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Chapter 1

Introduction

The µ-calculus is an extension of modal logic with least and greatest fixpoint
operators. Modal logic was originally developed by philosophers in the beginning
of the 20th century [BRV01]. It aimed at combining the concepts of possibility
and necessity with propositional logic. In the 1950s, the possible world seman-
tics was introduced (see for instance [BRV01, BS84]) and since then, modal logic
has proved to be an appealing language to reason about transition systems. In
addition to its philosophical motivations, modal logic appears to be of interest in
many other areas: essentially in any area that uses relational models as represen-
tation means. Examples include artificial intelligence, economics, linguistics and
computer science.

In computer science, labelled transition systems are used to represent pro-
cesses or programs. The nodes of the transition systems model the possible states
of the process, whereas the edges represent the possible transitions from one state
to another. The label of a given node carries all the local information about the
node. Within that perspective, logic seems to be a natural tool to describe the
properties of programs. This approach turned out to be particularly useful for
specification and verification purposes.

Verification is concerned with correctness of programs. More specifically, given
a program represented by a labeled transition system and a formula (called the
specification), representing the intended behavior of the program, we want to
check whether the formula holds in the transition system. This is nothing but
the model checking problem for the logic used as a specification language.

In order to reason about programs, especially non-terminating ones, standard
modal logic lacks expressive power. Usual types of correctness properties that
one would like to formulate are safety (“nothing bad ever happens”) or fairness
(“something good eventually happens”). Typically, such types of properties are
expressed using a recursive definition (nothing bad ever happens if nothing bad
happens now and it is the case that for the next states nothing bad ever happens).
So it seems reasonable to enrich modal logic with operators capturing some form

1



2 Chapter 1. Introduction

of recursive principle. At the end of the 1970s, Amir Pnueli [Pnu77] argued that
linear temporal logic (LTL), which is obtained by restricting to models based on
the natural numbers and by adding the “until” operator to modal logic, could be
a useful formalism in that respect. Since then, other temporal logics have been
introduced, the most famous ones being computation tree logic [CE81] (CTL)
and CTL* [EL86], and are considered as appropriate specification languages.

Around the same time, Vaughan Pratt [Pra76] and Andrzej Salwicki [Sal70]
independently introduced Dynamic Logic. The basic idea of Dynamic Logic is to
associate a modality [θ] with each program θ; the intuitive meaning of a formula
[θ]ϕ is that ϕ holds in all states reachable after an execution of θ. In 1977, a propo-
sitional version of Dynamic Logic (PDL) was introduced by Michael Fischer and
Richard Ladner [FL79]. One disadvantage of Dynamic Logic is that unlike tempo-
ral logics, it is not adequate for modeling non-terminating programs. Extensions
of PDL that can capture some specific infinite behaviors (see for instance [Har84])
have been studied by Robet S. Streett [Str81, Str82] (Delta-PDL), David Harel
and Vaughan Pratt [HP78] (PDL with a loop construct).

Fixpoint logics are formalisms that can deal with both non-terminating be-
havior and recursion in its most general form. The basic idea of fixpoint logics
is to explicitly add operators that allow us to consider solutions of an equation
of the form f(x) = x. For example, safety is a solution of the equation “x ↔
(nothing bad happens now ∧ for all successors, x)”.

The first logic that was extended by means of fixpoint operators was first-order
logic [Mos74]. The initial purpose was to establish a generalized recursion theory.
In the context of semantics of programming languages, the use of fixpoints to
enrich first-order logic goes back to Dana Scott, Jaco de Bakker [SdB69, Bak80]
and David Park [Par69]. However, this required the development of a complex
mathematical theory. A few years later, arose the idea of considering fixpoint ex-
tensions of modal logic. The most successful logic that came out of this approach
is the µ-calculus. Works of of E. Allen Emerson, Edmund Clarke [EC80], David
Park [Par80] and Vaughan Pratt [Pra81] prefigured the actual definition of the
µ-calculus which was given in 1983 by Dexter Kozen [Koz83].

The µ-calculus is obtained by adding the least fixpoint operator µx and its
dual, the greatest fixpoint operator νx, to the standard syntax for modal logic.
Intuitively, the formula µx.ϕ(x) is the smallest solution of the equation x↔ ϕ(x).
Similarly, νx.ϕ(x) is the biggest solution of this equation.

Not surprisingly, adding fixpoint operators to modal logic results in a sig-
nificant increase of the expressive power. Most temporal logics (including LTL,
CTL and CTL*) can be defined in terms of the µ-calculus [Dam94, BC96]. In
fact, these logics usually fall inside to a rather small syntactic fragment of the
µ-calculus (the fragment of alternation depth at most 2).

Moreover, on binary trees, it follows from various results [Rab69, EJ91, Niw88,
Niw97] that the µ-calculus is equivalent to monadic second-order logic (MSO).
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MSO is an extension of first-order logic, which allows quantification over subsets
of the domain. It is also one of the most expressive logics that is known to be
decidable on trees, whether they are binary or unranked (that is, there is no
restriction on the number a successors of a node). Hence, it is not surprising that
most specification languages are fragments of MSO. This means that on binary
trees, the µ-calculus subsumes most specification languages.

On arbitrary structures, it is easy to see that the µ-calculus is a proper frag-
ment of MSO. A key result concerning the expressive power of the µ-calculus
is the Janin-Walukiewicz theorem [JW96]: an MSO formula ϕ is equivalent to
a µ-formula iff ϕ is invariant under bisimulation. Bisimulations are used to for-
malize the notion of behavioral equivalence. The idea is that when specifying
behaviors, one is interested in the behavior of programs rather than the programs
themselves. Hence, a specification language should not distinguish two programs
displaying the same behavior. On a theoretical level, this boils down to the re-
quirement that a formula used for specification is invariant under bisimulation. So
the Janin-Walukiewicz theorem basically says that the µ-calculus is the “biggest”
relevant specification language which a fragment of MSO.

It is also interesting to mention that the Janin-Walukiewicz theorem extends
an important result of modal logic proved by Johan van Benthem [Ben76]: a
first-order formula ϕ is equivalent to a modal formula iff ϕ is invariant under
bisimulation. In the area of modal and temporal logics, the most common logics
used as yardsticks (references against which the other logics are compared) are
first-order logic and MSO. It follows from the Janin-Walukiewicz theorem and
van Benthem characterization that the µ-calculus is the counterpart of MSO, in
the same way that modal logic is the counterpart of first-order logic. From a
theoretical point of view, this makes the µ-calculus an attractive extension of
modal logic.

In order for a logic to be used as a specification language, it is important that
there is a good balance between its expressive power and its complexity. By com-
plexity, we usually refer to the complexities of the model checking problem and
the satisfiability problem. The model checking problem was already mentioned
before and consists in deciding whether a given formula holds on a given finite
structure. The satisfiability problem consists in deciding whether for a given
formula, there exists a structure in which the formula is true.

The model-checking problem for the µ-calculus is NP ∩ co-NP; the result can
even be strengthened to1 UP ∩ co-UP [Jur98]. To obtain this upper bound, the
idea is to use the connection between parity games and the µ-calculus, which was
observed by several authors, including E. Allen Emerson, Charanjit Jutla [EJ88]

1A non-deterministic Turing machine is unambiguous if for every input, there is at most one
accepting computation. The complexity class UP (Unambiguous Non-deterministic Polynomial-
time) is the class of languages problems solvable in polynomial time by an unambiguous
non-deterministic Turing machine (for more details on this model of computation, see for in-
stance [Pap94]).
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and Colin Stirling [Sti95]. Parity games play a fundamental role in game theory.
A parity game is a game of which the winning condition is specified by a map
assigning a bounded priority to each position of the board game. The winner of
an infinite match depends of the priorities encountered infinitely often during the
match.

It can be shown that the model checking problem for the µ-calculus is equiv-
alent to the problem of solving parity games, which consists in deciding which
player has a winning strategy in a given parity game with an initial position. It
was proved independently by Andrzej Mostowski [Mos91], E. Allen Ermerson and
Charanjit Jutla [EJ91] that a winning strategy in a parity game may be assumed
to be positional. That is, the move dictated by the strategy at a position of a
match only depends on the actual position, and not on what has been played
before reaching the position. This result implies that the complexity of solving a
parity game is NP ∩ co-NP. Later Marcin Jurdziński gave a tighter complexity
bound, which is UP ∩ co-UP [Jur98]. It is an important open problem what
is the exact complexity of solving parity games and in particular, whether this
complexity is polynomial.

The satisfiability problem for the µ-calculus is EXPTIME-complete [EJ88].
This was shown by E. Allen Ermerson and Charanjit Jutla, using automata theo-
retic methods. The basic idea of the automata theoretic approach is to associate
with each formula an automaton that accepts exactly the structures in which the
formula is true. It follows that solving the satisfiability problem for a formula is
reduced to checking non-emptiness of an automaton. The non-emptiness problem
for an automaton is to decide whether there exists a structure accepted by the
automaton.

Similarly to the model checking problem, verifying whether there is a struc-
ture accepted by a given automaton is equivalent to checking whether a player
has a winning strategy in an initialized infinite game associated with the automa-
ton [NW96]. Furthermore, a winning strategy in the game would directly induce
a structure accepted by the automaton.

The automata theoretic approach has also been useful for establishing other
important results. For example, the Janin-Walukiewicz theorem mentioned ear-
lier is proved using the correspondence between formulas and automata. In addi-
tion, David Janin and Igor Walukiewicz showed that there is a disjunctive normal
form for the formulas of the µ-calculus [JW95a]; a crucial part of the proof is based
on the fact that we can determinize automata operating on infinite words.

The goal of these last few paragraphs was not only to give some insight about
the complexity of the µ-calculus, but also to illustrate how the theory of the µ-
calculus benefits from the connections between different formalisms, such as game
theory, automata theory and, obviously, logic. This feature is not specific to the
µ-calculus: the same holds for all temporal logics and on a broader scale, this is
a phenomenon that is characteristic of many areas of mathematics. Nevertheless,
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it is still a very enjoyable aspect of the µ-calculus.
Now, from what we have seen, the µ-calculus seems a well-suited specifica-

tion language, as it combines a great expressive power and manageable decision
procedures. But there is a drawback: the µ-calculus is probably not the most
understandable way to specify behaviors. Most people would have a difficult time
understanding the meaning of a formula of the µ-calculus with alternation depth
greater than 2. In that respect, other temporal logics, such as LTL, CTL and
CTL*, are more convenient.

That being said, it is still the case that: the µ-calculus provides a uniform
framework containing all specification languages; it is characterized by a rich
and interesting mathematical theory; despite its difficult interaction with human
thinking, it has direct practical applications in the area of specification. For
these reasons, the µ-calculus has become a significant formalism in the landscape
of modal logic and specification.

In this thesis, we consider some important theoretical aspects of the µ-calculus,
namely axiomatizability, expressivity, decidability and complexity. One running
topic through the thesis is exploring the µ-calculus through its “fine-structure”.
Or to put it differently, we investigate the µ-calculus by focussing on restricted
class of models, special fragments of the language, etc. This approach is motivated
by the fact that the µ-calculus is a complex and powerful system.

In Chapters 3 and 4, we restrict our attention to special classes of models,
namely trees. Trees are particularly relevant structures for any logic that is
invariant under bisimulation. Such logics have the tree property; that is, a formula
is satisfiable iff it is satisfiable in a tree. In Chapter 3, we consider the question of
the axiomatization of the µ-calculus. This problem is notorious for its difficulty,
but it turns out that when focussing on finite trees, the proof of the completeness
of the axiomatization becomes much simpler. In Chapter 4, we deal with the
question of the expressive power of the µ -calculus in the context of frames (which
are transition systems without any labeling). Again we investigate this question
in the restricted setting of trees.

In Chapter 5, instead of having restrictions on the structures, we consider some
special fragments of the language. The main contribution of that chapter concerns
a characterization of what we call the continuous fragment. As we will see, the
continuous fragment is a good candidate for approximating the “computational
part” of the µ-calculus. Chapter 6 is slightly different than the other chapters,
as it concerns the formalism XPath [BK08]. The goal of that chapter is to show
how results in the area of modal logic can help for the understanding of XPath.
One of these results was shown in Chapter 5.

The last chapter is also concerned with special classes of models, but the
perspective with respect to the “fine-structure” approach is in effect reversed.
Instead of looking at specific classes of models, we consider more general struc-
tures, namely coalgebras. Coalgebras are an abstract version of evolving systems
and generalize the notion of labelled transition systems or Kripke models. In
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Chapter 7, we extend the automata theoretic approach for the µ-calculus to the
setting of coalgebras.

We give now a more detailed overview of the content of each chapter.

Axiomatizability

Chapter 3 In the same paper where he introduced the µ-calculus [Koz83], Dex-
ter Kozen also suggested an axiomatization. The completeness of that axiomatiza-
tion remains an open problem for many years. Eventually Igor Walukiewicz [Wal95]
provided a proof which is based on automata theory, game theory and classical
logic tools such as tableaux. The proof is also well-known for its difficulty.

In Chapter 3, we propose an easier proof in the restricted setting of the µ-
calculus on finite trees. On finite trees the expressive power of the µ-calculus
is rather limited: any formula of the µ-calculus is equivalent to a formula of
alternation depth 1. Nevertheless, the completeness proof we provide is not a
simplification of the original proof given by Igor Walukiewicz. The technique we
use consists in combining an Henkin-type semantics for the µ-calculus together
with model theoretic methods (inspired by the work of Kees Doets [Doe89]).

We hope that this different approach towards completeness might contribute
modestly to a better understanding of the problem. This method might also help
to prove other completeness results and we give two examples in the chapter. The
first one concerns a complete axiomatization of the graded µ-calculus on finite
trees. The other example applies to extensions of the µ-calculus with shallow
axioms [Cat05] on finite trees.

This chapter is based on the paper “An easy completeness proof for the µ-
calculus on finite trees”, co-authored by Balder ten Cate and published in the
proceedings of FOSSACS 2010.

Expressive power

Chapter 4 The Janin-Walukiewicz theorem concerns the expressive power of
the µ-calculus on the level of models, i.e. transition systems equipped with a val-
uation (stating which atomic propositions are true at each node). In Chapter 4,
we shift to the context of frames, which are transition systems without any val-
uation. The truth of a formula in a frame involves a second-order quantification
over all possible valuations.

As opposed to the case of modal logic, very little is known about the expressive
power of the µ-calculus on frames. This chapter compares the expressive power
of the µ-calculus and MSO on frames, in the particular case when the frames
have a tree structure. More specifically, we provide a characterization of those
MSO formulas that are equivalent on trees (seen as frames) to a formula of the
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µ-calculus. This characterization is formulated in terms of natural structural
criteria, namely closure under subtrees and p-morphic images. The result might
be compared to the Janin-Walukiewicz theorem, the main differences being the
context (frames vs. models), and our more restricted setting (trees vs. arbitrary
models).

This chapter is based on the paper “Frame definability for classes of trees in
the µ-calculus” co-authored by Thomas Place and published in the proceedings
of MFCS 2010.

Chapter 5 We present syntactic characterizations of semantic properties of
the µ-calculus, the two main ones being the continuous fragment and completely
additive formulas. A formula ϕ of the µ-calculus is continuous in a proposition
letter p iff the truth of ϕ at a given node only depends on the existence of
finitely many points making p true. The name “continuity” originates from the
direct connection between this fragment and the notion of Scott continuity, widely
used in theoretical computer science. One of the most interesting features of a
continuous formula is that its least fixpoint can be constructed in at most ω steps.

The completely additive fragment corresponds to distributivity over count-
able unions, which, in the case of the µ-calculus, was studied by Marco Hollen-
berg [Hol98b]. Using a characterization of this fragment, Marco Hollenberg ob-
tained an extension of the Janin-Walukiewicz theorem for µ-programs [Hol98b]
(which is what motivated the study of the completely additive fragment). Inspired
by our results for the continuous fragment, we propose an alternative proof for
the characterization of the completely additive fragment. Unlike the original
argument, this proof provides a direct translation from the completely additive
fragment to the adequate syntactic fragment.

This chapter is based on the paper “Continuous fragment of the µ-calculus”
published in the proceedings of CSL 2008 and on a submitted paper “Syntactic
characterizations of semantic fragments of the µ-calculus” co-authored by Yde
Venema.

Chapter 6 This chapter is concerned with the expressive power of a fragment of
CoreXPath. XPath is a navigation language for XML documents and CoreXPath
has been introduced to capture the logical core of XPath [GKP05]. The basic
idea of the chapter is to exploit the tight link between CoreXPath and modal
logic. CoreXPath is essentially a modal logic evaluated on specific models (which
are finite trees with two basic modalities). The main difference between modal
logic and CoreXPath is that the syntax for XPath is two-sorted: it contains
both formulas (which corresponds to subsets of the model) and programs (which
corresponds to binary relations).

In this chapter, we combine well-known results of the µ-calculus in order to
obtain results about the expressive power of CoreXPath. One of the results that
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we use is the adaptation of the Janin-Walukiewicz theorem for µ-programs. This
result was (re-)proved in the previous chapter.

This part of the thesis is based on the paper “Modal aspects of XPath” co-
authored by Balder ten Cate and Tadeusz Litak and which is an invited paper
for M4M 2007.

Decidability and complexity

Chapter 7 In this chapter, we extend the notion of automaton to the setting
of coalgebras. The aim of the theory of coalgebras is to provide a uniform frame-
work to describe evolving systems, Kripke models being a key example. It is
then not surprising that the definition of coalgebraic logic was inspired by modal
logic. Roughly, there are two kinds of coalgebraic logic: one using nabla (∇) op-
erators [Mos99], the other being based on the notion of predicate lifting [Pat03].
Similarly to what happens in modal logic, we can extend coalgebraic logic with
fixpoint operators and obtain a coalgebraic µ-calculus.

As mentioned earlier, the automata theoretic approach has been very suc-
cessful for the µ-calculus. Automata for the coalgebraic µ-calculus using nabla
operators have been introduced by Yde Venema [Ven06b]. The goal of this chap-
ter is to contribute to the development of the automata theoretic approach for
coalgebraic µ-calculus based on predicate liftings. More specifically, we introduce
the notion of an automaton associated with a set of predicate liftings. We use
these automata to prove the decidability of the satisfiability problem and ob-
tain a small model property. We also obtain a double exponential bound on the
complexity of the satisfiability problem.

This chapter is based on the paper “Automata for coalgebras: an approach
via predicate liftings” co-authored by Raul Leal and Yde Venema and published
in the proceedings of ICALP 2010.

We mentioned earlier that there exist connections between the µ-calculus and
other formalisms, the two major ones being game theory and automata theory.
We can think of the exploitation of these connections as being methods for ap-
proaching the µ-calculus. From that point of view, the five chapters that we
described can be seen, independently from the content, as a playground for these
methods: how they interact and what they can be used for.

In the following chapters, we often make use of the links with automata theory
and game theory. These two theories are themselves deeply connected to each
other. One of the main reasons (in our context) is that the terminology of game
theory is particularly adequate to describe the run of an automaton on branching
structures. The fact that a tree is accepted by an automaton is usually reduced
to the existence of a winning strategy for a player in a game associated with the
automaton.
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The most obvious place in the thesis where logic, automata and games are
intertwined is Chapter 7. This chapter can be seen as an illustration of the effi-
ciency of the automata theoretic approach. Automata are in effect an alternative
way of thinking about formulas. One of their advantages is that they capture
the algorithmic aspect of the µ-calculus, while not having the logical complexity
resulting from an inductive definition (unlike formulas). Game theory also comes
into play in this chapter: it offers a nice framework to interpret automata and
formulate proofs.

Even though there is no explicit mention of automata in the Chapters 4 and 5,
we could still think of these chapters as using the connections between automata,
games and logic. A useful result in both chapters is the equivalence between the
model checking problem for a formula and solving a certain parity game called the
evaluation game. The evaluation game is the acceptance game of the alternating
µ-automaton associated with the formula.

Now we do not only use game theory and automata theory as formalisms to
represent formulas in a more intuitive or convenient way, but also as reservoirs of
available results. For example, proofs in Chapter 7 rely on the fact that a strategy
in a regular game may be assumed to be a finite memory strategy. Interestingly
enough, a classical automata result (the determinization of automata on infinite
words) plays an important role in the proof of this fact. Another (less direct)
example is given in Chapters 4 and 5. The proofs in these chapters use in an
essential way the existence of a disjunctive normal form for fixpoint logics. As
mentioned earlier, a key ingredient for the proof of this last result is of automata
theoretic nature (and is again the determinization of automata on infinite words).

Finally, to the existing arsenal, we add a new method in Chapter 3. As
explained in the overview of this chapter, this method is inspired by model theory.
The idea is to introduce a notion of rank which plays the same role in our proof as
the notion of quantifier depth in model theory. Using this notion, we can transfer
model theoretic arguments that work by induction on the alternation depth to
the setting of the µ-calculus. In our case, the model theoretic argument originates
from Kees Doets’ work [Doe89].





Chapter 2

Preliminaries

We introduce the notation and results that we will need throughout this thesis.
Not surprisingly, most of this chapter concerns the µ-calculus. For a detailed
survey concerning the µ-calculus, we refer the reader to [BS07], [AN01], [GTW02]
and [Ven08a].

2.1 Syntax of the µ-calculus

In this section, we introduce the syntax for the µ-calculus and some related ter-
minology. We present the µ-calculus in two different syntactic formats. The first
format that we denote by µML, consists in adding fixpoint operators to standard
modal logic. The second format is obtained by replacing the modal operators 3

and 2 by the operator ∇ (nabla).
The set µML corresponds to the syntax for µ-calculus originally introduced

by Dexter Kozen [Koz83]. The advantage is that the set µML corresponds to
a natural way of enriching modal logic with fixpoints. On the other hand, the
second format is closer to the automata theoretic approach (see Section 2.4).

µ-formulas Let Prop be a set of proposition letters, Act a set of actions and
Var an infinite set of variables. We assume that Prop ∩ Var 6= ∅. A literal is a
formula of the form p or ¬p, where p ∈ Prop. The set µML of µ-formulas (over
Prop, Act and Var) is inductively given as follows:

ϕ ::= > | ⊥ | p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | 3aϕ | 2aϕ | µx.ϕ | νx.ϕ,

where p belongs to Prop, a belongs to Act and x belongs to Var .
The set µML∇ of µ-formulas in ∇-form (over Prop, Act and Var), is induc-

tively defined by:

ϕ ::= > | x | ϕ ∨ ϕ | ϕ ∧ ϕ | α • ∇aΦ | µx.ϕ | νx.ϕ,

11
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where x belongs to Var , a belongs to Act , Φ is a finite subset of µML∇ and α is
a conjunction of literals and variables.

In general, by µ-formula, we mean either a formula in µML or in µML∇. The
notion of subformula is defined in the usual way and given a formula ϕ, we let
Sfor(ϕ) denote the collection of subformulas of ϕ. If ψ is a subformula of ϕ, we
write ψ � ϕ and if in addition, ϕ 6= ψ, we write ψ � ϕ .

A modal formula is a µ-formula ϕ such that Sfor(ϕ) does not contain any
formula of the form µx.ψ or νx.ψ. A propositional formula is a µ-formula ϕ such
that Sfor(ϕ) does not contain any formula of the form µx.ψ, νx.ψ, 3aϕ or 2aϕ.

An occurrence of a variable x in a formula ϕ is bound if x is in the scope
of an operator µx or νx. Otherwise, the occurrence of x is free. A µ-sentence
is a µ-formula that do not contain any free variable. Substitutions are defined
as usual. If ϕ and ψ are µ-formulas and if v is either a proposition letter or a
variable, we denote by ϕ[v/ψ] the formula obtained by replacing in ϕ each free
occurrence of v by ψ. Note that if all the occurrences of a variable x are bound
in ϕ, we have ϕ[x/ψ] = ϕ.

A µ-formula ϕ is well-named if for every variable x the following holds

• every occurrence of x is free or

• every occurrence of x is bound and there is a unique subformula of the form
ηxx.δx. This unique subformula is called the unfolding of x and is denoted
as ηϕxx.δ

ϕ
x . We call x a µ-variable if ηϕx = µ, and a ν-variable if ηϕx = ν. If

ϕ is clear from the context, we simply write ηx.δx.

Convention Throughout this thesis, unless specified otherwise, we fix a set
Prop of proposition letters and an infinite set Var of variables. Moreover, in
most of the chapters, we assume the set of actions to be a singleton and in this
case, there is no confusion to write 3 instead of 3a and 2 instead of 2a. The
only reason for this restriction is to make the presentation smoother, but all the
results can be extended to the case where we have more than one action.

The way we defined the set µML, only allows the application of the negation
symbol to proposition letters. As we shall see in the next section, it is equivalent to
allow the application of the negation to any formula but require that in formulas
of the form µx.ϕ and νx.ϕ, x is under the scope of an even number of negation
symbols. The advantage of this last presentation is that it enables us to lower
down the number of primitive symbols, as we may treat ⊥, ∧, 2a and νx as
definable symbols (instead of primitive symbols). However, the presentation we
gave here, interacts better with the game semantics, which comes often into play
in this thesis.

It will still be sometimes useful to be able to apply the negation symbol to
a formula in µML. For that purpose, we introduce the abbreviation ¬ϕ (where
ϕ ∈ µML).
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The symbol ¬ Given a formula ϕ in µML, we define ¬ϕ by induction on ϕ as
follows:

¬> = ⊥, ¬2aϕ = 3a¬ϕ,
¬⊥ = >, ¬3aϕ = 2a¬ϕ,

¬(ϕ ∧ ψ) = ¬ϕ ∧ ¬ψ, ¬µx.ϕ = νx.¬ϕ[¬x/x],
¬(ϕ ∨ ψ) = ¬ϕ ∧ ¬ψ, ¬νx.ϕ = µx.¬ϕ[¬x/x],

where p belongs to Prop, x belongs to Var and ϕ[¬x/x] is the formula ϕ in which
all occurrences of ¬x are replaced with x.

If we consider a subformula ψ of a formula ϕ, it might be the case that some
variables x bound in ϕ, become free in ψ. In a sense, these variables lose the
role they played in ϕ. If we want to restore the role of these variables in ψ, we
can simply replace each variable x by the formula ηx.δx. Formally, we have the
following definition.

Dependency order and expansion Given a well-named formula ϕ, we define
the dependency order <ϕ on the bound variables of ϕ as the least strict partial
order such that x <ϕ y if δx is a proper subformula of δy.

If {x1, . . . , xn} is the set of variables occurring in ϕ0, where we may assume
that i < j if xi <ϕ xj, we define the expansion eϕ(ψ) of a subformula ψ of ϕ as:

e(ψ) := ψ[x1/ηx1 .δx1 ] . . . [xn/ηxn .δxn ].

That is, we substitute first x1 by δx1 in ψ; in the obtained formula, we substitute
x2 by δx2 , etc. If no confusion is likely we write e(ψ) instead of eϕ(ψ).

Let us mention that the order for performing the substitutions is crucial.
We illustrate this by an example. Consider the µ-sentence ϕ = µx.(µy.x ∧ y)
and let ψ be the subformula x ∧ y. It is easy to see that y <ϕ x. Now the
formula ψ1 := ψ[ηy.δy/y][ηx.δx/x] is equal to µy.(ϕ∧ y)∧ ϕ, whereas the formula
ψ2 := ψ[ηx.δx/x][ηy.δy/y] is equal to ϕ∧µy.(x∧y). The variables play exactly the
same role in ϕ and in ψ1 (which is the expansion of ψ). This does not hold for
the formula ψ2: there is an occurrence of the variable x that is free in ψ2. So we
see that it is important to start the substitution with the variable the unfolding
of which is the innermost subformula of ϕ.
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Closure of a formula The closure Cl(ϕ) of a formula ϕ is the smallest set of
formulas such that

ϕ ∈ Cl(ϕ),
if ¬p ∈ Cl(ϕ), p ∈ Cl(ϕ),
if ψ ∨ χ or ψ ∧ χ belongs to Cl(ϕ), then both ψ, χ ∈ Cl(ϕ),
if 3aψ or 2aϕ belongs to Cl(ϕ), then ψ ∈ Cl(ϕ),
if α • ∇aΦ belongs to Cl(ϕ), then α ∈ Cl(ϕ) and Φ ⊆ Cl(ϕ),
if µx.ψ ∈ Cl(ϕ), then ψ[x/µx.ψ] ∈ Cl(ϕ),
if νx.ψ ∈ Cl(ϕ), then ψ[x/νx.ψ] ∈ Cl(ϕ).

So the closure of a formula can be seen as the analog of the Fischer-Ladner closure
for PDL.

An immediate adaptation of a proof in [Koz95] shows that if ϕ is well-named,
Cl(ϕ) is equal to the set {eϕ(ψ) | ψ ∈ Sfor(ϕ)}.

Size of a formula Following [KVW00], we define the size of a µ-formula ϕ,
notation: size(ϕ), as the cardinality of the set Cl(ϕ).

The size of a formula is related to the number of nodes in the DAG (directed
acyclic graph) representation of the formula. There are two usual ways to repre-
sent a formula: as a tree or as a DAG. We give some intuition on how these two
representations work.

Given a formula ϕ, we can define a tree the nodes of which are labeled with
subformulas of ϕ. The root is labeled with the formula ϕ. Given a node labeled
with a formula ψ, we create the children of the node according to the form of
ψ. If ψ is a proposition letter or a variable, the node has no children. If ψ is a
disjunction of the form ψ1 ∨ ψ2, the node has two children, one labeled with ψ1

while the other one is labeled with ψ2. If ψ is of the form µx.χ, the node has one
child labeled with χ. It is easy to imagine how to proceed in the other cases.

Now we can also represent ϕ as DAG. Each node of the DAG corresponds to
a subformula of ϕ. There is an edge from a node associated with a formula ψ
to a node associated with a formula χ if χ is an immediate successor of ψ with
respect to the order �.

In the case we represent a formula as a tree, the number of nodes depends on
the number of subformulas and how many times each subformula occurs in ϕ. In
the case we represent a well-named formula ϕ as a DAG, the number of nodes is
linear in the size of ϕ.

2.1.1. Remark. There are two main ways to define the size of a formula: either
as the cardinality of the closure of the formula or as the number of symbols of
the formula. As explained earlier, the first definition is related to the number
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of nodes in the DAG representation of the formula, while the latter definition
corresponds to the number of nodes in the tree representation.

The fact that we opted for the first definition of the size is not crucial. In fact,
most of the (few) complexity results presented here are also true with the other
alternative definition of size. Our choice for the definition of the size is dictated
by the fact that the proofs for the complexity results (of this thesis) are usually
based on an automata theoretic approach. The number of states of an automaton
associated to a formula is directed related to the cardinality of the closure of the
formula (see proof of Proposition 2.4.2).

Finally, we introduce the notion of alternation depth. There are in fact several
possibilities to define the alternation depth. Since this notion does not play a
crucial role in this thesis, we use what is called the “simple-minded” definition
in [BS07]. For other definitions of alternation depth, we also refer to [BS07].

Alternation depth Let ϕ be a µ-formula. An alternating µ-chain in ϕ of
length k is a sequence

ϕ� µx1.ψ1 � νx2.ψ2 � · · ·� µk/νk.ψk,

where for all i ∈ {1, . . . , k}, xi is not free in every ψ such that ψi ≥ ψ ≥ ψi+1.
We let maxµ(ϕ) be the maximal length of an alternating µ-chain in ϕ. We define
in a similar way max ν(ϕ). The alternation depth of a µ-formula is the maximum
of maxµ(ϕ) and max ν(ϕ) .

2.2 Semantics for the µ-calculus

The structures on which we interpret the µ-formulas are the usual structures for
modal logic.

Kripke frames A (Kripke) frame is a pair (W, (Ra)a∈Act), where W is a set
and for all a ∈ Act , Ra a binary relation on W . W is the domain of the frame
and R is the accessibility relation or transition relation. Elements of w are called
nodes, states or points.

If (W, (Ra)a∈Act) is a Kripke frame and (w, v) belongs to Ra, we say that w
is an a-predecessor of v and v is an a-successor of w. Given a binary relation
R ⊆ W ×W , we denote by R[w] the set {v ∈ W | (w, v) ∈ R}. The transitive
closure of R is denoted as R+; elements of the set R+

a [w] are called (proper)
a-descendants of w.

A subframe of a frame (W, (Ra)a∈Act), is a frame of the form (W ′, (R′a)a∈Act),
where W ′ ⊆ W and for all a ∈ Act , R′a = Ra ∩ (W ′ ×W ′). Given a point w in
W , the subframe generated by w is the unique subframe, the domain of which is
{w} ∪

(⋃
a∈Act Ra

)+
[w].
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Kripke models A (Kripke) model (over Prop) is a triple (W, (Ra)a∈Act , V )
where (W, (Ra)Act) is a Kripke frame and V : Prop −→ P(W ) a valuation. A
pointed model is a pair (M, w), whereM is a Kripke model and w belongs to the
domain of M.

A submodel of a model (W, (Ra)a∈Act , V ), is a model of the form (W ′, (R′a)a∈Act ,
V ′), where (W ′, (R′a)a∈Act) is a subframe of (W, (Ra)a∈Act) and for all p ∈ Prop,
V ′(p) = V (p)∩W ′. Given a point w in a modelM, the submodel generated by w

is is the unique submodel of M, the domain of which is {w} ∪
(⋃

a∈Act Ra

)+
[w].

We start by giving the semantics for the modal formulas. The boolean con-
nectives are interpreted as usual. The operator 3a and 2a are interpreted as in
the setting of modal logic. Next, a formula α • ∇aΦ is true at a point w in a
model if α is true at w and

for all v ∈ Ra[w], there is ϕ ∈ Φ such that ϕ is true at v,

for all ϕ ∈ Φ, there is v ∈ Ra[w] such that ϕ is true at v. (2.1)

Alternatively, if we let [[ϕ]] be the set of points at which ϕ is true, (2.1) is equivalent
to the fact that the set of

⋃
{[[ϕ]] | ϕ ∈ Φ} contains the a-successors of w and that

each set [[ϕ]] with ϕ ∈ Φ, has a non-empty intersection with Ra[w].

Given the semantics of α • ∇aΦ, the notation α ∧ ∇aΦ might seem more
appropriate. The reason for writing α • ∇aΦ will become clear in Section 2.4.3.
This notation allows us to formulate the notion of disjunctive formula in an easier
way.

In the area of modal logic, the first explicit occurrences of the ∇ connective
can be found in the work of Jon Barwise and Lawrence Moss [BM96] and in that of
David Janin and Igor Walukiewicz [JW95b]. We also would like to mention that∇
corresponds to the relation lifting of the satisfiability relation. Given a model with
domain W , we can think of the satisfiability relation 
 as a relation between W
and the set µML∇. A pair (w,ϕ) belongs to the satisfiability relation if ϕ is true at
w. Using the notion of relation lifting, we can lift this relation into a relation P(
)
between P(W ) and P(µML) (for more details, see for instance [Ven06a]). It turns
out that ∇aΦ is true at a point w iff (Ra[w],Φ) belongs to P(
). This equivalence
was the key ingredient for the definition of coalgebraic modal logic [Mos99].

Semantics for modal formulas Fix a Kripke model M = (W, (Ra)a∈Act , V ).
Given a modal formula ϕ and an assignment τ : Var −→ P(W ), we will define the
meaning of ϕ as a set [[ϕ]]M,τ ⊆ W . In case a point w belongs to [[ϕ]]M,τ , we say
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that ϕ is true at w. The definition of [[ϕ]]M,τ proceeds by induction on ϕ:

[[>]]M,τ = W,

[[⊥]]M,τ = ∅,
[[p]]M,τ = V (p),

[[¬p]]M,τ = W \ V (p),

[[x]]M,τ = τ(x),

[[ϕ ∨ ψ]]M,τ = [[ϕ]]M,τ ∪ [[ψ]]M,τ ,

[[ϕ ∧ ψ]]M,τ = [[ϕ]]M,τ ∩ [[ψ]]M,τ ,

[[3aϕ]]M,τ = {w ∈ W | Ra[w] ∩ [[ϕ]]M,τ 6= ∅},
[[2aϕ]]M,τ = {w ∈ W | Ra[w] ⊆ [[ϕ]]M,τ},

[[α • ∇Φ]]M,τ = [[α]]M,τ ∩ [[∇Φ]]M,τ ,

[[∇Φ]]M,τ = {w ∈ W | R[w] ⊆
⋃
{[[ϕ]]M,τ | ϕ ∈ Φ}

and for all ϕ ∈ Φ, [[ϕ]]M,τ ∩R[w] 6= ∅}.

To define the semantics for the µ-formulas, it remains to interpret the fixpoint
operators µ and ν. The idea is to view formulas as set-theoretic maps and to think
of the connectives µx and νx as least and greatest fixpoints of these maps. We
start by defining the map ϕM,τ

x associated with a given a formula ϕ and a variable
x. Intuitively, this map captures how the meaning of ϕ depends on the meaning
of x.

The map ϕx Formally, given a µ-formula ϕ, a model M = (W, (Ra)a∈Act) and
an assignment τ : Var −→ P(W ), we define the map ϕM,τ

x by:

ϕM,τ
x : P(W ) −→ P(W )

U 7→ [[ϕ]]M,τ [x 7→U ],

where τ [x 7→ U ] is the assignment τ ′ such that τ ′(x) = U and τ ′(y) = τ(y), for
all variables y 6= x. If M and τ are clear from the context, we write ϕx instead
of ϕM,τ

x .

We would like to define the meaning of µx.ϕ (νx.ϕ) as the least (greatest)
fixpoint of the map ϕx. In general, not all maps admit a fixpoint and if they do,
there is no guarantee that there is a least or a greatest one.

In order to show that there are always a least and greatest fixpoints for the
map ϕx, we use the Knaster-Tarski theorem. We start by recalling the basic
definitions needed to state the Knaster-Tarski theorem.
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Fixpoints A complete lattice P is a partially ordered set (P,≤) in which each
subset has a greatest lower bound (called the meet) and a least upper bound
(called the join). If U is a subset of the lattice, we denote by

∧
U the meet of U

and by
∨
U the join of U . If U = {c, d}, we write c ∧ d instead

∧
U . Similarly,

we use the notation c ∨ d instead of
∨
U .

Let f : P −→ P be a map. A point c ∈ P is a fixpoint of f if f(c) = c. Next,
c is the least fixpoint of f if for all fixpoints d of f , we have c ≤ d. The point c is
the greatest fixpoint of f if for all fixpoints d of f , we have d ≤ c. Finally, c is a
pre-fixpoint of f if f(c) ≤ c and c is a post-fixpoint of f if c ≤ f(c).

2.2.1. Theorem ([Tar55]). Let (P,≤) be a complete lattice and f : P −→ P a
monotone map (that is, for all c, d ∈ P satisfying c ≤ d, we have f(c) ≤ f(d)).
Then f admits a least fixpoint, which is given by∧

{c ∈ P | f(c) ≤ c}

and f admits a greatest fixpoint, which is given by∨
{c ∈ P | c ≤ f(c)}.

Now it is immediate that for all modelsM with domainW , the pair (P(W ),⊆)
is a complete lattice (with meet operator

∧
given by

⋂
and join operator

∨
given

by
⋃

). Moreover, the syntax of the µ-formulas is defined such that no variable
occurring in a µ-formula is in the scope of a negation symbol. We can easily derive
that for all assignments τ : Var −→ P(W ), the map ϕM,τ

x : P(W ) −→ P(W ) is
monotone. Combining this with the Knaster-Tarski theorem, we obtain that the
map ϕx always admits a least and a greatest fixpoint. We are now ready to define
the semantics for the µ-formulas.

Semantics for µ-formulas Let M = (W, (Ra)a∈Act , V ) be a Kripke model.
Given an assignment τ : Var −→ P(W ) and a µ-formula ϕ, we define the meaning
of ϕ, notation: [[ϕ]]M,τ , by induction on the complexity of ϕ. The definition is as
in the case of the semantics for modal formulas, with the extra clauses:

[[x]]M,τ = τ(x),

[[µx.ϕ]]M,τ =
⋂
{U ⊆ W | [[ϕ]]M,τ [x 7→U ] ⊆ U},

[[νx.ϕ]]M,τ =
⋃
{W ⊆ S | U ⊆ [[ϕ]]M,τ [x 7→U ]},

where τ [x 7→ U ] is the assignment τ ′ such that τ ′(x) = U and τ ′(y) = τ(y), for
all variables y 6= x.

Note that the set [[µx.ϕ]]M,τ is defined as the intersection of all the pre-fixpoints
of the map ϕx. Hence, by the Knaster-Tarski theorem, [[µx.ϕ]]M,τ is indeed the
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least fixpoint of the map ϕx. Similarly, [[νx.ϕ]]M,τ defined as the union of all the
post-fixpoints of ϕx, is the greatest fixpoint of the map ϕx.

It is also interesting to observe that for all formulas ϕ ∈ µML, for all models
M = (W, (Ra)a∈Act , V ) and for all assignments τ : Var −→ P(W ), we have

[[¬ϕ]]M,τ = W\[[ϕ]]M,τ .

This can be shown by a standard induction on ϕ. We introduce now some general
terminology related to the semantics.

Truth and validity If w ∈ [[ϕ]]M,τ , we will writeM, w 
τ ϕ and say that ϕ is
true at w under the assignment τ . If ϕ is a sentence, the meaning of ϕ does not
depend on the assignment and so we writeM, w 
 ϕ, and say that ϕ is true at w.
A µ-formula is true in a modelM with domain W , if for all assignments τ : Var
−→ P(W ) and for all w ∈ W , we haveM, w 
τ ϕ. In this case, we writeM 
 ϕ.
A µ-formula ϕ is valid at a point w of a frame F = (W, (Ra)a∈Act), notation:
F, w 
 ϕ, if for all valuations V : Prop −→ P(W ) and for all assignments τ : Var
−→ P(W ), we have (W, (Ra)a∈Act , V ), w 
τ ϕ. If for all w ∈ W , we have F, w 
 ϕ,
then ϕ is valid in F and we write F 
 ϕ.

Two formulas ϕ and ψ are equivalent on a class C of Kripke models, notation:
ϕ ≡C ψ, if for all modelsM in C, and for all assignments τ , [[ϕ]]M,τ = [[ψ]]M,τ . If C
is the class of all Kripke models, we simply write ϕ ≡ ψ. A µ-formula is satisfiable
in a model M with domain W , if for some assignment τ : Var −→ P(W ) and
some w ∈ W , ϕ is true at w under the assignment τ . A µ-formula ϕ is satisfiable
if there is a model in which ϕ is satisfiable.

In the definition of the meaning of µx.ϕ and νx.ϕ, we obtained the least
and greatest fixpoints by taking intersections of pre-fixpoints and unions of post-
fixpoints. Another way to obtain the least and greatest fixpoints is to approximate
them.

Obtaining the fixpoints using approximations Fix a µ-formula ϕ, a model
M = (W, (Ra)a∈Act , V ) and an assignment τ : Var −→ P(W ). For each ordinal β,
we define the sets (ϕx)

β
µ(∅) by induction on β in the following way:

(ϕx)
0
µ(∅) = ∅,

(ϕx)
β+1
µ (∅) = ϕx((ϕx)

β
µ(∅)),

(ϕx)
λ
µ(∅) =

⋃
{(ϕx)βµ(∅) | β < λ},
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where λ is a limit ordinal. Dually, we define the sets (ϕx)
β
ν (W ) in the following

way:

(ϕx)
0
ν(W ) = W,

(ϕx)
β+1
ν (W ) = ϕx((ϕx)

β
ν (W )),

(ϕx)
λ
ν(W ) =

⋂
{(ϕx)βµ(W ) | β < λ},

where λ is a limit ordinal. Using the fact that ϕx is monotone, we can show
that for some ordinal β0, we have (ϕx)

β0
µ (∅) = (ϕx)

β0+1
µ (∅). Moreover, the set

(ϕx)
β0
µ (∅) is the least fixpoint of ϕx. The smallest ordinal β0 satisfying (ϕx)

β0
µ (∅) =

(ϕx)
β0+1
µ (∅), is called the closure ordinal of ϕ.

Similarly, for some ordinal β1, we have (ϕx)
β1
ν (W ) = (ϕx)

β1+1
ν (W ) and (ϕx)

β1
ν (W )

is the greatest fixpoint of ϕx. For details about the proof, we refer the reader
to [AN01].

Now that we defined the semantics, it is not hard to show that it is equivalent
to use the standard modalities 2a and 3a in a fixpoint formula or to use the ∇
modality. Unravelling the semantics of ∇a, we find that

∇aΦ ≡
∨

3aΦ ∧2a

∨
Φ, (2.2)

where 3aΦ = {3aϕ | ϕ ∈ Φ}. Conversely, it is easy to see that 3aϕ ≡ ∇a{ϕ,>}
and 2aϕ ≡ ∇a∅ ∨ ∇a{ϕ}. Based on this we can prove that the languages µML
and µML∇ are effectively equi-expressive.

2.2.2. Fact. For every formula in µML, we can compute an equivalent formula
in µML∇, and vice versa.

It also easily follows from the semantics that each µ-formula in µML (in
µML∇) is equivalent to a well-named µ-formula in µML (in µML∇), which is
simply obtained by renaming some variables in the original formula. We adopt
the following convention.

Convention We always assume µ-formulas to be well-named.

Finally, there is another restriction one might want to make on the shape of
the µ-formulas.

Guarded formula A µ-formula is guarded if each occurrence of a variable, that
is in the scope of a fixpoint operator η (where η is either µ or ν), is also in in the
scope of a modal operator (which is either 2a, 3a or ∇a), which is itself in the
scope of η.



2.3. Game terminology and the evaluation game 21

For example, µx.(p∨3x) is guarded but 3(µx.p∨x) is not guarded. It is not
hard to see that µx.x ≡ ⊥ and νx.x ≡ >. We can generalize this and show that
if an occurrence of x in a µ-formula of the form ηx.ϕ (with η ∈ {µ, ν}), is not
under the scope of a modal operator, we can basically get rid of this occurrence.

2.2.3. Proposition ([Koz83]). Each formula in µML (in µML∇) can be trans-
formed in linear time into an equivalent guarded formula in µML (in µML∇).

2.3 Game terminology and the evaluation game

An alternative way to define truth of µ-formulas, is to use games. The advantage
of the game semantics is that it is more intuitive than the semantics introduced
above. However, the latter semantics is usually more appropriate when proving
results by induction on the complexity of the formulas. Another advantage of
the game semantics is that it allows us to transfer results from game theory to
µ-calculus. Let us also mention that game theory plays an important role when
investigating the link between µ-calculus and automata (see the next section, but
also Chapter 7).

We start by introducing some general terminology for graph games. These
are board games that are played by two players (called ∃ and ∀).

General terminology Given a set G, we write G∗ for the set of finite sequences
of elements in G; we write Gω for the set infinite sequences of elements in G.

Graph game A graph game G is a tuple (G∃, G∀, E,Win), where G∃ and G∀
are disjoint sets, E is a subset of (G∃∪G∀)2, and Win is a subset of (G∃∪G∀)ω. An
initialized graph game G0 is a tuple (G∃, G∀, E,Win, zI), where (G∃, G∀, E,Win)
is a graph game and the initial position zI belongs to G∃ ∪G∀.

We write G for the set G∃ ∪G∀ and call it the board of the game. An element
z in G is a position. Moreover, if z ∈ G∃, z is a position for ∃, which means
that ∃ is supposed to move at position z. Otherwise, z is a position for ∀. If no
confusion is possible, we simply refer to graph games and initialized graph games
as games.

Very often we present a graph game in a table. The first column contains the
positions of the board. The second column specifies which player each position
belongs to. In the third row, we can find the sets E[z] of possible moves.

Match Let G be the graph game (G∃, G∀, E,Win) and let G0 be the initialized
graph game (G∃, G∀, E, Win, zI). A G-match is a sequence (zi)i<κ ∈ G∗ ∪ Gω

such that for all i with i + 1 < κ, (zi, zi+1) ∈ E. A G0-match is a sequence
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(zi)i<κ ∈ G∗ ∪Gω that is a G-match and such that z0 = zI . We call κ the length
of the match.

A match π = (zi)i<κ is full if either κ = ω, or κ is finite and there is no z ∈ G
such that (zκ−1, z) ∈ E. In the latter case, if z is a position that belongs to a
player σ, we say that player σ gets stuck. A match that is not full is also called
partial .

Every full match π has a winner ; in case π is finite, the winner is the opponent
of the player who got stuck. In case π is infinite, ∃ wins π if π belongs to Win.
Otherwise, π is won by ∀.

The notion of strategy is central in game theory. Many important results
concerns the existence of a strategy, or the existence of normal forms for strategies.
A strategy for a player is a map that tells the player how to play. In case the
strategy is winning, the player is ensured to win the match.

Strategy Let G be the graph game (G∃, G∀, E,Win) and let G0 be the initial-
ized graph game (G∃, G∀, E, Win, zI). If σ belongs to {∀,∃}, we denote by G∗Gσ

the set of sequences (zi)i<κ in G∗, with 1 < κ < ω and zκ−1 ∈ Gσ.
A strategy for a player σ in G (resp. in G0) is a partial map f : G∗Gσ −→ G

such that for all π = (zi)i<κ in the domain of f , (zκ−1, f(π)) belongs to E. We
denote by Dom(f) the domain of f . A G-match (resp. G0-match) π = (zi)i<κ is
f -conform if for all i+ 1 < κ such that zi ∈ Gσ, we have zi+1 = f(z0 . . . zi).

A position z ∈ G is winning with respect to f in G if the two following
conditions hold. For all f -conform partial G-matches (zi)i<κ with z0 = z and
zκ−1 ∈ Gσ, we have (zi)i<κ ∈ Dom(f). Moreover, for all full f -conform G-matches
π = (zi)i<κ with z0 = z, π is won by σ.

We say that a strategy f for σ in G0 is a winning strategy if zI is a winning
position with respect to f in G. Next, a position z ∈ G is winning for a player σ
in G if there is a strategy f for σ in G such that z is winning with respect to f in
G. We denote by Winσ(G) the set of all positions z ∈ G that are winning for σ.

Finally, a strategy f for player σ is a maximal winning strategy in G if all
winning positions z of σ are winning with respect to f in G.

All the games that we consider are either parity games or can be linked to
parity games. The notion of a parity game is fundamental in game theory. It cap-
tures a large class of graph games and still enjoys a powerful property: positional
determinacy. This means that a given position is either winning for ∃ or ∀ (the
game is determined) and that each strategy may be assumed to be positional;
that is, the decision dictated by the strategy at a position of a match does not
depend on what has been played before reaching the position.

Parity games and positional strategy A parity game is a tuple (G∃, G∀,
E,Ω), where G∃ and G∀ are disjoint sets, E is a subset of (G∃ ∪G∀)2, and Ω is a
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map from G∃ ∪G∀ to N. We write G for the set G∃ ∪G∀ and call it the board of
the game. If z ∈ G, we say that Ω(z) is the priority of z.

With each parity game we can associate a graph game G = (G∃, G∀, E,Win)
defining Win such that for all sequences π in Gω,

π ∈Win iff max{Ω(z) | z ∈ Inf (π)} is even,

where Inf (π) is the set of elements in G that appear infinitely often in π. Hence,
we can easily adapt all the definitions introduced earlier, to the case of parity
games.

A strategy f for a player σ is positional if there is a partial map fp : Gσ −→ G
such that for all z0 . . . zn ∈ Dom(f), f(z0 . . . zn) = fp(zn). We usually identify f
and fp.

We give now the result stating that parity games enjoy positional determinacy.

2.3.1. Theorem ([EJ91],[Mos91]). Let G be a parity game. There exist posi-
tional strategies f∃ and f∀ for ∃ and ∀ respectively such that for all positions z
on the board of G, z is winning either with respect to f∃ or with respect to f∀.

Moreover, given a position z, there is an effective procedure to determine
whether z is winning for ∃ or ∀.

2.3.2. Theorem. [Jur00] Let G = (G∃, G∀, E,Ω) be a parity game and let n,m
and d be the size of G, E and the range of Ω, respectively. Then for each player
σ, the problem, whether a given position z ∈ G is winning for σ, is decidable in

time O
(
d ·m ·

(
n
bd/2c

)bd/2c)
.

Next we introduce a parity game (called the evaluation game) which provides
an alternative semantics for the µ-calculus. The connection between µ-calculus
and games was first observed by E. Allen Emerson and Charanjit Jutla [EJ88]
and Colin Stirling [Sti95].

A position in the evaluation game is a pair (w,ϕ), where w is a point in a
model and ϕ a formula. The goal of ∃ is to show that ϕ is true at w, whereas ∀
wants to prove the opposite.

Evaluation game Let M = (W,R, V ) be a Kripke model and let ϕ be a
sentence in µML or in µML∇. We also fix a map pr : Var −→ N, which assigns
a priority to each variable such the two following conditions hold. If a variable x
in ϕ is a µ-variable, then pr(x) is even and if x is a ν-variable, then pr(x) is odd.
Moreover, if for some variables x and y, we have x <ϕ y, then pr(x) < pr(y). It
is easy to see that there is always such a map.

Next, given a set of formulas Φ and a point w ∈ W , we say that a map m : Φ
−→ P(R[w]) is a ∇a-marking if
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• for all ϕ ∈ Φ, there exists v ∈ Ra[w] such that v ∈ m(ϕ),

• for all v ∈ Ra[w], there exists ϕ ∈ Φ such that v ∈ m(ϕ).

We define the evaluation game E(M, ϕ) as a parity game. The board of the
game consists of the pairs (w,ψ), where w ∈ W and ψ is a subformula of ϕ.

The game is given in Table 2.1, where w ∈ W , p ∈ Prop, x ∈ Var , η ∈ {µ, ν},
ψ, ψ1, ψ2 ∈ Sfor(ϕ), Φ is a subset of Sfor(ϕ) and α is a conjunction of literals.

Position z Player Possible moves E[z] Ω(z)
(w,>) ∀ ∅ 0
(w,⊥) ∃ ∅ 0
(w, x) - {(w, δx)} pr(x)
(w, p) and w ∈ V (p) ∀ ∅ 0
(w, p) and w /∈ V (p) ∃ ∅ 0
(w,¬p) and w /∈ V (p) ∃ ∅ 0
(w,¬p) and w ∈ V (p) ∀ ∅ 0
(w,ψ1 ∧ ψ2) ∀ {(w,ψ1), (w,ψ2)} 0
(w,ψ1 ∨ ψ2) ∃ {(w,ψ1), (w,ψ2)} 0
(w, ηx.ψ) - {(w,ψ)} 0
(w,3aψ) ∃ {(v, ψ) | v ∈ R[w]} 0
(w,2aψ) ∀ {(v, ψ) | v ∈ R[w]} 0
(w, α • ∇aΦ) ∀ {(w, α), (w,∇aΦ)} 0
(w,∇aΦ) ∃ {m : Φ −→ P(R[w]) | 0

m is a ∇a-marking }
m : Φ −→ P(R[w]) ∀ {(u, ψ) | u ∈ m(ψ)} 0

Figure 2.1: The evaluation game

Given the fact that at position (w,ψ), ∃’s goal to prove that ψ is true at w,
the definitions of G∃, G∀ and E given above, seem fairly natural. The winning
condition might seem a bit more intricate. The intuition is that a µ-variable can
be unfolded only finitely many times, whereas a ν-variable corresponds to possibly
infinite unfolding (what we call “unfolding” of a variable x in the evaluation game,
is the move from a position (w, x) to position (w, δx)).

Obviously it could be the case that there is more than one variable that is
unfolded infinitely many times during a match. The point is that among all the
variables unfolded infinitely many times, there is a unique one which is highest
in the dependency order. ∃ wins iff this variable is a ν-variable. This is exactly
what is expressed by the parity condition.

2.3.3. Theorem. Let ϕ be a sentence and let (M, w) be some pointed Kripke
model. For the game E(M, ϕ), there are positional strategies f∃ and f∀ such that
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f∃ is winning for ∃, f∀ is winning for ∀ and for every position z, z is a winning
either with respect to f∃ or with respect to f∀.

In addition, for all w ∈M,

M, w 
 ϕ iff (w,ϕ) ∈Win∃(E(M, ϕ)).

More generally, for all subformulas ψ of ϕ and for all w ∈M, we have

M, w 
 eϕ(ψ) iff (w,ψ) ∈Win∃(E(M, ϕ)).

It follows from this proposition that a procedure for deciding which player has
a winning strategy in an initialized parity game, would give us a procedure for the
model checking problem for the µ-calculus. The model checking problem consists
in deciding whether a given µ-sentence is true at a given point in a finite model.
Using the result proved by Marcin Jurdziński in [Jur98] about the complexity
of parity games, we obtain the following upper bound for the complexity of the
model checking problem.

2.3.4. Theorem ([Jur98]). The model checking problem for the µ-calculus is
UP ∩ co-UP.

A non-deterministic Turing machine is unambiguous if for every input, there
is at most one accepting computation. The complexity class UP (Unambiguous
Non-deterministic Polynomial-time) is the class of languages problems solvable in
polynomial time by an unambiguous non-deterministic Turing machine (for more
details on this model of computation, see for instance [Pap94]).

The result above only gives us an upper bound for the model checking. It is
an important open problem to obtain the exact complexity (and in particular,
whether model checking can be done in polynomial time).

In fact, the problem of finding the exact complexity of the model checking
problem for the µ-calculus is equivalent to the problem of finding the exact com-
plexity for solving parity games. The problem of solving a parity game consists
in deciding which player has a winning strategy from a given position in a parity
game. The fact that there is a reduction from the model checking problem to the
problem of solving parity games immediately follows from Theorem 2.3.3. The
converse reduction follows from the fact that given a parity game and a player,
there is a µ-formula describing the set of winning positions for the player. This
result was proved by E. Allen Emerson and Charanjit Jutla [EJ91]; another proof
can be found in [Wal02].

2.4 µ-Automata

Another way to approach µ-formulas, is to use µ-automata. Automata theory is
a vast area, but we only present the material that we need in this thesis. For
more details about automata, see for instance [Tho97].
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2.4.1 ω-Automata

We start by recalling the notion of ω-automaton, which will be mostly used to
specify winning conditions for graph games.

ω-Automaton Fix a finite alphabet Σ. The elements of Σω are the infinite
words over Σ. A non-deterministic parity ω-automaton over a finite alphabet Σ
is a tuple (Q, qI , δ,Ω), where Q is a finite set of states, qI ∈ Q is the initial state,
δ is a function δ : Q × Σ −→ P(Q) called the transition map, and Ω : Q −→ N is
the parity map.

The automaton A is a deterministic parity ω-automaton if for all (q, c) ∈ Q×Σ,
the set δ(q, c) is a singleton. In this case, we can think of δ as a map from Q×Σ
to Q.

We define the size of the automaton as the cardinality of the set Q and the
index of A is the size of the range of Ω.

ω-Automata operate on infinite words. We recall the notions of run and
accepting run.

Run and acceptance Let c0c1 . . . be a word over Σ. A run of the automaton
(Q, qI , δ,Ω) on c0c1 . . . is a sequence q0q1 . . . in Qω such that q0 = qI and for all
i ∈ N, qi+1 ∈ δ(qi, ci).

A word c0c1 . . . is accepted by the automaton A if there is a run q0q1 . . . of the
automaton on c0c1 . . . such that the maximum of the set {Ω(q) | q ∈ Inf (q0q1 . . . )}
is even. Recall that Inf (q0q1 . . . ) is the set of elements in Q, that occur infinitely
often in the sequence q0q1 . . . .

A subset L of Σω is an ω-regular language over Σ if there is a non-deterministic
parity automaton A such that L is exactly the set of words accepted by A.

Assuming ω-automata to be non-deterministic turns to be convenient for prov-
ing certain results. Examples of such results include the fact that there is a dis-
junctive normal form for the µ-calculus (see the end of Section 2.4) and results
from Chapter 7. This assumption can be made without loss of generality, as
shown by the following result.

2.4.1. Theorem ([McN66, Saf92, Pit06]). Given a non-deterministic parity
ω-automaton A with size n and index k, we can construct in time exponential in
the size of A, a deterministic parity ω-automaton A′ such that A and A′ recognize
the same language and the index of A′ is linear in n and k.

2.4.2 µ-automata

We present the notion of µ-automaton, which is basically an alternative way
to think of a µ-formula. Michael Rabin introduced non-deterministic automata



2.4. µ-Automata 27

operating on infinite binary trees [Rab69] in order to show that the monadic
second-order theory of infinite binary trees is decidable (see Section 2.6). Later
David Muller and Paul Schupp considered alternating automata on infinite binary
trees [MS87]. In [SE89], Robert Streett and E. Allen Emerson gave a transfor-
mation from µ-formulas to Rabin automata, while a converse translation was
established by Damian Niwiński in [Niw88]. These notions of automata have
been extended to the setting of Kripke models (instead of binary trees) by David
Janin and Igor Walukiewicz in [Jan97].

Given the nature of fixpoint logics, a linear representation, as offered by µ-
formulas, is not always well-suited. Automata provide a graph theoretical repre-
sentation which has been useful for establishing fundamental results concerning
the µ-calculus. Let us for example mention the satisfiability problem (see Chap-
ter 7 where the satisfiability problem is presented in the framework of coalgebras).
A proof of the µ-calculus hierarchy theorem (see [Arn99]) is also based on the
connection between µ-automata and µ-formulas. Another example, the fact that
there is a disjunctive normal form, can be found in the next subsection.

µ-automata Given a finite set Q, we define the set TC (Q) of transition condi-
tions as the set of formulas ϕ given by:

ϕ ::= > | ⊥ | p | ¬p | | 3aq | 2aq | q | ϕ ∧ ϕ | ϕ ∨ ϕ

where a ∈ Act , p ∈ Prop and q ∈ Q. The set TC n(Q) is the set of formulas of
the form α ∧ ϕ, where α is a conjunction of literals and ϕ belongs to the set of
formulas given by:

ψ ::= > | ⊥ | | 3aq | 2aq | ψ ∧ ψ,
ϕ ::= ψ | ϕ ∨ ϕ,

where a ∈ Act and q ∈ Q. Basically a formula in TC n(Q) is a formula of the form
α ∧ ϕ, where α is a conjunction of literals and ϕ is a disjunction of conjunctions
of formulas of the form 3aq, 2aq, > or ⊥. It is easy to see that TC n(Q) is a
subset of TC (Q).

Next, we define the set TC d(Q) of disjunctive transition conditions as the set
of formulas that are disjunctions of formulas of the form α•∇Q′a, where a ∈ Act ,
Q′ ⊆ Q and α is a conjunction of literals over Prop.

An alternating µ-automaton is a tuple A = (Q, qI , δ,Ω), where Q is a finite
set of states, qI ∈ Q is the initial state, δ : Q −→ TC (Q) is the transition map
and Ω : Q −→ N is the parity map. In case δ is a map from Q to TC n(Q), A is a
normalized alternating µ-automaton. Finally, if δ is a map from Q to TC d(Q), A
is a non-deterministic µ-automaton. The size of A is the size of A and the index
of A is the size of the range of Ω.
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The input for a µ-automaton is a pointed model. Whether an automaton
accepts a pointed model or not, depends on the existence of a winning strategy
for player ∃ in a parity game, that we call the acceptance game.

Acceptance game Let M = (W,R, V ) be a model and let A = (Q, qI , δ,Ω)
be a normalized alternating or non-deterministic µ-automaton. The associated
acceptance game A(M,A) is the parity game given by the table below.

Position Player Admissible moves Priority
(w, q) ∈ W ×Q ∃ {m : Q −→ P(W ) | (W,R,m), w 
 δ(q)} Ω(q)
m : Q −→ P(W ) ∀ {(v, q′) | v ∈ m(q′)} 0

A pointed model (M, w0) is accepted by the automaton A if the pair (w0, qI)
is a winning position for player ∃ in A(M,A).

The acceptance game of µ-automata proceeds in rounds, moving from one
basic position in W × Q to another. Each round consists of two moves. At
position (w, q), ∃ has to come up with a marking m that assigns states of the
automaton to each point in W . The marking should be such that the formula
δ(q) is true at w. Given the shape of the formulas in TC (Q), we may assume
that if A is alternating, then for all v /∈ R[w] ∪ {w}, m(v) = ∅. Similarly, if
A is either normalized or non-deterministic, then we may suppose that for all
v /∈ R[w], m(v) = ∅.

Intuitively, after the marking is chosen, the automaton is split in several copies,
each of them corresponding to a pair (v, q′) with v ∈ m(q′). Now ∀ can pick one
of these copies and we move to a new basic position.

Since TC n(Q) is a subset of TC (Q), a normalized alternating automaton is an
alternating automaton, but the converse is not true. The main difference between
these two notions of µ-automata is that alternating automata allow “empty”
transitions in the model. This means that during a round, while the automaton
is moving from one state to another, it can happen that there is no move in the
model from the current point to one of its successors.

Equivalence between µ-automata Two µ-automata A and A′ are equivalentif
for all pointed models (M, w0), A accepts (M, w0) iff A′ accepts (M, w0).

For example, it is easy to see that each non-deterministic µ-automaton is
equivalent to a normalized µ-automaton. This follows from the facts that ∇a can
be expressed using 2a and 3a (see Fact (2.2)) and that every positive formula
of propositional logic is equivalent to a disjunction of conjunctions of proposition
letters.

Now that we defined the way automata operate on pointed models, we can
show that there are effective truth-preserving transformations from µ-formulas to
µ-automata and vice-versa.
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Equivalence between µ-automata and µ-formula A µ-sentence ϕ is equiv-
alent to a µ-automaton Aif for all pointed Kripke model (M, w), we have

M, w 
 ϕ iff A accepts (M, w).

When this happens, we write ϕ ≡ A.

Using Theorem 2.3.3, it is easy to transform a sentence into an alternating
automaton. We do give the construction (which is short in any case), as it
illustrates how close the notions of sentence and alternating automaton are.

2.4.2. Proposition. ] There is a procedure transforming a µ-sentence ϕ into
an equivalent alternating µ-automaton Aϕ of size n and index d, where n is the
number of subformulas of ϕ and d is the alternation depth of ϕ.

Proof Let ϕ be a sentence in µML. We define an alternating automaton A =
(Q, qI , δ,Ω) in the following way. We define Q as {ψ̂ | ψ subformulas of ϕ}. The

initial state qI is the state ϕ̂. For all subformulas ψ of ϕ, the formula δ(ψ̂) is
defined by induction on ψ in the following way:

δ(x̂) = δ̂x, δ(ψ̂1 ∧ ψ2) = ψ̂1 ∧ ψ̂2,

δ(>̂) = >, δ(2̂aψ) = 2aψ̂

δ(⊥̂) = ⊥, δ(3̂aψ) = 3aψ̂

δ(ψ̂1 ∨ ψ2) = ψ̂1 ∨ ψ̂2, δ(η̂x.ψ) = ψ̂,
δ(p̂) = p δ(¬̂p) = ¬p

where p ∈ Prop, a ∈ Act and η belongs to {µ, ν}. We also fix a map Ω which

assigns a priority to each state ψ̂ such the three following conditions hold. If a
variable x in ϕ is a µ-variable, then Ω(x̂) is even and if x is a ν-variable, then
Ω(x̂) is odd. Moreover, if for some variables x and y, we have x <ϕ y, then

Ω(x̂) < Ω(ŷ). Finally, if ψ is not a variable, Ω(ψ̂) = 0.
With such a definition of A, the acceptance game associated with A is ex-

tremely similar to the evaluation game associated with ϕ. Using Theorem 2.3.3,
we can show that ϕ and A are equivalent.

The alternating automaton constructed in the proof above is almost the DAG
of the formula, except that we add back edges from the variables to their un-
foldings. The point is that the alternating automata format does not really differ
from the linear representation of the µ-calculus. Normalized alternating automata
make a better use of the possibilities that a graph theoretical representation of
a formula has to offer. It follows from the next result that each µ-formula is
equivalent to a normalized alternating µ-automaton.

2.4.3. Proposition ([EJ91, VW07]). There is a procedure transforming an
alternating µ-automaton A into an equivalent normalized alternating µ-automaton
of size dn and index d, where n is the size and A is the alternation depth of A.
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In some occasions (as we shall see in Chapter 5), it is handy to associate
with a formula an even stronger notion of automata, namely non-deterministic
automata. The difference between these automata and the normalized alternating
automata that in the transition map of a non-deterministic automaton, the use
of the operator ∧ is rather restricted. Recall that in the evaluation game, the
positions of the form (ψ1 ∧ ψ2, w) belong to ∀. Hence, if we want to show that
a formula is true at point (that is, provide ∃ with a winning strategy), these are
“bad” positions as we cannot control them with the strategy. This suggests that
showing that a pointed model is accepted by an automaton is easier in case the
automaton is non-deterministic.

The notions of normalized alternating automata and non-deterministic au-
tomata are equivalent, as witnessed by the following result. A key ingredient
for proving the result is the fact that we can determinize ω-automata (Theo-
rem 2.4.1).

2.4.4. Proposition ([EJ91, VW07]). A normalized alternating µ-automaton
A of size n and index d can be transformed into a non-deterministic µ-automaton
A′, of size exponential in n and index polynomial in d.

We observed earlier that normalized alternating automata are alternating au-
tomata and that each non-deterministic automaton is equivalent to a normalized
alternating automaton. Hence, it follows from Propositions 2.4.3 and 2.4.4 that
the three notions of automata introduced are equivalent.

To finish the loop, it remains to transform an automaton into an equivalent
formula.

2.4.5. Proposition ([Niw88]). There is a procedure transforming a normal-
ized alternating µ-automaton A into an equivalent µ-sentence.

As we briefly mentioned earlier, some results concerning the µ-calculus were
obtained by using the tight connection between the µ-calculus and automata. For
example, the automata theoretic approach was used to give an exponential deci-
sion procedure for the satisfiability problem (recall that the satisfiability problem
consists in determining whether for a given formula ϕ, there exists a point in a
model at which ϕ is true).

The satisfiability problem can be reduced to the non emptiness problem for
µ-automata (that is, given a µ-automaton, decide wether there exists a pointed
model accepted by the automaton). We will use the same approach in the setting
of coalgebras in Chapter 7.

2.4.6. Theorem ([EJ88]). The satisfiability problem for the µ-calculus is EXPTIME-
complete.
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A related property of the µ-calculus is the small model property. This was
established in an earlier paper by Robert Streett and E. Allen Emerson [SE89],
also using methods based on automata theory.

2.4.7. Theorem ([SE89]). If a µ-sentence ϕ is satisfiable, then ϕ is satisfiable
in a model, the size of which is at most exponential in the size of ϕ.

2.4.3 Disjunctive formulas

We give an example of the use of the automata theoretic approach for the µ-
calculus, by showing that each µ-formula is equivalent to a formula in disjunctive
normal form (defined below). This result was proved by David Janin and Igor
Walukiewicz in [JW95b].

Similarly to non-deterministic µ-automata, the use of the connector ∧ is re-
stricted in disjunctive formulas. Hence, it is not surprising that when defining a
winning strategy for ∃ in the evaluation game, it might be easier to assume formu-
las to be disjunctive. Disjunctive formulas enjoy some other nice properties. For
example, the satisfiability problem for disjunctive formulas is linear time [Jan97],
whereas it is exponential time in the general case.

Disjunctive formula The set of disjunctive µ-formulas is given by:

ϕ ::= > | x | ϕ ∨ ϕ | α •
∧
{∇aiΦi | i ∈ I} | µx.ϕ | νx.ϕ,

where x belongs to Var , α is a conjunction of literals, I is a finite set, for all
i ∈ I, Φi is a finite subset of µML∇, ai belongs to Act and for all i 6= j, ai 6= aj.

2.4.8. Theorem ([JW95a]). A µ-sentence can be effectively transformed into
an equivalent disjunctive sentence.

In [JW95a], the proof that each µ-formula ϕ can be transformed into an
equivalent disjunctive formula, uses tableaux and ω-automata. We can also ob-
tain the result by first transforming ϕ into an equivalent normalized alternating
automaton (Propositions 2.4.2 and 2.4.3), second transform this automaton into
a non-deterministic automaton (Proposition 2.4.4) and finally show that if we
use the procedure described in the proof of Proposition 2.4.5, a non-deterministic
automaton is transformed into a disjunctive formula. This proof is based on the
idea that the transformation of a formula into a disjunctive formula corresponds,
at the level of automata, to the transformation of a normalized alternating au-
tomaton into a non-deterministic automaton.
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2.5 Axiomatization of the µ-calculus

In the same paper where he introduced the µ-calculus, Dexter Kozen proposed an
axiomatization for the formalism [Koz83]. This axiomatization is very natural and
consists in enriching the standard axiomatization for modal logic, with a fixpoint
axiom and a fixpoint rule. Dexter Kozen also proved completeness of that axiom-
atization with respect to a fragment of the µ-calculus. The problem of showing
completeness of the axiomatization with respect to the full µ-calculus turned out
to be very difficult, but eventually it was solved by Igor Walukiewicz [Wal95].

Kozen’s axiomatization The axiomatization of the Kozen system Kµ consists
of the following axioms and rules

propositional tautologies,
¬2a¬p↔ 3ap, (Dual-mod),
if ` ϕ −→ ψ and ` ϕ, then ` ψ (Modus ponens),
if ` ϕ, then ` ϕ[p/ψ] (Substitution),
` 2a(p −→ p′) −→ (2ap −→ 2ap

′) (K-axiom),
if ` ϕ, then ` 2aϕ (Necessitation),
νx.ϕ↔ ¬µx.¬ϕ[x/¬x] (Dual-fix),
` ϕ[x/µx.ϕ] −→ µx.ϕ (Fixpoint axiom),
if ` ϕ[x/ψ] −→ ψ, then ` µx.ϕ −→ ψ (Fixpoint rule),

where p, p′ belong to Prop, a belongs to Act , ϕ, ψ belong to µML, x is not a
bound variable of ϕ and no free variable of ψ is bound in ϕ.

A µ-formula is provable in Kµ if ϕ belongs to the smallest set of formulas,
which contains the propositional tautologies, the K-axiom, the Fixpoint axiom,
the definitions of 3 and ν and is closed under the Modus Ponens, the Substitution,
the Necessitation and the Fixpoint rules.

2.5.1. Remark. The presence of the axioms (Dual-mod) and (Dual-fix) is due
to the fact the connectives 3 and 2 and the operators µx and νx are primitive
symbols of our language. For instance, if 3 and ¬ would be primitive symbols
but not 2, then the symbol 2 would be introduced as an abbreviation for ¬3¬.
As a consequence, we would not need the axiom (Dual-mod).

2.5.2. Theorem ([Wal95]). Kozen’s axiomatization is complete with respect to
the µ-calculus on frames. That is, for all µ-formulas ϕ ∈ µML, ϕ is provable in
Kµ iff ϕ is valid on all frames.
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2.6 Expressivity of the µ-calculus

2.6.1 Bisimulation

A fundamental notion in the semantics of modal logic is the notion of bisimula-
tion, which was defined by Johan van Benthem [Ben84]. It was also introduced
independently by David Park [Par81] in the area of process algebra.

One of the motivations for modal logic is that Kripke models can be used to
represent processes. From that perspective, modal logic and its extensions are
languages for describing certain conditions, also called specifications, met by a
process. A natural requirement would be that a formula should not be able to
distinguish points that display the same behavior. The notion of “having the
same behavior” is formalized by the notion of bisimulation.

Bisimulation Let M = (W, (Ra)a∈Act , V ) and M′ = (S ′, (R′a)a∈Act , V
′) be two

models. A relation B ⊆ W ×W ′ is a bisimulation if for all (w,w′) ∈ B, for all
p ∈ Prop and for all a ∈ Act , we have

• w ∈ V (p) iff w′ ∈ V ′(p),

• for all v ∈ W such that wRav, there exists v′ ∈ W ′ such that (v, v′) ∈ B
and w′R′v′,

• for all v′ ∈ W ′ such that w′R′v′, there exists v ∈ W such that (v, v′) ∈ B
and wRv.

A relation B is a bisimulation between two pointed models (M, w) and (M′, w′)
if B is a bisimulation between M and M′ such that (w,w′) ∈ B. When this
happens, we say that (M, w) and (M′, w′) are bisimilar and we write M, w ↔
M′, w′.

The following result shows that indeed µ-calculus formulas cannot distinguish
two points with the same behavior.

2.6.1. Proposition. If M, w ↔ M′, w′, then for all µ-formulas ϕ, M, w 
 ϕ
iff M′, w′ 
 ϕ.

Using the property above, we can show that the µ-calculus has the tree model
property. That is, every formula that is satisfiable, is satisfiable in a tree.

The proof relies on Proposition 2.6.1 together with the fact that given a
pointed model (M, w), it unravels into a tree, the root of which is bisimilar
to w. In fact, we can even generalize this unravelling construction and prove
something stronger: for all cardinals κ and all pointed models (M, w), we can
construct a tree, the root of which is bisimilar to w and such that each node of the
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tree (except the root) has at least κ “copies”. This tree is called the κ-expansion
of (M, w).

We recall the definition of a tree and the related terminology. We also define
the notion of κ-expansion and unravelling.

Tree A pair (T,R), where T is a set and R ⊆ T × T , is a tree if for some point
r ∈ T , T = {r} ∪ R+[r], r does not have a predecessor and every state t 6= r has
a unique predecessor. A pair (T ′, R′), where T ′ is a set and R′ ⊆ T ′ × T ′ is a
transitive tree if for some tree (T,R), we have (T ′, R′) = (T,R+).

If (T, (Ra)a∈Act) is a Kripke frame, we denote by R the relation
⋃
{Ra | a ∈

Act}. A Kripke frame (T, (Ra)a∈Act) is a (transitive) tree if the pair (T,R) is a
(transitive) tree. A Kripke frame is a finite (transitive) tree if it is a (transitive)
tree and its domain is finite.

A node u is a child of a node t in a tree if (t, u) ∈ R. A sibling of a node u in
a tree is a node u′ 6= u such that for some node t, u and u′ are children of t.

A model (T, (Ra)a∈Act , V ) is a tree model if (T, (Ra)a∈Act) is a tree. Similarly,
we can define the notions of finite tree model, transitive tree model and finite
transitive tree model.

κ-Expansion Let κ be an cardinal. A tree model is κ-expanded if every node
(apart from the root) has at least κ many bisimilar siblings. Given a model
M = (W, (Ra)a∈Act , V ) and a point w ∈ W , the κ-expansion of (M, w) is the
structure Mκ

w := (W ′, (R′a)a∈Act , V
′) , defined as follows. The set W ′ is the set

of all finite sequences w0a1k1w1 . . . anknwn (n ≥ 0) such that w0 = w and ki < κ,
wi ∈ W , ai ∈ Act and wi−1Raiwi for all i > 0. For all a ∈ Act , the relation R′a is
given by

{(w0a1k1s1 . . . anknwn, w0a1k1w1 . . . anknwnakv) | k < κ and wnRav}.

Finally, for all p ∈ Prop, V ′(p) is the set {w0a1k1w1 . . . anknwn | wn ∈ V (p)}.
The canonical bisimulation between Mω

w and M is the relation linking any
point w0a1k1w1 . . . anknwn to wn. The unravelling of a pointed model (M, w) is
the 1-expansion of (M, w).

In case Act is a singleton, we can simply “forget” about the ais in the defi-
nitions of κ-expansion, canonical bisimulation and unravelling. For example, the
domain of the κ-extension becomes the set of all finite sequences w0k1w1 . . . knwn
(n ≥ 0) such that w0 = w and ki < κ, wi ∈ W and wi−1Rwi for all i > 0.

2.6.2. Fact. Given a pointed model (M, w) and a cardinal κ, the structure
(Mκ

w, w) is an κ-expanded tree which is bisimilar to (M, w) via the canonical
bisimulation.

Putting this result together with Proposition 2.6.1, we obtain the following
result.
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2.6.3. Proposition. Let ϕ be a µ-formula and κ be a cardinal. Then ϕ is true
in all models iff ϕ is true in all κ-expanded tree models.

In particular, this shows the tree model property for the µ-calculus. Often we
will also make use of Proposition 2.6.3 in Chapter 5, in the case where κ = ω.

In the same chapter, it will also be very handy to assume the formulas to
be disjunctive. The reason is that when evaluating a disjunctive formula on an
ω-expanded tree, we may assume that a strategy for ∃ satisfies some nice property.

Scattered strategy for the evaluation game LetM be a model and ϕ a µ-
sentence. Given a state w ∈M, a strategy f for a player σ in the game E(M, ϕ)
with initial position (w,ϕ), is scattered [KV05] if for all states v in M, for all f
conform matches π = (zi)i<κ and π′ = (z′i)i<κ′ and for all µ-formulas ϕ and ϕ′,

zκ−1 = (v, ψ) and zκ′−1 = (v, ψ′) implies π v π′ or π′ v π,

where v is the prefix (initial segment) relation.

2.6.4. Proposition. If ϕ ∈ µML∇ is disjunctive and T is an ω-expanded tree
model with root r, then T , r 
 ϕ iff there is a winning strategy f for ∃ in the
game E(M, ϕ) with initial position (r, ϕ), which is scattered.

2.6.2 Expressivity results

Most expressivity results consist in identifying a given logic X as a fragment of a
well-known logic, playing the role of a yardstick. In case of modal logic and its
extensions, first-order logic (FO) and monadic second-order logic (MSO) are the
usual yardsticks.

Monadic second-order logic extends first-order logic by allowing quantifica-
tion over subsets of the domain of the model. The introduction of MSO is related
to the first decidability and undecidability results for logics of arithmetics. In
the beginning of the 20th century, several decidability results were established,
a famous and still useful example being the decidability of Presburger arith-
metic [Rab77]. Presburger arithmetic is the set of valid first-order formulas in
the structure (ω,+). Surprisingly, it turned out that that the first-order theory of
(ω,+, ·) is undecidable [Göd31]. In the sixties, using automata theoretic methods,
J. Richard Büchi [Büc60] and Calvin C. Elgot [Elg61] showed independently that
the monadic second-order theory of (ω,<) is decidable. The result was extended
to infinite binary trees (with a signature consisting of a “left child” relation and
“right child” relation) by Michael Rabin [Rab69]. Both results gave a particularly
nice status to MSO, as full second-order logic is usually undecidable, even over
very simple classes of models.
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Monadic second-order logic Let Sig be a set of predicates, each of them
with a given arity. Fix also an infinite set Var 1 of first order variables and an
infinite set Var 2 of second order variables. The set of first-order formulas (FO)
over Sig is given by:

ϕ ::= (x = y) | P (x1, . . . , xn) | ϕ ∨ ϕ | ¬ϕ | ∃xϕ,

where x, y, x1, . . . , xn belongs to Var 1 and P is a n-ary predicate in Sig .
The set of monadic second-order (MSO) formulas over the signature Sig , is

defined inductively as follows:

ϕ ::= (x = y) | P (x1, . . . , xn) | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃Xϕ,

where x, y, x1, . . . , xn belongs to Var 1, X belongs to Var 2 and P is a n-ary pred-
icate in Sig . As usual, we let ∀xϕ be an abbreviation for ¬∃x¬ϕ and ϕ −→ ψ be
an abbreviation for ψ ∨ ¬ϕ.

Sometimes instead of ϕ, we may write ϕ(x1, . . . , xn); this means that the free
variables in ϕ are among x1, . . . , xn in Var 1.

Semantics for MSO Let M = (W,PM) be a structure for Sig . That is, W is
a set and for each predicate P in Sig , PM is a subset of W n, where n is the arity
of P .

Also let ϕ be an MSO formula over Sig and let τ : Var 1∪Var 2 −→ W ∪P(W )
be an assignment such that for all x ∈ Var 1, τ(x) ∈ W and for all X ∈ Var 2,
τ(X) ∈ P(W ). We define the relationM �τ ϕ by induction on ϕ, in the following
way:

M �τ (x = y) if τ(x) = τ(y),
M � P (x1, . . . , xn) if (τ(x1), . . . , τ(xn)) ∈ PM,
M,� x ∈ X if τ(x) ∈ τ(X),
M �τ ϕ ∨ ψ if M �τ ϕ or M �τ ψ,
M �τ ¬ϕ if M 2τ ϕ,
M �τ ∃xϕ if there is w ∈ W such that M �τ [x 7→w] ϕ,
M �τ ∃Xϕ if there is U ⊆ W such that M �τ [x 7→U ] ϕ,

where x, y, x1, . . . , xn belong to Var 1, X belongs to Var 2 and P is a n-ary pred-
icate in Sig . The map τ [x 7→ w] is the assignment τ ′ such that τ ′(x) = w, for
all y ∈ Var 1\{x}, τ ′(y) = τ(y) and for all X ∈ Var 2, τ ′(X) = τ(X). The map
τ [X 7→ U ] is the assignment τ ′ such that τ ′(X) = U , τ(x) = τ(x) for all x ∈ Var 1

and τ ′(Y ) = τ(Y ), for all Y ∈ Var 2\{X}.
If M �τ ϕ, we say that ϕ holds in M under the assignment τ . In case

ϕ = ϕ(x1, . . . , xn) (with x1, . . . , xn ∈ Var 1) and τ(xi) = ui for all 1 ≤ i ≤ n, we
might write M, (u1, . . . , un) � ϕ or M � ϕ(u1, . . . , un) instead of M �τ ϕ.

Kripke frames and Kripke models were introduced for interpreting formulas of
modal logic. But they can also be seen as structures in the usual model theoretic
sense. We fix here the signatures associated with these structures.
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Monadic second-order logic over frames and models A Kripke frame
F = (W, (Ra)a∈Act) can be seen as a structure over the signature Sig := {Ra | a ∈
Act}, where for all a ∈ Act , Ra is a binary predicate. For all a ∈ Act , we can
define RF

a as the relation Ra ⊆ W 2.
Similarly, a Kripke modelM = (W, (Ra)a∈Act , V ) can be seen as structure over

the signature Sig := {Ra | a ∈ Act} ∪ {P | p ∈ Prop}, where for all p ∈ Prop, P
is a unary predicate. We define RMa as Ra ⊆ W 2 (for all a ∈ Act) and PM as the
set V (p) (for all p ∈ Prop).

As mentioned earlier, one of the nicest features of MSO is that it is decidable
on some widely used classes of models. We state here the result in the case of
tree models.

As mentioned, the original result was proved by Michael Rabin for binary tree
models (instead of arbitrary tree models). However, using a standard construction
which allows us to encode tree models into binary tree models, we can easily derive
from Rabin’s theorem the following result.

2.6.5. Theorem ([Rab69]). MSO is decidable on tree models. That is, there
is an algorithm that decides whether for a given MSO ϕ(x) formula (over the
appropriate signature for Kripke models), there exists a tree model T with root r
such that T , r � ϕ(x).

The result remains true when we restrict our attention to finite tree models.
That is, MSO is decidable on finite tree models (see [TW68] and [Don70]).

It is easy to see that on Kripke models (and on Kripke frames), MSO subsumes
the µ-calculus. We start by introducing the notion of equivalence between a µ-
sentence and an MSO formula. Next we define the standard translation, which
allows us to embed the µ-calculus into MSO. Let us also remark that the expres-
sive power of µ-calculus goes beyond first order logic; a simple µ-sentence like
µx.3x∨p (there exists a path on which p is eventually true) cannot be expressed
in first-order logic.

Equivalence between MSO and µ-calculus An MSO formula ϕ(x) is equiv-
alent on a class C of Kripke models to a µ-sentence ψ if for all models M in C
and for all nodes w ∈M,

M, w � ϕ(x) iff M, w 
 ψ.

If C is the class of all models, we simply say that ϕ(x) and ψ are equivalent.

Standard translation Given a µ-formula ϕ and a variable x in Var 1, we de-
fine the MSO formula ST x,ρ(ϕ) (with one free variable x) by induction on the
complexity of ϕ:
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ST x(>) = (x = x),
ST x(⊥) = ¬(x = x),
ST x(p) = P (x),
ST x(¬p) = ¬P (x),
ST x(y) = x ∈ Y ,
ST x(ϕ ∨ ψ) = ST x(ϕ) ∨ ST x(ψ),
ST x(ϕ ∧ ψ) = ST x(ϕ) ∧ ST x(ψ),
ST x(3aϕ) = ∃z(xRaz ∧ (ST z(ϕ))),
ST x(2aϕ) = ∀z(xRaz −→ ST z(ϕ)),
ST x(α • ∇aΦ) = ST x(α) ∧ ST x(∇aΦ),
ST x(∇a{ϕ1, . . . , ϕn}) = ∀z(xRaz −→ (ST z(ϕ1) ∨ · · · ∨ ST z(ϕn)))∧∧

{∃z(xRaz ∧ ST z(ϕi)) | 1 ≤ i ≤ n},
ST x(µy.ϕ) = ∀Y ((∀z(STz(ϕ) −→ z ∈ Y )) −→ x ∈ Y ),
ST x(νy.ϕ) = ∃Y ((∀z(z ∈ Y −→ STz(ϕ)) ∧ x ∈ Y ),

where y belongs to Var , x, z belong to Var 1, Y belongs to Var 2 and a belongs to
Act . ST x(ϕ) is called the standard translation of ϕ.

It is crucial that in the fifth equality and in last two equalities, we use specif-
ically the second-order variable Y . The reason is that a bound variable y in a
µ-formula ϕ corresponds to a second-order variable. Hence, in order to translate
ϕ into a second-order formula, we have to fix an injective map that sends a vari-
able in Var to a second-order variable in Var 2. We implicitly fix such a map by
sending a variable y to Y , a variable y′ to Y ′, etc.

2.6.6. Proposition. For all µ-sentences ϕ, ST x(ϕ) and ϕ are equivalent.

Note that in case ϕ is a modal formula, ST x(ϕ) is a first-order formula. In
other words, the standard translation also embeds modal logic into first-order
logic.

As we have seen, MSO is a good benchmark for the expressive power of µ-
calculus. Obviously, not all MSO formulas are expressible in the µ-calculus. Ex-
amples are counting of successors (“a point has at least 2 a-transitions”) or cyclic-
ity (“a point has a sequence of transition that is eventually a cycle”). Previously
we mentioned that an important feature of the µ-calculus is that a µ-formula
cannot distinguish two bisimilar points. David Janin and Igor Walukiewicz
showed that this property characterizes completely the µ-calculus as a fragment
of MSO [JW96].

This characterization extends a result proved by Johan van Benthem: modal
logic corresponds to the bisimulation invariant fragment of FO [Ben76].

Bisimulation invariance An MSO formula ϕ(x) is invariant under bisimula-
tion on a class C of models if for all bisimulations B between two modelsM and
M′ in C and for (w,w′) ∈ B, we have

M, w � ϕ(x) iff M′, w′ � ϕ(x).
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If C is the class of all models, we simply say that ϕ(x) is invariant under bisimu-
lation.

2.6.7. Theorem ([JW96]). An MSO formula ϕ(x) is equivalent to a µ-sentence
iff ϕ(x) is invariant under bisimulation.

Moreover, given an MSO formula ϕ(x), we can compute a µ-sentence ψ such
that ϕ(x) and ψ are equivalent iff ϕ(x) is equivalent to a µ-sentence.

We sometimes refer to this theorem as the Janin-Walukiewicz theorem. The
result remains true if we only consider tree models, or finitely branching models
(instead of arbitrary Kripke models). However, it is unknown whether the µ-
calculus is still the bisimulation invariant fragment of MSO on finite models.

2.6.3 Expressivity results for µ-programs

Sometimes it will be convenient (specially in Chapter 6) to talk about µ-programs
[Hol98b], which are a natural generalization of PDL programs.

PDL was first defined by Michael Fischer and Robert Ladner [FL79] and was
designed to reason about programs. The basic idea is to associate a modality with
each program. The programs are obtained by combining atomic programs. The
atomic programs are interpreted by the relations Ras, while the “combination
operations” usually include composition of programs, union of programs, test on
formulas and iteration of programs.

PDL The PDL formulas and PDL programs are defined by simultaneous induc-
tion as follows:

ϕ ::= > | ⊥ | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈θ〉ϕ | [θ]ϕ,

θ ::= Ra | ϕ? | θ; θ | θ ∪ θ | θ∗,

where p belongs to Prop and a belongs to Act .

Semantics for PDL Fix a Kripke model M = (W, (Ra)a∈Act , V ). Given a
PDL formula ϕ, we define the meaning of ϕ as a set [[ϕ]]M ⊆ W . The meaning
[[θ]]M of a PDL program θ is a binary relation over W .

The definitions of [[ϕ]]M and [[θ]]M proceed by simultaneous induction on the
complexity of ϕ and θ. We add the following clauses to the clauses for the
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definition of the semantics of modal logic:

[[〈θ〉ϕ]]M = {w ∈ W | there is v ∈ [[ϕ]]M such that (w, v) ∈ [[θ]]M },
[[[θ]ϕ]]M = {w ∈ W | for all v such that (w, v) ∈ [[θ]]M, we have v ∈ [[ϕ]]M},
[[Ra]]M = Ra,

[[ϕ?]]M = {(w,w) | w ∈ [[ϕ]]M},
[[θ; γ]]M = {(w, u) ∈ W 2 | for some v ∈ W , (w, v) ∈ [[θ]]M and (v, u) ∈ [[γ]]M},

[[θ ∪ γ]]M = [[θ]]M ∪ [[γ]]M,

[[θ∗]]M = {(w,w) | w ∈ W} ∪ {(w, v) ∈ W 2 | for some n > 0 and v0, . . . , vn,

v0 = w, vn = v and for all 0 ≤ i ≤ n− 1, (vi, vi+1) ∈ [[θ]]M},

where a belongs to Act .

We can now define the µ-programs. They are defined in the same way as the
PDL programs, except that we are able to test over µ-sentences.

µ-Program The µ-programs are given by

θ ::= R | ϕ? | θ; θ | θ ∪ θ | θ∗,

where ϕ is a µ-sentence.

Semantics for µ-programs Given a model M with domain W , the meaning
[[θ]]M of a µ-program θ is a subset of W 2, which is defined by induction on θ. All
the induction steps are the same as the ones for the definition of the semantics
of PDL.

As mentioned earlier, the µ-programs do not increase the expressive power
of the µ-calculus. With a µ-program θ, we can associate an universal modality
[θ] and an existential modality 〈θ〉. Given a µ-formula ϕ, the meanings of [θ]ϕ
and 〈θ〉ϕ are defined similarly to the case of PDL. It is not hard to prove by
induction on θ that [θ]ϕ and 〈θ〉ϕ are equivalent to µ-formulas (for more details,
see [Hol98b]).

This immediately implies that each PDL formula is equivalent to a µ-formula.
However, not all µ-formulas are equivalent to a PDL formula. It is shown
in [Koz83] that the µ-formula µx.2x (there is no infinite path starting from the
point) is not expressible in PDL.

In fact, not only PDL can be seen a fragment of the µ-calculus, but most
temporal logics. It is easy to translate each formula of CTL [CE81] into an equiv-
alent µ-formula. A much harder problem is to find a truth preserving translation
for the state formulas of CTL∗ [EL86] into the µ-calculus. The most optimal
translation (which is exponential in the size of the original formula) was given by
Girish Bhat and Rance Cleaveland [BC96].
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Next we state a result that is an extension of the Janin-Walukiewicz theorem to
the setting of µ-programs. That is, we characterize the µ-programs as a fragment
of MSO.

We start by giving a formal definition of equivalence between MSO formulas
and µ-programs. Next we define the notion of safety for bisimulations, which was
introduced by Johan van Benthem [Ben98]. Safety for bisimulation is basically a
generalization of the two last clauses in the definition of bisimulation. Finally we
state the expressiveness result for the µ-programs, which was proved by Marco
Hollenberg [Hol98b]. We will use this result in Chapter 6.

Equivalence between MSO and the µ-programs An MSO formula ϕ(x, y)
is equivalent to a µ-program θ on a class C of models, if for all models M ∈ C
and for all w, v in the domain of M

M, (w, v) � ϕ(x, y) iff (w, v) ∈ [[θ]]M.

Safety for bisimulations An MSO formula ϕ(x, y) is safe for bisimulations on
a class C of models if for all bisimulations B between two models M and M′ in
C and for all (w,w′) ∈ B,

• if there is v ∈ W such that (w, v) ∈ [[θ]]M, then there is v′ ∈ W ′ such that
(w′, v′) ∈ [[θ]]M′ ,

• if there is v′ ∈ W ′ such that (w′, v′) ∈ [[θ]]M′ , then there is v ∈ W such that
(w, v) ∈ [[θ]]M,

where W is the domain of M and W ′ is the domain of M′.

2.6.8. Theorem ([Hol98b]). An MSO formula ϕ(x, y) is equivalent to a µ-
program iff ϕ(x, y) is safe for bisimulations.

Moreover, given an MSO formula ϕ(x, y), we can compute a µ-program θ such
that ϕ(x, y) and θ are equivalent iff ϕ(x, y) is equivalent to a µ-program.

2.7 Graded µ-calculus

The graded µ-calculus is obtained by adding graded modalities to the µ-calculus
(or fixpoint operators to graded modal logic). The idea of adding graded modal-
ities to modal logic (and its extensions) originates in the 1970s [Fin72, Gob70].
Graded modalities generalize the usual universal and existential modalities in
that they can express that a point has at most or at least k successors making
true a certain formula.
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Syntax The set µGL of graded µ-formulas is defined by induction as follows:

ϕ ::= > | ⊥ | p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | 3k
aϕ | 2k

aϕ | µx.ϕ | νx.ϕ,

where p belongs to Prop, a belongs to Act , k is a natural number and x belongs
to Var .

Semantics for µGL Fix a Kripke modelM = (W, (Ra)a∈Act , V ) and an assign-
ment τ : Var −→ P(W ). Given a graded µ-formula ϕ, we define by induction on ϕ
the meaning of ϕ as a set [[ϕ]]M ⊆ W . The definition of the meaning is obtained
by adding the following clauses to the definition of the semantics for µML:

[[3k
aϕ]]M,τϕ = {w ∈ W | |Ra[w] ∩ [[ϕ]]M,τ | > k},

[[2k
aϕ]]M,τϕ = {w ∈ W | |Ra[w] ∩ (W\[[ϕ]]M,τ )| ≤ k},

where a belongs to Act and k is a natural number.

Concerning the expressive power of the graded µ-calculus, there exists a result
similar to the Janin-Walukiewicz theorem. It should be clear from their defini-
tions, that the graded µ-formulas are not bisimulation invariant. A relevant notion
of bisimulation can be obtained by strengthening the notion of bisimulation with
some condition related to counting. Counting bisimulations were introduced by
David Janin and Giacomo Lenzi [JL03].

Let us also mention that a notion of g-bisimulation for graded modal logic has
been introduced by Maarten de Rijke [Rij00]. Two points linked by a counting
bisimulation are g-bisimilar. However, the converse is not true. For our purpose,
it is more convenient to use the notion of counting bisimulation than the notion
of g-bisimulation.

Counting bisimulation LetM = (W, (Ra)a∈Act , V ) andM′ = (W ′, (R′a)a∈Act ,
V ′) be two Kripke models. A relation B ⊆ W ×W ′ is a counting bisimulation
between M and M′ if

• B is a bisimulation between M and M′,

• for all a ∈ Act and all (w,w′) ∈ B, there exists a bijection f : Ra[w]
−→ R′a[w

′] such that for all v ∈ Ra[w], we have (v, f(v)) ∈ B.

We define the equivalence between an MSO formula ϕ(x) and a graded µ-
calculus ϕ, in the same way we defined the equivalence between an MSO formula
ϕ(x) and a µ-formula.

2.7.1. Theorem (from [Wal02],[Jan06]). An MSO formula ϕ(x) is equiva-
lent to a graded µ-formula iff ϕ(x) is invariant under counting bisimulation.

Moreover, given an MSO formula ϕ(x), we can compute a graded µ-formula ψ
such that ϕ(x) and ψ are equivalent iff ϕ(x) is equivalent to a graded µ-formula.
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It is worth noting that invariance under counting bisimulation is equivalent
to invariance under unravelling, since two pointed models are counting bisimilar
iff their unravelling are isomorphic.





Chapter 3

An easy completeness proof for the
µ-calculus on finite trees

When investigating a logic, a natural question to ask is whether there exists a nice
axiomatization for this logic. The proof might provide some insight about the
logic. Moreover, a nice axiomatization would already be a good indication that
the logic is well-behaved. For example, the existence of a finite axiomatization
implies that the satisfiability problem for the logic is semi-decidable: there is an
algorithm that, given a formula, always terminates if the formula is not satisfiable
and otherwise, keeps on running (simply consider the algorithm that examines all
the possible formal proofs with respect to the axiomatization and check whether
the conclusion is the input formula).

For the µ-calculus, a natural axiomatization (that we denote by Kµ) was pro-
posed by Dexter Kozen in 1983 [Koz95]. This axiomatization consists in enriching
the standard axiomatization for basic modal logic with one axiom (with the in-
tended meaning that µx.ϕ is a pre-fixpoint of the map induced by ϕ) and a
rule (ensuring that all the pre-fixpoints of the map induced by ϕ, are implied by
µx.ϕ). In the same paper, Dexter Kozen showed completeness for a fragment of
the µ-calculus, called the aconjunctive fragment. The proof was essentially using
tableau constructions.

Showing completeness of the µ-calculus(with respect to Kozen’s axiomatiza-
tion) appeared to be a hard problem, which was solved after ten years by Igor
Walukiewicz [Wal95]. The proof is involved and uses the disjunctive normal form
for µ-formulas and the weak aconjunctive fragment (which is an extension of the
aconjunctive fragment). The disjunctive formulas behave nicely with respect to
provability and one can show that if a disjunctive formula is not provable, then
the negation of the formula is satisfiable. Hence, in order to obtain completeness
for the full µ-calculus, it is sufficient to prove that each µ-sentence is provably
equivalent to a disjunctive formula (in fact, even something weaker than that
is sufficient). This is the hard part of the proof and it uses the notion of weak
aconjunctivity.

45
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In this chapter, we prove completeness of the Kozen’s axiomatization together
with the axiom µx.2x with respect to the class of finite trees. It is easy to see
that µx.2x is valid on a frame iff the frame does not contain any infinite path.
Adding this formula to the axiomatization helps us to obtain an easier proof for
completeness. It should be mentioned that our result can be derived from the
completeness result proved by Igor Walukiewicz (we give more details at the end
of Section 3.4). It is also fair to say that on finite trees, the expressive power of
the µ-calculus is rather limited. This is illustrated by the fact that for all graded
µ-formulas ϕ, µx.ϕ and νx.ϕ are equivalent on finite trees.

However, we believe that the alternative proof proposed here is of interest for
the following reasons. As mentioned already, it is a much simpler proof (but let
us emphasize again that the setting is restricted in comparison with the original
proof). Moreover, our proof can be extended to other settings: We obtain a
similar result for the graded µ-calculus and we also show that when we add
finitely many shallow axioms (as defined in [Cat05]) to the logic Kµ + µx.2x,
we get a complete axiomatization for the corresponding class of finite trees. The
probably most relevant feature of our proof are the tools that we use. These tools
are completely different than the ones of the original proof, which uses tableau
and automata (as the disjunctive normal form is deeply linked to the automata
perspective on µ-calculus).

Our approach is inspired by model theoretic methods. In order to illustrate
this, let us give a short summary of the structure of our proof. The proof is in three
steps. The first step consists of defining a notion of rank for µ-formulas, which
plays the same role as the modal depth for modal formulas and the quantifier
depth for first order formulas. The second step is to prove completeness of the µ-
calculus with respect to generalized models, which are Kripke models augmented
with a set of admissible subsets, in the style of Henkin semantics for second order
logic.

The last step is the one which has most of the connections with model theory.
In fact, it is inspired by the work of Kees Doets [Doe89]. More specifically, by
the method that he uses to provide complete axiomatizations of the monadic
Π1

1-theories of well-founded linear orders, the reals and certain classes of trees.
An essential notion for this last step is the notion of n-goodness. As we will see
from its definition, n-goodness shares some similarities with the model theoretic
notion of n-elementary equivalence. Moreover, a crucial part of this last step
consists in “gluing” together a collection of finite trees and during this process,
we also want the truth of formulas of rank n to be preserved. This is a typical
model theoretic argument: constructing new structures out of existing ones and
preserving elementary equivalence (see for example the Feferman-Vaught theorem
in [FV59]).

The chapter is organized as follows. In Section 3.1, we recall Kozen’s axiom-
atization and fix some notation. In Section 3.2, we define the notion of rank
for a formula. In Section 3.3, we introduce the notion of generalized model and
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we show completeness of Kµ with respect to the class of generalized models. In
Section 3.4, we use Kees Doets’ argument to obtain completeness of Kµ + µx.2x
with respect to the class of finite trees. In the next two sections, we give some
examples of extensions of Kµ+µx.2x to which we can apply our method in order
to prove completeness.

3.1 Preliminaries

We start by recalling Kozen’s axiomatization (already mentioned in Chapter 2)
and fixing some notation relative to axiomatic systems.

Convention In this chapter, we do not use the ∇ operator. So whenever we
write “µ-formula”, we refer to a formula in µML (and not in µML∇).

Kozen’s axiomatization The axiomatization of the Kozen system Kµ consists
of the following axioms and rules

propositional tautologies,
if ` ϕ −→ ψ and ` ϕ, then ` ψ (Modus Ponens),
if ` ϕ, then ` ϕ[p/ψ] (Substitution),
` 2(p −→ q) −→ (2p −→ 2q) (K-axiom),
if ` ϕ, then ` 2ϕ (Necessitation),
` ϕ[x/µx.ϕ] −→ µx.ϕ (Fixpoint axiom),
if ` ϕ[x/ψ] −→ ψ, then ` µx.ϕ −→ ψ (Fixpoint rule),

where p and q are proposition letters, ϕ and ψ are µ-formulas, x is not a bound
variable of ϕ and no free variable of ψ is bound in ϕ.

If Φ is a set of modal formulas, we write K + Φ for the smallest set of modal
formulas that contains the propositional tautologies, the K-axiom and is closed
under the Modus Ponens, Substitution and Necessitation rules. We say that K+Φ
is the extension of K by Φ. If Φ is empty, we simply write K.

Next, if Φ is a set of modal formulas, we denote by K+r Φ the smallest set of
formulas that contains both K and Φ and is closed under the Modus Ponens and
Necessitation rules. We call K +r Φ the restricted extension of K by Φ.

Finally, if Φ is a set of µ-sentences, we write Kµ + Φ for the smallest set of
formulas that contains both Kµ and Φ and is closed under the Modus Ponens, Sub-
stitution, Necessitation and Fixpoint rules. We say that Kµ + Φ is the extension
of Kµ by Φ.

As mentioned in the introduction, a key formula in this chapter is the formula
µx.2x.



48 Chapter 3. Completeness for the µ-calculus on finite trees

The formula µx.2x A path in a model M = (W,R, V ) is a sequence (wi)i<κ
such that κ ∈ N∪ {ω} and for all i+ 1 < κ, (wi, wi+1) ∈ R. It is easy to see that
the formula µx.2x is true at a point w in a modelM iff there is no infinite path
(wi)i<ω such that w0 = w. In particular, µx.2x is valid in a frame iff the frame
does not contain any infinite path.

3.2 Rank of a formula

The goal of this section is to introduce a definition of rank that would be the
analogue of the depth of a modal formula. For modal logic, the truth of a formula
ϕ of modal depth n at a point w is determined by the proposition letters that are
true at w and by the truth of the formulas of depth ≤ n at the successors of w.
In our proof, we will need something similar for the µ-calculus.

The most natural idea would be to look at the nesting depth of modal and fix-
point operators (which is defined below, but intuitively, this is the most straight-
forward generalization of the notion of modal depth). However, this definition
does not have the required properties1.

The notion of rank that we develop in this section is in fact related to the
closure of a formula, which has been introduced by Michael Fischer and Robert
Ladner [FL79] and already mentioned in Chapter 2.

Closure, depth and rank of a formula We recall that the closure Cl(ϕ) of
a formula ϕ ∈ µML is the smallest set of formulas such that

ϕ ∈ Cl(ϕ),
if ¬p ∈ Cl(ϕ), p ∈ Cl(ϕ),
if ψ ∨ χ or ψ ∧ χ belongs to Cl(ϕ), then both ψ, χ ∈ Cl(ϕ),
if 3ψ or 2ϕ belongs to Cl(ϕ), then ψ ∈ Cl(ϕ),
if µx.ψ ∈ Cl(ϕ), then ψ[x/µx.ψ] ∈ Cl(ϕ),
if νx.ψ ∈ Cl(ϕ), then ψ[x/νx.ψ] ∈ Cl(ϕ).

It is also proved in [Koz95] that the closure Cl(ϕ) of a formula ϕ is finite. In
order to define the rank, we also need to introduce the notion of (nesting) depth
of a formula.

1Look for example at the formula ϕ = µx.33(x ∨ p) (ϕ is true at a point w in a model
(W,R, V ) iff there exists a natural number i and a path (wj)j<2i+1 such that w0 = w and p is
true at w2i). Obviously, ϕ is equivalent to 33(ϕ ∨ p). Thus, the truth of ϕ at a point w only
depends on the truth of ψ = 3(ϕ ∨ p) at the successors of w. However, the nesting depth of ψ
is greater than the nesting depth of ϕ.
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The depth d(ϕ) of a formula ϕ is defined by induction as follows:

d(p) = d(¬p) = d(x) = 0,

d(ϕ ∨ ψ) = d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)},
d(3ϕ) = d(2ϕ) = d(ϕ) + 1,

d(µx.ϕ) = d(νx.ϕ) = d(ϕ) + 1.

Finally, the rank of a formula ϕ is defined by:

rank(ϕ) = max{d(ψ) | ψ ∈ Cl(ϕ)}.

Remark that since Cl(ϕ) is finite, rank(ϕ) is well-defined (that is, the max is
actually reached). All we will use later are the following properties of the rank.

3.2.1. Proposition. If the set Prop of proposition letters is finite, then for all
natural numbers n, there are only finitely many sentences of rank n (up to logical
equivalence).

Proof Fix a natural number n. If rank(ϕ) = n, then in particular, d(ϕ) ≤ n.
Hence, it is sufficient to show that there only finitely many sentences of depth
less or equal to n (up to logical equivalence). There is a finite set of variables
{x1, . . . , xk} such that the variables occurring in ϕ are among x1, . . . , xk. So we
can restrict ourselves to show that there are finitely many formulas (up to logical
equivalence) of depth n over the set Prop and the set of variables {x1, . . . , xk}.
The proof is by induction on k. We do not give details, as it is similar to the
proof that there only finitely many modal formulas (up to logical equivalence) of
modal depth n over a finite set of proposition letters. 2

3.2.2. Proposition. The rank is closed under boolean combination. That is,
for any n, a boolean combination of formulas of rank at most n is a formula of
rank at most n.

3.2.3. Proposition. Every formula ϕ is provably equivalent to a boolean combi-
nation of proposition letters and formulas of the form 3ψ or 2ψ, with rank(ψ) ≤
rank(ϕ).

Proof Let ϕ be a µ-formula. As mentioned in the preliminaries, every µ-formula
is equivalent to a guarded formula. In fact, the two formulas are even provably
equivalent. A close inspection of the proof in [Koz83] shows that when trans-
forming a formula into a provably equivalent guarded formula, the rank remains
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unchanged. Hence, we may assume that ϕ is guarded. We define a map G by
induction as follows:

G(p) = p,

G(¬p) = ¬p,
G(x) = x

G(ψ ∧ ψ′) = G(ψ) ∧G(ψ′)

G(ψ ∨ ψ′) = G(ψ) ∨G(ψ′),

G(3ψ) = 3ψ,

G(2ψ) = 2ψ,

G(µx.ψ) = G(ψ[x/µx.ψ]),

G(νx.ψ) = G(ψ[x/νx.ψ]),

where p is a proposition letter and x is a variable. Using the fact that ϕ is
guarded, one can show that the computation of G(ϕ) does terminate. It is not
hard to see that G(ϕ) is equivalent to ϕ. So it remains to show that G(ϕ) is
a boolean combination of proposition letters and formulas of the form 3ψ and
2ψ, with rank(ψ) ≤ rank(ϕ). It follows from the definition of G and the fact
that ϕ is guarded that G(ϕ) is a boolean combination of proposition letters and
formulas of the form 3ψ and 2ψ, where ψ belongs to the closure of ϕ. Now if a
formula ψ belongs to Cl(ϕ), then Cl(ψ) is a subset of Cl(ϕ). As a corollary, the
rank of ψ is less or equal to the rank of ϕ, which concludes the proof. 2

3.3 Completeness for generalized models

We introduce a semantics for the µ-calculus that is based on structures that we
call generalized models. The goal of this section is to prove completeness of Kµ

with respect to the class of generalized models.
The semantics presented here is the analogue of the Henkin semantics for

second order logic (see [Hen50]). The “Henkin trick” consists in restricting the
range of the predicates in the formulas. In general, such a restriction brings the
complexity of the logic down, as illustrated by the case of second order logic.
Another example can be found in [Ben05], where Johan van Benthem shows that
an adaptation of the Henkin semantics makes the fixpoint extension of first order
logic decidable.

However, in the case of modal logic and µ-calculus, the situation is different.
It follows from the completeness theorem of this section (Corollary 3.3.3) and the
completeness of µ-calculus (proved in [Wal95]) that a formula is true in all Kripke
models iff it is true in all generalized models. In particular, the logic corresponding
to the standard semantics and the logic corresponding to the “Henkin semantics”
coincide. Finally let us emphasize that all the material presented in this section
is not specific to the setting of finite trees.
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Generalized models Consider a quadruple M = (W,R, V,A), where (W,R)
is a Kripke frame, A is a subset of P(W ) and V : Prop −→ A is a valuation. A
set which belongs to A is called admissible.

We define the truth of a formula ϕ under an assignment τ : Var −→ A by
induction. All the clauses are the same as usual, except the one defining the
truth of µx.ϕ. Normally, we define the set [[µx.ϕ]]M,τ as the least pre-fixpoint
of the map ϕx. But here, we define it as the intersection of all the admissible
pre-fixpoints of ϕx. The set [[ϕ]]M,τ is defined by induction on ϕ as follows:

[[p]]M,τ = V (p),

[[¬p]]M,τ = S\V (p),

[[x]]M,τ = τ(x),

[[ϕ ∨ ψ]]M,τ = [[ϕ]]M,τ ∪ [[ψ]]M,τ ,

[[ϕ ∧ ψ]]M,τ = [[ϕ]]M,τ ∩ [[ψ]]M,τ ,

[[3ϕ]]M,τ = {w ∈ W | there exists a successor of w in [[ϕ]]M,τ},
[[2ϕ]]M,τ = {w ∈ W | all the successors of w belongs to [[ϕ]]M,τ},

[[µx.ϕ]]M,τ =
⋂
{U ∈ A | [[ϕ]]M,τ [x 7→U ] ⊆ U},

[[νx.ϕ]]M,τ =
⋃
{U ∈ A | U ⊆ [[ϕ]]M,τ [x 7→U ]}.

If w ∈ [[ϕ]]M,τ , we write M, w 
τ ϕ and we say that ϕ is true at w under the
assignment τ . If ϕ is a sentence, the truth of ϕ does not depend on the assignment
τ and we simply writeM, w 
 ϕ. A formula ϕ is true inM under an assignment
τ if for all w ∈ W , we have M, w 
τ ϕ. In this case, we write M 
τ ϕ.

Note that if the set A of admissible sets is arbitrary, it is possible that for
some formulas ϕ, [[ϕ]]M,τ does not belong to A. We say that a quadruple M =
(W,R, V,A) is a generalized model if for all formulas ϕ and all assignments τ : Var
−→ A, the set [[ϕ]]M,τ belongs to A. A triple F = (W,R,A) is a generalized frame
if for every valuation V : Prop −→ A, the quadruple (W,R, V,A) is a generalized
model. For people familiar with modal algebras, we observe that in particular, A
is a modal algebra, which is not necessarily complete, but for which some special
infinite meets and joins exist (namely the ones corresponding to the construction
of the least and greatest fixpoints, as described above).

If F = (W,R,A) is a generalized frame, we call (W,R) the underlying Kripke
frame of F. A formula ϕ is valid in a generalized frame F = (W,R,A), notation:
F 
 ϕ, if for all valuations V : Prop −→ A and all assignments τ : Var −→ A, the
formula ϕ is true in (W,R, V,A) under the assignment τ .

Any Kripke model M = (W,R, V ) can be seen as the generalized model
M′ = (W,R, V,P(W )). It follows easily from our definition that for all formulas
ϕ and all points w ∈ W ,

M, w 
 ϕ iff M′, w 
 ϕ.
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Now we show that for all sets Φ of formulas, the logic Kµ+Φ is complete with
respect to a particular generalized model. This is actually more general than what
we need in order to prove the completeness of Kµ = µx.2x (it would be sufficient
to know that Kµ is complete with respect to a particular generalized model). But
showing this more general result will help us to extend the completeness of Kµ to
other settings.

First we introduce some definitions and recall some results of modal logic.

3.3.1. Theorem (from [BRV01]). Let Φ be a set of modal formulas over a set
Prop of proposition letters. There exists a model M over Prop such that for all
modal formulas ϕ over Prop, ϕ is provable in K +r Φ iff M 
 ϕ.

Proof Fix a set Φ of modal formulas. We define the canonical model M =
(W,R, V ) for Φ as follows. A set Γ of modal formulas over Prop is Φ-consistent if
⊥ does not belong to K +r Φ and there is no finite subset {γ1, . . . , γn} of Γ such
that γ1 ∧ . . . γn −→ ⊥ belongs to K +r Φ. Moreover, Γ is maximal Φ-consistent if
for all Φ-consistent sets Γ′ such that Γ ⊆ Γ′, we have Γ = Γ′.

The set W is the set of maximal Φ-consistent sets of modal formulas over
Prop. The relation R is defined such that for Γ,Γ′ ∈ W , ΓRΓ′ iff for all ϕ ∈ Γ′,
3ϕ belongs to Γ. Finally, we define V such that for all proposition letters p,
V (p) = {Γ ∈ W | p ∈ Γ}.

It follows from the proof of in [BRV01] that for all formulas ϕ, [[ϕ]]M = {Γ ∈
W | ϕ ∈ Γ}. As a corollary, ϕ is provable in K +r Φ iff M 
 ϕ. 2

Replacement of a formula Let Prop be a set of proposition letters and Var a
set of variables. We let µFL be the set of sentences of the form µx.ϕ or νx.ϕ, for
some µ-formula ϕ over Prop. We denote by Prop+ the set Prop∪{pϕ | ϕ ∈ µFL}.
Given a µ-formula ϕ over Prop+, we say that a subformula ψ of ϕ is a maximal
subformula of ϕ in µFL if ψ belongs to µFL and there is no subformula ξ of ϕ
such that ξ belongs to µFL and ψ is a subformula of ξ.

If ϕ is a µ-formula over Prop+, we define s(ϕ) as the formula obtained by
replacing each proposition letter of the form pψ (ψ ∈ µFL), by the formula ψ.
We call s(ϕ) the source of ϕ.

Next, if ϕ is a µ-formula over Prop+, we say that a modal formula ψ over
Prop+ is the replacement of ϕ if ψ is obtained by replacing, in the formula s(ϕ),
all maximal subformulas χ in µFL by the proposition letter pχ. In this case, we
use the notation repl(ϕ). Finally, if Φ is a set of µ-formulas over Prop, we let
repl(Φ) be the set {repl(ϕ) | ϕ ∈ Φ}.

For example, let ϕ be the formula 3(µx.pνy.x∧y). Then s(ϕ) is the formula
3(µx.νy.(x ∧ y)) and repl(ϕ) is the formula 3pµx.νy.(x∧y).

We observe that repl(ϕ) is a modal formula over Prop+. Moreover, if ϕ is a
modal formula, then repl(ϕ) = ϕ. Let us also mention that s(repl(ϕ)) = s(ϕ)
and repl(s(ϕ)) = repl(ϕ).
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Now we prove that for all sets of formulas Φ, the logic Kµ + Φ is complete
with respect to the class of generalized models in which Φ is true. An easy way
to show this would be to do a standard canonical model construction (inspired
by the one used for the completeness of the modal logic K).

We give here another proof. The idea is to use the replacement map introduced
previously in order to translate the completeness result for modal logic into a
completeness result for generalized Kripke models. This proof might seem a bit
more tedious but it will help us to extend our result to other settings (like graded
µ-calculus).

3.3.2. Theorem. Let Φ be a set of µ-formulas over a set Prop. There is a
generalized model M = (W,R, V,A) such that for all sentences ϕ, ϕ is provable
in Kµ + Φ iff M 
 ϕ.

Proof By Theorem 3.3.1, there is a Kripke model N = (W,R, V +) (over Prop+)
such that for all modal formulas θ over Prop+, θ is provable in K+r repl(Kµ + Φ)
iff N 
 θ. Now let A be the set {[[δ]]N | δ modal formula over Prop+}. We define
M as the quadruple (W,R, V +,A).

First, we show that for all µ-formulas ϕ over Prop+, all w in W and all
assignments τ : Var −→ A, we have

N , w 
τ repl(ϕ) iff M, w 
τ ϕ. (3.1)

The proof is by induction on the alternation depth of ϕ. The basic case where
ϕ is a modal formula over Prop+ is immediate. For the induction step, fix a
formula ϕ of alternation depth n + 1. To show that equivalence (3.1) holds for
ϕ, we start a second induction on the complexity of ϕ. We only give details for
the most difficult case. That is, ϕ is a formula of the form µx.χ, where χ is a
µ-formula over Prop+ the alternation depth of which is less or equal to n.

For the direction from left to right of equivalence (3.1), suppose that N , w 
τ
repl(µx.χ). In order to show that M, w 
 µx.χ, we have to prove that for all U
in A such that [[χ]]M,τ [x 7→U ] ⊆ U , w belongs to U .

Fix an admissible set U in A such that [[χ]]M,τ [x 7→U ] ⊆ U . By definition
of A, there is a modal formula δ over Prop+ such that U = [[δ]]. Now, since
[[χ]]M,τ [x7→[[δ]]] ⊆ [[δ]], we have that for all v ∈ W , ifM, v 
τ [x 7→[[δ]]] χ, thenM, v 
τ
δ. By a standard induction, we can show that for all v ∈ W , M, v 
τ [x 7→[[δ]]] χ iff
M, v 
τ χ[δ/x]. Therefore, for all v ∈ W , if M, v 
τ χ[δ/x], then M, v 
τ δ.
That is, for all v ∈ W ,

M, v 
τ χ[δ/x] −→ δ.

Using the (first) induction hypothesis, we get that for all v ∈ W ,M, v 
τ χ[δ/x]
iff N , v 
τ repl(χ[δ/x]). It also follows from the induction hypothesis that for all
v ∈ W , M, v 
τ δ iff N , v 
τ repl(δ). Moreover, since δ is a modal formula, we
have repl(δ) = δ. Putting everything together, we obtain that for all v ∈ W ,

N , v 
τ repl(χ[δ/x]) −→ δ.
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By definition of N , this means that repl(χ[δ/x]) −→ δ is provable in K+r repl(Kµ+
Φ).

We show that it implies that

s(repl(χ[δ/x]) −→ δ) is provable in Kµ + Φ. (3.2)

Since repl(χ[δ/x]) −→ δ is provable in K +r repl(Kµ + Φ), there is a formal proof
for repl(χ[δ/x]) −→ δ in the system K+r repl(Kµ + Φ). By replacing each formula
ψ in each line of this formal proof by its source s(ψ), we obtain a formal proof
for s(repl(χ[δ/x]) −→ δ) in Kµ + Φ. This finishes the proof of (3.2).

Now we also have that

s(repl(χ[δ/x]) −→ δ) = s(repl(χ[δ/x])) −→ s(δ),

= s(χ[δ/x]) −→ s(δ), (for all θ, s(repl(θ)) = s(θ))

= s(χ)[s(δ)/x] −→ s(δ).

Putting this together with (3.2), we obtain that s(χ)[s(δ)/x] −→ s(δ) is provable
in Kµ + Φ.

It follows from the Fixpoint rule that the formula µx.s(χ) −→ s(δ) is provable
in Kµ + Φ. That is, repl(µx.s(χ) −→ s(δ)) belongs to repl(Kµ + Φ). Moreover,

repl(µx.s(χ) −→ s(δ)) = repl(µx.s(χ)) −→ repl(s(δ)),

= repl(µx.χ) −→ repl(δ),

= repl(µx.χ) −→ δ. (δ is a modal formula)

Putting everything together, we obtain that repl(µx.χ) −→ δ is provable in Kµ+Φ.
Since N 
 repl(Kµ + Φ) and repl(µx.χ) −→ δ belongs to repl(Kµ + Φ), we

have that N 
τ repl(µx.χ) −→ δ. Using the fact that N , w 
τ repl(µx.χ), we
obtain that N , w 
τ δ. That is, w belongs to [[δ]] and this finishes the proof of
the implication from left to right of equivalence (3.1).

For the direction from right to left of equivalence (3.1), suppose thatM, w 
τ
µx.χ. We have to show that N , w 
τ repl(µx.χ). Since M, w 
τ µx.χ, we have
that for all admissible sets U in A such that [[χ]]M,τ [x 7→U ] ⊆ U , w belongs to
U . Therefore, if we let U0 be the admissible set [[repl(µx.χ)]] and show that
[[χ]]M,τ [x 7→U0] ⊆ U0, we will obtain that w belongs to U0. That is, N , w 
τ
repl(µx.χ).

So in order to prove the direction from right to left of equivalence (3.1), it is
sufficient to show that [[χ]]M,τ [x 7→U0] ⊆ U0. Suppose that v belongs to [[χ]]M,τ [x 7→U0].
This means that M, v 
τ [x 7→U0] χ. That is,

M, v 
τ χ[repl(µx.χ)/x].

By (the first) induction hypothesis, this happens iffN , v 
τ repl(χ[repl(µx.χ)/x]).
As the sources of the formulas χ[repl(µx.χ)/x] and χ[µx.χ/x] are the same, we
have

repl(χ[repl(µx.χ)/x]) = repl(χ[µx.χ/x]).
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Since χ[µx.χ/x] −→ µx.χ is provable in Kµ, repl(χ[µx.χ/x]) −→ repl(µx.χ) belongs
to repl(Kµ + Φ). Recall also that N 
 repl(Kµ + Φ). Therefore,

N , v 
 repl(χ[µx.χ/x]) −→ repl(µx.χ).

Now since N , v 
 repl(χ[µx.χ/x]), we also have that N , v 
 repl(µx.χ). In other
words, v belongs to U0. This finishes the proof of equivalence (3.1).

Next, we prove that for all µ-sentences ϕ (over Prop), we have

M 
 ϕ iff ϕ is provable in Kµ + Φ.

For the direction from left to right, suppose that ϕ is not provable in Kµ + Φ.
Using a proof similar to the one for (3.2), we can show that this implies that
repl(ϕ) is not provable in K +r repl(Kµ + Φ). Therefore, the formula repl(ϕ) is
not true in N . By equivalence (3.1), this means that ϕ is not true in M.

For the direction from right to left, assume that ϕ is provable in Kµ + Φ. It
is routine to show that for all generalized models M′ such that M′ 
 Φ, we
have thatM′ 
 ϕ. Moreover, using equivalence (3.1) together with the fact that
repl(Φ) is true in N , we obtain that Φ is true inM. Putting everything together,
we get that ϕ is true in M.

To finish the proof, it remains to show thatM is a generalized model. That is,
for all µ-formulas ϕ over Prop, the set [[ϕ]]M belongs to A. Fix a µ-formula ϕ over
Prop. By equivalence (3.1), the set [[ϕ]]M is equal to [[repl(ϕ)]]N . By definition of
A, this set belongs to A. 2

3.3.3. Corollary. The logic Kµ + Φ is complete with respect to the class of
generalized models in which Φ is true. That is, for all sentences ϕ, ϕ is provable
in Kµ + Φ iff for all generalized models M such that M 
 Φ, we have M 
 ϕ.

3.4 Completeness for finite trees

In the style of Kees Doets [Doe89], we prove completeness of Kµ + µx.2x with
respect to the class of finite trees. The argument is as follows. First, we say that
a point w in a generalized model is n-good if there is a point t in a finite tree
model T such that no formula of rank at most n can distinguish w from t. Let
us emphasize that T is a Kripke model, not a generalized model.

Next, we show that “being n-good” is a property that can be expressed by a
formula γn of rank at most n. Afterward, we prove that each point in a generalized
model satisfying µx.2x, is n-good. Finally, using completeness for generalized
models, we obtain completeness of Kµ + µx.2x with respect to the class of finite
trees.
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n-goodness Fix a natural number n. LetM andM′ be two generalized models.
A world w ∈ M is rank n-indistinguishable from a world w′ ∈ M′ if for all
formulas ϕ of rank at most n, we have

M, w 
 ϕ iff M′, w′ 
 ϕ.

In case this happens, we write (M, w) ∼n (M′, w′). Finally, we say that w ∈M
is n-good if there exists a finite tree model T and some t ∈ T such that (M, w) ∼n
(T , t).

Let n be a natural number and let Φn be the set of formulas of rank at most
n. For any generalized model M and any w ∈M, we define the n-type θn(w) as
the set of formulas in Φn that are true at w.

By Proposition 3.2.1, Φn is finite (up to logical equivalence) and in particular,
there are only finitely many distinct n-types.

3.4.1. Lemma. Let n be a natural number. There exists a formula γn of rank n
such that for any generalized model M and any w ∈M, we have

M, w 
 γn iff (M, w) is n-good.

Proof Let n be a natural number and let γn be the formula defined by

γn =
∨
{
∧

θn(w) | w is n-good}.

Since there are only finitely many distinct n-types, the formula γn is well-defined.
Moreover, from Proposition 3.2.2, it follows that the rank of γn is n.

It remains to check that γn has the required properties. It is immediate to see
that if a point w in a generalized model is n-good, then γn is true at w. For the
other direction, assume that γn is true at a point w in a generalized model M.
Therefore, there is a point w′ in a generalized model M′ such that w′ is n-good
and θn(w′) is true at w. Since w′ is n-good, there is a point t in a finite tree T
such that w′ and t are rank n-indistinguishable. Using the fact that w and w′

have the same n-type, we obtain that w and t are also rank n-indistinguishable.
That is, w is n-good. 2

3.4.2. Lemma. For all natural numbers n, `Kµ 2γn −→ γn.

Proof Let n be a natural number. By Corollary 3.3.3, it is sufficient to show that
the formula 2γn −→ γn is valid in all generalized models. LetM be a generalized
model and let w be a point in M. We have to show M, w 
 2γn −→ γn. So
supposeM, w 
 2γn. If w is a reflexive point, we immediately obtainM, w 
 γn
and this finishes the proof. Assume now that w is irreflexive. We have to prove
that (M, w) is n-good. That is, we have to find a finite tree model T and some
t ∈ T such that (M, w) ∼n (T , t).



3.4. Completeness for finite trees 57

Now for any successor v of w, we haveM, v 
 γn. Therefore, (M, v) is n-good
and there exists a finite tree model Tv = (Tv, Rv, Vv) and some tv ∈ Tv such that
(M, v) ∼n (Tv, tv). Without loss of generality, we may assume that tv is the root
of Tv.

The idea is now to look at the disjoint union of these models and to add a
root t (that would be rank n-indistinguishable from w). However, this new model
might not be a finite tree model (t might have infinitely many successors). The
solution is to restrict ourselves to finitely many successors of w. More precisely,
for each n-type θ, we pick at most one successor of w the n-type of which is θ.

So let W0 be a set of successors of w such that for all successors v of w, there
is exactly one point w0 of W0 satisfying θn(v) = θn(w0). Remark that since there
are only finitely many distinct n-types, W0 is finite. Let T = (T, S, U) be the
model defined by

T = {t} ∪
⊎
{Tw0 | w0 ∈ W0},

S = {(t, tw0) | w0 ∈ W0} ∪
⋃
{Rw0 | w0 ∈ W0},

U(p) =

{
{t} ∪

⋃
{Vw0(p) | w0 ∈ W0} if M, w 
 p,⋃

{Vw0(p) | w0 ∈ W0} otherwise,

for all proposition letters p. Since W0 is finite, T is a finite tree model. Thus, it
is sufficient to check that for all formulas ϕ of rank at most n, we have

M, w 
 ϕ iff T , t 
 ϕ.

By Proposition 3.2.3, ϕ is provably equivalent to a boolean combination of propo-
sition letters and formulas of the form 3ψ and 2ψ, where rank(ψ) is at most n.
Thus, it is sufficient to show that w and t satisfy exactly the same proposition
letters and the same formulas 3ψ and 2ψ, with rank(ψ) ≤ n.

By definition of U , it is immediate that w and t satisfy the same proposition
letters. Now let ψ be a formula of rank at most n. We show that

M, w 
 3ψ iff T , t 
 3ψ.

The proof is similar for the formula 2ψ. For the direction from left to right,
suppose that M, w 
 3ψ. Thus, there exists a successor v of w such that
M, v 
 ψ. By definition of W0, there is w0 ∈ W0 such that (M, v) ∼n (M, w0).
Thus, (M, v) ∼n (Tw0 , tw0) and in particular, Tw0 , tw0 
 ψ. By definition of S, it
follows that T , t 
 3ψ. The direction from right to left is similar. 2

3.4.3. Proposition. For all natural numbers n, `Kµ µx.2x −→ γn.

Proof By Lemma 3.4.2, we know that 2γn −→ γn is provable in Kµ. By the
Fixpoint rule, we obtain that µx.2x −→ γn is provable in Kµ. 2
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3.4.4. Theorem. Kµ+µx.2x is complete with respect to the class of finite trees.

Proof For all finite tree models T , we have T 
 Kµ and T 
 µx.2x. Thus, it is
sufficient to show that if ϕ is not provable in Kµ+µx.2x, there exists a finite tree
model T such that T 1 ϕ. Let ϕ be such a formula. In particular, 0Kµ µx.2x
−→ ϕ. By Corollary 3.3.3, we have M, w 1 µx.2x −→ ϕ, for some generalized
model M and some w ∈M.

Let n be the rank of ϕ. By Corollary 3.3.3 and Proposition 3.4.3, we get
that M, w 
 µx.2x −→ γn. Since M, w 
 µx.2x, it follows that M, w 
 γn.
Therefore, there exists a finite tree model T and some t ∈ T such that (M, w) ∼n
(T , t). Since M, w 1 ϕ, we have T , t 1 ϕ. 2

3.4.5. Remark. As mentioned before, this result also follows from the com-
pleteness of Kµ showed by Igor Walukiewicz in [Wal95]. We briefly explain how
to derive Theorem 3.4.4 from the completeness of Kµ. Recall that in [Wal95], Igor
Walukiewicz showed that a sentence ϕ is provable in Kµ iff it is true in all tree
models.

Suppose that a sentence ϕ is not provable in Kµ + µx.2x. In particular, the
formula µx.2x −→ ϕ is not provable in Kµ. It follows from the completeness of
Kµ that there is a tree model T = (T,R, V ) and a point t in T such that µx.2x
−→ ϕ is not true at t. We may assume that t is the root of T .

Since µx.2x is true at t and since t is the root, the model T does not contain
any infinite path. Let n be the rank of ϕ. Now, if a point u in T has more than
one successor of a given n-type θ, we can pick one successor of n-type θ and delete
all the other successors of n-type θ. This would not modify the fact that ϕ is
not true at t. By repeating this operation in an appropriate way, we can prove
that the tree T may be assumed to be finite. Therefore, there is a finite tree T
in which ϕ is not true.

3.5 Adding shallow axioms to Kµ + µx.2x

By slightly modifying our method, it is also possible to prove that when we extend
the logic Kµ+µx.2x with axioms that are shallow, as defined in [Cat05], we obtain
a complete axiomatization for the corresponding class of finite trees.

Shallow formulas A formula is Prop-free if it is a sentence that does not
contain any proposition letter. A formula is propositional if it is a sentence of the
µ-calculus that contains neither 3 nor µ.

A formula is shallow if no occurrence of a proposition letter is in the scope
of a fixpoint operator and each occurrence of a proposition letter is in the scope
of at most one modality. In other words, the shallow formulas is the language
defined by

ϕ ::= ψ | 3ψ | 2ψ | ϕ ∨ ϕ | ϕ ∧ ϕ,
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where ψ is either a Prop-free formula or a propositional formula.

For example, 3p −→ 2p is a shallow formula. Other examples are formulas
expressing that each point has at most two successors (3p ∧3q −→ 2(p ∨ q)), or
that each point has at most one blind successor (3(p ∧2⊥) ∧2(2⊥ −→ p)).

The remaining of the section is devoted to the proof of the following com-
pleteness result.

3.5.1. Theorem. Let ϕ be a shallow formula. Then the logic Kµ +µx.2x+ϕ is
complete with respect to the class of finite trees in which ϕ is valid.

In order to prove this result, as for the logic Kµ + µx.2x, we first show that
the logic is complete with respect to a class of generalized frames. An important
tool for this proof is the fact that the shallow formulas are persistent with respect
to refined frames, which was proved by Balder ten Cate in [Cat05]. We start by
recalling the definitions of persistency and refinedness.

Refined frames and persistent formulas A generalized frame F = (W,R,A)
is differentiated if for all w, v ∈ W with w 6= v, there exists A ∈ A such that w ∈ A
and v /∈ A. A generalized model F = (W,R,A) is tight if for all w, v ∈ W such
that (w, v) /∈ R, there exists A ∈ A such that v ∈ A and for all u ∈ A, (w, u) /∈ R.
A generalized frame is refined if it is differentiated and tight.

A formula ϕ is persistent with respect to refined frames if for all refined frame
F such that F 
 ϕ, the formula ϕ is valid on the underlying Kripke frame of F.

3.5.2. Theorem ([Cat05]). Every shallow formula is persistent with respect to
refined frames.

3.5.3. Theorem. Let ϕ be a shallow formula. The logic Kµ +ϕ is complete with
respect to the class of generalized frames F such that ϕ is valid in the underlying
Kripke frame of F.

Proof By Theorem 3.3.2, we know that the logic Kµ+ϕ is complete with respect
to a generalized model M = (W,R, V +,A). It follows from the proofs of this
theorem and Theorem 3.3.1 that we may assume that W is the set of Φ-consistent
maximal sets of modal formulas over Prop+, where Φ = {repl(ϕ)}. Moreover, R
is such that for all w,w′ ∈ W , wRw′ iff for all ψ ∈ w′, 3ψ belongs to w. The
valuation V : Prop+ −→ P(W ) is such that for all p ∈ Prop+ and all w ∈ W , w ∈
V (p) iff p ∈ w. Finally, A is the set {[[ψ]]N | ψ is a modal formula over Prop+},
where N = (W,R, V +).

Since Kµ + ϕ is complete with respect to M, it is sufficient to show that ϕ is
valid in the underlying Kripke frame (W,R). It is easy to check that (W,R,A)
is refined. Hence, by Theorem 3.5.2, we can restrict ourselves to show that ϕ is
valid in the generalized Kripke frame (W,R,A).
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Let V ′ : Prop −→ A be a valuation and let M′ be the generalized model
(W,R, V ′,A). We have to show that M′ 
 ϕ. It follows from the definition of
A that for all proposition letters p, there is a modal formula ϕp over Prop+ such
that V ′(p) = [[ϕp]]N . Recall that in the proof of Theorem 3.3.2, we showed that
for all µ-formulas ψ over Prop+ and for all w ∈ W ,

N , w 
τ repl(ψ) iff M, w 
τ ψ.

In particular, for all w ∈ W , N , w 
τ repl(s(ϕp)) iff M, w 
τ s(ϕp). That is
[[repl(s(ϕp))]]N = [[s(ϕp)]]M.

Recall also that for all µ-formulas ψ over Prop+, we have repl(s(ψ)) = repl(ψ)
and in case ψ is a modal formula, repl(ψ) = ψ. It follows that repl(s(ϕp)) is equal
to ϕp. Putting this together with the fact that [[repl(s(ϕp))]]N = [[s(ϕp)]]M, we
obtain that [[ϕp]]N = [[s(ϕp)]]M.

Now we show that for all µ-formulas ψ over Prop, for all assignments τ : Var
−→ P(W ) and for all w ∈ W ,

M′, w 
τ ψ iff M, w 
τ ψ[p/s(ϕp)], (3.3)

where ψ[p/s(ϕp)] is a formula obtained by simultaneously replacing each proposi-
tion letter p in ψ by the formula s(ϕp). The basic step follows from the facts that
[[ϕp]]N = [[s(ϕp)]]M and V ′(p) = [[ϕp]]N . The induction steps are straightforward.

It follows from (3.3) that M′ 
 ϕ iff M 
 ϕ[p/s(ϕp)]. Since the logic Kµ + ϕ
is closed under substitution, ϕ[p/s(ϕp)] belongs to Kµ +ϕ. Putting that together
with the fact that Kµ + ϕ is complete with respect to M, we obtain that M 

ϕ[p/s(ϕp)]. Hence, M′ 
 ϕ. This finishes the proof that ϕ is valid in the
generalized Kripke frame (W,R,A). 2

n-goodness Let ϕ be a formula and let M be a generalized model. A point
w ∈ M is n-good for ϕ if there exist a finite tree model T such that T 
 ϕ and
(M, w) ∼n (T , t), for some t ∈ T .

The formula δn For all n ∈ N, we define the formula δn as the formula γn ∧
µx.(ϕ ∧2x), where γn is the formula given by Lemma 3.5.4.

With such a definition of δn, the next lemma is immediate.

3.5.4. Lemma. Let ϕ be a formula and let n be a natural number strictly greater
than the rank of ϕ. For all generalized models M and all w ∈M, we have

M, w 
 γn iff (M, w) is n-good for ϕ.

The proof of the next lemma is an adaptation of the proof of Lemma 3.4.2.

3.5.5. Lemma. Let ϕ be a shallow formula and let n be a natural number strictly
greater than the rank of ϕ. We have `Kµ+ϕ 2δn −→ δn.
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Proof Let ϕ be a shallow formula and let n be a natural number strictly greater
than the rank of ϕ. By Theorem 3.5.3, it is enough to show that for all generalized
frames F = (W,R,A) such that (W,R) 
 ϕ, we have F 
 2δn −→ δn. Let
F = (W,R,A) be a generalized frame such that (W,R) 
 ϕ. We also fix a
valuation V : Prop −→ A and a point w ∈ W . We prove that M, w 
 2δn −→ δn,
where M = (W,R, V,A). So suppose that M, w 
 2δn.

If (w,w) ∈ R, it is immediate thatM, w 
 δn. Next assume that (w,w) /∈ R.
We have to show that M, w 
 δn. That is, w is n-good for ϕ.

For all successors v of w, we haveM, v 
 δn. Therefore, (M, v) is n-good for
ϕ and there exists a finite tree model Tv = (Tv, Rv, Vv) and some tv ∈ Tv such
that (Tv, Rv) 
 ϕ and (M, v) ∼n (Tv, tv). Without loss of generality, we may
assume that tv is the root of Tv.

Now we define the set W0 and the finite tree model T = (T, S, U) exactly as in
the proof of Lemma 3.4.2. Recall that W0 is a set of successors of w such that for
all successors v of w, there is exactly one point w0 of W0 satisfying θn(v) = θn(w0).
The model T = (T, S, U) is defined by

T = {t} ∪
⊎
{Tw0 | w0 ∈ W0},

S = {(t, tw0) | w0 ∈ W0} ∪
⋃
{Rw0 | w0 ∈ W0},

U(p) =

{
{t} ∪

⋃
{Vw0(p) | w0 ∈ W0} if M, w 
 p,⋃

{Vw0(p) | w0 ∈ W0} otherwise,

for all proposition letters p. Since W0 is finite, T = (T, S) is a finite tree. Now it
remains to check that T 
 ϕ and (M, w) ∼n (T , t). The proof that (M, w) ∼n
(T , t) is exactly the same as in the proof of Lemma 3.4.2.

In order to show that T 
 ϕ, fix a point u ∈ T . We prove that T, u 
 ϕ.
First, if u 6= t, then there exists a successor w0 of w such that w0 ∈ W0 and
u ∈ Tw0 . It follows from the construction of T that for all formulas ψ, T, u 
 ψ
iff (Tw0 , Rw0), u 
 ψ. Putting this together with the fact that (Tw0 , Rw0) 
 ϕ, we
obtain that T, u 
 ϕ.

Next suppose that u = t and let T ′ = (T, S, U ′) be a model based on T.
We show that T ′, t 
 ϕ. We let M′ be the model (W,R, V ′), where V ′ : Prop
−→ P(W ) is a valuation such that for all proposition letters p, the two following
equivalences hold. The point w belongs to V ′(p) iff t belongs to U ′(p). For all
successors v of w, there exists w0 ∈ W0 such that θn(v) = θn(w0) and v belongs
to V ′(p) iff tw0 belongs to U ′(p). We prove the following claim.

1. Claim. M′, w 
 ϕ iff T ′, t 
 ϕ.

It will immediately follow from this claim that T ′, t 
 ϕ. Indeed, since
(W,R) 
 ϕ, we have M′, w 
 ϕ. So we can conclude using the claim.
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Proof of Claim The proof is by induction on the complexity of ϕ. If ϕ is a
propositional formula, the claim follows immediately from the definition of V ′.
The induction cases where ϕ is a disjunction or a conjunction are straightforward.

Next assume that ϕ is a Prop-free formula. Since ϕ is Prop-free,M′, w 
 ϕ iff
M, w 
 ϕ . Moreover, as (M, w) ∼n (T , t), we also have M, w 
 ϕ iff T , t 
 ϕ.
Using again the fact that ϕ is Prop-free, we get T , t 
 ϕ iff T ′, t 
 ϕ. Putting
everything together, we obtain M′, w 
 ϕ iff T ′, t 
 ϕ.

Now suppose that ϕ is a formula of the form 3ψ, where ψ is either a propo-
sitional formula or a Prop-free formula. We have to show M′, w 
 3ψ iff
T ′, t 
 3ψ. We only show the implication from left to right, as the proof for
the other implication is similar. So suppose thatM′, w 
 3ψ. Thus, there exists
a successor w0 of w such that M′, w0 
 ψ. Without loss of generality, we may
assume that w0 belongs to W0. If ψ is a propositional formula, it follows from
the definition of V ′ that T ′, tw0 
 ψ and therefore, T ′, t 
 3ψ.

Finally, assume that ψ is a Prop-free formula. Since ψ does not contain any
proposition letter, M′, w0 
 ψ iff M, w0 
 ψ. Hence, M, w0 
 ψ. Putting this
with the fact that (M, w0) ∼n (T , tw0), we have T , tw0 
 ψ. Using again the fact
that ψ is Prop-free, it follows that T , tw0 
 ψ iff T ′, tw0 
 ψ. We can conclude
that T ′, tw0 
 ψ.

The case where ϕ of the form 3ψ, where ψ is a Prop-free formula, is similar
to the previous case. J

2

3.5.6. Proposition. Let ϕ be a shallow formula and let n be a natural number
strictly greater than the rank of ϕ. Then `Kµ µx.2x −→ γn.

Proof By Lemma 3.5.5, we know that 2δn −→ δn is provable in Kµ + ϕ. By the
Fixpoint rule, we obtain that µx.2x −→ δn is provable in Kµ + ϕ. 2

3.5.7. Theorem. Let ϕ be a shallow formula. The logic Kµ + µx.2x + ϕ is
complete with respect to the class of finite trees in which ϕ is valid.

Proof It is easy to see that every formula of the logic Kµ + µx.2x + ϕ is valid
in a finite tree T satisfying T 
 ϕ. Thus, it is sufficient to show that if ψ is not
provable in Kµ+µx.2x+ϕ, there exists a finite tree T such that T 
 ϕ and T 1 ψ.
Let ψ be such a formula. In particular, 0Kµ+ϕ µx.2x −→ ψ. By Theorem 3.5.3,
there exist a generalized frame F and a generalized model M based on F such
that F 
 ϕ and M, w 1 µx.2x −→ ϕ, for some w ∈ F.

Let n be a natural number strictly greater than the rank of ϕ and greater
or equal to the rank of ψ. By Theorem 3.5.3 and Proposition 3.5.6, we get
that M, w 
 µx.2x −→ δn. Since M, w 
 µx.2x, it follows that M, w 
 δn.
Therefore, there exists a finite tree T, a Kripke model T based on T and t ∈ T
such that T 
 ϕ and (M, w) ∼n (M, t). Since M, w 1 ψ, we have T , t 1 ψ.
Hence, T is a finite tree such that T 
 ϕ and T 1 ψ. 2
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3.6 Graded µ-calculus

By adapting the definition of rank to the setting of the graded µ-formulas, we can
use the same proof to show that the graded µ-calculus together with the axiom
µx.2x is complete with respect to the class of finite trees.

Axiomatization for the graded µ-calculus The axiomatization of the sys-
tem GKµ consists of the following axioms and rules:

propositional tautologies,
If ` ϕ −→ ψ and ` ϕ, then ` ψ (Modus ponens),
If ` ϕ, then ` ϕ[p/ψ] (Substitution),
If ` ϕ, then ` 20ϕ (Necessitation),
` ϕ[x/µx.ϕ] −→ µx.ϕ (Fixpoint rule),
3k+1p −→ 3kp (axiom G1),
20(p −→ q) −→ (3np −→ 3nq) (axiom G2),
3!0(p ∧ q) −→ ((3!kp ∧3!lq) −→ 3!k+l(p ∨ q)) (axiom G3),
` ϕ[x/µx.ϕ] −→ µx.ϕ (Fixpoint axiom),
If ` ϕ[x/ψ] −→ ψ, then ` µx.ϕ −→ ψ (Fixpoint rule),

where p and q are proposition letters, ϕ and ψ are µ-formulas, x is not a bound
variable of ϕ and no free variable of ψ is bound in ϕ. For all k > 0 and for all
graded µ-formula, 3!k is an abbreviation for 3kϕ ∧ ¬3k−1ϕ.

The logic GK is the smallest set of formulas which contains the propositional
tautologies, the axioms G1, G2 and G3 and is closed under the Substitution, the
Modus ponens and the Necessitation rules.

3.6.1. Theorem ([FBC85]). The logic GK is complete with respect to a single
model. That is, there is a Kripke model M such that a graded modal formula is
provable in GK iff it is true in M.

3.6.2. Theorem. The logic GKµ + µx.20x is complete with respect to the class
of finite trees. That is, a graded µ-formula is provable in GKµ + µx.20x iff it is
valid in all finite tree frames.

Proof The structure of the proof is the same as the one for the proof of Theo-
rem 3.4.4. So first, we need to define a notion of rank for graded µ-formulas. As
before, we start by defining the closure and the depth of a formula. The closure
of graded formula is defined as in the case of µ-calculus, except that we replace
3 by 3k. The depth of a graded µ-formula is defined by induction as follows:

d(p) = d(¬p) = d(x) = 0

d(ϕ ∨ ψ) = d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)},
d(3kϕ) = d(2kϕ) = d(ϕ) + k + 1,

d(µx.ϕ) = d(νx.ϕ) = d(ϕ) + 1.
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Finally, we can define the rank of a graded µ-formula as in the case of µ-calculus.
The second step is to prove completeness of GKµ with respect to the class of

generalized frames. Using Theorem 3.6.1, it is possible to show this by using a
proof that is identical to the proof of Theorem 3.3.2 (except that Φ = ∅). We do
not give details.

As mentioned earlier, the proof that we gave of Theorem 3.3.2 is a bit tedious,
and not the most direct proof. The most direct proof would involve an adaptation
of the canonical model construction. Here we see the advantage of using our
more difficult proof for Theorem 3.3.2: it can be immediately adapted to the
setting of graded µ-calculus. A proof using an adaptation of the canonical model
construction would have been hard to extend, as the canonical model construction
for graded modal logic is already very involved.

The last step is to show the completeness of GKµ+µx.20x with respect to the
class of finite tree frames. This is done by extending all the notions and results
of Section 3.4 to the setting of the graded µ-calculus. It is immediate how to
proceed. 2

3.7 Conclusions

We showed that Kozen’s axiomatization together with the axiom µx.2x is com-
plete with respect to the class of finite trees. We also gave two examples of
settings to which our proof can be adapted. If we add finitely many shallow ax-
ioms Φ to the system Kµ + µx.2x, we obtain an axiomatization that is complete
with respect to the class of trees in which Φ is valid. Finally, we proved that if
we add µx.2x, the fixpoint axiom and the fixpoint rule to the standard axioma-
tization for graded modal logic, we obtain a complete axiomatization for graded
µ-calculus with respect to the class of finite trees.

We believe that this method could be adapted to other cases. In fact, Balder
ten Cate and Amélie Gheerbrant used the same method to show that MSO,
FO(TC1) (the extension of FO under the reflexive transitive closure of binary
definable relations) and FO(LFP1) (the extension of FO with a unary least fixpoint
operator) admit complete axiomatizations on finite trees. So this technique might
be useful for proving completeness of logics (in the model theory and modal logic
areas) with respect to structures which do not contain infinite paths.

It would also be nice if the method could be extended for proving completeness
of Kozen’s axiomatization with respect to arbitrary structures. A natural first
step would be to show completeness of Kµ + 3p −→ 2p with respect to linear
structures. This has been already established by Rope Kaivola [Kai97], using a
proof inspired by the one proposed by Igor Walukiewicz [Wal95] in the general
case. The proof of Rope Kaivola is considerably simpler than the proof in the
general case.

However, adapting the method that we presented in this chapter to the case
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of linear orders is already complicated. Remember that the proofs of the main
results of this chapter are in three steps. The first step is the definition of rank,
which do not need to be adapted. The second step is proving completeness with
respect to generalized models and the last step is to go from generalized models to
usual structures. Again, we can find inspiration for adapting the last step to the
case of linear orders in Kees Doets’ paper [Doe89]. However, in order to be able
to apply the method presented in that paper, we need the generalized models to
satisfy some conditions (which correspond to the fact that “approximately”, they
are linear orders). We could construct a canonical generalized model for Kµ +3p
−→ 2p and try to massage this model until it satisfies the required conditions.
These generalized models are so complex that it is very hard to modify them,
while keeping the truth of a fixed formula at a given point. It might be possible
but the proof would be technical.

Finally, we would like to mention that Yde Venema and Stéphane Demri
raised the question to which class of coalgebras this proof could be adapted. It
does not seem immediate how to do this. First, one should find the adequate
equivalent of the notion of “tree” in the coalgebraic setting. Moreover, the last
step of the proof involves some manipulation of the structures (taking a disjoint
union of trees and adding a root to this disjoint union). It is not really clear how
one could understand this from a coalgebraic perspective.





Chapter 4

The µ-calculus and frame definability on
trees

As we saw in the preliminaries, modal logic and µ-calculus offer different levels
of semantics: there are various kind of structures on which formulas can be in-
terpreted. There are basically two orthogonal choices to be made: (i) whether
the structures are models or frames and (ii) whether the perspective is local or
global. By local vs global perspective, we mean whether or not there is a point
that is distinguished in the structure. Recall that a model or a frame with a
distinguished point is called pointed.

On the level of models, modal logic is essentially a fragment of first-order
logic, as the operators 2 and 3 correspond to quantification over the points in
the model. Concerning the µ-calculus, the fixpoint operators capture a second-
order quantification over the subsets that are fixpoints of a certain map. More
formally, given a µ-sentence ϕ, we can define the standard translation STx(ϕ)
(see Section 2.6) such that STx(ϕ) is a monadic second-order formula with one
free variable x and for all pointed models (M, w),M, w 
 ϕ iffM � STx(ϕ)(w).
In case ϕ is a modal formula, the standard translation is a first-order formula.

If we shift from the context of pointed models to the context of pointed frames,
this results in a second-order quantification over all possible valuations. That is,
a µ-sentence ϕ with propositions letter p1, . . . , pn corresponds to the second-order
formula ∀P1 . . . ∀PnSTx(ϕ). In that case, modal logic is not longer a fragment of
first-order logic, but a fragment of MSO, as the µ-calculus. Finally, if we consider
global truth, we add a first-order quantification over all points of the model.
A µ-sentence ϕ with propositions letter p1, . . . , pn corresponds on (non-pointed)
frames to the formula ∀x∀P1 . . . ∀PnSTx(ϕ).

The correspondences we mentioned provide various links between modal logics
and classical first- and second-order logic. A more in-depth study of these links
produced some of the most beautiful results in the areas of modal logic and µ-
calculus. In the context of pointed models, the situation is now well understood.
Johan van Benthem proved that modal logic is the bisimulation invariant fragment

67
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of first-order logic [Ben76], while David Janin and Igor Walukiewicz extended this
result to the setting of the µ-calculus [JW96] (that is to say, the µ-calculus is the
bisimulation invariant fragment of MSO).

Since the introduction of the relational semantics for modal logic, the expres-
sive power of modal logic in the context of frames has been studied as well. One
of the motivations is that modal logic, when evaluated on frames, can express nat-
ural graph-theoretic properties, such as reflexivity, transitivity, etc. Even though
modal logic is a fragment of second-order logic, the focus has always been more
on the link with first-order logic. The most important works in that respect
consist of Sahlqvist theory and semantic characterizations of modally definable
classes of frames. The Sahlqvist fragment [Sah75] is a rather large syntactic frag-
ment of modal logic that contain formulas corresponding, ar the level of pointed
frames, to first-order formulas. It turned out that the formulas in this fragment
also enjoy another desirable property: canonicity. The most famous example of a
semantic characterization of modally definable classes of frames is the Goldblatt-
Thomasom theorem [GT75]. It provides necessary and sufficient conditions for
an elementary class of frames (that is, definable by a set of first-order formulas)
to be definable by a set of modal formulas.

Even though there is a long tradition of studying modal logic in the context
of frames, nothing is known for the µ-calculus. In this chapter, we contribute
to the understanding of the expressive power of the µ-calculus at the level of
frames. Since the question is relatively complex, we concentrate on trees, which
are fundamental structure in many areas of logic. More precisely, we investigate
under which conditions an MSO formula is frame definable in the particular case
where the frames are trees. An MSO formula ϕ is said to be (globally) frame
definable if there exists a µ-sentence ψ with proposition letters p1, . . . , pn such that
ϕ is equivalent to ∀x∀P1, . . . ,∀PnSTx(ψ). Local frame definability is defined in a
similar fashion, except that we replace the last formula by ∀P1, . . . ,∀PnSTx(ψ).

The results we provide can be expressed in a simple way: an MSO formula is
frame definable on trees iff it is preserved under p-morphic images on trees and
under taking subtrees. Moreover, an MSO formula is locally frame definable on
trees iff it is preserved under p-morphic images on trees. Basically p-morphisms
are functional bisimulations. Using these results, we show that it is decidable
whether a given MSO formula is (locally) frame definable on trees.

The proof of the results proceeds in three steps. The first step is the most
straightforward: we show that a characterization of local frame definability on
trees induces a characterization of frame definability on trees. Hence, we can
restrict ourselves to the study of local frame definability on trees.

For the second step, we use the connection between MSO and the graded
µ-calculus proved by Igor Walukiewicz [Wal02]. We establish a correspondence
between the MSO formulas that are preserved under p-morphic images on trees
and a fragment lying between the µ-calculus and the graded µ-calculus. We
denote this fragment by µML∇

′
.
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The second step consists in showing that each formula ϕ in µML∇
′

the propo-
sitions letters of which belongs to a set Prop, can be translated into a µ-sentence
ψ, which may contain fresh proposition letters (that is, proposition letters which
do not appear in Prop), and such that the following correspondence holds. At
a given point u in a tree model over Prop, the truth of ϕ at u corresponds to
the validity of ψ at u (that is, we quantify over all possible valuations for the
fresh proposition letters). In other words, this step is a shift from the model
perspective to the frame perspective.

We also present two variations of our main result. We ask exactly the same
question, but with a different definition of frame definability. The standard no-
tion of frame definability involves a universal second order quantification over all
proposition letters, or to put it in a different way, over all possible valuations.
Here, we replace this universal quantification by an existential quantification. As
we will see later in this chapter, there are two ways to implement this existential
quantification: the first one corresponds to negative definability (introduced by
Yde Venema in [Ven93]) and the second one corresponds to projective definability.

The chapter is organized as follows. In the first section, we introduce notation
and state the main results. We also show that a characterization of local frame
definability on trees easily implies a characterization of global frame definability
on trees. In the second section, we recall the link between MSO and the graded µ-
calculus. We also show that there exists a disjunctive normal form for the graded
µ-calculus. In the next section, we establish a correspondence, on the level of tree
models, between the fragment of MSO which is closed under p-morphic images
and µML∇

′
. In Section 4, we show how to derive our main result from this

correspondence. In the last section, we give two variations of our main results,
which concern negative definability and projective definability.

We would like to thank Balder ten Cate for his precious help in correcting a
mistake in one of the proofs of this chapter.

4.1 µMLF-definability on trees

Our goal is to characterize the MSO formulas that are equivalent in the context of
frames to µ-sentences. The characterization we propose is very natural and only
involves two well-known operations of modal logic: taking subtrees and p-morphic
images. We recall these notions together with some basic terminology and state
our main result.

Signature for MSO In the preliminaries, we mentioned that when interpreting
MSO on Kripke models, the signature consists of a binary relation and a unary
predicate for each proposition letter. In this chapter, we will mostly deal with
MSO on tree models. We modify the signature by adding a unary predicate for
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the root. Given a tree model, the interpretation of that unary predicate is the
singleton consisting of the root of the tree model.

Moreover, in this chapter, we will deal with two sets of proposition letters,
Prop and Prop ′. The models we consider are usually models over Prop or over
Prop ∪ Prop ′. Sometimes it might confusing which signature we have in mind.
However, the models on which we evaluate MSO formulas are always models over
Prop. Or to put it in other words, the signature for MSO in this chapter is as
follows: it consists of a binary relation, a unary predicate for each proposition
letter in Prop and a unary predicate for the root.

Trees A Kripke frame (T,R) is a tree if for some point r ∈ T , T = {r}∪R+[r],
r does not have a predecessor and every state t 6= r has a unique predecessor. If
(T,R) is a tree, then v is a child of u if (u, v) ∈ R and v is a descendant of u if
(u, v) ∈ R+.

If (T,R, V ) is a Kripke model over a set Prop and (T,R) is a tree, we say that
(T,R, V ) is a tree model over Prop. If a tree model T is a Kripke model over
a set Prop ∪ Prop ′ of propositions, we may represent T as a tuple (T,R, V, V ′)
where (T,R) is a tree, V is a map from Prop to P(T ) and V ′ is a map from Prop ′

to P(T ). In this chapter, a tree will always be a tree model. Since the set of
proposition letters is not fixed, we always try to specify whether a tree is a tree
over Prop or over Prop ∪ Prop ′.

µMLF-definabibility An MSO formula ϕ is µMLF-definable on trees if there
are a set Prop ′ and a µ-sentence ψ over Prop ∪ Prop ′ such that for all trees
T = (T,R, V ) over Prop,

T � ϕ iff for all u ∈ T , for all V ′ : Prop ′ −→ P(T ), (T,R, V, V ′), u 
 ψ.
(4.1)

In case Prop = ∅, this means that for all trees (T,R), ϕ is satisfied in (T,R) iff
ψ is valid in (T,R). The letter F in the abbreviation µMLF stands for “frames”
(and µML stands for modal fixpoint logic, as usual).

An MSO formula ϕ is locally µMLF-definable on trees if there are a set Prop ′

and a µ-sentence ψ over Prop ∪ Prop ′ such that for all trees T = (T,R, V ) over
Prop,

T � ϕ iff for all V ′ : Prop ′ −→ P(T ), (T,R, V, V ′), r 
 ψ, (4.2)

where r is the root of T . When this happens, we say that ϕ is locally µMLF-
definable on trees by ψ.

p-morphisms Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two models over
Prop. A map f : W −→ W ′ is a p-morphism between M and M′ if the two
following conditions hold. For all w, v ∈ W such that wRv, we have f(w)R′f(v).
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For all w ∈ W and v′ ∈ W ′ such that f(w)R′v′, there exists v ∈ W such that
f(v) = v′ and wRv.

Essentially p-morphisms are functional bisimulations. An MSO formula ϕ is
preserved under p-morphic images on trees if for all surjective p-morphisms f
between two trees T and T ′ over Prop,

T � ϕ implies T ′ � ϕ.

Preservation under taking subtrees A subtree of a tree T = (T,R, V ) over
Prop is a submodel of T , the domain of which consists of a node u of T and all
the descendants of u. If T is a tree over Prop and u is a node of T , we let Tu
denote the subtree of T with root u.

An MSO formula ϕ is preserved under taking subtrees if for all trees T over
Prop and for all nodes u of T ,

T � ϕ implies Tu � ϕ.

We can now state the main result of this chapter.

4.1.1. Theorem. An MSO formula ϕ is µMLF-definable on trees iff ϕ is pre-
served under p-morphic images on trees and under taking subtrees. An MSO
formula ϕ is locally µMLF-definable on trees iff ϕ is preserved under p-morphic
images on trees.

Most of the remaining part of this chapter is devoted to the proof of this result.
We concentrate on the direction from right to left, since the other direction is
easy. Our first observation is that it is sufficient to obtain a characterization of
the formulas locally µMLF-definable on trees.

4.1.2. Lemma. If an MSO formula ϕ is locally µMLF-definable on trees and is
preserved under taking subtrees, then ϕ is µMLF-definable on trees.

Proof Let ϕ be an MSO formula that is locally µMLF-definable on trees and
preserved under taking subtrees. Since ϕ is locally µMLF-definable on trees,
there are a set Prop ′ and a µ-sentence ψ over Prop ∪Prop ′ such that for all trees
T = (T,R, V ) over Prop, (4.2) holds. It is sufficient to show that equivalence (4.1)
holds. The only direction that is not immediate is from right to left. Suppose
that T � ϕ. Let u be a node of T . Since T � ϕ and ϕ is preserved under taking
subtrees, we also have Tu � ϕ. Putting this together with equivalence (4.2), we
obtain that for for all V ′ : Prop ′ −→ P(T ), (T,R, V, V ′), u 
 ψ.

It follows from the lemma that in order to obtain Theorem 4.1.1, we can
restrict ourselves to show that if an MSO formula ϕ is preserved under p-morphic
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Figure 4.1: General scheme of the first part of the construction of ψ.

images on trees, then ϕ is locally µMLF-definable on trees. So suppose that ϕ is
an MSO formula that is preserved under p-morphic images on trees. We have to
find a set Prop ′ and a µ-sentence ψ such that (4.2) holds. The route we take to go
from ϕ to ψ involves many intermediate logics between MSO and the µ-calculus.
So it might help for the understanding of the proof to give some indication about
the intuition and the main steps for the construction of ψ.

The basic idea is that the quantification over all valuations in (4.2) allows
some form of counting. This is the reason why the graded µ-calculus plays such
an important role in this chapter. However, the counting provided by µMLF-
definability is weaker than the usual counting of the graded µ-calculus. The
counting that we can express with µMLF-definability is captured by an operator
that we denote by ∇′. This operator is a stronger version of the usual ∇ operator.
We define µML∇

′
as the logic obtained by replacing ∇ by ∇′ in the formulas of

µML∇.

The construction of ψ is in two parts. The first part consists in applying to ϕ
several successive transformations. With each transformation, we associate a lan-
guage, as depicted in Figure 4.1. For example, the logic associated with the first
transformation is the graded µ-calculus. After each transformation, we should
obtain a formula that belongs to the logic corresponding to the transformation.
Moreover, under the conditions that ϕ is preserved under p-morphic images and
that we restrict to trees, this formula is equivalent to ϕ. In fact, for some of
the transformations, this equivalence remains true under some milder conditions.
Later in the chapter, we will give a more detailed table stating the exact links
between the logics of Figure 4.1.

As shown in Figure 4.1, the formula resulting after all the transformations is
a formula in µML∇

′
. That is, if we replace the usual ∇ operator by ∇′, we obtain

exactly the MSO formulas that are µMLF-definable on trees. The second part of
the construction of ψ (presented in Section 4.4) consists in showing that for all
sentences χ in µML∇

′
, we can find a set Prop ′ and a µ-sentence ψ such that for
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all trees T = (T,R, V ) over Prop,

T , r 
 χ iff for all V ′ : Prop ′ −→ P(T ), (T,R, V, V ′), r 
 ψ.

where r is the root of T .

4.2 Graded µ-calculus: connection with MSO
and disjunctive normal form

In this section, we recall the connection between MSO and the graded µ-calculus,
established in [Wal02] and [Jan06]. We introduce a ∇-like operator for the graded
µ-calculus, inspired by [Wal02]. Using results from [AN01], we also show that
there is a disjunctive normal for the graded µ-calculus. This section basically
corresponds to the arrows (1), (2) and (3) in Figure 4.1.

For the first transformation of Figure 4.1, we can simply rely on existing
results. Igor Walukiewicz established that on trees, MSO has the same expres-
sive power as a special sort of automaton, called later non-deterministic count-
ing automaton by David Janin [Jan06]. David Janin [Jan06] also showed that
for all counting automata, we can compute an equivalent graded µ-sentence.
Hence, MSO and the graded µ-calculus are equi-expressive on trees. As observed
in [Jan06] and [JL03], we can derive from this result that on arbitrary models,
the graded µ-calculus is the fragment of MSO that is preserved under counting
bisimulation (see Section 2.7).

Equivalence between MSO and the graded µ-calculus An MSO sentence
ϕ is equivalent on trees to a sentence ψ in µGL if for all trees T with root r,

T � ϕ iff T , r 
 ψ.

4.2.1. Theorem (from [Wal02], [Jan06]). MSO and the graded µ-calculus
are effectively equi-expressive on trees. That is, for all MSO formulas ϕ, we
can compute a graded µ-sentence ψ over Prop such that ϕ and ψ are equivalent
on trees over Prop, and vice-versa.

For the second transformation of Figure 4.1, we should introduce a ∇-like
operator for the µ-calculus. The definition is inspired by the automata presented
by Igor Walukiewicz in [Wal02].

∇ operator for the graded µ-calculus Given a set A, a finite tuple ~a over A
is a tuple of the form (a1, . . . , ak), where k ∈ N and for all 0 ≤ i ≤ k, ai belongs
to A. In case k = 0, then ~a = ∅.
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The set µGL∇ of ∇-formulas of the graded µ-calculus (over a set Prop of
proposition letters and a set Var of variables) is given by:

ϕ ::= x | ϕ ∨ ϕ | ϕ ∧ ϕ | α • ∇g(~ϕ; Ψ) | µx.ϕ | νx.ϕ,

where x ∈ Var , α is a conjunction literals over Prop, Ψ is a finite set of formulas
and ~ϕ is a finite tuple of formulas.

Given a formula ϕ, a modelM = (W,R, V ), an assignment τ : Var −→ P(W )
and a point w ∈ W , the relationM, w 
τ ϕ is defined by induction as in the case
of the µ-calculus with the extra condition:

M, w 
τ α • ∇g(~ϕ,Ψ) iff M, w 
τ α and M, w 
τ ∇g(~ϕ,Ψ),
M, w 
τ ∇g(~ϕ,Ψ) iff there exists a tuple (w1, . . . wk) over R[w] such that,

1. for all 1 ≤ i < j ≤ k, wi 6= wj,
2. for all 1 ≤ i ≤ k, M, wi 
τ ϕi,
3. for all u in R[w]\{wi | 1 ≤ i ≤ k},
M, u 
τ

∨
Ψ.

where ~ϕ = (ϕ1, . . . , ϕk). We say that (w1, . . . , wk) is a tuple of ∇g-witnesses for
the pair (~ϕ,Ψ) and the point w. If w is clear from the context, we simply say
that (w1, . . . , wk) is a tuple of ∇g-witnesses for the pair (~ϕ,Ψ). Moreover, for all
1 ≤ i ≤ n, wi is a ∇g-witness associated with ϕi.

A map m : µGL∇ −→ P(R[w]) is a ∇g-marking for ((ϕ1, . . . , ϕk),Ψ) if there
exists a tuple (w1, . . . , wk) such that for all 1 ≤ i < j ≤ k, wi 6= wj, wi ∈ m(ϕi)
and for all successors u of w such that u /∈ {wi | 1 ≤ i ≤ k}, there is ψ ∈ Ψ such
that u ∈ m(ψ).

A sentence ϕ in µGL∇ is equivalent on trees to an MSO formula ψ if for all
trees T over Prop, ψ is valid on T iff ϕ is true at the root of T . A formula ϕ
in µGL∇ is equivalent to a formula ψ in µGL if for all Kripke models M, for
all assignments τ : Var −→ P(M) and for all w ∈ M, we have M, w 
τ ϕ iff
M, w 
τ ψ.

The set of formulas in µGL∇ in disjunctive normal form is defined by induction
in the following way:

ϕ ::= x | ϕ ∨ ϕ | α • ∇g(~ϕ; Ψ) | µx.ϕ | νx.ϕ,

where x ∈ Var , α is a conjunction of literals over Prop, Ψ is a finite set of
formulas and ~ϕ is a finite tuple of formulas. This essentially means that the only
conjunctions that are allowed are conjunctions of literals.

4.2.2. Proposition. µGL and µGL∇ are effectively equi-expressive. That is,
for all formulas in µGL, we can compute an equivalent formula in µGL∇, and
vice-versa.
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Proof First, we show that each formula ϕ of the graded µ-calculus is equivalent to
a∇-formula of the graded µ-calculus. The proof is by induction on the complexity
of ϕ. We only treat the cases where ϕ is of the form 3kψ or 2kψ (which are the
only cases that are not straightforward). One can check that 3kψ is equivalent to
>•∇g((ϕ, . . . , ϕ), {>}), where (ϕ, . . . , ϕ) is a tuple of length k+ 1. The formula
2kψ is equivalent to >•∇g((>, . . . ,>), {ψ}), where (>, . . . ,>) is a tuple of length
k.

Second, we have to verify that each ∇-formula ϕ of the graded µ-calculus is
equivalent to a graded µ-calculus formula. for all v ∈ R[w], we have (v, f(v)) ∈ B.
We have to show that for all (w,w′) ∈ B, we have

The proof is also by induction on the complexity of the formulas. We only
treat the most difficult case, where ϕ = α•∇g(~ϕ,Ψ). Suppose that ~ϕ is the tuple
(ϕ1, . . . , ϕk). We also define ϕk+1 as the formula

∨
Ψ. If i > 0, we abbreviate the

set {1, . . . i} by [i].
We start by giving some intuition. Assume that the formula ∇g(~ϕ, ψ) is true

at a point w in a model M = (W,R, V ). This means that there exist pairwise
distinct successors w1, . . . , wk of w such for all 1 ≤ i ≤ k, M, wi 
 ϕi and for all
u ∈ R[w]\{w1, . . . , wn}, we haveM, u 
 ϕk+1. Now we have to use the operators
2n and 3n to describe the situation. The way we use these operators depends very
much on which formulas among ϕ1, . . . , ϕk+1 are true at the points w1, . . . , wk.
In order to encode this information, we introduce a map f : [k] −→ P [k + 1] with
the intended meaning that ϕj is true at wi iff j ∈ f(i). So in particular, for all
i ∈ [k], i belongs to f(i). Given a subset N of [k + 1], we define the formula
ψ′(N) by:

ψ′(N) =
(∧
{ϕj | j ∈ N} ∧

∧
{¬ϕj | j /∈ N}

)
.

Given a point v in a model, there is a unique N ⊆ [k + 1] such ψ′(N) is
true at v; ψ′(N) is essentially the type of v with respect to the set of formu-
las {ϕ1, . . . , ϕk+1}. So if the map f is defined as mentioned before, the type of
the point wi is the formula ψ′(f(i)).

Now we want to use the operator 3n in order to express that we have enough
witnesses making ϕ1, . . . , ϕk true. If i ∈ [k], how many successors of w make
ψ′(f(i)) true (and in particular ϕi)? By definition of f , the number of such
successors is at least equal to n(i, f) given by

n(i, f) := |{j ∈ [k] | f(i) = f(j)}|.

Hence, we should require that 3n(i,f)ψ′(f(i)) holds at w. We also want to use the
operator 2n to express that the successors of w that do not belong to {w1, . . . , wn}
make ϕk+1 true. Which successors of w do not make ϕk+1 true? Only the wis
such that k + 1 /∈ f(i). Therefore, if we define m(f) by:

m(f) = |{i ∈ [k] | k + 1 /∈ f(i)}|,
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the formula 2m(f)ϕk+1 is true at w. Putting everything together, we have that
the formula ψ(f) given by:

ψ(f) =
∧
{3n(i,f)ψ′(f(i)) | i ∈ [k]} ∧2m(f)ϕk+1

is true at w.
We are now ready to define ψ. We let ψ be the formula given by:

ψ =
∨
{ψ(f) | f : [k] −→ P [k + 1] and for all i ∈ [k], i ∈ f(i)}.

We prove that the formula ∇g(~ϕ,Ψ) is equivalent to the formula ψ. We do not
give details for the fact that ∇g(~ϕ,Ψ) implies ψ, as the proof is similar to the
intuition that we gave above.

Now we prove that ψ implies ∇g(~ϕ,Ψ). Let w be a point in a model M =
(W,R, V ) and let τ : Var −→ P(W ) be a valuation such that M, w 
τ ψ. Thus,
there is a map f : [k] −→ P [k + 1] such that for all i ∈ [k], i belongs to f(i) and
the formula ψ(f) is true at w.

Now take a set N ⊆ [k + 1] in the range of f . Hence, there is i ∈ [k] such
that N = f(i). Since ψ(f) is true at w, the formula 3n(i,f)ψ′(f(i)) is true at
w. That is, there are at least n(i, f) successors of w at which ψ′(N) is true.
Recall that n(i, f) is the size of the set {j ∈ [k] | f(i) = f(j)}. That is, n(i, f)
the size of the set {j ∈ [k] | f(j) = N}. Hence, we can fix an injective map
gN : {j ∈ [k] | f(j) = N} −→ W such that for all j in the domain of gN ,

M, gN(j) 
τ ψ
′(N). (4.3)

For each j ∈ [k], we define wj as the point gf(j)(j). It follows from (4.3) that
ψ′(f(j)) is true at wj. In order to show that ∇g(~ϕ,Ψ) is true at w, it is sufficient
to prove that

(i) for all i, j ∈ [k] such that i 6= j, we have wi 6= wj,

(ii) for all i ∈ [k], M, wi 
τ ϕi,

(iii) for all successors u of w such that u /∈ {wi | i ∈ [k]}, M, u 
τ
∨

Ψ.

We start by showing that for all i, j ∈ [k] such that i 6= j, we have wi 6= wj.
Take i, j ∈ [k] such that i 6= j. First assume that f(i) 6= f(j) and suppose
for contradiction that wi = wj. Recall that given a point u in M, there is a
unique subset N of [k+ 1] such that ψ′(N) is true at u. We observed earlier that
ψ′(f(i)) is true at wi and ψ′(f(j)) is true at wj. Since wi = wj, ψ

′(f(i)) and
ψ′(f(j)) are true at wi. This is contradiction as f(i) 6= f(j). Next suppose that
f(i) = f(j). By definition, wi is equal to gf(i)(i) and wj is equal to gf(j)(j). Since
f(i) = f(j), wj is equal to gf(i)(j). Since gf(i) is an injective map and i 6= j, we
have gf(i)(i) 6= gf(i)(j). That is, wi 6= wj.
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For (ii), take i ∈ {1, . . . , n}. We observed earlier that ψ′(i, f) is true at wi.
Since i belongs to f(i), it is immediate from the definition of ψ′(i, f) that if
ψ′(i, f) is true at a point, then ϕi is also true at that point. In particular, ϕi is
true at wi.

So it remains to prove (iii). That is, for all successors u of w such that
u /∈ {wi | i ∈ [k]}, M, u 
τ

∨
Ψ. Since 2m(f)

∨
Ψ is true at w, there are most

m(f) successors of w at which
∨

Ψ is not true. Recall that for all i ∈ [k], ψ′(f(i)) is
true at wi. In particular, if k+1 does not belong to f(i),

∨
Ψ is not true at wi. Or

in other words,
∨

Ψ is not true at any point of the set {wi | i ∈ [k], k+ 1 /∈ f(i)}.
By definition, the size of this set is m(f). Putting this together with the fact that
there are most m(f) successors of w at which

∨
Ψ is not true, we obtain that

∨
Ψ

is true at all successors of w which do not belong to {wi | i ∈ [k], k + 1 /∈ f(i)}.
In particular, for all successors u of w such that u /∈ {wi | i ∈ [k]},M, u 
τ

∨
Ψ.

This finishes the proof that ψ implies ∇g(~ϕ,Ψ). 2

4.2.3. Remark. Another (shorter) proof for Proposition 4.2.2 is to use the fact
that the graded µ-calculus is the fragment of MSO invariant under counting bisi-
mulation and to show that the formulas in µGL∇ are equivalent to MSO formulas
invariant under counting bisimulation. However, in the proof of the fact that the
graded µ-calculus is the fragment of MSO invariant under counting bisimulation,
David Janin [Jan06] skips the proof that a non-deterministic counting automaton
is equivalent to a counting automaton. The latter proof corresponds exactly to
the proof that each formula in µGL∇ is equivalent to a formula in µGL. This
motivated our decision to give details for the proof of Proposition 4.2.2, instead
of using the shortcut provided by the the fact that the graded µ-calculus is the
fragment of MSO invariant under counting bisimulation.

Now we move on to the third arrow of Figure 4.1. That is, we show that there
is a normal form for the graded µ-calculus.

4.2.4. Theorem. For each formula of the graded µ-calculus, we can compute an
equivalent formula of the graded µ-calculus in disjunctive normal form.

This theorem follows from an application of a result from [AN01]. We start
by recalling the definitions required to state the result from this book.

Fixpoint algebras A signature is a set Sig of function symbols equipped with
an arity function ρ : Sig −→ N. Let P = (P,≤P) be a complete lattice (see
Section 2.2). We say that P = (P,≤P) is distributive if for all c, d, e ∈ P , we have

c ∧ (d ∨ e) = (c ∧ d) ∨ (c ∧ e).

Over a signature Sig , a fixpoint algebra P is a complete lattice (P,≤P) together
with, for each symbol f ∈ Sig , a monotone function fP : P ρ(f) −→ P . We always
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assume that the binary operations ∧ and ∨ and the 0-ary operations ⊥ and >
belong to Sig . We let FSig denote the set of terms that contains the identity
operation (which is a unary operation and maps an element d ∈ P to d), all the
operations in Sig and that is closed under the composition operation.

Over a signature Sig and a set Var of variables, the fixpoint formulas are
defined by

ϕ ::= x | f(ϕ, . . . , ϕ) | µx.ϕ | νx.ϕ,
where x ∈ Var and f ∈ Sig . Given a fixpoint algebra P and an assignment
τ : Var −→ P, we define the set [[ϕ]]P,τ similarly to the case of modal fixpoint logic.
More specifically, we define [[ϕ]]P,τ by induction on ϕ in the following way:

[[x]]P,τ = τ(x),

[[f(ϕ1, . . . , ϕn)]]P,τ = fP([[ϕ1]]P,τ , . . . , [[ϕn]]P,τ ),

[[µx.ϕ]]P,τ =
∧
{c ∈ P | c ≤P [[ϕ]]P,τ [x 7→c]} ,

[[νx.ψ]]P,τ =
∨
{c ∈ P | c ≥P [[ϕ]]P,τ [x 7→c]},

where x ∈ Var , f is a symbol in Sig ∪ {∧,∨,⊥,>} of arity n and τ [x 7→ c] is the
assignment τ ′ : Var −→ A such that τ ′(x) = c and for all variables y 6= x, τ ′(y) =
τ(y). We say that [[ϕ]]P,τ is the interpretation of ϕ in P under the assignment τ .
As usual, a fixpoint formula is a fixpoint sentence if each variable occurring in the
formula is bound.

If ϕ and ψ are fixpoint formulas, ϕ and ψ are equivalent over a class L of
fixpoint algebras if for all fixpoint algebras P in L and for all assignments τ : Var
−→ P, we have [[ϕ]]P,τ = [[ψ]]P,τ . When this happens, we say that the equation
ϕ = ψ holds on L.

If ~x is a tuple of variables, we denote by
∧
~x the greatest lower bound of the

set of variables occurring in ~x. Given a class of fixpoint algebras L, we say that
the meet operator ∧ commutes with Sig on L if for all finite tuples (f1, . . . , fn) of
functional symbols of Sig\{∧,∨}, there exists a function g ∈ FSig built without
the symbol ∧ such that an equation of the form:∧

{fi(~xi) | 1 ≤ i ≤ n} = g(
∧
~y1, . . . ,

∧
~ym). (4.4)

holds on L, where the ~xis are tuples of distinct variables of the appropriate length
and the ~yjs are tuples of distinct variables taken among those appearing in ~xis.

It was shown in [AN01] that when the meet operator commutes with a sig-
nature on a class L of fixpoint algebras, then each fixpoint formula is equivalent
to a formula that does not contain the meet operator. A close inspection of the
proof shows that this last formula can be computed from the initial formula.

4.2.5. Theorem. [Corollary 9.6.9 from[AN01]] When the meet operator ∧ com-
mutes with Sig on L, each fixpoint formula ϕ is equivalent over L to a formula
ψ built without the symbol ∧.
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Moreover, if the maps gs occurring in the equations (4.4) are computable, then
ψ is computable.

Now we show how to use Theorem 4.2.5 in order to obtain Theorem 4.2.4. We
define the signature SigµGL∇ as the set consisting of >, ⊥, ∨, ∧ and the operators
of the form α •∇g

k,l, with k, l ∈ N and α a subset of literals over Prop. The arity
of the operator α • ∇g

k,l is k + l.
With each model M = (W,R, V ), we associate a fixpoint algebra PM over

SigµGL∇ in the following way. The fixpoint algebra PM is based on the complete
distributive lattice (P(W ),⊆). Hence, the interpretations of the operators >, ⊥,
∨ and ∧ are respectively the constants W and ∅ and the operations ∪ and ∩.

Given a subset α of Prop and k, l ∈ N, the operator α • ∇g
k,l maps subsets

U1, . . . , Uk, T1, . . . , Tl to the set of w ∈ W which belongs to
⋂
{V (p) | p ∈ α} ∩⋂

{W\V (p) | ¬p ∈ α} and for which there exists a set {wi | 1 ≤ i ≤ k} ⊆ R[w]
such that:

• for all 1 ≤ i < j ≤ k, wi 6= wj,

• for all 1 ≤ i ≤ k, wi belongs to Ui,

• for all successors u of w such that u /∈ {wi | 1 ≤ i ≤ k}, u belongs to⋃
{Tj | 1 ≤ j ≤ l}.

If we identify each operator α • ∇g
k,l with

∧
α • ∇g in the obvious way, then

for all fixpoint formulas ϕ over SigµGL∇ and for all valuations τ : Var −→ P(W ),
we have that [[ϕ]]AM,τ = [[ϕ]]M,τ .

Finally we define LML as {PM | M is a Kripke model }. In order to derive
Theorem 4.2.4 from Theorem 4.2.5, it is sufficient to show the following result.

4.2.6. Proposition. The meet operator commutes with SigµGL∇ on LML.

Proof Let (f1, . . . , fn) be a tuple of symbols in SigµGL∇ and for all 1 ≤ i ≤ n,
let ~xi be a vector of distinct variables, the length of which is the arity of fi. Let
also F be the set {fi(~xi) | 1 ≤ i ≤ n}. We have to prove that an equation of the
form of (4.4) holds on LML.

We start by showing that without loss of generality, we can suppose that for
all 1 ≤ i ≤ n, the operator fi is an operator of the form αi • ∇g

ki,li
. This is based

on the following two observations. First, if an operator fi0 is equal to ⊥, then
the equation

∧
F = ⊥ holds on LML. Second, if an operator fi0 is >, then the

equation
∧
F =

∧
{fi(~xi) | 1 ≤ i ≤ n, i 6= i0} holds on LML.

Now we show that an equation of the form (4.4) holds if all the fis are operators
of the form αi • ∇g

ki,li
. We start by giving some intuition. Let Yi be the set of

variables occurring in ~yi and suppose that
∧
{αi • ∇g(~xi, Yi) | 1 ≤ i ≤ n} is true

at a point w. Hence, for all 1 ≤ i ≤ n, there exists a tuple ~wi of ∇g-witnesses for
(~xi, Yi). We define the set of witnesses as the set of points that occurs in one of
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the ~wis. Our goal is to push the conjunctions “inside” the ∇ operators. The way
we proceed depends on how the witnesses are distributed. Or to put it differently,
how the witnesses for distinct pairs (~xi, Yi) and (~xj, Yj) overlap.

In order to encode this information, we define for each witness u a n-tuple
h(u) = (z1, . . . , zn) in the following way. Take i0 ∈ {1, . . . , n}. If u is not a
witness for (~xi0 , Yi0), then we define zi0 as ∗. Otherwise, there is a unique variable
x occurring in ~xi0 such that u is the witness for (~xi0 , Yi0) associated with x. In
this case, we define zi0 as x.

If we define Xi as the variables occurring in ~xi and X∗i as the set Xi ∪ {∗},
then the set consisting of all the tuples h(u) (with u being a witness) defines
a relation S ⊆ X∗1 × · · · × X∗n. The characteristic of that relation is that each
variable occurring in one of the ~xis occurs exactly in one tuple of S.

Now if we consider a successor v of w, which formulas are true at v? If v is
not a witness, then for all 1 ≤ i ≤ n, the formula

∨
Yi is true at v. So if we define

ϕ by:

ϕ =
∧
{
∨

Yi | 1 ≤ i ≤ n},

ϕ is true at v. Next if v is a witness, then the formulas true at v is determined by
the tuple h(v) = (z1, . . . , zn). If zi = ∗, then

∨
Yi is true at v, whereas if zi = x,

x is true at v. So if for all z ∈ X∗i , we define z̄ by:

z̄ =

{
z if z ∈ Xi,∨
Yi otherwise,

this means that ϕh(v) :=
∧
{z̄i | 1 ≤ i ≤ n} is true at v. We can think of v as

being a witness for the formula ϕh(v). In fact, we even have something stronger.
If the set of witnesses is equal to {u1, . . . , um}, we will show that the formula

∇g((ϕh(u1), . . . , ϕh(um)), ϕ),

is true at w. Note that all the conjunctions of this formula occurs “inside” the ∇
operator. Conversely, the truth of this formula at w ensures that for all 1 ≤ i ≤ n,
∇g(~xi, Yi) is true at w. Formally, we have the following claim.

1. Claim. With a tuple ~z = (z1, . . . , zn), we associate the formula ϕ~z given by

ϕ~z =
∧
{z̄i | 1 ≤ i ≤ n},

where z̄i is defined as in the previous paragraph. Next, given a relation S ⊆
X∗1 × · · · ×X∗n, we write kS for the size of S. If S = {~z1, . . . , ~zm}, we define ~ϕS as
a tuple of formulas

(ϕ~z1 , . . . , ϕ~zm).

A relation S ⊆ X∗1 × · · · × X∗n is a relevant distribution if for all 1 ≤ i ≤ n, for
all x ∈ Xi, there is a exactly one tuple (z1, . . . , zn) ∈ S such that zi = x. Finally,
we define α as the set

⋃
{αi | 1 ≤ i ≤ n}.
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With these definition, the equation∧
{αi • ∇g

ki,li
(~xi, ~yi) | 1 ≤ i ≤ n}

=
∨
{α • ∇g

kS ,1
(~ϕS, ϕ) | S is a relevant distribution}

holds on LML.

Proof of Claim For all 1 ≤ i ≤ n, we define γi as the formula αi •∇g
ki,li

(~xi, ~yi).
We also define ψ as the formula∨

{α • ∇g
kS ,1

(~ϕS, ϕ) | S is a relevant distribution}.

Fix a Kripke model M = (W,R, V ), its associated fixpoint algebra PM and an
assignment τ : Var −→ P(W ). We have to show that

[[γ1 ∧ · · · ∧ γn]]PM,τ
= [[ψ]]PM,τ

. (4.5)

First we prove the inclusion from right to left of (4.5). Suppose that a point
w belongs to [[ψ]]PM,τ

. Hence, there is a relevant distribution S ⊆ X∗1 × · · · ×X∗n
such that the formula

∧
α •∇g(~ϕS, {ϕ}) is true at w. Assume that S = {~zj | 1 ≤

j ≤ kS}. We have to show that for all 1 ≤ i ≤ n, w belongs [[γi]]PM,τ
. Let i be an

element in {1, . . . , n} and let us prove that
∧
αi • ∇g(~xi, Yi) is true at w.

Since
∧
α is true at w, it is immediate that

∧
αi is true at w. So it remains

to show that ∇g(~xi, Yi) is true at w. Recall that for all x ∈ Xi, there is a exactly
one tuple (z1, . . . , zn) ∈ S such that zi = x. So we can define an injective map
c : Xi −→ S such that for all variable x ∈ Xi,

c(x) = (z1, . . . , zn) iff zi = x.

As ∇g(~ϕS, {ϕ}) is true at w, there is a tuple ~wS = (w1, . . . , wkS) such that

• for all 1 ≤ j ≤ ks, ϕ~zj is true at wj,

• for all 1 ≤ j < j′ ≤ ks, wj 6= wj′ ,

• for all u ∈ R[w]\WS, ϕ is true at u,

where WS is the set {w1, . . . , wkS}. We let d : S −→ WS be the map such that for
all j ∈ {1, . . . , kS}

d(~zj) = wj.

It easily follows from the properties of the wjs that d is a bijection such that for
all ~z ∈ S, ϕ~z is true at d(~z). If Xi = {xi1, . . . , xiki}, we define ~wi as the tuple

(d(c(xi1)), . . . , d(c(xiki))).

We show that ~wi is a tuple of ∇g-witness for (~xi, Yi). That is,
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(i) for all distinct variables x and x′ in Xi, d(c(x)) 6= d(c(x′)),

(ii) for all x in Xi, x is true at d(c(xij)),

(iii) for all successors u of w such that u does not belong to Wi,
∨
Yi is true at

u.

where Wi is the set {d(c(x)) | x ∈ Xi}.
The first item follows from the fact that c and d are injective map. For (ii),

let x be a variable in Xi and let ~z = (z1, . . . , zn) be the tuple c(x). Recall that
ϕ~z is true at d(~z). In particular, if zi 6= ∗, zi is true at d(~z). It follows from the
definition of c that zi = x. So x is true at d(~z) = d(c(x)).

It remains to show (iii). That is, for all successors u of w such that u does not
belong to Wi,

∨
Yi is true at u. Let u be such a successor of w. In case u does

not belong to WS, then ϕ is true at u. In particular,
∨
Yi is true at u. So we

may assume that u belongs to WS. Hence, there is ~z = (z1, . . . , zn) in S such that
u = d(~z). Now we show that zi = ∗. Suppose for contradiction that zi 6= ∗. Then
zi is mapped by c to the unique tuple (z′1, . . . , z

′
n) ∈ S such that z′i = zi. Since

(z1, . . . , zn) belongs to S, c(zi) is nothing but the tuple (z1, . . . , zn). It follows
that d(~z) =u is equal to d(c(zi)), which belongs to Wi. Hence, u belongs to Wi,
which is a contradiction. Thus, zi = ∗. Recall that ϕ~z is true at d(~z). Putting
this together with the fact that zi = ∗, we obtain that

∨
Yi is true at d(~z). That

is,
∨
Yi is true at u and this finishes the proof of the inclusion from right to left.

Next we show the inclusion from left to right of (4.5). Suppose that w belongs
to [[γ1∧ · · · ∧γn]]PM,τ

. Take i ∈ {1, . . . , n} and recall that Xi = {xij | 1 ≤ j ≤ ki}.
Since w belongs to [[γi]]PM,τ

, we haveM, w 
τ ∇g(~xi, Yi). So there exist successors
wi1, . . . , wiki of w such that

(a) for all 1 ≤ j < j′ ≤ ki, xij is true at wij

(b) for all 1 ≤ j < j′ ≤ ki, wij 6= wij′ ,

(c) for all v ∈ R[w]\Wi},
∨
Yi is true at v.

where Wi is the set {wij | 1 ≤ j ≤ ki}.
We start by fixing some notation. We define U as the set

⋃
{Wi | 1 ≤ i ≤ n}.

Next for each u ∈ U , we define a n-tuple h(u) = (z1, . . . , zn) such that for all
1 ≤ i ≤ n,

zi :=

{
xij if for some xij in X, u = wij,

∗ otherwise.

The n-tuple h(u) is well-defined since for all distinct variables xij and xij′ in Xi,
we have wij 6= wij′ . We define S as the relation {h(u) | u ∈ U}.

First we show that S is a relevant distribution. Take i ∈ {1, . . . , n} and
let xij be a variable in Xi. We have to show that there is a exactly one tuple
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(z1, . . . , zn) ∈ S such that zi = xij. It follows from the definitions of S and h that
xij occurs in the tuple h(wij). Next if xij occurs in a tuple h(u) = (z1, . . . , zn) in
S, then by definition of h, u is equal to wij. Hence, h(wij) is the unique tuple in
S in which xij occurs at position i. This finishes the proof that S is a relevant
distribution.

So in order to show that M, w 
τ ψ, we can restrict ourselves to prove that
w belongs to [[α • ∇g

kS ,1
(~ϕS, ϕ)]]PM . That is,∧

α • ∇g(~ϕS, {ϕ}) is true at w. (4.6)

First we show that
∧
α is true at W . By definition of α, it is sufficient to

show that for all 1 ≤ i ≤ n,
∧
αi is true at w. This follows immediately from the

fact that w belongs to [[γi]]PM,τ
.

Next we prove that for all ~z ∈ S, there is a unique u ∈ U such that h(u) = ~z.
Let u, u′ be distinct elements of U and let (z1, . . . , zn) and (z′1, . . . , z

′
n) be the

tuples h(u) and h(u′) respectively. We have to prove that h(u) 6= h(u′). Since
u belongs to U , there exists i ∈ {1, . . . , n} such that u belongs to Wi. So there
is xij ∈ Xi such that u = wij. By definition of h, zi is equal to xij. If u′ does
not belong to Wi, then zi = ∗ and in particular, h(u) 6= h(u′). Suppose next that
u′ belongs to Wi. Hence, there exists xij′ ∈ Xi such that u′ = wij′ . Again, by
definition of h, this implies that z′i = xij′ . Since u 6= u′, u = wij and u′ = wij′ , we
have that j 6= j′ and hence, xij 6= xij′ . It follows that zi 6= z′i, which implies that
h(u) 6= h(u′). This finishes the proof that for all ~z ∈ S, there is a unique u such
that h(u) = ~z.

This means that we can define a function b between the relation S and the
set R[w] such that for all ~z ∈ S, b(~z) is the unique u satisfying ~z = h(u). It
follows from the definition of b that h(b(~z)) = ~z and b(h(u)) = u (for all ~z ∈ S
and u ∈ U). As a corollary, b is a bijection.

If S = {~z1, . . . , ~zm} and ~ϕS = (ϕ~z1 , . . . , ϕ~zm), we let ~wS be the tuple

(b(~z1), . . . , b(~zm)).

We define WS as the set {b(~zi) | 1 ≤ i ≤ ks}. We show that ~wS is a tuple of
∇g-witnesses for the pair (~ϕS, ϕ). Since b is an injective map, we have that for
all i 6= j, b(~zi) 6= b(~zj). Hence, it remains to show the two following conditions:

(i) for all ~z ∈ S, the formula ϕ~z is true at b(~z),

(ii) for all successors v of w which do not occur in ~wS, ϕ is true at v.

We start to prove that for all ~z ∈ S, ϕ~z is true at b(~z). Suppose that ~z =
(z1, . . . , zn). We have to show that for all i ∈ {1, . . . , n}, z̄i is true at b(~z). Take
i ∈ {1, . . . , n}. First, suppose that zi 6= ∗. Hence, z̄i is equal to zi. Recall that for
all u ∈ U , if h(u) = (z1, . . . , zn) and zi 6= ∗, then u = wij, where j is the unique
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natural number in {1, . . . , ki} such that zi = xij. Putting that together with
h(b(~z)) = (z1, . . . , zn), we obtain that b(~z) = wij, where j is the unique natural
number in {1, . . . , ki} such that zi = xij. Now xij is true at wij. It follows that
zi (= xij) is true at b(~z) (= wij).

It remains to consider the case when zi = ∗. This means that z̄i =
∨
Yi. So

we have to show that
∨
Yi is true at b(~z). We know that for all u ∈ U such that

h(u) = (z1, . . . , zn) and zi = ∗, u does not belong to Wi (if u belongs to Wi, then
u = wij for some j, which implies that zi = xij). Using this together with the fact
that h(b(~z)) = (z1, . . . , zn), we have that b(~z) does not belong to Wi. It follows
from condition (c) that

∨
Yi is true at u. In particular,

∨
Yi is true at b(~z). This

finishes the proof of (i).

Now we show that (ii) holds. Let v0 be a successor of w that does not belong
to WS. We prove that ϕ is true at v0. Recall that ϕ is the formula given by:

ϕ =
∧
{
∨

Yi | 1 ≤ i ≤ n}.

Take i ∈ {1, . . . , n}. We have to show that
∨
Yi is true at v0. By condition (c), it

is sufficient to prove that v0 does not belong to Wi. If it is not the case, then v0

belongs to U and hence, h(v0) belongs to S. It follows from the definition of WS

that b(h(v0)) belongs to WS. Recall that for all u ∈ U , b(h(u)) = u. Hence, v0

=b(h(v0)) belongs to WS, which is a contradiction. This finishes the proof that
α •∇g(~ϕS, {ϕ}) is true at w. Hence, the proof of the inclusion from left to right.
J

Now recall that the meet distributes over the join. That is, for all sets
Y1, . . . , Yn of variables, the equation∧

{
∨

Yi | 1 ≤ i ≤ n} =
∨
{
∧

Y | for all 1 ≤ i ≤ n, Y ∩ Yi 6= ∅}

holds on LML. Putting this together with the claim above, we obtain that an
equation of the form of (4.4) holds on LML, in case all the fi’s are operator of the
form αi • ∇ki,li . This finishes the proof. 2

4.3 Preservation of MSO under p-morphic im-

ages

This section corresponds to arrow (4) in Figure 4.1. We introduce the operator
∇′. As mentioned earlier, the logic associated with this operator is in between the
µ-calculus and the graded µ-calculus. We show in this section that on trees, it
corresponds to the fragment of the µ-calculus that is preserved under p-morphic
images on trees.
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The logic µML∇
′

The set µML∇
′

of ∇′-formulas of the graded µ-calculus is
given by:

ϕ ::= x | ϕ ∨ ϕ | ϕ ∧ ϕ | α • ∇′(~ϕ,Ψ) | µx.ϕ | νx.ϕ,

where x ∈ Var , α is a conjunction of literals over Prop, ~ϕ is a tuple of formulas
and Ψ is a finite set of formulas.

Given a formula ϕ, a Kripke model M = (W,R, V ), an assignment τ : Var
−→ P(W ) and a point w ∈ W , the relationM, w 
τ ϕ is defined by induction as
in the case of the µ-calculus with the extra condition:

M, w 
τ α • ∇′(~ϕ,Ψ) iff M, w 
τ α and M, w 
τ ∇′(~ϕ,Ψ),
M, w 
τ ∇′(~ϕ,Ψ) iff there exists a tuple (w1, . . . wk) over R[w] such that,

1. for all 1 ≤ i ≤ k, M, wi 
τ ϕi,
2. for all u in R[w]\{wi | 1 ≤ i ≤ k},
M, u 
τ

∨
Ψ.

where ~ϕ = (ϕ1, . . . , ϕk). The tuple (w1, . . . , wk) is a tuple of ∇′-witnesses for the
pair (~ϕ,Ψ).

A map m : µML∇
′ −→ P(R[w]) is a ∇′-marking for (~ϕ,Ψ) if there exists a

tuple (w1, . . . , wk) such that for all 1 ≤ i ≤ k, wi ∈ m(ϕi) and for all successors
u of w such that u /∈ {wi | 1 ≤ i ≤ k}, there is ψ ∈ Ψ such that u ∈ m(ψ).

A sentence ϕ in µML∇
′

is equivalent on trees to an MSO formula ψ if for all
trees over Prop T , ψ is valid on T iff ϕ is true at the root of T . A formula ϕ
in µML∇

′
is equivalent on trees to a formula ψ in µGL∇ if for all trees T over

Prop with root r and for all assignments τ : Var −→ P(T ), we have T , r 
τ ϕ iff
T , r 
τ ψ.

The set of formulas in µML∇
′

in disjunctive normal form is defined by induc-
tion in the following way:

ϕ ::= x | ϕ ∨ ϕ | α • ∇′(~ϕ; Ψ) | µx.ϕ | νx.ϕ,

where x ∈ Var , α is a conjunction of literals over Prop, Ψ is a finite set of formulas
and ~ϕ is a finite tuple of formulas.

The main difference between the semantics for the operator ∇′ and the se-
mantics for ∇g is that the points occurring in a tuple of ∇′-witnesses for a pair
(~ϕ,Ψ) might not be distinct. A typical example of property that we can express
with µGL∇, but not with µML∇

′
, is the existence of k successors satisfying a

formula ϕ (where k is a natural number strictly greater than 1 and ϕ is a given
formula).

We also introduce a game semantics for the languages µGL∇ and µML∇
′
. The

fact that the existence of a winning strategy for a player in the game corresponds
to the truth of a formula at a given point, is proved using classical methods (as
in the case of µ-calculus, see for instance [EJ91]).
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Game semantics Let ϕ be a formula in µGL∇∪µML∇
′
such that each variable

in ϕ is bound. Without loss of generality, we may assume that for all x ∈ Var
which occurs in ϕ, there is a unique subformula of ϕ, which is of the form ηx.δx,
where η ∈ {µ, ν}. We also fix a model M = (W,R, V ). We define the evaluation
game E(M, ϕ) as a graph game between two players, ∀ and ∃. The rules of the
game are given in the table below.

Position Player Possible moves
(w,>) ∀ ∅
(w, x) - {(w, δx)}
(w,ϕ1 ∧ ϕ2) ∀ {(w,ϕ1), (w,ϕ2)}
(w,ϕ1 ∨ ϕ2) ∃ {(w,ϕ1), (w,ϕ2)}
(w, ηx.ψ) - {(w,ψ)}
(w, α • ∇g(~ϕ,Ψ)) ∀ {α,∇g(~ϕ,Ψ)}
(w, α • ∇′(~ϕ,Ψ)) ∀ {α,∇′(~ϕ,Ψ)}
(w,∇g(~ϕ,Ψ)) ∃ {m : µGL∇ −→ P(R[w]) | m is a

∇g-marking for (~ϕ,Ψ)}
(w,∇′(~ϕ,Ψ)) ∃ {m : µML∇

′ −→ P(R[w]) | m is a
∇′-marking for (~ϕ,Ψ)}

m : µGL∇ −→ P(R[w]) ∀ {(u, ψ) | u ∈ m(ψ)}
m : µML∇

′ −→ P(R[w]) ∀ {(u, ψ) | u ∈ m(ψ)}

where w belongs to W , x belongs to Var , η belongs to {µ, ν}, ϕ1, ϕ2 and ψ
belongs to µGL∇ ∪ µML∇

′
, α is a conjunction of literals, Ψ is a finite subset of

µGL∇ ∪ µGL∇
′
, ~ϕ is a tuple of formulas in µGL∇ ∪ µML∇

′
.

If a match is finite, the player who gets stuck, loses. If a match ρ s infinite, we
let Inf (ρ) be the set of variables x such that there are infinitely many positions
of the form (w, x) in the match. There must be a variable x0 in Inf (ρ) such that
for all variables x ∈ Inf , δx is a subformula of δx0 . If x0 is bound by a µ-operator,
then ∀ wins. Otherwise ∃ wins.

4.3.1. Proposition. Let ϕ be a formula in µGL∇ ∪ µML∇
′
. For all Kripke

models M = (W,R, V ) and all w ∈ W , M, w 
 ϕ iff ∃ has a winning strategy in
the game E(M, ϕ) with starting position (w,ϕ).

We are now ready to show that modulo equivalence on trees, the MSO formulas
preserved under p-morphic images are exactly the formulas in µML∇

′
. This will

take care of the arrow (4) in Figure 4.1.

4.3.2. Proposition. For all sentences ϕ in µML∇
′
, we can compute an MSO

formula that is equivalent on trees to ϕ and that is preserved under p-morphic
images on trees.

Moreover, given an MSO formula ϕ, we can compute a disjunctive sentence
ψ ∈ µML∇

′
such that ϕ and ψ are equivalent on trees iff ϕ is preserved under

p-morphic images on trees.
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Proof It is routine to check that a formula in µML∇
′

is equivalent on trees to
an MSO formula preserved under p-morphic images on trees. Next, we show that
an MSO formula that is preserved under p-morphic images on trees is equivalent
on trees to a disjunctive formula in µML∇

′
. Let ϕ be an MSO formula that is

preserved under p-morphic images on trees. By Theorem 4.2.1, there is a graded
µ-formula γ such that for all trees T over Prop with root r,

T � ϕ iff T , r 
 γ.

By Proposition 4.2.4, we may assume the formula γ to be in disjunctive normal
form.

Now let χ be the formula γ in which we replace each operator ∇g by ∇′. We
show that under the assumption that ϕ is preserved under p-morphic images on
trees, γ and χ are equivalent on trees. Using Proposition 4.3.1 together with the
fact that a ∇g-marking is a ∇′-marking, it is easy to check that for all trees T
over Prop with root r and all assignments τ : Var −→ P(T ), we have

T , r 
τ γ implies T , r 
τ χ.

For the other direction, let T = (T,R, V ) be a tree over Prop with root r and
suppose that χ is true at r under an assignment τ : Var −→ P(T ). We have to
show that γ is true at r. Since χ is true at r, ∃ has a winning strategy h in the
evaluation game with starting position (r, χ). We say that a position (u, ϕ) is
h-reachable if there is an h-conform match during which (u, ϕ) occurs. A node u
is h-reachable if there is a formula ϕ such that (u, ϕ) is h-reachable.

We start by giving some intuition. The difference between a ∇′-marking and
a ∇g-marking is that the ∇′-witnesses might not be pairwise distinct. Hence,
in order to use h as a strategy for the evaluation game associated with γ, we
are going to expand the tree T . More precisely, if u is a node and if a map
m : µML∇

′ −→ P(R[u]) is a ∇′-marking associated with a pair (~ϕ,Ψ), then by
“making copies” of certain successors of u, we can transform this ∇′-marking into
a ∇g-marking. Now the choice of the successors that are copied (and the number
of copies) is determined by m and the pair (~ϕ,Ψ). So in case there is more than
one formula of the form α • ∇′(~ϕ,Ψ) associated with u (in the sense that the
pair (u, α • ∇′(~ϕ,Ψ)) is h-reachable), we are stuck. However, since the formula
γ is disjunctive, we may assume that for all nodes u, there is at most one such
formula associated with u.

Before defining the “expansion” of T , we fix some notation. We denote by N∗
the set of finite sequences over N. In particular, the empty sequence ε belongs to
N∗. If ψ is a formula in µML∇

′
, we write ψg for the formula obtained by replacing

∇′ by ∇g in ψ. If ~ϕ is a tuple (ϕ1, . . . , ϕk) of formulas in µML∇
′
, we write (~ϕ)g

for the tuple (ϕg1, . . . , ϕ
g
k). Similarly, if Ψ is set of formulas, we let Ψg be the set

{ψg | ψ ∈ Ψ}.
Now we define a new tree T ′ = (T ′, R′, V ′) over Prop such that
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• the root of T ′ is (r, ε) and T ′ is a subset of T × N∗,

• the child relation is such that for all (u1, (n1, . . . , nk)) and (u2, ~m) in T ′,

(u1, (n1, . . . , nk))R
′(u2, ~m) iff u1Ru2 and there is nk+1 ∈ N

such that ~m = (n1, . . . , nk, nk+1).

Thus, the depth of a node (u1, (n1, . . . , nk)) in T ′ is k + 1.

• for all p ∈ Prop and for all (u, ~n) ∈ T ′, (u, ~n) belongs to V ′(p) iff u belongs
to V (p).

Moreover, we define a positional strategy h′ for the evaluation game E(T ′, γ) with
starting position ((r, ε), γ) that satisfies the two following conditions:

(a) each point in T ′ is h′-reachable and h′ is scattered (see Section 2.6 of Chap-
ter 2),

(b) for all h′-conform matches ((u0, ~n0), (ϕ0)g) . . . ((um, ~nκ), (ϕκ)
g), the match

(u0, ϕ0) . . . (uκ, ϕκ) is h-conform,

where the definition of h′-reachability is a straightforward adaption of the defini-
tion of h-reachability.

The definitions of T ′ and h′ are by induction. More precisely, at stage i of
the induction, we specify what the nodes of T ′ of depth i are. We also define h′

for all positions of the form ((u, ~n), ϕ), where the depth of (u, ~n) in T ′ is at most
i− 1.

For the basic case, the only node of depth 1 in T ′ is the node (r, ε). For
the induction step, take i0 ≥ 1 and suppose that we already know what the
nodes in T ′ of depth at most i0 are. We have also defined the strategy h′ for all
positions of the form ((u, ~n), ϕ), where the depth of (u, ~n) in T ′ is at most i0− 1.
Let (u, ~n) = (u, (n1, . . . , ni0−1)) be a node in T ′ of depth i0. We are going to
define the set of children of this point and ∃’s move when a position of the form
((u, ~n), ϕ) is reached.

By induction hypothesis, (u, ~n) is h′-reachable. Hence, there exists an h′-
conform match π′ the last position of which is of the form ((u, ~n), ϕg). If ~n = ε,
we may assume that ϕ = χ and ϕg = γ. We know (by the induction hypothesis (b)
if i0 > 1 or trivially if i0 = 1) that there is an h-conform match π the last position
of which is (u, ϕ).

Now, there are two different possibilities depending on the shape of ϕ. First,
suppose that ϕ is a disjunction ϕ1 ∨ ϕ2. Then, in the h-conform match π, the
position following (u, ϕ) is of the form (u, ψ), where ψ is either ϕ1 or ϕ2. We
define h′ such that the position following ((u, ~n), ϕg) is ((u, ~n), ψg).

Second, suppose that ϕg is of the form α•∇g((~ϕ)g,Ψg), with ~ϕ = (ϕ1, . . . , ϕk).
Then, in the h-conform match π, the position following (u, ϕ) is a marking

m : µML∇
′ −→ P(R[u])
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such that m is a∇′-marking for (~ϕ,Ψ). First, we define what the children of (u, ~n)
in T ′ are. Second, in the h′-conform match π′, we give a ∇g-marking mg : µGL∇

−→ P(R′[(u, ~n)]) for the pair ((~ϕ)g,Ψg).
Since m is a ∇′-marking for ((~ϕ),Ψ), there exists a tuple (u1, . . . , uk) such

that the two following conditions holds. For all i ∈ {1, . . . , k}, ui is a child of
u at which ϕi is true. For all v ∈ R[u]\{ui | 1 ≤ i ≤ k},

∨
Ψ is true at v.

Hence, for each such a v, we can fix an arbitrary formula ψv such that ψv ∈ Ψ
and v ∈ m(ψv). Next we fix a tuple (u′1, . . . , u

′
k′) such that

{u′i | 1 ≤ i ≤ k′} = {ui | 1 ≤ i ≤ k}

and for all 1 ≤ i < j ≤ k′, we have u′i 6= u′j. For all i ∈ {1, . . . , k′}, we define
ri + 1 as the size of the set {j | uj = u′i} and we fix an arbitrary bijection fi from
{0, . . . , ri} to {j | uj = u′i}. We define U as the subset of T ×N∗ given by:

{(u′i, (n1, . . . , ni0−1, l)) | i ∈ {1, . . . , k′}, 0 ≤ l ≤ ri}

and W by:
{(v, (n1, . . . , ni0−1, 0)) | v ∈ R[u]\{u1, . . . , uk}}.

Finally, we define the set of children (u, ~n) in T ′ as the set U ∪W . Recall that the
(partially defined) strategy h′ is scattered. Hence, there is a unique formula of
the form α •∇′(~ϕ,Ψ) such that ((u, ~n), α •∇′(~ϕ,Ψ)) is h′-reachable. This means
that the set of children (u, ~n) in T ′ is well-defined.

We are now going to define a ∇g-marking mg : µGL∇ −→ P(R′[(u, ~n)]) for the
pair ((~ϕ)g,Ψg). We start by defining a map f : U −→ {1, . . . , k} in the following
way. If a point w belongs to U , there exist i ∈ {1, . . . , k′} and l ∈ {0, . . . , ri} such
that

w = (u′i, (n1, . . . , ni0−1, l)).

We define f(w) as the natural number fi(l). Next we define a map g : U ∪W
−→ µML∇

′
such that {

g((v, (n1, . . . , ni0−1, 0))) = ψv,

g(w) = ϕf(w),

where v ∈ R[u]\{ui | 1 ≤ i ≤ k} and w ∈ U . We let the marking mg : µGL∇

−→ P(R′[(u, ~n)]) be such that for all w ∈ U ∪W and for all formulas δ ∈ µML∇
′
,

we have
w ∈ mg(δg) iff δ = g(w).

We show that mg is a ∇g-marking. That is, we have to define points v1, . . . , vk
such that

(i) for all 1 ≤ i < j ≤ k, vi 6= vj,
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(ii) for all 1 ≤ j ≤ k, vj belongs to mg((ϕj)
g),

(iii) for all children w of (u, ~n) such that w /∈ {vj | 1 ≤ j ≤ k}, there is ψ ∈ Ψ
such that w ∈ mg(ψg).

The idea is to show that f : U −→ {1, . . . , k} is a bijection and to define vj as
f−1(j). First we prove that f is a surjective map. Take j ∈ {1, . . . , k}. Since
{u1, . . . , uk} = {u′1, . . . , u′k′}, there is a natural number i such that u′i = uj. If we
define l as the natural number f−1

i (j) and w as the point (u′i, (n1, . . . , ni0−1, l)),
it is easy to see that f(w) = j.

Next we show that f is an injective map. Let w and w′ be two distinct points
of U . We have to prove that f(w) 6= f(w′). Since w and w′ belong to U , we may
assume that

w = (u′i, (n1, . . . , ni0−1, l)) and w′ = (u′i′ , (n1, . . . , ni0−1, l
′)).

where i, i′ ∈ {1, . . . , k′}, l ∈ {0, . . . , ri} and l′ ∈ {0, . . . , k(i′)}. Suppose first that
i = i′. Since w 6= w′, this implies that l 6= l′. Since fi is a bijection, we also
have that fi(l) 6= fi(l

′). That is, f(w) 6= f(w′). Next assume that i 6= i′ and
suppose for contradiction that f(w) = f(w′). Since f(w) = fi(l), f(w) belongs to
the range of fi which is equal to {j | uj = u′i}. Hence, u′i = uf(w). For the same
reason, u′i′ = uf(w′). Since f(w) = f(w)′, u′i is equal to u′i′ . This is a contradiction,
since i 6= i′ and the points u′1, . . . , u

′
k′ are pairwise distinct. This finishes the proof

that f is a bijection. So for all j ∈ {1, . . . , k}, we define vj by

vj = f−1(j)

and we check that conditions (i), (ii) and (iii) are verified. Condition (i) follows
immediately from the fact that f is a bijection. For (ii), take j ∈ {1, . . . , k}. We
have to show that vj ∈ mg((ϕj)

g). That is, g(vj) = ϕj. Since wj belongs to U ,
g(vj) is equal to ϕf(vj). Since vj = f−1(j), f(vj) = j. Hence, g(vj) is equal to ϕj,
which finishes the proof that (ii) holds.

For condition (iii), let w be a children of (u, ~n) that does not belong to
{v1, . . . , vk}. First we show that w belongs to W . Otherwise, w belongs to U and
by definition, vf(w) = f−1(f(w)); that is vf(w) = w, which contradicts the fact that
w /∈ {v1, . . . , vk}. Since w belongs to W , there exists v ∈ R[u]\{ui | 1 ≤ i ≤ k}
such that

w = (v, (n1, . . . , ni0−1, 0)).

By definition of g, g(w) = ψv and hence, w belongs to mg((ψv)
g).

Now we check that the induction hypothesis remains true. That is, the con-
ditions (a) and (b) hold. First we show that h′ is scattered. By induction hy-
pothesis, it is sufficient to show that for all children w of (u, ~n), there is at most
one formula δ ∈ µML∇

′
such that w belongs to mg(δg). This follows immediately

from the definition of mg. Hence, to prove (a), it remains to prove that each
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point in the set U ∪W is h′-reachable. Recall that the position ((u, ~n), ϕ), where
ϕ = α•∇g(~ϕ,Ψ) is h′-reachable. Hence, it is sufficient to show that all the points
in U ∪ W belong to a set in the range of mg, which directly follows from the
definition of mg.

Finally we show that condition (b) holds. Let

((u0, ~n0), (δ0)g) . . . ((uκ, ~nκ), (δκ)
g) (4.7)

be an h′-conform match such that (uκ−1, ~nκ−1) = (u, ~n) and δκ−1 = α • ∇′(~ϕ,Ψ).
We have to show that (u0, δ0) . . . (uκ, δκ) is an h-conform match. By induction
hypothesis, (u0, δ0) . . . (uκ−1, δκ−1) is an h-conform match. Asm is the∇′-marking
provided by h at position (u, α • ∇′(~ϕ,Ψ)), it is sufficient to show that

uκ belongs to m(δκ). (4.8)

We abbreviate (uκ, ~nκ) by w and δκ by δ. By definition of h′ and since (4.7)
is an h′-conform match, we have that w belongs to mg(δg). Hence, g(w) = δ.
Suppose first that w belongs to W . Then w is equal to (v, (n1, . . . , ni0−1, 0)) for
some v ∈ R[u]\{ui | 1 ≤ i ≤ k}. It follows that uκ = v and g(w) = ψv. Since
g(w) is also equal to δ, we obtain δ = ψv. By definition of ψv, v (= uκ) belongs
to m(ψv) (=m(δ)). This finishes the proof of (4.8) in the case where w ∈ W .

Assume now that w belongs to U . There exist i ∈ {1, . . . , k′} and l ∈
{0, . . . , ri} such that

w = (u′i, (n1, . . . , ni0−1, l)).

Hence, uκ = u′i. It also follows that f(w) = fi(l). In particular, f(w) belongs
to the set {j | uj = u′i}. So there exists j ∈ {1, . . . , k} such that uj = u′i and
f(w) = j. Since g(w) = ϕf(w), this implies that g(w) = ϕj. Recall also that
g(w) = δ. Hence, δ = ϕj. By definition of the ujs, we know that uj (= u′i = uκ)
belongs to ϕj (=δ). This finishes the proof of (4.8). Hence, the definition of T ′
and h′.

Using condition (b) together with the fact that h is a winning strategy for ∃
in E(T , χ) with initial position (r, χ), we can easily check that the strategy h′ is
winning for ∃ in the game E(T ′, γ) with starting position ((r, ε), γ). Therefore,
the formula γ is true at the root of T ′. Now the map that sends a node (u, ~n) to
u is a surjective p-morphism between T ′ and T . Hence, T is a p-morphic image
of T ′. Since ϕ is preserved under p-morphic images for trees and γ and ϕ are
equivalent on trees, γ is also true at the root of T and this finishes the proof that
γ and χ are equivalent on trees. It follows that γ and ϕ are also equivalent on
trees. 2

We explained in Section 4.1 that the proof of Theorem 4.1.1 is divided in two
parts. The proposition we just proved finishes the first part, which was illustrated
by Figure 4.1. In this first part, we investigated several logics and established
relations between them. A general picture is given by Figure 4.2. All these
equivalences are at the level of models. In the second part, we will show that in
the context of frames, µML∇

′
is equivalent to the µ-calculus.
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MSO graded µ-calculus (µGL)
∇-form for µGL

disjunctive form for µGL

µML∇
′

disjunctive form for µML∇
′

equivalent

on trees

fragment preserved
under p-morphic images

fragment preserved
under p-morphic images

Figure 4.2: Relations between the different logics.

4.4 Local definability

The main goal of this section is to prove that given a disjunctive sentence ϕ in
µML∇

′
, we can find a set Prop ′ of proposition letters and a µ-sentence ϕt over

Prop ∪ Prop ′ such that for all trees T = (T,R, V ) over Prop with root r,

T , r 
 ϕ iff for all V ′ : Prop ′ −→ P(T ), (T,R, V, V ′), r 
 ϕt. (4.9)

Putting this result together with Proposition 4.3.2 and Lemma 4.1.2, we will be
able to derive the main result of this chapter, namely Theorem 4.1.1.

In case ϕ is a formula of the form α • ∇′(~ϕ,Ψ), the truth of ϕ involves the
existence of ∇′-witnesses for the pair (~ϕ,Ψ). So we existentially quantify over
points in the model. One problem that we may encounter when defining ϕt, is
that in (4.9), we universally quantify over all valuations.

The idea is to define a new evaluation game for the formulas in µML∇
′
.

The main feature of that game is that when reaching a position of the form
(w,∇′(~ϕ,Ψ)), it will be ∀ who has to make a move, unlike in the usual evaluation
game (see definition before Proposition 4.3.1). The intuition is that by letting ∀
play instead of ∃, we replace the existential quantification corresponding to the
formula ∇′(~ϕ,Ψ) by a universal quantification.

The definition of the new evaluation game is based on the following observa-
tion. Let U be a subset of a model M = (W,R, V ), let w ∈ W and let χ(w) be
the following first-order formula:

χ(w) = ∃w1, . . . , wk ∈ R[w] such that ∀u ∈ R[w]\{w1, . . . , wk}, u ∈ U.

That is, χ(w) expresses that there are at most k successors of the point w that
do not belong to U . In order to check whether χ(w) holds, we can let ∃ pick
k successors w1, . . . , wk of w. Next, ∀ chooses a successor u of w that does not
belong to {w1, . . . , wk}. Finally we check whether u belongs to U .
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Note that if ψ is a sentence such that [[ψ]]M = U , then χ(w) holds iff the
formula ∇′((>, . . . ,>), {ψ}) is true at w, where the length of the tuple (>, . . . ,>)
is k. Indeed, ∇′((>, . . . ,>), {ψ}) is true at w iff there exist {w1, . . . , wk} such
that for all 1 ≤ i ≤ k, > is true at wi and for all u ∈ R[w]\{w1, . . . , wk}, ψ is
true at u.

It is easy to see that χ(w) is in fact equivalent to the formula χ′(w) given by:

χ′(w) = ∃u ∈ R[w] ∧
(
∀w1, . . . , wk+1 ∈ R[w] such that

∧
{wi 6= wj | i 6= j},

∃u ∈ {w1, . . . , wk+1} such that u ∈ U
)
.

In order to check whether χ′(w) is valid, we let ∀ choose between options (a) and
(b). If he chooses option (a), then ∃ has to provide a successor u of w. If he
chooses option (b), he can pick k+ 1 distinct successors w1, . . . , wk+1 of w. Next,
∃ chooses a point u in {w1, . . . , wk+1} and we check whether u belongs to U .

This illustrates how in the new evaluation game we will turn an existential
quantification into an universal quantification. Of course, the formula ∇′(~ϕ,Ψ)
can express more difficult conditions than the one expressed by χ(w). So it will
be more difficult to transform the usual evaluation game into the new evalua-
tion game than to construct the formula χ′(w) from the formula χ(w). But the
intuition is roughly the same for both transformations.

We define now the new evaluation game E ′(M, ϕ) for a modelM = (W,R, V )
and a sentence ϕ in µML∇

′
.

The evaluation game E ′(M, ϕ) for the formulas in µML∇
′

Let M =
(W,R, V ) be a model and let ϕ be a sentence in µML∇

′
. The rules and the

winning conditions of the game E ′(M, ϕ) are the same as the ones for the game
E(M, ϕ) (see definition before Proposition 4.3.1), except when we reach a position
of the form (w,∇′(~ϕ,Ψ)).

In the usual game E(M, ϕ), ∃ has to propose a ∇′-marking m : µML∇
′ −→

P(R[w]) for the pair (~ϕ,Ψ). In the game E ′(M, ϕ), when we reach a position of
the form (w,∇′(~ϕ,Ψ)) and ~ϕ = (ϕ1, . . . , ϕk), then ∀ makes a choice:

(a) Either ∀ picks a natural number i ∈ {1, . . . , k}. Then ∃ has to provide a
successor v of w, moving to the position (v, ϕi).

(b) Or ∀ picks distinct successors v1, . . . , vm of w, where m ≤ k + 1. Next, it is
∃ who makes a move. She has the following choice:

(i) either she picks a point v in {v1, . . . , vm} and a formula ψ ∈ Ψ, moving
to the position (v, ψ),

(ii) or she provides an injective map f : {1, . . . ,m} −→ {1, . . . k}. In this
case, ∀ can choose a natural number i ∈ {1, . . . ,m}, moving to the
position (vi, ϕf(i)).
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We will call the two possible moves of ∀ at position (w,∇′(~ϕ,Ψ)), options (a)
and (b) in the game E ′(M, ϕ). Similarly, after ∀ picked the successors v1, . . . , vm,
we will say that ∃ has a choice between options (i) and (ii) in the game E ′(M, ϕ).

We prove now that the new evaluation game captures the truth of a sentence
in µML∇

′
.

4.4.1. Proposition. Let M = (W,R, V ) be a model, let w0 be a point in W
and let ϕ be a sentence in µML∇

′
. Then M, w0 
 ϕ iff ∃ has a winning strategy

in the game E ′(M, ϕ) with initial position (w0, ϕ).

Proof Given a natural number k ≥ 1, we abbreviate the set {1, . . . , k} by [k].
We also denote by E and by E ′ the games E(M, ϕ) and E ′(M, ϕ) respectively.
Given a subformula δ of ϕ and w ∈ W , we write E@(w, δ) for the game E with
initial position (w, δ). Similarly, we let E ′@(w, δ) be the game E ′ with initial
position (w, δ).

By Proposition 4.3.1, it is sufficient to prove that

∃ has a winning strategy in E ′@(w0, ϕ) iff ∃ has a winning strategy in E@(w0, ϕ).
(4.10)

We start by proving the direction from right to left. Suppose that ∃ has a win-
ning strategy h in E@(w0, ϕ). We have to define a winning strategy h′ for ∃ in
E ′@(w0, ϕ). The obvious way to proceed is to define h′ directly from the strategy
h. That is, consider a position of the board of the game E ′ that belongs to ∃ and
define, using the map h, the move dictated by h′ at that position.

It would be hard to define h′ in such a way; the problem is that the corre-
spondence between the game E and E ′ is not a correspondence that link a move
to another move, but a correspondence linking a sequence of moves in one game
to another sequence of moves in the other game. For example, if in the game E ,
∃ chooses a marking m and ∀ picks a pair (w, δ) with w ∈ m(δ), then those two
moves correspond, in the game E ′ to the following sequence of move. First, ∀
chooses between option (a) and (b); if he chooses (a), he picks a natural number
and ∃ picks a successor, whereas if ∀ chooses (b), he may pick a sequence of
successors, etc.

The idea to define h′ is to prove a claim of the type:

(†)

Suppose that (w, δ) is a winning position for ∃ in E with respect to h.
Then in the game E ′, ∃ has a strategy g′ which will guarantee that,
from the same position, within a finite number of steps, she will reach
a position of the form (v, γ) such that in some h-conform E-match with
initial position (w, δ), position (v, γ) would have been reached at some
point as well. Hence, in particular, (v, γ) is a winning position for ∃ in
E with respect to h.
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Using inductively (†), we can construct a strategy h′ for ∃. This strategy will
ensure that all the finite h′-conform matches are won by ∃. However, there is no
guarantee for the infinite g′-conform matches. The problem is that during the
g′-conform match ρ′ from (w, δ) to (v, γ), we might unfold different variables than
the ones unfolded in the h-conform match ρ from (w, δ) to (v, γ).

The solution is to strengthen (†). We will require that the only positions of
the form (u, x) (with u ∈ W and x ∈ Var) occurring in ρ′ are either the initial
position (w, δ) or the last position (v, γ). Similarly, the match ρ should be such
that the only positions of the form (u, x) occurring in ρ′ are either the initial
position (w, δ) or the last position (v, γ). Those two requirement imply that the
variables encountered in ρ and ρ′ coincide. This motivates the introduction of
the notion of variable scarceness. A match is variable scarce if it contains at most
one position of the form (u, x) with x ∈ Var , and this position can only occur as
either the first or the last position of the match.

We are now ready to state the claim that will be used to define h′ inductively.
We denote by v the prefix (initial segment) relation between sequences.

1. Claim. If w ∈ W and (w, δ) is a winning position for ∃ in E with respect to
h, then ∃ has a strategy g′ in E ′@(w, δ) with the property that for all g′-conform
matches λ′, there exists a g′-conform match ρ′ with last position (v, γ) satisfying
(ρ′ v λ′ or λ′ v ρ′) and conditions (1) and (2) below:

(1) there is an h-conform match ρ leading from (w, δ) to (v, γ),

(2) both ρ and ρ′ are variable scarce.

If Claim 1 holds, then we can define a strategy h′ for ∃ in E ′0 such that ∃ will
never get stuck and for all h′-conform E ′0-matches π′, there exists an h-conform
E0-conform matches π such that Inf (π) = Inf (π′), where Inf (π) (resp. Inf (π′)) is
the set of variables occurring infinitely often in the match π (resp. in the match
π′). It immediately follows that h′ is a winning strategy for ∃ in E ′@(w0, ϕ).

Hence, in order to prove the implication from right to left of (4.10), it is
sufficient to show Claim 1.

Proof of Claim We only treat the most difficult case, that is, δ is a formula
of the form ∇′(~ϕ,Ψ). Suppose that ~ϕ = (ϕ1, . . . , ϕk). At position (w,∇′(~ϕ,Ψ))
in the game E , ∃ chooses, according to h, a ∇′-marking

m : µML∇
′ −→ P(R[w])

for the pair (~ϕ,Ψ). In the game E ′, it is ∀ who plays at position (w,∇′(~ϕ,Ψ)): he
chooses either option (a) or option (b). Suppose first that ∀ chooses option (a)
and picks a natural number i ∈ [k]. Since m is a∇′-marking, there exists v ∈ R[w]
such that v ∈ m(ϕi). We propose v as the next move for ∃ in the game E ′. This
choice ensures that conditions (1) and (2) of Claim 1 are verified.
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Next assume that ∀ chooses options (b). That is, ∀ picks m distinct successors
v1, . . . , vm of w, where m ≤ k + 1. If there is i ∈ [m] and ψ ∈ Ψ such that
vi ∈ m(ψ), then we let ∃ propose the pair (vi, ψ) as the next position. Again, it
is immediate that conditions (1) and (2) of Claim 1 hold.

Otherwise, for all i ∈ [m] and all ψ ∈ Ψ, vi does not belong to m(ψ). Since
m is a ∇′-marking, there exist a tuple (w1, . . . , wk) such that for all i ∈ [k],
wi ∈ m(ϕi) and for all v /∈ {wi | i ∈ [k]}, there is ψ ∈ Ψ such that v ∈ m(ψ).
Putting that together with the fact that for all i ∈ [m] and all ψ ∈ Ψ, vi does not
belong to m(ψ), we obtain that

{v1, . . . , vm} ⊆ {w1, . . . , wk}.

Hence, for all i ∈ [m], there exists f(i) ∈ [k] such that vi = wf(j). Moreover,
as the successors v1, . . . , vm are distinct, if i 6= j, then f(i) 6= f(j). We let ∃
play this injective map f in the game E ′ (she chooses possibility (ii)). Now,
it is ∀’s turn in E ′: he picks a pair (vi, ϕf(i)). Given the definition of f , this
pair is equal to (wf(i), ϕf(i)). It follows from the definition of (w1, . . . , wk) that
wf(i) belongs to m(ϕf(i)). Hence, the position (wf(i), ϕf(i)) satisfies conditions (1)
and (2) of Claim 1. This finishes the proof of the implication from right to left
of (4.10). J

We prove now implication from left to right of (4.10). Assume that ∃ has a
winning strategy h′ in the game E ′@(w0, ϕ). The definition of a winning strategy
for ∃ in E@(w0, ϕ) is obtained by inductively applying the following claim.

2. Claim. If w ∈ W and (w, δ) is a winning position for ∃ in E with respect to
h′, then ∃ has a strategy g in E ′@(w, δ) with the property that for all g-conform
matches λ, there exists a g-conform match ρ with last position (v, γ) satisfying
(ρ v λ or λ v ρ) and conditions (1) and (2) below:

(1) there is an h′-conform match ρ′ leading from (w, δ) to (v, γ),

(2) both ρ and ρ′ are variable scarce.

Using an argument similar to the one in the proof of the implication from right
to left of (4.10), we can show that Claim 2 ensures the existence of a winning
strategy for1 ∃ in E@(w0, ϕ). Hence, in order to prove the implication from left
to right of (4.10), it is sufficient to prove Claim 2.

1We would like to mention that Claims 1 and 2 are basically showing that there is a bisi-
mulation between the game E@(w0, ϕ) and E ′@(w0, ϕ), in the sense of [KV09]. It immediately
follows from the results of [KV09] that ∃ has a winning strategy in one game iff she has a
winning strategy in the other. The issue of finding appropriate notions of game equivalence was
first raised by Johan van Benthem [Ben02].
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Proof of Claim We restrict ourselves to a proof in the case where δ = ∇′(~ϕ,Ψ).
Suppose that ~ϕ = (ϕ1, . . . , ϕk). We define U as the set of successors u of w such
that for some ψu ∈ Ψ there is an h′-conform partial match with initial position
(w,∇′(~ϕ,Ψ)) and last position (u, ψu). Next, let U ′ be the set of successors of w
that do not belong to U .

Let m be the size of U ′. First we show that m is less or equal to k. Suppose
for contradiction that m > k. Then there exist distinct successors v1, . . . , vk+1

of w that belong to U ′. In the game E ′, at position (w,∇′(~ϕ,Ψ)), we can let
∀ play the successors v1, . . . , vk+1. Then, using the strategy h′, ∃ chooses either
option (i) or option (ii) in the game E ′. Option (i) means that ∃ picks a vi and
a formula ψ ∈ Ψ, moving to the position (vi, ψ). This means that vi belongs to
U , which is a contradiction. Option (ii) means that ∃ chooses an injective map
f : [k + 1] −→ [k], which is clearly impossible. Hence, the size m of U ′ is less or
equal to k.

Let v1, . . . , vm be distinct successors of w such that U ′ = {v1, . . . , vm}. In
the game E ′, at position (w,∇′(~ϕ,Ψ)), we let ∀ play the successors v1, . . . , vm.
According to h′, ∃ chooses between option (i) and option (ii). As in the previous
paragraph, it is not possible that she chooses option (i). Indeed, if she chooses
option (i), the game moves to a position of the form (vi, ψ) for some i ∈ [m] and
ψ ∈ Ψ. This implies that vi belongs to U , which is a contradiction. Hence, ∃
chooses option (ii) and according to h′, she defines a map f : [m] −→ [k].

Recall that our goal is to define ∃’s move at position (w,∇′(~ϕ,Ψ)) in the game
E . That is, we have to provide a ∇′-marking

m : µML∇
′ −→ P(R[w])

for the pair (~ϕ,Ψ). The idea is to define the marking such that each u ∈ U is
marked with ψu and each vi ∈ U ′ is marked with ϕf(i). All the positions reached
after this marking in the game E would satisfy conditions (1) and (2) of Claim 2.
Now the problem is that such a marking might not be a ∇′-marking because there
is no guarantee that for all j ∈ [k], there is a point marked with ϕj. Since we
want to mark each vi with the formula ϕf(i), we already know that for all j in
the range of f , there is a successor of w marked with ϕj.

Consider now a natural number j that does not belong to the range of f . At
position (w,∇′(~ϕ,Ψ)) in the game E ′, we can let ∀ choose possibility (a) and pick
the natural number j. Then, using h′, ∃ provides a successor uj of w, moving to
the position (uj, ϕj). We are now ready to define the marking m. We first define
the relation Rw in the following way:

Rw = {(u, ψu) | u ∈ U} ∪ {(vi, ϕf(i)) | i ∈ [m]} ∪ {(uj, ϕj) | j /∈ Ran(f)},

where Ran(f) is the range of f . It follows from the definition of Rw that for all
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pairs (v, θ) ∈ Rw,

there is an h′-conform partial match with initial position (w, δ) (4.11)

and last position (v, θ) and no variable is unfolded during this match

Finally, we define a map m : µML∇
′ −→ P(R[w]) such that for all formulas

θ ∈ µML∇
′

and for all v ∈ R[w],

v ∈ m(θ) iff (v, θ) ∈ Rw.

It follows from the definition ofm and (4.11) that conditions (1) and (2) of Claim 2
hold. We check now that m is a ∇′-marking for the pair (~ϕ,Ψ). Take j ∈ [k].
If j belongs to the range of f , then there exists i ∈ [m] such that f(i) = j. In
that case, we define wj as the point vi. If j does not belong to the range of f ,
we define wj as the point uj. It is easy to see that the tuple (w1, . . . , wk) is such
that for all j ∈ [k], wj ∈ m(ϕj) and for all v ∈ R[w]\{w1, . . . , wk}, there is ψ ∈ Ψ
such that v ∈ m(ψ). J

This finishes the proof of Claim 2 and the proof of the proposition. 2

We are now ready to prove that an MSO formula is locally µMLF-definable
on trees iff it is preserved under p-morphic images on trees. Putting this result
together with Lemma 4.1.2, we obtain the main result of this chapter, that is,
Theorem 4.1.1.

4.4.2. Proposition. A MSO formula is locally µMLF-definable on trees iff it is
preserved under p-morphic images on trees.

Proof The only difficult direction is from right to left. Let ϕ0 be an MSO formula
that is preserved under p-morphic images on trees. By Proposition 4.3.2, there is
a disjunctive sentence ϕ in µML∇

′
such that for all trees T over Prop with root

r, ϕ is true at r iff T � ϕ0. Our goal is to define a set Propϕ of proposition letters
and a µ-sentence ϕt over Prop ∪ Propϕ such that for all trees T = (T,R, V ) over
Prop with root r,

T , r 
 ϕ iff for all V ′ : Propϕ −→ P(T ), (T,R, V, V ′), r 
 ϕt.

As usual, given a natural number k ≥ 1, we abbreviate the set {1, . . . , k} by
[k]. The definitions of the set Propϕ and the formula ϕt are by induction on the
complexity of ϕ. If ϕ is a proposition letter or a variable, we simply define ϕt

as ϕ and Propϕ as the empty set. If ϕ is a formula of the form ηx.ϕ1, then we
define ϕt as the formula ηx.ϕt and Propϕ as the set Propϕ1

. Next, suppose that
ϕ is a formula of the form ϕ1 ∨ ϕ2. Without loss of generality, we may assume
that Propϕ1

∩Propϕ2
= ∅. Then we define Propϕ as the set Propϕ1

∪Propϕ2
and

ϕt as the formula ϕt1 ∨ ϕt2.
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Finally suppose that ϕ is a formula of the form α • ∇′(~ϕ,Ψ), with ~ϕ =
(ϕ1, . . . , ϕk) and Ψ = {ψ1, . . . , ψl}. Without loss of generality, we may assume
that the sets

Propϕ1
, . . . ,Propϕk ,Propψ1

, . . . ,Propψl
have pairwise empty intersection. We let p1, . . . , pk+1 be fresh proposition letters;
that is, for all i ∈ [k + 1], for all j ∈ [k] and for all j′ ∈ [l], pi does not belong
Propϕj and pi does not belongs to Propψj′ . We define Propϕ as the set

{p1, . . . , pk+1} ∪
⋃
{Propϕi | i ∈ [k]} ∪

⋃
{Propψi | i ∈ [l]}.

We call p1, . . . , pk+1 the proposition letters associated with the formula α•∇′(~ϕ,Ψ).
In order to define the formula ϕt, we will use the structure of the new evalu-

ation game E ′(M, ϕ). It is given by:

ϕt = α ∧ ψ1 ∧ (ψ21 ∨ ψ22 ∨ ψ23),

ψ1 =
∧
{3ϕti | 1 ≤ i ≤ k},

ψ21 =
∨
{3(pi ∧ pj) | i, j ∈ [k + 1], i 6= j},

ψ22 =
∨
{3(pi ∧ ψt) | i ∈ [k], ψ ∈ Ψ},

ψ23 =
∨
{ψg | g : [k + 1] −→ P([k]) such that for all i 6= j, g(i) ∩ g(j) = ∅},

ψg =
∧{

2

(
¬pi ∨

∨
{ϕtj | j ∈ g(i)}

)i ∈ [k + 1]
}
.

The intuition for the construction of ϕt is as follows. If at position (w,∇′(~ϕ,Ψ))
in the new evaluation game, ∀ chooses possibility (a), this intuitively corresponds
to the fact that ∀ wants to check that for all i ∈ [k], there is a successor of w at
which ϕi is true. This motivates the introduction of the formula ψ1.

If ∀ chooses possibility (b), then he picks distinct successors v1, . . . , vm of w,
with m ≤ k + 1. Intuitively, we have in mind that for all i ≤ m, the proposition
letter pi is assigned to the point vi. This implies that the formula ¬ψ21 is true.

Now if ¬ψ21 is true, ∃ has to make a choice between options (i) and (ii).
Suppose she chooses (i); that is, she picks a point in {v1, . . . , vm} and a formula
ψ in Ψ, moving to the position (vi, ψ). Intuitively, this corresponds to the fact
that the formula ψ22 is true at w.

Finally suppose that ∃ chooses option (ii). Hence, she proposes an injective
map f : [m] −→ [k]. Then for all i ∈ [m], ∀ can move to the position (vi, ϕf(i)).
The intended meaning is that the formula ϕf(i) is true at vi. As it will become
clearer further on, we can think of f as being a map g : [k+1] −→ P([k]) such that
for all i 6= j, g(i) ∩ g(j) = ∅. Within that perspective, the fact that the formula
ϕf(i) is true at vi is equivalent to the fact that the formula

∨
{ϕtj | j ∈ g(i)} is

true at vi. Now if the valuation for the proposition letters p1, . . . , pn that we have
in mind is such that for all v ∈ R[w]

v ∈ V (pi) implies v = vi,
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then, for all i ∈ [m], the formula

2

(
¬pi ∨

∨
{ϕtj | j ∈ g(i)}

)
is true at w. This implies that the formula ψg is true at w. This finishes the
definitions of Propϕ and ϕt.

We have to show that for all trees T = (T,R, V ) over Prop with root r,

T , r 
 ϕ iff for all V ′ : Propϕ −→ P(T ), (T,R, V, V ′), r 
 ϕt. (4.12)

We start by proving the implication from left to right. Let T = (T,R, V ) be a
tree over Prop with root r such that T , r 
 ϕ. Let also V ′ : Propϕ −→ P(T ) be a
valuation. We have to show that T ′, r 
 ϕt, where T ′ := (T,R, V, V ′). Given a
game E and a position z of the board, we denote by E@z the game E with initial
position z.

Since T , r 
 ϕ, it follows from Proposition 4.4.1 that ∃ has winning strategy
h′ in the game E ′(T , ϕ)@(r, ϕ). We have to find a winning strategy for ∃ in the
game E(T ′, ϕt)@(r, ϕt). The definition of the strategy is based on the following
claim. Recall that v is the prefix (initial segment) relation between sequences.

1. Claim. If u ∈ T and (u, δ) is a winning position for ∃ in E ′(T , ϕ) with respect
to h′, then ∃ has a strategy gt in E(T ′, ϕt)@(u, δt) with the property that for all
gt-conform matches λ, there exists a gt-conform match ρ with last position (v, γt)
satisfying (ρ v λ or λ v ρ) and condition (1) or (2) below:

(1) either ∀ is stuck at position (v, γt),

(2) or there is an h′-conform match ρ′ leading from (u, δ) to (v, γ). Moreover,
both ρ and ρ′ are variable scarce.

Recall that a partial match is variable scarce if it contains at most one position
of the form (u, x) with x ∈ Var , and this position can only occur as either the
first or the last position of the match.

Using inductively the claim, we can define a strategy ht for ∃ in the game
E(T ′, ϕt)@(r, ϕt) such that ∃ never gets stuck and for all infinite ht-conform
matches π, there is an h′-conform match π′ such that Inf (π) = Inf (π′). Since h′

is a winning strategy for ∃, this implies that ht is a winning strategy for ∃ and
this finishes the proof of the implication from left to right of (4.12).

Proof of Claim We abbreviate by E ′ and by E t the games E ′(T , ϕ) and
E(T ′, ϕt) respectively. The proof is by induction on δ. The only case that is
not straightforward is the case where δ is a formula of the form α • ∇′(~ϕ,Ψ).
Suppose that (u, α • ∇′(~ϕ,Ψ)) is a winning position for ∃ in E ′ with respect to



4.4. Local definability 101

h′ and that ~ϕ = (ϕ1, . . . , ϕk). We have to define a strategy for ∃ in the game
E t@(u, (α • ∇′(~ϕ,Ψ))t). Recall that (α • ∇′(~ϕ,Ψ))t is given by

α ∧ ψ1 ∧ (ψ21 ∨ ψ22 ∨ ψ23),

where ψ1, ψ21, ψ22 and ψ23 are defined as previously. At position (u, (α•∇′(~ϕ,Ψ))t)
in the game E t, it is ∀ who has to play: he can choose between the formulas α,
ψ1 and (ψ21 ∨ ψ22 ∨ ψ23).

• Suppose first that he chooses the formula α. Then, at position (u, α •
∇′(~ϕ,Ψ)) in the game E ′, we can let ∀ move to the position (u, α). It is
immediate that condition (2) of Claim 1 holds.

• Next, suppose that at position (u, (α•∇′(~ϕ,Ψ))t) in the game E t, ∀ chooses
the formula ψ1, moving to the position (u, ψ1). Recall that ψ1 is the formula∧

{3ϕti | 1 ≤ i ≤ k}.

Hence, at position (u, ψ1), it is again ∀ who has to play and he has to pick a
natural number i0 ∈ [k], moving to the position (u,3ϕti0) in E t. At position
(u, α•∇′(~ϕ,Ψ)) in the game E ′, we can let ∀ choose option (a) and pick the
natural number i0. It follows from the rules of the game E ′ that ∃’s answer
(according to h′) is a successor v of u and the next position is (v, ϕi0). We
can define the strategy gt in the game E t such that at position (u,3ϕti0), ∃
proposes the pair (v, ϕti0) as the next position. It is immediate that in this
case, condition (2) of Claim 1 holds.

• Suppose finally that at position (u, (α•∇′(~ϕ,Ψ))t) in the game E t, ∀ chooses
the formula ψ21 ∨ ψ22 ∨ ψ23.

– Suppose first that ψ21 is true at u. Recall that ψ21 is the formula

ψ21 =
∨
{3(pi ∧ pj) | i, j ∈ [k + 1], i 6= j}.

If ψ21 is true at u, we let gt be such that at position (u, ψ21∨ψ22∨ψ23),
∃ moves to position (u, ψ21). Hence, it is clear that ∃ can play in such
a way that after 3 moves, condition (1) of Claim 1 is verified.

– Suppose that there is an h′-conform match ρ′ that satisfies the two
following conditions. The match ρ′ is variable scarce. Moreover, the
initial position of ρ′ is (u, α • ∇′(~ϕ,Ψ)) and the last position of ρ′

is (v0, ψ0), for some ψ0 ∈ Ψ and some v0 ∈ R[u] such that T ′, v0 

p1 ∨ · · · ∨ pk+1.

In this case, we let gt be such that at position (u, ψ21 ∨ ψ22 ∨ ψ23), ∃
moves to position (u, ψ22). The formula ψ22 is given by:

ψ22 =
∨
{3(pi ∧ ψt) | i ∈ [k], ψ ∈ Ψ}.
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Hence, at position (u, ψ22) in E t, it is ∃ who has to play and she
has to pick a natural number i ∈ [k] and a formula ψ ∈ Ψ. Since
T ′, v0 
 p1 ∨ · · · ∨ pk+1, there exists i ∈ [k] such that T ′0 , v0 
 pi.
We can propose this natural number i and the formula ψ0 as the next
move for ∃ in the game E t at position (u, ψ22). This means that we
are now at position (u,3(pi ∧ ψt0)) in the game E t. Hence, it is again
∃’s turn and she has to provide a successor v of u. We define gt such
that at position (u,3(pi ∧ ψt0)) in the game E t, ∃ picks the point v0,
moving to the next position (v0, pi ∧ ψt0).

Now it is ∀ who has to make a choice. If ∀ chooses the pair (v0, pi) as
the next position, then condition (1) of Claim 1 is met, as T ′0 , v0 
 pi.
If ∀ chooses the pair (v0, ψ

t
0) as the next position, then condition (2) of

Claim 1 is verified, since there is an h′-conform variable scarce match
with initial position (u, α • ∇′(~ϕ,Ψ)) and last position (v0, ψ0).

– Suppose finally that ψ21 is false at u and

(*)

there is no h′-conform match ρ′ satisfying the two following con-
ditions.

• The match ρ′ is variable scarce.

• The initial position of ρ is (u, α • ∇′(~ϕ,Ψ)) and the last
position of ρ′ is (v, ψ), for some ψ ∈ Ψ and some v ∈ R[u]
such that T ′, v 
 p1 ∨ · · · ∨ pk+1.

Let U ′ be the set of points v ∈ R[u] such that T ′, v 
 p1∨· · ·∨pk+1 and
let m be the size of U ′. We start by showing that m is less or equal to
k. Suppose otherwise. Then there exist distinct successors v1, . . . , vk+1

of u such that for all i ∈ [k+1], vi ∈ U ′. At position (u,∇′(~ϕ,Ψ)) in E ′,
we can let ∀ play the sequence v1, . . . , vk+1 (option (b) in the game E ′).
Then, using h′, ∃ chooses either (i) a successor v in {v1, . . . , vk+1} and
a formula ψ ∈ Ψ, or (ii) an injective map f : [k + 1] −→ [k]. Case (ii)
is obviously impossible. So suppose that ∃ chooses a successor v in
{v1, . . . , vk+1} and a formula ψ ∈ Ψ, moving to the position (v, ψ).
Since v belongs to {v1, . . . , vk+1}, v belongs to U ′. That is, T ′, v 

p1 ∨ · · · ∨ pk+1. Hence, there is an h′-conform variable scarce match
with initial position (u, α•∇′(~ϕ,Ψ)) and last position (v, ψ) such that
T ′, v 
 p1 ∨ · · · ∨ pk+1, which contradicts (*). This finishes the proof
that m is less or equal to k.

Now let v1, . . . , vm be distinct successors of u such that

U ′ = {v1, . . . , vm}.

At position (u,∇′(~ϕ,Ψ)) in the match E ′, we can let ∀ pick the suc-
cessors v1, . . . , vm of u (option (b) in the game E ′). According to h′, ∃
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chooses either possibility (i) or possibility (ii). In case she chooses (i),
she has to propose a point v ∈ {v1, . . . , vm} and a formula ψ ∈ Ψ,
moving to the position (v, ψ). As in the previous paragraph, we can
show that this contradicts (*).

Hence, ∃ chooses possibility (ii); that is, she proposes an injective map
f : [m] −→ [k]. Using the map f , we are now going to define a map
g : [k + 1] −→ P([k]) such that for all i 6= i′, g(i) ∩ g(i′) = ∅. For each
i ∈ [k+1], we define U ′i as the set of points v in U ′ such that T ′, v 
 pi.
Since the formula ψ21 given by:∨

{3(pi ∧ pj) | i, j ∈ [k + 1], i 6= j}.

is false at u, we know that for all i 6= i′, U ′i ∩U ′i′ = ∅. Given i ∈ [k+ 1],
we define g(i) by:

g(i) = {f(j) | vj ∈ U ′i}.

We verify that for all i 6= i′, g(i) ∩ g(i′) = ∅. Take i, i′ ∈ [k + 1]
such that i 6= i′. Suppose for contradiction that there exists a natural
number k0 in g(i) ∩ g(i′). Since k0 belongs to g(i), it follows from the
definition of g that there exists vj ∈ U ′i such that k0 = f(j). Similarly,
there exists vj′ ∈ U ′i′ such that k0 = f(j′). Thus, f(j) = f(j′). Since
f is an injective map, this means that j = j′. Hence, vj belongs to
U ′i ∩ U ′i′ . This contradicts the fact that for all i 6= i′, U ′i ∩ U ′i′ = ∅.
We are now ready to define the strategy gt for the game E t at position
(u, ψ21 ∨ψ22 ∨ψ23). First, we let ∃ choose the pair (u, ψ23) as the next
position. Recall that ψ23 is the formula∨
{ψg | g : [k + 1] −→ P([k]) such that for all i 6= j, g(i) ∩ g(j) = ∅}.

Second, at position (u, ψ23), we define ∃’s next move as the position
(u, ψg), where g is the map defined in the previous paragraph and ψg
is the formula

ψg =
∧{

2

(
¬pi ∨

∨
{ϕtj | j ∈ g(i)}

)i ∈ [k + 1]
}
.

Hence, at position (u, ψg) in E t, it is ∀ who has to play: he has to
choose a natural number i ∈ [k + 1], moving to the position (u, δi),
where δi is given by:

δi = 2

(
¬pi ∨

∨
{ϕtj | j ∈ g(i)}

)
.

At position (u, δi) in E t, ∀ has to pick a successor v of u and the next
position is (v,¬pi ∨

∨
{ϕtj | j ∈ g(i)}). If pi is not true at v, we let
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∃ propose the pair (v,¬pi) as the next position and condition (1) of
Claim 1 is verified.

Otherwise, suppose that pi is true at v. Then we let ∃ choose the
position (v,

∨
{ϕtj | j ∈ g(i)}) in the game E t. Since pi is true at v, v

belongs to U ′i . Hence, there exists a unique j ∈ [m] such that vj = v.
It follows from the definition of g that f(j) belongs to g(i). At position
(v,
∨
{ϕtj | j ∈ g(i)}) in the game E t, we let ∃’s strategy be such that

the next position is zi := (v, ϕtf(j)).

We check now that for that position, condition (2) of Claim 1 is met.
Recall that f was chosen by ∃ according to h′, after ∀ picked the se-
quence v1, . . . , vm in the game E ′. Hence, it follows from the rules of
the game E ′ that after ∃ proposed the map f , ∀ can move to the posi-
tion (vj, ϕf(j)) (= (v, ϕf(j))). This finishes the proof that condition (2)
of Claim 1 is verified for the position zi.

This also finishes the proof of the claim and the proof of the implication from left
to right of (4.12). J

Now we turn to the proof of the implication from right to left of (4.12).
Let T = (T,R, V ) be a tree over Prop with root r. Suppose that for all V ′ :
Propϕ −→ P(T ), (T,R, V, V ′), r 
 ϕt. We have to show that T , r 
 ϕ. Suppose
for contradiction that T , r 1 ϕ. Hence, by Proposition 4.4.1, ∀ has a winning
strategy e′ in the game E ′(T , ϕ)@(r, ϕ). The idea is to use this strategy to define
a valuation V ′0 : Propϕ −→ P(T ).

For all proposition letters p ∈ Propϕ, we define V ′0(p) ∩ {r} as the empty set.
Next, for each u ∈ T and each p ∈ Propϕ, we define the set V ′0(p) ∩R[u]. Take a
point u ∈ T and a proposition letter p ∈ Propϕ. It follows from the definition of
Propϕ that there is a unique subformula α•∇′(~ϕ,Ψ) of ϕ such that p is associated
with α •∇′(~ϕ,Ψ). Let p1, . . . , pk+1 be the set of all proposition letters associated
with α • ∇′(~ϕ,Ψ). For some i ∈ [k + 1], we have p = pi.

Consider the position (u, α • ∇′(~ϕ,Ψ)). If this position does not belong to
the domain of e′, we define V ′0(p)∩R[u] as the empty set. Otherwise, at position
(u, α • ∇′(~ϕ,Ψ)), according to e′, ∀ chooses either (a) a natural number or (b) a
sequence of distinct successors v1, . . . , vm of u, with m ≤ k+ 1. In case of (a), we
define V0(p) ∩ R[u] as the empty set. If ∀ chooses possibility (b), then we define
V ′0(pi) ∩R[u] by:

V ′0(pi) ∩R[u] =

{
{vi} if i ≤ m,

∅ otherwise.

We observe that it immediately follows that for all i, j ∈ [k + 1],

i 6= j implies V ′0(pi) ∩ V ′0(pj) = ∅. (4.13)

This finishes the definition of V0.
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We know by assumption that T ′0 , r 
 ϕt, where T ′0 := (T,R, V, V ′0). Hence, ∃
has a winning strategy ht0 in the game E(T ′0 , ϕt)@(r, ϕt). The idea is to use the
strategy ht0 to play against ∀’s strategy in the game E ′(T , ϕ)@(r, ϕ) and to obtain
a contradiction. More precisely, we define an infinite e′-conform match π′ such
that for some ht0-conform match π, we have Inf (π) = Inf (π′). The construction
of π′ is based on the following claim.

2. Claim. If (u, δ) is a winning position for ∀ in E ′(T , ϕ) with respect to e′ and
(u, δt) is a winning position for ∃ in E(T ′0 , ϕt) with respect to ht0, then there exists
a partial e′-conform match ρ′ with initial position (u, δ) and final position (v, γ)
such that

(1) there is a ht0-conform match ρ leading from (u, δt) to (v, γt),

(2) both ρ and ρ′ are variable scarce.

Using inductively the claim, we can define an infinite e′-conform match π′ such
that for some ht0-conform match π, we have Inf (π) = Inf (π′). Since e′ is a winning
strategy for ∀, π′ is won by ∀. On the other hand, as ht0 is a winning strategy
for ∃, π is won by ∃. Putting that together with the fact that Inf (π) = Inf (π′),
we obtain that π′ is also won by ∃, which is a contradiction. Hence, to prove the
implication from right to left of (4.12), it is sufficient to prove the claim.

Proof of Claim We abbreviate by E ′ and by E t the games E ′(T , ϕ) and
E(T ′0 , ϕt) respectively. The proof is by induction on the complexity of δ. We con-
centrate on the most difficult case, where δ is a formula of the form α •∇′(~ϕ,Ψ).
Assume that ~ϕ is equal to (ϕ1, . . . , ϕk). Suppose also that (u, α • ∇′(~ϕ,Ψ)) is
a winning position for ∀ in E ′ with respect to e′ and that (u, (α • ∇′(~ϕ,Ψ))t) is
a winning position for ∃ in E t with respect to ht0. At position (u, α • ∇′(~ϕ,Ψ)),
depending on the strategy e′, there are several types of moves that ∀ can make.

• Suppose first that ∀ moves to the position (u, α). Since e′ is a winning
strategy for ∀ and (u, α •∇′(~ϕ,Ψ)) is a winning position for ∀ with respect
to e′, this means that α is false at u. Now in the game E t at position
(u, (α•∇′(~ϕ,Ψ))t), we can also let ∀ propose the position (u, α). Since ht0 is
a winning strategy for ∃ and (u, (α •∇′(~ϕ,Ψ))t) is a winning position for ∃
with respect to ht0, this implies that α is true at u. This is a contradiction.

• Suppose next that ∀ moves to the position (u,∇′(~ϕ,Ψ)) and chooses op-
tion (a) in the game E ′. That is, ∀ picks a natural number i ∈ [k]. Recall
that α • ∇′(~ϕ,Ψ))t is the formula

α ∧ ψ1 ∧ (ψ21 ∨ ψ22 ∨ ψ23).
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Hence, at position (u, (α •∇′(~ϕ,Ψ))t) in the game E t, we can let ∀ move to
the position (u, ψ1), where ψ1 is the formula∧

{3ϕti | 1 ≤ i ≤ k}.

So ∀ may play again and propose the pair (u,3ϕti) as the next position.
Now it is ∃’s turn. According to ht0, she chooses a successor v of u, moving
to the position (v, ϕti). Now, we define the E ′-match ρ′ such that after ∀
picked the natural number i ∈ [k], ∃ moves to the position (v, ϕi). It is
immediate that conditions (1) and (2) of Claim 2 are met.

• Suppose finally that ∀ moves to the position (u,∇′(~ϕ,Ψ)) and chooses op-
tion (b) in the game E ′. Hence, ∀ picks distinct successors v1, . . . , vm of u,
with m ≤ k + 1. At position (u, (α • ∇′(~ϕ,Ψ))t) in the game E t, we can
decide that ∀ moves to the position (u, ψ21 ∨ ψ22 ∨ ψ23). Now, depending
on ht0, we make the following case distinction.

– Suppose that the position following (u, ψ21 ∨ψ22 ∨ψ23) in E t (dictated
by ht0) is the pair (u, ψ21). Recall that ψ21 is the formula given by:∨

{3(pi ∧ pj) | i, j ∈ [k + 1], i 6= j}.

Since (u, ψ21) is a winning position for ∃ in E t, the formula ψ21 is true at
u. Hence, there exists a successor v of u such that v ∈ V ′0(pi)∩ V ′0(pj),
for some i 6= j. This contradicts implication (4.13).

– Next assume that at position (u, ψ21 ∨ ψ22 ∨ ψ23) in E t, according to
ht0, ∃ chooses the position (u, ψ22). The formula ψ22 is given by:∨

{3(pi ∧ ψt) | i ∈ [k], ψ ∈ Ψ}.

Hence, at position (u, ψ22), it is again ∃ who has to play. Using ht0, she
chooses a formula ψ in Ψ and a natural number i ∈ [k], moving to the
position (u,3(pi ∧ ψt)). Next, according to ht0, ∃ picks a successor v
of u, moving to the position (v, pi∧ψt). Since ht0 is a winning strategy
for ∃, pi is true at v. By definition of V ′0 , we have R[u]∩V ′0(pi) = {vi}.
This implies that v is equal to vi. So we are now at position (vi, pi∧ψt)
in the game E t. It is ∀ who has to play. We can let him move to the
position (vi, ψ

t).

We define the E ′-match ρ′ such that after ∀ picked the successors
v1, . . . , vm of u, ∃ chooses option (i) in the game E ′ and moves to
the position (vi, ψ). It is clear that conditions (1) and (2) of Claim 2
are verified.
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– Finally suppose that at position (u, ψ21 ∨ ψ22 ∨ ψ23) in E t, according
to ht0, ∃ moves to the position (u, ψ23). Recall that ψ23 is the formula
given by:∨
{ψg | g : [k + 1] −→ P([k]) such that for all i 6= j, g(i) ∩ g(j) = ∅}.

Hence, the strategy ht0 provides ∃ with a map g : [k + 1] −→ P([k])
such that for all i 6= j, g(i) ∩ g(j) = ∅. Moreover, the new position in
the game E t is (u, ψg), where ψg is the formula∧{

2

(
¬pi ∨

∨
{ϕtj | j ∈ g(i)}

)i ∈ [k + 1]
}
.

Take i ∈ [m]. We can let ∀ choose(
u,2

(
¬pi ∨

∨
{ϕtj | j ∈ g(i)}

))
and

(
vi,
(
¬pi ∨

∨
{ϕtj | j ∈ g(i)}

))
as the next two positions in the game E t. It is now ∃ who has to
play according to ht0: either (A) she moves to the position (vi,¬pi)
or (B) she picks a natural number number f(i) ∈ g(i), moving to the
position (vi, ϕ

t
f(i)). By definition of V ′0 , we know that vi belongs to

V ′0(pi). Hence, the position (vi,¬pi) is not a winning position for ∃.
This means that case (A) cannot happen, as ∃ played using her winning
strategy ht0. Hence, ∃ chooses a natural number number f(i) ∈ g(i),
moving to the position (vi, ϕ

t
f(i)).

We define the E ′-match ρ′ such that after ∀ picked the successors
v1, . . . , vm of u, ∃ chooses option (ii) in the game E ′ and provides the
map f : [m] −→ [k + 1] as defined in the previous paragraph. Next, in
the game E ′, it is ∀ who makes a move according to e′: he picks a pair
(vi, ϕf(i)), with i ∈ [m]. By definition of f , condition (1) of Claim 2 is
satisfied. An inspection of the proof easily shows that condition (2) of
Claim 2 is also verified.

This finishes the proof of Claim 2. J

As mentioned earlier, Claim 2 implies that the implication from right to left
of (4.12) holds. This finishes the proof of the proposition. 2

We can now derive the following decidability result.

4.4.3. Corollary. It is decidable whether a given MSO formula is locally µMLF-
definable on trees. It is decidable whether a given MSO formula is µMLF-definable
on trees.
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Proof In order to derive this result from Theorem 4.1.1, it is sufficient to show it
is decidable whether a given MSO formula is preserved under p-morphic images
on trees and under taking subtrees. It follows from Proposition 4.3.2 and the fact
that MSO is decidable on trees that it is decidable whether an MSO formula is
preserved under p-morphic images on trees.

It remains to show that it is decidable whether a given formula ϕ is preserved
under taking subtrees. Let ϕ be an MSO formula. The proof consists in defining
an MSO formula ψ such that ψ is valid on all trees iff ϕ is preserved under taking
subtrees. It will follow from the decidability of MSO on trees that it is decidable
whether ϕ is preserved under taking subtrees.

First we introduce the formula χ1(X) with one free second-order variable X
by:

χ1(X) = ∃x, ∀y ∈ X(y ∈ X ↔ xR∗y),

where R∗ is the reflexive transitive closure of R. Since the reflexive transitive
closure of a relation can be expressed by an MSO formula, we may assume that
χ1(X) is an MSO formula. The formula χ1(X) is such that for all trees T and all
subsets U of T ,

T � χ1(U) iff U is the domain of a subtree of T .

Next, we define the formula χ(X) with one free second-order variable X by:

¬χ1(X) ∨ (χ1(X) ∧ ϕX),

where ϕX is the relativization of ϕ to X. That is, we replace each subformula
of the form (∃x, δ) by (∃x ∈ X, δ) and each subformula of the form (∃Y, δ) by
(∃Y ⊆ X, δ). For all trees T and all subsets U of T , χ(U) holds in T iff U is
not the domain of a subtree or U is the domain of a subtree in which ϕ holds.
Finally, we define ψ as the formula ∀X(ϕ −→ χ(X)). It is easy to check that ψ
has the required property. 2

4.5 Negative and projective definability

In this section, we consider other notions of frame definability. The one that we
used until now is the standard one and consists in a universal quantification over
all valuations and over all nodes. Here, we show how our results can be adapted
to the cases where we existentially quantify over all the valuations.

4.5.1 Negative definability

The first alternative notion of definability that we consider, is the negative de-
finability. It has been introduced by Yde Venema in [Ven93] and investigated by
Marco Hollenberg [Hol98a]. A frame (W,R) is negatively defined by a formula
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ϕ if everywhere in (W,R), ϕ is false under some valuation. This notion enables
us to capture interesting classes that are not definable in the standard sense. A
typical example is the class of all irreflexive frames. In the special case of trees,
negative definability corresponds to the dual of the usual notion of definability
(as we will see from the result in this section).

Negative definability An MSO formula ϕ is negatively µMLF-definable on
trees if there are a set Prop ′ and a µ-sentence ψ over Prop ∪ Prop ′ such that for
all trees T = (T,R, V ) over Prop,

T � ϕ iff for all u ∈ T , there exists V ′ : Prop ′ −→ P(T ), (T,R, V, V ′), u 1 ψ.

An MSO formula ϕ is locally negatively µMLF-definable on trees if there are a
set Prop ′ and a µ-sentence ψ over Prop∪Prop ′ such that for all trees T = (T,R, V )
over Prop,

T � ϕ iff there exists V ′ : Prop ′ −→ P(T ), (T,R, V, V ′), r 1 ψ,

where r is the root of T . When this happens, we say that ϕ is locally negatively
µMLF-definable on trees by ψ.

For characterizing negative definability, we use the dual notion of preservation
under p-morphic images.

Reflection of p-morphic images An MSO formula ϕ is reflects p-morphic
images on trees if for all surjective p-morphisms f between two trees T and T ′
over Prop, then

T ′ � ϕ implies T � ϕ.

The next proposition is the dual of Proposition 4.4.2.

4.5.1. Proposition. A MSO formula is locally negatively µMLF-definable on
trees iff it reflects p-morphic images on trees.

Moreover, given an MSO formula ϕ, we can compute at µ-sentence ψ such
that ϕ is locally negatively µMLF-definable on trees iff ϕ is locally negatively
µMLF-definable on trees by ψ.

Using easy adaptations of proofs of Lemma 4.1.2 and Corollary 4.4.3, we
obtain the following characterization for negative definability.

4.5.2. Proposition. An MSO formula is negatively µMLF -definable on trees iff
it reflects p-morphic images on trees and is closed under taking subtrees. More-
over, it is decidable whether an MSO formula is negatively µMLF -definable on
trees.
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4.5.2 Projective definability

Another alternative notion of definability is projective definability. A frame
(W,R) is projectively defined by a formula ϕ if there is a valuation such that
ϕ is true everywhere under this valuation.

Projective definability is a relevant notion in the framework of knowledge
representation. The general idea is as follows. We collect all the knowledge
concerning a specific subject and in order to reason about this knowledge, we
encode it using some logical language, in a knowledge base. Using axioms and
rules of the logical language, we can deduce consequences from this knowledge
base. Something common is to add fresh new proposition letters to the logical
language, that is, proposition letters which did not occur in the observational
core of the knowledge base. For this reason, these proposition letters are called
theoretical. The intuitive idea behind a sentence which contains a theoretical
proposition letter, is that, under some interpretation of the theoretical proposition
letter, the sentence holds. This corresponds exactly to an existential second order
quantification over the theoretical proposition letters. This explains the name
“projective definability”.

Projective definability An MSO formula ϕ is projective µMLF-definable on
trees if there are a set Prop ′ and a µ-sentence ψ over Prop ∪ Prop ′ such that for
all trees T = (T,R, V ) over Prop,

T � ϕ iff there exists V ′ : Prop ′ −→ P(T ), for all u ∈ T , (T,R, V, V ′), u 
 ψ.

The argument to derive a characterization of projective µ-definability from
Proposition 4.5.1 above is a bit more tedious, than for the case of negative defin-
ability.

4.5.3. Proposition. An MSO formula ϕ is projective µMLF-definable on trees
iff it reflects p-morphic images on trees and is closed under taking subtrees. More-
over, it is decidable whether an MSO formula ϕ is projective µMLF-definable on
trees.

Proof It is easy to check that an MSO formula ϕ that is projective µMLF-
definable on trees, reflects p-morphic images on trees and is closed under taking
subtrees.

For the other direction, let ϕ be an MSO formula that reflects p-morphic
images on trees and is closed under taking subtrees. By Proposition 4.5.1, ϕ is
locally projective µMLF-definable on trees. That is, there exist a set Prop ′ and
a µ-sentence ψ over Prop ∪ Prop ′ such that for all trees T = (T,R, V ) over Prop
with root r,

T � ϕ iff there is V ′ : Prop ′ −→ P(T ) such that (T,R, V, V ′), r 
 ψ. (4.14)
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Now we may assume that ψ is in disjunctive normal form. A formula χ is said
to be ψ-reachable if there exists a tree T ′ over Prop ∪Prop ′ with root r such that
∃ has a winning strategy f in the evaluation game E(T ′, ψ) with starting position
(r, ψ), and there is a f -conform match during which a position of the form (u, χ)
is reached.

In order to define the formula ψ′ which will witness that ϕ is projective µMLF-
definable on trees, we make a case distinction:

(a) Suppose first that there are a tree T ′ over Prop ∪Prop ′ with root r, a node
u in T ′ and a winning strategy f for ∃ in the evaluation game E(T ′, ψ) with
initial position (r, ψ) such that u does not occur in any f -conform match.
Then we define ψ′ as >.

(b) Otherwise, we let ψ′ be the formula
∨
{e(χ) | χ is ψ-reachable}. Recall

that e(χ) is the expansion of χ (see Section 2.1 of Chapter 2) (roughly,
this means that e(χ) is the sentence obtained from χ by replacing each free
variable x of χ, by the unfolding of x in χ).

In order to show that ϕ is projective µMLF-definable on trees, it is sufficient
to prove that for all trees T = (T,R, V ) over Prop,

T � ϕ iff there is V ′ : Prop ′ −→ P(T ) such that (T,R, V, V ′) 
 ψ′. (4.15)

First, suppose that T = (T,R, V ) is a tree over Prop with root r such that
T � ϕ. Then there is a valuation V ′ : Prop ′ −→ P(T ) such that (T,R, V, V ′), r 

ψ. We show that (T,R, V, V ′) 
 ψ′. If ψ′ = >, this is trivial. So we may assume
that we are in case (b). Let T ′ be the tree (T,R, V, V ′) over Prop ∪Prop ′ and let
u be a node in T ′.

Since ψ is true at r in T ′, ∃ has a winning strategy f in the evaluation game
E(T ′, ψ) with starting position (r, ψ). As we are in case (b), there is a formula χ
such that a position of the form (u, χ) occurs in an f -conform match. It follows
that the formula e(χ) is true at u in T ′ (see Section 2.3 of Chapter 2). The
formula χ is also ψ-reachable. It follows from the definition of ψ′ that ψ′ is true
at u in T ′.

For the other direction of equivalence (4.15), suppose that there is a tree
T = (T,R, V ) over Prop and a valuation V ′ : Prop ′ −→ P(T ) such that for all
nodes u, ψ′ is true at u in (T,R, V, V ′). We have to show that T � ϕ. First we
suppose that we are in case (b).

Let r be the root of T and let T ′ be the tree (T,R, V, V ′) over Prop ∪ Prop ′.
Since the formula ψ′ is true at r in T ′, there is a formula e(χ) such that χ is
ψ-reachable and T ′, r 
 e(χ). This implies that ∃ has a winning strategy g in the
evaluation game E(T ′, ψ) with starting position (r, e(χ)).

Moreover, since χ is ψ-reachable, there is a tree S ′ = (TS, RS, VS, V
′
s ) over

Prop ∪ Prop ′ with root s such that ∃ has a winning strategy f in the evaluation
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game E(S ′, ψ) with starting position (s, ψ) and a position of the form (uS, χ)
occurs during an f -conform match. Without loss of generality, we may assume
that S ′ is ω-expanded and that f is scattered (see Section 2.6).

Now we define a new tree T ′0 over Prop ∪ Prop ′, which is obtained by “re-
placing” the subtree S ′uS of S ′ by the tree T ′. More formally, we let (T1, R1)
be the subframe of (TS, RS), the domain of which consists of all the nodes
of S ′, except the proper descendants of uS. We define the frame (T0, R0) in
the following way. The set T0 is equal to T1 ∪ T\{r}. The relation R0 is
R1 ∪ (R\{(r, u) | u ∈ T}) ∪ {(uS, u) | (r, u) ∈ R}.

We also define the valuations V0 : Prop −→ P(T0) and V ′0 : Prop ′ −→ P(T0)
such that {

V0(p) = V (p)\{r} ∪ (Vs(p) ∩ T1),

V ′0(p′) = V ′(p′)\{r} ∪ (V ′s (p
′) ∩ T1),

for all proposition letters p ∈ Prop and all p′ ∈ Prop ′. We prove that the formula
ψ is true at the root r0 of T ′0 . It is sufficient to construct a winning strategy for
∃ in the evaluation game E(T ′0 , ψ) with starting position (r0, ψ). This winning
strategy is defined in the following way.

As long as the match stays in T1, ∃ follows the strategy f . Recall that f
is scattered. So the only way for an f -conform match to get out of T1 is to
go through the position (uS, χ). If this position is reached, we let ∃ follow the
strategy g until the end of the game. It is easy to see that this defines a winning
strategy for ∃ in E(T ′0 , ϕ) with starting position (r0, ψ). Thus, ψ is true at r0 in
T ′0 .

Putting this together with the fact that ϕ is locally projective µMLF-definable
by ψ, we obtain that T0 
 ϕ, where T0 := (T0, R0, V0). Using now the facts that
T is a subtree of T0 and that ϕ is preserved under taking subtrees, we obtain
T 
 ϕ. This finishes the proof of the implication from right to left of (4.15) in
case (b).

It remains now to consider case (a). In order to prove the implication from
right to left of (4.15) in case (a), we have to show that for all trees T over Prop,
T � ϕ. Let T = (T,R, V ) be a tree over Prop. Since (a) holds, there is a tree
S ′ = (TS, RS, VS, V

′
S) over Prop∪Prop ′ with root s, a node uS in S ′ and a strategy

f in the game E(S ′, ψ) with initial position (s, ψ) such uS does not occur in any
f -conform match.

It is possible to define a tree T ′0 over Prop ∪ Prop ′ which is obtained by
replacing the subtree S ′uS of S ′ by the tree T ′. The construction is done as in
case (b). Similarly to case (b), we can also show that ψ is true at the root r0 of
T ′0 and prove that it implies that T � ϕ.

We turn now to the proof of the decidability result. By Proposition 4.5.1,
given an MSO formula ϕ, we can compute a formula ψ such that (4.14) holds.
Then we check whether ψ is equivalent to > or if there is a set Ψ of subformulas
of ψ such that ψ is equivalent to

∨
{e(ψ) | ψ ∈ Ψ}. The formula ϕ is projective
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µMLF-definable on trees iff one of these equivalence holds. 2

4.6 Conclusion

We gave a natural characterization of the MSO formulas that are µMLF-definable
on trees. Precisely, we showed that an MSO formula is µMLF-definable on trees
iff it is preserved under p-morphic images on trees and under taking subtrees.
Using this characterization, we proved that it is decidable whether a given MSO
formula is µMLF-definable on trees.

A natural further question is to investigate the µMLF-definability for classes
of arbitrary frames, not only classes of trees. Unlike on trees, the graded µ-
calculus does not have the same expressive power as MSO on arbitrary models:
it corresponds to the fragment of MSO invariant under counting bisimulations
(see [JL03] and [Wal02]). Moreover, the proof of Proposition 4.3.2 does not work
for classes of arbitrary frames, as it relies on the fact that given a disjunctive
formula that is true in an ω-expanded tree, there is a scattered strategy for ∃. As
a consequence, in order to characterize µMLF-definability for classes of frames,
we probably need to use different methods than the ones used here.

Another problem that we are investigating at the moment, is the characteri-
zation of classes of trees that are definable in modal logic. We define the notion
of MLF-definability, exactly as we defined µMLF-definability, but we require ϕ to
be a modal formula, instead of a µ-sentence. Our goal is to prove results similar
to Theorem 4.1.1 and Corollary 4.4.3, but for MLF-definability. A key notion for
obtaining the characterization of MLF-definability, is the notion of local testabil-
ity. The decidability of the problem whether an MSO formula is MLF-definable
on trees is showed by combining the characterization together with a decidability
result from [PS09].

The notions that we use in that result are closely related the the notion of
local testability.





Chapter 5

Syntactic characterizations of semantic
fragments of the µ-calculus

This chapter is inspired by the model-theoretic tradition in logic of linking se-
mantic properties of formulas to syntactic restrictions on their shape. Such corre-
spondences abound in the model theory of classical (propositional or first-order)
logic [CK73]. Well-known preservation results are the  Los-Tarski theorem stat-
ing that the models of a sentence ϕ are closed under taking submodels iff ϕ is
equivalent to an universal sentence, or Lyndon’s theorem stating that a sentence
ϕ is monotone with respect to the interpretation of a relation symbol R iff ϕ is
equivalent to a sentence in which all occurrences of R are positive. In the last
example, the semantic property is monotonicity, and the syntactic restriction is
positivity.

Our aim here is to establish such correspondences in the setting of the µ-
calculus. Some results are known: in particular, preservation results, similar
to the  Los-Tarski and Lyndon theorems, have been shown for the µ-calculus by
Giovanna D’Agostino and Marco Hollenberg [DH00]. However, in the intended
semantics of the µ-calculus, where models represent computational processes, and
accessibility relations, bisimulations, and trees play an important role, there are
some specific properties of interest that have not been studied in classical model
theory.

As an example we mention the property of complete additivity with respect
to a proposition letter p. Given a proposition letter p, a formula ϕ is completely
additive in p iff it is monotone in p and in order to establish the truth of ϕ, we
need exactly one point at which p is true. Equivalently, this corresponds to the
fact that the map associated with ϕ (as defined in Section 2.2) distributes over
countable unions.

One of the main reasons for studying complete additivity is given by its im-
portant role in the characterization of the fragment of first- and monadic second-
order logic of formulas that are safe for bisimulations (see Section 2.6). Syntactic
characterizations of this property were obtained for modal logic by Johan van
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Benthem [Ben96], and for the µ-calculus by Marco Hollenberg [Hol98b]. As an
alternative to Marco Hollenberg’s result, we shall give a different (but clearly,
equivalent) syntactic fragment characterizing complete additivity.

Our work continues this line of investigation by studying, next to complete
additivity, a number of additional properties that are related to the notion of
continuity. In [Ben06], Johan van Benthem already identified the continuous
fragment (under the name ω-µ-calculus) as an important fragment for several
purposes in modal logic. Intuitively, given a proposition letter p, a formula ϕ is
said to be continuous in p if it is monotone in p and if in order to establish the
truth of ϕ at a point, we only need finitely many points at which p is true.

We believe that this continuous fragment is of interest for a number of rea-
sons. A first motivation concerns the relation between continuity and another
property, constructivity. The constructive formulas are the formulas whose fix-
point is reached in at most ω steps. Locally, this means that a state satisfies a least
fixpoint formula if it satisfies one of its finite approximations. It is folklore that
if a formula is continuous, then it is constructive. While, the other implication
does not strictly hold, interesting questions concerning the link between construc-
tivity and continuity remain. In any case, given our Theorem 5.4.4, continuity
can be considered as the most natural candidate to approximate constructivity
syntactically.

Another reason for looking at the continuous fragment (which also explains
the name) is its link with Scott continuity. A formula is continuous in p iff
for all models, the map ϕp (as defined in Chapter 2) is continuous in the Scott
topology on the powerset algebra. Scott continuity is of key importance in many
areas of theoretical computer sciences where ordered structures play a role, such
as domain theory (see, e.g., [AJ94]). For many purposes, it is sufficient to check
that a construction is Scott continuous in order to show that it is computationally
feasible.

Continuity can be seen as the independent combination of a “vertical” and a
“horizontal” component. A subset of a tree is finite iff it does not contain any
infinite path (which has a natural vertical representation in the usual picture of a
tree) and is finitely branching (which would be represented in an horizontal way
in the usual picture of a tree). As continuity is a restriction to finite sets, it is
the combination of the two following properties: a first one that corresponds to
a restriction to sets with no infinite path (the finite path property) and a second
one that corresponds to a restriction to finitely branching sets (the finite width
property). We give syntactic characterizations for these finite path and finite
width properties and by combining these two results, we immediately obtain
a syntactic characterization for the continuity property. Let us mention that
in [Ben96], Johan van Benthem gave a version of this characterization in the
setting of first-order logic.

Our proofs, though different in each case, follow a fairly uniform method,
which goes back to the proofs of David Janin and Igor Walukiewicz [JW96] and
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Giovanna D’Agostino and Marco Hollenberg [DH00]. For each semantic fragment
F , we will exhibit an effective translation which given a µ-sentence ϕ, computes
a formula τF (ϕ) in the desired syntactic fragment such that

a µ-sentence ϕ has the F -property iff ϕ is equivalent to τF (ϕ).

While the proofs of [JW96] and [DH00] rely on the tight link between µ-formulas
and µ-automata, the definitions of our translations are based on the syntax only.

The chapter is organized as follows. In the first section, we introduce the main
concepts and fix the notation. The second and third section are about the finite
path and the finite width properties. The next section is about the continuity
property, which is obtained as a combination of the two fragments previously
studied. We finish by a characterization of the complete additive formulas.

5.1 Preliminaries

We start by recalling and introducing some definitions and terminology, that will
play an important role in this chapter. We also recall the link between positivity
and monotonicity (established in [DH00]) and give an alternative proof for this
result, which follows the same scheme as most of the proofs further on. This link
is essential to prove the main results of the chapter.

5.1.1 Structures and games

Terminology for models Let M = (W,R, V ) be a Kripke model. If U ⊆ W ,
we write M[p 7→ U ] for the model (W,R, V [p 7→ U ]), where V [p 7→ U ] is the
valuation V ′ such that V ′(p) = U and V ′(p′) = V (p) for all proposition letters
p′ 6= p. The model M[p 7→ V (p) ∩ U ] will be denoted as M[p�U ].

A set U ⊆ W is downward closed if for all u ∈ U , the predecessors of u belongs
to U . A path through M is a sequence (wi)i<κ such that (wi, wi+1) ∈ R for all i
with i+ 1 < κ; here κ ≤ ω is the length of the path. We let v denote the prefix
(initial segment) relation between paths, and use < for the strict (irreflexive)
version of v. Given a path (wi)i<κ, we may occasionally also refer to the set
{wi | i < κ} as a path.

Tree, branch and ω-expansion In this chapter, we are only interested in
models and never consider frames. Hence, there is no confusion to write “tree”
instead of “tree model”.

A tree is ω-expanded if every node (apart from the root) has at least ω many
bisimilar siblings. Given a pointed model (M, w) (with M = (W,R,W ) and
w ∈ W ), its ω-expansion is the model Mω

w := (W ω, Rω, V ω), where W ω, Rω and
V ω are defined as follows. W ω is the set of all finite sequences w0k1w1 . . . knwn
(n ≥ 0) such that w0 = w, ki ∈ ω, wi ∈ W and wi−1Rwi for all i > 0. Rω is the
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relation {(w0k1w1 . . . knwn, w0k1w1 . . . knwnkv) | k ∈ ω and wnRv}. Finally, for
all proposition letters p, V ω(p) is the set {w0k1w1 . . . knwn | wn ∈ V (p)}.

If w is clear from the context, we may simply write Mω for the ω-expansion
of (M, w). As a particular case, if T is a tree with root r, we write T ω to denote
the ω-expansion of (T , r).

5.1.1. Fact. Given a pointed model (M, w), the structureMω
w is an ω-expanded

tree with root w. Moreover, the pointed models(Mω
w, w) and (M, w) are bisimilar

via the canonical bisimulation linking any point w0k1s1 . . . knwn to wn.

Recall that if there is a bisimulation B between two models M and M′ such
that (w,w′) belongs to B, we write M, w ↔M′, w′.

Terminology for games Let ϕ0 be a µ-sentence, M a Kripke model, w
and v points in M and ϕ a subformula of ϕ0. We recall that E(M, ϕ0) de-
notes the evaluation game for the formula ϕ0 in the model M. We denote by
Win∃(E(M, ϕ0)) the set of winning positions for ∃ in this game. We also use the
notation E(M, ϕ0)@(v, ϕ) for the evaluation game E(M, ϕ0) initiated at position
(v, ϕ). In order to avoid confusion, we use letters of the form E , E ′, . . . as abbre-
viations for evaluation games, while we reserve letters of the form E0, E ′0, . . . for
evaluation games with an initial position.

Let E stands for either the game E(M, ϕ0) or the game E(M, ϕ0)@(v, ϕ).
Given a strategy f for a player P in E , we say that a position (u, ψ) is f -reachable
(in E) if there is an f -conform match of E during which (u, ψ) occurs. Finally,
recall that a strategy f for player σ is a maximal winning strategy in E(M, ϕ0) if
all winning positions z of σ are winning with respect to f in E(M, ϕ0).

5.1.2 Guarded and disjunctive formulas

As we are interested in syntactic characterizations, the precise shape of formulas
will matter to us. Our proofs become easier if we assume certain restrictions on
the use of certain connectives, without modifying the expressive power. We recall
two results (already stated with more details in Chapter 2), which allow us to
make such restrictions. Recall also that throughout this thesis we assume that
the formulas are well-named.

5.1.2. Proposition ([Koz83]). Each formula in µML can be effectively trans-
formed into an equivalent guarded formula in µML.

Each formula in µML∇ can be effectively transformed into an equivalent guarded
formula in µML∇.

On a number of occasions it will be convenient to assume the formulas to be
disjunctive.
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5.1.3. Theorem. Each µ-formula can be effectively transformed into an equiv-
alent disjunctive guarded formula.

We also recall the notion of a scattered strategy and its connection with dis-
junctive formulas (for more details, see Chapter 2).

Scattered strategy Given a state w ∈ M, a strategy f for a player σ in the
game E(M, ϕ0) with initial position (w,ϕ0), is scattered [KV05] if for all states
v in M, for all f -conform matches π = (zi)i<κ and π′ = (z′i)i<κ′ and for all
µ-formulas ϕ and ϕ′,

zκ−1 = (v, ψ) and zκ′−1 = (v, ψ′) implies π v π′ or π′ v π.

5.1.4. Proposition. If a sentence ϕ0 ∈ µML∇ is disjunctive and T is an ω-
expanded tree with root r, then M, r 
 ϕ0 iff there is a scattered winning strategy
f for ∃ in E(M, ϕ0)@(r, ϕ0).

5.1.3 Expansion of a formula

We recall the notion of expansion of a formula, its link with the game semantics
and introduce the notion of being active.

Expansion of a formula Given a well-named sentence ϕ0, for each variable x
occurring in ϕ0, there is a unique formula of the form ηxx.δx which is a subformula
of ϕ0 (where ηx ∈ {µ, ν}). Moreover, we define the dependency order <ϕ0 on the
variables of ϕ0 as the least strict partial order such that x <ϕ0 y if δx is a
subformula of δy.

If {x1, . . . , xn} is the set of variables occurring in ϕ0, where we may assume
that i < j if xi <ϕ0 xj, we define the expansion eϕ0(ϕ) of a subformula ϕ of ϕ0

as:

e(ϕ) := ϕ[x1/ηx1 .δx1 ] . . . [xn/ηxn .δxn ].

That is, we substitute first x1 by δx1 in ϕ; in the obtained formula, we substitute
x2 by δx2 , etc. If no confusion is likely we write e(ϕ) instead of eϕ0(ϕ).

Being active Let ϕ0 be a µ-sentence. A proposition letter p is active in a
subformula ϕ of ϕ0 if p occurs in eϕ0(ϕ).

5.1.5. Proposition. Let ϕ0 be a µ-sentence, and let (M, w) be some pointed
Kripke model. For all subformulas ϕ of ϕ0, all w ∈ W , we have

M, w 
 eϕ0(ϕ) iff (w,ϕ) ∈Win∃(E(M, ϕ0)).
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As mentioned in the introduction, in this paper we shall focus on the role of
one specific proposition letter. It will be convenient from now on to fix this letter,
and reserve the name ‘p’ for it. Formulas in which this proposition letter does
not occur, will be called p-free.

We will often make use of the substitution [⊥/p], and abbreviate ϕ[⊥/p] as
ϕ⊥; similarly, we will write e⊥(ϕ) for (e(ϕ))[⊥/p]. For explicit referencing we give
the following, easily proved result.

5.1.6. Fact. Let ϕ be a µ-formula. For all models M = (W,R, V ), for all w in
M and for all τ : Var −→ P(W ),

M, w 
τ ϕ[⊥/p] iff M[p 7→ ∅], w 
τ ϕ.

5.1.4 Monotonicity and positivity

Since all the semantic properties that we study in this paper involve monotonicity,
we need to recall some results on the associated preservation result.

Monotonicity A formula ϕ0 ∈ µML ∪ µML∇ is monotone in p ∈ Prop if for
all models M = (W,R, V ), all w ∈ W , all assignments τ : Var −→ P(W ) and all
sets U ⊇ V (p),

M, w 
 ϕ0 implies M[p 7→ U ], w 
 ϕ0.

Positivity The set of formulas µML+(p) in µML, positive in p ∈ Prop is defined
by induction in the following way:

ϕ ::= p | x | p′ | ¬p′ | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2ϕ | µx.ϕ | νx.ϕ,

where p′ is a proposition letter distinct from p and x is a variable.
The set of formulas µML∇+(p) in µML∇, positive in p ∈ Prop is defined by

ϕ ::= > | x | ϕ ∨ ϕ | ϕ ∧ ϕ | α • ∇Φ | µx.ϕ | νx.ϕ,

where x is a variable, Φ is a finite subset of µML∇ and α is a conjunction of
literals, in which ¬p does not occur.

As we already mentioned, Giovanna D’Agostino and Marco Hollenberg [DH00]
proved a Lyndon theorem for the modal µ-calculus, stating that µML+(p) char-
acterizes monotonicity (in p). We give a simpler proof here, based on the same
methods as used further on in this chapter.

Given a disjunctive sentence ϕ, let τ dm(ϕ) denote the formula we obtain by
replacing each occurrence of ¬p in ϕ by >. Clearly the resulting formula is
positive in p. The key observation is the following result.
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5.1.7. Proposition. Let ϕ ∈ µML∇ be a disjunctive formula. Then

ϕ is monotone in p iff ϕ ≡ τ dm(ϕ). (5.1)

Proof We only give a sketch of the proof, as this result was already proved
in [DH00]. Since the direction ‘⇐’ of (5.1) is routine, we focus on the opposite
direction. Consider an arbitrary model T = (T,R, V ) and a point r ∈ T . We
have to show

T , r 
 ϕ iff T , r 
 τ dm(ϕ).

By Fact 5.1.1, we may assume that T is an ω-expanded tree with root r. The
direction from left to right is easy to prove.

For the direction from right to left, assume that T , r 
 τ dm(ϕ). By Fact 5.1.4,
∃ has a scattered winning strategy f in the game E0 := E(T , τ dm(ϕ))@(r, τ dm(ϕ)).
Since ϕ is guarded, this means that for each state t ∈ T there is at most one
formula of the form αt • ∇Φt such that the position (t, αt • ∇Φt) is f -reachable
from (r, τ dm(ϕ)). Let U be the set of all states t for which such a position, with ¬p
occurring in αt, is f -reachable. Using the scatteredness of f , one may show that f
is (or may in the most obvious way be transformed into) a winning strategy for ∃
in the evaluation game E ′0 := E(S[p 7→ V (p)\U ], ϕ)@(s, ϕ). (The key observation
here is that if the E ′0-match reaches a position of the form (t, αt •∇Φt), there are
two cases: Either ¬p occurs in α, implying that t ∈ U and T [p 7→ V (p)\U ], t 
 ¬p,
or ¬p does not occur in α, meaning that the situation is as in E0.) Then it follows
from Fact 5.1.5 that T [p 7→ V (p)\U ], s 
 ϕ, and hence by monotonicity of ϕ we
may conclude that T , r 
 ϕ. 2

As an almost immediate corollary of Proposition 5.1.7 we obtain that an
arbitrary sentence is monotone in p iff it is equivalent to a formula that is positive
in p.

5.1.8. Theorem ([DH00]). The sentences in µML+(p) and in µML∇+(p) are
monotone in p. Moreover, there is an effective translation which, given a µ-
sentence ϕ, computes a formula τm(ϕ) ∈ µML+ and a formula τ∇m (ϕ) ∈ µML∇+
such that

ϕ is monotone in p iff ϕ ≡ τm(ϕ),

iff ϕ ≡ τ∇m (ϕ).

As a corollary, it is decidable whether a formula ϕ ∈ µML is monotone in p.

Proof It is easy to check by induction on the complexity of the formulas that
the sentences in µML+(p) and in µML∇+(p) are monotone in p.

Next, let ϕ be a µ-sentence. By Theorem 5.1.3, we can compute a disjunctive
formula ψ that is equivalent to ϕ. We can then compute τ dm(ψ) and it follows
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from Proposition 5.1.7 that ψ is monotone in p iff τ dm(ψ) belongs to µML∇+. Since
ϕ and ψ are equivalent, ϕ is monotone in p iff ψ is monotone in p. Hence, ϕ is
monotone in p iff τ dm(ψ) belongs to µML∇+. We can define τ∇m (ϕ) as τ dm(ψ).

Now using the fact that

∇Φ ≡
∨

({3χ | χ ∈ Φ}) ∧2
∨

Φ,

we can transform τ∇m (ϕ) into an equivalent formula τm(ϕ) in µML+. 2

5.2 Finite path property

The first property that we consider is that of the finite path property.

Finite path property A sentence ϕ0 has the finite path property for p ∈ Prop
if ϕ0 is monotone in p and for every tree T with root r,

T , r 
 ϕ0 iff T [p�U ], r 
 ϕ0, for some U ⊆ S which is downward closed

and does not contain any infinite path.
(5.2)

Note that monotonicity needs to be specified explicitly, since it does not follow
from the equivalence (5.2): a simple counterexample is given by the formula
¬p ∧ 3p. Observe as well that we only require condition (5.2) to hold for trees,
since this condition would not make much sense on any model with circular paths.

The syntactic fragment of µML that corresponds to this property is given as
follows.

The fragment µMLD(p) We define the fragment µMLD(p) by induction in the
following way:

ϕ ::= p | x | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2ϕ | µx.ϕ,

where x is a variable and ψ is a sentence which does not contain p.

The following theorem states that modulo equivalence, µMLD(p) exactly cap-
tures the fragment of the modal µ-calculus that has the finite path property. In
addition, the problem, whether a sentence has this property, is decidable.

5.2.1. Theorem. The µ-sentences in µMLD(p) have the finite path property for
p. Moreover, there is an effective translation which given a µ-sentence ϕ, com-
putes a formula ϕd ∈ µMLD(p) such that

ϕ has the finite path property for p iff ϕ ≡ ϕd. (5.3)

As a corollary, it is decidable whether a given sentence ϕ has the finite path
property for p.
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Before we turn to the proof of this theorem, we state and prove two auxiliary
results. First we show that formulas in µMLD(p) indeed have the finite path
property.

5.2.2. Proposition. All sentences in µMLD(p) have the finite path property
with respect to p.

Proof Fix a sentence ϕ0 in µMLD(p) and a tree T = (T,R, V ) and with root r.
We have to show

T , r 
 ϕ0 iff T [p�U ], r 
 ϕ0, for some U ⊆ T which is downward closed

and does not contain any infinite path.

The direction from right to left follows from Theorem 5.1.8 and the fact that
ϕ0 is positive in p. For the opposite direction, suppose that T , r 
 ϕ0. We need
to find a subset U ⊆ T which is downward closed, does not contain any infinite
path and such that T [p�U ], r 
 ϕ0. Since T , r 
 ϕ0, ∃ has a positional winning
strategy f in the game E0 := E(T , ϕ0)@(r, ϕ0). We define U ⊆ T such that

u ∈ U iff there is ϕ such that (u, ϕ) is f -reachable in E0 and p is active in ϕ.

It is not difficult to see that U is downward closed: If a position (u, ϕ) occurs
in an E0-match π and p is not active in ϕ, then all the positions occurring after
(u, ϕ) are of the form (v, ψ), where p is not active in ψ.

Hence it suffices to show that U does not contain any infinite path. Suppose
for contradiction that U contains an infinite path P . We let A be the set of all
finite f -conform E0-matches π such that for all positions (u, ϕ) occurring in π,
u belongs to P and p is active in ϕ. Recall that v denotes the initial-segment
relation on paths and on matches.

Clearly, the structure (A,v) is a tree. Moreover, it is finitely branching, as
P is a single path, and all the formulas occurring in matches in A belongs to the
finite set Sfor(ϕ0). Next we show that the set A is infinite. It suffices to define
an injective map h from P to A. Fix t in P . In particular, t belongs to U and by
definition of U , there is a formula ϕ such that (t, ϕ) is f -reachable in E0 and p is
active in ψ. We let h(t) be a finite f -conform E0-match with last position (t, ϕ).
It is easy to check that any such map h is an injection from P to A.

By König’s lemma, since (A,v) is infinite and finitely branching, it must
contain an infinite path. This infinite path corresponds to an infinite f -conform
E0-match π such that for all positions (t, ϕ) occurring in π, t belongs to P and p
is active in ϕ. Since ϕ0 belongs to the fragment µMLD(p), this can only happen
if all the variables unfolded in π are µ-variables. This implies that π is lost by ∃
and this contradicts the fact that f is a winning strategy for ∃ in E0.

It remains to show that T [p�U ], r 
 ϕ0. Let E ′0 be the game E(T [p�U ], ϕ0)@(r, ϕ0).
We show that f itself is a winning strategy for ∃ in the game E ′0. The winning
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conditions for E0 and E ′0 are the same. Moreover, the rules of the two games are
the same, except when we reach a position of the form (t, p). So to prove that f is
a winning strategy for ∃ in E ′0, it suffices to show that if an f -conform E ′0-match π
arrives at a position (t, p), then T [p�U ], t 
 p, that is, t ∈ V (p)∩U . Suppose that
we are in this situation. Since π is also an f -conform E0-match and since f is a
winning strategy for ∃ in E0, t belongs to V (p). It remains to show that t belongs
to U . That is, we have to find a formula ϕ such that (t, ϕ) is f -reachable in E0

and p is active in ϕ. Clearly, the formula p itself satisfies these two conditions.
This proves that f is a winning strategy for ∃ in the game E ′0 and hence shows
that T [p�U ], r 
 ϕ0. 2

The hard part in the proof of Theorem 5.2.1 is to show that any sentence
ϕ0 with the finite path property can be rewritten into an equivalent sentence
τd(ϕ0) ∈ µMLD. First we define the translation τd.

The translation τd Fix a positive sentence ϕ0. We define the map τd : Sfor(ϕ0)
−→ µML by induction on the complexity of subformulas of ϕ0:

τd(l) = l,

τd(ϕ ∨ ψ) = τd(ϕ) ∨ τd(ψ),

τd(ϕ ∧ ψ) = τd(ϕ) ∧ τd(ψ),

τd(2ϕ) = 2τd(ϕ),

τd(3ϕ) = 3τd(ϕ),

τd(µx.ϕ) = µx.τd(ϕ),

τd(νx.ϕ) = µx.
(
τd(ϕ) ∨ e⊥(ϕ)

)
,

where l is a literal, a variable, or one of the constants ⊥ or >.

The translation τd maps a positive sentence to a sentence in µMLD(p). So
given a positive sentence ϕ0, we have to modify the subformulas of the form νx.ϕ,
in which p occurs. The idea is as follows. If we play the evaluation game for ϕ0

and if we assume ϕ0 to be guarded and with the finite depth property for p, then
after finitely many steps, we are sure that in the game we will never encounter
points at which p is true. So after finitely many steps, we can simply replace νx.ϕ
by e⊥(νx.ϕ), or equivalently, by e⊥(ϕ). This is captured by the last clause of the
definition of τd.

The following proposition is the key technical lemma of this section.

5.2.3. Proposition. A positive guarded sentence ϕ0 has the finite path property
with respect to proposition letter p iff ϕ0 is equivalent to τd(ϕ0).

Proof Fix a positive guarded sentence ϕ0. The direction from right to left of this
Proposition is an immediate consequence of Proposition 5.2.2 and the observation
that τd(ϕ0) belongs to the fragment µMLD(p).
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For the opposite direction, assume that ϕ0 has the finite path property with
respect to p. In order to prove that ϕ0 is equivalent to τd(ϕ0), consider an arbitrary
pointed model (T , r).

We have to show that

T , r 
 ϕ0 iff T , r 
 τd(ϕ0). (5.4)

By Fact 5.1.1, we may assume that T is a tree with root r.
For the direction ‘⇒’ of (5.4), assume that T , r 
 ϕ0. There is some subset

U ⊆ S which is downward closed (implying that r ∈ U), has no infinite paths,
and satisfies T [p�U ], r 
 ϕ0.

Therefore, (r, ϕ0) is a winning position for ∃ in the evaluation game E ′0 :=
E(T [p�U ], ϕ0)@(r, ϕ0). Let f denote some positional winning strategy of ∃ in
the game E ′0; also fix some maximal positional winning strategy g for ∃ in the
evaluation game Ed := E(T , τd(ϕ0)). In order to prove that T , r 
 τd(ϕ0), it
suffices to provide ∃ with a winning strategy in the game Ed initialized at (r, ϕ0).

The key idea underlying the definition of this winning strategy h, is that ∃
maintains, during an initial part of the Ed-match π, an f -conform shadow match
π′ of E ′0. The relation between π and π′ will be that at all times,

with last(π) = (t, ψ) and last(π′) = (t′, ψ′), we have

t = t′ and ψ ∈ {τd(ψ′), τd(ψ′) ∨ e⊥(ψ′)}. (†)

1. Claim. ∃ has a strategy h0 that enables her to maintain the condition (†) for
as long as she pleases (unless she wins the match at some finite stage).

Proof of Claim It is obvious that (†) holds at the beginning of the two matches,
with π and π′ consisting of the single positions (r, τd(ϕ0)) and (r, ϕ0), respectively.
Inductively, suppose that during the play of an Ed-match, ∃ has managed to
maintain an f -conform E ′0-match, and that play has arrived at the respective
partial matches π and π′, satisfying the condition (†). Let t, t′, ψ and ψ′ be as in
(†). In order to show that ∃ can push the condition forward, we distinguish cases.

First of all, in case ψ is of the form τd(ψ
′) ∨ e⊥(ψ′) then in the Ed-match, ∃

chooses the disjunct τd(ψ
′), making (t, τd(ψ

′)) the next position. Clearly then the
two partial matches, π(t, τd(ψ

′)) and π′, still satisfy (†).
If, on the other hand, ψ is of the form τd(ψ

′), then we make a further case
distinction as to the nature of ψ′. If ψ′ = p or ψ′ ∈ {q,¬q} for some proposition
letter q different from p, then both π and π′ are full matches. Now π′, being
f -conform, is won by ∃. This means that T [p�U ], t 
 ψ′, and so in all three
different cases we also have T , t 
 ψ′, which implies that ∃ is also the winner of
π. The cases where ψ′ is a conjunction, disjunction, or of the form 3χ or 2χ, are
routine, and so are the cases where ψ′ is a variable x or a fixpoint formula µx.χ.

This leaves the case where ψ′ is of the form νx.χ, meaning that (u, χ) is
the next position in the E ′0-match. The corresponding last position of π is
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(t, µx.τd(χ)∨e⊥(χ)), and from there an automatic move leads to position (t, τd(χ)∨
e⊥(χ)) which is of the required shape for (†).

Thus in each case either ∃ manages to win the match, or else condition (†) is
maintained one more step. This suffices to prove the claim. J

However, ∃’s strategy in an Ed-match will not be to maintain the condition (†)
indefinitely. Rather, her strategy h will be as follows: She plays strategy h0, until
the Ed-match arrives at a position of the form (t, τd(ψ

′) ∨ e⊥(ψ′)) such that the
second disjunct, e⊥(ψ′), is true at t in T . Should she arrive at such a position, she
picks this second disjunct, moving to position (t, e⊥(ψ′)). By Proposition 5.1.5,
and since p is not active in e⊥(ψ′), this position is winning for her in Ed, and so
from this moment on she plays her (positional) winning strategy g of Ed.

In order to prove that this is a winning strategy for her, suppose for contra-
diction that π is an h-conform match which is lost by ∃. This means that ∃ never
swaps to her winning strategy g but keeps playing her strategy h0, during the
entire match π. As a consequence, the shadow match π′ is infinite as well, and
it easily follows from (†) that the sequence of unfolded fixpoint variables is the
same in π as in π′. But π′, being conform to her winning strategy f in E ′0, is won
by ∃. In other words, the highest variable unfolded infinitely often in π′, say x,
is a ν-variable (with respect to ϕ0).

Observe that since τd(ϕ0) is guarded and U does not contain any infinite
paths, at a certain moment the infinite match π will leave U . Since x is unfolded
infinitely often, both in π′ and in π, there is a first unfolding of x in π after the
match has left U . Suppose that this unfolding happens at position (t, x), and
note that the corresponding position in π′ is also (t, x). In π′ the next position
after (t, x) is (t, δx), and since π′ is f -conform, this is a winning position for ∃
in E ′0. It follows from Proposition 5.1.5 that T [p�U ], t 
 e(δx). However, since u
does not belong to U , and U is downward closed, we may infer by Fact 5.1.6 that
T , t 
 e⊥(δx). This would mean that in π, where the next position after (t, x)
is (t, τd(δx) ∨ e⊥(δx)), ∃ would be in the position to pick the second disjunct and
jump to the winning strategy g after all. Thus we have arrived at the desired
contradiction, which means that h is a winning strategy for ∃.

For the opposite direction ‘⇐’ of (5.4), assume that T , r 
 τd(ϕ0), and let fd

be a positional winning strategy for ∃ in the game Ed0 = E(T , τd(ϕ0))@(r, τd(ϕ0).
In order to prove that T , r 
 ϕ0, we provide her with a winning strategy in the
game E := E(T , ϕ0) initiated ar (r, ϕ0).

As before, our proof is based on ∃ maintaining, during an initial part of the
E-match π, an fd-conform shadow match πd of Ed0 . Inductively, we will make sure
that ∃ can keep the following constraint on the two matches:

with last(π) = (t, ψ), we have last(πd) = (t, ψd)

with ψd ∈ {τd(ψ), τd(ψ) ∨ e⊥(ψ)}. (‡)
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Analogous to Claim 1 above, it is straightforward to prove that ∃ can maintain
this condition until she either wins the E-match, or else the two matches arrive
at positions (t, ψ) and (t, τd(ψ)∨ e⊥(ψ)), respectively, where in the shadow game
∃’s strategy fd tells her to pick the second disjunct, e⊥(ψ).

Once this happens, ∃ has a guaranteed win in E : Since she plays πd based on
her winning strategy fd, the pair (t, e⊥(ψ)) is a winning position for her in Ed0 ,
and so T , t 
 e⊥(ψ) by Proposition 5.1.5 (note that e⊥(ψ) is a sentence). Since
ϕ0 is positive in p, ψ is also positive in p. So e⊥(ψ) implies e(ψ). It follows that
T , t 
 e(ψ), and so by Proposition 5.1.5 again, we obtain that (t, ψ) ∈Win∃(E).
Hence she has no further need of the shadow match, and can continue π by
following any winning strategy of E .

Should, on the other hand, ∃ never leave the shadow match by moving to a
position of the form (t, e⊥(ψ)), then she maintains the shadow match forever. In
this case, it follows directly from (‡) that the resulting infinite matches π and πd

have the same sequence of unfolded fixpoint variables. Now observe that πd, being
fd-conform, is won by ∃; in other words, the highest variable unfolded infinitely
often during πd, is a ν-variable with respect to τd(ϕ0). But then this variable is
also a ν-variable with respect to ϕ0, and from this it is immediate that ∃ is also
the winner of π. 2

We finish the section with the proof of its main theorem.

Proof of Theorem 5.2.1. We already know by Proposition 5.2.2 that the sen-
tences in µMLD(p) have the finite path property for p.

Next, for an arbitrary µ-sentence ϕ, we define ϕd := τd(τm(ϕ)), where τm is
the translation of Theorem 5.1.8. Then the equivalence (5.3) is immediate by
Theorem 5.1.8 and Proposition 5.2.3.

The decidability of the finite path property follows by the observation that
the construction of the formula ϕd from ϕ is effective, and that it is decidable
whether ϕ and ϕd are equivalent. 2

5.2.4. Remark. Since our main interest in this chapter is model-theoretic, we
have not undertaken an in-depth study of the size of the formula ϕd (in Theo-
rem 5.2.1) or of the exact complexity of the problem of deciding whether a given
µ-sentence has the finite path property. However, we would like to make few
remarks in that respect.

While at first sight, the clause for the greatest fixpoint operator in the defi-
nition of τd may seem to create exponentially long formulas, given our definition
of size as the number of elements in the closure of a formula, one may show that
the size of τd(ϕ0) is in fact linear in the size of ϕ0. This is a consequence of the
two following equalities which can be proved by induction on the complexity of
the formulas:

Cl(e⊥ϕ0
(ϕ)) ⊆ {e⊥ϕ0

(ψ) | ψ � ϕ},
Cl(τd(ϕ)) ⊆ {eτd(ϕ)(τd(ψ)) | ψ � ϕ} ∪ Cl(ϕ⊥0 ),



128 Chapter 5. Characterizations of fragments of the µ-calculus

where ϕ0 is a µ-sentence and ϕ is a subformula of ϕ0.
However, in order to obtain an upper bound for the size of ϕd, it follows from

the proof of Theorem 5.2.1 that we also need to investigate the complexity of the
translation τm of Theorem 5.1.8. To perform the translation τm, we first have to
transform a µ-sentence into an equivalent disjunctive sentence. To our knowledge,
the exact complexity of this transformation and the size of the obtained formula
has not been studied yet in detail. Nevertheless, the complexity and the size are
known to be elementary (see for instance [Jan96]). It follows that the size of ϕd

is elementary in the size of ϕ and that it is decidable in elementary time whether
a given µ-sentence has the finite path property.

Another interesting remark is that the transformations τm and τd, which are
the key ingredients for proving Theorem 5.2.1, could also have been defined at
the level of automata. More precisely, given a sentence ϕ and a non-deterministic
automaton A = (Q, qI , δ,Ω) equivalent to ϕ, we can define the automata τm(A)
and τd(A) such that

ϕ is monotone in p iff ϕ ≡ τm(A),
ϕ has the finite path property for p iff ϕ ≡ τm(τd(A)).

Moreover, if we employ the “usual” procedure to transform τm(A) and τm(τd(A))
into µ-sentences (see Theorem 11.6 of [GTW02]), these automata correspond to
formulas in µML∇+(p) and µML∇d (p) respectively.

We do not want to give too many details, but let us give a brief description
of the automata τm(A) and τd(A). The automaton τm(A) is simply obtained by
replacing ¬p by > in each formula δ(q) (with q ∈ Q). The automaton τd(A) =
(Qd, qd, δd,Ωd) is given by:

Qd = Q× {0, 1},
qd = (qI , 0),

δ(q, 0) = δ(q)[q′/(q′, 0)] ∨ δ(q)[q′/(q′, 1)],

δ(q, 1) = δ(q)[p/>][q′/(q′, 1)],

Ω(q, i) =

{
1 if i = 0,

Ω(q) if i = 1,

where δ(q)[q′/(q′, i)] is the formula δ(q) in which each occurrence of a state q′ ∈ Q
is replaced by (q′, i) and where δ(q)[p/>][q′/(q′, 1)] is the formula δ(q) in which
each occurrence of p is replaced by > and each occurrence of a state q′ ∈ Q is
replaced by (q′, 1). Intuitively, τd(A) consists of two copies of A, corresponding
respectively to the ‘initial part’ of the model where p still might be true, and the
‘final part’ where p is false. The link between these two parts is given by the clause
of the definition for δ(q, 0). The disjunction of δ(q)[q′/(q′, 0)] and δ(q)[q′/(q′, 1)]
offered here corresponds to the disjunction in the ν-clause in the definition of the
translation τd for µ-formulas.
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The definitions of τm(A) and τd(A) consist in mimicking the translations τm
and τd defined in the context of formulas. Using arguments similar to the proofs
of Proposition 5.1.7 and Proposition 5.2.3, we can show that τm(A) and τd(A)
satisfy the required properties.

We believe that this approach might be more appropriate if we are interested
in complexity issues. For example, suppose that we want to check whether a
sentence is monotone. In order to apply the translation τm from Theorem 5.1.8,
we first transform the sentence into a disjunctive sentence. The method we use to
transform a sentence into a disjunctive sentence is to transform the sentence into
a non-deterministic automata and then transform this automata into a formula.
Hence, we have to move to the context of automata anyway. The point is that,
in order to get a better complexity result, it might be a good idea to stay at the
level of automata and apply the translation τm at that level (as described in the
previous paragraphs).

5.3 Finite width property

The second property that we are interested in is that of the finite width property.

Finite width property A µ-sentence ϕ0 has the finite width property for p ∈
Prop if ϕ0 is monotone in ϕ and for all trees T = (T,R, V ) with root r,

T , r 
 ϕ0 iff T [p�U ], r 
 ϕ0, for some U ⊆ T which is downward closed

and finitely branching,

where we call a subset U ⊆ T finitely branching if the set R[u] ∩ U is finite for
every u ∈ U .

The syntactic fragment associated with this property is given as follows.

The fragment µMLW (p) We define the fragment µMLW (p) by induction in
the following way:

ϕ ::= p | x | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | µx.ϕ | νx.ϕ,

where x is a variable and ψ is a sentence which does not contain p.

The following theorem states that modulo equivalence, µMLW (p) exactly cap-
tures the fragment of the modal µ-calculus that has the finite width property.

5.3.1. Theorem. The µ-sentences in µMLW (p) have the finite width property
for p. Moreover, there is an effective translation which given a µ-sentence ϕ,
computes a formula ϕw ∈ µMLW (p) such that

ϕ has the finite width property for p iff ϕ ≡ ϕw. (5.5)
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As a corollary, it is decidable whether a given sentence ϕ has the finite width
property for p.

The proof of Theorem 5.3.1 follows the same lines as that of Theorem 5.2.1.
First we show that formulas in the fragment µMLW (p) indeed have the required
property.

5.3.2. Proposition. If a sentence ϕ0 belongs to µMLW (p), then ϕ0 has the
finite width property with respect to p.

Proof Let ϕ0 be a sentence in µMLW (p). Fix a tree T = (T,R, V ) with root r.
We have to prove

T , r 
 ϕ0 iff T [p�U ], r 
 ϕ0, for some U ⊆ T which is downward closed

and finitely branching. (5.6)

The direction from right to left follows from Theorem 5.1.8 and the fact that
ϕ0 is positive in p. For the direction from left to right, suppose that T , r 
 ϕ0.
We need to find a finitely branching subset U of T that is downward closed and
such that T [p�U ] 
 ϕ0. Let f be a positional winning strategy of ∃ in the game
E0 := E(T , ϕ0)@(r, ϕ0). We define U ⊆ S such that

u ∈ U iff there is ϕ such that (u, ϕ) is f -reachable in E0 and p is active in ϕ.

The set U is downward closed. Indeed, if a position (u, ϕ) is reached during
an E0-match π and p is not active in ϕ, then all positions occurring after (u, ϕ)
will be of the form (v, ψ), where p is not active in ψ.

Hence it suffices to show that U is finitely branching. Fix u ∈ U and let us
show that R[u] ∩ U is finite. Let v ∈ U be a successor of u. Since u is the only
predecessor of v, by definition of U , there must be an f -conform match during
which a move occurs from (u,4ϕv) to (t, ϕv), where 4 ∈ {2,3} and ϕv is a
subformula of ϕ0 such that p is active in ϕv. By definition of µMLW (p), this can
only happen if 4 = 3. But then, (u,3ϕv) is a position which belongs to ∃ and
so v is her choice as dictated by f . From this, it follows that for all v and v′ in
R[u] ∩ U , we have ϕv 6= ϕv′ if v 6= v′. Putting this together with the fact that
Sfor(ϕ0) is finite, we obtain that R[u] ∩ U is finite. This finishes the proof that
U is downward closed and finitely branching.

It remains to show that T [p�U ], r 
 ϕ0. Here we omit the details since the
proof is similar to the one in Proposition 5.2.2. 2

As before, the hard part of the proof will consist in showing that any µ-
sentence ϕ0 with the finite width property can be effectively rewritten into a
formula τw(ϕ0) in the fragment µMLW . In order to define the translation τw, it
will be convenient to use the ∇-syntax for the source formulas.
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The translation τw Given a positive sentence ϕ ∈ µML∇, we define its trans-
lation τw(ϕ) by the following induction:

τw(>) = >,
τw(x) = x,

τw(ϕ ∨ ψ) = τw(ϕ) ∨ τw(ψ),

τw(ϕ ∧ ψ) = τw(ϕ) ∧ τw(ψ),

τw(α • ∇Φ) = α ∧
∨{∧

{3τw(ϕ) | ϕ ∈ Φ1} ∧ ∇
(
e⊥[Φ2]

)
| Φ1 ∪ Φ2 = Φ

}
,

τw(ηx.ϕ) = ηx.τw(ϕ),

where α is a conjunction of literals, Φ is a finite set of formulas in µML∇, and
η ∈ {µ, ν}.

The intuition for τw is as follows. We want τw to map a positive sentence to a
sentence in µMLW (p). So we need to replace the subformula of the form α • ∇Φ
by a formula in which p is not in the scope of a 2 operator. When we reach a
position of the form (t, α • ∇Φ) in the evaluation game and if ϕ0 has the finite
width property for p, we know that there are only finitely many points t1, . . . , tn
in R[t] such that p is true at a point of the model generated by ti.

In the evaluation game, at position (t, α • ∇Φ), ∃ has to come up with a
marking m : Φ −→ P(R[t]). If a point in R[t]\{t1, . . . , tn} is marked with a
formula ψ, we can simply replace ψ by e⊥(ψ). So in the definition of τw(α •∇Φ),
Φ2 corresponds to the set of formulas ψ such that a point in R[t]\{t1, . . . , tn} is
marked with ψ. Φ1 corresponds to the set of formulas ψ such that some ti is
marked with ψ.

5.3.3. Proposition. A positive sentence ϕ0 ∈ µML∇ has the finite width prop-
erty with respect to proposition letter p iff ϕ0 is equivalent to τw(ϕ0).

Proof The direction from right to left of this proposition is an immediate con-
sequence of Proposition 5.3.2 and the observation that τw maps formulas in ∇-
format to formulas in the fragment µMLW (p). For the opposite direction, assume
that ϕ0 has the finite width property with respect to p. In order to prove that
ϕ0 ≡ τw(ϕ0), consider an arbitrary pointed model (T , r). We will show that

T , r 
 ϕ0 iff T , r 
 τw(ϕ0). (5.7)

By Fact 5.1.1, we may assume that T is an ω-unravelled tree with root r.
For the direction ‘⇒’ of (5.7), assume that T , r 
 ϕ0. Then by the finite

width property there is some downward closed, finitely branching subset U of
S such that T [p�U ], r 
 ϕ0. Since U is downward closed, r belongs to U . By
Proposition 5.1.5 we may assume that ∃ has a positional winning strategy f in
the evaluation game E ′0 := E(T [p�U ], ϕ0)@(r, ϕ0). We fix also some maximal
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positional winning strategy g for ∃ in the evaluation game Ew := E(T , τw(ϕ0)).
In order to prove that T , r 
 τw(ϕ0), it suffices to provide ∃ with a winning
strategy in the game Ew initialized at (r, ϕ0).

The key idea underlying the definition of this winning strategy h, is that ∃
maintains, during (an initial part of) the Ew-match, an f -conform shadow match
of E ′0. Inductively we will make sure that ∃ can keep the following condition (†)
on the partial Ew-match π = z0 . . . zn and its shadow match π′ = z′0 . . . z

′
k (where

z0 = (r, τw(ϕ0)) and z′0 = (r, ϕ0)):

(†)

First of all, if ∃ is to move at zn, then she will not get stuck.
Furthermore, one of the following two constraints is satisfied:
(i) there is some m ≤ n with zm ∈ Win∃(Ew), and zmzm+1 . . . zn is a
g-conform Ew-match;
(ii) there is an order preserving partial map b : {0, . . . , k} −→ {0, . . . , n}
such that

(a) b(0) = 0,
(b) if b(i) = j then for some u ∈ U and some ϕ, zi and z′j are of the

form (u, ϕ) and (u, τw(ϕ)),
(c) for all variables x, if zi = (t, x), then i ∈ Dom(b), and if z′j = (t, x),

then j ∈ Ran(b).

Here we call a partial map b between two sets of natural numbers an order
preserving partial map if for all i < j such that i, j ∈ Dom(b), we have b(i) < b(j).

Two observations on (†) may be in order. First, the idea behind condition (†-i)
is that ∃ no longer needs to maintain the shadow match if she arrives at a position
zm that is already known to be winning for her in Ew. Once this happens, following
her winning strategy g will guarantee that she wins the Ew-match. Second, the
aim of condition (†-ii.c) is to ensure that every position involving a variable is
linked to some position in the other match. Condition (ii.b) then guarantees that
the companion position involves the same variable. As a corollary, in case (ii)
the sequence of variables that get unfolded in π is identical to the sequence of
unfolded variables in π′.

Let us first show why ∃ is guaranteed to win any match in which she can keep
the condition (†). Consider such a (full) match π. It is an immediate consequence
of (†) that ∃ will not get stuck during π, and so if π is finite she will be its winner.
Assume then that π is infinite. If at some moment the match arrived at a position
zm that is winning for ∃ in Ew, then by (†-i) the tail zmzm+1 . . . of π is conform her
winning strategy in Ew, and so she will be the winner of π. This leaves the case
where ∃ needs to maintain the shadow match during the entire match π. Thus in
the limit she creates an infinite E ′0-match π′ that is conform f , and linked to π by
an order preserving partial map b : ω −→ ω satisfying the conditions (†-ii:a-c). We
already observed that the respective sequences of variables that get unfolded in π
and π′ are identical, and so the winners of π and π′ are identical as well. But the
match π′ starts at a winning position for ∃, and she is assumed to play according
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to her winning strategy f . Clearly then it is ∃ who wins π′, and therefore, she
must be the winner of π as well.

Let us now see how ∃ can manage to maintain the condition (†) during the
match. The following claim will be the key instrument in pushing (†) forward.
Here, a local strategy is simply a strategy but we use the word “local” to empha-
size the fact that this strategy will help us to define, round by round, the global
strategy for ∃ in the game Ew initialized at (s, ϕ0). Recall that v is the prefix
(initial segment) relation between sequences.

1. Claim. If t ∈ U and (t, ϕ′) ∈ Win∃(E ′0), then ∃ has a local strategy h in
Ew@(t, τw(ϕ′)) with the property that for all h-conform matches λ, there exists
an h-conform match ρ with last position z satisfying (ρ v λ or λ v ρ) and
condition (a) or (b) below:
(a) z ∈Win∃(Ew);
(b) z is of the form (u, τw(ψ′)) for some u ∈ U and ψ′ ∈ Sfor(ϕ0), and there is
a f -conform partial match ρ′ leading from (t, ϕ′) to (u, ψ′); furthermore, both ρ
and ρ′ are variable-scarce.

Here we call a (partial) match variable scarce if it contains at most one position
of the form (t, x) with x, and this position can only occur as either the first or
the last position of the match.

Proof of Claim Fix a point t ∈ U and a formula ϕ′ such that (t, ϕ′) is a winning
position for f (in the game E ′0). Clearly, ∃’s local strategy in Ew@(t, τw(ϕ′))
depends on the shape of ϕ′.

If ϕ′ is the formula >, then ∃ does not even need to play, since the one-position
match (t, τw(ϕ′)) = (t,>) satisfies condition (a).

If ϕ′ is of the form ϕ′1∨ϕ′2, then by definition we have τw(ϕ′) = τw(ϕ′1)∨τw(ϕ′2).
Suppose that in the E ′0-game, at position (t, ϕ′1 ∨ ϕ′2), the strategy f will tell ∃
to pick a position (t, ϕ′i) (where i ∈ {1, 2}). Then in the Ew-game, at position
(t, τw(ϕ′1) ∨ τw(ϕ′2)), we let ∃ pick the position (t, τw(ϕ′i)). This choice ensures
that condition (b) is satisfied.

If ϕ′ is of the form ϕ′1 ∧ ϕ′2, then τw(ϕ′) = τw(ϕ′1) ∧ τw(ϕ′2). Suppose that in
the Ew-game, at position (t, τw(ϕ′1)∧τw(ϕ′2)), ∀ picks the conjunct τw(ϕ′i), moving
to position (t, τw(ϕ′i)). ∃ can mimic this in the shadow match by letting ∀ move
to position (t, ϕ′i). This ensures that condition (b) is satisfied.

Next, we look at the case when ϕ′ is a variable x. We observe that τw(x) = x.
In the E ′0-game, if we start at position (t, x), the next position is (t, δx), where
ηx.δx is the unique subformula of ϕ0 starting with ηx (η ∈ {µ, ν}). In the Ew-
game, the position played after (t, x) is (t, τw(δx)). Thus condition (b) is satisfied
— note that both ρ and ρ′ are matches of length 2, in which the first position
involves a variable. The case that ϕ′ is of the form ηx.ψ′ is similar and we omit
the details.
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The interesting case is where ϕ′ is of the form α • ∇Φ. In the Ew-match, ∃ is
faced with the position (t, τw(ϕ′)), where

τw(ϕ′) =
∧

α ∧
∨{∧

{3τw(ϕ) : ϕ ∈ Φ1} ∧ ∇
(
e⊥[Φ2]

)
| Φ1 ∪ Φ2 = Φ

}
.

First suppose that ∀ chooses the left conjunct of τw(ϕ), moving to position
(t, α). So we have to make sure that α is true at t in T [p�U ]. Since (t, α • ∇Φ)
is winning for ∃ in E ′0, α is true at t in T . As t belongs to U , α is also true at t
in T [p�U ].

Next suppose that in the Ew-game, at position (t, τw(ϕ′)), ∀ chooses the right
conjunct of τw(ϕ′). Assume that at the position (t, α • ∇Φ) in E ′0, ∃’s winning
strategy f provides her with a ∇-marking m : Φ −→ P(R[t]). Define

Ψ1 := {ψ ∈ Φ | u ∈ m(ψ) for some u ∈ U},
Ψ2 := {ψ ∈ Φ | v ∈ m(ψ) for some v 6∈ U}.

Then Φ = Ψ1∪Ψ2, because for every ψ ∈ Φ there is some v ∈ R(t) with v ∈ m(ψ).
The strategy of ∃ will be to pick the sets Ψ1 and Ψ2, moving to position(

t,
∧
ψ∈Ψ1

3τw(ψ) ∧∇
(
e⊥[Ψ2]

))
.

Now it is ∀’s turn; distinguish cases as to the conjunct of his choice:

• First assume that ∀ picks one of the conjuncts 3τw(ψ) with ψ ∈ Ψ1. By
definition of Ψ1, t has a successor u ∈ U such that u ∈ m(ψ), and ∃’s
response in Ew to ∀’s move will be to pick exactly this u, making (u, τw(ψ))
the next position in the match. It is straightforward to verify that this
position satisfies condition (b).

• The other possibility is that ∀ picks the formula ∇
(
e⊥[Ψ2]

)
= ∇{e⊥(ψ) |

ψ ∈ Ψ2}, choosing (t,∇(e⊥[Ψ2])) as the next position in the Ew-game. ∃
has to come up with a marking mw : e⊥[Ψ2] −→ P(R[t]). Let ψ be a formula
in Ψ2. We define mw(e⊥(ψ)) such that for all successors v of t,

– if v /∈ U , v belongs to mw(e⊥(ψ)) iff v ∈ m(ψ),

– if v ∈ U , v belongs to mw(e⊥(ψ)) iff there exists wv ∈ R[t]\U such
that T , v ↔ T , wv and wv ∈ m(ψ).

In order to show that this is a legal move for ∃, we have to prove that
mw : e⊥[Ψ2] −→ P(R[t]) is a∇-marking. Given a successor v of t, distinguish
cases. If v 6∈ U , then since m is a ∇-marking, there is a formula ψ ∈ Φ
such that v ∈ m(ψ), and so by definition ψ belongs to the set Ψ2. Hence we
find v ∈ mw(e⊥(ψ)). If, on the other hand, v belongs to U , then since T is
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ω-expanded and U is finitely branching, there is a state wv ∈ R[t]\U such
that T , v ↔ T , wv. As m is a ∇-marking, there exists a formula ψ ∈ Φ
such that wv ∈ m(ψ). Therefore, v belongs to mw(e⊥(ψ)). Conversely, an
arbitrary formula in e⊥[Ψ2] is of the form e⊥(ψ) for some ψ ∈ Ψ2. Then by
definition of Ψ2 there is some state v ∈ R(t) \ U such that v ∈ m(ψ), and
thus v ∈ mw(e⊥(ψ)). This finishes the proof that mw is a ∇-marking.

The game continues with ∀ choosing a pair in (v, e⊥(ψ)) with v ∈ mw(e⊥(ψ)),
as the next position in the Ew-match. If such a pair does not exist, then ∀
gets stuck and condition (a) is met immediately. Otherwise, we will show
that (a) holds in any case since we have

{(v, e⊥(ψ) | v ∈ mw(e⊥(ψ))} ⊆Win∃(Ew). (5.8)

For a proof of (5.8), first consider a pair (v, e⊥(ψ)), with v ∈ R[t]\U , and
v ∈ mw(e⊥(ψ)). By definition of mw, this means that v belongs to m(ψ).
Since m was part of ∃’s winning strategy f , we may conclude that (v, ψ)
is a winning position for ∃ in E ′0. Then by Proposition 5.1.5 it follows that
T [p�U ], v 
 e(ψ), and by Fact 5.1.6 we may infer that T , v 
 e⊥(ψ), and
so clearly (v, e⊥(ψ)) ∈Win∃(Ew).

Next we consider an arbitrary element (u, e⊥(ψ)), with u ∈ R(t) ∩ U , and
u ∈ mw(e⊥(ψ)). By definition of mw, there exists wu ∈ R[t] ∩ U such that
T , u ↔ T , wu and wu ∈ m(ψ). As in the previous case it follows from
Proposition 5.1.5 and Fact 5.1.6 that T , wu 
 e⊥(ψ), and so by T , u ↔
T , wu we obtain that T , u 
 e⊥(ψ). From this again it is immediate that
(u, e⊥(ψ)) ∈Win∃(Ew). This finishes the proof of (5.8).

Thus we have shown that for each type of formula ϕ′, ∃ has a strategy leading
to a position z satisfying condition (a) or (b). In case (b), the fact that the
matches ρ and ρ′ are variable scarce can be verified by a direct inspection of the
proof. J

On the basis of Claim 1, ∃ can find a strategy that enables her to keep the
condition (†). The basic idea is that she maintains the shadow E ′0-match π′ =
z′0 . . . z

′
k of the actual partial Ew-match π = z0 . . . zn in stages, inductively ensuring

that at the end of each stage, unless π ends with a winning position for ∃ in Ew,
we have (†-ii.a-c) and b(n) = k. More precisely, we say that π = z0 . . . zn and
π′ = z′0 . . . z

′
k are at the end of a stage if π and π′ satisfy (†) and in case (ii),

b(n) = k.
It is immediate that if z0 = (s, τw(ϕ0)) and z′0 = (s, ϕ0), then π := z0 and

π′ := z′0 are at the end of a stage. Therefore, in order to prove that ∃ can maintain
the condition (†) during any Ew@(r, τw(ϕ0))-match, it is sufficient to show that
if π and π′ are at the end of a stage, then we can properly extend π and π′ to
partial matches π ◦ ρ and π′ ◦ ρ′ which are at the end of a stage.
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Suppose that π and π′ are at the end of a stage. Then π = z0 . . . zn and
π′ = z′0 . . . z

′
k are such that (†) holds, with the additional assumption that in

case of condition (ii) we have b(n) = k. We make the obvious case distinction.
First, if π satisfies condition (†-i) then ∃ can simply continue playing her winning
strategy g (and she has no further need of the shadow match). Second, in case
π and π′ satisfy condition (†-ii), it follows from b(n) = k that we may assume
z′k and z′n to be of the form (t, ϕ′) and (t, τw(ϕ′)), respectively, with t ∈ U and
ϕ ∈ Sfor(ϕ0). Observe that since π′ is conform ∃’s winning strategy f , we have
(t, ϕ′) ∈Win∃(E ′0).

So we may assume that ∃ continues the match π by playing the strategy h
given by Claim 1. Hence there is a partial Ew-match π◦ρ such that ρ 6= ∅ and the
last position (u, ψ) of ρ satisfies (a) or (b). If (a) the position (u, ψ) is winning
for ∃ in Ew, then the partial match π ◦ ρ satisfies condition (†-i) (and from this
moment on ∃ can switch to the positional winning strategy of Ew, forgetting about
the shadow match). In the other case (b), there is a f -conform partial match ρ′

leading from (t, ϕ) to some (u, ψ′) with ψ = τw(ψ′). Suppose that π◦ρ = z0 . . . zm
and π′ ◦ ρ′ = z′0 . . . z

′
l. Let also b′ : {0, . . . ,m} −→ {0, . . . l} be the partial map

such that for all i ∈ {0, . . . ,m}, i ∈ Dom(b′) iff i ∈ Dom(b) or i = m. Moreover,
for all i ∈ Dom(b), b′(i) = b(i) and b′(m) = l. Then the matches π ◦ ρ and π′ ◦ ρ′
satisfy the conditions (†-ii.a-c) and are at the end of a stage. Here condition (c)
is an immediate consequence of the variable scarcity of ρ and ρ′.

This finishes to show that ∃ can maintain the condition (†), during any match
of Ew@(s, τw(ϕ0)). And as we have seen, this suffices to prove that T , r 
 τw(ϕ0).
Thus we have finished the proof of the left-to-right direction of (5.7).

The proof of the opposite direction ‘⇐’ of (5.7) will be very similar, and so
we will omit some details. Assume that T , s 
 τw(ϕ0), and let fw be a positional
winning strategy for ∃ in the game Ew0 = Ew@(r, τw(ϕ0)). In order to prove
that T , r 
 ϕ0, we will need to provide her with a winning strategy in the game
E := E(T , ϕ0) initialized at (r, ϕ0). Let g denote some maximal positional winning
strategy for ∃ in E .

As before, our proof is based on ∃ maintaining, during (an initial part of) the
E-match π, an fw-conform shadow match πw of Ew0 . Inductively, we will make
sure that ∃ can maintain the following constraint (‡) on the E-match π = z0 . . . zk
and its shadow πw = zw0 . . . z

w
n (with z0 = (r, ϕ0) and zw0 = (r, τw(ϕ0))):
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(‡)

First of all, if ∃ is to move at zk, then she will not get stuck.
Furthermore, one of the following two constraints is satisfied:
(i) there is some m ≤ k with zm ∈ Win∃(E), and zmzm+1 . . . zn is a g-
conform Ew0 -match;
(ii) there is an order preserving partial map b : {0, . . . , k} −→ {0, . . . , n}
such that

(a) b(0) = 0,
(b) if b(i) = j then for some u ∈ T and some ϕ, zi and zwj are of the

form (u, ϕ) and (u, τw(ϕ)),
(c) for all variables x, if zi = (t, x), then i ∈ Dom(b), and if zwj = (t, x),

then j ∈ Ran(b).

The proof that maintaining condition (‡) suffices for ∃ to win the game, is
completely analogous to the proof given above for the other direction of (5.7). We
omit the details, apart from stating and proving the crucial proposition replacing
Claim 1.

2. Claim. Let t ∈ T and ϕ ∈ Sfor(ϕ0) be such that (t, τw(ϕ)) ∈ Win∃(Ew0 ).
Then ∃ has a local strategy h in E@(t, ϕ) with the property that for all h-conform
matches λ, there exist an h-conform match ρ with last position z satisfying (ρ v λ
or λ v ρ) and one of the conditions below:
(a) z ∈Win∃(E);
(b) z is of the form (u, ψ) for some u ∈ S and ψ ∈ Sfor(ϕ0), and there is a
f -conform partial match ρw leading from (t, τw(ϕ)) to (u, τw(ψ)); furthermore,
both ρ and ρ′ are variable-scarce.

Proof of Claim As in the analogous claim given in the first part of the proof,
the definition of h depends on the shape of the formula ϕ. We confine our atten-
tion to the only case of interest, viz., where ϕ is of the form α •∇Φ. ∃’s strategy
will consist of a marking m : Φ −→ P(R[t]) that we define now.

It follows from the fact that (t, τw(ϕ)) ∈Win∃(Ew0 ) that T , t 
 α, and that for
some Ψ1,Ψ2 with Ψ1 ∪ Ψ2 = Φ, each position (t,3τw(ψ)) with ψ ∈ Ψ1, and the
position (t,∇e⊥[Ψ2]) belong to Win∃(Ew0 ). Given ψ ∈ Ψ1, let uψ ∈ R(t) be the
successor of t such that (uψ, τw(ψ)) is the move dictated by ∃’s winning strategy
f at the position (t,3τw(ψ)) ∈ Ew0 , and let m : Φ −→ P(R[t]) such that for all
ψ ∈ Φ, we have

• if ψ ∈ Ψ1\Ψ2, m(ψ) = {uψ}.

• if ψ ∈ Ψ2\Ψ1, m(ψ) = {v | v ∈ mw(e⊥(ψ))},

• if ψ ∈ Ψ1 ∩Ψ2, m(ψ) = {uψ, v | v ∈ mw(e⊥(ψ))}.

First we show that in E , m is a legitimate move for ∃ at the position (t, ϕ).
Since t 
 α, we only need to check that m is a ∇-marking. For this purpose,
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first consider an arbitrary successor v of t. Since mw is a ∇-marking, there is
a formula ψ ∈ Ψ2 such that v ∈ mw(e⊥(ψ)), and hence, by definition of m,
v ∈ m(ψ). Conversely, take an arbitrary formula ψ ∈ Φ. If ψ ∈ Ψ1, then uψ is a
successor of t with uψ ∈ m(ψ). Otherwise we have ψ ∈ Ψ2 and then since mw is a
∇-marking, there is a state u ∈ R[t] with v ∈ mw(e⊥(ψ)), and hence, v ∈ m(ψ).

Next ∀ may pick a pair z := (v, ψ) such that v ∈ m(ψ). If there is no such
a pair, we have arrived at case (a). Otherwise we claim that any next position
z picked by ∀ satisfies condition (a) or (b). If this z is of the form (uψ, ψ) with
ψ ∈ Ψ1, then since (u, τw(ψ)) was ∃’s choice at position (t,3τw(ψ)) ∈ Ew0 , it
should clear that this position satisfies condition (b). This leaves the case where
z is of the form (v, ψ) for some ψ ∈ Ψ2 with v ∈ mw(e⊥(ψ)). Since mw was chosen
accordingly to fw, we know that (e, e⊥(ψ)) belongs to Win∃(Ew0 ), and hence by
Proposition 5.1.5 we obtain that T , v 
 e⊥(ψ). From this it follows by Fact 5.1.6
that T [p 7→ ∅], v 
 e(ψ), and since ψ is positive this implies that T , v 
 e(ψ).
But then it is immediate by Proposition 5.1.5 again that (v, ψ) ∈Win∃(E); that
is, z = (v, ψ) satisfies condition (a). J

The proof that Claim 2 enables us to provide ∃ with a strategy satisfying
(‡) is again very similar to the corresponding proof given above for the opposite
direction of (5.7). We leave the details as an exercise for the reader. 2

Proof of Theorem 5.3.1. Fix an arbitrary µ-sentence ϕ. We define ϕw :=
τw(τ∇m (ϕ)), where τ∇m is the translation of Theorem 5.1.8. Then the equiva-
lence (5.5) is immediate by that Theorem and Proposition 5.3.3.

The decidability of the finite width property follows by the observation that
the construction of the formula ϕw from ϕ is effective, and that it is decidable
whether ϕ and ϕw are equivalent. 2

5.3.4. Remark. We would like to mention that given a monotone sentence ϕ0 in
µML∇, the size of τw(ϕ0) is exponential in the size of ϕ0. Hence, using a similar
argument to the one given in Remark 5.2.4, we easily obtain that it is decidable
in elementary time whether a sentence has the finite width property. Moreover,
the size of the sentence ϕw of Theorem 5.3.1 is elementary in the size of ϕ. The
exact complexity and size are left for further work.

As in Remark 5.2.4, we could also provide a construction τw on automata such
that for all sentences ϕ and for all non-deterministic automata A = (Q, qI , δ,Ω)
equivalent to ϕ,

ϕ has the finite width property for p iff ϕ ≡ τm(τw(A)),

where τm is the translation for automata presented in Remark 5.2.4. Moreover,
the automaton τm(τw(A)) corresponds to a formula in µMLW (p).
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5.4 Continuity

This section is devoted to one of our main results, namely, we give a syntactic
characterization of the continuous fragment of the modal µ-calculus.

Continuity A µ-sentence ϕ0 is continuous in p ∈ Prop if for every pointed
model (M, w),

M, w 
 ϕ0 iff M[p�U ], w 
 ϕ0, for some finite subset U ⊆ S.

We leave it for the reader to verify that continuity implies monotonicity: Any
formula that is continuous in p is also monotone in p.

Before we turn to its syntactic characterization, we first discuss the motiva-
tions for studying this property. The property of continuity is of interest for at
least two reasons: its link to the well-known topological notion of Scott continu-
ity [GHK+80] and its connection with the notion of constructivity.

5.4.1 Link with Scott continuity

The name ‘continuity’ that we have given to this property is appropriate because
of the following topological connection.

Scott topology Given a complete lattice (P,≤) (see Section 2.2), a subset
D ⊆ P is directed if for every pair d1, d2 ∈ D there is a d ∈ D such that d1 ≤ d
and d2 ≤ d. A subset U ⊆ P is called Scott open if it upward closed (that is,
if u ∈ U and u ≤ v then v ∈ U), and satisfies, for any directed D ⊆ P , the
property that U ∩ D 6= ∅ whenever

∨
D ∈ U . It is not hard to prove that the

Scott open sets indeed provide a topology, the so-called Scott topology (see for
instance [GHK+80]).

Let (P,≤) and (P ′,≤′) be two complete lattices. A map f : P −→ P ′ is Scott
continuous if for all Scott open sets U ′ ⊆ P ′, f−1[U ] is Scott open.

It is a standard result (see for instance [GHK+80]) that a map f : P −→ P ′ is
Scott continuous iff f preserves directed joins (that is, if D ⊆ P is directed, then
f(
∨
D) =

∨′ f [D]).

Now we show that the notion of continuity that we introduced earlier, corre-
sponds to the standard notion of Scott continuity. Recall that given a sentence ϕ,
a proposition letter p and a modelM = (W,R, V ), the map ϕp : P(W ) −→ P(W )
is such that for all U ⊆ W ,

ϕp(U) = {w ∈ W | T [p 7→ U ], w 
 ϕ}.

5.4.1. Proposition. A sentence is continuous in p iff for all models M =
(W,R, V ), ϕp : P(W ) −→ P(W ) is Scott continuous.
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Proof For the direction from left to right, let ϕ be a continuous sentence in
p. Fix a model M = (W,R, V ). We show that the map ϕp : P(W ) −→ P(W )
preserves directed joins.

Let F be a directed subset of (P(W ),⊆). It follows from the monotonicity
of ϕ that the set

⋃
ϕp[F ] is a subset of ϕp(

⋃
F). Thus, it remains to show that

ϕp(
⋃
F) ⊆

⋃
ϕp[F ]. Take w in ϕp(

⋃
F). That is, the formula ϕ is true at w in

the model M[p 7→
⋃
F ]. As ϕ is continuous in p, there is a finite subset F of⋃

F such that ϕ is true at w in M[p 7→ F ]. Now, since F is a finite subset of⋃
F and since F is directed, there exists a set U in F such that F is a subset of

U . Moreover, as ϕ is monotone, M[p 7→ F ], w 
 ϕ implies M[p 7→ U ], w 
 ϕ.
Therefore, w belongs to ϕp(U) and in particular, w belongs to

⋃
ϕp[F ]. This

finishes to show that ϕp(
⋃
F) ⊆

⋃
ϕp[F ].

For the direction from right to left, let ϕ be a sentence such that for all models
M = (W,R, V ), ϕp : P(W ) −→ P(W ) is Scott continuous. First we show that ϕ is
monotone in p. Let M = (W,R, V ) be a model. We check that ϕp(U) ⊆ ϕp(U

′),
in case U ⊆ U ′. Suppose U ⊆ U ′ and let F be the set {U,U ′}. The family
F is clearly directed and satisfies

⋃
F = U ′. Using the fact that ϕp preserves

directed joins, we get that ϕp(U
′) = ϕp(

⋃
F) =

⋃
ϕp[F ]. By definition of F ,

we have
⋃
ϕp[F ] = ϕp(U) ∪ ϕp(U ′). Putting everything together, we obtain that

ϕp(U
′) = ϕp(U) ∪ ϕp(U ′). Thus, ϕp(U) ⊆ ϕp(U

′).
To show that ϕ is continuous in p, it remains to show that ifM, w 
 ϕ, then

there exists a finite subset U of V (p) such that M[p 7→ U ], w 
 ϕ. Suppose that
the sentence ϕ is true at w in M. That is, w belongs to ϕp(V (p)). Now let F
be the family {U ⊆ V (p) | U finite}. It is not hard to see that F is a directed
subset of (P(W ),⊆). Since ϕp preserves directed joins, we obtain ϕp(V (p)) =
ϕp(
⋃
F) =

⋃
ϕp[F ]. From w ∈ ϕp(V (p)), it then follows that w ∈

⋃
ϕp[F ].

Therefore, there exists U ∈ F such that w ∈ ϕp(F ). That is, U is a finite subset
of V (p) such that M[p 7→ U ], w 
 ϕ. 2

5.4.2 Constructivity

Intuitively, a formula is constructive if the ordinal approximation of its least
fixpoint is reached in at most ω steps.

Constructivity Given a sentence ϕ and a modelM = (W,R, V ), we define, by
induction on i ∈ N, a map ϕip : P(W ) −→ P(W ). We set ϕ0

p := ϕp (where ϕp is as
defined in Chapter 2 or as in the previous subsection) and for all i ∈ N, ϕi+1

p :=
ϕp ◦ ϕip. The sentence ϕ is constructive in p if for all modelsM = (W,R, V ), the
least fixpoint of the map ϕp is equal to

⋃
{ϕip(∅) | i ∈ N}.

In [Ott99], Martin Otto proved that it is decidable in exponential time whether
a basic modal formula ϕ is bounded, but to the best of our knowledge, decidability
of constructivity (that is, the problem whether a given µ-sentence is constructive
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in p) is an open problem. In passing we mention that recently, Marek Czar-
necki [Cza10], found, for each ordinal β < ω2, a formula ϕβ for which β is the
least ordinal such that the least fixpoint of ϕβ is always reached in β steps.

The connection between the notions of continuity and constructivity is an
intriguing one. It is a routine exercise to prove that any sentence, continuous in
p, is also constructive in p.

5.4.2. Proposition. A sentence ϕ continuous in p is constructive in p.

Proof Let ϕ be a sentence continuous in p and let M = (W,R, V ) be a model.
We show that the least fixpoint of ϕp is

⋃
{ϕip(∅) | i ∈ N}.

Let F be the family {ϕip(∅) | i ∈ N}. It is sufficient to check that ϕp(
⋃
F) =⋃

F . First remark that the subset F of the partial order (P(W ),⊆) is directed.
Therefore, by Proposition 5.4.1, ϕp(

⋃
F) =

⋃
ϕp[F ]. It is also easy to prove that⋃

ϕp[F ] =
⋃
F . Putting everything together, we obtain that ϕp(

⋃
F) =

⋃
F

and this finishes the proof. 2

However, not all constructive sentences are continuous. We give two examples.
The formula ϕ = 2p∧22⊥ is true at a point w in a model if the depth of w is less
or equal to 2 (that is, there are no v and v′ satisfying wRvRv′) and all successors
of w satisfy p. It is not hard to see that ϕ is not continuous in p. However,
we have that for all models M = (W,R, V ), ϕ2

p(∅) = ϕ3
p(∅). In particular, ϕ is

constructive in p.
The formula ψ = νx.p ∧ 3x is true at a point w if there is an infinite path

starting from w and such that at each point of this path, p is true. This sentence
is not continuous in p. However, it is constructive, since for all models M =
(W,R, V ), we have ψp(∅) = ∅.

Observe that in the previous examples, we have µp.ϕ ≡ µp.22⊥ and µp.ψ ≡
µp.⊥. Thus, there is a continuous sentence (namely 22⊥) that is equivalent to
ϕ, modulo the least fixpoint operation. Similarly, there is a continuous sentence
(the formula ⊥) that is equivalent to ψ, modulo the least fixpoint operation.
This suggests the following question concerning the link between continuity and
constructivity: Given a constructive formula ϕ, can we find a continuous formula
ψ satisfying µp.ϕ ≡ µp.ψ?

We leave this question as an open problem, as we do with the question whether
constructivity can be captured by a nice syntactic fragment of the modal µ-
calculus.

5.4.3 Semantic characterization of continuity

We now turn to the main result of this section, namely, our characterization result
for continuity. Our approach towards continuity is based on the observation that
this property can be seen as the combination of the finite path and the finite
width properties.
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5.4.3. Proposition. A µ-sentence ϕ0 is continuous in p iff ϕ0 has both the finite
path and the finite width property with respect to p.

Proof Confining our attention to the direction from right to left, assume that a
µ-sentence ϕ0 has both the finite path and the finite width property. Fix a model
T = (T,R, V ) and a point r ∈ T . We have to show

T , r 
 ϕ0 iff T [p�U ], r 
 ϕ0, for some finite subset U ⊆ S.

The direction from right to left follows from Proposition 5.1.8 and the fact that
ϕ0 is positive in p. For the direction from left to right, suppose that T , r 
 ϕ0.
As in the proof of Proposition 5.3.2, we may assume that T is a tree with root r.

Since ϕ0 has the finite width property with respect to p, there is a downward
closed subset U1 ⊆ T which is finitely branching and such that T [p�U1], r 
 ϕ0.
But ϕ0 also has the finite path property with respect to p. Hence there is a subset
U2 of T such that U2 is downward closed, does not contain any infinite path and
T [p�(U1 ∩ U2)], r 
 ϕ0. By König’s Lemma, U1 ∩ U2 is finite. 2

The syntactic fragment corresponding to continuity can be defined as follows.

The fragment µMLC(p) We define the fragment µMLC(p) by induction in the
following way:

ϕ ::= p | x | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | µx.ϕ,
where x is a variable and ψ is a sentence which does not contain p.

Observe that this fragment is contained in the intersection of the fragments
µMLD(p) and µMLW (p) (defined in the previous two sections). Our characteri-
zation then is as follows.

5.4.4. Theorem. The µ-sentences in µMLC(p) are continuous in p. Moreover,
there is an effective translation which given a µ-sentence ϕ, computes a formula
ϕc ∈ µMLC(p) such that

ϕ is continuous in p iff ϕ ≡ ϕc. (5.9)

As a corollary, it is decidable whether a given sentence ϕ is continuous in p.

We turn now to the proof of Theorem 5.4.4. First, it is easy to see that the
fragment µMLC(p) consists of continuous formulas.

5.4.5. Proposition. If ϕ0 belongs to µMLC(p), then ϕ0 is continuous in p.

Proof If ϕ0 belongs to µMLC(p), then since µMLC(p) ⊆ µMLD(p) ∩ µMLW (p),
by the Propositions 5.2.3 and 5.3.2, it has both the finite path and the finite
width property with respect to p. Hence by Proposition 5.4.3, ϕ0 is continuous
in p. 2

We now turn to the hard part of the proof of Theorem 5.4.4. This part of the
proof will be based on the following translation, which combines clauses of the
translations τd and τw.
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The translation τc Fix a positive sentence ϕ0 ∈ µML∇. We define the map
τc : Sfor(ϕ0) −→ µML as the map τd ◦ τw (where we extend the translation τw to
∇-formulas in the obvious way). That, τc is the map defined by induction on the
complexity of the subformulas of ϕ0 by:

τc(>) = >,
τc(x) = x,

τc(ϕ ∨ ψ) = τc(ϕ) ∨ τc(ψ),

τc(ϕ ∧ ψ) = τc(ϕ) ∧ τc(ψ),

τc(α • ∇Φ)t =
∧
α ∧

∨
{
∧
{3τc(ϕ) | ϕ ∈ Φ1} ∧ ∇

(
e⊥[Φ2]

)
| Φ1 ∪ Φ2 = Φ},

τc(µx.ϕ) = µx.τc(ϕ),

τc(νx.ϕ) = µx.
(
τc(ϕ) ∨ e⊥(ϕ)

)
where x is a variable, α is a conjunction of literals, and Φ is a finite subset of
µML∇.

5.4.6. Proposition. A positive guarded sentence ϕ0 ∈ µML∇ is continuous with
respect to proposition letter p iff ϕ0 is equivalent to τc(ϕ0).

Proof Fix a positive guarded sentence ϕ0 in µML∇. The direction from right to
left is an easy consequence of Proposition 5.4.5 and the observation that τc(ϕ0)
belongs to µMLC(p).

For the opposite direction, suppose that ϕ0 is continuous with respect to p.
In particular, ϕ0 has the finite width property with respect to p. It follows from
Proposition 5.3.3 that ϕ0 is equivalent to τw(ϕ0). Since ϕ0 has the finite path
property with respect to p, τw(ϕ0) also has the finite path property with respect
to p. Therefore, from Proposition 5.2.3, we obtain that τw(ϕ0) is equivalent to
τd(τw(ϕ0)). Putting everything together, we get that that ϕ0 is equivalent to
τc(ϕ0). 2

We turn to the proof of the main result of this section.

Proof of Theorem 5.4.4. Fix an arbitrary µ-sentence ϕ. We define ϕc :=
τc(τ

∇
m (ϕ)), where τ∇m is the translation of Theorem 5.1.8. Given the fact that

continuity implies monotonicity, the equivalence (5.9) is then immediate by The-
orem 5.1.8 and Proposition 5.4.6.

The decidability of the associated continuity problem follows by the observa-
tion that the construction of the formula ϕc from ϕ is effective, and that it is
decidable whether ϕ and ϕc are equivalent. 2

5.4.7. Remark. It follows from Proposition 5.4.3 and Remarks 5.2.4 and 5.3.4
that it is decidable in elementary time whether a sentence is continuous in p.
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Again, the exact complexity is left for further work. Given a positive sentence ϕ,
the size of ϕc is exponential in the size of ϕ.

It also follows from Remarks 5.2.4 and 5.3.4 that we can define a construction
similar to τc in the context of automata. This construction might be helpful if we
study complexity issues related to the continuous fragment.

5.5 Complete additivity

The last property of formulas that we look at concerns the way in which the
semantics of the formula depends on the proposition letter p being true at some
single point.

Complete additivity A µ-sentence ϕ0 is completely additive in p ∈ Prop if for
all models M = (W,R, V ) and w ∈ W ,

M, w 
 ϕ0 iff M[p�{v}], w 
 ϕ0 for some v ∈ V (p). (5.10)

A formula ϕ0 that is completely additive in a proposition letter p is monotone
in p. Moreover, if M = (W,R, V ) is a model such that V (p) = ∅, it can never
happens that ϕ0 is true at a point in M.

One of the main reasons for studying complete additivity is its pivotal role
in the characterization of the fragment of first- and monadic second-order logic
formulas that are safe for bisimulations. A (first- or second order) formula ϕ(x, y)
is called safe for bisimulations if, whenever B ⊆ W×W ′ is a bisimulation between
two modelsM andM′, then B is also a bisimulation for the two models we obtain
by considering the interpretations of ϕ as accessibility relations on M and M′,
respectively (for a precise definition, see Section 2.6).

This notion was introduced by Johan van Benthem [Ben96] who also gave a
characterization of the safe fragment of first-order logic. The link with complete
additivity is given by the observation that a formula ϕ(x, y) is safe for bisim-
ulation iff the formula ∃y (ϕ(x, y) ∧ P (y)) (with P is a fresh unary predicate)
is bisimulation invariant. Recall that modal logic is the bisimulation invariant
fragment of first-order logic (see Section 2.6) and µ-calculus is the bisimulation
invariant fragment of MSO (Theorem 2.6.7). Hence, in case ϕ is a first-order
formula, the formula ∃y (ϕ(x, y) ∧ P (y)) is safe for bisimulation iff it is equiva-
lent to a modal formula ϕ′(p). Similarly, if ϕ is a monadic second-order formula,
∃y (ϕ(x, y) ∧ P (y)) is safe for bisimulation iff it is equivalent to a µ-sentence
ϕ′(p). Moreover, using the fact that ϕ′(p) is equivalent to ∃y (ϕ(x, y) ∧ P (y)), it
is easy to see that ϕ′(p) is completely additive in p, where p is a proposition letter
corresponding to the predicate P .

Thus, a syntactic characterization of the completely additive modal formulas
and modal µ-sentences, respectively, may help to obtain a syntactic characteriza-
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tion of the safe fragments of first- and monadic second-order logic. Such charac-
terizations were obtained for modal logic by Johan van Benthem [Ben96], and for
the µ-calculus by Marco Hollenberg [Hol98b], see Remark 5.5.2 for more details
on the latter result.

The syntactic fragment that corresponds to complete additivity is defined as
follows.

The fragment µMLA(p) We define the fragment µMLA(p) by induction in the
following way:

ϕ ::= p | x | ϕ ∨ ϕ | ϕ ∧ ψ | 3ϕ | µx.ϕ,

where x is a variable and ψ is a sentence which does not contain p.

5.5.1. Remark. There are interesting connections between these fragments and
the language PDL. Since PDL is by nature a poly-modal language, we momen-
tarily allow the set Act of actions to not be a singleton. One may show that
PDL has the same expressive power as the fragment of µML in which the formula
construction µx.ϕ is allowed only if ϕ is completely additive with respect to x.
More precisely, define the set FA of formulas by the following grammar:

ϕ ::= p′ | ¬ϕ | ϕ ∨ ϕ | 3aϕ | µx.ϕ,

where p′ is an arbitrary proposition letter, a belongs to Act and ϕ belongs to the
fragment µMLA(x). Then there are inductive, truth-preserving translations from
PDL to the fragment FA, and vice versa [Ven08b].

5.5.2. Remark. The characterization provided by Marco Hollenberg [Hol98b] of
the completely additive fragment of the modal µ-calculus states that a formula ϕ
is completely additive in p iff ϕ is equivalent to a formula of the form 〈π〉p, where
π is a µ-program. We do not recall the definition of µ-program there, as we do
not need it in this section (for more details, see Section 2.6.3).

Comparing the two fragments, Marco Hollenberg’s fragment is more suited to
prove the result on safety, while the shape of the fragment µMLA(p) is closer to
the shape of the syntactic fragments considered in the earlier sections. Hence,
if we express the characterization in terms of the fragment µMLA(p), it will be
easier to adapt the proofs of the previous sections. The fragment µMLA(p) is not
only useful for our proof, but also fairly intuitive. In any case, there are direct
translations between our fragment and Marco Hollenberg’s.

The main result of this section is the following theorem showing that, modulo
equivalence, µMLA(p) captures the fragment of the µ-calculus that is completely
additive.
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5.5.3. Theorem. The µ-sentences in µMLA(p) are completely additive in p.
Moreover, there is an effective translation which given a µ-sentence ϕ, computes
a formula ϕa ∈ µMLA(p) such that

ϕ is completely additive in p iff ϕ ≡ ϕa. (5.11)

As a corollary, it is decidable whether a given sentence ϕ is completely additive
in p.

As mentioned already, we could obtain our result as a corollary to Marco Hol-
lenberg’s characterization. The first proof of the characterization of the continu-
ous fragment [Fon08] (Theorem 5.4.4) was in fact inspired by Marco Hollenberg’s
proof for the characterization of the completely additive fragment. It turns out
that the proof of Theorem 5.4.4 could be simplified. The new proof (which is
the one presented in Section 5.4) is not only easier: unlike the original proof, it
provides a direction translation (the translation τC of Section 5.4).

This raised the following question: can we also simplify Marco’s Hollenberg
proof and find a direct translation playing the same role as τC? The answer is
yes. However, the definition of the translation is a lot more involved than the
definition of τC .

The existence of that new proof can also be an indication of the flexibility
(and limitations) of the method used in this chapter. As witnessed by the proof
of Proposition 5.1.7, the method can be adapted to prove the Lyndon’s theorem
for the µ-calculus [DH00]. We do not give details, but the method also works
to show the  Los-Tarski theorem for the µ-calculus [DH00]. In the case of the
property of complete additivity, we can also use the same method, but as we will
see in a few paragraphs, the proof becomes considerably harder than for the other
properties. Let us finally mention that in [FV10], we consider a property (the
single point property) for which we were not able to use the same method. The
characterization was obtained using an automata theoretic approach.

As in the other sections, we start by proving the easy direction of Theo-
rem 5.5.3. That is, if a sentence belongs to µMLA(p), then it is completely
additive.

5.5.4. Proposition. Any sentence in µMLA(p) is completely additive in p.

Proof Let ϕ0 be a sentence in µMLA(p). Fix a model M = (W,R, V ) and a
point w ∈ W . We have to show that

M, w 
 ϕ0 iff M[p�{v}], w 
 ϕ0 for some v ∈ V (p). (5.12)

The direction from right to left follows from Theorem 5.1.8 and the fact that ϕ0

is positive in p. For the opposite direction, suppose thatM, w 
 ϕ0. We have to
find a point v ∈ V (p) such that M[p�{v}], w 
 ϕ0.

SinceM, w 
 ϕ0, ∃ has a winning strategy f in the game E0 := E(M, ϕ0)@(w,ϕ0).
We start by defining an f -conform E0-match π such that
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(i) for all f -reachable positions (v, ϕ) with p active in ϕ, (v, ϕ) occurs in π,

(ii) for all positions (v, ϕ) occurring in π, ϕ belongs to µMLA(p).

For all i ∈ N, we define zi by induction on i such that zi is an f -reachable
position of the form (v, ϕ) with ϕ ∈ µMLA(p). If i = 0, we define zi as the
position (w,ϕ0). For the induction step, suppose that we already defined the
position zi = (v, ϕ) and ϕ belongs to µMLA(p). We make the following case
distinction:

• If ϕ = p, we stop the construction and we define π as z0 . . . zi.

• If ϕ = x, we define zi+1 as the position (v, δx), where ηx.δx is a subformula
of ϕ0 (η ∈ {µ, ν}).

• If ϕ is a formula of the form ϕ1∨ϕ2 (with ϕ2, ϕ2 in µMLA(p)), then according
to f , ∃moves from the position (v, ϕ) to a position of the form (v, ϕk), where
k ∈ {1, 2}. We define zi+1 as (v, ϕk).

• If ϕ is a formula of the form ϕ′ ∧ ψ (with ϕ in µMLA(p) and ψ a closed
sentence in which p does not occur), then we define zi+1 as (v, ϕ′).

• If ϕ is of the form µx.ϕ′ (with ϕ′ in µMLA(p)), we define zi+1 as (v, ϕ′).

• Finally, if ϕ is of the form 3ϕ′ (with ϕ′ in µMLA(p)), then according to f ,
∃ moves from the position (v, ϕ) to the position (u, ϕ′), for some u ∈ R[v].
We let zi+1 be the position (u, ϕ′).

If at some point the construction described above stopped, then π is already
defined. Otherwise, for all i ∈ N, zi is defined and we let π be the match z0z1 . . . .
It is easy to see that conditions (i) and (ii) are verified.

It follows from (ii) that the only positions of the form (ηx.ϕ) (where η ∈
{µ, ν}) occurring in π are such that η = µ. Hence, if π is infinite, π is lost by ∃.
This is impossible since π is an f -conform match and f is a winning strategy for
∃.

So π is a finite match of the form z0 . . . zn, which is won by ∃. Moreover, it
follows from the definition of π that zn is a position of the form (v, p). Putting
this together with the fact that π is won by ∃, we have p ∈ V (p). Therefore,
in order to show that the left-to-right direction of (5.12) holds, it is sufficient to
prove that M[p�{v}], w 
 ϕ0.

For that purpose, we show that f is a winning strategy for ∃ in E ′0 :=
E(M[p�{v}, ϕ0)@(w,ϕ0). The games E0 and E ′0 are exactly the same, except
when we reach a position of the form (u, p). In E ′0, such a position is winning for
∃ only if u = v. So in order to prove that f is winning for ∃ in E ′0, it is sufficient
to show that for all f -reachable positions (u, p) in E0, we have u = v.
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Let (u, p) be an f -reachable position in E0. In particular, (u, p) is a position
of the form (u, ϕ) with p active in ϕ. It follows from (ii) that (u, p) occurs in π.
This implies that u = v and this finishes the proof. 2

We turn now to the hard part of the proof, which consists in showing that a
formula that has the single point property can be rewritten as a formula in the
right syntactic fragment.

The translation τa Let ϕ0 be a positive sentence in µML∇, let Φ be a finite set
of subformulas of ϕ0, and let F be a family of finite sets of formulas in Sfor(ϕ0).
The formula τF(Φ) is defined by the list of instructions below, which has to be
read as follows: We apply the first instruction of the list which is applicable (there
will always be at least one instruction applicable). There are two possibilities.
Either the process stops or we end up with a new formula τF ′(Φ′) to be defined.
In the second case, we go trough the list again and apply the first instruction that
is applicable and so on. We show later that at some point, the process stops.

(1) If Φ is empty, we define τF(Φ) as >.

(2) If Φ contains the formula >, then we define τF(Φ) as τF(Φ\{>}).

(3) If Φ contains a formula ϕ of the form ϕ1∧ϕ2, we let Φ′ be the set (Φ\{ϕ})∪
{ϕ1, ϕ2} and we define τF(Φ) as τF(Φ′).

(4) If Φ contains a formula ϕ of the form µx.ψ or νx.ψ, then we let Φ′ be the set
Φ where we replace each formula of the form µx.χ or νx.χ by the formula
χ. We define τF(Φ) as τF(Φ′).

(5) If Φ contains a formula ϕ of the form ϕ1 ∨ ϕ2, then we let Φ1 be the set Φ
where we replace ϕ by ϕ1 and we let Φ2 be the set Φ where we replace ϕ
by ϕ2. We define τF(Φ) as τF(Φ1) ∨ τF(Φ2).

(6) If Φ contains a formula which is a variable, all formulas in Φ that are not
variables are of the form α • ∇Ψ and Φ does not belong to F , then we let
XΦ be the biggest set of variables such that XΦ ⊆ Φ. We also let Φ′ be the
set Φ where we replace each formula x ∈ XΦ by δx. We define τF(Φ) as
µxΦ.τF∪{Φ}(Φ

′).

(7) If Φ contains a formula which is a variable, all formulas in Φ that are not
variables are of the form α •∇Ψ and Φ belongs to F , then we define τF(Φ)
as xΦ.

(8) If Φ is a set of the form {α1 • ∇Φ1, . . . , αk • ∇Φk} and p does not occur in
α1 ∧ · · · ∧ αk, we define τF(Φ) as
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∨{
3τF

(
k⋃
i=1

Φ′i

)
∧

(
k∧
i=1

αi ∧∇e⊥[Φ′′i ]

) for all 1 ≤ i ≤ k,

Φ′i 6= ∅,Φ′i ∪ Φ′′i = Φi

}
.

(9) If Φ′ is a set of the form {α1 • ∇Φ1, . . . , αk • ∇Φk} and p does occur in
α1 ∧ · · · ∧ αk, we define τF(Φ) as

(α1 ∧ · · · ∧ αk) ∧
∧
{∇e⊥[Φi] | 1 ≤ i ≤ k}.

We will show in the next proposition that τF(Φ) is well-defined. Finally, we
define τa(ϕ0) as τ∅(ϕ0).

The intuition behind the definition of τF(Φ) is as follows. Our goal is to
translate the formula

∧
Φ into a formula in µMLA(p). This is done by induction

on the complexity of the formulas in Φ. If Φ contains a disjunction or the symbol
>, then it is easy how to proceed. If all the formulas in Φ are ∇-formulas, we use
a translation that is a variant of the one defined for the width property. Suppose
that the formula

∧
Φ is completely additive and is true at a point t in a model.

Assume that Φ = {α1 •∇Φ1, . . . , αk •∇Φk}. There are two possibilities: either p
occurs in α1 ∧ . . . αk or not. In the first case, p has to be true at t. Since

∧
Φ is

completely additive, we may assume that p is not true at all proper descendants of
t. Hence, we can replace p by ⊥ in the formulas of Φ1∪· · ·∪Φk. This corresponds
to case (9).

Otherwise, p does not occur in α1 ∧ . . . αk. Since
∧

Φ is completely additive,
there is a unique successor t′ such that p is true at one of the points of the model
generated by t′. In the evaluation game, at position (t, αi • ∇i), ∃ has to provide
a marking mi : Φi −→ P(R[t]). If a point t′′ in R[t]\{t′} is marked with a formula
ψ, then we can replace ψ by e⊥(ψ), since p is not true in the model generated by
t′′. Hence, if we define Φ′i as the set of formulas ψ such that t′ ∈ mi(ψ) and Φ′′i as
the set of formulas ψ such that mi(ψ) ∩ (R[t]\{t′}) 6= ∅, then the formula given
in (8) is true.

Next, suppose that one formula in Φ starts with a fixpoint operator. We
simply forget about it (we know that in the translated formula, p can only be
in the scope of least fixpoint operators by definition of µMLA(p)). If Φ contains
a variable, we unfold the variables in Φ. The problem is that by doing so, the
process will never stop and we will keep on unfolding variables.

The solution is to use the set F . Basically, in F , we keep track of all the
sets of formulas Φ that were encountered during the process. So when Φ contains
variables, instead of unfolding the variables, we first check, by looking at F ,
whether the set Φ appeared earlier. If not, we unfold the variables and we let Φ′
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be the set obtained after unfolding the variables in Φ. We also put a “marker”
for Φ, by writing the operator µxΦ before the formula corresponding to Φ′.

Otherwise, if Φ does belong to F , we stop the process and we simply write xϕ.
Note that the unfolding of xΦ in the translated formula, is the unique formula ψ
such that µxΦ.ψ is a subformula of the translated formula. It follows from the
construction of the translation, that ψ corresponds to the stage of the process
when we encountered Φ and unfolded its variables.

5.5.5. Proposition. For all positive guarded sentences ϕ0 in µML∇, τa(ϕ0) is
well-defined.

Proof We give a sketch of the proof that for all sentences ϕ0 in µML∇, the
translation τa(ϕ0) is well-defined. Given a formula ϕ, we write s(ϕ) for the
number of subformulas of ϕ. We let m be the size of the set Sfor(ϕ0), n the
number 2(2m) and l the number m · s(ϕ0). Given a set of formulas Φ ⊆ Sfor(ϕ0)
and given a family F of subsets of Sfor(ϕ0), we define the weight of (Φ,F),
notation: w(Φ,F), by the following:

w(Φ,F) := (n− |F|) · (l + 1) + Σϕ∈Φs(ϕ),

where |F| is the cardinal of F . We can look at the definition of τa as a pro-
cess which starts with the pair ({ϕ0}, ∅) and associates with each pair (Φ,F) in
P(Sfor(ϕ0))×PP(Sfor(ϕ0)) finitely many new pairs in P(Sfor(ϕ0))×PP(Sfor(ϕ0)),
until the process finishes. For example, if we apply the rule “If Φ contains a for-
mula ϕ of the form µx.ψ”, then there is a unique pair associated to (Φ,F), namely
the pair (Φ′,F), where Φ′ is the set Φ in which we replaced each formula of the
form ηx.χ by χ (where η ∈ {µ, ν}).

To show that τa(ϕ0) is well-defined, it is enough to show that the following
two properties hold. The weight of each pair is positive. The weight of each
new pair in P(Sfor(ϕ0))×PP(Sfor(ϕ0)) associated with a pair (Φ,F) is strictly
smaller than the weight of (Φ,F).

It follows easily from the definition of n that for all (Φ,F) in P(Sfor(ϕ0))×
PP(Sfor(ϕ0)), w(Φ,F) > 0. It is routine to verify the second property in most
cases and we only treat the most difficult case: case (6). That is, Φ contains
a formula that is a variable, all formulas in Φ that are not variables are of the
form α • ∇Ψ and Φ does not belong to F . Recall that Φ′ is the set Φ where we
replace each variable x ∈ XΦ by δx and that τF(Φ) is µxΦ.τF∪{Φ}(Φ

′). So we have
to check that the weight of (Φ′,F ∪ {Φ}) is strictly smaller than the weight of
(Φ,F).
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This follows from the following chain of inequalities:

w(Φ′,F ∪ {Φ}) = (n− |F| − 1) · (l + 1) + Σϕ′∈Φ′s(ϕ′), (Φ /∈ F)

≤ (n− |F| − 1) · (l + 1) + l, (†)
= (n− |F|) · (l + 1)− 1,

< (n− |F|) · (l + 1) + Σϕ∈Φs(ϕ),

= w(Φ,F).

Here (†) follows from the fact that Φ′ is a subset of Sfor(ϕ0), the s of Sfor(ϕ0) is
m and for all ϕ′ ∈ Φ′, s(ϕ′) ≤ s(ϕ0). 2

5.5.6. Proposition. A positive guarded sentence ϕ0 in µML∇ is completely ad-
ditive p iff ϕ0 is equivalent to τa(ϕ0).

Proof For the direction from right to left, suppose that ϕ0 is equivalent to τa(ϕ0).
Looking at the definition of τa, we see that the formula τa(ϕ0) belongs to the
fragment µMLA(p). By Proposition 5.5.4, this implies that τa(ϕ0) is completely
additive in p. Since ϕ0 is equivalent to τa(ϕ0), ϕ0 is completely additive in p.

For the direction from left to right, fix a positive sentence ϕ0 ∈ µML∇ that
is completely additive in p. In order to prove that ϕ0 and τa(ϕ0) are equivlent,
consider an arbitrary pointed model (T , r). We show that

T , r 
 ϕ0 iff T , r 
 τa(ϕ0). (5.13)

Without loss of generality (see Proposition 5.1.1) we may assume that T =
(T,R, V ) is an ω-unravelled tree with root r. Recall we use abbreviations of
the form E0, E ′0, . . . for initialized games, while we use abbreviations E , E ′, . . . for
non-initialized games.

For the direction ‘⇒’ of (5.13), assume that T , r 
 ϕ0. Since ϕ0 is com-
pletely additive, there is a point t0 ∈ V (p) such that T [p 7→ {t0}], r 
 ϕ0. By
Proposition 5.1.5 we may assume that ∃ has a positional winning strategy f in
the evaluation game E ′0 := E(T [p 7→ {t0}], ϕ0)@(r, ϕ0). We observe that any fi-
nite full f -conform E ′0-match ends with a position of the form (t,>) or with a
∇-marking m : Φ −→ R[t] for which there is no pair (ϕ, u) satisfying u ∈ m(ψ),
since the match is won by ∃. In the later case, this means that the point t has no
successor. Let π be any finite full f -conform E ′0-match with last position (t,>).
In order to simplify our proof later, we will assume that for all paths u0u1 . . .
such that t = u0, we have that π(u1,>)(u2,>) . . . is an f -conform E ′0-match.

We also let g be some maximal positional winning strategy ∃ in the evaluation
game Es := E(T , τa(ϕ0)). In order to prove that T , r 
 τa(ϕ0), it suffices to
provide ∃ with a winning strategy in the game Es initialized at (r, τa(ϕ0)).

The winning strategy h will be defined by stages. After finitely many stages,
∀ will get stuck or we will reach a position that is winning for ∃ in Es and she
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will then use the strategy g. This will guarantee that all h-conform Es-matches
are won by ∃, as g is a winning strategy for ∃ in Es.

Before defining h, we introduce some notation and we prove a first claim that
will correspond to a local construction of h (that is, during one stage).

Let P be the unique finite path from r to t0. There are finitely many partial
f -conform E ′0-matches with first position (r, ϕ0) and last position of the form
(t0, ψ), for some formula ψ. We denote by M the set of all these partial matches.
If π = (t0, ϕ0) . . . (tn, ϕn) is a full finite f -conform E ′0-match such that tn ∈ P
and tn 6= t0, then ϕn = > since t has at least one successor. In particular, such
a match π appears in disguise in M , namely as the match π(u1,>) . . . (un,>),
where u0 . . . un is the path between tn and t0.

We say that a position (t, ϕ) in the game Es M-corresponds to a set Φ of
formulas if the two following conditions hold. First, for all χ ∈ Φ, (t, χ) occurs
in a match in M and for all matches π ∈ M , there is a formula χ ∈ Φ such that
(t, χ) occurs in π. Second, for some family F of finite sets of formulas, we have
ϕ = τF(Φ).

1. Claim. If (t, ϕ) M -corresponds to Φ and ϕ 6= >, then ∃ has a strategy h
in Es@(t, ϕ) with the property that every h-conform partial match ρ leads to a
position z (distinct from (t, ϕ)) satisfying condition (a) or (b) below:
(a) z ∈Win∃(Es);
(b) z M -corresponds to some set Ψ.

Proof of Claim Fix a point t ∈ T and assume that (t, ϕ) M -corresponds to
Φ. So for some family F of finite sets of formulas, we have ϕ = τF(Φ).

First, we show that we may assume that no χ ∈ Φ is equal to >, a variable,
a conjunction or a formula of the form µx.ψ or νx.ψ. Take a formula χ in Φ.

If χ = >, we may delete χ in Φ and it will still be the case that (t, ϕ) M -
corresponds to Φ. If χ is a variable x, then we may replace x by δx in Φ. If χ is
a conjunction of the form ϕ2 ∧ ϕ3, we can replace Φ by (Φ\{χ}) ∪ {ϕ2, ϕ3}. If χ
is of the form µx.ψ or νx.ψ, we may replace χ by ψ in Φ. In all the cases, it will
still be true that (t, ϕ) M -corresponds to Φ.

Now suppose that a formula χ ∈ Φ is of the form ϕ1 ∨ ϕ2. Then, in the E ′0-
game, it is ∃’s turn at position (t, ϕ1 ∨ ϕ2). Following her strategy f , she moves
to position (t, ϕl), where l ∈ {1, 2}.

Now, let Φi be the set Φ where we replace ϕ by ϕi (i ∈ {1, 2}). Remember
that from our definition of τa, it follows that

τF(Φ) = τF (Φ1) ∨ τF (Φ2) .

Since ϕ = τF(Φ), it is ∃’s turn in the game Es, at position (t, ϕ). We let the
strategy h be such that ∃ chooses the position z = (t, τF (Φl)). The position
z M -corresponds to Ψ, where Ψ is the set Φ in which we replaced χ by ϕl.
Therefore, condition (b) holds.
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Next suppose that each formula in Φ is of the form α • ∇Ψ. We let Φ be
the set {ϕ1, . . . , ϕk}, where for all i ∈ {1, . . . , k}, the formula ϕi is of the form
αi •∇Φi. Since (t, ϕ) M -corresponds to Φ, there exists a match πi ∈M such that
(t, ϕi) occurs in πi. In the partial E ′0-match πi, the position (t, αi • ∇Φi) belongs
to ∃. Since πi is won by ∃, this implies that αi is true at t and according to f , ∃
picks a ∇-marking mi : Φi −→ P(R[t]).

First we show that

p occurs in α1 ∧ · · · ∧ αk iff t = t0. (5.14)

For the direction from left to right, suppose that p occurs in α1 ∧ · · · ∧ αk. Then
there is an i ∈ {1, . . . , k} such that αi contains p. Recall that by definition of
M -correspondence, (t, ϕi) is a winning position for ∃ in E ′0. In particular, αi is
true at t, which implies that p is true at t. In the game E ′0, there is a unique point
in T making p true, namely the point t0. So t = t0.

For the direction from right to left of equivalence (5.14), assume that t = t0.
Since ϕ0 is completely additive in p, ϕ0 is not true at r in the model T [p 7→ ∅]. So
this means that ∃ does not have a winning strategy in the game E⊥0 = E(T [p 7→
∅], ϕ0)@(r, ϕ0). In particular, f is not a winning strategy for ∃ in E⊥0 . The winning
conditions of E ′0 and E⊥0 are the same. The rules are the same, except when we
reach a position of the form (t0, α • ∇Ψ). The difference between the two games
is that in E ′0, α may contain p and ∃ could still win. In E⊥0 , if α contains p, then
∃ looses. Hence, in order to show that f is a a winning strategy for ∃ in E⊥0 , it is
sufficient to prove that no position of the form (t0, (α∧ p) •∇Ψ) is reached in an
f -conform E ′0-match with starting position (r, ϕ0). It follows from the definition
of M that there is a partial match πi ∈ M such that a position of the form
(t0, (α ∧ p) •∇Ψ) occurs in πi. This implies that α ∧ p is equal to αi, so p occurs
in α1 ∧ · · · ∧ αk and this finishes the proof of equivalence (5.14).

Next, we distinguish two cases:

• First, assume that p does not occur in α1 ∧ · · · ∧ αk. By (5.14), t 6= t0. So
t has a successor u on P .

Recall that ϕ is equal to τF (Φ) and Φ = {ϕ1, . . . , ϕk}, where for all i ∈
{1, . . . , k}, ϕi = αi • ∇Φi. By definition of τa, since p does not occur in
α1 ∧ · · · ∧ αk, ϕ is equal to

∨{
3τF

(
k⋃
i=1

Φ′i

)
∧

(
k∧
i=1

αi ∧∇e⊥[Φ′′i ]

) for all 1 ≤ i ≤ k,

Φ′i 6= ∅,Φ′i ∪ Φ′′i = Φi

}
. (5.15)

At position (t, ϕ) in the game Es, it is ∃’s turn and in order to pick one of
the disjuncts in (5.15), she has to choose for all i ∈ {1, . . . , k}, sets Φ′i and
Φ′′i such that Φ′i 6= ∅ and Φ′i ∪ Φ′′i = Φi.
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Take i ∈ {1, . . . , k}. Recall that we denote by mi the ∇-marking chosen
by ∃ at position (ti, αi • Φi), according to f . We define Φ′i as the set {ψ ∈
Φi | u ∈ mi(ψ)} and Φ′′i as the set {ψ ∈ Φi | for some u′ 6= u, u′ ∈ mi(ψ)}.
Since mi is a ∇-marking, the conditions Φ′i 6= ∅ and Φ′i ∪Φ′′i = Φi are easily
verified. Recall that by definition of the match πi, after ∃ chose the marking
mi in πi, ∀ picks a formula ψi such that u ∈ mi(ψi). .

So the next position in the game Es is the position z0 = (t,3τF

(⋃k
i=1 Φ′i

)
∧(∧k

i=1 αi ∧∇e⊥[Φ′′i )]
)

). It is ∀’s turn and there are two possibilities.

– Suppose first that at position z0, ∀ chooses the conjunct 3τF

(⋃k
i=1 Φ′i

)
.

Then ∃ has to play and we let her choose the successor u of t, moving

to position z := (u, τF

(⋃k
i=1 Φ′i}

)
. To show that condition (b) is sat-

isfied, recall that for all i ∈ {1, . . . , k}, ψi is the formula chosen by ∀
in πi, after ∃ played the marking mi. We let Ψ be the set {ψ1, . . . , ψn}
and we prove that z M -corresponds to Φ.

It is sufficient to show that τF

(⋃k
i=1 Φ′i}

)
= τF ({ψ1, . . . , ψk}). So

we can restrict ourselves to prove that {ψ1, . . . , ψk} =
⋃k
i=1 Φ′i. By

definition of Φ′i and ψi, we have that for all i ∈ {1, . . . , k}, ψi belongs
to Φ′i. So we only have to show that for all i ∈ {1, . . . , k}, Φ′i is a
subset of {ψ1, . . . , ψk}.
Take i ∈ {1, . . . , k} and take a formula ψ ∈ Φ′i. Let π′i be the partial
f -conform E ′0-match leading from (r, ϕ0) to (t,mi) and such that π′i is
a prefix of πi. Then there is a partial f -conform E ′0-match π which
extends π′i ◦ (u, ψ) and the last position of which is of the form (t0, χ).
Since M is the collection of all partial f -conform E ′0-matches of which
the last position is of the form (t0, χ), π belongs to M and there is
a natural number j such that π = πj. It follows that ψ = ψj. So
Φ′i ⊆ {ψ1, . . . , ψk} and this finishes the proof that the position z M -
corresponds to the set Ψ.

– Suppose next that ∀ chooses the conjunct
∧k
i=1

(
αi ∧∇e⊥[Φ′′i ]

)
. Then

it is again ∀ who has to make a move and he chooses a natural number
i ∈ {1, . . . , k}. Then the next position is z1 := (t, αi ∧ ∇e⊥[Φ′′]).
Suppose that ∀ chooses the first conjunct αi. Then we have to check
that αi is true at t. This follows from the facts that πi is a partial
f -conform E-match and that the position (t, αi • ∇Φi) occurs in πi.

Suppose next that at position z1, ∀ chooses the second conjunct∇e⊥[Φ′′i ],
leading to the position (t,∇e⊥[Φ′′i ]). Then ∃ has to come up with a
∇-marking m : e⊥[Φ′′i ] −→ P(R[t]).

Since T is ω-unravelled, there is a state vu ∈ R(t) \ {u} such that
T , u ↔ T , vu. Now we define m : e⊥Φ′′i −→ P(R[t]) such that for all
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ψ ∈ Φ′′i , we have

m(e⊥(ψ)) = {v | v ∈ mi(ψ), v 6= u} ∪ {u | vu ∈ mi(ψ)}.

In order to show that ∃ is allowed to make this move, we will prove
that

m : e⊥[Φ′′i ] −→ P(R[t]) is a ∇-marking. (5.16)

Given a successor v of t, we make the following case distinction. If
v 6= u, then since mi is a ∇-marking, there is a formula ψ ∈ Φ such
that v ∈ mi(ψ). So by definition of Φ′′i , ψ belongs to the set Φ′′i . Hence
we get that v ∈ m(e⊥(ψ)). If, on the other hand, v is equal to u, then
there exists a formula ψ ∈ Φ such that vu ∈ mi(ψ). It follows from the
definitions of vu and Φ′′i that ψ ∈ Φ′′i . Putting this together with the
definition of m, we get u ∈ m(e⊥(ψ)). Conversely, an arbitrary formula
in e⊥[Φ′′i ] is of the form e⊥(ψ) for some ψ ∈ Φ′′i . Then by definition of
Φ′′i there is some state v ∈ R(t) \ {u} such that v ∈ mi(ψ), and thus
v ∈ m(e⊥(ψ)). This proves (5.16).

The game continues with ∀ choosing a pair (v, e⊥(ψ)) such that v ∈
m(e⊥(ψ)), as the next position in the Es-match. If there is no such a
pair, then ∀ gets stuck and condition (a) is met immediately. Other-
wise, we will show that (a) holds in any case since we have

{(v, e⊥(ψ)) | v ∈ m(e⊥(ψ)} ⊆Win∃(Es). (5.17)

For a proof of (5.17), take an arbitrary pair (v, e⊥(ψ)) such that v ∈
m(e⊥(ψ)). Suppose first that v 6= u. Hence, v belongs to mi(ψ). Since
mi was part of ∃’s winning strategy f , we may conclude that (v, ψ) is a
winning position for ∃ in E ′0. Then by Proposition 5.1.5 it follows that
T [p 7→ {t0}], v 
 e(ψ). Since ϕ is positive in p and ψ is a subformula
of ϕ, it implies that T [p 7→ ∅], v 
 e(ψ). By Fact 5.1.6 we may infer
that T , v 
 e⊥(ψ), and so (v, e⊥(ψ)) ∈Win∃(Es).
Next suppose that v = u. By definition of m, vu belongs to m(ψ)
(where vu is a sibling of u such that T , u↔ T , vu). As in the previous
case it follows from Proposition 5.1.5 and Fact 5.1.6 that T , vu 

e⊥(ψ), and so by T , u ↔ T , vu we obtain that T , u 
 e⊥(ψ). From
this again it is immediate that (u, e⊥(ψ)) ∈ Win∃(Ew). This finishes
the proof of (5.17), and shows that condition (a) holds for any pair
chosen by ∀.

• Next assume that p does occur in α1 ∧ · · · ∧ αk. Then by (5.14), t =
t0. The formula ϕ is equal to τF (Φ) and Φ = {ϕ0, . . . , ϕk}, where for all
i ∈ {1, . . . , k}, ϕi = αi • ∇Φi. By definition of τa and since p occurs in
α1 ∧ · · · ∧ αk′ , ϕ is equal to

(α1 ∧ · · · ∧ αk) ∧
∧
{∇e⊥[Φi]) : 1 ≤ i ≤ k′}.
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At position (t0, ϕ), in the game Es, it is ∀’s turn. First suppose that he
chooses the first conjunct α1 ∧ · · · ∧ αk. Then, for all i ∈ {1, . . . , k}, we
have to verify that αi is true at t0. This follows from the facts that πi is an
f -conform E ′0-match and that the position (t, αi • ∇Φi) occurs in πi.

Suppose next that ∀ chooses the second conjunct
∧
{∇e⊥(Φi)) : 1 ≤ i ≤

k′}. Then it is again ∀ who has to play and he chooses a natural number
i ∈ {1, . . . , k}, leading to the position (t0,∇e⊥[Φ′′i ]). ∃ has to come up with
a ∇-marking m : e⊥[Φi] −→ P(R[t0]). We define m such that for all ψ ∈ Φi,

m(e⊥(ψ)) = mi(ψ).

Recall that mi is the ∇-marking chosen by ∃ (according to the winning
strategy f) at position (t, αi • ∇Φi) in the E ′0-match πi. Since mi is a ∇-
marking, we also have that m : e⊥[Φi] −→ P(R[t0]) is a ∇-marking. Then ∀
has to play and he may choose a position (u, e⊥(ψ)) such that u ∈ m(e⊥(ψ)).
If there is no such a position, then ∀ gets stuck and condition (a) is met.
Otherwise, we can show that condition (a) holds in any case. The proof is
similar to the one of (5.17), so we leave the details to the reader.

This finishes the proof of the claim. J

Now we define a winning strategy h for ∃ in Es@(r, τa(ϕ0)). It is immediate
by Claim 1 that we can define a strategy h for ∃ in Es such that for all h-conform
full Es-matches π with initial position (r, τa(ϕ0)), we have:

(†)

If ∀ does not get stuck, then π = z0z1 . . . is infinite and
(i) either there is i ∈ N such that zi ∈ Win∃(Es) and zizi+1 . . . is a

g-conform Es-match,
(ii) or for all i ∈ N, there exists j > i such that zj M -corresponds to

some set of formulas.

So we let h be a strategy for ∃ in Es such that (†) holds. In order to prove that
h is a winning strategy h for ∃ in Es@(r, τa(ϕ0)), let π be a full h-conform match.
First, if π is finite, then, by (†), π is won by ∃. Suppose now that π = z0z1 . . . is
infinite. If (i) holds, then it follows immediately from the fact that g is a winning
strategy for ∃, that π is won by ∃.

Next we prove that (ii) can never happen. Recall that if a position (t, ϕ)
M -corresponds to some set of formulas, then t belongs to P . So if there are
infinitely many positions in π thatM-correspond to some positions in π1, . . . , πk,
this means that the match π never leaves the path P . Since ϕ0 is guarded, τa(ϕ0)
is guarded and so every infinite Es-match corresponds to an infinite path, which
contradicts the fact that P is finite. This finishes the proof that h is a winning
strategy for ∃ in Es@(r, τa(ϕ0)) and the proof of the direction ‘⇒’ of (5.13).

For the other direction of (5.13), suppose that T , r 
 τa(ϕ0). So ∃ has a
positional winning strategy f s in the game Es0 := E(T , τa(ϕ0))@(r, τa(ϕ0)). If x
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is a variable of τa(ϕ0), we denote by δsx the unique subformula of τa(ϕ0) such
that µx.δsx or νx.δsx is a subformula of τa(ϕ0). We also let g be some maximal
positional strategy for ∃ in E := E(T , ϕ0).

We need to define a winning strategy h for ∃ in the game E initiated at (r, ϕ0).
As before, the strategy h will be defined in stages. After finitely many stages, we
will reach a position that is winning for ∃ in E and we will then use the strategy g.
This will guarantee that all h-conform E-matches are won by ∃, as g is a winning
strategy for ∃ in E . For the definition of the first stages of h, we make use of a
specific partial f s-conform Es0 -match π that is defined independently of h.

Intuitively, the match π is the longest partial f s-conform Es0 -match such that
each of its position contains a formula in which p is active. The construction of π
is done by stages. More precisely, we define π as the final stage of an inductively
defined sequence of partial f s-conform Es0 -matches π0, . . . , πn such that for all
i < n, πi v πi+1 (where v denotes the initial-segment relation). Moreover, the
last position of each πi will be of the form (t, τF (Φ)), for some t ∈ T , Φ ⊆ Sfor(ϕ0)
and F ⊆ P(Sfor(ϕ0)).

The match π0 is the single position match (r, τa(ϕ0)). Next suppose that we
already defined the match πi and that the last position reached in πi is (t, ϕ)
where ϕ = τF (Φ), for some t ∈ T , Φ ⊆ Sub(ϕ0) and F ⊆ P(Sfor(ϕ0)).

First we show that we may assume that no formula in Φ is a conjunction or
a formula of the form µx.χ or νx.χ. If ψ ∈ Φ is a conjunction ϕ1 ∧ ϕ2, we can
replace Φ by (Φ\{ψ}) ∪ {ϕ1, ϕ2} and it is still be the case that ϕ = τF (Φ). If
ψ ∈ Φ is a formula of the form µx.χ or νx.χ, we may replace ψ by χ in Φ and
we still have ϕ = τF (Φ). Without loss of generality, we can also suppose that if
Φ 6= {>}, then > /∈ Φ (if Φ 6= {>} and > ∈ Φ, we may delete > from Φ and we
still have ϕ = τF(Φ)).

To define the match πi+1, we make the following case distinction:

• Suppose that Φ = {>}. Then ϕ = >. We stop the construction and we
define π as πi.

• Suppose that Φ contains a formula of the form ϕ1 ∨ ϕ2. Then the formula
ϕ is equal to τF (Φ1) ∨ τF (Φ2), where Φi is the set Φ in which we replaced
ϕ1∨ϕ2 by ϕi (i ∈ {1, 2}). So using f s, at position (t, ϕ), ∃ chooses a position
z of the form (t, τF (Φl)), where l ∈ {1, 2}. The match πi+1 is defined by
πi+1 := πi ◦ z.

• Suppose that Φ contains a variable but no formula of the form ϕ1 ∨ ϕ2.
Assume also that Φ belongs to F . Then ϕ is equal to xΦ. The position in
Es0 following (t, ϕ) is z = (t, δsxΦ

). The match πi+1 is defined by πi+1 := πi◦z.

• Suppose that Φ contains a variable but no formula of the form ϕ1∨ϕ2. As-
sume also that Φ does not belong to F . Then ϕ is equal to µxΦ.τF∪{Φ} (Φ′),
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where Φ′ is the set Φ in which we replace each variable x ∈ Φ by δx. The po-
sition in Es0 following (t, ϕ) is z = (t, τF∪{Φ} (Φ′). The match πi+1 is defined
by πi+1 := πi ◦ z.

• Suppose that Φ is a set of the form {αi•∇Φi | i ∈ {1, . . . , k}}. If α1∧· · ·∧αk
contains p, then we stop the construction and we define π as πi. Otherwise,
the formula ϕ is equal to

∨{
3τF

(
k⋃
i=1

Φ′i

)
∧

k∧
i=1

αi ∧∇e⊥[Φ′′i ]
Φ′i 6= ∅,Φ′i ∪ Φ′′i = Φi

}
.

So, according to f s, ∃ chooses for all i ∈ {1, . . . , k}, sets Φ′i and Φ′′i such
that Φ′i 6= ∅ and Φ′i ∪ Φ′′i = Φi. Then, ∀ has to make a move and in
order to continue our definition of π, we can let him choose the conjunct

3τF

(⋃k
i=1 Φ′i

)
. So using f s, ∃ has to pick a successor u of t and the next

position z is
(
u, τF

(⋃k
i=1 Φ′i

))
. We define πi+1 as an f s-conform such that

πi v πi+1 and the last position of πi+1 is z.

Now we show that the above process terminates, so that we always end up with
a correctly defined match π = πn, for some n. Suppose for contradiction that it
is not the case. So for all i ∈ N, the partial match πi is well-defined. We let π′

be the unique infinite match such that for all i ∈ N, πi v π′. It follows from the
definition of the πi’s, that π′ is an f s-conform Es0 -match. Moreover, if we look at
the definition of the πi’s, we can see that if a position of the form (t, x) occurs in
π′, then x is equal to a formula of the form τF (Φ). Given the definition of τa, this
means that all the unfolded variables in π′ are µ-variables. So ∃ looses π′. This
contradicts the fact that π′ is an f s-conform Es0 -match and that f s is a winning
strategy for ∃.

Now that we defined the finite match π, we are ready to provide ∃ with a
winning strategy h in the game E ′. As in the proof of the direction ‘⇒’ of (5.13),
we first prove a preliminary claim that allow us to define h for the first few moves.
We say that a position (t, ψ) in the game E π-corresponds to (t, ϕ) if (t, ϕ) occurs
in π and for some set Ψ ⊆ Sub(ϕ0) containing ψ and some family F of subsets
of Sub(ϕ0), we have ϕ = τF (Ψ).

2. Claim. If (t, ψ) π-corresponds to (t, ϕ) and ψ 6= >, then ∃ has a strategy h
in E@(t, ψ) with the property that every h-conform partial match ρ leads to a
position z (distinct from (t, ψ)) satisfying condition (a) or (b) below:
(a) z ∈Win∃(E);
(b) z π-corresponds to a position (u, ϕ′) .

Proof of Claim Fix a position (t, ψ) which π-corresponds to a position (t, ϕ).
So for some set Ψ ⊆ Sub(ϕ0) containing ψ and some family F of subsets of
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Sub(ϕ0), we have

ϕ = τF (Ψ) . (5.18)

We may assume that Ψ = {ψ1, . . . , ψk}, ψ = ψ1 and for all i ∈ {2, . . . , k}, ψi is
distinct from ψ.

We will define the strategy h depending on the shape of ψ1. Suppose first that
ψ1 is a formula of the form µx.χ or νx.χ. Then the position following (t, ψ1) in
the game E is z := (t, χ). Let Ψ′ be the set Ψ in which we replace ψ1 by χ. Since
ϕ = τF (Ψ′), the position z satisfies condition (b).

Next assume that ψ1 is a conjunction χ1 ∧ χ2. Then in the game E , it is
∀’s turn and he can choose between the positions (t, χ1) and (t, χ2). Suppose
that ∀ chooses the position z := (t, χl), where l ∈ {1, 2}. Let Ψ′ be the set
(Φ\{ψ1})∪{χ1, χ2}. We have that τF(Ψ) = τF(Ψ′). So z π-corresponds to (t, ϕ),
since χl occurs in Ψ′ and ϕ = τF(Ψ′).

Now suppose that ψ1 is a variable x. Then the position following (t, ψ1) in
the game E is z = (t, δx). Let XΨ be the set of variables y such that y ∈ Ψ and
let Ψ′ be the set Ψ in which each variable y ∈ Ψ is replaced by δy. If Ψ does not
belong to F , then ϕ is equal to µxΨ.τF∪{Ψ} (Ψ′). So in Es0 , the position following
the position (t, ϕ) is z := (t, τF∪{Ψ} (Ψ′). The position z satisfies condition (b).

On the other hand, if Ψ belongs to F , then ϕ is equal to xΨ. So in Es0 , the
positions following the position (t, ϕ) = (t, xΨ) are of the form (t, µxΨ.τF ′ (Ψ′′))
and z := (t, τF ′ (Ψ′′)) respectively, for some F ′ and Ψ′′. So the position z satisfies
condition (b).

Suppose now that ψ1 is a formula of the form χ1 ∨ χ2. Let Ψ1 be the set
Ψ in which we replace ψ1 by χ1 and let Ψ2 be the set Ψ in which we replace
ψ1 by χ2. Then we have ϕ = τF (Ψ1) ∨ τF (Ψ2). So at position (t, ϕ), in the
Es0 -game, it is ∃ who has to play and suppose that according to f s, she chooses a
disjunct τF (Ψl), where l belongs to {1, 2}. We define h such that in the game E ,
at position (t, χ1 ∨ χ2), ∃ chooses the position z := (t, χl). Then condition (b) is
met.

It remains to consider the case when ψ1 is a formula of the form α1 •∇Φ1. So
we have to verify that α1 is true at t and we have to provide ∃ with a ∇-marking
m : Φ1 −→ P(R[t]). First, we show that we may assume that for all i ∈ {2, . . . , l},
the formula ψi is of the form αi • ∇Φi.

Take i ∈ {2, . . . , l}. If ψi is the formula >, we delete it from the set Ψ.
Suppose next that ψi is a variable. We let XΨ be the set of variables y such that
y ∈ Ψ and we let Ψ′ be the set Ψ in which each variable y ∈ Ψ is replaced by
δy. We observe that ψ1 /∈ XΨ and ψ1 ∈ Ψ′. If Ψ does not belong to F , then
ϕ is equal to µxΨ.τF∪{Ψ} (Ψ′). So if we replace Ψ by Ψ′ and ϕ by τF∪{Ψ} (Ψ′),
equality (5.18) remains true. On the other hand, if Ψ belongs to F , then ϕ is
equal to xΨ. It follows from the definition of τa that δsxΨ

is equal to τF (Ψ′). So if
we replace Ψ by Ψ′ and ϕ by τF (Ψ′), equality (5.18) remains true.

If ψi is of the form µx.χi or νx.χi, then we can replace ψi by χi in Ψ and
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equality (5.18) still holds. Finally suppose that ψi is a formula of the form
χ1 ∨ χ2. Let Ψ1 be the set Ψ in which we replace ψi by χ1 and let Ψ2 be the
set Ψ in which we replace ψi by χ2. Then we have ϕ = τF (Ψ1) ∨ τF (Ψ2). So at
position (t, ϕ), in the Es0 -game, it is ∃ who has to play and she chooses a disjunct
τF (Ψl), where l belongs to {1, 2}. So if we replace Ψ by Ψl and ϕ by τF (Ψl),
equality (5.18) remains true.

We observe that in order to assume that the formula ψi is of the form αi•∇Φi,
we may have to use one after each other the transformations described in the last
two paragraphs. We leave out the proof that this process will finish at some point,
but this basically follow from the fact that the formula ψi is guarded.

This finishes the proof that without loss of generality, we may assume that
for all i ∈ {2, . . . , l}, the formula ψi is of the form αi • ∇Φi. Now to define h, we
make the following case distinction:

• Suppose that α1∧· · ·∧αk does not contain p. Then ϕ is equal to the formula

∨{
3τF

(
k⋃
i=1

Φ′i

)
∧

(
k∧
i=1

αi ∧∇e⊥[Φ′′i ]

) for all 1 ≤ i ≤ k,

Φ′i 6= ∅,Φ′i ∪ Φ′′i = Φi

}
.

So in the game Es0 , at position (t, ϕ), it is ∃’s turn and assume that according
to f s, for all i ∈ {1, . . . , k}, she chooses sets Φ′i and Φ′′i such that Φ′i 6= ∅
and Φ′i ∪ Φ′′i = Φi, leading the Es0 -match to a position z′. Then it is ∀ who
makes a move in Es0 :

– Suppose that ∀ chooses the conjunct
∧k
i=1 αi ∧ ∇e⊥[Φ′′i ]. Then it is

again ∀ who has to play in Es0 . If ∀ picks the conjunct α1, the match
is finite and α1 has to be true at t, since f s is a winning strategy for
∃. If ∀ chooses the conjunct ∇e⊥[Φ′′1], then, according to f s, ∃ has to
come up with a ∇-marking m1 : e⊥[Φ′′1]) −→ P(R[t]).

– If at position z′ in Es0 , ∀ chooses the conjunct 3τF

(⋃k
i=1 Φ′i

)
, then

according to f s, ∃ picks a point u ∈ R[t]. The next position is (u, ϕ′),

where ϕ′ = τF

(⋃l
i=1 Φ′i

)
. Recall that by definition of π, this position

occurs in π.

We now go back to the game E . Recall that our goal is to prove that α1 is
true at t and to provide a ∇-marking m : Φ1 −→ P(R[t]). It follows from
the previous paragraphs that α1 is true at t. We define m as the map such
that for all χ ∈ Φ1,

– if χ belongs to Φ′1\Φ′′1, m(χ) := {u},
– if χ belongs to Φ′′1, m(χ) := {v | v ∈ m1(e⊥(χ))} ∪ {u | χ ∈ Φ′1}.
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We verify that m : Φ1 −→ P(R[t]) is a ∇-marking. Fix a successor v of t.
Since m1 is a ∇-marking, there is a formula χ such that v ∈ m1(χ); hence,
v ∈ m(χ). Next, fix a formula γ in Φ. If γ belongs to Φ′′1, then there is a
successor v of t such that v ∈ m1(e⊥(γ)), since m1 is a ∇-marking. So v
belongs to m(γ). Otherwise, γ belongs to Φ′1 and then, u belongs to m(γ).

After ∃ chose m, it is ∀ who has to move in E . Suppose that he picks a
position z = (v, χ), such that v ∈ m(χ). There are two possibilities: either
v ∈ m1(e⊥(χ)) or v = u and χ belongs to Φ′1. First suppose that v belongs
to m1(e⊥(χ)). Then we show that at position z, condition (a) is met. Since
m1 was part of ∃’s winning strategy f s, we may conclude that (v, e⊥(χ)) is
a winning position for ∃ in Es0 . Then by Proposition 5.1.5 it follows that
T , v 
 e⊥(χ), and by Fact 5.1.6 we know that T [p 7→ ∅], v 
 χ. Since χ is
positive in p, this gives T , v 
 e(χ). So (v, χ) belongs to Win∃(E).

Next assume that v = u and χ belongs to Φ′1. Then we claim that at position
z, condition (b) is satisfied. It is sufficient to prove that (u, χ) π-corresponds

to (u, ϕ′). But this follows from the facts that ϕ′ = τF

(⋃l
i=1 Φ′i

)
and

χ ∈ Φ′1.

• Suppose that α1 ∧ · · · ∧ αk contains p. Then ϕ is equal to the formula

(α1 ∧ · · · ∧ αk) ∧
∧
{∇e⊥[Φi] | 1 ≤ i ≤ k} ∧ ∇e⊥[Φ].

In the game Es0 , at position (t, ϕ), it is ∀’s turn. If he chooses the conjunct
α1, then the game is finite and α1 has to be true at t, since f s is a winning
strategy for ∃. Otherwise, he may also choose the conjunct ∇e⊥[Φ1]. Then
using f s, ∃ defines a ∇-marking m1 : e⊥[Φ′1] −→ P(R[t]).

We now go back to the game E . Recall that we have to show that α1 is
true at t and to provide a ∇-marking m : Φ1 −→ P(R[r]). Since we already
established that α1 is true at t, we are left with the definition of m. We
define m such that for all χ ∈ Φ′1, we have

m(χ) = {v | v ∈ m1(e⊥(χ))}.

Since m1 is a ∇-marking, we also have that m : Φ1 −→ P(R[t]) is a ∇-
marking.

After ∃ chose m in E , it is ∀ who has to move in E : he has to pick a position
z = (v, χ) such that v ∈ m(χ). We skip the proof that condition (a) is met,
as it is similar to the one for the previous case (where p does not occur in
α1 ∧ · · · ∧ αk).

J
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As in the proof of the opposite direction of 5.13, it is immediate by Claim 2
and the fact that (r, ϕ0) π-corresponds to (r, τa(ϕ0)), that we can define a strategy
h for ∃ in E such that for all h-conform full E-matches π′, we have:

(††)

If ∀ does not get stuck, then π′ = z0z1 . . . is infinite and
(i) either there is i ∈ N such that zi ∈ Win∃(E) and zizi+1 . . . is a

g-conform E-match.
(ii) or for all i ∈ N, there exists j > i such that zj Π-corresponds to

some position.

Now we let h be a strategy for ∃ in E satisfying (††). In order to prove that
h is a winning strategy for ∃ in Es0 , suppose that π′ is a full h-conform match. If
π is finite, then, by (††), π is won by ∃. Suppose that π′ = z0z1 . . . is infinite. If
(i) holds, then π is won by ∃, as g is a winning strategy for ∃.

Next we prove that (ii) is never satisfied. If a position (t, ϕ) π-corresponds to
some position, then t belongs to the path P . So as a corollary, if (ii) holds, then
the match π′ never leaves the path P . This is impossible as π′ is infinite and ϕ0

is guarded. 2

Proof of Theorem 5.5.3. Fix an arbitrary µ-sentence ϕ. We may assume ϕ
to be guarded. We define ϕa := τa(τ

∇
m (ϕ)), where τ∇m is the translation of The-

orem 5.1.8. Equivalence (5.11) is a consequence that Theorem and Proposi-
tion 5.5.5 (together with the observation that the range of the translation τa is a
subset of µMLA(p)).

The decidability of the finite width property follows by the observation that
the construction of the formula ϕa from ϕ is effective, and that it is decidable
whether ϕ and ϕa are equivalent. 2

5.5.7. Remark. Given a monotone guarded µ-sentence ϕ0, the size of τa(ϕ0) is
triply exponential in the size of ϕ0. As in the other sections, we did not investi-
gate the complexity of the problem of deciding whether a sentence is completely
additive, but it is easily seen to be elementary.

Similarly to the other sections, we could also have proved Theorem 5.5.3 using
translations at the level of automata. In the particular case of complete additivity,
the automata theoretic approach would not only have been useful for complexity
issues, but also to simplify the proof. We believe that part of the complexity of
the proof given earlier is due to the inductive definition of formulas. It was a bit
of a challenge to see how far we could go by staying at the level of formulas. This
fits into the perspective (mentioned in the general introduction) of this thesis
being a case study of the different methods to approach the µ-calculus.

In that respect, it is interesting to mention that if we drop the requirement
“v ∈ V (p)” in equivalence 5.10 (in the definition of complete additivity), then we
obtain another semantic property: the single point property, studied in a paper
co-authored by Yde Venema [FV10]. For the characterization of that fragment,
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we were not able to find a proof on the level of formulas and had to involve
automata (for more details, see [FV10]).

5.6 Conclusions

We gave syntactic characterizations of four semantic properties. The first three
properties (finite depth, finite width and continuity) are related to the continuous
fragment, in the sense that the combination of the finite depth and the finite width
fragments corresponds to the continuity property. The study of the continuous
fragment is mainly motivated by its links with Scott continuity and constructivity.

We also investigated complete additivity, which is an essential property in
order to characterize safety for bisimulations. Complete additivity was already
characterized by Marco Hollenberg [Hol98b]. We gave here an alternative proof
of this characterization.

It is not hard to prove some variations of our results. In particular, one
may show that the characterizations of the finite path property and complete
additivity still hold if we restrict our attention to the class of finitely branching
trees.

Putting our main results together with Theorem 5.1.8 and the complexity of
the satisfiability problem for µ-calculus, we easily obtained, for each semantic
property, the decidability of the question whether a given formula has that prop-
erty. It is interesting to show the exact complexity of this question. One difficulty
is that the procedures presented in this chapter rely on the transformation of a
µ-sentence into an equivalent disjunctive sentence. Hence, a first natural step
would be to understand the complexity of that latter transformation.

All the characterizations (and their proofs) presented here can be easily adapted
to the setting of modal logic. An interesting question would concern the adap-
tations of these characterizations to logics lying in between modal logic and µ-
calculus, such as PDL or CTL.

Finally, as mentioned in the section about continuity, it is interesting to clarify
the link between continuity and constructivity. In particular, we could try to
answer the following question: given a constructive formula ϕ, can we find a
continuous formula ψ satisfying µp.ϕ ≡ µp.ψ?





Chapter 6

Expressive power of CoreXPath
restricted to the descendant relation

XML is a standard for storage and exchange of data on the internet. Its basic
data structure is that of finite sibling-ordered tree: a finite tree in which the
children of each node are linearly ordered. Several languages were introduced
to describe XML documents and among them, the language XPath, which is
particularly convenient for selecting nodes and describing paths. In order to be
able to study XPath from a logical point of view, Georg Gottlob, Christoph Koch
and Reinhard Pichler isolated an essential navigational core of Xpath [GKP05],
called CoreXPath.

The logic CoreXPath is essentially a modal logic and the XML documents are
nothing but Kripke models with two basic modalities (one for the child relation
and the other one for the relation between the siblings of a node). The main
difference between CoreXPath and modal logic is that CoreXPath is a two-sorted
language: it contains both nodes expressions (which would be similar to formulas,
in the sense that they select points in a tree) and path expressions (which are like
PDL programs, as they select paths in a tree).

In this chapter, we exploit the connection between CoreXPath and modal
logic. The goal is not so much to prove very technical theorems, but to illustrate
how, by combining well-chosen results of modal logic, we can easily obtain results
for CoreXPath. Moreover, one of the results of the modal logic area that we use,
is an easy consequence of Theorem 5.5.3, established in the last chapter.

The results that we present, concerns the expressive power of CoreXPath. It
is easy to prove that CoreXPath is a fragment of first-order logic (using a variant
of the standard translation, presented in Chapter 2). However, not all first order
formulas (over the appropriate signature) are expressible in CoreXPath. In fact, it
was shown by Maarten Marx and Maarten de Rijke [MdR05] that the CoreXPath
node expressions capture exactly the two-variable first order formulas with one
and two free variables. A characterization in the same fashion for CoreXPath
path expression was also obtained.

165
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In this chapter, we focus on CoreXPath(↓+); that is the fragment of CoreXPath
for which the only axis allowed corresponds to the descendant relation (or to put
it in terms of modal logic, the only modality considered is associated with the
descendant relation). In determining the expressive power of this language, there
are at least two natural yardsticks. One is first-order logic, which is probably
the most well known logical language. The second, even more attractive one, is
monadic second order logic, which is a very well-behaved language on trees (see
Chapter 2). As mentioned earlier, CoreXPath is a fragment of first-order logic.
However, if we can characterize a fragments of CoreXPath in terms of MSO, this
means that we have a stronger result (in the sense that we can immediately derive
a characterization of this fragment in terms of FO).

Our two main results are a characterization of CoreXPath(↓+) node expres-
sions and a characterization of CoreXPath(↓+) path expressions, both in terms
of MSO. Each characterization is expressed in two different ways: using bisimu-
lations and in terms of simple operations on trees. Moreover, we can derive from
these results a decision procedure for establishing whether a given MSO formula
is equivalent to a CoreXPath(↓+) node expression or path expression.

The proofs of both characterizations follow the same scheme. Each of them
consists in combining two results concerning the µ-calculus. In the case of the
characterization for node expressions, the first result is the Janin-Walukiewicz
theorem (which characterizes the µ-calculus as a fragment of MSO) and the second
result is a consequence of the de Jongh-fixpoint theorem, mentioned in [Ben06]
(which says that on conversely well-founded transitive models, the µ-calculus and
modal logic have the same expressive power). In the case of the characterization
for path expressions, we use adaptations of these two results for µ-programs.
The adaptation of the Janin-Walukiewicz theorem for µ-programs is a direct
consequence of Theorem 5.5.3.

For CoreXPath(↓+) node expressions, similar characterizations have already
been proved by Miko laj Bojańczyk and Igor Walukiewicz [BW06, BW07], using
the framework of forest algebras (and without reference to modal logic). The
logic EF in their work corresponds to the node expressions of CoreXPath(↓+).
Miko laj Bojańczyk and Igor Walukiewicz [BW06] also established a similar char-
acterization for the fragment of CoreXPath where the only axis, or modalities,
allowed corresponds to the child relation and the descendant relation. Let us
finally mention that Miko laj Bojańczyk [Boj07] found a characterization of the
fragment of CoreXPath using the axis (modalities) associated to the ancestor and
the descendant relations.

Other alternative proofs for the characterization of CoreXPath(↓+) node ex-
pressions have also appeared, see e.g. [ÉI08], [Wu07] and [DO09]. The proof
presented here has been found independently and uses different methods (com-
bining well-known results from modal logic and µ-calculus). The advantage of
this new proof is that it can easily be extended to a similar characterization for
path expressions.
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In the first section, we introduce CoreXPath and emphasize its link with modal
logic. The second and the third sections contain respectively the characterizations
of the node and path expressions of CoreXPath(↓+). We gratefully acknowledge
a contribution of Miko laj Bojańczyk in a discussion about Theorem 6.3.1.

6.1 Preliminaries

6.1.1 XML trees

The language XPath is based on a tree representation of the XML documents.
Formally, given an infinite set Prop of proposition letters, we define an XML tree
as a structure T = (W,R,R→, V ), where

• (W,R) is a finite tree (with W the set of nodes and R the child relation),

• R→ is the successor relation of some linear ordering between siblings in the
tree,

• V : Prop −→ P(W ) labels the nodes with elements of Prop.

So an XML tree is nothing but a Kripke model for a modal language with
two modalities: one corresponding to the child relation and the other one to the
next sibling relation. In this particular setting, the elements of Prop correspond
to XML tags, such as, in the case of HTML, body, p, it, . . . . It is customary
to require that each node satisfies precisely one tag. In order to simplify the
presentation, it will be convenient for us not to make this requirement from the
start. However, all results can be adapted to the setting with unique node labels.

6.1.2 CoreXPath, the navigational core of XPath 1.0

There are two main types of expressions in CoreXPath: path expressions and
node expressions. Path expressions describe ways of traveling through the tree
and they are interpreted as binary relations, while node expressions are used to
describe properties of nodes and are interpreted as subsets. More precisely, the
syntax of CoreXPath is defined as follows:

Step := ↓ | ← | ↑ | →,
Axis := Step | Step+,

PathEx := . | Axis | PathEx [NodeEx] | PathEx/PathEx | PathEx ∪ PathEx,

NodeEx := p | 〈PathEx〉 | ¬NodeEx | NodeEx ∨ NodeEx,

where p belongs to Prop.
The axes correspond to basic moves one can make in the tree. The axe “.”

corresponds to staying at the current node. The axes ↓, ←, ↑ and → correspond
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Table 6.1: Comparison with Official XPath Notation [W3C]
our notation official notation our notation official notation
↓ children :: ∗ ↑ parent :: ∗
← preceding-sibling :: ∗[1] → following-sibling :: ∗[1]
↓+ descendant :: ∗ ↑+ ancestor :: ∗
←+ preceding-sibling :: ∗ →+ following-sibling :: ∗
p self :: p 〈PathEx〉 PathEx
¬NodeEx not(NodeEx) NodeEx ∨ NodeEx NodeEx or NodeEx

respectively to the child relation, the next sibling relation, the parent relation
and the previous sibling relation. Moreover, given one of these four axes A, the
axe A+ corresponds to the transitive closure of the relation associated to A. The
axes can be composed into path expressions by using composition (;), union (∪),
and node tests (·[·]). The node expression 〈PathEx〉 expresses that the current
node belongs to the domain of the binary relation defined by PathEx.

The reader familiar with original XPath notation will notice that we included
a number of abbreviations and alterations. Table 6.1 provides a comparison of
our notation with that of [W3C].

The semantics of CoreXPath expressions is given by two functions, [[·]]PExpr
and [[·]]NExpr. For any path expression A and XML tree T , [[A]]PExprT denotes a
binary relation over the domain of T , and for any node expression ϕ and XML
tree T , [[ϕ]]NExprT denotes a subset of the domain of T . Given an XML tree T =
(T,R,R→, V ), the binary relation [[·]]PExprT and the subset [[·]]NExprT are defined by
induction in the following way:

[[.]]PExpr = {(u, u) | u ∈ T},
[[a]]PExpr = Ra for all a ∈ Step,

[[a+]]PExpr = (Ra)
+ for all a ∈ Step,

[[A/B]]PExpr = {(u, v) | ∃w such that (u,w) ∈ [[A]]PExpr and (w, u) ∈ [[B]]PExpr},
[[A ∪B]]PExpr = [[A]]PExpr ∪ [[B]]PExpr,

[[A [ϕ]]]PExpr = {(u, v) | (u, v) ∈ [[A]]PExpr and v ∈ [[ϕ]]NExpr},

[[p]]NExpr = {u | u ∈ V (p)},
[[〈PathEx〉]]NExpr = {u | ∃v such that (u, v) ∈ [[PathEx]]PExpr},

[[¬ϕ]]NExpr = {u | u 6∈ [[ϕ]]NExpr},
[[ϕ ∨ ψ]]NExpr = [[ϕ]]NExpr ∪ [[ψ]]NExpr,

where R↓ is the relation R, R← is the converse of the relation R→, R↑ is the
converse of the relation R and given a binary relation Ra, (Ra)

+ is the transitive
closure of Ra. For readability, the superscript T is left out.
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For A ⊆ Axis, we will denote by CoreXPath(A) the fragment of CoreXPath in
which the only allowed axes are those listed in A.

6.1.3 Connections with modal logic

The are two main differences between modal logic and CoreXPath. First, the se-
mantics for CoreXPath is more restrictive (finite sibling-ordered trees as opposed
to arbitrary Kripke structure). Next, the syntax for CoreXPath is two-sorted
(node and path expressions, the interpretations of which are respectively subsets
and binary relations), whereas in modal logic, only formulas (which are inter-
preted as subsets) are considered. However, we can easily obtain a two-sorted
syntax for modal logic, by introducing modal programs. The definition of modal
program is a simplified version of the notion of program for PDL.

Modal programs Given a set A of actions, we define the set of modal programs
over the set A of actions by induction in the following way:

θ ::= Ra | ϕ? | θ; θ | θ ∪ θ,

where a ∈ A and ϕ is a modal formula over the set A of actions.

Given a Kripke modelM, the interpretation of a modal program θ is a binary
relation [[θ]]M over the domain of the model. This interpretation is defined by
induction on the complexity of the program. We do not give more details, as
this definition is a particular case of the semantics for PDL (see Chapter 2)
and the semantics for the µ-programs (see Chapter 2). We only recall that the
interpretation of ϕ? is the relation {(u, u) | ϕ is true at u}.

We would like to observe that the syntax for modal programs is the same as
the one for PDL, except that we do not use the Kleene star and that we can
only test with modal formulas (instead of PDL formulas). Moreover, in PDL, we
also allow formulas of the form 〈θ〉ϕ (where θ is a program and ϕ a formula) and
it is not the case for modal formulas. However, it is possible to show that for
all modal programs ϕ and for all modal programs, 〈θ〉ϕ is equivalent to a modal
formula (in fact, this can be proved easily using the translation τ2 from the proof
of the next proposition).

Equivalence between CoreXPath and modal logic Let A be a subset of Axis.
Given a CoreXPath(A) node expression ϕ and a modal formula over A, we say
that ϕ and ψ are equivalent (on finite trees) if for all XML trees T = (T,R,R→),
we have [[ϕ]]NExprT = [[ψ]]T .

Similarly, given a CoreXPath(A) path expression A and a modal program θ
over A, A and θ are equivalent (on finite trees) if for all XML trees T = (T,R,R→),
we have [[A]]PExprT = [[θ]]T .
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6.1.1. Proposition. Let A be a subset of Axis. There is an effective truth-
preserving translation from the set of CoreXPath(A) node and path expressions
to the set of modal formulas and programs over A, and vice-versa.

Proof Let A be a subset of Axis. Both translations are very similar and not
difficult to define; so we only give details for the translation which maps a
CoreXPath(A) node expression to an equivalent modal formula (over Prop and A)
and maps a CoreXPath(A) path expression to an equivalent modal program (over
Prop and A). This translation τ is defined as the composition of two translations
τ1 and τ2, which we define below.

The translation τ1 is defined by induction on the complexity of the path and
node expressions as follows:

τ1(a) = Ra, τ1(.) = >?,
τ1(A[ϕ]) = τ1(A); τ1(ϕ)?, τ1(A;B) = τ1(A); τ1(B),

τ1(A ∪B) = τ1(A) ∪ τ1(B), τ1(p) = p,
τ1(〈A〉) = 〈τ1(A)〉>, τ1(¬ϕ) = ¬τ1(ϕ),

τ1(ϕ ∨ ψ) = τ1(ϕ) ∨ τ1(ψ),

where a belongs to A, A and B are CoreXPath(A) path expressions, ϕ and ψ are
CoreXPath(A) node expressions and p is a proposition letter. Note that τ1 does
not necessarily map a node expression to a modal formula: formulas of the form
〈θ〉ϕ might occur in the range of τ1. Such formulas are not modal formulas, as
defined in Chapter 2.

To fix this problem, we introduce a translation τ2 which is defined by induction
on the complexity of the formulas and programs in the range of τ1:

τ2(Ra) = Ra, τ2(ϕ ∨ ψ) = τ2(ϕ) ∨ τ2(ψ),
τ2(ϕ?) = τ2(ϕ)?, τ2(ϕ ∧ ψ) = τ2(ϕ) ∧ τ2(ψ),
τ2(θ;λ) = τ2(θ); τ2(λ), τ2(〈Ra〉ϕ) = 3aτ2(ϕ),

τ2(θ ∪ λ) = τ2(θ) ∪ τ2(λ), τ2(〈ϕ?〉ψ) = τ2(ϕ) ∧ τ2(ψ),
τ2(p) = p τ2(〈θ;λ〉ϕ) = τ2(〈θ〉τ2(〈λ〉ϕ)),

τ2(¬p) = ¬p τ2(〈θ ∪ λ〉ϕ) = τ2(〈θ〉ϕ) ∨ τ2(〈λ〉ϕ),

where a belongs to A, p is a proposition letter, ϕ and ψ are PDL formulas in the
range of τ1, θ and λ are PDL programs in the range of τ1.

Finally we define τ as τ2 ◦ τ1. It is easy to check that τ has the required
properties. 2

As mentioned in the introduction, throughout the chapter, this connection will
help us to transfer well-known results of the modal logic area into the framework
of CoreXPath.
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6.2 CoreXPath(↓+) node expressions

We start by characterizing the CoreXPath(↓+) node expressions as a fragment of
monadic second order logic. Two characteristic features of CoreXPath(↓+) are
that (i) whether a node expression holds at a node depends only on the subtree
below it, and (ii) CoreXPath(↓+) expressions cannot see the difference between
children and descendants. It turns out that, in some sense, these two properties
characterize CoreXPath(↓+) as a fragment of monadic second-order logic. We
formalize these two features in two ways: using transitive bisimulations and in
terms of simple operations on trees.

Before we state the characterization, we fix some notation and introduce some
terminology.

Convention As the only axe that we consider is ↓+, we can forget about the
sibling order. More precisely, instead of evaluating node and path expressions
on XML trees, we interpret these expressions on finite tree models (as defined in
Section 2.6). Moreover, in this chapter, we never consider frames. So there is
no confusion if we use the word “tree” instead of “tree model” and we will do so
throughout this chapter.

Finally, recall that when we talk about MSO formulas on models, we always
have the same signature in mind, which consists of a binary relation and a unary
predicate for each proposition letter (for more details, see Section 2.6). In partic-
ular, the binary relation corresponds to the child relation, when we interpret an
MSO formula on a tree.

Equivalence An MSO formula ϕ(x) is equivalent to a CoreXPath(↓+) node
expression ψ if for all finite trees T and all nodes u ∈ T , we have T , u � ϕ(x) iff
u belongs to [[ψ]]T . When this happens, we write ϕ(x) ≡ ψ.

Transitive bisimulation Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two
Kripke models. A relation B ⊆ W × W ′ is a transitive bisimulation if for all
(w,w′) in B, we have

• the same proposition letters hold at w and w′,

• if wR+v, there exists v′ ∈ W ′ such that w′(R′)+v′ and (v, v′) ∈ B,

• if w′(R′)+v′, there exists v ∈ W such that wR+v and (v, v′) ∈ B.

A transitive bisimulation B between two models M = (W,R, V ) and M′ =
(W ′, R′, V ′) is total if the domain of B is W and the range of B is W ′.

A MSO formula ϕ(x) with one free first order variable is said to be invariant
under (transitive) bisimulation on a class C of models if for all modelsM,M′ in
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∼T
copyu−→v(T )

u
v

u
v

c(v)

Figure 6.1: The trees T and copyu−→v(T ).

C, all (transitive) bisimulations B ⊆ M×M′, and pairs (w,w′) ∈ B, we have
M, w � ϕ(x) iff M′, w′ � ϕ(x).

Intuitively, a transitive bisimulation is nothing but a regular bisimulation, ex-
cept that instead of considering the successor relation R, we focus on the transitive
closure of R.

The operation copy Let T = (T,R, V ) be a finite tree and let u, v be nodes
such that v is a descendant of u. Recall that Tv is the submodel of T generated
by v. We write copy(Tv) for a tree that is an isomorphic copy of Tv. In order
to make a distinction between a point w in Tv and the copy of w in copy(Tv),
we denote by c(w) the copy of w. We define copyu−→v(T ) as the tree that is
obtained by adding the isomorphic copy copy(Tv) to the tree T , plus an edge
from u to the copy c(v) of v, see Figure 6.1.

This definition allows us to make precise what it means not to distinguish
children from descendants: it means that T and copyu−→v(T ) are indistinguish-
able.

Invariance under the subtree and the copy operations Let ϕ(x) be an
MSO formula. We say that ϕ(x) is invariant under the subtree operation (on
finite trees) if for all finite trees T and nodes u,

T , u � ϕ(x) iff Tu, u � ϕ(x).

The formula ϕ(x) is invariant under the copy operation (on finite trees) if for
all finite trees T with root r, and with nodes u, v such that v is a descendant of
u,

T , r � ϕ(x) iff copyu−→v(T ), r � ϕ(x).

We can now state the characterization of CoreXPath(↓+) precisely.

6.2.1. Theorem. Let ϕ(x) be an MSO formula. The following are equivalent:

(i) ϕ(x) is equivalent to a CoreXPath(↓+) node expression,
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(ii) ϕ(x) is invariant under transitive bisimulation on finite trees,

(iii) ϕ(x) is invariant under the subtree and the copy operations.

Moreover, for all MSO formulas ϕ(x), we can compute a CoreXPath(↓+) node
expression ψ such that ϕ(x) ≡ ψ iff ϕ(x) is equivalent to a CoreXPath(↓+) node
expression.

The proof will be based on two known expressivity results. The first theorem
we use is the bisimulation characterization of the modal µ-calculus, due to David
Janin and Igor Walukiewicz (see Section 2.6 and [JW96]). This characterization
works on arbitrary Kripke models, but also on the restricted class of finite trees,
which is important for us.

Moreover, in the case of finite trees, the characterization is effective: it is de-
cidable whether an MSO formula is invariant under bisimulation, and for bisimu-
lation invariant MSO formulas an equivalent formula of the modal µ-calculus can
be effectively computed. Recall that an MSO formula ϕ(x) is equivalent on finite
trees, to a µ-sentence ψ if for all finite trees T and nodes u ∈ T , T , u � ϕ(x) iff
T , u 
 ψ.

6.2.2. Theorem (from [JW96]). An MSO formula ϕ(x) is equivalent on finite
trees to a µ-sentence iff ϕ(x) is invariant under bisimulation on finite trees.

Moreover, for all MSO formulas ϕ(x), we can compute a µ-sentence ψ such
that ϕ(x) and ψ are equivalent on finite trees iff ϕ(x) is equivalent on finite trees
to a µ-sentence.

Proof Let ϕ(x) be an MSO formula. It is immediate that if ϕ(x) is equivalent
on finite trees to a µ-sentence, then ϕ(x) is invariant under bisimulation on finite
trees. For the other direction of the implication, suppose that ϕ(x) is invariant
under bisimulation on finite trees.

It follows from the proof of the main result of [JW96] (Theorem 11) that we
can compute a µ-sentence ψ such that for all pointed models (M, w), we have

M, w 
 ψ iff Mω
w, w � ϕ(x).

Recall thatMω
w is the ω-expansion of the pointed model (M, w) (see Section 2.6).

A careful inspection of the proof shows that we can even get a stronger result:
we can compute n ∈ N and µ-sentence ψ such that for all pointed models (M, w),
we have

M, w 
 ψ iff (M, w)n, w � ϕ(x).

Recall that (M, w)n is the n-expansion of the pointed model (M, w) (see Sec-
tion 2.6). In particular, for all finite trees T and for all u ∈ T , we have

T , u 
 ψ iff (T , u)n, u � ϕ(x). (6.1)



174 Chapter 6. CoreXPath restricted to the descendant relation

Now recall that there is a bisimulation B between (T , u)n and T such that (u, u) ∈
B (see Section 2.6). Since ϕ(x) is invariant under bisimulation on finite trees,
this implies that

(T , u)n, u � ϕ(x) iff T , u � ϕ(x).

Putting this together with (6.1), we obtain that

T , u 
 ψ iff T , u � ϕ(x).

Therefore, ϕ(x) is equivalent on finite trees to a µ-sentence.
Moreover, it also easily follows from our proof that given an MSO formula

ϕ(x), we can compute a µ-sentence ψ such that ϕ(x) and ψ are equivalent on
finite trees iff ϕ(x) is equivalent on finite trees to a µ-sentence. 2

The second result we use is a consequence of the de Jongh-fixpoint theo-
rem which was proved independently by Dick de Jongh and Giovanni Sambin
(see [Smo85]). More specifically, we use the fact that the µ-calculus over mod-
els for Gödel-Löb logic (or equivalently, evaluated over transitive Kripke models,
that do not contain any infinite path) collapses to its modal fragment, as was
first observed by Johan van Benthem in [Ben06].

6.2.3. Theorem ([Ben06]). For all µ-sentences ϕ, we can compute a modal
formula ψ satisfying the following: For all Kripke models M = (W,R, V ) such
that R is transitive and M does not contain any infinite path, for all w ∈ W , we
have M, w 
 ϕ iff M, w 
 ψ.

In particular, for all finite transitive trees T + and all nodes u ∈ T +, we have
T +, u 
 ϕ iff T +, u 
 ψ.

We are now ready to prove that CoreXPath(↓+) is the transitive bisimulation
invariant fragment of MSO, by putting together Theorem 6.2.2 and Theorem 6.2.3.

6.2.4. Proposition. An MSO formula ϕ(x) is equivalent to a CoreXPath(↓+)
node expression iff ϕ(x) is invariant under transitive bisimulation on finite trees.

Moreover, for all MSO formulas ϕ(x), we can compute a CoreXPath(↓+) node
expression ψ such that ϕ(x) ≡ ψ iff ϕ(x) is equivalent to a CoreXPath(↓+) node
expression.

Proof First we show that an MSO formula ϕ(x) is equivalent to a CoreXPath(↓+)
node expression iff ϕ(x) is invariant under transitive bisimulation on finite trees.
We restrict ourselves to prove the difficult direction (the other one is a standard
induction on the complexity of CoreXPath(↓+) node expressions). Let ϕ(x) be a
MSO formula that is invariant under transitive bisimulation on finite trees. We
need to find a node expression χ of CoreXPath(↓+) such that for all finite trees
T and all nodes u, χ holds at u iff ϕ(u) is true.
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By Theorem 6.2.2, we can compute a µ-sentence ψ such that ϕ(x) and ψ
are equivalent on finite trees iff ϕ(x) is invariant under bisimulation. Since ϕ(x)
is invariant under transitive bisimulation on finite trees, in particular ϕ(x) is
invariant under ordinary bisimulation on finite trees. Hence, ϕ(x) and ψ are
equivalent on finite trees.

Now we show that for all finite trees T = (T,R, V ) and all nodes u in T , we
have

T , u 
 ψ iff T +, u 
 ψ, (6.2)

where T + = (T,R+, V ). Take a finite tree T = (T,R, V ) and a node u in T . Let
T + be the model (T,R+, V ) and let S be the unraveling of the pointed model
(T +, u) (see Section 2.6).

The canonical bisimulation between S and T + links u in S with u in T +.
It follows that T +, u 
 ψ iff S, u 
 ψ. Moreover, the canonical bisimulation
between S and T + constitutes a transitive bisimulation between S and T , which
links the node u in S to the node u in T . Since ψ is equivalent to ϕ(x) on finite
trees and ϕ(x) is invariant under transitive bisimulation on finite trees, we have
that

S, u 
 ψ iff T , u 
 ψ.
This finishes the proof of (6.2).

Next it follows from Theorem 6.2.3 that we can compute a modal formula χ
such that for all finite transitive trees T + and for all nodes u in T +,

T +, u 
 ψ iff T +, u 
 χ.

Given the connection between CoreXPath(↓+) and modal logic (see Section 6.1.3),
we can compute a node expression ξ of CoreXPath(↓+) such that for all finite
trees T = (T,R, V ) and all nodes u in T , we have

T +, u 
 χ iff u belongs to [[ξ]]T ,

where T + = (T,R+, V ). Putting everything together, we obtain that for all finite
trees T and all nodes u in T , T , u � ϕ(x) iff u belongs to [[ξ]]T . This finishes
the proof that an MSO formula ϕ(x) is equivalent to a CoreXPath(↓+) node
expression iff ϕ(x) is invariant under transitive bisimulation on finite trees.

Now it is easy to see that the fact that ξ is computable from ϕ(x) does not
depend on the fact that ϕ(x) was invariant under transitive bisimulation on finite
trees. The second statement of the proposition immediately follows.

2

To prove Theorem 6.2.1, it remains to show that (ii) and (iii) are equivalent,
by exploiting the tight link between transitive bisimulations and the operation
copyu−→v(T ).

The hardest direction is to show that (iii) implies (ii). Given a tree T and
its copy copyu−→v(T ), there is an obvious transitive bisimulation linking the two
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models. We call such a transitive bisimulation, a ∼-transitive bisimulation. Now
the idea is to show that each transitive bisimulation B, can be represented as the
composition of ∼-transitive bisimulations. It will then be easy that we can derive
(ii) from (iii). In order to make these intuitions more precise, we introduce the
following terminology.

The relation ∼ and its associated bisimulation Let T = (T,R, V ) and
S = (S,Q, U) be finite trees. We write T ⇒ S if there are nodes u and v of T
such that v is a descendant of u and S is isomorphic to copyu−→v(T ). We use
the notation T ∼ Sif T ⇒ S or S ⇒ T .

We say that a relation B ⊆ T × S is a ∼-transitive bisimulation for T and S
if one of the two following conditions holds. Either there exist u and v in T such
that S is isomorphic to copyu−→v(T ) and B is the relation

{(w,w) | w ∈ T } ∪ {(w, c(w)) | (v, w) ∈ R+}.

Or there exist u and v in S such that T is isomorphic to copyu−→v(S) and B is
the relation

{(w,w) | w ∈ S} ∪ {(c(w), w) | (v, w) ∈ Q+}.

If T1, . . . , Tn is a sequence of finite trees such that Ti ∼ Ti+1, for all i ∈
{1, . . . , n − 1}, we say that T1, . . . , Tn is a ∼-sequence between T1 and Tn. A
relation B ⊆ T1 × Tn is a ∼-transitive bisimulation for T1, . . . , Tn if either n = 1
and B is the identity or for all i ∈ {1, . . . , n− 1}, there exists a relation Bi which
is a ∼-bisimulation for Ti and Ti+1 and B = B1 ◦ · · · ◦Bn−1. A relation B between
two trees T and S is a ∼-transitive bisimulation if there is a ∼-sequence T1, . . . , Tn
between T and S such that B is a ∼-transitive bisimulation for T1, . . . , Tn.

6.2.5. Lemma. Let B be a total transitive bisimulation between two finite trees
T and S. Then there exists a ∼-transitive bisimulation between T and S that is
included in B.

Proof The proof is by induction on the depth of T . If the depth of T is 1, then
T and S are isomorphic and the lemma trivially holds.

For the induction step, suppose that T has depth n+ 1. Let r0 be the root of
T and s0 the root of S. Let also u0, . . . , uk be the children of r0 and v0, . . . , vm
the children of s0. Note that since T and S are linked by a total bisimulation,
the labels of r0 and s0 are the same and the depth of S is n+ 1.

First, we define Q as the tree obtained by taking the disjoint union of the
trees {Tu | u child of r0} and {Sv | v child of s0} and by adding a root r to it, the
label of which is the label of r0. We show that there exist a ∼-sequence between
T and Q and a ∼-transitive bisimulation for this sequence that is a subset of
{(r0, r)} ∪ {(u, u) | u ∈ T } ∪B.
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T

f(v0)
f(vm) T

. . .
f(v0) f(vm)

Figure 6.2: From T to T ′.

For each child v of s0, there exists a node f(v) in T such that f(v) and v
are linked by B. It follows that B ∩ (Tf(v) ×Sv) is a total transitive bisimulation
between Tf(v) and Sv. By induction hypothesis, there exist a ∼-sequence of finite
trees between Tf(v) and Sv and a ∼-transitive bisimulation Bv associated with
this sequence and included in B.

Next, let T ′ be the tree obtained by taking the disjoint union of {Tu |
u child of r0} and copies of the finite trees {Tf(v) | v child of s0} and by adding a
root to it, the label of which is the label of r0. If w belongs to a tree Tf(v) (where
v is a child of v0), we denote by cv(w) the copy of w that belongs to the copy
of Tf(v) in T ′. By definitions of ∼ and T ′, it is easy to see that there exists a
∼-sequence T0, . . . , Tm between T and T ′. Moreover, the relation B given by:

B = {(w,w) | w ∈ T }
∪ {(w, cv(w)) | v child of s0, w descendant of f(v) or w = f(v)},

is a ∼-transitive bisimulation for this sequence.

Now we define a ∼-sequence of trees Tm, . . . , T2m and ∼-transitive bisimula-
tions Bm, . . . , B2m such that T2m = Q and for all m + 1 ≤ i ≤ 2m, Bi is a ∼-
transitive bisimulation for a ∼-sequence between Ti−1 and Ti and Bm ◦ · · · ◦Bm+i

is a subset of

{(w,w) | w ∈ T } ∪ {(cvj(w), cvj(w)) | j > i, w ∈ Tf(vj)}
∪ {(cvj(w), t) | j ≤ i, (w, t) ∈ Bvj}.

The definitions of Tm, . . . , T2m and Bm, . . . , B2m are by induction. The tree
Tm has been previously defined and is equal to T ′. The relation Bm is defined as
{(w,w) | w ∈ Tm}. For the induction step, take 0 ≤ i ≤ m− 1. We define Tm+i+1

as the tree obtained by replacing in Tm+i, the subtree with root cvi+1
(f(vi+1)) by

the tree Svi+1
. That is, we replace the copy of Tf(vi+1) by the tree Svi+1

. Since
there is a ∼-sequence between Tf(vi+1) and Svi+1

, we can easily construct from it a
∼-sequence between the trees Tm+i and Tm+i+1. Moreover, we may assume that
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T

f(v0)
. . .

f(vm)

T

v0 . . .
vm

Figure 6.3: From T ′ to Q.

there is a ∼-transitive bisimulation Bm+i+1 associated to this sequence, such that

Bm+i+1 = {(w,w) | w 6= f(vi+1) and w is not a descendant of cvi+1
(f(vi+1))}

∪ {(cvi+1
(w), t) | (w, t) ∈ Bvi+1}.

It is routine to check that Tm+i+1 and Bm+i+1 satisfy the required properties.
Putting everything together, we obtain a sequence T0, . . . , T2m such that T0 =

T , T2m = Q and for all 0 ≤ i < 2m, there is a ∼-sequence between Ti and Ti+1.
Moreover, the ∼-transitive bisimulation B ◦ Bm ◦ · · · ◦ B2m between T0 and T2m

is equal to

{(w,w) | w ∈ T } ∪ {(w, t) | (w, t) ∈ Bv, for some child v of v0 }.

It follows from the fact that Bv ⊆ B for all children v of v0, that B1 ◦ · · · ◦B2m is
a subset of {(r0, r)}∪{(u, u) | u ∈ T }∪B. This finishes the proof that there exist
a ∼-sequence between T and Q and a ∼-transitive bisimulation for this sequence
that is a subset of {(r0, r)} ∪ {(u, u) | u ∈ T } ∪B.

Similarly we also obtain a ∼-sequence S1, . . . ,Sl between Q and S and a ∼-
transitive bisimulation for this sequence that is a subset of {(r, s0)}∪{(v, v) | v ∈
S}∪B. We can deduce that the sequence of finite trees T1, . . . , Tn,S2, . . . ,Sl is a
∼-sequence between T and S and there is a ∼-transitive bisimulation associated
with this sequence and included in B. 2

6.2.6. Proposition. An MSO formula ϕ(x) is invariant under transitive bisim-
ulation on finite trees iff ϕ(x) is invariant under the subtree and copy operations.

Proof The direction from left to right follows easily from the facts that ϕ(x)
is invariant under transitive bisimulation on finite trees and that the relation
{(w,w) | w ∈ T } ∪ {(w, c(w)) | vR+w} is a transitive bisimulation between T
and copyu−→v(T ).

For the direction from left to right, suppose that an MSO formula ϕ(x) is
invariant under the subtree and copy operations. We have to prove that ϕ(x)
is invariant under transitive bisimulation on finite trees. Let B be a transitive
bisimulation between two finite trees T and T ′ and suppose that (u, u′) belongs
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to B. Then, B ∩ (Tu × T ′u′) is a total transitive bisimulation between Tu and
T ′u′ . It follows from Lemma 6.2.5 that there exists a ∼-sequence between Tu and
T ′u′ . Using the fact that is invariant under the copy operation, we can check by
induction on the length of the ∼-sequence that Tu, u � ϕ(x) iff T ′u′ , u′ � ϕ(x).
Putting this together with the fact that is invariant under the subtree operation,
we obtain that T , u � ϕ(x) iff T ′, u′ � ϕ(x). 2

Using Proposition 6.2.4 and Proposition 6.2.6, we obtain Theorem 6.2.1.
Putting the second statement of Theorem 6.2.1 together with the decidability
of MSO on finite trees, we obtain the following result.

6.2.7. Corollary. It is decidable whether an MSO formula is equivalent to a
CoreXPath(↓+) node expression.

6.2.8. Remark. We would like to mention that although the equivalence be-
tween (i) and (iii) is specific to the setting of finite trees, the equivalence be-
tween (i) and (ii) can be adapted the case of trees. Note that strictly speaking,
a CoreXPath(↓+) node expression cannot be, by definition, evaluated on an in-
finite tree. However, there is an obvious way to extend the interpretation of
CoreXPath(↓+) node expressions to the setting of infinite trees. Using a similar
proof to the one we gave for Theorem 6.2.1, we can show that an MSO formula
ϕ(x) is equivalent to CoreXPath(↓+) node expression on trees iff ϕ(x) is invariant
under transitive bisimulation.

6.3 CoreXPath(↓+) path expressions

Now we will adapt this method in order to obtain a similar characterization for
path expressions. As before, the characterization is twofold. We provide a first
characterization that is formulated in terms of transitive bisimulations. We also
give another characterization based on the link between CoreXPath(↓+) path
expressions and the operation copy. We start by introducing some terminology.

Equivalence An MSO formula ϕ(x, y) is equivalent to a CoreXPath(↓+) path
expression A on finite trees if for all finite trees T and for all nodes u, v in
T , T , (u, v) � ϕ(x, y) iff (u, v) belongs to [[A]]T . When this happens, we write
ϕ(x, y) ≡ A.

In the setting of programs, the notion corresponding to invariance under bisim-
ulation, is the notion of safety for bisimulations, which was introduced by Johan
van Benthem [Ben98].

Safety for bisimulations An MSO formula ϕ(x, y) is safe for (transitive)
bisimulations on finite trees if for all finite trees T , T ′, (transitive) bisimulations
B ⊆ T × T ′, pairs (u, u′) ∈ B, and nodes v ∈ T , if T , (u, v) � ϕ(x, y), then there
exists a node v′ ∈ T ′ such that (v, v′) ∈ B and T ′, (u′, v′) � ϕ(x, y).
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ϕ ϕ

ϕ ϕ

Figure 6.4: Condition (6.3).

ϕ ϕ

Figure 6.5: Condition (6.4).

Invariance under the subtree and the copy operations Let ϕ(x, y) be an
MSO formula. We say that ϕ(x, y) is invariant under the subtree operation (on
finite trees) if for all finite trees T and for all nodes u, v in T such that v is a
descendant of u,

T , (u, v) � ϕ(x, y) iff Tu, (u, v) � ϕ(x, y).

The formula ϕ(x, y) is invariant under the copy operation (on finite trees) if
for all finite trees T , for all nodes u, v, w, t in T such that v is a descendant of u
and t a descendant of v, we have

T , (w, t) � ϕ(x, y) iff copyu−→v(T ), (w, t) � ϕ(x, y), (6.3)

copyu−→v(T ), (w, c(t)) � ϕ(x, y) implies T , (w, t) � ϕ(x, y). (6.4)

6.3.1. Theorem. Let ϕ(x, y) be an MSO formula. The following are equivalent:

(i) ϕ(x, y) is equivalent to a CoreXPath(↓+) path expression,

(ii) ϕ(x, y) is safe for transitive bisimulations on finite trees,

(iii) it is the case that ϕ(x, y) is invariant under the subtree and copy operations.

Moreover, given an MSO formula ϕ(x, y), we can compute a CoreXPath(↓+)
path expression A such that ϕ(x, y) is equivalent to a CoreXPath(↓+) path ex-
pression iff ϕ(x, y) ≡ A.
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The structure of the proof is the same as the one for node expressions. It is
based on versions of the Janin-Walukiewicz theorem and the de Jongh fixpoint
theorem, adapted to the setting of µ-programs (instead of µ-formulas). We recall
the syntax for the µ-programs. The µ-programs are given by

θ ::= R | ϕ? | θ; θ | θ ∪ θ | θ∗,
where ϕ is a µ-sentence.

Given a Kripke model, these µ-programs are interpreted as binary relations
over the model. These binary relations are defined by induction on the complex-
ity of the programs. We only recall that the interpretation of θ∗ is the reflexive
transitive closure of the relation corresponding to θ. For more details, see Sec-
tion 2.6.

There exists an expressivity result for µ-programs, which is the equivalent of
the Janin-Walukiewicz theorem. It was proved by Marco Hollenberg [Hol98b] (for
more details about this result, see Section 5.5 in Chapter 5). We show here how
to derive this result from Theorem 5.5.3, in the special case where we restrict
the class of structures to finite trees. Recall that an MSO formula ϕ(x, y) is
equivalent on finite trees to a µ-program θ if for all finite trees T and nodes u, v
in T , T , (u, v) � ϕ(x, y) iff (u, v) ∈ [[θ]]T .

6.3.2. Theorem. [from [Hol98b]] An MSO formula ϕ(x, y) is safe for bisimula-
tions on finite trees iff it is equivalent on finite trees to a µ-program.

Moreover, given an MSO formula ϕ(x, y), we can compute a µ-program θ such
that ϕ(x, y) is equivalent on finite trees to a µ-program iff ϕ(x, y) is equivalent to
θ on finite trees.

Proof The proof mainly relies on a variant of Theorem 5.5.3. The method used
to derive the result from Theorem 5.5.3 is the one used by Johan van Benthem
in [Ben98].

It is easy to show by induction on the complexity of µ-programs (and using the
fact that µ-formulas are invariant under bisimulation) that a µ-program is safe for
bisimulations. Hence, it is sufficient to show that given an MSO formula ϕ(x, y),
we can compute a µ-program θ such that if ϕ(x, y) is safe for bisimulations on
finite trees, then ϕ(x, y) and θ are equivalent on finite trees.

Let ϕ(x, y) be an MSO formula. Let ψ(x) be the MSO formula ∃y(ϕ(x, y) ∧
P (y)), where P is a unary predicate corresponding to a fresh proposition letter p
(i.e. p does not occur in ϕ(x, y)). By Theorem 6.2.2, we can compute a µ-sentence
χ such that ψ(x) is invariant under bisimulation on finite trees iff ψ(x) and χ are
equivalent on finite trees. It is easy to see that if ϕ(x, y) is safe for bisimulations,
then ψ(x) is invariant under bisimulation on finite trees and in particular, ψ(x)
is equivalent to χ on finite trees.

Now the formula χ is completely additive with respect to p on finite trees.
That is, for all finite trees T = (T,R, V ) and all nodes u in T ,

T , u 
 ψ iff there is a node v ∈ V (p) such that T [p 7→ {v}], u 
 ψ.
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It follows from Theorem 5.5.3 that for each formula that is completely additive
with respect to p, we can compute an equivalent formula in the syntactic fragment
µMLA(p). The proof of Theorem 5.5.3 could be easily adapted to show that for
each formula χ that is completely additive in p on finite trees, we can compute a
formula in µMLA(p), that is equivalent to χ on finite trees.

Moreover, as observed in Section 5.5 of Chapter 5, a formula belongs to
µMLS(p) iff it is equivalent to a formula of the form 〈θ〉p, where p does not
occur in the program θ. In fact, given a formula in µMLS(p), we can compute
a µ-program θ such that the formula is equivalent to 〈θ〉p. Putting everything
together, we can compute a µ-program θ in which p does not occur, such that
that χ is equivalent on finite trees to 〈θ〉p.

Recall that if ϕ(x, y) is safe for bisimulations, then ψ(x) is equivalent to χ on
finite trees. Hence, if ϕ(x, y) is safe for bisimulations, ψ(x) is equivalent to 〈θ〉p
on finite trees. It follows from the definition of ψ(x) that if ψ(x) is equivalent to
〈θ〉p on finite trees, then ϕ(x, y) is equivalent to θ on finite trees. This finishes
the proof that given an MSO formula ϕ(x, y), we can compute a µ-program θ
such that if ϕ(x, y) is safe for bisimulations on finite trees, then ϕ(x, y) and θ are
equivalent on finite trees. 2

We can also prove a variant of Theorem 6.2.3, which applies to programs.
Recall that a modal program is a µ-program which does not contain any Kleene
star ∗ and all its subprograms of the form ϕ? are such that ϕ is modal (a precise
definition was given in Section 6.1).

6.3.3. Theorem. For all µ-programs θ, we can compute a modal program λ such
that for all finite transitive trees T +, we have [[θ]]T + = [[λ]]T +.

Proof The proof consists in showing that on finite transitive trees, each µ-
program is equivalent to a finite disjunction of modal programs which are in
a special shape. We call these modal programs basic. More precisely, we say that
a modal program is a basic modal program if it belongs to the language defined
by the following grammar

θ ::= ϕ? | (θ;R;ϕ?),

where ϕ is a modal formula. We show that each µ-program is equivalent to a
finite disjunction of basic modal programs on finite transitive trees. The proof is
by induction on the complexity of the µ-programs.

First, assume that θ a program of the form ϕ? (where ϕ is a µ-sentence).
Then it follows from Theorem 6.2.3 that ϕ is equivalent to a modal formula ψ on
finite transitive trees. Therefore, θ is equivalent to the basic modal program ψ?
on finite transitive trees.

The cases where θ is the program R or a program of the form θ1 ∪ θ2, are
immediate. Next assume that θ is of the form θ1; θ2. By induction hypothesis,
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there exist sets Γ1 and Γ2 of basic modal programs such that θ1 =
∨

Γ1 and
θ2 =

∨
Γ2. It follows that θ is equivalent to the modal program

∨
{γ1; γ2 | γ1 ∈

Γ1, γ2 ∈ Γ2}. It remains to check that for all γ1 in Γ1 and all γ2 in Γ2, γ1; γ2 is
equivalent to a basic modal program. Since γ1 and γ2 are basic programs, there
are modal formulas ϕ1, . . . , ϕn and ψ1, . . . , ψk such that γ1 = ϕ1?;R; . . . ;R;ϕn?
and γ2 = ψ1?;R; . . . ;R;ψk?. Therefore, γ1; γ2 is equivalent to the basic program

ϕ1?;R; . . . ;R; (ϕn ∧ ψ1)?;R;ψ2;R; . . . ;R;ψk?.

The only case left is where θ is a µ-program of the form λ∗. By induction
hypothesis, λ is equivalent to the modal program

∨
Γ, for some set Γ of basic

modal programs. We prove that θ is equivalent to the disjunction of the set ∆
given by:

∆ = {γ1; . . . ; γn | n ∈ N, γ1, . . . , γn ∈ Γ and γ1, . . . , γn are pairwise distinct}.

First, it is routine to check that [[
∨

∆]]T + is a subset of [[λ∗]]T + , on all finite
transitive trees T +. So it remains to show that if T + is a finite transitive tree
and if the pair (u, v) belongs to [[λ∗]]T + , then there is a program δ in ∆ such that
(u, v) belongs to [[δ]]T + .

Let (u, v) be such a pair. Since θ is equivalent to (
∨

Γ)∗ on finite transitive
trees, there are programs γ1, . . . , γn in Γ such that (u, v) belongs to [[γ1; . . . ; γn]].
The problem is that γ1, . . . , γn might not be pairwise distinct. First, suppose that
for all i ∈ {1, . . . , n}, the program γi is of the form ϕi? (for some modal formula
ϕi). Then, it is easy to see that if there are i and j such that ϕi = ϕj, we can
delete the program γj from the list γ1, . . . , γn, without modifying the fact that
(u, v) belongs to [[γ1; . . . ; γn]].

Next suppose that there is at least one program γi0 which is not of the form
ϕ? (for some modal formula ϕ). First, we may assume that in fact no program
γi is of the form ψ?. If there were such a program, say γi = ψ?, then we could
remove γi from the list γ1, . . . , γn and it will still be the case that (u, v) belongs
to the relation associated to the program γ1; . . . ; γn.

Now suppose that there are i and j such that i < j and γi = γj. Since γi is
not a program of the form ψ?, it follows from the induction hypothesis that there
exists a formula ψ and a basic modal program γ such that γi = ψ?;R; γ. Since
(u, v) belongs to [[γ1; . . . ; γn]] and γi = γj = ψ?;R; γ, there are nodes u1 and u2

such that

• (u, u1) belongs to [[γ1; . . . ; γi−1;ϕ?]],

• (u1, u2) belongs to [[R; γ; γi+1; . . . ; γj−1;ϕ?;R]],

• (u2, v) belongs to [[γ; γj+1; . . . ; γn]].

Note that if (u1, u2) belongs to [[R; γ; γi+1; . . . ; γj−1;ϕ?;R]], then in particular, u2

is a descendant of u2. That is, (u1, u2) belongs to [[R]]. So we obtain that
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• (u, u1) belongs to [[γ1; . . . ; γi−1;ϕ?]],

• (u1, u2) belongs to [[R]],

• (u2, v) belongs to [[γ; γj+1; . . . ; γn]].

That is, (u, v) belongs to [[γ1; . . . ; γi; γj+1; . . . ; γn]]. This means that whenever
there are i and j such that i < j and γi = γj, we can remove the programs
γi+1, . . . , γj from the list γ1, . . . , γj and it is still the case that (u, v) belongs to
the relation associated to the program γ1; . . . ; γn. By repeating this operation, we
may assume that (u, v) belongs to [[γ1; . . . ; γn]], where the programs γ1, . . . , γn are
pairwise distinct. Therefore, (u, v) belongs to [[

∨
∆]] and this finishes the proof

that for all µ-programs θ, there exists a modal program λ which is equivalent to
θ on finite transitive trees. A careful inspection of the proof shows that λ can be
effectively computed from θ. 2

We can now prove that CoreXPath(↓+) path expressions correspond to the
MSO[↓] formulas that are safe for bisimulations.

6.3.4. Proposition. An MSO formula ϕ(x, y) is equivalent on finite trees to a
CoreXPath(↓+) path expression iff ϕ(x, y) is safe for transitive bisimulations on
finite trees.

Moreover, given an MSO formula ϕ(x, y), we can compute a CoreXPath(↓+)
path expression A such that ϕ(x, y) is equivalent to a CoreXPath(↓+) path ex-
pression iff ϕ(x, y) ≡ A.

Proof First, we show that an MSO formula ϕ(x, y) is equivalent on finite trees to
a CoreXPath(↓+) path expression iff ϕ(x, y) is safe for transitive bisimulations on
finite trees. For the direction from left to right, the proof is a standard induction
on the complexity of CoreXPath(↓+) path expressions.

For the direction from right to left, let ϕ(x, y) be an MSO formula that is safe
for transitive bisimulations on finite trees. By Theorem 6.3.2, we can compute a
µ-program θ such that ϕ(x, y) and θ are equivalent on finite trees iff ϕ(x, y) is safe
for bisimulations on finite trees. Since ϕ(x, y) is safe for transitive bisimulations
on finite trees, ϕ(x, y) is safe for bisimulations on finite trees. Hence, ϕ(x, y) and
θ are equivalent on finite trees.

Now we show that for all finite trees T = (T,R, V ), we have that [[θ]]T is equal
to [[θ]]T + . Take a finite tree T = (T,R, V ) and nodes u, v in T . We have to show
that

(u, v) ∈ [[θ]]T iff (u, v) ∈ [[θ]]T + . (6.5)

Let T + be the transitive tree (T,R+, V ) and let S be the unraveling of the
pointed model (T +, u) (see Section 2.6). Recall that S is a finite tree the root of
which is u. Its domain is the set of paths of T + with starting point u.
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For the direction from left to right of (6.5), suppose that (u, v) belongs to
[[θ]]T . The canonical bisimulation B between S and T + is a transitive bisimulation
between S and T such that (u, u) belongs to B. Since θ and ϕ(x, y) are equivalent
on finite trees and ϕ(x, y) is safe for transitive bisimulations on finite trees, it
follows from (u, v) ∈ [[θ]]T and (u, u) ∈ B that for some s = (ui)i≤n in S, we have
(v, s) ∈ B and (u, s) ∈ [[θ]]S . By definition of B, (v, s) ∈ B implies that un = v.
Now as θ is a µ-program, it is safe for bisimulations. Since (u, s) ∈ [[θ]]S and the
pair (u, u) belongs to the canonical bisimulation B between S and T +, we have
(u, v′) ∈ [[θ]]T + and (v′, s) ∈ Bc, for some v′ in T +. By definition of the canonical
bisimulation B, this can only be the case if un = v′. Since un = v, it follows that
v′ = v. Putting everything together, we obtain that (u, v) belongs to [[θ]]T + .

For the direction from right to left of (6.5), suppose that (u, v) belongs to
[[θ]]T + . Since (u, u) belongs to the bisimulation B and α is safe for bisimulation,
there exists s = (ui)i≤n such that (u, s) ∈ [[θ]]S and (v, s) ∈ B. By definition of
B, this can only happen if un = v. Now we have that (u, s) ∈ [[θ]]S , (u, u) belongs
to the transitive bisimulation B and α is equivalent to ϕ(x, y), which is safe for
transitive bisimulations. Therefore, there exists v′ ∈ T such that (u, v′) ∈ [[θ]]T
and (s, v′) ∈ B. Since (s, v′) belongs to B, we have un = v′. We established earlier
that un = v. Hence, v = v′. Putting everything together, we have (u, v) ∈ [[θ]]T
and this finishes the proof that [[θ]]T = [[θ]]T + .

It also follows from Theorem 6.3.3 that θ is equivalent on finite transitive trees
to a modal program λ. Given the connection between CoreXPath(↓+) and modal
logic (see Section 6.1.3), there exists a CoreXPath(↓+) path expression A such
that for all finite trees T = (T,R, V ) and for all nodes u, v ∈ T .

(u, v) ∈ [[λ]]T + iff [[A]]T ,

where T + = (T,R+, V ). Putting everything together, we found a CoreXPath(↓+)
path expression A such that for all finite trees T and all nodes u, v in T , T , (u, v) �
ϕ(x, y) iff (u, v) belongs to [[A]]T . This finishes the proof of the firsts statement.

Now it is easy to see that the fact that A is computable from ϕ(x, y) does
not depend on the fact that ϕ(x, y) was safe for transitive bisimulations on finite
trees. The second statement of the proposition immediately follows.

2

6.3.5. Proposition. An MSO formula ϕ(x, y) is safe for transitive bisimula-
tions on finite trees iff ϕ(x, y) is invariant under the subtree and copy operations.

Proof The direction from left to right follows easily from the facts that ϕ(x, y) is
safe for transitive bisimulations on finite trees and that the relation {(w,w) | w ∈
T }∪{(w, c(w)) | vR+w} is a transitive bisimulation between T and copyu−→v(T ).

For the direction from right to left, suppose that ϕ(x, y) is an MSO formula
that is invariant under the subtree and copy operations. In order to show that
ϕ(x, y) is safe for transitive bisimulation on finite trees, let B be a transitive



186 Chapter 6. CoreXPath restricted to the descendant relation

bisimulation between two finite trees T and S. Suppose that (u0, v0) belongs to B
and that there is a node u1 such that T , (u0, u1) � ϕ(x, y). We have to prove that
there exits a node v1 ∈ S such that (u1, v1) belongs to B and S, (v0, v1) � ϕ(x, y).

First observe that B∩(Tu0×Sv0) is a total transitive bisimulation between Tu0

and Sv0 . By Lemma 6.2.5, there exist finite trees T1, . . . , Tn, relations B1, . . . , Bn1

such that T1 = Tu0 , Tn = Sv0 , Bi is a ∼ -transitive bisimulation between Ti and
Ti+1 (for all i ∈ {1, . . . , n− 1}) and B1 ◦ · · · ◦ Bn−1 is included in B. We denote
by B0 the transitive bisimulation {(w,w) | w ∈ T1} between T1 and T1.

Now we prove by induction on i that for all 1 ≤ i ≤ n,

there exists (u1, wi) ∈ B0 ◦ · · · ◦Bi−1 such that Ti, (ri, wi) � ϕ(x, y), (6.6)

where ri is the root of Ti. The case where i = 1 is immediate as T , (u0, u1) �
ϕ(x, y) and T1 = Tu0 . Let us turn to the induction step i + 1. By induction
hypothesis, there exists (u1, wi) ∈ B0 ◦ · · · ◦ Bi−1 such that Ti, (ri, wi) � ϕ(x, y).
Since Bi is a ∼-transitive bisimulation between Ti and Ti+1, either Ti ⇒ Ti+1 or
Ti+1 ⇒ Ti. We suppose that Ti+1 ⇒ Ti. The other case is in fact easier. So
there are nodes u, v of Ti+1 such that Ti is equal to copyu−→v(Ti+1). Since Bi

is a ∼-transitive bisimulation and (wi, wi+1) ∈ Bi, either wi belongs to Ti+1 or
wi = c(w) for some descendant w of v in Ti+1.

If wi belongs to Ti+1, we can define wi+1 as wi and by the fact that ϕ(x, t)
is invariant under the copy operation (see condition (6.3)), it is the case that
Ti+1, (ri+1, wi+1) � ϕ(x, y). If wi = c(w) for some descendant w of v in Ti+1, we
can define wi+1 as w and using the fact that ϕ(x, y) is invariant under the copy
operation (see condition (6.4)), we have Ti+1, (ri+1, wi+1) � ϕ(x, y). This finishes
the proof of (6.6).

Next let v1 be a node such that (u1, v1) belongs to B1 ◦ · · · ◦ Bn−1 and
Tn, (rn, v1) � ϕ(x, y). That is, Sv0 , (v0, v1) � ϕ(x, y). Using the fact that ϕ(x, y)
is invariant under the subtree operation, we get that S, (v0, v1) � ϕ(x, y). Finally,
since B1 ◦ · · · ◦Bn−1 ⊆ B, (u1, v1) belongs to B. Putting everything together, we
found a node v1 in S such that (u1, v1) belongs to B and S, (v0, v1) � ϕ(x, y). 2

Putting Proposition 6.3.5 and Proposition 6.3.4 together, we obtain a proof
of Theorem 6.3.1. Putting the second statement of Theorem 6.3.1 together with
the decidability of MSO on finite trees, we obtain the following result.

6.3.6. Corollary. It is decidable whether an MSO formula is equivalent to a
CoreXPath(↓+) path expression.

6.3.7. Remark. Similarly to the observation at the end of the previous section,
we can extend the equivalence between (i) and (ii) in Theorem 6.3.1 to the setting
of infinite trees.
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6.4 Conclusions

In this chapter, we gave a characterization of the MSO formulas that are equiva-
lent to a CoreXPath(↓+) node expression. First we formulated the characteriza-
tion in terms of bisimulations, using classical results about fixpoints. We derived
from this result another characterization which involves closure properties under
some simple operations on finite trees. We gave a similar characterization for the
MSO formulas that are equivalent to a CoreXPath(↓+) path expression. From
both characterizations, we could derive a decision procedure.

We could ask what is the complexity of the procedure (in Theorem 6.2.1)
that, given an MSO formula ϕ(x), determines whether ϕ(x) is equivalent to a
CoreXPath(↓+) node expression. We did not look in details at this question but
we suspect that this procedure may be non-elementary. A possible proof would be
to reduce our problem to the satisfiability problem for MSO on finite trees, which
is non-elementary. The same comment holds for the complexity of the procedure
in Theorem 6.3.1.

It is an important open question whether there is a similar decidable character-
ization for full CoreXPath in terms of MSO. Thomas Place and Luc Segoufin [PS10]
recently characterized the node expressions of an important fragment of CoreXPath,
namely CoreXPath(↓+, ↑+,←+,→+).





Chapter 7

Automata for coalgebras: an approach
using predicate liftings

Automata theory is intimately connected to the µ-calculus, as illustrated in the
preliminaries, in Chapter 5 and even in Chapter 4 (an important tool is the fact
that MSO and the graded µ-calculus have the same expressive power on trees,
which relies on an automata theoretic proof). Inspired by these examples, we
introduce a notion of automata corresponding to coalgebraic fixpoint logic, which
is a generalization of the µ-calculus. We also present one application: similarly to
the case of the µ-calculus, we show that the satisfiability problem for coalgebraic
fixpoint logic reduces to the non-emptiness problem for automata and derive a
finite model property and a complexity result for the satisfiability problem for
coalgebraic fixpoint logic.

Universal coalgebra provides a general and abstract way to define state-based
evolving systems such as ω-words, trees, Kripke models, probabilistic transition
systems, and many others. This general and abstract way is based on category
theory. Formally, given a functor F on the category of sets, a coalgebra is a pair
S = (S, σ), where S is the carrier or state space of the coalgebra, and σ : S
−→ FS is its unfolding or transition map.

Logic enters the picture when one wants to reason about coalgebras. There
are two main different approaches to introducing coalgebraic logic, but they both
have the same starting point.

Since coalgebras are meant to represent dynamical systems, one would expect
that the logic should not be able to distinguish structures describing the same
process, or the same behavior. This is exactly what happens when we describe
Kripke models with modal logic: the notion of bisimulation is used to express
that two pointed models have the same behavior and modal logic is easily seen
to be invariant under bisimulation. The idea is to use the Kripke models as a key
example of coalgebra and to extend the definition of modal logic to the setting of
universal coalgebra.

There were two main proposals for extending the definition of modal logic.

189
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In [Mos99], Larry Moss introduced a modality ∇F generalizing the ∇ modality
for Kripke models to coalgebras of arbitrary type. This approach is uniform in
the functor F , but as a drawback only works properly if F satisfies a certain
category-theoretic property (viz., it should preserve weak pullbacks); also the
nabla modality is syntactically rather nonstandard.

As an alternative, Dirk Pattinson [Pat03] and others developed coalgebraic
modal formalisms, based on a completely standard syntax, that work for coal-
gebras of arbitrary type. In this approach, for each set Λ of predicate liftings
(the definition of which is recalled in Section 7.2) for a functor F , we introduce
a coalgebraic logic MLΛ. The main idea is that each predicate lifting in Λ cor-
responds to a modality of MLΛ. Many well-known variations of modal logic in
fact arise as the coalgebraic logic MLΛ associated with a set Λ of such predicate
liftings; examples include both standard and (monotone) neighborhood modal
logic, graded and probabilistic modal logic, coalition logic, and conditional logic.

Following the example of modal logic, we can increase the expressive power
of these coalgebraic logics by adding fixpoint operators. The coalgebraic fixpoint
logic obtained by adding fixpoint operators to the logic based on Moss’ modality
was introduced by Yde Venema [Ven06b]. Recently, Corina Ĉırstea, Clemens
Kupke and Dirk Pattinson [CKP09] introduced the coalgebraic µ-calculus µMLΛ

(where Λ is a set of predicate liftings), which is the extension of MLΛ with fixpoint
operators.

Since automata theory has played a fundamental role in the understanding of
the µ-calculus, it seems natural to develop notions of automata for the broader
setting of fixpoint coalgebraic logic. As there are two approaches for coalgebraic
logic, one may expect two kinds of automata (one for each approach). So far
only automata corresponding to fixpoint languages based on Moss’ modality have
been introduced (see [Ven06b]). Moreover, in [KV08], Clemens Kupke and Yde
Venema generalized many results in automata theory, such as closure properties
of recognizable languages, to this class of automata.

Our contribution is to define automata corresponding to the coalgebraic fix-
point logic based on the idea that modalities are predicate liftings (as defined
in [CKP09]). More precisely, given a set Λ of monotone predicate liftings for
a functor F , we introduce Λ-automata as devices that accept or reject pointed
F -coalgebras (that is, coalgebras with an explicitly specified starting point). We
emphasize that unlike the coalgebra automata introduced in [Ven06b], these au-
tomata are defined for all functors (and not only the one preserving weak pull-
backs).

As announced, Λ-automata provide the counterpart to the coalgebraic fixpoint
logic µMLΛ and there is a construction transforming a µMLΛ-formula into an
equivalent Λ-automaton. Hence we may use the theory of Λ-automata in order
to obtain results about coalgebraic fixpoint logic.

We give here an example: We use Λ-automata in order to prove a finite model
property for coalgebraic fixpoint logic. We also derive from the proof a complexity
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bound for the satisfiability problem for µMLΛ.
More precisely, we reduce the satisfiability problem for the coalgebraic fixpoint

logic MLΛ to the non-emptiness problem for a Λ-automaton. Then we show that
any Λ-automaton A with a non-empty language recognizes a coalgebra S that
can be obtained from A via some uniform construction. The size of S is finite
(in fact, exponential in the size of A). On the basis of our proof, in Theorem
7.3.4, we give a doubly exponential bound on the complexity of the satisfiability
problem of µMLΛ-formulas (provided that the one-step satisfiability problem of
Λ has a reasonable complexity).

Compared to the work of Corina Ĉırstea, Clemens Kupke and Dirk Pattin-
son [CKP09], our results are more general in the sense that they do not depend
on the existence of a complete tableau calculus. On the other hand, the cited
authors obtain a much better complexity result. Under some mild conditions on
the efficiency of their complete tableau calculus (conditions that are met by e.g.
the modal µ-calculus and the graded µ-calculus), they establish an EXPTIME
upper bound for the satisfiability problem of the µ-calculus for Λ. However, in
Section 7.4 below we shall make a connection between our satisfiability game
and their tableau game, and on the basis of this connection one may obtain the
same complexity bound as in [CKP09] (if one assumes the same conditions on
the existence and nature of the tableau system).

7.1 Preliminaries

7.1.1 Coalgebras

As mentioned in the introduction, universal coalgebra provides an abstract way
of defining dynamical systems, which is based on category theory. However, very
little knowledge about category theory is required for this chapter. We only need
the notions of category, functor and natural transformation. We start by recalling
these definitions.

Category A category consists of a class of objects, a class of arrows and two
operations on arrows that are called the identity and the composition. Each arrow
has a domain and a codomain which belong to the class of objects. If an arrow
f has a domain S and codomain T , we write f : S −→ T and we say that f is
an arrow between S and T . The identity assigns to each object S an arrow 1S
with domain S and codomain S. The composition assigns to each pair of arrows
(f, g) a new arrow, notation: g ◦ f , the domain of which is the domain of f and
the codomain of which is the codomain of g.

Moreover, the identity and the composition must satisfy the following two
axioms. If f, g and h are arrows such that the codomain of h is equal to the domain
of g and the codomain of g is equal to the domain of h, then h◦(g◦f) = (h◦g)◦f
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(the associativity axiom). If S is an object, then for all arrows f with domain S
and for all arrows g with codomain g, we have f ◦ 1S = f and 1S ◦ g = g (the
identity axiom).

The only two categories that we consider in this chapter are the category Set
and the category Setop . The objects of the categories Set and Setop are the sets.
Given two sets S and T , an arrow from S to T in Set is a map from S to T .
An arrow from S to T in Setop is a map from T to S. The identity and the
composition operations on Set and Setop are defined as usual.

Functor Let C and D be two categories. A functor F : C −→ D consists of
two functions. The object function which assigns to each object S of C an object
FS of D and the arrow function which assigns to each arrow f : S −→ T of C,
an arrow Ff : FS −→ FT such that the two following conditions hold. For all
objects S of C, F (1S) = 1FS. For all arrows f : S −→ T and g : T −→ U of C, we
have F (g ◦ f) = Fg ◦ Ff .

Examples of functors that are crucial in this chapter are the n-contravariant
powerset functors. For each n ∈ N0, we define the n-contravariant powerset
functor Qn : Set −→ Setop . Qn maps a set S to the set Qn(S) = {(U1, . . . , Un) |
for all 1 ≤ i ≤ n, Ui ⊆ S}. Moreover, for all arrows f : S −→ T of Setop , the

action of Qn on f is such that for all subsets U1, . . . , Un of T , Qf(U1, . . . , Un) =
(f−1[U1], . . . , f−1[Un]).

Coalgebra Let F : Set −→ Set be a functor. A F -coalgebra is a pair (S, σ)
where S is a set and σ is a function σ : S −→ FS. S is called the carrier set of S.
A pointed coalgebra is a pair (S, s), where S is a coalgebra and s belongs to the
carrier set of S. The size of a coalgebra S is the cardinality of the set S.

For convenience, we assume the functors F : Set −→ Set to be standard . That
is, for all subsets U of a set S, FU is a subset of FS and the inclusion map i
from U to S is mapped by F to the inclusion map from TU to TS. Note that
we can make this restriction without loss of generality: For every non-standard
functor F ′, there exists a standard functor F such that the class of F -coalgebras is
equivalent to the class of F ′-coalgebras (for more details, see for instance [Bar93]).

A morphism of F -coalgebras from S to S ′, written f : S −→ S ′, is a function
f : S −→ S ′ such that the following diagram

TS TS ′-
F (f)

S S ′-f

?

σ

?

σ′

commutes.
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As mentioned in the introduction, many mathematical structures can be seen
as coalgebras. We give here a few examples, that we use as running examples
through this chapter. The examples are only here as illustrations and are not
essential for understanding of this chapter.

7.1.1. Example. (1) We write P for the covariant powerset functor. It maps a
set to its powerset and its action on arrows is such that for all maps f : S −→ T ,
Pf(U) = f [U ], for all subsets U of S. A P-coalgebra consists of a set S and a
map from S to its powerset P(S).

In fact, P-coalgebras correspond to Kripke frames. The key observation is
that given a set W , a binary relation R ⊆ W × W can be represented by a
function R[·] : W −→ P(W ) that maps a point to its set of successors. So a
Kripke frame (W,R) corresponds to the P-coalgebra (W,R[·]).

(2) We denote by B the bags, or multiset functor that maps a set S to the set
B(S) that contains the maps from S to N with finite support (that is, there only
finitely many points in S that are not mapped to 0). Given a map f : S −→ T ,
the map B(f) is defined such that for all maps g : S −→ N with finite support,
((B(f))g)(t) =

∑
f(s)=t g(s).

B-coalgebras can be seen as directed graphs with N-weighted edges, known
as multigraphs [DV02]. We might assume that the edges with a weight equal
to 0 are not represented. In this case, the B-coalgebras correspond exactly the
directed graphs with N-weighted edges and such that there only finitely many
edges going out of each point.

(3) The monotone neighborhood functor M maps a set S to M(S) = {U ∈
QQ(X) | U is upwards closed}, and a function f to M(f) = QQ(f) = (f−1)−1.
Coalgebras for this functor are monotone neighborhood frames [HK04].

(4) We write D for the distribution functor that maps a set S to D(S) = {g : S
−→ [0, 1] |

∑
s∈S g(s) = 1} and a function f : S −→ T to the function D(f) : D(S)

−→ D(T ) that maps a probability distribution g to a probability distribution
(D(f))(g) such that for all t ∈ T , (D(f))(g)(t) =

∑
f(s)=t µ(s). In this case

coalgebras correspond to Markov chains [BSd04].
(5) Given a functor F from Set to Set, we define a new functor P(Prop)× F

from Set to Set. This new functor maps a set S to the set P(Prop) × FS and
maps a function f : S −→ T to a function g : P(Prop) × FS −→ P(Prop) × FT
such that g(P, η) = (P, Ff(η)), for all P ⊆ Prop and η ∈ FS.

For example, in case F = P , a P(Prop) × F -coalgebra is nothing but a
Kripke model. Indeed, a Kripke model (W,R, V ) can be seen as the coalgebra
(W,V −1[·]×R[.]), whereR[.] is defined as in the first example and V −1[·] is the map
from W to P(Prop) such that for all w ∈ W , V −1[w] = {p ∈ Prop | w ∈ V (p)}.

The last notion related to category theory that we use in this chapter is the
notion of a natural transformation. It plays a central role in the definition of
coalgebraic logic.
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Natural transformation Let C and D be two categories and let F,G : C −→ D
be functors. A natural transformation λ from F to G, written λ : F −→ G, is a
family of D-arrows λS : FS −→ GS, indexed by the objects of C, such that for all
C-arrows f : S −→ T , the following diagram

C D

S

T
?

f

FT GT-
λT

FS GS-λS

?
F (f)

?
G(f)

commutes.

7.1.2 Graph games

The proofs of our main results are based on a game characterizing the coalgebraic
automata the associated language of which is not empty. So we will be dealing
often with vocabulary related to game theory. Basic notions of game theory can
be found in Chapter 2. We introduce the notion of finite memory strategy, which
plays a crucial role in this chapter. We also mention some sufficient conditions
for games such that their winning strategies (if existing) can be assumed to be
based on a finite memory.

Finite memory strategy Recall that given a set G, we write G∗ for the set
of finite sequences of elements in G; we write Gω for the set infinite sequences of
elements in G. If π ∈ G∗ +Gω, we write Inf (π) for the set of elements in G that
appear infinitely often in π.

Recall also that given a game G = (G∃, G∀, E,Win), we write G for the
board G∃ ∪ G∀ of the game. Similarly, we write G′ for the board of a game
G′ = (G′∃, G

′
∀, E

′,Win ′).
Given a partial map f , we denote by Dom(f) the domain of f . A strategy f

for a player σ in a game G = (G∃, G∀, E,Win) is a finite memory strategy if there
exist a finite set M , called the memory set, an element mI ∈ M , a partial map
f1 : G×M −→ G and a partial map f2 : G×M −→M such that the following holds.
For all G-match z0 . . . zk ∈ Dom(f), there exists a sequence m0 . . .mk ∈M∗ such
that

m0 = mI ,mi+1 = f2(zi,mi) (for all i < k) and f(z0 . . . zk) = f1(zk,mk).

Next, we introduce regular games and show that their winning strategies can
be assumed to have a finite memory. The regular games are games the winning
condition of which is specified by an automaton.
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Regular games A graph game G = (G∃, G∀, E,Win) is called regular if there
exist a finite alphabet Σ, a coloring col : G −→ Σ, and an ω-regular language L
over Σ, such that

Win = {z0z1 . . . ∈ Gω | col(z0)col(z1) . . . ∈ L}.

An initialized graph game (G∃, G∀, E,Win, z0) is regular if G = (G∃, G∀, E,Win)
is regular.

The following result was proved by J. Richard Büchi and Lawrence Landwe-
ber [BL69]. We recall here the proof since further on, we use it to prove some
complexity result.

7.1.2. Proposition. If a G = (G∃, G∀, E,Win) is a regular game, then there
exist finite memory strategies f∃ and f∀ for ∃ and ∀ respectively such that for all
positions z on the board of G, z is winning either with respect to f∃ or with respect
to f∀.

Moreover, the size of the memory set is bounded by the size of the smallest
deterministic parity automaton recognizing an ω-regular language associated to
the regular game.

Proof Let G = (G∃, G∀, E,Win) be a regular game. By definition, there exists
a finite alphabet Σ, a coloring col : V −→ Σ, and an ω-regular language L over Σ,
such that

Win = {z0z1 · · · ∈ Gω | col(z0)col(z1) · · · ∈ L}.
Moreover, since L is an ω-regular language, there is a deterministic parity au-
tomaton B = (QB, qB, δB,ΩB) recognizing L.

First we define a new parity game G′ = (G′∃, G
′
∀, E

′,Ω′) in the following way:
The sets G′∃ and G′∀ are respectively the sets G∃ × QB and G∀ × QB and the
relation E ′ is defined by

E ′ = {((z, q), (z′, q′)) ∈ G′ ×G′ | (z, z′) ∈ E, δ(q, col(z)) = q′}.

The map Ω′ : G × QB −→ N is the map such that Ω′(z, q) = ΩB(q), for all
(z, q) ∈ G×QB.

Since G′ is a parity game, there exist finite memory strategies f ′∃ and f ′∀ for ∃
and ∀ respectively such that for all positions (z, q) on the board, (z, q) is winning
either with respect to f ′∃ or with respect to f ′∀. (see Theorem 2.3.1).

We are now ready to define a finite memory strategy f∃ for ∃ in G. We let the
memory set M be the set QB and we let mI be the initial state qB. The strategy
f∃ is uniquely determined by maps f1 : G × QB −→ G and f2 : G × QB −→ QB.
We define the partial map f1 : G × QB −→ G as the partial map with domain
Dom(f ′∃) and such that for all (z, q) ∈ Dom(f ′∃) with f ′∃(z, q) = (z′, q′), we have

f1(z, q) = z′.



196 Chapter 7. Automata for coalgebras: an approach using predicate liftings

The map f2 : G×QB −→ QB is such that for all (z, b) in G×QB, we have

f2(z, q) = δ(q, col(z)).

Similarly we define the finite memory strategy f∀. It remains to check that for
all positions z on the board of G, z is winning either with respect to f∃ or with
respect to f∀. Let z0 be a position on the board G.

It follows from the definitions of f ′∃ and f ′∀ that (z0, qb) is winning either with
respect to f ′∃ or with respect to f ′∀. Without loss of generality, we may assume
that (z0, qB) is winning with respect to f ′∃. Let π = z0z1 . . . be an f∃-conform G-
match. Let q0q1 . . . be the sequence such that q0 = mI = qB and qi+1 = f2(zi, qi),
for all i. It is easy to check that the G′-match π′ := (z0, q0), (z1, q1) . . . is an
f ′∃-conform match. Since (z0, qB) = (z0, q0) is winning with respect to f ′∃, π is
won by ∃.

First suppose that the match π is finite. Then the G′-match π′ is also a finite
match. Since this match is won by ∃, the last position of the match belongs to
∀. Therefore, the last position of the match π is also a position for ∀. Thus, this
finite match is won by ∃.

Finally suppose that the match z0z1 . . . is infinite. Since the G′-match (z0, q0)
(z1, q1) . . . is won by ∃, the maximum of the set {ΩB(q) | q ∈ Inf (q0q1 . . . )} is
even. It follows from the definition of f2 and mI that the sequence q0q1 . . . is
the unique run of B on col(z0)col(z1) . . . . Putting everything together, we obtain
that the word col(z0)col(z1) . . . is accepted by B. Therefore, the match z0z1 . . .
is won by ∃ and this finishes the proof. 2

By putting the proof of the previous proposition together with the next theo-
rem (see Chapter 2), we can obtain a complexity result for the problem whether
a given position in a regular game is winning.

7.1.3. Theorem. [Jur00] Let G = (G∃, G∀, E,Ω) be a parity game and let n,m
and d be the size of G, E and ran(Ω), respectively. Then for each player σ, the
problem, whether a given position z ∈ G is winning for σ, is decidable in time

O
(
d ·m ·

(
n
bd/2c

)bd/2c)
.

7.1.4. Theorem. Let G = (G∃, G∀, E,Win) be a regular game, let col : G −→ Σ
be a coloring of G, and let B = (QB, qB, δB,ΩB) be a deterministic parity ω-
automaton such that Win = {z0z1 . . . ∈ Gω | col(z0)col(z1) . . . ∈ L(B)}. Let n,m
and b be the size of G, E and B, respectively, and let d be the index of B. The
problem, whether a given position z ∈ G is winning for a player σ, is decidable

in time O
(
d ·m · b ·

(
b·n
bd/2c

)bd/2c)
.
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Proof Let G = (G∃, G∀, E,Win) be a regular game, let col : G −→ Σ be a
coloring of G, and let B be a deterministic parity stream automaton such that
Win = {z0z1 . . . ∈ Gω | col(z0)col(z1) . . . ∈ L(B)}. By the proof of the previous
proposition, we know that there is a parity game G′ = (G′∃, G

′
∀, E

′,Ω′) which
satisfies the following conditions. The sets G′∃ and G′∀ are respectively the sets
G∃ ×QB and G∀ ×QB and the relation E ′ is defined by

E ′ = {((z, q), (z′, q′)) ∈ G′ ×QB | (z, z′) ∈ E, δ(q, col(z)) = q′}.

The map Ω′ : G × QB −→ N is the map such that Ω′(z, q) = ΩB(q), for all
(z, q) ∈ G × QB. Moreover, a position z is winning for a player σ in G iff the
position (z, qB) is winning for σ in G′.

First we observe that we can compute the game G′ in time linear in the size
of the input. The board of G′, the relation E ′ and the map Ω′ are directly given
by the board of G, the set B, the relation E, the transition map δ, the coloring
col and the map Ω. Moreover, the sizes of the board of G′, the relation E ′ and
the map Ω′ are quadratic in the size of the input.

Now we show that it is decidable in time O
(
d ·m · b ·

(
b·d
bd/2c

)bd/2c)
whether

a position (z, qB) is winning for a player σ in G′. The size of the board of G′ is
equal to |G| · |QB| = n · b. The size of the relation E ′ is less or equal to m · b.
The size of the range of Ω′ is the size of the range of Ω. That is, is equal to d. It

follows from Theorem 7.1.3 that it is decidable in time O
(
d ·m · b ·

(
b·n
bd/2c

)bd/2c)
whether a position (z, qV ) is winning for a player σ in G′. Putting this together
with the fact that a position z is winning for a player σ in G iff the position
(z, qB) is winning for σ in G′, we conclude. 2

7.2 Automata for the coalgebraic µ-calculus

As mentioned in the introduction, the notion of coalgebraic logic that we consider
in this chapter, is the one introduced in [Pat03]. The idea is to extend modal
logic to a coalgebraic logic, by viewing the modal operators as predicate liftings.

Predicate lifting An n-ary predicate lifting for a functor F is a natural trans-
formation λ : Qn −→ QF .

Such a predicate lifting is monotone if for each set S, the operation λS : QnS
−→ QS preserves the subset order in each coordinate. The (Boolean) dual of a
predicate lifting λ : Qn −→ QF is the lifting λ : Qn −→ QF such that for all sets
S and for all subsets U1, . . . , Un of S, λS(U1, . . . , Un) = S \ λ(S \ U1, . . . , S \ Un).

In other words, a predicate lifting λ is a family of maps λS : QnS −→ QFS
(for each set S) such that for all maps f : S −→ T between two sets S and T , the
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following diagram commutes:

QnT QFT-
λT

QnS QFS-λS

6

Qnf
6

(Ff)−1

Convention In the remainder of this chapter, we fix a standard functor F on
Set and a set Λ of monotone predicate liftings that we assume to be closed under
taking Boolean duals.

In a few paragraphs, we will some examples of predicate liftings, but let us
start by introducing the notion of coalgebraic modal logic associated with the set
Λ of predicate liftings.

Coalgebraic modal logic We define the set MLΛ of coalgebraic modal Λ-
formulas as follows:

ϕ ::= ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ♥λ(ϕ1, . . . , ϕn)

where the arity of the operator ♥λ is n if λ is a n-ary predicate. This language
is the same as the one for modal logic, except that instead of having the modal
operators 3 and 2, we associate with each n-ary predicate lifting λ an n-ary
modality ♥λ. Another difference is that we assume the set of proposition letters
to be empty. We will see later that it is possible to encode a proposition letter
(or the negation of a proposition letter) using a 0-ary predicate lifting.

On a given coalgebra, a coalgebraic formula has a meaning, which corresponds
to a subset of the carrier set of the coalgebra. Formally, we define the following
semantics for MLΛ.

Let S = (S, σ) be a F -coalgebra. The meaning [[ϕ]]S of a formula ϕ is defined
by induction on the complexity of ϕ as follows:

[[>]]S = S,

[[⊥]]S = ∅,
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S ,

[[ϕ ∧ ψ]]S = [[ϕ]]S ∩ [[ψ]]S ,

[[♥λ(ϕ1, . . . , ϕn)]]S = σ−1λS([[ϕ1]]S , . . . , [[ϕn]]S),

where λ belongs to Λ. The only non immediate step of the definition is the one for
the meaning of a formula of the form ♥λ(ϕ1, . . . , ϕn). In words, ♥λ(ϕ1, . . . , ϕn)
is true at a state s iff the unfolding σ(s) belongs to the set λS([[ϕ1]]S , . . . , [[ϕn]]S).
As usual, if a state s belongs to [[ϕ]]S , we write S, s 
 ϕ.
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As mentioned in the introduction, many well-known variations of modal logic
arise as the coalgebraic logic MLΛ, associated to a well chosen set Λ of predicate
liftings. We give here few examples for the functors defined in the preliminaries
of this chapter. We do not recall the definition of neighborhood modal logic and
probabilistic modal logic. These logics are only mentioned for the people familiar
with these notions.

7.2.1. Example. (1) In case of the covariant power set functor P , the unary
predicate lifting given by λS(U) = {V ∈ PS | V ⊆ U} induces the usual universal
modality 2.

Indeed, we can show by induction on the complexity of ϕ that for all formulas
ϕ in ML{λ,λ} and for all Kripke frames F = (W,R), seen as coalgebras (W,σ)
for the covariant power set functor (that is, for all w ∈ W , σ(w) = R[s]), we
have [[ϕ]]F = [[ϕ′]]F, where ϕ′ is the formula obtained from ϕ by replacing each
occurrence of ♥λ by 2 and each occurrence of ♥λ by 3.

The only non immediate case for the induction is when ϕ is a formula of the
form ♥λ(ψ). In this case, we have

[[♥λψ]]F = σ−1λW ([[ψ]]F),

= σ−1{U ⊆ W | U ⊆ [[ψ]]F},
= {w ∈ W | σ(w) ⊆ [[ψ]]F},
= {w ∈ W | R[w] ⊆ [[ψ]]F},
= [[2ψ′]]F,

where the last equality follows from the induction hypothesis.

(2) Consider the multiset functor B. For all k ∈ N, we define the unary
predicate lifting λk for B such that for all sets S and subsets U of S, we have
λkS(U) = {B | S −→ N |

∑
u∈UB(u) ≥ k}. In this case, S, s 
 ♥kλϕ holds iff s

has at least k many successors satisfying ϕ, taking into account the weight of the
edges (that is, if there is an edge from s to a point t with label n, the point t
“generates” n successors of s satisfying ϕ).

This is similar to the semantics of the graded modality 3k. However, graded
modal logic is interpreted over Kripke frames, not multisets. Obviously, each
Kripke frame F can be seen as a multigraph SF, with all edges with weight 1. In
this case, for all formulas ϕ of graded modal logic and for all w ∈ F, we have
F, w 
 ϕ iff SF, w 
 ϕλ, where ϕλ is the formula obtained by replacing each
occurrence of 3k by ♥λ and each occurrence of 2k by ♥λ. Conversely, to each
multigraph S, we can associate a Kripke frame FS = (W,R) and a map f : FS
−→ S in the following way. The set W is the set of triples (s, i, t) ∈ S × N × S
such that there is an edge from s to t with weight > i. The map f sends a triple
(s, i, t) to the point t. Then, for all graded modal formulas ϕ and all w ∈ FS , we
have FS , w 
 ϕ iff S, f(w) 
 ϕλ.
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(3) The standard modalities of neighborhood modal logic can be obtained as
predicate liftings for the monotone neighborhood functor M . For example, for
the universal modality, we can define a unary predicate lifting λ such that for
all sets S and subsets U of S, we have λS(U) = {N ∈ M (S) | U ∈ N}. It is
then possible to show that S, s 
 ♥λϕ iff [[ϕ]]S belongs to M(s). In case the
neighborhood model happens to be a topological model, this coincides with the
usual interpretation of the universal modality on topological models.

(4) Probabilistic modalities can also be viewed as predicate liftings for the
distribution functors. For all p in the closed interval [0, 1], we introduce a unary
predicate lifting λp such that for all sets S and subsets U of S, we have λpS(U) =
{g : S −→ [0, 1] |

∑
u∈Ug(u) ≥ p}. With such a definition of λp, we have that

S, s 
V ♥pλϕ holds iff the probability that s has a successor satisfying ϕ is at
least p.

(5) We can encode proposition letters from a set Prop by using predicate
liftings for the functor P(Prop × F ). Given a proposition letter p in Prop,
we define a 0-ary predicate lifting λp such that for all sets S, we have λpS =
{(P, η) ∈ P(Prop)× F (S) | p ∈ P}. If S = (S, (σ1, σ2)) is a coalgebra for the
functor P(Prop×F ) (where σ1 is a map from S to P(Prop) and σ2 is a map from
S to FS), then we have [[♥λp ]]S = {s ∈ S | p ∈ σ1(s)} and [[♥λp ]]S = {s ∈ S | p /∈
σ1(s)}. So instead of using the notation ♥λp , we simply write p. Similarly, we
write ¬p instead of ♥λp .

In case we are dealing with a language containing proposition letters, these
are supposed to be encoded using appropriate predicate liftings, as in the last
example. Observe that by convention, the set Λ is closed under taking Boolean
duals. So if a language MLΛ contains a proposition letter, it also contains its
negation.

Just like for modal logic, we can extend coalgebraic logic by enriching the
language with fixpoint operators. Recall that we assume the predicate liftings in
Λ to be monotone, which is crucial for the definition of the coalgebraic µ-calculus.

Coalgebraic µ-calculus We fix a set Var of variables, and define the set µMLΛ

of coalgebraic fixpoint Λ-formulas ϕ as follows:

ϕ ::= x | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ♥λ(ϕ, . . . , ϕ) | µx.ϕ | νx.ϕ

where x belongs to Var λ ∈ Λ and the arity of the operator ♥λ is n if λ is a n-ary
predicate.

Just like coalgebraic formulas, the interpretation of a coalgebraic fixpoint
formula on a given coalgebra is a subset of the carrier set of the coalgebra. We
define the following semantics for µMLΛ.

Let S = (S, σ) be a F -coalgebra. Given an assignment τ : Var −→ P(S), we
define the meaning [[ϕ]]S,τ of a formula ϕ by induction. The induction is the same
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as the one for the semantics for coalgebraic logic, with the extra clauses:

[[x]]S,τ = τ(x),

[[µx.ϕ]]S,τ =
⋂
{U ⊆ S | U ⊆ [[ϕ]]S,τ [x 7→U ]},

[[νx.ϕ]]S,τ =
⋃
{U ⊆ S | [[ϕ]]S,τ [x 7→U ] ⊆ U},

where x belongs to Var , λ belongs to Λ and τ [x 7→ U ] is the valuation τ ′ such that
τ ′(x) = U and τ ′(y) = τ(y), for all variables y 6= x. As in the case of µ-calculus,
it follows from the Knaster-Tarski theorem (see Section 2.2) and the fact that
each λ ∈ Λ is monotone, that the set [[µx.ϕ]]S,τ is nothing but the least fixpoint
of the monotone map ϕS,τx : P(S) −→ P(S) such that ϕS,τx (U) = [[ϕ]]S,τ [x 7→U ], for
all subsets U of V . Similarly, [[νx.ϕ]]S,τ is the greatest fixpoint of the map ϕS,τx .

As usual, we write S, s 
τ ϕ if s belongs to [[ϕ]]S,τ . A sentence ϕ is satisfiable
in a coalgebra S if there is a state s in the carrier set of S such that S, s 
 ϕ.

A coalgebraic fixpoint sentence is a coalgebraic fixpoint formulas such that all
its variables are bound by a fixpoint operator. A coalgebraic fixpoint sentence ϕ
is satisfiable if there exists a pointed coalgebra (S, s) such that S, s 
 ϕ.

The subformulas, the alternation depth and the closure Cl(ϕ) of a coalgebraic
fixpoint formula ϕ are defined similarly to the case of the µ-calculus. To extend
the notion of size of a µ-formula, we assume that the set Λ is equipped with a
size measure size : Λ −→ N assigning a size to each symbol in Λ. We assume that
if the arity of a predicate lifting λ is n, then size(λ) ≥ n.

For each coalgebraic fixpoint formula ϕ, we define the weight of ϕ, notation:
w(ϕ), such that if ϕ is a formula of the form ♥λ(ϕn, . . . , ϕn), w(ϕ) := size(λ) and
w(ϕ) := 1, otherwise. The size of a coalgebraic fixpoint sentence ϕ is equal to
Σψ∈Cl(ϕ)w(ψ). We denote it by size(ϕ). Finally, if Γ is a set coalgebraic fixpoint
formulas, we write size(Γ) for Σϕ∈Γsize(ϕ).

Before we can turn to the definition of our automata we need some preliminary
notions.

Transition conditions and one-step semantics Given a finite set Q, we
define the set TC n

Λ(Q) of (normalized) transition conditions as the set of formulas
ϕ given by:

ψ ::= > | ⊥ | | ♥λ(q1, . . . , qn) | ψ ∧ ψ,
ϕ ::= ψ | ϕ ∨ ϕ,

where λ ∈ Λ and q1, . . . , qn ∈ Q. A (normalized) transition condition is a dis-
junction of conjunctions of formulas of the form ♥λ(q1, . . . , qn).

Given a set S and an assignment τ : Q −→ P(S), we define a map [[−]]1τ :
TC n

Λ(Q) −→ P(FS) interpreting formulas in TC n
Λ(Q) as subsets of S. The map
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is defined by induction by

[[>]]1τ = FS,

[[⊥]]1τ = ∅,
[[ϕ ∨ ψ]]1τ = [[ϕ]]1τ ∪ [[ψ]]1τ ,

[[ϕ ∧ ψ]]1τ = [[ϕ]]1τ ∩ [[ψ]]1τ ,

[[♥λ(q1, . . . , qn)]]1τ = λS(τ(q1), . . . , τ(qn)),

where λ belongs to Λ and q1, . . . , qn ∈ Q. We write FS, η 
1
τ ϕ to indicate

η ∈ [[ϕ]]1τ , and refer to this relation as the one-step semantics . Observe that if
S = (S, σ) is a coalgebra, then

S, s 
τ ♥λ(q1, . . . , qn) iff σ(s) ∈ [[♥λ(q1, . . . , qn)]]1τ .

We are now ready for the definition of the key structures of this chapter, viz.,
Λ-automata, and their semantics.

Λ-automata A Λ-automaton A is a quadruple A = (Q, qI , δ,Ω), where Q is a
finite set of states, qI ∈ Q is the initial state, δ : Q −→ TC n

Λ(Q) is the transition
map, and Ω : Q −→ N is a parity map. The size of A is defined as its number of
states, and its index as the size of the range of Ω.

Acceptance game Let S = (S, σ) be a F -coalgebra and let A = (Q, qI , δ,Ω)
be a Λ-automaton. The associated acceptance game A(S,A) is the parity game
given by the table below.

Position Player Admissible moves Priority
(s, q) ∈ S ×Q ∃ {τ : Q −→ P(S) | FS, σ(s) 
1

τ δ(q)} Ω(q)
τ ∈ P(S)Q ∀ {(s′, q′) | s′ ∈ τ(q′)} 0

A pointed coalgebra (S, s0) is accepted by the automaton A if the pair (s0, qI)
is a winning position for player ∃ in A(S,A).

The acceptance game of Λ-automata proceeds in rounds, moving from one
basic position in S ×Q to another. In each round, at position (s, q) first ∃ picks
an assignment τ that makes the depth-one formula δ(q) true at σ(s). Looking at
this τ : Q −→ P(S) as a binary relation {(s′, q′) | s′ ∈ τ(q′)} between S and Q, ∀
closes the round by picking an element of this relation.

This game is a natural generalization of the acceptance game for normalized
alternating µ-automata presented in Section 2.4. So it does not come as a surprise
that Λ-automata are the counterpart of the coalgebraic µ-calculus associated with
Λ. As a formalization of this we give the following proposition the proof of which is
an immediate adaptation of the proofs of Theorem 6.5 and Lemma 6.7 in [VW07].
Here we say that a Λ-automaton A is equivalent to a sentence ϕ ∈ µMLΛ if for
all pointed F -coalgebra (S, s), (S, s) is accepted by A iff S, s 
 ϕ.
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7.2.2. Proposition. There is a procedure transforming a sentence ϕ in µMLΛ

into an equivalent Λ-automaton Aϕ of size dn and index d, where n is the size
and d is the alternation depth of ϕ. Moreover, the procedure is exponential time
computable in the size of ϕ.

7.3 Finite model property

In this section we show that µMLΛ has the finite model property. That is, if a
sentence ϕ in µMLΛ is satisfiable in a coalgebra, then it is satisfiable in a finite
coalgebra. The key tool in our proof is a satisfiability game that characterizes
whether the class of pointed coalgebras accepted by a given Λ-automaton, is
empty or not.

Traces Let Q be a finite set and Ω a map from Q to N. Given a relation
R ⊆ Q × Q, we denote by Ran(R) the range of R which is the set {q ∈ Q |
for some q′ ∈ Q, (q′, q) ∈ R}. A finite sequence q0 . . . qk+1 in Q∗ is a trace through

a sequence R0 . . . Rk in (P(Q × Q))∗ if for all i ∈ {0, . . . k}, (qi, qi+1) belongs to
Ri. We denote by Tr(R0 . . . Rk) the set of traces through R0 . . . Rk. A sequence
q0q1 . . . in Qω is a trace through a sequence R0R1 . . . in (P(Q × Q))ω if for all
i ∈ N, (qi, qi+1) ∈ Ri. We write Tr(R0R1 . . . ) for the set of traces through
R0R1 . . . .

A sequence R0R1 . . . in (P(Q × Q))ω contains a bad trace if there exists a
trace q0q1 . . . through R0R1 . . . such that the maximum of the set {Ω(q) | q ∈
Inf (q0q1 . . . )} is odd. We denote by NBT (Q,Ω) the set of sequences R0R1 . . . in
(P(Q×Q))ω that do not contain any bad trace.

We are now going to define the satisfiability game for an automaton A =
(Q, qI , δ,Ω). The satisfiability game is an initialized graph game. We want this
game to be such that ∃ has a winning strategy in the satisfiability game iff there
is a coalgebra S = (S, σ) that is accepted by A. The idea behind the satisfiability
game is to make a simultaneous projection of all the acceptance matches. So
intuitively, a basic position of the satisfiability games should be a subset Q′ of Q.
We may associate with such a macro-state Q′ a point s ∈ S such that ∃ has to
deal with positions (s, q) in the acceptance game, for all q ∈ Q′.

For each t ∈ S and for each q ∈ Q′, we can define the set Qq
t as the collection

of states q′ ∈ Q such that (t, q′) is a possible basic position in the acceptance
game following the basic position (s, q). Since Q′ is a macro-state, we define Qt

as
⋃
{Qq

t | q ∈ Q′}. Hence, each such a set is a potential next combination of
states in Q that ∃ has to be able to handle simultaneously. The total collection
of those sets is {Qt | t ∈ S}; this is ∃’s move in the satisfiability game. Now it is
up to ∀ to choose a set from this collection, moving to the next macro-state.

With this definition of the game, a full match corresponds to a sequence
Q′0Q

′
1 . . . of basic positions, which are subsets of A. Intuitively, Q′i contains all
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the states that occur inside the i-th basic position of some acceptance match.
Now we have to say whether the match Q′0Q

′
1 . . . is won by ∃. Naively, we could

say that ∃ wins iff there is no bad trace q0q1 . . . such that for all i ∈ N, qi ∈ Q′i.
However, if there is such a bad trace q0q1 . . . , this would only be a problem if
q0q1 . . . actually corresponds to an acceptance match. Given the way we defined
the game in the last few paragraphs, we only know that each qi occurs in some
acceptance match, but there is no possibility to guess whether q0q1 . . . corresponds
to an acceptance match.

A solution to avoid this problem is to replace the subset Q′ by a relation
R ⊆ (Q×Q). The range of R would play the same role as Q′ (that is, the formula∧
{δ(q′) | q′ ∈ Ran(R)} is true at the point corresponding to R). Moreover, for

each q′ ∈ Ran(R), the set {q ∈ Q | (q, q′) ∈ R} is the set of states q in Q such
that there is an acceptance match that moves (after one round) from q to q′.
This helps us to remember which traces are relevant, when defining the winning
condition.

The satisfiability game Let (Q, qI , δ,Ω) be a Λ-automaton. The satisfiability
game Sat(A) for A is an initialized graph game. The game is played following the
rules given by the tableau below, where for an element q ∈ Q and for a collection
R ⊆ P(Q×Q), ρq : Q −→ Q×Q is the substitution given by

ρq : q′ 7→ (q, q′)

and υR : Q×Q −→ P(R) denotes the valuation given by

υR : (q, q′) 7→ {R ∈ R | (q, q′) ∈ R}.

Position Player Admissible moves
R ⊆ Q×Q ∃ {R ⊆ P(Q×Q) | [[

∧
{ρqδ(q) | q ∈ Ran(R)}]]1υR 6= ∅}

R ⊆ P(Q×Q) ∀ {R | R ∈ R}

The starting position is {(qI , qI)}. Concerning the winning conditions, finite
matches are lost by the player that gets stuck. An infinite match is won by ∃ if
the unique sequence of relations determined by the match does not contain any
bad trace.

We start by showing that the satisfiability game is a game the strategies of
which may assumed to have finite memory.

7.3.1. Proposition. Let A be a Λ-automaton. If ∃ has a winning strategy in
the game Sat(A), then ∃ has a finite memory strategy. The size of the memory
is at most exponential in the size of A.
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Proof Let (Q, qI , δ,Ω) be a Λ-automaton. By Proposition 7.1.2, it suffices to
show that the satisfiability game for the automaton A is an initialized regular
game. Abbreviate G := P(Q × Q) ∪ PP(Q × Q). So we have to find a finite
alphabet Σ, a coloring col : G −→ Σ and an ω-regular language L over Σ, such
that for all infinite sequences z0z1 . . . in Gω, col(z0)col(z1) . . . belongs to L iff for
all i ∈ N, z2i belongs P(Q×Q), z2i+1 belongs to PP(Q×Q) and z0z2z4 . . . does
not contain any bad trace.

We let Σ be the set P(Q × Q) ∪ {∗}. We define col such that for all R ∈
P(Q × Q), col(R) = R and for all R ⊆ P(Q × Q), col(R) = ∗. We define L as
the set {R0 ∗R1 ∗ · · · | R0R1 ∈ NBT (Q,Ω)}.

We only show that L is ω-regular, which is the most difficult part of the
proof. It is sufficient to prove that the complement of L is ω-regular. That is,
we have to find a non-deterministic parity ω-automaton B that accepts exactly
those sequences in Σω, which do not belong to L. We define a non-deterministic
ω-automaton B = (QB, qb, δB,ΩB) as follows. The set QB is equal to Q∪{q∗ | q ∈
Q} ∪ {q>}. The initial state qB is qI . The transition map δB : QB ×Σ −→ P(QB)
is given by putting

δ(q, R) = {q′∗ | (q, q′) ∈ R},
δ(q∗, ∗) = {q},
δ(q, ∗) = δ(q∗, ∗) = δ(q∗, R) = {q>},
δ(q>, ∗) = δ(q>, R) = {q>},

for all q ∈ Q and R ∈ P(Q × Q). Finally the parity map ΩB is defined by
Ω(q>) := 0 and ΩB(q) = ΩB(q∗) := Ω(q) + 1, for all q ∈ Q.

The intuition is that as soon as we see that a word over Σ is not of the form
R0 ∗ R1 ∗ . . . (where for all i ∈ N, Ri ⊆ (Q × Q)), we move to the state q> and
the word is accepted. If the word is of the form R0 ∗ R1 ∗ . . . , in each match of
the parity game corresponding to B, ∀ constructs a trace trough R0R1 . . . and
the match is winning for ∃ if the trace is bad.

Clearly the size of B is linear the size of A. By Theorem 2.4.1, there is a
deterministic parity ω-automaton the size of which is exponential in the size of
A and which recognizes L. By Proposition 7.1.2, we can conclude that the size
of the memory is at most exponential in the size of A.

7.3.2. Theorem. Let A = (Q, qI , δ,Ω) be a Λ-automaton. The following are
equivalent.

1. L(A) is not empty.

2. ∃ has a winning strategy in the satisfiability game associated with A.

3. L(A) contains a finite pointed coalgebra of size at most exponential in the
size of A.
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Proof We first prove that (1) implies (2). Let S = (S, σ, s0) be a pointed coal-
gebra accepted by A. We show that ∃ has a winning strategy in the satisfiability
game Sat(A).

Before we go into the details of this definition, we need some terminology and
notation. By assumption, player ∃ has a winning strategy f in the acceptance
game for the automaton A with starting position (s0, qI). Since the acceptance
game is a parity game, we may assume this strategy to be positional. Given
two finite sequences ~s = s0 . . . sk ∈ S∗ and ~q = q0 . . . qk ∈ Q∗, we say that ~q f -
corresponds to ~s if there is an f -conform partial match which has basic positions
(s0, q0) . . . (sk, qk). The set of all sequences in Q∗ that f -correspond to ~s is denoted
as Corr f (~s). Intuitively, this set represents the collection of all f -conform matches
passing through ~s.

The definition of the winning strategy for ∃ in the satisfiability game Sat(A) is
given by induction on the length of partial matches. Simultaneously we will select,
through the coalgebra S, a path s1s2 . . ., which is related to the Sat(A)-match π
as follows: At each finite stage R0R0R1 . . . Rk of π, R0 = RI ,

Tr(R1 . . . Rk) ⊆ Corr f (s0 . . . sk)

and each q ∈ Ran(Rk) occurs in some trace through R0 . . . Rk. (*)

This implies in particular that for each element q ∈ Ran(Rk), the pair (q, sk) is a
winning position for ∃ in the acceptance game.

First, we check that when the satisfiability game starts, condition (*) is sat-
isfied. In this case, we have R0 = {(qI , qI)} and ~s is the one element sequence s0.
It is immediate that (*) holds.

For the induction step, assume that in the satisfiability game, the partial
match ~R = R0R0R1 . . . Rk has been played. First we will provide ∃ with an
appropriate response Rk ⊆ P(Q×Q).

Inductively, we have selected a sequence ~s = s0s1 . . . sk satisfying condition
(*). Since f is by assumption a winning strategy for ∃ in the acceptance game,
the pair (q, sk) is a winning position for ∃ for each q ∈ Ran(Rk). This means that
∃’s strategy f will provide her with a collection of valuations {τq : Q −→ P(S) |
q ∈ Ran(Rk)} such that

FS, σsk 

1
τq δ(q). (7.1)

for all q ∈ Ran(Rk). The collection {τq | q ∈ Ran(Rk)} induces a map gτ from S
to P(Q×Q) such that for all s in S, we have

gτ (s) = {(q, q′) ∈ Q×Q | q ∈ Ran(Rk) and s ∈ τq(q′)}.

Intuitively, gτ (s) contains all the pairs (q, q′) such that in some f -conform match,
we move from the basic position (q, sk) to the basic position (q′, s).

Next, we define Rk as the image of S under gτ . That is, Rk is equal to gτ [S].
Thus we may and will see gτ as a surjective map from S to Rk.
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1. Claim. Rk is a legitimate move for ∃ in Sat(A) at position Rk.

Proof of Claim To see this, first observe that Fgτ is a map with domain FS
and codomain FRk. Thus, the object (FfV )σsk is a member of the set FRk.

Now, in order to prove that ∃ may legitimately play Rk at Rk, it suffices to
prove that for all q ∈ Ran(Rk),

FRk, (Fgτ )σsk 

1
υRk

ρqδ(q), (7.2)

where υRk is defined as in the definition of the satisfiability game. Fix q ∈
Ran(Rk), and abbreviate υ := υRk . Given (7.1), it clearly suffices to prove that

FRk, (Fgτ )σsk 

1
υ ρqϕ iff FS, σsk 


1
τq ϕ (7.3)

for all formulas ϕ in TC n
Λ(Q). We will prove (7.3) by induction on the complexity

of ϕ.
In the base case we are dealing with a formula ϕ = ♥λ(q′1, . . . , q′n). For

simplicity however we confine ourselves to the (representative) special case where
n = 1 and write q′ = q′1. In this setting, (7.3) follows from the following chain of
equivalences:

FRk, (Fgτ )σsk 

1
υ ρqϕ, ⇐⇒ FRk, (Fgτ )σsk 


1
υ ♥λ(q, q′)

(definition of ρq and ϕ)

⇐⇒ (Fgτ )(σsk) ∈ λRk [[(q, q′)]]υ (definition of 
)

⇐⇒ σsk ∈ (Fgτ )
−1(λRk [[(q, q

′)]]υ) (definition of (·)−1)

⇐⇒ σsk ∈ λSg−1
τ ([[(q, q′)]]υ) (†)

⇐⇒ σsk ∈ λS([[q′]]τq) (‡)
⇐⇒ FS, σsk 


1
τq ♥λq

′ (definition of 
)

Here the step marked (†) follows from λ being a natural transformation, which
implies that the following diagram commutes:

QRk QFRk
-

λRk

QS QFS-λS

6
g−1
τ

6
(Fgτ )

−1

The step marked (‡) follows from the identity [[q′]]τq = g−1
τ ([[(q, q′)]]υ), which in its

turn follows from the following chain of equivalences, all applying to an arbitrary
s ∈ S:

s ∈ [[q′]]τq ⇐⇒ s ∈ τq(q′) (definition of [[·]])
⇐⇒ (q, q′) ∈ gτ (s) (definition of gτ )

⇐⇒ gτ (s) ∈ υ(q, q′) (definition of υ = υRk)

⇐⇒ gτ (s) ∈ [[(q, q′)]]υ (definition of [[·]])
⇐⇒ s ∈ g−1

τ ([[(q, q′)]]υ)
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Since the inductive steps in the proof of (7.3) are completely routine, and
therefore, omitted, this finishes the proof of (7.3), and thus also the proof of the
claim. J

Given the legitimacy of Rk as a move for ∃ at position Rk, we may propose
it as her move in the satisfiability game. Note that this yields the definition of a
strategy.

Playing this strategy enables ∃ to maintain the inductive condition (*). In-
deed, by definition of Rk, for every R ∈ Rk there is an sR ∈ S such that
R = gτ (sR). Hence if ∀ picks such a relation R, that is putting Rk+1 := R,
∃ adds the state sR to her sequence ~s, putting sk+1 := sR.

To verify that the sequencesR0 . . . Rk+1 and s0 . . . sk+1 satisfy (*), let q0 . . . qk+1

be a trace through R1 . . . Rk+1. Since R0 . . . Rk and s0 . . . sk satisfy (*), there is
an f -conform match of the form (s0, q0) . . . (sk, qk). In this match, when the
position (sk, qk) is reached, on the basis of f , ∃ chooses a marking τqk : Q
−→ P(S) such that S, sk 
1

τqk
δ(qk). Then, ∀ may pick any pair (s, q) such

that s ∈ τqk(q). So in order to show that there is a partial f -conform match
of the form (s0, q0) . . . (sk+1, qk+1), it suffices to prove that sk+1 ∈ τqk(qk+1). Re-
call that (qk, qk+1) ∈ Rk+1. Since Rk+1 = gτ (sk+1), qk+1 belongs to Ran(Rk)
and sk+1 ∈ τqk(qk+1). This finishes the proof that the first part of (*) holds for
R0 . . . Rk+1 and s0 . . . sk+1.

It remains to show that for all q ∈ Ran(Rk+1), q occurs in a trace through
R0 . . . Rk+1. Fix q ∈ Ran(Rk+1). So there exists qk ∈ Q such that (qk, q) belongs
to Rk+1. Since Rk+1 = gτ (sk+1) and by definition of gτ , qk belongs to Ran(Rk).
Moreover, it follows from the induction hypothesis that if q ∈ Ran(Rk), there
is a sequence q−1 . . . qk−1 such that q−1R0q0 . . . Rkqk. Putting this together with
(qk, q) ∈ Rk+1, this finishes to prove that q occurs in a trace through R0 . . . Rk+1.

Finally we show why this strategy is winning for ∃ in the game Sat(A), initi-
ated at {(qI , qI)}. Consider an arbitrary match of this game, where ∃ plays the
strategy as defined above. First, suppose that this match is finite. It should be
clear from our definition of ∃’s strategy in Sat(A) that she never gets stuck. So
if the match is finite, ∀ got stuck and ∃ wins.

In case the match is infinite, ∃ has constructed an infinite sequence ~s =
s0s1s2 . . . corresponding to the infinite sequence ~R = R0R1R2 . . . induced by the
Sat(A)-match. It is easy to see that since the relation (*) holds at each finite

level, for every infinite trace q0q1q2 . . . through ~R, there is an f -conform infinite
match of the acceptance game on S with basic positions (s0, q0)(s1, q1) . . . Since
f was assumed to be a winning strategy, none of these traces is bad. In other
words, the sequence ~R satisfies the winning condition of Sat(A) for ∃, and thus
she is declared to be the winner of the Sat(A)-match. Since we considered an
arbitrary match in which she is playing the given strategy, this shows that this
strategy is winning, and thus finishes the proof of the implication (1⇒ 2).
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We now turn to the implication (2⇒ 3), which is the hard part of the proof.
Suppose that ∃ has a winning strategy f in the satisfiability game (G∃, G∀, E,Win,
{(qI , qI)}) associated with A. We need to show that A accepts some finite pointed
coalgebra of size at most exponential in the size of A.

By Proposition 7.3.1, we may assume ∃’s winning strategy to use finite mem-
ory only. This means that there is a finite set M , an element mI ∈M and partial
maps f1 : G∃ ×M −→ G and f2 : G∃ ×M −→ M satisfying the conditions of the
definition of a finite memory strategy (see Section 7.1.2).

Moreover, the size of M is at most exponential in the size of A. We can
extend the partial maps f1 and f2 to maps with domain G∃ ×M , by assigning
dummy values to the elements that do not belongs to the domain. Without loss
of generality, we may assume that for all (R,m) ∈ G∀×M , f2(R,m) = m. If this
is not initially the case, we can replace f2 by a map f ′2 satisfying f ′2(R,m) = m
and f ′2(R,m) = f2(f1(R,m), f2(R,m)), for all R ∈ G∃, R ∈ G∀ and m ∈M .

We denote by W∃ the subset of G∃×M that contains exactly the pairs (R,m)
satisfying the following condition. For all Sat(A)-matches R0R0R1R1 . . . and for
all sequences m0m1 . . . such that

R0 = R,m0 = mI and for all i ∈ N, Ri = f1(Ri,mi), mi+1 = f2(Ri,mi),

we have that R0R0R1R1 . . . is won by ∃. Such a pair (R,m) is said to be winning
for ∃ with respect to f in the acceptance game.

The finite coalgebra in L(A) that we are looking for will have the set G∃×M
as its carrier. Therefore we first define a coalgebra map ξ : G∃×M −→ F (G∃×M).
We base this construction on two observations.

First, let (R,m) be an element of W∃ and write R for the set f1(R,m). It
follows from the rules of the satisfiability game that there is an object g(R,m) ∈
FR such that for every q ∈ Ran(R), the formula ρqδ(q) is true at g(R,m) under
the valuation υR. Note that R ⊆ G∃, and thus we may think of the above
as defining a function g with domain W∃ and codomain FG∃. Choosing some
dummy values for elements (R,m) ∈ (G∃×M) \W∃, the domain of this function
can be extended to the full set G∃×M . To simplify our notation we will also let
g denote the resulting map, with domain G∃ ×M and codomain FG∃. Second,
consider the map addm : G∃ −→ G∃ ×M , given by addm(R) = (R,m). Based
on this map we define the function h : FG∃ × M −→ F (G∃ × M) such that
h(η,m) = F (addm)(η), for all (η,m) ∈ FG∃ ×M .

We let S be the coalgebra (G∃ ×M, ξ), where ξ : G∃ ×M −→ F (G∃ ×M) is



210 Chapter 7. Automata for coalgebras: an approach using predicate liftings

the map h ◦ (g, f2).

G∃ ×M F (G∃ ×M)-
ξ

F (G∃)×M

(g, f2)

�
�
�
�
���

h

@
@
@
@
@@R

Observe that the size of S is at most exponential in the size of A, since G∃ is
the set P(Q×Q) and M is at most exponential in the size of Q. As the designated
point of S we take the pair (RI ,mI), where RI := {(qI , qI)} and qI is the initial
state of the automaton A.

It is left to prove that the resulting pointed coalgebra (S, (RI ,mI)) is accepted
by A. That is, using ∃’s winning strategy f in the satisfiability game we need
to find a winning strategy for ∃ in the acceptance game for the automaton A
with starting position ((RI ,mI), qI). We will define this strategy by induction
on the length of a partial match, simultaneously setting up a shadow match of
the satisfiability game. Inductively we maintain the following relation between
the two matches: If ((R0,m0), q0), . . . , ((Rk,mk), qk) is a partial match of the
acceptance game (during which ∃ plays the inductively defined strategy), then

(*)
qIq0 . . . qk is a trace through R0 . . . Rk,
for all i ∈ {0, . . . , k − 1}, Ri+1 ∈ f1(Ri,mi) and mi+1 = f2(Ri,mi).

Setting up the induction, it is easy to see that the above condition is met at the
start of the acceptance match. In this case, ((R0,m0), q0) is equal to ((RI ,mI), qI)
and qIqI is the (unique) trace through the one element sequence RI .

Inductively assume that, with ∃ playing as prescribed, the play of the ac-
ceptance game has reached position ((Rk,mk), qk). By the induction hypoth-
esis, we have qk ∈ Ran(Rk) and the position (Rk,mk) is a winning position
for ∃ with respect to f in the satisfiability game. Abbreviate R := f1(Rk,mk)
and n := f2(Rk,mk). As the next move for ∃ we propose the valuation τ : Q
−→ P(G∃×M) such that τ(q) := {(R, n) | (qk, q) ∈ R and R ∈ R}, for all q ∈ Q.

2. Claim. τ is a legitimate move at position ((Rk,mk), qk).

Proof of Claim In order to prove the claim, we need to show that

S, (Rk,mk) 

1
τ δ(qk) (7.4)

For a proof of (7.4), recall that (Rk,mk) is a winning position for ∃ in the sat-
isfiability game. Hence, the element γ := g(Rk,mk) of FR satisfies the formula
ρqkδ(qk) under the valuation υ := υR (where υR is defined as in the definition of
the satisfiability game). That is,

FR, γ 
1
υR

ρqkδ(qk) (7.5)
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Thus in order to prove the claim it clearly suffices to prove that

S, (Rk,mk) 

1
τ ϕ iff FR, γ 
1

υ ρqkϕ (7.6)

for all formulas ϕ in L0(Λ(Q)). The proof of (7.6) proceeds by induction on the
complexity of ϕ.

First consider formulas of the form ♥λ(q′1, . . . , q′l); in order to keep notation
simple we assume l = 1 and write q′ instead of q′1. Then we can prove (7.6) as
follows:

S, (Rk,mk) 

1
τ ♥λq′ ⇐⇒ ξ(Rk,mk) ∈ λG∃×M([[q′]]τ ). (definition of 
)

⇐⇒ (Faddn)(γ) ∈ λG∃×M([[q′]]τ ). (definition of ξ)

⇐⇒ γ ∈ (Faddn)−1(λG∃×M [[q′]]τ ) (definition of (·)−1)

⇐⇒ γ ∈ λG∃(add−1
n ([[q′]]τ ) (†)

⇐⇒ γ ∈ λR([[(qk, q
′)]]υ) (‡)

⇐⇒ FR, γ 
1
υ ♥λ(qk, q′) (definition of 
)

⇐⇒ FR, γ 
1
υ ρqk♥λq′ (definition of ρqk)

Here (†) follows from λ being a natural transformation:

Q(G∃ ×M) QF (G∃ ×M)-
λG∃×M

QG∃ QFG∃-
λG∃

6

add−1
n

6

(Faddn)−1

For the remaining step (‡), using again the fact that λ is a natural transformation,
the following diagram commutes:

QG∃ QFG∃-
λG∃

QR QFR-λR

6

id−1
R

6

(F idR)−1

where idR is the identity map with domain R and codomain G∃. Moreover, since
we assume that F is standard, we have that F idR = idR. Putting these two
observations together with the fact that [[q]]υ is a subset of R (which is itself a
subset of G∃), we have λR[[q]]υ = λG∃ [[q]]υ.

But then (‡) is immediate by the following claim:

add−1
n ([[q′]]τ ) = [[(qk, q

′)]]υ, (7.7)
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which can be proved via the following chain of equivalences, which hold for an
arbitrary R ⊆ Q×Q:

R ∈ [[(qk, q
′)]]υ ⇐⇒ R ∈ υ(qk, q

′)

⇐⇒ R ∈ R and (qk, q
′) ∈ R (definition of υ = υR)

⇐⇒ (R, n) ∈ τ(q′) (definition of τ)

⇐⇒ addn(R) = (R, n) ∈ [[q′]]τ (definition of [[·]]τ )
⇐⇒ R ∈ add−1

n ([[q′]]τ ) (definition of (·)−1)

Since the inductive steps of the proof of (7.6) are trivial, we omit the details.
This finishes the proof of the Claim. J

Now that we showed that τ is a valid move for ∃, we verify that the induc-
tion hypothesis (*) remains true. In the acceptance game, after ∃ played the
valuation τ : Q −→ P(G∃ × M), ∀ picks a pair ((Rk+1,mk+1), qk+1) such that
(Rk+1,mk+1) belongs to τ(qk+1). By definition of τ , we have (qk, qk+1) ∈ Rk+1,
mk+1 = f2(Rk,mk) and Rk+1 ∈ f1(Rk,mk), which implies that the induction
hypothesis holds.

To finish the proof of the implication (2 ⇒ 3), it remains to show that
the strategy defined for ∃ is winning in the acceptance game A(,S,A) with
starting position ((RI ,mI), qI). First, if we look at the strategy, we see that
∃ will never get stuck. So all the finite matches are won by ∃. So let π =
((R0,m0), q0)((R1,m1), q1) . . . be an infinite match of the acceptance game dur-
ing which ∃ played accordingly to the strategy defined above. It follows that
qIq0q1 . . . is a trace through R0R1 . . . and for all i ∈ N, Ri+1 ∈ f1(Ri,mi) and
mi+1 = f2(Ri,mi). Since the pair (f1, f2) is a winning strategy for ∃, the satis-
fiability match R0R1 . . . is won by ∃, that is, R0R1 . . . does not contain any bad
trace. In particular, qIq0q1 . . . is not a bad trace, which means that π is won by
∃ and this finish the proof of implication (2⇒ 3).

Since the implication (3⇒ 1) is trivial, this finishes the proof of the theorem.
2

Putting this theorem together with Proposition 7.2.2, we obtain a finite model
property for the coalgebraic µ-calculus, for every set of predicate liftings.

7.3.3. Corollary. If a sentence ϕ in µMLΛ is satisfiable in a F -coalgebra, it
is satisfiable in a F -coalgebra of size exponential in the size of ϕ.

Moreover, given some mild condition on Λ and F , we obtain the following
complexity result.
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Exponential one-step satisfiability property Let F be a functor and Λ a
set of predicate liftings for F . We say that the pair (F,Λ) has the exponential
one-step satisfiability property if for all sets Q and S, assignments τ : Q −→ P(S)
and formulas ϕ in TC n

Λ(Q), the relation [[ϕ]]1τ 6= ∅ is decidable in time exponential
in the size of ϕ.

7.3.4. Theorem. Let F be a functor and Λ a set of predicate liftings for F such
that (F,Λ) has the exponential one-step satisfiability property. It is decidable
in time doubly exponential in the size of ϕ, whether a fixpoint Λ-sentence ϕ is
satisfiable in the class of F -coalgebras.

Proof Fix a fixpoint Λ-sentence ϕ. By Proposition 7.2.2, we can compute in
time exponential in the size of ϕ, a Λ-automata A = (Q, qI , δ,Ω) in such that for
all pointed coalgebras (S, s0),

S, s0 
 ϕ iff (S, s0) is accepted by A.

The automaton A is of size dn and index d, where n is the size of ϕ and d is the
alternation depth of ϕ.

So to decide whether ϕ is satisfiable, it is sufficient to decide whether A
accepts a pointed coalgebra. By Theorem 7.3.2, deciding whether A accepts a
pointed coalgebra is equivalent to decide whether ∃ has a winning strategy in the
game Sat(A) = (G∃, G∀, E,Win, {(qI , qI)}). Recall that Sat(A) is an initialized
regular game. Moreover, its associated regular language is the complement of the
language recognized by the automaton B, as defined in Proposition 7.3.1.

First, we show that in time doubly exponential in the size of A, we can compute
the game Sat(A). Since the set G∃ is equal to P(Q×Q) and the set G∀ is equal
to PP(Q × Q), each position of the board of Sat(A) can be represented by a
string exponential in the size of A. Moreover, the size of G is doubly exponential
in the size of A.

Given a pair (R, R) in PP(Q×Q)×P(Q×Q), we have that (R, R) belongs
to E iff R ∈ R. So it is decidable in time exponential in the size of A whether
(R, R) belongs to E. Given a pair (R,R) in P(Q × Q) × PP(Q × Q), we have
that (R,R) belongs to E iff

[[
∧
{ρqδ(q) | q ∈ Ran(R)}]]1υR 6= ∅,

where υR is defined as in the definition of the satisfiability game. Since A is
computable in time exponential in the size of ϕ, the size of δ(q) (for each q ∈ Q)
is at most exponential in the size of ϕ. Hence, the size of the formula

∧
{ρqδ(q) |

q ∈ Ran(R)} is at most exponential in the size of ϕ. Putting this together with
the fact that (F,Λ) has the exponential one-step satisfiability property, we get
that it is decidable in time double exponential in the size of ϕ whether (R,R)
belongs to E. Moreover, as E ⊆ G × G and G = P(Q × Q) × PP(Q × Q), the
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number of pairs (R,R) for which we have to check whether it belongs to E, is
doubly exponential in the size of A.

The winning condition of Sat(A) is completely determined by the coloring
col and the automaton B = (QB, qB, δB,ΩB) (as defined in the proof of Proposi-
tion 7.3.1). We can compute the graph of col in time doubly exponential in the
size of A. Moreover, the automaton B is computable in time exponential in the
size of A. This finishes the proof that in time doubly exponential in the size of
A, we can compute the game Sat(A).

Finally we show that it is decidable in time doubly exponential in the size of
A whether ∃ has a winning strategy in Sat(A). We use Theorem 7.1.4. The size
n of G is the size of the set PP(Q×Q) ∪ P(Q×Q). So n is doubly exponential
in the size of A. The size of E is also doubly exponential in the size of A. The
size and the index of B are linear in the size of A. Therefore, by Theorem 2.4.1,
there exists a deterministic ω-automaton that recognizes the same language as B,
the size of which is exponential in the size of A and the index of which is linear in
the size of A. Putting everything together with Theorem 7.1.4, we obtain that it
is decidable in time doubly exponential in the size of A whether ∃ has a winning
strategy in Sat(A). 2

7.4 One-step tableau completeness

In this section we show how our satisfiability game relates to the work of Corina
Ĉırstea, Clemens Kupke and Dirk Pattinson [CKP09]. The authors of this paper
proved that when assuming the existence of a certain derivation system satisfying
some properties for Λ, the satisfiability problem for fixpoint coalgebraic logic in
decidable in EXPTIME. In the previous section, we established a 2EXPTIME
bound for the same problem, but without any assumption.

We show that using the same assumptions as in [CKP09], we can modify the
satisfiability game from the previous section and obtain a new game: the tableau
game. The two games are equivalent, in the sense that ∃ has a winning strategy
in one of them iff she has a winning strategy in the other.

Moreover, it is clear from the definition of the tableau game that the tableau
game is rather similar to the game defined by Corina Ĉırstea et alii [CKP09]. The
main difference is that our tableau game is defined with respect to a Λ-automaton,
whereas their game is defined with respect to a coalgebraic fixpoint formula (recall
from Proposition 7.2.2 that such a formula can be translated into an equivalent
Λ-automaton). It is then not surprising that under the same assumptions as
in [CKP09], we can derive from the tableau game an EXPTIME bound for the
satisfiability problem.

We start by recalling the definitions of one step rule and one-step complete-
ness, as introduced in [CKP09]. We also define the tableau game.
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One-step rule Fix an infinite setX. We let Λ(X) denote the set {♥λ(x1, · · · , xn) |
λ ∈ Λ, xi ∈ X}. A (monotone) one-step rule d for Λ is of the form

Γ0

∆1 · · · ∆n

where Γ0 is a finite subset of Λ(X) and ∆1, . . . ,∆n are finite subsets of X, every
propositional variable occurs at most once in Γ0 and all variables occurring in
some of the ∆i’s (i > 0) also occur in Γ0. We write Conc(d) for the set Γ0 and
Prem(d) for the set {∆i | 1 ≤ i ≤ n}.

Let ϕ be a formula in TC n
Λ(X). Recall that a formula in TC n

Λ(X) is a disjunc-
tion of conjunctions of formulas in Λ(X). Hence, there exist subsets Γ1, . . . ,Γn
of Λ(X) such that

ϕ =
∨
{
∧

Γi | 1 ≤ i ≤ n}

Given a finite subset Γ of Λ(X), we say that Γ strongly entails ϕ, notation: Γ `s ϕ,
if there exists i0 ∈ {1, . . . , n} such that Γi0 ⊆ Γ.

For a set of such rules, with an automaton A we associate a so-called tableau
game, in which the rules themselves are part of the game board.

Tableau game Let (Q, qI , δ,Ω) be a Λ-automaton, let ΛA be the set of predicate
liftings λ ∈ Λ such that λ or its dual occurs in the range of δ and let D be a set
of one-step rules for Λ. The game Tab(A,D) is the initialized graph game given
by the table below.

Position Player Admissible moves
R ∈ P(Q×Q) ∃ {Γ ⊆ ΛA(Q×Q) | (∀q ∈ Ran(R))(Γ `s ρqδ(q)}
Γ ⊆ ΛA(Q×Q) ∀

{
(d, θ) ∈ D× (Q×Q)X | θ[Conc(d)] ⊆ Γ

}
(d, θ) ∈ D× (Q×Q)X ∃ {θ[∆] | ∆ ∈ Prem(d)}

The starting position is {(qI , qI)}. An infinite match R0Γ0(d0, θ0)R1Γ1(d1, θ1) . . .
is won by ∃ if R0R1 . . . belongs to NBT (Q ,Ω).

Our tableau game Tab(A,D) is (in some natural sense) equivalent to the sat-
isfiability game for A if we assume the set D to be one-step sound and complete
with respect to F .

One-step completeness A set D of one-step rules is one-step sound and com-
plete with respect to Λ if for all sets Y and S, all finite subset Γ of Λ(Y ) and all
assignments τ : Y −→ P(S) the following are equivalent:
(a) [[

∧
Γ]]1V 6= ∅

(b) for all rules d ∈ D and all substitutions θ : X −→ Y with θ[Conc(d)] ⊆ Γ,
there exists ∆i ∈ Prem(d) such that [[

∧
θ[∆i]]]

1
V 6= ∅.



216 Chapter 7. Automata for coalgebras: an approach using predicate liftings

Intuitively, one-step soundness and completeness means that the conclusion
of an instance of a rule is satisfiable iff one of the premisses of the instance of
the rule is satisfiable. Note that the implication (a) ⇒ (b) corresponds to the
completeness of D and the implication (b) ⇒ (a) corresponds to the soundness
of D.

7.4.1. Example. (1) For all n ∈ N, let dn be the following one-step rule:

{3x0,2x1, . . . ,2xn}
{x0, . . . , xn}

.

The set {dn | n ∈ N} is one-step sound and complete with respect to {λ, λ},
where λ is the predicate lifting corresponding the modality 2 (as defined in Ex-
ample 7.2.1(1)).

(2) The d defined by
{3x,2y}
{x, y}

,

is one-step sound and complete with respect to o {λ, λ}, where λ is the predicate
lifting corresponding the universal modality for neighborhood modal logic (as
defined in Example 7.2.1(3)).

7.4.2. Theorem. Let A = (Q, qI , δ,Ω) be a Λ-automaton and let D be a set of
one-step rules for Λ. If D is one-step sound and complete with respect to F , then
∃ has a winning strategy in Sat(A) iff ∃ has a winning strategy in Tab(A,D).

Proof For the direction from left to right, suppose ∃ has a winning strategy f in
Sat(A). We define a winning strategy g for ∃ in Tab(A,D). The idea is that during
a g-conform match R0Γ0(d0, θ0) . . . Rk−1Γk−1(dk−1, θk−1)Rk, ∃ will maintain an f -
conform shadow match R′0R0 . . . R

′
k−1Rk−1R

′
k such that for all i ≤ k, Ri ⊆ R′i.

The first position of any g-conform match is R0 = {(qI , qI)}. The first position
of its f -conform shadow match is R′0 = {(qI , qI)}, hence R0 ⊆ R′0.

For the induction step, let π = R0Γ0(d0, θ0) . . . Rk−1Γk−1(dk−1, θk−1)Rk be a
g-conform match and let π′ = R′0R0 . . . R

′
k−1Rk−1R

′
k be its f -conform shadow

match such that for all i ≤ k, Ri ⊆ R′i. At position R′k in the f -conform match,
suppose that ∃’s choice is the set Rk ⊆ P(Q × Q). It follows from the rules of
Sat(A) that [[

∧
{ρqδ(q) | q ∈ Ran(Rk)}]]1υRk 6= ∅. Hence, there is η ∈ FRk such

that
FRk, η 


1
υRk

ρqδ(q), (7.8)

for all q ∈ Ran(Rk).
Take q ∈ Ran(Rk). Recall that δ(q) is a disjunction of conjunctions of formulas

in Λ(Q). It follows from (7.8) that there exists a disjunct
∧

Γ′q of the formula

δ(q) sucht that FRk, η 
1
υRk

ρq
(∧

Γ′q
)
. Now we define Γk as the set {Γ′q | q ∈
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Ran(Rk)}. It follows from the definition of Γk that FRk, η 
1
υRk

ρq (
∧

Γk) and

that Γk `s ρqδ(q). We define the strategy g such that ∃’s next move in π is the
set Γk ⊆ ΛA(Q×Q).

Next, in the Tab(A,D)-match, suppose that ∀ plays and chooses a pair (dk, θk),
where dk ∈ D and θk : X −→ Q × Q are such that θk[Conc(dk)] ⊆ Γk. Now ∃
has to find a set ∆ ∈ Prem(dk). Since [[

∧
Γk]]

1
υRk
6= ∅ and D is one-step sound

and complete for F , there exists ∆ ∈ Prem(dk) such that [[
∧
θk[∆]]]υRk 6= ∅. We

continue the definition of g by letting ∃ choose the set θk[∆] as the next position
in the Tab(A,D)-match, i.e. Rk+1 = θk[∆].

Since [[
∧
θk[∆]]]υRk 6= ∅, there exists R′k+1 ∈ Rk such that

Rk, R
′
k+1 
υRk

∧
θk[∆]. (7.9)

We define the next move for ∀ in the f -conform match π′ as the relation R′k+1.
Now we check that the induction hypothesis remains true, i.e. Rk+1 ⊆ R′k+1.

Take (q, q′) in Rk+1. By definition of Rk+1, (q, q′) belongs to θk[∆]. It follows
from (7.9) that R′k+1 ∈ υRk(q, q′). Recalling the definition of υRk (see the defini-
tion of the satisfiability game), we see that (q, q′) belongs to R′k+1.

It remains to show that such a strategy g is winning for ∃ in Tab(A,D). It
follows from the definition of g that ∃ will never get stuck. Hence we may confine
our attention to infinite g-conform matches. Let π = R0Γ0(d0, θ0)R1Γ1(d1, θ1) . . .
be such a match. By definition of g, there exists an f -conform shadow match
π′ = R′0R0R

′
1R1 . . . such that for all i ∈ N, Ri ⊆ R′i. Since f is a winning

strategy for ∃, the sequence R′0R
′
1 . . . does not contain any bad trace. Putting

this together with the fact that Ri ⊆ R′i (for all i ∈ N), we obtain that R0R1 . . .
does not contain any bad trace; that is, π is won by ∃.

For the direction from right to left, suppose ∃ has a winning strategy g in
Tab(A,D). We need to provide a winning strategy f for ∃ in Sat(A). During a f -
conform match R0R0 . . . Rk−1Rk−1Rk, ∃ will maintain a g-conform shadow match
R0Γ0(d0, θ0) . . . Rk−1Γk−1(dk−1, θk−1)Rk. The first position of any f -conform match
is R0 = {(qI , qI)} and the first position of its g-conform shadow match is also R0.
For the induction step, let π = R0R0 . . . Rk−1Rk−1Rk be an f -conform match and
let π′ = R0Γ0(d0, θ0) . . . Rk−1Γk−1(dk−1, θk−1)Rk be its g-conform shadow match.
In the f -conform match, ∃ has to define a set Rk ⊆ P(Q×Q) such that

[[
∧
{ρqδ(q) | q ∈ Ran(Rk)}]]1υRk 6= ∅. (7.10)

Assume that at position Rk in the g-conform shadow match, ∃ chooses a set
Γk ⊆ ΛA(Q×Q) such that for all q ∈ Ran(Rk), Γk `s ρqδ(q).

We say that a set R ⊆ Q × Q is g-reachable from Rk if there is a g-conform
match of the form R0Γ0(d0, θ0) . . . Rk−1Γk−1(dk−1, θk−1)RkΓk(d, θ)R. We define
Rk as the set {R ⊆ Q×Q | R is g-reachable from Rk }.

1. Claim. Rk is a legitimate move for ∃ at position Rk in Sat(A).
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Proof of Claim To show that such a move is a legitimate move for ∃ in Sat(A),
we have to check that (7.10) holds. Since for all q ∈ Ran(Rk), Γk `s ρqδ(q), it is
sufficient to prove that [[

∧
Γk]]

1
υRk
6= ∅. As D is one-step tableau-complete for F ,

it suffices to verify that for all rules d in D and for all maps θ : X −→ Q×Q such
that θ[Conc(d)] ⊆ Γk, there exists ∆ ∈ Prem(d) such that [[

∧
θ[∆]]]υRk 6= ∅.

Fix a rule d in D and a map θ : X −→ Q×Q such that θ[Conc(d)] ⊆ Γk. Now
consider the g-conform match R0Γ0(d0, θ0) . . . Rk−1Γk−1(dk−1, θk−1)RkΓk(d, θ). In
this match, it is ∃’s turn and according to g, she chooses a set ∆ ∈ Prem(d),
making the relation θ[∆] as the new position. So the relation θ[∆] is g-reachable
from Rk. Thus it belongs to Rk. To show [[

∧
θ[∆]]]υRk 6= ∅, it enough to prove

that Rk, θ[∆] 
υRk
∧
θ[∆]. This follows from the definition of υRk and finishes

the proof of the claim. J

Now that we showed that Rk is a valid move for ∃ at position Rk in Sat(A),
we may define f such that the next move for ∃ in π is Rk. Next, it is ∀ who has
to play in the f -conform match and he picks a relation Rk+1 ∈ Rk. By definition
of Rk, Rk+1 is g-reachable from Rk. So there is a g-conform shadow match of
the form R0Γ0(d0, θ0) . . . Rk−1Γk−1(dk−1, θk−1)RkΓk(dk, θk)Rk+1. This finishes the
definition of f .

We still have to check that the strategy f is winning for ∃ in Sat(A). First
we observe that using f as a strategy ∃ will never get stuck. So it is sufficient to
consider an infinite f -conform match π = R0R0R1R1 . . . . By construction of f ,
there exists a g-conform shadow match π′ = R0Γ0(d0, θ0)R1Γ1(d1, θ1) . . . . Since
π′ is won by ∃, R0R1 . . . does not contain any bad trace. Hence π is won by ∃.

For the purpose of obtaining good complexity results for the coalgebraic µ-
calculus, in case we have a nice set D of derivation rules at our disposal, then
the tableau game has considerable advantages over the satisfiability game. More
specifically, if we follow exactly the ideas of [CKP09] and introduce the notions
of contraction closure and exponential tractability for a set of derivation rules,
we can show that the satisfiability problem for fixpoint coalgebraic formulas can
be solved in exponential time.

Contraction closure A set D is closed under contraction if for all sets Y ,
for all rules d in D and for all substitutions θ : X −→ Y , there exists d′ in D
and a substitution θ′ : X −→ Y such that the following conditions hold. For
all ϕ and ψ in Conc(d′) such that θ′(ϕ) = θ′(ψ), we have ϕ = ψ. Moreover,
θ[Conc(d)] ⊆ θ′[Conc(d′)] and for all ∆ in Prem(d), there exists ∆′ in Prem(d′)
such that θ[∆] ⊆ θ′[∆′].

Being contraction closed means that whenever we use a rule and the conclusion
contains twice the same formula, then we may replace the rule by a new one, where
the formula occurs only once in the conclusion.
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Exponential tractability A set D is exponentially tractable if for all sets Y ,
there is an alphabet Σ and a polynomial p : N −→ N such that every (d, θ) (with
d ∈ D and θ : X −→ Y ) can be encoded as a string of length ≤ p(size(θ[Conc(d)]))
and the relations

{(Γ, p(d, θ)) | θ[Conc(d)] ⊆ Γ}

and
{(p(d, θ), θ[∆]) | ∆ is the i-th premisse of Prem(d)}

are decidable in time exponential in the size of Y , for all i ∈ N.

Exponential tractability will help us to encode the positions of the board of the
tableau game, reduce the size of the board (its upper bound will be exponential in
the size of the automaton, whereas in the previous section, the upper bound was
doubly exponential) and give us a nice complexity for the relation determining
legal moves in the tableau game.

The following theorem was proved in [CKP09], but here, we show how to
derive it from the tableau game, which is in some sense, a particular case of the
satisfiability game when the set Λ satisfies some nice properties. The key results
are Proposition 7.2.2, Theorem 7.3.2 and Theorem 7.4.2. How to derive from
them the next theorem is similar to what is done in [CKP09]. For clarity, we
spell out the details.

7.4.3. Theorem. [CKP09] Let F be a functor, Λ a set of predicate liftings for
F , D a set of rules which is exponentially tractable, contraction closed and one-
step sound and complete for Λ. It is decidable whether a fixpoint Λ-sentence ϕ is
satisfiable in the class of F -coalgebras, in time exponential in the size of ϕ.

Proof Let F , Λ and D be as in the statement of the theorem. Since D is exponen-
tially tractable, there exist an alphabet Σ and a polynomial p which satisfy the
conditions of the definition of exponential tractability. Fix a fixpoint sentence ϕ
in MLΛ. By Proposition 7.2.2, we can compute in time exponential in the size of
ϕ, a Λ-automaton A = (Q, qI , δ,Ω) such that ϕ and A are equivalent. Moreover,
the size of A is dn, where d is the alternation depth of ϕ and n is the size of ϕ.
The index of A is equal to d.

To check whether ϕ is satisfiable, it is sufficient to check whether there exists
a pointed coalgebra accepted by A. By Theorem 7.3.2 and Theorem 7.4.2, this
boils down to determine whether ∃ has a winning strategy in the tableau game
Tab(A,D) = (G∃, G∀, E,Win, {(qI , qI)}).

We start by modifying the game Tab(A,D) such that the modified game is
easier to computer and is equivalent to the original game (in the sense that ∃
has a winning strategy in the original game iff ∃ has a winning strategy in the
modified game). To do this modification, we use the fact D is contraction closed.
We know that for all rules d and for all substitutions θ′ : X −→ Q×Q, there exist
a rule d′ ∈ D and a substitution θ′ : X −→ Q×Q such that



220 Chapter 7. Automata for coalgebras: an approach using predicate liftings

(i) for all ϕ and ψ in Conc(d′) satisfying θ′(ϕ) = θ′(ψ), we have ϕ = ψ.

(ii) θ[Conc(d)] ⊆ θ′[Conc(d′)] and for all ∆ in Prem(d), there exists ∆′ in
Prem(d′) such that θ[∆] ⊆ θ′[∆′].

It follows from (i) that θ′ induces an injection from Conc(d′) to ΛA(Q × Q). In
particular, the number of formulas in Conc(d′) is less or equal to k := |ΛA(Q×Q)|.
Moreover, it follows from (ii) and the rules of the tableau game that if the pair
((d, θ), R) belongs to the edge relation, we may remove this pair from the edge
relation and replace it by the pair ((d′, θ′), R). So in the remaining of the proof,
we assume that the number of formulas in the conclusion Γ of a rule d occurring
in the game is at most k.

Now we show that we can compute the game Tab(A,D) in time exponential
in the size of A. Recall that Tab(A,D) has three kinds of positions: (a) positions
in P(Q×Q), (b) positions in P(ΛA(Q×Q)) and (c) positions in D× (Q×Q)X .

1. Claim. Every position in the tableau game can be represented by a string of
polynomial length in the size of A.

Proof of Claim The claim immediate for the positions which belong to P(Q×
Q). Next we consider the positions in P(ΛA(Q × Q)). Since all the predicate
liftings of ΛA occur in ϕ, the size of ΛA is smaller than the size of ϕ and thus,
smaller than the size of A. Hence, the size of ΛA(Q×Q) is polynomial in the size
of A. It follows that the positions of the form Γ ⊆ ΛA(Q×Q) can be encoded by
a string polynomial in the size of A.

Now we consider the positions of type (c). Using exponential tractability, we
know that each position of the form (d, θ) can be encoded by a string (over Σ)
of length ≤ p(size(θ[Conc(d)])). Now θ[Conc(d)]) is a subset of ΛA(Q×Q). We
already observed that the size of ΛA(Q×Q) is polynomial in the size of A. Hence,
each position of the form (d, θ) can be encoded by a string of polynomial length
in the size of A and this finishes the proof of the claim. J

Next we show that the size of the board is exponential in the size of A. The
number of positions of type (a) is obviously exponential in the size of A. The
size of P(ΛA(Q × Q)) (that is, the positions of type (b)) is also exponential in
the size of A, as the size of ΛA is smaller than the size of A. Finally we consider
positions of type (c). Looking at the proof of the previous claim, we see that
there is a polynomial p′ such that each position of the form (d, θ) is encoded by a
string over Σ of length ≤ p′(|A|). There are at most (|Σ| + 1)p

′(|A|) such strings.
Therefore, the number of positions of the form (d, θ) ∈ D× (A× A)X is at most
exponential in the size of A. This finishes the proof that the size of the board is
exponential in the size of A.

Now we prove that we can compute the edge relation of the tableau game in
time at most exponential in the size of A .
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2. Claim. Given a pair of positions of the board, we can decide in time exponen-
tial in the size of A whether the pair belongs to the edge relation.

Proof of Claim First, given a relation R ∈ P(Q × Q) and a subset Γ of
ΛA(Q × Q), deciding whether (R,Γ) belongs to the edge relation is equivalent
to decide whether for all q ∈ Ran(R), the relation Γ `s ρqδ(q) holds. Since we
can compute A in time exponential in the size of ϕ, the size of δ(q) is at most
exponential in the size of ϕ. Hence, the question whether Γ `s ρqδ(q) holds is
decidable in exponential time.

Second, given a subset Γ of ΛA(Q × Q) and a pair (d, θ), we can check in
time exponential in the size of A whether the pair (Γ, (d, θ)) belongs to the edge
relation (that is, whether θ[Conc(d)] ⊆ Γ), by using exponential tractability.

Finally, given a pair (d, θ) in D× (Q×Q)X and a relation R ∈ P(Q×Q), we
want to decide whether the pair ((d, θ), R) belongs to the edge relation. That is,
decide whether there exists a premise ∆ of d such that R = θ[∆]. By exponential
tractability, for all i ∈ N, we can check in time exponential in the size of A
whether R = θ[∆i], where ∆i is the i-th premise of d. So it is sufficient to show
that the number of premises of d is bound in a reasonable way.

Recall that the number of formulas in the conclusion Γ of d is at most k. It
follows that the number of elements of X occurring in Γ is bound by n ·k, where n
is the maximal arity of the predicate liftings in ΛA. Hence the number of premises
of d is at most 2n·k. Since we suppose that the size of a predicate lifting of arity
l is at least l, n is less or equal to the size of ϕ, which is less or equal to the size
of A. We observed earlier that k = |ΛA(Q × Q)| is polynomial in the size of A.
Therefore, 2n·k is polynomial in the size of A. J

Now, since the size of the board is at most exponential in the size of A, the
size of the edge relation is also at most exponential in the size of A. Putting this
together with the last claim, we can compute the edge relation of the tableau
game in time at most exponential in the size of A.

We turn now to the computation of the winning condition. Exactly, as we
showed that the satisfiability game is regular (in Proposition 7.3.1), we can prove
that the tableau game is regular. We can define the alphabet Σ := P(Q×Q)∪{∗}
and a coloring col ′ : G∃ ∪G∀ −→ Σ such that for all R ∈ P(Q×Q), col ′(R) = R
and for all positions z of the board which do not belong to P(Q×Q), col ′(z) = ∗.
Finally we let L′ be the language {R0 ∗ ∗R1 ∗ ∗ · · · | R0R1 · · · ∈ NBT (Q ,Ω)}. It
is easy to see that with these definitions of Σ, col ′ and L′, Tab(A,D) is a regular
game.

It is immediate that we can compute the graph of col ′ in time exponential in
the size of A. Moreover, by slightly modifying the construction of the automaton
B in the proof of Proposition 7.3.1, we can construct a non-deterministic parity ω-
automaton C such that C recognizes the complement of L′. We may also assume
that C is computable in time exponential in the size of A and that the size and
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the index of C are linear in the size of A. This finishes the proof that we can
compute the game Tab(A,D) in time exponential in the size of A.

Finally, using Theorem 7.1.4, we show that it is decidable in time exponential
in the size of A whether ∃ has a winning strategy in Tab(A,D), from position
{(qI , qI)}. As proved earlier, the sizes of the board of the tableau game and of
the edge relation are exponential in the size of A. The size and the index of C
are linear in the size of A. Therefore, there exists a deterministic ω-automaton
recognizing the same language as C, the size of which is exponential in the size of
A and the index of which is linear in the size of A (see Theorem 2.4.1). Putting
everything together with Theorem 7.1.4, we obtain that it is decidable in time
exponential in the size of A whether ∃ has a winning strategy in Tab(A,D). 2

7.5 Conclusions

In this chapter we have introduced Λ-automata which are automata using predi-
cate liftings. We generalize [Ven06b] in that our presentation works for any type
of coalgebra i.e. no restriction on the functor.

We introduced an acceptance game for Λ-automata, and established a finite
model property (Theorem 7.3.2) using a satisfiability game for Λ-automata. We
used games to establish a 2EXPTIME bound on the satisfiability problem for
µMLΛ (Theorem 7.3.4). We showed how our approach relates to the work in
[CKP09] by means of a game based on tableau rules (Theorem 7.4.2).

There are still some unresolved issues. By proving the finite model property
for coalgebraic fixpoint logic, we gave an illustration how Λ-automata can be
a tool for showing properties of coalgebraic fixpoint logic. So one could ask
whether, using Λ-automata, we could prove other properties. For example, we
could be inspired by the fact that the proofs of the existence of a disjunctive
normal form and the uniform interpolation theorem for the µ-calculus are based
on the automata theoretic approach for the µ-calculus.



Chapter 8

Conclusion

I like the following sentence written by Roland Dorgelès: “Ils sont arrivés parce
qu’ils n’allaient pas loin” (“They have arrived because they did not go far”).
Throughout this thesis, we saw that there are various perspectives one can have
on a µ-sentence and depending on the context, one or another might be more
relevant. One could think of the sentence above as being pessimistic regarding
the work done. Or it could mean that the horizon is almost infinite.

The work done The idea was to explore the µ-calculus through the “fine
structure” approach; that is to say, by specializing the class of models, of frames
and of languages that we consider. We believe that the main contributions are
the following:

• We gave an easy proof of the completeness of the Kozen’s axiomatization
together with the axiom µx.2x with respect to the class of finite trees.
The proof consisted in combining Henkin-style semantics for the µ-calculus
together with model theoretic methods.

• We investigated the expressive power of the µ-calculus on frames. More
precisely, we showed that an MSO formula is frame definable by a µ-formula
on trees iff it is preserved under p-morphic images on trees and under taking
subtrees.

• We provided characterizations for the node and path expressions of the
fragment of CoreXPath the unique basic axis of which is the descendant
relation. These characterizations were obtained by combining well-known
results concerning the µ-calculus.

• We gave a syntactic characterization of the continuous fragment. Using the
characterization, we showed that it is decidable whether a given µ-sentence
is continuous.

223
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• In the framework of universal coalgebra, we introduced the notion of Λ-
automaton associated with a set Λ of predicate liftings. We used these
automata to obtain, under some very mild condition, a double exponential
upper bound for the satisfiability problem for coalgebraic fixpoint logic. It
also followed from the proof that coalgebraic fixpoint logic has the finite
model property.

A small part of the almost infinite horizon At the end of each chapter,
we mentioned a few suggestions for further work. Among those, we would like to
recall the following:

• It would be nice to have a better understanding of the completeness of the
µ-calculus. In particular, it would be interesting to obtain an easier proof
for the completeness of the µ-calculus in general.

As suggested by Chapter 3, a possible path is to first concentrate on re-
stricted settings. Possibilities other than finite trees include the setting of
linear orders and the alternation free fragment of the µ-calculus. Let us
recall that the axiomatizability of the µ-calculus on linear orders has been
studied by Roope Kaivola [Kai97].

• A natural question following the main result of Chapter 4 is whether we
can obtain a characterization of the expressive power of the µ-calculus on
arbitrary frames. More precisely, whether we can find semantic conditions
that characterize the µ-calculus as a fragment of MSO on frames in general.

• It would be interesting to see whether some of the characterizations pre-
sented in Chapter 5 can be adapted for PDL, CTL or CTL*. If we try to
modify the proofs of this chapter, a first difficulty that we would encounter
is the fact that there is no nabla operator for these logics. But it still
seems possible that there are translations similar to the ones presented in
Chapter 5 for PDL, CTL or CTL*.

Another interesting question related to Chapter 5 is to find the scope of
the techniques used in this chapter, by for example using these methods
to obtain characterizations of other natural fragments of the µ-calculus. A
first obvious question is to identify other natural fragments.

• It seems natural to pursue the development of the automata theoretic ap-
proach for coalgebras. For example, we could try to show a result similar
to the fact that there is a disjunctive normal form for the µ-calculus. This
might help to obtain a uniform interpolation result.

• We could also think of lifting some of the results to the setting of coalgebras.
The most relevant results in that respect are the completeness of the µ-
calculus on finite trees and the characterization results of Chapter 5. The
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most difficult step would probably be to express the results in coalgebraic
terms.

We also mentioned in the introduction that the chapters of this thesis can
be seen as an exploration of the possible methods to understand the µ-calculus.
In Chapter 3, we used model theoretic methods; it is is not yet clear what the
scope of the methods used there is, or if there are other particular model theoretic
methods that could help for investigating the µ-calculus.

Chapters 4, 5 and 7 provide several illustrations of the fact that game theory
is an adequate formalism to talk about the µ-calculus. Moreover, Chapter 7 is
also an example of the power of the automata theoretic approach and the fruitful
interaction between automata theory and game theory.

Throughout the remarks of Chapter 5, we sketched how the methods of that
chapter could be transferred from the level of formulas to the context of automata.
The main point of these remarks is that if we want to address complexity issues
(at least related to the problems of Chapter 5), the automata perspective might
be more appropriate.

It would be interesting to study this phenomenon on a broader scale. For
example, we mentioned in Chapter 5 the question of the complexity of the trans-
formation of a µ-sentence into an equivalent disjunctive sentence. Comparing
that complexity with the complexity of the transformation of an alternating µ-
automaton into a non-deterministic µ-automaton would contribute to a better
understanding of the link between automata and formula.

One of the first steps to investigate the complexity of the transformation of
a µ-sentence into an equivalent disjunctive sentence is to establish the complex-
ity of computing the solution of a modal equation system, as defined in [BS07,
Section 3.7].





Bibliography

[AJ94] Samson Abramsky and Achim Jung. Domain Theory. In Samson
Abramsky, Dov M. Gabbay Dov M., and Tom S. E. Maibaum, editors,
Handbook for Logic in Computer Science. 1994.

[AN01] André Arnold and Damian Niwiński. Rudiments of µ-calculus, volume
146 of Studies in Logic. 2001.
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[Jur00] Marcin Jurdziński. Small progress measures for solving parity games.
In Proceedings of STACS, volume LNCS 1770, pages 290–301, 2000.

[JW95a] David Janin and Igor Walukiewicz. Automata for the modal µ-calculus
and related results. In Proceedings of MFCS, pages 552–562, 1995.
LNCS 969.

[JW95b] David Janin and Igor Walukiewicz. Automata for the modal µ-calculus
and related results. In Proceedings of MFCS’95, pages 552–562, 1995.



232 Bibliography

[JW96] David Janin and Igor Walukiewicz. On the expressive completeness
of the propositional modal mu-calculus and related results. In Pro-
ceedings of CONCUR, pages 263–277, 1996.

[Kai97] Roope Kaivola. Using Automata to Characterize Fixed Point Tempo-
ral Logics. PhD thesis, Department of Computer Science, University
of Edinburgh, 1997.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoretical
Computer Science, 27(3):333–354, 1983.

[Koz95] Dexter Kozen. Results on the propositional µ-calculus. Lecture Notes
in Computer Science, 962, 1995.

[KV05] Clemens Kupke and Yde Venema. Closure properties of coalgebra
automata. In Proceedings of LICS 2005, pages 199–208, 2005.

[KV08] Clemens Kupke and Yde Venema. Coalgebraic automata theory: basic
results. Logical Methods in Computer Science, 4:1–43, 2008.

[KV09] Christian Kissig and Yde Venema. Complementation of coalgebra
automata. In Proceedings of CALCO’09, pages 81–96, 2009.

[KVW00] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-
theoretic approach to branching-time model checking. Journal of the
ACM, 47(2):312–360, 2000.

[McN66] Robert McNaughton. Testing and generating infinite sequences by a
finite automaton. Information and Control, 9(5):521–530, 1966.

[MdR05] Maarten Marx and Maarten de Rijke. Semantic characterizations of
navigational XPath. ACM SIGMOD Report, 34(3):41–46, 2005.

[Mos74] Yiannis Nicholas Moschovakis. Elementary induction on abstract
structures, volume 77 of Studies in Logic and the Foundations of Math-
ematics. 1974.

[Mos91] Andrzej Mostowski. Games with forbidden positions. Technical Re-
port 78, University of Gdańsk, 1991.
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Samenvatting

Dit proefschrift bestudeert enkele model-theoretische aspecten van de modale µ-
calculus, een uitbreiding van de modale logica met kleinste en grootste dekpunt-
operatoren. We verkennen deze aspecten via een “fijnstructuur” benadering van
de µ-calculus. Met andere woorden, we concentreren ons op speciale klassen van
structuren en specifieke fragmenten van de taal. De methoden die wij gebruiken
illustreren de vruchtbare interactie tussen de µ-calculus en andere onderzoekge-
bieden, zoals automatentheorie, speltheorie en modeltheorie.

Hoofdstuk 3 bewerkstelligt een volledigheidsresultaat voor de µ-calculus over
eindige bomen. Het volledigheidsbewijs van de µ-calculus over willekeurige struc-
turen [Wal95] staat bekend vanwege de moeilijkheidsgraad, maar eindige bomen
staan ons toe een veel eenvoudiger argument te geven. De techniek die we ge-
bruiken bestaat uit het combineren van een Henkin-stijl semantiek voor de µ-
calculus met modeltheoretische methoden gëınspireerd op het werk van Kees
Doets [Doe89]).

In hoofdstuk 4 bestuderen we de uitdrukkingskracht van de µ-calculus op
het niveau van frames. De uitdrukkingskracht van de µ-calculus op het niveau
van modellen (gelabelde grafen) is bekend [JW96], terwijl niets bekend is van
het niveau van frames (ongelabelde grafen). In de setting van frames komen de
propositieletters overeen met universeel gekwantificeerde tweede-orde variabelen.
Ons voornaamste resultaat is een karakterisering van die monadische tweede-orde
formules die op de klasse van bomen (gezien als frames) equivalent zijn met een
formule van de µ-calculus.

In Hoofdstuk 5 laten we karakteriseringen zien van specifieke fragmenten
van de µ-calculus, waarvan de belangrijkste het Scott continue fragment en het
volledig-additieve fragment zijn. Een interessant aspect van de continue formules
is dat ze constructief zijn, dat wil zeggen, hun kleinste dekpunten kunnen worden
uitgerekend in hoogstens ω veel stappen. We geven ook een alternatief bewijs
voor de karakterisering van het volledig-additieve fragment, een resultaat verkre-
gen door Marco Hollenberg [Hol98b]. Ons bewijs verloopt langs dezelfde lijnen
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als dat voor de karakterisering van het continue fragment.
In het daaropvolgende hoofdstuk onderzoeken we de uitdrukkingskracht van

een fragment van CoreXPath. XPath is een navigatietaal voor XML documenten
en CoreXPath is géıntroduceerd om de logische kern van XPath te vatten. In
Hoofdstuk 6 maken we gebruik van de nauwe verwantschap tussen CoreXPath
en modale logica: door het combineren van bekende resultaten aangaande de µ-
calculus (één daarvan uit Hoofdstuk 5), verkrijgen we een karakterisering van een
belangrijk fragment van CoreXPath.

Ten slotte, in Hoofdstuk 7, ontwikkelen we automaten-theoretische hulpmid-
delen voor co-algebraische dekpuntlogica’s, dat wil zeggen, generaliseringen van
de µ-calculus naar het abstractieniveau van co-algebras. Co-algebras geven een
abstract kader voor het wiskundig representeren van evoluerende systemen. We
gebruiken deze hulpmiddelen om zowel de beslisbaarheid van het vervulbaarhei-
dsprobleem als de kleine-model eigenschap voor co-algebraische dekpuntlogica’s
in een algemene setting te laten zien. We verkrijgen een dubbel-exponentiële
bovengrens voor de complexiteit van het vervulbaarheidsprobleem.



Abstract

This thesis is a study into some model-theoretic aspects of the modal µ-calculus,
the extension of modal logic with least and greatest fixpoint operators. We explore
these aspects through a “fine-structure” approach to the µ-calculus. That is,
we concentrate on special classes of structures and particular fragments of the
language. The methods we use also illustrate the fruitful interaction between
the µ-calculus and other methods from automata theory, game theory and model
theory.

Chapter 3 establishes a completeness result for the µ-calculus on finite trees.
The proof of the completeness of the µ-calculus on arbitrary structures [Wal95] is
well-known for its difficulty, but it turns out that on finite trees, we can provide a
much simpler argument. The technique we use consists in combining an Henkin-
type semantics for the µ-calculus together with model theoretic methods (inspired
by the work of Kees Doets [Doe89]).

In Chapter 4, we study the expressive power of the µ-calculus at the level
of frames. The expressive power of the µ-calculus on the level of models (la-
beled graphs) is well understood [JW96], while nothing is known on the level of
frames (graphs without labeling). In the setting of frames, the proposition letters
correspond to second-order variables over which we quantify universally. Our
main result is a characterization of those monadic second-order formulas that are
equivalent on trees (seen as frames) to a formula of the µ-calculus.

In Chapter 5, we provide characterizations of particular fragments of the µ-
calculus, the main ones being the Scott continuous fragment and the completely
additive fragment. An interesting feature of the continuous formulas is that they
are constructive, that is, their least fixpoints can be calculated in at most ω
steps. We also give an alternative proof of the characterization of the completely
additive fragment obtained by Marco Hollenberg [Hol98b], following the lines of
the proof for the characterization of the continuous fragment.

In the next chapter, we investigate the expressive power of a fragment of
CoreXPath. XPath is a navigation language for XML documents and CoreXpath
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has been introduced to capture the logical core of XPath. In Chapter 6, we exploit
the tight connection between CoreXPath and modal logic: by combining well-
known results concerning the µ-calculus (one of them appearing in Chapter 5),
we establish a characterization of an important fragment of CoreXPath.

Finally, in Chapter 7, we develop automata-theoretic tools for coalgebraic
fixpoint logics, viz. generalizations of the µ-calculus to the abstraction level of
coalgebras. Coalgebras provide an abstract way of representing evolving systems.
We use those tools to show the decidability of the satisfiability problem as well as
a small model property for coalgebraic fixpoint logics in a general setting. We also
obtain a double exponential upper bound on the complexity of the satisfiability
problem.
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