
Dynamic-Epistemic Logic of
Questions and Inquiry

Ştefan A. Minică

Dynamic-Epistemic Logic of
Questions and Inquiry

Copyright © 2011 by Ştefan A. Minică

Cover design by Camelia C. Minică, Mircea D. Minică & Ştefan A. Minică.

Printed and bound @ Lulu:
http://www.lulu.com/content/paperback-book/delq---paperback/12066431

http://www.lulu.com/product/hardcover/delq---hardback/18629151

http://www.lulu.com/product/ebook/delq---ebook/18634437

ISBN: 978–90–5776–229–1

The investigations were supported by the Huygens Scholarship Programme (HSP),
which was subsidized by the Netherlands Organization for International Cooper-
ation in Higher Education (NUFFIC) and the Institute for Logic, Language and
Computation (ILLC).

Memoriei tatălui meu

Contents

1 Introduction and Motivation 1
1.1 Brief History of Approaches to Questions 2
1.2 Main Topics in the DELQ Approach 6
1.3 Comparisons with Alternative Approaches 11

2 Dynamic Epistemic Logic of Questions 15
2.1 Basic Logical System for DELQ 15

2.1.1 Issue-Epistemic Models . 15
2.1.2 Information and Issues: Language and Semantics 16
2.1.3 Static Logic of Information and Issues 19

2.2 Dynamic Logic of Issue Management 20
2.2.1 Basic Actions of Issue Management 20
2.2.2 Issue Management: Language and Semantics 24
2.2.3 Dynamic Logic of Informational Issues 25

2.3 Multi-Agent Extensions for DELQ 27
2.3.1 Static Multi-Agent Logic of Information and Issues 27
2.3.2 Agent-specific Questioning with Preconditions 28
2.3.3 Dynamic Language, Logic, and Some Design Issues 30

2.4 Product Update for Multi-Agent DELQ 31
2.4.1 A simple Motivating Example 32
2.4.2 Product Update for Questions 33
2.4.3 Dynamic Logics for Product Update 37

2.5 Temporal Protocols in DELQ . 37
2.6 Long Term Protocols in Inquiry 40
2.7 Appendix A: Background Definitions 44
2.8 Appendix B: Proofs of Main Results 47

v

3 Implementing Questioning Dynamics 49
3.1 A DEMo-like Implementation for DELQ 49

3.1.1 The Syntax.lhs Module 51
3.1.2 The Structures.lhs Module 53
3.1.3 The BinaryRel.lhs Module 62
3.1.4 The Semantics.lhs Module 63
3.1.5 The Upgrade.lhs Module 64
3.1.6 The DELQ.lhs Module . 67

3.2 Illustrations using the Implementation 69

4 Games with Questioning Moves 85
4.1 Brief History of Epistemic Games 86

4.1.1 Knowledge Games with Epistemic Moves 86
4.1.2 Time-stamped Questions in Communication 86
4.1.3 Public Announcement Games 87

4.2 Question-Answer Games . 88
4.3 Questioning Games with Oracles 94

4.3.1 Bayesian Games . 103
4.4 Extensive Questioning Games . 105

4.4.1 Some Preliminary Notions 105
4.4.2 Definitions of Main Notions 109
4.4.3 Examples and Illustrations 112
4.4.4 Imperfect Information in EQGs 115
4.4.5 Strategies and Solution Concepts 116

4.5 Strategic Abilities in Questioning 118
4.5.1 Describing Strategic Abilities 118
4.5.2 Conclusions and Further Research 121

4.6 Appendix A: Background Definitions 121
4.7 Appendix B: Proofs of Main Results 122

5 Implementing Questioning Games 125
5.1 Implementing Questioning Games 125

5.1.1 The QAGames.lhs Question-Answer Games Module 126
5.1.2 The PAGs.lhs Extension Module 130

5.2 Illustrations using the Implementation 132
5.2.1 Counting Strategies . 133
5.2.2 Computing the Outcomes 135
5.2.3 Counting Goals . 139

5.3 Birelational Coarsest Partition Problem 143

vi

6 Querying Strategies and Probabilities 149
6.0.1 Introduction and Motivations 149

6.1 Querying Strategies in Solving Games 149
6.1.1 The Location Game and its Applications 150
6.1.2 Solving LG and Computing Solutions Efficiently 151

6.2 Computing NEp in LGl by QSb 153
6.2.1 Solving LG by Querying Local Properties 153
6.2.2 Efficient Solutions as Cycles of Profile Fragments 158

6.3 Characterizing NEp in LGl by BOc 160
6.3.1 Local Properties Oracle Characterizing NEp 161
6.3.2 Generalizing Fragment Cycle Solution to LGl 163
6.3.3 Concluding Remarks and Further Topics 165

6.4 Probabilistic Extensions . 165
6.4.1 General Probabilistic DELs 165
6.4.2 Questioning-Related Probabilistic DELs 167

6.5 Minimizing under Probabilistic Bisimulation 169
6.6 Appendix A: Background Definitions 175
6.7 Appendix B: Proofs of Main Results 176

7 Implementing Querying Strategies and Probability 181
7.1 Implementation for Questioning Actions 181
7.2 Implementation and Illustrative Examples 181

7.2.1 Haskell Implementation 181
7.2.2 Alloy Analyzer Implementation 184

7.3 Implementing Probabilistic Extensions 195
7.3.1 The Probability.lhs Module 196
7.3.2 The QPRO.lhs Module . 199
7.3.3 Issue-Probabilistic Minimal Model 211
7.3.4 The Probabilistic Component 218

8 Conclusions and Outlook 221
8.1 General Conclusions . 221
8.2 Future Research and Outlook . 224

Bibliography 227

Abstract 237

Acknowledgments 239

vii

Chapter 1

Introduction and Motivation

The logical study of questions is important for various reasons, it has an interest-
ing history, and significant potential for further development and applications.

The interest in questions as an intellectual tool is manifest already in Antiq-
uity, in the emergence of philosophical thinking. The ‘Socratic method’ makes
questions an essential element of argumentation and inquiry. Many subsequent
advances in science can be understood as refinements of best methods for raising
questions, and finding better instruments for giving answers, leading to progres-
sive theory improvement.

The study of questions in a formal setting coincides with the emergence
of modern logic in the beginning of the 20th century. Already Kazimierz Aj-
dukiewicz suggested in the 1930s that asking questions is a logical act, analogous
in importance to drawing conclusions. While this did not become mainstream
logic at the time, there has been a constant flow of interest in formal modeling
of questions, in (epistemic) logic, epistemology, philosophy of science, artificial
intelligence, information theory, game theory, and natural language semantics.

Asking and answering questions has been considered the decisive criterion for
defining and recognizing intelligence [87]. Contemporary practical applications of
questioning theory include query languages in database theory [61, 36], search-
ing the world wide web, guiding rovers exploring Mars towards the best way of
performing inquiry in a new environment [58], or computers able to beat human
champions in open-questions contests like Jeopardy, as Watson did recently [29].

There are many traditions in the logical study of questions, which started in
a serious manner in the 1960s: cf. the discussion in [13, 48, 44, 117]. It would be
tedious to discuss all of these, but here are a few major approaches:

– answer sets and question logic analogous to logics of assertions [13],

– partition representation for question semantics to natural language ques-
tioning acts [40],

– questions as epistemic devices exploring truth in the world [48],

1

2 Chapter 1. Introduction and Motivation

– questions related to inferential strategies in erotetic scenarios [117],

– algorithmic modeling of questions inside a process of inquiry [56].

These approaches range from quite concrete to highly abstract. There have
even been meta-theoretical results on incompleteness in [43], using Cantor’s diag-
onal argument for sets of answers, and undecidability in [81], which is inherited
from the underlying first order logic. But decidability of more constrained rea-
soning tasks with questions has also been established [15] as well as efficiency of
model checking in suitable modal logics.

In this thesis, we want to add something to this existing literature. We will
focus on questions as dynamic actions that change some current issue and guide
investigation. We will then formalize this view in terms of current ‘dynamic-
epistemic logics’, asking ourselves: what, precisely, is the natural repertoire of
questions and question-related actions, and what are the natural valid principles
of reasoning about them?

But before getting to this point, we discuss a number of existing approaches
to set the scene, identify some major insights that are available, and then state
what further things we want to achieve.

1.1 Brief History of Approaches to Questions

We start by a brief overview of major previous approaches to questions that will
be most relevant for later developments in this thesis.

– The Logic of Interrogation (LoI), close to natural language semantics,
[40, 37] starts from considering a set of possibilities. Then a context is
defined as an equivalence relation on these. A language containing first
order sentences and formulae is used to talk about such structures.

1. The semantics of both indicative and interrogative sentences is given
in terms of ‘context change potential’. Indicative sentences change
the context by eliminating possibilities. In contrast, interrogative sen-
tences change the context by disconnecting possibilities, so not by
providing new data but by ‘raising new issues’.1

1Without delving in all formal details here is how the difference between indicative an inter-
rogative context change is presented in [37]. Indicative sentences provide new data, hence an
indicative sentence will change the context by eliminating possible worlds: C[!φ] = {(w, v) ∈ C |
w |= φ∧v |= φ}. Interrogative sentences also change the context, not by giving new information
but by raising an issue, hence the context change potential of an interrogative sentence is to dis-
connect certain possible worlds: C[?φ] = {(w, v) ∈ C | ‖φ‖w = ‖φ‖v}. Where C is the context
equivalence relation on W , the set of possibilities, and ||φ||w = {g ∈ DFV (φ) | w, g |= φ} the
extension of φ in a triple (W,D, I) where W is a set of possible worlds, D a set of individuals,
and I an interpretation function [37].

1.1. Brief History of Approaches to Questions 3

2. Next, a notion of semantic entailment is defined also in terms of context
change potential. This describes relations between informative and in-
terrogative sentences, both as answerhood (either partial or complete)
of an indicative sentence, or as compliance (or licensing) between a
context resulting from a sequence of assertions and questions. Using
licensing and entailment notions of optimality and informativity for
answers can also be defined in this framework.

3. This framework leads to a complete axiomatization in [84] and to a
syntactic characterization for the answerhood relation [83] under the
assumption of rigid designation. The notion of questions entailment is
reduced to the notion of entailment between indicative first order for-
mulae by means of a development of a set of formulae and definability
and interpolation for first order logic [84].

4. Indicative sentences as primary information carriers are studied in close
connection to questions. Later approaches consider hybrid combina-
tion of indicative and inquisitive content of sentences [38, 39] and [18].

– Interrogative Epistemic Logic and the resulting Interrogative Model
of Inquiry (IMI), close to epistemology [49, 48, 78], starts by specifying
standard tableau decomposition rules for indicative sentences. Then the
resulting tableaux are enriched with an Oracle and rules for questioning
moves are added. These rules establish the interaction with the available
sources of information: only questions with established presuppositions can
be asked and only available information will trigger answers from the Oracle.

1. Knowledge operators can be added to this setting and patterns of de-
pendence and independence between quatifiers and the implicit epis-
temic quantification are used to specify new decomposition rules. Ques-
tions to and answers from the Oracle have also their tableau rules.2

2. IMI establishes a connection between a first order questioning model
using wh-questions [which object(s) have some property?] and a basic
propositional questioning model using the simplest yes-no questions [is
p the case?] via the Yes-No Theorem, cf. [49].

2Skipping the formal details for the rules describing standard logical operations, here is how
an (in)dependence pattern involving the epistemic modality K looks like as tableau rules [49]:

∨KL :
Π, S0[S1(∨/K)S2]→ Σ

Π, S0[(S1 ∧ f(−→y) = 0) ∨ (S2 ∧ f(−→y) 6= 0)] ∧
−→
∀y(∃/K)(f(−→y) = x))→ Σ

∃KL :
Π, S0[(∃x/K)S1[x]]→ Σ

Π, S0[S1[f(−→y)]],
−→
∀y(∃/K)(f(−→y)=x))→Σ

∃KR :
Π, (∃x/K)(t = x)→ Σ, S0[(∃x/K)S1[x]]

Π,(∃x/K)(t=x)→Σ,S0[(∃x/K)S1[x]], S0[S1[t]]

for S1, S2 occurring inside S0 within the scope of universal quantifiers
−→
∀y = (∀y0) . . . (∀yn) and

where −→y = y0, . . . , yn and f is a new function symbol.

4 Chapter 1. Introduction and Motivation

3. IMI establishes a first link between strategic aspects in questioning
and the choice of a decomposition rule in an interrogative tableau via
the Strategy Theorem, cf. [49].

A more detailed comparison and a comprehensive merge between IMI and
Dynamic Epistemic Logic (henceforth, DEL) can be also found in [41].

– Dynamic Epistemic Logic based approaches. Inside the broader DEL
paradigm questions also have a more recent but fruitful history which is
already very close to our own desiderata. A first account of questions as
‘communication acts’ was introduced in [8]:

1. Questions are a special case in a more general setting of ‘abstract
dialogues’ or ‘communication sequences’. Interrogatives, or queries
are in this setting a particular kind of communication acts.3

2. Communication acts come with a ‘timestamp’ determining the legal
or illegal ‘(communication) moves’ in a ‘dialogue game’.

3. Various kinds of questioning moves are captured by complex precon-
ditions for execution and/or the publicity of the action, the security of
the communication channel, responsiveness, sincerity, etc.

Questions as processes. Another recent approach inside the DEL paradigm
is [88, 105, 106]. Here questions are understood as processes combining
Propositional Dynamic Logic (PDL) tests with sequential composition and
choice to model changes in the structure of an epistemic model.

1. An update by a question is a complex program that changes a focus
equivalence relation representing the content of the asked formula.4

2. Standard notions of answerhood and interrogative entailment can be
captured in this setting in a natural way, and a large variety of ques-
tioning actions and their presuppositions projections can be modeled
such as embedded questions, constituent questions, etc.

3. The questioning moves interact with standard informative actions such
as public announcements to describe a complete epistemic dynamics
via model restrictions and the focus relation induced by questions.

3See also Section 4.1 later in the thesis, where we will further discuss the relevance of this
approach for questioning games.

4We cannot present all the formal details here, but here is the main idea from [88] in a
nutshell: the effect of asking the question whether φ is a complex program constructed by
composing several simple ones as follows: Fφ =def (Testφ;G; Testφ) ∪ (Test¬φ;G; Test¬φ),
where G = W ×W is the total binary relation and ; ,∪, and Test have their standard meaning
from PDL. The extensional result of executing a question is then given by refining the focus
relation: 〚Fφ〛M = {(w,w′) |M,w |= φ iff M,w′ |= φ}.

1.1. Brief History of Approaches to Questions 5

4. Another relevant contribution in this approach is the fruitful imple-
mentation of the DEL theory in a computational framework provided
by functional programming in Haskell [106, 109, 25].

There are also related approaches and neighboring fields in which the ques-
tioning research agenda is reinforced by similar results and research interests:

– Inferential Erotetic Logic [119, 118, 117], starts from an account of
inferences with questions as premises and builds an approach to problem
solving via ‘erotetic search scenarios’. This setting leads to results that link
erotetic derivation with a systematic search for an answer to one main wh-
question using a ‘golden path’ of propositional yes/no questions which are
the simplest in a logical and epistemological hierarchy.

– Other Inquiry Calculi There are other traditions aiming to develop ab-
stract calculi for inquiry using various formal frameworks. The approach
in [72] and [26] adds a research agenda to the AGM framework for belief
revision and studies resulting logics. The approach from [56, 57] provides
an algorithmic model for the role of questions inside a process of inquiry.
The approach in [20, 59] derives questioning inference rules from algebraic
properties of questions in an analogous way in which Boolean algebra is
connected with assertions and Bayesian inference [58, 60]. Finally, the ap-
proach in [14] studies questions and answers in an orthoalgebraic framework
using a ‘decorated’ partition theory and a formal theory of ‘observables’.

– Game Theory Approaches that establish a connection in both directions
between logical and game theoretical aspects are not new [50], [80, 77],
[90]. But even in standard game theoretic approaches questions and exper-
iments have played an important part as ancillary elements in probabilistic
belief dynamics [7]. Approaches to awareness and unawareness in imper-
fect information games have also many common points with the logic of
issue management we are going to develop here. A exhaustive presentation
is beyond the scope of this brief history, we also refer to Chapters 4, 5,
6 and 7 where we add a game theoretic twist to DELQ itself (i.e. DEL
with Questions), and we also mention [23] which provides a comprehensive
link between a DEL approach with binary experiments and agreement the-
orems. Moreover, there are results inside game theory showing how belief
dynamics based on questioning actions gives rise to specific, useful and ir-
reducible properties complementing the dynamics induced by informative
actions [46].

A complete presentation of all these fields is beyond the scope of this brief
introduction, nevertheless it suggest a coherent research agenda that includes
topics that resonate in many other research projects.

6 Chapter 1. Introduction and Motivation

1.2 Main Topics in the DELQ Approach

In this broad theoretical background boundaries between alternative approaches
aimed at explaining the same underlying phenomena of questioning are blurred
and clear distinctions might be only partial and sometimes elusive. One way to
distinguish the specific of one approach among many others is by finding pivotal
criteria for what it aims to achieve and aspects considered important.

We already listed the achievements of previous approaches, we will focus now
on some general desiderata that remain unfulfilled.

Even though the connection between knowledge and questions is of interest
in many previous approaches, this is not approached in an setting that makes
this connection explicit and with a language that can describe both aspects and
their intersection with adequate modalities. The issue-knowledge resolution will
be studied at both a static level, expressed by an intersection modality, and
a dynamic one, by performing the intersection between the two relations. The
intersection will be an essential tool in the formal repertoire needed to understand
the interdependence between questions and information.

A next natural desideratum left unfulfilled by previous approaches concerns
an interactive framework. We will use a genuine multi-agent setting that allows
for higher order questioning and information dynamics, private communication
and group notions of knowledge and issues.

Another unfulfilled desideratum concerns an exploration of strategic abilities
in questioning scenarios and the connection between a questioning theory and
designing efficient querying strategies. We will also provide a bridge between a
theory of questions and known search heuristics using backtrack oracles.

Many of the topics already discussed, issues acknowledged and problems raised
in previous approaches will constitute the main points to be addressed in our
approach. Some of the most relevant open problems received from previous tra-
ditions will define the profile of our current approach and will guide the solutions
we aim at and the general results that emerge in the DELQ approach.

There are at least three general goals that will characterize our approach inside
a more general framework of related approaches, and we state them in retrospect
from the very beginning. First, we will be interested in developing a setting
in which questions are analyzed and understood in their intricate conceptual,
logical, and practical interdependence and essential connection with knowledge
and information dynamics. Second, a genuine and fruitful guiding interest for a
setting in which questions arise in an interactive multi-agent environment doubled
by a study of the strategic aspects that emerge in such a setting. Finally, a third
defining criterion for our approach will be a constant interest to find the right
balance between expressive power and computational complexity. This will be
substantiated in a parallel connection with implementing theoretical aspects and
in developing logics that will provide at least decidability of reasoning task and
practical efficiency for model checking of realistic questioning scenarios.

1.2. Main Topics in the DELQ Approach 7

The discussion so far and the list of further desiderata already provides the
main points on the research agenda to be pursued throughout this thesis. We list
them here once more in a systematic way:

– make actions explicit, and determine the repertoire systematically,

– multi-agent character of questions,

– role of strategic interaction,

– role of protocols and global temporal perspective,

– need for a ‘reality check’ in implementation.

All these constitute relevant components in the general theoretical background
on which the approach presented in the following chapters will emerge. There are
also many topics for further research and connections with similar or alternative
approaches that will only be partially resolved in this thesis. We only mention
here one of them and reserve a more exhaustive discussion to Section 1.3 after a
more detailed overview of the DELQ approach.

Developing an adequate theory of questioning actions for first order logic and
the corresponding wh-questions using our framework will remain an important
desideratum for further research. In comparison to most of previous approaches
this is an important missing bit in our current approach. However, the current
questioning theory can already handle much of the relevant and interesting ques-
tioning scenarios involving first order definable properties by using oracles. The
main idea here is that once FO entailment between FO properties is indepen-
dently proved, a DELq theory can be applied to oracles that use such a FOL
implication. And designing efficient questioning strategies for such oracles does
not require higher order logics. We illustrate this with a concrete example in
Chapter 6 using an oracle of first order definable properties.

We end this section with a brief explanation of the rationale behind the im-
plementations included in the thesis. They can be understood in connection with
previous implementations for PAL and DEL from [108, 107, 109, 106]. We will
provide a significant extension of previous implementations which focus on infor-
mative actions with analogous functionality for questioning actions. Moreover,
we will also extend the standard DEL functionality with strategic aspects that
emerge in games with questions. In addition to previous Haskell implementa-
tions for DEL functionality from DEMO, we will also use Alloy Analyzer [52] to
capture entailment between oracles of local properties in characterizing solution
concepts, and the Haskell module for probabilistic functional programming from
[27]. The implementations are used to provide concrete illustrations for many the-
oretical and algorithmic aspects developed in the text. However, their role goes
beyond merely providing illustrations and often they will give rise to interesting
conceptualizations and provide additional useful results.

8 Chapter 1. Introduction and Motivation

Overview of the Thesis Before going into the details of each chapter, we give
a bird’s view perspective on the succession of the main topics that will converge
into the guiding storyline of the entire thesis.

There are two entangled strains contributing to the main story of this thesis.
The first strain will be theoretical and will provide a formal analysis of questioning
actions in epistemic and interactive contexts. This storyline will be intertwined
and doubled by the storyline of implementing the formal aspects and applying
them for analyzing realistic questioning scenarios.

The two story-lines are closely related but the succession of chapters allows
them to be followed independently. The even chapters will only contain theoreti-
cal aspects while the odd chapters complement these with implementation details
and further concrete illustrations of relevant example applications.

The first chapter is an introductory chapter in which we also review some of
the previous approaches to questions that are most relevant for this thesis.

We start in Chapter 2 with setting the ground for an analysis of question-
ing actions by introducing a basic logical framework. We extend the standard
epistemic models with equivalence relations for questions and introduce a static
language to describe such structures by means of corresponding modalities, most
important being the resolution modality which uses the intersection of the two
equivalence relations. We then go on to define actions changing both epistemic
and questioning structure in such models. Most important are the actions of ask-
ing and resolution which operate by refining partitions. Then we add dynamic
modalities to this language and provide a completeness result by means of re-
duction axioms. We conclude the chapter with two appendices containing some
theoretical background and definitions respectively the proofs of the main results.

We continue in Chapter 3 by presenting and discussing the implementation
behind our logic of questions. This will be a literate Haskell program that extends
the previous implementation for epistemic model checking from DEMO [107, 108]
with questioning specific functionality.

The main new additions are a richer, more expressive language that includes
formulas with intersection modalities, model checking for resolution, questioning
and epistemic formulae and a general and extensible implementation for com-
plex questioning and resolution dynamic actions that emerge in this framework.
We will also prove the implementation useful by analyzing some paradigmatic
examples of questioning scenarios in epistemic settings.

We return to a theoretical approach in Chapter 4 by defining and investigating
games with questioning moves. We first look at strategic games with two play-
ers and question-answer moves. We then extend this basic approach to settings
with more players, sequential moves, and oracles encoding interactions between
imperfect agents or limitations in external information sources or experimental
procedures. We define solution concepts for such games and consider some il-
lustrative examples. We continue by basic results about questioning games and

1.2. Main Topics in the DELQ Approach 9

compute outcomes in some illustrative interactions. We then investigate strategic
abilities in epistemic games with extensive questioning moves and show how and
why the difraction property is an important property of questioning games that
is relevant for a general framework for long term questioning actions in inquiry.
Two final appendices contain background definitions and proofs of main results.

In Chapter 5 we return to implementation by presenting and discussing the
Haskell scripts behind the questioning games introduced in the previous chapter.
These also extend basic epistemic functionality from [109] to include strategic
aspects specific for a game theoretic approach of questioning actions. Some of
the most noticeable new functionalities include the use of nominals to define
the execution value of questioning strategies by linking the semantic level based
on partitions of the domain with a corresponding syntactic level in expressive
harmony. This gives us a notion of strategy equivalence based on the execution
value for a question in an issue-epistemic model.

Using this notion of strategy equivalence we build the space of strategy profiles
for players in the issue-epistemic model at a state. Then using this local perspec-
tive we construct the induced game that represents the questioning interaction
at a global level of the model. Finally, we build the game matrix in the induced
global game by performing model checking for the goal formulae of the agents
and then by aggregating the results over the entire domain. We prove the im-
plementation useful by analyzing in detail the process of counting strategies and
goals and computing the outcomes in a representative example of a interactive
and competitive questioning scenario and further possible variations.

We also give an algorithm for minimizing issue-epistemic structures while
preserving the truth value of formulae using the intersection modalities. This is
based on a refinement algorithm that solves the birelational coarsest partition
problem. To match this fixedpoint refinement process we also define a notion of
behavioral equivalence between issue-epistemic models and we show that this is
the adequate invariance notion for our questioning language.

Chapter 6 approaches the topic of designing questioning strategies in problem
solving from a theoretical perspective. We take again solving games as our point
of departure and a rich test case representative for a more general theory. In this
context we investigate the problem of solving the location game (LG) played on
a line by finding all Nash equilibria (NE) with pure strategies.

We give a characterization of NE by means of local properties in the game.
Then we use an approach based on querying an oracle of local properties to
design questioning strategies that solve the game in an efficient way. We end by a
discussion of the general relevance of this result for designing querying strategies
in problem solving by using oracles of operational properties to solve a principal
problem using efficiently available sources of information. As in the previous
chapters, two appendix sections conclude the study by presenting some useful
background definitions and the proofs for the main results.

10 Chapter 1. Introduction and Motivation

Section 6.4 approaches the dynamics of questioning in a setting enriched with
probabilities. We start by considering previous approaches to DEL in a proba-
bilistic setting in general, and, in particular approaches that add questions into
the mix. Then we give an algorithm for minimizing probabilistic issue-epistemic
models while preserving the truth value of formulae using the intersection modal-
ities and probabilistic inequalities. This is based on a refinement algorithm that
solves the birelational coarsest partition problem. Based on this we also give a
notion of behavioral equivalence between probabilistic issue-epistemic models and
we show that this is the adequate invariance notion for our language.

Next, as we did until now, in Chapter 7, we present and discuss the imple-
mentation behind the results in the previous chapter. In this case we will use two
software tools. The first is, as in the previous chapters Haskell. We will show
how queries of local properties in the game can be used to search for equilibrium
strategy profiles in an implementation using list comprehension. This approach
assumes the existence of oracles of local properties and uses this to search NE.

Because both NE and the local properties are expressible by formulae of first
order logic we will use a second implementation, in Alloy Analyzer [52], to build a
model for the location game and check assertions about logical entailment within a
predetermined scope between formulae expressing local properties and NE. Once
more, we will illustrate the use of both implementation tools by considering in
detail representative examples of concrete strategic interactions in LG.

Chapter 8 is dedicated to draw the general conclusions and to discuss how our
approach gives rise to a coherent research agenda and many directions for further
study and broader connections with other relevant topics both inside DEL.

The Sources of Some Material The content in Chapter 2 is based on material
which has been previously presented in preliminary versions at the LIRa seminar
in Amsterdam and subsequently published in the LIRa Yearbook 2009. It was
also presented at the Second International Workshop on Logic, Rationality and
Interaction (LORI-II) in Chongqing, China, October 6-11, 2009, and subsequently
published in the conference proceedings as [100].

Section 4.4 has been presented in preliminary version at the 9th Conference on
Logic and the Foundations of Game and Decision Theory (LOFT 9), in Toulouse,
France, 5-7 July, 2010, as [1]. Section 4.4 has been presented and subsequently
published in the proceedings of the second ILCLI International Workshop on
Logic and Philosophy of Knowledge, Communication and Action, (LogKCA-10),
Donostia - San Sebastian, Spain, 3-5 November 2010 as [70].

A preliminary version of implementing questioning dynamics was presented
and subsequently published in the proceedings of the Second International Con-
ference on Computer Supported Education (CSEDU 2), in Valencia, Spain, 7-10
April, 2010 as [71]. Section 5.1.1 is the implementation corresponding to the the-
oretical framework from [1] and was also used in [70]. The content in Chapter 6

1.3. Comparisons with Alternative Approaches 11

originated from a homework exercise while the author was grading assignments
for the Strategic Games [4] course at ILLC in 2010 and it has been presented
before in the ComSoc seminar in Amsterdam and in the Student Session of the
Sino-European Winter School in Logic, Language and Computation (SELLC)
Guangzhou, China, December 3-18, 2010, and subsequently included in the elec-
tronic proceedings as [69].

1.3 Comparisons with Alternative Approaches

There are many classical traditions [42, 5, 65, 13] that provide useful insights for
an approach to questions and many of these are reinforced when considered in the
light of our current dynamic logics of questioning actions. It is beyond the scope
of this brief introduction to make a comprehensive comparison to all of them, we
will only focus on those of them that offer the closest connections.

One which is directly connected to our approach is the active program of Inter-
rogative Model of Inquiry (IMI) [48, 49] and [50, 78, 32]. As already mentioned,
questions are treated here as requests for new information, which function inter-
twined with deductive indicative moves in ‘interrogative tableaux’. There is an
extensive theory of answerhood, as well as an analysis of various types of question
in a predicate-logical setting, beyond what we have done here. The framework
has a number of nice theoretical results, including meta-theorems about the scope
of questioning in inquiry and discovery. A systematic comparative study of the
relations between the two approaches is still needed in order to have a complete
picture of the connections. There are previous studies that already started such
an investigation and proposed meaningful and fruitful merges between the frame-
works. A bridge in this direction has been given by [41], and comparison points
can be also found in [76]. Much of what we did in this thesis can also be seen as
a further development of some of the themes put forward in IMI.

Such themes also emerge in Inferential Erotetic Logic (IEL) [119, 118, 117]
which provides an account of inferences with questions as premises and, starting
from this notion, an approach to problem solving via ‘erotetic search scenarios’
linking erotetic derivation with a systematic search for an answer to one main
wh-question using a ‘golden path’ of propositional yes/no questions which are
the simplest in a logical and epistemological hierarchy.

Our approach in Chapter 6 establishes a fruitful link between a questioning
theory and known search heuristics using backtrack oracles. This shows that a
questioning theory is relevant and can be useful in designing efficient querying
strategies by using oracles of first order properties. It also shows that designing
such query strategies can be done with yes/no questions alone as long as the
higher first order entailment between properties encoded in the available oracles
has been established. This comparison is in no way complete but it provides a first
step towards a more general theory for efficient problem solving via questioning

12 Chapter 1. Introduction and Motivation

mechanism design and issue management.

Another close comparison to our approach stemming from the LoI tradition is
the recent inquisitive semantics ([39, 38, 18]). Inquisitive semantics gives proposi-
tions an “interrogative meaning” defined in a universe of information states over
propositional valuations, with sets of valuations expressing issues. This supports
a compositional semantics for the language of propositional logic, where, for in-
stance, a conditional is true in an informational sense if every subset (stronger
information state) supporting the antecedent also supports the consequent. In-
terrogative meanings are then defined in terms of generalized partitions of the
set of worlds, where partition cells may now also overlap. This is a significant
extension of the traditional issue picture. Based on this semantics, a proposi-
tional logic arises that describes valid consequence and other important relations
between questions, and for questions and answers. The program has found a
variety of applications to natural language semantics and pragmatics. Of course,
we cannot do full justice to this framework here: for recent updates see [86]. At
some level of abstraction, the ideas in this system sound very close to ours: there
is information dynamics, questions also change current possibilities, and so on.

However, a systematic study of the formal relationship between the two does
not yet exist in the literature. Neither does the scope and purpose of this thesis
provide the proper setting for such a comparison. The best we can do at this stage
is to give a starting point for a methodological comparison, while acknowledging
the fact that further investigation is needed in order to have a complete picture
of the existing connections bridging the two approaches in both directions.

We start from a basic observation that seems the key point of difference be-
tween the two approaches. Inquisitive semantics puts the dynamic information
about questions in a new account of the meaning of interrogative sentences in a
propositional language. This is not classical declarative meaning, and hence some
deviant propositional logic emerges.

By contrast, the DELQ approach wants to give an explicit account of questions
and other actions of issue management, but it does so by means of dynamic
modalities on top of a classical logical language. In particular, there is no meaning
shift: but rather an expansion of the domain of study of classical logic.

The distinction is similar to one in logic itself (cf. [89, 92]). Intuitionistic
logic studies knowledge and information implicitly by changing the meaning of
the classical logical constants, and then picking a fight with classical logic in the
set of ‘validities’. By contrast, epistemic logic analyzes knowledge explicitly as
an additional operator on top of classical propositional logic: there is no meaning
shift, but agenda expansion. In our view, DELQ stands in exactly the same
relationship to inquisitive logic: it makes the dynamics explicit, and steers away
from foundational issues of meaning and validity. Comparisons between the two
approaches can be quite delicate (cf. [92]), and the same may also be true here.

Much of what we did in chapters 3 and 5 is an investigation related to themes

1.3. Comparisons with Alternative Approaches 13

put forward in the inquisitive approach. We have considered many examples of
natural language conversational and epistemic scenarios in which various gradi-
ents of mixing information flow with raising issues emerge. We have also given
reduction axioms for some of these combinations, and, perhaps most importantly,
we have given an unifying method, a way to treat all such gradients in an uniform
way by using a unique product update rule. We have also shown how adequate
models for this ‘art of pragmatic modeling’ can be generated using implementa-
tion tools. We have also shown how the partition model can be extended to deal
with questions inducing a cover representation using the product update rule.

A complete comparison should proceed by giving characterization results by
explicit reduction axioms that will bridge the two approaches, this is a very inter-
esting enterprise for future research. Our approach that deals with birelational
structures might also bare some relevance to more recent inquisitive approaches
[17] that also consider the interaction between issues and attention or awareness.

Finally, our multi-agent approach to question-answer games revealed the fact
that the interactive desideratum is not just a collateral extension. We have shown
that multi-agent interaction gives rise to concepts about questioning that gener-
alize traditional notions. The questioning games analyzed in Chapters 4 and 5
showed that received standard notions of relevance and informativity for ques-
tions turn out to be one particular case in a more general conceptualization that
also takes the interaction with epistemic aspects into account.

But the closest comparison is inside DEL itself. There are previous DEL
approaches that inspired and guided what we have done. The first DEL approach
to questions as communicative actions [8] was already using product update and
gave reduction axioms for legal ‘timestamped’ moves in an abstract dialogue with
questions and answers. Our approach shows how this methodology can be lifted
from epistemic events to sets of epistemic events representing the answers to
questions and shows that this works essentially in the same way as it did for
logics focusing on informative actions. The same issues of privacy and publicity
that were treated for informative actions emerge for questioning actions.

Another close comparison inside DEL is the approach using a PDL tests and
regular operations to refine the focus relation [106, 105, 88]. This is already very
close to our approach both in desiderata and in formal details. The main further
contribution provided by our approach is to add intersection and show how to
handle it in a formal framework that captures the interaction between questions
and knowledge. Another relevant comparison point that emerges here consists in
the fruitful connection with implementations. The preexisting functionality for
dynamic epistemic modeling from DEMO [107, 109] was the starting point for
our extension to questions. We add functionality for questioning actions to this
framework, we also give algorithms for minimizing birelational models and we link
this to an notion of structural equivalence adequate for questions. We also show
how the Haskell implementation can be used for extensions modeling strategic

14 Chapter 1. Introduction and Motivation

aspects in question-answer games and also in basic probabilistic scenarios.

Last but not least we mention the close connection with game theory. This
connection is a major theme of the thesis and bridges its topics in both directions.

First we will show how the standard DELQ approach can lead to interesting
results when enriched with game theoretic concepts and we will add a more general
game theoretic twist to questioning actions in chapters 4 and 5 by considering
and analyzing games with questions.

Second, in chapters 6 and 7, we will start from a game theoretical analysis of a
concrete interactive situation in the location game on a line and use queries of local
properties together with backtrack oracle heuristics to design query strategies for
solving the game.

Chapter 2

Dynamic Epistemic Logic of Questions

2.1 Basic Logical System for DELQ

In this chapter we set the stage by introducing our basic logical system for repre-
senting questions and for giving an account of the dynamics of question answering.

2.1.1 Issue-Epistemic Models

We work over standard epistemic models. In this setting, a simple framework for
representing questions uses an equivalence relation over some relevant domain of
alternatives, that we will call the ‘issue relation’. This idea can be found in many
places, from linguistics (cf. [40]) to learning theory (cf. [57]): the current ‘issue’
is a partition of the set of all possibilities, with partition cells representing the
relevant classes of alternatives. We do not need prior assumption about how these
equivalence classes are generated. This abstract partition may be induced by a
concrete conversation whose current focus are the issues that have been put on
the table, or a game where finding out about certain issues has become important
to further play, a learning scenario for the regularities implicitly present in our
environment, or equally a whole research program with an agenda determining
what is currently under investigation. The relevant alternatives or possible worlds
are domain dependent: they may range here from simple finite settings like deals
in a card game to complex, potentially unbounded, histories representing a total
life experience. Formally, all this can be represented in the following way:

2.1.1. Definition. [Issue Epistemic Model] An epistemic issue model is a struc-
tureM=〈W,≈,∼, V 〉 with the following components: W is a set of possible worlds
or states (epistemic alternatives), ≈ is an equivalence relation on W (the abstract
issue relation), ∼ is an equivalence relation on W (epistemic indistinguishability),
and V : P→ ℘(W) is a valuation for atomic propositions p ∈ P.

15

16 Chapter 2. Dynamic Epistemic Logic of Questions

This basic setting can be extended for more general relations which are not as-
sumed to be equivalences to model belief instead of knowledge, or issue structures
which lack epistemic introspection or other relevant properties. We will not use
such extensions in this thesis, we will further discuss some of them in Chapter 8
and continue to work with equivalence relations.

We intuitively illustrate in Figure 2.1 the formal components from Definition
2.1.1 while describing their workings in the text. In Figure 2.1 and in subsequent
diagrams we will use some representation conventions: epistemic indistinguisha-
bility will be represented by lines linking possible worlds, and the issue relation
will be represented by partition cells, when appropriate, we will also use double
lines instead of partition cells to represent issue relations. We use the standard
conventions and skip, for brevity, reflexive and transitive relations. Unless other-
wise mentioned, we will also assume that the actual world is the top left one and
indicate the valuation function by propositional symbols.

Figure 2.1: Examples of Epistemic Issue Models

p q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

p q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

p q p q

p q p q
'& %$

 ! "#

With this understanding, Figure 2.1 depicts, from left to right, an epistemic
issue model in which nothing is known and everything is an issue, a second one
in which q is known in the actual world and the issue is to find out about p,
and, finally, one in which everything is known in the actual world, and nothing
is object of questioning, i.e. we have a universal issue relation on the domain.

2.1.2 Information and Issues: Language and Semantics

To describe facts and properties in and about our static issue structures we will
introduce a language with matching modalities. We make a minimal choice of
modal and epistemic logic of state spaces plus two new modalities: one describing
the issue structure the second talking about both epistemic information and ques-
tioning structure. First, Kϕ talks about knowledge or semantic information of
an agent, its informal short reading is ‘ϕ is known’, and its extended explanation
is as usual: ‘ϕ is the case in all epistemically indistinguishable worlds’.

In a similar fashion, we use Qϕ to say that, locally, in a given possible world,
the current structure of the issue-relation makes ϕ true, in a longer phrasing:
‘ϕ is true in all possible worlds that are issue-equivalent’. This local notion is
convenient in itself, but it does not express yet the global assertion that the
current issue is ϕ, this will be defined later in terms of the current local notion.

2.1. Basic Logical System for DELQ 17

Most importantly, we often need to express a notion that mixes the epistemic
and issue relations, expressing (roughly) what would be the case if the issue were
resolved and given what is already known in the structure. Technically, we add
an intersection modality Rϕ saying that ‘ϕ is the case in all worlds that are both
epistemically indistinguishable from and issue equivalent to the current one’.

Finally, in order to describe our structures at a global level, we add a universal
modality Uϕ saying intuitively that ‘ϕ is true in all worlds’.

While such modalities offer adequate expressive power for our current purpose
and are also frequent in many other settings, they also complicate axiomatization.
To deal with such formal complications, we will use the standard device of adding
nominals naming single worlds to our language (cf. [33, 66] for recent instances
of this technique in the DEL setting). As a first change, working with nominals
requires a modified valuation function in Definition 2.1.1, to a V : P] N→ ℘(W)
mapping every proposition p ∈ P to a set of states V (p) ⊆ W , but every nominal
i ∈ N to a singleton set V (i) of a world w ∈ W .

2.1.2. Definition. [Static Language] The language LELQ
(P, N) uses two disjoint

countable sets P and N of propositions and nominals, respectively, with p ∈ P,
i ∈ N. Its formulas are defined by the following inductive syntax rule:

i | p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | Uϕ | Qϕ | Kϕ | Rϕ

When needed, dual existential modalities Û , K̂, Q̂ and R̂ are defined as usual:
E or Û := ¬U¬, Q̂ := ¬Q¬, K̂ := ¬K¬, R̂ := ¬R¬.

Occasionally we will also use, interchangeably, the following notation which
makes the interactions between the relations used in the static modalities more
explicit: i | p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | Uϕ | 〈≈〉ϕ | 〈∼〉ϕ | 〈∼ ∩ ≈〉ϕ. Customary
shortcuts to express disjunction and other boolean connectives are also used in
their standard way. Formulas in this static language receive their meaning by:

2.1.3. Definition. [Interpretation] Formulas are interpreted in models M at
worlds w by the following recursive clauses: M |=w p iff w ∈ V (p), M |=w i iff w ∈
V (i), M |=w ¬ϕ iff not M |=w ϕ, M |=w ϕ ∧ ψ iff M |=w ϕ and M |=w ψ,
M |=w Uϕ iff for all w ∈ W : M |=w ϕ, M |=w Kϕ iff for all v ∈ W : w ∼
v implies M |=v ϕ, M |=w Qϕ iff for all v ∈ W : w ≈ v implies M |=v ϕ,
M |=w Rϕ iff for all v ∈ W : w (∼∩≈) v implies M |=v ϕ.

For instance, with this language we can express that the structure of the
current issue settles fact ϕ with the following formula: U(Qϕ ∨Q¬ϕ). The term
‘settling’ is used here in a technical sense, as saying that the issue answers (either
explicitly or implicitly) the question whether ϕ holds. In natural language, there
is also the notion of ‘settling an issue’, an event of finding out which partition cell
we are in. This will be a later action of ‘issue management’, that of resolution.

18 Chapter 2. Dynamic Epistemic Logic of Questions

This language can also express that an agent considers it possible that fact
ϕ is not settled by the structure of the current issue: K̂(ϕ ∧ Q̂¬ϕ). The next
example says that an agent knows locally that a certain fact ϕ would be settled
by the issue, while it is not settled globally: KQϕ ∧ ¬U(Qϕ ∨Q¬ϕ).

As for the third modality of ‘resolution’, it describes intuitively what agents
would know if the current issue is resolved. Thus, we can say that in the current
epistemic situation the fact expressed by ϕ is neither known by the agent nor
settled by the structure of the issue, but is true upon resolution: ¬Qϕ∧¬Kϕ∧Rϕ.

A more complex example is when a fact is neither known nor settled in any
world of the model, but it is true in all indistinguishable and issue-equivalent
worlds, and it would be settled by a resolution action: ¬Û(Kϕ ∨Qϕ) ∧ URϕ.

These examples show that our language can express quite complex notions
about questions. Many such notions have been already considered in the litera-
ture about questions and information flow, but often restricted to factual ques-
tions, and without the benefit of a uniform formal language. We include further
examples of how the interaction between information and questioning can be ex-
pressed by formulas of our language in Section 3.2. As it is the case with every
logical language, there is a trade-off between its expressive power and its com-
putational complexity. The main jump in this context is given by the use of the
universal modality. We discuss the computational cost that has to be paid for
this gain of expresivity in Section 2.7.

2.1.4. Fact. The intersection modality Rϕ is not definable in terms of the issue
modality Qϕ and the epistemic modality Kϕ.

2.1.1. Proof. A simple bisimulation argument establishes this claim. Con-
sider two issue-epistemic models: M = 〈W,≈,∼, V 〉 where W = {w, v, u},≈
= {(w, v)},∼ = {(w, u)}, V = {p 7→ {v, u}} and M ′ = 〈W ′,≈′,∼′, V ′〉 where
W ′ = {x, y},≈′ = {(x, y)},∼′ = {(x, y)}, V ′ = {p 7→ {y}}. Take the following
relation between the models Z = {(w, x), (v, y), (u, y)}, then worlds w and x are
bisimilar and should satisfy the same modal formulas. However, we have both:
M |=w ¬R̂p and M ′ |=x R̂p 2

•ϕ •ϕ

ϕ•

•

^f DDDDDDDD

DDDDDDDD

OO

•

GG S[

Figure 2.2: The intersection modality is not in-
variant under bisimulation.

An intuitive illustration of
this fact is given in Figure 2.2.
Here we can witness that, in
particular, R̂ϕ is not equiva-
lent with K̂ϕ ∧ Q̂ϕ. However,
the use of ‘nominals’ i from hy-
brid logic helps us to complete-
ness, by providing the needed

valid implication in the converse direction: K̂(i ∧ ϕ) ∧ Q̂(i ∧ ϕ)→ R̂ϕ.

2.1. Basic Logical System for DELQ 19

2.1.3 Static Logic of Information and Issues

As for reasoning with our language, here are some valid implications: K̂ϕ →
Ûϕ, Ôϕ → Ûϕ, R̂ϕ → Ûϕ. However, the following implications are not valid:
Rϕ→ Qϕ,Rϕ→ ¬Qϕ,Kϕ→ Qϕ,Qϕ→ Kϕ,Rϕ→ Kϕ.

More generally, we write |= ϕ if the static formula ϕ is true in every model
at every world. The static epistemic logic ELQ of information and questions in
epistemic issue models is the set of all validities: ELQ = {ϕ ∈ LELQ

: |= ϕ}.
Next, we consider the set of formulas derivable in the following proof system:

2.1.5. Definition. [Axiomatization] The proof system ELQ contains the cus-
tomary (epistemic) S5 axioms for K,Q and R:

1. Kp→ p (Truth), Kp→ KKp, ¬Kp→ K¬Kp (Full Introspection)

2. p→ QQ̂p, p→ Q̂p, Q̂Q̂p→ Q̂p (equivalence relation for issue),

3. p→ RR̂p, p→ R̂p, R̂R̂p→ R̂p (equivalence relation for resolution),

together with the characteristic axiom for intersection:

4. K̂i ∧ Q̂i↔ R̂i.

In addition, it contains a standard hybrid logic with universal modality: 2(p →
q) → (2p → 2q), (Distribution), ¬2¬p ↔ 3p,2 ∈ {U,K,R,Q} (Duality),

p→ UÛp, p→ Ûp, Û Ûp→ Ûp, Û i,3p→ Ûp,3 ∈ {K̂, R̂, Q̂}, 3(i∧p)→ 2(i→
p),2∈{U,K,R,Q} (Nominals), From `PC ϕ infer ϕ (Prop), From ϕ and ϕ→ ψ
infer ψ (M P), From ϕ infer 2ϕ, for 2 ∈ {U,K,R,Q} (Necessitation), From ϕ
and σsort(ϕ)=ψ infer ψ, where σsort is ‘sorted’ 1 From i → ϕ infer ϕ, for i not

occurring in ϕ, From Û(i ∧3j)→ Û(j ∧ ϕ) infer Û(i ∧2ϕ), for 3 ∈ {K̂, R̂, Q̂},
i 6= j, and j not occurring in ϕ.

We write, as usual, `ELQ
ϕ if ϕ is provable in the proof system ELQ. These

basic laws of reasoning derive many principles that confirm basic intuitions. For
instance, here is the simple proof that agents have introspection about the current
public issue: U(Qp∨Q¬p) `ELQ

UU(Qp∨Q¬p) `ELQ
KU(Qp∨Q¬p). Here are

some simple derivable principles describing interactions between the epistemic,
issue, resolution and universal modalities: Uϕ → Kϕ,Uϕ → Qϕ,Uϕ → Rϕ.
These properties are useful for describing epistemic and issue properties from a
global perspective. The intersection modality is, in its turn, included in both the
issue and the epistemic modalities, a feature that will allow us later on to describe
the way they interact in dynamic contexts: Kϕ→ Rϕ,Qϕ→ Rϕ.

All this machinery leads to the following expected general result:

1The technical notion ‘sorted’ and its uses are explained in [85], the main idea being that
the substitution is applied distinctly to each syntactic sort of propositions and, respectively,
nominals.

20 Chapter 2. Dynamic Epistemic Logic of Questions

2.1.6. Theorem (ELQ Completeness). For every formula ϕ ∈ LELQ
(P, N):

|= ϕ if and only if `ELQ
ϕ

The proof techniques for results like this one are standard in the literature
[85]. We include further relevant details and references in Sections 2.7 and 2.8
and continue towards adding dynamics to our static language.

2.2 Dynamic Logic of Issue Management

In the dynamic epistemic logic methodology, the next step is now to identify basic
events of information flow, and expand the so far static logic accordingly.

The situation is completely analogous for the logic of questioning events and
actions of ‘issue management’, and we will proceed in this section in a similar way
towards ‘dynamifying’ the static level by considering structure-changing actions.

2.2.1 Basic Actions of Issue Management

To identify basic actions that change the issue relation in a given model, we first
look at some intuitive illustrations. For simplicity, we start with the initial issue
as the universal relation, represented as a frame border.

p q p q

p q p q
'& %$

 ! "#

p?−→

p q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

q?−→

p q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

Figure 2.3: Effects of Asking Yes/No Questions.

p q p q

p q p q
'& %$

 ! "#

p !−→

p q p q

p q p q
'& %$

 ! "#

q !−→

p q p q

p q p q
'& %$

 ! "#
Figure 2.4: Almost Symmetrical Effects of ‘Soft’ Announcing.

In Figure 2.3, the first transition records the effect of asking a question: the
issue relation is split into p and ¬p cells. The second transition illustrates the a
second question: the issue partition is further refined.

In Figure 2.4, the first transition is an announcement: the indistinguishability
links between p and ¬p worlds are removed. The second transition shows how
a second announcement further refines the epistemic partition. Here and hence-
forth, we use a special sort of event that is congenial to this setting, viz. the

2.2. Dynamic Logic of Issue Management 21

p q p q

p q p q
'& %$

 ! "#

p?; q?−→

p q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

!−→

p q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

p q p q

p q p q
'& %$

 ! "#

p !; q !−→

p q p q

p q p q
'& %$

 ! "#

?−→

p q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

Figure 2.5: Resolving and Refining Actions.

link-cutting announcements ϕ! from [99]. Unlike eliminative public announce-
ments, these do not throw away worlds, but merely cut all links between ϕ- and
¬ϕ-worlds, keeping the whole model available for further reference. In this way,
there is a symmetry between a question and a soft announcement. One refines
the issue, the other the information partition:

2.2.1. Definition. [Question & Announcement] Let M = 〈W,≈,∼, V 〉 be an

epistemic issue structure and
ϕ
≡M = {(w, v) | ‖ϕ‖Mw = ‖ϕ‖Mv }. Executing ac-

tion ϕ? in M results in Mϕ? = 〈Wϕ?,∼ϕ?,≈ϕ?, Vϕ?〉, and executing a ϕ! action
results in Mϕ! = 〈Wϕ!,∼ϕ!,≈ϕ!, Vϕ!〉, with: Wϕ? = Wϕ! = W , Vϕ? = Vϕ! = V ,

∼ϕ? = ∼ ∼ϕ! = ∼∩
ϕ
≡M

≈ϕ? = ≈ ∩
ϕ
≡M ≈ϕ! = ≈

The symmetry in this mechanism would be lost if we let p! be an executable
action only if it is truthful. For, the corresponding question p? is executable in
every world in a model, even those not satisfying p. The results that will follow
can easily be stated for both kinds of announcement: truthful or not.

One attractive feature of this setting is that it suggests further natural op-
erations on information and issues. In particular, Figure 2.5 contains two more
management actions. In the first example two Yes/No questions p? and q? are
asked, and then a global resolving action follows on the epistemic relation. In the
second, two announcements p! and q! are made, and a refinement action follows
on the issue relation, adjusting it to what agents already know. These operations
are natural generalizations of asking and announcing:

2.2.2. Definition. [Resolution and Refinement] Let M = 〈W,≈,∼, V 〉 be an
epistemic issue structure. The execution of the ‘resolve’ action denoted by !,
and of the ‘refine’ action denoted by ? in model M results in changed models
M! = 〈W!,∼!,≈!, V!〉, and M? = 〈W?,∼?,≈?, V?〉, respectively, with:

22 Chapter 2. Dynamic Epistemic Logic of Questions

∼? = ∼ ∼! = ∼∩ ≈
≈? = ≈ ∩ ∼ ≈! = ≈

Again, the two actions are symmetric. As a way of understanding this, we
could introduce a new agent whose role is that of an ‘issue manager’, dual to the
epistemic information agent. It is also useful to have one more issue management
action # that simultaneously changes both equivalence relations. The effect of
executing this in model M is a new model M# = 〈W#,∼#,≈#, V#〉 with: W# =
W, ∼# =∼ ∩ ≈, ≈# =∼ ∩ ≈, V# = V .

Here is a final summary of our repertoire of issue management actions:

[ϕ?] Question [ϕ !] ‘Soft’ announcement
[!] Resolution [?] Refinement
[#] Simultaneous resolution or ‘parallel refinement’

Semantic Properties of Issue Management. Our basic actions satisfy some
intuitive principles. In particular, our three last ones form an algebra under
composition, as illustrated in the following table:

; ! ? #
! ! # #
? # ? #
#

With more specific management actions of questions
and announcements, the picture is more diverse. In par-
ticular, composing these operations is a complex endeavor,
and many prima facie laws do not hold, for instance:

2.2.3. Fact. [Composition] The following equations are not valid in DELQ:

(11) ϕ!; ! = !;ϕ! (12) ϕ!; ? = ?;ϕ! (13) ϕ!; # = #;ϕ!
(14) ϕ?; ! = !;ϕ! (15) ϕ?; ? = ?;ϕ! (16) ϕ?; # = #;ϕ?

(17) ϕ?;ψ! = ψ!;ϕ?

2.2.1. Proof. The following table lists simple counter-examples, with the fol-
lowing understanding. Each line presents a three-world static starting model
i, j, k with information cells between round brackets (,) and issue cells between
square brackets [,]. The relevant formulas use nominals for the worlds. 2

No. EIM ϕ ψ

11 ([ij][k]) K̂k ∧ Q̂j ∧ ¬i
12 [(ij)(k)] Q̂k ∧ K̂j ∧ ¬i
13 ([ij])([k]) i
14 ([ijk]) i
15 [(ijk)] j
16 ([ij])([k]) i

17 ([ijk]) i R̂i

It is worth noting that some of
these examples crucially involve non-
factual formulas. E.g., the equalities
ϕ?;ψ! = ψ!;ϕ? and ϕ?;ψ? = ϕ? · ψ?
are both valid for factual ϕ, and only
fail for formulas ϕ with non-factual
content. This is so because VM =
Vϕ? = Vϕ!, that is: the valuation func-
tion remains unchanged after all ques-

tioning actions. Therefore, by a simple inductive argument, JϕKM = JϕKM ′ for
nonmodal ϕ, i.e., purely propositional formulas have constant extensions during
questioning updates, independently of issue-epistemic changes.

2.2. Dynamic Logic of Issue Management 23

Next, let us see how some known features of information flow in public an-
nouncement logic PAL fare with our issue management actions.

Repetition. In PAL, repeating the same assertion !ϕ has no new effects when
its content ϕ is factual. But as the Muddy Children puzzle shows, repeating the
same epistemic assertion can be informative, and lead to new effects, or in the
above short-hand notation: ϕ! ;ϕ! 6= ϕ!. The reason is that when the model has
changed, epistemic operators may change truth values.

What about DELQ: is asking a question once the same as asking it twice?
Again, for factual questions, this is clearly so, given the above semantics: the
issue relation no longer changes in the second step. But when the question itself
can refer to the issue relation, things are different:

2.2.4. Fact. [Iteration] The equation ϕ?;ϕ? = ϕ? is invalid in DELQ.

2.2.2. Proof. Take ξ := (Q̂i → (j ∨ k)) ∧ ((Q̂j ∧ p) → Q̂i). Both updates for
this question, computed as above, change a model with a domain of three worlds
i, j, k, a universal issue relation, and a valuation that makes p true at k. 2

• i

Qj•

Q
yyyyyyyy

yyyyyyyy

Q DDDDDDDD

DDDDDDDD

k • p

ξ? //

• i

j•

Q DDDDDDDD

DDDDDDDD

k • p

ξ? //

• i

j•

k • p
Figure 2.6: Effects of asking the same question twice.

Composition. Next comes a difference with PAL. Public announcement sat-
isfies the valid composition principle that gives the effects of two consecutive
announcements with just a single one: ϕ!;ψ! = (ϕ∧ [ϕ]ψ)! It was observed in [99]
and [98], that this does not hold for more complex model changes.2

2.2.5. Fact. [Proper Iteration] There is no question composition principle.

2.2.3. Proof. If there were one single assertion having just the same effect as a
sequence ϕ?;ψ?, then, starting with the issue configured as the universal relation
on the domain of a model, such a sequence will always induce a two, not four,
element partition; this refutation is also depicted in Figure 2.5.3 2

Related to this are dynamic properties of ordering. While action order makes
no difference with purely factual assertions or questions, it does when the content
may be of an explicit epistemic or issue-related nature.

We have seen that information update and questions have many subtleties. It
is time for a dynamic epistemic logic of issues that can reason about these.

2The composition principle also fails in PAL with protocols, our topic in Section 6.
3This Fact is not a big obstacle. We could easily extend our language with multiple questions,

that do not just change partitions on a single-formula basis.

24 Chapter 2. Dynamic Epistemic Logic of Questions

2.2.2 Issue Management: Language and Semantics

In order to talk explicitly about the above changes, dynamic modalities are added
to the earlier static language of information and issues:

2.2.6. Definition. [Dynamic Language] Language LDELQ
(P, N) is defined by

adding the following clauses to Definition 2.1.2: [ϕ!]ψ | [ϕ?]ψ | [?]ϕ | [!]ϕ.

These are interpreted by adding the following clauses to Definition 2.1.3:

2.2.7. Definition. [Interpretation] Formulas are interpreted in a model M at
a world w by: M |=w [ϕ?]ψ iff Mϕ? |=w ψ, M |=w [ϕ!]ψ iff Mϕ! |=w ψ, M |=w

[!]ψ iff M! |=w ψ, M |=w [?]ψ iff M? |=w ψ, with Mϕ?, Mϕ!, M?, M! as before.

Interesting relations between knowledge, questions and answers can now be
expressed in our formal language. We can, for instance, say that a certain question
ψ? is entailed in an epistemic-issue model: U(Q̂i→ [ψ?]Q̂i), for all i4. Intuitively
this just says that the question does not change the issue structure. We can also
express the fact that a sequence of questions entails ψ? with:

U([ϕ0?] · · · [ϕn?]Q̂i→ [ϕ0?] · · · [ϕn?][ψ?]Q̂i)5 for all i

We can also express new notions of entailment, like, for instance, the notion of
epistemic global entailment of an arbitrary announcement ψ!: U(R̂i → [ψ!]R̂i),
for all i. A small modification of this in which we relax the previous requirement
of abstract global entailment can capture local compliance of answers:

[ϕ0?] · · · [ϕn?](ψ ∧ R̂i)→ [ϕ0?] · · · [ϕn?][ψ!]R̂i6 for all i

Moreover, our language can express basic laws of interrogative reasoning. For
instance, we can say that an agent knows in advance that the effect of a question
followed by its resolution leads to knowledge of the relevant issue:

K[ϕ?][!]U(Kϕ ∨K¬ϕ)

We include more examples and illustrations of relevant notions capturing epis-
temic and inquiry interaction in Section 3.2 and proceed to giving a dynamic logic.

4Here we assume that each world has a unique nominal i naming it.
5This generalizes standard definitions of entailment restricted to factual questions.
6Again, this generalizes notions of compliance restricted to propositional formulas.

2.2. Dynamic Logic of Issue Management 25

2.2.3 Dynamic Logic of Informational Issues

We have seen that effects of asking questions are not always easy to keep straight,
but also, that there is an interesting structure to management operations on
models. Both aspects call for a complete dynamic epistemic logic of questions.
Satisfaction and validity are defined as before. The dynamic epistemic logic of
questioning is the set of all semantic validities: DELQ = {ϕ ∈ LDELQ

(P, N) :|= ϕ}.
We introduce a proof system by adding the reduction axioms below to the earlier
proof system ELQ for the static fragment of the logic.

What follows is a long list of mostly operator commutation principles, in-
terspersed with clauses where ‘something happens’. This difference reflects the
workings of our semantics of information and issue management:

2.2.8. Definition. [Reduction Axioms] The proof system DELQ extends the
earlier static logic ELQ by the following reduction axioms and inference rule:

1. [ϕ?]a↔ a (Asking & Atoms)

2. [ϕ?]¬ψ ↔ ¬[ϕ?]ψ (Asking & Negation)

3. [ϕ?](ψ ∧ χ)↔ [ϕ?]ψ ∧ [ϕ?]χ (Asking & Conjunction)

4. [ϕ?]Uψ ↔ U [ϕ?]ψ (Asking & Universal Modality)

5. [ϕ?]Kψ ↔ K[ϕ?]ψ (Asking & Knowledge)

6. Asking & Resolution:

[ϕ?]Rψ ↔ (ϕ ∧R(ϕ→ [ϕ?]ψ)) ∨ (¬ϕ ∧R(¬ϕ→ [ϕ?]ψ))

7. Asking & Partition:

[ϕ?]Qψ ↔ (ϕ ∧Q(ϕ→ [ϕ?]ψ)) ∨ (¬ϕ ∧Q(¬ϕ→ [ϕ?]ψ))

8-11. The same as items 1 to 4 with [!] instead of [ϕ?].

12. Resolving & Knowledge: [!]Kϕ↔ R[!]ϕ

13. Resolving & Resolution: [!]Rϕ↔ R[!]ϕ

14. Resolving & Partition: [!]Qϕ↔ Q[!]ϕ

15-18. The same as items 1 to 4 with [ϕ!] instead of [ϕ?].

19. Answer & Knowledge7:

[ϕ!]Kψ ↔ (ϕ ∧K(ϕ→ [ϕ!]ψ)) ∨ (¬ϕ ∧K(¬ϕ→ [ϕ!]ψ))

7If we assume truthfulness as a precondition of executing an announcement action this axiom
(and other ones with a similar structure) does not need the right conjunct and will correspond
to the standard DEL axioms for announcement.

26 Chapter 2. Dynamic Epistemic Logic of Questions

20. Answer & Resolution:

[ϕ!]Rψ ↔ (ϕ ∧R(ϕ→ [ϕ!]ψ)) ∨ (¬ϕ ∧R(¬ϕ→ [ϕ!]ψ))

21. Announcement & Partition: [ϕ!]Qψ ↔ Q[ϕ!]ψ

22-25. The same as items 1 to 4 with [?] instead of [ϕ?].

26. Refining & Knowledge: [?]Kϕ↔ K[?]ϕ

27. Refining & Resolution: [?]Rϕ↔ R[?]ϕ

28. Refining & Partition: [?]Qϕ↔ R[?]ϕ

29. From ϕ infer 2ϕ, for 2 ∈ {[·?], [·!], [!], [?]} (Necessitation)

We write `DELQ
ϕ if ϕ is provable in the proof system DELQ.

2.2.9. Theorem (Soundness). The reduction axioms in DELQ are sound.

2.2.10. Theorem (DELQ Completeness). For every formula ϕ ∈ LDELQ
:

|= ϕ if and only if `DELQ
ϕ.

2.2.4. Proof. This is a standard DEL-style translation argument. Working
inside out, the reduction axioms translate dynamic formulas into corresponding
static ones. At the end, completeness for the static base logic is invoked. 2

Discussion So far we have given a logic of information and questions in stan-
dard DEL style. This calculus can derive many further principles, for instance:

The following formula is provable for all factual ϕ : ϕ→ [ϕ?][!]Kϕ.

2.2.5. Proof.
1 ϕ→ (ϕ ∧R(ϕ→ ϕ)) ∨ (¬ϕ ∧R(¬ϕ→ ϕ)) PC
2 ϕ→ (ϕ ∧R(ϕ→ [ϕ?]ϕ)) ∨ (¬ϕ ∧R(¬ϕ→ [ϕ?]ϕ)) Factual ϕ
3 ϕ→ [ϕ?]Rϕ Ak & R
4 ϕ→ [ϕ?]R[!]ϕ Factual ϕ
5 ϕ→ [ϕ?][!]Kϕ Rs & K

2

Here and elsewhere, we need the following auxiliary observation.

2.2.11. Fact. For factual formulas ϕ, with q ranging over management actions,
the following equivalence is valid: [q]ϕ↔ ϕ.

2.2.6. Proof. The proof proceeds by induction on the structure of formulas, us-
ing the Action & Atoms axioms for the base case and the Action & Negation or
Action & Conjunction axioms in the inductive steps. 2

Several steps in the previous proof crucially depend on ϕ being factual, and
they would fail otherwise as illustrated in Figure 2.7. The complex formula Q¬Kp
is true initially in every world of the model, but this is not the case anymore after
a ϕ? question plus a resolution action [!].

2.3. Multi-Agent Extensions for DELQ 27

p q

p q p q

00000

00000
�����

�����'& %$
 ! "#

'& %$
 ! "#

Figure 2.7: The impli-
cation ϕ → [ϕ?][!]Kϕ
fails for ϕ = Q¬Kp.

Such changes are not always easy to keep straight,
but our logic keeps track of the present, and even more
complex cases. But our analysis really shows its power
(compared with other approaches to questions) when we
consider multi-agent scenarios and protocols for investi-
gation. These extensions will be taken up in the next
two sections.

However, we have a remaining issue at this level:

‘Hidden validities’. Like with PAL, the current ax-
iomatization leave unfinished business. While reduction axioms work on a
formula-by-formula basis, they need not describe the general schematic laws of
the system, such as the earlier composition law for consecutive assertions, that
hold under arbitrary substitutions of formulas for proposition letters.8 This deficit
becomes even more urgent here. We saw that our model-changing operations of is-
sue management had a nice algebraic structure. For instance, it is easy to see that
resolving is idempotent and commutes with refinement: ! ; ! = ! and ! ; ? = ?; !.
But our axiomatization for DELQ does not state such laws explicitly, since, by
working only from innermost occurrences of dynamic modalities, the completeness
argument needed no recursion axioms with stacked modalities like [!] [!]. Yet this
sort of sequential information can be of interest for a logic of issue management.

2.3 Multi-Agent Extensions for DELQ

Questions typically involve more than one agent – and hence our restriction to
single agents so far misses much of the action. In the following sections we will
study multi-agent questioning scenarios.

This will be done in two stages: public questions first, and after that, questions
with different informational powers for different agents.

2.3.1 Static Multi-Agent Logic of Information and Issues

The first step is routine. A static language and semantics with many agents follow
entirely standard lines, by merely adding a set A of agent labels.

First we modify Definition 2.1.1 to get richer epistemic issue models:

2.3.1. Definition. [Epistemic Issue Model]An epistemic issue model is a struc-

ture M = 〈W, a∼,
a
≈, V 〉 where W and V are as in Definition 2.1.1 and a ∈ A:

a∼
and

a
≈ are binary equivalence relations on W .

8Note that the above reduction axioms for atoms typically do not have this substitution
property – though many of our more complex reductions axioms do.

28 Chapter 2. Dynamic Epistemic Logic of Questions

2.3.2. Definition. [Static Language] The language LELQm(P, N, A) is defined by
the following inductive syntax rule: i | p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | Uϕ | Kaϕ | Qaϕ |
Raϕ. Existential modalities K̂a, Q̂a and R̂a are again defined as usual.

2.3.3. Definition. [Interpretation] Formulas are interpreted in models M at
worlds w using the same clauses as Definition 2.1.3 for atoms, Boolean and univer-
sal combinations, plus the following indexed modal ones: M |=w Kaϕ iff for all v ∈
W : w

a∼ v implies M |=v ϕ, M |=w Qaϕ iff for all v ∈ W : w
a
≈ v implies M |=v

ϕ, M |=w Raϕ iff for all v ∈ W : w (
a∼∩

a
≈)v implies M |=v ϕ.

This language can make agent-dependent distinctions. E.g., it can say that
one agent’s information is linked with issues for another: K̂aϕ→ Rbψ or Kbψ →
(ϕ ∧ Q̂a¬ϕ). It can also say that a fact ϕ is an issue for some agents and not
for others: U(Qaϕ ∨Qa¬ϕ) ∧ ¬U(Qbϕ ∨Qb¬ϕ). It can also describe much more
deeply intertwined knowledge and issues, we give more examples in Section 3.2.

Next, we need to bring out the dynamics. We first consider public actions as
before. These lead to an immediate generalization of earlier results:

2.3.4. Theorem (Public Multi-Agent DELQ Completeness). The logic
of multi-agent epistemic questions is completely axiomatizable.

Remark on groups. Our static language only contains issue modalities for single
agents. But like in epistemic logic, groups of agents have inquiry-related behavior
of their own. Thus, a full treatment would require group notions of information
(such as common and distributed knowledge), and operators for ‘collective issues’
owned by groups rather than individuals.

2.3.2 Agent-specific Questioning with Preconditions

So far, we only had impersonal public questions among many agents. Now we
must consider real questions, as asked by one agent to another. As everywhere
in this section, we restrict attention to propositional questions:9 b asks a: ‘Is ϕ
the case?’ Thus, real ‘agency’ enters the picture when we consider the structure
of questioning acts. But does this also call for new management actions?

Consider an analogy with public announcement logic PAL. Real speech acts
of announcement, too, are agent-relative: ‘b tells a that ϕ’. But one usually
performs a reduction here: saying that ϕ is treated as an impersonal public
announcement of the conversational precondition of this event.

What that precondition is may depend on one’s pragmatic theory. But it will
usually involve agent-oriented facts such as: ‘b knows ϕ’, and perhaps even: ‘b
believes that a does not know that ϕ’.

9Extension to other types of questions, such as Wh-questions are possible but they would
need a predicate-logical version of the static epistemic logics.

2.3. Multi-Agent Extensions for DELQ 29

Thus, agents come in through impersonal public announcement of agent-
dependent preconditions.10 Some common multi-agent preconditions: (1) ‘b asks
ϕ’ presupposes ¬Kbϕ∧¬Kb¬ϕ: that is, the questioner must not know the answer
to the question she asks, (2) ‘b asks ϕ to a’ presupposes K̂b(Kaϕ ∨Ka¬ϕ): that
is, the questioner must consider it possible that the questionee knows the answer.

These make sense for truly informative Gricean questions, and there may be
other preconditions. For instance, asking a question usually suggests that one
wants to know the answer. But of course, questions come in many varieties.
Rhetorical questions by a teacher to the students do not convey that the teacher
does not know the answer, and they definitely do not suggest that the teacher is
under any illusions whether the students know the answer.

Such typology of questions: ‘plain’, ‘rhetorical’, ‘Socratic’, is not a task for
logic, however. Indeed, a language of the sort we have developed here can for-
mulate lots of different preconditions, and logic is neutral on any choice between
them. Our further issue management actions like resolution, refinement, or their
parallel execution may also involve multi-agent preconditions.

The only thing our logic needs to do at this stage is keep track of possible
preconditions for agent-related questioning actions ϕ? ba : ‘b asks ϕ to a’. We as-
sume that some precondition pre(ϕ? ba) is given for this, and likewise, a pre(ϕ! ba)
for an act of b’s saying that ϕ to a. Then we can formulate management actions
and their dynamic logic along lines that are by now standard:

2.3.5. Definition. [Questioning Actions] Executing the ϕ? ba action in model

M gives a new model Mϕ?ba
= 〈Wϕ?ba

,
c∼ϕ?ba

,
c
≈ϕ?ba

, Vϕ?ba
〉. Likewise, executing the

ϕ! ba action produces a new epistemic-issue model Mϕ!ba
= 〈Wϕ!ba

,
c∼ϕ!ba

,
c
≈ϕ!ba

, Vϕ!ba
〉,

where: Wϕ?ba
= Wϕ!ba

= W , Vϕ?ba
= Vϕ!ba

= V and

c∼ϕ?ba
=

c∼ ∩
pre(ϕ? b

a)
≡M

c∼ϕ!ba
=

c∼ ∩
pre(ϕ! ba)
≡M ∩

ϕ
≡M

c
≈ϕ?ba

=
c
≈ ∩

ϕ
≡M

c
≈ϕ!ba

=
c
≈

The ‘resolution’ and ‘refinement’ actions remain as before.

In this definition, assertions refine the epistemic relation by means of their
preconditions and also by their content. In our link-cutting version, this refines
the given relation into four equivalence classes.

To make an analogy with world-eliminating announcements, this behaves as
if we are restricting the domain to the worlds satisfying only one formula: the
conjunction between the content and the precondition.

10The same is true if we add further agent-dependent aspects of taking what is said, such as
the reliability that a assigns to the source b. This may be reflected in degrees of ‘softness’ of the
signal ϕ, as in dynamic logics of belief revision (cf. [96]). We will not pursue this here, since
reliability seems to play less of a role in the process of raising issues. But similar phenomena
would come up if one gave speakers ‘authority’ in raising issues.

30 Chapter 2. Dynamic Epistemic Logic of Questions

Questions act differently: they refine the issue relation with their content, but
they also refine the epistemic relation through the information content of their
precondition. Our clauses capture these ideas formally.

∗pq

pq pq

a0000

0000
b����

����

ab

'& %$

 ! "#

⊗ A∗1(Q)! A∗0(Q)!

abab

ab

'& %$
 ! "#

'& %$
 ! "#

= ∗pq, A1! pq, A0!

abab

a

'& %$
 ! "#

'& %$
 ! "#

Figure 2.8: Modeling agency by the effects of epistemic preconditions when asking
agent-dependent question (p ∧ q)? in a multi-agent epistemic-issue environment.

2.3.6. Example. [Solving a Question by Raising It] This multi-agent semantics
can deal with interesting phenomena. For instance, the combination of precondi-
tions and issue change can have surprising effects which go beyond mere refine-
ment of the issue relation. In particular, agents can solve a question by raising it.
Consider the example in Figure 2.8 where by asking a question a simultaneously
gives b the answer to the very issue that he raises.

Here agent a asks the question Q = (p ∧ q)? to agent b, with the standard
yes/no answers {A0, A1} and the following combined epistemic preconditions:

pre(Q) = ¬(Ka(p ∧ q) ∨ ¬Ka(p ∧ q)) ∧ K̂a(Kb(p ∧ q) ∨Kb¬(p ∧ q)),

this formula is a precondition for the questioning action, its intuitive meaning
captures pragmatic conditions as discussed before: the first conjunct says that
the questioner (agent a) does dot know the answer and, the second conjunct, she
(agent a) also considers it possible that the questionee (agent b) knows it.

pre(A0(Q)) = ¬(p ∧ q) ∧ pre(Q), and pre(A1(Q)) = p ∧ q ∧ pre(Q).

Next we have the two (yes/no) possible answers (0 or false, and 1 or true), they
carry their own preconditions, respectively, and the previously explained formula.

Much more complex scenarios can be dealt with, but this will give the flavour
for now, see also Section 3.2 for further details.

2.3.3 Dynamic Language, Logic, and Some Design Issues

Now we can add a dynamic language as usual, and interpret it over multi-agent
epistemic issue models. This proceeds just as before, in Section 2.2.3

2.3.7. Theorem. There is a complete dynamic logic with reduction axioms for
public multi-agent questions extending the single-agent one of Section 2.2.3.

2.4. Product Update for Multi-Agent DELQ 31

The overall completeness argument runs exactly like before, we give the rele-
vant reduction axioms in Section 2.8. A similar completeness theorem for corre-
spondingly modified axioms holds for the usual world-eliminating announcements.

But there are also modifications of our question dynamics that could be stud-
ied. For instance, our treatment of questions really amounts to a simultaneous
parallel operation on epistemic issue models: we change epistemic accessibility
and the issue relation at the same time, using the precondition of the question
and its content, respectively. An alternative closer to standard systems of DEL
might be to do this sequentially – but then, for complex questions, updating with
the precondition might change the model in a way that affects the subsequent
change in the issue relation. The two approaches are not the same. Our feeling
is that the parallel version is closer to the intuitive effect of a question.

Moreover, we also think that our system has an independent technical interest,
as an example of a new program operation in dynamic-epistemic logic: parallel
execution of actions on different components of a model.

2.4 Product Update for Multi-Agent DELQ

Now we move to the real domain of dynamic-epistemic logic: informational ac-
tions that involve different observational powers for agents, ranging from differ-
ences in public abilities to privacy and hiding. These same phenomena make
sense with questions and issue management. There may be differences in agents’
powers, and questions can be private just as well as observations. And mixtures
can occur, too: a question may be public, but the answer partly private, or an
answer may be public, and the question private. Indeed, there are many com-
municative settings in which subtle distinctions of this sort make sense, and even
more so in the setting of epistemic games and competitive scientific research.

The dynamic-epistemic mechanism appropriate to this setting is computing a
product update. We include a brief exposition of the method of computing the
product update between static epistemic models M and event or action models E,
in Section 2.7 and refer to the classic paper [9] for further relevant details.

The main idea of performing a product update is to look at epistemic actions
as arbitrary events and represent epistemic relations between events in an action
model. Such events will have preconditions, telling where (i.e. in which epistemic
alternatives) they can occur, or be executed, in our case these are going to be
both truthfulness, as with a public announcement, but also questions specific
pragmatic considerations, encoded by epistemic formulas.

Then the result of a product update will be a new epistemic structure, in
which some actions took place in some worlds, according to their preconditions
for execution. This will also define a new space of epistemic possibilities, taking
into account both previous uncertainty about the world, encoded in the initial
epistemic model, and indistinguishability between the possible epistemic actions,

32 Chapter 2. Dynamic Epistemic Logic of Questions

such as questions or possible answers to questions, encoded in the action model.
In what follows, we will merely show that, and how, this method can be

extended to include questioning actions and issue management.
The main idea is simply this: we add issue relations to static epistemic models,

but also to epistemic event models. It then turns out that the usual product
update rule makes sense for both kinds of relation – though there are interesting
new points of interpretation and application.

2.4.1 A simple Motivating Example

Before defining a formal counterpart to product update in our new setting, let us
discuss what needs to be done in an intuitive way, starting from the basic type
of question that we have already studied before.

Consider the simple scenario depicted in Figure 2.9: a public Yes/No question
is asked in a single-agent structure. As the relevant events, we have chosen two
abstract epistemic signals that model the two possible answers to the question.
The epistemic uncertainty relation connects these two events, since the agent does
not yet know which one will actually occur. By contrast, the issue relation chosen
in this event model does distinguish the answers:

∗p p

'& %$
 ! "#

⊗ ∗p! ∗p !

'& %$
 ! "#

'& %$
 ! "#

= ∗p, p! p, p!

'& %$
 ! "#

'& %$
 ! "#

Figure 2.9: Question p? in a single-agent epistemic-issue structure.

As indicated in Figure 2.9, it is easy to see, even without formal definitions
yet, that the product update rule gives rise to exactly the new model that we
defined earlier in Section 2.1.1. The same is true for the examples we discussed
earlier and further ones included and discussed in detail in Section 3.2.

Simple as this proposal looks, it raises some divergence points with DEL.

Observation versus prediction uncertainty In PAL and DEL, epistemic
indistinguishability between events represents observational uncertainty of agents.
In the present setting, there is yet no observation of the possible future answers,
and therefore the epistemic relation rather models predictive uncertainty. This is
analogous to the situation in games, where ‘future ignorance’ about a next move
is not lack of observational power about present or past moves, but uncertainty
about what will happen. Likewise, the issue relation changes its intuitive meaning.
The point is not that answer events are issues by themselves, but rather, the issue
relation in an event model makes agents aware of possibilities to resolve questions
in a future answering move. The issue of awareness also has relevant syntactic
aspects. We could call this the highlighting function of the issue relation.

2.4. Product Update for Multi-Agent DELQ 33

Distinguished sets of worlds While the initial epistemic model usually has
one actual world, there is no such distinguished world in our questioning-event
model. None of the possible answers is yet distinguished at this stage as the
real answer. Therefore, we will use a version later where models can have sets
of distinguished worlds or sets of distinguished events – a generalization that has
also been considered for DEL itself. It is also possible and useful to have both a
distinguished set of actual events and an real answer inside that set.

Two kinds of preconditions Answer events have the precondition that
their content is true. But in addition, we also saw that questions themselves
may have preconditions, such as ignorance of the answer. How should these be
represented in the event model? One option is to have the precondition as a
separate announcement before the product update, another option (less intuitive,
but sometimes more convenient) would be to copy the precondition of the whole
question into the preconditions for each answer.

Once we have this simplest setting in place, we want to model more complex
cases, that go far beyond what most logics of questions can handle. In particular,
some of the phenomena we want to model are the following:

– Mixtures of prediction uncertainty and observation uncertainty. An agent
knows that some question is asked, but does not know exactly what that
question is: it could be either p? or q?.

– Genuine privacy. An agent hears the question p?, but another agent thinks
that nothing happened.

We now formulate a mechanism that can deal with such scenarios, that often
occur in daily life and our natural communicative practice.

2.4.2 Product Update for Questions

It is time now to introduce a more precise formal model that can account for
the above described phenomena. In order to do this, we use the following event
models enriched with issue structure:

2.4.1. Definition. An action structure γ = 〈E, (a∼)a∈A, (
a
≈)a∈A, pre〉 is a tuple

with the following components, where A is a set of agent-labels: E is a set of events
(possible future answer events),

a∼ are equivalence relations on E (prediction

uncertainty), for a ∈ A,
a
≈ are equivalence relations on E (issue highlight relation),

for a ∈ A, pre : E → L is a precondition function mapping events e ∈ E to
formulas of the epistemic issue language L. We use pairs (γ, e) for γ an action
model and e ∈ ℘E. If e is a singleton we call such pairs pointed action structures.

There is a ‘parametrization’ here to some appropriate language for specifying
the preconditions. This language can be a propositional base logic of factual

34 Chapter 2. Dynamic Epistemic Logic of Questions

assertions, the richer static epistemic issue language of Section 2.2, or even the
full dynamic language LELQm below. The latter choice involves a slightly delicate
issue of mutual recursion, which is similar to that for DEL in general.

We continue by specifying the way such structures transform given issue epis-
temic models which provide the underlying changing entities for specific ques-
tioning actions. From now on, when convenient and unlikely to cause confusion,
we will skip indexing the binary relations and use only

a∼ instead of (
a∼)a∈A:

2.4.2. Definition. [Product Update] Given any arbitrary epistemic-issue struc-

ture M = (〈W, a∼,
a
≈, V 〉, w), and action-issue structure γ = (〈E, a∼,

a
≈, pre〉, e) the

update product M ⊗ γ = Mγ
⊗ = (〈W⊗,

a∼⊗ ,
a
≈⊗ , V⊗〉, (w, e)) is defined by:

– W⊗ = {(w, e) | w ∈ W, e ∈ E,M |=w pre(e)}, V⊗(w, e) = V (w),

–
a∼⊗= {((w, e), (w′, e′)) | w,w′ ∈ W, e, e′ ∈ E,w a∼ w′, e

a∼ e′},

–
a
≈⊗= {((w, e), (w′, e′)) | w,w′ ∈ W, e, e′ ∈ E,w

a
≈ w′, e

a
≈ e′},

If we need to work with sets of distinguished events, as indicated earlier,
we take all pairs of an earlier distinguished world and the (unique) answer event
supported by it. The fact that there is a unique event capturing a possible answer
depends on how the action model has been set up in the first place. We assume
that we work with an adequate action structure, we also show how such structures
can be automatically generated in a standard way in Chapter 3. A structure in
which two different events can be executed at the real world is allowed by the
formalism but will correspond to a questioning action represented by a cover
instead of a partition. We discuss these issues at length later in Chapter 3.

p q p q

∗p q p q
'& %$

 ! "#
⊗

q! q!

∗p! ∗p!

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

=

p q
q!

p q
q!

p q
q!

p q
q!

p q
p!

p q
p!

∗p q
p!

p q
p!

'& %$

 ! "#

'& %$

 ! "#

'& %$
 ! "#

'& %$
 ! "#

Figure 2.10: Intuitive dynamics for asking more indistinguishable questions.

We will now consider some examples demonstrating how this mechanism
works. We start by considering our two earlier desiderata:

2.4.3. Example. Uncertainty about the question. Figure 2.10 depicts a scenario
where a question is asked but, as far as the observing agent is concerned, the
content of the question could be either p or q.

2.4. Product Update for Multi-Agent DELQ 35

This is not yet a multi-agent situation nor does it involve privacy. But it
serves its purpose as a prime illustration for the kind of structures we are going
to use to represent questions. The first model is a standard issue-epistemic model.
The second model is an action model of the type we need to model questioning
actions. It contains the possible answers as events of the model.

The third model is the result obtained using the product update rule just
described for the first two models. It represents all the possibilities to partition
the space of epistemic possibilities given the questioning structure.

2.4.4. Example. Radical privacy. Figure 2.11 depicts a question that is not
observed by an agent, who thinks that nothing happened. This involves mistaken
beliefs of agents, just as in the case of private observations. Accordingly, the
accessibility relations might not be reflexive anymore – but as with DEL in
general, this changes nothing essential in the product update mechanism.

p q p q

∗p q p q
'& %$

 ! "#
⊗

>! >!
��

===========

��

������������

∗p! ∗p!

�� ��

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

=
p q
>!

p q
>!

p q
>!

p q
>!

p q
p!

p q
p!

∗p q
p!

p q
p!

##GGGGG
|| yyyy

99ssss

dd IIIII

'& %$

 ! "#

'& %$

 ! "#

'& %$

 ! "#

Figure 2.11: Intuitive dynamics for radical privacy about questions.

This is a good place to discuss how preconditions of answers work during
product update. The first action (answer p!) is successfully executed in two of
the worlds, the remaining ones provide a successful execution for the second event
(the complementary answer p!). Both these events belong to the real question.
However, there are two more events in the action structure. One of them (the
trivial answer >!) gets executed everywhere, and the remaining one nowhere.

Note that in a certain way the last event is redundant, a model with just the
first three events, and the relations between them, could have produced the same
effect more efficiently. However, the presence of the ⊥! event helps us later on in
building relations between questions from relations between answers.

We end with one more example, now involving two agents essentially:

2.4.5. Example. Privacy in multi-agent scenarios. Figure 2.12 illustrates how
the product update mechanism produces the right result in a scenario where
different agents have different information about the content of a public question.

One advantage of the product update mechanism will be that it works for
a multi-agent setting of questioning actions just as well as it works in a single-
agent setting. In this example we have the same events as before in a single agent

36 Chapter 2. Dynamic Epistemic Logic of Questions

p q p q

∗p q p q

ab ab

ab

ab
'& %$

 ! "#
ab

⊗

q! q!

ab

ab

∗p! ∗p!

a a
abab

abab

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

=

p q
q!

p q
q!

p q
q!

p q
q!

p q
p!

p q
p!

∗p q
p!

p q
p!

ab

ab

a

a

ab

ab

ab ab

'& %$

 ! "#

'& %$

 ! "#

'& %$
 ! "#

'& %$
 ! "#

ab ab

ab

ab

Figure 2.12: Product update for a scenario in which b knows that the content of
the question is p? but a considers that the content might have been q?.

setting, but now the epistemic relations between the events are the ones that
determine the fact that, after the product update, the epistemic effects for some
agents are going to be different, as deriving from the question-action structure.

These examples raise some further issues that we state briefly here.

Special event models for questions. Questions are just a particular type
of event, and a more complete treatment might try to capture them as a subclass
of the above event models, using the earlier examples as a guide. For instance, it
seems plausible that answers to observation-distinguishable questions should be
prediction-distinguishable, and further constraints are easily found. We leave a
fuller treatment of these issues to future investigation.

Modeling answers as separate events. In Section 3, answers to questions
ϕ? were not modeled separately – though one might think of announcements
ϕ! or ¬ϕ! as answer events. In the present setting, an answer event might be
modeled explicitly as an event model with its own presuppositions: for instance,
the questioner might indicate that he thinks the addressee knows the answer,
whereas the answerer communicates that she does know. But also, an answer
involves a selection of one possible answer as the actual one, removing the earlier
prediction uncertainty, though perhaps still subject to observation uncertainty. It
is easy to model such scenarios with the machinery that we have proposed here.

Further issue management actions. Counterparts to our earlier actions of
Resolution and Refinement that were introduces in Section 2.2.1 and went beyond
simple questions and answers can also be modeled in this style. These require
slight adaptations of the present product update rule that we do not pursue here.

The role of syntax: formulation and protocols. Our treatment here
has been semantic, identifying propositions with sets of worlds in the usual man-
ner. Thus, the two questions (p ∨ p)? and p? will have exactly the same effects,
and can be considered the same. More generally, our study is not sensitive to
differences in output models up to suitably defined epistemic-issue bisimulation.
This ignores the role of syntactic formulation in inquiry, and more modestly, in
the appropriateness of answers to a stated question. But actually, the product
update mechanism also suggests a more syntactic viewpoint, where the answer
events are actual linguistic formulations of answers. This syntactic perspective
will return when discussing protocols that constrain avenues of investigation.

2.5. Temporal Protocols in DELQ 37

2.4.3 Dynamic Logics for Product Update

The preceding dynamics can be described in a language extending our systems
from previous sections. We proceed in the standard DEL-style, we first add
dynamic modalities over event models:

2.4.6. Definition. [Dynamic language] Formulas of the dynamic epistemic is-
sue language LELQm are constructed by the following inductive-syntax rule:

i | p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | Qaϕ | Raϕ | Kaϕ | Uϕ | [γ?]ϕ | [!]ϕ

The interpretation of this language is following usual lines. The semantic
clauses for boolean and modal formulas are the same as before, the newly added
dynamic modalities are defined also as expected:

2.4.7. Definition. [Semantics] Formulas are interpreted with this key clause:

M |=w [γ?]ϕ iff M ⊗ γ |=w ϕ, M |=w [!]ϕ iff M! |=w ϕ.

The resulting dynamic epistemic logic can be axiomatized by standard tech-
niques, in terms of reduction axioms for event modalities:

2.4.8. Theorem. Any formula in multi-agent logic of questions can be reduced
to an equivalent static formula. The key reduction axioms are the following:

– Asking & Knowledge: [γ?]Kaϕ↔
∨
e∈Q(pre(e) ∧

∧
γ?

a∼ γ′? Ka[γ
′?]ϕ)

– Asking & Partition: [γ?]Qaϕ↔
∨
e∈Q(pre(e)∧

∧
γ?

a∼ γ′?Qa(pre(e)→ [γ′?]ϕ))

– We also get the axioms involving the resolution modality [!] for free by
recalling their corresponding axioms from our previous systems.

We include the proofs and further discussion of possible extensions of the
current framework in Sections 2.8 and 3.2, respectively.

We can now safely say that questions involve the same sort of social issues of
privacy and security as informative statements and observations, and our general
approach shows how to deal with that in a systematic way.

This allows for a drastic extension of modeling power with regard to what is
done in much of the existing literature about questions. Our treatment is by no
means complete, but it may show how current logics of questions can undergo
the same broadening that epistemic logic has experienced in DEL.

2.5 Temporal Protocols in DELQ

Our final topic in this chapter is another recent theme from dynamic-epistemic
logic: longer-term temporal perspective and ‘procedural information’ (cf. [51]).
To make this procedural information explicit, [97] introduces protocols in dynamic-
epistemic logic. This results in modified versions of PAL and DEL, which now
encode procedural as well as factual and epistemic information. As a technical
side-effect, the original reduction axioms no longer do all the work, as procedural
information may be irreducible. Completeness proofs become more complex.

38 Chapter 2. Dynamic Epistemic Logic of Questions

But the same considerations apply to questions, perhaps even more so. Single
questions usually only make sense in a longer-term temporal perspective of some
ongoing inquiry process: an experimental procedure, an ongoing conversation, an
information exchange scenario, and so on.

Not everything can be asked, for a variety of reasons such as limitations of
measuring instruments, availability of information sources, social conventions or
financial resources, and so on. Thus, it makes sense to adapt our dynamic logics
to a protocol setting, and we will show how this can be done, while also providing
a more realistic theory of inquiry.

We will first present several settings where procedural restrictions on available
questions make sense. We do this in some detail, to show a crucial dimension of
questions and inquiry that is often ignored in the literature.

Restrictions on types of questions. Clearly, there are strong restrictions
on the kinds of question that can be asked in realistic inquiry. We measure
‘little things’ in science, such as readings of instrument panels, and try to get
insights about larger issues. Thus, in a logic setting, we may only be able to ask
about atomic questions p?, and not about very complex formulas ϕ?. The same
is true in conversation: we are usually restricted to simple questions that are
easy to understand. More generally, we can think of this as a logical hierarchy,
from factual questions to epistemic ones (‘Did you know that ...?’) to complex
procedural ones (‘What would she say if I asked her what I just asked you?’).

These aspects can be illustrated already in the simple setting of propositional
logic. Atomic questions may take more time to reach a goal than complex ones.

pqrs pq r s

pqrs p qrs
'& %$

 ! "#

p?−→

pqrs pq r s

pqrs p qrs
'& %$
 ! "#

s? ↓ ↘(r→¬p)?

pqrs pq r s

pqrs p qrs

'& %$
 ! "# pqrs pq r s

pqrs p qrs
'& %$

 ! "#

'& %$

 ! "#
Figure 2.13: Complex Experiments versus Atomic Questioning

Figure 2.13 gives a very simple illustration. We have here a scenario in which
using questions only about propositional atoms has, due to the particular struc-
ture of the starting model, different procedural consequences than using unre-
stricted propositional binary questions. This scenario can lead to an interesting

2.5. Temporal Protocols in DELQ 39

comparison with the usual approch in information theory which measures infor-
mation bit content in terms of the number of factual Yes/No questions needed
to determine the real situation – but it has no restriction to just atomic or other
kinds of questions. Thus, one may sometimes need more atomic questions than
the usual bit measure would indicate.

Procedural Constraints on Questioning. Even if the available types of
question are fixed, there can be further procedural restrictions, having to do, for
instance, with access to experimental devices.

Consider a classical mathematical ‘Weighing Problem’ like the following:

“You have 9 pearls, 1 lighter than the others that are all of equal weight.
You can weigh only 2 times with a standard balance. Find the lighter pearl.”

• • • • • • • • •

123/456?

OO

456/789?

OO

789/123?

OO
• • •

•eeeeeee • •
•YYYYYYY

• •'& %$! "# '& %$! "# '& %$! "#

'& %$! "#

• • •
•eeeeeee

•nnnnnnn •PPPPPPP

•YYYYYYY
• •

4/5?

OO
5/6?

OO

6/4?

OO'& %$! "# '& %$! "#

'& %$! "#
'& %$! "# '& %$! "#

• • •
•

•
•

• • •!

OO

'& %$! "# '& %$! "#

'& %$! "#
'& %$! "# '& %$! "#

Figure 2.14: Procedural restrictions in the number of available questions

The allowed questions are fixed in this scenario: we can only ask Nature for
some atomic balance facts. The resulting process can be pictured in an ‘event tree’
of possible histories of successive weighings. Figure 2.14 illustrate a few successful
evolutions, but there could also be ‘bad’ ones. For instance, asking (7/8)? after
(789/123)? is a history that fails to solve the problem in two steps, and hence it
would be a bad experimental procedure. Protocols encode conditional information
like ’If measuring 123/789 turns out 789 then measure 7/8, else, if it turns out
123, then measure 2/3, else measure 4/6’. The solution to this weighing problem
can be formulated as an interaction between questioning actions and knowledge
after resolution: “Weigh 3 pearls against 3, leaving 3 pearls aside. If the result
is equal, then weigh 2 of the remaining 3 pearls against each other. If these are
equal, then the remaining pearl is the lighter one – if not, then you know which
one was lightest. If the initial result was unequal, apply the previous procedure
to the lighter group of 3: weigh 2 of these, and you will know.”

40 Chapter 2. Dynamic Epistemic Logic of Questions

Restrictions from epistemic properties of inquiry. Even if types of ques-
tions and procedural restrictions are fixed, there may still be further relevant
restrictions in multi-agent scenarios. In epistemic games, for instance, it might
be of crucial importance in what temporal order new knowledge is obtained. If
the competition finds out the actual world ahead of time, there is no incentive
for sharing resources in a social experimental procedure. A further analysis and
concrete illustrations of such scenarios are included in Chapter 4.

2.6 Long Term Protocols in Inquiry
Some formalities. The preceding examples can be formalized in an epistemic
question protocol logic that follows the general methodology from [97] and [51]:

2.6.1. Definition. [DELQ Protocol] Let Σ be an arbitrary set of epistemic
events (management actions). Let Σ∗ be the set of finite strings over Σ (finite
histories of questioning events). A questioning protocol is a set H ⊆ Σ∗ such
that: FinPre−λ(H) = {h | h 6= λ,∃h′ ∈ H : h � h′} ⊆ H

Next, we can set up a formal language over these structures. In the truth
definition, dynamic modalities now state that there exists a next informational or
issue action available at this stage by the current protocol whose execution makes
the postcondition true.

The construction in the following definition considers only sequences wσ such
that w is a world in the domain of the initial model M , and σ, σ′ are sequences
in the state dependent protocol Q(w); σn denotes the sequence σ up to its n-th
position and σ(n) denotes the n-th element in the sequence.

2.6.2. Definition. [Q-Generated Model] Let M = 〈W,∼,≈, V 〉 be an arbitrary
model and let Q be an arbitrary DELQ-protocol over M (a prefix-closed set
of finite sequences of questioning events). The Q-Generated Model at level n,
Mn

Q = 〈W n
Q,∼nQ,≈nQ, V n

Q 〉 is defined by induction on n as follows:11

1 W 0
Q = W, ∼0

Q = ∼, ≈0
Q = ≈, V 0

Q = V ;

2 wσ ∈ W n+1
Q iff w ∈ dom(M), σ ∈ Q(w), len(σ) = n+ 1, and wσn ∈ W n

Q;

3 If σ(n+1) = ϕ? then: (a) (wσ, vσ′) ∈ ∼n+1
Q iff σ(n+1) = σ′(n+1), and

(wσn, vσ
′
n) ∈ ∼nQ; (b) (wσ, vσ′) ∈ ≈n+1

Q iff σ(n+1) = σ′(n+1), (wσn, vσ
′
n) ∈

≈nQ, and (wσn, vσ
′
n) ∈

ϕ
≡Mn

Q
;

11We include here only questions and resolution actions to save some space. It should be
emphasized that other types of management actions can be considered. For instance here is
how clauses for announcement and refinement look like:

If σ(n+1) = ϕ! then: (a) (wσ, vσ′) ∈ ≈n+1
Q iff σ(n+1) = σ′

(n+1) and (wσn, vσ
′
n) ∈ ≈nQ;

(b) (wσ, vσ′) ∈ ∼n+1
Q iff σ(n+1) = σ′

(n+1), (wσn, vσ
′
n) ∈ ∼nQ, and (wσn, wσ

′
n) ∈

ϕ
≡Mn

Q
;

If σ(n+1) = ? then: (a) (wσ, vσ′) ∈ ∼n+1
Q iff σ(n+1) = σ′

(n+1), and (wσn, vσ
′
n) ∈ ∼nQ;

(b) (wσ, vσ′) ∈ ≈n+1
Q iff σ(n+1) = σ′

(n+1), (wσn, vσ
′
n) ∈ ≈nQ, and (wσn, vσ

′
n) ∈ ∼nQ;

2.6. Long Term Protocols in Inquiry 41

4 If σ(n+1) = ! then: (a) (wσ, vσ′) ∈ ≈n+1
Q iff σ(n+1) = σ′(n+1), and

(wσn, vσ
′
n) ∈ ≈nQ; (b) (wσ, vσ′) ∈ ∼n+1

Q iff σ(n+1) = σ′(n+1), (wσn, vσ
′
n) ∈

∼nQ, and (wσn, vσ
′
n) ∈ ≈nQ;

5 For each a ∈ P] N, V n+1
Q (a) = {wσ | wσ ∈ W n+1

Q , w ∈ V (a)}.
The class of structures Forest(TDELQ) consists of all models Forest(M,Q) for
some arbitrary model M and some arbitrary TDELQ protocol Q.

We can now define the corresponding temporal structure Using the construc-
tion from the previous Definition 2.6.2.

2.6.3. Definition. [Generated ETL Model] Let M = 〈W,∼,≈, V 〉 be an arbi-
trary epistemic-issue model and let Q be an arbitrary DELQ-protocol over M (a
set of finite sequences of questioning events closed under initial segments). The
Generated ETL Model Forest(M,Q) = 〈H,∼,≈, V ′〉 is defined as follows:

1 H = {h | there is a w ∈ W,σ ∈ Q with h = wσ ∈ W len(σ)
Q };

2 For all histories h, h′ ∈ H with h = wσ and h′ = vσ′, h ∼ h′ iff
len(σ) = len(σ′), and (wσ, vσ′) ∈ ∼len(σ)

Q ;

3 For all histories h, h′ ∈ H with h = wσ and h′ = vσ′, h ≈ h′ iff
len(σ) = len(σ′), and (wσ, vσ′) ∈ ≈len(σ)

Q ;

4 For each a ∈ P] N, and h = wσ ∈ H, h ∈ V ′Q(a) iff h ∈ V len(σ)
Q (a).

Next we give a truth definition for a matching dynamic language, with dy-
namic actions involving formulas from the static base language only.

2.6.4. Definition. [Interpretation] The truth definition of formulas at state h in
model Forest(M,Q) := Fr(M,Q) = 〈H,∼,≈, V 〉 uses the following key inductive
clauses for the modal operators:

- Fr(M,Q) |=h Kϕ iff ∀h′ ∈ H : h ∼ h′ implies Fr(M,Q) |=h′ ϕ;

- Fr(M,Q) |=h Qϕ iff ∀h′ ∈ H : h ≈ h′ implies Fr(M,Q) |=h′ ϕ;

- Fr(M,Q) |=h Rϕ iff ∀h′ ∈ H : h (∼ ∩ ≈)h′ implies Fr(M,Q) |=h′ ϕ;

- Fr(M,Q) |=h 〈q〉ϕ iff hq ∈ H and Fr(M,Q) |=hq ϕ;

- Fr(M,Q) |=h Uϕ iff ∀h′ ∈ H : h = wσ, h′ = w′σ′, w, w′ ∈ Dom(M),

σ, σ′ ∈ Q, and σ = σ′ implies Fr(M,Q) |=h′ ϕ.

Where q is used as a variable over all issue management actions.

In order to obtain the completeness result we will proceed by the standard
Henkin construction of a canonical model. We start constructing the canonical

ETL model M c by first defining the base level M c
0 = 〈H0,

a
≈0,

a∼0, V0〉 using the
usual definitions as follows:

- H0 = {w | w is a maximally consistent set of formulas},
- For each w, v ∈ H0, let w

a
≈0 v if and only if {ϕ | Qaϕ ∈ w} ⊆ v,

- For each w, v ∈ H0, let w
a∼0 v if and only if {ϕ | Kaϕ ∈ w} ⊆ v,

- For each p ∈ P and w ∈ H0, w ∈ V0(p) iff p ∈ w.

42 Chapter 2. Dynamic Epistemic Logic of Questions

2.6.5. Definition. The canonical model M c = 〈Hc,
a∼c,

a
≈c, V c〉 is defined by:

- Hc =
⋃∞
i=0 Hi;

- For each h, h′ ∈ Hc with h = wσ and h′ = vσ′, let h
a
≈ch′ if and only if

σ = σ′ and w
a
≈0 v;

- For each h, h′ ∈ Hc with h = wσ and h′ = vσ′, let h
a∼ch′ if and only if

σ = σ′ and w
a∼0 v;

- For every a ∈ P] N and h = wσ ∈ Hc, wσ ∈ V c(a) iff w ∈ V0(a).

2.6.6. Definition. [Legal Histories] Let W0 be the set of all TDELQ maximal
consistent sets. We define λn and Hn(0 ≤ n ≤ d(Σ)) as follows:

- Set H0 = W0, and for each w ∈ H0, set λ0(w) = w.

- Let Hn+1 = {hq | h ∈ Hn and 〈q〉> ∈ λn(h)} and

let λn+1(h) = {ϕ | 〈q〉ϕ ∈ λn(h′)}, for each h = h′q ∈ Hn+1.

We need to check that each map λn is well defined:

2.6.7. Lemma. For each n ≥ 0, for each w ∈ Hn, λn(σ) is maximally consistent.

2.6.8. Lemma (Truth Lemma). For every ϕ ∈ LELQ
(P, N, A) and any h ∈ Hc:

ϕ ∈ λ(h) if and only if M c |=h ϕ.

2.6.9. Theorem (TDELQ Completeness). The dynamic epistemic question
logic TDELQ of protocol models is completely axiomatizable.

The proof of this result follows the standard Henkin construction of a canonical
model from maximally consistent sets of formulae. This method has been used
before for PAL and DEL in [97], [51] and [22].

Some crucial axioms for TDELQ are in this setting Questions & Partition:

〈ϕ?〉Qψ ↔ 〈ϕ?〉> ∧ ((ϕ ∧Q(ϕ→ 〈ϕ?〉ψ)) ∨ (¬ϕ ∧Q(¬ϕ→ 〈ϕ?〉ψ)))

Resolution & Knowledge: 〈!〉Kϕ↔ 〈!〉> ∧R〈!〉ϕ
The main difference with the earlier reduction axioms is given by the presence

of conjuncts like 〈ϕ?〉>. These now express the fact that the questioning action
described is available according to the protocol. This procedural information
may be sui generis, and not equivalent to any simple precondition formula in the
underlying static language. This information encodes now epistemic aspects, as
for PAL and DEL, but also dynamics of issue structure.

In our current setting the proof needs to be more elaborated because:

– Unlike in the setting of PAL and DEL, we work not with one but with four
distinct dynamic modalities.

– The possible sequences of dynamic actions (or legal histories) have a more
complex structure as they are constructed by sequential compositions of all
these four dynamic modalities.

2.6. Long Term Protocols in Inquiry 43

– Unlike in the setting of PAL and DEL, these new modalities change not one
binary relation but two distinct ones plus their intersection.

– The static language has formulas containing modalities describing both the
issue structure and the epistemic structure on one hand, and also their
mutual interdependence via the resolution modality, on the other hand.

Despite this variety, an adapted version of the proof can be obtained in an
analogous way using the following simplifications:

– We will only consider two relevant modalities [ϕ?] and [!], and note that the
remaining ones have a completely symmetrical behavior.

– We will only consider the non-commuting modalities. Because relevant
modalities have a segregated effect on the components of the static struc-
tures, some modalities are unchanged by some dynamic actions. These have
a merely commutating behavior as the underlying relation is not changed
by the given dynamic action and can be safely ignored.

– Given the equalities presented earlier in 2.2.1, some sequences obtained by
sequential composition can be shown to have a redundant effect. In order
to simplify the proof we will always collapse such redundant sequences into
one single dynamic action. For instance, the sequence !!! is equivalent to !!
and ! as far as their their dynamic effects are concerned.

– We will build the proof componentwise, first for the main dynamic modality
of questioning [ϕ?], which will only require the choice of the appropriate
disjunct in a reduction formula as an additional step in the proof, and the
resolution modality [!], for which the intersection modality will be used.

All these aspects show how the dynamic logics of questions suddenly get
a much richer field of study than single linguistic speech acts, or information-
theoretic question scenarios where anything can be asked and answered. We will
further pursue the idea of designing good questioning strategies in inquiry and
problem solving considering a concrete example in Chapter 6 of this thesis.

We have shown that dynamic logic of questions can easily accommodate global
temporal protocols, thus getting closer to a true logic of inquiry. Of course,
the main interest is not in our general completeness theorem, but in analyzing
concrete protocols, and more detailed logical effects of various restricted question
repertoires. The following chapters will further develop these ideas.

Conclusions and Further Topics In this chapter, we have shown how dy-
namic logics of questions can analyze various aspects of private and public inquiry.
The main contributions we have made so far are the following:

- A rich system of dynamic issue-management actions

- Complete dynamic logics for questioning in DEL style,

- Extension to privacy and product update for questions,

- Extension to temporal protocols for inquiry.

44 Chapter 2. Dynamic Epistemic Logic of Questions

These systems fit entirely within the methodology of dynamic-epistemic logic,
and they seem to form a natural complement to what already exists in this area,
making the the actions of questioning and resolution explicit in information flow.

2.7 Appendix A: Background Definitions

The theoretical background on which the static epistemic-issue logic is based is
that of hybrid logics. In particular here are two general results which are applied
in the proof of completeness of the static logic:

2.7.1. Theorem (5.2.10 in [85]). Every pure H-formula is di-persistent. Con-
versely, every di-persistent H-formula defines the same class of discrete general
frames as a pure H formula. The same holds for H(@) and H(E).

Pure formulas are formulas that only contain nominals and no proposition letters.

2.7.2. Corollary (5.4.1 in [85]). Let Σ be any set of pure formulas, very sim-
ple modal Sahlqvist formulas and/or shallow modal formulas of H(@). Then
K+
H(@)Σ is strongly complete for the class of frames defined by Σ. Similar for

K+
HΣ and K+

H(E)Σ.

Using these general results completeness of our static logic of questions and
knowledge follows as a particular application:

2.7.1. Proof (Theorem 2.1.6). We only have to show that the intersection
axiom: 〈∼〉i ∧ 〈≈〉i ↔ 〈∼ ∩≈〉i is a pure formula. The rest of the proof is an
application of the more general result (2.7.2 in [85]) to the particular case of an
extension of the basic hybrid logic with pure formulas. 2

Complexity of Static Logic The main novelty of our static epistemic logic
is the use of the intersection modality between issues and knowledge. The inter-
section modality has been studied before in the DEL literature but only for one
relations in the context of group epistemic notions like general knowledge within a
group. Already in a setting with only one kind of relation the intersection modal-
ity raises technical difficulties as it is not invariant under bisimulation. Using
intersection between two different kinds of binary relations gave us the advantage
of being able to express interesting connections between questioning actions and
knowledge evolution, but also brought all the technical difficulties with it.

To solve these technical aspects we have to use an extended modal logic. Using
a hybrid logic with nominals is enough to define the intersection modality as we
show in Section 2.1.2. One natural question to ask in this context is: what is
the computational price of this gain in expressive power? The answer is available
in the standard hybrid logic literature: the K-satisfaction problem is PSPACE-
complete, just like the standard modal logic (up to a polynomial).

Using a universal modality provides even more expressive power but raises
the complexity from PSPACE to EXPTIME. However the logic still remains de-
cidable as long as our modalities do not need to satisfy the commutation axiom:

2.7. Appendix A: Background Definitions 45

[∼][≈]ϕ↔ [≈][∼]ϕ. Even so, in many applications which are relevant for describ-
ing inquiry in general many interesting facts can be expressed even without the
universal modality (see the extensive questioning games studied in Chapter 4).

The step towards undecidability is only made if the logic is enriched with the
down-arrow binder. However, in none of the applications that we will consider in
the following chapters this will be necessary.

Overall, the complexity profile of hybrid logic is very appealing for a large
variety of inquiry and questioning related applications. The task which is most of
the time enough for describing information flow via questioning is model checking
of formulas involving the intersection modality.

The DEL Methodology The background method used for completeness of the
various dynamic logics proposed in this chapter is standard in the DEL literature
[9, 24, 93]. We will illustrate below for the reduction axioms in Definition 4.4.7
the major steps of the DEL methodology used several times in this chapter.

2.7.3. Definition. [Translation] The translation of DELQ formulas is given by:
t(p) = p, t(¬ϕ) = ¬t(ϕ), t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ), t(2aϕ) = 2at(ϕ), for 2a ∈
{Ka, Qa, Ra}, t(lhs) = t(rhs) for axioms in 4.4.7.

2.7.4. Definition. [Complexity] The complexity of DELQ formulas is given by:
c(p) = 1, c(!) = 1, c(¬ϕ) = 1 + c(ϕ), c(ϕ ∧ ψ) = 1 + max(c(ϕ), c(ψ)), c(2aϕ) =
1 + c(ϕ), for 2a ∈ {Ka, Qa, Ra}, c([q]ψ) = (c(q) + 5) · c(ψ), for q ∈ {ϕ?, !}.

2.7.5. Lemma (Complexity properties). For any DELQ formulas ϕ and ψ:

1. c(ϕ) ≥ c(ψ) if ψ ∈ Sub(ϕ)

2. c(lhs) > c(rhs) for axioms in 4.4.7.

2.7.2. Proof. By induction on ψ. 2

2.7.6. Lemma (Translation). For all DELQ formulas we have: ` ϕ↔ t(ϕ)

2.7.3. Proof. By induction on c(ϕ), using Lemma 2.7.5 and Theorem 2.2.9. 2

2.7.7. Theorem (Completeness). For all DELQ formulas it is the case that:

|= ϕ implies ` ϕ

2.7.4. Proof. Suppose |= ϕ, therefore, using Theorem 2.2.9 (soundness) to-
gether with Lemma 2.7.6 (translation correctness), we know that |= t(ϕ). Hence,
by Theorem 2.1.6 (completeness of the static fragment), it follows that ELQ `
t(ϕ). Because ELQ is contained in DELQ as a subsystem, we also get that
DELQ ` t(ϕ). And, using Lemma 2.7.6 (translation correctness) DELQ `
t(ϕ)↔ ϕ, we obtain that DELQ ` ϕ, as desired. 2

This general methodology works in an analogous way for instances of recursive
reduction axioms introduced in the present chapter.

46 Chapter 2. Dynamic Epistemic Logic of Questions

Complexity of Dynamic Logic Because reasoning in the the dynamic logic
is reduced by the above translation axioms to the static logic, the complexity of
the dynamic fragment depends on the properties of the translation. The logic
for which complexity results are known is PAL. Therefore we will evaluate the
complexity profile of DELQ on the background of existing results about PAL [67].

The equivalence-preserving translation used so far cannot avoid an exponential
blow-up in formula size even for certain PAL formula instances. However, in the
standard literature [67] this is also regarded as a positive quality that allows a
language to express the same sentences in a more succinct manner. Compared to
PAL, formulae in which the main operator is a question modality are translated
into a disjunction of two formulae. This makes the blowup in formula size even
more dramatic for DELQ. In the same time, this can also be seen twice as much as
the positive quality of succinctness that DELQ inherits from results about PAL.
The dynamic modalities introduced by DELQ allow to express certain properties
in a more succinct manner than the static epistemic-issue language.

A different translation [67], which is only preserving satisfiability, does avoid
an exponential blowup. This is because in a recursive translation there are ex-
ponentially many recursive translation calls but, because some of them have the
same content, there are only polynomially many relevant translation calls, i.e.
clauses using distinct sub-formula instances. This ensures that reasoning in the
dynamic fragment stays inside the PSPACE bound of the static epistemic logic.
Because both disjuncts of a yes/no question translation formula have a symmetric
syntactic structure, the number of relevant translation calls is only increased by
a constant. Therefore, reasoning in the dynamic logic of yes/no questions also
remains inside the previous bounds for the static issue-epistemic logics.

Product Update The standard sources for product update are [9, 24, 93].
Here we only recall the basics in a nutshell. An event model E consists of a
set of relevant events related by epistemic uncertainty links that encode agents’
observational powers. Moreover, each event comes with a ‘precondition’ stating
just when it can occur: these drive the information flow when events are observed.

This shows in forming a product model M × E consisting of all pairs (s, e) of
old worlds s ∈ M that satisfy the precondition for event e. The new knowledge
of agents is encoded in the new uncertainty relation between pairs, constructed
from old uncertainly and event indistinguishability by the ‘product rule’:

(s, e) ∼ (t, f) iff s ∼ t and e ∼ f.

Finally, the valuation for proposition letters at (s, e) remains the same as in s: at
least in the simple DEL systems that we discuss here, there is no factual change.

2.8. Appendix B: Proofs of Main Results 47

2.8 Appendix B: Proofs of Main Results

2.8.1. Proof (Theorem 2.2.9). By standard modal arguments. We discuss
two cases that go beyond mere commutation of operators.

The first (Asking & Partition) explains how questions refine a partition:

[ϕ?]Qψ ↔ (ϕ ∧Q(ϕ→ [ϕ?]ψ)) ∨ (¬ϕ ∧Q(¬ϕ→ [ϕ?]ψ))

From left to right. Assume that M |=w [ϕ?]Qψ, then we also have Mϕ? |=w Qψ. In
case M |=w ϕ, the new issue relation locally refined the old one to ϕ-worlds, and
hence we get the left-hand disjunct on the right. The other case yields the right-
hand disjunct. From right to left. Properly viewed, the preceding explanation
already established an equivalence.

Our second illustration (Resolving & Knowledge) shows how a resolution ac-
tion changes knowledge, making crucial use of the intersection modality:

[!]Kϕ↔ R[!]ϕ

M |=w [!]Kϕ is equivalent to M! |=w Kϕ, which is equivalent to ∀v ∈ W! :
w ∼! v implies M! |=v ϕ. As ∼! =∼∩≈,the semantics of our dynamic modality
tells us that ∀v ∈ W : w (∼∩≈) v implies M |=v [!]ϕ, which is equivalent to
M |=w R[!]ϕ, as desired.

The rest of the proof proceeds exactly like before along the standard DEL
methodology. 2

2.8.2. Proof (Theorem 2.3.4). The proof consists in suitable agent labeling
of earlier reduction axioms. We illustrate this generalization with the indexed
versions of two previous axioms, e.g. Answer & Knowledge, Asking & Partition:

[ϕ!]Kaψ ↔ (ϕ ∧Ka(ϕ→ [ϕ!]ψ)) ∨ (¬ϕ ∧Ka(¬ϕ→ [ϕ!]ψ)),

[ϕ?]Qaψ ↔ (ϕ ∧Qa(ϕ→ [ϕ?]ψ)) ∨ (¬ϕ ∧Qa(¬ϕ→ [ϕ?]ψ)).

The rest of the proof proceeds like before along the DEL methodology. 2

2.8.3. Proof (Theorem 2.3.7). We display here just three key reduction ax-
ioms: – Asking & Knowledge, where χ = pre(ϕ? ba):

[ϕ?ba]Kcψ ↔ (χ ∧Kc(χ→ [ϕ?ba]ψ)) ∨ (¬χ ∧Kc(¬χ→ [ϕ?ba]ψ))

– Asking & Intersection: [ϕ?ba]Rcψ ↔
∨
i∈{0..3}{χi ∧ Rc(χi → [ϕ?ba]ψ)} where

χi ∈ {pre(ϕ? ba) ∧ ϕ,¬pre(ϕ? ba) ∧ ϕ, pre(ϕ? ba) ∧ ¬ϕ,¬pre(ϕ? ba) ∧ ¬ϕ}

– Announcement & Knowledge: [ϕ!ba]Kcψ ↔
∨
i∈{0..3}{χi ∧Kc(χi → [ϕ!ba]ψ)},

where χi ∈ {pre(ϕ! ba) ∧ ϕ,¬pre(ϕ! ba) ∧ ϕ, pre(ϕ! ba) ∧¬ϕ,¬pre(ϕ! ba) ∧¬ϕ}

48 Chapter 2. Dynamic Epistemic Logic of Questions

The rest of the proof proceeds exactly like before along the standard DEL method-
ology. 2

2.8.4. Proof (Theorem 2.4.8). The proof follows the lines of the standard
DEL methodology described in the previous section with the only caveat that
now we need to define a complexity measure for formulae containing questioning
action modalities by taking the complexity of the preconditions.

The proof also makes use of a definition that will be introduced in Section
3.2, we insert the proof after the needed notions are explained and discussed in
detail in Section 3.2. 2

2.8.5. Proof (Lemma 2.6.7). Induction on n. For (base case) n = 0 it is the
case by definition. Suppose (induction hypothesis) that the statement holds for
Hn and λn. Take (induction step) σ ∈ Hn+1 with σ = σ′q. By the induction
hypothesis, λn(σ′) is a maximally consistent set. Moreover, by the construction
of Hn+1, 〈q〉> ∈ λn(σ), hence λn+1(σ) 6= ∅. For arbitrary ϕ ∈ LTDELQ

, as
λn(σ′) is a maximally consistent set, either 〈q〉ϕ ∈ λn(σ′) or ¬〈q〉ϕ ∈ λn(σ′). If
〈q〉ϕ ∈ λn(σ′), then ϕ ∈ λn+1(σ) by construction. If ¬〈q〉ϕ ∈ λn(σ′), then, by
the Neg. axiom we have 〈q〉¬ϕ ∈ λn(σ′). Thus, ¬ϕ ∈ λn+1(σ) by construction.
As ϕ was arbitrary, we have that for all ϕ ∈ LTDELQ

, either ϕ ∈ λn+1(σ) or
¬ϕ ∈ λn+1(σ).

To show that λn+1 is consistent, suppose towards contradiction that there
are formulas ϕ1, ..., ϕm ∈ λn+1(σ) such that `

∧m
i=1 ϕi → ⊥. Using standard

modal reasoning, ` 〈q〉> →
∨m
i=1〈q〉¬ϕi. Since 〈q〉> ∈ λn(σ′), it folllows that∨m

i=1〈q〉¬ϕi ∈ λn(σ′). As λn(σ′) is a maximally consistent set, there is some j with
1 ≤ j ≤ m and 〈q〉¬ϕj ∈ λn(σ′). Using the Neg. axiom we have ¬〈q〉ϕj ∈ λn(σ′).
By construction of λn+1(σ) we have 〈q〉ϕi ∈ λn(σ′) for each i = 1, . . . ,m, which
contradicts the fact that λn(σ′) is consistent. 2

2.8.6. Proof (Lemma 2.6.8). The proof needs a definition that will be intro-
duced in Section 3.2, we insert the proof after the needed notions are explained
and discussed in detail in Section 3.2. 2

2.8.7. Proof (Theorem 2.6.9). The proof follows by a standard argument
from Lemma 2.6.8 and the fact that the canonical model is in the class of intended
models. 2

Chapter 3

Implementing Questioning Dynamics

In this chapter we present and document the Haskell implementation behind
DELQ. Some outstanding features of the implementation are the following: mod-
eling the dynamics of issue-epistemic updates via questioning actions, intuitive
display of update results, intuitive display of both issue-epistemic models and
questioning action models, model checking of issue-epistemic formulae in issue-
epistemic structures. The chapter presents and explains the code of one main
module DELQ.lhs as well as its related functionality contained in auxiliary mod-
ules. The code is written in Haskell [55], [68], in the style of Knuth’s ‘literate
programming’ and it is related to previous epistemic functionality from DEMO
[107], and specific DELQ functionality from [71].

3.1 A DEMo-like Implementation for DELQ

In this sections we present the implementation behind the DELQ results of Chap-
ter 2. We present and discuss the main modules, other modules containing aux-
iliary functionality are added in a final section. Further illustrations of how the
code is useful can be found already in the next section based on the theory already
introduced in the previous chapter, they are also referred to throughout the text
and additional illustrations are added whenever needed.

The working language for this chapter is Haskell. Haskell is a high level, non-
strict, purely-functional programming language named after Haskell B. Curry.
The overall design of the implementation has a modular structure, with specific
modules capturing theoretical aspects and modeling logical components intro-
duced and discussed so far in previous chapters. The DELQ.lhs module is behind
the general theoretical background for the logic of questions from Chapter 2,
and it also contains functionality to model more complex questioning and reso-
lution actions that include questions that are represented by a cover instead of a
partition and answering that captures indistinguishability of previous questions.

49

50 Chapter 3. Implementing Questioning Dynamics

The following modules are part of the main DELQ.lhs module:

Syntax The module that defines the data structures for propositional symbols, agent
labels and complex formulae of DELQ. These definitions are behind syn-
tax of the epistemic language from Section 2.1.2 of Chapter 2, where their
intuitive meaning was introduced and discussed extensively.

Structures The module that defines the data structures for the issue-epistemic struc-
tures and the various action models and event models as well as their inner
structure component by component. Specific functionality, like initialization
and naming functions are also included in this module. These definitions
are behind Section 2.1.1 of Chapter 2, where their intuitive meaning was
introduced and discussed in detail.

BinaryRel The module containing the type definition and the main functionalities for
binary relations. Binary relations are a central component of the issue-
epistemic and action structures, therefore operations on and properties of
relations are used for many tasks: defining issue and information partitions,
computing fixed points, etc. These definitions are behind Section 2.2.1 of
Chapter 2, where their intuitive meaning was introduced and discussed.

Semantics The module that contains the functionality linking the formal language
introduced in the Syntax.lhs module to the issue-epistemic models and
their functionality from the Structures.lhs module. The main pillar of
this link is given by the way in which DELQ formulae are interpreted in
issue-epistemic structures. This is done by a recursive semantic definition
for the concept of truth in a structure. All these correspond to Section 2.1.2
of Chapter 2, where they are intuitively illustrated and minutely explained.

Upgrade The module containing functionality related to the model upgrade opera-
tions discussed so far. These encode model transformations either by means
of resolution and refinement based on taking intersections or by using pre-
conditions and taking the product upgrade of issue-epistemic structures
and questioning action models. These definitions are behind Section 2.2.1
of Chapter 2, where their intuitive meaning is introduced and discussed.

Display Auxiliary module containing functionality used to display epistemic struc-
tures themselves and results of various operations involving them such as
model-checking of formulae, domain naming, listing of expressible formulae,
etc. These have been used in Section 3.2 of Chapter 2.

Shortcuts Auxiliary module containing the predefined structures used as examples and
illustrations from Section 3.2 of Chapter 2.

3.1. A DEMo-like Implementation for DELQ 51

3.1.1 The Syntax.lhs Module

1 module Syntax

2 where

3 import List

4

5 data Prop = P Int | Q Int | R Int | S Int | N Int deriving (Eq,Ord)

6 data Nomi = Nomi Int deriving (Eq,Ord)

7

8 instance Show Prop where

9 show (P 0) = "p"; show (P i) = "p" ++ show i

10 show (Q 0) = "q"; show (Q i) = "q" ++ show i

11 show (R 0) = "r"; show (R i) = "r" ++ show i

12 show (S 0) = "s"; show (S i) = "s" ++ show i

13 show (N 0) = "n"; show (N i) = "n" ++ show i

14

15 data Agent = A Int | B Int | C Int | D Int | E Int deriving (Eq,Ord)

16

17 instance Show Agent where

18 show (A 0) = "a"; show (A i) = "a" ++ show i

19 show (B 0) = "b"; show (B i) = "b" ++ show i

20 show (C 0) = "c"; show (C i) = "c" ++ show i

21 show (D 0) = "d"; show (D i) = "d" ++ show i

22 show (E 0) = "e"; show (E i) = "e" ++ show i

Basic operations on lists are predefined in Prelude.hs which is the main
Haskell module containing the standard language definitions and functions. The
list functionality is imported from the List module in line 3.

Next, the data-structure for propositional atoms is defined and its basic func-
tionality is added in lines 5-13. Propositions are going to be symbols possible
indexed by an integer, we introduce for this data constructors. We want to be
able to test propositional symbols for equality and to compare and order propo-
sitional symbols, we make the proposition datatype inherit this properties as
they are predefined in the standard Haskell type-system by using the deriving

(Eq,Ord) command. A special type of propositional symbols are the nominals,
line 6. For conceptual reasons we can introduce a distinct data structure for
them. For technical reasons propositions and nominals have to belong to disjoint
sets as discussed before. In practice, however, this can also be achieved by simply
reserving a special symbol for nominals, in our case N, line 5. We give here both
alternatives and we will use the most convenient one in subsequent functions.

Finally, we want to be able to display propositional symbols, we achieve this
by making Prop an instance of the predefined Show class and by defining the show
function for propositions. In case the index is 0 this is not going to be displayed,
otherwise we concatenate the character for the index and display the resulting
list of characters. We continue by defining the data-structure for agent labels and
by adding its basic functionality in lines 15-22. These is completely analogous to
what we did for propositional symbols.

52 Chapter 3. Implementing Questioning Dynamics

The final code block, lines 23-54, defines the data-structure for complex formu-
lae and adds its basic functionality. These follow the basic definitions introduced
in Section 2.1.2 of Chapter 2: we have constructors for nominals and proposi-
tional atoms, then we have the basic boolean connectives, taking list of formulas
for conjunction and disjunction, and we have constructors for the static modali-
ties, which take bot a formula and an agent label as parameters. In addition, we
also introduce standard group notions for issues, knowledge and their intersection:
conditional common knowledge, common knowledge and distributed knowledge,
taking a list of agents as an additional parameter, and general knowledge.

23 data Formq = Top | Prop Prop | Nomi Nomi

24 | Neg Formq | Conj [Formq] | Disj [Formq]

25 | O Agent Formq | X Agent Formq | K Agent Formq | U Formq

26 | CO [Agent] Formq | DO [Agent] Formq | EO Formq

27 | CX [Agent] Formq | DX [Agent] Formq | EX Formq

28 | CK [Agent] Formq | DK [Agent] Formq | EK Formq

29 | CCO [Agent] Formq Formq | CCK [Agent] Formq Formq

30 | CCX [Agent] Formq Formq deriving (Eq,Ord)

31

32 instance Show Formq where

33 show Top = "T"

34 show (Prop p) = show p

35 show (Nomi i) = show i

36 show (Neg f) = ’~’: show f

37 show (Conj fs) = ’&’: show fs

38 show (Disj fs) = ’v’: show fs

39 show (O agent f) = ’Q’: show agent ++ show f

40 show (X agent f) = ’R’: show agent ++ show f

41 show (K agent f) = ’K’: show agent ++ show f

42 show (U f) = ’U’: show f

43 show (CO group f) = "CQ" ++ show group ++ show f

44 show (DO group f) = "DQ" ++ show group ++ show f

45 show (EO f) = "EQ" ++ show f

46 show (CX group f) = "CX" ++ show group ++ show f

47 show (DX group f) = "DX" ++ show group ++ show f

48 show (EX f) = "EX" ++ show f

49 show (CK group f) = "CK" ++ show group ++ show f

50 show (DK group f) = "DK" ++ show group ++ show f

51 show (EK f) = "EK" ++ show f

52 show (CCO group f1 f2) = "CCQ" ++ show f1 ++ show group ++ show f2

53 show (CCX group f1 f2) = "CCX" ++ show f1 ++ show group ++ show f2

54 show (CCK group f1 f2) = "CCK" ++ show f1 ++ show group ++ show f2

Analogous to propositions, we define the show function used to display for-
mulae in our language, using prefix notation for boolean connectives which are
applied to lists of formulae. Further illustrations of how this code works for some
frequently used formula instances are included in Section 3.2.

3.1. A DEMo-like Implementation for DELQ 53

3.1.2 The Structures.lhs Module

The list functionality is imported as explained before. The syntax-related func-
tionality is imported from the previously described Syntax.lhs module in line 4.
The content of the Probability module will be explained at a later stage.

1 module Structures

2 where

3 import List

4 import Syntax

5 import Probability

6

7 data EIM state = Eim

8 [state]

9 [Agent]

10 [(Agent,state,state)]

11 [(Agent,state,state)]

12 [(state,[Prop])]

13 [state]

14 deriving (Eq,Show)

Next, the data-structure for issue-epistemic models is defined in lines 7-14
following the basic definitions introduced and discussed in Section 2.1.1 of Chap-
ter 2. Without going again in minute details we remind the main components
and explain how they are implemented. The data constructor for issue-epistemic
structures takes the following arguments: a list of states, representing the domain
of alternatives or possible worlds; a list of labels representing the agents, as intro-
duced before; two lists of triples containing an agent and two states, encoding the
issue relation respectively the uncertainty relations, indexed by the corresponding
agent label; a list of pairs containing a state and a list of propositional symbols,
representing the valuation function assigning propositions to each possible world;
the final component is a list of states encoding the actual situation. We want
to be able to test for equality and display EIMs, so we make the EIM datatype
inherit this properties as they are predefined in the standard Haskell type-system
by using the deriving (Eq,Show) command. Further illustrations of how this
code works for some concrete instances of EIMs are included in Section 3.2.

Next we add the functions needed to work with the structures just defined.

The function initMq, lines 16-24, is used to generate issue-epistemic mod-
els. It takes a list of agents and a list of propositional atoms as arguments,
respectively, and returns a “blisfull ignorance” and “pristine questioning” issue-
epistemic model, i.e., each agent has both a universal issue relation and a univer-
sal uncertainty relation over all possible combinations of the given propositional
atoms. The actual situation remains unspecified, using a list of the entire domain.

16 initMq :: (Num state, Enum state) => [Agent] -> [Prop] -> (EIM state)

17 initMq ags props = (Eim worlds ags accs eqq val points)

18 where

54 Chapter 3. Implementing Questioning Dynamics

19 worlds = [0..(2^k-1)]

20 k = length props

21 val = zip worlds (sortL (powerList props))

22 accs = [(ag,st1,st2) | ag <- ags, st1 <- worlds, st2 <- worlds]

23 eqq = [(ag,st1,st2) | ag <- ags, st1 <- worlds, st2 <- worlds]

24 points = worlds

25

26 powerList :: [a] -> [[a]]

27 powerList [] = [[]]

28 powerList (x:xs) = (powerList xs) ++ (map (x:) (powerList xs))

29

30 sortL :: Ord a => [[a]] -> [[a]]

31 sortL = sortBy (\ xs ys -> if length xs < length ys then LT else

32 if length xs > length ys then GT else compare xs ys)

33

34 sortR :: Ord a => [[a]] -> [[a]]

35 sortR = sortBy (\ xs ys -> if length xs < length ys then GT else

36 if length xs > length ys then LT else compare ys xs)

37

38 dom :: EIM a -> [a]

39 dom (Eim worlds _ _ _ _ _) = worlds

The next step in the generation of an issue-epistemic model is to name all
its states using the nominal n indexed by integer values for every possible world
in the domain. This is done by the named function which takes an arbitrary
structures and returns it named, see lines 40-45.

40 named :: (Eq a) => EIM a -> EIM a

41 named m@(Eim worlds ags accs eqq val points) =

42 (Eim worlds ags accs eqq namedval points)

43 where

44 namedval = zip worlds (map(\x ->((snd (val!!x) ++ [(N((elemIndices

45 (fst (val!!x)) (map fst val))!!0))]))) [0..((length val)-1)])

The remaining functions have an auxiliary role as follows: starting from line
26, the powerList function defines recursively a list-analogue of the powerset
construction, it is used to generate all propositional combinations. The functions
sortL and sortR, line 30, respectively, line 34 give two alternative ways of order-
ing lists, by comparing first their length and second their content. Both require
an ordered type as the predefined list ordering functions are used. Finally, the
dom function, line 38, takes an EIM and returns its domain.

The data structure for EIMs and its functionality are very flexible, as they
can be extended with minor modeling adaptations to capture action structures.

Questioning Action Models The action models representing both question-
ing and resolution actions are a straightforward adaptation of EIMs. Their data-
structures is defined in lines 47-54 following the basic definitions introduced and
discussed in Section 2.1.1 of Chapter 2. Again, without going in minute details we
remind the main components and explain briefly the implementation design. The

3.1. A DEMo-like Implementation for DELQ 55

data constructor for questioning action structures (QAMs) takes the following
arguments: a list of states, representing the arbitrary epistemic events, which in
this context stand for possible answers; a list of labels representing the agents, as
before; two lists of triples containing an agent and two states, encoding the issue
respectively uncertainty relations, as before; a list of pairs containing an event
and a issue-epistemic formula, representing the precondition function assigning
formulae encoding conditions for execution to questioning events, this replaces the
previous valuation function; the final ingredient is a list of events encoding the
real or actual question. We want to be able to test for equality and display QAMs,
so we make the EIM datatype inherit this properties as they are predefined in
the standard Haskell type-system by using the deriving (Eq,Show) command.
Further illustrations of how this code works for some concrete instances of QAMs
are included in Section 3.2 of the current chapter.

47 data QM state = Qm

48 [state]

49 [Agent]

50 [(Agent,state,state)]

51 [(Agent,state,state)]

52 [(state,Formq)]

53 [state]

54 deriving (Eq,Show)

The data structure for a resolution action, lines 56-63, is defined essentially as
the one for questioning actions, with the exception that now the list of answers
is replaced by a unique event. However, this structural isomorphism hides the
fact that in practice the formulae encoding preconditions for execution have a
completely different structure. This is why we have both actions represented by
distinct data constructors.

The main arguments in describing and generating questioning action struc-
tures are given by a list of ignorant agents a list of knowing, or aware, agents
and a list of formulae representing content of binary questions together with a
designated formula which stands for the content of the actual questioning action:

56 data RM state = Rm

57 [state]

58 [Agent]

59 [(Agent,state,state)]

60 [(Agent,state,state)]

61 [(state,Formq)]

62 state

63 deriving (Eq,Show)

The initAq function, lines 65-80, generates a model for indistinguishable
yes/no questions as follows: two events are generated for each formula, line 70,
corresponding to the affirmative and the negative answers; the corresponding
positive and negative preconditions are assigned to the generated events, line 71;

56 Chapter 3. Implementing Questioning Dynamics

the uncertainty relation is constructed starting from line 72, taking into account
the distinction between the two lists of ignorant and aware agents, answers to
the same question remain undetermined for everyone while answers to different
questions are indistinguishable only for the ignorant agents; the issue relation is
set to the identity for all agents, line 77; and the distinguished set of events is the
binary answer to the real question, line 79. The precond function, lines 82-85, is
an auxiliary function used to retrieve the precondition for an event.

65 initAq :: (Num state, Enum state) =>

66 [Agent] -> [Agent] -> [Formq] -> Formq -> (QM state)

67 initAq iags kags propfs quest =

68 (Qm events (iags ++ kags) accs eqqs prec answers)

69 where

70 events = [0..(2* (fromIntegral (length propfs)))-1]

71 prec = zip events (propfs ++ (map (\x-> (Neg x)) propfs))

72 accs = [(ag,st1,st2) | ag <- iags, st1 <- events, st2 <- events

73 ++[(ag,st1,st2) | ag <-kags, st1 <-events, st2 <- events,

74 or [(precond prec st1) == (precond prec st2),

75 (precond prec st1) == (Neg (precond prec st2)),

76 (precond prec st2) == (Neg (precond prec st1))]]

77 eqqs = [(ag,st1,st2) | ag <- (iags ++ kags), st1 <- events,

78 st2 <- events, st1==st2]

79 answers = let q = quest in

80 map (\x-> (fst x)) (filter (\x->(or [(snd x)==q,(snd x)==(Neg q)])) prec

81

82 precond :: (Num state, Enum state) =>

83 [(state,Formq)] -> state -> Formq

84 precond prec e =

85 (map (\x -> (snd x)) (filter (\x -> ((fst x)==e)) prec))!!0

The initAr function, lines 87-98, generates a model for a resolution action
as follows: a list of events matching the formula-list argument is created, line
92, and execution preconditions are assigned to each event, line 93; as previously
for questioning actions, the pattern based on the distinction between the list
arguments containing ignorant and aware agents is used to generate a universal
and an identity uncertainty relation, respectively, line 94 and a universal issue-
relation, line 96; finally, the last argument determines the actual event, line 97.

87 initAr :: (Num state, Enum state) =>

88 [Agent] -> [Agent] -> [Formq] -> Formq -> (RM state)

89 initAr iags kags propfs res =

90 (Rm events (iags ++ kags) accs eqqs prec answer)

91 where

92 events = [0..(1* (fromIntegral (length propfs)))-1]

93 prec = zip events propfs

94 accs = [(ag,st1,st2) | ag <- iags, st1 <- events, st2 <- events]

95 ++ [(ag,st1,st2) | ag <- kags, st1 <- events, st2 <- events, st1==st2]

96 eqqs = [(ag,st1,st2) | ag <- (iags++kags), st1 <- events, st2 <- events]

97 answer = let q = res in

98 (map (\x-> (fst x)) (filter (\x-> ((snd x)==q)) prec))!!0

3.1. A DEMo-like Implementation for DELQ 57

Such resolution structures work fine with a product update mechanism for
public questions, however, in order to capture more complex resolution actions
succeeding private questioning actions more elaborate constructions are needed.

The pinitAr function, lines 100-114, generates a resolution action structure
that allows for some answers to remain indistinguishable as follows:

100 pinitAr :: (Num state, Enum state) =>

101 [Agent] -> [Agent] -> [Formq] -> Formq -> [Formq] -> (RM state)

102 pinitAr iags kags propfs res reset =

103 (Rm events (iags ++ kags) accs eqqs prec answer)

104 where

105 events = [0..(1* (fromIntegral (length propfs)))-1]

106 prec = zip events propfs

107 accs = [(ag,st1,st2) | ag <- iags, st1 <- events, st2 <- events,

108 (st1 ‘elem‘ (map (\x -> (fst x)) (filter (\x ->

109 (elem (snd x) reset)) prec))) == (st2 ‘elem‘ (map (\x -> (fst x))

110 (filter (\x -> (elem (snd x) reset)) prec)))]

111 ++ [(ag,st1,st2) | ag <- kags, st1 <- events, st2 <- events, st1==st2]

112 eqqs = [(ag,st1,st2) | ag <- (iags++kags), st1 <- events, st2 <- events]

113 answer = let q = res in

114 (map (\x-> (fst x)) (filter (\x-> ((snd x)==q)) prec))!!0

The first two arguments are, as before, list containing ignorant respectively
aware agents used to generate uncertainty relations that allow for epistemic gra-
dients, line 107, instead of just complete uncertainty as before, now partial uncer-
tainty can be modeled; the issue-relation is, as before, universal, line 112; a list
of events matching the formula-list argument is created, line 105, and execution
preconditions are assigned to each event, line 106 as explained previously; finally,
the last function argument is used to determine the actual event, in line 113.

Complex Questioning As with resolution actions, the raw binary questioning
structures are just a first approximation, their basic utilities can be extended to
deal with more complex questioning functionality in an analogous way. We give
here the code for both complex propositional questions with mutually disjoint
answers and complex cover-based questions with overlapping answer-sets.

115 initPropq :: (Num state, Enum state) =>

116 [Agent] -> [Agent] -> [[Formq]] -> [Formq] -> (QM state)

117 initPropq iags kags frmlist quest =

118 (Qm events (iags ++ kags) accs eqqs prec answers)

119 where

120 events = [0..((fromIntegral (length (foldr (++) [] frmlist)))-1)]

121 prec = zip events ((foldr (++) [] frmlist))

122 accs = [(ag,st1,st2) | ag <- iags, st1 <- events, st2 <- events]

123 ++[(ag,st1,st2) | ag <- kags, st1 <- events, st2 <- events,

124 (filter (elem (precond prec st1)) frmlist) ==

125 (filter (elem (precond prec st2)) frmlist)]

126 eqqs = [(ag,st1,st2) | ag <- (iags ++ kags), st1 <- events,

127 st2 <- events, st1==st2]

128 answers = let q = quest in

58 Chapter 3. Implementing Questioning Dynamics

129 map (\x-> (fst x)) (filter (\x-> (elem (snd x) q)) prec)

130

131 fst33 (x,_,_) = x

132 snd33 (_,x,_) = x

133 trd33 (_,_,x) = x

The initPropq function, lines 115-129, generalizes the previous construction
from binary yes/no questions to arbitrary partition-based propositional questions.
To capture this additional complexity the function arguments are now a list of
ignorant agents, a list of aware agents, just like before, but the remaining param-
eters are lifted one level of abstraction, we have now a list of lists of formulae,
standing for the indistinguishable questioning actions and a list of formulae de-
signed to capture the real or actual question.

The function arguments are assumed for now to be adequate for a partition
model of questions, i.e. the formulae are assumed to be mutually incompatible,
however they do not have to also be jointly exhaustive, the product update mech-
anism handles such aspects in a standard way. The process of automatic gener-
ation proceeds as follows: events are generated for each formula, after collapsing
in line 120 by forldr one level of abstraction and concatenating all formulae in
one list; the corresponding exclusive preconditions are assigned to the generated
events, in line 121 by zip-ing the two lists; the uncertainty relation is constructed
starting from line 122, taking into account the distinction between ignorant and
aware agents, answers to the same question remain undetermined for everyone
while answers to different questions are indistinguishable only for the ignorant
agents, because in the current setting it is possible that answers appear in multi-
ple questions, the answer-list is also used as an additional identification criterion;
the issue relation is set, as before, to the identity for all agents, line 126 capturing
the fact that questioning actions refine the issue relation; and the actual set of
events is taken to be the distinguished formula list given as the last argument,
line 128. Further illustrations of how this code works for some concrete examples
are included in Section 3.2 later in this chapter.

135 initPropCov :: (Num state, Enum state) =>

136 [Agent] -> [Agent] -> [[Formq]] -> ([Formq],Formq) -> (QM state)

137 initPropCov iags kags frmlist quest answ =

138 (Qm events (iags ++ kags) accs eqqs prec answers)

139 where

140 events = [0..((fromIntegral (length (foldr (++) [] frmlist)))-1)]

141 prec = zip events ((foldr (++) [] frmlist))

142 accs = [(ag,st1,st2) | ag <- iags, st1 <- events, st2 <- events]

143 ++[(ag,st1,st2) | ag <- kags, st1 <- events, st2 <- events,

144 (map trd33 (filter (\x -> (fst33 x == st1))

145 (zip3 events ((foldr (++) [] frmlist)) (foldr (++) []

146 (map (\x -> take (length x) (repeat x)) frmlist)))))

147 == (map trd33 (filter (\x -> (fst33 x == st2))

148 (zip3 events ((foldr (++) [] frmlist)) (foldr (++) []

149 (map (\x -> take (length x) (repeat x)) frmlist)))))]

3.1. A DEMo-like Implementation for DELQ 59

150 eqqs = [(ag,st1,st2) | ag <- (iags ++ kags), st1 <- events,

151 st2 <- events, st1==st2]

152 answers = [fst33 ((filter (\x -> (and [(snd33 x) ==

153 answ, (trd33 x)==quest])) (zip3 events ((foldr (++)

154 [] frmlist)) (foldr (++) [] (map (\x -> take (length x)

155 (repeat x)) frmlist))))!!0)]

The initPropCov function, lines 135-155, generalizes the previous construc-
tion from partition-based propositional questions to questions based on a cover
by eliminating the requirement that answers to questions have to be disjoint and
allowing for answers with overlapping extensions.

In order to deal with this additional complexity the initPropCov function,
lines 135-155, takes as arguments the lists of ignorant and aware agents, just like
before, a list of formulae lists, but the last parameter is now a list-formula pair,
representing the real question action and the designed actual answer, respectively.
Auxiliary projection functions for triples are defined in lines 131-133.

The process of automatic generation proceeds as follows: events are generated
for each formula, again by folding all the answers in a single list, in line 140; the
arbitrary preconditions are zip-ed with the generated events, in line 141; the
uncertainty relation is constructed using triples containing events, questions and
answers starting from line 142, the distinction between ignorant and aware agents
has the same role as before, because in the current setting answers may have
nonempty intersections and appear in multiple questions, the answer-list is also
used as an additional identification criterion; the issue relation is set, as before,
to the identity for all agents, in line 150, capturing the fact that questioning
actions refine the issue relation by distinct events, even thought some might have
overlapping or identical preconditions; and the actual event is constraint now to
a singleton list taking into account both the precondition and the question list to
which it belongs, line 152. Further illustrations of how this code works for some
concrete examples are included in Section 3.2.

Complex Resolution It is now time to extend our models for resolution ac-
tions in a similar way to allow a formal structure matching the gradient level of
abstraction in the actions with indistinguishable questions discussed so far.

A first step in this direction will be to parametrize resolution by the history
of previous questioning actions. This can be done by the use of preconditions.
The initAres function, lines 157-177, has the same structure as previous ones
but assigns preconditions to event in a more complex way.

The componentwise generation process is the following: events are generated
for each formula, by taking binary answers, in line 162; corresponding binary issue
preconditions are zip-ed with the generated events, in line 163; the uncertainty
relation is constructed by pairing events with affirmative respectively negative
issue-precondition, (see Section 3.2 for the intuitive example), starting from line
167, the distinction between ignorant and aware agents has the same role as

60 Chapter 3. Implementing Questioning Dynamics

explained before; the issue relation is the universal relation for all agents, line
175, capturing the fact that resolution actions do not raise further issues; and the
actual event is determined by the last function argument, at line 176.

Resolution actions can in some cases override the structure of the issue relation
and give either more or less information than a mere answer to the questions raised
so far would allow. There is no reason why such information flow scenarios should
be excluded from the formalism. And indeed such situations can be captures by
using the constructor defined by the initAres2 function, lines 179-192.

The components that are unchanged from the previous constructor are the
event set, from line 184, the binary issue-precondition formulae, from line 185,
the universal issue relation, from line 190, and the designated actual event, in
line 191; the changed component in this new resolution model consists in as-
signing an universal indistinguishability relation between events to the oblivious
agents, starting from line 188, while the aware agents have a transparent access
to the content of the resolution action. Further intuitive illustrations of how this
code works and some concrete examples of resulting resolution actions and their
epistemic effect are included in Section 3.2 later in this chapter.

157 initAres :: (Num state, Enum state) =>

158 [Agent] -> [Agent] -> [Formq] -> Formq -> (QM state)

159 initAres iags kags propfs actf =

160 (Qm events (iags ++ kags) accs eqqs prec resol)

161 where

162 events = [0..(2* (fromIntegral (length propfs)))-1]

163 prec = zip events ((map (\x-> (Conj [x, Disj [O (iags!!0) x,

164 O (iags!!0) (Neg x)]])) propfs) ++ (map (\x-> (Conj [

165 Neg x, Disj [O (iags!!0) x, O (iags!!0)

166 (Neg x)]])) (propfs)))

167 accs = [(ag,st1,st2) | ag <- iags, st1 <- events, st2 <- events,

168 ((elemIndices st1 events)!!0) <= (length propfs)-1,

169 ((elemIndices st2 events)!!0) <= (length propfs)-1]

170 ++ [(ag,st1,st2) | ag <- iags, st1 <- events,

171 st2 <- events, ((elemIndices st1 events)!!0) >=

172 (length propfs), ((elemIndices st2 events)!!0) >=

173 (length propfs)] ++ [(ag,st1,st2) | ag <- kags,

174 st1 <- events, st2 <- events, st1==st2]

175 eqqs = [(ag,st1,st2) | ag <- (iags ++ kags),st1 <- events,st2 <- events]

176 resol = let q = actf in

177 map (\x->(fst x)) (filter (\x->((snd x)==q)) (zip events propfs))

178

179 initAres2 :: (Num state, Enum state) =>

180 [Agent] -> [Agent] -> [Formq] -> Formq -> (QM state)

181 initAres2 iags kags propfs actf =

182 (Qm events (iags ++ kags) accs eqqs prec resol)

183 where

184 events = [0..(2* (fromIntegral (length propfs)))-1]

185 prec = zip events ((map (\x-> (Conj [x, Disj [O (iags!!0) x,

186 O (iags!!0) (Neg x)]])) propfs) ++ (map (\x->(Conj [Neg x,Disj

187 [O (iags!!0) x, O (iags!!0) (Neg x)]])) (propfs)))

3.1. A DEMo-like Implementation for DELQ 61

188 accs = [(ag,st1,st2) | ag<-iags, st1<-events, st2<-events] ++

189 [(ag,st1,st2) | ag<-kags, st1<-events, st2<-events, st1==st2]

190 eqqs = [(ag,st1,st2) | ag <- (iags ++ kags), st1 <-events, st2 <- events]

191 resol = let q = actf in map (\x-> (fst x))

192 (filter (\x-> ((snd x)==q)) (zip events propfs))

The initAres3 function, lines 194-209, takes resolution actions to the other
extreme in this large spectrum of modeling possibilities by allowing resolutions
in which all the questions raised so far are publicly resolved for all agents.

The components that are unchanged from the previous constructor are the
event set, from line 199, the binary issue-precondition formulae, from line 200,
the universal issue relation, from line 207, and the designated actual event, in line
208; the changed component in this new resolution model consists in assigning
an identity indistinguishability relation between events to all agents in line 204.

194 initAres3 :: (Num state, Enum state) =>

195 [Agent] -> [Agent] -> [Formq] -> Formq -> (QM state)

196 initAres3 iags kags propfs actf =

197 (Qm events (iags ++ kags) accs eqqs prec resol)

198 where

199 events = [0..(2* (fromIntegral (length propfs)))-1]

200 prec = zip events ((map (\x-> (Conj [x, Disj [O (iags!!0) x,

201 O (iags!!0) (Neg x)]])) propfs) ++ (map (\x-> (Conj

202 [Neg x, Disj [O (iags!!0) x, O (iags!!0)

203 (Neg x)]])) (propfs)))

204 accs = [(ag,st1,st2) | ag <- iags, st1 <- events, st2 <- events,

205 st1 ==st2] ++ [(ag,st1,st2) | ag <- kags, st1 <- events,

206 st2 <- events, st1==st2]

207 eqqs = [(ag,st1,st2) | ag <- (iags ++ kags),st1 <- events,st2 <- events]

208 resol = let q = actf in map (\x-> (fst x))

209 (filter (\x-> ((snd x)==q)) (zip events propfs))

Finally, the initAres4 function, lines 211-229, models a resolution action with
an arbitrary gradient of publicity for the answer events. The components that
remain unchanged are the event set, from line 216, the binary issue-precondition
formulae, from line 217, the universal issue relation, from line 226, and the des-
ignated actual event, in line 208; the changed component in this new resolution
model consists in assigning an indistinguishability relation that groups the events
by division modulo the length of the list of answer events, starting from line 221.

Further intuitive illustrations of how this code works for some concrete reso-
lution actions are discussed in Section 3.2 later in this chapter.

Although all the constructions presented and explained in this section seem
to lead to an industrious process, they follow the usual requirements for an exer-
cise in the ‘art of modeling’ for various scenarios occurring in luxuriant practical
applications, moreover, the generation of adequate models is automated, indicat-
ing the fact that the choice of the right issue-epistemic gradient for a particular
context to be modeled does is not given by logic but is merely a contingent choice
determined by an adequate model of the situation at hand.

62 Chapter 3. Implementing Questioning Dynamics

211 initAres4 :: (Num state, Enum state) =>

212 [Agent] -> [Agent] -> [Formq] -> Formq -> (QM state)

213 initAres4 iags kags propfs actf =

214 (Qm events (iags ++ kags) accs eqqs prec resol)

215 where

216 events = [0..(2* (fromIntegral (length propfs)))-1]

217 prec = zip events ((map (\x-> (Conj [x, Disj [O (iags!!0) x,

218 O (iags!!0) (Neg x)]])) propfs) ++ (map (\x-> (Conj

219 [Neg x, Disj [O (iags!!0) x, O (iags!!0)

220 (Neg x)]])) (propfs)))

221 accs = [(ag,st1,st2) | ag <- iags, st1 <- events, st2 <- events,

222 rem ((elemIndices st1 events)!!0) (length propfs) ==

223 rem ((elemIndices st2 events)!!0) (length propfs)] ++

224 [(ag,st1,st2) | ag <- kags, st1 <- events, st2 <- events,

225 st1==st2]

226 eqqs = [(ag,st1,st2) | ag <- (iags ++ kags), st1 <- events,

227 st2 <- events]

228 resol = let q = actf in

229 map (\x-> (fst x)) (filter(\x->((snd x)==q)) (zip events propfs))

The real advantage of having all these models is that they can be handled in
a unitary manner by the product update mechanism, as we will see shortly.

3.1.3 The BinaryRel.lhs Module

Before we go on to discuss the product upgrade mechanism we will spend some
time presenting the basic definitions and functionality used in the implementation
for binary relations as already introduced in 2.2.1 of Chapter 2.

The module starts by importing the standard list functionality and defining,
in line 5 the datatype for binary relations as a list of pairs. Next a containment
function for lists is defined to be used for comparing relations represented as pair-
lists, at line 7, also a function that decides identity for relations, by ignoring the
order in which the pairs are present in the list, is defined at line 9.

1 module BinaryRel

2 where

3 import List

4

5 type Rel a = [(a,a)]

6

7 containedIn :: Eq a => [a] -> [a] -> Bool

8 containedIn xs ys = all (\ x -> elem x ys) xs

9 sameR :: Ord a => Rel a -> Rel a -> Bool

10 sameR r s = sort (nub r) == sort (nub s)

11

12 cnv :: Rel a -> Rel a

13 cnv r = [(y,x) | (x,y) <- r]

14

15 infixr 5 @@

16 (@@) :: Eq a => Rel a -> Rel a -> Rel a

3.1. A DEMo-like Implementation for DELQ 63

17 r @@ s = nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

18

19 euclR :: Eq a => Rel a -> Bool

20 euclR r = (cnv r @@ r) ‘containedIn‘ r

21

22 serialR :: Eq a => Rel a -> Bool

23 serialR r = all (not.null) (map (\ (x,y) -> [v | (u,v) <- r, y == u]) r)

Basic relational operations are introduced via the next two functions, the first
is the relational converse, in line 12, and relational composition, in line 15, as
an infix operator with priority 5. Two useful relational properties are defined
afterwards in line 19 euclideanity respectively seriality in line 22.

25 rightS :: Ord a => Rel a -> a -> [a]

26 rightS r x = (sort.nub) [z | (y,z) <- r, x == y]

27

28 lfp :: Eq a => (a -> a) -> a -> a

29 lfp f x | x == f x = x

30 | otherwise = lfp f (f x)

31

32 rtc :: Ord a => [a] -> Rel a -> Rel a

33 rtc xs r = lfp (\ s -> (sort.nub) (s ++ (r @@ s))) i

34 where i = [(x,x) | x <- xs]

35

36 tc :: Ord a => Rel a -> Rel a

37 tc r = lfp (\ s -> (sort.nub) (s ++ (r @@ s))) r

The image of an element under a relation is defined in line 25 and the reflex-
ive transitive closure and reflexive closure of a relation are introduced in lines
32 respectively line 36 using the least fix-point definition from line 28. These
definitions are going to be useful later on, for instance to define the semantics of
the common knowledge modality or for partition refinement.

3.1.4 The Semantics.lhs Module

The Sematics.lhs module uses the functionality presented so far, starting from
line 3, to give a recursive definition for truth of DELQ formulae in issue-epistemic
structures as introduced previously in Section 2.1.2 of Chapter 2.

1 module Semantics

2 where

3 import List

4 import Syntax

5 import Structures

6 import BinaryRel

7

8 domain :: Ord state => EIM state -> [state]

9 domain m@(Eim dom _ _ _ _ _) = dom

10

11 smodels :: Ord state => EIM state -> Formq -> Bool

12 smodels m@(Eim _ _ _ _ _ act) fr = (and (map (\x-> (models m x fr)) act))

64 Chapter 3. Implementing Questioning Dynamics

13

14 models :: Ord state => EIM state -> state -> Formq -> Bool

15 models m w Top = True

16 models m@(Eim _ _ _ _ val _) w (Prop p) =

17 elem p (concat [props|(w’,props) <- val, w’==w])

18 models m w (Neg f) = not (models m w f)

19 models m w (Conj fs) = and (map (models m w) fs)

20 models m w (Disj fs) = or (map (models m w) fs)

21 models m@(Eim _ _ _ eqq _ _) w (O agt f) =

22 and (map (flip (models m) f) (rightS (relq agt m) w))

23 models m@(Eim _ _ _ _ _ _) w (X agt f) =

24 and (map (flip (models m) f) (rightS (relx agt m) w))

25 models m@(Eim _ _ acc _ _ _) w (K agt f) =

26 and (map (flip (models m) f) (rightS (relk agt m) w))

27 models m@(Eim dom ags _ eqq _ _) w (U f) =

28 and (map (flip (models m) f) dom)

29

30 relk :: Agent -> EIM a -> Rel a

31 relk a m@(Eim _ _ acc _ _ _) = [(x,y) | (agent,x,y) <-acc, a == agent]

32

33 relq :: Agent -> EIM a -> Rel a

34 relq a m@(Eim _ _ _ eqq _ _) = [(x,y) | (agent,x,y) <-eqq, a == agent]

35

36 relx :: (Eq a) => Agent -> EIM a -> Rel a

37 relx a m = intersect (relk a m) (relq a m)

In line 8, the auxiliary function takes an issue-epistemic structure and returns
its domain. Before defining the usual local definition of truth at a state or from a
pointed perspective, we introduce the same notion at the level of a set of worlds
from line 11. This notion turns out to be often useful, especially in game contexts
where players are uncertain about the real situation.

The most important function in this module is the models function introduced
in lines 14-28. It takes as input an issue-epistemic structure, a state in its domain
and a formula and returns a boolean value. The definitions proceed along the
expected lines starting with the boolean cases, for which the valuation of the
model provides the needed information, and continuing to formulae containing
more complex modalities, for which the functionality related to the issue and
epistemic relations becomes crucial. The relevant information about the issues,
epistemic uncertainty and their interrelation for an agent or even groups of agents
is contained inside the model received as a function parameter. In order to access
this information and use it in recursive truth-value computations, three additional
auxiliary functions are defined starting from lines 33, 30 and 36, respectively.

3.1.5 The Upgrade.lhs Module

We have now all the requested ingredients to proceed towards implementing the
functionality needed for the central dynamic actions for DELQ as discussed in
Section 2.2.1 of Chapter 2. In this section we will show that the product update

3.1. A DEMo-like Implementation for DELQ 65

can be used as a unifying formal mechanism encompassing the luxuriant variety
of questioning actions that can be modeled by DELQ. We will also show how
using the issue relation on top of the traditional epistemic relation can extend
the product update mechanism in an interesting and useful way.

The module starts again in the standard way by incrementally importing, at
lines 3-7, some needed functionality from modules previously explained.

1 module Upgrade

2 where

3 import List

4 import Syntax

5 import Structures

6 import Semantics

7 import Shortcuts

Next, the upgradeq function, lines 9-27, implements the product update mech-
anism between issue structures and models of questioning actions using, as before,
the componentwise construction of the models’ constituents described before.

The new domain consists of pairs of worlds and events with matching pre-
conditions, from line 15; the two models that are the function’s arguments are
assumed to take the same list of agents, which is also used in the output model,
line 17; the new uncertainty and issue relations are constructed by combining
the old ones in both the issue-epistemic model and the action model, see lines
18 respectively 21; the new valuation conserves the previous one for the world in
the pair, line 24; the new actual world is uniquely determined by the event with
matching preconditions in the real question list, line 26.

9 upgradeq:: (Eq state, Ord state) =>

10 EIM state -> QM state -> EIM (state, state)

11 upgradeq m@(Eim dom agts accs eqqs val act)

12 q@(Qm evs ags acs eqs prec answ) =

13 (Eim udom uagts uaccs ueqqs uval uact)

14 where

15 udom = [(w,e) | w <-dom, e <-evs,

16 (models m w (precondition q e))]

17 uagts = [x | x <- agts]

18 uaccs = [(ag,(w,e),(v,f))| ag <- ags, (w,e) <- udom,

19 (v,f) <- udom, (ag,w,v) ‘elem‘ accs,

20 (ag,e,f) ‘elem‘ acs]

21 ueqqs = [(ag,(w,e),(v,f))| ag <- ags, (w,e) <- udom,

22 (v,f) <- udom, (ag,w,v) ‘elem‘ eqqs,

23 (ag,e,f) ‘elem‘ eqs]

24 uval = [((w,e),l) | (w,e) <- udom, l <- (map (\x -> (snd x))

25 val), ((valuation m w) == l)]

26 uact = [(w,e) | w <-act, e <- answ,

27 (models m w (precondition q e))]

The functions valuation, line 29, and precondition, line 33, have an auxil-
iary role, the first takes an EIM and a state and returns its valuation, the second

66 Chapter 3. Implementing Questioning Dynamics

takes a question model and an event and returns its precondition for execution.

29 valuation :: Eq state => EIM state -> state -> [Prop]

30 valuation m@(Eim dom agts accs eqqs val act) w =

31 (snd ((filter (\x -> ((fst x) == w)) val)!!0))

32

33 precondition :: Eq state => QM state -> state -> Formq

34 precondition q@(Qm evs ags acs eqs prec answ) e =

35 (snd ((filter (\x -> ((fst x) == e)) prec)!!0))

The product update mechanism for resolution will be applied on two sample
models: an issue-epistemic model, line 37, and a resolution model, line 40.

37 eimsample = (upgradeq (initMq [a,b] [Syntax.P 0,Q 0])

38 (initAq [a] [b] [p,q] p))

39

40 resample = (initAres [a] [b] [p,q] p)

Now we have all the required ingredients to introduce an implementation of
a product rule that uses both equivalence relations to model resolution actions.
The first and most obvious way in which to make good us of the expressive power
introduced by the fact that out models use two relations is by considering their
intersection in defining the action’s effects. The exclam function given in lines
42-46 does exactly this. It implements the resolution by the intersection dynamic
action defined before. This is a very simple and already useful mechanism that
makes the interdependence between questions and information explicit.

42 exclam :: (Eq state, Ord state) => EIM state -> EIM state

43 exclam m@(Eim dom agts accs eqqs val act) =

44 (Eim dom agts accsr eqqs val act)

45 where

46 accsr = accs ‘intersect‘ eqqs

A more complex resolution action, more suitable for realistic scenarios in-
volving the various gradients of publicity in a resolution discussed before will
extend the product update mechanism by allowing a combination between the
two relations to be the driving force in the product upgrade mechanism.

48 upgraderes:: (Eq state, Ord state) =>

49 EIM state -> QM state -> EIM (state, state)

50 upgraderes m@(Eim dom agts accs eqqs val act)

51 mq@(Qm evs ags acs eqs prec answ) = (Eim udom uagts uaccs ueqqs uval uact)

52 where

53 udom = [(w,e) | w <- dom, e <- evs, (models m w (precondition mq e))]

54 uagts = [x | x <- agts]

55 uaccs = [(ag,(w,e),(v,f))| ag <- uagts, (w,e) <- udom,

56 (v,f) <- udom, (ag,w,v) ‘elem‘ accs, or

57 [(ag,w,v) ‘elem‘ eqqs,(ag,e,f) ‘elem‘ acs]]

58 ueqqs = [(ag,(w,e),(v,f))| ag <- uagts, (w,e) <- udom,

59 (v,f) <- udom, (ag,w,v) ‘elem‘ eqqs,

60 (ag,e,f) ‘elem‘ eqs]

3.1. A DEMo-like Implementation for DELQ 67

61 uval = [((w,e),l) | (w,e) <- udom, l <- nub (map

62 (\x -> (snd x)) val), ((valuation m w) == l)]

63 uact = [(w,e) | w <- act, e <- answ, (models m w (precondition mq e))]

64

65 recondition :: Eq state => RM state -> state -> Formq

66 recondition r@(Rm evs ags acs eqs prec answ) e =

67 (snd ((filter (\x -> ((fst x) == e)) prec)!!0))

The upgraderes function implements this aspects in lines 48-63 by the fol-
lowing componentwise construction: the new domain consists of pairs of wolds
and events with matching preconditions, line 53; the function’s arguments are an
issue-epistemic model and a resolution model assumed to take the same list of
agents, which is also used to construct the output model, line 54; the new un-
certainty relation is constructed by a disjunctive combination of old uncertainty
between states and previous issue equivalence between events, from line 55; the
new issue relations are constructed in the same way as before from their core-
spondents in both the given resolution model and the issue-epistemic model, line
58; the new valuation conserves the valuation of the world in the pair, line 61; the
new actual world is determined by the event with matching preconditions in the
real question list, line 63. The last function, from line 65, has an auxiliary role, it
takes a resolution model and an event and returns its precondition for execution.

3.1.6 The DELQ.lhs Module

The DELQ.lhs module puts together all the functionality presented so for in an
unitary framework. It starts by importing the functionality in the corresponding
modules as discussed previously. Then it includes some additional functions.

1 module DELQ

2 where

3 import List

4 import Syntax

5 import Structures

6 import Semantics

7 import BinaryRel

8 import Upgrade

9 import Display

10 import Shortcuts

11 import Probability

The extension function takes a formula and an issue-epistemic model, line
13, and returns the set of states satisfying the formula. The next two functions,
line 16 and line 21, return the image respectively the converse image under an
epistemic relation for a set of states and an agent given as arguments.

13 extension :: (Ord a) => Formq -> EIM a -> [a]

14 extension f m = filter (\x -> (models m x f)) (dom m)

15

68 Chapter 3. Implementing Questioning Dynamics

16 boxk :: (Eq b) => [b] -> Agent -> EIM b -> [b]

17 boxk s a m =

18 nub (map snd (filter (\x -> (fst x) ‘elem‘ s) (relk a m)))

19

20 boxk_minus :: (Eq b) => [b] -> Agent -> EIM b -> [b]

21 boxk_minus s a m =

22 nub (map fst (filter (\x -> (snd x) ‘elem‘ s) (relk a m)))

The last function in the block, line 24, returns the set of states that satisfy a
formula via the intersection modality, making crucial use of nominals.

24 intersOp f m = filter (\x -> models m x (k_ a

25 (Conj [f, (o_ a ((noml m1 [x])!!0))]))) (dom m1)

26

27 nominals :: (Eq a) => EIM a -> [Formq]

28 nominals m@(Eim _ _ _ _ val _) = map (\x -> (Prop x))

29 (map (\x -> (x!!((length x)-1))) (map snd val))

30

31 noml :: (Eq a) => EIM a -> [a] -> [Formq]

32 noml m l = map (\x -> (Prop x))

33 ((map (\x -> (x!!((length x)-1))))

34 (map snd (filter (\x -> (elem (fst x) l)) (valuationL m))))

Next, there are two functions dealing with generating nominals for an issue-
epistemic structure given as input, line 27. This is useful in order to deal with
intersection modality and to allow for full expressibility when describing a named
model. The second function generates the nominal list for a given subset of
the domain in an issue-epistemic structure, which is useful to generate all the
expressible formulae given a model and a hybrid language, line 31.

The valuation of a model can be retrieved by the function given in line 36, and
can be used to generate all the expressible formulae as disjunctions of nominals
in the powerset of the domain, as described starting from line 39.

36 valuationL :: EIM a -> [(a, [Prop])]

37 valuationL m@(Eim _ _ _ _ val _) = val

38

39 forms :: (Ord state) => EIM state -> [Formq]

40 forms m = map (\y -> Disj y)

41 (map (\x -> noml m x) (powerList (dom m)))

42

43 relk_a :: Agent -> QM state -> Rel state

44 relk_a a m@(Qm _ _ acc _ _ _) =

45 [(x,y) | (agent,x,y) <- acc, a == agent]

46

47 relq_a :: Agent -> QM state -> Rel state

48 relq_a a m@(Qm _ _ _ eqq _ _) =

49 [(x,y) | (agent,x,y) <- eqq, a == agent]

Finally, two more auxiliary functions are given at line 43 and line 47, they take
a questioning action model and an agent and return the relation pairs indexed
by that agent, for the epistemic and the issue relations, respectively.

3.2. Illustrations using the Implementation 69

Further intuitive illustrations of how this code works for some concrete reso-
lution actions are discussed in Section 3.2 of the current chapter.

This concludes the exposition of the core DELQ functionality contained in the
most important modules implementing theoretical aspects. The remaining ones
have supporting role with only practical and applicative importance.

3.2 Illustrations using the Implementation

In this chapter we will discuss some general consequences of the DELQ approach
explained so far. We will support and give concreteness to our discussion by using
illustrative intuitive examples, for this purpose we will make use of code output
for both ease of exposition and computational precision.

In order to do this we will guide the reader through the bare minimum needed
to grasp the examples discussed. We do this by linking some of the concrete
examples already discussed and illustrated in the text with their representation
as both standard tuple-notation and implementation-generated output.

Epistemic Issue Structures (EIMs) can be automatically generated by DELQ.hs
in a standard way. For facilitating the current presentation we refer the reader to
our previous intuitive diagrammatic representation in Figure 2.12. The starting
EIM in our Example 2.4.5 is generated and represented as follows:

*QPR> dpq (initMq [a,b] [Syntax.P 0,Q 0])

[0,1,2,3]

[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

[3]

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

Intuitively, this says that we have two agents a, b ignorant about two facts p, q and
with a universal issue relation on the domain, the world in which both facts are
true represents the actual situation. This also corresponds to the following struc-

ture in standard tuple-notation M = 〈W,
a
≈,

b
≈, a∼, b∼, V 〉: W = {0, 1, 2, 3}, V =

{p 7→ {1, 3}, q 7→ {2, 3}},
a
≈ =

b
≈ = {0, 1, 2, 3} × {0, 1, 2, 3} =

a∼ =
b∼.

In a similar fashion, the Action Issue Model (AIM) from Example 2.4.5 can
be automatically generated by DELQ.hs in a standard way. The second model in
Figure 2.12 is generated and represented in the implementation as follows:

*QPR> dpa (initAq [a] [b] [p,q] p)

[0,1,2,3]

[(0,p),(1,q),(2,~p),(3,~q)]

(a,[[0,1,2,3]])

(b,[[0,2],[1,3]])

[0,2]

(a,[[0],[1],[2],[3]])

(b,[[0],[1],[2],[3]])

70 Chapter 3. Implementing Questioning Dynamics

Intuitively, we have here two agents a, b and four events corresponding to the
possible ways to answers the two questions p? and q?. Each of the events has the
corresponding formula as its precondition. Here these are the obvious proposi-
tional atoms and their negation. Later on, in order to capture more interesting sit-
uation such preconditions can become more complex formulae in our epistemic is-
sue language designed to capture questioning content and its relation with agents’
information. This also corresponds to the following structure represented in stan-

dard tuple-notation Q = 〈E,
a
≈,

b
≈, a∼, b∼, P 〉: E = {0, 1, 2, 3}, P = {0 7→ p, 1 7→

q, 2 7→ ¬p, 3 7→ ¬q},
a
≈ = {0, 1, 2, 3}×{0, 1, 2, 3},

b
≈ = {(0, 0), (1, 1), (2, 2), (3, 3)} =

Id(E),
a∼ =

b∼ = {0, 2} × {0, 2} ∪ {1, 3} × {1, 3}.
Here is a good place to introduce the basics about how issue-epistemic formu-

lae are generated, used, and represented in Haskell. Formulas can be visualized
in DELQ.hs in a compact way, we give here some illustrative examples covering
most frequently used formula instances:

DELQ.hs Formula Display
Neg (Conj [O a p, Neg p]) ¬(Qap ∧ ¬p) ~&[Qap,~p]

Disj [Neg (X a (Prop(P 0))), p] Rap→ p v[~Rap,p]

Disj [K a p, k a (Neg p)] Kap ∨ K̂a¬p v[Kap,~Ka~~p]

U (Disj [O b q, O b (Neg q)]) U(Qbq ∨Qb¬q) Uv[Qbp,Qb p]

U (Conj [Prop(N 1), X a (K b p)]) U(n1 ∧RaKbp) U&[n1,RaKbp]

Continuing with our correspondence between the diagramatic representation
in Figure 2.12 and the code output, we can see that a is ignorant with regard
to what question was asked, we model this by a universal indistinguishability
relation on the set of events (answers). The second agent b, on the other hand,
is aware of what the content of the questioning action is. The identity issue
relation on the domain of events captures the fact that both agents are aware
abut possible answers to the questioning actions. Finally, the actual question is
p?, we represent this by a list of distinguished events in the domain. The set of
distinguished events is not a singleton, as in the standard DEL action structure,
but the set of possible answers to the real question {p,¬p}.

Discussion (Determinism) One important assumption in the standard DEL
modeling using product update was the fact that both epistemic structures and
action models are deterministic. This background assumption was present in the
formalism in the uniqueness of the real world and of the actual event. Some
agents are ignorant about the real world and some agents cannot determine what
epistemic action has taken place. But this kind of nondeterminism is merely a
reflection of epistemic uncertainty not genuine lack of determinism in the real
situation modeled. The fact that the perfectly informed modeler of the epistemic
scenario can chose beforehand a designated world and a unique action that really
took place reflects precisely the essential deterministic character of the approach.

3.2. Illustrations using the Implementation 71

One natural question at this point is: Don’t we have to give up determinism
when we want to build an adequate model of questioning actions? A quick an-
swer at this stage is: Not yet. Note that EIMs still have a unique world, and we
only introduced multiple events in AIMs. However, we still require our models
to be deterministic, even though at a higher level. We only allow for a unique
questioning action, which can have multiple, not yet determined, answers corre-
sponding to a partition cell. Besides being conceptually interesting, this aspect
will be important from a technical point of view during the completeness proof.
For this reason, we give it a distinct statement already at this stage:

3.2.1. Definition. [Deterministic AIMs] A questioning structure is a Kripke
frame over a set of agents and events together with a set of events corresponding
to multiple (but mutually exclusive) answers to a unique designated question.

Using Definition 3.2.1 one can show that the class of EIMs structures is closed
under product update with deterministic AIMs and partition questions.

We now return to our exposition of Example 2.4.5. The resulting updated
model can now be computed in our implementation of DELQ using standard
product update; the result is visualized by DELQ.hs in the following way:

*QPR> dpq (reornameq (upgradeq

(initMq [a,b] [Syntax.P 0,Q 0]) (initAq [a] [b] [p,q] p)))

[0,1,2,3,4,5,6,7]

[(0,[]),(1,[]),(2,[p]),(3,[p]),(4,[q]),(5,[q]),(6,[p,q]),(7,[p,q])]

(a,[[0,1,2,3,4,5,6,7]])

(b,[[0,2,5,6],[1,3,4,7]])

[6]

(a,[[0,5],[1,3],[2,6],[4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

The resulting model has a unique actual world and agents have the expected
issue relation capturing the natural intuitions, namely, both agents have an issue
relation that captures the possible answers but only b can distinguish between
the two possibilities, while a is uncertain which of the alternative is the case.

Starting from this first simple illustration, we will proceed towards a more
general logical framework in which examples like this can be captured formally.
The next step in the standard DEL methodology is to define simultaneously a
language that uses modalities over such AIM structures and the structures in
which the event-preconditions are formulated in a language describing them.

Let L be a set of atomic sentences closed under boolean operators, epistemic,
issue and intersection modalities for a set of agent labels and [γ?]ϕ where γ is a
deterministic AIM and ϕ ∈ L. The following step in the DEL methodology is
to lift the indistinguishability relation from events to action structures. For DEL
this was a simple translation from uncertainty between events in a structure with
the same domain to an epistemic relation between structures themselves.

72 Chapter 3. Implementing Questioning Dynamics

Because we have now both epistemic and questioning equivalence relations
the task at hand requires more work. Another conceptual difficulty that prevents
applying the same strategy comes from the fact that we are already using a
reduction. Our AIM structures are meant to capture questioning actions while
the domain of an AIM contains not questions but answers to questions. However,
we will show that a natural lifting that captures the basic intuitions and keeps
the product method unchanged is still possible. For this purpose we will use a
standard ordering of questions as sets of answers. This design option has many
natural formal properties and also captures the intended intuitions:

3.2.2. Definition. [Lifting] Let γ = 〈E,
a
≈, a∼, P,Q〉 and γ′ = 〈E ′,

a
≈
′
,
a∼
′
, P ′, Q′〉

be two AIMs, then:

γ′
a
≈ γ iff E = E ′, P = P ′ and ∀e ∈ Q, e′ ∈ Q′ : e

a
≈ e′

γ′
a∼ γ iff E = E ′, P = P ′ and ∀e ∈ Q, e′ ∈ Q′ : e a∼ e′

We have now all the ingredients for proving the soundness of the axioms given
in Section 2.4.3 using the semantics already introduced there. The crucial step
used Definition 3.2.1 to restrict the class of structures described.

3.2.1. Proof (Theorem 2.4.8). Let γ = 〈E,
a
≈, a∼, P,Q〉 be an AIM. Fix a

pair 〈W,w〉. As γ is a yes/no question, it follows that W |=w P (e) for some
e ∈ Q. Using Definition 3.2.1 we also know that there is a unique such (w, e).
Pick the e disjunct in the rhs of the A&P axiom. Assume that 〈W,w〉 ⊗ γ |=
Qaϕ. Take some γ′ such that γ

a∼ γ′. By Definition 3.2.2, this γ′ is of the form

〈E,
a
≈
′
,
a∼
′
, P,Q′〉 for some Q′ such that ∀e ∈ Q, e′ ∈ Q′ : e

a∼ e′. Let w
a
≈ w′.

We have two cases: Q = Q′ , and Q 6= Q′. In both cases we have e
a
≈ e′ iff

e = e′. Then (w′, e′) is a world of 〈W,w〉 ⊗ γ, and indeed (w, e)
a
≈ (w′, e′). Since

Q is a unique set of yes/no answers we have to consider two possibilities for
e ∈ Q: if 〈W,w′〉 |= ¬pre(e) then 〈W,w′〉 |= pre(e) → [γ′?]ϕ trivially and we
are done, otherwise, 〈W,w′〉 |= pre(e) and we can use the previous assumption.
From 〈W,w〉 ⊗ γ |= Qaϕ we get that 〈W ⊗ γ, (w′, e′)〉 |= ϕ. This means that
〈W,w′〉 ⊗ γ′ |= ϕ. Hence 〈W,w′〉 |= pre(e) → [γ′?]ϕ. Since γ′ and w′ were
arbitrary, 〈W,w〉 |=

∧
γ?

a∼ γ′? Qa(pre(e)→ [γ′?]ϕ). The other direction is similar.

Pick the e disjunct in the rhs of the A&K axiom. Assume that 〈W,w〉 ⊗ γ |=
Kaϕ. Take some γ′ such that γ

a∼ γ′. By Definition 3.2.2, this γ′ is of the form

〈E,
a
≈
′
,
a∼
′
, P,Q′〉 for some Q′ such that ∀e ∈ Q, e′ ∈ Q′ : e

a∼ e′. Let w
a∼ w′.

We have two cases: Q = Q′ , and Q 6= Q′. In both cases we have e
a∼ e′.

Then (w′, e′) is a world of 〈W,w〉 ⊗ γ, and indeed (w, e)
a∼ (w′, e′). Now our

assumption that 〈W,w〉 ⊗ γ |= Kaϕ implies that 〈W ⊗ γ, (w′, e′)〉 |= ϕ. This
means that 〈W,w′〉 ⊗ γ′ |= ϕ. Hence 〈W,w′〉 |= [γ′]ϕ. Since γ′ and w′ were
arbitrary, 〈W,w〉 |=

∧
γ?

a∼ γ′? Ka[γ
′?]ϕ. The other direction is similar.

3.2. Illustrations using the Implementation 73

The rest of the proof continues along the lines of the standard DEL method-
ology described in the previous section with the only caveat that now we need to
define a complexity measure for formulae containing questioning action modalities
by taking the complexity of the preconditions. 2

We also get the axioms for resolution action for free since we used the most
convenient formal model that gives the semantic meaning by taking the previ-
ously discussed intersection. Even so, formal convenience does not always match
conceptual clarity, we still have an unfulfilled modeling desideratum on our list.

*QPR> dpq (exclam (reornameq (upgradeq

(initMq [a,b] [Syntax.P 0,Q 0]) (initAq [a] [b] [p,q] p))))

[0,1,2,3,4,5,6,7]

[(0,[]),(1,[]),(2,[p]),(3,[p]),(4,[q]),(5,[q]),(6,[p,q]),(7,[p,q])]

(a,[[0,5],[1,3],[2,6],[4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

[6]

(a,[[0,5],[1,3],[2,6],[4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

Consider the consequences of taking the undifferentiated epistemic effects of
the intersection resolution action in our previous questioning product update
model which produce the result represented in the previous code output.

A brief inspection of the resulting model and a basic analysis of its intuitive
meaning reveals that it is fair to say that it would be expected that a resolution
action can also be modulated epistemicaly. There can be levels of underlying
dynamics: some agents can be aware of the fact that a resolution action happens
but still be opaque about its content, while for others the content is transparent.

In our example, since a was unaware which of the questions was asked, hearing
an affirmative answer should not have the same epistemic effect as a transparent
answer, or public announcement. Nor should hearing the negative resolution to
one of two undistinguished questions have the same effect as receiving a negative
answer to any of them. Our rough intersection semantics misses such subtleties.

Once again, we can use the framework of product update to capture the de-
sired epistemic effects. In order to do this we will make crucial use of the gain
in expressive power coming from having a language capable of talking about
both facts, epistemic realities, questioning conditions and their mutual interde-
pendence. Again, we will proceed first by means of an illustrative example:

*QPR> dpq (reornameq (upgradeq

(initMq [a,b] [Syntax.P 0,Q 0]) (initAq [a] [b] [p,q] p)))

[0,1,2,3,4,5,6,7]

[(0,[]),(1,[]),(2,[p]),(3,[p]),(4,[q]),(5,[q]),(6,[p,q]),(7,[p,q])]

(a,[[0,1,2,3,4,5,6,7]])

(b,[[0,2,5,6],[1,3,4,7]])

[6]

(a,[[0,5],[1,3],[2,6],[4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

74 Chapter 3. Implementing Questioning Dynamics

The main task is to come up with a formal structure representing a resolution
action which captures the natural intuitions about the epistemic evolution. Such a
model can be again automatically generated by the implementation in a standard
way. The structure we need here is represented by DELQ.hs as follows:

*QPR> dpa (initAres [a] [b] [p,q] p)

[0,1,2,3]

[(0,&[p,v[Qap,Qa~p]]),(1,&[q,v[Qaq,Qa~q]]),

(2,&[~p,v[Qap,Qa~p]]),(3,&[~q,v[Qaq,Qa~q]])]

(a,[[0,1],[2,3]])

(b,[[0],[1],[2],[3]])

[0]

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

A new feature in comparison to AIMs for questioning actions is the more
complex preconditions for resolution, they have now, in addition to the factual
component, a questioning aspect designed to capture the conditions on the struc-
ture of the issue relation. Next, the resolution does not change the issue structure
by raising new questions, therefore both agents have a universal relation. Finally,
agent a can only distinguish between affirmative and negative resolution, like
when hearing an opaque ‘Yes’ answer in a conversation that could refer to any of
two previous questions. We have used agent-dependent epistemic preconditions
before, the issue-related content of the preconditions for resolution goes beyond
only modeling epistemic effects and factual aspects. In order to capture the in-
tended meaning we add a further generalization to the product update rule. This
can now go beyond using only indistinguishability and it is natural to take full
advantage of both equivalence relations. The new uncertainty can be now derived
from two alternative and complementary sources: both previous uncertainty and
issue-indistinguishability. Both aspects and their mutual dependence are needed
to capture the dynamics of joint observation and prediction uncertainty.

The rule that makes sense in this context is the following:

(w, e) ∼ (v, f) iff w ∼ v and (w ≈ v or e ∼ f)

This rule allows a finer grained modeling of the dependence between two
sources of uncertainty in an epistemic scenario, and captures expected intuitions:

*QPR> dpq (reornameq (upgraderes (reornameq (upgradeq

(initMq [a,b] [Syntax.P 0,Q 0]) (initAq [a] [b] [p,q] p)))

(initAres [a] [b] [p,q] p)))

[0,1,2,3,4,5,6,7]

[(0,[]),(1,[]),(2,[p]),(3,[p]),(4,[q]),(5,[q]),(6,[p,q]),(7,[p,q])]

(a,[[0,1,3,5],[2,4,6,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

[6]

(a,[[0,5],[1,3],[2,6],[4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

3.2. Illustrations using the Implementation 75

The new kind of resolution only partially resolves agent a’s prediction uncer-
tainty due to his previous observational limitation about the question asked. He
can distinguish the affirmative answers from the negative ones but acquires no
further knowledge about the situation. The flow of information is modulated by
two distinct sources: previous uncertainty and current observational limitations.

Further gradations in the level of assertive or questioning content implicitly
contained in a resolution action can now be spelled out using the same underlying
formalism. However, capturing this variation is not a logical task. The underlying
logic is given in all cases by the same extended product rule, while the remaining
enterprise consists merely in designing the adequate action structures for the
concrete resolution scenario to be captured. Witness the following situations:

*QPR> dpa (initAres2 [a] [b] [p,q] p)

[0,1,2,3]

[(0,&[p,v[Qap,Qa~p]]),(1,&[q,v[Qaq,Qa~q]]),

(2,&[~p,v[Qap,Qa~p]]),(3,&[~q,v[Qaq,Qa~q]])]

(a,[[0,1,2,3]])

(b,[[0],[1],[2],[3]])

[0]

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

*QPR> dpa (initAres4 [a] [b] [p,q] p)

[0,1,2,3]

[(0,&[p,v[Qap,Qa~p]]),(1,&[q,v[Qaq,Qa~q]]),

(2,&[~p,v[Qap,Qa~p]]),(3,&[~q,v[Qaq,Qa~q]])]

(a,[[0,2],[1,3]])

(b,[[0],[1],[2],[3]])

[0]

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

*QPR> dpa (initAres3 [a] [b] [p,q] p)

[0,1,2,3]

[(0,&[p,v[Qap,Qa~p]]),(1,&[q,v[Qaq,Qa~q]]),

(2,&[~p,v[Qap,Qa~p]]),(3,&[~q,v[Qaq,Qa~q]])]

(a,[[0],[1],[2],[3]])

(b,[[0],[1],[2],[3]])

[0]

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

The following code outputs are resulting models capturing the intuitively ad-
equate gradients in information flow predicted by our extended product rule:

*QPR> dpq (reornameq (upgraderes (reornameq (upgradeq

(initMq [a,b] [Syntax.P 0,Q 0]) (initAq [a] [b] [p,q] p)))

(initAres2 [a] [b] [p,q] p)))

[0,1,2,3,4,5,6,7]

[(0,[]),(1,[]),(2,[p]),(3,[p]),(4,[q]),(5,[q]),(6,[p,q]),(7,[p,q])]

(a,[[0,1,2,3,4,5,6,7]])

76 Chapter 3. Implementing Questioning Dynamics

(b,[[0,5],[1,3],[2,6],[4,7]])

[6]

(a,[[0,5],[1,3],[2,6],[4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

*QPR> dpq (reornameq (upgraderes (reornameq (upgradeq

(initMq [a,b] [Syntax.P 0,Q 0]) (initAq [a] [b] [p,q] p)))

(initAres4 [a] [b] [p,q] p)))

[0,1,2,3,4,5,6,7]

[(0,[]),(1,[]),(2,[p]),(3,[p]),(4,[q]),(5,[q]),(6,[p,q]),(7,[p,q])]

(a,[[0,2,5,6],[1,3,4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

[6]

(a,[[0,5],[1,3],[2,6],[4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

*QPR> dpq (reornameq (upgraderes (reornameq (upgradeq

(initMq [a,b] [Syntax.P 0,Q 0]) (initAq [a] [b] [p,q] p)))

(initAres3 [a] [b] [p,q] p)))

[0,1,2,3,4,5,6,7]

[(0,[]),(1,[]),(2,[p]),(3,[p]),(4,[q]),(5,[q]),(6,[p,q]),(7,[p,q])]

(a,[[0,5],[1,3],[2,6],[4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

[6]

(a,[[0,5],[1,3],[2,6],[4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

The same gradation can be applied to the issue relation, our initial questioning
action model was one extreme in a large spectrum of intermediate possibilities
of mixing informative and questioning content in various levels. This aspect
also opens the possibility of further comparing the DEL approach to alternative
approaches of questioning phenomena and to unravel some implicit modeling
assumptions in an explicit formal representation.

Another interesting aspect is that the new resolution rule gives a formal way
of capturing the widespread phenomenon that much information, even if both
truthful and known, might still not be available for announcement. This gives a
formal justification for using procedural restrictions in both games with epistemic
moves and protocols for inquiry and communication.

So far we have used only Yes/No questions. Doesn’t this choice drastically
limit our modeling options? The quick answer at this stage is: Not yet. The
framework can be extended without any alteration to more complex proposi-
tional questions by merely lifting the construction from formulae to lists/sets of
formulae. The following code outputs illustrate exactly such situations.

Once again, the extension from binary questions to arbitrary propositional
questions falls under the same logical framework using product update. The only
extra needed work is an empirical exercise in designing the right AIM for the
given scenario to be modeled. This is a very interesting exercise in the ‘art of
modeling’ without significant conceptual or computational consequences.

3.2. Illustrations using the Implementation 77

*QPR> dpa (initPropq [a] [b] [[p,Neg p],[Conj [p,q],Conj[Neg p, Neg q],

Disj [Conj [p, Neg q], Conj [q, Neg p]], Conj[Neg p, Neg q]]]

[Conj [p,q],Disj[Conj [p, Neg q], Conj [q, Neg p]]])

[0,1,2,3,4]

[(0,p),(1,~p),(2,&[p,q]),(3,v[&[p,~q],&[q,~p]]),(4,&[~p,~q])]

(a,[[0,1,2,3,4]])

(b,[[0,1],[2,3,4]])

[2,3,4]

(a,[[0],[1],[2],[3],[4]])

(b,[[0],[1],[2],[3],[4]])

*QPR> dpq (reornameq (upgradeq (initMq [a,b] [Syntax.P 0,Q 0])

(initPropq [a] [b] [[p,Neg p],[Conj [p,q],

Disj[Conj [p, Neg q], Conj [q, Neg p]],Conj[Neg p, Neg q]]]

[Conj [p,q],Disj[Conj [p, Neg q], Conj [q, Neg p]],Conj[Neg p, Neg q]])))

[0,1,2,3,4,5,6,7]

[(0,[]),(1,[]),(2,[p]),(3,[p]),(4,[q]),(5,[q]),(6,[p,q]),(7,[p,q])]

(a,[[0,1,2,3,4,5,6,7]])

(b,[[0,2,4,6],[1,3,5,7]])

[7]

(a,[[0,4],[1],[2,6],[3,5],[7]])

(b,[[0,4],[1],[2,6],[3,5],[7]])

The crucial fact here is the requirement that the designed AIM is an adequate
one. If it respects the postulate of determinacy and uses appropriate sets of
mutually inconsistent answers, then all the formal details can be adapted without
ado, and all results transfer in corresponding reformulations.

Discussion: Nondeterminism What about modeling questions that do not
have mutually inconsistent answers? In other words, does the DEL product
upgrade mechanism still work when we switch from a classical model of questions
modeled as partitions to one which has a cover as the underlying formal structure?
We will discuss the conceptual implications of this change and we will show that
the formal product mechanism still works under minor adaptations.

So we are still working with a unique actual world in our initial EIMs, but
now we take a question to be an arbitrary set of formulae seen as subsets of the
domain of possibilities, including ones with a nonempty intersection.

Therefore, our previous AIM structures in which we take as the designated
set of actual events all the answers to the actual question can generate multiple
actual worlds in the model obtained after performing product update.

It can be argued that this is meaningful as a representation of nondeterminism
at a subjective level in many scenarios of social interaction, or even in an objective
sense in contexts of dependence between measurements of entangled states in
quantum physics. However, we identify it as an open problem weather the formal

78 Chapter 3. Implementing Questioning Dynamics

details needed in the proofs can be adapted for a non-deterministic setting, and
reserve a study of valid principles for nondeterminism for a future occasion.

Our next step will be to illustrate how our previous mechanism works if we
change the questioning structures to ones having both a set of events representing
the real question and a designated event for the actual answer. As in the standard
DEL approach, and as we did before for issue relations, we use preconditions for
action execution to reduce multiple consistent answers to questioning actions with
unique effects. This is a good place to illustrate how model checking of formulae
involving epistemic and issue effects is performed in our Haskell implementation.

*DELQ> dpq m1

[0,1,2,3]

[(0,[n]),(1,[p,n1]),(2,[p,n2]),(3,[q,n3])]

[0,1,2,3]

(a,[[0,1,3],[2]])

(a,[[0,2,3],[1]])

The truth-value of formulas can be computed at a state in an epistemic-issue
model. The following is an illustration of how DELQ.hs performs model checking
in the issue-epistemic model m1 represented in the code output above:

*DELQ> models m1 0 (impl (x_ a p) (Conj[o_ a p,k_ a p]))

True

*DELQ> models m1 0 (dimpl (x_ a p) (Conj[o_ a p,k_ a p]))

False

*DELQ> models m1 0 (impl (x_ a q) (Conj[o_ a q,k_ a q]))

True

*DELQ> models m1 0 (dimpl (x_ a (Conj[n3,q]))

(Conj[o_ a (Conj[n3,q]),k_ a (Conj[n3,q])]))

True

*DELQ> models m1 0 (Conj

[o_ a (Conj[n2,p]), k_ a (Conj[n1,p])])

True

*DELQ> models m1 0 (Conj

[o_ a (Conj[n2,p]), k_ a (Conj[n1,p]), x_ a p])

False

Now, we can attach preconditions for mutually consistent answers to distinct
events in our action models and we obtain the expected results. The only nec-
essary adjustment is to use a singleton set of real answers in the questioning
model during the product computation. In this way the class of deterministic
EIMs remains closed under product update. Here is how this can be done for a
disjunctive question that can receive three overlapping answers:

*QPR> dpa (initPropCov [a] [b]

[[Disj[p,q],p,q],[Disj[p,Neg q],p,Neg q]] [Disj[p,q],p,q] p)

[0,1,2,3,4,5]

[(0,v[p,q]),(1,p),(2,q),(3,v[p,~q]),(4,p),(5,~q)]

(a,[[0,1,2,3,4,5]])

(b,[[0,1,2],[3,4,5]])

3.2. Illustrations using the Implementation 79

[1]

(a,[[0],[1],[2],[3],[4],[5]])

(b,[[0],[1],[2],[3],[4],[5]])

*QPR> dpq (reornameq (upgradeq (initMq [a,b] [Syntax.P 0,Q 0])

(initPropCov [a] [b] [[Disj[p,q],p,q],[Disj[p,Neg q],p,Neg q]]

[Disj[p,q],p,q] p)))

[0,1,2,3,4,5,6,7,8,9,10,11,12,13]

[(0,[]),(1,[]),(2,[p]),(3,[p]),(4,[p]),(5,[p]),(6,[p]),(7,[q]),(8,[q]),

(9,[p,q]),(10,[p,q]),(11,[p,q]),(12,[p,q]),(13,[p,q])]

(a,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13]])

(b,[[0,1,4,5,6,12,13],[2,3,7,8,9,10,11]])

[10]

(a,[[0,4,12],[1,6],[2,7,9],[3,10],[5,13],[8,11]])

(b,[[0,4,12],[1,6],[2,7,9],[3,10],[5,13],[8,11]])

This setting can also be used to obtain completeness results about long term
inquiry procedures. The discussion so far about adapting the proof techniques
from informative actions to questioning actions is equally relevant in a long term
protocols setting. We give here the proof for the basic case with binary questions.

3.2.2. Proof (Lemma 2.6.8). By structural induction on ϕ ∈ LDELQ. Base
case: straightforward. Boolean cases: straightforward. We start from the right
to left direction: For each h ∈ Hcan:

if Hcan, h |= ϕ then ϕ ∈ λ(h)

We proceed by considering case by case the most relevant situations:

1. Question/Issue Modality Case:

(a) Questioning Action Case:

We start by recalling some relevant valid principles in this context,
that we will use later on:

Axiom 1 (Protocol Asking and Negation):

〈γ?〉¬ϕ↔ 〈γ?〉> ∧ ¬〈γ?〉ϕ

Axiom 2 (Protocol Asking and Partition):

〈γ?〉Qiϕ↔ 〈γ?〉> ∧ ((γ ∧Qi(γ → 〈γ?〉ϕ)) ∨ (¬γ ∧Qi(¬γ → 〈γ?〉ϕ)))

Take an arbitrary history h ∈ Hcan. Assume that Qiψ 6∈ λ(h) (1). For
simplicity let h = wγ? with w ∈ W0 and γ ∈ LEL. The argument can
easily be generalized to deal with the general case along the lines of
the argument below.

80 Chapter 3. Implementing Questioning Dynamics

By λ being a MCS: (1) ⇒ ¬Qiψ ∈ λ(h) (2). By the construction of
legal histories in Definition 2.6.6 we have: (2)⇒ 〈γ?〉¬Qiψ ∈ λ(w)(3).

By Axiom 1 above: (3)⇒ ¬〈γ?〉Qiψ ∈ λ(w)(4) By Axiom 2 above and
using de Morgan equations we have: (4) ⇒ ¬〈γ?〉> ∨ ¬((γ ∧ Qi(γ →
〈γ?〉ψ)) ∨ (¬γ ∧Qi(¬γ → 〈γ?〉ψ))) ∈ λ(w) (5)

By Construction: 〈γ?〉> ∈ λ(w) (6) By Disjunctive Syllogism: (5)&(6)
⇒ ¬((γ∧Qi(γ → 〈γ?〉ψ))∨ (¬γ∧Qi(¬γ → 〈γ?〉ψ))) ∈ λ(w) (7) By de
Morgan equivalence: (7) ⇒ ¬(γ ∧Qi(γ → 〈γ?〉ψ))∧¬(¬γ ∧Qi(¬γ →
〈γ?〉ψ)) ∈ λ(w)(8) By de Morgan again we have: (8)⇒ (¬γ∨¬Qi(γ →
〈γ?〉ψ)) ∧ (γ ∨ ¬Qi(¬γ → 〈γ?〉ψ)) ∈ λ(w) And we can rewrite this as:

(¬γ ∧ ¬Qi(¬γ → 〈γ?〉ψ)) ∨

(¬γ ∧ γ) ∨ (¬Qi(γ → 〈γ?〉ψ) ∧ γ) ∨
(¬Qi(γ → 〈γ?〉ψ) ∧ ¬Qi(¬γ → 〈γ?〉ψ)) ∈ λ(w)

We proceed by considering the disjuncts case by case:

Case 1: The γ ∧ ¬γ ∈ λ(w) case is ruled out by Lemma 2.6.7.

Case 2: If we have ¬γ ∧ ¬Qi(¬γ → 〈γ?〉ψ) ∈ λ(w) then we can make the
sub-claim:

The following is a consistent set:

v0 = {θ | Qiθ ∈ λ(w)} ∪ {¬(¬γ → 〈γ?〉ψ)}

Suppose not. Then there are formulae: θ1, . . . , θm such that:

`
m∧
j=1

θj → (¬γ → 〈γ?〉ψ)(12)

and for j = 1, . . . ,m,Qiθj ∈ λ(w). Then, by standard modal
reasoning (Necessitation and Distribution of Q) we have:

(12)⇒`
m∧
j=1

Qiθj → Qi(¬γ → 〈γ?〉ψ)(13)

Hence, we also have: (13)⇒ Qi(¬γ → 〈γ?〉ψ) ∈ λ(w)(14)
Because λ is a MCS: (14) contradicts (Case 2).

By Lindenbaum’s Lemma any consistent set can be extended to
a MCS. Hence there exist a MCS v such that v0 ⊆ v (9). There-
fore, by construction we have: (9) ⇒ w ∼0

i v and wγ? ∼can
i vγ?

(10) Hence ⇒ 〈γ?〉> ∈ λ(v) and ¬〈γ?〉ψ ∈ λ(v) (11) and by
the Axiom 1: (11) ⇒ 〈γ?〉¬ψ ∈ λ(v). By LH construction: (11)
⇒ ¬ψ ∈ λ(vγ?)(12), hence (12) ⇒ ψ 6∈ λ(vψ?)(13). By induction
hypothesis: (13) ⇒ Hcan, vψ? 6|= ψ (14) and by standard modal
semantics: (14) ⇒ Hcan, wγ? 6|= Qiψ, as desired.

3.2. Illustrations using the Implementation 81

Case 3: If we have (¬Qi(γ → 〈γ?〉ψ) ∧ γ) ∈ λ(w) then we can reason
completely analogously to case 2.

Case 4: If we have (¬Qi(γ → 〈γ?〉ψ) ∧ ¬Qi(¬γ → 〈γ?〉ψ)) ∈ λ(w) we can
use case 2 and case 3 to reach the desired conclusion.

(b) Resolution Action Case:

We start by recalling some relevant valid principles in this context:

Axiom 3 (Protocol Resolution and Negation):

〈 ! 〉¬ϕ↔ 〈 ! 〉> ∧ ¬〈 ! 〉ϕ

Axiom 4 (Protocol Resolution and Partition):

〈 ! 〉Qiϕ↔ 〈 ! 〉> ∧Qi〈 ! 〉ϕ

This case is a situation of a commutating behavior so we are done.

2. Intersection Modality Case: Behaves completely similar to the already ex-
plained Question/Issue modality for both cases (a) and (b) below:

(a) Questioning Action Case and

(b) Resolution Action Case.

3. Epistemic/Knowledge Modality Case:

(a) Questioning Action Case:

We start by recalling some relevant valid principles in this context:

Axiom 1 (Protocol Asking and Negation):

〈γ?〉¬ϕ↔ 〈γ?〉> ∧ ¬〈γ?〉ϕ

Axiom 6 (Protocol Asking and Knowledge):

〈γ?〉Kiϕ↔ 〈γ?〉> ∧Ki〈γ?〉ϕ

This case is a situation of a commutating behavior so we are done.

(b) Resolution Action Case:

We start by recalling some relevant valid principles in this context,
that we will use later on:

Axiom 3 (Protocol Resolution and Negation):

〈 ! 〉¬ϕ↔ 〈 ! 〉> ∧ ¬〈 ! 〉ϕ

Axiom 7 (Protocol Resolution and Knowledge):

〈 ! 〉Kiϕ↔ 〈 ! 〉> ∧Ri〈 ! 〉ϕ

82 Chapter 3. Implementing Questioning Dynamics

This is an interesting combination as it relies essentially on the inter-
section modality so we will give it closer attention.

Take an arbitrary history h ∈ Hcan. Assume that Kiψ 6∈ λ(h) (1). For
simplicity let h = w! with w ∈ W0 and ! a resolution symbol. The
argument can easily be generalized to deal with the general case along
the lines of the argument below.

By λ being a MCS: (1) ⇒ ¬Kiψ ∈ λ(h) (2). By the construction of
legal histories in Definition 2.6.6 we have: (2) ⇒ 〈 ! 〉¬Kiψ ∈ λ(w)(3).

By Axiom 3 above: (3) ⇒ ¬〈 ! 〉Kiψ ∈ λ(w)(4) By Axiom 7 above
we have: (4) ⇒ ¬(〈 ! 〉> ∧ Ri〈 ! 〉ψ) ∈ λ(w) (5). Using de Morgan:
(5)⇒ ¬〈 ! 〉> ∨ ¬Ri〈 ! 〉ψ ∈ λ(w) (5).

By Construction: 〈 ! 〉> ∈ λ(w) (6) By Disjunctive Syllogism: (5) and
(6) ⇒ ¬Ri〈 ! 〉ψ ∈ λ(w) (7). We make the next sub-claim:

The following set is consistent:

v0 = {θ | Riθ ∈ λ(w)} ∪ {¬〈 ! 〉ψ}

Suppose not. Then there are formulae: θ1, . . . , θm such that:

`
m∧
j=1

θj → ¬〈 ! 〉ψ(12)

and for j = 1, . . . ,m,Riθj ∈ λ(w). Then, by standard modal
reasoning (Necessitation and Distribution of Q) we have:

(12)⇒`
m∧
j=1

Riθj → Ri¬〈 ! 〉ψ(13)

Hence, we also have: (13)⇒ Ri¬〈 ! 〉ψ ∈ λ(w)(14)
Because λ is a MCS: (14) contradicts the initial assumption (1).

By Lindenbaum’s Lemma any consistent set can be extended to a
MCS. Hence there exist a MCS v such that v0 ⊆ v (9). Therefore, by
construction we have: (9) ⇒ w ∼0

i ∩≈0
i v and from this it follows by

construction that w! ∼can
i ∩≈can

i v! (10). Hence ⇒ 〈 ! 〉> ∈ λ(v) and
¬〈 ! 〉ψ ∈ λ(v) (11) and by Axiom 3: (11) ⇒ 〈 ! 〉¬ψ ∈ λ(v). By LH
construction: (11) ⇒ ¬ψ ∈ λ(v!)(12), hence (12) ⇒ ψ 6∈ λ(v!)(13).
By induction hypothesis: (13) ⇒ Hcan, v! 6|= ψ (14) and by standard
modal semantics: (14) ⇒ Hcan, w! 6|= Riψ and Kiψ, as desired.

We continue now with the remaining converse direction. Base case: straight-
forward. Boolean cases: straightforward. We will consider the interesting cases
involving modalities in more detail next.

3.2. Illustrations using the Implementation 83

1. Epistemic/Knowledge Modality Case:

(a) Resolution Action Case: Let us start by recalling some relevant valid
principles in this context, that will be useful later in the proof:

Axiom 7 (Protocol Resolution and Knowledge):

〈 ! 〉Kiϕ↔ 〈 ! 〉> ∧Ri〈 ! 〉ϕ

Take an arbitrary history h ∈ Hcan such that h = w!. The argument
can easily be generalized to deal with the general case h = w!1 · · ·!n.
along the lines of the argument below.

Assume that: Kiψ ∈ λ(h) (1). Suppose: h′ ∈ Hcan and h ∼i h′ (2).
By CM construction: (2) ⇒ h′ = v!, for some v ∈ H0 with w ∼0

i v.
By LH construction: (1) ⇒ 〈 ! 〉Kiψ ∈ λ(w) (4). By the previously
introduced Axiom 7: (4) ⇒ (〈 ! 〉> ∧ Ri〈 ! 〉ψ) ∈ λ(w) = w (5). By
CM construction: (2) ⇒ w ∼0

i v (6). Using the modal semantics of
Ri: (5) and (6) ⇒ 〈 ! 〉ψ∈ v=λ(v) (7). Using the LH construction we
have: (7) ⇒ ψ ∈ λ(v!) = λ(h′) (8). From the Induction Hypothesis
it follows that: Hcan, h′ |= ψ. Therefore, by Modal Semantics we get
H, h |= Kiψ as desired.

(b) Questioning Action Case: Let us start by recalling some relevant valid
principles in this context: Axiom 6 (Protocol Asking and Knowledge):

〈ϕ?〉Kiψ ↔ 〈ϕ?〉> ∧Ki〈ϕ?〉ψ

This case is a situation of a commutating behavior so we are done.

2. Intersection Modality Case:

(a) Questioning Action Case:

Let us start by recalling some relevant valid principles in this context,
that will be useful later on during the proof:

Axiom 8 (Protocol Asking and Intersection):

〈γ?〉Riϕ↔ 〈γ?〉> ∧ ((γ ∧Ri(γ → 〈γ?〉ϕ)) ∨ (¬γ ∧Ri(¬γ → 〈γ?〉ϕ)))

Take an arbitrary history h ∈ Hcan such that h = wγ?. The argument
can be generalized to deal with the general case h = wγ1? · · · γn?. along
the lines of the argument below. This generalization essentially relies
on having a unique choice of the relevant disjunct in every component
in the long term history consisting of a finite sequence of question-
ing actions. The availability of such a unique choice is ensured by
Definition 3.2.1.

84 Chapter 3. Implementing Questioning Dynamics

Assume that: Riψ ∈ λ(h) (1). Suppose that we have: h′ ∈ Hcan and
h ∼0

i ∩≈0
i h

′ (2). By CM construction: (2) ⇒ h′ = vγ?, for some
v ∈ H0 such that w ∼0

i ∩≈0
i v. From the LH construction it follows

that: (1)⇒ 〈γ?〉Riψ ∈ λ(w) (4). By the previously introduced Axiom
8: (4)⇒ (〈γ?〉>∧ ((γ ∧Ri(γ → 〈γ?〉ψ))∨ (¬γ ∧Ri(¬γ → 〈γ?〉ψ)))) ∈
λ(w) = w. Hence we have either (γ ∧ Ri(γ → 〈γ?〉ψ) ∈ λ(w) = w or
(¬γ ∧ Ri(¬γ → 〈γ?〉ψ)) ∈ λ(w) = w. All we have to do at this stage
is to pick the right disjunct, because of Definition 3.2.1 we know there
is such a disjunct and the result of the choice function is well defined.
Because λ is a MCS either one or the other is the case. Here γ is a
yes/no question but the argument can also be extended along the same
lines to arbitrary partition-based propositional questions.

Assume wlog: (¬γ ∧ Ri(¬γ → 〈γ?〉ψ)) ∈ λ(w) = w (5). By CM
construction: (2) ⇒ w ∼0

i ∩≈0
i v (6). Using the modal semantics of

Ri: (5) and (6)⇒ 〈γ?〉ψ∈v=λ(v) (7). Using the LH construction we
have: (7) ⇒ ψ ∈ λ(vγ?) = λ(h′) (8). From the Induction Hypothesis
it follows that: Hcan, h′ |= ψ. Therefore, by Modal Semantics we get
H, h |= Riψ as desired.

(b) Resolution Action Case:

Let us start by recalling some relevant valid principles in this context:

Axiom 6 (Protocol Resolving and Intersection):

〈 ! 〉Riϕ↔ 〈 ! 〉> ∧Ri〈 ! 〉ϕ

This case is a situation of a commutating behavior so we are done.

3. Issue/Question Modality Case: Behaves completely similar to the already
explained Intersection modality for both cases of (a) Questioning Action
and (b) Resolution Action.

This concludes the proof. 2

Chapter 4

Games with Questioning Moves

We have introduced in the previous chapter a general logical framework for ques-
tions, information flow, and their mutual interdependence. In the present chap-
ter we enrich our study with strategic considerations. We will see that adding
a strategic aspect to questioning activities is a natural extension of the logical
framework which fits with many intuitive scenarios and captures concrete aspects
of rational interaction in many practical applications. We will also show that the
game theoretic twist enriches with new theoretical content traditional notions
used to describe questions and results about epistemic and interactive scenarios.

This enrichment also fulfills several desiderata already encompassing our ap-
proach. A dynamic logic of questions is designed to model interactive scenarios in
which agents perform questioning moves and aim to achieve epistemic goals. The
main modeling desiderata that we will address are: to develop a formal model
of questioning actions using an issue relation and to study the epistemic and
strategic effects of such questioning actions in a game theoretical setting.

Approaches that combine logical and game theoretic aspects for informative
epistemic actions are not new, we start our chapter with a brief account of pre-
vious approaches inside the DEL paradigm. Next we will focus on showing how
these classical approaches designed to model informative actions can be extended
to model questioning actions in interactive scenarios.

We proceed by first introducing strategic games in which moves are question-
answer pairs. We give the basic definitions of such games and then proceed to
consider results about existence of solution concepts and analysis of concrete
examples. Next we introduce extensive games in which moves are questioning
actions whose effects are represented by an issue relation. We continue with
studying solution concepts and strategic abilities in epistemic games with ques-
tioning moves and general game properties useful to describe them.

85

86 Chapter 4. Games with Questioning Moves

4.1 Brief History of Epistemic Games

Several approaches that combine a logic and epistemic approach with a game-
theoretic approach for modeling scenarios of rational interaction and communi-
cation involving directly or indirectly questioning actions have been previously
considered in the literature [50, 77, 80]. We start by briefly surveying the main
approaches inside the dynamic epistemic logic paradigm [102], [8], and [2].

4.1.1 Knowledge Games with Epistemic Moves

A first relevant contribution inside the broader DEL paradigm approaches infor-
mative epistemic moves in a general game-theoretic setting [102], and defines and
studies games with epistemic moves. In brief, this approach starts by considering
a set of cards C and a set of agent-labels A. Let d ∈ AC be a deal of cards, then
the initial state of a game for the actual deal of cards d is:

(〈D]d, (∼a)a∈A, V 〉, d), where ∀a ∈ A : ∀d1, d2 ∈ D]d : d1 ∼a d2 ⇔
d−1

1 (a) = d−1
2 (a) and ∀e ∈ D]d : ∀ca ∈ P : Ve(ca) = 1⇔ e(c) = a

A knowledge game state for cards-deal d is an S5 model (〈W, (∼a)a∈A, V 〉, v), such
that v ∈ W , Vd, and: ∀w ∈ W : ∃d′ ∈ D]d : Vw = Vd′ , and for all a ∈ A:∀w1, w2 ∈
W :∀d1, d2 ∈ D]d: (w1 ∼a w2, Vw1 =Vd1 , Vw2 =Vd2)⇒ d−1

1 (a) = d−1
2 (a).

Let (〈W, (∼a)a∈A, V 〉, v) be a knowledge game state for d ∈ AC, then Ds =
{d′ ∈ Dd | ∃w ∈ W : w ∼A v, Vw = Vd′} are the epistemically relevant card-deals.

Let (〈W, (∼a)a∈A, V 〉, d) be a knowledge game state. A game action µ for
state s is a quintuple µ = 〈q,Q, r, R, pub〉, where q, r ∈ A, Q is a covering of W
that is coarser than ∼r, R ∈ Q and pubr is the identity ‘=’ on Q.

Let s = (〈W, (∼a)a∈A, V 〉, w) and µ = 〈q,Q, r, R, pub〉. The game action µ is
executable in game state s if the answer R contains actual world w, i.e., if r’s
information state [w]∼r is contained in the answer-set.

This framework also offers the possibility to describe epistemic actions as
they appear to groups of agents in interaction. For instance, when an action is
accessible to all agents in a subgroup B ∈ A this can be represented as pubB =
(
⋃
a∈B puba)

∗. The equivalence class of ∼B that contains the answer Q stands for
what subgroup B learns in that game action.

4.1.2 Time-stamped Questions in Communication

The second account that we will consider here was introduced in [8]. Here a
general setting of ‘communication acts’ is considered: [σ~ϕ]ψ saying intuitively
that “after the communication act σ~ϕ is performed at the current state, ψ will be
true at the output sate”. ‘Abstract dialogues’ or ‘communication sequences’ are
defined as words over the alphabet Act∗Σ of all communications acts considered.

4.1. Brief History of Epistemic Games 87

Interrogatives, or queries are in this setting a particular kind of communi-
cation acts. For instance, the ‘public questioning of agent b by agent a’ is of
type PubQi(a, b) having the following structure: Σ1 = {PubQa}, PubQi(a, b)c =
{PubQi(a, b)} for all agents c ∈ Ag, PREPubQi(a,b) = ∅, and CONPubQi(a,b) =
?i(a, b, Ag). The resulting communication act is the act of ‘agent a publicly ask-
ing b weather ϕ is true or not’. The notable feature here is the fact that such
communication acts come with a ‘timestamp i’ which will become relevant later
on when the communication acts are going to be cast as legal or illegal ‘(communi-
cation) moves’ in a ‘dialogue game’. Only moves that answer questions that have
been previously time-stamped are going to be legal while moves that also con-
sider the later dynamics are not allowed. Many other kinds of questioning moves
can be captured in this setting using more and more complex preconditions for
execution and/or the publicity of the action, the security of the communication
channel, etc. For instance, questions are qualified as ‘normal’ and ‘abnormal’,
‘private’ and ‘public’, ‘secure’ or ‘intercepted’, Socratic, etc.

In this setting, a ‘dialogue game’ is a pair G = (SG, ActG) containing a set
of initial epistemic states and available moves, both finite. A ‘legal dialogue’ is
a string s0, α0, s1, α1, . . . , snαn of time-stamped epistemic states and communica-
tion moves that have to satisfy various reasonable conditions such as, in the case
of questioning moves, responsiveness, sincerity, etc.

4.1.3 Public Announcement Games

A more recent approach that models games in which moves are public announce-
ments is [2]. In this framework, the modeling starts from an epistemic structure
over two agents. Moves in the game are public announcements. The result of
an announcement is the epistemic structure updated with the conjunction of an-
nouncement formulae for the two agents. The goals of the agents are represented
as epistemic formulae. The payoff for the agents is derived by model checking
goal formulae in the output epistemic structures. Both pointed games, which are
played locally at a world in the model, and induced games, which are necessary
because the agents themselves are uncertain about the actual situation, are de-
fined and analyzed in this setting. The main contribution of this chapter will be
to add questioning moves to this formal framework and to study both logical and
game theoretic notions and formal properties in settings with questioning moves.

The connection between this approach and question-answer games is very
close. While many of the definitions are similar, there are interesting differences
already emerging at this level, both conceptually and in terms of basic results. A
complete and detailed comparison is beyond the scope of this brief introduction.
We include a more detailed comparison starting from and using implementation
tools in Chapter 5 and proceed now to introduce definitions for question-answer
games in all details as well as illustrations and basic results about them.

88 Chapter 4. Games with Questioning Moves

4.2 Question-Answer Games

Introduction In general, there is a very close relation between questions and
answers. This intimate connection is manifest in many of the historical approaches
already discussed and will also be the starting point in the approach we will follow
in this chapter. We start with very basic strategic games that have question-
answer pairs as constitutive moves. We then explore more complex versions that
allow for more realistic features, including more complex questioning actions and
sources of information. We then continue our study with a setting of extensive
games which have questioning moves as their basic components.

The connection between strategic aspects and information content in ques-
tioning activities has been the topic in various studies about games that involve
questions and answers such as, for instance: [30, 62]. Moreover, relations between
game theory and pragmatic phenomena like the information content of questions
and their relevance for solving decision problems have also received attention
before, for instance in [110]. Such approaches have revealed close connection be-
tween an analysis of questions, information theory and related concepts such as
entropy and relevance. However, such approaches usually only consider question-
ing actions from a single-agent perspective. Following a long tradition, they do
not usually involve strategic answers to questions asked to or by other agents. We
aim at using an epistemic analysis in game theoretic style in order to integrate
such aspects in a broader multi-agent perspective on questioning scenarios.

Questioning Let us give more content to this general perspective by starting
from concrete examples. Consider two agents a, and b, and a relevant proposi-
tional symbol p. The other alternative, is therefore represented by ¬p.

There are several pragmatic preconditions included in the question ‘p?’ being
asked by an agent. She should not know the truth about p, i.e., she does not
know p, and she does not know ¬p. We are assuming a multi-agent epistemic
logic to model questions, where the expression Kap stands for ‘a knows p,’ and
where the epistemic modality Ka is interpreted with an equivalence relation ∼a.
This pragmatic constraint therefore amounts to the precondition ¬Kap∧¬Ka¬p.
The agent asking the question also has expectations about the agent that will
answer the question, and that constitutes another pragmatic precondition. She
considers it possible that he knows the answer, i.e., ¬Ka¬(Kbp ∨ Kb¬p). (She
also considers it likely that he knows the answer, i.e., she believes that tentatively,
Ba(Kbp ∨ Kb¬p), where belief and knowledge are combined as in [64]; we may
also see that as a combination of preferences and knowledge [99].)

A question ϕ? splits the domain in the set of states [[ϕ]] where ϕ is true and
the set of states [[¬ϕ]] where ϕ is false, i.e., the question induces a dichotomy on
the domain of the model. In the approach from the previous chapter, as well as in
[100], a question ϕ? is represented by the issue relation ≈ϕ. Such issue relations
are natural and intuitive representations for semantic effects of questioning actions

4.2. Question-Answer Games 89

in a universe of possible worlds, their use goes back to [40, 56]. We will start
this chapter by introducing a model that does not use such issue relations and
we will return to them later on. To a certain extent a dichotomy can be also
represented as two model restrictions corresponding to the possible answers to
the questions modeled as announcements, in standard public announcement logic.
Some interesting features that are specific for questions and deserve a minute
analysis emerge already at this stage, even without considering an issue relation.

Answers to Questions If a question is addressed to another agent, which
might have his own epistemic limitations, there are three possible answers: ‘Yes’,
‘No’, and ‘I don’t know’. A fourth possibility, which is, however, less relevant as
an epistemic action, would be: ‘I decline to answer the question’. Such a response
does not convey an epistemic content. Therefore we will focus only on the three
different answers that do have an epistemic content. Neither of these is less or
more informative than required in a multi-agent context.

When a question is addressed to an agent b an answer corresponds to the
(unique) largest union of b equivalence classes representing the knowledge that is
contained in the ϕ-states of the model. This is of course exactly the denotation
of the formula Kbϕ. If we make the reasonable assumption that questions are
answered truthfully, answers can be encoded as a public announcement Kbϕ! [79].

Similarly, if the answer is “No, I don’t” this can be thought as announcing
the formula Kb¬ϕ and its denotation is the complement of the (unique) smallest
union of equivalence classes that contains the ϕ-states. The answer “I don’t know”
results in the remainder, i.e. the union of all∼a classes that properly intersect with
≈ϕ. The ‘don’t know’ answer can be conceived as announcement of the formula
¬Kbϕ∧¬Kb¬ϕ and this might also fit into the form of an announcement, namely
Kb(¬Kbϕ∧¬Kb¬ϕ), so indeed this must also be a union of b-equivalence classes.

This in fact shows that answers to questions can be seen as rough sets [75].
Given the set [[ϕ]] (i.e., the subset of the domain consisting of the ϕ-states), in
rough set terms known as the target, take the lower and upper ∼b approximation
of the target, i.e., ∼b([[ϕ]]) and ∼b([[ϕ]]). If the answer to the question is ‘yes’, the
actual state is in the lower approximation. If the answer is ‘no’, the actual state
is in the complement of the upper approximation. If the answer is ‘don’t know’,
the actual state is in the upper approximation minus the lower approximation.
See also Figure 4.1 later in the section for an intuitive illustration.

In dynamic epistemic logic, a public announcement is interpreted as a model
restriction. Therefore, answering the question can be seen as executing one of
three possible such restrictions, a non-deterministic program so to speak.

Games with Questions and Answers Extending all this into a game theo-
retical scenario is as natural as it can be. The only aspect that needs clarification
is the goal of the game. What are the goals of the players? In the case of ask-

90 Chapter 4. Games with Questioning Moves

ing p, it is most natural to think of the goal as achieving knowledge about p:
Kap∨Ka¬p. But in this case it is not so clear if there is an opponent. Clearly if
the agent to whom the question is addressed has no interest in the issue he will
answer the question, but he will not be playing a game just yet.

But scenarios featuring genuine strategic aspects are frequent in many com-
petitive situations involving questions in a multi-agent setting. Take as a quick
illustration a scenario in which you and I are both spies looking to find out a
particular secret. The secret is the truth about p. Your goal is to get to know it
before me and my goal is to get to know it before you, i.e., each agent has a goal:

γa = (Kbp ∨Kb¬p)→ (Kap ∨Ka¬p),

γb = (Kap ∨Ka¬p)→ (Kbp ∨Kb¬p),
In other words, it is not a problem if you know it, as long as I already know it too,
and vice versa. The epistemic results of asking and answering are new information
states wherein we can check whether or not each player’s goal is fulfilled. This
determines a payoff function and thus the outcome of the epistemic game.

So in order to play a game with questions and answers the players need a
goal, and that goal can be an epistemic formula. Why should a player answer
a question if that means giving away information that may make him lose the
game? He has no reason whatsoever. However, just like in real life, if you wish
the other person to loosen his information strings, you may only expect to obtain
that by giving away some information yourself. The procedural version of this
expectation is a game where each player may choose between different questions
to ask but where the other player addressed by that question is obliged to answer.

Pointed and induced question-answer games Given two agents a and b,
an epistemic model M = (S,∼a,∼b, V) encodes their uncertainty about facts and
about each other; Two formulas γa and γb in the logical language express what
they wish to achieve by their questions. In order to achieve their goals, agent
a asks a question ϕ? to agent b, to which b is obliged to respond with ‘yes’ (I
know that ϕ), ‘no’ (I know that ¬ϕ), or ‘don’t know’ (I don’t know whether
ϕ). And similarly for b asking a question to a. We don’t want to keep saying
that all the time, so from now on we may refer to the two agents as i and j,
where i 6= j, and i may be either a or b. We assume that both agents ask their
question simultaneously, and that subsequently both agents answer the question
simultaneously. Of course, more realistic communicative settings would allow for
agents to ask questions and respond to them in any order, such generalizations
will be modeled as extensive games in a later section of this chapter. The question
formulas can be thought of as defining the strategies for the agents.

Executing the strategy ϕ for agent i can be thought of as follows. Agent i
asks ϕ? to j. If M, s |= Kjϕ, then j answers (announces) “Yes, I know that ϕ”.
If M, s |= Kj¬ϕ, then j answers “No, I know that ¬ϕ”. Otherwise, j answers “I

4.2. Question-Answer Games 91

don’t know whether ϕ”. The resulting model restriction depends on both answers,
e.g., if a asks ϕ? to which b responds Kbϕ! and b asks ψ? to which a responds
Ka¬ψ!, the result is the restricted model M |(Kbϕ∧Ka¬ψ). We can capture these
alternatives with a construct Kiϕ, for ‘agent i answers the question ϕ?’, defined
as follows. Given an epistemic model M and a state s ∈M , if M, s |= Kiϕ, then
Kiϕ ≡ Kiϕ; if M, s |= Ki¬ϕ, then Kiϕ ≡ Ki¬ϕ; and else Kiϕ ≡ ¬(Kiϕ∨Ki¬ϕ).

Alternatively, we can represent the question by an issue relation ≈ϕ and the
public announcement of answering the question in the link-cutting way from the
previous chapters in this thesis going back to [99, 100]. A strategy will be in
the current setting a tripartite question, and its execution value consists of the
answer to it. As the three epistemically relevant possible answers are mutually
exclusive, each world of the model uniquely determines the execution value for
each strategy. The values will then be aggregated at the global level of the model.

We associate two different strategic games with these questions, their an-
swers and agents’ goals: pointed question-answer games and not-pointed or global
question-answer games. Both are needed: a player may not know what the actual
state is, and therefore not know which game he is playing. These definitions are
adaptations of similar concepts in [2] with the only notable exception that when
modeling questions the pointed game has to use a more complex payoff function.

4.2.1. Definition. [Pointed question-answer game] The state game or pointed
question-answer game G((M, s), γa, γb) associated with state s ∈ M of goals γa
and γb for agents a and b respectively, is the strategic game defined by:

– N = {a, b};

– for i = a, b, Ai = {ϕ? | ϕ ∈ L};

– for i = a, b, usi (ϕ, ψ) =

{
1 if M, s |= 〈(Kbϕ ∧Kaψ)!〉γi
0 otherwise

Note that the set of strategies Ai is the same in all states of the model. The
next definition gives a state-independent perspective on question-answer games.

4.2.2. Definition. [Question-answer game] Given state games G((M, s), γa, γb)
for each s ∈ M , the induced game or question-answer game G(M,γa, γb) =
〈N, {A′i : i ∈ N}, {ui : i ∈ N}〉 is the strategic game defined by

– N = {a, b};

– for i = a, b, A′i is the set of uniform functions from S to Ai;

– for i = a, b, a′a, a
′
b ∈ A′i, ui(a′a, a′b) =

∑
s∈S u

s
i (a′a(s),a′b(s))

|S| .

92 Chapter 4. Games with Questioning Moves

In Definition 4.2.2, a strategy ai for player i is uniform iff for all s, t ∈ S:
s ∼i t implies ai(s) = ai(t). It can be easily shown that this corresponds to a
Bayesian game [45], in the sense that it has the same Nash equilibria; we will
return to this aspect in more detail later in the section.

As there are countably infinitely many formulas in the basic propositional
language, there will be infinitely many strategies in a pointed question-answer
game, and therefore also in an induced question-answer game. However, in order
to avoid such an explosion and an unnecessary overkill by strategy proliferation
we can propose the following major simplification for the notion of strategy.

4.2.3. Definition. [Strategy equivalence] Let an epistemic model M be given.
Two strategies ϕ? and ψ? for a pointed question-answer game played in the model
M are the same (equivalent) for agent i if:

{[[Kjϕ]]M , [[Kj¬ϕ]]M , [[¬(Kjϕ ∨Kj¬ϕ)]]M} =
{[[Kjψ]]M , [[Kj¬ψ]]M , [[¬(Kjψ ∨Kj¬ψ)]]M}

Note that it is common knowledge to a and b if two strategies are the same.
This is so because we are comparing the denotations of formulas involving ϕ and
ψ in the model, independent of the actual state.

We include a more detailed discussion of this notion of strategy equivalence
and additional examples in Section 5.2.

Given the requirement of uniform strategies in the global game, instead of
seeing a strategy in the induced game as a function from states to formulas, we
can also see such a strategy for agent i as a function from i-equivalence classes to
formulas, and therefore as a function from formulas characterizing i-equivalence
classes to formulas. In other words, we can see then as conditional strategies.

With these simplifications there are fewer strategies: given that our starting
models are always finite, there are only a finite number of non-equivalent strate-
gies. The next subsection contains an example where both players only have two
‘real’ (i.e., non-equivalent) strategies. Subject to the identification of strategies
with the same tri-partition, the number of strategies for i is a function of the num-
ber of the equivalence classes for agent j in the model M . We discuss further the
counting of strategies based on this notion of strategy equivalence in Section 5.2.
We will consider here the simple special case where the ‘don’t know’ alternative
is always empty as a first approximation of how strategies can be counted.

Also we will assume that the worlds in the domain of the model can be named
either by using nominals or by a characteristic epistemic formula true only at one
world. This can always be constructed if the starting epistemic model has been
minimized under epistemic bisimulation before the play of the question-answer
game begins and the set of formulae representing strategies is determined.

If the strategies for i have the form Kjϕ?, there are only two and not three
answers, namely only ‘yes’ and ‘no’, where the second answer contains now both
previously negative and unknown answer alternatives. If strategies are required

4.2. Question-Answer Games 93

to have this form for both agents, we call this a dichotomous question-answer
game. The number of strategies is now even lower. It can be counted as follows,
assuming that we work with {a, b}-connected models. If we assume that player
i has mi equivalence classes and player j has mj equivalence classes. Then the
number of pure strategies for player i will be 2mjmi−mi .

There are 2mj−1 different dichotomies for player j i.e. coarsenings of player
j’s partition, and for each of mi different equivalence classes for the requesting
player i, she may choose one of those questions, therefore the total number of
pure strategies in the game will be (2mj−1)mi = 2mjmi−mi .

We include further examples and illustrations in the next chapter.

It is time now to take stock of where we stand with our formal model so far.
First, our model is based on some implicit but drastic simplifications. These
have been useful so far because they provide concreteness to the formal model as
a initial approximation. We discuss some of these simplifying assumptions and
some further desiderata for games with more realistic features.

Simplifications In the discussion throughout this section, we disregard prag-
matic constraints of questions. One may ask a question to which she already
knows the answer. In other words, we did not consider that the question ϕ? is
also an informative update / public announcement of the formula:

(¬Kaϕ ∧ ¬Ka¬ϕ) ∧ ¬Ka¬(Kbϕ ∨Kb¬ϕ).

However, incorporating such additional constraints does not raise any significant
conceptual or technical difficulties. It merely restricts the players’ strategies.

Avoiding to answer the question is not modeled as a move in the version of
question-answer game considered so far. However, it is not problematic, as that
response can be modeled as the trivial announcement.

There are two players only, that ask each other questions. If there are more
than two players, one has to specify who is addressed by the question. Again, this
is doable, and an answer to the question would still be a public announcement.

So far, we only assume that the two players ask each other a single question,
and that they ask the question at the same time; say, by writing down the question
on a piece of paper, putting it in an envelope, and then exchanging envelopes.
For the answer, they again exchange envelopes.

The most natural interaction between players involving questions and answers
is where they ask each other questions in turn not simultaneously, such that a
question is answered before the next question is asked. Such scenarios can be
modeled but they will require an approach that uses games in extensive form.

However, in order to make sure that our formal model is relevant for real-
istic applications we have to find the right balance between a naive technical
convenience and an approach that can capture a reasonable level of conceptual
complexity. For this we list a number of further modeling desiderata.

94 Chapter 4. Games with Questioning Moves

Modeling Desiderata, Further Extensions We have shown how epistemic
models come with natural games that model interesting phenomena, and suggest
interesting logical questions. Our games are very simple, but this starting point
itself is an advantage, since well-chosen simple games are a first start for more
complex scenarios. Nevertheless, we wish to go beyond that. Most natural from
the viewpoint of our general aims are the following extensions:

A first desideratum is to have a richer account of questions that is adequate
at least for analyzing questions as possible moves in inquiry. As mentioned in
the introductory Section 4.2, a pragmatic constraint on questions is that the
interrogator does not know the answer. This amounts to the precondition

¬Kaϕ ∧ ¬Ka¬ϕ (i)

for a question ϕ?. The agent asking the question also has expectations about
the agent that will answer the question, and that constitutes another pragmatic
precondition. She considers it possible that he knows the answer, i.e.,

¬Ka¬(Kbϕ ∨Kb¬ϕ) (ii)

For a given model, such pragmatic constraints result in a (further) reduction
of strategies than the reduction already achieved by strategy equivalence. For
instance, given (i), in the example of Section 4.2 the agents would not have
had any strategic choice! The trivial question would not be allowed. Also, it
makes sense to consider games in which the trivial answer ‘I decline to answer
the question’ / announcement of > is always allowed; or games where this is
out-ruled. All such variations can be accommodated in the current model.

Extensive games with longer sequences of moves are an obvious desideratum,
and so are logics for them and finding sequential equilibria in extensive games.

An approach that generalizes questioning games by considering more than two
agents; multiple or partially ordered goals per agent; a notion of goal equivalence;
non-uniform probability distributions over the worlds in the domain, etc.

A final desideratum would be to have multiple goals and also goals that are
structured in a richer way, for instance forming a linear order with some of them
having a higher priority or relevance over the remaining ones.

4.3 Questioning Games with Oracles

Most of the applications that are relevant for modeling inquiry and scientific
research consider alongside strategic questions of rational agents objective answers
from Nature or other generic entity like an Oracle or other abstract information
sources. The strategic aspects involved in playing a questioning game depend
also on what are the sources of information available during the game.

4.3. Questioning Games with Oracles 95

In this section we will address the following modeling desiderata specified
earlier: we will consider a setting with more than two players, we will consider
a setting in which we can study various sources of information available and a
more complex model of questioning: both classical or dichotomous questions and
epistemically modulated, or trichotomous questions. We will show by means of
some illustrative examples how these features can be easily integrated in our
setting of epistemic games introduced in the previous section. Even more, we will
show that the standard approach to questioning actions in an epistemic neutral
environment can be captured in an epistemic setting as a particular case, when
a perfectly informed source of information is available in the model.

Moreover, we will also show how standard results about games in general
transfer in the expected way to question-answer epistemic games (QAGs). One
property investigated will be the (in)existence of Nash equilibria1. For games with
pure strategies in general there might be the case that no Nash equilibrium exist.
We show that this is also the case for QAGs using a setting in which this result
can be presented in a compact (even though, admittedly, graphically demanding)
way.

However, we will not have questions represented by an issue partition yet,
or games with sequential moves, these desiderata will be addressed later on in
Section 4.4.2. Let us start by considering a paradigmatic example:

4.3.1. Example. The answer to a question ϕ? can be seen as a rough set. In the
figure below, the (4× 4 = 16) cells represent the equivalence classes of the agent
answering the question. The blue ellipse corresponds to {ϕ}, the green region to
the answer ‘yes’ and the red region to the answer ‘no’ (and this could have been
the other way around), and the white region (necessarily) to ‘don’t know’.

Figure 4.1: Bipartite versus Tripartite Questioning: adding an epistemic partition
(right) enriches the standard approach of formal structure in answering (left).

We can generalize the setting from this example in the following way. Let W
be a set of possible worlds, R ∈ W ×W an equivalence relation on W , and K the

1The notion of Nash equilibrium we will use is the standard one, see Definition 6.6.1 in the
Theoretical Background appendix 6.6 and/or Definition 4.4.15 later on in this chapter.

96 Chapter 4. Games with Questioning Moves

modality for R. Let P ⊆ W be the extension of ϕ. We define S3P ∈ W 3 by:

S3P = {S0P , S1P , S2P}

where we have: S0P = {w |M |=w K¬ϕ}, S1P = {w |M |=w Kϕ},

S2P = {w |M |=w ¬K¬ϕ ∧ ¬Kϕ}.

Discussion Intuitively, K represents the query-available information. It can
be given by the limitations in the subjective knowledge of the agent or group of
agents, that will answer the query in a multi-agent query setting. It can equally
well represent the objective limits in generic answering capabilities like limitations
of measurement instruments, or contingencies of experimental design, restrictions
in computing power, or lack of specific resources needed for problem solving. Such
limitations can also be encoded by an oracle function.

We can now define an order on questions in the following way:

Let S be the set of tripartite questions expressible over a given domain W
and S3, S3′ ∈ S such that S3 = {S0, S1, S2}, S3′ = {S0′, S1′, S2′}, we define an
order ≤ ∈ S2 in the following way:

S3 ≤ S3′ ⇔ ∀X ∈ S3 ∃Y ∈ S3′ : X ⊆ Y

This ordering is related to the order over the subsets of the domain, repre-
senting assertions, in a natural way. Let P, P ′ ⊆ W be the extensions of ϕ, ϕ′,
respectively. We define an order ≤ ∈ ℘(W)2 in the following way:

P? ≤ P ′?⇔ {P} ≤ {P ′} ⇔ S3P ≤ S3P ′

It follows from this definition that ϕ? ≤ ϕ′?⇔ P? ≤ P ′?.
The two orders can be further lifted in a natural way to questions understood

as sets of answers. Let Q = {P1, . . . , Pn}, Q′ = {P ′1, . . . , P ′m}, Pi, P ′j ⊆ W , we
define an order ≤ ∈ ℘(℘(W))2 in the following way:

Q? ≤ Q′?⇔ {P1, . . . , Pn} ≤ {P ′1, . . . , P ′m} ⇔ ∀Pi ∈ Q ∃P ′j ∈ Q′ : S3Pi
≤ S3P ′j

This is a natural ordering of questions which depends on the information
available in the epistemic structure considered. However, it turns out that the
standard ordering of questions is just a particular case that can be obtained as
follows: Let PR be the partition induced by R on W , |PR| = c be number of
equivalence classes in PR and |W | = s be the size of W , i.e. the number of
possible worlds. When R = Id(W) = ∆(W 2) we have |P | = c = s = |W |, and we
obtain as a particular case the standard ordering between questions:

Q ≤ Q′ ⇔ ∀P ∈ Q,∃P ′ ∈ Q′ : P ⊆ P ′

4.3. Questioning Games with Oracles 97

In the following application we will investigate a scenario in which both kinds
of sources of information and their corresponding questions coexist. In this setting
it becomes important from a strategic point of view to chose the right source to
address the question, or the most efficient oracle, which is also a crucial aspect
in designing efficient questioning strategies in inquiry.

Epistemic Games with Subjective Agents and Objective Environment

We start with an epistemic situation where three agents a, b, c have various levels
of knowledge about three facts p, q, r, as follows: a knows q, b knows p and c
is fully informed. This epistemic situation can be represented in a relational
structure like the one depicted in Figure 4.2.

7
pqr b

5
pqr

a

6∗

pqr b

ab>>>

>>>

4
pq r

a

ab~~~

~~~

2
pqr

a

ab
���

���

0
p q rb

ab
@@@

@@@

3
pqr

a

1
p qrb

Figure 4.2: The M7 model

We specify an epistemic game to be played
inside this structure by the following com-
ponents: the moves that the agents are al-
lowed to make in the game and the goals that
each player tries to achieve by making choices
during the game. As described in previous
sections both of these components are formu-
las from the specified epistemic language dis-
cussed before.

Each questioning move is paired by a
truthful and informative answer to it. In the
current setting the answer can come from any
agent that has the requested information and
was addressed by the question. Each player’s

payoff is computed in the usual way at a given world inside the epistemic model
that results after the initial model is updated with the complete information con-
tained in all the answers for all the asked questions and from every information
source.

An intuitive illustration of the game just described is given in Figure 4.3.
Although this is not going to be our concern in this section we mention the
fact that the given strategies could have been obtained in a uniform way as a
result of a meaningful set of pragmatic pre- and/or post-conditions for epistemic
actions. For our present purpose it suffices to consider all the game components
as primitive. The formal definition is as follows (we use here p?(!b) as a shortcut
notation for a sequence in which a asks p? and b answers, and, similarly, r?(!c)
for a sequence in which b asks r? and c answers accordingly):

– The set of players is: N = {a, b, c},

– The strategy-sets are: Sa = {p?(!b), r?(!c)}, Sb = {p?(!a), r?(!c)}, Sc = {},

– The goal-formulas for each of the players are: γa = Kap, γb = Kbq, γc = Kc⊥



98 Chapter 4. Games with Questioning Moves

0
p q r

1
p qr

ab

2
pqr

3
pqr

ab

b

b

4
pq r

5
pqr

ab

6∗

pqr

7
pqr

ab

b

b

aaaa

13
b

57
b

a a

r?r? r?r?

3

7
a

r?q?

57
b

p?r?

6

7
ab

p?q?

7 q? r?
p? 11 10
r? 01 00

1

5
a

r?q?

7 5
b

p?r?

4

5
ab

p?q?

5 q? r?
p? 10 10
r? 00 00

57
b

13
b

a a

r?r? r?r?

7

3

a

r?q?

13
b

p?r?

2

3

ab

p?q?

3 q? r?
p? 01 00
r? 01 00

5

1

a

r?q?

3 1
b

p?r?

0

1

ab

p?q?

1 q? r?
p? 00 00
r? 00 00

4 q? r?
p? 10 10
r? 00 00

4

0

a

q?r?
46

b

02
b

a a

r?r?

6 4
b

p?r?

4

5
ab

p?q?

0 q? r?
p? 00 00
r? 00 00

q?r?
r?r?

2 0
b

p?r?

0

1
abp?q?

6 q? r?
p? 11 10
r? 01 00

6

2

a

q?r?
6 4

b

2 0
b

aa

r?r?

46
b

p?r?

6

7
ab

p?q?

2 q? r?
p? 01 00
r? 01 00

q?r?
r?r?

02
b

p?r?

2

3
ab p?q?

Figure 4.3: Question-answer updates and local games in the epistemic model M7.

– The payoff for each player is computed by the following function:

pwi (si, s−i) =

{
1 if M?! |=w γi
0 otherwise

where M?! is M7 |! ϕ for ϕ :=
∧

(si, s−i). We denote by
∧

(si, s−i) a strategy
profile, in which s−i is the tuple of strategies for players other than i. The
notation

∧
(si, s−i) is a shortcut for sa ∧ · · · ∧ sc.

The local state-games that result from this definition in each world of the M7

model are depicted in Figure 4.3. To economize on space we use an abbreviated
notation that assumes but does not represent explicitly the strategies and the
payoff values for player c, which will be 0 in all situations given the goal γc.



4.3. Questioning Games with Oracles 99

The local state-games played in each of the worlds of the epistemic model M7

are represented in Figure 4.4. The Nash equilibria in these games are underlined.
We can notice that the distinction between de re and de dicto concepts remains
pertinent also for games in which strategies are questions and answers in the same
way they were for games in which strategies are public announcements. Note also
that even if the strategies in the normal form for the state-games are questions in
fact the effect of the corresponding answer is the one that changes the epistemic
structure. The semantic effects of questions are not yet modeled at this stage.

0 q? r?
p? 00 00
r? 00 00

1 q? r?
p? 00 00
r? 00 00

2 q? r?
p? 01 00
r? 01 00

3 q? r?
p? 01 00
r? 01 00

4 q? r?
p? 10 10
r? 00 00

5 q? r?
p? 10 10
r? 00 00

6 q? r?
p? 11 10
r? 01 00

7 q? r?
p? 11 10
r? 01 00

Figure 4.4: Local state-games in the epistemic structure M7

Note also that in this setting the same strategy can have different semantic
effects in various worlds of the model. For instance, asking the question r? in
world 7 will lead to a truthful and informative announcement of r! and the cor-
responding update to a model with a domain containing only worlds with odd
numbers: {7531}. In contrast, asking the same question r? in world 0 will lead
to a truthful and informative announcement of r! and the corresponding update
to a model with a domain containing only worlds with even numbers: {6420}.
The more general inequality dom(M |? ϕ0?, . . . , ϕn?) 6= dom(M |? ϕ0?, . . . , ϕn?)
is the reason why the same strategy profile can lead to different payoff values.

We continue with an analysis of the induced Q-A game. Conceptually, the
induced game is the game that is played globally in the whole epistemic model
not just locally in each world of the model. Its formal definition is as follows:

– The set of players is: N = {a, b, c},

– The strategy-sets contain all strategies uniform on information cells:

Sa = {Sa0 , Sa1 , Sa2 , Sa3} Sb = {Sb0, Sb1, Sb2, Sb3}
Sa0 = {(7632, p?), (5410, p?)} Sb0 = {(7654, q?), (3210, q?)}
Sa1 = {(7632, p?), (5410, r?)} Sb1 = {(7654, q?), (3210, r?)}
Sa2 = {(7632, r?), (5410, p?)} Sb2 = {(7654, r?), (3210, q?)}
Sa3 = {(7632, r?), (5410, r?)} Sb3 = {(7654, r?), (3210, r?)}

– The goal-formulas for each of the players are: γa = Kap, γb = Kbq, γc = Kc⊥

– The payoff for each player is computed by the following function:



100 Chapter 4. Games with Questioning Moves

pMi (si, s−i) =

∑
w∈W pwi (si(w), s−i(w))

|W |
.

If we compute the players’ payoffs in the local state games for each world and
strategy profile according to this definition we obtain the following results:

(Sb, Sa) 0 1 2 3 4 5 6 7 (pMa , p
M
b )

(Sb0, S
a
0 ) 0, 0 0, 0 0, 1 0, 1 1, 0 1, 0 1, 1 1, 1 0.50, 0.50

(Sb0, S
a
1 ) 0, 0 0, 0 0, 1 0, 1 0, 0 0, 0 1, 1 1, 1 0.25, 0.50

(Sb0, S
a
2 ) 0, 0 0, 0 0, 1 0, 1 1, 0 1, 0 0, 1 0, 1 0.25, 0.50

(Sb0, S
a
3 ) 0, 0 0, 0 0, 1 0, 1 0, 0 0, 0 0, 1 0, 1 0.00, 0.50

(Sb, Sa) 0 1 2 3 4 5 6 7 (pMa , p
M
b )

(Sb1, S
a
0 ) 0, 0 0, 0 0, 0 0, 0 1, 0 1, 0 1, 1 1, 1 0.50, 0.25

(Sb1, S
a
1 ) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 1 1, 1 0.25, 0.25

(Sb1, S
a
2 ) 0, 0 0, 0 0, 0 0, 0 1, 0 1, 0 0, 1 0, 1 0.25, 0.25

(Sb1, S
a
3 ) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 1 0, 1 0.00, 0.25

(Sb, Sa) 0 1 2 3 4 5 6 7 (pMa , p
M
b )

(Sb2, S
a
0 ) 0, 0 0, 0 0, 1 0, 1 1, 0 1, 0 1, 0 1, 0 0.50, 0.25

(Sb2, S
a
1 ) 0, 0 0, 0 0, 1 0, 1 0, 0 0, 0 1, 0 1, 0 0.25, 0.25

(Sb2, S
a
2 ) 0, 0 0, 0 0, 1 0, 1 1, 0 1, 0 0, 0 0, 0 0.25, 0.25

(Sb2, S
a
3 ) 0, 0 0, 0 0, 1 0, 1 0, 0 0, 0 0, 0 0, 0 0.00, 0.25

(Sb, Sa) 0 1 2 3 4 5 6 7 (pMa , p
M
b )

(Sb3, S
a
0 ) 0, 0 0, 0 0, 0 0, 0 1, 0 1, 0 1, 0 1, 0 0.50, 0.00

(Sb3, S
a
1 ) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 0 1, 0 0.25, 0.00

(Sb3, S
a
2 ) 0, 0 0, 0 0, 0 0, 0 1, 0 1, 0 0, 0 0, 0 0.25, 0.00

(Sb3, S
a
3 ) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0.00, 0.00

By putting together all the obtained values we can construct the following
payoff matrix for the induced Q-A game (again player c’s payoffs are omitted):

Sb0 Sb1 Sb2 Sb3
Sa0 0.50, 0.50 0.50, 0.25 0.50, 0.25 0.50, 0.00
Sa1 0.25, 0.50 0.25, 0.25 0.25, 0.25 0.25, 0.00
Sa2 0.25, 0.50 0.25, 0.25 0.25, 0.25 0.25, 0.00
Sa3 0.00, 0.50 0.00, 0.25 0.00, 0.25 0.00, 0.00

As expected, the only Nash equilibrium in this game is given by the strategy
profile in which every player asks the question about its goal formula.

We conclude the analysis of the induced game and close this section about
Nash equilibria in Question-Answer epistemic games with the following result:2

2The notion of Nash equilibrium we will use here is the standard one, see Definition 6.6.1 in
the Theoretical Background appendix 6.6 and/or the previous footnote in this chapter.



4.3. Questioning Games with Oracles 101

4.3.2. Proposition (No Nash Equilibrium). There exist Question-Answer
Epistemic Games with Oracles in which no Nash equilibrium can be found.

4.3.1. Proof. This fact can be witnessed by changing the following goal formu-
las in our running example throughout this section:

γa = (p↔ q) ∧War ∧ (Wap ∨Wbq)

and symmetrically γb for the second player b, and where Wiϕ = Kiϕ ∨Kiϕ.
The rest of the proof consists in building the corresponding game matrix. We

include all the details in Section 4.7. 2

A natural question at this point is whether or not a similar result can be
obtained for games with question-answers without oracles that were discussed in
Section 4.2. Conceptually there seems to be no difference between these, however,
in practice it is more difficult to obtain and display a similar result in the initial
setting of question answer games. We have to leave this as an open question, and
we conclude this topic with merely the following tentative result:3

4.3.3. Conjecture. An example of a Question-Answer epistemic game with no
Nash Equilibrium exists, and it will have at least 256 strategy profiles.

Nash Equilibria under Syntactic Restrictions The inexistence result for
Nash equilibrium in the previous section can be interpreted as an undesirable sit-
uation if a design of an inquiry strategy is meant to offer incentive for cooperation
in research. Therefore it would be of interest to have a way of identifying inquiry
patterns in which Nash equilibria can be always found under special restrictions.

Positive goals and most informative answers Consider the fragment of
the positive formulae of L: ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Kiϕ | [ϕ]ϕ where p ∈ Θ.
This notion of positive formulae is found in [103]. It is an extension of [91] who
observed that purely epistemic, i.e. without announcement operators, positive
formulae are preserved under sub-models. This leads immediately to the result
that, if both players have goal formulae that are positive, every pointed question-
answer game has a Nash equilibrium. We can easily grasp why this is true. Let s
be the actual state of the Kripke model, for which we play the game. If player i
asks a question to player j that makes j reveal all he knows, either i’s goal is now

3The number of strategy profiles in the next conjecture can be justified as follows: a model
constructed starting from only two propositional atoms cannot produce the dynamics described
in Proposition 4.3.2. So at least three atoms are needed. A model in which any of the players
is fully informed cannot produce the dynamics described in Proposition 4.3.2. So each agent
has to have an epistemic partition with at least two equivalence classes. In a model with eight
worlds and two equivalence classes an agent has at least 23 × 2 strategies in the iduced game.



102 Chapter 4. Games with Questioning Moves

realized, or there is no way she can realize that goal. This is because if there were
a weaker announcement by j also realizing that goal, a further model restriction
would preserve the goal, as it is positive. Therefore, asking the question that
elicits the most informative answer is a weakly dominant strategy for i, for the
pointed question-answer game for state s. And as this holds for both players,
that must be a Nash equilibrium of the pointed question-answer game for state
s. As s was arbitrary, this holds for all pointed games.

4.3.4. Proposition. Whenever both players’ goals are positive formulae, each
pointed question-answer game has a Nash equilibrium.

However, what question elicits the most informative answer might not be
known to either of the players, as they may be unable to distinguish the actual
state from another state in which the same question does not elicit the most
informative answer. This makes for another difference between games with ques-
tioning moves and games with announcement moves. This is also of more general
interest than just for positive goal formulae.

Most informative answers We can call a strategy for a given agent weakly
dominant de re, if the agent knows that it is weakly dominant (i.e., if in all
states indistinguishable for that agent, including the current state, that strategy
is weakly dominant). The agent has a weakly dominant strategy de dicto if he has
a weakly dominant strategy in all indistinguishable states – but now it may be a
different one in each, so he cannot choose which one to execute. The de dicto/de
re distinction is well known in the knowledge and action literature [54]. Similarly,
we can distinguish a de dicto Nash equilibrium from a de re Nash equilibrium,
wherein all players know what their equilibrium profiles are. We can see how these
notions are useful in describing questioning games: the induced question-answer
game has an equilibrium if (not necessarily only if) all pointed games have a de
re equilibrium: each player has a uniform strategy that is weakly dominant.

This aspect reveals a real difference between public announcement games and
question-answer games. From a player’s perspective, there is such a thing as a
most informative announcement (tell them all you know). If all goals are positive,
then the most informative announcement is a weakly dominant strategy in all
points of the public announcement game. And because players know what their
most informative announcement is, this is therefore an Nash equilibrium strategy
of the induced public announcement game.

But the question that elicits the most informative answer from another player
cannot be called the most informative question from the questioning player’s point
of view. In a different state in the same equivalence class for that player, the
question to elicit the most informative answer may be a different question, as the
responding player may be in a different equivalence class there. So even when all
goals are positive, induced question-answer games may not have an equilibrium.



4.3. Questioning Games with Oracles 103

However, finding an example remains an open problem. We will return to the
topic of describing strategic abilities for questioning actions in Section 4.5.

4.3.1 Bayesian Games

The induced question-answer game corresponds to a Bayesian game. This can be
shown in an analogous way as the corresponding result for public announcement
games in [2]. We merely give an overview of the argument here.

Note that the difference between a game with announcements and one with
questions and answers consists only in how the strategies are defined. Once a
set of strategies is fixed the remaining overall structure of the argument follows
along similar directions. Given an arbitrary question-answer game we can define
an associated Bayesian game as follows:

– N = {1, 2}, – Ω = W, – τa(w) = [w] a∼,

– Ta = {[w] a∼ : w ∈ W}, where [w] a∼ = {v : w
a∼ v},

– Sa = {ϕ : {[[K−aϕ]]M , [[K−a¬ϕ]]M , [[¬(K−aϕ ∨K−a¬ϕ)]]M} =

{[[K−aψ]]M , [[K−a¬ψ]]M , [[¬(K−aψ ∨K−a¬ψ)]]M}},

– µ(v, [w] a∼) =

{
1

|[w]a∼
| if v ∈ [w] a∼

0 otherwise,
– ua(sa, s−a, w) = uwa (sa, s−a),

where uwa is the utility function of the w-local question-answer game, and a,−a
are variables ranging over N such that a 6= −a.

A signal ta for player a corresponds to an a-equivalence class. In a Bayesian
game, the combination of a player a and a signal ta defines a virtual player (a, ta),
who has the same strategies sa ∈ Sa at his disposition. But this amounts to the
same as our definition involving the same players a employing strategies s′a that
are uniform across equivalence classes and that are conditional from states to
strategies sa ∈ Sa, and therefore can be also seen as conditional at a higher level
from equivalence classes to strategies sa.

In our simplified modeling, all states w in a given Kripke model get equal a
priori probability of µ(w) = 1

|W | , i.e., uniform over the entire domain. (And this

is their probability for all agents.) A more general approach would have a given
probability distribution as a parameter in the modeling of the game.

However, a uniform distribution is a reasonable assumption from the perspec-
tive of the observer or modeler of such a multi-agent system: given common
knowledge of the structure of the model, as usual in multi-S5 conditions, there is
no reason to prefer one state over another one. For example, if the Kripke model
represents uncertainty about card deals, and the cards are shuffled and drawn
blindly from the pack by the players, there is no reason to consider any given
card deal (possible world / state) more likely than any other card deal.



104 Chapter 4. Games with Questioning Moves

After receiving their signal, each agent conditionalizes the probability mass
over its equivalence class, that is, µ(w|ta) = 1

|[w]∼a |
(in fact, we can assume the

received signal ta to be the corresponding equivalence class [w]∼a). This means
that for each state inside the class the probability is non-zero and uniform in that
class, and for each state t outside that class, the probability is 0. (Of course, we
are now talking about the probability for a given agent.)

For example, continuing our parallel with card games, after the cards have
been dealt and a player has picked up his cards, the agent only considers card deals
possible wherein she holds that hand of cards, but no longer any of the remaining
card deals. Further to this, in the absence of information to the contrary (i.e.,
assuming ‘fair play’) each of the possible deals of cards wherein she holds that
hand of cards will be also considered to be equally likely.

We will consider scenarios in which this is not the case anymore in the setting
with probabilistic extensions to DELQ from Chapter 7.

This provides the key to view an induced question-answer game as a Bayesian
game. In induced games the payoff for agent a is computed as

ua(s
′
1, s
′
2) =

∑
w∈W uwa (s′1(w), s′2(w))

|W |

whereas for a Bayesian game, one would get a sum (see [2])∑
w∈W

µ(w|ta)uwa (s′1(w), s′2(w)) =
∑
w∈W

uwa (s′1(w), s′2(w))

|[w]∼a |

Although these sums may be different, they induce the same order on payoffs
and thus they induce the same Nash equilibria.

4.3.5. Proposition. Any induced question-answer game has a corresponding
Bayesian game, and for a given model and fixed goal formulae for the players
they have the same Nash equilibria.

So far in this chapter we have introduced a formal model for question-answer
games and we have studied both logical and game theoretical properties that
emerge in such a setting. Such results are very useful as a starting point.

However, we still have two crucial unfulfilled modeling desiderata on our list:
a model that uses genuine questioning actions, represented by the previously
discussed issue relation, and a model of questioning actions as moves in an inquiry
process, which consists of long term sequences of questioning moves.

We will address both these desiderata in further detail during the following
section. These will provide a more general setting adequate for modeling more
realistic questioning scenarios in both inquiry and communication.



4.4. Extensive Questioning Games 105

4.4 Extensive Questioning Games

Introduction Questions are ubiquitous in communication and social interac-
tion and they are essential for inquiry and scientific research. One possibility to
approach questions is by their intricate connection with other informative actions
in their natural linguistic or scientific environment. This was the perspective fol-
lowed so far in the current chapter and it was closely related to a more general
approach which was initiated by [1, 2] and previous ones going back to [102].

Besides the fact that questions are intertwined with various kinds of informa-
tive actions which have been extensively studied inside DEL, there is still place
for an approach that takes questioning actions as primitive entities. For all rele-
vant purposes questions cannot be studied completely independently of answers,
announcements or other information providing activities, however, it is possible
and desirable to identify and separate the information seeking essence of question-
ing actions, and acknowledge their intrinsic important role in strategic reasoning
and rational interaction. This motivates recent approaches that study questions
and actions of issue-management inside the DEL paradigm like [100, 105], and
previous ones going back to [8].

There are two main desiderata previously discussed that are going to be ad-
dressed during this section. The first is to capture genuine questioning using a
model based on issue relations, the second one consists in defining a formal model
for sequential questioning games.

Questioning actions are knowledge-seeking actions, they do not give informa-
tion straight away but raise and manage issues or highlight possible alternatives
for future informative actions. This will also be the perspective followed in the
remaining of this chapter which will study questioning actions in a logical and a
game-theoretical framework as long-term rational and interactive activities. The
aim of this section is to proceed in this direction by defining and studying for-
mally extensive games in which moves available to players are questioning actions
and players seek to achieve epistemic goals.

4.4.1 Some Preliminary Notions

We will use epistemic issue structures as the basis for our investigations:

4.4.1. Definition. [Epistemic-Issue Model] An Epistemic-Issue Model (EIM)

is a tuple 〈W,N, (
i
≈, i∼)i∈N , P, C, V 〉 with the following components: W a set

of possible worlds or epistemic alternatives, N = {1, 2, . . . , n} a set of labels

representing agents,
i
≈∈ W ×W a binary issue relation on the domain W , for

i ∈ N ,
i∼∈ W ×W a binary indistinguishability relation on W , for i ∈ N , P and

C a sets of symbols representing propositions and nominals, respectively, such
that P ∩ C = ∅ and |V (c)| = 1, for any c ∈ C, V : P ∪ C → ℘(W ) a standard



106 Chapter 4. Games with Questioning Moves

propositional valuation function. A pointed EIM (M,w∗) is an EIM together
with a designated world w ∈ W . A set-pointed EIM (M,Q∗) is an EIM with a
designated set of worlds Q ⊆ W .

Intuitively, such structures model both the uncertainties agents have about
the world and also their agenda for inquiry, or the issues they would like to have
resolved by future answers to their questions. Another important feature in our
EIMs is the use of nominals. These are propositional symbols which are true in
only one world, thus naming it. We will use the symbol Keim to refer to the class

of all epistemic issue models (EIMs). In this section we assume that (
i∼,

i
≈)i∈N

are equivalence relations on the domain W .
Such basic structures will serve the purpose of the present approach but they

can be enriched in various ways, for instance, by adding more components to the
structure in order to represent beliefs alongside knowledge and issues. This can
be done either by using a plausibility relation between states or by introducing a
probability distribution over the domain of possibilities.

In order to talk about EIMs we will introduce a logical language that can
describe the epistemic-issue structure in a static way:

4.4.2. Definition. [Static Language] The static language of Epistemic Logic of
Questions (ELQ), denoted by LELQ , is defined by the following BNF:

ϕ ::= i | p | ¬ϕ | ϕ ∧ ϕ | Qaϕ | Raϕ | Kaϕ

with P a set of propositional symbols, N a set of nominal symbols, P ∩ N = ∅,
A a set of agent-labels, p ∈ P , i ∈ N and a ∈ A.

Various fragments of this language will be referred to in various places be-
low using the following notation: LEL will denote the language of epistemic logic,
which is the fragment without nominals and the issue Q and intersection R modal-
ities. LHL will denote the language of hybrid logic, which is the fragment without
the knowledge, issue and intersection modalities.

The semantics for our language is the standard modal semantics, using the
usual Boolean clauses and the standard relational clauses using ≈ for Q and ∼
for K. The intersection modality R is be defined using ≈ ∩ ∼ as:

M |=w Rϕ iff for all v ∈ W : w (∼ ∩ ≈) v implies M |=v ϕ

This basic language will serve the purpose of this section, it can also be ex-
tended if needed. Richer versions usually include the universal modality Uϕ and
group notions for knowledge CGϕ or even issue or intersection.

Validities in EIMs are captured by the axioms given in Definition 4.4.3. This
are standard axioms for hybrid logic with nominals and intersection. The inter-
section axiom makes crucial use of nominals, for the left to right direction. The
substitution rule has to keep track of both propositions and nominals.



4.4. Extensive Questioning Games 107

4.4.3. Definition. [Axiomatization] The ELQ proof system contains:

– minimal modal logic axioms for epistemic and issue modalities:

¬2¬p↔ 3p,2(p→ q)→ (2p→ 2q),2 ∈ {Q,R,K},

– standard S5 axioms for for epistemic and issue modalities:

p→ 23p, p→ 3p,33p→ 3p,3 ∈ {Q̂, R̂, K̂},

– an intersection axiom for the static resolution modality:

K̂i ∧ Q̂i↔ R̂i, where i ∈ N is a nominal,

– an axiom governing the behavior of nominals:

3(i ∧ p)→ 2(i→ p),2∈{Q,R,K}

– together with standard derivation rules for hybrid logic:

` ϕ, σsort(ϕ) = ψ

` ψ
,
` ϕ,` ϕ→ ψ

` ψ
,
`PC ϕ
` ϕ

,
` ϕ
` 2ϕ

,
i→ ϕ

ϕ
,

for 2 ∈ {Q,R,K}, i not occurring in ϕ, and σ a sorted substitution.

Note that for ease of notation and readability alone we have omitted subscripting
the Q,R,K modalities inside the axioms.

So far we have a logic that can describe knowledge and issues from a static
perspective. But for the purpose of a questioning game we also need to be able
to describe the way questioning actions change the knowledge of the players. We
need a way to describe knowledge and issues from a dynamic perspective. In order
to be able to also describe knowledge-change and issue-dynamics and, moreover,
the interaction between the two during a game, we will introduce the following
model-changing actions:

4.4.4. Definition. [Questioning] Let M = 〈W, (
i
≈, i∼)i∈N , V 〉 be an arbitrary

EIM. A question action, represented as ϕ?, changes the model M into a new

model M ⊗ ϕ? = 〈Wϕ?, (
i
≈ϕ?,

i∼ϕ?)i∈N , Vϕ?〉, in the following way:

i
≈ϕ? =

i
≈ ∩

ϕ
≡M

while leaving the other components unchanged, where the set of pairs of worlds

in M with equivalent ϕ value is denoted by
ϕ
≡M = {(w, v) : ‖ϕ‖Mw = ‖ϕ‖Mv }.



108 Chapter 4. Games with Questioning Moves

Intuitively, this action says that a questions changes a model by refining the
issue partition with the content of a formula ϕ in a specified language. Such a
partition-based approach goes back to [40] where it was used for giving semantics
of questions in natural language; here we add a dynamic dimension to questioning
actions and place them in a more abstract framework of inquiry and scientific
discovery. We also add another dynamic action:

4.4.5. Definition. [Resolution] Let M = 〈W, (
i
≈, i∼)i∈N , V 〉 be an arbitrary

EIM. A resolution action, represented as !, changes the model M into a new

epistemic-issue model M ⊗ ! = 〈W!, (
i∼!,

i
≈!)i∈N , V!〉, in the following way:

i∼! =
i∼ ∩

i
≈

while leaving all the other components in the initial model M unchanged.

Intuitively, the resolution action transforms the model to a situation in which
all the questions raised so far would have received one answer or another. This is
done by changing the underlying uncertainty to reflect the structure of the issue
relation in a given situation.

We will enrich our initial static modal language with two more dynamic modal-
ities which will make reasoning about the flow of information, issue management
and question answering possible in a formal way.

4.4.6. Definition. [Dynamic Language] By adding two dynamic modalities:
[ϕ?]ϕ and [ ! ]ϕ to the BNF from Definition 4.4.2 we obtain the full language
of Dynamic Epistemic Logic of Questions (DELQ), denoted by LDELQ .

Intuitively, a formula like [ϕ?]ψ says that “after a questioning action about ϕ
is performed, ψ holds” or “after asking weather ϕ, ψ is the case”. Similarly, [ ! ]ϕ
says that “after performing a resolution action, ϕ holds”.

A note about notation: The [ϕ?] notation is already familiar from Chapter 2
where was used to denote dynamic modalities. Previously in this chapter we used
ϕ? to refer to player’s strategies in a game. From now on strategies in a game are
also going to be questioning actions, nevertheless, we will try to use the square
parenthesis in a consistent way to disambiguate between the two whenever the
context might require additional precision.

The semantics of these dynamic modalities is also specified in the standard
way using the previously introduced model transformations. We will only need
here the minimal system given by the following clauses:

M |=w [ϕ?]ψ iff M ⊗ ϕ? |=w ψ, M |=w [ ! ]ψ iff M ⊗ ! |=w ψ,

The transformed models are computed as in the action definitions previously
introduced. This language can be extended if needed.



4.4. Extensive Questioning Games 109

4.4.7. Definition. [Reduction Axioms] Formulas in LDELQ can be reduced to
equivalent formulas in LELQ using the following reduction axioms:

– [ϕ?]a↔ a (Asking & Atoms), [ ! ]a↔ a (Resolving & Atoms),

– [ϕ?]¬ψ ↔ ¬[ϕ?]ψ, [ ! ]¬ϕ↔ ¬[ ! ]ϕ (Asking/Resolving & Negation),

– [q](ψ ∧ χ)↔ [q]ψ ∧ [q]χ, q ∈ {ϕ?, !} (Asking/Resolving & Conjunction),

– [ϕ?]Qψ ↔ (ϕ ∧Q(ϕ→[ϕ?]ψ)) ∨ (¬ϕ ∧Q(¬ϕ→[ϕ?]ψ)) (Asking & Issue),

– [ϕ?]Rψ ↔ (ϕ∧R(ϕ→[ϕ?]ψ))∨(¬ϕ∧R(¬ϕ→[ϕ?]ψ))(Asking & Intersection),

– [ ! ]Qϕ↔ Q[ ! ]ϕ, [ ! ]Rϕ↔ R[ ! ]ϕ (Resolving & Issue/Intersection),

– [ϕ?]Kψ ↔ K[ϕ?]ψ, [ ! ]Kϕ↔ R[ ! ]ϕ (Asking/Resolving & Knowledge).

All these provide a way of reasoning about dynamic actions of asking questions
and resolving issues. We will now proceed to defining formally games in which
moves are questioning actions as described so far.

4.4.2 Definitions of Main Notions

In this section we give formal definitions for extensive questions games, build-
ing on the preliminary notions introduced so far. Next we proceed by giving
some intuitive examples and illustrations of EQGs. After that we discuss mod-
eling choices, make some conceptual clarifications, and study solution concepts,
strategic abilities and other formal properties of EQGs.

In EQGs, like in any other game or interactive activity, players have objectives
or goals and they try to reach these objectives by making appropriate moves
during the play of the game. In a setting involving questions such goals will
have an epistemic character: players want to acquire some knowledge, but these
can also be complex higher-order epistemic situations, say “I want to find out
something in a way that prevents you from knowing that I know”, and so on.
Players can also have competing, convergent or even incompatible goals. We
represent such aspect formally by epistemic formulas.

4.4.8. Definition. [Epistemic-Issue Goal Structure] An Epistemic-Issue Goal
Structure (EIGS) is a tuple 〈M,G〉 with the following components:

– G = {G1, G2, . . . , Gn} a set of goal-sets, one for each agent i ∈ N , containing
formulas Gi = {γi1, γi2, . . . , γik} from LEL, and M an EIM.

An EIGS is (set)-pointed if and only if M is a (set)-pointed EIM.



110 Chapter 4. Games with Questioning Moves

Achieving such epistemic goals depends on moves made during the game, but
it also depends on the structure of the epistemic-issue model in which such a
game is played. Therefore, any EQGs will be characterized by the local epistemic
perspective of each of the players involved.

Such goal structure need not have the simplest structure considered here, it is
realistic to assume that agents might also have their research agenda structured
in a certain way, for instance by a priority order over the goals or even a more
complex graph structure with formulas as vertices.

Questioning and resolution moves made during the play of the game will
change the structure of the initial epistemic situation. Such transformations have
an interactive character, they are determined by a combination of choices for each
of the players. The resulting model can be computed using the model-changing
operations introduced in the previous section.

Finally, we can determine if players achieved their objectives by model check-
ing their goal-formulas in the resulting epistemic-issue structure. We use here a
language containing only epistemic modalities for simplicity, but it is conceivable
that agents might also have objectives with regard to the structure of the issue at
the end of a questioning game, such aspects could be also modeled using a richer
language for the goal formulas. We capture all these aspects in a formal way by
means of the following definition:

4.4.9. Definition. [Extensive Question Game] The Local Extensive Question
Game (LEQG) associated with a pointed EIGS E = 〈(M,w), G〉 is a tuple T =
〈E,H, J, F, (Ui)i∈N〉 with the following components:

– H = {h0, h1, . . . , hz} a set of histories such that:

- hi = ∅, for some i ∈ {0, . . . , z},
- if h = 〈q0, q1, . . . , ql−1, ql〉 ∈ H, then l + 1 ≤ |N |,
- if h = 〈q0, . . . , ql−1, ql〉 ∈ H and h′ = 〈q0, . . . , ql−1〉, then h′ ∈ H,

- if h = 〈q0, . . . , ql−1〉 ∈ H and h′ = 〈q0, . . . , ql−1, ql〉, then h′ ∈ H, for
ql = min([ϕ]M), and [ϕ]M = {ψ ∈ LHL : ‖ϕ‖M = ‖ψ‖M ⊆ W}

– J : H \ Z → N a turn-function assigning players to non-terminal histories,
s.t. J(h) = J(h′) iff |h| = |h′|, with Z = {h ∈ H : |h| = |N |},

– F : H → Keim a model-function assigning EIMs to histories as follows:

F (h) =

{
M if h = ∅

F (〈q0, q1, . . . , ql−1〉)⊗ ql? otherwise,

– Ui : Z → R a utility-function assigning utilities for player i ∈ N to terminal
histories in the following way:

Ui(h, ϕ) =

{
1 if Mh⊗ ! |=w ϕ
0 otherwise

and Ui(h) =
∑
γik∈Gi

Ui(h, γ
i
k).



4.4. Extensive Questioning Games 111

This definition describes the outcome of a questioning game as played in a
given possible world. But since the players have epistemic uncertainties, they
do not know precisely which is the real situation, hence what is the game that
they are playing. In any given state they also consider a number of many other
epistemic alternatives. Therefore, we also need a method to aggregate the payoffs
obtained in many local games in an expected utility given the entire structure of
the initial epistemic-issue model.

4.4.10. Definition. The Set-Local Extensive Question Game (SEQG) asso-
ciated to a set-pointed EIGS E = 〈(M,Q), G〉 is defined as the correspond-
ing LEQG (Definition 4.4.9) with the following modification of utility function:
Ui : Z → R assigns utilities for i ∈ N to terminal histories as follows:

Ui(h) =

∑w∈Q
γik∈Gi

Ui(h, γ
i
k, w)

|Q|

where Ui(h, γ
i
k, w) = Ui(h, γ

i
k) in the LEQG associated with E = 〈(M,w), G〉. The

Global/Induced Extensive Question Game (GEQG) associated with an arbitrary
EIGS E = 〈M,G〉 is the SEQG E = 〈(M,Q), G〉 in which Q = W .

We discuss briefly some of the modeling choices in this formal definitions before
we proceed to some concrete examples and illustrations. We already mentioned
the importance of the language in which goals are formulated. The same holds for
the language in which questioning moves are formulated during the play of a game.
The set of available actions at a give history depends on the available questioning
actions. It also depends on various pragmatic and epistemic preconditions that
one might want to capture in the formal model. We have made here a very general
choice by using a very expressive language and by ignoring any pragmatic or
epistemic preconditions for question execution. Further, more realistic, options
and the consequences that derive from them are discussed in later sections. Also,
we assume that an order on the set of formulas is available when choosing the
minimal representative from an equivalence class of formulas. We can also think
about versions in which resolution actions are available at non-terminal histories,
or versions in which players get more than one question during one play, such
options are captured by sequential compositions of EQGs as defined here.

Also we make no assumption with regard to the sources of answers that are
available in the game. Games in which answers can only come from other players
versus versions in which answers can come from nature or an oracle can both be
captured by means of pragmatic, epistemic or other arbitrary restrictions on the
questioning and resolution actions.

Another important aspect about interactive questioning activities is their co-
operative versus competitive character. We can imagine settings in which com-
peting research programs play a questioning game with nature or against each



112 Chapter 4. Games with Questioning Moves

other as well as situations in which inquiry scenarios have a cooperative setting
and the only design requirement is the efficiency of acquiring new knowledge in a
coalition of convergent research programs. All such aspects can be captured and
described formally using our definitions. We discuss such issues in greater detail
in later sections.

4.4.3 Examples and Illustrations

We will resort to intuitive examples to illustrate the formal definitions. Consider
the very simple concrete example with just two agents and two facts as depicted
in Figure 4.5 below. The initial model is represented in the top-left corner. Ques-
tioning and resolution moves are indicated with arrows labeled accordingly.

Interesting phenomena can be already described in this simple setting. For
instance, we can compare two interrogative scenarios with respect to their fairness
as cooperative experimental procedures, depicted in Figure 4.5.

a a

b

bp q p q

p q p q
'& %$

 ! "#

p?a−→
a a

b

bp q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

!−→

b

bp q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

q?b ↓ q?b ↓ q?b ↓

a a

b

bp q p q

p q p q
'& %$

 ! "#

'& %$

 ! "#

p?a−→
a a

b

bp q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

b

bp q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

! ↓ ↘! ! ↓

a a

p q p q

p q p q
'& %$

 ! "#

'& %$

 ! "#

p?a−→
a a

p q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

!−→

p q p q

p q p q

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

'& %$
 ! "#

Figure 4.5: EQG example of fairness in cooperative experimental procedures

If we describe an interrogative structure using the set of sequences of available
moves, or histories in the game, we can notice that, for instance, the following



4.4. Extensive Questioning Games 113

two experimental protocols are very different in terms of fair-learning during the
cooperative inquiry process. In the first scenario, represented by the protocol

Q1 = {p?, q?, p?>?, q?>?, p?q?, q?p?}

one player can become fully informed about the world before the other one does,
while in the second one

Q2 = {>?, p?, q?,>?q?,>?p?, p?q?, q?p?}

this possibility is ruled out, players become fully informed only simultaneously.
For instance, the goal formula

γb = (Kap ∨Ka¬p)→ (Kbq ∨Kb¬q)

and its symmetric counterpart, are both true in the corners on the main diagonal
and are false, respectively, in both corners on the secondary diagonal.

The figure also illustrates another interesting feature: extensive games can be
composed to form sequences. Each corner of the second diagonal is the endpoint
for the previously described game. However, the resulting model can be the
starting point for a new extensive game, starting in the resulting model from
previous plays as illustrated and proceeding further by new questioning actions.

Even more complex situations and subtleties about research procedures can
be captured using the modeling strength of various procedural restrictions in the
available experimental protocol, see [97] for such an account in a setting with
informative epistemic actions. All such facts about what players can achieve by
playing questioning games can be captured in a systematic way using a logic of
strategic ability. We will discuss some of these aspects in a later section. Before
that we will focus on some properties of EQGs.

Considering a setting in which questions are represented explicitly by means
of an issue relation has further advantages. For instance, we can define a measure
of relevance of questions in inquiry. Previous notions of relevance exist in the lit-
erature, in the present setting, however, we can capture strategic aspects resulting
from both the general goal of inquiry and the available sources of information.

Both can be described as partitions of the epistemic domain. Let W be a set
of possible worlds, R,R′, R′′ ∈ W ×W equivalence relations on W , and K,Q,G
the modalities for R,R′, R′′, respectively.

Let PR = {C1, . . . , Cn}, PR′ = {C1, . . . , Cn′}, PR′′ = {C1, . . . , Cn′′} be the
partitions induced in W by R,R′, R′′, respectively. Let Par(W ) be the set of
W -partitions. For P, P ′ ∈ Par(W ) we define e : Par(W )2 → Par(W ) by:

S = P e P ′ = {C1, . . . , Cn} e {C ′1, . . . , C ′n′} =
⋃
{Ci ∈ P | ∃C ′j ∈ P ′ : Ci ⊆ C ′j}



114 Chapter 4. Games with Questioning Moves

Let PR′ = {C1, . . . , Cn′} be the partition induced in W by a sequence of
questioning actions Q = {q1, . . . , qk}. We define the source-relevance or evidence-
relevance of Q by:

RS(Q) = |PR e PR′ |

For P, P ′ ∈ Par(W ) we define eq : Par(W )2 → Par(W ) as follows:

S = P eq P
′ = {C1, . . . , Cn} e {C ′1, . . . , C ′n′} =

⋃
{Ci ∈ P | Ci ⊆ C ′1 ∈ P ′}

Let PS be the bipartition PS = {P eP ′,W \ (P eP ′)} for Q = {q1, . . . , qk}. The
notion of goal-relevance or inquiry-relevance of Q is defined as follows:

RQ(Q) = |PR′′ eq PS|

These definitions of goal and source relevance of a question give rise to a
natural order on question sequences:

Q ≤S Q′ ⇔ RS(Q) ≤ RS(Q′)

Q ≤Q Q′ ⇔ RQ(Q) ≤ RQ(Q′)

4.4.11. Example. As an illustration, consider the following situation:

W = {w1, w2, w3, w4, w5, w6, w7, w8, , w9},

PR = {{w1, w4, w7, w2, w5, w8}, {w3, w6, w9}}

PR′′ = {{w1, w4}, {w9, w6, w3}, {w7, w2, w5, w8}}

PQ = {{w1, w4}, {w7, w8, w2, w5, w3, w6, w9}}

PQ′ = {{w1, w2, w5}, {w8, w7, w4, w3}, {w9}, {w6}}

Here we have:

RS(Q) = 2 < 5 = RS(Q′) and RQ(Q) = 2 > 0 = RQ(Q′)

This measure of relevance can express that Q′ is more relevant for the available
sources of information in the inquiry, but less relevant for the overall goal of the
inquiry. The situation is reversed for Q, it turns out to be less efficient in using
the available sources of information, but more useful for solving the main goal of
the inquiry. This is because not all information serving the goal is available.

Other traditional notions that are conceptually related with the notion of
relevance like, for example the entropy of a question and the informativity of an
answer are suitable for similar epistemic modulations.



4.4. Extensive Questioning Games 115

4.4.4 Imperfect Information in EQGs

As in games with sequential moves, all actions in an EQG are observable. This
means that any player is fully informed about (can distinguish between) any move
made previously in the game, either by herself or by other players. This fact is
captured in the formalism by the fact that there are no uncertainty lines linking
EIMs belonging to different histories.

Even so, it would not be completely accurate to consider that EQGs are games
of perfect information due to the fact that agents still have uncertainties during
the game, however, not about the moves played but about the worlds in the
epistemic model. Because of these particularities a conceptual clarification with
regard to the status of imperfect information in EQGs might be of interest.

4.4.12. Fact. Let P = {p1, . . . , pn} and A = {a1, . . . , am} be sets of proposi-
tional atoms and agent-labels, respectively. Any epistemic-issue model can be
represented as an imperfect information game in the following way:

– N = {a1, . . . , am} ∪ {c}, (here c is the chance player, or Nature),

– Sc = ℘P = 2|P |, Si = ∅ for i ∈ N \ {c}, (Nature chooses a possible world or
epistemic alternative, the other players do nothing),

– Qi = {D1, . . . , Dk} ⊂ ℘(℘P ), for i ∈ N\{c} (the players receive an arbitrary
issue partition [the same]),

– Ic = {{w} | w ∈ ℘P}, Ii = {C1, . . . , Ck} ⊂ ℘(℘P ) for i ∈ N \ {c} (each
agent receives an information partition consistent with the valuation).

In the light of this fact we can say that each game with questioning moves
starts from a pre-existing epistemic-issue model M and proceeds according to
the previously introduced definitions. It is then of interest to find the proper-
ties that characterize precisely EQGs as games of imperfect information. There
are results in the literature that characterize models generated by protocols of
dynamic epistemic logic in terms of very general properties:

4.4.13. Fact. [Representation [97]] ETL models generated by state-dependent
DEL protocols have the following properties: Propositional Stability, Syncronic-
ity, Perfect Recall, Local No Miracles & Local Bisimulation Invariance. For PAL
protocols we also have: Reflexive Events & Distinguished Events.

In the context of EQGs questioning actions resemble PAL and DEL actions
but are in addition parametrized by a player which performs the action and the
notion of bisimulation should also describe both epistemic and issue relations.
We will also discuss the Difraction Property (DP) which is of interest especially
for describing strategic abilities in EQGs in a later section.



116 Chapter 4. Games with Questioning Moves

4.4.5 Strategies and Solution Concepts

In this section we analyze EQGs using standard logical and game-theoretical
notions and techniques. Strategies are defined in a standard way, like in [73]:

4.4.14. Definition. [Strategy] In a EQG a strategy for player i ∈ N is a func-
tion Si : {h | J(h) = i} \ Z → {q | h_q ∈ H} that assigns an available question
to each non-terminal history in which it is player i’s turn to move. A strategy
profile S = (Si)i∈N is a tuple of strategies, one for each player. The outcome
O(S) of a strategy profile S = (Si)i∈N is the history h = 〈q0, . . . , ql〉 ∈ Z s.t. for
0 ≤ k ≤ l we have SJ(q0,...,qk)(q0, . . . , qk) = qk+1.

Counting strategies. In the very abstract setting used so far the number of
strategies at any node is a function of the size of the model |Si| = 2|W | and the
number of strategies for player i moving at history h is (2|W |)|h|.

Another standard requirement for games with imperfect information is that
the players must have uniform strategies, or that the strategies take into account
the players’ epistemic situation. There are various ways in which pragmatic and
epistemic considerations can be used to capture this aspect in a setting of EQGs.
For instance, we can add the following requirement:

for i = J(h′) we have F (h) |= ¬(Kiql+1 ∨Ki¬ql+1)

to item 1-4 in Definition 4.4.9, in an EIM M with |W | = m and where agent i
has n equivalence classes, then we are interested in the number of informative
questions for player i in M . There are 2m−1 bi-partitions of W and 2n−1 unions
of equivalence classes for i not including ∅ and W . Therefore the following set
Ri = {ϕ : M |=s ϕ ∧ K̂i¬ϕ, ϕ ∈ LHL, s ∈ W} contains all yes/no questions that
are informative for i in M and, up to logical equivalence, there are ri = |Ri| =
2m−1 − 2n−1 such questions.

Intuitively this says that the criterion for strategy equivalence requires that
the player only asks questions about what she does not know at the global
level. However we can also require that questions are about what the agent
doesn’t know locally, in a given state w in an information cell Ci, with: for i =
J(h′) we have F (h) |=w ¬(Kiql+1 ∨Ki¬ql+1) in this case the set Ri = {ϕ : M |=s

ϕ∧K̂i¬ϕ, ϕ ∈ LHL, s ∈ Ci} of locally informative questions depends on the struc-
ture of the information cell Ci of w inside the player’s information partition. And
since there are 2|ci|−1 subsets of Ci, not including ∅ and W , and 2|W |−|Ci| subsets
of W \ Ci, we get |Ri| = (2|Ci|−1)× 2|W |−|Ci| logically non-equivalent strategies.

Note also that the expressive power of the language we use to express the
questions is also a parameter in this counting. If we replace LHL by another
language, say LEL, the numbers might be different, depending on the concrete
structure of the model, we get the previous numbers as upper bounds on the
total number of logically non-equivalent strategies.



4.4. Extensive Questioning Games 117

There are multiple other modeling options that could be used here to capture
reasonable pragmatic preconditions. For instance, in order to capture a sequential
game structure it is very plausible to require the following:

for all qk ∈ h and ql+1 ∈ LHL, 〚ql+1〛F (h) 6= 〚qk〛F (h),

intuitively, this says that players do not repeat a question which, even if informa-
tive, was already asked before. For |M | = m, and n information cells for agent

i, the set Ri = {ϕ : M |=s ϕ ∧ K̂i¬ϕ, ϕ ∈ LHL, s ∈ W} contains, up to logical
equivalence, ri = |Ri| = 2m−1−2n−1 yes/no questions that are informative for i in
M . But now the history of previously asked questions further restricts available
actions, keeping ri only as an upper bound.

The maximum number of allowed questions for a player i moving at history
h = {q0, . . . , ql} will be given by dhi = ri × rJ(h−1) × rJ(h−2) × · · · × rJ(h−|h|) where
h−n = {q0, . . . , ql−n}. The total number of strategies for player i at history h

will be at most
(dhi
ghi

)
=

dhi !

ghi !(dhi −ghi )!
and at least

(dhi
ghi

)
− |h| where ghi = dh

−1

J(h−1) ×
dh
−2

J(h−2) × · · · × d
∅
J(∅). Finally, the number of strategy profiles in the EQG for M

is ghi × · · · × ghi for all i ∈ N and h ∈ H for which J(h) = i.

For versions in which agents ask questions to each other not only to Nature,
even more pragmatic preconditions make sense, like, for instance, that the ques-
tioner considers it possible that the questionee knows the answer.

Even disregarding pragmatic constraints, another aspect that is crucial to the
notion of strategy equivalence is the expressive power of the language for goal
formulas. If a certain language cannot express some goals then the number of
strategies having equivalent effects upon execution will decrease.

Solution concepts. The general framework introduced so far to model EQGs
can be adapted to capture a variety of concrete situations. But once a notion of
strategy equivalence is fixed, it is even more important to study solution concepts
in EQGs. These have standard game-theoretic definitions, like in [73]:

4.4.15. Definition. [Nash Equilibrium] An EQG Nash equilibrium is a strategy
profile S∗ s.t. for every player i ∈ N and every strategy si of i we have:

Ui(O(S∗−i, S
∗
i )) ≥i Ui(O(S∗−i, Si)).

We have now all the ingredients to obtain an analogous impossibility result
analogous to what we had for strategic games:

4.4.16. Fact. There are EQGs in which no pure Nash equilibrium exists.

We only have to construct an appropriate example to establish this fact. We
include the details in Section 4.7.



118 Chapter 4. Games with Questioning Moves

There are other solution concepts which are relevant for games in extensive
form. These concepts also provide an adequate analysis for EQGs as particular
cases of extensive-form games. One such solution concept, adequate for settings
with sequential moves is subgame perfect equilibrium.

We also reserve an extensive discussion regarding the theoretical relevance of
such an analysis in the general context of a logical approach to discovery and
inquiry for a future occasion and here merely present some basic facts.

Many other interesting problems that are of interest for a general account of
inquiry and scientific discovery in which questions play a genuine role emerge at
this point. We end this section by listing some of the most relevant ones.

– Explore other solution concepts, considered to be more adequate for games
with sequential moves, such as sub-game perfect equilibrium.

– Find systematic connections between existence of solution concepts and
syntactic properties of goal formulas and/or strategies.

– Explore a conceptual framework for relevance of questioning and resolution
in competitive and/or cooperative interrogative scenarios.

4.5 Strategic Abilities in Questioning

4.5.1 Describing Strategic Abilities

Players’ abilities to achieve certain outcomes during the play of an EQG can be
also described using a logical language. Such a language will contain “forcing
modalities” like, for instance, in [90]:

M, s |= 〈G, i〉ϕ “player i has a uniform strategy for playing game G
starting from state s which forces a set of outcomes satisfying ϕ in M”

or other modalities expressing strategic abilities as in [34, 53]:

M, q |= 〈〈A〉〉ϕ “there is a collective strategy SA such that ϕ holds for every path
[...] that may result from agents A executing strategy SA from state q onward”

Without introducing all the formal details of such frameworks, we mention
below some well known facts and discuss their relationship with EQGs.

For perfect information games various fixed-point recursive characterizations
of forcing modalities exist in the literature, like the game-logic from [90]:

〈G, i〉ϕ↔ (end ∧ ϕ) ∨ (turni ∧3〈G, i〉ϕ) ∨ (turnj ∧2〈G, i〉ϕ)

or the ATL fixed-point axiom for strategic ability from [34]:

〈〈A〉〉2ϕ↔ ϕ ∧ 〈〈A〉〉 © 〈〈A〉〉2ϕ



4.5. Strategic Abilities in Questioning 119

However, if we consider imperfect information games in general these fixed-
point recursive axioms are known to not be valid anymore. Given the special
status of imperfect information in EQGs discussed before, it is natural to ask if
such recursive axioms are valid in game structures generated by EQGs. In order
to approach this question we need the following fact:

4.5.1. Fact. Any EQG induces a Concurrent Epistemic Game Structure. For
EQG E = 〈M,G〉 the corresponding CEGS S = 〈n,Q,Π, π, d, δ, ( a∼)a∈Σ〉 is con-
structed in the following way (cf. Definition 1 in [34], also, [53] p. 440):

– n = |N |, – Q = W ∪ (W × ℘(W )n), – Π = P ,

– π(q) =

{
{p ∈ P | q ∈ V (p)} if q ∈ W,

{p ∈ P | fst(q) ∈ V (p)} otherwise

– da(q) = |℘(W )|, for all a ∈ Σ,

– δ(q, j1, . . . , jn) =

{
(q, 〈j1, . . . , jn〉) if q ∈ W,

q otherwise.

together with a family of equivalence (indistinguishability) relations (
a∼)a∈Σ, one

for each agent a ∈ Σ, with
a∼⊆ Q×Q computed in the following way:

–
a∼=

{
{(q, q′) | (q, q′) ∈ a∼M} if q, q′ ∈ W,

{(q, q′) | snd(q) = snd(q′), (q, q′) ∈ a∼F (snd(q))⊗ !} otherwise.

We only describe here one level of questioning and resolution actions but this
can be generalized in a similar fashion to any number of such iterations.

The Difraction Property. We discussed before some general properties of
EQGs, one that becomes particularly relevant in this context because of its rele-
vance in questioning scenarios is the one we will call the difraction property. The
name is intended to capture the basic intuition behind the notion, namely that
the value of the formula diverges in alternative histories. However, the formal
definition is completely independent of this intuition, it is the following:

4.5.2. Definition. [Difraction Property] We say that an epistemic game struc-
ture EGS satisfies the Difraction Property for ϕ (DPϕ) if, for some histories
h, h′ ∈ H, the following conditions:

– h ∼ h′, h |= ϕ and h′ |= ϕ,

– there is some action (transition) q, such that h_q, h′_q ∈ H,

imply that the following property obtains:

– h_q |= ϕ and h′_q 6|= ϕ or vice versa.



120 Chapter 4. Games with Questioning Moves

If an EGS has the DPϕ for any formula ϕ ∈ Γ then it also has DP for Γ. If
formula ϕ has factual content (only) we have Factual Difraction (FD), if formula
ϕ has issue/epistemic content, Issue/Epistemic Difraction (I/ED).

Intuitively, the difraction property states that whenever a formula ϕ has uni-
form truth value in indistinguishable histories, and the same action q is available
in both nodes/histories (q might be an issue/learning action [question, resolution,
announcement], but does not have to), it follows that, after executing the same
action q in both states/histories, the truth value of ϕ diverges (it is no longer the
same in both resulting histories).

We used in Definition 4.5.2 a setting in which actions and transitions are
assumed to coincide, such a setting is not specific to ATL but it is commonplace
in game-theoretic contexts. However, Definition 4.5.2 can be straightforwardly
reformulated even in a setting where actions and transitions are distinct as long
as the transition function is deterministic.

DP is interesting because it seems to be essential for the failure of fixed-point
axioms for strategic ability in imperfect information games. It can be shown [35]
that both directions of the recursive ATL axiom characterizing strategic ability
fail in the class of epistemic game structures that satisfy DP.

We show below that, in particular, the recursive axiom characterizing strategic
ability holds in the class of non-DP epistemic game structures.

4.5.3. Fact. The axiom 〈〈A〉〉2ϕ ↔ ϕ ∧ 〈〈A〉〉 © 〈〈A〉〉2ϕ is valid in the class
of epistemic game structures that do not satisfy the difraction property (DP).

We include the details of the proof in the following appendix (Section 4.7).

What we still have to show is that epistemic game structures without DP
indeed capture an interesting class of imperfect information games, in particular,
that they contain some epistemic games with sequential moves. We show here,
in particular, that EQGs do not have DP for positive formulas. The positive
fragment of ELQ, denoted L+

ELQ
, is defined by the following BNF:

ϕ ::= i | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ
χ ::= χ ∧ χ | χ ∨ χ | Qaϕ | Raϕ | Kaϕ

4.5.4. Fact. Epistemic game structures generated by extensive question games
(EQGs) do not have the difraction property (DP) for positive formulas.

We include the details of the proof in the following appendix (Section 4.7).

We assume in Fact 4.5.4 a setting with questioning and resolution actions but
this is not essential for the proof, link-cutting model transformations or non world-
eliminating announcements are also captured in such a setting by [ϕ!] = [ϕ?][!].



4.6. Appendix A: Background Definitions 121

4.5.2 Conclusions and Further Research

In this section we have defined extensive questioning games in a formal way using
the general framework of dynamic epistemic logic with questioning and resolution
actions and we have also introduced some illustrative examples.

In this general setting we studied solution concepts in EQGs, in particular, we
have shown that there are EQGs with no pure Nash equilibrium. The possibility of
describing strategic abilities of players in EQGs in a logical language was explored.
In this context we have shown how some strategic ability recursive axioms are
preserved in imperfect information games without DP and that EQGs do not
have DP for positive formulas.

Many interesting problems and topics for future research emerged, such as:
study other solution concepts in the context of EQGs and the relation between
existence of solution-concepts and syntactic structure of goal formulas, concep-
tual clarifications regarding notions of informativity and relevance of questioning
moves in scenarios of competitive or cooperative inquiry, find all the remaining
valid principles characterizing strategic ability in EQGs.

4.6 Appendix A: Background Definitions

Public Announcement Logic The logic of public announcements was one of
the earliest developed in the DEL paradigm. It is also one of the most studied
and well known members of the DEL family. Because we also used it in the first
sections of this chapter we include a brief summary here.

The language L of public announcement logic (PAL) [79] defined over a set of
agents N = {1, . . . , n} and a set of primitive propositions Θ is given as follows,
where i is an agent and p ∈ Θ is a propositional symbol:

ϕ ::= p | Kiϕ | ¬ϕ | ϕ1 ∧ ϕ2 | [ϕ1!]ϕ2

We write 〈ϕ1!〉ϕ2 resp. K̂iϕ for the duals ¬[ϕ1!]¬ϕ2 and ¬Ki¬ϕ.
A Kripke structure or epistemic model over N and Θ is a tuple M = (S,∼1

, . . . ,∼n, V ) where S is a set of states, ∼i ⊆ S×S is an epistemic indistinguisha-
bility relation that is assumed to be an equivalence relation for each agent i, and
V : Θ→ S assigns primitive propositions to the states in which they are true. A
pointed Kripke structure is a pair (M, s) where s is a state in M . In this chapter
and beyond we will also assume that Kripke structures are finite.

The interpretation of formulae from the public announcement language is
defined in a pointed Kripke structure at state as follows:

M, s |= p iff p ∈ V (p), M, s |= ¬ϕ iff not M, s |= ϕ

M, s |= Kiϕ iff for every t such that s ∼i t, M, t |= ϕ; and



122 Chapter 4. Games with Questioning Moves

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= [ϕ!]ψ iff M, s |= ϕ implies that M |ϕ, s |= ψ,

where M |ϕ = (S ′,∼′1, . . . ,∼′n, V ′) such that S ′ = {s′ ∈ S : M, s′ |= ϕ}, ∼′i = ∼i
∩(S ′ × S ′), and V ′(p) = V (p) ∩ S ′. For {s′ ∈ S : M, s′ |= ϕ} we also write [[ϕ]]M .

Strategic Game A strategic game is a triple G = 〈N, {Ai : i ∈ N}, {ui : i ∈
N}〉 where: N = {1, . . . , n} is the finite set of players ; for each i ∈ N , Ai is
the set of strategies (or actions) available to i. A = ×j∈NAj is the set of strategy
profiles ; and for each i ∈ N , ui : A→ R is the payoff function for i, mapping each
strategy profile to a number. Notation (a1, . . . , an)[ai/a

′
i] stands for the profile

wherein strategy ai is replaced by a′i. A strategy profile is a (pure strategy) Nash
equilibrium if every strategy is the best response of that agent to the strategies of
the other agents, i.e., if the agent can not do any better by choosing a different
strategy given that the strategies of the other agents are fixed. Formally, a profile
(a1, . . . , an) is a Nash equilibrium if and only if for all i ∈ N , for all a′i 6= ai,
ui((a1, . . . , an)[ai/a

′
i]) ≤ ui(a1, . . . , an).

A strategy for an agent is weakly dominant if it is at least as good for that agent
as any other strategy, no matter which strategies the other agents choose. For-
mally, a strategy ai for agent i is weakly dominant if and only if for all strategies
a′1, . . . , a

′
n for players 1, . . . , n respectively, ui(a

′
1, . . . , a

′
n) ≤ ui((a

′
1, . . . , a

′
n)[a′i/ai]).

Bayesian game The most common model of strategic games with imperfect
information is the Bayesian game [45]. Our presentation of Bayesian games is as
in [73]. A Bayesian strategic game BG = 〈N,S, {Ai : i ∈ N}, {Ti : i ∈ N}, {Pri :
i ∈ N}, {τi : i ∈ N}, {ui : i ∈ N}〉 has the following components:

N is the set of players; S is the finite set of states s modeling the players’
uncertainty about each other; and for each i ∈ N : Ai is the set of strategies or
choices in the game; Ti is the set of signals ti that may be observed by player i,
τi : S → Ti is the signal function of player i; Pri is a probability measure on S
(the prior belief of player i) such that Pri(τ

−1(ti)) > 0 for all ti ∈ Ti, that is, each
player’s received signal is correct with strictly positive probability; and finally ui
is a payoff function on the set of probability measures over A × S (instead of a
payoff function on the set of action profiles a).

4.7 Appendix B: Proofs of Main Results

4.7.1. Proof (Fact 4.3.2). The following are the answers corresponding to
each strategy profile in the game:



4.7. Appendix B: Proofs of Main Results 123

(Sb, Sa) 0 1 2 3 4 5 6 7 (aM , bM)
(Sb0, S

a
0 ) p, q p, q p, q p, q p, q p, q p, q p, q ( ,m)

(Sb0, S
a
1 ) r, q r, q p, q p, q r, q r, q p, q p, q ( , )

(Sb0, S
a
2 ) p, q p, q r, q r, q p, q p, q r, q r, q ( , )

(Sb0, S
a
3 ) r, q r, q r, q r, q r, q r, q r, q r, q (m, )

(Sb, Sa) 0 1 2 3 4 5 6 7 (aM , bM)
(Sb1, S

a
0 ) p, r p, r p, r p, r p, q p, q p, q p, q ( , )

(Sb1, S
a
1 ) r, r r, r p, r p, r r, q r, q p, q p, q (m, )

(Sb1, S
a
2 ) p, r p, r r, r r, r p, q p, q r, q r, q ( ,m)

(Sb1, S
a
3 ) r, r r, r r, r r, r r, q r, q r, q r, q ( , )

(Sb, Sa) 0 1 2 3 4 5 6 7 (aM , bM)
(Sb2, S

a
0 ) p, q p, q p, q p, q p, r p, r p, r p, r ( , )

(Sb2, S
a
1 ) r, q r, q p, q p, q r, r r, r p, r p, r ( ,m)

(Sb2, S
a
2 ) p, q p, q r, q r, q p, r p, r r, r r, r (m, )

(Sb2, S
a
3 ) r, q r, q r, q r, q r, r r, r r, r r, r ( , )

(Sb, Sa) 0 1 2 3 4 5 6 7 (aM , bM)
(Sb3, S

a
0 ) p, r p, r p, r p, r p, r p, r p, r p, r (m, )

(Sb3, S
a
1 ) r, r r, r p, r p, r r, r r, r p, r p, r ( , )

(Sb3, S
a
2 ) p, r p, r r, r r, r p, r p, r r, r r, r ( , )

(Sb3, S
a
3 ) r, r r, r r, r r, r r, r r, r r, r r, r ( ,m)

We give next the payoff matrix of the induced game mentioned in Fact 4.3.2.

Sb0 Sb1 Sb2 Sb3
Sa0 0.00, 1.00 0.25, 0.75 0.25, 0.75 0.50, 0.50
Sa1 0.25, 0.75 0.00, 1.00 0.50, 0.50 0.25, 0.75
Sa2 0.25, 0.75 0.50, 0.50 0.00, 1.00 0.25, 0.75
Sa3 0.50, 0.50 0.25, 0.75 0.25, 0.75 0.00, 1.00

2

4.7.2. Proof (4.4.16). This simple fact is witnessed by considering an EQG
with two agents a and b informed only about facts q and p, respectively, and only
aware of propositional atoms p, q, r, in which a has the following goal formula:

γa = (p↔ q) ∧War ∧ (Wap ∨Wbq)

and symmetrically γb for the second player b, and where Wi = Kiϕ ∨Kiϕ. The
model described informally so far in Fact 4.3.2 can be precisely specified using in
our later Haskell implementation by the following model transformations:

*QAGM> m7 = upd ( upd ( initM [a,b] [P 0, Q 0, R 0] )

( info [a] (P 0) ) )

( info [b] (Q 0) )



124 Chapter 4. Games with Questioning Moves

and the resulting EQG played in m7 has the following outcomes:

sa0 sa1 sa2 sa3
sb0 1.00, 0.00 0.75, 0.25 0.75, 0.25 0.50, 0.50
sb1 0.50, 0.50 0.75, 0.25 0.75, 0.25 1.00, 0.00

As in the previous example, we have a cycling pattern of local optima that
causes global inexistence of NE. 2

4.7.3. Proof (Fact 4.5.3). Let S = 〈n,Q,Π, π, d, δ, ( a∼)a∈Σ〉 be an arbitrary
epistemic game structure without DP. Suppose that 〈〈A〉〉2ϕ 6→ ϕ ∧ 〈〈A〉〉 ©
〈〈A〉〉2ϕ. Then, for some q ∈ Q, we have q |= 〈〈A〉〉2ϕ but q 6|= ϕ ∧ 〈〈A〉〉 ©
〈〈A〉〉2ϕ. In case q 6|= ϕ we are done. If q 6|= 〈〈A〉〉 © 〈〈A〉〉2ϕ then, by the
semantics, for all uniform A-strategies FA, for some computation λ ∈ out(q, FA),
we have λ[1] 6|= 〈〈A〉〉2ϕ. This means, by the semantics, that for all uniform
A-strategies FA, for some computation λ′ ∈ out(λ[1], FA), and for some position
i ≥ 0, we have λ′[i] 6|= ϕ. From q |= 〈〈A〉〉2ϕ we have, by the semantics, that there
exist a uniform A-strategy FA such that for each computation λ ∈ out(q, FA) and
all positions i ≥ 0, we have λ[i] |= ϕ. But we also have, for all q ∈ Q and a ∈ Σ,
that q

a∼ q, because
a∼ is an equivalence relation. Therefore, S must satisfy DP,

against the assumption. As q and S are arbitrary this holds for all non-DP EGS.
The other direction is similar. 2

4.7.4. Proof (Fact 4.5.4). If for an atomic ϕ we have h ∼ h′, h |= ϕ and
h′ |= ϕ then, for any questioning action q, we also have both h_q |= ϕ and
h′_q |= ϕ, because for any EIM M = 〈W,∼,≈ V 〉 and M ′ = M ⊗ q = 〈W,∼′
,≈′, V ′〉 we have, by [ϕ?], [ ! ] definitions, that V = V ′. If ϕ is a con(/dis)junction
of positive formulas ψ∧(/∨)χ then we use the induction hypothesis. If ϕ is a
modal formula Qψ we have to consider two cases. If h_q ≈ h′_q we are done. If
h_q 6≈ h′_q then, suppose that for some k ∈ H, h_q ≈ k_q and k |= ¬ψ, and,
for all k′ ∈ H such that h′_q ≈ k′, we have k′ |= ψ. In the first case ϕ is a positive
formula only if ψ is factual. But then we also have k |= ¬ψ because questioning
actions do not change factual content. Then by the definition of [q?], for any
epistemic-issue models M = 〈W,∼,≈ V 〉 and M ′ = M ⊗ q = 〈W,∼′,≈′, V ′〉, we

have ≈′=≈ ∩
q
≡M , hence we must also have h ≈ k but then, by the semantics

of Q, we have h 6|= ϕ and this contradicts the initial assumption. For resolution
[ ! ] actions, indistinguishability ∼ and formulas with epistemic Kψ or mixed Rψ
content the argument is analogous. 2



Chapter 5

Implementing Questioning Games

In this chapter we present and document the implementation behind the question
answer games discussed in previous chapter. Some outstanding features of the im-
plementation are the following: a representation strategies in game as questions
in an epistemic model, computing resulting strategy profiles and intuitive dis-
play of formulae representing game-moves, computation of both local and global
epistemic actions induced by questioning strategies and intuitive display for up-
dated epistemic models, model checking of goal formulae in resulting epistemic
structures, implementation of epistemic games with questioning moves and com-
putation and intuitive display of the corresponding matrix for the induced game.
The chapter presents and explains the literate Haskell (cf. [55, 68]) code of the
QAGames.lhs module covering the theoretical aspects surrounding the epistemic
games with questioning moves discussed in Chapter 4. Previous epistemic func-
tionality from DEMo [107], DEMo-light [109], and DELq functionality from [71]
is also explained and used in the current implementation. Finally, the PAGs.lhs

module is used to compare questioning games with games with announcements.
In the last section we will define the birelataional coarsest partition problem

and we will give an algorithm for minimizing issue-epistemic models using a notion
of behavioral equivalence that is adequate for the questioning language.

5.1 Implementing Questioning Games

Much of the theoretical notions introduced so far and even more so much of the
functionality contained in the discussed implementation have their utility enriched
in applications involving various scenarios of strategic interaction between rational
agents via dynamic questioning and informative actions.

This section implements extensions of basic epistemic functionality to model
epistemic games with informative and questioning moves in the style of [2] and
[1]. We will first model games in which moves of players are epistemic actions

125



126 Chapter 5. Implementing Questioning Games

which are public announcements triggered by mutual strategic questions, and in
which the players seek to achieve goals represented by epistemic formulae.

We will use as the point of departure the standard dynamic epistemic function-
ality for dynamic epistemic logic from DEMo-light [109]. An introductory course
presentation of both DEL and its basic Haskell implementation, in a version
without vocabulary change, is also available in [104]. The DEMo-light modules
in [109] provide all the needed functionality to achieve the purpose of this section.

Staring from here we add an extension module that uses the PAL and DEL
functionality for informative actions and builds the additional functionality needed
to capture the strategic aspects involved in question answer games.

The working of the code is afterwards illustrated in all minutia in Section 5.2
using a paradigmatic example. We will only present hereafter the main features
of the code and use it for examples already discussed in Chapter 4.

The main utility provided by the code consists in taking an epistemic-goal
structure with two main components a model and a pair of goal formulae and
building from these the game matrix for the strategic question-answer game
played in the given epistemic model with the given goals.

The following modules are imported by the main QuestionGames.lhs module:

ModelsVocab The module defines the basic data structures for epistemic models and epis-
temic formulae using an underlying propositional vocabulary and the un-
derling strong Kleene calculus.

ActionVocab The module defines the data structures for action models and uses it to
implement action model update. The module also contains the implemen-
tation of public announcements.

ChangeVocab The module adds functionality for factual change and model checking for
epistemic logic alongside with concrete illustrations for how to implement
perception and information dynamics.

ShortctsGms The module contains various syntactic sugars useful for defining and work-
ing with question-specific notions, like, for instance, the tripartite extension
used as the basis for strategy equivalence, the domain naming functionality,
etc. It also contains additional useful functions that have only an ancillary
role in display and related computations.

5.1.1 The QAGames.lhs Question-Answer Games Module

The module starts by importing background functionality as described before,
lines 2-10. The next seven functions introduce utilities needed to define execution
values for players’ strategies based on the structure of the epistemic model. First
a formula is linked with a subset of states in the epistemic domain, line 12. The



5.1. Implementing Questioning Games 127

second level also takes into account the indistinguishability relation for an agent
when computing the relevant extension of a formula line 15. Given any model as
input one can determine using nominals the number of formulae with different
extensions, line 21, this also gives an upper bound to the number of strategies in
the game. A questioning action lifts the extension of a formula to a set of three
extensions corresponding to the triple of epistemicaly relevant answers, line 25.

1 module QAGames where

2 import Control.Monad

3 import List

4 import Data.Ord (comparing)

5 import CombinatoricsGeneration

6 import qualified Data.Set as Set

7 import ShortctsGms

8 import ModelsVocab hiding (m0)

9 import ActionVocab hiding (upd,public,preconditions,voc)

10 import ChangeVocab

11

12 extension :: (Ord a) => EpistM a -> Form -> Maybe [a]

13 extension m f = filterM (\x -> (isTrueAtMayb m x f)) (dom m)

14

15 knowsExtension3 :: (Ord state) =>

16 EpistM state -> Agent -> [[Maybe [state]]]

17 knowsExtension3 m ag =

18 [[extension m (K ag x), extension m (Neg (Disj[(K ag x),

19 (K ag (Neg x)) ])), extension m (K ag (Neg x))] | x <- (forms m)]

20

21 forms :: (Ord state) => EpistM state -> [ Form ]

22 forms m = map (\y -> Disj y) (map (\x -> noml m x)

23 (powerList (dom m)))

After sorting the tripartite extension of the epistemic answers, line 29, the
upper bound of questioning strategies having non equivalent execution value in a
model can be sensibly lowered by merging all formulae with equivalent execution
value into only one representative strategy, line 34.

25 formsK3 :: (Ord state) =>

26 EpistM state -> Agent -> [(Form, [Maybe [state]])]

27 formsK3 m ag = zip (forms m) (knowsExtension3 m ag)

28

29 formsK3sort :: (Ord state) =>

30 EpistM state -> Agent -> [(Form, [Maybe [state]])]

31 formsK3sort m ag = zip (forms m) (map sort

32 (knowsExtension3 m ag))

33

34 formsK3nuby :: (Ord state) =>

35 EpistM state -> Agent -> [(Form, [Maybe [state]])]

36 formsK3nuby m ag = nubBy (\x y -> (snd y) ==

37 (snd x)) (zip (forms m) (map sort (knowsExtension3 m ag)))



128 Chapter 5. Implementing Questioning Games

The following four functions use the notions implemented so far to compute
global strategy profiles in the game. The first aspect concerns the fact that
strategies are uniform inside the same information cell but might differ between
elements of the partition, line 39. Next the individual strategies are globally
aggregated to form strategy profiles for all the agents, line 45.

39 straGlob :: (Eq state, Ord state, Num state) =>

40 EpistM state -> Agent -> [ [ ([state],Form) ] ]

41 straGlob m ag = cartProd (map (\x ->

42 (zip (take (length (formsK3nuby m (aminus m ag))) (repeat x))

43 (map fst (formsK3nuby m (aminus m ag))))) (infopart m ag))

44

45 profGlob :: (Eq state, Ord state, Num state) =>

46 EpistM state -> [[[([state],Form)]]]

47 profGlob m = cartProd [straGlob m ((agents m) !! 0) ,

48 straGlob m (aminus m ((agents m) !! 0))]

49

50 w2infoCells :: (Eq state, Ord state, Num state) =>

51 EpistM state -> state -> [[state]]

52 w2infoCells m w = [infocell m ((agents m)!!0) w,

53 infocell m ((agents m)!!1) w]

54

55 w_prof2forms :: (Eq state, Ord state, Num state) =>

56 EpistM state -> state -> [[([state],Form)]] -> [Form]

57 w_prof2forms m w p = map snd (filter (\x -> (fst x) ==

58 infocell m ((agents m)!!0) w) (p!!0) ++

59 filter (\x -> (fst x) == infocell m ((agents m)!!1) w) (p!!1))

Each world in the model corresponds to a list of information cells in the two
agents’ partitions, as computed in line 50. Furthermore, each global strategy
profile determines a list of corresponding formulae, line 55. Next, each of the
formulae determined by the global profiles have a corresponding execution value,
as calculated in line 61, following the tripartite model discussed before.

61 w_prof2exeVal :: (Eq state, Ord state, Num state) =>

62 EpistM state -> state -> [[([state],Form)]] -> [Form]

63 w_prof2exeVal m w p = [ barval3 m w ((agents m)!!0)

64 ((w_prof2forms m w p)!!0), barval3 m w ((agents m)!!1)

65 ((w_prof2forms m w p)!!1) ]

66

67 w_prof2answ :: (Eq state, Ord state, Num state) =>

68 EpistM state -> state -> [[([state],Form)]] -> Form

69 w_prof2answ m w p = Conj (w_prof2exeVal m w p)

70

71 w_prof2upd :: (Eq state, Ord state, Num state) =>

72 EpistM state -> state -> [[([state],Form)]] -> EpistM state

73 w_prof2upd m w p = upd_pa m (w_prof2answ m w p)

74

75 w2updates :: (Eq state, Ord state, Num state) =>

76 EpistM state -> state -> [EpistM state]

77 w2updates m s = map (\x -> (w_prof2upd m s x)) (profGlob m)



5.1. Implementing Questioning Games 129

The result is a conjunction of execution values, one for each agent, line 67.
And each answer computed as a conjunction of execution values leads to a corre-
sponding update of the initial model, as computed starting from line 71.

Taking each state of the model as the point of departure, each global strategy
profile can be executed in it, leading to a list of corresponding updates, line 75.

79 w2pays :: (Eq state, Ord state, Num state) =>

80 EpistM state -> state -> Form -> [Integer]

81 w2pays m w g = map (\x -> paynumber x w g) (w2updates m w)

82

83 prof2w_pays :: (Eq state, Ord state, Num state) =>

84 EpistM state -> [[([state],Form)]] -> Form -> [Integer]

85 prof2w_pays m p g =

86 map (\x -> paynumber (w_prof2upd m x p) x g) (dom m)

87

88 prof2w_paysum :: (Eq state, Ord state, Num state) =>

89 EpistM state -> [[([state],Form)]] -> Form -> Integer

90 prof2w_paysum m p g = foldr (+) 0 (prof2w_pays m p g)

The next and final stage in constructing the game matrix consists in assigning
payoffs to game outcomes, this is done by the following four functions. The payoff
value is determined at each world by model checking agents’ goal formulae in the
resulting updated model, line 79. The result of model checking goal formulae can
be lifted from local states to a list of worlds in the domain and global strategy
profiles, line 83. The payoff values of local strategy execution are aggregated in
a global sum corresponding to each strategy profile, computed at line 88.

Finally, the qagn function computes the resulting entries in the matrix induced
by the question-answer game played in the given epistemic model, line 92.

92 qagn :: (Eq state, Ord state, Num state) =>

93 EpistM state -> (Form,Form) -> [(Integer,Integer)]

94 qagn m g = zip (map (\x -> prof2w_paysum m x (fst g))

95 (profGlob m)) (map (\x -> prof2w_paysum m x (snd g)) (profGlob m))

Two additional auxiliary functions, which both assume a named epistemic
model as input, are used to compute the epistemic projection of a formula, first as
a bipartite epistemic announcement, line 98, and second as a tripartite epistemic
answer to a question, starting from line 101. This pair of function also give a
concise comparison point between games played with spontaneous announcement
moves and games played with questioning moves followed by answers.

97 barval2 :: (Ord state) => EpistM state -> state -> Agent -> Form -> Form

98 barval2 m s ag f | isTrueAtMayb m s (K ag f) == Just True = K ag f

99 | otherwise = Neg (K ag f)

100

101 barval3 :: (Eq state, Ord state) =>

102 EpistM state -> state -> Agent -> Form -> Form

103 barval3 m s ag f | isTrueAtMayb m s (K (aminus m ag) f) == Just True =

104 K (aminus m ag) f



130 Chapter 5. Implementing Questioning Games

105 | isTrueAtMayb m s (K (aminus m ag) (Neg f)) ==

106 Just True = K (aminus m ag) (Neg f)

107 | otherwise =

108 (Neg (Disj[(K (aminus m ag) f),

109 (K (aminus m ag) (Neg f)) ]))

5.1.2 The PAGs.lhs Extension Module

The infrastructure used to implement games with questioning actions uses an-
swers as informative actions in their simplest form as public announcements. In
this section we will show how this infrastructure can be extended to accommo-
date games with informative epistemic games. We present the remaining ancillary
functionality as a separate module merely for ease of exposition, it is in fact a
constitutive part of the QAGames.lhs module, sharing much of the functionality.

The infopart function reconstructs the information partition of a given agent
in an epistemic model m, line 111. Next, using the function at line 114, the
information cell determined by an additional state parameter can be retrieved.

111 infopart :: (Ord state) => EpistM state -> Agent -> [[state]]

112 infopart m a = rel2partition (dom m) (rel a m)

113

114 infocell :: (Ord state, Num state) =>

115 EpistM state -> Agent -> state -> [state]

116 infocell m a w =

117 (filter (\x -> (elem w x)) (infopart m a))!!0

At line 119 and following the information cell is mapped over the list of states
in the domain, this will be useful for further processing in the next steps. The
first processing step converts the information cells from sets of states to lists of
nominals for the states, line 125. This list is further processed by mapping a
disjunction over the nominals in the function starting from line 129.

119 kKpartState :: (Ord state, Num state) =>

120 EpistM state -> Agent -> state -> [[state]]

121 kKpartState m a s = map (\x -> foldl union [] x)

122 (filter (\x -> ((infocell (named m) a s) ‘elem‘ x))

123 (powerList (infopart (named m) a)))

124

125 cellpartnomK :: (Ord state, Num state) =>

126 EpistM state -> Agent -> state -> [[Form]]

127 cellpartnomK m a s = map (\x -> (noml (named m) x)) (kKpartState (named m) a s)

128

129 cellpartdisK :: (Ord state, Num state) =>

130 EpistM state -> Agent -> state -> [Form]

131 cellpartdisK m a s = map Disj (cellpartnomK (named m) a s)

132

133 cellpartdisKbar :: (Ord state,Num state)=> EpistM state -> Agent -> state -> [Form]

134 cellpartdisKbar m ag s = map (\x->(barval2 m s ag x)) (cellpartdisK (named m) ag s)



5.1. Implementing Questioning Games 131

Finally, the bipartite epistemic value of the disjunctions is computed by map-
ping model checking operations over the previous list, line 133.

136 realcellstratsK :: (Eq state, Ord state, Num state) =>

137 EpistM state -> Agent -> [state] -> [Form]

138 realcellstratsK m ag c = cellpartdisKbar m ag (c!!0)

139

140 strategiesKK :: (Eq state, Ord state, Num state) =>

141 EpistM state -> Agent -> [ [ ([state],Form) ] ]

142 strategiesKK m a = cartProd (map (\x ->

143 (zip (take (length (realcellstratsK m a x)) (repeat x))

144 (realcellstratsK m a x))) (infopart m a))

145

146 profilesKK :: (Eq state, Ord state, Num state) =>

147 EpistM state -> [[[([state],Form)]]]

148 profilesKK m = cartProd [strategiesKK m ((agents m) !! 0),

149 strategiesKK m (aminus m ((agents m) !! 0))]

Taking only one representative state instead of an entire partition cell simpli-
fies further computations by preserving only the minimally required information,
line 136. Global strategies are computed at line 140 for a model and a player
given as inputs by assigning to every cell in the information partition a formula.

This ensures that strategies are information dependent by being uniform over
cells in the knowledge partition. Global strategies for agents are lifted in global
strategy-profiles by taking the Cartesian product of individual strategies, in the
function starting at line 146. The pair of announcements corresponding to each
strategy profile is computed at line 151 by filtering relevant formulae for each
equivalence class. This gives rise to a joint announcement formula obtained by
taking the conjunction of individual announcements, in line 156.

151 announcementsKK :: (Eq state, Ord state, Num state) =>

152 EpistM state -> state -> [[Form]]

153 announcementsKK m s = (map (\y->(map snd ((filter (\x->(elem s (fst x))) (y!!0))

154 ++ (filter (\x -> (elem s (fst x))) (y!!1) )))) (profilesKK m))

155

156 jointannouncementKK :: (Eq state, Ord state, Num state) =>

157 EpistM state -> state -> [Form]

158 jointannouncementKK m s = map (\x -> (Conj x)) (announcementsKK m s)

159

160 updatesKK :: (Eq state, Ord state, Num state) =>

161 EpistM state -> state -> [EpistM state]

162 updatesKK m s = map (\x -> (upd_pa m x)) (jointannouncementKK m s)

163

164 paynumber :: (Eq state, Ord state, Num state) =>

165 EpistM state -> state -> Form -> Integer

166 paynumber m s f | isTrueAtMayb m s f == Just True = 1

167 | otherwise = 0

168

169 lpayKK::(Eq state,Ord state,Num state)=>EpistM state->state->Form->[Integer]

170 lpayKK m s f = map (\x -> (paynumber x s f)) (updatesKK m s)



132 Chapter 5. Implementing Questioning Games

171

172 gpayKK :: (Eq state, Ord state, Num state) =>

173 EpistM state -> Form -> [[Integer]]

174 gpayKK m f = map (\x -> (lpayKK m x f)) (dom m)

175

176 sumgpayKK :: (Eq state, Ord state, Num state) =>

177 EpistM state -> Form -> [Integer]

178 sumgpayKK m f = foldr (zipWith (+))

179 (take (length (profilesKK m)) (repeat 0)) (gpayKK m f)

180

181 pagn :: (Eq state, Ord state, Num state) =>

182 EpistM state -> (Form,Form) -> [(Integer,Integer)]

183 pagn m g = (zip (sumgpayKK m (fst g)) (sumgpayKK m (snd g) ))

The joint announcement formulae determine the list of resulting updated mod-
els, which are computed by the function starting at line 160.

The final stage in computing the normal form of the epistemic game consists
in model-checking goal formulae in the updated models and assigning payoffs to
the obtained results. The function from line 164 converts the result of model
checked goal formula into a corresponding numerical value.

The following function, from line 169, maps the conversion over the list of
resulting update models, returning all the numerical values in a list. The next
function, line 172, lifts this computation even higher by abstracting away the
particular state and projecting over the entire list of states in the domain. A final
step consists in taking the sum of all the values in the function from line 176.

Finally, the pagm function, line 181, computes the resulting game matrix.

5.2 Illustrations using the Implementation

Now that the implementation details have been discussed and explained in de-
tail, we continue by introducing one extended illustrative analysis of a concrete
questioning game and discuss some theoretical aspects that emerge.

The illustration below follow the code description and explanation. The out-
put will stay very close to the succession of processing functions in Haskell im-
plementation for games with questioning moves previously discussed. Whenever
needed the names of the functions used in the output can be used refer back to
code sections for further details, documentation and further explanations.

5.2.1. Example. [We Are Spies] Consider the following three-state epistemic
goal structure where a knows the truth about p and b knows the truth about q:

γa = Kbp→ Kaq qp qp qp γb = Ka¬q
a b

We start by considering the epistemic model used in the ‘We Are Spies’ ex-
ample (henceforth WaS). The starting epistemic structure is:



5.2. Illustrations using the Implementation 133

*QAGames> displayS5 m79

[1,2,3]

[(1,[p]),(2,[q]),(3,[p,q])]

(a,[[1,3],[2]])

(b,[[1],[2,3]])

[1,2,3]

DELq formulae can be evaluated in such structures. Formulas are represented
and visualized in Haskell in a compact way, see Section 3.2 for some intuitive ex-
amples. Another important element in modeling QAGs are the dynamic epistemic
actions changing the underlying epistemic structures. Such epistemic actions can
be questions or answers and they are represented as model transformations.

For instance, the result of updating the epistemic model considered in Example
1 with the formula Kap is computed in and visualized by QAGames.lhs as follows:

*QAGames> displayS5 (upd_pa m79 (K a p))

[1,3]

[(1,[p]),(3,[p,q])]

(a,[[1,3]])

(b,[[1],[3]])

[1,3]

Finally, the truth-value of formulas can be computed at a state in a model.
The following is an illustration of how QAGames.lhs performs model checking:

*QAGames> isTrueAtMayb (upd_pa m79 (K a p)) 1 (K b q)

False

This says intuitively that in the model of Example 5.2.1 updated by announc-
ing Kap the formula Kbq does not hold at the world with index 1.

5.2.1 Counting Strategies

There are two ways to consider a strategy in a question-answer game. One is the
syntactic way, not very convenient because makes the number of possible moves
in the game infinite as ϕ, ϕ ∧ ϕ, etc. are syntactically different strategies. If not
for conceptual reasons, at least as far as an efficient implementation is considered
desirable, it would be useful to restrict this number.

The second, semantic, perspective can be used to reduce this number: two
strategies are equivalent if they have the same extension. This is the notion of log-
ical equivalence between formulas. Even so, for every subset of the domain there
are infinitely many formulae that have that extension, but for a finite model we
will have only a finite set of subsets. It is enough to take one representative of each
equivalence class. For practical reasons we will use the minimal representative.

When using a semantic approach for strategy equivalence and syntactic enti-
ties in a language to represent the moves in the game is very useful to establish a
meaningful correspondence between the two levels. This can be done by naming
a model, that is adding a nominal to each world’s valuation list. A nominal is a
propositional atom which is true in only one world in the domain:



134 Chapter 5. Implementing Questioning Games

*QAGames> displayS5 (named m79)

[1,2,3]

[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])]

(a,[[1,3],[2]])

(b,[[1],[2,3]])

[1,2,3]

This can be then used to construct the set of all extensionally non-equivalent
formulae expressible in the language with respect to a given epistemic model.

In the (WaS) example we have as many extensionally non-equivalent formulae:

*QAGames> forms (named m79)

[v[],v[n2],v[n1],v[n1,n2],v[n],v[n,n2],v[n,n1],v[n,n1,n2]]

Such formulae are disjunction of propositional letters true at only one world,
or nominals, which correspond directly to subsets of the domain after the worlds
in the initial epistemic model have been named.

As discussed before, using nominals provides extra expressive power at no
computational expense. If, however, the model we are working with is minimized
under bisimulation, nominals are not needed, because a characteristic formula of
epistemic logic could be used instead to identify any world. Even so, we will see
that in the context of associating payoffs to worlds the number of worlds satisfying
the same formulae matters and minimization under bisimulation erases relevant
information for computing the payoffs in a question-answer game.

However, our example only has local games with two, not eight, strategies.
This is because some of the formulae have equivalent semantic effects in the game.
This proliferation, however, turns out to be redundant in the sense that it can be
avoided using a more efficient compact representation without affecting solution
concepts. For this reasons, our reduction gives rise to a natural and economic
criterion of strategy equivalence in question answer games. This basic fact is
captured by the following more general result for equilibria with pure strategies:

5.2.2. Fact. Let M be a named epistemic model, Π = ℘(domM) be the power-
set of M ’s domain. |X|M be the set of all formulae equiextensional with X ∈ Π.
Φ = {|X|M | X ∈ Π} be the set of all co-extensional formulas expressible in
M , ||X||M = {S0, S1, S2} be the execution-value of a formula with extension
X, where S0 = {w ∈ M | M |=w Ka¬ϕ}, S1 = {w ∈ M | M |=w Kaϕ},
S2 = {w ∈ M | M |=w ¬(Ka¬ϕ ∨ Ka¬ϕ)}, Γ = {||X||M | X ∈ Π} be the
set of all formulae which are epistemically equiextensional, [ϕ]M the epistemical
equiextensionality equivalence class of ϕ in M . Then, tfaeq:

– p = (si, s−i) is a NE in G(Φ),

– p∗ = (s∗i , s−i) is a NE in G(Γ), for any s∗i ∈ [si]M ,

where G(X) is the epistemic game in which player’s strategies belong to X.



5.2. Illustrations using the Implementation 135

Based on this result, for both reasons of conceptual simplicity and compu-
tational convenience we will adopt this further simplification. This will provide
a principled definition for a strategy in an epistemic game with question moves
which is conceptually clear and computationally efficient.

For instance, in (WaS) asking q? or p? would both have identical effects. And
they are both globally different from the effect of asking the trivial question >?:

(v[n1,n2],[[2],[1,3],[]]) --the first element represents q’s extension

(v[n,n2],[[1,3],[],[2]]) --the second element is p’s execution value

(v[n,n1,n2],[[1,2,3],[],[]]) --Top’s exec. value differs from both p’s & q’s

We use this basic observation as a notion of strategy equivalence for questions.
When computing the strategy set in the global game we only take the minimal
representatives in each equivalence class so determined.

Strategy profiles in the global game are the cartesian product of global strate-
gies and choices in global strategy profiles are uniform across agents’ information
cells like in games with imperfect information. The global strategy profiles in the
induced game of (WaS) example are given by:

*QAGames> display 1 (profGlob (named m79))

[[([1,3],v[]), ([2],v[])], [([1],v[]), ([2,3],v[])]]

[[([1,3],v[]), ([2],v[])], [([1],v[]), ([2,3],v[n2])]]

[[([1,3],v[]), ([2],v[])], [([1],v[n2]), ([2,3],v[])]]

[[([1,3],v[]), ([2],v[])], [([1],v[n2]), ([2,3],v[n2])]]

[[([1,3],v[]), ([2],v[n2])], [([1],v[]), ([2,3],v[])]]

[[([1,3],v[]), ([2],v[n2])], [([1],v[]), ([2,3],v[n2])]]

[[([1,3],v[]), ([2],v[n2])], [([1],v[n2]), ([2,3],v[])]]

[[([1,3],v[]), ([2],v[n2])], [([1],v[n2]), ([2,3],v[n2])]]

[[([1,3],v[n2]), ([2],v[])], [([1],v[]), ([2,3],v[])]]

[[([1,3],v[n2]), ([2],v[])], [([1],v[]), ([2,3],v[n2])]]

[[([1,3],v[n2]), ([2],v[])], [([1],v[n2]), ([2,3],v[])]]

[[([1,3],v[n2]), ([2],v[])], [([1],v[n2]), ([2,3],v[n2])]]

[[([1,3],v[n2]), ([2],v[n2])], [([1],v[]), ([2,3],v[])]]

[[([1,3],v[n2]), ([2],v[n2])], [([1],v[]), ([2,3],v[n2])]]

[[([1,3],v[n2]), ([2],v[n2])], [([1],v[n2]), ([2,3],v[])]]

[[([1,3],v[n2]), ([2],v[n2])], [([1],v[n2]), ([2,3],v[n2])]]

A brief inspection of the set of global strategy profiles confirms the fact that
there are indeed only two strategies with distinct execution value in the game
model. The strategies correspond to disjunction of nominals that are minimal in
their equivalence classes. In our example this are the disjunction of the empty
list and a disjunction with only one element n2.

Having a clear cut concept of strategy equivalence will serve as the starting
point in computing the outcomes and the construction of the game matrix.

5.2.2 Computing the Outcomes

The next lists contain the answers induced by the global profiles at states 1,2,3:



136 Chapter 5. Implementing Questioning Games

*QAGames> display 1 (map (\x->(w_prof2exeVal (named m79) 1 x))

(profGlob (named m79)))

[[b]-v[], [a]-v[]]

[[b]-v[], [a]-v[]]

[[b]-v[], -v[[a]v[n2],[a]-v[n2]]]

[[b]-v[], -v[[a]v[n2],[a]-v[n2]]]

[[b]-v[], [a]-v[]]

[[b]-v[], [a]-v[]]

[[b]-v[], -v[[a]v[n2],[a]-v[n2]]]

[[b]-v[], -v[[a]v[n2],[a]-v[n2]]]

[[b]-v[n2], [a]-v[]]

[[b]-v[n2], [a]-v[]]

[[b]-v[n2], -v[[a]v[n2],[a]-v[n2]]]

[[b]-v[n2], -v[[a]v[n2],[a]-v[n2]]]

[[b]-v[n2], [a]-v[]]

[[b]-v[n2], [a]-v[]]

[[b]-v[n2], -v[[a]v[n2],[a]-v[n2]]]

[[b]-v[n2], -v[[a]v[n2],[a]-v[n2]]]

Answers are epistemic formulae about strategies as nominal disjunctions:

*QAGames> display 1 (map (\x->(w_prof2exeVal (named m79) 2 x))

(profGlob (named m79)))

[[b]-v[], [a]-v[]]

[[b]-v[], [a]-v[n2]]

[[b]-v[], [a]-v[]]

[[b]-v[], [a]-v[n2]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[n2]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[n2]]

[[b]-v[], [a]-v[]]

[[b]-v[], [a]-v[n2]]

[[b]-v[], [a]-v[]]

[[b]-v[], [a]-v[n2]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[n2]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[n2]]

Answers to questions by agent a are formulae describing agent a’s epistemic
state with regard to the content of the question, in a tripartite execution value.

*QAGames> display 1 (map (\x -> (w_prof2exeVal (named m79) 3 x))

(profGlob (named m79)))

[[b]-v[], [a]-v[]]

[[b]-v[], -v[[a]v[n2],[a]-v[n2]]]

[[b]-v[], [a]-v[]]

[[b]-v[], -v[[a]v[n2],[a]-v[n2]]]

[[b]-v[], [a]-v[]]

[[b]-v[], -v[[a]v[n2],[a]-v[n2]]]

[[b]-v[], [a]-v[]]



5.2. Illustrations using the Implementation 137

[[b]-v[], -v[[a]v[n2],[a]-v[n2]]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[]]

[-v[[b]v[n2],[b]-v[n2]], -v[[a]v[n2],[a]-v[n2]]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[]]

[-v[[b]v[n2],[b]-v[n2]], -v[[a]v[n2],[a]-v[n2]]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[]]

[-v[[b]v[n2],[b]-v[n2]], -v[[a]v[n2],[a]-v[n2]]]

[-v[[b]v[n2],[b]-v[n2]], [a]-v[]]

[-v[[b]v[n2],[b]-v[n2]], -v[[a]v[n2],[a]-v[n2]]]

The next lists contain all the updated models in example WaS at worlds 1,2,3:

*QAGames> display 1 (map showS5 (w2updates (named m79) 1))

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[1,3], [(1,[p,n]),(3,[p,q,n2])], (a,[[1,3]]),(b,[[1],[3]]), [1,3]]

[[1,3], [(1,[p,n]),(3,[p,q,n2])], (a,[[1,3]]),(b,[[1],[3]]), [1,3]]

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[1,3], [(1,[p,n]),(3,[p,q,n2])], (a,[[1,3]]),(b,[[1],[3]]), [1,3]]

[[1,3], [(1,[p,n]),(3,[p,q,n2])], (a,[[1,3]]),(b,[[1],[3]]), [1,3]]

[[1], [(1,[p,n])], (a,[[1]]),(b,[[1]]), [1]]

[[1], [(1,[p,n])], (a,[[1]]),(b,[[1]]), [1]]

[[1], [(1,[p,n])], (a,[[1]]),(b,[[1]]), [1]]

[[1], [(1,[p,n])], (a,[[1]]),(b,[[1]]), [1]]

[[1], [(1,[p,n])], (a,[[1]]),(b,[[1]]), [1]]

[[1], [(1,[p,n])], (a,[[1]]),(b,[[1]]), [1]]

[[1], [(1,[p,n])], (a,[[1]]),(b,[[1]]), [1]]

[[1], [(1,[p,n])], (a,[[1]]),(b,[[1]]), [1]]

These correspond to all the possible executions of strategy values as joint
public announcements of the players’ formulae.

These also represent all the game evolution histories and the resulting epis-
temic structures in which the goal formulae are going to be model checked to
determine the payoffs and the overall result of the game.

The difference between the updates at worlds in the domain is determined by
the different execution values for the strategies at the worlds.

*QAGames> display 1 (map showS5 (w2updates (named m79) 2))

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[2], [(2,[q,n1])], (a,[[2]]),(b,[[2]]), [2]]

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[2], [(2,[q,n1])], (a,[[2]]),(b,[[2]]), [2]]

[[2,3], [(2,[q,n1]),(3,[p,q,n2])], (a,[[2],[3]]),(b,[[2,3]]), [2,3]]

[[2], [(2,[q,n1])], (a,[[2]]),(b,[[2]]), [2]]

[[2,3], [(2,[q,n1]),(3,[p,q,n2])], (a,[[2],[3]]),(b,[[2,3]]), [2,3]]

[[2], [(2,[q,n1])], (a,[[2]]),(b,[[2]]),[2]]

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[2], [(2,[q,n1])], (a,[[2]]),(b,[[2]]), [2]]

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[2], [(2,[q,n1])], (a,[[2]]),(b,[[2]]), [2]]

[[2,3], [(2,[q,n1]),(3,[p,q,n2])], (a,[[2],[3]]),(b,[[2,3]]), [2,3]]



138 Chapter 5. Implementing Questioning Games

[[2], [(2,[q,n1])], (a,[[2]]),(b,[[2]]), [2]]

[[2,3], [(2,[q,n1]),(3,[p,q,n2])], (a,[[2],[3]]),(b,[[2,3]]), [2,3]]

[[2], [(2,[q,n1])], (a,[[2]]),(b,[[2]]), [2]]

It is easy to check that the resulting updated models represented here as code
output correspond to the resulting models from Example 5.2.1.

*QAGames> display 1 (map showS5 (w2updates (named m79) 3))

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[1,3], [(1,[p,n]),(3,[p,q,n2])], (a,[[1,3]]),(b,[[1],[3]]), [1,3]]

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[1,3], [(1,[p,n]),(3,[p,q,n2])], (a,[[1,3]]),(b,[[1],[3]]), [1,3]]

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[1,3], [(1,[p,n]),(3,[p,q,n2])], (a,[[1,3]]),(b,[[1],[3]]), [1,3]]

[[1,2,3],[(1,[p,n]),(2,[q,n1]),(3,[p,q,n2])],(a,[[1,3],[2]]),(b,[[1],[2,3]]),[1,2,3]]

[[1,3], [(1,[p,n]),(3,[p,q,n2])], (a,[[1,3]]),(b,[[1],[3]]), [1,3]]

[[2,3], [(2,[q,n1]),(3,[p,q,n2])], (a,[[2],[3]]),(b,[[2,3]]), [2,3]]

[[3], [(3,[p,q,n2])], (a,[[3]]),(b,[[3]]), [3]]

[[2,3], [(2,[q,n1]),(3,[p,q,n2])], (a,[[2],[3]]),(b,[[2,3]]), [2,3]]

[[3], [(3,[p,q,n2])], (a,[[3]]),(b,[[3]]), [3]]

[[2,3], [(2,[q,n1]),(3,[p,q,n2])], (a,[[2],[3]]),(b,[[2,3]]), [2,3]]

[[3], [(3,[p,q,n2])], (a,[[3]]),(b,[[3]]), [3]]

[[2,3], [(2,[q,n1]),(3,[p,q,n2])], (a,[[2],[3]]),(b,[[2,3]]), [2,3]]

[[3], [(3,[p,q,n2])], (a,[[3]]),(b,[[3]]), [3]]

The following are the payoffs obtained by player a in the game of Example WaS:

*QAGames> display 1 (zip3 (w2pays (named m79) 1

(imp (Disj[K b p, K b (Neg p)]) (Disj[K a p, K a (Neg p)])))

(w2pays (named m79) 2

(imp (Disj[K b p, K b (Neg p)]) (Disj[K a p, K a (Neg p)])))

(w2pays (named m79) 3

(imp (Disj[K b p, K b (Neg p)]) (Disj[K a p, K a (Neg p)]))))

(1,1,1) (1,1,1)

(1,1,1) (1,1,1)

(1,1,1) (1,1,1)

(1,1,1) (1,1,1)

(1,1,1) (1,1,1)

(1,1,1) (1,1,1)

(1,1,1) (1,1,1)

(1,1,1) (1,1,1)

The following are the payoffs obtained by player b in the game of Example WaS:

*QAGames> display 1 (zip3 (w2pays (named m79) 1

(imp (Disj[K a p, K a (Neg p)]) (Disj[K b p, K b (Neg p)])))

(w2pays (named m79) 2

(imp (Disj[K a p, K a (Neg p)]) (Disj[K b p, K b (Neg p)])))

(w2pays (named m79) 3

(imp (Disj[K a p, K a (Neg p)]) (Disj[K b p, K b (Neg p)]))))

(1,0,0) (1,0,0)

(1,1,1) (1,1,1)

(1,0,0) (1,0,0)

(1,1,1) (1,1,1)



5.2. Illustrations using the Implementation 139

(1,0,0) (1,0,0)

(1,1,1) (1,1,1)

(1,0,0) (1,0,0)

(1,1,1) (1,1,1)

The payoff obtained by the players is constructed by averaging the local result
of checking goal formulae over the entire domain. For ease of readability we will
only take here the sum without dividing it to the size of the domain.

The next output gives the game matrix for the Q-A game in the WaS example:

*QAGames> display 4 (qagn (named m79)

((imp (Disj[K b p, K b (Neg p)]) (Disj[K a p, K a (Neg p)])),

(imp (Disj[K a p, K a (Neg p)]) (Disj[K b p, K b (Neg p)]))))

(3,1)(3,3)(3,1)(3,3)

(3,1)(3,3)(3,1)(3,3)

(3,1)(3,3)(3,1)(3,3)

(3,1)(3,3)(3,1)(3,3)

The following outputs give more interesting variations of the WaS example:

*QAGames> display 4 (qagn (named m79)

((imp (Disj[K b q, K b (Neg q)]) (Disj[K a q, K a (Neg q)])),

(imp (Disj[K a p, K a (Neg p)]) (Disj[K b p, K b (Neg p)]))))

(1,1)(1,3)(1,1)(1,3)

(1,1)(1,3)(1,1)(1,3)

(3,1)(3,3)(3,1)(3,3)

(3,1)(3,3)(3,1)(3,3)

display 4 (qagn (named m79)

((imp (Disj[K b p, K b (Neg p)]) (Disj[K a q, K a (Neg q)])),

(imp (Disj[K a q, K a (Neg q)]) (Disj[K b p, K b (Neg p)]))))

(2,2)(1,3)(2,2)(1,3)

(2,2)(1,3)(2,2)(1,3)

(3,1)(3,3)(3,1)(3,3)

(3,1)(3,3)(3,1)(3,3)

5.2.3 Counting Goals

There are sixteen global strategy profiles in the game from the WaS example:

*QAGames> length (profGlob (named m79))

16

Each strategy profile can have different execution values, for worlds in the
domain, three in our example. Each execution value leads to one update. Hence
there are as many possibilities to consider, some of which might be isomorphic:

*QAGames> 16 * 3

48

The model representing the entire game history can be obtained as the disjoint
union of every goal execution as follows:



140 Chapter 5. Implementing Questioning Games

*QAGames> displayS5 hyst

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,

54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,

79,80,81,82,83,84,85,86,87,88]

[(1,[p]),(2,[q]),(3,[p,q]),(4,[p]),(5,[q]),(6,[p,q]),(7,[p]),(8,[p,q]),

(9,[p]),(10,[p,q]),(11,[p]),(12,[q]),(13,[p,q]),(14,[p]),(15,[q]),(16,[p,q]),

(17,[p]),(18,[p,q]),(19,[p]),(20,[p,q]),(21,[p]),(22,[p]),(23,[p]),(24,[p]),

(25,[p]),(26,[p]),(27,[p]),(28,[p]),(29,[p]),(30,[q]),(31,[p,q]),(32,[q]),

(33,[p]),(34,[q]),(35,[p,q]),(36,[q]),(37,[q]),(38,[p,q]),(39,[q]),(40,[q]),

(41,[p,q]),(42,[q]),(43,[p]),(44,[q]),(45,[p,q]),(46,[q]),(47,[p]),(48,[q]),

(49,[p,q]),(50,[q]),(51,[q]),(52,[p,q]),(53,[q]),(54,[q]),(55,[p,q]),(56,[q]),

(57,[p]),(58,[q]),(59,[p,q]),(60,[p]),(61,[p,q]),(62,[p]),(63,[q]),(64,[p,q]),

(65,[p]),(66,[p,q]),(67,[p]),(68,[q]),(69,[p,q]),(70,[p]),(71,[p,q]),(72,[p]),

(73,[q]),(74,[p,q]),(75,[p]),(76,[p,q]),(77,[q]),(78,[p,q]),(79,[p,q]),

(80,[q]),(81,[p,q]),(82,[p,q]),(83,[q]),(84,[p,q]),(85,[p,q]),(86,[q]),

(87,[p,q]),(88,[p,q])]

(a,[[1,3],[2],[4,6],[5],[7,8],[9,10],[11,13],[12],[14,16],[15],[17,18],[19,20],

[21],[22],[23],[24],[25],[26],[27],[28],[29,31],[30],[32],[33,35],[34],[36],

[37],[38],[39],[40],[41],[42],[43,45],[44],[46],[47,49],[48],[50],[51],[52],

[53],[54],[55],[56],[57,59],[58],[60,61],[62,64],[63],[65,66],[67,69],[68],

[70,71],[72,74],[73],[75,76],[77],[78],[79],[80],[81],[82],[83],[84],

[85],[86],[87],[88]])

(b,[[1],[2,3],[4],[5,6],[7],[8],[9],[10],[11],[12,13],[14],[15,16],[17],[18],

[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30,31],[32],[33],

[34,35],[36],[37,38],[39],[40,41],[42],[43],[44,45],[46],[47],[48,49],[50],

[51,52],[53],[54,55],[56],[57],[58,59],[60],[61],[62],[63,64],[65],[66],[67],

[68,69],[70],[71],[72],[73,74],[75],[76],[77,78],[79],[80,81],[82],[83,84],

[85],[86,87],[88]])

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,

54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,

79,80,81,82,83,84,85,86,87,88]

This extended structure captures all the needed information about the game.
As far as the truth value of epistemic formulae is concerned many of these worlds
are equivalent.

Using the standard epistemic functionality in our code we can minimize this
model under bisimulation and name it. This minimization process is desirable
and useful especially for very large instances, however, it also has some drawbacks
for our current purpose, which is more then just preserving truth of the formulae.

*QAGames> displayS5 (named (bisim hyst))

[0,1,2,3,4,5,6,7,8,9]

[(0,[p,n]),(1,[q,n1]),(2,[p,q,n2]),(3,[p,n3]),(4,[p,q,n4]),(5,[p,n5]),

(6,[q,n6]),(7,[q,n7]),(8,[p,q,n8]),(9,[p,q,n9])]

(a,[[0,2],[1],[3,4],[5],[6],[7],[8],[9]])

(b,[[0],[1,2],[3],[4],[5],[6],[7,8],[9]])

[0,1,2,3,4,5,6,7,8,9]



5.2. Illustrations using the Implementation 141

*QAGames> displayS5 ((bisim hyst))

[0,1,2,3,4,5,6,7,8,9]

[(0,[p]),(1,[q]),(2,[p,q]),(3,[p]),(4,[p,q]),(5,[p]),(6,[q]),

(7,[q]),(8,[p,q]),(9,[p,q])]

(a,[[0,2],[1],[3,4],[5],[6],[7],[8],[9]])

(b,[[0],[1,2],[3],[4],[5],[6],[7,8],[9]])

[0,1,2,3,4,5,6,7,8,9]

Next, we show how one can compute the minimal model more efficiently using
partitions to capture the tree structure of the game history. Let W be the domain
of a model M = 〈W,Ra, V 〉 for a ∈ A. Let LW be the lattice of partitions of W
with

∧
refinement and

∨
coarsening. Let Pa be agent a’s information partition.

Let LW | Pa = ↓ Pa be the a-conditional partition lattice of W . Then

min(M) =
⋃
i∈A

(LW | Pi) ∪
∨
i∈A

{LW | Pi}

This confirms that there are as many logically non-equivalent goal formulae:

*QAGames> length (forms (named (bisim hyst)))

1024

This is an efficient and convenient model transformation that preserves the
truth value of all modal formulae. However, this also erases relevant information
about the strategic aspects of the epistemic game. For instance, there are as
many worlds that satisfy the formula: p ∧ ¬q ∧ K̂aK̂bKa¬p :

*QAGames> sum (map (\x -> (paynumber hyst x f0)) (dom hyst))

12

Whereas, after the model is minimized under bisimulation it appears as if the
goal is satisfied only once. This will affect the computation of the final payoffs in
the game whenever the model is minimized under standard bisimulation.

*QAGames> filter (\x -> (isTrueAt (named (bisim hyst)) x

(Conj [p, Neg q, (k a (k b (K a (Neg p))))])) ) (dom (named (bisim hyst)))

[0]

*QAGames> filter (\x -> (isTrueAt (bisim hyst) x

(Conj [p, Neg q, (k a (k b (K a (Neg p))))])) ) (dom (bisim hyst))

[0]

The same happens for the following goal formulas satisfied twelve times:

*QAGames> filter (\x -> (isTrueAt hyst x

(Conj [p, q, k a (Neg q), k b (Neg p) ])) ) (dom (hyst))

[3,6,13,16,31,35,45,49,59,64,69,74]

*QAGames> filter (\x -> (isTrueAt hyst x

(Conj [q, Neg p, (k b (k a (K b (Neg q))))])) ) (dom (hyst))

[2,5,12,15,30,34,44,48,58,63,68,73]

The following formulae are each satisfied eight times in the following worlds:



142 Chapter 5. Implementing Questioning Games

*QAGames> filter (\x -> (isTrueAt hyst x

(Conj [p, Neg q, (k a (K b (Conj [p,q])))])) ) (dom (hyst))

[7,9,17,19,60,65,70,75]

*QAGames> filter (\x -> (isTrueAt hyst x

(Conj [K b (Conj [p,q]),k a (Neg q)])) ) (dom (hyst))

[8,10,18,20,61,66,71,76]

*QAGames> filter (\x -> (isTrueAt hyst x

(Conj [K a (Conj [p,q]),k b (Neg p)])) ) (dom (hyst))

[38,41,52,55,78,81,84,87]

*QAGames> filter (\x -> (isTrueAt hyst x

(Conj [q, Neg p, (k b (K a (Conj [p,q])))])) ) (dom (hyst))

[37,40,51,54,77,80,83,86]

And the following formulae are satisfied each in the listed worlds, respectively:

*QAGames> filter (\x -> (isTrueAt hyst x

(Conj [(K a (Conj [p,q])),(K b (Conj [p,q]))]))) (dom (hyst))

[79,82,85,88]

*QAGames> filter (\x -> (isTrueAt hyst x

(Conj [(K a (Conj [Neg p,q])),(K b (Conj [Neg p,q]))]))) (dom (hyst))

[32,36,39,42,46,50,53,56]

*QAGames> filter (\x -> (isTrueAt hyst x

(Conj [(K a (Conj [p,Neg q])),(K b (Conj [p,Neg q]))]))) (dom (hyst))

[21,22,23,24,25,26,27,28]

To avoid this information loss we can use a hoarding version of bisimulation
contraction, to keep track of how many worlds we have in each contracted equiv-
alence class across the model. This can be represented by encoding the size of
the bisimilarity equivalence class as a parameter in the minimal model. A refined
criterion of goal equivalence should also keep track of this amount. See the notion
of probabilistic bisimuation from Chapter 8 for a comparison.

Considering a strictly extensional criterion, and no restriction with regard to
the expressive power of the language or the syntactic structure of the formulas
expressing goals we have so many logically equivalent goal formulae:

*QAGames> length (nubBy (\x y -> (snd y) == (snd x))

(zip (forms (named (bisim hyst))) (map (extension (named (bisim hyst)))

(forms (named (bisim hyst))))))

1024

As this example already illustrates, even the analysis of the simplest scenarios
can lead to structures with a very large number of states. This is even more so
for the setting using product update for more complex questioning and resolution
actions like the ones we discussed in the previous chapter. This is usually called
the ‘state explosion’ problem and to avoid it is desirable to have algorithms for
minimizing structures while preserving behavioral equivalence.



5.3. Birelational Coarsest Partition Problem 143

5.3 Birelational Coarsest Partition Problem

The main distinctive feature in our approach to questions so far was the use
of the intersection between two accessibility relations. This has technical conse-
quences with regard to behavioral invariance for issue-epistemic models that were
already explained and discussed in previous chapters. The main idea is that the
intersection modality is not invariant under bisimulation.

However, the ability to work with models that capture the same structural
behavior with a minimal number of states is very important in practice and also
desirable form a theoretical point of view. This is the problem of computing for
a given model the minimal bisimilar model.

For epistemic models this problem is solved using the standard notion of
bisimulation by a standard partition refinement algorithm. This is a problem
also related to minimizing the number of states in a finite automaton, see [74]
and [109] for further details.

For issue-epistemic models we cannot just use the standard minimization un-
der bisimulation procedure for the already mentioned reason that this does not
adequately capture the behavior of the intersection modality.

In this section we define the Birelational Coarsest Partition Problem in similar
way the coarsest partition problem is defined in [74] and we give an algorithm that
solves it similar to the algorithm from [109]. The main advantage of having such
an algorithm for issue-epistemic structures is that it provides a way to capture
invariance of issue-epistemic formulae, including, in special, formulae containing
the intersection modality which are going to be also preserved by this algorithm.

5.3.1. Definition. [Bistability] Let W be a finite set and K ⊆ W × W and
Q ⊆ W × W be two binary relations over W . A set B ⊆ W is bistable with
respect to another set D ⊆ W if either B ⊆ (Q∩K)(D) or B ∩ (Q∩K)(D) = ∅.

A partition P of W is bistable with respect to a set D ⊆ W if all the blocks
belonging to P are bistable as sets with respect to D. P is self-bistable if it is
bistable with respect to each of its own blocks as sets.

Two consequences of bistability, defined as in [74] useful during later proofs:

1. Bistability is inherited under refinement; that is, if Q is a refinement of P
and P is bistable with respect to a set S, then so is Q.

2. Bistability is inherited under union; that is, if P is bistable with respect to
two sets Q and S, then P is also stable with respect to Q ∪ S.

The birelational coarser partition problem is that of finding for two given rela-
tions K and Q and initial partition P over a set W the coarsest stable refinement
of W , i.e., the partition such that every other stable partition is a refinement of
it, so that it has the fewest blocks. Lemma 5.3.4 will also show that the coarsest
stable refinement is unique.

For any partition Q and subset S ⊆ W , let split(SR, Q) be the refinement of Q
obtained by replacing each block B ∈ Q such that B∩R(S) 6= ∅ and B\R(S) 6= ∅



144 Chapter 5. Implementing Questioning Games

by the two blocks B′ = B ∩ R(S) and B′′ = B \ R(S). The set S is a splitter of
Q if split(SR, Q) 6= Q.

5.3.2. Definition. [Double Split] For any partition Q and subset S ⊆ W , let
split(S2, Q) be the refinement of Q obtained by replacing each block B ∈ Q
such that B ∩ (Q ∩ K)(S) 6= ∅ and B \ (Q ∩ K)(S) 6= ∅ by the two blocks
B′ = B ∩ (Q ∩K)(S) and B′′ = B \ (Q ∩K)(S).

The set S is a double splitter of Q if split(S2, Q) 6= Q.

Note that Q is unstable with respect to S if and only if S is a splitter of
Q. The same for bistable and double split. Two properties of the split function,
defined as in [74], that are going to be used in later proofs are:

1. Function split is monotone in the second argument; that is, if U ⊆ W and
P is a refinement of Q then split(U, P ) is a refinement of split(U,Q).

2. Function split is commutative. The coarsest partition of P bistable with
respect to both S and Q is split(S, split(Q,P )) = split(Q, split(S, P )).

Algorithm 1 Compute Coarsest Birelational Stable Refinement

Precondition: Q is a partition of W , R1, R2 are binary relations on W
Postcondition: Q is the coarsest bistable refinement stable for R1 and R2

1 repeat
2 Find a set S that is a union of Q-blocks and is a double-splitter of Q
3 Replace Q by split(S,Q)
4 Find a set S that is a union of Q-blocks and is a R1-splitter of Q
5 Replace Q by split(S,Q)
6 Find a set S that is a union of Q-blocks and is a R2-splitter of Q
7 Replace Q by split(S,Q)
8 until Q is self-bistable and stable with regard to R1 and R2

5.3.3. Lemma (Invariance). Algorithm 1 maintains the invariant that every
coarsest stable refinement of the initial partition P is also a refinement of the
current partition Q.

The proof is very similar to the proof in [74], it proceeds by induction on the
number of refinement steps using the four properties discussed so far. The new
contribution is the use of the previously described split function for two relations.

5.3.1. Proof (Lemma 5.3.3). By induction on the number of refinement steps.
The base case is established by definition. Suppose we have proved that the
invariant in maintained before a refinement step of a partition Q by a splitter
set S. If R is an arbitrary coarsest stable refinement of P . Because S is a
union of Q-blocks and R is a refinement of Q by IH, S is a union of blocks of R.
Therefore, R is bistable with respect to S. Because the split function is monotone,
R = split(S,R) is a refinement of split(S,R). 2



5.3. Birelational Coarsest Partition Problem 145

5.3.4. Lemma (Termination). The refinement process in Algorithm 1 is cor-
rect and terminates after at most n − 1 refinement steps, having computed the
unique coarsest bistable partition.

The proof is very similar to the proof in [74], it is based on the fact that the
number of blocks in Q is at most |W | = n.

5.3.2. Proof (Lemma 5.3.4). Because the number of partition cells in Q for a
finite domain is at least one and at most |W | = n and because each refinement
step either increases this number or has already reached the least fixed point,
the algorithm terminates after n − 1 refinement steps. After the step in which
no further refinement steps are possible, Q is bistable and by Lemma 5.3.3 any
bistable refinement is a refinement of Q. Hence Q is the unique coarsest bistable
refinement. 2

We will use Algorithm 1 as the core component inside a model minimization
process that preserves modal formulae in the questioning language, including
formulae containing intersection modalities. This will be very similar with the
iterative refinement process from Algorithm 1 but for which some extra processing
has to be performed in order to make it adequate for the propositional and local
structure of issue-epistemic models.

There are two main aspects that need additional careful consideration: the
first one concerns the starting state of the algorithm, the second one concerns the
final steps and the resulting model.

At the beginning of the algorithm, before the refinement process starts there
is some preprocessing needed i.e. we have to make sure that the initial partition
is not an arbitrary one but one that respects atomic harmony, and is therefore a
partition in propositionally equivalent blocks.

After the refinement process reaches a fixed point we still need to apply some
postprocessing steps in order to build a new issue epistemic model from the
existing structure of the partition blocks and the relational structure in the initial
issue-epistemic model.

All we have to do before we can prove correctness and termination for our
algorithm is to spell out all the details in the build function, that is describe the
way in which the final model is constructed.

Intuitively, we take the new domain to be the set of partition blocks, the new
issue relation is build from the initial one as follows:

[x] ≈ [y] iff ∀z ∈ [x] ∃ v ∈ [y] : z ≈ v

The new epistemic relation is constructed from the initial one in an analogous
manner. The valuation of each minimal representative of a partition block is
assigned to the block containing it. And the issue of actuality is solved via block
membership projection.



146 Chapter 5. Implementing Questioning Games

Algorithm 2 Compute The Minimal Questioning Model

Precondition: M is an arbitrary Issue-epistemic Model
Postcondition: M ′ is the minimal PIM intersimilar to M
1 P ← {Ci | Ci ⊆ dom(M),∀ v, w ∈ Ci : V (w) = V (v)}
2 repeat
3 Find a set S that is a K-splitter of P and a union of P blocks
4 P ← split(S, P )
5 Find a set S that is a Q-splitter of P and a union of P blocks
6 P ← split(S, P )
7 Find a set S that is a 2-splitter of P and a union of P blocks
8 P ← split(S, P )
9 until P is self-bistable and stable with regard to Q and K

10 M ′ ← build(M,P )

We can now show that modal formula in the questioning language are pre-
served during the process of model minimization:

5.3.5. Lemma (Preservation). Algorithm 2 ensures that questioning modal
formulae true in the initial model are also true in the minimal model, includ-
ing, in special, formulae using intersection modalities.

The proof proceeds by induction on the structure of a modal formula using the
previous definitions for the split and double-split functions used in the refinement
steps and the construction of the new model via the build function.

5.3.3. Proof (Lemma 5.3.5). Let M be an arbitrary probabilistic issue epis-
temic model. Let M− be constructed from M via Algorithm 3.

We will proceed by constructing a double splitting set from any formula that
changes its truth value from M to M−.

Let ϕ be a diffraction formula, i.e. let M |=w ϕ and M− 6|=[w] ϕ.
We continue by induction on the structure of the formula ϕ.
If ϕ is an atomic propositional formula then we have from the definition of

the build function that ϕ ∈ V −([w]) and we are done.
If ϕ is a negation or a conjunction we apply IH to the constituent formula(e).
If ϕ := 〈≈∩∼〉ψ then, from M |=w 〈≈∩∼〉ψ we obtain by modal semantics

that ∃x ∈ W : w ≈∩∼ x and M |=x ψ. Using the induction hypothesis we get
that M− |=[x] ψ.

On the other hand, from M− 6|=[w] ϕ we obtain that ∀ [x] ∈ W− : [w] ≈∩∼ [x]
implies M− 6|=[x] ψ. Therefore, it must be the case that ([w], [x]) 6∈ ≈∩∼. From
the definition of the build function we have that ∃v ∈ [w] and ∃y ∈ [x] such that
(v, y) 6∈ ≈∩∼.

Assume wlog that v 6≈ y then we can easily check that if we take the set
S = [w] we have that split(S, P ) 6= P . Hence S is a double splitter set of P ,



5.3. Birelational Coarsest Partition Problem 147

and P could not have been obtained as the fixed point of the refinement process
because is not self-bistable.

For the remaining cases of formulae using the epistemic and questioning
modalities Q and K the argument proceeds completely analogously using ≈ and
∼ and constructing a splitter set. 2

5.3.6. Lemma (Termination). The refinement process in Algorithm 2 is cor-
rect for behavioral equivalence and terminates after at most |W | + 1 refinement
steps, having computed the unique minimal model intersimilar to the initial model.

The proof is based on the fact that we always start from an issue-epistemic
structure with a finite domain. Therefore he number of blocks in the initial
propositional equivalence partition Q is at most |W | = n.

5.3.4. Proof (Lemma 5.3.6). Because the starting propositional equivalence
partition in a finite issue-epistemic structure has at most as many cells as the size
of the domain of the model, the number of partition cells in P is at least one and
at most |W | = n. Each time the repeat loop is executed the number of blocks in
the partition is increased, therefore in at most n + 1 steps the repeat cycle will
bistabilize the partition and by Lemma 5.3.3 no further refinement is possible,
so no smaller model can exist. By Lemma 5.3.5 the model built is intersimilar
with the initial one. Hence M ′ is the unique minimal model intersimilar to M
and therefore behaviorally equivalent. 2

To conclude, we have provided an algorithm that can be used to minimize
issue-epistemic models while preserving the truth value of formulas using inter-
section modalities. This will also be very useful for minimizing probabilistic
issue-epistemic models later on in the chapter.

The insights provided by the minimization algorithm can be made more precise
and can be generalized in a structural notion describing invariance for the issue-
epistemic language. For this we have to come up with an adequate notion of
behavioral equivalence for issue-epistemic structures. In order to achieve this
we will need a notion of invariance between issue-epistemic models. This notion
cannot be standard bisimulation because, as we discussed before, the formulae
containing intersection modalities are not preserved under the standard epistemic
bisimulation. Hence the first step will be to propose an improved version of
behavioral equivalence. We will need a notion that is adequate in the following
sense: it will preserve the truth value of all formulae needed to reason about
questioning scenarios, in special formulae using the interdependence between the
two relations issue and epistemic, but also those using only one.

We will call this notion intersection bisimulation or intersimulation for short,
to highlight the main feature that it is designed to address.



148 Chapter 5. Implementing Questioning Games

5.3.7. Definition. [Intersection Bisimulation] An intersection bisimulation be-
tween two IEMs M and M ′ is a relation Z ⊆ W ×W ′ defined as in Definition
6.5.4 but in which the first two clauses describing the probabilistic aspects are
ignored. So an intersimulation has the following properties:

Atomic harmony: if sZs′ then V (s) = V ′(s′)

Forward relations: for both relations: sZs′ and sRt for some t ∈ W implies
that there is some t′ ∈ W ′ with s′R′t′ and tZt′

Forward intersection: if sZs′ and both sRt and sSt hold for some t ∈ W
then there is some t′ ∈ W ′ with both s′R′t′ and s′S ′t′ and tZt′

Backward relations: symmetrical with the forward clause for relations

Backward intersection: symmetrical with the forward clause for intersection

Given any two pointed issue-epistemic models 〈M, s〉 and 〈M ′, s′〉 we use the
following shortcut notation 〈M, s〉←→〈M ′, s′〉 to say that the models are intersim-
ilar, that is there exist a relation Z such that sZs′ and Z is an intersimulation.

We will now argue that the notion of intersimulation is the adequate invariance
notion for a language with intersection modalities:

5.3.8. Theorem (Invariance). For any two pointed PIMs M and M ′ and for
any formula ϕ in a questioning language with intersection modalities we have:
if M,w←→M ′, w′ then M |=w ϕ iff M ′ |=w′ ϕ.

The proof proceeds by induction on the structure of the formula ϕ.

5.3.5. Proof (Theorem 5.3.8). Atomic and Boolean cases follow straightfor-

wardly from the atomic clause and IH. For the modal formulae: In case ϕ := R̂ψ,
suppose xZy and M |=x ϕ. From xZx′ we get using Definition 6.5.4 that
zig(QKWx, Q

′K ′W ′
y) which is a shortcut notation for the following condition:

zig({v ∈ W | xQvKx}, {v′ ∈ W ′ | yQ′v′K ′y}). This is equivalent with: ∀v ∈
{v ∈ W | xQvKx} : ∃v′ ∈ {v′ ∈ W ′ | yQ′v′K ′y} : vZv′, which is further trans-
lated into ∀v ∈ {v ∈ W | (x, v) ∈ Q & (v, x) ∈ K−1} : ∃v′ ∈ {v′ ∈ W ′ | (y, v′) ∈
Q′ & (v′, y) ∈ K ′−1} : vZv′. By IH we obtain that M |=v ψ iff M ′ |=v′ ψ. We also
have ∀v ∈ {v ∈ W | (x, v) ∈ Q ∩K} : ∃v′ ∈ {v′ ∈ W ′ | (y, v′) ∈ Q′ ∩K ′} : vZv′.
Hence we can conclude, as desired, that: M ′ |=v′ ϕ. The other direction is sim-
ilar. The cases for the remaining modalities are completely analogous using the
corresponding relation and the matching clause in Definition 6.5.4. 2

We will show in Section 6.5 that this notion can also stand as the first building
block for a notion of probabilistic intersection bisimulation.



Chapter 6

Querying Strategies and Probabilities

6.0.1 Introduction and Motivations

There are three interconnected motivations behind the content that will be de-
veloped in the current chapter. The first one continues the main themes from the
previous chapters and concerns the development of a general and efficient theory
of designing good questioning strategies in problem solving.

There are two complementary but also important motivations that stem from
the nature of the concrete example considered. The first one is game theoretical
and consists in finding solution concepts for a particular example of a strategic
interaction. The second one has an algorithmic nature and aims at finding a
method for computing such equilibria in an efficient way.

As the first motivation is the one that connects directly with the approach in
previous and subsequent chapters it will be thoroughly pursued in this chapter. In
addition, the remaining two motivations will also be addressed in various degrees
and will receive solutions for special classes of problems.

We start by introducing the concrete theoretical context in which oracles of
local properties will be defined and strategies for querying such oracles will be
applied. This is a general framework of rational interaction and we will consider a
concrete game scenario as the working example. Then we will proceed to defining
query oracles and strategies used to resolve problems in this framework.

6.1 Querying Strategies in Solving Games

Intelligent interaction between rational agents is a ubiquitous phenomenon in
our highly, and increasingly, connected contemporary world. Finding solutions
in scenarios of rational interaction becomes even more relevant when agents are
competing for, and depleting, scarce or limited resources.

In this general context, the location game is a paradigmatic example of a
social interaction in an environment with limited resources for which finding ef-

149



150 Chapter 6. Querying Strategies and Probabilities

ficient solutions is in the same time theoretically interesting and also potentially
practically important. The location game has a very simple formal representation
that turns out to be relevant for a wide range of practical applications such as
over-fishing the oceans, overloading communication networks, deciding over an
optimal positioning on open markets or inside a spectrum of political preferences,
and the list can be further extended.

6.1.1 The Location Game and its Applications

In this section we start by considering an intuitive example of the location game
played on a line (LGl) and subsequently introduce the formal definition behind
it. Using this illustrative example, we will also show how the formal definition
behind LGl is relevant for modeling practical applications in a large variety of
concrete scenarios of rational interaction in social contexts.

An Intuitive Example. Consider a coastline divided in seven distinct fishing
regions. Several fishing companies can chose one of these regions as their fish-
ing location. The choice determines their access to resources which are evenly
distributed along the seven regions, in this example the resources are fish popu-
lation. Each location is assigned a unit of payoff and each player gains access to
the payoff units in the locations that are closest to his choice. If several players
have chosen the same location and if a location is equally distant from several
players the payoff is evenly split between those players.

4

5

3 1

2

6

1 2 3 4 5 6 7

We can represent this in the above figure in which we have N = {1, 2, 3, 4, 5, 6}
the set of players, with p = |N | = 6, and each player can chose a location from the
set Si = {1, 2, 3, 4, 5, 6, 7} of available locations, with l = |Si| = 7, for i ∈ N . As
an alternative representation, we can think of the locations as apartment buildings
on a densely populated street of a crowded city, and of the players as companies
deciding where to open a new shop. The model assumes that each inhabitant
will become the customer of the shop situated in the closest location to his living
place. For instance, inhabitants living in the locations 6 and 7 will become the
customers of the closest shop, which in this example is 6. Therefore player 6 will
get a payoff of p6 = 1 + 1 = 2 consisting of the sum of unit payoffs in locations
6 and 7. Alternatively we can think of the locations in the game as representing
a spectrum of political preferences for voters in an election and the candidates
will have to chose a platform that will attract the most voters, assuming that the
voters will cast their ballot for the candidate representing the closest position to



6.1. Querying Strategies in Solving Games 151

their preferences. In this case, for instance, players 1 and 2, which have chosen
the same position 4 will attract the most sympathetic voters in locations 4 and 5
of the preference spectrum and will split evenly the payoff. In this example, the
two candidates will have each the following payoff p1 = p2 = 1

2
+ 1

2
= 1.00. As a

final illustration, we can think of the locations as hot-spots in a wireless network
providing Internet access to all users in their range. In this case the users that are
equally closer to the same network hub will have to share its limited resources. In
our example, the bandwidth of the hub from position 2 will be evenly allocated
to the closest users, which are players 3, 4 and 5, giving them a total payoff of
p3 = 1 + 1

3
= 1.33, and p4 = p5 = 1

2
+ 1

3
= 0.83.

To sum up, all this luxuriant variety of concrete practical applications can be
described in a unitary way by a very simple formal model. We give the formal
definition for the location game on a line below:

6.1.1. Definition. [Location Game] LGl is defined in the following way:

– N = {1, . . . , n},

– Si = {1, . . . ,m}, for i ∈ N ,

– for i ∈ N , pi(si, s−i) =

m / n if ∀j 6= i si = sj ,

pn + div2(pr − pn − 1)

ns
+

mod2(pr − pn − 1)

ns + nr
if ∀j 6= i si ≤ sj ,

div2(pn − pl − 1) +m− pn + 1

ns
+

mod2(pn − pl − 1)

ns + nl
if ∀j 6= i si ≥ sj ,

1+div2(pn−pl−1)+div2(pr−pn−1)
ns

+ mod2(pr−pn−1)
ns+nr

+ mod2(pn−pl−1)
ns+nl

otherwise.

where pn = si, pr and pl are the strategies that are right-, respectively, left-
proximal (as locations) to si, nr and nl are the numbers of players that have
chosen a pr, respectively, a pl strategy, ns is the number of players in the same
location as i, and m is the number of positions (locations) in the game.

6.1.2 Solving LG and Computing Solutions Efficiently

The General Problem. The list of possible practical applications for this very
simple model is potentially endless, however, the main concern behind all these
examples should be a more general problem. This general problem is finding a
way to solve such interactive situations. This means to define solution concepts
for such games and design algorithms that find such solutions. For instance, in
our example, player 5 can increase her payoff by moving to location 5, and other
players can increase their payoff by deviating from their initial choices. Then a



152 Chapter 6. Querying Strategies and Probabilities

general question is ‘can we find a configuration of choices in which all players
are satisfied with the result?’. This solution concept is a Nash equilibrium of the
game [73], the formal definition is also included in Section 6.6.

Our main goal will be to use a general theory of queries to an oracle of local
properties for strategy profiles to find an algorithm that computes efficiently a
solution for the location game on a line formulated as a general problem:

Consider the location game for l locations and p players. Compute all NEp.

We will not consider NE with mixed strategy, this is known to always exist in
strategic games, and computing it is a hard problem [21]. We will only consider
pure strategy NEa, these do not always exist in strategic games.

Motivating the Research. As we mentioned already, the main motivation
during this chapter consists of establishing a useful link between questioning
actions theories, their implementations as software tools [70, 71] and potential
further applications to general problem solving.

This was already discussed in a more general framework in previous chapters.
In the current context we will rather be concern to a realistic application in which
the general abstract theory can be put to work and will produce useful results.

The chapter is also motivated by, and addresses in various degrees, both game-
theoretical and algorithmic aspects. We will discuss now these aspects in a little
more detail before continuing with pursuing the main goal.

Given a general standard definition for game solutions, the next step is to
design an algorithm that finds them. Several standard algorithms for finding Nash
Equilibria exist in the literature, like, for instance, iterated elimination of strictly
dominated strategies (IESDS) [73, 4]. A general game theoretic motivation is
to find such solutions for all game instances, or, if this cannot be dome for all
cases, to show that standard algorithms solve some particular classes of cases.
Interesting facts are known about solutions of particular instances of LGl using
standard algorithms, like, for instance, the fact that the IESDS procedure solves
LGl for n = 2k + 1 locations and 2 players in k rounds [4].

Another general motivation has an algorithmic nature, it aims at solving
games in an efficient way. For the general case, computing NEp is a search
problem if the game matrix is given explicitly as an input. In a game with
N = {1, 2, . . . , n} players the search space is the number of strategy profiles
p = |S1| × |S2| × · · · × |Sn| where Si is the strategy set of player i, for i ∈ N .
In order to determine if any given strategy profile is a NEp a number of t =
(|S1| − 1)× (|S2| − 1)× · · · × (|Sn| − 1) tests have to be performed. In the worst-
case scenario p× t tests are needed to compute pure NE in a matrix. This makes
the general algorithm exponential in the number of players.



6.2. Computing NEp in LGl by QSb 153

Several proposal of efficient algorithms for solving games exist in the literature:
some use heuristics to reduce the search space [82], others use special game
properties to limit computations to only few relevant interactions [116].

Overview. The content is structured in the following way: we start in Section
6.2 with an analysis of of the computational complexity of NLp in LGl using an
oracle model for backtrack searches. We first show that the local properties of
the game are essential for an algorithm that computes NLp in LGl efficiently. We
classify the local properties in negative ones, used to select relevant profiles and
construct query strategies, and positive ones, used to define a backtrack oracle,
and to characterize NLp in LGl. Then we show that local properties alone are
not sufficient for for an algorithm that computes NLp in LGl efficiently.

Next we give a method that computes NLp in LGl efficiently using cycles of
profile fragments. We continue in Section 6.3 by giving a characterization of NLp
in LGl by meas of local properties in the game. We conclude, in Section 6.3.3,
by a brief presentation of some implementation tools used in the process and
by indicating some open problems for future research. The final Sections 6.6-7.2
contain further technical definitions and proofs for the main results.

6.2 Computing NEp in LGl by QSb

In this section we will use structural and local properties in LGl to design an
efficient algorithm for computing NEp. A first observation about LGl is that we
have various levels of symmetry in the game. For example, we can use the fact
that all the players have the same strategies to simplify the general structure of
the search space for NEp. In general, for a LGl with n players and m locations,
the number of tests needed to compute NEp is:

f(n,m) = mn · (m− 1) · n ∈ Ω(mn)

This will generate a search space that is also exponential in the input, the number
of players and locations in the game. However, the fact that payoffs are also
computed symmetrically, suggest this can be further improved.

6.2.1 Solving LG by Querying Local Properties

Another important observations is that payoffs are computed symmetrically for
all players. This allows us to further reduce the search space by using this symme-
try and consider only the so called canonical games. These are only the strategy
profiles in which locations chosen in increasing order by players are weakly in-
creasing. If some NEp are found among canonical strategy profiles then all other
NEp in the game are isomorphic with one of these up to permutations of players.



154 Chapter 6. Querying Strategies and Probabilities

Counting Canonical Games. The figure below illustrates the way the canon-
ical games are constructed in a game with 3 locations and 3 players:

·

1

1

1 2 3

2

2 3

3

3

2

2

2 3

3

3

3

3

3

The depth of the tree corresponds to the number of players while the branching
factor represents the available choices for each player. For instance, if the first
player has chosen 2, location 1 is no longer available as a choice for the players
having higher indexes, here the second and the third players.

Local Properties are Necessary. Let cp(n,m) denote the number of canon-
ical profiles for a LGl with n players and m locations. We can see from the
example in the figure above that cp(3, 3) = 3 + 2 + 1 + 2 + 1 + 1 = 10. We can
generalize some basic observations about how this counting is performed:

– for n = 1 player and arbitrary m locations, cp(n,m) = m,

– for m = 1 location and arbitrary n players, cp(n,m) = 1,

– for arbitrary n players and m locations we will have:

cp(n,m) = cp(n− 1,m) + cp(n− 1,m− 1) + · · ·+ cp(n− 1, 2) + cp(n− 1, 1)

Putting all these observations together, we see that cp(n,m) can be computed
for arbitrary m and n by the following recursive function:

cp(n,m) =


m if n = 1,
1 if m = 1,

cp(n− 1,m) + cp(n,m− 1) otherwise.

Next we give a Haskell function computing the number of canonical profiles:

1 cp :: Integer -> Integer -> Integer

2 cp l 1 = l

3 cp 1 p = 1

4 cp l p = cp (l-1) p + cp l (p-1)



6.2. Computing NEp in LGl by QSb 155

For example, in a game with n = 10 players and m = 11 locations the number of
strategy profiles in which the chosen locations are weakly increasing is:

*CANG> cp 10 11

184756

This shows that the number of canonical profiles will also generate a search
space exponential in the size of the input, here the number m of locations:1

cp(m,n) ∈ Ω(1.6m)

and that the symmetry of the game is not enough, and further local properties
are essentially needed for an algorithm that computes NEp in LGl efficiently.

Querying Strategies by Local Properties. We will try to further restrict
the search space for NEp in LGL by safely ignoring strategy profiles that despite
being canonical cannot satisfy further conditions required by to be a NEp. The
background model during this section assumes the existence of an oracle of local
properties for NEp. Intuitively, such an oracle can answer the question about NEp

using local properties of the game, the formal definition is included in Section 6.6.
For instance, let h denote the number of players occupying a location and assume
that we can show that if h > 2 then that strategy profile is not a NEp. Then
many canonical strategy profiles can be safely excluded from the search space.
In a similar way, if we can show that in any NEp we have d < 2, where d is
the maximal distance between any two players we can further restrict the search
space by safely ignoring some location choices for certain players. Using such
local properties, we can construct a query strategy to select only relevant profiles
for further investigation. Intuitively, a query strategy (QS) is an economic way
of selecting only relevant profiles, the formal definition is included in Section 6.6.

Negative Local Properties. We can be sure that a query strategy is correct
because all the profiles that are ignored cannot be NEp. We are using only
negative properties to construct the query strategy. The figure below gives an
intuitive illustration for the negative properties described above:

max
height max distance

1We can check that cp increases faster than the Fibonacci sequence: take as base case
fib(1) = 2 ≤ cp(1, 2) = 2 (here the first argument of cp corresponds to the only argument of fib
while the second argument is one unit greater). We get from cp(l, p) = cp((l−1), p)+cp(l, (p−1))
and the IH that fib(n) ≤ cp(n, n+ 1). As fib(n) ∈ Ω(1.6n) we can use it as a rough estimate.



156 Chapter 6. Querying Strategies and Probabilities

Let us consider our previous example with p = 3 players and l = 3 locations,
in which d = h = 2 are the maximal distance and height, respectively. The way
in which a query strategy restricts the search space by considering only relevant
profiles can be represented intuitively by the following tree:

·

1

1

2 3

2

2 3

3

3

2

2

3

3

3

3

3

max h

max d

Let rp(l, p, d, h) denote the number of relevant strategy profiles. We can see that
for our example rp(3, 3, 2, 2) = 2 + 2 + 1 + 1 + 1 + 1 = 8. We can notice that
the maximal distance restricts the branching factor in this tree and the maximal
height makes further profiles irrelevant due to previous choices.

In order to be correct for finding NEp a query strategy has to include further
queries for local properties, as indicated in the following definition:

6.2.1. Definition. [Local Query] An LPQ of order k is a k-tuple over {0, 1,X}:

q = 〈X1X2 · · ·Xn︸ ︷︷ ︸
S0

Xn+1Xn+2 · · ·Xn+n︸ ︷︷ ︸
S1

· · ·Xmn+1Xmn+2 · · ·X(m+1)n︸ ︷︷ ︸
Sm

〉

for k = n(m+ 1), having the following structure:

– S0, S1, . . . , Sm are locally relevant strategy profiles,

– each qin+j, for 0 ≤ i ≤ m, 0 ≤ j ≤ n, is a Si local property,

– every qin+j = 1 and qin+j = 0 represents a Y or a N answer from an oracle
of local properties, respectively.

Positive Local Properties. Queries of local properties can include other as-
pects of the game. For instance, we can inquire weather a relevant profile satisfies
a requirement of minimal payoff u, assuming that we can show that in any NEp

profile we have that ui ≥ 1 for any player i. Another important positive property
for NEp describes the game dynamics. For instance the proximal move property
or unit deviation property will have to be satisfied by any NEp strategy profile.
The following figure illustrates such positive properties:



6.2. Computing NEp in LGl by QSb 157

1.5

right

left

payoff
min

Local Properties are not Sufficient. Intuitively, the time complexity for
a deterministic query strategy is the maximum number of queries required to
find all the positive answers from the backtrack oracle, formal definitions and
references to results are included in Section 6.6.

Hence it is important to count how many relevant profiles a query strategy
will have to consider. We will do this first for the concrete example considered
so far and next give a method to extend this counting for the general case. The
counting of relevant profiles in the given example proceeds as follows:

rp(3, 3, 2, 2) = 2 + 2 + 1 + 1 + 1 + 1 = 8
rp(3, 3, 2, 2) = rp(2, 2, 2, 2) + rp(1, 2, 2, 2) + rp(2, 1, 2, 2) + rp(1, 1, 2, 2)
rp(3, 3, 2, 2) = rp(1, 1, 2, 2) + rp(1, 0, 2, 2) + rp(0, 1, 2, 2)+

rp(1, 2, 2, 2) + rp(2, 1, 2, 2) + rp(1, 1, 2, 2)

We can generalize these basic observations in the following Haskell function:

1 rp :: Integer -> Integer -> Integer -> Integer -> Integer

2 rp l p h d | l == 1 = 1

3 | p == 1 = d

4 | l < 1 = 0

5 | p < 1 = 0

6 |otherwise = (rp (l-1) (p-1) h d)+(rp (l-2) (p-1) h d)

7 +(rp (l-1) (p-2) h d)+(rp (l-2) (p-2) h d)

This can be used as a recursive method of counting relevant profiles in LG.
However, we can also notice that this is not a safe recursion2 and therefore the
number of needed tests is still exponential in the input of the game:

rp(l, p, h, d) ∈ Ω((d+ 1)p)

This negative result3 motivates the approach developed in the next section.

2Safe recursion is defined in [12] as the class of constant, projection, successor, predecessor,
and conditional functions closed under predicative recursion on notation and safe composition.
A result of implicit complexity shows the equivalence between polynomially computable and
safely recursive functions [12]. We can also obtain the lower bound by taking c = 1 and n0 = 3.

3The previous lower bound for computing the number of local properties strategy profiles
can be considered a negative result because it shows that in order to find all NE in the game
one would need a number of queries of local properties that is exponential in one of the input
parameters of the game, namely the number of players.



158 Chapter 6. Querying Strategies and Probabilities

6.2.2 Efficient Solutions as Cycles of Profile Fragments

In this section we assume a characterization of NE by local properties and we
give an efficient algorithm for solving LGl for arbitrary locations m, and play-
ers n, using the maximum height h and distance d. The crucial new feature is
the definition of local strategy fragments and of local matching queries used to
construct cycles of strategy fragments, requiring a constant amount of queries.

Using Cycles of Local Profile Fragments. Let us assume that the maximum
distance in a NEp profile is d, then any strategy profile will can be decomposed
in fragments of length d + 1. If we can also show that the maximum height in
a NEp profile is h, then we can generate all possible fragments of length d + 1
in a combinatorial way. We illustrate below the profile fragment construction for
the case in which d = 1 and h = 2 and include the general definition shortly
after. An additional aspect that we have to consider is the fact that the border
fragments have particular properties and require a special treatment. We will
therefore construct three kinds of profile fragments, two for the left and right
limits, respectively and one for the middle profile regions.

For d = 1, and h = 2 let the set of all atomic local profile fragments be
F h
d := {22, 21, 12, 20, 11, 02, 10, 01} representing all possible combinations of h+1

column heights in fragments of length d+ 1, as illustrated below:

Left and right fragment sets are the cartesian product of atomic fragments:

S0 = S2 = {22, 21, 12, 20, 11, 02, 10, 01} × {22, 21, 12, 20, 11, 02, 10, 01}

The middle fragment set is also constructed from the atomic fragment set:

S1 = S0 × {22, 21, 12, 20, 11, 02, 10, 01}

For the general case, for arbitrary large values for the maximum distance and
maximum height a profile fragment is defined as follows:

6.2.2. Definition. [Profile Fragment] For arbitrary d, h let F h
d be defined by:

F h
d := {(x0, .., xd) | 0 ≤ xi ≤ h, 0 ≤ i ≤ d}

∪ {(x0, .., xd) | 0 < xi ≤ h, xi = xi+1, 0 ≤ i ≤ d}



6.2. Computing NEp in LGl by QSb 159

We have now all the ingredients to define a query strategy using fragments:

6.2.3. Definition. [Local Properties Querying Strategy] An LPQS is a finite
decision tree T in which nodes are LPQs:

q = 〈X1X2 · · ·Xn︸ ︷︷ ︸
Sn
0

〉 or q = 〈X1X2 · · ·Xn︸ ︷︷ ︸
Sn
1

〉 or q = 〈X1X2 · · ·Xn︸ ︷︷ ︸
Sn
2

〉

or local matching queries (LMQs) with the following structure, 1 ≤ k ≤ d:

– q = 〈Sn0 [d−k+1]
?
=Sm1 [0], Sn0 [d−k+2]

?
=Sm1 [1], . . . , Sn0 [2d+2]

?
=Sm1 [k−1]〉

– q =〈Sm1 [2d−k+2]
?
=Sn1 [0], Sm1 [2d−k+3]

?
=Sn1 [1], . . . , Sm1 [3d+3]

?
=Sn1 [k−1]〉

– q = 〈Sn1 [2d−k+1]
?
=Sm2 [0], Sn1 [2d−k+2]

?
=Sm2 [1], . . . , Sn1 [3d+3]

?
=Sm2 [k−1]〉

and with the edges linking LPQS nodes constructed in the following way:

– PQ(Sn0 )
N−→ PQ(Sn+1

0 ), PQ(Sn0 )
M−→ MQ(Sn0 , S

0
1), if n < l0;

PQ(Sn0 )
N−→ noNEp, PQ(Sn0 )

M−→ MQ(Sn0 , S
0
1) for n = l0,

– MQ(Sn0 , S
m
1 )

N−→ MQ(Sn0 , S
m+1
1 ), MQ(Sn0 , S

m
1 )

M−→ PQ(Sm1 ), if m < l1;

MQ(Sn0 , S
m
1 )

N−→ PQ(Sn+1
0 ), MQ(Sn0 , S

m
1 )

M−→ PQ(Sm1 ), if m=l1, n<l0;

MQ(Sn0 , S
m
1 )

N−→ noNEp, MQ(Sn0 , S
m
1 )

M−→ PQ(Sm1 ), if m=l1, n=l0;

– Analogously for PQ(Sn1 ), PQ(Sn2 ), MQ(Sn1 , S
m
1 ), MQ(Sn1 , S

m
2 )

with PQ(Sn2 )
N−→ noNEp, PQ(Sn0 )

M−→ ∃ NEp for n = l0.

The figure below illustrates a representative segment of a query strategy with
local properties and local matching as a decision tree. This strategy is correct
for an NEp oracle of local properties as each answer from the oracle allows us to
prune one outgoing branch at the respective node such that all the queries from
the root to the leafs form a cover for the backtrack oracle.

PQ(Sn0 )

PQ(Sn+1
0 )

PQ(Sl00 )

noNE

N

MQ(Sl00 ,S
0
1)

...

N

...

M

M

N

MQ(Sn+1
0 ,S0

1)

...

N

...

M

M

N

MQ(Sn0 ,S
0
1)

MQ(Sn0 ,S
n
1 )

MQ(Sn0 ,S
n+1
1 )

...

N

...

M

N

PQ(Sn1 )

...

N

...

M

M

N

...

NE

M

M

M



160 Chapter 6. Querying Strategies and Probabilities

Counting Cycles of Local Profile Fragments. Since the previous query
strategy is deterministic, its time complexity is the maximum number of queries
needed to determine all the instances for which the oracle gives a positive answer.
So we have to determine how many such queries there are for arbitrary locations
l, players p, maximal height h, and max distance d.

The first relevant counting parameter will be number of possible profile frag-
ments, this number is obtained from the combinatorial content in Definition 6.2.2.

|F h
d | = |P h+1

d+1 |+ h =
(h+ 1)!

(d− h)!
+ h

The second counting parameter is the total number of profile segments containing
two units of atomic profile fragments for the right and left boundaries respectively
three units for the middle parts:

l0 = |S0| = |F h
d × F h

d |, l1 = |S1| = |F h
d × F h

d × F h
d |

|LPQ(Sxi )| = n, for any i ∈ {0, 1, 2}, 0 ≤ x ≤ |Si|

|LMQ(Sxi , S
z
j )| = 2d± k, for any i, j ∈ {0, 1, 2}, k < d

|{LMQ(Sxi , y) : y ∈ Sj}| = |Sj|, for any i, j ∈ {0, 1, 2}

any LMQ(Sx1 , S
z
1) is repeated at most k · |S1||S1| times

Therefore, the execution time (i.e. max required queries) for this LPQS is in

O

(
(F h

d )l
l1
1

)

The notable feature here is that neither l nor p is a parameter in this counting.
This means that NEp can be computed in constant time for increasing number of
players and locations, as long as the values of d and h are determined.4

6.3 Characterizing NEp in LGl by BOc

In this section we give a characterization of NEp in LGl using local properties
of the game and use this to define a backtrack oracle (BO). The local game
properties can describe various game aspects, we mention here a relevant list:

– Maximum column (tower) height (MH)

4For all games with p < l the value of h is determined to be at most 2 (cf. Claim 6.3.3) and
for p = l− 1 the value of d can be also shown to be at most 2 (cf. Claim 6.3.4). In order to be
of use for other cases e.g. p = l − 2 or p = l − 3, etc. this observation should be also paired by
a corresponding result analogous to Claim 6.3.4 for p = l − 2 or p = l − 3, etc.



6.3. Characterizing NEp in LGl by BOc 161

– Maximal empty distance (MD), Minimal distance (mD),

– Minimal payoff value for a player (MP),

– Incentive for proximal move (unit deviation) (PM).

6.3.1 Local Properties Oracle Characterizing NEp

Both NE on one side, and the local properties we define below are definable by
first order logic formulae. So the definition of a backtrack oracle of local properties
reduces to checking entailment between the NE definition and the conjunction of
formulae for local properties of a given strategy profile. We proceed below by
giving both the formal definitions and an intuitive illustration for each of the
properties used to characterize NEp in LGl:

6.3.1. Definition. [Maximum Height, case invariant] A strategy profile S =
(si, s−i) is P2 (MH) iff ∀i, j, k :

(i 6= j ∧ i 6= k ∧ j 6= k ∧ si = sj)→ sk 6= sj

max
height

6.3.2. Definition. [Maximum Distance, case dependent] A strategy profile
S = (si, s−i) is P3 iff (MD) ∀i :

si = 1 ∨ si = 2 ∨ ∃j : si − sj = 1 ∨ si − sj = 2

max distance

6.3.3. Definition. [Minimum Payoff, case dependent] A strategy profile S =
(si, s−i) is P1 (MP) iff ∀i : pi(si, s−i) ≥ 1

0.5

payoff
min

6.3.4. Definition. [Proximal Move, case invariant] A strategy profile S =
(si, s−i) is P4 (PM) iff ∀i, si :

pi(si − 1, s−i) ≤ pi(si, s−i) ≥ pi(si + 1, s−i)



162 Chapter 6. Querying Strategies and Probabilities

right

left

We proceed by a series of entailments between local properties leading to the
characterization of NEp in LGl.

The corresponding proofs are included in Section 6.7.

6.3.1. Claim (NE ⇒ MP). For m < n, S is NEp ⇒ S is P1.

6.3.2. Claim (NE ⇒ MH). For m < n, S is NEp ⇒ S is P2.

6.3.3. Claim (MP & PM ⇒ MH). For m < n, S is P1 and P4⇒ S is P2.

6.3.4. Claim (MP & PM ⇒ MD). For m=n−1, S is P1 and P4⇒ S is P3.

6.3.5. Proposition (Local NE Characterization). For n = m− 1,

S is NEp ⇔ S is P1 and P4

The proof of this proposition is completely independent of the implementation
we used so far to study LG. The general structure of the proof for this particular
combination of local properties also hints at possible ways to extend the result
to larger classes of cases. We will discuss some of these in the next section.
Another aspect that emerges from the structure of the proof in Section 6.7 is
the fact that it generates an very large number of similar cases without giving
rise to any essentially new conceptual aspect during the analysis. This makes it
a prototypical example of a claim suitable for an analysis using an exhaustive
search of a large space of possibilities. This can be performed relatively quick by
contemporary computers and is hugely time consuming and tedious for humans.

Therefore it makes sense to use a software tool to automate this process.
We will use for this purpose Alloy analyzer [52]. Before presenting some of the
results obtained we will briefly explain the theoretical background behind the
Alloy architecture. Further implementation details are discussed in Chapter 7.

It is well known that the validity problem is undecidable for first order logic.
Alloy uses a relational logic that contains first order logic, therefore the auto-
matic process has to rely on a compromise. The type of compromise behind
model checking in general is to check for validity in a limited scope. This is
complementary to the compromise behind a theorem prover in which the process
is semi-automated and the failure to build a proof might mean either a faulty
assertion or a misguided proof strategy by the user.

What Alloy does is to perform an exhaustive search for an assignment to
variables that satisfies the initial constraint in a multi-dimensional but limited
search space. When checking an assertion Alloy looks for a refutation in a huge



6.3. Characterizing NEp in LGl by BOc 163

space of test cases i.e. possible assignments to variables. This provides a scope
complete analysis in the sense that if the analysis finds a counterexample then
the assertion is not valid and if the analysis fails to find a counterexample then
the assertion is valid within the specified scope. However, it might still be the
case that the assertion is not valid in general as it is still possible that it has a
counterexample in a larger scope.

Despite this obvious theoretical limitation, what makes this approach useful
in practice is the fact that models in a small scope already contain most of the
properties that are present in larger models. Testing for such properties in a small
scope gives a lot of information about all larger models sharing the property. This
has been called in the literature the small scope hypothesis and it basically says
that: if an assertion is invalid it most probably has a small counterexample.5

6.3.6. Corollary (in Alloy, scope 7). For n < m,

S is NEp ⇔ S is P2 and P4

However, such a result obtained using Alloy Analyzer can only be a partial
solution. We will further discuss its relevance in the Section 7.2.2 that presents
the Alloy Analyzer implementation in further detail.

For now, we close this section with the following open problem:

6.3.7. Conjecture (NE Characterization). For n < m,

S is NEp ⇔ S is P4

6.3.2 Generalizing Fragment Cycle Solution to LGl

In this section we give some illustrations of how the result works for the class
of games with n=m−1 and point out how this can be generalized to other game
classes, using the same pattern with case dependent local properties.

Note that in Proposition 6.3.5 we have a characterization of NE using local
properties that are case dependent. This means that for games in which, for
instance, n = m − 3 the maximum distance might be different from 1. On
the other side, Corollary 6.3.6, gives a characterization by case invariant local
properties. This is a more general result as it applies to any number of players
and locations and, except for the limited scope, would satisfy our initial game
theoretical motivation in the most general way: we have a method to compute
equilibria for all location games. However, there is a trade-off here between
the game theoretical and the algorithmic motivations behind this analysis. The
properties used in Corollary 6.3.6 cannot be used to construct profile fragments

5This hypothesis is formulated and defended in [52] in a very general framework. In order to
avoid the ad hoc character that this hypothesis might have for LG and to make the hypothesis
convincing in the concrete context of the game analyzed one has also to establish what a small
enough model would be that already contains all the relevant local properties.



164 Chapter 6. Querying Strategies and Probabilities

and therefore can not generate an efficient computation. We have to find a right
balance between the generality of the solution and the possibility to compute and
implement it efficiently.

We will use Haskell and Alloy output to illustrate NE strategy profiles, more
details about the implementation tools used are included in Section 7.2. As both
NE and the Local Properties can be expressed as FOL formulae, Alloy can be
used to test FOL entailment (up to a finite scope). But the construction of local
fragments depends on the maximum profile distance which can be different from
case to case. In Haskell a QSLPs can be implemented as a lists comprehension.
The list of relevant strategy profiles can be further filtered using the other local
properties characterizing NE profiles. For example, when we input 5 locations
and 4 players we get the following output:

*LocGame> nelg 5 4

[[2,2,4,4]]

This output is a list of choices that represents abstractly the strategy profile
intuitively represented in Figure 6.1 below. We can notice that it is decompos-

Figure 6.1: A P1-4 strategy profile in LG with 5 locations and 4 players

able by the following pattern P1=S0S
1
1S2 representing the profile fragment cycle

highlighted in Figure 6.2.

S0 S2

S1

Figure 6.2: Cycles of profile fragments in LG with 5 locations and 4 players
Such observations generalize to larger number of locations, as Haskell output:

*LocGame> nelg 7 6

[[2,2,3,5,6,6],[2,2,4,4,6,6]]

*LocGame> nelg 11 10

[[2,2,3,5,5,7,7,9,10,10],[2,2,4,4,6,6,8,8,10,10]]

And can be lifted into more general results solving large classes of cases:

6.3.8. Proposition. For l = p + 1 and p even the pattern of profile fragment
cycles Pn = S0S

∗
1S2 is one of the (possible many) Nash equilibria, for ∗ denoting

matching sequential composition, S0 = 〈0202〉, S1 = 〈020202〉, S2 = 〈2020〉.
Similar observations, with more complex patterns, generalize in the comple-

ment class of odd p, l = p− 1 cases, witness the examples:



6.4. Probabilistic Extensions 165

*LocGame> nelg 6 5

[[2,2,3,5,5],[2,2,4,5,5]]

*LocGame> nelg 8 7

[[2,2,3,5,5,7,7],[2,2,4,4,6,7,7]]

And can again be lifted into general results solving large classes of cases:

6.3.9. Proposition. For l = p + 1 and p odd the pattern of profile fragment
cycles Pn = S0S

1
1(S2

1)∗S2 is one of the (possible many) Nash equilibria, where
the concatenation and ∗ represent matching sequential composition, and for S0 =
〈0210〉, S1

1 = 〈10202020〉, S2
1 = 〈20202020〉, S2 = 〈2020〉.

The method can be further generalized to other classes of cases to obtain anal-
ogous results. The caveat here is that the maximal distance d is a local property
that can change from case to case. Even so, our result can be straightforwardly
applied to any class of games for which a maximal distance has been determined.
This will only require a analogous proof of Proposition 6.3.5 using a corresponding
property P3 as in Definition 6.3.2 for increasing d values.

6.3.3 Concluding Remarks and Further Topics

What we did in this chapter was to show how a questioning theory can have inter-
esting applications in problem solving in general and we took the location game
as a paradigmatic example. We established a link between a setting with propo-
sitional questions and oracles of first order properties. In this setting we showed
how questioning strategies can be used to reduce a goal question or the main
problem to operational “smaller” questions and how this can lead in particular
cases to efficient algorithms that solve the initial question.

A basic theory for efficient strategies of questioning oracles was the main
motivation of the chapter. However, we also had game theoretical and algorithmic
motivations to guide the concrete application considered. These also received
partial solutions and in the same time opened the way for further research.

We end with problems and topics for future research: Does a general, case-
independent NE-characterization exist? Can the location game be analyzed by
a potential argument? For the location game on the line this is not possible, as
there are examples in which no NE exists, but it might be possible for other con-
figurations. Can the method be used for other LGs: on a circle, in a network, etc.?
Can the analysis be extended: mixed strategies, probabilistic query-strategies?

6.4 Probabilistic Extensions

6.4.1 General Probabilistic DELs

Approaches adding probabilistic aspect to dynamic epistemic logic have them-
selves a lively and interesting recent history. The main theoretical framework



166 Chapter 6. Querying Strategies and Probabilities

from which all these start is a probabilistic static epistemic logic. This frame-
work has been established in classical papers such as [28].

The main task of a dynamic logic with probabilities is to add rules governing
the dynamics of how such static models change, especially rules governing the
evolution of the probabilistic components. For this purpose several proposal have
been considered in the literature. Before we proceed with the main topics of
this chapter we will make a brief presentation of previous approaches that add
probabilities to dynamic epistemic logic.

A first version is the framework from [63], we give below a schematic presen-
tation of its most important concepts.

The probabilistic component in a probabilistic epistemic model is defined as
a partial function, some worlds may not be in the domain of the function repre-
senting probabilities. For the worlds that are in the domain of the function the
usual probabilistic properties have to be the case.

P : (A×W )→ (W ⇀ [0, 1]), such that ∀ a ∈ A ∀ w ∈ W :∑
v∈dom(P (a,w))

P (a, w)(v) = 1

The use of a partial function is to capture the effect of dynamic actions.
Worlds in which an announced formula is not true is excluded from the domain
of the function.

The new probabilistic component of the model obtained after the informative
action is computed from the old probability component in the following way:

Pϕ(a, u)(v) =


Pϕ(a, u)(v) if Pϕ(a, u)(ϕ) = 0

Pϕ(a, u)(v)

Pϕ(a, u)(ϕ)
otherwise, given that v ∈ dom(Pϕ(a, u))

The computation proceeds by case distinctions taking into consideration excep-
tions for both zero probability value and the fact that the function does not range
over the entire domain.

The approach also offers a definition for the notion of epistemic probabilis-
tic bisimulation and a way to compute minimization of epistemic models under
epistemic probabilistic bisimulation.

A further elaborated version is the framework from [94], we give here a brief
account of the main conceptual and formal innovations.

The basic static models are again standard epistemic models to which an extra
probabilistic component is attached. This time the probability function is a total
function, assigning a value, which can be zero, to each world in the domain:

P : A→ (S → (S → [0, 1]))



6.4. Probabilistic Extensions 167

Besides this modification in the static structures, the dynamic actions introduced
in this framework are also more general. Now the update is not made by an-
nouncing a formula but there are complex action models that have a probabilistic
structure of their own. This probabilistic structure is twofold.

1. First there is a probability over a set of preconditions. The function pre
assigns to each precondition ϕ ∈ Φ a probability distribution over the set
of events E, where Φ is set of pairwise inconsistent precondition sentences.

2. Second, there is a probability over events. For each agent i, Pi assigns to
each event e a probability distribution over the set of events E.

Such structures model the dynamics of both a subjective observation prob-
ability and an objective occurrence probability. This allows for a description of
the dynamics of probability, considering three complementary sources: the prior
probability of the states in the initial model, the conditional occurrence proba-
bility for events given certain properties expressible by formulae in the language,
and finally, the subjective probabilistic uncertainty about observed events.

The usual components in the updated model are computed in the standard
way. We only mention here the new probabilistic component of the model re-
sulting from an update mechanism that handles both accessibility relations and
probabilities, which is computed in the following way:

P ′i ((s, e)(s
′, e′)) :=


0 if

∑e′′∈E
s′′∈S Pi(s)(s

′′) · pre(s′′, e′′) · Pi(e)(e′′) = 0

Pi(s)(s
′) · pre(s′, e′) · Pi(e)(e′)∑e′′∈E

s′′∈S Pi(s)(s
′′) · pre(s′′, e′′) · Pi(e)(e′′)

otherwise

This still has to use a case distinction to handle the case of zero probability,
but the mechanism can handle much more interesting combinations.

Despite conceptual and formal variability of the particular frameworks, both
approaches follow the same general DEL methodology of dinamifying a standard
static probabilistic epistemic logic by means of adding reduction axioms to the
ones describing the static structures. And they both use a probabilistic product
update rule that can increase the size of the model after dynamic actions.

6.4.2 Questioning-Related Probabilistic DELs

More recently, probabilistic dynamic logics using with modalities for questioning
actions have been also used to model the agreement theorem from [7]. We give
here a brief account of the approach from [23] which uses a setting with binary
experiments for this purpose.

Again the probabilistic component of a static epistemic structure is a standard
probability distribution over the domain of possible worlds.

µi(w) : W → [0, 1]



168 Chapter 6. Querying Strategies and Probabilities

In addition, two supplementary conditions are imposed on such probability distri-
butions. These are justified by intuitive properties and have formal advantages.

(i) µi(w)(w) > 0 for all w ∈ W

(ii) µi(w)(v) = 0 for (w, v) 6∈ Ri

The first requirement ensures that no division by zero is going to occur in
the computation of a new probability, and captures the intuitive principle of
truthfulness at the actual world via a probabilistic aspect.

The second requirement corresponds to the fact that it is unintuitive to assign
a positive probability to a world which is not considered possible.

The value of the probabilistic component after a binary experiment can be
now described without making a case distinction for zero probabilities:

µei (w)(v) :=
µi(w)({v} ∩ Ei[w])

µi(w)(Ei[w])
or µei (w)(x) := µi(w)(x | Ei[w])

Both experiments and informative epistemic actions such as public announce-
ments can be modeled in this way by restricting the class of models to ones with
reasonable factual and epistemic properties:

µϕi (w)(v) :=
µi(w)({v} ∩ 〚ϕ〛M)

µi(w)(〚ϕ〛M)
or µϕi (w)(x) := µi(w)(x | 〚ϕ〛M)

Another tradition that devotes attention to questions in a probabilistic context
is the one originated in [11]. We will give here a brief account of two more recent
approaches from [113] and [41] that use this general framework.

The approach to questions in this setting follows the directions of the classical
approach devoted to assertions or informative sentences. The first step is to
associate a measure of informativity to a formula in the following way:

inf(s)(ϕ) = log2

1

P (s)(ϕ)
= −log2P (s)(ϕ)

where the probability of ϕ in a probabilistic model is given by:

P (ϕ) =
∑

w∈[s]s.t.M,w|=ϕ

P (s)(w)

The corresponding notion of quantitative relevance or informativity for a ques-
tion is that of entropy. The entropy of a question Q = (γ1, . . . , γk), in a pointed
probabilistic model such that M, s |= pre(Q) is defined as follows:

E(s)(Q) =
∑

1≤i≤k

P (s)(γi)× inf(s)(γi)



6.5. Minimizing under Probabilistic Bisimulation 169

The informational value of an assertion ϕ in a pointed probabilistic model such
that M, s |= pre(Q) with respect to a question Q = (γ1, . . . , γk) is also defined in
an analogous way using the difference between the entropies before and after:

IVQ(s)(ϕ) = E(s)(Q)− Eϕ(s)(Q)

where the received information about ϕ changes the previous entropic value by
conditionalization in the following way:

Eϕ(s)(Q) =
∑

1≤i≤k

P (s)(γi | ϕ)× inf(s)(γi | ϕ)

Next the value or relevance of assertions are measured against the background
of a question. This way the relevance of an assertion ϕ with respect to a question
is greater than the relevance of another using the following informativity criteria:

IVQ(s)(ϕ1) > IVQ(s)(ϕ2), or

IVQ(s)(ϕ1) = IVQ(s)(ϕ2) and inf(s)(ϕ1) < inf(s)(ϕ2)

Intuitively this corresponds to the amount of change in the entropy of the question
brought about by the assertions considered.

An analogous notion for the relevance of a question needs the preliminary
notion of expected informational value of a questionQ′ = (χ1, . . . , χl) with respect
to another question Q = (γ1, . . . , γk), such that M, s |= pre(Q) and M, s |=
pre(Q′). This is defined by taking the average as follows:

EIVQ(s)(Q′) =
∑

1≤i≤l

P (s)(χi)× IVQ(s)(χi)

Intuitively this corresponds to the average amount of change in the value of the
main questions’ entropy over all possible answers brought about by the question
under consideration.

6.5 Minimizing under Probabilistic Bisimulation

Probabilistic issue-epistemic models (PIMs) can be used to describe the interde-
pendence between questioning actions and epistemic and doxastic effects in multi-
agent systems. Such approaches have a wide range of application in reasoning
about information dynamics in multi-agent systems and in artificial intelligence.
Approaches that study both questioning and epistemic dynamics have been con-
sidered recently [8, 105, 100, 93, 23, 41]. There exist various logics that describe
both static validities in epistemic structures enriched with probabilities [28] and
dynamic reduction axioms for probabilistic update [63, 94]. Adding questions to
this background allows to study the dynamic interdependence between knowledge



170 Chapter 6. Querying Strategies and Probabilities

and questions using the intersection of two relations, but with the technical com-
plications already discussed namely that it is not invariant under bisimulation.
An important prolegomenon to all approaches that will study questioning aspects
in a probabilistic setting should therefore be to develop a framework for dealing
with this aspect. This will be useful for minimizing models in which the product
update rule generates redundant states which are behaviorally equivalent.

In this background, the main motivation of this section is to establish some
metatheory and to give an implementation that can handle questioning specific
functionality as introduced in [71, 100] in a probabilistic setting. However, the
main concern is neither an axiomatization for the static logic nor dynamic re-
duction axioms but rather metatheory for PIMs, in particular that of defining
structural equivalence and computing model minimization for PIMs.

We start by introducing the underlying probabilistic issue-epistemic structures
(henceforth PIMs) which will be the changing structures in our investigations:

6.5.1. Definition. [Probabilistic Issue-Epistemic Model] A Probabilistic Issue-

Epistemic Model (PIM) is a tuple 〈W,N, (
i
≈, i∼, Di)i∈N , P, C, V 〉 containing:

- W a set of possible worlds or epistemic alternatives,

- N = {1, 2, . . . , n} a set of labels representing agents,

-
i
≈∈ W ×W a binary issue relation on W , for i ∈ N ,

-
i∼∈ W ×W an uncertainty relation on W , for i ∈ N ,

- Di : W → (W → [0, 1]) is a world-dependent probability distribution over
the domain W , for i ∈ N ,

- P , C are sets of propositions, respectively, nominals such that P ∩ C = ∅
and |V (c)| = 1, for any c ∈ C,

- V : P ∪ C → ℘(W ) is a sorted valuation function.

A a set-pointed PIM (M,Q) is a PIM together with a designated set of worlds
Q ⊆ W , if Q is a singleton set we call the PIM is pointed and denote this (M,w)
for w ∈ W .

Intuitively, such structures model both the uncertainties agents have about
the world and also their agenda for inquiry, or the issues they would like to have
resolved by future answers to their questions. Another important feature in our
PIMs is the use of nominals. These are propositional symbols which are true in

only one world, thus naming it. In this paper we will assume that (
i
≈, i∼)i∈N are

equivalence relations on the domain W of possibilities.



6.5. Minimizing under Probabilistic Bisimulation 171

Finally, the probabilistic information of the agents at a world about the do-
main of possibilities is also represented by PIMs. We will use the symbol Kpim to
refer to the class of all probabilistic issue-epistemic models (PIMs).

Various languages that describe such structures have been used in the liter-
ature. One classic reference for a static language to reason about probabilistic
structures is [28]. This has a set of basic propositions describing events closed
under Boolean operators. Primitive weight terms an formulae are added to the
language to describe the probability of the events by linear inequalities. Validities
in such languages are captured by probabilistic axioms and axioms for linear in-
equalities. Languages that extend the static language with informative dynamic
actions have been proposed in [94, 63], these are based on a notion of product
update that handles the qualitative components in the way already discussed and
adds extra reduction axioms for the probabilistic component as described in this
chapter. Approaches that add both probabilities and questions into the mix have
also been proposed in the literature [23, 41]. These usually add a second equiva-
lence relation to the static structures and use an intersection modality to describe
the epistemic dynamics. As discussed before, this requires a more expressive lan-
guage, that employs nominals naming worlds, or even higher order devices like
binary experiment nominals naming subset pairs.

In this section we will not focus on the dynamics of probabilistic questioning.
Such a study is possible inside the DEL methodology with the extensions already
discussed and it reveals interesting general properties for questioning phenomena.
We reserve such a study for a future occasion, and instead, as a prolegomenon,
we focus on a notion of invariance that is adequate for static structures and
on giving a minimization algorithm for static structures. The main advantage
of having a minimization algorithm that preserves behavioral equivalence is, as
discussed before, that of avoiding the ‘state explosion’ problem which usually
arises in practical applications.

In order to describe and reason about PIMs we introduce a basic static prob-
abilistic issue-epistemic logical language:

6.5.2. Definition. [Static Language] The static language of Probabilistic Epis-
temic Logic of Questions (PELQ), denoted by LELQ , is given by the next BNF:

ϕ ::= n | p | ¬ϕ | ϕ ∧ ϕ | Qiϕ | Riϕ | Kiϕ | Diϕ ≥ k

with p ∈ P a propositional symbol, n ∈ C a nominal symbol, i ∈ N an agent-
label, k ∈ Q and P ∩ C = ∅.

Various fragments of this language will be referred to in various places be-
low using the following notation: LEL will denote the language of epistemic logic,
which is the fragment without nominals and the issue Q and intersection R modal-
ities and without the probabilistic Dϕ ≥ k inequalities. LHL will denote the
language of hybrid logic, which is the fragment with no knowledge, issue and



172 Chapter 6. Querying Strategies and Probabilities

intersection modalities and no probabilistic inequalities. Finally, LPL will denote
the language of probabilistic logic which is the fragment with no knowledge, issue
and intersection modalities. We use usual syntactic shortcuts Q̂ = ¬Q¬, etc.

6.5.3. Definition. [Interpretation] The semantics for our language is standard,
using the usual Boolean clauses and the expected relational clauses with ≈ for Q
and ∼ for K. The probabilistic inequalities also have the expected meaning:

M |=w Diϕ≥k iff
∑

v∈〚ϕ〛M

Di(w)(v) ≥ k

and the intersection modality R is defined using ≈∩∼ as:

M |=w Riϕ iff ∀v ∈ W : w (
i
≈∩ i∼) v ⇒M |=v ϕ

where 〚ϕ〛M = {w ∈ W |M |=w ϕ} is the extension of ϕ.

This basic language will serve the purpose of this paper, it can also be extended
if needed. Richer versions usually include the universal modality Uϕ, group no-
tions for knowledge DGϕ,C

ψ
Gϕ or even for issue or intersection, and probabilistic

linear inequalities k0Daϕ0 + · · ·+ knDaϕn ≥ k.
A note on notation: in a very strict sense Di(w)(v) is in fact a function

with three arguments D(w, v, i) that is represented as D : W ×W × A → R or
D : W → (W → (A → R)), however, for ease of notation sometimes the third
argument will be given as an index, using Di(w)(v) interchangeably for D(w, v, i).
Also, when some of the arguments are the same, the function can reuse the value
of only one input, or receive it also as an extra index, so, for example X(w, e) or
Xe(w, e) are used interchangeably for X(w, e, e) or X(w, e)(e) for ease of notation.

Introducing dynamics in this setting follows the main directions of the DEL
methodology discussed so far. In the remaining part we will spend some time
studying the static language. It is useful to have a notion of bisimulation that ex-
tends to also model the probabilistic behavior. We will give a notion of probabilis-
tic issue bisimulation that is very similar to the notion of probabilistic epistemic
bisimulation proposed previously in the literature, like, for instance in [63, 94].

Moreover, we will establish a correspondence between this notion of bisimula-
tion and the refinement process in Algorithm 1. This will capture the interaction
between issue and epistemic relations in an adequate way and will also add the
needed clauses for the probabilistic component.

Discussion The use of nominals was so far motivated, as already discussed,
by a need to achieve “expressive harmony” between the static and the dynamic
fragments of our language. However convenient and formally elegant the solution
of using nominals proved to be so far it also has a drawback that needs to be
discussed in this context. This drawback consists in the fact that adding nominals



6.5. Minimizing under Probabilistic Bisimulation 173

in the valuation of each world makes the notion of bisimulation completely useless
as the very basic clause of atomic harmony at propositional level will never be
satisfied so no useful partition refinement process can start because the initial
partition will already be a partition in which each cell is a singleton.

Algorithm 3 Compute The Minimal Questioning Probabilistic Model

Precondition: M is an arbitrary Probabilistic Issue-epistemic Model
Postcondition: M ′ is the minimal PIM behaviorally equivalent to M
1 P ← {Ci | Ci ⊆ dom(M),∀ v, w ∈ Ci : V (w) = V (v)}
2 repeat
3 if ∃ S ⊆ dom(M) : S = Ck ∪ · · · ∪ Cl for some blocks Ck, . . . , Cl ∈ P

and S is a K-splitter of P then
4 P ← split(S, P )
5 else
6 skip

7 end if
8 if ∃ S ⊆ dom(M) : S = Ck ∪ · · · ∪ Cl for some blocks Ck, . . . , Cl ∈ P

and S is a Q-splitter of P then
9 P ← split(S, P )

10 else
11 skip

12 end if
13 if ∃ S ⊆ dom(M) : S = Ck ∪ · · · ∪ Cl for some blocks Ck, . . . , Cl ∈ P

and S is a 2-splitter of P then
14 P ← split(S, P )
15 else
16 skip

17 end if
18 until P is self-bistable and stable with regard to Q and K
19 M− ← build(M,P )
20 Dv(w)←

∑
w∈[w] Dv(w), ∀ a ∈ A

21 Dv([w])← Dv(z), for z = min([w]), ∀ a ∈ A
22 D[v]([w])← Dz([w]), for z = min([v]), ∀ a ∈ A
23 M ′ ← buildPro(M−, D)

However, in practice, many applications using product update will in fact
generate structures that have a more economic model that is bisimilar to the
initial one and in which reasoning about questioning actions can be performed
more efficiently. For this reason at least the notion of intersection bisimulation is
a very useful one, and having a minimization algorithm that captures invariance
under this notion is desirable.

6.5.4. Definition. [Probabilistic Bisimulation] A probabilistic bisimulation be-



174 Chapter 6. Querying Strategies and Probabilities

tween two PIMs M and M ′ is a relation Z ⊆ W × W ′ defined as follows:
∀ X ⊆ W,∀ Y ⊆ W ′ : ∀ x ∈ W,∀ y ∈ W ′ : xZy ⇒ ∀ a ∈ A : ∀ p ∈ P :

∃ X ′ ⊆ W ′ : Da(x,X) ≤ D′a(y,X
′) & zag(X,X ′)

∃ Y ′ ⊆ W : D′a(y, Y
′) ≤ Da(x, Y ) & zig(Y, Y ′)

zig(QKWx, Q
′K ′W ′

y), zag(QKWx, Q
′K ′W ′

y), x ∈ V (p)⇔ y ∈ V ′(p)
zag(QWx, Q

′W ′
y), zag(KWx, K

′W ′
y), zig(QWx, Q

′W ′
y), zig(KWx, K

′W ′
y)

where we use the following shortcuts: zig(X, Y ) := ∀ x ∈ X : ∃ y ∈ Y : xZy,
zag(X, Y ) := ∀ y ∈ Y : ∃ x ∈ X : xZy, RXx := {v ∈ X | xRv}, and RSXx :=
{v ∈ X | xRvSx}, for xRySx := (x, y) ∈ R ∧ (y, x) ∈ S−1, xRy := (x, y) ∈ R.

We will now prove that this is the adequate invariance notion for our language.

6.5.5. Theorem (Invariance). For any two pointed PIMs M and M ′ and for
any formula ϕ ∈ LELQ if M,w←→M ′, w′ then M |=w ϕ iff M ′ |=w′ ϕ.

In order to make good use of our notion of behavioral invariance, we also
provide in Algorithm 3 a method to perform model minimization.

The core of the algorithm follows the previous two algorithms in this section
and adds a final post-processing stage, lines 20-23, to construct the probabilistic
component in the minimal model.

The working of the algorithm is also illustrated on a concrete example in the
following chapter presenting the implementation for probabilistic DELQ.

The correspondence between our notion of invariance and the setting of the
minimization by refinement process in Algorithm 3 is established by the following
result showing that the minimization process is adequate:

6.5.6. Theorem (Minimization). Let M be an arbitrary PIM, and M ′ the
PIM obtained by applying birelational refinement together with probabilistic cell
additivity as presented in Algorithm 3.

Then M ′ is the minimal PIM that is probabilistically intersimilar to M .

The proof is incremental, building on previous proofs of Lemmas 5.3.5 and
5.3.6. And adding the extra details needed for probabilistic components.

This can be complemented with an implementation for probabilistic aspects.
The implementation builds incrementally on the modules from Chapter 3 by
enriching them with data structures and functionality specific for a probabilistic
setting. We also build on preexisting functionality from [27] and use it in the
context of probabilistic issue-epistemic models. We show how the implementation
is useful in practice by analyzing several examples and also by illustrating the
minimization algorithm for probabilistic models and in the context of dynamic
probabilistic questioning and resolution actions.



6.6. Appendix A: Background Definitions 175

6.6 Appendix A: Background Definitions

6.6.1. Definition. [Nash Equilibrium] A pure Nash equilibrium is a profile s∗

of pure strategies s.t. for any player i ∈ N and every strategy si of i we have:

pi(s
∗
−i, s

∗
i ) ≥i pi(s∗−i, si).

6.6.2. Definition. [Query] A query Q of oder n is an n-tuple over the alphabet
containing the symbols {0, 1,X}. Replacing X with 0 or 1 induces a partial order
on queries: for instance, 1XXX ⊇ 10X1; the minimal elements in the order are the
atomic queries, which do not contain X.

6.6.3. Definition. [Backtrack Oracle] A backtrack oracle (BO) of order n is a
function:

A : {0, 1,X}n → {Y,N,M}
satisfying the following properties:

– no M is given as a response to an atomic query, and

– if A(Q) = Y or A(Q) = N, and Q′ ⊆ Q,

then A(Q′) = Y or A(Q′) = N, respectively.

6.6.4. Definition. [Oracle Cover] A cover of order k for a BO is a set of queries

S = {Q0, Q1, . . . , Qk}

such that every atomic query is contained in some of the queries from S to which
the BO answers Y or N.

6.6.5. Definition. [Oracle Search] A BO search is a method of finding every
BO query Qi for which A(Qi) = Y, or conclude that there are none.

6.6.6. Definition. [Search Strategy] An order n search strategy is a finite de-
cision tree T in which nodes are queries of order n with two outgoing branches N
and M.

6.6.7. Definition. [Correct Search Strategy] A search strategy T is correct for
oracle A if for every leaf z of the answers-pruned tree (the answers from the oracle
A allow to prune one outgoing branch from each query node in T ):

- if S is the set of queries lying on the path from the root to z,

then S is a cover for A.

6.6.8. Theorem (Theorem 1 from [16]). Let C be a collection of oracles of
order N which have K-covers. Let T be a probabilistic search strategy which is

correct for C: Etime(T, C) ≥ 1
4

(
N−log2K

log2N log2K

)blog2Kc
.

For a deterministic search strategy the time complexity is given by the maximum
number of queries required.



176 Chapter 6. Querying Strategies and Probabilities

6.7 Appendix B: Proofs of Main Results

6.7.1. Proof (Claim 6.3.1 ). Suppose not, then ∃i : pi(si, s−i) < 1 for some
NEp (si, s−i). Because m < n, ∃s∗i : pi(s

∗
i , s−i) ≥ 1, so (si, s−i) cannot be NEp. 2

6.7.2. Proof (Claim 6.3.2 ). Suppose not, then ∃i, j, k : i 6= j ∧ i 6= k ∧ j 6=
k∧si = sj = sk and S = (si, sj, sk, s−ijk) is NEp. Hence, pi(s)+pj(s)+pk(s) ≥ 3,
using Claim 6.3.1. Hence, wlog ∀s∗ ∈ S : s∗ 6= si − 1 ∧ s∗ 6= si − 2.

Thus, pi(si − 1, s−i) > pi(si, s−i) and (si, s−i) cannot be NEp. 2

6.7.3. Proof (Claim 6.3.3 ). Suppose not, then ∃i, j, k : i 6= j ∧ i 6= k ∧ j 6=
k∧si = sj = sk and S = (si, sj, sk, s−ijk) is P4. We have pi(s)+pj(s)+pk(s) ≥ 3,
because S is P1. Hence, wlog ∀s∗ ∈ S : s∗ 6= si − 1 ∧ s∗ 6= si − 2. Thus,
pi(si − 1, s−i) > pi(si, s−i) and (si, s−i) cannot be P4. 2

6.7.4. Proof (Claim 6.3.4). Suppose not, then, if S is P1 and P4, by Claim
6.3.3, S is P2, so we have to consider the following two cases:
(1) ∃ i : si and ∀ k : (sk 6= si ∧ sk 6= si − 1 ∧ sk 6= si − 2) ∨ (sk 6= si ∧ sk 6=
si + 1 ∧ sk 6= si + 2). Assume wlog that sk 6= si ∧ sk 6= si − 1 ∧ sk 6= si − 2 then,

in the best case,

∑
sk≥si+3 pk(S)

|{k | sk ≥ si + 3}|
=

n− 4

m− 1
=
n− 4

n− 2
< 1, so S is not P1.

Otherwise, (2) ∃ i, j : si = sj and ∀ k : (sk 6= si ∧ sk 6= si − 1 ∧ sk 6= si − 2)
∨ (sk 6= si ∧ sk 6= si + 1 ∧ sk 6= si + 2). Assume wlog that sk 6= si ∧ sk 6=
si − 1 ∧ sk 6= si − 2 then, because S is P1 and P4, p(si, s−i) ≥ 1.33, hence,
pi(S) + pj(S) ≥ 2.66, therefore ∀ k : sk 6= si + 1 ∧ sk 6= si + 2. But then, in the

best case,

∑
sk≥si+3 pk(S)

|{k | sk ≥ si + 3}|
=

n− 5

m− 2
=
n− 5

n− 3
< 1, so S cannot be P1. 2

6.7.5. Proof (Proposition 6.3.5). (⇒) Assume S = (si, s−i) is NEp. Then,
by Claim 6.3.1, S is P1. Also, ∀ i : pi(si, s−i) ≥ pi(s

∗
i , s−i), hence, in particular,

∀ i : pi(si − 1, s−i) ≤ pi(si, s−i) ≥ pi(si + 1, s−i). (⇐) Assume S = (si, s−i) is
P1 and P4. Suppose S = (si, s−i) is not NE. Then ∃ i, l : l = s∗i → pi(si, s−i) <
pi(s

∗
i , s−i). If s∗i = si − 1, s∗i = si or s∗i = si + 1 we are done. Otherwise, we have

to consider the following (sub)cases:

(1) |h(l)| = 0, i.e. location l is empty, h(l) = {i | si = l},

(2) |h(l)| = 1, i.e. there is one player in l,

(3) |h(l)| = 2, i.e. there are two players in l.

Cases |h(l)| > 2 are, by Claim 6.3.3, impossible.

In each of the previous cases we have to consider two possibilities:

(.1) |h(si)| = 1, and



6.7. Appendix B: Proofs of Main Results 177

(.2) |h(si)| = 2, by Claim 6.3.3 |h(s1)| > 2 is also impossible.

For m = n− 1 we further have to consider four cases:

(..1) d− = 0, and d+ = 0, where d− = l − max({l′ | s−i < l} ∪ {0})

(..2) d− = 0, and d+ = 1, where d+ = min({l′ | s−i > l} ∪ {n})−l

(..3) d− = 1, and d+ = 0,

(..4) d− = 1, and d+ = 1, by Claim 6.3.4, d± > 1 are impossible.

We will consider the most representative cases and indicate when the remaining
ones behave in an analogous way.

Take case (1.1.1), by P1 we have pi(si, s−i) ≥ 1. But then pi(si, s−i) ≥
pi(s

∗
i , s−i) and this cannot be a payoff increasing unilateral deviation. Cases

(1.2.1), (2.1.1), (2.2.1), (3.1.1) and (3.2.1) behave analogously.
Take case (2.1.4) and consider the best case scenario in which h(l + 2) =

h(l − 2) = 1 then we have pi(s
∗
i , s−i) = 0.5 + 0.33 + 0.33 > 1. This might be

a payoff increasing unilateral deviation if, for instance, pi(si, s−i) = 1. However,
if 1 ≤ pi(si, s−i) < 1.16 then it should be the case that m + 1 > n, which is
in contradiction with the initial setting of the claim. Take case (1.1.2), as S is
P1 and P4, by Claim 6.3.3, S is P2, which is impossible. Cases (1.1.3), (1.1.4),
(1.2.2), (1.2.3) and (1.2.4) behave analogously.

Take case (2.1.2) by P1 we have pi(si, s−i) ≥ 1. But then pi(s
∗
i , s−i) ≤ 1

and this cannot be a payoff increasing unilateral deviation. Cases (2.1.3), (3.1.1),
(3.1.2), (3.1.3), and (3.1.4) behave analogously. Another possible scenario h(l +
2) = 1 and h(l − 2) = 2 (or vice versa). Then we have pi(s

∗
i , s−i) = 0.5 +

0.33 + 0.25 > 1. This might be a payoff increasing unilateral deviation if, for
instance, pi(si, s−i) = 1. However, if 1 ≤ pi(si, s−i) < 1.05 and S is P4 then
pk(sk, s−k) > 1, for any player k for which sk = l+ 2. If so, then it should be the
case that h(l+ 3) = 0 and this implies m+ 1 > n, which is in contradiction with
the initial setting of the claim. The final possibility is h(l + 2) = h(l − 2) = 2,
then we have pi(s

∗
i , s−i) = 0.5 + 0.25 + 0.25 = 1 which cannot produce a payoff

increasing unilateral deviation in a P1 profile.
Take case (2.2.4), again pi(s

∗
i , s−i) = 0.5 + 0.33 + 0.33 > 1 and this might be

a payoff increasing unilateral deviation even if S is P1. But then h(si + 1) = 0
or h(si − 1) = 0 and this implies m + 1 > n, which is in contradiction with the
initial setting of the claim. The remaining cases are similar. 2

6.7.6. Proof (Theorem 6.5.5). The first part of the proof is as in Proof 5.3.5.
For the probabilistic formulae: Suppose xZy and M |=x

∑n
i=1 qiDa(ϕi) ≥ q. Let

Ei = {v | M |=v ϕi} and E ′i = {v′ | M ′ |=v′ ϕi}. From xZx′ and Definition 6.5.4
we get ∃X ′ ∈ W ′ such that Da(x,X) ≤ D′a(y,X

′) & zag(X,X ′). By IH and



178 Chapter 6. Querying Strategies and Probabilities

zag(X,X ′) we obtain ∀v′ ∈ X ′ : M ′ |=v′ ϕi. Therefore X ′ ⊆ E ′i. Hence we have:
D′a(x

′)(X ′) ≤ D′a(x
′)(E ′i). And from this we can conclude, as desired, that:

Da(x)(Ei) ≤ D′a(x
′)(X ′) ≤ D′a(x

′)(E ′i)

The other direction is similar. 2

6.7.7. Proof (Theorem 6.5.6). First we will prove that M ′ is intersection
bisimilar with the initial model M , this is established by Lemma 5.3.5.

The rest of the proof consists in computing the new probability distributions.
The new probability distribution for any agent a ∈ A is constructed in three
stages from the previous probability distributions:

Line 20: After this step the following equality holds for any z ∈ [w]:

Dv(w) =
∑
w∈[w]

Dv(w) (by definition)

=
∑
z∈[w]

Dv(z) (because z ∈ [w])

= Dv(z) (by definition)

Line 21: After this step the following equality holds for any u ∈ [v]:

Dv([w]) = Dv(z) (for z = min([w]))

= Du(x) (for x ∈ [w], u ∈ [v] s.t. u ≈ x)

= Du(z) (because min([w]) = min([x]))

= Du([w]) (because z = min([w]))

Line 22: After this step the following equality holds for any u ∈ [v]:

D[v]([w]) = Dz([w]) (for z = min([v]))

= Du([w]) (for u ∈ [v] by the step 21)

= D[u]([w]) (because [v] = [u])

We now have to check that the newly constructed D′ is indeed a probability
distribution and that the M ′ construction is well defined. For this we need for all
[v], [w] ∈M ′ : D′[v]([w]) ≥ 0. And indeed we have:

D′[v]([w]) =
∑
w∈[w]

Dv(w) (by definition)

≥ 0 (because ∀ w ∈ W : Dv(w) ≥ 0)



6.7. Appendix B: Proofs of Main Results 179

We also have to check that for all [v], [w] ∈M ′ :
∑

[w]∈W ′ D
′
[v]([w]) = 1.

And indeed we have:

D′[v](W ) =
∑

[w]∈W

D′[v]([w]) (by definition)

=
∑

[w]∈W

∑
x∈[w]

D[v](x) (by definition and step 20)

=
∑

[w]∈W

∑
x∈[w]

Dv(x) (by definition and step 22)

=
∑
x∈W

Dv(x) (by additivity)

= 1 (as DM is a probability distribution)

Finally, we have to show for any X, Y ⊆ W ′ such that X ∩ Y = ∅ we have

D′[v](X ∪ Y ) = D′[v](X) +D′[v](Y )

And indeed we have:

D′[v](X) +D′[v](Y ) =
∑

[x]∈X

D′[v]([x]) +
∑
[y]∈Y

D′[v]([y]) (by definition)

=
∑

[x]∈X

∑
x∈[x]

D[v](x) +
∑
[y]∈Y

∑
y∈[y]

D[v](y) (by step 20)

=
∑

[x]∈X

∑
x∈[x]

Dv(x) +
∑
[y]∈Y

∑
y∈[y]

Dv(y) (by step 22)

= Dv(
⋃

[x]∈X

[x] ∪
⋃

[y]∈Y

[y]) (by additivity of Dv)

= D′[v](X ∪ Y ) (by Steps 21-3)

This completes the proof. 2





Chapter 7

Implementing Querying Strategies and
Probability

7.1 Implementation for Questioning Actions

We already mentioned two implementations that were used to model NEp in
LGl: Haskell and Alloy Analyzer. Haskell offers the advantages and versatility of
functional programming [25] and Alloy Analyzer [52] was used for characterizing
NEp in LGl. In this section we present and discuss further details about these
implementations. We will show how the Alloy code can be used to define relevant
properties of game profiles. And we will illustrate the Haskell implementation for
querying local properties of strategy profiles.

A final important aspect in designing good questioning strategies under un-
certainty is an account of probabilities. In the final part of this section we present
and document the implementation behind probabilistic DELq. One essential el-
ement in this extension is an adequate notion of behavioral equivalence and an
algorithm for minimizing probabilistic models, defined in the previous chapter.

The connection between questioning theory and implementation tools has
proved once more to be a fruitful one.

7.2 Implementation and Illustrative Examples

In this section we will briefly describe the Haskell implementation for local game
properties as list comprehension, explain its main functionality and use the code
to produce some illustrative examples.

7.2.1 Haskell Implementation

We start by importing basic Haskell functionality for list manipulation, line 3, and
some further functionality for generating various combinatorial functions, line 2.

181



182 Chapter 7. Implementing Querying Strategies and Probability

For instance, all possible strategy profiles in the location game can be gen-
erated by taking the cartesian product, line 6, of as many lists of all available
locations as there are players in the location game.

1 module LocGame where

2 import CombinatoricsGeneration

3 import List

4

5 allgames p l = cartProd $ take p $ repeat [1..l]

6 cartProd (set:sets) =

7 let cp = cartProd sets in [x:xs | x <- set, xs <- cp]

8 cartProd [] = [[]]

9

10 cangames p l = [x | x <- allgames p l, y<-[1..p-2],

11 x!!y >= (maximum (take (y) x)), x!!y <= (minimum (drop (y+1) x))]

As already explained in the text, the main task is to generate a search space
that contains only relevant profiles while still allowing for an efficient way of
finding Nash equilibria for the location game.

The next block of code gives the implementation of the main four local prop-
erties discussed as list comprehension over the canonical profiles.

13 p1games p l = nub [x | x <- cangames p l, minimum (map

14 (\y -> (payf x y (fromIntegral l) (fromIntegral p)))

15 [0..(fromIntegral p)-1]) >= 1 ]

16

17 p2games p l = nub [x | x <- cangames p l, maximum

18 (map (\y -> (hght x y)) [0..l]) <=2 ]

19

20 p3games p l = nub [x | x <- cangames p l, maximum

21 (map (\y -> (lftd x y)) [0..(fromIntegral p)-1]) <=1, maximum

22 (map (\y -> (rghd x y (fromIntegral l)))

23 [0..(fromIntegral p)-1]) <=1 ]

24

25 p4games p l = nub [x | x <- cangames p l,

26 dycg x (fromIntegral l) (fromIntegral p) == True ]

The rest of the code computes the payoff following the previously explained
definitions.

As an illustration of how this implementation approach works we present a
representative example in which local properties are used to restrict the relevant
search space for Nash equilibria profiles. The example also illustrates the fact
that a Nash equilibrium for pure strategies is not always guaranteed to exist in
the location game on a line.

*LocGame> cangames 3 5

[[1,1,1],[1,1,2],[1,1,3],[1,1,4],[1,1,5],[1,2,2],[1,2,3],[1,2,4],

[1,2,5],[1,3,3],[1,3,4],[1,3,5],[1,4,4],[1,4,5],[1,5,5],[2,2,2],[2,2,3],

[2,2,4],[2,2,5],[2,3,3],[2,3,4],[2,3,5],[2,4,4],[2,4,5],[2,5,5],[3,3,3],

[3,3,4],[3,3,5],[3,4,4],[3,4,5],[3,5,5],[4,4,4],[4,4,5],[4,5,5],[5,5,5]]



7.2. Implementation and Illustrative Examples 183

*LocGame> p1games 3 5

[[1,1,1],[1,1,4],[1,1,5],[1,2,2],[1,2,3],[1,2,4],[1,2,5],[1,3,3],[1,3,4],

[1,3,5],[1,4,4],[1,4,5],[1,5,5],[2,2,2],[2,2,3],[2,2,4],[2,2,5],[2,3,3],

[2,3,4],[2,3,5],[2,4,4],[2,4,5],[2,5,5],[3,3,3],[3,3,4],[3,3,5],[3,4,4],

[3,4,5],[4,4,4],[4,4,5],[5,5,5]]

*LocGame> p2games 3 5

[[1,1,2],[1,1,3],[1,1,4],[1,1,5],[1,2,2],[1,2,3],[1,2,4],[1,2,5],[1,3,3],

[1,3,4],[1,3,5],[1,4,4],[1,4,5],[1,5,5],[2,2,3],[2,2,4],[2,2,5],[2,3,3],

[2,3,4],[2,3,5],[2,4,4],[2,4,5],[2,5,5],[3,3,4],[3,3,5],[3,4,4],[3,4,5],

[3,5,5],[4,4,5],[4,5,5]]

*LocGame> p3games 3 5

[[1,2,4],[1,3,4],[1,3,5],[2,2,4],[2,3,4],[2,3,5],[2,4,4],[2,4,5]]

*LocGame> p4games 3 5

[]

We end this section with additional relevant code output. This includes ex-
amples of representative profiles satisfying P1 to P4 properties for the following
locations and players values l = p+ 2, l = p+ 3, and in general p < l:

*LocGame> nelg 5 3 *LocGame> nelg 6 4

[] [[2,2,5,5]]

*LocGame> nelg 7 5

[[2,2,3,5,6],[2,2,3,6,6],[2,2,5,6,6],[2,3,5,6,6]]

*LocGame> nelg 8 5

[[2,2,3,6,6],[2,2,3,6,7],[2,2,4,7,7],[2,2,5,7,7],[2,3,6,7,7],[3,3,6,7,7]]

*LocGame> nelg 10 9 *LocGame> nelg 10 2

[[2,2,3,5,5,7,7,9,9],[2,2,4,4,6,6,8,9,9]] [[5,5],[5,6],[6,6]]

*LocGame> nelg 11 5

[[2,2,4,9,9],[2,2,5,9,9],[2,3,6,9,9],[2,3,6,9,10],[3,3,6,9,9],

[3,3,6,9,10],[3,3,7,10,10],[3,3,8,10,10]]

*LocGame> nelg 11 6

[[2,2,3,6,9,9],[2,2,3,6,9,10],[2,2,5,6,9,9],[2,2,5,6,9,10],[2,2,5,7,9,10],

[2,2,5,7,10,10],[2,3,5,6,9,9],[2,3,5,6,9,10],[2,3,5,7,9,10],[2,3,5,7,10,10],

[2,3,6,6,9,9],[2,3,6,6,9,10],[2,3,6,7,9,10],[2,3,6,7,10,10],[2,3,6,9,10,10],

[3,3,6,6,9,9],[3,3,6,6,9,10],[3,3,6,7,9,10],[3,3,6,7,10,10],[3,3,6,9,10,10]]

*LocGame> nelg 11 10

[[2,2,3,5,5,7,7,9,10,10],[2,2,4,4,6,6,8,8,10,10]]

As discussed in the main text, using local properties allows for faster and
correct searching strategies using queries to an oracle, but without breaking the
threshold of efficiency. An efficient solution also will have to use a characterization



184 Chapter 7. Implementing Querying Strategies and Probability

of Nash equilibrium by local properties but additionally will have to make essential
use of fragments of strategy profiles.

7.2.2 Alloy Analyzer Implementation

We proceed now towards presenting the Alloy Analyzer implementation that pro-
vides a characterization of Nash equilibrium by local properties and tests this by
logical entailment in a specified scope.

We start by importing predefined Alloy modules for arithmetic operations
over integer numbers line 1, used for computing payoff values, and predefined
operations over orders, used to compare location signatures, line 2, and player
signatures, line 3, in a strategy profile.

Next we introduce the basic signatures needed to represent and reason about
location games. The signatures for locations, line 5, respectively for players, line
7, are atomic signatures without component fields representing the fact that they
do not have any relevant internal structure.

1 open util/integer

2 open util/ordering [Location]

3 open util/ordering [Player]

4

5 sig Location {}

6

7 sig Player {}

8

9 sig Game {

10 Locations : seq Location,

11 Players : seq Player,

12 Choice : Player -> one Location

13 }

The game signature, lines 9 to 13 has some internal structure represented by
three fields: a sequence of locations, a sequence of players and a function from
players to locations encoding choices made in the game, for each player.

The local properties defined and studied in the main text are going to be
introduced as facts over the previously described game signatures. The first
property, line 15, captures the canonical profiles. Any game is isomorphic up
to permutations of players to some canonical game. The constraints over game
signatures that are implementing this condition make use of the order relation
over players and their choices represented by the Locations field. Intuitively this
says that the player’s choices are ordered weakly increasing.

15 fact { --canonical games

16 all g : Game | all i,j : Player |

17 lt[i,j] => lte [g.Choice[i],g.Choice[j]]

18 }



7.2. Implementation and Illustrative Examples 185

The following blocks of code are dedicated to game constraints implementing
the local properties P1 to P4. For the sake of conceptual clarity we split them in
two clusters. The first will contain static properties which describe the charac-
teristics of a favorable strategy profile instance, and the second one will capture
dynamic properties or legal ways in which a profile can behave in terms of changes
in the field representing choice functions.

The first fact, line 20, implements property P1. Intuitively, this requires that
in any game signature any player has a payoff greater then or equal with a unit.
This relies on a definition of the payoff values in the game as fractional numbers
which will be introduced later. Because the payoff can be a fractional number
and Alloy only has predefined functionality for integers the payoff comparisons
will require utilities which are slightly more elaborate.

20 fact { --P1 : Minimum Payoff

21 all g : Game | all x : Player |

22 payoff_gt_3d[payoff_n_tot[g,x],1,payoff_d_tot[g,x],1]

23 or (div[payoff_n_tot[g,x],payoff_d_tot[g,x]] = 1 &&

24 rem[payoff_n_tot[g,x],payoff_d_tot[g,x]] = 0)

25 }

26

27 fact p2 { --P2 : Maximum Height

28 all g : Game | all i,j,k : Player |

29 i != j && i != k && j != k && g.Choice[i] == g.Choice[j] =>

30 g.Choice[k] != g.Choice[j]

31 }

32

33 fact p3 { --P3 : Maximum Distance

34 all g : Game | all x,y : g.Locations.inds -

35 {x : Int | some y : Location | some z : Player |

36 g.Locations.idxOf[y] == x && g.Choice[z] = y} | x != y-1

37 }

The second fact, line 27, implements property P2. Intuitively, this requires
that never more than two players occupy the same location in a game profile. This
is a straightforward translation of the first order formula expressing the tower
height property. Only quantification over players and their choices together with
equality and inequality are needed in order to express this fact.

The third fact, line 33, implements property P3. Intuitively, this says that
the maximum distance between occupied locations in a game is strictly smaller
than two. This is not a straightforward translation form the first order formula
expressing this property. Although such a translation is possible it is much eas-
ier encoded as a property of locations. For this the indexes of locations in the
sequence are used to perform simple arithmetic on their values. First the empty
locations in a game are selected by means of a set comprehension expression.
Next the condition that no difference between any two numbers in this set is
one is imposed. Here and in other places later on it is important to have index
values as integers in order to perform basic arithmetical operations, the ordering



186 Chapter 7. Implementing Querying Strategies and Probability

of locations alone would not be enough for this.

39 fact p4 { --P4 : Proximal Move

40 all x,y : Game | all z : Player |

41 not udev [x, y, z]

42 }

The next fact, line 39, implements property P4. This is the only property
describing the dynamics of the game. Intuitively, it says that no player has an
incentive for proximal move or unilateral deviation with one unit from his choice
in the considered strategy profile. This being a dynamic property, is implemented
in Alloy Analyzer in declarative style, by a predicate taking as input the precon-
dition game, the postcondition game and the relevant player. The following three
predicates provide an implementation for this as follows:

44 pred devleft [g,g’ : Game, p : Player] {

45 g.Locations == g’.Locations

46 g.Players == g’.Players

47 g’.Choice[p] == prev[g.Choice[p]]

48 all x : Player | p != x => g’.Choice[x] == g.Choice[x]

49 payoff_gt_3d[payoff_n_tot [g’, p], payoff_n_tot [g, p],

50 payoff_d_tot [g’, p], payoff_d_tot [g, p]]

51 }

52

53 pred devright [g,g’ : Game, p : Player] {

54 g.Locations == g’.Locations

55 g.Players == g’.Players

56 g’.Choice[p] == next[g.Choice[p]]

57 all x : Player | p != x => g’.Choice[x] == g.Choice[x]

58 payoff_gt_3d[payoff_n_tot [g’, p], payoff_n_tot [g, p],

59 payoff_d_tot [g’, p], payoff_d_tot [g, p]]

60 }

61

62 pred udev [g,g’ : Game, p : Player] {

63 devleft [g,g’,p] or devright [g,g’,p]

64 }

The predicate at line 44 defines a left unit unilateral deviation with incentive.
It specifies the fact that the Locations and Players fields in the pre and post
game signatures remain unchanged and the fact that the choice of the player
given as a parameter is changed from its initial location to the previous one in
the order, line 47. In the same time, this change is unilateral, that is, all the
other choices in the strategy profile remain unchanged, line 48.

The predicate at line 53 defines a right unit unilateral deviation with incentive.
It specifies the fact that the Locations and Players fields in the pre and post
game signatures remain unchanged and the fact that the choice of the player
given as a parameter is changed from its initial location to its successor in the
order, line 56. In the same time, this change is unilateral, that is, all the other
choices in the strategy profile remain unchanged, line 57.



7.2. Implementation and Illustrative Examples 187

An additional condition in both predicates is that the change comes with an
incentive, that is the payoff value in the postgame is greater than the payoff value
in the pregame, lines 49 and 58.

The last predicate in the block, line 62, puts together the previous ones to
define a left or right unit unilateral deviation with incentive. This is afterward
directly used to define the P4 property.

66 fun payoff_n_tot [g : Game, i : Player] : Int {

67 let th = tower_height[g, where[g, i]],

68 thl = tower_height_left_limit[g, i],

69 thr = tower_height_right_limit[g, i],

70 dl = left_dis_int_half[g,where[g,i]],

71 dr = right_dis_int_half[g,where[g,i]],

72 fl = rem[left_dis_int[g,where[g,i]],2],

73 fr = rem[right_dis_int[g,where[g,i]],2] |

74 let oone = add[1,add[dl,dr]] |

75 #left_of_occ[g,where[g,i]] != 0 &&

76 #right_of_occ[g,where[g,i]] != 0 =>

77 add[ mul[oone, mul[add[th,thl],add[th,thr]]],

78 add[mul[fl,mul[th,thr]],mul[fr,mul[th,thl]]]

79 ]

80 else

81 (#left_of_occ[g,where[g,i]] == 0 =>

82 add[ mul[(1+left_dis_int[g,where[g,i]]+dr),add[th,thr]],

83 mul[fr,th]]

84 else

85 (#right_of_occ[g,where[g,i]] == 0 =>

86 add[ mul[(1+right_dis_int[g,where[g,i]]+dl),add[th,thl]],

87 mul[fl,th]]

88 else

89 add[1, add[dl,dr]]

90 ))

91 }

The definition of both local properties P1 and P4 have made use of the payoff
values for specific choices in the game. So we have to introduce the way in which
this value is computed. Due to the fact that Alloy Analyzer is designed to handle
only integer numeric types and the payoff is a fractional number we will have to
represent the payoff value as a pair of integers.

The function at line 66 takes a game signature and a player and returns the
integer representing the numerator of the fraction that computes the payoff value
for the given player in the given game. The computation proceeds according to
the game definition by considering four relevant cases and using the splitting of
location payoff units according to the distances on the line and number of stacked
players and their proximal neighbors.

The function at line 93 takes a game signature and a player and returns the
integer representing the denominator of the fraction that computes the payoff
value for the given player in the given game. Again the computation proceeds



188 Chapter 7. Implementing Querying Strategies and Probability

according to the game definition by considering four relevant cases and using the
tower heights of the relevant locations in the game.

93 fun payoff_d_tot [g : Game, i : Player] : Int {

94 let th = tower_height[g, where[g, i]],

95 thl = tower_height_left_limit[g,i],

96 thr = tower_height_right_limit[g,i] |

97 #left_of_occ[g,where[g,i]] != 0 && #right_of_occ[g,where[g,i]] != 0

98 => mul[th, mul[ add[th,thl], add[th,thr] ]]

99 else

100 (#left_of_occ[g,where[g,i]] == 0 =>

101 mul[th, add[th,thr] ]

102 else

103 (#right_of_occ[g,where[g,i]] == 0 =>

104 mul[th, add[th,thl] ]

105 else

106 th

107 ))

108 }

Computing the fractional payoff value is only one aspect of analyzing the game
from a static perspective. Another important aspect is comparison between payoff
values, this can analyze the game from a dynamic perspective.

The function at line 110 takes four integers as arguments, representing, in
order, the nominator of the first fraction, the nominator of the second fraction,
the denominator of the first fraction and the denominator of the second fraction,
and returns true if the first fraction is greater then the second. The fractions are
representing payoff values and the comparison proceeds up to the third decimal
value. Note that for a maximum column height of two the first two decimals
should already be enough in order to decide the highest value.

The computation uses predefined alloy functionality for integer arithmetic like
multiplication, integer division and division reminder. These were imported in
the beginning from the util/integer module and are used to encode the result
of the fractional division as a rational number. This is needed because Alloy does
not have a predefined data structure for floating numbers.

For instance, when comparing 500
350

with 500
351

the result will be 1.42857 > 1.42450
and will be obtained by considering the first three decimal positions. This pro-
vides enough precision to be meaningful in the context of the location game.

110 pred payoff_gt_3d[n1,n2,d1,d2 : Int] {

111 div[n1,d1] > div[n2,d2] ||

112 (div[n1,d1] = div[n2,d2] &&

113 div[mul[10,rem[n1,d1]],d1] > div[mul[10,rem[n2,d2]],d2] ) ||

114 (div[n1,d1] = div[n2,d2] &&

115 div[mul[10,rem[n1,d1]],d1] = div[mul[10,rem[n2,d2]],d2] &&

116 div[mul[10,rem[mul[10,rem[n1,d1]],d1]],d1] >

117 div[mul[10,rem[mul[10,rem[n2,d2]],d2]],d2]) ||

118 (div[n1,d1] = div[n2,d2] &&

119 div[mul[10,rem[n1,d1]],d1] = div[mul[10,rem[n2,d2]],d2] &&



7.2. Implementation and Illustrative Examples 189

120 div[mul[10,rem[mul[10,rem[n1,d1]],d1]],d1] =

121 div[mul[10,rem[mul[10,rem[n2,d2]],d2]],d2] &&

122 div[mul[10,rem[mul[10,rem[mul[10,rem[n1,d1]],d1]],d1]],d1] >

123 div[mul[10,rem[mul[10,rem[mul[10,rem[n2,d2]],d2]],d2]],d2])

124 }

The following code blocks are dedicated to various computation for payoff
value. There is nothing remarkable about the functions, they proceed as expected
to capture the game definition. We include them here for the sake of completeness
but we will only briefly describe them without too much details.

126 fun where [g : Game, p : Player] : Location {

127 g.Choice[p]

128 }

129

130 fun tower_height [g : Game, l : Location]: Int {

131 #{x : Player | g.Choice[x] = l}

132 }

The function at line 126 takes a player and a game and returns its chosen
location. At line 130, the function takes a location and a game signature and
returns the number of players that have chosen the location. The function at line
134 takes a player and a game and returns the tower height of its right limit,
similarly, line 139, takes a player and returns the tower height of its left limit.

134 fun tower_height_right_limit [g : Game, i : Player]: Int {

135 where[g,i] = right_limit[g, where[g,i]] => 0

136 else tower_height[g,right_limit[g,where[g,i]]]

137 }

138

139 fun tower_height_left_limit [g : Game, i : Player]: Int {

140 where[g,i] = left_limit[g, where[g,i]] => 0

141 else tower_height[g,left_limit[g, where[g,i]]]

142 }

Next function, at line 144, takes a location and returns half of its left distance
as an integer number, similarly, line 148, takes a location and a game and returns
half of its right distance as an integer number.

144 fun left_dis_int_half [g : Game, l : Location] : Int {

145 div[left_dis_int[g, l],2]

146 }

147

148 fun right_dis_int_half [g : Game, l : Location] : Int {

149 div[left_dis_int[g, l],2]

150 }

The entire left distance is computed at line 152, the function takes a location
and a game and returns its left distance as a set of locations including limit
locations. Analogously, line 158, takes a location and returns its right distance
as set of locations including limits.



190 Chapter 7. Implementing Querying Strategies and Probability

152 fun left_dis [g : Game, l : Location] : Location {

153 no left_of_occ[g, l] => { x : Location | gt[x,left_limit[g, l]]

154 && lt[x,l]}+left_limit[g, l]

155 else { x : Location | gt[x,left_limit[g, l]] && lt[x,l]}

156 }

157

158 fun right_dis [g : Game, l : Location] : Location {

159 no right_of_occ[g, l] => { x : Location | lt[x,right_limit[g, l]]

160 && gt[x,l]}+right_limit[g, l]

161 else { x : Location | lt[x,right_limit[g, l]] && gt[x,l]}

162 }

In some contexts it is useful to consider the distance without the ending
locations. The function at line 164 takes a location and returns its left distance
as integer excluding limit locations. Analogously for the right side, the function
at line 168 takes a location and returns its right distance as integer again by
excluding the limit locations.

164 fun left_dis_int [g : Game, l : Location] : Int {

165 #(left_dis[g, l] - l)

166 }

167

168 fun right_dis_int [g : Game, l : Location] : Int {

169 #(right_dis[g, l] - l)

170 }

In the case of a location game on a line there are two locations with a special
behavior because they are the line endpoints. The function at line 172 takes a
location and returns its left limit or the least location i.e. the left endpoint of the
line or the minimal location. Symmetrically, the function at line 177, takes as
input a location and a game and returns its right limit or the greatest location,
i.e. the right endpoint of the line or the maximal location.

172 fun left_limit [g : Game, l : Location] : Location{

173 no left_of_occ[g, l] => min[Location]

174 else max[left_of_occ[g, l]]

175 }

176

177 fun right_limit [g : Game, l : Location] : Location{

178 no right_of_occ[g, l] => max[Location]

179 else min[right_of_occ[g, l]]

180 }

Another auxiliary function, line 182, takes a location and returns the occupied
locations to its left. Symmetrically, at line 186, the function takes a location and
returns the occupied locations to its right. Analogously the functions at lines 190
and 194 take as input the signatures of a location and a game and return the free
locations to the left and to the right, respectively.



7.2. Implementation and Illustrative Examples 191

182 fun left_of_occ [g : Game, l : Location] : Location {

183 { x : Location | lt[x,l] && some {y : Player | g.Choice[y] = x} }

184 }

185

186 fun right_of_occ [g : Game, l : Location] : Location {

187 { x : Location | gt[x,l] && some {y : Player | g.Choice[y] = x} }

188 }

189

190 fun left_of_free [g : Game, l : Location] : Location {

191 { x : Location | lt[x,l] && no {y : Player | g.Choice[y] = x} }

192 }

193

194 fun right_of_free [g : Game, l : Location] : Location {

195 { x : Location | lt[x,l] && no {y : Player | g.Choice[y] = x} }

196 }

The final predicate, line 198, used to capture the game dynamics records
arbitrary unilateral deviation with incentive. This is completely analogous to the
predicate characterizing the P4 property.

The difference is that this time the change of choice or the deviation in location
is an arbitrary one, it is not restricted to proximal locations but can be any
location in the game. This allows the predicate to be used in the characterization
of a Nash equilibrium strategy profile.

198 pred ne [g,g’ : Game, p : Player] {

199 g.Locations == g’.Locations

200 g.Players == g’.Players

201 g’.Choice[p] ! = g.Choice[p]

202 all x : Player | p != x => g’.Choice[x] == g.Choice[x]

203 payoff_gt_3d[payoff_n_tot [g’, p], payoff_n_tot [g, p],

204 payoff_d_tot [g’, p], payoff_d_tot [g, p]]

205 }

Based on this characterization the entailment between the local properties
and Nash equilibrium can be tested using a finite scope in Alloy Analyzer.

There are some additional constraints that do not correspond directly to the
local properties discuss so far but are needed in order to make the signatures
behave in the desired way. We include then here for the sake of completeness.

The first one, line 207, requires that players and locations are always part, i.e.
fields, in a game. The second one, line 210, requires that games always have the
same component fields. This is useful for comparing games.

207 fact{

208 all x : Player | some g : Game | x in g.Players.elems

209 all x : Location | some g : Game | x in g.Locations.elems

210 all x, y : Game | x.Locations==y.Locations && x.Players == y.Players

211 }

212



192 Chapter 7. Implementing Querying Strategies and Probability

213 fact{

214 all g : Game | all x,y : Location | gt[x,y] =>

215 g.Locations.idxOf[x] > g.Locations.idxOf[y]

216 all g : Game | not g.Locations.hasDups

217 all g : Game | all x,y : Player | gt[x,y] =>

218 g.Players.idxOf[x] > g.Players.idxOf[y]

219 all g : Game | not g.Players.hasDups

220 }

221

222 run {} for 5 but 4 Player, 10 int

Finally, a requirement that makes many of the calculations easier is that the
order over the Player and Location signatures and the sequence indexing are
bijective, line 213. In this way sequence indexes can be used to perform basic
arithmetic operations on locations in the game.

This useful correspondence is also illustrated in Figure 7.1 which is the Alloy
representation of the example in Figure 6.1 already discussed on page 164.

For instance the run at line 222 checks if the predicates implementing local
properties, are consistent, that is, it tries to generate an example satisfying all the
local properties. More concretely, an instance obtained by running a predicate is
an assignment that makes all the facts of the model true. These can be explicit
facts, in our implementation the fact paragraphs at lines 15, 20, 27, 33, 39, 207
and 213, but also implicit facts contained in the declarations used for the defined
signatures and their component fields, like for instance the requirement at line
12, specifying the fact that the players choose a unique location.

The variables assigned in an instance contain the sets associated with the
signatures, the relations associated with the fields and the arguments of the pred-
icates. The output details for running the predicate are included in the following
output block. The run specifies a limited scope in which Alloy tries to find such
an example. The scope is a muti-dimensional space of test cases in which each
dimension is a bound for the variables in the constraint. In this case the scope
specifies a bound of five for the signature representing game locations, and the
number of players is limited to four so that the game conditions are captured.

A final clause specifies the maximum integer value, in this case ten as needed
in the previously explained payoff computing function.

When the analysis finds an instance satisfying the specifications this can be
visualized as a graph, as illustrated below in Figures 7.2 and 7.1.

The provided output contains useful information about the structure of the
signatures considered and about the syntactic structure of the clause generated
and fed to the SAT solver:

> Executing "Run run$1 for 5 but 10 int, 4 Player"

Sig this/Player scope <= 4

Sig ordering/Ord scope <= 1

Sig open$3/Ord scope <= 1

Sig this/Location scope <= 5



7.2. Implementation and Illustrative Examples 193

Sig this/Game scope <= 5

Sig this/Location forced to have exactly 5 atoms.

Sig this/Player forced to have exactly 4 atoms.

Sig this/Location == [[Location$0], [Location$1], [Location$2],

[Location$3], [Location$4]]

Sig this/Player == [[Player$0], [Player$1], [Player$2], [Player$3]]

Sig this/Game in [[Game$0], [Game$1], [Game$2], [Game$3], [Game$4]]

Sig ordering/Ord == [[ordering/Ord$0]]

Sig open$3/Ord == [[open$3/Ord$0]]

Solver=sat4j Bitwidth=10 MaxSeq=5 SkolemDepth=1 Symmetry=20

1407216 vars. 375 primary vars. 6253223 clauses. 1262515ms.

Instance found. Predicate is consistent. 8212566ms.

The output specifies first the variables used to formulate the constraint, these
can be explicitly defined signatures like the location and players in the game or
predefined signatures for orders and sequences.

For each signature used there is a bound that defines the multi-dimensional
space of test cases in which an exhaustive search for assignments of variables
satisfying the constraint is going to be performed.

Figure 7.1: An instance of the LG model projected over the Game signature

The way Alloy Analyzer works can be regarded as a constraint solver for the
relational logic behind the Alloy syntax. The concrete steps are rather those of
a compiler: first the constraint is formulated using the signatures and fields de-
scribing the model and the defined predicates, next this is translated in a boolean
formula over the specified scope, this translation uses standard techniques like
skolemization and the fact that the scope is finite to convert formulae containing



194 Chapter 7. Implementing Querying Strategies and Probability

Figure 7.2: An instance of the LG model projected over Game and Int signatures

quantifiers to disjunctions over the range of the scope. Also, various strategies to
improve performance by reducing the search space based on symmetries between
all possible variable assignments are also employed at this stage.

The final step is to feed the obtained boolean formula to a ‘off the shelf’ SAT-
solver that tries to find a satisfying assignment, which is then translated back in
the Alloy relational logic and used to construct and visualize the relational struc-
ture representing the instance. The last three lines in the previous output contain
information about the SAT-solver used, the number of variables and clauses, and
the solving parameters and total time. If needed some of these parameters can be
changed as the analysis requires. See [52] for a detailed description of the analysis
process and the theoretical foundations of its logical background.

Besides running a predicate in order to find an example, Alloy Analyzer can
also check an assertion in order to find a counterexample. In this case the anal-
ysis will also perform an exhaustive search inside the multi dimensional space
of test cases specified by the scopes of signatures and relevant parameters. The
difference is now that the searching involves a refutation, that is, it tries to find
an assignment that makes the facts of the model true but the assertion false. If
no such instance is found then the assertion is valid within the scope.

For instance the following assertion can be used to justify the entailment from
Corollary 6.3.6 within a limited scope.

224 assert char {

225 all g, g’ : Game, p : Player | not ne[g,g’,p]

226 }

227

228 check char for 5 but 4 Player, 10 int



7.3. Implementing Probabilistic Extensions 195

In this case the scopes bounds are specified as in the case of the previous
predicate as can be seen in the following output:

$ Executing "Check char for 5 but 10 int, 4 Player"

Sig this/Player scope <= 4

Sig ordering/Ord scope <= 1

Sig open$3/Ord scope <= 1

Sig this/Location scope <= 5

Sig this/Game scope <= 5

Sig this/Location forced to have exactly 5 atoms.

Sig this/Player forced to have exactly 4 atoms.

Sig this/Location == [[Location$0], [Location$1], [Location$2],

[Location$3], [Location$4]]

Sig this/Player == [[Player$0], [Player$1], [Player$2], [Player$3]]

Sig this/Game in [[Game$0], [Game$1], [Game$2], [Game$3], [Game$4]]

Sig ordering/Ord == [[ordering/Ord$0]]

Sig open$3/Ord == [[open$3/Ord$0]]

Solver=sat4j Bitwidth=10 MaxSeq=5 SkolemDepth=1 Symmetry=20

1527795 vars. 389 primary vars. 6833561 clauses. 707222ms.

No counterexample found. Assertion may be valid. 171107ms.

The last three lines contain again information about the SAT solver param-
eters, and variables and clauses used. These are also as explained before. The
only new content is in the last line, this time the goal is to find counterexamples
for the assertion. The analyzer reports that no counterexample has been found
for the assertion. This is not a result that implies that the assertion is valid for
any scope, it just implies validity inside the bounded scope considered and gives
some confidence about the general case as many of the remaining models might
share the same properties.

7.3 Implementing Probabilistic Extensions

In this section we will introduce the implementation behind the probabilistic ex-
tension for DELQ discussed in the previous chapter. Some outstanding features
of the implementation are: modeling the dynamics of epistemic updates via ques-
tioning actions in a probabilistic setting, intuitive display of issue-epistemic mod-
els and questioning action models both enriched with probabilistic components
and for the results of update operations, model checking of issue-epistemic prob-
abilistic formulae in issue-epistemic probabilistic structures. The main module
QPRO.lhs is a literate Haskell program [55, 68], building on previously explained
issue-epistemic functionality from the DELQ.lhs module, and using specific func-
tionality for probabilistic functional programming from [27].

We briefly describe the module implementing probabilistic extensions for DELQ
and include some representative illustrations of situations that can be modeled
with the probabilistic extensions and we refer to the electronic version of this
thesis for the rest of the code and further illustrations.



196 Chapter 7. Implementing Querying Strategies and Probability

The following modules are part of the main QPRO.lhs module:

DELQ.lhs The module that defines the data structures and the standard function-
ality for the dynamic epistemic logic of questions. These definitions are
behind the theoretical aspects introduced in Chapter 2, where their intu-
itive meaning is introduced and discussed extensively. The details of the
implementation itself have been minutely presented in the previous section.

Probability The module that defines data structures and functionality for probabilistic
functional programming. The full details of the definitions and functions
contained in this module are presented and illustrated in [27]. In this sec-
tion we will only focus on presenting the details of the part containing
functionality that is relevant for DELQ. The main components containing
DELQ specific functionality are the definition of a probability distribution,
functions that generate probability distributions over a state space, func-
tionality for testing and retrieving probabilistic values for specified events in
a distribution. Such functions are used to enrich issue-epistemic structures
already defined with a new probabilistic component.

QPRO.lhs The module that contains data structures and the core functionality for
defining and working with probabilistic issue-epistemic models. The previ-
ous DELQ-specific data structures are enriched with intuitively adequate
probability distributions for both action structures and models of possible
worlds. Also corresponding upgrade operations between such structures are
defined in a way that handles the new probabilistic aspects in an adequate
way for both epistemic considerations but also taking into account technical
aspects concerning the new issue relation.

7.3.1 The Probability.lhs Module

We will introduce and explain the bare minimum required to understand the part
of the Probability module that was used for the extension of standard DELQ
functionality with probabilistic features. The rest of the code does not have a
direct use in our QPRO.lhs module and therefore it will be skipped here. The full
code is available, explained and illustrated in [27].

The module starts with importing standard Haskell functionality available
in Prelude, lines 231-236, basic and more advanced list functionality, a module
to generate and work with random numbers, standard monadic definitions and
functions and input-output classes and display utilities.

230 module Probability where

231 import List (sort,sortBy,transpose)

232 import ListUtils

233 import qualified Random

234 import Monad

235 import Foreign (unsafePerformIO)

236 import Show



7.3. Implementing Probabilistic Extensions 197

The code starts by introducing a couple of auxiliary definitions that set-up
the abstract framework for working with probabilities in general. We will also
insert along the way comments about how this general framework is instantiated
for the particular case of issue-epistemic structures.

The first definition is for an abstract event type, line 238, this can be a subset
of the probability state space, implemented as a function from an arbitrary type
a to a boolean value. This works as a selection function, separating states in
which the event occurs from those in which it does not. In the setting of an
IEM, the state space will be the domain of the model or an equivalence class in
the information partition of an agent and the selection function performs model
checking. An event will be represented as a subset thereof, separated by a formula
true at the state, or a corresponding disjunction of nominals.

A probability values are represented as Float numbers, line 242, and the
probability type is introduced by a corresponding constructor in line 240. A
probability distribution is then defined using unD in line 244 as a list of pairs
in which the first element is an arbitrary type a and the second is a probability
representation. The new type Dist, line 244, is used for constructing probability
distributions. These are going to be added as a new component in PIMs.

238 type Event a = a -> Bool

239

240 newtype Probability = P ProbRep

241

242 type ProbRep = Float

243

244 newtype Dist a = D {unD :: [(a,ProbRep)]}

245

246 instance Monad Dist where

247 return x = D [(x,1)]

248 d >>= f = D [(y,q*p) | (x,p) <- unD d, (y,q) <- unD (f x)]

249 fail _ = D []

250

251 instance Functor Dist where

252 fmap f (D d) = D [(f x, p) | (x,p) <- d]

The basic monadic laws: return, binding and fail are introduced for probability
distributions in lines 246-249. Also a probability distribution can be mapped over
and is an instance of the Functor class, line 251.

254 mkD :: [(a,ProbRep)] -> Dist a

255 mkD = checkD . D

256

257 onD :: ([(a,ProbRep)] -> [(a,ProbRep)]) -> Dist a -> Dist a

258 onD f = D . f . unD

259

260 normBy :: Num b => (a -> a -> Bool) -> Dist a -> Dist a

261 normBy f = onD $ accumBy f . sort



198 Chapter 7. Implementing Querying Strategies and Probability

Several auxiliary functions for constructing and working with probability dis-
tributions follow in the code. We only mention here the ones that are most
relevant for adding probabilities to issue-epistemic structures.

The function mkD takes a list of pairs of states and probabilities and returns a
probability distribution after checking some specific properties of the probability
values, like the fact that they add up to one, or signals an error if this is not
the case, line 254. The function onD, line 257, is used to transform a probability
distribution by a given function on distributions. The function normBy, line 260,
is used to normalize an input distribution by a given grouping function.

263 type Spread a = [a] -> Dist a

264

265 uniform :: Spread a

266 uniform = shape (const 1)

267

268 enum :: [ProbRep] -> Spread a

269 enum ps xs = mkD $ zip xs ps

270

271 enumPC :: [ProbRep] -> Spread a

272 enumPC ps = enum (map (/100) ps)

Various operations on probability distributions are available in the module
like, for instance, taking the product of independent distributions, printing a
probability distribution, etc. Since they are not directly relevant for our purpose
here we do not include them, and refer to [27] for all details.

Some relevant functions are included in the final code block. They are centered
around the Spread datatype, line 263. It contains a generator for a probability
distributions of various sorts used in standard applications, normal distributions,
linear, uniform, etc. The probability generators that we will use more often are
the uniform distribution and the enumeration distribution.

The first one, line 266, creates a uniform distribution over a given domain
by spreading evenly probability values over all entities. This will be used for
instance for creating a uniform probability distribution over an equivalence class
inside an information partition, to reflect either issue equivalence between events
of epistemic uncertainty between worlds.

Another useful function generates a probability distribution from a list of ar-
bitrary values and a list of states, line 268. This is particularly useful to model
specific scenarios that have predefined probabilistic parameters. Finally, the func-
tion defined in line 271 is creating a percentage-based probability distribution
from a list of numeric values given as input.

In order to be useful in practice for modeling realistic scenarios of issue-
epistemic interaction probability distributions have to be suitable for various
transformations and their domain and evolving values have to be available for
testing at various stages of the dynamic evolution. In line 274 a probabilistic
transition type is defined as a function that takes an input value to a probability



7.3. Implementing Probabilistic Extensions 199

distribution. Extracting and mapping the domain of a probabilistic distribution
is also a functionality that comes in handy in various contexts, its definition is
given in line 276 by mapping over the first elements in the distribution.

Last but not least, a test function capable of retrieving the probability values
for a given event describing the issue or epistemic situation under consideration in
the intended scenario to be modeled is also provided in the module. It is defined
as an infix operator with priority 8, line 279, and takes as input an event, i.e.
subset of the domain together with a probability distribution over the domain
and retrieves its occurrence probability, see line 281.

274 type Trans a = a -> Dist a

275

276 extract :: Dist a -> [a]

277 extract = map fst . unD

278

279 infix 8 ??

280

281 (??) :: Event a -> Dist a -> Probability

282 (??) p = P . sum . filter (p . fst) . unD

With all these in place the code can deal extremely efficiently with representing
and solving standard problems in probability domains. For instance a problem
like the following one only takes half a line of code to be solved:

> (==[Q,K,A]) ?? select 3 [A,K,Q,A,K]

6.7%

“Given a deck of five cards containing one queen, and two of both aces
and kings, what is the probability of drawing a queen, a king and an
ace, in this order and without putting them back in the deck?”

Even more complex probabilistic scenarios and famous puzzles like, for in-
stance, the Monty Hall problem or the Riddle of the Quiz-Master are easily and
elegantly handled by the explained code. We refer to [27] for a complete list of
such illustrations and further applications.

To proceed towards our main purpose we will continue with showing how the
functionality presented so far can be put to work in the context of our dynamic
logic of questions. We do this in the next section by constructing line by line
both static probabilistic issue structures and upgrade action model that enable
probabilistic dynamics in multi-agent contexts.

7.3.2 The QPRO.lhs Module

The module preamble starts by making the specific DELQ functionality available,
lines 2-9. This has been already explain in previous chapters of this thesis (see
Chapters 2 and 3). On top of the explained DELQ functionality, probabilistic
specific functionality is made available by importing the Probability module
which was already discussed and further standard Haskell modules, lines 10-13.



200 Chapter 7. Implementing Querying Strategies and Probability

1 module QPRO where

2 import Syntax

3 import Structures

4 import BinaryRel

5 import Semantics

6 import Upgrade

7 import Shortcuts

8 import Display

9 import DELQ

10 import Probability hiding (choose)

11 import Monad (liftM)

12 import List

13 import qualified Data.Set as Set

The main task ahead will be to bridge the issue-epistemic structures and
probabilistic patterns from previous sections. This will be achieved in stages, by
adding state-dependent probability distributions to issue-epistemic models, and
by enriching model transformations with upgrade rules for probabilistic actions.
All these will use the code patterns introduced and discussed so far.

15 worldindex m w = (elemIndices w (sort (dom m)))!!0

16

17 reornameq :: EIM (Integer,Integer) -> EIM Int

18 reornameq m@(Eim w a q k v p) =

19 Eim w’ a’ k’ q’ v’ p’

20 where

21 w’ = foldr (++) [] (map (\x -> (elemIndices x (sort w))) (sort w))

22 a’ = a

23 k’ = foldr (++) [] (map (\x -> (zip3

24 (replicate (length (relK x m)) x) (

25 map (worldindex (m)) (map fst (relK x (m)))) (

26 map (worldindex (m)) (map snd (relK x (m)))))) a)

27 q’ = foldr (++) [] (map (\x -> (zip3

28 (replicate (length (relQ x m)) x) (

29 map (worldindex (m)) (map fst (relQ x (m)))) (

30 map (worldindex (m)) (map snd (relQ x (m)))))) a)

31 v’ = zip w’ (map snd v)

32 p’ = foldr (++) [] (map (\x->(elemIndices x (sort p))) (sort p))

After a product upgrade the domain of an IEM consists of pairs of worlds
and events, however, many of the utilities introduced before are easier to keep
track of as atomic states. The function in line 15 returns the world-index after
sorting the domain. This is later used in the reordnameq function which takes
an issue-epistemic model and returns it reordered and renamed, lines 17-32.

Line 34 introduces and defines the structure that will be used as an illustrative
example in this section, it is the result of a questioning upgrade, as defined
previously, using the structures m0 and q0 already introduced in previous sections,
also the function is setting the actual world to 0.



7.3. Implementing Probabilistic Extensions 201

34 mp = (actual (reornameq (upgradeq m0 q0)) 0)

35

36 actual :: EIM Int -> Int -> EIM Int

37 actual m@(Eim dom agts accs eqqs val act) w = (Eim dom agts accs eqqs val act1)

38 where

39 act1 = [w]

40

41 qpart :: EIM Int -> Agent -> [[Int]]

42 qpart m a = rel2partition (dom m) (relQ a m)

43

44 kpart :: EIM Int -> Agent -> [[Int]]

45 kpart m a = rel2partition (dom m) (relK a m)

46

47 qcell :: EIM Int -> Int -> Agent -> [Int]

48 qcell m w a = head (filter (elem w) (qpart m a))

49

50 kcell :: EIM Int -> Int -> Agent -> [Int]

51 kcell m w a = head (filter (elem w) (kpart m a))

52

53 pqpart :: EIM Int -> Int -> Agent -> Dist Int

54 pqpart m w a = uniform (qcell m w a)

55

56 pkpart :: EIM Int -> Int -> Agent -> Dist Int

57 pkpart m w a = uniform (kcell m w a)

The actual function at lines 36-39, sets the set of actual states to a singleton
given as input. This is important for working with questions with mutually
exclusive answers represented by a cover instead of a partition.

The pair of functions line 41 and line 44 take an epistemic model and an agent,
and return the issue respectively the information partition of the agent. Even
more specific, the following pair of functions at line 47 and line 50 take as input
an issue-epistemic model an agent and a world and return the equivalence class
to which the world belongs to in the issue or information partition, respectively.

The first encounter with a probability distribution takes place in the pair of
functions from line 53 and line 56, these take as input an issue-epistemic model an
agent and a world and return a uniform probability distribution over the agent’s
issue respectively information cell containing the world. This is the simplest way
to create a distribution, and we will use it hereafter for illustrative purposes, more
ways of generating probabilities can be used if needed, for instance by enumeration
of arbitrary values, by a normal distribution, etc. as discussed before.

The following output illustrates how these functions work on the concrete
example introduced before at line 34.

*QPR> qpart mp a

[[0,5],[1,3],[2,6],[4,7]]

*QPR> qcell mp 1 a

[1,3]



202 Chapter 7. Implementing Querying Strategies and Probability

*QPR> pqpart mp 1 a

1 50.0%

3 50.0%

Changing probabilities via issue-epistemic dynamics is done by extracting and
performing computations on relevant values. The function at line 59 provides
a translation by turning a probability into a float number. In issue-epistemic
contexts it is most often of importance to be able to manipulate values across
cells of equivalence relations. The functions introduced at lines line 62 and line
66 provide this utility for each of the relevant binary relations by retrieving the
cell’s probability distribution as floating number values.

59 p2fl :: Probability -> ProbRep

60 p2fl p@(Probability.P n) = n

61

62 flqpart :: EIM Int -> Int -> Agent -> [Float]

63 flqpart m w a = map (\x -> p2fl

64 ((??) (==x) (pqpart m w a))) (qcell m w a)

65

66 flkpart :: EIM Int -> Int -> Agent -> [ProbRep]

67 flkpart m w a = map (\x -> p2fl

68 ((??) (==x) (pkpart m w a))) (kcell m w a)

The last step in building a probabilistic issue-epistemic model is done by lifting
the probability distribution to the whole domain in a way that is consistent with
both the issue and information partitions. The pair of functions starting from lines
70 respectively 76 take an issue-epistemic model, a world and an agent and use the
preexisting issue or information structure to generate automatically a probability
distribution on the domain. This probability distribution is generated in such a
way that it remains intuitively adequate for the agent’s local perspective, but this
is only an empirical requirement that provides an adequate description. However,
it is also possible to generate other kinds of probability distributions.

70 distwq :: EIM Int -> Int -> Agent -> Dist Int

71 distwq mg w a = enum (take (length (dom mg \\ qcell mg w a))

72 (repeat 0) ++

73 (flqpart mg w a)) ((dom mg \\ qcell mg w a) ++ qcell mg w a)

74

75 distwk :: EIM Int -> Int -> Agent -> Dist Int

76 distwk mg w a = enum (take (length (dom mg \\ kcell mg w a))

77 (repeat 0) ++

78 (flkpart mg w a)) ((dom mg \\ kcell mg w a) ++ kcell mg w a)

The following output continues the series of intuitive illustrations for the way
in which the previously explained functions work in the context of the concrete
issue-epistemic model now enriched with probabilistic components.

In the process of adding probabilistic components we make crucial use of
the testing and display utilities discussed before, put to work now on various



7.3. Implementing Probabilistic Extensions 203

components inside the model under consideration.

*QPR> (??) (==1) (pqpart mp 1 a)

50.0%

*QPR> p2fl ((??) (==1) (pqpart mp 1 a))

0.5

*QPR> flqpart mp 1 a

[0.5,0.5]

One noticeable feature of the setting used so far is that all the worlds in the
same issue partition cell have a positive probability while all the worlds outside
the locally relevant partition cell receive a zero probability. Throughout the
information or issue cells the values are uniformly distributed and this is done
consistently for all worlds in the model and all agents. This is adequate for settings
in which all questioning actions are distinguished but the framework allows for
more variation to obtain an adequate model for indistinguishable questioning and
resolution actions as discussed before.

*QPR> distwq mp 1 a

1 50.0% 3 50.0% 0 0.0% 2 0.0% 4 0.0% 5 0.0% 6 0.0% 7 0.0%

*QPR> distwq mp 5 b

0 50.0% 5 50.0% 1 0.0% 2 0.0% 3 0.0% 4 0.0% 6 0.0% 7 0.0%

It is time to put all these together in a function that initializes a probabilistic
issue-epistemic model, lines 79-84 do exactly this: for any issue-epistemic struc-
ture given as input a new one is generated with an additional probabilistic struc-
ture which is intuitively adequate in the sense just discussed. We use here this
distribution for illustrative purposes but it is not the only possibility to consider
for an initial probability distribution, many other candidates can be empirically
adequate in different contexts, for instance, an enumeration distribution.

79 initPM :: EIM Int -> PIM Int

80 initPM mg@(Eim dom agts accs eqqs val act) = Pim

81 dom agts accs eqqs prob val act where

82 { prob = (foldr (++) [] (map (\y -> (zip3 (take

83 (length dom) (repeat y)) dom (map (\x ->

84 distwk mg x y) dom))) agts ))}

85

86 data PIM state = Pim

87 [state]

88 [Agent]

89 [(Agent,state,state)]

90 [(Agent,state,state)]

91 [(Agent,state,Dist state)]

92 [(state,[Prop])]

93 [state]

94 deriving (Eq,Show)

Next, the data structure for probabilistic issue epistemic models is defined
from line 86 to line 94: previous components in the structures remain unchanged,



204 Chapter 7. Implementing Querying Strategies and Probability

as they were explained several times in previous sections, the only new compo-
nent is a list of triples containing an agent label a state name and a probability
distribution over the states in the domain of the model.

96 relKp :: Agent -> PIM state -> Rel state

97 relKp a m@(Pim _ _ acc _ _ _ _) =

98 [ (x,y) | (ag,x,y) <- acc, a == ag ]

99

100 relQp :: Agent -> PIM state -> Rel state

101 relQp a m@(Pim _ _ _ eqq _ _ _) =

102 [ (x,y) | (ag,x,y) <- eqq, a == ag ]

Two auxiliary functions used to retrieve the binary relations for issue, line 100,
and for uncertainty, line 96, but now from a probabilistic model, are introduced
next. These are useful for converting the components of a probabilistic structure
in an easier to show list of numeric values. This display conversion is performed
by the function between the lines 104-110.

Finally, these can be displayed on the screen in a readable fashion by the
function on line 112. The standard DELQ components are displayed in an anal-
ogous way to what we presented before, for the new probabilistic components
the display functions from the Probability module are employed to display the
probability distribution for each world in the domain.

104 showS5qp :: (Ord state, Show state) => PIM state-> [String]

105 showS5qp m@(Pim dom ags acc eqq prb val act) =

106 [show dom] ++ [show val] {-map show val-} ++

107 map show [(a, (rel2partition dom) (relKp a m)) | a <- ags]

108 ++ [show act] {-[" "] -} ++

109 map show [(a, (rel2partition dom) (relQp a m)) | a <- ags]

110 ++ map show prb

111

112 dppq :: (Ord state, Show state) => PIM state-> IO()

113 dppq = putStrLn . unlines . showS5qp

The next obvious step at this stage is to add probabilistic components to
issue-epistemic action structures. The data structure for these extended event
models is defined at lines 115-122. It has the customary DELQ components as
discussed before plus two new probabilistic components.

The first probabilistic component is a list of pairs of pairwise inconsistent
issue-epistemic formulae and probability distributions on the domain of states
representing events. It replaces a precondition function for event execution by
an occurrence probability for events. This is similar with structures used in [94]
but now using a language with issue modalities and nominals which allow an
expressive level adequate to model complex questioning actions.

115 data PQM state = Pqm

116 [state]

117 [Agent]

118 [(Agent,state,state)]



7.3. Implementing Probabilistic Extensions 205

119 [Formq]

120 [(Formq,Dist state)]

121 [(Agent,state,Dist state)]

122 deriving (Eq,Show)

The second probabilistic component is a list of triples in which the first com-
ponent is an agent, the second is a state, which might be any epistemic event, a
question, a message, and so forth, and a probability distribution over the events.
This represents the subjective probability of the agents with regard to what subset
of the events takes place in a dynamic action.

The function initPAq, lines 124-131, is used to generate automatically prob-
abilistic action models. It takes as input a list of agents, a list of events and a list
of propositional formulas, respectively, and returns a probabilistic update model.

The following triple of auxiliary functions, at line 133, line 136 and line 139,
are used to retrieve the three relevant probabilistic components from a given
issue-epistemic structure: the set of mutually inconsistent formulae representing
preconditions, the list of pairs of formulae and probability values representing
occurrence probabilities and the list of triples of agents, events, and probability
distributions on the domain representing subjective expectations.

124 initPAq :: (Num state, Enum state) =>

125 [Agent] -> [state] -> [Formq] -> (PQM state)

126 initPAq ags events precs =

127 (Pqm events ags accs precs precprobs probs) where

128 accs = [(ag,st1,st2) | ag <- ags,

129 st1 <- events, st2 <- events]

130 precprobs = [(prec,(uniform events)) | prec <- precs]

131 probs = [(ag,ev,(uniform events)) | ag <- ags, ev <- events]

132

133 precs :: PQM state -> [Formq]

134 precs pam@(Pqm _ _ _ precs _ _) = precs

135

136 precprobs :: PQM state -> [(Formq,Dist state)]

137 precprobs pam@(Pqm _ _ _ _ precprobs _) = precprobs

138

139 probabilities :: PQM state -> [(Agent,state,Dist state)]

140 probabilities pam@(Pqm _ _ _ _ _ precs) = precs

The basic unit to work with during the computations involved in a dynamic
upgrade of probability measures will be the individual probabilistic value that a
given agent assigns at a local state to another world or set of worlds or events to
be the case. The function defined between lines 142 and 146 performs the task
of extracting this value for further manipulation.

142 prob_ag_evt1_evt2 :: Eq state =>

143 PQM state -> Agent -> state -> state -> Probability

144 prob_ag_evt1_evt2 m a e1 e2 = (??) (==e2) (trd33 (

145 (filter (\y->(snd33 y == e1)) (filter (\x -> (fst33 x) == a)

146 (probabilities m)))!!0))



206 Chapter 7. Implementing Querying Strategies and Probability

147

148 pim2eim :: PIM state -> EIM state

149 pim2eim m@(Pim dom agt acc eqq prb val act) =

150 Eim dom agt acc eqq val act

In certain contexts it becomes useful to detach a model from its probabilistic
content before further processing it, the function at line 148 provides this utility.
In order to compute the local perspective for a dynamic probabilistic action it is
important to select the list of preconditions that are true at the given state, the
function starting at line 152 does exactly this.

152 trueprecs :: Ord state =>

153 PQM state -> PIM state -> state -> [Formq]

154 trueprecs qm m w = filter (\x ->

155 models (pim2eim m) w x) (precs qm)

156

157 statepre :: PIM Int -> PQM Int

158 -> Int -> Int -> Probability

159 statepre pim pam state event | trueprecs pam pim state ==

160 [] = Probability.P 0.0

161 | otherwise =

162 (??) (==event) (snd ((filter (\x -> (fst x) ==

163 (trueprecs pam pim state)!!0) (precprobs pam))!!0))

The events represented by preconditions which turn out false at the given
world will be assigned a zero probability by the statepre function, lines 157-163.

*QPR> prob_ag_wrd1_wrd2 mpp a 1 2

12.5%

*QPR> statepre mpp sample 4 2

50.0%

*QPR> prob_ag_evt1_evt2 sample a 1 2

50.0%

The previous and following outputs illustrate the most relevant of the func-
tions discussed until now using our working example so far.

*QPR> statepre mpp sample 3 1

50.0%

*QPR> statepre mpp sample 4 2

50.0%

*QPR> statepre mpp sample 1 1

0.0%

Finally, we have come to the point in which we have all the necessary ingredi-
ents to introduce the probabilistic update operation. The function product2, line
164, does this pointwise starting from seven arguments: an agent, a probabilistic
issue-epistemic structure, a probabilistic questioning action model, and two pairs
of a world and an event. The result of the pointwise products is put together as
a sum over the relevant set of world event pairs in the function starting from line
169. As in the case of probabilities for events, we have an auxiliary function used



7.3. Implementing Probabilistic Extensions 207

to retrieve the local probability for both the objective occurrence, line 174, and
subjective expectation, line 178 and line 184.

164 product2 a m q w e w’ e’=

165 (p2fl (prob_ag_wrd1_wrd2 m a w w’)) * (

166 p2fl (statepre m q w’ e’)) * (

167 p2fl (prob_ag_evt1_evt2 q a e e’))

168

169 sigma a m q w e = sum (map sum (map (\y -> (map

170 (*(p2fl (prob_ag_wrd1_wrd2 m a w y)))) (map

171 (\x -> (p2fl (prob_ag_evt1_evt2 sample a e x))*(p2fl

172 (statepre mpp sample y x))) (dom_pqm sample))) (dom_pim mpp)))

173

174 prob_w_w a m q (w, e) (w’, e’) | sigma a m q w e == 0 = 0

175 | otherwise =

176 (product2 a m q w e w’ e’) / (sigma a m q w e)

177

178 prob_ag_wrd :: PIM Int -> Agent -> Int ->

179 [(Agent, Int, Dist Int)]

180 prob_ag_wrd m a w = filter (\y->(snd33 y == w)) (

181 filter (\x -> (fst33 x) == a) (precprobsw m))

182

183 prob_ag_wrd1_wrd2

184 :: (Eq t1) => PIM t1 -> Agent -> t1 -> t1 -> Probability

185 prob_ag_wrd1_wrd2 m a w1 w2 = (??) (==w2) (trd33 ((filter

186 (\y->(snd33 y == w1)) (filter (\x -> (fst33 x) == a)

187 (precprobsw m)))!!0))

Probabilistic Product Upgrade All the functionality introduced so far al-
lows us to give the final contribution of this section: a function performing prob-
abilistic product update between probabilistic issue epistemic structures and cor-
responding probabilistic questioning action models.

The function probProdUpd, starting from line 189, takes as input two struc-
tures and returns the result of performing an update on the probabilities according
to the computations explained before leading to an intuitive model of dynamic
evolution of both information and issues.

The resulting model is constructed componentwise as follows: the new domain
contains pairs of worlds and events such that the probability value resulting from
taking the product of the probabilities of the two elements in the pair is not zero,
line 193; the function assumes identical agent sets in the two combined structures,
line 195, and takes this set to be same in the resulting model; the new accessibility
relation is constructed in the standard way from the old ones, line 196; the new
issue relation inherits the previous structure between the surviving worlds, line
199; the new probability distributions are computed using the functions explained
before in this section, line 204; the valuation function preserves the old values of
the surviving worlds, line 205; and the actual world set selects pairs containing
the actual elements of the starting models, line 206.



208 Chapter 7. Implementing Querying Strategies and Probability

189 probProdUpd :: PIM Int -> PQM Int -> PIM (Int,Int)

190 probProdUpd pem@(Pim dom agts accs eqqs prob val act)

191 pam@(Pqm events agts1 accs1 precs precprobs probs) =

192 Pim dom’ agts’ accs’ eqqs’ prob’ val’ act’ where

193 dom’ = [ (w,e) | w <- dom, e <- events,

194 p2fl (statepre pem pam w e) > 0.0]

195 agts’ = agts

196 accs’ = [ (ag1,(w1,s1),(w2,s2)) | (ag1,w1,w2) <- accs,

197 (ag2,s1,s2) <- accs1, ag1 == ag2, elem (w1,s1) dom’,

198 elem (w2,s2) dom’ ]

199 eqqs’ = [ (ag1,(w1,s1),(w2,s2)) |

200 (ag1,w1,w2) <- eqqs, s1 <- events, s2 <- events,

201 elem (w1,s1) dom’, elem (w2,s2) dom’ ]

202 prob’ = [(ag, (w,e), enum (map (prob_w_w ag pem pam (w,e))

203 (dom’)) dom’) | ag <- agts1, w <- dom, e <- events,

204 elem (w,e) dom’]

205 val’ = [((w,e),list) | (w,e) <- dom’, (w’,list) <- val, w==w’]

206 act’ = nub [(w,e) | (w,e) <- dom’, w <- act]

207

208 precprobsw :: PIM state -> [(Agent,state,Dist state)]

209 precprobsw m@(Pim _ _ _ _ prb _ _) = prb

210

211 dom_pim m@(Pim dom agt acc eqq prb val act) = dom

212 dom_pqm q@(Pqm dom agt acc frm pre prb) = dom

213

214 mpp = initPM mp

215 sample = initPAq [a,b] [1,2] [p,q]

216 mppp = probProdUpd mpp sample

Finally tree more auxiliary functions are introduced providing the utility of
retrieving needed components from a probabilistic structure: the list of proba-
bility distributions, line 208, the list of states in the starting probabilistic issue-
epistemic model, line 211, and the list of events in the starting probabilistic action
structure, line 212. Some concrete illustration of how the componentwise compu-
tations work in order to produce the components in the new structure from the
components of the starting structures are provided in the following outcomes.

*QPR> map (\x -> prob_ag_wrd1_wrd2 mpp a 1 x) (dom_pim mpp)

[ 12.5%, 12.5%, 12.5%, 12.5%, 12.5%, 12.5%, 12.5%, 12.5%]

*QPR> map (\x -> prob_ag_evt1_evt2 sample a 1 x) (dom_pqm sample)

[ 50.0%, 50.0%]

*QPR> map (\x -> statepre mpp sample 4 x) (dom_pqm sample)

[ 50.0%, 50.0%]

*QPR> display 1 (map (\y -> (map (\x ->

prob_ag_wrd1_wrd2 mpp a y x) (dom_pim mpp))) (dom_pim mpp))

[ 12.5%, 12.5%, 12.5%, 12.5%, 12.5%, 12.5%, 12.5%, 12.5%]

[ 12.5%, 12.5%, 12.5%, 12.5%, 12.5%, 12.5%, 12.5%, 12.5%]

...



7.3. Implementing Probabilistic Extensions 209

At line 214 and following two concrete probabilistic structures are built both
for possible worlds and events, together with their probabilistic product upgrade.
We end the section by providing the complete display of their composition.

*QPRO> dppq mpp

[0,1,2,3,4,5,6,7]

[(0,[]),(1,[]),(2,[p]),(3,[p]),(4,[q]),(5,[q]),(6,[p,q]),(7,[p,q])]

(a,[[0,1,2,3,4,5,6,7]])

(b,[[0,2,5,6],[1,3,4,7]])

[0]

(a,[[0,5],[1,3],[2,6],[4,7]])

(b,[[0,5],[1,3],[2,6],[4,7]])

(a,0,0 12.5% 1 12.5% 2 12.5% 3 12.5% 4 12.5% 5 12.5% 6 12.5% 7 12.5% )

(a,1,0 12.5% 1 12.5% 2 12.5% 3 12.5% 4 12.5% 5 12.5% 6 12.5% 7 12.5% )

(a,2,0 12.5% 1 12.5% 2 12.5% 3 12.5% 4 12.5% 5 12.5% 6 12.5% 7 12.5% )

(a,3,0 12.5% 1 12.5% 2 12.5% 3 12.5% 4 12.5% 5 12.5% 6 12.5% 7 12.5% )

(a,4,0 12.5% 1 12.5% 2 12.5% 3 12.5% 4 12.5% 5 12.5% 6 12.5% 7 12.5% )

(a,5,0 12.5% 1 12.5% 2 12.5% 3 12.5% 4 12.5% 5 12.5% 6 12.5% 7 12.5% )

(a,6,0 12.5% 1 12.5% 2 12.5% 3 12.5% 4 12.5% 5 12.5% 6 12.5% 7 12.5% )

(a,7,0 12.5% 1 12.5% 2 12.5% 3 12.5% 4 12.5% 5 12.5% 6 12.5% 7 12.5% )

(b,0,0 25.0% 2 25.0% 5 25.0% 6 25.0% 1 0.0% 3 0.0% 4 0.0% 7 0.0% )

(b,1,1 25.0% 3 25.0% 4 25.0% 7 25.0% 0 0.0% 2 0.0% 5 0.0% 6 0.0% )

(b,2,0 25.0% 2 25.0% 5 25.0% 6 25.0% 1 0.0% 3 0.0% 4 0.0% 7 0.0% )

(b,3,1 25.0% 3 25.0% 4 25.0% 7 25.0% 0 0.0% 2 0.0% 5 0.0% 6 0.0% )

(b,4,1 25.0% 3 25.0% 4 25.0% 7 25.0% 0 0.0% 2 0.0% 5 0.0% 6 0.0% )

(b,5,0 25.0% 2 25.0% 5 25.0% 6 25.0% 1 0.0% 3 0.0% 4 0.0% 7 0.0% )

(b,6,0 25.0% 2 25.0% 5 25.0% 6 25.0% 1 0.0% 3 0.0% 4 0.0% 7 0.0% )

(b,7,1 25.0% 3 25.0% 4 25.0% 7 25.0% 0 0.0% 2 0.0% 5 0.0% 6 0.0% )

In order to display a questioning probabilistic structure we will also need a
corresponding display function for it, given in line 218. This also uses an auxiliary
function to convert a binary relation into a partition, line 224.

218 showS5qpq :: (Ord state, Show state) => PQM state-> [String]

219 showS5qpq q@(Pqm dom ags acc frm pre prb) =

220 [show dom] ++ [show frm] ++ map show pre {-map show val-} ++

221 map show [(a, (rel2partition dom) (relKpq a q)) | a <- ags]

222 ++ map show prb

223

224 relKpq :: Agent -> PQM state -> Rel state

225 relKpq a m@(Pqm _ _ acc _ _ _) =

226 [ (x,y) | (ag,x,y) <- acc, a == ag ]

227

228 dppqq :: (Ord state, Show state) => PQM state-> IO()

229 dppqq = putStrLn . unlines . showS5qpq

Finally, the dppqq function at line 228 puts all the components together to
create the resulting probabilistic model which constitutes the function’s output.

*QPRO> dppqq sample

[1,2]

[p,q]

(p,1 50.0% 2 50.0% )



210 Chapter 7. Implementing Querying Strategies and Probability

(q,1 50.0% 2 50.0% )

(a,[[1,2]])

(b,[[1,2]])

(a,1,1 50.0% 2 50.0% )

(a,2,1 50.0% 2 50.0% )

(b,1,1 50.0% 2 50.0% )

(b,2,1 50.0% 2 50.0% )

The listed components are, line by line: the set of events, the precondition
formulae, the objective occurrence probability, agents’ uncertainty and agents’
probabilistic subjective beliefs about what is going on.

*QPRO> dppq (probProdUpd mpp sample)

[(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(7,1),(7,2)]

[((2,1),[p]),((2,2),[p]),((3,1),[p]),((3,2),[p]),((4,1),[q]),((4,2),[q]),

((5,1),[q]),((5,2),[q]),((6,1),[p,q]),((6,2),[p,q]),((7,1),[p,q]),((7,2),[p,q])]

(a,[[(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(7,1),(7,2)]])

(b,[[(2,1),(2,2),(5,1),(5,2),(6,1),(6,2)],[(3,1),(3,2),(4,1),(4,2),(7,1),(7,2)]])

[(0,1),(0,2)]

(a,[[(2,1),(2,2),(6,1),(6,2)],[(3,1),(3,2)],[(4,1),(4,2),(7,1),(7,2)],[(5,1),(5,2)]])

(b,[[(2,1),(2,2),(6,1),(6,2)],[(3,1),(3,2)],[(4,1),(4,2),(7,1),(7,2)],[(5,1),(5,2)]])

(a,(2,1),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(2,2),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(3,1),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(3,2),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(4,1),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(4,2),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(5,1),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(5,2),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(6,1),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(6,2),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(7,1),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(a,(7,2),(2,1) 8.3% (2,2) 8.3% (3,1) 8.3% (3,2) 8.3% (4,1) 8.3% (4,2) 8.3%

(5,1) 8.3% (5,2) 8.3% (6,1) 8.3% (6,2) 8.3% (7,1) 8.3% (7,2) 8.3% )

(b,(2,1),(2,1) 16.7% (2,2) 16.7% (5,1) 16.7% (5,2) 16.7% (6,1) 16.7% (6,2) 16.7%

(3,1) 0.0% (3,2) 0.0% (4,1) 0.0% (4,2) 0.0% (7,1) 0.0% (7,2) 0.0% )

(b,(2,2),(2,1) 16.7% (2,2) 16.7% (5,1) 16.7% (5,2) 16.7% (6,1) 16.7% (6,2) 16.7%

(3,1) 0.0% (3,2) 0.0% (4,1) 0.0% (4,2) 0.0% (7,1) 0.0% (7,2) 0.0% )

(b,(3,1),(3,1) 16.7% (3,2) 16.7% (4,1) 16.7% (4,2) 16.7% (7,1) 16.7% (7,2) 16.7%

(2,1) 0.0% (2,2) 0.0% (5,1) 0.0% (5,2) 0.0% (6,1) 0.0% (6,2) 0.0% )

(b,(3,2),(3,1) 16.7% (3,2) 16.7% (4,1) 16.7% (4,2) 16.7% (7,1) 16.7% (7,2) 16.7%



7.3. Implementing Probabilistic Extensions 211

(2,1) 0.0% (2,2) 0.0% (5,1) 0.0% (5,2) 0.0% (6,1) 0.0% (6,2) 0.0% )

(b,(4,1),(3,1) 16.7% (3,2) 16.7% (4,1) 16.7% (4,2) 16.7% (7,1) 16.7% (7,2) 16.7%

(2,1) 0.0% (2,2) 0.0% (5,1) 0.0% (5,2) 0.0% (6,1) 0.0% (6,2) 0.0% )

(b,(4,2),(3,1) 16.7% (3,2) 16.7% (4,1) 16.7% (4,2) 16.7% (7,1) 16.7% (7,2) 16.7%

(2,1) 0.0% (2,2) 0.0% (5,1) 0.0% (5,2) 0.0% (6,1) 0.0% (6,2) 0.0% )

(b,(5,1),(2,1) 16.7% (2,2) 16.7% (5,1) 16.7% (5,2) 16.7% (6,1) 16.7% (6,2) 16.7%

(3,1) 0.0% (3,2) 0.0% (4,1) 0.0% (4,2) 0.0% (7,1) 0.0% (7,2) 0.0% )

(b,(5,2),(2,1) 16.7% (2,2) 16.7% (5,1) 16.7% (5,2) 16.7% (6,1) 16.7% (6,2) 16.7%

(3,1) 0.0% (3,2) 0.0% (4,1) 0.0% (4,2) 0.0% (7,1) 0.0% (7,2) 0.0% )

(b,(6,1),(2,1) 16.7% (2,2) 16.7% (5,1) 16.7% (5,2) 16.7% (6,1) 16.7% (6,2) 16.7%

(3,1) 0.0% (3,2) 0.0% (4,1) 0.0% (4,2) 0.0% (7,1) 0.0% (7,2) 0.0% )

(b,(6,2),(2,1) 16.7% (2,2) 16.7% (5,1) 16.7% (5,2) 16.7% (6,1) 16.7% (6,2) 16.7%

(3,1) 0.0% (3,2) 0.0% (4,1) 0.0% (4,2) 0.0% (7,1) 0.0% (7,2) 0.0% )

(b,(7,1),(3,1) 16.7% (3,2) 16.7% (4,1) 16.7% (4,2) 16.7% (7,1) 16.7% (7,2) 16.7%

(2,1) 0.0% (2,2) 0.0% (5,1) 0.0% (5,2) 0.0% (6,1) 0.0% (6,2) 0.0% )

(b,(7,2),(3,1) 16.7% (3,2) 16.7% (4,1) 16.7% (4,2) 16.7% (7,1) 16.7% (7,2) 16.7%

(2,1) 0.0% (2,2) 0.0% (5,1) 0.0% (5,2) 0.0% (6,1) 0.0% (6,2) 0.0% )

The result of the probabilistic upgrade is as expected: new states are now
pairs of worlds and events as the precondition product mechanism dictates, the
valuation of old worlds is inherited, new uncertainties are constructed by com-
bining the old ones, the new issue relation is constructed from the old one and
also processes the probabilistic input, and the new probability distribution takes
a local product of both objective and subjective previous probabilities.

7.3.3 Issue-Probabilistic Minimal Model

The first step in the minimization algorithm is to ensure atomic harmony at
propositional level. In order to do this the function at line 231 retrieves the
valuation component in a PIM. Next, using the retrieved valuation, the function
at line 234 tests two worlds for propositional equivalence. Based on this test
the block of any world in the model is computed by the function at line 238.
This block equivalence induces a partition of the domain based on propositional
equivalence as constructed in line 241

231 pval :: PIM t -> [(t, [Prop])]

232 pval m@(Pim _ _ _ _ _ val _) = val

233

234 propeq :: (Eq a) => a -> a -> PIM a -> Bool

235 propeq w1 w2 m = snd ((filter (\x -> (fst x == w1)) (pval m))!!0) ==

236 snd ((filter (\x -> (fst x == w2)) (pval m))!!0)

237

238 propart :: (Eq t) => t -> PIM t -> [t]

239 propart w m = [x | x <- dom_pim m, propeq x w m ]

240

241 ppart :: (Eq a) => PIM a -> [[a]]

242 ppart m = nub (map (\x -> propart x m) (dom_pim m))

The first running example in this section is introduced in the next output
block and the working of the ppart function in illustrated immediately after.



212 Chapter 7. Implementing Querying Strategies and Probability

This is a very simple model with only one agent which however already con-
tains all the needed ingredients. The most noteworthy feature is the logical
relation between worlds 0 and 4.

*QPRO> dpq $ m5i

[0,1,2,3,4]

[(0,[]),(1,[p]),(2,[p]),(3,[p]),(4,[])]

(a,[[0,3],[1,4],[2]])

[0,1,2,3,4]

(a,[[0,3],[1],[2,4]])

*QPRO> ppart $ initPM m5i

[[0,4],[1,2,3]]

Each world in the domain will belong to an equivalence class under the propo-
sitional partition. The function at line 244 retrieves for any world w taken as an
argument the partition cell or block of w.

The two binary accessibility relations in the model induce an image for each
world based on the block to which it belongs. The functions at lines 247 and 251
take the same arguments and retrieve the K-image and the Q-image for the given
world, respectively, using a cell-by-cell construction.

244 cell :: (Eq a) => [[a]] -> a -> [a]

245 cell part w = head (filter (elem w) part)

246

247 kacc :: (Eq a) => PIM a -> [[a]] -> a -> Agent -> [[a]]

248 kacc m@(Pim _ _ acc _ _ _ _) part w agt =

249 nub [cell part x | (agt’,y,x) <- acc, agt’ == agt, y == w ]

250

251 qacc :: (Eq a) => PIM a -> [[a]] -> a -> Agent -> [[a]]

252 qacc m@(Pim _ _ _ eqq _ _ _) part w agt =

253 nub [cell part x | (agt’,y,x) <- eqq, agt’ == agt, y == w ]

We can already notice that the image under the K relation for connected
worlds is the same and is different for unconnected worlds:

*QPRO> kacc (initPM m5i) (ppart (initPM m5i)) 0 a

[[0,4],[1,2,3]]

*QPRO> kacc (initPM m5i) (ppart (initPM m5i)) 1 a

[[1,2,3],[0,4]]

*QPRO> kacc (initPM m5i) (ppart (initPM m5i)) 2 a

[[1,2,3]]

*QPRO> kacc (initPM m5i) (ppart (initPM m5i)) 3 a

[[0,4],[1,2,3]]

*QPRO> kacc (initPM m5i) (ppart (initPM m5i)) 4 a

[[1,2,3],[0,4]]

The same happens for the issue relation, now with world 1 as unconnected world:

*QPRO> qacc (initPM m5i) (ppart (initPM m5i)) 0 a

[[0,4],[1,2,3]]

*QPRO> qacc (initPM m5i) (ppart (initPM m5i)) 1 a

[[1,2,3]]



7.3. Implementing Probabilistic Extensions 213

*QPRO> qacc (initPM m5i) (ppart (initPM m5i)) 2 a

[[1,2,3],[0,4]]

*QPRO> qacc (initPM m5i) (ppart (initPM m5i)) 3 a

[[0,4],[1,2,3]]

*QPRO> qacc (initPM m5i) (ppart (initPM m5i)) 4 a

[[1,2,3],[0,4]]

So far there is no way to distinguish worlds 1 and 4, reflecting the variance
under standard bisimulation of the intersection modality.

Next we will make use of the function defined at line 255 to tests if two worlds
have the same K-image and Q-image in a given issue-epistemic structure. If this
is the case then the two worlds are behaviorally indistinguishable from each other
and they will satisfy the same modal formulae with epistemic and questioning
modalities and any combinations thereof.

255 sameKQ :: (Ord t) => PIM t -> [[t]] -> t -> t -> Bool

256 sameKQ m@(Pim _ agts acc eqq _ _ _) part w v =

257 and [and [sort (kacc m part w agt) == sort (kacc m part v agt)

258 | agt <- agts],

259 and [sort (qacc m part w agt) == sort (qacc m part v agt)

260 | agt <- agts] ]

We can see in the following output that in this way many worlds can be
distinguished, however, we can also see that worlds 0 and 4 can not.

*QPRO> sameKQ (initPM m5i) (ppart (initPM m5i)) 2 3

False

*QPRO> sameKQ (initPM m5i) (ppart (initPM m5i)) 1 2

False

*QPRO> sameKQ (initPM m5i) (ppart (initPM m5i)) 1 3

False

*QPRO> sameKQ (initPM m5i) (ppart (initPM m5i)) 0 4

True

In order to have a correct algorithm we have to do more work, in particular,
we have to consider the image under the intersection of the two modalities.

The following quadruple of functions implement the double splitting step in
the birelational partition refinement algorithm.

262 img :: (Eq t) => PIM t -> t -> Agent -> [t]

263 img m@(Pim dom _ acc eqq _ _ _) w agt = nub [ x | x<-dom, (agt,w,x) ‘elem‘ acc]

264

265 primg :: (Eq t) => PIM t -> t -> Agent -> [t]

266 primg m@(Pim dom _ acc eqq _ _ _) w agt =

267 nub [ x | x <- dom, (agt,w,x) ‘elem‘ eqq, w <- img m w agt ]

268

269 img2 :: (Eq t) => PIM t -> t -> Agent -> [t]

270 img2 m@(Pim dom _ acc eqq _ _ _) w agt = nub [ x | x<-dom, (agt,w,x) ‘elem‘ eqq]

271

272 primg2 :: (Eq t) => PIM t -> t -> Agent -> [t]

273 primg2 m@(Pim dom _ acc eqq _ _ _) w agt =

274 nub [ x | x <- dom, (agt,w,x) ‘elem‘ acc, w <- img m w agt ]



214 Chapter 7. Implementing Querying Strategies and Probability

At line 262 the function takes a probabilistic issue-epistemic model, a world
and an agent and returns the image for the given world in the given model under
the relation indexed to the given agent.

The relational image of a world obtained in the way just described can be
further process as a list of worlds. The function at line 265 computes the preimage
under the second relation starting from the image under the first relation of the
given world in the given model for the given agent.

In a similar fashion, but in the other direction the pair of functions at lines
269, respectively, line 272 compute the preimage of the image for a world in a
model using a reversed alternation of the two relations.

As a final step, the function at line 276 takes the intersection of the two
preimages computed by the previously explained functions.

276 intImg :: (Ord a) => PIM a -> a -> Agent -> [a]

277 intImg m w a = Set.toList (

278 Set.intersection (Set.fromList (primg m w a))

279 (Set.fromList (primg2 m w a)))

280

281 inters :: (Eq t) => PIM t -> t -> Agent -> [t]

282 inters m@(Pim dom _ acc eqq _ _ _) w agt =

283 [ x | x <- dom, (agt,w,x) ‘elem‘ acc, (agt,x,w) ‘elem‘ eqq]

284

285 sameInters :: (Ord t) => PIM t -> [[t]] -> t -> t -> Bool

286 sameInters m@(Pim _ agts acc eqq _ _ _) part w v =

287 and [and [sort (kacc m part w agt) == sort (kacc m part v agt)

288 | agt <- agts],

289 and [sort (qacc m part w agt) == sort (qacc m part v agt)

290 | agt <- agts],

291 and [ intImg m w agt == intImg m v agt | agt <- agts]

292 ]

The function at line 281 retrieves the intersection set image for a world in a
model for an agent given as parameters of the function.

The function at line 285 tests not only for K-image and Q-image equivalence
but also for intersection set image equivalence, thus providing the correct way of
further splitting the partition during the refinement.

We can see now that this also induces various images for worlds in the domain.
In special, we can see that worlds’ 0 and 4 intersection images are different:

*QPRO> inters (initPM m5i) 0 a

[0,3]

*QPRO> inters (initPM m5i) 1 a

[1]

*QPRO> inters (initPM m5i) 2 a

[2]

*QPRO> inters (initPM m5i) 3 a

[0,3]

*QPRO> inters (initPM m5i) 4 a

[4]



7.3. Implementing Probabilistic Extensions 215

*QPRO> sameInters (initPM m5i) (ppart (initPM m5i)) 0 4

False

We can use this insight to write a correct split function, line 294, that will
separate the relevant blocks in the partition in an adequate way at each step
in the refinement process. In contrast, the partition split function at line 303
considers only the KQ-image and captures only issue-epistemic formulae.

294 split :: (Ord t) => PIM t -> [[t]] -> [[t]]

295 split m part = splInters m part part

296 where

297 splInters m part [] = []

298 splInters m part (block:blocks) =

299 newblocks ++ (splInters m part blocks)

300 where

301 newblocks = cf2part block (\ x y -> sameInters m part x y)

302

303 splitMinus :: (Ord t) => PIM t -> [[t]] -> [[t]]

304 splitMinus m part = splInters m part part

305 where

306 splInters m part [] = []

307 splInters m part (block:blocks) =

308 newblocks ++ (splInters m part blocks)

309 where

310 newblocks = cf2part block (\ x y -> sameKQ m part x y)

The next output block reflects the difference between the two split functions.
The first one fails to distinguish worlds 0 and 4, and because of this it will fail
in general to provide an adequate formal mechanism for working with formulae
containing intersection modalities.

The second one distinguishes worlds 0 and 4 and will therefore provide a
general and correct refinement mechanism which will preserve the truth values
both modal and intersection formulae in the language.

*QPRO> splitMinus (initPM m5i) (ppart (initPM m5i))

[[0,4],[1],[2],[3]]

*QPRO> split (initPM m5i) (ppart (initPM m5i))

[[0],[4],[1],[2],[3]]

We can now use this split function in a standard design pattern that imple-
ments the refinement process capturing intersection, line 312.

The function at line 315 computes the minimal model under intersection split,
as the least fixpoint in the refinement process.

312 refint :: (Ord t) => PIM t -> [[t]] -> [[t]]

313 refint m = lfp (split m)

314

315 mintMod :: PIM Int -> PIM [Int]

316 mintMod m@(Pim dom agts acc eqq prb val act) =

317 (Pim dom’ agts acc’ eqq’ prb’ val’ act’)



216 Chapter 7. Implementing Querying Strategies and Probability

318 where

319 dom’ = sort (refint m (ppart m))

320 f = cell dom’

321 val’ = (nub . sort) (map (\ (x,y) -> (f x, y)) val)

322 acc’ = (nub . sort) (map (\ (x,y,z) -> (x, f y, f z)) acc)

323 eqq’ = (nub . sort) (map (\ (x,y,z) -> (x, f y, f z)) eqq)

324 prb’ = foldr (++) [] (map (newdist m) agts)

325 act’ = nub (sort (map f act))

We can now complete our exposition with a concrete illustration:

*QPRO> dpq m7i

[0,1,2,3,4,5,6]

[(0,[]),(1,[p]),(2,[p]),(3,[p]),(4,[]),(5,[]),(6,[])]

(a,[[0,3,5],[1,4,6],[2]])

[0,1,2,3,4,5,6]

(a,[[0,3,5],[1],[2,4,6]])

*QPRO> dpq (pim2eim (mintMod (initPM m7i)))

[[0,5],[1],[2],[3],[4,6]]

[([0,5],[]),([1],[p]),([2],[p]),([3],[p]),([4,6],[])]

(a,[[[0,5],[3]],[[1],[4,6]],[[2]]])

[[0,5],[1],[2],[3],[4,6]]

(a,[[[0,5],[3]],[[1]],[[2],[4,6]]])

We start from the model m7i in which worlds 0 and 5 , respectively 4 and 6
are bisimilar under intersection but 0 and 4 are not.

We then apply the minimization algorithm to m7i and we obtain the expected
result, illustrated as a new model in which states are the partition blocks com-
puted by the birelational splitting algorithm.

We can further refine this process by converting the partition blocks which
are represented as list of states back to regular states. The function at line 327
performs this conversion, and the function at line 343 combines the minimization
and the conversion to bisimulate the initial model into a minimal one.

327 convert :: (Num t, Ord t, Eq t1, Enum t) => PIM t1 -> PIM t

328 convert (Pim dom agts accs eqqs prb val act) =

329 Pim dom’ agts accs’ eqqs’ prb’ val’ act’

330 where

331 f = apply (zip dom [0..])

332 dom’ = sort (map f dom)

333 val’ = sort (map (\ (x,y) -> (f x,y)) val)

334 accs’ = map (\ (x,y,z) -> (x, f y, f z)) accs

335 eqqs’ = map (\ (x,y,z) -> (x, f y, f z)) eqqs

336 prb’ = map (\ (x,y,z) -> (x, f y, (enum

337 (map p2fl (map (\x -> (==x) ?? (head ( map trd33 (filter

338 (\v -> snd33 v == y) prb)))) (extract (head ( map trd33 (filter

339 (\v -> snd33 v == y) prb) ))))) (map f (extract (head

340 ( map trd33 (filter (\v -> snd33 v == y) prb) ) ) ) ) ) )) prb

341 act’ = nub ( sort ( map f act))

342

343 bisint :: PIM Int -> PIM Integer



7.3. Implementing Probabilistic Extensions 217

344 bisint = convert . mintMod

The following output illustrates the results of the convert and bisint func-
tions. So far the probabilistic component has not been considered. After the
issue-epistemic components have been worked out the computation proceeds by
taking issue-epistemic cell additivity to construct the new probability distribu-
tions. We will shortly illustrate this aspect in the following sections.

*QPRO> dpq (pim2eim (convert (mintMod (initPM m7i))))

[0,1,2,3,4]

[(0,[]),(1,[p]),(2,[p]),(3,[p]),(4,[])]

(a,[[0,3],[1,4],[2]])

[0,1,2,3,4]

(a,[[0,3],[1],[2,4]])

*QPRO> dpq (pim2eim (bisint (initPM m7i)))

[0,1,2,3,4]

[(0,[]),(1,[p]),(2,[p]),(3,[p]),(4,[])]

(a,[[0,3],[1,4],[2]])

[0,1,2,3,4]

(a,[[0,3],[1],[2,4]])

But before we proceed to introducing and explaining the probabilistic com-
ponent inside the model minimization algorithm we still have to introduce and
explain some auxiliary functions that were already used so far in the birelational
partition refinement algorithm.

First, the function at line 346 is used to convert from a characteristic function
to a partition. Next the function at line 353 computes the closure of a binary
relation by taking again the least fixed point of the expansion of the given relation
which is computed by the function at line 358.

346 cf2part :: [t] -> (t -> t -> Bool) -> [[t]]

347 cf2part [] r = []

348 cf2part (x:xs) r = xblock : cf2part rest r

349 where

350 (xblock,rest) = (x : filter (r x) xs, filter (not . (r x)) xs)

351

352 closure :: Ord state => [(Agent,state,state)] ->

353 [Agent] -> [state] -> [state]

354 closure rel agents xs = lfp f xs

355 where f = \ ys -> (nub.sort) (ys ++ (expand rel agents ys))

356

357 expand :: Ord state => [(Agent,state,state)] ->

358 [Agent] -> [state] -> [state]

359 expand rel agents ys = (nub . sort . concat)

360 [ alternatives rel ag state | ag <- agents, state <- ys ]

The expand function used the accessible states from a given state to construct
the next set of accessible states, the alternatives are computed by the function at
line 363. Finally, the function at line 369 takes a function represented as a list of
pairs and applies it to the second argument.



218 Chapter 7. Implementing Querying Strategies and Probability

362 alternatives :: Eq state => [(Agent,state,state)] ->

363 Agent -> state -> [state]

364 alternatives rel ag current =

365 [ s’ | (a,s,s’) <- rel, a == ag, s == current ]

366

367 type State = Int

368

369 apply :: Eq a => [(a,b)] -> a -> b

370 apply [] _ = error "argument not in list"

371 apply ((x,z):xs) y | x == y = z

372 | otherwise = apply xs y

All these functions have an ancillary utility and were used during the previ-
ously presented model minimization algorithm.

7.3.4 The Probabilistic Component

The remaining functions implement the probabilistic part in the minimization
process in Algorithm 3. All the functions will, in one way or another, process the
probabilities existing in an issue-epistemic structure, therefore, the first step will
be to have a function that extracts the probability component, line 374.

374 prb :: PIM t -> [(Agent, t, Dist t)]

375 prb m@(Pim dom agts acc eqq prb val act) = prb

376

377 prbAg :: PIM t -> Agent -> [(Agent, t, Dist t)]

378 prbAg mg ag =

379 filter (\x -> ((fst33 x) == ag)) (prb mg)

In some contexts information about the probability assigned by a specific
agent is needed. The function at line 377 takes a PIM and an agent and filters
out and returns the agent’s probability distribution over the domain as a list of
triples containing the agent a world and a distribution over the domain.

*QPRO> prb (initPM m7i)

[(a,0,0 33.3% 3 33.3% 5 33.3% 1 0.0% 2 0.0% 4 0.0% 6 0.0% ),

(a,1,1 33.3% 4 33.3% 6 33.3% 0 0.0% 2 0.0% 3 0.0% 5 0.0% ),

(a,2,2 100.0% 0 0.0% 1 0.0% 3 0.0% 4 0.0% 5 0.0% 6 0.0% ),

(a,3,0 33.3% 3 33.3% 5 33.3% 1 0.0% 2 0.0% 4 0.0% 6 0.0% ),

(a,4,1 33.3% 4 33.3% 6 33.3% 0 0.0% 2 0.0% 3 0.0% 5 0.0% ),

(a,5,0 33.3% 3 33.3% 5 33.3% 1 0.0% 2 0.0% 4 0.0% 6 0.0% ),

(a,6,1 33.3% 4 33.3% 6 33.3% 0 0.0% 2 0.0% 3 0.0% 5 0.0% )]

For contexts that require an even more precise computation the function at
line 381 takes a PIM and an agent and returns the distribution triple for the
specified world that is of interest. This provides the first query-ready format of
a distribution, i.e. the distribution is stripped of its first and second elements in
the triplet and is therefore suitable to receive predefined probabilistic functions.

381 askProb_a_w :: PIM Int -> Agent -> Int -> Dist Int

382 askProb_a_w mg ag w = (trd33 . head) (prob_ag_wrd mg ag w)



7.3. Implementing Probabilistic Extensions 219

383

384 qq :: PIM Int -> Int -> Int -> Agent -> Probability

385 qq mg w1 w2 ag = (??) (‘elem‘ (cell (rel2partition (dom (pim2eim mg))

386 (relK ag (pim2eim mg))) w2 ) ) (askProb_a_w mg ag w1)

387

388 qqq :: PIM Int -> Int -> [Int] -> Agent -> Probability

389 qqq mg w1 cell ag = (??) (‘elem‘ cell) (askProb_a_w mg ag w1)

A first level of probabilistic querying is performed by the function at line 384,
which takes a model, a world and an agent and returns the probability for the
partition cell under the epistemic relation of the world by taking (i.e. querying)
the prior probabilities and summing them up. This uses the predefined testing
functionality for the probability of event occurence, in this case the test is the
event of ‘being inside the information partition cell’.

A second level of probabilistic querying is performed by the function at line
388 which lifts the functionality of the qq function from the level of worlds to the
level of partition blocks given as the third argument.

391 wpdist :: PIM Int -> Int -> Agent -> Dist [Int]

392 wpdist mg w ag = enum (map p2fl (map (\x->(qqq mg w x ag))

393 ( (dom (pim2eim (mintMod mg)))))) (dom (pim2eim (mintMod mg)))

394

395 bpdist :: PIM Int -> [Int] -> Agent -> Dist [Int]

396 bpdist mg bk ag = enum (map p2fl (map (\x->(qqq mg (head bk) x ag))

397 ( (dom (pim2eim (mintMod mg)))))) (dom (pim2eim (mintMod mg)))

398

399 newdist :: PIM Int -> a -> [(a, [Int], Dist [Int])]

400 newdist mg ag = zip3 (repeat ag) (dom (pim2eim (mintMod mg)))

401 (map (\x -> (bpdist mg x a)) (dom (pim2eim (mintMod mg))))

Three more auxiliary functions, first, at line 391 taking as input a model, a
world and an agent the probability distribution for a world over the blocks in
the minimized model is computed. This provides the first level of correspondence
from the minimization algorithm.

Next, at line 395 the function takes a model and a block and an agent and
returnes the probability distribution for the minimal element/world in the block
over the blocks in the minimized model. This provides the second level of ab-
straction in the minimization algorithm.

*QPRO> wpdist (initPM m7i) 0 a

[0,5] 66.7% [3] 33.3% [1] 0.0% [2] 0.0% [4,6] 0.0%

*QPRO> bpdist (initPM m7i) [1] a

[4,6] 66.7% [1] 33.3% [0,5] 0.0% [2] 0.0% [3] 0.0%

Finally, the function at line 399 takes a PIM and an agent and builds the new
probability distribution in the minimized model.

We have now all the needed ingredients to apply the probabilistic minimization
algorithm for a concrete illustrative example.



220 Chapter 7. Implementing Querying Strategies and Probability

We start from a probabilistic model in which some worlds are behaviorally
equivalent and the probability is constructed in the previously described way as
a uniform distribution over the epistemic partition.

*QPRO> dppq (initPM m7i)

[0,1,2,3,4,5,6]

[(0,[]),(1,[p]),(2,[p]),(3,[p]),(4,[]),(5,[]),(6,[])]

(a,[[0,3,5],[1,4,6],[2]])

[0,1,2,3,4,5,6]

(a,[[0,3,5],[1],[2,4,6]])

(a,0,0 33.3% 3 33.3% 5 33.3% 1 0.0% 2 0.0% 4 0.0% 6 0.0% )

(a,1,1 33.3% 4 33.3% 6 33.3% 0 0.0% 2 0.0% 3 0.0% 5 0.0% )

(a,2,2 100.0% 0 0.0% 1 0.0% 3 0.0% 4 0.0% 5 0.0% 6 0.0% )

(a,3,0 33.3% 3 33.3% 5 33.3% 1 0.0% 2 0.0% 4 0.0% 6 0.0% )

(a,4,1 33.3% 4 33.3% 6 33.3% 0 0.0% 2 0.0% 3 0.0% 5 0.0% )

(a,5,0 33.3% 3 33.3% 5 33.3% 1 0.0% 2 0.0% 4 0.0% 6 0.0% )

(a,6,1 33.3% 4 33.3% 6 33.3% 0 0.0% 2 0.0% 3 0.0% 5 0.0% )

We end this section by an illustration of the input and output of the com-
putation for minimizing under itersimulation and probabilistic cell additivity as
previously described in Algorithm 3:

*QPRO> dppq (mintMod (initPM m7i))

[[0,5],[1],[2],[3],[4,6]]

[([0,5],[]),([1],[p]),([2],[p]),([3],[p]),([4,6],[])]

(a,[[[0,5],[3]],[[1],[4,6]],[[2]]])

[[0,5],[1],[2],[3],[4,6]]

(a,[[[0,5],[3]],[[1]],[[2],[4,6]]])

(a,[0,5],[0,5] 66.7% [3] 33.3% [1] 0.0% [2] 0.0% [4,6] 0.0% )

(a, [1],[4,6] 66.7% [1] 33.3% [0,5] 0.0% [2] 0.0% [3] 0.0% )

(a, [2],[2] 100.0% [0,5] 0.0% [1] 0.0% [3] 0.0% [4,6] 0.0% )

(a, [3],[0,5] 66.7% [3] 33.3% [1] 0.0% [2] 0.0% [4,6] 0.0% )

(a,[4,6],[4,6] 66.7% [1] 33.3% [0,5] 0.0% [2] 0.0% [3] 0.0% )

A final processing step converts the blocks back to integer numbers.

*QPRO> dppq (convert (mintMod (initPM m7i)))

[0,1,2,3,4]

[(0,[]),(1,[p]),(2,[p]),(3,[p]),(4,[])]

(a,[[0,3],[1,4],[2]])

[0,1,2,3,4]

(a,[[0,3],[1],[2,4]])

(a,0,0 66.7% 3 33.3% 1 0.0% 2 0.0% 4 0.0% )

(a,1,4 66.7% 1 33.3% 0 0.0% 2 0.0% 3 0.0% )

(a,2,2 100.0% 0 0.0% 1 0.0% 3 0.0% 4 0.0% )

(a,3,0 66.7% 3 33.3% 1 0.0% 2 0.0% 4 0.0% )

(a,4,4 66.7% 1 33.3% 0 0.0% 2 0.0% 3 0.0% )



Chapter 8

Conclusions and Outlook

8.1 General Conclusions

The dynamic calculi of questions developed in this thesis show how dynamic-
epistemic logic can incorporate a wide range of questioning and ‘issue manage-
ment’ actions beyond mere information handling. Our contribution is showing
how this can be done precisely, leading to complete dynamic logics that fit well
with the general DEL methodology and connects to existing systems.

Moreover, we have indicated how these systems can be used to explore prop-
erties of issue management beyond what is found in traditional approaches of
questions, including complex questioning and resolution actions, genuine multi
agent settings, explicit dynamics of raising and solving issues, and temporal pro-
tocols for inquiry and questioning games.

Let us have a final retrospective overview of the main topics that emerged
from the entire storyline of the thesis and draw the final conclusions. This will be
our starting point for the emerging agenda of further research topics and also for
comparisons with alternative approaches in light of the desiderata that motivated
our approach from the very beginning.

In Chapter 2 we have shown how dynamic logics of questions can analyze
various aspects of private and public inquiry. We extend the standard epistemic
models with equivalence relations for questions. We introduce a static logical
language to describe such structures by means of corresponding modalities, most
important being the resolution modality which uses the intersection of the two
equivalence relations for information respectively questioning partitions.

The main contributions contained in Chapter 2 are the following:

- A rich system of dynamic issue-management actions,

- Complete dynamic logics for questioning in DEL style,

- Extension to privacy and product update for questions,

- Extension to temporal protocols for inquiry.

221



222 Chapter 8. Conclusions and Outlook

These systems fit entirely within the methodology of dynamic-epistemic logic,
and they seem to form a natural complement to what already exists in this area,
making the questioning an explicit entity that drives and guides public announce-
ments and other informational events.

In Chapter 3 we complemented this theoretical perspective with an implemen-
tation for our logic of questions. This was literate Haskell program that extends
the previous implementation for epistemic model checking from DEMo [107, 108]
with questioning specific functionality.

The main new extensions that we provide in this chapter are:

- A richer, more expressive language that includes formulas with intersection
modalities describing the interaction between questioning and knowledge,

- Model checking utility for resolution, questioning and epistemic formulae,

- A general and extensible implementation for complex questioning and res-
olution dynamic actions that emerge in this framework.

We also showed how the implementation is useful by analyzing some paradig-
matic examples of questioning scenarios in epistemic settings.

What we did in chapters 2 ans 3 provides a setting in which questions are
analyzed and understood in their intricate conceptual, logical, and practical in-
terdependence and essential connection with knowledge and information dynam-
ics. This connection is made explicit within a language that can describe both
aspects and their intersection with adequate modalities. We have studied issue-
knowledge resolution both at a static level, expressed by an intersection modality,
and a dynamic one, by modeling the intersection between relations.

We return to a theoretical approach in Chapter 4 by defining and investigating
games with questioning moves. We first look at strategic games with two play-
ers and question-answer moves. We then extend this basic approach to settings
with more players, sequential moves, and oracles encoding interactions between
imperfectly informed agents or limitations in external information sources or mea-
surement instruments and experimental procedures.

The most noteworthy contributions in this chapter are:

- Definitions for games with questioning moves and their solution concepts,

- We give a tripartite interpretation for questioning moves and use it show
first why questioning phenomena in multi-agent contexts are more com-
plex than traditionally understood and second to distinguish games with
questioning moves from games with informative actions.

- We analyze illustrative examples and present an inexistence result for Nash
equilibrium with pure strategies in questioning games with oracles,



8.1. General Conclusions 223

- We identify the difraction property and show why it is important for de-
scribing strategic abilities in extensive questioning games.

In Chapter 5 we return to implementation by presenting and discussing the
Haskell scripts behind the questioning games introduced in the previous chapter.
These also extend basic epistemic functionality from [109] to include strategic
aspects specific for a game theoretic approach of questioning actions.

Some of the most noticeable new functionalities include the following:

- Our implementation provides ‘expressive harmony’ for questioning moves in
our games by linking the semantic level based on partitions of the domain
with a corresponding syntactic level using disjunctions of nominals,

- We compute complete game matrices for games with questioning moves,

- We give an algorithm for minimizing issue-epistemic models using a notion
of behavioral equivalence that is adequate for the questioning language.

What we did in chapters 4 and 5 provides a formal setting in which questions
arise in an interactive multi-agent environment in which the epistemic aspects
plays an important role. We have also studied the strategic aspects that emerge in
such a setting both in strategic games with questioning moves and in questioning
games in extensive form providing model for long term interactive inquiry.

Chapter 6 approaches the topic of designing questioning strategies in problem
solving from a theoretical perspective. We take again solving games as our point
of departure and a rich test case representative for a more general theory. In this
context we investigate the problem of solving the location game played on a line.
Our solution concept of choice will be Nash equilibrium with pure strategies.
We also discuss the general relevance of this approach for designing querying
strategies in problem solving by using oracles of operational properties to solve a
principal problem using efficiently available sources of information.

The most noticeable contributions contained in this chapter are:

- We give a characterization of NE by means of local properties in the game,

- We use an approach based on querying an oracle of local properties and
matching of strategy profile fragments to design questioning strategies that
solve the game in an efficient way.

In the final section we provide a minimization algorithm for probabilistic issue
models based on partition refinement solving the birelational coarsest partition
problem and in accordance with the adequate notion of behavioral equivalence
for probabilistic issue models and probabilistic questioning actions.



224 Chapter 8. Conclusions and Outlook

In Chapter 7 we present a Haskell implementation illustrating how queries of
local properties in the game can search for equilibrium strategy profiles using list
comprehension. This assumes the existence of oracles of local properties and uses
this to search for Nash equilibria in pure strategies.

The result needed to show that the query strategies are correct is the following:

- We give an Alloy Analyzer implementation for building coutermodels for
the location game and checking assertions about logical entailment within
a predetermined scope between facts expressing local properties and NE.

What we did in chapters 6 and 7 provides a setting in which the connec-
tion between a questioning theory and the process of designing efficient querying
strategies is investigated in the context of a concrete example. The interactive
location game studied and the solution concept investigated have also an inde-
pendent interest and relevance. Besides this we provide a bridge between a theory
of questions and known search heuristics using backtrack oracles.

The final Chapter 8, shows how our approach gives rise to a coherent research
agenda with a broader scope, and points to some further directions for future
research and comparisons with alternative approaches.

8.2 Future Research and Outlook

So far in this thesis, we have shown how dynamic logics of questions can analyze
various aspects of private and public inquiry. These systems fit entirely within
the methodology of dynamic-epistemic logic, and they seem to form a natural
complement to what already exists in this area, making the questions explicit
that drive public announcements and other informational events. In line with
this first finding, many lines of investigation open up:

Further general issues that emerge from our research agenda are the following:

Further types of questions: Wh-questions. One obvious next step in
developing our approach would be an extension to more complex types of ques-
tions beyond propositional ones. The next step would be to study objectual or
wh-questions in our framework. This will require an extension to a modal setting
for first order logic provides more expressive power but is undecidable. However
there are other possible extension which could consider various well behaved sub-
systems: like the fragment with monadic predicates, alternation free fragments,
guarded fragments or query languages with safe recursion.

Questions, decisions and information. Another connection, with both
information theory and decision theory, defines the ‘value of a question’ as its
role in resolving decision problems by means of the information contained in the
available answers. These aspects were introduced and discussed, for instance, in



8.2. Future Research and Outlook 225

[113, 112, 111]. This connection can become even more relevant in a setting that
makes explicit use of both an information partition and issue-structure for the
answers considered relevant by an agent.

Quantitative approaches. Another interesting direction for future research
is the relevance of questioning actions to notions of entropy of questions in multi-
agent contexts [113, 112, 110, 111] when this measure does not presuppose that
all information is always available to be directly accessed. We have considered
contexts in which agents have conflicting epistemic interests and incentive to
deceive or withhold information. Therefore, it is for such reasons desirable to have
a notion of entropic value of a question that can serve as a reference for designing
questioning mechanisms that capture both epistemic and strategic aspects.

There are still more fundamental limits to the information that can become
available by questioning. In quantum physics experiments there is a fundamen-
tal limitation with regard to the information that can be obtained by questions
and measurements. A more general notion of entropy that considers such infor-
mational limits might be also relevant for such contexts. The ultimate test of
the value of these definitions has to be assessed by weather they arise as natural
answers to a number of useful questions about questioning scenarios in inter-
active situations and weather they are useful generalizations that also capture
traditional notions as particular cases.

Further agent attitudes: beliefs and preferences. We have studied the
interaction of questions with knowledge. But of course, agents’ beliefs are just
as important, and we can also merge the preceding analysis with dynamic logics
of belief change. In fact, in addition to conveying hard information, asking a
question can also be a subtle way of influencing beliefs of agents. For instance,
we said earlier that not all questions impart knowledge that the speakers does
not know the answer. But we might say that, barring further information, they
induce a defeasible belief of the audience that this is the case. Thus, our question
dynamics might be added to the DEL-style belief logics of [10, 96].

Beyond beliefs, questions can also affect other agent attitudes. For instance,
a question can give us information about other agents’ goals and preferences, and
indeed, “Why” questions explicitly concern such reasons for behavior. Just as
information dynamics does not stop at purely informational attitudes, but also
extends to the way in which agents evaluate situations and actions, the same
extension makes sense for questions. This would come out concretely by adding
question dynamics to the preference logics of [33, 66].

There are also formal analogies between our question update operation and
the ‘ceteris paribus’ preferences from [98].

Update, inference, and syntactic awareness dynamics. While DEL
has been largely about observation-based semantic information, some recent pro-
posals have extended it to include more finely grained information produced by
inference or introspection. One can interpret the effect of asking a question as



226 Chapter 8. Conclusions and Outlook

making agents aware that something is an issue. Raising an issue makes agents
aware that some proposition is important. In that case, we can think of a finer
dynamics of questions, where they increase some current set of ‘relevant proposi-
tions’ whose truth value needs to be determined. This would work well in the syn-
tactic approach to inferential and other fine-grained information in [115, 114, 95],
with questions providing one reason for their acts of ‘awareness promotion’. The
latter take would also fit well with Hintikka’s emphasis on the combination of
questions and deductions as driving inquiry. In a dynamic perspective, merg-
ing semantic observational information and inferential syntactic information will
become even more natural when questions come into play. Instead of using the
phrase “Observation enables realization” we can consider a weaker slogan “Ques-
tioning and observation enables partial realization”: [p?][p → q!]〈+q〉Iq With
these preconditions, a formula can be promoted into the access set even if it was
not yet announced. This would also work in the setting that uses both formulas
and rules of inference. If some premises of a rule have been announced already
and the rest are already part of the current issue, the rule can be applied.

Structured issues and agenda dynamics. Surely, both in conversation
and in general investigation, the agenda of relevant issues is much more delicate
than just some equivalence relation, see also [26, 31, 72]. The primary fact seems
to be rather that we are usually maintaining a ‘structured agenda’ – and it is
this agenda that gets modified by successive events of either resolving old ques-
tions, or raising new ones. If we are to have any realistic logical account of, say,
the development of research programs, we need to understand this more finely-
grained dynamics. Moreover, there are already models that allow for this sort of
dynamics. Both [33, 66] consider, essentially, ‘priority graphs’ of ordered relevant
propositions (first proposed and studied in [3]) that can be used for this purpose.
Priority graphs can encode a structured family of issues, and they allow for a
larger repertoire of inserting or deleting questions. Being good at research seems
to imply being able to ask good questions just as much as giving clever answers.

Multi-agent behavior over time. We have already indicated that, just
as with assertions, questions make most sense in the context of some longer
temporal process of inquiry and discovery. Our study of protocols was one step
in this direction. Another long-term perspective where this makes eminent sense
are learning scenarios, where asking successive local questions would be a natural
addition to the usual input streams of answers (cf. [56]) contributing to one
unchanging grand question which global hypothesis about the actual history is
the correct one.



Bibliography

[1] Thomas Ågotnes, Johan van Benthem, Hans van Ditmarsch, and Ştefan
Minică. Question-Answer Games. In LOFT, Toulouse, France, 2010.

[2] Thomas Ågotnes and Hans van Ditmarsch. What will they say?–public an-
nouncement games. In Logic, Game Theory and Social Choice 6, Tsukuba,
Japan, 2009.

[3] H. Andréka, M. Ryan, and P.Y. Schobbens. Operators and laws for combin-
ing preference relations. Journal of logic and computation, 12(1):13, 2002.

[4] Krzysztof R. Apt. Strategic Games. ILLC, University of Amsterdam, 2010.

[5] L. Aqvist. A new approach to the logical theory of questions. Tübingen,
1965.

[6] Xabier Arrazola and Maria Ponte, editors. Proceedings of the Second ILCLI
International Workshop on Logic and Philosophy of Knowledge, Communi-
cation and Action, LoKCA-10, Donostia - San Sebastian, Spain, November
3-5. University of the Basque Country Press, 2010.

[7] R.J. Aumann. Agreeing to disagree. The annals of statistics, 4(6):1236–
1239, 1976.

[8] A. Baltag. Logics for insecure communication. In Proceedings of the 8th
conference on Theoretical aspects of rationality and knowledge, pages 111–
121. Morgan Kaufmann Publishers Inc., 2001.

[9] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic
of public announcements, common knowledge, and private suspicions. In
Proceedings of the 7th conference on Theoretical aspects of rationality and
knowledge, TARK ’98, pages 43–56, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc.

227



228 Bibliography

[10] Alexandru Baltag and Sonja Smets. From conditional probability to the
logic of doxastic actions. In Proceedings of the 11th conference on Theoret-
ical aspects of rationality and knowledge, pages 52–61. ACM, 2007.

[11] Y. Bar-Hillel and R. Carnap. Semantic information. The British Journal
for the Philosophy of Science, 4(14):147–157, 1953.

[12] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of
the polytime functions. Computational complexity, 2(2):97–110, 1992.

[13] N.D. Belnap, T.B. Steel, and H. Schleichert. The logic of questions and
answers, volume 20. Yale University Press London, 1976.

[14] R. Blutner. Questions and answers in an orthoalgebraic approach. 2009.

[15] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Logical foundations of peer-to-peer data integration. In Proc. of the
23rd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2004), pages 241–251, 2004.

[16] L. Carter, L. Stockmeyer, and M. Wegman. The complexity of backtrack
searches. In Proceedings of the seventeenth annual ACM symposium on
Theory of computing, pages 449–457. ACM, 1985.

[17] I. Ciardelli, J. Groenendijk, and F. Roelofsen. Might and free choice in
inquisitive semantics. In Proceedings of Semantics and Linguistic Theory,
2009.

[18] I. Ciardelli and F. Roelofsen. Inquisitive logic. Journal of Philosophical
Logic, pages 1–40, 2009.

[19] José A. Moinhos Cordeiro, Boris Shishkov, Alexander Verbraeck, and
Markus Helfert, editors. CSEDU 2010 - Proceedings of the Second Inter-
national Conference on Computer Supported Education, Valencia, Spain,
April 7-10, 2010 - Volume 2. INSTICC Press, 2010.

[20] R.T. Cox. Of inference and inquiry, an essay in inductive logic. The maxi-
mum entropy formalism, pages 119–167, 1978.

[21] C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The complexity of
computing a nash equilibrium. Communications of the ACM, 52(2):89–97,
2009.

[22] Cédric Dégremont. The Temporal Mind - Observations on the logic of belief
change in interactive systems. PhD thesis, ILLC, University of Amsterdam,
2010.



Bibliography 229

[23] L. Demey. Agreeing to Disagree in Probabilistic Dynamic Epistemic Logic.
Master’s thesis, 2010.

[24] H. Ditmarsch, W. Hoek, and B. Kooi. Dynamic epistemic logic. Springer,
2007.

[25] K. Doets and J. van Eijck. The Haskell Road to Logic, Math and Program-
ming. Citeseer, 2004.

[26] S. Enqvist. Interrogative belief revision in modal logic. Journal of philo-
sophical logic, 38(5):527–548, 2009.

[27] M. Erwig and S. Kollmansberger. FUNCTIONAL PEARLS: Probabilistic
functional programming in Haskell. Journal of Functional Programming,
16(01):21–34, 2006.

[28] R. Fagin, J.Y. Halpern, and N. Megiddo. A logic for reasoning about prob-
abilities* 1. Information and computation, 87(1-2):78–128, 1990.

[29] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A.A. Kalyanpur,
A. Lally, J.W. Murdock, E. Nyberg, J. Prager, et al. Building watson: An
overview of the deepqa project. AI Magazine, 31(3):59–79, 2010.

[30] M.M. Flood. Mastermind strategy. Journal of Recreational Mathematics,
18(3):194–202, 1985.

[31] E. Genot. The best of all possibleworlds: Where interrogative games meet
research agendas. Belief Revision meets Philosophy of Science, pages 225–
252, 2011.

[32] E.J. Genot. The game of inquiry: the interrogative approach to inquiry and
belief revision theory. Synthese, 171(2):271–289, 2009.

[33] Patrick Girard. Modal Logic for Belief and Preference Change. PhD thesis,
Stanford University, 2008.

[34] V. Goranko and G. van Drimmelen. Complete axiomatization and decid-
ability of alternating-time temporal logic. Theoretical Computer Science,
353(1-3):93–117, 2006.

[35] Valentin Goranko and Wojciech Jamroga. e-mail communication. ESSLLI,
Copenhagen, Denmark, 2010.

[36] G. Gottlob, E. Grädel, and H. Veith. Datalog lite: A deductive query
language with linear time model checking. ACM Transactions on Compu-
tational Logic (TOCL), 3(1):42–79, 2002.



230 Bibliography

[37] J. Groenendijk. Questions and answers: Semantics and logic. In Pro-
ceedings of the 2nd CologNET-ElsET Symposium. Questions and Answers:
Theoretical and Applied Perspectives, pages 16–23. OTS, 2003.

[38] J. Groenendijk. Inquisitive semantics: Two possibilities for disjunction.
Logic, Language, and Computation, pages 80–94, 2009.

[39] J. Groenendijk and F. Roelofsen. Inquisitive semantics and pragmatics. In
Proceedings of SPR, volume 9. Citeseer, 2009.

[40] Jeroen Groenendijk and Martin Stokhof. Questions, chapter 19, pages 1055–
1125. In van Benthem and ter Meulen [101], 1997.

[41] Y. Hamami. The Interrogative Model of Inquiry meets Dynamic Epistemic
Logics. Master’s thesis, 2010.

[42] C.L. Hamblin. Questions aren’t statements. Philosophy of Science,
30(1):62–63, 1963.

[43] D. Harrah. On completeness in the logic of questions. American Philosoph-
ical Quarterly, 6(2):158–164, 1969.

[44] D. Harrah. The logic of questions. Handbook of philosophical logic, 2:715–
764, 1984.

[45] J.C. Harsanyi. Games with incomplete information played by “bayesian”
players, i-iii. part i. the basic model. Management science, 14(3):159–182,
1967.

[46] S. Hart, A. Heifetz, and D. Samet. “Knowing whether”, “knowing that”,
and the cardinality of state spaces. Journal of economic theory, 70(1):249–
256, 1996.

[47] Xiangdong He, John F. Horty, and Eric Pacuit, editors. Proceedings of Sec-
ond International Workshop on Logic, Rationality, and Interaction, LORI-
II, Chongqing, China, October 8-11, 2009, volume 5834 of Lecture Notes in
Computer Science. Springer, 2009.

[48] J. Hintikka. Socratic epistemology: explorations of knowledge-seeking by
questioning. Cambridge Univ Pr, 2007.

[49] J. Hintikka, I. Halonen, and A. Mutanen. Interrogative logic as a general
theory of reasoning. Studies in Logic and Practical Reasoning, 1:295–337,
2002.

[50] Jaakko Hintikka and Gabriel Sandu. Game-theoretical semantics, chapter 6,
pages 361–410. In van Benthem and ter Meulen [101], 1997.



Bibliography 231

[51] Tomohiro Hoshi. Epistemic Dynamics and Protocol Information. PhD the-
sis, Stanford University, 2009.

[52] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.
MIT Press, 2006.

[53] W. Jamroga and T. Ågotnes. Constructive knowledge: what agents can
achieve under imperfect information. Journal of Applied Non-Classical Log-
ics, 17(4):423–475, 2007.

[54] W. Jamroga and W. van der Hoek. Agents that know how to play. Funda-
menta Informaticae, 63(2):185–219, 2004.

[55] Simon Jones. Haskell 1998 language report, available online at:
http://www.haskell.org/onlinereport.

[56] Kevin T. Kelly. The Logic of Reliable Inquiry. Oxford University Press,
USA, 1996.

[57] Kevin T. Kelly and C. Glymour. Convergence to the truth and nothing but
the truth. Philosophy of Science, 56(2):185–220, 1989.

[58] K.H. Knuth. Intelligent machines in the 21st century: foundations of in-
ference and inquiry. Phil. Trans. Roy. Soc. Lond. A, 361(1813):2859–2873,
2003.

[59] K.H. Knuth. Lattice duality: The origin of probability and entropy. Neu-
rocomputing, 67:245–274, 2005.

[60] K.H. Knuth. Toward question-asking machines: the logic of questions and
the inquiry calculus. In 10th International Workshop on Artificial Intelli-
gence and Statistics, Barbados. Citeseer, 2005.

[61] Phokion Kolaitis. Relational Databases, Logic, and Complexity. In Sino-
European Winter School in Logic, Language and Computation, Guangzhou,
China, 2010.

[62] B. Kooi. Yet another Mastermind strategy. ICGA Journal, 28(1):13–20,
2005.

[63] B.P. Kooi. Probabilistic dynamic epistemic logic. Journal of Logic, Lan-
guage and Information, 12(4):381–408, 2003.

[64] S. Kraus and D. Lehmann. Knowledge, belief and time. Theoretical Com-
puter Science, 58(1-3):155–174, 1988.

[65] T. Kubinski. The logic of questions. La Philosophie contemporaine, Flo-
rence: La Nuova Italia Editrice, pages 185–189, 1968.



232 Bibliography

[66] Fenrong Liu. Changing for the Better: Preference Dynamics and Agent
Diversity. PhD thesis, ILLC, University of Amsterdam, 2008.

[67] Carsten Lutz. Complexity and succinctness of public announcement logic.
In Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, AAMAS ’06, pages 137–143, New York,
NY, USA, 2006. ACM.

[68] Simon Marlow. Haskell 2010 language report, available online at:
http://www.haskell.org/onlinereport/haskell2010/.

[69] Ştefan Minică. Characterizing and Computing Pure Nash Equilibria in the
Location Game on a Line. SELLC, Sino-European Winter School in Logic,
Language and Computation, Guangzhou, China, 3-18 December, 2010.

[70] Ştefan Minică. Extensive Questioning Games. In Arrazola and Ponte [6],
pages 315–331.

[71] Ştefan Minică. Implementing Dynamic Epistemic Questioning. In Cordeiro
et al. [19], pages 97–105.

[72] E.J. Olsson and D. Westlund. On the role of the research agenda in epis-
temic change. Erkenntnis, 65(2):165–183, 2006.

[73] M.J. Osborne and A. Rubinstein. A course in game theory. The MIT press,
1994.

[74] Robert Paige and Robert E. Tarjan. Three partition refinement algo-
rithms. Society for Industrial and Applied Mathematics Journal of Com-
puting, 16(6):937–989, 1987.

[75] Z. Pawlak. Rough sets: Theoretical aspects of reasoning about data.
Springer, 1991.

[76] M. Pelǐs and O. Majer. Logic of questions from the viewpoint of dynamic
epistemic logic. The Logica Yearbook, pages 157–172, 2009.

[77] A. Pietarinen and G. Sandu. Games in philosophical logic. Nordic Journal
of Philosophical Logic, Epistemilogy, and the Unity of Science, 4:143–174,
1999.

[78] A.V. Pietarinen and G. Sandu. If logic, game-theoretical semantics and the
philosophy of science. Logic, Epistemilogy, and the Unity of Science, pages
105–138, 2004.

[79] J. Plaza. Logics of public communications. Synthese, 158(2):165–179, 2007.



Bibliography 233

[80] S. Rahman and T. Tulenheimo. From games to dialogues and back: towards
a general frame for validity. Games: Unifying Logic, Language and Philos-
ophy; Logic, Epistemilogy, and the Unity of Science, 15:153–208, 2006.

[81] Oded Shmueli. Decidability and expressiveness of logic queries. In PODS,
pages 237–249. ACM, 1987.

[82] A. Sureka and P.R. Wurman. Using tabu best-response search to find pure
strategy Nash equilibria in normal form games. In Proceedings of the fourth
international joint conference on Autonomous agents and multiagent sys-
tems, pages 1023–1029. ACM, 2005.

[83] B. ten Cate and C. Shan. Question answering: From partitions to Prolog.
Automated Reasoning with Analytic Tableaux and Related Methods, pages
75–116, 2002.

[84] B. ten Cate and C. Shan. Axiomatizing Groenendijks Logic of Interrogation.
Questions in dynamic semantics, pages 63–82, 2007.

[85] Balder D. ten Cate. Model Theory for Extended Modal Languages. PhD
thesis, ILLC, University of Amsterdam, 2005.

[86] The inquisitive website. sites.google.com/site/inquisitivesemantics.

[87] A.M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460,
1950.

[88] C. Unger and G. Giorgolo. Interrogation in dynamic epistemic logic. Proceedings
of the 13th ESSLLI Student Session, pages 195–202, 2008.

[89] J. van Benthem. Reflections on epistemic logic. Logique & Analyse, 133(134):5–
14, 1991.

[90] J. van Benthem. Games in Dynamic-Epistemic Logic. Bulletin of Economic
Research, 53(4):219–248, 2001.

[91] J. van Benthem. One is a lonely number: on the logic of communication. Institute
for Logic, Language and Computation (ILLC), University of Amsterdam, 2003.

[92] J. van Benthem. The information in intuitionistic logic. Synthese, 167(2):251–
270, 2009.

[93] J. van Benthem. Logical dynamics of information and interaction. Cambridge
University Press, 2011.

[94] J. van Benthem, J. Gerbrandy, and B. Kooi. Dynamic Update with Probabilities.
Studia Logica, 93(1):67–96, 2009.



234 Bibliography

[95] J. van Benthem and F.R. Velázquez-Quesada. Inference, promotion, and the
dynamics of awareness. ILLC Amsterdam. To appear in Knowledge, Rationality
and Action, 2009.

[96] Johan van Benthem. Dynamic logic for belief revision. Journal of Applied Non-
Classical Logics, 17(2):129–155, 2007.

[97] Johan van Benthem, Jelle Gerbrandy, Tomohiro Hoshi, and Eric Pacuit. Merging
frameworks for interaction. Journal of Philosophical Logic, 38:491–526, 2009.

[98] Johan van Benthem, Patrick Girard, and Olivier Roy. Everything else being
equal: A modal logic for ceteris paribus preferences. Journal of Philosophical
Logic, (38):83–125, 2009.

[99] Johan van Benthem and Fenrong Liu. Dynamic logic of preference upgrade.
Journal of Applied Non-Classical Logics, 14(2), 2004.

[100] Johan van Benthem and Ştefan Minică. Toward a Dynamic Logic of Questions.
In He et al. [47], pages 27–41.

[101] Johan van Benthem and Alice ter Meulen, editors. Handbook of Logic and Lan-
guage. The MIT Press, Elsevier, 1997.

[102] H. van Ditmarsch. Knowledge games. Bulletin of Economic Research, 53(4):249–
273, 2001.

[103] H. van Ditmarsch and B. Kooi. The secret of my success. Synthese, 153(2):339–
339, 2006.

[104] Hans van Ditmarsch and Jan van Eijck. Dynamic-Epistemic Logic.
Course Notes and Haskell Code, ESSLLI, Hamburg, August 2008:
http://homepages.cwi.nl/∼jve/courses/esslli08/.

[105] J. van Eijck and C. Unger. The epistemics of presupposition projection. In
Proceedings of the Sixteenth Amsterdam Colloquium, pages 235–240. Citeseer,
2007.

[106] J. van Eijck and C. Unger. Computational semantics with functional program-
ming. Cambridge University Press, 2010.

[107] Jan van Eijck. Dynamic epistemic modelling. manuscript, CWI, Amsterdam,
2005.

[108] Jan van Eijck. DEMO – a demo of epistemic modelling. In Interactive Logic.
Selected Papers from the 7th Augustus de Morgan Workshop, London, volume 1,
pages 303–362, 2007.

[109] Jan van Eijck, Lakshmanan Kuppusamy, and Floor Sietsma. Demo light for
composing models. http://www.cwi.nl/∼jve/software/demolight, 2011.



Bibliography 235

[110] R. van Rooij. Quality and quantity of information exchange. Journal of Logic,
Language and Information, 12(4):423–451, 2003.

[111] Robert van Rooij. Questioning to resolve decision problems. Linguistics and
Philosophy, 26(6):727–763, 2003.

[112] Robert van Rooij. Questions and relevance. In Questions and Answers, Pro-
ceedings 2d CoLogNET ElsNET Symposium, ILLC Amsterdam, pages 96–107,
2005.

[113] Robert van Rooij. Comparing questions and answers: A bit of logic, a bit of
language, and some bits of information. Formal Theories of Information, pages
161–192, 2009.

[114] Fernando Velázquez. Small Steps in Dynamics of Information. PhD thesis,
Institute for Logic, Language and Information, University of Amsterdam, 2010.

[115] F.R. Velázquez-Quesada. Inference and update. Synthese, 169(2):283–300, 2009.

[116] D. Vickrey and D. Koller. Multi-agent algorithms for solving graphical games. In
Proceedings of the National Conference on Artificial Intelligence, pages 345–351.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2002.

[117] A. Wísniewski. The posing of questions: logical foundations of erotetic inferences.
Kluwer Academic Pub, 1995.

[118] A. Wísniewski. Erotetic search scenarios. Synthese, 134(3):389–427, 2003.

[119] A. Wísniewski. Erotetic search scenarios, problem solving, and deduction.
Logique & Analyse, 185-188:139–166, 2004.





Abstract

The dissertation presents an approach to questions and broader questioning phe-
nomena inside the paradigm of dynamic epistemic logic. The main topics that
emerge in the thesis are concerned with: defining a rich repertoire of questioning
actions, developing a theoretical framework and logics to reason about interrog-
ative actions, provide implementation tools for analyzing realistic scenarios of
questioning in inquiry. In this way we provide a setting in which questions can be
understood and analyzed in their intricate conceptual, logical and practical inter-
dependence and strategic connection with knowledge and information dynamics.

Chapter 2 shows how dynamic logics of questions can analyze various aspects
of private and public inquiry. We introduce a resolution modality based on the in-
tersection between the two equivalence relations representing the information and
questioning partitions. This provides a rich system of dynamic issue-management
actions leading to complete dynamic logics for questioning in DEL style. These
systems fit entirely within the methodology of dynamic-epistemic logic, and they
seem to form a natural complement to what already exists in this area.

Chapter 3 complements the theoretical perspective with an implementation.
This extends previous implementations for epistemic model checking with ques-
tioning specific functionality. The main new utilities are model checking utility
for questioning, resolution, and epistemic formulae, and a general and extensi-
ble implementation for complex questioning and resolution dynamic actions that
emerge in this framework. We also show how the implementation is useful by
modeling and analyzing some paradigmatic examples of questioning scenarios.

Next we study the strategic aspects that emerge in DELQ both in games with
questioning moves and in long term interactive inquiry.

Chapter 4 defines and investigates games with questioning moves. We first
look at strategic games with two players. We then extend this basic approach
to a more realistic setting with sequential moves, and oracles encoding interac-
tions between imperfectly informed agents or limitations in external information
sources or measurement instruments and experimental procedures. We give a

237



238 Abstract

tripartite interpretation for questioning moves and use it to show first why ques-
tioning phenomena in multi-agent contexts are more complex than traditionally
understood and second to distinguish games with questioning moves from games
with informative actions. We analyze illustrative examples and present an inexis-
tence result for Nash equilibrium with pure strategies in questioning games with
oracles. We also identify the difraction property and show why it is important
for describing strategic abilities in extensive questioning games.

Chapter 5 provides an implementation for questioning games extending basic
epistemic functionality to include strategic aspects specific for a game theoretic
approach of questioning actions. The implementation provides ‘expressive har-
mony’ for questioning moves by linking the semantic level based on partitions of
the domain with a corresponding syntactic level using disjunctions of nominals.
In this way, we can compute complete game matrices for games with questioning
moves and we give an algorithm for minimizing issue-epistemic models using a
notion of behavioral equivalence that is adequate for the questioning language.

Next we investigate the connection between a questioning theory and the
process of designing efficient querying strategies. In this way we provide a bridge
between a theory of questions and known search heuristics using backtrack oracles.

Chapter 6 approaches the topic of designing questioning strategies in problem
solving from a theoretical perspective. We take again solving games as our point
of departure and a rich representative test case. In this context we investigate the
problem of finding Nash equilibria in the location game played on a line. We also
discuss the general relevance of this approach for designing querying strategies
in problem solving by using oracles of operational properties to solve a principal
problem using efficiently available sources of information. We give a character-
ization of NE by means of local properties in the game. We use an approach
based on querying an oracle of local properties and matching of strategy profile
fragments to design questioning strategies that solve the game in an efficient way.
In the final section we provide a minimization algorithm for probabilistic issue
models based on partition refinement solving the birelational coarsest partition
problem and in accordance with the adequate notion of behavioral equivalence
for probabilistic issue models and probabilistic questioning actions.

In Chapter 7 we present a Haskell implementation illustrating how queries
of local properties in the game can search for equilibrium strategy profiles using
list comprehension. This assumes the existence of oracles of local properties
and uses this to search for Nash equilibria in pure strategies. Next, we give an
Alloy Analyzer implementation for building countermodels for the location game
and checking assertions about logical entailment within a predetermined scope
between facts expressing local properties and NE.

Chapter 8 shows how our approach gives rise to a coherent research agenda
with a broader scope, and points to some further directions for future research.



Acknowledgments

There are many people I wish to acknowledge for their direct or indirect contri-
bution to this thesis or for making this text possible at all.

First of all, I am very grateful to my three supervisors who guided and shaped
this thesis in many ways. I thank Johan van Benthem for interesting discussions,
extended and useful comments on various draft manuscripts, long emails full of in-
sightful thoughts and much appreciated clarifications. He was a permanent source
of fresh and stimulating ideas while also providing constant support, knowledge-
able supervision and active encouragement for articulating and developing my
own ideas. His generous willingness to share his extensive knowledge was the
reason to start my research in DEL in the first place and instrumental for the
attempt to enrich it with an interrogative twist in this thesis. I can only hope
that in the future I will find the time and wisdom to follow up on more of the
the many interesting ideas Johan shared with me over the years.

Hans van Ditmarsch and Jan van Eijck joined in the supervision process in
the last two years and their dedication and support were pivotal in enhancing my
knowledge and fueling my interest. In 2008 at ESSLLI in Hamburg I attended
the DEL course taught by Jan and Hans in which they were using Haskell and
DEMO. It was during the next coffee break when I knew that my research will
never be the same again. Soon after that I discovered myself thinking about
DELq in DEMO code and, for better or worse, I kept doing it for the rest of this
thesis. I owe to Jan my initial interest in implementations and much of what I
learned about them since. His passion for neat code and deep thinking are truly
outstanding and inspirational.

I am thankful to Hans for his perceptive and enthusiastic supervision on any
PAL or DEL topic I explored. He also shaped my interest in games with epistemic
moves. I am indebted to him and Thomas Ågotnes for intellectual engagement
and many interesting discussions from which the questioning games emerged. I
also greatly appreciate their generosity as co-authors, advice and encouragement,
challenging joint work, enduring collaboration and many fruitful ideas.

239



240 Acknowledgments

Next I want to thank Krzysztof Apt for many critical comments and valuable
feedback about various subjects in the thesis. I have learned a lot from our
interaction over the years, the very topic of Chapter 6 emerged from an exercise
in the ‘Strategic Games’ lecture notes and many of the subsequent developments
would not have been possible without his constructive criticism and ineluctable
demands for more general and interesting results.

I thank Gabriel Sandu for useful advice and inspiring supervision as a visiting
student in Helsinki and also for awakening, perhaps unintended, my interest in
interrogative logic for the first time. I also admired from a very early stage
Alexandru Baltag’s work on integrating questions inside DEL, I thank him for
making DEL not just an interesting research field but in so many occasions also a
fun and enjoyable subject. I also thank the other members of the thesis committee
Paul Egré, Jeroen Groenendijk, Robert van Rooij and Frank Veltman for the
honor of agreeing to read and asses the manuscript.

I have also benefited from comments on parts of the text or discussions of
some topics in the thesis from many people over the years: Lorenz Demey, Vik-
toria Denisova, Valentin Goranko, Meiyun Guo, Yacin Hamami, Wesley Holliday,
Thomas Icard, Wojtek Jamroga, Lena Kurzen, Minghui Ma, Alexandru Mar-
coci, Eric Pacuit, Floris Roelofsen, Mehrnoosh Sadrzadeh, Katsuhiko Sano, Sunil
Simon, Sonja Smets, Cristina Unger and Fernando Velázquez-Quesada.

ILLC was also a great place for study and broadening my intelectual horizon.
I have learned a lot from the excellent teachers whose lectures I attended: Paul
Dekker, Peter van Emde Boas, Ulle Endriss, Dick de Jongh, Benedikt Löwe,
Sebastiaan Terwijn, Jouko Väänänen and Yde Venema. I also thank George
Barmpalias and Jan Jaspars for interesting and useful teaching activities.

I thank the dynamic seminar co-organizers and the seminar yearbook co-
editors: Cédric Dégremont, Davide Grossi, Alexandru Marcoci, Sonja Smets,
Ben Rodenhäuser, and Fernando Velázquez-Quesada and all the other members
in the dynamic logic group who were always a stimulating and enjoyable presence.
I thank Lena Kurzen for sharing an office in the JK building and so many others
for sharing the workspace in Science Park: Pietro Galliani, Umberto Grandi, Joel
Uckelman, Lucian Zagan, however, any list would be inevitably incomplete. The
entire ILLC community has made living and working enjoyable and interesting.

I thank the ILLC office for help with administrative and organizational issues:
Karin Gigengack, Tanja Kassenaar, Ingrid van Loon, Marco Vervoort, and I am
grateful to Peter van Ormondt also for helping with the dutch samenvatting.

Finally, I thank my family for their invaluable support over the years and
Camelia for always finding a way to make life so much more meaningful.

Amsterdam Ştefan Minică
October, 2011.


