
Combining Strategies Efficiently
High-Quality Decisions from Conflicting Advice

Wouter M. Koolen

Combining Strategies Efficiently
High-Quality Decisions from Conflicting Advice

ILLC Dissertation Series DS-2011-01

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904

1098 XH Amsterdam
phone: +31-20-525 6051

fax: +31-20-525 5206

e-mail: illc@uva.nl
homepage: http://www.illc.uva.nl

mailto:illc@uva.nl
http://www.illc.uva.nl

Combining Strategies Efficiently
High-Quality Decisions from Conflicting Advice

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op donderdag 27 januari 2011, te 14:00 uur

door

Wouter Michiel Koolen

geboren te Groningen

Promotiecommissie
Promotores:

prof. dr. ir. P. M. B. Vitányi
prof. dr. P. D. Grünwald

Overige leden:
prof. dr. P. W. Adriaans
prof. dr. ir. R. Scha
dr. P. J. C. Spreij
dr. ir. T. J. Tjalkens
dr. L. Torenvliet
prof. dr. V. Vovk
prof. dr. M. K. Warmuth

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

An electronic version of this dissertation is available free of charge from
the Digital Academic Repository of the University of Amsterdam at:

http://dare.uva.nl/record/363018

Copyright © 2011 by Wouter M. Koolen, except for Chapter 5, which is
copyright © 2010 by Springer-Verlag Berlin Heidelberg, and reproduced
here with kind permission from Springer Science+Business Media.

Cover design by aÞart, http://www.apbart.nl. Based on the fresco The
School of Athens by Raphael, 1510-1511.

Printed and bound by Ipskamp Drukkers.

ISBN: 978–90–5776–221–5

http://dare.uva.nl/record/363018
http://www.apbart.nl

Sponsors
The investigations were performed at the Centrum Wiskunde en Infor-
matica (CWI).

The research took place within project AFM2.2 of the research pro-
gram Basic Research in Informatics for Creating the Knowledge Society
(BRICKS), subsidised by Besluit Subsidies Investeringen Kennisinfras-
tructuur (BSIK).

The work was supported by Pattern Analysis, Statistical Modelling and
Computational Learning 2 (PASCAL2), a Network of Excellence funded
by European Union grant IST-2007-216886.

The author’s visits to the University of California, Santa Cruz (UCSC)
were supported by NSF grant IIS-0917397.

The author’s visit to the Statistical Laboratory at the University of Cam-
bridge was supported by their Department of Pure Mathematics and
Mathematical Sciences.

Origin of the Material
This dissertation is based on the following papers:

• Chapter 3 is a significant expansion of technical report

W. M. Koolen and S. de Rooij. Combining expert advice effi-
ciently. Computing Research Repository (CoRR), abs/0802.2015,
Feb. 2008.

which is itself an expanded version of the conference article

W. M. Koolen and S. de Rooij. Combining expert advice
efficiently. In R. Servedio and T. Zang, editors, Proceedings
of the 21st Annual Conference on Learning Theory (COLT 2008),
pages 275–286, June 2008.

• Chapter 4 is based on the technical reports

W. M. Koolen and T. van Erven. Freezing and sleeping:
Tracking experts that learn by evolving past posteriors. Com-
puting Research Repository (CoRR), abs/1008.4654, Feb. 2009.

and

W. M. Koolen and T. van Erven. Switching between hid-
den Markov models using Fixed Share. Computing Research
Repository (CoRR), abs/1008.4532, Feb. 2010.

• Chapter 5 was published as

W. M. Koolen and S. de Rooij. Switching investments. In
M. Hutter, F. Stephan, V. Vovk, and T. Zeugman, editors,
Proceedings of the 21st International Conference on Algorithmic
Learning Theory (ALT 2010), LNAI 6331, pages 239–254.
Springer, Heidelberg, Oct. 2010.

• Chapter 6 appeared as

W. M. Koolen, M. K. Warmuth, and J. Kivinen. Hedging
structured concepts. In Proceedings of the 23rd Annual Con-
ference on Learning Theory (COLT 2010), pages 93–105, June
2010.

Contents

Acknowledgments xiii

Prelude xv

1 Introduction 1
1.1 The Stage . 1

1.2 Recurring Decision Problems 2

1.3 Experts . 4

1.4 Online Learning . 5

1.5 Fundamental Online Learning Problems 6

1.6 Nomenclature and Taxonomy of Experts 10

1.7 Summary . 12

1.8 Related Research . 12

1.9 Meta-Experts — This Dissertation 14

1.10 Organisation of this Dissertation 15

1.11 Conclusion . 17

2 Regret Games 19
2.1 Introduction . 21

2.2 2× 2 Strategic Games . 23

2.3 Predicting a Single Binary Outcome 26

2.4 Repeated Games . 27

2.5 Predicting a Sequence of Binary Outcomes 29

2.6 Variations on a Theme . 38

2.7 Good Best Expert . 42

vii

2.8 Competing with a 1-Lipschitz Best Expert 46

2.9 Switching . 48

2.10 Related Research . 53

2.11 Conclusion . 55

3 Expert Hidden Markov Models 57
3.1 Introduction . 59

3.2 Expert Sequence Priors . 63

3.3 Expert Tracking using HMMs 66

3.4 Regret Bounds . 79

3.5 Switching Strategies . 84

3.6 Extensions . 107

3.7 Conclusion . 110

4 Freezing & Sleeping 113
4.1 Introduction . 115

4.2 Preliminaries . 121

4.3 Mixing Past Posteriors . 122

4.4 Structured Experts . 125

4.5 Freezing & Sleeping . 127

4.6 Other Loss Functions . 135

4.7 Discussion . 138

4.8 Conclusion . 138

4.A Running Times . 139

4.B Loss Bounds . 141

4.C Invariance . 143

5 Switching Investments 145
5.1 Introduction . 147

5.2 Setting . 151

5.3 Payoff Bound . 156

5.4 Implementation . 164

5.5 Conclusion . 166

6 Hedging Structured Concepts 167
6.1 Introduction . 169

6.2 Component Hedge . 172

6.3 Applications . 176

6.4 Lower Bounds . 186

viii

6.5 Comparison to Other Algorithms 188

6.6 Conclusion . 192

6.A Unit rule . 193

6.B Dual Problems for 4-projection 198

Bibliography 203

Index 223

Samenvatting 227

Abstract 231

Curriculum Vitae 235

ix

List of Floats

Figures

1.1 Hierarchy of expert types 11

2.1 Minimax regret of the regret game with time horizon T . . 34

2.2 Minimax strategy in the regret game with time horizon . . 36

2.3 Minimax strategy in the regret game with loss horizon . . 45

2.4 Backwards induction solution to the Ξ-regret game 49

2.5 Minimax regret of the regret game with 0–5 switches . . . 52

2.6 Minimax regret of the regret game with 0–5 switches (fit) 53

3.1 HMMs . 69

3.2 Standard Bayesian mixture bayes[Ξ, w] 71

3.3 Fixed elementwise mixture em[Ξ, w] 72

3.4 Unfolding example . 75

3.5 Interval notation . 76

3.6 Fixed share: fs[Ξ, w, α] . 85

3.7 Interpolation example: graph structure 88

3.8 The switching method interpolator sm 97

3.9 The run-length model interpolator rl[τ, c] 99

3.10 Parameter drift: pd[α] . 105

3.11 Irreflexive switching . 109

4.1 Example learning expert . 116

4.2 Full, freezing and sleeping reference schemes 118

4.3 Generalisation relation among prediction strategies 121

xi

4.4 Bayesian network specification of an EHMM 126

4.5 Hidden state transitions in slot machine HMM 126

4.6 Sleeping and Freezing EHMMs 128

4.7 Notation example . 142

5.1 An example play Λ for Nature 147

5.2 Worst-case plays for Nature are continuous. 157

5.3 Domain of integration example 159

5.4 Regularisation imposed by the ε-pruning Algorithm 5.1 . 162

6.1 Expanded Hedge is not Component Hedge on paths . . . 184

Tables

2.1 Solution of 2× 2 matrix games 25

4.1 Mixing schemes . 132

5.1 Example priors. 155

6.1 Example structured concept classes 173

Protocols

1.1 Sequential point forecasting 6

1.2 Sequential probability forecasting 8

Algorithms

2.1 Minimax algorithm for time horizon T 37

2.2 Minimax algorithm for loss horizon k 54

3.1 Forward algorithm . 77

4.1 Evolving past posteriors . 131

5.1 The ε-pruning algorithm . 161

xii

Acknowledgments

Many people were involved in the genesis and execution of this dis-
sertation, academically or otherwise. Since this dissertation is about
games, it seems suitable to categorise my thanks according to the game
in which they are due.

The Graduation Game I am indebted to my promotores Paul Vitányi
and Peter Grünwald for their guidance, inspiration and support, and
most of all for the incredible amount of freedom they gave me, trusting
that beauty arises by rigorously pursuing your own interests.

The Publishing Game I could not have written this dissertation with-
out my co-authors Steven de Rooij, Tim van Erven, Paul Vitányi, Edgar
Daylight (a.k.a. Karel van Oudheusden), Martin Ziegler, Manfred War-
muth, Jyrki Kivinen, Leen Stougie, Steven Kelk, Peter van der Gulik,
and Harry Buhrmann. It was a pleasure writing with you, and I hope
I’ll have the opportunity to cross pens with you once more.

Symbol Manipulation Games This work was inspired by my past
and present colleagues of INS4/PNA6 Peter Grünwald, Paul Vitányi,
Tim van Erven, Steven de Rooij, Wojciech Kotłowski, Alfonso Martinez,
Łukasz Dębowski, Nisheeth Srivastava, Thijs van Ommen and Peter
Harremoës. You provided a tantalising and vibrant environment for
doing research. You taught, guided and encouraged me. You chal-
lenged me, and we sparred, debated and competed. And you valued
and recognised my accomplishments. You formed me. I can only hope
that I returned the favour.

xiii

xiv Acknowledgments

Physical Games Theory needs to be balanced by practise. Vigorous
physical practice, that is. I would like to thank the following sparring
partners for keeping me sane: Steven de Rooij (squash), Claas-Willem
Visser (climbing and hiking), Sirée Koolen-Wijkstra (fencing, cycling
and hiking). Thank you: I needed it, and I greatly enjoyed it!

Social Games To stimulate creativity, one needs to tickle the fantasy.
Systematically. I would like to thank the following role players for their
fantastic inspiration: The Rotterdam by Night and Albany chronicles, con-
sisting of Maarten Oosten, Julia Krul, Sirée Koolen-Wijkstra and Vincent
van der Goes. And the Allansia chronicle, consisting of Csaba, Fedde,
Erik, Joseph and Sirée.

Culinary Games I want to thank the ESSLLI cooking club for the de-
licious dinners, interesting discussions and good company. Thank you
Marieke van Erp, Paul Groth, Tikitu de Jager, Olga Grigoriadou and
Sirée. And thank you Leonard Hugenholtz and Sandra Klaver and also
Mirjam Postma and Bjorn Hondelink.

Curiosity Games What does this button do? Let’s push it! Nerdy
geeks and geeky nerds that flabbergasted and discombobulated me
with simple questions to weird answers and vice versa include Steven
de Rooij, Maarten Oosten, Vincent van der Goes and Leonard Hugen-
holtz.

And last but not least, hors categorie, I would like to thank my wife
Siré Koolen-Wijkstra for her love, support, encouragement, strategic
advice and endurance during the intense phases of the process. Finally,
I am grateful to my parents Ad and Maite Koolen-Disler for their love.
Chapter 5 was written in their care, in their beautiful mountain refuge
in Suze, Drôme, France.

Amsterdam Wouter M. Koolen

October, 2010.

Prelude

I want to build intelligent computer systems. Like every computer pro-
grammer, I experience great joy and pride when my creation success-
fully performs a complex task. After half a century of Moore’s law1 we
do have the hardware necessary for intelligent behaviour2. However
it seems that more complicated tasks require more complicated pro-
grams. This problem is actually so severe that a lot of intelligent tasks
are completely beyond the abilities of current systems. We simply have
no clue how to program the desired behaviour. We’ve hit the so-called
software bottleneck.

The solution is relatively simple, at least in principle (it is the one
encountered in Nature). Instead of trying to design a complete system
for the desired behaviour, we build a flexible system that can learn, and
then train it to perform the desired task. The design and analysis of
such systems is called machine learning.

I particularly like the modular approach of building systems that
can be immediately put into production untrained. While executing its
task, the system continuously learns by receiving (virtual) reward for
desired behaviour and (virtual) punishment for faux pas. This feedback
allows the system to converge to the desired behaviour quickly. The
study of this class of systems is called online learning. This thesis is the
result of four years of doctoral research in online learning.

1G. E. Moore noted that the transistor count of integrated circuits doubled every
two years.

2For example, in November 2009, IBM Research presented its cortical simulator,
which runs on supercomputer hardware, and whose simulations exceed the size of the
cat cerebral cortex [7]. Earlier milestones include rat-scale and mouse-scale cortices.

xv

Chapter 1

Introduction

L− L∗
One of the main tasks in Artificial Intelligence is to construct computer
systems that learn to be successful in any task assigned to them. Indeed,
a goal that is as fascinating as it is difficult! Such an ambitious project
can only be realised in stages. This dissertation is such a stage.

1.1 The Stage

This dissertation realises successful learning systems for a practically
important and diverse class of tasks, known as the recurring decision
problems with full feedback. That is, problems in which a decision maker
repeatedly chooses actions with uncertainty about the quality of each
available action. If you perchance want to solve a problem of this
kind, then this book is for you. But even if you do not, its overarch-
ing approach may provide guidance in addressing other decision prob-
lems, the specific methods developed may be used as modular build-
ing blocks in the construction of advanced learning systems and the
theoretical results derived may provide insight into the philosophy of
learning.

1

2 Chapter 1. Introduction

This dissertation describes a series of systems that, without any
prior knowledge of the task at hand, incrementally learn to choose high-
quality actions, in a rigorously defined sense. Namely, each individual
system comes with a specific performance guarantee, that relates the
quality of its actions to those that would have been chosen by a “pre-
scient” system, or equivalently, by an external observer with hindsight
about the quality of all actions. Moreover, we show that each system
is computationally efficient in the sense that the required computation
time remains modest even if a large amount of data is processed.

Goal & Outline This chapter gently introduces recurring decision
problems with full feedback and existing online learning solutions, mo-
tivating concepts, goals and methods by example, and incrementally
building up to a high-level overview of the research presented in this
dissertation. Although the research chapters are self-contained, this in-
formal introduction explains their common conceptual background.

This introduction is itself structured as follows. First, in Section 1.2
we give a definition of and numerous examples from the class of re-
curring decision problems with full feedback. The first modular step in
solving such problems is identifying or creating expert advice, as ex-
plained in Section 1.3. The second modular step is to use online learn-
ing methods to combine the available expert advice into high-quality
actions, as discussed in Section 1.4. We review two fundamental online
learning algorithms in Section 1.5, and discuss their guarantees and ef-
ficiency. We summarise the online learning approach in Section 1.7. We
then place online learning into context by describing related research
in Section 1.8. Subsequently, in Section 1.9, we motivate the extended
learning tasks studied in this dissertation and discuss their challenges.
Then in Section 1.10, we give a short overview of this dissertation’s five
main chapters. We conclude in Section 1.11.

1.2 Recurring Decision Problems

This dissertation is about recurring decision problems with full feedback.
That is, problems in which a decision maker repeatedly chooses actions
with uncertainty about the quality of each available action. The follow-
ing concrete examples illustrate the diversity of such problems, their
frequency of occurrence and their practical importance.

1.2. Recurring Decision Problems 3

• A diabetic regularly needs to inject insulin, the desired amount
depending on future sugar intake and exercise level.

• A farmer decides whether to irrigate his fields, risking to waste
water when it rains later.

• A banker invests her capital in a portfolio of stocks with payoffs
determined by future prices.

• A commuter chooses a route daily, whose duration depends on
the severity of traffic jams.

• A hybrid car (equipped with both combustion and electric en-
gines) has to select its power source, with overall efficiency de-
pending on price and availability of refuelling and recharging sta-
tions.

• An SMS typing assistant predicts the continuation of the current
word, with usefulness proportional to the number of key presses
saved.

Note that the first few problems are currently addressed by humans, the
final few problems are already completely automated, and the prob-
lems in the middle are faced by humans with plenty of machine as-
sistance. These boundaries are constantly shifting as more decision
problems become automated or assisted.

Side Information Decisions are usually based on side information. For
example, diabetics typically measure their current blood glucose level,
and integrated hybrid car controllers use the route chosen by the on-
board navigator as side information. Trading with insider side infor-
mation is highly profitable and usually illegal.

Loss Function In each problem, the so-called loss function governs the
set of available actions and the way their quality is measured: better
actions incur less loss. The SMS assistant’s mistakes are counted by the
0/1 loss [25]. The banker’s capital growth rate is scored by Cover’s loss
[33], and the related log loss is appropriate for data compression [34],
probability forecasting [39] and hypothesis testing [15]. Square loss is
also widely used, e.g. in regression and clustering. Total commute time
is measured by the dot loss, which scores so-called structured concepts
[92] like home-to-work routes.

4 Chapter 1. Introduction

Informal Definition A recurring decision problem is a task that proceeds
in trials. Each trial the decision maker, or agent, receives the side infor-
mation relevant to the current trial. Then the agent chooses an action
from a set of available actions, and subsequently incurs the loss asso-
ciated to the chosen action by the loss function. In recurring decision
problem with full feedback, the loss of all possible actions is revealed to
the agent at the end of the trial. The agent’s cumulative loss after T trials
is the sum of the losses incurred in trials 1 through T.

Our goal is to build an automated agent that learns to exploit the
available side information and feedback to incur small cumulative loss.
This is accomplished in two modular steps. The first step is muster-
ing or creating experts to interpret the available side information, as
explained in the next section. The second step is using the feedback to
sequentially combine the expert advice using online learning methods,
as explained in Section 1.4.

1.3 Experts

The technical term expert denotes any strategy, agent, method or algo-
rithm, for choosing actions based on the available side information. An
expert, either human or machine, thus represents a particular approach
to a recurring decision problem. An expert may choose actions based
on common sense, rules of thumb, human experience and expertise,
scientific theories and statistical models. For example,

• In the diabetic example one expert may prescribe to follow the
catalogued average insulin production curve of healthy compara-
ble individuals. The patient’s physician may recommend a dose
based on the patient’s medical record. And as a third source of
expert advice we may consult a statistical biological model after
extracting dietary and exercise clues from the patient’s electronic
agenda.

• An SMS typing assistant is usually equipped with a dictionary
and a set of morphological rules, both annotated with frequen-
cies of occurrence. We may instantiate one expert based on the
Dutch language, one on the English language, and one on so-
called Textese, used 4 gr8er input r8.

1.4. Online Learning 5

• In the banking example a human expert may read all international
news and daily trade reports, and recommend investing all capital
in shares of IBM today, then in Coca Cola tomorrow etc. A fully
automated expert may recommend the portfolio that is optimal
under the assumption that stock prices evolve according to some
fixed probability distribution.

We assume throughout that suitable experts are present. It is often pos-
sible to find human experts, and it is relatively straightforward to create
simple automated experts for any decision problem. Even cutting-edge
automated experts, based on problem-tailored modelling and incorpo-
rating domain-specific knowledge, can in some cases be acquired.

Evidently, different experts capture different aspects of the decision
problem, and we desire to intelligently integrate their conflicting advice
into high quality decisions. In other words, we want to construct a
single superior master expert that combines the advice of many simpler
experts.

Recurrence with full feedback allows us to achieve this goal by learn-
ing, i.e. using the quality of past advice to adjust the relative importance
of each expert’s advice in our next decision. Let’s see how this is done.

1.4 Online Learning

The study of recurring decision problems in the presence of expert ad-
vice is the domain of online learning [25], an emerging discipline on the
interface between computer science, information theory and statistics.

Online-learning methods have been successfully applied to a di-
verse range of practical problems. Results include e.g. state-of-the-art
data compression software [189, 31], improved statistical methods for
hypothesis testing and model selection [178, 162, 40], fast natural lan-
guage entry assistants [184], competitive stock market predictors [33],
improved portable device power managers [78, 64] and highly adaptive
caching policies [70].

The goal of online learning theory [25] is to develop for each com-
bination of loss function and set of experts an efficient algorithm that
guarantees small regret, where regret is defined as the difference be-
tween the loss of the algorithm and the loss of the best expert. An
algorithm with small regret learns to act like the best expert. This im-

6 Chapter 1. Introduction

Protocol 1.1 Sequential point forecasting

for trial t = 1, 2, . . . do
Receive a prediction pi,t ∈ {y, n} for each expert i ∈ {1, . . . , n}.
Choose a prediction qt ∈ {y, n}.
Observe the actual outcome xt ∈ {y, n}.
Incur a mistake if qt 6= xt. Expert i incurs a mistake if pi,t 6= xt.

end for
Regret w.r.t. best expert after T trials: L− L∗ mistakes, where

L := ∑T
t=1 1qt 6=xt and L∗ := min

i
∑T

t=1 1pi,t 6=xt .

plies that if at least one of the experts that the algorithm has access to
incurs small loss, then the algorithm itself suffers small loss as well, and
hence, as desired, learns to perform its task well. We now introduce the
two fundamental regret guarantees that can be obtained.

1.5 Fundamental Online Learning Problems

Recall our farming example, where a farmer needed to decide whether
to irrigate or not, and hence needed to predict the rain. We abbreviate
the event that it rains to y, and denote its complement by n. We analyse
this online learning problem for two different loss functions: 0/1 loss
and log loss. In each case our goal is to minimise our regret, i.e. the
difference between our cumulative loss L and the cumulative loss L∗ of
the best expert. The regret formula L− L∗ serves as this chapter’s logo.

1.5.1 Prediction with 0/1 Loss

Say that we have n weather forecasting experts, e.g. employed by n
television channels. Every evening, each expert predicts whether it will
rain tomorrow or not by quoting either y or n. We then form our own
binary prediction based on this advice. The weather is observed the
following day, revealing correct and erroneous predictions, that is, pro-
viding full feedback about the loss of all possible predictions. Namely,

1.5. Fundamental Online Learning Problems 7

on outcome x, prediction p suffers 0/1 loss

1p 6=x =

{
0 if p = x,
1 if p 6= x.

This prediction problem is repeated daily, and our goal is to minimise
our regret L − L∗, i.e. the difference between our cumulative mistake
count L and the cumulative mistake count L∗ of the best expert. See
Protocol 1.1 for a systematic rendering of the timing of the actions and
for the formal definition of L and L∗. We illustrate the setup by exam-
ple. Say after T = 5 days the actual rain sequence was

x = y, y, y, n, y

while the n = 3 experts that we consulted sequentially predicted

p1 = y, y, y, y, y making 1 mistake,
p2 = y, n, y, n, y making 1 mistake,
p3 = n, n, n, n, n making 4 mistakes,

and we sequentially combined these predictions into our predictions

q = y, n, n, y, y making 3 mistakes.

Then our cumulative loss is L = 3, the cumulative loss of the best expert
is L∗ = 1, so that our regret is L− L∗ = 2 mistakes.

The Hedge Algorithm The Hedge algorithm [59] is a systematic way
to combine point predictions. At a high level, the idea is to give more
weight to predictions by experts that have suffered small 0/1 loss in the
past. Full details are given in Chapter 6. The Hedge algorithm issues
randomised predictions, so that L is a random variable. Applied to n
experts, the Hedge algorithm guarantees expected regret

E[L]− L∗ ≤
√

2 L∗ ln(n) + ln(n) mistakes. (1.1)

This guarantee holds irrespective of the number of days T and without
making any stochastic assumptions about the way outcomes arise; it

8 Chapter 1. Introduction

Protocol 1.2 Sequential probability forecasting

for trial t = 1, 2, . . . do
Receive a probability pi,t ∈ [0, 1] of y for each expert i ∈ {1, . . . , n}.
Choose a probability qt ∈ [0, 1] of y.
Observe the actual outcome xt ∈ {y, n}.
Suffer log loss − log qt(xt). Expert i suffers log loss − log pi,t(xt).

end for
Regret w.r.t. best expert after T trials: L− L∗ bits, where

L := ∑T
t=1− log qt(xt) and L∗ := min

i
∑T

t=1− log pi,t(xt).

holds for each individual sequence of outcomes x. It implies that the
quality of our predictions is close to that of the best expert. In fact, di-
viding both sides by the number of days T, we see that the overhead per
day tends to zero since L∗ ≤ T. As one would expect, it is harder to ap-
proximate the overall best expert if there are many experts (n is large).
Apparently, it is also harder to predict like the best expert if all experts
are bad (L∗ is large). This phenomenon is explained in Chapter 2.

Moreover, the Hedge algorithm runs in time O(n) per day. This is
clearly optimal, simply consulting the n experts already takes this many
steps.

1.5.2 Prediction with Log Loss

Now suppose that our n weather forecasting experts report a probabil-
ity of rain, as is commonly done e.g. on national television, and that
we want to combine these forecasts into our own probability. The loss
function commonly used for such probability forecasts is the so-called
log loss, which is the information-theoretic measure of surprise mea-
sured in bits1. More precisely, the log loss of predicting outcome y with
probability p ∈ [0, 1] (and hence outcome n with probability 1− p) on

1Log loss originated in coding theory, where code lengths are measured in bits.
Probability forecasting with log loss and sequential coding are essentially the same, as
shown by the Kraft Inequality and Shannon-Fano coding. [34]

1.5. Fundamental Online Learning Problems 9

actual outcome x ∈ {y, n} is

− log p(x) :=

{
− log(p) if x = y,
− log(1− p) if x = n,

where log denotes the logarithm to base 2. As expected, assigning high
probability to the actual outcome means small loss and vice versa. Note
that again by observing the outcome x we get full feedback about the
loss of all possible predictions p.

In contrast to the 0/1 loss used for counting mistakes, the log loss
is not bounded. In particular, any p that assigns zero probability to the
actual outcome x suffers infinite loss. The log loss setup is displayed as
Protocol 1.2.

Recall that in the example of the previous section the actual rain
sequence after T = 5 days was

x = y, y, y, n, y.

Suppose that our n = 3 experts sequentially quoted rain probability

p1 = 0.6, 0.6, 0.6, 0.6, 0.6 incurring 4.270 bits,
p2 = 0.8, 0.7, 0.6, 0.5, 0.4 incurring 3.895 bits,
p3 = 0, 1, 0, 1, 0 incurring ∞ bits,

and we sequentially combined these predictions into our predictions

q = 0.7, 0.6, 0.6, 0.5, 0.5 incurring 3.989 bits.

Then our cumulative loss is L = 3.989 bits, the cumulative loss of the
best expert is L∗ = 3.895 bits, so that our regret is L− L∗ = 0.093 bits.

The Bayesian Strategy The Bayesian strategy is a systematic way to
combine probabilistic predictions. At a high level, the idea is again
to give more weight to predictions by experts that have suffered small
log loss in the past. Full details are given in Chapter 3. Applied to n
experts, the Bayesian strategy guarantees regret

L− L∗ ≤ log(n) bits. (1.2)

Like Hedge, the Bayesian strategy runs in optimal time O(n) per day.

10 Chapter 1. Introduction

1.5.3 Comparison

Thus, in both cases there is a computationally efficient strategy that
guarantees that the quality of our predictions is close to that of the best
expert. This means that we can learn to approximately predict like the
best expert. Here, as always, “best” means “best with hindsight” at the
time T of evaluation.

These results also allow us to quantitatively compare the two pre-
diction problems. The fact that the point forecasting regret bound (1.1)
grows as the square root of the loss of the best expert whereas the prob-
ability forecasting regret bound (1.2) is completely independent of the
expert losses indicates that the first task is harder than the second.

Finally, note that both cases share the same interesting underlying
tradeoff. To see this, consider the loss as a function of the number n of
experts that we feed into either algorithm. The loss of the best expert
is non-increasing in the number of experts used. But the regrets (or at
least both bounds) are increasing in the number of experts used. The
best cumulative loss is thus obtained by running these algorithms with
a reasonably sized set of reasonable experts, so that both the regret and
the loss of the best expert are small.

In this section we did not use any background knowledge about the
predictions of the experts, and hence obtained regret guarantees that
hold irrespective of the expert advice. On the other hand, sometimes
explicit knowledge about the experts functioning is available, and may
be used to our advantage, to obtain better regret guarantees. In the next
section we classify the different types of experts, according to what we
know about them.

1.6 Nomenclature and Taxonomy of Experts

We already pointed out in Section 1.3 that the notion of expert is ex-
tremely general: an expert is any strategy, agent, method or algorithm,
for choosing actions in a given recurring decision problem. In this sec-
tion we identify different types of experts, and classify them according
to how much information we have about their functioning. The result-
ing hierarchy is displayed in Figure 1.1.

At the bottom we find the simplest constant experts. A constant
expert always recommends the same action. Next we encounter the

1.6. Nomenclature and Taxonomy of Experts 11

Figure 1.1 Hierarchy of expert types

m
or

e
ex

pl
oi

ta
bl

e
ex

pe
rt

st
ru

ct
ur

e

��

black-box or adversarial experts

��
gray-box or semi-adversarial experts

��
white-box or simulatable experts

��
static or blind experts

��
constant experts

m
ore

pow
erful/com

plex
experts

OO

slightly more general static or blind experts. A static expert follows a
fixed, known sequence of actions, so that its actions only depend on
time, but not on the loss of its past actions.

Experts in the subsequent category of white-box or simulatable ex-
perts do adapt their recommendation based on the loss of their past
actions, and they do this in a way that is known to us. That is, given
past outcomes we can always compute the action they will recommend
next. The most general class of experts are the black-box or adversar-
ial experts. This class includes human experts, which we can consult
but which we can not simulate. To obtain performance guarantees for
algorithms for decision problems with black-box experts, we have to
assume the worst case, that is, we assume that the advice of black-box
experts is determined by a malevolent adversary. Finally, the gray-box or
semi-adversarial experts arise when we combine the advice of black-box
experts in a simulatable fashion.

Before going into the details of this dissertation, we first summarise
what has been presented so far, and discuss related research.

12 Chapter 1. Introduction

1.7 Summary

In recurring decision problems a decision maker repeatedly chooses
actions with uncertainty about the quality of each available action. With
full feedback, the quality of each action is revealed after a decision
is committed. Online learning advocates the following approach to
solving recurring decision problems with full feedback:

1. Identify the set of actions.

2. Identify the loss function.

3. Identify the available side information.

4. Gather or create experts. That is, get access to agents that, each
trial, use the side information to recommend an action.

5. Run an algorithm that uses the feedback to combine the expert
advice, and that guarantees small regret w.r.t. the best expert.

For step 5 we need algorithms that guarantee small regret w.r.t. the best
expert, i.e. that learn to act approximately like the best expert. This
dissertation investigates the design and analysis of such algorithms.

Note that the resulting algorithm itself qualifies as an expert, since
it sequentially chooses actions. Its output can therefore serve as the
expert input in step 4 to an even higher-level algorithm. Such hierar-
chical combinations of experts can be used to obtain advanced learning
algorithms.

1.8 Related Research

Different models of learning are actively researched [126, 154, 8, 95, 106,
127, 179, 35, 74, 160, 17, 150, 25, 71]. There are two main approaches:
learning as displaying the correct behaviour vs learning as identifying
the underlying rule or process.

1.8.1 Decision-Making

A large class of models for learning agrees with online learning that the
objective is to build systems that make good decisions. These models
differ in the exact type of problems considered. The closest relative is
called bandit learning. [176, 155, 158, 50, 24, 55, 10, 118, 143, 5, 26] This

1.8. Related Research 13

name refers to a gambler who wants to learn which slot machine, or
one-armed bandit, yields the best overall payoff. In contrast to online
learning, the learner only gets partial feedback. He observes the loss of
his chosen action, but not the loss of the other possible actions. A typi-
cal bandit problem is ad(vertisement) selection. An ad has to be selected
from a large set for presentation to the user, say in the margin of some
web page. The system’s owner receives some financial reward if the
user clicks on the ad. In this setting, the system clearly only observes
the user’s reaction to the presented ad, and not to all possible ads.
Despite the difference, algorithms for the bandit setting often strongly
resemble online learning algorithms.

The even more difficult setting called Reinforcement Learning arises
when the quality of chosen actions is only revealed later, indirectly, or
not at all. [1, 9, 12, 13, 14, 20, 11, 22, 36, 30, 46, 48, 45, 42, 44, 49, 52, 37,
47, 54, 56, 57, 61, 60, 67, 62, 69, 63, 68, 76, 82, 83, 88, 89, 90, 96, 98, 94, 93,
97, 103, 109, 105, 110, 86, 107, 131, 114, 122, 116, 134, 133, 113, 121, 123,
120, 132, 124, 130, 119, 111, 115, 117, 135, 125, 137, 136, 138, 145, 141,
142, 139, 140, 144, 148, 152, 149, 151, 157, 156, 153, 147, 167, 159, 165,
169, 168, 164, 166, 175, 170, 171, 174, 183, 191, 187, 188, 51]

In these settings it is often necessary to make assumptions about the
environment before anything can be provably learnt.

Methods for making good decisions compared to a class of experts
can be found in the literature on different fields. Examples include
universal modelling in statistics [71], universal coding in data compression
[34] and universal portfolios in finance [33].

1.8.2 Inference

A second set of models for learning pursues a different goal altogether.
The crucial difference is that there is no extrapolation into the future.
Instead, the system has to create a pattern, rule, description, model, hy-
pothesis or explanation of the situation at hand from examples. Appli-
cations include data analysis, data mining, data compression, density
estimation, archaeology, clustering and de-noising. Although the goal
is exploratory, decision making is sometimes used as a sanity check.

The background so far provided by the introduction allows us to ex-
plain the content of this dissertation in slightly more detail.

14 Chapter 1. Introduction

1.9 Meta-Experts — This Dissertation

This introduction discussed a basic case: learning to behave like the best
expert. In the remainder of this dissertation we consider four complex
online learning problems, with more ambitious goals. In each case, we
start out with a set of “basic” experts, and then create a huge variety
of derived “meta”-experts, in such a way that we expect the best meta-
expert to be much better than the best basic expert. We consider the
following three sets of meta-experts.

• Switching between basic experts. Here a meta-expert switches be-
tween basic experts as time progresses. Such meta-experts outper-
form the best basic expert when the relative quality of the basic
experts varies over time. Competing with the best meta-expert
means learning when to switch between basic experts.

• Switching between learning basic experts. When basic experts are
themselves learning in the sense that their predictions depend on
the data that they have observed, we create a more ambitious goal.
Namely, each meta-expert switches between basic experts as time
progresses, but only lets the currently selected basic expert ob-
serve the current outcome. Competing with the best meta-expert
means learning how to segment the data, in such a way that for
each segment, the best basic expert for that segment can learn to
exploit the local patterns well.

• Structured concepts. Consider home-to-work routes. Say that we
have for each directed road segment a basic expert that specialises
in driving that segment. A meta-expert now is a route from home
to work, that uses all the basic experts along the path. The loss
(commute time) of a meta-expert is the sum of the losses of the
basic experts used. Competing with the best meta-expert means
learning the shortest path from home to work. Analogous con-
structions exist for other combinatorial combinations of experts,
e.g. sets, spanning trees, permutations etc.

In each case, the meta-experts that we construct are gray-box experts
according to the classification of Section 1.6. We may not know how
the underlying basic experts function, but we do know exactly how the
basic experts are combined.

1.10. Organisation of this Dissertation 15

As before, we then try to build algorithms that have small regret
w.r.t. the best meta-expert, i.e. that learn to approximate the best meta-
expert. This cannot be achieved by simply applying the fundamental
algorithms from Section 1.5 on the set of meta-experts, for two reasons:

• Efficiency. The set of meta-experts is huge, often exponential in
the number of basic experts and sometimes even infinite, so that
running the algorithm is intractable.

• Performance. The regret bounds (1.1) and (1.2) of the standard
algorithms are tight when the experts’ actions are independent.
But the actions of different meta-experts are highly dependent,
since they are derived from the same set of basic experts, so we
expect that much better bounds are achievable.

The challenge is hence to exploit the internal structure of the set of
meta-experts. That is, we want to design new algorithms that are ef-
ficient in terms of the number of basic experts, and that use the de-
pendence between meta-experts to obtain tight regret bounds. This
dissertation contains efficient algorithms for each of these classes of
meta-experts.

1.10 Organisation of this Dissertation

We now sketch the contents of the main chapters of this dissertation.
The next chapter, Chapter 2, is written at an introductory level. It does
not assume any prior knowledge about online learning, and contains
examples of the concepts used in the remainder. The subsequent four
chapters are based on research articles.

1.10.1 Chapter 2: Regret Games (Introductory)

We give a game-theoretic analysis of the simplest online learning prob-
lem, the prediction of a sequence of binary outcomes under 0/1 loss
with the help of 2 experts. For this simple problem, we compute the
minimax, i.e. game-theoretically optimal, regret, and show how to im-
plement the optimal strategy efficiently. We then give special attention
to the case that one of the experts is good. We conclude with a new
result: we give the optimal algorithm for competing with the set of
meta-experts that switch between the 2 basic experts.

16 Chapter 1. Introduction

1.10.2 Chapter 3: Expert Hidden Markov Models

We show how models for prediction with expert advice can be defined
concisely and clearly using hidden Markov models (HMMs); standard
algorithms can then be used to efficiently calculate how the expert pre-
dictions should be weighted. We focus on algorithms for “tracking the
best expert”, starting from the Fixed Share algorithm [79, 80], and show
how most existing models can be cast as HMMs. We recover the run-
ning times and loss bounds for each algorithm, and discuss how they
are related. We also describe three new models: (i) models with de-
creasing switching rate, which run in linear time and for which a fixed
switching rate does not have to be specified in advance, (ii) a new gen-
eralisation of the fixed share algorithm that is especially well equipped
to handle switches that occur in clusters, and (iii) a model tailored to
the scenario where the experts have a natural order, and where jumps
between them are typically small. This last model is relevant for pre-
dicting time series data where parameter drift is expected.

1.10.3 Chapter 4: Freezing & Sleeping

A problem posed by Yoav Freund at the Conference on Learning The-
ory (COLT) in 2000 is how to efficiently track a small pool of experts
out of a much larger set. This problem was solved when Bousquet and
Warmuth introduced their mixing past posteriors (MPP) algorithm in
2001.

In Freund’s problem the experts would normally be considered
black boxes. However, in this chapter we re-examine Freund’s problem
in case the experts have internal structure that enables them to learn.
In this case the problem has two possible interpretations: should the
experts learn from all data or only from the subsequence on which they
are being followed? The MPP algorithm solves the first case. Our con-
tribution is to generalise MPP to address the second option. The results
we obtain apply to any expert structure that can be formalised using
(expert) hidden Markov models. Curiously enough, for our interpreta-
tion there are two natural reference schemes: freezing and sleeping. For
each scheme, we provide an efficient prediction strategy and prove the
relevant loss bound.

1.11. Conclusion 17

1.10.4 Chapter 5: Switching Investments

We present a simple online two-way trading algorithm that exploits
fluctuations in the unit price of an asset. Rather than analysing worst-
case performance under some assumptions, we prove a novel, uncon-
ditional performance bound that is parameterised either by the actual
dynamics of the price of the asset, or by a simplifying model thereof.
The algorithm processes T prices in O(T2) time and O(T) space, but
if the employed prior density is exponential, the time requirement re-
duces to O(T). The result translates to the prediction with expert advice
framework, and has applications in data compression and hypothesis
testing.

1.10.5 Chapter 6: Hedging Structured Concepts

We develop an online algorithm called Component Hedge for learning
structured concept classes when the loss of a structured concept sums
over its components. Example classes include paths through a graph
(composed of edges) and partial permutations (composed of assign-
ments). The algorithm maintains a parameter vector with one non-
negative weight per component, which always lies in the convex hull
of the structured concept class. The algorithm predicts by decompos-
ing the current parameter vector into a convex combination of concepts
and choosing one of those concepts at random. The parameters are up-
dated by first performing a multiplicative update and then projecting
back into the convex hull. We show that Component Hedge has optimal
regret bounds for a large variety of structured concept classes.

1.11 Conclusion

We introduced the online learning approach to recurring decision prob-
lems with full feedback. We first reviewed prediction with expert ad-
vice, where the goal is to suffer small regret w.r.t. the best expert. We
then discussed more ambitious goals that arise by combining few basic
experts into a huge set of meta-experts, and then trying to approximate
the best meta-expert. We briefly summarised the sets of meta-experts
that are studied in the four research chapters this thesis, and previewed

18 Chapter 1. Introduction

the results that we obtain in each case, which take the form of algo-
rithms and corresponding regret bounds.

Chapter 2

Regret Games

y n
y Gy Gn + 1

n Gy + 1 Gn

2.1. Introduction 21

2.1 Introduction

The simplest decision problem is the prediction of a binary outcome.
For example, we would like to predict whether it is going to rain to-
morrow or not, whether a stock’s price will be higher tomorrow or
lower, etc. Predicting a binary outcome is an important and common
task, and it is also a fundamental decision problem because it arises as a
special case of many more sophisticated decision problems. We already
encountered this prediction problem in Section 1.5.1.

In this chapter we study predicting a binary outcome from the on-
line learning viewpoint, with the goal of understanding both this fun-
damental decision problem and its solutions. While we present several
new results, the chapter also serves an introductory purpose: this chap-
ter requires no prior knowledge about online learning, and illustrates
by example the concepts used in the subsequent four chapters. We de-
liberately keep the setup as simple as possible. That is, we adopt the
typical loss function for this scenario, the 0/1 loss, which simply counts
the number of mistakes.

We formulate online prediction with experts as a game, and use
elementary game theory to solve it. The advantage of this approach
is twofold. First, we get the minimax regret, a number that expresses
the complexity of the binary prediction problem, and gives us a lower
bound on the regret of any prediction algorithm. And second, we get
the minimax strategy, a prediction algorithm that achieves that lower
bound, and hence provides the optimal regret guarantee. This game-
theoretic approach to online learning was generally believed to be in-
tractable [27]. But two recent breakthrough papers found efficient min-
imax strategies for prediction [4] and decision-making [6]. These al-
gorithms compete with black-box experts, whose predictions and losses
are determined completely adversarially.

In this chapter we focus on the simpler white-box experts (see the
taxonomy in Section 1.6), for which we can compute all future predic-
tions. We first consider the simplest, constant experts. Unexpectedly,
by simplifying the prediction problem to its core, we obtain several
new results, including a new, optimal, efficient algorithm for the more
complex switching experts and for other elaborate classes of white-box
experts. We also obtain new insights in existing algorithms by observ-
ing how exactly they coincide for our simple setup.

22 Chapter 2. Regret Games

Experts We abstract away the meaning of the outcome, and call the
two possible values y and n. We use the two simplest constant experts

yyyyyyyyyyyyyyyy · · · and nnnnnnnnnnnnnnnn · · ·

That is, one expert always predicts y and the other always predicts n.
Apart from simplicity, another motivation for using these two experts
is the following. If we assume that the outcomes are generated by
flipping a biased coin, say loaded towards y, then the expected 0/1 loss
is minimised by always predicting y, and vice versa for n. Hence the
entire biased coin model is predicted optimally by these two experts.

Note however that the stochastic assumption made in the above ar-
gument is merely used as a sanity check to argue that these experts
are reasonable, and that we never make any such unverifiable assump-
tions about the outcome-generating process in any of our prediction
problems.

The goal now is to suffer small regret w.r.t. the best expert. In this
case, competing with the best constant expert means learning the global
trend, i.e. the outcome most frequent in the final sequence. Although
seemingly simple, the prediction problems with these two constant ex-
perts exhibit many interesting general phenomena, while clearly illus-
trating the underlying difficulties.

We subsequently consider the more sophisticated switching experts
that may switch between outcomes, predicting for example

yyyyynnnnnnnyyyy · · ·

Whereas competing with the best constant expert allows us to learn the
global trend of the sequence of outcomes, competing with switching
experts allows us to track local trends. This is useful in applications
where we expect the outcome-generating process to sometimes change
its characteristics, for example because it can be in several states. Again,
the goal is to suffer small regret w.r.t. the best switching expert.

Adversary In each trial of the binary prediction problem, we have
uncertainty about the actual outcome. We model this uncertainty by
placing the generation of the actual outcome in the hands of a second
player, which we call Adversary. The sole purpose of Adversary is
to maximally frustrate our learning attempt. Thus we are trying to

2.2. 2× 2 Strategic Games 23

minimise our regret while Adversary is trying to maximise it. Our goal
is to find a strategy that guarantees small regret against the malevolent
Adversary. By preparing for the worst case, we obtain a strategy with
regret guarantees that always hold. In particular, the validity of our
guarantees does not depend on any assumptions about the underlying
outcome-generating process.

Goal & Outline In this chapter we model the prediction problem as
a mathematical game, stressing the strategic considerations underlying
its analysis. We first review elementary strategic game theory in Sec-
tion 2.2, and then use it to solve predicting a single binary outcome
in Section 2.3. We then review the theory of repeated games in Sec-
tion 2.4, and use it to solve predicting a sequence of binary outcomes
in Section 2.5. We apply the solution to related problems in Section 2.6.
We then consider the special case that the best expert has small cumula-
tive loss in Section 2.7, and obtain regret bounds that are parametrised
accordingly. We demonstrate the generality of the methodology in Sec-
tion 2.8 and apply it to the set of switching experts in Section 2.9. Sec-
tion 2.11 concludes by placing these results into context.

2.2 2× 2 Strategic Games

In this chapter, we model several prediction problems as mathematical
games, and this section introduces the game theory necessary to model
a single trial. The game format appropriate for our problems is that
of strategic games, in which the players choose their action in parallel.
Contemporaneous moves model both our uncertainty about the actual
outcome, and our ability to randomise our prediction in a way that
Adversary cannot foretell.

In general, a two-player zero-sum 2 × 2 strategic game is repre-
sented by a cost matrix:

Adversary

We

y n
y A B
n C D

We identify with the row player, and call the column player Adversary.

24 Chapter 2. Regret Games

Both players independently choose an action, either y or n. We then in-
cur the cost A, B, C or D associated with the chosen pair of actions. It is
our objective to minimise the cost, while Adversary tries to maximise it.
In this section we compute our optimal strategy and its guarantee. Our
optimal strategy is often a mixed strategy, which carefully randomises
its action.

Saddle Point We identify a mixed strategy for either player with the
probability it assigns to the action y. When we follow strategy σ ∈ [0, 1],
while Adversary follows strategy τ ∈ [0, 1], our expected cost is

V(σ, τ) := στA + σ(1− τ)B + (1− σ)τC + (1− σ)(1− τ)D.

A minimax strategy σ̂ attains minσ maxτ V(σ, τ) while a maximin strat-
egy τ̂ attains maxτ minσ V(σ, τ). The celebrated Von Neumann mini-
max theorem (see [16]) states that a saddle point 〈σ̂, τ̂〉 exists with

V(σ̂, τ̂) = min
σ

max
τ

V(σ, τ) = max
τ

min
σ

V(σ, τ).

We call the above quantity the game value and denote it by V . The game
value V equals both our minimax cost and Adversary’s maximin cost.
In words, our minimax strategy σ̂ guarantees that our expected cost is
at most V , while Adversary’s maximin strategy τ̂ guarantees that our
expected cost is at least V . Consequently, playing σ̂ vs τ̂ results in V .

Computing a Saddle Point For 2× 2 games it is straightforward to
compute the game value V and construct a saddle point 〈σ̂, τ̂〉, as shown
in Table 2.1. Games satisfying any of the first four cases of Table 2.1
have a saddle point in pure, i.e. deterministic, strategies. The interesting
case is the fifth, where randomisation is essential for both players. A
tedious but straightforward case-by-case analysis shows that no pure
saddle point exists if and only if

(A− B)(C− D) < 0 and (A− C)(B− D) < 0. (2.1)

We now solve games without pure saddle points. The game-theoretic
analyses in all later sections are built upon this workhorse lemma.

2.2. 2× 2 Strategic Games 25

Table 2.1 Solution of 2× 2 matrix games. The game value V and saddle
point 〈σ̂, τ̂〉 are shown as a function of the costs A, B, C and D.

σ̂ τ̂ V condition

1 1 A C ≥ A≥ B
1 0 B D≥ B ≥ A
0 1 C A≥ C ≥D
0 0 D B ≥D≥ C

D−C
Z

D−B
Z

AD−BC
Z condition (2.1)

where Z = A− B− C + D

2.2.1. Lemma. If a game has no saddle point in pure strategies, then the game
value V and unique saddle point 〈σ̂, τ̂〉 are given by

V =
AD− BC

Z
, σ̂ =

D− C
Z

and τ̂ =
D− B

Z
where Z = A− B− C + D.

Proof. Say that we play action y with probability σ ∈ [0, 1]. We can then
guarantee expected cost

max
τ∈[0,1]

V(σ, τ) = max
{

σA + (1− σ)C, σB + (1− σ)D
}

.

The right hand is a maximum of two linear functions. We now use
(2.1). Since (A− C)(B− D) < 0 one function is increasing in σ while
the other is decreasing, so their maximum is minimised at their in-
tersection. Moreover, this intersection occurs for σ ∈ (0, 1) because
(A− B)(C− D) < 0. Hence the unique σ̂ is found by solving for σ in

σA + (1− σ)C = σB + (1− σ)D.

The computation of τ̂ is analogous, and simple algebra yields V .

Equaliser Strategies The proof of the lemma in fact shows something
more, namely that both σ̂ and τ̂ are equaliser strategies, that is, V(σ̂, τ) =
V(σ, τ̂) = V for all σ and τ. The equaliser strategy σ̂ removes all power
from Adversary by rendering all her strategies exactly equally costly
for us.

26 Chapter 2. Regret Games

Expectations We stress that all expectations in this chapter refer to
strategic randomness deliberately introduced by the players to realise
their guarantees. In particular, we never assume that outcomes are
drawn from a true distribution.

With now apply this machinery to forecasting a binary outcome.

2.3 Predicting a Single Binary Outcome

We first model the single-trial problem as a game. Both we and Ad-
versary choose a value in {y, n}. We call our value the prediction and
Adversary’s value the actual outcome. We make a mistake if our pre-
diction does not equal the actual outcome. Recall that there are two
experts, one that predicts y and one that predicts n. Since, in the single-
trial case, the best expert makes no mistake, our regret equals our loss.
Taking our regret as our cost results in the one-shot regret game:

G :=

Adversary

We

y n
y 0 1
n 1 0

Both our pure strategies y and n guarantee that we make at most one
mistake. This guarantee is trivial, since it is the maximal number of
mistakes. We now show that randomisation improves our guarantee.

2.3.1. Theorem. The one-shot regret game G has minimax regret V and
unique saddle point 〈σ̂, τ̂〉, where

V = 1/2, σ̂ = 1/2 and τ̂ = 1/2.

Proof. By (2.1) G has no saddle point in pure strategies, and hence the
unique saddle point and game value are given by Lemma 2.2.1.

The strategy σ̂, which predicts uniformly at random, is an equaliser
strategy that guarantees that we make a mistake with probability ex-
actly a half. That is, all actual outcomes are equally adversarial.

In a sense, predicting a single binary outcome with two experts is
not very interesting because we have too many (2) experts relative to the
number of outcomes (2): so many that the best expert always has loss

2.4. Repeated Games 27

zero. The situation is very different if we predict a sequence of multiple
binary outcomes in a row. We first introduce the necessary repeated-
game theory and subsequently analyse the scenario with repetition.

2.4 Repeated Games

A repeated game is a matrix game that results in games [16]. Such
games are defined recursively. In the elementary (zero-round) game
V ∈ R we simply suffer cost V. Then if H, I ,J and K are games, so is
the composite game

y n
y H I
n J K

in which the two players independently choose an action, and jointly
determine the subsequent game to be played. An example of a two-trial
game is

y n

y

y n
y A B
n C D

y n
y E F
n G H

n

y n
y I J
n K L

y n
y M N
n O P

. (2.2)

Say that, in the first trial, we play y and Adversary plays n. Together,
these actions determine that the players subsequently face the con-
stituent game

y n
y E F
n G H

. (2.3)

If, in the second trial, we play n and Adversary plays n, then the players
subsequently face the elementary game

H, (2.4)

in which we immediately incur the specified cost H.

28 Chapter 2. Regret Games

A history of length t is an element of {y, n}t × {y, n}t. A history
〈p, x〉 of length t records our prediction pi and the actual outcome xi
for each played trial 1 ≤ i ≤ t. The subgame of a game G identified
by the history 〈p, x〉 is denoted by Gp,x. For example, let G denote
the game displayed as (2.2). The history 〈y, n〉 identifies the subgame
Gy,n displayed as (2.3), while the history 〈yn, nn〉 identifies the 0-round
subgame Gyn,nn displayed as (2.4). The longer the history, the shorter
the subgame it identifies. The empty history 〈ε, ε〉 identifies the entire
game itself: G = Gε,ε for any game G.

As before, we are looking for the optimal strategies and for the game
value, i.e. the best possible expected cost guarantee. Repeated games
can be solved recursively by the procedure called backwards induction,
also known as dynamic programming or Zermelo’s algorithm [16].

2.4.1 Backwards Induction

Solving elementary games is trivial. To solve a composite game

G =

y n
y Gy,y Gy,n

n Gn,y Gn,n
,

first recursively solve its four constituent games to obtain their best
achievable expected cost guarantees Vy,y, Vy,n, Vn,y, and Vn,n. Second, re-
place each constituent game by its value to obtain the single-trial game

G ′ =

y n
y Vy,y Vy,n

n Vn,y Vn,n
.

The game G ′ represents the game G, assuming that we play all its sub-
games optimally. By solving the single-trial game G ′ using Section 2.2,
we therefore obtain the minimax strategy σ̂, maximin strategy σ̂ and
value V of the composite game G.

Backwards induction recursively solves all subgames of G. For each
subgame Gp,x, we denote its game value by Vp,x and its saddle point by
〈σ̂p,x, τ̂p,x〉.

2.5. Predicting a Sequence of Binary Outcomes 29

2.5 Predicting a Sequence of Binary Outcomes

We now formalise the recurring prediction problem as a repeated game.
We consider the case were we sequentially predict T binary outcomes,
for some known fixed time horizon T. Recall that we have two experts,
one that always predicts y and one that always predicts n, and that our
goal is to minimise our regret w.r.t. the best expert.

Fix a sequence of predictions p and of actual outcomes x, both of
length T. Our cumulative loss L and the cumulative loss of the best
expert L∗ are measured in mistakes, i.e.

L(p, x) :=
T

∑
t=1

1pt 6=xt and L∗(x) := min
{ T

∑
t=1

1y 6=xt ,
T

∑
t=1

1n 6=xt

}
,

and our regret is thus
L(p, x)− L∗(x). (2.5)

The regret is always evaluated at sequences of length exactly T, but it
is convenient to allow the cumulative losses L and L∗ to be evaluated at
all p and x of equal length t ≤ T, with in particular L(ε, ε) = L∗(ε) = 0.

2.5.1 The Regret Game with Time Horizon T

We now formalise the sequential prediction problem with two experts
as a repeated game, that we call the regret game with time horizon T. We
first define its subgames Gp,x recursively. To each history 〈p, x〉 of length
t = T we assign the elementary game in which we incur the regret

Gp,x := L(p, x)− L∗(x), (2.6a)

while for each history 〈p, x〉 of length t < T we simply play one trial

Gp,x :=

y n
y Gpy,xy Gpy,xn

n Gpn,xy Gpn,xn
. (2.6b)

The regret game with time horizon T starts from the empty history 〈ε, ε〉

G := Gε,ε. (2.6c)

30 Chapter 2. Regret Games

Predicting like the best expert amounts to solving the game G. Our
minimax strategy approximately predicts like the best expert, and our
minimax regret quantifies the discrepancy. We solve the repeated game
(2.6) by backwards induction. To simplify this task, we first use two
properties of the specific cost function (2.6a), the regret, to simplify the
representation of G and its subgames.

2.5.2 The Regret Game (Simplified)

The regret (2.5) is a special cost function. First, our cumulative loss L is
a sum that decomposes over trials. Second, the cumulative loss L∗ of the
best expert does not depend on our predictions p. These two properties
allow us to represent the game (2.6) more concisely by a game that is
only parametrised by a sequence of actual outcomes x. The game Gx is
defined as follows. To x of length t = T we assign the elementary game
with cost

Gx := −L∗(x), (2.7a)

while for x of length t < T we set1

Gx :=

y n
y Gxy Gxn + 1
n Gxy + 1 Gxn

. (2.7b)

The regret game with time horizon T starts without observed outcomes

G := Gε. (2.7c)

In words, (2.7a) accounts for the cumulative loss of the best expert at
the end of the game, while (2.7b) accounts for our mistakes (the +1)
directly in the trial where they occur.

Both (2.6) and (2.7) define the regret game with time horizon T. A
trivial induction on histories shows that they agree in the following
sense.

1 Incrementing a game G by v ∈ R, denoted G + v, means increasing all the costs
of its elementary subgames by v. This does not affect the optimal strategy for either
player, it simply increases the value of G by v.

2.5. Predicting a Sequence of Binary Outcomes 31

2.5.1. Proposition. For each history 〈p, x〉 of length t ≤ T

Vp,x = Vx + L(p, x), σ̂p,x = σ̂x and τ̂p,x = τ̂x,

where double subscripts refer to the regret game (2.6), while single subscripts
refer to the simplified regret game (2.7).

In particular, the entire games Gε,ε and Gε have the same value Vε,ε =
Vε, since L(ε, ε) = 0.

We are now ready to solve the simplified regret game with horizon
T. We first solve its subgames locally in Section 2.5.3, then compute our
minimax regret in Section 2.5.4, and finally implement our minimax
strategy in Section 2.5.5. The next result is rather counter-intuitive.

2.5.3 Expertly Unpredictable Adversarial Outcomes

It follows from the analysis of the one-shot regret game in Section 2.3
that Adversary maximises our expected cumulative loss by drawing T
outcomes uniformly at random. In the current game however, Adver-
sary strives to maximise our expected regret. To this end, Adversary has
to be simultaneously unpredictable to make our cumulative loss large
and predictable to make the cumulative loss of the best expert small.
These goals are obviously in direct conflict. Surprisingly, this discord is
resolved optimally by dropping the latter goal. That is, Adversary also
maximises our regret by drawing outcomes uniformly at random. This
result has been noted earlier, for example in [25, Section 8.3], and holds
quite generally. It also drives the minimax analyses [4] and [6].

2.5.2. Theorem. The game Gx of (2.7b) has minimax regret Vx and a unique
equaliser saddle point 〈σ̂x, τ̂x〉 where

σ̂x =
Vxy − Vxn + 1

2
, τ̂x =

1
2

and Vx =
Vxy + Vxn + 1

2
.

Since τ̂x = 1/2 independent of the past outcomes x, Adversary’s max-
imin strategy draws outcomes uniformly at random each trial.

Proof. By backwards induction (Section 2.4.1), the solution of Gx equals
the solution of the one-shot game of the values of its constituent games:

G ′x =

y n
y Vxy Vxn + 1
n Vxy + 1 Vxn

.

32 Chapter 2. Regret Games

An easy induction on the length of x shows that |Vxy − Vxn| ≤ 1. If
|Vxy − Vxn| < 1, then Vx has no saddle point in pure strategies since(

Vxy − (Vxn + 1)
)(
(Vxy + 1)− Vxn

)
=
(
Vxy − Vxn

)2 − 1 < 0

and (
Vxy − (Vxy + 1)

)(
(Vxn + 1)− Vxn

)
= −1 < 0

verify condition (2.1), so that Lemma 2.2.1 yields the unique equaliser
saddle point above. On the other hand if |Vxy − Vxn| = 1 then either

G ′x =

y n
y 0 0
n +1 −1

+ Vxy or G ′x =

y n
y −1 +1
n 0 0

+ Vxn.

In both cases the minimax strategy σ̂x above is a unique, pure equaliser.
In the left case, the entire interval [1/2, 1] is maximin, while in the right
case the entire interval [0, 1/2] is maximin. In both cases, the unique
equaliser maximin saddle point is τ̂x = 1/2.

Theorem 2.5.2 solves the game Gx in terms of the solutions to its
constituent games. We now obtain a direct expression for our minimax
regret of the full game Vε.

2.5.4 Our Minimax Regret

Theorem 2.5.2 shows that, in the worst case, Adversary generates the T
actual outcomes x uniformly at random. Then our expected cumulative
loss is T/2, whatever our strategy. The expected loss of each individual
expert is also T/2, and neither individual expert has any predictive
value. Perhaps paradoxically, the expected cumulative loss of the best
expert, i.e.

E
[
L∗(x)

]
=

T

∑
i=0

2−T
(

T
i

)
min{T − i, i},

is strictly lower than T/2, as can be seen by applying Jensen’s inequality
to the concave min function. Our minimax regret is exactly the expected
amount by which, purely by chance, the best expert beats just guessing.

2.5. Predicting a Sequence of Binary Outcomes 33

2.5.3. Theorem. Our minimax regret V in the regret game with time horizon
T is sandwiched as follows√

T − 1
2π

≤ V ≤
√

T + 1
2π

(2.8)

A somewhat cruder asymptotic analysis can be found surrounding [25,
Lemma 8.2].

Proof. Recall that our expected cumulative loss is T/2. We expand

V = T/2−E
[
L∗(x)

]
=

T

∑
i=0

2−T
(

T
i

)(
i−min{T − i, i}

)
=

T

∑
i=dT/2e

2−T
(

T
i

)(
i− (T − i)

)
=

T

∑
i=dT/2e

2−TT
((

T − 1
i− 1

)
−
(

T − 1
i

))

telescope
= 2−TT

(
T − 1

dT/2e − 1

)
= 2−T


T!

T−1
2 ! T−1

2 !
if T odd,

T!
T
2 ! T−2

2 !
if T even.

(2.9)

This elegant telescoping argument goes back to [58]. We now show that√
T − 1

2π
<

Γ
(T+1

2

)
Γ
(T

2

)
Γ
(1

2

) ≤ V ≤ Γ
(T

2 + 1
)

Γ
(T+1

2

)
Γ
(1

2

) <

√
T + 1

2π
.

The innermost two inequalities follow from log-convexity of Γ which
implies that the expression for odd T in (2.9) is a valid upper bound
for even T, whereas the expression for even T in (2.9) is a valid lower
bound for odd T. The outermost inequalities use Γ(1/2) =

√
π, and

Γ(x + 1/2)

Γ(x)
Γ(x + 1)

Γ(x + 1/2)
= x,

where the smaller left factor must be <
√

x, and the right >
√

x. This
implies that

√
x < Γ(x + 1)/Γ(x + 1/2) <

√
x + 1/2 for all x ≥ 0.

Figure 2.1 displays our minimax regret in the regret game with time
horizon T as a function of T, together with the two bounds of (2.8). We
see that the bounds are good approximations even for small T.

34 Chapter 2. Regret Games

Figure 2.1 Minimax regret of the regret game with time horizon T,
shown as a function of time horizon T

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100

re
g

re
t

(m
is

ta
k
e

s
)

horizon T (rounds)

minimax regret
lower bound
upper bound

Our minimax regret V grows sublinearly in the number of trials
T, which means that our minimax strategy σ̂ indeed learns to predict
approximately like the best expert. In particular, when the best expert
has small cumulative loss, so do we. Our minimax strategy thus attains
the goal set out in the introduction. We now describe how to implement
our minimax strategy σ̂ efficiently.

2.5.5 Executing Our Minimax Strategy

So far, we saw that a strategy achieving the minimax regret V exists,
and we found the recursive expression σ̂x = (Vxy − Vxn + 1)/2 in The-
orem 2.5.2. In practise, to follow the minimax strategy σ̂x, we need an
efficient method to sample according to it. Unfortunately, the recursive
expression does not simplify to a direct expression for σ̂x. There are
essentially three ways to still implement σ̂x.

2.5. Predicting a Sequence of Binary Outcomes 35

2.5.5.1 Computing σ̂x Exactly Using the Recursive Expression

Our minimax strategy σ̂x is a function of a sequence of outcomes x, but
it is clear that σ̂x only depends on x via the current cumulative loss of
both experts. Thus to compute σ̂x for all x, it suffices to compute σ̂x
for the O(T2) possible pairs of cumulative losses of the two experts.
This can be done in O(T2) time using O(T2) memory. We used this
method to compute Figure 2.2, which displays our minimax strategy
for time horizon T = 101. The colour values indicate the probability
of predicting y. The optimal probability of predicting y has a sharp
transition from 0 to 1 around the point where both experts have equal
cumulative loss.

The advantage of this method it that it computes σ̂x exactly for each
x, as required e.g. for graphing. The disadvantage is that the exponent
in the running time grows with the number of experts and outcomes,
rendering it impractical for problems with many experts. We may give
up computing σ̂x exactly, and instead approximate it.

2.5.5.2 Computing σ̂x Approximately

In Theorem 2.5.3 we sandwiched the minimax regret V tightly around√
T/(2π). A similar approach can be undertaken to bound the value
Vx of each subgame Gx, and then approximate σ̂x in terms of these
bounds.

We have not explored this approach in detail, but it is clear that
such methods can be much faster than O(T) per trial, and scale better
with the number of experts and outcomes. The difficulty lies of course
in bounding the additional regret incurred by approximating. There
is however a different method, that implements the minimax strategy
exactly without computing σ̂x exactly.

2.5.5.3 Not Computing σ̂x At All

Interestingly, following the minimax strategy does not require compu-
tation of σ̂x, it requires predicting y with probability σ̂x. We now show
that this can be done without computing σ̂x. In essence, we can think
of our method as performing a randomised exact computation of σ̂x.

As proved in Theorem 2.5.2, in game Gx our minimax strategy pre-
dicts y with probability σ̂x = (Vxy − Vxn + 1)/2. We now devise a

36 Chapter 2. Regret Games

Figure 2.2 Minimax strategy in the regret game with time horizon
T = 101. The colour value at position (t, e) indicates the probability
σ̂ that our minimax strategy assigns to observing y next after t trials
with t/2 + e occurrences of outcome y and hence t/2− e occurrences
of outcome n. The probabilities range from 0 (red) via 1/2 (green) to 1
(violet). The game has ended in black dots.

0 20 40 60 80 100

-40

-20

0

20

40

Sample size

E
x
ce
ss

y

2.5. Predicting a Sequence of Binary Outcomes 37

Algorithm 2.1 Minimax algorithm for time horizon T

Input: Game Gx with observed past outcomes x of length t < T.
Sample a continuation z uniformly at random from {y, n}T−t−1.
Compute Vxyz = −L∗(xyz) and Vxnz = −L∗(xnz).
Predict y with probability (Vxyz − Vxnz + 1)/2.

method to generate such predictions without computing Vxy and Vxn

exactly. Our algorithm is displayed as Algorithm 2.1. In words, the
algorithm takes xy and xn, the two possible one-step extensions of the
observed actual outcomes x, completes them both to length T by ap-
pending the same random future outcomes z, and plays the outcome
whose extension incurs the smaller regret. If both completions incur
the same regret, it predicts by flipping a fair coin.

This algorithm is new to the best of our knowledge. It interpolates
between the algorithms in [4] and [6], in the sense that it uses random
sampling akin to [6], but instead of using a random future to estimate
the best expert, it is used to gauge the quality of both outcomes as in
the recurrence relations in [4].

We now analyse the algorithm. First we prove correctness, and then
consider efficiency.

2.5.4. Theorem. Algorithm 2.1 implements our minimax strategy σ̂.

Proof. By Theorem 2.5.2, for any history x of length t and z sampled
uniformly at random from {y, n}T−t, we have E [Vxz] = (T− t)/2 + Vx.
Since the sequences xyz and xnz differ only in one position, the cumu-
lative loss of the best expert differs by at most one, so that

∣∣E [Vxyz]−
E [Vxnz]

∣∣ ≤ 1. The probability that the algorithm predicts y is therefore
given by

E

[
Vxyz − Vxnz + 1

2

]
=

E [Vxyz − Vxnz] + 1
2

=
Vxy − Vxn + 1

2
= σ̂x

as desired.

Performing this procedure in trial t takes O(T − t) steps and uses
O(T− t) memory. Predicting T outcomes thus takes O(T2) time in total.
Since the memory can be reused, O(T) memory suffices.

38 Chapter 2. Regret Games

The advantage of this method is that it is extremely simple, and
that it scales to more difficult prediction problems extremely well, as
will be explored in Section 2.8. For our two constant experts, the effect
of appending a random future is that the current cumulative losses of
both experts are incremented by a binomial random variable. Drawing
a binomial random variable can be done more efficiently, see e.g. [87].

Another interesting possibility is to re-use a single randomly drawn
full future of length T, reducing the running time to O(T) in total. This
makes our predictions in subsequent trials statistically dependent, and
this can be used against us by Adversary. However, for so-called obliv-
ious adversaries [25], i.e. adversaries that do not look at our predictions
at all, this fast strategy still attains the minimax regret.

2.6 Variations on a Theme

We modelled predicting a binary outcome as the regret game with time
horizon T, quantified the best achievable regret, and implemented our
minimax strategy efficiently. We now extend our results to a variety
of similar prediction problems, simultaneously obtaining near-optimal
solutions to the corresponding regret games, and resulting in new in-
sights into our minimax strategy.

2.6.1 Stopping Early

We now consider what happens if we give Adversary the power to stop
the game early, before the time horizon T is reached. That is, at the be-
ginning of each trial, we allow Adversary to declare the game finished,
and if she does we suffer the regret at that time. That is, if Adversary
stops in history 〈p, x〉, we suffer L(p, x)− L∗(x). If Adversary chooses
to continue, then the game proceeds as before. We now show that this
extra power cannot be used to beat Theorem 2.5.3.

2.6.1. Theorem. Our minimax regret without and with adversarial stopping
are identical.

Proof. We show that stopping is a dominated strategy. Say that we are
in some history 〈p, x〉, and assume w.l.o.g. that constant-y is the best
expert. By stopping, Adversary inflicts regret L(p, x) − L∗(x). How-
ever, she is better off by playing outcome n until time T. This will not

2.6. Variations on a Theme 39

change the cumulative loss of the best expert, nor will it decrease our
cumulative loss. Hence our eventual regret is at least our current regret.
Thus stopping is never useful.

Note that we do not claim that our minimax regret (2.8) now can be
evaluated with the actual stopping time substituted for the original time
horizon T. We simply say that our minimax regret with the original
time horizon T remains unchanged. We now obtain a bound that can
be evaluated on the actual stopping time.

2.6.2 Unknown Time Horizon T

It is not always realistic to assume that the number of trials T is known
beforehand. Still, it is possible to approximately achieve the minimax
regret (2.8) without knowing T by a method called the doubling trick
[25]. Start by segmenting the trials as follows.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
Play the first trial as if T = 1. Then reset the algorithm and play the
next two trials as if T = 2. Again, reset the algorithm and play the
subsequent four trials as if T = 4 etc. Each reset completely restarts
the algorithm, ignoring the history generated until then. This proce-
dure guarantees that in segment i (of length 2i−1), our regret is at most√
(2i−1 + 1)/(2π) w.r.t. the best expert on that segment. The cumula-

tive loss of the segmentwise best expert is at most the cumulative loss
of the best expert. To analyse the regret, we first prove the following
intermediate result.

2.6.2. Lemma. For any natural number b

b

∑
i=1

√
2i−1 + 1 ≤ (1 +

√
2)
√

2b.

Proof. By concavity of the square root
√

x + 1 ≤
√

x + 1
2
√

x , so that

b

∑
i=1

√
2i−1 + 1 ≤

b

∑
i=1

(√
2i−1 +

1

2
√

2i−1

)
=

√
2b − 1√
2− 1

+
1−
√

2−b

2−
√

2

= (1 +
√

2)
(√

2b − 1 + 1/
√

2−
√

2−b/
√

2
)

.

Then observe that −1 + 1/
√

2−
√

2−b/
√

2 ≤ 0 for all b.

40 Chapter 2. Regret Games

This lemma allows us to analyse the guarantee provided by the dou-
bling trick. If the actual length is T, we use dlog2(T + 1)e segments. The
last segment may be stopped early, but by the previous section the full
regret bound still holds there. In total, we thus guarantee regret

dlog2(T+1)e

∑
i=1

√
2i−1 + 1

2π
≤ (1 +

√
2)
√

2dlog2(T+1)e ≤
(
2 +
√

2
)√T + 1

2π

uniformly over time. The first inequality is Lemma 2.6.2, and the second
uses dxe ≤ x + 1.

This bound shows that not knowing the time horizon T multiplies
the regret (2.8) by at most a factor 2 +

√
2 ≈ 3.414. This is close to the

slightly better factor 2
√

π ln(2) ≈ 2.951 that is achieved by the expo-
nentially weighted average forecaster with suitably decreasing learning
rate [25, Theorem 2.3].

2.6.3 Two Adversarial Experts

In this section we replace our two constant experts with two adver-
sarial or black-box experts (see the taxonomy in Section 1.6), whose
predictions are determined by Adversary. It is clear that this increases
Adversary’s power, and hence increases our minimax regret. We now
show that our regret remains as it is, that is, constant experts are the
worst case.

First observe that trials in which the experts agree are wasted by
Adversary. Namely, in such trials we can ensure that our regret does
not grow, by issuing the same prediction as both experts. Since such
trials do not influence our regret, Adversary may as well delay them to
the end of the game. But then they amount to early stopping, which we
proved suboptimal in Section 2.6.1.

Second, observe that we can interchange the labels y and n (by
flipping both predictions and outcomes) while preserving the instan-
taneous loss of each prediction/outcome pair. Hence we may assume
that one expert always predicts y, while the other always predicts n.

Combining disagreement and label interchange, we see that our
original two constant experts are actually adversarial, and that the min-
imax algorithm for constant experts can be transformed into the mini-
max algorithm for adversarial experts by reinterpreting σ̂x as the prob-
ability of following the first expert.

2.6. Variations on a Theme 41

2.6.4 Many Experts

We have an algorithm for combining the binary predictions of two ex-
perts. Faced with many experts, an obvious way to combine their (still
binary) predictions is to combine them in a binary tree.

2.6.3. Theorem. The algorithm that combines n experts recursively in a bi-
nary tree, playing the minimax strategy for adversarial experts at each internal
node, guarantees expected regret at most

dlog(n)e
√

T + 1
2π

.

Proof. We prove the simple case of four experts. Let’s call them A, B, C
and D. We recursively combine them as follows

Z

ww ''X
�� ��

Y
�� ��

A B C D

Here the leaves A, B, C and D are basic experts, and the internal meta-
experts X, Y and Z represent experts that predict by running the mini-
max algorithm on their respective children. To analyse the regret of Z
w.r.t. the best basic expert, we abbreviate the cumulative loss of each
expert ξ ∈ {A, B, C, D, X, Y, Z} by Lξ , and denote the regret incurred
by the meta-experts X, Y and Z w.r.t. their children by RX, RY and
RZ. The cumulative losses and regrets of the meta-experts are random
variables, determined by the internal randomisation of the minimax
algorithm. We have

E[LZ] = E
[
min{LX, LY}+ RZ

]
= E

[
min

{
min{LA, LB}+ RX, min{LC, LD}+ RY

}]
+ E[RZ]

≤ min
{

min{LA, LB}+ E[RX], min{LC, LD}+ E[RY]
}
+ E[RZ]

≤ min{LA, LB, LC, LD}+ 2

√
T + 1

2π

by applying Jensen’s inequality to the concave function min, and using
the minimax regret bound Theorem 2.5.3. The case for n experts is
analogous.

42 Chapter 2. Regret Games

Expected regret that depends logarithmically on the number of ex-
perts n is already quite good, but even better guarantees can be ob-
tained. The exponentially weighted average forecaster [25, Theorem
2.2] achieves expected regret bounded by√

T
2

ln(n),

with square-root-of-ln dependence on the number of experts n.

2.7 Good Best Expert

Let’s consider again the simplest case, prediction with two constant
experts. Our minimax strategy for the regret game with time hori-
zon T guarantees the minimax regret

√
(T + 1)/(2π) w.r.t. the best ex-

pert, irrespective of Adversary’s strategy. In fact, our minimax strategy
equalises the expected regret over all possible strategies for Adversary.
That is, we suffer the same expected regret whatever the cumulative
loss of the best expert. There are no sequences of outcomes for which
we are lucky in the sense that our expected regret is actually smaller
than the bound indicates.

The concept of luckiness [163, 71]is the idea that we desire to incur
tiny regret whenever the best expert has small cumulative loss, and to
achieve this, are willing to accept a slight increase in overhead when
the best expert has moderate or large cumulative loss.

In this section we investigate a fundamentally different strategy,
namely the strategy that enforces maximal luck. To this end, we first
assume that we know that the best expert makes at most k mistakes.
We then create a new prediction game where this assumption is built
into the rules, i.e. constrains Adversary’s moves. As before, we find the
minimax strategy in this prediction game. Finally, we get rid of this
assumption using the doubling trick (as in Section 2.6.2).

The constraint that the cumulative loss of the best expert is at most k
serves as a “loss horizon”, replacing the role of the time horizon T. The
minimax strategy and regret that we obtain in this section are therefore
parametrised by k instead of T.

2.7. Good Best Expert 43

2.7.1 The Regret Game With Loss Horizon k

The regret game with loss horizon k is defined as follows. In trial t, we
pick a prediction pt and Adversary plays an actual outcome xt. As
before, both moves are randomised independently. If in any history
〈p, x〉 the best expert has cumulative loss L∗(x) > k, the game ceases
and we suffer regret −∞. This is so bad for Adversary that she will
never let this happen. Otherwise, the game continues for infinitely
many trials. In the resulting infinite history 〈p, x〉 we suffer the regret
L(p, x)− L∗(x). We may allow Adversary to stop the game early, but
this is a dominated strategy that does not increase her power, by the
same reasoning as in Section 2.6.1. We first simplify the game, then
solve it.

2.7.2 Simplified Regret Game

Infinite plays of the regret game with loss horizon k are pretty boring
apart from a finite initial part of length at most 2k + 1. This is because
after at most 2k + 1 outcomes, one expert must have cumulative loss
k + 1, meaning that this expert cannot be the eventual best expert. We
say that such an expert is dead.

We now show that our minimax strategy never follows a dead ex-
pert. This in turn means that once an expert dies, the regret never
changes. We and the best expert either both or neither incur loss.

Say w.l.o.g. that the constant-n expert is dead. Then both our cumu-
lative loss and the cumulative loss of the best expert decompose over
trials. That is, each such trial we are facing the game that changes our
regret as follows:

y n
y 0 0
n +1 −1

This game has a saddle point in pure strategies, σ̂ = τ̂ = 1, and game
value V = 0. Again σ̂ is an equaliser strategy: by deterministically
playing y, we guarantee that our eventual regret equals our current
regret L(p, x)− L∗(x), irrespective of Adversary’s strategy.

The regret game with loss horizon k is quite different from the regret
game with time horizon T. Surprisingly, we now solve the former game
problem by reducing it to the latter.

44 Chapter 2. Regret Games

2.7.3 Reduction to Time Horizon T = 2k + 1

We argued that once an expert is dead, our minimax strategy ensures
that the eventual regret equals the current regret. So we might as well
stop the game then or at any later time. We propose to stop the regret
game with loss horizon k at time T = 2k + 1. We know that at this time
exactly one expert is dead, so the game can safely be stopped. Note in
particular that the rule that hands out −∞ regret when both experts die
cannot yet have been invoked. Vice versa, in the regret game with time
horizon T = 2k + 1, the best expert will suffer loss at most k. But this
means that these games are identical, and hence share the same value
and optimal strategies. In particular

2.7.1. Theorem. The regret game with loss horizon k has minimax regret√
k
π
≤ V ≤

√
k + 1

π
. (2.10)

Adversary’s maximin strategy samples outcomes uniformly at random until
one expert dies. After that, she always chooses the outcome predicted by the
live expert. When both experts are still alive, our minimax strategy is the one
described in Section 2.5.5. After one expert has died, we follow the live expert.

Proof. By Theorem 2.5.3.

The equivalence of a loss horizon with a particular time horizon has
not been noted in the literature, perhaps because it is most apparent
for two experts. A generalisation to many experts can undoubtedly be
obtained, but falls outside the scope of this minimalistic introduction.

Our minimax strategy is displayed for k = 50 in Figure 2.3. This
figure is a truncated version of the optimal strategy with time horizon
T = 2k + 1 = 101, which is shown in Figure 2.2.

2.7.4 Unknown Loss Horizon k

In Section 2.6.2 we eliminated the need to know the time horizon T
by using the doubling trick. Here we face the problem that we may
not know k. Again we apply the doubling trick. We run our minimax
algorithm assuming that k = 1. When the worst expert dies, the game
with this assumption is essentially over, and we restart completely, now

2.7. Good Best Expert 45

Figure 2.3 Minimax strategy in the regret game with loss horizon
k = 50. This is a subplot of Figure 2.2. The colour value at position
(t, e) indicates the probability σ̂ that our minimax strategy assigns to
observing y next after t trials with t/2 + e occurrences of outcome y
and hence t/2− e occurrences of outcome n. The game has (essentially)
ended in black dots, since one expert is dead.

0 20 40 60 80 100

-20

-10

0

10

20

Sample size

E
x
ce
ss

y

with k = 2. Again when the worst expert dies we restart with doubled
loss horizon. The regret guarantee becomes

dlog2(k+1)e

∑
i=1

√
2i−1 + 1

π
≤ (1 +

√
2)
√

2dlog2(k+1)e ≤ (2 +
√

2)

√
k + 1

π
.

The first inequality is Lemma 2.6.2, and the second uses dxe ≤ x + 1.
This bound shows that not knowing the loss horizon k multiplies

the regret (2.10) by at most a factor 2 +
√

2 ≈ 3.414.

We now leave our two constant experts, to compete with more compli-
cated white-box experts.

46 Chapter 2. Regret Games

2.8 Competing with a 1-Lipschitz Best Expert

We now consider prediction with more complicated white-box experts
(see Section 1.6). In fact, we abstract so dramatically that the experts
almost disappear. Fix a time horizon T. We take as our basic ingredient
a function L∗ : {y, n}T → R that measures the cumulative loss of the
best expert.

The L∗-regret game with time horizon T is obtained by substituting the
given function L∗ into defining equation (2.7) on page 30. That is, the
game structure remains the full binary tree of depth T, but the payoff
is now the regret w.r.t. the best expert as specified by L∗.

In this section, we assume that L∗ is 1-Lipschitz in the Hamming
metric, which means that L∗(x) changes by at most 1 when we flip one
outcome of x. This assumption obviously holds for all L∗ that we have
considered so far, since the cumulative loss of any static (see Section 1.6)
expert changes by at most one if a single outcome is flipped, and hence
so does the cumulative loss of the best expert.

By choosing an intricate best expert cumulative loss function L∗, we
obtain interesting prediction games. The many-expert bounds and al-
gorithms that we saw in Section 2.6.4 are tight for adversarial experts,
that is, assuming that Adversary can control the loss of each expert in-
dependently, or at least approximately so. But the experts underlying
L∗ can be quite far from independent, implying that the minimax al-
gorithm is fundamentally different, and guarantees smaller regret than
the adversarial bounds suggest.

We will consider the particular application of switching experts (or
tracking) in Section 2.9. Interestingly and curiously, it is possible to
obtain a single minimax strategy, parametrised by L∗, that works for all
1-Lipschitz L∗.

2.8.1 The Minimax Strategy

We now show that Algorithm 2.1 remains our minimax strategy in the
L∗-regret game with time horizon T. As far as we know this unexpected
result is new. We also show that, as before, Adversary’s maximin strat-
egy draws outcomes uniformly at random. The crucial observation is
that the solution of the vanilla regret game with time horizon T, given
as Theorem 2.5.2, applies to the more general L∗-regret game.

2.8. Competing with a 1-Lipschitz Best Expert 47

2.8.1. Theorem. Fix a 1-Lipschitz function L∗, time horizon T, and let G
be the L∗-regret game with time horizon T as defined in equation (2.7) on
page 30. Then for any sequence of outcomes x of length t < T, the game Gx
has minimax regret Vx and a unique equaliser saddle point 〈σ̂x, τ̂x〉 where

σ̂x =
Vxy − Vxn + 1

2
τ̂x =

1
2

Vx =
Vxy + Vxn + 1

2

Again, Adversary’s maximin strategy is to play uniformly at random.
Note that these recurrence relations are exactly the same as obtained in
Theorem 2.5.2. However, the different base case Vx = −L∗ for final x of
length T, affects all derived values and minimax strategies.

Proof. The critical inequality is to show |Vxy − Vxn| ≤ 1, the remainder
of the proof equals that of Theorem 2.5.2. We prove this inequality by
induction on the length t of x. With z denoting a sequence of T − t− 1
outcomes drawn uniformly at random,

Vxy − Vxn = E
[
Vxyz − Vxnz

]
= E

[
−L∗(xyz) + L∗(xnz)

]
.

By Jensen’s inequality applied to the convex absolute-value function,
and by using that L∗ is 1-Lipschitz we obtain

|Vxy − Vxn| ≤ E
[∣∣−L∗(xyz) + L∗(xnz)

∣∣] ≤ 1.

It follows that Algorithm 2.1 implements our minimax strategy. The
efficiency of this algorithm now depends on the resources required to
evaluate L∗. It also follows that the game value equals

V = T/2−E
[
L∗(x)

]
.

We now consider a simple example.

2.8.2 Example

To illustrate Theorem 2.8.1, we now work through a simple example.
We consider predicting T = 3 outcomes, and compete with all experts
that predict y exactly once. That is, our goal is to learn which outcome
is the y. In formulas, our set of experts is

Ξ := {ynn, nyn, nny},

48 Chapter 2. Regret Games

so that the cumulative loss of the best expert is

L∗(x) := min
ξ∈Ξ

L(ξ, x).

The function L∗ is clearly 1-Lipschitz, since the cumulative loss of any
fixed sequence of predictions changes by at most one if a single outcome
is flipped, and hence so does the cumulative loss of the best expert. We
call this particular regret game the Ξ-regret game.

Figure 2.4 displays the solution, obtained by backwards induction
(Section 2.4.1), to the Ξ-regret game. The figure indicates the value
Vx of each subgame Gx, and either the best expert(s) when the game
is over or the minimax strategy σ̂x when trials remain. We see that
the minimax regret of the full game is 3/4, and that this equals our
expected cumulative loss, which is T/2 = 3/2, minus the expected
cumulative loss of the best expert, which is (2 + 1 + 1 + 0 + 1 + 0 + 0 +
1)/8 = 3/4.

We see that, starting at σ̂ = 1/4, our minimax strategy doubles the
probability of predicting y as long as ns are observed. This is reminis-
cent of the investment strategy underlying the St. Petersburg paradox.
After the first y, an eventual best expert is revealed, and we determin-
istically predict n.

This was a simple example. An important choice of L∗ arises from
considering as experts all prediction sequences with few switches. We
now consider this application.

2.9 Switching

In this section, we apply the theory of competing with a 1-Lipschitz best
expert to prediction with experts that divide the outcomes in blocks,
predict constantly within blocks, and flip their prediction between con-
secutive blocks. An example such expert ξ predicts

ξ = yyyyy︸ ︷︷ ︸
Block 1

Switch 1

�
nnnnnnn︸ ︷︷ ︸

Block 2

Switch 2

�
yyyy︸︷︷︸

Block 3

.

We may think of such switching experts either as static experts that
switch between two predictions (c.f. Section 1.6) or equivalently as meta-
experts that switch between the two constant experts (c.f. Section 1.9).

2.9. Switching 49

Figure 2.4 Backwards induction solution to the Ξ-regret game. For each
sequence x of outcomes we have computed the value Vx of the subgame
Gx. Squares display the best expert(s) for x of length t = T. Ellipses give
our minimax strategy σ̂x for x of length t < T. Adversary’s maximin
strategy satisfies τ̂x = 1/2 by Theorem 2.8.1.

y

n

n

y

y

n

n

y

n

y

y

n

n

y

V = −1
σ̂ = 0

V = 0
σ̂ = 0

V = 0
σ̂ = 1

V = 0
σ̂ = 0

V = 0
nyn

V = 1/2

σ̂ = 1/2

V = 0
σ̂ = 0

V = −1
nyn, nny

V = 0
nny

V = −1
ynn, nyn, nny

V = −2
ynn, nyn, nny

V = −1
ynn, nyn

V = 0
ynn

V = −1
ynn, nny

V = 3/4

σ̂ = 1/4

50 Chapter 2. Regret Games

The number of blocks always exceeds the number of switches by one,
since switches occur between blocks. Whereas competing with the best
constant expert allows us to learn the global trend of the sequence of
outcomes, competing with switching experts allows us to track local
trends. This is useful in applications where we expect the outcome-
generating process to infrequently change, for example because it can
be in several states. Our goal is to obtain an efficient minimax strategy.

The sets of prediction sequences of length T with exactly and at most
m blocks are defined by

Sm
T :=

{
ξ ∈ {y, n}T

∣∣∣ ∑
1≤t<T

1ξt 6=ξt+1 = m− 1
}

and S≤m
T :=

⋃
i∈[m]

Si
T.

Our example expert ξ above is a member of S3
16 and of S≤m

16 for all m ≥ 3.
The numbers of such experts with exactly and at most m blocks equal

∣∣Sm
T
∣∣ = 2

(
T − 1
m− 1

)
and

∣∣S≤m
T

∣∣ = 2 ∑
i∈[m]

(
T − 1
i− 1

)
.

We now compete with the rather large set S≤m
T . The cumulative loss of

the best expert in this set is given by

L∗(x) := min
ξ∈S≤m

T

L(ξ, x)

The function L∗ is obviously 1-Lipschitz, since the cumulative loss of
any sequence of predictions changes by at most one if a single outcome
is flipped, and hence so does the cumulative loss of the best expert in
S≤m

T .
The switching regret game with time horizon T is obtained by substi-

tuting this particular L∗ into equation (2.7). The set S≤m
T is rather large,

and hence computing the cumulative loss of the best expert by iterating
over its members quickly becomes impractical, both in T and m. For-
tunately, the set S≤m

T is highly regular, and its structure can be used to
evaluate L∗, allowing us to efficiently execute our minimax strategy.

2.9.1 Executing Our Minimax Strategy

We saw in Section 2.8 that we can follow our minimax strategy once we
have an efficient method to evaluate L∗(x), the cumulative loss of the

2.9. Switching 51

best expert on outcomes x. In case of switching, the cumulative loss
of the best expert can be computed efficiently by dynamic program-
ming. The trick is to recursively define Lm

y (x), the cumulative loss on
outcomes x of the best sequence of predictions with at most m blocks
that predicts y next. The recursive clauses are, for m > 1

Lm
y (xy) := Lm

y (x) Lm
y (xn) := min

{
Lm

y (x) + 1, Lm−1
n (x)

}
Lm

n (xn) := Lm
n (x) Lm

n (xy) := min
{

Lm
n (x) + 1, Lm−1

y (x)
}

and the base cases are

Lm
y (ε) := 0 L1

y(xy) := L1
y(x) L1

y(xn) := L1
y(x) + 1

Lm
n (ε) := 0 L1

n(xn) := L1
n(x) L1

n(xy) := L1
n(x) + 1

An easy induction on both m and the length of x shows that

2.9.1. Proposition. Fix 1 ≤ m ≤ T. For each sequence x of T outcomes

L∗(x) = min
{

Lm
y (x), Lm

n (x)
}

.

Evaluating L∗(x) for a history of length T can hence be done in time
O(mT). Predicting T outcomes using the minimax Algorithm 2.1 with
this method of evaluating L∗ takes O(mT2) time in total, and uses O(m)
memory.

2.9.2 Minimax Regret

To evaluate our minimax regret, we use the fact that Adversary’s max-
imin strategy, which generates outcomes uniformly at random, is an
equaliser strategy. Our expected regret is thus

V = T/2−E
[
L∗(x)

]
irrespective of the strategy that we follow. The difficulty is, of course,
to evaluate the expectation.

Using a trick similar to the dynamic programming solution of Sec-
tion 2.9.1, we can evaluate our minimax regret V exactly for particular
block counts m and time horizons T, resulting in Figure 2.5. For m = 1
blocks there are no switches, and our minimax regret is

√
T/(2π) as

before. We see that each additional block increases our minimax regret
by less.

52 Chapter 2. Regret Games

Figure 2.5 Minimax regret of the regret game with 0–5 switches as a
function of time horizon T

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100

re
g

re
t

(m
is

ta
k
e

s
)

horizon T (rounds)

no switches
1 switch

2 switches
3 switches
4 switches
5 switches
6 switches
7 switches

Adversarial Upper Bound The power of Adversary increases when
we give her |S≤m

T |many adversarial experts. Hence, our minimax regret
is bounded by the fully adversarial bound of [25, Theorem 2.3], yielding√

T/2 ln
∣∣S≤m

T

∣∣
Since |Sm

T | ≤ (T − 1)m−1, we have

|S≤m
T | ≤ 2

m−1

∑
i=0

(T − 1)i = 2
(T − 1)m − 1
(T − 1)− 1

≤ 2Tm−1.

So that when T ≥ 2, the minimax regret is bounded by√
T/2 ln

∣∣S≤m
T

∣∣ ≤ √
T/2m ln(T). (2.11)

By construction, this bound is too pessimistic. We now quantify the
discrepancy.

2.10. Related Research 53

Figure 2.6 Empirical Fit, equation (2.12), overlaid on Figure 2.5. For
m = 1 (shown in red), we have graphed the minimax regret.

 0

 5

 10

 15

 20

 0 20 40 60 80 100

re
g

re
t

(m
is

ta
k
e

s
)

horizon T (rounds)

no switches
1 switch

2 switches
3 switches
4 switches
5 switches
6 switches
7 switches

Empirical Fit Looking at Figure 2.5, it seems that the minimax regret
is well approximated, for all m ≥ 2, by√

6(m− 1)
T

2π
− m− 1√

5
. (2.12)

Figure 2.6 displays the fitted equation (2.12) overlaid on the exact min-
imax regrets from Figure 2.5. Indeed, we see that the fit is highly ac-
curate. This suggests that (2.11) may be improved, getting rid of the
logarithmic dependence on T under the square root.

We are in the curious situation that we have the optimal algorithm, but
it is hard to quantify its guarantees. Deriving a better analytic bound is
left as an open problem.

2.10 Related Research

We review the literature on online learning with the 0/1 loss.

54 Chapter 2. Regret Games

Algorithm 2.2 Minimax algorithm for loss horizon k

Input: Game Gx with outcome sequence x.
Draw samples z = z1, z2, . . . uniformly at random from {y, n} until
the worst expert on xz dies, i.e. reaches cumulative loss k + 1.
Then follow the other, live expert.

Prediction Problems The early work on sequential prediction with
0/1 loss includes the Weighted Majority algorithm [108] for combin-
ing the binary advice of n adversarial experts and the Aggregating
algorithm [181]. These algorithms have a learning rate that needs to
be supplied, and which must be tuned based on knowledge of time
horizon T or loss horizon k. Uniform bounds can be obtained by the
doubling trick, or more sophisticatedly, by decreasing the learning rate
incrementally, as analysed e.g. by [25] for the exponentially weighted
average forecaster.

A game-theoretic optimal solution for prediction with adversarial
experts with loss horizon k was found much later in the form of the
Binning algorithm by [4].

Decision Problems In prediction problems, experts suffer loss be-
cause they issue incorrect predictions. In the more abstract decision
problems the predictions disappear, and experts are entities that can be
followed and that suffer loss. Freund and Schapire adapted Weighted
Majority to this setting, yielding the Hedge algorithm [59], and proved
the regret bound we presented in Section 1.5.1 of the introduction Chap-
ter 1.

The minimax algorithm for the decision problem with loss horizon
k was recently obtained by Abernethy, Warmuth and Yellin in [6]. For
comparison, we have displayed this algorithm, specialised to predicting
two outcomes with our two constant experts, as Algorithm 2.2. This
algorithm is also minimax for prediction with two constant experts,
because two constant experts are essentially adversarial by the reason-
ing explained in Section 2.6.3. Both Algorithm 2.1 and Algorithm 2.2
sample a single sequence of random outcomes until the game is over.
However, this outcome is used in a fundamentally different way. Algo-
rithm 2.1 uses it to gauge the quality of both possible predictions. On
the other hand, Algorithm 2.2 uses it estimate the eventual best expert.

2.11. Conclusion 55

Bandit Problems In the even more abstract bandit problems [10, 118,
176, 155, 5, 26, 24, 50, 55, 143, 158], the loss feedback disappears, and
we only observe the loss of the expert we choose to follow, or of the
action that we choose to play. This leads to the problem of exploration vs
exploitation. To identify the best expert, we need to follow (exploration)
all experts once in a while, to monitor their quality. But to suffer small
loss, we want to follow (exploitation) the best expert exclusively. The
challenge in bandit problems is to interleave these two goals, trading
off the benefits of both.

Absolute Loss The absolute loss of a randomised prediction is defined
as its expected 0/1 loss [25]. Prediction with 0/1 loss and with absolute
loss are hence tightly related: their minimax regrets and strategies are
identical, modulo one important and subtle difference. To issue mini-
max predictions under 0/1 loss, it suffices to randomly compute σ̂, the
optimal probability of predicting y. For absolute loss it needs to be
computed exactly. This means that Algorithm 2.1 cannot be used for
absolute loss.

2.11 Conclusion

We presented and analysed four prediction games. We first consid-
ered predicting a single binary outcome with the help of two constant
experts. We showed that the corresponding one-shot regret game has
minimax regret 1/2, which we can achieve by predicting uniformly at
random. We then proceeded to predicting a sequence of binary out-
comes. We first considered competing with the best constant expert for
T trials. In the corresponding regret game with time horizon T our
minimax regret essentially equals

√
T/(2π). We then considered com-

peting with the best constant expert given that the best expert makes at
most k mistakes. In the regret game with loss horizon k, our minimax
regret essentially equals

√
k/π. We concluded by competing with the

best expert that switches at most m− 1 times. In each case, we gave an
efficient randomised algorithm for playing the minimax strategy.

The prediction problems that we considered form just the tip of
the iceberg of online learning, and many interesting problems readily
suggest themselves.

56 Chapter 2. Regret Games

1. Prediction problems with more than two outcomes.

2. Decision problems (without outcomes).

3. More than two experts.

4. More complicated white-box experts.

5. Black-box (adversarial) experts.

6. More complicated (gray-box) meta-experts, e.g. that

(a) switch between all of the above

(b) combinatorially combine all of the above

7. Competing with gray-box experts with loss horizon k.

8. All the above for loss functions other than the 0/1 loss.

In the remainder of this dissertation we consider the following spe-
cific problems. In Chapter 3 we introduce a general graphical frame-
work for the construction of meta-experts for log loss, with a focus on
switching. In Chapter 4 we extend this framework to switching be-
tween gray-box experts. In particular, this allows us to switch between
learning experts. Then in Chapter 5 we introduce a novel way to switch
between two experts, motivated by finance but generally applicable to
decision problems with log-loss or log-return. Finally, in Chapter 6

we consider combinatorial combinations of experts for 0/1 loss and/or
absolute loss.

The approach taken in future chapters is different from the method
developed in this chapter. The decision problems considered there are
more complicated, and hence finding the minimax solutions is gener-
ally hard. Instead, we design strategies based on other motivations, and
show that they guarantee small worst-case regret. In several cases we
also prove lower bounds that show that these strategies are minimax
up to constant factors.

For the problems that are not considered in this dissertation, we
refer the interested reader to the standard textbook [25] as a starting
point.

Chapter 3

Expert Hidden Markov Models

a

��

// a

��

// a

��

// a //

��
b

''
// b

''
// b

''
// b //

''

EE

88

''

��

EE

88

''

��

EE

88

''

��

EE

88

''

��

c

88
// c

88
// c

88
// c //

88

d

EE

// d

EE

// d

EE

// d //

EE

Abstract We show how models for prediction with expert advice can
be defined concisely and clearly using hidden Markov models (HMMs);
standard algorithms can then be used to efficiently calculate how the
expert predictions should be weighted. We focus on algorithms for
“tracking the best expert”, starting from the fixed share algorithm, and
show how most existing models can be cast as HMMs. We recover the
running times and loss bounds for each algorithm, and discuss how
they are related. We also describe three new models: (i) models with
decreasing switching rate, which run in linear time and for which a
fixed switching rate does not have to be specified in advance, (ii) a
new generalisation of the fixed share algorithm that is especially well
equipped to handle switches that occur in clusters, and (iii) a model tai-
lored to the scenario where the experts have a natural order, and where
jumps between them are typically small. This last model is relevant for
predicting time series data where parameter drift is expected.

58

3.1. Introduction 59

3.1 Introduction

We cannot predict exactly how complicated processes such as social in-
teractions, the weather, the stock market and so on, will develop into
the future. Nevertheless, people do make weather forecasts and buy
shares all the time. Such predictions can be based on formal models,
or on human expertise or intuition. An investment company may even
want to choose between portfolios on the basis of a combination of these
kinds of predictors. In such scenarios, it is typically unclear to what ex-
tent the predictors describe the true process underlying the data. Thus,
we may well end up in a position where we have a whole collection
of prediction strategies, or experts, each of whom has some insight into
some aspects of the process of interest. We address the question how a
given set of experts can be combined into a single predictive strategy
that is as good as, or if possible even better than, the best individual
expert.

The setup is as follows. Let Ξ be a set of experts. Each expert
ξ ∈ Ξ issues a distribution Pξ(xt+1|xt) on the next outcome xt+1 given
the previous observations xt := x1, . . . , xt. Here, each outcome xi is an
element of some countable space X , and random variables are written
in bold face. Then, when the outcome xt+1 = xt+1 is observed, the
expert suffers logarithmic loss − ln Pξ(xt+1|xt). Thus, if the experts as-
signs high probability to the actual observation, he incurs only small
loss, and vice versa. When predicting a sequence of outcomes, the goal
is to minimise the accumulated log-loss, but because of the chain rule
of sequential probability, this amounts to the same thing as maximising
the probability. For example, if we follow the predictions of expert ξ,
our accumulated loss is

t

∑
i=1
− ln Pξ(xi|xi−1) = − ln

t

∏
i=1

Pξ(xi)

Pξ(xi−1)
= − ln Pξ(xt).

Now that we have described how a single expert makes predictions
and incurs loss, we must consider how such predictions can be com-
bined into a single prediction strategy, such that the accumulated loss
for this aggregate strategy is small. The standard Bayesian approach
is to define a prior w on the experts Ξ which induces a joint distri-
bution with mass function P(xt, ξ) = w(ξ)Pξ(xt). Inference is then
based on this joint distribution. We can compute, for example: (a) the

60 Chapter 3. Expert Hidden Markov Models

marginal probability of the data P(xt) = ∑ξ∈Ξ w(ξ)Pξ(xt), (b) the pre-
dictive distribution on the next outcome P(xt+1|xt) = P(xt, xt+1)/P(xt),
which defines a prediction strategy that combines those of the indi-
vidual experts, or (c) the posterior distribution on the experts P(ξ|xt) =
Pξ(xt)w(ξ)/P(xt), which tells us how the experts’ predictions should
be weighted. This simple probabilistic approach has the advantage
that it is computationally easy: predicting t outcomes using k := |Ξ|
experts requires only O(k t) time. Additionally, this Bayesian strat-
egy guarantees that the accumulated loss is only a constant − ln w(ξ̂)
smaller than the loss incurred by best available expert ξ̂. On the flip
side, with this strategy we never do any better than ξ̂ either: we have
− ln Pξ̂(xt) ≤ − ln P(xt) ≤ − ln Pξ̂(xt)− ln w(ξ̂) , which means that po-
tentially valuable insights from the other experts are not used to our
advantage!

More sophisticated methods to combine prediction strategies can
be found in the literature under various headings. On the one hand
there are results in (Bayesian) statistics and source coding. On the other
hand, the learning theory community has produced a lot of work on
universal prediction under the heading “prediction with expert advice”.
In this case the experts’ predictions are not necessarily probabilistic,
and scored using an arbitrary loss function. In this chapter we state
our results for logarithmic loss. Our results apply to any mixable loss
function, as discussed in Section 3.6.4.

The three main contributions of this chapter are the following. First,
we introduce prior distributions on sequences of experts, which allows
unified description of many existing models. Second, we show how
HMMs can be used as an intuitive graphical language to describe such
priors and obtain computationally efficient prediction strategies. Third,
we use this new approach to describe and analyse numerous models
for expert tracking. On the one hand, we summarise some of the most
influential existing results in this area, while on the other hand we
introduce a number of new models that represent new good trade-offs
between time complexity and modelling power.

3.1.1 Overview

In Section 3.2 we develop a new, more general framework for com-
bining expert predictions, where we consider the possibility that the

3.1. Introduction 61

optimal weights used to mix the expert predictions may vary over time,
i.e. as the sample size increases. We stick to Bayesian methodology, but
we define the prior distribution as a probability measure on sequences
of experts rather than on experts. The prior probability of a sequence
ξ1, ξ2, . . . is the probability that we rely on expert ξ1’s prediction of the
first outcome and expert ξ2’s prediction of the second outcome, etc. To
see why this is useful, consider that the nature of the data generating
process may evolve over time; consequently different experts may be
better during different periods of time. It is also possible that not the
data generating process, but the experts themselves change as more
and more outcomes are being observed: they may learn from past mis-
takes, possibly at different rates, or they may have occasional bad days,
etc. In both situations we may hope to benefit from more sophisticated
modelling.

Of course, not all models for combining expert predictions are com-
putationally feasible. Section 3.3 describes a methodology for the spec-
ification of models that allows efficient evaluation. We achieve this by
using hidden Markov models (HMMs) on two levels. On the first level,
we use an HMM to specify a distribution on sequences of experts as
defined in Section 3.2. We introduce a graphical language to conve-
niently represent its structure. These graphs help to understand and
compare existing models and to design new ones. We then modify this
first HMM to construct a second HMM that specifies the distribution on
sequences of outcomes. Subsequently, we can use the standard dynamic
programming algorithms for HMMs (forward, backward and Viterbi)
on both levels to efficiently calculate most relevant quantities, most im-
portantly the marginal probability of the observed outcomes P(xt) and
posterior weights on the next expert given the previous observations
P(ξt+1|xt).

Many existing models for prediction with expert advice can be spec-
ified by HMMs that in turn define expert sequence priors (ES-priors).
We are interested in evaluating these models in terms of two qualities:
on the one hand, we want to know the time and space complexities of
predicting t outcomes using k experts. On the other hand, we evalu-
ate the predictive performance of the models by giving regret bounds.
The regret is the discrepancy between the predictive performance of the
considered model, and the performance of another prediction strategy
from a set of reference strategies. While the time complexity of any

62 Chapter 3. Expert Hidden Markov Models

model can be read directly from the structure of its defining HMM, we
need some theory that is developed in Section 3.4 to assist in analysing
the regret.

We proceed in Section 3.5 with a discussion of numerous models for
tracking the best expert, where the fixed share algorithm [79, 80] serves
as a starting point. We identify two drawbacks of fixed share: first, one
has to specify a fixed switching rate in advance; choosing a suboptimal
value here produces a linear penalty in the regret. Second, the incurred
regret depends on the sample size t, even when the optimal number of
switches is bounded. These problems can be addressed by modelling
the switching probabilities differently. Section 3.5.2 explains how the
part of the model that describes switching probabilities can be isolated
from the rest; we then proceed to describe several alternative models for
the switching probabilities, and discuss how these modifications affect
the regret bound. In particular, Section 3.5.3.2 describes a new, simple
and effective approach to solve both problems associated with fixed
share, and Section 3.5.5 also describes a new model that is especially
well suited to the scenario where changes in predictive performance
are expected to appear in clusters.

So far, none of the considered models for expert tracking made any
assumptions as to the inner workings of, or the relationships between,
the various experts – they are black boxes. However, as an interesting
special case we also consider the scenario where the experts are or-
dered. For example, if the experts are prediction strategies associated
with a parametric model, instantiated with various parameter values,
then switches between two experts seem intuitively more likely if they
represent parameter values that are close. This scenario is explored
in Section 3.5.6; the notion is taken to its extreme in Section 3.5.7, where
the regret is no longer analysed in terms of all-or-nothing “switches”,
but rather in terms of a more smooth characterisation of the amount of
“parameter drift”.

A number of loose ends associated with prediction with expert ad-
vice and expert tracking based on HMMs and ES-priors are discussed
in Section 3.6. We specifically discuss an extension of our framework
that generalises the concept of ES-priors by allowing the probability of
the next expert to depend on the observed data (Section 3.6.1), how one
might estimate which expert made the best prediction at a certain time
(Section 3.6.2), and finally how the framework we consider actually ap-

3.2. Expert Sequence Priors 63

plies generally to any mixable loss function (Section 3.6.4).

3.2 Expert Sequence Priors

In this section we explain how expert tracking can be described in prob-
ability theory using expert sequence priors. These ES-priors are distri-
butions on the space of infinite sequences of experts that are used to
express regularities in the development of the relative quality of the
experts’ predictions. As illustrations we render Bayesian mixtures and
elementwise mixtures as ES-priors. In the next section we show how
ES-priors can be implemented efficiently by hidden Markov models.

Notation We denote by N the natural numbers including zero, and
by Z+ the natural numbers excluding zero. Let Q be a set. We de-
note the cardinality of Q by |Q|. For any natural number t, we let the
variable qt range over the t-fold Cartesian product Qt, and we write
qt = 〈q1, . . . , qt〉. We also let qω range over Qω — the set of infinite
sequences over Q — and write qω = 〈q1, . . .〉. We read the statement
qλ ∈ Q≤ω to first bind λ ≤ ω and subsequently qλ ∈ Qλ. If qλ is a
sequence, and κ ≤ λ, then we denote by qκ the prefix of qλ of length κ.

Forecasting System Let X be a countable outcome space. We use the
notation X ∗ for the set of all finite sequences over X and let prob(X)
denote the set of all probability mass functions on X . A (prequential)
X -forecasting system (PFS) is a function P : X ∗ → prob(X) that maps
sequences of previous observations to a predictive distribution on the
next outcome. Prequential forecasting systems were introduced in [39].

Distributions We also use probability measures on spaces of infinite
sequences. In such a space, a basic event is the set of all continuations
of a given prefix. We identify such events with their prefix. Thus a
distribution on X ω is defined by a function P : X ∗ → [0, 1] that sat-
isfies P(ε) = 1, where ε is the empty sequence, and for all t ≥ 0, all
xt ∈ X t we have ∑x∈X P(x1, . . . , xt, x) = P(xt). We identify P with the
distribution it defines. We write P(xt|xi) for P(xt)/P(xi) if 0 ≤ i ≤ t.

Note that forecasting systems continue to make predictions even
after they have assigned probability 0 to a previous outcome, while

64 Chapter 3. Expert Hidden Markov Models

distributions’ predictions become undefined. Nonetheless we use the
same notation: we write P(xt+1|xt) for the probability that a forecasting
system P assigns to the next outcome given the first t outcomes, as if P
were a distribution.

ES-Priors The slogan of this chapter is we do not understand the data.
Instead of modelling the data, we work with experts. We assume that
there is a fixed set of k experts Ξ, and that each expert ξ ∈ Ξ predicts
using a forecasting system Pξ .

We are interested in switching between different forecasting systems
(experts) at different sample sizes. For a sequence of experts with prefix
ξt, the combined forecast, where expert ξi predicts the ith outcome, is
denoted

Pξt(xt) :=
t

∏
i=1

Pξi(xi|xi−1).

Adopting Bayesian methodology, we impose a prior π on infinite se-
quences of experts; this prior is called an expert sequence prior (ES-prior).
Inference is then based on the distribution on the joint space (X × Ξ)ω,
called the ES-joint, which is defined as follows:

Pπ(ξ
t, xt) := π(ξt)Pξt(xt). (3.1)

For example, this ES-joint induces a marginal distribution on sequences
of outcomes:

Pπ(xt) = ∑
ξt∈Ξt

Pπ(ξ
t, xt). (3.2)

Compare this to the usual Bayesian statistics, where a model class
{Pθ | θ ∈ Θ} is also endowed with a prior distribution w on Θ. Then,
after observing outcomes xt, inference is based on the posterior dis-
tribution on the parameter θ ∈ Θ, which is never actually observed.
Our approach is exactly the same, but we always consider Θ = Ξω.
Thus as usual predictions are based on the posterior distribution on
ξω. Namely, at each moment in time the predictions of the experts are
weighted according to the posterior probability of ξt+1, which can be
computed as follows:

Pπ(ξt+1|xt) =
∑ξt Pπ(ξt, xt, ξt+1)

∑ξt Pπ(ξt, xt)
=

∑ξt π(ξt, ξt+1)Pξt(xt)

∑ξt π(ξt)Pξt(xt)
. (3.3)

3.2. Expert Sequence Priors 65

Note that although this probability can be evaluated in principle, it
involves summing an exponential number of terms in general, which is
hardly practical. In the subsequent sections of this chapter we will be
looking for ES-priors that allow for efficient evaluation.

In the traditional subjectivist Bayesian interpretation, the prior dis-
tribution expresses our beliefs about an unknown “true” parameter
value, but in the case of ES-priors this philosophy is tenuous: normally
there is no “true expert sequence”, as experts do not generate data,
they only predict it. Moreover, by mixing different expert sequences, it
is sometimes possible to predict significantly better than by using any
single sequence of experts. Ideally, the ES-prior π should be chosen
such that the posterior distribution on experts (3.3) coincides with the
optimal mixture weights.

Rather than appealing to a subjectivist philosophy, in the remainder
of this chapter we motivate ES-priors by giving performance guarantees
in the form of bounds on running time and regret.

3.2.1. Example (Bayesian Mixtures). Let Ξ be a set of experts, and let
Pξ be a PFS for each ξ ∈ Ξ. Suppose that we do not know which
expert will make the best predictions. Following the usual Bayesian
methodology, we combine their predictions by conceiving a prior w on
Ξ, which (depending on the adhered philosophy) may or may not be
interpreted as an expression of beliefs in this respect. Then the standard
Bayesian mixture Pbayes,w is given by

Pbayes,w(xt) := ∑
ξ∈Ξ

Pξ(xt)w(ξ). (3.4)

Recall that Pξ(xt) means ∏t
i=1 Pξ(xi|xi−1), the combined prediction of

expert ξ. The Bayesian mixture is not an ES-joint, but it can easily
be transformed into one by using the ES-prior that assigns probability
w(ξ) to the identically-ξ sequence for each ξ ∈ Ξ:

πbayes,w(ξ
t) :=

{
w(k) if ξi = k for all i = 1, . . . , t,
0 o.w.

We will use the adjective “Bayesian” generously throughout this chap-
ter, but when we write the standard Bayesian ES-prior this always refers
to πbayes,w. 3

66 Chapter 3. Expert Hidden Markov Models

3.2.2. Example (Elementwise Mixtures). Again fix experts Ξ. The ele-
mentwise mixture1 is formed from some mixture weights w ∈ prob(Ξ)
by

Pmix,w(xt) :=
t

∏
i=1

∑
ξ∈Ξ

Pξ(xi|xi−1)w(ξ).

It may seem that elementwise mixtures do not fit in the framework of
ES-priors. But we can rewrite this definition in the required form as
follows:

Pmix,w(xt) =
t

∏
i=1

∑
ξ∈Ξ

Pξ(xi|xi−1)w(ξ) =

∑
ξt∈Ξt

t

∏
i=1

Pξi(xi|xi−1)w(ξi) = ∑
ξt

Pξt(xt)πmix,w(ξ
t),

which is the ES-joint based on the ES-prior

πmix,w(ξ
t) :=

t

∏
i=1

w(ξi). (3.5)

Thus, the ES-prior for elementwise mixtures is just the product distri-
bution of w. 3

We warned earlier against the interpretation of ES-priors as expres-
sions of belief about individual expert sequences. This is an example
where the ES-prior is clearly used differently: it is crafted such that its
posterior πmix,w(ξt+1|ξt) = w(ξt+1) exactly coincides with the desired
mixture of experts.

3.3 Expert Tracking using HMMs

We explained in the previous section how expert tracking can be im-
plemented using expert sequence priors. In this section we specify
ES-priors using hidden Markov models (HMMs). The advantage of
using HMMs is twofold. HMM state transition diagrams clearly and

1These mixtures are sometimes just called mixtures, or predictive mixtures, or expo-
nentially weighted averages. We use the term elementwise mixtures both for descrip-
tive clarity and to avoid confusion with Bayesian mixtures.

3.3. Expert Tracking using HMMs 67

intuitively display the model structure. Moreover, the time complex-
ity of the resulting expert tracking procedure can be read off directly
from these diagrams. We first give a short overview of the particular
kind of HMMs that we use throughout this chapter. We then show how
HMMs can be used to specify ES-priors. As illustrations we render
the ES-priors that we obtained for Bayesian mixtures and elementwise
mixtures in the previous sections, as HMMs.

3.3.1 Hidden Markov Models Overview

Hidden Markov models (HMMs) are a well-known tool for specifying
probability distributions on sequences with temporal structure, in this
case expert sequences. Furthermore, these distributions are very ap-
pealing algorithmically: many important probabilities can be computed
efficiently for HMMs. These properties make HMMs ideal models for
the definition of ES-priors. For an introduction to HMMs, see [146].
We require a slightly more general notion that incorporates silent states
and forecasting systems as explained below.

We define our HMMs on a generic set of outcomes O to avoid con-
fusion in later sections, where we use HMMs in three different contexts.
First in Section 3.3.2, we use HMMs to define ES-priors, and instantiate
O with the set of experts Ξ. Then in Section 3.3.3 we modify the HMM
that defines the ES-prior to incorporate the experts’ predictions, where-
upon O is instantiated with the set of observable outcomes X . Finally,
in Section 3.5.2 we build HMMs that output (binary) switch decisions,
and we set O = {n, s}.

3.3.1. Definition. Let O be a finite set of outcomes. We call a quintuple

H =
〈

Q, Qp, P◦, P�,
〈
P�q
〉

q∈Qp

〉
a hidden Markov model on O if Q is a countable set, Qp ⊆ Q, P◦ ∈
prob(Q), P� : Q→ prob(Q) and P�q is an O-forecasting system for each
q ∈ Qp.

Terminology and Notation We call elements of Q states. We call the
states in Qp productive and the other states silent. We call P◦ the initial
distribution, let I denote its support (i.e. I := {q ∈ Q | P◦(q) > 0}) and
call I the set of initial states. We call P� the stochastic transition function.

68 Chapter 3. Expert Hidden Markov Models

We let Sq denote the support of P�(q), and call q′ ∈ Sq a direct successor
of q. We abbreviate P�(q)(q′) to P(q→ q′). A finite or infinite sequence
of states qλ ∈ Q≤ω is called a branch through H. A branch qλ is called a
run if either λ = 0 (so qλ = ε), or q1 ∈ I and qi+1 ∈ Sqi for all 1 ≤ i < λ.
A finite run qt 6= ε is called a run to qt. For each branch qλ, we denote
by qλ

p its subsequence of productive states. We denote the elements of
qλ

p by qp
1, qp

2 etc. We call an HMM continuous if qω
p is infinite for each

infinite run qω.

Restriction In this chapter we will only work with continuous HMMs.
This restriction is necessary for the following to be well-defined.

3.3.2. Definition. An HMM H defines the following distribution on
sequences of states. πH(ε) := 1, and for λ ≥ 1

πH(qλ) := P◦(q1)
λ−1

∏
i=1

P(qi → qi+1).

Then via the PFSs, H induces the joint distribution PH on runs and
sequences of outcomes. Let ot ∈ Ot be a sequence of outcomes and let
qλ be a run with at least t productive states, then

PH(ot, qλ) := πH(qλ)
t

∏
i=1

P�qp
i
(oi|oi−1).

The value of PH at arguments ot, qλ that do not fulfil the condition above
is determined by the additivity axiom of probability.

3.3.2 HMMs as ES-Priors

In the most straightforward application of HMMs, the hidden state de-
termines a distribution on the observable outcomes. A graphical model
depicting this approach is displayed in Figure 3.1a. However, in this
chapter we use HMMs as ES-priors, that is, to specify temporal correla-
tions between the performance of our experts. Thus instead of concrete
observations our HMMs will “produce” sequences of experts, that are
never actually observed. Figure 3.1b illustrates this.

Using HMMs as priors allows us to use the standard algorithms for
HMMs to answer questions about the prior. For example, we can use

3.3. Expert Tracking using HMMs 69

Figure 3.1 HMMs. qp
i , ξ i and xi are the ith productive state, expert and

observation.
(a) Standard use of HMM

qp
1

//

��

qp
2

//

��

qp
3

//

��
x1 x2|x1 x3|x2···

(b) HMM ES-prior

qp
1

//

��

qp
2

//

��

qp
3

//

��
ξ1 ξ2 ξ3 ···

(c) Application to data

qp
1

//

��

qp
2

//

��

qp
3

//

��
ξ1

��

ξ2

��

ξ3

��

···

x1 x2|x1 x3|x2···

the forward algorithm to compute the prior probability of the sequence
of one hundred experts with expert number one at all odd indices and
expert number two at all even indices. However, we are obviously also
interested in questions about the data rather than about the prior. In
Section 3.3.3 we show how joints based on HMM priors (Figure 3.1c)
can be transformed into ordinary HMMs (Figure 3.1a) with at most a
k-fold increase in size, allowing us to use the standard algorithms for
HMMs not only for the experts, but for the data as well, with the same
increase in complexity. This is the best we can generally hope for, as
we now need to integrate over all possible expert sequences instead
of considering only a single one. Here we first consider properties of
HMMs that represent ES-priors.

Restriction HMM priors “generate”, or define the distribution on, se-
quences of experts. But contrary to the data, which are observed, no
concrete sequence of experts is realised. This means that we cannot
conveniently condition the distribution on experts in a productive state
qp

t on the sequence of previously produced experts ξt−1. We therefore
require that the forecasting systems associated to the states are fixed
distributions, so that all dependencies between consecutive experts are
carried by the state, in order to avoid having to sum over all (exponen-
tially many) possible expert sequences. It is possible to relax this restric-
tion somewhat: while it is not practical to condition on the sequence of
previously produced experts, we can condition on (a function of) the
observed data. This extension is discussed further in Section 3.6.1.

70 Chapter 3. Expert Hidden Markov Models

Deterministic Under the restriction above, and in the presence of
silent states, we can make any HMM deterministic in the sense that the
forecasting systems associated with the productive states assign proba-
bility one to a single outcome. We simply replace each productive state
q ∈ Qp by the following gadget:

''// q //

77

''
77 7→

a

��''
b

''//

??

77

//

''

��

c // //

77

''

77

d

77

e

??

In the left diagram, the state q has distribution P�q on outcomes O =
{a, . . . , e}. In the right diagram, the leftmost silent state has transition
probability P�q(o) to a state that deterministically outputs outcome o.
We call a HMM 〈Q, Qp, P◦, P�, Λ〉 on O deterministic if Λ maps produc-
tive states to fixed outcomes, i.e. it is a function Λ : Qp → O. This is
a slight abuse of notation as the last component of a (general) HMM
assigns a PFS to each productive state, while the last component of a
deterministic HMM assigns an outcome to each productive state.

Sequential prediction using a general HMM or its deterministic
counterpart costs the same amount of work: the |O|-fold increase in
the number of states is compensated by the |O|-fold reduction in the
number of outcomes that need to be considered per state. However, de-
terministic HMMs more accurately describe the operations of the for-
ward algorithm, which now has to perform a constant amount of work
for each edge (see Section 3.3.4.3), and they are convenient in diagrams.

Diagrams We graphically represent deterministic HMMs by drawing
a node Nq for each state q. We draw silent states as small black dots,
e.g. . We draw each productive state q as an open circle labelled by
the produced expert Λ(q), e.g. a . We draw an arrow from Nq to Nq′

if q′ is a direct successor of q. We often reify the initial distribution
P◦ by including a virtual node, drawn as an open circle, e.g. , with
an outgoing arrow to Nq for each initial state q ∈ I. The transition
probability P(q→ q′) is not displayed in the graph.

We are now ready to give the deterministic HMMs that correspond

3.3. Expert Tracking using HMMs 71

Figure 3.2 Standard Bayesian mixture bayes[Ξ, w]

a

〈a,1〉
// a
〈a,2〉

// a // a //

b

〈b,1〉
// b
〈b,2〉

// b // b //66

DD

((

��

c

〈c,1〉
// c
〈c,2〉

// c // c //

d

〈d,1〉
// d
〈d,2〉

// d // d //

bayes[Ξ, w] = 〈Q, Qp, P◦, P�, Λ〉
Q = Qp = Ξ×Z+

Λ(ξ, t) = ξ P◦ (ξ, 1) = w(ξ)

P (〈ξ, t〉 → 〈ξ, t + 1〉) = 1

to the ES-priors of our running examples: Bayesian mixtures and ele-
mentwise mixtures with fixed parameters.

3.3.3. Example (HMM for Bayesian Mixtures). The Bayesian mixture
ES-prior πbayes,w as introduced in Example 3.2.1 represents the hypoth-
esis that a single expert predicts best for all sample sizes. A simple
deterministic HMM on Ξ that generates the prior πbayes,w is given by
bayes[Ξ, w] as defined in Figure 3.2. Since the HMM computes the
Bayesian mixture, (3.4) tells us that the regret (log-loss overhead) of
bayes[Ξ, w] w.r.t. each expert ξ ∈ Ξ is bounded for all data xt by

ln
Pξ(xt)

P
bayes[Ξ,w](xt)

≤ − ln w(ξ). (3.6)

In particular this bound holds for ξ̂ = argmaxξ Pξ(xt), so we predict as
well as the single best expert with constant overhead. Also Pbayes,w(xt)
can obviously be computed in O(k t) using its definition (3.4). We show
in Section 3.3.4 that computing P

bayes[Ξ,w](xt) has exactly the same run-
ning time. 3

3.3.4. Example (HMM for Elementwise Mixtures). The deterministic
HMM em[Ξ, w] that implements the ES-prior πmix,w of Example 3.2.2
is defined in Figure 3.3. The vector-style definition of P� is shorthand

72 Chapter 3. Expert Hidden Markov Models

Figure 3.3 Fixed elementwise mixture em[Ξ, w]

a

〈a,1〉

��

a

〈a,2〉

��

a

��

a

��
b

〈b,1〉

''
b

〈b,2〉

''
b

''
b

''
〈0〉 77

DD

''

��

〈1〉 77

DD

''

��

〈2〉 77

DD

''

��

〈3〉 77

DD

''

��

c

〈c,1〉
77

c

〈c,2〉
77

c

77

c

77

d

〈d,1〉

DD

d

〈d,2〉

DD

d

DD

d

DD

em[Ξ, w] = 〈Q, Qp, P◦, P�, Λ〉
Q = Qs ∪Qp Qs = N Qp = Ξ×Z+

P◦(0) = 1 Λ(ξ, t) = ξ

P

(
〈t〉 → 〈ξ, t + 1〉
〈ξ, t〉 → 〈t〉

)
=

(
w(ξ)

1

)

for one P� per line. The HMM has a single silent state per outcome,
whose transition probabilities are the mixture weights w. We show in
Section 3.3.4 that this HMM allows P

em[Ξ,w](xt) to be calculated in O(k t)
time as well. 3

3.3.3 The HMM for Data

After composing an HMM prior on Ξ, we obtain our model for the
data (Figure 3.1c) by introducing a PFS Pξ for each expert ξ ∈ Ξ. As
it turns out, the resulting marginal distribution on data can be imple-
mented by a single HMM on X (Figure 3.1a) with the same number of
states as the HMM prior. Let Pξ be an X -forecasting system for each
ξ ∈ Ξ, and let the ES-prior πH be given by the deterministic HMM
H = 〈Q, Qp, P◦, P�, Λ〉 on Ξ. Then the marginal distribution of the data
(see (3.2)) is given by

PH(xt) = ∑
ξt

πH(ξ
t)

t

∏
i=1

Pξi(xi|xi−1).

3.3. Expert Tracking using HMMs 73

The HMM X := 〈Q, Qp, P◦, P�,
〈

PΛ(q)
〉

q∈Qp
〉 on X induces the same

marginal distribution (see Definition 3.3.2). That is, PX(xt) = PH(xt).
Moreover, X contains only the forecasting systems that also exist in H
and it retains the structure of H. In particular this means that the algo-
rithms for HMMs have the same running time on the prior H as on the
marginal X.

3.3.4 Computation

In this section we briefly review the important computational tasks and
corresponding algorithms for HMMs. We then give the forward al-
gorithm for our particular kind of HMMs with silent states, prove its
correctness and bound its running time as a function of the input HMM
and the sample size t.

3.3.4.1 Tasks & Algorithms

There are three tasks traditionally associated with hidden Markov mod-
els [146]:

1. Computing the marginal probability P(xt) of the data xt and/or
sequentially computing the prediction P(xt+1|xt) of the next out-
come given past data. This task is performed by the forward algo-
rithm, a dynamic programming algorithm that operates by perco-
lating weights along the transitions of the HMM.

2. MAP calculation: computing a sequence of states qλ with maxi-
mal posterior weight P(qλ|xt). Note that λ ≥ t. This task is solved
using the Viterbi algorithm, a simple variation on the forward al-
gorithm.

3. Parameter estimation. Instead of a single probabilistic transition
function P�, one may consider a collection of transition functions
〈P�θ | θ ∈ Θ〉 indexed by a set of parameters Θ. The Baum-Welch
algorithm can then be used to find the parameter θ for which the
corresponding HMM achieves the highest likelihood of the data.
This is an iterative improvement algorithm (in fact an instance of
Expectation Maximisation (EM)) built atop the forward algorithm
and a related dynamic programming algorithm called the back-
ward algorithm.

74 Chapter 3. Expert Hidden Markov Models

This chapter is mainly concerned with sequential prediction problems.
Section 3.6.2 provides a short discussion of the intricacies of expert es-
timation: the problem of finding out which expert made the best pre-
dictions at which time step. Parameter estimation is outside the scope
of this study.

We first describe the preprocessing step called unfolding and other
preliminaries. We then describe a version of the forward algorithm that
can cope with silent states and the additional layer that is introduced
by the experts. We prove correctness and analyse its running time and
space requirement.

3.3.4.2 Preliminaries

Unfolding For simplicity we will restrict attention to HMMs that are
unfolded in the following sense. Every HMM can be transformed into
an equivalent HMM in which each productive state is involved in the
production of a unique outcome. For example, the single node in Fig-
ure 3.4a is involved in the production of x1, x2, . . . In its unfolding Fig-
ure 3.4b the ith node is only involved in producing xi. Figures 3.4c
and 3.4d show HMMs that unfold to the Bayesian mixture shown in
Figure 3.2 and the elementwise mixture shown in Figure 3.3. In full
generality, fix an HMM H. Without loss of generality, assume that P◦ is
on productive states. The unfolding of H is the HMM

U (H) := 〈Qu, Qu
p, Pu
◦ , Pu

�,
〈
Pu
� q

〉
q∈Qu〉,

where the states and productive states are given by:

Qu :=
{
〈qλ, t〉 | qλ is a run through H

}
, where t = |qλ

p |

Qu
p := Qu ∩ (Qp ×N)

and the initial probability, transition function and forecasting systems
are:

Pu
◦ (〈q, 1〉) := P◦(q)

Pu

(
〈q, t〉 → 〈q′, t + 1〉
〈q, t〉 → 〈q′, t〉

)
:=

(
P(q→ q′)
P(q→ q′)

)
Pu
� 〈q,t〉 := P�q.

3.3. Expert Tracking using HMMs 75

Figure 3.4 Unfolding example
(a) Prior to unfold-
ing

a

��

(b) After unfolding

a // a // a //

(c) Bayesian mixture

a ee

b dd44

@@

**

��

c ee

d ee

(d) Elementwise mixture
a

��
b

ww
77

BB

''

��

c

gg

d

[[

Note that for each q, q′ only one line of the transition function applies.
The top line, where the time index is increased, applies if q′ is produc-
tive in H, while the bottom applies if it silent in H.

Unfolding has has following three properties. First, it preserves
the marginal: PH(ot) = PU (H)(ot). Second, unfolding is an idempotent
operation: U (H) is isomorphic to U (U (H)). Third, unfolding renders
the set of states infinite, but for each t it preserves the number of states
reachable in exactly t steps.

Order The states in an unfolded HMM have earlier-later structure. Fix
q, q′ ∈ Qu. We write q < q′ if there is a run to q′ through q. Obviously <
is a partial order, furthermore it is the transitive closure of the reverse
direct successor relation. It is well-founded, allowing us to perform
induction on states, an essential ingredient of the forward algorithm
(Algorithm 3.1) and its correctness proof (Theorem 3.3.5).

Interval Notation We introduce interval notation to address subsets
of states of unfolded HMMs, as illustrated by Figure 3.5. Our nota-
tion associates each productive state with the sample size at which it
produces its outcome, while the silent states fall in between. We use
intervals with borders in N. The interval contains the border i ∈ N if
the addressed set of states includes the states where the ith observation

76 Chapter 3. Expert Hidden Markov Models

Figure 3.5 Interval notation
(a) Q{1}

a

��

// a //

��

??

��

??

��
b

??

// b //

??

(b) Q(1,2]

a

��

// a //

��

??

��

??

��
b

??

// b //

??

(c) Q(0,2)

a

��

// a //

��

??

��

??

��
b

??

// b //

??

is produced.

Qu
[s,t) := Qu ∩ (Q× [s, t)) Qu

[s,t] := Qu
[s,t) ∪Qu

{t}

Qu
{s} := Qu ∩ (Qp × {s}) Qu

(s,t) := Qu
[s,t) \Qu

{s}

Qu
(s,t] := Qu

[s,t] \Qu
{s}

Fix t > 0, then Qu
{t} is a non-empty <-anti-chain (i.e. its states are

pairwise <-incomparable). Furthermore Qu
(t,t+1) is empty if Qu

{t+1} =⋃
q∈Qu

{t}
Sq, in other words, if there are no silent states between sample

sizes t and t + 1.

3.3.4.3 The Forward Algorithm

The forward algorithm is given in Algorithm 3.1.

Analysis In Algorithm 3.1, the w array represents the weight vector
at the current time. Consider a state q ∈ Q, say q ∈ Q[t,t+1). Initially,
q /∈ dom(w). Then at some point w(q) is assigned the value P◦(q). This
happens either in the second line because q is an initial state, or in For-
ward Propagation because q ∈ Sq′ for some predecessor q′ (in this case
P◦(q) = 0). Then w(q) accumulates weight as its direct predecessors are
processed in Forward Propagation. At some point all its predeces-
sors have been processed. If q is productive we call its weight at this
point (that is, just before Loss Update) alg(H, xt−1, q). Finally, Forward

Propagation removes q from the domain of w, never to be considered
again. We call the weight of q (silent or productive) just before removal
alg(H, xt, q).

3.3. Expert Tracking using HMMs 77

Algorithm 3.1 Forward algorithm. Fix an unfolded deterministic HMM
prior H = 〈Q, Qp, P◦, P�, Λ〉 on Ξ, and an X -PFS Pξ for each expert ξ ∈ Ξ.
The input consists of an infinite sequence x1, x2, . . . that arrives sequen-
tially.

Declare the weight map (partial function) w ··· Q→ [0, 1].
w(q)← P◦(q) for all q s.t. P◦(q) > 0. . dom(w) = I
for t = 1, 2, . . . do

Forward Propagation(t)
Predict next expert:

P(ξt = ξ|xt−1) = ∑
q∈Q{t} :Λ(q)=ξ

w(q)

/
∑

q∈Q{t}

w(q) .

Predict next outcome:

P(xt|xt−1) = ∑
ξ∈Ξ

Pξ(xt|xt−1)P(ξt = ξ|xt−1).

Loss Update(t)
Report probability of data: P(xt) = ∑q∈Q{t} w(q).

end for

Forward Propagation(t)
while dom(w) 6= Q{t} do . dom(w) ⊆ Q[t−1,t]

Pick a <-minimal state q in dom(w) \Q{t}. . q ∈ Q[t−1,t)
for all q′ ∈ Sq do . q′ ∈ Q(t−1,t]

w(q′)← 0 if q′ /∈ dom(w).
w(q′)← w(q′) + w(q)P(q→ q′).

end for
Remove q from the domain of w.

end while . dom(w) = Q{t}

Loss Update(t)
for all q ∈ Q{t} do . q ∈ Qp

w(q)← w(q)PΛ(q)(xt|xt−1).
end for

78 Chapter 3. Expert Hidden Markov Models

Note that we associate two weights with each productive state q ∈
Q{t}: the weight alg(H, xt−1, q) is calculated before outcome t is ob-
served, while alg(H, xt, q) denotes the weight after the loss update in-
corporates outcome t. We are now able to prove correctness of the
forward algorithm.

3.3.5. Theorem. Fix an HMM prior H, t ∈ N and q ∈ Q[t,t+1], then
alg(H, xt, q) = PH(xt, q).

Note that the theorem applies twice to productive states: before and
after production of their outcome.

Proof. By <-induction on states. Let q ∈ Q(t,t+1], and suppose that the
theorem holds for all q′ < q. Let Bq = {q′ | P(q′ → q) > 0} be the set of
direct predecessors of q. Observe that Bq ⊆ Q[t,t+1). The weight that is
accumulated by Forward Propagation(t) onto q is:

alg(H, xt, q) = P◦(q) + ∑
q′∈Bq

P(q′ → q)alg(H, xt, q′)

= P◦(q) + ∑
q′∈Bq

P(q′ → q)PH(xt, q′) = PH(xt, q).

The second equality follows from the induction hypothesis. Addition-
ally if q ∈ Q{t} is productive, say Λ(q) = ξ, then after Loss Update(t)
its weight is:

∗ alg(H, xt, q) = Pξ(xt|xt−1)alg(H, xt−1, q) =

Pξ(xt|xt−1)PH(xt−1, q) = PH(xt, q). (3.9)

The second inequality holds by induction on t, and the third by Defini-
tion 3.3.2.

Since the algorithm computes all joint xt, q probabilities correctly, it also
correctly predicts the next outcome.

Complexity In order to analyse the time and space complexities of
Algorithm 3.1, fix an HMM H and t ∈ N. The algorithm processes
each state in Q[0,t) once, and at that point this state’s weight is dis-
tributed over its successors. Thus, the running time is proportional to
∑q∈Q[0,t)

|Sq|. The forward algorithm keeps |dom(w)|many weights. But

3.4. Regret Bounds 79

at each sample size t, dom(w) ⊆ Q[t,t+1]. Therefore the largest amount
of space needed is proportional to maxt′<t|Q[t′,t′+1]|.

In practice, we will mostly be interested in expressing the complexi-
ties of the algorithm in terms of two variables: the number of outcomes
t, and the number of experts k = |Ξ|. To do so, it is convenient to extend
the usual big-O notation to the bivariate case as follows: we write

f (t, k) = O
(

g(t, k)
)

if ∃c, d : ∀t, k with t · k ≥ d : | f (t, k)| ≤ c|g(t, k)|.

Turning back to our earlier examples, we find that for both Bayes (Ex-
ample 3.3.3) and elementwise mixtures (Example 3.3.4) one may read
from the figures that for each time t both ∑q∈Q[t′ ,t′+1)

|Sq| and |Q[t′,t′+1)|
are O(k), so both models run in O(k t) time and require O(k) space.

3.4 Regret Bounds

Here we provide some handles for analysing the predictive perfor-
mance of HMMs. In each case, the idea is to compare the loss incurred
by some model P to the loss incurred by another prediction strategy
from a set M of reference strategies. For example, M might be the
set {Pξt | ξt ∈ Ξt} of all prediction strategies based on a fixed expert
sequence. Note that the model P is not necessarily present in M. The
goal is now to provide an upper bound on the loss overhead of the
model P compared to these reference strategies. However, since we
generally consider rather wide classes of reference strategies that vary
significantly in complexity, it is not always possible to give a good uni-
form regret bound. Instead, the regret bound will often be expressed in
terms of parameters that quantify the complexity of the reference strat-
egy. For example, the complexity of an expert sequence ξt will usually
be expressed in terms of the parameter m, defined as the number of
contiguous blocks in ξt where the same expert is used.

Throughout this chapter, we use three types of regret bounds, which
are given in order of increasing sophistication. The first bound is ap-
propriate if only a few expert sequences contribute significantly to the
probability of the data. In that case it is sufficient to simply drop some
terms from the Bayesian mixture (3.2).

80 Chapter 3. Expert Hidden Markov Models

3.4.1. Lemma (Regret w.r.t. Expert Sequence ξt). Let π denote an ES-prior,
and let ξt denote a particular reference expert sequence. Then, for all data xt,

ln
Pξt(xt)

Pπ(xt)
= ln

Pξt(xt)

∑ξ ′t Pξ ′t(xt)π(ξ ′t)
≤ ln

Pξt(xt)

Pξt(xt)π(ξt)
= − ln π(ξt).

(3.10)

We obtain an expression for the regret w.r.t. some reference set ⊆ Ξt

by maximising ξt over its elements. We have already seen an example
application: the regret bound (3.6) for bayes[Ξ, w] is derived in this way.

In the second kind of bound, another ES-prior ρ plays the role of
reference prediction strategy. It can be useful even if the number of dif-
ferent expert sequences with significant contribution to the probability
is very large. The following lemma forms the basis for such bounds.

3.4.2. Lemma (Regret w.r.t. ES-prior ρ). Given data xt and ES-priors π and
ρ, such that Pρ(xt) > 0. We have

ln
Pρ(xt)

Pπ(xt)
≤ − ln EV

[
π(ξt)

ρ(ξt)

]
≤ EV

[
ln

ρ(ξt)

π(ξt)

]
, where V = Pρ(ξ

t|xt).

Proof. We rewrite

Pπ(xt)

Pρ(xt)
≥ ∑

ξt :Pρ(xt,ξt)>0

Pρ(xt, ξt)

Pρ(xt)
· Pπ(xt, ξt)

Pρ(xt, ξt)
=

EV

[
Pπ(xt, ξt)

Pρ(xt, ξt)

]
= EV

[
π(ξt)

ρ(ξt)

]
,

take the − ln and subsequently apply Jensen’s inequality.

Although this bound still involves the actual data through the distri-
bution V, sometimes the expectation can be replaced by a minimum
over ξt. This may be sufficiently sharp for the job at hand if a good
uniform bound is available for the ES-priors. However, it is possi-
ble to say more about V if the HMMs that define π and ρ share a
certain structure. The next lemma is a generalisation of Theorem 1

in [129]; it is useful for parameterised HMMs. The HMM has to be
parameterised in a specific way. Namely, for an HMM H, define the
transition probabilities from a subset Q† ⊆ Q of the state space as fol-
lows. Let Tη(j) = eη>φ(j)h(j)/Z(η) be an exponential family of distri-
butions with parameter vector η, some sufficient statistic φ, carrier h

3.4. Regret Bounds 81

and normalisation Z(η) = ∑j eη>φ(j)h(j), where j takes values in a fi-
nite set J . Define a successor function S : Q† × J → Q. Now set
P(q → q′) = Tη(j), where j satisfies S(q, j) = q′. We also introduce
the following notation. Let λ be high enough so that all runs of length
λ have produced t outcomes. For each state sequence qλ ∈ Qλ, let
nj(qλ) = |{i | 1 ≤ i < λ, qi ∈ Q†, S(qi, j) = qi+1}| denote the number
of transitions in qλ between states in Q† and their j-successors, and let
n(qλ) = ∑j nj(qλ). We can now state our result:

3.4.3. Lemma (Regret w.r.t. ML Parameter η̂). Let H be parameterised as
defined above and let Pη denote the joint distribution on state sequences and
outcome sequences with transition probabilities from Q† defined by a successor
function S and an exponential family Tη , as described above. Fix outcomes
xt and let η̂ = argmaxη Pη(xt). Furthermore let W = Pη̂(qλ|xt) denote the
posterior of Pη̂ on runs. We then have

ln
Pη̂(xt)

Pη(xt)
≤ − ln EW

[
πη(qλ)

πη̂(qλ)

]
≤

EW

[
ln

πη̂(qλ)

πη(qλ)

]
= EW [n(qλ)]D

(
Tη̂

∥∥Tη

)
,

where D(P‖Q) = ∑x P(x) log P(x)/Q(x) is the Kullback-Leibler divergence
from P to Q.

As before, the goal of this lemma is to say something about the over-
head incurred by using a particular strategy Pη instead of the reference
strategy Pη̂ The result still depends on the data via the distribution W,
but in applications of the lemma the idea will be to replace EW [n(qλ)]
by a bound on the number of states in Q† that may be traversed in any
run through the HMM.

Proof of Lemma 3.4.3. The first two inequalities are Lemma 3.4.2 on the
level of runs. The contribution of this lemma lies in the last equality.

82 Chapter 3. Expert Hidden Markov Models

First expand

EW

[
ln

πη̂(qλ)

πη(qλ)

]
= EW

[
∑
j∈J

nj(qλ) ln
Tη̂(j)
Tη(j)

]

= ∑
j

EW [nj(qλ)]

(
(η̂ − η)>φ(j) + ln

Z(η)
Z(η̂)

)
= (η̂ − η)>∑

j
φ(j)EW [nj(qλ)] + EW [n(qλ)] ln

Z(η)
Z(η̂)

.

(3.11)

Since Pη̂ maximises the probability Pη(xt) over η and since

∇η ln Pη(xt, qλ) = ∇η ln
(
πη(qλ)/πη̂(qλ)

)
we obtain2

~0 = −∇η
Pη(xt)

Pη̂(xt)

∣∣∣∣
η=η̂

= −∑
qλ

Pη̂(xt, qλ)

Pη̂(xt)
∇η ln Pη(xt, qλ)

∣∣
η=η̂

=

∇η EW

[
ln

πη̂(qλ)

πη(qλ)

]∣∣∣∣
η=η̂

.

This shows that the vector differential of (3.11) must be zero at η̂. Re-
ordering terms we obtain

∑
j

φ(j)EW [nj(qλ)] = EW [n(qλ)]∇η ln
Z(η)
Z(η̂)

∣∣∣∣
η=η̂

=

EW [n(qλ)] E
j∼Tη̂

[φ(j)], (3.12)

where the last step follows from

∇η ln Z(η) =
∇ηZ(η)

Z(η)
= ∑

j∈J

eη>φ(j)h(j)
Z(η)

φ(j) = E
j∼Tη

[φ(j)].

2 Recall that for a function f : Rk → R, the vector differential ∇η f (η) is defined as

the column vector (∂ f (η1)
∂η1

, . . . , ∂ f (ηk)
∂ηk

).

3.4. Regret Bounds 83

Using (3.12) we may now simplify (3.11) to

EW

[
ln

πη̂(qλ)

πη(qλ)

]
= EW [n(qλ)]

(
(η − η̂)> E

j∼Tη̂

[φ(j)] + ln
Z(η)
Z(η̂)

)
=

EW [n(qλ)]D
(
Tη̂

∥∥Tη

)
,

completing the proof.

As an important special case, the distribution on J may be fully
specified by a multinomial distribution with parameter vector w; we
can then apply the lemma above by setting φ(j) = (0, . . . , 1, 0, . . .), with
the 1 appearing at the jth position, and h(j) = 1. However, it may be ad-
vantageous to restrict the class of distributions on J to an exponential
family of lower dimension, because then the reference strategy Tη̂ has
fewer degrees of freedom and the divergence D(Tη̂‖Tη) that appears in
the bound is decreased. We now apply the lemma to our two running
examples. Note that in both cases, the model is parameterised such that
the total number of parameterised transitions is known.

3.4.4. Example (Regret of Bayesian Mixtures). We have already proved
the bound (3.6) for bayes[Ξ, w] using Lemma 3.4.1, but it is instructive
to do the same using Lemma 3.4.3. Let Q† contain just the initial silent
state and identify the experts Ξ with J . We now have EW [n(qλ)] =
1, so the lemma tells us that our regret is D(ŵ‖w), where ŵ is the
hindsight optimal prior weight vector that maximises the probability of
the available data, and w is the prior we actually use. Now observe
that in order to maximise probability, ŵ must assign all mass to a single
expert ξ̂, so D(ŵ‖w) = − ln w(ξ̂) as before.

3

3.4.5. Example (Regret of Elementwise Mixtures). We now compute the
regret of em[Ξ, w]. Let Q† contain the silent states and again identify
the experts Ξ with J . For elementwise mixtures, EW [n(qλ)] = t. So by
Lemma 3.4.3, the regret of predicting the outcomes xt with an element-
wise mixture with weights w instead of the hindsight optimal mixture
weights ŵ is bounded by t D(ŵ‖w). 3

84 Chapter 3. Expert Hidden Markov Models

3.5 Switching Strategies

3.5.1 Fixed Share

The paper by Herbster and Warmuth [79, 80] on tracking the best expert is
the first to consider the scenario where the best predicting expert may
change with the sample size. They by partitioning the data of size t into
m segments, where each segment is associated with an expert, and give
algorithms to predict almost as well as the best partition where the best
expert is selected per segment. They give two algorithms called fixed
share and variable share. The second algorithm requires a generalisa-
tion of our framework; furthermore its motivation applies only to loss
functions other than log-loss. We focus on fixed share, which is in fact
virtually identical to the HMM fs[Ξ, w, α] defined in Figure 3.6. Note
that all arcs into the silent states have fixed probability α ∈ [0, 1] and
all arcs from the silent states have some fixed distribution w on Ξ. The
original algorithm uses a uniform w(ξ) = 1/k, and it does not allow
switching to the same expert. This difference is discussed in the next
section. The same algorithm is also described as an instance of the Ag-
gregating Algorithm in [183]. Fixed share reduces to fixed elementwise
mixtures by setting α = 1 and to Bayesian mixtures by setting α = 0.
Each productive state represents that a particular expert is used at a cer-
tain sample size. Once a transition to a silent state is made, all expert
history is forgotten and a new expert is chosen according to w.

We now bound the regret of fixed share with respect to a given
partition, i.e. sequence of experts.

3.5.1. Theorem (Fixed Share Regret). Fix experts Ξ and data xt, and let ξt

be a sequence of experts with m blocks, k = |Ξ|, and w(ξ) = 1/k. Let α∗ =
(m − 1)/(t − 1) denote the switching frequency in ξt. Write H(α∗, α) =
−α∗ ln α− (1− α∗) ln(1− α) for the cross entropy. Then

ln
Pξt(xt)

P
fs[Ξ,w,α](xt)

≤ m ln k + (t− 1)H(α∗, α). (3.13)

Proof. Let qλ be the run that produces ξt and that passes through silent

3.5. Switching Strategies 85

Figure 3.6 Fixed share: fs[Ξ, w, α]

a

��

// a

��

// a

��

// a //

��
b

''
// b

''
// b

''
// b //

''
〈0〉

EE

88

''

��

〈1〉

EE

88

''

��

〈2〉

EE

88

''

��

〈3〉

EE

88

''

��

c

88
// c

88
// c

88
// c //

88

d

EE

// d

EE

// d

EE

// d //

EE

Q = Qs ∪Qp Qs = N Qp = Ξ×Z+

P◦(0) = 1 Λ(ξ, t) = ξ

P

 〈t〉 → 〈ξ, t + 1〉
〈ξ, t〉 → 〈t〉
〈ξ, t〉 → 〈ξ, t + 1〉

 =

 w(ξ)

α

1− α



state 〈i〉 iff ξi 6= ξi+1. Then

P
fs[Ξ,w,α](xt)

Pξt(xt)

by (3.10)
≥ π

fs[Ξ,w,α](ξ
t) ≥

π
fs[Ξ,w,α](q

λ) = k−m(1− α)t−mαm−1.

Note that Herbster and Warmuth define fixed share without reflex-
ive switches (i.e. switches to the same expert), and thus derive a bound
with ln k + (m− 1) ln(k− 1) instead of our m ln k. We include reflexive
switches in all our models to keep the exposition clean and simple, and
address omitting them in Section 3.6.3.

While α∗ optimises the bound, it does not necessarily maximise the
probability of the data. We may wonder how much the predictive per-
formance of the algorithm may be harmed by using α rather than the
maximum likelihood value α̂ = argmaxα P

fs[Ξ,w,α](xt). To this end, we
can apply Lemma 3.4.3, setting Q† to Qp, the set of all productive states,
whose outgoing transitions are parameterised by the switching rate α,
to find

ln
P

fs[Ξ,w,α̂](xt)

P
fs[Ξ,w,α](xt)

≤ (t− 1)D (α̂‖α) . (3.14)

86 Chapter 3. Expert Hidden Markov Models

Judging from (3.13) and (3.14), the regret appears to grow linearly
with time, but if we substitute the switching rate α = α∗ that optimises
the bound, cross entropy reduces to ordinary entropy, and we find that
the regret only has a logarithmic dependence on t: we have

(m− 1) ln
t− 1
m− 1

≤ (t− 1)H(α∗) ≤ (m− 1) ln
t− 1
m− 1

+ m.

(3.15)
The problem is that such asymptotics can only be achieved if we are
somehow able to guess the optimal switching rate before observing the
data. This issue is addressed in the following sections. We will evaluate
the performance of the other models for expert tracking using the loss
of fixed share with α = α∗ as a baseline.

3.5.2 Intermezzo: Interpolation

Note how Fixed share (Figure 3.6) interpolates between the Bayesian
Mixture (Figure 3.2) and the Elementwise Mixture (Figure 3.3).The pa-
rameter α determines when switches occur. If no switch occurs then the
Bayesian Mixture’s transitions are used: all experts’ weights remain un-
changed. On the other hand, if a switch occurs then the Elementwise
Mixture’s transitions are used: all experts’ weights are gathered and
redistributed.

Interpolations are natural to the switching domain. In [41], so-called
Bernoulli HMMs are used to produce switching rates, whereas in Chap-
ter 4 a fixed switching rate α is used, varying instead the HMMs that
specify the normal and switching behaviour.

We now describe the general interpolation mechanism, which takes
three HMMs, H, Bn and Bs. The interpolator H specifies when switches
occur, Bn determines the normal (n) evolution and Bs determines the
evolution when a switch (s) occurs. In particular, we obtain a model
that defines the same distribution as fs[Ξ, w, α] by interpolation using
H = em[{n, s}, (1− α, α)], Bn = bayes[Ξ, w] and Bs = em[Ξ, w].

3.5.2. Definition (Interpolation). See Figure 3.7 for an illustration. Let
H = 〈QH, QH

p , PH
◦ , PH

� , ΛH〉 be a deterministic unfolded HMM on {n, s},
and let Bn and Bs be deterministic unfolded HMMs on experts Ξ shar-
ing a common state set Q with identical initial distribution P◦ and in-
terpretation Λ (and thus identical productive states Qp). We define

3.5. Switching Strategies 87

Bn ⊗H Bs, the H-interpolation of Bn and Bs, by

Bn ⊗H Bs :=
〈

Q⊗, Q⊗p , P⊗◦ , P⊗� , Λ⊗
〉
.

Each state of the interpolation is a pair of states, consisting of one state
from either B HMM, and one state from the interpolator H, at least one
of them productive:

Q⊗ := Q×QH
p ∪ Qp ×QH,

and productive states of the interpolation are the pairs with two con-
temporary productive states

Q⊗p :=
⋃
t≥1

Q{t} ×QH
{t}.

In the following we assume w.l.o.g. that P◦ and PH
◦ are on productive

states. The initial distribution P⊗◦ independently chooses a productive
state q from Q using P◦, and a productive state a from QH using the
initial distribution PH

◦

P⊗◦
(
〈q, a〉

)
:= P◦(q)PH

◦ (a).

The transition function P⊗� first forwards the first state component (q
in Q) to the next productive state in Q using either PBn

� or PBs
� as de-

termined by the produced label ΛH(a) ∈ {n, s}. Then it forwards the
second state component (a in QH) to the next productive state using PH

� .
Abbreviating BΛH(a) to Ba we have

P⊗�
(
〈q, a〉 → 〈q′, a′〉

)
:=


PBa
� (q→ q′) if q ∈ Q[t,t+1), a = a′ ∈ QH

{t},

PH
� (a→ a′) if a ∈ QH

[t,t+1), q = q′ ∈ Q{t+1},

0 otherwise.

Finally, the node label is that of the first component

Λ⊗
(
〈q, a〉

)
:= Λ(q).

Figure 3.7b shows the state transition diagram of an interpolation, with
the interpolator shown in Figure 3.7a. Figure 3.7c displays the Bayesian

88 Chapter 3. Expert Hidden Markov Models

Figure 3.7 Interpolation example: graph structure
(a) HMM H on {n, s} (normal/switch)

n // n // n

s

CC

��

s

CC

��

sCC

��

KK

CC

��

CC

��
n

CC

n

CC

n

(b) Interpolation HMM Bn ⊗H Bs on experts {A, B, C}
a // a // a

b PBn
�

// b PBn
�

// b PBn
�

c // c // c

a

==

��

a

==

��

a

b PBs
�

==

��

b PBs
�

==

��

b PBs
�

c

==

��

c

==

��

c

FF

��

CC CC

��

CC

��

P◦

FF

��

CC CC

��

CC

��

FF

��

CC CC

��

CC

��

a

CC

a

CC

a

b PBn
�

CC

b PBn
�

CC

b PBn
�

c

CC

c

CC

c

(c) Bayesian network of interpolation

ap
1

//

��

ap
2

//

��

ap
3

//

��

ap
4

//

��
σ1
��

σ2
��

σ3
��

σ4

��qp
1

//

��
qp

2
//

��
qp

3
//

��
qp

4
//

��
ξ1 ξ2 ξ3 ξ4

3.5. Switching Strategies 89

network of an interpolation. The random variables qp
i and ap

i are the
components of the productive state at time i, while ξ i = Λ(qp

i) and
σi = ΛH(ap

i). Note that σi = s if a switch occurs between time i and
i + 1.

Interpolation separates concerns; H, on the highest level, determines
when to switch. Below, Bn and Bs determine the normal and switching
behaviour. This separation is reflected in the following modular loss
bound:

3.5.3. Lemma (Interpolation Decomposition). Abbreviate πBσ to πσ. For
each sequence σt−1 ∈ {n, s}t−1 of switch decisions (on the H level) and each
sequence qt

p ∈ Qt
p of productive states (on the B level)

πBn⊗HBs(q
t
p) ≥ πH(σ

t−1) P◦(q
p
1)

t−1

∏
i=1

πσi(q
p
i+1|q

p
i).

Proof. For every distribution

πBn⊗HBs(q
t
p) ≥ πBn⊗HBs(σ

t−1)πBn⊗HBs(q
t
p|σt−1).

By the definition of interpolation, we have πBn⊗HBs(σ
t−1) = πH(σ

t−1)

and πBn⊗HBs(q
t
p|σt−1) = P◦(q

p
1)∏t−1

i=1 πσi(q
p
i+1|q

p
i).

3.5.4. Corollary (Default Interpolation Regret). We apply this theorem
to our B-level HMMs of interest, Bn = bayes[Ξ, w] and Bs = em[Ξ, w]
where w is uniform on k experts. Fix ξt. Set σi = s iff ξi+1 6= ξi, and let m be
the number of blocks in ξt, i.e. the number of s in σt−1 plus one. Then for all
data xt

ln
Pξt(xt)

PBn⊗HBs(xt)
≤ − ln πH(σ

t−1) + m ln k.

Proof. Recall that in both B-level HMMs there is, at each time, a one-
one correspondence between productive states and experts, so we may
just as well identify them. Then we have P◦(ξ1) = w(ξ1),

π
bayes[Ξ,w](ξi = ξi−1|ξi−1) = 1, and π

em[Ξ,w](ξi|ξi−1) = w(ξi).

Lemma 3.5.3, using w(ξ) = 1/k, yields πBn⊗HBs(ξ
t) ≥ πH(σ

t−1) k−m

and the result follows by (3.10).

90 Chapter 3. Expert Hidden Markov Models

3.5.5. Example (Fixed Share Regret). We shorten em[{n, s}, (1− α, α)]
to fs[α]. We now redefine the fixed share model in terms of the inter-
polation

fs[Ξ, w, α] := bayes[Ξ, w]⊗
fs[α] em[Ξ, w].

Note that this definition is equivalent to the one in Figure 3.6, as the
sets of infinite runs (of states) are in one-one correspondence between
the models, and so in particular they induce the same ES-joint. We now
reprove the fixed share regret bound (3.13) by combining Corollary 3.5.4
with the observation that

− ln π
fs[α](σ

t−1) = − ln
(
(1− α)t−mαm−1) = (t− 1)H(α∗, α). (3.16)

In the following we often use this mechanism. We prove a loss bound
for the interpolator H on switch sequences, and transport it to the data
level using Corollary 3.5.4, adding m ln k. 3

Running Time of Forward Algorithm The forward algorithm (Algo-
rithm 3.1, Section 3.3.4.3) decomposes for interpolations. To compute
the round t forward propagation step on the interpolation Bn ⊗H Bs,
we need to compute |Q{t}| many forward propagations on Bs/Bn, fol-
lowed by |QH

{t}| many forward propagations on H. For our HMMs of
interest, the total running time of the forward algorithm on the inter-
polation is dominated by |Ξ| times the running time on H.

Outlook This concludes the intermezzo. In the remainder of this sec-
tion, we discuss the benefits and costs of several choices for H, both
in terms of loss bound and in terms of running time. We also briefly
discuss alternatives for Bn and Bs.

3.5.3 Decreasing Switching Rate

Fixed share uses a fixed switching rate α. However, it is possible to
get good bounds without having to choose α, by letting the switching
probability decrease as a function of time. This approach was invented
in our group in CWI, Amsterdam, but from personal discussion with
Mark Herbster we learned that he independently invented an algorithm
similar to the slowly decreasing switching rate (Section 3.5.3.1), as early
as 1997. Fixed share uses the elementwise mixture interpolator with

3.5. Switching Strategies 91

switching rate α. We consider a new interpolator, dsr[αω], which is
similar to fs[α], except that the switching probability αt is no longer a
parameter of the model, but a fixed decreasing function of the time t.
We still model switches as independent, and as before, we define the
full model as

dsr[Ξ, w, αω] := bayes[Ξ, w]⊗
dsr[αω] em[Ξ, w].

To obtain bounds, we use the following equality. Let σt−1 be a se-
quence with m− 1 occurrences of s at positions t2, . . . , tm, and let t1 = 0.
Then

− ln π
dsr[αω](σ

t−1) = − ln

(
t−1

∏
i=1

(1− αi)
m

∏
j=2

αtj

1− αtj

)
=

−
t−1

∑
i=1

ln(1− αi)−
m

∑
j=2

ln
αtj

1− αtj

. (3.17)

The middle expression can be read as follows: the first sum denotes the
cost of not switching during the first t outcomes, and the second sum
denotes the correction for the switches that actually did occur.

We now consider two interesting choices for the switching rate αi,
solving the two problems that we identified for fixed share, namely that
the α parameter has to be tuned, and that the regret keeps increasing
even if, from some point on, no switches occur anymore.

3.5.3.1 Switching with Slowly Decreasing Probability

3.5.6. Theorem. Let αi = 1− e−c/i for some c > 0. Let w be the uniform
distribution on the set Ξ of k experts. For any data xt and expert sequence ξt

with m blocks

ln
Pξt(xt)

P
dsr[Ξ,w,αω](xt)

≤ m ln k + c− (m− 1) ln c + (m− 1 + c) ln(t− 1).

(3.18)

92 Chapter 3. Expert Hidden Markov Models

Proof. By (3.17), using ∑t
i=1

1
i < ln t + 1 and ex ≥ x + 1,

− ln π
dsr[αω](σ

t−1) = c
t−1

∑
i=1

1
i
−

m

∑
j=2

ln
(
ec/tj − 1

)
≤

c ln(t− 1) + c− (m− 1) ln c +
m

∑
j=2

ln tj.

The sum is bounded by substituting each tj by t − 1, and the result
follows by Corollary 3.5.4.

Note that while we succeeded in eliminating the parameter α, we
have in fact introduced a new parameter c, so it would appear that
matters have not improved much. But in fact, as c does not appear in
the dominant term of the bound, it may safely be set to some convenient
constant such as c = 1 or c = 1/e. The optimising value is c∗ =
(m − 1)/(1 + ln(t − 1)), which yields slightly better asymptotics, but
this defeats the purpose as it would require a priori knowledge of m
and t again.

We now compare the regret bound (3.18) to the bound (3.16) for
fixed share. To maximise the difference, we use the optimising param-
eter α∗ for fixed share, and we lower bound the entropy using (3.15).
The difference is

c− (m− 1) ln c + c ln(t− 1) + (m− 1) ln(m− 1),

where the last two terms dictate asymptotic behaviour. Which of these
terms is dominant depends on how quickly m grows as a function of t.
If there are relatively few switches, m ln m = o(ln t), then the c ln(t− 1)
term dominates, so it pays to use a small value for c to get good asymp-
totics in that case. If, on the other hand, the number of switches is large,
then the last term is larger, and it may be substantial; careful judgement
is then required to decide whether or not this is an acceptable price to
pay or that a more sophisticated method for learning the switching rate
(Section 3.5.4) is preferable.

3.5.3.2 Switching with More Quickly Decreasing Probability

In some settings the optimal number of switches between experts may
remain bounded. For example, in [177] the considered experts are

3.5. Switching Strategies 93

Bayesian prediction strategies associated with parametric models of
varying complexity; at small sample sizes, simple models typically
make the best predictions, but if one of the more complex models con-
tains (a distribution closest to) the data generating distribution, then
one expects that model to eventually make the best predictions. From
that point in time onwards, no more switches away from that model are
required.

In such a scenario, a simple Bayesian combination of the experts
with uniform prior yields a regret bound of ln k w.r.t. the ultimately
best expert (see (3.6)), which depends on the number of experts but not
on the sample size. Asymptotically, this is therefore a better solution than
the one presented in the previous section, where even if there are no
switches at all (m = 1), the incurred regret bound of ln k + c + c ln(t−
1) grows without bound. This happens because the ES-prior dsr[αω]
assigns zero probability to the event that no more switches occur from
some time t onwards.

There are two ways to tweak the model somewhat to ensure that
the probability of no more switches is strictly positive. This section
considers the simplest approach, which is just to let the probability of
switching decrease slightly faster. A different method called the switch
distribution, introduced in [177], is briefly discussed in the next section.

3.5.7. Theorem. Let αi = 1− e−cτ(t) for some c > 0 and a decreasing mass
function τ on the positive integers. Let w be the uniform distribution on the
set Ξ of k experts. For any data xt and expert sequence ξt with m blocks

ln
Pξt(xt)

P
dsr[Ξ,w,αω](xt)

≤ m ln k + c− (m− 1) ln c− (m− 1) ln τ(tm). (3.19)

Proof. Using (3.17), ∑i τ(i) = 1 and ex ≥ x + 1,

− ln π
dsr[αω](σ

t−1) = c
t−1

∑
i=1

τ(i)−
m

∑
j=2

ln
(
ec·τ(tj) − 1

)
≤

c− (m− 1) ln c−
m

∑
j=2

ln τ(tj).

For decreasing τ, we obtain an upper bound by substituting ti = tm for
1 ≤ i < tm, and the theorem follows from Corollary 3.5.4.

94 Chapter 3. Expert Hidden Markov Models

A desirable feature of this bound is that it is expressed in terms of
the index tm of the last switch rather than in terms of the time t. The
role of c is even weaker than before, since it no longer features in a
c ln t penalty term; its optimal value is now c∗ = m− 1, meaning that a
value of 1 or larger will generally be sensible. To choose a suitable prior
τ, note that the bound depends on the prior probability of tm, which
is typically at least moderately large. Therefore it is sensible to use a
fat-tailed prior. A convenient choice is

τ(t) =
1

ln(t + e− 1)
− 1

ln(t + e)
, (3.20)

which satisfies

− ln τ(t) ≤ ln(t) + 2 ln ln(t + e) + e/t.

To compare the resulting bound to the bound from Section 3.5.3.1, as-
sume tm = t− 1 and overestimate (3.19) by

m ln k+ c− (m− 1) ln c+(m− 1) ln(t− 1)+ 2(m− 1) ln ln(t− 1+ e)+ e.

Subtracting (3.18) we get a difference of

2(m− 1) ln ln(t− 1 + e)− c ln(t− 1) + e.

Thus, asymptotically the new bound (3.19) improves upon (3.18) if the
number of switches m does not grow too quickly as a function of t, to
be precise if m ln ln t = o(ln t). The current choice of αω has the simul-
taneous advantage of bounded regret w.r.t. reference expert sequences
with a bounded number of switches.

3.5.3.3 The Switch Distribution

Like the model with quickly decreasing probability of switching, the
switch distribution is a model with the feature that the regret bound is
parameterised by the index of the last switch tm rather than the time
t. It is an adaptation of the model with slowly decreasing switching
probability (Section 3.5.3.1). The structure of its defining interpolator
is displayed in Figure 3.7a. The idea is that with every switch, there
is a certain fixed probability of “stabilisation”, meaning that the in-
terpolator enters a special “band” of states where further switching is

3.5. Switching Strategies 95

impossible. The resulting loss bound is very similar to (3.18) except that
t is replaced by tm + 1, and there is an additional stabilisation penalty
of −(m− 1) ln(1− θ)− ln θ where 0 < θ < 1 is some fixed stabilisation
probability.

The switch distribution was developed for the purpose of MDL and
Bayesian model selection and model averaging. In [177] the switch
distribution is shown to achieve the optimal rate of convergence when
used for sequential prediction, but at the same time, it defines a model
selection criterion that can be shown to be consistent (select the model
containing the true distribution with probability 1 as sufficient data
become available).

In fact, the results in [177] apply also to the model with quickly de-
creasing switching probability of Section 3.5.3.2, which is significantly
simpler. For further details of how the original switch distribution can
be cast as an HMM, including a proof that this HMM corresponds to
the parametric definition of the ES-prior, the reader is referred to [101].
An abbreviated, but more polished, discussion appears in [100].

3.5.4 Learning the Switching Rate

3.5.4.1 The Switching Method

In a very early publication, Volf and Willems [180] describe an algo-
rithm called the switching method, which is very similar to Herbster and
Warmuth’s fixed share, except that it is able to learn the optimal switch-
ing rate α online. Here we describe it as an interpolation and bound its
regret. Whereas fixed share interpolates using a fixed Bernoulli[α] dis-
tribution, the switching method “integrates out” the parameter using
Jeffreys’ prior (which is Beta[1

2 , 1
2]).

The switching method HMM is defined as the interpolation

sm[Ξ, w] := bayes[Ξ, w]⊗sm em[Ξ, w],

with the interpolator sm defined in Figure 3.8. Each productive state
〈nn, ns, σ〉 represents the fact that after observation nn + ns + 1 a switch
occurs (σ = s) or not (σ = n), while there have been ns switches in the
past.

We now bound the regret of the switching method with respect
to fixed share with any switching rate α (in particular the maximum

96 Chapter 3. Expert Hidden Markov Models

likelihood rate α̂), and thereby show that it is universal for the fixed-
share model class

{
P

fs[Ξ,w,α]
∣∣ α ∈ [0, 1]

}
. As far as we know, this bound

is new.

3.5.8. Theorem (The Switching Method Regret). For any switching rate α
and data xt

ln
P

fs[Ξ,w,α](xt)

P
sm[Ξ,w](xt)

≤ ln 2 + 1
2 ln t.

Proof. Fixed share and the switching method interpolate the same un-
derlying HMMs, so we have the following information processing in-
equalities (c.f. Lemma 3.4.2)

max
xt

P
fs[Ξ,w,α](xt)

P
sm[Ξ,w](xt)

≤ max
ξt

P
fs[Ξ,w,α](ξ

t)

P
sm[Ξ,w](ξt)

≤

max
σt−1

P
fs[Ξ,w,α](σ

t−1)

P
sm[Ξ,w](σt−1)

= max
σt−1

P
fs[α](σ

t−1)

Psm(σt−1)
.

Thus we may transfer regret bounds from the interpolator level via
the expert-sequence level to the data level. The rightmost term is the
worst-case regret for the Bernoulli model with Jeffreys prior, which can
be bounded (see e.g. [190]) by ln 2 + 1

2 ln t for all α.

By the above theorem and the fixed share regret bound Theorem 3.5.1,
we obtain for all ξt with switching rate α∗

ln
Pξt(xt)

P
sm[Ξ,w](xt)

≤ m ln k + (t− 1)H(α∗) + ln 2 + 1
2 ln t.

The switching method was independently derived by [18], who also
proved the above bound. Our theorem is slightly sharper, as it bounds
the regret w.r.t. the maximum-likelihood fixed-share performance in-
stead of its regret bound.

3.5.4.2 Improving Time Efficiency for Learning the Switching Rate

The new ingredient of the switching method compared to fixed share
is that the HMM includes a switch count in each state. This allows
us to adapt the switching probability to the data, but it also renders

3.5. Switching Strategies 97

Figure 3.8 The switching method interpolator sm

s

88

〈3,0〉
//
::

n //

s

::

s

::

〈2,0〉
//
::

n //
〈2,1〉

//
::

n //

s

::

s

::

s

::

〈1,0〉
//
::

n //
〈1,1〉

//
::

n //
〈1,2〉

//
::

n //

s

::

s

::

s

::

s

::

〈0,0〉
//
::

n //
〈0,1〉

//
::

n //
〈0,2〉

//
::

n //
〈0,3〉

//
::

n //

Q = Qs ∪Qp Qs = N2 Qp = N2 × {n, s}
Λ(nn, ns, σ) = σ P◦(0, 0) = 1

P�


〈nn, ns, n〉 → 〈nn + 1, ns〉
〈nn, ns, s〉 → 〈nn, ns + 1〉
〈nn, ns〉 → 〈nn, ns, n〉
〈nn, ns〉 → 〈nn, ns, s〉

 =


1
1

(nn+
1
2)

(nn+ns+1)

(ns+
1
2)

(nn+ns+1)



the number of states quadratic. The quadratic running time O(k t2) re-
stricts its use to moderately sized data sets. Monteleoni and Jaakkola
[129] place a discrete prior on the switching rate α: the prior mass is dis-
tributed over

√
t well-chosen points, where the ultimate sample size t is

assumed known. This way they still achieve the bound of Theorem 3.5.8
up to a constant, while reducing the running time to O(k t

√
t).

The approach taken by Monteleoni and Jaakkola has two disadvan-
tages of its own: first, the ultimate sample size t has to be known in ad-
vance, which means that the presented algorithm is only quasi-online.
Second, the discretisation of the prior is defined only algorithmically,
which means that both the number and the values of the discretisation
points are not known symbolically. As a consequence, the resulting
regret bound can only be determined up to O(1). In [41] a simple ex-
plicit discretisation scheme is presented which allows the regret bound
to be calculated exactly. Furthermore, it is shown how, at the cost of a

98 Chapter 3. Expert Hidden Markov Models

somewhat worse regret bound, this discretisation scheme can be refined
online such that t no longer has to be known in advance.

3.5.5 The Run-length Model for Clustered Switching

Run-length codes have been used extensively in the context of data
compression, see e.g. [128]. Rather than applying run length codes
directly to the observations, we use the corresponding probability dis-
tributions on binary sequences as interpolators, as they may constitute
good models for the distances between consecutive switches.

The run-length model is especially useful if the switches are clus-
tered, in the sense that some parts of the expert sequence contain rel-
atively few switches, while other parts contain many. The fixed share
algorithm remains oblivious to such properties, as its interpolator is a
Bernoulli model: the probability of switching remains the same, regard-
less of the index of the previous switch. Essentially the same limitation
also applies to the switching method, whose switching probability nor-
mally converges as the sample size increases. The switch distribution
is efficient when the switches are clustered toward the beginning of the
sample: its switching probability decreases in the sample size. How-
ever, this may be unrealistic and may introduce a new unnecessary loss
overhead.

The run-length model is based on the assumption that the intervals
between successive switches are independently distributed according
to some distribution τ. After the universal share model and the switch
distribution, this is a third generalisation of the fixed share algorithm,
which is recovered by taking a geometric distribution for τ.

Let τ be a distribution on Z+ ∪ {∞}, which is used to model the
lengths of the blocks. We assume τ(∞) > 0; this keeps our regret
constant when the reference number of switches is bounded while the
number of samples goes to infinity. The run-length interpolator rl[τ]
is defined in Figure 3.9. Intuitively, the state 〈t, δ〉 means that we are at
time t, and that sample t+ 1 will be the δth sample since the last switch.
The HMM for the run-length model is given by the interpolation

rl[Ξ, w, τ] := bayes[Ξ, w]⊗
rl[τ] em[Ξ, w].

As may be read from the diagram of the interpolator, evaluating the
run-length model requires quadratic running time O(k t2) in general.

3.5. Switching Strategies 99

Figure 3.9 The run-length model interpolator rl[τ, c]

s

88

〈3,1〉

//
::

n //

s

::

〈2,1〉

//
::

n //
〈3,2〉

//

GG

n //

s

::

〈1,1〉

//
::

n //
〈2,2〉

//

GG

n //
〈3,3〉

II

// n //

s

::

〈0,1〉

//
::

n //
〈1,2〉

//

GG

n //
〈2,3〉

//

II

n //
〈3,4〉

//

II

n //

Q = Qs ∪Qp Qs = S Qp = {n} × S ∪ {s} ×N

P◦(0, 1) = 1 Λ(n, t, δ) = n Λ(s, t) = s

P�


〈s, t〉 → 〈t, 1〉
〈n, t, δ〉 → 〈t, δ〉
〈t, δ〉 → 〈n, t+1, δ+1〉
〈t, δ〉 → 〈s, t+1〉

 =


1
1

τ
(
z > δ|z ≥ δ

)
τ
(
z = δ|z ≥ δ

)


where

S :=
{
〈t, δ〉 ∈N2 | δ ≤ t + 1

}
.

3.5.9. Theorem (Run-length Model Regret). Let w be the uniform distri-
bution on k experts. Assume there is a log-convex function ϑ on [1, ∞) that
agrees with τ on Z+. With abuse of notation, we identify τ with ϑ. Then, for
all data xt and expert sequences ξt with m blocks, we have

ln
Pξt(xt)

P
rl[Ξ,w,τ](xt)

≤ m ln k− ln τ(∞)− (m− 1) ln τ

(
tm

m− 1

)
. (3.21)

Proof. Fix a switch sequence σt−1 with m− 1 occurrences of s at posi-
tions t2, . . . , tm, and let t1 = 0. For j = 1, . . . , m − 1, let δj = tj+1 − tj
denote the length of block j. From the definition of the interpolator

100 Chapter 3. Expert Hidden Markov Models

above, we obtain

− ln π
rl[τ](σ

t−1) = − ln τ(z ≥ t− tm)−
m−1

∑
j=1

ln τ(δj) ≤

− ln τ(∞)−
m−1

∑
j=1

ln τ(δj).

Since − ln τ is concave, by Jensen’s inequality we have

m−1

∑
j=1

− ln τ(δj)

m− 1
≤ − ln τ

(
m−1

∑
j=1

δj

m− 1

)
= − ln τ

(
tm

m− 1

)
.

In other words, the block lengths δi are all equal in the worst case.
Combining this with Corollary 3.5.4 we obtain the result.

We have seen that the run-length model reduces to fixed share if the
prior on switch distances τ is geometric, so that it can be evaluated in
linear time in that case. We also obtain a linear time algorithm when
τ has finite support, because then only a constant number of states can
receive positive weight at any sample size. For this reason it can be
advantageous to choose a τ with finite support, even if one expects
that arbitrarily long distances between consecutive switches may occur.
Expert sequences with such longer distances between switches can still
be represented with a truncated τ using a sequence of reflexive switches
from and to the same expert. This way, long runs of the same expert
receive exponentially small, but positive, probability.

To compare the performance of the run-length model to the bound
(3.16) for fixed share, assume tm = t− 1 and define τ as in (3.20). The
bound (3.21) becomes

m ln k− ln τ(∞) + (m− 1)
(

ln
t− 1
m− 1

+ 2 ln ln
(

t− 1
m− 1

+ e
)
+ e
)

To maximise the difference, we use the optimising parameter α∗ for
fixed share, and we lower bound the entropy using (3.15). The gap
between the bounds is then given by

− ln τ(∞) + 2(m− 1) ln ln
(

t− 1
m− 1

+ e
)
+ (m− 1)e.

3.5. Switching Strategies 101

At this modest price, the run-length model does not require tuning
any parameters, its regret depends on tm instead of t, and it may take
advantage of clustered switches, although this is not expressed by The-
orem 3.5.9.

3.5.6 Ordered Experts

In the models discussed so far, once a switch occurs, it is equally easy
to switch to any of the available experts, as Bs prescribes uniform re-
distribution of the probability mass. This approach is reasonable if we
do not know anything about the relationship between the experts; fur-
thermore it has the advantage that percolating probabilities through Bs

requires only O(k) operations, while we would need O(k2) operations
to support arbitrary transition probabilities between the experts. In this
section we consider an interesting alternative that both makes intuitive
sense and allows for efficient computation.

Assume that the experts can be sensibly organised using a line or
ring topology, with the interpretation that switches between two experts
are more likely if they are close together on this structure than if they
are far apart. As an example, in a density estimation problem, one may
define experts to estimate the underlying density of the data using a
histogram model with 1, 2, . . . bins respectively. In this case it is clear
that, typically, the optimal number of bins to use increases gradually as
more observations are gathered, so switching from a 10-bin histogram
to a 11-bin histogram is more likely than, say, switching to a 1,000-bin
histogram.

We will simplify matters further by postulating that the probability
of a switch between any pair of experts who are δ apart is the same.
Furthermore, for simplicity of exposition we identify the experts with
the integers, Ξ = Z. (In practice it is of course not possible to work with
an infinite set of experts, but this can be resolved by simply changing
the forward algorithm to drop all probability mass that at any time
becomes propagated to an expert outside of the considered range.)

Now the notion of similarity between experts may be expressed by
a kernel, i.e. a probability distribution on distances. The distribution
on experts at time t + 1 is the convolution of the kernel with the distri-
bution at time t. For kernel κ and distribution λ (both either discrete or

102 Chapter 3. Expert Hidden Markov Models

continuous), the convolution κ ∗ λ is defined by

(κ ∗ λ)(x) := Eδ∼κ [λ(x− δ)] .

This approach can be lifted to the level of states: sometimes it may be
sensible to order all states involved in an expert HMM. However, for
simplicity we will consider the interpolating model of Section 3.5.2,
where the transitions of Bs are replaced by a convolution κ on the
experts. The HMM implementing these convolutions is kernel[κ] :=
〈Q, Qp, P◦, P�, Λ〉, defined as follows

Q = Qp = Z×Z+ Λ(ξ, t) = ξ

P◦(ξ, 1) = κ(ξ) P(〈ξ, t〉 → 〈ξ ′, t + 1〉) = κ(ξ ′ − ξ).

For this scenario, we derive the following analogue of Corollary 3.5.4:

3.5.10. Corollary (Kernel Interpolation Regret). Let Bn = bayes[Z, κ]
and Bs = kernel[κ]. Fix ξt. Set σi = s iff ξi+1 6= ξi, and for 1 ≤ j ≤ m let
k j denote the expert used in the jth block. Further let k0 = 0. Then for all xt:

ln
Pξt(xt)

PBn⊗HBs(xt)
≤ − ln πH(σ

t−1)−
m

∑
j=1

ln κ(k j − k j−1).

Proof. As before, we identify productive states and experts to get

π
bayes[Z,κ](ξ1) = π

kernel[κ](ξ1) = κ(ξ1),

π
bayes[Z,κ](ξi = ξi−1|ξi−1) = 1,

and
π

kernel[κ](ξi|ξi−1) = κ(ξi − ξi−1).

Now Lemma 3.5.3 yields πBn⊗HBs(ξ
t) ≥ πH(σ

t−1) ∏m
j=1 κ(k j − k j−1),

and the result follows by (3.10).

From the Convolution Theorem, we know that any convolution κ ∗λ
on k experts can be carried out in O(k log k) time using the Fast Fourier
Transform algorithm, see e.g. [32, 21]. Thus, the ordered expert ap-
proach, which is in fact orthogonal to all the interpolating models de-
scribed in previous sections, seems to provide a very attractive tradeoff
between time complexity and expressive power.

In the following we consider a particular kernel for which the convo-
lution can be performed in O(k) time using a much simpler algorithm.
It also has an interesting interpretation as a nice model for “parameter
drift”.

3.5. Switching Strategies 103

3.5.7 Parameter Drift

So far, we have discussed strategies where we follow a Bayesian pre-
diction strategy which is interrupted every now and then by switching
events. This is reflected by the regret bound Corollary 3.5.10, which
consists of a term for the cost of specifying the indices of the switches,
and a second term for the cost of specifying which experts are involved
in the switches.

In this section we take a radically different approach. Rather than
thinking of sporadic abrupt changes in the relative predictive perfor-
mance of the experts, we now imagine that their performance changes
gradually over time. Sticking to the ordered experts approach, as be-
fore we identify the set of experts with the integers, Ξ = Z. However,
in this section we will bound the regret in terms of the total amount of
drift in ξt:

d =
t

∑
i=1
|δi|, where δ1 = ξ1 and δi = ξi − ξi−1 for 1 < i ≤ t,

which can be viewed as the length of the path described by ξt.
As an example, one may consider the switching model proposed by

Monteleoni and Jaakkola (see Section 3.5.4.2). They essentially instan-
tiate a number of fixed share models, for various values of the switch-
ing rate α. These fixed share instances are prediction strategies, and
can therefore be interpreted as experts themselves. However, it seems
reasonable to assume that in many cases the optimal switching rate α
might be subject to drift: it might vary somewhat as time progresses.
Therefore it may be beneficial to combine these “fixed share experts”
using a model that can represent parameter drift. The resulting loss
can be bounded in terms of the amount of drift that occurs in the ref-
erence sequence of switching parameters. For parameter drift we no
longer use an interpolation, as in previous sections, because switches
no longer have special status. Instead, shifts between experts are pos-
sible at each time step, through convolution with the following kernel,
parameterised by 0 < α < 1:

κα(δ) := α|δ|
1− α

1 + α
.

This kernel can be implemented with the HMM kernel[κα] from the
previous section, but as it turns out it is possible to represent the same

104 Chapter 3. Expert Hidden Markov Models

kernel using a different HMM pd[α], defined in Figure 3.10, that uses
silent states to reduce the number of edges, allowing the convolution to
be carried out in time proportional to the number of experts considered.

3.5.11. Theorem (Parameter Drift Regret). Fix any data xt and reference
sequence ξt with total drift d. Let H(P, Q) = −∑x P(x) ln Q(x) denote the
cross entropy. Then

ln
Pξt(xt)

P
pd[α](xt)

≤ t H(κα∗ , κα) = −t ln
1− α

1 + α
− d ln α,

where α∗ = argmaxα π
pd[α](ξ

t) =
√

1 + (t/d)2 − (t/d).

Proof. Applying Lemma 3.4.1, the left-hand side is bounded above by
− ln π

pd[α](ξ
t). Since {κα} is an exponential family with unit carrier,

− ln π
pd[α](ξ

t) = − ln
t

∏
i=1

κα(δi) = t Eκα∗ [− ln κα(δ)] = t H(κα∗ , κα).

The right equality follows from

π
pd[α](ξ

t) =
t

∏
i=1

κα(δi) = αd
(

1− α

1 + α

)t

.

The parameter α∗ that maximises the likelihood of ξt is found by equat-
ing the derivative to zero.

We can be somewhat more precise about how much it can hurt
performance to use a suboptimal parameter α. The following theorem,
which bounds the regret with respect to the optimal parameter-drift
model, is an analogue of Equation 3.14 for fixed share. The theorem
applies to a wide class of kernel HMMs, but in particular it holds for
the parameter-drift model pd[α].

3.5.12. Theorem (Kernel ML Regret). Fix a sequence of outcomes xt and
let η̂ = argmaxη P

kernel[κη](xt) for some exponential family {κη}. We have

ln
P

kernel[κη̂](xt)

P
kernel[κη](xt)

≤ t D
(
κη̂

∥∥κη

)
Proof. Since the transition probabilities associated with each productive
state (i.e. the kernel κη) are an exponential family distribution, we can
apply Lemma 3.4.3 with Q† equal to the set of all productive states.

3.5. Switching Strategies 105

Figure 3.10 Parameter drift: pd[α]

�� ��

OO

��

OO

��

2

>>

''

// 2

>>

''

// 2

OO

77

��

OO

77

��

1

>>

''

// 1

>>

''

// 1

OO

77

��

OO

77

��

LL

KK

GG

//

��

��

��

0

>>

''

// 0

>>

''

// 0 · · ·

OO

77

��

OO

77

��

-1
〈1,-1〉

>>

''

// -1
〈2,-1〉

>>

''

// -1

〈1,-2,-1〉

OO

77

〈1,-1,-2〉

��

OO

77

��

-2

>>

''

// -2

>>

''

// -2

OO

77

��

OO

77

��

OO OO

pd[α] = 〈Q, Qp, P◦, P�, Λ〉 Q = Qs ∪Qp

Qp = Z+ ×Z P◦(〈1, ξ〉) = κα(ξ) Λ(t, ξ) = ξ

Qs = Z+ × {〈i, i + 1〉, 〈i, i− 1〉 | i ∈ Z}

P



〈t, ξ−1, ξ〉 → 〈t, ξ, ξ+1〉
〈t, ξ+1, ξ〉 → 〈t, ξ, ξ−1〉
〈t, ξ−1, ξ〉 → 〈t+1, ξ〉
〈t, ξ+1, ξ〉 → 〈t+1, ξ〉

〈t, ξ〉 → 〈t+1, ξ〉
〈t, ξ〉 → 〈t, ξ, ξ+1〉
〈t, ξ〉 → 〈t, ξ, ξ−1〉


=



α

α

1− α

1− α

(1−α)/(1+α)

α/(1 + α)

α/(1 + α)



106 Chapter 3. Expert Hidden Markov Models

3.5.7.1 Getting rid of α

The parameter drift model as discussed so far shares both the elegance
of the fixed share algorithm and its awkward dependence on a param-
eter α. However, most of the techniques to avoid specifying α that were
discussed in previous sections can be adapted to the parameter drift
model. We will not discuss all these in detail, but consider only an
adaptation of the trick that we used in Section 3.5.3. Namely, we let the
kernel parameter α decrease with time.

3.5.13. Theorem (Decreasing Drift Regret). Let Ppd denote the ES-joint
based on the parameter drift model with time-dependent kernel καi with αi =
1/(i + 1). For any data xt and reference sequence ξt with total drift d, we
have

ln
Pξt(xt)

Ppd(xt)
≤ (d + 2) ln(t + 1).

Proof. We first expand

πpd(ξ
t) =

t

∏
i=1

καi(δi) =
t

∏
i=1

α
|δi |
i

1− αi

1 + αi
=

t

∏
i=1

(i + 1)−|δi | i
i + 2

=

2
(t + 1)(t + 2)

t

∏
i=1

(i + 1)−|δi |.

For fixed total drift d, it is clear that this probability is minimised by
|δi| = 0 for 1 ≤ i < t and |δt| = d. Therefore

πpd(ξ
t) ≥ 2

(t + 1)(t + 2)
(t + 1)−d ≥ (t + 1)−d−2.

We now take the − ln and apply Lemma 3.4.1 to complete the proof.

3.5.8 White-Box Experts

So far, we have considered various interpolations, but we have always
used a Bayesian mixture for Bn. Thus we interpreted normal opera-
tion (no switch) as sticking to the same expert. Another interpretation,
introduced in Chapter 4, instantiates Bn with an HMM that is able to
learn some pattern of the data, e.g. the trend of the samples. Then,
under normal operation, we keep on learning this trend. For Bs we

3.6. Extensions 107

choose the HMM that collects the weights, and redistributes according
to the initial distribution of Bn, fulfilling the same role as em took for
bayes. Thus, on a switch, everything is forgotten and learning the trend
restarts from scratch. See Chapter 4 for examples and analysis of regret
and running time for the fs[α] interpolator. The analyses can easily be
adapted to the other interpolators described above.

3.6 Extensions

In this section we describe a number of such extensions to the frame-
work described above. In Section 3.6.1 we outline a possible generalisa-
tion of the considered class of HMMs, allowing the ES-prior to depend
on observed data. In Section 3.6.2 we try to find out which expert was
best at a particular time step. In Section 3.6.3 we explain a minor modi-
fication of the algorithm that will disallow switching from an expert to
that same expert. Finally in Section 3.6.4 we indicate how our approach
can be generalised to work with any mixable loss function.

3.6.1 Data-Dependent Priors

When we discussed using HMMs to define ES-priors we imposed the
restriction that for each state the associated Ξ-PFS should be indepen-
dent of the previously produced experts. Indeed, conditioning on the
expert history would increase the running time dramatically as all pos-
sible histories would have to be considered. However, conditioning on
the past observations can be done at no additional cost, as the data are
observed. Using this freedom would typically require additional knowl-
edge about the process being modelled, in violation of our slogan “we
do not understand the data”. However, we may also condition on some
function of the data that does not require too much domain specific
knowledge to interpret. An interesting case is obtained by condition-
ing on the vector of losses (cumulative or incremental) incurred by the
experts. This extends expressive power: the resulting ES-joints are gen-
erally not decomposable into an ES-prior and expert PFSs. An example
is the Variable Share algorithm introduced in [80].

108 Chapter 3. Expert Hidden Markov Models

3.6.2 Expert Estimation

The forward algorithm computes the probability of the data, that is

P(xt) = ∑
qλ :qλ∈Q{t}

P(xt, qλ).

Instead of the entire sum, we are sometimes interested in the sequence
of states qλ that contributes most to it:

argmax
qλ

P(xt, qλ) = argmax
qλ

P(xt|qλ)π(qλ).

The Viterbi algorithm [146] is used to compute the most likely sequence
of states for HMMs. It can be easily adapted to handle silent states.
However, we may also write

P(xt) = ∑
ξt

P(xt, ξt),

and wonder about the sequence of experts ξt that contributes most. This
problem is harder because several states can produce the same expert
simultaneously (i.e. in the same Q{t}); in other words a single sequence
of experts can be generated by many different sequences of states. So
we cannot use the Viterbi algorithm as it is. The Viterbi algorithm can
be extended to compute the MAP expert sequence for general HMMs,
but the resulting running time explodes. Still, the MAP ξt can be some-
times be obtained efficiently by exploiting the structure of the HMM
at hand. This turns out to be possible for the switch distribution; the
algorithm is given in [101].

As an alternative way to gain insight, one may run the forward and
backward algorithms to compute P(xi, qp

i) and P(xt|qp
i , xi). Recall that

qp
i is the productive state that is used at time i. From these we can

compute the a posteriori probability P(qp
i |xt) of each productive state

qp
i . That is, the posterior probability taking all the available data into

account (including observations that were made later than time i). This
is a standard way to analyse data in the HMM literature, see e.g. [146].
We can then project the posterior on states down to obtain the posterior
probability P(ξi|xt) of each expert ξi ∈ Ξ at each time i = 1, . . . , t. This
gives us a sequence of mixture weights over the experts that we can, for
example, plot on a Ξ× t grid. On the one hand this gives us a mixture

3.6. Extensions 109

Figure 3.11 Irreflexive switching
(a) State transition diagram

a

''

��

��

a

b

77

''

��

b

c

??

77

''

c

d

DD

??

77

d

(b) Transition probabilities

P(ξ → ξ ′) = w(ξ ′|ξ ′ 6= ξ)

=
w(ξ ′)

1− w(ξ)

(c) Linear-time implementation

Input: Weights a1, . . . , ak at time t
Output: Weights b1, . . . , bk at time

t + 1
p← ∑k

i=1
ai

1−w(i)
for i = 1 . . . , k do

bi ← w(i)
(

p− ai
1−w(i)

)
end for

over experts for each time instance, obviously a richer representation
than just single experts. On the other hand we lose the temporal corre-
lations that can be important in MAP calculation, as each time instance
is treated separately.

3.6.3 Omitting Reflexive Switches

In most of the models that we present, we allow reflexive switches, and
prove a regret bound with a term of the form m ln k. By disallowing
reflexive switches (i.e. switches from and to the same expert), this re-
gret bound can be sharpened to ln k + (m− 1) ln(k− 1). One ln k term
remains, since the expert in the first block has no predecessor. This can
be done by using the HMM shown in Figure 3.11a for the switching be-
haviour Bs instead of em[Ξ, w]. The transition probabilities are shown
in Figure 3.11b. For the uniform prior they all reduce to 1/(k− 1).

Note that the state transition diagram has O(k2) edges. Still, due to
its regular structure, weights can be propagated forward in time O(k)
using the algorithm shown in Figure 3.11c.

110 Chapter 3. Expert Hidden Markov Models

3.6.4 Mixable Loss Functions

We presented log-loss regret bounds for experts that sequentially pro-
duce probability distributions on the next outcome. Not all predic-
tion tasks are in this form, for example, we may be asked to make a
point prediction based on real-valued expert advice and be scored using
quadratic loss. Fortunately, several loss functions are mixable [25, 75], in
that for each mixture of predictions, there is a single prediction whose
loss is always less than the exponentiated average loss. Mixable losses
include log loss, quadratic loss, Hellinger loss and entropic loss. 0/1

loss and absolute loss are not mixable.
Prediction strategies that are obtained by running the forward al-

gorithm on any HMM can be adapted to mixable losses straightfor-
wardly, by preprocessing the input to and post-processing the output
of the forward algorithm for sequential prediction. On the input side,
expert predictions are transformed into probabilities. On the output
side, the posterior distribution on the next expert (3.3) is transformed
(using the mixability condition) into a single prediction. The resulting
prediction strategy has the same mixable-loss regret bound as the origi-
nal prediction strategy (although possibly expressed in different units).
The details of the reduction can be found in Section 4.6.

3.7 Conclusion

In prediction with expert advice, we have at our disposal a number of
sequential prediction strategies (“experts”), and the goal is to combine
their predictions into a single prediction, by taking a weighted mixture
at every time step.

We take the Bayesian approach and model such combinations by
defining prior distributions on expert sequences (ES-priors). The (in-
finitely long) expert sequence defines which expert is used at which
time. Prediction then amounts to “integrating out” those experts in
the sequence that are used at other time steps than the one predicted.
The challenge is to identify those models that provide good tradeoffs
between predictive performance and time complexity.

We employ hidden Markov models (HMMs) to specify ES-priors,
since their explicit representation of the current state and state-to-state
evolution naturally fit the temporal correlations we seek to model. For

3.7. Conclusion 111

reasons of efficiency we use HMMs with silent states. The standard al-
gorithms for HMMs (Forward, Backward, Viterbi and Baum-Welch) can
be used to answer questions about the ES-prior as well as the induced
distribution on data. The running time of the forward algorithm can be
read off directly from the graphical representation of the HMM.

Our approach allows unification of many existing expert models.
We focus on models for tracking the best expert, where the loss incurred
by a prediction strategy is compared to the loss incurred if the data are
optimally divided into m blocks, and the best expert is used within each
block. The discrepancy (“regret”) is then bounded in terms of variables
such as the current time t, the number of experts k, and the number of
blocks m. In each case, we recover (sometimes improve) both the regret
bound and the running time known from the literature.

We use our unifying framework not only to succinctly summarise
and contrast many key algorithms from the literature, but also to de-
scribe a number of new models. In particular the models with de-
creasing probability of switching (Section 3.5.3), the run-length model
(Section 3.5.5) and the models that assume the experts to be ordered
(Section 3.5.6) are new, are computationally efficient and have compet-
itive regret bounds.

Acknowledgements

Peter Grünwald’s and Tim van Erven’s suggestions significantly im-
proved this chapter. Thanks also go to Mark Herbster for an enjoyable
afternoon exchanging ideas, which has certainly influenced the shape
of this chapter. We thank Wojciech Kotłowski for proofreading.

Chapter 4

Freezing & Sleeping

2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

Abstract A problem posed by Freund is how to efficiently track a
small pool of experts out of a much larger set. This problem was solved
when Bousquet and Warmuth introduced their mixing past posteriors
(MPP) algorithm in 2001.

In Freund’s problem the experts would normally be considered
black boxes. However, in this chapter we re-examine Freund’s problem
in case the experts have internal structure that enables them to learn.
In this case the problem has two possible interpretations: should the
experts learn from all data or only from the subsequence on which they
are being tracked? The MPP algorithm solves the first case. Our contri-
bution is to generalise MPP to address the second option. The results
we obtain apply to any expert structure that can be formalised using
(expert) hidden Markov models. Curiously enough, for our interpreta-
tion there are two natural reference schemes: freezing and sleeping. For
each scheme, we provide an efficient prediction strategy and prove the
relevant loss bound.

114

4.1. Introduction 115

4.1 Introduction

Freund’s problem arises in the context of prediction with expert ad-
vice [25]. In this setting a sequence of outcomes needs to be predicted,
one outcome at a time. Thus, prediction proceeds in rounds: in each
round we first consult a set of experts, who give us their predictions.
Then we make our own prediction and incur some loss based on the
discrepancy between this prediction and the actual outcome. The goal
is to minimise the difference between our cumulative loss and some ref-
erence scheme. For this reference there are several options; we may, for
example, compare ourselves to the cumulative loss of the best expert in
hindsight. A more ambitious reference scheme was proposed by Yoav
Freund in 2000.

Freund’s Problem Freund asked for an efficient prediction strategy
that suffers small additional loss compared to the following reference
scheme:

(a) Partition the data into several subsequences.
(b) Select an expert for each subsequence.
(c) Sum the loss of the selected experts on their subsequences.

In 2001, Freund’s problem was addressed by Bousquet and Warmuth,
who developed the efficient algorithm called mixing past posteriors
(MPP) [19]. MPP’s loss is bounded by the loss of Freund’s scheme plus
some overhead that depends on the number of bits required to encode
the partition of the data, and it has found successful application in [70].
Problem solved. Or is it?

4.1.1 Three Reference Schemes

In this paper we take another look at Freund’s reference scheme for
learning experts and ask: if an expert is selected for some segment, then
should the expert learn from all data or only from the data in that
segment?

We may assume that the experts do not know the segmentation
chosen in step a of the reference scheme. (Otherwise, why wouldn’t we
just ask them?) Hence if we treat the experts as black boxes and only
ask for their prediction at each time step as in [19], it is natural that they

116 Chapter 4. Freezing & Sleeping

Figure 4.1 Example learning expert DM[θ], which learns a drifting
mean, specified by its state transition diagram.

// 0
θ //

1− θ

��
1

θ //

1− θ

��
2

θ //

1− θ

��
3 //

1− θ

��

learn from all data. We call this interpretation of Freund’s problem the
full reference scheme.

However, as the following example will illustrate, it may be benefi-
cial if experts learn only from the segment for which they are selected,
because they may get confused by data in other segments that follow
a different pattern. As a slight complication, it will turn out that we
have a further choice: whether to tell a learning expert the timing of
its segment or not, which generally makes a difference. When segment
timing is preserved, we obtain the sleeping reference scheme; when seg-
ment timing is not preserved we obtain the freezing reference scheme. The
next intuitive example demonstrates that the full, freezing and sleep-
ing reference schemes are fundamentally different, and that the latter
two can be dramatically more appropriate for prediction with learning
experts.

4.1.1.1 Motivating Example: Drifting Mean

In applications one would usually build up complicated prediction
strategies from simpler ones in a hierarchical fashion. Following that
fashion, we first define simple constant experts, parametrised by µ ∈ R,
which predict according to a normal distribution with mean µ and unit
variance in each round.

Learning Experts Now define a learning expert DM[θ], as displayed
in Figure 4.1, that has a stochastic model for the (unobservable) drift
of µ over time. This drifting mean learning expert predicts according to
a hidden Markov model in which the hidden state at time t is µt and
the production probability of an outcome given µt is determined by the
simple expert with parameter µt. Initially, µ1 = 0 with probability one.
Then µt+1 = µt + 1 with probability θ and µt+1 = µt with probability
1− θ for some fixed parameter θ.

4.1. Introduction 117

The expert DM[θ] may be said to be learning, because its posterior
distribution of µt given outcomes x1, . . . , xt−1 indicates how much cred-
ibility the expert assigns to each value of µt: high weight on, say, µt = 3
indicates that DM[θ] considers it likely for µt = 3 to give the best pre-
diction for xt.

Data Consider the two artificial data sets displayed in Figures 4.2a and
4.2b. These data sets were obtained as follows. First, we generated two
straight-line data sets, with outcomes increasing at a rate of 0.1 and 0.3
per trial respectively. Then we divided both data sets in segments of 100
outcomes each. The data in Figure 4.2a were obtained by interleaving 10
segments from the 0.1 and 0.3 data sets, whereas the data in Figure 4.2b
were obtained by alternating 10 segments from the 0.1 and 0.3 data sets.
By construction, the freezing reference scheme is suited for the data in
Figure 4.2a, while the sleeping reference scheme is appropriate for the
data in Figure 4.2b.

Prediction Task We now evaluate the performance of the three ref-
erence schemes on the two data sets. In each case we consider two
experts: DM[0.1] and DM[0.3], and split the data into two subsequences
(step (a), according to the true rate, either 0.1 or 0.3. We predict all
outcomes for which the actual rate was θ ∈ {0.1, 0.3} using the expert
DM[θ].

The difference between the three schemes lies in which data is used
by both experts to learn from. In the full reference scheme DM[0.1] and
DM[0.3] are shown all the data, even those samples they do not predict.
In the two other reference schemes, on the other hand, DM[0.1] only
sees the data for which it is selected, that is, the data with true rate 0.1.
Similarly, DM[0.3] only sees the data with true rate 0.3. For freezing
DM[θ] predicts as if the data it has observed are the only data, thus the
original timing of the samples is lost. For sleeping the original timing
of the samples is preserved, and DM[θ] has to predict with uncertainty
about the intermediate unobserved samples.

Posteriors Figures 4.2c and 4.2d show the posterior distribution of the
expert DM[0.1] on states after 200 trials for each reference scheme. These
posterior distributions can be interpreted as the belief of the learning
expert DM[0.1] about the unobserved drifting mean after 200 trials.

118 Chapter 4. Freezing & Sleeping

Figure 4.2 The difference between the full, freezing and sleeping refer-
ence schemes. Note the logarithmic scale of the y-axis in (e) and (f)!
(a) Suitable freezing data

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

trial

o
u

tc
o

m
e

typical freezing data

(b) Suitable sleeping data

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

trial

o
u

tc
o

m
e

typical sleeping data

(c) Belief of DM[0.1] after 200 trials of (a)

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

state

p
o

s
te

ri
o

r
p

ro
b

a
b

ili
ty

freezing

sleeping

full

(d) Belief of DM[0.1] after 200 trials of (b)

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

state

p
o

s
te

ri
o

r
p

ro
b

a
b

ili
ty

freezing

sleeping

full

(e) Cumulative loss on data (a)

100 200 300 400 500 600 700 800 900 1000
10

1

10
2

10
3

10
4

10
5

trial

c
u

m
u

la
ti
v
e

 l
o

s
s

freezing

sleeping

full

(f) Cumulative loss on data (b)

100 200 300 400 500 600 700 800 900 1000
10

1

10
2

10
3

10
4

10
5

trial

c
u

m
u

la
ti
v
e

 l
o

s
s

freezing

sleeping

full

4.1. Introduction 119

We see in Figure 4.2c that, for the freezing data, the expert posterior
obtained by the freezing reference scheme matches the 201st outcome
(which is 10 in the freezing data set) best. Recall that this posterior is
obtained by first showing DM[0.1] outcomes 1 through 100, and then
asking it to predict outcome 201 as if it was the next outcome in the
sequence.

We also see in Figure 4.2d that, for the sleeping data, the expert
posterior obtained by the sleeping reference scheme matches the 201st

outcome (which is 20 in the sleeping data set) best. Recall that this pos-
terior is obtained by first showing DM[0.1] outcomes 1 through 100, and
then asking it to predict outcome 201 with all intermediate outcomes
unobserved.

Finally, we see that in both cases, the expert posterior obtained by
the full reference scheme, which shows all outcomes to DM[0.1], over-
shoots: the expert is confused by observing the intermediate outcomes.

Loss These snapshots of the expert’s posteriors provide an intuitive
understanding of what the reference schemes do and which one is ap-
propriate. We now quantify the predictive performance by looking at
the resulting cumulative loss. Figures 4.2e and 4.2f show the cumu-
lative log(arithmic) loss for all three reference schemes. Note that the
difference between the schemes is so large that their losses had to be
plotted on a logarithmic scale.

We see in Figure 4.2f that for the sleeping data the sleeping reference
scheme has much smaller loss than the other two schemes. And for
the freezing data the freezing reference scheme has the smallest loss
by far, as shown in Figure 4.2e. (Mind the logarithmic scale of the y-
axis, which puts the loss of sleeping deceptively close to the loss of
freezing in Figure 4.2e: a constant offset indicates a fixed multiplicative
overhead.) In both cases the reason for the large differences between the
reference schemes is that both experts DM[0.1] and DM[0.3] get confused
if they learn from the wrong data.

Note that for this synthetic example, we knew which partitioning
into subsequences to choose, since we constructed the data ourselves.
For real data a partitioning is not readily available. The challenge ad-
dressed in this chapter is to learn the best partition of the data online.

120 Chapter 4. Freezing & Sleeping

4.1.1.2 Structured Experts

In this chapter, we solve Freund’s problem under the interpretation that
experts only observe the subsequence on which they are evaluated. Of
course, for arbitrary experts, this is impossible. For in the setting of
prediction with expert advice (see [25]), the expert predictions that we
receive each round are always in the context of all data. We have no
access to the experts’ predictions in the context of any subsequence,
and these predictions may differ drastically from those on the whole
data.

Often however, experts have internal structure. For example, in [108,
80, 180, 181] adaptive prediction strategies (i.e. learning experts) are ex-
plicitly constructed from basic experts. To represent such structured
experts, we use the general framework called expert hidden Markov mod-
els (EHMMs), that was introduced in Chapter 3. EHMMs are hidden
Markov models in which the production probabilities are determined
by expert advice. A structured expert in EHMM form provides suffi-
cient information about its predictions on any isolated subsequence.

Many strategies for prediction with expert advice (i.e. learning ex-
perts) can be rendered as EHMMs. For example all adaptive strate-
gies in the papers above (see Chapter 3). But there are also strategies
that cannot be brought into EHMM form, like e.g. follow the perturbed
leader [73] and variable share [80].

Our approach may also be of interest to machine learning with
regular hidden Markov models (HMMs) [146]. Although existing ap-
proaches to shift between multiple HMMs [65, 66, 104] usually focus on
change-point detection, prediction seems a highly related issue.

4.1.2 Overview

After preliminaries we start by reviewing the main existing loss bound
for mixing past posteriors in Section 4.3. Then, in Section 4.4, we review
EHMMs as a way to represent structured experts.

The next section, Section 4.5, contains our results for Freund’s prob-
lem when structured experts are evaluated on isolated subsequences.
We formalise sleeping and freezing as two different ways of present-
ing a subsequence of the data to an EHMM, and present the evolving
past posteriors (EPP) algorithm that takes an EHMM as input. The EPP
algorithm has two variants, which both generalise the mixing past pos-

4.2. Preliminaries 121

Figure 4.3 Generalisation relation among prediction strategies

EPP-Freezing

,,��
EPP-Sleeping

��rr
Forward Algorithm

))
Mixing Past Posteriors

uu
Fixed Share

��
Bayes

teriors algorithm in a different way: EPP-Sleeping for sleeping and
EPP-Freezing for freezing. The relation between EPP and other exist-
ing prediction strategies is shown in Figure 4.3. There A → B means
that by carefully choosing prediction strategy A’s parameters it reduces
to strategy B.

In order to understand EPP, we verify that it produces the same
predictions for any two EHMMs that are equivalent in an appropriate
sense, and analyse its running time. We then proceed to show our main
result, which is that the losses of EPP-Freezing and EPP-Sleeping are
bounded by the loss of their appropriate reference scheme plus a com-
plexity penalty that depends on the number of bits required to encode
the reference partition in the same way as for mixing past posteriors.
In fact, our bounds (slightly) improve the known loss bound for mixing
past posteriors. Thus we solve Freund’s problem with learning experts
presented as EHMMs, both for freezing and for sleeping.

We first derive our results only for logarithmic loss. This allows us
to use familiar concepts and results from probability theory and refer
to the interpretation of log loss as a codelength [25]. In Section 4.6
we conclude by proving that any algorithm that satisfies certain weak
conditions, in particular EPP, directly generalises to an algorithm for
arbitrary mixable losses with the appropriate loss bounds.

4.2 Preliminaries

Prediction With Expert Advice Each round t, we first receive advice
from each expert e ∈ E in the form of an action ae

t ∈ A. Then we distill
our own action aalg

t ∈ A from the expert advice. Finally, the actual
outcome xt ∈ X is observed, and everybody suffers loss as specified

122 Chapter 4. Freezing & Sleeping

by a fixed loss function ` : A× X → [0, ∞]. Thus, the performance of
a sequence of actions a1 · · · aT upon data x1 · · · xT is measured by the
cumulative loss ∑T

t=1 `(at, xt).

Log Loss For log loss the actions A are probability distributions on X
and `(p, x) = − log p(x), where log denotes the natural logarithm. It is
important to notice that minimising log loss is equivalent to maximising
the predicted probability of outcome x. We write pe

t for the prediction
of expert e at time t and denote these predictions jointly by pEt .

Subsequences For m ≤ n, we abbreviate {m, . . . , n} to m:n. For com-
pleteness, we set m:n = ∅ for m > n. For any sequence y1, y2, . . .
and any set of indices C = {i1, i2, . . .} we write yC for the subsequence
〈yi〉i∈C . For example, xC = 〈xi〉i∈C and pE1:T = pE1 , . . . , pET. If members of
a family C = {C1, C2, . . .} are pairwise disjoint and together cover 1:T
(
⋃

C = 1:T), then we call C a partition of 1:T, and its members cells.

4.3 Mixing Past Posteriors

Mixing past posteriors (MPP) is a strategy for prediction with expert
advice. It operates by maintaining a table of so-called posterior distri-
butions on the set of experts. Each round, we first compute the pre-
dictive distribution on experts by mixing all the posteriors in the table.
Then the next outcome is predicted by mixing the expert predictions
according to this distribution. Finally, the next outcome is observed.
The predictive distribution on experts is conditioned on this outcome,
and the posterior distribution thus obtained is appended to the table of
posteriors. Note the recursive construction of the distributions in the
table; they are not Bayesian posteriors, but conditioned mixtures of all
earlier distributions from that same table.

We will not formally introduce MPP here, but recover it as a special
case of both the freezing and sleeping algorithms in Section 4.5.4. Here
we state the classical loss bound [19, Theorem 7], introducing our nota-
tion along the way. This loss bound relates the loss of MPP to Freund’s
full reference scheme, where we choose a partition of the data (step a)
and select an expert for each partition cell (step b). We measure expert

4.3. Mixing Past Posteriors 123

performance (step c) using the predictions issued in the context of all
data, i.e. the full interpretation of Freund’s scheme.

4.3.1 Loss Bound

We bound the overhead of MPP over the full reference scheme in terms
of the complexity of the reference partition. We first state the theorem,
and then explain the ingredients. We write PMPP

w (x1:T) for the prob-
ability that MPP assigns to data x1:T (so − log

(
PMPP

w (x1:T)
)

is MPP’s
cumulative log loss).

4.3.1. Theorem ([19, Theorem 7]). For any mixing scheme β, Bayesian joint
distribution PB with prior distribution w on experts, partition C of 1:T, data
x1:T and expert predictions pE1:T

PMPP
w (x1:T) ≥ β(C)PB

C(x1:T). (4.1)

A mixing scheme β is a sequence β1, β2, . . . of distributions, where β j+1
is a probability distribution on 0:j. In [19] several mixing schemes are
listed, e.g. Uniform Past and Decaying Past. A mixing scheme is turned
into a distribution on partitions as follows. Let C be a partition of 1:T,
and let i ∈ 1:T. The cell of i, denoted C(i), is the unique C ∈ C such that
i ∈ C. We write prevC(i) for the predecessor of i, defined as the largest
element in C(i) ∪ {0} that is smaller than i. Using this notation, the
distribution on partitions is given by

β(C) := ∏
t∈1:T

βt(prevC(t)).

Note that this distribution is potentially defective; two elements i < j
cannot share the same nonzero predecessor, but βi may assign nonzero
probability to prevC(j) nonetheless.

Now that we have seen how the loss bound encodes partition, we
turn to PB

C(x1:T), the probability of the data x1:T given a particular par-
tition C. To compute it, we treat the cells independently (4.2), and per
cell we use the Bayesian mixture with prior w on experts (4.3), thus

124 Chapter 4. Freezing & Sleeping

mixing the predictions the experts issued in the context of all data (4.4).

PB
C(x1:T) := ∏

C∈C

PB
C(xC), where (4.2)

PB
C(xC) := ∑

e∈E
w(e)pe

C(xC) and (4.3)

pe
C(xC) := ∏

i∈C
pe

i (xi). (4.4)

A second bounding step allows us to relate the performance of MPP
directly to Freund’s full scheme. Let w be the uniform prior over a
finite set of experts E , and select an expert eC for each partition cell
C ∈ C. Then bound each sum (4.3) from below by one of its terms to
obtain

4.3.2. Corollary. PMPP
w (x1:T) ≥ β(C) |E |−|C| ∏

C∈C

peC
C (xC).

Thus the log-loss overhead of MPP over the full reference scheme is
bounded by − log β(C)+ |C| log|E |, which can be related to the number
of bits to encode the chosen partition and the selected experts for each
cell [19].

Convex Combinations In [19], the authors make a point of selecting
a convex combination of experts for each subsequence, where the loss of
a convex combination of experts is the weighted average loss of the ex-
perts. The loss of such a convex combination is therefore always higher
than the loss of its best expert. Uniform bounds in terms of arbitrary
experts, like Corollary 4.3.2, apply in particular to the best expert, and
hence to any convex combination. Therefore, without loss of generality,
we do not discuss convex combinations any further.

Interpreting Freund’s Problem The loss bound Theorem 4.3.1 shows
that MPP solves the black-box-experts interpretation of Freund’s prob-
lem. This can be seen clearly in (4.4). To predict the subsequence xC , it
uses predictions pe

C which were issued in the context of all data. This
means that the experts observe the entire history x1:i before predicting
the next outcome Xi+1.

Switching between learning experts that observe all data is useful
when the data are homogeneous, and the experts learn its global pat-
tern at different speeds. In such cases we want to train each expert on

4.4. Structured Experts 125

all observations, for then by switching at the right time, we can predict
each outcome using the expert that has learned most until then. This
scenario is analysed in [178], where experts are parameter estimators
for a series of statistical models of increasing complexity.

On the other hand, if the data have local patterns then our new
interpretation of Freund’s problem applies, and we want to train each
expert on the subsequence on which it is evaluated, so that it can exploit
its local patterns. To solve Freund’s problem for such learning experts,
we need to know about its internal structure.

4.4 Structured Experts

Assume there is only a single expert and fix a reference partition. Sup-
pose we want to predict as if the expert is restarted on each cell of the
partition, when in reality the expert just makes her predictions as if all
the data were in a single cell. Then clearly this is impossible if we treat
this expert completely as a black box: if we do not know what the ex-
pert’s predictions would have been if a certain outcome were, say, the
start of a new cell, then we cannot match these predictions.

The expert therefore needs to reveal to us some of her internal state.
To this end, we will represent the parts of her internal state that will
not be revealed to us by lower level experts that we will treat as black
boxes, and assume our main expert combines the predictions of these
base experts using an expert hidden Markov model (EHMM).

4.4.1 EHMMs

Expert Hidden Markov Models (EHMMs) were introduced in Chapter 3

as a language to specify strategies for prediction with expert advice.
We briefly review them here. An EHMM A is a probability distribution
that is constructed according to the Bayesian network in Figure 4.4. It
is used to sequentially predict outcomes X1, X2, . . . which take values
in outcome space X . At each time t, the distribution of Xt depends on
a hidden state Qt, which determines mixing weights for the experts’
predictions. Formally, the production function p� determines the inter-
pretation of a state: it maps any state qt ∈ Q to a distribution pqt

� on the
identity Et of the expert that should be used to predict Xt. Then given
Et = e, the distribution of Xt is base expert e’s prediction pe

t . It remains

126 Chapter 4. Freezing & Sleeping

Figure 4.4 Bayesian network specification of an EHMM
p◦ // Q1

p� //

p���

Q2
p� //

p���

Q3
p� //

p���

Q4
p� //

p���

· · ·

E1

pE1��

E2

pE2��

E3

pE3��

E4

pE4��

· · ·

X1 X2 X3 X4 · · ·

Figure 4.5 Hidden state transitions in slot machine HMM

Jackpot

��
Cold99/100

11

1/100
// Hot 9/10

rr
1/10

\\

to define the distribution of the hidden states. The starting state Q1 has
initial distribution p◦, and the state evolves according to the transition
function p�, which maps any state qt to a distribution pqt

� on states.
An EHMM A defines a prediction strategy as follows; after observ-

ing x1:t, predict outcome Xt+1 using the marginal A(Xt+1|x1:t), which
is a mixture of the expert’s predictions pEt+1.

4.4.1. Example (Any Ordinary HMM). To illustrate how ordinary hid-
den Markov models are a special case of EHMMs, consider the follow-
ing naive gambler’s HMM model of an old-fashioned slot machine: in
each round the gambler inserts one nickel into the slot machine and
then the machine pays out a certain number of nickels depending on
its hidden internal state: in state Cold it pays out nothing; in state Hot
it pays out an amount between one and five nickels, uniformly at ran-
dom; and then there’s Jackpot in which it always pays out ten nickels.
The machine always starts in state Cold and the state transitions are as
in Figure 4.5.

To make an EHMM out of this HMM, we just identify experts with
states: Q = E = {Cold, Hot, Jackpot}, pe

�(e) = 1, and each expert pre-
dicts according to the corresponding payout scheme. The distributions
on states follow the original HMM: p◦(Cold) = 1 and p� as in Fig-
ure 4.5. 3

4.5. Freezing & Sleeping 127

4.4.2. Example (Bayes on base experts). We identify the
Bayesian distribution with prior w on base experts E and the EHMM
with Q = E , p◦ = w, and pe

�(e) = pe
�(e) = 1, since their marginals co-

incide. Despite its deceptive simplicity, this EHMM learns: its marginal
distribution on the next outcome is a mixture of the expert’s predictions
according to the Bayesian posterior. 3

4.4.3. Example (Bayes on EHMMs). Fix EHMMs A1, . . . ,An with dis-
joint state spaces and the same basic experts, and let w be a prior distri-
bution on 1:n. The Bayesian mixture EHMM has state space Q =

⋃
iQi,

and for any two states q, q′ ∈ Qi belonging to the same original EHMM,
p◦(q) = w(i)pi

◦(q), pq
�(q

′) = pi,q
� (q′) and pq

�(e) = pi,q
� (e). Again, this

EHMM learns which of the given EHMMs is the best predictor. 3

4.4.2 The Forward Algorithm

Sequential predictions for EHMMs can be computed efficiently using
the forward algorithm (see Algorithm 3.1 on page 77), which maintains
a posterior distribution over states, and predicts each outcome with
a mixture of the experts’ predictions. Given a posterior λt(Qt) =
A(Qt|x1:t−1) for the hidden state at time t, the forward algorithm pre-
dicts xt using the marginal of A(Qt, Et, Xt|x1:t−1). Then, after observing
outcome xt, it updates its posterior λt for Qt to a posterior λt+1 for
Qt+1.

For finite Q, E and X , the running time of the algorithm is deter-
mined by this last posterior update step, which in general may require
O
(
|Q|2

)
computation steps for each round t. On T outcomes, this gives

a total running time of O
(
|Q|2 · T

)
. In Appendix 4.A we provide a more

careful analysis.

4.5 Freezing & Sleeping

Let x1:T = x1, . . . , xT be a sequence of data and suppose that a reference
partition C of 1:T is given in advance. We are interested in the perfor-
mance of a structured expert AC, which for each cell C ∈ C runs a sep-
arate instance of the structured expert A on the subsequence xC . This
leaves unspecified, however, whether the original timing of xC should
be preserved when xC is presented to A. This is a modelling choice,

128 Chapter 4. Freezing & Sleeping

Figure 4.6 Sleeping and Freezing EHMMs on outcomes x{2,4,5,...}

(a) Sleeping: EHMM Asl
{2,4,5,...}

p◦ // Q1
p� // Q2

p� //

p���

Q3
p� // Q4

p� //

p���

Q5
p� //

p���

· · ·

E2

pE2��

E4

pE4��

E5

pE5��

· · ·

X2 X4 X5 · · ·

(b) Freezing: EHMM Afr
{2,4,5,...}

p◦ // Q2
p� //

p���

Q4
p� //

p���

Q5
p� //

p���

· · ·

E2

pE2��

E4

pE4��

E5

pE5��

· · ·

X2 X4 X5 · · ·

which depends on the application at hand. We therefore treat both the
case where the timing is preserved, which we call sleeping, and the case
where the timing is not preserved, which we call freezing. (See also
Figure 4.2 in the introduction.)

Sleeping We say that the instance of A that is used to predict cell C is
sleeping if it does notice the passing of time during outcomes outside of
C, even though it does not observe them. We write Asl

C for the resulting
EHMM, which is shown in Figure 4.6a for the example C = {2, 4, 5, . . .}.
Notice that Asl

C contains all five states Q1:5, even though it does not
observe x1 or x3. This has the effect that state transitions from e.g.
Q2 to Q4 are composed of two transition steps according to p�. The
distributions on individual cells combine into the following distribution
on all data x1:T:

Asl
C(x1:T) := ∏

C∈C

Asl
C (xC).

To memorise the nature of sleeping, one may think of the way television
channels get interleaved as you zap between them: a channel not being

4.5. Freezing & Sleeping 129

watched is not paused, but instead continues broadcasting even when
its content is not observed.

Freezing In freezing, the instance of A that is used to predict cell
C ∈ C is frozen when outcomes outside of C occur: its internal state
should not change based on those outcomes. (Of course we have no
control over the base experts on which A is based, so they may do
whatever they please with such data. We therefore do have to preserve
the timing of the base experts’ predictions.) The resulting EHMM Afr

C
is shown for the example C = {2, 4, 5, . . .} in Figure 4.6b. Note that Q2,
Q4 and Q5 are the first, second and third state of Afr

C ; state transitions
between them consist of a single transition step according to p�. The
resulting distribution on all data is defined by

Afr
C(x1:T) := ∏

C∈C

Afr
C(xC).

One might associate freezing with the way different e-mail conversa-
tions get interleaved in your inbox (if it is sorted by order of message
arrival): a conversation about your latest research is paused (remains
frozen) regardless of how much spam you receive in between.

4.5.1 An Infeasible Solution

The freezing or sleeping distributions can be computed if the reference
partition C is given in advance. The problem we are addressing, how-
ever, is that we do not assume C to be known. An easy (but impractical)
solution to this problem is to predict according to the Bayesian mixture
of all possible partitions: let w be a prior on the set of all possible par-
titions and predict such that the joint distribution on all data is given
by

B(x) := ∑
C

w(C)Af/s
C (x),

where f/s denotes either fr for freezing or sl for sleeping. Lower bound-
ing the sum by the term for the reference partition C directly gives an
upper bound on the log loss:

− logB(x) ≤ − log w(C)− logAf/s
C (x).

130 Chapter 4. Freezing & Sleeping

To predict according to B in general would require an exponential
amount of state to keep track of all possible partitions, which is com-
pletely impractical. In the following section we therefore present gen-
eralisations to both sleeping and freezing of the mixing past posteriors
algorithm and show that their running time is comparable to that of
the forward algorithm on A itself. Then in section Section 4.5.3 we
prove bounds that relate the additional loss to the encoding cost of the
reference partition C.

4.5.2 The EPP Algorithm

Here we present a generalisation of the mixing past posteriors (MPP)
algorithm, which we call evolving past posteriors (EPP). It is based on
the view that MPP internally uses the Bayesian mixture of base experts,
which is a standard EHMM. Given this perspective and after mak-
ing the distinction between sleeping and freezing, the generalisation
to other EHMMs is straightforward. We will discuss the connections
between MPP and EPP in more detail in Section 4.5.4.

The EPP algorithm has variants for sleeping and freezing, which
are both given in Algorithm 4.1. It takes an EHMM A and mixing
scheme β (see Section 4.3.1) as input. Given a distribution λt on the
hidden state Qt at time t, the EPP algorithm predicts Xt exactly like
the forward algorithm. It differs from the forward algorithm, however,
in the way it computes λt. Whereas in the forward algorithm λt may
be interpreted as the posterior distribution on Qt, in the EPP algorithm
λt is a β-mixture of the algorithm’s own past posteriors. This recursive
nature of EPP, which it inherits from the MPP algorithm, makes it hard
to analyse.

We denote by Pfr
A and Psl

A the probability distributions on random
variables 〈Qt, Et, Xt〉t∈N defined by EPP-Freezing and EPP-Sleeping

on EHMM A and mixing scheme β. For both f/s ∈ {sl, fr}

Pf/s
A (q1:T, e1:T, x1:T) = ∏

t∈1:T
palg

t (qt, et, xt).

4.5.2.1 Representation Invariance

Let A1 and A2 be EHMMs that are based on the same set of experts
E , but have different state spaces. We call A1 and A2 equivalent if

4.5. Freezing & Sleeping 131

Algorithm 4.1 Evolving past posteriors (EPP)

Input:

• An EHMM A with components p◦, p� and p� (see Section 4.4)

• A mixing scheme β1, β2, . . . (see Section 4.3.1 and Section 4.5.2.2)

• Expert predictions pE1 , pE2 , . . . and data x1, x2, . . .

Output: Predictions palg
1 , palg

2 , . . .
Storage: Past posteriors π1, π2, . . . on Q, the states of A

Algorithm

1: Set the first posterior to the initial distribution of A
π1(q1) ← p◦(q1)

2: for t = 1, 2, . . . do

3: Form λt, the current configuration, as the βt-mixture of past
posteriors:

λt(qt) ← ∑
0≤j<t

βt(j)πj+1(qt).

4: Compute palg
t , the joint distribution on states, experts and

outcomes:
palg

t (qt, et, xt) ← λt(qt)pqt
� (et)pet

t (xt).

5: Predict xt using the marginal palg
t (xt),

6: Observe xt. Suffer log loss

`alg
t ← − log

(
palg

t (xt)
)
.

7: Perform loss update and state evolution to obtain the next
posterior

πt+1(qt+1) ← ∑
qt∈Q

palg
t (qt|xt)pqt

�(qt+1).

8: Only for sleeping: perform state evolution for all past poste-
riors (1 ≤ j ≤ t)

πj(qt+1) ← ∑
qt∈Q

πj(qt)pqt
�(qt+1).

9: end for

132 Chapter 4. Freezing & Sleeping

Table 4.1 Mixing schemes

Mixing scheme βt+1(t) βt+1(j) for 0 ≤ j < t

Yesterday 1 0
Fixed Share(α) 1− α α if j = 0 and 0 o.w.
Uniform past(α) 1− α α/t
Decaying past(α, γ) 1− α α(t− j)−γ/Zt

A1(e1:T) = A2(e1:T) for all e1:T. Consequently, equivalent EHMMs as-
sign the same probability A1(x1:T) = A2(x1:T) to all data x1:T, hence the
difference between A1 and A2 is merely a matter of representation. As
an important sanity check, we need to verify that EPP on either EHMM
issues the same predictions.

4.5.1. Theorem (Invariance). Let f/s denote either fr or sl. Fix equivalent
EHMMs A1 and A2. Then for all data x1:T

Pf/s
A1(x1:T) = Pf/s

A2(x1:T).

Proof. Given in Appendix 4.C.

Thus, from the perspective of predictive performance, the difference
between A1 and A2 is irrelevant. Of course, it does matter for the
computational cost of EPP, see Section 4.5.2.3.

4.5.2.2 Mixing Schemes

Bousquet and Warmuth [19] provide an extensive discussion of possi-
ble mixing schemes. Their loss bounds for various schemes carry over
directly to our setting. It is interesting, however, to analyse the running
times of the Fixed-Share to uniform past and to decaying past mixing
schemes for EPP. For further information we refer the reader to [19].

Both schemes (see Table 4.1) depend on a switching rate α ∈ [0, 1],
which determines whether to continue with yesterday’s posterior or
switch back to an earlier one: βt+1(t) = 1− α and ∑0≤j<t βt+1(j) = α.

Uniform Past Given the choice to switch back, the uniform past mix-
ing scheme gives equal weights to the entire past: βt+1(j) = α/t for
0 ≤ j < t.

4.5. Freezing & Sleeping 133

Decaying Past The decaying past scheme assigns larger weight to
the recent past: βt+1(j) = α(t − j)−γ/Zt for 0 ≤ j < t, where Zt =

∑0≤j<t(t− j)−γ is a normalising constant and γ ≥ 0 is a parameter that
determines the rate of decay.

4.5.2.3 Running Times

Appendix 4.A provides a detailed comparison of the running times and
space requirements of EPP and the forward algorithm. The upshot is
that for the uniform past mixing scheme the sleeping variant of EPP is
as efficient as the forward algorithm, in terms of both running time and
space requirements; the freezing variant is equally efficient if the set of
hidden states Q is finite, but may be a factor O(T) less efficient on T
outcomes for countably infinite Q. The decaying past mixing scheme is
a factor O(T) less efficient (for both time and space) than uniform past
in all cases, but may be approximated by a scheme described in [19]
that reduces this factor to O(log T).

4.5.3 Loss Bound

We relate the performance of EPP-Freezing and EPP-Sleeping (defined
in Algorithm 4.1) to that of Afr

C and Asl
C for all partitions C jointly.

4.5.2. Theorem (EPP Loss Bounds). For both f/s ∈ {fr, sl} and any mixing
scheme β, data x1:T and expert predictions pE1:T

Pf/s
A (x1:T) ≥ ∑

C

β(C)Af/s
C (x1:T). (4.5)

Proof. Given in Appendix 4.B.

Using this bound, we can relate the predictive performance of EPP-
Sleeping and EPP-Freezing to that of Asl

C and Afr
C for any reference

partition C.

4.5.3. Corollary. Pf/s
A (x1:T) ≥ β(C)Af/s

C (x1:T).

From the brutal way in which Corollary 4.5.3 was obtained, we may ex-
pect to often do much better in practice; many partitions may contribute
significantly to (4.5).

134 Chapter 4. Freezing & Sleeping

4.5.4 Recovering MPP

We now substantiate our claim that EPP generalises MPP by proving
that MPP results from running EPP-Freezing or EPP-Sleeping on the
Bayesian EHMM (Example 4.4.2).

4.5.4. Theorem. Let A be the Bayesian EHMM with initial distribution w,
and let PMPP

w denote the probability distribution defined by MPP with prior w.
Then for all data x1:T

Pfr
A(x1:T) = Psl

A(x1:T) = PMPP
w (x1:T).

Proof. The difference between freezing and sleeping (line 8) evaporates
since state evolution is the identity operation. By identifying states and
experts the MPP algorithm [19, Figure 1] remains.

The theorem does not require the set of experts E to be finite. If E is
infinite (or too large), MPP is intractable. Still, a small EHMM may exist
that implements Bayes (say with the uniform prior) on E , and we can
use EPP-Sleeping (which is faster than EPP-Freezing) for sequential
prediction. For example, we may implement MPP on the infinite set of
Bernoulli experts efficiently, in time O(T2), using EPP-Sleeping on the
universal element-wise mixture EHMM of [100, §4.1].

4.5.4.1 Improved MPP Loss Bound

[19, Theorem 7] (our Theorem 4.3.1) bounds the overhead of MPP over
Freund’s full scheme in terms of β(C), the complexity of the reference
partition C according to the mixing scheme β. A more general bound
follows directly from Theorems 4.5.2 and 4.5.4:

4.5.5. Corollary. PMPP
w (x1:T) ≥ ∑

C

β(C)PB
C(x1:T).

Even with a fixed reference partition C in mind, we get a better bound
by considering small modifications of C, e.g. finer partitions or parti-
tions that disagree about a single round.

Adversarial Experts For each number of rounds T one can construct
a set of T base experts and data x1:T such that the loss of Freund’s full
scheme is infinite for all partitions except the finest one. We simply

4.6. Other Loss Functions 135

have expert t suffer infinite loss in all rounds other than t. In this
pathological case the bounds in Theorem 4.3.1 for that partition and
Corollary 4.5.5 are equal and tight.

4.5.4.2 Is EPP strictly more general than MPP?

A natural question is whether either EPP-Sleeping or EPP-Freezing

can be implemented using MPP on a rich set of meta-experts. To
preclude the trivial answer that regards either algorithm as a single
meta-expert, we ask for a fixed construction that works for all mixing
schemes.

Sleeping For any EHMM A, EPP-Sleeping can be reduced to MPP
on meta-experts. Let the set of meta-experts be Q∞, the set of paths
through the hidden states of A. Each meta-expert qN predicts xt using
the pqt

� -mixture of base expert predictions. We set the prior w in MPP
equal to the marginal probability measure ofA on paths (as determined
by p◦ and p�). We omit the proof that the predictions made by MPP on
these meta-experts with prior w are equal to those made by EPP on A.

Freezing The next example shows that EPP-Freezing really is more
general than MPP. Fix two experts E = {a, b}. Consider the EHMM A
that predicts the first outcome using expert a, and the second outcome
using expert b, i.e. Q = E , and p◦(a) = pa

�(b) = pq
�(q) = 1. Running

EPP-Freezing on A results in π2(b) = π1(a) = 1, so that the first out-
come is predicted using expert a, and the second outcome is predicted
using the β2-mixture of experts. Thus any candidate meta-expert must
predict the first outcome using base expert a. But that means that for
MPP with prior w on meta-experts, the loss update has no effect, so
that w = π1 = π2 = λ2. Hence the second outcome will be predicted
according to the prior mixture of experts. Since β2 is arbitrary and w is
fixed, there can be no general scheme to reduce EPP-Freezing to MPP.

4.6 Other Loss Functions

We will now show how the EPP algorithm for logarithmic loss can be
directly translated into an algorithm with corresponding loss bound for
any other mixable loss function. The same construction works for any

136 Chapter 4. Freezing & Sleeping

logarithmic loss algorithm that predicts according to a mixture of the
experts’ predictions at each trial and whose predictions only depend on
the experts’ past losses on outcomes that actually occurred.

Mixability A loss function ` : A× X → [0, ∞] is called η-mixable for
η > 0 if any distribution p on experts E can be mapped to a single
action Pred(p) ∈ A in a way that guarantees that

`
(
Pred(p), x

)
≤ − 1

η log Ee∼p

[
exp

(
−η`(ae, x)

)]
(4.6)

for all outcomes x ∈ X and expert predictions aE . It is called mixable
if it is η-mixable for some η > 0 [25]. Mixability ensures that expert
predictions for ` loss can be mixed in essentially the same way as for
log loss.

For example, logarithmic loss itself is 1-mixable. And for A = [0, 1]
and X = {0, 1} the square loss `(a, x) := (a− x)2 is 2-mixable and the
Hellinger loss `(a, x) :=
((
√

1− x−
√

1− a)2 + (
√

x−
√

a))/2 is
√

2-mixable.[75, 25]

The Benefits of Lying Given data x1:t and expert predictions aE1:t, let
`e

1:t := `(ae
1, x1), . . . , `(ae

t , xt) denote the sequence of losses of expert e,
and let `E1:t denote these losses jointly for all experts. In the special case
that ` is the logarithmic loss we write ``e

1:t and ``E1:t, respectively.
Suppose Alg is an algorithm for log loss that predicts each outcome

xt by mixing the experts’ predictions pEt according to the distribution
palg

t [x<t, ``E<t] on experts. The square-bracket expression indicates that
palg

t may depend on the past outcomes x1:t−1 and the losses of the ex-
perts on these outcomes, but not on the experts’ past or current pre-
dictions in any other way. Following this convention, the algorithm
predicts xt using:

palg
t [x<t, ``E<t](xt) := ∑

e
palg

t [x<t, ``E<t](e)p
e
t(xt).

Now for any game with η-mixable loss ` and the same set of experts E ,
we can derive from Alg an algorithm Alg

η
` that predicts xt according

to
aalgη

`
t := Pred

(
palg

t [x<t, η`E<t]
)
.

4.6. Other Loss Functions 137

Note that Alg
η
` is lying to Alg: while Alg thinks it is playing a game

for log loss in which experts have incurred log losses η`E<t, in reality
Alg

η
` is playing a game for loss ` and is feeding Alg fake inputs and

redirecting Alg’s outputs. Let us now analyse the loss of the derived
algorithm Alg

η
` .

4.6.1. Lemma (Other Loss Functions). Suppose Alg is an algorithm for
logarithmic loss that predicts according to
palg

t [x<t, ``E<t] at each time t, ` is an η-mixable loss function, and f (x1:T, `E1:T)
is an arbitrary function that maps outcomes and expert losses to real numbers.
Then any log loss bound for Alg of the form

− log Palg(x1:T) ≤ f (x1:T, ``E1:T) for all pE1:T, (4.7)

directly implies the ` loss bound for Alg
η
` :

`(aalgη
`

1:T , x1:T) ≤ 1
η f (x1:T, η`E1:T) for all aE1:T. (4.8)

Proof. Construct a log loss game in which at any time t each expert e
predicts according to a distribution pe

t such that pe
t(xt) = exp(−η`e

t) for
the actual outcome xt and pe

t is arbitrary on other outcomes such that
∑xt

pe
t(xt) = 1. In this game the log loss of Alg is

− log Palg(x1:T) = ∑
t∈1:T
− log palg

t [x<t, η`E<t](xt).

By η-mixability of `

`(aalgη
`

1:T , x1:T) = ∑
t∈1:T

`
(

Pred
(
palg

t [x<t, η`E<t]
)
, xt

)
≤ 1

η ∑
t∈1:T
− log palg

t [x<t, η`E<t](xt). (4.9)

Combining with (4.7) and (4.9) completes the proof.

Algorithms that satisfy the requirements of the lemma include Bayes,
follow the (perturbed) leader, the forward algorithm, MPP and EPP.
An algorithm that does not satisfy them is the last-step minimax algo-
rithm [172], because it takes into account the experts’ predictions on
outcomes that do not occur.

138 Chapter 4. Freezing & Sleeping

In the literature it is common to construct algorithms for arbitrary
mixable losses and point out their probabilistic interpretation for the
special case of log loss [75, 80, 19]. Instead, we have proceeded the
other way around: first we derived results for log loss and then we
showed that they generalise to other losses. This allowed us to draw on
concepts and results from probability theory like conditional probabil-
ities, HMMs and the forward algorithm, without reproving them in a
more general setting.

Lemma 4.6.1 generalises results by Vovk [183], who shows that the
most important loss bounds for Bayes with logarithmic loss can actually
also be derived for arbitrary mixable losses. Our algorithm Alg plays
a role similar to his APA algorithm.

4.7 Discussion

Relearning vs Continuing to Learn Corollary 4.5.3 bounds the regret
of EPP with respect to a reference partition C by − log β(C). Consider
the asymptotic behaviour of this bound if C has infinitely many shifts.
(A shift occurs when prevC(t + 1) 6= t.) For both decaying past with
γ ≤ 1 (e.g. following recommendations in [19]) and uniform past (see
Table 4.1) max0≤j<t βt+1(j) goes to zero as a function of t. Thus, the
cost per shift (be it to continue an earlier cell or to start a new one)
grows without bound. On the other hand for fixed share βt+1(0) = α
for all t, hence fixed share can start a new cell at fixed cost. It depends
on the structured expert whether continuing previously selected cells
at increasing cost is advantageous over relearning from scratch after
each shift at fixed cost. For EHMM experts with a finite state space
Q (including Bayes), relearning from scratch will cost at most a factor
|Q| over learning on. This factor is constant, so that fixed share will
eventually win.

4.8 Conclusion

We revisited Freund’s problem, which asks for a strategy for prediction
with expert advice that suffers small additional loss compared to Fre-
und’s reference scheme. We discussed the solution by Bousquet and
Warmuth, which interprets the experts as black boxes. We proposed

4.A. Running Times 139

a new interpretation of Freund’s scheme which is natural for learning
experts, namely to train experts on the subsequence on which they are
evaluated. This allows the reference scheme to exploit local patterns in
the data, and thus makes the problem harder.

We solved Freund’s problem for structured experts that are repre-
sented as EHMMs, building on the work of Bousquet and Warmuth. We
showed that our prediction strategies are efficient, and have desirable
loss bounds that apply to all mixable losses.

4.A Running Times

We compare the running times on T outcomes of EPP and the forward
algorithm, with respect to an arbitrary EHMM A with a countable set
of hidden states Q. For simplicity we assume that the sets of experts E
and outcomes X are finite.

Let Qt denote the hidden state of A at time t, and let p◦, p� and p�
denote A’s other components. Both algorithms base their predictions
on a distribution λt on Qt at time t, but differ in how they update
λt after observing xt. As the number of computations for this step
depends on the size of the support of λt and on p�, we will need the
following concepts. For any probability distribution p onQ, let Sp(p) =
{q ∈ Q | p(q) > 0} denote its support. We recursively define Qt, the set
of states reachable in exactly t steps, and Q≤t, the set of states reachable
in at most t steps, by

Q1 := Sp(p◦), Qt+1 :=
⋃

q∈Qt

Sp(pq
�), Q≤t :=

⋃
i∈1:t

Qi.

Obviously, Qt ⊆ Q≤t ⊆ Q holds for all t. Let g(S) := ∑q∈S|Sp(pq
�)| be

the number of outgoing transitions from any set of states S ⊆ Q.

4.A.1 Forward

The forward algorithm computes λt+1 by conditioning λt on xt and
applying the transition function p�. As λt has support Qt, the forward
algorithm requires O

(
g(Qt)

)
work per time step, and O

(
|Qt|+ |Qt+1|

)
space. Notice that, for finite Q, the number of transitions is bounded
by g(S) ≤ |Q|2 for any S. A rough upper bound on the total running

140 Chapter 4. Freezing & Sleeping

time of forward on T outcomes is therefore O
(
|Q|2T

)
, which is linear

in T.

4.A.2 EPP

The EPP algorithm comes in two variants: one for sleeping and one for
freezing. For sleeping the order of the running time is determined by
the evolution of past posteriors (line 8 in Algorithm 4.1); for freezing,
which skips line 8, either computation of λt (line 3) or of the next pos-
terior (line 7) is the dominant step. The main difference for the running
times of the two variants, however, is that in sleeping πj has support
Qt at any time t, whereas for freezing πj has support Q≤j.

4.A.2.1 Uniform Past

For the uniform past mixing scheme, one can keep track of ∑t
j=0 πj(qt)

to speed up computation of λt+1.

Sleeping This even works for sleeping, because applying the state
evolution to this sum in line 8 of the algorithm is equivalent to applying
it to the individual πj and then summing. Consequently, sleeping re-
quires O

(
g(Qt)

)
work and O

(
|Qt|+ |Qt+1|

)
space per time step, which

makes it as efficient as the forward algorithm.

Freezing For freezing, computing the next posterior (line 7) deter-
mines the running time. It requires O

(
g(Q≤t)

)
work and O

(
|Q≤t+1|

)
space per time step. Depending on the EHMM A, this may be signifi-
cantly slower than the forward algorithm. First, for finite Q, each of Qt,
Q≤t and Q have size O(1) in t, and freezing runs in time O(T), just like
the forward algorithm. Second, for infinite Q, Q≤t may be unbounded
as a function of t. Still, on T outcomes

∑
t∈1:T

g(Q≤t) ≤ Tg(Q≤T) ≤ T ∑
t∈1:T

g(Qt),

which implies that freezing is no more than a factor T slower than the
forward algorithm.

4.B. Loss Bounds 141

4.A.2.2 Decaying Past

For the decaying past scheme the relative mixing weights of any two
past posteriors change from βt to βt+1, which prevents us from sum-
ming them as for uniform past. Implementing decaying past therefore
slows down both the evolution of past posteriors and computation of
λt by a factor of O(t), and increases the required space by the same
factor. Fortunately, however, the decaying past scheme can be approx-
imated using a logarithmic number of uniform blocks, as described in
Appendix C of [19]. This reduces the slowdown factor from O(t) to
O(log t).1 Thus, both for sleeping and for freezing, approximated de-
caying past is only a factor O(log T) slower than uniform past on T
outcomes, and requires only a factor O(log T) more space.

4.B Loss Bounds

We identify λt with the EHMM on 〈Qi, Ei, Xi〉i≥t with initial distribution
λt, and with the transition and production functions of A. So in par-
ticular λ1 = A. For convenience, we shorten (λt)

fr
C(xC) to λfr

t (xC) and
(λt)

sl
C (xC) to λsl

t (xC). Thus, among others, λt(xt) = λsl
t (xt) = λfr

t (xt).

4.B.1. Lemma. For any C ⊆ t:T, interpreting λ0(·|x0) as λ1,

λf/s
t (xC) = ∑

j∈0:t−1
βt(j)λf/s

j (xC |xj).

Proof. Let πt
j denote the past posterior πj at the beginning of round t.

Thus for freezing πt
j = πj, and for sleeping πt

j is πj evolved t− j steps.

Then by definition λt(xC) = ∑t−1
j=0 βt(j)πt

j+1(xC). The operations (·)fr

and (·)sl distribute over taking mixtures. The lemma follows from the
fact that (πt

j)
sl(xC) = πsl

j (xC) and (πt
j)

fr(xC) = πfr
j (xC).

Proof of Theorem 4.5.2. For any t, we view the mixing scheme βt as defin-
ing the distribution of a randomised choice jt ∈ 0:(t − 1) for the pre-
decessor of the tth outcome. Let j>k := jk+1:T = (jk+1, . . . , jT) denote a

1In [19] it is suggested to weight each block of posteriors π[j1,j2−1] by (j2 − j1)βt(j1).
It seems that a marginal improvement is possible by weighting by ∑j1≤j<j2 βt(j) instead,
which can be implemented equally efficiently for decaying past.

142 Chapter 4. Freezing & Sleeping

Figure 4.7 Notation example. T = 10, k = 4, j>k = (2, 0, 6, 7, 5, 9),
S(j>k) = {6}, R2(j>k) = {2, 5, 9, 10}.

0 1 2 3 4 5
}}

6dd 7oo 8oo 9
||

10oo

vector of the choices beyond turn k. Unfortunately, some choices of j>k
are inconsistent with any partition, because an element can only have
one successor in a partition. Thus j>k is inconsistent with any partition
if jm = jn > 0 for k < m 6= n ≤ T. Let the predicate I(j>k) be true iff j>k
is consistent with some partition.

Some elements of j>k may indicate the start of a new cell of the
partition. Let S(j>k) denote the set of times when j>k prescribes to start
a new cell, i.e. S(j>k) := {t ∈ k + 1:T | jt = 0}. For an example, consult
Figure 4.7.

Consistent values of j>k specify the last part of a partition. For any
1 ≤ t ≤ k, we may ask which of the times k + 1:T will be put in the
same cell as t. Let Rt(j>k) denote this set, including t. For convenience,
we abbreviate

β(j>k) := ∏
t∈k+1:T

βt(jt),

W(j>k) := ∏
i∈S(j>k)

λf/s
1 (xRi(j>k)), and

Ul(j>k) := ∏
i∈1:l

λf/s
i (xRi(j>k)) for all l ≤ k,

to name the intermediate debris arising from the incremental reduc-
tion of Pf/s

A (x1:T). W-terms deal with cells that are completely specified
by j>k, while U-terms keep track of the remaining partially specified
cells. The proof proceeds by downward induction on k, with induction
hypothesis

∏
i∈1:T

λi(xi) ≥ ∑
j>k :I(j>k)

β(j>k)W(j>k)Uk(j>k). (4.10)

For the base case k = T the hypothesis holds with equality, and for
k = 0 the hypothesis is equivalent to the desired result (4.5). It remains

4.C. Invariance 143

to verify that it holds for k − 1 ≥ 0 if it holds for k. To this end, fix
k ≥ 1. To prove (4.10), it suffices to show that for consistent j>k

W(j>k)Uk(j>k) ≥ ∑
jk :I(j≥k)

βk(jk)W(j≥k)Uk−1(j≥k),

where j≥k denotes jk:T, i.e. jk followed by j>k. We expand the last factor
of Uk(j>k) using Lemma 4.B.1, and bound

Uk(j>k) = ∑
jk∈0:k−1

βk(jk)λf/s
jk (xRk(j>k)|xjk)Uk−1(j>k)

≥ ∑
jk :I(j≥k)

βk(jk)λf/s
jk (xRk(j>k)|xjk)Uk−1(j>k).

Observe that Rt(j>k) = Rt(j≥k) for all 1 ≤ t < k except t = jk. There are
two cases. If jk = 0, then

Uk−1(j>k) = Uk−1(j≥k) and W(j>k)λ
f/s
1 (xRk(j>k)) = W(j≥k).

On the other hand if jk > 0 then W(j>k) = W(j≥k). For consistent j≥k,
Uk−1(j>k) contains the factor λf/s

jk
(xjk), which implies that

λf/s
jk (xRk(j>k)|xjk)Uk−1(j>k) = Uk−1(j≥k).

4.C Invariance

Proof of Theorem 4.5.1. Let µ1 and µ2 be distributions on Q1 and Q2. We
overload notation, and write µ1 and µ2 for the EHMMs A1 and A2

with initial distribution replaced by µ1 and µ2. Recall that µ1 and µ2

are equivalent if µ1(e1:T) = µ2(e1:T) for all e1:T. Thus, A1 and A2 are
equivalent iff p1

◦ and p2
◦ are equivalent.

To prove the theorem, we need to prove that equivalence is pre-
served by all the operations that EPP performs, i.e. taking mixtures, per-
forming loss update and performing state evolution. Mixtures of equiv-
alent distributions are equivalent, since mixing and marginalisation
commute. For loss update, note that pe1

1 (x1) = µ1(x1|e1:T) = µ2(x1|e1:T)
for all pE1 and all e1:T. Finally, for state evolution, the claim follows from
(p� ◦ µ)(e1:T) = µ(E2:T+1 = e1:T).

Chapter 5

Switching Investments

Abstract We present a simple online two-way trading algorithm that
exploits fluctuations in the unit price of an asset. Rather than analysing
worst-case performance under some assumptions, we prove a novel,
unconditional performance bound that is parameterised either by the
actual dynamics of the price of the asset, or by a simplifying model
thereof. The algorithm processes T prices in O(T2) time and O(T)
space, but if the employed prior density is exponential, the time re-
quirement reduces to O(T). The result translates to the prediction with
expert advice framework, and has applications in data compression and
hypothesis testing.

146

5.1. Introduction 147

Figure 5.1 An example play Λ for Nature (solid gray), with a regu-
larised trend line Λ′ (dashed black).

−20

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

Market days

L
o
g
 P

ri
ce

5.1 Introduction

We consider a two-player game played between Investor and Nature.
Investor starts out with one unit of cash. At each time, Investor decides
which fraction of his current capital to invest in an asset (denoted A),
and how much to keep in his boot (denoted B). Nature, on the other
hand, chooses the price of the asset.

A play for Nature is a function Λ : [0, T] → R that specifies the
natural logarithm of the unit price of A as a function of time. The end-
time T is part of Nature’s move and unknown to Investor. An example
play is shown in Figure 5.1.

Investor’s payoff is defined as the natural logarithm of his capital
at the end-time T, where shares owned are valued at the final logprice
Λ(T). In hindsight, it would have been optimal for Investor to follow
the strategy SΛ that invests all capital in A at local minima of Λ, and
liquidates all shares into B at local maxima. Let z = z0, . . . , zm denote
the sequence of logprices at local extrema of Λ, with z0 = Λ(0) and
zm = Λ(T). The payoff of the strategy SΛ thus equals

SΛ∗Λ := ∑
1≤i≤m

max{0, zi − zi−1}.

We construct a foresight-free, computationally efficient strategy π that

148 Chapter 5. Switching Investments

guarantees payoff π∗Λ close to SΛ∗Λ. The definition of π relies on the
selection of a probability density function on [0, ∞) that for convenience
we identify with π itself (see Section 5.2), and we abbreviate − ln π(h)
to `(h). We then prove

π∗Λ ≥ SΛ∗Λ− ∑
1≤i≤m

`
(
|zi − zi−1|

)
− (m− 1)cπ − ln 2− 2επ, (5.1)

where cπ and επ are two constants that depend on π. Thus the payoff
of π on Λ falls short of the optimum by an overhead that depends on
the complexity of Λ, measured in terms of both the length of the vector
z, and the sizes of its entries. The bound is entirely independent of the
time scale T.

When Λ is simple, i.e. has few large fluctuations, (5.1) shows that π
exploits almost all achievable payoff. The bound degenerates when Λ
sports many small fluctuations, for which the overhead `(x) exceeds the
benefit x of trading. However, we prove that for any regularisation Λ′ of
Λ, as illustrated by the dashed line in Figure 5.1 and defined precisely
in Section 5.3.2, π’s payoff satisfies

π∗Λ′ ≤ π∗Λ. (5.2)

Thus, we may pretend that Nature actually played Λ′, and apply the
bound (5.1) with Λ′ in place of Λ. In fact the regulariser Λ′ may be
interpreted as a model for Nature’s play Λ. The most complex model
then yields the bound as presented in (5.1), but we may now concern
other models, that strike a better balance between model complexity
and goodness of fit. Such tradeoff models will usually yield better
bounds. In conclusion, if in hindsight a simple regulariser can be found
with large payoff, then π will collect most of that payoff as well.

5.1.1. Example. Let Λ and Λ′ be, respectively, the play for Nature and
the regulariser shown in Figure 5.1. The extrema of the regulariser are
given by z′ = (0, 42, 36, 82, 68, 112, 57, 90, 77, 90). Then SΛ′∗Λ′ = (42−
0) + (82− 36) + . . . + (90− 77) = 178. Now we select the exponential
density listed in Table 5.1 for the definition of π; the values for cπ and
επ are also listed there. We can now apply bounds (5.2) and (5.1) to
find

π∗Λ ≥ π∗Λ′ ≥ 178− 64.8− 8 · 0.034− ln 2− 2 · 3.40 ≈ 105.4.

5.1. Introduction 149

Note that there may be choices of Λ′ for which the bound is better, and
even for the optimal choice of Λ′ the strategy π may perform substan-
tially better than our bound indicates. The actual payoff of π on these
data is π∗Λ = 175.4. 3

5.1.0.3 Applications and Related Work.

Our model and its analysis are phrased in financial terms. However, it
applies much more widely. We list four examples.

One-Way Trading and Two-Way Trading. This is the most direct ex-
ample. We let Λ be the logarithm of the exchange rate between any
two assets, say dollar and yen. If we forbid selling A, we obtain the
setting called One-way Trading. Efficient algorithms with minimax pay-
off for one-way trading under various restrictions on Nature’s play Λ
are known. E.g. fixed daily price growth range [29], fixed price range
[53] and bounded quadratic variation [43]. Two-way trading guarantees
are derived in [38] by iterating a unidirectional trading algorithm back
and forth. Both the algorithms and the bounds are parametrised by the
restrictions placed on Nature’s play.

Our results are of a different kind. First, no restrictions are placed
on Nature’s play. Second, our guarantees are expressed in terms of
Nature’s actual play (or a regularisation thereof), and hence remain
informative when Nature does not play to ruin Investor.

Prediction with Expert Advice. Two experts, say A and B sequen-
tially issue predictions. We denote their cumulative loss at time t by
LA(t) and LB(t). We let Λ(t) = LB(t)− LA(t). In prediction tasks with
so-called mixable loss [182], guarantees for our financial game directly
translate to expert performance bounds and vice versa. Efficient strate-
gies include the seminal Fixed Share [80], the Switching Method [180],
and the Switch Distribution and its derivatives in Chapter 3 and [178].
These algorithms guarantee payoff ρ∗Λ ≥ SΛ′∗Λ′ −O(m′ ln T) for each
Λ′ with m′ blocks. The logarithmic dependence of the bound on the
time T of these algorithms means that for any arbitrary number h, if by
switching just a single time the payoff could be improved by h, there is
a sample size T such that these algorithms are not able to exploit this.

150 Chapter 5. Switching Investments

Variable Share [80] switches based on the losses LA and LB. Its
payoff guarantee depends logarithmically on the loss of the best ref-
erence strategy with m′ blocks. However, its analysis assumes so-called
bounded loss, and does not apply to financial games (which involve log-
arithmic loss, which is unbounded).

Prefix Coding/Compression. Fix two prefix codes A and B for a se-
quence of outcomes x1, . . . , xT. Let LA(t) and LB(t) denote the code-
length of A and B on the outcomes x1, . . . , xt measured in nats. Now let
Λ(t) = LB(t)− LA(t). It is well-known that we can build a prefix code
that attains code length ln(2) + min

{
LA(T), LB(T)

}
on the data. When

different codes are good for different segments of the data, we observe
fluctuation in Λ. Using standard information-theoretic methods, e.g.
[34], our financial prediction scheme can be transformed into a prefix
code that exploits these fluctuations.

Hypothesis Testing. We are given a null hypothesis P0 and an alterna-
tive hypothesis P1. Both candidate hypotheses are probabilistic models
for some sequence of observations x1, x2, . . . , xT. Let

Λ(t) = ln
P1(x1, . . . , xt)

P0(x1, . . . , xt)

be the loglikelihood ratio between P1 and P0. Thus Λ measures the
amount of evidence against the null hypothesis and can be used as a
test statistic. Traditionally [15], we choose a threshold τ > 0 and reject
the null hypothesis when Λ(T) ≥ τ, an event that is extremely unlikely
under P0. The case where Λ(T) is below the threshold τ, while Λ(t) ≥ τ
at some earlier time t is considered in [162, 40], and tests are presented
that lose as little evidence as possible while remaining unbiased. These
tests are based on strategies that switch only once, and resemble strate-
gies for one-way trading. By the same method, our strategy induces
a fair test statistic that can be used to reject P0 whenever Λ fluctuates
heavily; an event that is also unlikely under P0.

5.1.0.4 Outline.

We explicate the setting and describe the strategy π for Investor in Sec-
tion 5.2. We analyse the payoff of π and prove our payoff guarantee in

5.2. Setting 151

Section 5.3. We then show how to implement the strategy π efficiently
in Section 5.4.

5.2 Setting

We introduce the details of our financial game. We first review Nature’s
play Λ. We then construct strategies for Investor, culminating in the
definition of the strategy π. We conclude this section with a lemma
that simplifies all later proofs by exploiting the symmetry between A
and B.

5.2.1 Nature’s Play Λ

A play for Nature is a logprice function Λ : [0, T]→ R. The end-time T
is part of Nature’s move, and unknown to Investor.

For simplicity, we restrict attention to the setting where Λ is dis-
crete, i.e. piecewise constant with jumps at integer times. This is suf-
ficient for the practical scenario where Λ is monitored intermittently
(albeit possibly very often). Later in the analysis it will be convenient
for technical reasons to generalise to piecewise continuous plays for Na-
ture with finitely many local extrema and finitely many discontinuities;
nevertheless ultimately we remain concerned with the discrete setting
only.

Our results do extend quite readily to the wide class of càdlàg log-
price functions (right-continuous with left limits). These encompass
continuous time models that are often considered in the financial lit-
erature, such as Brownian motion with drift, etc. Such theoretically
interesting generalisations are deferred to future publications.

5.2.2 Investor’s Strategy π

We now construct the strategy π for Investor in three stages. Two basic
strategies exist. Strategy A invests the initial unit capital in the asset,
whereas strategy B keeps all capital in the boot. At the end of the game,
all shares are valued at the final logprice Λ(T). The payoffs, defined as
Investor’s final logcapital, of the basic strategies equal

A∗Λ := Λ(T)−Λ(0) and B∗Λ := 0.

152 Chapter 5. Switching Investments

Since we use logprice differences extensively, we abbreviate Λ(t)−Λ(s)
to Λ|ts.

5.2.2.1 Time-switched Strategies.

From these basic strategies A and B we construct more interesting
strategies. Let t = t0, t1, t2, t3, . . . be a sequence of times such that
0 = t0 ≤ t1 ≤ t2 ≤ . . . The strategy tA switches at times t starting
with A. That is, tA invests all capital in A until time t1. At that time it
sells all shares, and keeps all money in B until time t2. Then it again
invests all capital in A until time t3 etc. Symmetrically, tB is the strategy
that switches at times t starting with B. Thus the payoffs of tA and tB

when Nature plays Λ are

tA∗Λ :=
∞

∑
i=0

Λ|T∧t2i+1
T∧t2i

and tB∗Λ :=
∞

∑
i=0

Λ|T∧t2i+2
T∧t2i+1

.

Of course, a good time switch sequence t for Investor depends on Na-
ture’s unknown move Λ. However, Investor may hedge by dividing
his initial capital according to some prior distribution ρ on the switch
time sequence t, and construct time-switched strategies ρA and ρB with
payoffs

ρA∗Λ := ln
∫

exp
(
tA∗Λ

)
dρ(t) and

ρB∗Λ := ln
∫

exp
(
tB∗Λ

)
dρ(t),

and the meta strategy ρ with payoff

ρ∗Λ := ln
(

1
2 exp

(
ρA∗Λ

)
+ 1

2 exp
(
ρB∗Λ

))
.

5.2.2.2 Price-switched Strategies.

Price-switched strategies decide when to trade based on the logprice
Λ(t) instead of the time t itself. This renders their payoff independent
of the time-scale. Fix a sequence of nonnegative reals δ = δ1, δ2, . . . We
denote by δA the strategy that initially invests all capital in A, and waits
until the first time s1 where the logprice difference Λ|s1

0 is at least δ1. It
then sells all shares and puts the money into B, until the first subsequent

5.2. Setting 153

time s2 that the logprice difference Λ|s2
s1 is at most −δ2. Then it invests

all capital into A again, until the logprice difference Λ|s3
s2 is at least δ3,

etc. The strategy δB is defined symmetrically, with switching times
r0, r1, . . . The switching time sequences s and r are obtained as follows.
First s0 = r0 = 0. Then recursively, for even i

si := min
{

t ≥ si−1
∣∣ Λ|tsi−1

≥ +δi
}

ri := min
{

t ≥ ri−1
∣∣ Λ|tri−1

≤ −δi
}

and for odd i

si := min
{

t ≥ si−1
∣∣ Λ|tsi−1

≤ −δi
}

ri := min
{

t ≥ ri−1
∣∣ Λ|tri−1

≥ +δi
}

.

Both s and r are a function of δ and Λ and satisfy s(δ, Λ) = r(δ,−Λ).
By convention, the minimum is infinite if no suitable successor time
exists in the domain of Λ, i.e before time T. The payoffs of δA and δB

are given by

δA∗Λ := sA∗Λ and δB∗Λ := rB∗Λ.

The strategy δA has the following property. Whenever it sells its shares,
say at time si for some odd i, the asset price, and hence its capital, has
multiplied by at least exp(δi) ≥ 1 since the acquisition at time si−1. This
holds irrespective of Nature’s play. In particular, between time si and
si+1 for odd i, the logarithm of its capital equals

Λ|s1
s0
+ Λ|s3

s2
+ Λ|s5

s4
+ . . . + Λ|si

si−1
≥ δ1 + δ3 + δ5 + . . . + δi.

For each logprice difference sequence δ, the number of switches that
is executed, and hence the quality of δA depends on Nature’s move Λ.
Let D =

{
δA, δB

∣∣ δ ∈ [0, ∞)∞} be the set of price-switched strategies
for Investor.

5.2.2.3 The Strategy π.

Again, we may hedge by dividing our initial capital according to some
prior π on δ, and obtain strategies πA and πB with payoffs

πA∗Λ := ln
∫

exp
(
δA∗Λ

)
dπ(δ) and

πB∗Λ := ln
∫

exp
(
δB∗Λ

)
dπ(δ),

154 Chapter 5. Switching Investments

and the meta strategy π with payoff

π∗Λ := ln
(

1
2 exp

(
πA∗Λ

)
+ 1

2 exp
(
πB∗Λ

))
.

Note that the price-switched strategies in D are independent of the time
scale, and so are these strategies based on them.

Requirements on π. The above construction works for any prior π. In
this chapter we analyse the behaviour of strategies π that satisfy these
requirements:

1. π is the independent infinite product distribution of some prob-
ability density function on [0, ∞). Since the distinction is always
clear, we also denote the univariate density by π.

2. the function x 7→ exπ(x) is increasing.

3. the density π is log-convex.

The first requirement ensures that we can hedge capital according to
π. The second requirement ensures that paying − ln π(x) to gain x is
a better deal when x is larger. The third requirement ensures that we
rather pay − ln π(x + y) than − ln π(x)− ln π(y) to gain x + y. We use
the following consequences in our bounds.

5.2.1. Lemma. Let π satisfy the requirements 1–3 above. Then

1. π is strictly positive.

2. π is strictly decreasing.

3.
∫ ∞

h π(x)dx ≥ π(h) for each h ≥ 0.

Proof. Since π is a convex probability density, it is decreasing and thus
0 < π(0) = e0π(0). Since exπ(x) increases, we have π(x) > 0 for all
x. Then, since π is a non-zero convex probability density, it must be
strictly decreasing. Finally, for 0 ≤ h ≤ x we have π(x) = π(x)exe−x ≥
π(h)ehe−x. Therefore

∫ ∞
h π(x)dx ≥ π(h)

∫ ∞
h eh−x dx = π(h) .

The last fact implies that the density π(x) ≤ 1 for all x. Throughout
this chapter, we abbreviate − ln π(x) to `(x). Thus ` is nonnegative,
concave and increasing.

5.2. Setting 155

Table 5.1 Example priors.
Fat tail Pareto Exponential

π(x)
log(o)

(x + o)(log(x + o))2 (c− 1)oc−1(x + o)−c αe−αx

Condition 2 ≤ (o− 1) log o
(Sufficient: o ≥ 2.89) 1 < c ≤ o 0 < α ≤ 1

Parameters o = 3 c = 2, o = 3 α = 1/3

επ 4.10396 3.55884 3.39788

cπ 0.016645 0.0288849 0.034016

5.2.2. Example. The densities shown in Table 5.1, ordered from heavy
to light tails, satisfy all the requirements. 3

5.2.3 Exploiting Symmetry

Payoff is measured as (the natural logarithm of) Investor’s final amount
of cash. Of course, cash and asset are intrinsically symmetric. We make
this precise as follows. We say that the following pairs of strategies are
dual

A, B tA, tB ρA, ρB ρ, ρ δA, δB πA, πB π, π

and vice versa in each case. The meta strategies ρ and π are self-dual.

5.2.3. Lemma (Duality). Let S and S′ be dual strategies. Then for each Λ

S∗Λ = S′∗(−Λ) + Λ|T0 .

Proof. The lemma is trivial for the dual pair A and B. We proceed
to prove the lemma for the dual strategies tA and tB, the other cases
follow simply by definition. Recall that exp(Λ) is the asset price in
cash per share, so that exp(−Λ) is the price in shares per cash. Thus
tB∗(−Λ) is the log-number of shares resulting from investing one share
according to the strategy tA. Finally, Λ|T0 = Λ(T)− Λ(0) is the result
of exchanging cash to asset initially, and asset to cash at the end.

156 Chapter 5. Switching Investments

5.3 Payoff Bound

In this section we prove the payoff guarantees for the strategy π that
were given in the introduction. We build towards the statement and
proof of a more precise version of the bounds in the following subsec-
tions. First, in Section 5.3.1 we show that Nature’s worst-case logprice
functions are continuous. Then, in Section 5.3.2 we show that Investor’s
payoff decreases when Nature plays more regular. In Section 5.3.3 we
analyse Investor’s payoff under a regularity assumption on Λ called
γ-separation. Finally, in Section 5.3.4 we show how to establish γ-
separation if it does not obtain and establish the bound in the form
of Theorem 5.3.8.

5.3.1 Nature Plays a Continuous Logprice Function Λ

We now prove that it is sub-optimal for Nature to play a discontinuous
Λ. To do so, we show that Investor’s payoff is reduced when Nature
eliminates a jump by inserting a linear interpolation. Let Λ have a
discontinuity at t. We define Λ′, the t-ironing of Λ, by Λ′(s) := Λ(s) for
s < t, Λ′(s + 1) := Λ(s) for s > t, and Λ′(s) := (1 + t− s)Λ(t−) + (s−
t)Λ(t) for t ≤ s ≤ t + 1, where Λ(t−) := lims↑t Λ(s). This definition is
illustrated by Figure 5.2.

5.3.1. Theorem (Continuous Free Lunch). Fix any play for Nature Λ with
a discontinuity at time t, and let Λ′ be the t-ironing of Λ. Then

π∗Λ′ ≤ π∗Λ.

Proof. See Figure 5.2. By duality (Lemma 5.2.3), we may assume that
the jump is upward. Obviously, any strategy δ′ that does not switch
at time t on Λ has identical payoff on Λ and Λ′. Now consider any
strategy δ′ = (. . . , h, h − l, . . .), where h prompts a switch at time t
on Λ. We now modify the strategy to δ = (. . . , h, u − l, . . .) and we
compare the term corresponding to δ′ in the integral for π∗Λ′ to the
term corresponding to δ in the integral for π∗Λ:

exp(δ′∗Λ′)π(δ′)

exp(δ∗Λ)π(δ)
=

exp(h− l)π(h− l)
exp(u− l)π(u− l)

≤ 1,

where the inequality uses that ehπ(h) is increasing (see Section 5.2.2.3).
The proof follows by observing that the mapping that takes δ′ to δ is a
translation.

5.3. Payoff Bound 157

Figure 5.2 Worst-case plays for Nature are continuous.
(a) Nature’s move Λ with jump at time t,
and strategy δ = (. . . , h, u− l, . . .).

u
h
l

t

(b) The t-ironing Λ′ of Λ, and strategy
δ′ = (. . . , h, h− l, . . .)

u
h
l

t t+1

When Investor follows the strategy π, there is no benefit for Nature
to playing a logprice function Λ with jumps. Without loss of generality
we henceforth restrict Nature to continuous plays. This simplifies anal-
ysis considerably, as it allows us to assume that switches specified by
any δ occur at exactly the specified logprices.

5.3.2 Ordering by Regularity

Given a move for Nature Λ : [0, T] → R, we say that another move
Λ′ : [0, T′] → R is more regular than Λ, denoted Λ′ 4 Λ, if there is a
monotonic function f : [0, T′] → [0, T] such that f (0) = 0, f (T′) = T
and Λ′ = Λ ◦ f . That is, the price levels of the regularisation Λ′ are
a subsequence of the price levels of Nature’s move Λ, with the same
initial and final price, but potentially less fluctuation. We now show
that by following a fixed price-switched strategy, Investor gets richer
whenever Nature’s move is less regular.

5.3.2. Theorem (Monotonicity). For each price-switched strategy S ∈ D
and continuous logprice functions Λ and Λ′

Λ′ 4 Λ implies S∗Λ′ ≤ S∗Λ.

Proof. First note that Λ′ 4 Λ iff −Λ′ 4 −Λ. So that by Lemma 5.2.3
it suffices to prove the theorem for the strategies in D that start with
A. We proceed by induction on the number of switches executed by
the strategy δA on the regulariser Λ′. For the base case, suppose this

158 Chapter 5. Switching Investments

number is zero, i.e Λ′|t0 < δ1 for each 0 ≤ t ≤ T′. Let m ≥ 1 denote the
number of blocks of δA on Λ. There are two cases. If m is even then δA

follows B on the last block. Since δ1 > Λ′|T′0

δA∗Λ = ∑
1≤i<m odd

δi ≥ δ1 > Λ′|T′0 = δA∗Λ′.

If m is odd, then δA follows A on the last block. Again invoking
Lemma 5.2.3, we get

δA∗Λ = ∑
1≤i<m even

δi + Λ|T0 ≥ Λ|T0 = Λ′|T′0 = δA∗Λ′.

To prove the induction step, suppose a switch is executed, i.e. the first
difference δ1 is present in the regulariser Λ′, and hence also in Nature’s
play Λ, then the strategy δA switches at price level Λ(0) + δ1 on either
play, resulting in the same capital. The switches may occur at different
times on Λ and Λ′. Nevertheless, the induction hypothesis applies to
the tails of the plays since the remainder of the regulariser Λ′ is more
regular than the remainder of Nature’s move Λ.

Since the theorem holds pointwise in D, it also holds for the mixture
strategy π.

5.3.3 With γ-Separation

Fix a logprice function Λ. Throughout this section, we use the following
notation:

5.3.3. Definition. We denote by z = z0, z1, . . . , zm the sequence of log-
prices at the local extrema of Λ (attained or not), with z0 = Λ(0) and
zm = Λ(T), and we say that Λ has m blocks. Let ∆ = ∆1, . . . , ∆m denote
the sequence of absolute logprice differences, i.e. ∆i := |zi − zi−1|.

5.3.4. Definition. We say that Λ has γ-separation if ∆1, ∆m ≥ γ and
∆i ≥ 2γ for each 1 < i < m. That is, the border optima have logprice
difference at least γ with the border and each subsequent pair of local
extrema has at least logprice difference 2γ.

We now analyse the payoff of the strategy π, assuming that Λ has
γ-separation.

5.3. Payoff Bound 159

Figure 5.3 Domain of integration example. Some Λ, with m = 4, is
shown in black. The height of the dark gray triangles equals γ. This
Λ has γ-separation. In particular ∆2 = z1 − z2 = 2γ. Theorem 5.3.5
integrates over the strategies that are optimal for log-price functions in
the light gray region.

0 T
z0

z1

z2

z3

z4

5.3.5. Theorem (γ-Separation Payoff). For each Λ with γ-separation

π∗Λ ≥

∑
1≤i≤m

(zi − zi−1)+︸ ︷︷ ︸
gain

− ∑
1≤i≤m

`(∆i)︸ ︷︷ ︸
complexity penalty

+ (m− 1) ln(1− e−γ)︸ ︷︷ ︸
overhead per switch

− ln 2︸︷︷︸
parity

.

Proof. We saw in Section 5.2.3 that π is self-dual, so by symmetry
(Lemma 5.2.3) we may assume that z0 ≤ z1. As our first bound, we
use π∗Λ ≥ πA∗Λ − ln 2. Recall that the payoff πA∗Λ is defined as
ln
∫

exp
(
δA∗Λ

)
dπ(δ). As the next step, we re-parameterise the inte-

gral by introducing variables h, with hi := z0 −∑1≤j≤i(−1)jδj. That is,
hi is the logprice at the ith switch of δA. Then we obtain a lower bound
by restricting the domain of integration. For 1 ≤ i < m we restrict
hi ∈ [zi − γ, zi] for odd i and hi ∈ [zi, zi + γ] for even i. Thus, we keep
all prior mass on strategies that switch at logprices hi that are at most
γ nats short of the optimal switching logprice level zi. We restrict the
last logprice to hm ∈ [zm, ∞) for even m and hm ∈ (−∞, zm] for odd
m. This ensures that we do not switch between hm−1 and zm. Thus, we
only integrate over those strategies that closely follow Λ, as illustrated
by Figure 5.3. We first consider even m. Then

160 Chapter 5. Switching Investments

πA∗Λ ≥

ln
z1∫

z1−γ

eh1−h0 π(h1 − h0)

z2+γ∫
z2

π(h1 − h2)

z3∫
z3−γ

eh3−h2 π(h3 − h2) · · ·

· · ·
zm−1+γ∫
zm−1

π(hm−2 − hm−1)

∞∫
zm

ezm−hm−1 π(hm − hm−1)dh

Apply the tail probability bound (Lemma 5.2.1(3)) to the innermost in-
tegral to get∫ ∞

zm

ezm−hm−1 π(hm − hm−1)dhm ≥ ezm−hm−1 π(zm − hm−1).

Since |hi − hi−1| ≤ ∆i and π decreases (Lemma 5.2.1(2)) we get

πA∗Λ ≥ ln ∏
1≤i≤m

π(∆i) +

ln

ezm−z0

z1∫
z1−γ

eh1

z2+γ∫
z2

e−h2

z3∫
z3−γ

eh3 · · ·
zm−2∫

zm−2−γ

ehm−2

zm−1+γ∫
zm−1

e−hm−1 dh


Now all integrals have become independent. Rewrite odd/even in-
stances like∫ z1

z1−γ
eh1 dh1 = ez1(1− e−γ) and

∫ z2+γ

z2

e−h2 dh2 = e−z2(1− e−γ).

By rearranging terms we obtain

πA∗Λ ≥ ∑
1≤i≤m

(zi − zi−1)+ − ∑
1≤i≤m

`(∆i) + (m− 1) ln(1− e−γ).

The case for odd m is analogous.

5.3.4 Establishing γ-Separation

Say we have a Λ with γ-separation, and hence a performance guarantee
by Theorem 5.3.5. If γ is small, then a better bound can be obtained by

5.3. Payoff Bound 161

Algorithm 5.1 The ε-pruning algorithm

1: u← (2ε− ∆1)+ · sign(z1 − z0).
2: v← (2ε− ∆m)+ · sign(zm − zm−1).
3: z← (z0, z1 + u, z2 + u, . . . , zm + u + v) . Ensure ∆1, ∆m ≥ 2ε
4: while the minimal ∆i is (strictly) less than 2ε do
5: z← (z0, z1, . . . , zi−2, zi+1, . . . , zm) . See Figure 5.4
6: end while
7: z← (z0, z1 − u, z2 − u, . . . , zm − u− v) . Reverse line 3
8: if ∆1 < ε then z← (z0, z2, z3, . . . , zm) . Ensure ∆1 ≥ ε
9: if ∆m < ε then z← (z0, z1, . . . , zm−2, zm) . Ensure ∆m ≥ ε

first regularising Λ to a price function Λε with ε-separation for some
ε > γ, and only then applying the theorem. In this section we quantify
the gain of going from γ = 0 to ε, and then derive our main payoff
bound by tuning ε.

The regulariser Λε is constructed by Algorithm 5.1. The key idea
of the algorithm, implemented by lines 4–6, is to iteratively remove the
smallest fluctuation from z. This process is illustrated by Figure 5.4.
The solid line shows a segment of the logprice function before reg-
ularisation. The logprice difference between the two open circles is
too small, i.e. < 2ε. The dashed line is the logprice function resulting
from fluctuation removal. The other lines of the algorithm establish
ε-separation at the boundaries of Λ.

For any sequence z = z0, . . . , zm we abbreviate the terms in the
bound of Theorem 5.3.5 that depend on z by defining ~g = g1, . . . , gm
and G by

gi := (zi − zi−1)+ − `(∆i) and G := ∑
1≤i≤m

gi.

We first study the effect of a single execution of lines 4–6.

5.3.6. Lemma. Let z◦ and z† be the sequences before and after line 5. Then

G† − G◦ ≥ (m◦ −m†)min
{

0, `(2ε)− ε
}

Proof. Let i be the index of the minimal ∆◦i . Let l = ∆◦i−1, c = ∆◦i and
r = ∆◦i+1, so that ∆†

i−1 = l + r − c and 2ε > c ≤ l, r. By definition

162 Chapter 5. Switching Investments

Figure 5.4 Regularisation imposed by the ε-pruning Algorithm 5.1

G† − G◦ equals(
l + r− c− `(l + r− c)

)
−
(
l + r− `(l)− `(c)− `(r)

)
if zi−1 ≤ zi, or(

−`(l + r− c)
)
−
(
c− `(l)− `(c)− `(r)

)
if zi−1 ≥ zi.

In either case G†−G◦ simplifies to −c− `(l + r− c) + `(l) + `(c) + `(r).
Since ` is concave, the worst-case values for l and r are c. For the same
reason, the worst-case value for c is either 0 or 2ε. Finally

G† − G◦ ≥ 2`(c)− c ≥ 2 min{`(0), `(2ε)− ε} ≥ 2 min{0, `(2ε)− ε}

since ` is nonnegative.

Now fix ε ≥ 0. Let zε = zε
0, zε

1, . . . , zε
mε be the result of applying

Algorithm 5.1 with parameter ε to the sequence z of local extrema of Λ,
and let Λε be any continuous function with local extrema zε. By con-
struction Λε has ε-separation and regularises Λ. Theorem 5.3.5 gives
us a bound on the payoff in terms of Λε. We now show how to get a
bound in terms of the original Λ.

5.3.7. Theorem (Enforcing ε-Separation). For all ε ≥ 0 such that `(2ε) <
ε

Gε − G ≥
(
m−mε

)(
`(2ε)− ε

)
− 2`(2ε).

Proof. Let z+, z?, z− be the sequences after lines 3, 6 and 7 of Algo-
rithm 5.1. Thus the algorithm produces (denoted→) in order

z → z+ → z? → z− → zε.

5.3. Payoff Bound 163

with numbers of blocks m = m+ ≥ m? = m− ≥ mε. By Lemma 5.3.6
G? − G+ ≥

(
m+ −m?

)(
`(2ε)− ε

)
. It thus remains to show that

(G+ − G) + (G− − G?) + (Gε − G−) ≥
(m? −mε)

(
`(2ε)− ε

)
− 2`(2ε).

We have G+−G = g+1 − g1 + g+m+ − gm, G−−G? = g−1 − g?1 + g−m− − g?m−
and hence Gε − G− equals{

gε
1 − g−1 − g−2 if ∆−1 < ε,

0 otherwise,
+

{
gε

mε − g−m− − g−m−−1 if ∆−m− < ε,
0 otherwise.

These three expressions are symmetric in the first and last element of
the sequences concerned. The contributions of the first elements are

g+1 − g1 = u+ − `
(
∆1 + |u|

)
+ `(∆1), (5.3)

g−1 − g?1 = −u+ − `(∆−1) + `
(
∆−1 + |u|

)
, (5.4)

gε
1 − g−1 − g−2 = −∆−1 + `(∆−1) + `(∆−2)− `(∆−2 − ∆−1). (5.5)

If ∆−1 ≥ ε then no element is dropped in line 8. The sum of (5.3) and
(5.4) equals

−`
(
∆1 + |u|

)
+ `(∆1)− `(∆−1) + `

(
∆−1 + |u|

)
≥ −`(2ε).

Since ` increases the last two terms are positive and can be dropped
from the bound; the remaining expression is increasing in ∆1 by con-
cavity of ` and is decreasing in |u|. Substitute the worst-case values
∆1 = 0 and |u| = 2ε.

If on the other hand ∆−1 < ε then one element was dropped in line 8.
In this case the sum of (5.3)–(5.5) equals

−`
(
∆1 + |u|

)
+ `
(
∆−1 + |u|

)
+ `(∆1)− ∆−1 + `(∆−2)− `(∆−2 − ∆−1),

which is bounded below by −∆−1 as follows. First cancel the first two
terms and the last two terms since ` is increasing and 0 ≤ ∆1 ≤
∆−1 . Since ` is nonnegative, omit the third term as well. Then use
−∆−1 ≥ −ε =

(
`(2ε)− ε

)
− `(2ε).

The bound for the contribution of the final elements is analogous. In
each case, a dropped intermediate elements contributes at most `(2ε)−
ε, while the borders lose at most `(2ε) each.

164 Chapter 5. Switching Investments

We now put everything together, and in particular we optimise the
value of ε.

5.3.8. Theorem (Payoff Bound). Fix logprice functions Λ and Λ′, the latter
with associated z′, m′ and ∆′ as in Definition 5.3.3. If Λ′ 4 Λ then

π∗Λ ≥ ∑
1≤i≤m′

(z′i − z′i−1)+ − ∑
1≤i≤m′

`(∆′i)− (m′ − 1)cπ − ln 2− 2επ,

where επ is the unique solution to π(2ε) = 1
eε−1 , and cπ = − ln(1− e−επ).

Proof. For each ε ≥ 0 with `(2ε) < ε

π∗Λ ≥ π∗Λ′ ≥ π∗Λε ≥ Gε + (mε − 1) ln(1− e−ε)− ln 2

≥ G′ + (mε − 1) ln(1− e−ε) + (m′ −mε)
(
`(2ε)− ε

)
− 2`(2ε)− ln 2

≥ G′ + (m′ − 1)min
{

ln(1− e−ε), `(2ε)− ε
}
− 2`(2ε)− ln 2.

The inequalities are twice Theorem 5.3.2, then Theorem 5.3.5, then The-
orem 5.3.7. To complete the proof we set ε to equalise the arguments of
the minimum.

Typical values for επ and cπ are shown in Table 5.1.

5.4 Implementation

The following algorithm implements the strategy π. For arbitrary prior
densities it runs in O(T2) time. For exponential priors, we reduce the
running time to O(T). The key to efficiency is the independent product
form of π, which renders the last switching price a sufficient statistic.

For concreteness, we measure discrete time in days. As its data
structure, the algorithm maintains a set of bank accounts. Each bank
account has a balance, a type that is either A or B, and a birthday. The
balance of type A accounts is measured in shares, whereas that of type
B accounts is measured in cash.

On day zero the initial unit cash is divided evenly into two bank ac-
counts: one account of type B with half a unit of cash, and one account
of type A with 1

2 exp(−Λ(0)) shares, i.e. half a unit of cash worth of
shares at the initial logprice.

The algorithm then proceeds as follows. Each day t = 1, 2, . . . the
new price Λ(t) is announced. The algorithm creates a single new bank

5.4. Implementation 165

account with birthday t. If Λ(t − 1) ≤ Λ(t), then the new account is
of type B, and a portion of the shares in existing accounts of type A is
sold to fill it with cash. On the other hand if Λ(t− 1) ≥ Λ(t), then a
new account of type A is endowed with shares by investing a fraction
of the capital of existing accounts of type B. In either case, the amount
traded reestablishes the following invariant. At the end of day t:

• Each account of type A that was created with c shares on birthday
i has balance c

∫ ∞
λ π(h)dh, where λ = maxi≤j≤t Λ|ji .

• Each account of type B that was created with capital c on birthday
i has balance c

∫ ∞
λ π(h)dh, where λ = maxi≤j≤t−Λ|ji .

To see how this works, consider an A-type account with birthday i
and initial balance c, and assume that the invariant was maintained at
the end of day t − 1. First, note that it can only become violated if
the maximum changes, that is, if Λ|ti exceeds the previous maximum
λ = maxi≤j<t Λ|ji . Then the balance still is c

∫ ∞
λ π(h)dh but should

become c
∫ ∞

Λ|ti
π(h)dh. The fraction

1−

∫ ∞
Λ|ti

π(h)dh∫ ∞
λ π(h)dh

=

∫ Λ|ti
λ π(h)dh∫ ∞
λ π(h)dh

= π
(

H ≤ Λ|ti
∣∣H ≥ λ

)
(5.6)

of the balance must be sold to reestablish the invariant, and the result-
ing cash is transferred to the new account. Note that we only query π
via its cumulative distribution function.

5.4.0.1 Complexity Analysis.

After t days, there are t + 2 bank accounts to maintain, and each bank
account potentially requires work each round. Thus, trading for T days
takes O(T2) time and O(T) space.

For exponential priors we can do better by merging several bank
accounts into a single account with the sum of their balances. This is
because for memoryless priors, the fraction (5.6) to be traded away does
not depend on the birthday i, but only on the maximum λ, allowing
us to merge bank accounts with the same maximum. Now observe
that all bank accounts that are tapped to reestablish the invariant share

166 Chapter 5. Switching Investments

the same maximum afterwards, and can hence all be merged. This
means that a bank account requires work at most once, namely when
it is merged away. By maintaining two stacks of bank accounts, one
for each type, each ordered by the maximum λ, the running time is
brought down to O(T). Since we do not know when merges happen,
the space requirement is still O(T), and the running time is amortised
O(1) per day.

5.5 Conclusion

We presented a simple online algorithm that can be applied to two-way
trading, but also to prediction with expert advice, data compression
and hypothesis testing (see Section 5.1.0.3). Compared to the many
hedging algorithms described in the literature, our approach has two
novel properties. First, the overhead of our algorithm is independent
of the times at which prices are processed, and second, our bound is
free of any conditions on the evolution of the price of the asset, and is
parameterised either by the asset price function itself or by a regularised
model of it.

The surprisingly simple implementation (Section 5.4) processes a
sequence of T asset prices in O(T2) time and O(T) space. The algorithm
models the scale of the fluctuations of the price using a density function
on [0, ∞); if an exponential density is employed, the running time is
reduced to O(T).

Chapter 6

Hedging Structured Concepts

argmin
w∈conv(C)

4(w‖wt−1) + ηw · `t

Abstract We develop an online algorithm called Component Hedge for
learning structured concept classes when the loss of a structured con-
cept sums over its components. Example classes include paths through
a graph (composed of edges) and partial permutations (composed of
assignments). The algorithm maintains a parameter vector with one
non-negative weight per component, which always lies in the convex
hull of the structured concept class. The algorithm predicts by decom-
posing the current parameter vector into a convex combination of con-
cepts and choosing one of those concepts at random. The parameters
are updated by first performing a multiplicative update and then pro-
jecting back into the convex hull. We show that Component Hedge has
optimal regret bounds for a large variety of structured concept classes.

168

6.1. Introduction 169

6.1 Introduction

We develop online learning algorithms for structured concepts that are
composed of components. For example, sets are composed of elements,
permutations of individual assignments, trees have edges as compo-
nents, etc. The number of components d is considered small, but the
number of structured concepts D built from the components is typically
exponential in d.

Our algorithms address the following online prediction problem. In
each trial the algorithm first produces a concept from the structured
class by choosing a concept probabilistically based on its current pa-
rameters. It then observes the loss of each concept. Finally, it prepares
for the next trial by updating its parameters by incorporating the losses.
Since the algorithm “hedges” by choosing the structured concept prob-
abilistically, we analyse the expected loss incurred in each trial. The
goal is to develop algorithms with small regret, which is the total ex-
pected loss of the online algorithm minus the loss of the best structured
concept in the class chosen in hindsight.

We now make a key simplifying assumption on the loss: We assume
that the loss of a structured concept in each trial is always the sum of
the losses of its components and that the component losses always have
range [0, 1]. Thus if the concepts are k-element sets chosen out of n
elements, then in each trial each element is assigned a loss in [0, 1] and
the loss of any particular k-set is simply the sum of the losses of its
elements. Similarly for trees, a loss in [0, 1] is assigned to each edge of
the graph and the loss of a tree is the sum of the losses of its edges.

We will show that with this simplifying assumption we still have
rich learning problems that address a variety of new settings. We give
efficient algorithms (i.e. polynomial in d) that serve as an entry point
for considering more complex losses in the future.

Perhaps the simplest approach to learn structured concept classes
online is the Follow the Perturbed Leader (FPL) algorithm [92]. FPL
adds a random perturbation to the cumulative loss of each individ-
ual component, and then plays the structured concept with minimal
perturbed loss. FPL is widely applicable, since efficient combinatorial
optimisation algorithms exist for a broad range of concept classes. Un-
fortunately, the loss range of the structured concepts enters into the
regret bounds that we can prove for FPL. For example, for k-sets the

170 Chapter 6. Hedging Structured Concepts

loss range is [0, k] because each set contains k elements, for permuta-
tions the loss range is [0, n] because each permutation is composed of n
assignments, etc.

A second simple approach for learning well compared to the best
structured concept is to run the Hedge algorithm of [59] with one
weight per structured concept. The original algorithm was developed
for the so-called expert setting, which in the context of this chapter cor-
responds to learning with sets of size one. To apply this algorithm to
our setting, the experts are chosen as the structured concepts in the
class we are trying to learn. In this chapter we call this algorithm Ex-
panded Hedge (EH). It maintains its uncertainty as a probability distri-
bution over all structured concepts and the weight WC of concept C is
proportional to exp(−η`(C)), where `(C) is the total loss of concept C
incurred so far and η is a non-negative learning rate.

There are two problems with EH. First, there are exponentially
many weights to maintain. However our simplifying assumption as-
sures that `(C) is a sum over the losses of the component of C. This
implies that WC is proportional to a product over the components of
the structured concept C and this fact can be exploited to still achieve
efficient algorithms in some cases. More importantly however, like for
FPL, the loss range of the structured concepts usually enters into the
best regret bounds that we can prove.

Learning with structured concepts has also been dealt with recently
in the bandit domain [26]. However all of this work is based on EH and
contains the additional range factors.

Our contribution Our new method, called Component Hedge (CH),
avoids the additional range factors altogether. Each structured con-
cept C is identified with its incidence vector in {0, 1}d indicating which
components are used. The parameter space of CH is simply the con-
vex hull of all concepts in the class C to be learned. Thus, whereas EH
maintains a weight for each structured concept, CH only maintains a
weight for each component. The current parameter vector represents
CH’s first-order “uncertainty” about the quality of each concept. The
value of parameter i represents the usage of component i in the next
prediction. The usages of the components are updated in each trial by
incorporating the current losses, and if the usage vector leaves the hull,
then it is projected back via a relative entropy projection. The key trick

6.1. Introduction 171

to make this projection efficient is to find a representation of the convex
hull of the concepts as a convex polytope with a number of facets that
is polynomial in d. We give many applications where this is possible.

We clearly champion the Component Hedge algorithm in this chap-
ter because we can prove regret bounds for this algorithm that are tight
within constant factors for many structured concept classes. Also it is
trivial to enhance CH with a variety of “share updates” that make it
robust in the case when the best comparator changes over time [80, 19].

Two instances of CH have appeared before even though this name
was not used: learning with k-sets [185] and learning with permuta-
tions [77]. The same polytope we use for paths was also employed in
[5] for developing online algorithms for the bandit setting. They avoid
the projection step altogether by exploiting a barrier function. The con-
tribution of this chapter is to clearly formulate the general methodology
of the Component Hedge algorithm and give many more involved com-
binatorial examples. In the case of permutations we also show how the
method can be used to learn truncated permutations. Also in earlier
work [173] it was pointed out that the Expanded Hedge algorithm can
be simulated efficiently in many cases. In particular, the concept class
of paths in a directed graph was introduced. However, good bounds
were only achieved in very special cases. In this chapter we show that
CH essentially is optimal for the path problem.

Outline We give the basic setup for the structured prediction task,
introduce CH and prove its general regret bound in Section 6.2. We
then turn to a list of applications in Section 6.3: vanilla experts, k-sets,
permutations, paths, undirected and directed spanning trees. For each
structured concept class we discuss efficient implementation of CH, and
derive expected regret bounds for this algorithm. Then in Section 6.4
we provide matching lower bounds for all examples, showing that the
regret of CH is optimal within a constant factor. In Section 6.5 we
compare CH to the existing algorithms EH and FPL. We observe that
the best general regret bounds for each algorithm exceed that of CH
by a significant range factor. We show that the bounds for these other
algorithms can be improved to closely match those of CH whenever the
the so-called unit rule holds for the algorithms and class. This means
any loss vector ` ∈ [0, 1]d can be split into up to d scaled unit loss
vectors `i ei and processing these in separate trials always incurs at least

172 Chapter 6. Hedging Structured Concepts

as much loss. Unfortunately, for most pairing of the algorithms CH
and FPL with the classes we consider in this chapter, we have explicit
counter examples to the unit rule. Finally, Section 6.6 concludes with a
list of open problems.

6.2 Component Hedge

Prediction task We consider sequential prediction [75, 25] based on
a structured concept class [92, 26]. Fix a set of concepts C ⊆ {0, 1}d

of size D = |C|. For example C could consist of the incidence vectors
of subsets of k out of n elements (then D = (n

k) and d = n), or the
adjacency matrices of undirected spanning trees on n elements (then
D = nn−2 and d = n(n− 1)/2).

Our online learning protocol proceeds in trials. At trial t, we have
to produce a single concept Ct ∈ C. Then a loss vector `t ∈ [0, 1]d is
revealed, and we incur loss given by the dot product Ct · `t. Although
each component suffers loss at most 1, a concept may suffer loss up to
U := maxC∈C |C|. We allow randomised algorithms. Thus the expected
loss of of the algorithm at trial t is E[Ct] · `t, where the expectation
is over the internal randomisation of the algorithm. Our goal is to
minimise our (expected) regret after T trials

T

∑
t=1

E[Ct] · `t −min
C∈C

T

∑
t=1

C · `t.

That is, the difference between our cumulative expected loss and the
loss of the best concept in hindsight.

Note that the ith component of E[Ct] is the probability that compo-
nent i is “used in” concept Ct. We therefore call E[Ct] the usage vector.
This vector becomes the internal parameter of our algorithm. The set
of all usage vectors is the convex hull of the concepts.

6.2.1 Component Hedge

Two instances of CH appeared before in the literature [77, 185]. Here
we give the algorithm in its general form, and prove a general regret
bound. The algorithm CH maintains its uncertainty about the best
structured concept as a usage vector wt in conv(C) ⊆ [0, 1]d, the convex

6.2. Component Hedge 173

Table 6.1 Example structured concept classes

Case U D d

Experts 1 n n
k-Sets k (n

k) n
Permutations n n! n2

Paths (from source to sink) n + 1 n! · e− o(1) n(n + 1) + 1

Undirected spanning trees n− 1 nn−2 n(n− 1)/2

Directed spanning trees n− 1 nn−2 (n− 1)2

hull of the concepts C. The initial weight w0 is typically the usage of the
uniform distribution on concepts. CH predicts in trial t by decompos-
ing wt−1 into a convex combination1 of the concepts C, then sampling
Ct according to its weight in that convex combination. The expected
loss of CH is thus wt−1 · `t. The updated weight wt is obtained by
trading off the relative entropy with the linear loss:

wt := argmin
w∈conv(C)

4(w‖wt−1) + ηw · `t,

where the relative entropy is defined by

4(w‖v) = ∑
i∈[d]

(
wi ln

wi

vi
+ vi − wi

)
.

It is easy to see that this update can be split into two steps: an uncon-
strained update followed by relative entropy projection into the convex
hull:

ŵt := argmin
w∈Rd

4(w‖wt−1) + ηw · `t

wt := argmin
w∈conv(C)

4(w‖ŵt).

It is easy to see that ŵt
i = wt−1

i e−η`t
i , that is, the old weights are sim-

ply scaled down by the exponentiated losses. The result of the relative

1This decomposition usually is far from unique.

174 Chapter 6. Hedging Structured Concepts

entropy projection wt unfortunately does not have a closed form ex-
pression.

For CH to be efficiently implementable, the hull has to be captured
by polynomial in d many constraints. This will allow us to efficiently
decompose any point in the hull as a convex combination of at most
d + 1 concepts. The trickier part is to efficiently implement the projec-
tion step. For this purpose one can use generic convex optimisation
routines. For example this was done in the context of implementing
the entropy regularised boosting algorithm [186]. We proceed on a case
by case basis and often develop iterative algorithms that locally enforce
constraints and do multiple passes over all constraints. See Table 6.1
for a list of structured concept classes we consider in this chapter.

6.2.2 Regret Bounds

As in [77], the analysis is split into two steps parallelling the two update
steps. Essentially the unnormalised update step already gives the regret
bound and the projection step does not hurt. For any usage vector
wt−1 ∈ conv(C), loss vector `t ∈ {0, 1}d and any comparator concept C,

(1− e−η)wt−1 · `t ≤ 4(C‖wt−1)−4(C‖ŵt) + η C · `t︸ ︷︷ ︸
∑i wt−1

i (1−e−η`t
i)

≤ 4(C‖wt−1)−4(C‖wt) + η C · `t

The first inequality is obtained by bounding the exponential using the
inequality 1− e−ηx ≥ (1− e−η)x for x ∈ [0, 1] as done in [108]. The sec-
ond inequality is an application of the Generalised Pythagorean Theo-
rem [81], using the fact that wt is a Bregman projection of ŵt into the
convex set conv(C), which contains C. We now sum over trials and
obtain, abbreviating `1 + . . . + `T to `≤T,

(1− e−η)
T

∑
t=1

wt−1 · `t ≤ 4(C‖w0)−4(C‖wT) + ηC · `≤T.

Recall that wt−1 · `t equals the expected loss E[Ct] · `t of CH in trial t.
Also, relative entropies are nonnegative, so we may drop the second
one, giving us the following bound on the total loss of the algorithm:

T

∑
t=1

E[Ct] · `t ≤ 4(C‖w0) + ηC · `≤T

1− e−η
.

6.2. Component Hedge 175

To proceed we have to expand the prior w0. We consider the symmetric
balanced case, i.e. where the concept class is invariant under permuta-
tion of the components, and every concept uses exactly U components.
Paths may have different lengths and hence do not satisfy these re-
quirements. All other examples from Table 6.1 do. In this balanced
symmetric case we take w0 to be the usage of the uniform distribution
on concepts, satisfying w0

i = U/d for each component i. It follows that
4(C‖w0) = U ln(d/U), because any comparator C is a 0/1 vector that
also uses exactly U components.

Let `? denote minC∈C C · `≤T, the loss of the best concept in hind-

sight. Then by choosing η =
√

2U ln(d/U)
`? as a function of `?, we obtain

the following general expected regret bound for CH:

E [`CH]− `? ≤
√

2`?U ln(d/U) + U ln(d/U). (6.1)

The best-known general regret bounds for Expanded Hedge [59] and
Follow the Perturbed Leader [84] are:

E [`EH]− `? ≤
√

2`?U ln D + U ln D (6.2)

E [`FPL]− `? ≤
√

4`?Ud ln d + 3Ud ln d (6.3)

where D = |C|. Specific values for U, D and d in each application are
listed in Table 6.1. We remark that if only an upper bound ˆ̀ ≥ `? is
available, then we can still tune η as a function of ˆ̀ to achieve these
bounds with ˆ̀ under the square roots instead of `?. Moreover, standard
heuristics can be used to tune η “online” when no good upper bound
on `? is given, which increase the expected regret bounds by at most a
constant factor. (e.g. [28, 84]).

We are not concerned with small multiplicative constants (e.g. 2 vs
4), but the gap between (6.1) and both (6.2) and (6.3) is significant. To
compare, observe that ln D is of order U ln d in all our applications.
Thus, the EH regret bound is worse by a factor

√
U, while FPL is worse

by a bigger factor
√

d. Moreover, in Section 6.4 we show for the covered
examples that our expected regret bound (6.1) for CH is optimal up to
constant scaling.

Some concept classes have special structure that can be exploited to
improve the regret bounds of FPL and EH down to that of CH. We
consider one such property, called the unit rule in Section 6.5.

176 Chapter 6. Hedging Structured Concepts

6.3 Applications

We consider the following structured concept classes: experts, k-sets,
truncated permutations, source-sink paths, and both undirected and
directed spanning trees. In each case we discuss implementation of CH
and obtain a regret bound. Matching lower bounds are presented in
Section 6.4.

6.3.1 Experts

The most basic example is the vanilla expert setting. In this case, the
set of “structured” concepts equals the set of n standard basis vectors
in Rn. We will see that in this case Component Hedge see gracefully
degrades to the original Hedge algorithm. First, the parameter spaces
of both algorithms coincide since the convex hull of the basis vectors
equals the probability simplex. Second, the predictions coincide since
a vector in the probability simplex decomposes uniquely into a convex
combination of basis vectors. Third, the parameter updates are the
same, since the relative entropy projection of a non-negative weight
vector into the probability simplex amounts to re-normalising to unity.

In fact on this simple task CH, EH and FPL each coincide with
Hedge. For CH and EH this is obvious. For FPL this fact was observed
in [102, 91] by using log-of-exponential perturbations instead of expo-
nential perturbations used in the original paper [92]. Thus, we obtain
following regret bound for all algorithms:

E [`CH]− `? ≤
√

2`? ln n + ln n.

6.3.2 k-sets

The problem of learning with sets of k out of n elements was introduced
in [185] and applied to online Principal Component Analysis (PCA).
Their algorithm is an instance of CH, and we review it here. The con-
vex hull of k-sets equals the set of w ∈ Rn

+ that satisfy the following
constraints:

wi ≤ 1 for all i ∈ [n] and
n

∑
i=1

wi = k. (6.4)

6.3. Applications 177

Relative entropy projection into this polytope amounts to renormalis-
ing the sum to k, followed by redistributing the mass of the components
that exceed 1 over the remaining components so that their ratios are pre-
served. Finally, each element of the convex hull of sets can be greedily
decomposed into a convex combination of n k-sets by iteratively remov-
ing sets in the convex combination while always setting the coefficient
of the new set as high as possible. Both projection and decomposition
take O(n2) time [185].

Regret bound By (6.1), the regret of CH on sets is

E [`CH]− `? ≤
√

2`?k ln(n/k) + k ln(n/k).

We give a matching lower bound in Section 6.4.

6.3.3 Truncated Permutations

The second instantiation of CH that has appeared is the problem of
permutations [77]. Here we consider a slightly generalised task: trun-
cated permutations of k out of n elements. A truncated permutation fills
k slots with distinct elements from a pool of n elements. Equivalently, a
truncated permutation is a maximal matching in the complete bipartite
graph between [k] and [n]. Truncated permutations extend k-sets by
linearly ordering the selected k elements.

Results to search queries are usually in the form of a truncated per-
mutation; of all n existing documents, only the top k are displayed in
order of decreasing relevance. Predicting with truncated permutations
is thus a model for learning the best search result.

Matching polytope We write i ← j for the component that assigns
item j to slot i. Now the convex hull of truncated permutations consists
of all w ∈ Rk×n

+ (see [161, Corollary 18.1b]) satisfying the following k
row (left) and n column (right) constraints:

∑
j∈[n]

wi←j = 1 for all i ∈ [k] and ∑
i∈[k]

wi←j ≤ 1 for all j ∈ [n]. (6.5)

178 Chapter 6. Hedging Structured Concepts

Relative entropy projection The relative entropy projection of ŵ into
the convex hull of truncated permutations w = argminw s.t. (6.5)4(w‖ŵ)
has no closed form solution. By convex duality (details are given in
Appendix 6.B.1), wi←j = ŵi←je−λi−µj , where λi and µj are the Lagrange
multipliers associated to the row and column constraints (6.5), which
minimise

∑
i∈[k] ; j∈[n]

ŵi←je−λi−µj + ∑
i∈[k]

λi + ∑
j∈[n]

µj.

under the constraint that µ ≥ 0. This dual problem, which has 2n
variables and n constraints, may be optimised directly using numer-
ical convex optimisation software. Another approach is to iteratively
reestablish each violated constraint beginning from µ = 0 and λ = 0.
In full permutation case (k = n), this process is called Sinkhorn balanc-
ing. It is known to converge to the optimum, see [77] for an overview
of efficiency and convergence results of this iterative method.

Decomposition Our decomposition algorithm for truncated permuta-
tions interpolates between the decomposition algorithms used for k-sets
and full permutations [185, 77]. Assume w lies in the hull of trun-
cated permutations, i.e. the constraints (6.5) are satisfied. To measure
progress, we define a score s(w) as the number of zero components in w
plus the number of column constraints that are satisfied with equality.

Our algorithm maintains a truncated permutation C that satisfies
the following invariant: C hits all columns whose constraints are satis-
fied with equality by w, and avoids all components with weight zero in
w. Such a C can be established in time O(k2n) using augmenting path
methods (see [161, Theorem 16.3]).

Let l be the minimum weight of the components used by C, and
let h be the maximum column sum of the columns untouched by C.
So by construction h < 1. If l = 1 then w = C and we are done.
Otherwise, let α = min{l, 1− h}, and set w′ = (w− αC)/(1− α). It is
easy to see that the vector w′ satisfies (6.5), and that s(w′) > s(w). It
is no longer the case that C satisfies the invariant w.r.t. w′. However,
we may compute a weight k matching C′ that satisfies the invariant by
executing at most s(w′)− s(w) many augmenting path computations,
which each cost O(kn) time. We describe how this works below. After
that we simply recurse on w′ and C′. The resulting convex combination
is αC plus (1− α) times the result of the recursion.

6.3. Applications 179

The number of iterations is bounded by the score s(w), which is at
most kn. Thus, the total running time is O(k2n2).

We now show that C can be improved to C′ satisfying the invariant
by a single augmenting path computation per violated requirement. Let
C∗ be a size k matching satisfying the invariant for w′. Such a matching
always exists because w′ lies in the matching polytope. Let j ∈ [n] be
a problematic column, i.e. either C matches j to a row i but w′i←j = 0,
or C does not match j while its column constraint is tight for w′. From
j, alternately follow edges from C and C∗. Since C and C∗ are both
matchings, this can not lead to a cycle, so it must lead to a path. Since
all rows are matched, this path must end at a column. The path can
not end at a column whose constraint is forced in both C and C∗. So
it must end at a column whose constraint is not tight. Incorporating
this augmenting path into C corrects the violated requirement without
creating any new violations.

Regret bound By (6.1), the regret of CH on truncated permutations is

E [`CH]− `? ≤
√

2`?k ln n + k ln n.

We obtain a matching lower bound in Section 6.4.

6.3.4 Paths

The online shortest path problem was considered by [173, 92], and by
various researchers in the bandit setting (see e.g. [26, 5] and references
therein). We develop expected regret bounds for CH for the “full in-
formation setting”. Our regret bound improves the bounds given in
[173, 92] which have the additional range factors in the square root.

Consider the a directed graph on the set of nodes [n] ∪ {s, t}. Each
trial we have to play a walk from the source node s to the sink node t.
As always, our loss is given by the sum of the losses of the edges that
our walk traverses. Since each edge loss is nonnegative (it lies in [0, 1]
by assumption) it is never beneficial to visit a node more than once.
Thus w.l.o.g. we restrict attention to paths.

As an example, consider the full directed graph on [n]∪{s, t}. Paths
of length k + 1 through this graph use k distinct internal nodes in order,
and therefore are in 1-1 correspondence with truncated permutations

180 Chapter 6. Hedging Structured Concepts

of size k. Paths thus generalise truncated permutations by allowing all
lengths simultaneously.

Unit flow polytope To implement CH efficiently, we have to suc-
cinctly describe the convex hull of paths. Unfortunately, we can not
hope to write down linear constraints that capture the convex hull ex-
actly. For if we could, then we could solve the longest path problem,
which is known to be NP complete, by linear programming. Fortu-
nately, there is a slight relaxation of the convex hull of paths that is
describable by few constraints, namely the polytope of so-called unit
flows. Even better, we will see that this relaxation does not hurt predic-
tive performance at all.

A unit flow w ∈ Rd
+ is described by the following constraints:

1 = ∑
j∈[n]+t

ws,j and ∑
j∈[n]+s

wj,i = ∑
j∈[n]+t

wi,j for each i ∈ [n]. (6.6)

We think of wi,j as describing the amount of flow from node i to j. The
left constraint ensures that one unit of flow leaves the source s. The
right constraint enforces that at internal nodes inflow equals outflow. It
easily follows that one unit of flow enters the sink t.

The unit flow polytope is not bounded, but it has the right “bot-
tom”. Namely, the vertices of the unit flow polytope are the s-t paths,
see [161, Section 10.3]. The unit flow polytope is the Minkowski sum
of the convex hull of s-t paths and the conic hull (nonnegative linear
combinations) of directed cycles. Moreover, each unit flow can be de-
composed into at most d paths and cycles, by iterative greedy removal
of a directed cycle or paths containing the edge of least non-zero weight
in time O(n4).

Since the unit flow polytope does have polynomially many con-
straints, we may efficiently run CH on it. Each round, it produces a
flow. We then decompose this flow into paths and cycles, and throw
away the cycles. We then sample a path from the remaining convex
combination of paths.

Relative entropy projection To run CH, we have to compute the rela-
tive entropy projection of an arbitrary vector in Rd

+ into the flow poly-
tope (6.6). This is a convex optimisation problem in d ≈ n2 variables

6.3. Applications 181

with constraints. By Slater’s constraint condition, we have strong du-
ality. So equivalently, we may solve the concave dual problem, which
only has n + 1 variables and is unconstrained. The dual problem (de-
tails are given in Appendix 6.B.2) can therefore be solved efficiently by
numerical convex optimisation software.

Say we want to find w, the relative entropy projection of ŵ into
the flow polytope. Since each edge appears in exactly two constraints
with opposite sign, the solution has the form wi,j = ŵi,jeλi−λj for all
i, j ∈ [n] ∪ {s, t}, where λi is the Lagrange multiplier associated with
node i (and λt = 0). The vector λ maximises

λs − ∑
i 6=t ; j 6=s

ŵi,jeλi−λj

That is, we have to find a single scale factor eλi for each node i, such
that scaling each edge weight by the ratio of the factors of its nodes
reestablishes the flow constraints (6.6).

We propose the following iterative algorithm. Start with all λi equal
to zero. Then pick a violated constraint, say at node i, and reestablish
it by changing its associated λi. That is, we execute either

eλs ← 1

∑j∈[n]+t ŵs,je−λj

or

eλi ←
√

∑
j∈[n]+s

ŵj,ieλj
/

∑
j∈[n]+t

ŵi,je−λj for some i ∈ [n].

In our experiments, this algorithm converges quickly. We leave its thor-
ough analysis as an open problem.

Decomposition Find any s-t path with non-zero weights on all edges
in time O(n2). Subtract that path, scaled by its minimum edge weight.
This creates a new zero, maintains flow balance, and reduces the out-
flow of the source. After at most n2 iterations the source has outflow
zero. Discard the remaining conic combination of directed cycles. The
total running time is O(n4).

182 Chapter 6. Hedging Structured Concepts

Regret bound for the complete directed graph Since paths have dif-
ferent lengths, we aim for a regret bound that depends on the length of
the comparator path. To get such a bound, we need a prior usage vec-
tor w0 that favours shorter paths. To this end, consider the distribution
P that distributes weight 2−k uniformly over all paths of length k ≤ n,
and assigns weight 2−n to the paths of length n + 1. This assures that
P is normalised to 1. Since there are n!/(n− k + 1)! paths of length k,
the probability of a path P of length k equals

P(P = P) =


(n− k + 1)!

2kn!
if k ≤ n,

1
2nn!

if k = n + 1.

Also, the expected path length E[P · 1] is 2− 2−n. We now set w0 :=
E[P], i.e. the usage of P. There are three kinds of edges. We have one
direct edge s, t, we have 2n boundary edges of the form s, j or i, t, and
we have n(n− 1) internal edges of the type i, j. A simple computation
shows that their usages are (for n ≥ 3)

w0
s,t =

1
2

, w0
s,j , w0

i,t =
1

2n
, w0

i,j =
1− 2−(n−1)

2n(n− 1)
.

Let P be a comparator path of length k. If k = 1 then 4(P‖w0) = ln 2.
Otherwise, still for n ≥ 3,

4(P‖w0) = −2 ln
1

2n
− (k− 2) ln

1− 2−(n−1)

2n(n− 1)
+ E[P · 1]− k

= (k− 2) ln
(
2n(n− 1)

)
+ 2 ln 2n + (k− 2) ln

(
1 +

2−(n−1)

1− 2−(n−1)

)
−

2−n − (k− 2) ≤ k ln 2− (k− 2)
1− 2−n+2

1− 2−n+1 + 2(k− 1) ln n ≤ 2k ln n.

By tuning η as before, the regret of CH with prior w0 w.r.t. a comparator
path of length k is

E [`CH]− `? ≤
√

4`?k ln n + 2k ln n.

This new regret bound improves known results in two ways. First, it
does not have the range factors, which in the case of paths usually turn

6.3. Applications 183

out to be the diameter of the graph, i.e. the length of the longest s-t
path. Second, some previous bounds only hold for acyclic graphs. Our
bound holds for the complete graph.

Regret bound for an arbitrary graph We discussed the full graph as a
first application of CH. For prediction on an arbitrary graphs we simply
design a prior w0 with zero usage on all edges that are not present in
the graph. We could either use graph-specific knowledge, or we could
use our old w0, disable edges by setting their usage to zero, and project
back into the flow polytope. Relative entropy projection never revives
zeroed edges. The regret bound now obviously depends on the graph
via the prior usage w0.

6.3.4.1 Expanded Hedge and Component Hedge are Different on
Paths

An efficient dynamic programming-based algorithm for EH was pre-
sented in [173]. This algorithm keeps one weight per edge, just like
CH. These weights are updated using the weight pushing algorithm. This
algorithm performs relative entropy projection on full distributions on
paths. Like CH, weight pushing finds a weight of each node, and scales
each edge weight by the ratio of its nodes weights. We now show that
CH and EH are different on graphs. Consider the graph shown in Fig-
ure 6.1a. Say we use prior P with weight 1/2 on both paths (a, b, c) and
(a, c). Then the usages are (1/2, 1/2, 1/2) for (ab, bc, ac). Now multiply
edge ab by 1/3 (that is, we give it loss ln 3), and both other edges by
1 (we give them loss zero). The resulting usages of EH and CH are
displayed in Table 6.1b. The usages are different, and hence, so are the
expected losses. In most cases (as shown e.g. in Table 6.1c), the updated
usages of CH are irrational while the prior usages and the scale factors
of the update are rational. On the other hand, EH always maintains
rationality.

6.3.5 Spanning Trees

Whereas paths connect the source to the sink, spanning trees connect
every node to every other node. Undirected spanning trees are often
used in network-level communication protocols. For example, the Span-
ning Tree Protocol (IEEE 802.1D) is used by mesh networks of Ethernet

184 Chapter 6. Hedging Structured Concepts

Figure 6.1 Expanded Hedge is not Component Hedge on paths
(a) Graph

a

��

��

b

'' c

(b) Usages after update (1/3, 1, 1)

Case ab, bc ac

EH and CH prior 1/2 1/2
EH after update 1/4 3/4
CH after update 1/3 2/3

(c) Usages after update (1/2, 1, 1)

Case ab, bc ac

EH and CH prior 1/2 1/2
EH after update 1/3 2/3
CH after update

√
17−1
8

9−
√

17
8

switches to agree on a single undirected spanning tree, and thus elim-
inate loops by disabling redundant links. Directed spanning trees are
used for asymmetric communication, for example for streaming multi-
media from a central server to all connected clients. In either case, the
cost of a spanning tree is the sum of the costs of its edges.

Learning spanning trees was pioneered by [99] for learning depen-
dency parse trees. They discuss efficient methods for parameter esti-
mation under log-loss and hinge loss. [26] derive a regret bound for
undirected spanning trees in the bandit setting. We instantiate CH to
both directed and undirected trees and give the first regret bound with-
out the range factor.

Three kinds of directed spanning trees are common. Spanning trees
with a fixed root, spanning trees with a single arbitrary root, and ar-
borescences (or spanning forests) with multiple roots. We focus on a
fixed root. The other two models can be simulated by a fixed root. To
simulate arborescences, add a dummy as the fixed root, and put the
root selection cost of node i along the path from the dummy to i. Fur-
thermore, to force a single root, increase the cost of all edges leaving
the dummy by a fixed huge amount.

6.3. Applications 185

Tree polytope To characterise the convex hull of directed trees on n
nodes with fixed root 1, we use a trick based on flows from [112] that
makes use of auxiliary variables f k

i,j. For i, j, k ∈ [n] the constraints are

0 ≤ f k
i,j ≤ wi,j, ∑

i,j
wi,j = n− 1, (6.7a)

and

∑
j 6=i

f k
j,i︸ ︷︷ ︸

k-flow into i

+ 1i=1︸︷︷︸
k-source at 1

= ∑
j 6=i

f k
i,j︸ ︷︷ ︸

k-flow out of i

+ 1i=k︸︷︷︸
k-sink at k

. (6.7b)

The intuition is as follows. A tree has n− 1 edges, and every node can
be reached from the root. We enforce this by having a separate flow
channel f k for each non-root node k. We place a unit of flow into this
channel at the root. Each intermediate node satisfies flow equilibrium.
Finally, the target node k consumes the unit of flow destined for it. The
first equation ensures that each edge’s usage is sufficient for the flow
that traverses that edge. The undirected tree polytope is constructed
based on the directed tree polytope by considering the above wi,j as
auxiliary variables, an imposing the constraint wi,j + wj,i = vi,j. Now v
are the weights sought.

Relative entropy projection The relative entropy projection of ŵ into
the convex hull of directed spanning trees w = argminw s.t. (6.7)4(w‖ŵ)
has no closed form solution. By convex duality (details are given in
Appendix 6.B.3), the solution satisfies

wi,j = (n− 1)
ŵi,je

∑k 6=1 max{0,µk
j−µk

i }

∑i,j 6=i ŵi,je
∑k 6=1 max{0,µk

j−µk
i }

, f k
ij =

{
wi,j if µk

j > µk
i ,

0 if µk
j < µk

i ,

where µk
i , the Lagrange multipliers associated to the flow balance con-

straints, maximise

∑
k 6=1

(
µk

k − µk
1

)
− (n− 1) ln

(
∑

i,j 6=i
ŵi,je

∑k 6=1 max{0,µk
j−µk

i }
)

.

This unconstrained concave maximisation problem in ≈ n2 variables
seems easier than the primal problem, which has ≈ n3 variables and

186 Chapter 6. Hedging Structured Concepts

constraints. Note however that the objective is not differentiable every-
where. Alternatively, we may again proceed by iteratively reestablish-
ing constraints locally, starting from some initial assignment to the dual
variables µ. This approach is analogous to Sinkhorn balancing.

Decomposition We have no special-purpose tree decomposition algo-
rithm, and therefore resort to a general decomposition algorithm for
convex polytopes that is based on linear programming. Let w be in
the tree polytope. Choose an arbitrary vertex C (i.e. a spanning tree)
by minimising a linear objective over the current polytope. Now use
linear programming to find the furthest point w′ in the polytope on
the ray from C through w. At least one more inequality constraint is
tight for w′. Thus w′ lies in a convex polytope of at least one dimension
lower. Add this inequality constraint as an equality constraint, recur-
sively decompose w′, and express w as a convex combination of C and
the decomposition of w′. The recursion bottoms out at a vertex (i.e. a
spanning tree) and the total number of iterations is at most d.

Regret bound By (6.1), the regret E [`CH] − `? of CH on undirected
and directed spanning trees is at most

E [`CH]− `? ≤
√

2`?(n− 1) ln(n/2) + (n− 1) ln(n/2),

E [`CH]− `? ≤
√

2`?(n− 1) ln(n− 1) + (n− 1) ln(n− 1).

We provide matching lower bounds in Section 6.4.

6.4 Lower Bounds

Whereas it is easy to get some regret bounds with additional range
factors, we show that CH is essentially optimal in all our applications.
We leverage the following lower bound for the vanilla expert case:

6.4.1. Theorem. There are positive constants c1 and c2 s.t. any online algo-
rithm for q experts with loss range [0, U] can be forced to have expected regret
at least

c1
√
`?U ln q + c2 ln q. (6.8)

6.4. Lower Bounds 187

This type of bound was recently proven in [3]. Note that c1 and
c2 are independent of the number of experts, the range of the losses
and the algorithm. Earlier versions of the above lower bound using
many quantifier and limit arguments are given in [28, 77]. We now
prove lower bounds for our structured concept classes by embedding
the original expert problem into each class and applying the above the-
orem. This type of reduction was pioneered in [77] for permutations.

The general reduction works as follows. We identify q structured
concepts C1, . . . , Cq in the concept class C ⊆ {0, 1}d to be learned that
partition the d components. Now assume we have an online algorithm
for learning class C. From this we construct an algorithm for learning
with q experts with loss range [0, U]. Let ` ∈ [0, U]q denote the loss
vector for the expert setting. From this we construct a loss vector L ∈
[0, 1]d for learning C: L := ∑

q
i=

`i
U Ci. That is, we spread the loss of expert

i, evenly among the U many components used by concept Ci. Second,
we transform the predictions as follows. Say our algorithm for learning
C predicts with any structured concept C ∈ C. Then we play expert i
with probability Ci · C/U. The expected loss of the expert algorithm
now equals the transformed loss of the algorithm for learning concepts
in C:

E[`i] =
q

∑
i=1

Ci · C
U

`i = C ·
q

∑
i=1

`i

U
Ci = C · L

This also means that the expected loss of the expert algorithm equals
the expected loss of the algorithm for learning the structured class. This
implies that the expected regret of the algorithm for learning C is at least
the expected regret of the expert algorithm. The lower bound (6.8) for
the regret in the expert setting is thus also a lower bound for the regret
of the structured prediction task.

k-sets We assume that k divides n. Then we can partition [d] with
n/k sets, where set i uses components (i− 1)k + 1, . . . , ik. The resulting
lower bound has leading factor

√
k ln n

k , matching the upper bound for
CH within constant factors.

Truncated permutations We can partition the n2 assignments into n
full permutations. For example, the n cyclic shifts of the identity per-

188 Chapter 6. Hedging Structured Concepts

mutation achieve this. The truncations to length k of those n permu-
tations partition the kn components in the truncated case. The lower
bound with leading factor

√
k ln n again matches the regret bound of

CH within constant factors.

Spanning trees As observed in [72], the complete undirected graph
has (n− 1)/2 edge-disjoint spanning trees. Hence we get a lower bound
with leading factor

√
(n− 1) ln((n− 1)/2). Each undirected spanning

tree can be made directed by fixing a root. So there are at least as many
disjoint directed spanning trees with a fixed root. In both cases we
match the regret of CH within a constant factor.

Paths Consider the directed graph on [n]∪ s, t that has n/k disjoint s-t
paths of length k + 1 connecting source to sink. By construction, we can
embed n/k experts with loss range [0, k] into this graph, so the regret
has leading factor at least

√
k log(n/k). This graph is a subgraph of the

complete directed graph s → Kn → t. Moreover, nature can force the
algorithm to essentially play on the disjoint path graph by giving all
edges outside it sheer infinite loss in a sheer infinite number of trials.
This shows that the regret w.r.t. a comparator path of length k through
the full graph has leading factor at least

√
k log(n/k).

A lower bound on the regret for arbitrary graphs is difficult to ob-
tain since various interesting problems can be encoded as path prob-
lems. For example, the expert problem where each expert has a differ-
ent loss range can be encoded into a graph that has a disjoint path of
each length 1, 2, . . . n. The optimal algorithm for such expert problems
was recently found in [2], but its regret has no closed form expression.
It might be that the regret of CH is tight within constant factors for all
graphs, but this question remains open.

6.5 Comparison to Other Algorithms

CH is a new member of an existing ecosystem. Other algorithms for
structured prediction are EH[108] and FPL [92]. We now compare them.

Efficiency FPL can be readily applied efficiently to our examples of
structured concept classes: k-sets take O(n) per trial using variants

6.5. Comparison to Other Algorithms 189

of median-finding, truncated permutations take O(k2n) per trial us-
ing the Hungarian method for minimum weight bipartite matching,
paths take O(n2) per trial using Dijkstra’s shortest path algorithm and
spanning trees take O(n2) per trial using either Prim’s algorithm or
Chu–Liu/Edmonds’s algorithm for finding a minimum weight span-
ning tree.

EH can be efficiently implemented for k-sets [185] and paths [173]
using dynamic programming, and for spanning trees [99] using the
Matrix-Tree Theorem by Kirchoff (undirected) and Tutte (directed). An
approximate implementation based on MCMC sampling could be built
for permutations based upon [85].

In most cases FPL and EH are faster than CH. This may be partly
due to the novelty of CH and the lack of special-purpose algorithms for
it. On the other hand, FPL solves a linear minimisation problem, which
is intuitively simpler than minimising a convex relative entropy.

6.5.1 Improved Regret Bounds with the Unit Rule

On the other hand, we saw in Section 6.2.2 that the general regret bound
for CH (6.1) improves the guarantees of EH (6.1) by a factor

√
U and

those of FPL (6.3) by a larger factor
√

d. It is an open question whether
these factors are real or simply an artifact of the bounding technique
(see Section 6.6). We now give an example of a property of structured
concept classes that makes these range factors vanish.

We say that a prediction algorithm has the unit rule on a given struc-
tured concept class C if its worst-case performance is achieved when
in each trial only a single expert has nonzero loss. Without changing
the prediction algorithm, the unit rule immediately improves its regret
bound by reducing the effective loss range of each concept from [0, U]
to [0, 1]. The improved regret bounds are (c.f. (6.2) and (6.3))

E [`EH] ≤ `? +
√

2`? ln D + ln D (6.9)

E [`FPL] ≤ `? +
√

4`?U ln d + 3U ln d (6.10)

The unit rules for EH and FPL on experts have been observed before
[92, 6]. We reprove them here for completeness. The unit rule holds for
both EH and FPL on sets, and for EH on undirected trees. It fails for
EH and FPL on permutations, and for EH on directed trees.

190 Chapter 6. Hedging Structured Concepts

We prove the unit rule for EH on sets here, and counter it for EH
on directed trees. All other proofs and counterexamples are delayed to
Appendix 6.A.

6.5.1.1 Unit Rule Holds for EH on k-sets

Fix an expert i, and let j be an arbitrary other expert. We claim that if
we hand out loss to i, then the usage of j increases. For each k-set S, we
denote the prior weight of S by WS. We abbreviate

Zi := ∑
S:i∈S

WS, Z¬i := ∑
S:i 6∈S

WS,

Zj := ∑
S:j∈S

WS, Z¬j := ∑
S:j 6∈S

WS,

Zi∧j := ∑
S:i∈S,j∈S

WS, Z¬i∧j := ∑
S:i 6∈S,j∈S

WS,

Zi∧¬j := ∑
S:i∈S,j 6∈S

WS, Z¬i∧¬j := ∑
S:i 6∈S,j 6∈S

WS.

6.5.1. Theorem. Assume that the prior weights have product structure, i.e.
WS ∝ ∏i∈S wi. Then

Zj = P(j ∈ S1) ≤ P(j ∈ S2|`1 = δi) =
Zi∧je−η + Z¬i∧j

Zie−η + Z¬i
.

Proof. With some rewriting, the claim is equivalent to

ZiZj ≥ Zi∧j and also Zi∧¬jZ¬i∧j ≥ Zi∧jZ¬i∧¬j

Define
R(n, k) := ∑

S⊆[n]
|S|=k

∏
i∈S

wi.

We now show that R(n, k + 1)R(n, m) ≥ R(n, k)R(n, m + 1) for all 0 ≤
k < m < n. The proof proceeds by induction on n. The case n = 0 is
trivial. Now suppose that the claim holds up to n. We need to show it
for n + 1. For n > 0, we have

R(n, k) = 1k>0wnR(n− 1, k− 1) + 1k<nR(n− 1, k). (6.11)

6.5. Comparison to Other Algorithms 191

Suppose that the induction hypothesis holds up to n. We must show
that for all 0 ≤ k < m < n + 1

R(n + 1, k + 1)R(n + 1, m) ≥ R(n + 1, k)R(n + 1, m + 1).

By (6.11), this is equivalent to(
wn+1R(n, k) + 1k<nR(n, k + 1)

)(
1m>0wn+1R(n, m− 1) + 1m≤nR(n, m)

)
≥(

1k>0wn+1R(n, k− 1) + 1k≤nR(n, k)
)(

1m+1>0wn+1R(n, m) + 1m<nR(n, m + 1)
)
.

Now we expand, and use 0 ≤ k < m < n + 1 to eliminate indicators. It
remains to show

(wn+1)
2R(n, k)R(n, m− 1) +

wn+1R(n, k)R(n, m) +

wn+1R(n, k + 1)R(n, m− 1) +

R(n, k + 1)R(n, m)

 ≥


1k>0(wn+1)
2R(n, k− 1)R(n, m) +

1k>01m<nwn+1R(n, k− 1)R(n, m + 1) +

wn+1R(n, k)R(n, m) +

1m<nR(n, k)R(n, m + 1)


We now show that this inequality holds line-wise. Lines with active in-
dicators trivially hold. If k− 1 = m, the second line holds with equality.
Otherwise, and for the other lines we use the induction hypothesis.

6.5.1.2 Unit Rule Fails for EH on Directed Spanning Trees

The unit rule is violated for EH on directed trees. Consider this graph

•
e

�� ��
•

f
++ •kk

and its three directed spanning trees:

•

�� ��
• •

•

��
• ++ •

•

��
• •kk

Note that we may always restrict attention to a given graph G by as-
signing zero prior weight to all spanning trees of the full graph that use
edges outside G. Now if we put a unit of loss on edge e, the usage of
f decreases, and vice versa, contradicting the unit rule. Call the prior

192 Chapter 6. Hedging Structured Concepts

weights on directed trees WA, WB, WC. Then the usages satisfy

WA + WB = P(e ∈ T1) ≥ P(e ∈ T2|`1 = δ f) =
WA + WBe−η

WA + WBe−η + WC
,

WB = P(f ∈ T1) ≥ P(f ∈ T2|`1 = δe) =
WBe−η

WAe−η + WBe−η + WC
.

Hence the unit rule is violated on directed spanning trees.

6.6 Conclusion

We developed the Component Hedge algorithm for online prediction
over structured expert classes. The advantage of CH is that it has a
general regret bound without the range factors that typically plague EH
and FPL. We considered several example concept classes, and showed
that the lower bound is matched in each case.

Open problems While the unit rule is one method for proving regret
bounds for EH and FPL that are close to optimum, there might be other
proof methods that show that EH and FPL perform as well as CH when
applied to structured concepts. We know of no examples of structured
concept classes where EH and FPL are clearly suboptimal. Resolving
the question of whether such examples exist is our main open problem.

The prediction task for each structured concept class can be anal-
ysed as a two-player zero-sum game versus nature which tries to max-
imise the regret. The paper [6] gave an efficient implementation of
the minimax optimal algorithm for playing against an adversary in the
vanilla expert setting. Actually, the key insight was that the unit rule
holds for the optimal algorithm in the vanilla expert case. This fact
made it possible to design a balanced algorithm that incurs the same
loss no matter which sequence of unit losses is chosen by nature. Un-
fortunately, the optimum algorithm does not satisfy the unit rule for
any of the structured concept classes considered here. However, there
might be some sort of relaxation of the unit rule that still leads to an
efficient implementation of the optimum algorithm.

In this chapter the loss of a structured concept C always had the
form C · `, where ` is the loss vector for the components. This allowed
us to maintain a mixture of concepts w and predict with a random

6.A. Unit rule 193

concept C s.t. E[C] = w. By linearity, the expected loss of such a ran-
domly drawn concept C is the same as the loss of the mixture w. For
regression problems with for example the convex loss (C · `− y)2 our
algorithm can still maintain a mixture w, but now the expected loss
of C, i.e. E[(C · ` − y)2], is typically larger than the loss (w · ` − y)2

of the mixture. We are confident that in this more general setting we
can still get good regret bounds compared to the best mixture chosen
in hind-sight. All we need to do is replace CH with the more general
“Component Exponentiated Gradient” algorithm, which would do an
EG update on the parameter vector w and project the updated vector
back into the hull of the concepts.

In general, we believe that we have a versatile method of learning
with structured concept classes. For example it is easy to augment
the updates with a “share update” [80, 19] for the purpose of making
them robust against sequences of examples where the best comparator
changes over time. We also believe that our methods will get rid of the
additional range factors in the bandit setting [26] and that gain versions
of the algorithm CH also have good regret bounds.

At the core of our methods lies a relative entropy regularization
which results in a multiplicative update on the components. In general,
which relative entropy to choose is always one of the deepest questions.
For example in the case of learning k-sets, a sum of binary relative en-
tropies over the component can be used that incorporates the wi ≤ 1
constraints into the relative entropy term. In general incorporating in-
equality constraints into the relative entropy seems to have many ad-
vantages. However how to do this is an open ended research question.

6.A Unit rule

This appendix gives proofs of and counterexamples to the unit rule. We
already saw some unit rule results in Section 6.5.1.

6.A.1 Unit Rule Holds for EH on Experts

Let E1 and E2 denote a random expert sampled by the algorithm in the
first and second trial. Let δj denote a loss vector that assigns unit loss
to expert j and zero loss to all other experts. Let Wi and Wj be the prior

194 Chapter 6. Hedging Structured Concepts

weight of experts i and j. Then

Wj = P(j = E1) ≤ P(j = E2|`1 = δi) =
Wj

1−Wi(1− e−η)
.

Thus, if we hand out loss to one expert, all other usages increase. This
unit rule result does not lead to improved regret bounds, (6.2) and (6.9)
already coincide for experts.

6.A.2 Unit Rule Fails for EH on Permutations

There are two permutations of size two: A = {(1 ← 1), (2 ← 2)} and
B = {(1 ← 2), (2 ← 1)}. To contradict the unit rule, we show that
if we give a unit of loss to the component (1 ← 1), then the usage of
(2← 2) goes down with it and vice versa. By symmetry, we only need
to show it in one order. Let WA, WB denote the prior weights of the two
permutations. Then the usages satisfy

WA = P
(
(2← 2) ∈ Π1

)
≥

P
(
(2← 2) ∈ Π1

∣∣∣`1 = δ(1←1)

)
=

WAe−η

WAe−η + WB
,

where P denotes probability with respect to the algorithm’s internal
randomisation.

6.A.3 Unit Rule Holds for EH on Undirected Spanning Trees

Expanded Hedge on trees can be implemented using the Matrix-Tree
Theorem by Kirchoff (undirected) and Tutte (directed). This was pio-
neered in [99] for log-loss. It can be easily adapted to dot loss. Sampling
undirected spanning trees can be done using [23]. This method does
not easily generalise to directed spanning trees. Computing the usages
is fine for both, and this implies that computing the expected loss is
fine for both as well. For directed spanning trees, we can first compute
the usages and then decompose as for CH below.

The following theorem neatly characterises the log-partition func-
tion.

6.A.1. Theorem (Kirchhoff’s Matrix-Tree Theorem). Let G be an undi-
rected graph, and let w assign weights to the edges of G. Let S be the set of

6.A. Unit rule 195

spanning trees of G, and let L be the graph Laplacian of G, i.e. Li,j = w(i, j)
and Li,i = −∑k w(i, k). Then

∑
T∈S

∏
e∈T

w(e) = det(L[1,1]),

where L[1,1] is the first minor of L, i.e. L excluding its first row and column.

This theorem allows us to prove the unit rule for EH on undirected
trees.

6.A.2. Theorem. For all edges e, f

Z · Z¬e∧¬ f ≤ Z¬e · Z¬ f

Simple case (e and f have a common vertex) The following theorem
is essential.

6.A.3. Theorem. For any numbers a, b, c, vectors v, w and symmetric matrix
R

det

a b vT

b c wT

v w R

det
(

R
)
≤ det

(
a vT

v R

)
det

(
c wT

w R

)

Proof. First use the fact that det
(

A B
C D

)
= det(D)det(A − BD−1C)

repeatedly. We then need to show(
a−

(
b vT) (c wT

w R

)−1 (b
vT

))
(c−wTRw)det

(
R
)

det
(

R
)
≤

(a− vTR−1v)det
(

R
)
(c−wTRw)det

(
R
)

Now divide out det(R)2, which is positive, and use(
A B
C D

)−1
=

(
(A− BD−1C)−1 −(A− BD−1C)−1BD−1

−D−1C(A− BD−1C)−1 D−1 + D−1B(A− BD−1C)−1CD−1

)
to obtain

(
b vT) (c wT

w R

)−1 (b
vT

)
=

(b− vTR−1w)2

c−wTR−1w
+ vTR−1v.

196 Chapter 6. Hedging Structured Concepts

It then remains to show(
a− (b− vTR−1w)2

c−wTR−1w
− vTR−1v

)
(c−wTRw) ≤

(a− vTR−1v)(c−wTRw)

which follows from
(b− vTR−1w)2 ≥ 0.

Hard case (e and f have no common vertex)

6.A.4. Theorem. Let a, b, c, d, e, f be numbers, u, v, w be vectors, and let R
be a symmetric matrix. Then∣∣∣∣∣∣∣∣

a b c uT

b d e vT

c e f wT

u v w R

∣∣∣∣∣∣∣∣
(∣∣∣∣d vT

v R

∣∣∣∣+ ∣∣∣∣ e vT

w R

∣∣∣∣+ ∣∣∣∣e wT

v R

∣∣∣∣+ ∣∣∣∣ f wT

w R

∣∣∣∣) ≤
∣∣∣∣∣∣
d e vT

e f wT

v w R

∣∣∣∣∣∣
∣∣∣∣∣∣

a c uT

c f wT

u w R

∣∣∣∣∣∣+
∣∣∣∣∣∣
a b uT

c e wT

u w R

∣∣∣∣∣∣+
∣∣∣∣∣∣
a c uT

b e vT

u w R

∣∣∣∣∣∣+
∣∣∣∣∣∣
a b uT

b d vT

u v R

∣∣∣∣∣∣


Proof. Currently left to the reader :-). We need a good reduction from
this case to the simple case.

6.A.4 Unit Rule Holds for FPL on Experts

The unit rule for FPL holds for all perturbations. Fix prior loss `, and
let ρ denote a random permutation vector. Then by monotonicity of
probability distributions (the right set is bigger)

P

(⋂
k∈[n]

{
`j +

ρ
η ≤ `k +

ρ
η

})
= P(j = E1) ≤

P(j = E2|`1 = δi) = P

(⋂
k∈[n]

{
`j +

ρ
η ≤ (`+ δi)k +

ρ
η

})
.

By the unit rule, we may replace (6.3) by (6.10), eliminating a factor d
from under the square root, yielding — up to constants — the same
bound as EH. In fact, for Gumbel perturbations FPL coincides with
EH. Unfortunately, this fact remains outside the scope of the general
analysis of Section 6.2.2.

6.A. Unit rule 197

6.A.5 Unit Rule Holds for FPL on Sets

The usage of component i equals the probability that we draw i when
we draw k items without replacement, with probabilities proportional
to their weight. Let 0 ≤ β ≤ 1. Define

wS := ∑
h∈S

wh, R(i, S, 0) := 0, R(i, j, S, 0) := 0,

and recursively

R(i, S, k) :=
wi + ∑h∈S whR(i, S− h, k− 1)

wi + wS

R(i, j, S, k) :=
wi + wjR(i, S, k− 1) + ∑h∈S whR(i, S− h, k− 1)

wi + wj + wS

R̃(i, j, S, k) :=
wi + βwjR(i, S, k− 1) + ∑h∈S whR̃(i, S− h, k− 1)

wi + βwj + wS

6.A.5. Theorem. For all 0 ≤ k ≤ n = |S|+ 2.

R(i, j, S, k) = P(i ∈ S1) ≤ P(i ∈ S2|`1 = δj) = R̃(i, j, S, k).

Proof. By induction on k. Equality holds for k = 0. Suppose the theorem
holds up till k. We need to show

wi + wjR(i, S, k) + ∑h∈S whR(i, S− h, k)
wi + wj + wS

≤

wi + βwjR(i, S, k) + ∑h∈S whR̃(i, S− h, k)
wi + βwj + wS

We apply the induction hypothesis, multiply by both denominators,
rearrange and divide by (1− β)wj(wi + wS). It then suffices to show

R(i, S, k + 1) =
wi + ∑h∈S whR(i, S− h, k)

wi + wS
≥ R(i, S, k)

which is obvious.

198 Chapter 6. Hedging Structured Concepts

6.A.6 Unit Rule Fails for FPL on Permutations

The perturbed loss of a permutation is the loss of that perturbation plus
the sum of two independent perturbations. Initially both permutations
have loss zero, so that either permutation is the perturbed leader with
probability one half. If component (1← 1) suffers loss, then obviously
the usage of (2← 2) goes down.

6.B Dual Problems for 4-projection

In this appendix, we compute the Lagrange dual problems to the rela-
tive entropy projections on (truncated) permutations, paths and span-
ning trees. The dual problems involve less variables and less con-
straints, and thus lead to more efficient implementation of the projec-
tion.

6.B.1 Matching Polytope

We want to find
argmin
w s.t. (6.5)

4(w‖ŵ).

Introduce Lagrange multipliers λi and µj for each row and column con-
straint. Form the Lagrangian

F(w, λ, µ) = 4(w‖ŵ) + ∑
i∈[k]

λi

(
∑

j∈[n]
wi←j − 1

)
+ ∑

j∈[n]
µj

(
∑

i∈[k]
wi←j − 1

)

Equating the derivative of F w.r.t. w to zero yields wi←j = ŵi←je−λi−µj .
So the dual function is

F(λ, µ) := inf
w∈Rd

F(w, λ, µ) = ∑
i∈[k]

∑
j∈[n]

(1− e−λi−µj)ŵi←j − ∑
i∈[k]

λi − ∑
j∈[n]

µj

The advantage of the dual problem is that we only have k + n variables,
whereas the primal has kn. But since µ correspond to inequality con-
straints, we have to maximise the dual function F under the constraint
µ ≥ 0.

6.B. Dual Problems for 4-projection 199

6.B.2 Flow Polytope

We want to find
argmin

w a flow (6.6)
4(w‖ŵ).

Here we generalise slightly. We allow flow from a node to itself. And
we allow flow to enter the source. It is still forbidden for flow to leave
the sink, and the source still has unit excess flow. We introduce a La-
grange multiplier λi, for each node/constraint i 6= t, and form the La-
grangian

F(w, λ) = 4(w‖ŵ) + λs + ∑
i 6=t

λi

(
∑
j 6=t

wj,i −∑
j

wi,j

)

Equating the derivative of F w.r.t. w to zero yields wi,j = ŵi,jeλi−λj , with
the convention that λt = 0. The concave dual function thus equals

F(λ) := inf
w∈Rd

F(w, λ) = λs + ∑
i 6=t

∑
j
(1− eλi−λj)ŵi,j.

The advantage of the dual problem is that we now only have n + 1
variables and no constraints. The primal problem has order n2 variables
and n + 1 equality constraints. By strong duality, the optimal primal
variables w∗ can be reconstructed from the optimum dual variables λ∗.

6.B.3 Tree Polytope

Setup Fix any ŵ ∈ Rd
+. We are interested in finding

argmin
w s.t. (6.7)

4(w‖ŵ).

We introduce Lagrange multipliers αk
ij, γk

ij, λ and µk
i , and form the La-

grangian

F(w, α, γ, λ, µ) := 4(w‖ŵ)− ∑
i,j 6=i,k 6=1

αk
ij f k

ij + ∑
i,j 6=i,k 6=1

γk
ij

(
f k
ij − wij

)
+ λ

(
∑

i,j 6=i
wij − (n− 1)

)
+ ∑

i,k 6=1
µk

i

(
∑
j 6=i

(
f k
ij − f k

ji

)
+ θk

i

)
.

200 Chapter 6. Hedging Structured Concepts

Lagrange dual function The partial derivatives are

∂F
∂wij

= log
wij

ŵij
+ λ− ∑

k 6=1
γk

ij,
∂F
∂ f k

ij
= µk

i − µk
j + γk

ij − αk
ij.

By setting the partial derivatives to zero, we obtain the Lagrange dual

F∗ := inf
wij, f k

ij

F = ∑
i,j 6=i

w0
ij − e−λ ∑

i,j 6=i
ŵije

∑k 6=1 γk
ij − λ (n− 1) + ∑

i,k 6=1
µk

i θk
i

= ∑
i,j 6=i

ŵij − e−λ ∑
i,j 6=i

ŵije
∑k 6=1 γk

ij − λ (n− 1) + ∑
k 6=1

(
µk

k − µk
1

)

Lagrange dual problem We now maximise the Lagrange dual F∗ over
the dual variables αk

ij, γk
ij, µk

i and λ subject to the constraints

αk
ij ≥ 0, γk

ij ≥ 0, µk
i − µk

j + γk
ij − αk

ij = 0.

Since αk
ij do not appear in the dual, these are equivalent to

γk
ij ≥ 0, γk

ij ≥ µk
j − µk

i .

Eliminating λ Note that λ is unconstrained. Its derivative is

∂F∗

∂λ
= e−λ ∑

i,j 6=i
ŵije

∑k 6=1 γk
ij − (n− 1) .

Setting the derivative to zero, we obtain

F◦ := sup
λ

F∗ =

∑
i,j 6=i

ŵij − (n− 1)− (n− 1) ln
∑i,j 6=i ŵije

∑k 6=1 γk
ij

n− 1
+ ∑

k 6=1

(
µk

k − µk
1

)

Eliminating γk
ij Since F◦ is decreasing in γk

ij, they each have to be set
to their lower bound max{0, µk

j − µk
i }. We get

F† := sup
γk

ij

F◦ = ∑
i,j 6=i

ŵij − (n− 1)−

(n− 1) ln
∑i,j 6=i ŵije

∑k 6=1 max{0,µk
j−µk

i }

n− 1
+ ∑

k 6=1

(
µk

k − µk
1

)
.

6.B. Dual Problems for 4-projection 201

Recovering primal variables Say that we have µk
i . We now want to

extract the primal variables wij and f k
ij from these. First we solve for all

other dual variables in terms of µk
i :

γk
ij = max{0, µk

j − µk
i }

αk
ij = µk

i − µk
j + γk

ij = max{0, µk
i − µk

j } = γk
ji

λ = ln
∑i,j 6=i ŵije

∑k 6=1 γk
ij

n− 1
= ln

∑i,j 6=i ŵije
∑k 6=1 max{0,µk

j−µk
i }

n− 1

We then solve for the primal variables using the KKT conditions

wij = ŵije
−λ+∑k 6=1 γk

ij =
(n− 1) ŵije

∑k 6=1 max{0,µk
j−µk

i }

∑i,j 6=i ŵije
∑k 6=1 max{0,µk

j−µk
i }

f k
ij =

{
wij µk

j > µk
i , i.e. γk

ij > 0

0 µk
j < µk

i , i.e. αk
ij > 0

Bibliography

[1] N. Abe and P. M. Long. Associative reinforcement learning using
linear probabilistic concepts. In Proc. 16th International Conf. on
Machine Learning, pages 3–11. Morgan Kaufmann, San Francisco,
CA, 1999.

[2] J. Abernethy and M. K. Warmuth. Repeated games against bud-
geted adversaries. Unpublished manuscript.

[3] J. Abernethy, M. K. Warmuth, and J. Yellin. When random play is
optimal against an adversary. Journal version of [6], in progress.

[4] J. Abernethy, J. Langford, and M. K. Warmuth. Continuous ex-
perts and the binning algorithm. In G. Lugosi and H. Simon,
editors, Learning Theory, volume 4005 of Lecture Notes in Computer
Science, pages 544–558. Springer Berlin / Heidelberg, 2006.

[5] J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark:
An efficient algorithm for bandit linear optimization. In In Pro-
ceedings of the 21st Annual Conference on Learning Theory (COLT,
2008.

[6] J. Abernethy, M. K. Warmuth, and J. Yellin. Optimal strategies
for random walks. In Proceedings of The 21st Annual Conference on
Learning Theory, pages 437–446, July 2008.

[7] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha.
The cat is out of the bag: cortical simulations with 109 neurons,

203

204 Bibliography

1013 synapses. In SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, pages 1–
12, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-744-8.

[8] M. Anthony and N. Biggs. Computational Learning Theory. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, Cambridge, UK, 1992.

[9] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Purposive
behavior acquisition for a real robot by vision-based reinforce-
ment learning. Machine Learning, 23:279–303, 1996.

[10] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine Learning, 47(2/3):235–
256, 2002.

[11] L. Baird. Residual algorithms: reinforcement learning with func-
tion approximation. In Proc. 12th International Conference on Ma-
chine Learning, pages 30–37. Morgan Kaufmann, 1995.

[12] P. L. Bartlett and J. Baxter. Estimation and approximation bounds
for gradient-based reinforcement learning. In Proc. 13th Annu.
Conference on Comput. Learning Theory, pages 133–141. Morgan
Kaufmann, San Francisco, 2000.

[13] P. L. Bartlett and J. Baxter. Estimation and approximation bounds
for gradient-based reinforcement learning. J. Comput. Syst. Sci.,
64(1):133–150, 2002. Special Issue for COLT 2000.

[14] J. Baxter and P. L. Bartlett. Reinforcement learning in POMDP’s
via direct gradient ascent. In Proc. 17th International Conf. on Ma-
chine Learning, pages 41–48. Morgan Kaufmann, San Francisco,
CA, 2000.

[15] J. O. Berger. Could Fisher, Jeffreys and Neyman have agreed on
testing? Statistical Science, 18(1):1–32, 2003.

[16] K. Binmore. Fun and games: a text on game theory. D.C. Heath,
1991.

[17] C. M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2006. ISBN 0387310738.

Bibliography 205

[18] O. Bousquet. A note on parameter tuning for on-line shifting
algorithms. Technical report, Max Planck Institute for Biological
Cybernetics, 2003.

[19] O. Bousquet and M. K. Warmuth. Tracking a small set of experts
by mixing past posteriors. Journal of Machine Learning Research, 3:
363–396, 2002.

[20] M. Bowling. Convergence problems of general-sum multiagent
reinforcement learning. In Proc. 17th International Conf. on Ma-
chine Learning, pages 89–94. Morgan Kaufmann, San Francisco,
CA, 2000.

[21] R. Bracewell. “Convolution” and “Two-dimensional convolu-
tion”. In The Fourier Transform and Its Applications, pages 25–50

and 243–244. McGraw-Hill, 1965.

[22] R. I. Brafman and M. Tennenholtz. R-MAX - A general poly-
nomial time algorithm for near-optimal reinforcement learning.
Journal of Machine Learning Research, 3:213–231, 2002.

[23] A. Broder. Generating random spanning trees. In SFCS ’89: Pro-
ceedings of the 30th Annual Symposium on Foundations of Computer
Science, pages 442–447, Washington, DC, USA, 1989. IEEE Com-
puter Society. ISBN 0-8186-1982-1.

[24] N. Cesa-Bianchi and P. Fischer. Finite-time regret bounds for the
multiarmed bandit problem. In Proc. 15th International Conf. on
Machine Learning, pages 100–108. Morgan Kaufmann, San Fran-
cisco, CA, 1998.

[25] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games.
Cambridge University Press, 2006.

[26] N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. In Pro-
ceedings of the 22nd Annual Conference on Learning Theory, 2009.

[27] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, and M. K. Warmuth.
On-line prediction and conversion strategies. Machine Learning,
25:71–110, 1996. An extended abstract appeared in EuroColt ‘93.

206 Bibliography

[28] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E.
Schapire, and M. K. Warmuth. How to use expert advice. Journal
of the ACM, 44(3):427–485, May 1997.

[29] G.-H. Chen, M.-Y. Kao, Y.-D. Lyuu, and H.-K. Wong. Optimal
buy-and-hold strategies for financial markets with bounded daily
returns. In Proc. of the 31st annual ACM symposium on Theory of
computing, pages 119–128. ACM, 1999. ISBN 1-58113-067-8.

[30] P. Cichosz and J. J. Mulawka. Fast and efficient reinforcement
learning with truncated temporal differences. In Proc. 12th In-
ternational Conference on Machine Learning, pages 99–107. Morgan
Kaufmann, 1995.

[31] J. G. Cleary, Ian, and I. H. Witten. Data compression using adap-
tive coding and partial string matching. IEEE Transactions on Com-
munications, 32:396–402, 1984.

[32] J. W. Cooley and J. W. Tukey. An algorithm for the machine cal-
culation of complex Fourier series. Mathematics of Computation, 19

(90):297–301, 1965. ISSN 00255718.

[33] T. M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29,
1991.

[34] T. M. Cover and J. A. Thomas. Elements of Information Theory. John
Wiley & Sons, 1991.

[35] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vec-
tor Machines. Cambridge University Press, Cambridge, UK, 2000.

[36] R. H. Crites and A. G. Barto. Elevator group control using mul-
tiple reinforcement learning agents. Machine Learning, 33(2/3):
235–262, 1998.

[37] F. A. Dahl. A reinforcement learning algorithm applied to simpli-
fied two-player texas hold’em poker. In Machine Learning: ECML
2001, 12th European Conference on Machine Learning, Freiburg, Ger-
many, September 5-7, 2001, Proceedings, volume 2167 of Lecture
Notes in Artificial Intelligence, pages 85–96. Springer, 2001.

Bibliography 207

[38] E. Dannoura and K. Sakurai. An improvement on El-Yaniv-Fiat-
Karp-Turpin’s money-making bi-directional trading strategy. IPL,
66(1):27–33, 1998.

[39] A. P. Dawid. Statistical theory: The prequential approach. Journal
of the Royal Statistical Society, Series A, 147, Part 2:278–292, 1984.

[40] A. P. Dawid, S. de Rooij, G. Shafer, A. Shen, N. Vereshchagin,
and V. Vovk. Insuring against loss of evidence in game-theoretic
probability. Statistics & Probability Letters, 81(1):157 – 162, 2011.
ISSN 0167-7152.

[41] S. de Rooij and T. van Erven. Learning the switching rate by
discretising Bernoulli sources online. In JMLR Workshop and Con-
ference Proceedings, volume 5: AISTATS, 2009.

[42] G. DeJong. Hidden strengths and limitations: An empirical in-
vestigation of reinforcement learning. In Proc. 17th International
Conf. on Machine Learning, pages 215–222. Morgan Kaufmann, San
Francisco, CA, 2000.

[43] P. DeMarzo, I. Kremer, and Y. Mansour. Online trading algo-
rithms and robust option pricing. In Proc. of the 38 annual ACM
symposium on Theory of computing, pages 477–486. ACM, 2006.
ISBN 1-59593-134-1.

[44] T. G. Dietterich. The MAXQ method for hierarchical reinforce-
ment learning. In Proc. 15th International Conf. on Machine Learn-
ing, pages 118–126. Morgan Kaufmann, San Francisco, CA, 1998.

[45] T. G. Dietterich. Hierarchical reinforcement learning with the
MAXQ value function decomposition. Journal of Artificial Intel-
ligence Research, 13:227–303, 2000.

[46] T. G. Dietterich and N. S. Flann. Explanation-based learning and
reinforcement learning: a unified view. Machine Learning, 28:169–
210, 1997. Earlier version in 12th International Conf on ML, 1995.

[47] T. G. Dietterich and X. Wang. Support vectors for reinforcement
learning. In Machine Learning: ECML 2001, 12th European Confer-
ence on Machine Learning, Freiburg, Germany, September 5-7, 2001,

208 Bibliography

Proceedings, volume 2167 of Lecture Notes in Artificial Intelligence,
page 600. Springer, 2001.

[48] C. Domingo. Faster near-optimal reinforcement learning: Adding
adaptiveness to the E3 algorithm. In Algorithmic Learning Theory,
10th International Conference, ALT ’99, Tokyo, Japan, December 1999,
Proceedings, volume 1720 of Lecture Notes in Artificial Intelligence,
pages 241–251. Springer, 1999.

[49] K. Driessens, J. Ramon, and H. Blockeel. Speeding up relational
reinforcement learning through the use of an incremental first
order decision tree learner. In Machine Learning: ECML 2001,
12th European Conference on Machine Learning, Freiburg, Germany,
September 5-7, 2001, Proceedings, volume 2167 of Lecture Notes in
Artificial Intelligence, pages 97–108. Springer, 2001.

[50] M. O. Duff. Q-learning for bandit problems. In Proc. 12th Inter-
national Conference on Machine Learning, pages 209–217. Morgan
Kaufmann, 1995.

[51] S. Džeroski, L. De Raedt, and H. Blockeel. Relational reinforce-
ment learning. In Proc. 15th International Conf. on Machine Learn-
ing, pages 136–143. Morgan Kaufmann, San Francisco, CA, 1998.

[52] S. Dzeroski, L. De Raedt, and K. Driessens. Relational reinforce-
ment learning. Machine Learning, 43(1/2):7–52, 2001.

[53] R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. Optimal search
and one-way trading online algorithms. Algorithmica, 30(1):101–
139, 2001.

[54] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research, 6:
503–556, 2005.

[55] E. Even-Dar, S. Mannor, and Y. Mansour. PAC bounds for multi-
armed bandit and Markov decision processes. In 15th Annual
Conference on Computational Learning Theory, COLT 2002, Sydney,
Australia, July 2002, Proceedings, volume 2375 of Lecture Notes in
Artificial Intelligence, pages 255–270. Springer, 2002.

Bibliography 209

[56] C. N. Fiechter. Efficient reinforcement learning. In Proc. 7th Annu.
ACM Conf. on Comput. Learning Theory, pages 88–97. ACM Press,
New York, NY, 1994.

[57] D. J. Finton and Y. H. Hu. Importance-based feature extraction
for reinforcement learning. In T. Petsche, editor, Computational
Learning Theory and Natural Learning Systems, volume III: Selecting
Good Models, chapter 5, pages 77–94. MIT Press, 1995.

[58] J. S. Frame. Mean deviation of the binomial distribution. The
American Mathematical Monthly, 52(7):377–379, 1945.

[59] Y. Freund and R. E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal of
Computer and System Sciences, 55:119–139, 1997.

[60] Z. Gábor, Z. Kalmár, and C. Szepesvári. Multi-criteria reinforce-
ment learning. In Proc. 15th International Conf. on Machine Learn-
ing, pages 197–205. Morgan Kaufmann, San Francisco, CA, 1998.

[61] L. M. Gambardella and M. Dorigo. Ant-Q:a reinforcement learn-
ing approach to the traveling salesman problem. In Proc. 12th
International Conference on Machine Learning, pages 252–260. Mor-
gan Kaufmann, 1995.

[62] F. Garcia and S. M. Ndiaye. A learning rate analysis of reinforce-
ment learning algorithms in finite-horizon. In Proc. 15th Inter-
national Conf. on Machine Learning, pages 215–223. Morgan Kauf-
mann, San Francisco, CA, 1998.

[63] P. Geibel. Reinforcement learning with bounded risk. In Proc. 18th
International Conf. on Machine Learning, pages 162–169. Morgan
Kaufmann, San Francisco, CA, 2001.

[64] S. Geulen, B. Voecking, and M. Winkler. Regret minimization for
online buffering problems using the weighted majority algorithm.
In A. T. Kalai and M. Mohri, editors, Proceedings of the 23rd Con-
ference on Learning Theory, pages 132–143. Omnipress, June 2010.

[65] Z. Ghahramani and G. E. Hinton. Variational learning for switch-
ing state-space models. Neural Computation, 12(4):831–864, 2000.

210 Bibliography

[66] Z. Ghahramani and M. I. Jordan. Factorial hidden markov mod-
els. Machine Learning, 29(2-3):245–273, 1997. ISSN 0885-6125.

[67] M. Ghavamzadeh and S. Mahadevan. Continuous-time hierar-
chial reinforcement learning. In Proc. 18th International Conf. on
Machine Learning, pages 186–193. Morgan Kaufmann, San Fran-
cisco, CA, 2001.

[68] M. R. Glickman and K. Sycara. Evolutionary search, stochastic
policies with memory, and reinforcement learning with hidden
state. In Proc. 18th International Conf. on Machine Learning, pages
194–201. Morgan Kaufmann, San Francisco, CA, 2001.

[69] D. E. Goldberg. Probability matching, the magnitude of reinforce-
ment, and classifier system bidding. Machine Learning, 5:407–425,
1990.

[70] R. B. Gramacy, M. K. Warmuth, S. A. Brandt, and I. Ari. Adap-
tive caching by refetching. In In Advances in Neural Information
Processing Systems 15, pages 1465–1472. MIT Press, 2002.

[71] P. D. Grünwald. The Minimum Description Length Principle. The
MIT Press, 2007.

[72] D. Gusfield. Connectivity and edge-disjoint spanning trees. In-
formation Processing Letters, 16(2):87–89, 1983.

[73] J. Hannan. Approximation to Bayes risk in repeated play. In Con-
tributions to the Theory of Games, volume 3, pages 97–139. Princeton
University Press, 1957.

[74] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer Verlag,
2001.

[75] D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential predic-
tion of individual sequences under general loss functions. IEEE
Transactions on Information Theory, 44(5):1906–1925, 1998.

[76] M. Heger. Consideration of risk in reinforcement learning. In
Proc. 11th International Conference on Machine Learning, pages 105–
111. Morgan Kaufmann, 1994.

Bibliography 211

[77] D. P. Helmbold and M. K. Warmuth. Learning permutations with
exponential weights. Journal of Machine Learning Research, 10:1705–
1736, July 2009.

[78] D. P. Helmbold, D. D. E. Long, T. L. Sconyers, and B. Sherrod.
Adaptive disk spin-down for mobile computers. ACM/Baltzer Mo-
bile Networks and Applications (MONET), pages 285–297, 2000.

[79] M. Herbster and M. K. Warmuth. Tracking the best expert. In
Proceedings of the 12th Annual Conference on Learning Theory (COLT
1995), pages 286–294, 1995.

[80] M. Herbster and M. K. Warmuth. Tracking the best expert. Ma-
chine Learning, 32:151–178, 1998.

[81] M. Herbster and M. K. Warmuth. Tracking the best linear predic-
tor. Journal of Machine Learning Research, 1:281–309, 2001.

[82] D. F. Hougen, M. Gini, and J. Slagle. An integrated connection-
ist approach to reinforcement learning for robotic control: The
advantages of indexed partitioning. In Proc. 17th International
Conf. on Machine Learning, pages 383–390. Morgan Kaufmann, San
Francisco, CA, 2000.

[83] J. Hu and M. P. Wellman. Multiagent reinforcement learning:
theoretical framework and an algorithm. In Proc. 15th International
Conf. on Machine Learning, pages 242–250. Morgan Kaufmann, San
Francisco, CA, 1998.

[84] M. Hutter and J. Poland. Adaptive online prediction by following
the perturbed leader. Journal of Machine Learning Research, 6:639–
660, Apr. 2005.

[85] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time ap-
proximation algorithm for the permanent of a matrix with non-
negative entries. Journal of the ACM, 51(4):671–697, 2004. ISSN
0004-5411.

[86] L. ji Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine Learning, 8:293–321,
1992.

212 Bibliography

[87] V. Kachitvichyanukul and B. W. Schmeiser. Binomial random
variate generation. Commun. ACM, 31(2):216–222, 1988. ISSN
0001-0782.

[88] L. P. Kaelbling. Associative methods in reinforcement learning:
an empirical study. In S. J. Hanson, T. Petsche, R. L. Rivest,
and M. Kearns, editors, Computational Learning Theory and Natu-
ral Learning Systems, volume II: Intersections Between Theory and
Experiment, chapter 9, pages 133–153. MIT Press, 1994.

[89] L. P. Kaelbling. Associative reinforcement learning: Functions in
k-DNF. Machine Learning, 15(3):279–298, 1994.

[90] L. P. Kaelbling. Associative reinforcement learning: A generate
and test algorithm. Machine Learning, 15(3):299–319, 1994.

[91] A. Kalai. A perturbation that makes “Follow the Leader” equiv-
alent to “Randomized Weighted Majority”. Private communica-
tion, Dec. 2005.

[92] A. Kalai and S. Vempala. Efficient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):291–307,
2005. ISSN 0022-0000.

[93] M. Kearns and S. Singh. Near-optimal reinforcement learning
in polynomial time. In Proc. 15th International Conf. on Machine
Learning, pages 260–268. Morgan Kaufmann, San Francisco, CA,
1998.

[94] M. Kearns and S. Singh. Near-optimal reinforcement learning in
polynomial time. Machine Learning, 49(2-3):209–232, 2002.

[95] M. J. Kearns and U. V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, Cambridge, Massachusetts, 1994.

[96] H. Kimura and S. Kobayashi. An analysis of actor/critic algo-
rithms using eligibility traces: reinforcement learning with im-
perfect value functions. In Proc. 15th International Conf. on Machine
Learning, pages 278–286. Morgan Kaufmann, San Francisco, CA,
1998.

Bibliography 213

[97] H. Kimura, M. Yamamura, and S. Kobayashi. Reinforcement
learning by stochastic hill climbing on discounted reward. In Proc.
12th International Conference on Machine Learning, pages 295–303.
Morgan Kaufmann, 1995.

[98] H. Kimura, K. Miyazaki, and S. Kobayashi. Reinforcement learn-
ing in POMDPs with function approximation. In Proc. 14th In-
ternational Conference on Machine Learning, pages 152–160. Morgan
Kaufmann, 1997.

[99] T. Koo, A. Globerson, X. Carreras, and M. Collins. Structured
prediction models via the Matrix-Tree theorem. In Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pages 141–150, 2007.

[100] W. M. Koolen and S. de Rooij. Combining expert advice effi-
ciently. In R. Servedio and T. Zang, editors, Proceedings of the 21st
Annual Conference on Learning Theory (COLT 2008), pages 275–286,
June 2008.

[101] W. M. Koolen and S. de Rooij. Combining expert advice effi-
ciently. arXiv:0802.2015, Feb. 2008.

[102] D. Kuzmin and M. K. Warmuth. Optimum follow the leader algo-
rithm. In Proceedings of the 18th Annual Conference on Learning The-
ory (COLT ’05), pages 684–686. Springer-Verlag, June 2005. Open
problem.

[103] M. G. Lagoudakis and M. L. Littman. Algorithm selection using
reinforcement learning. In Proc. 17th International Conf. on Machine
Learning, pages 511–518. Morgan Kaufmann, San Francisco, CA,
2000.

[104] N. Landwehr. Modeling interleaved hidden processes. In Proceed-
ings of the 25th international conference on Machine learning, pages
520–527, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-
4.

[105] M. Lauer and M. Riedmiller. An algorithm for distributed rein-
forcement learning in cooperative multi-agent systems. In Proc.

214 Bibliography

17th International Conf. on Machine Learning, pages 535–542. Mor-
gan Kaufmann, San Francisco, CA, 2000.

[106] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and
Its Applications. Springer-Verlag New York, Inc., 1997.

[107] L. Lin. Self-improving reactive agents: case studies of reinforce-
ment learning frameworks. Technical Report CMU-CS-90-109,
Carnegie Mellon Computer Science Department, Aug. 1990.

[108] N. Littlestone and M. K. Warmuth. The weighted majority al-
gorithm. Information and Computation, 108(2):212–261, 1994. Pre-
liminary version appeared in the Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, Research Tri-
angle Park, North Carolina, 1989.

[109] M. L. Littman. Markov games as a framework for multi-agent
reinforcement learning. In Proc. 11th International Conference on
Machine Learning, pages 157–163. Morgan Kaufmann, 1994.

[110] M. L. Littman and C. Szepesvári. A generalized reinforcement-
learning model: Convergence and applications. In Proc. 13th In-
ternational Conference on Machine Learning, pages 310–318. Morgan
Kaufmann, 1996.

[111] R. Maclin and J. W. Shavlik. Creating advice-taking reinforcement
learners. Machine Learning, 22:251–281, 1996.

[112] T. L. Magnanti and L. A. Wolsey. Optimal trees. In M. Ball, T. L.
Magnanti, C. L. Monma, and G. L. Nemhauser, editors, Network
Models, volume 7 of Handbooks in Operations Research and Manage-
ment Science, pages 503–615. North-Holland, 1995.

[113] S. Mahadevan. To discount or not to discount in reinforcement
learning: a case study comparing R learning and Q learning. In
Proc. 11th International Conference on Machine Learning, pages 164–
172. Morgan Kaufmann, 1994.

[114] S. Mahadevan. Average reward reinforcement learning: Foun-
dations, algorithms, and empirical results. Machine Learning, 22:
159–195, 1996.

Bibliography 215

[115] S. Mahadevan. Sensitive discount optimality: unifying dis-
counted and average reward reinforcement learning. In Proc. 13th
International Conference on Machine Learning, pages 328–336. Mor-
gan Kaufmann, 1996.

[116] S. Mahadevan and J. Connell. Automatic programming of
behavior-based robots using reinforcement learning. Technical
report, IBM Research at Yorktown Heights, Dec. 1990.

[117] S. Mannor and N. Shimkin. A geometric approach to multi-
criterion reinforcement learning. Journal of Machine Learning Re-
search, 5:325–360, 2004.

[118] S. Mannor and J. N. Tsitsiklis. The sample complexity of ex-
ploration in the multi-armed bandit problem. Journal of Machine
Learning Research, 5:623–648, 2004.

[119] Y. Mansour. Reinforcement learning and mistake bounded algo-
rithms. In Proc. 12th Annu. Conf. on Comput. Learning Theory, pages
183–192. ACM Press, New York, NY, 1999.

[120] C. E. Mariano and E. F. Morales. DQL: A new updating strategy
for reinforcement learning based on Q-learning. In Machine Learn-
ing: ECML 2001, 12th European Conference on Machine Learning,
Freiburg, Germany, September 5-7, 2001, Proceedings, volume 2167

of Lecture Notes in Artificial Intelligence, pages 324–335. Springer,
2001.

[121] R. A. McCallum. Instance-based utile distinctions for reinforce-
ment learning with hidden state. In Proc. 12th International Con-
ference on Machine Learning, pages 387–395. Morgan Kaufmann,
1995.

[122] A. McGovern and A. G. Barto. Automatic discovery of subgoals in
reinforcement learning using diverse density. In Proc. 18th Inter-
national Conf. on Machine Learning, pages 361–368. Morgan Kauf-
mann, San Francisco, CA, 2001.

[123] A. McGovern, E. Moss, and A. G. Barto. Building a basic block
instruction scheduler with reinforcement learning and rollouts.
Machine Learning, 49(2-3):141–160, 2002.

216 Bibliography

[124] O. Mihatsch and R. Neuneier. Risk-sensitive reinforcement learn-
ing. Machine Learning, 49(2-3):267–290, 2002.

[125] J. D. R. Millán and C. Torras. A reinforcement connectionist ap-
proach to robot path finding in non-maze-like environments. Ma-
chine Learning, 8:363–395, 1992.

[126] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge,
MA, 1988.

[127] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[128] A. Moffat. Compression and Coding Algorithms. Kluwer Academic
Publishers, 2002. ISBN 0-7923-7668-4.

[129] C. Monteleoni and T. Jaakkola. Online learning of non-stationary
sequences. Advances in Neural Information Processing Systems, 16:
1093–1100, 2003.

[130] A. W. Moore. Reinforcement learning in factories: the auton
project (abstract). In Proc. 13th International Conference on Machine
Learning, page 556. Morgan Kaufmann, 1996.

[131] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforce-
ment learning with less data and less time. Machine Learning, 13:
103–130, 1993.

[132] D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learn-
ing through symbiotic evolution. Machine Learning, 22:11–32,
1996.

[133] J. Morimoto and K. Doya. Acquisition of stand-up behavior by a
real robot using hierarchical reinforcement learning. In Proc. 17th
International Conf. on Machine Learning, pages 623–630. Morgan
Kaufmann, San Francisco, CA, 2000.

[134] R. Munos. A convergent reinforcement learning algorithm in the
continuous case: the finite-element reinforcement learning. In
Proc. 13th International Conference on Machine Learning, pages 337–
345. Morgan Kaufmann, 1996.

Bibliography 217

[135] R. Munos. A study of reinforcement learning in the continuous
case by the means of viscosity solutions. Machine Learning, 40(3):
265–299, 2000.

[136] B. K. Natarajan and P. Tadepalli. Two new frameworks for learn-
ing. In Proc. of the 5th International Conference on Machine Learning,
pages 402–415, San Mateo, CA, June 1988. published by Morgan
Kaufmann.

[137] A. Y. Ng and S. Russell. Algorithms for inverse reinforcement
learning. In Proc. 17th International Conf. on Machine Learning,
pages 663–670. Morgan Kaufmann, San Francisco, CA, 2000.

[138] D. Ormoneit and Ś. Sen. Kernel-based reinforcement learning.
Machine Learning, 49(2-3):161–178, 2002.

[139] M. D. Pendrith and M. J. McGarity. An analysis of direct re-
inforcement learning in non-Markovian domains. In Proc. 15th
International Conf. on Machine Learning, pages 421–429. Morgan
Kaufmann, San Francisco, CA, 1998.

[140] M. D. Pendrith and M. R. K. Ryan. Actual return reinforcement
learning versus temporal differences: some theoretical and exper-
imental results. In Proc. 13th International Conference on Machine
Learning, pages 373–381. Morgan Kaufmann, 1996.

[141] T. J. Perkins and A. G. Barto. Lyapunov-constrained action sets for
reinforcement learning. In Proc. 18th International Conf. on Machine
Learning, pages 409–416. Morgan Kaufmann, San Francisco, CA,
2001.

[142] T. J. Perkins and A. G. Barto. Lyapunov design for safe reinforce-
ment learning. Journal of Machine Learning Research, 3:803–832,
2002.

[143] J. Poland. FPL analysis for adaptive bandits. In Stochastic Algo-
rithms: Foundations and Applications, Third International Symposium,
SAGA 2005, Moscow, Russia, October 2005, Proceedings, volume
3777 of Lecture Notes in Computer Science, pages 58–69. Springer,
2005.

218 Bibliography

[144] D. Precup and R. S. Sutton. Exponentiated gradient methods for
reinforcement learning. In Proc. 14th International Conference on
Machine Learning, pages 272–277. Morgan Kaufmann, 1997.

[145] B. Price and C. Boutilier. Implicit imitation in multiagent rein-
forcement learning. In Proc. 16th International Conf. on Machine
Learning, pages 325–334. Morgan Kaufmann, San Francisco, CA,
1999.

[146] L. R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. In Proceedings of the IEEE, vol-
ume 77, issue 2, pages 257–285, 1989.

[147] J. Randløv. Shaping in reinforcement learning by changing the
physics of the problem. In Proc. 17th International Conf. on Machine
Learning, pages 767–774. Morgan Kaufmann, San Francisco, CA,
2000.

[148] J. Randløv and P. Alstrøm. Learning to drive a bicycle using
reinforcement learning and shaping. In Proc. 15th International
Conf. on Machine Learning, pages 463–471. Morgan Kaufmann, San
Francisco, CA, 1998.

[149] J. Randløv, A. G. Barto, and M. T. Rosenstein. Combining rein-
forcement learning with a local control algorithm. In Proc. 17th
International Conf. on Machine Learning, pages 775–782. Morgan
Kaufmann, San Francisco, CA, 2000.

[150] C. Rasmussen and C. Williams. Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, 2006.

[151] J. Rennie and A. K. McCallum. Using reinforcement learning to
spider the web efficiently. In Proc. 16th International Conf. on Ma-
chine Learning, pages 335–343. Morgan Kaufmann, San Francisco,
CA, 1999.

[152] S. I. Reynolds. Adaptive resolution model-free reinforcement
learning: Decision boundary partitioning. In Proc. 17th Interna-
tional Conf. on Machine Learning, pages 783–790. Morgan Kauf-
mann, San Francisco, CA, 2000.

Bibliography 219

[153] C. Richter and J. Stachowiak. Knowledge propagation in model-
based reinforcement learning tasks. In Proc. 17th International
Conf. on Machine Learning, pages 791–798. Morgan Kaufmann, San
Francisco, CA, 2000.

[154] J. Rissanen. Stochastic Complexity in Statistical Inquiry, volume 15

of Series in Computer Science. World Scientific, 1989.

[155] R. L. Rivest and Y. Yin. Simulation results for a new two-armed
bandit heuristic. In S. J. Hanson, G. A. Drastal, and R. L. Rivest,
editors, Computational Learning Theory and Natural Learning Sys-
tems, volume I: Constraints and Prospects, chapter 17, pages 477–
486. MIT Press, 1994. Earlier version in 1990 Conference on Com-
putation Learning and Natural Learning at Princeton.

[156] M. Ryan and M. Reid. Learning to fly: An application of hierar-
chical reinforcement learning. In Proc. 17th International Conf. on
Machine Learning, pages 807–814. Morgan Kaufmann, San Fran-
cisco, CA, 2000.

[157] M. R. K. Ryan and M. D. Pendrith. RL-TOPs: an architecture for
modularity and re-use in reinforcement learning. In Proc. 15th
International Conf. on Machine Learning, pages 481–487. Morgan
Kaufmann, San Francisco, CA, 1998.

[158] M. Salganicoff and L. H. Ungar. Active exploration and learning
in real-valued spaces using multi-armed bandit allocation indices.
In Proc. 12th International Conference on Machine Learning, pages
480–487. Morgan Kaufmann, 1995.

[159] M. Sato and S. Kobayashi. Average-reward reinforcement learn-
ing for variance penalized Markov decision problems. In Proc.
18th International Conf. on Machine Learning, pages 473–480. Mor-
gan Kaufmann, San Francisco, CA, 2001.

[160] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press,
Cambridge, MA, 2002.

[161] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency.
Springer-Verlag, Berlin, 2003.

220 Bibliography

[162] G. Shafer, A. Shen, N. Vereshchagin, and V. Vovk. Test martin-
gales, Bayes factors, and p-values. Statistical Science, 2011. To
appear. Preprint available as arXiv:0912.4269.

[163] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony.
A framework for structural risk minimization. In Proc. 9th Annu.
Conf. on Comput. Learning Theory, pages 68–76. ACM Press, New
York, NY, 1996.

[164] S. P. Singh and R. S. Sutton. Reinforcement learning with replac-
ing eligibility traces. Machine Learning, 22:123–158, 1996.

[165] W. D. Smart and L. P. Kaelbling. Practical reinforcement learning
in continuous spaces. In Proc. 17th International Conf. on Machine
Learning, pages 903–910. Morgan Kaufmann, San Francisco, CA,
2000.

[166] P. Stone and R. S. Sutton. Scaling reinforcement learning toward
RoboCup soccer. In Proc. 18th International Conf. on Machine Learn-
ing, pages 537–544. Morgan Kaufmann, San Francisco, CA, 2001.

[167] M. Strens. A Bayesian framework for reinforcement learning. In
Proc. 17th International Conf. on Machine Learning, pages 943–950.
Morgan Kaufmann, San Francisco, CA, 2000.

[168] R. S. Sutton. Reinforcement learning architectures for animats.
In First International Conference on Simulation of Adaptive Behavior,
1991.

[169] R. S. Sutton. Open theoretical questions in reinforcement learn-
ing. In Computational Learning Theory, 4th European Conference, Eu-
roCOLT ’99, Nordkirchen, Germany, March 29-31, 1999, Proceedings,
volume 1572 of Lecture Notes in Artificial Intelligence, pages 11–17.
Springer, 1999.

[170] P. Tadepalli and T. G. Dietterich. Hierarchical explanation-based
reinforcement learning. In Proc. 14th International Conference on
Machine Learning, pages 358–366. Morgan Kaufmann, 1997.

[171] P. Tadepalli and D. Ok. Scaling up average reward reinforcement
learning by approximating the domain models and the value

Bibliography 221

function. In Proc. 13th International Conference on Machine Learning,
pages 471–479. Morgan Kaufmann, 1996.

[172] E. Takimoto and M. Warmuth. The last-step minimax algorithm.
In Proceedings of the 13th Annual Conference on Computational Learn-
ing Theory, pages 100–106, 2000.

[173] E. Takimoto and M. K. Warmuth. Path kernels and multiplicative
updates. Journal of Machine Learning Research, 4:773–818, 2003.
ISSN 1532-4435.

[174] A. Teller and M. Veloso. Efficient learning trough evolution: Neu-
ral programming and internal reinforcement. In Proc. 17th Inter-
national Conf. on Machine Learning, pages 959–966. Morgan Kauf-
mann, San Francisco, CA, 2000.

[175] H. Tong and T. X. Brown. Reinforcement learning for call admis-
sion control and routing under quality of service constraints in
multimedia networks. Machine Learning, 49(2-3):111–139, 2002.

[176] J. N. Tsitsiklis. A lemma on the multiarmed bandit problem. IEEE
Transactions on Automatic Control, AC-31(6), June 1986.

[177] T. van Erven, P. Grünwald, and S. de Rooij. Catching up faster by
switching sooner: a prequential solution to the AIC-BIC dilemma.
Submitted. Preprint available as arXiv:0807.1005., 2008.

[178] T. van Erven, P. D. Grünwald, and S. de Rooij. Catching up faster
in Bayesian model selection and model averaging. In Advances in
Neural Information Processing Systems 20 (NIPS 2007), 2008.

[179] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[180] P. A. Volf and F. M. Willems. Switching between two universal
source coding algorithms. In Proceedings of the Data Compression
Conference, Snowbird, Utah, pages 491–500, 1998.

[181] V. Vovk. Aggregating strategies. In Proceedings of the third Annual
Conference on Computational Learning Theory (COLT), pages 371–
383, 1990.

[182] V. Vovk. A game of prediction with expert advice. Journal of
Computer and System Sciences, 56:153–173, 1998.

222 Bibliography

[183] V. Vovk. Derandomizing stochastic prediction strategies. Machine
Learning, 35:247–282, 1999.

[184] D. J. Ward and D. J. C. MacKay. Artificial intelligence: Fast hands-
free writing by gaze direction. Nature, 418(6900):838–841, Aug.
2002.

[185] M. K. Warmuth and D. Kuzmin. Randomized online PCA algo-
rithms with regret bounds that are logarithmic in the dimension.
Journal of Machine Learning Research, 9:2287–2320, Oct. 2008.

[186] M. K. Warmuth, K. Glocer, and S. Vishwanathan. Entropy regu-
larized LPBoost. In Y. Freund, L. Györfi, G. Turán, and T. Zeug-
mann, editors, Proceedings of the 19th International Conference on
Algorithmic Learning Theory (ALT ’08), pages 256–271. Springer-
Verlag, Oct. 2008.

[187] M. Wiering. Multi-agent reinforcement learning for traffic light
control. In Proc. 17th International Conf. on Machine Learning, pages
1151–1158. Morgan Kaufmann, San Francisco, CA, 2000.

[188] M. A. Wiering. Reinforcement learning in dynamic environments
using instantiated information. In Proc. 18th International Conf. on
Machine Learning, pages 585–592. Morgan Kaufmann, San Fran-
cisco, CA, 2001.

[189] F. Willems, Y. Shtarkov, and T. Tjalkens. The context tree weight-
ing method: basic properties. IEEE Transactions on Information
Theory, 41(3):653–664, 1995.

[190] F. M. Willems. Coding for a binary independent piecewise-
identically distributed source. IEEE Transactions on Information
Theory, 42(6):2210–2217, Nov. 1996.

[191] J. L. Wyatt. Exploration control in reinforcement learning using
optimistic model selection. In Proc. 18th International Conf. on Ma-
chine Learning, pages 593–600. Morgan Kaufmann, San Francisco,
CA, 2001.

Index

actual outcome, 26

alternative hypothesis, 150

backwards induction, 28

balance, 164

balanced concept class, 175

bandit learning, 12

birthday, 164

blocks, 158

branch, 68

cell, 122, 123

continuous HMM, 68

convolution, 101

deterministic HMM, 70

doubling trick, 39

dual strategies, 155

dynamic programming, 28

EHMM, 125

elementwise mixture, 66

equaliser strategies, 25

equivalent EHMMs, 130

ES-joint, 64

evolving past posteriors, 120, 130

expert, 4

adversarial, 11

black-box, 11, 21

blind, 11

constant, 10, 22

dead, 43

gray-box, 11

semi-adversarial, 11

simulatable, 11

static, 11

switching, 22

white-box, 11, 21

expert sequence prior, 64

exploration vs exploitation, 55

freezing, 128

full feedback, 4

game value, 24

hidden Markov model, 67

history, 28

initial distribution, 67, 126

interpolation of EHMMs, 87

interpolator, 86

Investor, 147

ironing, 156

223

224 Index

loss, 3

0/1, 3

absolute, 55

Cover’s, 3

cumulative, 4

dot, 3

Hellinger, 136

logarithmic, 3, 8, 59, 122

mixable, 110, 136

square, 3, 136

luckiness, 42

machine learning, 231

marginal probability, 60

maximin cost, 24

maximin strategy, 24

minimax cost, 24

minimax regret, 21

minimax strategy, 21, 24

mixed strategy, 24

mixing scheme, 123

more regular moves, 157

Nature, 147

null hypothesis, 150

oblivious adversaries, 38

one-armed bandit, 13

online learning, 5, 231

partial feedback, 13

partition, 122

payoff, 147

posterior distribution, 60

predecessor, 123

prediction, 26

prediction with expert advice, 231

predictive distribution, 60

prequential forecasting system,
63

production function, 125

pure strategy, 24

recurring decision problem, 4

full feedback, 1, 2

reference scheme
freezing, 116

full, 116

sleeping, 116

regret, 5, 6, 172, 231

regret game, 48

loss horizon, 43

one shot, 26

switching, 50

time horizon, 29, 30, 46

regularisation, 157

run, 68

separation, 158

side information, 3

Sinkhorn balancing, 178

sleeping, 128

Spanning Tree Protocol, 183

standard Bayesian ES-prior, 65

state, 67

initial, 67

productive, 67

silent, 67

successor, 68

stochastic transition function, 67

switch distribution, 94

switching method, 95

symmetric concept class, 175

tracking the best expert, 232

transition function, 126

truncated permutations, 177

type, 164

unfolding, 74

Index 225

unit flow, 180

unit rule, 189

usage vector, 170, 172

weight pushing algorithm, 183

Zermelo’s algorithm, 28

Samenvatting

In dit proefschrift bestuderen we machine learning: het automatisch vin-
den en benutten van regelmatigheden in data.

We kunnen regelmatigheden die we hebben geïdentificeerd in ob-
jecten gebruiken om het verleden te verklaren (b.v. archeologie, recht-
spraak), en regelmatigheden die we hebben gevonden in processen om
de toekomst te voorspellen (b.v. het weer, beurskoersen) en om ons
handelen te leiden.

Dankzij alom beschikbare rekencapaciteit zijn machine learning al-
goritmen tegenwoordig overal doorgedrongen. Zij beheren bijvoor-
beeld financiële portfolios, managen het energiebesparingsbeleid van
draagbare apparatuur, bevelen films alsook advertenties aan gebaseerd
op persoonlijke voorkeuren, en zij vormen het hart van de best beschik-
bare datacompressieprogrammatuur.

Dit proefschrift is een bijdrage aan de theorie van online learning,
een tak van machine learning die sequentiële beslissingsproblemen met
onmiddellijke terugkoppeling bestudeert.

In het bijzonder bestuderen we de opzet genaamd voorspellen met
expertadvies. Het is hier onze taak om een reeks data te voorspellen.
Elke ronde raadplegen we hiertoe eerst een set experts. Daarna com-
bineren we hun adviezen en leveren zo onze eigen voorspelling van de
volgende uitkomst. Tenslotte wordt de volgende uitkomst onthuld, en
boeten we verlies in voor de discrepantie tussen onze voorspelling en
de gerealiseerde uitkomst.

Het doel is om efficiënte algoritmen te bouwen met weinig spijt,
d.w.z. het verschil tussen het ingeboete cumulatieve verlies van het al-
goritme en het verlies van de beste strategie, achteraf gekozen uit een
vaste referentieklasse. In deze zin kunnen de strategieën in de referen-

227

228 Samenvatting

tieklasse beschouwd worden als mogelijke patronen, en betekent het
oplopen van weinig spijt dat geleerd wordt welke referentiestrategie de
data het beste modelleert. Het belangrijkste verschil tussen de leerpro-
blemen die we beschouwen is de complexiteit van de referentieset.

Algoritmen voor het voorspellen met expertadvies hebben reeds le-
gio toepassingen, waaronder classificatie, regressie, hypothesetoetsen,
modelselectie, datacompressie, gokken en investeren in de aandelen-
beurs.

In hoofdstuk 2 geven we een speltheoretische analyse van het sim-
pelste online learning probleem, het voorspellen van een reeks binaire
uitkomsten onder de 0/1 verliesmaat met behulp van twee experts.
Voor dit simpele probleem berekenen we de minimax, d.w.z. speltheo-
retisch optimale spijt, en laten zien hoe de optimale strategie efficiënt te
implementeren is. Daarna geven we speciale aandacht aan het geval dat
een expert erg goed is. We sluiten af met een nieuw resultaat: het op-
timale algoritme voor wedijveren met de set meta-experts die wisselen
tussen de twee basisexperts.

In hoofdstuk 3 laten we zien hoe modellen voor voorspellen met ex-
pertadvies beknopt en helder kunnen worden gedefinieerd met gebruik
van hidden Markov modellen (HMMs); standaardalgoritmen kunnen
dan worden gebruikt om efficiënt uit te rekenen hoe de voorspellingen
van de experts gewogen moeten worden. We concentreren ons op al-
goritmen voor het volgen van de beste expert. Voor deze taak volgen
de strategieën in de referentieset steeds het advies van een enkele ex-
pert, maar welke expert dit is kan in verloop van tijd veranderen. We
herbeschrijven bestaande modellen als HMMs, beginnend bij het fixed
share algoritme, leiden de uitvoeringstijd en spijtbovengrens overnieuw
af, en bespreken de onderlinge verbanden. We beschrijven ook drie
nieuwe modellen voor het wisselen tussen experts.

In hoofdstuk 4 breiden we de opzet uit naar het volgen van de beste
lerende expert. Gebruikelijke experts geven elke ronde een advies over
de volgende uitkomst. Lerende experts kunnen daarintegen bevraagd
worden gegeven elke mogelijke subset van de data uit het verleden.
Deze extra mogelijkheid staat ter beschikking van zowel het algoritme
als van de referentiestrategieën. Het behalen van weinig spijt betekent
nu te leren de rondes te partitioneren, en de beste lerende expert te
trainen en te volgen binnen elke cel van de partitie. We geven efficiënte
algoritmen met weinig spijt voor het volgen van lerende experts die zelf

Samenvatting 229

uitgedrukt kunnen worden d.m.v. de expert HMMs uit hoofdstuk 3.
In hoofdstuk 5 beschouwen we referentiestrategieën die wisselen

tussen twee experts gebaseerd op hun cumulatieve verlies in plaats van
op de tijd. Dit hoofdstuk is geformuleerd in financiele termen om de
presentatie intuïtiever te maken. We presenteren een simpel online
handelsalgoritme dat fluctuaties uitbuit in de eenheidsprijs van een ac-
tivum. In plaats van de opbrengst te analyseren in het ongunstigste
geval onder zekere aannamen, bewijzen wij een nieuwe, aannamevrije
opbrengstgarantie die is geparametriseerd ofwel met de echte dynamiek
van de prijs van het activum, danwel met een versimpeling daarvan.

We bespreken toepassingen van de resultaten op voorspellen met
expertadvies, datacompressie en hypothesetoetsen.

In hoofdstuk 6 beschouwen we voorspellen met gestructureerde con-
cepten. Elke ronde keizen we een concept dat is opgebouwd uit com-
ponenten. Het verlies van een concept is de som van de verliezen
van diens componenten. Terwijl de verliezen van verschillende compo-
nenten onafhankelijk zijn, zijn de verliezen van verschillende concepten
juist hoogst gerelateerd. We ontwikkelen een online algoritme, Com-
ponent Hedge genaamd, dat deze afhankelijkheden uitbuit, en daardoor
de zogenaamde bereikfactor vermijdt, die optreedt als de afhankelijkhe-
den worden genegeerd. We laten zien dat Component Hedge optimale
spijtgaranties heeft voor een grote verscheidenheid aan gestructureerde
conceptklassen.

Abstract

In this dissertation we study machine learning: the automated discovery
and exploitation of regularities in data. We may use regularities iden-
tified in objects to explain the past (e.g. archaeology, justice), as well as
regularities found in processes to predict the future (e.g. weather, stock
market) and guide our actions.

With ubiquitous computational resources, machine learning algo-
rithms have become pervasive. For example, they manage financial
portfolios and power-saving policy, provide personalised movie recom-
mendations as well as advertisements, and form the core of state-of-
the-art data compression software.

This dissertation develops the theory of online learning, a branch of
machine learning that investigates sequential decision problems with
immediate feedback. In particular, we study the setting called predic-
tion with expert advice. Our task is to predict a sequence of data. Each
trial, we may first consult a given set of experts. We then combine
their advice and issue our prediction of the next outcome. Finally, the
next outcome is revealed, and we incur loss based on the discrepancy
between our prediction and it.

The goal is to build efficient algorithms with small regret, i.e. the
difference between the incurred cumulative loss and the loss of the best
strategy in hindsight from a fixed reference class. In this sense, the
strategies in the reference class are the patterns, and achieving small
regret means learning which reference strategy best models the data.
The main difference between the learning problems we consider is the
complexity of the reference set. Algorithms for prediction with ex-
pert advice have many applications including classification, regression,
hypothesis testing, model selection, data compression, gambling and

231

232 Abstract

investing in the stock market.
In Chapter 2 we give a game-theoretic analysis of the simplest on-

line learning problem, the prediction of a sequence of binary outcomes
under 0/1 loss with the help of two experts. For this simple problem,
we compute the minimax, i.e. game-theoretically optimal, regret, and
show how to implement the optimal strategy efficiently. We then give
special attention to the case that one of the experts is good. We con-
clude with a new result: the optimal algorithm for competing with the
set of meta-experts that switch between the two basic experts.

In Chapter 3 we show how models for prediction with expert ad-
vice can be defined concisely and clearly using hidden Markov models
(HMMs); standard algorithms can then be used to efficiently calculate
how the expert predictions should be weighted. We focus on algorithms
for tracking the best expert. Here the strategies in the reference set follow
the advice of a single expert, but this expert may change between trials.
We cast existing models as HMMs, starting from the fixed share algo-
rithm, recover the running times and regret bounds for each algorithm,
and discuss how they are related. We also describe three new models
for switching between experts.

In Chapter 4 we extend the setting to tracking the best learning ex-
pert. Whereas vanilla experts can be tapped for advice about the cur-
rent trial, learning experts may be queried for advice given each possi-
ble subset of the past data. This additional power is available to both
the algorithm and the reference strategies. Achieving small regret thus
means learning how to partition the trials, and which learning expert to
train and follow within each partition cell. We give efficient algorithms
with small regret for tracking learning experts that can themselves be
formalised using the expert HMMs of Chapter 3.

In Chapter 5 we consider reference strategies that switch between
two experts based on their cumulative loss instead of on time. This chap-
ter is formulated in financial terms to make the presentation more in-
tuitive. We present a simple online two-way trading algorithm that
exploits fluctuations in the unit price of an asset. Rather than analysing
worst-case performance under some assumptions, we prove a novel,
unconditional performance bound that is parameterised either by the
actual dynamics of the price of the asset, or by a simplifying model
thereof. We discuss application of the results to prediction with expert
advice, data compression and hypothesis testing.

Abstract 233

In Chapter 6 we consider prediction with structured concepts. Each
round we select a concept, which is composed of components. The loss
of a concept is the sum of the losses of its components. Whereas the
losses of different components are independent, the losses of different
concepts are highly related. We develop an online algorithm, called
Component Hedge that exploits this dependence, and thereby avoids the
so called range factor that arises when the dependences are ignored. We
show that Component Hedge has optimal regret bounds for a large
variety of structured concept classes.

Curriculum Vitae

Personalia

Surname Koolen
Name Wouter Michiel
Birth 2 July 1982, Groningen (The Netherlands)
Nationality Dutch, Swiss
Address Valckenierstraat 45 A

1018 XE Amsterdam
The Netherlands

Phone +31 6 49682755

e-mail wmkoolen@cwi.nl
Homepage http://www.cwi.nl/~wmkoolen

Fellowships & Education

Postdoc Computer Learning Research Centre
February 2011 - January 2013 Royal Holloway, London, UK
Project: Game-Theoretically Optimal Online Learning: From Conflicting Ad-
vice to High-Quality Decisions

Ph.D. Centrum Wiskunde en Informatica
January 2007 - January 2011 Amsterdam, The Netherlands
Promotores: prof. Paul M.B. Vitányi, prof. Peter D. Grünwald
Dissertation: Combining Strategies Efficiently: High-Quality Decisions from
Conflicting Advice

235

mailto:wmkoolen@cwi.nl
http://www.cwi.nl/~wmkoolen

236 Curriculum Vitae

Master of Science in Logic Universiteit van Amsterdam
September 2004 - December 2006 Amsterdam, The Netherlands
Supervisor: prof. Peter D. Grünwald
Thesis: Discovering the Truth by Conducting Experiments
Cum Laude

Honors & Awards

My propaedeutic (UvA, 2001) and bachelor’s (UvA, 2003) degrees in
both Computer Science and Artificial Intelligence, my Maîtrise (Uni-
versité de Nice-Sophia Antipolis, France, 2004) in Computer Science
and my Master’s degree in Logic (UvA, 2006) were all obtained cum
laude.

In 2010, the Netherlands Organisation for Scientific Research (NWO)
honored my project proposal Game-Theoretically Optimal Online Learn-
ing: From Conflicting Advice to High-Quality Decisions with a RUBICON
grant, funding two years of post-doctoral research with prof. Vladimir
Vovk at the Computer Learning Research Centre at Royal Holloway,
University of London.

Publications

Journal

• H. Buhrman, P. T. S. van der Gulik, S. M. Kelk, W. M. Koolen,
and L. Stougie. Some mathematical refinements concerning er-
ror minimization in the genetic code. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), 2010. Accepted.

• E. G. Daylight, W. M. Koolen, and P. M. Vitányi. Time-bounded
incompressibility of compressible strings and sequences. Informa-
tion Processing Letters (IPL), 109(18):1055 – 1059, Aug. 2009.

Conference

• W. M. Koolen and S. de Rooij. Switching investments. In M. Hut-
ter, F. Stephan, V. Vovk, and T. Zeugman, editors, Proceedings of

Curriculum Vitae 237

the 21st International Conference on Algorithmic Learning Theory (ALT
2010), LNAI 6331, pages 239–254. Springer, Heidelberg, Oct. 2010.

• W. M. Koolen, M. K. Warmuth, and J. Kivinen. Hedging struc-
tured concepts. In Proceedings of the 23rd Annual Conference on
Learning Theory (COLT 2010), pages 93–105, June 2010.

• M. Ziegler and W. M. Koolen. Kolmogorov complexity theory
over the reals. Electronic Notes in Theoretical Computer Science
(ENTCS), 221:153–169, Dec. 2008.

• W. M. Koolen and S. de Rooij. Combining expert advice effi-
ciently. In R. Servedio and T. Zang, editors, Proceedings of the 21st
Annual Conference on Learning Theory (COLT 2008), pages 275–286,
June 2008.

Technical Report

• W. M. Koolen and T. van Erven. Switching between hidden
Markov models using Fixed Share. Computing Research Repository
(CoRR), abs/1008.4532, Feb. 2010.

• H. Buhrman, P. T. S. van der Gulik, S. M. Kelk, W. M. Koolen,
and L. Stougie. Some mathematical refinements concerning error
minimization in the genetic code. arXiv, abs/0909.1442, Sept.
2009.

• W. M. Koolen and T. van Erven. Freezing and sleeping: Tracking
experts that learn by evolving past posteriors. Computing Research
Repository (CoRR), abs/1008.4654, Feb. 2009.

• E. G. Daylight, W. M. Koolen, and P. M. B. Vitányi. On time-
bounded incompressibility of compressible strings and sequences.
Computing Research Repository (CoRR), abs/0809.2965, Sept. 2008.

• M. Ziegler and W. M. Koolen. Kolmogorov complexity theory
over the reals. Computing Research Repository (CoRR), abs/0802.2027,
Feb. 2008.

• W. M. Koolen and S. de Rooij. Combining expert advice effi-
ciently. Computing Research Repository (CoRR), abs/0802.2015, Feb.
2008.

• W. M. Koolen. Temporary unavailability logic and general modi-
fication logic. ILLC Prepublication Series, Jan. 2008.

238 Curriculum Vitae

Extended Abstracts (Local Dissemination)

• W. M. Koolen and T. van Erven. Freezing and sleeping: Tracking
experts that learn by evolving past posteriors. In Proceedings of the
18th Annual Belgian-Dutch Conference on Machine Learning (Bene-
Learn 2009), pages 91–92, May 2009.

• W. M. Koolen and S. de Rooij. Combining expert advice effi-
ciently. In A. Nijholt, M. Pantic, M. Poel, and H. Hondorp, editors,
Proceedings of the twentieth Belgian-Dutch Conference on Artificial In-
telligence (BNAIC 2008), pages 323–324, Oct. 2008.

Master’s Thesis

• W. M. Koolen. Discovering the truth by conducting experiments.
Master’s thesis, Institute of Logic, Language and Computation,
Universiteit van Amsterdam, Dec. 2006.

Teaching

Kolmogorov Complexity FNWI, Universiteit van Amsterdam
Spring 2007, Spring 2008

This graduate level course was taught yearly by prof. Paul Vitányi at
the Universiteit van Amsterdam. I assisted Paul by teaching the home-
work/lab session and grading the homework and exams, and tutored
Edgar G. Daylight during the term project that he undertook, which
resulting in the second journal publication above.

Teaching Assistant FNWI, Universiteit van Amsterdam
September 2001 - December 2002

I assisted the following undergraduate level courses:
• Logisch Programmeren (Introduction to Prolog for A.I. students),
• Kennis en Interactie and
• Informatie en Informatieverwerking.

Employment History

Software developer AMSTEL Instituut, Universiteit van Amsterdam
January 2002 - March 2007

Curriculum Vitae 239

I designed and implemented the SIM-PL software package, an educa-
tional tool for the design and simulation of digital components and dig-
ital circuits. SIM-PL simulates the whole spectrum from simple gates
to super-scalar processors, and gives a timing-accurate insight into the
internal workings of these circuits.

SIM-PL is currently used in the courses Digitale Technieken and
Computer Architectuur at the Universiteit van Amsterdam.
http://www.science.uva.nl/amstel/SIM-PL/

Other interests

• Hiking, trekking, climbing, survival. Former Scouting member.
• Fantasy role-playing, Dungeons and Dragons.
• Bach, Mozart and symphonic metal.
• Medieval castles.
• Cooking.
• Programming.

http://www.science.uva.nl/amstel/SIM-PL/

Titles in the ILLC Dissertation Series:

ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili
Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke
Finitary coalgebraic logics

ILLC DS-2006-04: Robert Špalek
Quantum Algorithms, Lower Bounds, and Time-Space Tradeoffs

ILLC DS-2006-05: Aline Honingh
The Origin and Well-Formedness of Tonal Pitch Structures

ILLC DS-2006-06: Merlijn Sevenster
Branches of imperfect information: logic, games, and computation

ILLC DS-2006-07: Marie Nilsenova
Rises and Falls. Studies in the Semantics and Pragmatics of Intonation

ILLC DS-2006-08: Darko Sarenac
Products of Topological Modal Logics

ILLC DS-2007-01: Rudi Cilibrasi
Statistical Inference Through Data Compression

ILLC DS-2007-02: Neta Spiro
What contributes to the perception of musical phrases in western classical
music?

ILLC DS-2007-03: Darrin Hindsill
It’s a Process and an Event: Perspectives in Event Semantics

ILLC DS-2007-04: Katrin Schulz
Minimal Models in Semantics and Pragmatics: Free Choice, Exhaustivity,
and Conditionals

ILLC DS-2007-05: Yoav Seginer
Learning Syntactic Structure

ILLC DS-2008-01: Stephanie Wehner
Cryptography in a Quantum World

ILLC DS-2008-02: Fenrong Liu
Changing for the Better: Preference Dynamics and Agent Diversity

ILLC DS-2008-03: Olivier Roy
Thinking before Acting: Intentions, Logic, Rational Choice

ILLC DS-2008-04: Patrick Girard
Modal Logic for Belief and Preference Change

ILLC DS-2008-05: Erik Rietveld
Unreflective Action: A Philosophical Contribution to Integrative Neuro-
science

ILLC DS-2008-06: Falk Unger
Noise in Quantum and Classical Computation and Non-locality

ILLC DS-2008-07: Steven de Rooij
Minimum Description Length Model Selection: Problems and Extensions

ILLC DS-2008-08: Fabrice Nauze
Modality in Typological Perspective

ILLC DS-2008-09: Floris Roelofsen
Anaphora Resolved

ILLC DS-2008-10: Marian Counihan
Looking for logic in all the wrong places: an investigation of language,
literacy and logic in reasoning

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of General-
ized Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel
Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax
Subjectivity after Wittgenstein. Wittgenstein’s embodied and embedded
subject and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh
Theme with Variations. A Context-based Analysis of Focus

ILLC DS-2009-08: Tomohiro Hoshi
Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig
Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager
“Now that you mention it, I wonder. . . ”: Awareness, Attention, Assump-
tion

ILLC DS-2009-11: Michael Franke
Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman
More Than the Sum of Its Parts: Compact Preference Representation Over
Combinatorial Domains

ILLC DS-2009-13: Stefan Bold
Cardinals as Ultrapowers. A Canonical Measure Analysis under the Ax-
iom of Determinacy.

ILLC DS-2010-01: Reut Tsarfaty
Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper
Playing with Information

ILLC DS-2010-03: Cédric Dégremont
The Temporal Mind. Observations on the logic of belief change in interac-
tive systems

ILLC DS-2010-04: Daisuke Ikegami
Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen
Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang
Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher
Use theories of meaning between conventions and social norms

ILLC DS-2010-08: Amélie Gheerbrant
Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine
Modal Fixpoint Logic: Some Model Theoretic Questions

ILLC DS-2010-10: Jacob Vosmaer
Logic, Algebra and Topology. Investigations into canonical extensions,
duality theory and point-free topology.

ILLC DS-2010-11: Nina Gierasimczuk
Knowing One’s Limits. Logical Analysis of Inductive Inference

ILLC DS-2011-01: Wouter M. Koolen
Combining Strategies Efficiently: High-Quality Decisions from Conflict-
ing Advice

	Acknowledgments
	Prelude
	Introduction
	The Stage
	Recurring Decision Problems
	Experts
	Online Learning
	Fundamental Online Learning Problems
	Nomenclature and Taxonomy of Experts
	Summary
	Related Research
	Meta-Experts — This Dissertation
	Organisation of this Dissertation
	Conclusion

	Regret Games
	Introduction
	2 by 2 Strategic Games
	Predicting a Single Binary Outcome
	Repeated Games
	Predicting a Sequence of Binary Outcomes
	Variations on a Theme
	Good Best Expert
	Competing with a 1-Lipschitz Best Expert
	Switching
	Related Research
	Conclusion

	Expert Hidden Markov Models
	Introduction
	Expert Sequence Priors
	Expert Tracking using HMMs
	Regret Bounds
	Switching Strategies
	Extensions
	Conclusion

	Freezing & Sleeping
	Introduction
	Preliminaries
	Mixing Past Posteriors
	Structured Experts
	Freezing & Sleeping
	Other Loss Functions
	Discussion
	Conclusion
	Running Times
	Loss Bounds
	Invariance

	Switching Investments
	Introduction
	Setting
	Payoff Bound
	Implementation
	Conclusion

	Hedging Structured Concepts
	Introduction
	Component Hedge
	Applications
	Lower Bounds
	Comparison to Other Algorithms
	Conclusion
	Unit rule
	Dual Problems for Relative Entropy Projection

	Bibliography
	Index
	Samenvatting
	Abstract
	Curriculum Vitae

