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Chapter 1

Introduction

1.1 Introduction

We shall investigate whether second order equivalence of two models, or equiv-
alence in some stronger logic than second order logic, implies isomorphism of
the models in certain cardinalities. We always assume that our vocabulary is
finite. The notation which is not yet explained can be found under the heading
“Notation” on page 2 or by using the index.

1.1.1. Remark. We are assuming through this paper that a vocabulary is finite.
This is done because if the vocabulary is finite, the isomorphism type of the model
is characterizable inside the model in second order logic. In infinitary second order
logic L2

κ,ω the isomorphism type of the model is characterizable if the vocabulary
is smaller than κ, and our assumption is stronger than what is needed.

There are some open questions about whether our results can be generalized to
bigger vocabularies. An example of such a question is whether it is consistent with
ZFC, that in any countable vocabulary any two countable L2-equivalent models
are isomorphic.

Suppose L is a logic [3] (Chapter 2, Definition 1.1.1). The L-theory of a model
is the set of L-sentences true in the model. Two models are said to satisfy the
same L-theory if they satisfy the same L-sentences.

1.1.2. Definition. The expression A(L, κ) refers to the following condition: For
any models A and B of cardinality κ, if A and B satisfy the same L-theory then
they are isomorphic.

We use the expression A(ZF, κ) to denote the condition “For all models A and
B of cardinality κ in a finite vocabulary, if A and B satisfy the same sentences
(with the model as a parameter) in the language of set theory then A ∼= B.” Note
that ZF is not a logic as two isomorphic models can satisfy different sentences in
the language of set theory.

1



2 Chapter 1. Introduction

1.1.3. Definition. We call A(L2, ω) when restricted to ordinals the Fräıssé Hy-
pothesis. This is the Hypothesis: All countable ordinals have different second
order theories.

Ajtai [2] has proved that A(L2, ω) is independent of ZFC. We are looking
for related results in the cardinality ℵ0 and similar results in bigger infinite car-
dinalities. The name “Fräıssé Hypothesis” has been used by Wiktor Marek. The
Fräıssé Hypothesis has been studied by Fräıssé [6] and Marek [15], [16].

Our results are relative to the consistency of ZFC. If we assume more than
the consistency of ZFC it is always explicitly mentioned.

In Chapter 2 we will recall the proof of Ajtai and use his method to prove
various results related to A(L2, ω) in the countable cardinality.

In Chapter 3 we will develop a forcing technique for coding subsets of ordinals
by collapsing certain cardinals. This forcing is used to prove for example the
following: If κ is a cardinal in L there is a transitive model of ZFC in which
A(L4, λ) holds for exactly those cardinals λ which are smaller or equal to κ.

In Chapter 4 we will show that if κ is a cardinal, there is a language Lκ∗

with κ many generalized quantifiers such that A(Lκ∗, κ) holds. Given a cardinal
κ the language Lκ∗ may be different for different models of ZFC containing κ
and it is also possible that no such Lκ∗ is definable in the language of set theory.
This result for κ = ω is due to Scott Weinstein [29] and the generalization for
uncountable κ is based on an idea of Per Lindström [14].

In Chapter 5 we will use Ajtai’s method to prove that it is independent of
ZFC whether A(L2

κ,ω, κ) holds for a regular cardinal κ. We will also prove that
for different regular cardinals κ and λ, A(L2

κ,ω, κ) and A(L2
λ,ω, λ) are independent

of each other. We will also give an analogous result for singular cardinals.
In Chapter 6 we will investigate the relation between A(L2, ω) and various

large cardinal axioms. If there are infinitely many Woodin cardinals and a mea-
surable cardinal above them, then A(L2, ω) fails. Assuming the consistency of
relevant large cardinal axioms, if n is a natural number, there is a model of ZFC
in which there are n Woodin cardinals and A(L2, ω) holds. As n grows bigger,
more complex second order sentences seem to be needed to characterize all count-
able models up to isomorphism. A(L3, ω) is consistent with Martin’s Maximum
and practically all large cardinal axioms.

Notation

The expression ZF -formulas refers to formulas in the language of set theory, i.e.,
first order language in a vocabulary with one binary relation ∈. ZF -equivalence
of two structures, denoted by A ≡ZF B, refers to the condition that A and B
satisfy the same sentences of the language of set theory, i.e., for any sentence φ
in the language of set theory V |= φ(A) ↔ φ(B). If L is a logic A ≡L B refers
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to the condition that A and B satisfy the same sentences of L. H(κ) refers to
the set of sets hereditarily smaller than κ, i.e., {X : the transitive closure of X
has cardinality less than κ}. The symbol � means “restricted to”. Depending on
context this can mean a reduct of a model to a smaller vocabulary or restriction
of some operations to some set. The notation φM(·) refers to the set of tuples
which satisfy the formula φ in model M. The forcing name of a given set X is
denoted by Ẋ. Interpretation of a set in a given model of ZFC is denoted by the
set with the model of ZFC as superscript: for example ωL

1 means ω1 of L. The
reals mean the same as the powerset of ω.

Notation which is not explained is standard as used for example in Jech’s book
[11].

1.2 Preliminaries

1.2.1 The logics Ln

In this section we will present some fundamental definitions and lemmas about
higher order logics, forcing and L. This section does not contain any new results.
In the rest of the paper we have clearly marked results of other mathematicians
that we use. All the results which are not marked for somebody else are, according
to our knowledge, new.

1.2.1. Definition. An n-ary relation Rn
i ⊆ (dom(A))n is definable in a lan-

guage L in a model A if there is an L-formula φ(x1, . . . , xn) such that R =
{(a1, . . . , an) : A |= φ(a1, . . . , an)}.

A class of structures C is characterizable in a logic L if there is an L-formula
φC(X1, . . . , Xm) such that in any model A it holds that A |=s φC(X1, . . . , Xm)
⇔ (A, (X1)As , . . . , (Xm)As ) ∈ C. When C is a singleton class {B} we say that the
model B is characterizable in L.

1.2.2. Definition. Each second order function variable Fm
i has a finite arity

m. Each second order relation variable Rn
j has a finite arity n.

Given a vocabulary τ , the set of L2[τ ] terms is the smallest set which contains
first order variables, contains first order constants in vocabulary τ , is closed under
functions in vocabulary τ and is closed under second order function variables.

Given a vocabulary τ , the set of L2[τ ] atomic formulas is the smallest set which
contains equalities of L2[τ ] terms and contains the formulas Rm

i (t1, . . . , tm), where
each tn is an L2[τ ] term and Rm

i is either a relation symbol in τ of arity m or a
second order relation variable of arity m.

Second order logic, denoted by L2, is the smallest logic which

1. Contains atomic formulas,

2. Is closed under negation and conjunction,
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3. Is closed under first order existential and universal quantifiers and

4. Is closed under second order existential and universal quantifiers.

Assume we have defined Ln. An n+ 1st order relation variable Rt
i has a type

t which is a finite set of types of nth order relation variables.
The set of n + 1st order atomic formulas is the smallest set which contains

the nth order atomic formulas and the formulas Rt
i(R

t′
j ), where Rt

i is an n + 1st

order variable of type t, Rt′
j is an nth order variable of type t′ and t′ ∈ t.1 The

n+ 1st order logic Ln+1 is defined to be the smallest logic which

1. Contains atomic formulas

2. Is closed under the same operations as Ln and in addition closed under
n+ 1st order existential and universal quantifiers.

If A is a model and s is an assignment of variables of Ln+1 we have A |=s

Rt
i(R

t′
j ) iff (Rt′

j )As ∈ (Rt
i)

A
s .

We use L2 to refer to second order logic. In L2 we can quantify over all finitary
relations over the universe of the model, thus our second order logic means the
second order logic with full semantics. There are also other second order logics
which do not use full semantics such as monadic second order logic where we can
quantify over unary relations only, and second order logic with Henkin semantics
[10]. More generally Ln refers to nth order logic with full semantics.2

1.2.3. Definition. Let n ≥ 1 be a natural number. An Ln formula is Σn−1
0 and

Πn−1
0 if it does not contain any nth order quantifiers. A formula is Σn−1

k+1 if it is
of the form ∃R̄φ, where R̄ is a sequence of nth order variables and φ is a Πn−1

k

formula. A formula is Πn−1
k+1 if it is of the form ∀R̄φ, where R̄ is a sequence of

nth order variables and φ is a Σn−1
k formula. A property is said to be ∆n−1

m , if it
is both Σn−1

m and Πn−1
m .

1.2.4. Lemma. The following are characterizable in second order logic in any
model A of infinite cardinality κ:

1. A relation R is a function.

2. A relation R is an injection.

3. A relation R is a bijection from the set {x : φ(x, ā)} to the set {x : ψ(x, ā)}.

4. The set {x : φ(x, ā)} is infinite.

1To keep things simple we do not allow third order or higher order function variables.
2There are several ways to define Ln. By and large they are all equivalent (at least as long

as they allow to prove Lemma 1.2.9).



1.2. Preliminaries 5

5. The set {x : φ(x, ā)} is finite.

6. A tuple (X,<X) is a linear order, i.e., <X is a linear order in the set X .

7. A tuple (X,<X) is isomorphic to (ω,<).

8. A tuple (X,<X) is well-founded.

9. A tuple (X,<X) is a well-order.

10. A tuple (X,<X) is isomorphic to the model (κ,∈).

11. A tuple (X,+′, ·′, 0′, 1′) is isomorphic to the model (N,+, ·, 0, 1).

12. A tuple (X,Rn1
1 , . . . R

nm
m ) is isomorphic to a tuple (Y,Rn1

m+1, . . . R
nm
2m).

13. The canonical bijection π from κ×κ to κ and its inverse function: π(α, β) =
γ , π−1(γ) = (α, β).
The canonical bijection πn from κn to κ and its inverse function: πn(α1, . . . αn) =
γ, π−1

n (γ) = (α1, . . . αn).

14. A tuple (S, S ′) is the transitive closure of a ∈ R with respect to (R,R′), i.e.,
S is the set of those elements b in the domain of R such that there is a finite
sequence a1, . . . an in the domain of R so that R′(a1, a), R′(a2, a1), . . . R′(an, an−1)
and R′(b, an) and S ′ = R′ ∩ S × S.

Proof. In each case we give the relevant sentence. The natural numbers in
the sentences (for example 1. in sentence number 2.) refer to the sentences in the
list with the corresponding number.

1. ∀x∀y∀z((R(x, y) ∧R(x, z))→ y = z)

2. 1. ∧ ∀x∀y∀z((R(x, z) ∧R(y, z))→ x = y)

3. 2. ∧ ∀x∀y(R(x, y) → (φ(x, ā) ∧ ψ(y, ā))) ∧ ∀x∃y((φ(x, ā) → R(x, y)) ∧
(ψ(x, ā)→ R(y, x)))

4. ∃R∃z(φ(z, ā) ∧ θbij(R, ā)),
where θbij(R, ā) expresses the condition that R is a bijection from the set
{x : φ(x, ā)} to the set {x : φ(x, ā) ∧ ¬x = z}.

5. ¬4.

6. The relevant sentence is the conjunction of the following:

• ∀x∀y(x <X y → (X(x) ∧X(y)))

• ∀x¬x <X x
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• ∀x∀y∀z((x <X y ∧ y <X z)→ x <X z)

• ∀x∀y((X(x) ∧X(y))→ (x = y ∨ x <X y ∨ y <X x))

7. The sentence expresses the conjunction of the following:

• 6.

• {x : X(x)} is infinite

• ∀x(X(x)→ ({y : X(y) ∧ y <X x} is finite))

8. ¬∃R∃yψ, where ψ expresses the conjunction of the following:

• {x : R(x)} is infinite

• R(y)

• ∀x(R(x)→ (X(x) ∧ ∃z(R(z) ∧ z <X x)))

9. 6. ∧ 8.

10. 9∧∀x(X(x)→ ¬∃Rψ), where ψ expresses the condition that R is a bijection
from the set {y : X(y)} to the set {y : y <X x}))

11. ∃ < ∀H∀j (φlinear(<,X)
∧ ∀x∀y(x < y ↔ (x 6= y ∧ ∃z(z +′ x = y)))
∧ ∀x∀y(x = y +′ 1′ → ¬∃z(y < z ∧ z < x))
∧X(0′) ∧X(1′) ∧ ¬0′ = 1′

∧ φf (+′, X) ∧ φf (·′, X)
∧ ∀x∀y(x+′ 0 = x ∧ x+′ (y′ + 1) = (x+′ y) +′ 1)
∧ ∀x∀y(x ·′ 1′ = x ∧ x ·′ (y +′ 1′) = (x ·′ y) +′ x)
∧ φbij(H, j))

In the above formula φlinear(<,X) says that < is a linear order in X, the
formula φf (+

′, X) says that +′ is a function from X × X to X and the
formula φbij(H, j) says that if H is an injection from {x : x < j} to {x :
x < j}, then H is a bijection.

12. ∃Pψ, where ψ expresses the conjunction of the following:

• P is a bijection from X to Y

•
∧

1≤i≤m(∀x1, . . .∀xniR
ni
i (x1, . . . xni)↔

(∃y1, . . .∃yni(
∧

1≤j≤ni P (xj, yj) ∧Rni
m+i(y1, . . . yni))))

13. ∃Pψ, where ψ expresses the conjunction of the following:

• P is a bijection from κ× κ to κ

• P ((α, β), γ)
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• ∀α∀β∀α′∀β′(P (α, β) < P (α′, β′)↔ (β < β′ ∨ (β = β′ ∧ α < α′)))

• ∃P∃α′2, . . . ,∃α′n−1θ, where θ expresses the conjunction of the following:
a) P is a bijection from κ× κ to κ
b) P ((α1, α2), α′2)∧

∧
2≤m≤n−2 P ((α′m, αm), α′m+1)∧P ((α′n−1, αn−1), α′n)

c) ∀α∀β∀α′∀β′(P (α, β) < P (α′, β′)↔ (β < β′ ∨ (β = β′ ∧ α < α′)))

14. ∀x∀yψ, where ψ expresses the conjunction of the following:

• S(x)→ R(x)

• (S(x) ∧ S(y))→ (S ′(x, y)↔ R′(x, y))

• S(a)

• ((S(x) ∧R(y, x))→ S(y))

• ∀P∀P ′∀w((∀x∀y(P (x)→ R(x)∧((P (x)∧P (y))→ (P ′(x, y)↔ R′(x, y))∧
P (a) ∧ ((P (x) ∧R(y, x))→ P (y)))) ∧ S(w))→ P (w))

The first four formulas say that (S, S ′) is a transitive set (with respect to
R′) which contains a, and the last formula says that (S, S ′) is the smallest
such set.

�

In the following theorem we say that a relation E is extensional if the exten-
sionality axiom ∀x∀y(∀z(zEx↔ zEy)→ x = y) holds.

1.2.5. Theorem (Mostowski’s Collapsing Theorem). If E is a well-founded
extensional relation on a class P , then there is a transitive class M and an iso-
morphism π between (P,E) and (M,∈).

Proof. We define the function π by transfinite induction on the well-founded
class P :

π(x) = {π(y) : E(y, x)}.

It is clear from the definition that ran(π) is a transitive class. We will show
that (ran(π),∈) is isomorphic to (P,E). We will prove that π is one-to-one.
Assume not: Then there is an element z ∈ P of the least possible rank such that
z = π(x) = π(y) for some x 6= y. As x 6= y by symmetry and extensionality
axiom we can assume there is an element a0 such that E(a0, x) and not E(a0, y).
As π(x) = π(y) there is some element b0 such that E(b0, y) and π(a0) = π(b0).
But this contradicts the assumption that z was of the least possible rank.

We will now prove that xE y ↔ π(x) ∈ π(y). Assume xE y, then by definition
π(x) ∈ π(y). Assume then π(x) ∈ π(y). By definition π(x) = π(z) for an element
z such that zEy. Since π is one-to-one we have x = z and thus xEy.

�
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1.2.6. Definition. We say that a second order formula φ(X, Y ) is a second
order definable well-order of the reals if in the model (N,+, ·, 0, 1) the formula φ
defines a well-order of the subsets of the universe of the model.

We say that a second order formula φ(X, Y ) is a second order definable well-
order of the powerset of κ if in the model (κ,∈) the formula φ defines a well-order
of the subsets of the universe of the model.

Let τ = {R1, . . . , Rn} be a relational vocabulary and let the arity of Ri be ki
for each i. We will next introduce a way to code a model of infinite cardinality κ
in vocabulary τ into a subset of κm, where m = Σ1≤i≤nki.

1.2.7. Definition (Coding a model into a subset of κm).
Let B = (κ,RB

1 , . . . , R
B
n ) be a model of cardinality κ in the vocabulary τ . Given

an order < of order type κ on B,3 the relations of B can be coded into an m-ary
relation Xm

n ⊆ κm in the following way: any sequence of ordinals belongs to Xm
n

iff for some i it is of the form

( 0, 0, . . .︸ ︷︷ ︸
Σj<ikj times

α1 + 1, α2 + 1, . . . αni + 1, 0, 0, . . .︸ ︷︷ ︸
Σi<j≤nkj times

)

for some ordinals α1, . . . αni such that B |= Ri(α1, . . . αni). The ordinals αi, αi+1
etc. refer to elements of κ which have order type αi, αi + 1, etc. with respect to
<.

1.2.8. Lemma. Let A = (A,RA
1 , . . . R

A
n) be a model of infinite cardinality κ in a

finite vocabulary τ . Let #Ri = ki for each i and m = Σ1≤i≤nki. Then:

• A is isomorphic to some models which have κ as universe.

• The set IA of those subsets of κm which are codes of models isomorphic to
A is L2-characterizable in A.

Proof. Obviously any bijection from A to κ generates a model isomorphic to
A which has κ as universe.

In (B, <) the relation Xm
n (introduced in Definition 1.2.7) is L2-definable and

each relation RB
i is second order definable from Xm

n . Let ψ(Xm
n ,B, <) be the

following second order formula which says that Xm
n is the code of B with respect

to <:
∀x1, . . .∀xm(Xm

n (x1, . . . xm)↔
∨

1≤i≤m

φi)

where φi is the conjunction of the following formulas4:

3The reader may wonder where does < come from. If the model does not contain a copy
of (κ,∈) we can build such a copy by second order quantifiers. We have formulas of the form
∃K∃E(φκ,∈(K,E) ∧ . . . ), where φκ,∈ characterizes (κ,∈).

4To be precise the formulas below, such as xj = 0 are not formulas in our language. However
0, immediate predecessor of an element and immediate successor of an element(all with respect
to <) are definable so it is possible to write the expressions below formally.
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•
∧
j≤Σt<ikt

xj = 0

•
∧
j>Σt≤ikt

xj = 0

•
∧
j∈1+Σt≤ikt,...ki+Σt≤ikt

xj 6= 0 ∧R(x1+Σt≤ikt − 1, . . . xki+Σt≤ikt − 1).

Let C ⊆ κm. C is a code of a model isomorphic to A (with respect to <) iff

∃P k1
1 ∃P k2

2 . . . ,∃P kn
n ∃T ((φbij(T,A, dom(<)) ∧

∧
1≤i≤n

φi) ∧ ψ(C, (κ, P1, . . . Pn), <)),

where φbij(T,A, dom(<)) says that T is a bijection from A to dom(<), ψ is defined
above and φi is the following formula:

∀x1, . . . ,∀xki(Ri(x1, . . . xki)↔ Pi(T (x1), . . . T (xki))).

�

1.2.9. Lemma. a) Let φ be a second order formula in a finite vocabulary τ , A a
model of cardinality κ with vocabulary τ , and let s be an assignment of the free
variables of φ in A. Then φ with the assignment s is equivalent to a ZF -formula
in H(κ+) with A and s as parameters, i.e., there is a formula θ in the language
of set theory such that A |=s φ ⇔ H(κ+) |= θ(A, s). More generally an nth
order formula in a model A of cardinality κ with assignment s is equivalent to a
ZF -formula in H((in−2(κ))+) with A and s as parameters.

b) Let τ be a finite vocabulary and assume we have fixed some second order
characterizable way to code models in the vocabulary τ by subsets of κ. There is a
translation which translates every ZF(I)-sentence5 φ in (H(κ+), IA,∈) to a second
order sentence φ∗ in the vocabulary τ in such a way that (H(κ+), IA,∈) |= φ ⇔
A |= φ∗ for any model A of cardinality κ in vocabulary τ . More generally, there
is a translation which translates every ZF (I)-sentence φ in H((in−2(κ))+) to an
nth order sentence φ∗ in such a way that (H(in−2(κ)+), IA,∈) |= φ⇔ A |= φ∗.

Proof. a) Assignments of finitely many first order and second order variables
in the model A belong to H(κ+). To formalize truth definition of φ in A with an
assignment s we need only quantify over those assignments which are in H(κ+).
Generally third order variables are sets of second order variables and have car-
dinality at most 2κ, fourth order variables have cardinality at most 2(2κ) and so
on. It follows that interpretations of finitely many nth order variables belong
to H((in−2(κ))+) and the truth definition of an nth order formula φ with an

5This means we have added an extra unary predicate I to H(κ+) and interpreted it as the
set of those subsets of κm which are codes of models isomorphic to A. A ZF (I)-sentence is a
first order sentence in vocabulary {∈, I} where ∈ is a binary relation symbol and I is a unary
relation symbol.
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assignment s in a model A can be formalized in H((in−2(κ))+) with A and s as
parameters.

b) In second order logic we can quantify over transitive closures of the sets in
H(κ+) in the following way. If R is a well-founded binary relation which satisfies
the extensionality axiom ∀x∀y(∀z(Rzx ↔ Rzy) → x = y), then (dom(R), R)
is by Mostowski’s Collapsing Theorem 1.2.5 isomorphic to a transitive set. If
R is also either empty or has a maximal element (i.e., ∃y ∈ dom(R)¬∃xRyx),
then (dom(R), R) is isomorphic to (TC(a), ε) for some a ∈ H(κ+). On the other
hand, if a ∈ H(κ+) then |TC(a)| ≤ κ and there is a well-founded and extensional
relation Ra ⊂ A×A such that (dom(R), R) is isomorphic to (TC(a), ε). Thus in
second order logic we can in a sense quantify over transitive closures of sets in
H(κ+).

Let ψ(R) be a second order formula which says that R is a well-founded
binary relation which satisfies the extensionality axiom and is either empty or
has a greatest element.

We can define two sets R and R′ to be equal if and only if there is an iso-
morphism from (dom(R), R) to (dom(R′), R′). Now we can define x =∗ y to be
ψ(Rx) ∧ ψ(Ry) ∧ (dom(Rx), Rx) ∼= (dom(Ry), Ry).

We can define ∈ as follows: Rx ∈∗ Ry iff ∃v∃w∃Q∃Tψ, where θ expresses the
conjunction of the following:

1. x is maximal element in Ry

2. R′(w, v)

3. Q = (P,Ry � P ) is the transitive closure of w with respect to Ry (See
Lemma 1.2.4(14))

4. T is an isomorphism from (dom(Rx), Rx) to Q

Let then x ∈∗ y = ψ(Rx) ∧ ψ(Ry) ∧ ∃x∃y∃Q∃Tθ. Let then (¬φ)∗ = ¬(φ∗),
(φ ∧ θ)∗ = φ∗ ∧ θ∗ and (∃xφ)∗ = ∃Rxφ

∗.
We have shown that any ZF -sentence in H(κ+,∈) is equivalent to an L2-

sentence in the model A.
By Lemma 1.2.8 the relation IA is also second order definable so the claim

follows.
Next we will generalize the above result for n > 2. First we will define the

concept of a hereditarily monadic variable. For a start we say that a monadic
second order variable is hereditarily monadic. If we have defined what it means
for an nth order variable to be hereditarily monadic, we define an n + 1st order
variable to be hereditarily monadic iff it has arity 1 and its only argument is
a relation of one type: hereditarily monadic nth order variable. It is easy to
prove by induction that in a model of cardinality κ there are in−1(κ) hereditarily
monadic nth order relations, i.e., interpretations of hereditarily monadic n:th
order variables.
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Now the above proof works for Ln+1 when we replace first order variables by
hereditarily monadic nth order variables and second order variables of arity m by
n + 1st order variables which have as arguments only hereditarily monadic nth
order variables.

We denote An = {A : A is a hereditarily monadic nth order relation over
A}. Thus |An| = i2n−1(κ) and in Ln+1 we can quantify over subsets of (An ×
An). Certain subsets B of An × An correspond to transitive closures of sets in
H((i2n−1(κ))+), namely those sets B such that (dom(B), B) satisfies the axiom
of extensionality, B has a largest element and B is well-founded. As before, we
can define two sets of the above form to be the same if they are isomorphic and a
set a belongs to another set b if and only if there is an element b0 in the domain
of b which belongs to the greatest element in b, and the transitive closure of b0

with respect to b is isomorphic to a. Also, we can characterize the set of those
sets of the form κn which are isomorphic to A, so IA is characterizable as well.
Thus there is a translation of ZF (I)-sentences of (H((i2n−1(κ))+), I,∈) to Ln+1-
sentences in the model A, likewise there is a translation of ZF (I)-sentences of
(H((i2n−2(κ))+), I,∈) to Ln-sentences in model A.

�

1.2.2 Infinitary second order languages

We will next define second order infinitary language L2
κ,ω. The nth order infinitary

languages Lnκ,ω can be defined in an analogous way.

1.2.10. Definition. Let n ∈ ω and let κ be a regular cardinal. The logic L2
κ,ω

is the smallest logic which

1. Contains all atomic formulas,

2. Is closed under negation, conjunctions of size less than κ, disjunctions of
size less than κ, first order existential and universal quantifiers and second
order existential and universal quantifiers6.

1.2.11. Lemma. Let κ be a regular cardinal. In the logic Lκ,ω all ordinals (α,<)
smaller than κ are characterizable.

Proof. This is done by induction on the ordinal α < κ. Assume the Induction
Hypothesis holds for all β < α, i.e., there are formulas θβ(y) which characterize
(β,<) for ordinals β < α. Now the formula which characterizes (α,<) is∧

β<α

∃y(y < x ∧ θβ(y)) ∧ ∀y(y < x→
∨
β<α

θβ(y))

6We allow here both second order relation variables and second order function variables
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�

We will now present a lemma which is needed to show the indenpendence
of A(L2

κ,ω, κ) at a regular cardinal κ. In Definition 1.2.13 we will give an exact
coding of L2

κ,ω-formulas as set theoretic objects and prove the lemma.

1.2.12. Lemma. Let n ∈ ω. Every formula of L2
κ+,ω can be defined in (V,∈) (or

in (H((κ+)+),∈)) by a ZF -formula using a subset of κ as a parameter.
If κ is an inaccessible cardinal, every formula of L2

κ,ω can be defined in (V,∈)
(or in (H(κ+),∈)) by a ZF -formula using a subset of some λ < κ as a parameter.

The next definition proves Lemma 1.2.12.

1.2.13. Definition. We will introduce a coding where all L2
κ,ω formulas are

coded by subsets of κ, or in fact by subsets of ordinals smaller than κ. First
the atomic formulas:

1. A symbol in the vocabulary of the model which has been assigned a prime
number code n by a chosen Gödel numbering (as described in Lemma 6.1.2)
is 〈1, n〉.

2. xα = 〈2, α〉.

3. cα = 〈3, α〉.

4. Rn
α = 〈4, n, α〉, these are the codes for relation variables.

5. F n
α = 〈5, n, α〉, these are the codes for function variables.

6. F n
i (t1, . . . , tn) = 〈6, F n

i , t1, . . . , tn〉.

7. ti ≡ tj = 〈7, ti, tj〉.

8. Rn
i (t1, . . . , tn) = 〈8, Rn

i , t1, . . . , tn〉.

We describe now how to code objects of the above form by subsets of κ in a
systematic way. There is a second order definable bijection from κ to κ× κ (see
Lemma 1.2.4(13)). The objects are coded in such a way that the nth κ codes the
nth coordinate in the tuple. For example cω+1 has in the beginning of the first κ
three ones and the rest are zeros. In the beginning of the second κ it has ω + 1
ones and the rest are zeros, and all the other κ:s have just zeros. The code of
F 1

1 (cω+1) has 6 ones in the beginning of the first κ, code of F 1
1 in the second κ

and in the third κ the subset of κ coding cω+1 we just described.
By this coding the predicates “X is a L2

κ,ω(τ) term” and “X is a L2
κ,ω(τ)

atomic formula” are characterizable in second order logic.
The non-atomic formulas are coded as follows:
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1. ¬φ = 〈9, {φ}〉.

2.
∧
X = 〈10, X〉.

3.
∨
X = 〈11, X〉.

4. ∃xαφ = 〈12, xα, {φ}〉.

5. ∀xαφ = 〈13, xα, {φ}〉.

6. ∃Rn
αφ = 〈14, Rn

α, {φ}〉.

7. ∀Rn
αφ = 〈15, Rn

α, {φ}〉.

8. ∃F n
αφ = 〈16, F n

α , {φ}〉.

9. ∀F n
αφ = 〈17, F n

α , {φ}〉.

These are coded by subsets of κ in a similar way as atomic formulas except
that there are also sets of formulas. For example objects of type 2 are coded by
10 ones in the first κ and in the second κ a code for the set X. X is a set of
formulas of size less than κ and we use again the second order definable bijection
from κ to κ× κ. The first κ codes some formula in X, the second κ codes some
other formula in X, if there is any, and so on until after some α many κ:s there
are no more formulas in X and the rest are just zeros.

We have defined L2
κ,ω-formulas as subsets of κ, but in fact in all subsets coding

a L2
κ,ω-formula the set of ones is not cofinal in κ. Thus we can as well think them

as subsets of some α < κ when we have cut away the zeros from the end. This
proves Lemma 1.2.12.

We will next present the definition of generalized quantifiers:

1.2.14. Definition. Suppose τ is a finite relational vocabulary {R1, ..., Rk}, where
Ri is ri-ary. Suppose K is a class of τ -structures, closed under isomorphisms.
We get an extension of first order logic by adding to the syntax a new quantifier
symbol QK, a new formula generation rule

• If φ1, ..., φk are formulas, then so is QKx
1
1...x

1
r1
, ..., xk1...x

k
rk

;φ1, ..., φk.

The semantics is defined as follows:

• M |=s QKx
1
1...x

1
r1
, ..., xk1...x

k
rk

;φ1, ..., φk if and only if 7

(dom(M), P1, ..., Pk) ∈ K,

where
Pi = {(s(xii), ..., s(xiri)) : M |=s φi}.

7Here dom(M) means the domain of the model M .
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The extension of first order logic is denoted Lωω(QK).

Note that K is always definable in Lωω(QK) by the sentence

QKx
1
1...x

1
r1
, ..., xk1...x

k
rk

;R1(x1
1, ..., x

1
r1

), ..., Rk(x
k
1, ..., x

k
rk

).

We will next give some examples of generalized quantifiers:

1. The cardinality quantifier Qα, “There are ℵα-many”:

A |= Qαxφ(x, ȳ)⇔ |{x : A |= φ(x, ȳ)}| ≥ ℵα.

2. Härtig quantifier I, the “equicardinality quantifier”:

A |= Ix, y(φ(x, z̄), ψ(y, z̄))⇔ |{x : A |= φ(x, z̄)}| = |{y : A |= ψ(y, z̄)}|.

Lots of cardinality quantifiers Qα of the form 1. are definable in L2, see
Remark 4.2.3. From Lemma 1.2.4 (3.) it follows that Härtig quantifier is also
definable in L2.

1.2.3 The constructible universe L

In 1938 Kurt Gödel introduced L, the class of constructible sets, see for example
[7]. Recall the V -hierarchy of sets:

• V0 = ∅.

• Vα+1 = P(Vα).

• Vα =
⋃
β<α Vβ for α limit ordinal.

• V =
⋃
α∈On Vα.

The L-hierarchy is similar to the V -hierarchy, except that in the successor
steps we take only the definable powerset def(Lα), i.e., the set of those subsets
of Lα which are definable in Lα using elements of Lα as parameters.

• L0 = ∅.

• Lα+1 = def(Lα).

• Lα =
⋃
β<α Lβ for α limit ordinal.

• L=
⋃
α∈On Lα.

A few notes about L: GCH holds in L. The operation def(Lα) can be defined
as the closure of Lα ∪ {Lα} under certain finitely many “Gödel functions”:
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1. G1(Y, Z) = {Y, Z},

2. G2(Y, Z) = Y × Z,

3. G3(Y, Z) = {(u, v) : u ∈ Y ∧ v ∈ Z ∧ u ∈ v},

4. G4(Y, Z) = Y − Z,

5. G5(Y, Z) = Y ∩ Z,

6. G6(Y ) =
⋃
Y ,

7. G7(Y ) = dom(Y ),

8. G8(Y ) = {(u, v) : (v, u) ∈ Y },

9. G9(Y ) = {(u, v, w) : (u,w, v) ∈ Y },

10. G10(Y ) = {(u, v, w) : (v, w, u) ∈ Y }.

By induction it can be proved that |Lα| = |α| for all infinite α. All Gödel
functions are second order characterizable so the operation def(Lα) is second
order characterizable.

For each Lα there is a canonical well-order of Lα denoted by <Lα . If α < β
then <Lβ is an end extension of <Lα . We will next describe how the canonical
well-order is defined.

The well-order is defined by induction on α. Assume we have defined <Lα .
We will define next <Lα+1 . The idea is that in the beginning is <Lα , then Lα and
then the rest of Lα+1 in the order

i) How many times Gödel functions need to be iterated starting from the ele-
ments of Lα in order to reach the elements in question.

ii) Which Gödel functions need to be used.

iii) To which sets in Lα the Gödel functions need to be applied (here we can
use the already defined canonical well-order of Lα and define the element which
can be reached from smaller elements to be smaller).

We will next present a technical definition for the idea described above:

1.2.15. Definition. We define Wα
0 = Lα ∪ {Lα},

Wα
n+1 = {Gi(Y, Z) : Y, Z ∈ Wα

n , i ∈ {1, . . . , 10}}.

1. <0
α+1 is the well-ordering of Lα ∪{Lα} that extends <Lα such that Lα is the

greatest element.
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2. <n+1
α+1 is the following well-order of Wα

n+1:

x <n+1
α+1 y iff one of the conditions below hold:

a) x <n
α+1 y

b) x ∈ Wα
n and y /∈ Wα

n

c) x /∈ Wα
n and y /∈ Wα

n and one of the following holds:

• “The least i such that ∃u, v ∈ Wα
n (x = Gi(u, v))” < “the least j such that

∃s, t ∈ Wα
n (y = Gj(s, t))”

• “The least i such that ∃u, v ∈ Wα
n (x = Gi(u, v))” = “the least j such that

∃s, t ∈ Wα
n (y = Gj(s, t))” and

“the <n
α+1-least u ∈ Wα

n such that ∃v ∈ Wα
n (x = Gi(u, v))” <n

α+1 “the
<n
α+1-least s ∈ Wα

n such that ∃t ∈ Wα
n (y = Gi(s, t))”

• “The least i such that ∃u, v ∈ Wα
n (x = Gi(u, v))” = “the least j such

that ∃s, t ∈ Wα
n (y = Gj(s, t))” and “the <n

α+1-least u ∈ Wα
n such that

∃v ∈ Wα
n (x = Gi(u, v))” = “the <n

α+1-least s ∈ Wα
n such that ∃t ∈ Wα

n (y =
Gi(s, t))” and “the <n

α+1-least v ∈ Wα
n such that x = Gi(u, v)” <n

α+1 “the
<n
α+1-least t ∈ Wα

n such that y = Gi(u, t)”.

Now we let <α+1=
⋃
n∈ω <

n
α+1 ∩(P (Lα)× P (Lα)) (where P (Lα) refers to the

powerset of Lα).
For limit ordinals γ we define <Lγ=

⋃
α<γ <Lα.

The inductive definition of the class function α 7→<Lα is clearly definable in
the language of set theory. Looking at the definition, in order to define <Lα from
α there is no need to quantify over sets outside H(|α|+). Now it follows from
Lemma 1.2.9 that the function f : |α|+ → H(|α|+), f(β) =<Lβ is second order
characterizable in any model of cardinality |α|. It follows that in L in a model of
cardinality κ there is a second order characterizable well-order of the powerset of
κ: X < Y ⇔ ∃α(X <Lα Y ).

If X is a subset of an ordinal we can form the class L[X], the least transi-
tive model of ZFC containing all ordinals and X.8 The construction of L[X] is
similar to the construction of L except that we are allowed to intersect any set
with X (this can be done by adding 11th Gödel function G11(Y ) = Y ∩X). By
a reasoning similar to what was presented above, if X is second order characteri-
zable in a model then the functions α 7→ Lα[X] and α 7→<Lα[X] are second order
characterizable in the model.

8The structure of any set can be coded by a subset of some ordinal so we can make this
assumption w.l.o.g. The assumption “X is a subset of some ordinal” turns out to be very useful
as in infinitary second order languages L2

κ,ω we can characterize all subsets of ordinals smaller
than κ.
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The class L[X], the least transitive model of ZFC containing all ordinals and
X, should not be confused with L(R), the least model of ZF containing all the
reals.

1.2.4 Forcing

Forcing is a method invented by Paul Cohen in 1963. He used forcing to prove
independence of the Continuum Hypothesis from ZFC [4], [5]. Forcing is a
very general method for proving independence results and constructing different
models of ZFC. The invention of forcing has had huge impact to the development
of set theory.

The idea of forcing is briefly as follows: We have a transitive model M of
ZFC. Inside M we can form a forcing language which describes the model M [G]
which is the smallest transitive model of ZFC extending M and containing G.
What kind of generic set G a forcing adds depends on the type of the forcing. The
notation p  φ means that p forces φ i.e. whenever p ∈ G then M [G] |= φ. We
don’t give a detailed introduction to forcing here as it is a broad and complicated
topic. For a reader who wants to study forcing we recommend Jech [11].

We present without proofs the following fundamental theorems about forcing.
The proofs can be found for example from [11].

1.2.16. Theorem (The Generic Model Theorem). Let M be a transitive
model of ZFC and let (P,<) be a notion of forcing in M . If G ⊂ P is generic
over P , then there exists a transitive model M [G] such that the following hold:

1. M [G] is a model of ZFC.

2. M ⊂M [G] and G ∈M [G].

3. M [G] and M have the same ordinals.

4. If N is a transitive model of ZF such that M ⊂ N and G ∈ N , then
M [G] ⊂ N .

1.2.17. Theorem (The Forcing Theorem). Let (P,<) be a notion of forc-
ing in the ground model M . If σ is a sentence of the forcing language, then for
every G ⊂ P generic over M ,

M [G] |= σ ⇔ (∃p ∈ G)p  σ.

In the left-hand-side σ one interprets the constants of the forcing language ac-
cording to G.

The most important forcings used in this paper are the following:
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• Cohen forcings: If κ is a regular cardinal in M there is a Cohen forcing
(which is a different forcing for different cardinals κ) which adds a new
subset to κ.

• Cardinal collapses: If κ and λ are infinite cardinals in M such that κ < λ
there is a forcing which adds a bijection from κ to λ, i.e., collapses λ to
κ. After the forcing λ and all cardinals strictly between κ and λ are not
cardinals anymore.

• Iterated forcing: Iterated forcing was developed by Solovay and Tennen-
baum [26] in a paper where they proved the independence of Souslin Hy-
pothesis from ZFC. Iterated forcing is a technically complicated topic and
instead of defining iterated forcing here we refer to Jech [11]. The idea is
that by iterated forcing we can do α many successive forcings, where α is
the length of the iterated forcing.

We say that at a limit ordinal γ the support of a forcing condition p of
length γ is the set of those ordinals α < γ where p(α) is non-zero. A forcing
can have at a limit ordinal (for example) the following:

Finite support: Any forcing condition p has finite support.

Countable support: Any forcing condition p has countable support.

Full support: A forcing condition may have whole λ as support.

Direct limit: p ∈ Pα if and only if ∃β < α (p � β ∈ Pβ and ∀ξ ≥ β p(ξ) = 1).

Inverse limit: p ∈ Pα if and only if ∀β < α p � β ∈ Pβ.

1.2.18. Lemma (The Factor Lemma). Let Pα+β be a forcing iteration of 〈Q̇ξ :
ξ < α+ β〉, where each Pξ, ξ ≤ α+ β is either a direct limit or an inverse limit.

In V Pα, let Ṗ
(α)
β be the forcing iteration of 〈Q̇α+ξ : ξ < β〉 such that for every

limit ordinal ξ < β, Ṗ
(α)

ξ is either a direct limit or an inverse limit, according
to whether Pα+β is a direct limit or an inverse limit. If Pα+β is an inverse limit
for every limit ordinal ξ ≤ β such that cfξ ≤ |Pα|, then Pα+β is isomorphic to

Pα ∗ Ṗ (α)
β .

1.2.19. Definition. A forcing is κ-closed if for any increasing sequence of con-
ditions of length less than κ there is a condition which is stronger than all the
conditions in the sequence.

A forcing satisfies the κ-chain-condition if any antichain of forcing conditions
(i.e., a set of pairwise incompatible conditions) has cardinality less than κ.

A κ-closed forcing does not add any new subsets to cardinals smaller than κ.
A κ-chain-condition forcing does not collapse cardinals greater or equal to κ.
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Ajtai’s result, the countable case

2.1 A(L2, ω) and L2-definable well-order of the

reals

In this chapter we will present two theorems by Ajtai which show that A(L2, ω)
is independent of ZFC. After that we will discuss some related topics concerning
countable models.

We recall that Ajtai proved the independence of A(L2, ω) from ZFC. We will
now present the first part of the proof of Ajtai:

2.1.1. Theorem (Ajtai [2]). If there is a second order definable well-order of
the powerset of ω, then A(L2, ω) holds. If the well-order is Σ1

n for n ≥ 2, then
A(Σ1

n+1, ω) holds.

Proof. We will show that if there is a second order definable well-order of
the reals, A(Σ1

k, ω) holds for certain k. Let us assume our second order definable
well-order of the reals is ∆1

n for some n ≥ 2. We make the assumption n ≥ 2
to make complexity calculations simpler; in all our applications n ≥ 2 so it
does not do any harm. Note that if a well-order is Σ1

n then it is Π1
n because

x < y ⇔ x 6= y ∧ ¬y < x. Similarly every Π1
n well-order is Σ1

n. Thus a well-order
is Σ1

n iff it is Π1
n iff it is ∆1

n. Also two models are Σ1
n-equivalent iff they are Π1

n-
equivalent as we will show. Assume not: there are Σ1

n-equivalent models A and
B which are not Π1

n-equivalent. Assume φ is such a Π1
n formula that A |= φ and

B 2 φ. Now ¬φ is such a Σ1
n formula that A 2 ¬φ and B |= ¬φ, so the models

are not Σ1
n-equivalent, which is a contradiction. The proof that Π1

n-equivalence
implies Σ1

n-equivalence is the same.
As we have shown in Lemma 1.2.8, a model of cardinality ℵ0 in a finite vo-

cabulary is isomorphic to some models which have ω as universe. These models
can be coded into n-ary relations on ω in a second order definable way, and the
set I of codes of models which have ω as their universe and are isomorphic to

19
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the model in question is second order characterizable in the model in question.
As there is a second order definable well-order of the reals and a second order
characterizable bijection from ωn to ω, we can talk in second order logic about
the least subset A0 of ω which is mapped to a set in I by the bijection. For each
natural number n we can say in second order logic that n belongs to A0, and also
that n does not belong to A0. If two countable models in a finite vocabulary have
the same second order theory then they have the same set A0. Consequently they
have the same isomorphism type and they are isomorphic.

We will next present the definition of these sentences mentioned above and
calculate the complexity of them. Let Φ be the second order sentence:

∃N∃0′∃1′∃+′ ∃ ·′ ∃ < ∃πn∃Ā0∃A′0∃A∗0
(def(N, 0′, 1′,+′, ·′) ∧ def(πn) ∧ θĀ,τ
∧ ψ∼=(Ā0) ∧ φcode(Ā0, A

′
0) ∧ ηn(A′0, A

∗
0) ∧

∀Ā1∀A′1∀A∗1((θĀ1,τ ∧ ψ∼=(Ā1) ∧ φcode(Ā1, A
′
1) ∧ ηn(A′1, A

∗
1)

→ (φ′(A∗0, A
∗
1) ∨ ∀x(A∗0(x)↔ A∗1(x)))) ∧ A∗0(47)).

(2.1)

Here is an explanations of the different components of the sentence:

• def(N, 0′, 1′,+′, ·′) is the Π1
1-formula which defines the structure (N, 0, 1,+, ·),

• def(Πn) is the first order formula which defines a bijection from Nn to N ,
see Lemma 1.2.4.

• θĀ,τ is a first order formula which says that Ā is a sequence of relations on
N such that the arities correspond to arities of relations in τ .

• ψ∼=(Ā0) is a Σ1
1 formula which says that A (i.e., the model itself) is isomor-

phic to Ā0.

• φcode(Ā0, A
′
0) is the first order formula which says that (A0) is the subset of

Nn which codes Ā0, see Lemma 1.2.8.

• ηn(A′0, A
∗
0) is the first order formula which say that A∗0 is the image of A′0

under πn, see Lemma 1.2.4.

• φ′(A∗0, A∗1) is the ∆1
n-formula which says that A∗0 is strictly smaller than

A∗1 in the well-order of the powerset of N defined by φ′. The formula φ′

is formed from φ by replacing 0 by 0’, 1 by 1’, + by +’, · by ·′ and by
relativising all the first order and second order quantifiers to N .

• A∗0(47) is the first order formula which says that the natural number 47
(in the sense of N) belongs to A∗0. Similarly we could say by a first order
formula that n belongs to (or does not belong to) A∗0 for any chosen n.
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The formula

((θĀ1,τ ∧ ψ∼=(Ā1) ∧ φcode(Ā1, A
′
1) ∧ ηn(A′1, A

∗
1))

→ (φ′(A∗0, A
∗
1) ∨ ∀x(A∗0(x)↔ A∗1(x))))

has the same complexity as ¬φ′(A∗0, A∗1), which is ∆1
n, as φ′ is ∆1

n. Then the
formula

∀Ā1∀A′1∀A∗1((θĀ1,τ ∧ ψ∼=(Ā1) ∧ φcode(Ā1, A
′
1) ∧ ηn(A′1, A

∗
1))

→ (φ′(A∗0, A
∗
1) ∨ ∀x(A∗0(x)↔ A∗1(x))))

has complexity Π1
n. Now the formula

def(N, 0′, 1′,+′, ·′) ∧ def(πn) ∧ θĀ,τ
∧ ψ∼=(Ā0) ∧ φcode(Ā0, A

′
0) ∧ ηn(A′0, A

∗
0) ∧

∀Ā1∀A′1∀A∗1((θĀ1,τ ∧ ψ∼=(Ā1) ∧ φcode(Ā1, A
′
1) ∧ ηn(A′1, A

∗
1))

→ (φ′(A∗0, A
∗
1) ∨ ∀x(A∗0(x)↔ A∗1(x)))) ∧ A∗0(47)).

has complexity Π1
n and the formula (2.1) has complexity Σ1

n+1. The sentence Φ
is true in A, hence true in B. So A ∼= B. Thus A(Σ1

n+1, ω) has been proved.

�

2.1.2. Corollary (Ajtai [2]). If V = L then A(L2, ω) holds.

Proof. In L there is a second order definable well-order of the powerset of ω
(See the notes about L on page 14 in the preliminaries).

�

The well-order of the reals in L is ∆1
2, thus if V = L then Σ1

3-equivalence implies
isomorphism for countable models. More generally, if there is a Σ1

n well-order of
the reals, any two countable Σn+1-equivalent models are isomorphic. Hence they
are second order equivalent and the full second order theory of a countable model
is determined by its Σn+1-theory.

However, it does not follow that every second order sentence is equivalent to
a Σ1

n+1 sentence for countable models [22] (Corollary 14.5 VIII(b)).

2.1.3. Corollary (Ajtai [2], Harrington [8]). A(L2, ω) is consistent with
V 6= L.

Proof. By a result of Harrington [8] it is consistent with ZFC that the con-
tinuum is as big as desired but has a ∆1

3-definable well-order.

�
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If we have a second order definable well-order of the reals with a parameter1 r
then any two countable models which satisfy the same second order theory with
parameter r are isomorphic. This can be seen by just adding a parameter to the
proof of Theorem 2.1.1. However, in this article we do not give much attention
to the case where we allow parameters: We are generally interested in possibility
to determine isomorphism types of models by their theories in languages having
sentences smaller than the cardinality of the model. Thus using a real parameter
in a language to determine isomorphism type of a countable model (a real) is a
bit disappointing.

However, we note the following result of Harrington [8]: It is consistent with
ZFC that Martin’s Axiom holds, the continuum is as big as wanted and there is
a second order definable well-order of the reals using a real parameter. It follows
that there is a model of ZFC in which the following hold:

1. Martin’s Axiom

2. For some real parameter r, second order equivalence with the real parameter
r implies isomorphism for countable models.

2.1.4. Question. Is Martin’s Axiom consistent with A(L2, ω)?

A second order definable well-order of the reals is also consistent with mea-
surable and Woodin cardinals, which cannot exist in L. We will return to these
large cardinals in Chapter 6.

By Theorem 2.1.1 A(L2, ω) is consistent. In all our examples where A(L2, ω)
holds this is based on a second order definable well-order of the reals.

2.1.5. Question. Is it consistent with ZFC that A(L2, ω) holds, but there is no
second order definable well-order of the reals?

2.2 Optimality

We proved before that A(Σ1
3, ω) is consistent with ZFC. We will show next that

A(Σ1
1, ω) is not consistent with ZFC.

2.2.1. Theorem. For any infinite cardinal κ there are two non-isomorphic Σ1
1-

equivalent models of Peano Axioms of cardinality κ. In particular there are two
Σ1

1-equivalent countable models of Peano Axioms which are not isomorphic.

1The logic for second order logic with a real parameter is L2(Qr), the second order logic
with a generalized quantifier Qr. The quantifier Qr is defined as A |= Qr(x)φ(x) ⇔ |{x : A |=
φ(x)}| ∈ r. Note that if we have (ω,<) in the model (either in the vocabulary of the model or as
interpretation of second order variables) then the formula ψ(X) = ∀x ∈ ω(X(x)↔ Qry(y < x))
defines the real r as a subset of ω.
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Proof. We start by proving the claim for κ = ω. This proof works equally
well for all κ < 2ℵ0 . For κ ≥ 2ℵ0 the claim follows from a simple cardinality
argument.

We construct an elementary chain of length ω1 of countable models of Peano
Axioms. Let A0 be the standard model of arithmetic. We recall that there are
2ℵ0 different types in arithmetic. If A ⊆ ω, then by the Compactness Theorem
ΣA = {θn(x) : n ∈ A} ∪ {¬θn(x) : n /∈ A}, where θn(x) says that the n:th prime
number divides x, is a consistent set of formulas. Thus if A ⊆ ω, B ⊆ ω and
A 6= B, ΣA and ΣB can be completed to types and these types are different.
In any countable model only countably many types ΣA are satisfied, so by the
Compactness Theorem there is always a countable elementary extension which
realizes some new type ΣA. It is thus easy to get an elementary chain of length ω1

of countable non-isomorphic models of Peano Axioms. However, we want some
of the models in the chain to be Σ1

1-equivalent. In order to do that, we make
sure that the Σ1

1 sentences true in the models of the chain are increasing. Thus
for each Σ1

1 formula ∃Rφ which is true in the standard model of arithmetic we
put a new relation to the vocabulary of A0 and interpret it in such a way that
the formula φ is satisfied. If Aα+1 satisfies some Σ1

1 sentences (in the original
vocabulary) which are not true in Aα then we add new relations to the model so
that every Σ1

1 sentence is satisfied by a relation in the model. We are making the
vocabulary bigger and bigger, but it does not matter. If σ is the vocabulary of
Aα and τ is the vocabulary of Aβ, α < β, then Aα 4 Aβ � σ. Since there are only
countably many Σ1

1 sentences, there is such an α < ω1 that from α forward all
models in the chain are Σ1

1-equivalent. Thus from some α forward, all models in
the chain are Σ1

1-equivalent but not isomorphic.

The above proof works equally well for all cardinalities ℵα < 2ℵ0 . In any
cardinality κ there are 2κ nonisomorphic models of arithmetic. Therefore Σ1

1-
equivalence does not imply isomorphism in cardinalities κ ≥ 2ℵ0 and thus Σ1

1-
equivalence does not imply isomorphism in any infinite cardinality.

�

Theorem 2.2.1 is formulated for Peano Axioms, but the proof works equally
well for any theory which has 2ℵ0 many types and more than continuum many
non-isomorphic models in all cardinalities greater than or equal to the continuum.

We showed above that A(Σ1
1, ω) does not hold. We proved earlier that A(Σ1

3, ω)
holds in L. However we don’t know yet whether A(Σ1

2, ω) is consistent.

2.2.2. Question. Is it consistent with ZFC that A(Σ1
2, ω) holds?

2.2.3. Question. If V = L, are there two countable non-isomorphic models
which have the same monadic second order theory?
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2.3 Failure of A(L2, ω)

We will now recall the second part of the independence proof of Ajtai [2].

2.3.1. Theorem (Ajtai). It is consistent with ZFC, that there are two count-
able non-isomorphic models which satisfy the same sentences of the language of
set theory. In particular the models are second order equivalent and Ln-equivalent
for all n.

Proof. We add a Cohen-generic real to the set theoretic universe. Recall that
the forcing conditions are functions from finite subsets of ω to {0, 1}. A forcing
condition p is stronger than a forcing condition q iff p extends q. If G is a subset
of ω, we denote by FG the set of all subsets of ω which differ from G only in
finitely many points. Let now G be a generic real and −G the complement of
G. We are discussing the models (FG ∪ ω,<ω, PG) , where <ω is the natural
order of ω and PG is the relation which tells which natural numbers n belong to
which sets in FG, and the corresponding model to −G.2 We denote these models
MG and M−G. We claim that these two models satisfy the same sentences of
the language of set theory, but are not isomorphic. If some formula φ(x) of the
language of set theory is satisfied by MG, then by the Forcing Theorem 1.2.17 it
is forced by some forcing condition p. But p is finite and does not determine MG

at all. Assume p  φ(ṀG) ∧ ¬φ(Ṁ−G). So there is a generic filter G containing
p such that V G |= φ(MG) ∧ ¬φ(M−G). Now consider another generic filter G′

which agrees with G on the domain of p but is the complement of G outside
the domain of p. Now V G = V G′ , but the models MG and M−G swap places:

(ṀG)V
G

= ( ˙M−G)V
G′

and (ṀG)V
G′

= ( ˙M−G)V
G

. Thus the forcing condition p
can not force any formula of the language of set theory with parameters from the
ground model to be satisfied in MG and false in M−G.

But (FG ∪ ω,<ω, PG) and (F−G ∪ ω,<ω, P−G) are non-isomorphic: Since ω is
a rigid structure, in an isomorphism every set in FG should be mapped to exactly
the same set in F−G. But this is impossible because G /∈ F−G.

�

Note that in the proof we do not assume anything about the ground model.
Consequently if we add a Cohen real to any model of ZFC, as is done in the
proof, A(L2, ω) fails in the generic extension.

2.3.2. Remark. If two countable models are not isomorphic to each other then
they can be separated by some Lω1,ω-sentence. The logic Lω1,ω is related to Dy-
namic Ehrenfeucht-Fräıssé games, see for example [28] for the definitions. For

2In fact the union of the relations <ω and PG is ∈, so we could also form the model in
vocabulary {∈} instead of {<ω, PG}. We follow here Ajtai, whose vocabulary is maybe more
intuitive than the alternative vocabulary.
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any non-Lω1,ω-equivalent countable models A and B there is an α < ω1 such that
I has a winning strategy in Dynamic Ehrenfeucht-Fräıssé game EFDα(A,B).
The least such α is called the Scott Watershed for A and B. The bigger the Scott
Watershed is, the harder the models are to distinguish by an Lω1,ω-sentence. The
models MG and M−G satisfy the same sentences of the language of set theory, so
they are in a way hard to distinguish from each other. However, the Scott Water-
shed of the pair (MG , M−G) is a very small ordinal: ω + 1. Thus the difference
between MG and M−G is not of the kind that is well reflected in the approach of
Ehrenfeucht-Fräıssé games.

In the proof of Theorem 2.3.1 we added one generic real to the set theoretic
universe and got two second order equivalent non-isomorphic models. But actu-
ally by a little modification of the proof, we can add many generic reals to the
universe and get many countable second order equivalent non-isomorphic models:

2.3.3. Theorem. Let κ+ be an infinite cardinal. There is a cardinals preserving
notion of forcing P that forces that there are κ+ countable ZF -equivalent non-
isomorphic models.

Proof. We add κ+ generic reals to L. Forcing conditions are finite functions
from κ+ × ω to {0, 1}. A forcing condition p is stronger than another forcing
condition q iff p extends q. If G is a generic set for this notion of forcing, for all
α < κ+, fα = {n : G(α, n) = 1} is a generic real. Note that for all α < β < κ+,
fα and fβ differ in infinitely many points. Thus if we construct models around fα
and fβ as in Theorem 2.3.1, we get countable non-isomorphic models. We denote
these models by M fα and M fβ . We will show that the models are ZF -equivalent.
Assume not: then by the Forcing Theorem 1.2.17 there is a forcing condition
p and a ZF -sentence φ with possibly parameters from the ground model such

that p  φ(Ṁ fα)∧¬φ(Ṁ fβ). So there is a generic filter G containing p such that
V G |= φ(M fα)∧¬φ(M fβ). But there is another generic filter G′ which agrees with
G in all ordinals different from α and β, agrees with G in α and β in the domain
of p and chances digits of α to digits of β and vice versa outside the domain of p.

Now V G = V G′ , p ∈ G′ and the interpretations of Ṁ fα and Ṁ fβ swap places in

the two generic extensions. Thus it is impossible that p  φ(Ṁ fα) ∧ ¬φ(Ṁ fβ).

�

2.4 The Fräıssé Hypothesis

Given a language L, a cardinal κ and a model class C we can ask whether A(L, κ)
restricted to C is true, i.e., whether any two L-equivalent models of cardinality
κ which belong to C are isomorphic. In this section we will discuss the following
model classes: the ordinals, the linear orders and the models of arithmetic.

Recall the definition of the Fräıssé Hypothesis, Definition 1.1.3.
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2.4.1. Theorem. The Fräıssé Hypothesis implies that there is a third order de-
finable well-order of length ω1 of a subset of the reals.

Proof. The ordinal ω1 is characterizable in third order logic in any countable
model as a third order predicate (a set of sets). In third order logic we can also
characterize a truth definition for all countable ordinals, i.e., a mapping from ω1

to the second order theories of the ordinals in ω1. For details see Definition 6.1.8
and Lemma 6.1.9. We fix some Gödel-numbering of second order sentences and
consider second order theories as real numbers. From the Fräıssé Hypothesis it
follows that countable ordinals have different second order theories and thus our
mapping maps them to different reals. Thus we have a third order characterizable
injective mapping from ω1 to the reals. So we have a third order definable well-
order of length ω1 of a subset of the reals.

�

2.4.2. Theorem. If there is a second order definable well-order of length ω1 of
a subset of the reals then the Fräıssé Hypothesis holds.

Proof. Let X be the subset of the reals in the assumption and let α be a
countable ordinal. In the second order definable well-order of X there is the α:th
real in the well-order of X. In second order logic we can talk about this real by
sentences of the following form:

“There is an initial segment of the well-order of X which has the same order
type with this model and the supremum of this initial segment contains (or does
not contain) n.”

If α and β are different countable ordinals, then X has an α:th real a and a
β:th real b and a 6= b. Thus there is some n ∈ ω where a and b disagree and for
this n the ordinals α and β disagree about a second order sentence of the above
form.

�

2.4.3. Theorem. Consider the following conditions:

1. There is a second order definable well-order of the reals.

2. A(L2, ω).

3. The Fräıssé Hypothesis.

4. There is a third order definable well-order of a subset of the reals which has
length ω1.

5. There is a second order definable well-order of length ω1 of a subset of the
reals.
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The following implications hold:
1.⇒ 2.⇒ 3.⇒ 4.
5.⇒ 3.

Proof. 1. ⇒ 2. Theorem 2.1.1. 2. ⇒ 3. is trivial. 3. ⇒ 4. Theorem 2.4.1.
5.⇒ 3. Theorem 2.4.2.

�

Recall that the implication 2.⇒ 1. in Theorem 2.4.3 above is an open question.
From the next Theorem it follows that the negation of the Fräıssé Hypothesis
implies ω1 6= ωL1 . As a consequense implication 2.⇒ 3. is proper, as after adding
a Cohen real to L countable ordinals still satisfy different second order theories.

2.4.4. Theorem. Assume A is a countable model in the universe of constructible
sets, and M is a transitive model of ZFC containing all ordinals. Then for any
model B in M , if M |= A ≡L2 B then A ∼= B.

Proof. Given a countable model in L (say A), we can say in second order logic
which second order sentences it satisfies in L. This is because without too much
trouble we can relativize all second order quantifiers to L. Also there is a second
order sentence φ which says that the model in question is countable in L. Assume
now M |= A ≡L2 B. As B |= φ the model B is countable in L. As A and B
satisfy the same second order sentences in L, it follows from Theorem 2.1.1 that
A and B are isomorphic.

�

At this point we note that A(L2, ω) and the Continuum Hypothesis do not
decide each other in any way. We give the following examples:

1. A(L2, ω) and the Continuum Hypothesis both hold in L, see Theorem 2.1.1.

2. If we add ℵ2 Cohen generic reals to L (see Theorem 2.3.3), then A(L2, ω)
and the Continuum Hypothesis both fail.

3. Harrington[8] gives a model of ZFC in which the continuum is large but
has a ∆1

3 well-order. From Theorem 2.1.1 it follows that in Harrington’s
model the Continuum Hypothesis fails but A(L2, ω) holds.

4. If we add one Cohen generic real to L, as is done in Theorem 2.3.1, then
A(L2, ω) fails but the Continuum Hypothesis holds.

We will next define the diamond principle ♦ and show that ♦ does not decide
A(L2, ω) either.
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2.4.5. Definition. The diamond principle ♦ is the following condition:
There exists a sequence of sets 〈Sα : α < ω1〉 with Sα ⊂ α, such that for every

X ⊂ ω1, the set {α < ω1 : X ∩ α = Sα} is a stationary subset of ω1.

We will now introduce a forcing which makes ♦ true. We use the forcing from
Jech [11], exercise 15.23.

2.4.6. Lemma. (Folklore) Let Q = {〈Sβ : β < α〉, α < ω1}, where Sβ ⊆ β for all
β < α. Let p be stronger than q if and only if p extends q. Let G be Q-generic.
Then V [G] |= ♦.

Proof. We will show that
⋃
G is a ♦-sequence. Thus we need to show that

for any forcing names Ċ and Ẋ, if p  (Ċ is closed unbounded subset of ω1 and
Ẋ ⊆ ω1) then there is a q stronger than p such that q = 〈Sβ : β ≤ α〉 and
q  (α ∈ Ċ and Ẋ ∩ α = Sα).

So assume p  (Ċ is a closed unbounded subset of ω1 and Ẋ ⊆ ω1). We will
define inductively an ω-sequence of forcing conditions in such a way, that the
upper limit of this sequence will do the job. We use len(p) to denote the length
of the forcing condition p.

1. p0 = p

2. p1 is a forcing condition strictly stronger than p0 such that p1  α1 ∈ Ċ for
some α1 > len(p0). This is possible because p0 proves that Ċ is unbounded
subset of ω1.

3. p2 is a forcing condition strictly stronger than p1 such that it decides Ẋ∩α1,
and len(p2) > α1. This is possible because our forcing is ℵ0-closed and it
does not add any new subsets to countable sets. Thus Ẋ ∩ α1 is some set
from the ground model and there is some forcing condition which decides
which set from the ground model it is.

4. p3 is a forcing condition strictly stronger than p2 such that p3  α2 ∈ Ċ for
some α2 > len(p2).

5. p4 is a forcing condition strictly stronger than p3 such that it decides Ẋ∩α2,
and len(p4) > α2.

...

Let α be the supremum of the ordinals len(pn), n ∈ ω. Since the sequence
α1, α2, . . . converges to α and Ċ is closed, q  α ∈ Ċ for any q which is stronger
than all pn:s. Also for any β < α there is some forcing condition pn which decides
whether β ∈ Ẋ. Now we can define q to be as pn:s for β < α and at α we can
define it to be Ẋ ∩ α.
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�

In L the ♦ principle holds and A(L2, ω) holds. We just showed that ♦ can
be forced to be true by a small forcing which does not destroy large cardinals.
Thus we can have a model with ♦ and infinitely many Woodin cardinals with a
measurable cardinal above them (assuming the consistency of the large cardinal
axiom above). Then, looking ahead, from Theorem 6.1.6 it follows that ♦ is
consistent with the negation of A(L2, ω).

Ajtai [2] has proved that it is consistent with ZFC that there are two differ-
ent countable ordinals which satisfy the same standard ZF -formulas. However,
the model of ZFC in the proof is not necessarily transitive, so there might be
some non-standard ZF or second order formulas which do not agree about those
ordinals.

Marek [16] notes without a proof that in the Levy model, where all cardinals
below the first inaccessible cardinal are collapsed to countable ordinals, the Fräıssé
Hypothesis fails. He also notes a result of G. Sacks that if ωL

1 is collapsed to ω,
then the Fräıssé Hypothesis fails. We will next present a proof for this. Note
that the failure of the Fräıssé Hypothesis is consistent relative to the consistency
of ZFC.

2.4.7. Theorem (Sacks). It is consistent with ZFC that the Fräıssé Hypothe-
sis fails.

Proof. Let L be the ground model. We make a forcing which collapses ω1 to
ω. The forcing conditions are injective functions from finite subsets of ω to ω1.
A condition p is stronger than a condition q iff p extends q.

We make the following remark: The forcing is homogeneous (see [23] for the
definition), and consequently if a is an element of the ground model, φ is a second
order sentence and p  φ(a) then 1  φ(a). This is because in this forcing any
forcing condition can not determine the generic extension in any way. If G is a
generic filter for this forcing and p is a forcing condition then there is another
generic filter G′ containing p such that V G = V G′ .

We claim that after the forcing there are two different ordinals smaller than ωL
2

which have the same second order theory. Assume not. Then after the forcing all
ordinals smaller than ωL2 have different second order theories. For each ordinal
α < ωL2 , the relation 1  φ(α) is definable in the ground model and the real
rα = {n : n is a Gödel number of such a second order sentence φ that 1  φ(α)}
is definable in the ground model and belongs to the ground model. Now the
mapping α 7→ rα is an injective mapping from ω2 to the reals and it exists in L
which is a contradiction.

�
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We will give another proof for the consistency of the existence of two non-
isomorphic second order equivalent countable linear orders. In the proof we con-
struct two linear orders, which “look like” the two models in the proof of Theorem
2.3.1.

2.4.8. Theorem. It is consistent with ZFC that there are two (or κ+) countable
non-isomorphic second order equivalent linear orders.

Proof. Recall the models (FG ∪ ω,<ω, PG) and (F−G ∪ ω,<ω, P−G) from the
proof of Theorem 2.3.1. We expand these models by adding linear orders (“lexi-
cographic orders”) to the sets FG and F−G. In ”lexicographic order” X < Y iff
there is an n ∈ ω such that below n the sets X and Y have the same elements,
but n /∈ X and n ∈ Y . Note that these lexicographic orders are characterizable in
second order logic in the models in question, so the expanded models are second
order equivalent.

Now we want to modify these lexicographic orders in such a way that they
reflect the structure of the sets in FG and F−G. For each subset X of ω we
construct the following linear order denoted by <X :

We denote by <1
X the following linear order: In the beginning there are four

points. After the four starting points there is a Q-component. Then if X has the
first digit zero there are two points in the linear order. If X has the first digit one
there are three points in the linear order. If <n

X has been defined, we denote by
<n+1
X the linear order which has <n

X in the beginning, then a Q-component and
then two points (if the n+ 1st digit of X is 0) or three points (if the n+ 1st digit
of X is 1). Finally we define <X=

⋃
n∈N <

n
X .

The construction is characterizable in second order logic, so the mapping
X 7→<X with domain FG is characterizable by a L2 formula in (FG ∪ω,<ω, PG).
Similarly the mapping X 7→<X with domain F−G is characterizable by a L2

formula in (F−G ∪ ω,<ω, P−G).
Now we can define the linear order <G as follows:

dom <G=
⋃

X∈FG
dom <X

where dom <X ∩dom <Y = ∅ for all different X and Y . If x and y are in dom <G

then x <G y iff one of the following holds:

1. There are X and Y such that x ∈ dom <X and y ∈ dom <Y and X is
smaller than Y in the lexicographic order of FG.

2. There is X such that x ∈ dom <X and y ∈ dom <X and x <X y.

The construction of <G is second order characterizable in (FG ∪ ω,<ω). In a
similar way we can characterize another linear order <−G in (F−G ∪ω,<ω, P−G).
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Because (FG ∪ ω,<ω, PG) and (F−G ∪ ω,<ω, P−G) are second order equivalent,
also the linear orders <G and <−G are second order equivalent.

But the models are not isomorphic. The model constructed from −G does not
have an interval which starts with four points, then has ω copies of Q-components
and some points between the Q-components as we will describe below: For each
k ∈ ω between the k + 1st and k + 2nd Q-components there are 2 points when
the kth digit of G is 0 and there are 3 points when the kth digit of G is 1.

If we add κ+ generic reals as in Theorem 2.3.3 then we get κ+ non-isomorphic
second order equivalent linear orders.

�

2.4.9. Theorem. It is consistent with ZFC that there are two countable second
order equivalent non-isomorphic models of arithmetic.

Proof. Let α and β be second order equivalent countable non-isomorphic or-
dinals, which consistently exist by Theorem 2.4.7. Let σ be a minimal type [12].
We extend the prime model of arithmetic by taking α-canonical and β-canonical
extensions over the type σ. That is: we take the Ehrenfeucht-Mostowski models
which are generated by the sequences of elements of the minimal type σ, and we
let the generating sequences have order types α and β. The models are second
order equivalent, but they are not isomorphic as there is no order preserving map-
ping of the generators of the first model to the generators of the second model.
It is also impossible to have an isomorphism from one model to the other which
would map the set of generators to a set other than the generators in the other,
because both structures are rigid [12] (p.70).

�

2.5 Submodels

In this section we discuss elementary submodels. As we will see, the concept of
second order elementary submodel is too strong to be useful. However, using
Ajtai’s technique we will prove a theorem which demonstrates the possibility of
having a stronger version of first order elementary submodel.

2.5.1. Definition. A �∗L2 B means A is a second order elementary submodel
of B. This means: A is a submodel of B and for any second order formula
φ(X1, . . . Xn, x1, . . . , xm) and relations A1, . . . An ∈ A and elements a1, . . . , am ∈
A,

if A |= φ(A1, . . . An, a1, . . . , am) then B |= φ(A1, . . . An, a1, . . . , am).
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Clearly it is impossible to have A �∗L2 B when A 6= B, as A satisfies the
formula saying that every element belongs to it in A but that is not the case in
B.

We need a weaker formulation for second order elementary submodel:

2.5.2. Definition. A �L2 B if A ⊆ B and for any finite sequence of parameters
ā ∈ A (A, ā) ≡L2 (B, ā).

Is it possible to find non-isomorphic models A and B such that A �L2 B? In
fact we will prove a stronger result: we will give such models A and B that A ⊆ B,
A � B and (A, a1, . . . , an) and (B, a1, . . . , an) satisfy the same formulas of the
language of set theory for all first order parameters a1, . . . , an ∈ A. This result
is easy to get if one thinks models of empty vocabulary in different cardinalities,
but we give an example were both models A and B have the same cardinality ℵ0.

2.5.3. Theorem. It is consistent with ZFC that there exist two models A and B
of cardinality ℵ0 satisfying the following: A ⊆ B, A � B and (A, a1, . . . , an) ≡ZF
(B, a1, . . . , an) for all elements a1, . . . an ∈ A.

Proof. We force ω generic reals to the set theoretic universe. Forcing condi-
tions are finite functions f : ω×ω → {0, 1}, and a forcing condition p is stronger
than a forcing condition q iff p extends q.3 If G is a generic set of conditions
and i ∈ ω we say that Gi = {n : G(i, n) = 1} is the ith generic real. De-
fine domA =

⋃
i∈6N domAi, where Ai is the Ajtai model constructed from the

ith generic real. Define <A= the natural order of ω. Define PA =
⋃
i∈6N P

Ai .
Define similar way domB =

⋃
i∈2N domAi, <

B= the natural order of ω and
PB =

⋃
i∈2N P

Ai .
The models are not isomorphic because B contains some subsets of ω which

A does not contain, and in an isomorphism every subset of ω is mapped to itself.
We claim that (A, a1, . . . , an) ≡ZF (B, a1, . . . , an) for arbitrary a1, . . . an ∈

A. Suppose not: there is a forcing condition p and a formula φ such that p 
φ(Ȧ, ȧ1, . . . , ȧn) ∧ ¬φ(Ḃ, ȧ1, . . . , ȧn). Let G be a generic filter which contains
p. It is possible to construct another generic filter G′ such that V G = V G′ ,

ȧ1
V G = ȧ1

V G
′
, . . . , ȧn

V G = ȧn
V G
′

and ḂV G = ȦV G
′
. This is possible because

the forcing condition p is finite. For those i which determine the interpretations
of the forcing names ȧ1, . . . , ȧn we let G and G′ agree about everything4. In
the domain of p we let G and G′ agree about everything. Otherwise we let G′

produce in the indexes 6N those generic reals which G produces in the indexes

3In fact this forcing is the same as the usual Cohen real forcing where the forcing conditions
are finite functions from ω to {0, 1}, but we feel that this formulation is more intuitive here.

4ȧ1 is either a natural number or a subset of ω. If it is a natural number then the interpre-
tation of (for example) ȧ1 is determined by the trivial forcing condition. If ȧ1 is a subset of ω
then ȧ1 is the same as one of Gi:s (where i ∈ 2N), except for finitely many digits. Thus it is
determined by Gi = {n : G(i, n) = 1}.
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2N, and in the indexes N\6N those generic reals which G produces in the indexes
2N + 1. Because of p it may be impossible to produce exactly the same generic
reals, but it is possible to produce reals which are the same except in finitely
many digits. However, finitely many digits do not make any difference to the

model ȦV G
′

and we get ḂV G = ȦV G
′
. But now it can not be so that p 

φ((Ȧ, ȧ1, . . . , ȧn)) ∧ ¬φ((Ḃ, ȧ1, . . . , ȧn)).

�





Chapter 3

Fourth order logic

3.1 Coding subsets by collapsing cardinals

In Chapter 2 we showed that it is independent of ZFC whether A(L2, ω) holds.
A natural question is whether analogous results can be proved for other higher
order logics Ln or various uncountable cardinals κ. Our results in this chapter
were inspired by the following theorem of Ajtai [2].

3.1.1. Theorem (Ajtai). There is a model of ZFC in which A(Ln, ω) fails for
every n ∈ ω but A(ZF, ω) holds.

Proof. [sketch] We add first a Cohen real G to L as in Theorem 2.3.1. After
this forcing there are two ZF -equivalent non-isomorphic models of cardinality ω
and GCH holds.

Next we will make G definable by a ZF sentence. For all natural numbers
n we add by Easton forcing ℵω+n+2 Cohen subsets to ℵω+n for those n where
the nth digit of G is 1. After the forcing G is definable by a ZF -formula as the
function f : ω → {0, 1},

• f(n) = 0, if GCH holds at ℵω+n

• f(n) = 1 if GCH does not hold at ℵω+n

is definable by a ZF -formula. It follows that after the forcing the canonical
well-order of L[G] is definable by a ZF -formula and A(ZF, ω) holds after the
forcing. By Lemma 1.2.9 the truth of Ln sentences in a model of cardinality
ω are determined by sets in H((in−2(ω))+), thus the two models remain non-
isomorphic and Ln-equivalent for all n.

�

35
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Next we will give some motivation to our definition of a forcing PX′,κ, which
is used a lot in this chapter. The forcing uses some ideas of Kenneth McAloon
[18].

Assume M = L[X], λ is a cardinal and X ⊆ λ. Assume also that M and L
have the same cardinals, κ = ℵMα is a cardinal in M and GCH holds above κ in
M . We will next introduce the forcing PX,κ, which makes X definable from κ,
but does not add any new subsets to κ. Let X ′ be a subset of λ \ {β : β is a
limit ordinal} such that X ′ and X contain the same information1. The forcing
is an iterated forcing of length λ with full support at all limit stages. The idea
is that PX,κ collapses ℵα+ω·β+2 to ℵα+ω·β+1 for β ∈ X ′, and does not collapse
any other cardinals. After the forcing X ′ (and hence X) is definable from α as
X ′ = {β < λ : ℵL

α+ω·β+2 is not a cardinal}. Next we will give an exact definition
of the forcing conditions:

3.1.2. Definition (PX′,κ). The forcing conditions are sequences (pβ)β<λ such
that the following hold:

1. If 0 ∈ X ′, then P0 is the set of partial functions from ℵα+1 to ℵα+2 of
cardinality smaller than ℵα+1. A forcing condition p is stronger than a
forcing condition q if and only if p extends q. If 0 /∈ X ′, then P0 is the
trivial forcing.

2. Assume β = γ + 1 and Pγ′ has been defined for all γ′ ≤ γ.

If β ∈ X ′, we define Pβ to be the set of sequences pγ, γ ≤ β where the γth
coordinate belongs to Pγ for each γ < β and the βth coordinate is a forcing
name Ẏ such that p � β  Ẏ is a partial function from ℵα+ω·β+1 to ℵα+ω·β+2

of cardinality smaller than ℵα+ω·β+1. If p and q are two conditions of length
β then p is stronger than q if and only if p � γ is stronger than q � γ and
p � β  (p(β) and q(β) are partial functions from ℵα+ω·β+1 to ℵα+ω·β+2 of
cardinality smaller than ℵα+ω·β+1 and p(α) ⊇ q(α)).

If β /∈ X ′ then Pβ is the trivial forcing.

3. If β is a limit ordinal, the forcing conditions in Pβ are the tuples p of length
β such that for each γ < β p � γ  p(γ) ∈ Pγ. This forcing has full
support in all limit stages, which means that in limit stages all coordinates
of a forcing condition may be non zero. A forcing condition p is stronger
than q if and only if p � γ is stronger than q � γ for each γ < β.

3.1.3. Lemma. Assume M = L[X], λ is a cardinal and X ⊆ λ. Assume also
that M and L have the same cardinals and GCH holds above κ in M . Let G be
a PX,κ-generic set over M . M [G] |= X ′ = {β < λ : ℵL

α+ω·β+2 is not a cardinal}.

1For example for all α < λ : α ∈ X ↔ α+ 1 ∈ X ′.
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Proof. We prove by induction on β that after Pβ the claim holds for all γ ≤ β,
i.e., for all γ ≤ β, ℵL

α+ω·γ+2 is a cardinal iff γ ∈ X ′. The rest of the iterated forcing
is ℵα+ω·(β+1)-closed and does not add subsets to ℵα+ω·β+1 so the claim follows.

1. Let β = 0. If 0 /∈ X ′ then P0 is the trivial forcing and the claim holds.
If β ∈ X ′ then Pβ collapses ℵα+ω·β+2 to ℵα+ω·β+1. The forcing Pβ is <
ℵα+ω·β+1-closed and has cardinality ℵα+ω·β+2 (because GCH holds above
κ = ℵα), so other cardinals and GCH above κ are preserved.

2. Let β = γ+ 1 and assume Induction Hypothesis holds for γ. If β /∈ X ′ then
Pβ is the trivial forcing and the claim holds. If β ∈ X ′ then Pβ collapses
ℵα+ω·β+2 to ℵα+ω·β+1. Note that Pβ is < ℵα+ω·β+1-closed and has cardinality
ℵα+ω·β+2, because GCH above κ holds. It follows that Pβ preserves other
cardinals. Also GCH above κ is preserved so the claim holds.

3. Assume β is a limit ordinal and the Induction Hypothesis holds for all
smaller ordinals. The forcing Pβ has cardinality at most ℵα+ω·β so it does
not collapse any cardinals greater than ℵα+ω·β. Also ℵα+ω·β is not collapsed
because there are cofinally many cardinals below which are not collapsed.
GCH above κ is also preserved.

4. The whole forcing PX,κ has cardinality at most ℵα+ω·λ so cardinals greater
than ℵα+ω·λ are preserved. The cardinal ℵα+ω·λ itself is preserved, as cofi-
nally many cardinals below it are preserved.

�

3.1.4. Theorem. Let κ be a cardinal in L. There is a model of ZFC in which
2κ = 2ℵ0, A(L4, κ) holds, A(L2, κ) fails and all cardinals ≤ κ of L are preserved.

Proof. Let L be the ground model. We make an iterated forcing which has
three parts and length κ+ + 1. After the forcing fourth order equivalence implies
isomorphism in cardinality κ but second order equivalence does not.

1. First we add 2κ Cohen-subsets to ω. This forcing does not collapse any
cardinals and after the forcing 2ℵ0 = 2κ.

2. Now let G be the generic set we added in step 1. and let Π be a bijection
from 2ℵ0 to 2κ in V [G]. We want to make G and Π definable from κ in the
language of set theory, but not to make them second order characterizable
in cardinality κ.

As G and Π are of cardinality smaller or equal to 2κ = κ+, there is a subset
X of 2κ which codes them both. Let X ′ be a subset of 2κ \ {γ : γ is 0 or
a limit ordinal } such that X and X ′ are definable from each other. We
will now make one such X ′ definable from κ in the language of set theory.
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Let Ẋ ′ be a canonical name for X ′. After the forcing P0 the GCH holds
above κ, Ẋ ′ has cardinality 2κ, and the cardinals are the same as in L, so
by Lemma 3.1.3 P0 ∗ PẊ′,κ does not add any new subsets to κ and makes

Ẋ ′ definable from κ in the language set theory.

3. In the last step we add ℵα+ω·κ++1 Cohen subsets for κ+. This does not col-
lapse cardinals or add new subsets to κ. Now Ẋ ′ is definable in H((i2(κ))+)
so by Lemma 1.2.9 there is a fourth order definable well-order of the power-
set of κ and a fourth order definable bijection from the powerset of κ to the
reals. Now as in Theorem 2.1.1 we can have fourth order sentences which
say “There are R0 ⊆ κ and R′0 ⊆ ω such that R0 is the least subset in the
well-order isomorphic to the model in question and Π maps R0 to R′0 and
R′0(8743)”. Sentences of this form determine the isomorphism type of the
model so A(L4, κ) holds after the forcing. A(L2, κ) fails after the forcing as
it fails after the first Cohen forcing2 and we did not add any subsets to κ
after that.

�

3.1.5. Theorem. Let κ be a cardinal in L. There is a model of ZFC in which
2κ = 2ℵ0, and A(L4, λ) holds and A(L2, λ) fails in any cardinality λ ≤ κ.

Proof. Let L be the ground model. We use an iterated forcing which has the
following steps:

1. We add 2κ = κ+ Cohen subsets to ω. Cardinals are preserved in this forcing
and after this forcing 2λ = 2κ = κ+ for any λ ≤ κ. Also A(L2, λ) fails for
all λ ≤ κ, see Theorem 5.2.7 below.

2. Now let G be the generic set we added in step 1. and let {Πλ : λ ≤ κ} be
a set such that each Πλ is a bijection from 2ℵ0 to 2λ in V [G]. Let Ẋ ′ be
a subset of 2κ \ {γ : γ is 0 or a limit ordinal} which codes G and all the
bijections Πλ.

As in the previous theorem P0 ∗ PẊ′,κ makes X ′ definable from κ and adds
the same subsets of κ as P0 alone.

3. In the last step we add ℵα+ω·κ++1 Cohen subsets to 2κ.

After the forcing A(L2, λ) fails for every λ ≤ κ as we did not add any new
subsets to λ after step 1. After the forcing A(L4, λ) holds for all λ ≤ κ
as in H(i2(λ)+) there is a definable well-order of the powerset of λ and a
definable bijection from 2λ to 2ω.

2Theorem 2.3.1 proves this for κ = ω and Theorem 5.2.7 below proves the uncountable case.
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�

3.1.6. Theorem. Let κ be a cardinal in L and let n be a natural number greater
or equal to 2. There is a model of ZFC in which A(Ln, κ) fails but A(Ln+2, κ)
holds.

Proof. Let L be the ground model. Our iterated forcing has the following
steps:

1. We add 2κ Cohen subsets to ω. After this step A(Ln, κ) fails for every n,
2κ = 2ω, GCH holds above κ and all cardinals of L remain cardinals.

2. Let Ẋ ′ be a canonical name for a subset of κ+ \ {γ : γ is a limit ordinal or
0} which codes the generic set added in step 1. and a bijection Π from 2ω

to 2κ. The second step is PẊ′,in−2(κ) This step does not add any subsets to
in−2(κ).

3. Cohen forcing which adds ℵα+ω·2κ+1 subsets to in−1(κ).

After the forcing A(Ln, κ) fails as it fails after the first Cohen forcing and
no subsets are added to in−2(κ) after that. After the forcing X ′ is definable
in H((in(κ))+) and thus there is an Ln+2-characterizable well-order of the
powerset of κ and an Ln+2-characterizable bijection from 2κ to 2ω. It follows
that A(Ln+2, κ) holds.

�

Note that there are several open questions left, for example the following:

3.1.7. Question. Does A(Ln+1, κ) hold after the above forcing? Or does it de-
pend on κ and n whether A(Ln+1, κ) holds after the above forcing?

3.1.8. Theorem. Let κ be a cardinal definable in L. There is a model of ZFC
in which A(Ln, κ) fails for any n but A(ZF, κ) holds and all cardinals ≤ κ of L
are preserved.

Proof. This is just an obvious generalization of Ajtai’s theorem 3.1.1. Note
that the theorem could be also proved by using the forcing PX,κ. Let L be the
ground model. We do an iterated forcing with two steps:

1. Let P0 be a forcing which adds 2κ = κ+ Cohen subsets for ω. After this
forcing there are two ZF -equivalent non-isomorphic models of cardinality
κ in a finite vocabulary. The models are also Ln-equivalent for any natural
number n. This forcing does not collapse any cardinals and also GCH
above κ is preserved. After this forcing 2κ = 2ω.
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2. In the second step we make the Cohen subset G which we added in step
1 and a bijection Π from 2κ to 2ω definable in the language of set theory.
We make this in such a way, that the truth of all Ln sentences in models
of cardinality κ is preserved, and after the forcing the powerset of κ has a
ZF -definable well-order and there is a ZF -definable bijection from 2κ to
2ω. Consequently A(ZF, κ) holds after the forcing.

As κ is a definable cardinal in L, also ℵκ+ω is a definable cardinal in L.
As GCH holds above κ in L[G], the truth of Ln sentences in models of
cardinality κ in L[G] is determined by sets which are hereditarily smaller
than ℵκ+ω. We will introduce a forcing which makes G and Π definable in
the language of set theory but does not add any sets which are hereditarily
smaller than ℵκ+ω.

Let X ⊆ κ+ be a set which codes G and Π. Let P1 be a forcing which adds
ℵκ+ω+α+2 Cohen subsets to ℵκ+ω+α for those α for which α ∈ X. After the
forcing we can read X as the function from κ+ to {0, 1} which maps α to
0 if GCH holds at ℵκ+ω+α and to 1 otherwise. Now as X is definable by a
ZF -formula we have a ZF -definable well-order of the powerset of κ and a
ZF -definable bijection from 2κ to 2ω. It follows that A(ZF, κ) holds.

�

3.2 Solovay’s result on complete second order

sentences

In this section we will present a Solovay’s result about complete second order
sentences, Theorem 3.2.3, and prove some related results.

3.2.1. Definition. A L-sentence φ is a complete L-sentence, if all such models
A and B that A |= φ and B |= φ are L-equivalent.

Note that an equivalent definition would be that for all L-sentences ψ, φ |= ψ
or φ |= ¬ψ.

3.2.2. Definition. We use S(L) to denote the hypothesis that any complete L-
sentence φ has at most one model up to isomorphism.

We use S(L, κ) to denote the hypothesis that any complete L-sentence φ has
at most one model of cardinality κ up to isomorphism.

The following is an unpublished result of Solovay [25].

3.2.3. Theorem (Solovay). It is independent of ZFC whether S(L2) holds.
However, it is provable in ZFC that models which satisfy the same complete
second order sentence have the same cardinality.
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Proof. Let V = L and let φ be a complete second order sentence. If there were
more than one non-isomorphic models of φ then there would be some model A
which is the <L-least model of φ and some model B of φ which is not isomorphic
to the <L-least model of φ. But now φ can not be complete because A satisfies
second order sentence “is isomorphic to the <L-least model of φ” and B does not.

We have proved earlier that if we add a Cohen-generic real G to L, we get
L2-equivalent non-isomorphic models (FG ∪ ω,<ω, PG) and (F−G ∪ ω,<ω, P−G).
In fact the models satisfy the same complete second order sentence. This sentence
says: The universe of the model is ω∪{X ⊆ ω : |X ∩−G| < ℵ0} where G is some
Cohen-generic3 subset of ω over L such that all reals are constructible from G,
and there is also the natural order of ω and a relation which tells which elements
of ω belong to which subsets of ω.

We will now show that models which satisfy the same complete second order
sentence have the same cardinality. Assume not. Then there are models of
different cardinalities which satisfy a complete second order sentence φ. Some of
these models is of the smallest cardinality where there is a model of φ and some
others are not. Assume A is a model of φ of the least possible cardinality and B
is a model of φ of some bigger cardinality. Now in B the second order sentence
“there is a model of φ which has cardinality less than cardinality of this model”
is true and in A it is false. Thus φ is not a complete second order sentence.

�

3.2.4. Lemma. Assume L∗ is a logic extending L2 such that L∗ has relativization
property (see [3] for the definition) and κ is a cardinal characterizable by an
L∗-formula. If there is a well-order of the powerset of κ characterizable by an
L∗-formula in models of cardinality κ, then S(L∗, κ) holds.

Proof. Let φ be a complete L∗-sentence and let A and B be models of φ of
cardinality κ. Let < be the well-order of the powerset of κ characterizable by an
L∗-formula. As there is a model of φ of cardinality κ there is a model of φ of
cardinality κ which is up to isomorphism the <-least model of φ. Because φ is
a complete L∗-sentence and the property “is isomorphic to the <-least model of
φ” is expressible by an L∗-sentence, every model of φ is isomorphic to the <-least
model of φ. It follows that A and B are isomorphic.

�

3We can say in second order logic that G meets all dense subsets of the Cohen real forcing
over L. This is because in the Cohen real forcing over L the set of forcing conditions is countable
and hence characterizable in second order logic in any transitive model of ZFC. Consequently
we can quantify over dense subsets in second order logic and “G is a Cohen generic subset of ω
over L” is expressible in second order logic. All “Ajtai models” over Cohen generic subsets of
ω over L are ZF -equivalent (follows from the proof of Theorem 2.3.1 ) thus the sentence is a
complete second order sentence.
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The following theorem is essentially Theorem 4 in Ajtai [2].

3.2.5. Theorem (Ajtai). It is consistent with ZFC that S(L2, ω) fails but
S(L3, ω) holds.

Proof. [sketch] We describe the forcing of Ajtai which adds a Cohen real to
L and makes it third order characterizable. The idea is to add first a Cohen
real to L and then make that Cohen real third order characterizable by adding
uncountable branches to suitably chosen Suslin trees.

After we have added a Cohen real there are two non-isomorphic countable
models which satisfy the same complete second order sentence, i.e., S(L2, ω) fails.
Adding new subsets to ω1 does not make those models isomorphic or chance truth
of second order sentences, thus in the end S(L2, ω) fails. On the other hand, there
is a third order definable well-order of the reals, so S(L3, ω) holds by Lemma 3.2.4.

�

3.2.6. Definition. Let L∗ be a logic. A categorical L∗-theory is an L∗-theory
which has exactly one model up to isomorphism. A categorical L∗-sentence is an
L∗-sentence which has exactly one model up to isomorphism.

3.2.7. Theorem. Assume the Fräıssé Hypothesis holds. There is a cardinal κ
and a model A of cardinality κ such that A satisfies a categorical L2-theory but
there is no model of cardinality κ satisfying a categorical second order sentence.

In case V = L we can replace “categorical second order sentence” by “complete
second order sentence” above.

Proof. There is a second order sentence φ which says that the model has
cardinality ℵα where α is the order type of a well-ordered predicate U , see Remark
4.2.3 below. Assume the Fräıssé Hypothesis holds and α is a countable ordinal.
Consider the theory Tα = {φ}∪{ψU : α |= ψ}∪Uω where ψU is the relativization
of a second order sentence ψ to U and Uω is a sentence which says that U is
countable. Any model of Tα has cardinality ℵα, U has order type α and the
whole model has order type ℵα. Consequently every model of Tα is categorical.
As there are uncountably many countable ordinals α but only countably many
categorical second order sentences, in some cardinality ℵα no model satisfies a
categorical second order sentence.

In case V = L every complete second order sentence is categorical so the claim
follows.

�

3.2.8. Theorem. Let κ be a cardinal in L such that κ and all smaller cardinals
are definable in L, i.e., in the model (L,∈). There is a model of ZFC in which
S(L2, λ) holds for all λ < κ but S(L2, κ) fails and all cardinals ≤ κ of L are
preserved.
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Proof. Let L be the ground model. We add a Cohen subset G to κ. This does
not add any new subsets to cardinals smaller than κ so S(L2, λ) is preserved for
all λ < κ. In cardinality κ there are now two non-isomorphic models which satisfy
the same complete second order sentence φ. The sentence φ says that the model
has as universe the ordinal κ and a set of subsets of κ which differ from a Cohen
generic subset of κ over L in less than κ digits, and there is epsilon relation in
the model. This can be said in second order logic as the notion of forcing which
adds a Cohen subset for κ to L has κ forcing conditions, and we can quantify over
dense subsets of this notion of forcing in a model of cardinality κ.

�

3.2.9. Theorem. Let κ = ℵα be a cardinal such that κ and all smaller cardinals
are definable in L and let n ≥ 3 be a natural number. There is a model of ZFC
in which S(Ln, λ) fails for all λ ≤ κ but S(Ln+2, λ) holds for all λ ≤ κ and all
cardinals ≤ κ of L are preserved.

Proof. We use the iterated forcing developed earlier in this chapter. Let L be
the ground model.

1. We add 2κ Cohen subsets to ω. After this forcing the cardinals are preserved,
i.e., every cardinal of L remains a cardinal. Also for any infinite cardinal
λ ≤ κ it holds that 2λ = 2κ and GCH holds at and above κ.

As this notion of forcing has cardinality κ+, after the forcing we can quantify
over dense subsets of this forcing in L3 in any model of infinite cardinal-
ity. From a generic set over this forcing we can construct countable ZF -
equivalent non-isomorphic “Ajtai models” (see Theorem 2.3.3) and we can
expand these models to have cardinality λ ≤ κ as is described in Theorem
5.2.7. Consequently A(Ln, λ) fails for any λ ≤ κ after this forcing.

2. We add a definable well-order for the powersets of all cardinals λ ≤ κ as
follows. Let Ẋ be a canonical name for a sequence (Ẋβ : β ≤ α) such that
each Ẋβ is a canonical name for a well-order of the powerset of ℵβ. Let Ẋ ′

be a canonical name for a subset of κ+ \{γ : γ is 0 or a limit ordinal} which
codes Ẋ. The next step is the forcing PẊ′,in−2(κ).

This step does not add any such subsets to in−2(κ) which were not added
in step 1. Thus S(Ln, λ) remains false.

3. The last step adds ℵα+ω·κ++1 Cohen subsets to in−1(κ). After this step
S(Ln, λ) remains false for all λ ≤ κ. After the last step there will be a
definable well-order of the powerset of λ in H(in(λ)+) and from Lemma
3.2.4 it follows that S(Ln+2, λ) holds.

�





Chapter 4

Generalized quantifiers

4.1 The countable case

In this chapter we ask whether higher order logics can be replaced in the above
results by a logic with generalized quantifiers. A clear limitation is provided by
the following result [9]:

4.1.1. Theorem (Hella). Let n be a natural number. Let {Qi : i ∈ I} be a set
of generalized quantifiers of arity ≤ n and let κ be any infinite cardinal. Then
there are two models of cardinality κ which are L({Qi : i ∈ I})-equivalent but not
isomorphic.

In view of the above theorem, in order to characterize all models of an infinite
cardinality by their theories in a logic L({Qi : i ∈ I}), the arity of the generalized
quantifiers of the logic has to increase beyond any finite bound. On the other
hand, if we let the arity grow we can find a generalized quantifier logic L such
that A(L, κ) holds provably in ZFC. We will next give the definition of the above
mentioned language in case κ = ω.

4.1.2. Definition. Let (Ar)r∈R be an indexing of all countable models in finite
vocabularies by real numbers, i.e., for any countable model A in a finite vocabulary
there is exactly one r ∈ R such that A is isomorphic to Ar.

The language L∗ = L(Qr,s : r, s ∈ Q) contains atomic formulas, is closed
under negation, conjunction and first order existential and universal quantifiers.
L∗ is also closed under the quantifiers

(∗) Qr,sx̄
1, . . . , x̄n(φ1(x̄1), . . . φn(x̄n))

for all r, s ∈ Q. The notation x̄k is a shorthand for xk1, . . . , x
k
Nk

, where xnm 6= xpo
whenever m 6= o or n 6= p.

The formula (∗) is defined to be true in a model M if and only if |M| = ℵ0

and (M,φM
1 (·), . . . , φM

n (·)) is isomorphic to a structure At such that r < t < s.
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We can’t prove in ZFC that there is any such indexing (Ar)r∈R of the count-
able models, which is definable in the language of set theory. But we fix one such
indexing no matter whether it is definable or not.

4.1.3. Theorem (Weinstein (unpublished)). 1

In any model of ZFC there is a countable language L∗ such that A(L∗, ω)
holds.

Proof. Let A be a countable model in a finite relational vocabulary (R1, . . . , Rn).
Note that constants can be coded into unary relations and n-ary functions can
be coded into n+1-ary relations so restriction to relational vocabularies does not
make the result less general. The sentence Qr0,s0x̄

1, . . . , x̄n(R1(x̄1), . . . , Rn(x̄n))
is true in a model A if and only if the r such that Ar which is isomorphic to
(A,RA

1 , . . . , R
A
n) (and thus isomorphic to A itself) is between r0 and s0. Let now

A and B be two countable non-isomorphic models in vocabulary τ . Now A is
isomorphic to some Ap and B is isomorphic to some Aq for different p and q. Let
r0 and s0 be such that r0 < p < s0 and either q < r0 or s0 < q. Then

A |= Qr0,s0x̄
1, . . . , x̄n(R1(x̄1), . . . , Rn(x̄n))

but
B |= ¬Qr0,s0x̄

1, . . . , x̄n(R1(x̄1), . . . , Rn(x̄n)).

�

4.2 The uncountable case

Theorem 4.1.3 can be generalized to any infinite cardinality as we will do next.
The proof is based on an idea of Per Lindström [14]. First we will give the

definition of the relevant logic:

4.2.1. Definition. Let (Af )f :κ→{0,1} be an indexing of all models of cardinality
κ in finite vocabularies.

Define the sets Xα and X ′α as follows: Xα = {f : κ → {0, 1} : f(α) = 0},
X ′α = {f : κ→ {0, 1} : f(α) = 1}.

Let Lκ∗ = L(QS
α : α < κ, S a finite set of variables) contain atomic formulas,

be closed under negation, conjunction and first order existential and universal
quantifiers. Let S be any finite sequence of finite sequences of distinct variables
(S = (x̄1, . . . , x̄k)). Let Lκ be also closed under the following quantifiers QS

α and
RS
α:

QS
αx̄

1, . . . , x̄k(φ1(x̄1), . . . φk(x̄
k))

1This result and its proof is presented here with the permission of Professor Scott Weinstein.
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RS
αx̄

1, . . . , x̄k(φ1(x̄1), . . . φk(x̄
k)).

The formula QS
αx̄

1, . . . , x̄k(φ1(x̄1), . . . φk(x̄
k)) is true in a model M iff |M| = κ

and (M,φM
1 (·), . . . , φM

k (·)) is isomorphic to an Af such that f ∈ Xα.
The formula RS

αx̄
1, . . . , x̄k(φ1(x̄1), . . . φk(x̄

k)) is true in a model M iff |M| = κ
and (M,φM

1 (·), . . . , φM
k (·)) is isomorphic to an Af such that f ∈ X ′α.

Note that there are countably many finite vocabularies, and for any finite
vocabulary there are at most 2κ pairwise non-isomorphic models of cardinality κ
with the vocabulary. Thus an indexing (Af )f :κ→{0,1} of all models of cardinality
κ in finite vocabularies always exists though may be impossible to define in the
language of set theory.

4.2.2. Theorem. Let κ be an infinite cardinal. There is a language Lκ∗ of car-
dinality κ such that A(Lκ∗, κ) holds.

Proof. Any f : κ→ {0, 1} can be expressed as an intersection of κ many sets
of the form Xα and X ′α, namely {f} =

⋂
{Xα : f(α) = 0} ∩

⋂
{X ′α : f(α) = 1}.

On the other hand, if f and g are two different functions from κ to {0, 1}, there
is an Xα such that one of f and g belongs to Xα and the other does not.

As in the previous theorem, assume without loss of generality that a model A
of cardinality κ has a relational vocabulary R1, . . . Rn.

The sentenceQαx̄
1, . . . , x̄n(R1(x̄1), . . . , Rn(x̄n)) is true in a model A if and only

if the f such that Af which is isomorphic to (A,RA
1 , . . . , R

A
n) (and thus isomorphic

to A itself) belongs to Xα. The sentence Rαx̄
1, . . . , x̄n(R1(x̄1), . . . , Rn(x̄n)) is

true in a model A if and only if the f such that Af which is isomorphic to
(A,RA

1 , . . . , R
A
n) (and thus isomorphic to A itself) belongs to X ′α.

Let τ be a finite relational vocabulary (Rm1
1 , . . . , Rmn

n ) where the superscripts
denote the arities of the relation symbols. Let A and B be two non-isomorphic
models of cardinality κ with vocabulary τ . Let P be a sequence of variables
which corresponds to arities of the relation symbols i.e. P = x̄1, . . . , x̄n such that
each x̄p contains mp variables. Now (A,R1(·)A, . . . , Rn(·)A) (which is isomorphic
to A) is isomorphic to some Af and (B,R1(·)B, . . . , Rn(·)B) (which is isomorphic
to B) is isomorphic to some Ag and f 6= g. So there is an β such that one
of f and g (say f) gets value 0 at β and the other gets value 1. Now A |=
QP
β x̄

1, . . . , x̄n(R1(x̄1), . . . Rn(x̄k)) but B |= ¬QP
β x̄

1, . . . , x̄n(R1(x̄1), . . . Rn(x̄k)).

�

Hella’s result 4.1.1 showed that in order to characterize all models of cardinal-
ity κ the arity of the quantifiers in the language must be unbounded. However,
if we look at the proof above we see that if we want to characterize all models of
cardinality κ in a fixed finite vocabulary, the arity of quantifiers in the language
can be bounded.
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4.2.3. Remark. Many cardinality quantifiers are expressible in second order
logic. In the logics L2

κ+,ω even more cardinality quantifiers are expressible. If
an ordinal α is characterizable in second order logic then, as we show below, the
quantifiers ∃≥ℵα and ∃ℵα are definable in second order logic. This is also true
for infinitary second order languages. Consequently if κ is a regular cardinal and
α < κ is an ordinal, the quantifiers ∃≥ℵα and ∃ℵα are definable in the logic L2

κ,ω.
Assume now α is characterizable in second order logic (or in infinitary second

order logic). We will introduce a sentence which defines the quantifier ∃ℵα:
The sentence says that there are U , V , c and < such that the following hold:

1. The relation < defines a well-order in the unary predicate U ,

2. Unary predicate V contains those elements x satisfying the following:

• x ∈ U
• x has infinitely many predecessors

• For all y < x: |{z : z < y}| < |{z : z < x}|,

3. c is the greatest element of V and (V \ {c}, <� V \ {c}) ∼= (α, ε),

4. ∃π (π is a bijection from {y : y < c} to {y : φ(y)}).

When an ordinal α is given, 1.-3. characterize the cardinal ℵα. Finally 4.
says that there is a bijection from this cardinal to those elements which satisfy the
formula φ. Thus this sentence is equivalent to ∃ℵαxφ(x). By replacing bijection
by injection in 4. we get a sentence equivalent to ∃≥ℵαxφ(x).

4.2.4. Definition. We define the ordinal ε0 as follows: α0 = ω , αn+1 = αωn,
ε0 = sup{αn : n ∈ ω}.

4.2.5. Lemma. The ordinal ε0 and all ordinals α < ε0 are characterizable by
second order formulas.

Proof. We prove the claim by induction on ordinal α. Let αn, n ∈ ω, be as in
Definition 4.2.4. First of all, it is clear that ε0 and all the ordinals αn are second
order characterizable.

All ordinals smaller or equal to α0 are finite or ω and are thus second order
characterizable.

Assume all ordinals smaller or equal to αn are second order characterizable.
The ordinal αn+1 is second order characterizable and if αn < α < αn+1 then α
is of the form αmn + αn · m′ + β for some (unique) natural numbers m and m′

and ordinal β < αn. Now α is second order characterizable as αn, m, m′, β,
ordinal addition, ordinal multiplication and ordinal exponentiation are second
order characterizable.
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�

We say that a model A is monadic if the vocabulary of A contains only unary
relation symbols, and no constants or function symbols.

4.2.6. Theorem. For any monadic model A of cardinality smaller or equal to
ℵε0 there is a second order sentence φA which characterizes the model A up to
isomorphism.

Let κ be a regular cardinal. For any monadic model A of cardinality smaller
than ℵκ there is an L2

κ,ω-sentence φA which characterizes the model A up to iso-
morphism.

Proof. Let the vocabulary of A be P1, . . . , Pn where each predicate has arity
1. Consider formulas φ(x) of the form

∧
1≤m≤n ψm, where each ψm is either Pm(x)

or ¬Pm(x). It is clear that if B is a model in the same vocabulary as A and for
each formula of the form above the cardinality of elements satisfying the formula
is the same in A and B, then the models A and B are isomorphic. Thus if we
have in our language cardinality quantifiers which correspond to |φ(·)A| for the
φ’s of the form above, then we can write a sentence which tells cardinalities of
these sets and this sentence characterizes A up to isomorphism.

Now the first part of the theorem follows from Remark 4.2.3 and Lemma 4.2.5.
The second part follows from Remark 4.2.3 and the fact that every ordinal smaller
than κ is characterizable in Lκ,ω (see Lemma 1.2.11).

�

Note that ℵε0 is not an upper limit of those cardinalities where all monadic
structures can be characterized by a second order sentence. We can iterate the
idea of the proof of Lemma 4.2.5 and get bigger countable ordinals α such that all
ordinals up to α are second order characterizable. However, as there are uncount-
ably many countable ordinals and countably many second order sentences, there
is some countable ordinal α and a monadic stucture A of cardinality ℵα such that
A can not be characterized by a second order sentence. But the infinitary second
order language L2

ω1,ω
is strong enough to characterize all monadic structures of

cardinality < ℵω1 .





Chapter 5

Infinitary second order languages

5.1 Discussion

We have shown in Theorem 2.1.1 that A(L2, ω) is consistent with ZFC. But
is A(L2,ℵ1) consistent with ZFC? It is easy to show by a simple cardinality
argument that A(L2,ℵ1) does not necessarily hold:

In any finite vocabulary with a binary predicate there are 2ℵ0 many L2-
theories. In a finite vocabulary with a binary predicate there are 2ℵ1 models
of cardinality ℵ1 which are pairwise non-isomorphic. It is clear that if 2ℵ0 < 2ℵ1 ,
then there are two second order equivalent non-isomorphic models of cardinality
ℵ1. However, if 2ℵ0 = 2ℵ1 we don’t know what happens:

5.1.1. Question. Is it consistent that 2ℵ0 = 2ℵ1 and A(L2,ℵ1) holds?

In Chapter 2 we saw the result of Ajtai that it is independent of ZFC whether
all countable models in any finite vocabulary can be characterized up to isomor-
phism by their second order theories. By appropriate coding sentences of second
order logic are natural numbers and second order theories are real numbers. Via
coding, countable models are also real numbers, so the question whether any two
different reals of the latter type correspond to two different reals of the former
type is meaningful. We note that first order theories also correspond to real num-
bers but all countable models can not be characterized up to isomorphism by
their first order theories.

All models of cardinality κ can be characterized up to isomorphism by a Lκ+,κ+
sentence, as we will show. Let A be a model of cardinality κ. Let (aα : α < κ)
be a well-ordering of the domain of A. Let φA be the sentence

∃(xα)α<κ(
∧
φ∈Lω,ωatomic{φ(xα1 , . . . , xαm) : A |= φ(aα1 , . . . , aαm)}

∧
∧
φ∈Lω,ωatomic{¬φ(xα1 , . . . , xαm) : A |= ¬φ(aα1 , . . . , aαm)}

∧∀y
∨
α<κ y = xα)
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The sentences of the form φA say that there is a sequence of elements which
satisfies exactly the same atomic formulas as the elements (aα : α < κ) satisfy in
A and there are no other elements. It is clear that for each sentence of the form
φA there can be only one model up to isomorphism which satisfies φA. However,
these sentences have the same cardinality as the model in question. In this paper
we are interested in the possibility of characterizing models up to isomorphism
by theories, where the sentences have cardinality smaller than the model.

We make the following observations about the possibility to characterize mod-
els up to isomorphism by infinitary languages. In the countable cardinality of the
models Lω1,ω-equivalence implies isomorphism. Generally L∞,ω equivalence is
equivalent to the existence of a back-and-forth set. Back-and-forth-equivalence
implies isomorphism only in the countable cardinality so L∞,ω is not good in
characterizing uncountable models up to isomorphism. Nadel and Stavi [21] have
investigated logics L∞,λ and showed that these are not successful in character-
izing all models up to isomorphism in cardinality λ, where λ is an uncountable
successor cardinal.

Thus infinitary languages are not sufficient for characterizing all models up
to isomorphism in an uncountable cardinality λ, if we don’t allow the infinitary
language to have sentences of cardinality λ. Higher order languages are also
not very successful. As they have only continuum many theories they cannot
characterize all models up to isomorphism in a cardinality which has more than
continuum many models.

5.2 Regular cardinals

We have introduced the infinitary second order language L2
κ,ω for a regular car-

dinal κ in the preliminaries. We will now prove that it is independent of ZFC
whether all models of cardinality κ in any finite vocabulary can be characterized
up to isomorphism by their L2

κ,ω-theories. Sentences of L2
κ,ω correspond to subsets

of cardinals λ < κ so this logic is not ”too strong”.

5.2.1. Remark. We decided to formulate our theorems for L2
κ,ω because it is

a natural logic. However, most of our results hold equally well for a fragment
of L2

κ,ω which contains atomic formulas, in which ordinals smaller than κ are
characterizable and which is closed under second order quantifiers, first order
quantifiers and finite connectives. We don’t know whether this fragment is a
proper fragment of L2

κ,ω.
The logic L2

κ,ω has the following properties in models of cardinality ≥ κ:

1. All sets in H(κ) are characterizable.

2. The isomorphism type (in the sense of Lemma 1.2.8) of the model in ques-
tion is characterizable.
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3. The logic is closed under quantifying over sets in H(λ+), where λ is the
cardinality of the model in question.

4. The logic is closed under negation and finite conjunction.

It might be the case that L2
κ,ω is the least logic satisfying the conditions 1.-4.

above, but we have not found a proof for that.

5.2.2. Theorem. If κ is a regular cardinal and there is a second order definable
well-order of the powerset of κ, then A(L2

κ,ω, κ) holds. In particular A(L2
κ,ω, κ)

holds if V = L.

Proof. We omit the details as the proof is entirely similar to the proof of
Theorem 2.1.1. See also the proof of Theorem 5.2.3 below.

As in Theorem 2.1.1, a model can be coded into an n-ary relation R ⊆ κn.
By Lemma 1.2.11 all ordinals smaller than κ are characterizable. For all n-tuples
of ordinals smaller than κ we can say whether the tuple belongs to or does not
belong to the least subset of κn in the well-order which is isomorphic with the
model. The canonical well-order of L up to sets of cardinality κ is second order
characterizable in any cardinality κ.

�

In Theorem 5.2.2 we saw that A(L2
κ,ω, κ) holds in L at any regular cardinal κ

as there is a second order definable well-order of the powerset of κ. In fact we
will get a better result:

5.2.3. Theorem. Let κ be a regular cardinal and let H(κ+) ⊂ L[X] for some set
X with X ⊆ λ < κ. Then A(L2

κ,ω, κ) holds.

Proof. Let A and B be two models of cardinality κ. By assumption A and
B belong up to isomorphism to L[X] and hence are isomorphic to some sets in
L[X]. In the infinitary second order language L2

κ,ω we can talk about the least
subset of κn in the canonical well-order of L[X] which is isomorphic to A. We
will now describe how this is done.

In the logic L2
κ,ω all ordinals α < κ are characterizable by certain formulas

θα(see Lemma 1.2.11). Now the set X is characterizable in a model of cardinality
κ by the formula

∃ <∗ (φ(κ,ε)(A,<
∗) ∧ ∀x(P (x)↔

∨
α∈X

θα(x)))

In the above formula φ(κ,ε) denotes the formula which characterizes (κ,<) and
A denotes the domain of the model in question. We denote this formula which
characterizes X by φX .
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If the set X and an ordinal α < κ+ are given, the αth level of the sets
constructible from X is second order characterizable from these parameters. Also
the canonical well-order of Lα[X] is second order definable on Lα[X] from X and
α. Let φLα[X](Y,X, α) be a second order formula which says that Y is the αth
level of the sets constructible from X(up to isomorphism) and let φ<Lα[X]

(Z,X, α)
be a second order formula which says that Z is the canonical well-order of the
αth level of the sets constructible from X(up to isomorphism).

As usual, we assume that the model in question has been coded into an n-ary
relation R. We are interested in sentences of the following form:

There are X, a, M , < and R0 such that the following hold:

1. φX(X)

2. a is an ordinal

3. φLα[X](M,X, a)

4. φ<Lα[X]
(<,X, a)

5. R0 ∈M ∧R0
∼= R ∧ ∀R1((R1 ∈M ∧R1

∼= R)→ (R0 < R1 ∨R0 = R1))

6. (α1, . . . , αn) ∈ R0

The first four formulas say that a is an ordinal, X is what it is supposed
to be (up to isomorphism), M is La[X] (up to isomorphism) and < is <La[X]

(up to isomorphism). The fifth formula says that R0 belongs to La[X] and it is
the least model in the canonical well-order of La[X] which is isomorphic to the
model in question. The sixth formula says that a tuple (α1, . . . , αn) belongs to
R0. Similarly we can say that a tuple does not belong to R0.

If two models of cardinality κ are now L2
κ,ω-equivalent, then they satisfy all

the same sentences of the form above. Thus they have the same set R0 and
consequently they are isomorphic.

�

5.2.4. Corollary. It is consistent that there is a measurable cardinal κ and
A(L2

λ,ω, λ) holds for any λ > 2κ.

Proof. There is a model of ZFC [24] such that there is a measurable cardinal
κ and every set is constructible from a certain subset of the powerset of κ.

�

5.2.5. Question. Are the following conditions equivalent?

1. There is an L2
κ,ω-definable well-order of the powerset of κ.
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2. A(L2
κ,ω, κ).

Ajtai proved the following theorem in case κ = ω, see Theorem 2.3.1.

5.2.6. Theorem. Let κ be a regular cardinal. It is consistent with ZFC that
there are two ZF -equivalent non-isomorphic models of cardinality κ. The models
are also Lnκ,ω-equivalent for all n.

Proof. We add a Cohen-generic subset G to κ. The forcing conditions are map-
pings of cardinality smaller than κ from κ to {0, 1}. We define the model
(FG ∪ κ,<κ, RG). Here FG is the set of all subsets of κ which agree with G
everywhere except in a set of cardinality smaller than κ, <κ is the natural order
of κ and RG is a relation which tells which elements of κ belong to which sets in
FG. The model (F−G ∪ κ,<κ, R−G) is defined in an analogous way.

We note that this forcing is < κ-closed so it does not add any new subsets to
cardinals smaller than κ. If κ is inaccessible, all cardinals below κ are preserved
and κ remains inaccessible.

No forcing condition can determine the model (FG ∪ κ,<κ, RG) in any way,
as a forcing condition defines the value of G only in a subset of κ which has
cardinality less than κ. For any forcing condition p there are two generic filters
G and G′ containing p such that

V G = V G′ , (̇FG ∪ κ,<κ, RG)V
G

= (̇F−G ∪ κ,<κ, R−G)V
−G

and
(̇FG ∪ κ,<κ, RG)V

−G
= (̇F−G ∪ κ,<κ, R−G)V

G

.

Thus the models (FG ∪κ,<κ, RG) and (F−G ∪κ,<κ, R−G) are ZF -equivalent
with parameters from the ground model. As the forcing does not add any new
subsets to any cardinals smaller than κ, by Lemma 1.2.12 the models are L2

κ,ω-
equivalent. But they are not isomorphic: the well-ordered structure (κ,<κ) is
rigid, so every subset of κ would be mapped in an isomorphism to itself. However
G ∈ (FG ∪ κ,<κ, RG) and G /∈ (F−G ∪ κ,<κ, R−G), so there is no isomorphism.

�

5.2.7. Theorem. Let M be a transitive model of ZFC and let κ be a regular
cardinal in M . If we force a Cohen subset for κ in M , in the generic exten-
sion there are two ZF -equivalent non-isomorphic models of cardinality λ in all
cardinalities λ ≥ κ.

Proof. We have proved that adding a Cohen subset to a regular cardinal κ
produces two models of cardinality κ which are non-isomorphic but satisfy the
same formulas of the language of set theory with parameters from the ground
model. In fact Cohen subsets produce such models in all cardinalities λ ≥ κ.
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This is because we can extend the universes of the models defined in Theorem
5.2.6 by adding λ new elements and putting them to some new unary relation.
These new models can be constructed from the models introduced in Theorem
5.2.6 and the term λ, and thus they are ZF -equivalent.

�

5.3 Independence

We have proved that it is independent of ZFC whether A(L2
κ,ω, κ) holds at a

regular cardinal κ. It happens that these are also relatively independent of each
other, as the following theorem demonstrates.

5.3.1. Theorem. Let J be a finite set of regular cardinals. It is consistent that
A(L2

κ,ω, κ) fails for all cardinals κ in J and holds at every regular cardinal κ not
in J .

Proof. We start from L and use iterated forcing to add Cohen subsets to
all cardinals in J , adding a Cohen subset first to the smallest cardinal in J
and proceeding this way from down to up. We note that GCH holds in L and
adding a single Cohen subset preserves GCH so GCH is preserved all the way
through our forcing. Also cardinals are preserved. Let κ be a cardinal in J . It
follows from the Factor Lemma that the iterated forcing can be decomposed into
P<κ ∗ Pκ ∗ P>κ as follows. The forcing P<κ preserves GCH and cardinals and
Pκ adds a Cohen subset to κ. Thus after P<κ ∗ Pκ we have GCH, cardinals are
preserved and A(L2

κ,ω, κ) fails because of the proof of Theorem 5.2.6 applied after
P<κ. The forcing P>κ is κ+ closed and thus does not add any subsets to cardinals
smaller than or equal to κ. Consequently, P>κ does not chance the truth value of
A(L2

κ,ω, κ), which is false after the forcing P<κ ∗ Pκ.
Let now κ /∈ J . Our forcing can be decomposed to P<κ ∗ P>κ. The forcing

P<κ adds some Cohen subsets below κ and P>κ adds subsets only to cardinals
greater than κ. Thus after the forcing H(κ+) ⊆ L[X] for some X ⊆ λ < κ and
from Theorem 5.2.3 it follows that A(L2

κ,ω, κ) holds.

�

5.3.2. Theorem. Let J be a set which contains some successor cardinals and
possibly ω. It is consistent that A(L2

κ,ω, κ) fails for all κ ∈ J , and holds for all
successor cardinals outside J and for all inaccessible cardinals which do not have
a cofinal subset in J .

Proof. Let L be the ground model. We make an iterated forcing with full
support in all limit stages, which proceeds from down up and adds Cohen subsets
to all cardinals in J . Menas calls it backward Easton forcing [19].

The forcing conditions are as follows:
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1. If ω ∈ J , then P0 is the set of finite partial functions from ω to {0, 1}.
A forcing condition p is stronger than forcing condition q if and only if p
extends q. If ω /∈ J , then P0 is the trivial forcing.

2. Assume α = β+ and Pγ has been defined for all γ ≤ β.

If ℵα ∈ J , we define Pα to be the set of sequences pγ, γ ≤ α where the γth
coordinate belongs to Pγ for each γ < α, and the αth coordinate is a forcing
name Ẋ such that p � α  Ẋ is a partial function from ℵα to {0, 1} and
|Ẋ| < ℵα. If p and q are two conditions of length α, then p is stronger than
q if and only if p � α is stronger than q � α and p � α  “p(α) and q(α) are
partial functions from ℵα to {0, 1} which have cardinality smaller than ℵα
and p(α) ⊇ q(α)”.

If ℵα /∈ J then Pα is the trivial forcing.

3. If α is a limit ordinal, forcing conditions in Pα are tuples p of length α such
that for each β < α, p � β  p(β) ∈ Pβ. This forcing has full support in
all limit stages, which means that in limit stages all coordinates of a forcing
condition may be non zero. A forcing condition p is stronger than a forcing
condition q if and only if p � β is stronger than q � β for each β < α.

We will inductively show that for all cardinals κ the following conditions will
hold after the forcing:

1. κ remains a cardinal.

2. If κ is ω or a successor cardinal, A(L2
κ,ω, κ) fails iff κ ∈ J . If κ is inaccessible

cardinal and there is no cofinal subset of κ in J then A(L2
κ,ω, κ) holds.

3. Generalized Continuum Hypothesis holds up to cardinal κ.

Let us assume the claim holds for all cardinals below κ. By the Factor Lemma
the forcing can be decomposed into parts:

P<κ ∗ Pκ ∗ P>κ
in such a way that after the forcing P<κ Induction Hypothesis holds below κ and
if κ ∈ J , then Pκ adds a Cohen subset to κ, and if κ /∈ J , then Pκ is the trivial
forcing. The forcing P>κ is κ+-closed, so it does not make any chance to Induction
Hypothesis in cardinals less or equal to κ.

If κ ∈ J , then the Cohen forcing makes A(L2
κ,ω, κ) false, and adding a single

Cohen subset does not make GCH false at κ.
If κ /∈ J , the trivial forcing does not make GCH false at κ. Also H(κ+) ⊆

L(X) for X ⊆ λ < κ which codes all the previously added generic subsets, so
from Theorem 5.2.3 it follows that A(L2

κ,ω, κ) holds.
We still need to show that GCH is preserved at limit cardinals.
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1. Assume λ is a singular limit cardinal. From the Induction Hypothesis we
know that GCH holds below λ. Because our ground model was L and
the failure of the SCH(λ) implies 0] exists, after our forcing it can’t be
that ¬SCH(λ). Thus SCH (λ). Now λ is a strong limit cardinal so 2λ =
λcf(λ) = λ+ by SCH(λ).

2. Let κ be an inaccessible cardinal. All subsets of κ in V G are constructible
from a single set of cardinality κ which codes all the generic sets added
below κ. Thus the powerset of κ has cardinality κ+.

�

5.3.3. Remark. If we allow J to be a proper class in the assumption of Theorem
5.3.2, the theorem seems still to be valid. Then we just need to use a proper class
of forcing conditions and the length of the iteration is a proper class.

Ajtai’s original proof (see Theorem 2.3.1) did not only show the independence
of A(L2, ω), but it showed the independence of whether n:th order equivalence
implies isomorphism for countable models for arbitrary n ≥ 2. This is also true
for the generalization of Ajtai’s result to arbitrary regular cardinals, Theorem
5.2.6, which we presented earlier in this chapter. When we use iterated forcing
and add Cohen subsets first to smaller cardinals and then to bigger cardinals,
adding Cohen subsets to bigger cardinals does not change (infinitary) second order
equivalence of models at smaller cardinals. However, it might change (infinitary)
higher order equivalence of models for some stronger higher order logics. The
following question is an example about the problem:

5.3.4. Question. Let P be an iterated forcing which adds first a Cohen subset
to ℵ0 and then a Cohen subset to ℵ1. Let MG

0 and M−G
0 be the usual models

constructed from the generic set and its complement in cardinality ℵ0. Are the
models MG

0 and M−G
0 third order equivalent after the forcing?

5.4 Singular cardinals

In this chapter we have already given a generalization of Ajtai’s result to regular
cardinals. Next we will turn our attention to the case of singular cardinals. For
the case of regular cardinals the languages L2

κ,ω had an important role. For the
singular cardinals κ we introduce a language which has the same role as the
languages L2

κ,ω had for regular cardinals κ:

5.4.1. Definition. Let κ be a singular cardinal. We define L2
κ =

⋃
λ<κ L

2
λ+,ω.

Note that the set of L2
κ-formulas is closed under finitary first order connectives

and quantifiers, but not under conjunctions or disjunctions of length cf(κ).
Two important facts about the languages L2

κ are the following:
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1. Every ordinal α < κ is characterizable in L2
κ.

2. Every formula of L2
κ can be expressed as a formula of the language of set

theory using a subset of some λ < κ as a parameter.

As the formulas of L2
κ are the formulas of L2

λ,ω for regular cardinals λ < κ, the
above facts follow from Lemma 1.2.12 and Lemma 1.2.11.

5.4.2. Theorem. If V = L then A(L2
κ, κ) holds for any singular cardinal κ.

Proof. We showed before in Theorem 5.2.2 that if V = L then all L2
κ,ω-

equivalent models of cardinality κ are isomorphic for any regular cardinal κ.
Because all ordinals less than κ are characterizable in L2

κ, the proof we used there
works without any changes for L2

κ.

�

5.4.3. Theorem. Let κ = ℵα be a singular cardinal. There is a forcing extension
of L in which A(L2

κ, κ) fails and all cardinals are preserved.

Proof. Let L be the ground model. As in Theorem 5.3.2, we use the full
support iterated Cohen forcing. This time we add generic subsets to all regular
cardinals smaller than κ.

Recall that for each regular ℵβ < κ our forcing creates two models MG
β and

M−G
β of cardinality ℵβ which are L2

ℵβ ,ω-equivalent and non-isomorphic. We define

the models MG
κ and M−G

κ as follows:

MG
κ contains the α-sequences which satisfy the following conditions:

1. If β < α and ℵβ is regular, the βth coordinate is either MG
β or M−G

β ,

2. If β < α and ℵβ is singular, the βth coordinate is ∅,

3. The set of indexes β where the βth coordinate is M−G
β is not cofinal in α.

Similarly we define M−G
κ to contain those α-sequences which satisfy the fol-

lowing conditions:

1. If β < α and ℵβ is regular, the βth coordinate is either MG
β or M−G

β ,

2. If β < α and ℵβ is singular, the βth coordinate is ∅,

3. The set of indexes β where the βth coordinate is MG
β is not cofinal in α.
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Clearly the models are non-isomorphic as there is no sequence in M−G
κ which

could be mapped to the sequence in MG
κ which contains only the models MG

β .
We will now prove that the models are L2

κ-equivalent. Assume not. Then

there is a forcing condition p such that p  φ̇ ∈ L2
κ ∧ φ̇(ṀG

κ ) ∧ ¬φ̇( ˙M−G
κ ) for

some forcing name φ̇. Thus there is some generic filter G such that p ∈ G and
V G |= φ(MG) ∧ ¬φ(M−G). The sentence φ is a sentence in the language of set
theory with a subset of some ℵγ+ < κ as a parameter.

We will now construct another generic filter G′ which contains p such that

φ̇V
G

= φ̇V
G′

. The elements of G′ are made from elements of G by the following
modification:

1. Up to stage γ+ (where the formula φ appears) no modification is done.

2. In the the domain of p no modification is done.

3. Above stage γ+ outside the domain of p the forcing condition is chanced
to its mirror image, i.e., the domain remains the same but zeros and ones
chance places.

Clearly p ∈ G′. Also up to stage γ+ the generic sets G′ and G agree about

everything, so φ̇V
G

= φ̇V
G′

. After stage γ+ the generic set G′ adds essentially
complements of those sets which G adds to all regular cardinals. There is a
difference only in the domain of p which is always of a smaller cardinality. In
particular MG

β = M−G′
β and M−G

β = MG′

β for all γ+ < β < α. Also V G = V G′ .

Now ṀG
V G
′

= M−G and ˙M−GV
G′

= MG, i.e., the models chance places in the
generic extensions. However, the formula φ is the same and V G = V G′ so φ can
not be true in one model and false in the other.

�

We will next present a model of ZFC in which the infinitary second order
languages cannot characterize all models in any cardinality.

5.4.4. Corollary. Assuming the consistency of an inaccessible cardinal, there
is a model of ZFC in which A(L2

κ, κ) fails for all singular cardinals κ and
A(L2

κ,ω, κ) fails for all regular cardinals κ.

Proof. We start from a model of ZFC which satisfies V = L and there is an
inaccessible cardinal. Let λ be the least inaccessible cardinal in that model. We
proceed from down to up and add by iterated Cohen forcing generic subsets to
all regular cardinals smaller than λ. At limit stages we take full support. After
the forcing A(L2

κ, κ) fails for all singular cardinals κ < λ and A(L2
κ,ω, κ) fails for

all regular cardinals κ < λ and λ remains inaccessible. Thus V
(V G)
κ satisfies ZFC

and A(L2
κ, κ) fails for all singular cardinals κ and A(L2

κ,ω, κ) fails for all regular
cardinals κ.
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�

5.4.5. Question. Is it consistent with ZFC that there is a singular cardinal
κ such that A(L2

κ,κ) fails but A(L2
λ,ω, λ) does not fail in cofinally many regular

cardinals λ below κ?

5.5 A(L2
κ,ω, κ) at a measurable cardinal

In this section we prove two theorems of the form “If A(L2
λ,ω, λ) holds for all

regular cardinals λ below a suitable large cardinal κ then A(L2
κ,ω, κ) holds. The

large cardinals we are dealing with are the measurable cardinals and the Σm
n

indescribable cardinals, which we will define next.

5.5.1. Definition. A cardinal κ is Σm
n indescribable if for all U ⊆ Vκ and for all

Σm
n sentences φ if (Vκ, ε, U) |= φ then there is an α < κ such that (Vα, ε, U∩Vα) |=

φ.

5.5.2. Theorem. If A(L2
λ,ω, λ) holds for every regular cardinal λ below a Σ2

1

indescribable cardinal κ then A(L2
κ,ω, κ) holds..

Proof. Assume towards contradiction that A(L2
κ,ω, κ) fails. As we will see in

Lemma 6.1.10 below, the failure of A(L2
κ,ω, κ) is Σ2

1 in models of cardinality κ.
Then by Σ2

1 indescribability there is an α < κ such that (Vα, ε) |= φ, where φ
expresses the negation of A(L2

κ,ω, κ) at the cardinality of the model in question.
But then A(L2

κ,ω, κ) fails at the cardinality of Vα, so κ is not the first cardinal
where A(L2

κ,ω, κ) fails, contradiction. In fact we need here only an apparently
weaker version of Σ2

1 indescribability: we don’t need to use any subset of Vκ as a
parameter.

�

5.5.3. Theorem. If A(L2
λ,ω, λ) holds for every regular cardinal λ below a mea-

surable cardinal κ then A(L2
κ,ω, κ) holds.

Proof. Assume that is not the case. Then A(L2
λ,ω, λ) holds for every regular λ

below a measurable cardinal κ, but there are two models A and B of cardinality κ
which are L2

κ,ω-equivalent but not isomorphic. Let j be an elementary embedding
from V into a transitive class M with critical point κ. Since j is an elementary
embedding, j(κ) is the least cardinal κ′ such that M |= ¬A(L2

κ′,ω, κ
′). We will

show that A(L2
κ,ω, κ) fails in M , which will be a contradiction. We assume that A

and B are subsets of κn. Then j(A) and j(B) are subsets of j(κ)n. A = j(A)∩κn
and B = j(B)∩κn, thus the models A and B belong to M . Similarly any subset
of κ in V belongs to M . Thus the models A and B are L2

κ,ω-equivalent but not
isomorphic in M .

�





Chapter 6

A(L2, ω) and large cardinal axioms

6.1 Large cardinals

In this chapter we will discuss how some large cardinal axioms are related to
A(L2, ω). First we will discuss consistency of some large cardinal axioms with
second order definable well-orders of the reals. Then we will show that if there
are enough large cardinals then A(L2, ω) is false. We will also show that the
sentence “There are two L2

κ,ω-equivalent non-isomorphic models of cardinality κ”
is Σ2

1, i.e., third order Σ1 in models of cardinality κ. In the end we will discuss
third order definable well-orders of the reals and forcing axioms.

From the proof of Theorem 2.1.1 and some well-known facts about the consis-
tency of well-orders of the reals with large cardinals we get the following results:

6.1.1. Theorem (Ajtai [2], Silver [24], Martin and Steel [17]). It is con-
sistent that there is a measurable cardinal and A(Σ1

4, ω) holds. It is consistent that
there are n Woodin cardinals and A(Σ1

n+3, ω) holds. The above results are relative
to consistency of the relevant large cardinal axioms.

Proof. The existence of a measurable cardinal with a ∆1
3 well-order of the reals

is consistent [24], so by Theorem 2.1.1 it is consistent that there is a measurable
cardinal and A(Σ1

4, ω) holds. Also for each natural number n it is consistent to
have n Woodin cardinals and a Σ1

n+2 well-order of the reals [17]. From Theo-
rem 2.1.1 it follows that it is consistent that there are n Woodin cardinals and
A(Σ1

n+3, ω) holds.

�

We will next prove several lemmas which are needed to prove Theorem 6.1.6:
“If there are enough large cardinals then A(L2, ω) fails.”

6.1.2. Lemma. It is possible to code all finite vocabularies as natural numbers by
some Gödel numbering.

63
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Proof. Divide the set of prime numbers to infinitely many infinite parts Pn
in some second order characterizable way. Then take a countably infinite set
of constants and a countably infinite set of relation and function symbols of
each arity, and assign in some second order characterizable way a different prime
number code for any symbol. Now a finite vocabulary can be coded as the number
which we get if we multiply all codes of the symbols in the vocabulary with each
other.

�

6.1.3. Lemma. Given a finite vocabulary σ, the set of L2-terms in vocabulary σ
is second order definable on (ω,<). Also the set of free variables in a L2-term is
second order definable on (ω,<). Given an infinite model A in vocabulary σ, a
L2-term t and an assignment of L2-variables s which contains the free variables
of t in its domain, the interpretation of term tAs is second order characterizable.

Proof. We define the rank for L2(σ)-terms as follows:

1. Constants and variables have rank 0.

2. If rank of terms t1, . . . , tn have been defined and F is an n-ary function
symbol in σ or n-ary second order function variable then rank F (t1, . . . tn)
is sup{rank (ti) +1: 1 ≤ i ≤ n}.

A set t is an L2(σ)-term iff the following hold:
a) There is a set X such that t ∈ X and every set in X is either an L2(σ)-

term of rank 0 or is a result of applying a function in σ or a second order function
variable to sets in X.

The condition a) can be formalized in second order logic.
For an L2(σ)-term t define X ′ to be the smallest set which satisfies the con-

dition a) above. X ′ is the set of subterms of t and it is characterizable in second
order logic. Once we have X ′ characterized, we can characterize the rank for terms
in X ′ and by induction on rank characterize the free variables of all subterms and
interpretations of subterms with a given assignment.

�

6.1.4. Lemma. A(L2, ω) is true in V if and only if it is true in L(R).

Proof. We define inductively the rank for L2
κ,ω formulas φ as follows:

1. rank(φ)=0 for atomic φ.

2. rank(
∧

Ψ)= rank(
∨

Ψ) = sup { rank (φ)+1 : φ ∈ Ψ}.

3. If φ = ¬ψ, φ = ∃xnψ, φ = ∀xnψ, φ = ∃Xn
i ψ, φ = ∀Xn

i ψ, φ = ∃F n
i ψ or

φ = ∀F n
i ψ then rank(φ)=rank(ψ) +1.
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In case of second order formulas, conjunctions and disjunctions are of length 2
and rank is always finite. More generally L2

κ,ω formulas have rank less than κ.
Given a finite vocabulary τ , the second order formulas in vocabulary τ are

inductively characterizable in a similar way as terms in Lemma 6.1.3. Also for
any L2(τ)-formula the set of its subformulas is characterizable. In this set we can
define the rank for all subformulas, and by induction on the rank the set of free
variables in a given subformula. An interpretation for finitely many first order
and second order variables in a countable model can be coded into a real number.
Consequently every interpretation which exists in V exists in L(R). The truth
predicate for a countable model A, i.e., the set of ordered tuples 〈φ, s〉 such that
A |=s φ is inductively characterizable. This means that the truth predicate for
formulas of rank 0 is characterizable, and if the truth predicate for formulas of
rank < n is characterizable, then it is characterizable also for formulas of rank n.
Finally the truth predicate is characterizable as the union of these “partial truth
predicates”. The truth predicate is definable in L(R) because it is an inductive
definition and its existence is provable from ZF . Axiom of Choice may be false
in L(R) but it is not needed. Also the truth predicate of V equals truth predicate
of L(R) because they are determined by the reals and V and L(R) have the same
reals.

Let us now look at the sentence which says that A(L2, ω) fails:
The sentence starts with ∃τ∃A∃B∃ΠA∃ΠB and then the conjunction of the

following:

• A and B have vocabulary τ .

• |A| = |B| = ω.

• ¬A ∼= B.

• ΠA is a truth predicate of second order formulas for A and ΠB is a truth
predicate of second order formulas for B.

• ΠA and ΠB contain exactly the same sentences.

If the sentence is true in one of V and L(R) then all the sets witnessing the
truth of the sentence exist also in the other. Thus the sentence is also true in the
other and the claim follows.

�

The proof of the next theorem of Woodin can be found in Woodin’s book [31].

6.1.5. Theorem. If δ is a limit of Woodin cardinals and there exists a measur-
able cardinal above δ, then no forcing construction in Vδ can change the theory of
L(R).
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6.1.6. Theorem. If there is a measurable cardinal above a limit of Woodin car-
dinals then A(L2, ω) fails.

Proof. Assume there is a measurable cardinal above a limit of Woodin cardi-
nals. We add a Cohen generic real G to V as in Theorem 2.3.1. Now A(L2, ω) is
false in V [G]. By Lemma 6.1.4 A(L2, ω) is false in L(R)V [G]. By assumption and
Theorem 6.1.5 A(L2, ω) is false in L(R)V and by Lemma 6.1.4 A(L2, ω) is false in
V .

�

We note that the proof of Lemma 6.1.3 works also for L2
κ,ω(σ)-terms in cardi-

nality κ.

6.1.7. Lemma. Given a finite vocabulary σ the relation ”X is an L2
κ,ω(σ)-sentence”

is second order characterizable in a model of cardinality κ.

Proof. The second order sentence says that there is a set Y = Y1∪Y2 contain-
ing X such that every set in Y1 is either L2

κ,ω(σ)-term of rank 0 or is a result of
applying functions in σ or second order function variables to elements in Y1. Also
every element in Y2 is either L2

κ,ω atomic formula or is formed from other sets in
Y by operations described in Definition 1.2.13 and Y is the smallest set satisfying
this definition. By this definition Y is the set of subformulas and subterms of X.
The sentence says further that there is a function F which maps all the elements
of Y to the set of their free variables and F maps X to ∅.

�

6.1.8. Definition. Let A be a model and τ be a finite vocabulary. The truth
predicate T for the logic L2

κ,ω(τ) in the model A is a binary relation. As elements
it has ordered pairs of L2

κ,ω(τ)-formulas and interpretations of less than κ many
variables of Lκ,ω(τ) in the model A satisfying the following conditions:

1. If ti and tj are L2
κ,ω(τ) terms and variables of ti and tj belong to the domain

of an interpretation s, then 〈ti = tj, s〉 ∈ T if and only if (ti)
A
s = (tj)

A
s .

2. If R is an n-ary relation symbol in τ and t1, . . . tn are L2
κ,ω(τ)-terms such

that their variables belong to the domain of s, then 〈R(t1, . . . tn), s〉 ∈ T if
and only if 〈(t1)As , . . . (tn)As 〉 ∈ RA.

3. If X is an n-ary relation variable and t1, . . . tn are L2
κ,ω-terms such that

their variables belong to the domain of s, then 〈X(t1, . . . tn), s〉 ∈ T if and
only if 〈(t1)As , . . . (tn)As 〉 ∈ XA

s .

4. 〈¬φ, s〉 ∈ T if and only if 〈φ, s〉 /∈ T .
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5. If Ψ is a set of L2
κ,ω(τ)-formulas and for all φ ∈ Ψ it is defined whether

〈φ, s〉 ∈ T or not, then 〈
∧

Ψ, s〉 ∈ T if and only if 〈φ, s〉 ∈ T for all φ ∈ Ψ.

6. If Ψ is a set of L2
κ,ω(τ)-formulas and for all φ ∈ Ψ it is defined whether

〈φ, s〉 ∈ T or not, then 〈
∨

Ψ, s〉 ∈ T if and only if 〈φ, s〉 ∈ T for some
φ ∈ Ψ.

7. 〈∃xαφ, s〉 ∈ T if and only if 〈φ, s′〉 ∈ T for some interpretation s′ such that
s and s′ are the same except possibly in xα.

8. 〈∀xαφ, s〉 ∈ T if and only if 〈φ, s′〉 ∈ T for all interpretations s′ such that s
and s′ are the same except possibly in xα.

9. 〈∃Xαφ, s〉 ∈ T if and only if 〈φ, s′〉 ∈ T for some interpretation s′ such that
s and s′ are the same except possibly in Xα.

10. 〈∀Xαφ, s〉 ∈ T if and only if 〈φ, s′〉 ∈ T for all interpretations s′ such that
s and s′ are the same except possibly in Xα.

11. 〈∃Fαφ, s〉 ∈ T if and only if 〈φ, s′〉 ∈ T for some interpretation s′ such that
s and s′ are the same except possibly in Fα.

12. 〈∀Fαφ, s〉 ∈ T if and only if 〈φ, s′〉 ∈ T for all interpretations s′ such that s
and s′ are the same except possibly in Fα.

6.1.9. Lemma. If Π is a set of ordered pairs of L2
κ,ω(τ)-sentences and assign-

ments for less than κ variables in a model A then there is a second order sentence
with a third order parameter Π which is true if and only if Π is the truth predicate
of A.

Proof. This is just formalizing Definition 6.1.8 in second order logic. This
is possible because given a model A of cardinality κ in a vocabulary τ , the set
of L2

κ,ω-terms, formulas, free variables in formulas, assignments for less than κ
variables and interpretations of terms with given assignments including the free
variables of the term are second order characterizable. From these it follows that
the case of atomic formulas is definable in second order logic. The other cases
are definable as well, because we need to quantify only over sets of cardinality κ
in the truth definition. Note that we cannot quantify over the truth predicate in
second order logic because it is too big and we need a third order quantifier for
that. But given a model and a predicate, checking whether the predicate is the
truth predicate for the model is possible in second order logic.

�

6.1.10. Lemma. “There are two L2
κ,ω-equivalent non-isomorphic models of car-

dinality κ” is a Σ2
1 property in cardinality κ.
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Proof. In the following Σ2
1-sentence φω(Y, Z) says that (Y, Z) has ordertype

of (ω,<), φvoc(x,X, Y, Z) says that X has vocabulary x, where x is a natural
number with respect to (Y, Z), φκ(X) says that X has cardinality κ(where κ is
the cardinality of the model in question). The formula φtruth(Π, X, x, Y, Z) says
that Π is a truth definition of L2

κ,ω(x) in X. The formula φsentence(A, x, Y, Z) says
that A is a L2

κ,ω sentence in vocabulary x. The formula φ¬∼= says that two models
are not isomorphic to each other.

The sentence starts with ∃Y ∃Z∃σ∃A∃B∃Π1∃Π2 and then the conjunction of
the following:

• φω(Y, Z)

• φvoc(σ,A, Y, Z) ∧ φvoc(σ,B, Y, Z)

• φκ(A) ∧ φκ(B)

• φtruth(Π1,A, σ, Y, Z) ∧ φtruth(Π2,B, σ, Y, Z)

• ∀A(φsentence(A, σ, Y, Z)→ (Π1(A, ∅)↔ Π2(A, ∅)))

• φ¬∼=(A,B)

�

Some large cardinal axioms imply that there is no second order definable well-
order of the reals. In particular this holds for large cardinal axioms that imply
the Projective Determinacy, as we will show in the next section. These axioms
possibly imply that A(L2, ω) fails. If that is the case, we can ask the question:
does A(L3, ω) hold? By the following theorem most large cardinal axioms are
consistent with A(L3, ω) (relative to the consistency of the large cardinal axiom
in question).

6.1.11. Theorem. A(L3, ω) is consistent with practically all known consistent
large cardinal axioms.

Proof. Let the ground model be a model of ZFC which satisfies your favorite
large cardinal axiom. By a result of Abraham and Shelah [1] it is possible to force
a third order definable well-order of the reals with a small forcing1. In the generic
extension A(L3, ω) holds because of the same reasoning as in Theorem 2.1.1. If
the large cardinal axiom was preserved in the forcing, then the generic extension
satisfies the large cardinal axiom and A(L3, ω).

�
1If κ is a large cardinal we say that a notion of forcing P is small (relative to κ) if |P | < κ.

Practically all large cardinals are preserved in small forcings [11] (Theorem 21.2).
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6.2 Forcing axioms

As we already noted in Chapter 2, it is an open question whether Martin’s axiom
is consistent with A(L2, ω). Unlike the consistency of the Proper Forcing Axiom
and Martin’s Maximum, the consistency of Martin’s axiom +2ℵ0 = 2ℵ1 = ℵ2 can
be proved from the consistency of ZFC.

6.2.1. Lemma (Vitali [30], Mycielski and Steinhaus [20]). If there is a
second order definable well-order of the reals, then there is a second order defin-
able non-measurable set of reals. If Projective Determinacy holds, then all second
order definable sets of reals are Lebesgue measurable. Consequently if Projective
Determinacy holds, there is no second order definable well-order of the reals.

Proof. Recall the construction of a non-measurable set of reals by Vitali.
We define an equivalence relation in the interval [0, 1]: x ∼ y ⇔ x − y is a
rational number. By the Axiom of Choice there is a set which contains exactly
one member from each equivalence class. Such a set turns out, as is well-known,
to be non-measurable. If < is a second order definable well-order of the reals then
there is a second order definable non-measurable set of reals. We can define this
set to contain the <-least element from each equivalence class.

By a result of Mycielski and Steinhaus [20], every second order definable set
of reals is measurable assuming Projective Determinacy.

�

Next we will note that if the Proper Forcing Axiom holds, then there is no
second order definable well order of the reals. Consequently one cannot use
Ajtai’s proof to show the consistency of A(L2, ω) with the Proper Forcing Axiom.
If A(L2, ω) is consistent with the Proper Forcing Axiom, then A(L2, ω) can hold
without a second order definable well-order of the reals.

6.2.2. Theorem (Steel). The Proper Forcing Axiom implies that there is no
second order definable well-order of the reals.

Proof. The Proper Forcing Axiom implies that Axiom of Determinacy holds
in L(R), which in turn implies Projective Determinacy [27].

�

6.2.3. Question. Is the Proper Forcing Axiom consistent with A(L2, ω)?

6.2.4. Theorem. Assuming the consistency of the relevant large cardinal axioms
it is consistent that Martin’s Maximum holds with A(L3, ω).
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Proof. By Paul Larson’s result [13] Martin’s Maximum is consistent with the
existence of a well-order of the reals definable in H(ℵ2) without parameters.

By Lemma 1.2.9 we can quantify over elements of H(ℵ2) in third order logic
thus Martin’s Maximum is consistent with a third order definable well-order of the
reals. Consequently it is consistent that Martin’s Maximum holds and A(L3, ω)
holds.

�



Chapter 7

Summary and future work

7.1 Summary

If κ is an infinite cardinal we can ask the question what is the least logic L such
that every L-theory is κ categorical. If κ is a regular cardinal, adding a Cohen
subset for κ makes sure that no such small definable logic L exists. If κ is a
singular cardinal, adding Cohen subsets for cofinally many λ < κ by an iterated
forcing, taking full support at all limits, does essentially the same. However, there
is always a small logic L with generalized quantifiers such that all L-theories are
κ-categorical but L may be not definable in the language of set theory.

In the countable cardinality the “small” logic can be second order logic. If
V=L even Σ1

3 is enough. With n Woodin cardinals Σ1
n+3 can be enough. But

if there are infinitely many Woodin cardinals and a measurable cardinal above
them then A(L2, ω) fails. However A(L3, ω) is consistent with practically all large
cardinal axioms. A(L3, ω) is also consistent with Martin’s Maximum.

In an uncountable cardinality the small logic can be L2
κ,ω or Ln where n ≥ 4.

Whether A(L2
κ,ω, κ) holds for different cardinals κ is very much independent of

each other.

The following table contains information about whether A(L, κ) holds for
certain language L and cardinal κ. In the intersection of an L-row and a κ-column
we have described in the left-hand-side a model of ZFC where A(L, κ) holds and
on the right-hand-side a model of ZFC where A(L, κ) fails (if they exist). The
question mark means an open question. Cohen, iter., and PX,κ refer to suitable
Cohen forcing, iterated Cohen forcing with full support in all limit stages and
the forcing PX,κ defined in Chapter 3, respectively. Regular column refers to
arbitrary uncountable regular cardinals and singular column refers to arbitrary
uncountable singular cardinals. The ground model is L in all the forcings.
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A(L, κ) ℵ0 regular singular
FO −/always −/always −/always
Lκ+,ω always/− κ = ℵ0/κ 6= ℵ0 −/always
L2 V = L/Cohen ?/V = L ?/V = L

L2
κ,ω/L

2
κ V = L/Cohen V = L/Cohen V = L/iter.

L3 V = L/Cohen ?/V = L ?/V = L
L4 V = L/Cohen PX,κ/V = L PX,κ/V = L
Ln V = L/Cohen PX,κ/V = L PX,κ/V = L
ZF V = L/Cohen PX,κ/V = L PX,κ/V = L

7.2 Future work

In this section we list the most important open questions and possible directions
of future research.

Recall Question 2.1.5:

7.2.1. Question. Is it consistent that A(L2, ω) holds, but there is no second
order definable well-order of the reals?

If that is not consistent, then A(L2, ω) is equivalent to the existence of a
second order definable well-order of the reals. We have an idea how it might be
possible to prove that these conditions are not equivalent.

Suppose there is a model of ZFC with the following properties (We do not
know yet if such a model exists) :

1. There is no second order definable well-order of the reals.

2. There are second order definable sets Xi ⊂ R : i ∈ ω such that each Xi has
a second order definable well-order and R =

⋃
i∈ωXi.

Suppose now A and B are two second order equivalent countable models.
Now A is isomorphic to some real a and B is isomorphic to some real b. Assume
i and j are such indexes that a ∈ Xi and b ∈ Xj. Let X = Xi ∪ Xj. Now X
is second order definable and there is a second order definable well-order of X.
We assumed A and B are second order equivalent, so for all n ∈ ω the natural
number n belongs to the the least real in X isomorphic to A if and only if n
belongs to the the least real in X isomorphic to B. Now A and B have the same
isomorphism type and they are isomorphic.

We have another idea, suggested by Saharon Shelah, how it might be possible
to have A(L2, ω) without second order definable well-order of the reals. Assume
there is a second order definable set of reals which contains exactly one real of
each isomorphism type. Then we can use the idea of Ajtai’s proof to show that
A(L2, ω) holds. The problem is to find a model of ZFC in which there is a second
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order definable set of reals which contains exactly one real of each isomorphism
type but there is no second order definable well-order of the reals. We are working
on finding such a model, using a construction suggested by Shelah.

Adding a Cohen subset to a regular cardinal produces two ZF -equivalent non-
isomorphic models of cardinality κ. When we do iterated Cohen forcings we have
not been able to prove that the models remain ZF -equivalent. The following
question is an example of that: Let L be the ground model and P = P0 ∗P1 be an
iterated forcing which adds first a Cohen subset to ω and then a Cohen subset to
ℵ1. Let G be a P -generic set over L and G0 the P0-generic set over L determined
by G and MG0 and M−G0 the “Ajtai models” constructed from G0 and −G0 (see
Theorem 2.3.1). Are MG0 and M−G0 third order equivalent in L[G]?

7.2.2. Question. Is it consistent with ZFC that A(L2, κ) holds for an uncount-
able cardinal κ? If not, is it consistent that A(L3, κ) holds for an uncountable
cardinal κ?

7.2.3. Question. Is it consistent with ZFC that Martin’s axiom + 2ℵ0 = ℵ2

holds with A(L2, ω).

Possible directions for future research:

1. Our results are often related to models which resemble L a lot (Theorem
5.2.3 is used in many results). An interesting question is whether our results
could be generalized to inner models of some large cardinals.

2. The question about whether every L-theory is κ-categorical in a model
class C. We have here only discussed briefly the Fräıssé Hypothesis, i.e.,
the above question in case L = L2, κ = ω and C is the class of ordinals.

3. Ehrenfeucht-Mostowski models. Adding a Cohen real introduces two count-
able non-isomorphic ZF -equivalent linear orders. Suitable cardinal collapse
makes the Fräıssé Hypothesis fail. For which theories T we can construct
non-isomorphic ZF -equivalent Ehrenfeucht-Mostowski models over these
linear orders (or ordinals)? Is this possible for all unstable theories? Hytti-
nen, Kangas and Väänänen are working on this question.

4. Bigger vocabularies. Here is an example of an open question: Is it consis-
tent with ZFC that in any countable vocabulary second order equivalence
implies isomorphism for countable models? One can ask the same question
for any Ln.
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Samenvatting

A(L, κ) betekent dat voor alle modellen A en B van kardinaliteit κ, als A en B
dezelfde L-theorie vervullen, ze isomorphism zijn.

Als κ een oneindig kardinaalgetal is, kunnen we de vraag stellen wat de minste
logica L is zodanig dat elke L-theorie κ categorisch is. Als κ een regulier kar-
dinaalgetal is, maakt het toevoegen van een Cohen deelverzameling aan κ zeker
dat er geen kleine definieerbare logica L bestaat. Hetzelfde geldt voor het to-
evoegen van Cohen deelverzamelingen voor een co-eindig aantal λ < κ door een
geitereerde forcing die de volledige ondersteuning bij alle limieten geeft. Er is
echter altijd een kleine logica L met gegeneraliseerde kwantoren zodanig dat alle
L-theorieën κ-categorisch zijn maar niet definieerbaar hoeven te zijn in de taal
van de verzamelingentheorie.

In de telbare kardinaliteit kan de “kleine” logica een tweede order logica zijn.
Als V =L dan is zelfs Σ1

3 voldoende. Met een n aantal Woodin kardinaalgetallen
is Σ1

n+3 genoeg. Echter, als er oneindig veel Woodin kardinaalgetallen zijn en er
is een meetbaar kardinaalgetal boven ze, dan faalt A(L2, ω). A(L3, ω) is echter
consistent met alle grote kardinaal axioma’s. A(L3, ω) is ook consistent met
Martin’s Maximum.

In een ontelbare kardinaliteit κ kan de kleine logica L2
κ,ω zijn of Ln waar

n ≥ 4. De vraag of A(L2
κ,ω, κ) geldt voor verschillende kardinalen κ is hiervan

onafhankelijk.

De volgende tabel laat zien of A(L, κ) geldt voor een taal L en een kardinaal-
getal κ

In de doorsnede van een L-regel; en een κ-kolom hebben we aan de linkerkant
een model van ZFC beschreven waar A(L, κ) geldt en aan de rechterkant een
model van ZFC waar A(L, κ) niet geldt (als het bestaat). Met het vraagteken
beduigen wij een open vraag. Cohen, iter., en PX,κ betekenen Cohen forcing,
gëıtereerde Cohen forcing met volledige ondersteuning in alle limieten en de forc-
ing PX,κ, die in hoofdstuk 3 is gedefinieerd. Reguliere en respectievelijk singuliere
kolommen verwijden naar arbitraire ontelbare reguliere/singuliere kardinaalge-
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tallen. Het basismodel is L in alle forcings.

A(L, κ) ℵ0 regulier singulier
FO −/altijd −/altijd −/altijd
Lκ+,ω altijd/− κ = ℵ0/κ 6= ℵ0 −/altijd
L2 V=L/Cohen ?/V=L ?/V=L

L2
κ,ω/L

2
κ V=L/Cohen V=L/Cohen V=L/iter.

L3 V=L/Cohen ?/V=L ?/V=L
L4 V=L/Cohen PX,κ/V=L PX,κ/V=L
Ln V=L/Cohen PX,κ/V=L PX,κ/V=L
ZF V=L/Cohen PX,κ/V=L PX,κ/V=L



Abstract

Fix a cardinal κ. We can ask the question what kind of a logic L is needed to
characterize all models of cardinality κ (in a finite vocabulary) up to isomorphism
by their L-theories. In other words: for which logics L it is true that if any models
A and B satisfy the same L-theory then they are isomorphic.

It is always possible to characterize models of cardinality κ by their Lκ+,κ+-
theories, but we are interested in finding a “small” logic L, i.e. the sentences of
L are hereditarily smaller than κ. For any cardinal κ it is independent of ZFC
whether any such small definable logic L exists. If it exists it can be second order
logic for κ = ω and fourth order logic or certain infinitary second order logic L2

κ,ω

for uncountable κ. All models of cardinality κ can always be characterized by
their theories in a small logic with generalized quantifiers, but the logic may be
not definable in the language of set theory.
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