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Chapter 1

Introduction

1.1 Introduction

We shall investigate whether second order equivalence of two models, or equiv-
alence in some stronger logic than second order logic, implies isomorphism of
the models in certain cardinalities. We always assume that our vocabulary is
finite. The notation which is not yet explained can be found under the heading
“Notation” on page 2 or by using the index.

1.1.1. REMARK. We are assuming through this paper that a vocabulary is finite.
This is done because if the vocabulary is finite, the isomorphism type of the model
1s characterizable inside the model in second order logic. In infinitary second order
logic Liw the isomorphism type of the model is characterizable if the vocabulary
15 smaller than k, and our assumption is stronger than what is needed.

There are some open questions about whether our results can be generalized to
bigger vocabularies. An example of such a question is whether it is consistent with
ZFC, that in any countable vocabulary any two countable L*-equivalent models
are 1somorphic.

Suppose L is a logic [3] (Chapter 2, Definition 1.1.1). The L-theory of a model
is the set of L-sentences true in the model. Two models are said to satisfy the
same L-theory if they satisfy the same L-sentences.

1.1.2. DEFINITION. The expression A(L, k) refers to the following condition: For
any models A and B of cardinality k, if A and B satisfy the same L-theory then
they are isomorphic.

We use the expression A(ZF, k) to denote the condition “For all models 2 and
B of cardinality x in a finite vocabulary, if 2 and B satisfy the same sentences
(with the model as a parameter) in the language of set theory then 20 = 98.” Note
that ZF is not a logic as two isomorphic models can satisfy different sentences in
the language of set theory.
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1.1.3. DEFINITION. We call A(L?, w) when restricted to ordinals the Fraissé Hy-
pothesis. This is the Hypothesis: All countable ordinals have different second
order theories.

Ajtai [2] has proved that A(L? w) is independent of ZFC. We are looking
for related results in the cardinality Ry and similar results in bigger infinite car-
dinalities. The name “Fraissé Hypothesis” has been used by Wiktor Marek. The
Fraissé Hypothesis has been studied by Fraissé [6] and Marek [15], [16].

Our results are relative to the consistency of ZFC'. If we assume more than
the consistency of ZFC' it is always explicitly mentioned.

In Chapter 2 we will recall the proof of Ajtai and use his method to prove
various results related to A(L? w) in the countable cardinality.

In Chapter 3 we will develop a forcing technique for coding subsets of ordinals
by collapsing certain cardinals. This forcing is used to prove for example the
following: If k is a cardinal in L there is a transitive model of ZFC' in which
A(L*, \) holds for exactly those cardinals A\ which are smaller or equal to k.

In Chapter 4 we will show that if x is a cardinal, there is a language L"*
with k£ many generalized quantifiers such that A(L"*, k) holds. Given a cardinal
k the language L"* may be different for different models of ZFC' containing x
and it is also possible that no such L** is definable in the language of set theory.
This result for k = w is due to Scott Weinstein [29] and the generalization for
uncountable « is based on an idea of Per Lindstrom [14].

In Chapter 5 we will use Ajtai’s method to prove that it is independent of
ZFC whether A(L? ) holds for a regular cardinal k. We will also prove that

for different regular cardinals x and A, A(L?,, k) and A(L3 ,, \) are independent
of each other. We will also give an analogous result for singular cardinals.

In Chapter 6 we will investigate the relation between A(L? w) and various
large cardinal axioms. If there are infinitely many Woodin cardinals and a mea-
surable cardinal above them, then A(L? w) fails. Assuming the consistency of
relevant large cardinal axioms, if n is a natural number, there is a model of ZFC
in which there are n Woodin cardinals and A(L? w) holds. As n grows bigger,
more complex second order sentences seem to be needed to characterize all count-
able models up to isomorphism. A(L3 w) is consistent with Martin’s Maximum

and practically all large cardinal axioms.

Notation

The expression Z F'-formulas refers to formulas in the language of set theory, i.e.,
first order language in a vocabulary with one binary relation €. ZF'-equivalence
of two structures, denoted by A =z B, refers to the condition that 2 and B
satisfy the same sentences of the language of set theory, i.e., for any sentence ¢
in the language of set theory V |= ¢(2() <> ¢(B). If L is a logic A =, B refers
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to the condition that 2 and B satisfy the same sentences of L. H (k) refers to
the set of sets hereditarily smaller than &, i.e., {X : the transitive closure of X
has cardinality less than x}. The symbol | means “restricted to”. Depending on
context this can mean a reduct of a model to a smaller vocabulary or restriction
of some operations to some set. The notation ¢™(-) refers to the set of tuples
which satisfy the formula ¢ in model ). The forcing name of a given set X is
denoted by X . Interpretation of a set in a given model of ZFC' is denoted by the
set with the model of ZFC as superscript: for example w}' means w; of L. The
reals mean the same as the powerset of w.

Notation which is not explained is standard as used for example in Jech’s book
[11].

1.2 Preliminaries

1.2.1 The logics L"

In this section we will present some fundamental definitions and lemmas about
higher order logics, forcing and L. This section does not contain any new results.
In the rest of the paper we have clearly marked results of other mathematicians
that we use. All the results which are not marked for somebody else are, according
to our knowledge, new.

1.2.1. DEFINITION. An n-ary relation R} C (dom(2A))" is definable in a lan-
guage L in a model A if there is an L-formula ¢(xy,...,x,) such that R =
{(a1,...,a,) : A E o(ay,...,a,)}.

A class of structures C' is characterizable in a logic L if there is an L-formula
oc(X1,..., X)) such that in any model A it holds that A s ¢c(Xi, ..., Xm)
S (A (X)% .. (X)) € C. When C is a singleton class {B} we say that the
model ‘B 1is characterizable in L.

1.2.2. DEFINITION. FEach second order function variable F]" has a finite arity
m. Each second order relation variable R} has a finite arity n.

Given a vocabulary T, the set of L*[T] terms is the smallest set which contains
first order variables, contains first order constants in vocabulary 7, is closed under
functions in vocabulary T and is closed under second order function variables.

Given a vocabulary T, the set of L*[7] atomic formulas is the smallest set which
contains equalities of L*[7] terms and contains the formulas R (ty, ... tn), where
each t,, is an L*[7] term and R is either a relation symbol in T of arity m or a
second order relation variable of arity m.

Second order logic, denoted by L?, is the smallest logic which

1. Contains atomic formulas,

2. Is closed under negation and conjunction,
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3. Is closed under first order existential and universal quantifiers and
4. Is closed under second order existential and universal quantifiers.

Assume we have defined L"™. An n + 1st order relation variable R: has a type
t which is a finite set of types of nth order relation variables.

The set of n + 1st order atomic formulas is the smallest set which contains
the nth order atomic formulas and the formulas RL(RY), where R! is an n + 1st
order variable of type t, R;’ is an nth order variable of type t' and t' € t.!' The
n + 1st order logic L™ is defined to be the smallest logic which

1. Contains atomic formulas

2. Is closed under the same operations as L™ and in addition closed under
n + 1st order existential and universal quantifiers.

If A is a model and s is an assignment of variables of L™ we have A =,

Ri(RY) iff (RY)Y € (RD?.

We use L? to refer to second order logic. In L? we can quantify over all finitary
relations over the universe of the model, thus our second order logic means the
second order logic with full semantics. There are also other second order logics
which do not use full semantics such as monadic second order logic where we can
quantify over unary relations only, and second order logic with Henkin semantics
[10]. More generally L™ refers to nth order logic with full semantics.?

1.2.3. DEFINITION. Letn > 1 be a natural number. An L™ formula is X3~" and
Iy~" if it does not contain any nth order quantifiers. A formula is EZ;% if it is
of the form 3R¢, where R is a sequence of nth order variables and ¢ is a HZ’l
formula. A formula s HZ; if it is of the form YR, where R is a sequence of

nth order variables and ¢ is a ¥}~ formula. A property is said to be A"t if it
is both X1 and 1171

1.2.4. LEMMA. The following are characterizable in second order logic in any
model 2 of infinite cardinality k:

1. A relation R is a function.
2. A relation R is an injection.
3. A relation R is a bijection from the set {x : ¢(z,a)} to the set {x : Y(x,a)}.

4. The set {z : ¢(x,a)} is infinite.

'To keep things simple we do not allow third order or higher order function variables.
2There are several ways to define L. By and large they are all equivalent (at least as long
as they allow to prove Lemma 1.2.9).
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The set {z : ¢(x,a)} is finite.
A tuple (X, <x) is a linear order, i.e., <x is a linear order in the set X .

A tuple <x) 1s isomorphic to (w, <).

A tuple <x) 1s well-founded.

A tuple (X, <x) is isomorphic to the model (k, €).

(X,
(X,

A tuple (X, <x) is a well-order.
(

A tuple (X, +',-/,0',1") is isomorphic to the model (N,+,-,0,1).
(

A tuple (X, R, ... Ry is isomorphic to a tuple (Y, R, ... Ry7).

The canonical bijection m from kX k to k and its inverse function: 7(a, ) =

v, H(y) = (. B).

The canonical bijection m, from k" to k and its inverse function: m,(aq, ... ap) =
Y, ) = (an, - ).

A tuple (S, S") is the transitive closure of a € R with respect to (R, R'), i.e.,
S is the set of those elements b in the domain of R such that there is a finite
sequence ay, . . . a, in the domain of R so that R'(aq,a), R (ag,a1), ... R'(ay, an_1)

and R'(b,a,) and S"=R' NS x S.

Proof. In each case we give the relevant sentence. The natural numbers in
the sentences (for example 1. in sentence number 2.) refer to the sentences in the
list with the corresponding number.

1.

2.

VaVyVz((R(x,y) A R(z,2)) =y = 2)
1. AV2VYV2((R(z,2) A R(y,2)) = x =y)

2. NVaVy(R(z,y) — (¢(z,a) A P(y,a))) A VeIy((o(z,a) — R(z,y)) A
(¥ (x,a) = Ry, )))

JR3z(¢(z,a) A Oni(R, @),
where 6,;;(R, a) expresses the condition that R is a bijection from the set
{z: ¢(x,a)} to the set {z : ¢(x,a) N ~x = z}.

—4.
The relevant sentence is the conjunction of the following:

o VaVy(z <x y — (X(x) A X(y)))

o Vrx <y
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o VaVyVz((z <x y Ny <x z2) >z <x 2)
o Vavy((X(z) N X(y)) = (x=yVa<xyVy<x )

The sentence expresses the conjunction of the following:

° 6.
e {z: X(x)} is infinite
o V(X (z) —» ({y: X(y) Ny <x x} is finite))
=3 R3y1), where ¢ expresses the conjunction of the following:
e {x: R(z)} is infinite

e R(y)
o Vaz(R(x) — (X(x) AIz(R(2) Az <x x)))

6. A\ 8.

IAVz(X () — —3IRY), where 1) expresses the condition that R is a bijection
from the set {y : X(y)} to the set {y : y <x z}))

3 < VHY) (Ginear(<, X)

AVaVy(z <y < (x #yAJz(z+ z=1y)))
ANVaVy(z =y +' 1" - =32(y < 2 ANz < x))
AXO)ANXA)AN=0 =1
A¢f(+/7X) /\¢f('/7X)
AVaVy(x +' 0=z Az +' (v
AVaVy(x ' U=z ANz (y+
A duij(H, j))

In the above formula @ppear(<, X) says that < is a linear order in X, the
formula ¢¢(+', X) says that +' is a function from X x X to X and the
formula ¢v;(H, j) says that if H is an injection from {z : z < j} to {z :
x < j}, then H is a bijection.

) =(z+y)+'1)
)= (' y)+ )

3P, where 1 expresses the conjunction of the following:

e P is a bijection from X to Y

¢ Nicicm V1, Vo, RY (21, .. 2p,) <
3y, - - Elym(/\lgjgm P(xj,y;) A RZZH(QM o Yn))))

dP1, where 1 expresses the conjunction of the following:

e P is a bijection from k X Kk to K

o P((,5),7)
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o VaVpVa/'VB' (P, B) < P(d/, ') <> (B< B’V (B =B Na <d)))
e JP3ay, ..., 3o, _,0, where 6 expresses the conjunction of the following:
a) P is a bijection from k X Kk to Kk
b) P((O‘ha2)7a/2)/\/\2gmgn_2 P((a:n7am)va;n+1)/\P((a:1—1uan—l)
c) Vavpva'VE (Pla, B) < P(d, )« (B< BV (B=0FNa<d

, )
)
14. VaxVyi), where 1 expresses the conjunction of the following:

o S(z) = R(x)
(S(z) AS(y) = (5'(x,y) < R(x,y))
S(a)
((S(x) A Ry, x)) = S(y))

VPYPYw((VaVy(P(x) — R(z)A((P(x)AP(y)) = (P'(z,y) < R'(x,y))A
P(a) A ((P(x) A R(y,z)) = P(y)))) A S(w)) = P(w))

The first four formulas say that (5,5’) is a transitive set (with respect to
R’) which contains a, and the last formula says that (.5,5’) is the smallest
such set.

g

In the following theorem we say that a relation F is extensional if the exten-
sionality axiom VaVy(Vz(zEz <+ 2Ey) — x = y) holds.

1.2.5. THEOREM (MOSTOWSKI’'S COLLAPSING THEOREM). If E is a well-founded
extensional relation on a class P, then there is a transitive class M and an iso-
morphism m between (P, E) and (M, €).

Proof. We define the function 7 by transfinite induction on the well-founded
class P:

m(z) = {r(y) : E(y,x)}.

It is clear from the definition that ran(7) is a transitive class. We will show
that (ran(w),€) is isomorphic to (P, E). We will prove that 7 is one-to-one.
Assume not: Then there is an element z € P of the least possible rank such that
z = 7w(x) = w(y) for some x # y. As x # y by symmetry and extensionality
axiom we can assume there is an element a( such that E(ag, ) and not E(ag,y).
As 7(x) = 7w(y) there is some element by such that F(by,y) and 7(ag) = m(bo).
But this contradicts the assumption that z was of the least possible rank.

We will now prove that = E'y <> m(x) € 7(y). Assume x F y, then by definition
m(z) € m(y). Assume then 7m(x) € 7(y). By definition 7(z) = 7(z) for an element
z such that zFEy. Since 7 is one-to-one we have x = z and thus xEy.

g
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1.2.6. DEFINITION. We say that a second order formula ¢(X,Y) is a second
order definable well-order of the reals if in the model (N, +,-,0,1) the formula ¢
defines a well-order of the subsets of the universe of the model.

We say that a second order formula ¢(X,Y") is a second order definable well-
order of the powerset of k if in the model (k, €) the formula ¢ defines a well-order
of the subsets of the universe of the model.

Let 7 = {Ry,..., R,} be a relational vocabulary and let the arity of R; be k;
for each i. We will next introduce a way to code a model of infinite cardinality s
in vocabulary 7 into a subset of k™, where m = X;<;<,.k;.

1.2.7. DEFINITION (CODING A MODEL INTO A SUBSET OF K™).

Let B = (k, RP,..., R®) be a model of cardinality x in the vocabulary 7. Given
an order < of order type k on B,3 the relations of B can be coded into an m-ary
relation X" C K™ in the following way: any sequence of ordinals belongs to X"
ioff for some i it is of the form

(0,0,... ar+1l,aa+1,...0p,+1, 0,0,... )
—— ——
Yj<ik; times i< j<nkj times

for some ordinals oy, . . . ay, such that B | Ri(ay, ... ayp,). The ordinals o, o;+1
etc. refer to elements of k which have order type oy, co; + 1, etec. with respect to
<.

1.2.8. LEMMA. Let A = (A, RY,... R™) be a model of infinite cardinality  in a
finite vocabulary 7. Let #R; = k; for each © and m = ¥1<;<pk;. Then:

e 2 is isomorphic to some models which have k as universe.

o The set Iy of those subsets of K™ which are codes of models isomorphic to
2 is L*-characterizable in 2A.

Proof. Obviously any bijection from A to k generates a model isomorphic to
20 which has k as universe.

In (9B, <) the relation X™ (introduced in Definition 1.2.7) is L*-definable and
each relation RP is second order definable from X™. Let ¢(X™ 9B, <) be the
following second order formula which says that X" is the code of 8 with respect
to <:

Vo, .. Ve, (X (21, ... 2n) < \/ oi)

1<i<m

where ¢; is the conjunction of the following formulas®:

3The reader may wonder where does < come from. If the model does not contain a copy
of (k, €) we can build such a copy by second order quantifiers. We have formulas of the form
IK3E(¢u.c (K, E) A...), where ¢, ¢ characterizes (k, €).

4To be precise the formulas below, such as x; = 0 are not formulas in our language. However
0, immediate predecessor of an element and immediate successor of an element(all with respect
to <) are definable so it is possible to write the expressions below formally.
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* Nj<sion % =0

® /\j>2t9kt z; =0

° /\j61+2t9kt,---ki+2t9kt T #FON Ry, ok — 1o Ty sy — 1)

Let C C k™. C'is a code of a model isomorphic to 2 (with respect to <) iff

3PFAPE . AP IT (i (T, A, dom(<)) A\ 1) AU(C, (k, Pr, ... P,), <)),

1<i<n

where ¢y,;(T', A, dom(<)) says that 7" is a bijection from A to dom(<), ¢ is defined
above and ¢; is the following formula:

Var,. ..V Rz, .. an) < B(T(x1),. .. T(zx,))).
O

1.2.9. LEMMA. a) Let ¢ be a second order formula in a finite vocabulary 7, 2 a
model of cardinality k with vocabulary 7, and let s be an assignment of the free
variables of ¢ in A. Then ¢ with the assignment s is equivalent to a Z F-formula
in H(k™) with A and s as parameters, i.e., there is a formula 0 in the language
of set theory such that A =5 ¢ & H(kT) | 6(~A,s). More generally an nth
order formula in a model 2 of cardinality k with assignment s is equivalent to a
ZF-formula in H((3,-2(k))") with A and s as parameters.

b) Let T be a finite vocabulary and assume we have fized some second order
characterizable way to code models in the vocabulary T by subsets of k. There is a
translation which translates every ZF(I)-sentence® ¢ in (H(k1), Iy, €) to a second
order sentence ¢* in the vocabulary T in such a way that (H(k1), Iy, €) E ¢ <
A = ¢* for any model A of cardinality r in vocabulary 7. More generally, there
is a translation which translates every ZF (I)-sentence ¢ in H((J,—2(k))") to an
nth order sentence ¢* in such a way that (H(3,_2(k)"), Iy, €) E ¢ & A = ¢*.

Proof. a) Assignments of finitely many first order and second order variables
in the model 2 belong to H(x'). To formalize truth definition of ¢ in 2 with an
assignment s we need only quantify over those assignments which are in H(x™).
Generally third order variables are sets of second order variables and have car-
dinality at most 2%, fourth order variables have cardinality at most 2(*) and so
on. It follows that interpretations of finitely many nth order variables belong
to H((3,-2(x))") and the truth definition of an nth order formula ¢ with an

®This means we have added an extra unary predicate I to H(x") and interpreted it as the
set of those subsets of ™ which are codes of models isomorphic to A. A ZF(I)-sentence is a
first order sentence in vocabulary {€, 1} where € is a binary relation symbol and [ is a unary
relation symbol.
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assignment s in a model 2 can be formalized in H((3,,_2(x))") with 2 and s as
parameters.

b) In second order logic we can quantify over transitive closures of the sets in
H(k™) in the following way. If R is a well-founded binary relation which satisfies
the extensionality axiom VaVy(Vz(Rzx <> Rzy) — x = y), then (dom(R), R)
is by Mostowski’s Collapsing Theorem 1.2.5 isomorphic to a transitive set. If
R is also either empty or has a maximal element (i.e., Jy € dom(R)—3JzxRyx),
then (dom(R), R) is isomorphic to (TC/(a),€) for some a € H(k"). On the other
hand, if a € H(k™") then |T'C'(a)| < k and there is a well-founded and extensional
relation R, C A x A such that (dom(R), R) is isomorphic to (T'C'(a),€). Thus in
second order logic we can in a sense quantify over transitive closures of sets in
H(k™).

Let ¢(R) be a second order formula which says that R is a well-founded
binary relation which satisfies the extensionality axiom and is either empty or
has a greatest element.

We can define two sets R and R’ to be equal if and only if there is an iso-
morphism from (dom(R), R) to (dom(R’), R'). Now we can define x =* y to be
U(Re) Nb(Ry) A (dom(R,), Ry) = (dom(Ry), Ry).

We can define € as follows: R, €* R, iff Jv3w3Q3TY, where 0 expresses the
conjunction of the following:

1. z is maximal element in R,
2. R'(w,v)

3. Q = (P,R, | P) is the transitive closure of w with respect to R, (See
Lemma 1.2.4(14))

4. T is an isomorphism from (dom(R,), R,;) to @

Let then x €* y = ¢Y(R,) AN Y(Ry) A Jx3y3Q3TH. Let then (—¢)* = —(¢*),
(pNO) =" NO* and (Fxg)* = AR, P".

We have shown that any ZF-sentence in H(xk™, €) is equivalent to an L>-
sentence in the model 2.

By Lemma 1.2.8 the relation Iy is also second order definable so the claim
follows.

Next we will generalize the above result for n > 2. First we will define the
concept of a hereditarily monadic variable. For a start we say that a monadic
second order variable is hereditarily monadic. If we have defined what it means
for an nth order variable to be hereditarily monadic, we define an n + 1st order
variable to be hereditarily monadic iff it has arity 1 and its only argument is
a relation of one type: hereditarily monadic nth order variable. It is easy to
prove by induction that in a model of cardinality  there are J,,_; (k) hereditarily
monadic nth order relations, i.e., interpretations of hereditarily monadic n:th
order variables.
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Now the above proof works for L"*! when we replace first order variables by
hereditarily monadic nth order variables and second order variables of arity m by
n + 1st order variables which have as arguments only hereditarily monadic nth
order variables.

We denote A, = {A : A is a hereditarily monadic nth order relation over
2A}. Thus |A,| = Jon-1(k) and in L™ we can quantify over subsets of (A, x
A,)). Certain subsets B of A, x A, correspond to transitive closures of sets in
H((3yn-1(k))"), namely those sets B such that (dom(B), B) satisfies the axiom
of extensionality, B has a largest element and B is well-founded. As before, we
can define two sets of the above form to be the same if they are isomorphic and a
set a belongs to another set b if and only if there is an element by in the domain
of b which belongs to the greatest element in b, and the transitive closure of by
with respect to b is isomorphic to a. Also, we can characterize the set of those
sets of the form ™ which are isomorphic to 2, so Iy is characterizable as well.
Thus there is a translation of ZF(I)-sentences of (H((Jgn-1(k))"), I, €) to L1
sentences in the model 2, likewise there is a translation of ZF(I)-sentences of
(H((3gn—2(k))"), I, €) to L™sentences in model 2.

g

1.2.2 Infinitary second order languages

We will next define second order infinitary language Liw. The nth order infinitary
languages L} , can be defined in an analogous way.

1.2.10. DEFINITION. Let n € w and let k be a regular cardinal. The logic L7 ,
1s the smallest logic which

1. Contains all atomic formulas,

2. Is closed under negation, conjunctions of size less than k, disjunctions of
size less than k, first order existential and universal quantifiers and second
order existential and universal quantifiers®.

1.2.11. LEMMA. Let k be a reqular cardinal. In the logic Ly, all ordinals (o, <)
smaller than k are characterizable.

Proof. This is done by induction on the ordinal @ < k. Assume the Induction
Hypothesis holds for all § < «, i.e., there are formulas 63(y) which characterize
(8, <) for ordinals < a. Now the formula which characterizes (o, <) is

A\ By <2 n03() AVy(y <z =\ 05(y))

B<a B<a

6We allow here both second order relation variables and second order function variables
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g

We will now present a lemma which is needed to show the indenpendence
of A(L? ,,k) at a regular cardinal k. In Definition 1.2.13 we will give an exact

KW

coding of Li7w—formulas as set theoretic objects and prove the lemma.

1.2.12. LEMMA. Let n € w. Every formula of LiJr,w can be defined in (V,€) (or
in (H((kT)1),€)) by a ZF-formula using a subset of k as a parameter.
If k is an inaccessible cardinal, every formula of Li,w can be defined in (V, €)

(orin (H(k™1), €)) by a ZF-formula using a subset of some X\ < k as a parameter.
The next definition proves Lemma 1.2.12.

1.2.13. DEFINITION. We will introduce a coding where all L7, formulas are
coded by subsets of k, or in fact by subsets of ordinals smaller than k. First
the atomic formulas:

1. A symbol in the vocabulary of the model which has been assigned a prime
number code n by a chosen Gddel numbering (as described in Lemma 6.1.2)

is (1,n).
To = (2,0).
Co = (3, ).

R = (4,n,«), these are the codes for relation variables.

F? = (5,n,a), these are the codes for function variables.

,Fin(tl, PN ,tn) — <6, Fin,tl, PN ,tn>

t;, = tj = <7,t1,tj>

S L I

R(t1, .o ty) = (8, RV, ).

We describe now how to code objects of the above form by subsets of x in a
systematic way. There is a second order definable bijection from x to k X K (see
Lemma 1.2.4(13)). The objects are coded in such a way that the nth s codes the
nth coordinate in the tuple. For example ¢, .1 has in the beginning of the first x
three ones and the rest are zeros. In the beginning of the second « it has w + 1
ones and the rest are zeros, and all the other x:s have just zeros. The code of
F}(cy4+1) has 6 ones in the beginning of the first , code of F in the second &
and in the third s the subset of x coding c,; we just described.

By this coding the predicates “X is a L} ,(7) term” and “X is a L2 (7)
atomic formula” are characterizable in second order logic.

The non-atomic formulas are coded as follows:
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L. ¢ =(9,{¢}).
2. AX = (10, X).
3. VX = (11, X).
4. ¢ = (12,24, {0}).
5. Voat = (13,24, {¢}).
6. IR%¢ = (14, R, {¢}).
7. YR'$ = (15, R", {¢}).
8. IFy¢ = (16, F7, {¢}).
9. VER = (17, F2 {¢}).

These are coded by subsets of x in a similar way as atomic formulas except
that there are also sets of formulas. For example objects of type 2 are coded by
10 ones in the first k£ and in the second k a code for the set X. X is a set of
formulas of size less than x and we use again the second order definable bijection
from k to kK X k. The first k¥ codes some formula in X, the second x codes some
other formula in X, if there is any, and so on until after some o many k:s there
are no more formulas in X and the rest are just zeros.

We have defined L2  -formulas as subsets of , but in fact in all subsets coding
a L7 -formula the set of ones is not cofinal in x. Thus we can as well think them
as subsets of some a < k when we have cut away the zeros from the end. This
proves Lemma 1.2.12.

We will next present the definition of generalized quantifiers:

1.2.14. DEFINITION. Suppose T is a finite relational vocabulary { Ry, ..., Ry}, where
R; is ri-ary. Suppose K is a class of T-structures, closed under isomorphisms.
We get an extension of first order logic by adding to the syntar a new quantifier
symbol Qg , a new formula generation rule

o If ¢1,...,dx are formulas, then so is Qgay..x} , ..., xh..af i1, ..., by

L

The semantics is defined as follows:
o M= Qguy..x), . xi.xy b1, .., o if and only if”
(dom(M), P, ..., By) € K,

where

P, = {(s(al). o 5(al,)) : M =0 ).

"Here dom (M) means the domain of the model M.
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The extension of first order logic is denoted L, (Qk).

Note that K is always definable in L, (Qf) by the sentence

ko k k k
QKTy.. Ty, @Yy s Ri(ay, sy ), oy Re(2, 2 ).

sl

We will next give some examples of generalized quantifiers:

1. The cardinality quantifier (),, “There are X, ,-many”:
A= Qurd(r,y) & [z A= o(z,9)} = Ra.
2. Hartig quantifier I, the “equicardinality quantifier”:
A= Tr,y(o(e, 2),9(y, 2)) & Ho - A= oz, 2)} = {y - A = Py, )}

Lots of cardinality quantifiers @, of the form 1. are definable in L2, see
Remark 4.2.3. From Lemma 1.2.4 (3.) it follows that Hartig quantifier is also
definable in L2

1.2.3 The constructible universe L

In 1938 Kurt Godel introduced L, the class of constructible sets, see for example
[7]. Recall the V-hierarchy of sets:

[ J ‘/b = @
® Vot1 = P(Va)
o Vo =Ups o V3 for a limit ordinal.

o V= UocEOn VO"

The L-hierarchy is similar to the V-hierarchy, except that in the successor
steps we take only the definable powerset def(L,), i.e., the set of those subsets
of L, which are definable in L, using elements of L, as parameters.

o Lo=0.
La+1 = d€f<La)'

R — U5<a Ls for o limit ordinal.

o L= UaGOn La'

A few notes about L: GC'H holds in L. The operation def(L,) can be defined
as the closure of L, U {L,} under certain finitely many “Gdédel functions”:
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L Gy(Y,Z) = (Y, 2},
2. GolY,Z) =Y x Z,
3. G3(Y,Z) ={(u,v) :ueY ANveZANuecv},
4 GyY.Z)=Y — Z,

2)

9. Go(Y) = {(u,v,w) : (u,w,v) € Y},
10. G1o(Y) = {(u,v,w) : (v,w,u) € Y}.

By induction it can be proved that |L,| = |a| for all infinite a. All Godel
functions are second order characterizable so the operation def(L,) is second
order characterizable.

For each L, there is a canonical well-order of L, denoted by <. If o < /8
then <g, is an end extension of <p,,. We will next describe how the canonical
well-order is defined.

The well-order is defined by induction on . Assume we have defined <y, .
We will define next <y, .. The idea is that in the beginning is <y, then L, and
then the rest of L, in the order

i) How many times Godel functions need to be iterated starting from the ele-
ments of L, in order to reach the elements in question.

ii) Which Godel functions need to be used.

iii) To which sets in L, the Godel functions need to be applied (here we can
use the already defined canonical well-order of L, and define the element which
can be reached from smaller elements to be smaller).

We will next present a technical definition for the idea described above:

1.2.15. DEFINITION. We define W§ = L, U {La},
We, ={Gi(Y,2):Y,Z e Weie{l,...,10}}.

1. <8, is the well-ordering of Lo, U{L.} that extends <y, such that L, is the
greatest element.
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2. <Zﬂ is the following well-order of WS, ,:

x <!y iff one of the conditions below hold:

a)x <21y
b)x e W andy ¢ W
c)x g W and y ¢ W and one of the following holds:

e “The least i such that Ju,v € W(x = G;(u,v))” < “the least j such that
ds,t € Wi (y = G,(s,1))"

o “The least i such that Ju,v € W(x = G;(u,v))” = “the least j such that
ds,t € W (y = Gj(s,t))” and

“the <., -least u € W2 such that v € W (zx = G;(u,v))” <h,, “the
<0 -least s € W such that 3t € W (y = Gi(s,t))”

o “The least i such that Ju,v € Wz = G;(u,v))” = “the least j such
that 3s,t € Wi (y = Gj(s,t))” and “the <l ,-least u € W2 such that
Jv e Wiz = Gi(u,v))” = “the <[, -least s € W such that 3t € W (y =
Gi(s,t))” and “the <} -least v € W2 such that x = G;(u,v)” <., “the

noi-least t € W such that y = Gi(u,t)”.

Now we let <qy1=J
powerset of L, ).
For limit ordinals ~y we define <1, = |J

<n. 1 N(P(La) x P(La)) (where P(Ly) refers to the

new

a<y <La :

The inductive definition of the class function a —<y,, is clearly definable in
the language of set theory. Looking at the definition, in order to define <, from
« there is no need to quantify over sets outside H(|a|"). Now it follows from
Lemma 1.2.9 that the function f : |a|™ — H(|a|T), f(8) =<, is second order
characterizable in any model of cardinality |«|. It follows that in L in a model of
cardinality  there is a second order characterizable well-order of the powerset of
ke X <Y e da(X <, Y).

If X is a subset of an ordinal we can form the class L[ X], the least transi-
tive model of ZFC' containing all ordinals and X.® The construction of L[X] is
similar to the construction of L except that we are allowed to intersect any set
with X (this can be done by adding 11th Godel function G1;(Y) =Y N X). By
a reasoning similar to what was presented above, if X is second order characteri-
zable in a model then the functions a + L[X] and a — <, x] are second order
characterizable in the model.

8The structure of any set can be coded by a subset of some ordinal so we can make this
assumption w.l.o.g. The assumption “X is a subset of some ordinal” turns out to be very useful
as in infinitary second order languages Li,w we can characterize all subsets of ordinals smaller
than x.



1.2. Preliminaries 17

The class L[X], the least transitive model of ZFC' containing all ordinals and
X, should not be confused with L(R), the least model of ZF containing all the
reals.

1.2.4 Forcing

Forcing is a method invented by Paul Cohen in 1963. He used forcing to prove
independence of the Continuum Hypothesis from ZFC [4], [5]. Forcing is a
very general method for proving independence results and constructing different
models of ZF'C'. The invention of forcing has had huge impact to the development
of set theory.

The idea of forcing is briefly as follows: We have a transitive model M of
ZFC. Inside M we can form a forcing language which describes the model M[G]
which is the smallest transitive model of ZFC extending M and containing G.
What kind of generic set GG a forcing adds depends on the type of the forcing. The
notation p Ik ¢ means that p forces ¢ i.e. whenever p € G then M[G] | ¢. We
don’t give a detailed introduction to forcing here as it is a broad and complicated
topic. For a reader who wants to study forcing we recommend Jech [11].

We present without proofs the following fundamental theorems about forcing.
The proofs can be found for example from [11].

1.2.16. THEOREM (THE GENERIC MODEL THEOREM). Let M be a transitive
model of ZFC and let (P, <) be a notion of forcing in M. If G C P is generic
over P, then there exists a transitive model M[G] such that the following hold:

1. M|G] is a model of ZFC.
2. M C M|[G] and G € M|G].
3. M|G| and M have the same ordinals.

4. If N is a transitive model of ZF such that M C N and G € N, then
M|G] C N.

1.2.17. THEOREM (THE FORCING THEOREM). Let (P, <) be a notion of forc-
ing in the ground model M. If o is a sentence of the forcing language, then for
every G C P generic over M,

M[GlEo< (peG)plko.

In the left-hand-side o one interprets the constants of the forcing language ac-
cording to G.

The most important forcings used in this paper are the following:
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e Cohen forcings: If k is a regular cardinal in M there is a Cohen forcing
(which is a different forcing for different cardinals x) which adds a new
subset to k.

e Cardinal collapses: If x and A\ are infinite cardinals in M such that k < A
there is a forcing which adds a bijection from x to A, i.e., collapses A to
k. After the forcing A and all cardinals strictly between x and A are not
cardinals anymore.

e [terated forcing: Iterated forcing was developed by Solovay and Tennen-
baum [26] in a paper where they proved the independence of Souslin Hy-
pothesis from ZF'C'. Iterated forcing is a technically complicated topic and
instead of defining iterated forcing here we refer to Jech [11]. The idea is
that by iterated forcing we can do o many successive forcings, where « is
the length of the iterated forcing.

We say that at a limit ordinal v the support of a forcing condition p of
length ~y is the set of those ordinals av < v where p(«) is non-zero. A forcing
can have at a limit ordinal (for example) the following:

Finite support: Any forcing condition p has finite support.

Countable support: Any forcing condition p has countable support.

Full support: A forcing condition may have whole A as support.

Direct limit: p € P, ifand only if 35 < a(p | € Pz and V¢ > 5 p(§) = 1).
Inverse limit: p € P, if and only if VB < a p | B € P;s.

1.2.18. LEMMA (THE FACTOR LEMMA). Let P, be a forcing iteration of (Qg :
¢ < a+ ), where each Pe, £ < o+ (3 is either a direct limit or an inverse limit.

In VP let Péa) be the forcing iteration of (ng : & < B) such that for every

limit ordinal £ < (3, P£ () s either a direct limit or an inverse limit, according
to whether Pyyp is a direct limit or an inverse limit. If P,yp is an inverse limit
for every limit ordinal & < [ such that cf§ < |P,|, then P,y is isomorphic to
P, x Pﬁ(a).

1.2.19. DEFINITION. A forcing is k-closed if for any increasing sequence of con-
ditions of length less than k there is a condition which is stronger than all the
conditions in the sequence.

A forcing satisfies the k-chain-condition if any antichain of forcing conditions
(i.e., a set of pairwise incompatible conditions) has cardinality less than k.

A k-closed forcing does not add any new subsets to cardinals smaller than x.
A k-chain-condition forcing does not collapse cardinals greater or equal to k.



Chapter 2
Ajtai’s result, the countable case

2.1 A(L?,w) and L*-definable well-order of the
reals

In this chapter we will present two theorems by Ajtai which show that A(L? w)
is independent of ZF'C'. After that we will discuss some related topics concerning
countable models.

We recall that Ajtai proved the independence of A(L? w) from ZFC. We will
now present the first part of the proof of Ajtai:

2.1.1. THEOREM (AJTAI [2]). If there is a second order definable well-order of
the powerset of w, then A(L?,w) holds. If the well-order is ¥} for n > 2, then
A(XL., w) holds.

Proof. We will show that if there is a second order definable well-order of
the reals, A(3},w) holds for certain k. Let us assume our second order definable
well-order of the reals is A}L for some n > 2. We make the assumption n > 2
to make complexity calculations simpler; in all our applications n > 2 so it
does not do any harm. Note that if a well-order is X! then it is II. because
r <y r#yA-y <z Similarly every IT! well-order is X!. Thus a well-order
is 31 iff it is IT} iff it is AL. Also two models are 3!-equivalent iff they are IT}-
equivalent as we will show. Assume not: there are ¥!-equivalent models 2 and
B which are not IT}-equivalent. Assume ¢ is such a II} formula that 2 = ¢ and
B £ . Now —¢ is such a X} formula that A ¥ —¢ and B | —¢, so the models
are not Y!-equivalent, which is a contradiction. The proof that IT!-equivalence
implies 3!-equivalence is the same.

As we have shown in Lemma 1.2.8, a model of cardinality ¥, in a finite vo-
cabulary is isomorphic to some models which have w as universe. These models
can be coded into n-ary relations on w in a second order definable way, and the
set I of codes of models which have w as their universe and are isomorphic to

19
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the model in question is second order characterizable in the model in question.
As there is a second order definable well-order of the reals and a second order
characterizable bijection from w™ to w, we can talk in second order logic about
the least subset Ay of w which is mapped to a set in I by the bijection. For each
natural number n we can say in second order logic that n belongs to Ay, and also
that n does not belong to Ag. If two countable models in a finite vocabulary have
the same second order theory then they have the same set Ay. Consequently they
have the same isomorphism type and they are isomorphic.

We will next present the definition of these sentences mentioned above and
calculate the complexity of them. Let ® be the second order sentence:

INIIVI+ 3 3 < In, FAGFAIA;
(def(N, 0,1, +",) A def(m,) A 04,
A}b%(AO) A ¢code(A07A6)7A UTL(AE)JAE) A (2'1)
VANVANVAI((04,; N V=(A1) N deode(Ar, AY) A (A7, A7)
— (9'(A, A7) V Va(Ag(x) < Af(x)))) A AG(47)).

Here is an explanations of the different components of the sentence:

o def(N,0/, 1, +', ) is the IT}-formula which defines the structure (N, 0, 1, +, ),

o def(Il,) is the first order formula which defines a bijection from N™ to N,
see Lemma 1.2.4.

e 04, is a first order formula which says that A is a sequence of relations on
N such that the arities correspond to arities of relations in 7.

e Y=(Ay) is a X} formula which says that 2 (i.e., the model itself) is isomor-
phic to Ajg.

o deode(Ag, Ap) is the first order formula which says that (Ap) is the subset of
N"™ which codes A, see Lemma 1.2.8.

o 1,(Aj, Aj) is the first order formula which say that A§ is the image of A
under 7, see Lemma 1.2.4.

o ¢/(A;, A7) is the Al-formula which says that Aj is strictly smaller than
A} in the well-order of the powerset of N defined by ¢’. The formula ¢’
is formed from ¢ by replacing 0 by 0, 1 by 1’, + by +’, - by - and by
relativising all the first order and second order quantifiers to .

o A}(47) is the first order formula which says that the natural number 47
(in the sense of N) belongs to Af. Similarly we could say by a first order
formula that n belongs to (or does not belong to) Af for any chosen n.
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The formula

(04,7 N (A1) A booae (A1, A7) A (A7, A7)
= (¢(AG, AD) V V(A5 (z) < Al(2))))

has the same complexity as —¢/(Af, A7), which is Al as ¢’ is Al. Then the

formula
VfLVA/lv‘AT((G/E,T N w%@il) A ¢code<A17 All) N nn(Alla AT))

— (¢/(AG, A7) V V(A5 (7) < Al())))

has complexity II:. Now the formula

def(N,0,1,+",-") A def(m,) A 64,

A Y=(Ag) A Peoae(Aos Ay) A 1 (A{),A*)

VAVANVAT (04, » N ¥=(A1) A Geode(Ar, AY) A ma(AL, A7)
— (¢'(AG, A]) V V(A5 (z) < Aj(x)))) A AG(4T7)).

has complexity IT! and the formula (2.1) has complex1ty 3, 1. The sentence
is true in 2, hence true in B. So A= B. Thus A(X),,;,w) has been proved.

U
2.1.2. COROLLARY (AJTAI [2]). IfV =L then A(L* w) holds.

Proof. In L there is a second order definable well-order of the powerset of w
(See the notes about L on page 14 in the preliminaries).

g

The well-order of the reals in L is A}, thus if V' = L then X-equivalence implies
isomorphism for countable models. More generally, if there is a X! well-order of
the reals, any two countable X, ,1-equivalent models are isomorphic. Hence they
are second order equivalent and the full second order theory of a countable model
is determined by its ¥,,.1-theory.

However, it does not follow that every second order sentence is equivalent to
a X!, sentence for countable models [22] (Corollary 14.5 VIII(b)).

2.1.3. COROLLARY (AJTAI [2], HARRINGTON [8]). A(L? w) is consistent with
V # L.

Proof. By a result of Harrington [8] it is consistent with ZFC' that the con-
tinuum is as big as desired but has a Al-definable well-order.

g
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If we have a second order definable well-order of the reals with a parameter! r
then any two countable models which satisfy the same second order theory with
parameter r are isomorphic. This can be seen by just adding a parameter to the
proof of Theorem 2.1.1. However, in this article we do not give much attention
to the case where we allow parameters: We are generally interested in possibility
to determine isomorphism types of models by their theories in languages having
sentences smaller than the cardinality of the model. Thus using a real parameter
in a language to determine isomorphism type of a countable model (a real) is a
bit disappointing.

However, we note the following result of Harrington [8]: It is consistent with
Z FC that Martin’s Axiom holds, the continuum is as big as wanted and there is
a second order definable well-order of the reals using a real parameter. It follows
that there is a model of ZFC' in which the following hold:

1. Martin’s Axiom

2. For some real parameter r, second order equivalence with the real parameter
r implies isomorphism for countable models.

2.1.4. QUESTION. Is Martin’s Aziom consistent with A(L* ,w)?

A second order definable well-order of the reals is also consistent with mea-
surable and Woodin cardinals, which cannot exist in L. We will return to these
large cardinals in Chapter 6.

By Theorem 2.1.1 A(L? w) is consistent. In all our examples where A(L?, w)
holds this is based on a second order definable well-order of the reals.

2.1.5. QUESTION. Is it consistent with ZFC' that A(L?,w) holds, but there is no
second order definable well-order of the reals?

2.2 Optimality

We proved before that A(33, w) is consistent with ZFC. We will show next that
A(X],w) is not consistent with ZFC.

2.2.1. THEOREM. For any infinite cardinal k there are two non-isomorphic %1 -
equivalent models of Peano Axioms of cardinality . In particular there are two
Yi-equivalent countable models of Peano Azioms which are not isomorphic.

!The logic for second order logic with a real parameter is L?(Q,), the second order logic
with a generalized quantifier Q). The quantifier @, is defined as 2 E Q,(x)o(z) & [{z: A |=
¢(x)}| € r. Note that if we have (w, <) in the model (either in the vocabulary of the model or as
interpretation of second order variables) then the formula ¢ (X) = Vz € w(X(z) < Q,y(y < x))
defines the real r as a subset of w.



2.2.  Optimality 23

Proof. We start by proving the claim for k = w. This proof works equally
well for all kK < 2%, For x > 2% the claim follows from a simple cardinality
argument.

We construct an elementary chain of length w; of countable models of Peano
Axioms. Let 2y be the standard model of arithmetic. We recall that there are
2% different types in arithmetic. If A C w, then by the Compactness Theorem
Ya={0.(2) :ne€ A} U{—b0,(x): n ¢ A}, where 6,,(z) says that the n:th prime
number divides x, is a consistent set of formulas. Thus if A C w, B C w and
A # B, ¥4 and X can be completed to types and these types are different.
In any countable model only countably many types >4 are satisfied, so by the
Compactness Theorem there is always a countable elementary extension which
realizes some new type X 4. It is thus easy to get an elementary chain of length w;
of countable non-isomorphic models of Peano Axioms. However, we want some
of the models in the chain to be Yl-equivalent. In order to do that, we make
sure that the X} sentences true in the models of the chain are increasing. Thus
for each ¥} formula IR¢ which is true in the standard model of arithmetic we
put a new relation to the vocabulary of 2y and interpret it in such a way that
the formula ¢ is satisfied. If 2, satisfies some 3{ sentences (in the original
vocabulary) which are not true in 2, then we add new relations to the model so
that every 31 sentence is satisfied by a relation in the model. We are making the
vocabulary bigger and bigger, but it does not matter. If ¢ is the vocabulary of
20, and 7 is the vocabulary of g, a < 3, then 2, < Az | 0. Since there are only
countably many i sentences, there is such an «a < w; that from « forward all
models in the chain are Y{-equivalent. Thus from some a forward, all models in
the chain are ¥1-equivalent but not isomorphic.

The above proof works equally well for all cardinalities R, < 2%. In any
cardinality x there are 2" nonisomorphic models of arithmetic. Therefore X}-
equivalence does not imply isomorphism in cardinalities x > 2% and thus ¥}-
equivalence does not imply isomorphism in any infinite cardinality.

0

Theorem 2.2.1 is formulated for Peano Axioms, but the proof works equally
well for any theory which has 2% many types and more than continuum many
non-isomorphic models in all cardinalities greater than or equal to the continuum.

We showed above that A(3{,w) does not hold. We proved earlier that A(X}, w)
holds in L. However we don’t know yet whether A(X) w) is consistent.

2.2.2. QUESTION. Is it consistent with ZFC' that A(X3,w) holds?

2.2.3. QUESTION. If V = L, are there two countable non-isomorphic models
which have the same monadic second order theory?
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2.3 Failure of A(L* w)

We will now recall the second part of the independence proof of Ajtai [2].

2.3.1. THEOREM (AJTAI). It is consistent with ZFC, that there are two count-
able non-isomorphic models which satisfy the same sentences of the language of
set theory. In particular the models are second order equivalent and L™-equivalent
for all n.

Proof. We add a Cohen-generic real to the set theoretic universe. Recall that
the forcing conditions are functions from finite subsets of w to {0,1}. A forcing
condition p is stronger than a forcing condition ¢ iff p extends ¢. If G is a subset
of w, we denote by F¢ the set of all subsets of w which differ from G only in
finitely many points. Let now G be a generic real and —G the complement of
G. We are discussing the models (FY U w, <,,, Pg) , where <, is the natural
order of w and Pg is the relation which tells which natural numbers n belong to
which sets in F“, and the corresponding model to —G.2 We denote these models
M¢% and M~¢. We claim that these two models satisfy the same sentences of
the language of set theory, but are not isomorphic. If some formula ¢(x) of the
language of set theory is satisfied by M¢, then by the Forcing Theorem 1.2.17 it
is forced by some forcing condition p. But p is finite and does not determine M ¢
at all. Assume p I- (M) A —¢(M~C). So there is a generic filter G containing
p such that V¢ = ¢(MY) A =¢p(M~%). Now consider another generic filter G’
which agrees with G on the domain of p but is the complement of G outside
the domain of p. Now V¢ = V& but the models M% and M~¢ swap places:
(MG = (M-6)V and (MG)V? = (M~-6)V®. Thus the forcing condition p
can not force any formula of the language of set theory with parameters from the
ground model to be satisfied in A% and false in M ~C.

But (F¢Uw, <, Pg) and (F~¢Uw, <,, P_¢) are non-isomorphic: Since w is
a rigid structure, in an isomorphism every set in F'“ should be mapped to exactly
the same set in F~¢. But this is impossible because G ¢ F~¢.

4

Note that in the proof we do not assume anything about the ground model.
Consequently if we add a Cohen real to any model of ZFC, as is done in the
proof, A(L? w) fails in the generic extension.

2.3.2. REMARK. If two countable models are not isomorphic to each other then
they can be separated by some L, -sentence. The logic Ly, . 1s related to Dy-
namic Ehrenfeucht-Fraissé games, see for example [28] for the definitions. For

2In fact the union of the relations <, and Pg is €, so we could also form the model in
vocabulary {€} instead of {<,, Ps}. We follow here Ajtai, whose vocabulary is maybe more
intuitive than the alternative vocabulary.
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any non-Ly,, ,-equivalent countable models A and *B there is an o < wy such that
I has a winning strategy in Dynamic Ehrenfeucht-Fraissé game EF D, (U, B).
The least such « is called the Scott Watershed for A and 8. The bigger the Scott
Watershed is, the harder the models are to distinguish by an L, .-sentence. The
models MY and M~ satisfy the same sentences of the language of set theory, so
they are in a way hard to distinguish from each other. However, the Scott Water-
shed of the pair (MS |, M~%) is a very small ordinal: w + 1. Thus the difference
between ME and M~C is not of the kind that is well reflected in the approach of
Ehrenfeucht-Fraissé games.

In the proof of Theorem 2.3.1 we added one generic real to the set theoretic
universe and got two second order equivalent non-isomorphic models. But actu-
ally by a little modification of the proof, we can add many generic reals to the
universe and get many countable second order equivalent non-isomorphic models:

2.3.3. THEOREM. Let k1 be an infinite cardinal. There is a cardinals preserving
notion of forcing P that forces that there are k* countable ZF -equivalent non-
1somorphic models.

Proof. We add k™ generic reals to L. Forcing conditions are finite functions
from kT x w to {0,1}. A forcing condition p is stronger than another forcing
condition ¢ iff p extends q. If GG is a generic set for this notion of forcing, for all
a < k', fo ={n:G(a,n) =1} is a generic real. Note that for all @ < f < kT,
fa and fg differ in infinitely many points. Thus if we construct models around f,
and fg as in Theorem 2.3.1, we get countable non-isomorphic models. We denote
these models by M/ and M/#. We will show that the models are Z F-equivalent.
Assume not: then by the Forcing Theorem 1.2.17 there is a forcing condition
p and a ZF-sentence ¢ with possibly parameters from the ground model such
that p IF ¢(M7T>) A =¢(M/#). So there is a generic filter G containing p such that
V& = ¢(MI=)A=¢(MI#). But there is another generic filter G’ which agrees with
G in all ordinals different from « and [, agrees with G in a and £ in the domain
of p and chances digits of « to digits of S and vice versa outside the domain of p.
Now V& = V& p e G and the interpretations of M7 and M fs swap places in
the two generic extensions. Thus it is impossible that p I ¢(Mfe) A =p(M /7).

g

2.4 The Fraissé Hypothesis

Given a language L, a cardinal x and a model class C' we can ask whether A(L, k)

restricted to C is true, i.e., whether any two L-equivalent models of cardinality

x which belong to C are isomorphic. In this section we will discuss the following

model classes: the ordinals, the linear orders and the models of arithmetic.
Recall the definition of the Fraissé Hypothesis, Definition 1.1.3.
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2.4.1. THEOREM. The Fraissé Hypothesis implies that there is a third order de-
finable well-order of length wy of a subset of the reals.

Proof. The ordinal w; is characterizable in third order logic in any countable
model as a third order predicate (a set of sets). In third order logic we can also
characterize a truth definition for all countable ordinals, i.e., a mapping from w;
to the second order theories of the ordinals in w,. For details see Definition 6.1.8
and Lemma 6.1.9. We fix some Godel-numbering of second order sentences and
consider second order theories as real numbers. From the Fraissé Hypothesis it
follows that countable ordinals have different second order theories and thus our
mapping maps them to different reals. Thus we have a third order characterizable
injective mapping from w; to the reals. So we have a third order definable well-
order of length w; of a subset of the reals.

g

2.4.2. THEOREM. If there is a second order definable well-order of length wy of
a subset of the reals then the Fraissé Hypothesis holds.

Proof. Let X be the subset of the reals in the assumption and let o be a
countable ordinal. In the second order definable well-order of X there is the a:th
real in the well-order of X. In second order logic we can talk about this real by
sentences of the following form:

“There is an initial segment of the well-order of X which has the same order
type with this model and the supremum of this initial segment contains (or does
not contain) n.”

If @ and § are different countable ordinals, then X has an a:th real a and a
B:th real b and a # b. Thus there is some n € w where a and b disagree and for
this n the ordinals o and [ disagree about a second order sentence of the above
form.

O
2.4.3. THEOREM. Consider the following conditions:
1. There is a second order definable well-order of the reals.
A(L? w).

The Fraissé Hypothestis.

> e

There is a third order definable well-order of a subset of the reals which has
length wy.

5. There is a second order definable well-order of length wy of a subset of the
reals.



2.4. The Fraissé Hypothesis 27

The following implications hold:
l.=2.=3. =4
5. = 3.

Proof. 1. = 2. Theorem 2.1.1. 2. = 3. is trivial. 3. = 4. Theorem 2.4.1.
5. = 3. Theorem 2.4.2.

g

Recall that the implication 2. = 1. in Theorem 2.4.3 above is an open question.
From the next Theorem it follows that the negation of the Fraissé Hypothesis
implies w; # wk. As a consequense implication 2. = 3. is proper, as after adding
a Cohen real to L countable ordinals still satisfy different second order theories.

2.4.4. THEOREM. Assume 2 is a countable model in the universe of constructible
sets, and M is a transitive model of ZFC' containing all ordinals. Then for any

model B in M, if M |=A =12 B then A = B.

Proof. Given a countable model in L (say 2), we can say in second order logic
which second order sentences it satisfies in L. This is because without too much
trouble we can relativize all second order quantifiers to L. Also there is a second
order sentence ¢ which says that the model in question is countable in L. Assume
now M = A =12 B. As B | ¢ the model B is countable in L. As 2 and B
satisfy the same second order sentences in L, it follows from Theorem 2.1.1 that
2l and ‘B are isomorphic.

g

At this point we note that A(L? w) and the Continuum Hypothesis do not
decide each other in any way. We give the following examples:

1. A(L* w) and the Continuum Hypothesis both hold in L, see Theorem 2.1.1.

2. If we add Ny Cohen generic reals to L (see Theorem 2.3.3), then A(L? w)
and the Continuum Hypothesis both fail.

3. Harrington[8] gives a model of ZFC' in which the continuum is large but
has a Al well-order. From Theorem 2.1.1 it follows that in Harrington’s
model the Continuum Hypothesis fails but A(L? w) holds.

4. If we add one Cohen generic real to L, as is done in Theorem 2.3.1, then
A(L? w) fails but the Continuum Hypothesis holds.

We will next define the diamond principle  and show that <} does not decide
A(L? w) either.
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2.4.5. DEFINITION. The diamond principle $ is the following condition:
There exists a sequence of sets (S, : a < wy) with S, C «a, such that for every
X Cwy, the set {a <wy : X Na=95,} is a stationary subset of w;.

We will now introduce a forcing which makes <» true. We use the forcing from
Jech [11], exercise 15.23.

2.4.6. LEMMA. (Folklore) Let Q@ = {(Sp: f < o), v < wy}, where Sz C (3 for all
B < «a. Let p be stronger than q if and only if p extends q. Let G be QQ-generic.
Then V[G] = <.

Proof. We will show that | JG is a {-sequence. Thus we need to show that
for any forcing names C' and X, if p I+ (C is closed unbounded subset of w; and
X C wy) then there is a ¢ stronger than p such that ¢ = (S + B < a) and
gIF (c€Cand XNa=S,).

So assume p IF (C is a closed unbounded subset of w; and X C wy). We will
define inductively an w-sequence of forcing conditions in such a way, that the
upper limit of this sequence will do the job. We use len(p) to denote the length
of the forcing condition p.

1.po=p

2. p1 is a forcing condition strictly stronger than po such that p; IF oy € C for
some ay > len(pg). This is possible because py proves that C' is unbounded
subset of w.

3. ps is a forcing condition strictly stronger than p; such that it decides X Ny,
and len(py) > ayq. This is possible because our forcing is Ny-closed and it
does not add any new subsets to countable sets. Thus X N oy is some set
from the ground model and there is some forcing condition which decides
which set from the ground model it is.

4. ps is a forcing condition strictly stronger than ps such that ps IF an € C for
some as > len(ps).

5. pa4 is a forcing condition strictly stronger than ps such that it decides X Navs,
and len(py) > as.

Let a be the supremum of the ordinals len(p,), n € w. Since the sequence
o1, Qa, . .. converges to a and C' is closed, ¢ IF o € C for any ¢ which is stronger
than all p,:s. Also for any § < « there is some forcing condition p, which decides
whether 5 € X. Now we can define ¢ to be as p,:s for 3 < a and at a we can
define it to be X Na.
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g

In L the ¢ principle holds and A(L? w) holds. We just showed that <) can
be forced to be true by a small forcing which does not destroy large cardinals.
Thus we can have a model with <) and infinitely many Woodin cardinals with a
measurable cardinal above them (assuming the consistency of the large cardinal
axiom above). Then, looking ahead, from Theorem 6.1.6 it follows that ¢ is
consistent with the negation of A(L? w).

Ajtai [2] has proved that it is consistent with ZFC that there are two differ-
ent countable ordinals which satisfy the same standard Z F-formulas. However,
the model of ZFC' in the proof is not necessarily transitive, so there might be
some non-standard Z F' or second order formulas which do not agree about those
ordinals.

Marek [16] notes without a proof that in the Levy model, where all cardinals
below the first inaccessible cardinal are collapsed to countable ordinals, the Fraissé
Hypothesis fails. He also notes a result of G. Sacks that if wk is collapsed to w,
then the Fraissé Hypothesis fails. We will next present a proof for this. Note
that the failure of the Fraissé Hypothesis is consistent relative to the consistency
of ZFC.

2.4.7. THEOREM (SACKS). It is consistent with ZFC' that the Fraissé Hypothe-
sis fails.

Proof. Let L be the ground model. We make a forcing which collapses w; to
w. The forcing conditions are injective functions from finite subsets of w to wy.
A condition p is stronger than a condition ¢ iff p extends q.

We make the following remark: The forcing is homogeneous (see [23] for the
definition), and consequently if a is an element of the ground model, ¢ is a second
order sentence and p IF ¢(a) then 1 IF ¢(a). This is because in this forcing any
forcing condition can not determine the generic extension in any way. If G is a
generic filter for this forcing and p is a forcing condition then there is another
generic filter G’ containing p such that V& = V¢

We claim that after the forcing there are two different ordinals smaller than w¥
which have the same second order theory. Assume not. Then after the forcing all
ordinals smaller than w¥ have different second order theories. For each ordinal
a < wk, the relation 1 IF ¢(a) is definable in the ground model and the real
ro = {n :nis a Gédel number of such a second order sentence ¢ that 1 IF ¢(a)}
is definable in the ground model and belongs to the ground model. Now the
mapping a +— r, is an injective mapping from wy to the reals and it exists in L
which is a contradiction.
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We will give another proof for the consistency of the existence of two non-
isomorphic second order equivalent countable linear orders. In the proof we con-
struct two linear orders, which “look like” the two models in the proof of Theorem
2.3.1.

2.4.8. THEOREM. [t is consistent with ZFC' that there are two (or k) countable
non-isomorphic second order equivalent linear orders.

Proof. Recall the models (F¢ Uw, <,, Pg) and (F~¢ Uw, <,, P_¢) from the
proof of Theorem 2.3.1. We expand these models by adding linear orders (“lexi-
cographic orders”) to the sets F'“ and F'~¢. In "lexicographic order” X < Y iff
there is an n € w such that below n the sets X and Y have the same elements,
but n ¢ X and n € Y. Note that these lexicographic orders are characterizable in
second order logic in the models in question, so the expanded models are second
order equivalent.

Now we want to modify these lexicographic orders in such a way that they
reflect the structure of the sets in F“ and F~¢. For each subset X of w we
construct the following linear order denoted by <x:

We denote by <% the following linear order: In the beginning there are four
points. After the four starting points there is a Q-component. Then if X has the
first digit zero there are two points in the linear order. If X has the first digit one
there are three points in the linear order. If <% has been defined, we denote by
< the linear order which has <% in the beginning, then a Q-component and
then two points (if the n 4 1st digit of X is 0) or three points (if the n + 1st digit
of X is 1). Finally we define <x=J, oy <%-

The construction is characterizable in second order logic, so the mapping
X < x with domain F'¢ is characterizable by a L? formula in (F¢ Uw, <., Pg).
Similarly the mapping X ~—<x with domain F~¢ is characterizable by a L?
formula in (F~¢Uw, <, P_g).

Now we can define the linear order < as follows:

dom <g= U dom <x
XeFC

where dom <x Ndom <y = () for all different X and Y. If z and y are in dom <g
then x <4 y iff one of the following holds:

1. There are X and Y such that x € dom <x and y € dom <y and X is
smaller than Y in the lexicographic order of F¢.

2. There is X such that z € dom <x and y € dom <x and = <x y.

The construction of < is second order characterizable in (F¢ U w, <,). In a
similar way we can characterize another linear order <_¢ in (F~%Uw, <, P_q).
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Because (FY U w, <, Pg) and (F~% Uw, <,, P_g) are second order equivalent,
also the linear orders <4 and <_g are second order equivalent.

But the models are not isomorphic. The model constructed from —G does not
have an interval which starts with four points, then has w copies of ()-components
and some points between the ()-components as we will describe below: For each
k € w between the k + 1st and k + 2nd Q)-components there are 2 points when
the kth digit of G is 0 and there are 3 points when the kth digit of G is 1.

If we add k™ generic reals as in Theorem 2.3.3 then we get k' non-isomorphic
second order equivalent linear orders.

g

2.4.9. THEOREM. It is consistent with ZFC' that there are two countable second
order equivalent non-isomorphic models of arithmetic.

Proof. Let o and (8 be second order equivalent countable non-isomorphic or-
dinals, which consistently exist by Theorem 2.4.7. Let o be a minimal type [12].
We extend the prime model of arithmetic by taking a-canonical and S-canonical
extensions over the type o. That is: we take the Ehrenfeucht-Mostowski models
which are generated by the sequences of elements of the minimal type o, and we
let the generating sequences have order types o and . The models are second
order equivalent, but they are not isomorphic as there is no order preserving map-
ping of the generators of the first model to the generators of the second model.
It is also impossible to have an isomorphism from one model to the other which
would map the set of generators to a set other than the generators in the other,
because both structures are rigid [12] (p.70).

g

2.5 Submodels

In this section we discuss elementary submodels. As we will see, the concept of
second order elementary submodel is too strong to be useful. However, using
Ajtai’s technique we will prove a theorem which demonstrates the possibility of
having a stronger version of first order elementary submodel.

2.5.1. DEFINITION. 21 =7, B means 2 is a second order elementary submodel
of B. This means: 2 is a submodel of B and for any second order formula
O( Xy, ... Xn, 21, ..., Ty) and relations Ay, ... A, € A and elements ay, ..., an, €
A

if A E (A, ... Apyar, ... an) then B = ¢(Ay, ... Ay a1, ... an).
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Clearly it is impossible to have 2 <7, B8 when A # B, as A satisfies the
formula saying that every element belongs to it in 21 but that is not the case in
B.

We need a weaker formulation for second order elementary submodel:

2.5.2. DEFINITION. 2 <72 B if A C B and for any finite sequence of parameters
ac A a) = (B,a).

Is it possible to find non-isomorphic models 2 and B such that A <;2 87 In
fact we will prove a stronger result: we will give such models 2l and B that 2 C B,
A 2B and (A, ay,...,a,) and (B, aq,...,a,) satisfy the same formulas of the
language of set theory for all first order parameters ay,...,a, € A. This result
is easy to get if one thinks models of empty vocabulary in different cardinalities,
but we give an example were both models 2l and 8 have the same cardinality Y.

2.5.3. THEOREM. It is consistent with Z FC' that there exist two models 2 and B
of cardinality Ro satisfying the following: A C B, A Z B and (A, ay,...,a,) =zF
(B, ay,...,a,) for all elements ay,...a, € A.

Proof. We force w generic reals to the set theoretic universe. Forcing condi-
tions are finite functions f : w x w — {0, 1}, and a forcing condition p is stronger
than a forcing condition ¢ iff p extends ¢.® If G is a generic set of conditions
and i € w we say that G; = {n : G(i,n) = 1} is the ith generic real. De-
fine dom?l = |J,cqy dom®;, where 2; is the Ajtai model constructed from the
ith generic real. Define <®= the natural order of w. Define P* = |J, ¢y P™.
Define similar way dom®B = |J, oy dom2;, <®= the natural order of w and
P? = UiEQN P,

The models are not isomorphic because B contains some subsets of w which
2l does not contain, and in an isomorphism every subset of w is mapped to itself.

We claim that (2, aq,...,a,) =zr (9B,a4,...,a,) for arbitrary ai,...a, €
0. Suppose not: there is a forcing condition p and a formula ¢ such that p IF
gb(Ql, A1y, 0y) N ﬁgb(%,a'l, ...,ay,). Let G be a generic filter which contains
p. It is possible to construct another generic filter G’ such that V¢ = V&,

.V = avV,. .. a,"" = a,Y" and BYY = AVY . This is possible because
the forcing condition p is finite. For those ¢ which determine the interpretations
of the forcing names dy,...,d, we let G and G’ agree about everything?. In

the domain of p we let G and G’ agree about everything. Otherwise we let G’
produce in the indexes 6N those generic reals which G' produces in the indexes

3In fact this forcing is the same as the usual Cohen real forcing where the forcing conditions
are finite functions from w to {0, 1}, but we feel that this formulation is more intuitive here.

44, is either a natural number or a subset of w. If it is a natural number then the interpre-
tation of (for example) d; is determined by the trivial forcing condition. If @ is a subset of w
then a; is the same as one of G;:s (where i € 2N), except for finitely many digits. Thus it is
determined by G; = {n : G(i,n) = 1}.
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2N, and in the indexes N\ 6N those generic reals which G produces in the indexes
2N + 1. Because of p it may be impossible to produce exactly the same generic
reals, but it is possible to produce reals which are the same except in finitely
many digits. However, finitely many digits do not make any difference to the
model AV and we get BV = A" But now it can not be so that p IF

H((A, dy, ..., dn)) A—d((B,dy, ... d)).
O






Chapter 3

Fourth order logic

3.1 Coding subsets by collapsing cardinals

In Chapter 2 we showed that it is independent of ZFC whether A(L? w) holds.
A natural question is whether analogous results can be proved for other higher
order logics L™ or various uncountable cardinals x. Our results in this chapter
were inspired by the following theorem of Ajtai [2].

3.1.1. THEOREM (AJTAY). There is a model of ZFC in which A(L™,w) fails for
every n € w but A(ZF,w) holds.

Proof. [sketch] We add first a Cohen real G to L as in Theorem 2.3.1. After
this forcing there are two Z F-equivalent non-isomorphic models of cardinality w
and GCH holds.

Next we will make G definable by a ZF sentence. For all natural numbers
n we add by Easton forcing N,,,12 Cohen subsets to N, for those n where
the nth digit of G is 1. After the forcing G is definable by a Z F-formula as the
function f:w — {0, 1},

e f(n)=0,if GCH holds at N,
e f(n)=1if GCH does not hold at W,

is definable by a ZF-formula. It follows that after the forcing the canonical
well-order of L[G] is definable by a ZF-formula and A(ZF,w) holds after the
forcing. By Lemma 1.2.9 the truth of L™ sentences in a model of cardinality
w are determined by sets in H((3,_2(w))"), thus the two models remain non-
isomorphic and L™-equivalent for all n.

g
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Next we will give some motivation to our definition of a forcing P ., which
is used a lot in this chapter. The forcing uses some ideas of Kenneth McAloon
[18].

Assume M = L[X], A is a cardinal and X C A. Assume also that M and L
have the same cardinals, k = 8 is a cardinal in M and GC'H holds above & in
M. We will next introduce the forcing Px ,, which makes X definable from x,
but does not add any new subsets to k. Let X’ be a subset of A\ {8 : fis a
limit ordinal} such that X’ and X contain the same information'. The forcing
is an iterated forcing of length A\ with full support at all limit stages. The idea
is that Py, collapses Rqiy.512 t0 Notyp1 for € X', and does not collapse
any other cardinals. After the forcing X’ (and hence X) is definable from « as
X' ={B < X: Nt , is not a cardinal}. Next we will give an exact definition

a+w-[B+
of the forcing conditions:

3.1.2. DEFINITION (P ). The forcing conditions are sequences (pg)s<r Such
that the following hold:

1. If 0 € X', then Py is the set of partial functions from Woi1 to Naio of
cardinality smaller than R.,1. A forcing condition p is stronger than a
forcing condition q if and only if p extends q. If 0 ¢ X', then Py is the
trivial forcing.

2. Assume B =+ 1 and Py has been defined for all " < .

If B € X', we define Pg to be the set of sequences p,,y < [3 where the yth
coordinate belongs to P, for each v < 8 and the 8th coordinate is a forcing
nameY such that p | BI\FY is a partial function from Nt s+1 10 Nojwpyo
of cardinality smaller than Roy..p11. If p and q are two conditions of length
B then p is stronger than q if and only iof p | v is stronger than q [ v and

p | B (p(B) and q(B) are partial functions from Noiw.pi1 10 Notw.pr2 Of
cardinality smaller than R,4p.541 and p(a) 2 g(@)).

If B ¢ X' then Pg is the trivial forcing.

3. If B is a limit ordinal, the forcing conditions in Py are the tuples p of length
B such that for each v < B p [ v Ik p(y) € P,. This forcing has full
support in all limit stages, which means that in limit stages all coordinates
of a forcing condition may be non zero. A forcing condition p is stronger
than q if and only if p | v is stronger than q | vy for each v < j3.

3.1.3. LEMMA. Assume M = L[X]|, X\ is a cardinal and X C . Assume also
that M and L have the same cardinals and GCH holds above k in M. Let G be

a Px x-generic set over M. M[G] = X' ={f < X: N5+wﬂ+2 is not a cardinal}.

!For example forall a < A:a € X <> a+1€ X',
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Proof. We prove by induction on /3 that after P the claim holds for all v < 3,
i.e., forall v < 3, Ngﬂmw is a cardinal iff v € X’. The rest of the iterated forcing
is No4y.(s+1)-closed and does not add subsets to R, ..541 50 the claim follows.

1. Let = 0. If 0 ¢ X’ then F, is the trivial forcing and the claim holds.
If B € X' then Ps collapses Ny iy 12 t0 Noyw.pr1. The forcing P is <
Notw-pr1-closed and has cardinality R, 512 (because GCH holds above
k= N,), so other cardinals and GC'H above k are preserved.

2. Let f = v+ 1 and assume Induction Hypothesis holds for v. If 8 ¢ X’ then
Py is the trivial forcing and the claim holds. If 8 € X’ then Pj collapses
Notw-g+2 10 Nopo.p+1. Note that Pgis < N,4,,.541-closed and has cardinality
Notw-g12, because GCH above k holds. It follows that Ps preserves other
cardinals. Also GC'H above k is preserved so the claim holds.

3. Assume [ is a limit ordinal and the Induction Hypothesis holds for all
smaller ordinals. The forcing Ps has cardinality at most N,.,.5 so it does
not collapse any cardinals greater than RN, 3. Also 8,13 is not collapsed
because there are cofinally many cardinals below which are not collapsed.
GCH above k is also preserved.

4. The whole forcing Py , has cardinality at most N,,.\ so cardinals greater
than W, ..\ are preserved. The cardinal N, ., itself is preserved, as cofi-
nally many cardinals below it are preserved.

g

3.1.4. THEOREM. Let k be a cardinal in L. There is a model of ZFC' in which
2F = 2% A(L*, k) holds, A(L?, k) fails and all cardinals < k of L are preserved.

Proof. Let L be the ground model. We make an iterated forcing which has
three parts and length ™ + 1. After the forcing fourth order equivalence implies
isomorphism in cardinality x but second order equivalence does not.

1. First we add 2% Cohen-subsets to w. This forcing does not collapse any
cardinals and after the forcing 2% = 2~

2. Now let G be the generic set we added in step 1. and let II be a bijection
from 2% to 2% in V[G]. We want to make G and II definable from & in the
language of set theory, but not to make them second order characterizable
in cardinality k.

As G and II are of cardinality smaller or equal to 2 = k™, there is a subset
X of 2% which codes them both. Let X’ be a subset of 25\ {7 : v is 0 or
a limit ordinal } such that X and X’ are definable from each other. We
will now make one such X’ definable from « in the language of set theory.
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Let X' be a canonical name for X'. After the forcing Py the GCH holds
above k, X’ has cardinality 2%, and the cardinals are the same as in L, so
by Lemma 3.1.3 Py * Py, . does not add any new subsets to £ and makes

X’ definable from « in the language set theory.

. In the last step we add N,4,..+41 Cohen subsets for k™. This does not col-

lapse cardinals or add new subsets to . Now X’ is definable in H((Ja(x))")
so by Lemma 1.2.9 there is a fourth order definable well-order of the power-
set of k and a fourth order definable bijection from the powerset of s to the
reals. Now as in Theorem 2.1.1 we can have fourth order sentences which
say “There are Ry C k and R, C w such that R is the least subset in the
well-order isomorphic to the model in question and II maps R, to Rj, and
R((8743)”. Sentences of this form determine the isomorphism type of the
model so A(L*, k) holds after the forcing. A(L?, k) fails after the forcing as
it fails after the first Cohen forcing? and we did not add any subsets to &
after that.

g

3.1.5. THEOREM. Let k be a cardinal in L. There is a model of ZFC' in which
2F = 2% and A(L*, \) holds and A(L?,\) fails in any cardinality X < k.

Proof. Let L be the ground model. We use an iterated forcing which has the

following steps:

1. We add 2" = k™ Cohen subsets to w. Cardinals are preserved in this forcing

and after this forcing 2* = 2% = kT for any A\ < k. Also A(L? ) fails for
all A < k, see Theorem 5.2.7 below.

. Now let G be the generic set we added in step 1. and let {II, : A < k} be

a set such that each I, is a bijection from 2% to 2* in V[G]. Let X’ be
a subset of 2\ {7 : 7 is 0 or a limit ordinal} which codes G' and all the
bijections II,.

As in the previous theorem Py * Py, . makes X " definable from x and adds
the same subsets of xk as F, alone.

. In the last step we add N, .+,1 Cohen subsets to 2".

After the forcing A(L?, \) fails for every A < k as we did not add any new
subsets to A after step 1. After the forcing A(L* \) holds for all A < &
as in H(Jy(A)T) there is a definable well-order of the powerset of A and a
definable bijection from 2* to 2“.

2Theorem 2.3.1 proves this for x = w and Theorem 5.2.7 below proves the uncountable case.
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g

3.1.6. THEOREM. Let Kk be a cardinal in L and let n be a natural number greater
or equal to 2. There is a model of ZFC' in which A(L", k) fails but A(L""? k)
holds.

Proof. Let L be the ground model. Our iterated forcing has the following
steps:

1. We add 2" Cohen subsets to w. After this step A(L", k) fails for every n,
2% =2¥ GCH holds above k and all cardinals of L. remain cardinals.

2. Let X’ be a canonical name for a subset of x* \ {7 : v is a limit ordinal or
0} which codes the generic set added in step 1. and a bijection II from 2
to 2%. The second step is PX’,:L,L_Q(H) This step does not add any subsets to

:n_g(/i).

3. Cohen forcing which adds N,,,.2¢11 subsets to 3,1 (k).

After the forcing A(L", ) fails as it fails after the first Cohen forcing and
no subsets are added to 3,,_o(x) after that. After the forcing X’ is definable
in H((3,(k))") and thus there is an L""2-characterizable well-order of the

powerset of k and an L™*2-characterizable bijection from 2% to 2¥. It follows
that A(L""2, k) holds.

O
Note that there are several open questions left, for example the following:

3.1.7. QUESTION. Does A(L"™, k) hold after the above forcing? Or does it de-
pend on k and n whether A(L"™, k) holds after the above forcing?

3.1.8. THEOREM. Let k be a cardinal definable in L. There is a model of ZFC
in which A(L", k) fails for any n but A(ZF, k) holds and all cardinals < k of L
are preserved.

Proof. This is just an obvious generalization of Ajtai’s theorem 3.1.1. Note
that the theorem could be also proved by using the forcing Px .. Let L be the
ground model. We do an iterated forcing with two steps:

1. Let P, be a forcing which adds 2® = k% Cohen subsets for w. After this
forcing there are two Z F-equivalent non-isomorphic models of cardinality
k in a finite vocabulary. The models are also L™-equivalent for any natural
number n. This forcing does not collapse any cardinals and also GCH
above k is preserved. After this forcing 2% = 2%.
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2. In the second step we make the Cohen subset G which we added in step
1 and a bijection II from 2 to 2¥ definable in the language of set theory.
We make this in such a way, that the truth of all L™ sentences in models
of cardinality  is preserved, and after the forcing the powerset of k has a
Z F-definable well-order and there is a Z F-definable bijection from 2% to
2¢. Consequently A(ZF, k) holds after the forcing.

As k is a definable cardinal in L, also N, is a definable cardinal in L.
As GCH holds above k in L[G], the truth of L™ sentences in models of
cardinality x in L[G] is determined by sets which are hereditarily smaller
than N, ,,. We will introduce a forcing which makes G and II definable in
the language of set theory but does not add any sets which are hereditarily
smaller than N, .

Let X C k™ be a set which codes G and II. Let P, be a forcing which adds
N, wiare Cohen subsets to N, 1, for those o for which a € X. After the
forcing we can read X as the function from «* to {0,1} which maps a to
0 if GC'H holds at N, and to 1 otherwise. Now as X is definable by a
Z F-formula we have a Z F-definable well-order of the powerset of x and a
Z F-definable bijection from 2" to 2¥. It follows that A(ZF, ) holds.

g

3.2 Solovay’s result on complete second order
sentences

In this section we will present a Solovay’s result about complete second order
sentences, Theorem 3.2.3, and prove some related results.

3.2.1. DEFINITION. A L-sentence ¢ is a complete L-sentence, if all such models
A and B that A = ¢ and B | ¢ are L-equivalent.

Note that an equivalent definition would be that for all L-sentences ¢, ¢ =
or ¢ |= .

3.2.2. DEFINITION. We use S(L) to denote the hypothesis that any complete L-
sentence ¢ has at most one model up to isomorphism.

We use S(L, k) to denote the hypothesis that any complete L-sentence ¢ has
at most one model of cardinality k up to isomorphism.

The following is an unpublished result of Solovay [25].

3.2.3. THEOREM (SOLOVAY). It is independent of ZFC' whether S(L?) holds.
However, it is provable in ZFC that models which satisfy the same complete
second order sentence have the same cardinality.
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Proof. Let V = L and let ¢ be a complete second order sentence. If there were
more than one non-isomorphic models of ¢ then there would be some model 2
which is the <p-least model of ¢ and some model B of ¢ which is not isomorphic
to the <p-least model of ¢. But now ¢ can not be complete because 2l satisfies
second order sentence “is isomorphic to the < -least model of ¢” and B does not.

We have proved earlier that if we add a Cohen-generic real G to L, we get
L?-equivalent non-isomorphic models (F¢ Uw, <., Pg) and (F~%Uw, <, P_g).
In fact the models satisfy the same complete second order sentence. This sentence
says: The universe of the model is wU{X Cw: | X N—G| < Xy} where G is some
Cohen-generic? subset of w over L such that all reals are constructible from G,
and there is also the natural order of w and a relation which tells which elements
of w belong to which subsets of w.

We will now show that models which satisfy the same complete second order
sentence have the same cardinality. Assume not. Then there are models of
different cardinalities which satisfy a complete second order sentence ¢. Some of
these models is of the smallest cardinality where there is a model of ¢ and some
others are not. Assume 2l is a model of ¢ of the least possible cardinality and B
is a model of ¢ of some bigger cardinality. Now in B the second order sentence
“there is a model of ¢ which has cardinality less than cardinality of this model”
is true and in 2 it is false. Thus ¢ is not a complete second order sentence.

U

3.2.4. LEMMA. Assume L* is a logic extending L* such that L* has relativization
property (see [3] for the definition) and r is a cardinal characterizable by an
L*-formula. If there is a well-order of the powerset of k characterizable by an
L*-formula in models of cardinality , then S(L*, k) holds.

Proof. Let ¢ be a complete L*-sentence and let 2 and B be models of ¢ of
cardinality k. Let < be the well-order of the powerset of x characterizable by an
L*-formula. As there is a model of ¢ of cardinality x there is a model of ¢ of
cardinality x which is up to isomorphism the <-least model of ¢. Because ¢ is
a complete L*-sentence and the property “is isomorphic to the <-least model of
@” is expressible by an L*-sentence, every model of ¢ is isomorphic to the <-least
model of ¢. It follows that 2 and B are isomorphic.

g

3We can say in second order logic that G meets all dense subsets of the Cohen real forcing
over L. This is because in the Cohen real forcing over L the set of forcing conditions is countable
and hence characterizable in second order logic in any transitive model of ZFC'. Consequently
we can quantify over dense subsets in second order logic and “G is a Cohen generic subset of w
over L” is expressible in second order logic. All “Ajtai models” over Cohen generic subsets of
w over L are ZF-equivalent (follows from the proof of Theorem 2.3.1 ) thus the sentence is a
complete second order sentence.
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The following theorem is essentially Theorem 4 in Ajtai [2].

3.2.5. THEOREM (AJTAI). It is consistent with ZFC that S(L? w) fails but
S(L3,w) holds.

Proof. [sketch] We describe the forcing of Ajtai which adds a Cohen real to
L and makes it third order characterizable. The idea is to add first a Cohen
real to L and then make that Cohen real third order characterizable by adding
uncountable branches to suitably chosen Suslin trees.

After we have added a Cohen real there are two non-isomorphic countable
models which satisfy the same complete second order sentence, i.e., S(L?,w) fails.
Adding new subsets to w; does not make those models isomorphic or chance truth
of second order sentences, thus in the end S(L? w) fails. On the other hand, there
is a third order definable well-order of the reals, so S(L?, w) holds by Lemma 3.2.4.

g

3.2.6. DEFINITION. Let L* be a logic. A categorical L*-theory is an L*-theory
which has exactly one model up to isomorphism. A categorical L*-sentence is an
L*-sentence which has exactly one model up to isomorphism.

3.2.7. THEOREM. Assume the Fraissé Hypothesis holds. There is a cardinal k
and a model 2 of cardinality  such that 2 satisfies a categorical L?-theory but
there is no model of cardinality x satisfying a categorical second order sentence.

In case V = L we can replace “categorical second order sentence” by “complete
second order sentence” above.

Proof. There is a second order sentence ¢ which says that the model has
cardinality N, where « is the order type of a well-ordered predicate U, see Remark
4.2.3 below. Assume the Fraissé Hypothesis holds and « is a countable ordinal.
Consider the theory T, = {¢} U{¢Y : a = ¢} UU,, where 9V is the relativization
of a second order sentence ¢ to U and U, is a sentence which says that U is
countable. Any model of T, has cardinality N,, U has order type a and the
whole model has order type N,. Consequently every model of T}, is categorical.
As there are uncountably many countable ordinals « but only countably many
categorical second order sentences, in some cardinality R, no model satisfies a
categorical second order sentence.

In case V' = L every complete second order sentence is categorical so the claim
follows.

g

3.2.8. THEOREM. Let k be a cardinal in L such that k and all smaller cardinals
are definable in L, i.e., in the model (L,€). There is a model of ZFC' in which
S(L2,\) holds for all X\ < r but S(L? k) fails and all cardinals < r of L are

preserved.
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Proof. Let L be the ground model. We add a Cohen subset G to x. This does
not add any new subsets to cardinals smaller than x so S(L?,\) is preserved for
all A < k. In cardinality s there are now two non-isomorphic models which satisfy
the same complete second order sentence ¢. The sentence ¢ says that the model
has as universe the ordinal x and a set of subsets of x which differ from a Cohen
generic subset of xk over L in less than x digits, and there is epsilon relation in
the model. This can be said in second order logic as the notion of forcing which
adds a Cohen subset for x to L has « forcing conditions, and we can quantify over
dense subsets of this notion of forcing in a model of cardinality k.

g

3.2.9. THEOREM. Let k = X, be a cardinal such that k and all smaller cardinals
are definable in L and let n > 3 be a natural number. There is a model of ZFC
in which S(L™, \) fails for all X < k but S(L""2,X) holds for all A < k and all
cardinals < k of L are preserved.

Proof. We use the iterated forcing developed earlier in this chapter. Let L be
the ground model.

1. We add 2" Cohen subsets to w. After this forcing the cardinals are preserved,
i.e., every cardinal of L remains a cardinal. Also for any infinite cardinal
A < k it holds that 2* = 2% and GCH holds at and above k.

As this notion of forcing has cardinality x*, after the forcing we can quantify
over dense subsets of this forcing in L? in any model of infinite cardinal-
ity. From a generic set over this forcing we can construct countable ZF-
equivalent non-isomorphic “Ajtai models” (see Theorem 2.3.3) and we can
expand these models to have cardinality A < k as is described in Theorem
5.2.7. Consequently A(L™, \) fails for any A < k after this forcing.

2. We add a definable well-order for the powersets of all cardinals A < k as
follows. Let X be a canonical name for a sequence (X 5 B < «) such that
cach X3 is a canonical name for a well-order of the powerset of Ng. Let X’
be a canonical name for a subset of K™\ {7 : 7 is 0 or a limit ordinal} which
codes X. The next step is the forcing Py, )

This step does not add any such subsets to 3,,_o(x) which were not added
in step 1. Thus S(L", A) remains false.

3. The last step adds W, ,,..+y1 Cohen subsets to 3, _1(k). After this step
S(L™, \) remains false for all A < k. After the last step there will be a
definable well-order of the powerset of A in H(3,(\)") and from Lemma
3.2.4 it follows that S(L™*2 ) holds.

g






Chapter 4

Generalized quantifiers

4.1 The countable case

In this chapter we ask whether higher order logics can be replaced in the above
results by a logic with generalized quantifiers. A clear limitation is provided by
the following result [9]:

4.1.1. THEOREM (HELLA). Let n be a natural number. Let {Q; :1 € I} be a set
of generalized quantifiers of arity < n and let k be any infinite cardinal. Then
there are two models of cardinality x which are L({Q; : i € I})-equivalent but not
1somorphic.

In view of the above theorem, in order to characterize all models of an infinite
cardinality by their theories in a logic L({Q; : i € I}), the arity of the generalized
quantifiers of the logic has to increase beyond any finite bound. On the other
hand, if we let the arity grow we can find a generalized quantifier logic L such
that A(L, k) holds provably in ZFC. We will next give the definition of the above
mentioned language in case kK = w.

4.1.2. DEFINITION. Let (2,),cr be an indexing of all countable models in finite
vocabularies by real numbers, i.e., for any countable model A in a finite vocabulary
there is exactly one r € R such that 2 is isomorphic to 2.

The language L* = L(Q,s : 7,8 € Q) contains atomic formulas, is closed
under negation, conjunction and first order existential and universal quantifiers.
L* is also closed under the quantifiers

(%) QrsT's .., T((T), ... du(T"))

for all ;s € Q. The notation Z* is a shorthand for =%, ... ,xﬂ“\,k, where ), # xP
whenever m # o or n # p.

The formula (x) is defined to be true in a model M if and only if |IM| = Ny
and (M, ¢T(+), ..., ™ (+)) is isomorphic to a structure Ay such that r <t < s.

45
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We can’t prove in ZFC that there is any such indexing (2(,),cg of the count-
able models, which is definable in the language of set theory. But we fix one such
indexing no matter whether it is definable or not.

4.1.3. THEOREM (WEINSTEIN (UNPUBLISHED)). !

In any model of ZFC' there is a countable language L* such that A(L*,w)
holds.

Proof. Let 2 be a countable model in a finite relational vocabulary (R, ..., R,).
Note that constants can be coded into unary relations and n-ary functions can
be coded into n + 1-ary relations so restriction to relational vocabularies does not
make the result less general. The sentence Q2" ..., 2" (R (Z),..., R, (Z"))
is true in a model 2 if and only if the r such that 2. which is isomorphic to
(AR}, ..., RY) (and thus isomorphic to 2l itself) is between ry and so. Let now
2l and B be two countable non-isomorphic models in vocabulary 7. Now 2 is
isomorphic to some 24, and ‘B is isomorphic to some 2, for different p and ¢. Let
ro and sg be such that rg < p < sg and either ¢ < ry or sqg < ¢g. Then

2 ): Qro,so‘fl’ e 7jn(R1(j1>7 e 7R”(1_:n>>

but
B = QrosoZ's ., TR (T, ..., R (3")).

4.2 The uncountable case

Theorem 4.1.3 can be generalized to any infinite cardinality as we will do next.
The proof is based on an idea of Per Lindstréom [14]. First we will give the
definition of the relevant logic:

4.2.1. DEFINITION. Let (¢) (013 be an indexing of all models of cardinality
k in finite vocabularies.

Define the sets X, and X! as follows: X, = {f : k — {0,1} : f(a) = 0},
X ={f:k—{0,1}: f(a) = 1}.

Let L™ = L(Q5 : a < K, S a finite set of variables) contain atomic formulas,
be closed under negation, conjunction and first order existential and universal
quantifiers. Let S be any finite sequence of finite sequences of distinct variables
(S = (z,...,7%)). Let L* be also closed under the following quantifiers Q5 and
RY:

«

Q3z', ..., 7% (¢ (ZY),. .. on(@))

IThis result and its proof is presented here with the permission of Professor Scott Weinstein.
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RSz, .. 2R (2Y), ... or(Z)).

zE(py (7)), ... o (T)) is true in a model M iff |M| = &
)) is isomorphic to an Ay such that f € X,.
zE(py (7)), ... dn(T)) ds true in a model M iff M| = &
)) is isomorphic to an Ay such that f € X],.

The formula Q5z',. ..,
The formula RSz, ...,
and (M, ¢7"(-), ... &7 (:

Note that there are countably many finite vocabularies, and for any finite
vocabulary there are at most 2" pairwise non-isomorphic models of cardinality x
with the vocabulary. Thus an indexing () .x—0,13 of all models of cardinality
k in finite vocabularies always exists though may be impossible to define in the
language of set theory.

4.2.2. THEOREM. Let k be an infinite cardinal. There is a language L™ of car-
dinality k such that A(L™, k) holds.

Proof. Any f:k — {0,1} can be expressed as an intersection of k£ many sets
of the form X, and X!, namely {f} = ({X. : f(a) =0} n{X) : f(a) = 1}.
On the other hand, if f and ¢ are two different functions from « to {0, 1}, there
is an X, such that one of f and g belongs to X, and the other does not.

As in the previous theorem, assume without loss of generality that a model 2
of cardinality s has a relational vocabulary Ry, ... R,.

The sentence Q. 7', ..., T" (R (Z'), ..., R,(Z")) is true in a model 2 if and only
if the f such that 2; which is isomorphic to (A4, R}, ..., R¥) (and thus isomorphic
to 2 itself) belongs to X,. The sentence R,z',...,z"(Ri(Z'),..., R,(z")) is
true in a model 2 if and only if the f such that 2A; which is isomorphic to
(AR}, ..., R*) (and thus isomorphic to 2l itself) belongs to X'..

Let 7 be a finite relational vocabulary (R, ..., R") where the superscripts
denote the arities of the relation symbols. Let 2l and 8 be two non-isomorphic
models of cardinality x with vocabulary 7. Let P be a sequence of variables
which corresponds to arities of the relation symbols i.e. P = z!,...,z" such that
each T¥ contains m, variables. Now (A, R;(-)*,..., R,(-)*) (which is isomorphic
to 21) is isomorphic to some 2; and (B, Ry()®, ..., R,(-)®) (which is isomorphic
to 9B) is isomorphic to some A, and f # g. So there is an § such that one
of f and g (say f) gets value 0 at  and the other gets value 1. Now 2 |=
Q5z', ..., Z"(Ry(z"),... Ry(z%)) but B | -QFz', ... 2" (R (z'),... Ra(z")).

g

Hella’s result 4.1.1 showed that in order to characterize all models of cardinal-
ity k the arity of the quantifiers in the language must be unbounded. However,
if we look at the proof above we see that if we want to characterize all models of
cardinality x in a fixed finite vocabulary, the arity of quantifiers in the language
can be bounded.
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4.2.3. REMARK. Many cardinality quantifiers are expressible in second order
logic. In the logics Li+w even more cardinality quantifiers are expressible. If
an ordinal « is characterizable in second order logic then, as we show below, the
quantifiers 378 and I are definable in second order logic. This is also true
for infinitary second order languages. Consequently if k is a reqular cardinal and
a < k is an ordinal, the quantifiers 32X and I« are definable in the logic Li,w'

Assume now « is characterizable in second order logic (or in infinitary second
order logic). We will introduce a sentence which defines the quantifier I e :

The sentence says that there are U, V', ¢ and < such that the following hold:

1. The relation < defines a well-order in the unary predicate U,
2. Unary predicate V' contains those elements x satisfying the following:

ezxcU
e x has infinitely many predecessors

o Forally<uz: {z:z<y}| <|{z:z <z},
3. ¢ is the greatest element of V and (V \ {c}, <[ V \ {c}) = (o, ¢),

4. 3m (7 is a bijection from {y :y < c} to {y: &(y)}).

When an ordinal o is given, 1.-3. characterize the cardinal N,. Finally 4.
says that there is a bijection from this cardinal to those elements which satisfy the
formula ¢. Thus this sentence is equivalent to Fex¢(x). By replacing bijection
by injection in 4. we get a sentence equivalent to I=Nxd(x).

4.2.4. DEFINITION. We define the ordinal €y as follows: g = w , apy1 = o,
€0 = sup{a, : n € w}.

4.2.5. LEMMA. The ordinal €y and all ordinals o < €y are characterizable by
second order formulas.

Proof. We prove the claim by induction on ordinal a. Let a,,,n € w, be as in
Definition 4.2.4. First of all, it is clear that ¢; and all the ordinals «,, are second
order characterizable.

All ordinals smaller or equal to ag are finite or w and are thus second order
characterizable.

Assume all ordinals smaller or equal to «,, are second order characterizable.
The ordinal «,,; is second order characterizable and if a,, < a < 41 then «
is of the form o' + a,, - m’ +  for some (unique) natural numbers m and m’
and ordinal 8 < «,. Now « is second order characterizable as «,, m, m’, (3,
ordinal addition, ordinal multiplication and ordinal exponentiation are second
order characterizable.
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g

We say that a model 2 is monadic if the vocabulary of 2 contains only unary
relation symbols, and no constants or function symbols.

4.2.6. THEOREM. For any monadic model A of cardinality smaller or equal to
N, there is a second order sentence ¢y which characterizes the model A up to
isomorphism.

Let k be a reqular cardinal. For any monadic model A of cardinality smaller
than N, there is an Liw—sentence oo which characterizes the model 2L up to iso-
morphism.

Proof. Let the vocabulary of 2 be P, ..., P, where each predicate has arity
1. Consider formulas ¢(x) of the form A, ., . ¥, where each v, is either P, (z)
or =P, (). Tt is clear that if B is a model in the same vocabulary as 21 and for
each formula of the form above the cardinality of elements satisfying the formula
is the same in 2 and 25, then the models 2l and 28 are isomorphic. Thus if we
have in our language cardinality quantifiers which correspond to |¢(+)*| for the
¢’s of the form above, then we can write a sentence which tells cardinalities of
these sets and this sentence characterizes 2l up to isomorphism.

Now the first part of the theorem follows from Remark 4.2.3 and Lemma 4.2.5.
The second part follows from Remark 4.2.3 and the fact that every ordinal smaller
than « is characterizable in L, (see Lemma 1.2.11).

g

Note that R, is not an upper limit of those cardinalities where all monadic
structures can be characterized by a second order sentence. We can iterate the
idea of the proof of Lemma 4.2.5 and get bigger countable ordinals « such that all
ordinals up to « are second order characterizable. However, as there are uncount-
ably many countable ordinals and countably many second order sentences, there
is some countable ordinal a and a monadic stucture 2 of cardinality N, such that
2l can not be characterized by a second order sentence. But the infinitary second
order language L2 ,, is strong enough to characterize all monadic structures of
cardinality < N, .

,w
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5.1 Discussion

We have shown in Theorem 2.1.1 that A(L? w) is consistent with ZFC. But
is A(L? ;) consistent with ZFC? Tt is easy to show by a simple cardinality
argument that A(L? R;) does not necessarily hold:

In any finite vocabulary with a binary predicate there are 2% many L?2-
theories. In a finite vocabulary with a binary predicate there are 2% models
of cardinality N; which are pairwise non-isomorphic. It is clear that if 2% < 2%
then there are two second order equivalent non-isomorphic models of cardinality
N;. However, if 2% = 2™ we don’t know what happens:

5.1.1. QUESTION. Is it consistent that 2% = 2% and A(L? /R,) holds?

In Chapter 2 we saw the result of Ajtai that it is independent of Z F'C' whether
all countable models in any finite vocabulary can be characterized up to isomor-
phism by their second order theories. By appropriate coding sentences of second
order logic are natural numbers and second order theories are real numbers. Via
coding, countable models are also real numbers, so the question whether any two
different reals of the latter type correspond to two different reals of the former
type is meaningful. We note that first order theories also correspond to real num-
bers but all countable models can not be characterized up to isomorphism by
their first order theories.

All models of cardinality x can be characterized up to isomorphism by a L.+ .+
sentence, as we will show. Let 2 be a model of cardinality . Let (a, : a < k)
be a well-ordering of the domain of 2. Let ¢y be the sentence

El(xoé)a<ﬁ(/\¢eLwywatomic{¢(xa17 cee axam) : Q[ ): ¢(aa1a te 7aam)}
A /\¢6Lw,watomic{_‘¢(xa17 s 7xam) P ): _‘¢<a0¢17 SR 7aam)}
AYYV oer ¥ = Ta)
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The sentences of the form ¢y say that there is a sequence of elements which
satisfies exactly the same atomic formulas as the elements (a, : o < k) satisfy in
2l and there are no other elements. It is clear that for each sentence of the form
¢y there can be only one model up to isomorphism which satisfies ¢g. However,
these sentences have the same cardinality as the model in question. In this paper
we are interested in the possibility of characterizing models up to isomorphism
by theories, where the sentences have cardinality smaller than the model.

We make the following observations about the possibility to characterize mod-
els up to isomorphism by infinitary languages. In the countable cardinality of the
models L, -equivalence implies isomorphism. Generally L., equivalence is
equivalent to the existence of a back-and-forth set. Back-and-forth-equivalence
implies isomorphism only in the countable cardinality so L., is not good in
characterizing uncountable models up to isomorphism. Nadel and Stavi [21] have
investigated logics L., and showed that these are not successful in character-
izing all models up to isomorphism in cardinality A, where A is an uncountable
successor cardinal.

Thus infinitary languages are not sufficient for characterizing all models up
to isomorphism in an uncountable cardinality A, if we don’t allow the infinitary
language to have sentences of cardinality A. Higher order languages are also
not very successful. As they have only continuum many theories they cannot
characterize all models up to isomorphism in a cardinality which has more than
continuum many models.

5.2 Regular cardinals

We have introduced the infinitary second order language Liw for a regular car-
dinal x in the preliminaries. We will now prove that it is independent of ZFC
whether all models of cardinality x in any finite vocabulary can be characterized
up to isomorphism by their Liw—theories. Sentences of Liw correspond to subsets
of cardinals A\ < k so this logic is not "too strong”.

5.2.1. REMARK. We decided to formulate our theorems for L7 , because it is
a natural logic. However, most of our results hold equally well for a fragment
of L7, which contains atomic formulas, in which ordinals smaller than x are
characterizable and which is closed under second order quantifiers, first order
quantifiers and finite connectives. We don’t know whether this fragment is a
proper fragment of L2 .

The logic Li,w has the following properties in models of cardinality > &:
1. All sets in H(k) are characterizable.

2. The isomorphism type (in the sense of Lemma 1.2.8) of the model in ques-
tion is characterizable.
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3. The logic is closed under quantifying over sets in H(A"), where A is the
cardinality of the model in question.

4. The logic is closed under negation and finite conjunction.

It might be the case that Liw is the least logic satisfying the conditions 1.-4.
above, but we have not found a proof for that.

5.2.2. THEOREM. If k is a regular cardinal and there is a second order definable
well-order of the powerset of k, then A(LL k) holds. In particular A(L? ,, k)
holds if V = L.

Proof. We omit the details as the proof is entirely similar to the proof of
Theorem 2.1.1. See also the proof of Theorem 5.2.3 below.

As in Theorem 2.1.1, a model can be coded into an n-ary relation R C k™.
By Lemma 1.2.11 all ordinals smaller than x are characterizable. For all n-tuples
of ordinals smaller than x we can say whether the tuple belongs to or does not
belong to the least subset of ™ in the well-order which is isomorphic with the
model. The canonical well-order of L. up to sets of cardinality « is second order
characterizable in any cardinality k.

g

In Theorem 5.2.2 we saw that A(L? ,, x) holds in L at any regular cardinal

as there is a second order definable well-order of the powerset of x. In fact we
will get a better result:

5.2.3. THEOREM. Let k be a regular cardinal and let H (k%) C L[X] for some set
X with X C X < k. Then A(L%,,, k) holds.

Proof. Let 2 and B be two models of cardinality x. By assumption 2l and
B belong up to isomorphism to L[X] and hence are isomorphic to some sets in
L[X]. In the infinitary second order language L2, we can talk about the least
subset of k™ in the canonical well-order of L[X] which is isomorphic to A. We
will now describe how this is done.

In the logic sz all ordinals o < k are characterizable by certain formulas
0, (see Lemma 1.2.11). Now the set X is characterizable in a model of cardinality
k by the formula

3 <* (P (A, <*) AVz(P(z) \/ 0a(2)))

aeX

In the above formula ¢, () denotes the formula which characterizes (x, <) and
A denotes the domain of the model in question. We denote this formula which
characterizes X by ¢x.
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If the set X and an ordinal o < k' are given, the ath level of the sets
constructible from X is second order characterizable from these parameters. Also
the canonical well-order of L, [X] is second order definable on L,[X] from X and
a. Let ¢r,x1(Y, X, ) be a second order formula which says that Y is the ath
level of the sets constructible from X (up to isomorphism) and let OB~ (Z,X,«)
be a second order formula which says that Z is the canonical well-order of the
ath level of the sets constructible from X (up to isomorphism).

As usual, we assume that the model in question has been coded into an n-ary
relation R. We are interested in sentences of the following form:

There are X, a, M, < and R, such that the following hold:

1. ¢x(X)

2. a is an ordinal

3. dr.x](M, X, a)

4 ooy (<X a)

5. Rye M ARy = RAVR((RiE MAR, = R) — (Ry< RiVRy=Ry))
6. (a1,...,a,) € Ry

The first four formulas say that a is an ordinal, X is what it is supposed
to be (up to isomorphism), M is L,[X] (up to isomorphism) and < is <p,[x]
(up to isomorphism). The fifth formula says that Ry belongs to L,[X] and it is
the least model in the canonical well-order of L,[X] which is isomorphic to the
model in question. The sixth formula says that a tuple (a,...,a,) belongs to
Ry. Similarly we can say that a tuple does not belong to Ry.

If two models of cardinality « are now Li’w-equivalent, then they satisfy all
the same sentences of the form above. Thus they have the same set Ry and
consequently they are isomorphic.

g

5.2.4. COROLLARY. It is consistent that there is a measurable cardinal x and
A(L3,, A) holds for any X > 2~

Proof. There is a model of ZFC' [24] such that there is a measurable cardinal
k and every set is constructible from a certain subset of the powerset of .

O
5.2.5. QUESTION. Are the following conditions equivalent?

1. There is an Li,w—deﬁnable well-order of the powerset of k.
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2. A(L? . k).

K,w?

Ajtai proved the following theorem in case K = w, see Theorem 2.3.1.

5.2.6. THEOREM. Let k be a reqular cardinal. It is consistent with ZFC' that
there are two Z F-equivalent non-isomorphic models of cardinality k. The models
are also Ly, ,-equivalent for all n.

Proof. We add a Cohen-generic subset G to . The forcing conditions are map-
pings of cardinality smaller than x from s to {0,1}. We define the model
(FC U Kk, <., Rg). Here F¢ is the set of all subsets of x which agree with G
everywhere except in a set of cardinality smaller than , <, is the natural order
of k and R is a relation which tells which elements of xk belong to which sets in
FC. The model (F~¢ Uk, <,, R_¢) is defined in an analogous way.

We note that this forcing is < k-closed so it does not add any new subsets to
cardinals smaller than k. If k is inaccessible, all cardinals below k are preserved
and k remains inaccessible.

No forcing condition can determine the model (F¢ Uk, <., Rg) in any way,
as a forcing condition defines the value of GG only in a subset of x which has
cardinality less than x. For any forcing condition p there are two generic filters
G and G’ containing p such that

Ve =VY (FCUk <., Re)"" =F Uk <., R ) °

and ' . )
(FCUR, <, Re)Y = (F Uk, <., R_g)" .

Thus the models (F¢ Uk, <., Rg) and (F~% Uk, <., R_g) are Z F-equivalent
with parameters from the ground model. As the forcing does not add any new
subsets to any cardinals smaller than , by Lemma 1.2.12 the models are L -
equivalent. But they are not isomorphic: the well-ordered structure (k, <) is
rigid, so every subset of k would be mapped in an isomorphism to itself. However
G e (FCUR, <., Rg) and G ¢ (F~% Uk, <., R_g), so there is no isomorphism.

g

5.2.7. THEOREM. Let M be a transitive model of ZFC and let k be a reqular
cardinal in M. If we force a Cohen subset for k in M, in the generic exten-
sion there are two ZF-equivalent non-isomorphic models of cardinality A in all
cardinalities X > k.

Proof. We have proved that adding a Cohen subset to a regular cardinal s
produces two models of cardinality x which are non-isomorphic but satisfy the
same formulas of the language of set theory with parameters from the ground
model. In fact Cohen subsets produce such models in all cardinalities A > k.
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This is because we can extend the universes of the models defined in Theorem
5.2.6 by adding A new elements and putting them to some new unary relation.
These new models can be constructed from the models introduced in Theorem
5.2.6 and the term A, and thus they are Z F-equivalent.

g

5.3 Independence

We have proved that it is independent of ZFC whether A(L? ,, ) holds at a
regular cardinal k. It happens that these are also relatively independent of each
other, as the following theorem demonstrates.

5.3.1. THEOREM. Let J be a finite set of reqular cardinals. It is consistent that
A(L? . k) fails for all cardinals x in J and holds at every regular cardinal k not

Kyw?

n J.

Proof. We start from L and use iterated forcing to add Cohen subsets to
all cardinals in J, adding a Cohen subset first to the smallest cardinal in J
and proceeding this way from down to up. We note that GC'H holds in L and
adding a single Cohen subset preserves GCH so GCH is preserved all the way
through our forcing. Also cardinals are preserved. Let x be a cardinal in J. It
follows from the Factor Lemma that the iterated forcing can be decomposed into
P_. x P, x P, as follows. The forcing P., preserves GCH and cardinals and
P, adds a Cohen subset to . Thus after P, x P, we have GCH, cardinals are
preserved and A(L? ,, ) fails because of the proof of Theorem 5.2.6 applied after
P_,.. The forcing P, is kT closed and thus does not add any subsets to cardinals
smaller than or equal to k. Consequently, P-, does not chance the truth value of
A(Li’w, k), which is false after the forcing P, * P,.

Let now k ¢ J. Our forcing can be decomposed to P, * P-,. The forcing
P_,. adds some Cohen subsets below x and P-, adds subsets only to cardinals
greater than . Thus after the forcing H(k") C L[X] for some X C A < k and

from Theorem 5.2.3 it follows that A(L? , x) holds.

Kyw?

g

5.3.2. THEOREM. Let J be a set which contains some successor cardinals and
possibly w. It is consistent that A(L% k) fails for all k € J, and holds for all
successor cardinals outside J and for all inaccessible cardinals which do not have
a cofinal subset in J.

Proof. Let L be the ground model. We make an iterated forcing with full
support in all limit stages, which proceeds from down up and adds Cohen subsets
to all cardinals in J. Menas calls it backward Easton forcing [19].

The forcing conditions are as follows:
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1. If w € J, then P, is the set of finite partial functions from w to {0, 1}.
A forcing condition p is stronger than forcing condition ¢ if and only if p
extends ¢q. If w ¢ J, then Py is the trivial forcing.

2. Assume o = T and P, has been defined for all v < 3.

If X, € J, we define P, to be the set of sequences p,,y < o where the yth
coordinate belongs to P, for each v < o, and the ath coordinate is a forcing
name X such that p | o I X is a partial function from X, to {0,1} and
|X | < W,. If p and ¢ are two conditions of length «, then p is stronger than
q if and only if p [ « is stronger than ¢ [ @ and p [ a IF “p(«) and ¢(«) are
partial functions from R, to {0, 1} which have cardinality smaller than X,
and p(a) 2 q(a)".

If X, ¢ J then P, is the trivial forcing.

3. If v is a limit ordinal, forcing conditions in P, are tuples p of length « such
that for each § < a, p | B IF p(B) € Ps. This forcing has full support in
all limit stages, which means that in limit stages all coordinates of a forcing
condition may be non zero. A forcing condition p is stronger than a forcing
condition ¢ if and only if p | £ is stronger than ¢ [ § for each £ < a.

We will inductively show that for all cardinals « the following conditions will
hold after the forcing:

1. Kk remains a cardinal.

2. If k is w or a successor cardinal, A(L? , ) fails iff x € J. If k is inaccessible

Kyw)

cardinal and there is no cofinal subset of x in J then A(L? ) holds.

Kyw?

3. Generalized Continuum Hypothesis holds up to cardinal .

Let us assume the claim holds for all cardinals below . By the Factor Lemma
the forcing can be decomposed into parts:

P_.xP,x P,

in such a way that after the forcing P.,, Induction Hypothesis holds below x and
if k € J, then P, adds a Cohen subset to k, and if k ¢ J, then Py is the trivial
forcing. The forcing P, is kT -closed, so it does not make any chance to Induction
Hypothesis in cardinals less or equal to k.

If & € J, then the Cohen forcing makes A(L? , x) false, and adding a single
Cohen subset does not make GC'H false at k.

If k ¢ J, the trivial forcing does not make GCH false at k. Also H(k') C
L(X) for X C A < k which codes all the previously added generic subsets, so
from Theorem 5.2.3 it follows that A(L? , k) holds.

Kyw?

We still need to show that GC'H is preserved at limit cardinals.
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1. Assume A\ is a singular limit cardinal. From the Induction Hypothesis we
know that GC'H holds below A. Because our ground model was L and
the failure of the SCH () implies 0 exists, after our forcing it can’t be
that =SCH()). Thus SCH (\). Now ) is a strong limit cardinal so 2* =
NN = X\ by SCH(N).

2. Let x be an inaccessible cardinal. All subsets of x in V¢ are constructible
from a single set of cardinality x which codes all the generic sets added
below x. Thus the powerset of x has cardinality x*.

g

5.3.3. REMARK. If we allow J to be a proper class in the assumption of Theorem
5.3.2, the theorem seems still to be valid. Then we just need to use a proper class
of forcing conditions and the length of the iteration is a proper class.

Ajtai’s original proof (see Theorem 2.3.1) did not only show the independence
of A(L? w), but it showed the independence of whether n:th order equivalence
implies isomorphism for countable models for arbitrary n > 2. This is also true
for the generalization of Ajtai’s result to arbitrary regular cardinals, Theorem
5.2.6, which we presented earlier in this chapter. When we use iterated forcing
and add Cohen subsets first to smaller cardinals and then to bigger cardinals,
adding Cohen subsets to bigger cardinals does not change (infinitary) second order
equivalence of models at smaller cardinals. However, it might change (infinitary)
higher order equivalence of models for some stronger higher order logics. The
following question is an example about the problem:

5.3.4. QUESTION. Let P be an iterated forcing which adds first a Cohen subset
to No and then a Cohen subset to ¥,. Let MS and My be the usual models
constructed from the generic set and its complement in cardinality Ny. Are the
models M§ and My S third order equivalent after the forcing?

5.4 Singular cardinals

In this chapter we have already given a generalization of Ajtai’s result to regular
cardinals. Next we will turn our attention to the case of singular cardinals. For
the case of regular cardinals the languages Liw had an important role. For the
singular cardinals x we introduce a language which has the same role as the
languages L? , had for regular cardinals x:

5.4.1. DEFINITION. Let k be a singular cardinal. We define L2 =, _,. Li"',w'

Note that the set of L2-formulas is closed under finitary first order connectives
and quantifiers, but not under conjunctions or disjunctions of length cf (k).
Two important facts about the languages L? are the following:
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1. Every ordinal a < £ is characterizable in L2.

2. Every formula of L? can be expressed as a formula of the language of set
theory using a subset of some A < k as a parameter.

As the formulas of L7 are the formulas of L3 , for regular cardinals A < &, the
above facts follow from Lemma 1.2.12 and Lemma 1.2.11.

5.4.2. THEOREM. IfV =L then A(L?, k) holds for any singular cardinal k.

Proof. We showed before in Theorem 5.2.2 that if V = L then all Liw—
equivalent models of cardinality s are isomorphic for any regular cardinal .
Because all ordinals less than k are characterizable in L2, the proof we used there
works without any changes for L2.

g

5.4.3. THEOREM. Let k = N, be a singular cardinal. There is a forcing extension
of L in which A(L?, k) fails and all cardinals are preserved.

Proof. Let L be the ground model. As in Theorem 5.3.2, we use the full
support iterated Cohen forcing. This time we add generic subsets to all regular
cardinals smaller than k.

Recall that for each regular Nz < s our forcing creates two models M BG and
Mg ¢ of cardinality Ng which are Liﬁﬂw—equivalent and non-isomorphic. We define
the models M and M_¢ as follows:

M¢ contains the a-sequences which satisfy the following conditions:

1. If 8 < a and Np is regular, the Sth coordinate is either ME or M/JTG,
2. If § < a and N is singular, the Sth coordinate is 0,
3. The set of indexes 8 where the Sth coordinate is My @ is not cofinal in a.

Similarly we define M-¢ to contain those a-sequences which satisfy the fol-
lowing conditions:

1. If 8 < a and Np is regular, the Sth coordinate is either MﬁG or MﬁTG,
2. If § < a and N is singular, the Sth coordinate is 0,

3. The set of indexes 8 where the Sth coordinate is M ﬂG is not cofinal in a.
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Clearly the models are non-isomorphic as there is no sequence in M_¢ which
could be mapped to the sequence in M¢ which contains only the models M BG .

We will now prove that the models are L?-equivalent. Assume not. Then
there is a forcing condition p such that p I+ ¢ € L2 A p(MS) A ~¢(M=C) for
some forcing name ¢. Thus there is some generic filter G such that p € G and
VG = (M%) A =p(M~%). The sentence ¢ is a sentence in the language of set
theory with a subset of some R+ < k as a parameter.

We will now construct another generic filter G’ which contains p such that
¢V = éle. The elements of G' are made from elements of G by the following
modification:

1. Up to stage v* (where the formula ¢ appears) no modification is done.
2. In the the domain of p no modification is done.

3. Above stage v© outside the domain of p the forcing condition is chanced
to its mirror image, i.e., the domain remains the same but zeros and ones
chance places.

Clearly p € G'. Also up to stage v* the generic sets G’ and G agree about
everything, so PV = ¢VC . After stage v© the generic set G’ adds essentially
complements of those sets which G' adds to all regular cardinals. There is a

difference only in the domain of p which is always of a smaller cardinality. In
particular M§ = Mﬂ_Gl and Mﬁ_G = MBG/ for all v* < B < a. Also V& = V¢,

. VG/ . VG/
Now MG = M~%and M-¢ = MY, ie., the models chance places in the
generic extensions. However, the formula ¢ is the same and V& = V& so ¢ can
not be true in one model and false in the other.

0

We will next present a model of ZFC' in which the infinitary second order
languages cannot characterize all models in any cardinality.

5.4.4. COROLLARY. Assuming the consistency of an inaccessible cardinal, there
is a model of ZFC in which A(L?,r) fails for all singular cardinals k and
A(L? . k) fails for all reqular cardinals k.

Kyw?

Proof. We start from a model of ZFC which satisfies V' = L and there is an
inaccessible cardinal. Let A be the least inaccessible cardinal in that model. We
proceed from down to up and add by iterated Cohen forcing generic subsets to
all regular cardinals smaller than A. At limit stages we take full support. After
the forcing A(L?, k) fails for all singular cardinals x < A and A(L? , k) fails for

all regular cardinals K < A and A remains inaccessible. Thus V,.;(VG) satisfies ZF'C
and A(LZ, k) fails for all singular cardinals x and A(L? %) fails for all regular
cardinals k.
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Kyw?

g

5.4.5. QUESTION. Is it consistent with ZF'C' that there is a singular cardinal
r such that A(L7 ) fails but A(L3,, ) does not fail in cofinally many regular
cardinals A below 7

5.5 A(L? , k) at a measurable cardinal
In this section we prove two theorems of the form “If A(L3 ,,A) holds for all
regular cardinals A below a suitable large cardinal x then A(L? , x) holds. The

large cardinals we are dealing with are the measurable cardinals and the X7
indescribable cardinals, which we will define next.

5.5.1. DEFINITION. A cardinal k is X" indescribable if for allU C V. and for all
Y sentences ¢ if (Vi €,U) [= ¢ then there is an o < k such that (V,, e, UNV,) =

é.

5.5.2. THEOREM. If A(L3 ,,\) holds for every regular cardinal X below a X3
indescribable cardinal k then A(L? k) holds..

Kyw?

Proof. Assume towards contradiction that A(L2 , x) fails. As we will see in
Lemma 6.1.10 below, the failure of A(L? ) is ¥} in models of cardinality .

Then by ¥? indescribability there is an o < & such that (V,,¢) E ¢, where ¢
expresses the negation of A(L? , k) at the cardinality of the model in question.

Ryw)?

But then A(L? ,,«) fails at the cardinality of V,, so x is not the first cardinal
where A(L?,,, ) fails, contradiction. In fact we need here only an apparently

weaker version of 32 indescribability: we don’t need to use any subset of Vj as a
parameter.

g

5.5.3. THEOREM. If A(L?\’w, A) holds for every reqular cardinal A below a mea-
surable cardinal k then A(L? k) holds.

Kyw?

Proof. Assume that is not the case. Then A(I&,w, A) holds for every regular A
below a measurable cardinal x, but there are two models 2 and *B of cardinality «
which are Li,w—equivalent but not isomorphic. Let j be an elementary embedding
from V into a transitive class M with critical point k. Since j is an elementary
embedding, j(x) is the least cardinal &' such that M |= —A(LZ, ,,#'). We will
show that A(L7 ,, x) fails in M, which will be a contradiction. We assume that 2
and B are subsets of k”. Then j(2() and j(B) are subsets of j(x)". 2A = j(A)NkK"
and B = j(B) N k", thus the models 2 and B belong to M. Similarly any subset
of k in V' belongs to M. Thus the models 2 and B are L7 -equivalent but not

isomorphic in M.

i






Chapter 6
A(L? w) and large cardinal axioms

6.1 Large cardinals

In this chapter we will discuss how some large cardinal axioms are related to
A(L?,w). First we will discuss consistency of some large cardinal axioms with
second order definable well-orders of the reals. Then we will show that if there
are enough large cardinals then A(L? w) is false. We will also show that the
sentence “There are two Li,w—equivalent non-isomorphic models of cardinality «”
is X2 i.e., third order ¥; in models of cardinality . In the end we will discuss
third order definable well-orders of the reals and forcing axioms.

From the proof of Theorem 2.1.1 and some well-known facts about the consis-
tency of well-orders of the reals with large cardinals we get the following results:

6.1.1. THEOREM (AJTAI [2], SILVER [24], MARTIN AND STEEL [17]). [t is con-
sistent that there is a measurable cardinal and A(X}, w) holds. It is consistent that
there are n Woodin cardinals and A(X], 5,w) holds. The above results are relative
to consistency of the relevant large cardinal azioms.

Proof. The existence of a measurable cardinal with a A} well-order of the reals
is consistent [24], so by Theorem 2.1.1 it is consistent that there is a measurable
cardinal and A(X},w) holds. Also for each natural number n it is consistent to
have n Woodin cardinals and a X, ., well-order of the reals [17]. From Theo-
rem 2.1.1 it follows that it is consistent that there are n Woodin cardinals and
A(X), 4, w) holds.

4

We will next prove several lemmas which are needed to prove Theorem 6.1.6:
“If there are enough large cardinals then A(L? w) fails.”

6.1.2. LEMMA. [t is possible to code all finite vocabularies as natural numbers by
some Gaddel numbering.

63
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Proof. Divide the set of prime numbers to infinitely many infinite parts P,
in some second order characterizable way. Then take a countably infinite set
of constants and a countably infinite set of relation and function symbols of
each arity, and assign in some second order characterizable way a different prime
number code for any symbol. Now a finite vocabulary can be coded as the number
which we get if we multiply all codes of the symbols in the vocabulary with each
other.

g

6.1.3. LEMMA. Given a finite vocabulary o, the set of L*-terms in vocabulary o
is second order definable on (w,<). Also the set of free variables in a L*-term is
second order definable on (w,<). Giwen an infinite model A in vocabulary o, a
L?-term t and an assignment of L*-variables s which contains the free variables
of t in its domain, the interpretation of term t2 is second order characterizable.

Proof. We define the rank for L?(o)-terms as follows:
1. Constants and variables have rank 0.

2. If rank of terms tq,...,t, have been defined and F' is an n-ary function
symbol in ¢ or n-ary second order function variable then rank F'(¢y,...t,)
is sup{rank (¢;) +1: 1 <17 <n}.

A set t is an L?(o)-term iff the following hold:

a) There is a set X such that ¢ € X and every set in X is either an L?*(o)-
term of rank 0 or is a result of applying a function in ¢ or a second order function
variable to sets in X.

The condition a) can be formalized in second order logic.

For an L?(o)-term t define X’ to be the smallest set which satisfies the con-
dition a) above. X' is the set of subterms of ¢ and it is characterizable in second
order logic. Once we have X' characterized, we can characterize the rank for terms
in X" and by induction on rank characterize the free variables of all subterms and
interpretations of subterms with a given assignment.

U
6.1.4. LEMMA. A(L? w) is true in V if and only if it is true in L(R).
Proof. We define inductively the rank for Li,w formulas ¢ as follows:
1. rank(¢)=0 for atomic ¢.
2. rank(A )= rank(\/ ¥) = sup { rank (¢)+1: ¢ € ¥}.

3.1 ¢ = 0,6 = Fa,0, ¢ = Va0, 6 = IX[h, ¢ = YXMb, ¢ = IEM) or
¢ = VF¢ then rank(¢)=rank(¢) +1.
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In case of second order formulas, conjunctions and disjunctions are of length 2
and rank is always finite. More generally Li,w formulas have rank less than x.

Given a finite vocabulary 7, the second order formulas in vocabulary 7 are
inductively characterizable in a similar way as terms in Lemma 6.1.3. Also for
any L?(7)-formula the set of its subformulas is characterizable. In this set we can
define the rank for all subformulas, and by induction on the rank the set of free
variables in a given subformula. An interpretation for finitely many first order
and second order variables in a countable model can be coded into a real number.
Consequently every interpretation which exists in V' exists in L(R). The truth
predicate for a countable model 2, i.e., the set of ordered tuples (¢, s) such that
2A =, ¢ is inductively characterizable. This means that the truth predicate for
formulas of rank 0 is characterizable, and if the truth predicate for formulas of
rank < n is characterizable, then it is characterizable also for formulas of rank n.
Finally the truth predicate is characterizable as the union of these “partial truth
predicates”. The truth predicate is definable in L(R) because it is an inductive
definition and its existence is provable from ZF. Axiom of Choice may be false
in L(R) but it is not needed. Also the truth predicate of V' equals truth predicate
of L(R) because they are determined by the reals and V' and L(R) have the same
reals.

Let us now look at the sentence which says that A(L?, w) fails:

The sentence starts with J73A3B Iy dlly and then the conjunction of the
following:

e 2 and ‘B have vocabulary 7.
o A =[B|=w
[ ] —|Q[ =~ %

o Il is a truth predicate of second order formulas for 2 and Ilyg is a truth
predicate of second order formulas for 8.

e [y and Ily contain exactly the same sentences.

If the sentence is true in one of V' and L(R) then all the sets witnessing the
truth of the sentence exist also in the other. Thus the sentence is also true in the
other and the claim follows.

g

The proof of the next theorem of Woodin can be found in Woodin’s book [31].

6.1.5. THEOREM. If 0 is a limit of Woodin cardinals and there exists a measur-
able cardinal above 9, then no forcing construction in Vs can change the theory of

L(R).
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6.1.6. THEOREM. If there is a measurable cardinal above a limit of Woodin car-
dinals then A(L* w) fails.

Proof. Assume there is a measurable cardinal above a limit of Woodin cardi-
nals. We add a Cohen generic real G to V as in Theorem 2.3.1. Now A(L? w) is
false in V[G]. By Lemma 6.1.4 A(L? w) is false in L(R)V¢). By assumption and
Theorem 6.1.5 A(L?, w) is false in L(R)" and by Lemma 6.1.4 A(L? w) is false in
V.

i

We note that the proof of Lemma 6.1.3 works also for L7 (o)-terms in cardi-
nality .

6.1.7. LEMMA. Given a finite vocabulary o the relation "X is an L7, (0)-sentence”
15 second order characterizable in a model of cardinality .

Proof. The second order sentence says that there is a set Y = Y; UY; contain-
ing X such that every set in Y; is either L7 (o)-term of rank 0 or is a result of
applying functions in ¢ or second order function variables to elements in Y;. Also
every element in Y5 is either L?  atomic formula or is formed from other sets in
Y by operations described in Definition 1.2.13 and Y is the smallest set satistying
this definition. By this definition Y is the set of subformulas and subterms of X.
The sentence says further that there is a function F' which maps all the elements
of Y to the set of their free variables and F maps X to (.

g

6.1.8. DEFINITION. Let 2 be a model and T be a finite vocabulary. The truth
predicate T for the logic Liw(T) in the model A is a binary relation. As elements
it has ordered pairs of Liw(T)—formulas and interpretations of less than k many
variables of Ly, (T) in the model A satisfying the following conditions:

1. Ift; and t; are L7 () terms and variables of t; and t; belong to the domain
of an interpretation s, then (t; = t;,s) € T if and only if (t;)* = (¢;)*.

S

2. If R is an n-ary relation symbol in T and ty,...t, are L2 (T)-terms such
that their variables belong to the domain of s, then (R (tl, coty), sy €T if
and only if ()%, ... (t,)*) € R*.

3. If X 1s an n-ary relation variable and t,...t, are Lz’w—terms such that
their variables belong to the domain of s, then (X (t,...t,),s) € T if and

only if (1) . (1)) € X2
4. (=, s) € T if and only if (¢,s) ¢ T.
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5. If U is a set of Liw(T)-formulas and for all ¢ € VU it is defined whether
(¢,s) € T or not, then (\NV,s) € T if and only if (p,s) € T for all p € V.

6. If O is a set of L2 (7)-formulas and for all ¢ € W it is defined whether
(p,s) € T or not, then (\/ V,s) € T if and only if (¢p,s) € T for some
pe V.

7. (xap, s) € T if and only if (¢,s") € T for some interpretation s such that
s and s' are the same except possibly in x,.

8. (Vxo¢,s) € T if and only if (¢, s’y € T for all interpretations s’ such that s
and s' are the same except possibly in x.

9. (AX,¢,s) € T if and only if (¢,s") € T for some interpretation s such that
s and s' are the same except possibly in X,.

10. (VXo0,s) € T if and only if (¢, sy € T for all interpretations s’ such that
s and s’ are the same except possibly in X,.

11. (3F,¢,s) € T if and only if (¢,s') € T for some interpretation s’ such that
s and s’ are the same except possibly in F,.

12. (VEo0,s) € T if and only if (¢, ") € T for all interpretations s' such that s
and s' are the same except possibly in F,.

6.1.9. LEMMA. If Il is a set of ordered pairs of Lzyw(T)—sentences and assign-
ments for less than k variables in a model 2 then there is a second order sentence

with a third order parameter I1 which is true if and only if I is the truth predicate
of 2.

Proof. This is just formalizing Definition 6.1.8 in second order logic. This
is possible because given a model 2 of cardinality x in a vocabulary 7, the set
of L7 -terms, formulas, free variables in formulas, assignments for less than x
variables and interpretations of terms with given assignments including the free
variables of the term are second order characterizable. From these it follows that
the case of atomic formulas is definable in second order logic. The other cases
are definable as well, because we need to quantify only over sets of cardinality &
in the truth definition. Note that we cannot quantify over the truth predicate in
second order logic because it is too big and we need a third order quantifier for
that. But given a model and a predicate, checking whether the predicate is the
truth predicate for the model is possible in second order logic.

i

6.1.10. LEMMA. “There are two Liw-equivalent non-isomorphic models of car-
dinality k7 is a X2 property in cardinality k.
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Proof. In the following ¥2-sentence ¢, (Y, Z) says that (Y, Z) has ordertype
of (w, <), ¢voc(x, X,Y,Z) says that X has vocabulary z, where x is a natural
number with respect to (Y, Z), ¢.(X) says that X has cardinality x(where x is
the cardinality of the model in question). The formula ¢ (I, X, z,Y, Z) says
that IT is a truth definition of L7 (z) in X. The formula ¢sentence(4, z,Y, Z) says
that A is a Li,w sentence in vocabulary x. The formula ¢_~ says that two models
are not isomorphic to each other.

The sentence starts with Y 32303AFB 411, dIl; and then the conjunction of
the following;:

e 0,(Y,Z)
® Ovoc(0, Y, Z) A dvoc(0,B, Y, Z)
* 0u(2) N9 (B)
* Guun(Il1, 2, 0,Y, Z) A Guuin(Il2, B, 0,Y, Z)
o VA(sentence (4,0, Y, Z) — (11 (A, 0) > II5(A, 0)))
* o-=(2,B)
U

Some large cardinal axioms imply that there is no second order definable well-
order of the reals. In particular this holds for large cardinal axioms that imply
the Projective Determinacy, as we will show in the next section. These axioms
possibly imply that A(L? w) fails. If that is the case, we can ask the question:
does A(L?,w) hold? By the following theorem most large cardinal axioms are
consistent with A(L3,w) (relative to the consistency of the large cardinal axiom
in question).

6.1.11. THEOREM. A(L3,w) is consistent with practically all known consistent
large cardinal azioms.

Proof. Let the ground model be a model of Z F'C' which satisfies your favorite
large cardinal axiom. By a result of Abraham and Shelah [1] it is possible to force
a third order definable well-order of the reals with a small forcing!. In the generic
extension A(L3 w) holds because of the same reasoning as in Theorem 2.1.1. If
the large cardinal axiom was preserved in the forcing, then the generic extension
satisfies the large cardinal axiom and A(L?,w).

g

f £ is a large cardinal we say that a notion of forcing P is small (relative to «) if |P| < k.
Practically all large cardinals are preserved in small forcings [11] (Theorem 21.2).
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6.2 Forcing axioms

As we already noted in Chapter 2, it is an open question whether Martin’s axiom
is consistent with A(L? w). Unlike the consistency of the Proper Forcing Axiom
and Martin’s Maximum, the consistency of Martin’s axiom +2% = 2%t =R, can
be proved from the consistency of ZFC.

6.2.1. LEMMA (VITALI [30], MYCIELSKI AND STEINHAUS [20]). If there is a
second order definable well-order of the reals, then there is a second order defin-
able non-measurable set of reals. If Projective Determinacy holds, then all second
order definable sets of reals are Lebesque measurable. Consequently if Projective
Determinacy holds, there is no second order definable well-order of the reals.

Proof. Recall the construction of a non-measurable set of reals by Vitali.
We define an equivalence relation in the interval [0,1]: 2 ~y & 2z —yisa
rational number. By the Axiom of Choice there is a set which contains exactly
one member from each equivalence class. Such a set turns out, as is well-known,
to be non-measurable. If < is a second order definable well-order of the reals then
there is a second order definable non-measurable set of reals. We can define this
set to contain the <-least element from each equivalence class.

By a result of Mycielski and Steinhaus [20], every second order definable set
of reals is measurable assuming Projective Determinacy.

0

Next we will note that if the Proper Forcing Axiom holds, then there is no
second order definable well order of the reals. Consequently one cannot use
Ajtai’s proof to show the consistency of A(L? w) with the Proper Forcing Axiom.
If A(L? w) is consistent with the Proper Forcing Axiom, then A(L? w) can hold
without a second order definable well-order of the reals.

6.2.2. THEOREM (STEEL). The Proper Forcing Aziom implies that there is no
second order definable well-order of the reals.

Proof. The Proper Forcing Axiom implies that Axiom of Determinacy holds
in L(R), which in turn implies Projective Determinacy [27].

6.2.3. QUESTION. Is the Proper Forcing Aziom consistent with A(L? w)?

6.2.4. THEOREM. Assuming the consistency of the relevant large cardinal axioms
it is consistent that Martin’s Mazimum holds with A(L?,w).
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Proof. By Paul Larson’s result [13] Martin’s Maximum is consistent with the
existence of a well-order of the reals definable in H(X,) without parameters.

By Lemma 1.2.9 we can quantify over elements of H(Xy) in third order logic
thus Martin’s Maximum is consistent with a third order definable well-order of the
reals. Consequently it is consistent that Martin’s Maximum holds and A(L?,w)
holds.

g
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Summary and future work

7.1 Summary

If k is an infinite cardinal we can ask the question what is the least logic L such
that every L-theory is k categorical. If k is a regular cardinal, adding a Cohen
subset for k makes sure that no such small definable logic L exists. If k is a
singular cardinal, adding Cohen subsets for cofinally many A < s by an iterated
forcing, taking full support at all limits, does essentially the same. However, there
is always a small logic L with generalized quantifiers such that all L-theories are
k-categorical but L may be not definable in the language of set theory.

In the countable cardinality the “small” logic can be second order logic. If
V=L even X} is enough. With n Woodin cardinals X}, can be enough. But
if there are infinitely many Woodin cardinals and a measurable cardinal above
them then A(L?,w) fails. However A(L?,w) is consistent with practically all large
cardinal axioms. A(L? w) is also consistent with Martin’s Maximum.

In an uncountable cardinality the small logic can be L7 , or L™ where n > 4.
Whether A(LZ ,, %) holds for different cardinals & is very much independent of
each other.

The following table contains information about whether A(L, k) holds for
certain language L and cardinal . In the intersection of an L-row and a x-column
we have described in the left-hand-side a model of ZFC' where A(L, k) holds and
on the right-hand-side a model of ZFC where A(L, k) fails (if they exist). The
question mark means an open question. Cohen, iter., and Py , refer to suitable
Cohen forcing, iterated Cohen forcing with full support in all limit stages and
the forcing Py, defined in Chapter 3, respectively. Regular column refers to
arbitrary uncountable regular cardinals and singular column refers to arbitrary
uncountable singular cardinals. The ground model is L in all the forcings.
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A(L, k) N regular singular
FO —Jalways —Jalways — Jalways
L+, always/— k=No/k#Vy —/always
L? V = L/Cohen PV =L ?)V =L
L2 ,/L. |V =L/Cohen V = L/Cohen V = Lliter.
L3 |V =L/Cohen PV =1L 7V =1L
L* V =L/Cohen Px,/V=L Px,/V=L
L |V =L/Cohen Pxn/V=L Px./V=L
ZF |V =L/Cohen Px,/V=L Pyx.V=L

7.2 Future work

In this section we list the most important open questions and possible directions
of future research.
Recall Question 2.1.5:

7.2.1. QUESTION. Is it consistent that A(L* w) holds, but there is no second
order definable well-order of the reals?

If that is not consistent, then A(L? w) is equivalent to the existence of a
second order definable well-order of the reals. We have an idea how it might be
possible to prove that these conditions are not equivalent.

Suppose there is a model of ZFC with the following properties (We do not
know yet if such a model exists) :

1. There is no second order definable well-order of the reals.

2. There are second order definable sets X; C R : 7 € w such that each X; has
a second order definable well-order and R = J,., X;.

Suppose now 2 and B are two second order equivalent countable models.
Now 2l is isomorphic to some real a and B is isomorphic to some real b. Assume
¢ and j are such indexes that a € X; and b € X;. Let X = X, U X,. Now X
is second order definable and there is a second order definable well-order of X.
We assumed 2 and B are second order equivalent, so for all n € w the natural
number n belongs to the the least real in X isomorphic to 2 if and only if n
belongs to the the least real in X isomorphic to ‘8. Now 2 and ‘B have the same
isomorphism type and they are isomorphic.

We have another idea, suggested by Saharon Shelah, how it might be possible
to have A(L? w) without second order definable well-order of the reals. Assume
there is a second order definable set of reals which contains exactly one real of
each isomorphism type. Then we can use the idea of Ajtai’s proof to show that
A(L?* ,w) holds. The problem is to find a model of ZFC in which there is a second
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order definable set of reals which contains exactly one real of each isomorphism
type but there is no second order definable well-order of the reals. We are working
on finding such a model, using a construction suggested by Shelah.

Adding a Cohen subset to a regular cardinal produces two Z F-equivalent non-
isomorphic models of cardinality k. When we do iterated Cohen forcings we have
not been able to prove that the models remain Z F-equivalent. The following
question is an example of that: Let L be the ground model and P = Fy* P; be an
iterated forcing which adds first a Cohen subset to w and then a Cohen subset to
N;. Let G be a P-generic set over L and G the Py-generic set over L determined
by G and MY and M~ the “Ajtai models” constructed from Gy and —Gj (see
Theorem 2.3.1). Are M and M~ third order equivalent in L[G]?

7.2.2. QUESTION. Is it consistent with ZFC' that A(L?, k) holds for an uncount-
able cardinal k? If not, is it consistent that A(L® k) holds for an uncountable
cardinal k¢

7.2.3. QUESTION. Is it consistent with ZFC that Martin’s aziom + 280 = R,
holds with A(L?, w).

Possible directions for future research:

1. Our results are often related to models which resemble L a lot (Theorem
5.2.3 is used in many results). An interesting question is whether our results
could be generalized to inner models of some large cardinals.

2. The question about whether every L-theory is k-categorical in a model
class C'. We have here only discussed briefly the Fraissé Hypothesis, i.e.,
the above question in case L = L?, k = w and C is the class of ordinals.

3. Ehrenfeucht-Mostowski models. Adding a Cohen real introduces two count-
able non-isomorphic Z F-equivalent linear orders. Suitable cardinal collapse
makes the Fraissé Hypothesis fail. For which theories 7" we can construct
non-isomorphic Z F-equivalent Ehrenfeucht-Mostowski models over these
linear orders (or ordinals)? Is this possible for all unstable theories? Hytti-
nen, Kangas and Vaananen are working on this question.

4. Bigger vocabularies. Here is an example of an open question: Is it consis-
tent with ZF'C' that in any countable vocabulary second order equivalence
implies isomorphism for countable models? One can ask the same question
for any L™.
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Samenvatting

A(L, k) betekent dat voor alle modellen 2 en 8 van kardinaliteit ~, als A en B
dezelfde L-theorie vervullen, ze isomorphism zijn.

Als k een oneindig kardinaalgetal is, kunnen we de vraag stellen wat de minste
logica L is zodanig dat elke L-theorie k categorisch is. Als k een regulier kar-
dinaalgetal is, maakt het toevoegen van een Cohen deelverzameling aan s zeker
dat er geen kleine definieerbare logica L bestaat. Hetzelfde geldt voor het to-
evoegen van Cohen deelverzamelingen voor een co-eindig aantal A < x door een
geitereerde forcing die de volledige ondersteuning bij alle limieten geeft. Er is
echter altijd een kleine logica L met gegeneraliseerde kwantoren zodanig dat alle
L-theorieén k-categorisch zijn maar niet definieerbaar hoeven te zijn in de taal
van de verzamelingentheorie.

In de telbare kardinaliteit kan de “kleine” logica een tweede order logica zijn.
Als V' =L dan is zelfs 33 voldoende. Met een n aantal Woodin kardinaalgetallen
is X}, 5 genoeg. Echter, als er oneindig veel Woodin kardinaalgetallen zijn en er
is een meetbaar kardinaalgetal boven ze, dan faalt A(L? w). A(L? w) is echter
consistent met alle grote kardinaal axioma’s. A(L? w) is ook consistent met
Martin’s Maximum.

In een ontelbare kardinaliteit x kan de kleine logica L2, zijn of L" waar
n > 4. De vraag of A(Li’w, k) geldt voor verschillende kardinalen k is hiervan
onafhankelijk.

De volgende tabel laat zien of A(L, ) geldt voor een taal L en een kardinaal-
getal K

In de doorsnede van een L-regel; en een k-kolom hebben we aan de linkerkant
een model van ZFC beschreven waar A(L, ) geldt en aan de rechterkant een
model van ZFC waar A(L, k) niet geldt (als het bestaat). Met het vraagteken
beduigen wij een open vraag. Cohen, iter., en Px, betekenen Cohen forcing,
geitereerde Cohen forcing met volledige ondersteuning in alle limieten en de forc-
ing Px ., die in hoofdstuk 3 is gedefinieerd. Reguliere en respectievelijk singuliere
kolommen verwijden naar arbitraire ontelbare reguliere/singuliere kardinaalge-
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tallen. Het basismodel is L in alle forcings.

A(L, k) Ng regulier singulier
FO —/altijd —/altijd —/altijd
L+ o altijd/— Kk =No/k#Xy —/altijd
L? V=L/Cohen ?/V=L ?/V=L
L% ,/L. |V=L/Cohen N=L/Cohen V=L/iter.
L3 V=L/Cohen ?7/V=L V=L
L* V=L/Cohen  Px,/V=L  Px,/V=L
L V=L/Cohen  Px,/V=L  Px,/V=L
ZF |V=L/Cohen  Px,/V=L  Px,/V=L



Abstract

Fix a cardinal k. We can ask the question what kind of a logic L is needed to
characterize all models of cardinality  (in a finite vocabulary) up to isomorphism
by their L-theories. In other words: for which logics L it is true that if any models
20 and *B satisfy the same L-theory then they are isomorphic.

It is always possible to characterize models of cardinality x by their L,+ ,+-
theories, but we are interested in finding a “small” logic L, i.e. the sentences of
L are hereditarily smaller than «. For any cardinal x it is independent of ZFC
whether any such small definable logic L exists. If it exists it can be second order
logic for k = w and fourth order logic or certain infinitary second order logic Li’w
for uncountable . All models of cardinality x can always be characterized by
their theories in a small logic with generalized quantifiers, but the logic may be
not definable in the language of set theory.
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