
Grothendieck Inequalities,
Nonlocal Games and Optimization

Jop Briët





Grothendieck Inequalities,
Nonlocal Games and Optimization



ILLC Dissertation Series DS-2011-07

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904
1098 XH Amsterdam

phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/



Grothendieck Inequalities,
Nonlocal Games and Optimization

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Agnietenkapel
op donderdag 27 oktober 2011, te 12.00 uur

door

Jop Briët

geboren te Leiden.



Promotiecommissie:

Promotor:
prof. dr. H. M. Buhrman

Overige leden:
prof. dr. F. A. Bais
prof. dr. M. Laurent
dr. D. Pérez-García
dr. O. Regev
prof. dr. C. J. M. Schoutens
dr. F. Vallentin
prof. dr. R. M. de Wolf

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam
Science Park 904
1098 XH Amsterdam

The investigations were performed at the Centrum Wiskunde & Informatica
(CWI) and were supported by Vici grant 639-023-302 from the Netherlands Or-
ganization for Scientific Research (NWO), by the European Commission under
the Integrated Project Qubit Applications (QAP) funded by the IST directorate
as Contract Number 015848, and EU QCS grant.

Copyright c� 2011 by Jop Briët

Printed and bound by Ipskamp Drukkers.

ISBN: 978-90-5776-228-4



to my family

v





Contents

Acknowledgments xi

1 Nonlocal Games and Optimization 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum information theory . . . . . . . . . . . . . . . . . . . . 3

1.2.1 States and quantum systems . . . . . . . . . . . . . . . . 4
1.2.2 Measurements and observables . . . . . . . . . . . . . . . 4
1.2.3 Entangled states and local measurements . . . . . . . . . 5

1.3 Nonlocal games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Classical strategies . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Entangled strategies . . . . . . . . . . . . . . . . . . . . . 7

1.4 Two-player XOR games . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 The CHSH game . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Tsirelson’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Multiplayer XOR games . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.1 Mermin’s Game . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.2 Stabilizer states . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Semidefinite programs and relaxations . . . . . . . . . . . . . . . 17
1.7.1 Approximation algorithms . . . . . . . . . . . . . . . . . 17
1.7.2 MAX CUT . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7.3 The chromatic number and the Lovász theta number . . 22
1.7.4 A little on the Unique Games Conjecture . . . . . . . . . 23

vii



viii Contents

2 Grothendieck inequalities 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Grothendieck’s Inequality . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Generalizations of Grothendieck’s Inequality . . . . . . . . . . . 27

2.3.1 The rank-r Grothendieck constant . . . . . . . . . . . . . 27
2.3.2 The Grothendieck constant of a graph . . . . . . . . . . . 29
2.3.3 The complex Grothendieck constant . . . . . . . . . . . . 30
2.3.4 Tonge’s Inequality . . . . . . . . . . . . . . . . . . . . . . 30

3 Nonlocal games that require high entanglement 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Grothendieck’s Inequality with operators . . . . . . . . . . . . . 39
3.3 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Nonlocal games that require high entanglement . . . . . . . . . 47
3.5 Invariant operators and Grothendieck’s constant . . . . . . . . . 50
3.6 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8 Proof of the operator lemma . . . . . . . . . . . . . . . . . . . . . 53

4 The PSD Grothendieck problem 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 An optimal approximation algorithm? . . . . . . . . . . . 59
4.1.2 Interpretations . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.3 More related work . . . . . . . . . . . . . . . . . . . . . . 63

4.2 The approximation ratio . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 The expectation function . . . . . . . . . . . . . . . . . . . 64
4.2.2 Positive functions for spheres . . . . . . . . . . . . . . . . 66
4.2.3 The Wishart distribution . . . . . . . . . . . . . . . . . . . 67

4.3 A refined, dimension-dependent analysis . . . . . . . . . . . . . 70
4.4 Unique-Games hardness of approximation . . . . . . . . . . . . 72
4.5 The case of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Grothendieck problems with rank constraint 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.2 An efficient approximation algorithm for graphs with small

chromatic number . . . . . . . . . . . . . . . . . . . . . . 78
5.2 A matrix version of Grothendieck’s Identity . . . . . . . . . . . . 82



Contents ix

5.3 Convergence radius . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Constructing new vectors . . . . . . . . . . . . . . . . . . . . . . 87
5.5 A refined, dimension-dependent analysis . . . . . . . . . . . . . 90
5.6 Upper bounds for large chromatic numbers . . . . . . . . . . . . 95
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Entanglement in multiplayer XOR games 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Bounded violations for a large class of states . . . . . . . . . . . 103

6.2.1 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Proof overview and techniques . . . . . . . . . . . . . . . . . . . 107

6.3.1 First step: relating the entangled bias to the GIP bias . . 109
6.3.2 Second step: relating the GIP bias to the classical bias . . 110

6.4 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 Bounded violations for Schmidt states . . . . . . . . . . . . . . . 111

6.5.1 Strategies with GHZ states. . . . . . . . . . . . . . . . . . 111
6.5.2 Extension to Schmidt states. . . . . . . . . . . . . . . . . . 112

6.6 Bounded violations for clique-wise entanglement . . . . . . . . 114
6.6.1 Carne’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 115
6.6.2 Bounding the violations achievable by strategies with clique-

wise entanglement . . . . . . . . . . . . . . . . . . . . . . 116
6.7 Hardness of approximation of the entangled bias . . . . . . . . . 119
6.8 Proof of Carne’s Theorem . . . . . . . . . . . . . . . . . . . . . . 120
6.9 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 A problem of Varopoulos 123
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.1 Banach algebras . . . . . . . . . . . . . . . . . . . . . . . . 124
7.1.2 Q-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1.3 Schatten spaces and the Schur product . . . . . . . . . . 126

7.2 Varopoulos’s question and our part of the answer . . . . . . . . 127
7.2.1 The connection to the Schmidt states . . . . . . . . . . . . 133

7.3 The intermediate cases . . . . . . . . . . . . . . . . . . . . . . . . 134

A Some useful linear algebra and analysis 137
A.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.3 Tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



x Contents

A.4 Dirac notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography 145

Index 161

List of Symbols 163

Samenvatting 165

Abstract 169



Acknowledgments

First of all, I would like to thank Harry Buhrman, my PhD advisor. Being a
student in his group has been one of the most exciting experiences of my life.
He got me involved in fascinating research projects, introduced me to many
other interesting researchers and gave me the opportunity to explore many
beautiful topics in mathematics and computer science. During our discussions
he not only taught me valuable tricks of the trade, but he also instilled in me
greater and greater levels of tolerance for silly jokes of which I am the subject.
Before coming to CWI I was a research assistant for Peter Høyer at the Univer-
sity of Calgary. If I had not met Peter I would have missed out on some great
personal inspiration to do scientific research. I am truly grateful for his helpful
guidance and his endless generosity. For willing to be on my PhD committee
and giving many very helpful comments on an earlier version of this thesis
I thank Harry Buhrman, Sander Bais, Monique Laurent, David Pérez-García,
Oded Regev, Kareljan Schoutens, Frank Vallentin and Ronald de Wolf.

My other colleagues at CWI are also largely responsible for making my
last four years so enjoyable. Ronald de Wolf often gave me much-needed
advice on research, scientific writing and giving presentations. For the last
few years he has passed on his newspaper to me so I could save some money
and improve my state of knowledge on world affairs. I also very much en-
joyed my interactions, both scientific and informal, with Sourav Chakraborty,
David García-Soriano, Peter Harremoës, Monique Laurent, Bruno Loff, Arie
Matsliah, Fernando de Oliveira-Filho, Giannicola Scarpa, Christian Schaffner,
Florian Speelman, Ben Toner, Falk Unger, Frank Vallentin, Antonis Varvitsi-
otis and Stephanie Wehner. It makes me proud to have collaborated on pa-
pers with Harry Buhrman, Sourav Chakraborty, David García-Soriano, Peter

xi



xii Acknowledgments

Harremoës, Troy Lee, Arie Matsliah, Fernando de Oliveira-Filho, Ben Toner,
Frank Vallentin, Thomas Vidick and Ronald de Wolf. In particular I would like
to thank Harry, Ben, Fernando, Frank, Thomas and Troy, who worked with
me on the papers that form most of this thesis. I thank Peter Høyer, David
Pérez-García, Oded Regev and Nacho Villanueva for hosting me during inter-
esting and fun visits to the University of Calgary, Universidad Complutense,
LRI and ENS. I would also like to thank the extremely helpful CWI support
staff, in particular Susanne van Dam and Irish Hesp, all the librarians (for their
help with all the obscure books I wanted to read) and Maarten Dijkema (for his
IT support and hitchhiking all the way to Fontaine Bleau to come bouldering).

Last but not least, I thank my family and friends for all their support and
for giving me so many things to enjoy outside of my studies.

Amsterdam Jop Briët
August, 2011.



Chapter 1

Nonlocal Games and Optimization

1.1 Introduction

Nonlocal games. To gain a better understanding of the physical world, physi-
cists use mathematical frameworks to model it. Within these frameworks it is
often possible to describe everything from interactions of a subatomic parti-
cles to the orbits of planets flying around the sun. Such frameworks can be
used to predict what can or cannot happen in certain real-world situations and
the quality of a framework can be measured by how well its their predictions
match what is actually observed. Two of the most important frameworks are
Classical Mechanics and Quantum Mechanics, the latter being a refinement of
the former. Einstein’s General Relativity is another celebrated framework, but
it does not play a role in this thesis. A large part of this thesis is devoted to
studying within the frameworks of both Classical and Quantum Mechanics
an abstraction of a physical experiment called a nonlocal game, introduced first
by Cleve, Høyer, Toner and Watrous [CHTW04].1 The main reason for con-
sidering these games is that they provide an excellent way to study the most
important feature unique to Quantum Mechanics: entanglement. A nonlocal
game involves two or more players who are not allowed to communicate with
each other, but do interact with an extra party usually referred to as the referee.
At the start of the game the referee asks each of the players a question, upon
which they each reply to him with some answer. Then, the referee decides if
the players win or lose based only on the questions he asked and the answers

1The organization of the bibliography in the back of this thesis follows alphabetical order
of the abbreviations (such as [CHTW04]) used for references in the text.

1



2 CHAPTER 1. NONLOCAL GAMES AND OPTIMIZATION

he received. The players know in advance what set of answers would cause
them to win, which of course is their objective. The catch is that they only
know the question that was aimed directly at them and not any of the other
players’ questions, so they may not have enough information to know what
to answer in order to win. The players thus don’t play against each other,
but rather have to try to coordinate their strategies to win. The way we study
nonlocal games in the frameworks of Classical and Quantum Mechanics is by
analyzing the winning probabilities for optimal strategies. Probabilities come
into play here because we assume that the referee randomly picks the ques-
tions and because the players’ strategies may involve some random processes.
It turns out that the best course of action for players who live in a world de-
scribed by Classical Mechanics is the simplest kind imaginable: decide before
the game begins what to answer to each question and stick with that strategy
throughout the game. In a Quantum Mechanical world, more sophisticated
strategies sometimes give better results. Each player can base their answer on
the outcome of an experiment done on some private physical system. Such
an experiment may be, for example, measuring the orientation of the intrin-
sic magnetic field (the spin) of an electron. Such strategies typically give rise
to some randomness in the players’ answers, meaning that what a player an-
swers to a particular question is not determined in advance. But this is not
what separates quantum strategies from classical strategies. The key feature of
quantum strategies is that they can cause the players to produce answers that
are correlated in ways that are impossible in a classical world, as was shown
for the first time by Bell [Bel64] in a slightly different language. Physical sys-
tems that allow players to obtain such correlations are said to be entangled.
The fact that Quantum Mechanics predicts such a phenomenon was used by
Einstein, Podolski and Rosen [EPR35] to argue that this framework must be
incomplete, because according to them entanglement could not be part of a
reasonable description of Nature. Surprisingly, experiments done by Aspect et
al. [AGR81, ADR82, AGR82] gave convincing evidence that the world we live
does in fact allow for this!

Optimization. And now for something completely different. An important
type of problem in computer science is that of optimization under constraints.
One example of such a problem is finding an optimal strategy for a nonlocal
game, subject to the constraint that the strategy obeys the rules of Classical Me-
chanics (classical strategies). For a typical nonlocal game, finding an optimal
classical strategy may involve searching over a huge number of possibilities.
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For example, if in a two-player nonlocal game the referee can choose from n
different questions and the players can choose from two possible answers per
question, then there are 22n possible (deterministic) classical strategies. An-
other example of an optimization problem that we will encounter in this thesis
originates from (classical) statistical physics. Here, the problem is to optimize
spatial configurations of interacting particles so as to minimize the energy of
the total system. Minimizing the energy in the well-known n-particle Heisen-
berg model even involves searching over an infinite number of possible con-
figurations, since this turns out to be equivalent to optimally positioning n
points on the surface of a three-dimensional ball. Problems like the above two
likely can’t be solved exactly by any computer in a reasonable amount of time,
where time is measured by the number of elementary steps a computer makes
and where by “reasonable time” we mean a polynomial number of steps in the
size of the problem.2 The next-best thing to exactly solving an optimization
problem in polynomial time is to approximate it. In this case we are willing to
settle for any solution that is near-optimal, but can be found in a reasonable
amount of time. A computer algorithm that finds such a solution in polyno-
mial time is referred to as a polynomial-time approximation algorithm. The
second major theme in this thesis deals with analyzing new approximation al-
gorithms for geometric optimization problems that will allow us, for example,
to approximate the minimal energy in the Heisenberg model.

Grothendieck Inequalities. Nonlocal games and optimization problems may
at first seem to be quite unrelated. However, it turns out that the problems dis-
cussed above can be treated in a very similar fashion, using mathematical tools
we call Grothendieck Inequalities. This name derives from the fact that these tools
have their origin in a celebrated paper of Grothendieck [Gro53]. Grothendieck
Inequalities are the fibers pulling the other topics in this thesis together.

1.2 Quantum information theory

In this section, we give some basic mathematical background information on
the aspects of quantum information theory relevant to this thesis. More infor-

2In more technical terms, if P �=NP then there exists no polynomial-time algorithm for
these problems. This follows from a translation of specific instances these problems to one
of Karp’s [Kar72] NP-complete problems. In fact, Håstad [Hås99] showed that the situation
regarding these problems is even gloomier. The details of his result will be discussed later.
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mation can be found in Appendix A, the book of Nielsen and Chuang [NC00]
and the excellent lectures notes of Watrous [Wat08].

1.2.1 States and quantum systems

A state is a complex positive semidefinite matrix ρ that satisfies Tr(ρ) = 1. Any
n-by-n state ρ can be decomposed as

ρ =
n

∑
i=1

λi|ψi��ψi|,

where λ1, . . . , λn ≥ 0 are its eigenvalues and |ψ1�, . . . , |ψn� are corresponding
eigenvectors, which follows from the Spectral Theorem and positive semidefi-
niteness. A state ρ is pure if it has rank 1, that is, if ρ = |ψ��ψ| for some complex
unit vector |ψ�. The trace of a positive semidefinite matrix equals the sum of
its eigenvalues. Hence, a state is a convex combination of pure states. A state
with rank greater than 1 is sometimes referred to as a mixed state. It is common
to refer to a complex unit vector |ψ� as a state. What is implicitly referred to in
this case is the pure state ρ = |ψ��ψ|. We will follow this custom when we are
working in the context of quantum information theory.

Although a state can be treated as a purely mathematical object, it should
be thought of as describing the configuration of some quantum system, which is
an abstract physical object, or collection of objects, on which one can perform
experiments. Associated with a quantum system X is a positive integer n and a
copy of the vector space Cn. The possible configurations of X are given by the
states in Cn×n. The reason why we associate Cn with a quantum system instead
of Cn×n is that we will be working mostly with pure states. The integer n is
referred to as the dimension, or Hilbert space dimension of X. A quantum system X

is said to be in state ρ.

1.2.2 Measurements and observables

Let n be a positive integer and A be a finite set. A measurement on an n-
dimensional quantum system with outcomes in A is defined by a set of positive
semidefinite matrices {Fa}a∈A ⊆ Cn×n that satisfy

∑
a∈A

Fa = I.

If the matrices Fa also satisfy FaFb = δabFa for every a, b ∈ A, then they define
a projective measurement.
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A measurement represents an experiment that one can perform on a quan-
tum system. A measurement {Fa}a∈A ⊆ Cn×n performed on an n-dimensional
quantum system in state ρ ∈ Cn×n yields a random variable χ over the set A
whose probability distribution is given by

Pr[χ = a] = Tr(ρFa).

The random variable χ is referred to as the measurement outcome.
If the set A consists of real numbers, then the expected value of the random

variable resulting from a projective measurement {Fa}a∈A is given by

E[χ] = ∑
a∈A

aTr(ρFa) = Tr
�

ρ
�

∑
a∈A

aFa�
�

. (1.1)

The matrix ∑a∈A aFa appearing on the right-hand side of Eq. (1.1) is then called
the observable associated to the projective measurement {Fa}a∈A.

We will mostly work with observables associated to projective measure-
ments with only two outcomes. A {−1, 1}-valued observable is an observable
corresponding to a projective measurement with outcomes in the set {−1, 1}.
We denote the set of {−1, 1}-valued observables in Cn×n by O(Cn).

We note the following useful fact about {−1, 1}-valued observables, which
we use again later on. It follows from the definition that such an observable can
be written as the difference F+ − F− of two orthogonal projectors. Squaring
such an observable thus gives

(F+ − F−)2 = F+ + F− = I.

A {−1, 1}-valued observable is therefore both Hermitian and unitary. Since
any matrix that is Hermitian and unitary has its eigenvalues in {−1, 1}, the
converse is also true.

1.2.3 Entangled states and local measurements

A quantum system X may consist of subsystems X1, . . . ,XN. In this case, we
associate with each subsystem Xi a copy of the vector space Cni , and we asso-
ciate with X the vector space Cn1 � · · · � CnN . So, if X is in state ρ then ρ is a
matrix of size n1 · · · nN.

The subsystems may be distributed among N parties, who may be located
at different places anywhere in the universe. If the overall quantum system X

is in state ρ, then we say that the parties share the state ρ.
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If the first party performs measurement {Fa1}a1∈A1 ⊆ Cn1×n1 on her sub-
system X1, while the second party performs measurement {Fa2}a2∈A2 ⊆ Cn2×n2

on his subsystem X2, etc., then the joint probability distribution of the N mea-
surement outcomes χ1, χ2, . . . , χN is, by definition, given by

Pr[χ1 = a1, χ2 = a2, . . . , χN = aN ] = Tr(ρFa1
1 � Fa2

2 � · · ·� FaN
N ).

A pure state |ψ� ∈ Cn1 � · · ·� CnN is a product state if it is of the form

|ψ� = |ψ1�|ψ2� · · · |ψN�.

(Tensor product symbols are usually omitted when using Dirac notation.) If
|ψ� is not a product state then it is said to be entangled. If a mixed state is a
convex combination of pure product states then it is separable. The most famous
entangled state is the so-called EPR pair

|EPR� = |0�|0�+ |1�|1�√
2

∈ C2 � C2,

named after Einstein, Podolski and Rosen. This is a pure state of a pair of
two-dimensional quantum systems (usually referred to as qubits).

The most important difference between pure product states and pure en-
tangled states is that the former type always gives rise to product distributions
on local measurement outcomes, while this may not be the case for the latter
type of states. In other words, product states give uncorrelated measurement
outcomes, but entangled states can give correlated measurement outcomes.

Suppose that two parties, call them Alice and Bob, share a bi-partite prod-
uct state |ψ� = |ψA�|ψB� and perform measurements {Fa}a∈A and {Gb}b∈B on
their respective quantum systems. Then, the probability that Alice’s measure-
ment outcome χA is a and Bob’s measurement outcome χB is b, equals

Tr
�
|ψ��ψ|Fa � Gb) = �ψ|Fa � Gb|ψ�

= �ψA|�ψB|Fa � Gb|ψA�|ψB�
= �ψA|Fa|ψA��ψB|Gb|ψB�. (1.2)

Since �ψA|Fa|ψA� is the probability of Alice obtaining a and �ψB|Gb|ψB�
is the probability of Bob obtaining b, it follows that the distribution defined
by Eq. (1.2) is a product distribution and in particular, that the measurement
outcomes are uncorrelated.

Below, we give some examples in which parties produce correlated mea-
surement outcomes using entangled states.
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1.3 Nonlocal games

A two-player nonlocal game is defined by four finite sets A,B,S and T , a joint
probability distribution π : S × T → [0, 1] and a map V : A× B × S × T →
{0, 1}. The map V is usually referred to as the predicate. As the underlying sets
are implicit in the probability distribution π and the predicate V, a nonlocal
game can be uniquely defined by π and V.

A nonlocal game G = (π, V) involves three parties: A person called the
referee and two players, usually called Alice and Bob. The probability distribu-
tion and predicate are known to the three parties in advance. Before the game
begins, Alice and Bob may come together to decide on a strategy to play the
game. But after the game has begun, they are not allowed to communicate
with each other anymore.

At the start of the game, the referee picks a pair (s, t) ∈ S × T according
to the probability distribution π, and sends s to Alice and t to Bob. Based on
their strategies, the two players then answer the referee with a ∈ A and b ∈ B,
respectively. The players win the game if V(a, b, s, t) = 1, and lose otherwise.
The players’ objective is of course to maximize their chance of winning.

1.3.1 Classical strategies

A deterministic classical strategy refers to a strategy where the players simply
use deterministic maps a : S → A and b : T → B to decide what to answer the
referee after receiving their questions. In this case, their probability of winning
a nonlocal game G = (π, V) is given by

E(s,t)∼π

�
V
�
a(s), b(t), s, t

��
.

A slightly more sophisticated classical strategy involves shared and private
randomness. Here, the players flip coins (some of which both can see and
others that are private) to determine their answers. However, since such a
course of action results in a probability distribution over deterministic classi-
cal strategies, it cannot increase the maximal chance of winning (see for exam-
ple [CHTW04]).

1.3.2 Entangled strategies

We will contrast classical strategies with entangled strategies, in which Alice
and Bob may share an entangled state on which they perform local measure-
ments to determine their answers.
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An entangled strategy consists of a positive integer n, a pair of n-dimensional
quantum systems XA and XB in some entangled state ρ and measurements
{Fa

s }a∈A and {Gb
t }b∈B ⊆ Cn×n. The system XA belongs to Alice and the sys-

tem XB to Bob. The players thus share the entangled state ρ.
Upon receiving question s, Alice performs measurement {Fa

s }a∈A on XA,
and upon receiving question t, Bob performs measurement {Gb

t }b∈B on XB.
The answers that Alice and Bob send back to the referee are their measurement
outcomes. Since the probability that Alice answers a and Bob answers b is
given by Tr(ρFa

s � Gb
t ), their probability of winning the game equals

E(s,t)∼π

�
∑

a∈A
∑
b∈B

Tr(ρFa
s � Gb

t )V(a, b, s, t)
�
.

It follows easily from linearity of the trace function and the fact that states
are convex combinations of pure states, that pure entangled states suffice in
order to maximize the winning probability with an entangled strategy. Addi-
tionally, in order to possibly have any advantage over classical classical strate-
gies, the state ρ should be entangled, as separable states give rise to random
uncorrelated answers, that is, randomized classical strategies.

1.4 Two-player XOR games

An XOR game is a nonlocal game in which the answer sets A and B are {0, 1}
and the predicate V depends only on the exclusive-OR (XOR) of the answers
given by the players and the value of a boolean function f : S × T → {0, 1}.
More precisely, the predicate is given by V(a, b, s, t) = [a � b = f (s, t)] where
the square brackets denote the 0/1 truth value of the statement.

The truth table of the XOR function is as follows:

� 0 1
0 0 1
1 1 0

An XOR game is thus defined by a pair G = (π, f ) consisting of a probabil-
ity distribution π and boolean function f .

The bias and the violation ratio. In an XOR game, the players (quantum or
classical) can always win with probability 1/2 by answering every question
simply by flipping an unbiased coin. For the case of XOR games it therefore
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makes more sense to look at the amount by which the maximum winning prob-
ability is bounded away from 1/2.

We define the classical bias of an XOR game G to be the difference between
the probability of winning and the probability of losing for optimal classical
strategy. We denote the classical bias by β(G). We define the entangled bias
similarly, and denote it by β∗(G). The (classical or entangled) bias then equals
twice the amount by which the maximal classical winning probability is greater
than 1/2. The reason to consider this definition is given in the next paragraph.

As a measure of the advantage entangled strategies give over classical strate-
gies we define the violation ratio of G to be the fraction β∗(G)/β(G).

Signs and observables. XOR games are more easily analyzed using the {−1, 1}-
basis instead of the {0, 1}-basis for boolean-valued objects. Let (π, f ) be some
XOR game. For any classical strategy a : S → {0, 1} and b : T → {0, 1}, the
bias is given by the probability under π that a(s) � b(t) = f (s, t) minus the
probability under π that a(s)� b(t) �= f (s, t). Concisely, the bias equals

E(s,t)∼π

�
(−1)[a(s)�b(t)= f (s,t)]

�
= E(s,t)∼π

�
(−1)a(s)�b(t)+ f (s,t)

�

= E(s,t)∼π

�
(−1)a(s)(−1)b(t)(−1) f (s,t)

�
.

Hence, if we define sign matrix Σst = (−1) f (s,t) and functions χ(s) = (−1)a(s)

and ψ(t) = (−1)b(t), the bias becomes

E(s,t)∼π

�
χ(s)ψ(t)Σst

�
.

Let us now consider an entangled strategy consisting of a shared (pure)
entangled state |ψ� and projective measurements {F0

s , F1
s } and {G0

t , G1
t }. The

probability that Alice answers bit a upon receiving question s and Bob answers
bit b upon receiving question t equals �ψ|Fa

s � Fb
t |ψ�. Hence, the expected value

of the sign (−1)a�b equals

Pr[a = b]− Pr[a �= b] =

�ψ|F0
s � G0

t |ψ�+ �ψ|F1
s � G1

t |ψ� − �ψ|F0
s � G1

t |ψ� − �ψ|F1
s � G0

t |ψ� =

�ψ|(F0
s − F1

s )� (G0
t − G1

t )|ψ�.

Defining the {−1, 1}-valued observables Fs = F0
s − F1

s and Gt = G0
t − G1

t ,
we get that the bias based on this strategy equals

E(s,t)∼π

�
�ψ|Fs � Gt|ψ�Σst

�
.
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We will often replace the boolean function f by the matrix Σ, and say that
the pair (π, Σ) defines an XOR game. By the above calculations, the classical
bias of such a game is given by

max
�

E(s,t)∼π

�
Σst χ(s)ψ(t)

�
: χ : S → {−1, 1}, ψ : T → {−1, 1}

�

and the entangled bias is given by

sup
n∈N

�
E(s,t)∼π

�
Σst�ψ|Fs � Gt|ψ�

�
: |ψ� ∈ Cn � Cn, Fs, Gt ∈ O(Cn)

�
.

The supremum is used in the entangled bias because the possibility exists
that the maximal winning probability increases indefinitely with the dimen-
sion of the quantum systems.

This reformulation will prove to be a great convenience later on. The rea-
son why we only considered projective measurements is that general measure-
ments do not give an advantage over projective measurements, as shown by
Cleve, Høyer, Toner and Watrous [CHTW04, Proposition 2].

1.4.1 The CHSH game

The CHSH game, named after Clauser, Horne, Shimony and Holt [CHSH69], is
a two-player XOR with two possible questions per player, 0 and 1. The prob-
ability distribution π on {0, 1} × {0, 1} is the uniform distribution, so every
pair of questions is asked with probability 1/4. The predicate V evaluates to 1
if and only if a � b = s ∧ t, where ∧ denotes the AND function (which is 1 if
and only if s = t = 1). Classical players can win this game with probability no
greater than 3/4, which can be seen by observing that the system of equations

a0 � b0 = 0

a0 � b1 = 0

a1 � b0 = 0

a1 � b1 = 1

is overdetermined and only three equations can be satisfied simultaneously.
By sharing an EPR pair, Alice and Bob can win the CHSH game with prob-

ability cos(π/8)2 ≈ 0.85. An entangled strategy based on {−1, 1}-valued ob-
servables that achieves this is as follows. Define the matrices X =

� 0 1
1 0

�
and

Y =
� 0 −i

i 0
�
. These matrices satisfy X2 = Y2 = I, so they are observables, and

they anti-commute, meaning that XY + YX = 0. Define Alice’s observables
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for questions 0 and 1 by F0 = X and F1 = Y, respectively. Define Bob’s ob-
servables for questions 0 and 1 to be G0 = (X − Y)/

√
2 and G1 = (X + Y)

√
2,

respectively. The matrices X and Y should be thought of as being given in the
basis |0�, |1� in which the EPR pair

|EPR� = |0�|0�+ |1�|1�√
2

is given. The following relations then follow easily:

�EPR|X � X|EPR� = 1 �EPR|Y � Y|EPR� = −1

�EPR|X � Y|EPR� = 0 �EPR|Y � X|EPR� = 0.

From these equations we get �EPR|Fs � Gt|EPR� = (−1)s∧t/
√

2 for every s, t ∈
{0, 1} and it follows that the bias based on the above entangled strategy equals

1
4

1

∑
s,t=0

(−1)s∧t�EPR|Fs � Gt|EPR� = 1√
2

,

making the winning probability 1/2 + 1/(2
√

2) = cos(π/8)2.

1.5 Tsirelson’s Theorem

Tsirelson’s Theorem [Tsi87] gives an extremely useful characterization of en-
tangled strategies in two-player XOR games. It forms the basis of many results
in this thesis. Roughly speaking, the theorem gives a correspondence rela-
tion between entangled strategies consisting of a shared entangled state and
{−1, 1}-valued observables on the one hand, and pairs of sequences of real
unit vectors on the other. The correspondence relation is given by the follow-
ing theorem, which is commonly referred to as Tsirelson’s Theorem. We will
refer to the two parts of the correspondence as the “hard direction” and the
“easy direction”.

1.5.1. THEOREM (TSIRELSON). (Hard direction) For all positive integers n, r and
any real r-dimensional unit vectors x1, . . . , xn, y1, . . . , yn, there exists a positive in-
teger d that depends on r only, a state |ψ� ∈ Cd � Cd and {−1, 1}-observables
F1, . . . , Fn, G1, . . . , Gn ∈ O(Cd), such that for every i, j ∈ {1, . . . , n}, we have

�ψ|Fi � Gj|ψ� = xi · yj.

Moreover, d ≤ 2�r/2�.
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(Easy direction) Conversely, for all positive integers n, d, state |ψ� ∈ Cd � Cd and
{−1, 1}-observables F1, . . . , Fn, G1, . . . , Gn ∈ O(Cd), there exist a positive integer r
that depends on d only and real r-dimensional unit vectors x1, . . . , xn, y1, . . . , yn such
that for every i, j ∈ {1, . . . , n}, we have

xi · yj = �ψ|Fi � Gj|ψ�.

Moreover, r ≤ 2d2.

PROOF OF THEOREM 1.5.1: We start by proving the hard direction. Let

I =

�
1 0
0 1

�
, X =

�
0 1
1 0

�
, Y =

�
0 −i
i 0

�
, Z =

�
1 0
0 −1

�
.

(These matrices are called the Pauli matrices.) Note that each of them squares to
the identity matrix I. This implies that they have eigenvalues in {−1, 1}. Ad-
ditionally, note that the last three of them, X, Y and Z, pair-wise anti-commute,
meaning that XY + YX = XZ + ZX = YZ + ZY = 0.

Define for each � = 1, . . . , �r/2�, the d-by-d Clifford matrices,

S2�+1 = Z�(�−1) � X � I�(�r/2�−�),

S2� = Z�(�−1) � Y � I�(�r/2�−�).

From the properties satisfied by the Pauli matrices, the Clifford matrices sat-
isfy that they square to the identity matrix (of size d-by-d) and pair-wise anti-
commute. So, for every k, � ∈ {1, . . . , �r/2�}, we have SkS� + S�Sk = 2δk� I.
Additionally, for every k �= �, we have Tr(SkS�) = 0.

Define F1, . . . , Fn, G1, . . . , Gn ∈ Cd×d by

Fi =
r

∑
k=1

(xi)kSk,

Gj =
r

∑
k=1

(yj)kST
k .

1. CLAIM. The matrices F1, . . . , Fn, G1, . . . , Gn are {−1, 1}-observables.

PROOF: (Hard direction) It suffices to show that F2
i = G2

j = I for each i, j ∈
{1, . . . , n}, as this implies that the matrices have eigenvalues in {−1, 1}. To this
end, consider the expansion of F2

i ,

r

∑
k,�=1

(xi)k(xi)�SkS� = x · xI + ∑
k>�

(xi)k(xi)�(SkS� + S�Sk).
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From the anti-commutation relations satisfied by the Clifford matrices, it fol-
lows that the second sum on the right-hand side equals zero. What remains is
the identity, as x is a unit vector.

Of course, the same argument works for Gj. This proves the claim. �
2. CLAIM. For every i, j ∈ {1, . . . , n}, we have Tr

�
FiGT

j
�
/d = xi · yj.

PROOF: Fix i, j ∈ {1, . . . , n} Similarly as in the proof of the previous claim,
consider the expansion of the product FiGT

j ,

r

∑
k,�=1

(xi)k(yj)�SkS�. (1.3)

Since Tr(SkS�) = dδk�, the only terms in (1.3) that contribute nontrivially to
Tr(FiGT

j ), are those for which k = �. The sum of those terms is exactly dx · y. �

We now consider the expansion of Tr
�

FiGT
j
�
/d. Let {|1�, . . . , |d�} ⊆ Cd be

an orthonormal basis for Cd. Let

|ψ� = 1√
d

d

∑
s=1

|s�� |s�,

be the maximally entangled state.
We have

�ψ|Fi � Gj|ψ� =
1
d

d

∑
s,t=1

�s|� �s|Fi � Gj|t�� |t�

=
1
d

d

∑
s,t=1

�s|Fi|t��s|Gj|t�

=
1
d

Tr
�

FiGT
j
�
.

Combining this with the two claims then proves the hard direction.

(Easy direction) Note that since |ψ� has norm 1 and the observables Fi and
Gj are unitary operators, Fi � I|ψ� and I � Gj|ψ� are unit vectors in Cd2 . Addi-
tionally, note that since Fi and Gj are Hermitian, we have that the inner product

�
�ψ|Fi � I

�
·
�

I � Gj|ψ�
�
= �ψ|Fi � Gj|ψ�,

is a real number. For v ∈ Cd2 we let �(v) denote its real part and �(v) its
complex part, so that

Fi � I|ψ� = �
�

Fi � I|ψ�
�
+ i�

�
Fi � I|ψ�

�

I � Gj|ψ� = �
�

I � Gj|ψ�
�
+ i�

�
I � Gj|ψ�

�
.
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Define vectors 2d2-dimensional unit vectors xi, yj by

xi = �
�

Fi � I|ψ�
�
��

�
Fi � I|ψ�

�

yj = �
�
Gj � I|ψ�

�
��

�
− Gj � I|ψ�

�

Then, since �ψ|Fi � Gj|ψ� is a real number, we have

xi · yj = �
�
�ψ|Fi � Gj|ψ�

�
−�

�
�ψ|Fi � Gj|ψ�

�

= �ψ|Fi � Gj|ψ�,

as desired. ✷

1.6 Multiplayer XOR games

By a multiplayer XOR game we generally mean an XOR game involving more
than two players. For convenience, we will only consider N-player XOR games
in which the question sets are all the same finite set S . Let π be a probability
distribution on SN and f : SN → {0, 1} be a boolean function. In an N-player
XOR game G = (π, f ), the referee picks an N-tuple of questions (s1, . . . , sN)
according to π and sends s1 to the first player, s2 to the second, and so on. The
players answer with a1, . . . , aN ∈ {0, 1}N, respectively and win the game if

a1 � · · ·� aN = f (s1, . . . , sN).

The classical and entangled biases are given in terms of the map Σ : SN →
{−1, 1} defined by Σ[s1, . . . , sN ] = (−1) f (s1,...,sN). The map Σ will often be
referred to as a sign tensor and if N = 2 it will be called a sign matrix. The
classical bias of the game G = (π, Σ) is then given by

β(G) = max
�

E(s1,...,sN)∼π

�
Σ[s1, . . . , sN ]χ1(s1) · · · χN(sN)

��
,

where the maximum is taken over maps χ1, . . . , χN : S → {−1, 1}.
Then entangled bias is given by

β∗(G) = sup
�

E(s1,...,sN)∼π

�
Σ[s1, . . . , sN ]�ψ|F1(s1)� · · ·� FN(sN)|ψ�

��
,

where the supremum is over positive integers n, states |ψ� ∈ Cn � · · · � Cn

and observable-valued maps F1, . . . , FN : S → O(Cn).
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1.6.1 Mermin’s Game

Mermin [Mer90] gave a sequence of XOR games, one for every number N of
players, in which the violation ratio grows exponentially with N. Entangled
players can play these games perfectly by sharing an N-qubit GHZ state

|GHZ� = |0� · · · |0�+ |1� · · · |1�√
2

,

named after its inventors Greenberger, Horne and Zeilinger [GHZ89]. Mer-
min’s game is described as follows. The referee picks an N-bit string x =
x1x2 . . . xN uniformly at random from all strings with even Hamming weight
|x| (i.e., the number of 1s appearing in x is even). He sends x1 to the first player,
x2 to the second, etc. In order to win the game, the players must answer bits
a1, . . . , aN (resp.) such that a1 � · · ·� aN = |x|/2 mod 2.

1.6.1. PROPOSITION. The classical bias of Mermin’s game is at most 2−(N−1)/2 if N
is odd and at most 2−(N−2)/2 if N is even.

PROOF: Without loss of generality, we may assume that the players use a de-
terministic strategy in order to play the game. Let ak(0) and ak(1) denote the
answers of the kth player to questions 0 and 1, respectively.

A simple calculation shows that the players’ bias is given by the formula

1
2N−1 ∑

x∈{0,1}N : |x|even
(−1)|x|/2(−1)a1(x1)+···+ak(xk) =

1
2N−1�

�
N

∏
k=1

�
(−1)ak(0) + i(−1)ak(1)

��
,

where � denotes the real part of a complex number. Note that each complex
number (−1)ak(0) + i(−1)ak(1) has modulus

√
2 and argument a multiple of

π/4. If N is odd, then the product of these complex numbers makes a 45
degree angle with the real axis in the complex plane, making their real part
equal to ±2(N−1)/2. If N is even, then their product is either parallel to the
imaginary axis or parallel to the real axis. Hence, the real part of their product
is at most 2N/2. Dividing by the above factor 2N−1 gives the result. ✷

1.6.2. PROPOSITION. The entangled bias of Mermin’s game is 1.
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PROOF: Let X =
� 0 1

1 0
�

and Y =
� 0 −i

i 0
�
. As these matrices satisfy X2 = Y2 = I,

they are {−1, 1}-valued observables. Moreover, they satisfy

X|0� = |1� X|1� = |0�

Y|0� = i|1� Y|1� = −i|0�.
We claim that N entangled players can play the game perfectly by measur-

ing their respective qubits of the N-qubit GHZ state

|GHZ� = |0� · · · |0�+ |1� · · · |1�√
2

,

using observable F(0) = X on question 0 and F(1) = Y on question 1.
To see this, notice that we have

X � X � X � · · ·� X|ψ� = −|GHZ�
Y � Y � X � · · ·� X|ψ� = |GHZ�.

In general, if the number of Y’s that appear in the tensor products above is
an odd multiple of 2, then |ψ� is an eigenvector with eigenvalue -1, and if
the number of Y’s is a multiple of 4, then |ψ� has eigenvalue +1. Hence, for
x ∈ {0, 1}N with |x| even, we have

N�

k=1
F(xk)|GHZ� = (−1)|x|/2|GHZ�.

The result now follows from the fact that the players’ bias based on this
strategy equals

1
2N−1 ∑

x∈{0,1}N : |x|even
(−1)|x|/2 �GHZ|

N�

k=1
F(xk)|GHZ� = 1,

which completes the proof. ✷

1.6.2 Stabilizer states

The GHZ state, defined in the previous subsection, is a special case of a gen-
eral class of states known as stabilizer states. An N-qubit stabilizer state |ψ�
is the unique common eigenvector of the elements of an abelian subgroup
S ⊆ {I, X, Y, Z}�N of order 2N, such that M|ψ� = |ψ� for every M ∈ S. Here,
I, X, Y, Z are the 2-by-2 Pauli matrices (see Section 1.5) and the group operation
of S is regular matrix multiplication. By a tripartite stabilizer state, we mean a
stabilizer state whose qubits are distributed among three parties. These states
are discussed in the context of multiplayer XOR games in Chapter 6.
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1.7 Semidefinite programs and relaxations

A generic semidefinite program (SDP) has the following form. Given positive
integers k, n, real n-by-n matrices A, B1, . . . , Bk and real numbers c1, . . . , ck

maximize �A, X�
subject to X ∈ S+

n

�Bi, X� = ci,

for i = 1, . . . , k. Here �C, X� = Tr(CTX) denotes the trace inner product of the
matrices C and X and S+

n denotes the set of real n-by-n positive semidefinite
matrices.

We will use the following standard terminology and facts of semidefinite
programs (see for example the books of Grötschel, Lovász and Schrijver [GLS93]
and Boyd and Vandenberghe [BV04], or the survey of Laurent and Rendl [LR05]).

The quantity �A, X� above is referred to as the objective value of the SDP.
The conditions X ∈ S+

n and �Bi, X� = ci imposed on the matrix X are the
constraints. If a matrix X satisfies all the constraints of an SDP, then it is said
to be a feasible solution, or simply feasible for short. If a matrix X is a feasible
and it maximizes the objective value, then it is said to be an optimal solution for
the SDP, or optimal for short. The value �A, X� for optimal solution X is the
optimum of the SDP.

The most important fact about SDPs is that their optimum can be approxi-
mated to within arbitrary fixed precision in polynomial time, as testing whether
a rational matrix is positive semidefinite can be done efficiently using for ex-
ample Gaussian elimination.

1.7.1 Approximation algorithms

One of the most important uses of semidefinite programs is in approximation
algorithms for combinatorial optimization problems that are unknown to be
solvable exactly in polynomial time. The philosophy behind such algorithms
is that it is often good enough to have a solution that is close to optimal. The
advantage gained by relaxing exact optimality is that near-optimal solutions
can sometimes be found much faster.

We distinguish semidefinite programs from approximation algorithms by
requiring from the latter that they return a feasible solution for the optimiza-
tion problem they approximate. A semidefinite program which serves as a
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relaxation for an optimization problem can sometimes be turned into an ap-
proximation algorithm by adding a procedure which turns an optimal solu-
tion to the SDP (some positive semidefinite matrix) into a feasible one for the
optimization problem.

If the optimum of an SDP is c times the optimum of some optimization
problem OPT, then we say that the SDP has approximation ratio c for OPT. If the
output of an approximation algorithm gives a value of δ times the optimum of
an optimization problem, then we say that the approximation algorithm gives
a δ-approximation. Here, c is typically greater than 1 and δ lies in [0, 1].

Below we give two examples of applications of semidefinite programs for
well-known combinatorial optimization problems: the maximum cut problem
and the problem of computing the chromatic number of a graph.

1.7.2 MAX CUT

The maximum cut problem (MAX CUT) refers to the following combinatorial op-
timization problem. Given an undirected graph G = (V, E) with finite vertex
set V and edge set E ⊂ V × V (with no self-loops), find a bi-partitioning of
V such that the number of edges crossing the partition is maximal. Such a bi-
partitioning is also referred to as a cut, and the number of edges crossing it as
the size of the cut.

The MAX CUT problem is one of Karp’s 21 NP-complete problems [Kar72]
(see also [GJ76]). It is therefore unlikely that a polynomial-time algorithm
exists that solves it exactly in the worst case. To make matters worse, Hås-
tad [Hås99] proved that even finding a cut of size 16/17 − ε times the size of
a maximum cut, for any constant ε > 0, cannot be done in polynomial time
unless P=NP.

Good upper bounds on the size of a maximum cut of a graph can be found
using a semidefinite program and a matrix called the Laplacian. Given a graph
G = (V, E), its Laplacian A : V × V → R is defined by

A(u, v) =






deg(u) if v = u
−1 if {u, v} ∈ E
0 otherwise,

where deg(u) = |
�

v ∈ V : {u, v} ∈ E
�
| denotes the degree of vertex u.
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The semidefinite program is then given by:

maximize 1
4�A, X�

subject to X ∈ S+
V

X(u, u) = 1 for every u ∈ V,

(1.4)

where S+
V denotes the set of real positive semidefinite matrices whose rows

and columns are indexed by the vertices of G. The fact that the optimum of
this SDP upper bounds the size of a maximum cut can be shown as follows.
Suppose that S ⊆ V defines a cut (S, V\S) of maximal size. Define the function
χ : V → {−1, 1} by setting χ(u) = +1 if u ∈ S and χ(u) = −1 otherwise.
Then, the matrix X(u, v) = χ(u)χ(v) is feasible for SDP (1.4) since it is positive
semidefinite and has ones on the diagonal. For its objective value we compute

�A, X� = ∑
u,v∈V

A(u, v)χ(u)χ(v)

= ∑
u∈V

deg(u)− 2 ∑
{u,v}∈E

χ(u)χ(v)

= 2 ∑
{u,v}∈E

�
1 − χ(u)χ(v)

�
. (1.5)

Each of the terms 1−χ(u)χ(v) in the last sum equals 2 if the edge {u, v} crosses
the cut and 0 otherwise. Hence, the objective value of X is exactly the size of
the maximum cut. Note that the optimum of SDP (1.4) may be higher.

In a celebrated paper, Goemans and Williamson [GW94] turned SDP (1.4)
into a .878-approximation algorithm for MAX CUT, Algorithm 1.1 shown be-
low. The description of the algorithm uses that for any X ∈ S+

V satisfying
X(u, u) = 1 there is a function f : V → S|V|−1 such that X(u, v) = f (u) · f (v)
for every u, v ∈ V, where

Sn−1 = {x ∈ Rn : x · x = 1}

denotes the real n-dimensional unit sphere (see for example Appendix A).
To analyze Algorithm 1.1 we define a function χ : V → {−1, 1} by setting

χ(u) = +1 if u belongs to the set S returned by the algorithm and setting
χ(u) = −1 otherwise. Based on the vector z sampled in the algorithm we have

χ(u) = sign
�
z · f (u)

�
.

Let A : V × V → R be the Laplacian matrix of the graph G given to the
algorithm. By running the sequence of equations in Eq. (1.5) backwards we
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Algorithm 1.1 (Goemans and Williamson) Takes as input a graph G = (V, E)
and returns a cut (S, V\S) for some S ⊆ V in G.

(1) Solve SDP (1.4), obtaining a function f : V → S|V|−1.

(2) Sample a vector z ∈ R|V| such that the entries of z are independently
distributed Gaussian random variables with mean 0 and variance 1.

(3) Put u ∈ S if and only if z · f (u) ≥ 0.

get that on expectation over the vector z, the size of the cut returned by the
algorithm is given by

Ez

�
1
2 ∑
{u,v}∈E

�
1 − χ(u)χ(v)

�
�

= Ez

�
1
4 ∑

u,v∈V
A(u, v)χ(u)χ(v)

�

=
1
4 ∑

u,v∈V
A(u, v)Ez

�
χ(u)χ(v)

�
, (1.6)

where we used linearity of expectation for the second identity.
The next step of the analysis uses a useful identity often referred to as

Grothendieck’s Identity, as it appeared first in [Gro53, Proposition 4, p. 63].

1.7.1. LEMMA (GROTHENDIECK’S IDENTITY). Let x, y be real unit vectors and let z
be a random Gaussian vector with independently distributed entries that have mean 0
and variance 1. Then, we have

Ez[sign(z · x) sign(z · y)] =
2
π

arcsin(x · y).

PROOF: We have sign(z · x) sign(z · y) = +1 if and only if the vectors x and y
lie on the same side of the hyperplane orthogonal to the vector z. Now we
project this n-dimensional situation to the plane spanned by x and y. Then
the projected random hyperplane becomes a random line. This random line
is distributed according to the uniform probability measure on the unit circle
because z is normally distributed. We obtain the result by measuring regions
on the unit circle and using the identity arcsin(t) = π/2− arccos(t): The prob-
ability that x and y lie on the same side of the line is 1 − arccos(x · y)/π. ✷

Using Grothendieck’s Identity and χ(u) = sign
�
z · f (u)

�
, we get that the

sum appearing on the right-hand side of Eq. (1.6) equals

∑
u,v∈V

A(u, v)Ez
�
χ(u)χ(v)

�
= ∑

u,v∈V
A(u, v)

2
π

arcsin
�

f (u) · f (v)
�
.
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The fact that the matrix A satisfies ∑u∈V A(u, v) = 0 for every v ∈ V then gives

∑
u,v∈V

A(u, v)
2
π

arcsin
�

f (u) · f (v)
�
=

∑
u,v∈V

�
− A(u, v)

��
1 − 2

π
arcsin

�
f (u) · f (v)

��
. (1.7)

Define
αGW = min

�
arccos(t)

1 − t
: t ∈ [−1, 1]

�
= .878 . . . .

Using the trigonometric identity 1− 2 arcsin(t)/π = arccos(t) and A(u, v) ≤ 0
for all u �= v, we can now write and bound the right-hand side of Eq. (1.7) as

∑
{u,v}∈E

�
− A(u, v)

�
�

arccos
�

f (u) · f (v)
�

1 − f (u) · f (v)

�
�
1 − f (u) · f (v)

�
≥

αGW ∑
{u,v}∈E

�
− A(u, v)

��
1 − f (u) · f (v)

�
.

Now using 1 − f (u) · f (u) = 0 and A(u, v) = 0 for all {u, v} �∈ E allows us to
sum over all pairs of vertices, making the above sum equal to

∑
u,v∈V

�
− A(u, v)

��
1 − f (u) · f (v)

�
= ∑

u,v∈V
A(u, v) f (u) · f (v),

where in the identity we again used that ∑v∈V A(u, v) = 0 for all u ∈ V. The
last sum above is simply 4 times the optimum of SDP (1.4), which is in turn at
least as large as the size of a maximum cut. Collecting the factor 1/4 left behind
in Eq. (1.6) gives that the expected size of a cut returned by Algorithm 1.1 is at
least .878 . . . times the the size of a maximum cut.

Optimality of Goemans and Williamson’s approximation algorithm. By ex-
hibiting an explicit family of graphs, Karloff [Kar96], and later Feige and Schecht-
man [FS02], proved that Goemans and Williamson’s analysis of their algorithm
is in fact optimal, showing that strange-appearing number .878 . . . is an upper
bound on the approximation ratio of the algorithm for those graphs. Khot,
Kindler, Mossel and O’Donnell [KKMO04] showed that based on the assump-
tion of a complexity-theoretic conjecture known as the Unique Games Conjec-
ture (cf. Section 1.7.4), .878 . . . is in fact the best-possible approximation ratio
achievable by any polynomial-time approximation algorithm.
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1.7.3 The chromatic number and the Lovász theta number

The chromatic number of a graph is defined as the smallest number of colors
needed to color its vertices such that no two adjacent vertices receive the same
color. A coloring of the vertices that assigns different colors to adjacent pairs
and uses k colors is said to be a proper k-coloring of the graph. Computing the
chromatic number is a well-known NP-hard problem.

The theta number refers to the optimum of a celebrated semidefinite pro-
gram introduced by Lovász [Lov79]. One of its many applications is that it
gives a lower bound on the chromatic number of a graph. For this, we consider
the complement of a graph G = (V, E), denoted G, which is the graph with ver-
tex set V in which a pair of distinct vertices are an edge if and only if they are
not an edge in G. The theta number of the complement of a graph G = (V, E),
denoted by ϑ(G), is the optimum of the following semidefinite program:

minimize λ

subject to Z ∈ S+
V

Z(u, u) = λ − 1 for every u ∈ V

Z(u, v) = −1 for every {u, v} ∈ E,

where S+
V denotes the set of real positive semidefinite matrices whose rows

and columns are indexed by the vertices of G.
The fact that the value ϑ(G) provides a lower bound for the chromatic num-

ber of G can be seen as follows. Suppose that G has a proper k-coloring. We
associate with each vertex v ∈ V a vector f (v) ∈ R(k

2) whose coordinates are
indexed by all unordered pairs {i, j} ∈ ({1,...,k}

2 ).3 If the coloring assigns color i
to v then we define f (v) by

f (v){i,j} =

�
1 if j > i
−1 if j < i

and setting all other entries to zero. The matrix Z(u, v) = f (u) · f (v) is feasible
for the above SDP and has objective value k. It follows that ϑ(G) ≤ χ(G).

Notice that there are only k different vectors in the set
�

f (v)
�

v∈V . So, al-
though the vectors f (v) have dimension (k

2), they only span a k-dimensional
space. Geometrically, the vectors f (v) define a (k − 1)-dimensional regular
simplex whose vertices lie in a sphere of radius

√
k − 1: Vertices in the graph

having the same color are sent to the same vertex in the regular simplex and
vertices of different colors are sent to different vertices in the regular simplex.

3Throughout we denote by (S
t) the family of all t-element subsets of a finite set S.
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1.7.4 A little on the Unique Games Conjecture

In 2002 Khot [Kho02] introduced the Unique Games Conjecture (UGC) in or-
der to make progress on the problem of obtaining hardness of approximation
results for NP-complete problems. Before that, Håstad [Hås99] made signifi-
cant advances in this area. However, for many problems exact approximation
results remained unknown. Since its introduction, it has been shown that the
UGC would imply many inapproximability results unknown to be obtainable
otherwise [KN08, KN09]. Often such results are highly accurate, matching
the approximation ratios of known algorithms. Examples of problems where
exact UGC hardness results are known are MAX CUT [KKMO04], minimum
vertex cover [KR08], kernel clustering [KN10], max-kCSP [ST09]. Perhaps the
most striking result is due to Raghavendra [Rag08], who showed that truth
of the UGC implies that there is a single generic SDP-based polynomial-time
approximation algorithm for all constraint satisfaction problems that achieves
the optimal approximation ratio.

One of several equivalent formulations of the UGC [Kho10] is as follows.
For positive integer n, an instance of a linear unique game over Zn is a two-
player nonlocal game given by a positive integer N and numbers cij ∈ Zn for
i, j ∈ {1, . . . , N}. At the start of the game a referee uniformly samples a pair i, j
from the set {1, . . . , N} and sends question “i” to Alice and question “j” to Bob.
The players answer ai, bj ∈ Zn, respectively, and win if ai − bj = cij (mod n).

1.7.2. CONJECTURE (UNIQUE GAMES CONJECTURE). For any 0 < ε < 1, there
exists positive integer n = n(ε) such that given a linear unique game over Zn with
maximum classical winning probability 1 − ε, there is no polynomial-time algorithm
that finds a classical strategy whose winning probability is greater than ε.

Recently, Arora, Barak and Steurer [ABS10] gave a sub-exponential-time al-
gorithm with performance guarantee better than is allowed in the conjecture
for any polynomial-time algorithm. Though this does not disprove the conjec-
ture, it does show that it is on somewhat shaky ground.

In the context of nonlocal games it is natural to ask what happens to the
UGC when we allow for entangled strategies. Kempe, Regev and Toner [KRT08]
examined exactly this situation and showed that showed that in this case, con-
jecture is false.





Chapter 2

Grothendieck inequalities

2.1 Introduction

Grothendieck’s Inequality is a unifying theme for the chapters in this thesis.
Many of the mathematical tools we use to deal with the problems addressed
here are variations or extensions of this celebrated inequality. The inequal-
ity arose for the first time in Grothendieck’s 1953 paper Résumé de la théorie
métrique des produits tensoriels topologiques [Gro53], nowadays often referred to
simply as the Résumé. The influence this paper has had until now is difficult
to overstate. In particular its main result, Grothendieck’s Inequality, has had
important applications in huge number of different areas in pure mathematics,
theoretical computer science and theoretical physics. A few important exam-
ples of such applications are as follows. Tsirelson [Tsi87] showed that the in-
equality can be interpreted as comparing the classical and quantum biases of a
two-player XOR game, which becomes clear after one puts together Tsirelson’s
Theorem (see Section 1.5) and the form of Grothendieck’s Inequality given be-
low. We discuss this application in further detail in Chapters 3 and 6. Alon
and Naor [AN06] realized that the inequality gives an upper bound on the
ratio of the optima of certain integer optimization problems and their semidef-
inite relaxations. They showed that this implies the existence of constant-
factor approximation algorithms for the problem of computing the cut-norm
of a matrix. Their paper kindled a large amount of research on to connec-
tions between Grothendieck’s Inequality and approximation algorithms based
on semidefinite programming. These results are discussed in greater detail
in Chapters 4 and 5. Linial and Shraibman [LS09] and Lee, Shraibman and

25
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Schechtman [LSS09] showed that the inequality has connections to communi-
cation complexity and Regev and Toner [RT09] adapted techniques used in a
proof of the inequality to simulate quantum correlations with classical commu-
nication. Pérez-García [PG06] applied the inequality in the context of Banach
algebras, a result we discuss in more detail in Chapters 7. Not surprisingly,
many equivalent forms of the inequality have been discovered since its first
appearance. Arguably its most elementary shape was found by Lindenstrauss
and Pełczyński [LP68], which is the shape in which we present the inequal-
ity below. In this chapter we present most of the variations of Grothendieck’s
Inequality that appear in subsequent chapters, though for convenience defi-
nitions will often be repeated when they are needed. Many more references
regarding applications of Grothendieck’s Inequality can be found throughout
this thesis. We also refer to the recent extensive surveys of Pisier [Pis11] and
Khot and Naor [KN11] for more information on this inequality, variations of it
and applications to combinatorial optimization.

2.2 Grothendieck’s Inequality

To suppress the space needed to state Grothendieck’s Inequality and some of
the modifications of it that feature in this thesis we introduce the following
notation.

2.2.1. DEFINITION. For positive integers n, r and real n-by-n matrix A, define

SDPr(A) = max

�
n

∑
i,j=1

Aijxi · yj : x1, . . . , xn, y1, . . . , yn ∈ Sr−1

�
. (2.1)

Define SDP∞(A) analogously, with a maximum over the unit sphere of �2(R).

With regard to the above definition, let us note that since any collection of
vectors x1, . . . , xn, y1, . . . , yn span a space of dimension at most 2n, we have
SDP∞(A) = SDP2n(A) for every n-by-n matrix A. We also note that the set S0

consists just of the numbers 1 and −1. The reason for the abbreviation SDP is
a connection to semidefinite programs which will become more explicit in the
subsequent chapters. Grothendieck’s Inequality can now be stated as follows.

2.2.2. THEOREM (GROTHENDIECK [GRO53]). There exists a real number K > 0
such that for every positive integer n and any real n-by-n matrix A, we have

SDP∞(A) ≤ K SDP1(A). (2.2)
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Inequality (2.2) is nowadays known as Grothendieck’s Inequality. Associated
to Grothendieck’s Inequality is the smallest number K for which it holds.

2.2.3. DEFINITION. The Grothendieck constant KG is defined by

KG = sup
�

SDP∞(A)
SDP1(A)

: n ∈ N, A ∈ Rn×n
�

.

Despite many efforts the exact value of KG is currently not known. How-
ever, it is known to be bounded by

1.676 . . . � KG <
π

2 ln(1 +
√

2)
= 1.782 . . .

The lower bound is due to Davie [Dav84] and Reeds [Ree91], who indepen-
dently found the same result. The upper bound of π/

�
2 ln(1 +

√
2)
�

due to
Krivine [Kri79] was the best known for over thirty years and by many be-
lieved to be tight. However, an exciting development took place while this
thesis was being written. Using an extension of Krivine’s techniques, Braver-
man, Makarychev, Makarychev and Naor [BMMN11] proved that his upper
bound can be improved, disproving Krivine’s conjecture that his bound gave
the exact value of KG. Although they do not give a numerical bound, they
prove that KG ≤ π/

�
2 ln(1 +

√
2)
�
− ε holds for some constant ε > 0. A proof

of Krivine’s upper bound is given in Chapter 5 as part of a more general result
regarding a generalization of KG based on graphs, which is described below.

Despite the fact that the exact value of KG is unknown, Raghavendra and
Steurer [RS09] were able to show that KG is the UGC hardness threshold for
computing the value SDP1(A) for any real matrix A. Moreover, they show
that the exact value of KG can be approximated to within an error ε in time
O
�

exp(exp(1/ε3))
�

by a linear program.

2.3 Generalizations of Grothendieck’s Inequality

In this section we define various generalizations of Grothendieck’s Inequality
that will appear in the subsequent chapters.

2.3.1 The rank-r Grothendieck constant

The first generalization we consider relates SDPr(A) for values of r that may
differ from ∞ and 1. This generalization appeared for the first time in the
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paper [BBT11], whose content will be presented in Chapter 3. We first define
the following generalization of the Grothendieck constant.

2.3.1. DEFINITION. For every pair q, r ∈ N ∪ {∞} such that q ≥ r, define
KG(q �→ r) by

KG(q �→ r) = sup
�

SDPq(A)

SDPr(A)
: n ∈ N, A ∈ Rn×n

�
.

We refer to KG(∞ �→ r) as the rank-r Grothendieck constant. The reason for
the word rank is that a matrix X ∈ Rn×n has rank r if and only if there exist
r-dimensional vectors x1, . . . , xn and y1, . . . , yn such that Xij = xi · yj. It follows
that SDPr(A) is the maximum of �A, X� over rank-r matrices X. Based on Def-
inition 2.3.1 we get the following generalization of Grothendieck’s Inequality:
For every positive integer n and any real n-by-n matrix A, we have

SDPq(A) ≤ KG(q �→ r) SDPr(A). (2.3)

The constant KG(q �→ 1) is known as the Grothendieck constant of order q
and is usually denoted KG(q). It was studied before by Krivine [Kri77], who
proved that KG(2) =

√
2 and KG(4) ≤ π/2, and numerically computed upper

bounds for other values of q, including KG(3) < 1.57.

Variations of KG(q �→ r) that will appear in Chapter 4 are based on positive
semidefinite matrices and Laplacian matrices.

2.3.2. DEFINITION. For every pair q, r ∈ N ∪ {∞} such that q ≥ r, define
K�

G (q �→ r) by

K�
G (q �→ r) = sup

�
SDPq(A)

SDPr(A)
: n ∈ N, A ∈ S+

n

�
.

2.3.3. DEFINITION. For every pair q, r ∈ N ∪ {∞} such that q ≥ r, define
KL

G(q �→ r) by

KL
G(q �→ r) = sup

�
SDPq(A)

SDPr(A)
: n ∈ N, A ∈ S+

n and Laplacian
�

.

We have the following easy relations between the above constants:

KL
G(q �→ r) ≤ K�

G (q �→ r) ≤ KG(q �→ r) ≤ KG.

The calculations done in Section 1.7.2 to analyze the Goemans-Williamson ap-
proximation algorithm for MAX-CUT show that the constant KL

G(∞ �→ 1) is
bounded from above by (.878 . . . )−1 = 1.138 . . . . Upper bounds on the con-
stants KL

G(q �→ 1) for q = 2, 3 were computed by Avidor and Zwick [AZ05],
who showed that for these values of q, we have KL

G(q �→ 1) < KL
G(∞ �→ 1).
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2.3.2 The Grothendieck constant of a graph

We also consider a generalization of Grothendieck’s Inequality based on graphs.
For this, we introduce a variation of the quantity SDPr(A) based on graphs and
matrices whose rows and columns are indexed by the vertices of those graphs.

2.3.4. DEFINITION. For a graph G = (V, E), positive integer r and matrix A :
V × V → R, define

SDPr(G, A) = max




 ∑
{u,v}∈E

A(u, v) f (u) · f (v) : ∀u ∈ V, f (u) ∈ Sr−1




 .

Define SDP∞(G, A) analogously with a maximum over functions f : V → S∞

where S∞ is the unit sphere of �2(R).

Since �2(R) contains Rn as the subspace of its first n components, we have
that |V|-dimensional unit vectors suffice to achieve the maximum above (note
that a collection of |V| vectors span a space of dimension at most |V|). That is,
SDP∞(G, A) = SDP|V|(G, A). An important difference between SDPr(G, A)
and SDPr(A) defined above is that the latter has a maximum over two se-
quences of unit vectors, while the the former has only one such sequence.

2.3.5. DEFINITION. For a graph G = (V, E) and pair q, r ∈ N ∪ {∞} such that
q ≥ r, define K(q �→ r, G) by

K(q �→ r, G) = sup
�

SDPq(G, A)

SDPr(G, A)
: A : V × V → R

�
.

The rank-r Grothendieck constant of the graph G, denoted K(r, G), is defined
by K(r, G) = K(∞ �→ r, G). This number plays a major role in Chapter 5, where
we establish new upper bounds for r > 1. The constant K(G) = K(1, G) was
considered by by Alon, Makarychev, Makarychev and Naor [AMMN06], who
called it simply the Grothendieck constant of the graph G. They proved that

Ω
�

log ω(G)
�
≤ K(G) ≤ O

�
log ϑ(G)

�
,

where ω(G) is the size of the largest clique in G. This shows in particular that
K(G) depends strongly on the graph, and is not a universal constant like the
Grothendieck constant KG. Laurent and Varvitsiotis [LV11] showed that for
specific graph classes, it is possible to compute K(G) exactly. In particular, if G
is an n-cycle, then K(G) = n cos(π/n)/(n − 2) and if G has no K5 minor and is
not a forest, then K(G) equals the maximum value of K(C) for C a cycle graph
appearing as an induced subgraph in G. We refer to Chapter 5 for more results
on these numbers.
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2.3.3 The complex Grothendieck constant

Perhaps the most natural generalization of Grothendieck’s Inequality is ob-
tained by allowing all quantities involved to take complex values. Let us de-
note by Sr−1

C the r-dimensional complex unit sphere.

2.3.6. DEFINITION. For positive integers n, r and complex n-by-n matrix A, de-
fine

SDPC
r (A) = max

����
n

∑
i,j=1

Aij�xi, yj�
��� : x1, . . . , xn, y1, . . . , yn ∈ Sr−1

C

�
, (2.4)

where �·, ·� denotes the regular inner product on Cd. Define SDPC
∞ analogously

but with a supremum over the unit sphere of the Hilbert space �2(C) of com-
plex square-summable sequences.

2.3.7. DEFINITION. For every pair q, r ∈ N ∪ {∞} such that q ≥ r, define

KC
G(q �→ r) = sup

�
SDPC

q (A)

SDPC
r (A)

: n ∈ N, A ∈ Cn×n

�
. (2.5)

The complex Grothendieck constant KC
G is defined by KC

G = KC
G(∞ �→ 1). The

corresponding variant of Grothendieck’s Inequality is then as follows: For any
positive integer n and any matrix A ∈ Cn×n, we have

SDPC
∞(A) ≤ KC

G SDP1(A).

The currently best lower and upper bounds on KC
G, proved by Davie [Dav84]

and Haagerup [Haa87], respectively, are given by 1.33807 ≤ KC
G � 1.40491.

König [Kön91] obtained the numerical bounds 1.152 ≤ KC
G(2 �→ 1) ≤ 1.216.

Another related result of Davie [Dav85] shows that for every positive integer
n, any complex n-by-n matrix A and r the integer part of

√
2n − 1, we have

SDPC
∞(A) = SDPC

r (A); he noted that similar results hold for the real setting.

2.3.4 Tonge’s Inequality

Blei [Ble79] and Tonge [Ton78] considered certain multilinear generalizations
of Grothendieck’s inequality, where the matrix A is replaced by a higher-order
tensor, and the inner product function replaced by a multilinear functional on
more than two unit vectors. We use these generalizations in Chapters 6 and 7.
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By a (real) N-tensor we mean a map A : [n]N → R, which can be seen as an ar-
ray of reals whose coordinates are indexed by N-tuples of integers (i1, . . . , iN)
over the set [n]. The case N = 2 thus gives ordinary real matrices.

We introduce two quantities, reminiscent of the quantities SDP1(A) and
SDP∞(A) appearing on opposing sides of Grothendieck’s Inequality.

2.3.8. DEFINITION. For positive integers n, N and N-tensor A : [n]N → R,
define

OPT(A) = max




 ∑
I∈[n]N

A[I]χ1(i1) · · · χ(iN) :

χ1, . . . , χN : [n] → {−1, 1}




 . (2.6)

It may be helpful to note that for N = 2, we have OPT(A) = SDP1(A).
We introduce a multilinear functional, which replaces the regular inner

product appearing in Grothendieck’s Inequality. The generalized inner product
of vectors x1, . . . , xn ∈ Cd is defined by

�x1, . . . , xN� = ∑
i
(x1)i · · · (xN)i,

where (x1)i denotes the ith coordinate of the vector x1 in the canonical basis.
Note that for the case N = 2, �·, ·� is linear in both arguments, as opposed to
conjugate linear in the first and linear in the second. This conflicting notation
with the standard inner product will not be an issue later on and will only
occur in Chapters 6 and 7 where the cases N ≥ 3 are of main interest. Let BCd

denote the d-dimensional complex unit ball.

2.3.9. DEFINITION. For positive integers n, N and N-tensor A : [n]N → R, we
define

GIP(A) = sup






��� ∑
I∈[n]N

A[i1, . . . , iN ] � f1(i1), . . . , fN(iN)�
��� :

d ∈ N, f1, . . . , fN : [n] → BCd

�
. (2.7)
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Note carefully that in the definition of GIP(A), the supremum is taken over
complex vectors, while the tensor A is assumed to be real. For N = 2, the
identity GIP(A) = SDPC

∞(A) holds, as there is a 1-1 correspondence between
complex unit vectors and their conjugates.

The multilinear generalization of Grothendieck’s Inequality given below is
a slight variation of a result due to Tonge [Ton78].1

2.3.10. THEOREM (TONGE). Let n, N ≥ 2 be positive integers. Then, for any N-
tensor A : [n]N → R, we have

GIP(A) ≤ 2(3N−5)/2KC
G OPT(A). (2.8)

In the original inequality proved by Tonge the tensor A may be complex
and the maximization on the right-hand side is over variables in the complex
unit disc. The version stated above is tailored specifically to our needs.

The proof of Theorem 2.3.10 that we give here is longer than Tonge’s orig-
inal proof, but more elementary. Both proofs use induction on N. The base
case, N = 2, is derived from the complex version of Grothendieck’s Inequality,
which we restate here in its strongest form.

2.3.11. LEMMA (HAAGERUP). For all positive integers n, d, any complex n-by-n
matrix A and complex vectors x1, . . . , xn and y1, . . . , yn ∈ BCd , the inequality

���
n

∑
i,j=1

Aij�xi, yj�
��� ≤ KC

G max

����
n

∑
i,j=1

Aijσ1(i)σ2(j)
��� : σ1, σ2 : [n] → BC

�
, (2.9)

where KC
G � 1.40491 is independent of n and d.

Note that the maximization on the right-hand side of Eq. (2.9) is over se-
quences σ1(1), . . . , σ1(n) and σ2(1), . . . , σ2(n) of scalars in the complex unit disc.

The inductive step relies on a slight modification of an Inequality of Little-
wood (Lemma 2.3.12 below) [Lit30] (see also [Pie72, page 43] and [Sza76]).

2.3.12. LEMMA (LITTLEWOOD). For all positive integers n, d and any complex n-
by-d matrix B, we have

n

∑
i=1

� d

∑
j=1

|Bij|2
�1/2

≤ 23/2 max

����
n

∑
i=1

d

∑
j=1

Bijχ(i)ξ(j)
��� : χ(i), ξ(j) ∈ {−1, 1}

�
.

(2.10)

1A weaker version of Tonge’s result was proved earlier by Blei [Ble79] (though it was pub-
lished shortly after Tonge’s paper was).
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We first prove Theorem 2.3.10. Afterwards, we prove Lemma 2.3.12

PROOF OF THEOREM 2.3.10: By induction on N. For the base case, N = 2, we
use Lemma 2.3.11 and relate the right-hand side of Inequality (2.9) to OPT(A)
using the following version of [MST99, Proposition 15]:

3. CLAIM. For any real n-by-n matrix A and sequences of scalars σ1(1), . . . , σ1(n)
and σ2(1), . . . , σ2(n) in the complex unit disc BC, we have

���
n

∑
i,j=1

Aijσ1(i)σ2(j)
��� ≤ max

�
n

∑
i,j=1

Aij�
�

σ�
1(i)σ

�
2(j)

�
: σ�

1, σ�
2 : [n] → BC

�
.

(2.11)

PROOF: Using polar coordinates, the complex number ∑n
i,j=1 Aijσ1(i)σ2(j) can

be written as reiφ for some non-negative real number r and angle φ. This gives

���
n

∑
i,j=1

Aijσ1(i)σ2(j)
��� =

���e−iφ
n

∑
i,j=1

Aijσ1(i)σ2(j)
���

= �
�

e−iφ
n

∑
i,j=1

Aijσ1(i)σ2(j)

�

=
n

∑
i,j=1

Aij�
�

e−iφσ1(i)σ2(j)
�

,

where the second identity follows because the number between brackets is real
and nonnegative (it is r), and the third identity follows because A is real. The
result follows by defining σ�

1 = e−iφ/2σ1 and σ�
2 = e−iφ/2σ2. ✷

We can write the real part �(σ1σ2) of the product of two complex numbers
σ1, σ2 as the inner product between real vectors a =

�
�(σ1),�(σ1)

�T and b =
�
�(σ2),−�(σ2)

�T. Using this, Lemma 2.3.11 and Claim 3, we get that for every
sequence of unit vectors x1, . . . , xn and y1, . . . , yn ∈ BCd ,

���
n

∑
i,j=1

Aij�xi, yj�
��� ≤ KC

G max
σ1,σ2:[n]→B(C)

���
n

∑
i,j=1

Aijσ1(i)σ2(j)
���

≤ KC
G max

σ1,σ2:[n]→B(C)

n

∑
i,j=1

Aij�
�

σ1(i)σ2(j)
�

≤ KC
G max

a,b:[n]→B
R2

n

∑
i,j=1

Aija(i) · b(j)
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The base case now follows from Krivine’s [Kri79] bound KG(2) ≤
√

2 on the
Grothendieck constant of order 2 (see Section 2.3.1). This implies that

n

∑
i,j=1

Aija(i) · b(j) ≤
√

2 max

�
n

∑
i,j=1

Aijχ1(i)χ2(j) : χ1, χ2 : [n] → {−1, 1}
�

holds for any sequence of vectors a(1), . . . , a(2) and b(1), . . . , b(2) ∈ BR2 , and
hence proves the base case.

We continue with the induction step. Suppose that Inequality (2.8) holds
for some N ≥ 2. Let A : [n]N+1 → R be a real (N + 1)-tensor. Define the
complex n-by-d matrix B by

Bij =
n

∑
i1,...,iN=1

A[i1, . . . , iN, i] f1(i1)j · · · fN(iN)j,

where f1(i1)j stands for the jth coordinate of the d-dimensional complex vector
f1(i1). Then, we can write the left-hand side of Inequality (2.8) as

n

∑
i1,...,iN ,i=1

A[i1, . . . , iN, i]� f1(i1), . . . , fN+1(i)� =
n

∑
i=1

d

∑
j=1

Bij fN+1(i)j.

By the triangle inequality, the Cauchy-Schwarz inequality and Inequality (2.10)
from Lemma 2.3.12, we can bound the absolute value of this quantity by

���
n

∑
i=1

d

∑
j=1

Bij fN+1(i)j

��� ≤
n

∑
i=1

���
d

∑
j=1

Bij fN+1(i)j

���

≤
n

∑
i=1

� d

∑
j=1

��Bij
��2
�1/2

≤ 23/2 max

����
n

∑
i=1

d

∑
j=1

Bijχ(i)ξ(j)
���

�
, (2.12)

where the maximum is taken over χ : [n] → {−1, 1} and ξ : [d] → {−1, 1}.
Let χ and ξ be the functions with which this maximum is achieved.

Expanding the definition of the matrix B gives

23/2
���

n

∑
i=1

d

∑
j=1

Bijχ(i)ξ(j)
���

= 23/2
���

n

∑
i=1

d

∑
j=1

� n

∑
i1,...,iN=1

A[i1, . . . , iN, i] f1(i1)j · · · fN(iN)j

�
χ(i)ξ(j)

��� (2.13)
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Define the real N-tensor A� : [n]N → R defined by

A�[i1, . . . , iN ] =
n

∑
i=1

A[i1, . . . , iN, i]χ(i).

Then, we can write the right-hand side of Eq. (2.13) as

23/2
���

d

∑
j=1

∑
I∈[n]N

A�[I] f1(i1)j · · · fN(iN)jξ(j)
��� =

23/2
��� ∑

I∈[n]N
A�[I]� f1(i1)j, · · · , fN(iN) ◦ ξ�

���,

where by fN(iN) ◦ ξ we mean the entry-wise product of the d-dimensional
complex vectors fN(iN) and

�
ξ(1), . . . , ξ(d)

�
. By the induction hypothesis,

the last quantity is bounded from above by 23/22(3N−5)/2KC
G OPT(A�). Since

OPT(A) involves a re-maximization over χ that appears in the definition of
A�, we have OPT(A�) ≤ OPT(A). This completes the proof. ✷

We now prove Inequality (2.10) of Lemma 2.3.12. We derive it from Khint-
chine’s Inequality (see for example [MS86]), which states that there exists a con-
stant κ such that for any any finite sequence of complex scalars σ(1), . . . , σ(n)
the inequality

�
n

∑
i=1

|σ(i)|2
�1/2

≤ κ
� 1

t=0

���
n

∑
i=1

σ(i)ri(t)
���dt, (2.14)

where ri(t) = sign
�

sin(2iπt)
�

denotes the ith Rademacher function. The best
value of κ is due to Szarek [Sza76] (see also [LO94] ), who proved that κ ≤

√
2.

PROOF OF LEMMA 2.3.12: By Inequality (2.14), we have

n

∑
i=1

� d

∑
j=1

|Bij|2
�1/2

≤
√

2
� 1

t=0

n

∑
i=1

���
d

∑
j=1

Bijrj(t)
���dt

≤
√

2 max

�
n

∑
i=1

���
d

∑
j=1

Bijξ(j)
���

�
, (2.15)

where the above maximum is over maps ξ : [d] → {−1, 1}. Let ξ achieve this
maximum. Define χ : [n] → BC by

χ(i) =

�
∑d

j=1 Bijξ(j)
�∗

�� ∑d
j=1 Bijξ(j)

��
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Then, we have that the maximum on the right-hand side of Eq. (2.15) equals

n

∑
i=1

χ(i)
d

∑
j=1

Bijξ(j) =
n

∑
i=1

d

∑
j=1

Bijχ(i)ξ(j).

Now, we make χ real-valued, at the cost of a factor at most 2. By the triangle
inequality, we have

n

∑
i=1

χ(i)
d

∑
j=1

Bijξ(j) ≤
���

n

∑
i=1

�
�
χ(i)

� d

∑
j=1

Bijξ(j)
���+

���
n

∑
i=1

�
�
χ(i)

� d

∑
j=1

Bijξ(j)
��� (2.16)

Set χ� to be either the real or imaginary part of χ, whichever gives the largest
value on the right-hand side of Eq. (2.16). Then, χ� : [n] → [−1, 1] and we have

n

∑
i=1

� d

∑
j=1

|Bij|2
�1/2

≤ 23/2
���

n

∑
i=1

d

∑
j=1

Bijχ
�(i)ξ(j)

���

≤ 23/2 max

����
n

∑
i=1

d

∑
j=1

Bijχ
��(i)ξ(j)

���

�
,

where the maximum is taken over χ�� : [n] → {−1, 1} and ξ : [d] → {−1, 1}.
Here, the second inequality follows because χ� can be written as a convex com-
bination of functions χ�� : [n] → {−1, 1} and by the triangle inequality. This
completes the proof. ✷



Chapter 3

A generalized
Grothendieck constant and nonlocal games
that require high entanglement

The content of this chapter is based on joint work with Harry Buhrman and
Ben Toner [BBT11].

3.1 Introduction

The Clauser-Horne-Shimony-Holt (CHSH) game, briefly introduced in Sec-
tion 1.4.1, is a simple nonlocal game that classical players can win with prob-
ability no greater than 0.75, but for which entangled players can produce cor-
related answers such that their probability of winning is roughly 0.85. In prin-
ciple, nonlocal games can thus be used to witness a key feature of quantum
systems: entangled states. If a joint distribution on pairs of answers that re-
sult from local measurements on a shared quantum state, could be used to win
the CHSH game with probability strictly greater than 0.75, then entanglement
must have been present. Motivated by the fact that in quantum information
theory, dimensionality of quantum systems is viewed as a fundamental resource
(see for example [BKCD02, WCD08]), Brunner et al. [BPA+08] asked if a more
refined deduction is also possible:

Given a set of correlations originating from measurements on a quantum state of
unknown Hilbert-space dimension, can we determine the minimal dimension

necessary to produce such correlations?

37
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A more concrete motivation for this problem comes from quantum key dis-
tribution [BB84, Eke91], where usually security can only be proved if the as-
sumption is made that the local dimension of the shared entangled state is
known to both honest parties or that their state can be used to violate a Bell
inequality [BHK05, AGM06].

In this chapter, we address the above question via a connection between
local Hilbert space dimensions required to play certain two-player nonlocal
games optimally, and a generalization of the Grothendieck inequality. To il-
lustrate this connection, consider the following alternative to the “CHSH test”
for the cruder problem of detecting any entanglement whatsoever. This test is
based on the Grothendieck constant. The fact that the Grothendieck constant is
strictly greater than 1 is established by proving that for some n-by-n matrix A
(for some n) and some real unit vectors x1, . . . , xn, y1, . . . , yn, the inequality

n

∑
i,j=1

Aijxi · yj ≥ K max

�
n

∑
i,j=1

Aijχiψj : χ1, . . . , χn, ψ1, . . . , ψn ∈ {−1, 1}
�

,

(3.1)
holds for some real number K > 1. The first to prove this was Grothendieck
himself [Gro53]. He gave an example of a matrix A for which the above in-
equality holds with K = π/2 = 1.5707 . . . .

Suppose that we normalize Grothendieck’s example such that it can be de-
composed as Aij = π(i, j) · Σij for some probability distribution π on pairs
{1, . . . , n} × {1, . . . , n} and n-by-n sign matrix Σ (this can be done by simply
dividing each of the elements of A by ∑n

i,j=1 |Aij|). Then, the pair (π, Σ) defines
a two-player nonlocal game as follows. A referee samples a pair (i, j) according
to π and asks Alice question “i”, and Bob question “j”. Alice and Bob answer
with signs χi and ψj, respectively, and win the game if χiψj = Σij. A simple
calculation (see Section 1.4) shows that the maximum on the right-hand side
of Inequality (3.1) equals the classical bias, defined as the maximum difference
between the probability of winning and the probability of losing with classical
strategies. On the other hand, Tsirelson’s Theorem (see Section 1.5) shows that
the entangled bias is at least the value on the left-hand side of (3.1). Hence, the
entangled bias of this “Grothendieck game” (π, Σ) is at least π/2 times greater
than the classical bias, and therefore, this game can be used to witness the fact
that entanglement is present among Alice and Bob.

Like the CHSH game, the game described above is an XOR game, where
{−1, 1} is used for the binary basis. Brunner et al. conjectured that the more
refined problem of testing Hilbert space dimensions could also be dealt with
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by considering simple nonlocal games.

3.1.1. CONJECTURE (BRUNNER ET AL.). For every positive integer d, there exists a
two-player XOR game G, probability p and constant ε > 0, such that G can be won
with probability p with an entangled strategy, but any entangled strategy with local
Hilbert space dimensions less than d achieves winning probability at most p − ε.

The main result of this chapter is a proof of this conjecture. In [BPA+08] it
is observed that the truth of Conjecture 3.1.1 would follow if KG(q) is strictly
increasing with q, which is plausible, but is currently unknown to be true. We
avoid this issue by using the new generalization of the Grothendieck constant
KG(q �→ r) and proving that it is strictly greater than 1. This enables us to
obtain the result with an application of Tsirelson’s Theorem. For convenience,
let us recall that KG(q �→ r) is defined by

KG(q �→ r) = sup
�

SDPq(A)

SDPr(A)
: n ∈ N, A ∈ Rn×n

�

and that SDPr(A) is defined by

SDPr(A) = max

�
n

∑
i,j=1

Aijxi · yj : x1, . . . , xn, y1, . . . , yn ∈ Sr−1

�
.

3.2 Grothendieck’s Inequality with operators

In the next section, we prove lower bounds on the constant KG(q �→ r). This is
done by showing that for some matrix A and some constant K > 1, we have

SDPq(A) ≥ K SDPr(A),

implying that KG(q �→ r) ≥ K. However, the matrix we consider is of a special
kind that is not obviously covered in the definition of KG(q �→ r), because it
has uncountably many rows and columns. Slightly more precisely, the matrix
we consider has rows and columns that are indexed by real unit vectors. The
purpose of this section is to show that this is not a problem. In fact, all lower
bounds on the original Grothendieck constant were obtained by using similar
kinds of infinite matrices. Moreover, the form of Grothendieck’s Inequality
that results from this is much closer to the form in which it was originally
formulated in [Gro53]. The matrix we use in the next section is the one with
which Grothendieck himself proved the first lower bound of π/2 on KG. The
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current section will also prepare us for some more general results regarding
extremal examples for our constant KG(q �→ r), given in Section 3.5.

We now describe precisely what we mean by these infinite matrices. An
n-by-n matrix A defines a linear operator from Rn to Rn, as it maps a vector
x ∈ Rn to a vector Ax ∈ Rn via matrix-vector multiplication. Conversely, a
linear operator A : Rn → Rn defines a real n-by-n matrix given by (ei · Aej)n

i,j=1,
where e1, . . . , en are the canonical unit vectors. Hence, in the definition of our
constant KG(q �→ r), we could have used linear operators instead of matrices.

In the subsequent sections we will work with linear operators, instead of
infinite-dimensional analogues of matrices. More specifically, we will work
with linear operators that map functions to functions. These functions are of the
form f : Sn−1 → R and are continuous. Informally speaking, a function f is
continuous if f (x) is close to f (y) whenever x is close to y. We formalize this by
endowing Rn with the metric given by the Euclidean distance �x − y�2, so that
it makes sense to speak of continuous functions (see for example Appendix A
or [Rud86]). We denote the space of real-valued continuous functions on the
real n-dimensional unit sphere by C(Sn−1).

The linear operators that will take the place of finite matrices in our lower
bounds on KG(q �→ r) are of the form A : C(Sn−1) → C(Sn−1). Morally,
we can think of such a linear operator as a matrix whose rows and columns
are indexed by n-dimensional unit vectors. However, in order to be able do
so formally, we would need to deal with “problematic” cases that give rise to
generalized functions (or distributions) such as the Dirac delta function (see for
example [RS72, p. 148]). We choose to stick with linear operators instead of the
analogues of matrices that would be needed in order to avoid that discussion.

Now that we have specified the kind of linear operators that we will use,
we continue by extending the definition of SDPr(A) for the case where A is
a linear operator of the form A : C(Sn−1) → C(Sn−1). The goal of this is to
establish that KG(q �→ r) ≥ SDPq(A)/ SDPr(A) for any such operator A. Let
us recall that the definition of SDPr(A) when A is an n-by-n matrix is

max

�
n

∑
i,j=1

Aijxi · yj : x1, . . . , xn, y1, . . . , yn ∈ Sr−1

�
.

The argument of this maximum can be rewritten as

n

∑
i,j=1

Aijxi · yj =
n

∑
i=1

xi ·
� n

∑
j=1

Aijyj
�
. (3.2)
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The first thing we do towards extending the definition of SDPr is to give the
analogue of the last term ∑n

j=1 Aijyj for the case of linear operators on functions
defined on the n-dimensional unit sphere.

For linear operator A : C(Sn−1) → C(Sn−1) and continuous vector-valued
function f : Sn−1 → Rr, the expression A f should be interpreted as follows.
We can view the function f as a collection of r real-valued functions f1, . . . , fr ∈
C(Sn−1), such that f (x) =

�
f1(x), . . . , fr(x)

�T. By A f we mean that A acts on
each of these r functions simultaneously, giving another continuous vector-
valued function (A f ) : Sn−1 → Rr defined by (A f1, . . . , A fr)T. Now, the ana-
logue of the term ∑n

j=1 Aijyj above, where each yj is an r-dimensional unit vec-
tor, is given by (Ag), where g is a function of the form g : Sn−1 → Sr−1. The
sum over j on the right-hand side of Eq. (3.2) will therefore “disappear” when
we consider linear operators on functions.

The remaining sum over i appearing on the right-hand side of Eq. (3.2) will
be replaced by an integral over the n-dimensional unit sphere. For this, we use
the following standard tools from measure theory (see for example [Mat99,
Rud86]). We let O(Rn) = {U ∈ Rn×n : UTU = I} denote the orthogonal
group on Rn. A measure ν on Sn−1 (which we endow with the Borel σ-algebra)
is rotationally invariant if for any measurable subset R ⊆ Sn−1 and orthogonal
matrix U ∈ O(Rn), we have ν({Ua : a ∈ R}) = ν(R). A measure ν on a
measurable space Ω is a probability measure if it is normalized so that ν(Ω) = 1.
Let ωn be the (unique) rotationally invariant probability measure on Sn−1 (see
for example [MS86] for a proof of the uniqueness property).

With this, we can now extend the definition of SDPr. For linear operator
A : C(Sn−1) → C(Sn−1) and integer r ≥ 2, define

SDPr(A) = sup
��

Sn−1
f (x) · (Ag)(x)dωn(x) : f , g : Sn−1 → Sr−1

�
, (3.3)

where the supremum is taken over all functions f , g that are continuous and
measurable. We define SDP1(A) as the supremum over continuous measur-
able functions f , g taking values in [−1, 1]. The reason for this is that the
only continuous {−1, 1}-valued functions are constant functions. We define
SDP∞(A) analogous to the finite setting.

The fact that it is possible to prove lower bounds on KG(q �→ r) by consid-
ering linear operators on C(Sn−1) follows directly from the following lemma.

3.2.1. LEMMA. For all positive integers n, q, r with q > r, any linear operator A :
C(Sn−1) → C(Sn−1) and any η > 0, there exists positive integer N = N(η) and
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real N-by-N matrix B such that,

SDPq(B)
SDPr(B)

≥ SDPq(A)

SDPr(A)
− η. (3.4)

We defer the proof of this lemma, which uses a standard ε-net argument, to
the end of this chapter (Section 3.8), so that we can move on to prove our lower
bounds on KG(q �→ r). We only mention that the converse of Lemma 3.2.1 also
holds. In Section 3.5 we show that in order to prove lower bounds on KG(q �→
r), it is sufficient to restrict to linear operators on the sphere of a special kind:
rotationally invariant operators.

3.3 Lower bounds on the generalized Grothendieck
constant

In this section, we prove lower bounds on the constant KG(q �→ r).

3.3.1. THEOREM. For all positive integers q, r such that q > r, we have

KG(q �→ r) ≥ γ(q)
γ(r)

≥ 1 +
1
2r

− 1
2q

− O
� 1

r2

�
,

where the function γ : R → R is defined by

γ(z) =
2
z

�
Γ
� z+1

2
�

Γ
� z

2
�

�2

,

where Γ : R → R is the Gamma function, defined by

Γ(z) =
� ∞

0
tz−1e−tdt.

The theorem follows by considering the operator A : C(Sn−1) → C(Sn−1)
defined by

(A f )(x) =
�

Sn−1
x · y f (y)dωn(y). (3.5)

With this operator, Grothendieck proved the π/2 lower bound on KG, which
we obtain by letting q → ∞ and r = 1. For this operator we can compute the
value SDPr(A) exactly, giving the bounds KG(q �→ r) ≥ SDPq(A)/ SDPr(A) of
Theorem 3.3.1. The value of SDPr(A) is given in the following lemma.
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3.3.2. LEMMA. Let A : C(Sn−1) → C(Sn−1) be the linear operator defined in
Eq. (3.5). Then, for every integer 1 ≤ r ≤ n, we have

SDPr(A) =
1
r

�
Γ
� r+1

2
�
Γ
�n

2
�

Γ
� r

2
�
Γ
�n+1

2
�
�2

=
1
n

γ(r)
γ(n)

. (3.6)

PROOF: We prove the lemma in two parts. First, we show that the problem of
computing SDPr(A) can be reduced to computing a particular integral over the
n-dimensional unit sphere. This is the content of Claim 4. Second, we compute
that integral. The result of this computation is given in Claim 5.

4. CLAIM. For every 1 ≤ r ≤ n, we have

SDPr(A) =
1
r




�

Sn−1

�
r

∑
i=1

x2
i

�1/2

dωn(x)




2

. (3.7)

PROOF: The value SDPr(A) for the operator A of Eq. (3.5) is given by

sup
��

Sn−1

�

Sn−1
(x · y)

�
f (x) · g(y)

�
dωn(x)dωn(y)

�
, (3.8)

where the supremum is over functions f , g : Sn−1 → Sr−1 that are measurable
and continuous.

We start by rewriting the double integral in Eq. (3.8) as the trace inner-
product between two n-by-r matrices. Invariance of the trace function under
cyclic permutations of its arguments gives the simple identity

(x · y)
�

f (x) · g(y)
�
= Tr

�
f (x)xTyg(y)T�,

where we used x · y = xTy and f (x) · g(y) = g(y)T f (x). By linearity of the
trace function, this identity allows us to rewrite the argument of Eq. (3.8) as
the trace inner-product of two n-by-r matrices:

��

Sn−1
x f (x)Tdωn(x),

�

Sn−1
yg(y)Tdωn(y)

�
. (3.9)

The Cauchy-Schwarz inequality shows that this value is at most the prod-
uct of the Hilbert-Schmidt norms of the two matrices. Since equality in Cauchy-
Schwarz holds if and only if the matrices are scalar multiples of each other, we
may assume that the functions f , g satisfy f = g. It follows that

SDPr(A) = sup

�����
�

Sn−1
x f (x)Tdωn(x)

����
2

HS

�
, (3.10)
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where the supremum is over measurable and continuous f : Sn−1 → Sr−1.
For arbitrary ε > 0, let f : Sn−1 → Sr−1 be a measurable continuous func-

tion such that
����
�

Sn−1
x f (x)Tdωn(x)

����
2

HS
≤ SDPr(A) ≤

����
�

Sn−1
x f (x)Tdωn(x)

����
2

HS
+ ε. (3.11)

Let
�

Sn−1 x f (x)Tdωn(x) = χF where χ > 0 and F is an n-by-r matrix satisfying
�F�HS = 1. By the singular value decomposition, we have F = UTDV where
U ∈ O(Rn), V ∈ O(Rr) and D is a real n-by-r diagonal matrix with diagonal
entries λ1 ≥ · · · ≥ λr ≥ 0 satisfying �F�2

HS = λ2
1 + · · ·+ λ2

r = 1.
By linearity of the trace inner product, we have

χ =

��

Sn−1
x f (x)Tdωn(x), F

�

=
�

Sn−1

�
x f (x)T, F

�
dωn(x)

=
�

Sn−1
f (x) · (FTx) dωn(x).

The Cauchy-Schwarz inequality and the fact that the f (x) has unit norm shows
that the above expression is maximized if f is of the form f (x) = (FTx)/�FTx�2,
which is a normalized projection onto an r-dimensional subspace. Without loss
of generality, we may assume that f is of this form. This gives

χ =
�

Sn−1
�FTx�2dωn(x).

Since both the Euclidean norm and the measure ωn are invariant under
orthogonal transformations, the singular value decomposition of F gives

�

Sn−1
�FTx�2dωn(x) =

�

Sn−1
�VTDTUx�2dωn(x)

=
�

Sn−1
�DTx�2dωn(x)

= χ(λ1, . . . , λr), (3.12)

where

χ(λ1, . . . , λr) =
�

Sn−1

�
r

∑
i=1

λ2
i x2

i

�1/2

dωn(x).

It remains to show that the weights λ1, . . . , λr can be taken to be equal. By
invariance of ωn under permutations of the coordinates (which are orthogonal
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transformations), we have χ(λ1, λ2, . . . , λr) = χ(λ2, λ1, . . . , λr), and indeed,
such an identity holds for any other permutation of the indices 1, . . . , r. We
now use a symmetrization argument to show that, without loss of generality,
we may assume λ1 = · · · = λr.

Let σ : {1, . . . , r} → {1, . . . , r} be a random permutation, uniformly dis-
tributed over all r! possible choices. Let λ̄ =

�
Eσ[λ2

σ(1)] = 1/r. Then, by
Jensen’s inequality and concavity of the square-root function, we have

χ(λ1, . . . , λr) = Eσ[χ(λσ(1), . . . , λσ(r))]

= Eσ




�

Sn−1

�
r

∑
i=1

λ2
σ(i)x

2
i

�1/2

dωn(x)





=
�

Sn−1
Eσ




�

r

∑
i=1

λ2
σ(i)x

2
i

�1/2


 dωn(x)

≤
�

Sn−1

�
r

∑
i=1

λ̄2x2
i

�1/2

dωn(x)

= χ(λ̄, . . . , λ̄),

giving χ(1/r, . . . , 1/r)2 ≤ SDPr(A) ≤ χ(1/r, . . . , 1/r)2 + ε for any ε > 0 �

What is left to do in order to prove Lemma 4 is to compute the integral
given in Claim 4.

5. CLAIM. For every integer 1 ≤ r ≤ n, we have

�

Sn−1

�
r

∑
i=1

x2
i

�1/2

dωn(x) =
Γ
�n

2
�
Γ
� r+1

2
�

Γ
�n+1

2
�
Γ
� r

2
� . (3.13)

PROOF: For φ, θ1, . . . , θn−2 the angles of the hyperspherical coordinate system
for Rn, we have that the volume element dωn can be decomposed as

πr/2Γ
�n

2
�

πn/2Γ
� r

2
� sinn−2 θn−2 sinn−3 θn−3 · · · sin θr−1 dθn−2dθn−3 · · · dθr−1dωr

(see for example [AAR99, p. 456]; note that we have labeled the angles in
reverse order and normalized ωn). After applying a substitution of variables,
this allows us to write the left-hand side of Eq. (3.13) as

πr/2Γ
�n

2
�

πn/2Γ
� r

2
�
�

n−r−1

∏
i=1

� 1

−1
(1 − t2

i )
(n−2−i)/2dti

�


�

Sr−1

�
r

∑
i=1

x2
i

�1/2

dωr(x)
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The integral over Sr−1 equals ωr(Sr−1) = 1, as its integrand is simply
the Euclidean norm of the vector x. The remaining product of integrals can
be dealt with using the following version of the Beta integral (see for exam-
ple [AAR99, Eq. (1.1.12)]

B(α, β) =
� 1

0
s2α−1(1 − s2)β−1ds =

Γ(α)Γ(β)
2Γ(α + β)

. (3.14)

Setting α and β to the appropriate values, α = 1/2 and β = (n − i)/2, gives

n−r−1

∏
i=1

� 1

−1
(1 − t2

i )
(n−2−i)/2dti = 2n−r−1

n−r−1

∏
i=1

� 1

0
(1 − t2

i )
(n−2−i)/2dti

= π(n−r−1)/2
n−r

∏
i=1

Γ
�n−i

2
�

Γ
�n−i+1

2
�

=
πn/2Γ

� r+1
2
�

πr/2Γ
�n+1

2
�

Multiplying this by the left-over factor from above then gives result. �

Combining the two claims gives

SDPr(A) =
1
r

�
Γ
� r+1

2
�
Γ
�n

2
�

Γ
� r

2
�
Γ
�n+1

2
�
�2

,

which proves the lemma. ✷

With Lemma 3.3.2 in hand, the proof of Theorem 3.3.1 is straightforward.

PROOF OF THEOREM 3.3.1: By Lemma 3.3.2, we have

KG(q �→ r) ≥ SDPq(A)

SDPr(A)
=

γ(q)
γ(r)

.

The asymptotic lower bound follows from the duplication formula for the
Gamma function Γ(z)Γ(z+ 1/2) = 21−2z√πΓ(2z), which gives [KVR90, GKP94]

Γ(z + 1/2)
Γ(z)

=
√

z
�
1 − 1

8z
+

1
128z2 + · · ·

�
.

This proves the theorem. ✷

Next, we show that the lower bounds established in Theorem 3.3.1 are
strictly greater than 1 for all q > r. This fact follows from the following lemma.
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3.3.3. LEMMA. The function γ(r) is strictly increasing on integers r = 1, 2, . . ..

PROOF: For r ≤ 9, just evaluate γ(r). For r > 9, we use the following bound on
log Γ(z) (where log is the natural logarithm), first proved by Robbins [Rob55]
for integer values of z, but which Matsunawa observed [Mat76, Remark 4.1] is
also valid for real values of z ≥ 2:

√
2πzz+1/2e−z+1/(12z+1) < Γ(z + 1) <

√
2πzz+1/2e−z+1/(12z). (3.15)

Using this bound, we obtain

log
γ(r + 1)

γ(r)
= 2 log

� r
2
�
− log

�
1 +

1
r
�
+ 4 log Γ

� r
2
�
− 4 log Γ

�r + 1
2

�

≥ 2 log
�
1 +

1
(r/2)− 2

�
− log

�
1 +

1
r
�
− 2r log

�
1 +

1
r − 2

�
+

4
6r − 11

+
6r − 8
3r − 3

.

Now use

1
n
− 1

2n2 +
1

3n3 − 1
4n4 ≤ log

�
1 +

1
n

�
≤ 1

n
− 1

2n2 +
1

3n3 ,

(which is valid for all n ≥ 1), and we obtain

log
γ(t + 10)
γ(t + 9)

≥
�

14t7 + 679t6 + 13923t5 + 155346t4 + 1005620t3+

+ 3684139t2 + 6679947t + 3828140
���

3(t + 7)4(t + 8)(t + 9)3(6t + 43)
�

,

which is positive for t ≥ 0, i.e., for r ≥ 9. Thus γ(r) is strictly increasing. ✷

3.4 Nonlocal games that require high entanglement

In this section, we prove Conjecture 3.1.1.

3.4.1. THEOREM. For every positive integer d, there exists a two-player XOR game G,
probability p and constant ε > 0, such that G can be won with probability p with an
entangled strategy if the local Hilbert space dimensions are at least 2d2+1, but any
entangled strategy with local Hilbert space dimensions less than d achieves winning
probability at most p − ε.
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We prove Theorem 3.4.1 using Tsirelson’s Theorem, which gives a corre-
spondence relation between the entangled bias of an XOR game (π, Σ) where
the players are restricted to sharing a state with local dimension at most d,
and the value SDPr(π ◦ Σ) for some r = r(d) (where ◦ denotes the entrywise
product for matrices). For convenience, we restate Tsirelson’s Theorem here.

3.4.2. THEOREM (TSIRELSON). (Hard direction) For all positive integers n, r and
any real r-dimensional unit vectors x1, . . . , xn, y1, . . . , yn, there exists a positive in-
teger d that depends on r only, a state |ψ� ∈ Cd � Cd and {−1, 1}-observables
F1, . . . , Fn, G1, . . . , Gn ∈ O(Cd), such that for every i, j ∈ {1, . . . , n}, we have

�ψ|Fi � Gj|ψ� = xi · yj.

Moreover, d ≤ 2�r/2�.
(Easy direction) Conversely, for all positive integers n, d, state |ψ� ∈ Cd � Cd and

{−1, 1}-observables F1, . . . , Fn, G1, . . . , Gn ∈ O(Cd), there exist a positive integer r
that depends on d only and real r-dimensional unit vectors x1, . . . , xn, y1, . . . , yn such
that for every i, j ∈ {1, . . . , n}, we have

xi · yj = �ψ|Fi � Gj|ψ�.

Moreover, r ≤ 2d2.

PROOF OF THEOREM 3.4.1: From the previous section, we know that for every
positive integer r, we have

KG(r + 1 �→ r) > 1.

Hence, there exists some positive integer n and real n-by-n matrix A such that

SDPr+1(A)
SDPr(A)

> 1. (3.16)

Note that the existence of such a matrix follows directly from Lemma 3.2.1
and the fact that this bound holds for Grothendieck’s operator, as was shown
above. By suitably normalizing matrix A, we can decompose it entrywise as

Aij = π(i, j)Σij,

where π : {1, . . . , n} × {1, . . . , n} → [0, 1] is a probability distribution and Σ
is an n-by-n sign matrix. Note that the pair (π, Σ) defines a two-player XOR
game and that such normalization does not change the ratio (3.16).
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Let us denote by β∗
m(π, Σ) the entangled bias attainable with a state of local

dimension at most m, and by β∗
∞(π, Σ) the entangled bias when there is no

restriction on the dimension.
On the one hand, the easy direction of Tsirelson’s Theorem shows that the

bias attainable for game (π, Σ) by players who share an entangled state with lo-
cal dimension d = �

√
r/2�, is at most SDPr(A). To see this, note that what the

lemma tells us is that for every optimal d-dimensional strategy for the game,
there exist real r-dimensional unit vectors x1, . . . , xn, y1, . . . , yn such that

SDPr(A) ≥
n

∑
i,j=1

Aijxi · yj = β∗
d(π, Σ).

On the other hand, the hard direction of Tsirelson’s Theorem tells us that
for D = 2�(r+1)�/2, there exist state |ψ� ∈ CD � CD and observables F1, . . . , Fn,
G1, . . . , Gn ∈ O(CD), such that

β∗
∞(π, Σ) ≥ E(i,j)∼π

�
Σij�ψ|Fi � Gj|ψ�

�
= SDPr+1(A).

Hence, we have
β∗

∞(π, Σ)
β∗

d(π, Σ)
≥ SDPr+1(A)

SDPr(A)
> 1.

We conclude that entangled players can win the game (π, Σ) with proba-
bility p =

�
1 + SDPr+1(A)

�
/2, but not with a state that has local dimension

strictly less than d. This completes the proof. ✷

We conclude this section with a couple of comments regarding Theorem 3.4.1
and its proof.

• In Theorem 3.4.1 there is an exponential separation between the local
Hilbert space dimensions that can be separated by looking at the max-
imal bias of two-player XOR games. A result of Slofstra [Slo10] shows
that this separation cannot be decreased by much.

• After a preliminary version of this result was submitted to the twelfth
workshop on Quantum Information Processing (QIP 2009) on 20 Octo-
ber, 2008, we learned of a paper by Pál and Vértesi [PV08], who obtain
similar results independently. Without explicitly defining KG(q �→ r),
they prove that this quantity is strictly increasing with m when n → ∞
using essentially the same methods that we do, and use this result to
confirm Conjecture 3.1.1, giving an XOR game that has an infinite num-
ber of questions; they obtain dimension witnesses with finite number of
questions using different methods.
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3.5 Invariant operators and Grothendieck’s constant

The operator with which we proved lower bounds on KG(q �→ r), let’s call it
Grothendieck’s operator, has a special property, namely that it is rotationally
invariant. Intuitively, this means that if we were to think of the operator as a
matrix whose rows and columns are indexed by n-dimensional unit vectors,
then the (x, y)-entry of the matrix depends only on the inner product x · y. To
define more formally what it means for an operator to be rotationally invariant,
let us for continuous function f on the n-dimensional unit sphere and n-by-n
orthogonal matrix U denote by f U the function f U(x) = f (UTx). Then, a linear
operator A : C(Sn−1) → C(Sn−1) is rotationally invariant if for any continuous
function f and orthogonal matrix U, we have (A f U)(Ux) = (A f )(x).

The main message of this section is that there exists a rotationally invariant
operator A for which the ratio SDPq(A)/ SDPr(A) equals KG(q �→ r). In order
to establish tight lower bounds for KG(q �→ r), it therefore suffices to restrict
our attention to rotationally invariant operators. Since all rotationally invariant
operators share the same set eigenfunctions, differing only in their eigenvalue
spectrum, the search space can be reduced quite dramatically. A similar fact
about operators on functions on Gaussian spaces was used by Raghavendra
and Steurer [RS09] to show that the exact value of KG can be approximated to
within an error ε in time O

�
exp(exp(1/ε3))

�
by a linear program.

3.5.1. LEMMA. For all positive integers n, q, r with q > r and any real n-by-n ma-
trix A, there exists a rotationally invariant linear operator B : C(Sq−1) → C(Sq−1)
such that

SDPq(B)
SDPr(B)

≥ SDPq(A)

SDPr(A)
.

The proof of this fact closely follows that of the similar statement about KG
and operators on Gaussian spaces, due to Raghavendra and Steurer [RS09].

The proof relies on the use of a linear operator that would give rise to the
kind of generalized function alluded to in Section 3.2. In order to be able to in-
troduce the operator swiftly, we fix the following notation. For q-dimensional
unit vector x, let x⊥ denote the set of all q-dimensional unit vectors that are
orthogonal to x and let ωx⊥ be the rotationally invariant probability measure
on x⊥. Let µq be the rotationally invariant probability measure on O(Rq).

PROOF: Let u1, . . . , un, v1, . . . , vn ∈ Sq−1 be the optimal vectors for SDPq(A).
We construct the invariant operator B using linear combinations of the auxil-
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iary operator Tρ : C(Sq−1) → C(Sq−1), defined for all ρ ∈ [−1, 1] by

(Tρχ)(x) =
�

x⊥
χ
�

ρx +
�

1 − ρ2y
�

dωx⊥(y). (3.17)

To get some intuition for this operator, observe that the value (Tρχ)(x) is the
average of χ over the perimeter of a spherical cap of radius

�
1 − ρ2 with

pole x. Putting ρ = 1 gives the identity and ρ = 0 gives the Radon trans-
form (see for example [Hel99, KR11]). Moreover, this operator is rotationally
invariant.

Now, we define B by

B =
n

∑
i,j=1

AijTui·vj .

Clearly, this operator is also rotation invariant.
In order to bound the value SDPq(B) from below, consider the action of Tρ

on the linear function χ given by χ(x) = x1. We have

(Tρχ)(x) =
�

x⊥

�
ρx1 +

�
1 − ρ2y1

�
dωx⊥(y)

= ρx1

= ρχ(x).

Hence, χ is an eigenfunction of Tρ with eigenvalue ρ. It is not hard to see that
in fact any linear function is an eigenfunction of Tρ with eigenvalue ρ. From
this, it follows that for f , g : Sq−1 → Sq−1 given by f (x) = g(x) = x, we have

SDPq(B) ≥
n

∑
i,j=1

Aij

�

Sq−1
f (x) · (Tui·vj g)(y)dωq(x)

=
n

∑
i,j=1

Aijui · vj

�

Sq−1
f (x) · g(x)dωq(x)

= SDPq(A), (3.18)

where we used that f and g have linear functions at each of their coordinates.
In order to bound the value SDPr(B) from above, we use the following

claim. This claim will enable us to convert optimal functions f �, g� : Sq−1 →
Sr−1 for SDPr(B) into a sequence of r-dimensional unit vectors for SDPr(A).

6. CLAIM. For any u, v ∈ Sq−1 and χ, ψ ∈ C(Sq−1), we have
�

Sq−1
χ(x)(Tu·vψ)(x)dωq(x) =

�

O(Rq)
χ(U · u)ψ(U · v)dµq(U). (3.19)
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PROOF: Set ρ = u · v. As the measure µq is rotationally invariant, it suffices
to consider u = (1, 0, . . . , 0)T and v = (ρ,

�
1 − ρ2, 0, . . . , 0)T. Let us denote an

orthogonal matrix U as U = [x, y, z1, . . . , zq−2], where x, y, z1 . . . , zq−2 ∈ Sq−1

are its columns. Then, for random U distributed according to µq, we have
that the vector U · u = x is uniformly distributed over the q-dimensional unit
sphere, and U · v = ρx +

�
1 − ρ2y has the vector y uniformly distributed over

the (q − 1)-dimensional unit sphere x⊥. This shows that the right-hand side of
Eq. (3.19) equals

�

Sq−1
χ(x)

��

x⊥
ψ
�

ρx +
�

1 − ρ2y
�

dωx⊥(y)
�

dωq(x),

which in turn equals the left-hand side by the definition of Tρ. �

Let f �, g� : Sq−1 → Sr−1 be optimal functions for SDPr(B). Then, the claim
above allows us to upper bound SDPr(B) by

n

∑
i,j=1

Aij

�

Sq−1
f �(x) · (Tui·vj g

�)(x)dωq(x) =

n

∑
i,j=1

Aij

�

O(Rq)
f �(Uui) · g�(Uvj)dµq(U) =

�

O(Rq)

�
m

∑
i,j=1

Aij f �(Uui) · g�(Uvj)

�
dµq(U) ≤ SDPr(A),

where the last inequality follows because the last integral is a convex combina-
tion over the values attained by sequences of real r-dimensional unit vectors
given by u�

i = f �(Uui) and v�j = g�(Uvj).
The result follows by putting this together with the lower bound on SDPq(B)

given in Eq. (3.18). ✷

From the point of view of XOR games, the proof of the lemma shows that
entangled players who may use an unbounded amount of entanglement, can
use Tsirelson’s Theorem in order to construct observables from the question
vectors x and y, and win a game GB = (π, Σ) such that π ◦ Σ = B with bias
at least as large as their bias for a game GA = (π�, Σ�) with π� ◦ Σ� = A. On
the other hand, Claim 6 shows that entangled players who are restricted in the
amount of entanglement they are allowed to use, can transform any strategy
for game GB into a strategy for game GA by using shared randomness in the
form of a uniformly distributed orthogonal matrix, which implies that their
bias for game GB is at most that of game GA.
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3.6 Open problems

Davie [Dav84] and Reeds [Ree91] (independently) showed that Grothendieck’s
lower bound of π/2 on KG can be improved to 1.6769 . . . . Both authors achieve
this using a modification of Grothendieck’s operator, which we call the Davie-
Reeds operator. For ρ ∈ [0, 1], the Davie-Reeds operator Aρ : C(Sn−1) → C(Sn−1)
is defined by

(Aρ f )(x) = n
�

Sn−1
x · y f (y)dωn(y)− ρ f (x).

The number ρ is a parameter that can be optimized over in order to obtain the
best bounds. It is not hard to see that this operator is rotationally invariant.

There is an important difference between Grothendieck’s operator and the
Davie-Reeds operator. The former belongs to the class of “positive semidefinite
operators” (think matrices), for which it is possible to prove upper bounds on
the ratios SDP∞(A)/ SDPr(A) that match the lower bounds of Theorem 3.3.1
(see Chapter 4). Grothendieck’s operator is thus an extreme example for this
special class of operators. The Davie-Reeds operator shows that it is possible
to achieve strictly larger ratios between SDP∞ and SDP1 with non-positive-
semidefinite operators. A natural question is: Can the Davie-Reeds operator
be used to improve the lower bounds on KG(q �→ r) proved in this chapter for
values of q and r other than ∞ and 1, respectively?

3.7 Summary

In this chapter, we introduced a new generalization of the Grothendieck con-
stant, which we denoted by KG(q �→ r). We proved that for any choice of
positive integers q > r, it is strictly greater than 1, and used this fact to show
that for any positive integer d, there exists a two-player XOR game for which
the entangled bias cannot be attained if the local Hilbert space dimensions are
less than d, thereby confirming a conjecture of [BPA+08].

3.8 Proof of Lemma 3.2.1

In this section, we prove Lemma 3.2.1, which we restate here for convenience.
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3.8.1. LEMMA. For all positive integers n, q, r with q > r, any linear operator A :
C(Sn−1) → C(Sn−1) and any η > 0, there exists positive integer N = N(η) and
real N-by-N matrix B such that,

SDPq(B)
SDPr(B)

≥ SDPq(A)

SDPr(A)
− η. (3.20)

For the proof of the lemma we use an ε-net for Sn−1, which is a finite set of n-
dimensional unit vectors Zε = {z1, . . . , zN} that satisfies that for any x ∈ Sn−1,
there exists z ∈ Zε such that �z − x�2 ≤ ε. The following lemma gives a bound
on the size of such a set. We omit a proof of this fact, which follows from a
standard volume argument (see for example [Pis99, Lemma 4.10]).

3.8.2. LEMMA. For every positive integer n and any ε > 0 there exists an ε-net
Zε = {z1, . . . , zN} ⊆ Sn−1 of size

N ≤
�

3
ε

�n
.

PROOF OF LEMMA 3.8.1: Define for continuous function f : Sn−1 → Rq the
norm � f �∞ = max{� f (x)�2 : x ∈ Sn−1}. Without loss of generality, we may
assume that A is normalized such that for all continuous f : Sn−1 → Rq, we
have �A f �∞/� f �∞ ≤ 1.

We define the finite operator B : RN → RN to be a discretized version of A
as follows. Let Zε = {z1, . . . , zN} be an ε-net for the n-dimensional unit sphere,
for some ε to be chosen later. Let for each i ∈ {1, . . . , N} the region Ri ⊆ Sn−1

be the set of vectors for which point zi of Zε is closest in Euclidean distance
(with ties distributed arbitrarily) and let IRi : Sn−1 → {0, 1} be the indicator
function for region Ri. The idea is to take B of the form

Bij =
�

Ri
(AIRj)(x)dωn(x).

However, there is the technical problem that the indicator functions are discon-
tinuous while A is defined to act only on continuous functions. For this, we
use the fact that indicator functions on metric spaces can be approximated by
continuous functions arbitrarily well (see e.g., [Rud86, p. 39]). We will denote
by ĨRj an arbitrary continuous approximation of IRj that suffices for our needs
and instead define

Bij =
�

Ri
(AĨRj)(x)dωn(x).
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We start by showing that SDPq(B) is not much smaller than SDPq(A). (Since
these quantities appear in the numerator of Eq. (3.20), there is no problem if
SDPq(B) is larger than SDPq(A).) To this end, let f , g : Sn−1 → Sq−1 be optimal
for SDPq(A). Trivially,

SDPq(B) ≥
N

∑
i,j=1

Bij f (zi) · g(zj).

Define the continuous function h : Sq−1 → Sq−1 by h = ∑N
j=1 g(zj) ĨRj . Then, by

expanding the definition of Bij in the above right-hand side, we get

N

∑
i,j=1

Bij f (zi) · g(zj) =
N

∑
i,j=1

��

Ri
(AĨRj)(x)dωn(x)

�
f (zi) · g(zj)

=
N

∑
i=1

f (zi) ·
�

Ri
(Ah)(x)dωn(x).

With this, the difference SDPq(A)− SDPq(B) is bounded from above by

N

∑
i=1

�

Ri
( f (x) · (Ag)(x)− f (zi) · (Ah)(x)) dωn(x).

By our assumed normalization of operator A and the Cauchy-Schwarz in-
equality, we can write and bound the above integrand as

f (x) · (Ag)(x)− f (zi) · (Ah)(x) =
�

f (x)− f (zi)
�
· (Ag)(x) + f (zi) ·

�
(Ag)(x)− (Ah)(x)

�
≤

� f (x)− f (zi)�2 + �(Ag)(x)− (Ah)(x)�2.

Since the function f is continuous, we can make � f (x)− f (zi)�2 arbitrarily
small for every i ∈ {1, . . . , N} and x ∈ Ri by varying ε. Moreover, again using
the normalization of A, we have that

�(Ag)(x)− (Ah)(x)�2 = �
�

A(g − h)
�
(x)�2 ≤ �g − h�∞,

which can also be made arbitrarily small by virtue of the fact that g is continu-
ous and by suitably setting ε. Hence, for any δ1 > 0 we can define B as above
such that SDPq(A)− SDPq(B) ≤ δ1.

Next, we show that SDPr(B) cannot be much larger than SDPr(B). (Since
these quantities appear in the denominator of Eq. (3.20), there is no problem if
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SDPq(B) is smaller than SDPq(A).) To this end, let x1, . . . , xN, y1, . . . , yN ∈ Sr−1

be optimal for SDPr(B). Then, the candidate functions f = ∑N
i=1 xi ĨRi and

g = ∑N
j=1 yj ĨRj for SDPr(A) give

SDPr(B) =
N

∑
i,j=1

Bijxi · yj

=
N

∑
i,j=1

��

Ri
(AĨRj)(x)dωn(x)

�
xi · yj

=
�

Sn−1
xi IRi(x) · (Ag) dωn(x)

≤ SDPr(A) + δ2

for arbitrary δ2 > 0 depending on the choice of ĨRi , since the function f can be
made to approximate the (discontinuous) function xi IRi(x) arbitrarily well.

In conclusion, we have that for any δ1, δ2 > 0, there exist positive integer N
and finite operator B : RN → RN such that,

SDPq(B) ≥ SDPq(A)− δ1

SDPr(B) ≤ SDPr(A) + δ2,

from which the claim follows by taking the ratios of the two inequalities. ✷



Chapter 4

The positive semidefinite Grothendieck
problem with rank constraint

The content of this chapter is based on joint work with Fernando Mário de
Oliveira Filho and Frank Vallentin [BOFV10b].

4.1 Introduction

In this chapter we study computational aspects of an optimization problem
called the positive semidefinite Grothendieck problem with rank-r constraint. This
problem is defined as follows.

Problem 4.1 (The positive semidefinite Grothendieck problem with rank-
r constraint). Takes as input a positive integer n and a real n-by-n positive
semidefinite matrix A.

maximize ∑n
i,j=1 AijXij

subject to X ∈ S+
n

Xii = 1, ∀i = 1, . . . , n

rank(X) = r

This optimization problem looks almost like a semidefinite program (see
Section 1.7). However, the constraint on the rank makes that it is not always
efficiently solvable. In particular, the case r = 1 contains the maximum cut
problem (MAX CUT) as an instance. When the matrix A appearing in the
problem is the Laplacian matrix of a graph then the optimum gives the size of

57
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a maximum cut in the graph (see Section 1.7.2). As MAX CUT is one of Karp’s
celebrated 21 NP-complete problems [Kar72] it follows that Problem 4.1 is NP-
hard for r = 1. If we drop the rank constraint then the problem does become
a semidefinite program, which can be solved efficiently. We will refer to this
semidefinite program as the case r = ∞.

The problem can be visualized in a geometric way. A matrix X of rank r
with ones on the diagonal is positive semidefinite if and only if there exist r-
dimensional unit vectors x1, . . . , xn such that for each coordinate of X, we have
Xij = xi · xj. The problem thus asks to position n points on a real r-dimensional
unit sphere in such a way that a certain weighted sum of their inner products is
maximized. The special case r = 1 has a more combinatorial nature, since the
one-dimensional unit sphere consists only of −1 and 1. The following propo-
sition now follows easily and will simplify some of the notation later on.

4.1.1. PROPOSITION. For all positive integers n, r and any matrix A ∈ S+
n , the

optimum of Problem 4.1 equals SDPr(A), defined as in Definition 2.1, by

SDPr(A) = max

�
n

∑
i,j=1

Aijxi · yj : x1, . . . , xn, y1, . . . , yn ∈ Sr−1

�
.

PROOF: As argued above, the optimum of the problem involves has one se-
quence of unit vectors x1, . . . , xn. But SDPr(A) has a maximization over two
sequences of unit vectors. Hence, SDPr(A) is at least the optimum of the prob-
lem. Suppose that the vectors x1, . . . , xn and y1, . . . , yn ∈ Sr−1 are are optimal
for SDPr(A). Since A is positive semidefinite, there are vectors a1, . . . , an ∈
Sn−1 such that Aij = ai · aj. The argument of SDPr(A) can thus be written as

n

∑
i,j=1

(ai · aj)(xi · yj) =
n

∑
i,j=1

(ai � xi) · (aj � yj)

=

�
n

∑
i=1

ai � xi

�
·
�

n

∑
j=1

aj � yj

�
.

The last inner product is maximal if and only if the two vectors ∑n
i=1 ai � xi and

∑n
j=1 aj � yj are equal. Hence, we must have y1 = x1, . . . , yn = xn. ✷

It follows from Proposition 4.1.1 and Definition 2.3.2 that K�
G (∞ �→ r) is an

upper bound on the ratio of the optimum of the natural semidefinite relaxation
of Problem 4.1 (the case r = ∞), and its true optimum. Moreover, KL

G(∞ �→ r)
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(see Definition 2.3.3) is an upper bound on this ratio if the matrix A is the
Laplacian of a graph.

The case r = 1 was dealt with extensively in previous works. It was
studied by Rietz [Rie74] in the context of Grothendieck’s inequality and by
Nesterov [Nes97, Nes98] in the context of semidefinite relaxations for noncon-
vex quadratic optimization problems. Both proved that K�

G (∞ �→ 1) ≤ π/2,
meaning that the optimum is always within a factor 2/π of the optimum of
the natural semidefinite relaxation, and Nesterov [Nes98] gave a randomized
polynomial-time 2/π-approximation algorithm for the case r = 1 based on
this fact (see also Section 4.2.2). Grothendieck [Gro53] proved that K�

G (∞ �→
1) ≥ π/2, which shows that Rietz and Nesterov’s result are in fact optimal
(see also [AN06, Section 5.3]). Under the assumption that the UGC is true
(see Section 1.7.4), Khot and Naor [KN09] proved that there is no polynomial-
time approximation algorithm that has approximation ratio 2/π + ε for any
ε > 0 that is independent of the matrix size n. For the special case of Lapla-
cian matrices we saw in Section 1.7.2 that Goemans and Williamson’s .878-
approximation result is the best possible for polynomial-time algorithms, pro-
vided that the UGC is true. Recall that Goemans and Williamson’s result to-
gether with those of Karloff [Kar96] and Feige and Schechtman’s [FS02] im-
ply that KL

G(∞ �→ 1) = (.878 . . . )−1. Avidor and Zwick [AZ05] proved that
KL

G(q �→ 1) < (.878 . . . )−1 when q = 2, 3, which means that better approx-
imation results are possible when the semidefinite relaxation has an optimal
solution of rank 2 or 3.

Much less seems to be known about the more geometric cases of Prob-
lem 4.1, where r ≥ 2. In this chapter we extend most of the known complexity
results for the case r = 1 to larger values of r.

4.1.1 An optimal approximation algorithm?

In this section we present the main results of this chapter. As mentioned above,
the natural semidefinite relaxation of Problem 4.1 is simply the same optimiza-
tion problem without the rank constraint (the case r = ∞). Based on this
semidefinite relaxation we construct a simple polynomial-time approximation
algorithm for Problem 4.1, Algorithm 4.1 below. For the case r = 1 this algo-
rithm is Goemans and Williamson’s celebrated randomized hyperplane rounding
algorithm. For this case the algorithm can be derandomized using the tech-
niques of Mahajan and Ramesh [MR95].
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Algorithm 4.1 Takes as input positive integers n, r and n-by-n positive semidef-
inite matrix A, and returns a feasible solution y1, . . . , yn ∈ Sr−1 for Problem 4.1.

(1) Solve the semidefinite relaxation of Problem 4.1 for the matrix A, obtain-
ing vectors x1, . . . , xn ∈ Sn−1.

(2) Sample matrix Z ∈ Rr×n according to N(0, 1)r×n, that is, the entries Zij
are i.i.d. random variables with mean 0 and variance 1.

(3) Define y1, . . . , yn ∈ Sr−1 by yi = Zxi/�Zxi�2 for i = 1, . . . , n.

The approximation ratio. The analysis of Algorithm 4.1 gives the following
approximation result for Problem 4.1.

4.1.2. THEOREM. For every positive integer r we have

1 ≤ K�
G (∞ �→ r) ≤ 1

γ(r)
= 1 + Θ

�1
r

�
,

where

γ(r) =
2
r

�
Γ
� r+1

2
�

Γ
� r

2
�

�2

,

and there is a randomized polynomial-time γ(r)-approximation algorithm for Prob-
lem 4.1 that is based on its natural semidefinite relaxation.

We prove this theorem in Section 4.2

A refined, dimension-dependent analysis. If we take into account the size
of the matrix A appearing in Problem 4.1 then the upper bounds given in The-
orem 4.1.2 can be tightened for the combinatorial case r = 1. This gives a slight
improvement on the bounds of Nesterov [Nes97] and Rietz [Rie74]. Note that
if a positive semidefinite matrix A has size n-by-n, then SDP∞(A) = SDPn(A).
Upper bounds on K�

G (n �→ 1) therefore imply upper bounds on the ratio
SDP∞(A)/ SDP1(A) whenever A is positive semidefinite and of size n-by-n.

4.1.3. THEOREM. For every positive integer n we have

1 ≤ K�
G (n �→ 1) ≤ πγ(n)

2
=

π

2
− Θ

� 1
n

�
,

and there is a polynomial-time 2/(πγ(n))-approximation algorithm for the case r = 1
of Problem 4.1.
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We prove this theorem in Section 4.3. Together with Theorem 3.3.1, Theo-
rems 4.1.2 and 4.1.3 imply that we now know the exact values of K�

G (∞ �→ r)
and K�

G (n �→ 1). To see this, notice that Grothendieck’s operator, which we
used to prove the lower bounds of Theorem 3.3.1, can be seen as an infinite-
dimensional matrix given by A(x, y) = x · y where x, y are n-dimensional unit
vectors. Clearly this matrix is positive semidefinite. The problem of approxi-
mating this matrix by a finite matrix while preserving positive-semidefiniteness
can be dealt with using an ε-net argument of Alon and Naor [AN06, Section
5.2]. The first ten values of KG(∞ �→ r) are summarized in Table 4.1.

Table 4.1: The table shows the exact values of
K�

G (∞ �→ r) for r = 1, . . . , 10. For r = 1, the lower
bound is due to Grothendieck [Gro53] and the upper
bound due to Nesterov [Nes98] and Rietz [Rie74].

r K�
G (∞ �→ r)

1 1.570796 . . .
2 1.273239 . . .
3 1.178097 . . .
4 1.131768 . . .
5 1.104466 . . .
6 1.086497 . . .
7 1.073786 . . .
8 1.064324 . . .
9 1.057008 . . .

10 1.051184 . . .

Unique-Games hardness of approximation. By using arguments from the
proof of Theorem 4.1.3 and by Khot and Naor’s [KN09] UGC hardness result
for approximating the case r = 1, we obtain the following hardness result for
approximating Problem 4.1.

4.1.4. THEOREM. Under the assumption of the Unique Games Conjecture, there is no
polynomial-time approximation algorithm for Problem 4.1 that has ratio γ(r) + ε for
any ε > 0 that is independent of n (where n is the size of the matrix in Problem 4.1).

We prove this theorem in Section 4.4. With this, the current complexity
status of the r = 1 case of Problem 4.1 is similar to the one of the minimum
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vertex cover problem: given a graph, find a subset of the vertices of minimal
size, such that every edge has at least one endpoint in the subset. On the one
hand, Karakostas [Kar05] showed that this problem can be approximated to
within a factor 2 − Θ(1/

�
log |V|) in polynomial time. On the other hand,

Khot and Regev [KR08] showed that under the assumption of the UGC, the
size of a minimum vertex cover cannot be approximated in polynomial time to
within a factor 2 − ε for any ε > 0 that is independent of |V|.

4.1.2 Interpretations

We give two interpretations of Problem 4.1, one in classical statistical physics
and one in nonlocal games. The objective function of Problem 4.1 can be in-
terpreted as the energy of a system of interacting particles. Stanley [Sta68]
introduced a model of n interacting particles in a spin glass with ferromag-
netic and antiferromagnetic interactions, where the particles are represented
by r-dimensional unit vectors x1, . . . , xn. The case r = 1 corresponds to the
Ising model, the case r = 2 to the XY (or planar) model, the case r = 3 to the
Heisenberg model, and the case r = ∞ to the Berlin-Kac spherical model. The
potential function (Aij)n

i,j=1 is 0 if particles i and j do not interact, it is positive
if there is ferromagnetic interaction between particles i and j, and it is negative
if there is antiferromagnetic interaction. In the absence of an external field, the
energy of the system is given by the Hamiltonian

−
n

∑
i,j=1

Aijxi · xj.

The ground state of this model is a configuration of spins x1, . . . , xn ∈ Sr−1

which minimizes the total energy. If A is positive semidefinite, finding the
ground state is the same as solving Problem 4.1. Of course, considering only
positive semidefinite potential functions may be rather restrictive and in Chap-
ter 5 we deal with the most general setting of Stanley’s model (which requires
a fair bit more work). However, if the potential function is indeed positive
semidefinite then the approximation results for the ground state energy given
in Theorem 4.1.2 are stronger than those presented in Chapter 5.

Proposition 4.1.1 creates a bridge between the optimum of Problem 4.1 and
the bias of certain two-player XOR games based on dimensional-restricted en-
tangled strategies. Let G = (π, Σ) be a two-player XOR game given by a prob-
ability distribution π on {1, . . . , n}× {1, . . . , n} and n-by-n sign matrix Σ. De-
fine an n-by-n matrix A by Aij = π(i, j)Σij. It follows from Tsirelson’s Theorem
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(see Section 1.5) that SDPr(A) is a lower bound on the entangled bias of G when
the players are restricted to sharing a state with local dimension 2�r/2�, and
an upper bound on the entangled bias when the players are restricted to local
dimensions

√
r/2. If the matrix A is positive semidefinite, then the approxima-

tion results of Theorem 4.1.2 now allow us to estimate these biases. Of course,
considering only games for which the game matrix is positive semidefinite is
rather restrictive and the results of Chapter 5 will allow us to drop this assump-
tion (see Section 5.1.1). The results of this chapter give better approximation
results for these bounds with this restriction.

4.1.3 More related work

A few variations of Problem 4.1 that were previously considered in the context
of optimization are as follows.

Quadratic programming. If we allow the matrix A that appears in Prob-
lem 4.1 to also have negative eigenvalues, then the case r = 1 corresponds to
the well-studied problem of quadratic programming [BBC04, CW04, ABH+05,
AN06, AMMN06, KO06, RS09, KN10]. We will consider this problem and its
generalization for larger values of r in detail in Chapter 5.

The �p-Grothendieck problem. Allowing the matrix A to have negative eigen-
values and optimizing over matrices of the form X = xxT for x ∈ Rn such that
�x�p ≤ 1, gives the �p-Grothendieck problem. For p ≥ 2, Kindler, Naor and
Schechtman [KNS10] gave a polynomial-time (p/e + 30 log p)-approximation
algorithm and showed that under the assumption of the UGC, it is NP-hard to
approximate the optimum to within factor p/e + 1/4.

The Kernel-Clustering problem. In the kernel clustering problem, introduced
by Song et al. [SSGB07], in addition to an n-by-n positive semidefinite matrix
A, we are given a smaller k-by-k positive semidefinite matrix B. The goal is to
find a partition S1, . . . , Sk of the set {1, . . . , n} so as to maximize

k

∑
i,j=1



 ∑
(i�,j�)∈Si×Sj

Ai� j�



 Bij.

The case where B =
� 1 −1
−1 1

�
corresponds to Problem 4.1 with r = 1. Khot and

Naor [KN10] gave polynomial-time (in n) approximation algorithms for ev-
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ery choice of the matrix B and showed their approximation ratios are optimal
under the assumption of the UGC.

Outline of the rest of this chapter. In Section 4.2 we give a detailed analysis
of the approximation algorithm given in Section 4.1.1, leading to a proof of
Theorem 4.1.2. In Section 4.3 we prove Theorem 4.1.3. In Section 4.4 we prove
the UGC hardness results for Problem 4.1 given in Theorem 4.1.4. In Section 4.5
we specialize some of our results to the case of Laplacian matrices and we
briefly summarize this chapter in Section 4.6.

4.2 The approximation ratio

In this section we prove Theorem 4.1.2. We achieve this by analyzing Algo-
rithm 4.1, which converts solution vectors x1, . . . , xn ∈ Sn−1 of the semidefinite
relaxation of Problem 4.1 into a feasible solution in the form of vector-valued
random variables y1, . . . , yn ∈ Sr−1. Our techniques are inspired by the ap-
proach used by Nesterov [Nes97] for the case r = 1.

4.2.1 The expectation function

By linearity of expectation, the expected quality of the solution of Algorithm 4.1
is given by

E

�
n

∑
i,j=1

Aijyi · yj

�
=

n

∑
i,j=1

AijE[yi · yj]. (4.1)

Let us have a closer look at the expectation E[yi · yj] for some arbitrary
pair i, j. By the definition of the random vectors yi, yj the expectation equals

E

�
Zu

�Zu�2
· Zv
�Zv�2

�
, (4.2)

where the expectation is over random Gaussian matrix Z ∼ N(0, 1)r×n and u, v
are some n-dimensional unit vectors. The distribution of Z is invariant under
orthogonal transformations, that is, for any orthogonal matrix U ∈ O(Rn), the
random matrix ZU has the same distribution. To see this, note that each row of
Z is an independent random vector whose direction with respect to the origin
is uniformly distributed. An orthogonal transformation simply rotates these
vectors about the origin, thus leaving their distributions unchanged. It follows
that we can pick U such that Uu = (1, 0, . . . , 0)T and Uv = (t,

√
1 − t2, 0 . . . , 0)T
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for t = u · v, and leave the expectation (4.2) unchanged, showing that it de-
pends on the inner product u · v only. This justifies defining the function
Er : [−1, 1] → [−1, 1] by

Er(u · v) = E

�
Zu

�Zu�2
· Zv
�Zv�2

�
.

Then, since we had yi = Zxi/�Zxi�2 where x1, . . . , xn ∈ Sn−1 are optimal for
SDP∞(A), we can write the right-hand side of Eq. (4.1) as

n

∑
i,j=1

AijEr(xi · xj). (4.3)

The following lemma shows that the function Er enjoys a special property
that will allow us to derive lower bounds for SDPr(A) in terms of SDP∞(A).

4.2.1. LEMMA. There exists a real number c > 0 such that for every positive integer k
and any real n-dimensional unit vectors u1, . . . , uk, the matrix

�
Er(ui · uj)− cui · uj

�k
i,j=1

is positive semidefinite.

Recall that for positive semidefinite matrices A, B, we have ∑i,j AijBij =
�A, B� ≥ 0. Hence, by Eq. (4.3) and Lemma 4.2.1, we have

SDPr(A) ≥
n

∑
i,j=1

AijEr(xi · xj)

= c
n

∑
i,j=1

Aijxi · xj +
n

∑
i,j=1

Aij
�
Er(xi · xj)− cxi · xj

�

≥ c SDP∞(A),

where the factor c comes from Lemma 4.2.1. From this it follows that the sec-
ond term on the second line is at least 0. The second inequality follows since
the vectors x1, . . . , xn are optimal for SDP∞(A). Lemma 4.2.1 thus enables us
to prove that SDP∞(A)/ SDPr(A) ≤ 1/c. As SDP∞(A) ≥ SDPr(A), we also
get that the approximation ratio of Algorithm 4.1 is at least c. In the next two
sections we prove Lemma 4.2.1 and compute the number c.
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4.2.2 Positive functions for spheres

Lemma 4.2.1 states that the function t �→ Er(t) − ct has a special property,
namely that it is of positive type for unit spheres.

4.2.2. DEFINITION. A continuous function f : [−1, 1] → [−1, 1] is of positive
type for S∞, if for all positive integers n, k and any real n-dimensional unit vec-
tors u1, . . . , uk, the matrix �

f (ui · uj)
�k

i,j=1

is positive semidefinite.

Functions of positive type were extensively studied by Schoenberg [Sch42],
who gave a very useful characterization of them in terms of their Taylor series.

4.2.3. THEOREM (SCHOENBERG). A continuous function f : [−1, 1] → R is of
positive type for S∞ if and only if it is of the form

f (t) =
∞

∑
k=0

cktk,

where c0, c1, · · · ≥ 0 and the series ∑∞
k=0 ck converges.

The rank-1 case. The analysis for the case r = 1 relies on Grothendieck’s
Identity (Lemma 1.7.1), which we restate below for convenience. This identity
gives the exact form of the function E1 and allows us to obtain our lower bound
on the number c from Lemma 4.2.1. In turn we get a lower bound on the
approximation ratio of Algorithm 4.1.

4.2.4. LEMMA (GROTHENDIECK’S IDENTITY). Let u, v be real unit vectors and let z
be a random vector with independently distributed entries that have mean 0 and vari-
ance 1. Then, we have

E[sign(z · u) sign(z · v)] =
2
π

arcsin(u · v).

Grothendieck’s Identity and the Taylor expansion of the arcsine function
thus give

E1(t) =
2
π

arcsin t =
2
π

∞

∑
k=0

(2k)!
22k(k!)2(2k + 1)

t2k+1.

Notice that all the coefficients in this expansion are nonnegative (also the series
converges on [−1, 1]). Hence, by Schoenberg’s Theorem (Theorem 4.2.3), this
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expansion shows that E1 is indeed a function of positive type for S∞. As the lin-
ear term in this expansion is 2t/π, it follows that the function

�
E1(t)− 2t/π

�
is

of positive type for S∞. For the case r = 1, the number c from Lemma 4.2.1 giv-
ing the upper bound SDP∞(A)/ SDP1(A) ≤ 1/c can thus be taken to be 2/π.
We have just derived Nesterov’s 2/π upper bound on the approximation ratio
of Algorithm 4.1 for the case r = 1.

Extension to higher ranks. For the cases r ≥ 2 it takes quite a bit of work
to obtain an explicit form of the function Er. We obtain this in Chapter 5 (see
Lemma 5.2.1). For the moment we take the following approach. We first argue
that for every positive integer r the function Er is of positive type for S∞. To
see this, note that for every positive integer k and any choice of unit vectors
u1, . . . , uk, we have that the matrix

�
Er(ui · uj)

�k
i,j=1

is a convex combination of positive semidefinite matrices, since

�
Er(ui · uj)

�k
i,j=1 =

�
E

�
Zui

�Zui�2
·

Zuj

�Zuj�2

��k

i,j=1

= E




�

Zui
�Zui�2

·
Zuj

�Zuj�2

�k

i,j=1



 .

Clearly each of the matrices inside the square brackets is positive semidefi-
nite. Convex combinations of positive semidefinite matrices are again positive
semidefinite, showing that the function Er is indeed of positive type for S∞.

Now, by Schoenberg’s Theorem (Theorem 4.2.3) there exist c0, c1, · · · ≥ 0
such that Er(t) = ∑∞

k=0 cktk. A second application of Schoenberg’s Theorem
then gives that the function Er(t) − c1t is of positive type for S∞ as well. It
follows that Lemma 4.2.1 holds for c the coefficient c1 multiplying the linear
term in the Taylor series of Er. For our purposes, it therefore suffices just to
compute this term instead of the whole Taylor expansion of Er.

4.2.3 The Wishart distribution

What is left to do, is to compute the coefficient multiplying the linear term
in the Taylor series expansion of the function Er for r ≥ 2. To this end, we
simplify the expression for Er and evaluate its first derivative at t = 0.
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Towards simplifying the expression for Er, let for some angle θ ∈ [0, 2π],
u = (cos θ, sin θ, 0, . . . , 0)T and v = (cos θ,− sin θ, 0, . . . , 0)T be n-dimensional
unit vectors. Notice that any pair of unit vectors can be simultaneously put
into this form by an orthogonal transformation. Assuming that the vectors
have this form will bring the number of dimensions involved in the expression
for Er down to two, because all terms that appear in the expression

Zu
�Zu�2

· Zv
�Zv�2

=
uTZTZv�

(uTZZTu)(vTZZv)
,

involve only the upper-left 2-by-2 sub-matrix of the matrix ZTZ. This sub-
matrix is distributed according to a (standard) Wishart distribution from mul-
tivariate statistics. The Wishart distribution W2(r) is the distribution of a 2-by-2
positive semidefinite matrix of the form HT H where H is an r-by-2 random
matrix with independent N(0, 1) entries (see for example [Mui82]). This dis-
tribution may be seen as a matrix variant of the chi-square distribution. The
probability density function of W2(r) is given by

1
2rΓ2(r/2)

eTr(W)/2(det W)(r−3)/2,

where Γq is the multivariate gamma function, defined as

Γq(x) = πq(q−1)/4
q

∏
i=1

Γ
�

x − i − 1
2

�
.

Hence, for x = (cos θ, sin θ)T, y = (cos θ,− sin θ)T, t = cos 2θ and W ∼
W2(r), we now have a more explicit form for the function Er, given by

Er(t) = EW∼W2(r)

�
xTWy�

(xTWx)(yTWy)

�

=
1

2rΓ2(r/2)

�

S+
2

xTWy�
(xTWx)(yTWy)

eTr(W)/2(det W)(r−3)/2dW.(4.4)

The integral above can be simplified by using the parametrization of the
cone of 2-by-2 positive semidefinite matrices given by

S+
2 =

��
a
2 + cos φ α sin φ

α sin φ a
2 − cos φ

�
: a ∈ R+, φ ∈ [0, 2π], α ∈ [0, a/2]

�
.

This parametrization can easily be obtained from the characteristic polynomial
t2 − Tr(W)t + det(W) of a generic element W ∈ S+

2 . We then have

Tr(W) = a, det A =
a2

4
− α2, dW = αdφdαda
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and

xTWy =
at
2
+ α cos φ

xTWx =
a
2
+ α(t cos φ + 2 sin θ cos θ sin φ)

yTWy =
a
2
+ α(t cos φ − 2 sin θ cos θ sin φ).

Plugging this back into the form for Er(t) obtained in Eq. (4.4) gives the
large, but manageable, triple integral

Er(t) =
1

2rΓ2(r/2)

� ∞

0

� a/2

0

� 2π

0

at
2 + α cos φ

�
( a

2 + αt cos φ)2 − α2(1 − t2)(sin φ)2

· e−a/2
�

a2

4
− α2

�(r−3)/2

αdφdαda.

Making the substitution α = (a/2)s and integrating over a already reduces
the integral to

Γ(r)
2r−1Γ2(r/2)

� 1

0

� 2π

0

(t + s cos φ)s(1 − t2)(r−3)/2
�
(1 + st cos φ)2 − s2(1 − t2)(sin φ)2

dφds. (4.5)

Another simplification follows from Legendre’s duplication formula [AAR99,
Theorem 1.5.1], Γ(2m)Γ(1/2) = 22m−1Γ(m)Γ(m + 1/2), which gives

Γ(r)
2r−1Γ2(r/2)

=
r − 1
2π

.

Recall that our objective was to compute the coefficient multiplying the lin-
ear term in the Taylor expansion of Er. Evaluating the derivative of Eq. (4.5)
with respect to t at t = 0, gives that this coefficient is given by the integral

c1 =
r − 1
2π

� 1

0

� 2π

0

s(1 − s2)(r−1)/2

(1 − s2(sin φ)2)3/2 dφds.

Using Euler’s integral representation of the hypergeometric function [AAR99,
Theorem 2.2.1] and by a substitution of variables, we get

c1 =
r − 1
2π

� 2π

0

Γ(1)Γ((r + 1)/2)
2Γ((r + 3)/2) 2F1

�
3/2, 1

(r + 3)/2
; sin2 φ

�
dφ

=
r − 1
4π

Γ((r + 1)/2)
Γ((r + 3)/2)

4
� 1

0
2F1

�
3/2, 1

(r + 3)/2
; t2

�
(1 − t2)−1/2dt

=
r − 1

π

Γ((r + 1)/2)
Γ((r + 3)/2)

1
2

� 1

0
2F1

�
3/2, 1

(r + 3)/2
; t

�
(1 − t)−1/2t−1/2dt.
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This simplifies further by Euler’s generalized integral [AAR99, (2.2.2)], and
Gauss’s summation formula [AAR99, Theorem 2.2.2]

c1 =
r − 1
2π

Γ((r + 1)/2)
Γ((r + 3)/2)

Γ(1/2)Γ(1/2)
Γ(1) 3F2

�
3/2, 1, 1/2
(r + 3)/2, 1

; 1

�

=
r − 1

2
Γ((r + 1)/2)
Γ((r + 3)/2)2F1

�
3/2, 1/2
(r + 3)/2

; 1

�

=
r − 1

2
Γ((r + 1)/2)
Γ((r + 3)/2)

Γ((r + 3)/2)Γ((r − 1)/2)
Γ(r/2)Γ((r + 2)/2)

=
2
r

�
Γ((r + 1)/2)

Γ(r/2)

�2
.

This proves both Lemma 4.2.1 and Theorem 4.1.2, as it shows that c1 = γ(r).

4.3 A refined, dimension-dependent analysis

In this section we show that one can slightly improve Nesterov and Rietz’s
approximation ratio for Algorithm 4.1 for the case r = 1 when we take into
account the size of the matrix. This result is key to the hardness results for
approximating SDPr(A) presented in the next section.

We will use another theorem of Schoenberg [Sch42], which gives a char-
acterization of positive functions on spheres of specific dimension.1 The Tay-
lor series that appears in Theorem 4.2.3 will be replaced by a series expan-
sion in terms of Gegenbauer polynomials. These polynomials form a complete
orthogonal basis for L2([−1, 1]), the space of square-integrable functions on
[−1, 1], endowed with the inner product

( f , g)n =
� 1

−1
f (t)g(t)(1 − t2)(n−3)/2dt. (4.6)

The Gegenbauer polynomials Pn
0 , Pn

1 , Pn
2 , . . . are the polynomials obtained by per-

forming a Gram-Schmidt orthogonalization procedure to the sequence of lin-
early independent functions 1, t, t2, . . . (see for example [Sze75, Chapter IV]).

4.3.1. THEOREM (SCHOENBERG). A continuous function f : [−1, 1] → R is of
positive type for Sn−1 if and only if it is of the form

f (t) =
∞

∑
k=0

ckPn
k (t),

1A nice proof of this theorem can be found in [OF09].
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for c0, c1, · · · ≥ 0 such that the series ∑∞
k=0 ck converges.

PROOF OF THEOREM 4.1.3: Let x1, . . . , xn ∈ Sn−1 be optimal for SDP∞(A). By
Grothendieck’s Identity, Algorithm 4.1 gives {−1, 1}-valued random variables
χ1, . . . , χn that satisfy

E[χiχj] =
2
π

arcsin(xi · xj).

Since the arcsin function is positive for S∞, in particular it is positive for Sn−1.
Therefore, by Theorem 4.3.1, arcsin can be expanded in terms of the Gegen-
bauer polynomials as

arcsin(t) =
∞

∑
k=0

ckPn
k (t),

where c0, . . . , ck ≥ 0 and ∑∞
k=0 c0 converges. Then, since Pn

1 (t) = t, the function
arcsin(t)− c1t is positive for Sn−1 as well. Arguing as before, we get

SDP1(A) ≥ 2
π

n

∑
i,j=1

Aij arcsin(xi · xj) ≥
2c1
π

SDP∞(A).

What is left is to compute the constant c1. Since the Gegenbauer polynomi-
als are orthonormal with respect to the inner product (4.6) and Pn

1 (t) = t, we
have c1 = c(n) =

�
arcsin, Pn

1
�

n/(Pn
1 , Pn

1 )n. The numerator of c(n) equals

(arcsin t, Pn
1 )n =

� 1

−1
arcsin(t)t(1 − t2)(n−3)/2dt

=
� π/2

−π/2
θ sin θ(cos θ)n−2dθ

=
Γ(1/2)Γ

�n
2
�

(n − 1)Γ
�n+1

2
� .

The denominator of c(n) equals

(Pn
1 , Pn

1 )α =
� 1

−1
t2(1 − t2)(n−3)/2dt

=
Γ(3/2)Γ

�n−1
2

�

Γ
�n+2

2
� ,

where we used the Beta integral of Eq. (3.14). Now, by using the functional
equation xΓ(x) = Γ(x + 1), the desired equality c(n) = 1/γ(n) follows. ✷
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4.4 Unique-Games hardness of approximation

In this section, we prove the hardness of approximation result for Problem 4.1
given in Theorem 4.1.4. The idea behind the proof is that a good approxima-
tion algorithm for the case r > 1 can be converted into a good approximation
algorithm for the case r = 1. By Khot and Naor’s [KN09] UGC hardness results
for the case r = 1, the algorithm for r > 1 cannot be too good.

PROOF OF THEOREM 4.1.4: Suppose that ρ is the smallest approximation ratio
a polynomial-time algorithm can achieve for Problem 4.1 Given positive inte-
ger n and n-by-n positive semidefinite matrix A, let x1, . . . , xn ∈ Sr−1 be an
approximate solution coming from such a polynomial-time algorithm. Then,

n

∑
i,j=1

Aijxi · xj ≥ ρ SDPr(A).

Applying the hyperplane rounding technique to x1, . . . , xn ∈ Sr−1 gives {−1, 1}-
valued random variables χ1, . . . , χn such that

E
� n

∑
i,j=1

Aij χiχj

�
=

2
π

n

∑
i,j=1

Aij arcsin xi · xj

≥ 2ρ

πγ(r)
SDPr(A),

where we used the fact that the function arcsin(t)− t/γ(r) is of positive type
for Sr−1, as was established in the previous section in the proof of Theorem 4.1.3.
Since SDPr(A) ≥ SDP1(A), this is a polynomial-time approximation algorithm
for the r = 1 case of Problem 4.1 with approximation ratio πγ(r)/(2ρ). The
hardness result of [KN09] for approximating this case with ratio π/2 − ε for
ε > 0 independent of r now gives that the UGC implies ρ ≤ γ(r). ✷

4.5 The case of graphs

In this section we show that one can improve the approximation ratio of Algo-
rithm 4.1 if the positive semidefinite matrix A = (Aij) ∈ Rn×n has the follow-
ing special structure:

Aij ≤ 0, if i �= j, (4.7)
n

∑
i=1

Aij = 0, for every j = 1, . . . , n. (4.8)

This happens for instance when A is the Laplacian matrix of a graph.
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4.5.1. PROPOSITION. For positive integers n, r with r ≤ n and real n-by-n positive
semidefinite matrix A that satisfies Eq.’s (4.7) and (4.8), we have

SDP∞(A)
SDPr(A)

≤ 1
ρ(r)

,

where ρ(r) is given by

ρ(r) = min
�

1 − Er(t)
1 − t

: t ∈ [−1, 1]
�

.

In particular, the above proposition implies KL
G(∞ �→ r) ≤ 1/ρ(r). The

proof follows a standard argument of Goemans and Williamson [GW95] (see
also Section 1.7.2).

PROOF: Applying Algorithm 4.1 gives Sr−1-valued random variables y1, . . . , yn
such that

SDPr(A) ≥ E

�
n

∑
i,j=1

Aijyi · yj

�
=

n

∑
i,j=1

AijEr(xi · xj),

where x1, . . . , xn ∈ Sn−1 are optimal vectors for SDP∞(A). Note that we have
Er(1) = 1, which follows easily from the definition of this function. Using this,
and the fact that A satisfies Eq.’s (4.7) and (4.8), we have

n

∑
i,j=1

AijEr(xi · xj) =
n

∑
i,j=1

(−Aij)
�
1 − Er(xi · xj)

�

= ∑
i �=j

(−Aij)
1 − Er(xi · xj)

1 − xi · xj
(1 − xi · xj)

≥ ρ(r)∑
i �=j

(−Aij)(1 − xi · xj)

= ρ(r)
n

∑
i,j=1

(−Aij)(1 − xi · xj)

= ρ(r) SDP∞(A),

where we used Eq. (4.8) on the first line, Er(1) = 1 on the second line, Eq. (4.7)
and the definition of ρ(r) on the third line, xi · xi = 1 on the fourth line and
Eq. (4.8) on the last line. ✷

The first ten numerical values of the above upper bounds are given in Ta-
ble 4.2. The numerical values suggest that as r → ∞, the value of t for which
the minimum appearing in the function ρ(r) is attained approaches 0.5.
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Table 4.2: The table shows numerical estimates for
the approximation ratio of Algorithm 4.1 for the case
of Laplacian matrices of graphs for r = 1, . . . , 10. The
case r = 1 corresponds to the MAX CUT approxima-
tion algorithm of Goemans and Williamson [GW95].

r ρ(r) minimum attained at

1 0.87856 . . . -0.68915
2 0.93494 . . . -0.61712
3 0.95633 . . . -0.58426
4 0.96733 . . . -0.56556
5 0.97397 . . . - 0.55353
6 0.97839 . . . - 0.54518
7 0.98154 . . . - 0.53905
8 0.98389 . . . - 0.53437
9 0.98572 . . . - 0.53068

10 0.98717 . . . - 0.52770

4.6 Summary

We studied computational aspects of the positive semidefinite Grothendieck
problem with rank-r constraint (Problem 4.1). We showed that:

1. There is an efficient randomized approximation algorithm, Algorithm 4.1
for this problem that achieves approximation ration γ(r) = 1 − Θ(1/r).

2. This approximation ratio can be improved to 2/
�
πγ(n)

�
when the matrix

has size n-by-n for the case r = 1.

3. Assuming the Unique Games Conjecture, there is no polynomial-time
approximation algorithm with approximation ratio γ(r) + ε for any ε > 0
independent of the matrix size.

The results of this chapter show that there is a relatively small ratio between
SDPr(A) and SDP∞(A). Fortunately, this leaves just enough room for two
interesting consequences: the existence of XOR games that can serve to test
Hilbert space dimension of entangled states (see Chapter 3) and the existence
of efficient and accurate approximation algorithms (the results of this chapter).



Chapter 5

The graphical Grothendieck problem with
rank constraint

The content of this chapter is based on joint work with Fernando Mário de
Oliveira Filho and Frank Vallentin [BOFV10a]

5.1 Introduction

In this chapter, we study computational aspects of another optimization prob-
lem, the graphical Grothendieck problem with rank-r constraint. This problem is
based on a graph G = (V, E) with finite vertex set V, edge set E ∈ (V

2) and a
symmetric matrix A whose rows and columns are indexed by V. Let us recall
that S+

V denotes the cone of positive semidefinite matrices whose rows and
columns are indexed by V. The problem is defined as follows.

Problem 5.1 (The graphical Grothendieck problem with rank-r constraint).
Takes as input a graph G = (V, E), positive integer r and symmetric matrix
A : V × V → R.

maximize ∑{u,v}∈E A(u, v)X(u, v)

subject to X ∈ S+
V

X(u, u) = 1 ∀u ∈ V

rank(X) = r

Like the variant considered in Chapter 4 this problem is almost a semidefi-
nite program. But due to the rank constraint it may not be efficiently solvable

75
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or approximable to within arbitrary precision. The case r = 1 has MAX CUT
(see Section 1.7.2) as a special case, and is therefore NP-hard. To obtain the
MAX CUT problem we set the graph G to be the complete bipartite graph Kn,n
on 2n vertices. Take a Laplacian matrix B of some graph on n vertices and set
A =

� 0 B
BT 0

�
. An optimal solution for Problem 5.1 then gives a cut of maxi-

mal size for the n-vertex graph. The problem reduces to the positive semidefinite
Grothendieck problem treated in Chapter 4 when we replace the above matrix B
by an arbitrary positive semidefinite matrix. If we remove the rank constraint
(we will denote this by r = ∞) then the problem does become a semidefinite
program, which can be solved efficiently regardless of the graph G.

We can interpret the problem geometrically using the 1-1 correspondence
between rank-r positive semidefinite matrices X : V × V → R and matrices
of the form

�
f (u) · f (v)

�
u,v∈V where each f (u) is an r-dimensional unit vec-

tor. The problem thus asks to position |V| vectors on a real r-dimensional unit
sphere in such a way that a weighted sum of their inner products is maximized.
It follows from this that the optimum of Problem 5.1 is given by SDPr(G, A)
(see Definition 2.3.4) and that the largest possible ratio SDPq(G, A)/ SDPr(G, A)
for matrices A : V × V → R is given by K(q �→ r, G) (see Definition 2.3.5).
In particular, the rank-r Grothendieck constant of the graph G, defined by
K(r, G) = K(∞ �→ r, G), gives the largest possible ratio of the optimum of
the natural semidefinite relaxation of Problem 5.1, and its actual optimum.

The case r = 1 of Problem 5.1 was studied extensively by the computer
science community. The case of bipartite graphs was studied by Alon and
Naor [AN06] in the context of computing the cut norm of matrices and find-
ing Szemerédi partitions of graphs. Based on the fact that K(1, Kn,n) ≤ KG,
they gave a polynomial-time (1/KG)-approximation algorithm for computing
the cut-norm, thereby kindling a large mass of research related to connections
between optimization, semidefinite programming and Grothendieck-like in-
equalities. Let Kn denote the complete graph on n vertices. For G = Kn Prob-
lem 5.1 is known as the quadratic programming problem with {−1, 1}-constraint.
Independently, Nemirovski, Roos and Terlaky [NRT99], Megretski [Meg01]
and Charikar and Wirth [CW04] proved that K(1, Kn) ≤ O(log n). Khot and
O’Donnell [KO08] proved that K(1, Kn) ≥ Ω(log n), showing that in contrast
to KG, its graphical versions are not in general constants (see also [AMMN06,
ABH+05]). Hardness-of-approximation results for the quadratic programming
problem were obtained by Arora et al. [ABH+05]. We refer to Section 2.3.2 for
more details on these numbers.
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Much less seems to be known about the computational aspects of the more
geometric cases of the graphical Grothendieck problem with rank-r constraint,
where r ≥ 2. The main results of this chapter are new upper bounds on the
numbers K(r, G) for arbitrary ranks r and graphs G with small chromatic num-
ber. These upper bounds are obtained by analyzing an efficient K(r, G)−1-
approximation algorithm for Problem 5.1, given in Section 5.1.2. At the end
of this chapter we derive new upper bounds on K(r, G) for graphs with large
chromatic number, by analyzing a straight-forward modification of an efficient
approximation algorithm due to Alon, Makarychev, Makarychev, and Naor
[AMMN06] (see Section 5.6). Before giving details of the main results we dis-
cuss two applications.

5.1.1 Applications

We give two interpretations of Problem 5.1, one in ground state energies and
one in XOR games. Similar to the problem considered in Chapter 4, the objec-
tive function of Problem 5.1 can be interpreted as a kind of energy. Stanley’s
n-vector model [Sta68] describes the interaction of particles in a spin glass with
ferromagnetic and antiferromagnetic interactions. Let G = (V, E) be the inter-
action graph where the vertices represent particles and where edges indicate
which particles interact. The potential function A : V × V → R is 0 if u and
v are not adjacent, positive if there is ferromagnetic interaction between u and
v, and negative if there is antiferromagnetic interaction. The particles possess
a vector-valued spin f : V → Sn−1. The case n = 1 corresponds to the Ising
model, the case n = 2 to the XY (or classical planar) model, the case n = 3 to
the Heisenberg model, and the case n = ∞ to the Berlin-Kac spherical model.
In the absence of an external field, the total energy of the system is given by
the Hamiltonian

− ∑
{u,v}∈E

A(u, v) f (u) · f (v).

The ground state of this model is a configuration of spins f : V → Sn−1 which
minimizes the total energy. Finding the ground state is the same as solv-
ing SDPn(G, A). The much-studied Ising model (the case n = 1) is a simplifica-
tion of the spin glass model in which the vectors are two- or three-dimensional
(i.e., the XY model and the Heisenberg model) [Sta68, BGJR88, KNS10]. Typ-
ically, the interaction graph has small chromatic number. The most common
case is when this graph is a finite subgraph of the integer lattice Zn where
the vertices are the lattice points and where two vertices are connected if their
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Euclidean distance is one. These graphs are bipartite since they can be parti-
tioned into even and odd vertices, corresponding to the parity of the sum of
the coordinates. We refer to Talagrand’s book [Tal03] and the paper Bansal,
Bravyi and Terhal [BBT08] for more extensive introductions and mathemati-
cal/computational treatments of spin glasses.

The case of bipartite graphs in Problem 5.1 is also of interest to us because
it is related to the setting of two-player nonlocal games. Let L and R be disjoint
finite sets and let G = (π, Σ) be a two-player XOR game given by probability
distribution π on L × R and sign matrix Σ : L × R → {−1, 1}. The set L
contains Alice’s questions and the set R Bob’s. Let G = (V, E) be the complete
bipartite graph on vertex set V = L ∪ R where all edges are between the sets
L and R. Define the matrix A : L ∩ R → R by setting A(u, v) = π(u, v)Σ(u, v)
if {u, v} ∈ E and A(u, v) = 0 otherwise. The optimum of Problem 5.1 is of the
form

∑
{u,v}∈E

A(u, v) f (u) · f (v)

for some functions f : V → Sr−1. Since our graph G is bipartite, we can split
the collection of vectors f (u) into two groups corresponding to whether u ∈ L
or u ∈ R. By renaming the vectors f (u) for every u ∈ R to, say, g(u) we get
that the sum above equals

∑
u∈L

∑
v∈R

A(u, v) f (u) · g(v) = E(u,v)∼π

�
Σ(u, v) f (u) · g(v)

�
.

By Tsirelson’s Theorem (see Section 1.5) we thus have that the optimum above
is a lower bound on the entangled bias of G when the players have quantum
systems of local dimension 2�r/2�, and an upper bound on the bias when the
local dimensions are

√
r/2.

5.1.2 An efficient approximation algorithm for graphs with small
chromatic number

In this chapter we prove explicit upper bounds for K(r, G). For the most part,
we will focus on the case of small r and graphs with small chromatic num-
ber, although our methods for such cases are not restricted to this. The proof
of the following theorem gives a randomized polynomial-time approximation
algorithm for approximating ground states in the Heisenberg model in the lat-
tice Z3 with approximation ratio 0.78 . . . = (1.28 . . .)−1. This result can be
regarded as the principal contribution of this chapter.
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5.1.1. THEOREM. For r = 1, . . . , 10 and in the case of a bipartite or a tripartite
graph G the rank-r Grothendieck constant is at most:

r bipartite G tripartite G

1 1.782213 . . . 3.264251 . . .
2 1.404909 . . . 2.621596 . . .
3 1.280812 . . . 2.412700 . . .
4 1.216786 . . . 2.309224 . . .
5 1.177179 . . . 2.247399 . . .
6 1.150060 . . . 2.206258 . . .
7 1.130249 . . . 2.176891 . . .
8 1.115110 . . . 2.154868 . . .
9 1.103150 . . . 2.137736 . . .

10 1.093456 . . . 2.124024 . . .

Our bound for the original Grothendieck constant KG, which corresponds
to the case where r = 1 and G is a complete bipartite graph Kn,n of any
size n, is due to Krivine [Kri79]. Our bound for K(2, Kn,n) coincides with
Haagerup’s [Haa87] upper bound on KC

G. Though these numbers may be dif-
ferent, it should not be a surprise that the bounds are equal, since we use some
of Haagerup’s techniques. When the graph G has large chromatic number,
then the result of [AMMN06] gives the best known bounds for K(1, G) (see
Section 2.3.2). They prove a logarithmic dependence on the chromatic number
of the graph whereas the first row in the table has a linear dependence on the
chromatic number. We extend the results of [AMMN06] for large chromatic
numbers for r ≥ 2 in Section 5.6.

For the proof of Theorem 5.1.1 we use the framework developed by Krivine
and Haagerup for the case of bipartite graphs, explained below. The main new
technical tool used in the proof is a matrix version of Grothendieck’s Identity
given in Lemma 5.2.1. To develop some intuition for the proof we begin by con-
sidering the natural strategy for proving upper bounds on K(r, G). Based on
the Goemans and Williamson approximation algorithm for MAX CUT and Al-
gorithm 4.1 for Problem 4.1, the natural strategy is to embed a collection of |V|-
dimensional vectors

�
f (u)

�
u∈V for which the value SDP∞(G, A) is achieved1

into Sr−1 using a random projection based on an r-by-|V| matrix Z with i.i.d.

1Recall that |V|-dimensional vectors always suffice since |V| vectors span a space of dimen-
sion at most |V|.
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Gaussian entries. This amounts to defining the random r-dimensional unit
vectors g(u) = Z f (u)/�Z f (u)�2. By linearity of expectation, the expected ob-
jective value of this solution for the rank-r case of Problem 5.1 is given by

E

�
∑

{u,v}∈E
A(u, v)g(u) · g(v)

�
= ∑

{u,v}∈E
A(u, v)E

�
g(u) · g(v)

�
.

The problem now is lower bound this quantity in terms of the optimum of the
problem SDPr(G, A). If r = 1, Grothendieck’s Identity gives E

�
g(u) · g(v)

�
=

(2/π) arcsin
�

f (u) · f (v)
�
. For larger values of r this expectation is also some

nonlinear function of f (u) · f (v). The strategy of Krivine and Haagerup is to
“linearize” these functions by using the following new embedding lemma.

5.1.2. LEMMA. Let G = (V, E) be a graph and choose Z = (Zij) ∈ Rr×|V| at
random so that the entries are i.i.d. N(0, 1) random variables. Given f : V → S|V|−1,
there is a function g : V → S|V|−1 such that whenever u and v are adjacent in G, then

E

�
Zg(u)

�Zg(u)�2
· Zg(v)
�Zg(v)�2

�
= β(r, G) f (u) · f (v)

for some constant β(r, G) depending only on r and G. Moreover, the function g can
be found in polynomial time in |V|.

In the statement above we are vague regarding the constant β(r, G). We
will give the precise statement of the lemma in Section 5.4 (Lemma 5.4.1 there),
right now this precise statement is not relevant to our discussion. Now, the
strategy of Krivine and Haagerup amounts to analyzing a following four-step
procedure that yields a randomized polynomial-time approximation algorithm
for Problem 5.1, Algorithm 5.1 shown below.

To analyze this algorithm, we compute the expected value of the feasible
solution h. By linearity of expectation, we get

SDPr(G, A) ≥ E

�
∑

{u,v}∈E
A(u, v)h(u) · h(v)

�

= ∑
{u,v}∈E

A(u, v)E[h(u) · h(v)]

as before. But now, using Lemma 5.1.2, we get that the above sum equals

β(r, G) ∑
{u,v}∈E

A(u, v) f (u) · f (v) = β(r, G) SDP∞(G, A), (5.1)
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Algorithm 5.1 Takes as input graph G = (V, E), positive integer r and sym-
metric matrix A : V × V → R, and returns a feasible solution h : V → Sr−1 for
SDPr(G, A).

(1) Solve the semidefinite relaxation of Problem 5.1, obtaining f : V → Sn−1.

(2) Use f to construct g : V → S|V|−1 according to Lemma 5.1.2.

(3) Sample matrix Z ∈ Rr×|V| such that the entries Zij are independently
distributed Gaussian random variables with mean 0 and variance 1.

(4) Define h : V → Sr−1 by h(u) = Zg(u)/�Zg(u)�2 for every u ∈ V.

and hence K(r, G) ≤ β(r, G)−1. Since SDP∞(G, A) ≥ SDPr(G, A) it also fol-
lows that Algorithm 5.1 is a β(r, G)-approximation algorithm for Problem 5.1.

The constant β(r, G) in Lemma 5.1.2 is defined in terms of the Taylor ex-
pansion of the inverse of the function Er : [−1, 1] → [−1, 1] given by

Er(x · y) = E

�
Zx

�Zx�2
· Zy
�Zy�2

�
,

where x, y ∈ S∞ and Z = (Zij) ∈ Rr×∞ is chosen so that its entries are inde-
pendently distributed according to the normal distribution with mean 0 and
variance 1. In Section 4.2.1 of Chapter 4 we argued that the function Er is in-
deed well-defined, which follows because the expectation above is invariant
under orthogonal transformations.

Outline of the rest of this chapter. The Taylor expansion of Er is computed
in Section 5.2. The Taylor expansion of E−1

r is treated in Section 5.3, where we
basically follow Haagerup [Haa87]. A precise version of Lemma 5.1.2 is stated
and proved in Section 5.4, following Krivine [Kri79]. In Section 5.5 we show
that one can refine this analysis and can (strictly) improve the upper bounds on
K(r, G) if one takes the size of the vertex set into account. In particular, there we
prove upper bounds on K(q �→ r, G). In Section 5.6 we show how to generalize
the technique of [AMMN06] to deal with graphs with large chromatic numbers
and higher values of r and we briefly summarize this chapter in Section 5.7.
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5.2 A matrix version of Grothendieck’s Identity

In this section we prove a generalization of Grothendieck’s Identity. This gives
the Taylor coefficients of the function Er, which we need to prove Lemma 5.1.2.

5.2.1. LEMMA. For positive integers r, n, let u, v be real n-dimensional unit vectors
and let Z be a random real r-by-n matrix with independent N(0, 1) entries. Then,

E

�
Zu

�Zu�2
· Zv
�Zv�2

�
= γ(r) (u · v) 2F1

�
1/2, 1/2
r/2 + 1

; (u · v)2

�
,

where

γ(r) =
2
r

�
Γ
� r+1

2
�

Γ
� r

2
�

�2

and

2F1

�
1/2, 1/2
r/2 + 1

; (u · v)2

�
=

∞

∑
k=0

�
1 · 3 · · · (2k − 1)

�2

�
(r + 2)(r + 4) · · · (r + 2k)

��
2 · 4 · · · (2k)

� (u · v)2k

is a hypergeometric function (see for example [AAR99]).

Before proving this lemma, we note a couple of special cases. For the case
r = 1, we obtain Grothendieck’s Identity (Lemma 4.2.4):

E[sign(Zu) sign(Zv)] =
2
π

arcsin(u · v)

=
2
π

�
u · v +

�
1
2

�
(u · v)3

3
+

�
1 · 3
2 · 4

�
(u · v)5

5
+ · · ·

�
.

The case r = 2 gives a function used by Haagerup [Haa87] to upper bound KC
G:

E

�
Zu

�Zu�2
· Zv
�Zv�2

�
=

1
u · v

�
E(u · v)− (1 − (u · v)2)K(u · v)

�

=
π

4

�
u · v +

�
1
2

�2 (u · v)3

2
+

�
1 · 3
2 · 4

�2 (u · v)5

3
+ · · ·

�
,

where K and E are the complete elliptic integrals of the first and second kind
(see for example [AAR99]). Note that on page 201 of Haagerup [Haa87] π/2
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should be π/4. In the previous chapter we computed the first coefficient of the
Taylor series of the expectation for every r, which turned out to be γ(r).

Unfortunately, for r ≥ 2 we don’t have a nice geometric proof as we do for
the case r = 1. The proof we give here is based on the rotational invariance
of the normal distribution and integration with respect to spherical coordi-
nates together with some identities for hypergeometric functions. A similar
calculation was done by König and Tomczak-Jaegermann [Kön01]. It would
be interesting to find a more geometrical proof of the lemma.2

PROOF OF LEMMA 5.2.1: Let Zi ∈ Rn be the i-th row of the matrix Z, with
i = 1, . . . r. We define vectors

x =





Z1 · u
Z2 · u

...
Zr · u




and y =





Z1 · v
Z2 · v

...
Zr · v





so that we have x · y = (Zu) · (Zv). Since the probability distribution of
the vectors Zi is invariant under orthogonal transformations we may assume
that u = (1, 0, . . . , 0)T and v = (t,

√
1 − t2, 0, . . . , 0)T and so the pair (x, y) ∈

Rr × Rr is distributed according to the probability density function (see for
example [Mui82, Theorem 1.2.9])

(2π
�

1 − t2)−r exp
�
−x · x − 2tx · y + y · y

2(1 − t2)

�
.

Hence,

E

�
x

�x�2
· y
�y�2

�
=

(2π
�

1 − t2)−r
�

Rr

�

Rr

x
�x�2

· y
�y�2

exp
�
−x · x − 2tx · y + y · y

2(1 − t2)

�
dxdy.

By using spherical coordinates x = αξ, y = βη, where α, β ∈ [0, ∞) and
ξ, η ∈ Sr−1, and the rotationally invariant (surface area) measure ω̃r on the
r-dimensional unit sphere, normalized such that ω̃r(Sr−1) = πr/2/Γ

�
r/2

�
, we

rewrite the above integral as
� ∞

0

� ∞

0
(αβ)r−1 exp

�
− α2 + β2

2(1 − t2)

� �

Sr−1

�

Sr−1
ξ · η exp

�
αβtξ · η

1 − t2

�

dω̃r(ξ)dω̃r(η)dαdβ.
2Oded Regev gave a more intuitive proof based on well-known probabilistic estimates, but

we won’t give the details of his proof here.
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If r = 1, we get for the inner double integral

�

S0

�

S0
ξ · η exp

�
αβtξ · η

1 − t2

�
dω̃r(ξ)dω̃r(η)

= 4 sinh
�

αβt
1 − t2

�

= 4
αβt

1 − t2 0F1

�

3/2
;
�

αβt
2(1 − t2)

�2
�

.

Now we consider the case when r ≥ 2. Since the inner double integral over
the spheres only depends on the inner product p = ξ · η, it can be rewritten as

ω̃r−1(Sr−2)ω̃r(Sr−1)
� 1

−1
p exp

�
αβtp
1 − t2

�
(1 − p2)(r−3)/2 dp.

Integration by parts yields

� 1

−1
p(1 − p2)(r−3)/2 exp

�
αβtp
1 − t2

�
dp

=
αβt

(r − 1)(1 − t2)

� 1

−1
(1 − p2)(r−1)/2 exp

�
αβtp
1 − t2

�
dp.

The last integral can be rewritten using the modified Bessel function of the first
kind (see for example [AAR99, p. 235, Exercise 9])

� 1

−1
(1 − p2)(r−1)/2 exp

�
αβtp
1 − t2

�
dp

= Γ((r + 1)/2)
√

π

�
2(1 − t2)

αβt

�r/2

Ir/2

�
αβt

1 − t2

�
.

One can write Ir/2 as a hypergeometric function [AAR99, Eq. (4.12.2)]

Ir/2(x) = (x/2)r/2
∞

∑
k=0

(x/2)2k

k!Γ(r/2 + k + 1)
=

(x/2)r/2

Γ((r + 2)/2)0F1

�

(r + 2)/2
;
�x

2

�2
�

.

Putting things together, we get

ω̃r−1(Sr−2)ω̃r(Sr−1)
� 1

−1
p exp

�
αβtp
1 − t2

�
(1 − p2)(r−3)/2 dp

=
4πr

Γ(r/2)2r
αβt

1 − t2 0F1

�

(r + 2)/2
;
�

αβt
2(1 − t2)

�2
�

.
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Notice that the last formula also holds for r = 1. So we can continue without
case distinction.

Now we evaluate the outer double integral

� ∞

0

� ∞

0
(αβ)r exp

�
− α2 + β2

2(1 − t2)

�
0F1

�

(r + 2)/2
;
�

αβt
2(1 − t2)

�2
�

dαdβ.

Here the inner integral equals

� ∞

0
αr exp

�
− α2

2(1 − t2)

�
0F1

�

(r + 2)/2
;
�

αβt
2(1 − t2)

�2
�

dα,

and doing the substitution ζ = α2/(2(1 − t2)) gives

2(r−1)/2(1 − t2)(r+1)/2
� ∞

0
ζ(r−1)/2 exp(−ζ) 0F1

�

(r + 2)/2
;

ζ(βt)2

2(1 − t2)

�
dζ,

which, by the Bateman Manuscript Project [EMOT54, p. 337 Eq. (11)], equals

2(r−1)/2(1 − t2)(r+1)/2Γ((r + 1)/2)1F1

�
(r + 1)/2
(r + 2)/2

;
(βt)2

2(1 − t2)

�
.

Now we treat the remaining outer integral in a similar way, using [EMOT54,
p. 219 Eq. (17)], and get that

� ∞

0
βr exp

�
− β2

2(1 − t2)

�
1F1

�
(r + 1)/2
(r + 2)/2

;
(βt)2

2(1 − t2)

�
dβ

= 2(r−1)/2(1 − t2)(r+1)/2Γ((r + 1)/2)2F1

�
(r + 1)/2, (r + 1)/2

(r + 2)/2
; t2

�
.

By applying Euler’s transformation (see for example [AAR99, Eq. (2.2.7)])

2F1

�
(r + 1)/2, (r + 1)/2

(r + 2)/2
; t2

�
= (1 − t2)−r/2

2F1

�
1/2, 1/2
(r + 2)/2

; t2

�

and after collecting the remaining factors we arrive at the result. ✷

5.3 Convergence radius

To construct the new vectors in the step (2) of Algorithm 5.1 that are used to
linearize the expectation, we will make use of the Taylor series expansion of
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the inverse of Er. Locally around zero we can expand the function E−1
r as

E−1
r (t) =

∞

∑
k=0

b2k+1t2k+1,

for some coefficients b2k+1, but in the proof of Lemma 5.1.2 it will be essential
that this expansion be valid for all t ∈ [−1, 1].

In the case r = 1 we have E−1
1 (t) = sin(πt/2) and here the convergence

radius is even infinity. The case r = 2 was treated by Haagerup and it requires
quite some technical work which we sketch very briefly now. He shows that
|bk| ≤ C/k2 for some constant C, independent of k, using tools from complex
analysis. Using Cauchy’s integral formula and after doing some simplifica-
tions [Haa87, p. 208] one can express bk for any choice of α > 1 as

bk =
2

πk

� α

1
�(E2(z)−k) dz +

2
πk

�
��

C�
α

E2(z)−k dz
�

,

where C�
α is the quarter circle { αeiθ : θ ∈ [0, π/2] }.

For an appropriate choice of α the first integral is in absolute value bounded
above by C/k and the second integral is in absolute value exponentially small
in k. We refer to the original paper for the details. One key point in the argu-
ments is the following integral representation of E2 giving an analytic contin-
uation of E2 on the complex plane slit along the half line (1, ∞):

E2(z) =
� π/2

0
sin θ arcsin(z sin θ) dθ.

Here, the term arcsin(z sin θ) gives the main contribution in the estimates.
Now we derive a similar representation of Er and using it in Haagerup’s

analysis with obvious changes shows that also for r > 2 we have bk ≤ C/k2

for some constant C, independent of k.

5.3.1. LEMMA. For r ≥ 2 we have

Er(z) =
2(r − 1)Γ((r + 1)/2)

Γ(1/2)Γ(r/2)

� π/2

0
cosr−2 θ sin θ arcsin(z sin θ) dθ.

PROOF: Using Euler’s integral representation of the hypergeometric function
(see for example [AAR99, Theorem 2.2.1]) we can rewrite Er as

Er(z) =
Γ((r + 1)/2)
Γ(1/2)Γ(r/2)

� 1

0

(1 − t)(r−1)/2z�
t(1 − z2t)

dt,
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which is valid in the complex plane slit along the half line (1, ∞). Using the
substitution t = sin2 θ we get

Er(z) = 2
Γ((r + 1)/2)
Γ(1/2)Γ(r/2)

� π/2

0

cosr θz�
1 − z2 sin2 θ

dθ.

Now integration by parts and the identity

d
dθ

arcsin(z sin θ) =
z cos θ�

1 − z2 sin2 θ

gives the result. ✷

5.4 Constructing new vectors

In this section, we prove Lemma 5.1.2, of which Lemma 5.4.1 below is the de-
tailed version. Roughly speaking, we define the function g : V → S|V|−1 such
that the inner product g(u) · g(v), for adjacent vertices u and v, inverts the func-
tion Er and leaves a linear function of f (u) · f (v). For this, we use the Taylor
expansion of the inverse of Er and build on a construction of Krivine [Kri79],
who proved the lemma for the case of bipartite graphs.

For the nonbipartite case we use the theta number, which is a graph pa-
rameter introduced by Lovász [Lov79]. Let G = (V, E) be a graph. The theta
number of the complement of G, denoted by ϑ(G), introduced in Section 1.7.3.
We restate it here for convenience. It is the optimal value of the following
semidefinite program:

ϑ(G) = min
�

λ : Z ∈ S+
V ,

Z(u, u) = λ − 1 for u ∈ V,

Z(u, v) = −1 for {u, v} ∈ E
�

.

(5.2)

5.4.1. LEMMA. Let G = (V, E) be a graph with at least one edge. Given f : V →
S|V|−1, there exists g : V → S|V|−1 such that for all {u, v} ∈ E, we have

Er
�

g(u) · g(v)
�
= β(r, G) f (u) · f (v),

where the constant β(r, G) is defined by the unique positive solution of the equation

∞

∑
k=0

|b2k+1|β(r, G)2k+1 =
1

ϑ(G)− 1
,
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where the coefficients b2k+1 come from the expansion

E−1
r (t) =

∞

∑
k=0

b2k+1t2k+1.

With this lemma we can now prove Theorem 5.1.1.

PROOF OF THEOREM 5.1.1: We combine Lemma 5.4.1 with the analysis of Al-
gorithm 5.1. To compute the table in the theorem, we use the formula

bk =
1

k!ak
1

�
dk−1

dtk−1

�
1 +

a2
a1

t + · · ·+ ak
a1

tk−1
�−k

�

t=0

, (5.3)

where ai are the Taylor coefficients of Er (see for example Morse and Fesh-
bach [MF53, (4.5.13)]). ✷

PROOF OF LEMMA 5.4.1: We construct the vectors g(u) ∈ S|V|−1 by construct-
ing vectors R(u) in an infinite-dimensional Hilbert space H whose inner prod-
uct matrix coincides with the one of the g(u). We construct the vectors R(u)
from two pairs of vector-valued functions, inner functions S, T : R|V| → H, and
outer functions s, t : V → R2|V|. The inner functions serve to invert the func-
tion Er and the outer functions serve to control the pairwise inner products for
adjacent vertices u and v. We proceed in three steps.

In the first step, we construct the inner functions. Set H = R|V| and

H =
∞�

k=0
H�(2k+1).

For a unit vector x ∈ H, define the vectors S(x), T(x) ∈ H given component-
wise by

S(x)k =
�
|b2k+1|β(r, G)2k+1x�(2k+1)

and
T(x)k = sign(b2k+1)

�
|b2k+1|β(r, G)2k+1x�(2k+1).

Then for vectors x, y ∈ S|V|−1 we have

S(x) · T(y) = E−1
r (β(r, G)x · y)

and moreover by the definition of β(r, G) given in the lemma,

S(x) · S(x) = T(x) · T(x) =
∞

∑
k=0

|b2k+1|β(r, G)2k+1 =
1

ϑ(G)− 1
.
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Notice that here it is essential that the Taylor expansion of E−1
r has a conver-

gence radius of at least one.
In the second step, we define the outer functions. Let λ = ϑ(G), and Z be

an optimal solution for (5.2). We have λ ≥ 2 since G has at least one edge. Set

A =
(λ − 1)(J + Z)

2λ
and B =

(λ − 1)J − Z
2λ

,

where J is the all-ones matrix, and consider the matrix

U =

�
A B
B A

�
.

By applying a Hadamard transformation

1√
2

�
I I
I −I

�
U

1√
2

�
I I
I −I

�
=

�
A + B 0

0 A − B

�

we see that U is positive semidefinite, since both A + B and A − B are positive
semidefinite. We define the functions s : V → R2|V| and t : V → R2|V| so that U
is the Gram matrix of the vectors

�
s(u)

�
u∈V and

�
t(v)

�
v∈V with inner products

s(u) · s(v) = t(u) · t(v) = A(u, v) and s(u) · t(v) = B(u, v).

It follows that the functions s and t have the following properties:

1. s(u) · t(u) = 0 for every u ∈ V,

2. s(u) · s(u) = t(u) · t(u) = (ϑ(G)− 1)/2 for every u ∈ V,

3. s(u) · s(v) = t(u) · t(v) = 0 whenever {u, v} ∈ E,

4. s(u) · t(v) = s(v) · t(u) = 1/2 whenever {u, v} ∈ E.

In the third step, we combine the two pairs of functions S, T and s, t to
define

R(u) = s(u)� S( f (u)) + t(u)� T( f (u)).

Then, for adjacent vertices u, v ∈ V we have

R(u) · R(v) = E−1
r (β(r, G) f (u) · f (v)),

and moreover the R(u) are unit vectors. Finally, we use the Gram decomposi-
tion of (R(u) · R(v)) ∈ S+

V to define the function g : V → S|V|−1. ✷
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We conclude this section with a few remarks on the lemma and its proof:

1. The last sentence of the above proof of Lemma 5.4.1 states that there is a
positive semidefinite matrix Y ∈ S+

V which satisfies Y(u, u) = 1 and

Y(u, v) = E−1
r

�
β(r, G)

�
f (u) · f (v)

for every edge {u, v} of G. As this matrix only has to satisfy linear con-
straints, it can be found in polynomial time in |V| using a semidefinite
program. Hence, the function g : V → S|V|−1 of the lemma, defined by
the Gram decomposition of Y, can be found in polynomial time.

2. Krivine proved the statement of the lemma in the case r = 1 and for
bipartite graphs G. Then, ϑ(G) = 2 holds. In this case one has various
simplifications: One only needs the first step of the proof. Also, β(1, G)
can be computed analytically. We have E−1

1 (t) = sin(π/2t) and

∞

∑
k=0

�����(−1)2k+1 (π/2)2k+1

(2k + 1)!

����� t2k+1 = sinh(π/2t).

Hence, β(1, G) = 2 arcsinh(1)/π = 2 ln(1 +
√

2)/π.

3. In the second step one can also work with any feasible solution of the
semidefinite program (5.2). For instance one can replace ϑ(G) in the
lemma by the chromatic number χ(G) albeit getting a potentially weaker
bound.

4. Alon, Makarychev, Makarychev, and Naor [AMMN06] also provide an
upper bound for K(1, G) using the theta number of the complement of G.
They show that

K(1, G) ≤ O(log ϑ(G))

which is much better than our result in the case of large ϑ(G). However,
our bound is favourable when ϑ(G) is small. In particular, we obtain

K(1, G) ≤ 2
π arcsin−1 �ϑ(G)− 1

� .

5.5 A refined, dimension-dependent analysis

So far we only bounded K(∞ �→ r, G). One can perform a refined, dimension-
dependent analysis by bounding K(q �→ r, G) when q ≥ r. This is of interest



5.5. A REFINED, DIMENSION-DEPENDENT ANALYSIS 91

because for instance SDP∞(G, A) = SDP|V|(G, A). In this section we prove an
upper bound for K(q �→ r, G) that depends on q and r. For fixed r, this upper
bound will approach 1 as q approaches r. Krivine [Kri79] gave such a refined
analysis for bipartite graphs. We show that our upper bound on K(q �→ r, G)
is strictly smaller than our upper bound for K(q + 1 �→ r, G).

5.5.1. LEMMA. Let G = (V, E) be a graph with at least one edge. Given f : V →
Sq−1, there is a function g : V → S|V|−1 such that whenever u and v are adjacent,
then

Er(g(u) · g(v)) = β(q �→ r, G) f (u) · f (v),

where 0 < β(q �→ r, G) ≤ 1 is such that β(q �→ r, G) > β(q + 1 �→ r, G)
and β(q �→ r, G) > β(r, G) for all q ≥ 2.

Together with the analysis of Algorithm 5.1, this lemma implies the follow-
ing bounds on K(q �→ r, G).

5.5.2. THEOREM. Let G = (V, E) be a graph with at least one edge and let q ≥ r ≥ 1
be integers. Then K(q �→ r, G) ≤ β(q �→ r, G)−1.

PROOF: Combine Lemma 5.5.1 with Algorithm 5.1. ✷

The proof of the lemma uses a few more basic facts from harmonic analysis,
which we now summarize. Let Pn

k denote the renormalized version of the
Gegenbauer polynomial Pn

k (introduced in Section 4.3) such that Pn
k (1) = 1.

Let us recall the the Gegenbauer polynomials form a completely orthonormal
basis for L2([−1, 1]) for the inner product

( f , g)n =
� 1

−1
f (t)g(t)(1 − t2)(n−3)/2.

A polynomial in R[x1, . . . , xn] is harmonic if it is homogeneous and vanishes un-
der the Laplace operator ∆ = ∂2/∂x2

1 + · · ·+ ∂2/∂x2
n. When restricted to Sn−1,

harmonic polynomials are usually referred to as spherical harmonics. We endow
the space of measurable functions on Sn−1 with the inner product

( f , g) =
�

Sn−1
f (x)g(x)dωn(x).

Spherical harmonics are related to Gegenbauer polynomials by the addition for-
mula (see for example [AAR99, Theorem 9.6.3]): Let Hk be the space of degree-k
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spherical harmonics on n variables. Any orthonormal basis of Hk can be scaled
to give a basis ek,1, . . . , ek,dk of Hk such that for every x, y ∈ Sn−1, we have

Pn
k (x · y) =

dk

∑
i=1

ek,i(x)ek,i(y).

With this we have all that we need to prove the lemma. We only consider
the bipartite case in the proof in order to simplify the notation and to make the
argument more transparent. One can handle the nonbipartite case exactly in
the same way as in the proof of Lemma 5.4.1.

PROOF OF LEMMA 5.5.1: As before, we construct the function g : V → S|V|−1

from functions S and T that satisfy S(x) · T(y) = E−1
r (βx · y) for some real

number β. Consider the expansion

E−1
r (βt) =

∞

∑
k=0

cq
k(β)Pq

k(t).

7. CLAIM. The function hq : [0, 1] → R given by

hq(β) =
∞

∑
k=1

|cq
k(β)|

is continuous on its domain.

Before proving the claim, we show how it is used to prove Lemma 5.5.1.
Let β(q �→ r, G) be the largest number β ∈ [0, 1] such that hq(β) = 1. The fact
that such a β exists follows by the Intermediate Value Theorem, from the fact
that hq(0) = 0, hq(1) ≥ E−1

r (1) = 1 and continuity of hq.
Consider the Hilbert space

H =
∞�

k=0
Rdk ,

where dk is the dimension of Hk, the space of harmonic polynomials of degree
k on q variables. For a vector x ∈ Sq−1, consider the vectors S(x) and T(x) ∈ H
given componentwise by

S(x)k =
�
|cq

k
�

β(q �→ r, G)
�
|
�
ek,1(x), . . . , ek,dk(x)

�

T(x)k = sign
�
cq

k
�

β(q �→ r, G)
���

|cq
k
�

β(q �→ r, G)
�
|
�
ek,1(x), . . . , ek,dk(x)

�
.
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By the addition formula, we have

S
�

f (u)
�
· T

�
f (v)

�
= E−1

r
�

β(q �→ r, G) f (u) · f (v)
�
.

Moreover, from our normalization of the Gegenbauer polynomials Pq
k and the

addition formula, it follows that we have

�S
�

f (u)
�
�2

2 = �T
�

f (v)
�
�2

2 = hq
�

β(q �→ r, G)
�
= 1.

The desired function g : V → S|V|−1 can be obtained from the 2|V|-by-2|V|
Gram matrix of the vectors S

�
f (u)

�
and T

�
f (v)

�
.

Next, we show that for every q ≥ 2, we have

β(q �→ r, G) > β(q + 1 �→ r, G).

We prove this by showing that hq
�

β(q + 1 �→ r, G)
�
< 1, which is sufficient

since, by definition, β(q �→ r, G) is the largest β ∈ [0, 1] such that hq(β) = 1.
Recall that

hq(β) =
∞

∑
k=0

|cq
k(β)|,

where the functions cq
k came from the expansion

E−1
r (βt) =

∞

∑
k=0

cq
k(β)Pq

k(t).

Using the expansion of E−1
r (βt) in terms of the polynomials Pq+1

1 , Pq+1
2 , . . . ,

we can thus write

cq
k(β) =

1
�Pq

k�2
q

�
E−1

r (βt), Pq
k
�

q =
1

�Pq
k�2

q

∞

∑
�=0

cq+1
� (β)(Pq+1

� , Pq
k)q.

The function E−1
r is not of positive type because the coefficient b3 of its

Taylor expansion is always negative (this can easily be checked using Eq. (5.3)).
It follows that some of the cq+1

k (β) are negative. Hence,

hq(β) =
∞

∑
k=0

|cq
k(β)| <

1
�Pq

k�2
q

∞

∑
k,�=0

|cq+1
� (β)|(Pq+1

� , Pq
k)q =

∞

∑
�=0

|cq+1
� (β)|

�
1

�Pq
k�2

q

∞

∑
k=1

(Pq+1
� , Pq

k)q

�
.
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It follows from the fact that the polynomials Pq
1, Pq

2, . . . form a complete orthog-
onal basis for L2([−1, 1]) with respect to the inner product (·, ·)q and our choice
of normalization Pq+1

k (1) = Pq
k(1) = 1 that the expression between brackets

equals 1. This establishes that for any β ∈ (0, 1), we have hq(β) < hq+1(β).
What is left to do, is to prove the claim.

PROOF OF CLAIM 7: We begin by showing that for any β ∈ [0, 1], the series

∞

∑
k=0

|cq
k(β)| (5.4)

converges. For this, we use the comparison test. Consider the Taylor expansion
of the function E−1

r , given by

E−1
r (t) =

∞

∑
k=0

bktk,

and recall that the series ∑∞
k=0 |bk| converges. Hence, by Schoenberg’s Theorem

(Theorem 4.2.3), the function

E−1
r (t) =

∞

∑
k=0

|bk|tk

is of positive type for S∞. In particular, this function is of positive type for Sq−1,
and can therefore, by Theorem 4.3.1, be expanded in terms of the Gegenbauer
polynomials as ∑∞

k=0 c̄q
kPq

k(t), for some c̄q
0, c̄q

1, · · · ≥ 0 such that ∑∞
k=0 c̄q

k con-
verges.

By orthogonality of the Gegenbauer polynomials with respect to the inner
product (·, ·)q, we have

c̄q
k =

1
�Pq

k�2
q
(E−1

r , Pq
k)q =

1
�Pq

k�2
q

∞

∑
�=0

|b�|(t�, Pq
k)q (5.5)

cq
k(β) =

1
�Pq

k�2
q
(E−1

r (βt), Pq
k)q =

1
�Pq

k�2
q

∞

∑
�=0

b�β�(t�, Pq
k)q. (5.6)

Since for every �, the function t �→ t� is of positive type for Sq−1 (since it
is of positive type for every dimension), we have (t�, Pq

k)q ≥ 0. Compar-
ing Eq.’s (5.5) and (5.6), we see that for every k and any β ∈ [0, 1], we have
|cq

k(β)| ≤ c̄k. The fact that the series (5.4) converges now follows from the fact
that ∑∞

k=0 c̄k converges.
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The above discussion also establishes that for every every k, the function cq
k

is continuous in β on the interval [0, 1], from which it follows that β �→ |cq
k(β)|

is continuous there as well. The fact that the function hq is continuous now
follows because, by convergence of (5.4), it can be approximated arbitrarily
well by a finite sum of continuous functions. �

This completes the proof. ✷

5.6 Bounds for graphs with large chromatic number

For graphs with large chromatic number, our bounds on K(r, G) proved above
can be improved using the techniques of [AMMN06], which rely on so-called
Gaussian Hilbert spaces (see also [JL01, AN06, KNS10]). In this section, we
show how their bounds on K(1, G) can be generalized to higher values of r.

5.6.1. THEOREM. Given graph G = (V, E) and positive integer 1 ≤ r ≤ log ϑ(G),
we have

K(r, G) ≤ Θ

�
log ϑ(G)

r

�
.

PROOF: It suffices to show that for any matrix A : V × V → R, we have

SDPr(G, A) ≥ Ω
�

r
log ϑ(G)

�
SDP∞(G, A).

Fix a matrix A : V × V → R. Let f : V → S|V|−1 be optimal for the
semidefinite relaxation of Problem 5.1 given the matrix A, so that

∑
{u,v}∈E

A(u, v) f (u) · f (v) = SDP∞(G, A).

Let �Z : V × V → R be an optimal solution for the Lovász-theta SDP. Let J
be the 2|V|-by-2|V| all-ones matrix and I the 2-by-2 identity matrix. Since the
matrix (I � �Z + J)/λ is positive semidefinite, we obtain from its Gram decom-
position functions s, t : V → R2|V| that satisfy

1. s(u) · s(u) = t(u) · t(u) = 1 for all u ∈ V.

2. s(u) · t(u) = 1/ϑ(G) for all u, v ∈ V.

3. s(u) · s(v) = t(u) · t(v) = 0 for all {u, v} ∈ E.
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Let H be the Hilbert space of vector-valued functions h : Rr×|V| → Rr such
that for a random r-by-|V| matrix Z whose entries are i.i.d. N(0, 1/r) dis-
tributed random variables, the inner product on H is defined by

(g, h) = EZ[g(Z) · h(Z)].

We emphasize that elements of H map matrices to r-dimensional vectors.
Let R ≥ 2 be some number to be set later. Define for every u ∈ V the

function gu ∈ H by

gu(Z) =






Z f (u)
R if �Z f (u)�2 ≤ R
Z f (u)

�Z f (u)�2
otherwise,

for R satisfying the assumptions in the theorem. Notice that for every matrix
Z ∈ Rr×|V|, the vector gu(Z) ∈ Rr has Euclidean norm at most 1. It follows by
linearity of expectation that

SDPr(G, A) ≥ EZ

�
∑

{u,v}∈E
A(u, v) gu(Z) · gv(Z)

�
= ∑

{u,v}∈E
A(u, v)(gu, gv).

We proceed by lower bounding the right-hand side of the above inequality.
Based on the definition of gu we define two functions h0

u, h1
u ∈ H by

h0
u(Z) =

Z f (u)
R

+ gu(Z) and h1
u(Z) =

Z f (u)
R

− gu(Z).

Next, we define a function in the space R2|V| � H by combining the vectors
s(u), t(v) ∈ R2|V| and h0

u, h1
u ∈ H. We endow this space with the natural inner

product: For x � g, y � h ∈ R2|V| �H, define �x � g, y � h� = (x · y) (g, h), and
extend this inner product linearly so that it is defined for all of R2|V| �H. For
every u ∈ V, define the function Hu ∈ R2|V| �H by

Hu =
1
4

s(u)� h0
u + 2ϑ(G) t(u)� h1

u.

We expand the inner products (gu, gv) in terms of f (u) · f (v) and �Hu, Hv�.

8. CLAIM. For every {u, v} ∈ E we have

(gu, gv) =
1

R2 f (u) · f (v)− �Hu, Hv�.
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PROOF: Simply expanding the inner product �Hu, Hv� gives

�Hu, Hv� =
s(u) · s(v)

16
(h0

u, h0
v) + 4ϑ(G)2�t(u) · t(v)

�
(h1

u, h1
v) +

ϑ(G)
2

��
s(u) · t(v)

�
(h0

u, h1
v) +

�
t(u) · s(v)

�
(h1

u, h0
v)
�
.

It follows from property 3 of s and t that the above terms involving s(u) · s(v)
and t(u) · t(v) vanish. By property 2, the remaining terms reduce to

1
2

�
(h0

u, h1
v) + (h1

u, h0
u)
�

=
1
2

EZ

��
Z f (u)

R
+ gu(Z)

�
·
�

Z f (v)
R

− gv(Z)
��

+

1
2

EZ

��
Z f (u)

R
− gu(Z)

�
·
�

Z f (v)
R

+ gv(Z)
��

.

Expanding the first expectation gives

1
R2 EZ[ f (u)TZTZ f (v)]− (gu, gv)− EZ

�
Z f (u)

R
· gv(Z)

�
+ EZ

�
gu(Z) · Z f (v)

R

�

and expanding the second gives

1
R2 EZ[ f (u)TZTZ f (v)]− (gu, gv)+EZ

�
Z f (u)

R
· gv(Z)

�
−EZ

�
gu(Z) · Z f (v)

R

�
.

Adding these two gives that the last two terms cancel. Since EZ[ZTZ] = I,
what remains equals

1
R2 f (u) · f (v)− (gu, gv),

which proves the claim. �

From the above claim it follows that

∑
{u,v}∈E

A(u, v)(gu, gv) =
1

R2 SDP∞(G, A)− ∑
{u,v}∈E

A(u, v)�Hu, Hv�

≥
�

1
R2 − max

u∈V
�Hu�2

2

�
SDP∞(G, A),

where �Hu�2
2 = �Hu, Hu�.

By the triangle inequality, we have for every u ∈ V,

�Hu�2
2 ≤ 1

R2

�
1
2
+ 2ϑ(G)R EZ

����
Z f (u)

R
− gu(Z)

���
2

2

��2
.
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By the definition of gu, the vectors Z f (u) and gu are parallel. Moreover,
they are equal if �Z f (u)�2 ≤ R. Since f (u) is a unit vector, the r entries of the
random vector Z f (u) are i.i.d. N(0, 1/r) random variables. Hence,

EZ

����
Z f (u)

R
− gu(Z)

���
2

2

�
=

�

Rr
1[�x� ≥ R]

��x�
R

− 1
�� r

2π

�r/2
e−r�x�2/2dx

=
� ∞

R

�

Sr−1
ρr−1

� ρ

R
− 1

�� r
2π

�r/2
e−rρ2/2dρdω̃r(ξ)

≤ rr/2

RΓ
� r

2
�
� ∞

R
ρre−rρ2/2dρ,

where ω̃r is the unique rotationally invariant measure on Sr−1, normalized
such that ω̃r(Sr−1) = rr/2/Γ(r/2). Using a substitution of variables, we get

� ∞

R
ρre−rρ2/2dρ =

1
2

�2
r

�(r+1)/2
Γ
�r + 1

2
,

rR2

2

�
,

where Γ(a, x) is the lower incomplete Gamma function [AAR99, Eq. (4.4.5)].
Collecting the terms from above then gives the bound

SDPr(G, A) ≥ 1
R2



1 −
�

1
2
+ ϑ(G)

2(r+1)/2
√

rΓ
� r

2
�Γ

�r + 1
2

,
rR2

2

��2


 SDP∞(G, A).

(5.7)
The bound in the theorem follows by setting R as small as possible such that
the above factor between brackets is some positive constant.

By Stirling’s formula, we have that for some constant C1 > 0, the inequality
Γ(x) ≥ C1e−xxx−1/2 holds (see for example [AS64, Eq. (6.1.37)]). Hence, for
some constants c, C > 0, we have

2(r+1)/2
√

rΓ
� r

2
� ≤ C

� c
r

�r/2
(5.8)

The power series of the incomplete gamma function (see for example [AS64,
Eq. (6.5.32)]) gives that if a ≤ x, for some constant C2 > 0, the inequality
Γ(a, x) ≤ C2xae−x holds. As R ≥ 2, for some constants d, D > 0, we have

Γ
�

r + 1
2

,
rR2

2

�
≤ D

√
r
�

r
dR2

�r/2
. (5.9)

Putting together estimates (5.8) and (5.9) gives

ϑ(G)
2(r+1)/2
√

rΓ
� r

2
�Γ

�
r + 1

2
,

rR2

2

�
≤ CD

√
rϑ(G)

�
c

dR2

�r/2
.
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Since r ≤ log ϑ(G) there is some constant C� such that for R2 = C�� log ϑ(G)
�
/r,

the above value is less than 1/4. It follows that for this value of R, Inequal-
ity (5.7) is nontrivial and we get the result. ✷

5.7 Summary

In this chapter, we proved the first upper bounds depending on r on the rank-
r graphical Grothendieck constants K(r, G) for r > 1, giving a 1/K(r, G)-
approximation algorithm for the graphical Grothendieck problem with rank-r
constraint based on its natural semidefinite relaxation. In particular, we ob-
tained the best known approximation results for approximating the ground
state energy for the Heisenberg model when the interaction graph has small
chromatic number.





Chapter 6

Entanglement in multiplayer XOR games

The content of this chapter is based on joint work with Harry Buhrman, Troy
Lee and Thomas Vidick [BBLV09].

6.1 Introduction

Due to Tsirelson’s Theorem, the role of entanglement in two-player XOR games
is reasonably well understood. As we have seen in the previous chapters, it im-
plies that the violation ratio is always bounded by the Grothendieck constant.
Moreover, it implies that there is a semidefinite program of size polynomial in
the number of questions whose optimum value is exactly the entangled bias of
a two-player XOR game. This contrasts with the classical setting, where even
approximating the bias to within a small constant is NP-hard [Hås01].

Unfortunately, our understanding of entangled games does not extend far
beyond the setting of two-player XOR games. Two-player games with larger
answer sizes seem to be much harder to get a handle on (see however [BRSW10,
JP11, Reg11] for some recent results on the violation ratios achievable in this
setting). Even less is known about games involving three players or more. This
is in part a reflection of the fact that multipartite entanglement is much less
well understood, and seemingly much more diverse than its bipartite counter-
part. A simple example of a three-player XOR game that exhibits properties of
tripartite entanglement which bipartite entanglement cannot possess is Mer-
min’s game (see Section 1.6.1). In this game classical players can attain bias at
most 1/2, but by sharing the three-qubit GHZ state entangled players can play
the game perfectly by performing two-outcome measurements on their local

101
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qubits. That is, the entangled bias equals 1. This kind of separation between
entangled and classical biases is impossible in a two-player scenario. Cleve,
Høyer, Toner and Watrous [CHTW04, Theorem 8] showed that if the entan-
gled bias of a two-player XOR game equals 1, then the classical bias must be 1
as well. Another important example of a property unique to multipartite en-
tanglement is that of monogamy [Ton09], which shows that there is a trade-off
in the amount of entanglement between two quantum systems and the amount
of entanglement between either one of them and a third system. Monogamy
plays a role in many multiplayer nonlocal games [TV06].

Entanglement is not a resource that is easily created or manipulated, and
when studying violation ratios of nonlocal games one may ask which types
of entanglement are the most useful; in fact this is a question that has pre-
occupied physicists for the past four decades (see e.g. [MS07] for a survey).
In the bipartite setting the most natural measure of entanglement of a quan-
tum state |ψ�AB is its von Neumann entropy S(ψ) = −TrρA log ρA, where
ρA = TrB|ψ��ψ| is the reduced density matrix on Alice’s subsystem. However,
from the point of view of nonlocality, states with higher entropy are not al-
ways the most useful: while in any dimension d the maximally entangled state
|ψd� = d−1/2 ∑d

i=1 |i�|i� has the largest entropy, for some games it is known not
to be the best resource [AGG05, JP11, VW10, Reg11]. In fact, there is a different
“maximally nonlocal” state, the embezzlement state [DH03, Oli10] |φd� which is
the state proportional to ∑d

i=1 i−1/2|i�|i�: for any nonlocal game (not necessar-
ily XOR) for which there is an optimal finite-dimensional strategy achieving
the violation ratio, and any ε > 0, there is also a d and a strategy using |φd�
which achieves the violation ratio up to precision ε. Interestingly, this distinc-
tion is not apparent in two-player XOR games, for which it is known that the
maximally entangled state is also optimal.

In the case of XOR games with more than two players, little is known
about the power of specific states as a resource to produce nonlocal correla-
tions. The most striking recent results in this area are due to Pérez-García et al.
[PGWP+08], who show that for every positive integer d, there exists a three-
player XOR game with violation ratio Ω(

√
d). Here d refers to the smallest

local dimension of the entangled state for any of the three players. An inter-
esting feature of their work is that it makes use of techniques from operator
space theory, a field that had not been connected to problems related to non-
locality before. Unfortunately their proof techniques don’t give much insight
into what kind of states can be used to achieve such “unbounded violations”.
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6.2 Bounded violations for a large class of states

In this chapter we consider multiplayer XOR games in which the players are
restricted to sharing specific patterns of entanglement. For this, we introduce
two main types of N-partite entanglement. The first is a generalization of GHZ
states that we call Schmidt states, named so because they admit a sort of tri-
partite Schmidt decomposition1: states of the form |ψ� = ∑i αi|i��N, for any
sequence of positive (normalized) coefficients αi.2 Note that these also contain
a natural generalization of the “universal” embezzlement states to more than
two parties, and as such one might expect that they are the most highly nonlo-
cal in the context of multiplayer games. The second type of states are formed
by what we will refer to as clique-wise entanglement. Here, we consider the
general setting where the N players are organized in k coalitions of r players
each (a given player can take part in any number of coalitions). The members
of each of the coalitions are allowed to share a GHZ state of arbitrary dimen-
sion, i.e., a state of the form d−1/2 ∑d

i=1 |i�� · · ·� |i�, among themselves. Note
that this includes possible collections of EPR pairs shared among two-party
coalitions, as these states are simply higher-dimensional two-party GHZ states.
Clique-wise entanglement includes states that have been covered extensively
in the literature on entanglement, such as GHZ states [GHZ89, Mer90, Zuk93,
CB97, BCD01, RW08], which have even been realized experimentally [BPD+99,
PBD+00], and tripartite stabilizer states (see Section 1.6.2), which are of funda-
mental importance to the theory of quantum error correction [Got97, Nes05,
BFG06] and also appear in the context of nonlocal games [GTHB05, TGB06].

We denote by β∗
S(G) (resp. β∗

C(G)) the maximal bias achievable in game
G by players who are restricted to sharing a Schmidt state of arbitrary dimen-
sion (resp. arbitrary clique-wise entanglement). We note the following obvious
relationships between the biases:

β(G) ≤ β∗
S(G) ≤ β∗(G) and β(G) ≤ β∗

C(G) ≤ β∗(G).

The main results of this chapter are constant upper bounds on the violation
ratios of these quantities.

Concerning Schmidt states we prove the following.

1For bipartite states, the Schmidt decomposition is simply the singular value decomposi-
tion when the state is represented by a matrix.

2The assumption that the αis are real and positive is not a restriction, as complex arguments
can be introduced to them via a local unitary transformation done by one of the N players.



104 CHAPTER 6. ENTANGLEMENT IN MULTIPLAYER XOR GAMES

6.2.1. THEOREM. Let G be an N-player XOR game. Then the maximum bias achiev-
able by players sharing a Schmidt state |ψ� = ∑d

i=1 αi|i��N, for an arbitrary dimen-
sion d, is at most a constant factor greater than the classical bias. More precisely,

β∗
S(G) ≤ 2(3N−5)/2KC

G β(G),

where KC
G � 1.40491 is the complex Grothendieck constant (see Section 2.3.3).

The exponential dependence on the number of players is necessary in this
theorem as Zukowski [Zuk93] gave an explicit sequence of N-player XOR
games where players sharing an N-partite GHZ state can a achieve a bias that
is 2−1(π/2)N times larger than the classical bias. The same conclusion follows
from Mermin’s game, but Zukowski’s games give slightly larger separations
between the two biases.

Theorem 6.2.1 generalizes–with slightly improved constants–a result of Pérez-
García et al. who show a constant violation ratio for the case of GHZ states of
arbitrary local dimension. The proof of the theorem also uses fairly elementary
techniques compared to those used in [PGWP+08].

Our second result deals with the case where the players share clique-wise
entanglement. Even in this complex setting, we can show that the violation
ratio is bounded by a constant depending only on the number of coalitions,
and the number of players taking part in each of them, but independent of the
dimension of the various states shared among the parties.

6.2.2. THEOREM. Let G be an N-player XOR game. Then the maximum bias achiev-
able by players sharing clique-wise entanglement, in which the players are organized
in k coalitions of r players each, is greater than the classical bias by at most a constant
factor depending only on k and r. More precisely,

β∗
C(G) ≤ 2k(3r−5)/2 (KC

G)
k β(G).

Stabilizer states were considered in the context of XOR games in [GTHB05,
TGB06], where it is shown that they allow for violations that grow exponen-
tially with the number of players sharing them. In view of these results, one
might hope to obtain explicit examples of three-player XOR games that ex-
hibit the unbounded violation ratios proved possible by Pérez-García et al. by
cleverly grouping some large numbers of players sharing a stabilizer state into
three sets that, when treated as three players, can still obtain large violations.
Based on a result by Bravyi et al. [BFG06] we obtain the following corollary of
Theorem 6.2.2, showing that, unfortunately, such a construction impossible.
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6.2.3. COROLLARY. Let G be a 3-player XOR game in which the players are restricted
to using a stabilizer state. Then the maximum bias achievable is bounded by a universal
constant, independent of the specific state used, or its dimension. More formally, if |ψ�
is an arbitrary stabilizer state, then the following inequality holds:

β∗
|ψ�(G) ≤ 8 (KC

G)
4 β(G).

The above two theorems and corollary provide a perhaps surprising coun-
terpoint to another of [PGWP+08]’s results, mentioned above, which shows
that some states can achieve much larger gaps. Together, these results indicate
a large variation in nonlocality for multipartite states, which is already appar-
ent through their use in XOR games. This contrasts with the bipartite scenario,
where all states give at most constant violation ratios, and both the maximally
entangled state and the embezzlement states are optimal resources.

In the following section we outline implications of the above results for
Banach algebras, for hardness of approximation, and for parallel repetitions.

6.2.1 Implications

Implications for Banach algebras. Theorem 6.2.1 answers an open question
of Pérez-García et al. They were particularly interested in this question be-
cause they were able to relate the violation ratio with Schmidt states to an old
open problem of Varopoulos in Banach algebras [Var75]. Via the reductions
given in [Dav73, PGWP+08] and in conjunction with the partial answers of Le-
Merdy [LM98] and Pérez-García [PG06], Theorem 6.2.1 settles Varopoulos’s
question completely. We discuss this result in detail in the next chapter, where
we explain our contribution separate from the context of nonlocal games, and
sketch the connection to Schmidt states made in [PGWP+08].

Implications for hardness of approximation. On the one hand, Tsirelson’s
characterization of two-player entangled XOR games gives a means to effi-
ciently compute the bias β∗(G) to high accuracy via semidefinite program-
ming. On the other hand, approximating the classical bias of two-player XOR
games within a sufficiently small constant is NP-hard [Hås01]. Hence the nat-
ural relaxation that corresponds to allowing the players to share entanglement
marks the transition from a hard optimization problem to a tractable one.

As our results show, for multiplayer XOR games the violation ratio can
be tightly bounded when the players share specific forms of entanglement,
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and it is interesting to ask whether the quantum bias can again be efficiently
approximated. It turns out, however, that the situation in this case is quite
different. In fact, our results imply the following:

6.2.4. THEOREM. Unless P=NP, for any integer N ≥ 3 there is no polynomial-time
algorithm that approximates the maximum bias of an entangled N-player game in
which the players are restricted to sharing either a Schmidt state or clique-wise entan-
glement to within a factor c for any constant c > 1.

Our results only hold for the specific types of entanglement that we con-
sider, and it could very well be the case that β∗(G) can be computed exactly or
approximated closely in polynomial-time for general entanglement. The proof
of Theorem 6.2.4 follows from a hardness-of-approximation result for Max-E3-
Lin2 due to Håstad and Venkatesh [HV04], and we give it in Section 6.7.

Implications for parallel repetition. Parallel repetition of a general two-player
nonlocal game G refers to the following situation: The referee samples inde-
pendently some number � of question pairs (i1, j1), . . . , (i�, j�) from the proba-
bility distribution π associated to G, and sends the � questions i�, . . . , i� to Alice
and j1, . . . , j� to Bob. The players are then expected to each return � answers,
one corresponding to each of their questions. They win this parallel repetition
version of G if their answers win each of the � instances of G.

If the maximal winning probability of one round of G is at most ω(G) < 1,
then it is intuitively clear that an �-fold parallel repetition of it is even more
difficult. Determining just how much more difficult parallel repetitions make
a game, turns out to be a very non-trivial matter. In general, it is not true
that the winning probability simply scales as one would expect, i.e. as ω(G)�,
which would be the case if the repetitions of the game are performed sequen-
tially [Fei91, CHTW04, Raz08, BHH+08, KR10]. For two-party nonlocal games
the celebrated parallel repetition theorem [Raz98, Hol07] states that the win-
ning probability does decrease exponentially in the number of parallel repeti-
tions of the game. Only recently, Kempe and Vidick [KV11] proved that the en-
tangled winning probability of general nonlocal games decreases at all under
parallel repetitions. This was shown to hold before for XOR games by Cleve et
al. [CSUU08] and unique games by Kempe, Regev and Toner [KRT08].

Closely related to parallel repetition theorems are XOR lemmas. Let us
recall that an XOR game can be defined by a probability distribution π on
[n]× [n] and a sign matrix Σ ∈ {−1, 1}n×n. The �-fold XOR repetition of an XOR



6.3. PROOF OVERVIEW AND TECHNIQUES 107

game G = (π, Σ) is again an XOR game, and is defined as G�� = (π��, Σ��).
Thus, in this game � question pairs (ik, jk)k=1...� are picked independently with
respect to π, and all ik are sent to Alice, jk to Bob. In order to win the game,
they should answer signs a and b respectively such that ab = Σi1 j1 · · ·Σik jk .

Cleve et al. [CSUU08] show that for any two-player XOR game G, the game
G�� has entangled bias exactly β∗(G)�. Since the classical and quantum biases
are within a constant factor of each other, this also implies that if β∗(G) < 1,
then the classical bias β(G��) must go down exponentially with � (although it
does not behave as nicely as the quantum bias with respect to taking XORs).
Cleve et al. further use this XOR lemma for the entangled bias to show that
the winning probability with entanglement of two-player XOR games behaves
perfectly under parallel repetition, i.e., as ω(G)� (such behavior is usually re-
ferred to as strong parallel repetition). In fact, quite generally XOR lemmas
imply parallel repetition theorems [Ung09].

Surprisingly, our results (as well as the previous results by Pérez-García
et al. [PGWP+08]) imply that there is no such XOR lemma for classical XOR
games in the N-player setting for N > 2. This can be seen as follows. Suppose
that β∗

S(G) = 1 and β(G) < 1 for some game G. Then clearly β∗
S(G��) = 1, and

so by Theorem 6.2.1 it must be the case that the classical bias satisfies

β(G) ≥ 1
2(3N−5)/2 KC

G
,

which is independent of �. Mermin’s game is an example of such a game.

6.3 Proof overview and techniques

The main technical contribution of this chapter is the expansion of the connec-
tion between violation ratios of two-player XOR games and Grothendieck’s
Inequality established by Tsirelson’s Theorem. We relate violation ratios for
N-player XOR games with the patterns of entanglement discussed above and
certain multilinear extensions of Grothendieck’s inequality. Let us briefly re-
call that in the case of two players sharing an entangled state |ψ�, the easy
direction of Tsirelson’s Theorem follows from the simple observation that the
expected value of the product of the players’ answers determined by {−1, 1}-
valued observables F and G, given by �ψ|F � G|ψ�, can be written as the inner-
product of two complex vectors (�ψ|F � I) · (I � G|ψ�). Hence, the optimiza-
tion over entangled strategies is readily upper-bounded by an optimization
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over complex unit vectors, which can in turn be related to the classical bias via
Grothendieck’s Inequality.

In the multiplayer case, this kind of connection between the entangled
and classical biases is not so obvious. The bipartite structure needed to ex-
press the expectation as an inner product between vectors is lost already when
we consider the case of three players, where this expectation has the form
�ψ|F � G � H|ψ�. The results of this chapter stem from the observation that the
function (F, G, H) �→ �ψ|F � G � H|ψ� is still a multilinear functional, whose
exact dependence on the coefficients of F, G and H will depend on the state
|ψ�. Hence we isolate certain classes of states |ψ� (Schmidt states and clique-
wise entanglement, already described above) and study the functionals that
arise from them.

Our proofs proceed in two steps. In the first step, we show that, given
a class of states |ψ�, a maximization over observables F, G, H can be upper-
bounded by the maximization of a certain generalized inner product over unit
vectors. This step greatly depends on the class of states |ψ� under consider-
ation. In the second step, we bound this last optimization as a function of
the classical bias, which is the maximization over products of {−1, 1}-valued
functions. This step involves a constant-factor loss, as indeed in general the
classical bias is smaller than the quantum bias that we started with.

We illustrate those two steps in more detail below by giving an overview
of the proof of Theorem 6.2.1 for the case of three-player games in which en-
tangled players share GHZ states of arbitrary local dimension. We use the fol-
lowing definitions introduced in Section 2.3.4. Let us recall that for N-tensor
A : [n]N → R, we defined

OPT(A) = max




 ∑
I∈[n]N

A[I]χ1(i1) · · · χ(iN) : χ1, . . . , χN : [n] → {−1, 1}






and

GIP(A) = sup

����
N

∑
i1,...,iN=1

A[i1, . . . , iN ] � f1(i1), . . . , fN(iN)�
��� :

d ∈ N, f1, . . . , fN : [n] → BCd

�
,

where �x1, . . . , xN� = ∑i(x1)i · · · (xN)i is the generalized inner product. Note
that if A = π ◦ Σ for some N-player XOR game G = (π, Σ), then OPT(A) is
precisely the classical bias β(G) of G.
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6.3.1 First step: relating the entangled bias to the GIP bias

We show that, when |ψ� has a certain structure, one can relate the expected
value �ψ|F � G � H|ψ� to a certain natural trilinear functional over unit vectors.
For instance, for the simplest case of GHZ states one obtains the generalized
inner-product �x, y, z� defined above. Other types of states may lead to more
complicated functionals, and hence this step crucially depends on the type of
entanglement that the players are allowed to use. Note that, in contrast, the
Schmidt decomposition implies that for the case of two-player games the only
bilinear functional which arises is essentially a weighted inner product. The
many inequivalent classes of multilinear functionals that one can obtain for
the case of three or more players are a reflection of the much richer structure
of multipartite entanglement.

For the case of GHZ states |ψ� = 1√
d ∑d

�=1 |��|��|�� we show the following:

6.3.1. LEMMA. Let G = (π, Σ) be a 3-player XOR game. Assume that the players are
restricted to sharing a GHZ state, and denote the resulting maximum bias by β∗

Z(G).
Then the following bound holds:

β∗
Z(G) ≤ GIP(π ◦ Σ).

PROOF: Fix an optimal strategy of the players based on the shared entangled
state |ψ� = 1√

d ∑d
�=1 |��|��|��, and let Fi, Gj, Hk be each player’s {−1, 1}-valued

observables in that strategy. Let A = π ◦ Σ. The players’ bias is given by

β∗
Z(G) = ∑

(i,j,k)∈[n]3
A[i, j, k]�ψ|Fi � Gj � Hk|ψ�

=
1
d ∑

(i,j,k)∈[n]3
A[i, j, k]

d

∑
�,m=1

��|Fi|m���|Gj|m���|Hk|m�

=
1
d

d

∑
m=1



 ∑
(i,j,k)∈[n]3

A[i, j, k]
d

∑
�=1

��|Fi|m���|Gj|m���|Hk|m�





≤ 1
d

d

∑
m=1

GIP(A) = GIP(A).

The inequality holds as the inner sum on the third line is a generalized inner
product of the mth columns of the {−1, 1}-valued observables Fi, Gj, Hk, which
are unit vectors since these matrices are unitary. ✷
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6.3.2 Second step: relating the GIP bias to the classical bias

The second step in our proofs consists of upper-bounding the multilinear ex-
pression resulting from the first step by a similar optimization over real num-
bers of absolute value less than 1. This step involves a constant-factor loss, and
is based on Tonge’s Inequality, Theorem 2.3.10. For our second result, The-
orem 6.2.2, we use an inequality proved by Carne [Car80] in the context of
Banach lattices, combined with Grothendieck’s inequality. Specialized to the
case of real rank-3 tensors, Tonge’s Inequality reads:

6.3.2. THEOREM. For every positive integer n ≥ 2 and any 3-tensor A : [n]3 → R,
we have

GIP(A) ≤ 4KC
G OPT(A). (6.1)

Combining Lemma 6.3.1 with Theorem 6.3.2 gives β∗
Z(G) ≤ 4 KC

G β(G),
since putting A = π ◦Σ makes the maximum on the right-hand side of Eq. (6.1)
exactly the classical bias β(G). This proves Theorem 6.2.1 for the case of three
entangled players sharing GHZ states.

Tonge’s Inequality also plays a role in the proof of [PGWP+08] showing a
constant violation ratio in the case of GHZ states. It is used there as an inter-
mediate step to show a relationship between different tensor norms that are in
turn used to prove the bound. Their technique, however, does not seem to be
easily adapted to the case of Schmidt states or clique-wise entanglement.

Outline of the rest of this Chapter In Section 6.4 we introduce a few more
notational conventions and definition. In Section 6.5 we prove Theorem 6.2.1,
extending the above techniques to the case of Schmidt states. In Section 6.6 we
prove Theorem 6.2.2 and Corollary 6.2.3, extending the above techniques to
the case of clique-wise entanglement and stabilizer states. In Section 6.8 prove
Carne’s Theorem. In Section 6.9 we pose an open question and we give a brief
summary of this chapter in Section 6.10

6.4 Notation and definitions

The following definition will be useful in studying the different biases achiev-
able by players who are restricted to sharing a specific type of entanglement.
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6.4.1. DEFINITION. Let G = (π, Σ) be an N-player XOR game and |ψ� ∈ H�N

be a fixed entangled state shared by N players. Then the bias restricted to |ψ�,
denoted β∗

|ψ�(G), is defined as

β∗
|ψ�(G) = max

F1,...,FN
EI∼π

�
Σ[I] �ψ|F1(i1)� · · ·� FN(iN)|ψ�

�

where the maximum is taken over F1, . . . , FN : [n] → O(H).

The following setups are the ones that we will encounter most frequently,
and for each we introduce a special notation for the bias. For the case of GHZ
states |ψ� = d−1/2 ∑d

i=1 |i�1 · · · |i�N (of arbitrary dimension d) we will denote
the maximum bias by β∗

Z(G), while for Schmidt states |ψ� = ∑d
i=1 αi|i�1 · · · |i�N

(with arbitrary dimension d and real positive coefficients αi satisfying ∑d
i=1 α2

i =
1) we will use the notation β∗

S(G). Finally, clique-wise entanglement is any
type of entanglement that can be obtained by grouping the N players into k
coalitions of r players each (a given player can take part in any number of
coalitions), and allowing the members of each of the coalitions to share a GHZ
state of arbitrary dimension (recall that collections of EPR pairs shared among
a two-party coalition are simply higher dimensional two-party GHZ states).
In that case, we denote the maximal bias by β∗

C(G). This may depend on the
parameters k and r, which are kept implicit so as not to overload the notation,
but will always be clear from context.

6.5 Bounded violations for Schmidt states

In this section we prove Theorem 6.2.1. As this chapter is rather heavy on no-
tation, we present the proof of Theorem 6.2.1 in three steps, in order to let the
reader get accustomed to the various quantities involved. First, in Section 6.5.1
we analyze the maximum bias β∗

Z(G) achievable by strategies that are limited
to sharing a GHZ state for games with an arbitrary number of players. In Sec-
tion 6.5.2, we extend our proof to cover the case where the players are allowed
to share a Schmidt state.

6.5.1 Strategies with GHZ states.

We prove the following lemma, which is a (straightforward) generalization of
Lemma 6.3.1 proved in Section 6.3:
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6.5.1. LEMMA. Let G = (π, Σ) be an N-player game. Assume that the players are
restricted to sharing a GHZ state (i.e., a state of the form |ψ� = 1√

d ∑d
�=1 |���N where

d is arbitrary). Then the maximum bias the players can achieve is upper-bounded by

β∗
Z(G) ≤ GIP(π ◦ Σ).

PROOF: For i1, . . . , iN ∈ [n], let F1(i1), . . . , FN(iN) be the {−1, 1}-valued ob-
servables used by the N players to play G while sharing state |ψ� = 1√

d ∑d
�=1 |���N.

Let A = π ◦ Σ. The players’ bias is then given by

β∗
Z(G) = ∑

I∈[n]N
A[I]�ψ|F1(i1)� · · ·� FN(iN)|ψ�

=
1
d ∑

I∈[n]N
A[I]

d

∑
�,m=1

��|F1(i1)|m� · · · ��|FN(iN)|m�

≤ 1
d

d

∑
m=1



 ∑
I∈[n]N

A[I]
d

∑
�=1

��|F1(i1)|m� · · · ��|FN(iN)|m�





≤ 1
d

d

∑
m=1

GIP(A) = GIP(A).

The inequality holds as the inner sum on the third line is a generalized inner
product of the mth columns of the observables F1(i1), . . . , FN(iN), which are
unit vectors since these matrices are unitary. ✷

The inequality β∗
Z(G) ≤ 2(3N−5)/2 KC

G β(G) now follows from Lemma 6.5.1
and Theorem 2.3.10, since for A = π ◦ Σ, we have that OPT(A) is precisely the
classical bias of the game G = (π, Σ). This proves Theorem 6.2.1 for the special
case of GHZ states.

6.5.2 Extension to Schmidt states.

We extend the result of Section 6.5.1 to the case of Schmidt states, thus prov-
ing Theorem 6.2.1 in full generality. For this, analogous to Lemma 6.5.1, it is
sufficient to show that for a Schmidt state |ψ� = ∑d

�=1 α�|���N, we have

β∗
|ψ�(G) ≤ GIP(π ◦ Σ)

The theorem then follows by setting A = π ◦ Σ and applying Theorem 2.3.10.
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PROOF OF THEOREM 6.2.1: For N-player XOR game G = (π, Σ), define the
tensor A = π ◦ Σ. Suppose that the N players share the Schmidt state |ψ� =

∑d
�=1 α�|���N. For i1, . . . , iN ∈ [n], let F1(i1), . . . , FN(iN) be a choice of {−1, 1}-

valued observables used by the players to achieve bias β∗
|ψ�(G).

We use the following claim, which shows that |ψ� can be expressed as a
weighted sum of GHZ-type states.

9. CLAIM. There exist nonnegative reals ν1, . . . , νd such that |ψ� = ∑d
m=1 νm|φm�,

where |φm� = ∑m
�=1 |���N for m = 1, . . . , d is a “partial” (un-normalized) GHZ

state. Moreover, the ν� satisfy the following equation:

d

∑
m,k=1

νmνk · min{m, k} = 1 (6.2)

PROOF: Renaming the basis vectors as necessary, we can assume that α1 ≥
· · · ≥ αd. Let νd = αd and νm = αm − αm+1 for � = 1, . . . , d − 1. Then we have

|ψ� =
d

∑
m=1

νm|φm�.

Moreover, Eq. (6.2) is immediate from the fact that |�ψ|ψ�| = 1 and �φm|φk� =
min{m, k} (recall that |φm� � itself was not normalized). �

This reformulation of |ψ� reduces the task of showing an upper bound
on β∗

|ψ�(G) to a form similar to what we had before. Namely,

β∗
|ψ�(G) = ∑

m,k
νmνk ∑

I∈[n]N
A[I]�φm|F1(i1)� · · ·� FN(iN)|φk�.

For fixed m, k, each term of the sum involves unnormalized “partial” GHZ
states, which can be handled in the same fashion as Lemma 6.5.1.

10. CLAIM. For tensor A and states |φm� as defined above, we have

∑
I∈[n]N

A[I]�φm|F1(i1)� · · ·� FN(iN)|φk� ≤ min{m, k}GIP(A).

PROOF: Writing out |φm� and |φk�, we have

∑
I∈[n]N

A[I]�φm|F1(i1)� · · ·� FN(iN)|φk� =

∑
I∈[n]N

A[I]
m

∑
s=1

k

∑
t=1

�s|F1(i1)|t� · · · �s|FN(iN)|t�.
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We will order the double sum over s, t depending on whether m or k is smaller—
we want the outer sum to be over the smaller one. Suppose that m ≤ k. The
other case is completely analogous. Then

∑
I∈[n]N

A[I]
m

∑
s=1

k

∑
t=1

�s|F1(i1)|t� · · · �s|FN(iN)|t� =

m

∑
s=1



 ∑
I∈[n]N

A[I]
k

∑
t=1

�s|F1(i1)|t� · · · �s|FN(iN)|t�



 . (6.3)

For each fixed s, the inner sum is now a generalized inner product of the first
k entries of the sth rows of the matrices F1(i1), . . . , FN(iN). Since the full rows
of these matrices have norm at most 1, we obtain complex vectors of norm at
most 1 by taking only their first k coordinates. Hence, we have

∑
I∈[n]N

A[I]�φm|F1(i1)� · · ·� FN(iN)|φk� ≤ min{m, k}GIP(A).

This proves the claim. �

We can now finish the proof of the theorem. Combining the above two
claims gives

β∗
|ψ�(G) = ∑

m,k
νmνk ∑

I∈[n]N
A[I]�φm|F1(i1)� · · ·� FN(iN)|φk�

≤ ∑
m,k

νmνk min{m, k}GIP(A)

= GIP(A).

The first line follows from Claim 10 and the last from Claim 9. ✷

6.6 Bounded violations for clique-wise entanglement

The proof of Theorem 6.2.2 is based on a result by Carne [Car80] that essen-
tially shows how Grothendieck-type inequalities can be composed in order to
prove new inequalities of the same type. This will let us prove bounds on the
entangled bias when the players are allowed to share any combination of EPR
pairs and GHZ states. We explain Carne’s theorem in Section 6.6.1, we ex-
plain how it is applied to prove Theorem 6.2.2 in Section 6.6.2 and we end this
section with a proof of Corollary 6.2.3.
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6.6.1 Carne’s Theorem

Carne’s Theorem is most easily explained with the use of hypergraphs. A hy-
pergraph H = (V, E) consists of a finite set V of vertices and a family E of
subsets (called hyper-edges) of V. In a normal graph, the edge set E consists
of pairs of vertices, but in a hypergraph, the hyper-edges are allowed to have
any size ranging from 1 to |V|. For a vertex u ∈ V, we denote by E(u) the set
of hyper-edges e ∈ E that contain u as an element.

Towards understanding Carne’s Theorem, let H = (V, E) be a hypergraph.
We associate with each hyper-edge e ∈ E and vertex u ∈ e a complex Hilbert
space H(u, e). Furthermore, we associate with every edge e ∈ E a linear func-
tional φe :

�
u∈e H(u, e) → C. Later, every vertex u ∈ V will correspond to a

player in a |V|-player XOR game and for every hyper edge e containing u, the
space H(u, e) will be u’s local Hilbert space for some state |φe� ∈

�
v∈e H(v, e)

that u shares with the other members of e. The linear functionals φe will corre-
spond to generalized inner products that arise when the |φe� are GHZ states.

Suppose that every φe satisfies a Grothendieck-type inequality, by which we
mean that for every |e|-tensor A : [n]|e| → R and functions fu : [n] → BH(u,e),
for each u ∈ e, the inequality

��� ∑
I∈[n]|e|

A[I]φe

��

u∈e
fu(iu)

���� ≤ Ce OPT(A), (6.4)

holds for some constant Ce independent of A and the fu. The functionals φe that
we will encounter below are those for which φe

��
u∈e xu

�
is the generalized

inner product between the vectors xu ∈ H(u, e).
Define for every u ∈ V the Hilbert space Hu =

�
e∈E(u) H(u, e). Carne’s

Theorem then states that a certain natural combination of the linear function-
als φe in a general multilinear functional Φ defined over the entire Hilbert space
H =

�
u∈V Hu also satisfies a Grothendieck-type inequality with a constant

equal to the product of the Ce. This combination of the φe is precisely the type
we obtain by allowing the players in each hyper-edge to share a GHZ state.
Since a vertex u can be part of many different edges, there can be many func-
tionals φe that act on the same space Hu. This is what makes Carne’s Theorem
non-trivial. We need one last thing, which is the linear re-arranging map

σ :
�

u∈V

� �

e∈E(u)
H(u, e)

�
→

�

e∈E

��

u∈e
H(u, e)

�
,

which simply permutes the elements of a vector x ∈ �
u∈V Hu.
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6.6.1. THEOREM (CARNE). Define the linear functional Φ :
�

u∈V Hu → C as
Φ =

��
e∈E φe

�
◦ σ, where ◦ denotes the composition of the two maps. Then, for any

|V|-tensor A : [n]|V| → R and set of functions fu : [n] → BHu , for u ∈ V, we have

∑
I∈[n]V

A[I]Φ
� �

u∈V
fu(iu)

�
≤

�
∏
e∈E

Ce

�
OPT(A), (6.5)

where the Ce are as in Eq. (6.4).

If for each e ∈ E, the functional φe gives the generalized inner product be-
tween vectors xu ∈ H(u, e) = Cd, then by Theorem 2.3.10 (Tonge’s Inequality),
we get that Inequality 6.4 holds with Ce = 2(3|e|−5)/2KC

G.

6.6.2 Bounding the violations achievable by strategies with
clique-wise entanglement

Consider an N-player XOR game G = (π, Σ). Let the players be organized in k
coalitions of r players each3, where each player can take part in any number of
coalitions. Each coalition is allowed to share a GHZ state between its members.

To model this setup, we associate a hypergraph H = (V, E) to the coalition
structure, with V = [N] and there is a hyperedge for every coalition. For every
hyper edge e we introduce a Hilbert space H(e) =

�
u∈e H(u, e), where H(u, e)

is a local space of player u corresponding to edge e. The state of the players in
this space is a GHZ state |φe� = d−1/2 ∑d

j=1 |j��|e|. The global entangled state
shared by the players at the start of the game is then

|Φ̃� =
�

e∈E
|φe� ∈

�

e∈E

��

u∈e
H(u, e)

�
(6.6)

Finally, each player u has an observable Fu(iu) corresponding to question iu ∈
[N]. These act on player u’s local space Hu =

�
e∈E(u) H(u, e).

Theorem 6.2.2 states that the maximum bias achievable by a strategy of the
form that we have just described is at most a constant times the classical bias
of the game. In order to prove it, we first relate the bias with any {−1, 1}-
valued observables {Fu(iu)}u∈V to an expression similar to the one appearing
on the left-hand side of Inequality (6.9) in Carne’s Theorem, where φe will be
the linear functional associated with the GHZ state. More precisely, for every

3The organization of these coalitions is independent of the game itself; rather it is used to
define the structure of the entanglement that is shared between the players.



6.6. BOUNDED VIOLATIONS FOR CLIQUE-WISE ENTANGLEMENT 117

e ∈ E, the Hilbert spaces H(u, e) for u ∈ e will be Cd (for some d) and φe will be
such that for any set of vectors {xu}u∈e ⊆ Cd the value φe

��
u∈e xu

�
equals the

generalized inner product of the xus. Applying Theorem 6.6.1 will conclude
the argument.

PROOF OF THEOREM 6.2.2: Fix observables {Fu}u∈V and an entangled state
|Φ� = σ−1(|Φ̃�), where |Φ̃� is described in Eq. (6.6) and σ is the rearrangement
map that appears in Carne’s Theorem. This map appears because we need
to re-arrange the terms of |Φ̃� to correspond to the decomposition of space
�

u∈V Hu. (We omit the arguments iu in the Fu for now to suppress notation
and because they do not play a role at this moment.)

We begin by expanding the expectation �Φ|�u∈V Fu|Φ�, with the goal of
relating it to the map Φ of Theorem 6.6.1. Let [d]E denote the set of |E|-tuples
of the form (je)e∈E where each je is an integer in [d]. Recall that the members
of an edge e ∈ E share a state of the form |φe� = d−1/2 ∑d

je=1 |je��|e|. We have

|Φ� = σ−1

�
1√
d|E|

�

e∈E

� d

∑
je=1

�

u∈e
|je�

��

=
1√
d|E|

∑
J∈[d]E

�

u∈V
|J|E(u)�

where J|E(u) denotes the tuple (je)e∈E(u) and |J|E(u)� =
�

e∈E(u) |je� is a state in
the Hilbert space Hu of player u.

Since observables are Hermitian, the expected value �Φ|�u∈V Fu|Φ� equals

�Φ|
�

u∈V
Fu|Φ� =

1
2 · d|E| ∑

J�,J∈[d]E

�

∏
u∈V

�J�|E(u)|Fu|J|E(u)�+ ∏
u∈V

�J|E(u)|Fu|J�|E(u)�
�

=
1

2 · d|E| ∑
J�,J∈[d]E

�

∏
u∈V

�J�|E(u)|Fu|J|E(u)�+ ∏
v∈V

�J�|E(v)|F∗
v |J|E(v)�

�

=
1

d|E| ∑
J�∈[d]E



 ∑
J∈[d]E

�
�

∏
u∈V

�J�|E(u)|Fu|J|E(u)�
�


 . (6.7)

Note that, since the expression on the left-hand side is real, the one on the
right-hand side is too, and we can safely ignore the � symbol on the right.
Since the Fu are unitary matrices, their columns are unit vectors. This implies
that there exist unit vectors xu ∈ �

e∈E(u) H(u, e) (depending on J�) such that
the expression between the brackets in equation (6.7) is of the form

∑
J∈[d]E

∏
u∈V

(xu)J|E(u)
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where (xu)J|E(u) denotes J|E(u)-coordinate of the vector xu, when written in the
basis defined by the vectors |J|E(u)�.

11. CLAIM. For Φ =
��

e∈E φe

�
◦ σ where each φe corresponds to the generalized

inner product function on
�

u∈e H(u, e), we have

∑
J∈[d]E

∏
u∈V

(xu)J|E(u) = Φ
� �

u∈V
xu

�
.

PROOF: Since Φ is linear, it suffices to prove the claim for vectors of the form
xu =

�
e∈E(u) xu,e, where each xu,e ∈ H(u, e). In this case, we have
��

e∈E
ψe

�
◦ σ

� �

u∈V

� �

e∈E(u)
xu,e

��
=

�

e∈E

�
ψe

��

u∈e
xu,e

��

= ∏
e∈E

� d

∑
je=1

�
∏
u∈e

(xu,e)je

��

= ∑
J∈[d]E

∏
e∈E

�
∏
u∈e

(xu,e)je

�

= ∑
J∈[d]E

∏
u∈V

�
∏

e∈E(u)
(xu,e)je

�
,

where the last product is ∏e∈E(u)(xu,e)je = (xu)J|E(u) . ✷

Let Fu(iu) be the observable used by player u on question iu, so that the bias
achieved by this strategy in the game G = (π, Σ) is

∑
I∈[n]V

A[I] �Φ|
�

u∈V
Fu(iu)|Φ�

where A = π ◦ Σ. We can bound this expression by

��� ∑
I∈[n]V

A[I]



 1
d|E| ∑

J�∈[d]E
∑

J∈[d]E
∏
u∈V

�
Fu(iu)

�
J|E(u), J�|E(u)




���

≤ 1
d|E| ∑

J�∈[d]E

��� ∑
I∈[n]V

A[I] · ∑
J∈[d]E

∏
u∈V

�
Fu(iu)

�
J|E(u), J�|E(u)

���

≤ max
J�∈[d]E

��� ∑
I∈[n]V

A[I] · ∑
J∈[d]E

∏
u∈V

�
Fu(iu)

�
J|E(u), J�|E(u)

���

≤ max
fu :[n]→BHu : u∈V

��� ∑
I∈[n]V

A[I]Φ
� �

u∈V
fu(iu)

����, (6.8)
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where the first equality is (6.7), and the last inequality follows from Claim 11.
The result then follows directly from Theorem 6.6.1 combined with the bound
in Theorem 2.3.10, giving the last part of the theorem. ✷

We end this section with a proof of Corollary 6.2.3.

PROOF OF COROLLARY 6.2.3: Theorem 5 in [BFG06] states that, if |Ψ� is any
stabilizer state shared in an arbitrary way among three parties, then there exist
unitary matrices U1, U2 and U3 on the Hilbert spaces H1, H2 and H3, respec-
tively, such that U1 � U2 � U3|Ψ� is a state of the form |Φ� considered above. In
other words, |Ψ� is local-unitarily equivalent to a number of EPR pairs shared
between each of the three pairs of players, together with a GHZ state shared
in common. By defining local observables U1F1(i1)U∗, etc, it is not difficult to
see that for any three-player XOR game G, the bias β∗

|Ψ�(G) is at most the bias
attainable with clique-wise entanglement shared among the three players.

It now suffices to consider the hypergraph H with vertex set V = {1, 2, 3},
and edge set E = {{1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}. In the notation of Theo-
rem 6.2.2, this hypergraph has k = 4 and r ≤ 3, which gives the bound 28(KC

G)
4.

However, a careful examination of the proof of Theorem 6.2.2 easily reveals
that the inequality holds with the smaller constant 8(KC

G)
4. ✷

6.7 Hardness of approximation of the entangled bias

Khot and Naor [KN08] observed that the hardness-of-approximation results
for Max-E3-Lin2 of Håstad and Venkatesh [HV04] can be extended to:

6.7.1. THEOREM (HÅSTAD-VENKATESH-KHOT-NAOR). Unless P=NP, there is no
polynomial-time algorithm that approximates the classical bias of a three-party XOR
game to within a multiplicative factor c for any constant c > 1.

The inapproximability results in [HV04] only hold for symmetric strategies,
in which the players all share the same strategy. However, Khot and Naor
show that the inapproximability result holds even when restricted to games
G = (π, Σ) that are invariant under permutations of the three players (i.e. for
A = π ◦ Σ we have A[i, j, k] = A[i, k, j] = A[j, i, k] = A[j, k, i] = A[k, i, j] =
A[k, j, i]) and are such that the same question is never asked to two players si-
multaneously (i.e. A[i, j, j] = A[j, i, j] = A[j, j, i] = 0). In this case Lemma 2.1
in [KN08] shows that the optimum with respect to symmetric strategies is
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within a factor 10 of the general optimum. Combining this result with Theo-
rems 6.2.1 and 6.2.2 immediately proves Theorem 6.2.4. Indeed, Theorem 6.2.1
(resp. Theorem 6.2.2) shows that, as long as the players are restricted to using
an arbitrary Schmidt state (resp. clique-wise entanglement), the quantum bias
is at most a constant times the classical bias. Hence any constant-factor ap-
proximation to the quantum bias would give a constant approximation to the
classical bias, which is ruled out by the hardness result from [HV04].

6.8 Proof of Carne’s Theorem

In this section we prove Theorem 6.6.1, which we restate here for convenience.

6.8.1. THEOREM (CARNE). Define the linear functional Φ :
�

u∈V Hu → C as
Φ =

��
e∈E φe

�
◦ σ, where ◦ denotes the composition of the two maps. Then, for any

|V|-tensor A : [n]|V| → R and set of functions fu : [n] → BHu , for u ∈ V, we have

∑
I∈[n]V

A[I]Φ
� �

u∈V
fu(iu)

�
≤

�
∏
e∈E

Ce

�
OPT(A), (6.9)

where the Ce are as in Eq. (6.4).

PROOF OF THEOREM 6.8.1: The proof is by induction on the number of edges
|E|. If the edge set is empty, then there is nothing to prove. Let e0 be any edge
in the hypergraph H, and consider the graph H0 = (V, E\{e0}). To re-write
the expression, first assume that each vector fu(iu) ∈ Hu =

�
e∈E(u) H(u, e)

has the following tensor structure:

fu(iu) = f 0
u(iu)� f 1

u(iu),

where f 0
u(ix) ∈ �e∈E\{e0}H(u, e) and f 1

u(iu) ∈ H(u, e0).

Define ΦH0 =
��

e∈E\{e0} φe

�
◦ σH0 , where σH0 is the re-arranging map for

H0. With this notation we have

Φ
� �

u∈V
fu(iu)

�
= Φ

� �

u∈V
f 0
u(iu)� f 1

u(iu)
�

= ΦH0

� �

u∈V
f 0
u(iu)

�
· φe0

� �

u∈e0

f 1
u(iu)

�
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Define the tensor B[I] = A[I] · φe0

��
u∈e0

f 1
u(iu)

�
. Applying the induction

hypothesis to B[I] and the graph H0 (note that the φe0(· · · ) term is simply a
number, dependent on I) gives

∑
I∈[n]V

B[I] · ΦH0

� �

u∈V
f 0
u(iu)

�
≤

�
∏

e∈E\{e0}
Ce

�
OPT(B) (6.10)

By definition,

OPT(B) = max

�

∑
I

B[I] ∏
u∈V

χu(iu) : χu : [n] → {−1, 1}
�

= max

�

∑
I

A[I]

�

∏
u∈V

χu(iu)

�
φe0

�
�

u∈e0

f 1
u(iu)

�
: χu : [n] → {−1, 1}

�
.

Fix χu that achieve this maximum, and define the tensor C[I] = A[I]∏u∈V χu(ii).
By hypothesis, the function φe enjoys a Grothendieck-type inequality, hence the
expression above can be bounded by

OPT(B) = ∑
I

C[I] · φe0

�
�

x∈e0

f 1
x (ix)

�
≤ Ce0 OPT(C) (6.11)

To conclude, we can relate OPT(C) to OPT(A) in the following way:

OPT(C) = max

�

∑
I

C[I] ∏
u∈V

χ�
u(iu) : χ�

u : [n] → {−1, 1}
�

= max

�

∑
I

A[I] ∏
u∈V

χu(iu)χ
�
u(iu) : χ�

u : [n] → {−1, 1}
�

= max

�

∑
I

A[I] ∏
u∈V

χ��
u(iu) : χ��

u : [n] → {−1, 1}
�

= OPT(A).

Combining Eqs. (6.10) and (6.11) gives the result in the case where all fu(iu)
have the tensor structure we described earlier. If not, since Φ is linear, writing
their Schmidt decomposition will result in a weighted sum of expressions in-
volving only unit vectors of this form. The weighted sum can be bounded by
its maximum component, for which we can apply the reasoning above. ✷
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6.9 Open questions

We proved that Schmidt states admit only constant-factor violation ratios. We
also proved that clique-wise entanglement admits violation ratios bounded
from above by a factor depending only on the number of coalitions. Clique-
wise entanglement consists of combinations of GHZ states, which are special
cases of Schmidt states. Unfortunately, we were not able to unify these re-
sults in the sense that we defined clique-wise entanglement as combinations of
Schmidt states. A natural open question thus is: Do the bounds on the viola-
tion ratios for clique-wise entanglement still hold when we allow the players
in each coalition to share general Schmidt states, instead of restricting them to
sharing GHZ states?

6.10 Summary

In this chapter, we considered the problem of upper bounding the largest pos-
sible violation ratio for XOR games that involve possibly many players and
where entangled players are restricted to using one of two types of entangle-
ment: Schmidt states, or clique-wise entanglement. We proved that when the
players use these types of entanglement, their advantage over classical play-
ers is at most a constant factor, depending only on the number of players. The
case of Schmidt states settled an open problem of [PGWP+08] and by a reduc-
tion given in that paper, a much older problem of [Var75] (see Chapter 7). The
case of clique-wise entanglement shows that, perhaps surprisingly, entangle-
ment consisting of arbitrary combinations of EPR pairs and GHZ states shared
among the players is insufficient to reproduce the violation ratios proved pos-
sible in [PGWP+08]. A theorem of [BFG06] implies that the same holds for
stabilizer states.



Chapter 7

A problem of Varopoulos: Schatten spaces
with the Schur product are Q-algebras

The content of this chapter is based on joint work with Harry Buhrman, Troy
Lee and Thomas Vidick [BBLV11].

7.1 Introduction

And now for something completely different. In this chapter, we discuss an
old problem posed by Varopoulos [Var75] in the context of Banach algebras.
Our contribution to this problem is the solution to a part of it that, when put in
conjunction with a series of previous results due to Pietsch and Triebel [PT68],
Varopoulos [Var72], Davie [Dav73], Le-Merdy [LM98] and Pérez-García [PG06],
leads to its complete resolution.

We begin by giving an informal explanation of what Varopoulos’s question
is about. Put briefly, the question asks for the existence of isomorphisms be-
tween Banach algebras. Roughly speaking, a Banach algebra is a vector space
in which one can add the elements and multiply them by scalars as usual,
but in addition one can multiply the elements themselves. Two Banach alge-
bras are isomorphic if there is a linear bijection (i.e., a one-to-one correspon-
dence defined by a linear function) between the underlying vector spaces that
preserves the multiplication operations. Varopoulos’s question concerns two
types Banach algebras:

1. algebras in which the vector spaces are formed by sets of matrices and
the additional multiplication operation is the entry-wise multiplication

123
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(known as the Schur or Hadamard product),

2. algebras formed by a vector space of complex-valued functions which
can be multiplied in the obvious way (the product f g defined by ( f g)(x) =
f (x)g(x)).

Roughly, the problem is to determine whether the first kind (1) are isomorphic
to Banach algebras (called Q-algebras) formed by cosets of the second kind (2)
(details follow below).

Although this problem may appear completely unrelated to the rest of this
thesis, Pérez-García et al. [PGWP+08] showed that part of it is equivalent to
the problem of determining whether Schmidt states (defined in Chapter 6) al-
low for arbitrarily large violation ratios in multiplayer XOR games: a problem
that we solved in the negative in the previous chapter. The negative answer
to the Schmidt state problem (Theorem 6.2.1) in conjunction with the results
mentioned above, implies a positive answer for the Banach algebra problem.

The main purpose of this chapter is to explain Varopoulos’s question in
more detail and to explain which part of it was solved by Theorem 6.2.1. We
give a proof of our contribution separate from the context of XOR games and
explain the relation to the Schmidt state problem found in [PGWP+08] after-
wards. Last, we briefly sketch why the whole problem is solved when our
result is put in conjunction with the results mentioned above.

Before continuing, I want to confess that I am a layman in the subject matter
of this chapter. Clearly, the problem about to be discussed was solved in the
most part due to more significant partial results and reformulations of others.
Nevertheless, the hope is that this presentation may be useful in some way.

In the remainder of this section we gather the mathematical tools needed to
explain Varopoulos’s problem precisely. More details of the following informa-
tion can be found in the excellent books by Diestel, Jarchow and Tonge [DJT95],
Reed and Simon [RS72], Rudin [Rud86] and Simon [Sim05].

7.1.1 Banach algebras

A complex algebra X = (V , ∗) is a vector space V over C in which a multipli-
cation ∗ is defined that is distributive and associative. For A, B ∈ V , we have
A ∗ B ∈ V . If V has a norm � � defined on it that satisfies for all A, B ∈ V

�A ∗ B� ≤ �A��B�,
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then X is called a normed complex algebra. If V is complete with respect to this
norm, then X is called a Banach algebra.

A Banach algebra is commutative if the multiplication operation is commu-
tative, that is, A ∗ B = B ∗ A for all A, B ∈ V .

An important example is the space C(K) of continuous functions f : K → C

on a metric space K, which is a Banach algebra when endowed with the uniform
norm (also called the supremum norm), defined as � f � = sup{| f (x)| : x ∈ K},
and the pointwise multiplication, given by ( f ∗ g)(x) = f (x)g(x). Often this
Banach algebra is also denoted by C(K), as we will do here.

7.1.2 Q-algebras

Two complex algebras X = (V , ∗) and Y = (W , ·) are isomorphic if there exists
a linear bijective map ϕ : V → W that preserves the multiplication in the sense
that ϕ(A ∗ B) = ϕ(A) · ϕ(B) for all A ∈ V and B ∈ W . Such a map ϕ is
called an isomorphism. If X and Y are normed algebras, then they are said
to be isometrically isomorphic if there exists an isomorphism ϕ : V → W that is
norm-preserving, that is, �A�V = �ϕ(A)�W .

A Banach algebra is a uniform algebra if it is isometrically isomorphic to a
closed subspace of the Banach algebra C(K) for some space K which is allowed
to be a slightly more general space than a metric space (namely a compact
Hausdorff space; see for example [Rud86, p. 36]).

Q-algebras are closely related to uniform algebras. Roughly speaking, a Q-
algebra is a Banach algebra formed by cosets in a uniform algebra. To define
Q-algebras precisely, we need two more definitions, that of an ideal, and that
of a quotient algebra.

A subset I of a commutative complex algebra X is an ideal in X if I is a
subspace of X (in the sense of a vector space), and if for every A ∈ I and
B ∈ X , we have A ∗ B ∈ I .

Given an ideal I , we can associate with each A ∈ X the coset ϕ(A) =
A + I = {A + B : B ∈ I}. A vector space is obtained out of such cosets by
defining

ϕ(A) + ϕ(B) = ϕ(A + B)
αϕ(A) = ϕ(αA)

for every complex scalar α. Moreover, if I is closed and properly contained
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in X (i.e., I �= X ), then a commutative Banach algebra is obtained by defining

ϕ(A)ϕ(B) = ϕ(A ∗ B)
�ϕ(A)� = inf{�B� : B ∈ ϕ(A)}.

The Banach algebra obtained this way is called a quotient algebra of X , and is
denoted by X/I .

7.1.1. DEFINITION. Let X be a commutative Banach algebra. Then X is a Q-
algebra if there exists a uniform algebra Y and a closed ideal I ⊂ Y such that X
is isomorphic to the quotient algebra Y/I .

The most interesting feature of Q-algebras, discovered by Cole (see [Wer69]),
is that they are isometrically isomorphic to a closed (commutative) subalge-
bra of B(H), the algebra of bounded operators on a Hilbert space (where the
multiplication is the regular matrix product). In other words, Q-algebras are
commutative operator algebras. In general, the converse is false [Var74], but
Tonge [Ton78] showed that it is true for every algebra generated by a set of
commuting Hilbert-Schmidt operators (endowed with the matrix product). We
refer to the Notes and Remarks section of [DJT95, Chapter 18] for more infor-
mation on the significance and historical developments of Q-algebras.

7.1.3 Schatten spaces and the Schur product

Varopoulos’s question involves Banach algebras formed by Schatten spaces
and the Schur product, which we introduce next.

The Spectral Theorem asserts that the Banach space of compact operators
on �2, which we denote by S∞, consists of the operators A that admit a repre-
sentation of the form

A =
∞

∑
i=1

λi� · , ei� fi, (7.1)

where (ei)i and ( fi)i are orthonormal bases for �2 and the sequence (λi)i ⊂
R satisfies λ1 ≥ λ2 ≥ · · · ≥ 0 and limi→∞ λi = 0 (see for example [RS72,
Theorem VI.17]). The space S∞ is endowed with the operator norm �A� =
sup{|�x, Ay�| : �x�, �y� ≤ 1}.

For 1 ≤ p < ∞, the Schatten p-norm of a compact operator A is given
by the �p-norm (|λ1|p + |λ2|p + · · · )1/p of the sequence (λi)i appearing in
Eq. (7.1). It is a well-known, but nontrivial fact, proved by Schatten and von
Neumann [Sch46, SvN46, SvN48], that these functions are indeed norms. The



7.2. VAROPOULOS’S QUESTION AND OUR PART OF THE ANSWER 127

p-Schatten space Sp ⊆ S∞ is the normed vector space formed by the set of com-
pact operators that have finite Schatten p-norm, where the norm is the Schat-
ten p-norm. In [SvN48] it was first proved that these spaces are Banach spaces.
Much-studied examples of these spaces are the trace class S1 and the Hilbert-
Schmidt operators S2.

The Schur product, for which we henceforth fix the symbol ◦, is a commuta-
tive multiplication for S∞ defined as the entry-wise product when the elements
of S∞ are represented by matrices using the canonical basis for �2. That is, for
A, B ∈ S∞ such that A = (Aij)i,j and B = (Bij)i,j, we have

A ◦ B = (AijBij)i,j.

7.2 Varopoulos’s question and our part of the an-
swer

Davie [Dav73] and Varopoulos [Var72] proved that the Banach algebra (�p, ◦)
is a Q-algebra for all 1 ≤ p ≤ ∞. Here the multiplication ◦ is the pointwise
multiplication. Note that this notation is consistent with the symbol used for
the Schur product (defined in the previous section) when we represent an ele-
ment x ∈ �p as a linear combination of the canonical basis vectors. This result
implies immediately that the algebra of Hilbert-Schmidt operators (S2, ◦) (with
the Schur product) is a Q-algebra. To see this, notice that a matrix can be seen
as a vector by simply appending all of its columns underneath each other. The
Hilbert-Schmidt norm (also known as the Frobenius norm) of the matrix then
coincides with the �2 norm of that vector, and the Schur product of two ma-
trices corresponds to the pointwise product of their corresponding vectors. In
other words, (S2, ◦) is isometrically isomorphic to (�2, ◦).

Varopoulos’s question [Var75] is the natural one following these facts:

Is it true that (Sp, ◦) is a Q-algebra for all 1 ≤ p ≤ ∞?

Progress was made by Le-Merdy [LM98] and Pérez-García [PG06], who
proved that the property holds true for all 2 ≤ p ≤ 4 and 1 ≤ p ≤ 2, respec-
tively. Mantero and Tonge [MT80] proved that (S∞, ◦) fails to be a so-called
1-summing algebra, which requires only slightly stronger conditions than for
being a Q-algebra. Nevertheless, our contribution gives a positive result for
the high end of the spectrum.
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7.2.1. THEOREM. The Banach algebra (S∞, ◦) is a Q-algebra.

The proof of Theorem 7.2.1 relies on an important result of Davie [Dav73,
Theorem 3.3], which gives a simple characterization of Q-algebras . We use a
slight reformulation of it, as given in [DJT95, Lemma 18.5 and Proposition 18.6].
For tensor T : [n]N → C, define

OPTC(T) = sup






��� ∑
I∈[n]N

T[I]ξ1(i1) · · · ξN(iN)
��� : ξ1, . . . , ξN : [n] → BC




 .

7.2.2. THEOREM (DAVIE). Let X = (V , ∗) be a commutative Banach algebra. Then X
is a Q-algebra if and only if there exists a universal constant K > 0, such that for any
choice of positive integers n, N, complex tensor T : [n]N → C, and V-valued se-
quences A1, . . . , AN : [n] → BV , the inequality

��� ∑
I∈[n]N

T[I]A1(i1) ∗ · · · ∗ AN(iN)
���
V
≤ KN OPTC(T), (7.2)

holds.

We prove that the Banach algebra (S∞, ∗) satisfies Davie’s criterion using
the multilinear extension of the complex version of Grothendieck’s inequal-
ity, due to Blei [Ble79] and Tonge [Ton78], which we encountered in a slightly
different form Section 2.3.4.

7.2.3. THEOREM (TONGE). Let n, N ≥ 2 and d be positive integers. Then, for any
tensor T : [n]N → C and functions f1, . . . , fN : [n] → BCd , we have

��� ∑
I∈[n]N

T[I]
�

f1(i1), . . . , fN(iN)
���� ≤ 2(N−2)/2KC

G OPTC(T). (7.3)

A proof of this theorem can be obtained with some minor modifications of
the proof of the variant presented in Section 2.3.4. This theorem was also used
by Pérez-García [PG06] to prove that (S1, ◦) is a Q-algebra.

PROOF OF THEOREM 7.2.1: The case N = 1 is trivial and holds for K = 1, as
for any sequence A(1), . . . , A(n) ∈ BS∞ , we have

���
n

∑
i=1

T[i]A(i)
��� = sup

����
n

∑
i=1

T[i]�u, A(i)v�
��� : u, v ∈ B�2

�
= OPTC(T).
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From now on, we fix integers n, N ≥ 2, tensor T : [n]N → C and operator-
valued maps A1, . . . , AN : [n] → BS∞ . Define

M = ∑
I∈[n]N

T[I]A1(i1) ◦ · · · ◦ AN(iN).

By Theorem 7.2.2 (Davie’s criterion) it suffices to show that the inequality

�M� ≤ KN�T�∞, (7.4)

holds for some constant K independent of n, N, T and A1, . . . , AN.
We begin by making four small preliminary steps to show that without

loss of generality we may assume that T is real valued and the Ai are finite-
dimensional Hermitian matrices. Afterwards we will be able to apply Theo-
rem 7.2.3 in order to prove Eq. (7.4). In the first step we show that without loss
of generality, we may assume that the tensor T is real-valued. To this end, de-
fine the real-valued tensors TR and TC by TR[I] = �(T[I]) and TC[I] = �(T[I])
for every I ∈ [n]N. Define

MR = ∑
I∈[n]N

TR[I]A1(i1) ◦ · · · ◦ AN(iN)

MC = ∑
I∈[n]N

TC[I]A1(i1) ◦ · · · ◦ AN(iN)

Since M = MR + iMC, we have �M� ≤ 2 max{�MR�, �MC�}. Proving Eq. (7.4)
for real-valued tensors thus suffices.

In the second step we show that it suffices to consider the case where the op-
erators A1(i1), . . . , AN(iN) ∈ BS∞ are finite-dimensional matrices (in the canon-
ical basis for �2). Recall that norm of M is given by

�M� = sup{|�u, Mv�| : u, v ∈ B�2}.

For any u ∈ �2 with �u� ≤ 1 and any ε > 0 there exists a D ∈ N such that the
vector u� = ∑D

�=1 u�e� has norm at least 1 − ε. Hence, for any u, v ∈ B�2 and
ε > 0 there exist D ∈ N and u�, v� ∈ B�2 supported only on e1, . . . , eD such that

|�u, Mv�| ≤ |�u�, Mv��|+
�
2ε(1 − ε) + ε2�|�u, Mv�|.

It follows that for some D ∈ N and vectors u�, v� ∈ B�2 supported only on
e1, . . . , eD, we have

�M� ≤ 2|�u�, Mv��|. (7.5)
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Define for every k = 1, . . . , N and ik = 1, . . . , n the D-by-D complex matrix
A�

k(ik) = (�e�, Ak(ik)em�)D
�,m=1. Note that �A�

k(ik)� ≤ �Ak(ik)� ≤ 1. Expanding
the definition of M then gives

�u�, Mv�� =
�

u�, ∑
I∈[n]N

T[I]A1(i1) ◦ · · · ◦ AN(iN)v�
�
=

∑
I∈[n]N

T[I]�u�, A1(i1) ◦ · · · ◦ AN(iN)v�� =

∑
I∈[n]N

T[I]�u�, A�
1(i1) ◦ · · · ◦ A�

N(iN)v��. (7.6)

Define the complex number Θ = �u�, Mv��. Eq. (7.5) shows that to prove
the theorem, it suffices to show that the inequality

|Θ| ≤ KN�T�∞, (7.7)

holds for some constant K, and Eq. (7.6) shows that we can write Θ using the
matrix-valued maps A�

1, . . . , A�
N.

In the third step we absorb the complex part of the number Θ into the
matrix-valued map A�

1. Let us write Θ in polar coordinates as |Θ|eiφ for some
φ ∈ [0, 2π]. Define A��

1 (i1) = e−iφ A�
1(i1). Then by Eq. (7.6), we have

∑
I∈[n]N

T[I]�u�, A��
1 (i1) ◦ A�

2(i2) ◦ · · · ◦ A�
N(iN)v�� = |Θ|. (7.8)

In the fourth step we symmetrize the situation by making the matrices Her-
mitian. To this end, define the map ρ : CD×D → C2D×2D by

ρ(A) =

�
0 A

A∗ 0

�
.

Define matrix-valued maps B1, . . . , BN : [n] → C2D×2D by

B1(i1) = ρ
�

A��
1 (i1)

�

B2(i2) = ρ
�

A�
2(i2)

�

...

BN(iN) = ρ
�

A�
N(iN)

�
.

Note that �Bk(ik)� ≤ 1 for all k = 1, . . . , N and ik = 1, . . . , n, since the map ρ

leaves the norm unchanged. Define the matrices

M� = ∑
I∈[n]N

T[I]A��
1 (i1) ◦ A�

2(i2) ◦ · · · ◦ A�
N(iN)

M�� = ∑
I∈[n]N

T[I]B1(i1) ◦ B2(i2) ◦ · · · ◦ BN(iN).
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Since the tensor T is real-valued we have M�� = ρ(M�).
Define the vector w = (v� � u�)/

√
2 and note that �w� ≤ 1. We have

�w, M��w� =
1
2
[(u�)∗, (v�)∗]

�
0 M�

(M�)∗ 0

� �
u�

v�

�

= �
�
�u�, M�v��

�

= �



 ∑
I∈[n]N

T[I]�u�, A��
1 (i1) ◦ · · · ◦ A�

N(iN)v��





= |Θ|, (7.9)

where the last identity follows from Eq. (7.8), which shows that the term be-
tween brackets on the third line is the real number |Θ|.

Next, we absorb the complex parts of the vector w into the matrix-valued
map B1. Using polar coordinates we can write

w =
2D

∑
�=1

w�eiψ�e�

for some moduli w� ∈ R+ and arguments ψ� ∈ [0, 2π]. Let U ∈ CD×D be
the diagonal unitary matrix given by U = diag(eiψ1 , . . . , eiψD). Define the non-
negative real vector w� = U∗w = ∑2D

�=1 w�e� and define the matrix-valued map
B�

1 by B�
1(i1) = U∗B1(i1)U. Note that �B�

1(i1)� ≤ �B1(i1)� ≤ 1.
Then, by Eq. (7.9) and by expanding the definition of M�� we have

∑
I∈[n]N

T[I]�w�, B�
1(i1) ◦ B2(i2) ◦ · · · BN(iN)w�� = �w, M��w� = |Θ|. (7.10)

We can now make a connection to Theorem 7.2.3 using the following two
claims.

12. CLAIM. There exist real numbers µ1, . . . , µ2D ≥ 0 such that

0 ≤
2D

∑
�,m=1

µ�µm min{�, m} ≤ 1 (7.11)

and for 1� = e1 + · · ·+ e�,

|Θ| =
2D

∑
�,m=1

µ�µmθ�,m, (7.12)

where
θ�,m = ∑

I∈[n]N
T[I]�1�, B�

1(i1) ◦ B2(i2) ◦ · · · ◦ BN(iN)1m�.
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PROOF: By relabeling the basis vectors e1, . . . , e2D appropriately, we may as-
sume that the coefficients of the above vector w� satisfy w1 ≥ w2 ≥ · · · ≥ w2D.
Setting µ� = (w� − w�−1) for � = 1, . . . , 2D − 1 and µ2D = w2D gives

w� =
2D

∑
�=1

µ�1�,

since �w�, ek� = µk + µk+1 + · · · + µ2D = wk. Eq. (7.11) follows from the fact
that 0 ≤ �w�, w�� ≤ 1 and �1�, 1m� = min{�, m}, and Eq. (7.12) follows by
expanding w� in Eq. (7.10). ✷

13. CLAIM. For every 1 ≤ �, m ≤ 2D, we have

|θ�,m| ≤ CN min{�, m}�T�∞, (7.13)

where CN = 2(N−2)/2KG.

PROOF: Expanding the vectors 1� in the canonical basis gives
�

1�, B�
1(i1) ◦ B2(i2) ◦ · · · ◦ BN(iN)1m

�
=

�

∑
s=1

m

∑
t=1

�
es, B�

1(i1) ◦ B2(i2) ◦ · · · ◦ BN(iN)et

�
. (7.14)

Note that each term in the double sum on the right-hand side of Eq. (7.14) is
simply the product of (s, t)-entries of the matrices B�

1(i1), B2(i2), . . . , BN(iN).
Suppose that � ≤ m. Since the matrices B�

1(i1), B2(i2), . . . , BN(iN) have
norm at most 1, their rows belong to B�m

2
(where �m

2 is the set of length-m 2-
summable sequences). Hence, the inner sum on the right-hand side of Eq. (7.14),

m

∑
t=1

�
es, B�

1(i1) ◦ B2(i2) · · · ◦ BN(iN)et

�
=

m

∑
t=1

�es, B�
1(i1)et��es, B2(i2)et)� · · · �es, BN(iN)et�,

is the generalized inner product of a set of N vectors in B�m
2

. The result for the
case � ≤ m now follows from the triangle inequality and Theorem 7.2.3, as

|θ�,m| =

������
∑

I∈[n]N
T[I]

�
1�, B�

1(i1) ◦ B2(i2) ◦ · · · ◦ BN(iN)1m

�
������
≤

�

∑
s=1

������
∑

I∈[n]N
T[I]

m

∑
t=1

�es, B�
1(i1)et��es, B2(i2)et)� · · · �es, BN(iN)et�

������
≤

�2(N−2)/2KG�T�∞.
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The case � ≥ m is proved in the same manner. �

Putting Claim 12 and Claim 13 together gives

|Θ| =
2D

∑
�,m=1

µ�µmθ�,m

≤
2D

∑
�,m=1

µ�µm|θ�,m|

≤ CN�T�∞

2D

∑
�,m=1

µ�µm min{�, m}

≤ CN�T�∞.

We conclude that Eq. (7.7) (Davie’s criterion) holds for K ≤ 4. ✷

7.2.1 The connection to the Schmidt states

For completeness, we now sketch the connection made in [PGWP+08] to the
problem of determining whether Schmidt states, which are states of the form
|ψ� = ∑d

�=1 α�|���N for arbitrary real nonnegative coefficients αi, allow for
arbitrary large violation ratios in N-player XOR games.

The starting point is the last line of Eq. (7.6) in the proof above, which is of
the form:

∑
I∈[n]N

T[I]
�

u, A1(i1) ◦ · · · ◦ AN(iN)v
�

,

for some d-dimensional vectors u, v and matrices A�(i�). Theorem 7.2.1 was
proved by showing that the absolute value of this quantity is bounded from
above by KN OPTC(T) for some universal constant K.

Renaming the basis vectors e1, . . . , ed for Cd as |1�, . . . , |d� gives u = ∑d
�=1 α�|��

and v = ∑d
�=1 β�|��. The crucial observation is now that for Schmidt states

|ψ� =
d

∑
�=1

α�|���N and |φ� =
d

∑
�=1

β�|���N,
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we have

∑
I∈[n]N

T[I]
�

u, A1(i1) ◦ · · · ◦ AN(iN)v
�
=

∑
I∈[n]N

T[I]
d

∑
�,m=1

α∗�βm��|A1(i1) ◦ · · · ◦ AN(iN)|m� =

∑
I∈[n]N

T[I]�ψ|A1(i1)� · · ·� AN(iN)|φ�.

The form of the last quantity above and the fact that |ψ� and |φ� are Schmidt
states already give a strong indication that it cannot be far from the entangled
bias of some N-player XOR game where the players are restricted to sharing a
Schmidt state. As shown in [PGWP+08], this is indeed the case. The fact that
this bias is at most KN times larger than the classical bias (for some universal
constant K), as stated in Theorem 6.2.1, then implies the required bound, as the
classical bias of N-player XOR game (π, Σ) equals OPT(π ◦Σ) ≤ OPTC(π ◦Σ).

7.3 The intermediate cases

It turns out that once the cases p = 1 and p = ∞ of Varopoulos’s question are
answered in the positive, the same results for intermediate ones 1 < p < ∞
are obtained essentially for free. The reason for this comes from a pair of very
useful results of Pietsch and Triebel [PT68] and Varopoulos [Var72], which give
that the Banach algebras (Sp, ◦) can be characterized as algebras “between”
(S1, ◦) and (S∞, ◦). What is meant by “between” is that there is a way to obtain
the spaces Sp for 1 < p < ∞ by taking certain combinations of S1 and S∞.
This method is known as the complex interpolation method; we refer to Berg and
Löfström [BL76] for a detailed account.

We give rough a description of what the complex interpolation method en-
tails in the current setting. Consider the space F of functions f : C → S∞ that
are analytic in the open strip {0 < �(ξ) < 1 : ξ ∈ C} and continuous on the
closed strip {0 ≤ �(ξ) ≤ 1 : ξ ∈ C} (additionally, the functions in F have
to approach 0 sufficiently rapidly when their argument moves away from the
real line; see [BL76] for details). We endow F with the norm

� f �F = max
�

sup
t∈R

� f (it)�S∞ , sup
t∈R

� f (1 + it)�S1

�
.

For 0 < θ < 1, the interpolation space (S∞, S1)[θ] is defined as the subset of
elements A ∈ S∞ such that A = f (θ) for some f ∈ F . The norm on this space
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is defined by

�A�[θ] = inf
�
� f (θ)�F : f (θ) = A, f ∈ F

�
.

Surprisingly, the p-Schatten spaces for the intermediate values 1 < p < ∞
can be characterized in this way.

7.3.1. LEMMA (PIETSCH AND TRIEBEL). For any 1 < p < ∞, we have

(S∞, S1)[1/p] = Sp.

Varopoulos [Var72] proved that the property of being a Q-algebra is in-
herited under the complex interpolation method. Specialized to the current
setting, his result says the following.

7.3.2. LEMMA (VAROPOULOS). If (S1, ◦) and (S∞, ◦) are Q-algebras, then for any
value 0 < p < 1, we have that

�
(S∞, S1)[1/p], ◦

�
is a Q-algebra.

Combining the above two lemmas with the result of Pérez-García [PG06]
showing that (S1, ◦) is a Q-algebra and Theorem 7.2.1 thus gives the following
corollary, showing that Varopoulos’s question is now completely answered.

7.3.3. COROLLARY. For any 1 ≤ p ≤ ∞, the Banach algebra (Sp, ◦) is a Q-algebra.





Appendix A

Some useful linear algebra and analysis

In this section, we provide some basic facts and definitions from linear algebra
and analysis which are used in this thesis.

A.1 Vector spaces

Euclidean vector spaces Let n be a positive integer. The vector spaces Rn

and Cn consist of column vectors of the form



x1
...

xn



 ,

where x1, . . . , xn are real or complex scalars, respectively. Addition and multi-
plication by scalars are defined by




x1
...

xn



+




y1
...

yn



 =




x1 + y1

...
xn + xn



 , α




x1
...

xn



 =




αx1

...
αxn



 .

Transpose The transpose of a vector x in a Euclidean vector space, denoted xT,
is defined to be the row-vector (x1, . . . , xn).

Conjugate transpose The conjugate transpose of a vector x in a complex Eu-
clidean vector space, denoted x∗, is defined to be the row-vector (x̄1, . . . , x̄n).
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Normed vector spaces A norm on a vector space V is a function � � : V → R

which satisfies for every x, y ∈ V and scalar α,

1. �αx� = |α|�x�

2. �x� = 0 if and only x = 0

3. �x + y� ≤ �x�+ �y�

The last property is referred to as the triangle inequality. A vector space en-
dowed with a norm is a normed vector space.

The 2-norm on a Euclidean vector space is defined by

�x�2 = (|x1|2 + · · ·+ |xn|2)1/2.

Inner product spaces An inner product on a complex vector space V is a map
of the form � , � : V × V → C which satisfies for x, y, z ∈ V and scalar α,

1. �x, y� = �y, x�

2. �x + y, z� = �x, z�+ �y, z�

3. �x, αy� = α�x, y�

4. �x, x� ≥ 0

5. �x, x� = 0 if and only x = 0

A vector space endowed with an inner product is an inner product space.
The Euclidean inner product on Rn is by x · y = x1y1 + · · ·+ xnyn. Using the

transpose, this can also be denoted as xTy.
The Euclidean inner product on Cn is defined by �x, y� = x̄1y1 + · · ·+ x̄nyn.

Using the conjugate transpose, this can also be written as x∗y.

Metric spaces For a vector space V a metric is a function d : V × V → R

which satisfies for any x, y, z ∈ V ,

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, z) ≤ d(x, y) + d(y, z)

The last property is also referred to as the triangle inequality. A vector space
endowed with a metric is a metric space.
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Hilbert spaces Let H be an inner product space. We can make H into a
normed vector space by endowing it with the norm �x� =

�
�x, x�. We can

make H a metric space by endowing it with the metric d(x, y) = �x − y�. A
sequence (xi)∞

i=1 ⊆ H is a Cauchy sequence if for any ε > 0 there is an integer N
such that d(xi, xj) ≤ ε for all i, j > N. Then, we have that H is a Hilbert space if
every Cauchy sequence converges to an element of H (i.e., if H is complete).

The Euclidean spaces Rn and Cn are Hilbert spaces when endowed with the
Euclidean inner product. The Hilbert space L2([−1, 1]) consists of the functions
f : [−1, 1] → R with finite norm, where the inner product is defined by

( f , g) =
� 1

−1
f (t)g(t)dt.

Cauchy-Schwarz inequality For Hilbert space H, the Cauchy-Schwarz inequal-
ity states that for any x, y ∈ H, we have |�x, y�| ≤ �x��y�.

Continuous functions on metric spaces Let X ,Y be metric spaces. A func-
tion f : X → Y is continuous if for any ε > 0 there is a δ > 0, such that for any
x, y ∈ X satisfying dX (x, y) < δ, we have dY

�
f (x), f (y)

�
< ε.

A.2 Matrices

Transpose The transpose of a complex matrix A ∈ Cn×m is the complex matrix
AT ∈ Cm×n defined by (AT)ij = Aji.

Conjugate transpose The conjugate transpose of a complex matrix A ∈ Cm×n,
denoted A∗, is the complex n-by-m matrix defined by (A∗)ij = A∗

ji.

Trace The trace function Tr : Cn×n → C is defined by Tr(A) = A11 + · · ·+ Ann.

Trace inner product The trace inner product (also known as the Hilbert-Schmidt
inner product) is an inner product on the vector space of matrices Cn×n de-
fined by �A, B� = Tr(A∗B). Endowed with this inner product, Cn×n forms an
n2-dimensional Hilbert space.

Rank The rank of a matrix is defined to be its largest number of linearly in-
dependent columns.
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Outer product The outer product of two vectors x ∈ Cn and y ∈ Cm is the
matrix xy∗ ∈ Cn×m given by (xy∗)ij = xiȳj.

Hermitian matrix A complex matrix A ∈ Cn×n is Hermitian if A∗ = A.

Unitary matrices A complex matrix U ∈ Cn×n is unitary if it satisfies

U∗U = I.

Unitary matrices have the property that they preserve inner products be-
tween vectors. In fact, this property is equivalent to being unitary. For any
pair of vectors x, y ∈ Cn, we have �Ux, Uy� = �x, y�. It follows that unitary
matrices are also norm-preserving: �Ux� = �x�.

Positive semidefinite matrices A complex Hermitian matrix A ∈ Cn×n is
positive semidefinite if one of the following holds.

1. The matrix A has only real nonnegative eigenvalues.

2. There exist a complex n-dimensional vectors z1, . . . , zn such that for every
i, j ∈ {1, . . . , n}, we have Aij = zi · zj.

3. For any vector z ∈ Cn, we have z∗Az ≥ 0.

4. There exists a complex matrix B such that A = B∗B.

In fact, Items 1-4 are equivalent (see for example [Bha07]). The factorization
given in item 2 is called the Gram decomposition of A.

The set of positive semidefinite matrices forms a convex cone, meaning that
for any n-by-n positive semidefinite matrices A, B and nonnegative scalars
α, β ∈ R+, we have that the matrix αA+ βB is also positive semidefinite. Some-
times the notation A � 0 will be used to denote that A is positive semidefinite.

A positive semidefinite matrix A satisfying A2 = A is an orthogonal projec-
tor. An orthogonal projector corresponds to a subspace of Cn defined by the
space spanned by its nonzero eigenvectors.

In the case of real matrices, we have the following analogous characteriza-
tion of positive semidefinite matrices. A real symmetric matrix A ∈ Rn×n is
positive semidefinite if one of the following holds.

1. The matrix A has only real nonnegative eigenvalues.

2. There exist a real n-dimensional vectors z1, . . . , zn such that for every i, j ∈
{1, . . . , n}, we have Aij = zi · zj.
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3. For any vector z ∈ Rn, we have zT Az ≥ 0.

4. There exists a real matrix B such that A = BTB.

We denote the cone of real n-by-n positive semidefinite matrices by S+
n .

The rank of a positive semidefinite matrix equals the smallest positive inte-
ger d such that there exists a Gram decomposition of it in Rd.

Laplacian matrices Let G = (V, E) be a graph with finite vertex set V and
edge set E ⊆ (V

2). Then, the Laplacian matrix of G is the matrix A : V × V → R

(this matrix has rows and columns indexed by the vertices of V) defined by

A(u, v) =






deg(u) if v = u
−1 if {u, v} ∈ E
0 otherwise,

where deg(u) = |
�

v ∈ V : {u, v} ∈ E
�
| denotes the degree of vertex u.

The Laplacian matrix of a graph is always a positive semidefinite matrix.
To see this, let G = (V, E) be some graph and let us define for each edge {u, v}
in the graph the vector xuv = eu − ev, where the eu are the |V|-dimensional
canonical unit vectors and the choice of which of the two unit vectors in xuv is
subtracted from the other is arbitrary. Then, we have that the matrix

A = ∑
{u,v}∈E

xuvxT
uv

satisfies

A(u, v) = eT
u ∑
{u�,v�}∈E

(eu� − ev�)(eu� − ev�)
Tev

=






deg(u) if v = u
−1 if {u, v} ∈ E
0 otherwise.

Hence, A is the Laplacian matrix of G. This matrix is positive semidefinite
because it is a positive linear combination of the rank-1 positive semidefinite
matrices xuvxT

uv.

A.3 Tensor products

If X = Cn1×m1 and Y = Cn2×m2 then the tensor product of the vector spaces X
and Y is defined as X �Y = Cn1n2×m1m2 .
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To define the tensor product of complex matrices it is convenient to index
the rows and columns of a matrix by sets R and C, respectively, and view the
matrix as a map from R× C to C. An n-by-m matrix A is thus viewed as a map
A : {1, . . . , n}× {1, . . . , m} → C and its (i, j)-entry is written as A(i, j)

Let R1, C1 and R2, C2 be sets and let A : R1 × C1 → C and B : R2 × C2 → C

be complex matrices. Then, their tensor product is the matrix

A � B : (R1 ×R2)× (C1 × C2) → C

is defined by

(A � B)
�
(r1, r2), (c1, c2)

�
= A(r1, c1)B(r2, c2).

It follows easily that the tensor product satisfies for any matrices A, B, C, D:

(A � B)� C = A � (B � C)
A � (B + C) = A � B + A � C

(A � B)(C � D) = (AC)� (BD),

where for the last identity we assumed that A and C have equal size and that
B and D have equal size.

We also have for x1, y1 ∈ Cn and x2, yn ∈ Cm, the easy identity

�x1 � x2, y1 � y2� = �x1, y1��x2, y2�.

A.4 Dirac notation

Dirac notation refers to a notational convention used for the Hilbert space Cn

in the context of quantum information theory. Vectors are usually denoted by
a Greek symbol or a non-negative integer wedged between a “|” and a “�”. We
thus write for example |ψ� ∈ Cn or |1� ∈ Cn. The non-negative integers are
reserved for the canonical basis vectors, that is

|0� =





1
0
...
0




, |1� =





0
1
...
0




, . . . , |n − 1� =





0
0
...
1




.

The conjugate transpose of a vector |ψ� ∈ Cn is denoted by �ψ|. Usually
the tensor product symbol is omitted when we take the tensor product of two
vectors |ψ� and |φ�. So |ψ�� |φ� is abbreviated to |ψ�|φ�.
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Let A ∈ Cn×n and B ∈ Cm×m be matrices and let |ψ� ∈ Cn and |φ� ∈ Cm be
vectors. It follows easily from the properties of the tensor product that

�ψ|�φ|A � B|ψ�|φ� = �ψ|A|ψ��φ|B|φ�.
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List of symbols

N: The positive integers 1, 2, 3, . . . .
[n]: The set {1, . . . , n}.
[n]N: The cartesian product of [n]
with itself N times.
Z: The integers . . . ,−2,−1, 0, 1, 2, . . . .
R: The real numbers.
R+: The real nonnegative numbers.
C: The complex numbers.

�2(R): The Hilbert space of real square-
summable sequences.
�2(C): The Hilbert space of complex
square-summable sequences.
Sn−1: The real n-dimensional unit
sphere.
S∞: The unit sphere of �2(R).
Sn−1

C : The complex n-dimensional unit
sphere.
BV : The unit ball of normed vector
space V .
S+

n : Cone of n-by-n positive semidef-
inite matrices
O(H): The set of {−1, 1}-valued ob-
servables on Hilbert-space H.

ϑ: The Lovász theta number

SDPr(A): See Definition 2.1.
SDPr(G, A): See Definition 2.3.4.
OPT: See Definition 2.6.
GIP: See Definition 2.7.

KG: The (real) Grothendieck constant.
KC

G: The complex Grothendieck con-
stant.
KG(q �→ r): See Definition 2.3.1
K�

G (q �→ r): See Defintion 2.3.2
KL

G(q �→ r): See Definition 2.3.3
K(G): The Grothendieck constant of
graph G (See Section 2.3.2).
K(r, G): The rank-r Grothendieck con-
stant of graph G (See Section 2.3.2).
K(q �→ r, G): See Definition 2.3.5.

G: Nonlocal game
β(π, Σ): The classical bias of XOR
game G = (π, Σ)
β∗(π, Σ): The entangled bias of XOR
game G = (π, Σ)
β∗
|ψ�(π, Σ): The entangled bias of XOR

game G = (π, Σ) where the players
share state |ψ�

163



164 List of symbols

◦: The entry-wise multiplication for
matrices and tensors.
∼: “Distributed according to”
�x1, x2, · · · , xN�: The generalized in-
ner product of x1, . . . , xN ∈ Cd. See
Section 2.3.4.



Samenvatting

Gemotiveerd door toepassingen in de kwantuminformatietheorie en optimal-
isatie introduceren we nieuwe varianten van de beroemde Grothendieck ongeli-
jkheid. In de kwantuminformatietheorie passen we deze wiskundige gereed-
schappen toe in de studie van de meest verrassende en merkwaardige voor-
spelling van de kwantummechanica: verstrengeling. In optimalisatie gebruiken
we ze om de nauwkeurigheid te bepalen van efficiente approximatie algo-
ritmen voor geometrische problemen die op natuurlijk wijze voortkomen uit
de studie van verstrengeling en uit modellen voor interacterende deeltjes die
beschouwd worden in de klassieke statistische fysica.

In dit proefschrift wordt verstrengeling bestudeert met behulp van non-
lokale spellen. Een nonlokaal spel wordt gespeeld door twee of meer deelne-
mers die niet met elkaar mogen communiceren, maar wel in contact staan met
een scheidsrechter. Als het spel begint vraagt de scheidsrechter aan elke deel-
nemer een vraag, waarna ze hem elk een antwoord terugsturen. De scheid-
srechter bepaalt vervolgens of de deelnemers winnen of verliezen op basis van
enkel de gestelde vragen en verkregen antwoorden. De deelnemers weten van
te voren welke antwoorden nodig zijn om het spel te winnen; dat is natuurlijk
het doel. Het probleem is dat een deelnemer alleen de vraag kent die direct
aan hem gesteld is en niet de vragen die aan de andere deelnemers gesteld
zijn. De deelnemers spelen dus niet tegen elkaar, maar moeten juist proberen
hun strategieën te coördineren.

In een wereld waar de wetten van de klassieke mechanica gelden is de beste
strategie voor een nonlokaal spel altijd de meest voor de hand liggende: bepaal
vooraf de antwoorden op alle mogelijke vragen. In een kwantummechanische
wereld daarentegen, kunnen meer ingewikkelde strategieën soms een beter
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resultaat geven. Elke deelnemer kan zijn antwoord laten afhangen van de
uitkomst van een natuurkundig experiment. De onderscheidende eigenschap
van een dergelijke handelwijze is dat het de deelnemers kunnen produceren
die gecorreleerd zijn op een manier die onmogelijk is in een klassieke wereld. In
dat geval zijn de deelnemers verstrengeld.

Het feit dat de kwantummechanica het bestaan van zo’n fenomeen voor-
spelt, werd in 1935 door Einstein, Podolski en Rosen gebruikt om te beargu-
menteren dat deze theorie niet compleet zou kunnen zijn. Volgens hen zou
verstrengeling geen deel uit moeten maken van een redelijke beschrijving van
de natuur. Verrassend genoeg gaven experimenten van Aspect el al. uit de
jaren ’80 overtuigend bewijs dat de wereld waarin wij leven wel degelijk zulke
effecten toestaat!

Optimalisatie betekent het doorzoeken van een doorgaans grote verzamel-
ing met als doel een element met de beste eigenschappen te vinden. Een voor-
beeld daarvan is het vinden van een strategie voor een nonlokaal spel waarmee
de deelnemers de grootste kans hebben om te winnen. Een ander voorbeeld
is het orienteren van de magnetische velden van interacterende deeltjes, zodat
de energie van het systeem dat deze vormen minimaal is.

De optimalisatieproblemen die het meest bestudeerd worden zijn van een
combinatorisch type. Voorbeelden zijn het vinden van een optimale klassieke
strategie voor een nonlokaal spel, maar ook het minimaliseren van de energie
van een verzameling deeltjes in het Ising-model uit de klassieke statistische
mechanica. Beide vergen een zoektocht over een discrete verzameling mogeli-
jkheden. In dit proefschrift beschouwen we optimalisatieproblemen van een
meer geometrisch type. Een typisch voorbeeld hiervan is het zoeken van een
optimale verdeling van een eindig aantal punten op het oppervlak van een
driedimensionale bal. Deze geometrische optimalisatieproblemen vloeien op
natuurlijke wijze voort uit de studie van verstrengeling wanneer men de mate
van verstrengeling beperkt die gebruikt mag worden door deelnemers van een
nonlokaal spel. Deze problemen komen ook voort uit het Heisenberg-model
van interacterende deeltjes, welk model ook gebruikt wordt in klassieke statis-
tische fysica.

De meeste van die hiervoor beschreven problemen kunnen waarschijnlijk
door geen enkele computer binnen een redelijke hoeveelheid tijd precies wor-
den opgelost. Als tijd een belangrijke rol speelt, dan is het beste alternatief om
te zoeken naar een zo goed mogelijke oplossing die snel gevonden kan wor-
den. We gebruiken nieuwe varianten van Grothendiecks ongelijkheid in de
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analyse van algoritmen voor de hiervoor beschreven geometrische problemen
die precies zo een alternatief bieden.





Abstract

Motivated by applications in quantum information theory and optimization
we introduce new variants of a celebrated inequality known as Grothendieck’s
Inequality. In quantum information theory we apply these mathematical tools
to study of one of the most surprising and counter-intuitive predictions of
Quantum Mechanics: entanglement. In optimization we use them to deter-
mine the precision of efficient approximation algorithms for geometric prob-
lems that arise naturally from the study of entanglement and from models of
interacting particles considered in classical statistical physics.

In this thesis we study entanglement by using nonlocal games. A nonlocal
game involves two or more players who are not allowed to communicate with
each other, but do interact with an extra party usually referred to as the referee.
At the start of the game the referee asks each of the players a question, upon
which they each reply to him with some answer. Then, the referee decides if
the players win or lose based only on the questions he asked and the answers
he received. The players know in advance what set of answers would cause
them to win, which of course is their objective. The catch is that they only
know the question that was aimed directly at them and not any of the other
players’ questions. The players thus don’t play against each other, but should
somehow coordinate their strategies to win.

The best course of action for players who live in a world described by Clas-
sical Mechanics is the simplest kind imaginable: just fix in advance what to
answer to each question. In a Quantum Mechanical world, more sophisticated
strategies sometimes give better results. Each player can base their answer on
the outcome of an experiment done on some private physical system. The key
feature of such strategies is that they can cause the players to produce answers

169



170 Abstract

that are correlated in ways that are impossible in a classical world. In this case
the players are said to be entangled.

The fact that Quantum Mechanics predicts such phenomena was used by
Einstein, Podolski and Rosen in 1935 to argue that this theory must be incom-
plete, as surely entanglement could not be part of a reasonable description of
Nature. Surprisingly, experiments done by Aspect et al. in the 1980’s gave con-
vincing evidence that the world we live does in fact allow for this!

Entanglement is usually mathematically described by a vector in a Hilbert
space. Such a vector is referred to as a state. We prove that for a large class
of states the advantage gained by using them over classical strategies in the
simplest nonlocal games involving three or more players is severely limited.
As a bonus, the proof of this result can also be used to resolve a 35-year-old
open problem posed by Varopoulos in an area of mathematics called Banach
Space Theory.

Optimization means searching over a huge collection to find some element
with the best characteristics. One example of such a problem is finding a strat-
egy for a nonlocal game that maximizes the players’ winning probability. An
second example is to optimize the directions of the magnetic fields of interact-
ing particles so as to minimize the total energy of the system.

The most-studied optimization problems usually have a combinatorial na-
ture. For example, finding an optimal classical strategy for a nonlocal game
or minimizing the energy of interacting particles described by the celebrated
Ising model amounts to searching over a discrete set of possibilities. In this
thesis we consider problems with a more geometric flavor. To picture this, imag-
ine searching for some optimal configuration of a finite number of points on
a three-dimensional sphere. Such problems arise naturally from the study of
entanglement when one restricts the amount of entanglement players are al-
lowed to use in nonlocal games, and from the Heisenberg model of interacting
particles in classical statistical physics.

Unfortunately, most problems like the ones described above likely can’t be
solved exactly by any computer in a reasonable amount of time. If time is of
the essence, then the next-best thing is to search for any solution that is near-
optimal, but can be found in a reasonable amount of time. We will use new
variants of Grothendieck’s Inequality to analyze algorithms that offer exactly
such an alternative for the geometric optimization problems mentioned above.
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