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C 1
I

Look at the following situations of a relatively common day. You wake up in the
morning and observe that the day is slightly windy and cold. Being summer,
you assume that the weather will get better, and decide to go to work without a
jacket. But after five minutes biking, the sky gets filled with dark clouds; then
you change your mind and, expecting rain, go back to pick a raincoat.

Once you arrive at your workplace, you look at the notes on the blackboard
(whiteboard nowadays) to remember the activities that your team should finish.
From the five activities for the week, two have been completed and your
colleagues are working on two of the others; then you realize you should take
care of the remaining one, and start working on it.

At 17hrs you are about to go home, and you have planned to visit your
bank to make a payment. On your way out, a colleague tells you that it might
be possible to do a transfer via internet. Now that you consider this possibility,
you make a call to your bank and happily find out that indeed an internet
transfer is possible, taking care of it immediately.

When arriving at home, you see the bedroom window open. You assume
that you left it open in the morning, and then you realize that the bookshelf
below it should be wet after today’s rain. Later that night, after having dinner,
you remember to set up the alarm. Then you go to sleep, hoping to have
enough rest and be ready for the next day.

The previous example shows how every single day of our life is filled
with small actions that change our information. We observe new facts, draw
inferences from them, make assumptions, become aware of new possibilities,
acknowledge what we do and do not know, forget some things and remember
others. All these actions change our knowledge, beliefs, opinions, desires,
intentions and other attitudes in a small but decisive way, and they are precisely
the main interest of the present dissertation. Our main goal is to provide a
formal logical framework in which we can not only represent, but also reason
about small steps in dynamics of information.

1



2 Chapter 1. Introduction

In order to achieve this goal, we should start from the beginning. If we want
to represent and reason about small steps in dynamics of information, we need
a setting that allows us to represent and reason about dynamics of information.
And in order to represent and reason about dynamics of information, we should
first find an adequate framework in which we can represent information, and
reason about it.

One of the most well-known systems for this, Epistemic Logic (Hintikka 1962;
Fagin et al. 1995), provides us with a compact and powerful framework that al-
lows us to deal not only with an agent’s information about propositional facts,
but also with her information about her own (and eventually other agents’)
information. This system has a very simple language and its usual semantic
model, possible worlds, is very intuitive. On top of this, simple specific prop-
erties of the model allow us to deal with different attitudes, like knowledge,
safe, conditional and plain beliefs, and several others. For these and other
reasons, Epistemic Logic is widely used in many areas in which information
representation is needed, like Computer Science (security and distributed sys-
tems), Philosophy (Epistemology), Economics (Game Theory) and others. All
these reasons make it very appealing for our purposes.

Nevertheless, with possible worlds as semantic model, the system has an
important drawback. An agent represented in this framework is logically om-
niscient: her information is closed under logical consequence. This property,
useful in some areas, has been widely criticized in some others, and there is an
extensive literature discussing it (e.g., Sim (1997), Moreno (1998) and Halpern
and Pucella (2007)). Most people agree that omniscience is an excessive ideal-
ization for ‘human’ agents; after all, we have disciplines like Mathematics and
Computer Science whose purpose is to fill in the logical consequences of the
information we already have. But omniscience is also a strong assumption for
computational agents who may lack the required time and/or space (Ågotnes
and Alechina 2009). For our purposes of representing small steps in dynamics
of information, omniscience is also undesirable since it makes irrelevant some
of the actions we are interested in: for example, an act of truth-preserving in-
ference does not give new information to an omniscient agent since she already
has all logical consequences of her information.

If we want to use Epistemic Logic, we should take care of this omniscience
problem. Many approaches have been presented in order deal with it, and most
of them do it by weakening the properties of the agent’s information. Some of
them use syntactic representations of information; some use impossible worlds.
Some others use variants of neighbourhood models and even non-standard
logical approaches (see the mentioned surveys for summaries).

There is, nevertheless, an important observation to take into account when
discussing omniscience. As several authors have mentioned (Konolige (1984);
Levesque (1984); Lakemeyer (1986); Vardi (1986); Fagin and Halpern (1988);
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Barwise (1988); van Benthem (2006) among many others), Epistemic Logic
really describes the agent’s implicit semantic information, a notion that is defi-
nitely closed under logical consequence. But this closure does not need to hold
for weaker attitudes, like ‘actual’ or explicit information. And it is precisely for
these finer notions for which the finer actions that we want to represent are
actually meaningful.

What we need first is, then, to define a model in which we can represent finer
notions of information, and we will begin by reviewing the existing literature.

1.1 Structure of information

Information is a widely used term, and therefore there are several definitions
and theories about it in many different fields, ranging from natural to social sci-
ences and humanities. Even when restricting ourselves to logical frameworks,
we can find several accounts of this notion (van Benthem and Martı́nez 2008).
Fortunately, we can divide them in two main groups, according to the way
information is understood and, therefore, represented.

1.1.1 Semantic representations

Semantic approaches associate an agent’s information with the collection of
situations she considers possible. In other words, semantic approaches en-
code information by means of a range possibilities: the different ways the real
situation might be from the agent’s point of view.

In fact, semantic approaches do not focus on the agent’s information, but
on her uncertainty. Instead of representing directly the information the agent
has, these approaches encode it by representing the situations the agent cannot
rule out. A great range indicates a big uncertainty, and therefore less informa-
tion about the real situation. On the other hand, a small range indicates less
uncertainty, that is, more information. For example, an agent is informed that
a given p is the case when her range contains only possibilities where p holds,
and she is not informed about whether a given q is the case when she considers
as possible at least one situation where q fails (so she cannot affirm that q is
true) and another in which q holds (so she cannot affirm that q is false).

Semantical approaches provide us with a very compact representation of
information. An agent that considers only two possibilities, one in which p and
q hold, and another in which p holds but q does not, is indeed informed about
p. At this point the range (two possibilities) may seem larger than just writing
down p, but it encodes much more. An agent with such range is also informed
about “p and p”, “q or not q”, “p or q”, “q or p”, “p or not q” and many more simply
because her range does not contain possibilities in which these statements fail.
All this is encoded in a two-possibilities range; instead of listing exhaustively
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all the agent knows about the real situation, we just need to list the situations
she considers possible, given the information she currently has .

There are several approaches for representing information as a collection
of possible situations. Among them, the best-known is the already mentioned
Epistemic Logic with possible worlds as semantic model. Since this framework
will play a prominent role in the rest of our work, we will devote some time
here to present it properly.

Epistemic Logic

Epistemic Logic (EL) was first introduced in Hintikka (1962), and it has been
further developed by many authors from different disciplines. Its most com-
mon semantic model, the possible worlds model, is formally defined as follows.

Definition 1.1 (Possible worlds model) Let P be a set of atomic propositions.
A possible worlds model is a tuple M = 〈W,R,V〉where

• W is a non-empty set whose elements are called possible worlds (situations,
states, possibilities, points);

• V : W → ℘(P) is an atomic valuation function, indicating the atomic propo-
sitions in P that are true at each possible world;

• R ⊆ (W×W) is an accessibility relation, indicating which worlds the agent
considers possible from each one of them.

Among the possible worlds, we usually distinguish one called the evaluation
point. The pair (M,w), consisting of a possible worlds model M and this distin-
guished world w, is called a pointed possible worlds model. J

A possible worlds model M = 〈W,R,V〉 is a collection of situations (W),
each one of them associated to an atomic valuation that indicates which atomic
propositions are true in it (V). The model represents an agent’s information
by indicating which situations the agent considers possible from each world
(R). More precisely, from each w ∈ W, the agent considers as possible all
the situations u that she can R-access from w, that is, she considers possible
those situations in R[w] := {u ∈W | Rwu}. Note how the information range of
the agent is not defined globally but rather locally, since the worlds the agent
considers possible may vary from world to world.

Epistemic Logic is more than just a semantic model for representing infor-
mation. It has an associated language that allows us to talk about the real
situation and the information an agent has about it, therefore allowing us to
reason about the agent’s information. This language extends the propositional
one with a modal operator �. With it we can build formulas of the form �ϕ,
read as “the agent is informed about ϕ”. The formal definition is the following.
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Definition 1.2 (Epistemic Logic language) Let P be a set of atomic proposi-
tions. The language of Epistemic Logic contains exactly those formulas built
according to the following rules.

1. An atomic proposition p ∈ P is a formula in the language.

2. If ϕ and ψ are formulas in the language, so are ¬ϕ, ϕ ∨ ψ and �ϕ.

3. Nothing else is a formula in the language.

The definition can be abbreviated with the following statement. Formulas ϕ,ψ
of the EL language are built according to the following rule, where p is in P:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | �ϕ

Other connectives, like conjunction (∧), implication (→) and biconditional
(↔), can be defined from negation (¬) and disjunction (∨) in the standard way:

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), ϕ→ ψ := ¬ϕ ∨ ψ, ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ→ ϕ).

Similarly, the constants> and⊥ can be defined as p∨¬p and p∧¬p, respectively.
The ‘diamond’ modal operator ^ is defined as the dual of �:

^ϕ := ¬�¬ϕ

We can get the reading of ‘diamond’ formulas by unfolding its definition: ^ϕ
corresponds to ¬�¬ϕ, that is, “it is not the case that the agent is informed about
¬ϕ” or, in other words, “the agent considers ϕ possible”. J

As we mentioned before, the range of an agent is defined locally, and
therefore formulas of the EL language are evaluated in pointed possible worlds
models. The formal definition of this ‘truth’ relation between pointed models
and formulas is as follows.

Definition 1.3 (Semantic interpretation) Let the pair (M,w) be a pointed pos-
sible worlds model, with M = 〈W,R,V〉. Then,

(M,w) 
 p iff p ∈ V(w)
(M,w) 
 ¬ϕ iff it is not the case that (M,w) 
 ϕ
(M,w) 
 ϕ ∨ ψ iff (M,w) 
 ϕ or (M,w) 
 ψ
(M,w) 
 �ϕ iff for all u ∈W, Rwu implies (M,u) 
 ϕ

When (M,w) 
 ϕ, we say that ϕ is true (holds) at w in M. J

The semantic interpretation of atomic propositions is given directly by the
atomic valuation, and that of negation and disjunction is the classical one. The
interesting one here is the semantic interpretation of �ϕ: the agent is informed
about ϕ at w in M, (M,w) 
 �ϕ, if and only if ϕ is true in all the worlds that are
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R-reachable from w. In other words, the agent is informed about ϕ if and only
if ϕ is true in all the worlds she considers possible.

We can use the semantic interpretation of our primitive connectives and
modalities ¬, ∨ and � in order to get that of the defined ones∧,→,↔ and^. In
particular, � works as a universal quantifier restricted to the worlds the agent
considers possible from the evaluation point, so the semantic interpretation of
^ corresponds to a restricted existential quantifier:

(M,w) 
 ^ϕ iff there is a u ∈W such that Rwu and (M,u) 
 ϕ

The following example shows how a small possible worlds model allows
us to represent a huge amount of information.
Example 1.1 Consider the following possible worlds model M. It has two
possible worlds, w1 and w2, with their respective valuation indicated: both p
and q are true at w1, p is true and q is false at w2. When considering w1 as the
evaluation (double circled) point, the model describes a situation in which w1

is the real world, but the agent considers possible both w1 and w2. Then, (1) the
agent is informed about p, but (2) she is informed about neither q nor ¬q.

p, q p
w1 w2

(1) (M,w1) 
 � p

(2) (M,w1) 
 ¬� q ∧ ¬�¬q

But the model represents much more than just the agent’s information
about p and lack of information about whether q. It also indicates that the
agent is informed about p ∨ q (� (p ∨ q) is true at w1), q → p (� (q→ p) is true
w1) and many other propositional formulas. More importantly, the model
also represents high-order information, that is, information the agent has about
her own information. For example, while the agent is informed that she is
informed about p (�� p) and she is informed about her lack of information
about q (�¬� q), she is not informed that she is informed about q (¬�� q). J

Identifying a piece of information with the situations in which it is true
allows us to encode a huge amount of information within a small model. But
there is a price to pay.

Consequences of semantic representations

Semantic approaches identify a piece of information with the situations in
which it holds. Then, the agent cannot make a difference between formulas
that are true exactly in the same situations: she is informed about one of them
if and only if she is informed about the other. In the pointed model (M,w1)
of Example 1.1, the agent is informed about p ∨ q, but also about the logically
equivalent ¬(¬p ∧ ¬q), ¬p→ q, ¬q→ p and so on.
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In particular, associating formulas with the situations in which they are true
implies that all tautologies are informationally equivalent simply because all of
them are true in every possible situation. This implies that ‘obvious’ tautologies
like p → p are, from the agent’s perspective, identical to more ‘illuminating’
ones like (p ∧ (p→ q))→ q.

This informational equivalence of logically equivalent formulas is inherent
to any semantic approach. But the combination of the EL language and possible
worlds models has a stronger effect: the described omniscience property that
makes the agent’s information closed under logical consequence. The key
reason for this property is that each possible world encodes an infinite set of
EL-formulas: exactly the ones that are true at it. This fact becomes evident
when we look at the general Henkin model (Henkin 1950) of this case: the
canonical possible worlds model.

The canonical possible worlds model has as domain the collection of all
maximal consistent sets of EL-formulas, that is, each possible world is defined
as a set of EL-formulas with two properties: consistency (the contradiction ⊥
cannot be finitely derived) and maximality (no further formula can be added
without making the set inconsistent). The model is called canonical because it
is a ‘universal’ model: any satisfiable set of EL-formulas can be satisfied in it.

The important observation for us is what is called the Truth Lemma: the
EL-formulas that are true at each world of this canonical model (i.e., the EL-
formulas that are true at each maximal consistent set) are exactly those that
belong to it. In other words, for the EL language, the canonical possible worlds
model is a syntactic construction that puts explicitly in each possible world
exactly all the EL-information the world itself provides. But this information
turns out to be a maximal consistent (and therefore infinite) set of EL-formulas!

Now it is easier to see where the omniscience property comes from. Recall
that an agent is informed about ϕ at w if and only if ϕ is true in all the worlds
she considers possible. As the canonical possible worlds model shows, each
possible world stands for a maximal consistent set of EL-formulas, and maximal
consistent sets are closed under logical consequence: if ϕ→ ψ and ϕ are in the
set, then consistency gives us the right to add ψ and maximality actually puts
it in. But then the information each possible world provides is closed under
logical consequence, and hence so is the agent’s information: if the agent is
informed about both ϕ → ψ and ϕ at w (if � (ϕ→ ψ) and �ϕ are true at w),
then both ϕ → ψ and ϕ are true in all worlds R-reachable from w. But then ψ
also holds in each one of such worlds, and therefore the agent is also informed
about ψ at w (�ψ is true at w).

How omniscience affects inference As mentioned before, the omniscience
property has a consequence that is important for us: truth-preserving inference,
which guarantees the truth of the conclusion from the truth of the premises,
becomes irrelevant. It does not provide any new information, since anything
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that follows logically from the agent’s information is already part of it. In other
words, the possible worlds approach does not account for the informative na-
ture of truth-preserving inference. Information is represented as the agent’s
range of possibilities, but there is the tacit assumption that the agent has avail-
able every single piece of information each one of these possibilities encode.
Therefore truth-preserving inference, which extends the agent’s information
about each possibility, does not provide anything new.

This is a serious drawback because, for human beings, truth-preserving
inference is clearly informative in many cases. It may not create new information
in the sense that what we infer was already present in some implicit form, but
it definitely gives us new information that we did not have before the inference.
A simple and clear example is the proof of a theorem. When we state the
assumptions (“Let x be y and suppose z holds”), we are merely reducing the
possible situations that should be considered. Then, after that, there is the
proof of the theorem, which is nothing but a sequence of truth-preserving
reasoning steps showing that the conclusion indeed holds. We need the proof
because, even after discarding the irrelevant possibilities, we may not have the
needed information about the remaining ones to see the truth of the conclusion;
we need these steps to bring the conclusion into the light.

So pure semantic approaches are not suitable for our purposes. Which other
alternatives do we have for representing information?

1.1.2 Syntactic representations
On the other extreme of the coarse semantic representation, we have syntactic
approaches. They follow the most natural way of representing information:
by means of symbols of a given formal language, encoding information in
formulas at some abstract level. After all, human information is most obvi-
ously expressed in written or spoken language, and the use of a formal one
has the advantage of avoiding most ambiguities and other obscurities. These
approaches have the advantages of clarity (the encoding is merely a translation
from a natural to a formal language) and being fine-grained enough to allow
us to even represent possible differences in idiosyncracies and formulation. In
this view, syntactic approaches can be seen as “. . . little more than a streamlined
and regimented version of an ordinary language” (Hintikka and Sandu 2007).

The simplest variant of this approach is the one in which information is
represented by a plain set of formulas of a given formal language, an idea
originated when looking for representations of knowledge and beliefs that are
adequate for more ‘real’ beings like humans (Eberle 1974) or computers (Moore
and Hendrix 1979). For example, if some agent is informed that some fact p is
the case, then we simply add p to her correspond set of formulas. If, on the other
hand, she does not have information about whether p is the case or not, we do
not add anything to her set. The idea is to represent an agent’s information
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simply by an explicit, plain and exhaustive listing of what the agent knows
about the real situation. The more the information, the bigger the set.

Other variants assume a set of formulas with certain properties. One of the
most representative examples are the belief sets of classical Belief Revision (see,
e.g., Gärdenfors (1992); Williams and Rott (2001)): consistent sets of formulas
closed under logical consequence. Note how such assumptions produce omni-
scient agents, and it is generally accepted that these properties are not realistic
for describing the actual beliefs of individuals.

Some other syntactic approaches consider sets of formulas without par-
ticular properties, but with further internal structure. Ryan (1992) considers
ordered theory representations: multi-sets of formulas with a partial order among
them. Then we have the labelled deductive systems of Gabbay (1996) that enrich
formulas with labels (terms of an algebra, formulas of another logic, resources
or databases) providing further information. Again in Belief Revision, there
is also the distinction between belief sets, the mentioned consistent set of for-
mulas closed under logical consequence, and the belief base, a simple set of
formulas which serves as a basis for generating the belief set (Makinson 1985).

In a syntactic representation, the meaning of each piece of information is
completely determined by the formula representing it. Then, two pieces of
information have the same meaning if and only if they are represented by
the same sequence of symbols. This could be excessive in some cases: for
example, though the linguistic conjunction ‘and’ is usually understood as the
affirmation of both conjuncts, the formulas p ∧ q and q ∧ p are syntactically
different and therefore express different information. One could argue that in
some situations the order of the conjuncts does make a difference (think about
the different emphasis in the phrases “she is smart and beautiful” and “she is
beautiful and smart”), but there are more extreme cases. It is difficult to find a
situation in which p and p∧p have different meaning and yet the two formulas,
being syntactically different, are understood as different pieces of information.
Syntactic approaches have been criticized as being too fine-grained, making
differences in meaning where there seems to be none.

Another criticism to syntactic approaches is that the typically used formal
languages can express the information the agent can get but not what informa-
tion the agent has. To indicate that the agent is informed about p we add the
formula to the corresponding set, but usually there is no formula that expresses
the fact that the agent is informed about p. In such cases, the reasoning about
the properties of the agent’s information should take place in a metalanguage,
usually a non-logical one. This also prevents the agent from having high-order
information, that is, information about her own information.1

1Note that we do not mean that high-order information cannot be represented syntactically
(the EL language shows it can be done), but rather that few purely syntactic approaches have
used this possibility.
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1.1.3 Intermediate points

The problem of choosing an adequate representation of information is that our
intuition pulls in opposite directions. Paraphrasing a sentence of Moore (1989),
it seems that in order to be the object of attitudes like knowledge, beliefs and
so on, information should be individuated almost as narrowing as sentences of
natural language, and yet, it seems that it should not be represented specifically
with linguistic entities, but rather ‘semantic’ objects of some special kind.

Several authors have looked for intermediate representations. In fact, “much
of the discussion of ‘propositions’ and ‘meanings’ in the philosophical literature [. . . ]
might be seen as the search for a level of information in between mere sets of models
and every last detail of syntax” (van Benthem and Martı́nez 2008).

Carnap already worked with syntactic descriptions of possible situations
in his inductive logic (Carnap 1952). His state descriptions are conjunctions
describing the atomic valuation of the situation, that is, conjunctions containing,
for each atomic proposition, either the atom itself or else its negation.

Lewis (1970) also looked for a balance when defining meaning. He argued
that the intension, a function that returns the truth-value of a sentence based on
a series of arguments like a possible world, time, place, speaker, audience and
others, does not provide the sentence’s meaning. The reason is that sentences
with the same intension may have different meanings: for example, “it would
be absurd to say that all tautologies have the same meaning, but they have the same
intension; the constant function having [for every argument] the value [true]” (Lewis
1970). He proposes that, for atomic sentences, we can identify meaning with
intension, but the meaning of composed sentences should be given by the
intensions of the constituents. With this idea, the tautology “Snow is white or
it is not” differs in meaning from the similarly structured “Grass is green or
it is not” because their respective components, “Snow is white” and “Grass is
green”, have different intentions.

More recently, Moore (1989) suggested that the simplest approach with
some hope of success is the ‘Russellian’ view. Different from the ‘Fregean’
perspective that claims that a proposition consists of a relation and the concepts
of the related objects, Russell (1903) defines a proposition as a relation and the
related objects themselves. Moore argues that, since they are structured objects,
Russellian propositions can mirror syntax in order to distinguish propositions
that are true in the same situations. Nevertheless, they are no linguistic entities
since they are defined by means of objects and relations.

The mentioned approaches, based on philosophical discussions about what
a proposition means and what kind of information it conveys, attack the prob-
lem at the very foundations of the theory of meaning. There are also approaches
that aim at intermediate points by looking at existing proposals and then ab-
stracting existing differences (if the original proposal is syntactic) or imposing



1.1. Structure of information 11

further ones (if the original proposal is semantic). Among the latter we find
neighbourhood models, generalizations of possible worlds models developed in-
dependently in Scott (1970) and Montague (1970). Similar to syntactic ap-
proaches, a neighbourhood model represents an agent’s information by listing
all the formulas the agent is informed about; similar to semantic approaches,
each one of these formulas is not presented as a string of symbols, but as the
set of situations in which it is true.

More precisely, in a neighbourhood model M = 〈W,N,V〉, the accessibility
relation is replaced by a neighbourhood function N : W → ℘(℘(W)) that assigns,
to each possible world, a set of sets of worlds. Then it is said that the agent is
informed about some formula ϕ at a world w if and only if the set of worlds in
which ϕ is true in M (denoted by ~ϕ�M) is in N(w).2 This allows us to represent
agents whose information is not closed under logical consequence, since N(w)
does not need to have any particular closure property, and therefore having
~ϕ�M and ~ϕ → ψ�M does not imply to have ~ψ�M. The textbook Chellas
(1980) and the lecture notes Pacuit (2007) provide extensive information and
important results about neighbourhood models.

As appealing as it may be, a neighbourhood model is still not fine enough
to provide important differences in meaning. It still associates pieces of infor-
mation with the set of situations in which they are true, and therefore the agent
cannot make a difference between formulas that are true in exactly the same
situations, that is, she cannot make a difference between logically equivalent
formulas. This has again the unpleasant consequence of making the tautologies
p→ p and (p ∧ (p→ q))→ q the same in the eyes of the agent.

Despite all the efforts, there is no clear consensus about a proper intermedi-
ate representation. Lewis himself mentions that, though some approaches can
be found, he “doubt[s] that there is any unique natural way to do so” (Lewis 1970).

1.1.4 Combining the two extremes

There is, however, an important observation about the way semantic and syn-
tactic approaches understand information; an observation that is useful for
deciding where to look for an appropriate information representation.

Semantic approaches are based on a universal quantification: the agent has
a piece of information if and only if this information is true in all the situations
she considers possible. Syntactic approaches, on the other hand, are based
on existential quantification: the agent has a piece of information if and only
if in her information set there is a formula standing for it. These two views
are not opposite; for example, completeness results establish correspondence

2There is also an alternative approach in which the neighbourhood of w should contain not
the set of worlds in whichϕ is true, but simply a subset of it. The two approaches are compared
in Areces and Figueira (2009).
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between semantic validity as truth in every model and syntactic validity as the
existence of a derivation/proof. As mentioned in van Benthem and Martı́nez
(2008), semantic and syntactic approaches can be seen as the dual or the comple-
ment of each other, and therefore they can be put together, just like the use of
complementary colors is an important aspect in art and graphic design or like
sound and silence complement each other in musical pieces. Looking for an
approach standing in between semantics and syntax is not the only possibility;
from the perspective of this alternative methodology, we can also look at the
different ways these two extremes can ‘complete the circle’ and work together.

Some authors have looked at this duality. van Benthem (1993) suggested a
merging between notions of information as range with some sort of ‘calculus’
of justifications, and in the literature there are already several proposals for this,
like combinations of Epistemic Logic with Logics of Proofs (Artemov and Nogina
2005) and with modal representations of inference (van Benthem 2008d).

1.2 Dynamics

When discussing what information is and how it should be represented, there
is an important fact to keep in mind: information is not static. Our knowledge,
beliefs, opinions, desires, intentions and other attitudes change as the result of
many different informational activities, including not only those given by the
interaction with our environment (reading newspapers, conversations, asking
questions) but also those that stand for our own internal reasoning (inferences,
changes in awareness, acts of introspection, remembering and forgetting). In-
formation states are just stages in a dynamic process, and the actions that
produce the changes should be taken into account when looking for a proper
representation of an agent’s information.

The importance of studying structures together with the actions that trans-
form them has been recognized in many fields. Actions, in fact, play the key
role in Computer Science, a field frequently described as the systematic study of
algorithmic processes that create, describe, and transform information. Many
logicians and philosophers have also given a first-class status to the acts that
transform information. Lewis (1970) mentions that “in order to say what a mean-
ing is, we may first ask what a meaning does”; Gärdenfors (1988) emphasizes that
“the problem of finding an appropriate knowledge representation is a key problem for
artificial intelligence. But a solution to this problem is of little help unless one also
understands how to update the epistemic states in the light of new information”; van
Benthem and Martı́nez (2008) also agrees in that “[t]here are structures repre-
senting the information, but these only make sense as vehicles for various processes
of information flow”. Emphasizing actions is the main idea behind the dynamic
turn in Epistemic Logic: notions of information should be studied together
with the informational actions that modify them.
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When looking for a adequate representation of information, we should also
take into account which are the actions we are interested in. Let us review what
semantics and syntax offer us.

1.2.1 Semantic dynamics

With semantic approaches that represent information as a range of possibilities,
the relevant informational actions are those that modify this range. The most
natural of such operations is the one that reduces the range, standing for an
action of observation, but there are many other options, like introducing new
possibilities, or modifying the further internal structure the range may have.

All in all, ranges of information change as the agent makes observations or
engages in communication. And it is not strange that the actions that make
sense for semantic representations have this ‘external-interaction’ flavor. After
all, since the agent’s semantic information has strong closure properties, she
usually has already all the information she can extract from each one of the
possibilities she considers. No further ‘internal’ reflexive act will lead to new
information, so the only way she can get to know more about the real situation
is by means of interaction, either with her environment (acts of observation) or
with other agents (acts of communication).

Just like Epistemic Logic is the best-known paradigm based on a seman-
tic representation of information, its dynamic counterpart, Dynamic Epistemic
Logic (DEL; van Ditmarsch et al. (2007)), has become an important paradigm
for representing changes in an agent’s range. Some of the most interesting
DEL-incarnations, like action models for representing uncertainty about the ob-
servation (Baltag et al. 1999), or order-changing operations for representing
changes in preference and/or beliefs (van Benthem 2007; van Benthem and Liu
2007; Baltag and Smets 2008) will be discussed in different chapters of this dis-
sertation. Here we will present the proper definitions of the simplest of them:
Public Announcement Logic (PAL; Plaza (1989); Gerbrandy (1999)), which allows
us to represent public announcements and the effect they have in the agent’s
information. Since PAL announcements are not associated to any announcer,
we will refer to them with another name: we will call them acts of observation.

Observation Logic

The act of observation is the simplest one of the ‘external’ actions an agent
can perform. In order to express the effects of such an act, the EL language is
extended with an existential modality 〈χ!〉 , the observation modality, where χ is
a formula of the language. More precisely,
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Definition 1.4 (Observation Logic language) Let P be a set of atomic proposi-
tions. Formulas ϕ,ψ, χ of the language of Observation Logic are given by:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | �ϕ | 〈χ!〉ϕ

with p an atomic proposition in P. Formulas of the form 〈χ!〉ϕ are read as “χ
can be observed and after that ϕ will be the case”. The universal counterpart of the
〈χ!〉 modality is defined as its dual, as usual:

[χ!]ϕ := ¬〈χ!〉 ¬ϕ

This formula is read as “after any observation of χ, ϕ will be the case”. J

Besides being the simplest ‘external’ action an agent can perform, the act of
observation also has a very natural interpretation as an operation that reduces
the agent’s range of possibilities. By observing certain χ, the agent realizes that
χ is true, and therefore she can discard those possibilities in which χ does not
hold, hence keeping just those in which χ is the case. The formal definition of
this operation over a possible worlds model is as follow.

Definition 1.5 (Observation operation) Let M = 〈W,R,V〉be a possible worlds
model, and let χ be a formula in the Observation Logic language. The possible
worlds model Mχ! = 〈W′,R′,V′〉 is given by

• W′ :=
{
w ∈W | (M,w) 
 χ

}
;

• R′ := R ∩ (W′
×W′);

• for every w ∈W′, V′(w) := V(w).

In words, the observation operation restricts the model by keeping only the
possible worlds where the observedχholds, restricting the accessibility relation
to the new domain and retaining the atomic valuation of the preserved worlds.J

The observation formula is related to the observation operation by means
of its semantic interpretation.

Definition 1.6 (Semantic interpretation) Let the pair (M,w) be a pointed pos-
sible worlds model and χ a formula of the observation language.

(M,w) 
 〈χ!〉ϕ iff (M,w) 
 χ and (Mχ!,w) 
 ϕ

By unfolding its definition, the semantic interpretation of the universal obser-
vation modality becomes

(M,w) 
 [χ!]ϕ iff (M,w) 
 χ implies (Mχ!,w) 
 ϕ J
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Note how the observation modality comes with a precondition. Indeed,
χ can be observed and after doing it ϕ will be the case, (M,w) 
 〈χ!〉ϕ, if
and only if χ can be observed, (M,w) 
 χ, and after observing it, ϕ is the
case, (Mχ!,w) 
 ϕ. This precondition has a technical reason. We need for the
evaluation point to satisfy χ; otherwise, it will not survive the observation
operation. But there is also an intuitive and very natural reason: in order for χ
to be observed, χ has to be true.

Example 1.2 Recall the possible worlds model M of Example 1.1, representing a
situation where the agent is informed about p, but not informed about whether
q. Suppose that she observes that indeed q is the case. The resulting model Mq!

and formulas indicating the observation’s effect appear below (note that the
formulas are still evaluated in the original pointed model (M,w1)).

p, q p
w1 w2

M

p, q
w1

Mq!

(M,w1) 
 ¬� q ∧ 〈q!〉� q

(M,w1) 
 � p ∧ 〈q!〉� p

(M,w1) 
 �¬� q ∧ 〈q!〉 (¬�¬� q ∧ �� q)

The observation changes the agent’s information by adding q to it, as the first
formula expresses, preserving the agent’s information about p, as the second
formula indicates. But not all the agent’s previous information is preserved.
This may look counterintuitive at first sight, but this is because we usually
consider information about plain propositional facts (which is not affected by an
observation, since the atomic valuation in the surviving worlds is not modified),
but not information about information. Before the observation, the agent was
informed about her lack of knowledge about q, as we indicated before. But after
the observation this information has gone! Even more: now she is informed
about her being informed about q, as the third formula expresses. J

Note two important facts about the observation operation. First, the new in-
coming information reduces the possibilities the agent considers; as mentioned
before, more information leads to a smaller range. Second, by observing q, the
agent gets much more than just q. For example, after the observation, she is also
informed about p∧q and � q; the first one is reasonable since she already had p,
and the second one is also reasonable from a conscious observation. But there is
more. After the observation the agent is also informed about any propositional
logical consequence of p and q together and, moreover, every epistemic logical
consequence of being informed about p and being informed about q. This is
a consequence of the information’s closure under logical consequence in pos-
sible worlds models. Observing q discards the possibilities where q does not
hold, but then the agent’s information is ‘recomputed’, producing not only q
but also all logical consequences of q and the closed-under-logical-consequence
information the agent already had before.
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1.2.2 Syntactic dynamics

Syntactic approaches represent information as a set of formulas, so syntactic
dynamics of information are nothing but operations that modify such sets.
More precisely, since syntactic approaches represent information with symbols,
dynamics in these approaches can be seen as operations that manipulate an
existing collection of such symbols in order to produce a new collection.

The major syntactic dynamic paradigm is inference, the process of drawing a
conclusion from some given assumptions (premises) in a general sense. Logic
itself has been traditionally identified with the study of inferences and inferen-
tial relations, with Proof Theory (Troelstra and Schwichtenberg 2000) and Theory
of Computation (including lambda calculus, recursive functions and Turing ma-
chines) as the relevant sub-disciplines. Also traditionally, Logic has focused on
the development of mechanisms for truth-preserving inference (also called de-
duction): inference in which the truth of the premises guarantees the truth of the
conclusion. Being closely tied to details of syntactic representation, there is a
great variety of logical systems for truth-preserving inference, with very differ-
ent formats. While Proof Theory itself is based on Hilbert-style proof systems
and natural deduction, there are other well-established approaches like Logic
Programming (Kowalski 1979), Resolution Theorem Proving and Unification-based
mechanisms (Doets 1994).

Truth-preserving inference is essentially cumulative or, to use a more com-
mon term, monotonic. This means that truth-preserving inference with true
premises, besides allowing us to add the derived conclusion to the collection of
things we know are true, it also assures us that this collection of true facts will
never need to be revised, since no further information can affect their status of
‘true’. This focus on monotonic inference has slowly changed, and the 1980s
witnessed the development of many proposals for non-monotonic (i.e., non-
truth-preserving) inferences: those in which what we have accepted as true
may become false in the light of further information or, in other words, those in
which the conclusion can be false even if the premises are true. These proposals
emerged with the aim to formalize the more ‘human’ reasoning processes that
we use in our every-day life. Indeed, non-monotonic inferences seem close
to our common reasoning, and the classical examples are typical situations in
which we ‘adventurously’ make extra assumptions, given our lack of complete
information about the real world. If someone tells us that Chilly Willy is a
bird, we will probably think it can fly. Nevertheless, further information about
Chilly Willy (being hurt, being a penguin, etc.) could make us reconsider its
flying abilities. Among the most important works on non-monotonic inference,
we can mention Default Logic (Reiter 1980), Circumscription (McCarthy 1980),
Auto-epistemic Logic (Moore 1985) and the extensively studied Belief Revision
(Alchourrón et al. 1985; Gärdenfors 1992; Gärdenfors and Rott 1995; Rott 2001;
Williams and Rott 2001).
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Inference can be seen as an operation over a set of formulas, but it can also
be seen as a transition between information states. Recent works (Duc (1995);
Ågotnes (2004); Jago (2006a) among others) have represented inference in a
modal style, with states standing for sets of formulas and transitions between
them standing for (rule-based) inference steps. Then modal languages can
be used to describe such structures; this has the advantage of allowing us to
express the information the agent has at the current state and, moreover, how
it will change after a given sequence of reasoning acts.

But inference is not the only dynamic paradigm of syntactic approaches.
Inference indeed corresponds to operations that add formulas with certain
degree of truth: certainly true in truth-preserving inferences, probably but
no definitely true in the case of non-monotonic ones. But we can also look at
operations that remove formulas from the agent’s information set, representing
in this way actions of forgetting or rejecting certain information.

Syntactic approaches are also fine enough to represent changes in awareness,
that is, changes in the possibilities an agent considers. For example, consider an
agent whose information set contains only formulas built from the atoms p and
q. The action of introducing the formula r∨¬r does not give the agent any real
information, but it can be seen as introducing the topic r to the conversation,
therefore making the agent aware of that possibility.

Even more. If the language from which formulas are built allows us to
express whether the agent has some given piece of information or not, then
syntactic dynamics can also represent acts of introspection: the action through
which an agent realizes that she has or does not have some piece of information.
If the formula A p is read as “the agent is informed about p”, then an operation that
puts such formula in the information set represents an action through which
the agent becomes informed of being informed about p.

Though the actions of change in awareness and introspection are conceptu-
ally different from the act of inference, in syntactic representations the formers
could be seen as a particular case of the latter. After all, all of them can be rep-
resented by operations that add formulas/remove formulas to/from the agent’s
information set. In other words, in syntactic representations, a general notion
of inference can be seen as the ‘normal form’ for the mentioned actions.

1.3 A summary and a choice

We have recalled several approaches for representing information from both
semantic and syntactic perspectives. Semantic approaches, representing in-
formation as a range of possible situations, have the advantage of a clear and
compact representation of factual and often high-order information, but are
too coarse in the sense that they cannot make fine distinctions on pieces of
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information. Syntactic approaches, representing information by an exhaustive
listing of formulas of a formal language encoding information at some abstract
level, have the advantage of being fine-grained enough to allow us to represent
possible differences in idiosyncracies and formulation, but frequently do not
provide further structure to this information and often suffer from a language
that lacks enough expressivity to reason about the information the agent has.
Though there are several proposals that look for intermediate points with a
proper granularity, there is no clear consensus about an ideal representation.

Nevertheless, semantic and syntactic approaches are not opposite. They
simply look at the notion of information from different, but nevertheless com-
plementary perspectives: information as what is true in all possible situations
in the semantic case, and information as the existence of a string of symbols
representing it in the syntactic one. This observation shows that there is an al-
ternative methodology: we can take these two extreme approaches and ‘close
the circle’, that is, we can put them together.

Now recall our main goal: we are interested in representing and reasoning
about small steps in dynamics of information. What is important for us are the
informational actions that can be defined and studied in a given representa-
tion of information. As we have seen, while semantic approaches are natural
frameworks for representing actions that correspond to the agent’s external in-
teraction, syntactic approaches are natural frameworks for representing actions
that correspond to the agent’s internal and introspective reasoning. And while
our focus is mainly the internal actions, it is the combination of all of them
what matters. Our opening example shows how our every-day life is full of
informational activities that work together with each other, transforming our
information in small but decisive ways.

Given our interest in dynamics of information, we will follow the idea of
combining the two extremes. This will allow us to represent ‘internal’ and
‘external’ informational actions together, therefore giving us the possibility to
express not only the isolated effect of each one of them, but also the way they
intertwine with each other in real-life scenarios. Through this dissertation, we
will work with possible worlds models extended with functions that indicates
explicitly the information the agent has at each possible world. One natural
way of understanding this combination is the following.

While semantic approaches represent the agent’s information about the
real situation by encoding it in terms of all the situations the agent considers
possible, syntactic approaches represent the agent’s information about the real
situation by an explicit enumeration of formulas encoding it. Then, by putting
the two approaches together, what we get is a model in which we can represent
the information an agent has about the real situation by explicitly listing the
information the agent has about each one of the situations she considers possible.
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1.4 Outline of the dissertation

This dissertation is organized as follows.

We start in Chapter 2 from the already mentioned observation: the � opera-
tor should not be understood as ‘full-blooded information’, representing what
the agent actually has, but as a notion of implicit information, representing
what she can eventually get. In order to define the agent’s explicit information,
we follow two systems in the Dynamic Syntactic Epistemic Logic style, and we
associate to each possible world a set of formulas and a set of rules. While
the first is interpreted as the formulas the agent has acknowledged as true in
each possible world, the second is interpreted as the rules the agent can apply
in each one of them. Then, by asking for extra model properties, we focus on
notions of true information, that is, implicit and explicit knowledge. This setting
already allows us to represent non-omniscient agents.

But our point is not only to represent agents that are not ideal, but also to rep-
resent the actions that lead such agents to change (and possibly improve) their
information. Following this idea, we define model operations that represent
two of the most important informational actions: (rule-based) truth-preserving
inference and explicit observations. Moreover, we also provide model opera-
tions that mimic the application of structural rules, allowing the agent to extend
the inference rules she can apply. All these operations are introduced seman-
tically and syntactically, and in the three cases a complete axiomatization is
provided following the reduction axioms technique. Once the framework has
been defined and some of its properties discussed, we show how it allows us
to describe real-life situations.

In Chapter 3 we explore another reason for which an agent may not be
explicitly informed about her implicit information: lack of awareness. We recall
the existing awareness logic: a setting that extends a possible worlds model by
associating a set of formulas to each possible world. Different from the previous
chapter, these sets do not indicate what the agent has acknowledged as true,
but only the formulas she is aware of (what she entertains), without specifying
any attitude pro or con. The framework gives us several options for defining
explicit information, and we discuss some of them.

Then we explore the dynamics of the introduced notions. We present actions
that produce changes in awareness and in implicit information, therefore pro-
ducing changes in explicit information too. In all cases, we provide semantic
and syntactic definitions as well as complete axiomatizations.

Though the actions that change awareness have an ‘internal’ feeling, they
become public when we move to a multi-agent environment. Then we take the
action models idea and extend it in order to deal with the syntactic component
of our models; this allows us to provide private and even unconscious versions
of the awareness-changing actions.
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In Chapter 4 we combine the two different ingredients that in the previous
chapters made explicit the agent’s implicit information: awareness of the for-
mula and acknowledgement of it as true. In particular, the notion of awareness
we work with is not given by an arbitrary set of formulas anymore: it is now
given by the formulas generated from the atoms the agent can use in all the
worlds she considers possible. Asking for equivalence indistinguishability re-
lations allows us to turn the notions of implicit and explicit information into
implicit and explicit knowledge, and we discuss several of their properties.

On the dynamic side, we adapt the already provided actions of raising
awareness, truth-preserving inference and explicit observation to the new
richer setting, again stating syntactic and semantic definitions as well as com-
plete axiom systems. For the action of explicit observation, we briefly sketch
a version that fits better the non-omniscient spirit of our work. Then we show
how the developed setting allows us to describe the way information flows
during agents’ interaction.

The previous chapters deal either with an abstract notion of information
or else with the notion of knowledge. Nevertheless, most of the behaviour of
‘real’ agents is based not on what they know, but rather on what they believe.
Based on DEL ideas for representing this notion and our previous ideas for
representing non-omniscient agents, we introduce in Chapter 5 a framework for
representing implicit and explicit beliefs, and we discuss some of the properties
of these notions.

Then we look at the dynamics. We recall the existing notion of upgrade, close
to the notion of revision, and we adapt it to our non-omniscient setting. But,
just like a setting with implicit and explicit knowledge suggest the action of
deduction, the current setting suggest different forms of inferences that involve
not only knowledge but also beliefs. We argue that such inferences should allow
the agent to create more possibilities, and with that aim we combine existing
plausibility models with the richer action models defined in Chapter 3. This
yields a framework in which we can represent several forms of inference,
including not only combinations of known/believed premises/rules, but also
weak and strong forms of local reasoning. We also provide a completeness
result that extends to the multi-agent system of Chapter 3, and then we present
an example of the situations the setting can describe.

In Chapters 6 and 7 we present links of the developed framework with
different areas. The first one focuses on known forms of inference, and it
shows how our framework allows us to represent some forms of deduction,
default and abductive reasoning; it also discusses connections with belief bases
and how our setting deals with contradictions. The second one focuses on
connections with other fields, including Linguistics, Cognitive Science as well
as Game Theory.
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Finally, Chapter 8 concludes this dissertation, presenting a summary of the
developed work, and mentioning further interesting questions that deserve
additional investigation.

Sources of the chapters The material presented in this dissertation is based on
the following papers.

The framework of Chapter 2 for representing inference and explicit obser-
vations has evolved from Velázquez-Quesada (2008a) and Velázquez-Quesada
(2008b), and appears in its final version in Velázquez-Quesada (2009a).

The material on which the dynamization of awareness of Chapter 3 is based
appears in van Benthem and Velázquez-Quesada (2010).

The analysis of awareness, implicit and explicit knowledge of Chapter 4 is
the final installment of a work whose previous versions appear in Grossi and
Velázquez-Quesada (2009) and Grossi and Velázquez-Quesada (2010).

Chapter 5 extends the work on implicit and explicit beliefs that appears
in Velázquez-Quesada (2009c), Velázquez-Quesada (2010b) and Velázquez-
Quesada (2010a).

Parts of Chapter 6 appear in Soler-Toscano and Velázquez-Quesada (2010).
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As mentioned before, Logic itself has been traditionally identified with the
study of inferences and inferential relations. Also traditionally, Logic has fo-
cused on truth-preserving inference: inference in which the truth of the premises
guarantees the truth of the conclusion. Nevertheless, there are not so many
approaches that study inference from an agent’s point of view. Our first step
towards a framework for representing small steps in dynamics of information
is the development of a framework in which we can represent the action of
truth-preserving inference and reason about it.

But our goal is not to represent each one of the different discussed actions
in isolation; our goal is to represent them as different components of the same
framework, so we can study not only the particular effect of each one of them,
but also the way they interact and work together. Then, in this chapter, we
will present a framework in which we can represent not only the act of truth-
preserving inference, but also a non-omniscient version of the act of observation,
that is, explicit observation.

2.1 The Restaurant example

Consider the following situation, from van Benthem (2008a):

You are in a restaurant with your parents, and you have ordered three dishes: fish,
meat, and vegetarian, for you, your father and your mother, respectively. Knowing
that each person gets one dish, a new waiter comes from the kitchen with the full
order. What can he do to get to know which dish corresponds to which person?

The waiter can ask “Who has the fish?”; then he can ask “Who has the meat?”.
Now he does not have to ask anymore: “two questions plus one inference are all
that is needed” (van Benthem 2008a).

23
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This example shows the two mentioned logical processes at work. On
one hand we have acts of observation, represented by the answers the second
waiter receives for his questions. Acts of this kind reflect the agent’s interaction
with her environment, and provide her with new arbitrary (and yet truthful)
information. On the other hand, we also have an act of inference, more precisely,
an act of deduction, represented by the reasoning step the waiter performs to
realize that the remaining person should get the remaining dish. Acts of this
kind are more ‘internal’, and allow the agent to derive new information based
on what she already has.

Like van Benthem mentions, these two phenomena fall directly within the
scope of modern Logic, since “asking a question and giving an answer is just as
’logical’ as drawing a conclusion!” (van Benthem 2008b). Indeed, both processes
are equally important in their own right, but so is their interaction. This chapter
is devoted to the development of a logical framework that allows us to represent
inference and observation together.

The approach of the present chapter results from combining ideas for rep-
resenting inference in a modal framework with ideas for representing obser-
vations in the same setting. The key notions for the latter have been already
introduced (the Observation Logic of Section 1.2.1), so now we will provide
a brief summary of two modal approaches for inference: Dynamic Syntactic
Epistemic Logic and Logic for Rule-Based Agents.

2.2 Modal truth-preserving inference

The two approaches discussed in this section emerged as proposals for solving
the logical omniscience problem. Though most of the proposals for solving this
problem focus on weakening the properties of the agent’s information, some
authors (Drapkin and Perlis (1986); Duc (1995) among others) have argued that
solutions of this kind are not acceptable. Their main reasons can be summarized
in the following two points.

1. The agent’s information can be weakened in many ways, and there is no
clear method to decide which restrictions produce reasonable agents and
which ones make them too strong/weak.

2. These approaches do not look at the heart of the matter: they still describe
the agent’s information at a single (probably final) stage, without looking
at how such state is reached.

Dynamic Syntactic Epistemic Logic and Logic for Rule-Based Agents are based
on the idea of dynamizing Epistemic Logic. As it is argued, by saying that an
agent knows the laws of Logic, we do not mean that she knows some facts
about the world, but rather that she is able to use these laws in the proper
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situations to draw conclusions from what she already knows. This idea allows
“a good trademark between logical omniscience and logical ignorance: the agent is
surely not omniscient with respect to her actual or explicit knowledge, but neither is
she logically ignorant” because she can always extend her information by means
of the proper reasoning steps (Duc 1997).

2.2.1 Dynamic Syntactic Epistemic Logic

In Duc (1995, 1997, 2001), Ho Ngoc Duc proposes a Dynamic Syntactic Epistemic
Logic to represent truth-preserving inference in a modal framework. His main
goal is to represent an agent that is not logically omniscient, but nevertheless
has enough reasoning abilities to extend what she knows. In other words, the
agent’s knowledge does not appear automatically; it is the result of an action.

Duc proposes several languages, the main difference between them being
the sub-language used for expressing what the agent can get to know (just
propositional formulas, propositional and epistemic formulas, etc.). His ap-
proach is mainly syntactic in the sense that he mostly focuses on presenting
different axiom systems and discussing how reasonable are some postulates
about the agent’s reasoning abilities (he discusses questions like “Should the
agent have perfect recall?”, “Can she reach an omniscient state?”, “Is the rea-
soning linear or branching?”). Among his proposals, the most interesting for
us is the one in which he presents not only a language but also a semantic
model: the logic LBDE (Duc 1995).

The language for this logic is built in two stages. There is an internal
language, the propositional one, that allows us to express the knowledge the
agent can get. Then there is another language to reason about this knowledge
and how it evolves.

Definition 2.1 (LanguageLBDE) Let At denote the set of formulas of the form
�γ for γ a propositional formula. The language LBDE is the smallest set of
formulas that contains At and is closed under negation, conjunction and the
modal operator 〈F〉. More precisely, the language LBDE is given by

γ ::= p | ¬γ | γ ∨ δ
ϕ ::= �γ | ¬ϕ | ϕ ∨ ψ | 〈F〉ϕ

Formulas of the form �γ and 〈F〉ϕ are read as “γ is known” and “after some
course of thought of the agent, ϕ is true”, respectively. Note how the agent’s
knowledge is restricted to propositional formulas and howLBDE itself does not
allow us to talk about the real world.

A BDE-model is a small variation of a possible worlds model satisfying
some special requirements.
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Definition 2.2 (BDE-model) A general model M is a tuple (W,R,V) where W ,
∅ is the set of possible worlds, R ⊆ (W ×W) is a transitive binary relation and
V : W → ℘(At) associates a set of formulas of At to each possible world. Then,
a BDE-model is a general model M in which

1. for all w ∈W, if �γ ∈ V(w) and Rwu, then �γ ∈ V(u);

2. for all w ∈W, if �γ and � (γ→ δ) are in V(w), then there is a world u such
that Rwu and � δ ∈ V(u).

3. if γ is a propositional tautology, then for all w ∈W there is a world u such
that Rwu and �γ ∈ V(u). J

Definition 2.3 (Semantic interpretation) Given a BDE-model, the semantic in-
terpretation for negation and conjunctions is as usual. For formulas in At and
‘course-of-thought’ formulas, we have

(M,w) 
 �γ iff �γ ∈ V(w)
(M,w) 
 〈F〉ϕ iff there is a u ∈W such that Rwu and (M,u) 
 ϕ J

Duc’s strategy is now clear. In order to avoid logical omniscience, he repre-
sents the agent’s knowledge in a syntactic form, with the function V returning
those formulas the agent knows at each world. In order to avoid logical igno-
rance he introduces inference, representing it as a relation that stands for the
reasoning steps the agent can perform in order to change her knowledge.

Given the semantic interpretation, we can now see the meaning of the
three semantic requirements. The first guarantees that the agent’s knowledge
will only grow as she reasons, and the second and third guarantee that this
knowledge will be closed under modus ponens and will contain all tautologies
at some point in the future. So though a LBDE-agent is not omniscient, she has
the logical resources to eventually derive all that follows logically from what
she currently knows (i.e., she can reach an omniscient state).

Though the important part of the language, the modality 〈F〉, is similar to the
‘future’ modality in Tense Logic (Prior 1957), Duc discusses a more interesting
interpretation of these “course of thoughts”. If the set of actions the agent can
perform is explicitly given by {r1, . . . , rn}, then F actually stands for (ri∪· · ·∪rn)+:
the transitive closure of the non-deterministic application of actions in the set.
This makes the approach closer to the ideas in Propositional Dynamic Logic
(PDL; Harel et al. (2000)). In fact, we could look at a more appealing PDL-style
language that states explicitly which are the actions that the agent performs. To
quote one of Duc’s examples, assume that the agent knows the conjunction of
p and p→ q, that is, � (p ∧ (p→ q)). In classical Epistemic Logic, it follows that
the agent knows p∧ q, that is, � (p ∧ q). But there is no guarantee that a realistic
agent will know p ∧ q automatically. What we should say instead is that if she
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knows p and p → q, and she reasons appropriately, then she will get to know
p ∧ q. In this concrete case, let CE, MP and CI stand for the rules of conjunction
elimination, modus ponens and conjunction introduction, respectively. Then, by
using PDL-style notation (‘;’ stands for sequential composition), instead of the
omniscient � (p ∧ (p→ q))→ � (p ∧ q), we get the more realistic

�
(
p ∧ (p→ q)

)
→ 〈CE; MP; CI〉�

(
p ∧ q

)
But semantically, in order to formalize this example, we need more than just

the abstract relation R of before. We need specific relations RCE, RMP, RCI and so
on for each one of the inference steps the agent can perform. More importantly,
we need to be sure that each one of these relations follows the intuition behind
it: if RMP relates world w with world u, then at w the agent should know an
implication and its antecedent, and at u her knowledge should be extended
with the implication’s consequent.

The approach that we will recall now attacks the second problem, provid-
ing formal definitions of what a relation should satisfy in order to represent
properly a rule-application.

2.2.2 Logic for Rule-Based Agents

Based on the prominent case of rule-based agents of the Artificial Intelligence
(AI) literature, Mark Jago proposes in Jago (2006a,b, 2009) a system for agents
whose reasoning steps are given by a generalized version of modus ponens.

In his approach, the agent can have beliefs about two different entities:
literals and rules. A literal λ is an atomic proposition or its negation. A rule,
denoted usually as ρ, has the form λ1, . . . , λn ⇒ λ, with λ and all λis literals. In
particular λ, the rule’s conclusion, is usually denoted by cn(ρ).

The important concept, that of a rule application, has the following form:

λ1, . . . , λn, (λ1, . . . , λn ⇒ λ)

λ

In words, if the agent has the rule and all its premises, then she can apply it,
obtaining the rule’s conclusion.

The language used to reason about the agent’s beliefs, calledML, is based
on formulas of the form Bλ and Bρ for λ a literal and ρ a rule, and it is closed
under negation, conjunction and the existential modal operator ^.

Definition 2.4 (LanguageML) Let P be a set of atomic propositions. The
collection of literals λ based on P and rules ρ based on such literals is called the
agent’s internal language. Then, formulas φ, ϑ of theML language are given by

φ ::= Bλ | Bρ | ¬φ | φ ∨ ϑ | ^φ



28 Chapter 2. Truth-preserving inference and observation

Formulas of the form Bλ (Bρ) are read as “the agent believes the literal λ (the rule
ρ)”. Formulas of the form ^φ are read as “after a rule application, φ is true”.
Similar to Duc’s LBDE, the agent’s beliefs are restricted, this time to literals and
rules based on them; also, the language can express the agent’s beliefs and how
they change, but cannot express what happens in the real world. J

A model for this language is again a small variation of a possible worlds
model. Each world has now associated a subset of the agent’s internal language
(i.e., a set of literals and rules) representing what she believes at it, and each
transition between worlds represents a change in the agent’s belief state.

Definition 2.5 (ML-model) A ML-model for the ML language is a tuple
M = 〈W,R,V〉where W is a non-empty set of states, R is a binary relation on W,
and V is a labelling function, assigning a subset of the agent’s internal language
to each possible world. J

The semantic interpretation is the usual one, with formulas of the form Bλ
and Bρ simply looking at the contents of the subset of the internal language
associated to the evaluation point.

Definition 2.6 (Semantic interpretation) Let (M,w) be a pointed model for the
ML language, with M = 〈W,R,V〉. The semantic interpretation for negation
and disjunction are standard. For the rest,

(M,w) 
 Bλ iff λ ∈ V(w)
(M,w) 
 Bρ iff ρ ∈ V(w)
(M,w) 
 ^φ iff there is a u ∈W such that Rwu and (M,u) 
 φ J

The defined class of models is too general, so it needs to be restricted in
order to faithfully represent rule-based reasoning. The following definitions
are used to state formally the properties such models should satisfy.

Definition 2.7 (Matching rule) Let w be a state of aML-model M = 〈W,R,V〉.
A rule ρ of the form λ1, . . . , λn ⇒ λ is w-matching if and only if at w the
agent believes the rule and all its premises but not its conclusion, that is,
{ρ, λ1, . . . , λn} ⊆ V(w) but λ < V(w). J

Definition 2.8 (ρ-extension of a state) Let w and u be states of a ML-model
M = 〈W,R,V〉, and let ρ be a rule. The state u ρ-extends the state w if and only if
V(u) extends V(w) with ρ’s conclusion, that is, V(u) = V(w) ∪ {cn(ρ)}. J

Definition 2.9 (Terminating state) A state w in a ML-model M is said to be
terminating if and only if no rule is w-matching. J

With these concepts, we can now present the four requirements a ML-
model should satisfy in order to represent rule-based reasoning.
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1. For every state w, if a rule ρ is w-matching, then there is a state u such
that Rwu and u is a ρ-extension of w.

2. For every terminating state w there is a state u such that Rwu and, more-
over, V(w) = V(u).

3. For every states w,u, we have Rwu only if w and u satisfy one of the
previous two points, that is, either V(u) = V(w) ∪ {cn(ρ)} for some rule ρ,
or else V(u) = V(w).

4. For all rules ρ and states w,u, we have ρ ∈ V(w) if and only if ρ ∈ V(u).

The first requirement tells us that if the agent can apply a rule, then there
should always be a state that results from the application. The second one says
that if there are no applicable rules, the agent should still be able to perform
reasoning steps, but they should not change her beliefs. The third one states that
no other reasoning steps are allowed and the fourth one, following a standard
AI practice, says that the rules the agent believes should not change: they are
neither learnt nor forgotten.

The two discussed approaches have interesting proposals: the representa-
tion of inference as a modal relation (Duc’s Dynamic Syntactic Epistemic Logic),
and the use of a generalized version of modus ponens and the formalization of
the precondition and the effect of a rule application (Jago’s Logic for Rule-Based
Agents). Within these two frameworks we can represent agents that are, indeed,
non-omniscient. And not only that; the represented agents are also capable of
extending their information by performing the adequate reasoning steps.

But there is still room for improvement. From an ‘inference’ perspective,
we can be more precise about the agent’s reasoning steps by specifying, syn-
tactically and semantically, which one is the action (i.e., the rule) that the agent
is actually performing (i.e., applying). From a ‘meta-inference’ perspective, the
rules the agent can apply do not need to be given by the same set at any time:
we can dynamize once more by looking at possible ways in which the agent’s
rules can change. Even from an ‘expressiveness’ perspective, we can extend the
language in order to be able to express not only the agent’s information and
how it evolves, but also what happens in the real world.

Still, the most important point has to do with the representation of inference.
The two discussed works represent inference as a modal relation, and in order
to get a proper representation, the relation should satisfy several requirements
(Definition 2.2 for Duc’s case; the paragraph below Definition 2.9 for Jago’s
one). All these requirements make the frameworks not as clear as we would
like, and we could expect for it to be really confusing when we incorporate
more actions to the picture.



30 Chapter 2. Truth-preserving inference and observation

There is another possibility. Actions can be represented not only as relations
within the model (the Propositional Dynamic Logic style); they can also be repre-
sented as operations that change the model (the Dynamic Epistemic Logic style).
Instead of defining a model that represents not only the agent’s information,
but also all the possible paths the agent’s reasoning steps can follow (what Duc
and Jago do), we can define a model that represents exclusively the informa-
tion the agent has at a given stage, and then define operations that change this
model (and therefore the agent’s information) in different ways. The advan-
tage of the latter is that we do not need to ask for a relation to satisfy certain
requirements; we just need to define reasonable operations. More importantly,
representing inference as a model operation will facilitate the incorporation of
our other relevant action, explicit observation.

2.3 Implicit and explicit information

Recall that our goal is to represent the way an agent’s information evolves
through the use of truth-preserving inferences and observations. As mentioned
before, the EL framework with possible worlds models is one of the most widely
used for representing and reasoning about agents’ information. Nevertheless,
in its traditional form, it is not fine enough for our purposes since, as we have
discussed, agents whose information is represented with this framework are
logically omniscient. Though this feature is useful in some applications, it is too
much in some others and, more importantly, it hides the inference process. In
fact, when representing the restaurant example with a standard possible worlds
model, the answer to the second question makes the waiter know not only that
your father should get the meat dish, but also that your mother should get the
vegetarian one. In this case, the hidden inference is short and very simple,
but in general this is not the case. Proving a theorem, for example, consists on
successive applications of deductive inference steps to show that the conclusion
indeed follows from the premises. Some theorems may be straightforward but,
as we know, some are not. Moreover, the distinction does not correspond to
immediate notions like the number of inference steps, and may be related with
the ‘complexity’ of each one of them, whatever this ‘complexity’ is.

Now, truth-preserving inference over a notion of information that is already
closed under logical consequence becomes irrelevant: it does not provide new
information. So our goal should not be to represent inference over what the
classical modal operator � represents. In fact, this operator should not be un-
derstood as ‘full-blooded knowledge’, but as a more implicit notion, describing
not the information the agent actually has, but rather the information she can
eventually get. With this idea in mind, closure under logical consequence is
not a problem anymore because we do expect for implicit information to have
such property. What we need now is to extend EL to provide an adequate
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representation for another ‘weaker’ notion in which truth-preserving inference
is actually meaningful: explicit information. Only then we will be able to
represent inferences and observations together in the proper way.

2.3.1 Formulas, rules and the implicit/explicit language

In our framework, the agent’s explicit information will be given by a set of
formulas and rules, with these rules being the mechanism through which the
agent will be able to increase this explicit information. In other words, our
agent can have information not only about the way the world is (given by the
formulas), but also about the actions she can perform to increase her explicit
information (given by the rules).

We start by defining the language to represent the explicit information the
agent can have, and by indicating what a rule in that language is.

Definition 2.10 (Formulas and rules inLP) Let P be a set of atomic proposi-
tions. Formulas γ, δ of the propositional language LP are given by the rule

γ ::= p | ¬γ | γ ∨ δ

with p an atomic proposition in P.
A rule ρ based on the propositional language is given by

ρ ::= ({γ1, . . . , γnρ}, δ)

In words, a rule ρ is a pair, sometimes represented as {γ1, . . . , γnρ} ⇒ δ, where
{γ1, . . . , γnρ} is a finite set of formulas and δ is a formula, all of them in LP.
While formulas describe situations about the world, rules describe relations
between such situations. Intuitively, the rule ({γ1, . . . , γnρ}, δ) tells us that if
every γ ∈ {γ1, . . . , γnρ} is true, so is δ. We denote by RLP the set of rules based
on formulas of LP, omitting the subindex when no confusion arises. J

When dealing with rules, the following definitions will be useful.

Definition 2.11 (Premises, conclusion and translation) Let ρ be a rule of the
form ({γ1, . . . , γnρ}, δ). We define

pm(ρ) := {γ1, . . . , γnρ} the set of premises of ρ
cn(ρ) := δ the conclusion of ρ

Moreover, we define a rule’s translation, tr(ρ), as an implication inLP whose an-
tecedent is the (finite) conjunction of the rule’s premises and whose consequent
is the rule’s conclusion:

tr(ρ) :=
( ∧
γ∈pm(ρ)

γ
)
→ cn(ρ)

J
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The rules we have defined are simple implications with a special nota-
tion. We could have defined them as rules schemas (based on meta-variables
to be substituted by formulas) and then their application would be a non-
deterministic operation (instantiating the rule and then accepting the instan-
tiated rule’s conclusion). But our approach is not a limitation since, as we
will see, rules will be applied in a generalized modus ponens way: if all the
premises have been accepted, then the conclusion can be accepted. Then we can
mimic the application of (instances of) other rules, like conjunction elimination
(p ∧ q⇒ p) or disjunction introduction (p⇒ p ∨ q).

Note also that we have defined the premises of a rule as a set, and not as a
more general notion like an ordered sequence or a multi-set. With such a general-
ized definition, it would be possible to analyze inference in ‘resource-conscious’
sub-structural logics where order and multiplicity matters, like Linear Logic (Gi-
rard 1987) or Categorial Grammar (Moortgat 1997). Nevertheless, our restricted
definition is good enough for dealing with the process we are interested in,
truth-preserving inference, which will be explored in Section 2.4.1

Finally, we could simplify the approach by defining formulas as rules with
empty premises. Nevertheless, we will stick to the formulas-and-rules setting
since it emphasizes the difference between ‘factual’ information (the formulas;
what the agent already has) and ‘procedural’ information (the rules; the tools
to perform derivations).

The language to reason about the agent’s information extends that of EL by
adding two kinds of formulas: one for expressing the agent’s explicit informa-
tion (Aγ) and the other for expressing the rules she can apply (Rρ).

Definition 2.12 (Language IE) Let P be a set of atomic propositions. Formulas
ϕ,ψ of the implicit/explicit language IE are given by

ϕ ::= p | Aγ | Rρ | ¬ϕ | ϕ ∨ ψ | �ϕ

with p ∈ P, γ ∈ LP and ρ ∈ R. Formulas of the form Aγ, access formulas, are
read as “the agent is explicitly informed about γ”, and formulas of the form Rρ,
rule formulas, are read as “the agent can apply rule ρ”. The universal modal
operator, �, is now interpreted as implicitly information, with formulas of the
form �ϕ being read as “the agent is implicitly informed about ϕ”. Other boolean
connectives (∧,→ and↔), logical constants (> and⊥) as well as the existential
modal operator ^ are defined as usual. J

Our agent can have explicit information about facts, but not about her own
(or, eventually, other agents’) information. This is indeed a limitation, but it
allows us to define one of the two processes we are interested in: observation

1In fact, sets are good enough even for dealing some forms of non-monotonic reasoning, as
shown in Chapters 5 and 6.



2.3. Implicit and explicit information 33

(Section 2.5). In Section 2.7 we discuss the reasons for this limitation, leaving a
deeper analysis and further proposals for the next chapters.

The semantic model extends a possible worlds model by assigning two new
sets to each possible world: one indicating the formulas the agent is explicitly
informed about, and other indicating the rules she can apply. We still have just
one relation between worlds, the accessibility relation, indicating which the
worlds the agent considers possible from a given one.

Definition 2.13 (Implicit/explicit model) Let P be a set of atomic propositions.
An implicit/explicit model is a tuple M = 〈W,R,V,A,R〉 where 〈W,R,V〉 is a
possible worlds model over P and

• A : W → ℘(LP) is the access set function, indicating the agent’s explicit
information at each possible world. The set A(w) will be called the agent’s
access set at w, and should be preserved by the accessibility relation: if
γ ∈ A(w) and Rwu, then γ ∈ A(u) (the coherence property for formulas);

• R : W → ℘(R) is the rule set function, indicating the rules the agent can
apply at each possible world. The set R(w) will be called the agent’s
rule set at w, and should be also preserved by the accessibility relation: if
ρ ∈ R(w) and Rwu, then ρ ∈ R(u) (the coherence property for rules).

We denote by IE the class of implicit/explicit models. Note again how, just as in
the definition of the premises of a rule, the agent’s explicit information about
formulas and rules is given by a set. J

The two model requirements, coherence for formulas and rules, reflect the
following idea. At each world w, the sets A(w) and R(w) represent the formulas
and rules the agent is explicitly informed about. Then, if at w the agent considers
u possible, it is natural to ask for u to preserve the agent’s explicit information
at w. Note also how formulas (rules) in the A-sets (R-sets) are not required to
be true (truth-preserving) in the corresponding world. This requirement will
be imposed in order to deal with true information (Subsection 2.3.2).

The semantic interpretation of formulas in IE has an immediate definition.

Definition 2.14 (Semantic interpretation) Let (M,w) be a pointed IE-model
with M = 〈W,R,V,A,R〉. The semantic interpretation for negations and dis-
junctions is given as usual. The case of atomic propositions p and implicit
information formulas �ϕ is just like in Epistemic Logic. For access and rule
formulas, we just look at the corresponding sets:

(M,w) 
 Aγ iff γ ∈ A(w)
(M,w) 
 Rρ iff ρ ∈ R(w) J
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Example 2.1 In the leftmost world w1 of following model, the agent has (1) im-
plicit and explicit information about p, (2) implicit but not explicit information
about q and (3) neither implicit nor explicit information about r, as indicated
by the formulas on the right. Access sets are drawn below the corresponding
world, and rule sets are not indicated.

p, q, r p, q

{p} { }

w1 w2

(1) (M,w1) 
 � p ∧ A p

(2) (M,w1) 
 � q ∧ ¬A q

(3) (M,w1) 
 ¬� r ∧ ¬A r

J

Axiom system So which properties does the agent’s information get under this
representation? A standard approach to find them is to look for those formulas
that are valid in the given class of models, that is, formulas that are true at
every world of every model in the given class. There are several ways to look
for such formulas, and one of the most commonly used is to look for their
syntactic characterization, that is, a derivation or axiom system. Such system is a
sort of calculus that gives us basic formulas and then operations to derive more
formulas. An axiom system is interesting when it only derives formulas valid
in a given class of models (a sound axiom system), and it becomes even more
interesting when, additionally, it derives every valid formula of the given class
(a complete axiom system).

In order to provide a sound and complete axiom system for formulas in IE
with respect to IE-models, it is helpful to look at that for the underlying system:
Epistemic Logic (Subsection 1.1.1). The well-known axioms and rules of Table
2.1 provide us with a sound and strongly complete axiom system for the EL
language with respect to possible worlds models.

Prop ` ϕ for ϕ a propositional tautology MP If ` ϕ→ ψ and ` ϕ, then ` ψ

K ` � (ϕ→ ψ)→ (�ϕ→ �ψ) Nec If ` ϕ, then ` �ϕ

Dual ` ^ϕ↔ ¬�¬ϕ

Table 2.1: Axiom system for EL w.r.t. possible worlds models.

Now we can provide our particular axiom system.
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Theorem 2.1 (Axiom system for IE w.r.t. IE) The axioms and rules of Tables 2.1
and 2.2 form a sound and strongly complete axiom system for formulas in IE with
respect to IE-models. While axioms and rules of Table 2.1 provide us with validities of
the language in possible worlds models, axioms CohLP and CohR describe the particular
requirements of access and rule formulas for IE-models: the coherence property for
formulas and rules, respectively. This axiom system is denoted by IE.

CohLP ` Aγ→ �Aγ

CohR ` Rρ→ �Rρ

Table 2.2: Axioms for the coherence properties.

Proof. Soundness follows from axioms being valid and rules being validity-
preserving. Completeness is proved by a standard modal canonical model
construction with an adequate definition of the access and rule set functions.
In order to obtain the crucial coherence properties, we use the CohLP and CohR
axioms. See Appendix A.1 for details. �

Observe how axioms of Table 2.1 say that the agent’s implicit information
is omniscient: it contains all validities (rule Nec) and it is closed under logical
consequence (axiom K). Nevertheless, the agent’s explicit information does not
have these properties: the validity of γ does not imply the validity of Aγ, and
A (γ→ δ)→ (Aγ→ A δ) is not valid.

2.3.2 The case of true information

The way it is defined, an IE-model allows us to represent an agent whose
information is not necessarily true. We do not ask for any property for the
accessibility relation, so there are no constraints for implicit information, others
than those given by the representation itself, like closure under modus ponens
(the K axiom) and the inclusion of validities (the Gen rule). In particular, the
actual world does not need to be among the ones the agent considers possible,
so the agent can be implicitly informed about certain ϕ without it being true.
Moreover, formulas in access sets do not need to be true and rules in rule sets
do not need to be truth-preserving at the corresponding world; therefore the
agent can be explicitly informed about a formula γ or a rule ρ without they
being true and truth-preserving, respectively.

By asking for the adequate model properties, we can represent different
notions of information. Here we will focus on the case of true information, that
is, knowledge.2

2For literature about information that can be true or false, we refer to Dretske (1981) and
Floridi (2005).
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Among models in IE, we distinguish those where implicit and explicit in-
formation are true and the rules are truth-preserving. For implicit information,
we consider equivalence accessibility relations, as it is usually done in EL.3 For
explicit information, we ask for every formula in an access set to be true in the
corresponding world. Finally, for the case of rules, we ask for its translation to
be true in the corresponding world.

Definition 2.15 (The class IEK) We denote by IEK the class of models M =
〈W,R,V,A,R〉 in IE satisfying the following properties.

• Equivalence: R is an equivalence relation.

• Truth for formulas: for every world w, if γ ∈ A(w), then (M,w) 
 γ.

• Truth for rules: for every world w, if ρ ∈ R(w), then (M,w) 
 tr(ρ). J

Recall the coherence property for formulas and rules: if γ ∈ A(w) (ρ ∈ R(w))
and Rwu, then we have γ ∈ A(u) (ρ ∈ R(u)). Note how, when the accessibility
relation is an equivalence relation, we get the same information and rule set for
all the worlds that belong to the same equivalence class.

In the rest of this chapter, we will use the term “information” for the general
class of IE-models, and the term “knowledge” for the class of models with true
information, that is, IEK-models.

Axiom system In order to provide a sound and complete axiom system with
respect to the just defined class of IEK-models, we just need to provide axioms
that characterize the properties of models in the class.

Theorem 2.2 (Axiom system for IE w.r.t. IEK) The axioms of Tables 2.1, 2.2 and
2.3 form a sound and strongly complete axiom system for formulas in IE with respect
to IEK-models. In particular, axioms of Table 2.3 characterize the properties that
distinguish models in IEK from models in IE: equivalence and truth for formulas and
rules. This axiom system is denoted by IEK.

T ` �ϕ→ ϕ TthLP ` Aγ→ γ

4 ` �ϕ→ ��ϕ TthR ` Rρ→ tr(ρ)

5 ` ¬�ϕ→ �¬�ϕ

Table 2.3: Extra axioms for IEK-models

3Given our understanding of knowledge as true information, we actually just need for the re-
lation to be reflexive. Nevertheless, we will stick to the standard approach of using equivalence
relations that give the agent (implicit) positive and negative introspection.
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Proof. Soundness is again simple. Completeness is proved by showing that
the canonical model for IEK satisfies equivalence (from axioms T, 4, 5), truth for
formulas (from axiom TthLP) and truth for rules (from axiom TthR). Details can
be found in Appendix A.2. �

The new axioms provide new properties. Axioms T, 4 and 5 tell us that
implicit knowledge is true (T) and has the positive and negative introspection
properties (4 and 5). Axioms TthLP and TthR indicate that the agent’s explicit
knowledge about formulas and rules is also true. Note that from the coherence
and the truth axioms, CohLP and TthLP , we get the following validity, expressing
that the agent’s explicit knowledge is also implicit knowledge.

Aγ→ �γ

It is now time to turn our attention to the dynamics of implicit and explicit
knowledge. In the following sections we will define our intended informational
actions: truth-preserving inference and observation.

2.4 Inference

The agent can extend her explicit information by applying the rules she has
available. Intuitively, a rule (Γ, δ) indicates that if every γ ∈ Γ is true, so is δ.
However, so far, we have not indicated or restricted the way the agent can use
a rule. She can use it to get the conclusion without having all the premises, or
even deriving the premises whenever she has the conclusion. In the previous
section we focused on models for true information; in the same spirit, this
section will deal with truth-preserving inference.

2.4.1 Truth-preserving inference

The inference process aims at extending the agent’s explicit information by
means of a rule-application. Technically, this boils down to adding formulas
to the agent’s access sets. In order to represent truth-preserving inference, we
will restrict the way in which the rule can be applied.

Definition 2.16 (Deduction operation) Let M = 〈W,R,V,A,R〉 be an IE-model,
and let σ be a rule in R. The model M↪→σ = 〈W,R,V,A′,R〉 differs from M just in
the access set function, which is given for every w ∈W by

A′(w) :=
{

A(w) ∪ {cn(σ)} if pm(σ) ⊆ A(w) and σ ∈ R(w)
A(w) otherwise

The operation (·)↪→σ
is called the deduction operation with rule σ. J



38 Chapter 2. Truth-preserving inference and observation

The conclusion of the rule will be added to a world only when all the
premises and the rule are already present. In other words, after the inference
the agent’s explicit information will be extended with the rule’s conclusion
only if she already has the rule and all its premises.

Note how the deduction operation preserves models in IEK.

Proposition 2.1 Let σ be a rule. If M is an IEK-model, so is M↪→σ .

Proof. Equivalence and both properties of rules are immediate since neither the
accessibility relation nor the rule set function are modified. The properties of
formulas can be verified easily; details can be found in Appendix A.3. �

The language IED extends IE by closing it under existential deduction
modalities 〈↪→σ〉 for σ a rule: if ϕ is a formula in IED, so is 〈↪→σ〉ϕ. These new
formulas are read as “there is a deductive inference with σ after which ϕ is the case”
and their universal duals, defined as usual,

[↪→σ]ϕ := ¬〈↪→σ〉 ¬ϕ

are read as “after any deductive inference with σ, ϕ is the case”.
For the semantic interpretation, note that the agent cannot preform a truth-

preserving inference with σ in any situation. In order to do it, she should know
explicitly the rule and its premises. The abbreviation

Pre↪→σ :=
( ∧
γ∈pm(σ)

Aγ
)
∧ R σ

indicates precisely this requirement.

Definition 2.17 (Semantic interpretation) Let (M,w) be a pointed IE-model.

(M,w) 
 〈↪→σ〉ϕ iff (M,w) 
 Pre↪→σ and (M↪→σ ,w) 
 ϕ

By unfolding the definition of the universal deduction modality, we get

(M,w) 
 [↪→σ]ϕ iff (M,w) 
 Pre↪→σ implies (M↪→σ ,w) 
 ϕ J

The semantic interpretation of deduction modalities simply reflects our
intuition about a rule application: the agent can perform a deductive inference
with σ after which ϕ is the case, (M,w) 
 〈↪→σ〉ϕ, if and only if she knows
explicitly the rule and its premises, (M,w) 
 Pre↪→σ , and, after the inference, ϕ is
the case, (M↪→σ ,w) 
 ϕ. Note how the new pointed model (M↪→σ ,w) is defined
even if the precondition of the operation Pre↪→σ does not hold at the original
(M,w). This is different from the observation operation (Definition 1.5) that
makes (Mχ!,w) undefined if the precondition χ fails at (M,w). Nevertheless, the
behaviour of the modalities is the same in the two operations: the existential



2.4. Inference 39

ones, 〈↪→σ〉ϕ and 〈χ!〉ϕ, are true if and only if the respective actions can be
executed and the (unique) resulting pointed model satisfiesϕ, and the universal
ones, [↪→σ]ϕ and [χ!]ϕ, are true if and only if either the action can be executed
with the specified results, or else the action cannot be executed at all.

Now we can see that in IEK-models, the deduction operation behaves as
expected: if the agent can perform a truth-preserving inference with σ, then
after doing it she will know explicitly σ’s conclusion. This is because if she
can perform the inference at w in M, then the precondition tells us that she
knows explicitly the rule and its premises. Because of the truth properties, the
premises are true and the rule is truth-preserving at w in M, so the conclusion is
also true at w in M. But since the conclusion is a propositional formula, its truth-
value depends only on the atomic valuation of w; since w’s atomic valuation
in the new model is exactly the same as in the original one, the conclusion will
also be true at w in M↪→σ . Moreover, this conclusion will be in the access set of
w in M↪→σ ; therefore, the agent will know explicitly the rule’s conclusion. The
following validity express this:

〈↪→σ〉A cn(σ)

Note also how, in IEK-models, if the agent can apply a σ-inference, then σ’s
conclusion is already in the agent’s implicit information. This is because if σ is
applicable at w in M, then the agent knows the rule and all its premises, that is,
A pm(σ) ∧ R σ holds at w. Then, the coherence properties put σ and its premises
in all worlds R-reachable from w. But then, because of the truth properties, σ’s
conclusion holds in all of them. Hence, � cn(σ) is true in the current world.
The following validity express this:

〈↪→σ〉> → � cn(σ)

In other words, an act of deduction extends the agent’s explicit knowledge by
making explicit what was already implicit.

Axiom system In order to provide a sound and complete axiom system for for-
mulas inIE plus deduction modalities, we will review the sound and complete
axiom system for Observation Logic (Definition 1.4).

Recall that the idea of a sound and complete axiom system is to characterize
validities of a language with respect to a given class of models. We already
have a characterization of the validities of the ‘static’ epistemic language in
possible worlds models (Table 2.1); what we need now are axioms and rules
describing the relevant properties of the observation modalities.

First, note that the observation operation preserves possible worlds models,
that is, if M is a possible worlds model, so is Mχ!. This is important because
any formula valid in M will still be valid after the operation. Then we have the
following rule:

!N From ` ϕ, infer ` [↪→σ]ϕ



40 Chapter 2. Truth-preserving inference and observation

Now, note that the observation modality has the behavior described in the
validities of Table 2.4.

!P ` 〈χ!〉 p ↔ (χ ∧ p)

!¬ ` 〈χ!〉 ¬ϕ ↔ (χ ∧ ¬〈χ!〉ϕ)

!∨ ` 〈χ!〉 (ϕ ∨ ψ) ↔ (〈χ!〉ϕ ∨ 〈χ!〉ψ)

!� ` 〈χ!〉�ϕ ↔ (χ ∧ � [χ!]ϕ)

Table 2.4: Validities for observation modality.

Let us read some of them. The first indicates that the agent can observe χ
and after doing it p will be true if and only if both χ and p are true before the
observation. More interestingly, the last one tells us that the agent can observe
χ and after doing it she will be (implicitly) informed about ϕ if and only if χ
is true and the agent is (implicitly) informed that after any observation of χ, ϕ
will be true.

These validities give us more than just properties of the observation opera-
tion: they provide a way of translating any formula with observation modalities
into a semantically equivalent one without them. For example, consider the for-
mula 〈(p∧ q)!〉� p, expressing that p∧ q can be observed and, after doing it, the
agent will be informed about p. By a repeated application of the validities, we
can eliminate the observation modalities in the following way:

〈(p ∧ q)!〉� p ↔ (p ∧ q) ∧ � [(p ∧ q)!] p
↔ (p ∧ q) ∧ � ((p ∧ q)→ p)

So 〈(p ∧ q)!〉� p is semantically equivalent to (p ∧ q) ∧ � ((p ∧ q)→ p). Even
if we have a formula with nested occurrences of observation modalities, we
can eliminate all of them by following a ‘deepest-first’ order. For example,
eliminating the deepest observation modality from 〈(p ∨ q)!〉 〈¬p!〉� q gives us
〈(p∨q)!〉 (¬p ∧ � (¬p→ q)); then we can eliminate the remaining one. Note how
the existence of these validities imply that the ‘static’ language, the one without
observation modalities, is actually expressive enough to encode the way the
model will change after the operation.

How are these validities useful when looking for an axiom system? By stat-
ing them as axioms, reduction axioms, a formula with observation modalities
and its translation are not just semantically but also provably equivalent. Then,
completeness of the language with the observation modality follows from the
completeness of the basic ‘static’ system, since each formula with these modal-
ities can be effectively translated into a provably equivalent one without them.
For a more detailed explanation of this technique, we refer to Section 7.4 of van
Ditmarsch et al. (2007).
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Now we can provide an axiom system for IED with respect to IEK-models.
By Proposition 2.1, this class is closed under the deduction operation, so we
can rely on the axiom system IEK. We provide reduction axioms, expressing how
deduction operation affect the truth-value of formulas of the language.

Theorem 2.3 (Reduction axioms for the deduction modality) Table 2.5 provides
reduction axioms for the deduction modality. Together with IEK (Theorem 2.2), they
form a sound and complete axiom system for languageIED with respect to IEK-models.

↪→p ` 〈↪→σ〉 p ↔ (Pre↪→σ ∧ p) ↪→A ` 〈↪→σ〉A cn(σ) ↔ Pre↪→σ

↪→¬ ` 〈↪→σ〉 ¬ϕ ↔ (Pre↪→σ ∧ ¬〈↪→σ〉ϕ) ↪→A ` 〈↪→σ〉Aγ ↔ (Pre↪→σ ∧Aγ) for γ , cn(σ)

↪→∨ ` 〈↪→σ〉 (ϕ ∨ ψ) ↔ (〈↪→σ〉ϕ ∨ 〈↪→σ〉ψ) ↪→R ` 〈↪→σ〉Rρ ↔ (Pre↪→σ ∧ Rρ)

↪→� ` 〈↪→σ〉�ϕ ↔ (Pre↪→σ ∧ � [↪→σ]ϕ)

↪→N From ` ϕ, infer ` [↪→σ]ϕ

Table 2.5: Axioms and rule for the deduction modality.

Proof. Soundness follows from the validity of the new axioms and the validity-
preserving property of the new rule, just as before. Strong completeness follows
from the fact that, by a repeated application of the reduction axioms, any
deduction operation formula can be reduced to a formula in IE, for which IEK

is strongly complete with respect to IEK. �

The interesting reduction axioms, indicating how access and rule sets are
affected by deduction, appear on the right column of Table 2.5. Axioms ↪→A

indicate that cn(σ) is the unique formula added to access sets, and axiom ↪→R

indicates that rule sets are not modified.
As an example of what can be derived with the axiom system, consider the

formula 〈↪→σ〉> → � cn(σ). Its validity was already justified by a semantic
argument, but it can also be justified syntactically. 4

〈↪→σ〉> ↔ 〈↪→σ〉 (p ∨ ¬p)
↔ 〈↪→σ〉 p ∨ 〈↪→σ〉 ¬p by ↪→∨
↔

(
Pre↪→σ ∧ p

)
∨

(
Pre↪→σ ∧ ¬p

)
by ↪→p, ↪→¬ and Prop. logic

↔ Pre↪→σ by Prop. logic
↔

(∧
γ∈pm(σ) Aγ

)
∧ R σ def. of Pre↪→σ

→

(∧
γ∈pm(σ) �Aγ

)
∧ �R σ by CohLP and CohR

→

(∧
γ∈pm(σ) �γ

)
∧ �
(
(
∧
γ∈pm(σ) γ)→ cn(σ)

)
by TthLP and TthR.

↔ �
(∧

γ∈pm(σ) γ
)
∧ �
(
(
∧
γ∈pm(σ) γ)→ cn(σ)

)
dist. of � over ∧

→ � cn(σ) by K

4Through the whole text, this and other syntactic derivations make a slight abuse of notation.
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Comparison with previous works

It is illustrative to make a brief comparison between our proposal and the
approaches for inference described in Section 2.2.

Dynamic Syntactic Epistemic Logic From Duc’s work we have inherited the
syntactic representation of the agent’s explicit information and the spirit of
inference as rule-application. There are small syntactic differences: (1) while
Duc uses a single modality 〈F〉, standing for “a course of thought”, our language
is more precise about what this ‘course of thought’ is by explicitly stating
the applied rule; (2) Duc’s language does not allow us to talk about the real
world, something our language can do. There is also the fact that while Duc’s
framework just focuses on one notion, explicit information, our framework
represents explicit and also implicit information.

But the most important difference is semantic. While Duc represents in-
ference as a relation between worlds, we represent it as an operation over the
model. Consequences of this will be discussed below, but first we will look at
how our work relates to the other reviewed approach.

Logic for Rule-Based Agents From Jago’s work we have inherited the formal
definition of the requirements and the consequences of a rule application.
There are small language-related differences, like the ones with respect to Duc’s
approach plus the fact that Jago’s system limits the agent’s information to
literals and rules built from them. Also, his framework represents only one
notion of information.

But again, the main difference is the representation of inference as a modal
relation, different from our model operation approach.

Modal relation vs. model operation Following the two described approaches,
inference was represented in our earlier proposals (Velázquez-Quesada 2008a)
as a modal relation between worlds with a relation Rσ for each inference rule σ
the agent can apply. But then, consider the following natural requirements for
truth-preserving inference.

1. Inference steps should not modify the ontic (factual) situation.

2. In order to apply a rule, the agent needs the premises and the rule.

3. The application of a rule should preserve explicit factual information the
agent had before.

4. Explicit information should be increased by the conclusion of the rule.

5. There should be no other difference between explicit information before
and after the rule application.
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If we represent inference as a modal relation, several restrictions are required
in the semantic model in order to satisfy these requirements, making the treat-
ment somehow confusing. But if we represent inference as a modal operation,
we do not need to ask for these properties anymore: they are a consequence of
the representation. The deduction operation preserves world-valuation, so the
ontic situation is not affected. But not only that: we get automatically the four
remaining properties, as the validity of the following formulas shows.

2. 〈↪→σ〉> → Pre↪→σ 4. [↪→σ] A cn(σ)
3. Aγ→ [↪→σ] Aγ 5. 〈↪→σ〉Aγ→ Aγ for γ , cn(σ)

There is another important consequence. In our representation, inference
is functional: the agent can perform an inference step with σ every time she has
the rule and all its premises. With a relational representation of inference, this
property has to be explicitly required (as Jago does) and, more importantly, is
not preserved by model operations: adding formulas to the set can make appli-
cable a rule that was not applicable before. This is relevant for us because the
second informational action we want to deal with, observation, is semantically
represented by a model operation.

2.4.2 Dynamics of truth-preserving inference

Just as the agent’s explicit knowledge changes, her inferential abilities can also
change. This may be because she gets to know a new rule (by means of an
observation; Section 2.5), but it may be also because she builds new rules from
the ones she already has. For example, from the rules {p} ⇒ q and {q} ⇒ r, it is
possible to derive the rule {p} ⇒ r. It takes one step to derive the new rule, but
it will save intermediate steps in future inferences.

In fact this situation, a form of transitivity, represents the application of cut
over the mentioned rules. In general, inference relations can be characterized
by structural rules, indicating how to derive new rules from the ones already
present. In the case of deduction, we have the structural rules of Table 2.6.

In our setting, each application of a structural rule produces a rule that can
be added to the rule set. Note that neither contraction nor permutation yield a
new rule, since the premises of our rules are given by a set.5 On the other hand,
reflexivity, monotonicity and cut can produce rules that were not present before.

Definition 2.18 (Structural operations) Let M = 〈W,R,V,A,R〉 be an IE-model.
The structural operations defined below return a model that differs from M just
in the rule set function, which in each case is defined in the following way.

5This is not to say that order or multiplicity of inference steps are irrelevant; given our
dynamic approach, they definitely matter, as changes in order or number of inference steps can
yield different results. We just mean that order and multiplicity of the premises are irrelevant
because we represent them as a set, and therefore the two mentioned operations will only
generate rules that were already considered.
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Reflexivity:
ϕ⇒ ϕ

Contraction:
ψ, χ, ξ, χ, φ⇒ ϕ

ψ, χ, ξ, φ⇒ ϕ

Permutation:
ψ, χ, ξ, φ⇒ ϕ

ψ, ξ, χ, φ⇒ ϕ
Monotonicity:

ψ,φ⇒ ϕ

ψ, χ, φ⇒ ϕ

Cut:
χ⇒ ξ ψ, ξ, φ⇒ ϕ

ψ, χ, φ⇒ ϕ

Table 2.6: Structural rules for deduction.

Reflexivity Let δ be a formula in LP and consider the rule

ςδ := ( {δ} , δ )

The rule set function R′ of the model MRefδ is given, for every w ∈W, by

R′(w) := R(w) ∪ {ςδ}

The operation (·)Refδ is called the reflexivity operation with formula δ.
Monotonicity Let δ be a formula in LP and ς a rule over it. Consider the rule

ς′ := ( pm(ς) ∪ {δ} , cn(ς) )

extending ς by adding δ to its premises. The rule set function R′ of the model
MMonδ,ς is given, for every w ∈W, by

R′(w) :=
{

R(w) ∪ {ς′} if ς ∈ R(w)
R(w) otherwise

The operation (·)Monδ,ς is the monotonicity operation with formula δ and rule ς.
Cut Let ς1, ς2 be rules over LP such that the conclusion of ς1 appears in the
premises of ς2. Consider the rule

ς′ :=
(
(pm(ς2) \ {cn(ς1)}) ∪ pm(ς1) , cn(ς2)

)
combining ς1 and ς2. The rule set function R′ of the model MCutς1 ,ς2

is given, for
every w ∈W, by

R′(w) :=
{

R(w) ∪ {ς′} if {ς1, ς2} ⊆ R(w)
R(w) otherwise

The operation (·)Cutς1 ,ς2
is called the cut operation with rules ς1 and ς2. J
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Just like the deduction operation, the three structural operations preserve
models in the class IEK.

Proposition 2.2 If M is an IEK-model, then so are MRefδ , MMonδ,ς and MCutς1 ,ς2
.

Proof. Coherence and truth for formulas as well as equivalence are immediate,
since neither access sets nor accessibility relations are modified. For coherence
and truth for rules, see Appendix A.4. �

The languageIES
D

extendsIED by closing it under existential modalities for
structural operations: if ϕ is in IES

D
, so are 〈Refδ〉ϕ, 〈Monδ,ς〉ϕ and 〈Cutς1,ς2〉ϕ.

The formulas are read as “there is a way of applying the structural operation after
which ϕ is the case”. In order to formally define their semantic interpretation,
we define the following formulas, stating the precondition of each operation.
For uniformity, we define a precondition for reflexivity; since this operation
can be defined in any situation, we define it simply as >.

PreRefδ := >
PreMonδ,ς := R ς

PreCutς1 ,ς2
:= R ς1 ∧ R ς2 ∧

(
(
∧
γ∈pm(ς2) Aγ)→ A cn(ς1)

)
Definition 2.19 (Semantic interpretation) Let (M,w) be a pointed IE-model:

(M,w) 
 〈Refδ〉ϕ iff (M,w) 
 PreRefδ and (MRefδ ,w) 
 ϕ
(M,w) 
 〈Monδ,ς〉ϕ iff (M,w) 
 PreMonδ,ς and (MMonδ,ς ,w) 
 ϕ
(M,w) 
 〈Cutς1,ς2〉ϕ iff (M,w) 
 PreCutς1 ,ς2

and (MCutς1 ,ς2
,w) 
 ϕ

Just as before, the universal modalities of the structural operations are defined
as the dual of their corresponding existential versions. Just as before, the
unfolding yields the following semantic interpretation

(M,w) 
 [Refδ]ϕ iff (M,w) 
 PreRefδ implies (MRefδ ,w) 
 ϕ
(M,w) 
 [Monδ,ς]ϕ iff (M,w) 
 PreMonδ,ς implies (MMonδ,ς ,w) 
 ϕ
(M,w) 
 [Cutς1,ς2]ϕ iff (M,w) 
 PreCutς1 ,ς2

implies (MCutς1 ,ς2
,w) 
 ϕ J

Axiom system In order to provide an axiom system for the new formulas,
Proposition 2.2 allows us to rely on the axiom system IEK once again. Table 2.7
provide axioms indicating how the truth value of formulas after the structural
operations depends on the truth value of formulas before them.

Theorem 2.4 (Reduction axioms for structural modalities) Let STR stand for
either Refδ, Monδ,ς or Cutς1,ς2 , and let ς′ stand for the corresponding new rule in
each case. Table 2.7 provides reduction axioms for the structural modalities. Together
with IEK (Theorem 2.3), they form a sound and complete axiom system for language
IE

S
D

with respect to IEK-models.
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STRp ` 〈STR〉 p ↔ (PreSTR ∧ p) STRA ` 〈STR〉Aγ ↔ (PreSTR ∧Aγ)

STR¬ ` 〈STR〉 ¬ϕ ↔ (PreSTR ∧¬〈STR〉ϕ) STRR ` 〈STR〉R ς′ ↔ PreSTR

STR∨ ` 〈STR〉 (ϕ ∨ ψ) ↔ (〈STR〉ϕ ∨ 〈STR〉ψ) STRR ` 〈STR〉R σ ↔ (PreSTR ∧R σ) for σ , ς′

STR� ` 〈STR〉�ϕ ↔ (PreSTR ∧� [STR]ϕ)

STRN From ` ϕ, infer ` [STR]ϕ

Table 2.7: Axioms and rules for the reflexivity, monotonicity and cut modalities.

Proof. Just like the reduction axioms for the deduction modality, soundness fol-
lows from the validity of the new axioms and the validity-preserving property
of the new rules. Strong completeness follows from the fact that, by a repeated
application of such axioms, any structural operation formula can be reduced
to a formula in IED, for which we already have a sound and strongly complete
axiom system with respect to IEK-models. �

The three structural operations have similar reduction axioms. The differ-
ence between them is the precondition for each one to take place, and the new
rule each one introduces. While the reflexivity operation with δ can be per-
formed in any case, adding the rule {δ} ⇒ δ, the monotonicity operation with
δ and ς can be performed only if the agent has already the rule ς, producing a
rule that extends ς’s premises with δ. Finally, the cut operation with ς1 and ς2

can be performed only if ς2’s premises include ς1’s conclusion and the agent
has already these both rules, producing a rule whose premises are those of ς2

minus ς1’s conclusion plus those of ς1, and whose conclusion is that of ς2.
The relevant axioms of Table 2.7 are those expressing how rule sets are

affected by structural operations; from them we can derive validities analogous
to those given at the end of Section 2.4.1 for the case of access sets and deduction.

2.4.3 Combining dynamics

Strictly speaking, we do not need axioms relating deduction and structural
operations. We can focus on the deepest occurrence of them, apply the corre-
sponding reduction axioms to eliminate it and then proceed with the next until
we remove all the operation modalities. Nevertheless, it is interesting to see
how the operations interact between them; in particular, it is interesting to see
how deduction is affected by structural operations.

We finish this section presenting the validities of Table 2.8, expressing how
deduction after structural operations is related to deduction before them. For
each structural operation, the first formula indicates that the operation does
not affect deduction with a rule different from the new one, and the second
indicates how deduction with the new rule changes. For this last case, the
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formula presents a disjunction of two possibilities: the new rule was already
in the original rule set (so just deduction is needed) or it was not (so we ask for
some requisites). As an example, the second formula for monotonicity indicates
that a sequence of this operation and then deduction with the generated rule
ς′ is equivalent to a single deduction with ς′ (if ς′ was already present) or to
a sequence of deduction with ς and then monotonicity with the agent having
explicitly knowledge about the added premise δ and the original rule ς. See
Appendix A.5 for details about the validity proofs.

Reflexivity with ςδ the rule {δ} ⇒ δ

〈Refδ〉 〈↪→σ〉ϕ ↔ 〈↪→σ〉 〈Refδ〉ϕ for σ , ςδ
〈Refδ〉 〈↪→ςδ〉ϕ ↔

(
〈↪→ςδ〉ϕ ∨ (A δ ∧ 〈Refδ〉ϕ)

)
Monotonicity with ς′ the rule pm(ς) ∪ {δ} ⇒ cn(ς)

〈Monδ,ς〉 〈↪→σ〉ϕ ↔ 〈↪→σ〉 〈Monδ,ς〉ϕ for σ , ς′

〈Monδ,ς〉 〈↪→ς′〉ϕ ↔
(
〈↪→ς′〉ϕ ∨ (A δ ∧ R ς ∧ 〈↪→ς〉 〈Monδ,ς〉ϕ)

)
Cut with ς′ the rule (pm(ς2) \ {cn(ς1)}) ∪ pm(ς1)⇒ cn(ς2)

〈Cutς1,ς2〉 〈↪→σ〉ϕ ↔ 〈↪→σ〉 〈Cutς1,ς2〉ϕ for σ , ς′

〈Cutς1,ς2〉 〈↪→ς′〉ϕ ↔
(
〈↪→ς′〉ϕ ∨ (A pm(ς1) ∧ R ς1 ∧ (A cn(ς1)→ 〈↪→ς2〉 〈Cutς1,ς2〉ϕ))

)
Table 2.8: Formulas relating structural operations and deduction.

2.5 Observation

So far, our language can express just internal dynamics. We can express how de-
ductive steps modify explicit knowledge, and even how structural operations
extend the available rules, but we cannot express how knowledge is affected by
external interaction. We now add the other fundamental source of information;
we extend our framework to express the effect of observations.

This action has been already studied in a DEL setting: an observation is
interpreted as an operation that removes those worlds where the observed fact
does not hold (Definition 1.5). In our framework we have a finer representation
of the agent’s information: we distinguish between an implicit form, given
by the accessibility relation, and an explicit one, given by the access sets.
Then, even after fixing the effect of an observation over the agent’s implicit
information, there are several possibilities for how the operation will affect
the explicit part, each one of them representing a different way in which the
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agent processes external information. Here, we present one of the possible
definitions, what we call an explicit observation.

2.5.1 Explicit observation

Different kinds of observations may affect the agent’s explicit information in
different ways. For example, if the observation is a formula, one option is to
keep the A-sets as before (an implicit observation); another possibility is to add
a rule without premises that will allow the agent to derive the observation one
inferential step later (a semi-explicit observation). An explicit observation has
the most intuitive effect: it adds the observed formula to its corresponding set.

Definition 2.20 (Explicit observation operation) Let M = 〈W,R,V,A,R〉 be an
IE-model, and let χ be a formula of (a rule based on) LP. The model Mχ!+ =
〈W′,R′,V′,A′,R′〉 is given by

• W′ :=
{
w ∈W | (M,w) 
 χ

} (
W′ :=

{
w ∈W | (M,w) 
 tr(χ)

})
,

• R′ := R ∩ (W′
×W′)

and, for every w ∈W′,

• V′(w) := V(w),

• A′(w) := A(w) ∪ {χ}
(
A′(w) := A(w)

)
,

• R′(w) := R(w)
(
R′(w) := R(w) ∪ {χ}

)
.

The operation (·)χ!+ is called the explicit observation operation with χ. J

The explicit observation operation behaves just like the observation oper-
ation with respect to worlds, accessibility relation and valuation. It removes
worlds where the observation (its translation, in case the observation is a rule)
does not hold, restricting the accessibility relation to the new domain and leav-
ing unmodified the atomic valuation of the preserved worlds. With respect to
access and rule sets, explicitly observing χ adds χ itself to the corresponding set
of every world, so the agent will have the observation explicitly, as expected.

The explicit observation operation also preserves IEK-models.

Proposition 2.3 Let M be an IEK-model and let χ be a formula in (a rule based on)
LP. If M is in IEK, so is Mχ!+ .

Proof. Equivalence is immediate since we go to a sub-model, and the coherence
properties are also simple because access (rule) sets are extended uniformly.
The interesting property is truth for formulas (rules), and it follows from the
fact that χ (tr(χ)) is propositional, and that atomic valuations of the preserved
worlds are not modified. See Appendix A.6 for details. �
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The language IES
D

!+ extends IES
D

with existential modalities for explicit
observations. The new formulas 〈χ!+〉ϕ are read as “there is a way of explicitly
observing χ after which ϕ is the case”. For the agent to observe the formula χ we
need for χ to be true; for the agent to observe the rule χ we need for χ to be
truth-preserving:

Preχ!+ :=

 χ if χ is a formula
tr(χ) if χ is a rule

The semantics of explicit observation formulas is given as follows.

Definition 2.21 (Semantic interpretation) Let (M,w) be a pointed IE-model.

(M,w) 
 〈χ!+〉ϕ iff (M,w) 
 Preχ!+ and (Mχ!+ ,w) 
 ϕ

The case of its universal counterpart, defined as usual, is given by

(M,w) 
 [χ!+]ϕ iff (M,w) 
 Preχ!+ implies (Mχ!+ ,w) 
 ϕ

In words, 〈χ!+〉ϕ holds at w in M if and only if at w, the agent can observe
χ (i.e., χ is true/truth-preserving) and, after explicitly doing it, ϕ holds. J

Axiom system A sound and complete axiom system for the new language
with respect to IEK-models can be given based on those already provided and
reduction axioms for the new modality.

Theorem 2.5 (Reduction axioms for the explicit observation modality) Table
2.9 provides reduction axioms for the explicit observation modality. Together with IEK

(Theorem 2.4), they form a sound and complete axiom system for language IES
D

!+ with
respect to IEK-models. �

!+p ` 〈χ!+〉 p ↔ (Preχ!+ ∧p)

!+¬ ` 〈χ!+〉 ¬ϕ ↔ (Preχ!+ ∧¬〈χ!+〉ϕ)

!+
∨
` 〈χ!+〉 (ϕ ∨ ψ) ↔ (〈χ!+〉ϕ ∨ 〈χ!+〉ψ)

!+^ ` 〈χ!+〉^ϕ ↔ (Preχ!+ ∧^ 〈χ!+〉ϕ)

!+N From ` ϕ, infer ` [χ!+]ϕ

If χ is a formula:

!+A ` 〈χ!+〉Aχ ↔ Preχ!+

!+A ` 〈χ!+〉Aγ ↔ (Preχ!+ ∧Aγ) for γ , χ

!+R ` 〈χ!+〉Rρ ↔ (Preχ!+ ∧Rρ)

If χ is a rule:

!+A ` 〈χ!+〉Aγ ↔ (Preχ!+ ∧Aγ)

!+R ` 〈χ!+〉Rχ ↔ Preχ!+

!+R ` 〈χ!+〉Rρ ↔ (Preχ!+ ∧Rρ) for ρ , χ

Table 2.9: Axioms and rules for explicit observation modality.
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The relevant axioms are those indicating how explicit information about
formulas and rules is affected, and appear on the right column of the table. The
agent is always informed about the observation explicitly after observing it, and
any other explicit information was already present before the observation. The
axioms look similar to those for deduction and structural operations, but again
the important difference is the precondition. While in the case of deduction
and structural operations the agent needs to have enough explicit information
to extract the new piece, an observation is a more radical informational process:
it just need for the observation to be true (truth-preserving).

We finish this section like the previous one, by presenting some validities
expressing how the two informational processes considered in this chapter,
truth-preserving inference and observation, interact with each other (details
about the proof of their validity can be found in Appendix A.7). Table 2.10
presents two cases, according to whether the observed χ is a formula or a rule.
Then we make a further difference, this time according to whether the observa-
tion enables the application of a rule or not. The first formula indicates that an
observation does not affect deduction when the observation is not part of what
the agent needs to perform the inference; the second formula presents the dis-
junction of two possibilities: the observation was already explicit information
or it was not. These principles, together with those of Table 2.8, indicate how
external and internal dynamics intertwine when we process information, as it
will be shown when reviewing the restaurant example (Section 2.6).

If χ is a formula:

〈χ!+〉 〈↪→σ〉ϕ ↔ 〈↪→σ〉 〈χ!+〉ϕ for χ < pm(σ)

〈χ!+〉 〈↪→σ〉ϕ ↔
(
〈↪→σ〉 〈χ!+〉ϕ ∨ (Aχ ∧ 〈↪→σ〉 〈χ!+〉ϕ)

)
for χ ∈ pm(σ)

If χ is a rule:

〈χ!+〉 〈↪→σ〉ϕ ↔ 〈↪→σ〉 〈χ!+〉ϕ for χ , σ

〈χ!+〉 〈↪→χ〉ϕ ↔
(
〈↪→χ〉 〈χ!+〉ϕ ∨ (Rχ ∧ 〈↪→σ〉 〈χ!+〉ϕ)

)
for χ = σ

Table 2.10: Formulas relating explicit observation and deduction.

2.6 Back to the Restaurant

Let us represent the restaurant example with our framework. The new waiter’s
initial information can be given by a model M with six possible worlds, each
one of them indicating a possible distribution of the dishes, and all of them
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indistinguishable from each other. For the language, consider atomic propo-
sitions of the form pd where p stands for a person (father, mother or you) and
d stands for some dish (meat, fish or vegetarian). The waiter explicitly knows
each person will get only one dish, so we can put the rules

ρ1 : {yf} ⇒ ¬yv ρ2 : {fm} ⇒ ¬fv

and similar ones in each world. Moreover, he explicitly knows that each dish
corresponds to one person, so we can add the following rule, among any others

σ : {¬yv,¬fv} ⇒ mv

Let w be the real world, where yf, fm and mv are true. In this initial situation,
the waiter does not know neither explicitly nor implicitly that your mother has
the vegetarian dish:

(M,w) 
 ¬�mv ∧ ¬A mv

While approaching to the table, the waiter can increase the rules he knows.
This does not give him new explicit facts, but allows him to reduce the number
of inference steps he will need later. He has ρ1 and σ, and the conclusion of the
first is in the premises of the second, so he can apply cut over them, getting

ς1 : {yf,¬fv} ⇒ mv

Then, we have

(M,w) 
 〈Cutρ1,σ〉
(
¬�mv ∧ ¬A mv ∧ R ς1

)
Moreover, he can apply cut again, this time with ρ2 and ς1, obtaining the rule

ς2 : {yf, fm} ⇒ mv

Now we have

(M,w) 
 〈Cutρ1,σ〉 〈Cutρ2,ς1〉

(
¬�mv ∧ ¬A mv ∧ R ς2

)
After the answer to the first question, “Who has the fish?”, the waiter explicitly

knows that you have the fish. Four possible worlds are removed, but he still
does not know (neither explicitly nor implicitly) that your mother has the
vegetarian dish. Then,

(M,w) 
 〈Cutρ1,σ〉 〈Cutρ2,ς1〉 〈yf!+〉
(
¬�mv ∧ ¬A mv ∧ R ς2 ∧A yf

)
Then he asks “Who has the meat?”, and the answer not only gives him explicit

knowledge about the fact that your father has the meat, but also gives him
implicit knowledge about the fact that your mother has the vegetarian dish.

(M,w) 
 〈Cutρ1,σ〉 〈Cutρ2,ς1〉 〈yf!+〉 〈fm!+〉
(
�mv ∧ ¬A mv ∧ R ς2 ∧A yf ∧A fm

)
Now he can perform the final inference step:

(M,w) 
 〈Cutρ1,σ〉 〈Cutρ2,ς1〉 〈yf!+〉 〈fm!+〉
(
�mv ∧ R ς2 ∧A yf ∧A fm ∧ 〈↪→ς2〉A mv

)
Two structural operations, two explicit observations and one truth-preserving
inference are all that is needed.
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2.7 Remarks

By extending the possible worlds model with a set of formulas and a set of
rules at each possible world, the framework presented in this chapter allows
us to make a finer distinction in an agent’s information. We can represent not
only ‘epistemic’ implicit information, but also explicit information. With this
semantic model, explicit information can be defined in several ways, and the
present chapter has explored the option in which the agent’s explicit informa-
tion is given by the set of formulas she has in the evaluation point (Aϕ). Then
we have asked for extra requirements that produce true implicit and explicit
information, that is, implicit and explicit knowledge. This merging of syntax
and semantics provides us a fine grained structure that allows us to represent
the information of non-ideal (i.e., non-omniscient) agents. A list of the static
notions introduced in this chapter, including their definition and the relevant
properties the model should satisfy, is presented in Table 2.11.

Notion Definition Relevant model requirements

Implicit information �ϕ —–

Explicit information Aγ Coherence (Definition 2.13).

Implicit knowledge �ϕ Equivalence accessibility relation.

Explicit knowledge Aγ Coherence and truth (Definition 2.15).

Table 2.11: Static notions of information.

On the dynamic side, we have provided a notion of explicit observation, sim-
ilar in its effects to the observation act in DEL. But our focus is not on explicit
versions of acts already defined and studied; providing a finer representation of
an agent’s information highlights informational acts hidden before. In particu-
lar the notion of truth-preserving inference, an act that is irrelevant in standard
DEL due to the omniscient nature of the represented agents, becomes now sig-
nificant and, moreover, gets an intuitive and clear representation. But there is
more. Once our act of rule-based inference has been defined, we have shown
how structural operations allow the agent to extend the rules she can apply. In
all the cases we have provided the model operation, the corresponding modal-
ities for the language, and reduction axioms that express how the operations
modify the truth-value of formulas in the language, therefore allowing us to
derive how the notions of information are affected. We have also presented
validities describing how deduction, structural operations and observations
interact with each other. A list of the reviewed actions and a brief description
of their effect is presented in Table 2.12.
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Action Description

Truth-preserving inference. Turns implicit knowledge into explicit knowledge.

Structural operations. Add truth-preserving rules the agent can apply.

Explicit observation. Changes the agent’s implicit and explicit knowledge.

Table 2.12: Actions and their effects.

Still, there are some not completely satisfactory points in our proposal.
Among them, the most important is the one that limits the agent’s explicit
information to only propositional formulas, leaving out high-order information
(information about her own and, eventually, other agent’s information) and
information about how actions affect her and other agent’s information. The
reason for restricting access sets to purely propositional formulas is that, in
general, the truth-value of formulas of the full implicit/explicit language is not
preserved by the explicit observation operation, and then the operation does
not preserve the truth property for formulas. Under our definition of explicit
information, this property is needed to deal with the case of true information,
that is, knowledge.

Let us look at the problem in more detail. In general, a true observed formula
of the full implicit/explicit language cannot be simply added to an access set
because it may become false after being observed. Classical examples of such
cases are Moore sentences of the form p∧¬� p. Intuitively, an observation of “p
is the case and the agent does not know it (implicitly)” will make the agent to know
(implicitly) p, and therefore the observation is not true anymore. Technically, an
explicit observation of p∧¬� p keeps only those worlds in which the observation
is true in the original model, but the operation affects the accessibility relation so
¬� p will not be true in the model that results from the operation.

A first attempt to solve this limitation would be to change the definition of
the new access set function in order to keep only those formulas that are still
true in the new model. Nevertheless, such definition faces circularity. The new
access set should contain only those formulas of the original one that are still
true in the new one; but, in particular, in order to decide whether an explicit
information formula Aγ is true or not in the new model, we need the new
access set, precisely the one we are just defining.

Yang (2009) suggests another possibility. Though it is reasonable to ask
for our non-omniscient agent to have true propositional information, maybe
it is too much to ask for her to have also true high-order information. He
suggests to allow arbitrary formulas of the full language in access sets, but
restrict the truth property to purely propositional ones. As he mentions, our
non-omniscient agent does not need to realize automatically all the high-order
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consequences of the observation. Nevertheless, she should be able to realize
eventually that some explicit (high-order) information she held correctly before
has been ‘outdated’ by an informational act, and therefore she should be able
to correct herself.

There is another option. As we mentioned, the definition of explicit infor-
mation that we have used is not the only possibility. We will discuss some
other alternatives in the following chapter, when we will focus on another
action logical omniscience hides: changes in awareness.



C 3
T   

Logical omniscience is not the only idealization Epistemic Logic agents have.
In possible worlds models it is taken for granted not only that the agent can rec-
ognize as true all the formulas that are so in the worlds she considers possible; it
is also assumed that she can talk about any formula. In other words, a possible
worlds model assumes that an agent is aware of all formulas of the language.
And once again, the idealization leaves out important and interesting actions:
this time, changes in awareness.

This chapter focuses on dynamics of the awareness of notion. Such changes
are an every-day issue in our life; we can easily imagine situations where new
possibilities are introduced (you have lost your keys and someone suggest that
you may have left them in the kitchen), and others in which some possibilities
are dropped (while watching a soccer match we do not usually think about the
finite model property of modal logic).

In order to deal with dynamics of a system, we need the system first. We
will start by providing a brief summary of a famous framework for dealing
with the awareness of notion: Fagin and Halpern (1988)’s Awareness Logic.

3.1 Awareness Logic

The awareness logic of Fagin and Halpern (1988) is based on two observations.
First, the modal operator � should not be understood as the information the
agent actually has, but as the information the agent can eventually get: her
implicit information. Second, in order to make explicit her implicit information,
the agent should be aware of it.

The awareness logic language extends the base language of EL with an
operator A that allows us to build formulas of the form Aϕ.

55
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Definition 3.1 (Language L) Let P be a set of atomic propositions. Formulas
ϕ,ψ of the awareness language L are given by

ϕ ::= p | Aϕ | ¬ϕ | ϕ ∧ ψ | �ϕ

with p ∈ P. Other Boolean connectives (∨,→,↔) as well the existential modal
operator (^) are defined as usual. J

In this chapter, formulas of the form Aϕ are read as “the agent is aware of ϕ”,
and formulas �ϕ as “the agent is informed about ϕ implicitly”. The language is
interpreted in possible worlds models that assign a set of formulas to the agent
in each world, representing in this way the information she is aware of.

Definition 3.2 (Awareness model) Let P be a set of atomic propositions. An
awareness model is a tuple M = 〈W,R,A,V〉where 〈W,R,V〉 is a standard possible
worlds model (Definition 1.1), and

• A : W → ℘(L) is the awareness function, returning the formulas that the
agent ‘has in mind’. A(w) is the agent’s awareness set at w.

As usual, a pointed awareness model (M,w) also has a distinguished world w. J

The semantic interpretation of formulas in L is entirely as expected.

Definition 3.3 (Semantic interpretation) Let (M,w) be a pointed awareness
model with M = 〈W,R,A,V〉. Atomic propositions and boolean connectives
are interpreted as usual; for Aϕ and �ϕ we have:

(M,w) 
 Aϕ iff ϕ ∈ A(w)
(M,w) 
 �ϕ iff for all u ∈W, Rwu implies (M,u) 
 ϕ. J

Note how, though the syntax and the semantic representation is the same,
the awareness of notion is conceptually different from the access notion we used
in the previous chapter. While access sets are understood as ‘what the agent
has acknowledged as true’, being aware of is a matter of attention; by saying
“the agent is aware of ϕ” we simply indicate that “the agent entertains ϕ”. The
concept does not imply any attitude pro or con: the agent may believe ϕ, but
also reject it. Stated in other, but related terms, “awareness of” does not imply
“awareness that”.

On these models we can impose standard epistemic assumptions about the
accessibility relation, such as reflexivity, transitivity, and symmetry. Moreover,
further conditions can be imposed on the awareness sets, like closure under
commutation for conjunction and disjunction, or being generated by some
subset of atomic propositions, according to the specific notion of awareness
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one has in mind.1 Nevertheless, these requirements are orthogonal to the main
concern in this chapter, and we will not assume any of them.

The axiom system for awareness logic is exactly that for the minimal epis-
temic logic (Table 2.1). Since no special properties about the accessibility rela-
tion or the awareness sets are considered, no particular axioms are needed.

Let us turn now to the definition of explicit information. In order for the
agent to have explicit information about some formula, besides having it as
implicit information, the agent should be aware of it. In other words, the agent
needs “to be aware of a concept before [she] can have beliefs about it” (Fagin and
Halpern 1988). This yields the following definition for explicit information:

�ϕ ∧Aϕ

Example 3.1 In the one-world model below, the agent is implicitly informed
that p and also that q. But while she is aware of p, she is not aware of q, so her
explicit information about p and q differs.

p, q

{p}
w1

(M,w1) 
 � p ∧ � q

(M,w1) 
 A p ∧ ¬A q

(M,w1) 
 (� p ∧A p) ∧ ¬(� q ∧A q)

J

Leaving the rule set function and rule formulas aside, there are three main
differences between awareness logic and the framework we presented in the
previous chapter. First, A-sets are now interpreted as what the agent is aware
of, different from the former “agent’s explicit information”. Second, these
sets are allowed to have any formula of the awareness language, without re-
stricting them to the propositional ones like we did. Third, and maybe more
interestingly, explicit information is defined now as implicit information plus
awareness, �ϕ ∧Aϕ, different from the Aϕ we used before.

3.2 Other options for explicit information

As we have mentioned before, several authors coincide in that the � operator
should not be understood as ‘full-blooded information’ representing what the
agent actually has, but as a notion of implicit information, representing what

1Such conditions are studied in depth in Fagin and Halpern (1988) and, more recently, in
Halpern (2001).
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she can eventually get. But when it comes to defining the finer notion of explicit
information there are different opinions. Even in frameworks similar to the one
we have presented in the previous chapter there are variations. Let us leave
aside the interpretation of the A-sets for a moment, and review the options.

Explicit information as a primitive notion In the previous chapter we assumed
a primitive notion of explicit information given by the function A assigning a
set of formulas to each possible world. For a proper representation of the
knowledge notion, we needed to assume that all formulas in such sets were not
only preserved by the accessibility relation but also true in the corresponding
world. Since the last property is not preserved by standard model operations,
we had to restrict formulas in A-sets to those whose truth-value is not affected
by such changes: purely propositional formulas.

Explicit information as a defined notion The notion of explicit information
can also be defined as a combination of � and A. Fagin and Halpern (1988)
already provides us one candidate, �ϕ ∧ Aϕ, which says that ϕ is explicit
information whenever it is implicit information and belongs to the A-set of the
evaluation point.

Another interesting option arises when we take a closer look to the con-
sequences of our requirements for dealing with knowledge in the previous
chapter. We asked for propositional formulas γ in A-sets to be true (truth:
Aγ → γ), for these formulas to be preserved by the accessibility relation (co-
herence: Aγ → �Aγ) and for this relation to be reflexive (�ϕ → ϕ) (also
transitive and symmetric). Note how these properties gives us the following
equivalence.

Aγ ↔ �Aγ by coherence (→) and reflexivity (←)
↔ � (γ ∧Aγ) by truth (→) and propositional logic (←)

In IEK-models, our definition of explicit information is equivalent to� (γ ∧Aγ).
What is interesting here is how � (γ ∧Aγ) encodes the coherence and truth

requirements. The formula asks directly for γ to be present in the A-set of all
R-accessible worlds and for it to be true in each one of them; hence these two
properties are not needed anymore. Now, while coherence was a requirement
for our most general class of models, truth and reflexivity were required for
dealing with the particular case of true implicit and explicit information, that
is, implicit and explicit knowledge. But if we define explicit information as
� (ϕ ∧Aϕ), then just reflexivity is needed in order to have true implicit and
explicit information, analogous to what happen in classical Epistemic Logic.

This alternative definition has several advantages. The most important is
that since the truth property is no longer necessary, we can lift the restriction
of A-sets, allowing them to have any formula of the language, and therefore
allowing the agent to have explicit information not only about propositional
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facts, but also about her own (and eventually) other agent’s information, and
about how this information will change after actions are performed. Having
true formulas in A-sets is not needed anymore since, after an action takes place,
our new definition automatically ‘recomputes’ what is explicit information.
Besides that, we have the validity � (ϕ ∧Aϕ)→ �ϕ, so explicit information is
implicit information in the general case.

These two advantages are also shared by Fagin and Halpern (1988)’s defini-
tion of explicit information as �ϕ∧Aϕ, but there is another reason that makes
our � (ϕ ∧Aϕ) more appealing. Consider the property of explicit information
having implicit positive introspection: if the agent is explicitly informed about ϕ,
then she has implicit information about this. Under Fagin and Halpern (1988)’s
definition of explicit information, this property is expressed by the formula
(�ϕ∧Aϕ)→ � (�ϕ ∧Aϕ). But this formula is not valid in awareness models,
even when we restrict ourselves to those with transitive accessibility relations,
a property that characterizes positive introspection in EL. The following model
proves it, since at w1 it satisfies � p ∧A p but not � (� p ∧A p):

p p

{p} { }

w1

Why is this undesirable? Implicit information is understood as “the best the
agent can do”. Then, if the agent does not have implicit information about her
explicit information, intuitively she will not be able to make explicit this, that
is, she will not be able to achieve explicit positive introspection by herself.

With our alternative definition, the notion of implicit positive introspection
is expressed by � (ϕ ∧Aϕ) → �� (ϕ ∧Aϕ). The formula is not valid in the
general class of models, but it is in the class of transitive models. In other words,
with our definition, implicit positive introspection depends on the properties of
the accessibility relation, just like in classical EL. In the same way, considering an
euclidean accessibility relation gives us implicit negative introspection, witness
the validity of ¬� (ϕ ∧Aϕ)→ �¬� (ϕ ∧Aϕ).

Finally, recall that in classical EL we have not only the notion of information,
�ϕ, but also the notion of possibility: ^ϕ says that the agent considers ϕ
possible. Defining explicit information as � (ϕ ∧Aϕ) gives us also a very
natural notion: ^ (ϕ ∧Aϕ) says that the agent considers ϕ explicitly possible.

For the mentioned reasons, we will define explicit information as follows:

Exϕ := � (ϕ ∧Aϕ)

Once we have fixed a definition of explicit information, it is time to concen-
trate on our main issue: dynamics of awareness.
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3.3 Operations on awareness models

Awareness models suggest a natural and simple dynamics. Though the agent
is not logically omniscient, she can get new information by various possibly
complex acts. But we want to dig deeper. In line with our definition for explicit
information, it also makes sense to look for simple actions transforming models
that can be put together to analyze more complex informational acts. We will
see later on how these transform explicit information.

Defining the basic actions Our models have two separate components for
representing information: the accessibility relation and the awareness sets.
The following operations modify these components in a simple way, allowing
us to define complex epistemic actions later on.

The consider operation represents an “awareness raising” action:

Definition 3.4 (The consider operation) Let M = 〈W,R,A,V〉 be a model and
χ any formula in L. The model M+χ = 〈W,R,A′,V〉 is M with its awareness sets
extended with χ, that is,

A′(w) := A(w) ∪ {χ} for every w ∈W J

‘Considering’ extends the formulas that an agent is aware of, but we can
also define a drop operation with the opposite effect: reducing awareness sets.
This fits with the operational idea that agents can expand and shrink the set of
issues having their current attention.

Definition 3.5 (The drop operation) Let M = 〈W,R,A,V〉 be a model and χ a
formula in L. The model M−χ = 〈W,R,A′,V〉 reduces M’s awareness sets by
removing χ, that is,

A′(w) := A(w) \ {χ} for every w ∈W J

This operation can be seen as a form of ‘forgetting’, an action usually dis-
regarded in Dynamic Epistemic Logic (but see van Ditmarsch et al. (2009) and
van Ditmarsch and French (2009) for proposals).

The preceding actions affect what an agent is aware of. The next one, known
from DEL, modifies her implicit information by discarding those worlds where
some observed formula χ fails:

Definition 3.6 (The implicit observation operation) Let M = 〈W,R,A,V〉 be a
model and χ a formula in L. The model Mχ! = 〈W′,R′,A′,V′〉 is given by

• W′ :=
{
w ∈W | (M,w) 
 χ

}
• R′ := R ∩ (W′

×W′)

and, for every w ∈W′,

• A′(w) := A(w) • V′(w) := V(w). J
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The observation is implicit because, although it removes worlds, it does not
affect what the agent is aware of in the preserved ones.

Building complex actions Complex actions can now be built by combining
basic ones. As an example, it seems natural to think that a public observation of
some fact is in fact done consciously, generating awareness. The corresponding
operation of “explicit observation” can be defined in the following way.

Definition 3.7 The explicit observation operation, analogous in its effect to a
public announcement in PAL (Plaza 1989; Gerbrandy 1999), can be defined by
means of an implicit observation followed by an act of consideration:

MEO(χ) := (Mχ!)+χ J

The definition also works if we interchange the order of the operations
because we are transforming two independent components of our models.2

Preserving static constraints Though we have not imposed constraints on
the static awareness models, it is interesting to note that some reasonable
requirements, like our previous coherence (also called weak introspection on A-
sets) or equivalence relations for accessibility, are preserved by our operations.

Proposition 3.1 Considering preserves coherence and equivalence relations.

Proof. The equivalence property of R is obviously preserved, since R is not
modified. For coherence, take a world w in M+χ and any ϕ ∈ A′(w). Suppose
Rwu. If ϕ is already in A(w), then ϕ ∈ A(u) because M satisfies the principle,
and then ϕ ∈ A′(u) by the definition of A′. If ϕ is not in A(w), then it should be
χ itself, which by definition is also in A′(u). �

By a similar argument, the drop operation, too, preserves the two mentioned
properties.

Proposition 3.2 Dropping, too, preserves coherence and equivalence relations. �

Finally, our actions of implicit observation have the same effect:

Proposition 3.3 Implicit observation preserves coherence and equivalence relations.

Proof. Equivalence relations are preserved automatically since we go to a sub-
model. Next, for coherence, use the fact that the sub-model Mχ! has the same
awareness sets at its worlds as M, while its epistemic accessibility is a sub-
relation of that for M. �

It is also worthwhile to notice how some properties one might impose on
the A-sets (the truth property, the already mentioned closure under commu-
tation for conjunction and disjunction, or being generated by some subset of
atomic propositions, as in Fagin and Halpern (1988)) are not preserved by the
operations consider and drop.

2Still, one might argue that implicit observation and considering take place simultaneously.
While this makes sense, we will not pursue it here.
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3.4 The actions in action

Consider the following model:

p, q p,¬q

{ } { }

w1 w2

In the leftmost world, w1, the agent does not
have implicit information about q, but she is im-
plicitly informed about p, though not explicitly.

After the agent considers p, we get the model
on the right: in both worlds, the agent is now
explicitly informed about p.

p, q p,¬q

{p} {p}

w1 w2

We do not have the truth requirement of the previous chapter anymore, so our
agent can also get explicit information about her own awareness, or implicit
and explicit information. Here is how this can happen:

p, q p,¬q

{p,Ex p} {p,Ex p}

w1 w2

When she considers Ex p, we get the model on
the left. The agent has explicit information
about her having explicit information of p. By
acting, she has achieved positive introspection.

Next, consider the above explicit observation of q: an implicit
observation followed by consideration of q. This yields the
model on the right where q is now part of the agent’s explicit
information.

p, q

{p,Ex p, q}

w1

p, q

{Ex p, q}

w1

Finally, dropping p makes the agent lose earlier explicit infor-
mation about it (that is, we get ¬Ex p). Moreover, by our
definition of explicit information, she no longer has explicit
information that Ex p, since the latter formula is no longer
true, and therefore, it is no longer implicit information.3

There are many further scenarios with complex many-world patterns, but
the above will suffice to show the interest of our setting.

3This may seem strange since the formula Ex p is still in the awareness set of the world, but
this only means that the agent is aware of it, not that she still endorses it.
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3.5 A complete dynamic logic

In order to express how our dynamic operations affect awareness, implicit and
explicit information, we extend the static awareness language with modalities
representing each basic operation. If χ and ϕ are formulas in the resulting
extended language (still called L in this section), then so are

〈+χ〉ϕ there is a way of considering χ after which ϕ is the case.
〈−χ〉ϕ there is a way of dropping χ after which ϕ is the case.
〈χ!〉ϕ there is a way of observing χ implicitly after which ϕ is the case.

Definition 3.8 (Semantic interpretation) Let (M,w) be a pointed awareness
model and let χ, ϕ be formulas in the extended language L. Then,

(M,w) 
 〈+χ〉ϕ iff (M+χ,w) 
 ϕ
(M,w) 
 〈−χ〉ϕ iff (M−χ,w) 
 ϕ
(M,w) 
 〈χ!〉ϕ iff (M,w) 
 χ and (Mχ!,w) 
 ϕ

The universal versions of the modalities are defined as the dual of their respec-
tive existential, as usual. J

The main difference among the new modalities is the precondition. The
agent can consider or drop a formula χ without any further requirement, but
for her to implicitly observe χ, χ needs to be true. In particular, the lack of
precondition and the fact that the operations are functional make the semantic
interpretation of the existential and the universal modalities for the consider
and the drop operation coincide:

(M,w) 
 [+χ]ϕ iff (M+χ,w) 
 ϕ
(M,w) 
 [−χ]ϕ iff (M−χ,w) 
 ϕ

3.5.1 Dynamic completeness theorem

We now formulate a sound and complete logic for the semantic validities in
the extended language L:

Theorem 3.1 (Reduction axioms for the action modalities) The valid formulas
of the extended awareness language L in awareness models are those provable by the
axioms and rules for the static language (Table 2.1; see Section 3.1) plus the reduction
axioms and modal inference rules listed in Table 3.1. �

These axioms express the syntactic basics of the considering and dropping
operations, merged with the axioms of Observation Logic (Section 1.4). For
instance, how do the propositions that the agent is aware of change when the
agent considers χ? Our axioms show the two possibilities. After considering
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+p ` 〈+χ〉 p ↔ p +A ` 〈+χ〉Aχ ↔ >

+¬ ` 〈+χ〉 ¬ϕ ↔ ¬〈+χ〉ϕ +A ` 〈+χ〉Aϕ ↔ Aϕ for ϕ , χ

+∨ ` 〈+χ〉 (ϕ ∨ ψ) ↔ (〈+χ〉ϕ ∨ 〈+χ〉ψ)

+^ ` 〈+χ〉^ϕ ↔ ^ 〈+χ〉ϕ

+N From ` ϕ, infer ` [+χ]ϕ

−p ` 〈−χ〉 p ↔ p −A ` 〈−χ〉Aχ ↔ ⊥

−¬ ` 〈−χ〉 ¬ϕ ↔ ¬〈−χ〉ϕ −A ` 〈−χ〉Aϕ ↔ Aϕ for ϕ , χ

−∨ ` 〈−χ〉 (ϕ ∨ ψ) ↔ (〈−χ〉ϕ ∨ 〈−χ〉ψ)

−^ ` 〈−χ〉^ϕ ↔ ^ 〈−χ〉ϕ

−N From ` ϕ, infer ` [−χ]ϕ

!p ` 〈χ!〉 p ↔ (χ ∧ p) !A ` 〈χ!〉Aϕ ↔ (χ ∧Aϕ)

!¬ ` 〈χ!〉 ¬ϕ ↔ (χ ∧ ¬〈χ!〉ϕ)

!∨ ` 〈χ!〉 (ϕ ∨ ψ) ↔ (〈χ!〉ϕ ∨ 〈χ!〉ψ)

!^ ` 〈χ!〉^ϕ ↔ (χ ∧^ 〈χ!〉ϕ)

!N From ` ϕ, infer ` [χ!]ϕ

Table 3.1: Axioms and rules for the action modalities.

χ, the agent is aware of a ϕ , χ if and only if she was aware of ϕ before; but
also, considering χ always makes the agent aware of χ. The drop operation has
an analogous effect in the opposite direction. The rest of the axioms are simple
commutation clauses, indicating the independence of modifying the domain
of worlds and the awareness sets.

3.5.2 How the logic describes our major issues

Our logic states how each basic operator of the language is affected by our
three actions. By combining these effects and unfolding the definitions, the
logic also explains how the derived notion of explicit information changes under
these actions. We discuss a few cases, using our earlier definition � (ϕ ∧Aϕ),
and suppressing detailed calculations:

Explicit information For the action of considering χ and explicit information
about a different formula ϕ, an application of the reduction axioms gives us
the following valid principle

[+χ] Exϕ ↔ �
(
[+χ]ϕ ∧Aϕ

)
(for ϕ , χ)
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The principle states that after consideringχ the agent will be explicitly informed
aboutϕ if and only if she is already implicitly informed that the considering act
will makeϕ true and that she is aware ofϕ. One might have expected a simpler
direct reduction principle [+χ] Exϕ ↔ Exϕ, but this formula is not valid in
the general case, since the consider action may have changed truth values for
sub-formulas of ϕ. Nevertheless, for propositional formulas γ we do have the
validity [+χ] Exγ ↔ Exγ: considering χ does not affect explicit information
about propositional facts different from χ.

In the particular case of explicit information about χ itself, however, we get
the following.

Fact 3.1 The formula [+χ] Exχ ↔ �χ is valid.
Proof. Using our reduction axioms, we get

[+χ] Exχ ↔ [+χ]� (χ ∧Aχ)
↔ � [+χ]χ ∧ � [+χ] Aχ
↔ � [+χ]χ
↔ �χ �

The last step is justified by the following proposition.

Proposition 3.4 The formula χ↔ [+χ]χ is valid.
Proof. The reason is that, given our semantics, an act of considering χ can only
change truth values for Aχ and formulas containing it. But then, χ itself cannot
be affected by the operation, since it cannot contain Aχ. �

This shows how a consider action makes implicit information explicit.
Now consider the K axiom, the one to blame for logical omniscience in EL:

� (ϕ→ ψ) → (�ϕ→ �ψ)

This formula is still valid in awareness models, and that is reasonable since
implicit information is expected to be closed under logical consequence. But
the following formula is also valid

Ex (ϕ→ ψ) → (Exϕ→ �ψ)

The reason is that, since explicit information is also implicit, Ex (ϕ→ ψ) and
Exϕ already imply � (ϕ→ ψ) and �ϕ. Then, considering is the action that ‘fills
the gap’, turning explicit the formerly implicit information:

Ex (ϕ→ ψ) → (Exϕ→ [+ψ] Exψ) is valid

One might think that the real act here is a richer one of drawing the inference,
but in our analysis it is the explicit consideration of the conclusion what ‘gives
the last little push’ toward explicit information.4

4In Chapter 4 we ask for awareness and acknowledgement of formulas as true in order to
get explicit information. Then, the needed acts are those of awareness raising and inference.
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But our proposal can describe more, including the behaviour of explicit
information under the drop operation. Here is what happens with formulas ϕ
that differ from the dropped χ:

[−χ] Exϕ ↔ �
(
[−χ]ϕ ∧Aϕ

)
(for ϕ , χ)

For explicit information about χ itself, we get the following.

Fact 3.2 The formula [−χ] Exχ↔ �⊥ is valid.

Proof. Using our reduction axioms as above,

[−χ] Exχ ↔ [−χ]� (χ ∧Aχ)
↔ � ([−χ]χ ∧ [−χ] Aχ)
↔ � ([−χ]χ ∧ ⊥)
↔ �⊥ �

The validity states that after droppingχ the agent has explicit information about
it if and only if she is implicitly informed about contradictions. In the partic-
ular cases of consistent information (technically, seriality for the accessibility
relation) or true information (reflexivity), this validity becomes

¬[−χ] Exχ

read as “one never has explicit information about χ after dropping it”.

Still, even after dropping it, the agent does keep χ as implicit information,
witness the following valid law:

Fact 3.3 The formula Exχ→ [−χ]�χ is valid.

Proof. Again, using the axioms and unfolding the definitions,

Exχ → �χ ∧ �Aχ
→ �χ
→ � [−χ]χ
→ [−χ]�χ �

Our proof uses the following proposition, whose justification is analogous
to the one for χ↔ [+χ]χ (Proposition 3.4).

Proposition 3.5 The formula χ ↔ [−χ]χ is valid. �
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Finally, we analyze the effect of an implicit observation over explicit infor-
mation. For any ϕ and χ, unfolding the definition of explicit information via
our axioms (we suppress intermediate steps here) gives

[χ!] Exϕ↔
(
χ→ �

(
[χ!]ϕ ∧ (χ→ Aϕ)

))
The principle states that after an implicit observation of χ the agent will be
explicitly informed aboutϕ if and only if, conditional to the truth of the observation,
she is already implicitly informed that this observing act will make ϕ true and
that she is aware of ϕ. This outcome is our solution to the earlier-mentioned
problem of update making explicit information ‘out of synch’ with reality.
(Recall that this was the reason for the restriction to purely factual assertions
in the previous chapter.) Explicit information is now a defined notion, so it
automatically re-adjusts to whatever happens to the modalities � and A, and
our logic tells us precisely how.

We have extracted the effect of our basic epistemic actions over explicit
information defined as � (ϕ ∧Aϕ). Thus, we replace discussion whether the
agents’s information is closed under logical consequence by a much richer
picture of what they can do to change their information.

Moreover, this style of analysis works not only for the stated notion of
explicit information; it can also provide us with validities expressing the way
different definitions of explicit information are affected by dynamic actions,
like Fagin and Halpern (1988)’s �ϕ ∧Aϕ or others, like �ϕ ∧A�ϕ.

3.5.3 Schematic validities and algebra of actions

While all this seems a straightforward dynamic epistemic technique, there is a
catch. In deriving the principles of the previous section, we have used more
than the reduction axioms of our logic per se. Several important ‘schematic’
principles did not follow from our reduction axioms. In particular, we have
used the two principles

[+χ]χ↔ χ and [−χ]χ↔ χ

whose validity involved additional considerations. Of course, each specific
instance of such a formula can be derived, given our completeness theorem. But
that does not mean there is any illuminating uniform derivation of an “algebraic”
sort. Indeed, an explicit characterization of the schematic validities in dynamic-
epistemic logics (valid for all substitutions of formulas for proposition letters)
is a well-known open problem (cf. van Benthem (2010)), even in the case of
Public Announcement Logic. Given the importance of such general principles
here, that problem becomes even more urgent.
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Algebra of actions We end this section with one particular source of schematic
validities. As important as it is to understand how actions affect our informa-
tion, their general algebraic structure is of interest too. We briefly discuss some
validities, to show that this “algebra of actions” raises some interesting issues:

• In general, drop does not neutralize consider: [+χ] [−χ]ϕ↔ ϕ is not valid.
If the agent is initially aware of χ, consider makes no change, but drop
does, yielding a model where χ is not in the awareness set. The actual
validity is the qualified

¬Aχ→ ([+χ] [−χ]ϕ↔ ϕ)

• The dual case behaves in the same way: consider does not neutralize drop
in general, but we do have:

Aχ→ ([−χ] [+χ]ϕ↔ ϕ)

As for unqualified algebraic laws, we do have idempotence:

• A sequence of consider actions for the same formula has the same effect as
a single one, and the drop operation behaves similarly:

[+χ]ϕ↔ [+χ] [+χ]ϕ and [−χ]ϕ↔ [−χ] [−χ]ϕ

Next, given the dynamics of the system, we do not expect strong commuta-
tion laws between considering and dropping (the fact that they do not cancel
each other gives us a clue). Nevertheless, we do expect commutation of these
operations with implicit observation, since the latter modifies an independent
component of our models. For example, the following formulas

[χ!] [+χ]ϕ↔ [+χ] [χ!]ϕ and [χ!] [−χ]ϕ↔ [−χ] [χ!]ϕ,

are valid even for formulas χ using the modality A. The reason is, once again,
that the operations +χ and −χ can only change the truth value of Aχ, and
hence that of χ cannot be affected.

This action algebra, yielding more validities when we restrict our attention
to just factual assertions, clearly involves uniform schematic validities that once
more are not immediately obvious from our earlier completeness theorem.
In fact, PAL itself (what we have called observation logic) has an algebra of
actions describing the behaviour of successive announcements, but it tends to
go unnoticed since two successive announcements can be compressed into a
single one, as the following validity indicates:

[χ1!] [χ2!]ϕ↔ [(χ1 ∧ [χ1!]χ2)!]ϕ

This compression disappears when the operation changes the accessibility
relation, as it is done in dynamic epistemic logics for changes in preferences or
beliefs: two successive upgrades cannot be compressed into a single one (van
Benthem and Liu 2007; van Benthem 2007).



3.6. From single to multi-agent scenarios 69

3.6 From single to multi-agent scenarios

So far, we have considered activities of single agents, including not only their
observations, but also their acts of awareness raising. Now, the latter are
typically private, and hence it makes sense to look at scenarios with privacy.
But a bit paradoxically, privacy only becomes visible in a multi-agent setting.
Here is a first simple illustration with two agents:

Example 3.2 Consider the following model M, generalizing the single-agent
framework to a multi-agent setting in a straightforward way:

p

A1 = {}

A2 = {}

w1

1, 2
In the unique world of the model, w1, each agent is implicitly
informed about p, but no agent is aware of p (¬A1 p ∧ ¬A2 p).
Moreover, agents have implicit information about each other’s
lack of awareness about p. E.g., agent 2 is implicitly informed
that agent 1 is not aware of p (�2¬A1 p).

Now let an event take place: agent 1 considers p. The model M+p1 is given by

p

A1 = {p}

A2 = {}

w1

1, 2

In the new situation, agent 1 is aware of p (A1 p), and now
has explicit information about it. But there is more: though
agent 2 does not have any new explicit information, she is now
implicitly informed that agent 1 is aware of p (�2A1 p).

Is this a realistic scenario? Independently of the modelling, it seems strange that
an internal action that takes place only in agent 1’s mind can affect immediately
the information of agent 2. This shows the need of a more detailed analysis of
how awareness models should change in a setting that allows not only public
but also private actions. J

3.6.1 Multi-agent static framework

The extension of the static awareness framework to a setting with many agents
in a group Ag is straightforward. In the language of multi-agent L, we just
add agent indexes to the A and the � modalities (Ai and �i, respectively). In
the semantic models, R becomes a function from Ag to ℘(W ×W) returning an
accessibility relation Ri for each agent i ∈ Ag, and A becomes a function from
Ag×W to ℘(L) returning the awareness set Ai(w) of each agent i at each possible
world w. The semantic interpretation of formulas is then as before, using Ai

and Ri to interpret formulas of the form Ai ϕ and �iϕ, respectively.
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Again, in this multi-agent case we will not impose special semantic con-
straints. But it is interesting to notice that if we had been dealing with the
notion of knowledge, going from public to private actions would have made us
to change the notion to one in which information is not required to be true (just
as in DEL in general). This is because, being unable to observe some actions,
an agent’s information can go out of synch with reality.

3.6.2 Multi-agent actions: the general case

To make our actions private, we need a mechanism in which we can represent
actions that affect different agents in different ways. The action models of Baltag
et al. (1999) allow us to do that. The key observation behind them is that, just
as the agent can be uncertain about which one is the real world, she can also
be uncertain about which particular event has taken place. In such situations,
the uncertainty of the agent about the action can be represented with a model
similar to that used for representing her uncertainty about the static situation.

More precisely, an action model consists of a collection of possible events
connected by means of an accessibility relation, indicating the events each agent
considers possible. Different from the worlds of a possible worlds model, and
as their name indicate, each event is not understood as a possible state of affairs,
but as an event that might have taken place. Instead of associating them with
an atomic valuation, each event is associated with a precondition, indicating
what that particular event requires to take place.

In order to make action models suitable for our purposes, we will extend
them in essentially the manner of van Benthem et al. (2006) where, besides
affecting the agent’s uncertainty, action models can also affect the real world.
In our case, besides affecting the agent’s uncertainty, our action models will
also be able to affect the agent’s awareness.

Definition 3.9 (Multi-agent action model) With P the set of atomic proposi-
tions and Ag the finite set of agents, a multi-agent action model is a tuple
C = 〈E,T,Pre,PosA〉where

• 〈E,T,Pre〉 is an action model (Baltag et al. 1999) with E a finite non-empty
set of events, T : Ag → ℘(W × W) a function returning an accessibility
relation Ti for each agent i ∈ Ag and Pre : E→ L the precondition function
indicating the requirement for each event to be executed;

• PosA : (Ag × E × ℘(L)) → ℘(L) is the postcondition function, assigning a
new set of formulas in L to every tuple of an agent, event, and (old) set
of formulas in L.

A pointed action model (C, e) has a distinguished event e. J
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Observe how, in our action model, each event e comes not only with a
precondition Pre(e), a formula expressing what e needs to take place), but also
with a postcondition PosAi(e,X), the set of formulas agent i would be aware of if
e takes place. This function PosA is a generalization of the substitution function
in van Benthem et al. (2006) for representing factual change.

We have defined the way we will represent our actions. It is now time to
define how they will affect the agent’s information.

Definition 3.10 (Product update) Let M = 〈W,R,A,V〉 be a multi-agent aware-
ness model and let C = 〈E,T,Pre,PosA〉 be a multi-agent action model. The
product update operation ⊗ yields the model M ⊗ C = 〈W′,R′,A′,V′〉, given by

• W′ :=
{
(w, e) | (M,w) 
 Pre(e)

}
• R′i(w1, e1)(w2, e2) iff Riw1w2 and Tie1e2

and, for every (w, e) ∈W′,

• V′(w, e) := V(w)

• A′i(w, e) := PosAi(e,Ai(w)) J

The set of worlds of the model M ⊗ C is given by the restricted cartesian
product of W and E: a pair (w, e) will be a world in the new model if and only
if event e can be executed at world w. For each agent i, her uncertainty about
the situation after an action, R′i , is a combination of her uncertainty about the
situation before the action, Ri, and her uncertainty about the action, Ti. The agent
will not distinguish (w2, e2) from (w1, e1) if and only if she does not distinguish
w2 from w1 and e2 from e1. Or, from the opposite perspective, the agent will
distinguish (w2, e2) from (w1, e1) if and only if she already distinguishes w2 from
w1, or e2 from e1. For the new atomic valuation, each world (w, e) inherits that
of its static component w: an atom p holds at (w, e) if and only if p holds at w.

Now observe how the function PosA works: for each agent i and each event
e, PosA takes agent i’s awareness set at w in M, and returns her awareness set
at (w, e) in M ⊗ C. Note how PosA does not have restrictions on the format of
the definition; in fact, it can even return a new awareness set that is completely
unrelated to the original one. The cases of interest in this chapter have a simple
definition, and more uniform expressions will be explored in Chapter 5.

In order to express how product updates affect the agents’ information, the
extended multi-agent language L has extra modalities: if (C, e) is a pointed action
model and ϕ is a formula in the extended multi-agent L, then so is 〈C, e〉ϕ. The
semantic interpretation of these new formulas is as follows:

Definition 3.11 (Semantic interpretation) Let (M,w) be a pointed multi-agent
model and let (C, e) be a pointed action model with C = 〈E,T,Pre,PosA〉.

(M,w) 
 〈C, e〉ϕ iff (M,w) 
 Pre(e) and (M ⊗ C, (w, e)) 
 ϕ J

It is time to look at concrete cases illustrating the mechanism.
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3.6.3 Public consider and drop

To begin with, our multi-agent setting generalizes the single agent case, since
we can define action models for our earlier (now public) consider and drop
operations.

Definition 3.12 (Public consider action) Let χ be a formula in multi-agent L.
The action of agent j publicly considering χ is given by the pointed action model
(Pub j

+χ, e1) with Pub j
+χ = 〈E,T,Pre,PosA〉 defined as

• E := {e1} • Ti := {(e1, e1)} for every agent i

• Pre(e1) := > •

 PosA j(e1,X) := X ∪ {χ}

PosAi(e1,X) := X for i, j

e1

PosA1(X) := X ∪ {χ}

PosA2(X) := X

1, 2

The diagram on the left shows the action model Pub1
+χ

in the 2-agent case (with the precondition omitted).

J

Definition 3.13 (Public drop action) Let χ be a formula in multi-agent L. The
action of agent j publicly dropping χ is given by the pointed action model
(Pub j

−χ, e1), which differs from a public considering only in its postcondition
function for j in e1:

PosA j(e1,X) := X \ {χ} J

The public versions of the actions have just one event, and their accessibility
relations Ti indicate that all involved agents recognize this. Moreover, the pre-
condition in the unique world is simply >. Then, the application of (Pub j

+χ, e1)
((Pub j

−χ, e1), respectively) on a multi-agent static model M yields a copy of M
in which χ has been added to (removed from, respectively) the awareness set
of agent j in all worlds.

3.6.4 Private consider and drop

But our mechanism can also define private actions. Here are simple versions of
the earlier consider and drop. As usual, these encode what takes place, but also
how different agents ‘view’ this.
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Definition 3.14 (Private consider action) Let χ be a formula in multi-agent L.
The action of agent j privately considering χ is given by the pointed action model
(Pri j

+χ, e1) with Pri j
+χ = 〈E,T,Pre,PosA〉 defined as

• E := {e1, e2} • Ti :=

{(e1, e1), (e2, e2)} if i = j

{(e1, e2), (e2, e2)} otherwise

• Pre(e1) = Pre(e2) := > •

 PosA j(e1,X) := X ∪ {χ}, PosA j(e2,X) := X

PosAi(e1,X) := X, PosAi(e2,X) := X for i, j

e1

PosA1(X) := X ∪ {χ}

PosA2(X) := X

e2

PosA1(X) := X

PosA2(X) := X

1

2

1, 2

The diagram on the left shows the
model Pri1

+χ for 2 agents (preconditions
again omitted).

J

Definition 3.15 (Private drop action) Let χ be a formula in multi-agent L. The
action of agent j privately dropping χ is given by the pointed action model
(Pri j

−χ, e1), which differs from a private considering only in its postcondition
function for j in e1:

PosA j(e1,X) := X \ {χ} J

The difference between the public and the private version of the actions
is that the private actions involve two events: one in which χ is added to
(removed from) agent j’s awareness set (the event e1), and another in which
there is no change (the event e2). Moreover, the accessibility relations Ti indicate
that, while j recognizes which event is the real one (our e1), the other agents do
not consider that event possible, sticking to the ‘no change’ option. Then, the
application of (Pri j

+χ, e1) ((Pri j
−χ, e1), respectively) on a multi-agent static model

M yields a model containing two copies of M: one, recognized as the real one
only by j, in which j’s awareness set has changed, and another, viewed by the
other agents as the only possibility, in which nothing has happened.

Example 3.3 Recall the model M from Example 3.2. After agent 1 considers p
privately (i.e., after applying (Pri1

+p, e1)), we get a better version of the initial
situation that started the thread of this section:



74 Chapter 3. The dynamics of awareness

p

A1 = {p}

A2 = {}

(w1, e1)

p

A1 = {}

A2 = {}

(w1, e2)

1

2

1, 2 In the evaluation point, (w1, e1), agent 1 is
aware of p (A1 p), just like she does after pub-
licly considering p. But this time, agent 2’s im-
plicit information does not change: she is still
implicitly informed that agent 1 is not aware
of p (�2¬A1 p).

J

3.6.5 Unconscious versions

The flexibility of the postcondition mechanism is great. We can represent many
further scenarios, even unconscious actions, hidden from all agents, including
the one that ‘performs’ it! We just give an illustration:

Definition 3.16 (Unconscious drop action) Let χ be a formula in the multi-
agent L. The action of agent j unconsciously dropping χ is given by the pointed
action model (Unc j

−χ, e1), differing from its private counterpart only in the defi-
nition of the accessibility relation:

• Ti := {(e1, e2), (e2, e2)} for all agents i

e1

PosA1(X) := X ∪ {χ}

PosA2(X) := X

e2

PosA1(X) := X

PosA2(X) := X

1, 2

1, 2

The diagram on the left depicts
Unc1

−χ in a 2-agent scenario.

J

Example 3.4 Consider the model (M ⊗ Pri1
+p, (p, e1)) of Example 3.3. If agent 1

unconsciously drops p, we get the following updated model:

p
A2 = {}

A1 = {}

((w1, e1), e1)

p
A2 = {}

A1 = {p}

((w1, e1), e2)

p
A1 = {}

A2 = {}

((w1, e2), e1)

p
A1 = {}

A2 = {}

((w1, e2), e2)

1

2

1

2

1, 2
1, 2

In
(
(w1, e1), e1

)
, agent 1 is not

aware of p (¬A1 p), but she is
implicitly informed that she is
aware of it (�1A1 p).
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The updated model contains two copies of the original one. Here, agent
1 considers only the rightmost world of the upper copy, and agent 2 only the
rightmost world of the lower one. J

Much more can be said about this scenario, and we feel that we have a
promising take here on unconscious actions such as forgetting. But our purpose
here was just to demonstrate the flexibility of the framework.

3.6.6 Completeness of the multi-agent system

In principle, there is a complete axiom system for our product update mecha-
nism for awareness, and it looks like our earlier single-agent logic, with indices
attached. Its principles for atomic formulas, boolean operations, and implicit
knowledge are the usual ones from Dynamic Epistemic Logic DEL. As an illus-
tration, we have the valid equivalence

` 〈C, e〉^iϕ ↔ Pre(e)→
∨
Ti e f

^i〈C, f 〉ϕ

But to formulate a precise result, the crucial issue is stating the right reduc-
tion axiom for awareness given the postconditions. Consider the earlier axioms
that we gave for our two basic syntactic operations of consider and drop. These
described the postconditions (the effect of the operations on the A-sets) inside
the language, exploiting the simple format of their effects. For instance, we
have ϕ in our A-set after an act +χ if we had ϕ before, or ϕ is actually the
just added formula χ. This case distinction in the reduction axiom reflects
directly the simple disjunctive definition of the postcondition for the action χ!:
A′(w) := A(w) ∪ {χ}.

The same is true in our more general setting with action models: simple
definitions of postconditions in our action models will allow us to provide matching
reduction axioms. Consider, as an illustration, the system in van Benthem et al.
(2006); it allows factual change by modifying the set of worlds in which each
atomic proposition is true. But this new set is not an arbitrary one; it is defined
syntactically by means of a formula of the language. This suggest that, in
order to get a proper completeness theorem, we should look for some uniform
syntactic expressions from which reduction axioms can be derived. We will
deal with this issue in Chapter 5.

Though we have merely made some proposals, the defined actions show
the power of a simple syntactic extension of the well-known DEL action models
and its product update.
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3.7 Remarks

In this chapter we have noticed that, besides the lack of acknowledgement of
a given formula as true, there is another reason for which an agent may have
just implicit information about it: she may not be aware of it. This notion
has been the main protagonist of the present chapter. Based in the Awareness
Logic of Fagin and Halpern (1988), we have discussed its role in the definition
of the notion of explicit information, presenting several possibilities that make
also use of the implicit information notion. Table 3.2 summarizes the notions of
information discussed in this chapter and the definition we have worked with.

Notion Definition Relevant model requirements

Awareness of Aϕ —–

Implicit information �ϕ —–

Explicit information � (ϕ ∧Aϕ) —–

Table 3.2: Static notions of information.

Here it is important to emphasize again the difference in the interpretation
of the A-sets in this and the previous chapter. In Chapter 2 we discuss an agent
that does not need to be omniscient because she does not need to recognize
every true formula as such; in that case the A-sets are interpreted directly as
the agent’s explicit information. In the present chapter we have discussed an
agent that does not need to be omniscient because she does not need to have
full attention; in this case the A-sets are interpreted as those formulas the agent
is aware of, but this does not imply any attitude, positive or negative, about
them. Note that awareness by itself is not enough to provide the agent explicit
information (we are aware of many possibilities, but that definitely does not
imply that we assume that all of them are true); this is another reason why
we have changed our definition of explicit information from the Aϕ of the
previous chapter, to the current � (ϕ ∧Aϕ).

On the dynamic side, just like in the previous chapter, the introduction
of finer notions of information has allowed us to describe acts that, though
important for real human agents, have been neglected in the classical DEL lit-
erature due to the strong idealization of the represented agents. In this case,
the highlighted acts are those that change the information the agent is aware of
(therefore modifying her explicit information), and we have provided a formal
representation for two of them: consider, an act of awareness raising, and drop,
an act of awareness reduction. For the third static notion discussed in this
chapter, implicit information, we have not only recalled an action that affects
it, implicit observation (the PAL public announcement), but also shown how an
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explicit version, explicit observation, can be defined with the help of the con-
sider action. Moreover, we have made the jump from a single-agent case to a
multi-agent scenario, and we have observed that, in public, privacy becomes
important. Accordingly, we have provided proper multi-agent representation
for private and even unconscious versions of the awareness-changing acts al-
ready proposed for the single-agent case. These defined actions sketch the
power of a syntactic extension of well-known action models and product up-
date, and further examples of their application will be presented in Chapter 5.
Table 3.3 summarizes the actions that have been defined in this chapter.

Action Description

Consider (in its public and
private versions).

The agent becomes aware of a formula.

Drop (in its public and pri-
vate versions).

The agent loses awareness of a formula.

Implicit observation. Changes the agent’s implicit information.

Explicit observation. Changes the agent’s implicit and explicit information.

Table 3.3: Actions and their effects.

The notion of awareness (and its dual, unawareness) has been an interesting
research topic not only in Logic (Ågotnes and Alechina 2007; van Ditmarsch
et al. 2009) but also in Computer Science Halpern (2001); Halpern and Rêgo
(2005, 2009) and particularly in Economics (Modica and Rustichini 1994; Dekel
et al. 1998; Modica and Rustichini 1999; Heifetz et al. 2003; Board and Chung
2006; Sillari 2006; Samet 2007). Dynamics of the notion have been recently
explored also in van Ditmarsch and French (2009) and Hill (2010). Our partic-
ular approach shows how a significant informational dynamics can take place
over existing awareness models, generalizing acts of observation and aware-
ness change. It also shows how this leads to useful technical systems, and we
have provided results about them in the spirit of Dynamic Epistemic Logic.
Thus, we have shown that the ‘reductionist approach’ to explicit knowledge in
terms of implicit semantic knowledge and syntactic awareness is feasible and
interesting in its own right.

During the present chapter some new issues have arisen. Our multi-agent
setting can describe many more agent activities than what we have shown, and
we have only scratched the surface. Also, many technical issues remain open,
like the issue of schematic validities and action algebra. In the case of the first,
there is already one interesting result: the set of schematic validities in Public
Announcement Logic is decidable (Holliday et al. 2010).
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But beyond this, there is a more important question: how the two notions
of explicit information that we have worked with so far are related? In Chapter
2 we worked under the intuition that the only reason why implicit information
may not be explicit is because the agent could fail to recognize true formulas as
such, just like we may fail to recognize that the conclusion of a theorem is true.
But it is now clear that acknowledging a formula as true could not be enough
because we could still need the adequate ‘attention’ to the subject.

In the present chapter we have reduced explicit information to implicit
information plus awareness, that is, the only reason why implicit information
may not be explicit is because the agent could not have full attention, just like
we may fail to recognize that our lost keys are in the kitchen because we do not
even consider that possibility. But it is also clear that full attention could not be
enough to make explicit our implicit information because we could still need to
recognize the information as true. Think of a conclusion that I am pondering,
and that in fact follows from some premises whose truth I explicitly have. I
could still fail to see explicitly the conclusion. In fact, this shows how our
acts of awareness raising are not acts of inference, since under this chapter’s
definition, merely becoming aware of ϕ was enough to upgrade information
from implicit to explicit.

A more satisfying notion of explicit information is one that combines the
two ideas: the agent needs to be aware of the subject, but also recognize it
as true. This idea, and the focus on the particular case of true information
(knowledge) will be the topic of our next chapter.
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The two previous chapters studied the notion of explicit information by looking
at two different requirements. In Chapter 2, we asked for explicit information to
be implicit information that the agent has acknowledged as true, highlighting
the fact that a ‘real’ agent, even with full attention about the current possibilities,
may fail to recognize that some facts are indeed the case. In Chapter 3, we
asked for explicit information to be implicit information that the agent is aware
of, highlighting the fact that a ‘real’ agent, even with full reasoning abilities,
may not pay full attention to all relevant possibilities.

As we mentioned in the closing remarks of Chapter 3, we can obtain a more
satisfying notion of explicit information by putting these two ingredients to-
gether: explicit information needs attention and acknowledgement of formulas
as true. This gives us a broader range of attitudes and allows us to represent
situations that are not possible within the frameworks of the two previous
chapters, like a situation in which, though the agent has accepted something
as true, she is not paying attention to (aware of) it right now and therefore
she does not have it explicitly, or situations in which, though aware of and
implicitly informed about a fact, the agent still fails to recognize it as true.

This chapter starts by looking at a definition of explicit information that
involves the two mentioned requirements, putting particular attention on the
case of true information, that is, knowledge. Then we review how some of the
already defined actions, namely changes in awareness, inference and explicit
observation (announcement in this case), work in this richer setting.

4.1 Twelve Angry Men

Consider the following quote, taken from the script of Sydney Lumet’s 1957
movie “12 Angry Men”.

79
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“You’ve listened to the testimony [. . . ] It’s now your duty to sit down and
try and separate the facts from the fancy. One man is dead. Another man’s
life is at stake. If there’s a reasonable doubt [. . . ] as to the guilt of the accused
[. . . ], then you must bring me a verdict of not guilty. If there’s no reasonable
doubt, then you must [. . . ] find the accused guilty. However you decide, your
verdict must be unanimous.”

The quote illustrates a very common collective decision-making situation:
a group of agents should put their particular information together in order to
establish whether a given state-of-affairs holds or not (Kornhauser and Sager
1986). But before the very act of voting, these scenarios typically include
a deliberation phase, and it is precisely in this phase in which new issues
are introduced and explicit information is exchanged, allowing the agents to
perform further reasoning steps and therefore reach a better ‘merging’ of their
individual information.

Take, as a more concrete example, the following excerpt from the Jury’s
deliberation in the mentioned movie.

Example 4.1 (12 Angry Men)

A: Now, why were you rubbing your nose like that?
H: If it’s any of your business, I was rubbing it because it bothers me a little.
A: Your eyeglasses made those two deep impressions on the sides of your nose.
A: I hadn’t noticed that before.
A: The woman who testified that she saw the killing had those same marks on the

sides of her nose.
. . .
G: Hey, listen. Listen, he’s right. I saw them too. I was the closest one to her.

She had these things on the side of her nose.
. . .
D: What point are you makin’?
D: She had [. . . ] marks on her nose. What does that mean?
A: Could those marks be made by anything other than eyeglasses?
. . .
D: [. . . ] How do you know what kind of glasses she wore? Maybe they were

sunglasses! Maybe she was far-sighted! What do you know about it?
C: I only know the woman’s eyesight is in question now.
. . .
C: Don’t you think the woman may have made a mistake?
B: Not guilty.

J
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The excerpt shows the dynamics of the two discussed ingredients: aware-
ness and acknowledgement of facts as true. Juror A supports the idea that the
defendant cannot be proven guilty beyond reasonable doubt, and juror H’s ac-
tion of rubbing his nose makes A aware of an issue that has not been considered
before: marks on the nose. When he considers the issue, he remembers that
the witness of the killing had such marks, and he announces it. Now everyone
knows (in particular, G remembers) that the woman had marks on the side on
her nose. Then, A draws an inference and announces what he has concluded:
the marks are due to the use of glasses. After this announcement takes place,
it is now C who performs an inference, concluding that the woman’s eyesight
can be questioned. Finally, B makes the last reasoning step, announcing then
to everybody that the defendant is not guilty beyond any reasonable doubt.

During the deliberation we can see the interplay of at least three different
notions of information: what each juror is aware of, and his implicit and explicit
information. Moreover, we can also see two of the main informational actions
we have studied, inference and changes in awareness, as well as a small variant
of a third, broadcasted explicit observations, that is, announcements.

How can we represent formally such deliberative situations? We already
have frameworks for dealing with agents that may fail to recognize formulas
as true (Chapter 2) and with agents that may lack full attention (Chapter 3),
so the natural idea is combine them. But before going into discussions of the
dynamics, we must settle down what will be the static notions of information
we will work with, and what is the relation between them.

4.2 Awareness, implicit and explicit information

The deliberation shows at least three different notions of information. The
strongest of them, that of explicit information, is what is directly available to the
agent without any further reasoning step. In our running example, all members
of the Jury are explicitly informed (in this particular case, they explicitly know)
that a killing has taken place, that a boy is being accused of the killing, and that
a woman has testified affirming that she saw the killing.

There is also information that is not directly available to the agents; infor-
mation that follows from what they explicitly know but should be ‘put in the
light’. In the example, at some stage agent D has recognized (that is, knows
explicitly) that the witness had marks on her nose. From that information it
follows that she wears glasses, but D is just implicitly informed about it; he
needs to perform an inference step to reach that conclusion.

But even if at that point D does not have explicit information about the
witness using glasses, he considers it as a possibility, just like he considers
possible for the accused to be innocent or guilty. Such possibilities are part
of the current discussion or, more syntactically, they are part of the agent’s
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current language. On the other hand, before H rubs his nose, the possibility of
the woman having or not marks in her nose is not considered by the agents:
they are not aware of that possibility. Again, just like in the previous chapter,
being aware of a possibility just means that the agent entertains it, and does not
imply by itself any attitude positive or negative towards the possibility. But also
note that not being currently aware of a possibility does not imply that an agent
does not have information about it. In our example, while H was completely
uninformed about the witness having marks on her nose or not, A knew that
the witness had such marks, but he just disregarded that information.

Here is a more mathematical example relating the three mentioned notions.
Consider an agent trying to prove that if p → q and p are the case, then so is
q. She is explicitly informed that p → q and p are the case, but she is informed
about q just implicitly: she needs to perform an inference step in order to make
it explicit. While trying to find the proof, the agent is aware of p and q, but
not of r, s and other atomic propositions. Again, this does not say that she has
or does not have relevant information about r, s and so; it just says that these
atoms are not part of the information the agent entertains right now.

Relation between the notions The relation we assume between implicit and
explicit information is as before: explicit information is implicit information that
has been ‘put in the light’ by some reasoning mechanism. Therefore, explicit
information is always part of the implicit one.

The relation between implicit information and information we are aware of
can be seen from two different perspectives. We could assume that the agent’s
implicit information is everything that the agent can get to know, including
what she would get if she became aware of every possibility. Then, the infor-
mation the agent is aware of would be part of her implicit information. From
our discussion before, it can be seen that we will adopt another perspective:
the information the agent is aware of actually defines her language, and neither
implicit nor explicit information can go beyond it. Therefore, implicit infor-
mation is part of the information the agent is aware of. Figure 4.1 shows the
hierarchy that will be used in this chapter.

Explicit
Information

Implicit
Information Awareness of

Figure 4.1: Awareness of, implicit and explicit information.
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It is important to make the following remark. The notion of awareness of we
used in the previous chapter was understood as a set of formulas. And though
Fagin and Halpern (1988) study several closure properties of it, in Chapter 3
we did not assumed any of them. In this chapter we will work with a more
restricted version of awareness: the one that is generated from a set of atomic
propositions and therefore defines the agent’s language. The intuition is that
if an agent is aware of a formula ϕ, then she should be aware of all its sub-
formulas and, in particular, she should be aware of all the atomic propositions
that appear ϕ. On the other hand, if the agent is aware of a given set of atomic
propositions, then she should be aware of any formula that can be built from it.1

Accordingly, the awareness of an agent will not be defined by a set of arbitrary
formulas, but by a set of atomic propositions.

4.3 The static framework

We start by defining the formal language that allows us to describe situations
like Example 4.1, together with its semantic model and semantic interpretation.

4.3.1 Basic language, models and interpretation

Definition 4.1 (Language L) Let P be a set of atomic propositions and let Ag be
a set of agents. Formulas ϕ,ψ and rules ρ of the language L are given by

ϕ ::= p | [i]p | Ai ϕ | Ri ρ | ¬ϕ | ϕ ∨ ψ | �iϕ
ρ ::= ({ψ1, . . . , ψnρ}, ϕ)

where p ∈ P and i ∈ Ag. We denote by L f the set of formulas of L, and by Lr

its set of rules. Other boolean connectives (∧,→,↔) as well as the existential
modalities ^i are defined as usual (^iϕ := ¬�i¬ϕ, for the latter). J

The language L extends that of EL with three new basic components: [i]p,
Ai ϕ and Ri ρ. Formulas of the form [i]p indicate that agent i has proposition p
available (at her disposal) for expressing her information, and will be used to
define the notion of awareness of. Formulas of the form Ai ϕ (access formulas)
and Ri ρ (rule-access formulas) indicate that agent i can access formula ϕ and
rule ρ, respectively. While the first will be used to define the agent’s explicit
information, the second will be used to express the processes the agent can use
to extend this explicit information. These processes, in our case syntactic rules,
deserve a brief discussion once again.

1These intuitions reflect the assumption that the agent can process negation, disjunction and
other boolean connectives without any problem. It also assumes that, in principle, the agent
does not have problem with reasoning about herself and other agents (but see the discussion
on awareness of agents).
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The rules Let us go back to our example for a moment, and consider how the
three notions of information change. The possibilities an agent considers, the
awareness of notion, change as a consequence of the appearance of a possibility
not currently considered, and the implicit information notion changes as a con-
sequence of announcements, that is, communication. But changes in explicit
information do not need to be the result of external influences; they can also
be the result of the agent’s own reasoning steps. And in order to perform such
reasoning steps the agent needs certain extra ‘procedural’ information, just like
the Pythagoras theorem is needed to get the length of the hypothenuse from
the length of the legs, or, in a simpler setting, just like modus ponens is needed
to get q from p and p → q. This is precisely the role of our syntactic rules, the
most natural way of representing this ‘procedural’ information in our logical
setting. Rules are precisely what allow the agent to infer further consequences
of her explicit information.

Let us recall the following rule-related definitions.

Definition 4.2 (Premises, conclusion and translation) Let ρ be a rule in Lr of
the form ({ψ1, . . . , ψnρ}, ϕ). We define

pm(ρ) := {ψ1, . . . , ψnρ} the set of premises of ρ
cn(ρ) := ϕ the conclusion of ρ

Moreover, we define a rule’s translation, tr(ρ) ∈ L f , as an implication whose an-
tecedent is the (finite) conjunction of the rule’s premises and whose consequent
is the rule’s conclusion:

tr(ρ) :=
( ∧
ψ∈pm(ρ)

ψ
)
→ cn(ρ)

J

Besides the already discussed formulas Ai ϕ and Ri ρ, we also have now
formulas expressing availability of atoms: [i]p. Let us discuss them.

Availability of formulas Formulas of the form [i]p allow us to express local
availability of atomic propositions, and they will allow us to define what an
agent is aware of. The notion can be extended to express local availability of
formulas of the whole language in the following way.

Definition 4.3 Let i, j be agents in Ag. Define

[i]( [ j]ϕ) := [i]ϕ [i](¬ϕ) := [i]ϕ
[i](A j ϕ) := [i]ϕ [i](ϕ ∨ ψ) := [i]ϕ ∧ [i]ψ
[i](R j ρ) := [i]ρ [i](� jϕ) := [i]ϕ

and

[i]ρ := [i]tr(ρ) J
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Intuitively, formulas of the form [i]ϕ express that ϕ is available to agent
i, and this happens exactly when all the atoms in ϕ are available to her. For
example, [i](¬p) is defined as [i]p, that is, the formula ¬p is available to agent i
whenever p is available to her. On the other hand, [i](p∨ q) is given by [i]p∧ [i]q,
that is, p ∨ q is available to agent i whenever both p and q are available to her.

Note how the definition of availability for agent i in the case of formulas
involving an agent j ( [ j]ϕ, A j ϕ, R j ρ and � jϕ) simply discard any reference to j.
With this definition, we are implicitly assuming that all agents are ‘available’
to each other, that is, all agents can talk about any other agent. Some other
approaches, like van Ditmarsch and French (2009), consider also the possibility
of agents that are not necessarily aware of all other agents. We will not pursue
such generalization here, but we emphasize that this idea has interesting conse-
quences, as we will mention once we provide our definitions for the awareness
of, implicit and explicit information notions in Section 4.3.2.

Having defined the language L, we now define the semantic model in which
the formulas will be interpreted.

Definition 4.4 (Semantic model) Let P be the set of atomic propositions and
Ag the set of agents. A semantic model for the language L is a tuple M =
〈W,Ri,V,PAi,Ai,Ri〉where:

• 〈W,Ri,V〉 is a standard multi-agent possible worlds model with W the
non-empty set of worlds, Ri ⊆W ×W an accessibility relation for each agent
i and V : W → ℘(P) the atomic valuation;

• PAi : W → ℘(P) is the propositional availability function, indicating the set
of atomic propositions agent i has at her disposal at each possible world;

• Ai : W → ℘(L f ) is the access set function, indicating the set of formulas
agent i can access (i.e., has acknowledge as true) at each possible world;

• Ri : W → ℘(Lr) is the rule set function, indicating the set of rules agent i
can access (i.e., has acknowledged as truth-preserving) at each possible
world.

The pair (M,w) with M a semantic model and w a world in it is called a pointed
semantic model. We denote by M the class of all semantic models. J

Our semantic model extends possible worlds models with three functions,
PAi, Ai and Ri, that allow us to give semantic interpretation to the new formulas.

Definition 4.5 (Semantic interpretation) Let the pair (M,w) be a pointed se-
mantic model with M = 〈W,Ri,V,PAi,Ai,Ri〉. The satisfaction relation 
 between
formulas of L and (M,w) is given by
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(M,w) 
 p iff p ∈ V(w)
(M,w) 
 [i]p iff p ∈ PAi(w)
(M,w) 
 Ai ϕ iff ϕ ∈ Ai(w)
(M,w) 
 Ri ρ iff ρ ∈ Ri(w)
(M,w) 
 ¬ϕ iff it is not the case that (M,w) 
 ϕ
(M,w) 
 ϕ ∨ ψ iff (M,w) 
 ϕ or (M,w) 
 ψ
(M,w) 
 �iϕ iff for all u ∈W, Riwu implies (M,u) 
 ϕ J

The multi-agent version of the basic epistemic axiom system is sound and
complete for this framework.

Theorem 4.1 (Sound and complete axiom system for L w.r.t. M) The axiom
system of Table 4.1 is sound and strongly complete for formulas of L w.r.t. M-models.

Prop ` ϕ for ϕ a propositional tautology MP If ` ϕ→ ψ and ` ϕ, then ` ψ

K ` �i(ϕ→ ψ)→ (�iϕ→ �iψ) Nec If ` ϕ, then ` �iϕ

Dual ` ^iϕ↔ ¬�i¬ϕ

Table 4.1: Axiom system for L w.r.t. M.

Proof. (Sketch of proof) The proof is similar to that of Theorem 2.1. The axioms
are valid and the rules preserve validity, so we get soundness. Completeness
is proved by building the standard modal canonical model with the adequate
definitions for the propositional availability, access set and rule set functions:

PAi(w) := {p ∈ P | [i]p ∈ w} Ri(w) := {ρ ∈ Lr | Ri ρ ∈ w}
Ai(w) := {ϕ ∈ L f | Ai ϕ ∈ w}

With these definitions, it is easy to show that the new formulas also satisfy the
Truth Lemma, that is,

(M,w) 
 [i]p iff [i]p ∈ w (M,w) 
 Ri ρ iff Ri ρ ∈ w
(M,w) 
 Ai ϕ iff Ai ϕ ∈ w

This gives us completeness. �

Once again, note how there are no axioms for formulas of the form [i]p,
Ai ϕ and Ri ρ. Such formulas can be seen as particular atomic propositions
that correspond to the particular valuation functions PAi, Ai and Ri. Since these
functions do not have any special property and there is no restriction in the
way they interact with each other, we do not need special axioms for them (but
see Subsection 4.3.2 for some interaction properties).

Nevertheless, Definition 4.3 gives us validities expressing the behaviour of
[i]ϕ. The formulas of Table 4.2 are valid in M-models.
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[i](¬ϕ) ↔ [i]ϕ [i]( [ j]ϕ) ↔ [i]ϕ
[i](ϕ ∨ ψ) ↔ [i]ϕ ∧ [i]ψ [i](A j ϕ) ↔ [i]ϕ
[i](� jϕ) ↔ [i]ϕ [i](R j ρ) ↔ [i]tr(ρ)

Table 4.2: Validities derived from Definition 4.3.

4.3.2 The relevant notions and basic properties

With the language, semantic model and semantic interpretation defined, it is
now time to formalize the notions informally introduced in Section 4.2.

Definition 4.6 The notions of awareness, implicit information and explicit infor-
mation are defined as in Table 4.3. J

Agent i is aware of formula ϕ Awi ϕ := �i
[i]ϕ

Agent i is aware of rule ρ Awi ρ := �i
[i]tr(ρ)

Agent i is implicitly informed about formula ϕ Imi ϕ := �i

(
[i]ϕ ∧ ϕ

)
Agent i is implicitly informed about rule ρ Imi ρ := �i

(
[i]tr(ρ) ∧ tr(ρ)

)
Agent i is explicitly informed about formula ϕ Exi ϕ := �i

(
[i]ϕ ∧ ϕ ∧Ai ϕ

)
Agent i is explicitly informed about rule ρ Exi ρ := �i

(
[i]tr(ρ) ∧ tr(ρ) ∧ Ri ρ

)
Table 4.3: Formal definitions of awareness, implicit and explicit information.

First, let us review the new definition for the notion of awareness. In
Chapter 3, this notion is given directly by the so-called awareness set: an agent
i is aware of ϕ at a world w if and only if ϕ ∈ Ai(w). Now the notion is not
defined from a set of formulas, but from a set of atomic propositions. But not
only that. This new notion of awareness needs more than just availability at
the evaluation point: the agent is aware of ϕ at a world w if and only if [i]ϕ
holds in all the worlds she considers possible. By Propositions 4.1 and 4.2 below,
[i]ϕ holds if and only if [i]p holds for every atom p of ϕ, so in fact the agent is
aware of ϕ if and only if she has available every atom of ϕ in all the worlds she
considers possible. Our notion of awareness corresponds now to a language
based on those atomic propositions that appear in the PA-set of all worlds
reachable through the agent’s accessibility relation. We emphasize that this
form of syntactic representation of awareness based on atomic propositions is
not given by a set of formulas with a special closure property (like in Fagin and
Halpern (1988)), but rather by a property on atomic propositions (the PA-sets)
lifted to a property on formulas via a recursive definition (Definition 4.3).
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The second notion, implicit information, is not independent from awareness
anymore: even if ϕ holds in all the worlds agent i considers possible, she will
not have implicit information about it unless she is aware of it.

Finally the strongest notion, that of explicit information. It asks not only for
awareness and implicit information, but also for access in all the Ri-accessible
worlds. In other words, in order to have explicit information about a given ϕ,
the agent not only should be aware of and have implicit information about it:
she should also acknowledge it as true in all the worlds she considers possible.
Here it is also important to notice how this definition follows the spirit of
the definition of explicit information of Chapter 3 in which all the needed
ingredients fall under the scope of the modal operator�i. Then, in order to deal
with true explicit information, that is, in order to deal with explicit knowledge,
we just need to ask for equivalence accessibility relations (see Subsection 4.3.3)
and no extra special properties (like truth of Chapter 2) are required. Hence,
no restrictions for formulas in the Ai-sets are needed.

The rest of this subsection will be devoted to the study of basic properties
of these notions and the way they interact with each other. We will focus on
awareness of, implicit and explicit information about formulas, but the cases for
rules can be obtained in a similar way.

The awareness of notion The notion of awareness of for agent i is now defined
in terms of the formulas the agent has available in all the worlds she can access.
We say that agent i is aware of ϕ, Awi ϕ, if and only if she has ϕ at her disposal
in all the worlds she considers possible, �i

[i]ϕ. As we have mentioned, this
notion of awareness defines the language of the agent. First, if the agent is
aware of a formula ϕ, then she is aware of all the atoms in the formula. But not
only that; if the agent is aware of a set of atomic propositions, then she is aware
of every formula built from such atoms. These statements are made formal and
proved in Proposition 4.1 and Proposition 4.2 below.

In order to prove Proposition 4.1, we first need the following lemma.

Lemma 4.1 Let the pair (M,w) be a pointed semantic model and i an agent. Let ϕ be
a formula in L, and denote by atm(ϕ) the set of atomic propositions occurring in ϕ.

If i has ϕ at her disposal, that is, if (M,w) 
 [i]ϕ, then she has at her disposal all
atoms in it, that is, (M,w) 
 [i]p for every p ∈ atm(ϕ). In other words, the formula

[i]ϕ→ [i]p

is valid for every p ∈ atm(ϕ).
Proof. We prove the following equivalent (and more semantic) statement:

(M,w) 
 [i]ϕ implies atm(ϕ) ⊆ PAi(w)

The two statements are indeed equivalent, given the semantic interpretation of
formulas of the form [i]p (Definition 4.5).
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The proof is by induction on ϕ. The base case is immediate, and the induc-
tive ones follow from the inductive hypothesis and the validities of Table 4.2
derived from Definition 4.3. Details can be found in Appendix A.8. �

Proposition 4.1 Let the pair (M,w) be a pointed semantic model and i an agent. Let
ϕ be a formula in L.

If i is aware of ϕ, that is, if (M,w) 
 Awi ϕ, then she is aware of all its atoms, that
is, (M,w) 
 Awi p for every p ∈ atm(ϕ). In other words, the formula

Awi ϕ→ Awi p

is valid for every p ∈ atm(ϕ).

Proof. Suppose (M,w) 
 Awi ϕ. Then, (M,w) 
 �i
[i]ϕ, that is, (M,u) 
 [i]ϕ for

every u such that Riwu. Pick any such u; by Lemma 4.1, (M,u) 
 [i]p for every
p ∈ atm(ϕ). Hence, (M,w) 
 �i

[i]p, that is (M,w) 
 Awi p, for every p ∈ atm(ϕ).�

In order to prove Proposition 4.2, we first need the following lemma.

Lemma 4.2 Let the pair (M,w) be a pointed semantic model and i an agent. Let
{p1, . . . , pn} ⊆ P be a set of atomic propositions.

If i has all atoms in {p1, . . . , pn} at her disposal, that is, if (M,w) 
 [i]pk for every
k ∈ {1, . . . ,n}, then she has at her disposal any formula built from such atoms, that is,
(M,w) 
 [i]ϕ for any formula ϕ built from {p1, . . . , pn}. In other words, the formula( ∧

k∈{1,...,n}

[i]pk

)
→

[i]ϕ

is valid for every ϕ built from {p1, . . . , pn}.

Proof. Again, we will prove an equivalent (and more semantic) statement:

{p1, . . . , pn} ⊆ PAi(w) implies (M,w) 
 [i]ϕ

for every ϕ built from {p1, . . . , pn}. Again, the two statements are indeed equiv-
alent because of the semantic interpretation of formulas of the form [i]p.

By assuming {p1, . . . , pn} ⊆ PAi(w), the proof proceeds by induction onϕ. The
base case is again immediate, and the inductive ones follow from the inductive
hypothesis and the validities of Table 4.2 derived from Definition 4.3. Details
can be found in Appendix A.8. �

Proposition 4.2 Let the pair (M,w) be a pointed semantic model and i an agent. Let
{p1, . . . , pn} ⊆ P be a subset of atomic propositions.
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If i is aware of all atoms in {p1, . . . , pn}, that is, if (M,w) 
 Awi pk for every
k ∈ {1, . . . ,n}, then she is aware of any formula built from such atoms, that is,
(M,w) 
 Awi ϕ for any formula ϕ built from {p1, . . . , pn}. In other words, the formula( ∧

k∈{1,...,n}

Awi pk

)
→ Awi ϕ

is valid for every ϕ built from {p1, . . . , pn}.

Proof. Suppose (M,w) 
 Awi pk for every k ∈ {1, . . . ,n}. Then, (M,w) 
 �i
[i]pk,

that is, (M,u) 
 [i]pk for every k ∈ {1, . . . ,n} and every u such that Riwu. Pick any
such u; by Lemma 4.2, (M,u) 
 [i]ϕ for any formula ϕ built from {p1, . . . , pn}.
Hence, (M,w) 
 �i

[i]ϕ, that is (M,w) 
 Awi ϕ. �

As mentioned before, our awareness of notion assumes that all agents are
aware of each other. We could drop this assumption and, following van Dit-
marsch and French (2009), extend PAi-sets to provide not only the atoms but
also the agents agent i has at her disposal in each possible world. Formulas
of the form [i]ϕ can be redefined accordingly: for example, [i](� jϕ) becomes
[i]ϕ ∧ [i] j, with [i] j true at (M,w) if and only if j ∈ PAi(w). This gives us a more
fine-grained awareness of notion, and has interesting consequences.

First, we can represent agents that are not aware of themselves by simply
not including i in the PAi-sets. Moreover, if an agent i is not aware of any
agent, then we have an agent whose explicit information can only be propo-
sitional: though she may have non-propositional formulas in her Ai-sets, she
will not have explicit information about them because she will not be aware
of them. In particular, the agent’s explicit information will be completely
non-introspective since she will not be aware of herself. Finally, consider again
the notion of introspection. In classical EL, knowledge of ϕ is defined as �ϕ
in models with equivalence accessibility relations; this gives the agent positive
and negative introspection. In the approaches of the previous and the present
chapter this is not the case for the corresponding notion of explicit knowledge
even with equivalence relations (as we will see), but the agent can reach in-
trospection by performing the adequate inference steps.2 With the mentioned
extension of agent awareness, explicit introspection becomes a matter not only
of the adequate inference, but also a privilege of self-aware agents.

The implicit information notion This notion defines everything the agent can
get to know without changing her current awareness and provided she has the
tools (that is, the rules) to perform the necessary inferences. It is defined as
everything that is true in all the worlds the agent considers possible, modulo
her current awareness.

2In the approach of Chapter 2 the agent’s explicit information is, by design, limited to propo-
sitional formulas, so no action can give explicit knowledge positive or negative introspection.
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Note how this notion has a weak form of omniscience: the agent has implicit
information about validities built from atomic propositions she is aware of.
Moreover, implicit information is closed under logical consequence.

Proposition 4.3 Let (M,w) be any pointed semantic model and let i be an agent.

• Suppose ϕ is a validity and, for every p ∈ atm(ϕ), we have (M,w) 
 Awi p.
Then (M,w) 
 Imi ϕ.

• If (M,w) 
 Imi (ϕ→ ψ) ∧ Imi ϕ, then (M,w) 
 Imiψ.

Proof. For the first property, ϕ is a validity, so it holds in any world of any
semantic model, in particular, (M,w) 
 �iϕ. Since (M,w) 
 Awi p for every
p ∈ atm(ϕ), Proposition 4.2 gives us (M,w) 
 Awi ϕ, that is, (M,w) 
 �i

[i]ϕ.
Hence (M,w) 
 �iϕ ∧ �i

[i]ϕ, that is, (M,w) 
 Imi ϕ.
For the second property, suppose (M,w) 
 Imi (ϕ→ ψ) ∧ Imi ϕ. Then we

have (M,w) 
 �i(ϕ→ ψ) ∧ �iϕ, hence we have (M,w) 
 �iψ. But we also have
(M,w) 
 �i

[i](ϕ→ ψ), hence (M,w) 
 �i
[i]ψ and therefore (M,w) 
 Imiψ. �

The explicit information notion This is the strongest of the three notions:
explicit information implies awareness and implicit information.

Since Ai-sets do not have any special requirement, nothing needs to be
explicitly known, and therefore the notion does not have any closure property.
This suits us well, since the explicit information of an agent i does not need
to have any strong closure requirement. We can easily imagine a situation
in which she is not explicitly informed about some validity she implicitly
has, like the one represented in the leftmost model of the following diagram
(with PAi- and Ai-sets presented in that order), or another in which her explicit
information is not closed under logical consequence, like the one represented
on the rightmost model.

p

{p}, { }

• Im (p ∨ ¬p)

• ¬Ex (p ∨ ¬p)
p, q

{p, q}, {p, p→ q}

• Ex p ∧ Ex (p→ q)

• ¬Ex q

But the fact that explicit information does not need to have any special prop-
erty does not mean that it cannot. From our dynamic perspective, explicit
information does not need built-in properties that guarantee the agent has cer-
tain amount of minimal information; what it needs is the appropriate set of
actions that explains how the agent gets that information.

Hierarchy of the notions By simply unfolding their definitions, it follows that
our three notions behave exactly like in Figure 4.1 (page 82).
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Proposition 4.4 (The hierarchy of the notions) In M-models, our relevant no-
tions of information have the following properties:

• explicit information ⊆ implicit information;
• implicit information ⊆ awareness of.

This hierarchy is reflected in the following validities:

Exi ϕ→ Imi ϕ and Imi ϕ→ Awi ϕ �

Interaction between the model components In our general class of models
there is no relation between propositional availability, access set and rule set
functions and accessibility relations. But by asking for particular requirements
we obtain particular kinds of agents.

Consider the following properties, relating accessibility relations with prop-
ositional availability and access, respectively.

• If available atoms are preserved by the accessibility relation, that is, if
p ∈ PAi(w) implies p ∈ PAi(u) for all worlds u such that Riwu, then agent
i’s information satisfies what we call weak introspection on available atoms,
a property characterized by the formula

[i]p→ �i
[i]p

• In a similar way, if accessible formulas are preserved by the accessibility
relation, that is, if ϕ ∈ Ai(w) implies ϕ ∈ Ai(u) for all worlds u for which
Riwu, then agent i’s information satisfies weak introspection on accessible
formulas, characterized by

Ai ϕ→ �iAi ϕ

Note the effect of these properties (similar in spirit to the coherence of Chap-
ter 2) in combination with properties of R. With preorders, PAi and Ai become
persistent; with equivalence relations, PAi and Ai become a function from equiv-
alence classes to sets of atoms and formulas, respectively. Moreover, reflexive
models with these two properties have the following validities:

• �i
[i]ϕ ↔ [i]ϕ,

• �i( [i]ϕ ∧ ϕ) ↔ ( [i]ϕ ∧ �iϕ),
• �i( [i]ϕ ∧ ϕ ∧Ai ϕ) ↔ ( [i]ϕ ∧ �iϕ ∧Ai ϕ).

This shows how, under the mentioned properties, our definitions for the three
notions coincide in spirit with the definition of explicit information of Fagin
and Halpern (1988) where access, the A-part of the definition, falls outside the
scope of the modal operator.3

3A more detailed comparison between the works is provided in Subsection 4.3.5.
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More interestingly, and as we mentioned before, our semantic models do
not impose any restriction for formulas in access sets. In particular, they can
contain formulas involving atomic propositions that are not in the correspond-
ing propositional availability set, that is, Ai ϕ ∧ ¬( [i]ϕ) is satisfiable. Models in
which formulas in access sets are built only from available atoms (semantically,
ϕ ∈ Ai(w) implies atm(ϕ) ⊆ PAi(w); syntactically, Ai ϕ → [i]ϕ) forces what we
call strong unawareness: if the agent is unaware of ϕ, then becoming aware of it
does not give her any explicit information about ϕ, simply because ϕ (or any
formula involving it) cannot be in her access set.

On the other hand, our unrestricted setting allows us to additionally repre-
sent what we call weak unawareness: becoming aware of ϕ can give the agent
explicit information about it because ϕ can be already in her access set. This
allows us to model a remembering notion: I am looking for the keys in the bed-
room, and then when someone introduces the possibility for them to be in the
kitchen, I remember that I actually left them next to the oven.

Other definable notions What about the reading of other combinations of ac-
cess to worlds with access to formulas and propositional availability? Though
we will not pursue a systematic study of all the technically definable notions
and their interpretation, a good intuition about them can be obtained by read-
ing them in terms of what they miss in order to become explicit information.
For example the EL definition of information, �iϕ, characterizes now informa-
tion that will become explicit as soon as the agent becomes aware of ϕ and
acknowledges it as true.4 In the same way, �i(ϕ ∧Ai ϕ) expresses that ϕ is a
piece of information that only needs for the agent to become aware of it in order
to become explicit information; in other words,ϕ is information the agent is not
currently aware of (some form of forgotten information), as we will see when
we use the framework to represent our running example (Subsection 4.3.4).

4.3.3 Working with knowledge

Our current definitions do not guarantee that the agent’s information is true,
simply because the real world does not need to be among the ones she considers
possible. Different from Chapter 2, in order to work with true information, that
is, with the notion of knowledge, this time we only need to work in models
where the accessibility relations are reflexive: the truth requirement is not
needed anymore. Following the standard EL approach, we will assume that
the relations are full equivalence relations.

Definition 4.7 (Class MK) A semantic model M = 〈W,Ri,V,PAi,Ai,Ri〉 is in the
class MK if and only if Ri is an equivalence relation for every agent i. J

4This emphasizes that, in classical EL, understanding �iϕ as explicit information assumes,
precisely, that the agent is aware of all relevant formulas, and has acknowledged as true those
that are so in each possible world.
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Proposition 4.5 In MK-models, every piece of implicit and explicit information is true
(in the case of formulas) and truth-preserving (in the case of rules). In other words,
Imi ϕ → ϕ and Exi ϕ → ϕ are valid in the case of formulas, and Imi ρ → tr(ρ) and
Exi ρ→ tr(ρ) in the case of rules.

Proof. For the case of formulas, we prove the first validity. Suppose (M,w) 

Imi ϕ; then (M,w) 
 �i( [i]ϕ ∧ ϕ), that is, [i]ϕ∧ϕ holds in all worlds Ri-accessible
from w. But Ri is reflexive, so [i]ϕ ∧ ϕ holds at w and then so does ϕ; hence,
Imi ϕ → ϕ is valid. The second validity follows from this and the hierarchy
proved in Proposition 4.4. The case of rules can be proved in a similar way. �

When working with models in MK, we will use the term knowledge instead of
the term information, that is, we will talk about implicit and explicit knowledge.
A sound and complete axiom system for validities of L in MK-models is given
by the standard multi-agent S5 system.

Theorem 4.2 (Axiom system for L w.r.t. MK) The axiom system of Table 4.1 plus
the axioms of Table 4.4 is sound and strongly complete for formulas of L with respect
to models in MK. �

T ` �iϕ→ ϕ for every agent i

4 ` �iϕ→ �i�iϕ for every agent i

5 ` ¬�iϕ→ �i¬�iϕ for every agent i

Table 4.4: Extra axioms for L w.r.t. MK

Introspection Let us review what introspection properties our three notions of
information have.

Our notion of awareness has positive introspection, regardless of the prop-
erties of the accessibility relation. It defines a language and does not take into
account awareness about agents, so every time an agent i is aware of a formula
ϕ, she is also aware of her being aware.

Proposition 4.6 In our general class of models M, agents are always aware of her
own awareness. In other words, we have the following validity:

Awi ϕ→ Awi Awi ϕ

Proof. Suppose Awi ϕ holds at some world in a given model. From Proposition
4.1 we know that the agent is aware of all atoms in ϕ; from Proposition 4.2
we know that she is also aware of every formula built from such atoms, in
particular, she is aware of Awi ϕ itself. �
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Note that if we consider also awareness about agents, for the awareness notion
to be positively introspective, the agent needs to be aware of herself.

On the other hand, awareness does not have negative introspection: if the
agent is not aware of ϕ, that is, if ¬Awi ϕ holds, this does not imply that she is
aware of not being aware of ϕ, that is, Awi ¬Awi ϕ does not need to hold. In
fact, what we have is the following.

Proposition 4.7 In our general class of models M, agents are not aware of her lack of
awareness. In other words, we have the following validity:

¬Awi ϕ→ ¬Awi ¬Awi ϕ

Proof. Suppose ¬Awi ϕ holds at some world in a given model. From Propo-
sition 4.2 we know that the agent is not aware of at least one atom of ϕ; then
from Proposition 4.1 we know she cannot be aware of any formula involving
such atom, in particular, she cannot be aware of ¬Awi ϕ itself. �

Now consider the notion of implicit information. In the general case we
have neither positive nor negative introspection, just like in EL. Things change
if we focus on MK-models, that is, if we focus on implicit knowledge.

In standard EL, assuming equivalence accessibility relations (in particular,
assuming transitive relations) gives �ϕ positive introspection, that is, �iϕ →
�i�iϕ. In our case, the assumption gives Imi ϕ positive introspection, that is,

Proposition 4.8 In MK-models, implicit knowledge has the positive introspection
property, that is, the following formula is valid:

Imi ϕ→ Imi Imi ϕ

Proof. Unfolding the definitions produces the following formula

�i
[i]ϕ ∧ �iϕ → �i

[i]
(
�i( [i]ϕ ∧ ϕ)

)
∧ �i�i

[i]ϕ ∧ �i�iϕ

By Propositions 4.1 and 4.2, the first conjunct of the antecedent implies the first
one of the consequent; by transitivity (axiom 4 of Table 4.4), the first and second
conjunct of the antecedent imply the second and third ones of the consequent,
respectively. �

But implicit knowledge is not negatively introspective, that is, the formula
¬Imi ϕ → Imi ¬Imi ϕ is not valid. The reason is that, though the accessibility
relation is euclidean (that is, we have axiom 5), Imi ϕ may fail because i is not
aware of ϕ; then she would not be aware of ¬Imi ϕ either and therefore she
would not know it implicitly (recall that awareness is a requisite for implicit
information, and therefore for implicit knowledge). Nevertheless, negative
introspection holds if the agent is aware of ϕ.
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Proposition 4.9 In MK-models, if the agent does not know ϕ implicitly but still she
is aware of it, then she knows implicitly that she does not know ϕ implicitly. That is,(

¬Imi ϕ ∧Awi ϕ
)
→ Imi ¬Imi ϕ

Proof. Suppose ¬Imi ϕ∧Awi ϕ holds. Then we have �i
[i]ϕ and ¬�iϕ. From the

first and Propositions 4.1 and 4.2, we get �i
[i](¬Imi ϕ). From both and axioms

4 and 5, respectively, we get �i�i
[i]ϕ and �i¬�iϕ, that is, �i¬(�i

[i]ϕ ∧ �iϕ) or,
shortening, �i¬Imϕ. These two pieces gives us Imi ¬Imi ϕ. �

For explicit information, the notion lacks positive introspection. Even if
we move to explicit knowledge, the Ai-sets do not need to satisfy any closure
property and, in particular, ϕ ∈ Ai(w) does not imply Exi ϕ ∈ Ai(w): having rec-
ognized ϕ as true does not make the agent automatically recognize her explicit
knowledge about it. Positive introspection is a property of MK-models that
additionally satisfy the just described requirement, syntactically characterized
by the formula Ai ϕ→ Ai Exi ϕ.

Proposition 4.10 In MK-models in which Ai ϕ→ Ai Exi ϕ is valid, explicit informa-
tion has the positive introspection property, that is, the following formula is valid:

Exi ϕ→ Exi Exi ϕ

Proof. Unfolding the definitions produces the following formula

�i
[i]ϕ ∧ �iϕ ∧ �iAi ϕ → �i

[i]
(
�i( [i]ϕ ∧ ϕ ∧Ai ϕ)

)
∧ �i�i

[i]ϕ

∧ �i�iϕ ∧ �i�iAi ϕ ∧ �iAi Exi ϕ

By Propositions 4.1 and 4.2, the first conjunct of the antecedent implies the first
of the consequent. By transitivity, the first, second and third conjunct of the
antecedent imply the second, third and fourth of the consequent, respectively.
Finally, the third conjunct of the antecedent and the assumed Ai ϕ → Ai Exi ϕ
imply the fifth conjunct of the consequent. �

The notion of explicit information also lacks negative introspection. This
time, even in the knowledge case (MK-models) , awareness or even the stronger
notion of implicit knowledge of ϕ are not enough; we also need to assume
also the validity of ¬�iAi ϕ → �iAi ¬Exi ϕ, a formula requiring that, if there
are epistemic alternatives where the agent has not acknowledged ϕ, then in
all epistemic alternatives she has acknowledged that she does not know ϕ
explicitly. Only then explicit knowledge gets negative introspection.
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Proposition 4.11 In MK-models in which ¬�iAi ϕ → �iAi ¬Exi ϕ is valid, if the
agent does not know ϕ explicitly but still she has implicit knowledge about it, then she
knows explicitly that she does not know ϕ explicitly. In a formula,(

¬Exi ϕ ∧ Imi ϕ
)
→ Exi ¬Exi ϕ

Proof. The antecedent of the implication gives us �i
[i]ϕ, �iϕ and ¬�iAi ϕ.

From the first we get �i
[i](¬Exi ϕ) as before. From the first, second and

third together with 4 and 5 we get �i�i
[i]ϕ, �i�iϕ and �i¬�iAi ϕ, that is,

�i¬(�i
[i]ϕ ∧ �iϕ ∧ �iAi ϕ) or, shortening, �i¬Exi ϕ. The third and the further

assumption gives us �iAi ¬Exi ϕ. These three pieces give us Exi ¬Exi ϕ. �

Though explicit knowledge does not have neither positive nor negative in-
trospection in the general case, it does have a weak form of them.

Proposition 4.12 In MK-models, explicit knowledge has the weak positive and nega-
tive introspection property, that is, the following formulas are both valid.

Exi ϕ→ Imi Exi ϕ and (¬Exi ϕ ∧Awi ϕ)→ Imi ¬Exi ϕ

Proof. The proof is similar to those of Propositions 4.8 and 4.10, by unfolding
the definitions and applying standard modal principles. �

The first statement of Proposition 4.12 says that if i has explicit knowledge
that ϕ, then she implicitly knows (that is, she should be in principle able to
infer) that she has explicit knowledge that ϕ. The second one says that if she
does not have explicit knowledge that ϕ but still she is aware of it, then she
implicitly knows that she does not have explicit knowledge.

Note how, from our dynamic perspective, the additionally properties we
have asked for to reach introspection can be understood not as static require-
ments, but as actions that, after performed, will yield the indicated results.

4.3.4 The information state of the Jury

We can now provide a formal analysis of Example 4.1.

Example 4.2 (The juror’s information) Define the following atoms:

gls: the woman wears glasses mkns: she has marks in the nose
esq: her eyesight is in question glt: the accused is guilty beyond any reasonable doubt
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A �A(tr(σ1) ∧ RA σ1) �A(mkns ∧AA mkns) AwA glt

�A(tr(σ2) ∧ RA σ2) AwA esq

�A(tr(σ3) ∧ RA σ3)

B �B(tr(σ1) ∧ RB σ1) AwB glt

�B(tr(σ2) ∧ RB σ2)
�B(tr(σ3) ∧ RB σ3)

C �C(tr(σ1) ∧ RC σ1) AwC glt

�C(tr(σ2) ∧ RC σ2)
�C(tr(σ3) ∧ RC σ3)

G �G(tr(σ1) ∧ RG σ1) �G(mkns ∧AG mkns) AwG glt

�G(tr(σ2) ∧ RG σ2)
�G(tr(σ3) ∧ RG σ3)

Table 4.5: Information state of the agents in Example 4.1.

Let the relevant rules, abbreviated as ϕ ⇒ ψ with ϕ the (conjunction of the)
premise(s) and ψ the conclusion, be the following:

σ1 : mkns⇒ gls σ2 : gls⇒ esq σ3 : esq⇒ ¬glt

Table 4.5 indicates the information state of the relevant members of the
Jury at the beginning of the conversation. In words, not only are the three
rules truth-preserving in all worlds every agent considers possible, but also
each agent has acknowledged that (first column). In other words, each one of
them accepts that if somebody has some marks on her nose then she wears
glasses, that if she wears glasses then we can question her eyesight, and that
someone with questioned eyesight cannot be a credible eye-witness. However,
only A and G have access to the bit of information which is needed to trigger
the inference, namely, that the witness had those peculiar marks on her nose
(second column). Still, this is not enough since they are not considering the
atoms mkns and gls in their ‘working languages’, that is, they are not currently
aware of these possibilities. The only bit of language they are considering
concerns the defendant being guilty or not and, in A’s case, the concern about
the witness eyesight (third column). J

All in all, the key aspect in Example 4.2 here is that the pieces of information
that can possibly generate explicit knowledge are spread across the group. The
effect of the deliberation is to share these bits through communication, which
is the topic of Section 4.4. Before getting there, however, it is worthwhile to put
the developed framework in perspective with other options for the notions of
awareness, implicit and explicit information.
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4.3.5 Other approaches

We have defined our main notions of information, studying some of their
properties in the general case (Subsection 4.3.2) as well under the assumption
of models built on equivalence classes (Subsection 4.3.3). We will now make
a brief recapitulation about alternative definitions of these notions, comparing
them with the approach of the present chapter.

Syntactic awareness vs. semantic awareness The proposed formalization of
the awareness of notion is based on the intuition that, at each state, each agent
has only a particular subset of the language at her disposal for expressing her
information. This intuition is modeled via formulas of the form [i]p for an atom
p, and their inductive extension to any formula (Definition 4.3).

This is a syntactic way to look at the atomic propositions available to agents
and, thus, to look at awareness generated by a set of atoms. An alternative se-
mantic approach can be obtained by means of a relation that holds between two
worlds whenever they coincide in the truth-value of the atomic propositions in
a given Q ⊆ P, as presented in Grossi (2009).

Definition 4.8 (Propositional equivalence up to a signature) Let P be a set of
atomic propositions, W a set of possible worlds and V an atomic valuation
function V : W → ℘(P) as before. Two worlds w,u ∈ W are propositionally
equivalent up to a signature Q ⊆ P (propositionally Q-equivalent) if and only if, for
every p ∈ Q, we have p ∈ V(w) if and only if p ∈ V(u), that is, if w and u coincide
in the atomic valuation of all atoms in Q. When w,u ∈ W are Q-equivalent, we
write w ∼Q u. Note that ∼Q is indeed an equivalence relation.5 J

We can use the relation ∼Q to define a semantic notion of awareness based
on atomic propositions. Suppose we are working with a language based on
the atoms p and q, but our agent is only aware of p. Then, intuitively, she
cannot make propositional difference between worlds that make p and q true,
and worlds that make p true but q false, simply because she cannot perceive
the only propositional difference between these worlds: the truth-value of q.

More generally, an agent cannot make propositional difference between
worlds that coincide in the truth-value of all the atoms she is aware of. In
the mentioned case the agent is only aware of p, and therefore she cannot
make a propositional distinction between two worlds w and u if V(w) = {p, q}
and V(u) = {p}, but also if V(w) = {q} and V(u) = { }. These propositionally
indistinguishable worlds are precisely the worlds related by ∼{p}.

The equivalence relation ∼Q creates equivalence classes by grouping worlds
that have the same atomic valuation for atoms in Q. Then, any propositional
formula built only from such atoms has an uniform truth-value, true or false,

5This notion of states propositionally equivalent up to a signature can be extended to a notion
of states modally equivalence up to a signature (van Ditmarsch and French 2009).
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in all the worlds of each equivalence class. So take an agent i whose available
atoms at world w are PAi(w). If she can make use of a propositional formula γ
to express her information (that is, if γ is built from atoms in PAi(w), what our
[i]γ expresses), then the formula [∼PAi(w)]γ ∨ [∼PAi(w)]¬γ is true at w, with the
‘box’ modality [∼PAi(w)] interpreted via the relation ∼PAi(w) in the standard way.

Nevertheless, the other direction does not hold: the fact that [∼PAi(w)]γ ∨
[∼PAi(w)]¬γ holds at w does not imply that γ is built only from atoms in PAi(w).
The reason is that, ultimately, the truth-value of formulas of the form [∼PAi(w)]γ
depends only on the truth-value of γ’s atoms, regardless of which ones they
actually are. For example, in a model in which p and q are true in all the
worlds, both [∼PAi(w)] p ∨ [∼PAi(w)]¬p and [∼PAi(w)] q ∨ [∼PAi(w)]¬q are true, even
if agent i can use p (p ∈ PAi(w)) but not q (q < PAi(w)). So different from our
approach, this semantic alternative does not define a language by itself.

Other approaches to awareness Let us make a brief comparison between the
approach to awareness of this chapter and other syntactic proposals.

The notion of awareness in Fagin and Halpern (1988), and hence our dy-
namization of it in Chapter 3, is modelled by assigning to each agent a set
of formulas in each possible world. Such sets, in principle, lack any partic-
ular property, but several possibilities are mentioned in that paper, including
awareness based on a set of atomic propositions like the one have discussed in
this chapter. From this perspective we can say that we look at one particular
form of awareness, but we emphasize again that our notion is not defined from
a set of formulas with some particular closure property, as Fagin and Halpern
(1988) proposes, but from a set of atoms, our PAi-sets, and then a recursive
definition of formulas build from them, our Definition 4.3.

There is a more important difference. Their notion is defined as a set of
formulas at the evaluation point: an agent is aware of ϕ at world w if and only
if ϕ is in the corresponding set of world w. This differs from our definition,
where we look not at the atomic propositions the agent has at her disposal in
the evaluation point, but at those she has in every world she considers possible. As
we have mentioned, the two definitions coincide under the assumption that
the accessibility relations are reflexive and preserve PAi-sets.

Putting aside the notion of awareness of an agent discussed before, in van
Ditmarsch and French (2009) the authors present an approach similar to ours:
each possible world assigns to each agent a set of atomic propositions, and the
notion of awareness of is defined in terms of such set. Nevertheless, they follow
Fagin and Halpern’s idea, defining the notion relative only to the evaluation
point, [i]p in our syntax. Their notion indeed defines a language, like ours, but
it does it relative to a single point and not to the worlds the agent considers
possible. Such definition allows situations like “the agent is aware of p ( [i]p in our
notation), but she is not aware of it in all the worlds she considers possible (¬�i

[i]p)”.
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Other definitions of explicit information The formal definition of explicit
information/knowledge has several variants in the literature. Among them, we
can mention the �iϕ ∧Ai ϕ (i.e., standard epistemic modality plus awareness)
of Fagin and Halpern (1988); van Ditmarsch and French (2009), and the Ai ϕ of
Duc (1997); Jago (2009); van Benthem (2008c) and our Chapter 2. The definition
we have used in this chapter follows the spirit of the one we argued for in
Section 3.2, in which all the ingredients of explicit information fall under the
scope of the modal universal modality �.

We have already argued about the reasons for going from the Ai ϕof Chapter
2 to the�i(ϕ ∧Ai ϕ) of Chapter 3 and for choosing it over the�iϕ∧Ai ϕ of Fagin
and Halpern (1988) (Section 3.2). Let us now emphasize again the reasons for
having two components [i]ϕ and Ai ϕ, that is, for distinguishing between the
formulas the agent is aware of and those she has acknowledged as true.

First, having two components accounts for cases well-known, for instance,
in mathematical practice: while trying to prove a statement we are (hopefully)
aware of all the relevant notions. But even being aware does not guarantee
that we can recognize as true what it is so. In such cases, formulas of the form
[i]ϕ allow us to express what the agent can talk about, and formulas of the form
Ai ϕ allow us to express what she has acknowledged as true (with inference
and observation the most common acts that result in such acknowledgment).

Now consider what we would get by using only one component. Having a
notion of explicit information that uses only formulas the agent has acknowl-
edged as true would fall short in capturing situations in which the agent does
not consider all relevant possibilities, like our running Jury example. On the
other hand, a definition in which only the awareness of notion is taken as an
extra component of explicit information gives us two possibilities: either this
awareness notion defines a language based on atomic propositions, or it does
not. If it does not, like in the original general awareness from Fagin and Halpern
(1988), then the agent can be aware of ϕ and ψ without being aware of ϕ ∧ ψ;
this is undesirable because, from this chapter’s perspective, becoming aware
of a possibility should also make the agents aware of boolean combinations
of it. On the other hand, if this notion is defined as a full language, like in
van Ditmarsch and French (2009), then the agent’s explicit information would
be closed under logical consequence. Being explicitly informed about ϕ and
ϕ→ ψ would mean that the agent has implicit information about both formu-
las and is also aware of them. Since implicit information is closed under logical
consequence, the agent will be implicitly informed about ψ; since the agent is
aware of ϕ → ψ, she is also aware of ψ. Therefore, the agent will be explicitly
informed about ψ, which is also clearly undesirable in our setting.

The present chapter works on the idea that two requirements are needed in
order to make explicit a piece of information. First, the agent should be aware
of that information, in the sense that such information should be a notion
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the agent can express with her current language. Second, the agent should
have also acknowledged somehow that this information is in fact true. Based
on these two extra requirements we have identified three different notions
of information, awareness of, implicit and explicit information, and we have
reviewed some of their properties. It is now time to turn our attention to the
actions that modify them.

4.4 Dynamics of information

Our framework allows us to describe the information a set of agents have at
some given stage. It is time to provide the tools that allow us to describe
how this information changes. Three are the informational actions relevant
for our example and our discussion: becoming aware, inference and public
announcement.

The first action, becoming aware, makes the agent aware of a given atomic
proposition q. This is the processes through which the agent extends her current
language, and it can be interpreted as the introduction of a topic in a conversa-
tion. The second one, inference, allows the agent to extend the information she
can access by means of a rule application. This is the process through which the
agent acknowledges as true certain information that up to this point has been
just implicit, therefore making it part of her explicit information. The third one,
announcement, represents the agent’s interaction with the external world: she
announces to the others something that she explicitly knows.

For each one of these actions, we define a model operation representing it.

Definition 4.9 (Dynamic operations) Let M = 〈W,Ri,V,PAi,Ai,Ri〉 be a seman-
tic model in M.
• Take q ∈ P and j ∈ Ag. The atomic awareness operation produces the model

M
 

j
q
= 〈W,Ri,V,PA′i ,Ai,Ri〉, differing from M just in the propositional

availability function of agent j, which is given for every world w ∈W by

PA′j(w) := PA j(w) ∪ {q}

In words, the operation j
q adds the atomic proposition q to the proposi-

tional availability set of agent j in all worlds of the model.
• Take σ ∈ Lr and j ∈ Ag. The agent inference operation produces the model

M
↪→

j
σ
= 〈W,Ri,V,PAi,A′i ,Ri〉, differing from M just in the access set function

of agent j, which is given for every world w ∈W by

A′j(w) :=
{

A j(w) ∪ {cn(σ)} if σ ∈ R j(w) and pm(σ) ⊆ A j(w)
A j(w) otherwise

In words, the operation ↪→ j
σ adds the conclusion of σ to the access set of

agent j in those worlds in which the agent has already σ and its premises.
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• Take χ ∈ L f and j ∈ Ag, and recall that atm(χ) denotes the set of atomic
propositions occurring in χ. The announcement operation produces the
model M j:χ! = 〈W′,R′i ,V

′,PA′i ,A′i ,R
′

i〉where, for every agent i ∈ Ag,

• W′ :=
{
w ∈W | (M,w) 
 Ex j χ

}
• R′i := Ri ∩ (W′

×W′)

and, for every w ∈W′,

• V′(w) := V(w) • R′i(w) := Ri(w)

• PA′i(w) := PAi(w) ∪ atm(χ) • A′i(w) := Ai(w) ∪ {χ}

In words, the operation j : χ! removes worlds where Ex j χ does not hold,
restricting the agents’ accessibility relation and the valuation to the new
domain. It also extends the agents’ propositional availability sets with
the atomic propositions occurring in χ and extends their access sets with
χ itself, preserving rule sets as in the original model. J

While the first two operations affect the model components of just one agent,
the third one affects those of all of them. Indeed, while the atomic awareness
operation  j

q affects only agent j’s PA-sets and the inference operation ↪→ j
σ

affects only agent j’s A-sets, the announcement affects the accessibility relation
as well as the PA- and A-sets of every agent. But affecting just the model-
components of a single agent, like our first two operations do, does not imply
that other agents’ information does not change. In fact, the atomic awareness
and inference operations behave similar to the ‘public’ consider operation of
Chapter 3 (Definition 3.4) in that, by modifying a model component of one
agent, they affect the information of the others. In the atomic awareness case,
 j

q makes [ j]q true in every world in the model, therefore making it true in every
world any agent i considers possible, that is, �i

[ j]q becomes true everywhere.
This does not say that every agent has now explicit information about agent j
being aware of q, but it does say that they will as soon as they become aware
of q and have access to [i]q in all the worlds they consider possible (the other
two ingredients for explicit information). Something similar happens with the
inference operation ↪→ j

σ since it makes �iA j cn(σ) true in every world of the
model. Private versions of these operations can be defined following the action
model approach of Section 3.6. We will omit details here.

The announcement operation deserves also extra words for two reasons, and
the first is the worlds that the operation discards. Note how an announcement
of χ by agent j preserves only the worlds where agent j is explicitly informed
about χ (i.e., worlds where Ex j χ holds). This is different from the observation
operation (Definition 1.5) and its explicit versions (Definitions 2.20 and 3.7),
which preserve only worlds where the observed χ holds.
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The second reason is how the operation affects the sets of formulas of the
preserved worlds. After j announces χ, only χ is added to the A-sets. This
choice represent situations in which the hearers acknowledge implicitly that
the announcer indeed is explicitly informed about χ (hence only Ex j χ-worlds
survive), but they acknowledge explicitly only χ. There are other variations
for defining an announcement; our choice has the advantage of taking the
announcer into consideration and also making the hearers explicitly informed
about the announced χ in MK-models (see Proposition 4.14 below).

Our three operations preserve models in MK.

Proposition 4.13 If M is a MK-model, so are M
 

j
q
, M

↪→
j
σ

and M j:χ!.

Proof. We just need to prove that the accessibility relations in the three new
models are equivalence relations. This is immediate for the first two since
neither the domain nor the relation are affected, and also immediate for the
third because we go to a sub-model. �

In order to express the effect of this operations over the agent’s information,
we extend the language L with three new existential modalities, 〈 j

q〉 , 〈↪→
j
σ〉

and 〈 j : χ!〉 , representing each one of our operations (their universal versions
are defined as their corresponding dual, as usual). We call this language
extended L; the semantic interpretation of the new formulas is as follows.

Definition 4.10 (Semantic interpretation) Let M = 〈W,Ri,V,PAi,Ai,Ri〉 be a se-
mantic model, and take a world w ∈W. Define the following formulas

Pre
↪→

j
σ

:=
( ∧
ψ∈pm(σ)

Ex jψ
)
∧ Ex j σ Pre j:χ! := Ex j χ

expressing the precondition for ↪→ j
σ and j : χ!, respectively. Then,

(M,w) 
 〈 j
q〉ϕ iff (M

 
j
q
,w) 
 ϕ

(M,w) 
 〈↪→ j
σ〉ϕ iff (M,w) 
 Pre

↪→
j
σ

and (M
↪→

j
σ
,w) 
 ϕ

(M,w) 
 〈 j : χ!〉ϕ iff (M,w) 
 Pre j:χ! and (M j:χ!,w) 
 ϕ J

Note how the precondition of each operation reflects its intuitive meaning.
An agent can extend her language at any point; for applying an inference with
σ she needs to know explicitly the rule and all its premises; for announcing χ,
the agent simply needs to be explicitly informed about it.

Again, we use reduction axioms in order to provide a sound and complete
axiom system for the extended language.
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` 〈 
j
q〉 p ↔ p ` 〈 

j
q〉

[i]p ↔ [i]p for i, j

` 〈 
j
q〉 ¬ϕ ↔ ¬〈 

j
q〉ϕ ` 〈 

j
q〉

[ j]p ↔ [ j]p for p,q

` 〈 
j
q〉 (ϕ ∨ ψ) ↔

(
〈 

j
q〉ϕ ∨ 〈 

j
q〉ψ
)

` 〈 
j
q〉

[ j]q ↔ >

` 〈 
j
q〉^iϕ ↔ ^i〈 

j
q〉ϕ ` 〈 

j
q〉Ai ϕ ↔ Ai ϕ

If ` ϕ, then ` [ j
q]ϕ ` 〈 

j
q〉Ri ρ ↔ Ri ρ

` 〈↪→ j
σ〉 p ↔ Pre

↪→
j
σ
∧ p ` 〈↪→ j

σ〉
[i]p ↔ Pre

↪→
j
σ
∧

[i]p

` 〈↪→ j
σ〉 ¬ϕ ↔ (Pre

↪→
j
σ
∧ ¬〈↪→ j

σ〉ϕ) ` 〈↪→ j
σ〉Ai ϕ ↔ Pre

↪→
j
σ
∧Ai ϕ for i, j

` 〈↪→ j
σ〉 (ϕ ∨ ψ) ↔

(
〈↪→ j

σ〉ϕ ∨ 〈↪→
j
σ〉ψ
)

` 〈↪→ j
σ〉A j ϕ ↔ Pre

↪→
j
σ
∧A j ϕ for ϕ,cn(σ)

` 〈↪→ j
σ〉^iϕ ↔ (Pre

↪→
j
σ
∧^i〈↪→

j
σ〉ϕ) ` 〈↪→ j

σ〉A j cn(σ) ↔ Pre
↪→

j
σ

If ` ϕ, then ` [↪→ j
σ]ϕ ` 〈↪→ j

σ〉Ri ρ ↔ Pre
↪→

j
σ
∧ Ri ρ

` 〈 j : χ!〉 p ↔ Pre j:χ! ∧ p ` 〈 j : χ!〉 [i]p ↔ Pre j:χ! ∧
[i]p for p < atm(χ)

` 〈 j : χ!〉 ¬ϕ ↔ (Pre j:χ! ∧ ¬〈 j : χ!〉ϕ) ` 〈 j : χ!〉 [i]p ↔ Pre j:χ! for p ∈ atm(χ)

` 〈 j : χ!〉 (ϕ ∨ ψ) ↔
(
〈 j : χ!〉ϕ ∨ 〈 j : χ!〉ψ

)
` 〈 j : χ!〉Ai ϕ ↔ Pre j:χ! ∧Ai ϕ for ϕ,χ

` 〈 j : χ!〉^iϕ ↔ (Pre j:χ! ∧^i〈 j : χ!〉ϕ) ` 〈 j : χ!〉Ai χ ↔ Pre j:χ!

If ` ϕ, then ` [ j : χ!]ϕ ` 〈 j : χ!〉Ri ρ ↔ Pre j:χ! ∧ Ri ρ

Table 4.6: Extra axioms for extended L w.r.t. MK

Theorem 4.3 (Reduction axioms for dynamic modalities) The valid formulas of
the language extended L in MK-models are exactly those provable by the axioms and
rules for the static base language (Tables 4.1 and 4.4) plus the reduction axioms and
modal inference rules listed in Table 4.6 (with > the always true formula). �

For the existential modalities of the three operations, 〈 j
q〉 , 〈↪→

j
σ〉 and

〈 j : χ!〉 , the reduction axioms in the case of atomic propositions p, negations ¬,
disjunctions ∨ and existential relational modalities^i (left column of the table)
are standard: the operations do not affect atomic propositions, distribute over
∨ and commute with ¬ and ^i modulo their respective preconditions.

The interesting cases are those expressing how propositional availability,
access and rule sets are affected (right column of the table). For the j

q op-
eration, the axioms indicate that only q is added exactly to the propositional
availability sets of agent j, leaving the rest of the components of the model as
before. For the ↪→ j

σ operation, the axioms indicate that only the access sets of
agent j are modified, and the modification consist in adding the conclusion of
the applied rule. Finally, axioms for the j : χ! operation indicate that while rule
sets are not affected, propositional availability sets of every agent are extended
with the atoms of χ and access sets are extended with χ itself.
Basic operations We have introduced only those operations that have a direct
interpretation in our setting. One can easily imagine situations, like our running
example, in which becoming aware, applying inference and talking to people
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are the relevant actions that change the agents’ information. Nevertheless, from
a technical point of view, our defined inference and announcement operations
can be decomposed into more basic ones.

Our inference operation modifies access sets A, adding the conclusion of the
rule whenever its premises and rule itself are present. But following ideas from
van Benthem (2008c) and our Chapter 3, we can define a more basic operation,
+χ j

ψ, that adds an arbitrary formulaχ to the access set of agent j on those worlds
satisfying certain condition ψ. The formal definition of this model operation is
straightforward. For the language, we can introduce a modality 〈+χ j

ψ〉 whose
semantic interpretation is given by

(M,w) 
 〈+χ j
ψ〉ϕ iff (M

+χ
j
ψ
,w) 
 ϕ

Now we can define our inference operation as the conjunction of its pre-
condition and a formula expressing the result of adding the rule’s conclusion
to the agent’s access sets, that is,

〈↪→
j
σ〉ϕ := Pre

↪→
j
σ
∧ 〈+cn(σ) j

ζ
〉ϕ

with ζ := R j σ∧A j pm(σ). In words, the above definition says that it is possible
for agent j to apply an inference with σ after which ϕ will be the case, 〈↪→ j

σ〉ϕ,
if and only if she knows explicitly the rule and all its premises, Pre

↪→
j
σ
, and,

after adding the rule’s conclusion to the access sets of those worlds in which
the agent has the rule and its premises, ϕ is the case, 〈+cn(σ) j

ζ〉ϕ.
Our announcement operation removes those worlds in which the announcer

is not informed explicitly about the announcement, adding the announced
formula’s atoms to the PAi-sets and the announced formula itself to the Ai-sets,
for every agent i. But following the implicit observation of the previous chapter,
we can define a more basic restriction operation, χ!!, that simply removes those
worlds that do not satisfy the given χ. Again, the formal definition of this
model operation is straightforward, and for the language we can introduce a
modality 〈χ!!〉 whose semantic interpretation is given by

(M,w) 
 〈χ!!〉ϕ iff (Mχ!!,w) 
 ϕ 6

Then, our announcement operation j : χ! can be defined as a conjunction of
its precondition and a formula expressing the result of a sequence of operations:
a restriction with Ex j χ and then awareness operations (one for every atom in
χ) and an addition of χ to the A-sets of every agent. Assuming a finite set of
them i1, . . . , im, we have

〈 j : χ!〉ϕ := Pre j:χ! ∧ 〈Ex j χ!!〉
(
〈 i1

q1
〉 · · · 〈 i1

qn
〉〈+χi1

>
〉

)
· · ·

(
〈 im

q1
〉 · · · 〈 im

qn
〉〈+χim

>
〉

)
ϕ

6Note how this operation is not the implicit observation of before; different from it, a
restriction lacks a precondition.
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with q1, . . . , qn the atomic propositions occurring in χ. Note that once the
restriction operation Ex j χ!! has taken place, the rest of the operations can be
performed in any order, yielding exactly the same model. They can even be
performed at the same time, suggesting the idea of parallel model operations
that, though interesting, will not be pursued here.

4.4.1 Some properties of the operations

Our three operations behave as expected, witness the following proposition.

Proposition 4.14

• The formula [ j
q] Aw j q is valid in the general class of M-models: after j

q,
agent j is aware of q.

• The formula [↪→ j
σ] Ex j cn(σ) is valid in the general class of M-models: after ↪→ j

σ,
agent j is explicitly informed about cn(σ).

• For χ propositional and any agent i, [ j : χ!] Exi χ is valid in the class of
MK-models: after j : χ! any agent i is explicitly informed about χ.

Proof. Pick any pointed semantic model (M,w). The first property is straight-
forward: the operation puts q in the PA j-set of every world in the model, so in
particular � j

[ j]q is true at w.
For the second one, we cover the three ingredients for explicit information.

After the inference operation the agent is aware of cn(σ) because the precon-
dition of the operation tells us that she was already aware of σ; this gives us
� j

[ j]cn(σ). Moreover, after the operation, cn(σ) itself is in the A j-set of every
world that already had σ and its premises, so in particular it is in every world
R j-accessible from w since the precondition of the operation requires that σ and
its premises were already there; this gives us � jA j cn(σ). Finally, observe that
the ↪→ j

σ operation only affects formulas containing A j cn(σ); hence, cn(σ) itself
cannot be affected. Because of the precondition, we know that cn(σ) holds in
every world R j-accessible from w in the initial model M; then, it is still true
at every world R j-accessible from w in the resulting model M

↪→
j
σ
; this gives us

� jcn(σ). Therefore, Ex j cn(σ) holds at w in M
↪→

j
σ
.

The third case is also straightforward. The operation guarantees that, after
it, �i( [i]χ ∧Ai χ) will be true at w. Moreover, the new model contains only
worlds that satisfy Ex j χ in M, and since the relation is reflexive, they also
satisfy χ in M. Now, propositional formulas depend just on the valuations,
which are not affected by the announcement operation; then the surviving
worlds will still satisfy χ in the resulting model M j:χ!. Hence, �iχ is true at w
and therefore we have Exi χ true at w in M j:χ!. �
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The property for announcements cannot be extended to arbitraryχs because
of the well-know Moore-type formulas, p ∧ ¬�ip, that become false in every
world of a model after it has been restricted to those that satisfied it.

It is interesting, though, to note a slight difference between how standard
PAL and our agents react to announcements in the Moore spirit. In PAL, after
an announcement of “p is the case and agent j does not know it”, p ∧ ¬� jp, only
p-worlds are left, and therefore �ip is true: every agent i knows that p holds.
But in our setting, though an announcement of “p is the case and agent j does not
know it explicitly”, p ∧ ¬Ex j p, does leave just p-worlds, there is no guarantee
that the agents will be informed about p explicitly. This is because, though the
announcement puts p∧¬Ex j p in the Ai-set of every world w, nothing guarantees
us that p will also be there. Agents may need a further inference step to ‘break
down’ the conjunction and then make p explicit information.

4.4.2 A brief look at a finer form of observation

Before applying the developed framework to our running example, we will
spend some words discussing an interesting variant of the removing-worlds
operations: our announcements and observations. For simplicity, we will work
with observations and we will not deal with the awareness notion. As we
have mentioned, our fine-grained framework gives us several possibilities for
defining such operations, and we have defined explicit versions that, besides
removing the worlds where the observation is false, also add the observed
formula to the A-sets of the preserved worlds (Definitions 2.20 and 3.7).

However, as it has been indicated by Hamami (2010b), these definitions
presuppose some form of omniscience from the agent. When χ is observed,
the agent gets to know that χ is true, and therefore she discards those worlds
that she recognizes as ¬χ-worlds. In the omniscient PAL, this amounts for the
agent to eliminate all worlds where ¬χ is the case, but in our non-omniscient
setting the agent may not acknowledge all the information each possible world
provides. In particular, she may not recognize a ¬χ-world as such because she
may not acknowledge that ¬χ is true in that world. Then, intuitively, if the
agent does not identify a world as a ¬χ-one, she should not eliminate it when
observing χ. So how can we address this issue?

One interesting possibility for a finer observation operation is the following.
In Epistemic Logic, the statement “the agent knows ϕ” is represented by the
formula �ϕ; then a standard observation of a certain χ removes those worlds
that the agent recognizes as ¬χ-worlds, that is, worlds where ¬χ is the case. In
our framework, the statement “the agent knows explicitlyϕ” is represented by the
formula � (ϕ ∧Aϕ); then a finer explicit observation of a certain χwill remove
those worlds that the agent recognizes as ¬χ-worlds, that is, worlds where
¬χ∧A¬χ is the case. Again, to deal with our finer knowledge representation,
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the operation will add χ to the A-sets of all remaining worlds. This definition
is closer to the spirit of our framework.

Note how, with such a definition, though some¬χ-worlds will be discarded
(those the agent recognizes as ¬χ-worlds), some of them will not (those the
agent does not recognize as ¬χ-worlds), agreeing with our intuition. But now
there is another issue: our intuition also tells us that an explicit observation of
χ should allow the agent to discard all ¬χ worlds!

The two intuitions are reconciliated through the following observation. A
finer explicit observation of χ should definitely allow the agent to eliminate
all ¬χ-worlds, but only the ones recognized as such should be eliminated
immediately after the observation. The remaining ones can be eliminated only
after they have been identified as ¬χ-worlds. In order to do this, we can introduce a
further operation, contradiction removal, that discards worlds in which the agent
has acknowledged both a formula ϕ and its negation as true, that is, worlds
where Aϕ ∧A¬ϕ is the case.

Now we can sketch the full story. After χ is observed, the agent eliminates
the ¬χ-worlds she has identified so far. Some ¬χ-worlds will survive, but
by adding χ to the A-sets of all the worlds that are not eliminated, the agent
acknowledges that χ should be the case in all of them. Then, by further
reasoning (e.g., by inference), the agent might recognize a ¬χ-worlds as such,
thereby realizing that the world contradicts the previous observation. At this
point the contradiction removal can be invoked, and then the agent will be able
to discard that world, as expected.

4.4.3 The information dynamics of the example

We conclude this chapter by going back to Example 4.1 and the formalization
of its underlying information state provided in Example 4.2. The dynamic
framework we have introduced allows us to ‘press play’ to see how the agents
interact and how their information evolves as a result of the interaction.

Example 4.3 (Information flow among the jurors) We can formalize the dy-
namics of in Example 4.1 by singling out six different stages.
Stage 1. Juror H’s action of scratching his nose makes A aware of both mkns
and gls. Then, he (A) becomes aware of the three relevant rules (he was
already questioning the eyesight of the woman, esq), and that is enough to
make the rules part of his explicit knowledge. More importantly, he also gets
explicit knowledge about mkns, since he had that information before but simply
disregarded the issue (see Table 4.5 of Example 4.2).

〈 A
mkns
〉 〈 A

gls
〉

(
AwA mkns ∧ AwA gls∧

ExA (mkns⇒ gls) ∧ ExA (gls⇒ esq) ∧ ExA (esq⇒ ¬glt)∧
ExA mkns

)
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Stage 2. Juror A has become aware of mkns so he can now introduce it to the
discussion by announcing the possibility. Since he also knows explicitly that
mkns is the case, he can also announce it, giving explicit knowledge about it to
all the members of the Jury.

〈A : AwA mkns!〉
(
AwJURY mkns ∧ ExA mkns ∧ 〈A : mkns!〉ExJURY mkns

)
Stage 3. In particular, the simple introduction of mkns to the discussion makes
it part of G’s explicit knowledge, since he was just unaware of it.

�G(mkns ∧AG mkns) ∧ ¬AwG mkns ∧ 〈A : AwA mkns!〉ExG mkns

Stage 4. Now, A can apply the rule mkns⇒ gls since after stage 1 he got explicit
knowledge about the rule and its premise. After doing it, he announces the
conclusion gls. This very act also makes aware every member of the Jury about
the possibility of questioning the eyesight of the witness.

〈↪→A
mkns⇒gls

〉

(
ExA gls ∧ 〈A : gls!〉 (ExJURY gls ∧ 〈 

JURY
esq 〉AwJURY esq)

)
Stage 5. Now aware of gls and esq, C has explicit knowledge about gls⇒ esq.
Moreover, he knows gls explicitly from A’s announcement. Then he can
perform an inference step, announcing after it that esq is indeed the case.

〈↪→C
gls⇒esq

〉

(
ExC esq ∧ 〈C : esq!〉ExJURY esq

)
Stage 6. Finally B, now explicitly knowing esq⇒ ¬glt and its premise, draws
the last inference and announces the conclusion.

〈↪→B
esq⇒¬glt

〉
(
ExB ¬glt ∧ 〈B : ¬glt!〉ExJURY ¬glt

)
Stages 1-6 can be compounded in one formula and, given Proposition 4.14,

it is not difficult to check that such formula is a logical consequence of the
information state formalized in Example 4.2. J

4.5 Remarks

In this chapter we have discussed a notion of explicit information that combines
two requirements examined separately in the two previous chapters. First, in
order to have explicit information, the agent should be aware of that informa-
tion, and in this chapter we have understood awareness as a language-related
notion: being aware of some information means that the agent is able to ex-
press that information with her current language. Second, the agent should
also acknowledge that the information is indeed true. These two requirements
are captured by the two components of each possible world: while the PA-sets
provide us with the atomic propositions the agent can use at each possible
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Notion Definition Model req.

Availability of formulas. []ϕ —–

Local access to formulas. Aϕ —–

Local access to rules. Rρ —–

Awareness about formulas. � []ϕ —–

Awareness about rules. � []tr(ρ) —–

Implicit information about formulas. � ( []ϕ ∧ ϕ) —–

Implicit information about rules. � ( []tr(ρ) ∧ tr(ρ)) —–

Explicit information about formulas. � ( []ϕ ∧ ϕ ∧Aϕ) —–

Explicit information of rules. � ( []tr(ρ) ∧ tr(ρ) ∧ Rρ) —–

Implicit knowledge about formulas. � ( []ϕ ∧ ϕ) Equiv. relation.

Implicit knowledge about rules. � ( []tr(ρ) ∧ tr(ρ)) Equiv. relation.

Explicit knowledge about formulas. � ( []ϕ ∧ ϕ ∧Aϕ) Equiv. relation.

Explicit knowledge about rules. � ( []tr(ρ) ∧ tr(ρ) ∧ Rρ) Equiv. relation.

Table 4.7: Static notions of information.

world (therefore defining the agent’s language at it), the A-sets provides us
with the formulas the agent has accepted as true, again at each possible world.
Based on combinations of these components, we can define several notions of
information; the ones we have worked with are listed in Table 4.7.

There are other notions that correspond to other combinations of access
to worlds with access to formulas and propositional availability. As men-
tioned before, a good intuition about them can be obtained by reading them in
terms of what they miss in order to become explicit information. For example,
� (ϕ ∧Aϕ) expresses that ϕ is a piece of information that will become explicit
when the agent considers the atoms in ϕ. In other words, ϕ is information that
the agent is not currently paying attention to, i.e., forgotten information.

In the dynamic part, we have ‘updated’ two of the main informational ac-
tions of the previous chapter to the new setting. An act that increase awareness
is now given not in terms of adding a specific formula, but in terms of adding
an atomic proposition. For the act of inference there has been not an important
change; given our definition of awareness as a language-related notion, the
fact that the agent has explicit information about a rule and its premises also
indicates that she is already aware of the rule’s conclusion, and therefore the ac-
tion representing the rule’s application only needs to deal with acknowledging
the conclusion as true. Finally, we have also reviewed the act of ‘broadcasted
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explicit observation’ (i.e., an announcement). In the version we have defined,
an announcement not only restricts the domain to the worlds where the an-
nouncer knows explicitly the announcement, adding the announced formula
to the acknowledgement set of every agent: it also makes the hearers aware
of the atomic propositions involved. We have also sketched a non-omniscient
version of an observation that fits better the spirit of our work. Table 4.8 shows
a summary of the properly defined actions.

Action Description

Becoming aware. The agent becomes aware of an atom (and therefore
of all formulas built from it).

Truth-preserving inference. Turns implicit knowledge into explicit knowledge.

Public announcement. An agent announces something she knows explicitly
to everyone.

Table 4.8: Actions and their effects.

Though the general framework presented in this chapter deals with infor-
mation that does not need to be true, we have spent extra time reviewing the
particular case in which the information has this property. In other words,
we have focused on the notion of knowledge, for which we have now the im-
plicit and explicit counterparts, as well as two main actions that affect them:
observations (announcements) and knowledge-based inference.

But in the introduction of this dissertation we also argued for notions of
information that does not need to be true. In fact in many situations, like our
“12 Angry Men” example, it is the agents’ beliefs what are more relevant, rather
that their knowledge.7 And once we take beliefs seriously, we should look for a
real analysis of finer notions of information in the setting of dynamic logics for
acts of belief revision that work over epistemic plausibility models (van Benthem
2007; Baltag and Smets 2008). And not only that. It also makes sense to look at
how our finer reasoning act of inference behaves in a beliefs setting.

7Nevertheless, even restricted to the notion of knowledge, our finer representation sheds
some light on the small steps that leads to the final result.
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In the previous chapters we have explored the notions of implicit and explicit
information and their dynamics, focusing in particular on the cases of implicit
and explicit knowledge. But in our daily life we usually work with incomplete
information, and therefore very few things are completely certain for us. The
public transport in Amsterdam is highly reliable and usually behaves according
to its time schedule, and nevertheless we cannot say in the absolute sense that
we know the bus will be at the bus stop on time: many unpredictable factors,
like flooded streets, snow, mechanical failure or even a car crash may take place.
In fact, if we had to act based only on what we know, we would have very little
maneuvering space. Fortunately, our attitudes toward information are more
than just ‘knowing’ and ‘not knowing’. Most of our behaviour is leaded not by
what we know, but rather by what we believe.

This chapter will focus on the study of the notions of implicit and ex-
plicit beliefs, as well as their dynamics. We will start by recalling two existing
frameworks for representing beliefs in a possible worlds models. Then we
will present our setting for representing implicit and explicit beliefs, discussing
briefly some of their properties. We emphasize that, just like in the frameworks
of the previous chapters there are several possibilities for defining explicit
knowledge, the framework we will work with now offers us several possibili-
ties for defining explicit beliefs (e.g., Velázquez-Quesada (2009b)). The one we
will use follows the idea of defining an explicit notion of information as what is
true and accepted as true in all worlds relevant for the notion (Chapters 3 and 4).

Once the static framework is settled, we will move on to discuss dynamics
of implicit and explicit beliefs. First, we will recall an existing notion of belief
revision in a DEL setting, refining it to put it in harmony with our non-omniscient
approach. Then we will move to the new action our non-omniscient agent can
perform: inferences that involve not only knowledge but also beliefs.

113
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In order to simplify the analysis of this chapter, we will focus on the single-
agent case. Moreover, we will assume that our single agent is aware of all
atomic propositions of the language, and therefore aware of all formulas in the
language generated by it. Nevertheless, we still keep our non-omniscient spirit:
though the agent will have full attention, she does not need to recognize as true
all the formulas that are so, and therefore her explicit information (in this case
her explicit beliefs) does not need to be closed under logical consequence.

5.1 Approaches for representing beliefs

Let us start by reviewing two alternatives for representing beliefs within the
possible worlds framework.

5.1.1 The KD45 approach

The classical approach for modelling knowledge in EL is to define it as what is true
in all the worlds the agent considers possible. To get a proper representation,
it is asked for the accessibility relation to be at least reflexive (making �ϕ → ϕ
valid: if the agent knows ϕ, then ϕ is true), and often to be also transitive and
euclidean (giving the agent full positive and negative introspection).

The idea behind the KD45 approach for representing beliefs is similar. The
notion is again defined as what holds in all the worlds the agent can access
from the current one, but now the accessibility relation R is asked to satisfy
weaker properties. While knowledge is usually required to be true, beliefs are
usually required to be just consistent. This is achieved by asking for R to be
not reflexive but just serial, making the D formula ¬�⊥ valid. The additional
transitivity (4) and euclideanity (5) give us full introspection.

5.1.2 Plausibility models

But beliefs are different from knowledge. Intuitively, we do not believe some-
thing because it is true in all possible situations; we believe it because it is true
in the ones we consider most likely to be the case (Grove 1988; Segerberg 2001).
This idea suggest that we should add further structure to the worlds that an
agent consider possible. They should be given not just by a plain set, like what
we get when we consider equivalence relations for representing knowledge;
there should be also a plausibility order among them, indicating which worlds
the agent considers more likely to be the case. This idea has led to the develop-
ment of variants of possible worlds models (Board 2004; van Benthem 2007),
similar to those used for conditional logics (Lewis 1973; Veltman 1985; Lamarre
1991; Boutilier 1994b). Here we recall the models we will use: the plausibility
models of Baltag and Smets (2008) with small modifications.
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The first question we should ask is, which properties should this plausibility
order satisfy? There are several options. The minimum found in Burgess (1984)
and Veltman (1985) are reflexivity and transitivity; some other authors (e.g.,
Lewis (1973)) impose also connectedness. There is no ideal choice, but we
should be sure that the properties of our relation are enough to provide a
proper definition of the notions we want to deal with.

The idea behind plausibility models is to define beliefs as what holds in the
most plausible worlds. If we want consistent beliefs, we need to be sure that this
set of maximal worlds is always properly defined. This can be done by asking
for the relation to be a locally well-preorder.

Definition 5.1 (Locally well-preorder) Let M = 〈W,≤〉 be a possible worlds
frame (that is, a possible worlds model minus the atomic valuation) in which
the accessibility relation is denoted by ≤.

For every world w ∈W, denote by Vw the comparability class of w, that is, the
set of worlds ≤-comparable to (≤-above, ≤-equivalent or ≤-below) w:

Vw := {u | w ≤ u or u ≤ w }

For every U ⊆ W, denote by Max≤(U) the set of ≤-maximal worlds of U,
that is, the set of those worlds in U that are better than all the rest in U:

Max≤(U) := {v ∈ U | for all u ∈ U, u ≤ v }

The accessibility relation≤ is said to be a locally well-preorder if and only if it is
a preorder (a reflexive and transitive relation) such that, for each comparability
class Vw and for every non-empty U ⊆ Vw, the set of maximal worlds in U is
non-empty, that is, Max≤(U) , ∅. J

Note how the existence of maximal elements in every U ⊆ Vw implies the
already required reflexivity by just taking U as a singleton. Moreover, it also
implies connectedness inside Vw (local connectedness): for any two-worlds set
U = {w1,w2}, the Max≤(U) , ∅ requirement forces us to have w1 ≤ w2 (so w2 is
the maximal), w2 ≤ w1 (w1 is the maximal), or both. In particular, if two worlds
w2 and w3 are more plausible than a given w1 (w1 ≤ w2 and w1 ≤ w3), then
these two worlds should be ≤-related (w2 ≤ w3 or w3 ≤ w2 or both). Finally,
the requirement also implies that each comparability class is conversely well-
founded, since there should be at least one element that is above the rest.

Summarizing, a locally well-preorder over a set W partitions it in one or
more comparability classes, each one of them being a connected preorder that
has maximal elements. In other words, a locally well-preorder is the same as
a locally connected and conversely well-founded preorder. In particular, because
of local connectedness, the notion of “most plausible” is global inside each
comparability class, that is, the maximal worlds in each comparability class are
the same from the perspective of any world belonging to it.

Now we can define what a plausibility model is.
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Definition 5.2 (Plausibility model) A plausibility model is a possible worlds
model M = 〈W,≤,V〉 in which the accessibility relation, denoted now by ≤ and
called the plausibility relation, is a locally well-preorder over W. J

Note how, given a world w, the comparability class Vw actually defines all
the worlds the agent cannot distinguish from w. Of course, some worlds in Vw

might be less plausible than w (those u for which we have u ≤ w and w 6≤ u),
some might be more plausible (those u for which w ≤ u and u 6≤ w) and some
others even equally-plausible (those satisfying both w ≤ u and u ≤ w). But
precisely because of that, the agent cannot rule them out if w were the real
one. Then, the union of ≤ and its converse ≥ gives us an equivalence rela-
tion (denoted by ∼) that corresponds to the agent’s epistemic indistinguishability
(i.e.,comparability) relation.

Before discussing the needed modalities to express beliefs our plausibility
models, it is illustrative to justify the properties of the plausibility relation.

As we mentioned, reflexivity and transitivity are the minimal requirements
found in the literature. Our first important choice is to allow models with
multiple comparability classes instead of a single one, and the reason is that,
though we will focus on the single-agent case in which a unique class is enough,
considering multiple classes already will make smoother the transition to multi-
agent situations, a case that is left for further analysis.

Now, why is it asked for every subset U of every comparability class Vw to
have maximal elements instead of asking for this requirement just for every
Vw? The reason is, again, further developments: though we will work with
the notion of plain beliefs, asking for this requirement will allow us future
extensions that involve the more general notion of conditional beliefs. This
notion expresses not what the agent believes about the current situation, but
what she would believe it was the case if she would learn that someψwas true,
and plain beliefs can be defined as the particular case in which the condition
ψ is the always true >. Now, in conditional beliefs, learning ψ is understood
as not considering those worlds where ψ does not hold, similar to what the
observation operation does (Definition 1.5). Nevertheless, while this operation
allows us to express what will be the case after the learning, conditional beliefs
describe what was the case before the learning took place. This is achieved by
looking just at those worlds that satisfy the givenψ in each comparability class,
without discarding the rest of them. For this definition to work, we need to be sure
that any such restriction will yield a set of worlds for which there are maximal
elements; hence the requirement.

It is time to review the options we have for expressing the notion of belief.
The first possibility is to work with the more general notion of conditional
beliefs as a primitive by means of a modality of the form Bψϕ (“the agent believes
ϕ conditionally to ψ”), and then define the notion of belief as the particular case
where the condition ψ is the always true >.
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But recall that, because of the properties of our plausibility relation, each
comparability class is in fact a connected preorder that has maximal elements.
Then, as observed in Stalnaker (2006) and Baltag and Smets (2008), ϕ is true in
the most plausible worlds from w (i.e., the maximal ones in Vw) if and only if
w can ≤-see a world from which all ≤-successors are ϕ worlds. Hence, we can
use a standard modality for the relation ≤ and define plain beliefs with it in the
following way:

Bϕ := 〈≤〉 [≤]ϕ 1

As a remark, note how the notion of conditional belief cannot be defined just
in terms of a modality for ≤, but it can be defined if we include (1) a universal
modality U and a strict plausibility modality 〈<〉 2, or (2) a universal modality3,
or (3) a modality for the epistemic indistinguishability relation ∼ 4.

5.2 Representing non-omniscient beliefs

Our framework for representing implicit and explicit beliefs combines the ideas
used in previous chapters for defining implicit and explicit knowledge, with
the just introduced plausibility models.

The language has two components: formulas and rules. Formulas are given
by a propositional language extended, first, with formulas of the form Aϕ and
Rρ, whereϕ is a formula and ρ a rule (as in Chapters 2 and 4), and second, with
modalities 〈≤〉 and 〈∼〉 . Rules, on the other hand, are pairs consisting of a finite
set of formulas, the rule’s premises, and a single formula, the rule’s conclusion
(again, as in Chapters 2 and 4). The formal definition is as follows.

Definition 5.3 (Language L) Given a set of atomic propositions P, formulas
ϕ,ψ and rules ρ of the plausibility-access language L are given, respectively, by

ϕ ::= p | Aϕ | Rρ | ¬ϕ | ϕ ∨ ψ | 〈≤〉ϕ | 〈∼〉ϕ
ρ ::= ({ψ1, . . . , ψnρ}, ϕ)

where p ∈ P. Once again, formulas of the form Aϕ are read as “the agent has
acknowledged (accepted) that formula ϕ is true”, and formulas of the form Rρ
as “the agent has acknowledged (accepted) that rule ρ is truth-preserving”. For the
modalities, 〈≤〉ϕ is read as “there is a more plausible world where ϕ holds”, and
〈∼〉ϕ as “there is an epistemically indistinguishable world where ϕ holds”. Other
boolean connectives as well as the universal modalities [≤] and [∼] are defined
as usual. We denote by L f the set of formulas of L, and by Lr its set of rules.J

1Note that [≤]ϕ is not adequate since it holds at w whenϕ is true in all the worlds that are more
plausible than w, and that includes not only the most plausible ones, but also all those laying
between them and w. In fact, [≤]ϕ stands for the so-called notion of safe belief.

2Bψ ϕ := U ((ψ ∧ ¬〈<〉ψ)→ ϕ); see Girard (2008).
3Bψ ϕ := U (ψ→ 〈≤〉 (ψ ∧ [≤] (ψ→ ϕ))); see van Benthem and Liu (2007).
4Bψ ϕ := 〈∼〉ψ→ 〈∼〉 (ψ ∧ [≤] (ψ→ ϕ)); see Boutilier (1994a); Baltag and Smets (2008).
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For the semantic model, we extend plausibility models with two functions,
indicating the formulas and the rules the agent can access (i.e., has acknowl-
edged as true and truth-preserving, respectively) at each possible world, just
like in the semantic models of Chapters 2 and 4.

Definition 5.4 (Plausibility-access model) Let P be a set of atomic proposi-
tions. A plausibility-access (PA) model is a tuple M = 〈W,≤,V,A,R〉 where
〈W,≤,V〉 is a plausibility model over P and

• A : W → ℘(L f ) is the access set function, indicating the formulas the agent
has acknowledged as true (i.e., accepted) at each possible world.

• R : W → ℘(Lr) is the rule set function, indicating the rules the agent has
acknowledged as truth-preserving (i.e., accepted) at each possible world.

Recall that if two worlds are ≤-related (comparable), then in fact they are epis-
temically indistinguishable. Then, we define the indistinguishability relation
∼ as the union of ≤ and its converse, that is, ∼ :=≤ ∪ ≥. In other words, the
agent cannot distinguish between two worlds if and only if she considers one
of them more plausible than the other. Note that ∼ is different from the equal
plausibility relation, which is given by the intersection between ≤ and ≥.

A pointed plausibility-access model (M,w) is a plausibility-access model with
a distinguished world w ∈W. J

Now for the semantic evaluation. The modalities 〈≤〉 and 〈∼〉 are interpreted
via their corresponding relation in the usual way, and formulas of the form Aϕ
and Rρ are interpreted with our two extra functions.

Definition 5.5 (Semantic interpretation) Let (M,w) be a pointed PA model
with M = 〈W,≤,V,A,R〉. Atomic propositions and boolean operators are inter-
preted as usual. For the remaining cases,

(M,w) 
 Aϕ iff ϕ ∈ A(w)
(M,w) 
 Rρ iff ρ ∈ R(w)
(M,w) 
 〈≤〉ϕ iff there is a u ∈W such that w ≤ u and (M,u) 
 ϕ
(M,w) 
 〈∼〉ϕ iff there is a u ∈W such that w ∼ u and (M,u) 
 ϕ J

In order to characterize syntactically the formulas in L f valid in plausibil-
ity access models, we follow Theorem 2.5 of Baltag and Smets (2008). The
important observation is that a locally well-preorder is a locally connected and
conversely well-founded preorder. Then, by standard results on canonicity and
modal correspondence (Chapter 4 of Blackburn et al. (2001)), the axiom system
of Table 5.1 is sound and (weakly) complete for formulas of our language L

with respect to ‘non-standard’ plausibility-access models: those in which ≤ is re-
flexive, transitive and locally connected (axioms T≤, 4≤ and LC, respectively)
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and ∼ is the symmetric extension of ≤ (axioms T∼, 4∼, B∼ and Inc). But such
models have the finite model property with respect to formulas in our language,
so completeness with respect to plausibility-access models follows from the
fact that every finite strict preorder is conversely well-founded.

Prop ` ϕ for ϕ a propositional tautology MP If ` ϕ→ ψ and ` ϕ, then ` ψ

K≤ ` [≤] (ϕ→ ψ)→ ([≤]ϕ→ [≤]ψ) K∼ ` [∼] (ϕ→ ψ)→ ([∼]ϕ→ [∼]ψ)

Dual≤ ` 〈≤〉ϕ↔ ¬[≤]¬ϕ Dual∼ ` 〈∼〉ϕ↔ ¬[∼]¬ϕ

Nec≤ If ` ϕ, then ` [≤]ϕ Nec∼ If ` ϕ, then ` [∼]ϕ

T≤ ` [≤]ϕ→ ϕ T∼ ` [∼]ϕ→ ϕ

4≤ ` [≤]ϕ→ [≤] [≤]ϕ 4∼ ` [∼]ϕ→ [∼] [∼]ϕ

B∼ ` ϕ→ [∼] 〈∼〉ϕ

LC (〈∼〉ϕ ∧ 〈∼〉ψ)→
(
〈∼〉 (ϕ ∧ 〈≤〉ψ) ∨ 〈∼〉 (ψ ∧ 〈≤〉ϕ)

)
Inc 〈≤〉ϕ→ 〈∼〉ϕ

Table 5.1: Axiom system for L with respect to plausibility-access models.

5.2.1 Implicit and explicit beliefs, and their basic properties

It is time to define the notions of implicit and explicit beliefs. Again, just
like there are several ways of defining explicit knowledge (the Aϕ of Duc
(1995); Jago (2006a); van Benthem (2008c) and our Chapter 2; the �ϕ ∧ Aϕ of
Fagin and Halpern (1988) and van Ditmarsch and French (2009); the �Aϕ of
Velázquez-Quesada (2009b); the � (ϕ ∧Aϕ) of our Chapter 3), there are also
several possibilities for defining explicit beliefs. The definitions we will use in
this chapter, shown in Table 5.2 below, combine the ideas for defining beliefs
as what is true in the most plausible situations (see the mentioned references
in Subsection 5.1) with the ideas for defining notions of explicit information as
what is true and has been recognized by the agent as true in the relevant set of
worlds (see Chapters 3 and 4).
Definition 5.6 The notions of implicit and explicit belief about formulas and
rules are provided in Table 5.2. In words, the agent believes implicitly the
formula ϕ (the rule ρ) if and only if ϕ (tr(ρ)) is true in the most plausible
worlds, and she believes ϕ (ρ) explicitly if, in addition, she acknowledges it as
true (truth-preserving) in these ‘best’ worlds. J

But we also have an epistemic indistinguishability relation∼, so we can also
define implicit and explicit knowledge by using its universal modality, just like
we did in Chapters 3 and 4. Table 5.3 shows these definitions once again.
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The agent believes implicitly the formula ϕ BImϕ := 〈≤〉 [≤]ϕ

The agent believes explicitly the formula ϕ BExϕ := 〈≤〉 [≤]
(
ϕ ∧Aϕ

)
The agent believes implicitly the rule ρ BImρ := 〈≤〉 [≤] tr(ρ)

The agent believes explicitly the rule ρ BExρ := 〈≤〉 [≤]
(
tr(ρ) ∧ Rρ

)
Table 5.2: Implicit and explicit beliefs about formulas and rules.

The agent knows implicitly the formula ϕ KImϕ := [∼]ϕ

The agent knows explicitly the formula ϕ KExϕ := [∼]
(
ϕ ∧Aϕ

)
The agent knows implicitly the rule ρ KImρ := [∼] tr(ρ)

The agent knows explicitly the rule ρ KExρ := [∼]
(
tr(ρ) ∧ Rρ

)
Table 5.3: Implicit and explicit knowledge about formulas and rules.

The current framework allows us to represent implicit/explicit forms of
knowledge/beliefs about formulas and rules. Moreover, the following validi-
ties, which follow from the contrapositive of axioms Inc and T≤ of Table 5.1
([∼]ϕ → [≤]ϕ and ϕ → 〈≤〉ϕ, respectively), indicates that implicit and explicit
knowledge imply implicit and explicit beliefs, respectively.

For formulas: KImϕ→ BImϕ For rules: KImρ→ BImρ
KExϕ→ BExϕ KExρ→ BExρ

Modulo the awareness notion (not considered in this chapter), the just
defined notions of implicit and explicit knowledge have the properties stated
in Subsection 4.3.3. Let us now review some properties of the notions of
implicit/explicit belief. Again, though we will focus on the case of formulas,
properties for rules can be obtained in a similar way.

The notions are global Note how the notions of implicit/explicit knowl-
edge/beliefs are global in each comparability class. This is obvious for implicit
knowledge because this notion is defined as what it is true in all the worlds the
agent considers possible, that is, in all the worlds in the comparability class. Then,
if the agent knows implicitly a given ϕ, this ϕ is true in all the worlds of the
comparability class, and therefore the agent knows it implicitly in any world in
it. Moreover, since explicit knowledge is defined as implicit knowledge plus a
requirement in all epistemically indistinguishable worlds, the notion is global too.
More precisely, we have the following proposition.
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Proposition 5.1 Let (M,w) be a pointed PA model. (1) If (M,w) 
 KImϕ then, for
all worlds u ∈ Vw, (M,u) 
 KImϕ. (2) If (M,w) 
 KExϕ then, for all worlds u ∈ Vw,
(M,u) 
 KExϕ. These two statements are abbreviated in the following validities:

KImϕ→ [∼] KImϕ KExϕ→ [∼] KExϕ �

But the notion of belief is also global inside each comparability class in its
implicit and its explicit version. The main reason for this is that each such class
is connected, and therefore even if the plausibility order branches at some point,
these ramifications should converge to a topmost layer that exists because the
relation is conversely well-founded.

Proposition 5.2 Let (M,w) be a pointed PA model. (1) If (M,w) 
 BImϕ then, for
all worlds u ∈ Vw, (M,u) 
 BImϕ. (2) If (M,w) 
 BExϕ then, for all worlds u ∈ Vw,
(M,u) 
 BExϕ. Again, these two statements correspond to the following validities:

BImϕ→ [∼] BImϕ BExϕ→ [∼] BExϕ �

Basic properties First, explicit beliefs are obviously implicit beliefs.

Proposition 5.3 If ϕ is explicitly believed, then it is also implicitly believed, that is,
the following formula is valid in PA models:

BExϕ→ BImϕ �

But, different from implicit and explicit knowledge, and though≤ is reflexive,
neither implicit nor explicit beliefs have to be true. The reason is that the real
world does not need to be among the most plausible ones.

Fact 5.1 The formula BExϕ ∧ ¬ϕ is satisfiable in PA models. �

Nevertheless, reflexivity makes implicit (hence explicit) beliefs consistent.

Proposition 5.4 Implicit and explicit beliefs are consistent, that is, the following
formula is valid in PA models:

¬BIm⊥

Proof. The validity can be derived with the axiom system from > → 〈≤〉> (an
instance of the contrapositive of T≤), Prop, MP, Nec≤ and then two applications
of instances of Dual≤ and MP. �

Omniscience Implicit beliefs are omniscient.

Proposition 5.5 All logical validities are implicitly believed and, moreover, implicit
beliefs are closed under logical consequence. This gives us the following:
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• If ϕ is valid, then BImϕ.

• BIm(ϕ→ ψ)→ (BImϕ→ BImψ).

Proof. The argument for these statements is simple. For the first, if ϕ is valid,
then it is true in every world of every model; in particular, it is true in the most
plausible worlds from any world in any model. For the second, if the most
plausible worlds satisfy both ϕ→ ψ and ϕ, then they also satisfy ψ. �

But, again, explicit beliefs do not need to have these properties because the
A-sets do not need to have any closure property. Nothing forces the A-sets to
contain all validities, and having ϕ and ϕ→ ψ does not guarantee to have ψ.

Introspection Now let us review the introspection properties. First, implicit
beliefs are positively introspective.

Proposition 5.6 In PA-models, implicit beliefs have the positive introspection prop-
erty, that is, the following formula is valid:

BImϕ→ BImBImϕ

Proof. Here is a derivation:

BImϕ → 〈≤〉 [≤]ϕ by definition
→ 〈≤〉 [≤] [≤] [≤]ϕ by two applications of 4≤
→ 〈≤〉 [≤] 〈≤〉 [≤]ϕ by [≤]ϕ→ 〈≤〉ϕ, derivable from T≤
→ BImBImϕ by definition �

They are also negatively introspective.

Proposition 5.7 In PA-models, implicit beliefs have the negative introspection prop-
erty, that is, the following formula is valid:

¬BImϕ→ BIm¬BImϕ

Proof. Here is a derivation:

¬BImϕ → ¬〈≤〉 [≤]ϕ by definition
→ [≤]¬[≤]ϕ by Dual≤
→ [≤] [≤] [≤]¬[≤]ϕ by two applications of 4≤
→ 〈≤〉 [≤] [≤]¬[≤]ϕ by [≤]ϕ→ 〈≤〉ϕ
→ 〈≤〉 [≤]¬〈≤〉 [≤]ϕ by Dual≤
→ BIm¬BImϕ by definition �
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Explicit beliefs do not have these properties in the general case, again be-
cause the A-sets do not need to have any closure property. Nevertheless, we
can get introspection by asking for additional requirements, like we did in
Subsection 4.3.3 for the knowledge case.

For positive introspection, we need that if the agent has acknowledged that
ϕ is true, then she has also acknowledged that she believes explicitly in it.

Proposition 5.8 In PA models in which Aϕ→ A BExϕ is valid, explicit beliefs have
the positive introspection property, that is, the following formula is valid:

BExϕ→ BExBExϕ

Proof. Here is a derivation:

BExϕ → 〈≤〉 [≤] (ϕ ∧Aϕ) by definition
→ 〈≤〉 [≤] [≤] (ϕ ∧Aϕ ∧Aϕ) by 4≤ and Prop
→ 〈≤〉 [≤]

(
[≤] (ϕ ∧Aϕ) ∧ [≤] Aϕ

)
by dist. of [≤] over ∧

→ 〈≤〉 [≤]
(
[≤] [≤] (ϕ ∧Aϕ) ∧Aϕ

)
by 4≤ and T≤

→ 〈≤〉 [≤]
(
〈≤〉 [≤] (ϕ ∧Aϕ) ∧Aϕ

)
by [≤]ϕ→ 〈≤〉ϕ

→ 〈≤〉 [≤]
(
BExϕ ∧Aϕ

)
by definition

→ 〈≤〉 [≤]
(
BExϕ ∧A BExϕ

)
by the assumption

→ BExBExϕ by definition �

For negative introspection, explicit belief about a given ϕ may fail because
ϕ is not even implicitly believed, or because the agent has not acknowledged
ϕ in the most plausible worlds. If ϕ is indeed an implicit belief, then explicit
belief is negatively introspective if the agent acknowledges¬BExϕ in all the best
worlds every time she does not acknowledge ϕ in all of them.

Proposition 5.9 In PA models in which ¬BImAϕ → BImA¬BExϕ is valid, the fol-
lowing formula is valid:

(¬BExϕ ∧ BImϕ)→ BEx¬BExϕ

Proof. By using the definitions, Dual≤ and distributing [≤] over ∧, the implica-
tion’s antecedent becomes 〈≤〉 [≤]ϕ ∧ ¬〈≤〉 [≤] Aϕ, its right side being ¬BImAϕ.
Then, the extra assumption gives us BImA¬BExϕ. But Proposition 5.10 be-
low takes us from the left conjunct of the antecedent to BIm¬BExϕ. Then we
have BIm¬BExϕ∧BImA¬BExϕ, i.e., BIm(¬BExϕ ∧A¬BExϕ), which abbreviates as
BEx¬BExϕ. �

Nevertheless, though in the general case explicit beliefs do not have neither
positive nor negative introspection, they do have them in a weak form.
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Proposition 5.10 The following formulas are valid in PA-models:

BExϕ→ BImBExϕ and ¬BExϕ→ BIm¬BExϕ

Proof. Similar to the proofs of Propositions 5.6 and 5.7. �

5.2.2 An example

We close the definition of the static framework for beliefs with a simple example.

Example 5.1 Consider the following plausibility-access model where the A-
and the R-set of each world appears to their right in that order. The atomic
propositions b and f have the reading “Chilly Willy is a bird” and “Chilly Willy
flies”, respectively. In the model, (1) the agent knows explicitly that Chilly Willy
is a bird and, moreover, she believes explicitly the rule stating that if it is a bird,
then it flies. Nevertheless, (2) though she believes implicitly that Chilly Willy
flies, (3) this belief is not explicit. All this is indicated by the formulas on the
right. Since these notions are global inside each comparability class, we do not
refer to some particular evaluation point.

b, f

b

w2

w1

{b}

{b}

{b⇒ f }

{ }

(1) KEx b ∧ BEx(b⇒ f )

(2) BIm f

(3) ¬BEx f

J

After defining a framework for representing implicit and explicit forms of
beliefs, we will now turn our attention to processes that transform them.

5.3 Belief revision

The first operation that we will review is the one that corresponds to belief revi-
sion, an action that occurs when an agent’s beliefs change in order to incorporate
new external information in a consistent way (Gärdenfors 1992; Gärdenfors and
Rott 1995; Williams and Rott 2001; Rott 2001). The study of this process and
its properties can be traced back to the early 1980s, with the seminal work of
Alchourrón et al. (1985) considered to mark the birth of the field.

Traditionally, there have been two approaches to study belief revision. The
first one, what we could call the postulational approach, analyzes belief change
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without committing to any fixed mechanism, proposing instead abstract gen-
eral principles that a “rational” belief revision process should satisfy. Most
of the initial work in the field follows this approach, with the so called AGM
theory (Alchourrón et al. 1985) being the most representative one. In most of
these proposals, an agent’s beliefs are represented by a set of formulas closed
under logical consequence (i.e., a complete theory), and in all of them three are
the most relevant operations: (1) expansion of beliefs with a given χ, consisting
technically in adding χ to the set of formulas and then closing it under logical
consequence; (2) contracting the beliefs with respect toχ, consisting in removing
some formulas such that the closure under logical consequence of the resulting
set does not contain χ; (3) revising the beliefs with respect to χ, consisting in
contracting with ¬χ and then expanding with χ.

On the other hand, some works have approached belief revision from a
more constructive way, presenting concrete mechanisms that change the agent’s
beliefs. Among these approaches we can mention the epistemic entrenchment
functions of Gärdenfors and Makinson (1988): an ordering among formulas that
indicates how strong is the agent’s belief about them, and therefore provide a
way to encode factors that determine which beliefs should be discarded when
revising with respect to a given χ. More interesting are the approaches that
represent beliefs in a different way, like Grove (1988) which uses a structure
called a system of spheres (based on the earlier work of Lewis (1973)) to construct
revision functions. Like an epistemic entrenchment, a system of spheres is
essentially a preorder, but now the ordered objects are no longer formulas, but
complete theories.

On its most basic form, belief revision involves an agent with her beliefs, and
study the way these beliefs change when new information appears. Then, it is
very natural to look for a belief revision approach within the DEL framework.
Here we review briefly the main idea behind the most relevant proposals.

5.3.1 The DEL approach

The main idea behind plausibility models is that the set of worlds the agent
considers possible has in fact a further internal structure: an order indicating
how plausible each possible world is. Then, an agent believes what is true in
the most plausible worlds, i.e., those she considers more likely to be the case.

Now here is the key idea (van Ditmarsch 2005; van Benthem 2007; Baltag
and Smets 2008): if beliefs are represented by a plausibility order, then changes
in beliefs can be represented by changes in this order. In particular, the act
of revising beliefs in order to accept χ can be seen as an operation that puts
χ-worlds at the top of the plausibility order. Of course, there are several ways
in which such a new order can be defined, but each one of them can be seen as
a different policy for revising beliefs. Here is one of the many possibilities.
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Definition 5.7 (Upgrade operation) Let M = 〈W,≤,V,A,R〉 be a PA model and
let χ be a formula in L f . The upgrade operation produces the PA model Mχ⇑ =
〈W,≤′,V,A,R〉, differing from M just in the plausibility order, given by

≤
′:= (≤;χ?)︸ ︷︷ ︸

(1)

∪ (¬χ?;≤)︸   ︷︷   ︸
(2)

∪ (¬χ?;∼;χ?)︸        ︷︷        ︸
(3) J

The new plausibility relation is given in a PDL style. It states that, after an
upgrade with χ, “all χ-worlds become more plausible than all ¬χ-worlds, and within
the two zones, the old ordering remains” (van Benthem 2007). More precisely, in
Mχ⇑ we will have w ≤′ u if and only if in M (1) w ≤ u and u is a χ-world, or (2)
w is a ¬χ-world and w ≤ u, or (3) w ∼ u, w is a ¬χ-world and u is a χ-world.
Again, there are many other definitions for a new plausibility relation that put
χ-worlds at the top (e.g., van Benthem (2007); van Eijck and Wang (2008)). The
presented one, so-called radical upgrade, only shows one of many options.

But not all relation-changing operations are technically adequate. We are
interested in those that preserve the required model properties, and therefore
keep us in the relevant class of models. In our case, we are interested in
operations that do yield a locally well-preorder.

Proposition 5.11 If M is a PA model, so is Mχ⇑.

Proof. We need to show that if ≤ is a locally well-preorder, so is ≤′. The proof
can be found in Appendix A.9. �

Note the effect of the upgrade operation on the agent’s beliefs. It does not
affect the A-sets, so we cannot expect for it to create explicit beliefs about χ,
since nothing guarantees that χ will be present in the most plausible worlds.

But even if we modify the definition to force χ to be present, the operation
puts on top those worlds that satisfy χ in the original model M (if there are none,
the plausibility order will stay the same), but these worlds do not need to
satisfy χ in the resulting model Mχ⇑. In other words, an upgrade with χ does not
necessarily make the agent believe in χ, even implicity; this is because, besides
beliefs about facts, our agent also has high-order beliefs, that is, beliefs about
beliefs and so on. Since the plausibility relation changes, the agent’s beliefs
change, and so her beliefs about beliefs. This corresponds to the well-known
Moore-like sentences (“p is the case and the agent does not know it”) in Public
Announcement Logic (Plaza 1989; Gerbrandy 1999) that become false after being
announced, and therefore cannot be known by the agent.

Nevertheless, the operation makes the agent believe implicitly in χ if χ is
a propositional formula. An upgrade does not change valuations, so if χ is
purely propositional, the operation will put on top those worlds that satisfy χ
in the original model M, and these worlds will still satisfy χ in the resulting
model Mχ⇑. Then, the agent will believe χ implicitly.
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In order to represent this operation within the language, we add the ex-
istential modality 〈χ ⇑〉 , with its universal version defined as its dual in the
standard way. Formulas of the form 〈χ⇑〉ϕ are read as “it is possible for the agent
to upgrade her beliefs with χ in such a way that after doing it ϕ is the case”, with their
semantic interpretation given in the following way.

Definition 5.8 (Semantic interpretation) Let M = 〈W,≤,V,A,R〉 be a PA model
and χ a formula in L f . Then,

(M,w) 
 〈χ⇑〉ϕ iff (Mχ⇑,w) 
 ϕ

Note how the upgrade operation is a total function: it can always be executed
(there is no precondition5) and it always yields one and only one model. Then,
the semantic interpretation of the universal upgrade modality collapses to

(M,w) 
 [χ⇑]ϕ iff (Mχ⇑,w) 
 ϕ J

Finally, in order to provide a sound and complete axiom system for the
language with the new modality, we use reduction axioms once again.

Theorem 5.1 (Reduction axioms for the upgrade modality) The valid formulas
of the language L f plus the upgrade modality in PA models are exactly those provable
by the axioms and rules for the static base language (Table 5.1) plus the reduction
axioms and modal inference rules listed in Table 5.4. �

⇑p ` 〈χ⇑〉 p ↔ p ⇑A ` 〈χ⇑〉Aϕ ↔ Aϕ

⇑¬ ` 〈χ⇑〉¬ϕ ↔ ¬〈χ⇑〉ϕ ⇑R ` 〈χ⇑〉Rρ ↔ Rρ
⇑∨ ` 〈χ⇑〉 (ϕ ∨ ψ) ↔

(
〈χ⇑〉ϕ ∨ 〈χ⇑〉ψ

)
⇑〈≤〉 ` 〈χ⇑〉 〈≤〉ϕ ↔ 〈≤〉

(
χ ∧ 〈χ⇑〉ϕ

)
∨

(
¬χ ∧ 〈≤〉 〈χ⇑〉ϕ

)
∨

(
¬χ ∧ 〈∼〉 (χ ∧ 〈χ⇑〉ϕ)

)
⇑〈∼〉 ` 〈χ⇑〉 〈∼〉ϕ ↔ 〈∼〉 〈χ⇑〉ϕ

⇑N If ` ϕ, then ` [χ⇑]ϕ

Table 5.4: Axioms and rule for the upgrade modality.

Atomic valuation and access and rule sets are not affected by an upgrade,
and the reduction axioms for atomic propositions, access and rule formulas
reflect this. The reduction axioms for negation and disjunction are standard (in
the case of negation recall that the operation does not have precondition), and
those for the indistinguishability modality 〈∼〉 reflects the fact that the operation

5It can be argued that for the agent to upgrade her beliefs with respect to χ, she needs to
consider χ possible. This corresponds to 〈∼〉χ as precondition for the operation.
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just changes the order within each comparability class, so two worlds will be
comparable after an upgrade if and only if they were comparable before.

The interesting axiom is the one for the plausibility modality 〈≤〉 . It is
obtained with techniques from van Benthem and Liu (2007): if the new relation
can be defined in terms of the original one with by means of a PDL-expression,
≤
′:= α(≤), then in the new model a world w can ≤′-reach a world that satisfies

a given ϕ, 〈χ ⇑〉 〈≤〉ϕ, if and only if in the original model w could α(≤)-reach
a world that will satisfy ϕ after the operation, 〈α(≤)〉〈χ ⇑〉ϕ. Then, if the
PDL expression α(≤) does not use iteration, the PDL axioms for sequential
composition (〈a; b〉ϕ ↔ 〈a〉〈b〉ϕ), non-deterministic choice (〈a ∪ b〉ϕ ↔ (〈a〉ϕ ∨
〈b〉ϕ)) and test (〈χ?〉ϕ ↔ (χ ∧ ϕ)) can be successively applied to the formula
〈α(≤)〉〈χ⇑〉ϕ until only modalities with the original relation ≤ are left. In our
particular case, the axiom simply translates the three-cases PDL definition of
the new plausibility relation: after an upgrade with χ there is a ≤-reachable
world whereϕ holds if and only if before the operation (1) there is a≤-reachable
χ-world that will become ϕ after the upgrade, or (2) the current is a ¬χ-world
that can ≤-reach another that will turn into a ϕ-one after the operation, or (3)
the current is a ¬χ-world that can ∼-reach another that is χ and will become ϕ
after the upgrade.

A reduction axiom for the notion of conditional belief in terms of the modal-
ities for ≤ and ∼ can be also obtained by unfolding the stated definition.

5.3.2 Our non-omniscient case

Recall our discussion about finer observations (Subsection 4.4.2). We empha-
sized that, in our approach, the agent may not have direct access to all the
information each possible world provides. In other words, in general the agent
has not only uncertainty about which one is the real world, but also about what
holds in each one of them. So even if she considers possible a single world
where some ϕ holds, she may not recognize it as a ϕ-world because she may
not have acknowledged that ϕ is indeed the case.

We already discussed how this affects the intuitive idea of an observation.
Now, how does this affect the idea behind an upgrade?

The intuition behind any operation that changes the plausibility relation is
that the agent rearranges the worlds according to what holds in each one of
them. In particular, in the operation we defined, the agent puts the worlds
she recognizes as χ-worlds, that is, those where χ holds, on top of the rest of
them, that is, those where ¬χ holds. But in our non-omniscient setting, the
agent may not be able to tell whether a given world satisfies χ or not. Besides
the worlds she identifies as χ-worlds, that is, those satisfying χ ∧Aχ, and the
worlds she identifies as ¬χ-worlds, that is, those satisfying ¬χ∧A¬χ, she can
also see χ-uncertain worlds, that is, those that do not satisfy neither χ ∧ Aχ
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nor ¬χ ∧A¬χ. From this perspective, the definition of the new relation is not
reasonable anymore, since it assumes that the agent can identify whether χ
holds or not in each possible world.

If the intuitive idea behind an upgrade operation with χ is that the agent
will put on top those worlds she recognizes as χ-worlds, then a non-omniscient
version should reflect this. Define Gχ := χ ∧Aχ. Then,

Definition 5.9 (Non-omniscient upgrade operation) Let M = 〈W,≤,V,A,R〉 be
a PA model and let χ be a formula in L f . The non-omniscient upgrade operation
produces the PA model Mχ+⇑ = 〈W,≤′,V,A,R〉, differing from M just in the
plausibility order, given now by

≤
′:= (≤; Gχ?) ∪ (¬Gχ?;≤) ∪ (¬Gχ?;∼; Gχ?) J

In words, this revision policy states that the agent will put the worlds she
recognizes as χ-worlds on top of the rest of them, keeping the old ordering
between the two zones. Note how, just like there are several definitions for
omniscient upgrades that put χ-worlds at the top, there are several definitions
for non-omniscient variations that do the same with Gχ-worlds. The one we
have provided guarantees that, if χ is propositional, the agent will believe it
explicitly after the upgrade, as we will discuss below.

The defined operation differs from its omniscient counterpart just in the
‘upgraded’ formula, but the structure of the new order is exactly the same.
Therefore, this non-omniscient operation preserves PA models too.

Syntactically, we have the following.

Definition 5.10 (Semantic interpretation) Let M = 〈W,≤,V,A,R〉be a PA model
and χ a formula in L f . Then,

(M,w) 
 〈χ+⇑〉ϕ iff (Mχ+⇑,w) 
 ϕ

The non-omniscient upgrade operation is a total function too6, so the semantic
interpretation of the universal non-omniscient upgrade modality collapses to

(M,w) 
 [χ+⇑]ϕ iff (Mχ+⇑,w) 
 ϕ J

Note now the effect of this non-omniscient upgrade operation. Again, we
cannot expect for it to create even implicit beliefs about χ, since once that the
plausibility order has changed, the worlds that we have put on top, those that
satisfied χ in the original model, may not satisfy it anymore.

6Now the requirement would be for the agent to consider χ explicitly possible. This corre-
sponds to 〈∼〉 (χ ∧Aχ) as precondition for this non-omniscient operation.
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But consider now the cases in which χ is a propositional formula. A non-
omniscient upgrade with χ puts on top of the ordering not those worlds that
satisfy χ, but those worlds the agent recognizes as χ worlds, that is, worlds
satisfying χ∧Aχ. Then, since χ is propositional and the A-sets are not affected
by the operation, every world satisfying χ∧Aχ in the original model will also
satisfy it after the operation. Therefore, after a non-omniscient upgrade, the
agent will believe χ not only implicitly, but also explicitly.

Finally, for an axiom system, the non-omniscient upgrade modality has
exactly the same reduction axioms the upgrade modality has in the cases of
atomic propositions, negation, disjunction, indistinguishability modality and
access and rule set (Table 5.4). They key reduction axiom, the one for the
plausibility relation, is simply the earlier one with Gχ filled in:

〈χ⇑〉 〈≤〉ϕ ↔ 〈≤〉

(
Gχ ∧ 〈χ⇑〉ϕ

)
∨

(
¬Gχ ∧ 〈≤〉 〈χ⇑〉ϕ

)
∨

(
¬Gχ ∧ 〈∼〉 (Gχ ∧ 〈χ⇑〉ϕ)

)
5.4 Belief-based inference

The just discussed action, upgrade in its omniscient and non-omniscient ver-
sions, was borrowed from standard DEL. But our non-omniscient agent can
perform actions omniscient agents cannot; in particular, she can perform infer-
ence. We have already a representation of this act in its knowledge-based form;
let us review the main ideas behind it before going into the belief-based case.

The intuition behind the action of knowledge-based inference is that, if the agent
knows explicitly a rule and all its premises, then an inference will make her know
explicitly the rule’s conclusion. This action has been semantically defined as an
operation that adds the rule’s conclusion to the A-set of those worlds where the
agent has access to the rule and all its premises (Definition 4.9). But since the
precondition of the operation is for the agent to know explicitly the rule and
its premises, what the operation actually does is to add the rule’s conclusion to
the A-set of those worlds in which the agent knows the rule and its premises.

But take a closer look at the operation. What it actually does is discard those
worlds in which the agent knows explicitly the rule and all its premises, and
replace them with copies that are almost identical, the only difference being
that their A-sets now contain the conclusion of the applied rule. And this is
reasonable because, under the assumption that knowledge is true information,
knowledge-based inference (inference with a known rule and known premises)
is simply deductive reasoning: the premises are true and the rule preserves the
truth, so the conclusion should be true. In fact, knowledge-based inference can
be seen as the act of recognizing two things. First, since the applied rule is
truth-preserving and its premises are true, its conclusion must be true; second,
situations where the premises are true and the rule is truth-preserving but the
conclusion does not hold are not possible.
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The case is different when the inference involve beliefs. Consider, for ex-
ample, a situation in which the premises of a rule are explicitly known, but the
rule itself is only explicitly believed. In such cases it is reasonable to consider
very likely a situation in which the premises and the conclusion hold. Never-
theless, the agent should not discard a situation where the premises hold but
the conclusion fails, and therefore the rule is not truth-preserving. Technically,
an operation representing such action should split the current possibilities into
two. One of them, the most plausible one, standing for the case in which the
rule’s conclusion is indeed true; the other, the less plausible one, standing for the
case in which the rule’s conclusion is false and the rule is not truth-preserving.

More generally, an inference that involves beliefs creates new possibilities,
and an operation representing it should be faithful to this. But, how to do it?
The action models and product update of Baltag et al. (1999), already used in
Section 3.6 for multi-agent situations, will be useful once again. This time our
proposal will be based in its plausibility version.

5.4.1 Plausibility-access action models

Recall the intuition behind the action models of Baltag et al. (1999): just as
the agent can be uncertain about which one is the real world, she can also be
uncertain about which event has taken place. In such situations, her uncertainty
about the action can be represented with a model similar to that used for
representing her uncertainty about the situation. Action models are possible-
worlds-like structures in which the agent considers different events as possible,
and her uncertainty after the action is an even combination of her uncertainty
about the situation before the action and her uncertainty about the action.

This idea has been extended in order to match richer structures that indicate
now only the worlds the agent considers possible but also a plausibility order
among them. A first approach was made in Aucher (2003), then generalized in
van Ditmarsch (2005). But these two works are based in quantitative plausibility
orders that use plausibility ordinals in order to express degrees of belief. In
contrast, the plausibility action models of Baltag and Smets (2008) are purely
qualitative, and therefore provide a more natural extension to be used with the
matching plausibility models.

Just like we did in Section 3.6, we will extend these plausibility action
models in order to deal with our access and rule sets function. Here is the
formal definition, for the single-agent case.

Definition 5.11 (Plausibility-access action model) A single agent plausibility-
access (PA) action model is a tuple C = 〈E,4,Pre,PosA,PosR〉where

• 〈E,4,Pre〉 is a plausibility action model (Baltag and Smets 2008) with
E a finite non-empty set of events, 4 a plausibility order on E (with the
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same requirements as those for a plausibility order in PA models) and
Pre : E→ L f a precondition function indicating the requirement each event
should satisfy in order to take place. This requirement is given in terms
of a formula in our language L f , so it can include not only facts about the
real world but also about the agent’s implicit/explicit knowledge/beliefs.

• PosA : (E × ℘(L f )) → ℘(L f ) is the new access set function, indicating the
set of formulas the agent will accept after the action according what she
accepted before it and the event that has taken place.

• PosR : (E × ℘(Lr)) → ℘(Lr) is the new rule set function, indicating the set
of rules the agent will accept after the action according what she accepted
before it and the event that has taken place.

This time, we define three new relations: strict plausibility, ≺ :=4 ∩ < , equal
plausibility, u :=4 ∩ <, and epistemic indistinguishability (i.e., comparability),
≈ :=4 ∪ <. A pointed PA action model (C, e) has a distinguished event e ∈ E. J

Now, for the definition of the product update, note that both the static and
the action model are preorders with further properties. There are two natural
ways of building the order of their cartesian product: we can give the priority
either the preorder of the static model, or else to that of the action model.
The second option, to give priority to the order of the action, is closer to the
intended spirit in which it is the action the one that will modify the agent’s
static plausibility order. The formal definition of this case is as follows.

Definition 5.12 (Product update) Let M = 〈W,≤,V,A,R〉 be a PA model and
C = 〈E,4,Pre,PosA,PosR〉 be a PA action model. The product update operation
⊗ yields the PA model M ⊗ C = 〈W′,≤′,V′,A′,R′〉, given by

• W′ :=
{
(w, e) ∈ (W × E) | (M,w) |= Pre(e)

}
• (w1, e1) ≤′ (w2, e2) iff

(
e1 ≺ e2 and w1 ∼ w2

)
or
(
e1 u e2 and w1 ≤ w2

)
and, for every (w, e) ∈W′,

• V′(w, e) := V(w)

• A′(w, e) := PosA(e,A(w))

• A′(w, e) := PosR(e,R(w)) J

Again, the set of worlds of the new plausibility-access model is given by
the restricted cartesian product of W and E; a pair (w, e) will be a world in the
new model if and only if event e can be executed at world w. Valuations and
the access and rule set of the new worlds are also just as before. First, a world
in the new model inherits the atomic valuation of its static component, that is,
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an atom p holds at (w, e) if and only if p holds at w. Then, the agent’s access set
at world (w, e) is given by the function PosA with the event e and her access set
at w as parameters. The case for rule sets is similar.

The important difference is that new plausibility order is now built following
the so-called ‘action-priority’ rule. A world (w2, e2) will be more plausible than
(w1, e1) if and only if either e2 is strictly more plausible than e1 and w1,w2 are
already comparable (i.e., epistemically indistinguishable), or else e1, e2 are equally
plausible and w2 is more plausible than w1.

Observe what our PA action models can do. If we define the new access set
and new rule set functions as the identity functions (that is, PosA(e,X) := X and
PosA(e,Y) := Y for all events e ∈ E), then we get a pure plausibility model that
can modify the worlds the agent considers possible and the plausibility order
among them.

But pure plausibility models cannot modify the model-component that al-
lows us to represent finer notions of information: access and rule sets. Here
is precisely where our new access set and new rule set functions, a general-
ization of the substitution function in van Benthem et al. (2006) for representing
factual change, come into play. Our PA action models can modify the formu-
las and rules that the agent has acknowledged as true and truth-preserving,
respectively, and therefore they can also modify the agent’s explicit beliefs.

More importantly, the main virtue of a PA action model and its product
update is not that they can modify the semantic component of our static model
on one hand and the syntactic component on the other. They can modify both
of them together, allowing us to truly represent acts that change not only the
situations the agent considers possible, but also what she has acknowledged
as true in each one of them, as we will see in Subsection 5.4.2.

It is not hard to verify that product update preserves PA models.

Proposition 5.12 . If M is a plausibility-access model and C an plausibility-access
action model, then M ⊗ C is a plausibility-access model.

Proof. We need to prove that if the plausibility orders in M and C are locally
well-preorders, then so is the plausibility order of M ⊗ C. The proof can be
found in Appendix A.10. �

In order to express how product updates affect the agents’ information, we
extend our language with modalities for each pointed plausibility-access action
model (C, e), allowing us to build formulas of the form 〈C, e〉ϕ, whose semantic
interpretation is given below.

Definition 5.13 (Semantic interpretation) Let (M,w) be a pointed PA model
and let (C, e) be a pointed PA action model with Pre its precondition function.

(M,w) 
 〈C, e〉ϕ iff (M,w) 
 Pre(e) and (M ⊗ C, (w, e)) 
 ϕ J
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It is now time to introduce the inferences that can be represented with PA
action models.

5.4.2 Some examples of action models

Just like a public announcement in PAL corresponds to a single-event action
model (Baltag et al. 1999), the action of knowledge-based inference can be
represented with a single-event plausibility-access action model.

Definition 5.14 (Inference with known premises and known rule) Let σ be a
rule. The action of knowledge-based inference, that is, inference with known
premises and known rule, is given by the PA action model Cσ

KK whose definition
(left) and diagram showing events, plausibility relation and the way rule and
access sets are affected (right) are given by

• E := {e} • PosA(e,X) := X ∪ {cn(σ)}

• 4:= {(e, e)} • PosR(e,Y) := Y

• Pre(e) :=
∧
ψ∈pm(σ) KExψ ∧ KExσ

e
X ∪ {cn(σ)}

Y

This action model has a single event, with its precondition being for the agent to
know explicitly the rule and its premises. In the resulting model, the agent will
acknowledge the rule’s conclusion in all worlds satisfying the precondition.
Moreover, since the premises are true and the rule is truth-preserving in all
epistemically indistinguishable (∼-accessible) worlds, the conclusion of the rule
must be true in them in the original model M. But, just like the inference operation
of Definition 4.9, this PA action model only affects formulas containing A cn(σ);
hence, cn(σ) itself cannot be affected and will still be true in all ∼′-accessible
worlds in the resulting model M ⊗ Cσ

KK. Hence, the agent will know explicitly
the rule’s conclusion. J

But our PA action models allow us to represent more. Following our pre-
vious discussion, here is the action model for inference with known premises
and believed rule.

Definition 5.15 (Inference with known premises and believed rule) Let σ be
a rule. The action of inference with known premises and believed rule is given by
the PA action model Cσ

KB whose definition is the following.

• E := {e1, e2}

• 4:= {(e1, e1), (e1, e2), (e2, e2)}

• Pre(ei) :=
∧
ψ∈pm(σ) KExψ ∧ BExσ

•

 PosA(e1,X) := X ∪ {¬cn(σ)}

PosA(e2,X) := X ∪ {cn(σ)}

•

 PosR(e1,Y) := Y \ {σ}

PosR(e2,Y) := Y
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The diagram below shows this two-event model. The event on the right, the
most plausible one, extends the agent’s access set with the rule’s conclusion,
leaving the rule set intact; it corresponds to the case in which the conclusion of
the rule holds. The one on the left, the less plausible one, extends the agent’s
access set with the negation of the rule’s conclusion, removing the rule itself
from the rule set; it corresponds to the case in which the conclusion of the rule
does not hold. In both events the precondition is the same: the agent should
know explicitly σ’s premises and believe explicitly σ itself.

e1 e2

X ∪ {¬cn(σ)} X ∪ {cn(σ)}

Y \ {σ} Y

J

We can also represent a similar situation in which the rule is explicitly
known, but one or more of the premises are just explicitly believed. In this
case, the best scenario is in which all believed premises are true, but one or
more of them may be false, producing an extra number of situations the agent
should consider. The following definition provides a model in which all these
extra situations are equally plausible, but different orders can be represented.

Definition 5.16 (Inference with believed premises and known rule) Let σ be
a rule, and let {ψ1, . . . , ψn} ⊆ pm(σ) be the premises of σ that are believed but
not known. Moreover, list as BP2, . . . ,BP2n each one of the non-empty subsets
of {ψ1, . . . , ψn}, and denote by ¬BPi the set that contains the negation of all
formulas in BPi. The action of inference with believed premises and known rule is
given by the PA action model Cσ

BK whose definition is

• E := {e1, . . . , e2n}

• 4 := {(ei, e1) | i = 1, . . . , 2n
} ∪

(
(E \ {e1}) × (E \ {e1})

)
• Pre(ei) :=

∧
ψ∈pm(σ) BExψ ∧ KExσ

•

 PosA(e1,X) := X ∪ {cn(σ)}

PosA(ei,X) := (X \ BPi) ∪ ¬BPi for i = 2, . . . , 2n

• PosR(ei,Y) := Y

This time the rule is known, but some premises are just believed; then the
model has one event for each combination of failing premises. Event e1 is the
one in which no premise fails, and therefore the rule’s conclusion is accepted.
Events e2 to e2n are those in which at least one premise fails, and therefore the
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agent rejects them, accepting now their negation. A diagram of this PA model,
with reflexive and transitive arrows omitted, appears below.

· · ·

e1

e2 e3 e2n−1
e2n

X ∪ {cn(σ)}

(X \ BP2) ∪ ¬BP2 (X \ BP3) ∪ ¬BP3 (X \ BP2n−1) ∪ ¬BP2n−1 (X \ BP2n ) ∪ ¬BP2n

Y

Y Y Y Y

J

We can even represent a third scenario in which some premises and the rule
are just believed. Besides the precondition, this case differs from the previous
one (believed premises and known rule) in that there is another possibility: all
the premises are indeed true, but the rule is not truth-preserving.

The previous PA action models act ‘globally’ in the sense that they extend
the agent’s explicit information based on what she has in a set of relevant worlds:
the epistemically indistinguishable ones when we talk about knowledge and
the most plausible ones when we talk about beliefs. But it can also be the
case that the agent performs a local inference in which she extends what she
acknowledges about some particular world based only on the information she
has about it. This accounts for situations in which the agent just look at one of
the possibilities she considers, and performs inference on it without looking at
the rest. Such situations can also be represented with a PA action model.

Definition 5.17 (Weak local inference) Let σ be a rule, and define the follow-
ing abbreviation, stating that the agent has acknowledged a rule σ and its
premises

Preσ :=
(∧

ψ∈pm(σ) Aψ
)
∧ R σ

The action of weak local inference is given by the following PA action model Cσ:

• E := {e1, e2}

• 4:= E × E

•

 Pre(e1) := Preσ
Pre(e2) := ¬Preσ

•

 PosA(e1,X) := X ∪ {cn(σ)}

PosA(e2,X) := X

• PosR(ei,Y) := Y
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With this action the agent works locally. Note how any given world satisfies
either the precondition of e1 or the precondition of e2, but not both. Then,
after the operation, we will get a model that differs from the original static one
only in that the agent will have accepted the rule’s conclusion exactly in those
worlds in which she already accepted the rule and its premises.7 The diagram
of this PA action model appears below.

e1 e2

X ∪ {cn(σ)} X

Y Y

J

A stronger form of local inference can be obtained by strengthening the
precondition in the following way.

Definition 5.18 (Strong local inference) Let σ be a rule. The action of strong
local inference is given by a PA action model that differs from the one representing
weak local inference only in the definition of the formula Preσ, which is now
strengthen in the following way:

Preσ :=
(∧

ψ∈pm(σ)(ψ ∧Aψ)
)
∧

(
tr(σ) ∧ R σ

)
The precondition of event e1 now requires not only for the agent to accept

the rule and the premises, but also for the premises to be true and the rule to
be truth-preserving. The access sets of such worlds will be extended with the
rule’s conclusion, and the rest of the worlds will remain the same. J

5.4.3 A further exploration

Plausibility-access action models allow us to represent more than what we
have described. We will not go into details (further applications can be found
in Chapter 6), but here are some notions that arise in this rich framework.

As observed by many authors, a plausibility relation with the specified
properties generates a Grove’s system of spheres (Grove 1988), that is, layers
of equally-plausible elements with the layers themselves ordered according to
their plausibility. The PA action models presented so far have at most two
layers and in the most plausible one there are at most two events, but we
do not have to restrict ourselves to them. With more than two layers we
can generalize situations like the case of inference with believed premises and

7Note how the effect of a weak local inference can be achieved with the inference operations
of previous chapters (Definitions 2.16 and 4.9) by setting the appropriate precondition.
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known rule: the events in which at least one of the premises fails do not need
to be equally plausible. With more than two events in the top layer we can
represent inferences with rules that have more than one conclusion: in the top
layer we can have one event for each situation in which one or more of the
conclusions are accepted.

We can also classify inferences according to how the events of the action
model affect the access sets. For example, PA action models in which for every
two events e1, e2 we have that e1 4 e2 implies PosA(e1,X) ⊆ PosA(e2,X) reflect
the optimism of the agent about the conclusion: events that extend A-sets are
more plausible. On the opposite side we have PA action models in which for
every two events e1, e2 we have that e1 4 e2 implies PosA(e1,X) ⊇ PosA(e2,X);
they reflect the pessimism of the agent about the conclusion since events that
extend A-sets are less plausible.

Finally, all the inferences we have discussed follow one direction: from the
rule and its premises to its conclusion. But a rule can be used in many other
ways. For example, the agent can also reason by contraposition: if she knows
explicitly a rule and also knows explicitly that the conclusion fails, then she
can infer that at least one of the premises fails. And we do not need to stick
to deductive reasoning: if the agent knows explicitly a rule and its conclusion,
then she can believe explicitly that the premises hold, performing in this way a
form of abductive reasoning that will be discussed in more detail in Section 6.3.

All in all, PA action models are a powerful tool that allow us to represent di-
verse forms of inference that involve not only an agent’s knowledge but also her
beliefs, therefore giving us the possibility to represent not only truth-preserving
inferences but also non-truth-preserving ones (see Chapter 6). Technically, the de-
fined product update works not only on the semantic component of the agent’s
information, like traditional action models do, but also on the syntactic com-
ponent (formulas and rules) we have worked with through this dissertation;
this allows us to truly represent acts that change not only the situations the
agent considers possible, but also what she has acknowledged as true in each
one of them. Thus, our agents are equipped with a broad variety of actions,
and with them we can provide a more precise representation of the fine steps
that changes our information in real life situations, like we will show in our
example of Section 5.5.

5.4.4 Completeness

We have shown how PA action models can represent diverse form of inference.
Let us now turn to the syntactic characterization of validities involving the PA
action model modalities. Following the strategy used through this dissertation,
we will provide reduction axioms for the product update operation.
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The reduction axioms for atomic propositions, negation, disjunction and
plausibility and indistinguishability modalities of Baltag and Smets (2008) are
inherited by our system. But when looking for reduction axioms for access
and rule set formulas, the functions PosA and PosR present a problem. The
reason is that they allow the new access and rule sets to be any arbitrary set.
Let us compare this with other action models and product update definitions
for which reduction axioms are provided.

The action models and product update of van Benthem et al. (2006), from
which our access-changing functions PosA and PosR and our product update
have evolved, allow us to change the atomic valuation, but the new set of
worlds in which each atomic proposition will be true is not arbitrary: it is
given by a formula of the language. And if we see each formula as a set of
worlds (those in which the formula is true), then in fact the new set of worlds
in which a given atom p will be true is given in terms of the original one (the set
of worlds in which p was true) by means of certain operations: ¬ (complement),
∨ (union) and so on. But not only that: the static language is already expressive
enough to deal with these operations.

Let us look at another definition of an action model and its corresponding
product update. The approach of van Eijck and Wang (2008) allows us to
change the accessibility relation, but again the new relation is not given in an
arbitrary way: it is given in terms of the previous relations by using only regular
(PDL) operations. And just as the previous case, the static language is already
expressive enough to deal with these expressions.

Consider now our product update operation, which extends plausibility
action models by allowing us to modify sets of formulas and sets of rules. By
looking at the two mentioned cases, we can see that we can provide reduction
axioms in the cases in which the definitions of the PosA and PosR functions are
not given arbitrarily, but by means of some structured expression that can be
already handled in the static language. We will focus on what we will call set
expressions, and here is our strategy. First, we will extend our static language
in order to deal with these expressions, providing not only their semantic
interpretation but also the corresponding axioms for them. Then, with the help
of these new formulas, we will provide reduction axioms for the class of PA
action models in which the PosA and PosR functions are definable by means of
these expressions.

As it is currently defined, our static language allows us to look for formulas
only at A- and R-sets. What we will do now is to incorporate new formulas
that allow us to look not only at these basic sets, but also at more complex ones.

Definition 5.19 (Extended L) Given a set of atomic propositions P, formulas
ϕ,ψ, rules ρ, set expressions over formulas Φ,Ψ and set expressions over rules Ω,Υ
of the extended plausibility-access language L are given, respectively, by
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ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈∼〉ϕ | 〈≤〉ϕ | bΦcϕ | bΩcρ
ρ ::= ({ψ1, . . . , ψnρ}, ϕ)
Φ ::= A | {ϕ} | Φ | Φ ∪Ψ
Ω ::= R | {ρ} | Ω | Ω ∪ Υ

with p an atomic proposition in P. J

Formulas of the form Aϕ have disappeared, leaving their place to formulas
of the form bΦcϕwhere Φ is what we call a set expression over formulas. While
the Aϕ formulas allowed us to look only at the contents of the A-sets, formulas
of the form bΦcϕ allow us to look at the content of more complex setsΦ that are
built from A and singletons {ϕ} by means of complement and union. (The case
of set expressions over rulesΩ is analogous.) We emphasize that, even though
our syntax for set expressions may suggest some strong semantic content, they
are just a way of making syntactic comparisons between formulas and between
rules, as we will see when analyzing their axiomatization.

The behavior of the new formulas is fixed by their semantic interpretation.

Definition 5.20 (Semantic interpretation) Let (M,w) be a pointed PA model
with A and R the access and rule sets functions, respectively. The semantic
interpretation for the new formulas is given by

(M,w) 
 bAcϕ iff ϕ ∈ A(w) (M,w) 
 bRcρ iff ρ ∈ R(w)

(M,w) 
 b{ψ}cϕ iff ϕ = ψ (M,w) 
 b{%}cρ iff ρ is %

(M,w) 
 bΦcϕ iff ϕ < Φ (M,w) 
 bΩcρ iff ρ < Ω

(M,w) 
 bΦ ∪Ψcϕ iff ϕ ∈ (Φ ∪Ψ) (M,w) 
 bΩ ∪ Υcρ iff ρ ∈ (Ω ∪ Υ) J

Note, first, how bAcϕ and bRcρ are equivalent to the earlier Aϕ and Rρ,
respectively. Note also how we can even look at the contents of sets built with
the intersection and difference operations following the standard definitions:

Φ ∩Ψ := Φ ∪Ψ Φ \Ψ := Φ ∩Ψ

The earlier ‘static’ axiom system is not enough anymore. Though the A-
and R-sets still lack any special closure property and there is still no restriction
in the way they interact with each other, the additional set expressions have
special behaviour, characterized by the following extra axioms.

Theorem 5.2 (Extra axioms for extended L w.r.t. PA models) The axiom system
of Table 5.1, together with the axioms from Table 5.5 is sound and (weakly) complete
for the extended language L with respect to plausibility-access models. �
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SE{ }A ` b{ψ}cψ SE{ }R ` b{%}c %

SE{ }A ` ¬b{ψ}cϕ for ϕ , ψ SE{ }R ` ¬b{%}cρ for ρ , %

SEA ` bΦcϕ ↔ ¬bΦcϕ SER ` bΩcρ ↔ ¬bΩcρ

SE∪A ` bΦ ∪Ψcϕ ↔
(
bΦcϕ ∨ bΨcϕ

)
SE∪R ` bΩ ∪ Υcρ ↔

(
bΩcρ ∨ bΥcρ

)
Table 5.5: Axiom system for extended L w.r.t. plausibility-access models.

The new axioms reflect the behaviour of these sets operations. In the case
of set expressions over formulas, axioms SE{ }A indicate that ψ and only ψ is an
element of {ψ}. Axiom SEA says that ϕ is in the complement of a set if and only
if it is not in the set; axiom SE∪A says that ϕ is in the union of two sets if and
only if it is in at least one of them. The axioms for set expressions over rules
behave in a similar way.

Moreover, the axioms for complement and union actually tell us that bΦcϕ
and bΦ ∪Ψcϕ are not really needed, since they can be defined as ¬bΦcϕ and
bΦcϕ ∨ bΨcϕ, respectively. In fact, from the axioms we can see that all we
really need are expressions that allow us to verify syntactic identity between
formulas on one side, and syntactic identity between rules on the other, like
formulas of the form b{ψ}cϕ and b{%}cρ do (see their axioms). With such
extension, our original PA language L (Definition 5.3) is enough for defining
these new expressions. Nevertheless, we will keep this ‘syntactic sugar’ in
order to make easier the reading of the formulas and, more importantly, to
simplify the reduction axioms that will be provided.

With the extended language it is easy to formulate reduction axioms for
PA action models that provide the new access and rule sets by means of set
expressions. First, we provide a proper definition of this class.

Definition 5.21 (SE-definable PA action model) A set-expression (SE) definable
PA action model is a PA action model in which, for each event e, the new access
set function PosA(e) is given by a set expression over formulas, and the new
rule set function PosR(e) is given by a set expression over rules. J

Note how all the PA action models presented in Subsection 5.4.2 are SE
definable. For example, in the action model for inference with known premises
and believed rule (Definition 5.15), we have

Event e1: PosA(e1) :=A ∪ {¬cn(σ)}, PosR(e1) :=R \ {σ}.
Event e2: PosA(e2) :=A ∪ {cn(σ)}, PosR(e2) :=R.

Now we can provide reduction axioms for the modalities that involve PA
action models and product update.
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Theorem 5.3 The axiom system built from Tables 5.1, 5.5 and Table 5.6 (with > and
⊥ the always true and always false formula, respectively) provide a sound and (weakly)
complete axiom system for formulas in the extended language L plus modalities for
action models with respect to PA models and SE-definable PA action models. �

` 〈C, e〉p ↔ Pre(e) ∧ p

` 〈C, e〉¬ϕ ↔ Pre(e) ∧ ¬〈C, e〉ϕ

` 〈C, e〉(ϕ ∨ ψ) ↔
(
〈C, e〉ϕ ∨ 〈C, e〉ψ

)
` 〈C, e〉〈≤〉ϕ ↔

(
Pre(e) ∧

(∨
e≺ e′〈∼〉 〈C, e′〉ϕ ∨

∨
eu e′′〈≤〉 〈C, e′′〉ϕ

))
` 〈C, e〉〈∼〉ϕ ↔

(
Pre(e) ∧

∨
e≈ e′〈∼〉 〈C, e′〉ϕ

)
If ` ϕ, then ` [C, e]ϕ

` 〈C, e〉bAcϕ ↔ Pre(e) ∧ bPosA(e)cϕ

` 〈C, e〉b{ψ}cψ ↔ Pre(e) ∧ >

` 〈C, e〉b{ψ}cϕ ↔ Pre(e) ∧ ⊥ for ϕ , ψ

` 〈C, e〉bΨcϕ ↔ 〈C, e〉¬bΨcϕ

` 〈C, e〉bΨ ∪Φcϕ ↔ 〈C, e〉(bΦcϕ ∨ bΨcϕ)

` 〈C, e〉bRcϕ ↔ Pre(e) ∧ bPosR(e)cϕ

` 〈C, e〉b{%}c % ↔ Pre(e) ∧ >

` 〈C, e〉b{%}cρ ↔ Pre(e) ∧ ⊥ for ρ , %

` 〈C, e〉bΩcρ ↔ 〈C, e〉¬bΩcρ

` 〈C, e〉bΩ ∪ Υcρ ↔ 〈C, e〉(bΩcρ ∨ bΥcρ)

Table 5.6: Axioms and rules for SE-definable action models.

On the first block, the first three axioms are standard: 〈C, e〉 does not affect
atomic valuations, commute with negations (modulo the precondition) and dis-
tributes over disjunctions. The fourth, inherited from Baltag and Smets (2008),
states that a (C, e) product update after which there is a more plausible ϕ-world
can be performed if and only if the evaluation point satisfies e’s precondition,
and in the original model there is an epistemically indistinguishable world that
will satisfy ϕ after a product update with a strictly more plausible e′, or there is a
more plausible world that will satisfy ϕ after a product update with an equally
plausible e′′. Finally, the fifth reduction axiom indicates that the comparability
class does not change: a (C, e) product update after which there is an epistemi-
cally indistinguishable ϕ-world can be performed if and only if the evaluation
point satisfies e’s precondition and there is an epistemically indistinguishable
world that will satisfy ϕ after a product update with an indistinguishable e′.
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The second block contains the axioms for set expressions over formulas,
with the first one being the key. After a (C, e) product update, ϕ will be in the
agent’s access set if and only if e’s precondition is satisfied an ϕ is in the set
expression that defines the new access set at event e:

〈C, e〉bAcϕ ↔ Pre(e) ∧ bPosA(e)cϕ

The simplicity of the axiom takes advantage of the fact that our extended L

language can deal with set expressions. As mentioned before, the original lan-
guage L plus expressions for syntactic identity is powerful enough to express
the membership of a given formula in a set defined from A-sets and singletons
by means of complement and union. Then, reduction axioms without set ex-
pressions can be provided, but we would need an inductive translation from
the expression PosA(e) to the formula that express the membership of ϕ in it.

The remaining axioms of the second block simply unfold the static axioms
for the remaining set-expressions over formulas. The third block, containing
axioms for set expressions over rules, behave exactly the same.

Again, a reduction axiom for the notion of conditional belief in terms of the
modalities for ≤ and ∼ can be obtained by unfolding the stated definition.

5.5 An example in motion

We close this chapter with an example of the operations we have defined.

Example 5.2 Recall the situation of Example 5.1, whose diagram appears below
on the left. The agent (1) knows explicitly that Chilly Willy is a bird and believes
explicitly that if it is a bird, then it flies. Nevertheless, (2) her belief about Chilly
Willy being able to fly is just implicit. The formulas below the diagram express
this. We also assume that the rule f ⇒ ¬¬ f is present in the R-sets of both
worlds, though it will not be indicated in the picture for simplicity.

Now the agent decides to use the explicitly believed rule b ⇒ f , whose
premise she knows explicitly. This corresponds to the PA action model Cb⇒ f

KB ,
whose diagram and precondition for both worlds appears on the right.

b, f

b

w2

w1

{b}

{b}

{b⇒ f }

{ }

⊗
e1 e2

X ∪ {¬ f } X ∪ { f }

Y \ {b⇒ f } Y

(1) KEx b ∧ BEx(b⇒ f )

(2) BIm f ∧ ¬BEx f

KExb ∧ BEx(b⇒ f )
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The two worlds of the static model satisfy the precondition of the two events
of the action model, so the resulting PA model has four worlds, as indicated in
the diagram below.

b, f

b

b, f

b

(w2, e2)

(w1, e2)

(w2, e1)

(w1, e1)

{b, f }

{b, f }

{b,¬ f }

{b,¬ f }

{b⇒ f }

{ }

{ }

{ }

Note how (w2, e2) and (w1, e2) form a copy
of the original static model in which the
access sets of the worlds have been ex-
tended with the rule’s conclusion, according
to what event e2 indicates. The two remain-
ing worlds, (w2, e1) and (w1, e1), form a copy
of the original static model in which the ac-
cess sets of the worlds have been extended
with the negation of the rule’s conclusion and
the rule has been removed from the rule sets,
according to what event e1 indicates. The e2-
partition is above the e1-partition because e2

is more plausible than e1 in the action model.

In the resulting model, (1) the agent still knows explicitly that Chilly Willy
is a bird and still believes explicitly the rule stating that if it is a bird then it flies.
But now (2) she also believes explicitly that it flies. Nevertheless, the rule she
just applied is not known, just believed; then, conscious that the rule might fail,
(3) the agent does not know neither explicitly nor implicitly that Chilly Willy
flies. In fact, (4) she considers explicitly a possibility in which Chilly Willy does
not fly. All this is expressed by the following formulas.

(1) KEx b ∧ BEx(b⇒ f ) (3) ¬KEx f ∧ ¬KIm f

(2) BEx f (4) K̂Ex ¬ f

where K̂Exϕ is the ‘diamond’ version of the explicit knowledge notion KExϕ,
that is, K̂Exϕ := 〈∼〉 (ϕ ∧Aϕ).

While waiting for information that confirms or refutes her beliefs, our agent
decides to perform weak local inference. She realizes that in the situations
in which she has accepted f , she should also accept ¬¬ f . This action corre-
sponds to the product update between the previous four-worlds static model
(below to the left with worlds renamed) and the PA action model C f⇒¬¬ f (be-
low to the right). The diagram of the action model includes now the dif-
ferent preconditions for each event, with Pre( f⇒¬¬ f ) standing for the formula
A f ∧ R ( f ⇒ ¬¬ f ).
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b, f

b

b, f

b

u4

u3

u2

u1

{b, f }

{b, f }

{b,¬ f }

{b,¬ f }

{b⇒ f }

{ }

{ }

{ }

⊗
e1 e2

Pre( f⇒¬¬ f ) ¬Pre( f⇒¬¬ f )

X ∪ {¬¬ f } X

Y Y

The action simply extends with ¬¬ f those worlds in which the agent has
accepted the rule f ⇒ ¬¬ f and its premise f . Remember that we have assumed
the rule was already present in the R-sets of the initial static model, so it is also
in the R-sets of the worlds u1 to u4. Since u3 and u4 satisfy Pre( f⇒¬¬ f ), they will
be extended with ¬¬ f , following event e1 of the action model; since u1 and u2

satisfy ¬Pre( f⇒¬¬ f ), they will stay the same, following event e2. Note how, since
the events are equally plausible and their preconditions are complementary,
what we get is an exact copy of the static model in which the worlds that satisfy
Pre( f⇒¬¬ f ) are extended with ¬¬ f , and worlds not satisfying it stay the same.
The diagram of this resulting model appears below.

b, f

b

b, f

b

(u4, e1)

(u3, e1)

(u2, e2)

(u1, e2)

{b, f ,¬¬ f }

{b, f ,¬¬ f }

{b,¬ f }

{b,¬ f }

{b⇒ f }

{ }

{ }

{ }

Finally, our agent gets new information: a reliable and yet fallible source
tells her that in fact Chilly Willy does not fly (¬ f ). Since the source is fallible,
our agent should not discard those worlds where this ‘soft’ information does
not hold; since the source is reliable, she should consider those satisfying the
information more likely to be the case.
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She can handle this information by revising her beliefs with respect to ¬ f .
The operation will put the worlds the agent recognizes as ¬ f , that is, those
satisfying ¬ f ∧A¬ f , on top of the rest, keeping the ordering in the two zones
as before. In this particular case, the only world the agent recognizes as ¬ f is
v1 (formerly called (u1, e2)); then, the operation produces the following result.

b, f

b

b, f

b

v4

v3

v2

v1

{b, f ,¬¬ f }

{b, f ,¬¬ f }

{b,¬ f }

{b,¬ f }

{b⇒ f }

{ }

{ }

{ }

(¬ f )+⇑

b

b, f

b

b, f

v1

v4

v3

v2

{b,¬ f }

{b, f ,¬¬ f }

{b, f ,¬¬ f }

{b,¬ f }

{ }

{b⇒ f }

{ }

{ }

In the resulting model, (1) the agent still knows explicitly that Chilly Willy is
a bird, but now she does not believe (neither explicitly nor implicitly) anymore
that if it is a bird then it flies. Moreover, (2) she does not believe (neither
explicitly nor implicitly) that it flies; in fact, she believes explicitly that Chilly
Willy does not fly (¬ f ). Nevertheless, she recognizes that this does not need
to be the case, and therefore (3) she does not know (neither explicitly nor
implicitly) that Chilly Willy does not fly. Actually, (4) she still recognizes
explicitly the possibility for it to fly.

(1) KEx b ∧ ¬BEx(b⇒ f ) ∧ ¬BIm(b⇒ f ) (3) ¬KEx ¬ f ∧ ¬KIm ¬ f
(2) (¬BEx f ∧ ¬BIm f ) ∧ BEx ¬ f (4) K̂Ex f J

5.6 Remarks

After previous chapters have explored some variations of the notions of implicit
and explicit information with particular emphasis on the knowledge cases, this
chapter has focused on the notions of implicit and explicit beliefs.

On the static side, we have provided a representation for implicit and ex-
plicit beliefs by combining the ideas for representing non-omniscient agents
discussed in the previous chapters, with ideas for representing beliefs in a pos-
sible worlds setting (specifically, we have used plausibility models). Table 5.7
shows the introduced notions.
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Notion Definition Model requirements

Implicit belief about formulas. 〈≤〉 [≤]ϕ ≤ a locally well-preorder.

Implicit belief about rules. 〈≤〉 [≤] tr(ρ) ≤ a locally well-preorder

Explicit belief about formulas. 〈≤〉 [≤]
(
ϕ ∧Aϕ

)
≤ a locally well-preorder.

Explicit belief about rules. 〈≤〉 [≤]
(
tr(ρ) ∧ Rρ

)
≤ a locally well-preorder.

Table 5.7: Static notions of information.

We have also defined, again, the notions of implicit and explicit knowledge.
The definitions are the same as those of Chapter 4 minus the awareness re-
quirement (a notion not considered in this chapter for simplicity). The main
difference is that the relation that defines the notion of knowledge, the epistemic
indistinguishability relation ∼, is not a primitive in the model anymore: it is
defined as the union of the plausibility order ≤ and its converse ≥. This states
that the agent cannot distinguish between two worlds if she considers one of
them more plausible than the other.

On the dynamic side, we have reviewed the existing DEL approach for the
act of belief revision, presenting a variant that is closer to the non-omniscient
spirit of our work. But the main part of this chapter has been devoted to the
study of inferences that involve beliefs. After arguing why such notion should
allow the agent to create new possibilities, we have shown how the combi-
nation of existing plausibility action models with the action models that deal
with the syntactic components (formulas and rules) of our extended possible
worlds model (Section 3.6.2) provide us with a powerful tool that can rep-
resent different forms of inference that involve not only knowledge but also
beliefs. In particular, we have introduced PA action models that represent the
actions of inference with known rule and known premises, believed rule and
known premises, known rule and believed premises, and strong and weak
local inference. Table 5.8 summarizes the actions defined in this chapter.

Thus, our setting provides a very general perspective on the workings of
inferences that mix knowledge and belief, far beyond the specifics of particular
consequence relations. Though we have provided just some examples of the
forms of inferences we can represent, we have by no means exhausted the
possibilities. Just like the original action models allow us to represent a broad
variety of announcements (public, private, hidden, etc.), our PA action models
allow us to represent a broad variety of inferences, including some forms that
resemble default and abductive reasoning, as we will discuss in Chapter 6.

There is an important issue in which our PA action models can shed some
light. The so-called “scandal of deduction” (Hintikka 1973; Sequoiah-Grayson
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Action Description

Upgrade The agent puts on top of her order those worlds
satisfying a given formula.

Non-omniscient upgrade The agent puts on top of her order those worlds she
recognizes as satisfying a given formula.

Knowledge-based inference Inference with explicitly known premises and ex-
plicitly known rule. This is truth-preserving infer-
ence, that is, deduction.

Belief-based inference Inference in which the rule or at least one of the
premises is not explicitly known, but explicitly be-
lieved.

Table 5.8: Actions and their effects.

2008; D’Agostino and Floridi 2009) comes from the idea that deductive rea-
soning does not provide new information because whatever is concluded was
already present in the information given by the premises. In fact, it has been
argued that only non truth-preserving inferences can be considered amplia-
tive since, if the concluded information is genuinely new, its truth cannot be
guaranteed by the old information (Hintikka and Sandu 2007).

In our approach, both truth-preserving and non-truth-preserving inferences
are ampliative, but in a different sense. Truth-preserving inference (i.e., deduc-
tion) is definitely ampliative because, though the agent does not get new im-
plicit knowledge, her explicit knowledge is increased. This has already been
recognized by the distinction between surface information (our explicit infor-
mation) and depth information (our implicit one). More precisely, we can say
that deductive inference is internally ampliative because, though it does not
change the number of situations the agent considers (no change in implicit
information), it does increase the information the agent has about each one
of these possibilities. On the other hand, non-truth-preserving inference is
ampliative in a different way: it adds more possibilities. More precisely, we
can say that non-truth-preserving inference is externally ampliative because it
increases the number of possibilities the agent considers.

In fact, in our syntactic-semantic setting we can see a nice interplay of four
main informational activities. Hard external information, i.e., observations, re-
move situations the agent considered possible (the observation and announce-
ments operations), but soft external information only rearranges them (the
upgrade operations). This already happens in standard omniscient DEL, but
our non-omniscient setting allows us to represent new actions, the most impor-
tant one being that of inference. Our truth-preserving inference does not remove
situations and does not rearrange them; what it does is to extend the informa-
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tion the agent has about each one of them. Then, our non-truth-preserving
inference is what allows the agent to generate new possible situations.

Finally, through this chapter we have interpreted the A-sets as what the
agent has acknowledged as true in each possible world, and for simplicity
we have left the notion of awareness out of the picture. By incorporating the
notion of awareness in this belief setting, we can provide a richer picture of
the agent’s attitudes, combining what she believes with what she knows and
what she is aware of. In particular, for the notion of awareness, we have now
two candidates, the general notion defined in Chapter 3, or the language-based
notion of Chapter 4. More importantly, in this chapter we have shown how our
extended version of action models can deal with syntactic ‘acknowledgement’
dynamics, but in Chapter 3 we already showed how a similar structure can
deal with syntactic ‘awareness’ dynamics. Then, just like in the static part, a
combination of both can provide us with a richer setting, this time of dynamic
actions that affect at the same time what the agent is paying attention to and
what she acknowledges as true.
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The framework developed in the previous chapters has two main virtues.
First, it allows us to define finer notions of information; second, and more
importantly, it allows us to represent fine informational acts. And, although
we have examined non-omniscient versions of the already DEL-studied actions
of observation and upgrade as well as actions that increase or reduce the agent’s
awareness, our main focus has been on diverse notions of inference, and we
have presented settings for truth-preserving (knowledge-based) and non-truth-
preserving (belief-based) inference.

In fact, these two forms of syntactic inference are related with the two
semantic informational actions in classical DEL. In a purely semantic setting
with knowledge and beliefs, we have two kinds of ‘incoming information’:
hard knowledge-generating information, that is, observations that remove the
worlds in which the incoming observation is not the case, and soft belief-
generating information, that is, upgrades that do not delete the words where
the incoming information does not hold, but nevertheless makes worlds that
satisfy it the most plausible ones. Our proposal allows us represent acts of
inference, and they also come in a ‘hard’ and ‘soft’ flavor: while the ‘hard’ truth-
preserving inference of Chapters 2 and 4 makes the agent to accept the conclusion
of the applied rule in all the worlds she considers possible, therefore generating
explicit knowledge, the ‘soft’ non-truth-preserving inference of Chapter 5 makes
the agent to accept the rule’s conclusion only in the most plausible worlds,
generating in this way only explicit beliefs.

This chapter looks at connections of the acts of inference presented so far
with known forms of reasoning. We discuss how our framework relates to
deductive, default and abductive reasoning. Then, for belief revision, we first
examine the relation between our implicit/explicit beliefs and belief sets/bases,
and then review how our setting deals with contradictions.

151
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6.1 Deductive reasoning

The most extensively studied form of reasoning is that of deductive reasoning,
also known as valid inference and logical or classical consequence. Its characteristic
property is that it is a truth-preserving form of reasoning: the conclusion of the
inference is true in every single case in which all the premises are true. In other
words, when the reasoning is deductive, the truth of the premises guarantee
the truth of the conclusion.

This form of reasoning corresponds directly to the truth-preserving forms
of inference presented in Chapters 2 and 4. In both of them, the requisite for the
application of an inference with a given rule σ is for the agent to know explicitly
σ and its premises. We have assumed that knowledge is true information,
which in the case of formulas means that they are true, and in the case of rules
means that they are truth-preserving, that is, their translation as an implication
produces a true formula. From this it follows that the precondition of the
operation guarantees that the conclusion of the rule is true and, moreover,
implicitly known. Then, the operation only needs to make this knowledge
explicit by adding the formula to the corresponding A-sets.

Here is the straightforward translation of deductive reasoning into our
setting. Suppose that the following rule σ states a valid inference, that is, if the
premises are true, then the conclusion is true.

ψ1, . . . , ψn

ϕ

In our setting, this is stated by the following validity (notation of Chapter 4)( ∧
ψ∈pm(σ)

KExψ ∧ KExσ
)
→ 〈↪→σ〉KExcn(σ)

The main difference is that our setting represents deductive reasoning as
a dynamic action that requires not only the rule’s premises but also the rule
itself. The rule’s conclusion is already implicit knowledge, but the agent does
not get that information in an explicit form automatically: she should perform
a reasoning step.

6.2 Default reasoning

Though reasoning with knowledge is useful in certain areas (e.g., mathematics),
most of the information we real agents deal with is not absolutely certain, but
only very plausible. Instead of having information stating “ϕ is true”, we
usually have information of the form “ϕ is plausible”. A classical situation is
the one used in the running example of Chapter 5: birds typically fly.
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The question that originates default reasoning is, how can we represent this
fact? Given the unquestionable information that Chilly Willy is a bird, we
would like to have some mechanism that allows us to infer that it flies. But
in a deductive (i.e., truth-preserving) approach, the premises would include,
besides the “Chilly Willy is a bird” requirement, an extra number of them, each
one discarding one of the (possibly infinite) reasons for which Chilly Willy
might not fly, like being an ostrich, being a penguin, having broken wings
and so on. And the problem is not only that we would need to deal with
a possibly infinite number of premises, but also that, in order for the agent
to derive that Chilly Wily flies, she would need to verify that none of these
‘flying-impossibilities’ situations holds. More precisely, in order for the agent
to derive that Chilly Willy flies, she would need to know that it is not an ostrich,
it is not a penguin, it does not have broken wings, and so on.

Default reasoning aims to represent this reasoning based on plausible situa-
tions. As Reiter states it, “what is required is somehow to allow [Chilly Willy]
to fly by default” (Reiter 1980). His default logic interprets this ‘default’ as “If
[Chilly Willy] is a bird, then in the absence of any information to the contrary,
infer that [Chilly Willy] can fly” (Reiter 1980). Following this intuition, he
defines a default rule as an expression of the following form, where ψ is the
prerequisite of the rule, each φi is a justification, and χ is the conclusion.

ψ : φ1, . . . , φn

χ

The idea of a default rule is that, if the agent has the prerequisite and the
justification is consistent with her information, then she can accept the conclusion.
Usually, the “justification” part of a rule, φ1, . . . , φn, is abbreviated as simply χ,
so the rule is read as “if ψ is the case and χ is consistent with the information, then
accept the latter”. For example, with the atomic propositions used in Subsection
5.2.2 (b stands for “Chilly Willy is a bird”, and f stands for “it flies”), the default
rule “birds typically fly” is given by a rule with b as prerequisite, f as justification,
and f itself as conclusion.

Note how default reasoning is non-monotonic. Though the prerequisite has
to be true, the justifications do not need to: they just need to be consistent with
the current information. Then, further information can invalidate the use of a
default rule, and therefore the conclusion may need to be retracted.

Default reasoning and other forms of non-monotonic reasoning have been
usually studied from a purely syntactic point of view. The study has been based
on “sub-structural” consequence relations, that is, consequence relations that
do not satisfy the five structural rules the classical consequence relation satis-
fies: reflexivity, permutation, contraction, monotonicity and cut (see Subsection
2.4.2). Another approach, closer to the DEL spirit of our work, is not to look at
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consequence relations with different properties, but rather to consider the dif-
ferent informational attitudes that these reasoning processes involve (Boutilier
1994c; Meyer and van der Hoek 1995). In the case of default logic, Reiter him-
self already mentioned that the result of inferences with default rules should
have the status of a belief, subject to change in the light of further information.

Default reasoning as belief upgrade Introducing epistemic notions highlights
other possible readings of a default rule. From an epistemic and doxastic point
of view, it can be read as “if the agent knows the prerequisite ψ and the justifica-
tions φ1, . . . , φn are consistent with her knowledge (i.e., she considers φ1, . . . , φn

explicitly possible), then after applying the reasoning step she will believe χ”.1

The framework for beliefs introduced in Section 5.4 allow us to represent the
action described by this new reading. From this perspective, default reasoning
can be seen as a change in beliefs that, under the condition that ψ is explicitly
known and every φi is explicitly possible, will modify the agent’s plausibility
relation in order to put on top those worlds she recognizes as χ-worlds. This
reasoning step can be expressed with the formula 〈Defψ :φ1,...,φn

χ 〉ϕ, defined as

〈Defψ :φ1,...,φn
χ 〉ϕ := KExψ ∧

(
K̂Exφ1 ∧ · · · ∧ K̂Exφn

)
∧ 〈χ+⇑〉ϕ

Thus, default reasoning can be seen as belief upgrade with a specific precon-
dition. In fact, this idea can be already handled in standard DEL by dropping
the “explicit” part in the precondition and using the omniscient upgrade.

Default reasoning as inference with believed rule But our framework with
implicit/explicit knowledge/beliefs about formulas/rules gives us another op-
tion. Recall the definition of inference with known premises and believed rule
(Definition 5.15): based on the explicit knowledge of the premises and the ex-
plicit belief in the rule, it produces an explicit belief in the conclusion of the
applied rule, just like what a default rule does. This represents, again, certain
form of default reasoning, but the followed strategy is different.

Consider the “birds typically fly” situation. What our setting proposes is
that we can work with a rule that concludes flying abilities from bird nature as
long as we recognize that this rule works only in the most plausible situations. In
other words, instead of using a truth-preserving rule whose premises need to
discard every single situation in which Chilly Willy might not fly (the deductive
approach), or using a default rule that ask for the agent information to be
consistent with the conclusion (the default logic approach), we can use a simple
rule of the form “if it is a bird, it flies”. But then, different from the deductive
and default logic approaches, we do not ask for the rule to be known: what
we assume is that the rule itself is just believed. Following the intuitive effect
of such a reasoning step, an inference with this rule should make the agent
believe that Chilly Willy actually flies. Nevertheless, this conclusion shout not

1Similar dynamic readings of defaults reasoning steps have been studied in Veltman (1996).
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get a knowledge status and, in fact, the inference should also make the agent to
acknowledge a possibility in which Chilly Willy does not fly. This is exactly
what the PA action model of Definition 5.15 does.

In general, this second approach to default reasoning proposes the fol-
lowing. Given a default rule of the form described before, its effect can be
mimicked by the application of an inference with the rule ψ ⇒ χ, provided
that ψ is explicitly known and ψ⇒ χ is explicitly believed, that is,

〈Defψ :φ1,...,φn
χ 〉ϕ := KExψ ∧ BEx(ψ⇒ χ) ∧ 〈Cψ⇒χ

KB , e1〉ϕ

where Cσ
KB is the PA action model of Definition 5.15.

But, where have the justifications gone? They are now embedded in the
involved notions of information. Intuitively, the justifications are precisely
what allow the agent to make the inference, so if any of them fails, the agent
should not be able to perform the latter: if Chilly Willy is an ostrich, or a
penguin, or has its wings broken, then it does not fly. This says that the agent
should believe, at least implicitly, that if any of the justification φi fails, Chilly
Willy does not fly, that is, she should believe, at least implicitly, that for every
justification φi, formulas of the form ¬φi → ¬χ hold. With our notation, this is

BIm(¬φi → ¬χ) for each φi

stating that every ¬φi → ¬χ is true the agent’s most plausible worlds.
Suppose that indeed some justification φk fails and the agent knows it

explicitly, that is,
KEx¬φk

This makes¬φk true in all possible worlds, and given the agent’s stated implicit
belief, ¬χ is true in the most plausible ones. Now, if the agent wants to perform
an inference step based on a default rule in the just described style, she needs
to know explicitly the prerequisite, that is,

KExψ

This makes ψ true in all the worlds she considers possible, and then the most
plausible ones satisfyψ, but also¬χ. But now she cannot believeψ⇒ χ neither
implicitly nor explicitly, and therefore she cannot apply the inference step.

¬BIm(ψ⇒ χ)

Even if she does not know that some justification fails and simply believes it
explicitly, BEx¬φk, this would still make ψ and ¬χ true in the most plausible
situations, so again the inference could not be applied.

By representing default reasoning with an inference based on known prem-
ises and believed rule, we do not need to list the justifications anymore; all we
need is for the agent to believe implicitly that the failure of any of them will
invalidate the inference. Then, it is enough for her to believe explicitly that one
justification has failed in order for the inference to be blocked, as expected.
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6.3 Abductive reasoning

All the inferences mentioned in Chapter 5 follow one direction: from the rule
and its premises to its conclusion. But this is not the only way in which a
rule can be used. In fact, one of the most prominent non-monotonic reasoning
processes, abductive reasoning, is usually described as ‘backwards deduction’.

The process of abductive reasoning, introduced into modern logic by Charles
S. Peirce (see Aliseda (2006) for a more recent study of the subject), is usually
described as the process of looking for an explanation of a given observation,
and it has been recognized as one of the most commonly used in our daily
activities. Classical examples go from Sherlock Holmes’ stories (observing that
Mr. Wilson’s right cuff is very shiny for five inches and the left one has a smooth
patch near the elbow, Holmes assumes that Mr. Wilson has done a considerable
amount of writing lately) to medical diagnosis (given the symptoms A and B,
a doctor suspects that the patient suffers from C). In Peirce’s own words
(Hartshorne and Weiss 1934), abduction can be described in the following way:

The surprising fact χ is observed.
But if ψ were true, χ would be a matter of course.
Hence, there is reason to suspect that ψ is true.

Pierce himself did not remain quite convinced that one logical form covers
all cases of abductive reasoning (Peirce 1911). Indeed, different kinds of ab-
ductive problems arise when we consider agents with different omniscient and
reasoning abilities, and even more appear when we combine different notions
of information (Soler-Toscano and Velázquez-Quesada 2010). Among all of
them, some can be represented with the framework for belief-based inference
introduced in Section 5.4.

Intuitively, the idea behind abductive reasoning is the following. The agent
observes a fact that cannot be justified by her current information. Then, she
looks for an explanation: one or several pieces of information that, if true, would
make the observation something expected. Consider, for example, the Sherlock
Holmes situation. Holmes observes that while Mr. Wilson’s right cuff is very
shiny, the left one has a patch near the elbow. Then, in order to explain these
observations, Holmes assumes that Mr. Wilson has done a considerable amount
of writing lately. These assumptions, if knew before, would have allowed him
to predict the observations. In words closer to our terminology, Holmes knows
a piece of information (the status of Mr. Wilson’s cuffs) and he also knows how
he could have derived it (If Mr. Wilson has been writing a lot, then his cuffs
will have such status). Then, Holmes believes that what fires such derivation
could have been the case (he believes that Mr. Wilson has writing a lot lately).

This kind of abductive reasoning can be represented in our setting with a PA
action model. The idea behind this action model is that this form of abductive
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reasoning can be seen as a change in beliefs fired by the agent’s inferential tools:
if she knows explicitly a formula that is the conclusion of an explicitly known rule;
then, there is reason to believe explicitly in the premises of the rule.

Definition 6.1 (Knowledge-based abduction) Let σ be a rule, and recall that
for a given formula ϕ, the worlds the agent recognizes as ϕ-worlds are those
satisfying Gϕ := ϕ ∧ Aϕ. The action of knowledge-based abduction (that is,
abduction with known rule and known conclusion) is given by the PA action
model CAbd(σ)

KK whose definition is the following.

• E := {e1, e2}

• 4:= {(e1, e1), (e1, e2), (e2, e2)}

• Pre(e1) :=
(
KExσ ∧ KExcn(σ)

)
∧ ¬

(∧
ψ∈pm(σ) Gψ

)
• Pre(e2) :=

(
KExσ ∧ KExcn(σ)

)
∧

(∧
ψ∈pm(σ) Gψ

)
•

 PosA(e1,X) := X

PosA(e2,X) := X

•

 PosR(e1,Y) := Y

PosR(e2,Y) := Y

The diagram below shows this two-event model. Note that no event affects
neither the formulas nor the rules the agent has accepted; in fact, the only
difference between the events, besides their plausibility, is their precondition.
The precondition for the most plausible event, e2, is not only for the agent to
know explicitly the rule and its conclusion (what we call the strong abductive
precondition), but also to recognize each one of the rule’s premises as true. The
precondition for the least plausible event, e1, is not only for the agent to know
explicitly the rule and its conclusion (the strong abductive precondition), but
also for the agent to not to recognize all the premises as true. What this action
model does is just rearrange the ordering of the worlds. Those that the agent
recognizes as satisfying all premises of the rule will be on top of the rest, and
within the two zones the old ordering will remain.

e1 e2
X X
Y Y

J

Here is an example of how this PA action model works.

Example 6.1 Consider the static PA model below. In it our agent, Sherlock
Holmes, (1) knows explicitly the status of Mr. Wilson’s cuffs (c), and also
knows explicitly that if Mr. Wilson has been doing a considerable amount of
writing lately (t), then the status of his cuff’s would follow. Nevertheless, (2)
Holmes does not believe, neither explicitly nor implicitly, that Mr. Wilson has
been writing lately. The formulas on the right of the diagram express all this.
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t, c c
w1 w2

{t, c} {c}{t⇒ c} {t⇒ c}

(1) KEx c ∧ KEx(t⇒ c)

(2) ¬BEx t ∧ ¬BIm t

Now Holmes applies abductive reasoning in order to explain the status of
Mr. Wilson’s cuffs. He knows that if he knew that Mr. Wilson has being doing
a considerable amount of writing lately, he would have been able to conclude
the observed state of his cuffs. Then, there is reason for Holmes to believe it.

t, c c
w1 w2

{t, c} {c}{t⇒ c} {t⇒ c}

⊗ e1 e2

X X

Y Y

Pre(e1) :=
(
KEx(t⇒ c) ∧ KEx c

)
∧ ¬(t ∧A t)

Pre(e2) :=
(
KEx(t⇒ c) ∧ KEx c

)
∧ (t ∧A t)

The strong abductive precondition, KEx(t⇒ c)∧KEx c, is true in both worlds
of the PA model. Nevertheless, w1 is the unique world that Holmes recognizes
as a t-world; then, only w1 satisfy e2’s precondition, and only w2 satisfy e1’s
precondition. As consequence, the resulting PA model (shown below) has
only two worlds, (w1, e2) and (w2, e1). The components of these new worlds
are exactly those of their static counterpart because atomic valuation does not
change, and the postcondition functions of the two events do not make any
change in the set of formulas and the set of rules the agent accepts. What has
changed is the ordering of the worlds: now the unique world that Holmes
recognizes as a t-world, w1, has become more plausible than the rest. In this
resulting model (1) Holmes still knows explicitly the status of Mr. Wilson’s
cuffs, and still knows explicitly the rule that links that with a considerable
amount of writing. But, as a result of abductive reasoning, (2) Holmes now
believes (both implicitly and explicitly) that the high amount of writing indeed
is the case.

c

t, c

(w2, e1)

(w1, e2)

{c}

{t, c}

{t⇒ c}

{t⇒ c}
(1) KEx c ∧ KEx(t⇒ c)

(2) BEx t ∧ BIm t

J
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We have represented this form of abductive reasoning as a form of belief
change driven by a rule: the agent knows explicitly the rule and its conclusion,
so it is reasonable for her to believe explicitly all the premises.

Iterative abduction Abduction is a form of non-monotonic reasoning. The
explanations are just hypothesis, and cannot be considered as absolute truth.
In other words, abductive reasoning generates beliefs, not knowledge. But
then, the form of abductive reasoning we have represented cannot be iterative.
Though we require for the rule and its conclusion to be explicitly known, the
process produces explicitly believed premises, and then the agent cannot look
for an explanation of these premises themselves.

We can represent a form of abduction that allows iteration by weakening
the abductive precondition. Instead of asking for the rule and the conclusion
to be explicitly known, we can ask for the rule to be explicitly known, but for
the conclusion only to be explicitly believed. After an abductive step the agent
will believe the premises, and then she can look for an explanation for them.

Definition 6.2 (Belief-based abduction) Let σ be a rule, and recall that for
any formula ϕ, the worlds the agent recognize as ϕ-worlds are those satisfying
Gϕ := ϕ∧Aϕ. The action of belief-based abduction is given by the PA action model
CAbd(σ)

KB , differing from its knowledge-based counterpart CAbd(σ)
KK (Definition 6.1)

only in the abductive precondition, which now becomes KExσ∧BExcn(σ). More
precisely, the precondition of events e1 and e2 are now given by

• Pre(e1) :=
(
KExσ ∧ BExcn(σ)

)
∧ ¬

(∧
ψ∈pm(σ) Gψ

)
• Pre(e2) :=

(
KExσ ∧ BExcn(σ)

)
∧

(∧
ψ∈pm(σ) Gψ

)
J

An even weaker notion of abduction can be defined by asking for the rule
not to be explicitly known, but simply explicitly believed.

Finding abductive solutions Our approach allows us to represent some forms
of abductive reasoning. But typically, works on abductive reasoning focus not
only in defining an operation that incorporates the explanation to the agent’s
information (what a product update with the defined PA action models does),
but also in finding such explanations and then selecting the ‘best’ of them.

From our perspective, the stage of looking for explanations should be
guided by the inferential tools the agent has. If the aim of abductive rea-
soning is to incorporate hypothesis that, if knew before, would have allowed
the agent to derive (i.e., predict) the observation, then it is reasonable to con-
sider as explanations all those pieces of information that would have allowed
the derivation. In our example there is only one rule whose conclusion is the
observed fact, but in general the agent might have several rules that allow
her to derive the observation, and therefore she could choose between many
different explanations, each one of them being the premises of such rules.
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Now, when looking for a criteria to decide which ones of these possible
explanations are ‘the best’, our framework provides us with some options. Note
that we cannot rely on how plausible is the rule that provides the explanation,
since our precondition is that the rule is explicitly known (in a weaker case,
believed), and therefore recognized as true in all possible worlds (in the most
plausible ones). One possibility is to rely on the plausibility of the rule’s
premises: if the agent already believes in some of them, then it is reasonable
to believe in the rest. This solution follows the “minimal change” approach,
since the reordering needed to believe in all the premises is in principle less
complicated than the reordering that would be needed to believe in all the
premises when none of them are currently believed.

6.4 Belief bases in belief revision

Coherentism vs foundationalism As we have mentioned, belief revision deals
with the different ways an agent’s beliefs can change in order to incorporate
external information in a consistent way. Classical approaches, like the men-
tioned AGM theory, assume that an agent’s beliefs, her belief set, are given by
a theory: a consistent set of formulas closed under logical consequence. From
this perspective, the coherentist perspective, there is no distinction between the
agent’s beliefs: all of them come from the same source, all of them are equally
supported, and all of them are equally relevant when they need to be revised.

Nevertheless, it has been argued (Alchourrón and Makinson 1982; Hansson
1989; Fuhrmann 1991; Hansson 1992) that not all beliefs in a belief set have the
same status: there is a distinguished class of basic beliefs, the belief base, which
are somehow given, and from which the rest of the beliefs can be derived by
some inference process, typically a truth-preserving one. In the most general
case, this belief base is a simple set of formulas that does not need to satisfy any
logical constrain, like closure under logical consequence or even consistency.
This foundationalist approach highlights the process of inference through which
the agent generates the full belief set from the belief base.

Classical EL approaches for representing beliefs (Section 5.1) follow the
coherentist idea. In the case of the KD45 approach, the belief set of the agent
corresponds to the set of formulas that are true in all the accessible worlds; in
the case of the plausibility models approach, the belief set corresponds to the set
of formulas that are true in the most plausible worlds. In both cases, there is
no distinction among the believed formulas: they all have the same status and
they all are equally relevant.

On the other hand, our non-omniscient approach to beliefs (Section 5.2)
is closer to the foundationalist spirit. First, just like in the omniscient case, the



6.4. Belief bases in belief revision 161

agent’s belief set at world w in model M (BelBas(M,w)) can be defined as the set of
formulas that are true in the agent’s most plausible worlds. In our terminology,
these are exactly the formulas the agent believes implicitly. This gives us

BelSet(M,w) := {ϕ ∈ L f | (M,w) 
 BImϕ }

In other words, the formula ϕ is in the agent’s belief set if and only if she
believes it implicitly.

Then, the agent’s belief base at w in M (BelBas(M,w)) can be defined as those
implicit beliefs the agent has acknowledged, that is, her explicit beliefs:

BelBas(M,w) := {ϕ ∈ L f | (M,w) 
 BExϕ }

Despite the similarities, our notion of explicit beliefs do not correspond
directly to the notion of belief bases, and there are two main reasons for this.

The first reason is technical: our explicit beliefs do not need to be a set that
generates the implicit beliefs. Consider, for example, the following model:

p A := { }

A := { }

In this extreme situation, the agent does not have any explicit belief, and
then the closure under logical consequence of this empty set will only generate
the set of validities. But this set does not coincide with the agent’s implicit
beliefs, which additionally contains p and all its logical consequences. And
there is more. Even if the agent acknowledges the truth-value of every atomic
proposition in each possible world, there is still no guarantee that she can
actually derive all the implicit beliefs. Her inferential abilities, that is, the rules
she can apply, do not need to be complete in the sense that they may not be
enough to derive all the logical consequences of her explicit information.

Our notions of implicit and explicit beliefs can be put in correspondence
with the notions of belief set and belief base if we make these two assumptions:

1. the agent has acknowledged the truth-value of all atomic propositions in
each possible world, that is, for all p ∈ P and for all w ∈W,

p ∈ V(w) implies p ∈ A(w) and p < V(w) implies ¬p ∈ A(w)

2. the agent has complete reasoning abilities; in other words, if something
is an implicit belief, then there is a finite sequence of reasoning steps
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(i.e., rule applications) after which the belief will be explicit. This can be
expressed with the formula

BImϕ→ 〈∗〉BExϕ

where the modality 〈∗〉 stands for the reflexive and transitive closure of
the application of inference steps.

The second reason is more conceptual, and highlights the top-down per-
spective of our framework. In the foundationalist approach, it is the belief
base the one that is given; then the belief set is built by successive inference
steps until we reach a stable situation in which no further step will add further
information. But our notions of implicit and explicit beliefs, and in general
our notions of implicit and explicit information follow the other direction. It
is the implicit form the one that is given, usually by what is true in all the
relevant worlds (the epistemically indistinguishable in the case of knowledge,
the most plausible ones in the case of beliefs). Then, among the pieces of im-
plicit information, we distinguish the ones that the agent has recognized and
acknowledged; those are the explicit ones.

6.5 Dealing with contradictions

We have discussed connections of our framework with known forms of non-
monotonic reasoning, arguing that we can represent some of their forms by
dealing explicitly with the weaker notion of information they involve: beliefs.

Now, when beliefs are considered, there is the possibility for the agent to
have incorrect information and therefore to face contradictions. Let us revise
which options our framework provides for dealing with such situations.

In general, an agent can face two different forms of contradiction.

External contradictions An agent can face a contradiction between her infor-
mation and some external source. The typical belief revision case falls into this
category: the agent believes that χ holds and then an external source suggests
her that ¬χ is the case. There are also other possibilities, according to how
strong is the agent’s attitude towards χ (known or just believed) and how re-
liable is the external observation (infallible or just plausible). In out setting,
the case in which the agent knows χ and gets informed that ¬χ certainly holds
cannot happen, because χ cannot be both true and false at the same time (we
have assumed true knowledge). But, putting this case aside, any of the other
three situations is possible.

The way the agent deals with such contradictions depends on which one is
the strongest: the agent’s information or the observation. If the agent knows χ,
then being suggested that ¬χ is the case will not affect neither her knowledge
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nor her beliefs. On the other hand, if the agent believes χ, then having an
irrefutable proof that ¬χ holds will make change her knowledge and hence
also her beliefs (what an explicit observation does). Finally, in the case in
which the agent believes χ and she gets informed from a reliable but fallible
source that ¬χ is the case, the needed action depends on the reliability of the
external source. If the external source is more reliable than the agent’s beliefs,
then we are in the typical belief revision case, which is solved by a change in
the agent’s beliefs (what a DEL upgrade and its non-omniscient version do) to
agree with the external source. If, on the other hand, the agent’s beliefs are
more reliable, then there will be no change. Note how in the cases in which an
action is needed, our setting has an operation that represents it.

Internal contradictions A more serious form of contradiction arises when the
contradiction occurs inside the agent’s information, that is, when the agent is
informed (implicitly or explicitly) about both a formula and its negation.

In our setting of Chapter 5, the agent cannot have internal contradictions
in her implicit/explicit knowledge/beliefs. For the case of beliefs, recall that
the plausibility relation is a locally well-preorder, so inside each comparability
class there are always maximal worlds; hence BImϕ ∧ BIm¬ϕ is not satisfiable,
and therefore neither is BExϕ ∧ BEx¬ϕ. For the case of knowledge, the indistin-
guishability relation is reflexive (because the plausibility relation is reflexive);
hence KImϕ ∧ KIm¬ϕ is not satisfiable and therefore neither is KExϕ ∧ KEx¬ϕ.

Note how implicit/explicit knowledge/beliefs cannot face internal contra-
dictions because of semantic restrictions: the plausibility relations always have
maximal worlds inside each comparability class and the indistinguishability
relation is reflexive. Then, every single time there is at least one maximal world
and at least one epistemically possible; hence the implicit forms of knowledge
and belief are contradiction-free, and therefore so are their explicit forms.

But we do not have any restriction for the formulas the agent has in her ac-
cess sets.2 Then, weaker notions of information that look only at the contents of
such sets can face internal contradictions. In particular, our agent can consider
as possible worlds in which she has acknowledged the truth of both a formula
and its negation, that is, formulas of the form 〈∼〉 (Aϕ ∧A¬ϕ) are satisfiable.

The question is now, how can our agent deal with these situations? In
Section 4.4.2 we proposed to remove the world in which such contradiction
occurs. The intuition behind the suggestion is that in a pure knowledge setting,
that is, true observations and truth-preserving inference, the only reason such
situation can occur is because the agent has observed that χ holds, and then
has found out (via inference) that one of the possibilities she still considers is
in fact a ¬χ-one. Then discarding such possibility is simply the delayed effect
of the previous observation.

2In the framework of Chapter 2 we ask for the formulas to be true, but we dropped this
requisite in the next chapters when we changed our definition of explicit information.
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In a setting that involves beliefs it is also reasonable to eliminate such con-
tradictory possibilities if the beliefs have been built in a proper way. When
beliefs are involved, the inferential acts we have proposed take care of generat-
ing the possibilities in which the assumptions fail. For example, our definition
of inference with known premises but believed rule not only makes the agent
to believe explicitly that the rule’s conclusion is the case; it also generates an
explicit possibility in which the conclusion is not. Hence, if there is an epis-
temically possible world in which the agent has acknowledged χ and then she
truthfully and explicitly observes ¬χ, there should be a copy of the world in
which she has not acknowledged χ (and in fact she has acknowledged ¬χ).

But the “removing the syntactically inconsistent world” proposal is not an
option in situations like the following one:

p, q {p,¬q} {p⇒ q}

In this model, the agent knows explicitly p and p⇒ q. Then, she can perform an
inference (in fact, deductive) step that makes her know q explicitly. There is no
contradiction at the level of explicit knowledge, since the agent does not know
¬q, even implicitly. But, nevertheless, there is a local contradiction because the
agent has accepted ¬q as true before, and now she has just accepted q too.

Note how, if there is indeed a proper justification to have both the rule’s
conclusion and its negation in the A-set, then this ‘simple’ model represents
a situation that, as mentioned in van Benthem (2009), “challenges our dynamic
approach to belief change so far”. Not only the contradiction cannot be solved
by a reordering of the worlds: then the whole theory itself becomes subject of
revision, and fundamental changes may be needed.

Here we just mention briefly two possibilities for dealing with this situation,
without going into further details. One of them is equip the A set with a
further structure, an ordering among formulas, like it is done in syntactic belief
revision. This further extension would allow us to decide which elements of
the theory should be thrown away and which ones should be kept. Some
examples of this are entrenchment functions in belief revision (Gärdenfors and
Makinson 1988), ordered theory presentation (Ryan 1992) and structured belief
bases Kahle (2002). There are also more recent proposals based on the idea
of ordered preferences (Liu 2010). Another possibility is to consider worlds
that contain not a single set of formulas, but several of them, ordered by some
plausibility relation (van Benthem 2009). If a contradiction arises, then we can
perform a reordering, but now not among the worlds, but among the theories
themselves.
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The non-omniscient and dynamic setting presented in this dissertation adds an
extra dimension to standard Dynamic Epistemic Logic: besides the studied acts
of observation (update) and revision (upgrade), our agents can get information
by means of finer informational actions, like changes in awareness and diverse
forms of inference. Thus, our framework can give a different perspective and
therefore shed some light in areas that deal, in some form or another, with an
agent’s information and its dynamics.

Though in this dissertation we will not pursue particular applications, the
present chapter introduces some proposals for connections. We focus on areas
in Linguistics and Cognitive Science as well as Game Theory. Our purpose is
not to provide formal and deep proposals, but simply to show how the main
ideas behind our setting have a wide range of applications.

7.1 Linguistics

Our work can be related with Linguistics, the formal study of natural language.
Among all the linguistic areas, there are interesting connections with the study
of the notions of attention, questions and pragmatics.

7.1.1 Attention

The interest on the study of a notion of “attention” arises from the observation
that, though every day of our life we face an large amount (and probably an
infinite number) of possibilities, we, as agents with limited resources, do not
have the ability to work properly with all, and at any given moment we only
deal with a small subset of them.

There are several ways of defining what an agent is paying attention to, and
our approach can represent some of them.
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Attention as awareness Attention can be understood as a language-related
notion: we pay attention to the possibilities our current language allows us
to express. For example, Natalia is looking for her car’s keys, and she is just
paying attention to the possibility for them to be either in the bedroom, or in
the kitchen, or in the dinning room. From her point of view, there exists only
three possibilities, and she is not considering the possibility for the keys to be
in the bathroom because “bathroom” is not in her current language.

More generally, if an agent is only aware of two atomic propositions p and q,
then she will identify at most four possibilities: the four different combinations
of p and q’s truth-values. But what she identifies as “the p and q possibility”
may correspond to a number of them that differ from each other in the truth-
value of atomic propositions the agent is not currently entertaining, like r, s
and so on. In other words, some possibilities are not considered because the
agent’s language is not fine enough to identify them in the first place.

This notion of attention corresponds directly to the notion of awareness we
have dealt with in Chapter 4, in which the set of formulas the agent is aware of
is generated by the set of atomic propositions she has available in all the worlds
she considers possible (Definition 4.6). This gives us the following definition:

Attϕ := Awϕ

Attention given by beliefs There are others understandings of what it means
to be “paying attention” to a given possibility. Following ideas about conscious
belief and investigation presented in Stalnaker (1984), the dissertation de Jager
(2009) relates the notions of attention and inattention not only to syntactic
sources, like the agent’s language, but also to semantic ones, like the agent’s
beliefs. For example, Natalia is still looking for her keys, but now she is also
not paying attention to the possibility for them to be in the kitchen because she
considers that situation very unlikely to be the case.

More generally, even though an agent might be aware of the atomic propo-
sitions p and q, she might be paying attention just to two possibilities (e.g, the
one with p and q true, and the one with p true and q false). Though the other
two possibilities are expressible, she is not paying attention to them because,
according to her beliefs, they are very implausible.

When beliefs are involved, there are several possibilities for defining what
the agent is paying attention to. One option is given by an agent that pays
attention to a given ϕ if and only if ϕ is true in at least one epistemically
possible situation: Attϕ := 〈∼〉ϕ. But we can also have a more radical agent
that pays attention only to those possibilities that occur in at least one world
that is more plausible than the current one: Attϕ := 〈≤〉ϕ. We can even have a
very radical agent that pays attention only to those possibilities that hold in at
least one of the most plausible situations: Attϕ := [≤] 〈≤〉ϕ.
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7.1.2 Questions

There are close relations between our framework and the logical analysis of
questions. In particular, we see two important connections.

Questions as aware raising mechanism In Chapters 3 and 4 we discussed
two different understandings of the notion of awareness: as the formulas of
an arbitrary set, and as those generated from the set of atoms the agent can
use in all the worlds she considers possible, respectively. Our discussion was
not only about awareness’ representation, but also about its dynamics, and we
provided mechanisms for raising and dropping awareness.

But, though our actions showed the effect that changes in awareness have in
the agent’s information, besides situations like the Twelve Angry Men example
(Section 4.1), we did not provide concrete reasons for these awareness’ modi-
fications. In other words, though we describe how awareness change, we did
not justify why these changes happen.

One of the most natural ways to change the current awareness of an agent
and focus her attention on a specific issue is by asking a question. Intuitively,
when a question is asked, the hearer switches her attention to focus on the just
raised issue. This is the approach followed by some of the most prominent
logical treatment of questions (Groenendijk 2007; van Benthem and Minică
2009): a question separates the current set of possibilities into several groups
according to the possible answers, therefore changing the agent’s attention.

From our fine grained perspective, we can think of a combination of ques-
tions and finer representations of information: we can understand a question
as an action that increases some current set of ‘relevant propositions’ whose
truth value needs to be determined.

A setting in which we can embed the ideas of our framework in a natural
way is the DEL approach to questions of van Benthem and Minică (2009).
Semantically, their epistemic issue model contains, besides the non-empty set of
words, their atomic valuation and an equivalence indistinguishability relation
denoted by ∼, an equivalence abstract issue relation, denoted by ≈, that divides
the set of possibilities in areas in which the agent would like to be. Syntactically,
the epistemic language is extended with a universal modality for the issue
relation, [≈], and the universal modality, U.

The important actions in this framework are not only those that announce
a fact (an announcement), but also those that raise an issue (a question). While
an announcement “ϕ!′′ differs from that of standard PAL in that it just cut links
between worlds that disagree on ϕ without deleting any of them, the effect of
asking a question “ϕ?′′ is a refinement of the issue relation: each issue partition
is split into (possibly) two: one with the worlds that satisfyϕ, and another with
those that satisfy ¬ϕ.
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This setting allows us to define statements describing the effect of a question.
For example, the formula U ([≈]ψ ∨ [≈]¬ψ) expresses that ψ is settled as an
issue across the whole model (Definition 4 in van Benthem and Minică (2009)).
Then, the following formula states that ψ will be settled as an issue across the
whole model after asking χ:

[χ?] U
(
[≈]ψ ∨ [≈]¬ψ

)
But, from our non-omniscient perspective, the fact that the truth-value of ψ

is uniform in all the agent’s ≈-partitions is not enough to settle it as an issue
explicitly. Consider, for example, our setting of Chapter 3 in which, in order for
ϕ to be explicit information, we needed for the agent to be aware of it, defining
Exϕ as � (ϕ ∧Aϕ). Following the same methodology, we can interpret [≈] as
implicit issue, and then define its explicit version as

Issϕ := [≈] (ϕ ∧Aϕ)

Then, according to the mentioned formula, the following one expresses that
after asking χ, ψ will be settled as an explicit issue across the whole model:

[χ?] U
(

Issψ ∨ Iss¬ψ
)

But now we can look for other versions of the act of asking a question. In
van Benthem and Minică (2009)’s omniscient setting, “ϕ?” raises an issue not
only about ϕ, but also about all formulas that are logically equivalent to it. But
from our non-omniscient perspective, only the issue about ϕ should be raised
explicitly, and the rest of the formulas logically equivalent toϕ should be indeed
an issue, but only in an implicit way.

Following the spirit of the act of explicit observation (Definition 3.7), an explicit
question operation that follows the given intuition, denoted by “ϕ+?′′, can be
defined as the former “ϕ?” plus the additional effect of making the agent aware
of ϕ. Given the definition of awareness, the latter requirement boils down to
adding ϕ to the A-set of all possible worlds. Then we can build formulas like
the following, expressing that ψ will be settled as an explicit issue across the
whole model after asking χ explicitly:

[χ+?] U
(

Issψ ∨ Iss¬ψ
)

This new setting, together with the actions defined in Section 3.5, allow us
to express combinations of questions and changes in awareness. For example,
the following formula expresses that, after asking χ explicitly, ψ will become
an issue settled implicitly across the whole model, and it will be an issue settled
explicitly as soon as the agent considers it:

[χ+?]
(

U ([≈]ψ ∨ [≈]¬ψ) ∧ [+ψ] U (Issψ ∨ Iss¬ψ)
)
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These examples show how a question can be understood as mechanism
that raises issues, and therefore creates awareness. Such changes can affect
now only the agent’s explicit knowledge (and beliefs), but also other attitudes,
like preferences (Guo and Xiong 2010).

Questions and inferences The second strong connection is not with acts of
awareness change, but with acts of inference. Most of the scientific inquiry can
be described as a combination of questions and inferences, like Hintikka em-
phasizes in his Interrogative Model of Inquiry (IMI: Hintikka (1999); Hintikka et al.
(2002); Hintikka (2007)). In the IMI, inquiry is represented as an information-
seeking process in which the inquirer, based on some premises, tries to establish
certain conclusion. At each stage, she has a choice between performing a de-
ductive step in which a logical conclusion is derived from the information she
has acquired so far, or performing an interrogative move in which she test a
fact that she cannot justify or discard with her current information.

In the search for formalizations of the IMI, combinations of frameworks for
questions and inference have already produced fruitful results. The master’s
dissertation Hamami (2010a) combines a logic for questions with a logic for
tableau-based inference, and the inference part shares some similarities with
our approach for rule based inference of Chapter 2, like the definition of explicit
knowledge (called local knowledge) and the restriction for explicit information
about only propositional formulas. On top of that, the system has the important
advantage of providing to the agent a complete reasoning system.

For a simple example of a useful combination of questions an inference,
recall the described DEL approach to questions (van Benthem and Minică 2009).
Another important action defined there is the action of resolution, “!”, in which
the indistinguishability relation ∼ is restricted within the issue partitions (that
is, is redefined as ∼ ∩ ≈). As indicated in the mentioned work, this operation
is a natural generalization of an announcement that need not have natural
language correspondent. With such operation we can build formulas like

[χ?] [!] U
(
[∼]ψ ∨ [∼]¬ψ

)
expressing that a question aboutχ followed by a resolution will produce knowl-
edge everywhere about whether ψ.

In a non-omniscient setting, a question and a resolution may not be enough
to produce explicit knowledge. Even if an implicit question of χ followed by
resolution produce indeed implicit knowledge about ψ, there is no guarantee
that ψ will be also explicitly known. But then, all the agent needs is a further
inference step. So suppose that, indeed, [χ?] [!] U ([∼]ψ ∨ [∼]¬ψ) is the case.
Then, we expect the following formula to be true too:

[χ+?] [!] [↪→(χ⇒ψ)] U (KExψ ∨ KExψ)
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The formula expresses that an explicit question aboutχ followed by a resolution
and then an inference step will produce explicit knowledge about ψ.

The combination of questions and inferences become even more appeal-
ing when we look not only at the inquirer’s knowledge and her deductive
inferences, but also at her beliefs and her inferences in general.

7.1.3 Pragmatics

Suppose your partner tells you truthfully “I’m cooking meat tonight”. What
information is conveyed by this announcement?

Besides the plain fact that your partner indeed will be cooking meat tonight,
the message usually provides more information. Depending on the specific
circumstances, it may also indicate “bring red wine”, “do not be late” or, in
some extreme cases, “do not show up at all”. These pieces of information,
despite being beyond the proper meaning of the announcement, are usually
understood and acknowledged in our conversations.

Where does this extra information (implicatures) comes from? Why is
it communicated? What is the role of the proper semantic meaning of the
announced sentence in the extra information it provides? These questions are
the concern of linguistic Pragmatics.

One of the most influential pragmatic theories is the one introduced by
Paul Grice (see Grice (1989)). The main idea of his proposal is that, based on
the assumption that the speaker obey certain ‘maxims’ about the informative
purpose of a conversation, the hearer can extract additional information that is
not covered by the semantic meaning of the statement. In other words, Grice
proposed that conversational implicatures can be seen as further inferences, and
that they can be justified by a reasoning process that takes into account not only
the semantic meaning of the announced sentence, but also some aspects of the
conversational context.

With this idea in mind, and following the methodology of our approach,
implicatures can be seen as the result of further inference steps based on beliefs
the hearer has about the speaker’s intentions. Consider the mentioned example:
a speaker announces “I’m cooking meat tonight”, and from this the hearer infers
that she needs to get red wine. How can this be represented in our setting?

First, note that the assumptions the hearer made about the drinking prefer-
ences of the speaker (white wine when cooking fish, red whine when cooking
meat) are already encoded in the hearer’s beliefs before the announcement takes
place; it is in this sense that the hearer makes assumptions about the speaker’s
intentions during a conversation. This situation corresponds to the following
model, in which m stands for meat (hence¬m stands for fish) and r stands for red
wine (¬r stands for white wine). The arrows represent the plausibility relation,
with the reflexive arcs omitted.
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m, r

m r

{m} {m⇒ r} {¬m} {¬m⇒ ¬r}

{m} {m⇒ ¬r} {¬m} {¬m⇒ r}

The hearer’s plausibility order puts on top the meat-red wine and fish-white wine
situations. Nevertheless, this is only implicit; the only explicit information the
hearer has is about the food’s choice in each possible situation, and about what
drink it would imply in each one of them.

Then the speaker says ‘I’m cooking meat tonight”. The immediate effect of
the utterance is that of a public announcement: the hearer will discard those
situations she recognizes as ¬m-ones, i.e., the situations on the right column
(see Section 4.4.2). This gives us the following model, which we call M:

m, r

m

{m} {m⇒ r}

{m} {m⇒ ¬r}

Here is where the further reasoning takes place. The agent believes explicitly
that meat corresponds to red wine, so she can perform an inference that will
make her implicit belief about the red wine explicit. In our setting, she has at
least two ways of doing it. The first one, a strong local inference with m ⇒ r
(Definition 5.18) will only make explicit the red wine belief (BEx r):

M ⊗ X ∪ {r} X

Y Y

Pre :=
(
m ∧A m

)
∧

(
tr(m⇒ r) ∧ R (m⇒ r)

)
=

m, r

m

{m, r} {m⇒ r}

{m} {m⇒ ¬r}

The second possibility, an inference with known premises m and believed
rule m ⇒ r (Definition 5.15), will additionally acknowledge explicitly a (not
plausible but still possible) situation with white wine (BEx r ∧ K̂Ex ¬r):
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M ⊗ X ∪ {¬r} X ∪ {r}

Y \ {m⇒ r} Y

Pre := KEx b ∧ BEx(b⇒ f )

=

m, r

m

m, r

m

{m, r}

{m, r}

{m,¬r}

{m,¬r}

{m⇒ r}

{m⇒ ¬r}

{ }

{m⇒ ¬r}

Pragmatics as iterated best response The iterated best response mechanism pro-
posed in Franke (2009) explains pragmatic phenomena as the result of a se-
quence of iterated best responses that start from the literal semantic meaning
of the announcement and continue for as long as it is reasonable and the agents
can do it. We have shown how our setting can capture the small steps that
makes explicit the assumptions in each response, and our non-omniscient be-
lief revision (Section 5.3.2) can represent how the agents ‘correct’ their beliefs
for future responses. To describe the long-term behaviour, an extension that
deal with iterations is needed, as we will discuss in Chapter 8.

7.2 Cognitive Science

Our framework deals with the representation of several notions of information
and the way they are affected by diverse actions. Thus, it also has connections
with Cognitive Science, the study of mind and how information (perception,
language, reasoning, and emotion) is represented and transformed in the brain.

7.2.1 Learning Theory

Leaving aside for a moment the particular frameworks and tools that we have
explored so far, the main subject of this dissertation is the study and represen-
tation of changes in information. Besides Logic (and, in particular, Epistemic
Logic and its dynamic extensions), there are other approaches that deal with
epistemic changes. One of these frameworks is Learning Theory (LT; see e.g. Jain
et al. (1999)), the study of functions that attempt to identify the correct hypothe-
sis from a collection of possibilities based on inductively given streams of data.
Though it evolved from the study of language acquisition, learning theory fo-
cuses on various properties of the process of conjecture-change over time, and
therefore it is applicable also in other fields, like philosophy of science, where
it can be interpreted as a theory of empirical inquiry (Kelly 1996).
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Using the language learning terminology, the basic premises in Learning
Theory are that the agent considers several languages as the possible ones.
Then she receives an infinite sequence of data that contains all words of the
actual language. Based on this information, the agent tries to identify the actual
language, in some cases by making a single conjecture after a finite number
of data (finite identification; Mukouchi (1992)), and in some others by making a
conjecture every certain time and waiting for the conjecture to stabilize to the
correct one (inductive inference; Gold (1967); Angluin and Smith (1983)).

Recent works have looked at connections between Learning Theory and
DEL (Gierasimczuk 2009; Ma 2009; Baltag and Smets 2009; Dégremont and
Gierasimczuk 2009). The main idea is that, by representing the languages the
agent considers possible in a possible worlds style, learning can be seen as a
mechanism that, at each stage, decides how the just received data will change
the agent’s knowledge/beliefs.

Our fine-grained setting allows us to represent this process from the per-
spective of non-ideal agents. First, a ‘real’ agent may not have at hand the
full language each possibility represents. More precisely, our A-sets that so far
have contained the formulas the agent has acknowledged as true in that world,
can now contain the words the agent has recognized as part of the language
represented by that world. For example, if the agent considers only two pos-
sibilities, one standing for the language a(a + b)∗ and another standing for the
language a(a + b)∗a, then she knows implicitly that the word aba is in the lan-
guage because it is in the two languages she considers possible. But, following
our definition of explicit knowledge of Chapters 4 and 5, the knowledge is not
explicit if she has not recognized the word in the two possibilities. This can be
expressed with the following formula:

KIm(aba) ∧ ¬KEx(aba)

Second. Though a ‘real’ agent does not need to have the full language each
possibility represents, she may as well be able to construct words of it. The
agent can have information not only about the words of each language, but
also about how to generate more words from current ones. Following the ideas
of Formal Grammar, one way to do this is by using production rules: then we can
express situations in which, thanks to her current knowledge, the agent can
derive another word of the language:(

KEx(abX) ∧ KEx(X⇒ a)
)
→ [↪→(X⇒a)] KEx(aba)

Third. Adding beliefs to the picture enriches the setting, allowing us to rep-
resenting the agent’s implicit and explicit hypothesis about the actual language
at each stage and how it changes due to the received piece of information (Baltag
and Smets 2009; Dégremont and Gierasimczuk 2009). In our non-omniscient
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case, the following formula expresses that after receiving the explicit informa-
tion that abaa is a word in the language, the agent will believe that abaaa is a
word too:

¬BEx(abaaa) ∧ [abaa+⇑] BEx(abaaa)

Finally, our setting for inferences involving beliefs allows us to represent
small belief changes that are not direct consequence of the received data (just
like conversational implicatures). For example, if the agent believes explicitly
that X ⇒ b is a production rule of the actual language, then she can use it to
generate a new explicit belief. This is expressed by the following formula in
which the PA action model (CX⇒b

KB , e) is the one of Definition 5.15.(
KEx(abX) ∧ BEx(X⇒ b)

)
→ 〈CX⇒b

KB , e〉 (BEx(abb) ∧ ¬KEx(abb))

7.2.2 The notion of surprise

Surprising observations Many belief dynamics, like abduction and belief revi-
sion, are related to the notion of surprise, and there are some formal approaches
to this concept. In particular, the framework of Lorini and Castelfranchi (2007)
investigates the role of surprise in triggering the process of belief change, and
distinguishes two main forms of surprise: mismatch-based surprise and astonish-
ment. While the first one appears when the agent perceives information that
contradicts the beliefs she is currently focusing on, the second one appears
when the agent perceives information that is not in the focus of the agent. The
latter has two variants: after the agent brings the topic into focus, she recog-
nizes that she did not expect the observation, or even worst, that she expected
the opposite of the observation.

These two notions of surprise can be represented in our framework. Note
that the key difference between the two notions is the focus of the agent, so to
get a proper representation, we need to incorporate the awareness of notion (we
will use that of Chapter 4) to the beliefs framework of Chapter 5. Assume an
extended definition of implicit and explicit beliefs of the following form:

The agent believes implicitly the formula ϕ BImϕ := 〈≤〉 [≤] ( []ϕ ∧ ϕ)

The agent believes explicitly the formula ϕ BExϕ := 〈≤〉 [≤]
(

[]ϕ ∧ ϕ ∧Aϕ
)

We will use the modality 〈ϕ+!〉 for the finer non-omniscient observation (i.e.,
an announcement with unspecified announcer) sketched in Section 4.4.2.

The first form of surprise, mismatch-based surprise, occurs when the agent
faces an observation that contradicts the beliefs she is currently focusing on.
Our notion of explicit beliefs already requires the agent’s attention, so in our
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setting this situation corresponds roughly to the following formula

BEx¬χ ∧ 〈χ
+!〉> 1

The second form, astonishment, occurs when the agent faces an observation
that is not in her current focus and, after bringing into focus the related infor-
mation, she recognizes that either she did not expected the observation, or else
she expected exactly the opposite. This situation corresponds to the formula

¬Awχ ∧
(
¬〈≤〉 [≤] (χ ∧Aχ) ∨ 〈≤〉 [≤] (¬χ ∧A¬χ)

)
∧ 〈χ+!〉> 2

where 〈≤〉 [≤] (ϕ ∧Aϕ) stands for beliefs that just need the agent’s attention (i.e.,
awareness) to become explicit (cf. Subsection 4.3.2).

But our system can also express situations in which the agent can perceive
surprises that happen not only at the explicit level, but also at the implicit one.
Such surprises are stronger because what fails is not the agent’s ability to make
explicit her implicit beliefs (that is, the surprise does not arise because of lack
of reasoning), but rather her plausibility order.

Other actions producing surprise We have discussed surprises that occur as
a result of observations. But, are there other actions that can produce surprise?

For simplicity, we go back to the awareness-less definitions of implicit and
explicit beliefs of Chapter 5. We will say that the formula χ is a weak explicit
surprise if and only if the agent does not believe it explicitly: ¬BExχ; we will say
that χ is a strong explicit surprise if and only if the agent believes ¬χ explicitly:
BEx¬χ. Correspondent notions of implicit weak and strong surprise can be
obtained by replacing BEx by BIm in the previous definitions. The forms of
surprise that can be produced by each one of the actions in our setting depend
on what each action needs to take place.

Consider first our knowledge-related actions. In order for the agent to
observe some χ she does not need any previous information, so an observation
can produce not only the forms of surprise we just defined, but also many
others. In the case of knowledge-based inference with a rule σ, a weak explicit
surprise can be produced, since the agent does not need to believe explicitly
the rule’s conclusion before applying the rule. But none of the other forms
of surprise is possible, and the reason is that in order for the inference to take
place, cn(σ) should be already implicit knowledge, and therefore implicit belief.
Then weak implicit surprise is not possible because it asks for cn(σ) not to be

1In fact, 〈χ+!〉> does not express that χ is actually observed; just that it can be observed.
Then, the whole formula does not state that the agent is surprised, but rather than she can be
surprised. An alternative definition would take as the evaluation point not the stage before
the observation, but the stage after it. Nevertheless, it would need a past-looking modality to
express what the agent believed before the observation (cf. Yap (2007)).

2Again, the formula only states that the agent can be surprised.
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implicitly believed, and the two strong cases are also not possible because in
both the agent would need to believe ¬cn(σ) implicitly, and our setting does
not allow inconsistent beliefs.

Now consider our belief-related actions. Arbitrary acts of revision (i.e., arbi-
trary rearrangement of beliefs) can definitely produce surprises, again because
there is no precondition attached to them. Whether a non-arbitrary rearrange-
ment can produce surprising information or not depends on what the agent
needs to perform the action. For example, our inference with known premises
and believed rule aims to produce a situation in which the agent believes ex-
plicitly the rule’s conclusion (and yet considers explicitly a possibility in which
it fails). Then, the requirements imply that the rule’s conclusion is already
implicitly believed, and therefore, though the action can produce weak explicit
surprise, it cannot produce the weak implicit or any of the strong versions.
But this is reasonable, because as we discuss, this kind of inference resembles
default reasoning, an inference that works on what is most likely to be the case.

Other forms of inferences involving beliefs can produce surprises. The al-
ready discussed abductive reasoning requires from the agent some information
about the rule and its conclusion, but since this does not imply any attitude
about the premises, surprises are possible. Nevertheless, recall that the goal of
abductive reasoning is to find the ‘best’ an explanation of a given χ. Though an
explanation can be definitely surprising, there are usually several candidates,
and choosing the ‘best’ is generally understood as choosing the one that will
produce the less amount of changes or, in other words, the one that is less sur-
prising (and even not surprising at all). In fact, the notion of ‘best’ explanation
could be tied to how surprising this explanation would be.

7.3 Game Theory

Game Theory analyzes competitive situations in which several agents have to
make a (sequence of) choice(s). The outcome of the situation is then determined
by the individual choices of each one of them. A typical example is the so called
centipede game, whose diagram is shown below.

1

2

3

4

5
a b

(1, 1) (0, 100)

(99, 99)

This game takes place between two players, a and b, with 1 the starting point
and 2, 4 and 5 the final ones. At points 1 and 3, an agent has to take a decision
(a and b, respectively), and the final payoffs of the game, indicated in the form
(player a, player b), are determined by the players’ choices.
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One of the main goals of Game Theory is the study of solution concepts:
formal rules that indicate optimal strategies for the game, and therefore predict
the (not necessarily unique) final outcome. For example, backward induction
predicts that in the centipede game of above, if point 3 were reached, b would
choose 4 instead of 5, getting 100 instead of 99, and leaving a with 0 instead of
99. But if a recognizes this, then she will realize that choosing between 2 and 3
actually means to choose between a payoff of 1 and a payoff of 0, respectively.
Then she will choose 2, and the final payoff of the game will be (1,1).

In order to indicate what each player will do, a solution concept needs to
make assumptions not only about the nature of the game (perfect/imperfect
information, strategic/extensive game, etc.), but also about the nature of the
involved players. Recent literature (Aumann (1995); Stalnaker (1996); Aumann
and Brandenburger (1995); Polak (1999); Chen et al. (2007) among others) has
looked at the epistemic conditions that players need to satisfy in order to fol-
low the solution concept’s specification, and some of them have used Epistemic
Logic and Dynamic Epistemic Logic tools to make formal these epistemic require-
ments. It turns out that the assumption of rationality that some of the most
important solution concepts in the literature make (the mentioned backward in-
duction, Nash equilibrium, iterated elimination of strictly dominated strategies among
others) implies not only that every player will always make the choice that will
give her the best possible outcome, but also that the players are always able
to perfectly calculate every single consequence of every action. Not surpris-
ingly, the predictions of solution concepts based on such strong assumptions
usually do not coincide with the choices real agents do when facing these situa-
tions. Even in approaches that model games with incomplete information (e.g.,
Feinberg (2004)), it is implicitly assume that the players can derive all logical
consequences of the information they have, and this is not necessarily the case.

Our framework allows us to model situations in which the involved agents
are non-omniscient, and therefore allows us to explain why non-ideal players
do not necessarily behave in an optimal way. Consider again the presented
centipede game, and suppose a knows explicitly not only the structure of the
game but also her preferences about the final state. Moreover, suppose that
she believes explicitly that, if the game reaches point 3, b will choose 4. These
assumptions can be expressed with the following formulas:

Game’s structure Final state’s preferences Rationality

Ka
Ex

(
1→ [Next](2 ∨ 3)

)
Ka

Ex

(
2→ Neutrala

)
Ba

Ex(3→ [Next]4)

Ka
Ex

(
4→Worsta

)
Ka

Ex

(
5→ Besta

)
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The game starts, so Ka
Ex1 is the case. By deduction, a knows explicitly that she

has a choice between 2 and 3, that is, Ka
Ex[Next](2 ∨ 3). What will she do?

The important point here is that a non-omniscient agent may have not
noticed the connection between her current choice, her explicit belief about
b’s choice at 3, and the payoffs in each case. In other words, she may have
not realized that if she chooses 3, the game is very likely to end with 4 as the
final state. In order to link those pieces of information, she needs to apply the
following truth-preserving rule{

[Next] (2 ∨ 3) , 3→ [Next] 4
}
⇒ [Next] (2 ∨ [Next]4)

While the first premise, [Next] (2 ∨ 3), is something a knows (explicitly), the
second one, 3 → [Next] 4, is something she only believes (explicitly). Then,
after the inference step, a will only believe (explicitly) the conclusion, that is,

Ba
Ex[Next]

(
2 ∨ [Next]4

)
But again, being non-omniscient, she may still need to link the final states

with her preference about them, that is, she may need to apply{
[Next] (2 ∨ [Next] 4) , (2→ Neutrala) , (4→Worsta)

}
⇒ [Next]

(
Neutrala ∨[Next] Worsta

)
Again, the conclusion of this rule will be only believed (explicitly), that is,

Ba
Ex[Next]

(
Neutrala ∨ [Next] Worsta

)
Only after these two inference steps a will realize that, according to her

beliefs, her choice between 2 and 3 actually boils down to a choice between
Neutrala and a future Worsta.

Though the example makes some simplifications, it definitely highlights one
of the main reasons3 why real agents might not choose the solution backward
induction proposes: even if they have full knowledge about the structure and
payoffs of the game and even if they believe they all will pick the highest payoff
when having the choice, they might fail in establishing a direct relation between
early moves in the game and later outcomes. In these cases, our non-omniscient
analysis allows us to model not only the information these non-ideal agents
have, but also the reasoning steps they need in order to reach an information
state in which the strategy proposed by the solution concept will actually be
played.

3Other explanation is a common agreement to reach an outcome that is better for both agents
(5 in our example).
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By focussing on finer notions of information, the framework developed in this
dissertation allows us to represent small steps in dynamics of information.

More precisely, by zooming in on the omniscient notions of knowledge and
belief, we have identified the notions of awareness, implicit/explicit knowledge,
and implicit/ explicit beliefs that have been discussed through this work, as well
as many others that have been just sketched. Technically, this has been achieved
by extending the possible worlds model with functions that associate to each
possible world a set of formulas, a set of atomic propositions and a set of rules.
This merge of semantic and syntactic machineries has allowed us to represent
finer notions of information and therefore non-omniscient agents. Table 8.1
shows the most important discussed notions.

Then we have studied different informational acts that transform these finer
notions, focusing not only on non-omniscient versions of acts already studied,
like observation and upgrade, but also on the actions that become meaningful
in this non-omniscient setting: changes in awareness and different kinds of
inferences. Technically, these actions have been defined as operations that
modify not only the semantic part but also the syntactic component of our
models. Table 8.2 shows the most important defined actions.

Let us review in more detail what each particular chapter has achieved.

8.1 Summary of the chapters

In Chapter 2 we have put together ideas from frameworks representing syn-
tactic inference in a modal style (Duc 1997; Jago 2009) with the key ideas of the
semantic-based Epistemic Logic (Hintikka 1962; Fagin et al. 1995). The result is
a setting in which we can represent an agent’s implicit and explicit information.
Thus, the agent does not need to be omniscient anymore, because her implicit
information does not need to be explicit. An important observation here is that
our agent has explicit information not only about the way the world can be (i.e.,
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Notion Definition Model requirements

Awareness of formulas Chap. 3: Aϕ

Chap. 4: � []ϕ

—–

—–

Awareness of rules Chap. 4: � []tr(ρ) —–

Implicit information
about formulas

Chap. 2: �ϕ

Chap. 3: �ϕ

Chap. 4: � ( []ϕ ∧ ϕ)

—–

—–

—–

Implicit information
about rules

Chap. 4: � ( []tr(ρ) ∧ tr(ρ)) —–

Explicit information
about formulas

Chap. 2: Aγ

Chap. 3: � (ϕ ∧Aϕ)

Chap. 4: � ( []ϕ ∧ ϕ ∧Aϕ)

Coherence

—–

—–

Explicit information
about rules

Chap. 4: � ( []tr(ρ) ∧ tr(ρ) ∧ Rρ) —–

Implicit knowledge
about formulas

Chap. 2: �ϕ

Chap. 4: � ( []ϕ ∧ ϕ)

Chap. 5: [∼]ϕ

Equivalence relation

Equivalence relation

Equivalence relation

Implicit knowledge
about rules

Chap. 4: � ( []tr(ρ) ∧ tr(ρ))

Chap. 5: [∼] tr(ρ)

Equivalence relation

Equivalence relation

Explicit knowledge
about formulas

Chap. 2: Aγ

Chap. 4: � ( []ϕ ∧ ϕ ∧Aϕ)

Chap. 5: [∼]
(
ϕ ∧Aϕ

)
Coherence and truth

Equivalence relation

Equivalence relation

Explicit knowledge
about rules

Chap. 4: � ( []tr(ρ) ∧ tr(ρ) ∧ Rρ)

Chap. 5: [∼]
(
tr(ρ) ∧ Rρ

) Equivalence relation

Equivalence relation

Implicit belief
about formulas

Chap. 5: 〈≤〉 [≤]ϕ Locally well-preorder

Implicit belief
about rules

Chap. 5: 〈≤〉 [≤] tr(ρ) Locally well-preorder

Explicit belief
about formulas

Chap. 5: 〈≤〉 [≤]
(
ϕ ∧Aϕ

)
Locally well-preorder

Explicit belief
about rules

Chap. 5: 〈≤〉 [≤]
(
tr(ρ) ∧ Rρ

)
Locally well-preorder

Table 8.1: Static notions of information.
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Action Description

Increasing awareness The agent increases her awareness. Studied in Chapters 3
(public and private versions) and 4.

Dropping awareness The agent increases her awareness. Studied in Chapter 3
(public and private versions).

Knowledge-based (i.e.,
truth-preserving) inference

Inference with explicitly known premises and explicitly
known rule. Studied in Chapters 2, 4 and 5.

Belief-based inference Inference that involve believed premises and/or believed
rules. Studied in Chapter 5.

Structural operation Extend the rules the agent knows. Studied in Chapter 2.

Implicit observation An observation that does not affect the agent’s explicit infor-
mation. Studied in Chapter 3.

Explicit observation An observation that affects the agent’s explicit information.
Studied in Chapters 2, 3 and 4.

Upgrade (revision) Reordering (revision) of the agent’s beliefs (omniscient and
non-omniscient versions). Studied in Chapter 3.

Table 8.2: Actions and their effects.

her explicit information is not only about formulas), but also about procedures
that allow her to extract more explicit information from what she already has
(i.e., she also has information about rules).

Then we have turned our attention to the actions that modify the agent’s
information. We have presented an explicit version of the known observation
(public announcement) action from Plaza (1989); Gerbrandy (1999). More inter-
estingly, we have provided a model operation representing the act of inference,
an act not considered in standard DEL due to the omniscient nature of the rep-
resented agents. This action allows the agent to extend her explicit information
by making explicit the information that was only implicit before. We have
also observed that, just like the agent can increase the formulas she explicitly
knows, she can also extend the rules she explicitly have. We have provided
model operations representing the application of structural rules (reflexivity,
monotonicity, cut); their effect is to increase the rules the agent can apply.

Chapter 3 is devoted to the notion of awareness. We have observed that
another reason for which an agent may not have explicit information about
something that is true in all the worlds she considers possible is because she
may not be aware of it. Then, we have looked at the Awareness Logic of Fagin and
Halpern (1988), and discussed the different possibilities it offer us for defining
a notion of explicit information.
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On the dynamic side, we have examined different actions that modify the
primitive notions of the framework, awareness and implicit information, and
therefore modify the defined notion of explicit information. For the notion of
awareness, we have reviewed actions that increase and decrease what the agent
is aware of; for the notion of implicit information, we have recalled the notion
of observation (public announcement). In all cases we reviewed the effect of
these actions in the agent’s explicit information. When going to a multi-agent
scenario, we have observed that the actions we defined are ‘public’; then, we
have presented an extension of the action models of Baltag et al. (1999) that
can deal with the syntactic component of our model, and therefore allows us
to represent private and even unconscious versions of the mentioned actions.

In Chapter 4 we have put together the ingredients that have helped us to
defined explicit information in the two previous chapters: in order to have
explicit information about a certain formula, the agent needs to be aware of it,
have implicit information about it, and acknowledge it as true. In particular, we
have worked with a language-based notion of awareness that is given not by an
arbitrary formulas as in Chapter 3, but by those generated from a set of atomic
propositions. We have reviewed properties of these notions, focusing on the
particular case of true information, that is, implicit and explicit knowledge.

We have then reviewed the actions of awareness raising, inference and
explicit observations defined in the previous chapters, adapting them to the
new richer setting. The new awareness raising operation works now by adding
atomic propositions to the proper set (and the related act of awareness dropping
can be represented by removing atoms from it); the inference action takes
advantage of the language-based definition of the awareness notion; the explicit
observation action becomes now an explicit announcement action that extends
its previous behaviour by producing not only implicit and explicit information,
but also awareness about the announced formula.

Chapter 5 has focused on a fine representation of the notion of beliefs. By
combining ideas for representing beliefs in a possible worlds framework (van
Benthem 2007) with ideas from the previous chapters for representing non-
omniscient information, we have introduced a semantic model that allows us to
represents an agent’s implicit/explicit knowledge/beliefs about formulas/rules.

Several actions can be defined over our new model. We first explored a
notion of belief revision already existing in the DEL literature, and we adapted
it to our non-omniscient setting. But just like our agent can perform inference
based on knowledge (that is, deduction), she can also perform inference that
involve beliefs. By combining the plausibility action models of Baltag and
Smets (2008) with the action models introduced in Chapter 3, we provided a
setting that allows us to express a large variety of inferences. In particular, we
defined inference with known premises and believed rule, believed premises
and known rule, and even weak and strong forms of local inference.
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Finally, Chapters 6 and 7 provide connections and applications of the devel-
oped framework in other fields. The first discusses the relations with diverse
known forms of reasoning, focusing on deductive reasoning, default reasoning,
abductive reasoning, the relation of belief bases with our explicit beliefs and
the relation with purely inferential belief revision. The second discusses on
connections with Linguistics, Cognitive Science and Game Theory.

While looking for answers for our original questions, the present work has
also shed some light on some other areas.

First, we have shown how a definition of information that merges semantic
and syntactic ideas allows us to get the best of both worlds. We still have some
level of the abstract structure a semantic approach give us, but we also have
the fine granularity that syntactic approaches provide us. More importantly, in
our framework we can define the ‘external’ semantic actions that represent the
agent’s interaction with her environment as well as the ‘internal’ introspective
acts that represent the agent’s own reasoning.

Second, we have shown that there is a harmony between the external and the
internal actions that change our information. Just as in standard DEL we have
acts of ‘hard’ information that produce knowledge (observations) and ‘soft’ acts
that produce beliefs (upgrade), in our non-omniscient setting we have ‘hard’
acts of knowledge-based inference that produce explicit knowledge as well as
‘soft’ acts of belief-based inference that produce explicit beliefs.

Third, though the presented framework for belief-based inference, PA action
models, was developed for representing inferences that combine known/be-
lieved premises with known/believed rules, these ideas have produced a rich
framework in which we can represent deductive reasoning as well as certain
forms of default and abductive reasoning.

Finally, our whole approach has been based in defining explicit information
in terms of other notions, like awareness, acceptance of formulas and implicit
information. Thus, we have shown that, in a setting with multiple notions of
information, the reductionist approach that defines some of them in terms of
combinations of the others is feasible and interesting in its own right.

8.2 Further work

Like most research works, ours has provided some answers, but has also raised
interesting questions. Here are the ones that we consider most appealing.

Long-term We have defined the effect of a single execution of several infor-
mational actions, but the result of their iterative application is also important.
More precisely, fixed-point operators would allow us express the effect of iter-
ative application of the defined actions, analogous to the Kleene star operator
in Propositional Dynamic Logic.
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How are fixed-point operators useful? Consider first the case of knowledge.
Restricting ourselves to the agent’s purely propositional knowledge, one would
expect that, when provided with a ‘complete’ set of rules, the result of an
agent’s iterative applications of truth-preserving inferences over her explicit
knowledge would be her implicit knowledge. This situation can be expressed
with a formula of the form

KImγ→ [(↪→∪)∗] KExγ

where the modality [(↪→∪)∗] stands for the reflexive transitive closure of the ap-
plication of the union of all truth-preserving inferences the agent can perform.
But recall that explicit knowledge is already implicit knowledge, and that in
the case of purely propositional facts, this explicit knowledge is not affected by
inference operations (that is, if the agent knows explicitly some purely propo-
sitional fact, then she will still know it after any truth-preserving inference).
Then what we have in fact is the full equivalence

KImγ↔ [(↪→∪)∗] KExγ

This formula shows how the omniscient epistemic notion of knowledge can
be seen as the fixed point of a sequence of actions over a non-omniscient but
dynamic notion. More generally, the use of fixed points suggest that ideal states
can be seen not as a static property, but as the fixed point of the application
of finer actions, thus highlighting the actions that are needed to reach such
optimal point.

Now, the equivalence does not need to extend to the case of epistemic
knowledge, since part of the agent’s explicit knowledge can be invalidated by
further inferences (consider Moore-type sentences “I do not knowϕ explicitly”).
But then fixed points would provide us a way to study which pieces of epistemic
information will be eventually overthrown and which ones will not.

Expressing the result of long-term iterative application of actions is also
interesting when we look at the agent’s beliefs. It would allow us to talk
about information that, though it might never become proper knowledge, can
nevertheless become a ‘stable’ belief that will not be affected by further steps.
There are already some results on the effect of iterated belief revision (e.g.,
Baltag and Smets (2009)), and a fixed-point extension of our setting would allow
us to include the described forms of default and abductive reasoning in the
iteration. Some specific fields in which fixed points of our finer informational
acts can be useful are

• Learning Theory, in particular, when dealing with the identification in the
limit paradigm in which learning is seen as an infinite process that is
successful if there is a finite number of steps after which the agent’s
hypothesis about the real language becomes stable,
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• Game Theory, in particular, in the Evolutionary Game Theory approach that
focuses not on properties of an ideal strategy but rather on the way
strategies arise and evolve until they become optimal, and hence stable.

Multi-agent notions of information We have dealt with the single-agent no-
tions of awareness, implicit/explicit knowledge, and implicit/explicit beliefs.
And though we have dealt with multi-agent situations, we have not dealt
multi-agent notions of information, like group knowledge/beliefs and, more
interestingly, common knowledge/beliefs. In our fine-notions-of-information
setting, this amounts to the study of implicit and explicit forms of group and
common knowledge/beliefs.

The combination of implicit/implicit forms information gives us several
cases. For example, in the case of group knowledge, while the very implicit
form can be defined as “everybody in the group knowsϕ implicitly” (coinciding
with the standard omniscient notion) and the very explicit form can be defined
as “everybody in the group knows ϕ explicitly”, there are now intermediate
points in which while some agents know ϕ explicitly, the rest know it only
implicitly.

The case of common knowledge is more interesting. Different from group
knowledge, the omniscient version of common knowledge is not defined by a
finite conjunction (assuming the group of agents is finite), but as an infinite one.
There is more room for intermediate forms: explicit and full common knowl-
edge corresponds to “everybody knows it explicitly and everybody knows that
everybody knows it explicitly and . . . ”, and we can find several situations in
which some levels of the knowledge of some agent is only implicit.

Now for the dynamics. Once that implicit group knowledge has been
reached (everybody knows implicitly that ϕ holds), then just actions of aware-
ness raising (in the case of Chapter 3) or even acts of inference (in the case of
Chapter 4) are needed to reach explicit group knowledge. But for reaching
common explicit knowledge from its implicit form we need group introspective
acts in which the agent recognizes that everybody in the group knows some-
thing explicitly. Moreover, being an infinitary notion, we do need fixed-points
operations to define explicit common knowledge, since our language can only
deal with finite formulas. But then we can look at the finite versions and verify
how many levels of group introspection are actually needed for real agents to
behave in a proper way (cf. Flobbe et al. (2008)).

Justifications By comparing our framework with the Logic of Justifications of
Artemov and Nogina (2005), we can observe that our static framework can
be seen as a special case in which each formula can have one and only one
justification: the formula itself. Under this interpretation, our definitions of
explicit information get a different reading. For example, our awareness-less
definition of explicit knowledge, � (ϕ ∧Aϕ), read as “ϕ is true and the agent has
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acknowledged it in all the worlds she considers possible”, can be read now as “ϕ is
true and the agent has the justification for it in all the worlds she considers possible”.
But clearly there may be more than one justification (evidence) for every true
formula. In fact, some authors (e.g., van Benthem and Martı́nez (2008)) have
proposed a definition of explicit knowledge that involve a universal quantifi-
cation over the possible situations and existential quantification over evidence:
the agent knows explicitly ϕ if and only if she has a justification for it in all the
worlds she considers possible.

This suggest a further classification of justification. For example, while
some facts are justified by deductive reasoning, some others are justified by
their observation. But then we should look more formally at a calculus of
justifications that involve our inferential steps. With this idea in mind, the act
of deductive inference can be seen as an act of building a justification for the
conclusion from the justifications of the premises.

Further dimension of syntactic structure When dealing with knowledge, ex-
isting semantic and syntactic approaches consider plain sets: of possible worlds
in the first case and of formulas in the second. Our approach for pure knowl-
edge of Chapters 2 and 4 simply combines them by assigning a set of formulas
(and of rules) to each possible world.

When dealing with beliefs, existing semantic and syntactic approaches con-
sider ordered sets: of possible worlds in the first case and of formulas in the
second. Our approach for beliefs of Chapter 5 provides only an ordering for
the worlds the agent considers possible, and the collection of formulas attached
to each world does not have any further structure. The proposed framework
can be extended in order to be fair to both semantic and syntactic approaches
by considering, besides an ordering among the possible worlds, an ordering
among the formulas (and rules) accepted in each one of them. This would
allow us to deal with internal syntactic contradictions, as we briefly discussed
in Section 6.5, but would also provide us with tools for more refined inference
processes. In particular, it would give us tools to choose ‘the best’ explanation
in abductive reasoning (cf. Section 6.3).
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A.1 Completeness of IEK w.r.t. IE-models

This section provides the completeness proof for the implicit/explicit language
with respect to IE-models (Theorem 2.1). Non-defined concepts like satisfia-
bility of a formula and a set of formulas, a Λ-consistent (inconsistent) set and
a maximal Λ-consistent set (for Λ an axiom system) are completely standard,
and can be found in chapter 4 of Blackburn et al. (2001).

For a completeness proof, the key observation is that an axiom system Λ
is strongly complete with respect to a class of models if and only if every Λ-
consistent set is satisfiable in a structure of the given class (Proposition 4.12 of
Blackburn et al. (2001)). Then, we will use the canonical model technique to
show that every IE-consistent set is satisfiable in a pointed IE-model. Proofs
of Lindenbaum’s Lemma and Existence Lemma are standard. For the Truth
Lemma, we will prove the case for our access and rule set formulas.

Lemma A.1 (Lindenbaum’s Lemma) For any IE-consistent set of formulasΣ, there
is a maximal IE-consistent set Σ+ such that Σ ⊆ Σ+. �

Definition A.1 (Canonical model for IE) Recall that IE denotes the implic-
it/explicit language. The canonical model of the axiom system IE is the model

MIE = 〈WIE,RIE,VIE,AIE,RIE
〉

where:

• WIE is the set of all maximal IE-consistent set of formulas;

• RIEwu iff for all ϕ in IE, ϕ ∈ u implies ^ϕ ∈ w (or, equivalently,
RIEwu iff for all ϕ in IE, �ϕ ∈ w implies ϕ ∈ u);

and, for all w ∈WIE

187
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• VIE(w) := { p ∈ P | p ∈ w };

• AIE(w) := {γ ∈ LP | Aγ ∈ w };

• RIE(w) := {ρ ∈ R | Rρ ∈ w }; J

Lemma A.2 (Existence Lemma) For every world w ∈ WIE, if ^ϕ ∈ w, then there
is a world u ∈WIE such that RIEwu and ϕ ∈ u. �

Lemma A.3 (Truth Lemma) For all w ∈WIE, we have (MIE,w) 
 ϕ iff ϕ ∈ w.

Proof. We prove the case of access and rule set formulas. For the first,

(MIE,w) 
 Aγ iff γ ∈ AIE(w) by semantic interpretation

iff Aγ ∈ w by definition of AIE

The case of rule set formulas is similar. �

By the mentioned Proposition 4.12 of Blackburn et al. (2001), all we have to
do is show that every IE-consistent set is satisfiable in a pointed IE-model, so
take any such set Σ. By Lindenbaum’s Lemma, we can extend it to a maximal
IE-consistent set Σ+; by the Truth Lemma, we have (MIE,Σ+) 
 Σ, so Σ is
satisfiable in the canonical model of IE at Σ+. It is only left to show that MIE

is indeed a model in IE, that is, we have to show that it satisfies coherence for
formulas and rules.

Remember that any maximal IE-consistent set Φ is closed under logical
consequence, that is, if ϕ and ϕ→ ψ are in Φ, so is ψ.

• Coherence for formulas. Suppose γ ∈ AIE(w); we want to show that for all u
such that RIEwu we have γ ∈ AIE(u). Note that Aγ→ �Aγ (axiom CohLP)
is in w.

By definition, γ ∈ AIE(w) implies Aγ ∈ w; by the logical consequence
closure, we have �Aγ ∈ w. Take any u such that RIEwu; by definition of
RIE we have Aγ ∈ u, and therefore γ ∈ AIE(u).

• Coherence for rules. Similar to the case of formulas, using the CohR axiom.

A.2 Completeness of IEK w.r.t. IEK-models

This section provides the completeness proof for the implicit/explicit language
with respect to IEK-models (Theorem 2.2).

We know already that IE is complete with respect to models in IE (Theorem
2.1). In order to show that IEK is complete with respect to IEK, we just have to
show that the canonical model for IEK satisfy equivalence, truth for formulas and
truth for rules.
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Definition A.2 (Canonical model for IEK) The canonical model for IEK, MIEK =
(WIEK ,RIEK ,VIEK ,AIEK ,RIEK), is defined just as the canonical model for IE (Defi-
nition A.1), but the worlds are maximal IEK-consistent sets of formulas instead
of maximal IE-consistent ones. J

Here is the proof for the three properties.

• Equivalence. Axioms T, 4 and 5 are canonical for reflexivity, transitivity
and euclideanity, respectively, so RIEK is an equivalence relation.

• Truth for formulas. We want to show that γ ∈ AIEK(w) implies (MIEK ,w) 
 γ.
Suppose γ ∈ AIEK(w); then we get Aγ ∈ w. By axiom TthLP we have γ ∈ w;
by the Truth Lemma, (MIEK ,w) 
 γ.

• Truth for rules. Similar to the case of formulas, with axiom TthR.

A.3 Closure of deduction operation

This section proves that IEK-models are closed under the deduction operation
(Proposition 2.1).

Let M be a model in IEK. To show that M↪→ρ (Definition 2.16) is also in IEK,
we will show that it satisfies coherence and truth for formulas, coherence and
truth for rules, and equivalence. Equivalence and both properties of rules are
immediate since neither the accessibility relation nor the rule set function are
modified. For the properties of formulas, we have the following.

• Coherence for formulas. Suppose γ ∈ A′(w) and pick any u ∈ W such that
Rwu in M↪→ρ ; we will show that γ ∈ A′(u).

From the definition of A′, we know that γ was added by the operation
or was already in A(w). In the first case, γ should be cn(σ) and therefore
pm(σ) ⊆ A(w) and σ ∈ R(w). But then, by coherence for formulas and
rules of M and the fact that Rwu, we have pm(σ) ⊆ A(u) and σ ∈ R(u);
therefore, the operation also adds cn(σ) (our γ) to the access set of u, that
is, γ ∈ A′(u). In the second case, by coherence for formulas of M and Rwu,
we have γ ∈ A(u) and therefore γ ∈ A′(u).

• Truth for formulas. Suppose γ ∈ A′(w); we will show that (M↪→σ ,w) 
 γ.

Again, from the definition of A′, we know that γ was added by the
operation or was already in A(w). In the first case, γ should be cn(σ)
and therefore pm(σ) ⊆ A(w) and σ ∈ R(w). By truth for formulas of M
we have (M,w) 


∧
γ∈pm(σ) γ; by truth for rules of M we have (M,w) 


(
∧
γ∈pm(σ) γ) → cn(σ). Therefore, we have (M,w) 
 cn(σ), i.e., (M,w) 
 γ.

In the second case, by truth for formulas of M we also get (M,w) 
 γ.
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Now, γ is a propositional formula so its truth value depends only on the
valuation at w. But since the valuations at M and M↪→σ are the same, we
get (M↪→σ ,w) 
 γ, as required.

A.4 Closure of structural operations

This section proves that IEK-models are closed under the three structural oper-
ations of Definition 2.18, reflexivity, monotonicity and cut (Proposition 2.2).

The proposition already argues for equivalence and the two properties of
formulas, coherence and truth. It is only left to prove coherence and truth for
rules for each one of the three operations.

Coherence In the case of the reflexivity operation, the coherence property fol-
lows immediately, since the original model M already has the property and the
new rule ςδ is added to the rule set of all worlds in MRefδ . For the monotonicity
operation, we just need to check coherence for the new rule ς′. Recall that it is
added only to worlds that already have ς. But if a world w has ς in M, then,
by coherence for rules of M, every world R-reachable from w also has ς in M,
and therefore it will have ς′ in MMonδ,ς . The case of cut is similar: ς′ is added
to those worlds that have ς1 and ς2, but then every world R-accessible from w
also has ς1 and ς2 in M, so they will have ς′ in MCutς1 ,ς2

.

Truth Note that for this property, it is enough in all three cases to show that
the added rules are truth-preserving in M because the truth-value of the trans-
lation, a purely propositional formula, depends just on the valuation, which is
preserved by the operations. So let R be the rule set function of the original
model M, R′ be the rule set function of the corresponding new model, and pick
any world w ∈W.

• Reflexivity. Recall that ςδ is given by {δ} ⇒ δ, and pick any rule ρ ∈ R′(w).
If ρ is already in R(w), we have (M,w) 
 tr(ρ) since M is in IEK. Otherwise,
ρ is ςδ, and we obviously have (M,w) 
 δ→ δ.

• Monotonicity. Recall that ς′ is given by pm(ς) ∪ {δ} ⇒ cn(ς), and pick any
ρ ∈ R′(w). If ρ is already in R(w), we have (M,w) 
 tr(ρ). Otherwise, ρ is ς′,
and then ς ∈ R(w). Since M is in IEK, we have (M,w) 
 (

∧
γ∈pm(ς) γ)→ cn(ς)

and therefore (M,w) 
 ((
∧
γ∈pm(ς) γ) ∧ δ)→ cn(ς).

• Cut. Recall that ς′ is given by (pm(ς2) \ {cn(ς1)}) ∪ pm(ς1) ⇒ cn(ς2), and
pick any ρ ∈ R′(w). If ρ ∈ R(w), we have (M,w) 
 tr(ρ) since M is in IEK.
Otherwise, ρ is ς′ and we have {ς1, ς2} ⊆ R(w).

Suppose
∧
γ∈pm(ς′) γ is true at w in M; then, every premise of ς′ is true at

w in M. This includes every premise of ς1 and every premise of ς2 except



A.5. Structural operations and deduction 191

cn(ς1). But since every premise of ς1 is true at w in M and ς1 is in R(w),
truth for rules of M tells us that cn(ς1) is true at w in M and hence every
premise of ς2 is true at w in M. Now, since ς2 is in R(w), truth for rules
of M tell us that cn(ς2), that is, cn(ς′), is true at w in M. Then we have
(M,w) 
 tr(ς′).

A.5 Structural operations and deduction

This section provides a sketch for the proof of the validities of Table 2.8.

Take any pointed IEK-model (M,w). The main idea of the proof is that, un-
der the appropriate circumstances, different sequences of operations produce
models that are exactly the same from w’s point of view, and therefore satisfy
the same formulas of our language. For example, we will argue that if we
have δ ∈ A(w) and ς ∈ R(w), then the pointed models ((MMonδ,ς)↪→ς′

, w) and
((M↪→ς)Monδ,ς

, w) are the same from w’s point of view (third entry for mono-
tonicity in Table A.1 below). Note how a stronger identity between models
does not hold because we cannot verify what happens in worlds that are not
reachable from w. Therefore, we will state this “identity from w’s perspective”
in terms of an extended notion of bisimulation that asks for related worlds to
have the same access and rule set.

Definition A.3 (Bisimulation) Take two IE-models M1 = 〈W1,R1,V1,A1,R1〉

and M2 = 〈W2,R2,V2,A2,R2〉. A non empty relation B ⊆ (W1 ×W2) is a bisim-
ulation between M1 and M2 (in symbols, M1↔ B M2) if and only if B is a stan-
dard bisimulation between 〈W1,R1,V1〉 and 〈W2,R2,V2〉 and, if Bw1w2, then
A1(w1) = A2(w2) and R1(w1) = R2(w2).

We will write (M1,w1)↔ B (M2,w2) when M1↔ B M2 and Bw1w2. J

The validity of the formulas stated in Table 2.8 follows from the bisimilarities
between models stated in Table A.1, where models of the form (MSTR)↪→σ

are
the result of applying the structural operation STR and then the deduction
operation with rule σ, and similar for models of the form (M↪→σ)STR. In all cases,
the bisimulation is the identity relation over worlds reachable from w.

Now for the proof. The involved operations (structural ones and deduction)
preserve worlds, accessibility relations and valuations. Then, in order to show
that the identity relation over worlds reachable from w is indeed a bisimulation,
we just need to show that such worlds have the same access and rule set in
both models.

Consider as an example the third bisimilarity for monotonicity; we will work
with w first. For access sets, take any γ in the access set of w in (MMonδ,ς)↪→ς′

; by
definition, either it was already in that of w in MMonδ,ς or else it was added by
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Reflexivity with ςδ the rule {δ} ⇒ δ

If σ , ςδ, then
(
(MRefδ)↪→σ

, w
)
↔

(
(M↪→σ)Refδ , w

)
If ςδ ∈ R(w), then

(
(MRefδ)↪→ςδ

, w
)
↔

(
M↪→ςδ

, w
)

If δ ∈ A(w), then
(
(MRefδ)↪→ςδ

, w
)
↔

(
(M↪→ςδ

)
Refδ

, w
)

Monotonicity with ς′ the rule pm(ς) ∪ {δ} ⇒ cn(ς)

If σ , ς′, then
(
(MMonδ,ς)↪→σ

, w
)
↔

(
(M↪→σ)Monδ,ς , w

)
If ς′ ∈ R(w), then

(
(MMonδ,ς)↪→ς′

, w
)
↔

(
M↪→ς′

, w
)

If δ ∈ A(w) and ς ∈ R(w), then
(
(MMonδ,ς)↪→ς′

, w
)
↔

(
(M↪→ς)Monδ,ς

, w
)

Cut with ς′ the rule (pm(ς2) \ {cn(ς1)}) ∪ pm(ς1)⇒ cn(ς2)

If σ , ς′, then
(
(MCutς1 ,ς2

)
↪→σ

, w
)
↔

(
(M↪→σ)Cutς1 ,ς2

, w
)

If ς′ ∈ R(w), then
(
(MCutς1 ,ς2

)
↪→ς′

, w
)
↔

(
M↪→ς′

, w
)
.

If (pm(ς1) ∪ {cn(ς1)}) ∈ A(w) and ς1 ∈ R(w), then(
MCutς1 ,ς2 ↪→ς′

, w
)
↔

(
M↪→ς2 Cutς1 ,ς2

, w
)
.

Table A.1: Bisimilarities for deduction and structural operations

the deduction operation with ς′. In the first case, γ is in the access set of w in
M, since structural operations do not modify access sets; then it is also in the
access set of w in M↪→ς and in that of w in (M↪→ς)Monδ,ς

. In the second case, γ
should be cn(ς′), but then we have the premises of ς′ (and hence those of ς) in
the access set of w in MMonδ,ς . Then, they are already in that of w in M and, by
hypothesis, we have ς in the rule set of w in M, so cn(ς), which is nothing but
cn(ς′), is in the access set of w in M↪→ς and hence it is in that of w in (M↪→ς)Monδ,ς

.
For the other direction, take γ in the access set of w in (M↪→ς)Monδ,ς

. Then it
is in that of w in M↪→ς and therefore either it was already in that of w in M, or
else it was added by the deduction operation. In the first case, γ is preserved
through the monotonicity and the deduction operations, and therefore it is in
the access set of w at (MMonδ,ς)↪→ς′

. In the second case, γ should be cn(ς), and
then we should have pm(ς) and ς in the corresponding sets of w in M. By
hypothesis, we have δ in the access set of w in M, so we have all the premises
of ς′ in the access set of w in M; therefore they are also in that of w at MMonδ,ς .
Since we have ς in the rule set of w in M, we have ς′ in that of w in MMonδ,ς
too. Hence, we have cn(ς′), which is nothing but cn(ς), in the access set of w in
(MMonδ,ς)↪→ς′

.
The argument for rules is similar, and hence w has the same access and rule

sets in (MMonδ,ς)↪→ς′
and (M↪→ς)Monδ,ς

.
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Now suppose a world u is reachable from w through the accessibility relation
at MMonδ,ς ↪→ς′

. Since R is not modified by the operations, u is reachable from
w at M and therefore u is reachable from w at M↪→ςMonδ,ς

too. Now we use the
coherence properties: since δ ∈ A(w) and ς ∈ R(w), we have δ and ς in the
corresponding sets of u, and then we can apply the argument used for w to
show that u has the same information and rule set on both models.

These bisimulations allow us to prove the validities of Table 2.8. For exam-
ple, recall the two formulas for monotonicity:

Monotonicity with ς′ the rule pm(ς) ∪ {δ} ⇒ cn(ς)

〈Monδ,ς〉 〈↪→σ〉ϕ ↔ 〈↪→σ〉 〈Monδ,ς〉ϕ for σ , ς′

〈Monδ,ς〉 〈↪→ς′〉ϕ ↔
(
〈↪→ς′〉ϕ ∨ (A δ ∧ R ς ∧ 〈↪→ς〉 〈Monδ,ς〉ϕ)

)
As mentioned in the text, the first formula indicates that the operation does

not affect deduction with a rule different from the new one, and it follows from
the first bisimilarity for monotonicity:

if σ , ς′, then (MMonδ,ς ↪→σ
, w)↔ (M↪→σMonδ,ς , w)

The second formula indicates how deduction with the generated rule changes
after the structural operation, and it expresses the disjunction of two cases. If
the rule created by the monotonicity operation was already in the original rule
set, then the monotonicity operation is irrelevant, and just deduction is needed.
This follows from the second bisimilarity for this structural operation:

If ς′ ∈ R(w), then (MMonδ,ς ↪→ς′
, w)↔ (M↪→ς′

, w)

But if the created rule was not in the original set, then we need some require-
ments, as the third bisimilarity for the operation shows:

If δ ∈ A(w) and ς ∈ R(w), then (MMonδ,ς ↪→ς′
, w)↔ (M↪→ςMonδ,ς

, w)

A.6 Closure of explicit observation operation

This section proves that IEK-models are closed under the explicit observation
operation of Definition 2.20 (Proposition 2.3).

Let M = 〈W,R,V,A,R〉 be a model in IEK. To show that Mχ!+ is also in IEK,
we will show that it satisfies equivalence, coherence and truth for formulas and
coherence and truth for rules.

Equivalence is immediate since the new model is a sub-model of the original
one. For the other properties, suppose χ is a formula. Coherence for formulas
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of Mχ!+ follows from that of M and the fact that χ is added uniformly to all
preserved worlds. Coherence for rules of Mχ!+ follows simply from that of M.
Truth for formulas of Mχ!+ follows from that of M since the truth of formulas
in A-sets depends only on the atomic valuation of each world, which is not
modified by the operation, and from the fact that the preserved worlds are
precisely those in which χ is true. Truth for rules of Mχ!+ simply relies on that of
M, again because the truth-value of the translation of a rule depends only on
the unmodified atomic valuation of each world. The argument for the case in
which χ is a rule is similar.

A.7 Explicit observation and deduction

This section provides a sketch for the proof of the validities of Table 2.10.

Just as the case of structural operations and deduction, the validity of the
formulas follows from bisimilarities, this time the ones stated in Table A.2.

If χ is a formula:

If χ < pm(σ), then (Mχ!+ ↪→σ
,w) ↔ (M↪→σχ!+ ,w)

If χ ∈ pm(σ) and χ ∈ A(w), then (Mχ!+ ↪→σ
,w) ↔ (M↪→σχ!+ ,w)

If χ is a rule:

If χ , σ, then (Mχ!+ ↪→σ
,w) ↔ (M↪→σχ!+ ,w)

If χ = σ and χ ∈ R(w), then (Mχ!+ ↪→σ
,w) ↔ (M↪→σχ!+ ,w).

Table A.2: Bisimilarities for deduction and explicit observation operations

The proof is also similar to the case of structural operations and deduction,
keeping in mind that explicit observations remove worlds, therefore modifying
accessibility relations.

A.8 Awareness as a full language

This section provides the proofs of Lemmas 4.1 and 4.2.

Lemma 4.1 states that if an agent i has the formula ϕ at her disposal, that is,
if (M,w) 
 [i]ϕ, then she has at her disposal all atoms in it, that is, (M,w) 
 [i]p
for every p ∈ atm(ϕ). In other words, the formula

[i]ϕ→ [i]p

is valid for every p ∈ atm(ϕ).
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We will prove the equivalent statement:

(M,w) |= [i]ϕ implies atm(ϕ) ⊆ PAi(w)

The equivalence of the statements follows from the semantic interpretation of
formulas of the form [i]p (Definition 4.5).

The proof is by induction on ϕ. The base case is immediate: if ϕ is an atom
p and (M,w) 
 [i]p, then the semantic interpretation gives us p ∈ PAi(w), hence
atm(p) ⊆ PAi(w). For the inductive cases we have the following.

ϕ as [ j]p. Suppose (M,w) 
 [i]( [ j]p). From Definition 4.3 we have the validity
[i]( [ j]p)↔ [i]p so (M,w) 
 [i]p; then p ∈ PAi(w) and hence atm( [ j]p) ⊆ PAi(w).

ϕ as A j ψ. Suppose (M,w) 
 [i](A jψ). Definition 4.3 gives us [i](A jψ) ↔ [i]ψ
so (M,w) 
 [i]ψ. But ψ is a sub-formula of A jψ; then, by inductive
hypothesis, atm(ψ) ⊆ PAi(w), and hence atm(A jψ) ⊆ PAi(w).

ϕ as R j ρ. Suppose (M,w) 
 [i](R j ρ). Definition 4.3 gives us [i](R j ρ) ↔ [i]ρ so
(M,w) 
 [i]ρ. But ρ is a sub-formula of R j ρ; then, by inductive hypothesis,
atm(ρ) ⊆ PAi(w), and hence atm(R j ρ) ⊆ PAi(w).

ϕ as ¬ψ. Suppose (M,w) 
 [i](¬ψ). Definition 4.3 gives us [i](¬ψ) ↔ [i]ψ so
(M,w) 
 [i]ψ. Since ψ is a sub-formula of ¬ψ, inductive hypothesis gives
us atm(ψ) ⊆ PAi(w) and hence atm(¬ψ) ⊆ PAi(w).

ϕ as ψ ∨ ψ′. Suppose (M,w) 
 [i](ψ∨ψ′). Definition 4.3 gives us [i](ψ∨ψ′)↔
( [i]ψ∧ [i]ψ′) so (M,w) 
 ( [i]ψ∧ [i]ψ′), that is, (M,w) 
 [i]ψ and (M,w) 
 [i]ψ′.
Since ψ and ψ′ are sub-formulas of ψ ∨ ψ′, inductive hypothesis gives us
(atm(ψ) ∪ atm(ψ′)) ⊆ PAi(w) and hence atm(ψ ∨ ψ′) ⊆ PAi(w).

ϕ as � jψ. Suppose (M,w) 
 [i](� jψ). Definition 4.3 gives us [i](� jψ) ↔ [i]ψ so
(M,w) 
 [i]ψ. Butψ is a sub-formula of� jψ; then, by inductive hypothesis,
atm(ψ) ⊆ PAi(w), and hence atm(� jψ) ⊆ PAi(w).

This completes the proof.

Lemma 4.2 states that if agent i has all atoms in {p1, . . . , pn} at her disposal,
that is, if (M,w) 
 [i]pk for every k ∈ {1, . . . ,n}, then she has at her disposal any
formula built from such atoms, that is, (M,w) 
 [i]ϕ for any formula ϕ built
from {p1, . . . , pn}. In other words, the formula( ∧

k∈{1,...,n}

[i]pk

)
→

[i]ϕ

is valid for every ϕ built from {p1, . . . , pn}.
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Again, we will prove an equivalent statement, this time:

{p1, . . . , pn} ⊆ PAi(w) implies (M,w) 
 [i]ϕ

for every ϕ built from {p1, . . . , pn}. Again, the equivalence of the statements
follows from the semantic interpretation of formulas of the form [i]p.

So suppose {p1, . . . , pn} ⊆ PAi(w); we will proceed by induction on ϕ. The
base case is immediate: if ϕ is any pi in {p1, . . . , pn}, then we obviously have
(M,w) 
 [i]pi. For the inductive cases we have the following.

ϕ as [ j]p. In this case p should be in {p1, . . . , pn} so (M,w) 
 [i]p. But by Defini-
tion 4.3 we have [i]( [ j]p)↔ [i]p, so (M,w) 
 [i]( [ j]p).

ϕ as A j ψ. Since A jψ is built from atoms in {p1, . . . , pn}, we have atm(A jψ) ⊆
{p1, . . . , pn}, that is, atm(ψ) ⊆ {p1, . . . , pn}. Since ψ is a sub-formula of A jψ,
inductive hypothesis gives us (M,w) 
 [i]ψ. But by Definition 4.3 we have
[i](A jψ)↔ [i]ψ, so (M,w) 
 [i](A jψ).

ϕ as R j ρ. We have atm(R j ρ) ⊆ {p1, . . . , pn}, that is, atm(ρ) ⊆ {p1, . . . , pn}. Since
ρ is a sub-formula of R j ρ, inductive hypothesis gives us (M,w) 
 [i]ρ. But
by Definition 4.3 we have [i](R j ρ)↔ [i]ρ, so (M,w) 
 [i](R j ρ).

ϕ as ¬ψ. We have atm(ψ) ⊆ {p1, . . . , pn}. Since ψ is a sub-formula of ¬ψ, in-
ductive hypothesis gives us (M,w) 
 [i]ψ. But by Definition 4.3 we have
[i](¬ψ)↔ [i]ψ, so (M,w) 
 [i](¬ψ).

ϕ as ψ ∨ ψ′. We have (atm(ψ)∪atm(ψ′)) ⊆ {p1, . . . , pn}. Sinceψ andψ′ are both
sub-formulas of ψ ∨ ψ′, inductive hypothesis yields (M,w) 
 [i]ψ ∧ [i]ψ′.
Definition 4.3 gives us [i](ψ ∨ ψ′) ↔ ( [i]ψ ∧ [i]ψ′) so we have (M,w) 

[i](ψ ∨ ψ′).

ϕ as � jψ. We have atm(ψ) ⊆ {p1, . . . , pn}. Since ψ is a sub-formula of � jψ,
inductive hypothesis gives us (M,w) 
 [i]ψ. But by Definition 4.3 we have
[i](� jψ)↔ [i]ψ, so (M,w) 
 [i](� jψ).

Note how this case does not involve availability at worlds other than w.
It simply says that if � jψ is a formula built from atoms the agent has
locally available at w, then all atoms in ψ should be locally available. By
inductive hypothesis, ψ should be locally available, [i]ψ, and therefore by
Definition 4.3, � jψ is also locally available, [i](� jψ).

This completes the proof.
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A.9 Upgrade and locally well-preorders

This section provides the proof of Proposition 5.11.

We need to show that if the relation ≤ is a locally well-preorder, so is the
relation ≤′ defined as

≤
′:= (≤;χ?)︸ ︷︷ ︸

(1)

∪ (¬χ?;≤)︸   ︷︷   ︸
(2)

∪ (¬χ?;∼;χ?)︸        ︷︷        ︸
(3)

In words, we have w ≤′ u if and only if in M (1) w ≤ u and u is a χ-world, or (2)
w is a ¬χ-world and w ≤ u, or (3) w is a ¬χ-world, u is a χ-world and the two
worlds are in the same comparability class. Note that the only case in which
we do not have w ≤′ u is when, in M, w is a χ-world and u is a ¬χ-world.

The key observation is that a locally well-preorder is a locally connected
and conversely well-founded preorder. We will prove that if ≤ satisfies such
properties, so does ≤′ defined as above.

For reflexivity, pick any w ∈W. Since ≤ is reflexive, we have w ≤ w. Now, w
is either a χ-world or a ¬χ-one. In the first case we get w ≤′ w from part (1) of
the definition of ≤′; in the second case we get it from part (2).

For transitivity, suppose w ≤′ u and u ≤′ v and consider w. If it is a χ-world,
then so is u (otherwise there would not be a link from w to u) and hence so is
v too; therefore, by part (1) of the definition, w ≤′ v. If it is a ¬χ-world, part (2)
of the definition gives us w ≤′ v. Hence, ≤′ is transitive.

For local connectedness, first we will show that, for every u1,u2 in W, we have
u1 ∼ u2 if and only if u1 ∼

′ u2.
(=⇒) Suppose u1 ∼ u2. If we have u1 ≤

′ u2, then we have u1 ∼
′ u2 and we are

done. Otherwise, u1 should be a χ-world in M and u2 should be a ¬χ-world in
M; this together with u1 ∼ u2 gives us u2 ≤

′ u1 by part (3) of the definition, and
hence we have u1 ∼

′ u2.
(⇐=) If u1 ∼

′ u2, then we have u1 ≤
′ u2 or u2 ≤

′ u1. Consider the first case,
and let us review the three possibilities. If we have u1 ≤

′ u2 because of part
(1) of the definition of ≤′, then we have (u1,u2) ∈ (≤;χ?); hence u1 ≤ u2 and
therefore u1 ∼ u2. If it is because of part (2), then we have (u1,u2) ∈ (¬χ?;≤);
hence u1 ≤ u2 and therefore u1 ∼ u2. If it is because of part (3), then we
have (u1,u2) ∈ (¬χ?;∼;χ?); hence u1 ∼ u2. In the three possibilities we get the
required u1 ∼ u2. The second case is analogous.

Now, to show local connectedness, take any w ∈ W and pick u1,u2 in Vw

under ≤′. By definition of Vw we have w ∼′ u1 and w ∼′ u2; by the just proved
property we get w ∼ u1 and w ∼ u2; by local connectedness of≤we have u1 ∼ u2

and then by the just proved property again we get the required u1 ∼
′ u2.

For converse well-foundedness we proceed by contradiction. Suppose that
there is an infinite ascending chain u1 <′ u2 <′ · · · . These worlds are either χ or
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¬χ-worlds in the original model. Since the chain is infinite, there must be an
infinite sub-chain of either χ or ¬χ-worlds (we cannot have an alternation from
a χ-world to a ¬χ-one because of the definition of ≤′). But inside these areas,
the new relation is the old one, contradicting the converse well-foundedness
of ≤. Then, such infinite chain cannot exists, and therefore ≤′ is conversely
well-founded.

This completes the proof.

A.10 Product update and locally well-preorders

This section provides the proofs of Proposition 5.12.
We will show that if ≤ and 4 are two locally well-preorders over W and E

respectively, so is the relation ≤′ over W × E given by

(w1, e1) ≤′ (w2, e2) iff
(
e1 ≺ e2 and w1 ∼ w2

)
︸                     ︷︷                     ︸

(1)

or
(
e1 u e2 and w1 ≤ w2

)
︸                     ︷︷                     ︸

(2)

Recall that a locally well-preorder is a locally connected and a conversely well-
founded preorder

For reflexivity, take any (w, e) ∈ W × E. By reflexivity of ≤ and 4, we have
w ≤ w and e 4 e. Then w ≤ w and e u e and hence (w, e) ≤′ (w, e) from (2) of the
definition of ≤′.

For transitivity, suppose (w1, e1) ≤′ (w2, e2) and (w2, e2) ≤′ (w3, e3). According
to the definition of ≤′, each one of these two inequalities has two possible
reasons, and this gives us four cases. We will prove two of them in detail; the
other two can be proved in a similar way.

1. Suppose that both (w1, e1) ≤′ (w2, e2) and (w2, e2) ≤′ (w3, e3) hold because
of part (1) of the definition of ≤′. Then we have

e1 ≺ e2, w1 ∼ w2, e2 ≺ e3, w2 ∼ w3.

By unfolding the definitions of ≺ and ∼we get

e1 4 e2, e1 64 e2,

 w1 ≤ w2

w2 ≤ w1
, e2 4 e3, e3 64 e2,

 w2 ≤ w3

w3 ≤ w2
.

For the action part, recall that 4 is transitive. Then we have e1 4 e3. We
also have e3 64 e1 because otherwise from e1 4 e2 we will get e3 4 e2,
contradicting part of the assumptions. Then we have e1 ≺ e3.
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For the static part we have again four possibilities. If we have w1 ≤ w2

and w2 ≤ w3, then we get w1 ≤ w3 by transitivity of ≤, and hence w1 ∼ w3.
If we have w1 ≤ w2 and w3 ≤ w2, then we should have w1 ≤ w3 or w3 ≤ w1

because ≤ is locally connected; hence w1 ∼ w3. In the other two cases, a
similar reasoning shows that w1 ∼ w3 holds too.

Then, part (1) of the definition of ≤′ gives us (w1, e1) ≤′ (w3, e3).

2. Suppose that while (w1, e1) ≤′ (w2, e2) holds because of part (1) of the
definition of ≤′, (w2, e2) ≤′ (w3, e3) holds because of part (2). Then

e1 ≺ e2, w1 ∼ w2, e2 u e3, w2 ≤ w3.

By unfolding the definitions we get

e1 4 e2, e1 64 e2,

 w1 ≤ w2

w2 ≤ w1
, e2 4 e3, e3 4 e2, w2 ≤ w3,

For the action part, recall that 4 is transitive. Then we have e1 4 e3. We
also have e3 64 e1 because otherwise from e2 4 e3 we will get e2 4 e1,
contradicting part of the assumptions. Then we have e1 ≺ e3.

For the static part we have two possibilities. If we have w1 ≤ w2, then
together with w2 ≤ w3 we get w1 ≤ w3; hence w1 ∼ w3. If we have w2 ≤ w1

then from w2 ≤ w3 we should have w1 ≤ w3 or w3 ≤ w1 because≤ is locally
connected; hence w1 ∼ w3.

Then, part (1) of the definition gives us (w1, e1) ≤′ (w3, e3).

For local connectedness, first we will show that, for every w1,w2 in W and
e1, e2 in E, we have w1 ∼ w2 and e1 ≈ e2 if and only if (w1, e1) ∼′ (w2, e2).
(=⇒) If w1 ∼ w2 and e1 ≈ e2, then we have w1 ≤ w2 or w2 ≤ w1, and e1 4 e2 or
e2 4 e1. This gives us four cases. For example, suppose w1 ≤ w2 and e2 4 e1.
If we have e1 4 e2 we get e1 u e2; then by part (2) of the definition we get
(w1, e1) ≤′ (w2, e2) and hence (w1, e1) ∼′ (w2, e2). If we do not have e1 4 e2, then
we have e2 ≺ e1 and from w1 ≤ w2 we already have w1 ∼ w2; then by part (1)
of the definition we have (w2, e2) ≤′ (w1, e1) and hence (w1, e1) ∼′ (w2, e2). The
other three cases can be proved in a similar way.
(⇐=) If (w1, e1) ∼′ (w2, e2), then (w1, e1) ≤′ (w2, e2) or (w2, e2) ≤′ (w1, e1). In the
first case, we have either possibility (1), which gives us e1 ≺ e2 and w1 ∼ w2,
hence e1 ≈ e2 and w1 ∼ w2, or else possibility (2), which gives us e1 u e2 and
w1 ≤ w2, hence e1 ≈ e2 and w1 ∼ w2. The second case is similar.

Now, to show local connectedness, take any (w, e) ∈ (W × E) and pick
(w1, e1), (w2, e2) in V(w,e) under ≤′. By definition of V(w,e) we have (w, e) ∼′ (w1, e1)
and (w, e) ∼′ (w2, e2); by the just proved property we get w ∼ w1, e ≈ e1, w ∼ w2
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and e ≈ e2; by local connectedness of ≤ and 4 we have w1 ∼ w2 and e1 ≈ e2 and
then by the just proved property again we get the required (w1, e1) ∼′ (w2, e2).

For converse well-foundedness we proceed by contradiction. Suppose that
there is an infinite ascending chain (w1, e1) <′ (w2, e2) <′ · · · . Consider the
infinite chain e1, e2, . . .: if there is an infinite number of pairs ei and ei+1 for
which the plausibility order is strict, that is, if ei ≺ ei+1 happens infinitely
often, then we have an infinite ascending chain in E, contradicting the converse
well-foundedness of 4. On the other hand, if ei ≺ ei+1 only happens finitely
often, then from some moment on we have only equal plausibility, that is, from
some moment on we have ei u ei+1. But then, from that moment on, we have
wi < wi+1, which is an infinite ascending chain in W, contradicting the converse
well-foundedness of ≤. Then, the infinite chain in W × E cannot exists, and
hence ≤′ is conversely well-founded.

This completes the proof.
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S

Dit proefschrift presenteert een logisch kader voor de weergave van kleine
stappen in de dynamica van informatie.

De klassieke kennislogica, met de mogelijke-werelden semantiek, is een van
de meest verbreide systemen voor de weergave van en het redeneren over in-
formatie van actoren. Haar dynamisch tegenwicht, ‘dynamic epistemic logic’
(dynamische kennislogica), maakt het ons mogelijk om acties die informatie
veranderen weer te geven en om daarover te redeneren. Een voorbeeld zijn
de zogenaamde ‘harde’ aankondigingen die als gevolg hebben dat we alle
mogelijkheden waarin de aangekondigde informatie niet waar is, compleet
weggooien. Een ander voorbeeld zijn de ‘zachte’ aankondigingen waarin we
eenvoudigweg het verkondigde aannemelijker vinden dan het tegendeel, maar
waarin we niettemin de situaties waarin de aankondiging onwaar is niet elim-
ineren.

In dit kennislogisch kader zijn de actoren echter alwetend: hun informatie
is afgesloten onder de logische gevolgtrekkingsrelatie. Deze eigenschap, ook
al is ze bruikbaar in sommige toepassingen, is een zeer sterke idealisering in
andere toepassingen. Het wordt vaak beweerd dat kennislogica om die reden
geen geschikt gereedschap is voor het redeneren over de informatie van ‘echte’
actoren met begrensde vermogens. En, wat nog belangrijker is, alwetendheid
maakt de kleine stappen volstrekt irrelevant die wij in het dagelijks leven
als niet-ideale actoren nemen, zoals bewustzijnsverandering, introspectie, en
vooral: afleiding.

In dit proefschrift breiden we de klassieke kennislogica uit, opdat wij be-
halve de kennislogische notie van informatie, met dit aspect van alwetendheid,
ook meer verfijnde noties van informatie kunnen weergeven. Deze verfijnde
noties kunnen een aantal afsluitingseigenschappen missen en hoeven in het
bijzonder niet afgesloten te zijn onder logisch gevolg. We onderzoeken ver-
schillende zulke noties zoals bewustzijn (‘awareness’)(hoofdstukken 3 en 4),
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expliciete kennis (hoofdstukken 2, 4, en 5), en expliciet geloof (hoofdstuk 5), en
we bespreken de eigenschappen van deze noties.

Wat nog belangrijker is, we geven eveneens definities voor verfijnde vormen
van acties die opereren op deze verfijnde noties van informatie. We introduc-
eren acties voor de weergave van bewustzijnsverandering (hoofdstukken 3 en
4), voor de weergave van op kennis gebaseerde (waarheidsbehoudende) aflei-
ding (hoofdstukken 2, 4, en 5) en voor de weergave van op geloof gebaseerde
(niet waarheidsbehoudende) afleiding (hoofdstuk 5). We presenteren tevens
niet-alwetende versies van de eerder genoemde acties van ‘harde’ en ‘zachte’
aankondiging (hoofdstukken 2 en 4 voor de eerste, en hoofdstuk 5 voor de
tweede). In alle gevallen definiëren we de actie, presenteren haar basiseigen-
schappen, en geven een correct en volledig axiomatisch bewijssysteem.

Het door ons ontwikkeld systeem heeft verscheidene verbanden en toe-
passingen. In het bijzonder bespreken we de relatie van de diverse vormen
van afleiding die we gedefiniëerd hebben tot standaard redeneervormen als
deductie, verstekredeneren (‘default reasoning’), en abductie (hoofdstuk 6).
Wat betreft toepassingen maken we enige suggesties over de bruikbaarheid
van ons systeem voor nieuwe perspectieven in taalkunde, cognitiewetenschap,
en speltheorie (hoofdstuk 7).

We besluiten met het vermelden van nog verschillende andere vragen en
uibreidingen die aanvullend onderzoek behoeven (hoofdstuk 8).



A

This dissertation presents a logical framework for representing small steps in
dynamics of information.

Classical Epistemic Logic with possible worlds models is one of the most
widely used frameworks for representing and reasoning about agents’ informa-
tion. Its dynamic counterpart, Dynamic Epistemic Logic, allows us to represent
and reason about actions that change this information, like ‘hard’ announce-
ments that make us discard completely the possibilities where the announced
proposition is not true, of ‘soft’ announcements where we simply consider the
announced proposition very likely to be the case, but nevertheless we do not
eliminate the situations in which it does not hold.

However, agents represented in the epistemic logic framework are omni-
scient: their information is closed under logical consequence. This property,
useful in some applications, is a very strong idealization in some others: it
is often argued that, because of it, epistemic logic is not an adequate tool for
reasoning about the information of ‘real’ agents with bounded abilities. More
importantly, omniscience makes irrelevant the small steps that we non-ideal
agents perform every day in our life, like change in awareness, introspection
and, especially, inference.

In this dissertation, we extend the classical epistemic logic framework in
order to represent, besides the omniscient epistemic logic notion of informa-
tion, other finer notions that do not need to have strong closure properties and,
in particular, do not need to be closed under logical consequence. We explore
different definitions for notions like awareness (Chapters 3 and 4), explicit knowl-
edge (Chapters 2, 4 and 5) and explicit beliefs (Chapter 5), discussing some of
their properties.

More importantly, we provide definitions for finer actions that affect these
finer notions of information. We introduce actions representing changes in
awareness (Chapters 3 and 4), knowledge-based (i.e., truth-preserving) inference
(Chapters 2, 4 and 5) and belief-based (non-truth-preserving) inference (Chapter
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5). We also present non-omniscient versions of the already studied acts of
‘hard’ and ‘soft’ announcement (Chapters 2 and 4 for the first, Chapter 5 for
the second). In all cases we define the action, present its basic properties, and
provide a sound and complete axiom system.

The developed framework has a wide range of connections and applica-
tions. In particular, we discuss the relation of the several acts of inference we
define with known forms of reasoning, like deduction, default and abductive
reasoning (Chapter 6). For applications, we make a few suggestions of how
our framework might provide a useful tool that gives new perspective in fields
like Linguistics, Cognitive Science and Game Theory (Chapter 7).

We conclude by mentioning further interesting questions and extensions
that deserve additional investigation (Chapter 8).



R

Este trabajo presenta un sistema lógico en el cual es posible representar pequeñas
acciones que modifican la información de un agente.

El sistema de Lógica Epistémica con mundos posibles como modelo semánti-
co es uno de los sistemas más usados para representar y razonar acerca de
la información de un grupo de agentes. Su versión dinámica, Lógica Dinámi-
ca Epistémica, nos permite representar y razonar acerca de las acciones que
modifican dicha información, tales como anuncios ‘drásticos’ que eliminan
completamente las situaciones en las cuales la información anunciada es falsa,
o anuncios ‘débiles’ que hacen que el agente considere como más probables las
situaciones en las cuales la información anunciada es verdadera, sin descartar
aquellas situaciones en las cuales el anuncio es falso.

Sin embargo, los agentes cuya información es representada en este sistema
son omniscientes: la información que tienen es cerrada bajo consecuencia lógica.
Esta propiedad, útil en algunas aplicaciones, es una idealización muy grande en
otras, y de hecho una de las crı́ticas más comunes a la lógica epistémica es que,
debido a esta caracterı́stica, no es una herramienta adecuada para representar y
razonar acerca de la información de agentes ‘reales’ con capacidades limitadas.
Aún más importante es el hecho de que la omnisciencia lógica vuelve irrele-
vantes las pequeñas acciones que modifican la información de agentes ‘reales’
en actividades comunes, tales como cambios en la información de la cual el
agente es consciente, actos de introspección y, en particular, actos de inferencia.

El presente trabajo extiende el sistema de Lógica Epistémica con el fin de
representar no solo la mencionada noción omnisciente de información, sino
también nociones más refinadas que no tienen idealizaciones tan grandes y, en
particular, pueden no ser cerradas bajo consecuencia lógica. En los capı́tulos
3 y 4 presentamos diferentes definiciones de la información de la cual el agente
es consciente; en los capı́tulos 2, 4 y 5 presentamos diferentes definiciones de
conocimiento explı́cito; finalmente, en el capı́tulo 5 presentamos una definición
de creencia explı́cita. Además de presentar las definiciones de dichas nociones
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de manera semántica y extender el lenguaje formal con modalidades que las
representan, también discutimos varias de sus propiedades.

Una vez que tenemos nociones de información más finas, nuestro siguente
paso es definir acciones que las modifican. En los capı́tulos 3 y 4 presentamos
acciones que modifican la información de la cual el agente es consciente; en los
capı́tulos 2, 4 y 5 definimos inferencia basada en conocimiento (es decir, deduc-
ción); finalmente, en el capı́tulo 5 presentamos la acción de inferencia basada en
creencias. También presentamos versiones no-omniscientes de acciones estu-
diadas en Lógica Dinámica Epistémica: los ya mencionados anuncios ‘drásticos’
y ‘débiles’ (capı́tulos 2 y 4 en el primer caso, y capı́tulo 5 en el segundo). Para
cada una de las acciones mencionadas, nuestro trabajo presenta su definición,
analiza sus propiedades básicas y presenta un sistema de derivación correcto
y completo.

El sistema que aquı́ se desarrolla tiene conexiones con diversos campos.
En particular, la relación de las acciones de inferencia definidas con formas de
razonamiento conocidas, tales como dedución y razonamientos por defecto y
abductivo, es analizada en el capı́tulo 6. En cuanto a aplicaciones, el capı́tulo
7 describe como nuestro sistema proporciona una nueva perspectiva en áreas
tales como Lingüı́stica, Ciencias Cognitivas y Teorı́a de Juegos.

El trabajo concluye en el capı́tulo 8, donde presentamos nuestras conclu-
siones y discutimos preguntas y extensiones que merecen una investigación
más detallada.
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