
Logic, Algebra and Topology

Investigations into canonical extensions, duality theory and
point-free topology

Jacob Vosmaer





Logic, Algebra and Topology

Investigations into canonical extensions, duality theory and
point-free topology



ILLC Dissertation Series DS-2010-10

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904
1098 XH Amsterdam

phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/



Logic, Algebra and Topology

Investigations into canonical extensions, duality theory and
point-free topology

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Agnietenkapel
op dinsdag 14 december 2010, te 14.00 uur

door

Jacob Vosmaer

geboren te Amsterdam.



Promotiecommissie

Promotores: Prof. dr. M. Gehrke
Prof. dr. Y. Venema

Overige leden: Prof. dr. J.F.A.K. van Benthem
Dr. G. Bezhanishvili
Prof. dr. D.H.J. de Jongh
Prof. dr. A. Jung
Dr. A. Palmigiano
Prof. dr. H.A. Priestley

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam
Science Park 904
1098 XH Amsterdam

This research was supported by the Netherlands Organization for Scientific Re-
search (NWO) VICI grant 639.073.501.

Copyright c© 2010 by Jacob Vosmaer

Printed and bound by Ipskamp Drukkers.

ISBN: 978–90–5776–214–7



voor Liesbeth en Therus

v





Contents

Acknowledgments xi

1 Introduction 1
1.1 Logic, algebra and topology . . . . . . . . . . . . . . . . . . . . . 1
1.2 Mathematical surroundings . . . . . . . . . . . . . . . . . . . . . 1
1.3 Survey of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Canonical extensions: a domain theoretic approach 9
2.1 Canonical extension via filters, ideals and topology . . . . . . . . 10

2.1.1 The canonical extension of a lattice . . . . . . . . . . . . . 11
2.1.2 Topologies on posets and completions . . . . . . . . . . . . 15
2.1.3 Characterizing the canonical extension via the δ-topology . 18
2.1.4 Basic properties of the canonical extension . . . . . . . . . 24
2.1.5 Conclusions and further work . . . . . . . . . . . . . . . . 27

2.2 Canonical extensions of maps I: order-preserving maps . . . . . . 27
2.2.1 The lower and upper extensions of an order-preserving map 28
2.2.2 Operators and join-preserving maps . . . . . . . . . . . . . 33
2.2.3 Canonical extension as a functor I: lattices only . . . . . . 42
2.2.4 Conclusions and further work . . . . . . . . . . . . . . . . 44

2.3 Canonical extensions via dcpo presentations . . . . . . . . . . . . 45
2.3.1 Dcpo presentations . . . . . . . . . . . . . . . . . . . . . . 47
2.3.2 A dcpo presentation of the canonical extension . . . . . . . 48
2.3.3 Extending maps via dcpo presentations . . . . . . . . . . . 50
2.3.4 Conclusions and further work . . . . . . . . . . . . . . . . 51

3 Canonical extensions and topological algebra 53
3.1 Topological algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Compact Hausdorff algebras . . . . . . . . . . . . . . . . . 55
3.1.2 Profinite algebras and profinite completions . . . . . . . . 56

vii



3.1.3 Topological lattices . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Canonical extensions of maps II: maps into profinite lattices . . . 68

3.2.1 Extending maps via lim inf and lim sup . . . . . . . . . . . 69
3.2.2 Maps into profinite lattices . . . . . . . . . . . . . . . . . . 74
3.2.3 Canonical extension and function composition . . . . . . . 78
3.2.4 Conclusions and further work . . . . . . . . . . . . . . . . 82

3.3 Canonical extension as a functor II: lattice-based algebras . . . . 83
3.3.1 Order types and canonical extension types . . . . . . . . . 84
3.3.2 Preservation of homomorphisms . . . . . . . . . . . . . . . 87
3.3.3 Canonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.4 Conclusions and further work . . . . . . . . . . . . . . . . 93

3.4 Profinite completion and canonical extension . . . . . . . . . . . . 93
3.4.1 Universal properties of canonical extension . . . . . . . . . 94
3.4.2 Finitely generated varieties . . . . . . . . . . . . . . . . . . 99
3.4.3 Canonical extension and monotone topological algebras . . 105
3.4.4 Conclusions and further work . . . . . . . . . . . . . . . . 109

4 Duality, profiniteness and completions 111
4.1 Dualities for distributive lattices with operators . . . . . . . . . . 112

4.1.1 Semi-topological DLO’s . . . . . . . . . . . . . . . . . . . 113
4.1.2 Colimits of ordered Kripke frames . . . . . . . . . . . . . . 116
4.1.3 Duality for profinite DLO’s . . . . . . . . . . . . . . . . . 120
4.1.4 Profinite completion via duality . . . . . . . . . . . . . . . 122
4.1.5 Conclusions and further work . . . . . . . . . . . . . . . . 127

4.2 A brief survey of subcategories of DLO . . . . . . . . . . . . . . . 127
4.2.1 Distributive lattices . . . . . . . . . . . . . . . . . . . . . . 128
4.2.2 Boolean algebras . . . . . . . . . . . . . . . . . . . . . . . 129
4.2.3 Heyting algebras . . . . . . . . . . . . . . . . . . . . . . . 130

4.3 Duality for topological Boolean algebras with operators . . . . . . 132
4.3.1 Duality for Boolean topological BAO’s . . . . . . . . . . . 133
4.3.2 Ultrafilter extensions of image-finite Kripke frames . . . . 137
4.3.3 Conclusions and further work . . . . . . . . . . . . . . . . 139

5 Coalgebraic modal logic in point-free topology 141
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.1 Basic mathematics . . . . . . . . . . . . . . . . . . . . . . 144
5.2.2 Category theory . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2.3 Relation lifting . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.4 Frames and their presentations . . . . . . . . . . . . . . . 152
5.2.5 Powerlocales via � and ♦ . . . . . . . . . . . . . . . . . . 154

5.3 The T -powerlocale construction . . . . . . . . . . . . . . . . . . . 157
5.3.1 Introducing the T -powerlocale . . . . . . . . . . . . . . . . 157

viii



5.3.2 Basic properties of the T -powerlocale . . . . . . . . . . . . 161

5.3.3 Two examples of the T -powerlocale construction . . . . . . 165

5.3.4 Categorical properties of the T -powerlocale . . . . . . . . . 171

5.3.5 T -powerlocales via flat sites . . . . . . . . . . . . . . . . . 179

5.4 Preservation results . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.4.1 Regularity and zero-dimensionality . . . . . . . . . . . . . 185

5.4.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.5 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A Preliminaries 199

A.1 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.2 Category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.2.1 Categories and functors . . . . . . . . . . . . . . . . . . . 200

A.2.2 Adjunctions of categories . . . . . . . . . . . . . . . . . . . 202

A.3 Order theory and domain theory . . . . . . . . . . . . . . . . . . . 202

A.3.1 Pre-orders and partial orders . . . . . . . . . . . . . . . . . 202

A.3.2 Adjunctions of partially ordered sets . . . . . . . . . . . . 204

A.3.3 Dcpo’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

A.3.4 Order and topology . . . . . . . . . . . . . . . . . . . . . . 205

A.4 Lattice theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.4.1 Semilattices and suplattices . . . . . . . . . . . . . . . . . 205

A.4.2 Lattices and complete lattices . . . . . . . . . . . . . . . . 206

A.4.3 Distributive lattices, Heyting algebras and Boolean algebras 206

A.5 Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.5.1 The ideal (and filter) completion of a pre-order . . . . . . 207

A.5.2 The MacNeille completion of a pre-order . . . . . . . . . . 209

A.6 Universal algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.6.1 Ω-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.6.2 Homomorphic images, subalgebras and products . . . . . . 210

A.6.3 Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

A.6.4 Terms and equations . . . . . . . . . . . . . . . . . . . . . 214

A.7 General topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

A.7.1 Topological spaces . . . . . . . . . . . . . . . . . . . . . . 214

A.7.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

A.7.3 Separation and compactness . . . . . . . . . . . . . . . . . 216

A.8 Duality for ordered Kripke frames . . . . . . . . . . . . . . . . . . 217

Bibliography 219

Index 227

Samenvatting 231

ix



Abstract 233

x



Acknowledgments

In this section I would like to acknowledge the difference that certain people made
for me while I was doing my PhD research.

Scientific contacts For starters, I would like to thank my main supervisors
(promotores) Mai Gehrke and Yde Venema, and the Netherlands Organisation
for Scientific Research (NWO). The research reported on in this dissertation was
carried out at the Institute for Logic, Language and Computation of the University
of Amsterdam with NWO funding, as part of the VICI ‘Algebra and Coalgebra’
project of which Yde Venema is the principal investigator. For four years, starting
in November 2006, I have been able to benefit from his supervision and mentorship.
In my first year Alessandra Palmigiano served as my secondary supervisor, for
which I am also very grateful. During my second year, Yde attracted Mai Gehrke
as my second main supervisor. Since Mai is based at the Radboud University in
Nijmegen, my interactions with her have been slightly less frequent than those
with Yde, but on every occasion it was both a great pleasure and a great help to
see her. Time and again, Mai and Yde have shown great concern not only for my
success as a young academic, but also for my general wellbeing. This has meant a
great deal to me.

I would also like to thank my co-authors for selected papers, namely Guram
Bezanishvili, Mai Gehrke, Yde Venema and Steve Vickers. My first publication
in a peer-reviewed journal [16] was a joint publication with Guram Bezanishvili.
I learned a lot from working with him and I am grateful for the high standards
he demanded from both of us. The two papers I co-authored with Mai Gehrke
were written in a breeze; I enjoyed working on them very much. Finally, I am
pleased to have been collaborating with Yde Venema and Steve Vickers on an as
yet unpublished paper, on which Chapter 5 is based.

While I was working on my PhD during the last four years, my immediate
research environment consisted of Yde’s Algebra & Coalgebra group and its
‘extended family’, which is grounded in the University of Amsterdam but extends

xi



far beyond it. Many members of this family are mentioned elsewhere in these
acknowledgments; of those who are not, I would like to mention Nick Bezhanishvili,
Vincenzo Ciancia, Dion Coumans, Sam van Gool, Helle Hansen, Christian Kissig,
Clemens Kupke, Loes Olde Loohuis and Alexandra Silva.

My work also benefited greatly from several visits to other universities I made
during the last four years. In early 2008, I visited Hilary Priestley at the University
of Oxford. I enjoyed my discussions with her a great deal. In late 2009, I visited
Steve Vickers and Achim Jung at the University of Birmingham. This was another
very nice opportunity for mathematical discussions, and it led to the collaboration
with Steve and Yde on which Chapter 5 is based. Finally I would like to mention
my visit to Mai Gehrke and Paul-André Melliès at Université Paris 7 – Denis
Diderot. I enjoyed having the opportunity to give a very technical and interactive
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Chapter 1

Introduction

1.1 Logic, algebra and topology

The connection between logic, algebra and topology is intricate and well-known.
The archetypical examples of this connection are provided by the works of G. Boole
and M.H. Stone. In the 1840s, Boole, one of the founding fathers of modern logic,
made his ‘laws of thought’ the subject of mathematical investigation by treating
logic as if it were algebra [21]. Boole’s algebraic analysis of logic led to the study
of Boolean algebras. In the 1930s, Stone showed that Boolean algebras can be
faithfully represented through using topology as (the duals of) Stone spaces, which
was a revolutionary contribution to both algebra and topology [81]. Out of these
two ideas, the algebraization of logic and duality between algebra and topology,
many research fields have sprung. In this dissertation, we present mathematical
investigations which contribute to some of the research areas of logic, mathematics
and computer science which developed out of the combined work of Boole and
Stone: canonical extensions, extended Stone duality and point-free topology.

1.2 Mathematical surroundings

We will begin by sketching some of the mathematical context in which our work
may be viewed.

Stone duality

Boolean algebras are the mathematical models Boole used to study ‘the laws of
thought’, or classical propositional logic as we would call it nowadays. Stone’s
famous duality theorem for Boolean algebras is a two-edged sword. One edge
amounts to the fact that any Boolean algebra B can be represented as the algebra
of closed-and-open (clopen) subsets of a topological space X: B ' X∗, where (·)∗
is the function that assigns to a topological space X its algebra of clopen sets,

1



2 Chapter 1. Introduction

with union, intersection and complementation as its algebra operations. More
specifically, what Stone showed is that given B, one can define a topological space
B∗ such that B ' (B∗)∗. In addition, he showed that such a space B∗ is always
compact, Hausdorff and zero-dimensional (recall that a space X is zero-dimensional
if the clopen subsets of X form a basis for its topology). We call such spaces
Boolean spaces or Stone spaces; in this dissertation we will use the former term.
The other edge of the sword is now that if X is a Boolean space, then X ' (X∗)∗.

The constructions (·)∗ and (·)∗ are not merely defined on Boolean algebras
and Boolean spaces: they are also defined on functions. Specifically, if f : A→ B
is a Boolean algebra homomorphism, then f∗ : B∗ → A∗ is a continuous function,
and conversely, if g : X → Y is a continuous function between Boolean spaces
then g∗ : Y ∗ → X∗ is a Boolean algebra homomorphism. These assignments are
contravariant functors, meaning the directions of the arrows are reversed. For this
reason, the equivalence between Boolean algebras and Boolean spaces is called a
dual equivalence or a duality of categories. Stone duality has proven to be a very
influential mathematical discovery, see e.g. [54, Introduction]. Two research areas
which are based on Stone duality play a central role in this dissertation: relational
semantics for modal logic and point-free topology.

Relational semantics for modal logic

For our purposes, modal logic consists of propositional logic enriched with modal
connectives, often denoted �, ♦, meant to express modalities such as ‘possibly ϕ’,
‘agent a knows that ϕ’, ‘at some time in the future, ϕ’, ‘ϕ holds with probability p’,
etc. A wide class of modal logics, known as normal modal logics, admit relational
semantics involving Kripke frames [19]. Kripke frames are structures consisting of
a set X enriched with finitary relations R� ⊆ Xn+1, for each modality � involved.

Extended Stone duality

Stone duality for Boolean algebras can be extended to a representation theory for
modal algebras, the algebraic counterparts of normal modal logics. This extended
duality, known as Jónsson-Tarski duality [58], shows how one can give any modal
algebra a representation as a topological relational structure. Many properties of
modal logics can be understood in terms of Jónsson-Tarksi duality; however, if
we want to also involve Kripke frames, i.e. discrete topological structures, then
we run into a second duality, usually referred to as discrete duality. Discrete
duality for modal algebras is based on the well-known duality between complete
atomic Boolean algebras and sets [83], which in its turn is based on the fact that
a complete atomic algebra can be uniquely described in terms of its set of atoms.
The duality between complete atomic Boolean algebras and sets can be extended
into a duality between complete, atomic, completely additive modal algebras
(perfect modal algebras) and Kripke frames.
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The connections between these two dualities are sketched in Figure 1.1. The
horizontal connections are the dualities: the functors (·)∗ and (·)∗ for Jónsson-
Tarski duality, and (·)+ and (·)+ for the discrete duality. The vertical connections
in the middle are in themselves rather innocuous: on the left, we have the inclusion
of the category of perfect modal algebras into the category of all modal algebras;
this inclusion exists because any perfect modal algebra is a fortiori a modal algebra.
On the right, we have the forgetful functor U , which takes a topological relational
structure and strips it of its topology, yielding a bare, discrete relational structure.

logical
calculiOO

�� �O
�O
�O

modal
algebras

(·)∗ // descriptive
general frames

(·)∗
oo

U

��
perfect

modal algebras

⊆

(·)+ // Kripke
frames

(·)+
oo

relational
semantics

��

OO
O�
O�
O�

Figure 1.1: The double duality diagram for modal algebras and Kripke frames

In the upper left corner of Figure 1.1, we have logical calculi consisting of
Hilbert systems, Gentzen calculi, natural deduction, etc. for modal logics. The
squigly arrow connecting the logical calculi with modal algebras is covered by
algebraic logic [20], which tells us how to capture logical calculi in systems of
algebras. The squigly arrow in the bottom right corner, connecting Kripke frames
and relational semantics, is covered by the model theory of modal logic, which
tells us how to interpret modal formulas using Kripke frames [19]. The study of
the logical properties of normal modal logics can now be understood as a study of
the connections through the square between the logical calculi in the upper left
and the relational semantics in the lower right.

Canonical extensions

The vertical connection on the left side of Figure 1.1 is the subject of study in the
theory of canonical extensions [58]. Canonical extensions are a construction that
allows one to pass from modal algebras to perfect modal algebras, thus adding a
new arrow to the diagram.

If one takes a modal algebra A from the upper left corner and ‘pulls it around
clockwise’, one obtains a perfect modal algebra (UA∗)+, into which A can be
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embedded in a natural way. It turns out that the embedding of A into (UA∗)+

can be described in purely abstract terms as an embedding e : A→ Aδ of A into
a perfect modal algebra Aδ, the canonical extension of A, without even assuming
the existence of the two dualities in Figure 1.1. This latter point can be significant
because Jónsson-Tarski duality is dependent on the Axiom of Choice, a feature
it inherits from Stone duality. Certain properties of modal logics can now be
understood as properties of canonical extensions of modal algebras. An added
advantage of this stems from the fact that canonical extensions can be defined
for algebras associated with many other logics besides modal logic. This makes
canonical extensions into a tool for a generalized, uniform investigation of logical
properties of a wide range of logics.

Coalgebraic modal logic

In coalgebraic modal logic, a somewhat different view on the double duality
diagram of Figure 1.1 is adopted. One separates modal logic into a Boolean
base and a modal ‘add-on’, and similarly, Kripke frames are separated into their
underlying set of states and a transition type. In the case of Kripke frames,
the transition type corresponds to the relations on the frame which are used
to interpret modal connectives. Technically, this is made precise by describing
abstract transition systems as coalgebras and specifying two functors. One on
Boolean algebras, describing the supra-Boolean logical structure, and one on sets
describing the transition type of the coalgebras involved, resulting in a diagram
as in Figure 1.2. In the case of basic modal logic, T is the powerset functor and
L is the free ∧-semilattice functor. In coalgebraic logic, one now studies modal

BAL
++

U◦(·)∗
33 Set

(·)+
ss

T
ss

Figure 1.2: The duality diagram of coalgebraic logic

logics (specified by the functor L) in relation to coalgebras (specified by T ), seen
as abstract transition systems.

Another coalgebraic interpretation of duality for modal algebras can be found
in the fact that if one considers the free ∧-semilattice functor M , which allows one
to see modal algebras as M -algebras over Boolean algebras, then one can show
that M dually corresponds to the Vietoris hyperspace functor V on Boolean spaces.
Descriptive general frames can then be seen as V -coalgebras in the category of
Boolean spaces.



1.3. Survey of Contents 5

Point-free topology

Although Stone called his duality theorem a representation theorem for Boolean
algebras, one might as well see it as a representation theorem for Boolean spaces.
When dealing with a problem involving Boolean spaces, one can translate it using
Stone duality into a problem involving Boolean algebras and then use algebraic
rather than topological methods to analyze the problem. Moreover, at any stage
of the analysis, one can switch back to looking at Boolean spaces. In point-free
topology [54], this duality-based view is taken as the primary way to look at
topology. This approach consists of two conceptual ingredients. The first is to
generalize Stone duality so that it encompasses all topological spaces, at the price
of weakening the dual equivalence of Stone duality for Boolean spaces to a dual
adjunction between topological spaces and frames, the algebras that arise when
one views Stone duality at this generalized level. Frames are complete lattices in
which infinite joins distribute over finite meets; a frame homomorphism is a map
which preserves finite meets and infinite joins. Just as Boolean algebras can be
seen as models for classical propositional logic, frames can be seen as models for
geometric propositional logic, which is a logic with finite conjunctions and infinite
disjunctions. The second conceptual ingredient in the framework of point-free
topology is to view frames as ‘point-free spaces’, which we call locales, rather than
as algebras. In this dissertation we will take a predominantly algebraic approach
to point-free topology however, meaning that we will mostly deal with frames.

1.3 Survey of Contents

We will now give a broad overview of the contents of this dissertation.

Canonical extensions

The framework of canonical extensions as we present it consists of two components:
a construction on lattices, which is a lattice completion, and a construction for
extending maps between lattices. Canonical extensions of maps are used both
to define the canonical extensions of a given lattice-based algebra A, since the
operations on A are maps between powers of A, and to define extensions of
homomorphisms between lattice-based algebras f : A → B. In our discussion
of canonical extensions in Chapters 2 and 3, our focus is on three subjects:
topological and categorical properties of canonical extensions, and the view on
canonical extensions as dcpo algebras.

Regarding the topological properties of canonical extensions, we would like to
point out the topological characterization of the canonical extension of a lattice
in §2.1.3, our broad discussion of topological properties of canonical extensions of
maps, beyond what was previously known, in §2.2 and §3.2, and our investiagations
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into universal properties of canonical extensions with respect to topological lattice-
based algebras in §3.4. This brings us to the categorical properties of canonical
extensions. One of the crucial facts behind these universal properties is the
fact, established in §3.3, that canonical extensions preserve surjective algebra
homomorphisms, a fact which was previously only known to hold under assumption
of distributivity.

In our discussion of canonical extensions of order-preserving maps in §2.2, the
ideal and filter completion functors play an important role. They reprise this role
when we look at canonical extensions as dcpo algebras in §2.3 and §3.3.3. Here we
show how canonicity results for distributive lattices with operators (DLO’s) can
be understood using more general results about dcpo algebras.

Duality for topological lattice-based algebras

When studying distributive lattices with operators (or DLO’s for short), a class of
algebras which arises naturally in algebraic logic, one has two categorical dualities
at one’s disposal. The first one is the extended Priestley duality between ‘plain’
DLO’s and topological ordered Kripke frames, known as relational Priestley spaces.
The second one is the discrete duality between so-called perfect DLO’s and ordered
Kripke frames sans topology. In our discussion of duality for DLO’s in Chapter
4, we propose that the proper perspective on perfect DLO’s is to regard them as
semi-topological DLOs. We will use discrete duality for semi-topological DLO’s
to provide a number of dual characterization results. In §4.1, we characterize
profinite DLO’s as the duals of hereditarily finite ordered Kripke frames, and
accordingly we dually characterize the profinite completion of a DLO A relative to
the prime filter frame of A. In §4.2, we briefly discuss how these results specialize
to distributive lattices, Boolean algebras and Heyting algebras. Finally, in §4.3,
we characterize compact Hausdorff Boolean algebras with operators as the duals of
image-finite Kripke frames, and we use this duality to study ultrafilter extensions
of Kripke frames using duality.

Powerlocales and coalgebraic logic

In Chapter 5 we use techniques from coalgebraic logic to describe and generalize
the Vietoris powerlocale construction from point-free topology. The idea is the
following: we take an axiomatization of coalgebraic logics for T -coalgebras, where T
is an arbitrary weak pullback-preserving standard set functor, known as the Carioca
axiomatization, and we then use this axiomatization to algebraically describe a
new construction on locales, the T -powerlocale construction in §5.3. The usual
Vietoris powerlocale is now the Pω-powerlocale, where Pω is the finite powerset
functor. We then proceed to prove a number of properties of T -powerlocales. For
instance, we show in §5.3.5 that T -powerlocales admit a flat site presentation,
which is a technical property that allows us to disentangle the roles of conjunctions
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and disjunctions. Moreover, in §5.4 we show that the T -powerlocale construction
preserves (point-free) topological properties such as regularity and the combination
of compactness and zero-dimensionality.
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Chapter 2

Canonical extensions: a domain
theoretic approach

In this chapter, we provide a perspective on the toolkit of canonical extensions
of lattices and order-preserving maps with an eye to connections with domain
theory. This leads to new results and new insights into the reasons why and when
canonical extensions work.

Canonical extensions were introduced by Jónsson and Tarski in 1951 [58, 59],
as part of the representation theory for Boolean algebras with operators (BAOs),
which play an important role in algebraic logic. Examples of BAOs considered
by Jónsson & Tarski were e.g. relation algebras, cylindric algebras and closure
algebras. Another example, which was not immediately recognized, is the class of
modal algebras, which are used to study modal logic via algebra. The connection
between BAOs and modal logic, or rather the connection between BAOs and
Kripke semantics for modal logic via Stone duality became more widely recognized
in the 1970s via the work of Thomason [87] and Goldblatt [46]; see [48] for historical
context. The algebraic approach to BAO representation theory via the purely
algebraic theory of canonical extensions was revived in the 1990s and 2000s in the
work of Jónsson, Gehrke and Harding [57, 38, 34, 39] and De Rijke and Venema
[31], and this approach has remained active since. Moreover canonical extensions
have been generalized from a representation theory for Boolean algebras with
operators to a more general representation theory toolkit for lattice-based algebras.
We will wait with defining canonical extensions of lattice-based algebras until
Chapter 3. In this chapter, we will introduce the reader to two important parts of
the canonical extensions toolkit: canonical extensions of lattices and canonical
extensions of order-preserving maps between lattices. Moreover, while doing so
we will demonstrate the utility of methods from domain theory in relation to
canonical extensions.

Domain theory was pioneered by D.S. Scott, with the aim to “give a mathe-
matical semantics for high-level computer languages” [80]. It has been used to
study subjects as diverse as recursive equations, semantics for untyped λ-calculus,

9
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computability and partial information (see [1]). In this chapter we will borrow
several techniques from the study of domain theory and continuous lattices when
studying canonical extensions:

• Order topologies. Order topologies are used heavily in domain theory, and
they occur very naturally when studying canonical extensions [39]. We
offer the most extensive treatment of the topological properties of canonical
extensions to date, and we present two results in §2.1.3 which make clear
that the topologies on canonical extensions are both central, even defining,
and natural.

• Filter and ideal completions. Many results about canonical extensions can
be understood by looking at an intermediate level of filters and ideals, rather
than only at the canonical extensions themselves [44]. In fact, the filter
and ideal completion functors play a central role in the theory of canonical
extensions of order-preserving maps – a fact which was foreshadowed in
[41]. We revisit and expand upon the results of [34], showing how the filter
completion and the ideal completion play an important role ‘under the hood’.

• Dcpo presentations. Directed complete partial orders are central in domain
theory. We already indicated that the canonical extension is intimately
connected with the filter completion and the ideal completion. In fact, we
can present the canonical extension of a lattice L as a dcpo generated by
the filter completion F L.

This chapter is organized as follows. In §2.1, we introduce canonical extensions
of lattices, both classically and using a new topological characterization in §2.1.3.
In §2.2, we develop the theory of canonical extensions of order-preserving maps
with an emphasis on the role of the filter and ideal completion. Finally, in §2.3
we present an alternative characterization of canonical extensions using dcpo
presentations. Furthermore, at the end of each section we provide a discussion of
the contributions in that section and suggestions for further work.

2.1 Canonical extension via filters, ideals and

topology

In this section we want to introduce the canonical extension of a bounded lattice,
which is a well-studied lattice completion, together with an improved topological
perspective on this completion. The key to this topological perspective lies in
understanding the role that the ideal and the filter completion play with respect
to the canonical extension.

In §2.1.1, we introduce the classical definition of canonical extensions of lattices.
In §2.1.2, we will introduce several important topologies on partial orders and
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lattice completions. In §2.1.3, we will present the two main new results of this
section, which characterize canonical extensions of lattices topologically, and which
identify the characterizing topologies of canonical extensions. Finally, in §2.1.4,
we present assorted additional properties of canonical extensions of lattices that
will be of use later on.

2.1.1 The canonical extension of a lattice

In this subsection, we will introduce the canonical extension Lδ of a lattice L. We
will define a concrete construction on a given lattice, using filters and ideals, and
we will then state a uniqueness result which tells us that any completion of L
satisfying certain abstract order-theoretic properties is in fact isomorphic to Lδ.
From that point on, we will no longer concern ourselves with the actual concrete
construction of Lδ; rather, we will show how one can understand Lδ through its
abstract characterization.

Overlapping sets, filters and ideals

Before we go ahead and introduce the canonical extension, we would like to
introduce a very elegant concept from constructive mathematics. We will often
want to talk about sets U, V which have a non-empty intersection, i.e. U ∩ V 6= ∅.
We would like to think of this relation on sets as a positive property.

2.1.1. Definition. Given two sets U, V ⊆ X, we write U G V (U and V overlap)
if U ∩ V 6= ∅.

What makes the overlapping relation interesting is that it interacts nicely with
several operations and relations on sets.

2.1.2. Lemma. Let X be a set and let U, V ⊆ X such that U G V .

1. If U ′, V ′ ⊆ X such that U ⊆ U ′ and V ⊆ V ′, then also U ′ G V ′.

2. If f : X → Y is a function to another set Y , then also f [U ] G f [V ].

Consequently, if f : P→ Q is an order-preserving map and if F ∈ F P, I ∈ I P
such that F G I, then also F f(F ) G I f(I).

Proof Parts (1) and (2) are elementary. For the last part it suffices to recall that
F f(F ) := ↑ f [F ] and I f [F ] := ↓ f [F ].

The following lemma provides a further indication that the overlapping relation
also interacts in a nice way with filters and ideals. Recall from §A.5.1 that
given a poset P, I P := 〈IdlP,⊆〉 is the ideal completion of P, and dually that
F P := 〈FiltP,⊇〉 is the filter completion of P.
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2.1.3. Lemma. Let P be a poset. If F ∈ F P and I ∈ I P such that F G I, then
↓(F ∩ I) = I and ↑(F ∩ I) = F .

Proof We only show the first case, since the other follows by order duality. Take
y ∈ I, we will show that there exists z ∈ F ∩ I such that y ≤ z. Since F G I,
there exists x ∈ F ∩ I. Because x, y ∈ I, there exists z ∈ I such that x ≤ z and
y ≤ z. Because x ∈ F and F is an upper set, z ∈ F . But then y ≤ z ∈ F ∩ I, so
that I ⊆ ↓(F ∩ I). The other inclusion follows immediately from the fact that
F ∩ I ⊆ I and I is a lower set.

Existence and uniqueness of the canonical extension

We will now present the canonical extension first as a concrete construction on
lattices, and later as a completion of lattices which is unique up to isomorphism.
The particular concrete construction we have chosen, which seems to go back to
[44], is not the only possible one. In light of the uniqueness theorem however, the
concrete construction of the canonical extension we choose now is not particularly
important. Our construction will be a two-stage construction on a given lattice
L. The first stage in the construction consists of creating a pre-order. The order
relation we use goes back to [44].

2.1.4. Definition. Let L be a lattice. We define a structure IntL := 〈F L ]
I L,v〉, where for all F, F ′ ∈ F L and I, I ′ ∈ I L,

F v I if F G I;
F v F ′ if F ⊇ F ′;
I v I ′ if I ⊆ I ′;
I v F if I × F ⊆ ≤L,

i.e. I v F iff for all a ∈ I and for all b ∈ F , we have a ≤ b.

The following fact is well-known, cf. [44, p. 11].

2.1.5. Lemma. Let L be a lattice. Then IntL is a pre-order.

Proof It suffices to show that v is transitive. For this, we need to make a case
distinction. Let F, F ′ ∈ F L and I, I ′ ∈ I L.

F v F ′ v I ⇒ F v I by Lemma 2.1.2;

F v I v I ′ ⇒ F v I ′ idem;

I v I ′ v F ⇒ I v F easy,
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since if I ⊆ I ′ and I ′ × F ⊆ ≤L then I × F ⊆ I ′ × F ⊆ ≤L;

I v F v F ′ ⇒ I v F ′ idem;

I v F v I ′ ⇒ I v I ′ see below;

F v I v F ′ ⇒ F v F ′ see below.

The last two cases have essentially the same proof; we only discuss the latter.
If F v I v F ′, i.e. if F G I and I × F ′ ⊆≤L, then we need to show that also
F v F ′, i.e. that F ⊇ F ′. Let a ∈ F ′. Since F G I, there exists b ∈ F ∩ I. Since
I × F ′ ⊆≤L, we have b ≤ a. But then a ∈ F ; it follows that F ⊇ F ′.

Note that in other places where IntL is introduced [44, 32, 41], one also takes a
quotient of the pre-order to make it into a partial order. We do not bother with
this because the pre-order is flattened into a partial order in the second stage of
constructing the canonical extension anyway. This second stage consists of taking
the MacNeille completion (see §A.5.2) of IntL.

2.1.6. Definition. We define the canonical extension of L to be Lδ := IntL ,
with i : IntL→ Lδ the embedding of the MacNeille completion. We map L to Lδ
by setting eL : a 7→ i(↓ a).

We now have a way to constuct a complete lattice Lδ, given a lattice L, and a
function eL : L → Lδ. We see below that eL is in fact a lattice completion, and
that we can characterize it up to isomorphism of completions.

2.1.7. Definition. Given a (bounded) lattice L and a complete lattice C, we
call a lattice embedding e : L→ C a completion of L. We say two completions of
e : L→ C and e′ : L→ C′ are isomorphic if there exists an isomorphism h : C→ C′
such that he = e′.

C h // C′

L

e

OO

e′

>>~~~~~~~~

Before we state the basic uniqueness result concerning canonical extensions, we
would like to point out that any completion e : L→ C induces two auxiliary maps
eF : F L→ C and eI : I L→ C, if we exploit the fact that a complete lattice C
is simultaneously a dcpo and a co-dcpo.

2.1.8. Definition. Given a lattice completion e : L ↪→ C, we define eI : I L→ C
by I 7→

∨↑ e[I]. It is easy to see that eI : I L→ C is the unique Scott-continous
extension of e : L→ C, the existence of which is stipulated by Fact A.5.3.

I L
eI

��
L

↓
==||||||||

e
// C
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Dually, we define eF : F L→ C by F 7→
∧
↓ e[F ]. We emphasize that eI(↓x) =

eF(↑x) = e(x) for all x ∈ L. We refer to {eF(F ) | F ∈ I L} and {eI(I) | I ∈ I L}
as the filter and ideal elements of C, respectively.1

Filter and ideal elements play a crucial role in defining and understanding the
canonical extension.

2.1.9. Fact ([41], Proposition 3.6). Let L be a lattice, then the map eL : L→
Lδ defined above is a lattice embedding. Moreover, if e : L→ C is a completion of
L such that

1. for all x ∈ C,

x =
∨{

eF(F ) | eF(F ) ≤ x, F ∈ F L} =
∧
{eI(I) | eI(I) ≥ x, I ∈ I L

}
;

2. for all F ∈ F L, I ∈ I L, if eF(F ) ≤ eI(I) then F G I;

then there exists a (unique) isomorphism of completions h : C→ Lδ, i.e. such that
he = eL.

We will refer to a lattice completion e : L→ C satisfying the conditions above as
a canonical extension of L. The first condition of Fact 2.1.9, which is traditionally
called density, states that given a canonical extension e : L→ C,

• the filter elements of C are join-dense, and

• the ideal alements of C are meet-dense.

The second condition (traditionally known as compactness) could also have been
stated as:

• for all F ∈ F L, I ∈ I L, eF(F ) ≤ eI(I) iff F G I,

since F G I implies that there is a ∈ F ∩ I, so that
∧
e[F ] ≤ e(a) ≤

∨
e[I]. From

here on, we will simply refer to the density and compactness properties of the
canonical extension instead of explicitly referring to Fact 2.1.9.

We conclude this subsection with a class of examples of canonical extensions
which is both important and trivial. Recall that a poset P is said to satisfy the
ascending chain condition (ACC) if for every countable chain x0 ≤ x1 ≤ x2 ≤
· · · ≤ xi ≤ · · · , there exists a n ∈ N such that for all k ∈ N, xk ≤ xn.

2.1.10. Fact. Let L be a (bounded) lattice. The identity embedding idL : L→ L
is a canonical extension of L iff L satisfies both the ascending chain condition
(ACC) and the descending chain condition (DCC).

1This is an abuse of language, since strictly speaking they are the filter and ideal elements of
e : L→ C.
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2.1.11. Example. Examples of lattices satisfying ACC and DCC include finite
lattices, and lattices such as M∞, where

M∞ := 〈{0, 1} ∪ {an | n ∈ N},≤〉,

and x ≤ y iff x = 0 or y = 1, see Figure 2.1.

a0 a1 a2 an

0

1

Figure 2.1: The lattice M∞ is a fixed point of the canonical extension

2.1.12. Convention. If L is a finite lattice, then we define Lδ := L in light of
Fact 2.1.10.

2.1.2 Topologies on posets and completions

We will now introduce two families of topologies which are defined on posets,
and one which is defined on completions. The Scott topologies and the interval
topologies are defined on any poset. The δ topologies are defined on any lattice
completion. All three families come in three kinds: one where every open set is
an upper set, one where every open set is a lower set, and the join of these upper
and lower topologies, where every basic open is an intersection of an open upper
set and an open lower set.

2.1.13. Definition. Let P = 〈P,≤〉 be a poset.

• By ι↑(P) := 〈{P \ ↓x | x ∈ P}〉 we denote the upper interval topology of P,
and ι↓(P) := ι↑(Pop).

• By σ↑(P) we denote the Scott topology on P: U ⊆ P is σ↑-open if U is an
upper set which is inaccessible by directed joins, or equivalently if P \ U
is a lower set closed under all existing directed joins. By σ↓(P) we denote
σ↑(Pop).
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Let e : L→ C be a lattice completion. We define two topologies on C:

• δ↑(C) :=
〈
{↑ eF(F ) | F ∈ F L}

〉
and δ↓(C) :=

〈
{↓ eI(I) | I ∈ I L}

〉
.

Recall from §A.7 that if τ and τ ′ are topologies on a set X, then τ ∨ τ ′ :=〈
{U ∩ V | U ∈ τ, V ∈ τ ′}

〉
is the least topology on X containing τ and τ ′. We

define σ(P) := σ↑(P) ∨ σ↓(P) (the bi-Scott topology) and δ(C) := δ↑(C) ∨ δ↓(C).
Below, if e.g. f : C→M is some map, we will say that f is (δ↑, σ↑)-continuous

if f : 〈C, δ↑(C)〉 → 〈M,σ↑(M)〉 is a continuous function.

2.1.14. Remark. Observe that given a completion e : L ↪→ C, the filter and ideal
elements of C are often referred to as the ‘closed’ and ‘open’ elements of C in the
canonical extension literature (cf. [34, Lemma 3.3]). This makes our definitions of
the δ↑ and δ↓ topologies equivalent with those in [39], where they are called σ↑

and σ↓ respectively.
Although we will not use it, it is worth noting that ι := ι↑ ∨ ι↓ is the usual

interval topology. For example, ι(R) is the topology generated by

{{z ∈ R | x < z < y} | x, y ∈ R} ,

i.e. the usual topology on the real line.

2.1.15. Lemma. Let e : L→ C be a lattice completion.

1. The following set is a base for δ↑(C):

{↑
∨
F∈Se

F(F ) | S ⊆ F L finite}.

2. The following set is a base for δ↓(C):

{↓
∧
I∈T e

I(I) | T ⊆ I L finite}.

3. The following set is a base for δ(C):

{↑
∨
F∈Se

F(F ) ∩ ↓
∧
I∈T e

I(I) | S ⊆ F L, T ⊆ I L finite}.

Proof It suffices to show that (1) holds. First, observe that if S ⊆ F L, then
since C is complete, it follows by order theory that⋂

F∈S ↑ e
F(F ) = ↑

∨
F∈Se

F(F ). (2.1)

Next, observe that since {↑ eF(F ) | F ∈ F L} is a subbase for δ↑(C) by definition,
it follows by general topology that

{
⋂
F∈S ↑ e

F(F ) | S ⊆ F L finite}

is a base for δ↑(C). It now follows by (2.1) that (1) holds.
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We are considering topologies defined on ordered sets, and the order plays
an important role in defining these topologies. Below we will establish some
elementary facts about the interaction between our topologies and the order.

2.1.16. Lemma. Let P be a poset. If O ⊆ P is σ-open, then P \O is closed under
all existing directed joins and codirected meets.

Proof We only show the case of directed joins. Towards a contradiction, let
S ⊆ P \ O be a directed set such that

∨
S ∈ O. Then by definition of σ, there

must exist a σ↑-open U ⊆ P and a σ↓-open V ⊆ P such that
∨
S ∈ U ∩ V ⊆ O.

Since U is Scott-open and
∨
S ∈ U , there is some x ∈ S ∩ U . Since V is a lower

set, we also get x ∈ V , which is a contradiction.

2.1.17. Lemma. Let P be a poset and let e : L→ C be a lattice completion.

1. ι↑(P) ⊆ σ↑(P) and ι↓(P) ⊆ σ↓(P);

2. {U ∈ σ(P) | U is an upper set} = σ↑(P);

3. {U ∈ δ(C) | U is an upper set} = δ↑(C).

Consequently, an order-preserving map f : P→ Q is (σ, σ)-continuous iff it is both
(σ↑, σ↑)-continuous and (σ↓, σ↓)-continuous.

Proof (1). This is easy to see: any subbasic ι↑-open ↓x is also σ↑-open, since
obviously ↓x is a lower set closed under directed joins.

(2). Suppose that U is a σ-open set such that U is an upper set. Then all
we have to do to show that U is σ↑-open, is to show that P \ U is closed under
directed joins. But this follows immediately from Lemma 2.1.16.

(3). Suppose that U ⊆ C is a δ-open upper set. To show that U is δ↑-open,
it suffices to show that for every x ∈ U , there exists a δ↑-open U ′ ⊆ U such that
x ∈ U ′. Take x ∈ U . Since U is δ-open, by Lemma 2.1.15(3), there exist finite
sets S ⊆ F L and T ⊆ I L such that

x ∈ ↑
∨
F∈Se

F(F ) ∩ ↓
∧
I∈T e

I(I) ⊆ U.

Then
∨
F∈Se

F(F ) ∈ U , so since U is an upper set,

U ′ := ↑
∨
F∈Se

F(F ) ⊆ U.

By Lemma 2.1.15(1), U ′ is δ↑-open; since x ∈ U ′ ⊆ U was arbitrary it follows that
U is δ-open.

For the last claim of the lemma, suppose that f : P→ Q is order preserving.
If f is both (σ↑, σ↑) and (σ↓, σ↓)-continuous, then it follows by general topology
(Lemma A.7.3) that f is (σ↑ ∨ σ↓, σ↑ ∨ σ↓)-continuous, so since σ := σ↑ ∨ σ↓, f
is (σ, σ)-continuous. Conversely, if f is (σ, σ)-continuous and U ⊆ Q is an upper
set, then f−1(U) is also an upper set since f is order-preserving. Now by part
(2) above, f−1(U) is σ↑-open; since U ⊆ Q was arbitrary, it follows that f is
(σ↑, σ↑)-continuous. The argument for (σ↓, σ↓)-continuity is analogous.



18 Chapter 2. Canonical extensions: a domain theoretic approach

When forming, say, the topology σ = σ↑ ∨ σ↓ on a poset P, we are creating
many new open sets. A priori, it is possible that σ contains new open upper sets
which are not σ↑-open. The lemma above tells us that in the case of the σ and δ
topologies, this does not happen.

Recall that the σ and ι-topologies were defined using order duality: ι↓(P) :=
ι↑(Pop). The following lemma states that we could have done the same with the δ
topologies.

2.1.18. Lemma. Let e : L → C be a lattice completion. Then the following
topologies on C coincide: δ↑(L) = δ↓(Lop). Consequently, δ(L) = δ(Lop).

Proof This follows easily from Fact A.5.2.

Of course, the above lemma also holds, by definition, for the Scott topology.
At this point we come to a property which the Scott topology notoriously lacks.

2.1.19. Lemma. Let e1 : L1 → C1 and e2 : L2 → C2 be two lattice completions.
Then the following topologies on C1×C2 coincide: δ↑(C1)× δ↑(C2) = δ↑(C1×C2)
and δ↓(C1)× δ↓(C2) = δ↓(C1 × C2).

Proof We will show that δ↑(C1)× δ↑(C2) = δ↑(C1 × C2). Recall that

δ↑(C1 × C2) = 〈{↑C1×C2
(e1 × e2)F(F ) | F ∈ F(L1 × L2)}〉

= 〈{↑C1×C2
(eF1 (F1), eF2 (F2)) | (F1, F2) ∈ F L1 ×F L2}〉,

where the last equality follows from fact that F commutes with products (Fact
A.5.4). Moreover, if (F1, F2) ∈ F L1 × F L2 so that (eF1 (F1), e

F
2 (F2)) ∈ C1 × C2,

then again by Fact A.5.4 (applied to C1 × C2), we see that

↑C1×C2
(eF1 (F1), eF2 (F2)) = ↑C1

(
eF1 (F1)

)
× ↑C2

(
eF2 (F2)

)
.

But we know from general topology that

δ↑(C1)× δ↑(C2) = 〈{↑C1

(
eF1 (F1)

)
× ↑C2

(
eF2 (F2)

)
| F1 ∈ F L1, F2 ∈ F L2}〉,

so it follows that δ↑(C1)× δ↑(C2) = δ↑(C1 × C2).

The above lemma is not true of the Scott topology: there exist lattices L, M
such that σ↑(L×M) 6= σ↑(L)× σ↑(M) [45, Thm. II-4.11].

2.1.3 Characterizing the canonical extension via the δ-
topology

In this subsectoin, we present the two main new results of this section. Firstly, we
prove a new, topological characterization theorem for the canonical extension. Sec-
ondly, we show how the δ-toplogies can be given a natural description as subspace
topologies with respect to the Scott and co-Scott topology on superstructures of
Lδ.
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The interaction between the δ-topologies and the maps eF and eI

We start with a lemma which tells us that the compactness property of canonical
extensions is in fact a topological property.

2.1.20. Lemma. Let e : L ↪→ C be a completion of L. Then the following are
equivalent:

1. for all F ∈ F L and I ∈ I L, eF(F ) ≤ eI(I) iff F G I.

2. eI : I L→ C is (σ↑, δ↑)-continuous and eF : F L→ C is (σ↓, δ↓)-continuous.

Proof Assume (1) holds. Let ↑ eF(F ) be a subbasic open set of δ↑ (for some
F ∈ F L). We will show that U := (eI)−1

(
↑ eF(F )

)
is Scott-open in I L. Since

eI is order-preserving, we see that U must be an upper set. Now let S ⊆ I L be
directed; then

∨
S =

⋃
S. If

∨
S ∈ U , then

eI(
∨
S) = eI(

⋃
S) ∈ ↑ eF(F ),

i.e. eI(
⋃
S) ≥ eF(F ). It follows by (1) that there is a ∈ F ∩

⋃
S, i.e. there

is an I ∈ S such that a ∈ F ∩ I. But then F G I, so by (1), it follows that
eF(F ) ≤ eI(I), so that I ∈ (eI)−1

(
↑ eF(F )

)
= U . Since S was arbitrary it follows

that U is Scott-open. The proof of the statement for eF is the order dual of the
above; it follows that (2) holds.

Conversely, assume that (2) holds and let F ∈ F L, I ∈ I L. If F G I then
there is a ∈ F ∩ I, so we see that

eF(F ) =
∧
e[F ] ≤ e(a) ≤

∨
e[I] = eI(I).

Now suppose that eF(F ) ≤ eI(I), so that I ∈ U := (eI)−1(↑ eF(F )). By (2), U is
Scott-open. Now since I =

∨
a∈I ↓ a is a directed join, it follows that there is some

a ∈ I such that ↓ a ∈ U , i.e. eI(↓ a) ∈ ↑ eF(F ). Equivalently, eF(F ) ∈ ↓ eI(↓ a),
so by an argument analogous to that above, there is some b ∈ F such that
eF(↑ b) ≤ eI(↓ a). But now

e(b) = eF(↑ b) ≤ eI(↓ a) = e(a),

so that b ≤ a. Since a ∈ I and I is a lower set, we also get b ∈ I, so that F G I.
It follows that (1) holds.

The above lemma effectively translates one of the defining properties (compactness)
of the canonical extension into a topological property of lattice completions. The
following lemmas establish some topological properties of eF and eI which will
be of use later. First, we show that eI : I L → C is a Scott-continuous lattice
homomorphism under certain topological assumptions.
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2.1.21. Lemma. Let L be a bounded lattice and let e : L ↪→ C be a completion of
L.

1. eI : I L→ C preserves all joins (including 0), and the top element 1.

2. If eI : I L → C is (σ↑, δ↑)-continuous and δ↑ is T0, then eI : I L → C
preserves finite meets.

Proof (1). Preservation of 0 and 1 follows from the fact that e : L → C is a
bounded lattice embedding; if we look at e.g. the top element of I L, i.e. ↓ 1, then
eI(↓ 1) =

∨
e[↓ 1] = e(1) = 1. The argument for 0 is identical. Now for binary joins,

recall that the join of two ideals I1, I2 ∈ I L is I1∨I2 := ↓{a1∨a2 | a1 ∈ I1, a2 ∈ I2}.
Now

eI(I1 ∨ I2) =
∨
e[I1 ∨ I2] =

∨
{e(a1 ∨ a2) | a1 ∈ I1, a2 ∈ I2} =∨

{e(a1) ∨ e(a2) | a1 ∈ I1, a2 ∈ I2} =
∨
e[I1] ∨

∨
e[I2] = eI(I1) ∨ eI(I2),

where the penultimate equality follows from the fact that I1 and I2 are directed.
Since eI is Scott-continuous by Fact A.5.3, it follows that eI preserves all joins.

(2). We will only consider binary meets. Assume that δ↑ is T0 and let I1, I2 ∈
I L. Since eI is order-preserving, we only need to show that eI(I1) ∧ eI(I2) ≤
eI(I1∩I2). Suppose not, then since δ↑ is T0 there must be some δ↑-open U such that
eI(I1)∧eI(I2) ∈ U and eI(I1∩I2) /∈ U . We see that also eI(I1) ∈ U and eI(I2) ∈ U ;
moreover, without loss of generality we may assume U =

⋂
1≤i≤n ↑ eF(Fn) for

some finite set {F1, . . . , Fn} ⊆ F L. Since eI : I L → C is (σ↑, δ↑)-continuous,
(eI)−1(U) is Scott-open. Now since I1 =

∨
a∈I1 ↓ a ∈ (eI)−1(U) is a directed

join, there must be some a1 ∈ I1 such that eI(↓ a1) = e(a1) ∈ U , and similarly
there must be some a2 ∈ I2 such that e(a2) ∈ U . Since U =

⋂
1≤i≤n ↑ eF(Fn),

it follows that for all 1 ≤ i ≤ n, we have that e(a1), e(a2) ∈ ↑ eF(Fi), so also
e(a1) ∧ e(a2) = e(a1 ∧ a2) ∈ ↑ eF(Fi). Since i was arbitrary, it follows that
e(a1 ∧ a2) ∈ U . Since we also have that a1 ∧ a2 ∈ I1 ∩ I2, it follows that

eI(I1 ∩ I2) =
∨
e[I1 ∩ I2] ≥ e(a1 ∧ a2) ∈ U,

which is a contradiction since we assumed U is an upper set not containing
eI(I1 ∩ I2). It follows that eI(I1 ∩ I2) = eI(I1) ∧ eI(I2).

Next, we show that under the assumptions of Lemma 2.1.21, the δ↑-topology
on a completion e : L→ C has a base of principal lower sets.

2.1.22. Corollary. Under the assumptions of Lemma 2.1.21, {↓ eI(I) | I ∈
I L} is not only a subbase for δ↓, but in fact a base.

Proof We will show that {↓ eI(I) | I ∈ I L} is closed under finite intersections.
Let I1, I2 ∈ I L, then

↓ eI(I1) ∩ ↓ eI(I2) = ↓(eI(I1) ∧ eI(I2)) = ↓ eI(I1 ∩ I2).
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The δ-topology determines the canonical extension

Now that we have proved the required technical results about the δ-topologies, we
can present the first main result of this section: we show how the δ-topologies,
which arise naturally on canonical extensions, in fact characterize it.

2.1.23. Theorem. Let L be a bounded lattice and let e : L ↪→ C be a completion
of L. Then e : L ↪→ C is a canonical extension of L iff

1. eI : I L→ C is (σ↑, δ↑)-continuous and eF : F L→ C is (σ↓, δ↓)-continuous,

2. δ↑ and δ↓ are both T0.

Proof First assume that e : L→ C is a canonical extension of L. It follows from
Lemma 2.1.20 that (1) holds. Moreover, if x, y ∈ C and x � y, then there must
be some F ∈ F L and I ∈ I L such that eF(F ) ≤ x and eF(F ) � y. It follows
that x ∈ ↑ eF(F ) and y /∈ ↑ eF(F ), so δ↑ is T0. The proof for δ↓ is analogous; it
follows that (2) holds.

Conversely, assume that (1) and (2) hold. It follows from Lemma 2.1.20 that
condition (2) of Fact 2.1.9 holds. Moreover, if x, y ∈ C and x � y, then since δ↑ is
T0, there must exist some finite S ⊆ F L such that

x ∈
⋃
F∈Se

F(F ) 63 y.

It follows that there must be some F ∈ S such that y /∈ ↑ eF(F ); now we see
that eF(F ) ≤ x and eF(F ) � y. An analogous argument shows that since δ↓ is
T0, there must be some I ∈ I L such that y ≤ eI(I) and x � eI(I). Since x, yC
were arbitrary, it follows that (1) of Fact 2.1.9 holds, so e : L→ C is a canonical
extension of L.

Explaining the δ-topology

We now present the second main result of this section, which sheds a different light
on the definition of the δ-topology. In particular, we will focus on the δ↑-topology.
We will show that there is a natural way to embed Lδ in I F L, and that the
δ↑-topology on Lδ is simply the Scott topology on I F L, restricted to Lδ.

So how do we embed Lδ in I F L? The key insight is that since eF : F L→ Lδ
preserves all finite joins (by Lemma 2.1.24), the map I eF : I F L→ I Lδ has a
left adjoint, namely (eF)−1 : I Lδ → I F L.

2.1.24. Lemma. Let L,M be lattices and let f : L → M be a map preserving ∨
and 0.

1. The inverse image function f−1 maps ideals of M to ideals of L;
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2. I f a f−1, i.e. for all I ∈ I L, J ∈ IM, we have

I f(I) ⊆ J iff I ⊆ f−1(J);

Proof (1). If J ∈ IM, then f−1(J) is a lower set since f is order-preserving.
Moreover, if a, b ∈ f−1(J), then f(a), f(b) ∈ J , so f(a) ∨ f(b) = f(a ∨ b) ∈ J , so
that a ∨ b ∈ f−1(J). Finally, since 0 = f(0) ∈ J , it follows that 0 ∈ f−1(J), so
that f−1(J) is non-empty.

(2). If I f(I) = ↓ f [I] ⊆ J , then for every a ∈ I, f(a) ∈ J , i.e. a ∈ f−1(J), so
I f(I) ⊆ J implies I ⊆ f−1(J). Conversely, if I ⊆ f−1(J), then for every a ∈ I,
f(a) ∈ J , i.e. f [I] ⊆ J . Since J is a lower set, we also get I f(I) = ↓ f [I] ⊆ J .

We now define g : Lδ → I F L as g := (eF)−1 ◦ ↓Lδ . This map g will be the
embedding that shows that Lδ is isomorphic to a subposet of I F L.

2.1.25. Theorem. Let e : L→ Lδ be a canonical extension.

1. The following diagram commutes:

I F L
I eF //

I Lδ
(eF )−1

oo

F L

↓F L

OO

eF
// Lδ
↓Lδ

OO

2. The composite g := (eF)−1 ◦ ↓Lδ is a (δ↑, σ↑)-continuous homeomorphic
embedding.

Proof (1). We need to show that

I eF ◦ ↓F L = ↓Lδ ◦ eF (2.2)

and that
(eF)−1 ◦ ↓Lδ ◦ eF = ↓F L. (2.3)

The validity of (2.2) follows from the fact that ↓ is a natural transformation by
Fact A.5.3(1). To see why (2.3) holds, first observe that since eF : F L → Lδ
preserves all finite joins by Lemma 2.1.21, it follows by Lemma 2.1.24(2) that
(eF)−1 : I Lδ → I F L is right adjoint to I eF . Since I eF is an order-embedding
by Fact A.5.3(5), it follows by Fact A.3.3(2) that

(eF)−1 ◦ I eF = idI F L . (2.4)

Now we see that

(eF)−1 ◦ ↓Lδ ◦ eF = (eF)−1 ◦ I eF ◦ ↓F L by (2.2),

= ↓F L by (2.4).
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(2). We now define g := (eF)−1 ◦ ↓Lδ ; observe that

g(x) = (eF)−1(↓Lδ x) = {F ∈ F L | eF(F ) ≤ x}, (2.5)

which is an ideal of F L. This map will be the embedding of Lδ into I F L. Con-
versely, there is a natural map from I F L to Lδ: since eF : F L→ Lδ is an order
preserving map from F L to a dcpo Lδ, the universal property of ideal completion
tells us that there exists a unique Scott-continuous map (eF)I : I F L→ Lδ such
that (eF)I ◦ ↓F L = eF ; namely

(eF)I : I 7→
∨
eF [I] =

∨
{eF(F ) | F ∈ I}, (2.6)

where I ∈ I F L.

I F L
(eF )I

��
F L

eF
//

↓F L
::vvvvvvvvv
Lδ

Now observe that (eF)I ◦ g = idLδ : take x ∈ Lδ, then

(eF)I ◦ g(x)

=
∨
{eF(F ) | F ∈ g(x)} by (2.6),

=
∨
{eF(F ) | eF(F ) ≤ x} by (2.5),

= x by join-density of filter elements.

Now it is easy to see that g is an order embedding:

g(x) ≤ g(y)

⇒ (eF)I ◦ g(x) ≤ (eF)I ◦ g(y) since (eF)I is order-preserving,

⇒ x ≤ y since (eF)I ◦ g = idLδ .

We will now show that g : Lδ → I F L is a (δ↑, σ↑)-continuous homeomorphic
embedding, meaning that for every δ↑-open U ⊆ Lδ there exists a σ↑-open
U ′ ⊆ I F L such that U = g−1(U ′). It suffices to show this for the case that U is
a basic open, i.e. for the case that U = ↑Lδ e

F(F ) for an arbitrary F ∈ F L. Since
F ∈ F L, we know that ↓F L F is a compact element of I F L, so that ↑I F L(↓F L F )
is σ↑-open. Now

g−1 (↑I F L ↓F L F )

= g−1
(
↑I F L g ◦ eF(F )

)
since g ◦ eF = ↓F L,

= {y ∈ Lδ | g ◦ eF(x) ≤ g(y)} by def. of g−1 and ↑,
= {y ∈ Lδ | eF(F ) ≤ y} because g is an ord. emb.,

= ↑Lδ eF(F ).

It follows that g is a homeomorphic embedding.
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The fact that g : Lδ → I F L is a (δ↑, σ↑)-homeomorphic embedding tells us two
things. Firstly, that Lδ is isomorphic to a subposet of I F L. Secondly, this tells
us that the δ↑-topology is precisely the topology that Lδ inherits as a subspace of
I F L, where the latter is endowed with the σ↑-topology. Naturally, this result
dualizes if we view Lδ as a subposet of F I L.

2.1.4 Basic properties of the canonical extension

In this section, we will introduce assorted basic properties of canonical extensions
which will be of use later on. The first observations concern the interaction with
products and the operation of taking the order dual of a lattice. After that, we
will prove certain topological and order-theoretical properties of the maps eI and
eF and of the δ-topologies. In particular, we will see that canonical extensions
satisfy two distributive laws with respect to joins of filter elements and meets
of ideal elements. We conclude the subsection with a result about the internal
structure of the lattices that arise as canonical extensions.

We begin by showing that canonical extensions commute with finite products
and order duals of lattices.

2.1.26. Lemma. Let e1 : L1 → Lδ1 and e2 : L2 → Lδ2 be canonical extensions.

1. e1 × e2 : L1 × L2 → Lδ1 × Lδ2 is a canonical extension of L1 × L2.

2. eop1 : Lop1 → (Lδ1)op is a canonical extension of Lop1 .

Proof (1). We will verify that e1×e2 : L1×L2 → Lδ1×Lδ2 satisfies the topological
conditions of Theorem 2.1.23. Since the product of two T0 spaces is again T0, it
follows from Lemma 2.1.19 that both δ↑(Lδ1 × Lδ2) and δ↓(Lδ1 × Lδ2) are T0.

Now since eIi : I Li → Lδi is (σ↑, δ↑)-continuous for i = 1, 2, it follows from
Fact A.5.4, Lemma 2.1.19 and general topology that

eI1 × eI2 : I L1 × I L2 → Lδ1 × Lδ2 is (σ↑, δ↑)-continuous.

Let h : I(L1 × L2) → I L1 × I L2 be the order-isormorphism witnessing that
I(L1×L2) ' I L1×I L2; observe that h is (σ↑, σ↑)-continuous. Now consider the
diagram in Figure 2.2. The upper left triangle commutes by Fact A.5.4, the upper
right triangle commutes by the universal property of ↓L1×L2

: L1×L2 → I(L1×L2)
(Fact A.5.3), and the lower triangle commutes by definition of (e1 × e2)

I . Now
since (eI1 × eI2 ) ◦ h is (σ↑, δ↑)-continuous, so is (e1 × e2)I , which is what we needed
to show. The argument showing that (e1×e2)F : F(L1×L2)→ Lδ1×Lδ2 is (σ↓, δ↓)-
continuous is identical; it follows by Theorem 2.1.23 that e1×e2 : L1×L2 → Lδ1×Lδ2
is a canonical extension of L1 × L2.

(2). This follows readily from the order duality between filters and ideals and
Lemma 2.1.18.
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Figure 2.2: Finite products of canonical extensions

I L1 × I L2

eI1×eI2

��>>>>>>>>>>>>>>>>>>>

I(L1 × L2)

(e1×e2)I &&NNNNNNNNNNN

h

OO

L1 × L2

↓L1
×↓L2

@@������������������� ↓L1×L2

88ppppppppppp

e1×e2
// Lδ1 × Lδ2

The fact that canonical extension commutes with taking finite products is in
fact an instance of the more powerful result that canonical extensions commute
with Boolean products (see §A.6). An alternative reference for the following result
is [43, Theorem 5.1].

2.1.27. Fact ([34]). Let L be a lattice and let (px : L → Mx)x∈X be a Boolean
product decomposition of L. Then Lδ ∼=

∏
XMδ

x.

Parts (1) and (2) of the following lemma can be found in [41]. Part (3) however,
which we will use very frequently, is new. In light of Theorem 2.1.25, part (3)
below is perhaps not that surprising.

2.1.28. Lemma. Let e : L→ Lδ be the canonical extension of a bounded lattice
L.

1. (a) eF : F L→ Lδ is an ∨,
∧

-embedding;

(b) eI : I L→ L is an ∧,
∨

-embedding;

2. for all x ∈ Lδ,

(a) {eF(F ) | eF(F ) ≤ x} is directed;

(b) {eI(I) | x ≤ eI(I)} is co-directed;

3. (a) σ↑(Lδ) ⊆ δ↑(Lδ);

(b) σ↓(Lδ) ⊆ δ↓(Lδ);

(c) σ(Lδ) ⊆ δ(Lδ);

4. e[L] is dense in 〈Lδ, δ(Lδ)〉 and in 〈Lδ, σ(Lδ)〉.

Proof (1). We will only prove part (a). It follows from (the order dual of) Lemma
2.1.21 that eF is a ∨,

∧
-homomorphism. To show that it is an embedding, we

will show that eF is order-reflecting. Assume that F + F ′; we will show that
eF(F ) � eF(F ′). By assumption, there exists a ∈ F ′ \ F , so that F ∩ ↓ a = ∅
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and F ′ G ↓ a. It follows by the compactness property of canonical extension that
eF(F ) � eI(↓ a) and eF(F ′) ≤ eI(↓ a). Now by the meet-density of ideal elements,
it follows that eF(F ) � eF(F ′).

(2). We only show part (a). This follows from (1), since ↓x is an ideal.
{eF(F ) | eF(F ) ≤ x}

(3). Suppose U ⊆ Lδ is Scott-open and that x ∈ U . Then x =
∨
{eF(F ) |

eF(F ) ≤ x} is a directed join by (1), so there must be some F such that eF(F ) ≤ x
and eF(F ) ∈ U . It follows that x ∈ ↑ eF(F ) ⊆ U ; hence U is δ↑-open.

(4). Consider a non-empty basic open U of 〈Lδ, δ(Lδ)〉, i.e. there are F ∈ F L,
I ∈ I L such that U = {x ∈ Lδ | eF(F ) ≤ x ≤ eI(I)}. Since U 6= ∅, it must be
that eF(F ) ≤ eI(I), so that F G I. Take a ∈ F ∩ I, then

∧
e[F ] ≤ e(a) ≤

∨
e[I]

so that e(a) ∈ U . It follows that e[L] is dense in 〈Lδ, δ(Lδ)〉. Since σ ⊆ δ by (3),
it is also the case that e[L] is dense in 〈Lδ, σ(Lδ)〉.

The distributive law below, which is similar to Lemma 3.2 of [34], is a very
powerful result. We will in fact use it to characterize the canonical extension as a
dcpo in §2.3.

2.1.29. Lemma. Let e : L→ Lδ be the canonical extension of a lattice L. Then
for all S ⊆ F L and S ′ ⊆ I L,∨

{eF(F ) | F ∈ S} =
∧
{eI(I) | ∀F ∈ S, F G I}

and ∧
{eI(I) | I ∈ S ′} =

∨
{eF(F ) | ∀I ∈ S ′, F G I}.

Proof We only prove the first statement. Since the ideal elements of Lδ are
meet-dense, we see that∨

{eF(F ) | F ∈ S} =
∧
{eI(I) |

∨
F∈Se

F(F ) ≤ eI(I)}.

Now observe that
∨
F∈Se

F(F ) ≤ eI(I) iff for all F ∈ S, eF(F ) ≤ eI(I) iff for all
F ∈ S, F G I. The (first) statement of the lemma follows.

We conclude this subsection with a well-known result from the canonical
extension literature, which plays an important role in the duality theory for
canonical extensions. Let L be a complete lattice. Recall that an element p ∈ L
is called completely join-irreducible if for all S ⊆ L such that p =

∨
S, there

exists a ∈ S such that p = a. We denote the set of completely join-irreducible
elements of L by J∞(L). Completely meet-irreducible elements are defined dually;
we denote them by M∞(L). The following fact, which is related to Stone duality,
requires the Axiom of Choice.

2.1.30. Fact ([34], Lemma 3.4). Let L be a lattice. Then Lδ is join-generated
by J∞(Lδ) and meet-generated by M∞(Lδ).
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2.1.5 Conclusions and further work

This section served two purposes: to make the reader familiar with the classical
definition and well-known properties of the canonical extension, and to add a
number of fundamental topological results on canonical extensions. The work of
Gehrke and Jónsson [39] has shown that the topological perspective on canonical
extensions is worthwile, however the basic topological properties of canonical
extensions in the general setting of (not necessarily distributive) lattices have not
previously been studied. One fundamental difference between the distributive and
the non-distributive settings is that the Scott topology and the topology generated
by principal up-sets of completely join irreducibles no longer coincide.

All the results in §2.1.1 are known from the work of Gehrke and Harding [34],
save perhaps the small technical results concerning the overlap relation. It should
be noted however that the emphasis on the auxiliary maps eF : F L → Lδ and
eI : I L→ Lδ is a departure from the view on canonical extensions furthered in
[34, 39].

In §2.1.3 we presented results which were first reported at TACL 2009 in
Amsterdam. Both the topological characterization theorem (Theorem 2.1.23)
and the result which casts the δ-topologies as subspace topologies (Theorem
2.1.25) were previously unknown. The topological characterization theorem was
inspired by the work of Theunissen and Venema [86] on MacNeille completions of
lattice-based algebras.

Further work

• It would be very interesting to see if Fact 2.1.27, which deals with canonical
extensions of Boolean products of lattices, can be given a new proof reducing
it to a statement about the ideal completion and filter completion of lattices.

• It would also be interesting to see if there is a version of the topological
characterization theorem (Theorem 2.1.23) which does not rely on eF and
eI , while still giving a topological characterization of Lδ.

• An alternative approach to canonical extensions using filters and ideals has
been developed by Gehrke, Jansana & Palmigiano [37], using logical filters
rather than order filters. It would be interesting to see if their approach also
admits a topological characterization.

2.2 Canonical extensions of maps I: order-pre-

serving maps

In the previous section, we have studied the canonical extension as a construction
on lattices to some length. We will now turn to the subject of canonical extensions
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of maps f : L → M between lattices, which is probably an even richer subject.
In this dissertation, we will consider two approaches to obtaining a canonical
extension of a map f : L→M between lattices.

• The first approach is to assume that f is order-preserving, so that we may
first extend f : L → FM to maps F f : F L → M and I f : I L → IM
acting on filters and ideals, respectively, and then work from there. This is
the approach we will take in the current section.

• The second approach is to assume that Mδ has nice topological properties, in
which case we can develop a substantial part of the basic theory of extensions
of maps without making any assumptions about the map f : L→ M. We
will pursue this approach in §3.2.

It is an interesting open question whether the two approaches above form a
dichotomy of some sort. We will return to this question in Remark 3.2.22.

In §2.2.1, we will first give the basic definition of the lower (fO) and the
upper (fM) canonical extension of an order-preserving map f : L → M, and we
will characterize these extensions as a largest and smallest continuous extension
of f to a map Lδ → Mδ, respectively (Theorem 2.2.4). We will then show in
§2.2.2 that if we assume that f preserves joins (or dually, meets), even in only
one coordinate, then this vastly improves the behaviour of fO and fM (Theorem
2.2.18). Finally in §2.2.3 we will put this good behaviour to use by showing that
canonical extensions of lattice homomorphisms are particularly well-behaved, so
well in fact that canonical extension is a functor on the category of lattices and
lattice homomorphisms (Theorem 2.2.24). All along, we will see that almost every
result we prove about fO and fM reduces to statements about filters and ideals.

2.2.1 The lower and upper extensions of an order-preserving
map

In this subsection we will discuss the two canonical [34] ways to extend an order-
preserving map f : L → M to a map f ′ : Lδ → Mδ, namely the lower and the
upper canonical extension. We will then prove some of the basic facts that hold
true for any order-preserving map. We conclude the subsection with a topological
characterization theorem, which tells us that fO and fM can be seen as the largest
and smallest continuous extension of f , respectively.

Consider the following diagram, where eL : L→ Lδ and eM : M→Mδ are the
canonical extensions of L and M, respectively:

L
↑L //

f

��

F L
eFL //

F f
��

Lδ

?
���
�
�

M ↑M
// FM

eFM

//Mδ
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(Observe that we factor eL : L→ Lδ as e(a) = eFL (↑ a).) We would like to find a
function that can take the place of the ‘?’ in the diagram. To do this, we use the
fact that any x ∈ Lδ is approximated from below by Sx := {F ∈ F L | eFL (F ) ≤ x}.
Now each F ∈ Sx can be mapped into Lδ via the assignment F 7→ eFM ◦ F f(F ).

2.2.1. Definition. Let f : L→M be an order-preserving map between lattices.
Then we define fO : Lδ →Mδ, the lower extension of f , as follows:

fO : x 7→
∨{

eFM ◦ F f(F ) | eFL (F ) ≤ x
}
.

Dually, we define fM : Lδ →Mδ, the upper extension of f , as follows:

fM : x 7→
∧{

eIM ◦ I f(I) | x ≤ eIL(I)
}
.

2.2.2. Remark. There is a slight discrepancy between our definition of fO and
fM when we compare it with the working definition found in e.g. [34, Lemma 4.3].
Using our notation, the working definition of [34] amounts to

fO : x 7→
∨{∧

eM ◦ f [F ] | eFL (F ) ≤ x
}
.

The difference is that we use F f(F ) rather than f [F ]; however this difference is
inconsequential. If F ∈ F L, then F f(F ) = ↑ f [F ] ⊇ f [F ], so

eFM (F f(F )) =
∧
eM
[
F f(F )]

]
by def. of eFM,

≤
∧
eM ◦ f [F ] since F f(F ) ⊇ f [F ].

Conversely, since eM is order-preserving, we know by Fact A.3.1 that for all U ⊆M,
↑ eM[U ] ⊇ eM[↑U ]. Now we see that∧

eM ◦ f [F ] =
∧
↑ eM ◦ f [F ] by order theory,

≤
∧
eM
[
↑ f [F ]

]
since ↑ eM ◦ f [F ] ⊇ eM

[
↑ f [F ]

]
.

In the following lemma we see that fO and fM mingle well with the auxilliary
maps induced by eL : L→ Lδ and eM : M→Mδ, or alternatively, that fO and fM

behave well on filter and ideal elements.

2.2.3. Lemma ([34]). Let f : L → M be order-preserving. Then fO : Lδ → Mδ

and fM : Lδ →Mδ are order-preserving maps, which satisfy the following additional
properties:

1. fO ◦ eFL = eFM ◦ F f ;

2. fM ◦ eIL = eIM ◦ I f ;
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3. fO ≤ fM;

4. fO ◦ eIL = fM ◦ eIL;

5. fM ◦ eFL = fO ◦ eFL .

Proof It is easy to see why fO and fM are order-preserving. Take x, y ∈ Lδ such
that x ≤ y and consider fO. Then

{F ∈ F L | eFL (F ) ≤ x} ⊆ {F ∈ F L | eFL (F ) ≤ y},

so also∨
{eFM ◦ F f(F ) ∈ F L | eFL (F ) ≤ x} ≤

∨
{eFM ◦ F f(F ) ∈ F L | eFL (F ) ≤ y},

i.e. fO(x) ≤ fO(y). Below, we will only prove statements (1), (3) and (4), since
(2) and (5) are order duals of (1) and (4).

(1). Let F ∈ F L; the set {F ′ ∈ F L | eFL (F ′) ≤ eFL (F )} has a maximal
element, viz. F . It follows that

fO
(
eFL (F )

)
=
∨
{eFM ◦ F f(F ′) | eFL (F ′) ≤ eFL (F )} by definition of fO,

= eFM ◦ F f(F ) since eFM ◦ F f is order-preserving.

(3). Let x ∈ Lδ. Recall that fO(x) =
∨
{eFM ◦ F f(F ) | eFL (F ) ≤ x} and

fM(x) =
∧
{eIM ◦ I f(I) | x ≤ eIL(I)}; we now have to show that∨
{eFM ◦ F f(F ) | eFL (F ) ≤ x} ≤

∧
{eIM ◦ I f(I) | x ≤ eIL(I)}. (2.7)

Take F ∈ F L, I ∈ I L such that eFL (F ) ≤ x ≤ eI(I), then it follows by
compactness that F G I. Now by Lemma 2.1.2, we get that F f(F ) G I f(I), so
that also eFM ◦ F f(F ) ≤ eIM ◦ I f(I). It follows that (2.7) holds.

(4). Let I ∈ I L. We claim that

∀J ∈ IM,
[
∀F ∈ F L, F G I ⇒ F f(F ) G J

]
iff I f(I) ⊆ J. (2.8)

Take J ∈ IM and suppose that the left-hand side of (2.8) holds. Take a ∈ I,
then ↑ a G I, so by our assumption regarding J , ↑ f(a) G J , i.e. f(a) ∈ J . It
follows that f [I] ⊆ J and thus I f(I) = ↓ f [I] ⊆ J . Conversely, suppose that
I f(I) ⊆ J and that F ∈ F L such that F G I. Then there is some a ∈ F ∩ I.
Since a ∈ F , we also get f(a) ∈ f [F ] ⊆ ↑ f [F ] = F f(F ). Since a ∈ I, we get that
f(a) ∈ f [I] ⊆ ↓ f [I] = I f(I). Since we assumed that I f(I) ⊆ J , it follows that
f(a) ∈ J . But then F f(F ) G J . It follows that (2.8) holds.
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We can now see that

fO
(
eIL(I)

)
=
∨
{eFM ◦ F f(F ) | eFL (F ) ≤ eIL(I)} by def. of fO,

=
∨
{eFM ◦ F f(F ) | F G I} by compactness,

=
∧
{eIM(J) | ∀F

[
F G I ⇒ F f(F ) G J

]
} by Lemma 2.1.29,

=
∧
{eIM(J) | I f(I) ⊆ J} by (2.8),

= eIM ◦ I f(I) by order theory,

= fM
(
eIL(I)

)
by (2).

It is known that the lower extension of an arbitrary map f : L→M between
distributive lattices L, M can be characterized as the largest continuous extension
of f [39, Theorem 2.15]. The result below, which is new, tells us that we can say
the same about maps between non-distributive lattices, if we assume that f is
order-preserving. We will return to this issue in §3.2.2.

2.2.4. Theorem. Let f : L→M be an order-preserving map between lattices.

1. (a) The map fO : Lδ →Mδ is (δ↑, σ↑)-continuous and fO ◦ eL = eM ◦ f .

(b) The map fM : Lδ →Mδ is (δ↓, σ↓)-continuous and fM ◦ eL = eM ◦ f .

2. Let f ′ : Lδ →Mδ be an order-preserving extension of f : L→M, i.e. assume
that f ′ ◦ eL = eM ◦ f .

(a) If f ′ is (δ↑, ι↑)-continuous, then f ′ ≤ fO.

(b) If f ′ is (δ↓, ι↓)-continuous, then fM ≤ f ′.

Proof We will only prove the statements concerning fO, since the proofs for those
concerning fM are identical modulo order duality.

(1). Let x ∈ Lδ; we will first show that fO is locally (δ↑, σ↑)-continuous at x.
Suppose that fO(x) ∈ U , where U ⊆Mδ is a σ↑-open set. Recall that

fO(x) =
∨
{eFM ◦ F f(F ) | eFL (F ) ≤ x},

and observe that this join is directed by Lemma 2.1.28(1). Since fO(x) ∈ U ,
it follows by definition of the σ↑-topology that some element of the join above
lies in U , i.e. that there must be some F ∈ F L such that eFL (F ) ≤ x and
eFM ◦ F f(F ) ∈ U . Now ↑ eFL (F ) is a δ↑-open neighborhood of x; it remains to be
shown that fO[↑ eFL (F )] ⊆ U . But this is easy to see: since fO is order-preserving,
it follows by Fact A.3.1 that fO[↑ eFL (F )] ⊆ ↑ fO(eFL (F )). Now by Lemma 2.2.3(1),
fO(eFL (F )) = eFM(F ) ◦ F f(F ); since we assumed that eFM(F ) ◦ F f(F ) ∈ U and
we know that U is an upper set, it follows that ↑ fO(eFL (F )) ⊆ U . Since U was
arbitrary, it follows that fO is locally (δ↑, σ↑)-continuous at x; since x ∈ Lδ was
arbitrary, it follows that fO is (δ↑, σ↑)-continuous.
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To see that fO ◦ eL = eM ◦ f , observe that the right square below commutes
by Lemma 2.2.3(2) and the left square commutes by the universal property of F .

L
↑L //

f

��

F L
eFL //

F f
��

Lδ

fO

��
M ↑M

// FM
eFM

//Mδ

(2). Let f ′ : Lδ →Mδ be an order-preserving extension of f : L→M. We will
show something stronger than statement (2)(a): we will show that for all x ∈ Lδ,
if f ′ is locally (δ↑, ι↑)-continuous at x, then f ′(x) ≤ fO(x). Suppose towards a
contradiction that f ′ is locally continuous but that we have x ∈ Lδ such that
f ′(x) � fO(x). Now since ↓ fO(x) is ι↑-closed, by local continuity there must be
some δ↑-open set U ⊆ Lδ such that x ∈ U and f ′[U ] ⊆ Mδ \ ↓ fO(x). We may
assume that U is a basic open set, i.e. that U = ↑ eFL (F ) for some F ∈ F L, so it
must be the case that eFL (F ) ≤ x and f ′(eFL (F )) /∈ ↓ fO(x). But now we can use
the fact that f ′ is order-preserving to see that

f ′
(
eFL (F )

)
= f ′(

∧
eL[F ]) by definition of eFL ,

≤
∧
f ′ ◦ eL[F ] since f ′ is order-preserving,

=
∧
eM ◦ f [F ] because f ′ ◦ eL = eM ◦ f ,

= eFM ◦ F f(F ) by Remark 2.2.2,

≤ fO(x) by definition of fO.

This is a contradiction because we also assumed that f ′(eFL (F )) /∈ ↓ fO(x); it
follows that indeed, local continuity of f ′ at x implies that f ′(x) ≤ fO(x). Thus,
if f ′ is continuous at every x ∈ Lδ, it follows that f ′ ≤ fO.

Even though fO is not Scott-continuous in general, it is when we restrict it to
ideal elements. The following result is known from the study of duality theory for
Heyting algebras and modal algebras, but it holds in fact at the level of generality
of lattices and order-preserving maps.

2.2.5. Corollary (Esakia’s Lemma). Let f : L→M be an order-preserving
map between lattices L,M. Then fO ◦ eIL = fM ◦ eIL is Scott-continuous and
fM ◦ eFL = fO ◦ eFL is co-Scott continuous.

Proof We only consider the first statement. The equality follows by Lemma 2.2.3;
the continuity follows since eIL is (σ↑, δ↑)-continuous by Lemma 2.1.20 and fO is
(δ↑, σ↑)-continuous by Theorem 2.2.4.

As another application of Lemma 2.2.3, we will show that the canonical
extension of an order embedding is again an order embedding.
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2.2.6. Lemma. Let L, M be lattices. If f : L→M is an order embedding, then
so are fO and fM.

Proof Let f : L→M be an order embedding. We will only prove part (1); part
(2) follows by order duality. Let x, y ∈ Lδ and suppose that fO(x) ≤ fO(y). We
will show that

∀F ∈ F L, ∀I ∈ I L, if eFL (F ) ≤ x and y ≤ eIL(I), then eFL (F ) ≤ eIL(I). (2.9)

This is not hard to see. Take F ∈ F L and I ∈ I L such that eFL (F ) ≤ x and
y ≤ eIL(I). Then

eFM ◦ F f(F ) = fO
(
eFL (F )

)
by Lemma 2.2.3 (1),

≤ fO(x) since eFL (F ) ≤ x,

≤ fO(y) by assumption,

≤ fO
(
eIL(I)

)
since y ≤ eIL(I),

= eIM ◦ I f(I) by Lemma 2.2.3 (2).

Consequently, F f(F ) G I f(I), i.e. ↑ f [F ] G ↓ f [I]. It follows that there must exist
a ∈ F and b ∈ I such that f(a) ≤ f(b). Since f is an order embedding, a ≤ b,
so F G I. It follows that eFL (F ) ≤ eIL(I), concluding our proof of (2.9). It now
follows from the density of filter and ideal elements that x ≤ y, concluding our
proof.

2.2.2 Operators and join-preserving maps

So far we have seen how to take an order-preserving map f : L→M and extend it
covariantly to maps F f : F L→ FM and I f : I L→ IM at the intermediate
level of filters and ideals, and from there to maps fO : Lδ →Mδ and fM : Lδ →Mδ.
In this section we will see that if f : L → M preserves binary joins, then the
set-theoretic inverse function f−1 : P(L)→ P(M) becomes a partial function from
IM to I L. This contravariant partial extension of f at the intermediate level
will then tell us a lot about the topological properties of fO : Lδ →Mδ.

Applying join-preserving maps to filters and ideals

We begin by making the observation that when an order-preserving map g : L→M
preserves binary joins, we not only get a map I g : I L → IM, defined as
I g(I) := ↓ g[I], but also a well-behaved partial map g−1 : IM→ I L.

2.2.7. Lemma. Let L, M be lattices and let g : L→M be a map preserving binary
joins. Then

1. ∀J ∈ IM, g−1(J) ∈ I L iff g−1(J) 6= ∅;
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2. ∀F ∈ F L, ∀J ∈ IM, F g(F ) G J iff g−1(J) ∈ I L and F G g−1(J).

Proof (1). Let J ∈ IM. Since ideals are non-empty by definition, the left-to-
right implication is immediate. For the converse, first observe that g−1(J) is
non-empty by assumption. Moreover, g−1 is order-preserving, so by Fact A.3.1(3),
g−1(J) is a lower set. Moreover, if a, b ∈ g−1(J), then g(a), g(b) ∈ J , so since J
is an ideal we get g(a) ∨ g(b) ∈ J . Since g preserves binary joins, we see that
g(a ∨ b) = g(a) ∨ g(b) ∈ J , so that a ∨ b ∈ g−1(J). It follows that g−1(J) is an
ideal of L.

(2). Let F ∈ F L and J ∈ IM. If F g(F ) G J , then ↑ g[F ] G J , i.e. there
must be some b ∈ (↑ g[F ]) ∩ J . Since b ∈ ↑ g[F ], there is some a ∈ F such that
g(a) ≤ b. Since b ∈ J and J is a lower set, it follows that g(a) ∈ J . But then
a ∈ F ∩ g−1(J), so that F G g−1(J). Moreover, since g−1(J) 6= ∅, it follows by (1)
that g−1(J) ∈ I L. Conversely, if F G g−1(J) then there must exist a ∈ F ∩g−1(J),
i.e. a ∈ F and g(a) ∈ J . Since g(a) ∈ g[F ] ⊆ ↑ g[F ], it follows that ↑ g[F ] G J .

Up to this point, we have only considered canonical extensions of unary maps
f : L→M. We would now like to state several more detailed results, concerning
canonical extensions of n-ary maps. This is non-problematic since canonical
extensions commute with finite products; however, we would like to ignore the
technical difference between, say, (L1 × L2)δ and Lδ1 × Lδ2 whenever possible.

2.2.8. Convention. If f : L1 × · · · × Ln → M is an n-ary order-preserving
map, then we regard F f as a map F L1 × · · · × F Ln → FM and fO as a
map Lδ1 × · · · × Lδn → Mδ, rather than as maps F(L1 × · · · × Ln) → FM and
(L1 × · · · × Ln)δ →Mδ. This is justified by Fact A.5.4 and Lemma 2.1.26. Using
this convention, fO is calculated as follows for (x1, . . . , xn) ∈ Lδ1 × · · · × Lδn:

fO(x1, . . . , xn) =
∨
{eFM ◦ F f(F1, . . . , Fn) | eFL1

(F1) ≤ x1, . . . , e
F
Ln(Fn) ≤ xn},

and fM(x1, . . . , xn) is calculated similarly.

We will now work towards the main technical lemma of this section, which
concerns canonical extensions of binary maps f : L1 × L2 → M which preserve
joins in only one coordinate. We will first prove a result about the extension
F f : F L1 × F L2 → FM of such a map f , which will also be of use to us in
§2.3.3.

2.2.9. Lemma. Let f : L1 × L2 →M be an order-preserving map between lattices
L1, L2 and M which preserves binary joins in its first coordinate. Let S ∪ {F ′} ⊆
F L1 and G ∈ F L2. If S 6= ∅ and

∀I ∈ I L1, [∀F ∈ S, F G I]⇒ F ′ G I, (2.10)
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then also

∀J ∈ IM, [∀F ∈ S, F f(F,G) G J ]⇒ F f(F ′, G) G J. (2.11)

Proof For each b ∈ L2, we define fb : L1 →M as fb : a 7→ f(a, b). It follows from
our assumptions above that for each b ∈ L2, fb : L1 → M is a map preserving
binary joins. Now we claim that

∀b ∈ G, ∀F ∈ F L1, F f(F,G) ⊇ F fb(F ). (2.12)

After all,

F f(F,G) = ↑ f [F,G] by definition of F f ,

⊇ ↑ f [F, {b}] since G ⊇ {b},
= ↑ fb[F ] by definition of fb,

= F fb(F ). by definition of F fb.

Now suppose that (2.10) holds and that J ∈ IM such that ∀F ∈ S, F f(F,G) G J .
We need to show that F f(F ′, G) G J . We define I1 :=

⋃
b∈Gf

−1
b (J). We claim

that
I1 ∈ I L1, i.e. I1 is an ideal of L1. (2.13)

To establish this we need to show three things: we want that I1 is a lower set,
that I1 is directed and that I1 is non-empty. Since fb is order-preserving for each
b ∈ G, it follows by Fact A.3.1(3) that I1 is a union of lower sets and hence, itself
a lower set. To see that I1 is directed, first observe that

for all b, b′ ∈ G, if b ≥ b′ then f−1
b (J) ⊆ f−1

b′ (J). (2.14)

After all, if a ∈ f−1
b (J), then f(a, b) ∈ J . Since f is order-preserving and b′ ≤ b,

we see that f(a, b′) ≤ f(a, b) ∈ J . Since J is a lower set, it follows that f(a, b′) ∈ J ,
so that a ∈ f−1

b′ ; since a ∈ f−1
b was arbitrary, it follows that (2.14) holds. Now

since G is a filter, it is co-directed; consequently, I1 :=
⋃
b∈Gf

−1
b (J) is a directed

union. To see why I1 is a directed subset of L1, consider a, a′ ∈ I1. Because I1

is a directed union, there must exist some b ∈ G such that a, a′ ∈ f−1
b (J). Now

f−1
b (J) is non-empty, so it is an ideal by Lemma 2.2.7(1); consequently, there must

exist some c ∈ f−1
b (J) such that a, a′ ≤ c. Since f−1

b (J) ⊆ I1, it follows that I1 is
directed. Finally, to see that I1 is non-empty, observe that since S is non-empty,
there is some F ∈ S such that F f(F,G) G J . Since F f(F,G) := ↑ f [F,G], this
means that there is some c ∈ (↑ f [F,G]) ∩ J . Since c ∈ ↑ f [F,G], there must be
a ∈ F and b ∈ G such that f(a, b) ≤ c. Since J is a lower set and c ∈ J , it follows
that f(a, b) ∈ J . But then also fb(a) ∈ J , so that a ∈ f−1

b (J); since f−1
b (J) ⊆ I1,

it follows that I1 6= ∅. We conclude that (2.13) holds. Next, we observe that

If ∀F ∈ S, F f(F,G) G J , then ∀F ∈ S,∃b ∈ G, F G f−1
b (J). (2.15)
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Suppose that the left-hand side of (2.15) holds and take F ∈ S. Then F f(F,G) G
J , so as we have seen above, there must exist a ∈ F and b ∈ G such that
a ∈ f−1

b (J). It follows that a ∈ F ∩ f−1
b (J), so that F G f−1

b (J). Since F ∈ S was
arbitrary, it follows that (2.15) holds. Recall that we assumed that J ∈ IM such
that ∀F ∈ S, F f(F,G) G J ; we now see that

∀F ∈ S, F f(F,G) G J by assumption,

⇒ ∀F ∈ S,∃b ∈ G, F G f−1
b (J) by (2.15),

⇒ ∀F ∈ S, F G I1 since I1 =
⋃
Gf
−1
b (J),

⇒ F ′ G I1 by (2.13) and (2.10),

⇒ ∃b ∈ G, F ′ G f−1
b (J) by def. of I1,

⇒ ∃b ∈ G, F fb(F ′) G J by Lemma 2.2.7(2),

⇒ F f(F,G) G J by (2.12) and L. 2.1.2(1).

Since J ∈ IM was arbitrary, it follows that (2.11) holds.

The following well-known lemma is perhaps the most powerful technical result
in the theory of canonical extensions of maps between lattices.

2.2.10. Lemma ([34]). Let e1 : L1 → Lδ1, e2 : L2 → Lδ2 and eM : M → Mδ be
canonical extensions of lattices, and let f : L1 × L2 → M be a order-preserving
map which preseves binary joins in the first coordinate. Then fO : Lδ1 × Lδ2 →Mδ

preseves all non-empty joins in the first coordinate.

Proof Let T ⊆ Lδ1 be a non-empty set and let y ∈ Lδ2. To show that fO(
∨
T, y) =∨

x∈Tf
O(x, y), it suffices to show that

fO(
∨
T, y) ≤

∨
x∈Tf

O(x, y), (2.16)

since fO is order-preserving. Using the definition of fO, one can show that

fO(
∨
T, y) =

∨
{fO(

∨
T, eF2 (G)) | eF2 (G) ≤ y},

and that ∨
x∈Tf

O(x, y) =
∨
{
∨
x∈Tf

O(x, eF2 (G)) | eF2 (G) ≤ y}.

Thus we see that it suffices to show that for arbitrary G ∈ F L2,

fO(
∨
T, eF2 (G)) ≤

∨
x∈Tf

O(x, eF2 (G)). (2.17)

Fix G ∈ F L2 and define S := {F ∈ F L1 | ∃x ∈ T, eF1 (F ) ≤ x}; we see that∨
F∈Se

F
1 (F ) =

∨
T . Now if we look at the left-hand side of (2.17) then we see that

fO(
∨
T, eF2 (G))

= fO(
∨
F∈Se

F
1 (F ), eF2 (G))

=
∨
{eFM ◦ F f(F ′, G) | eF1 (F ′) ≤

∨
F∈Se

F
1 (F )} by def. of fO.
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The right-hand side of (2.17) reduces as follows:∨
x∈Tf

O(x, eF2 (G))

=
∨
x∈T
∨
{eFM ◦ F f(F,G) | eF1 (F ) ≤ x} by def. of fO,

=
∨
{eFM ◦ F f(F,G) | F ∈ S} by def. of S,

=
∧
{eIM(J) | ∀F ∈ S, F f(F,G) G J} by L. 2.1.29.

Thus we see that to show that (2.17) holds, it suffices to show that for all
F ′ ∈ F L1 such that eF1 (F ′) ≤

∨
F∈Se

F
1 (F ) and for all J ∈ IM such that

∀F ∈ S, F f(F,G) G J , we have that

eFM ◦ F f(F ′, G) ≤ eIM(J). (2.18)

Now given the fact that eF1 (F ′) ≤
∨
F∈Se

F
1 (F ), we know from Lemma 2.1.29 that

eF1 (F ′) ≤
∧
{eI1 (I) | ∀F ∈ S, F G I},

i.e. for all I ∈ I L1, if ∀F ∈ S, F G I, then F ′ G I. But now it follows from Lemma
2.2.9 and our assumption about J that F f(F ′, G) G J , so that (2.18) holds. Since
F ′ and J were arbitrary, it follows that (2.17) holds, which concludes our proof.

Operators and dual operators

Obviously, we can use Lemma 2.2.10 to make claims about join-preserving maps,
but that is not all. Operators form another example of maps which satisfy the
conditions of Lemma 2.2.10.

2.2.11. Definition. Let f : L1 × · · · × Ln → M be an n-ary order-preserving
map between lattices. We call f an operator if f preserves binary joins in each
coordinate, i.e. if for all i ≤ n, for all a1, . . . , an ∈ L1 × · · · × Ln and all b ∈ Li,
we have

f(a1, . . . , ai ∨ b, . . . , an) = f(a1, . . . , ai, . . . , an) ∨ f(a1, . . . , b, . . . , an).

If all lattices involved are complete and if f preserves all non-empty joins in each
coordinate, then we call f a complete operator.

We call f a normal operator if f is an operator and for all i ≤ n, for all
a1, . . . , an ∈ L1 × · · · × Ln,

ai = 0⇒ f(a1, . . . , ai, . . . , an) = 0.

In other words, f is a normal operator if it also preserves the empty join in each
coordinate.

A dual operator (complete dual operator, etc.) is an n-ary map which preserves
binary meets (all non-empty meets, etc.) in each coordinate.
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Operators arise, for instance, in the algebraic semantics for modal logics [19,
Ch. 5], where they correspond to existential modalities (usually denoted by ‘♦’).

2.2.12. Example. The property of being a (normal) operator is weaker than
that of being a join-homomorphism. Consider the map f : {0, 1}×{0, 1} → {0, 1},
with the usual order on {0, 1}, defined as

f : (a, b) 7→ a ∧ b.

Then f is an operator, in fact a normal operator, because {0, 1} is a distributive
lattice. However, f is not a join-homomorphism:

f((0, 1) ∨ (1, 0)) = f(1, 1) = 1 ∧ 1 = 1,

but

f(0, 1) ∨ f(1, 0) = (0 ∧ 1) ∨ (1 ∧ 0) = 0 ∨ 0 = 0.

This is quite different from the situation for directed joins; if g : D1×· · ·×Dn →
E is a map between dcpo’s which preserves directed joins in each coordinate, then
by Fact A.3.4, g preserves directed joins in D1 × · · · × Dn.

In Lemma 2.2.10, we only considered binary joins, i.e. non-empty finite joins.
Canonical extensions also behave well with respect to maps which preserve the
empty join.

2.2.13. Lemma. Let e1 : L1 → Lδ1, e2 : L2 → Lδ2 and eM : M → Mδ be canonical
extensions of lattices, and let f : L1 × L2 →M be a order-preserving map.

1. If ∀b ∈ L2, f(0, b) = 0, then also ∀y ∈ Lδ2, fO(0, y) = 0;

2. If ∀b ∈ L2, f(1, b) = 1, then also ∀y ∈ Lδ2, fO(1, y) = 1;

Proof We will only prove (1), since (2) is just the order dual of (1). First, observe
that

∀F ∈ F L1, ∀G ∈ F L2, 0 ∈ F ⇒ 0 ∈ F f(F,G). (2.19)

Take F ∈ F L1 and G ∈ F L2 such that 0 ∈ F , then since G must be non-empty,
there is some b ∈ G. Now

f(0, b) ∈ f [F,G] ⊆ ↑ f [F,G] = F f(F,G),

so since f(0, b) = 0 by assumption, we see that 0 ∈ F f(F,G). Next, observe that
it is a basic fact about canonical extensions that for any lattice L,

∀a ∈ L,∀F ∈ F L, a ∈ F iff eFL (F ) ≤ eL(a). (2.20)
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After all, a ∈ F iff F G ↓ a iff eFL (F ) ≤ eIL(↓ a) = eL(a). Now we can see that for
any y ∈ Lδ2,

fO(0, y)

= fO(e(0), y) since e(0) = 0,

=
∨
{eM ◦ F f(F,G) | eF1 (F ) ≤ e1(0), eF2 (G) ≤ y} by def. of fO,

=
∨
{eM ◦ F f(F,G) | 0 ∈ F, eF2 (G) ≤ y} by (2.20),

≤
∨
{eM(F ′) | 0 ∈ F ′} by (2.19),

=
∨
{eM(F ′) | eM(F ′) ≤ e(0)} by (2.20),

= 0,

which is what we wanted to show.

We can now state an immediate corollary of Lemmas 2.2.10 and 2.2.13:

2.2.14. Corollary ([34]). Let f : L1 × · · · × Ln → M be an n-ary order-
preserving map between lattices.

1. If f is a (normal) operator, then fO is a complete (normal) operator.

2. If f is a dual (normal) operator, then fM is a complete dual (normal)
operator.

Topological properties of operators and join-preserving maps

It is one of the characteristic features of canonical extension that maps between
lattices (f : L→M ) have both a lower (fO : Lδ →Mδ) and an upper extension
(fM : Lδ →Mδ). These two extensions need not necessarily be different.

2.2.15. Definition. We say that an order-preserving map f : L→M is smooth
if fO = fM. If we want to emphasize that f is smooth, we will refer to the canonical
extension of f as f δ rather than fO or fM.

In light of the recurring topological themes in this chapter, it may not come
as a surprise that smoothness of a map f : L→M is a topological property.

2.2.16. Lemma. an order-preserving map f : L→M between lattices is smooth
iff fO : Lδ →Mδ is (δ, σ)-continuous.

Proof If fO = fM, then fO is both (δ↑, σ↑)-continuous and (δ↓, σ↓)-continuous;
hence fO is also (δ, σ)-continuous. Conversely, if fO is (δ, σ)-continuous, then it
follows from Lemma 2.1.17 and the fact that fO is order-preserving that fO is
(δ↓, σ↓)-continuous. It follows by the order dual of Theorem 2.2.4 that fM ≤ fO.
Since fO ≤ fM by Lemma 2.2.3, we find that fO = fM.
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Before we proceed to the main result about topological properties of operators
and join-preserving maps, we prove another technical lemma which says, intuitu-
ively, that if f : L→M preserves binary joins, then fO : Lδ →Mδ has a kind of
weak, partial right adjoint.

2.2.17. Lemma. Let f : L → M be an order-preserving map preserving binary
joins.

∀x ∈ Lδ,∀J ∈ IM, fO(x) ≤ eIM(J) iff f−1(J) ∈ I L and x ≤ eIL ◦ f−1(J).

Proof Let x ∈ Lδ and J ∈ IM. We define S := {F ∈ F L | eFL (F ) ≤ x}; observe
that S is always non-empty since at least ↑ 0 ∈ S. Now if fO(x) ≤ eIM(J), then
since fO(x) =

∨
F∈Se

F
M ◦ F f(F ), we see that ∀F ∈ S, eFM ◦ F f(F ) ≤ eIM(J). By

basic properties of canonical extension it follows that ∀F ∈ S,F f(F ) G J . Since
S 6= ∅, there is at least one F ∈ F L such that F f(F ) G J , so by Lemma 2.2.7(2),
f−1(J) ∈ I L. It also follows by Lemma 2.2.7(2) that ∀F ∈ S, F G f−1(J),
so that ∀F ∈ S, eFL (F ) ≤ eIL ◦ f−1(J). Since x =

∨
F∈Se

F
L (F ), it follows that

x ≤ eIL ◦ f−1(J). The proof of the converse implication is analogous.

We now arrive at the main theorem about topological properties of operators
and join-preserving maps. Parts (1) and (3) were already known from [34].

2.2.18. Theorem. Let f : L→M be an order-preserving map between lattices.

1. (a) If f is an operator, then fO is (σ↑, σ↑)-continuous.

(b) If f is a dual operator, then fO is (σ↓, σ↓)-continuous.

2. (a) If f preserves binary joins, then fO : Lδ →Mδ is (δ↓, δ↓)-continuous.

(b) If f preserves binary meets, then fM : Lδ →Mδ is (δ↑, δ↑)-continuous.

3. If f preserves binary joins or binary meets, then f is smooth.

4. If f preserves binary joins and binary meets, then f is smooth and f δ : Lδ →
Mδ is (δ, δ)-continuous.

Proof We will only show the proofs for the statements about fO, since the proofs
for the statements about fM are order dual.

(1). By Lemma 2.2.10, fO preserves all non-empty joins in each coordinate,
so a fortiori fO preserves directed joins in each coordinate. It follows from Fact
A.3.4 that fO : Lδ1 × · · · × Lδn →Mδ preserves directed joins.

(2). We will show that (fO)−1 maps basic δ↓-open sets to δ↓-open sets. Let
J ∈ IM; we need to show that (fO)−1

(
↓ eIM(J)

)
is δ↓-open. If (fO)−1

(
↓ eIM(J)

)
is empty then we are done. If not, then it follows from Lemma 2.2.17 that

(fO)−1
(
↓ eIM(J)

)
= ↓ eIL

(
f−1(J)

)
, (2.21)
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so we see that (fO)−1
(
↓ eIM(J)

)
is in fact a basic δ↓-open set.

(3). Suppose that f preserves binary joins; then by (2), fO : Lδ → Mδ

is (δ↓, δ↓)-continuous. Since σ↓ ⊆ δ↓ (Lemma 2.1.28(3), it follows that fO is
(δ↓, σ↓)-continuous. On the other hand, by Theorem 2.2.4(1) we know that fO is
(δ↑, σ↑)-continuous. It now follows from Lemma 2.2.16 that f is smooth.

(4). It follows from (3) that f is smooth. Now by (2), fO is (δ↓, δ↓)-continuous
and fM is (δ↑, δ↑)-continuous. Since f is smooth, i.e. since fO = fM, it now follows
from general topology that f δ := fO is (δ, δ)-continuous.

We now turn to an interesting question which we have neglected so far. We
took it as part of our definition that eL : L → Lδ is a lattice embedding, which
means that the meet and join of Lδ a priori ‘play nice’ with those of L. If we
look at meet and join as maps ∨L : L× L→ L and ∧L : L× L→ L however, we
can also ask ourselves what are the canonical extensions of ∨L and ∧L. Are these
indeed the join and meet of Lδ? Fortunately, the answer is yes.

2.2.19. Lemma ([34]). Let e : L→ Lδ be a canonical extension. Then (∨L)O =
(∨L)M = ∨Lδ and (∧L)O = (∧L)M = ∧Lδ .

Proof We will only consider ∨, since the other case follows by order duality. Since
∨L : L× L→ L is associative, it is a join-preserving map, so by Theorem 2.2.18
(∨L)O = (∨L)M. It follows from order theory that for all x, y ∈ Lδ,

x ∨Lδ y =
∧
{z ∈ Lδ | x, y ≤ z}.

By meet-density of ideal elements, this reduces to

x ∨Lδ y =
∧
I∈Se

I(I),

where S := {I ∈ I L | x, y ≤ eI(I)}. On the other hand,

x(∨L)My =
∧
J∈S′e

I(J),

where S ′ := {I ∨L(J1, J2) | x ≤ eI(J1), y ≤ eI(J2)}. Since I ∨L = ∨I L, we see
that if I ∈ S then I ∨L(I, I) = I ∈ S ′, so S ′ ⊆ S. Conversely, if I ∨L(J1, J2) ∈ S ′
and x ≤ eI(J1), y ≤ eI(J2), then also x, y ≤ eI(I ∨L(J1, J2)), so I ∨L(J1, J2) ∈ S
and hence S ′ ⊆ S. It follows that (∨L)M = ∨Lδ .

Now if L is a distributive lattice, then we know that ∧L : L × L → L is an
operator. Consequently, by Corollary 2.2.14, (∧L)O = ∧δL is a complete operator,
so as a bonus we get the following well-known corollary:

2.2.20. Corollary. If L is a distributive lattice then so is Lδ.

2.2.21. Remark. Canonical extensions of distributive lattices have much stronger
properties than just being distributive. We will return to this subject in §4.1.
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2.2.3 Canonical extension as a functor I: lattices only

So far in this chapter we have seen that canonical extension is a construction on
lattices and maps between lattices. This raises the very natural question whether
canonical extension is a functor, and if so between which categories. In this
subsection we will see that canonical extension is a functor from the category of
bounded lattices and lattice homomorphisms to the category of complete lattices
and complete homomorphisms.

In order to establish this result, we will first prove several facts about the
interaction between canonical extensions and compositions of order-preserving
maps. The most basic such result is the well-known fact [34] that if we have two
order-preserving maps

L1
f // L2

g // L3 ,

then it is always the case that (gf)O ≤ gOfO and dually, gMfM ≤ (gf)M. This
result is supplemented by the observation that if we make certain continuity
assumptions about fO or gO, we can prove the reverse inequality. This fact was
already known in the case of order-preserving maps between distributive lattices
[39], however the result is new for the non-distributive case. Armed with these
results we can then prove Theorem 2.2.24, which says that canonical extension
is a functor from the category of lattices to the category of complete lattices.
Theorem 2.2.24 extends a known result from [34] with a new observation about
the continuity properties of canonical extensions of lattice homomorphisms. We
will revisit the subject of compositions of canonical extensions of maps in §3.2.3,
and the subject of functorial behaviour of canonical extension in §3.3.

We will now first state several results about canonical extensions of composi-
tions of order-preserving maps. We begin with a well-known result.

2.2.22. Lemma ([34]). Let ei : Li → Lδi be canonical extensions of lattices L1,L2,L3

and let f : L1 → L2 and g : L2 → L3 be order-preserving maps. Then the following
inequalities hold:

(gf)O ≤ gOfO ≤
{
gOfM

gMfO

}
≤ gMfM ≤ (gf)M.

Proof The inequalities gOfO ≤ gOfM and gOfO ≤ gMfO follow from Lemma 2.2.3.
For the first inequality, observe that

(gf)O(x) =
∨
{eF3 ◦ F gf(F ) | eF1 (F ) ≤ x} =∨

{eF3 ◦ F g ◦ F f(F ) | eF1 (F ) ≤ x} ≤
∨
{eF3 ◦ F g(F ′) | eF2 (F ′) ≤ fO(x)},

where the inequality directly above follows from the fact that if eF1 (F ) ≤ x, then
also

eF2 ◦ F f(F ) = fO
(
eF1 (F )

)
≤ fO(x).

The other inequalities in the statement of the lemma follow by order duality.
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Next, we present a handful of corollaries of the above lemma.

2.2.23. Corollary. Let f : L1 → L2 and g : L2 → L3 be order-preserving maps
between lattices.

1. If gOfO is (δ↑, σ↑)-continuous then gOfO = (gf)O;

2. If gO is (σ↑, σ↑)-continuous then gOfO = (gf)O;

3. If fO is (δ↑, δ↑)-continuous then gOfO = (gf)O.

Proof (1). If gOfO is (δ↑, σ↑)-continuous then by Theorem 2.2.4, gOfO ≤ (gf)O.
By Lemma 2.2.22, (gf)O ≤ gOfO. Statements (2) and (3) are instances of (1).

Recall from Definition 2.2.15 that we call a map f : L→M smooth if fO = fM,
and that we refer to the canonical extension of f as f δ : Lδ → Mδ in that case.
Additionally, recall from §A.4 that we denote the category of bounded lattices
and lattice homomorphisms by Lat, and the category of complete lattices and
complete lattice homomorphisms by CLat. We can now state a fundamental
theorem about canonical extensions of lattices. Most of this theorem was already
known, see e.g. [34]; part (1) is a new observation however.

2.2.24. Theorem. Let L, M be lattices and let f : L→M be a lattice homomor-
phism. Then f is smooth and

1. f δ : Lδ → Mδ is a complete lattice homomorphism which is both (δ, δ)-
continuous and (σ, σ)-continuous;

2. If f is injective, then so is f δ;

3. If f is surjective, then so is f δ.

In fact, canonical extension defines a functor from Lat to CLat and eL : L→ Lδ
is a natural transformation.

Proof (1). Since f preserves binary joins and binary meets, it follows by Lemma
2.2.10 that f δ preserves all non-empty joins and meets. It follows from Lemma
2.2.13 that f δ preserves 0 and 1. Now since complete homomorphisms preserve
directed joins and co-directed meets a fortiori, it follows that f δ is (σ, σ)-continuous.
Finally it follows from Theorem 2.2.18(2) that f δ is (δ, δ)-continuous.

(2). This follows from Lemma 2.2.6, since f preserves binary joins.
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(3). Assume f is surjective; then by (1), f δ is a complete homomorphism, and
we already know that F f is surjective (see §A.5.1). Let x ∈Mδ; we now make a
straightforward computation:

f δ
(∨
{eFL (F ) | eFM ◦ F f(F ) ≤ x}

)
=
∨
{f δ ◦ eFL (F ) | eFM ◦ F f(F ) ≤ x} because f is a complete hom.,

=
∨
{eFM ◦ F f(F ) | eFM ◦ F f(F ) ≤ x} by Lemma 2.2.3,

=
∨
{eFM(F ′) | eFM(F ′) ≤ x} because F f is surjective,

= x by join-densite of filter elements.

Since x ∈Mδ was arbitrary it follows that f δ is surjective.
To see that canonical extension is a functor, we will first look at compositions

of homomorphisms: consider lattice homomorphisms f : L1 → L2 and g : L2 → L3.
Since gδ is Scott-continuous by (1), it follows by Corollary 2.2.23 that gδf δ = (gf)δ.
To see that canonical extension preserves the identity function, we use that fact
that F is a functor. Let x ∈ Lδ be arbitrary, then

(idL)δ(x) =
∨
{eFL ◦ F idL(F ) | eFL (F ) ≤ x} by definition,

=
∨
{idF L ◦ eFL (F ) | eFL (F ) ≤ x} because F is a functor,

=
∨
{eFL (F ) | eFL (F ) ≤ x} by definition of idF L,

= x by join-density of filter elements,

= idLδ(x)

This proves that canonical extension is a functor on lattices and lattice homomor-
phisms. The fact that eL : L→ Lδ is a natural transformation follows from the
fact that f δ is an extension of f .

We conclude this section with a minor observation about canonical extensions
of sublattices which will be useful later.

2.2.25. Corollary. If L is a sublattice ofM, then Lδ is isomorphic to a complete
sublattice of Mδ.

2.2.4 Conclusions and further work

The main contribution of this section lies in the technical results concerning filters
and ideals, and the results about topological properties of fO and fM. Most of the
topological results in this section can also be found in our paper with M. Gehrke
[43]. Many of these where inspired by what was known about distributive lattices
from the work of Gehrke and Jónsson [39]. It was not known however that
distributivity of the lattices involved, which is a central assumption in [39], is in
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no way essential when one wants to discuss topological properties of canonical
extensions of order-preserving maps. In the work of Ghilardi and Meloni [44],
the action of join-preserving maps on filters and ideals receives the attention it
deserves, although the authors nowhere refer explicitly to canonical extensions.
The idea to define canonical extensions of order-preserving maps, rather than
join-preserving maps or operators, via the filter and ideal completion seems to
have been introduced by Gehrke and Priestley in [41], but in that paper most
attention was directed at lattice homomorphisms.

The definition of fO and fM for an order-preserving map in §2.2.1 is well known
from the work of Gehrke and Harding [34]. Theorem 2.2.4, which describes fO

and fM as the largest and smallest continuous extensions of an order-preserving
map f , respectively, was previously only known to hold for distributive lattices. It
raises questions which we will return to in Remark 3.2.22. The result concerning
preservation of order embeddings (Lemma 2.2.6) is also an improvement over what
was previously known (viz. that the canonical extension of an injective lattice
homomorphism is again injective).

The technical results about order-preserving maps applied to filters and ideals
in §2.2.2 are new, although similar results can be found in [44]. It was already
known from [34] that canonical extensions of join-preserving maps and operators
are very well-behaved (Theorem 2.2.18); the topological results we presented are
new however.

Further work

• In this section, we have made much use of the filter completion and the ideal
completion, which we borrowed from domain theory. It would be interesting
to see if there are more domain-theoretic tools available that we can use to
better understand and develop the theory of canonical extensions. We will
see an example of this in the next section, where we use dcpo presentations
to describe canonical extensions.

• Another interesting question is to see whether the domain theory tools and
topological methods of this section can also be applied in the setting of
monotone partially ordered algebras, as studied by Dunn et al. in [32].

• A more specific question which needs to be resolved is whether the canonical
extension of any order embedding is again an order embedding, cf. Lemma
2.2.6.

2.3 Canonical extensions via dcpo presentations

Thus far, we have explored canonical extensions of lattices and order-preserving
maps via topological methods. We will conclude this chapter with a section, based
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on results from [42], in which we show that canonical extensions can also be
understood via dcpo presentations, a technique from domain theory [60]. Apart
from being interesting in its own right, the perspective on canonical extensions
using dcpo presentations sheds a different light on the issue of extending maps
between lattices to maps between their canonical extensions, and ultimately on
the question whether inequations valid on a distributive lattice with operators A
are also valid on its canonical extension Aδ, i.e. the question when inequations are
canonical.

The idea of dcpo presentations is to give a unique description of a dcpo D,
that is, of a directed complete partial order, by specifiying a partially ordered or
pre-ordered set of generators P such that each element of D is the directed join of
the generators below it. If one imposes no relations on the generators other than
the order, that is, if one freely adds all directed joins to P , then this is equivalent
to taking the ideal completion of P . Thus we can give presentations of algebraic
dcpos. If, on the other hand, one imposes relations of the shape a ≤

∨
U , for

{a} ∪ U ⊆ P , then we may get a presentation for any dcpo, see [60].
To see how we may use this to get a dcpo presentation of the canonical

extension of a lattice L, recall from Theorem 2.1.25 that there exists an order
embedding g : Lδ → I F L such that g ◦ eFL = ↓F L.

Lδ
g

##FFFFFFFFF

L ↑L
//

eL

66mmmmmmmmmmmmmmmmm F L ↓F L

//
eFL

==zzzzzzzz
I F L

where g =
(
eFL
)−1 ◦ ↓Lδ and eFL are embeddings. What this diagram tells us is

that the canonical extension of L ‘sits between’ F L and I F L, the structure
one obtains by freely adding all directed joins to F L. The idea of the dcpo
presentation of canonical extension is to be selective and only add some directed
joins to F L, so that we obtain Lδ. Because of the way that filters, ideals and
canonical extensions dualize with respect to order (see Lemma 2.1.26), we can
just as well regard Lδ as an object sitting in between I L and F I L; this would
lead to a description of Lδ via a co-dcpo presentation over I L. We choose not to
engage in this exercise of dualization.

Since dcpo presentations are characterized externally, that is, by conditions on
their behaviour with respect to maps, it is quite natural to expect that we can use
them to describe canonical extensions of maps between lattices. In this section,
we will restrict our attention to maps of the type f : Ln → L, with n a natural
number. This choice is dictated by economy rather than necessity: we will develop
just enough of the technique of extending maps between lattices to canonical
extensions via dcpo presentations to allow us to prove a canonicity result in §3.3.3.
The key observation is that under the right assumptions, the canonical extension
of a map can be seen as an instance of an extension via dcpo presentations, so
that one can apply results about dcpo presentations to canonical extensions.
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2.3.1 Dcpo presentations

In this subsection, we introduce dcpo presentations, which are a technical tool
for uniquely specifying a dcpo without spelling out its entire structure. This is
an instance of a very general algebra technique, namely that of specifications by
generators and relations.

2.3.1. Definition. A dcpo presentation [60] is a triple 〈P,v, /〉 where

• 〈P,v〉 is a pre-order;

• / ⊆ P ×P(P ) is a binary relation such that a/U only if U ⊆ P is non-empty
and directed.

An order-preserving map f : P → D to a dcpo D is cover-stable if for all a / U ,
f(a) ≤

∨
f [U ].

In other words, a dcpo presentation consists of a pre-ordered set of generators
〈P,v〉 together with set of relations of the form a ≤

∨
U . But what does it mean

for a dcpo presentation to uniquely describe, i.e. to present a dcpo?

2.3.2. Definition. A dcpo presentation 〈P,v, /〉 presents a dcpo D if there
exists a cover-stable order-preserving map η : P → D such that for all dcpos E,
if f : P → E is a cover-stable order-preserving map then there exists a unique
Scott-continuous f ′ : D→ E such that f ′ ◦ η = f . If this is the case, we say that
〈P,v, /〉 presents D via η.

D
f ′

��
P

η
??~~~~~~~

f
// E

We may ask ourselves if every dcpo presentation uniquely describes, i.e. presents
a dcpo. This is indeed the case; one can show this by constructing a dcpo from
a given presentation using so-called C-ideals. For more information we refer the
reader to [60].

2.3.3. Fact. Every dcpo presentation presents a dcpo.

We conclude this subsection with two trivial examples of dcpo presentations.

2.3.4. Example. If P = 〈P,≤〉 is a poset, then 〈P,≤, ∅〉 presents I P via ↓ : P→
I P. This follows from the universal property of the ideal completion. What
makes this example trivial is the fact that there are no relations imposed on the
generators.

If D is a dcpo, then 〈D,≤, /D〉, where a /D U iff a ≤
∨
U , presents D itself

via idD : D→ D. This is a trivial example because there are as many generators
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as there are elements in the dcpo being presented and the order is already fully
specified: the main reason for considering presentations of objects via generators
and relations, rather than the objects themselves, is that the presentations can be
simpler to describe than the objects they are presenting. In the current example,
this is not the case.

2.3.2 A dcpo presentation of the canonical extension

We now define a dcpo presentation given a lattice L, with the aim of showing that
this dcpo presentation presents Lδ. This is a two-stage process: first we take L
and we define a presentation ∆(L), using F L as the set of generators. Then, we
show that ∆(L) presents Lδ.

2.3.5. Definition. Given a lattice L, we define a dcpo presentation ∆(L) :=
〈F L,⊇, /L〉, where for all F ∈ F L and S ⊆ F L directed,

F /L S iff ∀I ∈ I L,
[
∀F ′ ∈ S, F ′ G I

]
⇒ F G I.

We want to emphasize that this definition is not being pulled out of a hat. Firstly,
since the filter elements of Lδ are join-dense in Lδ, it is not a strange idea to
take the filters of L as generators. Secondly, we know by Lemma 2.1.29 that if
e : L→ Lδ is the canonical extension of L, then∨

{eF(F ) | F ∈ S} =
∧
{eI(I) | ∀F ∈ S, F G I},

and we will see in the proof of the theorem below that this equation is essentially
equivalent to the relations of the shape F /L S we are imposing on ∆(L).

2.3.6. Theorem. Let L be a lattice and let e : L→ Lδ be its canonical extension.
Then ∆(L) presents Lδ via eF : F L→ Lδ.

Proof Observe that eF : F L→ Lδ is order-preserving by Lemma 2.1.28(1); we
now first need to show that eF is cover-stable. We will show something stronger:
for all F ∈ F L and S ⊆ F L directed,

F /L S iff eF(F ) ≤
∨
F ′∈S

eF(F ′). (2.22)

The key to this observation is Lemma 2.1.29, which states that
∨
F ′∈Se

F(F ′) =∧
{eI(I) | ∀F ′ ∈ S, F ′ G I}. Now

eF(F ) ≤
∨
F ′∈Se

F(F ′)

iff eF(F ) ≤
∧
{eI(I) | ∀F ′ ∈ S, F ′ G I} by Lemma 2.1.29,

iff ∀I ∈ I L, [∀F ′ ∈ S, F ′ G I]⇒ eF(F ) ≤ eI(I) by order theory,

iff ∀I ∈ I L, [∀F ′ ∈ S, F ′ G I]⇒ F G I (†),
iff F /L S by def. of /L,
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where (†) follows from the basic fact about canonical extensions that eF(F ) ≤ eI(I)
iff F G I. It follows that (2.22) holds.

Next, suppose that f : F L→ D is an order-preserving cover-stable map to a
dcpo D. We define f ′ : Lδ → D by setting

f ′ : x 7→
∨
{f(F ) | eF(F ) ≤ x}.

We need to show (1) that f ′ is well-defined and Scott-continuous, (2) that f ′◦eF = f
and (3) that f ′ is unique with respect to properties (1) and (2).

(1). For any x ∈ Lδ, the set ↓x is an ideal. Since eF is a ∨-homomorphism
(Lemma 2.1.28(1)), it follows that (eF)−1(↓x) = {F | eF(F ) ≤ x} is also an ideal
and hence, directed, Since f is order-preserving it follows that f ′(x) is a directed
join, so that indeed f ′ is well-defined. To see that f ′ is Scott-continous, take
S ⊆ Lδ directed. Observe that∨

S

=
∨
x∈S

∨
{eF(F ) | eF(F ) ≤ x} by join-density of filter elements,

=
∨⋃

x∈S{e
F(F ) | eF(F ) ≤ x} by associativity of

∨
,

=
∨

eF
[⋃

x∈S{F | e
F(F ) ≤ x}

]
by elementary set theory.

It is not hard to see that
⋃
x∈S{F | eF(F ) ≤ x} is a directed union of directed

sets; consequently, we will simply assume that S is a directed set of filter elements;
say S = {eF(F ) | F ∈ S ′} where S ′ ⊆ F L is directed. Now observe that

f ′
(∨

F∈S′e
F(F )

)
=
∨{

f(F ′) | eF(F ′) ≤
∨
F∈S′e

F(F )
}

=
∨
{f(F ′) | F ′ /L S

′},

where the last equality follows by (2.22). Since f is cover-stable, F ′ /L S
′ implies

f(F ′) ≤
∨
f [S ′]. We see that

f ′
(∨

F∈S′e
F(F )

)
=
∨
{f(F ′) | F ′ /L S

′} ≤
∨
F∈S′

f(F ) =
∨
F∈S′

f ′
(
eF(F )

)
,

so that it follows that f ′ is Scott-continuous.
(2). To see that f ′ ◦ eF = f , observe that

f ′ ◦ eF(F ) =
∨
{f(F ′) | eF(F ′) ≤ eF(F )}.

Because eF is an order embedding, the join in the RHS above has a maximal
element, viz. f(F ). It follows that f ′ ◦ eF = f .

(3). Suppose that f ′′ : Lδ → D is Scott-continuous and that f ′′ ◦ eF = f . Take
x ∈ Lδ, then since x =

∨
{eF(F ) | eF(F ) ≤ x} is a directed join, we see that

f ′′(x) = f ′′
(∨
{eF(F ) | eF(F ) ≤ x}

)
=
∨
{f ′′ ◦ eF(F ) | eF(F ) ≤ x}

=
∨
{f(F ) | eF(F ) ≤ x} = f ′(x).

It follows that f ′ = f ′′ so that f ′ is unique.
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What have we learned now? Firstly, we have discovered a new characterization
of the canonical extension of a lattice L, namely as a certain dcpo generated by
the filters of L. Secondly, we have paved the way for applying general results
about dcpo algebras to canonical extensions of lattice-based algebras, as we will
see later.

2.3.3 Extending maps via dcpo presentations

We will now briefly look at extensions of maps via dcpo presentations. The goal is
to be able to use results about dcpo presentations to prove facts about canonical
extensions. Specifically, we would like to be able to lift a map f : Ln → L through
our two-stage construction, first to a map defined on F L and then via the dcpo
presentation to a map on Lδ. We first state the facts we need for the second stage
of extending f .

Let 〈P,v, /〉 be a dcpo presentation and let f : P n → P be an order-preserving
map. We say f is cover-stable if f preserves covers in each coordinate, i.e. for all
1 ≤ i ≤ n, for all a1, . . . , an ∈ P , for all U ⊆ P ,

ai / U ⇒ f(a1, . . . , an) / {f(a1 . . . , ai−1, b, ai+1, . . . , an) | b ∈ U}.

2.3.7. Fact ([60]). Let 〈P,v, /〉 be a dcpo presentation which presents a dcpo D
via η : P → D. If f : P n → P is a cover-stable order-preserving map, then there
exists a unique Scott-continuous map f : Dn → D which extends f , i.e. such that
f ◦ ηn = η ◦ f .

Suppose we are given a map f : Ln → L, and recall that F f(F1, . . . , Fn) :=
↑ f [F1, . . . , Fn]. How do we know if F f : (F L)n → F L is cover-stable? The best
condition we know of is the rather strong requirement that f is an operator, i.e. if
f preserves binary joins in each coordinate.

2.3.8. Lemma. Let L be a lattice. If f : Ln → L is an operator, then F f : (F L)n →
F L is cover-stable with respect to ∆(L). Consequently, F f extends to a map
F f : (Lδ)n → Lδ; moreover, F f = fO.

Proof Let e : L→ Lδ be the canonical extension of L and let f : Ln → L be an
operator; to lighten the notation, we assume that n = 2.

First, we need to show that F f is cover-stable with respect to ∆(L). It
suffices to show that F f is cover-stable in its first coordinate. So suppose that
{F,G} ∪ S ⊆ F L such that F /L S; we want to show that

F f(F,G) /L {F f(F ′, G) | F ′ ∈ S}.

By definition of /L, this amounts to showing that if

∀I ∈ I L1, [∀F ′ ∈ S, F G I]⇒ F G I,
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then also

∀J ∈ IM, [∀F ′ ∈ S, F f(F ′, G) G J ]⇒ F f(F,G) G J.

But that is exactly the statement of Lemma 2.2.9, so it follows immediately that
F f is cover-stable.

Now, observe that by Fact 2.3.7, we know that F f has a Scott-continuous
extension F f such that F f ◦ (eF × eF) = eF ◦ F f . We will show that F f = fO.
Take x, y ∈ Lδ, then

F f(x, y) = F f
(∨
{eF(F ) | eF(F ) ≤ x},

∨
{eF(G) | eF(G) ≤ y}

)
,

by join-density of filter elements. Now since each of the joins above is directed
(Lemma 2.1.28) and F f is Scott-continuous, we see that

F f(x, y) =
∨{
F f(eF(F ), eF(G)) | eF(F ) ≤ x, eF(G) ≤ y

}
=
∨{

eF ◦ F f(F,G) | eF(F ) ≤ x, eF(G) ≤ y
}

by F. 2.3.7,

= fO(x, y),

where the last equality follows by definition of fO. Since x, y ∈ Lδ were arbitrary,
it follows that F f = fO.

Thus, we see that canonical extensions of operators can be described using
dcpo presentation techniques. This concludes our discussion of dcpo presentations
for now. We will use what we have learned here later on, in §3.3.3.

2.3.4 Conclusions and further work

This section is based on a paper of M. Gehrke and the author [42], which was
written to demonstrate how a canonicity result for distributive lattices with
operators from [38] can be seen as a special case of a result concerning dcpo
algebras from [60], see §3.3.3.

What we have seen here (and what we will see in §3.3.3) is part of the
intersection of the structures and results which can be described both using dcpo
algebras and canonical extensions. It would be interesting to further explore the
overlapping area of the two fields.





Chapter 3

Canonical extensions: topological
algebra and categorical properties

In Chapter 2, we have presented a toolkit of results which allow us to work
with canonical extensions of bounded lattices and order-preserving maps, using
techniques from domain theory. In this chapter, we will start looking at canonical
extensions of lattice-based algebras, which is the main application area of canonical
extensions, and we will see that canonical extensions are finely intertwined with
topological algebra.

As we discussed in Chapter 1, the main application of canonical extensions is to
provide representation theorems for lattice-based algebras, which arise in algebraic
logic. Via such representation theorems (e.g. the Jónsson-Tarski theorem [58]),
questions about logics can be reduced to questions about canonical extensions,
and this is where the canonical extensions toolkit can be very useful. (We do
point out however that in this chapter we are concerned with the mathematical
properties of canonical extensions, rather than their applications in logic.)

Topological algebra, the study of algebras with continuous operations, has its
origins in classical mathematics, perhaps most notably in Galois theory: Galois
groups of field extensions are profinite groups [77], and profinite algebras are an
important example of topological algebras (see §3.1.2). We will see that profinite
lattices arise naturally as canonical extensions of lattices in finitely generated
varieties of lattices.

The connections between canonical extensions and topological algebra are
many and intricate. The core connection, however, is that canonical extensions
have universal properties with respect to topological algebras. Meaning, that if we
have a lattice-based algebra A and an algebra homomorphism f : A→ B, where
B is a topological algebra, then there exists a unique continuous homomorphism

53
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f ′ : Aδ → B, extending f .

Aδ

f ′

��
A

eA
>>~~~~~~~~

f
// B

This is subject to certain assumptions on the algebras A and B, which we will
review in §3.4.

We begin this chapter with a review of preliminary facts about topological
algebras in §3.1. After that, we will first expand the canonical extension toolkit
with results that exploit topological lattice properties of canonical extensions of
lattices in §3.2. We will then define lattice-based algebras and canonical extenions
of lattice-based algebras in §3.3. Finally in §3.4, we discuss the connection between
topological lattice-based algebras and canonical extensions.

3.1 Topological algebra

In this section we will review certain useful facts about two important classes of
topological algebras, namely compact Hausdorff algebras and profinite algebras,
which form a subclass of the compact Hausdorff algebras. After that we will take a
closer look at topological lattices, which will lead to a characterization theorem for
Boolean topological lattices. The idea behind topological algebra is very simple.
Given an algebra signature Ω, an Ω-algebra is a structure A = 〈A, (ωA)ω∈Ω〉
consisting of a set A and functions ωA : Aar(ω) → A for all ω ∈ Ω. A topological Ω-
algebra is a structure 〈A, (ωA)ω∈Ω, τA〉 such that 〈A, τA〉 is a topological space and
each ωA : Aar(ω) → A is a (τ ar(ω), τ)-continuous function. This makes a topological
algebra A = 〈A, (ωA)ω∈ΩτA〉 into an object which has one foot in the world of
algebra and one foot in the world of topology.

3.1.1. Example. If A = 〈A, (ωA)ω∈Ω〉 is an Ω-algebra, then 〈A, (ωA)ω∈Ω,P(A)〉
is a topological algebra, where P(A) is the discrete topology on A. Although this
example is rather trivial, we shall see when defining profinite algebras that it is
very important.

In §3.1.1, we will first briefly look at compact Hausdorff topological algebras,
or compact Hausdorff algebras for short, which form the most general class of
topological algebras we will consider. We will look at the way the subalgebra
construction behaves when it comes to compact Hausdorff algebras, and we will
consider the compactification functor for compact Hausdorff algebras. After that,
we will review some facts concerning profinite algebras in §3.1.2. Profinite algebras
will play an important role later on in this chapter, so we will go into some detail to
make the reader familiar with their definition and construction. Finally, in §3.1.3
we will look at a particular class of topological algebras, namely topological lattices.
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We will review some of the key facts about compact Hausdorff lattices, most notably
the fact (due to J.D. Lawson) that the topology on a compact Hausdorff lattice is
unique. We will then specialize further by looking at Boolean topological lattices,
i.e. lattices with a compact Hausdorff zero-dimensional topology and continuous
meet and join. What is nice about Boolean topological lattices is the fact that
one can characterize them order-theoretically, a result due to H.A. Priestley.

3.1.1 Compact Hausdorff algebras

In this subsection we will state several facts about topological algebras for which
the topology is compact Hausdorff. One of the things which make compact
Hausdorff algebras particularly interesting is the fact every Ω-algebra A has a
unique compactification ηA : A→ β A with the universal property that whenever
we have a compact Hausdorff algebra 〈B, τ〉 and an algebra homomorphism
f : A→ B, then there exists a unique continuous f ′ : β A→ B.

β A
f ′

��
A

ηA
>>||||||||

f
// B

We like to think of β A as an extension of A, and of f ′ as a continuous extension
of f , however there is one important caveat to this perspective: in general, the
natural map ηA : A → β A is not an embedding. This is quite contrary to the
notion of compactification from general topology, where a compactification of a
space X is a compact space Y of which X is a dense subspace.

3.1.2. Fact ([84]). For any Ω-algebra A there exists a compact Hausdorff Ω-
algebra 〈β A; τA〉 and a homomorphism ηA : A→ β A such that

1. ηA[A] is a dense subalgebra of 〈β A, τβ A〉,

2. for every compact Hausdorff algebra B and every f : A→ B, there exists a
unique continuous homomorphism f ′ : β A→ B such that f ′ ◦ ηA = f .

β A
f ′

��
A

ηA
>>||||||||

f
// B

3.1.3. Remark. Recall that a variety V is called residually small if there exist a
bound on the cardinality of the subdirectly irreducible algebras in V . It has been
conjectured [12, p. 519] that a sufficient condition for ηA : A→ β A being injective
is that A ∈ V for some residually small variety V . However, at this time only the
converse of this conjecture is known to hold.
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3.1.4. Fact (Corollary of Th. 1.2 of [85]). Let V be a variety. If ηA : A→
UβA is an embedding for every A in V, then V is residually small.

3.1.5. Fact (Th. 2.1.9 of [33]). Let f, g : X → Y be continuous maps from a
topological space X into a Hausdorff space Y . If there is a dense subset Z ⊆ X
such that f � Z = g � Z, then f = g.

The following Lemma is an elementary fact from topological algebra. Observe
the distinction between the topological algebra 〈B, τ〉 and the discrete algebras A,
B.

3.1.6. Lemma. Let 〈B, τ〉 be a Hausdorff topological algebra and let A be a subal-
gebra of B such that A is dense in 〈B, τ〉. Then B ∈ HSP(A).

Proof We will show that if s ≈ t is an equation such that A � s ≈ t, then
also B � s ≈ t. Suppose s and t use n variables. Consider the term functions
sA : An → A and tA : An → A. Because A � s ≈ t and A is a subalgebra of B,
we know that sB and tB agree on An. Now because B is a topological algebra,
the term functions sB : Bn → B and tB : Bn → B are continuous. But An is dense
in the Hausdorff space 〈Bn, τn〉, so by Fact 3.1.5, sB = tB. We conclude that
B � s ≈ t.

3.1.7. Corollary. If A is an Ω-algebra, then β A ∈ HSP(A).

3.1.2 Profinite algebras and profinite completions

In this subsection, we will introduce two notions which are central to this chapter,
namely profinite algebras and profinite completions. Profinite algebras are a very
natural and well-behaved example of topological algebras, which have been studied
extensively in the setting of groups [77] because of the connections between Galois
theoy and profinite groups.

To be able to say what profinite algebras and profinite completions are, we
must first introduce the notion of a limit of a diagram of algebras. The way one
defines a limit is from the bottom up, through a universal property with respect
to a diagram of objects. Roughly, this means that every mapping going into
the diagram of algebras has to factor uniquely through the limit of the diagram.
In this sense, a limit is a single object which represents a collection of objects,
viz. the diagram of which it is a limit. At the same time, however, we can view
a limit from the top down as a single object which can be broken down into a
representation in the form of the diagram of which it is a limit. This perspective
is particularly salient in the case of profinite algebras, which are those algebras
which arise as limits of diagrams of finite algebras. It is precisely the fact that a
profinite algebra A ' lim←−I Ai can be broken down into a diagram of finite algebras
Ai that allows us to define a topology τ on A making 〈A, τ〉 a topological algebra.
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A second important consequence of the fact that every profinite algebra B
has a categorical representation as a diagram, is that it allows us to associate
with each algebra A a unique profinite algebra Â, the profinite completion of A
and a natural map µA : A → Â, such that whenever we have a homomorphism
f : A→ B from A to a profinite algebra B, then f will factor through the natural
map µA : A→ Â:

Â
f ′

��
A

µA
??��������

f
// B

We will make frequent use of the universal property of µA : A→ Â in §3.4.

Poset-indexed limits of Ω-algebras

We will now show how to define limits of diagrams of algebras, where we restrict
ourselves to the case in which the diagrams are indexed by a poset (see Remark
3.1.11). This will provide us with the technical means to define profinite algebras
and profinite completions later on. Fix an algebra signature Ω and let AlgΩ

denote the category of Ω-algebras and Ω-algebra homomorphisms. Let 〈I,≤〉 be
a poset. An I-indexed diagram in AlgΩ is a functor from I to AlgΩ. In other
words, an I-indexed diagram is an assigmnent of an Ω-algebra Ai to each i ∈ I,
and a homomorphism fij : Ai → Aj to each (i, j) ∈ I × I such that i ≤ j, with
the additional restrictions that

• for all i ∈ I, fii = idAi : Ai → Ai;

• if i ≤ j ≤ k, then fjk ◦ fij = fik.

We denote this diagram by 〈Ai, fij〉I . If the index poset I of a diagram 〈Ai, fij〉I is
e.g. co-directed, we say that 〈Ai, fij〉I is a co-directed diagram of algebras. (Recall
that a poset I is co-directed if for all i, j ∈ I there exists k ∈ I such that k ≤ i, j.)

A cone to a diagram of algebras 〈Ai, fij〉I in AlgΩ is an I-indexed collection
of maps (gi : A→ Ai)I with a common domain A such that for all i, j ∈ I with
i ≤ j, we have fij ◦ gi = gj.

A
gi
��

gj

  AAAAAAAA

Ai fij
// Aj

Let (hi : B→ Ai)I be another cone to 〈Ai, fij〉I and let e : B→ A be an algebra
homomorphism. We say e is a map of cones if for all i ∈ I, gi ◦ e = hi.

B
hi
��

e // A

gi��~~~~~~~

Ai
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We call (gi : A → Ai)I a limiting cone if for all (hi : B → Ai)I , there exists a
unique map of cones e : B → A. We then call A the limit of 〈Ai, fij〉I , writing
A ' lim←−I Ai.

3.1.8. Example. If I is a discrete poset, meaning that i ≤ j iff i = j, then the
limit of an I-indexed diagram 〈Ai, fij〉I is simply the product: lim←−I Ai '

∏
I Ai.

Indeed, if we have a collection of maps (B hi−→ Ai)I , then these define a unique
map e : B→

∏
I Ai, viz.

e : a 7→ (hi(a))i∈I .

Moreover, e is a map of cones: if a ∈ A and i ∈ I, then πi ◦ e(a) = hi(a).

Now that we have abstractly defined what limits are, we may ask ourselves
whether every diagram of algebras actually has a limit.

3.1.9. Fact. Every poset-indexed diagram 〈Ai, fij〉I in AlgΩ has a limiting cone,
which may be computed as follows:

lim←−IAi = {α ∈
∏

IAi | ∀i, j ∈ I, i ≤ j ⇒ fij(α(i)) = α(j)} .

Moreover, lim←−I Ai is a subalgebra of
∏

I Ai.

Because varieties of algebras (§A.6) are closed under taking products and subalge-
bras, we get as a corollary that varieties are closed under taking limits.

3.1.10. Corollary. If V is a variety of Ω-algebras, and if 〈Ai, fij〉I is a diagram
of Ω-algebras such that Ai ∈ V for each i ∈ I, then also lim←−I Ai ∈ V.

We now know enough about limits of diagrams of algebras to define profinite
algebras and profinite completions.

3.1.11. Remark. What we have described here is really only a special case of
the categorical notion of limit. The special case of poset-indexed diagrams will
allow us to define what profinite algebras and profinite completions are. For a
discussion of the category theory at work here, see [69, §III.4].

Profinite Ω-algebras

We will now define profinite algebras and we will sketch why profinite algebras
are topological algebras. Let us start by simply giving the definition.

3.1.12. Definition. Let A be an Ω-algebra. We say that A is a profinite Ω-
algebra if there exists a poset-indexed diagram 〈Ai, fij〉I such that

• A ' lim←−I Ai;
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• for each i ∈ I, Ai is finite;

• the index poset I is co-directed, i.e. for all i, j ∈ I, there exists k ∈ I such
that k ≤ i, j.

Let 〈Ai, fij〉I be a co-directed diagram of finite Ω-algebras and let (πi : A→ Ai)I
be a limiting cone for this diagram, i.e. assume that A ' lim←−I Ai. We will now
sketch how we can use the limiting cone (πi : A→ Ai)I to define a topology on
A, such that for each ω ∈ Ω, ωA is continuous. First observe that the following
collection of sets forms a base for a topology on A:{

π−1
i (U) | U ⊆ Ai, i ∈ I

}
.

To see why, consider two basic opens π−1
i (U) and π−1

j (V ), where U ⊆ Ai and
V ⊆ Aj. We will show that there exists a k ∈ I and W ⊆ Ak such that

π−1
i (U) ∩ π−1

j (V ) = π−1
k (W ).

The key observation is the fact that by co-directedness of the index poset I,
there must exist k ∈ I such that k ≤ i, j, so there exist maps fki : Ak → Ai and
fkj : Ak → Aj. Because (πi : A→ Ai)I is a cone, it must be the case that

πi = fki ◦ πk and πj = fkj ◦ πk. (3.1)

We now see that

π−1
i (U) ∩ π−1

j (V )

= (fki ◦ πk)−1(U) ∩ (fkj ◦ πk)−1(V ) by (3.1),

= π−1
k ◦ f

−1
ki (U) ∩ π−1

k ◦ f
−1
kj (V ) by basic set theory,

= π−1
k

(
f−1
ki (U) ∩ f−1

kj (V )
)

idem.

Thus we see that if we take W := f−1
ki (U)∩f−1

kj (V ), then indeed π−1
i (U)∩π−1

j (V ) =

π−1
k (W ). We call the topology generated by {π−1

i (U) | U ⊆ Ai, i ∈ I} the profinite
topology on A. Note that the profinite topology on A is determined by the limiting
cone (πi : A → Ai)I ; it is the coarsest topology which makes all the projection
maps πi : A→ Ai continuous with respect to the discrete topology on Ai. We will
now sketch why A is a topological algebra with respect to the profinite topology.
Consider an operation ω ∈ Ω and suppose for the sake of simplicity that ω is
unary. We want to show that ωA is continuous. It suffices to show that for a basic
open set π−1

i (U), where U ⊆ Ai, it is also the case that ω−1
A (π−1

i (U)) is open. The
key observation is the fact that πi : A→ Ai is an Ω-algebra homomorphism; this
allows us to see that

ω−1
A
(
π−1
i (U)

)
= (πi ◦ ωA)−1(U) by basic set theory,

= (ωAi ◦ πi)−1(U) because πi is an Ω-hom.,

= π−1
i

(
ω−1

Ai (U)
)

by basic set theory,
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so that ω−1
A (π−1

i (U)) is in fact a basic open.
Thus, we see that if we are given a profinite algebra A ' lim←−I Ai, then A is a

topological algebra in its profinite topology, which we defined in a natural way
using the limiting cone (πi : A→ Ai)I . We will now record the fundamental fact
that every profinite topology is Boolean, i.e. every profinite topology is compact,
Hausdorff and zero-dimensional.

3.1.13. Fact ([8]). If A ' lim←−Ai is a profinite algebra, then A is a Boolean
topological algebra in its profinite topology.

3.1.14. Remark. We have chosen to first describe profinite algebras using uni-
versal algebra, viz. as the limit of a diagram of finite algebras 〈Ai, fij〉I , and then
to indicate that one can define a topology on lim←−I Ai, making lim←−I Ai a topological
algebra. Alternatively, one can start by endowing each algebra Ai with the discrete
topology, and then show that one can also take limits of topological algebras, so
that it follows immediately that lim←−I Ai is a topological algebra. One can then
show that lim←−I Ai is a closed subalgebra of

∏
I Ai, so that it follows from general

topology that the profinite topology on lim←−I Ai is a Boolean topology.

Next, we would like to know how we can construct new profinite algebras from
one or more given profinite algebras. The most straightforward construction we
can use to create new profinite algebras is to take products.

3.1.15. Fact ([8]). If {Ai | i ∈ I} is a set of profinite algebras, then
∏

I Ai is
also profinite.

(An alternative reference for the above fact is [77, Proposition 2.2.1].) Now what
about subalgebras? That is, when is a subalgebra of a profinite algebra again
profinite? It turns out that here the profinite topology is very useful.

3.1.16. Fact ([8]). Let A be a profinite algebra. If B is subalgebra of A which is
closed in the profinite topology, then B is also profinite.

(An alternative reference for the above fact is [77, Corollary 1.1.8].) For other
constructions, such as homomorphisms, things are more complicated. We will
return to this matter in the special case of canonical extensions of profinite lattices
with Lemma 3.2.11.

Before we move on to profinite completions, we mention a result regarding
an important question in the study of profinite algebras. We have seen above in
Fact 3.1.13 that every profinite Ω-algebra is a Boolean topological algebra in its
profinite topology. Conversely, it well known that every Boolean space is profinite.
This raises the following question: given a Boolean topological algebra 〈A, τ〉, can
we find a co-directed diagram of finite algebras 〈Ai, fij〉I such that A ' lim←−I Ai
and τ is the profinite topology, i.e. the topology induced by (πi : A→ Ai〉I?
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3.1.17. Fact ([24, 28]). Let 〈A, τ〉 be a Boolean topological algebra and suppose
that A ∈ V for some variety V. If

1. V is finitely generated and congruence distributive, or

2. V has equationally definable principle congruences,

then there exists a co-directed diagram of finite algebras 〈Ai, fij〉I in V such that
A ' lim←−I Ai and τ is the profinite topology on A.

We will return to this question in §4.2.

Profinite completion of Ω-algebras

We now arrive at a very important property of profinite algebras, namely that every
algebra A has a profinite completion, denoted Â, and a natural map µA : A→ Â
which has the universal property that for every algebra homomorphism f : A→ B
to a profinite algebra B, there exists a unique continuous homomorphism f ′ : Â→ B
such that f ′ ◦ µA = f .

Â
f ′

��
A

µA
??��������

f
// B

In our discussion of the profinite completion we will focus on the construction
of Â and the natural map µA : A→ Â, since we will use these later in this chapter
when we describe the fundamental connection between canonical extensions and
profinite completions in §3.4.1.

Fix an Ω-algebra A; we will now describe how to construct Â. We will do this
by specifying the diagram of which Â is the limit. We define the following index
poset:

ΦA = {θ ∈ ConA | A/θ is finite},
where the order is the inclusion relation. Now if θ, ψ ∈ ΦA such that θ ⊆ ψ, then
the Isomorphism Theorems of universal algebra [23, §II.6] tell us that the map

fθψ : a/θ 7→ a/ψ

is a well-defined, surjective Ω-algebra homomorphism. It is now easy to see that
〈A/θ, fθψ〉ΦA forms a diagram in AlgΩ; we define

Â := lim←−ΦA
A/θ.

But while we are at it, we can immediately also define the natural map µA : A→ Â.
The quotient maps (µθ : A→ A/θ)ΦA , defined as

µθ : a 7→ a/θ,
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form a cone to the diagram 〈A/θ, fθψ〉ΦA . Thus we can define µA : A→ Â to be the

unique map of cones from A to Â induced by (µθ : A→ A/θ)ΦA . We summarize
these two definitions below.

3.1.18. Definition. Let A be an Ω-algebra. We define Â, the profinite comple-
tion of A, to be the limit of the diagram of finite quotients of A.

Â := lim←−ΦA
A/θ

Additionally, we define µA : A→ Â to be the map of cones induced by (µθ : A→
A/θ)ΦA .

Now that we have defined the profinite completion, we record three important
facts about it. The first is the universal property that we referred to before. For
general categorical reasons, this property defines the profinite completion up to
isomorphism.

3.1.19. Fact ([8]). Let f : A → B be an Ω-algebra homomorphism between Ω-
algebras A and B. If B is profinite then there exists a unique continuous homo-
morphism f ′ : Â→ B such that f ′ ◦ µA = f .

Â
f ′

��
A

µA
??��������

f
// B

The second important fact is that strictly speaking, the name ‘profinite com-
pletion’ can be seen as a misnomer. One would expect a completion of an algebra
A to be an extension of A; however, the natural map µA : A→ Â is not always an
embedding. Recall that an Ω-algebra A is residually finite if for all a, b ∈ A with
a 6= b, there exists a finite Ω-algebra B and an Ω-homomorphism f : A→ B such
that f(a) 6= f(b).

3.1.20. Fact. An algebra A is residually finite iff the natural map µA : A→ Â
is injective. A variety V is residually finite iff for every A ∈ V, µA : A → Â is
injective.

In light of the above fact, we must make a distinction between a given algebra
A and its image µA[A] in the statement of the fact below.

3.1.21. Fact. The subalgebra µA[A] is dense in Â.
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3.1.3 Topological lattices

We conclude this section with several observations about compact Hausdorf lattices
and the characterization theorem for Boolean topological lattices.

Compact Hausdorff lattices and lattice-based algebras are an interesting class
of topological algebras because a compact Hausdorff topology on a compact
Hausdorff lattice is always unique and intrinsic, meaning that the topology is
uniquely determined by the algebra structure. This means that admitting a
compact Hausdorff topology is a property of lattices. Moreover, by extension,
admitting a compact Hausdorff topology is a property of lattice-based algebras.
In this subsection we will present both known and new results which help us to
understand topological properties of compact Hausdorff, Boolean topological and
profinite lattices via order theory and lattice theory. In particular, we will present
necessary and sufficient conditions for a lattice to admit a unique Boolean topology
(Theorem 3.1.26), and we will look at sufficient conditions for establishing that
sublattices of profinite lattices are again profinite.

Compact Hausdorff lattices

Let us start by recording the fundamental fact that the topology on a compact
Hausdorff lattice is intrinsic and unique.

3.1.22. Fact ([68]). Let L be a lattice. There exists at most one topology τ on
L such 〈L, τ〉 is a compact Hausdorff topological lattice.

This fact has many important consequences, the first of which is that we may
now refer to a compact Hausdorff lattice 〈L, τ〉 simply by referring to L, since
the topology τ is intrinsic. Recall that Lat is the category of bounded lattices
and lattice homomorphisms, and that CLat is the category of complete lattices
and complete lattice homomorphisms. By KHausLat we denote the category of
compact Hausdorff topological lattices and continuous lattice homomorphisms;
additionally, we are interested in BoolLat, which has Boolean topological lattices
as its objects and continuous lattice homomorphisms as its morphisms, and
in Pro- Latf , which is the category of profinite lattices and continuous lattice
homomorphisms.

3.1.23. Fact. Let L be a compact Hausdorff lattice. Then

1. the unique topology making L a compact Hausdorff topological lattice is σ(L),
the bi-Scott topology;

2. L is complete;

3. a lattice homomorphism f : L → M between compact Hausdorff lattices is
continuous iff it is complete.
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Consequently,

4. KHausLat, BoolLat and Pro- Latf are full subcategories of CLat.

For proofs of the statements in the above fact we refer the reader to [54, §VII-1.7]
and [45, §VII-2]. We now shift our attention from compact Hausdorff lattices to
Boolean topological lattices and profinite lattices.

Boolean topological lattices

We will now consider Boolean topological lattices, which form a subclass of compact
Hausdorff lattices. What is particularly nice about Boolean topological lattices
is that one can characterize them order-theoretically, a result which was first
published by H.A. Priestley [76]. Below, we will discuss this result and its proof
in some detail.

Since Boolean topological lattices are ordered Boolean topological spaces, we
may ask ourselves if they are perhaps Priestley spaces, that is if they satisfy the
Priestley separation axiom. This is indeed the case.

3.1.24. Lemma. If L is a Boolean topological lattice, then 〈L, σ〉 is a Priestley
space, i.e. for all x, y ∈ L such that x � y there exists a clopen upper set U such
that x ∈ U 63 y.

Proof Let x, y ∈ L with x � y. Then by [54, Lemma VII-1.5] and [54, Corollary
VII-1.2], there exists an σ-open upper set U ′ ⊆ L such that x ∈ U ′ 63 y. Now
because we assumed that the σ-topology on L is zero-dimensional, there exists
some clopen U ⊆ U ′ such that x ∈ U . Observe that y /∈ ↑U , since ↑U ⊆ U ′. Now
it follows by [5, Lemmas 2 and 3] that ↑U is clopen.

So now that we know that there exists an abundance of clopen upper sets in a
Boolean topological lattice, we may ask ourselves what these sets look like. Recall
that given a lattice L, we denote the set of its compact elements by KL; p ∈ L is
compact if for all directed S ⊆ L such that

∨
S exists, we have that p ≤

∨
S only

if ↑ p G S.

3.1.25. Lemma. Let L be a compact Hausdorff lattice and let U, V ⊆ L be an
upper and a lower set, respectively. Then

1. U is clopen iff there exists a finite Z ⊆ KL such that U = ↑Z;

2. V is clopen iff there exists a finite W ⊆ K(Lop) such that V = ↓W .

Proof We will only prove (1), since (2) is just its order dual. Suppose that U ⊆ L
is a clopen upper set. We denote the minimal elements of U by minU :

minU := {p ∈ U | ∀x ∈ L, x < p⇒ x /∈ U}.
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Now we claim that
U = ↑minU. (3.2)

To see why, suppose that x ∈ U . Then ↓x is σ↑-closed and hence, σ-closed;
consequently U ∩ ↓x is σ-closed. Now by Lemma 2.1.16, U ∩ ↓ x is closed under
co-directed meets, so a fortiori it is closed under taking meets of chains. In other
words, U ∩↓x is a partial order which is closed under meets of chains; it follows by
(the order dual of) Zorn’s Lemma that there exists a minimal element p ∈ U ∩ ↓x.
It is easy to see that p is also minimal in U ; it follows that (3.2) holds. Next we
claim that

minU ⊆ KL. (3.3)

To see why, consider p ∈ minU and suppose that p ≤
∨
S for some directed S ⊆ L;

we must show that there is an x ∈ S such that p ≤ x. Because L is a compact
Hausdorff lattice, we know that ∧ : L × L → L is (σ, σ)-continuous; by Lemma
2.1.17, it follows that ∧ is (σ↑, σ↑)-continuous, i.e. that ∧ preserves directed joins.
So since p ≤

∨
S, we see see that

p = p ∧
∨
S =

∨
p ∧ S.

Now suppose towards a contradiction that p ∧ x < p for all x ∈ S; then since p
is minimal in U , it follows that p ∧ S ⊆ L \ U . Because U is open, it follows by
Lemma 2.1.16 that

∨
p ∧ S ∈ L \ U . But this contradicts the fact that∨

p ∧ S = p ∈ U.

We conclude that there must be some x ∈ S such that p ≤ x. It follows that
p ∈ KL. Now recall that by (3.2),

U = ↑minU =
⋃
p∈U ↑ p.

Since U is σ-closed and each ↑ p is σ-open by (3.3) and Fact A.5.5(2), it follows
by compactness that there must exist some finite Z ⊆ minU ⊆ KL such that
U = ↑Z.

Conversely, suppose that U = ↑Z for some finite Z ⊆ KL. Since

U = ↑Z =
⋃
p∈Z ↑ p,

we see firstly that U is open by Fact A.5.5(2). Secondly, we see that U is closed
because it is a finite union of σ↓-closed sets, and σ↓ ⊆ σ. It follows that U is
clopen.

A lattice L is called bi-algebraic if both L and Lop are algebraic. By λ(L) :=
σ↑(L) ∨ ι↓ we denote the Lawson topology of L [45].

We are now ready to prove the main result of this section, which is the
Characterization Theorem for Boolean topological lattices, due to H.A. Priestley.
Observe however that condition (2) below is new.
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3.1.26. Theorem ([76]). Let L be a lattice. The following are equivalent:

1. L is a Boolean topological lattice;

2. L is complete and there exist P,Q ⊆ L such that

(a) P is join-dense in L and Q is meet-dense in L;

(b) for every p ∈ P , there is a finite Z ⊆ L such that L \ ↑ p = ↓Z;

(c) for every q ∈ Q, there is a finite Z ⊆ L such that L \ ↓ p = ↑Z;

3. L is complete and bi-algebraic, σ↑ = ι↑ and σ↓ = ι↓.

Proof (1) ⇒ (2). We will first argue that L is bi-algebraic. To see that L is
algebraic, it suffices to show that if x, y ∈ L and x � y, then there exists a p ∈ KL
such that p ≤ x and p � y. But this is easy to see: by Lemma 3.1.24, there exists
a clopen upper set U ⊆ L such that x ∈ U 63 y. By Lemma 3.1.25, U = ↑Z for
some finite Z ⊆ KL. But then it follows that there must be some p ∈ Z such that
p ≤ x; moreover, since y /∈ ↑Z, it follows that p � y. The argument for showing
that L is co-algebraic is identical. If we now define P := KL and Q := KLop
then it follows that (2)(a) holds. To see that (2)(b) holds, take any p ∈ P = KL.
It follows by Lemma 3.1.25 that ↑ p is a clopen upper set, so L \ ↑ p must be a
clopen lower set. Applying Lemma 3.1.25 again, we see that there must be some
W ⊆ KLop such that L \ ↑ p = ↓W . The proof for (2)(c) is order dual.

(2) ⇒ (3). We will first show that

σ↑ = ι↑ and σ↓ = ι↓. (3.4)

We will only show the first part of (3.4), since the other follows by order duality.
Recall from Lemma 2.1.17(1) that ι↑ ⊆ σ↑, so it suffices to show that σ↑ ⊆ ι↑.
Now observe that by assumption (2)(b), we know that for every p ∈ P , we have

L \ ↑ p = ↓Z =
⋃
q∈Z ↓ q,

for some finite set Z, so that

↑ p = L \ (L \ ↑ p) = L \
(⋃

q∈Z ↓ q
)

=
⋂
q∈Z(L \ ↓ q).

We see that ↑ p is a finite intersection of ι↑-open sets; since p ∈ P was arbitrary,
we see that

for all p ∈ P , ↑ p is ι↑-open. (3.5)

Now let U be a σ↑-open set and let x ∈ U . Because P is join-dense in L, we know
that x =

∨
(↓x∩P ). Since U is σ↑-open, it follows that there must be some finite

Z ⊆ ↓x ∩ P such that
∨
Z ∈ U . Now observe that

x ∈ ↑
∨
Z since Z ⊆ ↓x ∩ P ,

=
⋂
p∈Z ↑ z by order theory,

⊆ U since
∨
Z ∈ U .
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Since
⋂
p∈Z ↑ z is ι↑-open by (3.5) and since x ∈ U was arbitrary, it follows that

U is ι↑-open. Since U was an arbitrary σ↑-open set it follows that σ↑ ⊆ ι↑ and
consequently, (3.4) holds. Now we will show that

L is bi-algebraic. (3.6)

We first show that P ⊆ KL. If p ∈ P , then by (3.5) and (3.4), ↑ p is σ↑-open.
But then it follows immediately that p ∈ KL: if p ≤

∨
S for some directed S ⊆ L,

then
∨
S ∈ ↑ p, so there exists some y ∈ S such that p ≤ y. Now we see that for

any x ∈ L,

x =
∨

(↓x ∩ P ) because P is join-dense in L,

=
∨

(↓x ∩KL) by order theory because P ⊆ KL,

so that we see that L is algebraic. By an order dual argument it follows that L is
also co-algebraic, so that (3.6) holds.

(3) ⇒ (1). We will first show that the σ-topology on L is a Boolean topology,
i.e. it is compact, Hausdorff and zero-dimensional. Recall that the Lawson topology
on L is defined as λ = σ↑∨ ι↓. Since σ := σ↑∨σ↓, it follows by our assumption that
in our case, λ = σ. Since L is algebraic by assumption, it follows by [45, Theorem
III.1.10] that the Lawson topology on L is compact and Hausdorff; consequently,
so is the σ-topology. Now if x, y ∈ L such that x � y, then since L is algebraic,
there exists a p ∈ KL such that p ≤ x and p � y, i.e. x ∈ ↑ p 63 y. Because
p ∈ KL, ↑ p is σ↑-open. Because ↑ p is a principal upper set, it is ι↓-closed. By
our assumption that σ↑ = ι↑ and σ↓ = ι↓, it follows that ↑ p is σ-clopen, so since
x, y ∈ L were arbitrary, it follows that the σ-topology is totally disconnected;
consequently, the σ-topology is a Boolean topology.

Finally, we will show that L is a topological lattice in its σ-topology. We know
by associativity that ∧ : L × L → L preserves co-directed meets, so that ∧ is
(σ↓, σ↓)-continuous. Because L is algebraic, we know by [45, Proposition I-1.14]
that ∧ preserves directed joins, i.e. that ∧ is (σ↑, σ↑)-continuous. It follows that ∧
is (σ, σ)-continuous; the argument for ∨ : L× L→ L is order-dual. We conclude
that L is a Boolean topological lattice.

3.1.27. Corollary. If L is a Boolean topological lattice, then σ = λ, i.e. its
intrinsic Boolean topology is the Lawson topology.

We conclude this section with an application of the Characterization Theorem
above. Recall that we saw above that a closed sublattice of a profinite lattice is
again profinite. Using Theorem 3.1.26 in conjunction with a technical result from
domain theory, we can prove the following:

3.1.28. Lemma. Let L be a profinite lattice. If L′ is a complete subalgebra of L
then L′ is closed and hence, profinite.
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Proof Because L is algebraic by Theorem 3.1.26, it is a continuous lattice in the
sense of [45]. Consequently, we may apply [45, Theorem III.1.11] to conclude that
L′ must be closed in the Lawson topology of L. Now by Corollary 3.1.27, we know
that σ = λ, so L′ is a σ-closed subalgebra of L. Since the profinite topology on L
must be the σ-topology (as there can be only one compact Hausdorff topology
on L which is compatible with ∧ and ∨), we see that L′ is closed in the profinite
topology on L. It now follows from Lemma 3.1.16 that L′ is itself profinite.

This concludes our preliminaries for this chapter on topological algebra and
topological lattices.

3.2 Canonical extensions of maps II: maps into

profinite lattices

In §2.2, we defined the canonical extension of an order-preserving map f : L→M
by first extending f to a map F f : F L → FM, mapping a filter F to ↑ f [F ],
and subsequently extending F f to a continuous extension fO : Lδ → Mδ, and
dually via I L when constructing fM. This approach fails, however, if we drop the
assumption that f is order-preserving, because F f is then no longer defined. In
this section we will introduce a different way of continuously extending f : L→M
to a map fO : Lδ →Mδ, which does not depend on any properties of f . We can
still characterize fO as a largest continuous extension of f if we make additional
assumptions about M, the codomain of f .

Some of the definitions and results in this section are generalizations from the
case of distributive lattices studied by Gehrke and Jónsson [39]. As we indicated
in our paper with M. Gehrke [43] however, distributivity of the underlying lattice
is not an essential property for ensuring good behaviour of the canonical extension.
Rather, what matters is that the underlying lattice lies in a finitely generated
variety. We will make use of the technical lemmas from this section in the rest of
this chapter, when we look at canonical extensions of lattice-based algebras rather
than plain lattices.

The section is organized as follows. First, we show that there is a natural
way to define a lower and upper extension of an arbitrary map f : L→ C, from a
lattice into a complete lattice, to a continuous map f ′ : Lδ → C, viz. the lim inf
and lim sup extension of f . We then use lim inf and lim sup to extend an abitrary
function f : L→M to a continuous function fO : Lδ →Mδ in §3.2.1. We will then
show in §3.2.2 how we can view fO : Lδ →Mδ as a maximal continuous extension
of f : L→M if we assume that HSPM is finitely generated. Finally, in §3.2.3 we
investigate properties of extension of compositions of arbitrary maps. We conclude
this section with an overview of the contributions and further work in §3.2.4.
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3.2.1 Extending maps via lim inf and lim sup

Our first goal in this subsection is to extend an arbitrary map f : L→ C from a
lattice L to a complete lattice C to a continuous map f ′ : Lδ → C in such a way
that f ′ ◦ e = f , where e : L→ Lδ is the canonical extension of L.

Lδ
f ′ // C

L

e

OO

f

88qqqqqqqqqqqqq

We exploit the fact that e[L] is dense in 〈L, δ(L)〉 (by Lemma 2.1.28), meaning
that for ‘a lot’ of points in Lδ, our function f ′ : Lδ → C is already defined. For
an arbitrary x ∈ Lδ and a δ-open neighborhood U of x, we get a set of values
f [e−1(U)] in C approximating f ′(x). We can now take the infimum (meet) or
supremum (join) of this set of approximating values. Thus, we get an inf- or
sup-approximant of f ′(x) for every open neighborhood of x. Intuitively, we can
now define f ′(x) to be the ‘limit’ over all open neighborhoods of x of these
approximants.

Recall that the δ-topology on Lδ has as its base the collection of sets

{↑ eF(F ) ∩ ↓ eI(I) | F ∈ F L, I ∈ I L}.

We now arrive at the following definition:

3.2.1. Definition. Given a function f : L→ C, where C is a complete lattice,
we define lim inf f : Lδ → C, where

lim inf f(x) =
∨{∧

f [F ∩ I] | eF(F ) ≤ x ≤ eI(I)
}
.

Dually, we define lim sup f : Lδ → C as

lim sup f(x) =
∧{∨

f [F ∩ I] | eF(F ) ≤ x ≤ eI(I)
}
.

First, observe that these definitions follow the pattern we sketched above. The
reader may notice however that the expressions f [F ∩ I] are a lot simpler than
the f [e−1(U)] we arrived at before. The reason lies in the following lemma:

3.2.2. Lemma. Let e : L→ Lδ be a canonical extension and let F ∈ F L, I ∈ I L.
Then eF(F ) ≤ e(a) ≤ eI(I) iff a ∈ F ∩ I.

Proof We show that eF(F ) ≤ e(a) iff a ∈ F ; the statement then follows by order
duality. Now, observe that eF(F ) ≤ e(a) = eF(↑ a) iff F ⊇ ↑ a, since eF(F ) is an
embedding (by Lemma 2.1.28). But F ⊇ ↑ a iff a ∈ F .
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The following lemma shows that lim inf f indeed gives us a continuous extension
of f .

3.2.3. Lemma. Let f : L→ C be a function from a lattice L to a complete lattice
C and let e : L→ Lδ be the canonical extension of L. Then

1. lim inf f is (δ, σ↑)-continuous;

2. lim sup f is (δ, σ↓)-continuous;

3. lim inf f ≤ lim sup f ;

4. lim inf f ◦ e = lim sup f ◦ e = f .

Lδ
lim inf f // C

L

e

OO

f

88qqqqqqqqqqqqq

Proof (1). First, observe that given x ∈ Lδ,{∧
f [F ∩ I] | eF(F ) ≤ x ≤ eI(I)

}
is a directed set: take F1, F2 ∈ F L and I1, I2 ∈ I L such that eF(Fi) ≤ x ≤ eI(Ii)
for i = 1, 2. Then

eF(F1 ∩ F2) = eF(F1) ∨ eF(F2) since eF is a homomorphism,

≤ x by assumption,

≤ eI(I1) ∧ eI(I2) idem,

= eI(I1 ∩ I2) because eI is a homomorphism.

Moreover, since F1 ∩ F2 ∩ I1 ∩ I2 ⊆ Fi ∩ Ii for i = 1, 2, we get∧
f [F1 ∩ F2 ∩ I1 ∩ I2] ≥

∧
f [Fi ∩ Ii] for i = 1, 2;

it follows that lim inf f(x) is a directed join. We will use this fact to show that
lim inf f is locally continuous at x; since x is arbitrary this suffices to show that
lim inf f is continuous. Suppose that U ⊆ C is Scott-open and lim inf f(x) ∈ U ,
then since lim inf f(x) is a directed join, there must be some F ′ ∈ F L, ′I ∈ I L
such that eF(F ′) ≤ x ≤ eI(I ′) and

∧
f [F ′ ∩ I ′] ∈ U . But then for all y ∈ Lδ such

that eF(F ′) ≤ y ≤ eI(I ′), we have

lim inf f(y) =
∨{∧

f [F ∩ I] | eF(F ) ≤ y ≤ eI(I)
}

by definition of lim inf,

≥
∧
f [F ′ ∩ I ′] since eF(F ′) ≤ y ≤ eI(I ′),

∈ U,
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so that it follows that lim inf f is locally (δ, σ↑)-continuous. Part (2) is just the
order dual of (1).

(3). Let x ∈ Lδ; we want to show that∨{∧
f [F ∩ I] | eF(F ) ≤ x ≤ eI(I)

}
≤
∧{∨

f [F ∩ I] | eF(F ) ≤ x ≤ eI(I)
}
.

It suffices to show that for all F, F ′ ∈ F L and I, I ′ ∈ I L such that eF(F ) ≤
x ≤ eI(I) and eF(F ′) ≤ x ≤ eI(I ′), we have that

∧
f [F ∩ I] ≤

∨
f [F ′ ∩ I ′]. First,

observe that we have that

eF(F ∩ F ′) = eF(F ) ∨ eF(F ′) ≤ x ≤ eI(I) ∧ eI(I ′) = eI(I ∩ I ′),

as before. It follows by the compactness property of canonical extensions that
(F ∩ F ′) G (I ∩ I ′), i.e. F ∩ F ′ ∩ I ∩ I ′ 6= ∅. But then∧

f [F ∩ I] ≤
∧
f [F ∩ F ′ ∩ I ∩ I ′] since (F ∩ I) ⊇ (F ∩ F ′ ∩ I ∩ I ′),

≤
∨
f [F ∩ F ′ ∩ I ∩ I ′] since F ∩ F ′ ∩ I ∩ I ′ 6= ∅,

≤
∨
f [F ′ ∩ I ′] since (F ∩ F ′ ∩ I ∩ I ′) ⊆ (F ′ ∩ I ′).

Since F, F ′ ∈ F L and I, I ′ ∈ I L were arbitrary it now follows that lim inf f(x) ≤
lim sup f(x).

(4). We only show that lim inf f ◦ e = f ; the other equality follows by order
duality. Let a ∈ L, then

lim inf f ◦ e(a) =
∨{∧

f [F ∩ I] | eF(F ) ≤ e(a) ≤ eI(I)
}

by definition,

=
∨
{
∧
f [F ∩ I] | a ∈ F ∩ I} by Lemma 3.2.2,

≤ f(a) by order theory.

Conversely, since eF(↑ a) ≤ e(a) ≤ eI(↓ a), we see that

f(a) =
∧
f [↑ a ∩ ↓ a] ≤ lim inf f ◦ e(a).

3.2.4. Lemma. Let f : L1 → C1 and g : L2 → C2 be functions from lattices L1,
L2 to complete lattices C1, C2. Then

lim inf(f × g) = (lim inf f)× (lim inf g)

lim sup(f × g) = (lim sup f)× (lim sup g)

Proof We will only prove the first statement, since the proof of the second
statement is identical modulo order duality. Although we will have to do some
bookkeeping and there is a lot of notation, the proof of this lemma is essentially very
easy. We first make a number of observations. For starters, if (x1, x2) ∈ Lδ1 × Lδ2,
then {

(F, I) | eFL1×L2
(F ) ≤ (x1, x2) ≤ eIL1×L2

(I)
}

=
{

(F1 × F2, I1 × I2) | eFLi(Fi) ≤ xi ≤ eILi(Ii), i = 1, 2
}
, (3.7)



72 Chapter 3. Canonical extensions and topological algebra

where F and I are filters and ideals of L1×L2, and Fi and Ii are filters and ideals
of Li for i = 1, 2. This follows from fact that every filter of L1 × L2 is of the form
F1 × F2 for some F1 ∈ F L1, F2 ∈ F L2. Next, we claim that for all filters and
ideals F1, I1 ⊆ L1 and F2, I2 ⊆ L2,

(F1 × F2) ∩ (I1 × I2) = (F1 ∩ I1)× (F2 ∩ I2). (3.8)

This follows from basic set theory. Finally, we claim that for all filters and ideals
F1, I1 ⊆ L1 and F2, I2 ⊆ L2,

f × g [(F1 × F2) ∩ (I1 × I2)] = f [(F1 ∩ I1)]× g [(F2 ∩ I2)] . (3.9)

This follows from (3.8) and basic set theory, since f × g(a, b) = (f(a), g(b)) for
(a, b) ∈ L1×L2. Let (x1, x2) ∈ Lδ1×Lδ2; we will show that lim inf(f × g)(x1, x2) =
(lim inf f(x1), lim inf g(x2)).

lim inf f × g(x1, y1)

=
∨{∧

f × g[F ∩ I] | eFL1×L2
(F ) ≤ (x, y) ≤ eIL1×L2

(I)
}

by definition of lim inf,

=
∨{∧

f × g[F1 × F2 ∩ I1 × I2] | eFLi(Fi) ≤ xi ≤ eILi(Ii), i = 1, 2
}

by (3.7),

=
∨{∧

f [(F1 ∩ I1)]× g [(F2 ∩ I2)] | eFLi(Fi) ≤ xi ≤ eILi(Ii), i = 1, 2
}

by (3.9),

=
∨{

(
∧
f [(F1 ∩ I1)] ,

∧
g [(F2 ∩ I2)]) | eFLi(Fi) ≤ xi ≤ eILi(Ii), i = 1, 2

}
because

∧
is computed component-wise,

=
(∨{∧

f [(F1 ∩ I1)] | eFL1
(F1) ≤ x1 ≤ eIL1

(I1)
}
,∨{∧

g [(F2 ∩ I2)] | eFL2
(F2) ≤ x2 ≤ eIL2

(I2)
} )

because
∨

is computed component-wise,

= (lim inf f(x1), lim inf g(x2))

by definition of lim inf.

Because (x1, x2) ∈ Lδ1 × Lδ2 was arbitrary, it follows that lim inf(f × g) =
(lim inf f)× (lim inf g).

3.2.5. Remark. The technical results about lim inf may be seen even more as
topological results rather than canonical extension results. This viewpoint is
discussed further in [39, §2.3].

Thus we see that the lim inf-construction we have defined above has the desirable
property that it gives us a continuous extension of an arbitrary map into a complete
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lattice. We now have a good candidate definition for extending an arbitrary map
f : L→M to a map from Lδ toMδ: simply take the map lim inf(eM◦f) : Lδ →Mδ.

Lδ
lim inf(eM◦f) //Mδ

L

eL

OO

f
//M

eM

OO

As the above diagram illustrates, lim inf(eM◦f) is indeed an extension of f : L→M
to a map from Lδ to Mδ. But before we take this as the definition, we must ask
ourselves an important question: is this proposed extension compatible with the
extensions of order-preserving maps we studied in §2.2?

3.2.6. Lemma. If f : L→M is order-preserving, then fO = lim inf(eM ◦ f) and
fM = lim sup(eM ◦ f).

Proof Let x ∈ Lδ. Recall that

fO(x) =
∨{

eFMF f(F ) | eFL (F ) ≤ x
}
,

and that

lim inf(eM ◦ f)(x) =
∨{∧

eM ◦ f [F ∩ I] | eFL (F ) ≤ x ≤ eIL(I)
}
.

We claim that

eFMF f(F ) =
∧
eM ◦ f [F ∩ I] whenever eFM(F ) ≤ eIM(I). (3.10)

First, observe that

eFMF f(F ) =
∧
eM [↑ f [F ]] by definition,

=
∧
eM ◦ f [F ] since eM is order-preserving.

Moreover, we see that∧
eM ◦ f [F ∩ I] =

∧
eM ◦ f [↑(F ∩ I)] since f is order-preserving,

=
∧
eM ◦ f [F ] by Lemma 2.1.3,

where we need the fact that eFM(F ) ≤ eIM(I) in order to apply Lemma 2.1.3. It
follows that (3.10) holds; it is now easy to see that fO(x) = lim inf(eM ◦ f)(x).

In light of Lemma 3.2.6, we can now safely state the following definition, which
subsumes Definition 2.2.1.
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3.2.7. Definition. If f : L→M is an abitrary function between lattices, then
we define fO : Lδ →Mδ as follows:

fO := lim inf(eM ◦ f).

Dually, we define fM : Lδ →Mδ:

fM := lim sup(eM ◦ f).

As a corollary of Lemma 3.2.3, we can now list the following properties of our
newly defined extensions fO and fM.

3.2.8. Corollary. Let f : L→ M be an arbitrary function between lattices L,
M. Then

1. fO : Lδ →Mδ is (δ, σ↑)-continuous;

2. fM : Lδ →Mδ is (δ, σ↓)-continuous;

3. fO ≤ fM.

Proof This follows immediately from Lemma 3.2.3 and Definition 3.2.7.

3.2.2 Maps into profinite lattices

Recall from §2.2 that if f : L→M is an order-preserving map, then fO : Lδ →Mδ

is the largest (δ↑, ι↑)-continuous extension of f , where ι↑ is the upper interval
topology. We would like to prove a similar result in the case that f is not
necessarily order-preserving. We begin with a maximality result concerning the
lim inf-construction for maps f : L→ C, where we use the additional assumption
that C is profinite, which is a very strong property. It is an interesting and open
question whether the assumption that C is profinite is essential; see Remark 3.2.22.

3.2.9. Theorem. Let f : L → C be a function from a lattice L to a profinite
lattice C, and let f ′ : Lδ → C be an extension of f , i.e. assume that f ′ ◦ eL = f .

Lδ

f ′

��
L

eL
??~~~~~~~

f
// C

1. If f ′ : Lδ → C is (δ, ι↑)-continuous, then f ′ ≤ lim inf f .

2. If f ′ : Lδ → C is (δ, ι↓)-continuous, then lim sup f ≤ f ′.
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Proof By order duality it suffices to prove part (1). We will prove something
stronger, in fact: we will show that for all x ∈ Lδ, if f ′ : Lδ → C is locally (δ, ι↑)-
continuous at x, then f ′(x) ≤ lim inf f(x). Towards a contradiction, suppose that
f ′(x) � lim inf f(x). By Theorem 3.1.26, C is algebraic, so there must exist a
compact element p ∈ KC such that p ≤ f ′(x) and p � lim inf f(x). Now ↑ p is
σ↑-open (Fact A.5.5), so again by Theorem 3.1.26, it follows that ↑ p is ι↑-open.
By local continuity of f ′ at x, there must exist F ∈ F L and I ∈ I L such that
eFL (F ) ≤ x ≤ eIL(I) and

f ′
[
{y ∈ Lδ | eFL (F ) ≤ y ≤ eIL(I)}

]
⊆ ↑ p. (3.11)

Now for every a ∈ F ∩ I, by Lemma 3.2.2 we have eFL (F ) ≤ eL(a) ≤ eIL(I), so
by (3.11), f ′ ◦ eL(a) = f(a) ∈ ↑ p. Since a ∈ F ∩ I was arbitrary, it follows that
f [F ∩ I] ⊆ ↑ p, hence

∧
f [F ∩ I] ≥ p. Since eFL (F ) ≤ x ≤ eIL(I), it follows by

definition of lim inf that

lim inf f(x) ≥
∧
f [F ∩ I] ≥ p.

But this contradicts our assumption that p � lim inf f(x). It follows that indeed,
f ′(x) lim inf f(x).

3.2.10. Corollary. Let f : L→ C be a function from a lattice L to a profinite
lattice C. If f ′ : Lδ → C is a (σ, σ)-continuous function such that f ′ ◦ eL = f , we
have f ′ = lim inf f = lim sup f .

Proof If f ′ is (σ, σ)-continuous, then by Lemma 2.1.28(3), f ′ is also (δ, σ)-
continuous. This has two immediate consequences. Firstly, since σ↑ ⊆ σ by
definition, we see that f ′ is (δ, σ↑)-continuous, so by Theorem 3.2.9, f ′ ≤ lim inf f .
Secondly, since σ↓ ⊆ σ, we get that f ′ is (δ, σ↓)-continuous, so it follows again by
Theorem 3.2.9 that lim sup f ≤ f ′. We conclude that

lim sup f ≤ f ′ ≤ lim inf f.

Since lim inf f ≤ lim sup f by Lemma 3.2.3(3), it follows that lim sup f = f ′ =
lim inf f .

With the help of the above theorem, we can make sure that fO : Lδ → Mδ

is the largest continuous extension of f : L→ M if Mδ happens to be profinite.
Fortunately, there is a condition on M that guarantees that this will be the case.

3.2.11. Lemma. Let L be a profinite lattice and let M be an arbitrary lattice. If
there exists a complete surjective homomorphism h : L→Mδ then Mδ is a Boolean
topological lattice.
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Proof We know from Fact 2.1.30 that Mδ is join-generated by its completely
join-irreducibles J∞(Mδ) and meet-generated by its completely meet-irreducibles
M∞(Mδ). We will show that

∀p ∈ J∞(Mδ),∃Z ⊆Mδ finite, such that Mδ \ ↑ p = ↓Z, and (3.12)

∀p ∈ M∞(Mδ),∃Z ⊆Mδ finite, such that Mδ \ ↓ p = ↑Z.

Since h : L→Mδ is a complete homomorphism, it has a left adjoint h[ : Mδ → L.
Since h[ a h and h is surjective, we know from Fact A.3.3 that h ◦ h[ = idMδ . We
claim that

h[ maps elements of J∞(Mδ) to elements of KL. (3.13)

Let p ∈ J∞(Mδ); we will show that h[(p) ∈ KL. Let S ⊆ L be a directed set such
that h[(p) ≤

∨
S, then

h[(p) = h[(p) ∧
∨
S by order theory,

=
∨(

h[(p) ∧ S
)

by σ-continuity of ∧.

Now we see that

p = h ◦ h[(p) because h ◦ h[ = idMδ ,

= h
(∨

(h[(p) ∧ S)
)

because h[(p) =
∨

(h[(p) ∧ S),

=
∨(

h ◦ h[(p) ∧ h[S]
)

because h is a complete lattice hom.,

=
∨

(p ∧ h[S]) because h ◦ h[ = idMδ .

Since p is completely join-irreducible, it follows that there must exist x ∈ S such
that p = p ∧ h(x). But then p ≤ h(x), so since h[ a h, we see that h[(p) ≤ x; it
follows that p ∈ KL and we may conclude that (3.13) holds.

Now if p ∈ J∞(Mδ), so that h[(p) ∈ KL, we know by Theorem 3.1.26 that
there exists a finite Z ⊆ L such that L \ ↑h[(p) = ↓Z. We will show that

Mδ \ ↑ p = ↓h[Z]. (3.14)

Recall from Fact A.3.3 that h[ is an order embedding because h is surjective; we
now see that

x ∈ ↓h[Z]

iff ∃q ∈ Z, x ≤ h(q) by def. of ↓ ·,
iff ∃q ∈ Z, h[(x) ≤ q because h[ a h,

iff h[(x) ∈ ↓Z by def. of ↓ ·,
iff h[(p) � h[(x) because L \ ↑h[(p) = ↓Z,

iff p � x because h[ is an order embedding.
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It follows that (3.14) holds. Now because Z is finite, so is h[Z]. It follows that
(3.12) holds (the case for q ∈ M∞(Mδ) follows by order duality). Now we may
apply Theorem 3.1.26 to conclude that Mδ is a Boolean topological lattice.

3.2.12. Theorem. Let L be a lattice such that HSP(L) is finitely generated.
Then Lδ is profinite and Lδ ∈ HSP(L)

Proof Since HSP(L) is finitely generated, there must exist some finite lattice
M such that HSP(L) = HSP(M). Since M is finite, by Fact A.6.3 we have that
HSP(M) = HSPB(M). Since M clearly is profinite and has the property that
M ∈ HSP(M) = HSP(L), it suffices to show that this property is preserved as we
apply PB, S and H.

If L ∈ PB(M), then there exists a Boolean decomposition (px : L→M)x∈X for
some Boolean space X. By Fact 2.1.27, we have that Lδ 'MX . It follows by Fact
3.1.15 that Lδ is profinite; it is also immediate that Lδ ∈ HSP(L).

If L ∈ SPB(M), then there exists some L′ ∈ PB(M) such that L is a subalgebra
of L′. It follows from Theorem 2.2.24 that Lδ is (isomorphic to) a complete subal-
gebra of L′δ. By the above, L′δ is profinite and L′δ ∈ HSP(L), so it immediately
follows that Lδ ∈ HSP(L). Moreover, it follows by Lemma 3.1.28 that Lδ is
profinite.

Finally, if L ∈ HSPB(M), then there exists L′ ∈ SPB(M) and a surjective
homomorphism h : L′ → L. By Theorem 2.2.24, hδ : L′δ → Lδ is a complete
surjective homomorphism; it follows immediately that Lδ ∈ HSP(M) = HSP(L).
Since L′δ is profinite by the above, it follows from Lemma 3.2.11 that Lδ is a
Boolean topological lattice. Since Lδ ∈ HSP(M), which is a finitely generated
congruence distributive variety, it follows from Fact 3.1.17 that Lδ is profinite.

3.2.13. Remark. In fact, we will later see in §3.4.2 the statement that Lδ is
profinite is equivalent to saying that Lδ is the profinite completion of L. In this
light, the above theorem is a consequence of the main result in [50].

3.2.14. Remark. In our proof of Theorem 3.2.12, we invoke Fact 3.1.17 to show
that under the assumptions of the theorem, a Boolean topological quotient of a
profinite lattice must again be profinite. In a recent paper, Gehrke et al. show
that a Boolean topological quotient of a profinite algebra is always profinite, using
a duality argument [35].

We can now state a powerful result about canonical extensions of arbitrary maps,
which echoes Theorem 2.2.4.

3.2.15. Corollary. Let f : L→M be an arbitrary function between lattices L
and M; furthermore assume that HSP(M) is finitely generated. Let f ′ : Lδ →Mδ

be an extension of f , i.e. assume that f ′ ◦ eL = eM ◦ f . Then
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1. if f ′ : Lδ →Mδ is (δ, ι↑)-continuous, then f ′ ≤ fO;

2. if f ′ : Lδ →Mδ is (δ, ι↓)-continuous, then fM ≤ f ′;

Proof We only prove (1). If HSP(M) is finitely generated, then by Theorem
3.2.12, Mδ is profinite and consequently eM ◦ f : L→Mδ is a map into a profinite
lattice. It now follows by Theorem 3.2.9 that f ′ ≤ lim inf(eM ◦ f) = fO.

3.2.16. Corollary. Let f : L→M be an arbitrary function between lattices L
and M; furthermore assume that HSP(M) is finitely generated. If f ′ : Lδ →Mδ is
a (σ, σ)-continuous function such that f ′ ◦ eL = eM ◦ f then f ′ = fO = fM, i.e. f
is smooth.

3.2.3 Canonical extension and function composition

We conclude this section with a series of technical lemmas about the interaction
between canonical extension and function composition, and composition with
lattice homomorphisms in particular.

If we look at a function composition with a lattice homomorphism on the left,
we need no other assumptions to show that canonical extension commutes with
function composition. Recall that if h : L→M is a lattice homomorphism then h
is smooth (by Theorem 2.2.18), so we write hδ instead of hO or hM.

3.2.17. Lemma. Let ei : Li → Lδi be canonical extensions of lattices L1,L2,L3; let
f : L1 → L2 be an arbitrary map and let h : L2 → L3 be a lattice homomorphism.
Then hδfO = (hf)O.

Proof Recall from Theorem 2.2.24 that hδ : Lδ2 → Lδ3 is a complete homomor-
phism.

Lδ1
fO
// Lδ2

hδ // Lδ3

L1

e1

OO

f // L2

e2

OO

h // L3

e3

OO

Let x ∈ Lδ1; it takes an easy computation to see that

hδfO(x) = hδ ◦ lim inf(e2 ◦ f)(x) by definition of fO,

= hδ
(∨{∧

e2 ◦ f [F ∩ I] | eF1 (F ) ≤ x ≤ eI1 (I)
})

by definition of lim inf

=
∨{∧

hδ ◦ e2 ◦ f [F ∩ I] | eF1 (F ) ≤ x ≤ eI1 (I)
}

since hδ preserves
∨
,
∧

,

=
∨{∧

e3 ◦ h ◦ f [F ∩ I] | eF1 (F ) ≤ x ≤ eI1 (I)
}

since hδ ◦ e2 = e3 ◦ h,

= lim inf(e3 ◦ h ◦ f)(x) by definition of lim inf,

= (hf)O(x) by definition of (hf)O.

Since x ∈ Lδ1 was arbitrary it follows that hδfO = (hf)O.
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If we look at lattice homomorphisms on the right, the situation is more
complicated. Consider the following picture, where h is a lattice homomorphism
and g is an arbitrary map:

L1
h // L2

g // L3

When considering the question whether (gh)O = gOhδ, it turns out that it matters
if h is surjective or not. We first record the following observation about the action
of surjective lattice homomorphisms on lattice filters and ideals.

3.2.18. Lemma. Let h : L→M be a surjective lattice homomorphism. Then for
all F ∈ F L, I ∈ I L,

F G I ⇒ h[F ∩ I] = F h(F ) ∩ I h(I).

Proof Let F ∈ F L and I ∈ I L and suppose that F G I. Since F ∩ I ⊆ F , we
see that

h[F ∩ I] ⊆ h[F ] ⊆ ↑h[F ] = F h(F ),

and similarly h[F ∩ I] ⊆ I h(I), so that

h[F ∩ I] ⊆ F h(F ) ∩ I h(I).

For the converse, assume that c ∈ F h(F )∩ I h(I) = ↑h[F ]∩ ↓h[I], so there exist
a ∈ F and b ∈ I such that

h(a) ≤ c ≤ h(b).

Since F G I, by Lemma 2.1.3 we know that F = ↑(F ∩ I) and I = ↓(F ∩ I).
Consequently, we may assume without loss of generality that a, b ∈ F ∩ I. Since
h : L→M is surjective, there must exist some c′ ∈ L1 such that h(c′) = c. Define
c′′ := (c′ ∨ a) ∧ b. We will show that h(c′′) = c and that c′′ ∈ F ∩ I, so that
c ∈ h[F ∩ I]. For the first claim, observe that

h(c′′) = h ((c′ ∨ a) ∧ b) by definition,

= (h(c′) ∨ h(a)) ∧ h(b) because h is a homomorphism,

= (c ∨ h(a)) ∧ h(b) because h(c′) = c,

= c because h(a) ≤ c ≤ h(b).

For the second claim, observe that since a ≤ c′ ∨ a, we also get

a ∧ b ≤ (c′ ∨ a) ∧ b = c′′.

Since a, b ∈ F , we also have a ∧ b ∈ F , so that c′′ ∈ F . Since b ∈ I and

c′′ = (c′ ∨ a) ∧ b ≤ b,

we also see that c′′ ∈ I, so that c′′ ∈ F∩I. It follows that F h(F )∩I h(I) ⊆ h[F∩I].
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3.2.19. Lemma. Let ei : Li → Lδi be canonical extensions of lattices L1,L2,L3;
let h : L1 → L2 be a surjective lattice homomorphism and let g : L2 → L3 be an
arbitrary map. Then (gh)O = gOhδ.

Proof Recall that

(gh)O(x) = lim inf(e3 ◦ g ◦ h)(x)

=
∨{∧

e3 ◦ g ◦ h[F ∩ I] | eF1 (F ) ≤ x ≤ eI1 (I)
}

and

gOhδ(x) =
∨{∧

e3 ◦ g[F ′ ∩ I ′] | eF2 (F ′) ≤ hδ(x) ≤ eI2 (I)
}
.

We will show that{
g ◦ h[F ∩ I] | eF1 (F ) ≤ x ≤ eI1 (I)

}
=
{
g[F ′ ∩ I ′] | eF2 (F ′) ≤ hδ(x) ≤ eI2 (I ′)

}
,

(3.15)

which is sufficient to show that (gh)O(x) = gOhδ(x). Take an element of the
left-hand side of (3.15), i.e. take F ∈ F L1, I ∈ I L1 such that eF1 (F ) ≤ x ≤ eI1 (I).
We will show that g ◦ h[F ∩ I] is an element of the right-hand side of (3.15),
because

g ◦ h[F ∩ I] = g [F h(F ) ∩ I h(I)] ,

and that eF2 ◦ F f(F ) ≤ x ≤ eI2 ◦ I h(I). The former follows immediately from
Lemma 3.2.18; we see that the latter holds since

eF2 ◦ F h(F ) = hδ ◦ eF1 (F ) by Lemma 2.2.3(1),

≤ hδ(x) since eF1 (F ) ≤ x ≤ eI1 (I),

≤ hδ ◦ eI1 (I) idem,

= eI2 ◦ I h(I) by Lemma 2.2.3(2).

Thus we have shown that the left-hand side of (3.15) is contained in the right-hand
side.

Conversely, consider an element of the right-hand side of (3.15), i.e. take
F ′ ∈ F L2 and I ′ ∈ I L2 such that eF2 (F ′) ≤ hδ(x) ≤ eI2 (I ′). We will show that
g[F ′ ∩ I ′] is an element of the left-hand side of (3.15), because

g[F ′ ∩ I ′] = g ◦ h
[
h−1(F ) ∩ h−1(I)

]
,

and that eF1 ◦ h−1(F ′) ≤ x ≤ eI1 ◦ h−1(I ′). The first claim follows from the fact
that h is surjective, so that F h and I h are also surjective:

g ◦ h
[
h−1(F ′) ∩ h−1(I ′)

]
= g

[
F h ◦ h−1(F ′) ∩ I h ◦ h−1(I ′)

]
by Lemma 3.2.18,

= g[F ′ ∩ I ′] by surj. of F h and I h.
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For the second claim, note that since eF2 (F ′) ≤ hδ(x) ≤ eI2 (I ′), we have that
hδ(x) ∈ ↑ eF2 (F ′) ∩ ↓ eI2 (I ′), so that

x ∈ (hδ)−1
(
↑ eF2 (F ′) ∩ ↓ eI2 (I ′)

)
= (hδ)−1

(
↑ eF2 (F ′)

)
∩ (hδ)−1 ↓

(
eI2 (I ′)

)
because (hδ)−1 commutes with ∩,

= ↑ eF1 ◦ h−1(F ′) ∩ ↓ eI1 ◦ h−1(I ′),

where the last equality follows from claim (2.21) from the proof of Theorem
2.2.18(2) since h preserves both binary joins and meets. It follows that the
right-hand side of (3.15) is contained in the left-hand side.

Recall the picture we had before, where h is a lattice homomorphism and g is
an arbitrary map:

L1
h // L2

g // L3

It turns out that if h is not surjective, we need to make several strong assumptions
if we want to prove that (gh)O = gO ◦ hδ. For starters, we assume that HSP(L3)
is finitely generated.

3.2.20. Lemma. Let ei : Li → Lδi be canonical extensions of lattices L1,L2,L3

and let f : L1 → L2 and g : L2 → L3 be arbitrary maps. Furthermore, assume that
HSP(L3) is finitely generated.

1. If gOfO is (δ, σ↑)-continuous, then gOfO ≤ (gf)O;

2. If gOfO is (δ, σ↓)-continuous, then gOfO ≥ (gf)O;

3. If gOfO is (δ, σ)-continuous, then gOfO = (gf)O.

Proof (1). It is easy to see that gOfO extends gf : L1 → L3, since both squares
below commute:

Lδ1
fO
// Lδ2

gO
// Lδ3

L1

e1

OO

f // L2

e2

OO

g // L3

e3

OO

Now since we assumed that gOfO is (δ, σ↑)-continuous, and since ι↑ ⊆ σ↑, it follows
that gOfO ≤ (gf)O, since (gf)O is the largest (δ, ι↑)-continuous extension of gf by
Corollary 3.2.15.

(2). If gOfO is (δ, σ↓)-continuous, then

gOfO ≥ (gf)M by Corollary 3.2.15,

≥ (gf)O by Lemma 3.2.8(3).

(3). If gOfO is (δ, σ)-continuous, then a forteriori gOfO is (δ, σ↑)-continuous
and (δ, σ↓)-continuous, since σ↑, σ↓ ⊆ σ. The statement now follows by (1) and
(2).
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We can now straightforwardly apply Lemma 3.2.20 to the case where we have
a lattice homomorphism on the right.

3.2.21. Lemma. Let ei : Li → Lδi be canonical extensions of lattices L1,L2,L3; let
h : L1 → L2 be a lattice homomorphism and let g : L2 → L3 be an arbitrary map.
Furthermore, assume that HSP(L3) is finitely generated. Then gOhδ ≤ (gh)O.

If we additionally assume that gO : Lδ2 → Lδ3 is (σ, σ)-continuous, then gOhδ =
(gh)O.

Proof By Theorem 2.2.24, hδ is (δ, δ)-continuous. Since gO is (δ, σ↑)-continuous
by Corollary 3.2.8, it follows by general topology that gOhδ is (δ, σ↑)-continuous.
Since hδ = hO, it follows by Lemma 3.2.20(1) that gOhδ ≤ (gh)O.

If gO is (σ, σ)-continuous, then by Lemma 2.1.28(3), gO is also (δ, σ)-continuous.
By Theorem 2.2.24, hδ is (σ, σ)-continuous, so we see that gO◦hδ is (δ, σ)-continuous.
It follows by Lemma 3.2.20(3) that gOhδ = (gh)O.

3.2.4 Conclusions and further work

In this section we investigated canonical extensions of arbitrary maps between
lattices, rather than extensions of order-preserving maps (which we studied in
§2.2). Canonical extensions of arbitrary maps between distributive lattices have
been studied extensively by Gehrke and Jònsson [39]. This section is based on our
paper with M. Gehrke [43]; our contribution lies primarily in two observations:

• The results in [39] hold not only for maps between distributive lattices,
but more generally for maps between lattices which lie in finitely generated
varieties.

• When considering the canonical extensions fO : Lδ →Mδ and fM : Lδ →Mδ

of a map f : L → M, the natural topology one should be using on the
codomain Mδ is the σ↑-topology, respectively the σ↓-topology. This is
a departure from [39], where one would have considered the ι↑-topology
and the ι↓-topology on Mδ. Our choice for the σ topologies was inspired
by Y. Venema’s treatment of canonicity for BAOs [89] and the work on
MacNeille completions by Theunissen and Venema [86].

Most of the results from §3.2.1 were only known to hold for distributive lattices
from [39]. What was not known before however, is that one does not need to make
any assumptions about the lattices or the maps involved to prove the results in
§3.2.1. In §3.2.2 we introduced topological algebra into the picture of canonical
extensions. Theorem 3.2.12, which says that Lδ is profinite if HSP(L) is finitely
generated, can be regarded as a corollary of a result of J. Harding [50]. It is
interesting to note that many of the proofs in §3.2.3 are direct adaptations of
the proofs for distributive lattices from [39], which further supports our claim
above that all results in that paper may be generalized from distributive lattices
to lattices lying in a finitely generated variety.
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3.2.22. Remark. We now have two sets of circumstances under which fO : Lδ →
Mδ is the largest continuous extension of f : L→M (and dually, we have conditions
under which fM is the smallest continuous extension of f).

• If f is order-preserving, then fO is the largest (δ↑, σ↑)-continuous extension
of f (Theorem 2.2.4).

• If HSP(M) is finitely generated, then fO is the largest (δ, σ↑)-continuous
extension of f (Corollary 3.2.15).

It would be interesting to see if there is a unifying explanation for these continuity
properties.

3.3 Canonical extension as a functor II: lattice-

based algebras

In this section, we want to change our perspective on canonical extension from a
construction on lattices to a construction on lattice-based algebras. Previously,
canonical extensions of lattice-based algebras have only been considered under
certain additional assumptions, such as monotonicity of all algebra operations [34],
or distributivity of the underlying lattice [39]. In contrast, we will define canonical
extensions for lattice-based algebras without making any further assumptions
about the algebra operations or the shape of the lattice (other than boundedness).

Once we have defined canonical extensions of lattice-based algebras, it does
not follow straightforwardly that the canonical extension construction applied
to lattice based-algebras is well-defined on algebra homomorphisms, i.e. whether
canonical extension is a functor. In fact, it is already known from [39] that in
general this is not the case, unless we make certain assumptions about either the
algebras or the homomorphisms involved. We will discuss two ways to improve
the behaviour of canonical extensions of homomorphisms. Firstly, if h : A → B
is a homomorphism between lattice-based algebras and every algebra operation
is monotone, i.e. order-preserving or order-reversing in each coordinate, then
hδ : Aδ → Bδ is also an algebra homomorphism. This is already known from [34].
If we do not know whether all algebra operations on A and B are monotone, but we
do know that h is surjective, then hδ : Aδ → Bδ is also an algebra homomorphism.
If the assumption of surjectivity of h is dropped, we can no longer guarantee that hδ

will be a homomorphism. This preservation of surjective algebra homomorphisms
was already known for the distributive case from [39]. We will see however that
distributivity is not needed for this result.

A second question we may ask ourselves is:

For which equations is validity on a lattice-based algebra A preserved
when moving to its canonical extension Aδ?
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This topic is known as canonicity. One could argue that the study of canonicity
is actually the raison d’être of the body of work on canonical extensions that
this chapter and the previous are contributing to. The approaches to proving
canonicity occupy a spectrum ranging from the imposing of very restrictive
abstract conditions on A (e.g. demanding that HSP(A) is finitely generated)
which guarantee preservation of validity of all equations, to sophisticated toolkits
that allow one to decide whether validity of one given equation is preserved by
looking at the syntactic shape of the given equation. The results on canonical
extensions in this dissertation make a technical contribution to the methods of
proving canonicity at both ends of the above-mentioned spectrum, but remain
foundational. We will not go into any concrete applications of canonicity.

This section is organized as follows. First, we set up the technicalities of
defining canonical extensions of lattice-based algebras. In particular we need
to take some care when extending order-reversing maps, and for every algebra
operation ωA : An → A, we need to choose whether we want its canonical extension
to be ωOA or ωMA . After that we look at preservation of homomorphisms; we conclude
this section with a discussion of the relation of this work to the field of canonicity.
We discuss the contribution of this section and possible further work on p. 93.

3.3.1 Order types and canonical extension types

Our goal in this subsection is to define canonical extensions for any algebra with
a lattice reduct. So let us first make this notion of lattice-based algebra a little
more precise.

3.3.1. Definition. Let Ω be an algebraic signature and let ar : Ω → N be its
associated arity function (see §A.6). We say that Ω is a lattice-based similarity
type if {∧,∨, 0, 1} ⊆ Ω; in the remainder of this section we will always assume
that we are dealing with lattice-based signatures. Given a lattice-based similarity
type Ω, a lattice-based Ω-algebra is an Ω-algebra A = 〈A, (ωA)ω∈Ω〉 such that
〈A,∧A,∨A, 0A, 1A〉 is a lattice. We denote the lattice reduct of A by Al. We will
usually suppress the subscripts on algebra operations, writing ∧ instead of ∧A,
etc.

By LatAlgΩ we denote the category of lattice-based Ω-algebras and Ω-algebra
homomorphisms. If it is clear from the context what Ω is, we will simply speak of
lattice-based algebras and algebra homomorphisms.

Now, we would like to define canonical extensions of lattice-based algebras in
such a way that we can profit maximally from the results in §2.2. In particular,
we want to see order-reversing maps as a variation of order-preserving maps. The
reason this is possible is that a map f : L→ M is order-reversing if and only if
f : Lop → M is order-preserving. So if e.g. g : L × L → L is a function that is
order-reversing in its first coordinate and order-preserving in its second coordinate,
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then equivalently, g : Lop × L → L is order-preserving. The following definition
will provide us with notation for dealing with such maps in a uniform way.

3.3.2. Definition. An order type of arity n is an element o ∈ {1, op}n. If
o = (o1, . . . , on) is an order type and L is a lattice, then we define

Lo := Lo1 × · · · × Lon ,

where L1 := L and Lop is the usual order dual of L. If f : L→ M is a function,
then we define f o : Lo →Mo as follows:

f o : (x1, . . . , xn)→ (f(x1), . . . , f(xn)) .

It is easy to see that f o is again a lattice homomorphism.
Observe that the usual product construction of lattices is a special case of the

above construction: if we take oi = 1 for i = 1, . . . , n, then Lo = Ln and likewise
for lattice homomorphisms.

We can now define monotone lattice-based algebras, i.e. lattice-based alge-
bras with operations that are either order-preserving or order-reversing in each
coordinate.

3.3.3. Definition. Given an algebraic signature Ω, an order signature is a
function ord: Ω → {1, op}∗ such that for all ω ∈ Ω, ord(ω) ∈ {1, op}ar(ω). An
ord-monotone lattice based Ω-algebra A is a lattice-based Ω-algebra such that for
all ω ∈ Ω, ωA : Aord(ω) → A is order-preserving.

By MLatAlg(Ω,ord) we denote the category of ord-monotone lattice based
Ω-algebras and Ω-algebra homomorphisms. If it is clear from the context what Ω
and ord are, we will simply speak of monotone lattice-based algebras.

3.3.4. Example. Heyting algebras are an example of monotone lattice-based
algebras. Their signature is Ω = {→,∧,∨, 0, 1}, where ar(→) = 2, and their order
types are as follows: ord(→) = (op, 1) and ord(∧) = ord(∨) = (1, 1). Indeed,

∧A : A× A→ A,
∨A : A× A→ A,
→A : Aop × A→ A,

are all order-preserving.

We know that canonical extensions commute with products and taking order
duals, modulo isomorphism. In practice it is rather cumbersome to explicitly deal
with said isomorphisms all the time however.
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3.3.5. Convention. Let L be a lattice and let o be an order type. It follows by
Lemma 2.1.26 that (Lδ)o is a canonical extension of Lo. In light of this fact, we will
identify (Lδ)o and (Lo)δ. Consequently, if h : L→M is a lattice homomorphism,
then we also identify (hδ)o : (Lδ)o → (Mδ)o and (ho)δ : (Lo)δ → (Mo)δ.

We can now finally define canonical extensions of lattice-based algebras.

3.3.6. Definition. Let Ω be a lattice-based similarity type. A canonical exten-
sion type for Ω is a function β : Ω→ {O,M}. Given a lattice-based Ω-algebra A =
〈A, (ωA)ω∈Ω〉, the β-canonical extension of A is the algebra Aδ := 〈Aδ, (ωAδ)ω∈Ω〉.
For each ω ∈ Ω, the map ωAδ : (Aδ)n → Aδ, where n = ar(ω), is

(ωA)β(ω) :
(
Aδ
)n → Aδ

If it is clear from the context what β is, we will simply speak of the canonical
extension of A.

If A is a monotone lattice-based algebra with respect to some order signature
ord, then we define ωAδ as

(ωA)β(ω) :
(
Aδ
)ord(ω) → Aδ.

Observe that we are really using Convention 3.3.5 above: strictly speaking, (ωA)β(ω)

is a map (Ao)δ → Aδ.

We can now finally speak of canonical extensions of algebras. We should keep
in mind however that a priori, a lattice-based algebra has many different canonical
extensions: for every algebra operation we may choose either the upper or the
lower canonical extension. Sometimes, however, these choices do not arise. Recall
that a map f : L → M between lattices L and M is called smooth if fO = fM.
Analogously, we say a lattice-based Ω-algebra A is smooth if for every ω ∈ Ω,
(ωA)O = (ωA)M. Observe that in case A is smooth, A has a unique canonical
extension, since it does not matter whether β(ω) = O or β(ω) =M for any ω ∈ Ω.

3.3.7. Lemma. Fix a lattice-based signature Ω and a canonical extension type β.
Let A be a lattice-based Ω-algebra such that HSP(Al) is finitely generated. If Aδ is
a Boolean topological algebra then A is smooth.

Proof Suppose that Aδ is a Boolean topological algebra; we need to show that for
every ω ∈ Ω, ωA is smooth. Take ω ∈ Ω and without loss of generality, assume that
β(ω) = O. Because Aδ is a Boolean topological algebra, we know that (ωA)O must
be (σ, σ)-continuous, since the topology on Aδ is the σ-topology (Fact 3.1.23(1)).
It follows by Corollary 3.2.16 that ωA is smooth; this is where we use the fact
that HSP(Al) is finitely generated. Since ω ∈ Ω was arbitrary, it follows that A is
smooth.
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Finite lattice-based algebras in particular satisfy the conditions of the above
lemma, although it is also easy to see directly that if A is a finite lattice-based
algebra, then A ' Aδ. Just as we did with lattices in Convention 2.1.12, we will
therefore just define Aδ := A in case A is finite.

3.3.8. Convention. If A is a finite lattice-based algebra, then we define Aδ := A.

We conclude this subsection with some observations about (·)l, the forgetful
functor from the category of lattice-based Ω-algebras to the category of lattices.

3.3.9. Fact. Let A be a lattice-based Ω-algebra. Then

1. (Aδ)l = (Al)δ;

2. If HSP(A) is a finitely generated variety of Ω-algebras, then HSP(Al) is a
finitely generated variety of lattices;

3. If A is a profinite Ω-algebra, then Al is a profinite lattice.

3.3.2 Preservation of homomorphisms

In this subsection we will prove two main results on preservation of algebra
homomorphisms by canonical extensions. These results are very important in
light of one of the main subjects of this chapter: the relation between canonical
extensions and profinite completions. The latter is characterized externally, in
terms of algebra homomorphisms. Consequently, homomorphisms form a very
natural element of our discourse. Canonical extensions do not behave perfectly on
homomorphisms; interestingly, they do behave well enough.

3.3.10. Theorem ([34]). Fix a lattice-based similarity type Ω, an order type
ord and a canonical extension type β. If A and B are monotone lattice-based
algebras and if h : A→ B is an algebra homomorphism, then hδ : Aδ → Bδ is also
an algebra homomorphism.

Proof We know by Theorem 2.2.24(1) that hδ : Aδ → Bδ is a lattice homomor-
phism which is both (σ, σ)-continuous and (δ, δ)-continuous. To show that it is
an algebra homomorphism, consider an arbitrary ω ∈ Ω. Let ord(ω) = o, so
that ωA : Ao → A is an order-preserving map. Finally, without loss of generality,
assume that β(ω) = O, so that ωAδ = (ωA)O. By Convention 3.3.5, it suffices to
show that the following diagram commutes:

(Ao)δ

(ho)δ

��

(ωA)O
// A

hδ

��
(Bo)δ

(ωB)O
// B
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It follows from Lemma 3.2.17 that

hδ ◦ (ωA)O = (h ◦ ωA)O. (3.16)

Secondly, since ho is a fortiori a ∧-homomorphism, it follows by Theorem 2.2.18(2)
that (ho)δ is (δ↑, δ↑)-continuous, so by Corollary 2.2.23(3), we see that

(ωB)O ◦ (ho)δ = (ωB ◦ ho)O. (3.17)

Now because h : A→ B is an Ω-algebra homomorphism, we see that h◦ωA = ωB◦ho,
so that

hδ ◦ (ωA)O = (h ◦ ωA)O by (3.16),

= (ωB ◦ ho)O since h ◦ ωA = ωB ◦ ho,
= (ωB)O ◦ (ho)δ by (3.17).

Since ω ∈ Ω was arbitrary, we conclude that hδ is an Ω-algebra homomorphism.

Thus we see that canonical extension maps algebra homomorphisms to algebra
homomorphisms, provided we are looking at monotone lattice-based algebras.
Since all other things we ask of functors (commuting with function composition,
preserving the identity function) already follow from Theorem 2.2.24, we get the
following result.

3.3.11. Corollary ([34]). Fix a lattice-based similarity type Ω, an order type
ord and a canonical extension type β. Then β-canonical extension forms a functor
from MLatAlg(Ω,ord) to MLatAlg(Ω,ord).

Now we turn to the more general situation where we do not assume that every
operation of our lattice-based algebras is monotone. The following theorem was al-
ready known for distributive lattice-based algebras [39, Theorem 3.7]; interestingly,
however, distributivity is not a necessary condition.

3.3.12. Theorem. Fix a lattice-based similarity type Ω and a canonical extension
type β. Let A and B be lattice-based algebras. If h : A→ B is a surjective algebra
homomorphism, then so is hδ : Aδ → Bδ.

Proof As in the proof of Theorem 3.3.10, we must show that for arbitrary ω ∈ Ω,
we have that hδ ◦ ωAδ = ωBδ ◦ (hδ)n, where n = ar(ω). Without loss of generality,
we again assume that β(ω) = O; now as before, showing that

hδ ◦ (ωA)O = (ωB)O ◦ (hδ)n
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boils down to showing that the following diagram commutes; the difference is that
we do not have to bother with order types.

(An)δ

(hn)δ

��

(ωA)O
// A

hδ

��
(Bn)δ

(ωB)O
// B

It follows from Lemma 3.2.17 that

hδ ◦ (ωA)O = (h ◦ ωA)O.

For the other direction, observe that since h : A→ B is surjective, so is hn : An →
Bn, so by Lemma 3.2.19 we have that

(ωB)O ◦ (hn)δ = (ωB ◦ hn)O.

Just like in the proof of Theorem 3.3.10, we see that the diagram above commutes
because h is an Ω-algebra homomorphism, i.e. because h ◦ ωA = ωB ◦ hn. Since
ω ∈ Ω was arbitrary we see that hδ : Aδ → Bδ is an Ω-algebra homomorphism.

Unfortunately, it is not possible to improve on the above theorem, for [39,
Example 3.8] provides an example of a distributive lattice-based algebra B with a
subalgebra A such that Aδ is not a subalgebra of Bδ. However, we will see that for
the main result of §3.4.1, our Theorem 3.3.12 gives us just enough to work with.

3.3.3 Canonicity

To conclude this section we will make a few remarks about the preservation of
(equations and) inequations by canonical extensions of lattice-based algebras,
i.e. canonicity of inequations. This very rich subject is probably the single most
important application of canonical extensions in logic. This has to do with the
relation between canonical extensions and Stone duality, a subject we will look at
in Chapter 4. The exact details of the applications in logic aside, the question is
whether we can show that if a given inequation s 4 t is valid on a lattice-based
algebra A (see §A.6), then s 4 t is also valid on Aδ. We will very briefly discuss
three approaches to this question.

Finitely generated varieties

The first approach is one of brute force. If we assume that HSP(A) is finitely
generated, then every inequation valid on A is also valid on Aδ. The reason for
this is that under these assumptions, canonical extensions coincide with profinite
completions; see §3.4.2. It holds for any algebra A that Â, the profinite completion
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of A, lies in the variety generated by A (see §3.1.2). Therefore, an equation s ≈ t
is valid on Â iff it is valid on A; since every inequation s 4 t can be encoded
as an equation s ∨ t ≈ t, the same holds for inequations. Profinite completions
are always well-behaved in this sense, and if HSP(A) is finitely generated, this
good behaviour of Â is also exhibited by Aδ since the two are isomorphic. This
good behaviour comes at a price, however. There are many interesting varieties of
lattice-based algebras which are not finitely generated. To name two of the most
illustrious, we mention the variety of Heyting algebras and the variety of modal
algebras.

Our contribution to this first approach of using finitely generated varieties is
that we show in §3.4.2 that this works for arbitrary lattice-based algebras, rather
than only for monotone lattice-based algebras [34, Corollary 6.9] or distributive
lattice-based algebras [39, Corollary 4.6].

Sahlqvist-style theorems

The second approach to proving canonicity focusses on one inequation s 4 t at a
time, relying on syntactic criteria on s and t to prove a result. As an example, we
give a proof for a result that goes back to [38]; the form in which we state it is
closer to [34] though. The particular proof we employ (via dcpo algebras) was
first presented in [42].

In the proof of the theorem that follows, we want to exploit properties of dcpo
algebras and dcpo presentations. First of all, we have to explain what a dcpo
algebra is. An Ω-dcpo algebra is simply an ordered Ω-algebra A such that 〈A,≤〉
is a dcpo and such that each ωA : Aar(ω) → A is Scott-continuous. In §2.3, we
have considered dcpo presentations, which allowed us to describe dcpos in an
economical fashion. This technique can be extended so that it is also applicable
to dcpo algebras.

3.3.13. Definition. An Ω-dcpo algebra presentation consists of a structure 〈P,v
, /, (ωP )ω∈Ω〉 such that 〈P,v, /〉 is a dcpo presentation, 〈P, (ωP )ω∈Ω〉 is an Ω-algebra
and each ωP : P ar(ω) → P is cover-stable.

As usual, given a definition of a particular kind of algebra presentation, one needs
to show that each such presentation actually presents an object. This is exactly
what the following fact tells us.

3.3.14. Fact ([60]). Let 〈P,v, /, (ωP )ω∈Ω〉 be a dcpo algebra presentation. Sup-
pose that 〈P,v, /〉 presents a dcpo D via η : P → D. Then

1. There exist unique Scott-continuous algebra operations ωD on D such that
η : P → D is an Ω-algebra homomorphism;

2. For all inequations s 4 t, if 〈P, (ωP )ω∈Ω〉 |= s 4 t then also 〈D, (ωD)ω∈Ω〉 |=
s 4 t.
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Now that we have prepared our magic wand, we can go ahead and present our
theorem. Observe that we make a distinction between the signature of the algebra
A and the signature used in the inequation s 4 t that we want to preserve. The
reason for this is that demanding that each operation in the algebra signature
Ω is an operator would restrict the applicability of the theorem to distributive
lattices, since it would require that ∧ : A× A→ A is an operator.

3.3.15. Theorem ([34]). Let A be a lattice-based Ω-algebra and let s 4 t be an
inequation. If for each ω occurring in s or t, ωA is an operator and ωAδ = (ωA)O,
then A |= s 4 t implies Aδ |= s 4 t.

Proof We present the proof of the theorem as found in [42]. Let s(x1, . . . , xn) and
t(x1, . . . , xn) be terms and let Ω′ denote the set of function symbols occurring in s
or t. We assume that each ω ∈ Ω′ is an operator. Fix any canonical extension type
β : Ω→ {O,M} such that β(ω) = O for all ω ∈ Ω′. Now, suppose that A |= s 4 t;
we need to show that Aδ |= s 4 t

Since for each ω ∈ Ω′, we assumed ωA is an operator, we see by Lemma 2.3.8
that F ωA is cover-stable for each ω ∈ Ω′. It follows that 〈F A,⊇, (F ωA)ω∈Ω′〉
is a dcpo algebra presentation. Moreover, the dcpo algebra it presents is the
Ω′-reduct of Aδ, since F ωA = (ωA)O for each ω ∈ Ω′ by Lemma 2.3.8. Now by
Fact 3.3.14, it follows that if we can show that 〈F A,⊇, (F ωA)ω∈Ω′〉 |= s 4 t, then
we automatically get that Aδ |= s 4 t. But the former is easy to see: because
each operation in s and t is order-preserving, it follows from the fact that F is a
functor from the category of partially ordered sets and order-preserving maps to
the category of co-dcpos that

F sA = sF A, (3.18)

and likewise for t. This can be shown by an easy induction on the complexity of
s. (See §A.6 for a reminder about term functions and universal algebra.)

• Suppose that s = xi. Then sA : An → A is simply the i-th projection
function πi : An → A, and by Fact A.5.4, F πi : (F A)n → F A is again the
i-th projection function.

• Now suppose that s = ω(t1, . . . , tm), where m = ar(ω) and by induction
hypothesis F(ti)A = (ti)F A. Then

F sA

= F (ωA ◦ ((t1)A × · · · × (tm)A)) by definition of sA,

= F ωA ◦ F ((t1)A × · · · × (tm)A) since F is a functor,

= F ωA ◦ (F(t1)A × · · · × F(tm)A) since F preserves finite products,

= F ωA ◦ ((t1)F A × · · · × (tm)F A) by induction hypothesis,

= sF A by definition of sF A.
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We see that

sF A = F sA by (3.18),

≤ F tA since sA ≤ tA by assumption,

= tF A by (3.18).

Thus, we see that the validity of s 4 t lifts from A to 〈F A,⊇, (F ωA)ω∈Ω′〉 by
functorial properties of F , and from there to Aδ by Fact 3.3.14.

Results of this kind form an example of Sahlqvist canonicity [79], that is canonicity
of inequations based on their syntactic shape; for examples see [34, 40, 39]. It
should be noted that what we are discussing here is only half of what Sahlqvist
theory is about: Sahlqvist correspendence (see e.g. [19, Ch. 3]) is as important as
the canonicity we have just discussed.

Ad hoc analysis

The third approach is one of ad hoc analysis. In this case, the idea is to prove
only what is needed to show that validity on A of one given inequation s 4 t is
preserved by canonical extensions. First, we need to think of the term functions
induced by s(x1, . . . , xn) and t(x1, . . . , xn), i.e. sA : An → A and tA : An → A.
Validity of the inequation then becomes equivalent to the statement that sA ≤ tA,
and the goal becomes to prove that sAδ ≤ tAδ . For the moment, let us assume that
for every ω ∈ Ω, we have that ωAδ = (ωA)O. If canonical extensions commuted
with composition of arbitrary functions it would now be a breeze to show that
validity of s 4 t is preserved, because then we would see that

sAδ = (sA)O ≤ (tA)O = tAδ .

In practice however, we do not know a priori if the equalities sAδ = (sA)O and
(tA)O = tAδ hold, or even the inequalities sAδ ≤ (sA)O and (tA)O ≤ tAδ , which would
already be sufficient. The ad hoc analysis approach now consists of using specific
knowledge about the algebra operations ωA occuring in sA and tA, in conjunction
with the results about the interaction of function composition and canonical
extensions from §2.2.3 and §3.2.3, to show that sAδ ≤ (sA)O and (tA)O ≤ tAδ . This
analysis would also have to take into account whether ωAδ = (ωA)O or ωAδ = (ωA)M

for every ω in s and t.

One can see the Sahlqvist approach to canonicity as an organized version of
the ad-hoc analysis we sketched above. It should also be noted that there is
a limit to the complexity of the inequations for which we can prove canonicity
results, since it is undecidable in general whether a given inequation is canonical
[64, Thm. 9.6.1].
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3.3.4 Conclusions and further work

Most of the results in §3.3 are well-known from the work of Gehrke and Harding
[34]; the purpose of this section is simply to set straight the definitions of canonical
extensions of lattice-based algebras, expanding upon canonical extensions of
lattices. In our discussion of canonicity using our dcpo approach, we present a
new proof of a known canonicity theorem (Theorem 3.3.15). The new proof we
present was first published by M. Gehrke and the author in [42].

Further work

It may be interesting to see if Theorem 3.3.12, which states that surjective
homomorphisms are preserved by canonical extensions, can be stretched even
further, e.g. to ordered algebras with monotone [32] or non-monotone operations.

3.4 Profinite completion and canonical extension

In this section we will explore the connections between canonical extensions and
profinite completions of lattice-based algebras. These connection are very rich
and in some cases also very intricate.

The most basic connection between canonical extension and profinite com-
pletion is Theorem 3.4.1, which states that the profinite completion Â of any
lattice-based algebra A can be seen as a complete quotient of Aδ, the canonical
extension of A. As a consequence, without making any assumptions about A,
we can prove that Aδ has a universal property with respect to profinite algebras
(Corollary 3.4.2). This result is completely general and it shows that there is
really a fundamental connection between the canonical extension and the profinite
completion of a lattice-based algebra. In general, however, Aδ itself is not profinite,
unless we make additional assumptions about A. The most extreme assumption
we can make is that HSP(A) is finitely generated; in this case, Aδ is the profinite
completion of A (Theorem 3.4.12). A consequence of this is that Aδ ∈ HSP(A) if
HSP(A) is finitely generated, which is a well-known canonicity result.

We conclude the section with two results which sit between the basic connection
(profinite completion as a quotient of canonical extension) and the strongest
connection (canonical extensions coinciding with profinite completions in finitely
generated varieties). It turns out that if we restrict our attention to monotone
lattice-based algebras A, then we can prove a universal property of canonical
extensions with respect to Boolean topological monotone lattice-based algebras
with profinite lattice reducts (Theorem 3.4.14), and a theorem characterizing
certain retracts of canonical extensions (Theorem 3.4.16). The prime example
of such monotone lattice-based algebras is the class of distributive lattices with
operators, which we will revisit in Chapter 4. We discuss the contribution of this
section and possible further work in §3.4.4.
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3.4.1 Universal properties of canonical extension

In this subsection we will discuss an interesting property of the canonical extension,
namely that for any lattice-based algebra A and any homomorphism f : A→ B to
a profinite lattice-based algebra B, there exists a unique complete homomorphism
f ′ : Aδ → B such that f ′ ◦ eA = f (Corollary 3.4.2).

Aδ

f ′

��
A

f
//

eA
>>~~~~~~~~
B

We will arrive at this result by first showing that the profinite completion Â is
a quotient of Aδ; the canonical extension then inherits the universal property of
µA : A→ Â.

Let A be a lattice-based algebra. Recall that Â, the profinite completion of A,
is the limit of the finite quotients of A. These finite quotients are arranged in a
diagram 〈A/θ, fθψ〉θ,ψ∈ΦA , where

ΦA = {θ ∈ ConA | A/θ finite},

and fθψ : A/θ → A/ψ is defined if θ ⊆ ψ, as

fθψ : a/θ 7→ a/ψ.

The profinite completion of A, denoted Â, is the limiting cone over this diagram (see
§3.1.2) and it is characterized by the property that for every cone (fθ : B→ A/θ)ΦA ,

there exists a unique map of cones f : B→ Â over 〈A/θ, fθψ〉ΦA . This is how we

defined the natural map µA : A→ Â, namely, using the fact that (µθ : A→ A/θ)ΦA ,
where µθ : a 7→ a/θ, is a cone over the diagram 〈A/θ, fθψ〉ΦA .

3.4.1. Theorem. Let Ω be a lattice-based similarity type and let A be a lattice-
based Ω-algebra. Then there exists an Ω-algebra homomorphism νA : Aδ → Â such
that

Aδ

νA
��

A

eA
??��������

µA
// Â

1. νA ◦ eA = µA;

2. νA is (σ, σ)-continuous, i.e. a complete homomorphism;

3. νA is surjective;

4. νA = lim inf µA = lim supµA;
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Proof Let Ω be the similarity type of A, and fix a canonical extension type β.
We claim that

(µδθ : Aδ → A/θ)ΦA is a cone over the diagram 〈A/θ, fθψ〉ΦA . (3.19)

Observe that µδθ : Aδ → A/θ is well-defined: since µθ : A → A/θ is a surjective
Ω-algebra homomorphism, it follows by Theorem 3.3.12 that µδθ : Aδ → (A/θ)δ
is also an Ω-algebra homomorphism; since (A/θ)δ = A/θ by Convention 3.3.8,
we see that indeed µδθ : Aδ → A/θ is an Ω-algebra homomorphism. To show that
(µδθ : Aδ → A/θ)ΦA is a cone over 〈A/θ, fθψ〉ΦA , take θ, ψ ∈ ΦA such that θ ⊆ ψ.
Since (µθ : A→ A/θ)θ∈ΦA is a cone, we know that fθψ ◦ µθ = µψ; we want to show
that it is also the case that fθψ ◦ µδθ = µδψ, that is, we want to show that the
following diagram commutes:

Aδ

µδθ
��

µδψ

""FFFFFFFF

A/θ
fθψ
// A/ψ

But this is easy to see:

fθψ ◦ µδθ = f δθψ ◦ µδθ since (A/θ)δ = A/θ and (A/ψ)δ = A/ψ,

= (fθψ ◦ µθ)δ by Th. 2.2.24, since fθψ and µθ are latt. hom.’s,

= µδψ because fθψ ◦ µθ = µψ.

Now that we know that (3.19) holds, it follows from the fact that Â is the
limit of 〈A/θ, fθψ〉ΦA that there exists a unique map of cones νA : Aδ → Â over
〈A/θ, fθψ〉ΦA .

(1). We will show that eA : A→ Aδ is a map of cones over 〈A/θ, fθψ〉ΦA . That
means that we must show that for all θ ∈ ΦA, µδθ ◦ eA = µθ, i.e. that the following
diagram commutes.

A
eA //

µθ
��

Aδ

µδθ}}{{{{{{{{

A/θ

It is a basic property of canonical extensions of maps that µδθ ◦eA = eA/θ ◦µθ. Since
A/θ is finite, we know that (A/θ)δ = A/θ. But that means that eA/θ = idA/θ, so
that indeed µδθ ◦ eA = µθ. Since θ ∈ ΦA was arbitrary, it follows that eA : A→ Aδ
is a map of cones. Now since νA : Aδ → Â is also a map of cones, we obtain a map
of cones νA ◦ eA : A → Â over 〈A/θ, fθψ〉ΦA . Since Â is the limit of 〈A/θ, fθψ〉ΦA

and both µA : A → Â and νA ◦ eA : A → Â are maps of cones over 〈A/θ, fθψ〉ΦA

from A to Â, it follows that νA ◦ eA = µA.
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(2). Since for each θ ∈ ΦA, µθ : A→ A/θ is a lattice homomorphism, it follows
by Theorem 2.2.24 that µδθ : Aδ → A/θ is (σ, σ)-continuous. By Fact 3.1.13, the

σ-topology on Â is generated by the base

{π−1
θ (U) | θ ∈ ΦA, U ⊆ A/θ}.

Now if we take a basic open set π−1
θ (U), then we see that

(νA)−1
(
π−1
θ (U)

)
= (πθ ◦ νA)−1 (U) by properties of (·)−1,

= (µδθ)
−1(U) because νA is a map of cones,

which is a σ-open subset of Aδ since µδθ : Aδ → A/θ is (σ, σ)-continuous. We
conclude that νA is (σ, σ)-continuous.

(3). Given p ∈ K Â, we define Fp := {a ∈ A | p ≤ µA(a)}. We claim that

∀p ∈ K Â, p =
∧
µA[Fp]. (3.20)

It is easy to see that p ≤
∧
µA[Fp]; towards a contradiction suppose that the

converse is not the case, i.e. suppose that
∧
µA[Fp] � p. Then because Â is (bi-)

algebraic, there must exist q ∈ K Â such that q ≤
∧
µA[Fp] and q � p. The former

tells us

∀a ∈ Fp, q ≤ µA(a).

The latter tells us that ↑ p \ ↑ q 6= ∅. Now ↑ p and ↑ q are σ-clopen (Lemma 3.1.25),
so it follows that ↑ p \ ↑ q is σ-clopen. Now since µA[A] is dense in Â (Fact 3.1.21),
it follows that there must be some a ∈ A such that µA(a) ∈ ↑ p \ ↑ q. But then
p ≤ µA(a), so that a ∈ Fp, and q � µA(a), which is a contradiction. It follows

that
∧
µA[Fp] ≤ p so that (3.20) holds. Now take x ∈ Â, then

x =
∨{

p ∈ K Â | p ≤ x
}

because Â is algebraic,

=
∨
{
∧
µA[Fp] | p ≤ x} by (3.20),

=
∨
{
∧
νA ◦ eA[Fp] | p ≤ x} by (1),

= νA

(∨
{
∧
eA[Fp] | p ≤ x}

)
since νA is complete by (2).

Since x ∈ Â was arbitrary, it follows that νA is surjective.
(4). By Fact 3.3.9(3), (Â)l is a profinite lattice. Now by (1) and (2) above, we

can apply Corollary 3.2.10 to see that νA = lim inf µA = lim supµA.

Now that we have a unique complete homomorphism νA : Aδ → Â from the
canonical extension to the profinite completion, it is not very difficult to show
that eA : A→ Aδ has a universal property with respect to profinite algebras.
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3.4.2. Corollary. Let f : A → B be a homomorphism from a lattice-based
algebra A to a profinite lattice-based algebra B. Then there exists a unique
complete homomorphism f ′ : Aδ → B such that f ′ ◦ eA = f . In fact, f ′ =
lim inf f = lim sup f .

Aδ

f ′

��
A

eA
>>~~~~~~~~

f
// B

Proof Assume that we have a homomorphism f : A→ B to a profinite algebra
B. By the universal property of µA : A→ Â, the profinite completion of A, there
exists a unique continuous, i.e. complete, homomorphism f̃ : Â → B such that
f̃ ◦µA = f . Recall from Theorem 3.4.1 that there exists a complete homomorphism
νA : Aδ → Â such that νA ◦ eA = µA. We now define f ′ := f̃ ◦ νA. It follows
immediately that f ′ is a complete homomorphism; moreover

f ′ ◦ eA = f̃ ◦ νA ◦ eA by definition of f ′,

= f̃ ◦ µA because νA ◦ eA = µA,

= f because f̃ ◦ µA = f .

Now since f ′ : Aδ → B is a complete, i.e. (σ, σ)-continuous homomorphism and
B is profinite, it follows from Corollary 3.2.10 that f ′ = lim inf f = lim sup f , so
that f ′ is unique.

At this point we would like to remind the reader that even though any
homomorphism f : A → B from a lattice-based algebra A to a profinite lattice-
based algebra B can be extended to a continuous f ′ : Aδ → B, Aδ itself need not
be a profinite algebra. In fact, Aδ need not even be a topological lattice, as we
will see in the example below.

3.4.3. Example. We will present an example of a lattice L such that its canonical
extension Lδ is not meet-continuous. Consider the lattice L = 〈L,∧,∨, 0, 1〉 where

L = {0, 1} ∪ {aij | i, j ∈ N},

0 is the bottom, 1 is the top, and

aij ≥ akl ⇐⇒ (i+ j ≤ k + l and i ≥ k).

It is not hard to show that the poset 〈L,≤〉 is a lattice. This lattice, see Figure 3.1,
is non-distributive by [23, Theorem 3.6], since

{1, a20, a11, a00, a02}



98 Chapter 3. Canonical extensions and topological algebra

0

1

a0,0

a0,1

a0,2

a2,0 a1,0

a1,1

x0

x1

x2

x3

Figure 3.1: The lattice M, with its sublattice L denoted by the solid dots.

is a (non-bounded) sublattice of L which is isomorphic to N5 (see [23]). We now
add the elements xi, i ∈ N to L, with xi ≤ aij for all i, j ∈ N, and xi ≤ xj for all
i ≤ j ∈ N, to obtain a new lattice M. We claim that M, depicted in Figure 3.1, is
the canonical extension of its sublattice L. Rather than proving this in detail, we
provide the reader with the following hints:

• M is complete;

• every element of M is a filter element, i.e. for all b ∈M, there exists a filter
F ∈ F L such that b =

∧
F ;

• every element of L is an ideal element of M, i.e. only the elements xi for
i ∈ N are not ideal elements of M.

Armed with these hints it is not hard to prove that M is the canonical extension
of L. To see that Lδ is not meet-continuous note that

a00 ∧ (
∞∨
i=0

xi) = a00 ∧ 1 = a00

while
∞∨
i=0

(a00 ∧ xi) =
∞∨
i=0

x0 = x0.
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Now if Lδ were a topological lattice in its σ-topology, then a fortiori ∧ : Lδ×Lδ →
Lδ would have to be (σ↑, σ↑)-continuous, i.e. meet-continuous; however we have
just demonstrated that this is not the case. It follows that Lδ is not a topological
lattice in its σ-topology.

We conclude this subsection with a result stating that νA : Aδ → Â also has a
universal property, namely with respect to complete homomorphisms f : Aδ → B
from Aδ to a profinite algebra B.

3.4.4. Corollary. Fix a canonical extension type β and consider the canonical
extension e : A → Aδ of a lattice-based algebra A. If f : Aδ → B is a complete
homomorphism to a profinite lattice-based algebra B, then there exists a unique
complete homomorphism f ′ : Â→ B such that f ′ ◦ νA = f .

Â
f ′

��
Aδ

νA
??��������

f
// B

Proof Suppose that f : Aδ → B is a complete homomorphism to a profinite
lattice-based algebra B. Then f ◦ eA : A → B is a homomorphism from A to a
profinite algebra B, so by the universal property of µA : A → Â, there exists a
complete homomorphism f ′ : Â→ B such that f ′ ◦ µA = f ◦ eA.

Â
f ′

��
A

µA

77oooooooooooooooo
eA
// Aδ f

// B

We want to show that f ′ ◦ νA = f . By Theorem 3.4.1(1), we see that

f ◦ eA = f ′ ◦ µA = f ′ ◦ νA ◦ eA.

Since both f : Aδ → B and f ′ ◦νA : Aδ → B are complete homomorphisms agreeing
on eA[A], it follows by Corollary 3.4.2 that f = f ′ ◦ νA, which is what we wanted
to show.

3.4.2 Finitely generated varieties

In §3.4.1, we saw that every homomorphism f : A → B from a lattice-based
algebra A to a profinite lattice-based algebra B factors through the canonical
extension eA : A → Aδ, but that we cannot expect Aδ itself to be profinite. In
this subsection we will study sufficient and sometimes necessary conditions for
Aδ being profinite, namely the condition that HSP(A), the variety generated
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by A, is finitely generated. A different approach to canonical extensions in this
setting, using natural extension techniques and focussing on prevarieties rather
than varieties, can be found in [26].

Recall that a lattice-based Ω-algebra A is smooth if for every ω ∈ Ω, (ωA)O =
(ωA)M, and that in case A is smooth, A has a unique canonical extension, since it
does not matter whether β(ω) = O or β(ω) =M for any ω ∈ Ω.

We will now prove a series of lemmas which will later help us to prove Theorem
3.4.10, which says that if HSP(A) is finitely generated, then Aδ is profinite. The
proof of Theorem 3.4.10 uses the observation, due to Jònsson, that if B is a finite
algebra and HSP(B) is congruence distributive, then HSP(B) = HSPB(B), where
PB stands for taking Boolean products (see §A.6). To exploit this fact, we will
need the following technical lemmas about Boolean products, subalgebras and
homomorphic images of lattice-based algebras.

3.4.5. Lemma. Let A be a lattice-based Ω-algebra and let (px : A→ B)x∈X be a
Boolean power decomposition of A. If B is finite then Aδ is profinite.

Proof Suppose that A has a Boolean decomposition (px : A→ B)x∈X where B is
a finite algebra. Since B is finite, it follows by Fact 2.1.10 that B ' Bδ. We now
know by Fact 2.1.27 that on the lattice level, BX is a canonical extension of A,
where e : A→ BX is defined as

e : a 7→ (px(a))x∈X .

We will now show that

for all ω ∈ Ω, ωBX = (ωA)O = (ωA)M. (3.21)

This observation has two consequences. Firstly, it shows that BX is the (unique)
canonical extension of A and that A is smooth. Secondly, since a product of
profinite algebras is profinite, it follows that Aδ ' BX is a profinite algebra.

So let us show that (3.21) holds. Pick ω ∈ Ω and let n be the arity of ω. We
will first show that ωBX is a (σ, σ)-continuous extension of ωA. First, observe
that it follows from universal algebra that since each px : A→ B is an Ω-algebra
homomorphism, so is e : A→ BX , i.e. the following diagram commutes and ωBX

is indeed an extension of ωA.

(BX)n
ωBX // BX

An
en

OO

ωA
// A

e

OO

Now since BX is profinite (Fact 3.1.15) and BX is a lattice-based algebra, we know
that ωBX is (σ, σ)-continuous. We would now like to apply Corollary 3.2.16 to
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conclude that (3.21) holds, but in order to do that we need to know that HSP(Al)
is finitely generated. Since we assumed that A is a Boolean power of B, we know
that A ∈ HSP(B), so by Fact A.6.2, HSP(A) is finitely generated. It follows by
Fact 3.3.9 that HSP(Al) is finitely generated; we may now apply Corollary 3.2.16
to conclude that (3.21) holds. It follows that Aδ ' BX so that Aδ is profinite.

The next lemma shows that the property of having a profinite canonical
extension is inherited by subalgebras of lattice-based algebras.

3.4.6. Lemma. Let A, B be lattice-based algebras and assume that HSP(Bl) is
finitely generated. If A is a subalgebra of B and if Bδ is profinite, then Aδ is
(isomorphic to) a closed subalgebra of Bδ and, consequently, profinite.

Proof Fix a canonical extension type β. Let us denote the embedding of A
into B by h : A → B. Below, we will show that hδ : Aδ → Bδ is an Ω-algebra
homomorphism, so that Aδ ' h[Aδ] is isomorphic to a subalgebra of Bδ. It then
follows from Corollary 2.2.25 and Lemma 3.1.28 that h[Aδ] is closed and hence,
profinite by Fact 3.1.16.

So let us show that hδ : Aδ → Bδ is an Ω-algebra homomorphism. Take ω ∈ Ω
and let n := ar(ω). Without loss of generality, assume that β(ω) = O. We will
show that the following diagram commutes:

(Bδ)n
(ωB)O

// Bδ

(Aδ)n
(hδ)n

OO

(ωA)O
// Aδ

hδ

OO

Since we assumed that Bδ is a profinite algebra, we know that

(ωB)O : (Bδ)n → Bδ is (σ, σ)-continuous. (3.22)

Now we see that

(ωB)O ◦ (hδ)n = (ωB)O ◦ (hn)δ by Convention 3.3.5,

= (ωB ◦ hn)O by Lemma 3.2.21 and (3.22),

= (h ◦ ωA)O because h is an Ω-homomorphism,

= hδ ◦ (ωA)O by Lemma 3.2.17.

Since ω ∈ Ω was arbitrary, it follows that hδ : Aδ → Bδ is an Ω-algebra homomor-
phism.
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3.4.7. Remark. In Lemmas 3.3.7, 3.4.5 and 3.4.6 above, we are assuming that
the lattice-based algebras involved have a lattice reduct lying in a finitely generated
variety. The reason for this is that we want to be able to apply results that are
consequences of Corollary 3.2.15. If we wanted, however, we could replace the
assumptions concerning finitely generated varieties by restricting our results to
monotone lattice-based algebras. We would then have the results that follow from
Theorem 2.2.4 at our disposal, in particular Corollary 2.2.23.

Now that we have studied profiniteness of canonical extensions in relation with
Boolean products and subalgebras, the only thing left to consider is homomorphic
images. Here, we need to do a little more work, starting with a technical lemma
about continuity properties of complete surjective lattice homomorphisms. Observe
that the property that the following lemma ascribes to complete surjective lattice
homomorphisms h : L→M is weaker than saying that h is an open map: h only
preserves forward images of open sets of the shape h−1(U), for U ⊆M.

3.4.8. Lemma. Let h : L → M be a complete surjective lattice homomorphism
between complete lattices L and M. Let U ⊆M. If h−1(U) is σ↑-open (σ↓-open,
σ-open) in L, then U is σ↑-open (σ↓-open, σ-open) in M.

Proof We will only treat the case for the σ↑-topology; the other cases follow by
order duality. Observe that since h : L→M is a complete homomorphism, it has
a left adjoint h[ : M→ L. By Fact A.3.3(1), h[ preserves all joins. Moreover, since
h is surjective, we know that h ◦ h[ = idM (Fact A.3.3(2)). Moreover,

∀x ∈ U, h[(x) ∈ h−1(U). (3.23)

After all, if x ∈ U , then because h ◦ h[ = idM, we see that h ◦ h[(x) = x ∈ U , so
that h[(x) ∈ h−1(U). Now suppose that U ⊆M such that h−1(U) is σ↑-open. We
will show that U itself is then also σ↑-open. First, we show that U is an upper set.
If x ∈ U and x ≤ y, then since h[ is order-preserving, we see that h[(x) ≤ h[(y).
By (3.23), we see that h[(x) ∈ h−1(U). Since we assumed that h−1(U) is an upper
set, it follows that h[(y) ∈ h−1(U). Now

y = h ◦ h[(y) since h ◦ h[ = idM,

∈ h
[
h−1(U)

]
since h[(y) ∈ h−1(U),

= U since h is surjective.

It follows that U is an upper set. Next, suppose that S ⊆M is directed and that∨
S ∈ U . Then we see that∨

h[[S] = h[(
∨
S) because h[ preserves all joins,

∈ h−1(U) by (3.23) since
∨
S ∈ U .



3.4. Profinite completion and canonical extension 103

Now because h−1(U) is σ↑-open, there must exist x ∈ S such that h[(x) ∈ h−1(U).
Now

x = h ◦ h[(x) since h ◦ h[ = idM,

∈ h
[
h−1(U)

]
since h[(x) ∈ h−1(U),

= U since h is surjective.

It follows that U is σ↑-open.

We are now ready to state the result about homomorphic images of algebras which
have a profinite canonical extension. Note that this result is decidedely weaker
than the corresponding results about Boolean products and subalgebras above,
since we only get a Boolean topological algebra rather than a profinite algebra.

3.4.9. Lemma. Let A, B be lattice-based algebras. If h : B → A is a surjective
Ω-algebra homomorphism and if Bδ is profinite, then Aδ is a Boolean topological
algebra.

Proof Fix a canonical extension type β. It follows from Lemma 3.2.11 that (Aδ)l
is a Boolean topological lattice, so we already know that the σ-topology on Aδ
is a Boolean topology. What remains to be shown is that Aδ is a topological
algebra, i.e. that for each ω ∈ Ω, (ωA)β(ω) : (Aδ)n → Aδ is (σ, σ)-continuous, where
n = ar(ω). Without loss of generality, suppose that β(ω) = O. Consider the
following diagram:

(Aδ)n
(ωA)O

// Aδ

(Bδ)n
(hδ)n

OO

(ωB)O
// Bδ

hδ

OO

We know that this diagram commutes because h : B→ A is a surjective Ω-algebra
homomorphism, so Theorem 3.3.12 applies. Let U ⊆ Aδ be σ-open; we want to
show that ((ωA)O)−1 (U) is σ-open. First, observe that(

(hn)δ
)−1 ◦ ((ωA)O)

−1
(U) =

(
(ωA)O ◦ (hn)δ

)−1
(U) by properties of (·)−1,

=
(
hδ ◦ (ωB)O

)−1
(U) because hδ is an Ω-hom.

Now (ωB)O is (σ, σ)-continuous because Bδ is profinite (Fact 3.1.23(1)), and
hδ is (σ, σ)-continuous because h is a lattice homomorphism (Theorem 2.2.24);

consequently, hδ ◦ (ωB)O is (σ, σ)-continuous. It follows that
(
hδ ◦ (ωB)O

)−1
(U) is

σ-open. Now since (hn)δ is a complete homomorphism, it follows by Lemma 3.4.8
that ((ωA)O)−1 (U) is σ-open. Since U ⊆ Aδ was arbitrary, it follows that (ωA)O

is (σ, σ)-continuous. Since ω ∈ Ω was arbitrary, it follows that Aδ is a Boolean
topological algebra.
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Now that we have our technical lemmas sorted out, we are ready to prove the
first main theorem of this subsection.

3.4.10. Theorem. If A is a lattice-based algebra such that HSP(A) is finitely
generated, then Aδ is profinite and hence, A is smooth.

Proof Suppose that B is a finite lattice-based algebra such that A ∈ HSP(B).
Because HSP(B) is congruence distributive, we may conclude by Fact A.6.3 that
HSP(B) = HSPB(B). If A ∈ SPB(B), then by Lemmas 3.4.5 and 3.4.6 it follows
that A is profinite. If A ∈ HSPB(B) however, then Lemma 3.4.9 only tells us
that A is a Boolean topological algebra. But, since A ∈ HSP(B) and HSP(B) is
congruence distributive and finitely generated, we may use Fact 3.1.17 to conclude
that A is profinite. It follows by Lemma 3.3.7 that A is smooth.

3.4.11. Remark. Observe that the above proof uses Fact 3.1.17, which is a
powerful result from [24]. In a recent paper, Gehrke et al. [35] have showed
that any Boolean topological quotient of a profinite algebra is again profinite,
employing an argument based on Stone duality.

The following result is a generalization of the main result of [50]. There, the
theorem was stated for monotone lattice-based algebras. It was communicated to
us at the time of writing of this chapter (June/July 2010) that Theorem 3.4.12
has been independently discovered by M.J. Gouveia [49]; see §3.4.4 for further
discussion.

3.4.12. Theorem. Fix a lattice-based similarity type Ω and let V be a variety of
lattice-based Ω-algebras.

1. If V is finitely generated then for every A ∈ V, A eA−→ Aδ is the profinite
completion of A;

2. If Ω is finite and for every A ∈ V, A eA−→ Aδ is the profinite completion of A,
then V is finitely generated.

Proof (1). Let A ∈ V; it follows from Theorem 3.4.10 that Aδ is profinite. To
show that eA : A→ Aδ is the profinite completion of A, we only have to show that
eA : A→ Aδ has the universal property that characterizes the profinite completion,
namely, that if B is a profinite algebra and f : A→ B is a homomorphism, then
there exists a unique continuous homomorphism f ′ : Aδ → B such that f ′ ◦ eA = f .
But this follows immediately from Corollary 3.4.2.

(2). The proof for the second statement is identical to that in [50]. The proof
uses more background knowledge than we assume for the rest of our discourse; we
include it for cognoscenti. If for every A ∈ V , A eA−→ Aδ is the profinite completion
of A, then the natural map from A to Â is injective for every A ∈ V, since
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eA : A→ Aδ is always injective. It follows by Fact 3.1.20 that V is residually finite.
Now since we assumed that Ω is finite, it follows by [61, Theorem 4.1] that there
exists a finite bound on the size of subdirect irreducibles in V ; consequently, V is
finitely generated.

We conclude this subsection with a canonicity result that is well-known in
other, less general forms (e.g. [34, Corollary 6.9]).

3.4.13. Corollary. Let A be a lattice-based algebra. If HSP(A) is finitely
generated, then Aδ ∈ HSP(A); consequently, every equation which is valid on A is
also valid on Aδ.

Proof If HSP(A) is finitely generated, then by Theorem 3.4.12(1), Aδ ' Â. Since
Â is a subalgebra of a product of quotients of A, we know that Â ∈ HSP(A). The
statement now follows.

3.4.3 Canonical extension and monotone topological alge-
bras

We conclude this section with a universal property of canonical extensions with
respect to Boolean topological lattice-based algebras and a corresponding retraction
theorem. Our motivation for studying this universal property comes from modal
algebras. We will see in §4.1 that Boolean topological modal algebras correspond,
via Stone duality, to image-finite Kripke frames. In light of this motivating example,
we will make two assumptions about the Boolean topological lattice-based algebras
B we are dealing with in this subsection.

• We only consider monotone lattice-based algebras B;

• we only consider Boolean topological lattice-based algebras B such that Bl,
the lattice reduct of B, is a profinite lattice.

We will see in §4.1 that modal algebras, and more generally distributive lattices
with operators, indeed satisfy the conditions above. Moreover, modal algebras
will provide us with a clear example why the conditions above are strictly weaker
than assuming that B is profinite.

3.4.14. Theorem. Fix a lattice-based similarity type Ω and a canonical extension
type β. Let A be a monotone lattice-based Ω-algebra. If f : A → B is an Ω-
homomorphism to a Boolean topological monotone lattice-based Ω-algebra B and
if Bl is profinite, then there exists a unique complete Ω-algebra homomorphism
f ′ : Aδ → B such that f ′ ◦ eA = f .

Aδ

f ′

��
A

eA
>>~~~~~~~~

f
// B
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Proof Suppose that we have an Ω-homomorphism from f : A→ B where A and
B are monotone lattice-based algebras and B is a Boolean topological algebra, and
suppose that Bl is profinite. Under these assumptions Corollary 3.4.2 tells us that
there exists a unique continuous lattice homomorphism f ′ : (Aδ)l → Bl such that
f ′ ◦ eA = f . Moreover, by Corollary 3.2.10 we know that

f ′ = lim inf f = lim sup f. (3.24)

We now have to show that f ′ : Aδ → B is in fact an Ω-algebra homomorphism.
Let ω ∈ Ω and let n := ar(ω). Without loss of generality, assume that

β(ω) = O. We now want to show that the following diagram commutes:

(Aδ)n
(ωA)O

//

(f ′)n

��

Aδ

f ′

��
Bn ωB

// B

In order to show that ωB ◦ (f ′)n = f ′ ◦ (ωA)O, we need to make a few observations.
Firstly, observe that

ωB : Bn → B is both Scott- and co-Scott-continuous, (3.25)

so that ωB preserves both directed joins and co-directed meets. Since B is a
Boolean topological algebra, we know that ωB is (σ, σ)-continuous. Since ωB is
monotone, it follows by Lemma 2.1.17 that (3.25) holds.

Our second observation is that

ωB ◦ fn = f ′ ◦ eA ◦ ωA. (3.26)

Since f : A → B is an Ω-homomorphism, we know that ωB ◦ fn = f ◦ ωA. Now
we may use the fact that f = f ′ ◦ eA to conclude that (3.26) holds. Now let
x ∈ (Aδ)n = (An)δ; we see that

ωB ◦ (f ′)n(x)

= ωB ◦ (lim inf f)n (x) by (3.24),

= ωB ◦ lim inf(fn)(x) by Lemma 3.2.4,

= ωB
(∨{∧

fn[F ∩ I] | eFAn(F ) ≤ x ≤ eIAn(I)
})

by def. of lim inf,

=
∨{∧

ωB ◦ fn[F ∩ I] | eFAn(F ) ≤ x ≤ eIAn(I)
}

by (3.25) (†),

=
∨{∧

f ′ ◦ eA ◦ ωA[F ∩ I] | eFAn(F ) ≤ x ≤ eIAn(I)
}

by (3.26),

= f ′
(∨{∧

eA ◦ ωA[F ∩ I] | eFAn(F ) ≤ x ≤ eIAn(I)
})

since f ′ is complete,

= f ′ ◦ lim inf(eA ◦ ωA)(x) by def. of lim inf

= f ′ ◦ (ωA)O(x) by definition of (ωA)O,
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where (†) makes use of the fact that F ∩ I is both directed and co-directed for
any filter F and ideal I, and the fact that fn : An → Bn is order-preserving, so
that fn[F ∩ I] is again both directed and co-directed.

Since x ∈ (Aδ)n was arbitrary we see that ωB ◦ (f ′)n = f ′ ◦ (ωA)O. (In case
β(ω) =M, we would have used the fact that f ′ = lim sup f in the derivation above.)
Since ω ∈ Ω was arbitrary, it follows that f ′ : Aδ → B is an Ω-homomorphism.
This concludes our proof.

To conclude this subsection, we will prove a theorem that tells us when a
monotone lattice-based algebra A with a profinite lattice reduct, i.e. a structure
which has a reduct which is already a topological algebra, is in fact a topological
algebra in its entire signature. Before we come to this theorem, we first need a
technical lemma.

3.4.15. Lemma. Let L and M be complete lattices such that there exist complete
homomorphisms g : Lδ → L and h : Mδ → M such that g ◦ eL = idL. Then if
f : L→M is an order-preserving map so that either h◦fO = f ◦g or h◦fM = f ◦g,
then f is (σ, σ)-continuous.

Lδ
fO or fM

//

g

��

Mδ

h
��

L
idL
//

eL
??~~~~~~~
L

f
//M

Proof Throughout the proof, we will suppose that h ◦ fO = f ◦ g; the other case
is order dual. We will first show that f : L→M preserves directed joins. Recall
that by the universal property of ↓L : L → I L, we can factor eL : L → Lδ as
eL = eIL ◦ ↓L through I L, the ideal completion of L. We may now draw the big
diagram in Figure 3.2, about which we make two observations. Firstly, we claim

Lδ
fO

//

g

��

Mδ

h

��

I L

eIL
=={{{{{{{{

L

↓L
==||||||||

idL
// L

f
//M

Figure 3.2: A closer look at fO via I L.

that

g ◦ eIL is (σ↑, σ↑)-continuous. (3.27)
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Lδ
fO

//

g

��

Mδ

h

��

F L

eFL
==zzzzzzzz

L

↑L
=={{{{{{{{

idL
// L

f
//M

Figure 3.3: A closer look at fO via F L.

To see why, first observe that since g is a complete homomorphism, it also
preserves all directed joins, so that g is (σ↑, σ↑)-continuous. Since σ↑ ⊆ δ↑ by
Lemma 2.1.28(3), it follows that g : Lδ → L is (δ↑, σ↑)-continuous. Now since
eI : I L→ L is (σ↑, δ↑)-continuous by Theorem 2.1.23, it follows that (3.27) holds.
Our second observation is that

h ◦ fO ◦ eIL is (σ↑, σ↑)-continuous. (3.28)

Similarly to g, as we have seen above, it is the case that h : Mδ →M is (σ↑, σ↑)-
continuous. Now since fO ◦ eIL is (σ↑, σ↑)-continuous by Corollary 2.2.5, it follows
that (3.28) holds.

We can now show that f : L→M is (σ↑, σ↑)-continuous, i.e. that f preserves
directed joins. Let S ⊆ L be directed, then

f(
∨
S) = f

(∨
geIL ↓L[S]

)
since g ◦ eIL ◦ ↓L = idL,

= fgeIL (
∨
↓L[S]) by (3.27),

= hfOeIL (
∨
↓L[S]) since h ◦ fO = f ◦ g,

=
∨
hfOeIL ↓L[S] by (3.28),

=
∨
fgeIL ↓L[S] since h ◦ fO = f ◦ g,

=
∨
f [S] since g ◦ eIL ◦ ↓L = idL.

The proof that f preserves co-directed meets is similar. We need to consider
the diagram in Figure 3.3, about which we make the two following familiar
observations. Firstly, for reasons analogous to those for (3.27), it follows that

g ◦ eFL is (σ↓, σ↓)-continuous. (3.29)

Secondly, as before with (3.28) we see that

h ◦ fO ◦ eFL is (σ↓, σ↓)-continuous. (3.30)

Now if S ⊆ L is co-directed, then we can make the same step-by-step argument as
above to show that f(

∧
S) =

∧
f [S]. Having established that f is both (σ↑, σ↑)-

continuous and (σ↓, σ↓)-continuous, we see that it follows by general topology
(Lemma A.7.3) that f : L→M is (σ, σ)-continuous.
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In its most general form, we say an algebra A is a retract of an algebra B if
there exist homomorphisms f : A→ B and g : B→ A such that gf = idA. So the
question when a lattice-based algebra is a retract of its canonical extension is
the question under what circumstances there exists a homomorphism g : Aδ → A
such that g ◦ eA = idA. We will answer this question below under two additional
requirements. Firstly, we will only consider complete homomorphisms g : Aδ → A.
Secondly, we will assume that A has a profinite lattice reduct.

3.4.16. Theorem. Fix a lattice-based signature Ω and let A be a monotone lattice-
based Ω-algebra such that Al is profinite. Then there exists a unique complete
lattice homomorphism g : (Aδ)l → Al such that g ◦ eA = idA. Moreover, the
following are equivalent:

1. g : Aδ → A is an Ω-algebra homomorphism;

2. A is a Boolean topological algebra.

Proof Since we assumed that Al is profinite, the existence of a unique complete
lattice homomorphism g : (Aδ)l → Al extending idA : A→ A follows from Corollary
3.4.2. To show that (2) implies (1), we can apply Theorem 3.4.14 to idA : A→ A.

We will now show that (1) implies (2). Since Al is already a Boolean topological
lattice, we only need to show that for each ω ∈ Ω, ωA : Ao → A is continuous,
where o is the order type of ω, and the topology we are considering is σ(A), the bi-
Scott topology. Since we assumed that g : Aδ → A is an Ω-algebra homomorphism,
we know that the following diagram commutes:

(Aδ)o
ωAδ //

go

��

Aδ

g

��
Ao

(eA)o
<<yyyyyyyy

idAo
// Ao ωA

// A

Now regardless of whether ωAδ = (ωA)O or ωAδ = (ωA)M, Lemma 3.4.15 tells us
that ωA is (σ, σ)-continuous, since ωA is order-preserving and g is a complete
homomorphism. Since ω ∈ Ω was arbitrary, it follows that A is a topological
algebra.

3.4.4 Conclusions and further work

At this point in the narrative of this dissertation, §3.4 is a high point that is best
enjoyed standing on a lot of ground work developed in Chapters 2 and 3. To a
large extent, Chapters 2 and 3 were shaped to support the individual results in
§3.4. Since this section contributes to an active field, we will now put our results
in some perspective.
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The results in §3.4.1 are an improvement of results from [96]. In [96], we
relied on duality theory to establish the fundamental connection between the
canonical extension and the profinite completion (Theorem 3.4.1), so we could only
state the result for distributive lattices with operators. The connection between
canonical extensions and profinite completions via duality has been studied more
extensively in the cases of Heyting algebras [15, 14, 16] and distributive lattices
and Boolean algebras [16]; also see §4.1.4. It is only now that we have extended
(the topological) part of the canonical extension theory (in Chapter 2 and §3.2, and
with Theorem 3.3.12), that we are able to state and prove Theorem 3.4.1 in full
generality, without using duality theory. The central reasons for the main point
of Theorem 3.4.1, viz. the fact that the profinite completion Â of a lattice-based
algebra A is always a complete quotient of the canonical extension Aδ, are the
fact that canonical extensions preserve surjective algebra homomorphisms and the
fact that finite algebras are a fixed point of canonical extensions.

In §3.4.2, we set out to improve on J. Harding’s result [50], which says that
profinite completions and canonical extensions of monotone lattice-based algebras
coincide in finitely generated varieties, using a proof strategy centered around the
fact that HSP = HSPB in finitely generated congruence-distributive varieties. At
the time of writing of this chapter, we learned that M.J. Gouveia has a paper in
press [49] which contains the same result as our Theorem 3.4.12. Unfortunately we
cannot presently compare our approach in §3.4.2 with that of [49], because we have
not seen this paper yet. Our results in §3.4.3, concerning universal properties of
canonical extensions with respect to Boolean topological lattice-based algebras, are
similar to unpublished work of Gehrke & Harding, who investigated the question
when canonical extensions are a reflector when applied to a lattice-based algebras.

Further work

We believe that there is a lot more work to be done on the subject of canonical
extensions and topological algebra. We will name a few possible more concrete
questions.

• Even though we know that the canonical extension of a lattice is not always
a topological lattice in its σ-topology (Example 3.4.3), this does not rule out
that there is a meaningful way to see the canonical extension of a lattice L as
a topological lattice. One possibility would be to consider ‘mixed’ topologies
on Lδ, such as σ↑ ∨ δ↓ or σ↓ ∨ δ↑, much like the Lawson topology σ↑ ∨ ι↓ [45].

• Given the fact that Boolean topological lattices can be characterized order-
theoretically (Theorem 3.1.26), it would be interesting to see if we can find
further universal properties of canonical extensions with respect to Boolean
topological algebras.
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Duality, profiniteness and completions

In §3.4, we saw that there are several strong connections between canonical
extensions, profinite completions and topological lattice-based algebras. In this
chapter, we will see that some of these connections can also be interpreted through
the discrete duality for distributive lattices with operators (DLO’s).

Discrete duality is one of the ingredients of the ‘double duality diagram’ for
modal logic (Fig. 1.1, p. 3) from Chapter 1. For DLO’s, the diagram looks as
follows.

DLO’s
extended // relational Priestley

spaces
Priestley duality

oo

forget
topology

��
semi-topological

DLO’s

discrete //

are included
in

OO

ordered
Kripke frames

duality
oo

We point out two reasons why the discrete duality results we present are
interesting. Firstly, these results provide algebraic insight into interesting classes
of (ordered) Kripke frames. Secondly, these results provide spacial insight into
interesting classes of lattice-based algebras. This latter perspective will be the
primary one in this chapter.

This chapter is organized as follows. In §4.1, we discuss a general duality for
profinite DLO’s, and a way to present profinite completions of DLO’s using duality.
We will see that profinite DLO’s correspond to hereditarily finite Kripke frames.
In §4.2, we provide a brief survey of how the results from §4.1 specialize to known
results concerning distributive lattices, Boolean algebras and Heyting algebras.
Finally, in §4.3, we will restrict our attention to Boolean algebras with operators,

111
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and we will see that in that case, we can also characterize Boolean topological
algebras via duality: Boolean topological Boolean algebras with operators are
dual to image-finite Kripke frames.

4.1 Dualities for distributive lattices with oper-

ators

In this section, we will describe discrete duality for profinite distributive lat-
tices with operators (DLO’s), and we will discuss the relation between canonical
extensions, profinite completions and duality. Recall that distributive lattices
correspond to Priestley spaces via Priestley duality, and that complete, bi-algebraic
distributive lattices correspond to partially ordered sets via discrete duality. Gold-
blatt [47] showed that discrete duality for distributive lattices can be extended to a
duality relating DLO+, the category of semi-topological DLO’s, to OKFr, the cat-
egory of ordered Kripke frames. Moreover, there is a strong and non-coincidental
connection between canonical extensions of DLO’s and discrete duality: given a
DLO A, one can naturally construct an ordered Kripke frame A• via extended
Priestley duality, which is then the discrete dual of Aδ, the canonical extension of
A.

The two main points of this section are the following. Firstly, we show that
Pro- DLOf , the category of profinite DLO’s, forms a subcategory of DLO+,
the category of semi-topological DLO’s, and that the discrete duality for semi-
topological DLO’s restricts to a duality between profinite DLO’s and hereditarily
finite ordered Kripke frames.

DLO+ ' OKFrop

Pro- DLOf

⊆

' HωOKFrop

⊆

Secondly, we show that Â, the profinite completion of a DLO A, corresponds to a
generated subframe of A•, the dual of Aδ.

A

µA

  

eA

��@@@@@@@

Aδ

νA
��

A•

Â HωA•

v

This section is organized as follows. First, in §4.1.1, we introduce semi-
topological DLO’s, and we show how semi-topological DLO’s are a generalization
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of Boolean topological DLO’s and profinite DLO’s. Next, in §4.1.2, we take a
closer look at the category of ordered Kripke frames; specifically, we show how
one can construct direted colimits of ordered Kripke frames. In §4.1.3, we use
a categorical argument to show that the category of profinite DLO’s is dually
equivalent to the category of hereditarily finite ordered Kripke frames. Finally,
in §4.1.4, we show how the relation between canonical extensions and profinite
completions can be understood using duality. In §4.1.5 we provide conclusions
and suggestions for further work.

4.1.1 Semi-topological DLO’s

In this subsection we will present several facts and results on topological DLO’s
which we will need further on, and which additionally serve to motivate the phrase
‘semi-topological DLO’. Let us start by restricting the notion of DLO we will
consider in this section.

4.1.1. Convention. In full generality, a DLO is a monotone distributive lattice-
based algebra (see §3.3.1) A for a signature Ω = {0, 1,∧,∨}]Ωj]Ωm such that for
each ω ∈ Ωj , ωA : Aord(ω) → A is a normal operator, and ω ∈ Ωm, ωA : Aord(ω) → A
is a dual normal operator. To simplify our presentation, we fix two natural
numbers n, m and we will only consider DLO’s with a single normal operator
♦ : An → A and dual normal operator � : Am → A.

4.1.2. Remark. We choose not to explicitly deal with order-reversing operators
in this chapter, to simplify the presentation. However, all results we present
generalize to operators which are order-preserving in some coordinates and order-
reversing in others.

4.1.3. Example. Examples of DLO’s are:

• distributive lattices (with no operators);

• Heyting algebras A = 〈A,∧,∨,→, 0, 1〉, as the Heyting implication→ : Aop×
A→ A is a dual normal operator;

• Boolean algebras A = 〈A,∧,∨,¬, 0, 1〉, as Boolean negation ¬ : Aop → A is
both a normal operator and a dual normal operator by De Morgan’s laws;

• modal algebras A = 〈A,∧,∨,¬, 0, 1,�〉, since these satisfy �(x ∧ y) =
�x ∧�y and �1 = 1.

We may now define semi-topological DLO’s, which are the main objects of
study in this section, together with ordered Kripke frames (which we will introduce
in §4.1.2).
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4.1.4. Definition. Let A = 〈A,∧,∨, 0, 1,♦,�〉 be a DLO. We say A is a semi-
topological DLO if

• A is complete,

• A is bi-algebraic,

• ♦ : An → A is a complete operator (preserves all joins in each coordinate),

• � : Am → A is a complete dual operator (preserves all meets in each coordi-
nate).

By DLO+ we denote the category of semi-topological DLO’s and complete homo-
morphisms.

Semi-topological DLO’s are usually called perfect DLO’s in the literature. We
hope that the facts and results in the remainder of this subsection help to convince
the reader that there are good reasons for the name we have chosen. The first
reason for using the phrase ‘semi-topological’ lies in the fact that if we were
to consider DLO’s without any operators, i.e. ‘naked’ distributive lattices, then
‘semi-topological’ distributive lattices are topological lattices.

4.1.5. Fact. Let L be a distributive lattice. Then the following are equivalent:

1. L is semi-topological (i.e. complete and bi-algebraic);

2. L is a profinite lattice.

There are many equivalent characterizations of profinite lattices such as the fact
above, see e.g. [27, Th. 2.5].

We see now that semi-topological DLO’s come equiped with a natural, Boolean
topology, and that ∨ and ∧ are always continuous with respect to this topology.
The reason a semi-topological DLO A may fail to be finite lies in the (lack of)
continuity properties of ♦ and �. We show below that we can expect some
continuity from ♦ and �, however.

4.1.6. Lemma. Let A be a DLO. Then A is a semi-topological DLO if and only if

1. Al is a profinite lattice;

2. ♦ : An → A is (σ↑, σ↑)-continuous;

3. � : Am → A is (σ↓, σ↓)-continuous.
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Proof Suppose that A is a semi-topological DLO. Firstly, we see that Al, the
lattice reduct of A, is complete and bi-algebraic, so by Fact 4.1.5, Al is a profinite
lattice. Secondly, since ♦ : An → A preserves all joins in each coordinate, a fortiori
it also preserves directed joins in each coordinate. It follows from Fact A.3.4 that
♦ is (σ↑, σ↑)-continuous. The argument for � is analogous.

Conversely, suppose that A is a DLO satisfying (1), (2) and (3). It follows
by Fact 4.1.5 that A is complete and bi-algebraic. Moreover, by Fact A.3.4,
♦ : An → A preserves directed joins in each coordinate. But then ♦ preserves
both finite joins (because it is an operator) and directed joins in each coordinate,
it follows by Fact A.4.1 that f preserves all joins in each coordinate. An order
dual argument shows that � : Am → A preserves all meets in each coordinate;
consequently we may conclude that A is a semi-topological DLO.

We will now see that two important classes of topological DLO’s, namely
Boolean topological DLO’s and profinite DLO’s, are semi-topological. This is
interesting for two reasons. Firstly, it tells us that we can apply the duality for
semi-topological DLO’s to Boolean topological DLO’s and profinite DLO’s, so
that we may better understand them. Secondly, the fact that Boolean topological
DLO’s are semi-topological is a further motivation for the use of the phrase
‘semi-topological’.

4.1.7. Definition. By BoolDLO we denote the category of Boolean topological
DLO’s and continuous homomorphisms. By Pro- DLOf we denote the category
of profinite DLO’s and continuous homomorphism.

We know for general reasons that Pro- DLOf is a subcategory of BoolDLO
(Fact 3.1.13). If we restrict our attention to distributive lattices rather than DLO’s,
this inclusion can also be reversed, as was first demonstrated by K. Numakura
[72].

4.1.8. Fact. Pro- DLf
∼= BoolDL.

We will now show how semi-topological DLO’s can be seen as a generalization
of the profinite DLO’s and Boolean topological DLO’s.

4.1.9. Corollary. BoolDLO is a full subcategory of DLO+. Consequently, so
is Pro- DLOf .

Proof We will show that every Boolean topological DLO is a semi-topological
DLO. Since all continuous DLO homomorphisms are complete homomorphisms
by Fact 3.1.23(3), it then follows that BoolDLO is a full subcategory of DLO+.
Moreover, since by Fact 3.1.13 every profinite DLO is also a Boolean topological
DLO, it follows that Pro- DLOf is also a full subcategory of DLO+.

Suppose A is a Boolean topological DLO. Then Al, the lattice reduct of A, is
profinite by Fact 4.1.8. Also, the operation ♦ : An → A is continuous with respect
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to the (unique!) topology on A, i.e. with respect to the bi-Scott topology (Fact
3.1.23(1)). Since ♦ is order-preserving, it is also (σ↑, σ↑)-continuous (by Lemma
2.1.17). By the same argument if follows that � is (σ↓, σ↓)-continuous, so we may
conclude by Corollary 4.1.6 that A is a semi-topological DLO. This concludes our
proof.

4.1.2 Colimits of ordered Kripke frames

In this subsection we will introduce ordered Kripke frames, which correspond to
semi-topological DLO’s via discrete duality, and we will show how to construct
directed colimits of ordered Kripke frames. Moreover, we will see that directed
unions of Kripke frames are an example of directed colimits.

Ordered Kripke frames

We begin defining OKFr, the category of ordered Kripke frames and bounded
morphisms, which is dually equivalent to DLO+, the category of semitopological
DLO’s and continuous homomorphisms.

4.1.10. Definition. An ordered Kripke frame [47] consists of a tuple F =
〈XF,≤F,RF, QF〉 where

1. 〈XF,≤F〉 is a partial order;

2. RF ⊆ X ×Xn is an (n+ 1)-ary relation such that

(a) ∀x ∈ X, RF[x] := {ȳ ∈ Xn | x RF ȳ} is a lower set;

(b) ∀ȳ ∈ Xn, {x ∈ X | x RF ȳ} is an upper set;

3. QF ⊆ X ×Xm is an (m+ 1)-ary relation such that

(a) ∀x ∈ X, QF[x] is a upper set;

(b) ∀ȳ ∈ Xn, {x ∈ X | x QF ȳ} is a lower set.

Observe that the conditions on RF and QF can be summarized as follows:

≥F ;RF ; (≥F)n = RF and ≤F ;QF ; (≤F)m = QF.

A bounded morphism between two ordered Kripke frames F = 〈XF,≤F, RF, QF〉
and G = 〈XG,≤G, RG, QG〉 is a function f : XF → XG such that

1. ∀x, y ∈ F, if x ≤F y then f(x) ≤G f(y) (f is order-preserving);

2. ∀x, y1, . . . , yn ∈ F, if x RF (y1, . . . , yn) then f(x) RG (f(y1), . . . , f(yn)) and
similarly for Q (f has the forth property);
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3. ∀x ∈ F, ∀y′1, . . . , y′n ∈ G, if f(x) RG (y′1, . . . , y
′
n) then ∃y1, . . . , yn ∈ F such

that x RF (y1, . . . , yn) and f(y1) = y′1, . . . , f(yn) = y′n (f has the back
property).

By OKFr we denote the category of ordered Kripke frames and bounded mor-
phisms. We will sometimes omit the subscripts when specifying a frame, simply
writing F = 〈X,≤, R,Q〉.

For details about the following fact, see e.g. [40, §2.3]. Of the two functors
that witness this duality, we will only use (·)+ : OKFrop → DLO+, which we will
describe in more detail in Definition 4.1.21.

4.1.11. Fact. The categories DLO+ and OKfr are dually equivalent.

Directed colimits of ordered Kripke frames

We will now describe directed colimits of ordered Kripke frames. First, we recall
what colimits are. A cocone to a poset-indexed diagram of ordered Kripke frames
〈Fi, fij〉I in OKFr is an I-indexed collection of maps (gi : Fi → F)I with a common
codomain F such that for all i, j ∈ I with i ≤ j, we have gj ◦ fij = gi.

F

Fi

gi

OO

fij
// Fj

gj
__????????

Let (hi : Fi → G)I be another cocone to 〈Fi, fij〉I and let e : F→ G be a bounded
morphism. We say e is a map of cocones if for all i ∈ I, e ◦ gi = hi.

G F
eoo

Fi

hi

OO

gi

??�������

We call (gi : Fi → F)I a limiting cocone if for all (hi : Fi → G)I , there exists a
unique map of cocones e : F→ G. We then call F the colimit of 〈Fi, fij〉I , writing
F ' lim−→I

Fi. In this chapter, we will only consider directed diagrams of ordered
Kripke frames, meaning that we will always assume that for all i, j ∈ I, there
exists a k ∈ I such that i, j ≤ k. What is nice about directed colimits of ordered
Kripke frames is that we can construct them in an elegant way.

Suppose that 〈Fi, fij〉i,j∈I is a directed diagram of ordered Kripke frames
Fi = 〈Xi,≤i, Ri, Qi〉. We define a relation ∼I on the disjoint union

⊎
I Xi: for all

x ∈ Xi and y ∈ Xj,

x ∼I y :⇔ ∃k ≥ i, j, fik(x) = fjk(y).
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It is easy to see that ∼I is reflexive and symmetric; moreover, since I is directed,
one can also easily show that ∼I is transitive and hence, an equivalence relation.
What we have just described is how to construct directed colimits in the category
of sets. We will now define an ordered Kripke frame structure on the set of
∼I-equivalence classes, i.e. on

⊎
I Xi/∼I = {[x] | ∃i ∈ I, x ∈ Xi}. We define the

relations as follows:

[x] ≤I [y] if ∃i ∈ I and x′, y′ ∈ Fi such that x ∼I x′, y ∼I y′ and x′ ≤i y′,

and similarly for R and Q. Now we define⊎
I

Fi/∼I := 〈
⊎
I

Xi/∼I ,≤I , RI , QI〉.

4.1.12. Lemma. Let 〈Fi, fij〉i,j∈I be a directed diagram of ordered Kripke frames.
Then

⊎
I Fi/∼I is the colimit of 〈Fi, fij〉i,j∈I .

Proof Suppose that we have a cocone for 〈Fi, fij〉i,j∈I , i.e. an ordered Kripke
frame G = 〈Y,≤, R′, Q′〉 and bounded morphisms gi : Fi → G such that for all
i ≤ j, gj◦fij = gi. We want to find a unique bounded morphism g :

⊎
I Fi/∼I → G

extending all the gi. We know from basic category theory that the function

g :
⊎

Xi/∼I → Y

[x] 7→ gi(x) for x ∈ Fi,

is the unique function extending all the gi. What remains to be shown is that g is
a bounded morphism. To see why e.g. the order ≤I is preserved by g, suppose
that [x] ≤I [y]. Then there must exist some i ∈ I and x′, y′ ∈ Fi such that x ∼I x′,
y ∼I y′ and x′ ≤i y′. Now we see that

g([x]) = g([x′]) since x ∼I x′,
= gi(x

′) since x′ ∈ Fi,

≤ gi(y
′) since gi is order-preserving,

= g([y′]) since y′ ∈ Fi,

= g([y]) since y ∼I y′.

Similar arguments show that the relations RI and QI are preserved. Finally,
suppose that g([x])R′(y′1, . . . , y

′
n). We have to find [y1], . . . , [yn] ∈

⊎
I Fi/∼I such

that
[x]RI([y1], . . . , [yn]) and g([y1]) = y′1, . . . , g([yn]) = y′n.

Let i ∈ I such that x ∈ Fi; then since g([x]) = gi(x) we see that gi(x)R′(y′1, . . . , y
′
n).

Since gi is a bounded morphism, it follows that there exist y1, . . . , yn ∈ Xi such
that xRi(y1, . . . , yn) and gi(y1) = y′1, etc. It follows that [x]RI([y1], . . . , [yn]), and
since g([y1]) = gi(y1), etc, we see that g is indeed a bounded morphism. It follows
that

⊎
I Fi/∼I is the colimit of 〈Fi, fij〉i,j∈I .
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Colimits via generated subframes

We will now see that diagrams of ordered Kripke frames can occur as collections
of generated subframes of a given frame F, and that directed colimits of such
diagrams can be computed by simply taking a union. First, we will define generated
subframes of ordered Kripke frames.

4.1.13. Definition. Given ordered Kripke frames F′ = 〈X ′,≤′, R′, Q′〉 and F =
〈X,≤, R,Q〉, we say F′ is a substructure of F if

• X ′ ⊆ X;

• ≤′ = ≤ � (X ′ ×X ′) and similarly for R′ and Q′

Observe that if F′ is a substructure of F, then the relations on F′ are all induced
by the underlying set X ′. We may therefore refer to F′ as the substructure of
F induced by X ′. We say F′ is a generated subframe of F (notation: F′ v F) if
additionally, we have that

• ∀x ∈ X ′, ∀y1, . . . , yn ∈ X, if xR(y1, . . . , yn), then {y1, . . . , yn} ⊆ X ′, and
similarly for Q (F′ is closed under R- and Q-successors).

We present a well-known fact which will be of use in §4.1.4. Let f : F′ → F

be a bounded morphism between ordered Kripke frames F = 〈X,≤, R,Q〉 and
F′ = 〈X ′,≤′, R′, Q′〉. We define f [F′] to be the substructure of F induced by f [X ′].

4.1.14. Lemma. Let f : F′ → F be a bounded morphism between ordered Kripke
frames. Then f [F′] is a generated subframe of F.

Proof We need to show that f [F′] is a substructure of F, and that f [F′] is closed
under R- and Q-successors. The former follows by the definition of f [F′] above;
the latter from the fact that f , as a bounded morphism, has the back property.

It is not hard to see that the generated subframe relation v on OKFr is a
partial order. Consequently, we can view a collection of generated subframes as a
diagram in the category of ordered Kripke frames and bounded morphisms. Let
{Fi | i ∈ I} be a collection of generated subframes of F. We may impose an order
on I by defining i ≤ j :⇔ Fi v Fj. If we denote the embedding from Fi to Fj by
fij : Fi → Fj, then 〈Fi, fij〉i,j∈I becomes a diagram of ordered Kripke frames: if
Fi v Fj v Fk, then Fi v Fk, so that the following diagrams commutes.

Fj
fjk // Fk

Fi

fij

OO

fik

??~~~~~~~~
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We call 〈Fi, fij〉i,j∈I the diagram associated with {Fi | i ∈ I}; whenever possible we
will not refer explicitly to the embedding maps fij . One of the pleasant properties
of directed diagrams of generated subframes is that we can easily compute their
colimit. If {Fi | i ∈ I} is a set of generated subframes of F, we denote by⋃
{Fi | i ∈ I} the substructure of F induced by

⋃
{Xi | i ∈ I}.

4.1.15. Lemma. Let F = 〈X,≤, R,Q〉 be an ordered Kripke frame and let {Fi |
i ∈ I} be a collection of generated subframes of F. Then

⋃
IFi is also a generated

subframe of F.
Moreover, if we assume that {Fi | i ∈ I} is directed, then

⋃
IFi is the colimit

of the diagram associated with {Fi | i ∈ I}.

Proof Since
⋃
IFi is a substructure of F by definition, in order to show that

⋃
IFi v

F it suffices to show that
⋃
IFi is closed under R-successors and Q-successors. So

suppose that x ∈
⋃
IFi and that xR(y1, . . . , yn) for some y1, . . . , yn ∈ F. Then

there must be some i ∈ I such that x ∈ Fi. Now since Fi v F by assumption, we
see that y1, . . . , yn ∈ Fi. It follows that

⋃
IFi is closed under R-successors; the

argument for Q-successors is identical.
To see that

⋃
IFi is the colimit of the diagram associated with {Fi | i ∈ I},

suppose we have a co-cone of bounded morphisms (gi : Fi → G)i∈I to some frame
G. Saying that (gi : Fi → G)i∈I is a cocone means that whenever x ∈ Fi v Fj,
then gj(x) = gi(x).

Fj
gj // G

Fi

gi

??��������

v

But this is precisely sufficient for allowing us to uniquely define a map g :
⋃
IFi → G

which commutes with all of the gi: given x ∈
⋃
IFi, pick any i ∈ I such that

x ∈ Fi and map x to gi(x). To see that g :
⋃
IFi → G is order-preserving and

has the forth-property, i.e. that it preserves each of the relations ≤, R and Q,
suppose that e.g. x, y ∈

⋃
IFi and x ≤ y. Then there must exist i, j ∈ I such that

x ∈ Fi and y ∈ Fj. Since we assumed that {Fi | i ∈ I} is directed, there must
exist some k ∈ I such that Fi v Fk and Fj v Fk. But now it follows from the fact
that gk : Fk → G is a bounded morphism that g(x) = gk(x) ≤ gk(y) = g(y). The
argument to show that g :

⋃
IFi → G has the back-property is identical to that

from the proof of Lemma 4.1.12. It follows that
⋃
IFi is the colimit of {Fi | i ∈ I}.

4.1.3 Duality for profinite DLO’s

In this subsection, we will show that the category of profinite distributive lattices
with operators and the category of hereditarily finite ordered Kripke frames are
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dually equivalent. Moreover, this duality is the restriction of the duality between
semi-topological DLO’s and ordered Kripke frames.

DLO+ ' OKFrop

Pro- DLOf

⊆

' HωOKFrop

⊆

We start by defining the category in the lower right hand corner of the above
diagram.

4.1.16. Definition. An ordered Kripke frame F is hereditarily finite if for all
x ∈ F, there exists a finite F′ v F such that x ∈ F′. By HωOKFr we denote the
full subcategory of OKFr whose objects are all hereditarily finite ordered Kripke
frames.

One can see the property of being hereditarily finite as a local finiteness
property. We will see below that we can express this property categorically.

4.1.17. Lemma. Let F be an ordered Kripke frame. The following are equivalent:

1. F is hereditarily finite;

2. F ' lim−→I
Fi for some directed diagram of finite frames.

Proof (1) ⇒ (2). If F is hereditarily finite then for every x ∈ F, there is a finite
F′ v F such that x ∈ F′. It follows that F =

⋃
{F′ v F | F′ finite}. It follows by

the first part of Lemma 4.1.15 that the diagram associated with {F′ v F | F′ finite}
is directed: if F0 v F and F1 v F are finite generated subframes of F, then F0 ∪F1

is also a generated subframe of F, which obviously is still finite. It now follows
from the second part of Lemma 4.1.15 that F is a directed colimit of finite frames.

(2) ⇒ (1). Suppose that 〈Fi, fij〉i,j∈I is a directed diagram of finite ordered
Kripke frames; we will show that

⊎
Fi/∼I is hereditarily finite. This is sufficient

since by Lemma 4.1.12, lim−→I
Fi '

⊎
Fi/∼I . Recall that each Fi can be mapped

to
⋃

Fi/∼I by sending x ∈ Fi to [x], the ∼I-equivalence class of x. Let us denote
these maps by hi : Fi →

⊎
Fi/∼I . Let [x] ∈

⊎
Fi/∼I ; we want to show that there

is a finite F′ v
⊎

Fi/∼I such that x ∈ F′. Since [x] ∈
⊎

Fi/∼I , we know that
x ∈

⊎
Fi, so there is some i ∈ I such that x ∈ Fi. It follows that hi(x) = [x], so

that [x] ∈ hi[Fi]. Now we know from Fact 4.1.14 that hi[Fi] v
⊎

Fi/∼I , and since
Fi is finite, so is hi[Fi]. Since [x] ∈

⊎
Fi/∼I was arbitrary, it follows that

⊎
Fi/∼I

is hereditarily finite.

Now that we have characterized the category of hereditarily finite ordered
Kripke frames categorically, it is easy to prove the duality result of this subsection.
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4.1.18. Theorem. Pro- DLOf
∼= (HωOKFr)op.

Proof We already know that DLO+ ' OKFrop (Fact A.8.1). Since Pro- DLOf

is a full subcategory of DLO+ and HωOKFr is a full subcategory of OKFr, it
suffices to show that the functor (·)+ : DLO+ → OKFrop maps profinite DLO’s
to hereditarily finite ordered Kripke frames and vice versa for (·)+ : OKFrop →
DLO+; we need not concern ourselves with morphisms.

Suppose that A is a profinite DLO, i.e. that A ' lim←−I Ai for some co-directed
diagram 〈Ai, fij〉i,j∈I . We will show that A+ is a hereditarily finite ordered Kripke
frame. Since being a limit is a categorical property, it is stable under categorical
equivalenc. Since (·)+ : DLO+ → OKFrop is a contravariant functor however, we
see that A+ must be a colimit for the diagram 〈(Ai)+, (fij)+〉i,j∈I , and since the
arrows are reversed, this diagram is directed rather than co-directed. Since each
Ai is finite, we see by Fact A.8.1 that each (Ai)+ is finite as well. We have now
established that

A+ ' lim−→I
(Ai)+,

for a directed diagram of finite frames 〈(Ai)+, (fij)+〉i,j∈I . It follows by Lemma
4.1.17 that A+ is hereditarily finite.

Conversely, if F is hereditarily finite, then by Lemma 4.1.17 we may assume
that F ' lim−→I

Fi for some directed diagram of finite frames 〈Fi, fij〉i,j∈I . It now

follows by an argument analogous to the one above that 〈F+
i , f

+
ij 〉i,j∈I is a co-

directed diagram of finite DLO’s and that F+ ' lim←−I F+
i ; consequently, F+ is

profinite. This concludes our proof.

4.1.4 Profinite completion via duality

In this subsection, we will show that Â, the profinite completion of a DLO A,
corresponds to the largest hereditarily finite generated subframe of A•, the prime
filter frame of A. We illustrate this with the following picture:

A

µA

  

eA

��@@@@@@@

Aδ

νA
��

A•

Â HωA•

v

The left side of the picture above follows from the commutative diagram of Theorem
3.4.1, which states that the profinite completion µA : A → Â of a lattice-based
algebra A can be factored through eA : A→ Aδ, the canonical extension of A, via
a surjective complete homomorphism νA : Aδ → Â. The right-hand side of the
picture above shows two dual structures which are derived from our DLO A. The
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prime filter frame of A, denoted A•, is known to be the discrete dual of Aδ. What
we will see below is that Â, the profinite completion of A, is dual to HωA•, which
is the largest hereditarily finite generated subframe of A•.

Canonical extensions via duality

Recall that given a DLO A = 〈A,∧,∨, 0, 1,�A,♦A〉, we can think of four different
canonical extensions of A, depending on how we choose to extend �A and ♦A:
by taking (�A)O and (♦A)O, (�A)M and (♦A)M, (�A)O and (♦A)M, or (�A)M and
(♦A)O. Out of these four choices, the last one has the best continuity properties if
we go by Theorem 2.2.18 (1).

4.1.19. Convention. If A = 〈A,∧,∨, 0, 1,�A,♦A〉 is a DLO, then we define
Aδ = 〈Aδ,∧,∨, 0, 1, (�A)M, (♦A)O〉, meaning that we take the lower extension of
the operator(s) of A and the upper extension of the dual operator(s).

We will now discuss how the canonical extension of a DLO A can be constructed
via A∗, the extended Priestley dual of A. First, one takes A∗ and one strips
this structure of its topology, resulting in a discrete ordered Kripke frame we
denote by A•, the prime filter frame of A. This construction is in fact a functor
(·)• : DLO→ OKFrop.

4.1.20. Definition. The prime filter frame of a DLO A = 〈A,∧,∨, 0, 1,♦A,�A〉
is defined as follows:

A• := 〈XA• ,≤A• , RA• , QA•〉,

where

• 〈XA• ,≤A•〉 is the set of prime filters of A, ordered by inclusion;

• F RA• (G1, . . . , Gn) iff ♦A[G1, . . . , Gn] ⊆ F ;

• F QA• (G1, . . . , Gm) iff �−1
A (F ) ⊆

⋃m
i=1bi(A,Gi), where

bi(U, V ) := U × · · · × U︸ ︷︷ ︸
i−1

× V × U × · · · × U︸ ︷︷ ︸
m−i

.

If f : A→ B is a DLO homomorphism, then f• : B• → B• is defined simply as

f• : F 7→ f−1(F ).

The next step in constructing Aδ from A is to take the complex algebra of A•. The
complex algebra functor (·)+ : OKfrop → DLO+ is part of the discrete duality
between semi-topological DLO’s and ordered Kripke frames (Fact 4.1.11).
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4.1.21. Definition. If F = 〈X,≤, R,Q〉 is an ordered Kripke frame, then we
define

F+ := 〈Up(X),∩,∪, ∅, X, 〈R〉, [Q]〉,

the complex algebra of F, where

• 〈Down(X),∩,∪, ∅, X〉 is the lattice of lower sets of 〈X,≤〉;

• 〈R〉 : (U1, . . . , Un) 7→ {x ∈ X | R[x] G U1 × · · · × Un};

• [Q] : (U1, . . . , Um) 7→ {x ∈ X | Q[x] ⊆
⋃m
i=1bi(X,Ui)}.

If f : F→ G is a bounded morphism, then we define f+ : G+ → F+ as

f+ : U 7→ f−1(U).

Having defined the functors (·)• : DLO → OKFrop and (·)+ : OKFrop →
DLO+, we can now describe the canonical extension of a DLO A using duality.

4.1.22. Fact ([38]). Let A be a DLO. Then e : A→ (A•)+, where

e : a 7→ {F ∈ A• | a ∈ F},

is the canonical extension of A.

The above fact is no coincidence; canonical extensions were developed by Jónsson
and Tarski [58] for Boolean algebras with operators precisely to study properties
of duality-based representations such as that in Fact 4.1.22. Note that rather than
defining Aδ first on the lattice reduct of A, and then adding extensions of � and
♦ as we did in §3.3, we can define the canonical extension of a DLO directly. This
is because we restricted our notion of canonical extension in Convention 4.1.19.

4.1.23. Convention. For convenience, we redefine eA : A→ Aδ, the canonical
extension of a DLO A, as eA : A→ (A•)+ (see Fact 4.1.22 above) for the remainder
of this chapter.

4.1.24. Remark. Observe that the functor (·)+ : OKFrop → DLO+ maps an
ordered Kripke frame to its collection of lower sets. Some authors define Priestley
duality differently, using upper sets rather than lower sets. This is possible only if
one also adapts the definition of (·)+ : DLO+ → OKFrop. Both approaches are
mathematically equivalent, as long as the readers are aware which approach is
being used.
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The dual of the profinite completion

In the introduction to this subsection, we mentioned that the profinite completion
of A correspondes to ‘the largest hereditarily finite generated subframe’ of A•.
Below, we will make this notion precise.

4.1.25. Lemma. HωOKFr is a co-reflective subcategory of OKFr.

Proof The statement of the lemma boils down to the following. For each frame F

we need to find a hereditarily finite frame F′ and a bounded morphism h : F′ → F,
such that whenever f : G→ F is a bounded morphism from a hereditarily finite
frame G to F, then there exists a unique f ′ : G→ F′ such that h ◦ f ′ = f .

F

G

f
??��������

f ′
// F′

h

OO

Concretely, we will define F′ to be the following generated subframe of F:

HωF =
⋃
{G | G vω F}.

Observe HωF is indeed a generated subframe of F by Lemma 4.1.15, and by
the same lemma, we see that HωF is a colimit of a directed diagram of finite
frames. We will take h : HωF → F to simply be the embedding map. Now we
must show that HωF has the desired universal property. What we will show is
that if f : G→ F is a bounded morphism from a hereditarily finite frame G to F,
then f [G] v HωF. But this is easy to see: if x ∈ G, then since G is hereditarily
finite, there exists a finite G′ v G such that x ∈ G′. It follows that f(x) ∈ f [G′].
Since G′ is finite, so is f [G′]. Now since also f [G′] v F by Fact 4.1.14, we see that

f(x) ∈ f [G′] v HωF.

Since x ∈ G was arbitrary, it follows that f [G] v HωF. We may therefore take
f ′ : G→ HωF to be f with its codomain restricted to HωF. It follows from basic
set theory that f ′ is the unique map such that h ◦ f ′ = f .

By basic category theory, Hω : OKFr→ HωOKFr is now a functor [69, §IV.3];
if f : F → G is a bounded morphism then Hωf : HωF → HωG is simply the
restriction of f to HωF.

4.1.26. Remark. Observe that our definition of HωF above leaves open the
possibility that HωF is the empty frame. This will happen if every point in
F generates an infinite generated subframe. Not all textbooks on modal logic
universally agree with us that the empty frame is actually a frame, cf. [19,
Definition 1.19].
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We can now show how to construct the profinite completion Â of a DLO A
via duality.

4.1.27. Theorem. Let A be a DLO. Then m : A→ (HωA•)+, where

m : a 7→ {F ∈ HωA• | a ∈ F},

is the profinite completion of A.

Proof Since the profinite completion of A can be characterized via a universal
property (Fact 3.1.19), it suffices to show the following three things:

1. (HωA•)+ is profinite;

2. m : A→ (HωA•)+ is a DLO algebra homomorphism;

3. for every DLO homomorphism f : A→ B, where B is a profinite DLO, there
exists a unique continuous DLO homomorphism f ′ : (HωA•)+ → B such that
f ′ ◦m = f .

(1). This follows immediately from the fact that Hω : OKFr→ HωOKFr is a
functor and Theorem 4.1.18.

(2). Let us denote the embedding HωA• v A• by h : HωA• → A•. Then

h+ : (A•)+ → (HωA•)+

is a complete DLO homomorphism. Now it is an easy calculation to show that

m = h+ ◦ eA; (4.1)

consequently, m : A→ (HωA•)+ is a DLO algebra homomorphism.
(3). Suppose that f : A→ B and that B is a profinite DLO. Then by Corollary

3.4.2, there exists a unique continuous homomorphism f ′′ : (A•)+ → B such that

f ′′ ◦ eA = f. (4.2)

Now since (·)+ and (·)+ form a duality, there exists a bijection

ϕ : Hom((A•)+,B)� Hom(B+,A•) : ϕ−1,

which is natural in A• and B. This bijection gives us a bounded morphism
ϕ(f ′′) : B+ → A•. Since B+ is image-finite by Theorem 4.1.18, it follows from
Lemma 4.1.25 that there exists a unique g : B+ → HωA• such that h ◦ g = ϕ(f ′′).

HωA•
h
��

B+

g
;;

ϕ(f ′′)
// A•
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Observe that it is a consequence of the naturality of ϕ−1 that the following diagram
commutes:

HomOKFr(B+, HωA•)
ϕ−1
//

h◦
��

HomDLO+((HωA•)+,B)

◦h+

��
HomOKFr(B+,A•)

ϕ−1
// HomDLO+((A•)+,B)

Now we see that

f ′′ = ϕ−1 ◦ ϕ(f ′′) since ϕ is a bijection,

= ϕ−1(h ◦ g) since h ◦ g = ϕ(f ′′),

= ϕ−1(g) ◦ h+ by naturality of ϕ−1.

Now we define f ′ := ϕ−1(g). Then we see that

f ′ ◦m = f ′ ◦ h+ ◦ eA by (4.1),

= ϕ−1(g) ◦ h+ ◦ eA by definition of f ′,

= f ′′ ◦ eA since ϕ−1(g) ◦ h+ = f ′′,

= f by (4.2).

Moreover, it follows from the fact that g : B+ → HωA• is unique that f ′ = ϕ−1(g)
is unique.

4.1.5 Conclusions and further work

The duality for profinite DLO’s we presented in §4.1.3 was inspired by the general
categorical approach of Johnstone [54, Ch. VI], and the results on the Heyting
algebra case due to G. & N. Bezhanishvili [14]. The dual characterization of
profinite completion we present in §4.1.4 was inspired by results on the Heyting
algebra case due to G. Bezhanishvili et al. [15]. In [15], the dual of the profinite
completion of a Heyting algebra is described using the Nachbin order compactifi-
cation; this is a different approach than ours, which uses the fact that hereditarily
finite ordered Kripke frames form a co-reflective subcategory of the category of
ordered Kripke frames (Lemma 4.1.25).

An interesting question for further work is whether one can characterize
BoolDLO non-trivially using duality. We will provide a partial answer to this
question in §4.3; we revisit this question explicitly in §4.3.3.

4.2 A brief survey of subcategories of DLO

In this section, we will briefly sketch how the two main results of §4.1 specialize
to three well-known subcategories of DLO: the categories of distributive lattices,
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Boolean algebras and Heyting algebras. We will now recall the main results from
§4.1. Firstly, we showed that the discrete duality for semi-topological DLO’s
restricts to a duality for profinite DLO’s and hereditarily finite ordered Kripke
frames.

DLO+ ' OKFrop

Pro- DLOf

⊆

' HωOKFrop

⊆

Secondly, the profinite completion Â of a DLO A dually corresponds to the largest
hereditarily finite generated subframe of A•, the prime filter frame of A.

A

µA

��

eA

��???????

Aδ

νA
��

' (A•)+

��

A•

Â ' (HωA•)+ HωA•
v

Below we will see that in some cases, the diagrams above collapse. Our prime
examples of DLO’s for which the diagrams do not collapse are Heyting algebras,
which we will briefly discuss in §4.2.3, and Boolean algebras with operators. The
latter will be discussed in greater detail in §4.3.

4.2.1. Remark. In our discussion of completions in this section we have not
included the MacNeille completion (§A.5.2). Duality for MacNeille completions
of Heyting algebras was discussed by Harding & Bezhanishvili [51]. The relation
between canonical extensions and MacNeille completions of monotone lattice-based
algebras has been studied by Gehrke, Harding & Venema [36]. Bezhanishvili &
Vosmaer [16] discuss the question when canonical extensions, MacNeille comple-
tions and profinite completions of distributivel lattices, Heyting algebras and
Boolean algebras are isomorphic, using duality. Finally, we would like to point
out the brief discussion of the circumstances under which profinite completions
and MacNeille completions of modal algebras coincide in [97].

4.2.1 Distributive lattices

In the case of distributive lattices, the discrete duality between DLO+ and OKFr
boils down to the duality between DL+, the category of complete, bi-algebraic
distributive lattices and complete lattice homomorphisms, and Pos, the category
of partially ordered sets and order-preserving maps.

4.2.2. Fact. DL+ ' Posop.
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If we look at BoolDL ⊆ DL+, the category of Boolean topological distributive
lattices and continuous homomorphisms, and Pro- DLf , the category of profinite
distributive lattices and continuous homomorphisms, then it follows from Facts
4.1.5 and 4.1.8 that both of these categories are isomorphic to DL+.

4.2.3. Fact. Pro- DLf
∼= BoolDL ∼= DL+.

We combine these two facts in the following picture:

DL+ ' Posop

BoolDL

∼=
Pro- DLf

∼=

These dualities and isomorphisms have been discussed and rediscovered many
times; we refer the reader to Johnstone [54, §VI-3] and Davey et al. [27] for more
details and historical discussion.

Just like the categories DL+ and Pro- DLf collapse, we see that profinite
completion and the canonical extension of a distributive lattice L are isomorphic.

L

µL

��

eL

��???????

Lδ ' (L•)+ L•

L̂ '

'

(HωL•)+

=

HωL•

=

The fact that νL : Lδ → L̂ is an isomorphism and that νL ◦ eL = µL is a corollary
of Theorem 3.4.1, and was first published by G. Bezhanishvili et al. [15] and
J. Harding [50]. The relation between Lδ and L̂ via duality has been studied in
greater detail in [15] and by G. Bezhanishvili and the author in [16]; also see [27].

4.2.2 Boolean algebras

For Boolean algebras, the discrete duality between DLO+ and OKFr boils down
to the well-known duality between CABA, the category of complete, atomic
Boolean algebras and complete homomorphisms, and Set, the category of sets
and functions.

4.2.4. Fact. CABA ' Setop.
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The situation with topological Boolean algebras is similar to that for distribu-
tive lattices, but it has one important additional ingredient, which is a result due
to D. Papert Strauss [74].

4.2.5. Fact. If A is a compact Hausdorff Boolean algebra, then A is profinite.

This surprising fact contributes to the following collapse of categories:

4.2.6. Fact. Pro- BAf
∼= BoolBA ∼= KHausBA ∼= CABA.

We combine the above facts in the following picture:

CABA ' Setop

KHausBA

∼=
BoolBA

∼=

Pro- BAf

∼=

For further discussion of these dualities we refer the reader to [54, §VII-1.16].
The relation between the canonical extension and the profininte completion

of a given Boolean algebra A = 〈A,∧,∨,¬, 0, 1〉 is the same as in the case of
distributive lattices: the map νA : Aδ → Â from Theorem 3.4.1 is an isomorphism,
so that Aδ ' Â, and Aδ ' (A•)+, i.e. the canonical extension of A is isomorphic
to the complex algebra of the set of ultrafilters of A. Indeed, the embedding of A
into (A•)+ is what canonical extensions were defined to describe by Jónsson and
Tarski [58].

4.2.3 Heyting algebras

For Heyting algebras, the discrete duality between DLO+ and OKFr boils down
to a duality between HA+, the category of complete bi-algebraic Heyting algebras
and complete homomorphisms, and IntKFr, the category of intuitionistic Kripke
frames, which consists of partially ordered sets and bounded morphisms. A
bounded morphism between intuitionistic Kripke frames f : F→ G, where F =
〈XF,≤F〉 and G = 〈XG,≤G〉, is a function f : XF → XG such that

↑G f(x) = f [↑F x],

for all x ∈ XF. One can easily show that every bounded morphism between
intuitionistic Kripke frames is order-preserving; consequently IntKFr is a (non-
full!) subcategory of Pos. The duality between HA+ and IntKFr is obtained by
simply restricting the duality between DL+ and Pos.
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4.2.7. Fact. HA+ ' IntKFrop.

It is hard to pin down the origin of Fact 4.2.7. One early source is de Jongh
& Troelstra [30]; for more categorical detail see G. Bezhanishvili [13]. As far as
topological Heyting algebras are concerned, the following is known.

4.2.8. Fact. Let A be a Heyting algebra. The following are equivalent:

1. A is a Boolean topological algebra;

2. A is profinite;

3. A is complete, bi-algebraic and residually finite.

Proof The equivalence of (1) and (2) was established by Johnstone [54, Prop. VI-
2.10]. The equivalence of (2) and (3) was established by G. & N. Bezhanishvili
[14].

Hereditarily finite intuitionistic Kripke frames are those frames F such that for
all x ∈ F, ↑x is finite. We denote the category of hereditarily finite intuitionistic
Kripke frames by HωIntKFr. The following result, which can be seen as a
specialization of our Theorem 4.1.18, is due to G. & N. Bezhanishvili [14].

4.2.9. Fact. Pro- HAf ' HωIntKFrop.

We summarize the dualities for Heyting algebras we have discussed in the diagram
below.

HA+ ' IntKFrop

BoolHA

⊆

Pro- HAf '

∼ =

HωIntKFrop

⊆

4.2.10. Remark. We have seen that for distributive lattices and Boolean algebras,
there is no difference between semi-topological algebras and topological algebras.
We now have our first example of a category of DLO’s for which not every
semi-topological DLO is a Boolean topological DLO; we will demonstrate this
using duality. Observe that the inclusion HωIntKFrop ⊆ IntKFrop is strict:
consider the poset F = 〈N,≤〉 consisting of the natural numbers with their usual
ordering. The poset F is an intuitionistic Kripke frame, however, for all x ∈ F,
↑x is infinite, so F is a fortiori not hereditarily finite. Now since the inclusion
HωIntKFrop ⊆ IntKFrop is strict, the inclusion BoolHA ⊆ HA+ is necessarily
also strict.
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Unlike the situation with distributive lattices and Boolean algebras, profinite
completions of Heyting algebras do not always coincide with canonical extensions
[15, Th. 5.2]; consequently, given a Heyting algebra A, we are faced with the
general picture:

A

µA

��

eA

��???????

Aδ

νA
��

' (A•)+

��

A•

Â ' (HωA•)+ HωA•

v

Here, A• is the prime filter frame of A, and HωA• is the generated subframe of
A• induced by the set of points x ∈ A• such that ↑x is finite. These facts, which
can again be seen as a specialization of results from §4.1, were first established by
G. Bezhanishvili et al. [15].

4.3 Duality for topological Boolean algebras

with operators

In the previous section, we considered topological algebras in three categories
of distributive lattices with operators: distributive lattices, Boolean algebras
and Heyting algebras. In all three of these categories, every Boolean topological
algebra is profinite. In this final section of this chapter, we will discuss the category
of Boolean algebras with operators (BAO’s). This category has the interesting
property that not every Boolean topological algebra is profinite. Moreover, we can
characterize Boolean topological BAO’s via duality: every Boolean topological
BAO is the dual of an image-finite Kripke frame.

Boolean algebras with operators are the original class of lattice-based algebras
for which canonical extensions were defined by Jónsson and Tarksi [58]. They
arise naturally as an algebraic semantics for various modal logics [19] and also
more generally in algebraic logic, e.g. as relation algebras [59]. We know from
§4.1 that profinite BAO’s correspond to hereditarily finite Kripke frames. We
will see that Boolean topological BAO’s correspond to image-finite Kripke frames,
i.e. frames in which each point has finitely many successors. From a coalgebraic
viewpoint (see Chapter 5), image-finite Kripke frames are a very natural class of
frames: they are coalgebras for the finite powerset functor.

This section is organized as follows. In §4.3.1, we establish the main result of
this section, namely the duality between Boolean topological BAO’s and image-
finite Kripke frames, and we briefly discuss a few examples. Next, in §4.3.2, we
take a closer look at the folk result that a Kripke frame F can be embedded in
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its ultrafilter extension iff F is image-finite, and we show how this result can be
interpreted using duality.

4.3.1 Duality for Boolean topological BAO’s

In this subsection we will show that given a BAO A, the following three things are
equivalent: (1) A is a Boolean topological algebra; (2) A is a compact Hausdorff
algebra; (3) A+, the discrete dual of A, is an image-finite frame. Given the facts
and results we have previously stated, the proof of this result is very simple. We
begin with some conventions and definitions. A distinguishing property of BAO’s
is that operators and dual operators are interdefinable. If A = 〈A,∧,∨,¬, 0, 1,♦A〉
is a BAO with a single normal operator ♦A : Am → A, then

�A : (a1, . . . , am) 7→ ¬♦A(¬a1, . . . ,¬am)

is a dual normal operator. For this reason, we will afford ourselves the convenience
of only considering BAO’s A = 〈A,∧,∨,¬, 0, 1,�A〉 where �A is an m-ary dual
normal operator.1

4.3.1. Definition. The category of semi-topological BAO’s BAO+ consists of
complete atomic Boolean algebras with operators A = 〈A,∧,∨,¬, 0, 1,�A〉, where
�A is an m-ary complete dual normal operator, and complete BAO homomor-
phisms. The category of Kripke frames KFr consists of structures F = 〈X,R〉,
where R ⊆ X × Xm is an (m + 1)-ary relation. A morphism of Kripke frames
f : F→ G is a map satisfying the back and forth conditions of Definition 4.1.10,
or equivalently, such that

fm[R[x]] = R[f(x)]

for all x ∈ F.

Now that we have made it more precise what we mean by BAO’s and Kripke
frames, it is time for us to introduce image-finite Kripke frames.

4.3.2. Definition. By ImωKFr we denote the full subcategory of KFr whose
objects are all image-finite Kripke frames. A frame F = 〈X,R〉 is image-finite (or
finitely branching) if for all x ∈ F, R[x] is finite.

4.3.3. Example. Recall that a frame F is hereditarily finite if for every x ∈ F,
there exists a finite generated subframe F′ v F such that x ∈ F′. Not every
image-finite frame is hereditarily finite: consider the frame F := 〈N, S〉, where S
is the successor relation: x S y iff y = x+ 1. The frame F is image-finite, since
for every x ∈ F, S[x] = {x + 1} is a finite set. However, it is not hard to show
that if F′ v F, then F′ must be infinite.

1We might as well have chosen to take an operator rather than a dual operator as primary.
Our choice is a matter of taste.
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We now arrive at the key lemma which will allow us to prove the duality result
for Boolean topological DLO’s and image-finite frames.

4.3.4. Lemma. Let F = 〈X,R〉, with R ⊆ Xm+1, be a Kripke frame. Then F is
image-finite iff [R] : P(W )m → P(W ) is Scott-continuous.

Proof For the sake of simplicity we will only treat the case where m = 2. Recall
from §A.8 that for all U, V ∈ P(X),

[R](U, V ) := {x ∈ X | R[x] ⊆ U ×X ∪X × V }.

Suppose that 〈X,R〉 is image-finite; we will show that [R] : P(X)×P(X)→ P(X)
is Scott-continuous. By Fact A.3.4, it suffices to show that [R] is Scott-continuous
in each coordinate. Now suppose that {Ui | i ∈ I} ⊆ P(X) is a directed collection
of sets and V ∈ P(X) is an arbitrary set, and take x ∈ [R](

⋃
IUi, V ). We will show

that x ∈
⋃
I [R](Ui, V ); since [R] is order-preserving this is sufficient to show that

[R] preserves directed joins in its first coordinate. Now since x ∈ [R](
⋃
IUi, V ), it

follows that

R[x] ⊆ (
⋃
IUi)×X ∪X × V by definition of [R],

=
⋃
I(Ui ×X) ∪X × V by elementary set theory,

=
⋃
I(Ui ×X ∪X × V ) idem.

Now since {Ui | i ∈ I} ⊆ P(X) is directed, so is {Ui ×X ∪X × V | i ∈ I}. Since
R[x] is finite by assumption, there must be some j ∈ I such that

R[x] ⊆ Uj ×X ∪X × V.

Now we see that x ∈ [R](Uj, V ), so consequently x ∈
⋃
I [R](Ui, V ). Since x was

arbitrary it follows that

[R](
⋃
IUi, V ) ⊆

⋃
I [R](Ui, V ).

Since {Ui | i ∈ I} was arbitrary, it follows that [R] preserves directed joins in its
first coordinate. An analogous argument shows that this also holds for the second
coordinate; we conclude that [R] is Scott-continuous.

For the converse, suppose that [R] is Scott-continuous. Take x ∈ X; we want
to show that R[x] is finite. It is easy to verify that [R](X, ∅) = X. Let

S := {U ⊆ X | X finite},

then X =
⋃
S. It follows that x ∈ [R](

⋃
S, ∅). Now since [R] is Scott-continuous,

there must be some U1 ∈ S such that x ∈ [R](U1, ∅), so that

R[x] ⊆ U1 ×X ∪X × ∅ = U1 ×X.
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An analogous argument shows that there must be a U2 ∈ S such that R[x] ⊆ X×U2.
But now we see that

R[x] ⊆ U1 ×X ∩X × U2 = U1 × U2,

and since both U1 and U2 are finite, it follows that R[x] must be finite. Since
x ∈ X was arbitrary it follows that 〈X,R〉 is image-finite.

The lemma above equates being image-finite with a continuity property; all that
is left for us to do is to show that this continuity property precisely characterizes
Boolean topological BAO’s.

4.3.5. Theorem. KHausBAO ∼= BoolBAO ' ImωKFrop.

Proof To see why KHausBAO ∼= BoolBAO, first observe that BoolBAO is
a full subcategory of KHausBAO because every Boolean topological BAO is
necessarily a compact Hausdorff BAO. Moreover, if A = 〈A,∧,∨,¬, 0, 1,�A〉 is
a compact Hausdorff BAO, then its Boolean algebra reduct 〈A,∧,∨,¬, 0, 1〉 is a
compact Hausdorff Boolean algebra. By Fact 4.2.5, 〈A,∧,∨,¬, 0, 1〉 is a profinite
Boolean algebra; consequently the bi-Scott topology on A is a Boolean topology,
so that A is a Booleaen topological BAO. Since A was arbitrary it follows that
each compact Hausdorff BAO is a Boolean topological BAO.

We will now show that BoolBAO ' ImωKFrop. Since BoolBAO is a full
subcategory of BAO+, and since ImωKFr is a full subcategory of KFr, it suffices
to show that (·)+ maps objects of BoolBAO to objects of ImωKFr, and conversely
that (·)+ maps objects of ImωKFr to objects of BoolBAO. First, suppose that
A = 〈A,∧,∨,¬, 0, 1,�A〉 is a Boolean topological BAO. Then �A : Am → A must
be (σ, σ)-continuous; since �A is order-preserving, it follows by Lemma 2.1.17 that
�A is (σ↑, σ↑)-continuous. Now by Lemma 4.3.4, A+ is image-finite.

Next, consider an image-finite Kripke frame F = 〈X,R〉. By duality, F+ is a
semi-topological BAO, so the Boolean reduct of F+ is a profinite Boolean algebra
and [R] : F+ → F+ is (σ↓, σ↓)-continuous by Lemma 4.1.6. Now since we assumed
that F is image-finite, it follows by Lemma 4.3.4 that [R] is (σ↑, σ↑)-continuous;
consequently, by Lemma 2.1.17, [R] : F+ → F+ is (σ, σ)-continuous, so that F+ is
indeed a Boolean topological algebra. This concludes our proof.
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We can now draw the following diagram to present the dualities for topological
BAO’s.

BAO+ ' KFrop

KHausBAO

⊆

BoolBAO

∼ =

' ImωKFrop

⊆

Pro- BAOf

⊆
' HωKFrop

⊆

4.3.6. Remark. Both inclusions HωKFrop ⊆ ImωKFrop ⊆ KFrop are strict; con-
sequently, the inclusions Pro- BAOf ⊆ BoolBAO and KHausBAO ⊆ BAO+

are also strict.
To see why the inclusions HωKFrop ⊆ ImωKFrop ⊆ KFrop are strict, consider

the frames F := 〈N,≤〉 and G := 〈N, S〉, where xSy iff y = x+ 1. It is not hard
to see that F is not image-finite (cf. Example 4.3.3); it is also not hard to see that
G is image-finite but not hereditarily finite.

4.3.7. Remark. Recall from §3.1.1 that for general reasons, there exists a com-
pactification functor β : BAO → KHausBAO. Since KHausBAO forms a
subcategory of BAO, β : BAO → KHausBAO is a reflector from BAO to
KHausBAO. The behaviour of the compactification functor for BAO’s is similar
to that of the profinite completion. For instance, it is a corollary of Theorem 3.4.14
that for each BAO A, there exists a unique map h : Aδ → βA such that h◦eA = ηA,
where ηA : A→ βA is the natural map from A to βA. The compactification βA
can also be described using duality, analogously to Theorem 4.1.27, using the fact
that ImωKFr is a co-reflective subcategory of KFr.

4.3.8. Example. Let n be a natural number and define

altn :=
∨

0≤j≤n

�
(

(
∧

0≤i<jpi)→ pj

)
.

An alternative, equivalent form of this axiom is:∧
0≤i≤n

♦pi →
∨

0≤i<j≤n

♦(pi ∧ pj).

It is known that if A is a BAO such that A |= altn, then Aδ ∈ HSP(A) [11], also
see the discussion of ‘logics of bounded alternativity’ in [64]. We will show how
this result can be understood in terms of compact Hausdorff BAO’s.

Assume that A |= altn; then it is known (cf. [11]) that for each x ∈ A•, |R[x]| ≤
n. A fortiori, A• is image-finite, so Aδ = (A•)+ is a compact Hausdorff BAO by
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Theorem 4.3.5. We will argue that in fact, eA : A→ Aδ is the compactification of A.
To establish this fact, it suffices to show that for every homomorphism f : A→ B,
where B is a compact Hausdorff modal algebra, there exists a unique continuous
f ′ : Aδ → B such that f ′ ◦ eA = f . This is indeed the case: by Theorem 4.3.5,
B is a Boolean topological algebra, so by Theorem 3.4.14, there exists a unique
continuous f ′ : Aδ → B such that f ′ ◦ eA = f . Since f : A→ B was arbitrary, we
conclude that eA : A→ Aδ is indeed the compactification of A. Now by Corollary
3.1.7, Aδ ∈ HSP(A).

4.3.2 Ultrafilter extensions of image-finite Kripke frames

The ultrafilter extension of a Kripke frame is an important construction in the
model theory of modal logic [19]; for instance, it used to state the Goldblatt-
Thomason theorem. In this subsection we will investigate a folklore result, namely
that a Kripke frame F can be embedded in its ultrafilter extension if and only if F

is image-finite; we will see that this result is essentially a corollary of Theorem
3.4.16.

4.3.9. Definition. Given a frame F = 〈W,R〉, we define

ue F := (F+)•.

There is a natural map iF : F→ ue F, defined by

iF : x 7→ {W ⊆ X | x ∈ W},

i.e. sending x ∈ X to the principal ultrafilter over X generated by x.

One might ask if iF : F → ue F is a bounded morphism; we will see in Theorem
4.3.11 that this is not always the case. Before we can show why, we need to explain
the connection between ultrafilter extensions of Kripke frames and canonical
extensions of BAO’s. Observe that

(ue F)+ =
(
(F+)•

)+
by definition of ue,

=
(
F+
)δ

by Convention 4.1.23,

where the BAO F+ is embedded in (ue F)+ via

eF+ : W 7→ {F ∈ ue F | W ∈ F}. (4.3)

We will now show that there is a natural relation between the two maps iF : F→
ue F and eF+ : F+ → (ue F)+. Recall that Al is the lattice reduct of A, and that
if Al is profinite then by Corollary 3.4.2, there exists a unique complete lattice
homomorphism g : (Aδ)l → Al such that g ◦ eA = idA.
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4.3.10. Lemma. Let F be a Kripke frame. Then

(iF)+ :
(
(ue F)+

)l → (
F+
)l

is a complete Boolean algebra homomorphism and (iF)+ ◦ eF+ = idF+.

Proof Since the duality between semi-topological BAO’s and Kripke frames is
an extension of the duality between complete Boolean algebras and sets, it follows
that the (set) function iF : F→ ue F corresponds to a complete Boolean algebra
homomorphism

(iF)+ :
(
(ue F)+

)l → (
F+
)l
.

Moreover, an easy calculation shows that (iF)+◦eF+ = idF+ . Let us denote elements
of (ue F)+ by W ,V for the duration of this proof. Then since (iF)+ := (iF)−1, we
see that

(iF)+ : W 7→ {x ∈ F | iF(x) ∈ W}. (4.4)

Now let W ∈ F+, then we see that

(iF)+ ◦ eF+(W )

= (iF)+ ({F ∈ ue F | W ∈ F}) by (4.3),

= {x ∈ F | iF(x) ∈ {F ∈ ue F | W ∈ F}} by (4.4),

= {x ∈ F | W ∈ iF(x)} by elementary set theory,

= {x ∈ F | x ∈ W} by definition of iF,

= W.

It follows that (iF)+ ◦ eF+ = idF+ .

We now arrive at the main result of this subsection.

4.3.11. Theorem. Let F = 〈W,R〉 be a Kripke frame. The natural map iF : F→
ue F is a bounded morphism iff F is image-finite.

Proof Recall from our discussion above that (F+)δ = (ue F)+. Now if iF : F→ ue F

is a bounded morphism, then

(iF)+ : (ue F)+ → F+

is a BAO homomorphism, and by Lemma 4.3.10, (iF)+ is a complete lattice algebra
homomorphism such that

(iF)+ ◦ eF+ = idF+ .

It now follows from Theorem 3.4.16 that F+ is a Boolean topological algebra, so
by Theorem 4.3.5, F is image-finite.
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For the converse, assume that F is image-finite. By Theorem 3.4.16, there
exists a unique complete lattice homomorphism

g :
(
(ue F)+

)l → (
F+
)l

such that eF+ ◦ g = idF+ . By Lemma 4.3.10 and uniqueness of g, it must be the
case that g = (iF)+. Now since F+ is a Boolean topological algebra by Theorem
4.3.5, g : (ue F)+ → F+ is in fact a modal algeba homomorphism. Since we have
already established that g = (iF)+, it follows by duality that iF is a bounded
morphism.

4.3.3 Conclusions and further work

In §4.3.1, we showed that every compact Hausdorff BAO is a Boolean topological
BAO, and that these BAO’s correspond to image-finite Kripke frames via discrete
duality (Theorem 4.3.5). One of the key insights for this result was provided by
Lemma 4.3.4, which seems to be folklore. Theorem 4.3.11, which states that a
Kripke frame F embeds in ue F iff F is image finite, also seems to be a folklore
result. However, the proof we present, using duality for image-finite frames, and
reducing the question to whether F+ is a retract of (F+)δ, is new.

Further work

With §4.3.1 we have provided a partial answer to the question from §4.1.5 whether
BoolDLO can be characterized in a meaningful way via duality: if we restrict
our attention from DLO’s to BAO’s, then the answer is yes. The question
whether BoolDLO can be characterized dually in a non-trivial way is still open
however. (A trivial characterization would be to say that Boolean topological
DLO’s correspond to ordered Kripke frames F = 〈X,≤, R,Q〉 such that 〈R〉
preserves co-directed intersections of lower sets, and [Q] preserves directed unions
of lower sets.)

Another interesting question, which is related to modal logic, is to see whether
one can prove without using duality that if A is a modal algebra such that A |= ψn,
then Aδ is a compact Hausdorff algebra, cf. Example 4.3.8.





Chapter 5

Coalgebraic modal logic in point-free
topology

5.1 Introduction

In this chapter we will show how powerlocales, a construction in point-free topology,
can be understood and studied via coalgebraic modal logic.

Hyperspaces and powerlocales

The Vietoris hyperspace construction is a topological construction on compact
Hausdorff spaces, which was introduced in 1922 by L. Vietoris [95] as a general-
ization of the Hausdorff metric. Given a topological space X one defines a new
topology τX on KX, the set of compact subsets of X. This new topology τX has
as its basis all sets of the form

∇{U1, . . . , Un} := {F ∈ KX | F ⊆
⋃n
i=1Ui and ∀i ≤ n, F G Ui},

where U1, . . . , Un ⊆ X is a finite collection of open sets and F G U is notation to
indicate that F ∩ U 6= ∅. Alternatively, one can use a subbasis to generate τX ,
consisting of subbasic open sets of the shape

�(U) := {F ∈ KX | F ⊆ U},

and

♦(U) := {F ∈ KX | F G U}.

To generate the basic open sets ∇{U1, . . . , Un} from �(U) and ♦(U), one can use
the following expression:

∇{U1, . . . , Un} = � (
⋃n
i=1Ui) ∩

⋂n
i=1♦(Ui).

141
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In the field of point-free topology, a considerable amount of general topology
has been recast in a way which makes it more compatible with cosntructive
mathematics and topos theory. (Standard references are Johnstone [54] and
Vickers [91]). The main idea is to study the lattices of open sets of topological
spaces, rather than their associated sets of points. In other words, it is an approach
to topology via algebra, where one studies categories of locales rather than of
topological spaces. Locales have algebraic representations in the form of their
associated frames. A frame is a complete lattice in which infinite joins distribute
over finite meets. In accordance with the algebraic approach which is prevalent
throughout this dissertation, we will only work with frames in this chapter. We
will be using the word ‘powerlocale’ rather than ‘powerframe’ however, in order
to remain consistent with standard terminology.

Johnstone defines a point-free, syntactic version of the Vietoris powerlocale,
using �(a) and ♦(a). However he soon also introduces expressions of the shape

�(
∨
A) ∧

∧
b∈B♦(b),

where A and B are finite sets, which should remind the reader of the expression
for ∇{U1, . . . , Un} above. Nevertheless, the description of the Vietoris powerlocale
using �(a) and ♦(a) is usually taken as primitive, and not without good reason:
one can construct the Vietoris powerlocale by first constructing one-sided locales
corresponding to the �-generators on the one hand and the ♦-generators on the
other, and then joining these two one-sided powerlocales to obtain the Vietoris
powerlocale [94]. The question remains however, if one can describe the Vietoris
powerlocale directly in terms of its basic opens, corresponding to ∇{U1, . . . , Un},
rather than the subbasic opens �(U) and ♦(U). One of the main contributions of
this chapter is to show that this is indeed possible.

The cover modality and coalgebraic modal logic

The reader may have noticed that the notation using � and ♦ above is highly
suggestive of modal logic; this is no coincidence. In Boolean-based modal logic,
one can define a ∇-modality which is applied to finite sets of formulas. The
∇-modality then has the following semantics. If M = 〈W,R, V 〉 is a Kripke model
and α is a finite set of formulas, then for any state w ∈ W ,

M, w 
 ∇α iff ∀a ∈ α, ∃v ∈ R[w], M, v 
 a and

∀v ∈ R[w], ∃a ∈ α, M, v 
 a.

In classical modal logic, the ∇-modality is equi-expressive with the �- and ♦-
modalities, using the following translations:

∇α ≡ � (
∨
α) ∧

∧
a∈α♦a,
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and in the other direction, one can use

�a ≡ ∇{a} ∨ ∇∅, and ♦a ≡ ∇{a,>}.

The ∇ was first introduced as a modality by Barwise & Moss [10] in the study of
circularity and by Janin & Walukiewicz [53] in the study of the modal µ-calculus.
It was in Moss [71] however that the ∇-modality stepped into the spotlight as a
modality suitable for coalgebraic modal logic.

A T -coalgebra is simply a function σ : X → TX, where X is the underlying
set of states of the coalgebra, and a T -coalgebra morphism between coalgebras
σ : X → TX and σ : X ′ → TX ′ is simply a function f : X → X ′ such that
Tf ◦ σ = σ′ ◦ f . Aczel [2] introduced T -coalgebras as a means to study transition
systems. A natural example of such transition systems is provided by the Kripke
frames and Kripke models used in the model theory of propositional modal logic:
the category of Kripke frames and bounded morphisms is isomorphic to the category
of P -coalgebras, where P : Set→ Set is the covariant powerset functor. Universal
coalgebra was later introduced by J. Rutten [78] as a theoretical framework for
modelling behaviour of set-based transition systems, parametric in their transition
functor T : Set→ Set.

Coalgebraic logics are designed and studied in order to reason formally about
coalgebras; one of the main applications of this approach is the design of specifi-
cation and verification languages for coalgebras, i.e. for transition systems. One
influential approach to coalgebraic logic, known as coalgebraic modal logic, is to
try and generalize properties of propositional modal logic, because the Kripke
semantics of classical modal logic is coalgebra in disguise. The cover modality ∇
was introduced in coalgebraic modal logic by L. Moss [71], who made the funda-
mental observation that the modal semantics for ∇ can be described using the
set-theoretical/categorical technique of relation lifting. The most recent sound and
complete derivation system for coalgebraic ∇-logic, the Carioca axiomatization,
was introduced through the collaborative efforts of B́ılková, Palmigano & Venema
[17] and Kupke, Kurze & Venema [66].

Contribution

The results in this chapter are all joint work with Yde Venema and Steve Vickers.
We list some of the main contributions of this work:

• We introduce a generalized powerlocale construction, parametric in a tran-
sition functor T . The classical Vietoris powerlocale construction is an
instantiation of the T -powerlocale, where we take T = Pω, the covariant
finite power set functor.

• We show that the connection between the Vietoris construction and the
cover modality, which was implicit in semantic form already from Vietoris’s
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1922 paper [95], can also be made explicit syntactically using coalgebraic
modal logic. Our approach shows how to describe the Vietoris constructions
syntactically using the∇-expressions as primitives, rather than as expressions
derived from �- and ♦-primitives, as it was introduced in [54]. This approach
runs parallel to that of Kupke, Kurz & Venema who introduced the Boolean
algebra version of the construction we apply to frames [66, 67].

• Additionally, we take first steps towards developing a geometric coalgebraic
modal logic, i.e. a logic using finite conjunctions and infinite disjunctions.
This is a step away from previous work on the Carioca axioms [73, 17, 66, 62,
67] where one only considered finite disjunctions. Possible future applications
in coalgebra include the development of modal logics for coalgebras on
compact Hausdorff spaces, rather than on discrete sets.

This chapter is organized in a more self-contained manner than the rest of this
dissertation. In §5.2 we introduce preliminaries on category theory, relation lifting,
frame presentations and the classical point-free presentation of the powerlocale,
along with a new compactness proof. In §5.3 we introduce the T -powerlocale
functor VT . We then show that the Pω-powerlocale is isomorphic to the classical Vi-
etoris powerlocale and we demonstrate how one can extend natural transformations
between transition functors to natural transformations between T -powerlocale
functors. We conclude the section with a different presentation of T -powerlocales,
which reveals that each element of a T -powerlocale has a disjunctive normal form.
Finally in §5.4 we show several first preservation results: we show that VT preserves
regularity and zero-dimensionality, and the combination of zero-dimensionality
and compactness.

5.2 Preliminaries

5.2.1 Basic mathematics

First we fix some mathematical notation and terminology, which will sometimes
differ from that used previously in this dissertation.

Let f : X → X ′ be a function. Then the graph of f is the relation

Grf ::= {(x, f(x)) ∈ X ×X ′ | x ∈ X}

Given a relation R ⊆ X ×X ′, we denote the domain and range of R by dom(R)
and rng(R), respectively. Given subsets Y ⊆ X, Y ⊆ X ′, the restriction of R to
Y and Y ′ is given as

R�Y×Y ′ ::= R ∩ (Y × Y ′).
The composition of two relations R ⊆ X ×X ′ and R′ ⊆ X ′ ×X ′′ is denoted by
R ;R′, whereas the composition of two functions f : X → X ′ and f ′ : X ′ → X ′′ is
denoted by f ′ ◦ f . Thus, we have Gr(f ′ ◦ f) = Grf ; Grf ′.
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We will denote by P (X) and Pω(X) the power set and finite power set of a
given set X. The diagonal on X is the relation ∆X = {(x, x) | x ∈ X}. Given two
sets X, Y we say that X and Y overlap, notation: X G Y , if X ∩ Y is inhabited
(that is, non-empty).

A pre-order is a pair (X,R) where R is a reflexive and transitive relation on
X. Given such a pre-order we define the operations ↓(X,R), ↑(X,R) : PX → PX
by ↓(Y ) := {x ∈ X | x R y for some y ∈ Y } and ↑(Y ) := {x ∈ X | y R
x for some y ∈ Y }. If no confusion is likely, we will write ↓X or ↓ rather than
↓(X,R).

5.2.2 Category theory

We will assume familiarity with the basic notions from category theory discussed
in §A.2, including those of categories, functors, natural transformations, and (co-)
monads.

We let Set denote the category with sets as objects and functions as morphisms;
endofunctors on this category will simply be called set functors. The most
important set functor that we shall use is the covariant power set functor P , which
is in fact (part) of a monad (P, µ, η), with ηX : X → P (X) denoting the singleton
map ηX : x 7→ {x}, and µX : PPX → PX denoting union, µX(A) :=

⋃
A. The

contravariant power set functor will be denoted by P̆ .

We will restrict our attention to set functors satisfying certain properties, of
which the first one is crucial. In order to define it, we need to recall the notion of a
(weak) pullback. Given two functions f0 : X0 → X, f1 : X1 → X, a weak pullback
is a set P , together with two functions pi : P → Xi such that f0 ◦ p0 = f1 ◦ p1,
and in addition, for every triple (Q, q0, q1) also satisfying f0 ◦ q0 = f1 ◦ q1, there is
an arrow h : Q→ P such that q0 = h ◦ p0 and q1 = h ◦ p0, in a diagram:

Q

q0

��

q1

$$

h

  @
@

@
@

P
p1 //

p0
��

X1

f1
��

X0 f0
// X

For (P, p0, p1) to be a pullback, we require in addition the arrow h to be unique.

A functor T preserves weak pullbacks if it transforms every weak pullback
(P, p0, p1) for f0 and f1 into a weak pullback (TP, Tp0, Tp1) for Tf0 and Tf1. An
equivalent characterization is to require T to weakly preserve pullbacks, that is, to
turn pullbacks into weak pullbacks. In the next subsection we will see yet another,
and motivating, characterization of this property.

The second property that we will impose on our set functors is that of standard-
ness. Given two sets X and X ′ such that X ⊆ X ′, let ιX,X′ denote the inclusion
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map from X into X ′. A weak pullback-preserving set functor T is standard if it
preserves inclusions, that is: TιX,X′ = ιTX,TX′ for every inclusion map ιX,X′ .

5.2.1. Remark. Unfortunately the definition of standardness is not uniform
throughout the literature. Our definition of standardness is taken from Moss [71],
while for instance Adámek & Trnková [4] have an additional condition involving
so-called distinguished points. Fortunately, the two definitions are equivalent in
case the functor preserves weak pullbacks, see Kupke [65, Lemma A.2.12].

The restriction to standard functors is not essential, since every set functor
is ‘almost standard’ [4, Theorem III.4.5]: given an arbitrary set functor T , we
may find a standard set functor T ′ such that the restriction of T and T ′ to all
non-empty sets and non-empty functions are naturally isomorphic.

Finally, we shall require that our functors are determined by their behaviour
on finite sets. Call a standard set functor T finitary if TX =

⋃
{TX ′ | X ′ ⊆ω X}.

Our focus on finitary functors is not so much a restriction as a convenient way
to express the fact that we are interested in the finitary version of an arbitrary
set functor, in the sense that Pω is the finitary version of P . Generally, we may
define, for a standard functor T , the functor Tω that on objects X is defined by
TωX =

⋃
{TX ′ | X ′ ⊆ X}, while on arrows f we simply put Tωf := Tf .

5.2.2. Convention. Throughout this chapter we will assume that T is a finitary,
standard endofunctor on Set that preserves weak pullbacks.

Many set functors satisfy the conditions listed in Convention 5.2.2, guaranteeing
a wide scope for the results in this chapter.

5.2.3. Example. The identity functor Id , the finitary power set functor Pω, and,
for each set Q, the constant functor CQ (given by CQX = Q and CQf = idQ) are
standard, finitary, and preserve weak pullbacks.

For a slightly more involved example, consider the finitary multiset functor
Mω. This functor takes a set X to the collection MωX of maps µ : X → N of
finite support (that is, for which the set Supp(µ) := {x ∈ X | µ(x) > 0} is finite),
while its action on arrows is defined as follows. Given an arrow f : X → X ′ and a
map µ ∈MωX, we define (Mωf)(µ) : X ′ → N by putting

(Mωf)(µ)(x′) :=
∑
{µ(x) | f(x) = x′}.

With this definition, the functor is not standard, but we may ‘standardize’ it
by representing any map µ : X → N of finite support by its ‘support graph’
{(x, µx) | µx > 0}. As a variant of Mω, consider the finitary probability functor
Dω, where DωX = {δ : X → [0, 1] | Supp(δ) is finite and

∑
x∈X δ(x) = 1}, while

the action of Dω on arrows is just like that of Mω.
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Perhaps more importantly, the class of finitary, standard functors that preserve
weak pullbacks is closed under the following operations: composition (◦) , product
(×), co-product (+), and exponentiation with respect to some set D ((·)D). As a
corollary, inductively define the following class EKPF ω of extended finitary Kripke
polynomial functors :

T ::= Id | Pω | CQ |Mω | Dω | T0 ◦ T1 | T0 + T1 | T0 × T1 | TD.

Then each extended Kripke polynomial functor falls in the scope of the work in
this chapter.

As running examples in this chapter we will often take the binary tree functor
B = Id × Id , and the finitary power set functor Pω.

An interesting result of standard functors is that they preserve finite inter-
sections [4, Theorem III.4.6]: T (X ∩ Y ) = TX ∩ TY . As a consequence, if T is
finitary, for any object ξ ∈ TX we may define

BaseTX(ξ) :=
⋂
{X ′ ∈ Pω(X) | ξ ∈ TX ′},

and show that BaseTX(ξ) is the smallest set X such that ξ ∈ TX [90]. In fact, the
base maps provide a natural transformation Base : T → Pω; for referencing we
will mention this fact explicitly in the next section.

To facilitate the reasoning in this chapter, which will involve objects of various
different types, we use a variable naming convention.

5.2.4. Convention. Let X be a set and let T : Set → Set be a functor. We
use the following naming convention:

Set Elements
X a, b, . . . , x, y, . . .

TX α, β, . . .
PX A,B, . . .

PTX Γ,∆, . . .
TPX Φ,Ψ, . . .

5.2.3 Relation lifting

In §5.1, we mentioned that coalgebraic modal logic using the cover modality, as
introduced by Moss, crucially uses relation lifting, both for its syntax and semantics.
Relation lifting is a technique which allows one to extend a functor T : Set→ Set
defined on the category of sets (satisfying the conditions of Convention 5.2.2) to
a functor T : Rel→ Rel on the category of sets and relations in a natural way.
In this subsection we will introduce some of the basic facts and definitions about
relation lifting.
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Let T be a set functor. Given two sets X and X ′, and a binary relation R
between X and X ′, we define the lifted relation T (R) ⊆ TX × TX ′ as follows:

T (R) := {((Tπ)(ρ), (Tπ′)(ρ)) | ρ ∈ TR},

where π : R → X and π′ : R → X ′ are the projection functions given by
π(x, x′) = x and π′(x, x′) = x′. In a diagram:

X R
πoo π′ // X ′

TX TR
Tπoo

����
〈Tπ,Tπ′〉

��

Tπ′ // TX ′

TR� _

��
TX × TX ′

AA������������������

]]:::::::::::::::::

In other words, we apply the functor T to the relation R, seen as a span

X R
πoo π′ // X ′ , and define TR as the image of TR under the product map

〈Tπ, Tπ′〉 obtained from the lifted projection maps Tπ and Tπ′.
Let us first see some concrete examples.

5.2.5. Example. Fix a relation R ⊆ X × X ′. For the identity and constanct
functors, we find, respectively:

IdR = R

CQR = ∆Q.

The relation lifting associated with the power set functor P can be defined
concretely as follows:

PR = {(A,A′) ∈ PX × PX ′ | ∀a ∈ A ∃a′ ∈ A′.aRa′ and ∀a′ ∈ A′ ∃a ∈ A.aRa′}.

This relation is known under many names, of which we mention that of the
Egli-Milner lifting of R. For any standard, weak pullback preserving functor T
it can be shown that the lifting of Tω agrees with that of T , in the sense that
TωR = TR ∩ (TωX × TωX ′). From this it follows that

for all A ∈ TωX,A′ ∈ TωX ′ : A PωR A′ iff A PR A′,

and for this reason, we shall write PR rather than PωR.
Relation lifting for the finitary multiset functor is slightly more involved: given

two maps µ ∈MωX,µ
′ ∈MωX

′, we put µ MωR µ′ iff

there is some map ρ : R→ N such that ∀x ∈ X.
∑
{ρ(x, x′) | x′ ∈ X ′} = 1

and ∀x′ ∈ X ′.
∑
{ρ(x, x′) | x ∈ X} = 1.
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The definition of Dω is similar.
Finally, relation lifting interacts well with various operations on functors [52].

In particular, we have

T0 ◦ T1R = T 0(T 1R)

T0 + T1R = T 0R ∪ T 1R

T0 × T1R =
{

((ξ0, ξ1), (ξ′0, ξ
′
1)) | (ξi, ξ′i) ∈ T i, for i ∈ {0, 1}

}
.

TDR = {(ϕ, ϕ′) | (ϕ(d), ϕ′(d) ∈ TR for all d ∈ D}

5.2.6. Remark. Strictly speaking, the definition of the relation lifting of a given
relation R depends on the type of the relation, i.e. given sets X,X ′, Y, Y ′ such
that R ⊆ X ×X ′ and R ⊆ Y × Y ′, it matters whether we look at R as a relation
from X to X ′ or as a relation from Y to Y ′. We have avoided this potential source
of ambiguity by requiring the functor T to be standard, see also Fact 5.2.7(6).

Relation lifting has a number of properties that we will use throughout the
chapter. It can be shown that relation lifting interacts well with the operation of
taking the graph of a function f : X → X ′, and with most operations on binary
relations. Most of the properties below are easy to establish — we refer to [67] for
proofs.

5.2.7. Fact. Let T be a set functor. Then the relation lifting T satisfies the
following properties, for all functions f : X → X ′, all relations R, S ⊆ X ×X ′,
and all subsets Y ⊆ X, Y ′ ⊆ X ′:

1. T extends T : T (Grf) = Gr(Tf);

2. T preserves the diagonal: T (∆X) = ∆TX ;

3. T commutes with relation converse: T (R̆ ) = (TR)̆ ;

4. T is monotone: if R ⊆ S then T (R) ⊆ T (S);

5. T distributes over composition: T (R ; S) = T (R) ; T (S), if T preserves weak
pullbacks.

6. T commutes with restriction: T (R�Y×Y ′) = TR�TY×TY ′, if T is standard
and preserves weak pullbacks.

Fact 5.2.7(5) plays a key role in our work. In fact, distributivity of T over
relation composition is equivalent to T preserving weak-pullbacks; the proof of
this equivalence goes back to Trnková [88].

Many proofs in this chapter will be based on Fact 5.2.7, and we will not always
provide all technical details. In the lemma below we have isolated some facts that
will be used a number of times; the proof may serve as a sample of an argument
using properties of relation lifting.
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5.2.8. Lemma. Let X, Y be sets, let f, g : X → Y be two functions and let
R ⊆ X ×X and S ⊆ Y × Y be relations.

1. If (X,R) is a pre-order, then so is (TX, TR).

2. If f(x) S g(x) for all x ∈ X, then Tf(α) TS Tg(α) for all α ∈ TX.

3. If x R y implies f(x) S g(y) for all x, y ∈ X, then α TR β implies
(Tf)α TS (Tg)β for all α, β ∈ TX.

Proof For part 1, observe that (X,R) is a pre-order iff ∆X ⊆ R and R ;R ⊆ R.
Hence, if (X,R) is a pre-order, it follows from Fact 5.2.7(2,4) that ∆TX = T∆X ⊆
TR, and from Fact 5.2.7(5,4) that TR ; TR = T (R ; R) ⊆ TR, implying that
(TX, TR) is a pre-order as well.

For part 2, observe that the antecedent can be succinctly expressed as

(Grf )̆ ; Grg ⊆ S.

Then it follows by the properties of relation lifting that

(GrTf )̆ ; GrTg = (T (Grf))̆ ; T (Grg) (Fact 5.2.7(1))

= T ((Grf )̆ ) ; T (Grg) (Fact 5.2.7(3))

= T ((Grf )̆ ; Grg) (Fact 5.2.7(5))

⊆ TS (Fact 5.2.7(4))

But the inclusion (GrTf )̆ ; GrTg ⊆ TS is just another way of stating the
conclusion of part 2.

For part 3, we reformulate the statement of its antecedent as

(Grf )̆ ;R ; Grg ⊆ S.

On the basis of this we may reason, via a completely analogous argument to the
one just given, that

(GrTf )̆ ; TR ; GrTg ⊆ TS,

which is equivalent way of phrasing the conclusion of part 3.

Relation lifting interacts with the map Base as follows:

5.2.9. Fact ([67]). Let T be a standard, finitary, weak pullback-preserving func-
tor.

1. Base is a natural transformation Base : T → Pω. That is, given a map
f : X → X ′ the following diagram commutes:

TX
BaseX//

Tf

��

PωX

Pf
��

TX ′
BaseX′// PωX

′



5.2. Preliminaries 151

2. Given a relation R ⊆ X × X ′ and elements α ∈ TX, β ∈ TY , it follows
from α TR β that Base(α) PR Base(β).

An interesting relation to which we shall apply relation lifting is the membership
relation ∈. If needed, we will denote the membership relation restricted to a given
set X by the relation ∈X ⊆ X × PX. Given a set X and Φ ∈ TPX, we define

λTX(Φ) = {α ∈ TX | α T∈X Φ}.

Elements of λT (Φ) will be called lifted members of Φ.
Properties of λT are intimately related to those of T .

5.2.10. Fact ([67]). The collection of maps λTX forms a distributive law with
respect to both the co- and the contravariant power set functor. That is, λT

provides two natural transformations, λT : TP → PT , and λT : T P̆ → P̆ T .

5.2.11. Remark. Rather than just a distributive law with respect to the functor
P , λT is a distributive law over the monad (P, µ, η), in the sense of being also
compatible with the unit η and the multiplication µ of P , as given by the following
two diagrams:

TX

ηTX $$HHHHHHHHH
TηX // TPX

λTX
��

PTX

TPPX

TµX
��

λTPX // PTPX
PλTX // PPTX

µX
��

TPX
λTX

// PTX

In the terminology of [82], (T, λT ) is a monad opfunctor from the monad P to
itself, and there is a one-one correspondence between the monad opfunctors and
the functors T equipped with extensions to endofunctors on the Kleisli category
Kl(M) associated with M . (The explicit results in [82], using the 2-functor AlgC,
are in terms of monad functors and extensions to the category of Eilenberg-Moore
algebras. The results for monad opfunctors and the Kleisli category are dual.) Note
that the Kleisli category of the power set monad is (isomorphic to) the category
Rel with sets as objects, and binary relations as arrows. The correspondence
mentioned then links the natural transformation λT to the notion of relation lifting
T .

5.2.12. Lemma. Let T be a standard, finitary, weak pullback-preserving functor.
Let X be some set and let Φ ∈ TPX.

1. If ∅ ∈ Base(Φ) then λT (Φ) = ∅.

2. If Base(Φ) consists of singletons only, then λT (Φ) is a singleton.

3. If T maps finite sets to finite sets, then for all Φ ∈ TPωX, |λT (Φ)| < ω.
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Proof For part 1, suppose that α is a lifted member of Φ; then it follows
by Fact 5.2.9 that Base(α) P∈ Base(Φ). But from this it would follow, if
∅ ∈ Base(Φ), that Base(α) contains a member of ∅, which is clearly impossible.
Consequently, then λT (Φ) is empty.

For part 2, observe that another way of saying that Base(Φ) consists of
singletons only, is that Φ ∈ TSX . Let θX : SX → X be the inverse of ηX , that
is, θX is the bijection mapping a singleton {x} to x. Clearly then, the map
TθX : TX → TSX is a bijection as well. In addition, we have (GrθX )̆ = ∈X , from
which it follows by Fact 5.2.7 that (GrTθX )̆ = T∈. From this it is immediate
that if Φ ∈ TSX , then (TθX)(Φ) is the unique lifted member of Φ.

Finally, we consider part 3. Since T is finitary, Φ ∈ TPωX implies that
Φ ∈ TPωY for some finite set Y , and from this it follows that Base(Φ) ⊆ PωY .
If α is a lifted member of Φ, then by Fact 5.2.9 we obtain Base(α) P∈ Base(Φ),
and so in particular we find Base(α) ⊆

⋃
Base(Φ) ⊆ Y . From this it follows that

λT (Φ) ⊆ TY , and so by the assumption on T λT (Φ) must be finite.

5.2.4 Frames and their presentations

A frame is a complete lattice in which finite meets distribute over arbitrary joins.
The signature of frames consists of arbitrary joins and finite meets, and it will
be convenient for us to include the top and bottom as well. Thus a frame will
usually be given as L = 〈L,

∨
,∧, 0, 1〉, while we will often consider join and meet

as functions
∨

L : PL → L and
∧

L : PωL → L. This enables us for instance to
define a frame homomorphism f : L → M as a map from L to M satisfying
f ◦

∧
=
∧
◦ (Pωf) and f ◦

∨
=
∨
◦ (Pf). By Fr we denote the category of

frames and frame homomorphisms. The initial frame (the lattice {0, 1} of truth
values) will be denoted as Ω, and for a given frame L we will let !L denote the
unique frame homomorphism from Ω to L, omitting the subscript if L is clear
from context.

The order relation ≤L of a frame L is given by a ≤L b if a ∧ b = a (or,
equivalently, a ∨ b = b). We can adjoin an implication operation to a frame L by
defining a→ b :=

∨
{c | a ∧ c ≤ b}; this operation turns L into a Heyting algebra.

As a special case of implication we can consider the negation: ¬a :=
∨
{c | a∧ c =

0}. Neither of these two operations is preserved by frame homomorphisms. A
subset S of L is directed if for every s0, s1 ∈ S there is an element s ∈ S such that
s0, s1 ≤ s. The join of a directed set S is often denoted as

∨↑ S.
A frame presentation is a tuple 〈G | R〉 where G is a set of generators and

R ⊆ PPωG× PPωG is a set of relations. A presentation 〈G | R〉 presents a frame
L if there exists a function f : G→ L which is compatible with R, i.e. such that

for all (t1, t2) ∈ R,
∨
A∈t1

∧
(Pωf)A =

∨
B∈t2

∧
(Pωf)B,

and for all framesM and functions g : G→M compatible with R, there is a unique
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frame homomorphism g′ : L→ M such that g′f = g. We call f the insertion of
generators (of G in L).

5.2.13. Fact ([91], Section 4.4). Every frame presentation presents a frame.

The details of the proof of the above fact tell us how to construct a unique frame
given a presentation 〈G | R〉. Omitting these details of the construction, we denote
this unique frame by Fr〈G | R〉. We will usually write

∨
i∈I
∧
Ai =

∨
j∈J
∧
Bj

instead of ({Ai | i ∈ I}, {Bj | j ∈ J}) when specifying relations. In light of the fact
that a ≤ b iff a∨b = b, we will also allow ourselves the liberty to specify inequalities
of the shape

∨
i∈I
∧
Ai ≤

∨
j∈J
∧
Bj as relations. It follows from the proof of Fact

5.2.13 that if f : G→ Fr〈G | R〉 is the insertion of generators, then every element
of Fr〈G | R〉 can be written as

∨
i∈I
∧
PωfA for some {Ai | i ∈ I} ∈ PPωG; in

other words every element of Fr〈G | R〉 can be written as an infinite disjunction
of finite conjunctions of generators.

We will now introduce flat site presentations for frames, which have as one
of their main advantages that they allow us to assume that an arbitrary element
of the frame being presented is an infinite disjunction of generators. A flat site
is a triple 〈X,v, /0〉, where 〈X,v〉 is a pre-order and /0 ⊆ X × PX is a binary
relation such that for all b v a /0 A, there exists B ⊆ ↓A ∩ ↓b such that b /0 B. A
flat site 〈X,v, /0〉 presents a frame L if there exists a function f : X → L such
that

• f is order-preserving,

• 1 ≤
∨

(Pf)X,

• for all a, b ∈ X, f(a) ∧ f(b) ≤
∨

(Pf)(↓a ∩ ↓b), and

• for all a /0 A, f(a) ≤
∨

(Pf)A

and for all frames M and all g : X →M satisfying the above two properties, there
exists a unique frame homomorphism g′ : L→M such that g′f = g. Specifically,
for all a ∈ L,

g′(a) =
∨
{g(x) | f(x) ≤ a}.

To put it another way, the frame presented by a flat site is

Fr〈X,v, /0〉 ' Fr〈X | a ≤ b (a v b),
a ≤

∨
A (a /0 A),

1 =
∨
X

a ∧ b =
∨
{c | c v a, c v b}〉.

A suplattice is a complete
∨

-semilattice; accordingly, a suplattice homomorphism
is a map which preserves

∨
. A suplattice presentation is a triple 〈X,v, /0〉 where

〈X,v〉 is a preorder and /0 ⊆ X × PX. A suplattice presentation 〈X,v, /0〉
presents a suplattice L if there exists a function f : X → L such that
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• f is order-preserving;

• for all a /0 A, f(a) ≤
∨
Pf(A);

and for all suplattices M and all functions g : X →M respecting the above two
conditions, there exists a unique suplattice homomorphism g′ : L→ M such that
g′ ◦ f = g. Every suplattice presentation presents a suplattice [60, Prop. 2.5].
Now observe that every flat site can also be seen as a suplattice presentation with
an additional stability condition. Consequently, given a flat site 〈X,v, /0〉, we
can generate two different objects with it: a frame Fr〈X,v, /0〉 and a suplattice
SupLat〈X,v, /0〉. The Flat site Coverage Theorem tells us that these two objects
are in fact order isomorphic.

5.2.14. Fact (Th. 5 of [93]). Let 〈X,v, /0〉 be a flat site. Then Fr〈X,v, /0〉 '
SupLat〈X,v, /0〉.

We record the following consequences of the above fact. Suppose that 〈X,v, /0〉
is a flat site which presents a frame L via f : X → L. Then

• every element of L is of the shape
∨
Pf(A) for some A ∈ PX;

• we can use 〈X,v, /0〉 both to define suplattice homomorphisms and frame
homomorphisms.

5.2.5 Powerlocales via � and ♦

We will now introduce the Vietoris powerlocale. In line with our generally algebraic
approach we shall define it directly as a functor on the category of frames rather
than its opposite, the category of locales. In its full generality it originates (as
the “Vietoris construction”) in Johnstone [55], with some earlier, more restricted
references in [54]. For locales it is a localic analogue of hyperspace (with Vietoris
topology). The points are (in bijection with) certain sublocales of the original
locale. For a full constructive description see [92].

Given a frame L, we first define L� := L and L♦ := L, and then

V L := Fr〈L� ⊕ L♦ | �1 = 1
�(a ∧ b) = �a ∧�b
�(
∨↑A) =

∨↑
a∈A�a (A ∈ PL directed)

♦(
∨
A) =

∨
a∈A♦a (A ∈ PL)

�a ∧ ♦b ≤ ♦(a ∧ b)
�(a ∨ b) ≤ �a ∨ ♦b
〉

5.2.15. Remark. We are abusing notation when specifying the relations in the
definition above. Strictly speaking, we have two maps, � : L� → V L for the
left copy of L and ♦ : L♦ → V L for the right copy of L, so that the insertion of
generators is the map �⊕ ♦ : L� ⊕ L♦ → V L.
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Johnstone [55] shows that V gives a monad on the category of locales, i.e. a
comonad on the category of frames. We shall not need the full strength of this
here, but some of the ingredients of the comonad structure are easy to check.

• V is functorial. If f : L→M is a frame homomorphism, then the function
(�f) ⊕ (♦f) : L� ⊕ L♦ → VM is compatible with the relations in the
presentation of V L, so that there is a frame homomorphism V f : V L→ VM
extending this map. It is also easy to show functoriality.

• The counit iL : V L→ L is given by �a 7→ a and ♦a 7→ a. The comultiplica-
tion µL : V L→ V V L is given by �a 7→ ��a and ♦a 7→ ♦♦a.

There are various relations between properties of L and of V L. [55] shows
that L is regular, completely regular, zero-dimensional or compact regular iff V L
is, and also that if L is locally compact then so is V L. The same paper also
mentions without proof that if L is compact then so is V L, referring to a proof
by transfinite induction similar to that used for the localic Tychonoff theorem in
[54]. The paper leaves open the converse question, of whether V L being compact
implies that so is V L. We shall give here a constructive (topos-valid) proof using
preframe techniques that L is compact iff V L is.

5.2.16. Definition. A frame L (or, more properly, its locale) is compact if
whenever 1 ≤

∨↑
i ai then 1 ≤ ai for some i.

The following constructive proof, as proposed by Steve Vickers, is a routine
application of the techniques in [56].

5.2.17. Theorem. L is compact iff V L is.

Proof ⇒: L is compact iff the function L → Ω that maps a ∈ L to the truth
value of a = 1 is a preframe homomorphism, i.e. preserves finite meets and
directed joins. This function is characterized by being right adjoint to the unique
frame homomorphism ! : Ω→ L and so to prove compactness it suffices to define
a preframe homomorphism L→ Ω and show that it is right adjoint to !. If L is
presented – as a frame – by generators and relations, then the “preframe coverage
theorem” of [56] shows how to derive a presentation as preframe, which can then
be used for defining preframe homomorphisms from L. The strategy is to generate
a ∨-semilattice from the generators, and add relations to ensure a ∨-stability
condition analogous to the ∧-stability used in Johnstone’s coverage theorem [54].
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Our first step is to apply the preframe coverage theorem to derive a preframe
presentation of V L. We show

V L ∼= Fr〈PωL× L (qua ∨ -semilattice) |
1 ≤ (γ ∪ {1}, d)
(γ ∪ {a}, d) ∧ (γ ∪ {b}, d) ≤ (γ ∪ {a ∧ b}, d)

(γ ∪ {
∨↑A}, d) ≤

∨↑
a∈A(γ ∪ {a}, d) (A directed)

(γ,
∨↑A ∨ d) ≤

∨↑
a∈A(γ, a ∨ d) (A directed)

(γ ∪ {a}, d) ∧ (γ, b ∨ d) ≤ (γ, (a ∧ b) ∨ d)
(γ ∪ {a ∨ b}, d) ≤ (γ ∪ {a}, b ∨ d)
〉.

The ∨-semilattice structure on PωL× L is the product structure from ∪ on PωL
and ∨ on L. The homomorphisms between the frame presented above and V L
are given by

�a 7→ ({a}, 0), ♦a 7→ (∅, a)

(γ, d) 7→
∨
c∈γ

�c ∨ ♦d.

The relations shown are ∨-stable, so the preframe coverage shows that

V L ∼= PreFr〈PωL× L (qua poset) | same relations as above 〉.

We can now define a preframe homomorphism ϕ : V L→ Ω by

ϕ(γ, d) = ∃c ∈ γ. c ∨ d = 1.

To motivate this, we want criteria for
∨
c∈γ �c∨♦d = 1, and intuitively this means

that for every sublocale K corresponding to a point of V L either K is included
in some c ∈ γ or K and d overlap. Taking K to be the closed complement of d,
we get the given condition. This is not a rigorous argument, since that closed
complement is not necessarily a point of V L. However, the rest of our argument
validates the choice. The relations in the preframe presentation of V L are largely
easy to check. We shall just mention the penultimate one. Suppose (γ ∪ {a}, d)
and (γ, b ∨ d) are both mapped to 1. We have either some c ∈ γ with c ∨ d = 1,
in which case c∨ (a∧ b)∨ d = 1, or we have a∨ d = 1 and in addition some c′ ∈ γ
with c′ ∨ b ∨ d = 1. In this latter case c′ ∨ (a ∧ b) ∨ d = 1.

Next we show that ϕ is right adjoint to ! : Ω → V L, the unique frame
homomorphism defined by

!(p) =
∨
{1 | p} =

∨↑
({0} ∪ {1 | p}) .

We must show ϕ(!(p)) ≥ p and !(ϕ(γ, d)) ≤ (γ, d).

ϕ(!(p)) = ϕ
(∨↑

({0} ∪ {1 | p})
)

= ϕ(∅, 0) ∨
∨
{ϕ({1}, 0) | p} ≥ p
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since if p holds then the disjuncts include ϕ({1}, 0) = 1. For the other inequality,
we must show that ∨

{1 | ϕ(γ, d)} ≤ (γ, d).

If ϕ(γ, d) holds true then c ∨ d = 1 for some c ∈ γ, so

1 = ({1}, 0) = ({c ∨ d}, 0) ≤ ({c}, d) ≤ (γ, d).

⇐: Suppose in L we have 1 =
∨↑
i ai. Then in V L we have 1 = �1 =

∨↑
i �ai

and so 1 = �ai for some i. Applying i to both sides gives 1 = ai.

5.3 The T -powerlocale construction

In this section we arrive at the main conceptual contribution of this chapter.
Given a weak pullback-preserving, standard, finitary functor T : Set→ Set, we
define its associated T -powerlocale functor VT : Fr→ Fr on the category of frames,
using the Carioca axioms for coalgebraic modal logic. This construction truly
generalizes the Vietoris powerlocale construction, because we will see that the
Pω-powerlocale is isomorphic to the Vietoris powerlocale. The other two major
results in this section are the fact that one can lift a natural transformation
between transition functors ρ : T ′ → T to a natural transformation ρ̂ : VT → VT ′
going in the other direction, and the fact that T -powerlocales are join-generated by
their generators of the shape ∇α. We will establish the latter fact via the stronger
result by showing that VTL admits a flat site presentation. The fact that VTL is
join-generated by its generators is not entirely surprising, since the Carioca axioms
were designed with the desirability of conjunction-free disjunctive normal forms in
mind [17]; however the precise mathematical formulation of this property, using
flat sites and suplattices, is an improvement over what was previously known.

This section is organized as follows. In §5.3.1 we introduce the T -powerlocale
construction on frames. In §5.3.2 we make technical observations about T -
powerlocales. In §5.3.3, we consider two instantiations of the T -powerlocale
construction, the most notable of which is the Pω-powerlocale which is isomorphic
to the classical Vietoris powerlocale. In §5.3.4 we extend the T -powerlocale con-
struction to a functor VT on the category of frames, and we show how one can
lift natural transformations between set functors T , T ′ to natural transformations
between powerlocale functors VT , VT ′ . We conclude this section with §5.3.5, in
which we show that the T -powerlocale construction admits a flat site presentation,
a corollary of which is that each element of VTL has a disjunctive normal form.

5.3.1 Introducing the T -powerlocale

In this subsection, we will use the Carioca axioms for coalgebraic modal logic [17]
to define the T -powerlocale VTL of a given frame L using a frame presentation,
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i.e. using generators and relations. The generators of VTL will be given by the
set TL; in order to specify the relations we will use relation lifting (§5.2.3) and
slim redistributions, which we will introduce below. In addition, we will provide
an alternative presentation of VTL, which does not use slim redistributions. From
a conceptual viewpoint, it is not immediately obvious which presentation of VTL
should be taken as the primary definition. Our choice to use slim redistributions
in the primary definition is motivated by the existing literature [17, 66, 67].

5.3.1. Definition. Let X be a set and let Γ ∈ PωTX. The set of all slim
redistributions of Γ is defined as follows:

SRD(Γ) =
{

Ψ ∈ TPω
(⋃

γ∈ΓBase(γ)
)
| ∀γ ∈ Γ, γ T∈ Ψ

}
Intuitively, Ψ ∈ TPωX is a slim redistribution of Γ ∈ PωTX if (i) Ψ is ‘obtained

from the material of Γ’, that is:

Ψ ∈ TPω
(⋃

γ∈ΓBase(γ)
)
,

and (ii) every element of Γ is a lifted member of Ψ, or equivalently, Γ ⊆ λT (Ψ).
We illustrate this with the motivating example of slim redistributions, namely
slim redistribution for the finite powerset functor.

5.3.2. Example. Recall from Example 5.2.5 that if R ⊆ X × Y is a relation
then PωR ⊆ PωX × PωY can be characterized as follows:

αPωRβ iff ∀x ∈ α, ∃y ∈ β, xRy and ∀y ∈ β, ∃x ∈ α, xRy.

In particular, for ∈ ⊆ X × PX we get αPω ∈ Γ iff α ⊆
⋃

Γ and ∀γ ∈ Γ, γ G α.
(Recall that γ G α means that γ ∩ α is inhabited.) For an order ≤, let us define
the upper, lower and convex preorders on finite sets:

α ≤L β if α ⊆ ↓ β, i.e. ∀x ∈ α, ∃y ∈ β, x ≤ y

α ≤U β if ↑α ⊇ β, i.e. ∀y ∈ β, ∃x ∈ α, x ≤ y

α ≤C β if α ≤L β and α ≤U β.

Thus Pω ≤ is ≤C .
Next, if α ∈ PωS then

Base(α) =
⋂
{S ′ ∈ Pω(S) | α ⊆ S ′} = α.

From this, if Γ ∈ PωPωX then

SRD(Γ) = {Ψ ∈ PωPω (
⋃

Γ) | ∀γ ∈ Γ, (γ ⊆
⋃

Ψ and ∀α ∈ Ψ, α G γ)}
= {Ψ ∈ PωPω (X) |

⋃
Ψ =

⋃
Γ and ∀γ ∈ Γ, ∀α ∈ Ψ, α G γ}.
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5.3.3. Definition. Let T be a standard, finitary, weak pullback-preserving func-
tor. Let L be a frame. We define the T -powerlocale of L

VTL := Fr〈TL | (∇1), (∇2), (∇3)〉,

where the relations are the Carioca axioms [17]:

(∇1) ∇α ≤ ∇β, (α T≤ β)
(∇2)

∧
α∈Γ∇α ≤

∨
{∇(T

∧
)Ψ | Ψ ∈ SRD(Γ)}, (Γ ∈ PωTL)

(∇3) ∇(T
∨

)Φ ≤
∨
{∇β | β T∈ Φ}, (Φ ∈ TPL)

5.3.4. Remark. To be precise, we assume that ∇ : TL→ VTL is the insertion
of generators, so when specifying the relations we should write e.g. α ≤ β instead
of ∇α ≤ ∇β. The way we have specified the relations above is more consistent
with [17].

We will discuss the instantiation of these axioms for T = Pω in some more detail
in §5.3.3.

We will now present a very useful equivalent definition of VTL. The crucial
observation behind the alternative definition of VTL is the following technical
lemma, which characterizes the slim redistributions of a given finite subset Γ of
〈TL, T≤〉 as the maximal lower bounds of Γ. Observe that the lemma also holds
in case Γ = ∅.

5.3.5. Lemma. Let L be a meet-semilattice (e.g., a frame) and let Γ ∈ PωTL.
Then for any α ∈ TL, the following are equivalent:

(a) α ∈ TL is a lower bound of Γ, that is, α T≤ γ for all γ ∈ Γ;

(b) α T≤ (T
∧

)Φ for some Φ ∈ SRD(Γ).

In particular, if Φ ∈ SRD(Γ) then (T
∧

)Φ T≤ γ for all γ ∈ Γ.

Proof Recall that

SRD(Γ) :=
{

Ψ ∈ TP
(⋃

γ∈ΓBase(γ)
)
| Γ ⊆ λT (Ψ)

}
.

For the implication from (b) to (a), observe that for any a ∈ L and A ∈ PωL,
we have that a ∈ A implies that

∧
A ≤ a. By Fact 5.2.7 it follows that for all

γ ∈ TL and Ψ ∈ TPωL, if γ T∈ Ψ then T
∧

(Ψ) T≤ γ. Now suppose that Ψ is a
slim redistribution of Γ. Then Γ ⊆ λT (Ψ), and so (T

∧
)Ψ is a T≤-lower bound of

Γ. From this the implication (b) ⇒ (a) is immediate.
For the oppositie implication, take α ∈ TL such that ∀γ ∈ Γ, α T≤ γ.

Then by Fact 5.2.9, we obtain Base(α) P≤ Base(γ) for all γ ∈ Γ. Abbreviate
C :=

⋃
γ∈ΓBase(γ), and define f : Base(α)→ PC as follows:

f : a 7→ ↑L a ∩ C,
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that is: f(a) = {c ∈ C | a ≤ c}. Then Tf is a function

Tf : TBase(α)→ TPC.

We claim that Ψ := Tf(α) is an element of SRD(Γ) and that α T≤ T
∧

(Ψ). For
the first claim, since Φ ∈ TPC, all we need to show is that Γ ⊆ λT (Ψ), i.e. that
for all γ ∈ Γ, γ T∈ Ψ. So suppose that γ ∈ Γ; then by assumption, α T≤ γ, so
Base(α) P≤ Base(γ). It follows from the definition of f that for all b ∈ Base(γ),
and all a ∈ Base(α), if a ≤ b then b ∈ f(a). It follows by Fact 5.2.7 that

∀δ ∈ TBase(α), ∀β ∈ TBase(γ), δ T≤ β ⇒ β T∈ Tf(δ).

So in particular, since α ∈ TBase(α), γ ∈ TBase(γ) and α T≤ γ, we see that
γ T∈ Tf(α) = Ψ. Since γ ∈ Γ was arbitrary, it follows that Γ ⊆ λT (Ψ).
Consequently, Ψ ∈ SRD(Γ), as we wanted to show.

For the second claim, i.e. that α T≤ T
∧

(Ψ), it suffices to observe that
a ≤

∧
f(a) for all a ∈ Base(α), so by Fact 5.2.7,

∀δ ∈ TBase(α), δ T≤ T
∧
◦ Tf(δ).

Since α ∈ TBase(α) and Ψ = Tf(α), we get that α T≤ T
∧
◦ Tf(α) = T

∧
(Ψ).

5.3.6. Corollary. Let L be a frame. Then

VTL ' Fr〈TL | (∇1), (∇2′), (∇3)〉,

where the relations are as follows:

(∇1) ∇α ≤ ∇β, (α T≤ β)
(∇2′)

∧
γ∈Γ∇γ ≤

∨
{∇α | ∀γ ∈ Γ, α T≤ γ}, (Γ ∈ PωTL)

(∇3) ∇(T
∨

)Φ ≤
∨
{∇β | β T∈ Φ}, (Φ ∈ TPL)

Proof Observe that the only difference between Fr〈TL | (∇1), (∇2′), (∇3)〉 and
the original definition of VTL is that we replaced (∇2),

(∇2)
∧
α∈Γ∇α ≤

∨
{∇(T

∧
)Ψ | Ψ ∈ SRD(Γ)}, (Γ ∈ PωTL)

with (∇2′). The equivalence of these two relations is an immediate corollary of
Lemma 5.3.5: take any Γ ∈ TPωL, then∨

{∇T
∧

(Ψ) | Ψ ∈ SRD(Γ)}
=
∨
{∇α | ∃Ψ ∈ SRD(Γ), α T≤ ∇T

∧
(Ψ)} by order theory and (∇1),

=
∨
{∇α | ∀γ ∈ Γ, α T≤ γ} by Lemma 5.3.5.

It follows that VTL ' Fr〈TL | (∇1), (∇2′), (∇3)〉.

5.3.7. Remark. We will see later that both axioms (∇2) and (∇2′) are equally
useful. It seems that (∇2′) has not been studied before in the literature on
coalgebraic modal logic via the ∇-modality [73, 17, 62, 67].
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5.3.2 Basic properties of the T -powerlocale

In this subsection we make some technical observations about slim redistributions
and about the structure of the T -powerlocale. We start with two facts on slim
redistributions.

5.3.8. Lemma. SRD(∅) = T{∅}.

Proof If Φ is a slim redistribution of the empty set, then by definition Φ ∈
TPω(∅) = T{∅}. Conversely, any Φ ∈ T{∅} satisfies the condition that ∅ ⊆
λT (Φ), and so Φ ∈ SRD(∅).

The following Lemma plays an essential role when defining VT on frame
homomorphisms, rather than just on frames. It is of crucial use when showing
that if f : L → M is a frame homomorphism, then VTf : VTL → VTM preserves
conjunctions, as we will see in §5.3.4.

5.3.9. Lemma. Let X, Y be sets and let f : X → Y be a function; let Γ ∈ PωTX.
Then the restriction of TPωf : TPωX → TPωY to SRD(Γ) is a surjection onto
SRD(PωTfΓ).

Proof Let X, Y, f and Γ be as in the statement of the Lemma, and abbreviate
Γ′ := (PωTf)Γ, C :=

⋃
γ∈Γ Base(γ) and C ′ :=

⋃
γ′∈Γ′ Base(γ′). Then an easy

calculation shows that

C ′ =
⋃
γ∈Γ

Base(Tf)(γ) (definition of Γ′)

=
⋃
γ∈Γ

(Pf)Base(γ) (Base is natural transformation)

= (Pf)(C) (elementary set theory)

We will first show that TPωf maps slim redistributions of Γ to slim redistribu-
tions of Γ′. For that purpose, take an arbitrary element Φ ∈ SRD(Γ), and write
Φ′ := (TPωf)Φ. We claim that Φ′ ∈ SRD(Γ′), and first show that

Φ′ ∈ TPωC ′, (5.1)

or equivalently, that BaseΦ′ ⊆ PωC
′. To prove this inclusion, take an arbitrary

set A′ ∈ Base(Φ′). Since by Fact 5.2.9, Base(Φ′) = (PωPωf)(Base(Φ), this means
that A′ must be of the form (Pωf)(A) for some A ∈ Base(Φ). In particular, A′

must be a subset of (Pωf)(
⋃

Base(Φ)). Also, because Φ is a slim redistribution
of Γ, by definition we have Base(Φ) ⊆ PωC, and so

⋃
Base(Φ) ⊆

⋃
C. From this

it follows that A′ ⊆ (Pf)(
⋃

Base(Φ)) ⊆ (Pf)(
⋃
C) = C ′, as required.

Second, we claim that
Γ′ ⊆ λT (Φ′). (5.2)
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To prove this, take an arbitrary element of Γ′, say, (Tf)γ for some γ ∈ Γ. We
have γ T∈ Φ by the assumption that Φ ∈ SRD(Γ). But then, since a ∈ A
implies fa ∈ (Pωf)A for any a ∈ C and A ⊆ C, it follows by Lemma 5.2.8 that
γ′ = (Tf)γ T∈ (TPωf)(Φ) = Φ′. This means that γ′ is a lifted member of Φ′, as
required.

Clearly, the claims (5.1) and (5.2) above suffice to prove that Φ′ ∈ SRD(Γ′),
which means that indeed, TPωf maps slim redistributions of Γ to slim redistribu-
tions of Γ′.

Thus it is left to prove that every slim redistribution of Γ′ is of the form
(TPωf)Φ for some slim redistribution Φ of Γ. Take an arbitrary Φ′ ∈ SRD(Γ′),
and recall that P̆ denotes the contravariant power set functor. Restrict f to
the map f− : C → C ′, which means that P̆ f− : PωC

′ → PωC. It follows that
T P̆f− : TPωC

′ → TPωC, so that we may define Φ := (T P̆f−)Φ′, and obtain
Φ ∈ TPωC. Hence, in order to prove that

Φ ∈ SRD(Γ), (5.3)

it suffices to show that Γ ⊆ λT (Φ). But this is an immediate consequence of the
fact that λT is a distributive law of T over P̆ (Fact 5.2.10), since for an arbitrary
γ ∈ Γ we may reason as follows. From γ ∈ Γ it follows by definition of Γ′ that
(Tf−)(γ) = (Tf)(γ) belongs to Γ′. Since Γ′ ⊆ λTY (Φ) by assumption, by definition
of P̆ we find that γ ∈ (P̆ Tf)λTY (Ψ). But by λT : T P̆ → P̆ T we know that
(P̆ Tf)λTY (Ψ) = λTX(T P̆f)(Ψ) = λTX(Φ). Thus we find γ ∈ λT (Φ), as required.

Finally, observe that f− : C → C ′ is surjective, so that it follows by properties
of the co- and contravariant power set functors that Pωf

− ◦ P̆ f− = idPωC′ . From
this it is immediate by functoriality of T that

Φ′ = (TPωf
− ◦ T P̆f−)Φ′ = (TPωf

−)Φ = (TPωf)Φ.

This finishes the proof of the Lemma.

In the following lemma we gather some basic observations on the frame structure
of the T -powerlocale. These facts generalize results from [67] to our geometrical
setting.

5.3.10. Lemma. Let T be a standard, finitary, weak pullback-preserving functor
and let L be a frame.

1. If α ∈ TL is such that 0L ∈ Base(α), then ∇α = 0VTL.

2. If A ⊆ L is such that a ∧ b = 0L for all a 6= b in A, then ∇α ∧∇β = 0VTL
for all α 6= β in TA.

3. If there is no relation R such that α TR β, then ∇α ∧∇β = 0VTL.

4. 1VTL =
∨
{∇γ | γ ∈ T{1L}}.
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5. For any A ⊆ L such that 1L =
∨
A, we have 1VTL =

∨
{∇α | α ∈ TA}.

Proof For part 1, let α ∈ TL be such that 0L ∈ Base(α). Consider the map
f : L→ PL given by

f(a) :=

{
∅ if a = 0L,
{a} if a > 0L.

Then idL =
∨
◦f , so that idTL = (T

∨
) ◦ (Tf) by functoriality of T . In particular,

we obtain that α = (T
∨

)(Tf)(α), so that we may calculate

∇α =
∨{
∇β | β T∈ (Tf)(α)

}
(axiom ∇2)

≤
∨{
∇β | Base(β) P∈ Base((Tf)(α))

}
(Fact 5.2.9)

=
∨
∅ (†)

= 0VTL

In order to justify the remaining step (†) in this calculation, observe that it
follows from the naturality of Base (Fact 5.2.9(1)) that

Base((Tf)(α)) = (Pf)(Base(α)),

and so by the assumption that 0L ∈ Base(α) we obtain ∅ ∈ Base((Tf)(α)). Now
suppose for contradiction that there is some B ⊆ L such that B P∈ Base((Tf)(α)).
Then by definition of P there is a b ∈ B such that b ∈ ∅, which provides the
desired contradiction. This proves (†), and finishes the proof of part 1.

For part 2, let A ⊆ L be such that a ∧ b = 0L for all a 6= b in A, and take two
distinct elements α, β ∈ TA. In order to prove that ∇α ∧∇β = 0VTL, it suffices
by axiom (∇2) to show that

∇(T
∧

)(Φ) = 0VTL, for all Φ ∈ SRD{α, β}. (5.4)

Take an arbitrary slim redistribution Φ of {α, β}, then by Fact 5.2.12, Base(Φ)
contains a set A0 ⊆ω A of size > 1. Define the map d : Base(Φ)→ Pω(A)∪{{1L}}
by putting:

d(B) :=


∅ if |B| > 1,
B if |B| = 1,
{1L} if |B| = 0.

It is straightforward to verify from the assumptions on A and the definition of d,
that

∧
B ≤

∨
d(B), for each B ∈ Base(Φ). Hence it follows by Fact 5.2.7 that

(T
∧

)(Φ) T≤ (T
∨

)(Td)(Φ), so that by axiom (∇1) we may conclude that

∇(T
∧

)(Φ) ≤ ∇(T
∨

)(Td)(Φ) (5.5)

Finally, it follows from the naturality of Base (Fact 5.2.9(1)) that Base(Td)(Φ) =
(Pd)(Base(Φ)). Consequently, for the set A0 ∈ Base(Φ) satisfying |A0| > 1, we
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find ∅ = d(A0) ∈ Base(Td)(Φ), and then 0L =
∨
∅ ∈ (P

∨
)Base(Td)(Φ) =

Base(T
∨

)(Td)(Φ). Thus by part (1) of this lemma it follows that

∇(T
∨

)(Td)(Φ) = 0VTL. (5.6)

This finishes the proof of part 2, since (5.4) is immediate on the basis of (5.5)
and (5.6).

In order to prove part 3, suppose that α, β ∈ TL are not linked by any lifted
relation. Consider the (unique) map

f : L→ {1},

and define α′ := (Tf)α, β′ := (Tf)(β). Suppose for contradiction that α′ = β′.
Then we would find α T ((Grf )̆ ; Grf) β, contradicting the assumption on α and
β. It follows that α′ and β are distinct, and so by part (2) of this lemma (with
A = {1L}), we may infer that ∇α′ ∧∇β′ = 0VTL. This means that we are done,
since it follows from Grf ⊆ ≤ and the definitions of α′, β′, that α T≤ α′ and
β T≤ β′, and from this we obtain by (∇1) that

∇α ∧∇β ≤ ∇α′ ∧∇β′ ≤ 0VTL.

For part 4, we reason as follows:

1VTL =
∨
{∇(T

∧
)(Φ) | Φ ∈ SRD(∅)}, (axiom (∇2) with A = ∅)

=
∨
{∇(T

∧
)(Φ) | Φ ∈ T{∅}} (Fact 5.3.8)

=
∨
{∇γ | γ ∈ T{1L}} (‡)

where the last step (‡) is justified by the observation that, since the map
∧

:
PωL→ L restricts to a bijection

∧
: {∅} → {1L}, its lifting restricts to a bijection

T
∧

: T{∅} → T{1L}.

Finally, we turn to the proof of part 5. Let A ⊆ L be such that 1L =
∨
A, and

consider an arbitrary element Φ ∈ T{A}. We claim that

λT (Φ) ⊆ TA. (5.7)

To see this, take an arbitrary lifted element α of Φ. It follows from α T∈ Φ
that Base(α) P∈ Base(Φ). In particular, each a ∈ Base(α) must belong to some
B ∈ Base(Φ) ⊆ {A}. In other words, Base(α) ⊆ A, which is equivalent to saying
that α ∈ TA. This proves (5.7).

By (5.7) and axiom (∇3) we obtain

∇(T
∨

)(Φ) ≤
∨
{∇α | α ∈ TA}. (5.8)
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Now we reason as follows:

1VTL =
∨
{∇α | α ∈ T{1L}} (part 4)

=
∨
{∇(T

∨
)(Φ) | Φ ∈ T{A}} (∗)

≤
∨
{∇α | α ∈ TA}, (5.8)

To justify the second step (∗), observe that if we restrict the map
∨

: PL→ L to
the bijection

∨
: {A} → {1L}, as its lifting we obtain a bijection T

∨
: T{A} →

T{1L}.

5.3.3 Two examples of the T -powerlocale construction

In this subsection we will discuss two examples of T -powerlocales. First, we
discuss the somewhat trivial example of the Id-powerlocale. After that, we will
discuss the defining example of T -powerlocales, namely the Pω-powerlocale, which
is isomorphic to the classical Vietoris powerlocale.

5.3.11. Example. Let Id: Set→ Set be the identity functor on the category of
sets. Then for all frames L, VIdL ' L.

First recall from Example 5.2.5 that for any relation R ⊆ X × Y , IdR = R.
Moreover, if A ∈ IdPωL = PωL, then it is straightforward to verify that

SRD(A) = {Ψ ∈ Pω(
⋃
c∈A{c}) | ∀c ∈ A, c ∈ Ψ}

= {A}.

Consequently, the ∇-relations reduce to the following in case T = Id:

(∇1) ∇a ≤ ∇b, (a ≤ b)
(∇2)

∧
a∈A∇a ≤ ∇

∧
A, (A ∈ PωL)

(∇3) ∇
∨
A ≤

∨
{∇b | b ∈ A}. (A ∈ PL)

The identity idL : L→ L obviously satisfies (∇1), (∇2) and (∇3). Moreover if we
have a frame M and a function f : L→M which is compatible with (∇1), (∇2)
and (∇3), then it is easy to see that f is in fact a frame homomorphism L→M.
By the universal property of frame presentations, it follows that VIdL ' L.

We now turn to the Pω-powerlocale. Recall from Example 5.2.3 that Pω : Set→
Set, the covariant finite power set functor, is indeed standard, weak pullback-
preserving and finitary. We will now show that the Pω-powerlocale is the Vietoris
powerlocale. The equivalence of the ∇ axioms and the �, ♦ axioms on distributive
lattices is already known from the work of Palmigiano & Venema [73]; what is
different here is that we consider infinite joins rather than only finite joins.
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We will use the presentation using (∇1), (∇2′) and (∇3) as our point of
departure. Recall that for all α, β ∈ PωL,

α ≤L β if α ⊆ ↓ β,
α ≤U β if ↑α ⊇ β,

α ≤C β if α ≤L β and α ≤U β.

By Example 5.3.2, two of the relations presenting VPωL thus become

(∇2′)
∧
γ∈Γ∇γ ≤

∨
{∇α | ∀γ ∈ Γ, α ≤C γ}

(∇3) ∇{
∨
α | α ∈ Φ} ≤

∨
{∇β | β ∈ Pω (

⋃
Φ) and ∀α ∈ Φ, α G β}

5.3.12. Lemma. We consider the presentation of VPωL.

1. In the presence of (∇1), the relation (∇2′) can be replaced by

(∇2.0) 1 ≤
∨
{∇β | β ∈ PωL}

(∇2.2) ∇γ1 ∧∇γ2 ≤
∨
{∇β | β ≤C γ1, β ≤C γ2}

2. In the presence of (∇1) and (∇2) (or its equivalent formulations), the
relation (∇3) can be replaced by

(∇3.↑) ∇
(
γ ∪ {

∨↑ S}) ≤ ∨↑ {∇ (γ ∪ {a}) | a ∈ S} (S directed)

(∇3.0) ∇ (γ ∪ {0}) ≤ 0
(∇3.2) ∇ (γ ∪ {a1 ∨ a2}) ≤ ∇ (γ ∪ {a1}) ∨∇ (γ ∪ {a2}) ∨∇ (γ ∪ {a1, a2})

Proof (1) (∇2.0) and (∇2.2) are special cases of (∇2′), when Γ is empty or a
doubleton. To show that they imply (∇2′) is an induction on the number of
elements needed to enumerate the finite set Γ.

(2) Each of the replacement relations is a special case of (∇3) in which all
except one of the elements of Φ are singletons. We now show that they are
sufficient to imply (∇3). First, we show for any finite S that

∇
(
γ ∪ {

∨
S}
)
≤
∨
{∇ (γ ∪ α) | ∅ 6= α ∈ PωS} .

We use induction on the length of a finite enumeration of S. The base case, S
empty, is (∇3.0). Now suppose S = {a} ∪ S ′. Then

∇
(
γ ∪ {

∨
S}
)

= ∇
(
γ ∪ {a ∨

∨
S ′}
)

≤ ∇ (γ ∪ {a}) ∨∇
(
γ ∪ {

∨
S ′}
)
∨∇

(
(γ ∪ {a}) ∪ {

∨
S ′}
)

(by (∇3.2))

≤ ∇ (γ ∪ {a}) ∨
∨
{∇ (γ ∪ α′) | ∅ 6= α′ ∈ PωS ′}

∨
∨
{∇ (γ ∪ {a} ∪ α′) | ∅ 6= α′ ∈ PωS ′} (by induction)

=
∨
{∇ (γ ∪ α) | ∅ 6= α ∈ PωS} .
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Now we can use (∇3.↑) to relax the finiteness condition on S, since for an arbitrary
S we have

∇
(
γ ∪ {

∨
S}
)

= ∇
(
γ ∪

{∨↑ {∨
S0 | S0 ∈ PωS

}})
≤
∨↑ {

∇
(
γ ∪

{∨
S0

})
| S0 ∈ PωS

}
.

Finally, we can use induction on the length of a finite enumeration of Φ to
deduce (∇3). More precisely, one shows by induction on n that

∇
(
γ ∪ {

∨
S1, . . . ,

∨
Sn}
)

≤
∨{

∇ (γ ∪ α) | ∅ 6= α ∈ Pω

(
n⋃
i=1

Si

)
and ∀i, α G Si

}
.

5.3.13. Remark. Relation (∇2.0) can be weakened even further, to

1 ≤ ∇∅ ∨∇{1}.

For if β is non-empty then β ≤C {1}. From (∇2.2) we can also deduce that
∇∅ ∧∇{1} = 0, giving that ∇∅ and ∇{1} are clopen complements.

5.3.14. Lemma. In V L we have, for any S ⊆ L,

�
(∨

S
)

=
∨{

�
(∨

α
)
∧
∧
a∈α

♦a | α ∈ PωS

}
.

Proof ≥ is immediate. For ≤, first note that since
∨
S is a directed join∨↑

α∈PωS
∨
α, we have � (

∨
S) ≤

∨↑
α∈PωS � (

∨
α) and thus we reduce to the case

where S is finite. We show that for every α, β ∈ PωS we have

�
(∨

α ∨
∨

β
)
∧
∧
a∈α

♦a ≤ RHS in statement,

after which the result follows by taking β = S and α = ∅. We use Pω-induction on
β, effectively an induction on the length of an enumeration of its elements. The
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base case, β = ∅, is trivial. For the induction step, suppose β = β′ ∪ {b}. Then

�
(∨

α ∨
∨

β
)
∧
∧
a∈α

♦a

= �
(∨

α ∨ b ∨
∨

β′
)
∧
∧
a∈α

♦a

= �
(∨

α ∨ b ∨
∨

β′
)
∧
∧
a∈α

♦a ∧
(
�
(∨

α ∨
∨

β′
)
∨ ♦b

)

=

(
�
(∨

α ∨
∨

β′
)
∧
∧
a∈α

♦a

)
∨

�(∨ (α ∪ {b}) ∨
∨

β′
)
∧

∧
a∈α∪{b}

♦a


≤ RHS, by induction.

5.3.15. Theorem. Let L be a frame. Then V L ∼= VPωL.

Proof First we define a frame homomorphism ϕ : VPωL → V L by ϕ(∇α) =
� (
∨
α) ∧

∧
a∈α♦a. We must check that this respects the relations. For (∇1),

suppose α ≤C β. From α ≤U β and α ≤L β we get
∧
a∈α♦a ≤

∧
b∈β♦b and∨

α ≤
∨
β, giving ϕ(∇α) ≤ ϕ(∇β).

For (∇2.0), we have 1 = �(0 ∨ 1) = �0 ∨ (�1 ∧ ♦1) = ϕ (∇∅) ∨ ϕ (∇{1}).
For (∇2.2), ϕ (∇γ1) ∧ ϕ (∇γ2) is

� (
∨
γ1) ∧

∧
c∈γ1♦c ∧� (

∨
γ2) ∧

∧
c′∈γ2♦c

′

= � (
∨
γ1 ∧

∨
γ2) ∧

∧
c∈γ1♦c ∧

∧
c′∈γ2♦c

′

= � (
∨
γ1 ∧

∨
γ2) ∧

∧
c∈γ1♦ (c ∧

∨
γ1 ∧

∨
γ2) ∧

∧
c′∈γ2♦ (c′ ∧

∨
γ1 ∧

∨
γ2)

= � (
∨
γ1 ∧

∨
γ2) ∧

∧
c∈γ1♦ (c ∧

∨
γ2) ∧

∧
c′∈γ2♦ (c′ ∧

∨
γ1)

= �
(∨

c∈γ1
∨
c′∈γ2c ∧ c

′
)
∧
∧
c∈γ1
∨
c′∈γ2♦ (c ∧ c′) ∧

∧
c′∈γ2

∨
c∈γ1♦ (c ∧ c′)

Redistributing the disjunctions of the ♦s, we find that each resulting disjunct is
of the form

�
(∨

c∈γ1
∨
c′∈γ2c ∧ c

′
)
∧
∧
cRc′♦ (c ∧ c′)

for some R ∈ Pω (γ1 × γ2) such that γ1 PωRγ2. Note that for any such R if we
define βR = {c∧c′ | cRc′} then we have βR ≤C γi (i = 1, 2). Now by Lemma 5.3.14
we see

�
(∨

c∈γ1
∨
c′∈γ2c ∧ c

′
)
∧
∧
cRc′♦ (c ∧ c′)

≤
∨{
� (
∨
cR′c′c ∧ c

′) ∧
∧
c(R∪R′)c′♦ (c ∧ c′) | R′ ∈ Pω (γ1 × γ2)

}
≤
∨
{� (

∨
cR′c′c ∧ c

′) ∧
∧
cR′c′♦ (c ∧ c′) | R ⊆ R′ ∈ Pω (γ1 × γ2)}

=
∨
{ϕ (∇βR′) | R ⊆ R′ ∈ Pω (γ1 × γ2)}
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and the result follows.
For (∇3.↑): the LHS is

�
(∨

γ ∨
∨↑S) ∧∧c∈γ♦c ∧ ♦

(∨↑S)
=
∨↑ {� (

∨
γ ∨ a) | a ∈ S} ∧

∨↑ {∧
c∈γ♦c ∧ ♦a | a ∈ S

}
=
∨↑ {� (

∨
γ ∨ a) ∧

∧
c∈γ♦c ∧ ♦a | a ∈ S

}
which is the RHS.

For (∇3.0): the LHS is

� (
∨
γ ∨ 0) ∧

∧
c∈γ♦c ∧ ♦0 = 0.

For (∇3.2): the LHS is

� (
∨
γ ∨ a1 ∨ a2) ∧

∧
c∈γ♦c ∧ ♦ (a1 ∨ a2)

=
2∨
i=1

∨{
� (
∨
β) ∧

∧
c∈β∪γ∪{ai}♦c | β ∈ Pω (γ ∪ {a1, a2})

}
≤

2∨
i=1

∨
{ϕ (∇ (β ∪ γ ∪ {ai})) | β ∈ Pω (γ ∪ {a1, a2})}

=
2∨
i=1

∨
{ϕ (∇β) | γ ∪ {ai} ⊆ β ∈ Pω (γ ∪ {a1, a2})}

= ϕ (∇ (γ ∪ {a1})) ∨ ϕ (∇ (γ ∪ {a2})) ∨ ϕ (∇ (γ ∪ {a1, a2})) .

Next, we define the frame homomorphism ψ : V L→ VPωL by

ψ (�a) =
∨
{∇α | α ≤L {a}} = ∇∅ ∨∇{a}

ψ (♦a) =
∨
{∇α | α ≤U {a}} =

∨
{∇ (β ∪ {a}) | β ∈ PωL} .

(Observe that the expression for ψ (♦a) could be simplified even further to∇{1, a}.)
We check the relations. First, it is clear that ψ respects monotonicity of � and ♦.
� preserves directed joins:

ψ
(
�
(∨↑

i ai

))
= ∇∅ ∨∇{

∨↑
i ai} =

∨↑
iψ (�ai) .

� preserves top immediately from (∇2.0).
� preserves binary meets:

ψ (�a1) ∧ ψ (�a2) = ∇∅ ∨ (∇{a1} ∧ ∇{a2})
= ∇∅ ∨

∨
{∇β | β ≤C {a1}, β ≤C {a2}}

= ∇∅ ∨∇{a1 ∧ a2} = ψ (� (a1 ∧ a2)) .



170 Chapter 5. Coalgebraic modal logic in point-free topology

♦ preserves joins:

ψ (♦ (
∨
A)) =

∨
{∇ (β ∪ {

∨
A}) | β ∈ PωL}

=
∨
{∇ (β ∪ α) | β ∈ PωL, ∅ 6= α ∈ PωA}

=
∨
a∈A
∨
{∇ (β ∪ {a}) | β ∈ PωL} =

∨
a∈Aψ(♦a).

For the first mixed relation, and noting that∇∅∧∇ (β ∪ {b}) ≤ ∇∅∧∇{1} = 0,
we have:

ψ (�a) ∧ ψ (♦b) =
∨
β∈PωL (∇∅ ∨∇{a}) ∧∇ (β ∪ {b})

=
∨
β∈PωL∇{a} ∧ ∇ (β ∪ {b})

=
∨
{∇γ | ∃β, γ ≤C {a}, γ ≤C β ∪ {b}}

≤
∨
β∈PωL∇ (β ∪ {a ∧ b}) = ψ (♦ (a ∧ b)) .

For the second:

ψ (� (a ∨ b)) = ∇∅ ∨∇{a ∨ b}
= ∇∅ ∨∇{a} ∨ ∇{b} ∨ ∇{a, b}
≤ ψ (�a) ∨ ψ (♦b)

since ∇∅ ∨∇{a} = ψ (�a) and ∇{b} ∨ ∇{a, b} ≤ ψ (♦b).
It remains to show that ϕ and ψ are mutually inverse.

ϕ (ψ (�a)) = ϕ (∇∅ ∨∇{a}) = �0 ∨ (�a ∧ ♦a) = �a

since �0 ∧ ♦a ≤ ♦ (0 ∧ a) = 0.
Next, to show ϕ (ψ (♦a)) = ♦a, we have

ϕ (ψ (♦a)) =
∨
β∈PωL

(
� (
∨
β ∨ a) ∧

∧
b∈β♦b ∧ ♦a

)
≤ ♦a
= � (1 ∨ a) ∧ ♦1 ∧ ♦a = ϕ (∇{1, a}) ≤ ϕ (ψ (♦a)) .

Finally, to show ψ (ϕ (∇α)) = ∇α, we have

ψ (ϕ (∇α)) = ψ
(
� (
∨
α) ∧

∧
a∈α♦a

)
= (∇∅ ∨∇{

∨
α}) ∧

∧
a∈α
∨
βa∈PωL∇ (β ∪ {a}) .

Now,∧
a∈α
∨
βa∈PωL∇ (β ∪ {a}) =

∨
{∇γ | ∀a ∈ α, ∃βa ∈ PωL, γ ≤C βa ∪ {a}}

=
∨
{∇γ | γ ≤U α} .
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Also

∇∅ ∧
∨
{∇γ | γ ≤U α} =

∨
{∇δ | δ ≤C ∅, δ ≤U α}

=

{
∇α if α = ∅
0 if α 6= ∅

∇{
∨
α} ∧

∨
{∇γ | γ ≤U α} =

∨
{∇δ | δ ≤C {

∨
α} , δ ≤U α}

= ∇ (α ∪ {
∨
α})

=
∨
{∇ (α ∪ α′) | ∅ 6= α′ ∈ Pωα}

=

{
0 if α = ∅
∇α if α 6= ∅

It follows that, whether α is empty or not, ψ (ϕ (∇α)) = ∇α.

5.3.4 Categorical properties of the T -powerlocale

In this section we discuss two categorical properties of the T -powerlocale construc-
tion. First we show how to extend the frame construction VT to an endofunctor
on the category Fr of frames. As a second topic we will see how the natural
transformation i : VPω → VId (discussed in §5.2.5 as i : V → Id) can be generalized
to a natural transformation

ρ̂ : VT → VT ′ ,

for any natural transformation ρ : T ′ → T satisfying some mild conditions (where
T and T ′ are two finitary, weak pullback preserving set functors).

VT is a functor

We start with introducing a natural way to transform a frame homomorphism
f : L→M into a frame homomorphism from VTL to VTM. For that purpose we
first prove the following technical lemma.

5.3.16. Lemma. Let L,M be frames and let f : L→M be a frame homomorphism.
Then the map ∇ ◦ Tf : TL → VTM , i.e. α 7→ ∇(Tf)(α), is compatible with the
relations (∇1), (∇2) and (∇3).

Proof We abbreviate ♥ := ∇ ◦ Tf , that is, for α ∈ TL, we define ♥α :=
∇(Tf)(α).

In order to prove that ♥ is compatible with (∇1), we need to show that

for all α, β ∈ TL : α T≤L β implies ♥α ≤VTM ♥β. (5.9)

To see this, assume that α, β ∈ TL are such that α T≤L β. From this it follows
by Lemma 5.2.8 and the assumption that f is a frame homomorphism, that
(Tf)(α) T≤M (Tf)(β). Then by (∇1)M we obtain that ♥α ≤VTM ♥β, as required.
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Proving compatibility with (∇2) boils down to showing

for all Γ ∈ PωTL :
∧
α∈Γ

♥α ≤
∨
{♥(T

∧
)(Ψ) | Ψ ∈ SRD(Γ)}. (5.10)

For this purpose, given Γ ∈ PωTL, let Γ′ ∈ PωTM denote the set (PωTf)(Γ) =
{(Tf)(α) | α ∈ Γ}. Then we may observe∧

α∈Γ

♥α =
∨
{∇(T

∧
)(Ψ) | Ψ ∈ SRD(Γ′)} (∇1)

≤
∨
{∇(T

∧
)(TPωf)(Φ) | Φ ∈ SRD(Γ)} (Lemma 5.3.9)

=
∨
{∇(Tf)(T

∧
)(Φ) | Φ ∈ SRD(Γ)} (†)

=
∨
{♥(T

∧
)(Φ) | Φ ∈ SRD(Γ)} (definition of ♥)

Here the identity marked (†) is easily justified by f being a homomorphism:
it follows from f ◦

∧
=
∧
◦(Pωf) and functoriality of T that (Tf) ◦ (T

∧
) =

(T
∧

) ◦ (TPωf).
Finally, for compatibility with (∇3) we need to verify that

for all Φ ∈ TPL : ♥(T
∨

)(Ψ) ≤
∨
{♥β | β T∈ Φ}. (5.11)

To prove this, we calculate for a given Φ ∈ TPL:

♥(T
∨

)(Φ) = ∇(Tf)(T
∨

)(Φ) (definition of ♥)

= ∇(T
∨

)(TPf)(Φ) (f a frame homomorphism)

≤
∨
{∇β | β T∈ (TPf)(Φ)} (∇3)M

=
∨
{∇(Tf)(γ) | γ T∈ Φ} (‡)

=
∨
{♥γ | γ T∈ Φ} (definition of ♥)

Here the identity (‡) follows from the observation that for all β ∈ TM and
Φ ∈ TPL, we have β T∈ (TPf)(Φ) iff β is of the form β = (Tf)(γ) for some
γ ∈ TL. Using Fact 5.2.7, this is easily derived from the observation that for
b ∈M and A ∈ PL, we have b ∈ (Pf)A iff b = f(c) for some c ∈ A.

Lemma 5.3.16 justifies the following definition.

5.3.17. Definition. Let f : L → M be a frame homomorphism. We define
VTf : VTL→ VTM to be the unique frame homomorphism extending

∇ ◦ Tf : TL→ VTM.
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5.3.18. Theorem. Let T be a standard, finitary, weak pullback-preserving func-
tor. Then the operation VT defined above is an endofunctor on the category
Fr.

Proof Since for an arbitrary f : L→M we have ensured by definition that VTF
is a frame homomorphism from VTL to VTM, it is left to show that VT maps the
identity map of a frame to the identity map of its T-powerlocale, and distributes
over function composition. We confine our attention to the second property.

Let f : K → L and g : L → M be two frame homomorphisms. In order to
show that VT (g ◦ f) = VTg ◦ VTf , first recall that VT (g ◦ f) is by definition the
unique frame homomorphism extending the map ∇M ◦ T (g ◦ f) : TK → VTM.
Hence, it suffices to prove that the map VTg ◦ VTf , which is obviously a frame
homomorphism, extends ∇M ◦ T (g ◦ f). But it is easy to see why this is the case:
given an arbitrary element α ∈ TK, a straightforward unravelling of definitions
shows that

(VTg ◦ VTf)(α) = VTg(∇L(Tf)(α)) = ∇M(Tg)(Tf)(α) = ∇MT (g ◦ f)(α),

as required.

Natural transformations between VT and VT ′

Now that we have seen how each finitary, weak pulback preserving set functor T
induces a functor VT on the category of frames, we investigate the relation between
two such functors VT , VT ′ . In fact, we have already seen an example of this: recall
that in §5.2.5 we mentioned Johnstone’s result [55] that the standard Vietoris
functor V is in fact a comonad on the category of frames. In our nabla-based
presentation of this functor as V = VPω , thinking of the identity functor on the
category Fr as the Vietoris functor VId , we can see the counit of this comonad as
a natural transformation

i : VPω → VId ,

given by iL : ∇A 7→
∧
A. More precisely, we can show that the map ♥ : PωL→ L

given by ♥A :=
∧
A is compatible with the ∇-axioms, and hence can be uniquely

extended to the homomorphism iL; subsequently we can show that this i is natural
in L. Recall that in the case of a concrete topological space (X, τ), this counit
corresponds on the dual side to the singleton map σX : s 7→ {s} which provides
an embedding of a compact Hausdorff topology into its Vietoris space.

We will now see how to generalize this picture, of the natural transformation
i : VPω → VId being induced by the singleton natural transformation σ : Id → Pω,
to a more general setting. First consider the following definition.

5.3.19. Definition. Let T and T ′ be standard, finitary, weak pullback-preserving
functors. A natural transformation ρ : T ′ → T is said to respect relation lifting if
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for any relation R ⊆ X × Y we have, for all α, β ∈ TX

α TR β only if ρX(α) T ′R ρY (β). (5.12)

We call ρ base-invariant if it commutes with Base, that is,

BaseT
′
= BaseT ◦ ρ. (5.13)

for any set X.

5.3.20. Example. We record three examples of base-invariant natural transfor-
mations which respect relation lifting.

1. The base transformation BaseT : T → Pω;

2. The singleton natural transformation σ : Id→ Pω, which is in fact a special
case of (1);

3. The diagonal map δ (given by δX : x 7→ (x, x)); it is straightforward to
check that as a natural transformation, δ : Id → Id × Id also satisfies both
properties of Definition 5.3.19.

As we will see now, every base-invariant natural transformation ρ : T ′ → T
that respects relation lifting, induces a natural transformation ρ̂ : VT → VT ′ . In
particular, the natural transformation i : V → Id can be seen as i = σ̂, where
σ : Id → Pω is the singleton transformation discussed above.

5.3.21. Theorem. Let T and T ′ be standard, finitary, weak pullback-preserving
functors, assume that ρ : T ′ → T is a base-invariant natural transformation that
respects relation lifting, and let L be a frame. Then the map from TL to VT ′L
given by

α 7→
∨
{∇α′ | α′ ∈ T ′L, ρ(α′) T≤ α}

specifies a frame homomorphism

ρ̂L : VTL→ VT ′L

which is natural in L.

Proof We let ♥ : TL→ L denote the map given in the statement of the Theorem,
that is, ♥α :=

∨
{∇α′ | α′ ∈ T ′L, ρ(α′) T≤ α}. We will first prove that this

map is compatible with, respectively, (∇1), (∇2) and (∇3), and then turn to the
naturality of the induced frame homomorphism.

1. Claim. The map ♥ is compatible with (∇1).
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Proof of Claim To show that ♥ is compatible with (∇1), take two elements
α, β ∈ TL such that α T≤ β. Then for any α′ ∈ T ′L such that ρ(α′) T≤ α, by
transitivity of T≤ (Fact 5.2.7(5)), we obtain that ρ(α′) T≤ β. From this it is
immediate that ♥α ≤ ♥β, as required.

2. Claim. The map ♥ is compatible with (∇2).

Proof of Claim For compatibility with (∇2), it suffices to show compatibility with
(∇2′). That is, for Γ ∈ PωTL, we will verify that∧

{♥γ | γ ∈ Γ} ≤
∨
{♥β | β T≤ γ, for all γ ∈ Γ}. (5.14)

We start with rewriting the left hand side of (5.14) into∧
{♥γ | γ ∈ Γ} =

∧{∨{
∇γ′ | ρ(γ′) T≤ γ

}
| γ ∈ Γ

}
(definition of ♥)

=
∨{∧

{ϕγ | γ ∈ Γ} | ϕ ∈ CΓ

}
(frame distributivity)

where we define CΓ := {ϕ : Γ→ T ′L | ρ(ϕγ) T≤ γ, for all γ ∈ Γ}.
For any map ϕ ∈ CΓ we may calculate∧
{ϕγ | γ ∈ Γ}

=
∨
{∇γ′ | γ′ T ′≤ ϕγ,∀γ ∈ Γ} (∇2′)

≤
∨
{∇γ′ | ρ(γ′) T≤ ρ(ϕγ),∀γ ∈ Γ} (ρ respects relation lifting)

≤
∨
{∇γ′ | ρ(γ′) T≤ γ, ∀γ ∈ Γ} (ϕ ∈ CΓ, transitivity of T≤)

=
∨{∨

{∇γ′ | ρ(γ′) T≤ β} | β T≤ γ, ∀γ ∈ Γ
}

(associativity of
∨

)

=
∨
{♥β | β T≤ γ, ∀γ ∈ Γ} (definition of ♥)

From the above calculations, (5.14) is immediate.

3. Claim. The map ♥ is compatible with (∇3).

Proof of Claim We need to show, for an arbitrary but fixed set Φ ∈ TPL, that

♥(T
∨

)(Φ) =
∨
{♥α | α T∈ Φ}. (5.15)

By definition, on the left hand side of (5.15) we find

♥(T
∨

)(Φ) =
∨
{∇β′ | ρ(β′) T≤ (T

∨
)(Φ)},
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while on the right hand side we obtain, by definition of ♥,∨
{♥α | α T∈ Φ} =

∨{∨
{∇α′ | ρ(α′) T≤ α} | α T∈ Φ

}
=
∨{
∇α′ | ρ(α′) T (≤ ; ∈) Φ

}
where the latter equality is by associativity of

∨
, and the compositionality of

relation lifting (Fact 5.2.7(5)).
As a consequence, in order to establish the compatibility of ♥ with (∇3), it

suffices to show that

∇β′ ≤
∨{
∇α′ | ρ(α′) T (≤ ; ∈) Φ

}
for any β′ with ρ(β′) T≤ (T

∨
)(Φ). (5.16)

Let β′ be an arbitrary element of TL such that ρ(β′) T≤ (T
∨

)(Φ). Our goal will
be to find a set Φ′ ∈ T ′PL satisfying (5.20), (5.21) and (5.22) below: clearly this
will satisfy to prove (5.16).

By Fact 5.2.9 we obtain that

BaseT (ρβ) P≤ BaseT ((T
∨

)(Φ)) = (P
∨

)BaseT (Φ),

and since ρ is base-invariant, we have BaseT
′
(β′) = BaseT (ρβ′). Combining these

facts we see that BaseT
′
(β′) P≤ (P

∨
)BaseT (Φ). This motivates the definition of

the following map H : BaseT
′
(β′)→ PωPL:

H(b) := {B ∈ BaseT (Φ) | b ≤
∨
B}.

From the definitions it is immediate that

for all b ∈ BaseT
′
(β′) : b ≤

∧{∨
B | B ∈ H(b)

}
. (5.17)

Also, given a set B ∈ PωPL, let CB be the collection of choice functions on B, that
is:

CB := {f : B → L | f(B) ∈ B for all B ∈ B}.

Then it follows by frame distributivity that∧{∨
B | B ∈ B

}
=
∨{∧

(Pf)(B) | f ∈ CB
}
. (5.18)

Define the map K : PωPL→ PL by

K(B) :=
{∧

(Pf)(B) | f ∈ CB
}
,

then it follows from (5.17), (5.18) and the definitions that

for all b ∈ BaseT
′
(β′) : b ≤

∨
K(H(b)). (5.19)
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As a corollary, if we define

Φ′ := (T ′K)(T ′H)(β′),

then it follows from (5.19), by the properties of relation lifting, that β′ T ′≤
(T ′
∨

)(Φ′), so that an application of (∇1) yields

∇β′ ≤ ∇(T ′
∨

)(Φ′). (5.20)

Also, on the basis of an application of (∇3) we may conclude that

∇(T ′
∨

)(Φ′) ≤
∨
{∇γ′ | γ′ T ′∈ Φ′}. (5.21)

This means that we are done with the proof of (5.16) if we can show that

for any γ′ ∈ T ′L, if γ′ T ′∈ Φ′ then ρ(γ′) T (≤ ; ∈) Φ. (5.22)

For a proof of (5.22), let γ′ be an arbitrary T ′-lifted member of Φ′ and recall
that Φ′ = (TK)(TH)(β′). Then it follows by the assumption that ρ respects
relation lifting, that ρ(γ′) T∈ ρ(Φ′) = (TK)(TH)(ρ(β′)). Given our assumption
on β′, this means that the relation between ρ(γ′) and Φ can be summarized as

ρ(γ′) T∈ (TK)(TH)(β) and β T≤ (T
∨

)(Φ) for some β ∈ TBaseT
′
(β′), (5.23)

where for β we may take ρ(β′).
Returning to the ground level, observe that for any c ∈ L, A ∈ BaseT (Φ), we

have

if c ∈ KH(b) and b ≤
∨
A, for some b ∈ BaseT

′
(β′), then c (≤ ; ∈) A. (5.24)

To see why this is the case, assume that c ∈ KH(b) and b ≤
∨
A, for some

b ∈ BaseT
′
(β′). Then by definition of H we find A ∈ H(b), while c ∈ KH(b)

simply means that c =
∧
{f(B) | B ∈ H(b)}, for some f ∈ CH(b). But then it is

immediate that c ≤ f(A), while f(A) ∈ A by definition of CH(b). Thus f(A) is the
required element witnessing that c (≤ ; ∈) A.

But by the properties of relation lifting, we may derive from (5.24) that

if γ T∈ (TK)(TH)(β) and β T≤ (T
∨

)(Φ) for some β ∈ TBaseT
′
(β′),

then γ T (≤ ; ∈) Φ, (5.25)

so that it is immediate by (5.23) that ρ(γ′) T (≤ ; ∈) Φ. This proves (5.22).
As mentioned already, the compatibility of ♥ with (∇3) is immediate by (5.20),

(5.21) and (5.22), and so this finishes the proof of Claim 3.

As a corollary of the Claims 1–3, we may uniquely extend♥ to a homomorphism
ρ̂L : VTL→ VT ′L. Clearly then, in order to prove the theorem it suffices to prove
the following claim.
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4. Claim. The family of homomorphisms ρ̂L constitutes a natural transformation
ρ̂ : VT → VT ′ .

Proof of Claim Given two frames L and M and a frame homomorphism f : L→M,
we need to show that the following diagram commutes:

VTL
bρL //

VT f

��

VT ′L
VT ′f

��
VTM

bρM // VT ′M
To show this, take an arbitrary element α ∈ TL, and consider the following
calculation:

(VT ′f)(ρ̂L(∇α))

= (VT ′f)(♥α) (definition of ρ̂L))

= (VT ′f)
(∨{

∇β′ | ρL(β′) T≤ α
})

(definition of ♥))

=
∨{

(V ′Tf)(∇β′) | ρL(β′) T≤ α
}

(VT ′f is a frame homomorphism)

=
∨{
∇(T ′f)(β′) | ρL(β′) T≤ α

}
(definition of VT ′f))

=
∨{
∇δ′ | ρM(δ′) T≤ (Tf)(α)

}
(†)

= ♥(Tf)(α) (definition of ♥))

= ρ̂M(∇(Tf)(α)) (definition of ρ̂M))

= ρ̂M((VTf)(∇α)) (definition of VTf))

Here the crucial step, marked (†), is proved by establishing the two respective
inequalities, as follows. For the inequality ≤, it is straightforward to show that
the set of joinands on the left hand side is included in that on the right hand side,
and this follows from

ρL(β′) T≤ α implies ρM((T ′f)(β′)) T≤ (Tf)(α). (5.26)

To prove (5.26), suppose that ρL(β′) T≤ α; then it follows by the fact that f is a
homomorphism, and hence, monotone, that (Tf)(ρL(β′)) T≤ (Tf)(α). But since
ρ is a natural transformation, we also have (Tf)(ρL(β′)) = ρM (T ′f)(β′), and from
this (5.26) is immediate.

In order to prove the opposite inequality∨{
∇δ′ | ρM(δ′) T≤ (Tf)(α)

}
≤
∨{
∇(T ′f)(β′) | ρL(β′) T≤ α

}
, (5.27)

fix an arbitrary element δ′ ∈ TL such that ρM(δ′) T≤ (Tf)(α).
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Define the map h : BaseT
′
(δ′)→ L by putting

h(d) :=
∧
{a ∈ BaseT (α) | d ≤ f(a)}.

Then for all d ∈ BaseT
′
(δ′) and all a ∈ BaseT (α), we find that d ≤ fa implies

hd ≤ a; this can be expressed by the relational inclusion

Grf ;≥ ; Grh ⊆ ≥

so that by the properties of relation lifting we may conclude that Gr(Tf) ; T≥ ;
Gr(Th) ⊆ T≥, which is just another way of saying that, for all δ ∈ TBaseT

′
(δ′),

we have
δ T≤ (Tf)(α) only if (Th)(δ) T≤ α. (5.28)

Now define
β′ := (T ′h)(δ′),

then we may conclude from the fact that ρ respects relation lifting that ρL(β′) =
(Th)ρM(δ′), and so by the assumption that ρM(δ′) T≤ (Tf)(α), we obtain by
(5.28) that

ρL(β′) T≤ α. (5.29)

Similarly, from the fact that d ≤ fhd, for each d ∈ BaseT
′
(δ′), we may derive

that δ′ T ′≤ (T ′f)(β′), and so by (∇1) we may conclude that

∇δ′ ≤ ∇(T ′f)(β′). (5.30)

Finally, (5.26) is immediate by (5.25) and (5.30).
This finishes the proof of Claim 4.

5.3.22. Remark. The definition of the ρ̂L : VTL→ VT ′L, using the assignment

α 7→
∨
{∇α′ | α′ ∈ T ′L, ρ(α′) T≤ α},

is very similar to that of a right adjoint. If it were the case that ρ̂L preserved all
meets, then the adjoint functor theorem would allow us to define its left adjoint.
However, we only have a proof that ρ̂L : VTL→ VT ′L preserves finite conjunctions,
so it is not at all obvious at this point if there even is a left adjoint to ρ̂L. This is
an interesting question for future work.

5.3.5 T -powerlocales via flat sites

In this subsection, we will show that VTL, the T -powerlocale of a given frame L,
has a flat site presentation as VTL ' Fr〈TL, T≤, /L

0 〉. It then follows by the Flat
site Coverage Theorem that every element of VTL has a disjunctive normal form,
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and that the suplattice reduct of VTL has a presentation defined only in terms of
the order T≤ and the lifted join function T

∨
: TPL→ TL.

Recall that 〈X,v, /0〉 is a flat site if 〈X,v〉 is a pre-order and /0 is a basic
cover relation compatible with v. In that case, we know that 〈X,v, /0〉 presents a
frame Fr〈X,v, /0〉, and that if we denote the insertion of generators by ♥ : X →
Fr〈X,v, /0〉, then

Fr〈X,v, /0〉 ' Fr〈X | ♥a ≤ ♥b (a v b),
1 =

∨
{♥a | a ∈ X}

♥a ∧ ♥b =
∨
{♥c | c v a, c v b}

♥a ≤
∨
{♥b | b ∈ A} (a /0 A)〉.

Observe that this is very similar to our presentation of VTL from Corollary 5.3.6
using (∇1), (∇2′) and (∇3), namely

VTL ' Fr〈TL | ∇α ≤ ∇β (α T≤ β),∧
Γ∇γ =

∨
{∇δ | ∀γ ∈ Γ, δ T≤ γ} (Γ ∈ TPωL)

∇T
∨

(Φ) ≤
∨
{∇β | β ∈ λT (Φ)} (Φ ∈ TPL)〉.

We will see below that if we define a cover relation /L
0 which is inspired by (∇3),

then we obtain a flat site 〈TL, T≤, /L
0 〉, and this flat site presents VTL.

So how do we go about defining a basic cover relation /L
0 ⊆ TL× PTL so we

can give a presentation of VTL? Intuitively, we would like to take the T -lifting of
the relation {(a,A) ∈ L× PL | a ≤

∨
A} = ≤ ; (Gr

∨
) .̆ However, the T -lifting of

this relation is of type TL×TPL, while a basic cover relation on 〈TL, T≤〉 should
be of type TL × PTL. We solve this by involving the natural transformation
λT : TP → PT , given by λT (Φ) := {β ∈ TL | β T∈ Φ}, assigning to each
Φ ∈ TPL the set of its lifted members. That is, we define

/L
0 := {(α, λT (Φ)) ∈ L× PTL | α T≤ T

∨
(Φ)}.

In other words: we put α /L
0 Γ iff Γ is of the form λT (Φ) for some Φ ∈ TPL

such that α T≤ (T
∨

)Φ. We must now do two things: first, we must show that
〈TL, T≤, /L

0 〉 is a flat site, meaning that /0 is compatible with T≤. Secondly, we
must show that 〈TL, T≤, /L

0 〉 presents VTL. The following technical observation
about the relation α T≤ T

∨
(Φ) is the main reason why VTL admits a flat site

presentation. The reason for introducing a ∧-semilattice M below will become
apparent in §5.4.2.

5.3.23. Lemma. Let L be a frame and let M be a ∧-subsemilattice of L. Then
for all α ∈ TM and Φ ∈ TPM such that α T≤ T

∨
(Φ), there exists Φ′ ∈ TPM

such that

1. α T≤ T
∨

(Φ′);
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2. Φ′ T⊆ T ↓L ◦Tη(α);

3. Φ′ T⊆ T ↓L(Φ)

Proof First, we define the following relation on M × PM :

R := {(a,A) ∈M × PM | a ≤
∨
A} = (≤ ; (Gr

∨
)̆ ) �M×PM .

Consider the span M
p1←− R

p2−→ PM . We define the following function f : R→ R:

f : (a,A) 7→ (a, a ∧ A),

where a ∧ A := {a ∧ b | b ∈ A}. To see why this function is well-defined, first
observe that a∧A ∈ PM because M is a ∧-subsemilattice of L. Moreover, by the
infinite distributive law for frames, we see that if (a,A) ∈ R, i.e. if a ≤

∨
A, then

also a ≤
∨

(a ∧A), so that (a, a ∧A) ∈ R. Now observe that f : R→ R satisfies
an equation and two inequations: for all (a,A) ∈ R,

p1 ◦ f(a,A) = a = p1(a,A), by def. of f ,

p2 ◦ f(a,A) = a ∧ A ⊆L ↓L{a} = ↓L ◦ηL ◦ p1(a,A), since ∀b ∈ A, a ∧ b ≤ a,

p2 ◦ f(a,A) = a ∧ A ⊆L ↓LA = ↓L ◦p2(a,A) since ∀b ∈ A, a ∧ b ≤ b ∈ A.

Now consider the lifted diagram

TM TR
Tp1oo Tp2 // TPM.

It follows from Lemma 5.2.8 and the equation/inequations above that for each
δ ∈ TR, we have

Tp1 ◦ Tf(δ) = Tp1(δ), (5.31)

Tp2 ◦ Tf(δ) T⊆L T ↓L ◦TηL ◦ Tp1(δ), (5.32)

Tp2 ◦ Tf(δ) T⊆L T ↓L ◦Tp2(δ) (5.33)

Now recall that by Fact 5.2.7,

T≤ ; Gr(T
∨

)̆ = T (≤ ; (Gr
∨

)̆ ) = TR,

so we see that α T ≤ T
∨

(Φ) iff α TR Φ. So let α ∈ TM and Φ ∈ TPM such
that α T≤ T

∨
(Φ), i.e. such that α TR Φ; we will show that there is a Φ′ ∈ TPM

satisfying properties (1)–(3). First, observe that by definition of relation lifting,
there must exist some δ ∈ TR such that

Tp1(δ) = α and Tp2(δ) = Φ.
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We claim that Φ′ := Tp2◦Tf(δ) satisfies properties (1)–(3). We know by definition
of relation lifting that (Tp1 ◦ Tf(δ)) TR (Tp2 ◦ Tf(δ)). Since

Tp1 ◦ Tf(δ) = Tp1(δ) by (5.31),

= α by assumption,

it follows that α TR Φ′, i.e. α T≤ T
∨

(Φ′); we conclude that (1) holds. Moreover,
it follows immediately from (5.32) that (2) holds. Similarly, it follows immediately
from (5.33) that (3) holds.

In the lemma above, we use the lifted inclusion relation T⊆ and the lifted
downset function T ↓. In the lemma below we record several elementary obser-
vations about the interaction between T⊆, T ↓ and the natural transformation
λT : TP → PT .

5.3.24. Lemma. Let 〈X,v〉 be a pre-order, let α ∈ TX and let Φ,Φ′ ∈ TPX.
Then

1. ↓TXλT (Φ) = λT (T↓X(Φ));

2. ↓TX{α} = λT (T↓X ◦ TηX(α));

3. If Φ′ T ⊆X Φ, then also λT (Φ′) ⊆ λT (Φ).

Proof (1). For all a ∈ X and all A ∈ PX, we have a ≤ ; ∈ A iff a ∈ ↓X A.
Consequently,

∀α ∈ TL,∀Φ ∈ TPL, α T≤ ; T∈ Φ iff α T∈ T ↓X(Φ).

Now we see that

α ∈ ↓TX λT (Φ)⇔ α T≤ ; T∈ Φ by def. of ↓ and λT ,

⇔ α T∈ T ↓X(Φ) by the above,

⇔ α ∈ λT (T↓X(Φ)) by def. of λT .

(2). For all a, b ∈ X, we have b ≤ a iff b ∈ ↓X{a}. It follows by relation lifting
that

∀α, β ∈ TX, β T≤ α iff β T∈ T ↓X ◦TηX(α).

It now follows by an argument analogous to that for (1) above that (2) holds.
(3). Observe that for all A,A′ ∈ PX and all a ∈ X, we have that a ∈ A′ ⊆ A

implies that a ∈ A. The statement follows by relation lifting.

We are now ready to prove that 〈TL, T≤, /L
0 〉 is indeed a flat site.

5.3.25. Lemma. If L is a frame then 〈TL, T≤, /L
0 〉 is a flat site.
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Proof We have already know from Lemma 5.2.8 that 〈TL, T≤〉 is a pre-order, so
what remains to be shown is that the relation /L

0 is compatible with the pre-order.
Fix α ∈ TL and Φ ∈ TPL such that α T≤ T

∨
(Φ), so that α /L

0 λ
T (Φ). We need

to show that

∀β ∈ TL, if β T≤ α then ∃Γ ∈ TPL s.t. Γ ⊆ ↓TL{β} ∩ ↓TL λT (Φ) and β /L
0 Γ.

(5.34)
But this is easy to see: if β T≤ α then since α T≤ T

∨
(Φ), it follows by transitivity

of T≤ that β T≤ T
∨

(Φ). Now by Lemma 5.3.23 there exists Φ′ ∈ TPL such
that α T≤ T

∨
(Φ′), Φ′ T⊆ T ↓L ◦Tη(β) and Φ′ T⊆ T ↓L Φ. Define Γ := λT (Φ′),

then it follows from the definition of /L
0 that β /0 Γ; moreover, it now follows

from Lemma 5.3.24 that Γ ⊆ ↓TL{β} ∩ ↓TL λT (Φ). We conclude that (5.34) holds.
Since α ∈ TL and Φ ∈ TPL were arbitrary, it follows that /L

0 is compatible with
the order T≤, so that 〈TL, T≤, /L

0 〉 is a flat site.

Having established that 〈TL, T≤, /L
0 〉 is a flat site, we will now prove that it

presents VTL, i.e. that VTL ' Fr〈TL, T≤, /L
0 〉.

5.3.26. Theorem. Let L be a frame and let T be a standard, finitary, weak
pullback-preserving functor. Then VTL admits the following flat site presentation:

VTL ' Fr〈TL, T≤, /L
0 〉,

where /L
0 = {(α, λT (Φ)) ∈ L× PTL | α T≤ T

∨
(Φ)}, and in each direction, the

isomorphism is the unique frame homomorphism extending the identity map idTL
on the set of generators of VTL and Fr〈TL, T≤, /L

0 〉, respectively.

Proof For this proof, we denote the insertion of generators from TL to VTL by
∇, and from TL to Fr〈TL, T≤, /L

0 〉 by ♥. We will show that

1. the function ♥ : TL→ Fr〈TL, T≤, /L
0 〉 is compatible with the relations (∇1),

(∇2′) and (∇3), and

2. that the function ∇ : TL→ VTL has the following properties:

(a) ∇ is order-preserving;

(b) 1 =
∨
{∇α | α ∈ TL};

(c) for all α, β ∈ TL, ∇α ∧∇β =
∧
{∇γ | δ T≤ α, β};

(d) for all α /L
0 Γ, ∇α ≤

∨
{∇β | β ∈ Γ}.

(1). First consider (∇1). Suppose that α, β ∈ TL such that α T≤ β; we
have to show that ♥α ≤ ♥β. This follows immediately from the fact that
♥ : TL → Fr〈TL, T≤, /L

0 〉 is order-preserving. Secondly, consider (∇2′). Let
Γ ∈ PωTL, we then have to show that∧

γ∈Γ♥γ ≤
∨
{♥δ | ∀γ ∈ Γ, δ T≤ γ}. (5.35)
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Recall from §5.2.4 that since 〈TL, T≤, /L
0 〉 is a flat site, we know that 1 =

∨
{♥α |

α ∈ TL} and that for all α, β ∈ TL, ♥α ∧ ♥β =
∧
{♥γ | δ T≤ α, β}. It now

follows by induction on the size of Γ that (5.35) holds.
Finally for (∇3), take Φ ∈ TPL. We have to show that ♥T

∨
(Φ) ≤

∨
{♥β |

β ∈ λT (Φ)}. This follows immediately from the definition of /L
0 , since T

∨
(Φ) T≤

T
∨

(Φ). We conclude that ♥ : TL→ Fr〈TL, T≤, /L
0 〉 is compatible with the rela-

tions (∇1), (∇2) and (∇3) and thus there must be a unique frame homomorphism
f : VTL→ Fr〈TL, T≤, /L

0 〉 which extends ♥.
(2). We first have to show that ∇ is order-preserving, i.e. that if α T≤ β,

then ∇α ≤ ∇β. This follows immediately from (∇1). Secondly, we must show
that (2)(b) and (2)(c) are satisfied, but this follows immediately from (∇2′).
Finally, consider (2)(d), i.e. suppose that α /L

0 Γ. By definition of /L
0 , there is some

Φ ∈ TPL such that α T≤ T
∨

(Φ) and λT (Φ) = Γ. Now we need to show that
∇α ≤

∨
{∇β | β ∈ λT (Φ)}. This is easy to see, since

∇α ≤ ∇T
∨

(Φ) by (∇1),

≤
∨
{∇β | β ∈ λT (Φ)} by (∇3).

It follows that (2)(d) holds; consequently, there is a unique frame homomorphism
g : Fr〈TL, T≤, /L

0 〉 → VTL extending ∇.
Finally, it is easy to see that

gf = idVTL and fg = id〈TL,T≤,/L
0〉
,

so that indeed VTL ' Fr〈TL, T≤, /L
0 〉.

In light of Theorem 5.3.26 above, we denote the insertion of generators by
∇ : TL → Fr〈TL, T≤, /L

0 〉. We now arrive at the most important corollary of
Theorem 5.3.26, which says that every element of VTL has a disjunctive normal
form.

5.3.27. Corollary. Let L be a frame. Then for all x ∈ VTL, there is a Γ ∈ PTL
such that x =

∨
{∇γ | γ ∈ Γ}.

Proof By Theorem 5.3.26 we know that VTL ' SupLat〈TL, T≤, /L
0 〉. The state-

ment now follows Fact 5.2.14.

5.3.28. Remark. It is not hard to show that

SupLat〈TL, T≤, /L
0 〉 ' SupLat〈TL | (∇1), (∇3)〉.

Consequently, by Theorem 5.3.26 and Fact 5.2.14, the order on VTL is uniquely
determined by the relations (∇1) and (∇3).
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5.4 Preservation results

Now that we have established the T -powerlocale construction, we can set about
to prove that it is well-behaved. One particular kind of good behaviour is to ask
that it preserves algebraic properties. In this section, we present several initial
results in this area. In particular, we show that VT preserves regularity and zero-
dimensionality of frames, and the property of being a compact zero-dimensional
frame.

5.4.1 Regularity and zero-dimensionality

The purpose of this subsection is to prove that the operation VT preserves regularity
and zero-dimensionality of frames. Both of these notions are defined in terms of
the well-inside relation 0; accordingly, the main technical result of this subsection
states that if α T0 β, then also ∇α 0VTL ∇β. We first recall some notions leading
up to the definition of regularity.

5.4.1. Definition. Given two elements a, b of a distributive lattice L, we say
that a is well inside b, notation: a 0 b, if there is some c in L such that a ∧ c = 0
and b ∨ c = 1. If a 0 a we say a is clopen. We denote the clopen elements of L by
CL.

In case L is a frame, in the definition of 0, for the element c witnessing that
a 0 b we may always take the Heyting complementation ¬a of a. In other words,
a 0 b iff b∨¬a = 1. Consequently, if a is clopen then a∨¬a = 1. In the sequel we
will use not only this fact, but also the following properties of 0 without warning.

5.4.2. Fact ([54], L. III.1.1). Let L be a frame.

1. 0 ⊆ ≤;

2. ≤ ;0 ;≤ ⊆ 0;

3. for X ∈ PL, if ∀x ∈ X.x 0 y then
∨
X 0 y;

4. for X ∈ PL, if ∀x ∈ X.y 0 x then y 0
∧
X;

5. a 0 a iff a has a complement.

5.4.3. Definition. A frame L is regular if every a ∈ L satisfies

a =
∨
{b ∈ L | b 0 a}.

We say L is zero-dimensional if for all a ∈ L,

a =
∨
{b ∈ CL | b ≤ a}.
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We record the following useful property of CL [54, §III-1.1]:

5.4.4. Fact. Let L be a frame. Then 〈CL,∧,∨, 0, 1〉 is a sublattice of L.

We define a function ⇓ : PL→ PCL which maps A ∈ PL to ↓A ∩ CL.

5.4.5. Lemma. If L is a zero-dimensional frame, then

1. ∀α ∈ TL, ∇α =
∨
{∇β | β ∈ TCL, β T≤ α};

2. ∀Φ ∈ TPL, T
∨

(Φ) = T
∨
◦ T ⇓(Φ);

3. ∀Φ ∈ TPL, ∀α ∈ TL, [α ∈ TCL and α T≤ ; T∈ Φ] iff α ∈ λT (T ⇓(Φ)).

Similarly to (1), if L is regular then ∀α ∈ TL, ∇α =
∨
{∇β | β ∈ TL, β T0 α}.

Proof (1). First, observe that for all a ∈ L, we have that

a =
∨
{b ∈ CL | b ≤ a} by zero-dimensionality,

=
∨
⇓{a} by definition of ⇓,

=
∨
⇓ ◦η(a) by def. of η : IdSet → P .

By relation lifting, it follows that

∀α ∈ TL, α = T
∨
◦ T ⇓ ◦Tη(α). (5.36)

Now observe that for all a, b ∈ L, we have b ∈ ⇓{a} iff b ∈ CL and b ≤ a. By
relation lifting, it follows that

∀α, β ∈ TL,
[
β T∈ T ⇓ ◦Tη(α) iff β ∈ TCL and β T≤ α

]
. (5.37)

Combining these two observations, we see that

∇α = ∇ (T
∨
◦ T ⇓ ◦Tη(α)) by (5.36),

=
∨
{∇β | β T∈ T ⇓ ◦Tη(α)} by (∇3),

=
∨
{∇β | β ∈ TCL, β T≤ α} by (5.37).

(2). It follows by zero-dimensionality of L that for all A ∈ PL, we have∨
A =

∨
⇓A. Consequently, by relation lifting, it follows that (2) holds.

(3). Take a ∈ L and A ∈ PL. Then

a ∈ ⇓A⇔ a ∈ CL and ∃b ∈ A, a ≤ b by definition of ⇓,

⇔ a ∈ CL and a ≤ ; ∈ A by def. of relation composition.

It follows by relation lifting that

∀Φ ∈ TPL, ∀α ∈ TL, α T∈ T ⇓(Φ) iff α ∈ TCL and α T≤ ; T∈ Φ.
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Now it follows by definition of λT (Φ) that (3) holds.
For the last part of the proof, first observe that if L is regular, then for all

a ∈ L, a =
∨
w(a), where we temporarily define w : L→ PL as

w : a 7→ {b ∈ L | b 0 a}.

By relation lifting, it follows that

T
∨
◦ Tw = idL . (5.38)

Moreover, it follows by definition of w : L→ PL that for all a, b ∈ L, b ∈ w(a) iff
b 0 a. Consequently,

∀α, β ∈ TL, β T∈ Tw(α) iff β T0 α. (5.39)

Now we see that for any α ∈ TL,

∇α = ∇ (T
∨
◦ Tw(α)) by (5.38),

=
∨
{∇β | β T∈ Tw(α)} by (∇3),

=
∨
{∇β | β T0 α} by (5.39).

The key technical lemma of this subsection states that relation lifting preserves
the 0-relation.

5.4.6. Lemma. Let T be a standard, finitary, weak pullback-preserving functor
and let L be a frame. Then

for all α, β ∈ TL : α T0 β implies ∇α 0VTL ∇β. (5.40)

Proof Let α, β ∈ TL be such that α T0 β. Our aim will be to show that
∇α 0VTL ∇β.

We may assume without loss of generality that

∃f : Base(α)→ Base(β) such that β = (Tf)α and ∀a ∈ Base(α), a 0 fa.
(5.41)

To justify this assumption, assume that we have a proof of (5.40) for all β
satisfying (5.41). To derive (5.40) in the general case, consider arbitrary elements
α, β′ ∈ TL such that α T0 β′. In order to show that ∇α T0 ∇β′, consider the
map f : Base(α) → L given by f(a) :=

∧
{b ∈ Base(β′) | a 0 b}. On the basis

of Fact 5.4.2 it is not difficult to see that Gr(f) ⊆ 0 and so by the properties of
relation lifting we obtain Gr(Tf) ⊆ T0. In particular, we find that α T0 (Tf)α;
thus by our assumption we may conclude that ∇α 0 ∇(Tf)α. Also, observe
that a 0 b implies fa ≤ b, for all a ∈ Base(α) and b ∈ Base(β′). Hence by
Lemma 5.2.8 we may conclude from α T0 β′ that (Tf)α T≤ β′, which gives
∇(Tf)α ≤ ∇β′. Combining our observations thus far, by Fact 5.4.2 it follows from
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∇α 0 ∇(Tf)α and ∇(Tf)α ≤ ∇β′ that ∇α 0 ∇β′ indeed. Thus our assumption
(5.41) is justified indeed.

Turning to the proof itself, consider the map h : PBase(α)→ L given by

h(A) :=
∧

({¬a | a ∈ A} ∪ {fa | a 6∈ A}) .

Our first observation is that, since by assumption ¬a ∨ fa = 1L for each a ∈
Base(α), we may infer that

1L =
∧
{¬a ∨ fa | a ∈ Base(α)},

a straightforward application of the (finitary) distributive law yields that

1L =
∨
{h(A) | A ∈ PBase(α)}. (5.42)

Define X ⊆ L to be the range of h, so that we may think of h as a surjection h :
PBase(α)→ X, and read (5.42) as saying that 1 =

∨
X. Using Lemma 5.3.10(5),

from the latter observation we may infer that

1VTL =
∨
{∇ξ | ξ ∈ TX}. (5.43)

However, from h : PBase(α) → X being surjective we may infer that Th :
TPBase(α)→ TX is also surjective, so that we may read (5.43) as

1VTL =
∨
{∇Th(Φ) | Φ ∈ TPBase(α)}. (5.44)

This leads us to the key observation in our proof: We may partition the set
{Th(Φ) | Φ ∈ TPBase(α)} into elements γ such that ∇γ ≤ ∇β, and elements γ
satisfying ∇α ∧∇γ = 0VTL.

1. Claim. Let Φ ∈ TPBase(α).
(a) If (α,Φ) ∈ T 6∈, then Th(Φ) T≤ β;
(b) if (α,Φ) 6∈ T 6∈, then ∇α ∧∇Th(Φ) = 0VTL.

Proof of Claim For part (a), it is not hard to see that

a 6∈ A⇒ h(A) ≤ f(a), for all a ∈ Base(α), A ∈ PBase(α).

From this it follows by Lemma 5.2.8 that

α T 6∈ Φ⇒ Th(Φ) T≤ (Tf)(α) = β.

For part (b), assume that ∇α∧∇Th(Φ) > 0VTL. It suffices to derive from this
that α T 6∈ Φ.
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Let ≤′ be the restriction of ≤ to the non-zero part of L, that is, ≤′ := ≤�L′×L′ ,
where L′ = L \ {0L}. We claim that for all γ, δ ∈ TL:

∇γ ∧∇δ > 0VTL ⇒ (γ, δ) ∈ T≥′ ; T≤′. (5.45)

To see this, assume that ∇γ ∧∇δ > 0VTL, and observe that Lemma 5.3.5 yields
the existence of a θ ∈ TL such that ∇θ > 0VTL and θ T≤ γ, δ. It follows from
Lemma 5.3.10(1) that γ, δ and θ all belong to TL′, and so θ is witnesses to the
fact that (γ, δ) ∈ T≥′ ; T≤′.

By (5.45) and the assumption on α and Φ it follows that (α,Φ) ∈ T≥′ ; T≤′ ;
(GrTh)̆ , and so by Fact 5.2.7 we obtain

(α,Φ) ∈ T (≥′ ;≤′ ; (Grh)̆ ) (5.46)

The crucial observation now is that

≥′ ;≤′ ; (Grh)̆ ⊆ 6∈. (5.47)

For a proof, take a pair (a,A) ∈ L× PL in the LHS of (5.47), and suppose for
contradiction that a ∈ A. Then by definition of h we obtain h(A) ≤ ¬a, so that
a ∧ h(A) = 0L. But if a ≥′ ;≤′ ; (Grh)̆ A, then there must be some b such that
b ≤′ a, h(A), and by definition of ≤′ this can only be the case if b > 0L. This gives
the desired contradiction.

Finally, by monotonicity of relation lifting, it is an immediate consequence of
(5.46) and (5.47) that α T 6∈ Φ. This finishes the proof of the Claim.

On the basis of the Claim it is straightforward to finish the proof. Define

c :=
∨{

Th(Φ) | Φ ∈ TPBase(α) such that (α,Φ) 6∈ T 6∈
}
,

then we may calculate that

c ∨∇β

≥ c ∨
∨{

Th(Φ) | Φ ∈ TPBase(α) such that (α,Φ) ∈ T 6∈
}

(Claim 1(a))

=
∨
{Th(Φ) | Φ ∈ TPBase(α)} (definition of c)

= 1VTL (equation (5.44))

and

∇α ∧ c

=
∨{
∇α ∧ Th(Φ) | Φ ∈ TPBase(α) such that (α,Φ) 6∈ T 6∈

}
(distributivity)

=
∨{

0VTL | Φ ∈ TPBase(α) such that (α,Φ) 6∈ T 6∈
}

(Claim 1(b))

= 0VTL

In other words, c witnesses that ∇α 0VTL ∇β.
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We now arrive at the main result of this subsection, namely, that the T -
powerlocale construction preserves regularity and zero-dimensionality.

5.4.7. Theorem. Let L be a frame and let T be a standard, finitary, weak
pullback-preserving functor.

1. If L is regular then so is VTL.

2. If L is zero-dimensional then so is VTL.

Proof (1). By Corollary 5.3.27, it suffices to show that for all α ∈ TL,

∇α =
∨
{∇β ∈ VTL | ∇β 0 ∇α}. (5.48)

Take α ∈ TL; we see that

∇α =
∨
{∇β | β T0 α} by Lemma 5.4.5,

≤
∨
{∇β | ∇β 0VTL ∇α} by Lemma 5.4.6,

≤ ∇α since 0 ⊆ ≤.

It follows that (5.48) holds, concluding the proof of part (1).

(2). Again by Corollary 5.3.27, it suffices to show that for all α ∈ TL,

∇α =
∨
{∇β | ∇β ∈ CVTL, ∇β ≤ ∇α}. (5.49)

The main observation here is that

∀β ∈ TCL, ∇β ∈ CVTL. (5.50)

To see why, recall that CL := {b ∈ L | b 0 b}, so that for all b ∈ CL, b = b implies
b 0 b. Consequently, by relation lifting,

∀β ∈ TCL, β T0 β.

It follows by Lemma 5.4.6 that (5.50) holds. Now

∇α =
∨
{∇β | β ∈ TCL, β T≤ α} by Lemma 5.4.5(1),

≤
∨
{∇β ∈ CVTL | β T≤ α} by (5.50),

≤
∨
{∇β ∈ CVTL | ∇β ≤ ∇α} by (∇1),

= ∇α by order theory.

It now follows that (5.49) holds; consequently we see that (2) holds.
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5.4.2 Compactness

In this subsection, we will show that if L is compact and zero-dimensional, then so
is VTL. Our proof strategy is as follows. Given a compact zero-dimensional frame
L, we will define a new construction V C

T L which is guaranteed to be compact, and
then we show that VTL ' V C

T L.
We define a flat site presentation 〈TCL, T≤, /C0 〉, where

/C0 := {(α, λT (Φ)) ∈ TCL × PTL | α T≤ T
∨

(Φ), Φ ∈ TPωCL}.

Observe that we view TCL as a substructure of TL, which is justified by the
fact that CL is a sublattice of L (Fact 5.4.4): this fact tells us that

∨
: PL→ L

restricts to a function from PωCL to CL; consequently, by standardness of T T
∨

maps TPωCL to TCL. Below, we will need the following property of relation lifting
with respect to ordered sets.

5.4.8. Lemma. Let P be a poset with a top element 1.

∀β ∈ TP, ∃α ∈ T{1}, β T≤ α;

Proof Consider the following function at the ground level: f : P → {1}, where
f is the constant function f : b 7→ 1. Then for all b ∈ P , we have b ≤ f(b) and
f(b) ∈ {1}. By relation lifting, we see that for all β ∈ TP , β T≤ Tf(β) and
Tf(β) ∈ T{1}. The statement follows.

5.4.9. Lemma. Let L be a frame. Then 〈TCL, T≤, /C0 〉 is a flat site. Moreover,
if T maps finite sets to finite sets then Fr〈TCL, T≤, /C0 〉 is a compact frame.

Proof Because CL is a meet-subsemilattice of L, we can apply Lemma 5.3.23
to TCL. Now the proof that 〈TCL, T≤, /C0 〉 is a flat site is analogous to that of
Lemma 5.3.25.

Now suppose that T maps finite sets to finite sets. Then for all Φ ∈ TPωCL, it
follows by Fact 5.2.12(3) that λT (Φ) is finite. Consequently,

∀α /C0 λT (Φ), λT (Φ) is finite.

Moreover, by Lemma 5.4.8,

TCL = ↓TCL
T{1L},

since 1L ∈ CL as CL is a sublattice of L. Now since we assumed that T maps finite
sets to finite sets, {1L} must be finite. It is now follows from a straight-forward
generalization of [93, Proposition 11] that Fr〈TCL, T≤, /C0 〉 is a compact frame.
(The only change we need to make to [93, Proposition 11] is to generalize from
from using single finite trees to using disjoint unions of |T{1L}|-many trees, so
that one can cover each element of T{1L}.)
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We define V C
T L := Fr〈TCL, T≤, /C0 〉, and for the time being we denote the

insertion of generaters by ♥ : TCL → V C
T L. Our goal is now to show that VTL '

V C
T L. We will use a shortcut, exploiting the fact that both VTL and V C

T L have
flatsite presentations: we will define suplattice homomorphisms f ′ : VTL→ V C

T L
and g′ : V C

T L→ VTL. We then show that g′ ◦ f ′ = id and f ′ ◦ g′ = id, so that VTL
and V C

T L are isomorphic as suplattices. It then follows from order theory that they
are also isomorphic as frames. We start by defining a function g : TCL → VTL,
defined as

g : α 7→ ∇α.

5.4.10. Lemma. Let L be a frame. Then the fuction g defined above extends to a
suplattice homomorphism g′ : V C

T L→ VTL such that g′ ◦ ♥ = g.

V C
T L

g′ // VTL

TCL

♥
OO

g

<<xxxxxxxxx

Proof We need to show that g : TCL → VTL preserves the order on TCL and
preserves covers in to joins: if α /C0 λT (Φ), where α ∈ TCL, Φ ∈ TPCL and
α T≤

∨
(Φ), then g(α) ≤

∨
{g(β) | β ∈ λT (Φ)}. Both of these properties

follow straightforwardly from the fact that 〈TCL, T≤, /C0 〉 is a substructure of
〈TL, T≤, /L

0 〉.

The next step is to define the suplattice homomorphism f ′ : VTL→ V C
T L. This

requires a little more work then the definition of g′ : V C
T L→ VTL, beginning with

the following lemma.

5.4.11. Lemma. Let L be a compact frame. If α ∈ TCL and Φ ∈ TPCL such
that α T≤ T

∨
(Φ), then there exists Φα ∈ TPωCL such that Φα T⊆L Φ and

α T≤ T
∨

(Φα).

Proof Since L is compact, we can show that

for all a ∈ CL, a is compact. (5.51)

After all, if a ∈ CL and A ∈ PL such that a ≤
∨
A, then also 1 ≤ a ∨ ¬a ≤∨

A ∪ {¬a}, so by compactness of L, there exists a finite A′ ⊆ A such that
a ∨ ¬a ≤

∨
A′ ∪ {¬a}. Consequently, a ≤

∨
A′. Since A was arbitrary, it follows

that a is compact.
We define

S := (≤ ;Gr(
∨

)̆ ) �CL×PCL ;

so that (a,A) ∈ S iff a ∈ CL, A ∈ PCL and a ≤
∨
A. By (5.51), we can define a

function h : S → S where h : (a,A) 7→ (a′, A′) such that a = a′, A′ ⊆ A, a′ ≤
∨
A′
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(otherwise h would not be well-defined) and such that A′ is finite, i.e. A′ ∈ PωCL.
In other words, h : S → S is a function which assigns a finite subcover A′ to a set
of zero-dimensional opens A covering a zero-dimensional open element a . If we
denote the projection functions of S as

CL S
p1oo p2 // PCL

then we can encode the above-mentioned properties of h as follows:

∀x ∈ S, p1 ◦ h(x) = p1(x);

∀x ∈ S, p2 ◦ h(x) ⊆ p2(x);

∀x ∈ S, p2 ◦ h(x) ∈ PωCL.

By relation lifting, it follows that

∀x ∈ TS, Tp1 ◦ Th(x) = Tp1(x); (5.52)

∀x ∈ TS, Tp2 ◦ Th(x) T⊆ Tp2(x); (5.53)

∀x ∈ TS, Tp2 ◦ Th(x) ∈ TPωCL. (5.54)

Finally, observe that it follows by relation lifing that

∀α ∈ TCL,∀Φ ∈ TPCL, α T≤
∨

(Φ) iff α TS Φ.

Now take α ∈ TCL and Φ ∈ TPCL such that α T≤
∨

(Φ). Then by the above,
we have α TS Φ, so by definition of T there must exist some x ∈ TS such
that Tp1(x) = α and Tp2(x) = Φ. We define Φα := Tp2 ◦ Th(x); observe that
Tp1 ◦ Th(x) = Tp1(x) = α by (5.52). Since Th is a function from TS to TS, we
see that α TS Φα, so that α T≤ T

∨
(Φα). Moreover by (5.53) Φα T⊆ Φ and by

(5.54), Φα ∈ TPωCL. This concludes the proof.

We now define a map f : TL→ V C
T L by sending

f : α 7→
∨
{♥β | β ∈ TCL, β T≤ α}.

This will give us our suplattice homomorphism f ′ : VTL→ V C
T L.

5.4.12. Lemma. If L is a compact zero-dimensional frame then f : TL→ V C
T L

defined above extends to a suplattice homomorphism f ′ : VTL → V C
T L, where

f ′ ◦ ∇ = f .

VTL
f ′ // V C

T L

TL

∇

OO

f

;;wwwwwwww
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Proof In order to show that f : TL → V C
T L extends to a suplattice homomor-

phism, we need to show that f preserves the order on TL and f transforms
covers into joins, i.e. that for all (α, λT (Φ)) ∈ /0, where α T≤ T

∨
(Φ), we have

f(α) ≤
∨
{f(γ) | γ ∈ λT (Φ)}. To see why f is order-preserving, suppose that

α0, α1 ∈ TL and that α0 T≤ α1. Then

f(α0) =
∨
{♥β | β ∈ TCL, β T≤ α0} by definition of f ,

≤
∨
{♥β | β ∈ TCL, β T≤ α1} since β T≤ α0 T≤ α1 ⇒ β T≤ α1,

= f(α1) by definition of f .

Before we go ahead and show that f tranforms covers α /0 λ
T (Φ) into joins, we

show that the expression
∨
{f(γ) | γ ∈ λT (Φ)} can be simplified:

∀Φ ∈ TPL,
∨
{f(γ) | γ ∈ λT (Φ)} =

∨
{♥β | β ∈ λT (T ⇓(Φ))}. (5.55)

To see why, observe that∨
{f(γ) | γ ∈ λT (Φ)}

=
∨{∨

{♥β | β ∈ TCL, β ≤ γ} | γ ∈ λT (Φ)
}

by definition of f ,

=
∨{∨

{♥β | β ∈ TCL, β ≤ γ} | γ T∈ Φ
}

by definition of λT ,

=
∨
{♥β | β ∈ TCL, ∃γ T∈ Φ, β ≤ γ} by associativity of

∨
,

=
∨
{♥β | β ∈ TCL, β T≤ ; T∈ Φ} by def. of relation composition,

=
∨
{♥β | β ∈ λT (T ⇓(Φ))} by Lemma 5.4.5(3).

Let α ∈ TL and Φ ∈ TPL such that α T≤ T
∨

(Φ); we need to show that
f(α) ≤

∨
{f(γ) | γ ∈ λT (Φ)}. By (5.55) it suffices to show that

f(α) ≤
∨
{♥γ | γ ∈ λT (T ⇓(Φ))}. (5.56)

Recall that f(α) =
∨
{♥β | β ∈ TCL, β ≤ α}. We will show that

∀β ∈ TCL, β T≤ α⇒ ♥β ≤
∨
{♥γ | γ ∈ λT (T ⇓(Φ))}. (5.57)

Suppose that β ∈ TCL and that β T≤ α. Then since we assumed that α T≤
T
∨

(Φ), it follows that β T≤ T
∨

(Φ). By Lemma 5.4.5(2), we know that T
∨

(Φ) =
T
∨
◦ T ⇓(Φ), so we see that

β T≤ T
∨
◦ T ⇓(Φ).

Now since T ⇓(Φ) ∈ TPCL, we can now apply Lemma 5.4.11 to conclude that
there must be some Φ′ ∈ TPωCL such that Φ′ T⊆ T ⇓(Φ) and β T≤

∨
Φ′. Now it

follows by definition of /C0 that β /C0 λ
T (Φ′). Now

♥β ≤
∨
{♥γ | γ ∈ λT (Φ′)} since β /C0 λ

T (Φ′),

≤
∨
{♥γ | γ ∈ λT (T ⇓(Φ))} by L. 5.3.24 since Φ′ T⊆ T ⇓(Φ).
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Since β ∈ TCL was arbitrary it follows that (5.57) holds; consequently, (5.56) holds
so that we may indeed conclude that f transforms covers into joins. We conclude
that f : TL→ V C

T L extends to a suplattice homomorphism f ′ : VTL→ V C
T L.

Now that we have established the existence of suplattice homomorphisms
f ′ : VTL→ V C

T L and g′ : V C
T L→ VTL, we are ready to prove the theorem of this

subsection.

5.4.13. Theorem. Let T : Set → Set be a standard, finitary, weak pullback-
preserving set funtor which maps finite sets to finite sets and let L be a frame. If
L is compact and zero-dimensional then so is VTL.

Proof It follows by Theorem 5.4.7 that VTL is zero-dimensional. To show that
VTL is compact, it suffices to show that VTL ' V C

T L by Lemma 5.4.9. We will
establish that VTL ' V C

T L by showing that g′ : V C
T L→ VTL and f ′ : VTL→ V C

T L
are suplattice isomorphisms, because g′ ◦ f ′ = idVTL and f ′ ◦ g′ = idV CT L. This
is sufficient since by order theory, any suplattice isomorphism is also a frame
isomorphism. We begin by making the following claim:

∀α ∈ TL, g′ ◦ f(α) = ∇α. (5.58)

After all, if α ∈ TL then

g′ ◦ f(α) = g′
(∨
{♥β | β ∈ TCL, β T≤ α}

)
by definition of f ,

=
∨
{g′(♥β) | β ∈ TCL, β T≤ α} since g′ preserves

∨
,

=
∨
{g(β) | β ∈ TCL, β T≤ α} by Lemma 5.4.10,

=
∨
{∇β | β ∈ TCL, β T≤ α} by definition of g,

= ∇α by Lemma 5.4.5(1).

It follows that (5.58) holds. Conversely, we claim that

∀α ∈ TCL, f
′ ◦ g(α) = ♥α. (5.59)

This is also not hard to see. Take α ∈ TCL, then

f ′ ◦ g(α) = f ′ (∇α) by definition of g,

= f(α) by Lemma 5.4.12,

=
∨
{♥β | β ∈ TCL, β T≤ α} by definition of f ,

= ♥α since ♥ is order-preserving.

It follows that (5.59) holds. Now we see that for all α ∈ TL,

g′ ◦ f ′(∇α) = g′ ◦ f(α) since f ′ ◦ ∇ = f ,

= ∇α by (5.58),

= idVTL (∇α) .
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In other words, we see that g′ ◦ f ′ and idVTL agree on the generators of VTL; it
follows that g′ ◦ f ′ = idVTL. An analogous argument shows that f ′ ◦ g′ = idV CT L.

We conclude that VTL and V C
T L are isomorphic as suplattices and consequently

also as frames; it follows that VTL is compact.

5.5 Further work

In this final section of this chapter, we give a list of possible questions for further
work. The first question, or rather, task, is to investigate concrete instances of the
T -powerlocale, beyond the cases T = Pω and T = Id. Some other, more technical
questions could be the following:

• A straightforward question is if we can prove, given reasonable assumptions
about T , that VT preserves compactness.

• For a follow-up question, consider the following. There is a dual equivalence
between KRegFrm, the category of compact regular frames and frame
homomorphisms, and KHaus, the category of compact Hausdorff spaces
and continuous maps, as witnessed by the functors pt : KRegFr→ KHaus
and Ω: KHaus→ KRegFr. If we denote the classical Vietoris hyperspace
functor by K : KHaus → KHaus, then it is the case that K ◦ pt '
pt ◦V . (All of the above can be found in [54, Ch. III].) Our question is
now if it is possible, given a coalgebra functor T : Set → Set such that
VT preserves compactness (and regularity, by Theorem 5.4.7), to define a
functor KT : KHaus→ KHaus, such that KT ◦ pt ' pt ◦VT . Palmigiano
& Venema propose an approach to this problem via Chu spaces in [73].

• A related question concerns the work in [66, 67]. In these papers, the authors
define a functor MT : BA→ BA on Boolean algebras, similar to the way we
defined VT : Fr→ Fr on frames. It is known [54, §§II-3 and II-4] that L is a
compact and zero-dimensional frame iff L ' I B for some Boolean algebra B,
where I is the ideal completion functor. This raises the question if our VT
is equivalent to MT of [67] modulo ideal completion, i.e. if I ◦MT ' VT ◦ I.

• A rather technical question is the one raised in Remark 5.3.22: in what
sense, if at all, is ρ̂ : VT → VT ′ a right adjoint?

A different line of questions concerns constructive mathematics. In their current
form, it is not entirely obvious where in the results we have presented there might
be constructive issues. We mention two possible improvements:

• We have described the construction VTL by taking a frame L and then giving
a presentation of VTL. One could also define VT on presentations of frames,
rather than on the full frames being presented. This way, one can study
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frames entirely via their presentations, which is conceptually comparable to
the approach of formal topology [25].

• Our results crucially use relation lifting, which seems to be tied to the
category of sets rather much. If one would take a more axiomatic approach
to the properties of λT : TP → PT , it might be possible to escape Set and
describe yet another generalization of VT which can be constructed using
other categories.





Appendix A

Preliminaries

In this appendix, we will briefly discuss some of the mathematical background
knowledge that we rely on elsewhere in this dissertation. The presentation of this
appendix is not linear: when explaining one subject, we will sometimes refer to
another one which may lie further ahead in the text.

A.1 Set theory

Throughout this dissertation, we assume that the reader is familiar with elementary
set theoretical notions such as membership x ∈ X, intersection X ∩ Y , union
X ∪ Y and set theoretic difference X \ Y . An exception is Chapter 5, where we
use some extra notation which does not occur in the rest of the dissertation. The
additional preliminaries for Chapter 5 are discussed in §5.2.

The only thing we would like to briefly mention at this point is the power-
set construction. If f : X → Y is a function between sets X and Y , then by
f−1 : P(Y )→ P(X) we denote the inverse image function, which maps any set
U ⊆ Y to

f−1(U) := {x ∈ X | f(x) ∈ U}.

At the same time, if U ⊆ X, then we define

f [U ] := {f(x) | x ∈ U};

this yields a function f [·] : P(X)→ P(Y ). Using these two mappings on subsets
based on a function f : X → Y , we can define two functors on Set, the category
of sets, with the same action on objects, viz. sending X to P(X). The covariant
powerset functor P : Set→ Set maps f : X → Y to Pf : P(X)→ P(Y ), where
Pf : U 7→ f [U ]. The contravariant powerset functor P̆ : Set → Setop maps
f : X → Y to P̆ f : P(Y )→ P(X), where P̆ f : U 7→ f−1(U).

199
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A.2 Category theory

Our main reference for category theory is Mac Lane [69]; alternatively, one can
consult Adamek, Herrlich & Strecker [3].

A.2.1 Categories and functors

A category is a structure C consisting of a class of objects X, Y, Z, . . . and a binary
function HomC which assigns to any two objects X, Y a class of morphisms, or
arrows, denoted HomC(X, Y ).1 If f ∈ HomC(X, Y ) then we write f : X → Y or

X
f−→ Y.

We require that if (X, Y ) 6= (X ′, Y ′), then HomC(X, Y ) and HomC(X ′, Y ′) are
disjoint. In other words, given an arrow f in C, f has a unique domain X and
codomain Y such that f ∈ HomC(X, Y ). Every category comes equipped with
an associative composition operation ◦ for morphisms, and identity morphisms
idX , one for each object X. If f : X → Y and g : Y → Z then g ◦ f : X → Z is a
morphism from X to Z. Saying that composition is associative means that for all
f : X → Y , g : Y → Z and h : Z → W , we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

The identity arrows idX are characterized by the following property: for all arrows
f : X → Y and g : Y → X,

f ◦ idX = f and idX ◦g = g.

We also use the arrows to define the notion of isomorphism. An arrow f : X → Y
is an isomorphism if there exists an arrow g : Y → X such that

gf = idX and fg = idY .

A.2.1. Example. As a prototypical example of a category, consider Set, which
has as its objects the class of all sets, and as its arrows all functions between sets.
Composition of arrows is then simply composition of functions; the identity arrows
are the identity functions and isomorphisms are precisely the bijective functions.
Note that this is not the prototypical example of a category, see [69, §I.2] for a
list of further basic examples.

Let C and C′ be categories. We say C′ is a subcategory of C if every object
of C′ is also an object of C, and if for all objects X, Y of C′, HomC′(X, Y ) ⊆
HomC(X, Y ). We say C′ is a full subcategory of C if for all objects X, Y of C′,
HomC′(X, Y ) = HomC(X, Y ).

1In all categories we consider in this dissertation, HomC(X, Y ) is a set rather than a class.
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A.2.2. Example. The category Setf , which has as its objects the class of all
finite sets, and as its morphisms all functions between finite sets, forms a full
subcategory of Set.

Given a category C, we can construct its dual category Cop. The objects of
Cop are simply those of C. The arrows of Cop are in 1-1 correspondence f 7→ f op

with those of C. The only difference between C and Cop is that if f : X → Y is
an arrow of C, then f op : Y → X in Cop goes in the other direction. We can now
define the composite of two arrows f op : Y → X and gop : Z → Y in Cop to be

f op ◦ gop := (gf)op.

It is easy to see that (idX)op is the identity arrow of X in Cop, and that Cop indeed
forms a category.

Because of the way Cop is defined in terms of C, we can unravel statements
about Cop into statements about C. Using this fact, we can automatically define
the dual version of any categorical concept. Usually, we will name such a dual
concept by prefixing ‘co-’ to the name of the original concept. This process can
be made much more precise, see [69, §II.1, II.2].

A.2.3. Example. Let C be a category and let F : C → C be an endofunctor,
i.e. a functor with the same domain and codomain. An F -algebra consists of an
object X and a morphism h : F (X)→ X. The dual notion, that of an F -coalgebra,
consists simply of an object X and a morphism r : X → F (X).

A functor is a structure-preserving map between categories. Concretely, if
C,D are categories then a functor F : C → D consists of an assignment of an
object F (X) to every object X of C, and of an assignment of an arrow F (f) ∈
HomD(FX,FY ) to every arrow f ∈ HomC(X, Y ) such that F (g◦f) = F (g)◦F (f)

for all X
f−→ Y

g−→ Z in C and F (idX) = idF (X) for all X in C. If it is not visually
confusing, we will sometimes omit parentheses, writing e.g. Ff instead of F (f).

A.2.4. Example. As a trivial example of a functor, observe that given any
category C we can define the identity functor IdC : C → C which leaves all
objects and arrows unchanged.

A functor F : C→ Dop is called a contravariant functor from C to D; one can
alternatively view F as an ‘arrow-reversing’ functor from C to D. The notion of
functor we introduced before is sometimes also called a covariant functor.

A natural transformation ν between functors F,G : C → D is a family of
D-morphisms νX : F (X)→ G(X), one for each object X of C, such that for all
f : X → Y in C, the following diagram commutes:

X

f

��

F (X)
νX //

F (f)

��

G(X)

G(f)

��
Y F (Y ) νY

// G(Y )
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If ν is a natural transformation such that for each X, νX is an isomorphism, then
we call ν a natural isomorphism. If there exists a natural isomorphism between
two functors F,G : C→ D, we say F and G are naturally isomorphic.

A.2.2 Adjunctions of categories

One of the fundamental notions of category theory is that of adjunctions between
categories. A pair of functors F : C→ D and G : D→ C is called an adjunction,
abbreviated F a G, if there exist natural transformations η : IdC → GF and
ε : FG→ IdD such that for all f : X → GY , there exists a unique f ′ : F (X)→ Y
such that f = Gf ′ ◦ ηX , and for all g : FX → Y , there exists a unique g′ : X →
G(Y ) such that g = εY ◦ Fg′:

GF (X)

G(f ′)
��

F (X)

f ′

��

FG(Y )
εY

""FFFFFFFFF
G(Y )

X

ηX
;;xxxxxxxxx

f
// G(Y ) Y F (X)

F (g′)

OO

g
// Y X

g′

OO

A dual adjunction between categories C and D is simply an adjunction between
C and Dop.

We say to categories C,D are equivalent if there exist functors F : C → D
and G : D→ C such that GF is naturally isomorphic to IdC and FG is naturally
isomorphic to IdD. If both F and G are contravariant, we say C and D are dually
equivalent.

If D is a subcategory of C, then the inclusion of D into C forms a functor
J : D → C. If this functor has a left adjoint F : C → D, we say that D is a
reflective subcategory of C, and we call F : C→ D a reflector. Dually, if J : D→ C
has a right adjoint G : C→ D, we say that D is a co-reflective subcategory of C,
and we call G : C→ D a co-reflector.

A.3 Order theory and domain theory

In this section we will discuss some of the order theory and domain theory that
we employ in this dissertation. Our main reference for order theory is Davey &
Priestley [29]; our main reference for domain theory is Abramsky & Jung [1].

A.3.1 Pre-orders and partial orders

A pre-order is a structure P = 〈P,≤〉 where ≤ ⊆ P ×P is a binary relation which
is

• reflexive: ∀x ∈ P, x ≤ x;
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• transitive: ∀x, y, z ∈ P, if x ≤ y and y ≤ z, then x ≤ z.

(Note that we will sometimes write ‘x ∈ P’ rather than ‘x ∈ P ’.) Observe that a
preorder 〈P,≤〉 can be seen as a small category with a set of objects P , such that
between any two objects x, y there is at most one arrow. From this perspective,
we get that HomP(x, y) 6= ∅ iff x ≤ y. The notion of dual category now specializes
to the notion of the order dual of a pre-order; we denote the order dual of P by
Pop. In other words, Pop := 〈P,≥〉, where x ≥ y :⇔ y ≤ x. It is not hard to see
that Pop is again a pre-order. If x ∈ P, we define ↓P x = {y ∈ P | y ≤ x}; ↑P x
is defined dually. If it is clear what order we are dealing with we will omit the
subscripts on ↓ and ↑. For U ⊆ P , we define ↓U =

⋃
x∈U ↓x. If U = ↓U we say

that U is a lower set ; dually, if U = ↑U then U is an upper set. An equivalent
characterization of lower sets is to say that U is a lower set iff for all x ∈ U and
all y ≤ x, we have y ∈ U .

A partial order (or partially ordered set, or poset) is a pre-order 〈P,≤〉 which
satisfies the additional property that it is

• anti-symmetric: ∀x, y ∈ P, if x ≤ y and y ≤ x then x = y.

Although most of the order-theoretic notions we will discuss below also can be
defined for pre-orders (in fact, even for categories), we will restrict our attention
below to partially ordered sets.

Given two posets P and Q, a function f : P → Q is called order-preserving if
for all x, y ∈ P such that x ≤ y, we have f(x) ≤ f(y). (This is the order-theoretic
specialization of the categorical notion of being a functor.) We say f : P → Q
is an order embedding if for all x, y ∈ P, x ≤ y iff f(x) ≤ f(y). One can show
that order embeddings between posets are necessarily injective maps. An order
isomorphism is a surjective order-embedding. By Pos we denote the category of
partially ordered sets and order-preserving maps.

A.3.1. Fact. Let P,Q be posets and let f : P → Q be a function. The following
are equivalent:

1. f is order-preserving;

2. for all U ⊆ P , f [↓U ] ⊆ ↓ f [U ];

3. for all V ⊆ Q, if V is a lower set then so is f−1(V ).

Products of posets are defined point-wise: if {Pi | i ∈ I} is a collection of
posets, we define ∏

I

Pi =
〈∏

IPi,≤
〉
,

where for x, y ∈
∏

I Pi, we have x ≤ y iff for all i ∈ I, x(i) ≤i y(i).
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A.3.2 Adjunctions of partially ordered sets

Since every poset is a category, we can specialize the categorical notion of adjunc-
tion we introduced in §A.2.2 to posets.

A.3.2. Definition. Let f : P → Q and g : Q → P be order-preserving maps.
We say f and g are an adjoint pair, abbreviated f a g, if one of the following
equivalent conditions holds:

• ∀x ∈ P , ∀y ∈ Q, f(x) ≤ y iff x ≤ g(y);

• idP ≤ g ◦ f and f ◦ g ≤ idQ.

Adjoint pairs have many attractive mathematical properties; we list a few
below. As a reference, consider [1, Prop. 3.1.12].

A.3.3. Fact. Suppose that f : P → Q and g : Q → P form an adjoint pair,
i.e. f a g. Then

1. f preserves all existing suprema and g preserves all existing infima;

2. f is an order embedding iff g is surjective iff g ◦ f = idP;

3. f is surjective iff g is order embedding iff f ◦ g = idQ.

A.3.3 Dcpo’s

A non-empty subset U ⊆ P of a partially ordered set P is called directed if for all
x, y ∈ U , there exists a z ∈ U such that x ≤ z and y ≤ z. A dcpo D = 〈D,≤, 〉 is
a partial order such that for every directed non-empty U ⊆ D, U has a supremum
or join in D, denoted

∨
U . By Dcpo we denote the category of dcpo’s and Scott-

continuous functions, i.e. functions which preserve directed joins. As a general
reference for facts about dcpo’s, we suggest Abramsky & Jung [1]. We will see
later that Scott-continuity is indeed a continuity property. For now we record the
following fact about finite products of dcpo’s. As a reference for this fact, consider
[1, Prop. 3.2.2 and Lemma 3.2.6]

A.3.4. Fact. Let D1, . . . ,Dn,E be dcpo’s. Then the poset-product D1 × · · · × Dn
is also a dcpo. If f : D1× · · ·×Dn → E is a function, then f preserves all directed
joins in D1 × · · · × Dn iff f preserves directed joins in each coordinate.
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A.3.4 Order and topology

Given a partial order P, one can use the order to define several topologies on P , as
we do in §A.7. As a general reference, we suggest the Compendium of Continuous
Lattices[45, Ch. 2 and 3]. We will mention a few properties of one such topology,
the Scott topology.

A.3.5. Definition. Let P = 〈P,≤〉 be a poset. A set U ⊆ P is Scott-open iff
P \ U is a lower set closed under all existing directed joins. By σ↑(P) we denote
the Scott topology of P [45, Ch. 2].

The following well-known fact states that Scott-continuity of maps between
dcpo’s is indeed a continuity property. As a reference, consider [1, Prop. 2.3.4].

A.3.6. Fact. A function f : D→ E between dcpo’s preserves directed joins iff it
is continuous with respect to the Scott topology.

Many order-theoretic properties can be characterized topologically; this is a
major topic in this dissertation. As another example consider the following.

A.3.7. Example. Given a poset P = 〈P,≤〉 define the Alexandrov topology to
be the collection of all upper sets of P [54, §II-1.8]. A function f : P→ Q between
posets is order-preserving iff f is continuous with respect to the Alexandrov
topology.

A.4 Lattice theory

A standard reference for lattice theory is Birkhoff [18]. Good introductory exposi-
tions can also be found in e.g. [23], [29] and [54, Ch. I].

A.4.1 Semilattices and suplattices

A ∨-semilattice is an algebra (see §A.6) L = 〈L, 0,∨〉 with a binary operation ∨
called ‘join’ and a constant 0 which satisfy the following equations:

(i) x ∨ x ≈ x (idempotence) (ii) x ∨ y ≈ y ∨ x (commutativity)
(iii) x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z (associativity)
(iv) x ∨ 0 ≈ x (0 is the identity).

A ∨-semilattice is a poset under the ordering a ≤ b :⇔ a ∨ b = b. Alternatively,
one can characterize ∨-semilattices as posets in which any finite subset has a
least upper bound; one can then define 0 to be the upper bound of the empty set,
and a ∨ b to be the least upper bound of {a, b}. A ∨-semilattice homomorphism
f : L→M is a map between semilattices L, M which preserves ∨ and 0, i.e. such
that f(a ∨ b) = f(a) ∨ f(b) for all a, b ∈ L and such that f(0) = 0.
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A complete ∨-semilattice or suplattice is a partially ordered set in which
each subset has a least upper bound; alternatively, a suplattice is an algebra
L = 〈L,

∨
, 0〉, where

∨
is an infinitary operation.

A.4.1. Fact. Let L and M be suplattices and let f : L→M be a function. The
following are equivalent:

1. f preserves all non-empty joins;

2. f preserves binary joins and directed joins.

The order dual notion of a ∨-semilattice is that of a ∧-semilattice. In a
∧-semilattice L = 〈L,∧, 1〉, the operation ∧ (meet) determines a partial order
a ≤ b :⇔ a ∧ b = a. Under this order a ∧ b is the greatest lower bound of {a, b}.

A.4.2 Lattices and complete lattices

A (bounded) lattice is an algebra L = 〈L,∧,∨, 0, 1〉 which is simultaneously a
∧-semilattice and a ∨-semilattice. Alternatively, a lattice is a partially ordered
set in which each finite subset has both a least upper bound and a greatest lower
bound.

A.4.2. Remark. Throughout this dissertation we assume that lattices are bounded,
i.e. that a lattice L always has a least element 0L and a greatest element 1L, and
that lattice homomorphisms preserve 0L and 1L.

By Lat we denote the category of lattices and lattice homomorphisms; by CLat
we denote the category of complete lattices and complete homomorphisms. The
following fact is the order-theoretic version of a well-known result from category
theory, known as the Adjoint Functor Theorem. As a reference for this order-
theoretic version, consider [1, Prop. 3.1.13].

A.4.3. Fact. If f : L→ M is a map between complete lattices which preserves
all joins, then there exists a unique g : M→ L such that f and g form an adjoint
pair f a g.

A.4.3 Distributive lattices, Heyting algebras and Boolean
algebras

Introductory discussions of distributive lattices, Heyting algebras and Boolean
algebras can be found in Johnstone [54, Ch. I]. For additional technical detail,
see e.g. Balbes & Dwinger [7] for distributive lattices and Heyting algebras and
Koppelberg [63] for Boolean algebras.

A lattice L is distributive if it satisfies the equation x∧(y∨z) ≈ (x∧y)∨(x∨z),
or equivalently, if it satisfies the equation x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z). We
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denote the category of distributive lattices and lattice homomorphisms by DL. If
L is complete, we say L satisfies the (∧,

∨
)-distributive law (also known as the

infinite distributive law) if for all a ∈ L and for all S ⊆ L, a ∧
∨
S =

∨
b∈S(a ∧ b).

Complete lattices which satisfy the (∧,
∨

)-distributive law are known as frames,
also see §5.2.4.

A Heyting algebra is an algebra A = 〈A,∧,∨,→, 0, 1〉 such that 〈A,∧,∨, 0, 1〉
is a distributive lattice and→ is a binary operation, known as Heyting implication,
such that

z ∧ x ≤ y iff z ≤ x→ y.

Alternatively, one can say that → has to satisfy the following axioms:
(i) x→ x ≈ 1 (ii) x ∧ (x→ y) ≈ x ∧ y

(iii) y ∧ (x→ y) ≈ y (iv) x→ (y ∧ z) ≈ (x→ y) ∧ (x→ z)
It is a fact of order-theory that adjoints of maps are unique; consequently, since
→ is defined via an adjointness property with respect to ∧, a given distributive
lattice L admits at most one Heyting implication such that 〈L,∧,∨,→, 0, 1〉 is a
Heyting algebra. We denote the category of Heyting algebras and Heyting algebra
homomorphisms by HA.

A Boolean algebra is an algebra A = 〈A,∧,∨,¬, 0, 1〉 such that 〈A,∧,∨, 0, 1〉
is a distributive lattice, and where ¬ is a unary operation, known as negation or
complementation, satisfying the following equations:

x ∨ ¬x ≈ 1 and x ∧ ¬x ≈ 0.

As was the case with Heyting algebras, a distributive lattice L admits at most
one negation operation making it into a Boolean algebra. In fact, every Boolean
algebra is also a Heyting algebra, if we define

a→ b := ¬a ∨ b.
We denote the category of Boolean algebras and Boolean algebra homomorphisms
by BA.

A.5 Completions

In §A.3 and §A.4 we have seen several kinds of complete ordered structures.
Completions of ordered structures, that is embeddings of ordered structures into
complete structures play an important role in this dissertation. In this section we
will discuss some properties of the filter and ideal completions and the MacNeille
completion.

A.5.1 The ideal (and filter) completion of a pre-order

The ideal completion is a construction that allows one to embed any partial order
into a dcpo. As references we suggest Plotkin [75, §6] and Abramsky & Jung [1,
§2.2.6].



208 Appendix A. Preliminaries

Ideals and filters

A.5.1. Definition. Let P = 〈P,≤〉 be a partial order. An ideal of P is a
non-empty, directed lower set I ⊆ P. We define I P = 〈Idl(P),⊆〉 (the ideal
completion of P) to be the collection of ideals of P ordered by subset inclusion.
Dually, a filter is a non-empty upper set F ⊆ P which is co-directed. We define
F P := 〈Filt(P),⊇〉 (the filter completion of P) to be the collection of filters of P.

One can embed P in I P by mapping x 7→ ↓x. Moreover, given a order-
preserving function f : P→ P′ and I ∈ I P, we define

I f : I 7→ ↓f [I] = {x′ ∈ P′ | ∃x ∈ I, x′ ≤ f(x)},

which is a Scott-continuous function from I P to I P′. It is easy to show that if
L is a ∨-semilattice, then a non-empty lower set I ⊆ L is an ideal iff I is closed
under ∨. Similarly, filters in ∧-semilattices are non-empty upper sets closed under
∧.

Basic properties of I and F

The following fact is a consequence of the fact that the definitions of ideals and
filters are order-symmetric. Given a poset P, I is an ideal of Pop iff I is a filter of
P. This gives us an order anti-isomorphism between I(Pop) and F(P).

A.5.2. Fact. I(Pop) ' (F P)op.

We will now list several useful properties of the ideal completion. Naturally,
all of these properties dualize to the filter completion.

A.5.3. Fact. Let P be a partial order.

1. I is a functor Pos→ Dcpo and ↓ : Id→ I is a natural transformation.

2. If f : P → D is an order-preserving map to a dcpo D, then there exists a
unique Scott-continuous f ′ : I P→ D such that f ′ ◦ ↓{·} = f ; i.e. I P is the
free dcpo over P.

I P
f ′ // D

P

↓P

OO

f

==||||||||

3. If P is a join semilattice then I P is a complete lattice.

4. If P and P′ are join semilattices and if f : P → P′ preserves binary joins,
then I f : I P→ I P′ preserves all non-empty joins.

5. If f : P→ Q is an order embedding then so is I f .
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The ideal completion, and dually, the filter completion, preserves finite products;
see [1, Prop. 2.2.23].

A.5.4. Fact. Let P,Q be partial orders. There exists an order isomorphism
h : I(P×Q)→ I P× I Q such that for all x ∈ P , y ∈ Q,

h ◦ ↓P×Q(x, y) = ↓P(x)× ↓Q(y).

(The map h simply sends (I1, I2) to I1×I2.) In other words, the functor I : Pos→
Dcpo preserves finite products.

I(P×Q) h // I P× I Q

P×Q

↓P×Q

OO

↓P×↓Q

77ppppppppppp

Moreover, σ↑(I P)× σ↑(I Q) = σ↑(I(P×Q)).

Algebraic dcpo’s

Let D be a dcpo. An element p ∈ D is compact if for all directed S ⊆ D, p ≤
∨
S

implies that there is some x ∈ S such that p ≤ x. We denote the set of compact
elements of D by KD. We call D an algebraic dcpo if for each x ∈ D, the set
↓x ∩KD is directed and x =

∨
(↓x ∩KD).

A.5.5. Fact. Let D be an algebraic dcpo. Then

1. D ' I(KD);

2. the set {↑ p | p ∈ KD} forms a base for the Scott topology on D.

If L is a complete lattice, then KL is closed under finite ∨. Consequently,
↓x ∩KL is always directed in a lattice; a complete lattice is therefore algebraic
iff for all x ∈ L, x =

∨
(↓x ∩KD).

A.5.2 The MacNeille completion of a pre-order

Let P = 〈P,≤〉 be a pre-order and let U ⊆ P . We define

ub(U) := {x ∈ P | U ⊆ ↓x} (the upper bounds of U),

lb(U) := {x ∈ P | U ⊆ ↑x} (the lower bounds of U).

A cut of P is a pair of sets (U, V ), where U, V ⊆ P, such that U = lb(V ) and
V = ub(U). We can order the set of all cuts of P by setting

(U1, V1) ≤ (U2, V2) :⇔ U1 ⊆ U2 (or equivalently, V1 ⊇ V2).
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Under this order, the set of all cuts of P is a complete lattice which we denote
by P. We call P the MacNeille completion of P [70]. There exists a natural map
iP : P→ P defined by

iP : x 7→ (↓x, ↑x).

A.5.6. Remark. Similarly to the canonical extension (Fact 2.1.9), the MacNeille
completion can be characterized up to isomorphism of completions. Banaschewski
& Bruns [9, §4] showed that if e : P→ C is an order embedding of a poset P into
a complete lattice C such that e[P] is both join-dense and meet-dense, then there
exists a unique order-isomorphism h : C→ P such that h ◦ e = iP.

A.5.7. Example. Perhaps the best-known example of a MacNeille completion
is the embedding of the rational numbers Q into the reals R. This is known as
the completion of the rationals by Dedekind cuts; for this reason the MacNeille
completion is also known as the Dedekind-MacNeille completion.

A.6 Universal algebra

Our main reference for universal algebra is Burris & Sankappanavar [23].

A.6.1 Ω-algebras

An algebraic signature consists of a set of function symbols Ω and an arity function
ar : Ω→ N, assigning a finite arity to each operation symbol. An Ω-algebra is a
structure A = 〈A; (ωA)ω∈Ω〉 where for each ω ∈ Ω, ωA is a function ωA : Aar(ω) → A.
Given two Ω-algebras A, B, and a function f : A→ B, we say that f is an Ω-algebra
homomorphism if for all ω ∈ Ω, the following diagram commutes:

An

f [n]

��

ωA // A

f

��
Bn

ωB // B

where n = ar(ω) and f [n] : An → Bn denotes the function

(x1, . . . , xn) 7→ (f(x1), . . . , f(xn)) .

A.6.2 Homomorphic images, subalgebras and products

Fix an algebraic signature Ω.
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Subalgebras

Let A = 〈A, (ωA)ω∈Ω〉 be an algebra and let B ⊆ A. We say that B is a subuniverse
of A if for all ω ∈ Ω, ωA[Bar(ω)] ⊆ B; in other words, if B is closed under all
operations ωA. In that case, we can define operations ωB := (ωA) � Bar(ω) for all
ω ∈ Ω, and we call B = 〈B, (ωB)ω∈Ω〉 a subalgebra of A. If K is a class of algebras,
we denote the class of all subalgebras of algebras in K by S(K). If K consists of a
single algebra A, we denote the set of all its subalgebras by S(A).

Homomorphic images, quotients and congruences

Let A and B be algebras and let f : A→ B be a homomorphism; if f is surjective
then we call B a homomorphic image of A. If K is a class of algebras, we denote
the class of all homomorphic images of algebras in K by H(K). Given an algebra A,
each algebra B in the class of all its homomorphic images H(A) can be represented
as a quotient, using a congruence on A.

A congruence is an equivalence relation θ ⊆ A×A on the underlying set of A
such that for all ω ∈ Ω and all a1, . . . , an, b1, . . . , bn ∈ A, where n = ar(ω),

if ai θ bi for all i ≤ n, then also ωA(a1, . . . , an) θ ωA(b1, . . . , bn).

It is a consequence of the definition of congruences that if θ is a congruence of
A = 〈A, (ωA)ω∈Ω〉, then we can define an algebra structure on A/θ, the set of θ-
equivalence classes of A. We denote this algebra by A/θ. If we define µθ : A→ A/θ
as µθ : a 7→ a/θ, then µθ : A → A/θ is a surjective algebra homomorphism. We
denote the poset of all congruences of A, ordered by subset inclusion, by ConA.
In fact, ConA is always a complete lattice, so we may speak of the congruence
lattice of A.

A natural example of a congruence is provided by the kernel of a given
homomorphism f : A→ B:

ker f := {(a, b) ∈ A× A | f(a) = f(b)}.

It is a consequence of the Isomorphism Theorems of universal algebra that if
f : A→ B is a surjective homomorphism, then there exists a unique isomorphism
h : B → A/ ker f such that h ◦ f = µker f . In other words, every homomorphic
image of A is naturally isomorphic to a quotient of A.

Products and subdirect products

If {Ai | i ∈ I} is a set of algebras, then we can define an algebra structure on the
product

∏
I Ai. If ω is an operation of arity n, then we define ωQ

I Ai on (
∏

I Ai)n
coordinate-wise as follows:(

ωQ
I Ai(a1, . . . , an)

)
(i) = (ωAi (a1(i), . . . , an(i))) .
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We denote the product of {Ai | i ∈ I} by
∏

I Ai. We denote the corresponding
projection homomorphisms by πj :

∏
I Ai → Aj. If K is a class of algebras, we

denote the class of all products of algebras in K by P(K).
An algebra A is a subdirect product of a set of algebras {Bi | i ∈ I} if there

exists a set of surjective algebra homomorphisms pi : A → Bi such that for all
a, b ∈ A, if pi(a) = pi(b) for all i ∈ I, then a = b. In this case we call (pi : A→ Bi)I
a subdirect decomposition of A. If K is a class of algebras, we denote the class of
all subdirect products of algebras in K by PS(K).

A.6.3 Varieties

A variety is a class of algebras K which is closed under H, S and P, i.e. such that
H(K) ⊆ K, S(K) ⊆ K and P(K) ⊆ K. It is a fact of universal algebra that if K
is a class of algebras, then HSP(K) is the smallest variety containing K. We call
HSP(K) the variety generated by K.

Congruence-distributive varieties

Recall that given an algebra A, we defined ConA to be the lattice of congruences
of A. If ConA is a distributive lattice, we say that A is congruence-distributive.
If V is a variety such that every A in V is congruence-distributive, we call V a
congruence-distributive variety. The following fact is well-known, cf. [23, Theorem
12.3].

A.6.1. Fact. If A has a lattice reduct, then ConA is distributive.

We say that a variety V is finitely generated if there exists a finite algebra A
such that V = HSP(A). An equivalent condition is to demand that there exists
a finite set of finite algebras K such that V = HSP(K). The following fact, for
which we do not have an explicit reference, is a straightforward consequence of
Jónsson’s Lemma [23, Corollary 6.10].

A.6.2. Fact. If V is a congruence-distributive finitely generated variety and if
V ′ is a subvariety of V, then V ′ is also finitely generated.

Proof sketch Suppose that V = HSP(A) for some finite algebra A. Since V is
congruence-distributive, it follows by Jónsson’s Lemma [23, Cor. 6.10] that VSI , the
subdirect irreducibles of V , are contained in HS(A). Consequently, every subdirect
irreducible of V is finite. Moreover, since S(A) is finite, HS(A) is essentially finite,
meaning that there exists a finite set K ⊆ VSI such that VSI = I(K), where
I(K) is the class of all algebras isomorphic to an algebra in K. Now let V ′ be a
subvariety of V; then V ′SI ⊆ VSI , so there must exist a necessarily finite K ′ ⊆ K
such that V ′SI = I(K ′). It follows that V ′ = HSP(K ′), so that V ′ is indeed finitely
generated.
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Boolean products

We recall the definition of Boolean products of algebras from [23, §IV.8]. Let A be
an algebra. A Boolean product decomposition of A is a subdirect decomposition of
A, i.e. a collection of surjective maps (px : A→ Bx)x∈X such that for all a, b ∈ A,
if px(a) = px(b) for all x ∈ X then a = b, satisfying the additional properties that:

• X is a Boolean space;

• for all a, b ∈ A, the set {x ∈ X | px(a) = px(b)} is clopen;

• for all a, b ∈ A and all U ⊆ X clopen, there is a (unique) c ∈ A such that
px(c) = px(a) if x ∈ U and px(c) = px(b) otherwise.

A.6.3. Fact. If A is a finite algebra, then HSP(A) = HSPB(A).

Since this fact seems to be a folklore result, we will sketch the proof below.

Proof sketch First we show that HSP = HSPBPU, where PU stands for taking
ultraproducts. It is easy to see that HSPBPU ⊆ HSP. For the converse, we will
show that P ⊆ PBPU. Let

∏
I Ai be a product of algebras; we will show that∏

I Ai can be seen as the Boolean product of all ultraproducts over {Ai | i ∈ I}.
Define X to be the set of ultrafilters over I; then X is a Boolean space in its Stone
topology. For each U ∈ X, let pU :

∏
I Ai →

∏
I Ai/U be the projection onto the

ultraproduct
∏

I Ai/U . We claim that(
pU :

∏
IAi →

∏
IAi/U

)
U∈X

is a Boolean product decomposition. It is not hard to show the following facts:

1. (pU :
∏

I Ai →
∏

I Ai/U)X is a subdirect product decomposition: if a, b ∈∏
I Ai and a 6= b, then there exists i ∈ I such that a(i) 6= b(i). If we take the

principal ultrafilter U := {J ⊆ I | i ∈ J} then we see that pU(a) 6= pU(b).

2. For all a, b ∈
∏

I Ai, {U ∈ X | pU(a) = pU(b)} is clopen: it follows from
the definition of pU that pU(a) = pU(b) iff {i ∈ I | a(i) = b(i)} ∈ U , and{
U ∈ X | {i ∈ I | a(i) = b(i)} ∈ U

}
is clopen by Stone duality.

3. For all a, b ∈
∏

I Ai and all clopen O ⊆ X, there exists a c ∈
∏

I Ai such
that pU(c) = pU(a) if U ∈ O and pU(c) = pU(b) if U ∈ X \O: since O ⊆ X
is clopen, by Stone duality there exists an J ⊆ I such that U ∈ O iff J ∈ U .
Now define c(i) := a(i) if i ∈ J and c(i) := b(i) if i ∈ I \ J .

Since {Ai | i ∈ I} was arbitrary, it follows that P ⊆ PBPU, so that indeed
HSP = HSPBPU. Returning to the statement of the Fact, if A is finite, then
PU(A) = I(A); it follows that HSP(A) = HSPB(A).
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A.6.4 Terms and equations

Let X be a set of variables. The set TerΩ(X) of Ω-terms over X is defined as the
smallest set such that

• X ⊆ TerΩ(X);

• for all ω ∈ Ω, for all t1, . . . , tar(ω) ∈ TerΩ(X), we have ω(t1, . . . , tar(ω)) ∈
TerΩ(X).

If t is a term, we write t(x1, . . . , xn) to indicate that the variables occuring in t
are among {x1, . . . , xn}. If t(x1, . . . , xn) is an Ω-term and A is an Ω-algebra, then
we define the term function tA : An → A inductively as

(xi)A := πi : An → A,
(ω(t1(x̄), . . . , tk(x̄))A := ωA ◦ ((t1)A × · · · × (tk)A) ,

where x̄ denotes the tuple x1, . . . , xn and k = ar(ω). If s(x1, . . . , xn) and
t(x1, . . . , xn) are terms we say that the equation s ≈ t is valid on an algebra
A (alternatively, A satisfies s ≈ t or A |= s ≈ t) if sA = tA, i.e. if the corresponding
term functions coincide. If A is an ordered algebra, then A satisfies the inequation
s 4 t if sA ≤ tA.

A.7 General topology

Our main reference for general topology is Engelking [33]. Another standard text
is Bourbaki [22].

A.7.1 Topological spaces

Let X be a set. A topology on X is a collection of subsets τ ⊆ P(X), which we
call τ -open sets, such that

• {∅, X} ⊆ τ ;

• for all S ⊆ τ ,
⋃
S ∈ τ ;

• for all U, V ∈ τ , U ∩ V ∈ τ .

We call 〈X, τ〉 a topological space. If it is clear what the topology on X is we
will not mention τ explicitly. We define U ⊆ X to be closed if X \ U is open,
i.e. if X \ U ∈ τ . If both U and X \ U are open, then we say U is clopen
(closed-and-open).
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A.7.1. Example. Given any set X, we can always define two somewhat trivial
topologies on it. The space 〈X, {∅, X}〉 is literally called the trivial topology; this
topology has the smallest collection of open sets possible. On the other extreme
we have the discrete topology 〈X,P(X)〉, which is the topology on X with the
largest possible collection of open sets.

Subspaces

If 〈X, τ〉 is a topological space and Y ⊆ X is a set, we can define a topology on
Y , called the subspace topology , by defining

τY := {U ∩ Y | U ∈ τX}.

We then call 〈Y, τY 〉 a subspace of 〈X, τX〉.

Bases and subbases

Let X be a set. A subbase for a topology on X is a collection B ⊆ P(X) such that

•
⋃
B = X.

We call B a base if addionally,

• ∀U, V ∈ B, U ∩ V =
⋃
{W ∈ B | W ⊆ U, V }.

If B is a subbase on X, then {
⋂
S | S ⊆ B finite} is a base on X.

A.7.2. Example. As a trivial example, observe that if 〈X, τ〉 is a topological
space, then τ is a base on X.

Let B be a base on X and let B′ be a subbase on X. We define

〈B〉 = {
⋃
B0 | B0 ⊆ B}, and

〈B′〉 =
{⋃
B0 | {B0 ⊆ {

⋂
S | S ⊆ B finite}

}
.

It is a fact of general topology that 〈B〉 and 〈B′〉 as defined above are topologies
on X. Given a topological space 〈X, τ〉, we say B is a (sub-) base for 〈X, τ〉 if
τ = 〈B〉. If B is a base for 〈X, τ〉, then it follows from the definition of 〈B〉 that for
all open sets U ∈ τ and for all x ∈ U , there exists a V ∈ B such that x ∈ V ⊆ U .

Let X be a set. One can show that the partial order〈
{τ ⊆ P(X) | 〈X, τ〉 is a topological space},⊆

〉
is a complete lattice. If τ0 and τ1 are topologies on X with bases B0 and B1,
respectively, then

{U ∩ V | U ∈ B0, V ∈ B1}
is a base for τ0 ∨ τ1.
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A.7.2 Continuity

Let 〈X, τX〉 and 〈Y, τY 〉 be topological spaces. A function f : X → Y is called
(τX , τY )-continuous if for all U ∈ τY , f−1(U) ∈ τX . If it is clear from the context
what the topologies are, we simply say that f is continuous. We say that f : X → Y
is (τX , τY )-open if for all U ∈ τX , f [U ] ∈ τY . We say that 〈X, τX〉 and 〈Y, τY 〉 are
homeomorphic if there exists an open and continuous bijective map f : X → Y ;
this is the natural notion of isomorphism for topological spaces.

Let f : Y → X be a continuous function between spaces 〈X, τX〉 and 〈Y, τY 〉.
If f is injective and if for all U ∈ τY , there exists a U ′ ∈ τX such that U = f−1(U ′),
then we call f : X → Y a homeomorphic embedding. Under these circumstances,
〈Y, τY 〉 is homeomorphic to f [Y ], where the latter set is equipped with the subspace
topology inherited from 〈X, τX〉.

One of the reasons it is practical to work with bases and subbases for topologies
is that they make it easier to check whether a function f : X → Y between
topological spaces 〈X, τX〉 and 〈Y, τY 〉 is continuous: If B is a subbase for τY , then
one can show that f : X → Y is continuous iff for all U ∈ B, f−1(U) ∈ τX .

A.7.3. Lemma. Let X, Y be sets, let σ0, σ1 be topologies on X, let τ0, τ1 be
topologies on Y and let f : X → Y be a function.

1. If f : X → Y is (σ0, τ0)-continuous and if σ0 ⊆ σ1 and τ0 ⊇ τ1, then f is
also (σ1, τ1)-continuous.

2. If f : X → Y is both (σ0, τ0)-continuous and (σ1, τ1)-continuous, then f is
also (σ0 ∨ σ1, τ0 ∨ τ1)-continuous.

Proof This is an easy exercise.

A.7.3 Separation and compactness

In this subsection we list several properties of topological spaces. A topological
space 〈X, τ〉 satisfies the T0 separation axiom if for all x, y ∈ X such that x 6= y,
there exists an open set U ⊆ X such that either x ∈ U 63 y or x /∈ U 3 y. A
topological space satisfies the T1 separation axiom if for all x, y ∈ X such that
x 6= y, there exist open sets U, V ⊆ X such that x ∈ U 63 y and x /∈ V 3 y.
Finally, a topological space satisfies the T2 separation axiom, also known as the
Hausdorff separation axiom, if for all x, y ∈ X such that x 6= y, there exist disjoint
open sets U, V ⊆ X such that x ∈ U and y ∈ V . We will usually simply say that
a space is T0, Hausdorff, etc.

Let 〈X, τ〉 be a topological space and let Y ⊆ X. We say Y is compact if for
all S ⊆ τ such that Y ⊆

⋃
S, there exists a finite S0 ⊆ S such that Y ⊆

⋃
S0. If

X itself is a compact set we call 〈X, τ〉 a compact space.
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Boolean spaces

A topological space 〈X, τ〉 is zero-dimensional if 〈X, τ〉 has a base of clopen sets.
Equivalently, 〈X, τ〉 is zero-dimensional if for all open sets U ⊆ X and all x ∈ U ,
there exists a clopen V ⊆ X such that x ∈ V ⊆ U . We call spaces that are both
compact, Hausdorff and zero-dimensional Boolean spaces; these spaces are also
called Stone spaces [54].

A.8 Duality for ordered Kripke frames

In §4.1.4, we discuss the discrete duality between DLO+, the category of semi-
topological distributive lattices with operators and complete homomorphisms, and
OKFr, the category of ordered Kripke frames and bounded morphisms. However,
in §4.1.4 we only describe the functor (·)+ : OKFrop → DLO+. Below we will
describe the functor (·)+ : DLO+ → OKFrop. As a general reference about DLO’s
we mention Goldblatt [47]; the details of the discrete duality we use are discussed
by Gehrke et al. in [40, §2.3].

Before we can describe the functor (·)+ : DLO+ → OKFrop, we need a few
definitions. Let A be a semi-topological DLO. By J∞(A) we denote the completely
join-irreducible elements of A, i.e. those p ∈ A such that for all S ⊆ A, if p =

∨
S

then there exists an x ∈ S such that p = x. Using order duality we can define
the set of completely meet irreducible elements of A, denoted M∞(A). In a semi-
topological DLO, we can define an order-isomorphism κ : J∞(A)→ M∞(A), by
sending p 7→

∨
(A \ ↑ p).

Recall from §4.1.1 that a semi-topological DLO is a complete bi-algebraic
distributive lattice-based algebra A = 〈A,∧A,∨A, 0A, 1A,♦A,�A〉, where ♦A : An →
A is a complete normal n-ary operator and �A : Am → A is a complete normal
m-ary dual operator. We now define

A+ := 〈J∞(A),≤, RA+ , QA+〉,

where

• 〈J∞(A),≤〉 is the set of completely join-irreducibles of A with the order
inherited from A;

• RA+ is an n+ 1-ary relation on J∞(A) such that

p RA+ (q1, . . . , qn) iff p ≤ ♦A(q1, . . . , qn);

• QA+ is an m+ 1-ary relation on J∞(A) such that

p QA+ (q1, . . . , qm) iff �A(κ(q1), . . . , κ(qm)) ≤ κ(p).
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If f : A→ B is a morphism of DLO+, i.e. a complete DLO homomorphism, then
we define f+ : B+ → A+ as

f+ : p 7→
∧
{a ∈ A | p ≤ f(a)},

which is indeed a bounded morphism. One can show that f+ is in fact the left
adjoint of f : A→ B, restricted to J∞(B).

A.8.1. Fact. The functors (·)+ : DLO+ → OKFrop and (·)+ : OKFrop → DLO+

form a dual equivalence of categories. Each of the functors (·)+ and (·)+ map
finite objects to finite objects. Moreover given a complete DLO homomorphism
f : A→ B between semi-topological DLO’s,

1. f : A→ B is surjective iff f+ : B+ → A+ is an embedding of ordered Kripke
frames;

2. f : A→ B is injective iff f+ : B+ → A+ is surjective.

The isomorphisms witnessing the above Fact are obtained as follows: for a
semi-topological DLO A, we map A to (A+)+ by sending

a 7→ {p ∈ J∞(A) | p ≤ a},

which is a lower set of A+. Conversely, given an ordered Kripke frame F, we map
F to (F+)+ by sending

x 7→ ↑x,

which is a completely join-irreducible element of F+.
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Samenvatting

In dit proefschrift bespreken we drie onderwerpen: canonieke extensies van tralie-
algebra’s, Stone-dualiteit voor distributive tralies met operatoren, en een generali-
satie van de puntvrije Vietoris powerlocale-constructie.

In Hoofdstukken 2 en 3 onderzoeken verbanden tussen canonieke extensies
van tralie-algebra’s en topologische algebra, pro-eindige completeringen en gericht-
volledige partiële ordeningen (dcpo’s). We geven een topologische karakterisering
van de canonieke extensie van een tralie in §2.1.3, en een verbeterde karakterisering
van canonieke extensies van orde-bewarende afbeeldingen als maximale continue
extensies, alsmede andere continüıteitsresultaten, in §2.2. De verbetering in de
resultaten in §2.2 schuilt in het feit dat we niet uitgaan van distributieve tralies,
maar van willekeurige tralies. In §2.3 ronden we Hoofdstuk 2 af met een andere ka-
rakterisering van canonieke extensies, namelijk door middel van dcpo-presentaties.
In Hoofdstuk 3 bespreken we canonieke extensies van willekeurige afbeeldingen en
canonieke extensies van algebras, beide in relatie tot topologische algebra. In §3.3.2
laten we zien dat canonieke extensies van surjectieve algebrahomomorfismes tussen
tralie-algebra’s wederom homomorfismes zijn. We gebruiken dit gegeven in §3.4.1
om te laten zien dat de pro-eindige completering van een willekeurige tralie-algebra
A gekarakteriseerd kan worden als een volledig quotiënt van de canonieke extensie
van A. Vervolgens onderzoeken we in §3.4.2 wanneer de pro-eindige completering
van een tralie-algebra A samenvalt met de canonieke extensie van A. We sluiten
Hoofdstuk 3 af met enige resultaten betreffende een universele eigenschap van
canonieke extensies met betrekking tot Boolese topologische algebra’s in §3.4.3.

In Hoofdstuk 4 verdiepen wij ons in de discrete Stone-dualiteit voor semi-
topologische distributieve tralies met operatoren (DLO’s) en geordende Kripke-
frames. In §4.1 behandelen we de dualiteit tussen pro-eindige DLO’s en de
daarmee corresponderende erfelijk eindige geordende Kripke-frames. We bespreken
enkele speciale gevallen van deze dualiteit in §4.2, te weten discrete dualiteit voor
distributieve tralies, Boolese algebra’s, Heytingalgebra’s en modale algebra’s.
Wij sluiten dit hoofdstuk af met een nadere blik op de voornoemde dualiteit in het
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geval van Boolese algebra’s met operatoren (BAO’s) in §4.3. In dit geval kunnen
we niet alleen de pro-eindige BAO’s karakteriseren middels Stone-dualiteit, maar
ook de compacte Hausdorff- en Boolese topologische BAO’s. We laten zien dat
compacte Hausdorff-BAO’s (en Boolese topologische BAO’s) de dualen zijn van
eindig vertakkende Kripke-frames. We passen deze kennis toe in een beschouwing
van de inbedding van Kripke-frames in hun ultrafilterextensies in §4.3.2.

In Hoofdstuk 5 gebruiken we een geometrische variant van de Carioca-axioma’s
voor coalgebräısche modale logica om een nieuwe beschrijving te geven van
de puntvrije Vietorisconstructie. In §5.3.1 introduceren we de T -powerlocale-
constructie, gegeven een endofunctor T : Set → Set op de categorie van verza-
melingen. We laten vervolgens in §5.3.3 zien dat het P -powerlocale, waar P de
covariante machtsverzamelingfunctor is, de oorspronkelijke Vietoris powerlocale-
constructie geeft. In §5.3.4 laten we zien dat de T -powerlocale-constructie onder-
deel is van een functor VT op de categorie van frames. Daarnaast laten we zien
hoe een natuurlijke transformatie van een functor T ′ naar T een natuurlijke trans-
formatie van VT naar VT ′ oplevert. In §5.3.5 laten we zien dat het T -powerlocale
gepresenteerd kan worden door middel van flat sites; dit leidt tot een algebräısch
bewijs van het feit dat formules in onze geometrische coalgebräısche modale logica
disjunctieve normaalvormen hebben. Ten slotte laten we in §5.4 zien dat de T -
powerlocale-constructie frame-eigenschappen als regulariteit, nul-dimensionaliteit
en de combinatie van nul-dimensionaliteit en compactheid bewaart.



Abstract

In this dissertation we discuss three subjects: canonical extensions of lattice-based
algebras, Stone duality for distrbutive lattices with operators, and a generalization
of the point-free Vietoris powerlocale construction.

In Chapters 2 and 3, we study canonical extensions of lattice-based algebras
in relation to topological algebra, profinite completions and directed complete
partial orders (dcpo’s). We provide a topological characterization theorem for the
canonical extension of a lattice in §2.1.3, and we give an improved characterization
of canonical extensions of order-preserving maps as maximal continuous extensions,
along with further continuitresults, in §2.2. The improvement in the results of
§2.2 lies in the fact that they hold for arbitrary rather than distributive lattices.
In §2.3, we show how canonical extensions of lattices can be characterized using
dcpo presentations, concluding Chapter 2. In Chapter 3 we discuss canonical
extensions of arbitrary maps and canonical extensions of lattice-based algebras,
both in relation to topological algebra. In §3.3.2, we show that the canonical
extenion of a surjective lattice-based algebra homomorphism is again an algebra
homomorphism. We use this fact to show in §3.4.1 that the profinite completion
of any lattice-based algebra A can be characterized as a complete quotient of
the canonical extension of A. Subsequently, in §3.4.2, we investigate necessary
and sufficient circumstances for the profinite completion of A to be equal to the
canonical extension of A. We conclude Chapter 3 with a discussion of a universal
property of canonical extensions with respect to Boolean topological algebras in
§3.4.3.

In Chapter 4, we study discrete Stone duality for semi-topological distributive
lattices with operators (DLO’s) and ordered Kripke frames. In §4.1, we study the
duality between profinite DLO’s and the corresponding hereditarily finite ordered
Kripke frames. We consider special cases of this duality in §4.2, namely distributive
lattices, Boolean algebras, Heyting algebras and modal algebras. Finally, in §4.3,
we show that if we restrict our attention to Boolean algebras with operators
(BAO’s) rather than DLO’s, we can characterize not only profinite BAO’s via
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Stone duality, but also compact Hausdorff and Boolean topological BAO’s. We
show that compact Hausdorff BAO’s (and Boolean topological BAO’s) are dual
to image-finite Kripke frames. We use this knowledge to study the embedding of
Kripke frames into their ultrafilter extensions in §4.3.2.

In Chapter 5, we use a geometric version of the Carioca axioms for coalgebraic
modal logic with the cover modality to give a new description of the point-free
Vietoris construction. In §5.3.1 we introduce the T -powerlocale construction,
where T : Set→ Set is a weak-pullback preserving, standard, finitary endofunctor
on the category of sets. We then go on to show that the P -powerlocale, where
P is the covariant powerset functor, is the usual Vietoris powerlocale in §5.3.3.
In §5.3.4 we show that the T -powerlocale construction yields a functor VT on the
category of frames, and we show how to lift natural transformations between set
functors T ′ and T to natural transformations between T -powerlocale functors VT
and VT ′ . In §5.3.5 we show that the T -powerlocale can be presented using a flat
site presentation rather than an frame presentation; this gives us an algebraic
proof for the fact that formulas in our geometric coalgebraic modal logic have
a disjunctive normal form. Finally in §5.4, we show that the T -powerlocale
construction preserves regularity, zero-dimensionality and the combination of
zero-dimensionality and compactness.
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