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Abstract. We investigate proof theoretic properties of logical systems
via algebraic methods. We introduce a calculus for deriving multiple-
conclusion rules and show that it is a Hilbert style counterpart of hyper-
sequent calculi. Using step-algebras we develop a criterion establishing
the bounded proof property and finite model property for these systems.
Finally, we show how this criterion can be applied to universal classes
axiomatized by certain canonical rules, thus recovering and extending
known results from both semantically and proof-theoretically inspired
modal literature.

1 Introduction

In this paper we continue proof theoretic investigations of modal logic via alge-
braic methods which started in [3, 4]. In [3, 4] the bounded proof property (the
bpp), which is a kind of analytic subformula property, was introduced as a mea-
surement of robustness of proof systems. An algebraic criterion was developed
in [3, 4] establishing whether a modal system axiomatized by standard rules
possesses the bpp. Here we extend this research in two directions. First, we in-
vestigate more expressive proof systems axiomatized by multiple-conclusion rules
for which we develop equivalent systems via hypersequent calculi and prove for
them an algebraic criterion for the bpp. Second, for a large class of logics (stable
logics) we systematically design proof systems that have the bpp. Thus, we are
at a position to not only check whether a system is robust, but also to design
robust proof systems.

Multiple-conclusion rules recently gained attention in the modal logic lit-
erature (see e.g., [2, 13, 15]), because they constitute an essential tool for in-
vestigating classes of algebras beyond varieties and because canonical formulae
axiomatizations can be nicely developed within this framework. On the other
hand and from a completely different research perspective, the proof-theoretic
oriented community realized that standard sequent formalisms are insufficient
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to handle complex logics and moved to more expressive hypersequent calculi
(compare for instance the simplicity of communication rules used for the logics
of linear frames developed in [1] with the more complex systems needed for cut
elimination in the traditional context [9, 11]).

In this paper we connect multiple-conclusion rules and hypersequent calculi.
To our best knowledge, no explicit calculus for multiple-conclusion rules has
been proposed so far. Note that for semantic investigations such as [2, 13], it
is in fact sufficient to specify abstractly the properties that a rule system (seen
just as a set of rules) should satisfy. On the other hand, a specific calculus for
multiple-conclusion rules is needed if we want to make a close comparison with
the hypersequent approach. This calculus will play the role of a Hilbert calculus
for hyper-formulae, i.e. for the syntactic components of a hyper-sequent. We
will introduce such a calculus and investigate it using the techniques developed
in [3, 4]. These techniques, based on semantic analysis of ‘step’ structures, have
been shown to be rather effective in establishing the bpp. Our long-term proposal
is to apply these techniques to obtain bpp and the finite model property (the
fmp), thus also decidability, for logics axiomatized by canonical formulae. In
this paper, we report a first success in this direction, already covering bpp and
fmp for a continuum of logics, including those recently analyzed in [16] via the
hypersequent approach.

Proofs of the results from Section 2 will be deferred to the first appendix;
proofs of the results from Sections 3,4 (requiring routine adjustments from the
corresponding proofs in [3, 4]) will be included into the second appendix.

2 A calculus for derived multiple-conclusion rules

Modal formulae are built from propositional variables x, y, . . . by using the
Booleans (¬,∧,∨,→, 0, 1) and modal operators (♦,�). For simplicity, we take
¬, ∧, ♦ as primitive connectives, the remaining ones being defined in the cus-
tomary way (in particular, � is defined as ¬♦¬). We shall also use parameters
a, b, . . . instead of variables whenever we want to stress that uniform substitu-
tion does not apply to them. Underlined letters stand for tuples of unspecified
length and formed by distinct elements, thus for instance, we may use x for a
tuple such as x1, . . . , xn. When we write φ(x) we want to stress that φ contains
at most the variables x (and no parameters) and similarly when we write φ(a)
we want to stress that φ contains at most the parameters a (and no variables).
The same convention applies to sets of formulae: if Γ is a set of formulae and we
write Γ (a), we mean that all formulae in Γ are of the kind φ(a), etc. We may
occasionally replace variables with parameters in a formula: for this, we use the
following self-explanatory notation. For a formula φ(x) we write φ(a) to mean
that φ(a) is obtained from φ(x) by replacing x = x1, . . . , xn (simultaneously and
respectively) by a = a1, . . . , an. The modal complexity (or the modal degree) of
a formula φ counts the maximum number of nested modal operators in φ (the
precise definition is by an obvious induction).



We recall some background on modal algebras, see e.g., [6, Sec. 5.2] or [7, Sec.
7.6] for more details. A modal algebra A = (A,♦) is a Boolean algebra A endowed
with a unary operator ♦ satisfying ♦(x∨y) = ♦x∨♦y,♦0 = 0. Notice that, here
and elsewhere, we use the same name for a connective and the corresponding
operator in modal algebras (thus, for instance, 0 is zero, ∨ is join, etc.). In
this way, propositional formulae can be identified with terms in the first order
language of modal algebras.

From the semantic side, we have the notion of a frame; a frame F = (W,R) is
a set W endowed with a binary relation R. The dual of a frame F = (W,R) is the
modal algebra F∗ = (℘(W ),♦R), where ℘(W ) is the powerset Boolean algebra
and ♦R is the semilattice morphism associated with R. The latter is defined as
follows: for S ⊆ W , we have ♦R(S) = {w ∈ W | R(w) ∩ S 6= ∅} (here R(w)
denotes {v ∈ W | (w, v) ∈ R}). It should be noticed that there is a real duality
(in the categorical sense) between modal algebras and frames only if we restrict
to finite modal algebras and finite frames. If we want a full duality working for
arbitrary modal algebras, we must introduce some topological structures on our
frames (see, e.g., [6, Sec. 5.5], [7, Sec. 7.5], [14, Ch. 4] or [17]). For the purposes of
this paper, however, the duality between finite frames and finite modal algebras
will suffice.

2.1 Multiple-conclusion rules

Normal modal logics are an adequate formalism to describe equational classes of
modal algebras. However, in this paper we are interested in more general classes.
A class of modal algebras is said to be:

(i) a variety iff it is the class of models of a set of equations, i.e., of sentences
of the kind ∀x φ(x) = 1, where φ is a modal formula (aka a term in the first
order language of modal algebras);

(ii) a quasi-variety iff it is the the class of models of a set of implications of
equations, i.e. of sentences of the kind ∀x (

∧n
i=1 φi(x) = 1 → ψ(x) = 1),

where φ1, . . . , φn, ψ are modal formulae;
(iii) a universal class iff it is the class of models of a set of clauses, i.e., of sen-

tences of the kind ∀x (
∧n
i=1 φi(x) = 1→

∨m
j=1 ψj(x) = 1), where φ1, . . . , φn,

ψ1, . . . , ψm are modal formulae.

In order to describe universal classes within a propositional modal language,
we shall use multiple-conclusion rules; a multiple-conclusion rule (or just a rule)
is a pair of finite sets of formulae 〈Γ, S〉. If Γ = {φ1, . . . , φn}, S = {ψ1, . . . , ψm},
we write the rule 〈Γ, S〉 as Γ/S or as

γ1, . . . , γn
δ1 | · · · | δm

(R)

The formulae Γ = {γ1, . . . .γn} are said to be the premises of the rule (R) and
the formulae S = {δ1, . . . , δm} are said to be the conclusions of the rule (R).
The multiple-conclusion rule (R) is said to be an inference rule or a single-
conclusion rule iff m = 1, i.e., iff it has a single conclusion. A modal algebra



A = (A,♦) validates the multiple-conclusion rule (R) iff it is a model of the
clause ∀x (

∧n
i=1 φi(x) = 1→

∨m
j=1 ψj(x) = 1).

We recall the notion of a rule system from [13]:

Definition 1. A set of multiple-conclusion rules K is said to be a rule system
iff it satisfies the following conditions for every formula φ and for every finite
sets of formulae Γ, Γ ′, S, S′:

(i) φ/φ ∈ K;
(ii) if Γ/S, φ ∈ K and Γ, φ/S ∈ K, then Γ/S ∈ K;
(iii) if Γ/S ∈ K then Γ, Γ ′/S, S′ ∈ K;
(iv) if Γ/S ∈ K then for every substitution σ, we have that Γσ/Sσ ∈ K.

Above we used obvious conventions about set-theoretic union of finite sets of
formulae (e.g., Γ, φ stands for Γ ∪ {φ}, moreover Γ, Γ ′ stands for Γ ∪ Γ ′, etc.);
in addition, we used Γσ to denote the set resulting from the application of σ to
all members of Γ .

Definition 2. A (normal) modal rule system is a rule system containing tau-
tologies and the distribution schema �(α1 → α2) → (�α1 → �α2) (as single-
conclusion 0-premises rules) as well as necessitation (α/�α) and modus ponens
(α, α→ β/β) rules.

We say that a set of rules K entails or derives a rule Γ/S (written K `
Γ/S) iff Γ/S belongs to the smallest modal rule system [K] containing K. The
following algebraic completeness theorem is proved in [13] (but follows also from
our results below):

Theorem 1. Let K be a set of multiple-conclusion rules. Then K ` Γ/S iff
every modal algebra validating all rules in K validates also Γ/S.

2.2 Hyper-formulae and hyper-proofs

We now design a calculus for recognizing syntactically the relation K ` Γ/S.
We shall actually give two equivalent versions of such a calculus, the latter to be
seen just as a Hilbert-style analogue of the well-known hypersequent calculi [1].

An hyper-formula is a finite set of propositional formulae written in the form

α1 | · · · | αn. (1)

We use letters S, S1, S
′, . . . for hyper-formulae; the notation S | S′ means set

union and S | α and α | S stand for S | {α} and {α} | S, respectively.

Definition 3. Let Γ be a set of propositional modal formulae and let K be a
set of multiple-conclusion rules. A K-hyper-proof (or a K-derivation or just
a derivation) under assumptions Γ is a finite list of hyper-formulae S1, . . . , Sn
such that each Si in it matches one of the following requirements:



(i) Si is of the kind α | S, where α ∈ Γ or α is a tautology or α is an instance
of the distribution schema;

(ii) Si is obtained from hyper-formulae preceding it by applying a rule from K
or the necessitation rule or the modus ponens rule.

We write Γ `K S to mean that there is a K-derivation ending with S.

An important remark is in order for (ii): when we say that Si is obtained
by applying an inference rule, we include uniform substitution and weakening
in the application of the rule. Thus, if the rule is (R), when we say that Si is
obtained from (R), we mean that there is a substitution σ such that Si is of the
kind S | δ1σ | · · · | δmσ and that there are j1, . . . , jn < i such that Sj1 is of the
kind S | γ1σ, and . . . and Sjn is of the kind S | γnσ (of course, this applies also
to the case n = 0, i.e., to zero-premisses rules).

Theorem 2. Let K be a set of multiple-conclusion rules. Then Γ `K S iff the
multiple-conclusion rule Γ/S is valid in every modal algebra validating K.

Corollary 1. Let K be a set of multiple-conclusion rules. For each multiple-
conclusion rule Γ/S, we have K ` Γ/S iff Γ `K S.

Notice that Theorem 1 follows from Corollary 1 and Theorem 2.

2.3 Hypersequent syntax

A sequent is a pair of finite sets of formulae written as Γ ⇒ ∆ and a hypersequent
is a finite set of sequents written as

Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n. (2)

In this paper, we are investigating proof theoretic facts that only depends on
the modal degree of formulae and on proofs, thus we view a sequent Γ ⇒ ∆ as
the formula

∧
Γ →

∨
∆ and a hypersequent (2) as the hyperformula∧
Γ1 →

∨
∆1 | · · · |

∧
Γn →

∨
∆n. (3)

Still, there is an important difference between hyperproofs according to Defini-
tion 3 and hypersequent calculi e.g., in [1]: once translated into our formalism,
the difference is in the possibility of using rules having hyper-formulae (and
not just formulae) as premises. We show here that this difference is immaterial
because we can translate these more general rules and proofs into our formal-
ism. The translation is effective, does not increase the modal degree of formulae
involved in the proofs, but might be harmful for complexity.

We first introduce the definitions needed to make the comparison. A hyper-
rule is a n ∗ 1-tuple of hyper-formulae, written as S1, . . . , Sk/S, if H is a set
of hyper-rules, Γ is a set of hyper-formulae and S is a hyper-formula. We say
that S is provable from Γ in H, written Γ 
H S iff there exists a finite list of
hyper-formulae S1, . . . , Sn (called a derivation) such that each Si in it matches
one of the following requirements:



(i) Si is a hyper-formula containing a member of Γ , or a tautology, or a formula
of the form �(α1 → α2)→ (�α1 → �α2);

(ii) Si is obtained from hyper-formulae preceding it by applying modus ponens
rule α, α→ β/β, necessitation rule α/�α, or a hyper-rule from H.

Again, ‘to apply a rule S1, . . . , Sk/S to get Si’ means that there is a substitution
σ such that Si is of the kind S̃ | Sσ and that there are j1, . . . , jn < i such that
Sj1 is of the kind S̃ | S1σ and . . . and Sjk is of the kind S̃ | Skσ.3

Proposition 1. Let H be a finite set of hyper-rules. Then it is possible to pro-
duce a set of rules K such that for all Γ, S̃ we have Γ 
H S̃ iff Γ `K S̃.

Proof. (Sketch, see the appendix for full details) Consider a hyper-rule S1, . . . , Sk/
S fromH: to obtainK, we simply replace it with the set of rules γ(S1), . . . , γ(Sn)/
S, varying γ among the functions that pick one formula from each Si, for each
i = 1, . . . , n. a

Next we give a few examples. In order to make a more direct link with
the current literature, we will use the hypersequent syntax (Gentzen standard
sequent rules for classical logic, as well as external structural rules will be always
implicitly assumed below).

Example 1. An adequate calculus for S4 comprises the following two rules (taken
from [12])

�Γ⇒A1 | · · · | �Γ⇒An
Γ ′,�Γ⇒∆,�A1, · · · ,�An

(⇒�)

�A,A, Γ⇒∆
�A,Γ⇒∆ (T )

where, if Γ = {φ1, . . . , φn}, then �Γ stands for {�φ1, . . . ,�φn}.
Example 2. Let us now consider the universal class of prime S4.3 algebras: these
are the modal algebras validating the above rules and satisfying in addition the
clause

∀x ∀y (�x ≤ �y or �y ≤ �x).

To axiomatize this class, we can add to the above rules the further rule

Γ̃ ,�Γ,�Γ ′⇒∆ Γ̃ ′,�Γ ′,�Γ⇒∆′

Γ̃ ,�Γ⇒∆ | Γ̃ ′,�Γ ′⇒∆′
(Dich)

taken from [12]. Rule (Dich) is nothing but a variant of the communication rule
introduced in [1].

Example 3. For prime S5 algebras, we can add to S4-rules the following rule
taken from [1]

�Γ, Γ ′⇒�∆,∆′

�Γ⇒�∆ | Γ ′⇒∆′
(S5)

3This notion of a derivation avoids the introduction of side components (in the
sense of [1]) when specifying rules: in fact, the side component S is introduced directly
when applying the rule.



3 Bounded proofs and step frames

From now on, we shall make exclusive reference to the calculus explained in
Definition 3. We call a modal calculus (or simply a calculus) a set of multiple-
conclusion rules where only formulae of modal degree at most one occur.4

When we write Γ `nK S we mean that there is a K-hyperproof under as-
sumptions Γ (see Definition 3) in which only formulae of modal complexity at
most n occur. We are mostly interested in the semantic characterization of the
following property:

Definition 4. We say that a calculus K has the bounded proof property (bpp,
for short) iff for every hyper-formula S of modal complexity at most n and for
every Γ containing only formulae of modal complexity at most n, we have

Γ `K S ⇒ Γ `nK S.

It should be clear that the bpp for K implies the decidability of the relation
Γ `nK S (and hence, according to Corollary 1, of derivability of rules in K). This
is because we have a bounded search space for hyper-formulae occurring in a
possible derivations and for possible substitutions instantiating rules from K: in
fact, there are only finitely many non-provably equivalent formulae containing
at most a given finite set of propositional variables and with modal complexity
bounded by a given n (notice that in a proof witnessing Γ `nK S we can freely
suppose that only the variables occurring in Γ, S occur, because extra variables
can be uniformly replaced by, say, 0).

The following proposition shows that we can limit our consideration to for-
mulae of complexity 1 when checking the bpp.

Proposition 2. A calculus K has the bounded proof property iff for every hyper-
formula S of modal complexity at most 1 and for every Γ containing only for-
mulae of modal complexity at most 1, we have Γ `K S ⇒ Γ `1

K S.

In the following, we shall adopt the equivalent formulation of the bpp sug-
gested by the above proposition. We shall call finite sets Γ of formulae of modal
complexity at most 1, finite presentations. It is useful to use parameters (see
Section 2) to name the variables occurring in a finite presentation Γ : this is
because in a K-hyperproof under assumptions Γ , the formulae in Γ are intro-
duced in the derivation as they are (no substitution applies to them), whereas
substitutions are applied to rules in K. Thus, we write Γ (a) to emphasize that
at most the parameters a occur in Γ and Γ (a) `K S(a) to emphasize that the
tuple a includes all parameters occurring in both Γ, S.

4 This property can be assumed without loss of generality, by applying the trans-
formation suggested in [3] (that transformation does not increase the modal degree of
proofs). In [3] another property is assumed on rules (namely that variables occurring in
them have occurrences inside a modal operator). This property was assumed there to
simplify the definition of evaluation in step algebras, but in the present more general
context it can have unclear side effects, so we prefer not to assume it anymore.



3.1 Conservative one-step algebras and one-step frames

We first recall the definition of one-step modal algebras and one-step frames
from [10] and [5], and define conservative one-step modal algebras and one-step
frames.

Definition 5. A one-step modal algebra is a quadruple A = (A0, A1, i0,♦0),
where A0, A1 are Boolean algebras, i0 : A0 → A1 is a Boolean morphism, and
♦0 : A0 → A1 is a semilattice morphism (i.e., it preserves only 0,∨). The
algebras A0, A1 are called the source and the target Boolean algebras of the one-
step modal algebra A. We say that A is conservative iff i0 is injective and the
union of the images i0(A0) ∪ ♦(A0) generates A1 as a Boolean algebra.

From the dual semantic point of view we have the following:

Definition 6. A one-step frame is a quadruple S = (W1,W0, f, R), where W0,W1

are sets, f : W1 →W0 is a map and R ⊆W1×W0 is a relation between W1 and
W0. We say that S is conservative iff f is surjective and the following condition
is satisfied for all w1, w2 ∈W1:

f(w1) = f(w2) & R(w1) = R(w2) ⇒ w1 = w2. (4)

Similarly to the case of Kripke frames, above we used the notation R(w1)
to mean the set {v ∈ W0 | (w1, v) ∈ R} (and similarly for R(w2)). The dual
of a finite one-step frame S = (W1,W0, f, R) is the one-step modal algebra
S∗ = (℘(W0), ℘(W1), f∗,♦R), where f∗ is the inverse image operation and ♦R
is the semilattice morphism associated with R. The latter is defined as follows:
for S ⊆ W0, we have ♦R(S) = {w ∈ W1 | R(w) ∩ S 6= ∅}. Conservativity also
carries over from one-step frames to one-step modal algebras (see [3] for a proof
of the following proposition):

Proposition 3. A finite one-step frame S is conservative iff its dual one-step
modal algebra S∗ is conservative.

To complete our list of definitions, let us observe that a one-step modal
algebra A = (A0, A1, i0,♦0) in which we have A0 = A1 and i0 = id is nothing
but a modal algebra. Similarly, a one-step frame S = (W1,W0, f, R) where we
have W0 = W1 and f = id is just a frame. For clarity, we shall sometimes
call modal algebras and frames standard or plain modal algebras and frames,
respectively.

3.2 Inference validation in step algebras

We spell out what it means for a one-step modal algebra and a one-step frame to
validate a modal calculus K and a finite presentation Γ (the definition requires
little modifications with respect to [3, 4] because we do not restrict to reduced
rules).



Let us fix two finite sets of variables x = x1, . . . , xn, y = y1, . . . , ym and
a finite set of parameters a = a1, . . . , am (either x, y or a can be empty). An
a-augmented one-step modal algebra A = (A0, A1, i0,♦0, a) is a one-step modal
algebra together with displayed elements a = a1, . . . , am ∈ A0 (these elements
will interpret parameters).

Given an a-augmented one-step modal algebra as above, an A-valuation is a
map associating with each variable xi ∈ x an element v(xi) ∈ A0 and with each
variable yj ∈ y an element v(yj) ∈ A1. For every formula φ(x) of complexity 0,
we define φv0 ∈ A0 as follows:

xv0i = v(xi) (for every variable xi ∈ x); av0i = ai (ai ∈ a);
(φ1 ∗ φ2)v0 = φv01 ∗ φv02 (∗ = ∧,∨); (¬φ)v0 = ¬(φv0).

For every formula φ(x) of complexity 0, we define φv1 ∈ A1 as i0(φv0). For every
ψ(x, y) of complexity at most 1 in which the y do not have occurrences within
the scope of a modal operator, ψv1 ∈ A1 is defined as follows:

yv1j = v(yj) (for every variable yj ∈ y); (♦φ(x))v1 = ♦(φv0);

(ψ1 ∗ ψ2)v1 = ψv1
1 ∗ ψv1

2 (∗ = ∧,∨); (¬ψ)v1 = ¬(ψv1).

Definition 7. Suppose that the formulae δ1(x, y), . . . , δk(x, y), γ1(x, y), . . . , γl(x,
y) have modal degree at most one and that the variables y are the variables not
occurring in them inside the scope of a modal operator. We say that a one-step
modal algebra A validates the multiple-conclusion rule

γ1, . . . , γn
δ1 | · · · | δm

(R)

iff for every A-valuation v, we have that if (φv11 = 1 and · · · and φv1m = 1),
then (γv11 = 1 or · · · or γv1n = 1). We say that A validates a modal calculus K
(written A |= K) iff A validates all inferences from K.

Notice that it might well be that K1 and K2 are equivalent (in the sense that
rules from K1 are derivable in K2 and vice versa), but that only one of them is
validated by a given A. This phenomenon, however, cannot happen in case A is
standard (i.e., it is a modal algebra).

For formulae φ(a) where the variables x do not occur, the valuation v is
not relevant. Thus, in such cases, we may write φa0, φa1 instead of φv0, φv1,
respectively, to stress the fact that the augmentation a is the essential part of
the definition. We write A |= φ(a) for φa1 = 1 and A |= S(a) iff there is a
φ ∈ S such that A |= φ. We say that A validates the presentation Γ (in symbols,
A |= Γ (a)) iff we have that A |= φ(a) for all φ(a) ∈ Γ .

The notion of an S-valuation for a one-step frame S is the expected one,
namely v is an S-valuation iff it is an S∗-valuation. In the same way the other
notions introduced above (augmentation, φv0, φv1, validation of a presentation,
of an inference, of an axiomatic system) can be extended by duality to one-step
frames.



Example 4. For the systems S4,S4.3,S5, it can be shown (by applying the ‘step’
variant of modal correspondence theory [3,4]) that a conservative one-step frame
S = (W1,W0, f, R)

- validates the rules of Example 1 iff it is step-transitive and step-reflexive, where
the latter means f ⊆ R and the former means R ⊆ f◦ ≥R (here ◦ is relation
composition and w1 ≥R w2 is defined to be R(w1) ⊇ R(w2));

- validates the rules of Example 2 iff it is step-transitive, step-reflexive and step-
linear, where the latter means ∀w1, w2 ∈ W1 (R(w1) ⊆ R(w2) or R(w2) ⊆
R(w1));

- validates the rules of Example 3 iff R(w1) = R(w2) for alll w1, w2 ∈W1.

We can specialize our notions to standard modal algebras and frames. An
a-augmentation in a modal algebra A = (A,♦) is a tuple a of elements from
the support of A, matching the length of a. For frames F = (W,R), we dually
take a tuple from ℘(W ), i.e., a tuple of subsets. Given such a-augmentation, we
can define A |= Γ (a) and F |= Γ (a) for a presentation Γ (a), just specializing
the above definitions (standard modal algebras and frames are special one-step
modal algebras and frames). Notice that F |= Γ (a) is global validity in terms of
the Kripke forcing from the modal logic literature, see e.g., [14, Sec. 3.1].

Proposition 4. Let A = (A,B, i,♦, a) be an augmented conservative one-step
modal algebra that validates the modal calculus K and the presentation Γ (a).
Then, for every hyper-formula S(a), we have that Γ `1

K S implies A |= S.

4 Semantic characterizations of the bpp and the fmp

In this section we first introduce the morphisms of one-step modal algebras and
one-step frames.

Definition 8. An embedding between one-step modal algebras A = (A0, A1,
i0,♦0) and A′ = (A′0, A

′
1, i
′
0,♦
′
0) is a pair of injective Boolean morphisms h :

A0 → A′0, k : A1 → A′1 such that

k ◦ i0 = i′0 ◦ h and k ◦ ♦0 = ♦′0 ◦ h . (5)

Notice that, when A′ is standard (i.e. A′1 = A′0 = and i′0 = id), h must be
k ◦ i0 and (5) reduces to

k ◦ ♦0 = ♦′0 ◦ k ◦ i0. (6)

For frames we have the dual definition. In the definition below, we use ◦
to denote relational composition: for R1 ⊆ X × Y and R2 ⊆ Y × Z, we have
R2 ◦ R1 := {(x, z) ∈ X × Z | ∃y ∈ Y ((x, y) ∈ R1 & (y, z) ∈ R2)}. Notice that
the relational composition applies also when one or both of R1, R2 is a function.

Definition 9. A p-morphism between step frames F ′ = (W ′1,W
′
0, f
′, R′) and

F = (W1,W0, f, R) is a pair of surjective maps µ : W ′1 → W1, ν : W ′0 → W0

such that
f ◦ µ = ν ◦ f ′ and R ◦ µ = ν ◦R′. (7)



Notice that, when F ′ is standard (i.e., W ′1 = W ′0 and f ′ = id), ν must be
f ◦ µ and (7) reduces to

R ◦ µ = f ◦ µ ◦R′. (8)

The following definitions introduce the semantic notions needed for our char-
acterization of bpp.

Definition 10. Let A0 = (A0, A1, i0,♦0) be a one-step modal algebra. A one-
step extension of A0 is a one-step modal algebra A1 = (A1, A2, i1,♦1) satisfying
i1 ◦ ♦0 = ♦1 ◦ i0. Dually, a one-step extension of the one-step frame S0 =
(W1,W0, f0, R0) is a one-step frame S1 = (W2,W1, f1, R1) satisfying R0 ◦ f1 =
f0 ◦R1.

Definition 11. A class of one-step modal algebras has the extension property
iff every conservative one-step modal algebra A0 = (A0, A1, i0,♦0) in the class
has an extension A1 = (A1, A2, i1,♦1) such that i1 is injective and A1 is also in
the class. A class of one-step modal frames has the extension property iff every
conservative one-step frame S0 = (W1,W0, f0, R0) in the class has an extension
S1 = (W2,W1, f1, R1) such that f1 is surjective and S1 is also in the class.

Theorem 3. A modal calculus K has the bpp iff the class of finite one-step
modal algebras (equivalently, the class of finite one-step frames) validating K
has the extension property.

The characterization of the bpp from Theorem 3 may not be easy to handle,
because in practical cases one would like to avoid managing one-step extensions
and would prefer to work with standard frames instead. This is possible, if we
combine the bpp with the finite model property.

Definition 12. A modal calculus K has the (global) finite model property, the
fmp for short, if for every tuple a of parameters, for every finite set of formulae
Γ (a) and for every hyper-formula S(a) we have Γ 6`K S iff there exists a finite
a-augmented modal algebra A such that A |= K, A |= Γ (a) and A 6|= S(a)
(equivalently, iff there exists a finite a-augmented Kripke frame F such that F |=
K, F |= Γ (a) and F 6|= S(a)).

We are ready for a characterization result:

Theorem 4. A modal calculus K has both the bpp and the fmp iff every finite
conservative one-step frame validating K is a p-morphic image of a finite frame
validating K (equivalently, iff every finite conservative one-step modal algebra
validating K has an embedding into a finite modal algebra validating K).

Example 5. Theorem 4 applies to all Examples 1 - 3. The construction is the
same in all cases and it is rather straightforward: given a finite conservative
step frame S = (W1,W0, f, R) validating the rules of the calculus, we can define
F′ = (W ′, R′) and µ so that condition (8) is satisfied as follows:

W ′ := W, µ := id, w1R
′w2 :⇔ R(w1) ⊇ R(w2).



5 Modal stable rules

Canonical formulae for transitive modal logics and intuitionistic logic were intro-
duced by Zakharyaschev (see [7] for an overview) who proved that all transitive
modal logics and all intermediate logics are axiomatizable by canonical formulae.
Jérabek [13] defined canonical rules, which are multiple-conclusion rules gener-
alizing canonical formulas. Jérabek used these rules for an alternative proof of
decidability of admissible rules for intuitionistic logic and transitive modal logics
K4, S4, S4.3, etc. However, there are non-transitive modal logics not axiom-
atizable by canonical rules. [2] defines stable canonical rules, which differ from
Zakharyaschev’s canonical formulae and Jérabek’s canonical rules and proves
that every modal logic (including non-transitive ones) is axiomatizable by these
rules. In this section we will concentrate on logics axiomatizable by a special
subclass of stable canonical rules.

Subframe logics are the logics whose frames are closed under taking sub-
frames. Transitive subframe logics are axiomatizable by a special subclass of
canonical formulae called subframe formulae, see, e.g., [7]. A similar restriction
to stable canonical rules gives a class of stable logics. But stable logics are not
necessarily transitive. Logics in this class are exactly the logics that are closed
under order-preserving onto maps. Transitive subframe logics and stable logics
enjoy the fmp. Transitive subframe logics enjoy the fmp because they admit se-
lective filtration, and stable logics enjoy the fmp because they admit the standard
filtration [2].

In this section we show that all stable logics admit an axiomatization that has
the bounded proof property. As we will see below, stable canonical rules will not
produce an axiomatization that has the bpp. However, we will modify these rules
so that the obtained rules do possess the bpp. This provides a systematic method
of producing infinitely many proof calculi that are good (enjoying the bpp) from
the proof-theoretic point of view. We remark that Lahav [16] also considers a
class of modal logics whose Kripke frames satisfy special first-order conditions.
He introduces hypersequent calculi for these logics and proves that these calculi
admit cut elimination. It is easy to see that the non-transitive logics studied
in [16] are stable logics – their frame classes are closed under order-preserving
onto maps. Thus, the class of logics we investigate in this section extends the class
of logics studied in [16] in the non-transitive case. (The transitive logic K4 is not
stable. Proof theoretic aspects of stable logics over K4 will be investigated in the
forthcoming paper.) Note, however, that [16] studies cut elimination, whereas we
work with the bpp only. Now, if cut elimination gives the subformula property as
a by-product, the bpp follows trivially. The converse is not true: we might have
the bpp without the subformula property. However, it should be noticed that
the bpp is a strong evidence about the proof-theoretic robusteness of a system
and supplies a loose notion of analiticity which is sufficient for decidability and
which can hold for a wide class of calculi, including cases where the design of
cut-eliminating systems looks very problematic.

We start by recalling the definition of modal stable rules. Let F = (F,RF )
be a finite frame. For every a ∈ F we introduce a new propositional variable xa.



The modal stable rule of F is∨n
i=1 xai ,

∧
i6=j ¬(xai ∧ xaj ),

∧n
i=1(xai → �

∨
b∈RF (ai)

xb)

¬xa1 | · · · | ¬xan

(rF)

where we suppose that F = {a1, . . . , an}.
A stable embedding of a modal algebra A = (A,♦) into a modal algebra

B = (B,♦) is an injective Boolean morphism µ : A → B such that we have
♦µ(x) ≤ µ(♦x) for all x ∈ A. For a frame F we denote by F∗ its dual modal
algebra and for an algebra A we denote by A∗ its dual frame. Recall that a
map f : W → W ′ between Kripke frames (W,R) and (W ′, R′) is called order-
preserving if for each x, y ∈W we have xRy implies f(x)R′f(y).

The following proposition is proved in [2].

Proposition 5. Let A = (A,♦) be a modal algebra. Then

1. A does not validate (rF) iff there is a stable embedding of F∗ into A.
2. A does not validate (rF) iff there is a surjective order-preserving map from

A∗ onto F (here A∗ is the descriptive frame dual to A).

Our aim is to show that all modal calculi axiomatized by rules of the kind
(rF) have the bounded proof property. Rules (rF), however, are not good for the
bpp, see the counterexample below. We replace rules (rF) by modified versions.

For each a ∈ F we just add an extra propositional variable ra and define the
new rule (r+F ) by∨n
i=1 xai

,
∧
i 6=j ¬(xai

∧ xaj
),

∧n
i=1(xai

→ �rai
),

∧n
i=1(rai

→
∨
b∈RF (ai)

xb)

¬xa1 | · · · | ¬xan

(since we want the ra to have at least one occurrence inside a modal operator,
we might also add premisses like �(ra ∨ ¬ra) if needed).

Lemma 1. Rules (r+F ) and (rF) are inter-derivable.

Proof. On one side, (rF) can be obtained from (r+F ) by applying the substitution
rai 7→

∨
b∈RF (ai)

xb. On the other side, we apply necessitation and distribution
to the premise

∧n
i=1(rai

→
∨
b∈R(ai)

xb) and then transitivity of implication to
obtain

∧n
i=1(xai

→ �
∨
b∈RF (ai)

xb).

Notice that the above fragment of a derivation, when plugged into a hyper-
proof, may increase the modal degree (if the substitution used to apply the rule
(rF) replaces the xb with formulae of, say, modal degree 1, we get formulae of
modal degree 2 when we use (rF) to simulate (r+F )). This is why (r+F ) is preferable
to (rF) from the point of view of the modal complexity analysis of proofs.

Theorem 5. A modal calculus comprising only rules of the kind (r+F ) enjoys
the bpp and fmp.



Proof. Let S = (W1,W0, f, R) be a finite conservative step frame. Consider the
Kripke frame (W1, R̃) where R̃ is defined by

wR̃w′ iff wRf(w′) (9)

(i.e. we have R̃ = fo ◦R, where fo is the converse of f , seen as a relation). This
is a finite Kripke frame having S as p-morphic image. In fact, (8) is satisfied by
taking µ := id because f ◦ R̃ = f ◦ fo ◦R = R, (we used that f ◦ fo = id, which
holds by the surjectivity of f).

We now show that (W1, R̃) validates (rF) (recall that (r+F ) is equivalent to
it in standard frames because the two rules are inter-derivable): to this aim,
we prove that if there is a surjective R-preserving map µ from (W1, R̃) onto
F = (F,RF ), then S does not validate (r+F ). Suppose there is such a µ. Define
now a valuation v by taking v(xa) = {w | µ(w) = a} ⊆W1 and

v(ra) = {v ∈W0 | ∀w (f(w) = v ⇒ aRFµ(w))}.

The definition is well defined because the variables having at least an occurrence
inside a modal operator are precisely the ra’s, so these variables are evaluated
as subsets of W0 and the other ones as subsets of W1. Thus v evaluates to
1 the formulae

∨n
i=1 xai

and
∧
i 6=j ¬(xai

∧ xaj
), whereas ¬xa1 , . . . ,¬xan

are not
evaluated to 1 (because µ is surjective). It remains to check that for every a ∈ F ,
we have (i) xv1a ⊆ � rv1a and (ii) rv1a ⊆ (

∨
b∈RF (a) xb)

v1. Now (i) holds by (9) and
because µ is order-preserving: if w ∈ xv1a and wRv then v ∈ rv1a because if
f(w′) = v then wR̃w′ and consequently a = µ(w)RFµ(w′). To prove (ii), pick
w ∈ f∗(ra); we have in particular aRFµ(w), thus w ∈ (

∨
b∈RF (a) xb)

v1. a

From Lemma 1, we immediately obtain the following result from [2]:

Corollary 2. A modal calculus comprising only rules of the kind (rF) enjoys
the finite model property.

The following counterexample shows that we really need to replace (rF) by
(r+F ) to get the bpp.

Example 6. Consider the two element reflexive chain

F := b 	−→	 a

The rule (rF) simplifies to
xa → �xa
xa | ¬xa

This rule is validated in a step frame S = (W1,W0, f, R) iff for every proper
subset a ⊆ W0 (i.e., for every subset different from ∅,W0) there is w ∈ W1

such that f(w) ∈ a and R(w) 6⊆ a. In a standard frame (W,S) this means that
every pair of elements of W are connected via an S-path (to see this, consider
as a the set of points which are reachable in n ≥ 0 steps by any given point
and show that such an a must be total). It is not difficult to check that putting



W1 := {w1, w2},W0 := {v}, f(w1) := f(w2) := v,R(w1) := {v}, R(w2) := ∅, we
obtain a finite conservative one-step frame that validates (rF) but cannot be a
p-morphic image of a standard Kripke frame validating it (because in the latter
there cannot be terminal points and any pre-image of w2 along a p-morphism
must be such by (8)). Since the fmp holds for the modal calculus axiomatized by
the rule (rF) according to Corollary 2, it is clear that it is the bpp that fails for
it (failure of the bpp can also be directly checked by using Theorem 3 instead of
Theorem 4 and Corollary 2).
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A Proofs from Section 2

For the proof of the algebraic completeness Theorem 2, we need a couple of
lemmas:

Lemma 2. Weakening is admissible: we have Γ `K S ⇒ Γ `K S | S′, for every
S′.

Proof. Trivial by induction on the length of derivation. a

Lemma 3. Let Γ be a set of formulae, α a formula, S a hyper-formula and K a
set of multiple-conclusion rules. If Γ ∪ {α} `K S and Γ `K α | S, then Γ `K S.

Proof. Assume Γ `K α | S. Using weakening, by induction on proof length, it
is easy to see that Γ ∪ {α} `K S̃ implies Γ `K S | S̃ for every S̃. The claim
now follows because S | S is equal to S (hyper-formulae are defined as sets of
formulae). a

Theorem 2 Let K be a set of multiple-conclusion rules. Then Γ `K S iff the
multiple-conclusion rule Γ/S is valid in every modal algebra validating K.

Proof. One direction is trivial. For the other direction, let us suppose that Γ `K
S does not hold. By Zorn’s lemma, pick Γ̃ to be a maximal set of formulae
containing Γ such that Γ̃ 6`K S. We claim that for every hyperformula α1 | · · · |
αn

Γ̃ `K α1 | · · · | αn | S ⇒ ∃i Γ̃ `K αi. (10)

In fact, if this does not hold, by the maximality of Γ̃ , we have both that Γ̃ `K
α1 | · · · | αn | S and that Γ̃ ∪ {α1} `K S. By the above lemma, this implies
Γ̃ `K α2 | · · · | αn | S. Repeating the argument n-times, we obtain Γ̃ `K S,
contradiction.

Now notice that Lemma 3 and the maximality of Γ̃ imply that if Γ̃ `K α,
then α ∈ Γ̃ and �α ∈ Γ̃ (the latter is because necessitation rule is mentioned in
condition (ii) of Definition (3)). In addition, Γ̃ contains Γ and is disjoint from
S, by condition (i) of Definition (3). Thus, if we put

α1 ≈ α2 ⇔ α1 ↔ α2 ∈ Γ̃

we can introduce on the set of equivalence classes a modal algebra structure
A = (A,♦). Since Γ is included in Γ̃ and is disjoint from S, A does not validate
Γ/S. By the claim (10) and condition (ii) of Definition (3), it is evident that A
validates all rules from K. a

Corollary 1 Let K be a set of multiple-conclusion rules. For each multiple-
conclusion rule Γ/∆, we have K ` Γ/∆ iff Γ `K ∆.



Proof. If is sufficient to observe that (I) if Γ `K ∆, then Γ/∆ belongs to every
modal rule system K containing K and that (II) {Γ/∆ | Γ `K ∆} is a modal
rule system extending K.

Claim (II) is immediate from Lemmas 2, 3.
Claim (I) is by induction on the length of the K-hyper-proof witnessing

Γ `K ∆: for instance, if the K-hyper-proof ends with an application of the
necessitation rule according to Definition 3(ii), then from Γ/α, S ∈ K (this holds
by induction hypothesis) and from the fact that the necessitation rule belongs to
every modal rule system, from conditions (iii) and (ii) of Definition 1, we obtain
Γ/�α, S ∈ K. 5 a

We now fill the missing details for the proof of the

Proposition 1 Let H be a finite set of hyper-rules. Then it is possible to produce
a set of rules K such that for all Γ, S̃ we have Γ 
H S̃ iff Γ `K S̃.

Proof. Consider a hyper-rule S1, . . . , Sk/S from H: to obtain K, we simply re-
place it with the set of rules γ(S1), . . . , γ(Sn)/S, varying γ among the functions
that pick one formula from each Si, for each i = 1, . . . , n.

The right-to-left claim of the proposition is immediate by weakening. To show
the left-to-right direction, we use the argument below. Suppose H ′ is obtained
from H by replacing the hyper-rule S1, . . . , Sn/S with the pair of rules

S′1, S2, . . . , Sn/S, S′′1 , S2, . . . , Sn/S (11)

where we suppose that S′1, S
′′
1 are both not empty and such that S1 = S′1 ∪

S′′1 . We claim that we have Γ 
H S iff Γ 
H′ S (clearly, the statement of
the proposition follows from an iterated application of this claim). Again that
Γ 
H S̃ ⇐ Γ 
H′ S̃ holds is trivial by weakening. Now suppose that we have
Γ 
H S̃. In the derivation witnessing this, there will possibly be lines labelled by
S1σ | T, . . . , Snσ | T justifying a line labelled Sσ | T via the use of the hyper-rule
S1, . . . , Sn/S. The derivation can be corrected so to use the rules (11) instead
(iterated corrections will eliminate any use of the rule S1, . . . , Sn/S).6 We first
produce (by weakening) derivations of S2σ | S′′1σ | T and · · · and Snσ | S′′1σ |
T . These hyperformulae, combined with S′1σ | S′′1σ | T yield a derivation of
S′′1σ | Sσ | T by applying the first hyper-rule from (11). By weakening again,
we produce now derivations of S2σ | Sσ | T and · · · and Snσ | Sσ | T . These
hyperformulae, combined with S′′1σ | Sσ | T yields a derivation of Sσ | Sσ | T by
applying the second hyper-rule from (11) and we are done because Sσ | Sσ | T
is equal to Sσ | T (hyperformulae are sets, not multisets). a

5 Notice that we added S to α because, according to the remark following Defi-
nition 3, when we apply the necessitation rule α/�α, then we deduce �α | S from a
proof line containing the hyperformula α | S.

6 Applying multiset induction it is possible to show that the order of corrections
does not matter. Alternatively, one can start correcting subderivations requiring a
single use of the rule S1, . . . , Sn/S.



B Missed Proofs from Sections 3 and 4

In this appendix we collect proofs requiring minimal modifications to the proofs
of the corresponding statements from [3,4].

Proposition 2 A calculus K has the bounded proof property iff for every hyper-
formula S of modal complexity at most 1 and for every Γ containing only for-
mulae of modal complexity at most 1, we have Γ `K S ⇒ Γ `1

K S.

Proof. We define the modal complexity of a substitution σ to be the maximum of
the complexities of the formulae σ(xi), varying x among propositional variables.
Notice as a general fact that

(*) if σ has modal complexity at most k and φ has modal complexity at most l,
then φσ has modal complexity at most k + l.

Given our Γ, S of modal complexities at most n, we define Γi, Si, σi (0 ≤ i ≤
n − 1) such that: (i) σi has modal complexity at most 1 and Γi, Si have modal
complexities at most n−i; (ii) Si+1σi+1 = Si; (iii) Γi+1σi+1 is equal to the union
of Γi with some tautologies of modal complexity at most 1; (iv) Γi+1 `K Si+1

iff Γi `K Si.
We let Γ0 be Γ , S0 be S and σ0 be the identity replacement. To define the

i+ 1-th data, consider all subformulae of the kind ♦ψ occurring in Γi, Si, where
ψ has complexity 0. For each such subformula, pick a fresh variable xψ, replace
everywhere ♦ψ by xψ in Γi, Si. Then add xψ ↔ ♦ψ to Γi and let σi+1 be given
by {xψ 7→ ♦ψ}ψ. Hence Properties (i)-(iv) hold.

Now suppose that Γ `K S. Then we have Γn−1 `K Sn−1 by (iv) and also
Γn−1 `1

S Sn−1 by (i) and the hypothesis of the proposition. Next, if we apply
σn−1 to the proof certifying Γn−1 `1

Ax Sn−1, by (ii)-(iii) and (*), we obtain
Γn−2 `2

Ax Sn−2. Repeating this for σn−1, . . . , σ1, we finally obtain Γ `nAx S. a

Proposition 4 Let A = (A,B, i,♦, a) be an augmented conservative one-step
modal algebra that validates the modal calculus K and the presentation Γ (a).
Then, for every hyper-formula S(a), we have that Γ `1

K S implies A |= S.

Proof. Let S1, . . . , Sn be the derivation of S witnessing Γ `1
K S. Notice that all

formulae in such a proof must have modal complexity at most one. In addition,
we can freely suppose that variables do not occur in the proof (only parame-
ters are there). If there are variables, they can be replaced by a tautology, still
obtaining a proof witnessing Γ `1

K S, because variables do not occur in Γ, S.
Recall from Definition 3 that each Si belongs to Γ (modulo weakening) or is
obtained from the previous Sj ’s by applying the rules of K, modus ponens, or
necessitation.

The case of modus ponens is easy. Now assume that Sj is obtained from Si
by applying the rule of necessitation: thus Si is φ | S̃ and Sj is �φ | S̃. Then φ is
of complexity 0 (otherwise the complexity of Sj will be greater than one). The
induction hypothesis yields that either A |= S̃(a) or A |= φi. The former case is



trivial and in the latter we have φa1i = 1, and i(φa0i ) = 1. Since A is conservative,
i is injective, which yields φa0i = 1, thus (�φi)a1 = �φa0i = 1 and finally A |= Sj .

For the case of inference rules, we argue as follows. Suppose that Si is ob-
tained from Si1 , . . . , Sik by applying the reduced rule φ1, . . . , φk/ψ1 | · · · | ψl
from K. Thus, for some S̃ and for some substitution σ, we have that Si1 is
S̃ | φ1σ, . . . , Sik is S̃ | φkσ and Si is S̃ | ψ1σ | · · · | ψlσ. Suppose that
x = x1, . . . , xn are the variables having in the rule at least an occurrence in-
side a modal operator and that y = y1, . . . , ym are the remaining variables.
Since every propositional variable xi ∈ x occurring in the rule must have an
occurrence inside a ♦ and the formulae occurring in the proof have modal com-
plexity at most 1, the substitution σ must map such variables to formulae of
complexity 0 (on the other hand, the y can be mapped into formulae of com-
plexity 0 or 1). In other words, we have that σ(xi) = θi(a) where the θi have
modal complexity 0 (1 ≤ i ≤ n) and σ(yj) = ζj(a), where the ζj have modal
complexity 0 or 1 (1 ≤ j ≤ m). If we take a valuation w such that w(xi) = θa0i
(1 ≤ i ≤ n) and w(yj) = ζa1j (1 ≤ i ≤ m), we can easily check by induction
that, for every subformula δ of any formula occurring in the rule, we have that
δw1 is equal to (δσ)a1. Thus, from the induction hypothesis, in case A does not
validate S̃, we have (φ1σ)a1 = 1, . . . , (φmσ)a1 = 1, that is φw11 = 1, . . . , φw1m = 1.
Since A validates the rules, we must have that there is k = 1, . . . , n such that
1 = ψw1

j = (ψjσ)a1, namely A |= Si. a
The following lemma is immediate.

Lemma 4. Let (h, k) be an embedding between one-step modal algebras A =
(A0, A1, i0,♦0) and A′ = (A′0, A

′
1, i
′
0,♦
′
0). Suppose they are both augmented and

that for the respective interpretations a, a′ of the parameters a = a1, . . . , an, we
have h(a) = a′, that is, h(ai) = a′i for all i = 1, . . . , n. Then for every hyper-
formula S(a), we have A |= S(a) iff A′ |= S(a).

Corollary 3. Suppose that there is an embedding between the one-step modal
algebras A and A′. Then, if A′ validates a modal calculus K, so does A.

We now introduce an important ingredient of our proofs, namely diagrams.
These are adaptations to our step contexts of classical methods in mathematical
logic, due to A. Robinson in the model-theoretic environment [8, Ch. 2.1] and
due to Jankov and Fine in the modal logic environment (see, e.g., [14, Sec.
7.3], [7, Sec. 9.4]). These rules are also similar to stable canonical rules of [2].

Let A = (A,B, i,♦) be a finite conservative one-step algebra. For each a ∈ A
we introduce a parameter pa (below we call a the tuple of such parameters). Let

Γ 0
A(a) := {pa∨b ↔ pa ∨ pb : a, b ∈ A} ∪

{pa∧b ↔ pa ∧ pb : a, b ∈ A} ∪
{p¬a ↔ ¬pa : a ∈ A}.

We augment A by interpreting every parameter pa as a. By the conservativity
of A, for every b ∈ B, there is θb such that b is equal to θa1b . Notice that from
our definitions, it follows in particular that for a ∈ A, we have θi(a) = pa.

Now let



Γ 1
A(a) := {θa∨b ↔ θa ∨ θb : a, b ∈ B} ∪

{θa∧b ↔ θa ∧ θb : a, b ∈ B} ∪
{θ¬a ↔ ¬θa : a ∈ B} ∪
{θ♦a ↔ ♦pa : a ∈ A}.

The positive diagram of A is the set of formulae ΓA(a) := Γ 0
A(a)∪Γ 1

A(a) and
the negative diagram of A is the set of formulae

∆A(a) := {θa ↔ θb : a 6= b, for a, b ∈ B}.

In this paper, we view the negative diagram as a hyper-formula.
We say that an augmented modal algebra C refutes ΓA ` ∆A iff we have

C |= φ(a) forall φ(a) ∈ ΓA and C 6|= ∆A. The following Lemma is proved in [3]:

Lemma 5. Let A be a conservative finite one-step algebra with the natural aug-
mentation a (interpreting every parameter pa to a). Then

1. A refutes ΓA ` ∆A.
2. For each conservative one-step algebra (C0, C1, j,♦), there is an augmenta-

tion c such that C = (C0, C1, j,♦, c) refutes ΓA ` ∆A iff A is embeddable
into C.

The following lemma (also proved in [3]) relates embeddings into standard
algebras with extensions.

Lemma 6. Let A = (A0, A1, i0,♦0) be a one-step modal algebra and let (k◦i0, k)
be an embedding of it into a standard modal algebra A = (A,♦). Then the one-
step modal algebra A′ = (A1, A, k,♦ ◦ k) is an extension of A. Moreover, if A
validates a modal calculus K, then so does A′.

Theorem 3 A modal calculus K has the bpp iff the class of finite one-step modal
algebras (equivalenly, the class of finite one-step frames) validating K has the
extension property.

Proof. Suppose that the class of one-step modal algebras validating K has the
extension property and let Γ (a) be a finite presentation (i.e., a finite set of
formulae of modal complexity at most 1) such that Γ 6`1

K S for a hyper-formula
S(a) of modal complexity at most 1. We adapt the Lindembaum-like construction
of the proof of Theorem 2 to build a one-step modal algebra A0 = (A0, A1, i0,♦0)
as follows.

By Zorn lemma, pick Γ̃ to be a maximal set of formulae containing Γ such
that Γ̃ 6`1

K S. By the same argument used in the proof of Theorem 2, we have
that for every hyperformula α1 | · · · | αn of modal degree at most 1

Γ̃ `K α1 | · · · | αn | S ⇒ ∃i Γ̃ `K αi. (12)

Now if we put
α1 ≈ α2 ⇔ α1 ↔ α2 ∈ Γ̃



we can introduce on the set of equivalence classes a step algebra structure
A0 = (A0, A1, i0♦0), by considering the equivalence classes of the formulae of
complexity 0 and of complexity (0 or 1), respectively, with the obvious mor-
phisms. Moreover, using the claim (12) and considerations similar to those em-
ployed in the proof of Theorem 2, we can prove the following: (i) i0 is injective
and A0 is conservative (because the formulae of modal complexity 1 can all be
obtained as Boolean combinations of formulae of modal complexity 0 and of
formulae of the kind ♦ψ, where ψ has complexity 0); (ii) A0 validates K by con-
struction; (iii) if we define an augmentation by taking a to be the tuple of the
equivalence classes in A0 of the parameters a, we have (

∧
Γ )a1 = 1 and φa1 6= 1,

for all φ ∈ S.
By the extension property, there is an extension A1 = (A1, A2, i1,♦1), with

injective i1, also validating K. We can freely assume that A1 is conservative;
otherwise, we replace A2 by the subalgebra generated by the images of i1 and
♦1, which as a subalgebra also trivially validates K. If we continue in this way,
we generate a chain

A0
i0−→ A1 → · · · → Ak

ik−→ Ak+1 → · · · (13)

of Boolean algebras equipped with semilattice morphisms

A0
♦0−−→ A1 → · · · → Ak

♦k−−→ Ak+1 → · · · (14)

satisfying the conditions ♦k+1 ◦ ik = ik+1 ◦ ♦k and such that for every k ≥ 0,
the one-step modal algebra (Ak, Ak+1, ik,♦k) validates Ax. Thus, the Boolean
algebra A obtained by taking the colimit of (13) can be endowed with a semi-
lattice morphism ♦ : A −→ A in such a way that A := (A,♦) is a standard
modal algebra validating Ax by construction. In this algebra, under the obvious
augmentation obtained by composing the previous augmentation a with the in-
clusion of A0 into the colimit, since the ik are all injective, we have A |= Γ (a) and
A 6|= S(a). Thus, we found an augmented (standard) modal algebra validating
K,Γ but not S: this implies that Γ 6`S S by Theorem 2.

Conversely, suppose that the bpp holds and take a conservative finite one-
step modal algebra A = (A0, A1, i0,♦). Let a be a list of parameters naming the
elements of A0. Since A (with the natural augmentation) refutes ΓA ` ∆A, by
Lemma 4, we have that ΓA 6`1

K ∆A. By the bpp, we have

ΓA 6`K ∆A. (15)

By Theorem 2, there is a modal algebra A such that A 6|= ΓA/∆A. Then by
Lemma 5,A is embeddable into A (seen as a one-step algebra), via an embedding,
say, (k ◦ i0, k). We now apply Lemma 6 and conclude that A′ = (A1, A, k,♦ ◦ k)
is an extension of A validating K. Since A′ needs not be finite, we can consider
the one-step subalgebra B = (A1, A2, k̃, ♦̃), where A2 is the Boolean subalgebra
generated by the images of A1 under k and ♦ ◦ k and where k̃, ♦̃ are k,♦ ◦ k,
respectively, restricted in their codomains. Since A has an extension B validating
K, the result follows. a



Theorem 4 A modal calculus K has both the bpp and the fmp iff every finite
conservative one-step frame validating K is a p-morphic image of some finite
frame validating K (equivalently, iff every finite conservative one-step modal
algebra validating K has an embedding into some finite modal algebra validating
K).

Proof. First assume that every finite conservative one-step modal algebra vali-
dating K has an embedding into some standard finite modal algebra validating
K. Since this implies that the class of finite one-step modal algebras validating
K has the extension property (by Lemma 6), K has the bpp by Theorem 3.
Now, to show that fmp holds, suppose that Γ 6`K S, for a finite set Γ (a) and for
a hyper-formula S(a). By applying the same method as in the proof of Propo-
sition 2, we can freely assume that Γ, φ have complexity 1. Like in the proof
of Theorem 2, pick Γ̃ (a) to be a maximal set of formulae such that Γ ⊆ Γ̃
and Γ̃ 6`K S and build the ‘Lindembaum algebra’ for Γ̃ ,K. This is the algebra
defined in the following way: for formulae ψ1(a), ψ2(a), let us put ψ1 ≈ ψ2 iff
Γ̃ `K ψ1 ↔ ψ2. This is clearly an equivalence relation and we can build an aug-
mented modal algebra out of it by defining all operations on equivalence classes.
In particular, the selected tuple a will be the tuple of the equivalence classes of
the a. We obtain Boolean subalgebras A0, A1, . . . by considering the equivalence
classes of the formulae of modal complexity at most 0, 1, ... Then S is refuted in
the augmented one-step modal algebra A = (A0, A1, i0,♦0, a) which is such that
A |= Γ (a) and A |= K. Here i0 is inclusion and ♦0 is the restriction of ♦ to A0 in
the domain and A1 in the codomain. By our assumption, A embeds (via some k
satisfying (6)) into a finite modal algebra A = (A,♦) validating K. We can aug-
ment A by taking the k(i0(a)) as the selected tuple interpreting the parameters
a. As embeddings preserve the interpretation of formulas (see Lemma 4), we have
that (A,♦, k(i0(a))) also refutes S(a), validates Γ (a). Hence, (A,♦, k(i0(a))) is
a countermodel to Γ `K S, and thus K has the finite model property.

Now suppose K has both the bpp and the fmp and let A be a finite con-
servative one-step modal algebra that validates K. Since A (with the natural
augmentation) refutes ΓA ` ∆A, by Lemma 4, we have that ΓA 6`1

K ∆A. By
the bpp, we have ΓA 6`K ∆A and by the fmp there exists an augmented finite
modal algebra C witnessing this; thus C refutes ΓA ` ∆A and validates K. By
Lemma 5, this implies that A is embedded into C. a
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