his deci-
sion he won’t know what decision 1 has reached. Using the preceding lan-
guage one can verify that the model is indeed correct. To do so we simply
check that at the empty sequence in the ETL≻ model of Figure 6.3, we have
H, ǫ 
 C{1,2}[B ∪ S]¬(K2〈B

−1〉⊤ ∨ K2〈S
−1〉⊤).
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On the level of frames one can determine syntactic correspondents to certain
assumptions about the game and the agents giving us insight into the logic of
informational flow in games and its specificities. As an example let us look at
the definability of the earlier properties relating to the game-theoretical notion of
perfect recall. The analysis in this section is closely related to the one in Bonanno
[44] which uses a slightly different language and slightly different model-theoretic
primitives. We start with ‘memory of one’s own choices’ (Definition 6.6). But
first, let us recall how the determinacy of actions can be characterized:

Fact 6.11 (Defining determinacy, see e.g. [39]).

The formula 〈a〉p → [a]p characterizes the class of action-deterministic frames.

Now on the class of action-deterministic frames, memory of one’s own choices
can be characterized as follows:

Fact 6.12 (Defining memory of one’s own choices).

On the class of action-deterministic ETL frames, 〈(a, i)−1〉⊤ → Ki〈(a, i)
−1〉⊤

characterizes memory of one’s own choices.

Now if we assume perfect recall (in the sense of Definition 2.1) we can use a
stronger formula, which does not require the converse construct.

Fact 6.13 (Defining memory of one’s own choices on frames with perfect recall).
On the class of action-deterministic ETL frames with perfect recall,

〈(a, i)〉〈∼i〉p → 〈∼i〉〈(a, i)〉p

characterizes memory of one’s own choices.

The same phenomenon can observed for the definability of perfect recall it-
self with respect to the assumption of synchronicity. But, in general, extensive
games with imperfect information and (game-theoretical) perfect recall need not
satisfy synchronicity. So the stronger axiom (〈→〉〈∼i〉p → 〈∼i〉〈→〉p) would
characterize a smaller class of games.

On the technical side, these schemes of axioms are usual suspects in the epis-
temic temporal literature as they can be used to force grid-like structures. This
comes as bad news since the corresponding modal logics are rapidly undecidable
and even non-finitely axiomatizable. In fact it follows from a theorem by Halpern
and Vardi [94] that adding iteration (and test) to LGDL would immediately ex-
clude the possibility of axiomatizing its validities over the class of ETL frames
with perfect recall. For the big picture about such complexity results for epistemic
temporal languages, the reader can check [34].
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6.4 Solution concepts changing the models

But this is not the end of what a non-doxastic language can do. It is indeed
possible to model a bit of strategic reasoning in such structures. The idea is
that the model itself encodes the representation agents have of the interactive
situation. If we’re ready to accept the idea that pre-play reasoning is transparent
in the sense that every agent will reason in the same way and expect everyone
to expect everyone else to reason in the same way, then one can focus on this
common reasoning directly on the level of ETL models.

To do so, van Benthem [31] develops the analogy between a solution concept
and a model-change operation such as public announcement. Indeed eliminat-
ing part of a game as incompatible with a given solution concept is modifying
one’s representation of an interactive situation, and can thus really be seen as
eliminating part of a model that is incompatible with some rationality concept.
The process of applying a solution algorithm such as iterated strict dominance
can really be thought of as the process of assuming that agents will behave in
certain (rational) ways and thus as eliminating the possibilities that the agents
will behave in certain other (irrational) ways. Moreover applying iterated strict
dominance to the game can only be a correct way of simulating agents’ reasoning
on the condition that this process is transparent and commonly ‘known’ to be
performed by all agents.

But now given an epistemic representation of a strategic game in its natural
S5N product form (see [31] for details), it is possible to define a formula ϕ such
that the public announcement of ϕ in the epistemic model of the strategic game
mimics exactly the effect of applying strict dominance once. Intuitively ϕ is the
notion of rationality underlying the concept of iterated strict dominance: a player
won’t select an action that she knows to be strictly dominated. And a public
announcement of rationality eliminates all parts of the (epistemic representation
of the) game that correspond to a play in which at least one agent is doing
something irrational [31].

That the resulting model is still a(n epistemic representation of a) game is
guaranteed by the fact that ‘(the chosen notion of) irrationality is introspective’,
i.e. if at some state i is irrational, then i knows she is irrational. In this way
if a state is eliminated, it is because some agent j would be irrational in the
corresponding play of the game, but then by introspection, the whole information
cell for j (which corresponds to an action for j) will be eliminated. Finally the
idea of a public announcement of rationality might sound counterintuitive, but in
the DEL way of thinking the event that all agents remove all states of the model
that do not satisfy ϕ (‘rationality’) in such a way that this process is transparent
and commonly ‘known’ to all agents, is exactly what a public announcement of
ϕ (‘rationality’) is doing.

But the crucial point is that, as indicated by van Benthem [31], to different
solution concepts will really correspond different notions of rationality. We have
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explained this notion of correspondence between a notion of rationality and a
solution concept on an intuitive level so far. For the case of extensive games,
there is more than one possible way to define the correspondence and we are not
claiming to give the ‘right’ one. Instead we give a relatively general definition,
that needs to parametrized. The parameters will be discussed right after the
definition.

Definition 6.14 (Rationality concept corresponding to an iterative solution con-
cept). Given a class of extensive games (of imperfect information) C: a notion of
rationality ϕ corresponds to an iterative solution concept SOL on C iff for every
game G ∈ C the following sets have the same extension:

1. The set of profiles of pure strategies in SOL(G).

2. The set of profiles of pure strategies that can be defined within the fixed point
of the ETL≻ model of a game generated by G under publicly announcing ϕ
and then closing under preferences.

The first parameter concerns the class of games: usually games of perfect
recall, sometimes of perfect information, sometimes without ties in payoff, to cite
a few. The second parameter is the notion of preference-closure we are using to
lift preferences from terminal nodes towards the root. Another option — which is
a syntactic way to look at preference closure — is to encode the implicit notions
of preference closure within the notions of rationality. But doing so has two
drawbacks. The first is that it tends to obfuscate the underlying local notion
of a ‘rational decision’ by merging it in a single formula together with that of a
notion of temporal coherence of preferences. The second is that it tends to push
definability out of the scope of decidable logics.

This definition and these comments are fairly abstract. It might be useful to
give concrete examples. We start with the case for which things are the clear-
est. We will give a paradigmatic local notion of rationality putting together two
slogans:

Slogan 6.15 (Locality; Blackburn et al. [39]). Modal languages provide an inter-
nal, local perspective on relational structures.

Slogan 6.16 (Rationality; [126]). The action chosen by a decision-maker is at
least as good, according to her preferences, as every other available action.

In fact it is easier to define a notion of ‘irrationality’.

Definition 6.17 (Local irrationality in perfect information situations). We say
that an agent i has just been irrational in a perfect information situation if

H, h 
 〈(i−1; i) ∩≺i〉⊤



142 Chapter 6. Strategic reasoning

This formula says something simple, namely that the agent just did something
such that she could have done something else that would have led her to some
state that she would now prefer to the current state. Our notion of rationality of
i is then just its negation: [(i−1; i)∩ ≺i]⊥.

Interestingly this very simple notion of rationality together with a natural
notion of preference lifting corresponds to backward induction on the class of
extensive games of perfect information without ties in payoff.

Proposition 6.18. On the class of extensive games of perfect information without
ties in payoff, using a natural notion of preference lifting,

∧

i∈N [(i−1; i)∩ ≺i]⊥
corresponds to backward induction.

Sketch. The idea is to show that announcing
∧

i∈N [(i−1; i)∩ ≺i]⊥ and lifting
preferences mimics exactly the backward induction algorithm (BI) on games of
perfect information without ties in payoff. With ties in payoff the two differ, since
the backward induction algorithm will branch, isolating only the subgame perfect
equilibria, while the algorithm corresponding to announcing

∧

i∈N [(i−1; i)∩ ≺i]⊥
will be weaker and accept all the possible profiles of strategies that be defined on
the union of the set of subgame perfect equilibria.

Let us now see that the two algorithms match. Take the first stage, there are
only preference relations on the leaves. So 〈(i−1; i)∩ ≺i〉⊤ (irrationality) can only
hold at one of the leaves. Now BI will start by checking the subgames of size 1
(size is counted from the leaves). If backward induction eliminates a state, then
it is because it would correspond to a suboptimal decision, but then it is easy
to see that 〈(i−1; i)∩ ≺i〉⊤ would hold at the leaf corresponding to that decision,
so, after the announcement, this leaf (and the corresponding action-edge) will be
removed.

Now for stage 2 preferences will only be lifted one level, and what matters
is to check that the notion of preference lifting we are using matches the one at
work in the backward induction algorithm. qed

In the preceding sketch we left the notion of ‘preference lifting’ undefined.
We think of this notion as corresponding to an idea of ‘temporal coherence of
preferences’. Discussing an idea that has repercussions in decision theory and
philosophy of action would require (at least) another chapter. We rather leave it
unanalyzed and focus instead on different (local) notions of rationality.

Still, another strategy is to encode both the temporal coherence of preferences
and the rationality of decision-making in a ‘global’ notion of rationality.

Definition 6.19 (Momentaneous rationality; van Benthem [31]). Momentaneous
rationality (MR) says that at every stage of a branch in the current model, the
player whose turn it is has not selected a move whose available continuations all
end worse for her than all those after some other possible move.



6.4. Solution concepts changing the models 143

This is the road originally followed in van Benthem [31] who proved a similar
correspondence result:

Proposition 6.20 (van Benthem [31]). On the class of extensive games of perfect
information without ties in payoff, MR (without preference lifting) corresponds to
backward induction.

We save the reader from a very intricate characterization of MR in a modal
language using both features of hybrid logics with binders and iteration. It is in-
deed so demanding that it is certainly more naturally characterized as a fragment
of first-order logic with transitive closure.

Let us move to the case of extensive games of imperfect information. This a
place where the distinction between the epistemic and the evolutive interpreta-
tion of games will be useful. Indeed equilibria of games of imperfect information
are generally expressed in terms of mixed strategies and matching probabilis-
tic beliefs. It is not clear to us what would be the natural counterpart of such
strategies in a qualitative setting. But under the epistemic interpretation solution
algorithms are at least as important as equilibrium notions, and it is in our opin-
ion somewhat easier to think of qualitative solution algorithms than qualitative
equilibrium notions for games of imperfect information. In general, a qualitative
theory of strategic decision-making cannot be as fine-grained as a probabilistic
one, but as a consequence eliciting the information basis required in the proba-
bilistic setting assumes much more from the agents. Moreover there are still a few
natural qualitative solution algorithms whose corresponding rationality concepts
can be investigated.

One of the weakest algorithms one can think of is strict dominance applied
directly, backwards on the tree. In words it eliminates actions that an agent would
know to be dominated at her information set. Consider the following notion of
rationality.

¬
∨

a∈AΣ(i)

〈(a, i)−1〉
∨

b∈AΣ(i)

Ki〈((b, i);≻) ∩ (a, i)〉⊤ (RSD(i))

First note that, as one would expect, knowledge now appears in the formula.
Moreover explicit reference to actions appear too, to express the idea of domina-
tion of an action. Finally note that the size of formula will be quadratic in the
number of actions.

In what follows extensive-form strict dominance is a qualitative counterpart to
Pearce [133]’s procedural definition characterization of extensive-form rationaliz-
ability (EFR) referred to, in Battigalli [22], as backward iterated dominance and
for which Battigalli [22] provides an alternative belief-based formulation that he
proves to be equivalent. Intuitively, extensive-form strict dominance is simulated
on the level of the game model by reading, at each stage, the current support off
the current sub-model and similarly for the currently surviving strategies.
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Proposition 6.21. On the class of extensive games of imperfect information
without ties in payoff, using a natural notion of preference lifting,

∧

i∈N (RSD(i))
corresponds to extensive-form strict dominance.

Sketch. The idea of the proof is the same as for Proposition 6.18. qed

Strict dominance will eliminate actions that an agent knows to be dominated
at her information set. But this is as far as it goes. A stronger concept corre-
sponding to a cautious type of decision-making is to use the MinMax approach.
The general idea is simple: choose actions that minimize your maximum possible
loss. But in a strategic context, applying it properly cannot be done by brute
force. Indeed it might conflict with either domination arguments or forward in-
duction arguments.

It would take us out of the scope of this chapter to discuss the design of a
satisfactory algorithm using MinMax for extensive games of imperfect information
in a qualitative setting. But the underlying notion of rationality of the pure
MinMax algorithm is the following:

¬
∨

a∈AΣ(i)

〈(a, i)−1〉
∨

b∈AΣ(i)

(〈(b, i)〉⊤ ∧ 〈∼i; (a, i)〉[(�i; (b, i)
−1) ∩ ((a, i)−1;∼i)]⊥

(6.1)
Similar questions arise for an approach based on weak dominance. But again
the underlying notion of rationality of the pure weak dominance algorithm is the
following:

¬
∨

a∈AΣ(i)

〈(a, i)−1〉
∨

b∈AΣ(i)

((Ki〈((b, i);�) ∩ (a, i)〉⊤) ∧ (〈∼i〉〈((b, i);≻) ∩ (a, i)〉))

(6.2)
A syntactic counterpart to the fact that weak dominance is stronger than strict
dominance, in the sense it will eliminate more strategies, is that

Ki〈((b, i);≻)∩ (a, i)〉⊤ → ((Ki〈((b, i);�)∩ (a, i)〉⊤) ∧ (〈∼i〉〈((b, i);≻)∩ (a, i)〉))

is valid, under the simple assumption that the uncertainty relation is serial, i.e.
that knowledge is always consistent.

6.5 Past-oriented beliefs in equilibrium

So far we have discussed knowledge-based approaches to strategic reasoning.
Other aspects of strategic reasoning involve different notions of beliefs, which
are properties of plays or of an equilibrium, but not given by the structure of the
game. For example we might precisely be interested in checking if certain profiles
of strategies and beliefs are in equilibrium or if they satisfy certain optimality
properties. To do so the first step is to encode the beliefs of the agents. How
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much can be done without drastically transforming the given epistemic temporal
structure?

As the reader might expect, we will first consider moving to doxastic epistemic
temporal models. Doing so allows us, by extending the epistemic temporal model
generated from the game with plausibility relations, to encode past beliefs of
the players, i.e. beliefs about previous actions taken so far. Let us show an
application of this simple DETL perspective by giving a starting point to a logical
characterization of a simple notion of equilibrium. To start with, compare the
following three plays of the game in Example 6.1 (Figures 6.4 to 6.6).

<

(B, 2) (S, 2) (B, 2) (S, 2)

(S, 1)(B, 1)

2, 1 0,0 0, 0 1, 2

Figure 6.4: A first play of the Bartók or Strauss game.

0,0

(B, 2) (S, 2) (B, 2) (S, 2)

(S, 1)(B, 1)

2, 1 0, 0 1, 2

>

Figure 6.5: A second play of the Bartók or Strauss game.

2,1

(B, 2) (S, 2) (B, 2) (S, 2)

(S, 1)(B, 1)

0, 0 1, 2

<

0, 0

Figure 6.6: A third play of the Bartók or Strauss game.

Of these three plays only the third (Figure 6.6) is an equilibrium. The first
play is not an equilibrium because player 2’s decision at his information set is not
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a best response to his beliefs. The second play is not an equilibrium because his
beliefs about 1’s strategy are incorrect. If the game is to be played repeatedly like
this, his beliefs would change. In the third example his beliefs are in equilibrium
with 1’s strategy and his decision is a best response. To complete the equilibrium
analysis we would need to look at things from the perspective of 1 as well, but
let us get come to it. For now we can already extract two important ideas for a
logical characterization. A play is an equilibrium if

• agents’ beliefs are correct and

• if their decisions are best responses to their beliefs.

But for past-beliefs these are notions that can be characterized by natural
DETL formulas, with as usual Pϕ↔ 〈(→−1)∗〉ϕ:

Fact 6.22 (Correctness of past-beliefs). Player i’s past-beliefs are correct through-
out the play h of the game if

H, h 
 P
∧

(a,j)∈Σ

Bi〈(a, j)
−1〉⊤ → 〈(a, j)−1〉⊤

Fact 6.23 (Best response to past-beliefs). Player i’s actions are optimal with
respect to her past beliefs throughout the play h of the game if

H, h 
 P
∧

a∈AΣ(i)

[(a, i)−1]¬Bi

∨

b∈AΣ(i)

〈(b;≻) ∩ (a, i)〉⊤

This gives us a starting point for a logical characterization of equilibrium
notions. To complete the analysis we now need to look at future beliefs. Indeed
our decisions need not only to be best responses to our beliefs about the past but
also to our expectations about what others will do after us.

6.6 Future we can believe in

In the same way that our beliefs about the past can evolve as we observe events,
so can our beliefs about the future, about what will happen next. And these
beliefs about the future (expectations) might need to be revised when they are
defeated by new information.

The information partition encodes what players know about previous actions,
about the play so far. A plausibility ordering selects the most plausible elements
of a cell of information, indicating what are the agents’ beliefs (and conditional
beliefs) about what has happened so far. Without changing radically the underly-
ing model-theoretical representation of the interactive situation, one can consider
richer structures, building on DETL models, on which one can interpret languages
that allow for future beliefs or expectations.
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Before we give the details, we need a bit of notation. Given an ETL model,
let Z be the set of maximal histories and H(h) = { h′ ∈ Z | h ⊑ h′ } be the set
of maximal histories still open at h. (As before h ⊑ h′ means that h is a prefix
of h′). Finally given a set H of histories, we write H(H) :=

⋃

h∈H H(h). We can
now define the notion of expectation function.

Definition 6.24 (Expectation function). The agents’ beliefs about the future
history or expectations will be defined by an expectation function EXi : H → ℘(Z)
such that EXi(h) ⊆ H(Ki[h]).

Intuitively an expectation function selects the histories that i considers to be
the most likely continuations. An ETL model with expectations is then an ETL
model with a profile of expectation functions.

As for assumptions about expectation functions, it seems natural to require
that agents are introspective with respect to their expectations. Formally we
require:

Definition 6.25 (Introspection of expectations). In an ETL model with expec-
tations, an agent i satisfies introspection of expectations iff h ∼i h

′ implies
EXi(h) = EXi(h

′).

In the same way as for ETL models, a DETL model with expectations is
simply a DETL model with a profile of expectation functions. In this context, a
natural consistency property one might require is that expectations are consistent
with (past oriented) beliefs.

Definition 6.26 (Consistency of expectations with beliefs). In DETL model
with expectations, an agent i satisfies consistency of expectations with beliefs iff
EXi(h) ⊆ H(Bi[h]) where as usual Bi[h] = min≤i

(Ki[h]).

The idea is that an agent should expect histories to happen that are compatible
with what she believes the past history to have been so far.

Concerning the logic itself we add a branching-time type operator (in the
sense that it quantifies on future continuations) [gi] for each agent i. [gi]ϕ
means that i expects that ϕ or more precisely that in all the future continuations
that i considers the most likely, ϕ is holds. It has the following branching time
semantics (cf. Section 3.3.2):

H, ǫ, h 
 [gi]ϕ iff ∀ǫ′ ∈ EXi(h) ∀h′ such that h′ ⊑ ǫ′ and h′ ∈ Ki[h]
we have H, ǫ′, h′ 
 ϕ

The two constraints on the relation between expectations and both knowl-
edge and (past-oriented) beliefs that we have been considering have their natural
syntactic correspondents:

[gi]ϕ → Ki[gi]ϕ (6.3)
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In words: if i expects that ϕ, then i knows that she expects that ϕ. And

Bi∀ϕ → [gi]ϕ (6.4)

If i believes that in all possible continuations ϕ holds, then she expects that ϕ.

Note that we cannot require the converse direction, since the whole idea behind
expectations is that they select a subset of all the possible future courses of action
that an agent believes to be still open.

Further constraints include consistency properties in the way expectations
are revised. Such assumptions have been considered in the context of another
approach to expectations in a sequence of papers by Bonanno [41, 42]. We first
sketch out the idea behind this framework and then try to identify what these
constraints would boil down to in the approach we have presented.

6.6.1 Revising expectations

Modeling predictions. Bonanno [41, 42]’s approach is based on prediction
frames which are closely related to extensive games of perfect information and
we will think of them as extending tree-like ETL-frames of perfect information,
i.e. ETL-frames in which for every h and agent i, |Ki[h]| = 1, with a prediction
relation for each agent. Recall that R→ is really the successor relation in the ETL
model. A prediction relation is then a sub-relation Rp of (R→)+, the transitive
closure of R→. As usual R[h] is the image of h under R, i.e. R[h] = {h′ ∈
H | (h, h′) ∈ R}.

Bonanno [42] proposes a principle of minimal revision that implements a con-
servativity rule requiring that if some previous predictions are still compatible
with the actual course of things, then the agent should stick to these predictions,
i.e. she should predict all the continuations that she was previously predicting
that have not been defeated yet (MR1) and only those (MR2). It naturally splits
in two parts. (MR1) is thus a principle of non-contraction:

if h1Rph2 then Rp[h1] ∩ (R→)+[h2] ⊆ Rp[h2] (MR1)

while (MR2) is thus a principle of non-expansion:

if h1Rph2 and Rp[h1]∩ (R→)+[h2] 6= ∅ then Rp[h2] ⊆ Rp[h1]∩ (R→)+[h2] (MR2)

What would be a corresponding property in the expectation framework? In
line with our previous approach, a natural way of generalizing the preceding re-
vision properties to the general ETL case with expectations would be as follows:
if some previous expectations are still compatible with our current beliefs, then
the agent should stick to these expectations, i.e. she should predict all the con-
tinuations that she was previously predicting that are still compatible with her
current beliefs (MER1) and only those (MER2).
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By choosing beliefs over knowledge in the previous definitions we guarantee
that the compatibility of expectations with beliefs (Definition 6.26) has prior-
ity over the conservativity of expectation revision. Formally we have the two
following principles:

if (h1, h2) ∈ (∼i ◦(R→)+) then EXi(h1) ∩H(Bi[h2]) ⊆ EXi(h2) (MER1)

while (MER2) is as expected the corresponding notion of non-expansion:

if (h1, h2) ∈ (∼i ◦(R→)+) and EXi(h1) ∩H(Bi[h2]) 6= ∅

then EXi(h2) ⊆ EXi(h1) ∩H(Bi[h2]) (MER2)

As for their syntactic correspondents, we expect similar properties as the one
found in [42] and leave the question open.

Such a logic of expectations can be put to work to encode beliefs of players
about what other agents are going to do. Using a conditional notion of expec-
tation we think that it is possible to encode beliefs about strategies and also a
corresponding notion of best response, and to complete the previous logical anal-
ysis. But we leave these questions open for now. Before we turn to the other
possible approach, based on epistemic plausibility models and dynamic epistemic
and doxastic logics, we make a remark about another temporal approach.

6.6.2 Enriching the temporal structure

Instead of working with a branching-time language with expectation operators,
it is possible to work with richer process models reducing uncertainty about the
future to uncertainty about the past. This line of work is very much in line with
Harsanyi [98] and with the epistemic game theory literature in the sense that it
steps away from the given structure of the game to work with models of games
in which players’ beliefs and strategies are taken as objects of uncertainty in the
same way that external parameters are in Harsanyi [98]’s analysis of games of in-
complete information. Among the possible logical models, epistemic plausibility
models (and related models) are frequently considered, but richer process models
occupy a natural position on the scale of the possible trade-offs between preser-
vation of a natural temporal structure of reasonable size and complexity of the
language.

In Figure 6.7, we illustrate such models with the game of Example 6.2 in
which only some possible types of the players are considered. In particular not
all strategies of Employer are considered.

Now beliefs about strategies can be encoded as past-beliefs. Here is an example
of a simple piece of reasoning. At the darker node, call it w, the Worker knows her
Low-type. It also the case that Worker believes it is more likely that Employer
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Figure 6.7: Modeling education signaling game in a richer ETL�z

model.

will give a C(hallenging) job to an agent signaling college education (I). This is
expressed by the following formula:

w 
 B〈I〉⊤
w 〈I〉(〈C〉⊤ ∧ [D]⊥)

Worker also knows that Employer will give a D(ull) job to an agent who has
skipped college (S).

w 
 Kw[S](〈D〉⊤ ∧ [C]⊥)

So Worker (correctly) believes that she is better off taking college education:

w 
 B〈S〉⊤
w [S]G(G⊥ → ↓x.H(H⊥ → B〈I〉⊤

w G(G⊥ → 〈≻w〉x)))

The trade-off is roughly speaking between richer process models but being
able to express future-oriented beliefs (expectations) in a more standard DETL
language or to extend the language with modalities quantifying over branches.

We conclude here our discussion of temporal approaches to strategic reasoning
and turn to the more frequently considered, dynamic approach based on epistemic
plausibility models.
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6.7 A dynamic approach to strategic reasoning

So far we have considered temporal analyses of strategic reasoning. Another ap-
proach more in line with the dynamic approach works with epistemic (plausibility)
models of games. They are what the reader might expect: epistemic plausibility
models whose states are labeled either by complete plays or by strategy profiles.
In this perspective the ‘dynamic’ aspects of extensive games are modeled as model
change operations. We think it is interesting to present these models at work on
a concrete case: the epistemic foundations of backward induction and the role of
belief change in its analysis. As such the observations we will make have been
made before, using different logical models. But it is interesting to see how the
dynamic doxastic framework with protocols can be applied to this test case.

6.7.1 Is backward induction logical?

A sequence of papers including Stalnaker [147, 146], Halpern [92], Board [40] and
Baltag et al. [21] uses doxastic, often plausibility-based models to analyze strategic
reasoning in extensive games of perfect information in general, and to discuss the
epistemic foundations of backward induction in particular. We think it will be
useful to see how indeed an important part of the strategic reasoning at stake
in the discussion of the epistemic foundations of backward induction involves the
question of belief change and can be approached from a logical perspective, using
epistemic plausibility models and a ‘dynamic’ (logic) style of thinking.

There are at least two ways to think about the problem of backward induction
and its epistemic foundations. The first problem was raised by Reny [139] in a
more general way. The way of putting is as follows:

Problem 6.27. Is it possible for an agent to be better off by deviating from the
backward induction solution?

The problem is serious since if indeed a theory of games is a theory of ‘rational
behavior’ then a solution concept, which defines what it means to be rational in
a given class of games, should be

immune to defections from it. That is, it must never be to one’s
advantage to behave in a manner that the theory deems irrational
(Reny [139]).

But, to check if a solution concept (such as backward induction) is immune to
deviations from it, we need to know what the theory recommends if someone
does deviate and what would be the outcome of the game after the deviation.
But, at least in an epistemic analysis, decisions of agents off the equilibrium-path
crucially depend on their beliefs about what is going to happen next. So the
theory should say something about what agents should believe after something
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unexpected has happened. Indeed assume that common belief of rationality (and
rationality) implies that the agents will play according to the backward induction
solution. Once someone deviates should not the other agents stop believing that
rationality is common belief?

This actually leads us to the second way of putting the problem (for the two
player case, without ties in payoffs):

Problem 6.28. Is it possible that there is common belief of rationality between
two (rational) agents, and that they don’t end up in the backward induction out-
come?

What these papers have shown (among other things) using a logical approach
is that the answer depends on agents’ belief revision policy. As a two-players
example, if agent 1 is going to keep believing that it is common belief of rationality
between them, then whatever 2 does, 2 is better off not deviating from what the
backward induction solution dictates. On the other hand, if one agent (say 1)
is very keen to stop believing in the other players’ rationality (or maybe in the
other agent’s belief in her rationality), then once 2 deviates, 1 best response to her
belief might be not to respect the backward induction solution. But then 2 might
be justified in deviating in the first place. The conclusion is that for some belief
revision policies, as encoded by some plausibility orderings, the out-of-equilibrium
beliefs of the agents might not support anymore the backward induction play and
thus, for such a belief revision policy backward induction might not be supported
at all, even under common belief of rationality.

6.7.2 Exploring the logical dynamics of backward induc-
tion

This was a fairly abstract way of telling the story so let us give a concrete game-
theoretical scenario that illustrates this discussion and explains how a logical
analysis is usually brought to it. The example and the analysis follow the lines
of Board [40, sec.5].

T1

1 2 1

3, 0 2, 3 5, 2

4, 5

T2

L1 L2 L3

T3

Figure 6.8: A centipede game.

This game is a 3-legs centipede game. The idea behind is that alternatively
each player will get the opportunity to stop the game by taking (T) the money
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on the table or to leave the money (L) on the table, in which case both agents
will have two extra dollars to share. The important paramater is that you get a
nicer share if you’re the one taking the money (and stopping the game) and that
leaving the money is only interesting for you if the other is not going to take the
money at the next stage of the game. The left payoff is thus the payoff for player
1 and right payoff the payoff for player 2.

We will first indicate how to represent possible scenarios based on this game
using epistemic plausibility models, plausibility event models and protocols. The
idea is that each move in the game is information possibly triggering some plau-
sibility change. Now the particular type of trigger depends on the scenario (i.e.
of the play). Roughly speaking the representation depends not only on the game
but on the personality of the players. Formally speaking, it is represented as a
plausibility event model that can change the plausibility ordering of the agents.

Now the protocol maps states to sequences of pointed event models that cor-
respond to a possible evolution of the informational process: it is constrained by
both the structure of the underlying game and the particular play of the game.
Finally the epistemic plausibility models encode the beliefs and knowledge of the
agents about each other’s strategies and beliefs, and there exists a surjective func-
tion from the domain of the model to the set of possible strategy profiles of the
game. So let us look at how to model the game in Figure 6.8.

Initial epistemic-plausibility model. To lighten the model, our initial states
correspond only to a subset of the possible strategies, since it is sufficient to repre-
sent this part of the model to present the main idea: {T, LTL, LTT, LLT, LLL}.
We take the epistemic partition of 1 to be {T}, {LTL, LTT, LLT, LLL} and LLT
to be the state that 1 considers most likely. The epistemic relation of 2 is the
total relation and T is the state she considers most likely.

T LLLLTT LLTLTL
≃2<2 ≃2 ≃2

Figure 6.9: The initial epistemic plausibility models.

Modeling actions as event models. The actions T1, T2, T3 and L3 are the
easiest to represent. Since they end the game immediately, we will define them
as event models with a singleton domain, a total epistemic uncertainty relation
and a total plausibility ordering. Since agents’ beliefs at the last information
set are (in such a perfect information setting) irrelevant we can model L2 in the
same way. For L1 we will consider event models with two elements, depending on
whether 1 intends to leave the money or to take it at the final information state.
Let us call them LT and LL. Their respective plausibility ranking will be depend
on the scenario we consider.
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Protocol. Finally the protocol is as follows: P (T ) = {T1}, P (LT ) is the pre-
fix closure of {LL;T2, LT ;T2}, P (LLT ) is the prefix closure of {LT ;L2;T3} and
P (LLL) is the prefix closure of {LL;L2;L3}. Let us consider our two scenarios.

Preferences. The preference relation is the obvious total pre-order on the set of
terminal sequences given by the protocol.

Let us now compare two scenarios.

Scenario 6.29. Agent 2 is suspicious. When 2 receives the information that 1
has chosen T1 then 2 believes that it is because 1 intends to play T3 (to take the
money) if he gets the opportunity. In game-theoretical terms, 2 believes that 1
will behave rationally at his last information set.

In the event model corresponding to the preceding scenario, 2 considers LT as
strictly more likely than LL.

Scenario 6.30. Agent 2 is confident in human nature. When 2 receives the
information that 1 has chosen T1 then 2 believes that it is because 1 intends to
play L3 (to leave the money), leading to an outcome that Pareto-dominates both
the T1- and the L1;T2-outcome. In game-theoretical terms 2 expects that 1 will
do something irrational at his last information set.

In the event model corresponding to the second scenario (Figure 6.10), 2
considers LL as strictly more likely than LT .

L1; L3

LT > LL

2

L1; T3

Figure 6.10: 2 is confident.

The model in Figure 6.11 displays how the informational process unfolds in
the second scenario. Consider the state LLT . In the initial model, at LLT , it is
indeed common belief that both players will behave rationally all the way. But
when 2’s initial belief that 1 will take the money immediately is defeated, she
changes her mind and expects 1 to cooperate “again”. So she is being rational
by leaving the money, but finally 1, rationally, takes the money. This illustrates
the first observation made in the literature: (initial) common belief of rationality
and rationality does not imply backward induction.

If we use instead the event model corresponding to the first scenario, common
belief of rationality fails. Indeed 1 would initially expect 2 to behave irrationally
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T LTT LLTLTL LLL
<2 ≃2 ≃2 ≃2

>2>2 <2

L L L L

T T L L

T L

2, 3 2, 3

5, 2 4, 5

3, 0

Figure 6.11: Failure of backward induction under common belief of rationality.

(and leave the money) if 1 were to leave the money in the first place. The compar-
ison of the models illustrates the second observation made in the literature: that
the epistemic foundations of backward induction might be restored by making
assumptions about the way players revise their beliefs.

As we said, the preceding observations have been made before. They have
also been considered from a logical perspective including in a dynamic doxastic
setting in Baltag et al. [21]. But the approach presented here illustrates how using
protocols and epistemic plausibility models one could capture some strategic rea-
soning. The natural next step is to generalize the previous dynamic approach to
strategic reasoning and even more importantly to discuss how to give it a syntac-
tic counterpart by first developing the right languages to express the important
notions at work and then explore whether such languages can be axiomatized. If
they can be, giving syntactic derivations of semantic arguments from the epis-
temic game theory literature — similarly to what we did for an agreement result
when studying interactive reasoning in Chapter 4 — seems to us an interesting
line of research.

Other open problems include extending our analysis of equilibrium concepts
with future-oriented beliefs and studying in detail the logic of expectations ini-
tiated in Section 6.6. In general it is fairly possible that quantification over
branches together with an uncertainty relation and a full temporal syntax might
be enough for this logic to lack the finite model property and maybe even worse.
It is anyway in our view one of the most interesting open problems in this chapter.
Finally completing the picture of an analysis of the role of belief change in strate-
gic reasoning based on protocols is another open issue. In particular giving it the
right corresponding syntax and exploring the syntactic counterparts of semantic
results from epistemic game theory.
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Finally let us mention that Zvesper [152] offers an extensive treatment of the
relation between dynamic epistemic logic and the epistemic foundations of game
theory.

6.8 Conclusion

This chapter studied strategic reasoning in extensive games of imperfect (and
perfect) information using approaches living at the edge of temporal and dy-
namic doxastic logics. We looked at solution algorithms for extensive games of
imperfect information as model-change operations and extracted the correspond-
ing notions of rationality that implicitly underly them. We initiated a doxastic
temporal study of notions of equilibrium using past beliefs. We then focused on
logical modeling of expectations (future-oriented beliefs) in imperfect information
contexts and their properties. Finally we used our earlier framework based on
protocols to discuss the role of belief change in the analysis of backward induction.

Major sources. Concerning the modeling of extensive games of imperfect in-
formation as process models the starting points were van Benthem [26], Bonanno
[46] and van der Hoek and Pauly [105]. The idea of looking at solution concepts
as model change operations and extracting notions of rationality corresponding
to a given solution algorithm stems from van Benthem [31]. A source for our
work on expectations is Bonanno [41]. In particular the assumptions on how
expectations are revised are natural generalizations of the ones considered in Bo-
nanno [42]. The idea of using a richer informational structure to model beliefs
about strategies is conceptually based on Harsanyi [98] and technically in line
with the perspective of Fagin et al. [72] on multi-agent systems. Finally our dy-
namic approach to the role of belief change in backward induction has sources in
Board [40] and Baltag et al. [21], and also in Stalnaker [147, 146], Halpern [92] for
the logical approach, and for the more general problematic in Reny [139] and a
large literature that has shaped our way of thinking about these issues, including
[111, 138, 10, 38, 25].

Our main results. This chapter analyzed strategic reasoning in extensive games
of imperfect and perfect information from the perspective of a logical framework
drawing on features of both temporal and dynamic logics. We have shown con-
cretely how to develop a doxastic temporal approach based on the game structure
itself, giving the starting point of a logical characterization of equilbrium concepts.
We discussed a notion of expectations based on a branching-time semantics, some
natural assumptions to impose on them and their syntactic counterpart. Finally
we look at two ways of giving a dynamic perspective on solution concepts and
their foundations. On the one hand, we discuss how rationality concepts could be
extracted from solution algorithms for extensive games of imperfect information.
On the other hand, we discuss how to give a protocol-based dynamic approach
to the role of belief change in the foundations of backward induction.
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The next step. This concludes our discussion of how to analyze strategic reason-
ing in extensive games of imperfect and perfect information from the perspective
of doxastic temporal logics and of dynamic doxastic logics. In the next and last
chapter we bring the focus from belief change to a complementary aspect of ra-
tional interaction: coalitional agency and preferences.





Chapter 7

Modal logics for prefer-
ences and cooperation: Expressivity and
complexity1

In this dissertation we have concentrated so far on informational and doxastic
aspects of interaction. In this chapter we switch the focus to another comple-
mentary dimension: that of cooperative agency and preferences, but we maintain
the methodology: fixing the model, comparing the languages, chiefly in terms of
their respective definability. In some sense we even systematize the methodology.
But we will get into the methodological details in due time. Let us start with a
brief presentation of our two fresh newcomers: cooperation and preferences.

7.1 Introduction

Cooperation of agents is a major issue in fields such as computer science, eco-
nomics and philosophy. The conditions under which coalitions are formed occur
in various situations involving multiple agents. A single airline company for in-
stance cannot afford the cost of an airport runway whereas a group of companies
can. Generally, agents can form groups in order to share complementary re-
sources or because as a group they can achieve better results than individually.
Modal logic (ML) frameworks for reasoning about cooperation mostly focus on
what coalitions can achieve. Coalition Logic (CL) [131] uses modalities of the
form [C]ϕ saying that “coalition C has a joint strategy to ensure that ϕ”. CL
has neighborhood semantics but it has been shown how it can be simulated on
Kripke models [53].

Another crucial concept for reasoning about interactive situations is that of
preferences. It has also received attention from modal logicians ([86] surveys).
Recent works (e.g. [112, 1]) propose different mixtures of cooperation and prefer-

1This chapter is based on Dégremont and Kurzen [62].
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ence logics for reasoning about cooperation. In such logics many concepts from
game theory (GT) and social choice theory (SCT) are commonly encountered.
Depending on the situations to be modelled, different bundles of notions are im-
portant. The ability to express these notions — together with good computational
behavior — makes a logic appropriate for reasoning about the situations under
consideration.

Rather than proposing a new logical framework, with specific expressivity and
complexity, in this chapter, we identify how social choice theory and game theory
notions are demanding for modal logics in terms of expressivity and complexity.
We identify notions relevant for describing interactive situations. Some of them
are local, i.e. they are properties of pointed models. We determine under which
operations on models these properties are invariant. Other properties are global,
i.e. they are properties of frames. For each of them, we check whether the class of
frames having this property is closed under certain operations. We refer to such
results as satisfiability invariance and validity closure results respectively.

We also give explicit definability results for these notions. Given a local prop-
erty P we give a formula ϕ such that a pointed model M, w 
 ϕ iff M, w has
property P . Given a global property Q we give a formula ψ such that a frame
F 
 ϕ iff F has property P . We thus identify the natural (extended) modal
languages needed depending on the class of frames actually considered and the
particular bundle of notions of interest. We finally draw some conclusion about
the complexity of reasoning about cooperation using modal logics.

Our results apply to logics interpreted on Kripke structures using a (prefer-
ence) relation for each agent and a relation for each coalition. The latter can be
interpreted in various ways. The pair (x, y) being in the relation for coalition C

can e.g. mean:

• Coalition C considers y as being at least as good as x.

• If the system is in state x, C would choose y as the next state.

• C can submit a request such that if it is the first one received by the server
while the state is in x, then the state of the system will change from x to y.

• When the system is in state x, C considers it possible that it is in state y.

Interpreting the relation as the possibility to bring the system into a different
state applies to scenarios where agents act sequentially (e.g. with a server treating
requests in a “first-come, first-served” manner) rather than simultaneously (as in
ATL [4] or CL). In special cases — e.g. for turn-based [89, 131] frames — the
approaches coincide. Still, the two approaches are first of all complementary. Our
focus in this chapter is on concepts bridging powers and preferences. The same
analysis is possible for powers themselves in ATL-style. Both analyses can then be
combined in an interesting way. Finally, an important alternative interpretation
of the coalition relation is that of group preferences, in which case ATL models
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can simply be merged with the models we consider. We discuss the possible
interpretations of such models in more detail in Section 7.2.

Structure of this chapter. Section 7.2 presents three classes of models of co-
operative situations. Section 7.3 introduces local and global notions motivated
by ideas from GT and SCT indicating local properties of a system and global
properties that characterize classes of frames. Section 7.4 presents a large class of
extended modal languages interpreted on the previous models. For background
on invariance and closure results for modal languages, the reader can check Ap-
pendix B. In Section 7.5, we study the expressivity needed to express the local
notions (to define the global properties) by giving invariance results for relevant
operations and relations between models (frames). Section 7.6 completes this
work by defining the notions in fragments of (extended) modal languages. We
give complexity results for model checking and satisfiability for these languages
and thereby give upper bounds for the complexity of logics that can express the
introduced notions. Section 7.7 concludes.

7.2 The models

Our aim is to study how demanding certain concepts from game theory and
social choice theory are in terms of expressivity and complexity. This depends on
the models chosen. We consider three classes of simple models that have many
suitable interpretations. This gives our results additional significance. A frame
refers to the relational part of a model. For simplicity, we introduce models and
assume that the domain of the valuation is a countable set of propositional letters
prop and nominals nom. We focus on model theory and postpone discussion of
formal languages to Section 7.4.

Definition 7.1 (N-LTS). A N-LTS (Labeled Transition System indexed by a finite

set of agents N) is of the form 〈W, N, {
C
→ | C ⊆ N}, { ≤j | j ∈ N}, V 〉,

where W 6= ∅, N = {1, . . . , n} for some n ∈ IN,
C
→ ⊆ W ×W for each C ⊆ N,

≤j ⊆W ×W for each j ∈ N, and V : prop ∪ nom → ℘(W ), |V (i)| = 1 for each
i ∈ nom.

W is the set of states, N a set of agents and w
C
→ v says that coalition C can

change the state of the system from w into v. As mentioned, other interpretations
are possible. w ≤j v means that j finds the state v at least as good as w. w ∈ V (p)
means that p is true at w. Preferences are usually assumed to be total pre-orders
(TPO). Let TPO-N-LTS denote the class of N-LTSs in which for each j ∈ N, ≤j is a
TPO. We also consider models with strict preferences as explicit primitives.

Definition 7.2 (S/TPO-N-LTS). Define S/TPO-N-LTS as models of the form 〈W, N,

{
C
→ | C ⊆ N}, { ≤j | j ∈ N}, { <j | j ∈ N}, V 〉, which extend TPO-N-LTS
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models by an additional relation <j⊆ W ×W for each j ∈ N with the constraint
that for each j ∈ N, w <j v iff w ≤j v and v 6≤j w.

Depending on the interpretation of
C
→, it can be complemented or replaced by

effectivity functions (CL) or more generally transition functions as in ATL. In the
latter sense, powers of coalitions will in general not reduce to relations on states.
We leave an analysis of powers in such settings aside for now. There would be two
ways to go: drawing on the model-theory of neighborhood semantics [95] or on a
normal simulation of CL [53]. Generally, the expressive power might depend on
whether coalitional powers are taken as primitives or computed from individual
powers.

In the next section, we identify a list of notions inspired by concepts from
game theory and social choice theory for reasoning about cooperative ability and
preferences of agents. Then we will determine the expressivity required by certain
local and global notions, by giving invariance results for pointed models and
closure conditions for classes of frames, respectively. Since we are also interested
in the effects of the underlying models on the expressivity required to express the
local notions, we will give invariance results with respect to the three different
types of models we just introduced.

7.3 The notions

Reasoning about cooperative interaction considers what coalitions of agents can
achieve and what individuals prefer. Using these elements, more elaborate notions
can be built. We consider natural counterparts of SCT and GT notions and are
interested both in local notions i.e. properties of a particular state in a particular
system, i.e. properties of pointed models M, w, and also in global notions, which
are properties of classes of systems. In other words, we are interested in the class
of frames a global property characterizes. With respect to content, apart from
notions describing only coalitional powers or preferences, we consider stability
and effectivity concepts.

Power of Coalitions. We now present some interesting notions about coalitional

power. Recall that w
C
→ v can e.g. mean “C can achieve v at w”.

Local Notions. Interesting properties of coalitional power involve the relation
between the powers of different groups (PowL3) and the contribution of individ-
uals to a group’s power, e.g. an agent is needed to achieve something (PowL2).

• PowL1. Coalition C can achieve a state where p is true. ∃x(w
C
→ x ∧ P (x))

• PowL2. Only groups with i can achieve p-states.
∧

C⊆N\i(∀x(w
C
→ x ⇒ ¬P (x)))

• PowL3. Coalition C can force every state that coalition D can force.

∀x(w
D
→ x⇒ w

C
→ x)
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Global Notions. PowG1 says that each coalition can achieve exactly one re-
sult. PowG3 expresses coalition monotonicity: it says that if a coalition can
achieve some result, then so can every superset of that coalition. In many situ-
ations, decision making in groups can only be achieved by a majority (PowG2).
PowG4 and PowG5 exemplify (mathematically natural) consistency requirements
between powers of non-overlapping coalitions.

• PowG1. In any state each coalition can achieve exactly one state.
∧

C⊆N
∀x∃y(x

C
→ y ∧ ∀z(x

C
→ z ⇒ z = y))

• PowG2. Only coalitions containing a majority of N can achieve something.

∀x(
∧

C⊆N,|C|<
|N|
2

(¬∃y(x
C
→ y)))

• PowG3. Coalition monotonicity, i.e. if for C and D, C ⊆ D, then RC ⊆ RD.

∀x(
∧

C⊆N

∧

D⊆N,C⊆D
(∀y(x

C
→ y ⇒ x

D
→ y)))

• PowG4. If C can achieve something, then subsets of its complement cannot
achieve anything.

∀x
∧

C⊆N
(((∃y(x

C
→ y)) ⇒

∧

D⊆N\C ¬∃z(x
D
→ z)))

• PowG5. If C can achieve something, then subsets of its complement cannot
achieve something C cannot achieve.

∀x
∧

C⊆N
(((∃y(x

C
→ y)) ⇒

∧

D⊆N\C ∀z(x
D
→ z ⇒ x

C
→ z)))

Preferences. What do agents prefer? What are suitable global constraints on
preferences? w ≤i v means “i finds v at least as good (a.l.a.g.) as w”. We write
w <i v for w ≤i v ∧ ¬(v ≤i w), meaning that “i strictly prefers v over w”.
Local Notions. First of all, we can distinguish between strict and nonstrict
preferences. The most basic preference relation that we consider is that of being
a.l.a.g. We can also look at the relation “at least as bad” (a.l.a.b) (PrefL4).
Agents’ preferences over states can also be seen as being based on preferences
over propositions [60]. PrefL8 (PrefL10) says the truth of a given proposition is a
sufficient (necessary) condition for an agent to prefer some state. In what follows,
“at least as good” (a.l.a.g) means “at least as good as the current state”.

• PrefL1. There is a state i finds a.l.a.g. where p holds. ∃x(w ≤i x ∧ P (x))

• PrefL2. There is a p-state that i strictly prefers. ∃x(w <i x ∧ P (x))

• PrefL3. There is a state that all agents find a.l.a.g and that at least one
strictly prefers. ∃x(

∧

i∈N(w ≤i x) ∧
∨

j∈Nw <j x)

• PrefL4. There is a state that i finds a.l.a.b. where p holds.

∃x(x ≤i w ∧ P (x))
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• PrefL5. There is a state that i finds strictly worse where p is true.

∃x(x <i w ∧ P (x))

• PrefL6. i finds a state a.l.a.g. a the current one iff j does.

∀x(w ≤i x↔ w ≤j x)

• PrefL7. There is a state only i finds a.l.a.g. ∃x(w ≤i x ∧
∧

j∈N\{i} ¬(w ≤j x))

• PrefL8. i finds every p-state a.l.a.g. ∀x(P (x) ⇒ w ≤i x)

• PrefL9. i strictly prefers every p-state. ∀x(P (x) ⇒ w <i x)

• PrefL10. i considers only p-states to be a.l.a.g. ∀x(w ≤i x⇒ P (x))

• PrefL11. i strictly prefers only p-states. ∀x(w <i x⇒ P (x))

Global Notions. Capturing the intuitive idea of preferences requires several
conditions for the preference relation: reflexivity, transitivity and completeness
(trichotomy for strict preferences). Sometimes, it can also be appropriate to say
that for each alternative there is exactly one that is at least as good (PrefG8).

• PrefG1. “at least as good as” is reflexive. ∀x(
∧

i∈N(x ≤i x))

• PrefG2. “at least as good as” is transitive.

∀x∀y∀z(
∧

i∈N((x ≤i y ∧ y ≤i z) ⇒ x ≤i z))

• PrefG3. “at least as good as” is complete.

∀x∀y(
∧

i∈N(x ≤i y ∨ y ≤i x))

• PrefG4. “at least as good as” is a total pre-order.

(Conjunction of the two previous formulas.)

• PrefG5. “strictly better than” is transitive.

∀x∀y∀z((
∧

i∈N(x <i y ∧ y <i z) ⇒ x <i z)))

• PrefG6. “strictly better than” is trichotomous.

∀x∀y(
∧

i∈N(x <i y ∨ y <i x ∨ x = y))

• PrefG7. “strictly better than” is a strict total order.

(Conjunction of the previous two formulas.)

• PrefG8. Determinacy for “at least as good as”, i.e. exactly one successor.

∀x(
∧

i∈N(∃y(w ≤i y ∧ ∀z(x ≤i z ⇒ z = y))))
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So far, we have focused on preferences of individuals. A natural question in SCT
is how to aggregate individual preferences into group preferences. We can address

this question by interpreting
C
→ as a preference relation for each C ⊆ N.

• PrefG9. C finds a state a.l.a.g. as the current one iff all its members do.

∀x∀y(
∧

C⊆N
(x

C
→ y ↔

∧

i∈C x ≤i y))

• PrefG10. C finds a state at least as good as the current one iff at least one
member does.

∀x∀y(
∧

C⊆N
(x

C
→ y ↔

∨

i∈C x ≤i y))

• PrefG11. C finds a state a.l.a.g. as the current one iff most members do.

∀x∀y(
∧

C⊆N
(x

C
→ y ↔

∨

D⊆C,|D|>
|C|
2

(
∧

i∈D x ≤i y)))

Combining the preceding concepts. We start with the conceptually and
historically important SCT notion of a dictator. d is a dictator if the group’s

preferences mimic d’s preferences. Interpreting
C
→ as an achievement relation, we

get an even stronger notion: groups can only do what d likes. A local dictator is
a dictator who controls one state in the system, and a dictator controls all states.

Definition 7.3 (Local Dictatorship). i is a weak (strong) local dictator at w iff
any group prefers v at w only if for i, v is a.l.a.g. as (strictly better than) w.

We now introduce combinations of powers and preferences. The first notion
says that coalition C can do something useful for i (in some cases giving i an incen-
tive to join) and the third notion characterizes situations in which a unanimously
desired state remains unachievable. We start with Local Notions.

• PPL1. C can achieve a state that i finds at least as good as the current one.

∃x(w
C
→ x ∧ w ≤i x)

• PPL2. C can achieve a state that all i ∈ D find a.l.a.g. as the current one.

∃x(w
C
→ x ∧

∧

i∈Dw ≤i x)

• PPL3. There is a state that all agents prefer but no coalition can achieve

it. ∃x((
∧

i∈Nw ≤i x) ∧
∧

C⊆N
¬(w

C
→ x))

• PPL4. C can achieve all states that agent i finds a.l.a.g. as the current one.

∀x(w ≤i x⇒ w
C
→ x)

• PPL5. C can achieve all states that i strictly prefers. ∀x(w <i x⇒ w
C
→ x)

• PPL6. i is a weak local dictator. ∀x(
∧

C⊆N
(w

C
→ x⇒ w ≤i x))
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• PPL7. i is a strong local dictator. ∀x(
∧

C⊆N
(w

C
→ x⇒ w <i x))

Global Notions. PPG1 is a natural constraint on coalitional power: a group can
achieve a state iff it is good for all members — otherwise they would not take part
in the collective action. PPG3 is a condition of Arrow’s impossibility theorem.
PPG4 reflects individual rationality: don’t join a group if you don’t gain anything.
It can be generalized to every sub-coalition or weakened to “not joining if you
lose something” (cf. the core of a coalitional game [127] (Def. 268.3)). PPG5
applies to systems where an agent is indispensable to achieve anything: a unique
capitalist in a production economy or a unique server are typical examples.

• PPG1. Coalitions can only achieve states that all their members consider
at least as good as the current one. ∀x∀y

∧

C⊆N
(x

C
→ y ⇒

∧

i∈C(x ≤i y))

• PPG2. One agent is a weak local dictator in every state (dictator).
∨

i∈N ∀x∀y(x
C
→ y ⇒ x ≤i y)

• PPG3. There is no dictator. ¬(
∨

i∈N ∀x∀y(x
C
→ y ⇒ x ≤i y))

• PPG4. If i can achieve some state i strictly prefers then for any C containing
i: if C \ i cannot achieve some state but C can, then i strictly prefers that

state.
∧

i∈N ∀x(∃y(x
{i}
→ y ∧ x <i y) ⇒

∧

C⊆N,i∈C(∀z(x
C
→ z ∧ ¬(x

C\{i}
→ z)) ⇒ x <i z))

• PPG5. Only groups with i can achieve something. ∀x
∧

C⊆N\{i} ¬∃y(x
C
→ y)

• PPG6. In all states, there is an i such that groups with i can achieve exactly

the states as they can without i. ∀x(
∨

i∈N

∧

C⊆N,i∈C ∀y(x
C
→ y ↔ x

C\{i}
→ y))

• PPG7. For any agent, there is some state in which coalitions not containing

this agent cannot achieve any state.
∧

i∈N ∃x(
∧

C⊆N,i∈C ¬∃y(x
C
→ y))

Efficiency and Stability Notions. In our setting, it is natural to interpret
the state space as possible social states or allocations of goods. A criterion from
welfare economics to distinguish “good” from “bad” states is that of efficiency :
if we can change the allocation or social state and make an agent happier without
making anyone less happy then we are using resources more efficiently and it is
socially desirable to do so. E.g. PrefL3 in this respect means that the current state
is not efficient: there is a state that is a Pareto-improvement of it. Importing the
notion of Pareto-efficiency into our framework is straightforward.

Definition 7.4 (Pareto-efficiency). A state is weakly (strongly) Pareto-efficient
iff there is no state that everyone strictly prefers (finds a.l.a.g). A state is Pareto-
efficient iff there is no state such that everyone considers it to be at least as good
and at least one agent thinks that it is strictly better.
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GT equilibrium concepts characterize stable states: given what others are
doing, I don’t have an incentive to do something that makes us leave this stable
state. Generalizing, a system is in a stable state if nobody has an incentive to
change its current state. We can think of strategy profiles in a strategic game as
assigning roles to the agents. Two profiles x = (s∗−i, s

∗
i ), y = (s∗−i, s

′
i) are related

by
{i}
→ iff i can unilaterally change role (strategy) to s′i in the next round of the

game. E.g. the stability of a state where an agent provides the public good on
his own depends on whether he cares enough about it to provide it on his own.
A state is stable iff there is no strictly preferred state that an agent can achieve
alone. Since the idea relates to Nash equilibria (see [127]), we use the names
Nash-stability, and Nash-cooperation stability for its group version.

Definition 7.5 (Nash-stability). A state is (strongly) Nash-stable iff there is no
state that an agent i strictly prefers (finds a.l.a.g.) and that i can achieve alone.
It is (strongly) Nash-cooperation stable iff there is no state v and coalition C such
that every i ∈ C strictly prefers v (finds v a.l.a.g.) and C can achieve v.

Local Notions

• EF1. The current state is weakly Pareto-efficient. ¬∃x(
∧

i∈N(w <i x))

• EF2. The current state is Pareto-efficient. ¬∃x((
∧

i∈N w ≤i x) ∧
∨

j∈N w <i x)

• EF3. The current state is strongly Pareto-efficient. ¬∃x(
∧

i∈N w ≤i x)

• ST1. The current state is Nash stable. ¬∃x(
∨

i∈N(w
{i}
→ x ∧ w <i x))

• ST2. The current state is strongly Nash stable. ¬∃x(
∨

i∈N(w
{i}
→ x ∧ w ≤i x))

• ST3. The current state is strongly is Nash-cooperation stable.

¬∃x(
∨

C⊆N
(w

C
→ x ∧

∧

i∈Cw <i x))

• ST4. The current state is strongly Nash-cooperation stable.

¬∃x(
∨

C⊆N
(w

C
→ x ∧

∧

i∈Cw ≤i x))

This concludes the list of notions we will consider. We now turn to the possible
extended modal languages that can express them, interpreting them on the models
of Section 7.2, and making observations on their expressive power.

7.4 Modal languages and their expressivity

As will be clear from the invariance results of the next sections, the basic modal
language will generally be too weak for reasoning about cooperation. However,
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any notion expressible in the FO correspondence language is expressible in the hy-
brid language H(E,@, ↓) [55]. We have introduced the ideas behind some extended
modal languages in Section 1.7 such as hybrid logics and boolean modal logics.
Among them are model-theoretically well-understood fragments. We introduce
all these Extended Modal Languages at once as a “super” logic interpreted
on our earlier models. For background on invariance and closure results for these
logics the reader is referred to Appendix B.

Syntax. The syntax of this “super” logic is defined by simultaneous recursion
as follows:

α ::=≤j | C | α−1 | ?ϕ | α;α | α ∪ α | α ∩ α | α

ϕ ::= p | i | x | ¬ϕ | ϕ ∧ ϕ | 〈α〉ϕ | Eϕ | @iϕ | @xϕ | ↓x.ϕ | JαKϕ

where j ∈ N, C ∈ ℘(N)−{∅}, p ranges over prop, i ranges over nom and x ∈ svar,
for svar being a countable set of variables.

Semantics. A valuation maps propositional letters to subsets of the domain and
nominals to singleton subsets. Given a N-LTS, a program α is interpreted as a
relation as follows:

R≤i
= ≤i

RC =
C
→

Rβ−1 = {(v, w)|wRβv}
Rβ∪γ = Rβ ∪ Rγ

Rβ∩γ = Rβ ∩ Rγ

Rβ = (W ×W ) −Rβ

Formulas are interpreted together with an assignment g : svar →W as indicated
below. We skip booleans.

M, w, g 
 i iff w ∈ V (i)
M, w, g 
 x iff w = g(x)
M, w, g 
 〈α〉ϕ iff for some v with wRαv we have M, v, g 
 ϕ
M, w, g,
 Eϕ iff for some v ∈W we have M, v, g 
 ϕ
M, w, g,
 @iϕ iff M, v, g 
 ϕ where V (i) = {v}
M, w, g,
 @xϕ iff M, g(x), g 
 ϕ
M, w, g,
 ↓x.ϕ iff M, w, g[x := w] 
 ϕ
M, w, g 
 JαKϕ iff for all w ∈W we have wRαv whenever M, v, g 
 ϕ

Expressivity. The least expressive modal language we consider is L(N), which
is of similarity type 〈(C)C⊆N, (≤i)i∈N〉. Its natural extensions go along two lines:
adding program constructs and new operators. L(N,∩, i) e.g. refers to the logic
with language: α ::= ≤j | C | α ∩ α ϕ ::= p | i | ¬ϕ | ϕ ∧ ϕ | 〈α〉ϕ.
As language inclusion implies expressivity inclusion (indicated by “≤”), we only
indicate (some) non-obvious facts of inclusions in this space of modal languages.
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Fact 7.6. L(N,∪, ; , ?) ≤ L(N).

Proof. By the facts that M, w, g 
 〈α ∪ β〉ϕ iff M, w, g 
 〈α〉ϕ ∨ 〈β〉ϕ; that
M, w, g 
 〈α; β〉ϕ iff M, w, g 
 〈α〉〈β〉ϕ and that M, w, g 
 〈?ψ〉ϕ iff M, w, g 


ψ ∧ ϕ. qed

Fact 7.7. L(N,@, i) ≤ L(N, E, i).

Proof. By the fact that M, w, g 
 @iϕ iff M, w, g 
 E(i ∧ ϕ). qed

Fact 7.8. L(N,∩) ≤ L(N, ↓,@, x).

Proof. M, w, g 
 〈α ∩ β〉ϕ iff M, w, g 
 ↓x.〈α〉↓y.(ϕ ∧ @x〈β〉y). qed

Fact 7.9. L(N, J K) ≤ L(N, ).

Proof. By the fact that M, w, g 
 JαKϕ iff M, w, g 
 [α]¬ϕ. qed

Fact 7.10. L(N, ) ≤ L(N, ↓, E, x).

Proof. M, w, g 
 〈α〉ϕ iff M, w, g 
 ↓x.E↓y.(ϕ ∧ ¬E(x ∧ 〈α〉y)). qed

Fact 7.11. L(N, −1) ≤ L(N, ↓, E, x).

Proof. By the fact that M, w, g 
 〈α−1〉ϕ iff M, w, g 
 ↓x.E(ϕ ∧ 〈α〉x). qed

Fact 7.12. L(N, E) ≤ L(N, ).

Proof. By the fact that M, w, g 
 Eϕ iff M, w, g 
 〈α〉ϕ ∨ 〈α〉ϕ. qed

The reader might now like to see immediately how the notions can be defined
in extended modal languages and go directly to Sect. 7.6. Of course, the choice
of the languages is only justified once we have determined the required expres-
sive power both to express the local notions and to define the class of frames
corresponding to the global ones. Thus we start by doing so in the next section.

7.5 Invariance and closure results

We start with satisfiability invariance results for the classes of pointed models
defined in Section 7.2. Then we turn to closure results for classes of frames defined
by global notions. A “Y” in a cell means that the row notion is invariant under
the column operation. The numbers in the columns refer to representative proofs
for these results found below the tables. They will give the reader a concrete idea
of the meaning of these results. The particular choice of operations we consider
is naturally determined by background invariance and closure results for modal
languages (see Appendix B for details).

Overview of the Results for the General Case.
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B
is

C
B

is

∩
-B

is

T
B

is

H
-B

is

H
(@

)-
B

is

H
(E

)-
B

is

B
M

G
S
M

D
U

[PowL1] Y Y Y Y Y Y Y Y Y Y
[PowL2] Y Y Y Y Y Y Y Y Y Y
[PowL3] N N N N N N N N Y Y
[PrefL1] Y Y Y Y Y Y Y Y Y Y
[PrefL2] N N N N N N N N Y Y
[PrefL3] N N N N N N N N Y Y
[PrefL4] N Y N N N N N N N (14) Y
[PrefL5] N N N N N N N N N Y
[PrefL6] N N N N N N N N Y Y
[PrefL7] N N N N N N N N Y Y
[PrefL8] N N N N N N N N N N
[PrefL9] N N N N N N N N N N
[PrefL10] Y Y Y Y Y Y Y Y Y Y
[PrefL11] N N N N N N N N Y Y
[PPL1] N N Y N N N N N Y Y
[PPL2] N N Y N N N N N Y Y
[PPL3] N N N N N N N N Y Y
[PPL4] N N N N N N N N Y Y
[PPL5] N N N N N N N N Y Y
[PPL6] N N N N N N N N Y Y
[PPL7] N N N N N N N N Y Y
[EF1] N N N N N N N N Y Y
[EF2] N N N N N N N N Y Y
[EF3] N N Y N N N N N Y Y
[ST1] N N N N N N N N Y Y
[ST2] N N Y N N N N N Y Y
[ST3] N N N (13) N N N N N Y Y
[ST4] N N Y N N N N N Y Y

Comments. Most of our notions are not bisimulation-invariant. The basic
modal language of similarity type 〈{

C
→ | C ⊆ N}, { ≤i | i ∈ N}〉 is thus not

expressive enough to describe our local notions (without restrictions on the class
of frames). Invariance under BM often fails; some failures are due to intersections of
relations, but as ∩-Bis also fails often, this cannot be the only reason. By contrast,
invariance under GSM generally holds; it fails for properties with backward looking
features. This is good news for expressivity: we can expect definability in the
hybrid language with ↓-binder.2 But not for computability, since the satisfiability
problem of the bounded fragment is undecidable. Finally, the results are the same

2Indeed, [73, 9] have proven that all notions definable in the first-order correspondence
language that are invariant under GSM are equivalent to a formula of the bounded fragment, i.e.
of the hybrid language with ↓-binder (which are notational variants).
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for hybrid and basic bisimulations. No surprise: roughly speaking, at the level of
local satisfaction, to exploit the expressive power of nominals, the notions would
have to refer explicitly to some state. Here are two representative results.

Representative Proofs for the General Case

Proposition 7.13. On N-LTS, ST3 is not invariant under ∩-bisimulation.

Proof. Let M = 〈{w, v}, {1, 2}, {
C
→ |C ⊆ {1, 2}}, {≤1,≤2}, V 〉, where w

{1,2}
→

v, w ≤1 v, v ≤1 w,w ≤2 v, V (p) = {w, v}. Let M′ = 〈{s, t, u}, {1, 2}, {
C
→ ′|C ⊆

{1, 2}}, {≤′
1,≤

′
2}, V

′〉, where s
{1,2}
→ ′t, u

{1,2}
→ ′t, s ≤′

1 t, u ≤′
1 t, t ≤

′
1 u, s ≤′

2 t, u ≤′
2

t, V ′(p) = {s, t, u}. Then, M, w 
 ST3 and M′, s 1 ST3 because s
{1,2}
→ ′t and

s <′
1 t, s <

′
2 t. Moreover, Z = {(w, s), (w, u), (v, t)} is a ∩-bisimulation. qed

Proposition 7.14. On N-LTS, PrefL4 is not invariant under GSM.

Proof. Let M = 〈{w, v}, {1}, {
C
→ |C ⊆ {1}}, {≤1}, V 〉, where

{1}
→= ∅, v ≤1

w, V (p) = {v}. Then, M, w 
 PrefL4 because v ≤1 w and v ∈ V (p). But
for the submodel M′ generated by {w}, we have M′, w 1 PrefL4 since v is not
contained in M′. qed

Results Overview for the Total Pre-orders (TPO) Case. This table shows
rows that differ from the general case. Entries that differ are in boldface.

Bis CBis ∩-Bis TBis H-Bis H(@)-Bis H(E)-Bis BM GSM DU
[PrefL8] N N N N N N N N N Y*
[PrefL9] N Y (15) N N N N N N N Y*
[EF1] N N N N N N N N Y Y*

Proposition 7.15. On TPO-N-LTS, PrefL9 is invariant under CBis.

Proof. Let M, w and M′, w′ be two pointed TPO-N-LTS such that there exists a
C-Bisimulation Z between M and M′ such that (w,w′) ∈ Z. But now assume
that M, w 6
 PrefL9. It follows that there exists some t ∈W such that t ∈ VM(p)
but w 6<M

i t. But then by totality of ≤M
i we have t ≤M

i w, i.e. w ≥M
i t. But

then by C-Bisimulation there exists some state t′ ∈ W ′ such that (t, t′) ∈ Z and
therefore t′ ∈ VM′

(p) and w′ ≥M′

i t′ and thus w′ 6<M′

i t′. By definition we have
thus M′, w′ 6
 PrefL9. The other direction is symmetrical. qed

Comments. Except for disjoint union (DU), the restriction to the TPO case brings
only slight benefits. The ∗ marks trivial invariance: the only DU of models that is
complete is the trivial one: mapping a model to itself.

Overview of the Results for the TPO Case with Strict Preferences. The
following table contains the rows that differ from the ones in the table for total
preorders without a strict preference relation.
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B
is

C
B

is

∩
-B

is

T
B

is

H
-B

is

H
(@

)-
B

is

H
(E

)-
B

is

B
M

G
S
M

D
U

[PrefL2] Y Y Y Y Y Y Y Y Y Y
[PrefL3] N N N N N N N Y Y Y
[PrefL5] N Y N N N N N N N Y
[PrefL6] N N N N N N N Y Y Y
[PrefL7] N N N N N N N Y Y Y
[PrefL8] N Y N N N N N N N Y
[PrefL11] Y Y Y Y Y Y Y Y (16) Y Y
[PPL7] N N N N N N N Y Y Y
[EF1] N N Y N N N N Y Y Y
[EF2] N N Y N N N N Y Y Y
[ST1] N N Y N N N N Y (17) Y Y
[ST3] N N Y N N N N Y Y Y

Proposition 7.16. On S/TPO-N-LTS, PrefL11 is invariant under BM.

Proof. Let M and M′ be two S/TPO-N-LTS and assume that f is a bounded
morphism from M to M′. Assume that the property PrefL11 does not hold for
M, w, i.e. there is a state v ∈ Dom(M) such that w <M

i v and v 6∈ VM(p).
But then by R-homomorphism, we have f(w) <M′

i f(v) and by Atomic Harmony,
f(v) 6∈ VM′

(p), and thus PrefL11 does not hold for M′, f(w). For the other
direction, assume that PrefL11 is not satisfied at M′, f(w). It follows that there
is a state v′ ∈ Dom(M′) such that f(w) <M′

i v′ and v′ 6∈ VM′
(p) but then by

Back there is a state v ∈ Dom(M) such that f(v) = v′ and w <M
i v. But

by Atomic Harmony, v 6∈ VM(p) and thus PrefL11 is not satisfied at M, w,
concluding our proof. qed

Proposition 7.17. On S/TPO-N-LTS, ST1 is invariant under BM.

Proof. One direction follows directly from R-homomorphism. For the other direc-
tion, assume that PrefL11 is not satisfied at M′, f(w). It follows that there is a

state v′ ∈ Dom(M′) such that f(w)
{i}
→′v′ and f(w) <M′

i v′ (a). But then by Back

there is a state v ∈ Dom(M) such that f(v) = v′ and w
{i}
→ v (b). We are in one

of two cases. Case 1: v 6≤M
i w (c). But then by totality we have w ≤M

i v (d). But
it follows from (b), (c), (d) that PrefL11 is not satisfied at M, w. Now assume
for a contradiction that we are in the other case. Case 2: v ≤M

i w (e). But then
by R-homomorphism, we have f(v) ≤M′

i f(w) contradicting the assumption that
(a) and concluding our proof. qed

Comments. The failures of invariance under GSM are still present, reflecting the
fact that we do not have converse relations. By contrast, PrefL11 and PrefL2
are now invariant under bisimulation and a simple boolean modal logic with
intersection seems to have the right expressive power to talk about efficiency and
stability notions, since all of them are now invariant under ∩-Bisimulations. We



7.6. Modal definability 173

now check if the properties define classes of frames that are closed under the
different operations introduced. The results can be read off the tables as in the
previous section.

Closure Results for class of frames defined by global properties

B
M
I

G
S
F

D
U

re
fl
.G
S
F

B
i
s
S
y
s
I
m

B
M
I

G
S
F

D
U

re
fl
.G
S
F

B
i
s
S
y
s
I
m

B
M
I

G
S
F

D
U

re
fl
.G
S
F

B
i
s
S
y
s
I
m

PowG1 Y Y Y Y Y PrefG4 Y Y N N Y PPG1 Y Y Y Y Y
PowG2 Y Y Y Y Y PrefG5 N Y Y Y Y PPG2 Y Y N N Y
PowG3 Y Y Y Y Y PrefG6 N Y N N Y PPG3 N N N Y ?
PowG4 Y Y Y Y Y PrefG7 N Y N N Y PPG4 N Y Y Y Y
PowG5 Y Y Y Y Y PrefG8 Y Y Y Y Y PPG5 Y Y Y Y Y
PrefG1 Y Y Y Y Y PrefG9 N Y Y Y Y PPG6 Y Y Y Y Y
PrefG2 Y Y Y Y Y PrefG10 Y Y Y Y Y PPG7 Y N Y Y Y
PrefG3 Y Y N N Y PrefG11 N (18) Y Y Y Y

Proposition 7.18. Validity of PrefG11 is not preserved under BMI.

Proof. Consider the frames F = 〈{x, v, w}, {1, 2}, {
C
→ | C ⊆ {1, 2}}, {≤1,≤2}〉,

with w
1
→ v, w

2
→ v,

{1,2}
→ = ∅, w ≤1 v, w ≤2 x and F ′ = 〈{s, t}, {1, 2}, {

C
→ | C ⊆

{1, 2}}, {≤′
1,≤

′
2}〉, with s

1
→ t, s

2
→ t,

{1,2}
→ = ∅, s ≤1 t, s ≤2 t. Then f : W →

W ′, f(w) = s, f(v) = f(x) = t is a surjective BM. However, F 
 PrefG11 and

F ′ 1 PrefG11 because s ≤1 t, s ≤2 t and it is not the case that s
{1,2}
→ t. qed

At the frame level, ML is a fragment of Monadic Second Order Logic. That
it does better at this level is thus not only an artifact of the chosen notions.

7.6 Modal definability

The previous model-theoretic results give us information about possible definabil-
ity results. However, let us be more constructive and give formulas that indeed
do the job: be it for local-satisfaction or frame-definability aims. We indicate the
least expressive language we found still being able to express the property under
consideration, the tightness of these results being given by our earlier invariance
results. Another useful criterion is that of the computational complexity of the
logic, i.e. of its satisfiability problem (SAT) and on its model checking problem
(MC). We bridge our expressivity and complexity results as follows: for each
local (resp. global) notion, we look for the least expressive logic that is still
able to express it locally (resp. define the class of frames corresponding to it)
and take the complexity of this logic as an upper bound. More precisely we take
the upper bounds on its SAT problem and of (the combined complexity of) its
model-checking. We indicate these upper bounds and references to the papers in
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which these complexity results were proven. The reader who is not familiar with
P, PSPACE and EXPTIME is referred to [129]. Π0

1-complete problems [125] are
undecidable but co-recursively enumerable (e.g. IN × IN tiling [97]). Let us now
start with our definability results.

7.6.1 Defining local notions

The following table summarizes our definability results (for local notions) and
their corollaries with respect to upper bounds of satisfiability and of model-
checking.

Axiom Best SAT MC

Language
PowL1 〈C〉p L(N) PSPACE[113] P[74]

PowL2
∧

C 6∋i[C]¬p L(N) PSPACE[93] P[74]

PowL3 ↓x.[D]↓y.@x〈C〉y (19) L(N, ↓, @, x) Π0
1[55] PSPACE [76]

PrefL1 〈≤i〉p L(N) PSPACE[113] P[74]

PrefL2 ↓x.〈≤i〉(p ∧ [≤i]¬x) L(N, ↓, x) EXPTIME[56] PSPACE[76]

PrefL3 ↓x.〈
⋂

i∈N ≤i〉(
∨

j∈N[≤j ]¬x) L(N, ↓,∩, x) Π0
1[55] PSPACE

PrefL4 〈≤i
−1〉p L(N, ↓, @, x) PSPACE PSPACE [76]

PrefL5 ↓x.〈≤i
−1〉(p ∧ [≤i

−1]¬x) L(N, ↓,−1, x) Π0
1 [91] PSPACE

PrefL6 [(≤i ∩≤j) ∪ (≤j ∩≤i)]⊥ L(N, ,∩) EXPTIME[120] P[114]

PrefL7 〈≤i ∩(
⋂

j∈N−{i} ≤j)〉⊤ L(N, ,∩) EXPTIME[120] P[114]

PrefL8 J≤iKp L(N, J K) EXPTIME[120] P[114]

PrefL9 ↓x.A↓y.(¬〈≤i〉x ∧ @x〈≤i〉y) L(↓, @, x, E) Π0
1 [91] PSPACE[75]

PrefL10 [≤i]p L(N) PSPACE[93] P[74]

PrefL11 ↓x.[≤i]([≤i]¬x ⇒ p) (20) L(↓, x) (22)EXPTIME[56] PSPACE[76]

PPL1 〈C∩ ≤i〉⊤ L(N,∩) PSPACE [68] P[114]

PPL2 〈C ∩ (
⋂

i∈D ≤i)〉⊤ L(N,∩) PSPACE[68] P[114]

PPL3 〈(
⋂

i∈N ≤i) ∩ (
⋃

C⊆N

C
→)〉⊤ L(N, ,∩) EXPTIME[120] P[114]

PPL4 [C∩ ≤i]⊥ L(N, ,∩) EXPTIME[120] P[114]

PPL5 ↓x.[C∩ ≤i]〈≤i〉x L(N↓, , ,∩, x) Π0
1 [91] PSPACE

PPL6
∨

C⊆N
[C ∩≤i]⊥ L(N, ,∩) EXPTIME[120] P[114]

PPL7 ↓x.[C]↓y.(¬〈≤i〉x ∧ @x〈≤i〉y) L(N, ↓, @, x) Π0
1[56] PSPACE[76]

EF1 ↓x.[
⋂

i∈N ≤i]
∨

i∈N〈≤i〉x L(N, ↓,∩) Π0
1[55, 56] PSPACE

EF2 ¬↓x.〈
⋂

i∈N ≤i〉(
∨

j∈N[≤j]¬x) L(N, ↓,∩) Π0
1[55, 56] PSPACE

EF3 [
⋂

i∈N ≤i]⊥ L(N,∩) PSPACE [68] P[114]

ST1
∧

i∈N↓x.[i∩ ≤i]〈≤i〉x L(N, ↓,∩) Π0
1[55] PSPACE

ST2
∧

i∈N[i∩ ≤i]⊥ L(N,∩) PSPACE [68] P[114]

ST3
∧

C⊆N
↓x.[C ∩ (

⋂

i∈C ≤i)]
∨

j∈C〈≤j〉x L(N, ↓,∩) Π0
1[56] PSPACE

ST4
∧

C⊆N
[C ∩ (

⋂

i∈C ≤i)]⊥ L(N,∩) PSPACE [68] P[114]

Representative definability results.

Proposition 7.19. PowL3 is true of M, w iff M, w, g 
 ↓x.[D]↓y.@x〈C〉y.

Proof. From right to left: Assume that M, w, g 
 ↓x.[D]↓y.@x〈C〉y. Then we have
M, w, g[x := w],
 [D]↓y.@x〈C〉y. But now assume there is a state v that coalition
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D can force from w. By definition, w
D
→ v (1). But by (1) and semantics of [D]

then we have M, v, g[x := w],
 ↓y.@x〈C〉y (2). (2) and semantics of ↓ gives us
M, v, g[x := w, y := v] 
 @x〈C〉y (3). From (3) and semantics of @x and the fact
that g(x) = w we have M, w, g[x := w, y := v] 
 〈C〉y (4). But by semantics of

〈C〉 and the fact that g(y) = v, (4) really means that w
C
→ v (5). Since the v was

arbitrary, it follows from (5) that at w for any state v, if D can achieve it, then C

can do so, too. But this precisely means that PowL3 is true of M, w. qed

Proposition 7.20. PrefL11 is true of M, w iff ↓x.[≤i]([≤i]¬x⇒ p).

Proof. From right to left: Assume that M, w, g 
 ↓x.[≤i]([≤i]¬x⇒ p). Then we
have M, w, g[x := w],
 [≤i]([≤i]¬x ⇒ p) (1). Take an arbitrary state v such that
w <i v (2). We will prove that v is a p-state. It follows from (2) that w ≤i v (3).
From (1), (3) and semantics of [≤i] it follows that M, v, g[x := w],
 [≤i]¬x⇒ p
(4). But by (2) we have v 6≤i w. It follows by semantics of x and [≤i] that
M, v, g[x := w],
 [≤i]¬x. By (4) and (5) it follows that v ∈ V (p). qed

Theorem 7.21 (ten Cate and Franceschet [56]). The satisfiability problem for
formulas in the modal language L(N, ↓,@, x)−2↓2 with bounded width is EXPTIME-
complete.

Proposition 7.22. PrefL11 is expressible in an extended modal language with a
satisfiability problem in EXPTIME.

Proof. By the previous proposition, we have PrefL11 is defined by ↓x.[≤i]([≤i

]¬x ⇒ p). But ↓x.[≤i]([≤i]¬x ⇒ p) does not contain the 2↓2 scheme. Thus,
PrefL11 is defined by a formula in ML(N, ↓,@, x) − 2↓2 (1). But by Theorem
7.21 the satisfiability problem of ML(N, ↓,@, x) − 2↓2 is in EXPTIME. qed

On the model-theoretic level we observed that our notions were generally not
invariant under taking bounded morphic images. This is reflected in the fact
that, on the syntactic level, most of the notions use intersection: be it to require
a state to be better for all agents or to check whether a better state of the system
can be achieved. But in general a boolean modal logic with complement and
intersection can express a lot of relevant notions, suggesting that social-choice
and game-theoretical reasoning in a modal logic setting about models in which
the representation of coalitional powers is greatly simplified need not require
logics with a SAT problem worse than EXPTIME. Finally it is interesting to note
that strong notions of stability (strong Nash stability) or of efficiency (strong
Pareto-effiency) are easier to express than their weak counterparts (Nash stability
and Pareto-efficiency) for which a decidable modal logic needs to be looked for
outside the space of logics we have been considering, using a more refined scale
of candidate modal logics. We now turn to the global notions.



176 Chapter 7. Logics of cooperation: Expressivity and complexity

7.6.2 Defining global notions

We now present our findings for global notions and similarly their corollaries in
terms of upper bounds on the complexity of a modal logic that can define them.

Axiom Best SAT MC

Language
PowG1

∧

C⊆N
((〈C〉ϕ ⇒ [C]ϕ) ∧ 〈C〉⊤) L(N) PSPACE[113] P[74]

PowG2
∧

C:|C|<|N|/2
[C]⊥ L(N) PSPACE[93] P[74]

PowG3
∧

C⊆N(〈C〉ϕ ⇒ [C]ϕ) L(N) PSPACE[113] P[74]

PowG4
∧

C⊆N

∧

D⊇C
(〈C〉ϕ ⇒ 〈D〉ϕ) L(N) PSPACE[93] P[74]

PowG5 〈C〉⊤ ⇒
∧

D:C∩D=∅(〈D〉ϕ ⇒ 〈C〉ϕ) L(N) PSPACE[113] P[74]
PrefG1 ϕ ⇒ 〈≤i〉ϕ L(N) PSPACE[93] P[74]
PrefG2 〈≤i〉〈≤i〉ϕ ⇒ 〈≤i〉ϕ L(N) PSPACE[113] P[74]
PrefG3 (p ∧ Eq) ⇒ (E(p ∧ 〈≤i〉q) ∨ E(q ∧ 〈≤i〉p)) L(N, E) EXPTIME[144] P[114]
PrefG4 Conjunction of the 3 previous axioms L(N, E) EXPTIME[101] P[114]
PrefG5 see below L(N) PSPACE[93] P[74]
PrefG6

∧

i∈N(@j〈≤i〉k ∨ @kj ∨ @k〈≤i〉j) L(N, @, i) PSPACE[8] P[76]
PrefG7 PrefG5 ∧ PrefG6 ∧ (

∧

i∈N(j ⇒ ¬〈≤i〉j)) L(N, @, i) PSPACE[8] P[76]
PrefG8

∧

i∈N ((〈≤i〉ϕ ⇒ [≤i]ϕ) ∧ 〈≤i〉⊤) L(N) PSPACE[93] P[74]
PrefG9 〈C〉j ↔

∧

i∈C〈≤i〉j L(N, i) PSPACE[8] P[76]
PrefG10 〈C〉p ↔

∨

i∈C〈≤i〉p L(N) PSPACE[113] P[74]
PrefG11 〈C〉j ↔

∨

D⊆C&|D|> |C|
2

(
∧

i∈D〈≤i〉j) L(N, i) PSPACE[8] P[76]

PPG1 〈C〉ϕ ⇒
∧

i∈N〈≤i〉ϕ L(N) PSPACE[93] P[74]
PPG2

∨

i∈N A
∧

C⊆N
(〈C〉ϕ ⇒ 〈≤i〉ϕ) L(N, E) EXPTIME[144] P[114]

PPG3
∧

i∈N

∨

C⊆N
(≤i∪ ≤i)〈≤i ∩ C〉⊤ L( ,∩,∪) EXPTIME[120] P[114]

PPG4 see below L(N, i) PSPACE[8] P[76]

PPG5
∧

C 6⊇{i}[
C
→]⊥ L(N) PSPACE[113] P[74]

PPG6 〈C〉ϕ ⇒
∨

D⊂C
〈D〉ϕ L(N) PSPACE[93] P[74]

PPG7
∧

i∈N E
∧

C 6⊇{i}[C]⊥ L(N, E) EXPTIME[8] P[76]

∧

i∈N

(j ∧ 〈≤i〉(k ∧ ¬〈≤i〉j ∧ 〈≤i〉(l ∧ ¬〈≤i〉k))) ⇒ j ∧ 〈≤i〉(l ∧ ¬〈≤i〉j) (AxPrefG5)

[p ∧ 〈i〉q ∧ 〈≤i〉(q ∧ 〈≤i〉¬p)] ⇒
∧

i∈C⊆N

[(〈C〉r ∧
∧

D⊆C\i

¬〈D〉r) ⇒ 〈≤i〉(r ∧ ¬〈≤i〉p)] (PPG4)

From our earlier closure results for these notions there is no suprise in the
fact that most of these notions are definable in the basic modal languages, cor-
responding to the earlier mentioned fact that on the level of frames modal logic
is really a fragment of MSO. More generally global notions will generally not be
responsible for the complexity cost when designing a modal language to reason
about coalitional power and preferences. This remark is to be balanced by the
fact that we generally use very big conjunctions or disjunctions that might well
be exponential if we take the number of agents as a parameter for the complexity
results.

The conclusion will give a bigger picture. For now let us indicate, based on
our current work, lines that seem worth exploring:
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• Since dealing with real coalitional powers is probably more natural using
neighborhood semantics, it will be useful to do the same work for modal
logics of the CL-type or of the type of one of its normal simulations [53].

• More generally the preceding invariance and definability results (as well as
their corollaries in terms of complexity) depend on the choice of models.
[63] investigates how the expressive power and complexity requirements are
affected by the choice of models.

• It would be interesting to obtain similar invariance results and upper bounds
on the complexity of the logics needed to encode concrete arguments from
SCT and (cooperative) GT, thus addressing the complexity of actual rea-
soning about cooperative situations.

• From our definability results we could obtain upper bounds (on SAT) and on
the combined complexity of model checking of logics able to express certain
notions from SCT and GT. The converse road would be to use complexity
results from computational social choice and algorithmic game theory to
obtain lower bounds on its data complexity.3 As an example: a way to go
could be to take a hardness result for the problem of determining whether
a profile of strategies is a pure Nash equilibrium of a given game (with
respect to some reasonable and qualitative encoding of games) as a lower
bound on the data complexity of model-checking of a logic that can express
this notion.

• In order to obtain a complete picture of the complexity of reasoning about
cooperation, we need a procedure to assess the LB of the complexity of
modal logics that can express some notion.

• Our definability results made use of very big conjunctions and disjunctions.
It would be interesting to check how the length of these formulas is related
to a more reasonable input such as the number of agents. (Taking conjunc-
tions/disjunctions over all coalitions, they will be exponentially related.)

• We could also consider the complexity effects of using more succinct lan-
guages that have more modalities, e.g. a modality 〈Most ≤〉ϕ, read: “there
is a ϕ-state that a majority of agents finds at least as good as the current
one” (cf. e.g. [2]).

3When measuring combined complexity both the formula and the model are part of the
input, while when measuring data complexity, the formula is fixed and the model is the input
(see [151]).
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7.7 Conclusion

We investigated how reasoning about coalitional powers and preferences in a
modal logic setting is demanding in expressive power, by giving invariance and
definability results for notions inspired from game theory and social choice theory
with respect to models in which the representation of coalitional power is greatly
simplified.

Major sources. The point of departure of this chapter was the recent develop-
ment of different modal logical systems involving both preferences and coalitional
power in a number of works such as Kurzen [112], Ågotnes et al. [1]. The par-
ticular models we chose can be seen as a generalization of Segerberg [143] for
coalitions instead of single agents (complemented with preferences). The notions
of a Pareto-efficient and of a Nash-stable state were considered independently in
[140]. Finally the tightness of our definability results, given our invariance results,
is backed up by characterization and invariance results for (extended) modal lan-
guages; we refer to Appendix B for references. The papers proving the complexity
results for different modal languages from which we obtain our corollaries are too
numerous to list here, the tables have pointers to the relevant papers.

Our main results. This chapter identified natural notions for reasoning about
cooperation: local notions giving properties of a state of a system and global no-
tions defining a class of frames. We provided satisfiability (resp. validity) invari-
ance results for these notions for a large class of operations and relations between
models (resp. frames). We also gave explicit definability results and observed, on
the one hand, that defining frames for cooperation logics is not too demanding in
terms of expressive power, as most of the notions considered are definable in the
basic modal language. On the other hand, our results show that local notions call
for modal logics for which satisfaction is not invariant under bounded morphisms.
However, as long as we avoid converse modalities, interesting reasoning about co-
operation can be done within GSM-invariant modal languages. Though this fact
does not directly lead to a nice upper bound on the complexity of the logic’s SAT

(nor to its decidability), our definability results show that most of the considered
notions can (individually) be expressed in MLs in EXPTIME. Moreover, for sev-
eral notions we only found logics with undecidable SAT that could express them.
All these notions involve the idea of a “strict” improvement (e.g. Nash-stable,
Pareto-efficient). By contrast, strong notions of stability and efficiency (EF3,
ST2, ST4) are all expressible in logics with SAT in PSPACE. Thus, we could say
that “expressing strictness” and therefore “weak” notions are dangerous, while
“strong” notions (looking only at the weak preference relation) are safe.

The last step. This chapter has turned the focus from belief change to prefer-
ences and coalitional power, extending our logical analysis based on modal logics
to a complementary dimension of intelligent interaction. The next chapter con-
cludes this dissertation.
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Conclusion: reasoning about reasoning

Modeling rational agents’ reasoning in interactive contexts and identifying its
logic is the general analytic project to which this dissertation contributes. The
borders of this project run through economics, computer science and philosophy.
It includes several theoretical lines that we have connected. Interactive episte-
mology is the study of interactive reasoning: how agents entertain beliefs and
reason about the beliefs of other agents. Formal learning theory is the study of
the conditions under which agents can reach stable beliefs or identify a correct
hypothesis from a stream of data. Epistemic game theory is a theory of how ra-
tional agents would make decisions based on their beliefs in strategic interactive
situations. In all these systems, beliefs, interactive beliefs, and their evolution as
informational processes unfold are at stake.

This dissertation has connected these themes by developing one single logical
framework. For this purpose, we operated at the interface of two major logics
of belief change: the temporal approach and the dynamic approach. Concretely,
we connected and merged the two families of logics, first at a structural semantic
level and then at a syntactic one. Subsequently, we applied the resulting system
to analyze what happens to agents’ beliefs over time when agents communicate,
learn, interact, and reason interactively, inductively, or strategically.

Chapter 2 identified the main structural properties of belief revising agents
over time, and Chapter 3 then formulated its main logical proof principles. This
chiefly took the form of semantic representation theorems, plus a completeness
theorem for changing beliefs in a temporal logic that admits protocols. Chapter
4 identified common belief of posteriors in suitable structures as a key sufficient
condition for agents to reach agreement, and iterated announcement of beliefs
as a major way of reaching it. We also determined the right family of static
and dynamic logics to reason about agreement, and found agreement results,
invariance results, and concrete syntactic proofs of agreement results. Chapter
5 investigated the logical principles behind inductive learning and in particular
behind the key notion of finite identifiability. This took the form of a reduction
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of the problem of identifiability to a problem of model-checking for an epistemic
temporal logic, plus further representation results. Chapter 6 took the dynamic-
temporal logical viewpoint to the building blocks of strategic reasoning: solution
algorithms, rationality, equilibrium, and expectations, discussing the importance
of belief change for the epistemic foundations of game theory. We gave many
concrete scenarios sketching a bigger picture. Chapter 7 completed the whole
approach with two further key aspects of agency: preferences, and coalitional
powers. We explored the logical expressive power demanded by notions imported
in this area from social choice theory and cooperative and non-cooperative game
theory, in terms of modal invariance and definability.

Some major open problems

This dissertation has made a number of connections, but in doing so, it raises an
even larger number of new issues. From where we stand now, what are the most
important tasks that lie ahead?

Question 8.1. Can agreement be reached via soft updates?

Public announcements of beliefs really represent a type of disagreement-solving
scenario in which agents take belief announcement as hard information. In the
preceding chapters we have extensively discussed soft dynamics such as lexico-
graphic upgrade. What if agents instead of eliminating incompatible states, sim-
ply re-arrange their plausibility ordering: will they reach agreement in the limit?
Does one need to make stronger assumptions about their prior beliefs? Will in
general more radical or more conservative types of updates bring faster conver-
gence?

Question 8.2. What are the logical principles of function learning?

Question 8.3. What are the logical principles of identification in the limit?

The connection between modal logics of belief change and learning theory is
just emerging. We focused on a very specific type of learning: with languages
viewed as sets of natural numbers, and a very specific notion of convergence:
finite identifiability. The next step would be an analysis of function learning and
less demanding notions of convergence such as identification in the limit. The
full generality of soft updates based on plausibility event models and priority
update might be useful for the study of identification in the limit. Function
learning sounds somewhat more challenging for a stepwise approach to belief
change, since the environments are no longer closed under permutation and might
call for history-dependent learning strategies.

Question 8.4. What is the complete logic of expectations?
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Question 8.5. What is the complexity of the logic of expectations?

We gave an outline for a logic of expectations in branching time. Technically, its
semantics has features of other logics of agency, but does not seem to match them
precisely. It would be of interest to obtain an axiomatic completeness result, or
a proof of higher complexity. Axiomatic completeness results for CTL

∗ or STIT

might be relevant here.

Question 8.6. What are the logical principles of dynamic agreement results based
on public announcement?

We stated static agreement results and gave a syntactic proof matching one of
them. We also stated dynamic results, with conditions under which agents will
end up agreeing. The syntactic counterpart for these dynamic results might live
in the region of inflationary modal fixed-point logics. But where exactly is a
major open question.

Question 8.7. What are reasonable notions of identifiability under imperfect
observation?

Question 8.8. What happens when learners can communicate?

Formal learning theory usually focus on learning situations in which learners try
to converge to some hypothesis from unambiguous data. What happens if instead
they are replaced by signals whose interpretation might be unclear or that might
be noisy? What would be reasonable concepts of identifiability in such situations?
We suggested that communication between learners plays a role in these contexts.
Can this role be analyzed systematically?

Question 8.9. What are the effects of the choice of protocol on identifiability of
sets?

Question 8.10. What are the effects of the choice of protocol on dynamic agree-
ment results?

Question 8.11. Can argumentative and dialogical scenarios be analyzed from the
perspective of ‘dynamic-temporal’ logics?

Restricting attention to particular classes of protocols might lead to scenarios
in which learning is impossible or on the contrary trivial. The same is true for
reaching agreements. In between are many interesting non-equivalent protocols.
Can the effect of varying the protocols be studied in a systematic manner? Very
concrete protocols are those considered by some argumentative and dialogical
games. Is it possible to account systematically for some of these games from the
perspective of dynamic-temporal logic of belief change?

Question 8.12. How can one define lower bounds for the complexity of classes
of logics of cooperation?
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Question 8.13. What are the lower bounds of the data complexity of model check-
ing notions from social choice and game theory when the size of the input is taken
to be that of the model? — of the number of possible allocations? — of the number
of profiles of pure strategies?

From definability results we obtained upper bounds on the combined complexity
of model checking for modal logics of cooperation. Our invariance results showed
that these results are tight to some extent. It would be interesting to also find
lower bounds on the data complexity of model checking these notions. Results in
the computational social choice literature or in algorithmic game theory should
be relevant here. But they usually take the number of agents or resources as input
size, while a logical approach would take size of the model, generally exponentially
bigger, calling for logarithmic hardness results.

More specific open problems have been stated at many places in this disser-
tation. We mention just a few:

• extend the completeness proof of Chapter 3 to interactive doxastic notions
such as common belief,

• find a logic in which static agreement results can be derived syntactically,
that would be finitely axiomatizable,

• extend the automatic Sahlqvist correspondence technique to doxastic and
dynamic formulas, and similarly, for other correspondence algorithms such
as structure-seeking dialogues.

A final thought

The outline of a logical theory of rational agency and intelligent interaction
has been sharpening continuously in recent research. This dissertation has con-
tributed its share, focusing on informational processes and logics of belief change
over time. In our view, this logical theory is not meant to be a lonely helium
balloon.

Loneliness. A logical theory of rational interaction is not meant to stand by
itself, since it can only work properly in interaction with other fields that analyze
human reasoning and human interaction. This dissertation has built connections
in that spirit.

Helium balloon. It is not meant to be a purely analytical theory dealing
with how theoretical agents would reason and interact, but also to explain how
real agents with their cognitive limitations do reason and interact. But if so, it
cannot ignore empirical data about real people. Giving a logical account of the
cognitive limitations of real agents might sound like a recurring open problem
but we do think that moving towards reality is one of the most challenging and
exciting steps.
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Some basics of interactive epistemology

We introduce the framework considered by [13, 11, 12] and Osborne and Ru-
binstein [127, ch.5] to encode the beliefs and information (or knowledge) of the
agents.

Definition A.1 (Information function). Given a set of states Ω let an informa-
tion function be a function I : Ω → ℘(Ω) such that

1. ω ∈ I(ω) for every ω ∈ Ω

2. I(ω) = I(ω′) whenever w′ ∈ I(w)

An information function really induces a partition on Ω.

Definition A.2 (Aumann probabilistic model of knowledge and beliefs). Given
a countable set of states Ω and a finite set of agents N, a probabilistic model for
knowledge and belief is of the form 〈Ω, (Ii),Σ, N, (πi)i∈N〉 where for each i ∈ N ,
Ii : Ω → ℘(Ω) is an information function, Σ is a σ-algebra over Ω such that for
all i ∈ N and ω ∈ Ω, Ii(ω) ∈ Σ, and πi is a (prior) probability measure on Ω.

Elements of Σ are called events. They can be thought of as the natural
semantic counterpart of a non-doxastic, non-epistemic formula, e.g. the time at
which a particular movie is played in a given theater. Intuitively Ii(ω) encodes
the information or knowledge of i at ω. Agent i knows that E at ω if and only if
E ⊆ Ii(ω). πi gives the prior (probabilistic) beliefs of i. Finally the (probabilistic)
beliefs of agent i at ω are obtained by conditioning on his information function.
Formally the posterior probability that i assigns to an event E ∈ Σ at a state ω
is

πi(E | Ii(ω)) =
πi(E ∩ Ii(ω))

πi(Ii(ω))

Before we state an important result about such probabilistic models of knowledge
and beliefs we need to make a few remarks and introduce a new notion. It is easy
to see that the agents’ information (or knowledge) could equivalently be encoded
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by an equivalence relation and doing so is actually standard within qualitative
approaches this dissertation is in line with and as introduced in Subsection 1.3.2.
In this context we introduced a notion of common knowledge which is different
but equivalent on partitional (and relational) structures to the one Aumann [13]
is using. We will state Aumann’s definition for the case of two agents.

Let E be an event. Intuitively it is common knowledge between agent 1 and
agent 2 that E iff 1 knows that E, 2 knows that E, 1 knows that 2 knows that
E, 2 knows that 1 knows that E, 1 knows that 2 knows that 1 knows that E and
so on. We use the equivalent definition of Osborne and Rubinstein [127], ch.5

Definition A.3 (Osborne and Rubinstein [127, ch.5]). An event F ∈ Σ is self-
evident if for i = 1, 2 and for all ω ∈ F , Ii(ω) ⊆ F .

Definition A.4 (Aumann [13], Osborne and Rubinstein [127, ch.5]). An event
E ∈ Σ is common knowledge between 1 and 2 at ω if there is a self-evident event
F such that ω ∈ F ⊆ E.

We can now state an important result due to Aumann.

Theorem A.5 (Aumann [13]). Suppose that Ω is finite and that agents 1 and
2 have the same prior belief (probability measure). If the posteriors that 1 and
2 assign to an event E are common knowledge between them at a state ω, then
these posteriors must be equal.
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Some basics on modal definability and
invariance

One can ask two different things about a modal language with respect to de-
finability. The first one is whether it is able to distinguish between two given
relational models with a distinguished state (pointed models). In this case invari-
ance results can help us (Section B.1). The second one is whether the language is
able to define a class of frames of interest. For this task one can draw on closure
results (Section B.2). In general Blackburn et al. [39] and ten Cate [55] are very
useful sources and the interested reader is referred to them for details.

B.1 Distinguishing pointed models

Given a modal language and two situations for which we have an adequate rep-
resentation as pointed models, how can we determine if some formula of the
language will be able to make the distinction? An equivalent question is whether
there is a formula ϕ in this particular language such that M, w 
 ϕ iff M, w
has some property of interest. Depending on the language we can draw on ex-
isting characterization results that establish invariance criterion for definability.
We give two classical characterization results and refer to [39, 55] for details and
additional results. And then we introduce the relevant operations and relations
on pointed models that we will be using in this dissertation.

Background results. We indicate two classical characterization results. For
details see [39, 55]. Let ϕ(x) be a formula of the FO correspondence language with
at most one free variable. [27] proved that ϕ(x) is invariant under bisimulations
iff ϕ(x) is equivalent to the standard translation of a modal formula. While
[9, 73] proved that ϕ(x) is invariant under taking generated submodels iff ϕ(x) is
equivalent to the standard translation of a formula of L(N, ↓,@, x).

We first introduce some relations between models. Let τ be a finite modal
similarity type with only binary relations. Let M = 〈W, (Rk)k∈τ , V 〉 and M′ =

185



186 Appendix B. Some basics on modal definability and invariance

〈W ′, (R′
k)k∈τ , V

′〉 be models of similarity type τ .

Definition B.1 (Bisimulations). A bisimulation between M and M′ is a non-
empty binary relation Z ⊆ W ×W ′ fulfilling the following conditions:
Atomic Harmony For every p ∈ prop, wZw′ implies w ∈ V (p) iff

w′ ∈ V ′(p).
Forth ∀k ∈ τ , if wZw′ & Rkwv then ∃v′ ∈W ′ s.t. R′

kw
′v′

& vZv′.
Back ∀k ∈ τ , if wZw′ & R′

kw
′v′ then ∃v ∈ W s.t. Rkwv

& vZv′.

In a nutshell, ∩-bisimulations (resp. Cbisimulations) require that Back and Forth

also hold for the intersection (resp. the converse) of the relations. H-Bisimula-
tions extend Atomic Harmony to nominals. Tbisimulations (H(@)-bisimulations)
are total1 bisimulations (resp. total H-bisimulations). H(E)-bisimulations are H-
bisimulations matching states “with the same name”. See [55] for details. We
now define bounded morphisms, generated subframes and disjoint unions.

Definition B.2 (BM). f : W → W ′ is a bounded morphism from M to M′ iff:
Atomic Harmony For every p ∈ prop, w ∈ V (p) iff f(w) ∈ V ′(p).
R-homomorphism ∀k ∈ τ , if Rkwv then R′f(w)f(v).
Back ∀k ∈ τ , if R′

kf(w)v′ then ∃v ∈ W s.t. f(v) = v′ and
Rkwv.

Definition B.3 (Generated submodel). We say that M′ is a generated submodel
(GSM) of M iff W ′ ⊆ W , ∀k ∈ τ, R′

k = Rk ∩ (W ′ ×W ′), ∀p ∈ prop, V ′(p) =
V (p) ∩ (W ′ ×W ′) and if w ∈W ′ and Rkwv then v ∈W ′.

In some cases we will be interested in the submodel generated by a particular
subset A of the domain.

Definition B.4 (A-Generated submodel). Let us give the definition for the con-
crete case of epistemic plausibility models M = 〈W, (≤i)i∈N , (∼i)i∈N , V 〉 and
A ⊆W . The submodel of M generated by A (or A-generated submodel), that we
write MA is defined as follows: MA = 〈WA, (≤A

i )i∈I , (∼
A
i )i∈I , V

A〉, where:

• WA = W ∩ A;

• For each i ∈ N , ≤A
i =≤i ∩(WA ×WA);

• For each i ∈ N , ∼A
i =∼i ∩(WA ×WA);

• For each v ∈WA, v ∈ V A(p) iff v ∈ V (p).

We write Sub(M) = {M′ is the A-generated submodel of M | A ⊆ |M|}
and M′ ⊑ M whenever M′ ∈ Sub(M).

1Z ⊆ W × W ′ is total iff ∀w ∈ W ∃w′ ∈ W ′ wZw′ & ∀w′ ∈ W ′ ∃w ∈ W wZw′.
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Definition B.5 (Disjoint Unions). Let (Mj)j∈J be a collection of models with
disjoint domains. Define their disjoint union

⊎

j Mj = 〈W,R, V 〉 as the union of
their domains and relations, and define for each p ∈ prop, V (p) :=

⋃

j Vj(p).

Definition B.6 (Invariance). A property of pointed models Φ(X, y) is invariant
under λ-Bisimulations iff whenever there exists a λ-bisimulation Z between M
and M′ such that (w,w′) ∈ Z, then Φ(M, w′) holds iff Φ(M′, w′) holds. Invari-
ance for other operations is defined similarly.

Similar results and tools can help us determine whether a modal language can
define a given class of frames.

B.2 Defining classes of frames

First of all, we define what it means for a formula to be valid on a class of frames.

Definition B.7 (Validity on a class of frames). We say that a formula ϕ is valid
on a class of frames F iff for any frame F ∈ F and any model M based on F , at
all states w in Dom(F), M, w 
 ϕ. We write F 
 ϕ.

By defining a class of frames F, we mean finding a formula ϕ such that for
every frame F we have F 
 ϕ iff F ∈ F.

In the case of definability of classes of frames we will be interested in closure
conditions. In fact we will mostly be interested in using the following result to
prove that certain classes of frames are not definable in basic modal languages.
Background result. We indicate one classical characterization result on the
level of frames. For details see [39, 55]. Goldblatt and Thomason [88] proved
that a first-order definable class of frames is modally definable iff it is closed
under taking BMI, GSF, disjoint unions and reflects ultrafilter extensions.

Let us now introduce the definitions of the relevant closure conditions. First,
we consider bounded morphic images (BMI) of frames. BM on frames are obtained
by dropping Atomic Harmony in Def. B.2. A class of frames is closed under BMI

iff it is closed under surjective BM. Next, we consider closure under generated
subframes (GSF) — the frame-analogue to GSM (cf. Def. B.3). We also check if
properties reflect GSF. A property ϕ reflects GSF if whenever for every frame F ,
it holds that every GSF of F has property ϕ, then so does F . We also consider
closure under taking disjoint unions (DU) of frames, which are defined in the
obvious way. Moreover, we look at closure under images of bisimulation systems
[55], which are families of partial isomorphisms.

Definition B.8 (Bisimulation System). A bisimulation system from a frame F
to a frame F ′ is a function Z : ℘(W ′) → ℘(W ×W ′) that assigns to each Y ⊆W ′

a total bisimulation Z(Y ) ⊆W ×W ′ such that for each y ∈ Y :
1. There is exactly one w ∈W such that (w, y) ∈ Z(Y ).
2. If (w, y), (w,w′) ∈ Z(Y ), then w′ = y.
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Additional proofs for Chapter 2

We prove a general representation theorem similar to the one in Section 2.7 and
1.8, for unified (or local) plausibility models (as introduced in Definition 1.17).
Representing the local priority updaters (cf. Definition 2.24) in unified (or local)
doxastic temporal terms. We recall Definition 2.24.

Definition. The local priority update of a unified doxastic plausibility model
M = 〈W, (�i)i∈N , V 〉 and a �-event model ǫ = 〈E, (�i)i∈N , pre〉 is the unified
plausibility model M⊗ ǫ = 〈W ′, (�′

i)i∈N , V
′〉 constructed as follows:

• W ′ = {(w, e) ∈W ×E | M, w 
 pre(e)},

• (w, a) �′
i (w

′, b) iff one of the following clauses holds:

1. a�i b, b 6�a and w � w′ ∨ w′ � w

2. a�i b, b� a and w � w′,

• V ′((s, e)) = V (s).

As mentioned in Section 2.9.3 our basic temporal doxastic agent properties in
this setting are:

• �-Perfect Recall : If ha� h′b we have h� h′ ∨ h′ � h.

• �-Preference Propagation : If h� h′ and ja� j′b then also ha� h′b.

• �-Preference Revelation : If ha� h′b ∧ jb� j′a, also h� h′.

• �-Accommodation : If (ja� j′b, h′ � h and ha 6�h′b), for all ga, g′b ∈ H
(g � g′ ↔ ga� g′b), and for all g′a, gb ∈ H (g � g′ ↔ gb� g′a).

For simplicity we fix the precondition language here to be that of safe belief on
local plausibility ordering. But for the reasons mentioned in Chapter 2 the result
generalizes for more languages by adjusting the notion of bisimulation invariance.

189
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Theorem C.1. Let H be any local doxastic-temporal model with a local plausi-
bility order. Then the following two assertions are equivalent:

1. There exists a local plausibility model M and a sequence of local plausibility
event models ~ǫ such that H is isomorphic to the forest generated by the
Priority Update of M by the sequence ~ǫ.

2. H satisfies Propositional Stability, Synchronicity, �-bisimulation invari-
ance, �-Perfect Recall, �-Preference Propagation, �-Preference Revelation
and �-Accommodation

Proof. Necessity (1 =⇒ 2). We show that the given conditions are satisfied by
any local DoTL model generated through successive priority updates along some
given protocol sequence. Propositional Stability and Synchronicity are straight-
forward from the definition of generated forests.

�-Preference Propagation. Assume that ja� j′b; it follows by definition of
local priority update that a � b. Now assume h � h′, it follows that in all cases
(b� a or b 6�a) we have by local priority update ha� h′b.

�-Preference Revelation. Assume that ha � h′b, it follows that a � b. As-
suming jb�j′a, we get b�a. It follows from the definition of local priority update
that h� h′.

�-Perfect Recall. Perfect recall is (almost) immediate from the definition of
local priority update.

�-Accommodation. Assume that h′ � h, za� z′b and ha 6�h′b. Now assume
for a contradiction that a� b. It follows by local priority update that ha� h′b, a
contradiction. Now assume that a 6�b, it follows by the definition of local priority
update, that za 6�z′b. But then a ∼= b. By definition it is easy to show that
the local plausibility relation is invariant under updates a and b, i.e. a and b are
�-accomodating.

Sufficiency (2 =⇒ 1). Given a local DoTL model H satisfying the stated
conditions, we show how to construct a matching doxastic plausibility model and
a sequence of event models.

Construction. Here is the initial plausibility model M0 = 〈W, (�0
i )i∈N , V̂ 〉:

• W := {h ∈ H | len(h) = 1}

• Define h�0
i h

′ whenever h�i h
′.
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• For every p ∈ prop, define V̂ (p) = V (p) ∩W

We construct the j-th event model ǫj = 〈Ej, (�
j
i )i∈N , prej〉 as follows:

• Ej := {e ∈ Σ | there is a history of the form he ∈ H such that len(h) = j}

• For each i ∈ N , define a�
j
i b iff

– either there are ha, h′b ∈ H such that len(h) = len(h) = j and ha �i

h′b.

– or if for all g, g′, ga, g′b ∈ H we have ga � g′b iff g � g′ and similarly
when switching a and b — in other words if a and b always preserve
and anti-preserve the previous order — in which case we put a ∼= b
(i.e. a � b and b � a). Whenever such a situation occurs, we say that
a and b are accommodating. When this step is not involved in the
construction of the plausibility order in an event model, we say that it
is constructed in a normal way.

Equivalence: h� h′ iff h�F
DDL h

′. We now prove by induction on the length
of the histories that h� h′ iff h�F

DDL h
′.

Assume that len(h) = len(h′) = 1; then it is straightforward to see that plau-
sibility is preserved and anti-preserved in the epistemic model by the construction,
and therefore preserved in the generated ETL forest (again by construction).

Now for the induction step.

From DoTL to Forest(DEL)

Case 1. h� h′, ha� h′b Assume ha� h′b. By construction a� b. Since h� h′,
by IH h�F

DDL h
′ and thus at least one clause of local priority update applies and

we have ha�F
DDL h

′b.

Case 2. h 6�h′, ha � h′b Assume ha � h′b (1). It follows by construction that
a � b (2). It also follows by �-Perfect Recall that h � h′ ∨ h′ � h, and by IH
that h�F

DDL h
′ ∨ h′ �F

DDL h (3). Moreover since by hypothesis h 6�h′ (4) we have
h′ � h (5).

By (1) and (4) we know that a and b are not �-accomodating (6). But
by contraposition of �-Preference Revelation, (1) and (4), we have that for all
j′a, jb ∈ H jb 6�j′a (7). But by (6) we know that only the normal part of the
construction has been used, so that b 6�a (8).

Finally it follows from (1) that a � b (9). But by (3), (9), (8) and the first
clause of local priority update it follows that ha�F

DDL h
′b.

Converse direction: From Forest(DEL) to DoTL
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Case 1: h�F
DDL h

′, ha�F
DDL h

′b. Assume that h�F
DDL h

′; it follows by IH that
h�h′ (1). Now assume for a contradiction that ha 6�h′b (2). It follows that a and
b are not accomodating and thus that the local plausibility relation is defined in
a normal way. Now assume that ha�F

DDL h
′b. It follows by the definition of local

priority update that a � b and thus (by normality of the construction) that for
some ja, j′b ∈ H , ja � j′b but then by �-Preference Propagation and (1) we have
ha� h′b, contradicting (2).

Case 2: h 6�F
DDLh

′, ha �F
DDL h

′b. This is the only place where we make use
of the abnormal part of the construction of the plausibility relation in the event
models (and of axiom G3).

Assume that h 6�F
DDLh

′, ha �F
DDL h

′b. It follows by the definition of local
priority update that a � b (1), b 6�a (2) and h′ �F

DDL h (3). From (2) it follows
that a and b are not accomodating (4) (for otherwise the construction would give
us a ∼= b). But then by (1) and normality of the construction, it follows that
there are some ja, j′b ∈ H with ja� j′b (5).

Moreover by (3) and IH it follows that h′ � h (6).
Now assume for a contradiction that ha 6�h′b (7). It follows from (5), (6), (7)

and �-Accommodation that a and b are accomodating, contradicting (4). Thus
by reduction from (7) we have ha � h′b. This concludes the proof for this case
and the induction. qed
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Additional proofs for Chapter 4

Proof of Fact 4.11 To show this result we introduce a few more definitions.

Definition D.1. Two epistemic plausibility models M and M′ are doxastically
bisimilar whenever there is a relation ↔ ⊆ W ×W ′ such that for all w ∈ W
and v ∈W ′, if w ↔ v then:

• For all p ∈ prop, w ∈ V (p) iff v ∈ V ′(p).

• Back and forth for ∼i.

– If w ∼i w
′ then there is a v′ ∈W ′ such that v ∼′

i v
′ and w′ ↔ v′.

– If v ∼i v
′ then there is a w ∈W such that w ∼′

i w
′ and v′ ↔ w′.

• For all formulas ϕ, back and forth for →
||ϕ||
i . We write →ϕ

i in what follows.

– If w →ϕ
i w

′ then there is a v′ ∈W ′ such that v →′ϕ
i v′ and w′ ↔ v′.

– If v →′ϕ
i v′ then there is a w ∈ W such that w →ϕ

i w
′ and v′ ↔ w′.

Two pointed models M, w and M′, v bisimilar, noted M, w ↔ M′, v, if w ↔ v.

Fact D.2. For all models M and M′, w ∈ W , v ∈ W ′ and ϕ ∈ LEDL, if
M, w ↔ M′, v then M, w 
 ϕ iff M′, v 
 ϕ.

Proof of Fact 4.11 In the following proof we often write [w]1 for K1[w].

Proof. Let the model M be as in the proof of Theorem 4.9 and M′ be defined as
follows, with I = {1, 2} in both cases. M′ = 〈W, I, (≤′)i∈I , (∼

′)i∈I , V
′〉 such that:

• W = {wo, we}.

• we <
′
1 wo and wo <

′
2 we.

• For both i ∈ I and w ∈W : [w]i = W .
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• V ′(p) = {wo} and V (q) = ∅ for all q 6= p in prop.

Observation D.3. In M there is a common prior and M, x 
 CBI(B1(¬p) ∧
B2(p)) for all x ∈ ZZ. In M′ the latter is common belief as well, at both w ∈ W ,
but 1 and 2 have different priors.

Define the relation ↔ ⊆ M×M′ as follows: x↔ wo for all odd integers x, and
x↔ we for all even integers.

Claim D.4. The relation ↔ is a bisimulation.

Proof. The propositional clause is trivial. It is easy to see that the clause for the
relations ∼i and ∼′

i is also satisfied. It remains to be shown that the clause for
the families of relations →ϕ

i and →′ϕ
i are also satisfied. We show this by induction

on ϕ. In fact we show something stronger, namely that for all ϕ:

1. If x→ϕ
i y and x↔ w then there is a w′ such that w →′ϕ

i w′ and y ↔ w′.

2. If w →′ϕ
i w′ then for all x↔ w there is a y such that x→ϕ

i y and w′ ↔ y.

3. If x is odd then x ∈ ||ϕ||M iff wo ∈ ||ϕ||M
′
, and if x is even then x ∈ ||ϕ||M

iff we ∈ ||ϕ||M
′
.

Base Case: ϕ ∈ prop. We only have to consider p.

1. Assume that x is odd and that x →p
i y. Observe that by construction

it can only be that min≤i
([x]i ∩ ||p||) = {x}, for both i = 1, 2. This means

that y = x, and so we are done, since wo →′p
i wo and x ↔ wo. Suppose

that x is even. Then x→p
1 y iff y = x− 1, again by construction. But since

y ↔ wo and we →
′p
1 wo, we are done. The case for x →p

2 y is similar, with
taking here y = x+ 1.

2. Consider first wo, and suppose that wo →′p
i w′. Observe again that

this can only happen if w′ = wo. Now take any x such that w0 ↔ x. By
definition any such x is odd, and thus x ∈ V (p). But we know, furthermore,
that min≤i

([x]i ∩ ||p||) = {x} for both i = 1, 2, and so we are done. The
case for we is entirely similar.

3. Follows directly from the definition of V and V ′.

Inductive Step. Our inductive hypothesis is that claims (1), (2) and (3) hold
for all ϕ′ of lower complexity than ϕ. We only show the cases for (1): the
arguments for (2) are entirely symmetrical, and the ones for (3) are simple
applications of the inductive hypothesis.

• ϕ := ¬ψ.

1. We only show the case where x is odd. The other one is similar, with
1 and 2 reversed. Suppose that x →¬ψ

i y. This means that M, y 6
 ψ.
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Consider first the case where x = y. Then M, x 6
 ψ, and thus by our
inductive hypothesis M′, wo 6
 ψ. This is enough to conclude that wo →

′¬ψ
2

wo, simply because we >
′
2 wo. So consider 1, for which we have that [x]1 =

{x, x + 1}. Since x >1 x + 1, it must be that M, x + 1 
 ψ. This means,
by the inductive hypothesis again, that M′, we 
 ψ. But since wo >

′
1 we,

we have that min≤′
1
([wo]1 ∩ ||¬ψ||) = {wo}, and so that wo →

′¬ψ
1 wo. The

reasoning for x 6= y is similar, again with 1 and 2 reversed.

• ϕ := ψ ∧ ξ.

1. We show again only the case where x is odd. Suppose that x →ψ∧ξ
i y.

Since x ↔ wo, we have to show that there is a w′ ∈W such that wo →
′ψ∧ξ
i w′

and y ↔ w′. Observe that either y = x or y = x+ 1 if i = 1 and y = x or
y = x−1 if i = 2, which means that in both cases y ∈ min≤i

([x]i∩||ψ||∩||ξ||)
iff

• either (*) y ∈ min≤i
([x]i∩||ψ||), in which case, by the first clause of the

inductive hypothesis, there is a w′ such that wo →
′ψ
i w′ and y ↔ w′;

• or (**) y ∈ min≤i
([x]i ∩ ||ξ||) in which case, again by the first clause

of the inductive hypothesis, there is a w′′ such that wo →′ψ
i w′′ and

y ↔ w′.

One can check that for each agent there is a unique w′ ∈ [wo]i such that
y ↔ w′, whatever y is, and so if both (*) and (**) hold then it must be
that w′ = w′′, which means that we are done. We show the case where only
(*) holds. For agent 1, this can only happen when x = y. By (*) and the
inductive hypothesis this means that wo →

′ψ
i wo, because there is no other

w′ ∈ [w]i such that x ↔ w′. By assumption, we know furthermore that
M, x 
 ξ, and so by the inductive hypothesis that M′, wo 
 ξ. It remains
to be shown to M′, we 6
 ψ. Since (**) does not hold, it has to be that
M, x + 1 
 ξ: we know that M, x 
 ξ and x >1 x + 1. This means that
M, x+1 6
 ψ, for otherwise we would have x+1 ∈ min≤1

([w]i∩||ψ||∩ ||ξ||),
against the minimality of x. By the inductive hypothesis, then we know
that M′, we 6
 ψ, as required. The case for agent 2 follows the same line,
except that (**) can only fail if x 6= y.

• ϕ := Kiψ.

1. Suppose that x is odd and x →
Kjψ

i y. We only show the case for i = 1.
Assume that j = 1 as well. Then M, y 
 K1ψ. By positive introspection
of Ki, this means that M, y′ 
 K1ψ for all y′ ∈ [x]1 = {x, x+ 1}, and since
Kiϕ → ϕ is also valid for Ki, we get that M, y′ 
 ψ for all such y′. By
the inductive hypothesis this means that M′, wo 
 ψ and M′, we 
 ψ, and
so that M′, wo 
 K1ψ and M′, we 
 K1ψ. Since y is either x or x + 1,
we get that for any w′ ↔ y, wo →′K1ψ

1 w′. Suppose now that j = 2 and
y = x. This means that M, x 
 K2ψ. Again by positive introspection
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and the truth axiom, we get that M, x 
 ψ and M, x− 1 
 ψ. Using our
inductive hypothesis twice, we conclude that M′, wo 
 ψ and M′, we 
 ψ.
But this covers all w′ ∈ [wo]2 = [wo]1, and in particular wo, so we have that
wo →

′K2ψ
1 wo. The same reasoning applies mutatis mutandis when y = x+1,

and if x is even.

• ϕ := Bξ
jψ.

1. Suppose that x is odd and x →
B

ξ
jψ

i y. Assume that i 6= j, and suppose
that i = 1, the argument for i = 2 being entirely symmetric. We first show
that it cannot be the case that y = x, for it would imply that M′, wo 
 Bξ

2ψ
while M′, we 
 ¬Bξ

2ψ, which is impossible since [wo]2 = [we]2. If x = y then
by the minimality of x within [x]1 ∩ ||Bξ

2ψ|| it must be that both:

• (*) M, x 
 Bξ
2ψ and

• (**) M, x+ 1 
 ¬Bξ
2ψ.

If (*) then for all y′ ∈ min≤2
([x]2∩||ξ||) we have that M, y′ 
 ψ. If [x]2∩||ξ||

is empty, then M, x 6
 ξ and M, x 6
 ξ, which means by our inductive
hypothesis that M′, wo 6
 ξ and M′, we 6
 ξ, and so that M′, wo 
 Bξ

2ψ
trivially. If x ∈ min≤2

([x]2 ∩ ||ξ||) ⊆ ||ψ||, then we know by the inductive
hypothesis that M, wo 
 ξ∧ψ. But since wo is ≤′

2-minimal in [wo]2, we can
conclude that M′, wo 
 Bξ

2ψ as well. Finally, if x 6∈ min≤2
([x]2 ∩ ||ξ||) ⊆

||ψ||, it must be that x →ξ
2 x − 1. By the inductive hypothesis we know

that wo →ξ
2 we, which can only happen if M′, wo 
 ¬ξ, from which we

can conclude that M′, wo 
 Bξ
2ψ. So from (*) we get that M′, wo 
 Bξ

2ψ.
Now, by (**) we know that there is a y′ ∈ min≤2

([x + 1] ∩ ||ξ||) such that
x 6∈ ||ψ||. This y′ is either x + 1 ↔ we or x + 2 ↔ wo. In the first case we
get from our inductive hypothesis that we →

′ξ
2 we, which can only happen

if min≤2
([x+ 1] ∩ ||ξ||) = {we}, and thus if M′, we 
 ¬Bξ

2ψ. In the second
case we get by the inductive hypothesis that M′, wo 
 ξ ∧ ¬ψ, from which
we also know that M′, we 
 ¬Bξ

2ψ, since wo is ≤′
2-minimal in [wo]2 and

Bϕ
i ϕ

′ → KiB
ϕ
i ϕ

′ is valid in epistemic plausibility models. From (**) we
thus know that M′, we 
 ¬Bξ

2ψ, which means in conjunction with (*) that
it cannot be that x = y.

Assume thus that x 6= y. This means that x →
B

ξ
2
ψ

1 x + 1. We are done

if we can show that wo →
′Bξ

jψ

i we, for which it is enough to show that

M′, we 
 Bξ
2ψ. That x →

B
ξ
2
ψ

1 x + 1 means that M, x1 
 Bξ
2ψ. From there

we reach the intended conclusion by following the same steps as above for
(*).

Suppose then that i = j = 1. Then x→
B

ξ
1
ψ

1 y. This means that M, y 
 Bξ
1ψ

and M, x 
 Bξ
1ψ because Bϕ

i ϕ
′ → KiB

ϕ
i ϕ

′ is valid in epistemic plausibility
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models. This means, first, x→⊤
1 y and thus by the inductive hypothesis that

there is a w′ ↔ y such that wo →
′⊤
1 w′, i.e. that w′ is ≤′

1-minimal in [wo]i.
If we can show that M′, wo 
 Bξ

1ψ then we are thus done. If M, x 
 Bξ
1ψ

because [x]i∩||ξ|| = ∅ then we are done. Otherwise, if M, x+1 
 ξ then by
the inductive hypothesis we know that M′, we 
 ξ ∧ ψ and so we are done
because we is ≤′

1-minimal in [wo]i = [we]i. If finally M, x + 1 6
 ξ but yet
[x]i∩||ξ|| 6= ∅ then it must be that M, x 
 ξ∧ψ. But then by the inductive
hypothesis we know that M′, wo 
 ξ ∧ ψ and M′, we 6
 ξ, which is enough
to show that M′, wo 
 Bξ

1ψ. The argument for i = j = 2 is symmetric.

• ϕ := CGψ.

1. The case when G is a singleton boils down to knowledge. So we consider

the case were G = {1, 2}. Assume x ↔ w (H) and x →
C{1,2}ψ

i y (0). By

definition of →
C{1,2}ψ

i it follows that M, y 
 C{1,2}ψ. By definition of M it
follows that for all z ∈ |M| = ZZ we have M, z 
 ψ. By IH it follows that
for all v ∈ |M′| we have M′, v 
 ψ. Moreover in both models C{1,2}ψ is
satisfied everywhere (1). Now assume that i = 1, and that x is even. It
follows that K1[x] = {x − 1, x}. Moreover x is the minimum of K1[x] (2).
So by (0), (1) and (2) we have x = y. Now we have x ↔ we and in the

second model we →
C{1,2}ψ

i we. Now assume that x is odd. It follows that
K1[x] = {x, x + 1}. Moreover x + 1 is the minimum of K1[x] (3). So by
(0), (1) and (3) we have x + 1 = y. Now we have y = x + 1 ↔ we and in

the second model wo →
C{1,2}ψ

i we. Now assume i = 2 and that x is odd. It
follows that K2[x] = {x − 1, x}. Moreover x is the minimum of K2[x] (2).
So by (0), (1) and (2) we have x = y. Now we have x ↔ wo and in the

second model wo →
C{1,2}ψ

i wo. Suppose finally that x is even. It follows that
K2[x] = {x, x+ 1}. Moreover x+ 1 is the minimum of K2[x] (3). So by (0),
(1) and (3) we have x + 1 = y. Now we have y = x + 1 ↔ wo and in the

second model we →
C{1,2}ψ

i wo.

• ϕ := CBGψ.

We have that x→CBGϕ
i y iff x→CGϕ

i y in M, and similarly in M′.

qed

This concludes the proof of the Claim and the whole argument. qed





Appendix E

Additional proofs for Chapter 5

In this appendix we give the proofs we omitted in Chapter 5 concerning multi-
agent learning. The main step to prove Theorem 5.29 will be to prove a No
Learning Theorem that can be stated as follows:

Theorem E.1. Whenever agents have the same background information and the
same observational powers, then there is no knowledge gain by forcing announce-
ment of conjectures between each step.

Formally, let M be a doxastic epistemic model that satisfies same initial in-
formation and P a local protocol for M in which all agents have the same ob-
servational capacities. Let For(M, P )[(∼i)i∈N ] be the doxastic epistemic forest
generated by M and P and For(M, !B(p))[(∼!B

i )i∈N ] be the doxastic epistemic
forest generated by M and !B(p). We have:

h ∼i h
′ iff !B(h) ∼!B

i !B(h′) for all i ∈ N.

Now for the proof of this theorem.

Proof of Theorem E.1. In the proof of this theorem we will need the following
fact and the two following lemmas.

Fact E.2 (DETL models satisfy belief introspection).
If Ki[h] = Ki[h

′] then Bi[h] = Bi[h
′].

Proof. Bi[h] = min≤i
Ki[h] = min≤i

Ki[h
′] = Bi[h

′]. qed

Lemma E.3 (Same Info Lemma). Let H=〈W,Σ, H, (≤i)i∈N , (∼i)i∈N , V 〉 be a
doxastic epistemic model satisfying SOC(i, j), PR(i, j), SYN(i, j) and SII(i, j).
It follows that for all h′, h ∈ H, we have h ∼i h

′ iff h ∼j h
′.

Proof. The proof is by induction on the length of h, h′. The proof by induction
is justified by SYN(i, j).
Base case is immediate by SII(i, j).
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Induction step. Assume that ve1 . . . en+1 ∼i we
′
1 . . . e

′
n+1 (a). By PR(i) we have

ve1 . . . en ∼i we
′
1 . . . e

′
n (b). But then by IH we have ve1 . . . en ∼j we

′
1 . . . e

′
n (c).

From (b), (c), (a) and SOC(i, j) it follows that ve1 . . . en+1 ∼j we
′
1 . . . e

′
n+1. The

other direction is of course identical. qed

Lemma E.4 (Inter-model No Miracles Lemma). Let M be a doxastic epis-
temic model. Let P be a local protocol for M. Let For(M, p) = 〈W,Σ, H, (≤i

)i∈N , (∼i)i∈N , V 〉 be the doxastic epistemic forest generated by M and P and
For(M, !B(p)) = 〈W,Σ ∪ {!B}, H !B, (≤i)i∈N , (∼

!B
i )i∈N , V 〉 be the doxastic epis-

temic forest generated by M and !B(P ). If we1 . . . en+1 ∼i ve
′
1 . . . e

′
n+1 and

w!B(e1 . . . en) ∼
!B
i v!B(e′1 . . . e

′
n), then w!B(e1 . . . en)en+1 ∼

!B
i v!B(e′1 . . . e

′
n)en+1.

Proof. By hypothesis we1 . . . en+1 ∼i ve
′
1 . . . e

′
n+1. But then by the definition of

product update we have en+1 ∼i e
′
n+1. By definition of !B(P ) it follows that

en+1 ∼!B
i e′n+1 (1). Now by hypothesis we have w!B(e1 . . . en) ∼!B

i v!B(e′1 . . . e
′
n)

(2). But then by (1), (2) and product update it follows that w!B(e1 . . . en)en+1 ∼
!B
i

v!B(e′1 . . . e
′
n)en+1. qed

We can now start with the proof of Theorem E.1.

Proof. The proof is by induction on the length of the history, which is allowed by
Synchronicity.1 We start with the easy direction: from right to left.
Base case Assume that !B(w) ∼!B

i !B(v). It follows by perfect recall that w ∼!B
i v.

But by construction the initial models are identical, thus w ∼i v.

Induction step. Assume that w!B(e1 . . . enen+1) ∼!B
i v!B(e′1 . . . e

′
ne

′
n+1). It fol-

lows by Perfect Recall that w!B(e1 . . . en)en+1 ∼!B
i v!B(e′1 . . . e

′
n)e

′
n+1 (1). By

Perfect Recall, it follows from (1) that w!B(e1 . . . en) ∼!B
i v!B(e′1 . . . e

′
n) (2). By

IH and (2) we have we1 . . . en ∼i ve
′
1 . . . e

′
n (3). But then by Lemma E.4, (1) and

(3) it follows that we1 . . . en+1 ∼i ve
′
1 . . . e

′
n+1.

Now for the more interesting direction: From left to right. We re-start count-
ing of propositions.
Base case. Assume that v ∼i w (1). We prove that v!B ∼!B

i w!B. Take an
arbitrary agent j. From (1) we have Ki[v] = Ki[w] (2). By SII(i, j) and (2) it
follows that:

Kj [w] = Ki[w] = Ki[v] = Kj [v] (3)

But then by belief introspection for j (Fact E.2) and (3) we have Bj [w] = Bj [v]
(4). Since j was arbitrary it follows from (4), (2) ”!B is the Belief Announcement
event” that w!B ∼!B

i v!B.

Induction step. Assume that ve1 . . . en+1 ∼i we
′
1 . . . e

′
n+1 (5). We prove that

w!B(e1 . . . en+1) ∼!B
i v!B(e′1 . . . e

′
n+1). First of all it follows from (5) and perfect

1In the following proof the usage of properties such as Synchronicity is justified by Corollary
5.16 when talking about For(M, p) and by another easy corollary, whose proof we omit, when
talking about For(M, !B(p)). We drop further reference to these two results in the proof.
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recall for i that ve1 . . . en ∼i we
′
1 . . . e

′
n (6). But then by (6) and IH we have

w!B(e1 . . . en) ∼
!B
i v!B(e′1 . . . e

′
n) (7).

Now take an arbitrary j ∈ N . By (6) and Lemma E.3 it follows that
ve1 . . . en∼jwe

′
1 . . . e

′
n (8). By IH and (8) we have v!B(e1 . . . en) ∼

!B
j w!B(e′1 . . . e

′
n)

(9). By (5) and Lemma E.3 we have ve1 . . . en+1 ∼j we
′
1 . . . e

′
n+1 (10).

Now from (10), (9) and uniform no miracles for j (for all events in Σ) it follows
that v!B(e1 . . . en)en+1 ∼!B

j w!B(e′1 . . . en)e
′
n+1 (11). Similarly from (5), (7) and

uniform no miracles for i (for all events in Σ) we have v!B(e1 . . . e1)en+1 ∼!B
j

w!B(e′1 . . . en)e
′
n+1 (12). By belief introspection for j and (11) it follows that

Bj [v!B(e1 . . . e1)en+1]=Bj[w!B(e′1 . . . en)e
′
n+1] (13). Since j was arbitrary it follows

from (13), (12) and “!B is the Belief Announcement event” that v!B(e1 . . . en+1)
∼!B
i w!B(e′1 . . . ene

′
n+1) qed

Proof of Theorem 5.29 We start by proving the following corollary which
will make it very easy to prove Theorem 5.29.

Corollary E.5. let M be a doxastic epistemic model that satisfies SII(N) and
P a local protocol for M such that P satisfies SOC(N). Let For(M, p) =
〈W,Σ, H, (≤i)i∈N , (∼i)i∈N , V 〉 be the doxastic epistemic forest generated by M
and p and For(M, !B(p)) = 〈W,Σ∪ {!B}, H !B, (≤i)i∈N , (∼

!B
i )i∈N , V 〉 be the dox-

astic epistemic forest generated by M and !B(p).
We have ∃h = wh′ ∈ Bi[ve1 . . . en] iff ∃h2 = wh3 ∈ B!B

i [!B(ve1 . . . en)].

Proof. The proof is by induction on the length of ve1 . . . en which is allowed by
the assumption of Synchronicity.2

Base case. We prove both directions simultaneously. By construction we have
for all v, w ∈W w ≤i v iff w!B ≤i v!B. Since by Theorem E.1 we have w ∼i v iff
w!B ∼i v!B. It follows that for all v, w ∈ W we have w ∈ Bi[v] = min≤i

Ki[v] iff
w!B ∈ Bi[v!B] = min≤i

Ki[v!B].
Induction step. From left to right. Assume that there is some history wh ∈
Bi[ve1 . . . ven+1] (1). It follows that wh ∈ Ki[ve1 . . . ven+1], i.e. wh ∼i ve1 . . . ven+1

(2). But then by Theorem E.1 we have w!B(h) ∼i v!B(e1 . . . ven+1) (3). Now
assume for a contradiction that for every h′ of the form w!B(h2), we have h′ 6∈
Bi[!B(ve1 . . . en+1)] (4). It follows that for every such h′ we have some history
s!B(h3) ∈ Ki[!B(ve1 . . . en+1)] (5) with s 6= w (6) and s!B(h3) <i h

′ (7). It is
easy to check that len(sh3) = len(h′) (8). But then by (7), (8) and Preference
Stability we have s <!B

i w (9). By construction it follows that s < w (10).
But by (5) and Theorem E.1 we have sh3 ∈ Ki[ve1 . . . en+1] (11). But then by
Preference Stability we have sh3 < w(h2) (12). Thus, by definition of Bi, we have
w(h2) 6∈ Bi[ve1 . . . ven+1] (13). But since h2 was arbitrary we have in particular
wh 6∈ Bi[ve1 . . . ven+1] (14), contradicting (1). Thus by reduction there is some
history h′ of the form w!B(h2) such that h′ ∈ Bi[!B(ve1 . . . en+1)] (15).

2Same remark as for the previous proof.
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The other direction is similar. qed

The proof of Theorem 5.29 is now easy.

Proof. Assume that i stabilizes on v ∈W after the sequence we1 . . . en. Then for
every h which extends we1 . . . en, all histories in Bi[h] starts with v. But then for
every h, by Corollary E.5, at !B(h), i believes only in histories starting with v.
The other direction is similar. qed
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Samenvatting

Het algemene analytische project waartoe deze dissertatie bijdraagt is het mod-
elleren van redeneren door rationele actoren in interactieve situaties, en het identi-
ficeren van de logica hiervan. De grenzen van dit project doorkruisen de economie,
de informatica en de filosofie, in het bijzonder de volgende deelgebieden. Inter-
actieve epistemologie bestudeert interactief redeneren: hoe hebben en verwer-
ven actoren kennis en hoe redeneren zij over de kennis van anderen. Formele
leertheorie bestudeert de voorwaarden waaronder een actor stabiele kennis kan
bereiken, en uit een stroom van data een juiste hypothese kan vinden. Epistemis-
che speltheorie bestudeert hoe rationele actoren beslissingen nemen tot handelen
op grond van hun kennis in strategische interactieve situaties. In al deze syste-
men staan interactieve vormen van kennis en geloof centraal, en hun evolutie door
informatie-processen in de tijd.

In deze dissertatie worden al deze onderwerpen verbonden in één logisch sys-
teem. Daarmee bevinden we ons op het grensvlak van twee grote paradigma’s die
verandering van kennis beschrijven: de temporele en de dynamische logica. We
vergelijken deze, en combineren ze vervolgens: eerst op een structureel-semantisch
niveau, vervolgens ook syntactisch. Het aldus verkregen systeem passen we toe in
de analyse van wat er gebeurt met de kennis van actoren gedurende een tijdspanne
waarin zij communiceren, leren, op elkaar reageren, en inductief of strategisch re-
deneren.

Hoofdstuk 2 bepaalt de algemene structurele eigenschappen van actoren die
kennis en geloof herzien op grond van informatie door de tijd heen, en in hoofd-
stuk 3 worden hiervoor dan algemene logische bewijsprincipes gegeven in een
epistemisch-temporele logica. De analyse verloopt technisch via semantische
representatie-stellingen, alsmede een volledigheidsbewijs voor een tijdslogica van
kennisverandering voor modellen met informatie-protocollen. De volgende hoofd-
stukken bestuderen concrete informatieprocessen tegen deze algemene achter-
grond. Hoofstuk 4 onderzoekt hoe actoren door herhaalde aankondigingen van
wat zij geloven op den duur tot overeenstemming kunnen komen, en identificeert
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gemeenschappelijk geloof in ’posteriors’ in geschikte structuren als de voornaam-
ste voorwaarde. Tevens definiëren we statische en dynamische logica’s waarmee
we over processen van overeenstemming kunnen redeneren, en vinden enkele be-
langrijke semantische en bewijstheoretische eigenschappen. Hoofdstuk 5 onder-
zoekt logische principes van inductief leren door de tijd heen, en in het bijzonder
van de centrale leertheoretische notie van eindige identificeerbaarheid. De vorm
die dit aanneemt is een reductie van eindige identificeerbaarheid tot een semantis-
che evaluatietaak voor epistemisch-temporele logica. Voorts worden enkele repre-
sentatie resultaten gegeven voor de bijbehorende modellen. Hoofdstuk 6 past het
door ons ontwikkelde dynamisch-temporele perspectief toe op de bouwstenen van
strategisch redeneren met onvolledige informatie: oplossingsalgorithmen voor spe-
len, rationaliteit, speltheoretisch evenwicht, en verwachtingen van spelers. Hierbij
wordt het belang van dynamische kennislogica voor de epistemische grondslagen
van de speltheorie gëıllustreerd aan de hand van vele concrete situaties. Hoofdstuk
7 rondt onze benadering af met twee verdere belangrijke thema’s: voorkeuren van
actoren, en groepshandelen (in het bijzonder, de vermogens van coalities). We on-
derzoeken vanuit ons logisch perspectief een groot aantal voorgestelde noties uit
de sociale keuzetheorie en non-coöperatieve speltheorie. Dit leidt tot vele resul-
taten over logische definiëerbaarheid, semantische invariantie en computationele
complexiteit.



Abstract

Modeling rational agents’ reasoning in interactive contexts and identifying its
logic is the general analytic project to which this dissertation contributes. The
borders of this project run through economics, computer science and philosophy.
It includes several theoretical lines that we are connecting. Interactive episte-
mology is the study of interactive reasoning: how agents entertain beliefs and
reason about the beliefs of other agents. Formal learning theory is the study of
the conditions under which agents can reach stable beliefs or identify a correct
hypothesis from a stream of data. Epistemic game theory is a theory of how ra-
tional agents would make decisions based on their beliefs in strategic interactive
situations. In all these systems, beliefs, interactive beliefs, and their evolution as
informational processes unfold are at stake.

This dissertation connects these themes by developing one single logical frame-
work. For this purpose, we are operating at the interface of two major logics of
belief change: the temporal approach and the dynamic approach. Concretely,
we connect and merge the two families of logics, first at a structural semantic
level and then at a syntactic one. Subsequently, we apply the resulting system
to analyze what happens to agents’ beliefs over time when agents communicate,
learn, interact, and reason interactively, inductively, or strategically.

Chapter 2 identifies the main structural properties of belief revising agents
over time, and Chapter 3 then formulates their main logical proof principles. This
chiefly takes the form of semantic representation theorems, plus a completeness
theorem for changing beliefs in a temporal logic that admits protocols. Chapter
4 identifies common belief of posteriors in suitable structures as a key sufficient
condition for agents to agree, and iterated announcement of beliefs as a major
way of reaching agreement. We also determine the right family of static and dy-
namic logics to reason about agreement, and find agreement results, invariance
results, and concrete syntactic proofs of agreement results. Chapter 5 investigates
the logical principles behind inductive learning and in particular behind the key
notion of finite identifiability. This takes the form of a reduction of the problem
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of finite identifiability to a problem of model-checking for an epistemic temporal
logic, plus further representation results. Chapter 6 takes the dynamic-temporal
logical viewpoint to the building blocks of strategic reasoning: solution algo-
rithms, rationality, equilibrium, and expectations, discussing the importance of
belief change for the epistemic foundations of game theory. We are giving many
concrete scenarios sketching a bigger picture. Chapter 7 completes the whole
approach with two further key aspects of agency: preferences, and coalitional
powers. We explore the logical expressive power demanded by notions imported
in this area from social choice theory and cooperative and non-cooperative game
theory, in terms of modal invariance and definability.



Résumé

Modéliser la façon dont des agents rationnels raisonnent en contextes interactifs
puis identifier la logique de ce raisonnement, est le projet analytique global à
laquelle cette thèse contribue. Les frontières de ce projet traversent les sciences
économiques, les sciences de l’information et la philosophie. Nous connectons
certaines lignes de recherche importantes qui s’inscrivent dans ce projet. Ces
lignes sont l’épistémologie interactive, la théorie formelle de l’apprentissage et la
théorie des jeux épistémique. L’épistémologie interactive étudie le raisonnement
interactif, la façon dont des agents entretiennent des croyances et raisonnent
à propos des croyances d’autres agents. La théorie formelle de l’apprentissage
s’intéresse aux conditions auxquelles des agents peuvent parvenir à avoir des
croyances stables ou identifier une hypothèse correcte à partir d’une séquence
de données. La théorie des jeux épistémique a pour objet la façon dont des
agents rationnels prendraient des décisions fondées sur leurs croyances dans des
situations interactives stratégiques. Dans tous ces systèmes, les croyances, les
croyances interactives, et leur évolution à mesure que les agents reçoivent et
échangent de nouvelles informations, occupent une place centrale.

Cette thèse relie les thèmes précédents en développant un cadre logique unique.
Pour ce faire, nous travaillons à l’interface de deux approches logiques importantes
du changement de croyances: l’approche temporelle et l’approche dynamique.
Plus précisément, nous relions et fusionnons les deux familles de logiques, tout
d’abord à un niveau sémantique structurel, puis à un niveau syntaxique. Nous
appliquons le système ainsi obtenu à l’analyse de l’évolution temporelle des croy-
ances d’agents lorsqu’ils communiquent, apprennent, interagissent et raisonnent
de façon interactive, inductive ou stratégique.

Le chapitre 2 identifie les propriétés doxastiques temporelles structurelles qui
caractérisent les agents révisant leurs croyances dynamiquement, et le chapitre
3 en formule ensuite les principes logiques centraux. Cela prend principale-
ment la forme de théorèmes de représentation sémantiques, et d’un théorème
de complétude pour une logique du changement de croyances qui autorise les pro-
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tocoles. Le chapitre 4 identifie la croyance commune des croyances postérieures
dans des structures qualitatives comme une condition-clé suffisante pour garantir
que des agents s’accordent, et l’annonce itérée de croyances comme un moyen
important d’y parvenir. Nous déterminons également la famille de logiques sta-
tiques et dynamiques adéquate pour raisonner à propos de problèmes d’accord.
Nous trouvons de tels résultats d’accord, mais aussi des résultats d’invariance, et
des preuves syntaxiques pour des théorèmes d’accord. Le chapitre 5 s’intéresse
aux principes logiques du raisonnement inductif et à ceux qui soutiennent la
notion d’identifiabilité finie. Cela prend la forme d’une réduction du problème
d’identifiabilité finie à un problème de vérification (model checking) pour une
logique temporelle épistémique, et de résultats de représentation. Le chapitre 6
oriente le point de vue logique dynamique-temporel sur les concepts élémentaires
du raisonnement stratégique : algorithmes de solution, rationalité, équilibre, et
anticipations, discutant l’importance du changement de croyances pour les fon-
dations épistémiques des jeux. Nous donnons de nombreux scénarios concrets es-
quissant une image plus globale. Le chapitre 7 enrichit l’approche en considérant
deux autres aspects clés complémentaires de l’interaction: les préférences et le
pouvoir des coalitions. Nous explorons le pouvoir expressif requis par des no-
tions importées dans le champ logique à partir du choix social et de la théorie
des jeux coopérative et non-coopérative, en termes d’invariance modale et de
définissabilité.
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